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INTRODUCTION

1.1/ HANDWRITING ANALYSIS

Handwriting is an effective behaviour identifier to portray the uniqueness of an individ-

ual. Many factors such as age, schooling, and emotional state can influence handwriting,

which is technically called intra-class variance. Handwriting characteristics, i.e., contours,

corners, transitions, thickness, etc., serve as discriminative features in biometric identifi-

cation with the exact representation as in the face, iris, fingerprints, or DNA. Compared

to electronic documents, handwriting provides more information about the person who

created it.

According to the situation, geographical location, traditional and historical backgrounds,

the form, rules, and style of handwriting change. While the learning process begins with

copying forms from the standard ”copybook” (see Figure. 1.1), over time, each individual

develops his or her own handwriting style as a skill of personal preference in drawing char-

acter shapes or combining them. A person will not produce exactly the same writing style

twice. It is even impossible or rare for two individuals to have the same writing style. This

variation is called interclass variance when it comes to dissimilarities between two texts

produced by two individuals. The handwriting was an essential part of communication

until the end of the twentieth century. Thus, there is a significant historical stock of hand-

writing that is the subject of research in many ways. Besides, the mass of handwritten

documents continues to grow daily, and more and more industries and services require

rapid processing techniques while ensuring the security of these documents. Machines

equipped with a handwriting analysis system have been set up to meet the needs of these

industries. Handwriting analysis is a challenging research area of pattern recognition that

has attracted much attention for psychologists, graphologists, forensic scientists, and his-

torians in recent decades. A system based on handwriting analysis applies the principles

of artificial intelligence, more specifically, machine learning or deep learning. The goal is

to equip computers to learn to recognize the shape and features of a character, word, or

phrase

3



4 CHAPTER 1. INTRODUCTION

Figure 1.1: Sample copybook form. (Amend and Ruiz (2000))

In general, most of the approaches reported for handwriting analysis have fo-

cused on converting handwritten texts into uniform representations that are machine-

understandable and easily reproducible. This field has become an important area of

research with many scientific/technical locks and application challenges/potentials. The

goal is to propose new concepts and reliable solutions for handwriting analysis and de-

velop effective recognition systems that can be applied to different writing styles.

Research in the field of handwriting analysis has many applications in modern life. It cov-

ers, in full extension, a wide range of applications. One can cite online/offline verification
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of handwritten signatures (Frias-Martinez et al. (2006)), handwritten musical scores for

writer identification (Fornés et al. (2008)), online/offline writer identification (Chahi et al.

(2020b); Abdi and Khemakhem (2015); Chahi et al. (2018)), classification of ancient doc-

uments (Arabadjis et al. (2013)), and smart meeting rooms for writer identification. It also

finds application in the writer’s gender, age range, and handedness (Liwicki et al. (2006)),

forensic to identify the responsible behind fraudulent/threatening letters, ransom notes,

and business agreements (Franke and Köppen (2001)). With the development of infor-

mation security, handwriting is used as a biometric feature useful as a forensic tool for

identity verification, validation, and authentication. It is a practical means of identification

and has great significance in authenticating authorship of questionable documents, identi-

fying forgeries, detecting alterations, verifying legal documents and cheques, or analyzing

indented writings and historical documents.

From the perspective of graphology, handwriting is used to characterize personality traits

to capture a person’s attitudes, behaviors, and emotions. Therefore, handwriting is also

referred to as brain writing because the manipulation of writing is done by the command

of the brain, which is delegated to the nervous system, hand, arm and fingers. Thus,

handwriting reflects mood swings and characterizes the writer’s state of mind at that mo-

ment. Nowadays, there are handwriting tests that distinguish between certain medical

disorders. These include shaking palsy, and Parkinson’s disease (Ünlü et al. (2006)), or

hardening of the arteries that supply the brain and those that supply the heart. Handwrit-

ing analysis can distinguish between those who suffer from arthritis and those who suffer

from hypertension (Amend and Ruiz (2000)).

In summary, we believe that there is a great need for automatic methods to assist hand-

writing analysts, forensic experts, and scientists in their tasks and research, especially

when dealing with large amounts of data. Computational algorithms for handwriting anal-

ysis facilitate the search space when comparing and matching questioned handwriting

samples and extract useful information from the writing.

1.1.1/ CHALLENGES IN HANDWRITING ANALYSIS

The handwriting analysis is a challenging task because of its high contextual variation

with different properties and handwriting form characteristics. ”Handwriting is a complex

motor skill that combines sensory, neurological, and physiological impulses. Factors such

as visual perception and acuity, form comprehension, central nervous system pathways,

and the anatomy and physiology of the bones and muscles of the hand and arm interact

to produce the desired output.” (Harrison et al. (2009)). Three factors cause variability in

handwriting: biological, cultural, and interior factors.
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1.1.1.1/ BIOLOGICAL AND CULTURAL FACTORS

Two fundamental factors contribute to the individuality of writing: genetic (biological or

natural) and cultural (memetic). Several genetic factors influence handwriting and con-

tribute to its uniqueness. First and foremost is the biomechanical structure of the hand

(Bulacu (2007)): left- or right-handedness (Francks et al. (2003)), the corresponding sizes

of the wrist and finger carpal bones, which strongly influence the pencil grip. Also, there

are muscle strength, fatigability, peripheral motor dysfunction (Bulacu (2007)), and central

nervous system (CNS) characteristics that affect fine motor control and influence hand-

writing (Van Galen et al. (1993)). Parkinson’s disease, for example, impairs fine motor

control, resulting in very shaky handwriting movements.

Cultural factors in handwriting biometrics are the culturally mediated influences on writing

forms (allographic variation). Handwriting variability within a population is strongly influ-

enced by the writing techniques taught in school and other factors such as geographic

location and time, religion, types of schools, and learning the handwriting of others while

imitating the writing style of parents (Bulacu (2007)).

The conclusion of whether the genetic factor or the cultural factor is the main factor has

been investigated in several studies. Srihari et al. (2016) showed that children’s writing

skills increase with continuous learning, time, and practice. They stop copying texts and

instead start writing from memory. At this point, children begin to develop their writing

style. Besides, the school in which the children learned to write could be identified (Srihari

et al. (2012)). Assuming that the genetic factor is the most dominant, the handwriting of

the twins cannot be distinguished. Nevertheless, the opposite is true: even in identical

twins, it was possible to determine their handwriting (Srihari et al. (2008)).

1.1.1.2/ INTERIOR FACTORS

Several conscious and unconscious factors determine the handwriting variability

(Schomaker (1998)):

• Affine transforms: Scale, rotation, shear, and translation are transformations con-

trolled consciously by the writer. In particular, slant (shear) is a common parameter

determined by the pen grip and the wrist subsystem’s orientation relative to the

fingers (see Figure 1.2 (a)).

• Neurobio-mechanical variability: Handwriting is too sensitive to high intraclass vari-

ability depending on the state of the writer (mood, time, and effort). Figure 1.2 (b)

shows different handwritings of the same word produced by the same scribe. This

variation is technically known as neuro bio-mechanical variation, which is more re-

lated to system state than system identity.
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• Sequence variability: As shown in Figure. 1.2 (c), characters can be reproduced

with different stroke sequences. This may have implications for handwriting analysis

using temporal data. This factor is also dependent on the instantaneous system

state during the writing process and is interpreted by the sequencing variability.

• Allographic variation: As shown in Figure 1.2 (d), allographic variation refers to the

inter-class variability between writers, considered as a discriminative information for

the writer identification task. However, it causes most of the problems in automatic

script recognition.

Figure 1.2: Interior factors for handwriting variability (Schomaker (1998)).

1.1.1.3/ WRITTEN LANGUAGE

Of the more than 7,100 languages in existence, there are at most 200 written languages.

While there are many approaches to Latin handwriting analysis, this is no less the case

with specific languages such as Chinese, Arabic, Hindu languages, etc. For example,

very few works have dealt with the Arabic language. It has its characteristics and writing

features which pose some difficulties to the existing systems. Arabic writing uses three-

letter roots, with vowels not always written. This makes the reconstruction of handwritten

words a difficult task. Moreover, every Arabic word is accompanied by diacritical marks.
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Therefore, these characters may be automatically removed when using segmentation

techniques in the pre-processing phase, affecting the system performance in characteriz-

ing the writing variability. Moreover, the same Arabic character may be written in different

shapes depending on its position within the word or syllable, and it is visually written

obliquely on the line rather than vertically as in most other languages. These various

challenges further complicate handwriting analysis, as there are a variety of problems

that need to be solved.

1.1.2/ DEFINITIONS

To investigate these challenges and develop a suitable, reliable, yet effective approach

based on handwriting analysis, we need to define:

• The type of available data (How is the data collected and acquired ?)

• The writing content (how is the handwritten text present in the database ? Is it

always the exact text ?)

• For what task is the eventual handwriting-based system to be used?

Based on these questions, handwriting analysis systems can be categorized into different

groups: online or offline data, text-independent vs. text-dependent, as described below.

1.1.2.1/ ON-LINE VS. OFF-LINE DATA

On-line handwriting analysis systems use temporal and spatial characteristics of the writ-

ing captured through digitizing acquisition devices at the writing’s real-time (e.g., Anoto

pen). These characteristics are transmitted to computers for analysis using a particular

transducer device, i.e., converting dynamic writing movements (see Figure 1.3) such as

strokes, trajectory, height, speed, writing time, and pen pressure, etc., into a sequence of

signals processed by computers. Handwriting analysis based on on-line data is expected

to perform better than offline data as many significant features of writing are available

during data acquisition. However, offline approach- based handwriting analysis remains

a challenging and complex research topic. It can be defined as a static process that

typically uses digitized handwritten images as input samples (which present allographic

and textural variation). Off-line data can be derived relatively well from the image pat-

tern of the writing. Thus, the image of the handwriting contains pattern features that are

needed to characterize the handwriting style. To capture these features, various image

processing and segmentation methods can be used. Research on handwriting analysis

using offline data has focused on the pattern recognition and computer vision community
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Figure 1.3: Example of online vs. offline handwriting word.

in recent decades. This is mainly due to its practical applications in security verification,

behavioral biometrics, forensic document examination, and ancient document analysis.

1.1.2.2/ TEXT-DEPENDENT VS. TEXT-INDEPENDENT METHODS

Depending on how the writing content is present in the database, handwriting analysis

systems can be further divided into two main types: text-dependent and text-independent.

Text-dependent methods deal with the textual content of the writing, asking different

scribes to produce the same fixed handwritten texts (e.g., signature verification). In gen-

eral, these methods are not applicable in many practical cases due to their limitation to

textual content (e.g., historical document analysis, forensic and identity verification).

In contrast, the text-independent method has no condition or restriction on the textual

content, and any text can be analyzed and evaluated. It addresses the variation of the

image writing texture with arbitrary texts and different character shapes, making the study

of this mode more challenging.

1.1.2.3/ WRITER RECOGNITION

Relevant tasks for handwriting analysis are writer identification, verification, and retrieval.

Writer recognition is the most general term that combines identification, retrieval, and

verification. The current thesis does not focus on what is written. Instead, we study the

problem of writer recognition, more specifically, writer identification and retrieval using

offline data, in a text-independent manner.



10 CHAPTER 1. INTRODUCTION

For writer identification, the system works on the basic principle of the ”one-to-many”

search technique within a large handwritten database. It uses multi-class ranking, where

the output is a predicted list, sorted by class, of writers whose writing style matches that

of the query sample. Identifying a person by their handwriting or signature is a form of be-

havioral biometric recognition. Thus, handwriting-based writer identification is considered

as an important area of research that is valuable as a forensic tool for identity verifica-

tion, validation, and authentication. For writer retrieval, the system searches and retrieves

all document samples produced by a particular writer within an extensive database ac-

cording to the similarity of handwritings (see Figure 1.4). As shown in Figure 1.5, Writer

verification systems only compare and match a query handwriting sample with another

sample. It answers whether two query handwriting samples are from the same person or

not (e.g. signature verification).

Writer identification, verification, and retrieval rely on pattern recognition and machine

learning techniques to characterize the writing variability. Note that in the remainder of

this thesis, we follow the published vocabulary of this field and refer to writer identification

for both identification and retrieval. This is because writer identification and retrieval can

be mapped to the same process by ranking the most similar reference samples to the

query one.

1.2/ WRITER IDENTIFICATION: MOTIVATIONS AND OBJECTIVES

A person’s writing is often recognizable, like faces or fingerprints. This feature attracts in-

terest and presents a challenge for researchers to explore this area. It is an essential part

of forensic document understanding and pattern recognition. This work addresses the

problem of text-independent writer identification using handwriting images (off-line data).

The motivation of this work stems from the need to improve behavioral biometric tasks,

which have been mainly used for writer identification, to enhance security and forensic

applications in today’s world. This can be achieved by developing near real-time, effec-

tive, and robust systems based on machine learning approaches. Some advantages and

reasons sustain the ongoing study of handwriting patterns for writer identification. From

the application point of view, one of the main advantages of handwriting-based writer

identification is that it minimizes human intervention. Thus, the oldest techniques used

by forensic examiners are tedious. With the advent of computerized handwriting analysis

systems, writer identification is improved, and the search space for comparing, matching,

and identifying the authenticity of unknown documents is reduced. Another important

need for writer identification arises from the field of security and biometric verification.

This refers to the potential use of handwritten words or small phrases to enhance real-

world security applications in mobile and internet-based environments. To investigate
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Identification 
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handwriting samples 
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Figure 1.4: Writer identification system. The handwriting samples that are most similar to
the query are retrieved from the reference database in a hit list.

Handwriting
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system
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SAME or DIFFERENT 

writers

Figure 1.5: Writer verification system. It compares two handwriting samples and auto-
matically decides whether or not the same person wrote the input samples.

the task of writer identification, established benchmarks described in the literature are

used to evaluate algorithms for writer identification. These databases contain extensive

handwriting data with different scripts and languages.

Writer identification is a challenging task that has been considered in several applica-

tion fields, ranging from preprocessing of handwriting images to biometric measurement

and classical handwriting classification methods. The present work contributes to the
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solution of numerous challenges that arise in these different stages. Writer identification

systems face several challenges, mainly due to (i) the diversity of languages used world-

wide. Each language has its own character form with different and complex writing styles;

(ii) the variability of writing (cf. Section 1.1.1) and degraded documents with noise back-

ground and accidental writing traces; (iii) the collection and reorganization of handwritten

databases is a difficult task. The goal is to develop efficient, real-time, robust, and generic

approaches to correctly handle the identification task’s writing style. Computational algo-

rithms facilitate writer identification by assisting scribe analysts and forensic experts in

reducing the search space to compare and match specific handwritten patterns within an

extensive reference database.

Addressing these challenging problems raises some important research issues in com-

puter vision: (1) How can we characterize the writing variability using automatic methods?

(2) What kind of feature representations are most appropriate, and how can we combine

them? (3) How can we exploit the feature representation of writing to identify its writer?

(4) What performance and results can be achieved with these algorithms?

Our research aims to develop an effective and state-of-the-art writer identification system

by exploiting theoretical and technical advances in image analysis and artificial intelli-

gence. Our contributions concern all the main steps of an automatic system for identifying

writers from handwriting:

• Image preprocessing step to reduce noise and unwanted details in scanned hand-

writing images.

• Segmentation of the preprocessed image into entities (words, characters, con-

nected components, etc.) reduces the complexity of the subsequent processing

modules.

• Feature extraction. It consists in defining, from the representation of the image, a

synthetic description of the shape to be recognized in a space with multiple dimen-

sions. In this work, texture descriptors and deep learning methods are proposed to

characterize the variability of the writing. A dimensionality reduction step would be

necessary to reduce the computational cost of the recognition process.

• Writer identification process. The query documents to be identified are automat-

ically compared and matched in a large handwritten database. Our goal is to

improve this step by developing new and robust distance-based approaches and

appropriate learned models. In the second case, our goal is to design effective

methods based on deep learning.

In this context, institutes such as the National Institute of Standards and Technology

(NIST) and the International Association of Pattern Recognition (IAPR) offer many pro-
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grams that promote pattern recognition and computer vision research. They regularly

hold competitions to award the best performing learning systems. This work proposes

to place itself in the middle of these international competitions for writer identification,

gaining interest on scientific, social, and economic levels.

1.3/ THESIS OUTLINE

This thesis is structured in six chapters to give the readers a comprehensive presentation

of the main contributions and prepare their background for a fluent experience.

Chapter 2 presents a comprehensive literature review of existing works for writer identifi-

cation, which are compared thoroughly in our performance evaluation in Chapter 5.

Chapter 3 introduces the main stages of our proposed framework for writer identification.

It details the different feature extraction methods we propose: Block Wise Local Binary

Count (BW-LBC), zones-based handcrafted, Cross Multi-Scale Locally encoded Gradient

Patterns (CLGP), and Local gradient full-Scale Transform Patterns (LSTP). This chapter

also explains the image preprocessing and segmentation method used and the classifi-

cation step employed to perform writer identification.

Chapter 4 shows that deep learning methods can be used to achieve further improve-

ments in writer identification performance. It includes a comprehensive explanation of

two proposed deep CNN models named DeepWINet and WriterINet for writer identi-

fication and a CNN framework for image retrieval for historical handwritten fragments

(ICFHR2020 competition).

Chapter 5 is devoted to the study of experimental results obtained with our various ap-

proaches to writer identification and image retrieval for historical handwritten fragments.

It describes in detail the handwritten databases used with the standard protocol setup to

evaluate our proposed approaches, compares and discusses our achieved performance

with SOTA systems. This chapter also highlights additional experiments conducted to

further investigate the effectiveness and stability of the proposed methods.

Chapter 6 summarizes the research results presented in this thesis and outlines the over-

all conclusions with future research directions opened by the work reported here.





2

WRITER IDENTIFICATION: LITERATURE

REVIEW

2.1/ INTRODUCTION

Writer identification based on handwriting style recognition is considered as one of the

most common research areas in pattern recognition and biometrics. It has received a lot

of interest and attention in recent decades, as it is a challenging task considering the large

within-writer and between-writer style variability. Several reviews (Rehman et al. (2019);

Dargan and Kumar (2019)) have extensively addressed writer identification SOTA. The

interest is to compare, evaluate and build reliable, near real-time and robust approaches

that would provide high identification performance. In this research area, one needs to

compute abstract and discriminative writing style features and extract details that reflect

personal writing habits. This poses a great challenge due to the high sensitivity of the

writing variability. Dealing with such extreme variations greatly improves the identification

task and reduces misclassifications. Most existing work generally considers the following

pipeline: pre-processing, feature extraction, and classification stages.

In this chapter, we survey well-known writer identification approaches proposed in recent

years, as a result of the renewed interest in the scientific community for this research

topic.

2.2/ RELATED WORKS

Here we summarize research work on writer identification. These approaches can be

categorized into four groups: texture-based, grapheme-based, contour-based, and auto-

learned methods.

15
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2.2.1/ TEXTURE-BASED METHODS

Texture-based methods have been widely used for writer identification. Based on the

assumption that handwriting can be considered as a texture image, texture features can

be extracted within blocks, regions, fragments, words, lines of text, or the entire image.

He and Tang (2004) presented a texture-based approach for Chinese off-line handwriting

writer identification. They considered each character as a texture from which each feature

vector is computed. The Weighted Euclidean Distance classifier (WED) is used to match

and compare the extracted features for writer identification. Local binary pattern (LBP),

local ternary pattern (LTP), and local phase quantization (LPQ) have been used in several

recent approaches (Bertolini et al. (2013); Nicolaou et al. (2015); Hannad et al. (2016);

Singh et al. (2018)) to capture texture features from handwriting and have shown promis-

ing results (writer identification performance) on benchmark handwriting databases.

Bertolini et al. (2013) proposed a texture-based system for writer identification using LBP

and LPQ texture descriptors. These descriptors capture texture information from normal-

ized blocks of writing. The system extracts small blocks and fills up the line while re-

moving unwanted components considered noise. The normalized blocks are constructed

from the filled lines as shown in Figure 2.1. The SVM classifier was used to identify the

authorship of the query documents. This approach has produced remarkable results on

a large database of 650 writers.

Figure 2.1: Example of text block generation in (Bertolini et al. (2013)). (a) Filling the line.
(b) Construction of a normalized texture block.
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Nicolaou et al. (2015) used a new variant of the LBP descriptor, known as Sparse Radial

Sampling LBP, for writer identification. SR-LBP feature vectors are computed from hand-

writing images and forwarded to the Nearest Neighbor classifier to identify query writers.

The proposed method showed SOTA performance on CVL and ICDAR2013 databases.

Hannad et al. (2016) presented a texture-based approach for writer identification of hand-

written documents. As shown in Figure 2.2, the authors segmented the handwriting into

small fragment sub-images and computed a feature vector for each fragment using LBP,

LPQ, and LTP texture descriptors. The query documents are classified based on the

extracted feature vectors using the nearest neighbor classifier (1-NN) with Hamming dis-

tance metric. They achieved correct performance on IFN/ENIT and IAM databases.

Similarly, Singh et al. (2018) conducted a comparative study of six textural descriptors

to identify writers. These include LBP, LPQ, Discrete Wavelet Transform -based Local

Extrema Pattern (DWT + LEP), Discrete Wavelet Transform -based Directional and Local

Extrema Pattern (DWT + DLEP), Center Symmetric Local Binary Co-occurrence Pattern

(CSLBCoP), and Local Tri-Directional Pattern (LTriDP) methods. The authors extracted a

set of nine texture blocks for each handwritten document using the algorithm presented in

(Hanusiak et al. (2012)). It aligns the text and reduces the spacing between characters,

words, and lines of text. An example of extracted texture blocks is shown in Figure 2.3.

Four different classifiers, including k- Nearest Neighbor (kNN), Support Vector Machine

(SVM), Multilayer Perceptron (MLP), and Random Forest (RF), are used to compare and

match texture features within the extracted texture blocks to identify unseen documents

from the test set. Singh et al. (2018) have experimentally shown that LBP and LPQ

methods perform best on three handwriting databases (Arabic, English, and Devnagri

Figure 2.2: Overview of the proposed system in (Hannad et al. (2016))
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scripts).

Figure 2.3: Example of input samples with the corresponding texture blocks for (a) IAM
(b) KHATT (c) Devnagri databases (Singh et al. (2018)).

Run-length histograms are a trendy feature method primarily because they are concep-

tually simple and effective in characterizing handwriting variability. In (Chawki and Labiba

(2010)), the gray-level run-length matrix (GLRL) and the gray-level co-occurrence ma-

trix (GLCM) are used to capture the textural information of the writing. The proposed

system uses the standard nearest neighbor rule with the Euclidean distance metric to

perform writer classification. An identification rate of 82.62% is reported for 130 different

writers. Later, Gordo et al. (2013) proposed multiscale run-length histograms for large-

scale document image identification. They successfully applied Principal Component

Analysis (PCA) for dimensionality reduction while maintaining (or even improving) their
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discriminative qualities. They reported state-of-the-art results on document classification

tasks. Djeddi et al. (2013) investigated text-independent writer identification and verifi-

cation in various scripts. They evaluated some SOTA features and found that run-length

histograms performed much better than other methods in the multi-script environment.

They showed encouraging results in two different languages, Greek and English.

He and Schomaker (2016) presented an original texture-based approach for writer identi-

fication. They introduced a feature method called General Pattern Run-Length Transform

(GPRLT) based on the run-length patterns of handwriting. It can be performed on bi-

nary handwriting images (GPRLT bin) or grayscale images (GPRLT gray) without using

any binarization or segmentation techniques. Figure 2.4 shows an example of the run

length (computed from the binary image of a handwritten character) with three scanning

lines and the corresponding converted string lines of the three patterns (1, 0, 1), (0, 1, 1),

and (1, 1, 1). Using the GPRLT (General Pattern Run-Length Transform) method, hand-

written documents are mapped into feature spaces containing the required properties of

the writing style. Then the normalized features are fed to the chi-square-based classi-

fier to perform the writer identification. Experimental results on the English CERUG-EN

database validate the effectiveness of the overall system in identifying query writers.

Later in (He and Schomaker (2017b)), two novel curvature-free features are proposed:

the run lengths of Local Binary Pattern (LBPruns), which is the run-length histogram of

local binary patterns (LBP), and the cloud of line distribution (COLD), which is the distri-

bution of line segments from contours of handwritten texts in polar coordinate space. The

Figure 2.4: The run-length of the more complex patterns p1, p2, and p3 on the scanning
line S formed by the three lines ly, ly+d, ly+2d with distance d. The run length of the pattern
p in the scanning line S is computed by the run length of the value ”1” in the converted
string line bp(x) (x is the index of the sequence)(He and Schomaker (2016)).
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overall method achieved good performance on writer identification in three benchmark

datasets.

Texture filter-based methods were also studied and evaluated for writer identification.

The work in (Said et al. (2000)) was the first to introduce a texture filter-based method

to study writer identification in a text-independent mode using 1000 test images written

by 40 writers. The overall approach normalizes the input handwriting and generates

standard blocks according to the following steps: 1) horizontal projection for line detection,

2) standardization of spacing between lines and words, 3) ”padding” of the text, and 4)

block segmentation. Figure 2.5 shows an example of document normalization. Said

et al. (2000) computed texture features captured from the preprocessed blocks using the

grayscale co-occurrence matrix (GSCM) and multichannel Gabor filtering (MGF). They

used the weighted Euclidean distance (WED) and nearest neighbor method (K-NN) to

classify the writers. The best results are obtained with an identification rate of 96%.

In another work presented by Shahabi and Rahmati (2006), four different texture filter-

based methods for characterizing writer variability were evaluated. These include sym-

metric Gabor filters, the Gabo sigmoidal transform, the Gabor energy feature, the Fourier

Original image
Horizontal Projection

Profile (HPP)

Word and Line
Spacing Normalization

Image Padding

Texture Block
(Size of 123×123)

Figure 2.5: Example of handwritten document normalization (Said et al. (2000)).
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transform of the Gabor output, and the co-occurrence matrix features. The weighted Eu-

clidean distance (WED) is used to identify unseen writers. Shahabi and Rahmati (2006)

reported that Gabor energy and Fourier transform of Gabor output performed better than

other methods. Later, Nejad and Rahmati (2007) proposed a system for off-line writer

identification of Farsi handwriting. A bank of Gabor filters is applied to images of Farsi

handwriting to extract texture features, which are fed to weighted Euclidean and Chi-

square classifiers to perform writer identification. Nejad and Rahmati (2007) achieved

correct performance on Farsi handwriting of 40 writers.

He et al. (2010) combined Gabor filter, wavelet decomposition, and fractal dimension to

improve the performance of writer identification. They generated multiple Gabor sub-

bands from the handwriting images, which were expanded into data sequences and de-

composed into a series of wavelet subpatterns by wavelet transformation. They used

normalized Euclidean distance to perform writer identification. Their method outperforms

existing Gabor-based methods and reports SOTA results. Helli and Moghaddam (2010)

introduced a feature relation graph (FRG) to encode the directions of Gabor and XGabor

filters based on some fuzzy variables. The Gabor filter is mainly used to quantify and

characterize frequent patterns. It responds to single lines and depends only on the gra-

dient of the line. Figure 2.6 shows an example of this response. XGabor filter is another

variant of the Gabor filter that responds to the writing curves. A 2D convolution operation

is used to obtain the response of an XGabor filter to an image. Figure 2.7 shows the re-

sults of applying a circular and an elliptical XGabor filter to an image. The authors used a

graph similarity measure in the classification phase to identify query writers. Experimental

results showed better SOTA performance on 100 writers.

The oriented Basic Image Feature (oBIF) column is an effective texture-based method

that has been used for character recognition (Newell and Griffin (2011)) and texture

Figure 2.6: (a) A sample image, (b) response of (a) to a Gabor filter with θ = π/4 and (c)
response of (a) to a Gabor filter with θ = 3π/4 (Helli and Moghaddam (2010)).



22 CHAPTER 2. WRITER IDENTIFICATION: LITERATURE REVIEW

Figure 2.7: (a) Example image consists of 9 different elliptic shapes, (b) result of convolv-
ing an elliptic XGabor with (a) and (c) result of convolving a circular XGabor with (a) (Helli
and Moghaddam (2010)).

recognition (Timofte and Van Gool (2012); Newell et al. (2010)). It was first adapted

for writer identification by Newell and Griffin (2014) and used by the winning team of

the ICDAR2017 Historical-Writer identification competition (Fiel et al. (2017); Abdeljalil

et al. (2018)). Newell and Griffin (2014) showed that the oriented Basic Image Feature

could achieve better writer identification performance even when there are no common

handwritten characters between training and test data. As shown in Figure 2.8, the oBIF-

based system in (Newell and Griffin (2014)) encodes the handwriting image into oriented

Basic Image Features (oBIFs) at two different scales. The oBIFs column features in the

encoded image are computed at each location by combining the oBIF type found at the

two scales. Note that there are seven possible symmetry types: slope, dark line, light

line, dark rotation, light rotation, saddle-like, and flat. The oBIF column features are then

counted across the image to form the final normalized feature histogram. The Near-

est Neighbour classifier was used to evaluate the oBIF column method using the IAM

database. The classification results demonstrated the ability of the oBIF column scheme

in characterizing the writing variability with a writer identification score of 99% (tested

on 300 writers). Similarly, Abdeljalil et al. (2018) used different configurations of oBIF

columns to extract texture information from handwriting. Feature matching and classifi-

cation were performed using standard distance metrics, including Euclidean, city block,

correlation, cosine, and Spearman. Experiments were performed on 720 different writ-

ers from the ICDAR2017 database. The approach provides better SOTA performance for

writer identification.

Kumar and Sharma (2019) presented a modeling approach based on descriptive distri-

bution curves (DDC-) and cellular automata (CA-). The DDC algorithm uses the pixel

distribution of handwritten text images to generate a unique curve as a feature vector fed

to a support vector machine (SVM) for writer identification. They also evaluated similarity-
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Figure 2.8: The various steps in the oBIF column encoding scheme as applied to writer
identification. An image is first encoded into oBIFs, with a local symmetry type and ori-
entation assigned to each location in the scale space. The oBIFs at two scales are then
stacked to form a pair or column of oBIFs at each position. To remove whitespace, any
column feature that contains a flat oBIF at either scale is discarded. The remaining col-
umn features are counted to form a histogram, which is normalised by dividing by the total
number of non-flat columns. (Newell and Griffin (2014)).

based classifiers (SBC) for classification. Both approaches (DDC + SVM and CA + SBC)

are combined into one system called DCWI to improve the overall writer identification

performance.

2.2.2/ GRAPHEME-BASED METHODS

Grapheme-based methods focus on extracting features within small writing traces called

graphemes. A robust segmentation algorithm is needed to crop the handwriting into

trace lines, and then the segmented lines are further fragmented into small segments

(small strokes of handwriting). Every segment might contain zero, one, or more than one

grapheme. Encoding techniques like the bag of words are used to locally encode the writ-
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ing graphemes over a prototype codebook produced by clustering. Bensefia et al. (2002)

first used graphemes for writer identification. They proposed a morphological grapheme-

based analysis to characterize each pattern’s redundancy, known as writer invariants

(cf. Figure 2.9). Two experiments were conducted to evaluate the effectiveness of their

method. Based on 88 writers, Bensefia et al. (2002) reported a 97.7% hit rate for writer

identification using large compressed handwriting samples. In the second experiment,

they investigated the effect of the number of graphemes on overall performance. The

score of 92.9% in identification rate is reached for 88 writers using only 50 graphemes of

each handwriting sample. The same authors further improved the same database results

(88 writers) by using graphemes with an information retrieval paradigm to compare each

unseen sample to the reference base (Bensefia et al. (2003)). They also evaluated a set

of concatenated graphemes (bi- and tri-gramme) as features to improve the task.

Van Der Maaten and Postma (2005) compared and tested Kohonen-trained grapheme

codebooks with grapheme codebooks constructed by random selection to improve writer

identification performance. They selected a random number of graphemes from train-

ing to form the feature codebook. The authors showed in experiments that random

grapheme codebooks performed better compared to Kohonen-based codebooks. Bu-

lacu and Schomaker (2005) compared and analyzed three different clustering methods

for grapheme codebook generation. These include k-means, Kohonen self-organizing

map (SOM) 1D and 2D (cf. Figure 2.10). Extensive experiments were conducted on

both the Firemaker and ImUnipen datasets to compare the three clustering methods over

a wide range of codebook sizes. The results for writer identification are consistent with

those reported in their previous work in (Schomaker and Bulacu (2004)).

Figure 2.9: Example of invariant clusters (graphemes) extracted from a handwritten page
(graphemes) (Bensefia et al. (2002)).
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Figure 2.10: Examples of codebooks with 400 graphemes. For K-means (a) and K-SOM
1D (b), the graphemes were arranged 25 in a row, while for K-SOM 2D (c) the original
20x20 SOM organization was retained (Bulacu and Schomaker (2005)).

Bensefia et al. (2005) used a cursive handwriting segmentation algorithm to extract

graphemes as local features for writer identification. PSI (88 writers) and IAM (150 writ-

ers) databases were used to evaluate their overall system. The Vector Space Model

(VSM) was used as a classifier to compare the feature vectors and then identify the

unseen documents. Figure 2.11 illustrates an overview of the proposed system. They

successfully recorded a score of 96.41% on the PSI database and 97.33% on the IAM

database.

Bulacu and Schomaker (2006) combined several features (directional, grapheme, and

run-length probability distribution functions) extracted from handwriting images. Otsu’s

algorithm was used to binarize the input grayscale images, considering three main rep-

resentations of the document for feature computation: the binary image, the connected

components, and their extracted contours. Bulacu and Schomaker (2006) have shown

that the feature fusion scheme improves writer identification and verification performance.

Gaceb et al. (2006) presented an approach to characterizing the writer’s style invariants

based on Gabor-based directional features and a complete grapheme signature. The

method reported good results in writer identification.

In (Bulacu and Schomaker (2007)), original work on writer identification and verification

using an effective allographic feature method was presented. They used contour-based

joint directional probability distribution functions (PDFs) that highly encode orientation and

curvature information to characterize writing style. They also used a stochastic pattern

generator of ink-trace fragments or graphemes and computed the probability distribution

functions (PDF) of these shapes (in a given handwriting sample) using a typical shape

codebook obtained by grapheme clustering. Experimental results showed that combining

multiple features (directional, contour-Hinge PDF, grapheme, Autocorrelation, and run-

length PDFs) allows high performance in writer identification.
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Figure 2.11: An overview of the approach proposed in (Bensefia et al. (2005)).

Pervouchine and Leedham (2007) used microstructural features extracted from charac-

ters and graphemes to identify query writers. They used a generic algorithm called wrap-

per (John et al. (1994)) to search for the optimal features and trained a neural network

as a classifier for writer identification. Experiments showed that graphemes are more ef-

ficient than micro-features in characterizing writing variability. In (Khalifa et al. (2015)), an

ensemble of multiple codebooks was proposed for writer identification. They used spec-

tral regression with kernel discriminant analysis (SR-KDA) as a dimensionality reduction

technique to avoid over-fitting. A Nearest-Neighbor (NN) classifier was used in a leave-

one-out strategy to evaluate the performance of writer identification. Figure 2.12 shows

the foremost steps used in this approach. Experiments on the IAM (Marti and Bunke
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Figure 2.12: The main steps of the system proposed in (Khalifa et al. (2015)).

(2002)) and ICFHR2012 (Hassaı̈ne and Al Maadeed (2012)) datasets showed that the

fusion of multiple codebooks gives better performance in writer identification than a sin-

gle codebook approach.

Abdi and Khemakhem (2015) generated synthetic codebooks for feature extraction using

the beta-elliptic model. Their work reported that they were the first to address the capa-

bility of model-based synthetic codebooks in writer identification and verification. Instead
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of extracting natural graphemes from a training set using segmentation and clustering,

their approach synthesizes their own graphemes based on the beta-elliptic model. The

grapheme-based approach generates one full and four partial codebooks, which are re-

duced according to specific criteria using a feature selection procedure. Experiments are

performed on the IFN/ENIT database (Pechwitz et al. (2002)) with a total of 411 writ-

ers using 60 feature vectors extracted by template matching. The results show a good

generalization ability of the synthetic codebooks for writer identification.

Garz et al. (2016) proposed a conceptually fast and straightforward approach for writer

identification. It captures orientation distributions at multiple scales and geometric rela-

tionships between grapheme strokes, junctions, endings, and loops. Experimental results

on the IAM database showed the effectiveness of combining these methods, with a result

of 86.9% in the top-1 writer identification rate. In (Miller et al. (2017)), isomorphic graph

class and shape are embedded in a generic graph-based system to improve automated

handwriting identification. Miller et al. (2017) used topological and geometric classifi-

cation of graphemes with ”like-with-like” comparisons of similar features across different

writers.

Khan et al. (2017) used universal codebooks with bagged discrete cosine transformed

(BDCT) descriptors to identify writers from handwriting. DCT features are computed

from overlapping blocks (graphemes) extracted from the original writing. Dimensional-

ity reduction of the extracted features was performed using Kernel Discriminant Analysis

with Spectral Regression (SR -KDA), and classification was performed using the nearest-

center rule. As illustrated in Figure 2.13, multiple SR -KDA predictor models are gener-

ated for each writer (codebook) using a training set. The authors used a majority voting

strategy to identify unseen documents in the test set, as shown in Figure 2.14. The overall

system achieved superior SOTA performance on four different benchmark databases.

Pandey and Seeja (2018) proposed a grapheme-based approach to text-independent

writer identification. Graphemes are extracted from handwriting and represented as pro-

jection profile representations. They performed dictionary learning (codebook) from hand-

writing samples using k-means clustering. The k-nearest neighbor classifier is used to

compare and match feature vectors to identify query writers. Pandey and Seeja (2018)

reported better results compared to other grapheme-based methods. Durou et al. (2019)

proposed a feature fusion approach combining Oriented Basic Image features (oBIF

columns) and grapheme codebooks for writer identification. They used Kernel Princi-

pal Component Analysis (kPCA) to reduce the high dimension of the resulting feature

vector. The K- Nearest Neighbour, Support Vector Machine (SVM), and Neural Networks

are used to classify unseen writers from IAM and ICFHR2012 databases. Their method

showed better SOTA performance compared to similar techniques.

The Scale-Invariant Feature Transform (SIFT) descriptor is considered an efficient
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Figure 2.13: Training step - SR-KDA predictor model i is generated for codebook i (Khan
et al. (2017)).

Figure 2.14: Testing step of the system proposed in (Khan et al. (2017)).
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grapheme-based feature method for all pattern recognition problems, especially for char-

acterizing salient local structures. In writer identification and verification, the SIFT de-

scriptor has been widely used to capture local structures of writing variability. It can be

extracted locally for feature matching, as in (Mohammed et al. (2017, 2018)), or encoded

into a global vector or score, as in (Fiel and Sablatnig (2013); Christlein et al. (2017a);

Khan et al. (2019)). The most recent typical work using this type of feature is the approach

presented in (Lai et al. (2020)). The authors combined two feature methods to capture

salient information of local structures of handwriting: they proposed a novel contour-

based method called Pathlet feature and used a grapheme-based method known as the

unidirectional SIFT feature to describe corners and junctions of handwriting. Also, an

encoding method called bagged vector of locally aggregated descriptors (bagged-VLAD)

was introduced to encode both Pathlet and SIFT features effectively. The overall system

was evaluated on historical benchmark databases for writer identification and achieved

excellent SOTA performance. An overview of the overall system is shown in Figure 2.15.

2.2.3/ CONTOUR-BASED METHODS

Contour-based methods have also been studied for writer identification. These meth-

ods capture features from handwriting contours rather than image pixels, which are a

probability distribution of local attributes, such as angles and ink widths. Text image seg-

mentation techniques are required to enhance the identification performance. The most

Figure 2.15: The historical writer identification system proposed in (Lai et al. (2020)).
First, document images are rotation corrected and binarized using deep U-Net model.
Second, pathlet features and unidirectional SIFT features are extracted. Third, for each
document, the pathlet features and SIFT features are encoded using the proposed
bVLAD, followed by dimensionality reduction and l2 normalization. The resulting feature
vectors are then used to identify the unseen document (Lai et al. (2020)).
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well-known work that used this approach is the one presented in (Schomaker and Bulacu

(2004)). The authors introduced an important theory-based approach to use connected-

component contours (CO3s) and edge-based features for automatic writer identification.

A stochastic pattern generator model is used to characterize a family of connected com-

ponents of the Western uppercase script. Based on the CO3s training codebook of 100

writers, Schomaker and Bulacu (2004) calculated the probability density function (PDF)

of the CO3s test set of 150 unseen writers. Their experimental results showed a high

sensitivity of the CO3-PDF for identifying individual writers based on a single sentence

of capital letters. They also combined the CO3-PDF with an independent edge-based

orientation and curvature PDF to improve the performance of writer identification. Simi-

larly, Schomaker et al. (2004) improved the task of writer identification using fragmented

connected-component contours (FCO3) in mixed handwritten samples of limited size. In

a stochastic model, they generated a family of character fragments called fraglets and

determined their probability distribution for an independent test set. Later, Bulacu and

Schomaker (2007) captured the joint probability distribution functions (PDF) of orienta-

tions of the two legs of the so-called ”contour-hinge.” Bulacu and Schomaker (2007) also

used a stochastic pattern generator of ink-trace fragments or graphemes and computed

the PDF of these shapes (in a given handwriting sample) using a typical shape code-

book obtained by grapheme clustering. The authors experimentally demonstrated that

combining multiple features (directional, contour-Hinge PDF, grapheme, and run-length

PDFs) leads to high performance in writer identification. In another work presented in

(Bulacu et al. (2007)), the same combination of features, i.e., PDFs-based features and

graphemes, was used to evaluate writer identification from Arabic handwriting. Figure

2.16 shows an example of extracted direction and run-length PDFs. The overall system

achieved an identification rate of 88% on an Arabic database of 350 writers. The results

prove the possibility of applying the same approach to other script languages, except that

the authors affirmed that Arabic writing presents more difficulty and a real challenge for

writer identification systems.

Abdi et al. (2009) presented a contour-based system for writer identification from Arabic

handwriting. The approach computes the joint probability distribution functions (PDF) of

a combination of contour features. As with other writer identification systems that use

PDFs, a preprocessing stage is required for the document image. This step, shown in

Figure 2.17, consists of normalizing the word image by removing diacritical marks, dilating

the image, and extracting word contours. Relevant word contours are approximated and

extracted using a minimum perimeter polygon (MPP) algorithm with different pixel grid

sizes. Abdi et al. (2009) used six features based on length, direction, angle and curvature

measurements extracted from the relevant contours (cf. Figure 2.18).

An interesting work presented by Siddiqi and Vincent (2010) proposes a contour-based

approach for writer identification. It extracts, as shown in Table 2.1, a set of 14 visual
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Figure 2.16: Schematic description for the contour-direction PDF feature extraction
method. (Bulacu et al. (2007)).

Figure 2.17: An example of relevant word contours obtained using the minimum perimeter
polygon (MPP) algorithm with different pixel grid sizes. Contour projections disappear as
the grid size increases. MPP contour edges that no longer meaningfully represent their
respective word outlines are filled with a darker color (Abdi et al. (2009)).

features (orientation and curvature information) from redundant patterns of the writing.

The extracted contour-based features, called chain-code-based probability distribution

and polygon (cf. Figure 2.19), provide competitive performance to the Hinge feature

proposed in (Bulacu and Schomaker (2007)). The overall system combines codebook
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Figure 2.18: (a) Edge direction φ relative to the horizontal straight line. (b) Angle θ formed
by two adjacent edges. (c) Curvature C (Abdi et al. (2009)).

Table 2.1: Summary of contour features. f 1 − f 9 are chain code-based features and
f 10 − f 14 are polygon-based features (Siddiqi and Vincent (2010)).

Feature Description Dimension
f 1 Distribution of chain codes 8
f 2 Distribution of 1st order differential chain codes 7
f 3 Distribution of 2nd order differential chain codes 8
f 4 Distribution of chain code pairs 44
f 5 Distribution of chain code tripplets 236
f 6 Distribution of curvature indices 11
f 7 Local stroke direction distribution 80
f 8 f 2 computed locally 70
f 9 f 3 computed locally 80
f 10 Distribution of segment slopes 8
f 11 Length-weighted distribution of segment slopes 8
f 12 Distribution of curvatures 8
f 13 Length-weighted distribution of curvatures 8
f 14 Distribution of segment lengths 10
Total 586

(a) (b)

Figure 2.19: (a) Polygonization at different values of T . T is a user-defined parameter that
controls the accuracy of the approximation. Larger values of T produce longer segments
at the expense of character shape degradation, and vice versa. (b) Curvature (angle)
between two connected segments (Siddiqi and Vincent (2010)).
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and contour features. The identification step in this system is based on the aggregation

of the computed chi-square distances (related to extracted features) to identify the query

writers. The system performance has been evaluated on different databases. The highest

rate of 91% is reached on 650 writers.

Another work presented by Jain and Doermann (2011) exploits the K-adjacent segments

feature (KAS), which is used to represent the relationship between groups of adjacent

(neighboring) edges in an image for object detection (Ferrari et al. (2007)). As the name

implies, K-adjacent segments describe any number K of adjacent segments, where two

segments are considered adjacent if they share a common endpoint. As explained in (Jain

and Doermann (2011)), the primary line segment is defined as the line whose midpoint is

closest to the center of the midpoints of all lines. The remaining lines are ordered by their

midpoints from left to right and then from top to bottom. Figure 2.20-(a) shows an example

of KAS feature extraction (3AS with K = 3). Before proceeding with the computation of

K- AS features, the approach proposed in (Jain and Doermann (2011)) extracts contours

and edges of the writing, performing the following preprocessing steps: 1) binarization

of the document image, 2) extraction of contours capturing the shape and curvature, 3)

decomposition of smooth curves into a set of lines using a line fitting algorithm. This

process is illustrated in Figure 2.20-(b). Then, a feature vector is extracted from the

codebook K- AS computed for each writer and compared using Euclidean distance to

identify the unknown author of the test document. Classification results are comparable

to SOTA systems, with an identification rate of 93% for 350 writers.

Brink et al. (2012b) reported an interesting work on writer identification using directional

ink trace width measurements. The authors developed efficient pixel contour-based fea-

ture methods called Quill and QuillHinge (a variant of Quill). The proposed approach

captures the information of probability distribution between ink direction and ink width.

(a) (b)

Figure 2.20: (a) The segment ordering and recorded features for a 3AS, where the pri-
mary segment is numbered 1. θ and L are the orientation and length of a particular
segment that makes up the feature KAS. (b) Extraction of contours and edges (Jain and
Doermann (2011)).
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The Quill feature calculation (contour tracking, angle measurements, and width mea-

surements) is shown in Figure 2.21. In the classification process, the nearest-neighbor

rule was used to perform writer identification. The overall system was evaluated on

two datasets of medieval handwriting, the Dutch Charter dataset and the diverse En-

glish dataset, and on two datasets of contemporary handwriting, the Firemaker and IAM

databases. The experimental results confirm the effectiveness of the QuillHinge-based

system for identifying writers.

Ghiasi and Safabakhsh (2013) presented two different codebook-based methods for ex-

tracting codes from COnnected-COmponent COntours (CO3), which are a significant

improvement over early CO3 (Schomaker and Bulacu (2004)) and FCO3 (Schomaker

et al. (2004)). The first method uses the pixel coordinates of contour fragments, while the

second is based on a linear piecewise approximation using segment angles and lengths.

Both methods use the frequency histogram of component shapes in a codebook to create

a feature vector for each handwriting sample. Evaluations on two English and three Farsi

handwriting databases showed promising performance in identifying unseen writers.

The approach presented in (Awaida and Mahmoud (2013)) captures gradient and con-

tour chain code features from handwriting samples. Five feature selection methods were

used for data reduction. These include principal component analysis (PCA), linear dis-

criminant analysis (LDA), multiple discriminant analysis (MDA), multidimensional scaling

(MDS), and forward-backward feature selection algorithms. The nearest neighbour (NN)

method was used to classify the query writers (from the test set). The authors evaluated

different distance metrics and reported that Euclidean distance performed better with a

top 1 result of 75.0% for 250 writers (using 54 out of 83 features with the backward fea-

(a) (b)

Figure 2.21: (a) φ and w are determined at each contour pixel (x, y). φ (trace direction)
is measured by averaging the angles with two adjacent contour pixels at distance r. w
(trace width) is computed using the so-called Bresenham width: the distance to the first
background pixel hit when following a Bresenham path, perpendicular to φ, in the di-
rection (xe, ye). (b) Contour tracing by tracking crack edge contours, shown as arrows.
Foreground pixels are shown as blocks; pixels in the resulting trajectory are shaded dark
(Brink et al. (2012b)).
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ture selection algorithm). Jain and Doermann (2014) presented a contour-based system

to address the writer identification problem, which is an improvement over the early sys-

tem in (Jain and Doermann (2011)). In feature extraction, they used the combinations

of three different feature methods: K- Adjacent Segments (K- AS), Speeded Up Robust

Features (SURF), and Contour-Gradient Descriptors (CGD) (cf. Figure 2.22). A linear

combination of the Fisher Vector distances is used (feature pooling), and feature match-

ing is performed using the Gaussian Mixture Model supervector (GMM). This approach

provides SOTA performance on three different datasets. The authors pointed out that the

combination of local features consistently performs better than single features.

He and Schomaker (2014) proposed a system for writer identification based on the use

of the same feature method presented in (Bulacu and Schomaker (2007)), known as the

Hinge feature. They proposed a new variant of the Hinge feature, called Delta-n Hinge,

that incorporates the derivative between several writing points along the ink contours

to extract rotation-invariant features. The Nearest-Neighbor (NN) classification with a

”leave-one-out” strategy was used to perform writer identification. The overall system

was evaluated on two different databases, showing promising SOTA performance.

Christlein et al. (2015a) used contour Zernike moments as local features by decompos-

ing the handwriting image using Zernike polynomials. The extracted Zernike moments

are encoded into a global descriptor using the Vectors of Locally Aggregated Descrip-

tors (VLAD) algorithm. The feature vectors are decorrelated using Principal Component

Analysis (PCA), and dimensionality reduced to 256 components and finally matched and

compared using a cosine distance metric. The system outperforms existing methods in

two benchmark databases for writer identification. In (He et al. (2015)), a generic ap-

proach to junction detection for writer identification is proposed. The system performs a

junction detection using Junclets to identify query writers. Later, in (He et al. (2016b)),

they designed two methods to characterize handwriting style: local contour fragments

(kCF) and stroke fragments (kSF) features. These methods were further explored to

(a) (b)

Figure 2.22: (a) SURF Features extracted from handwriting. (b) : Contour gradients and
the resulting feature (Jain and Doermann (2014)).
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evaluate other applications, such as dating historical documents and multi-faceted tasks,

including writer identification (He and Schomaker (2017a)).

He and Schomaker (2017a) proposed the principle of Joint Feature Distribution (JFD)

to develop feature algorithms for writer identification, script recognition, and historical

manuscript dating and localization. They introduced seventeen features, including twelve

texture-based and five contour-based features. For writer identification, the features are

matched and compared using the Chi-square distance measure. The best experimental

results (on five different databases) were obtained using the QuadHinge and CoHinge

pixel contours as features.

2.2.4/ DEEP LEARNING-BASED METHODS

Convolutional neural networks (CNNs) have recently emerged as state-of-the-art tools for

large-scale image classification and pattern recognition problems. With enough training

data and good optimization, Deep learning can provide an accurate solution for identi-

fying writers based on their handwriting. CNN models were first used as activations of

fully connected layers to capture deep features for writer identification (Fiel and Sablatnig

(2015); Christlein et al. (2015b, 2017b); Xing and Qiao (2016)).

Fiel and Sablatnig (2015) used Convolutional Neural Networks (CNN) to extract learned

features from segmented words and text lines. The CNN model named Caffenet was

trained on different databases of known writers, and the penultimate fully connected layer

was used for feature activation. Figure 2.23 shows the structure of the Caffenet network.

The Nearest Neighbor (NN) classifier was performed to compare and match these deep

features to identify unseen writers. The overall system obtained SOTA results in the

ICDAR2013, ICDAR2011, and CVL databases with 50, 26, and 309 writers, respectively.

Figure 2.23: Structure of the Caffenet CNN model (Fiel and Sablatnig (2015)).
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Christlein et al. (2015b) used activation features learned from a deep CNN model as

local descriptors to characterize handwriting style. They used zero-phase component

analysis whitening (ZCA) to decorrelate the activation features, followed by global L2 nor-

malization. Deep local features were extracted from patches in a handwriting sample

and encoded using a modified variant of the Gaussian Mixture Model (GMM) supervec-

tor. The resulting GMM supervector was normalized to the global descriptor using the

KL kernel (Kullback Leibler) presented in (Xu et al. (2010)). Figure 2.24 illustrates the

main steps of the approach proposed in (Christlein et al. (2015b)). The authors com-

pared the performance of CNN features with Speeded Up Robust Features (SURF) and

Enhanced Scale-Invariant Feature Transform (RootSIFT) methods using the same clas-

sification method, i.e., the Nearest Neighbor classifier with cosine distance as similarity

metric. Experimental results on two different databases showed superior SOTA perfor-

mance.

Xing and Qiao (2016) designed a multi-stream CNN architecture called DeepWriter, which

consists of two branches sharing the same CNN layers for writer identification. Local

handwritten patches of size 113 × 113 (cf. Figure 2.25) are the input of the DeepWriter

model, which was directly trained (or pre-trained) on two benchmark databases with Soft-

max classification loss. A patch-scan strategy is introduced to handle text images with

different lengths. Since two adjacent CNN streams construct the DeepWriter model, the

two output vectors of the fully connected layer (FC7) are merged by an element-wise

sum operation. Figure 2.26 shows the construction of the DeepWriter model. In the test

Figure 2.24: Diagram of the approach proposed in (Christlein et al. (2015b)).
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Figure 2.25: Image patches cropped from the IAM dataset (Xing and Qiao (2016)).

Figure 2.26: Pipeline of testing. Stream 1 and stream 2 share the same parameters (Xing
and Qiao (2016)).

phase, the unseen documents are classified according to a similarity score averaging

rule. The score vectors are computed using the softmax classification loss of the Deep-

Writer model relative to each patch image. As a final decision, the overall system returns

the writer of the query document with the highest average score. Experimental results on

IAM and HWDB datasets showed superior SOTA performance. The authors found that

different languages such as English and Chinese can have common patterns and that

joint training can improve writer identification performance.

Later in (Christlein et al. (2017b)), the same authors improved the writer identification task

by introducing an effective approach to learn CNN activation features in an unsupervised

manner without requiring labelled data. As shown in Figure 2.27, scale-invariant key-

point descriptors (SIFT) are first computed on the training database and clustered with

surrogate classes. The clustered index represents each surrogate class. Then, a deep
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Figure 2.27: Diagram of the approach proposed in (Christlein et al. (2017b)).

residual network (ResNet) is trained with surrogate classes using patches extracted from

each SIFT location (from the same SIFT keypoints). The deep features are extracted from

the penultimate CNN activation layer, encoded, and classified using the linear exemplar

support vector machines (E-SVM). The approach performed all SOTA methods on the

ICDAR17 competition dataset for identifying historical document writers (Historical- WI).

The work presented by Christlein and Maier (2018) investigates how VLAD (Vector of

Locally Aggregated Descriptors ) encoding of CNN activations compares to triangula-

tion embedding methods proposed in (Jégou and Zisserman (2014)) (cf. Figure 2.28).

They evaluated different CNN network topologies to learn deep features from handwrit-

ten patches of size 32×32. These include LeNet, two different residual networks (ResNet),

and models with different depths. The CNN activation features are then encoded into a

global representation using triangulation and VLAD embeddings. The authors also inves-

tigated Generalized Max Pooling (GMP) as an alternative to Sum Pooling (SP), and they

found that the GMP method slightly outperformed the SP method. The authors compared

the Exemplar Support Vector Machines (ESVM) and PCA whitening when using VLAD or

triangulation as the encoding approach in the classification phase. Experimental results

on three benchmark databases (ICDAR13, CVL, and KHATT) showed the effectiveness of

combining deep CNN activation features, VLAD encoding, normalization, and Exemplar

SVMs for better writer identification.

An interesting work presented in (Keglevic et al. (2018)) proposes a learning feature rep-

resentation for writer identification using the triplet CNN architecture of the DenseNet

model. Instead of using the SoftMax layer and a Mean Square Error loss function, the

authors employed three CNN branches with common weights in which the L2 distance
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Figure 2.28: Encoding local descriptors to form a global representation that can be com-
pared (Christlein and Maier (2018)).

was used to measure similarities. Then, the loss function with negative and positive dis-

tances is evaluated simultaneously in the three CNN streams (see Figure 2.29). As in

(Christlein et al. (2017b)), image patches of size 32 × 32 are extracted based on the posi-

tions of the SIFT keypoints in the handwriting (cf. Figure 2.30). The triplet CNN is trained

on these image patches by maximizing the inter-class distance and minimizing the intra-

class distance. The deep activation features (corresponding to each document image)

are encoded into a global descriptor using the Vector of Locally Aggregated Descriptors

(VLAD). The evaluation of the writer’s identification is performed in a leave-one-out strat-

egy. A ranked hit list is generated according to the Euclidean and Cosine similarity of

each document (taken once as query sample and represented by its feature vector) with

other documents (taken as a reference base).

(a) (b)

Figure 2.29: (a) Triplet CNN architecture. (b) Dense block with 5 layers (Keglevic et al.
(2018)).
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Figure 2.30: Sample patches of size 32 × 32 extracted at the SIFT keypoint locations
(Keglevic et al. (2018)).

Recently, Chen et al. (2019) developed a semi-supervised feature learning for writer iden-

tification, trained with additional unlabeled data and the original labeled data simultane-

ously. For this purpose, they introduced a data augmentation called Weighted Label

Smoothing Regularization (WLSR) method. It assigns a weighted uniform distribution

of labels to the additional unlabeled data to regularize the CNN model to learn more

discriminative features. As shown in Figure 2.31, the semi-supervised feature learning

network, which is the baseline of ResNet-50, is trained from mixed original labeled data

and additional unlabeled data (image patches extracted from handwritten documents).

In the test phase, deep activation features (related to the image patches extracted from

the unseen document) are computed from the penultimate fully connected layer, PCA-

whitened, and encoded into a normalized global feature vector representing the query

document. Euclidean distance was used as a similarity metric to compare and match the

documents based on their feature vectors. Experiments conducted on the ICDAR2013

and CVL databases demonstrated the effectiveness of semi-supervised feature learning

in accurately identifying the writers.

Kumar and Sharma (2020) introduced a CNN model called SEGmentation-free Writer

Identification (SEG -WI) to improve writer identification. A training strategy without seg-

mentation and preprocessing steps is the main contribution of this work. Unsegmented

handwritten documents are the input for the SEG -WI model to be trained. It extracts

deep features at different depth levels of the network, further selected by a region se-

lection mechanism. A weighted voting mechanism is used to compute the loss of the

network for writer identification. The main steps of the SEG-WI model are given in Figure

2.32.

In (He and Schomaker (2020)), a deep CNN model named FragNet is proposed for writer
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Figure 2.31: The pipeline of semi-supervised feature learning, which consists of three
parts: preprocessing (green dotted box), semi-supervised learning (blue dotted box) and
encoding (purple dotted box) (Chen et al. (2019)).

identification. As shown in Figure 2.33, the FragNet architecture is structured into two

streams: a feature pyramid stream used to extract feature maps from the whole word

image, and a CNN fragment stream (fragments as input) trained to identify the writer

based on the predicted scores of fragment images and feature maps (computed from the

feature pyramid). The authors have shown that the FragNet model trained with word im-

ages and fragments performs better (for writer identification) than networks trained with

word images only. Experimental results on four benchmark databases have shown the

effectiveness of the FragNet model in writer identification. Javidi and Jampour (2020)

presented an offline writer identification system based on the concatenation of deep and

local descriptor features. The CNN model is a residual network (ResNet) with 18 layers,

where deep feature vectors of dimension 512 are extracted from the Flatten layer. As

shown in Figure 2.34, the proposed local descriptor named Handwriting Thickness De-

scriptor (HTD) captures the handwriting thickness information by counting the all-black

patches in the binary image, resulting in a feature vector with a size of 45 dimensions.

Deep and HTD activation features are combined to form an extended end-to-end version

of ResNet-18 for writer identification. Classification results (on four benchmark datasets)

demonstrated the effectiveness of the system in identifying writers.
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Figure 2.32: The main steps of the approach presented in (Kumar and Sharma (2020)).

Figure 2.33: A FragNet network has two paths: feature pyramid (blue color), which ac-
cepts the whole word image as input, and fragment path (green color), which accepts the
fragment as input. (P)−CBR means the sequence of P: max-pooling, C: convolutional, B:
batch normalization and R: ReLU layers. C with the circle is the concatenation operation.
×2 means two blocks are stacked together. Gi and Fi are the ith feature maps in the
feature pyramid and fragment path, respectively (He and Schomaker (2020)).
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Figure 2.34: Handwriting Thickness Descriptor (HTD), counts fully black patches with
different size (Javidi and Jampour (2020)).

2.2.5/ DISCUSSION

Texture features are easy to compute from handwriting without going through a bina-

rization step. However, one of the drawbacks of texture-based methods, when used

in conjunction with a classifier, is the higher number of parameters and computations

required for image classification. This limitation, i.e., texture features are costly in pro-

cessing time, is due to the high number of bins of extracted feature vectors. To solve

this problem, post-processing methods such as principal component analysis (PCA), lin-

ear discriminant analysis (LDA), and generalized discriminant analysis (GDA) are mainly

used as tools to reduce the higher dimensional space, whether it is 1D, 2D, or 3D data.

However, these techniques may affect the overall performance in identifying the query

authors. Texture-based methods detect redundant writing patterns and achieve correct

performance, which can be further improved using robust classifiers.

Grapheme- and contour-based methods mainly rely on binarization and image segmen-

tation techniques to characterize local writing patterns. Therefore, the recognition and

identification performance is somewhat limited and dependent on the ability of these

techniques to capture local structural information of the writing. Texture, contour, and

grapheme approaches depend on features computed by algorithms and basically de-

signed by humans. Currently, these features can be learned automatically using Deep

Learning (DL). It provides an easier way to obtain the desired features for the task under

consideration. However, deep learning requires large labeled training data to learn how

to classify images of a particular application. For writer identification, large handwriting

training data is needed to learn and characterize the writing style, which is not always

present in some scenarios. In this case, traditional methods perform better or equivalent

to deep learning.
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2.3/ CONCLUSION

In this chapter, we have presented, in chronological order, a comprehensive literature re-

view of the known approaches that have been proposed for writer identification. We have

categorized these approaches into texture-based, grapheme-based, contour-based, and

deep learning methods. We have also discussed the challenges, factors, performance,

and criticisms of these approaches to better characterize the handwriting style. To im-

prove writer identification, researchers agree that the feature extraction step is one of

the most critical modules in a writer identification system. Indeed, using a very powerful

classifier cannot compensate for a poorly matched feature representation.

In the following chapters, we discuss and present our proposals to improve state-of-the-

art performance to better characterize the writing style and accurately classify and identify

the authorship of handwritten documents. Note that our proposed approaches in this

thesis belong to the texture and deep learning categories.
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3

TEXTURE FEATURES-BASED WRITER

IDENTIFICATION

3.1/ INTRODUCTION

Most existing work for writer identification generally considers the following pipeline: im-

age pre-processing, feature extraction, and classification. These approaches mainly fo-

cus on feature extraction, as the aim is to capture necessary and discriminative informa-

tion from the image that reflects and characterizes the writing style. Feature engineering

is an essential part of a pattern recognition system that can improve or decrease classi-

fication performance. Features, also called descriptors, attributes, variables, measures,

are discriminative compared to the original image pixels. Different types of feature meth-

ods have been reported in the literature, and each has its limitations and advantages in

terms of applicability, suitability, performance, and computational complexity. It is chal-

lenging to meet all these criteria in the feature extraction step, especially when dealing

with handwritten documents with complex writing styles. At this level, the goal is to ac-

curately identify the writer using useful features extracted from handwriting images in a

text-independent manner.

Handwriting can be viewed as a texture image that contains grayscale or binary varia-

tions that form specific recurring patterns. Extracting such features defines a synthetic

characterization of handwriting in a 2D dimension. A well-designed and defined feature

extraction method improves writer identification through appropriate pre-processing and

classification methods. To this end, we propose several approaches for writer identifi-

cation based on texture features. Our contributions address all main steps of an au-

tomatic writer identification system, including image pre-processing and segmentation,

feature extraction, and classification methods. The following four texture-based systems

are proposed to help to solve some challenges encountered in these different steps: (1)

Block Wise Local Binary Count (BWLBC)-based system. The BWLBC operator charac-

terizes the variability of writing style by capturing pixels’ distribution within small binary

49
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blocks; (2) Handcrafted feature-based system. The handcrafted descriptors Local Bi-

nary Patterns (LBP), Local Ternary Patterns (LTP), and Local Phase Quantization (LPQ)

are applied to small regions (zones) of interest in the writing to extract texture features.

We also introduce a dimensionality reduction technique to reduce the computational cost

of the subsequent classification process; (3) An effective approach based on the Cross

multi-scale Locally encoded Gradient Patterns (CLGP) descriptor to capture texture infor-

mation of the writing image. It consists of encoding CLGP features using the Histograms

of Oriented Gradients (HOG) method; (4) The fourth approach computes local intensity

gradients of the writing within non-overlapping blocks using the Local gradient full- Scale

Transform Patterns (LSTP) method. This feature gives the overall system the ability to

extract more relevant information to improve the identification task. The writer classifica-

tion is performed using the nearest neighbor with a new strategy to compute similarities

between the handwritten documents.

This chapter presents in detail the theoretical description of our proposed texture-based

systems for text-independent offline writer identification. Note that the experiments and

evaluations to validate the effectiveness of these systems are discussed later in Chapter

5.

3.2/ OVERALL PIPELINE

Our proposed system for writer identification based on texture features involves three

main steps: 1) image preprocessing and segmentation, 2) feature extraction, and 3) clas-

sification process. In our methodology, handwritten documents are considered as tex-

ture images, and their respective features are extracted from different regions of interest

(i.e., connected component sub-images). The proposed system for writer identification is

shown in Figure 3.1. Each of the main steps of the system is described in detail in the

following subsections.

3.2.1/ IMAGE PRE-PROCESSING AND SEGMENTATION

To enhance the performance of writer identification, we perform some basic image pre-

processing techniques on the handwritten input image to make it suitable for the segmen-

tation phase and reduce the complexity of the subsequent processing modules. First, the

handwritten images, which are in RGB format, are converted to grayscale images. Then,

except for the IFN/ENIT database, which contains handwritten patterns in binary format

(cf. benchmark and experimental setup in Chapter 5), global thresholding is performed

on the handwritten grayscale images using Otsu’s method described in (Otsu (1979)) to

convert them into binary images. For a grayscale image, binarization consists of first
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Figure 3.1: Flowchart of the proposed writer identification system.

determining a normalized threshold and minimizing the intraclass variance of the black

and white pixels. Figures 3.2 and 3.3 show that this binarization process is necessary

to clearly distinguish the background from the foreground (writing pixels). In general, the

grayscale threshold should be closer to the intensity of the foreground writing to remove

unwanted background noise while maximizing the useful information in the scanned im-

age. As can be seen from the examples in Figures 3.2 and 3.3, the complement of the

binary image is computed to obtain the same fixed binary format, i.e., black as the back-

ground and white as the foreground (white pixels correspond to the ink). The obtained

preprocessed image is then segmented into a set of isolated components using a label-

ing procedure that assigns a label to each connected object in the binary sample. Only

the significant and representative connected components are retained, i.e., those with

minimal amounts of text pixels such as diacritics and random writing traces (random pat-

terns produced during the image acquisition) are considered as unwanted details and dis-

carded. In the next step, a bounding box is assigned to each labeled region. It is defined

as the smallest rectangle that completely encloses and circumscribes the corresponding

connected component. At this stage, each labeled region (connected component) is con-

sidered within its bounding box. Figure 3.4 shows an example of connected component

extraction from an Arabic handwritten word, where small components are suppressed

as they are considered as unwanted details. The algorithm of the preprocessing and
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segmentation stage is summarized in Algorithm 1.

000-a01-122u-03.png (Origin text line image from IAM database)

Binary image

Complement binary image

writer_01SET2WordImage_20.png (Origin word image 
from AHTID/ MW database)

Binary image

Figure 3.2: Example of binarization of handwritten samples from IAM (Marti and Bunke
(2002)), and AHTID/MW (Mezghani et al. (2012)) databases.

Binarization 

Complement 

Binary image

Complement binary image RGB image to grayscale image

Grayscale image

0004-4-cropped.tif (Origin document image 
from CVL database 

Figure 3.3: Example of binarization of handwritten sample from CVL (Kleber et al. (2013))
database.
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Algorithm 1: Pre-processing and segmentation step

Input : S // handwriting sample.

Output: [Ci] list, i = 1, 2, · · · , n, where each element is an integer. // connected

component sub-images.

/* Segment the input sample into connected component sub-images. */

1 Sb = binarizefunction(S); // binarize the S image into binary image S b.

2 cord = cordinatefunction(Sb); // get the coordinates

cord(i) = [xmin(i), ymin(i), width(i), height(i)], of all connected components C

from the binary image S b; The lower left corner of the detected

bonding box of the connected component i is the the pixel with spatial

coordinates (xmin(i), ymin(i)); width(i) and height(i) are the width and height

of the bounding box i.

/* Extract connected component sub-images from the binary input image

S b, S b = ∪
card(cord)
i=1 Ci */

3 for i← 1 to Ncord do
// Ncord is the number of extracted bounding boxes (corresponding to

connected components) in the binary image S b.

4 Ci = cropfunction(Sb, cord(i));
Ci = Sb(xmin(i) : (xmin(i) + width(i)), ymin(i) : (ymin(i) + height(i)));

5 if size(Ci) >= 50 × 50 then
6 save(Ci);

7 else
8 skip; // ignore accidental writing traces and diacritics.

9 end if

10 end for
11 return [Ci] // output. n is the number of segmented connected

components.

3.2.2/ FEATURE EXTRACTION METHODS

Feature extraction is a fundamental step in writer identification, using various techniques

to capture local variations in writing style. Extracting such extreme variations increases

the quality of the identification task. At this stage of our system, we have a set of related

components for each handwritten document. It is still a difficult problem to accurately

identify the corresponding writer since only the related components are obtained, and

there is no information estimation about their content yet, which is necessary for the

identification process. Feature extraction consists of defining a synthetic description of

the writing style to be characterized in two-dimensional space from scanned handwritten

images. The goal is to extract, characterize and consequently index common features
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Figure 3.4: Pre-processing and segmentation of an Arabic word taken from the
AHTID/MW (Mezghani et al. (2012)) database.

from handwritten images belonging to the same writer (class). If these features are in-

appropriately extracted from the writing, it will unfavorably affect the classifier used to

identify unseen documents. For this reason, four texture-based methods are proposed

to accurately characterize the writing style from the preprocessed connected component

sub-images. Each method is described in detail below.

3.2.2.1/ BW-LBC DESCRIPTOR

Motivated by the effectiveness of small writing fragments and texture blocks in character-

izing the writer’s individuality (Bertolini et al. (2013); Hannad et al. (2016)), we propose

a computationally efficient, high-quality, and conceptually simple descriptor called Block

Wise Local Binary Count (BW-LBC) to characterize the connected components of hand-

writing images. To show its effectiveness, the BW-LBC model is compared with LBP, LTP,

and LPQ descriptors, which are the most commonly used methods for writer identifica-

tion (Hannad et al. (2016); Khan et al. (2016); Bertolini et al. (2013)). The analysis of this

experiment is given in Chapter 5 (cf. Section 5.3.1). The BW-LBC operator characterizes

the variability of the writing style within small blocks by computing the distribution of oc-

currences of pixels corresponding to writing in binary component images. For our system,

these binary component images are the connected components previously obtained us-

ing the segmentation method in Section 3.2.1. Formally, the BW-LBC operator proceeds

as follows. The preprocessed connected component sub-images are first resized into the

same uniform window size W×W. Then, each component C is scanned from top to bottom
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and left to right and divided into N×N non-overlapping blocks Bi,i=1,..,N×N (C=
N×N⋃
i=1

Bi ). For

each block Bi (i = 1, 2 . . .N×N), the appearance frequency of the white pixels, i.e., the ink,

is calculated. Finally, each block Bi is henceforth characterized by its feature BWLBC(i),

which can be computed as follows:

BWLBC(i) =
∑

xp∈Bi

δ(1, Bi(xp)), i = 1, 2 . . . (N×N) (3.1)

where Bi(xp) is the value of pixel xp in the block Bi (i = 1, 2 . . .N×N) and δ being the

Kronecker delta function, defined as follows:

δ (x, y) =

 1 , i f x = y
0 , i f x , y

(3.2)

The resulting normalized FBWLBC feature vector is then calculated by the following forms:

FBWLBC =
1

WB

(N×N)∏
i=1

BWLBC(i)

=
1

WB

(N×N)∏
i=1

∑
xp∈Bi

δ(1, Bi(xp)), i = 1, 2 . . . (N×N)

(3.3)

where
∏

is the concatenation operator and WB = W×W
N×N is the block size. Note that the

normalized FBWLBC(i) represents the histogram bin number i in the final FBWLBC feature

vector. The whole procedure shown in Figure 3.5 to compute the BWLBC code can be

summarized as follows:

• Step 1: The input handwriting document with the writer label wr is converted to a

binary image Dwr .

• Step 2: The obtained binarized image Dwr is segmented into connected compo-

nents (Dwr =

Nwr⋃
k=1

Ck
wr

η(Ck
wr )>ν

) ; where Nwr = card(Dwr ) is the number of connected

components in the document Dwr and η(Ck
wr

) is the number of pixels of the com-

ponent Ck
wr

and ν is a small threshold (ν << W × W). The connected components

with very small proportions of writing pixels, i.e., with area less than ν pixels, such

as diacritics and random writing traces, are considered as unwanted details and

then discarded. At this stage, each preserved connected component is considered

within its bounding box.
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• Step 3: Connected components are resized into the same uniform window size

W ×W.

• Step 4: Each component Ck
wr

is scanned from top to bottom and from left to right

and divided into N × N non-overlapping blocks Bk
(wr ,i),i=1,..,N×N(Ck

wr
=

N×N⋃
i=1

Bk
(wr ,i) ).

• Step 5: Each block Bk
(wr ,i),i=1,...,N×N , is defined by its feature BWLBC(k,wr)(i) using Eq.

3.1.

• Step 6: For each connected component Ck
wr

, the corresponding normalized feature

vector F(k,wr)
BWLBC is calculated using Eq. 3.3.

• Step 7: The input handwriting document with the writer label wr is henceforth rep-

resented by a set of FBWLBC-histograms {F(k,wr)
BWLBC , k = 1, ...,Nwr}.

It is worth noting that when using the BW-LBC descriptor as feature extraction, the system

performance strongly depends on the chosen number of blocks (N × N) and the window

size (W × W). Indeed, different values of N and W would lead to a different encoding of

the BW-LBC binary operator. The experiment to study the effects of these parameters on

system performance is discussed later in Chapter 5 (Section 5.3.1.2).

Figure 3.5 shows an example of the procedure for computing the BW-LBC code. In this

example, starting from the connected component within its bounding box of 187 × 81

pixels, the resized component (300 × 300) is divided into N × N (= 7x7 = 49) blocks of WB

(= W×W
N×N = 43 × 43) pixels. The number of white pixels then represents each block. The
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Figure 3.5: The local BW-LBC code computation process.
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concatenation of the white pixel counts of all blocks forms the final feature vector. Note

that the chosen number of blocks (N × N) in the binary sample represents the resulting

dimensionality of the BW-LBC vector.

3.2.2.2/ ZONES-BASED HANDCRAFTED DESCRIPTOR

In this approach, three well-known state-of-the-art texture descriptors are used, includ-

ing histograms of Local Binary Patterns (LBP), Local Ternary Patterns (LTP), and Local

Phase Quantization (LPQ). These texture operators, which are commonly used in writer

identification problems (Hannad et al. (2016); Khan et al. (2016); Bertolini et al. (2013)),

are briefly described in the following.

Traditional local binary patterns (LBP). Ojala et al. (2002) introduced a robust descrip-

tor for texture classification called a local binary pattern (LBP). It is defined as a gray-scale

invariant operator that measures the local contrast for texture analysis and summarizes

the gray-level structure into a local region. As shown in Figure 3.6, the traditional LBP

operator labels the pixels of the grayscale image I in a 3×3 local neighborhood by thresh-

olding the eight neighboring pixels with the central pixel. The mathematical formulation of

LBP for a referenced pixel xc is defined by the following equation:

LBP(xc) =

P−1∑
p=0

φ(I(xp)−I(xc)) × 2p (3.4)

where I(xc) is the central pixel gray-scale value, I(xp) is the value of its neighbors, P is

the number of neighbors and φ(·) is the Heaviside step function (cf. Eq. 3.5).

φ (z) =

 1 , i f z ≥ 0

0 , i f z < 0
(3.5)

LBP generates 256 (28) possible patterns (cf. Table 3.1). In this work, LBP features are

computed in a 3×3 square neighborhood, i.e., the LPB radius and the number of neighbor

pixels are set to 1 and 8, respectively.

Local ternary patterns (LTP). Tan and Triggs (2010) proposed an improved variant of

LBP called Local Ternary Patterns (LTP), which is more robust to noise than LBP. LTP

extracts 3-valued (1, 0,−1) local grayscale codes by encoding the difference between the

central pixel value I(xc) and adjacent values I(xp) using a threshold. The kernel function

of the LTP code is defined as follows (cf. Eq. 3.6):

LT P(xc) =

P−1∑
p=0

ϑτ(I(xc),I(xp)) × 2p (3.6)
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Thresholding

Binary Code: 10000011

Decimal: 131

Figure 3.6: Example of LBP encoding scheme.

where τ is the user-specified threshold and ϑτ(·) is the Ternary Thresholding function

defined as follows:

ϑτ(a,b) =


1, if a ≥ b + τ

0, if b − τ ≤ a < b + τ

−1, otherwise

(3.7)

To simplify the threshold function of the LTP descriptor, Tan and Triggs (2010) introduced

a different representation based on the extraction of two binary patterns, splitting the

ternary pattern into its positive and negative parts, as shown in Figure 3.7. LTP generates

512 (29) possible patterns (cf. Table 3.1).

Local phase quantization (LPQ). The local phase quantization (LPQ) operator, origi-

nally proposed in (Ojansivu and Heikkilä (2008)), is a texture descriptor based on the blur

invariance property of the Fourier phase spectrum. It uses the phase information esti-

mated in local M-by-M neighborhoods at each pixel position x of the image f . The local

spectra are computed using a 2-D discrete Fourier transform (DFT) or, more precisely, a

short-term Fourier transform (STFT) defined by:

F (u, x) =
∑
y∈Nx

f (x − y) e− j2πuTy = WT
u fx (3.8)

Wu being the basis vector of the 2-D DFT at frequency u, fx is the vector containing all

M2 image samples of the (MxM) neighbourhood (Nx) of x. Local Fourier coefficients are

computed at four frequency points u1 = [a, 0]T, u2 = [0, a]T, u3 = [a, a]T and u4 = [a,−a]T;

where a is a small scalar frequency. The resulting vector of each pixel position is given
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Threshold

T=2

[ 170-T ,  170+T  ]

Ternary code : 11(-1)0(-1)(-1)01

Positive Pattern: 11000001

Negative Pattern: 00101100

Figure 3.7: Example of LTP encoding scheme.

by:

F (x) = [F (u1, x) , F (u2, x) , F (u3, x) , F (u4, x)] (3.9)

The phase information in the Fourier coefficients is calculated by using a simple scalar

quantization for each component in F(x):

q j =

 1 , i f gi ≥ 0

0 , otherwise
(3.10)

where gi is the jth component of the vector G(·) (cf. Eq. 3.11):

G (x) = [Re {F (x)} , Im {F (x)}] (3.11)

The quantized coefficients are given as integer values between 0 and 255 using the

following binary coding:

b =

7∑
j=0

q j2 j (3.12)

Th LPQ method generates 256 (28) possible patterns (cf. Table 3.1).
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Table 3.1: The tested texture descriptors

Texture operators Dimension (Dim)

Local Binary Pattern (LBP) 256

Local Ternary Pattern (LTP) 512

Local Phase Quantization (LPQ) 256

Proposed feature extraction process. The feature extraction process applied in the

proposed system is shown in Figure 3.8. First, the previously obtained preprocessed

component images for both the test and training sets are fitted into the same uniform

window of 50 × 50 pixels. Then, each connected component image C is subjected to

LBP, LTP, or LPQ descriptor coding to obtain the feature image FC. Since the original

component image is in binary format, it can be observed that there are irrelevant fea-

tures in the feature map FC, which may not be informative and could then be ignored.

Therefore, we propose a simple dimensionality reduction technique to reduce the com-

putational cost of the subsequent classification process. It normalizes the obtained fea-

ture image FC by a factor F, as shown in the example in Figure 3.8. To incorporate

more spatial information in the final descriptor, the obtained normalized code map ( FC
F ) is

scanned from top to bottom and from left to right and spatially divided into small spatial

(Nz × Nz), non-overlapping parts, which are called zones Zi,i=1,..,Nz×Nz (FC=
Nz×Nz⋃

i=1

Zi ), and

a histogram of LBP, LTP or LPQ codes is extracted from each zone. Thus, each zone

Zi (i = 1, 2 . . .Nz×Nz) in the feature image FC is characterized by a ( Dim
F ) bins histogram

that eliminates the non-discriminatory bins. The feature histogram hi characterizing each

zone Zi (i = 1, 2 . . .Nz×Nz) is calculated using Eq. 3.13.

hi(λ) =
∑

xp∈Zi

δ(λ,Zi(xp))) (3.13)

where Zi(xp) is the value of pixel xp in the zone Zi (i = 1, 2 . . .Nz×Nz), λ ∈ [0, Nbins],

Nbins=Dim
F −1 is the number of bins of the feature histogram hi, Dim is the descriptor dimen-

sion given in Table 3.1, F is the dimensionality reduction factor, and δ(·) is the Kronecker

delta function defined as follows:

δ (x, y) =

 1 , i f x = y
0 , i f x , y

(3.14)

All these regional subhistograms hi,i=1,..,Nz×Nz of dimensionality ( Dim
F ) are concatenated

through Eq. 3.15 to form the holistic connected component representation H of dimen-
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sionality Dc = ( Dim
F ) × Nz× Nz.

H =

(Nz×Nz)∏
i=1

hi (3.15)

Where
∏

is the concatenation operator. The histogram sequence concatenation on the

normalized feature image ( FC
F ) allows a complete generalization of the writing intensity

distributions into local regions (zones) that strongly characterize the writing style and dis-

criminate the large variability between handwriting. The computational time of the classi-

fication process increases progressively with the number of zones Nz × Nz, which is quite

natural since the classification is performed by comparing the distances between corre-

sponding component histograms. Indeed, the dimensionality Dc of the feature histogram

H increases with the increase of the number of zones (Dc=(Nz ×Nz)× ( Dim
F )). However, the

dimensionality reduction factor F, introduced to ignore irrelevant features (bins), allows

for a reduction in computation time since Dc decreases as F increases.

The feature extraction process to compute the final feature histogram H can be summa-

rized in the following steps (see Figure 3.8):

• Step 1: The input handwriting sample (document or set of word/text line images)

with writer label wm is converted to a binary image S wm .

• Step 2: The obtained binarized image S wm is segmented into labeled regions (i.e.,

connected components) (S wm =

Nwm⋃
j=1

C j
wm

ζ(C j
wm )>ρ

) ; where Nwm = card(S wm) is the number

of connected components in the sample S wm and ζ(C j
wm) is the number of writing

pixels in the component C j
wm and ρ is a small threshold (ρ << 50 × 50). Accidental

writing traces and diacritics are considered as noise and then removed (labeled

regions with very small proportions of writing pixels, i.e., with a surface less than

ρ pixels). The threshold ρ is experimentally set to ρ = 12 × 12 pixels for the IAM

database and ρ = 10 × 10 pixels for the IFN/ENIT, CVL and AHTID/MW databases.

• Step 3: Component images are resized to the same fixed window size of 50×50

pixels.

• Step 4: For each component C j
wm , the corresponding feature image FC j

wm is com-

puted using the texture descriptor encoding and then normalized by the dimension-

ality reduction factor F.

• Step 5: The normalized feature image ( FCj
wm

F ) is scanned from top to bottom and

from left to right and divided into Nz × Nz zones Z( j,wm)
i,i=1,..,Nz×Nz

(C j
wm=

Nz×Nz⋃
i=1

Z( j,wm)
i ).
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Figure 3.8: The proposed feature extraction process.

• Step 6: Each zone Z( j,wm)
i,i=1,..,Nz×Nz

is represented by its feature histogram h( j,wm)
i using

Eq. 3.13.

• Step 7: Each connected component C j
wm is characterized by its concatenated his-

togram H( j,wm) using Eq. 3.15.

• Step 8: Finally, the set of H-histograms {H( j,wm), j = 1, ...,Nwm} represents the input

handwriting sample of the classifier with the writer label wm.

Note that the performance of the system depends substantially on both the dimensionality

reduction factor F and the number of zones Nz × Nz. Indeed, different values of Nz and

F would result in a different representation of the LBP, LPQ, and LTP histograms (H). A

comprehensive experiment to investigate the system performance as a function of these

parameters is addressed in Chapter 5 (Section 5.3.2.1).

In summary, given LBP, LPQ, and LTP texture descriptors, the writing sample S wm (docu-
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ment or set of word/text line images) with writer label wm is characterized by a set HS wm
of

feature histograms computed from all connected components extracted from it:

HS wm
= {H( j,wm), 1 ≤ j ≤ Nwm} (3.16)

where Nwm = card(S wm) is the number of connected components in the sample S wm and

H( j,wm) is the feature histogram corresponding to the jth component in the writing sample

S wm .

3.2.2.3/ CROSS MULTI-SCALE LOCALLY ENCODED GRADIENT PATTERNS DESCRIPTOR

We build an effective feature descriptor referred to as Cross multi-scale Locally encoded

Gradient Patterns (CLGP). The proposed CLGP feature descriptor captures the texture

information of the writing image using transformation feature construction and encodes

the obtained texture codes in multiple scales via the Histograms of Oriented Gradients

(HOG) operator within non-overlapping blocks. The distribution of local intensity gradients

within these non-overlapping blocks forms the final CLGP feature histogram. CLGP is

insensitive to noise by using low-order Gaussian derivative filters and a global averaging

operator in the scalar quantization step.

As shown in Figure 3.9, the feature extraction procedure for computing the final CLGP

feature histogram H is outlined in the following steps:

Step 1: Extremum responses computation (spatial filtering). The input connected

components (gray-scale sub-images) are first resized to the same uniform window size

of 80 × 80 pixels. Note that we use the same segmentation step in Section 3.2.1 with

a slight change in the overall algorithm to extract gray-scale connected components. In

Algorithm 1 (line 4), we only change the binary sample S b with the original sample S to be

segmented into connected component sub-images Ci in gray-scale format. Each resized

component sub-image is convolved with a family of Gaussian derivative filters (Freeman

et al. (1991)) (up to second order) to compute extremum value responses (maximum and

minimum) at multiple scales. The main goal of this step is to capture useful information

contained in the first and second-order differential structures at a range of scales. Based

on the two-dimensional circularly symmetric Gaussian function defined in Eq. 3.17, we

compute the first and second Gaussian derivatives at an arbitrary orientation θ, as given

in Eqs. 3.18 and 3.19.

G (x, y; σ) =
1

2πσ2 exp
(
−

x2 + y2

2σ2

)
(3.17)
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G θ
1 = cos(θ)Gx + sin(θ)Gy (3.18)

G θ
2 = cos2 (θ) Gxx − sin (2θ) Gxy + sin2 (θ) Gyy (3.19)

where σ is the scale or standard deviation. Gx and Gxx are respectively the scale-

normalized first and second derivatives of G along the x-axis, and analogously for Gy , Gxy

and Gyy. For each connected sub-image I, the first and second order image derivatives

are defined by: Lx = Gx ∗ I, Ly = Gy ∗ I,Lxx = Gxx ∗ I, Lxy = Gxy ∗ I, Lyy = Gyy ∗ I, where ∗

is the convolution operator. Formally, the responses of the first and second Gaussian

derivative filters at orientation θ (Freeman et al. (1991); Zhang et al. (2013)) are given as

follows:

Iθ1 = Gθ
1 ∗ I = cos (θ) Lx + sin(θ)Ly

=

√
L2

x + L2
y sin (θ + φ)

(3.20)

where φ = arctan
(

Lx
Ly

)
and

Iθ2 = Gθ
2 ∗ I = cos2 (θ) Lxx − sin(2θ)Lxy + sin2(θ)Lyy

=
1
2

Lxx + Lyy +

√(
Lxx − Lyy

)2
+ 4L2

xycos (2θ − ψ)

 (3.21)

where ψ = arctan
(

2Lxy
Lyy−Lxx

)
. The extremum response values of Iθ1 and Iθ2 over all θ are

computed as follows:

Iθ1max =

√
L2

x + L2
y (3.22)

Iθ2max =
1
2

Lxx + Lyy +

√(
Lxx − Lyy

)2
+ 4L2

xy

 (3.23)

Iθ2min =
1
2

Lxx + Lyy −

√(
Lxx − Lyy

)2
+ 4L2

xy

 (3.24)

Extreme value responses are computed on Nσ scales. As in (Zhang et al. (2013); Song

et al. (2015)), the number of scales Nσ is experimentally set to Nσ = 3: σ1 = 1, σ2 = 2,
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and σ3 = 4.

Step 2: Transorm feature construction. Linear and nonlinear operators are applied

to the previously obtained extreme value responses Iθ1max, Iθ2max, and Iθ2min to construct

a compact, rotation-invariant, yet discriminative set of transformation features, denoted

as F = {g, d, s, r} ({g, d} is constructed with linear combinations of the extreme value re-

sponses, while {s, r} is constructed with nonlinear ones). The transformation feature g,

referred to as the gradient magnitude, is the maximum response of the first directional

Gaussian derivative filter, i.e., g = Iθ1max =

√
L2

x + L2
y . The second transformation feature

d, i.e., the extrema difference of the maximum and minimum responses of the second

directional Gaussian derivative filter is calculated by:

d = Iθ2max − Iθ2min =

√(
Lxx − Lyy

)2
+ 4L2

xy (3.25)

The feature set F includes other quantitative measures of the second-order differential

structure defined by the shape index s:

s =
1
2
−

1
π

arctan
− Iθ2max + Iθ2min

Iθ2max − Iθ2min


=

1
2
−

1
π

arctan

 −Lxx − Lyy√(
Lxx − Lyy

)2
+ 4L2

xy


(3.26)

The correlation information of first and second order differential structures is character-

ized by means of the mixed extremal ratio r, which is defined as follows:

r =
2
π

arctan
(
d
g

)
=

2
π

arctan
 Iθ2max − Iθ2min

Iθ1max


=

2
π

arctan


√√√(

Lxx − Lyy
)2

+ 4L2
xy

L2
x + L2

y


(3.27)

Step 3: Quantization and cross-scale joint coding. With the obtained transformation

features, the scalar quantization step aims to design a discriminative and computationally

efficient quantizer to quantize the feature set F into discrete texture codes. To this end,

two types of scalar quantization by simple binary or multilevel thresholding are designed.

For the feature subset {g, d}, we perform a mean-based binary ratio quantizer Q1 (.):

y = Q1 (x) =

 0, i f x
mx

> k

1, otherwise
(3.28)
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where x ∈ {g, d}, mx is the mean value of the transform feature map of x and k is a tuning

parameter. The transform feature values of {s, r} are in the range of [0, 1] (cf. Eqs. 3.26

and 3.27). Therefore, for the feature subset {s, r}, a simple uniform quantization Q2 (.) is

used (cf. Eq. 3.29):

y = Q2 (x) =


0, x ∈ [0, ∆]

1, x ∈ [∆, 2∆]

. . .

(L x) − 1, x ∈ [((L x) − 1)∆, 1]

(3.29)

where x ∈ {s, r}, L x is the quantization level (L s and L r for the transform features s and r,

respectively), and ∆ = 1/L x is the quantization step. In our experiments, we empirically

set the parameters related to scalar quantization as k = 2, L s = 3, and L r = 5, as

proposed in (Song et al. (2017)).

In the next step, the cross-scale joint coding is performed to aggregate the generated

discrete pixel-wise codes obtained by scalar quantization into a compact image fea-

ture representation. This is performed by jointly encoding the texture codes across all

scales, i.e., constructing multiple feature code maps across multiple scales (cf. Figure

3.9). The first feature code map, referred to as Adjacent-Scale Coding (AS C), is obtained

by jointly encoding the quantized texture codes of the transform feature subset {g, d, s}

across two adjacent scales (e.g., ( σ1, σ2) , ( σ2, σ3), etc). For the adjacent scale pair
( σi, σi+1) (i = 1, 2, . . . , Nσ − 1), the feature code map AS C value of the pixel (x, y) in the

connected sub-image I is composed as follows:

ci (x, y) =

2∑
j=1

(L s) j−1ys
(
x, y; σi+ j−1

)
+

(L s)2

 2∑
j=1

(L d) j−1yd
(
x, y; σi+ j−1

) +

(L s)2(L d)2

 2∑
j=1

(L g) j−1yg
(
x, y; σi+ j−1

)
(3.30)

ys
(
x, y; σi+ j−1

)
, yd

(
x, y; σi+ j−1

)
, and yg

(
x, y; σi+ j−1

)
are the quantized texture codes of the

transform features s, d, and g at scale σi. L s, L d and L g are the quantization levels for

features s, d and g, respectively. We empirically set L s = 3 and L d = L g = 2. Based on

the AS C encoding, two feature code maps are generated: c1 (i.e., AS C1) at two adjacent

scales ( σ1, σ2) = (1, 2), and c2 (i.e., AS C2) at ( σ2, σ3) = (2, 4) (cf. Figure 3.9). Next,

we perform another joint scale encoding, referred to as Full-Scale Coding (FS C), where

the transform feature subset {r} is jointly encoded over all Nσ scales (σ1, ..., σNσ). The

feature code map FS C value of the pixel (x, y) in the connected sub-image I is calculated
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as follows:

cNσ
(x, y) =

Nσ∑
j=1

(L r) j−1yr
(
x, y; σ j

)
(3.31)

yr
(
x, y; σ j

)
is the quantized texture codes of the transform features {r} at the scale σ j. L r

is the quantization level for the features {r}. The third feature code map c3 (i.e., FS C) is

computed at three adjacent scales (σ1, σ2, σ3) = (1, 2, 4).

Step 4: Code maps encoding via HOG operator. As shown in Figure 3.9, the proposed

technique is to portion each obtained feature code map into small spatial regions (blocks)

and encode each of them via the HOG operator (Dalal and Triggs (2005)) to generate the

corresponding HOG histogram. Concatenating the histograms of all the regions forms the

normalized feature vector related to a particular feature code map. After that, we further

concatenate all the obtained feature vectors of all feature code maps to obtain the final

CLGP (Cross multi-scale Locally encoded Gradient Patterns) histogram-based feature

representation.

In summary, three feature code maps are obtained, i.e., AS C1, AS C2, and FS C, each

of which is scanned from top to bottom and left to right and spatially divided into small

uniform Nb non-overlapping blocks. The histogram HOG is extracted from each block

Bt,t=1,...,Nb (cf. Figure 3.9). Given a feature code map cm,m=1,...,Nσ partitioned into Nb blocks,

we compute their respective HOG feature histograms using gradient detectors. Formally,

each pixel of each block Bm
t is convolved with the simple convolution kernel defined as

follows:

Grx = Bm
t (x + 1, y) − Bm

t (x − 1, y) (3.32)

Gry = Bm
t (x, y + 1) − Bm

t (x, y − 1) (3.33)

Grx and Gry are the horizontal and vertical components of the gradients, respectively.

HOG descriptor is computed from the occurrence of oriented gradients, i.e., magnitude

and direction, within rectangular non-overlapping cells (R- HOG) of the feature block Bm
t .

The gradient orientation θ and magnitude M are calculated as follows:

M (x, y) =

√
Gr2

x + Gr2
y (3.34)

θ (x, y) = tan−1 Gry

Grx
(3.35)
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Each block Bm
t,t=1,...,Nb

in the feature code map cm,m=1,...,Nσ contains Ncell non-overlapping

cells and 9 bin histograms per cell. These histograms are then concatenated to construct

a (Ncell × 9)-dimensional feature vector Vm
t,t=1,..,Nb

, which is then normalized by applying L2

block normalization (Lee et al. (2013)) as follows:

hm
t =

Vm
t√∥∥∥Vm

t

∥∥∥2
+ ε

(3.36)

hm
t is the normalized (Ncell × 9)-dimensional feature vector and ε is a small value close to

zero.

Subsequently, each feature code map cm is henceforth characterized by its concatenated

histogram Hm using Eq. 3.37:

Hm =

Nb∏
t=1

hm
t (3.37)

where
∏

is the concatenation operator. The three (Nσ = 3) obtained normalized fea-

ture vectors Hm,m=1,..,(Nσ=3) representing the three feature code maps cm,m=1,...,(Nσ=3) are

further concatenated to obtain the final CLGP histogram-based feature representation

H = [H1,H2,H3], which is a (Ncell × 9 × Nb × (Nσ = 3))-dimensional image feature descrip-

tor.

Note that the performance of the system depends significantly on the number of blocks

and cells (Nb and Ncell, respectively). Indeed, the optimal settings of these parameters for

each tested database are determined by extensive experiments discussed in Chapter 5

(cf. Section 5.3.3.2).
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Figure 3.9: The pipeline of CLGP feature extraction method.
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3.2.2.4/ LOCAL GRADIENT FULL-SCALE TRANSFORM PATTERNS DESCRIPTOR

An effective feature descriptor for writing characterization called Local gradient full- Scale

Transform Patterns (LSTP) is proposed. Inspired by our previous CLGP descriptor, es-

pecially the part that uses extreme value filtering and linear/nonlinear transformations,

our LSTP feature descriptor explicitly captures and encodes the writing pattern over non-

overlapping blocks. Indeed, it characterizes the writing information using a set of transfor-

mation features across multiple scale-spaces and encodes the resulting transformation

feature map (obtained by intersecting all transformation features) in small observation

blocks via the Histogram of Oriented Gradients operator (Dalal and Triggs (2005)). The

local intensity gradients computed within these blocks form the final LSTP feature his-

togram. The use of low-order Gaussian derivative filters makes LSTP insensitive to noise.

As shown in Figure 3.10, the steps of the LSTP feature descriptor are explained in detail

in the following:

Spatial Gaussian derivative filtering. Input connected components (gray-scale sub-

images) are first subjected to directional Gaussian derivative filtering (DGD) (Freeman

et al. (1991)). Using the circularly symmetric 2-D Gaussian function defined in Eq. 3.38,

the first and second DGD filters are computed as follows (cf. Eqs. 3.39 and 3.40):

G (x, y; σ) =
1

2πσ2 exp
(
−

x2 + y2

2σ2

)
(3.38)

G θ
1 = cos(θ)Gx + sin(θ)Gy (3.39)

G θ
2 = cos2 (θ) Gxx − sin (2θ) Gxy + sin2 (θ) Gyy (3.40)

G (x, y; σ) is defined and written in Cartesian coordinates x and y. θ is an arbitrary ori-

entation. σ is the standard deviation. In the (x)- axis, Gx (first) and Gxx (second) are

the scale derivatives of G, and Gy, Gyy and Gxy over the (y)- axis. For each connected

component sub-image I, the image derivatives are defined by: Lx = Gx ∗ I, Ly = Gy ∗ I,

Lxx = Gxx ∗ I, Lxy = Gxy ∗ I, Lyy = Gyy ∗ I, where ∗ is the convolution operator. The first and

second Gaussian responses at orientation θ (Freeman et al. (1991); Zhang et al. (2013))

are formally defined as follows:

Iθ1 = Gθ
1 ∗ I = cos (θ) Lx + sin(θ)Ly

=

√
L2

x + L2
y sin (θ + φ)

(3.41)
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where φ = arctan
(

Lx
Ly

)
and

Iθ2 = Gθ
2 ∗ I = cos2 (θ) Lxx − sin(2θ)Lxy + sin2(θ)Lyy

=
1
2

Lxx + Lyy +

√(
Lxx − Lyy

)2
+ 4L2

xycos (2θ − ψ)

 (3.42)

where ψ = arctan
(

2Lxy
Lyy−Lxx

)
. Extremum (maximum and minimum) response values of Iθ1

and Iθ2 over all θ are computed at Nσ scales (cf. Eqs 3.43, 3.44, and 3.45):

Iθ1max =

√
L2

x + L2
y (3.43)

Iθ2max =
1
2

Lxx + Lyy +

√(
Lxx − Lyy

)2
+ 4L2

xy

 (3.44)

Iθ2min =
1
2

Lxx + Lyy −

√(
Lxx − Lyy

)2
+ 4L2

xy

 (3.45)

Following (Varma and Zisserman (2009); Crosier and Griffin (2010); Zhang et al. (2013);

Song et al. (2015)), the number of scales Nσ is experimentally set to Nσ = 3: σ1 = 1,

σ2 = 2, and σ3 = 4.

Cross-scale features. Iθ1max, Iθ2max and Iθ2min are convolved with linear and nonlinear op-

erators to construct a discriminative and compact set of transform features F = {g, d, s, r}.

This step captures the local texture structures of the writing, and computes their corre-

lation in the input component sub-image. The gradient magnitude g is the first transform

feature, simply defined by: g = Iθ1max =

√
L2

x + L2
y . The extrema difference feature d is

calculated as:

d = Iθ2max − Iθ2min =

√(
Lxx − Lyy

)2
+ 4L2

xy (3.46)

The feature s (the shape index) is given by:

s =
1
2
−

1
π

arctan
− Iθ2max + Iθ2min

Iθ2max − Iθ2min


=

1
2
−

1
π

arctan

 −Lxx − Lyy√(
Lxx − Lyy

)2
+ 4L2

xy


(3.47)
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The fourth transform feature r (mixed extrema ratio) is computed as given in Eq 3.48:

r =
2
π

arctan
(
d
g

)
=

2
π

arctan
 Iθ2max − Iθ2min

Iθ1max


=

2
π

arctan


√√√(

Lxx − Lyy
)2

+ 4L2
xy

L2
x + L2

y


(3.48)

Full-scale map encoding via HOG operator. This encoding step aims to construct a

compact feature map over multiple scales. It performs a quantification of the generated

transform features F = {g, d, s, r} into a full-scale code map, i.e., a quantitative feature code

map at (σ1, σ2, σ3) = (1, 2, 4). As shown in Figure 3.10, each transformation subset, viz.

{g}, {d}, {s} or {r}, comprises three feature sub-images at three scales σ1, σ2 and σ3, re-

spectively: g =
{
gσ1 , gσ2 , gσ3

}
, d =

{
dσ1 , dσ2 , dσ3

}
, s =

{
sσ1 , sσ2 , sσ3

}
, and r =

{
rσ1 , rσ2 , rσ3

}
. For

each transform feature subset (g, d, s and r), the proposed technique is to jointly merge

the three feature sub-images (computed at three different scales) into a holistic discrimi-

native feature sub-image. Formally, using Eqs. 3.49, 3.50, 3.51, and 3.52, the Hadamard

product is performed for each transformed feature subset, which takes three feature sub-

images (matrices) of the same dimension and generates a different feature matrix (i.e., a

holistic discriminative feature sub-image) where each element is the product of the ele-

ments of the original three feature matrices. This increases the ability of the algorithm to

accurately characterise the writing content within each related component sub-image.

G =
(
gσ1
◦ gσ2

◦ gσ3

)
i j

=
(
gσ1

)
i j •

(
gσ2

)
i j •

(
gσ3

)
i j (3.49)

D =
(
dσ1
◦ dσ2

◦ dσ3

)
i j =

(
dσ1

)
i j •

(
dσ2

)
i j •

(
dσ3

)
i j (3.50)

S =
(
sσ1
◦ sσ2

◦ sσ3

)
i j =

(
sσ1

)
i j •

(
sσ2

)
i j •

(
sσ3

)
i j (3.51)

R =
(
rσ1
◦ rσ2

◦ rσ3

)
i j =

(
rσ1

)
i j •

(
rσ2

)
i j •

(
rσ3

)
i j (3.52)

Next, the four holistic feature matrices G, D, S and R are concatenated horizon-

tally/vertically to form the full-scale code map FC (cf. Figure 3.10). Then, FC is par-

titioned into Nbk blocks Bkt,t=1,..,Nbk (without overlap) encoded via the HOG operator to

generate their respective HOG histograms:

Gradx = Bkt (x + 1, y) − Bkt (x − 1, y) (3.53)
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Grady = Bkt (x, y + 1) − Bkt (x, y − 1) (3.54)

Gradx (horizontal) and Grady (vertical) are the gradients. Oriented gradient occurrences,

i.e., magnitude and direction computed within rectangular non-overlapping cells (R-

HOG), define the HOG descriptor:

Mg (x, y) =

√
Grad2

x + Grad2
y (3.55)

θg (x, y) = tan−1 Grady

Gradx
(3.56)

Mg and θg are the gradient magnitude and orientation. In our experimental study, Nc

non-overlapping cells and 9 bin histograms per cell are set for each block Bkt,t=1,...,Nbk in

the full-scale code map FC. The concatenation of these histograms constructs a (Nc × 9)-

dimensional feature histogram ht,t=1,..,Nbk . The feature histogram ht,t=1,..,Nbk is normalized

via the L2 block normalization function (Lee et al. (2013)):

Ht =
ht√
‖ht ‖

2 + ξ

, t = 1, ..,Nbk (3.57)

Ht is the normalized (Nc × 9)-dimensional feature histogram and ξ is a small value close

to zero. Normalized histograms Ht,t=1,...,Nbk of all blocks in the full-scale code map FC

are further concatenated to form the final LSTP histogram-based feature representation,

which is a (Nc × 9 × Nbk)-dimensional image feature descriptor:

HLS T P =

Nbk∏
t=1

Ht (3.58)

∏
is the concatenation operator. The optimal values for the number of blocks and

cells (Nbk and Nc, respectively) are empirically determined for each tested handwritten

database. The proposed LSTP algorithm for feature extraction is given in Algorithm 2.
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Figure 3.10: The proposed LSTP feature extraction method.
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Algorithm 2: Proposed LSTP for feature extraction

Input : Ci, i = 1, 2, · · · , n, where each element is an integer. // connected

component sub-image number i.

Output: HLS T P // LSTP feature vector histogram of the connected

component number i.

1 I← Ci;

/* Compute extremum (maximum and minimum) response values of Iθ1 and Iθ2
over all θ at three different scales Nσ = 3: σ1 = 1, σ2 = 2, and

σ3 = 4. */

2 G(x, y, σ); // Eq. 3.38; define the 2-D circularly symmetric Gaussian

function.

3 Gθ
1; Gθ

2; // Eqs. 3.39 and 3.40; compute the first and second Gaussian

derivatives Gθ
1 and Gθ

2 at orientation θ.

4 Iθ1 = Gθ
1 ∗ I; Iθ2 = Gθ

2 ∗ I; // Eqs. 3.41 and 3.42; compute the first and second

Gaussian responses Iθ1 and Iθ2 at orientation θ.

5 Iθ1max; Iθ2max; Iθ2min; // Eqs. 3.43, 3.44, and 3.45; get the maximum and

minimum response values of Iθ1 and Iθ2 over all θ at three different

scales Nσ = 3: σ1 = 1, σ2 = 2, and σ3 = 4.

/* Construct cross-scale transform features denoted as F = {g, d, s, r}. */

6 g = Iθ1max; d = Iθ2max − Iθ2min; s; r = 2
πarctan

(
d
g

)
; // Eqs. 3.46, 3.47, and 3.48;

compute the gradient magnitude g, extrema difference d, shape index s,

and mixed extrema ration r.

/* Compute the full-scale tranform features G, D, S , and R. */

7 G = gσ1
◦ gσ2

◦ gσ3
; D = dσ1

◦ dσ2
◦ dσ3 ; S = sσ1

◦ sσ2
◦ sσ3 ; R = rσ1

◦ rσ2
◦ rσ3 ; // Eqs.

3.49, 3.50, 3.51 and 3.52;

/* Concatenate G, D, S , and R to form the full-scale code map FC. */

8 c1 = concatenatefunction(G,D, axis = 2); // horizental concatenation of G and

D. c2 = concatenatefunction(S,R, axis = 2); // horizental concatenation of S

and R. FC = concatenatefunction(c1, c2, axis = 1); // vertical concatenation of

c1 and c2.

/* Compute the final LSTP feature histogram. */

9 Bk = getblocksfunction(FC,Nbk); // devide the full-scale code map FC into

Nbk non-overlapping blocks FC = ∪
Nbk
t=1 Bkt (Bkt is the block number t).

10 HLSTP = [ ];

11 for t ← 1 to Nbk do
12 Ht = HOGfunction(Bkt); // Eq. 3.57; compute the HOG histogram of the

block Bkt.

13 HLSTP = concatenatefunction(HLSTP,Ht, axis = 2); // Eq. 3.58; output; HOG

histograms of all blocks in FC are concatentated to form the

feature vector histogram HLS T P.

14 end for
15 return HLS T P
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3.2.3/ CLASSIFICATION PROCESS

After extracting feature histograms from all the connected components in the writing, we

perform the classification process, i.e., identifying the writer using the Nearest Neighbor

classifier. Keeping the same classification process, we empirically evaluated various dis-

tance metrics to study the system performance. These include Euclidean, correlation,

Bhattacharyya, cosine, and Hamming distance metrics. The experiments have shown

that Hamming distance, which is commonly used and considered as an efficient distance

in writer identification (Hannad et al. (2016); Schomaker and Bulacu (2004), etc.), per-

forms better than the other metrics.

To perform the identification process, we set up a comparison mechanism between hand-

written samples (cf. Figure 3.11). It consists of comparing the Hamming distances of the

respective feature histograms of one sample from the test set and the other from the train-

ing set: (1) test sample (unseen) to be identified, denoted as S wx , where wx is the label

of the unknown writer in the test set; (2) training sample, denoted as S wr f , produced by

a known writer labeled by wr f in the reference base Br f . A set of connected sub-images

C j ( j=1,.,Nwx )
wx is extracted from the test sample S wx characterized by their corresponding

feature histograms HS wx
= {HC j

wx

ζ(C j
wx )>ρ

, 1 ≤ j ≤ Nwx}. ζ(C j
wx) is the number of pixels in the

component C j
wx . ρ is a small threshold used to remove certain unwanted diacritics and

accidental writing traces that represent a very small fraction of writing pixels with an area

less than ρ pixels (ρ << 50 × 50). Nwx = card(S wx) is the number of connected component

sub-images cropped from the test sample S wx . In the same way, the connected compo-

nent sub-images C
j ( j=1,.,Nwr f )
wr f , which form the training sample S wr f , are represented by

their feature histograms HS wr f
= {H

C j
wr f

ζ(C j
wr f )>ρ

, 1 ≤ j ≤ Nwr f }. Nwr f = card(S wr f ) is the number

of connected component sub-images in the training sample S wr f .

To summarise, the classification process (cf. Algorithm 3) for identifying the query sample

S wx (based on distance comparison with a training sample S wr f ) is briefly outlined as

follows: (i) Hamming distances are computed between each connected component C j
wx

in the query sample S wx and all components C
k (k=1,.,Nwr f )
wr f in the training set S wr f , (ii) the

component in the training set that has the smallest metric value is the one that matches

the test component C j
wx in the query sample S wx , and (iii) the final dissimilarity measure

DIS (S wx , S wr f ) between the unknown sample S wx and the (known) training sample S wr f is

defined as follows:

DIS (S wx , S wr f ) =
1

Nwx

Nwx∑
j=1

min{η
(
C j

wx
,C1

wr f

)
, η

(
C j

wx
,C2

wr f

)
, . . . ,

η
(
C j

wx
,C

Nwr f
wr f

)
}

(3.59)



3.2. OVERALL PIPELINE 77

𝑺𝒘𝒙
𝟏

Total set of testing samples

Evaluation (Test) Reference base (Training)

Total set of training samples 𝝒

: Feature histograms of connected
component sub-images.

𝑺𝒘𝒙
𝒊 : ith Testing sample

𝑺𝒘𝒙
𝟐

𝑺𝒘𝒓𝒇
𝟏

𝑺𝒘𝒓𝒇
𝝒

𝑺𝒘𝒓𝒇

𝒋
: jth Training sample

:   Dissimilarity measure𝐃𝐈𝐒 𝑺𝒘𝒙
𝒊 , 𝑺𝒘𝒓𝒇

𝒋

𝑺𝒘𝒓𝒇
𝟐

Figure 3.11: An overview of the classification process.

where η
(
C j

wx ,C
k
wr f

)
is the Hamming distance between the connected component number

j (i.e., C j
wx) in the test document S wx and the connected component number k (i.e., Ck

wr f
) in

the training document S wr f . The Hamming distance function η(·, ·) is given in the following:

η
(
C j

wx ,C
k
wr f

)
=

Dim∑
n=1

|HC j
wx (n) − HC j

wr f (n)| (3.60)

HC j
wx is the feature histogram of the connected component C j

wx , HC j
wr f is the feature his-

togram of the connected component Ck
wr f

, and Dim is the feature histogram dimension. All

dissimilarities between the unseen sample S wx and all the training ones S wr f , r f = 1, ...,κ
are arranged in a hit list (κ is the number of handwritten samples in the training base Br f ).

As final classification decision, the writer of the query sample S wx is then identified as the

writer of the sample in training set Br f , which reports the minimum dissimilarity:
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Writer
(
S wx

)
=argmin{DIS

(
S wx , S w1

)
, . . . ,

, . . . ,DIS
(
S wx , S wκ )

} (3.61)

Algorithm 3: The classification process

Input : S wx , [S wr f ] // S wx is the query handwriting sample to be identfied;

[S wr f ] list is the training samples, where r f = 1, ...,κ (κ is the
number of handwritten samples in the training base Br f).

Output: Writer(S wx) // writerID of the query sample S wx.

/* Parameters definition. */

// Nwx = card(S wx) is the number of connected components of S wx;

Nwr f = card(S wr f ) is the number of connected components of S wr f ; Ci
wx
is the

connected component number i charecterized by its feature histogram HCi
wx

in the query sample S wx; C j
wr f is the connected component number j

charecterized by its feature histogram HC j
wr f in the training sample

S wr f ;

/* Compute the dissimilarity between the query sample S wx and the

training sample S wr f . */

1 for i← 1 to Nwx do
2 for j← 1 to Nwr f do
3 tmpdis(j) = hammingdisfunction(Ci

wx
,Cj

wrf ); // Eq.3.60; compute Hamming

distance between HCi
wx and HC j

wr f .

4 end for
5 mindistances(i) = minfunction(tmpdis); // compute the minimum Hamming

distance between Ci
wx
and all [C j

wr f ] of the training sample S wr f .

6 end for
7 diss(Swx ,Swrf ) = 1

Nwx

∑Nwx
i=1 mindistances(i); // Eq. 3.59; dissimilarity measure

between S wx and S wr f .

/* Identify the writer of the query sample S wx. */

8 for r f ← 1 to κ do
9 dissimilarities(rf) = diss(Swx ,Swrf ); // compute all dissimilarities between

the query sample S wx and all the training ones [S wr f ].

10 end for
11 Writer(Swx) = argminfunction(dissimilarities) // Eq. 3.61;

12 return Writer(S wx)
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3.3/ CONCLUSION

In this chapter, we presented four texture-based systems for text-independent offline

writer identification. The following pipeline was considered for the proposed systems:

image preprocessing, feature extraction, and classification. We proposed and used a

common step for all four texture-based systems for image preprocessing, namely, remov-

ing background noise and diacritics from the writing and segmenting the document image

into connected component sub-images. These connected components are the input to

the feature extraction step in all the proposed approaches.

The first system is based on the BWLBC method. It characterizes the variability of writing

style in small binary blocks (of connected components) by computing the distribution of

white pixels corresponding to the ink. A second contribution is to use LBP, LTP, LPQ hand-

crafted descriptors in a new and effective learning framework to capture texture features

of small regions (zones) of interest in writing, followed by dimensionality reduction. The

feature vector is then a set of sub-histograms computed sequentially within each zone of

the connected component. This chapter also introduced two feature extraction methods,

namely CLGP and LSTP. The CLGP model computes the distribution of local intensity

gradients within small connected regions called cells (in connected components) across

multiple feature code maps. The LSTP method is an extended variant of CLGP to extract

more relevant texture information using the HOG operator. In the classification step,

features are matched and compared using the nearest neighbor with an efficient strategy

to identify unseen documents.

Deep learning methods are also explored in this thesis. In the next chapter, new and

effective techniques based on Convolutional Neural Network (CNN) are presented to im-

prove the writer identification task.





4

DEEP LEARNING FOR WRITER

IDENTIFICATION

4.1/ INTRODUCTION

In deep learning, Convolutional Neural Network (CNN or ConvNet) is a class of deep

neural networks that have recently emerged as a modern tool for large-scale pattern

recognition problems and has found wide application in computer vision. With enough

training data and good optimization, CNNs can provide an accurate solution for identifying

writers from handwriting images. They also provide an easier way to obtain the desired

features for characterizing individual writing style information. These features can be

automatically learned by CNNs thanks to appropriate deep modeling and learning. To this

end, we exploit the power of deep convolutional neural networks (CNNs) to improve the

task of offline text-independent writer identification. Our first contribution consists of an

effective deep learning-based framework called WriterINet. It includes three main steps:

(1) image preprocessing to segment handwritten documents into word and connected

component images; (2) deep feature extraction step. Since it is challenging to model

the within-writer and between-writers variability, characterizing such features requires a

well-designed and effective feature method using suitable classifiers. If these features are

inappropriately extracted from the writing, it will affect the system in performing correct

identification. Therefore, we introduce a multi-path deep CNN consisting of ResNet50

and DenseNet201 networks. Both models are trained and fine-tuned with different input

data, i.e., words and connected components; (3) writer classification process using a

conceptually simple and effective artificial neural network (1D- ANN). We define a custom

1D artificial neural network to classify CNN features (1D- ANN is initially used in signal

processing for 1D data);

To further investigate the performance of writer identification using deep learning, we de-

sign an efficient CNN model referred to as DeepWINet. The proposed model is used

and evaluated in two different ways. In the first scenario, the CNN activation features of

81
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DeepWINet computed from the connected components of the writing are fed to a nearest-

neighbor classifier for writer identification. In the second scenario, DeepWINet is eval-

uated as an end-to-end CNN network trained on connected components of the writing.

Then, a score-averaging component-decision combiner is performed to average the pre-

dicted scores for writer identification.

The present work also contributes to the solution of historical document retrieval based on

writer identification. We participated in the ICFHR2020 competition on image retrieval for

historical handwritten fragments. The competition’s goal is to retrieve all similar fragment

images that belong to the same writer ID and find all fragment images segmented from

the same page ID. Our submitted approach consists of two CNN streams trained and fine-

tuned with different input data (fragment images from the ICFHR2020 training set). The

average pooling layer of the two CNN branches is used to extract learned deep features

of the test fragment images. As a similarity measure, the distance computation is per-

formed using the Ch-square metric. In this competition, four approaches are presented

by participants from different universities, including University Bourgogne Franche-Comte

(UBFC), University of Groningen (RUG), and Tebessa University (ULT). Our system won

first place in Task 2 (Page Retrieval) and second place in Task 1 (Writer Retrieval).

This chapter explains our different CNN-based approaches for writer identification, intro-

duces the ICFHR2020 competition and the tested database and presents our proposed

method along with a brief description of the other submitted methods.

4.2/ WRITERINET: A MULTI-PATH DEEP CNN FOR WRITER IDEN-

TIFICATION

As shown in Figure 4.1, our proposed deep learning-based approach, called WriterINet,

consists of three steps. First, the writing documents are fed to the preprocessing and

segmentation phase, where each writing sample is decomposed into word images and

connected component sub-images. Second, a powerful deep multipath CNN model is

built for feature extraction, which consists of ResNet-50 (He et al. (2016a)) and DenseNet-

201 (Huang et al. (2017)) models (pre-trained on the training set of IAM database). The

model extracts discriminative features of the input word and its related component im-

ages. Third, a simple artificial neural network model (ANN) is developed to classify the

obtained local features (corresponding to the words and connected components). In this

way, for each test document (unseen sample), the trained model predicts all the simi-

larity scores of its local deep feature vectors, based on which the writer identification is

performed. Each step is described in detail in the following sections.
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Figure 4.1: Design and structure of the proposed WriterINet approach.

4.2.1/ IMAGE SEGMENTATION METHOD

Image preprocessing and segmentation is an essential step in improving writer identifica-

tion performance. As shown in Figure 4.1, each handwritten input sample is segmented:

into word images and connected component sub-images. This step is critical because we

need to isolate each word from the others and separate the individual connected compo-

nents in writing. For word segmentation, we employ the same scale-space technique as in

(Manmatha and Srimal (1999)), which is based on the use of blob analysis and Gaussian

filters. This segmentation algorithm is fast, easy to implement 1 and, more importantly,

ensures that one gets satisfactory segmentation results. As for the second segmenta-

tion, different regions of interest are extracted from the segmented word images, called

connected components. This process is performed using a labeling function that assigns

1code: https://github.com/githubharald/WordSegmentation
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a small bounding box around each connected component, i.e., determines all connected

neighbor pixels that form a connected writing trace. Each truncated connected compo-

nent is labeled with its specific class (writer). To quantify the writing content within each

component, all connected neighbor pixels with non-significant information such as dia-

critics and random writing traces are removed. To discard these unwanted details, which

are either generated during the image segmentation step or filled with the original back-

ground, a size-based thresholding procedure is applied to the connected components

using a small threshold σ (<< 50 × 50). An example of preprocessing and segmentation

Chinese-English sample is shown in Figure 4.2.

4.2.2/ FEATURE LEARNING

Feature extraction in writer identification is considered as an important milestone that

allows characterizing the repeated patterns of the writing style. To extract such relevant

features, a well-designed and effective feature extraction method is required. If these

features are poorly extracted from the writing, the system will not perform correct writer

identification even with a good classifier. At this stage, there is a need to extract explicit

writing style features and find descriptive details that reflect individual writing habits. This

Original document image (writer_0101_04-02.ppm)

30 extracted 
word images

Gaussian filter-based 
scale space

for word segmentation

Discarding unwanted
details

Figure 4.2: Pre-processing of English-Chinese handwritten document from CERUG-
MIXED (He and Schomaker (2017b)) database.
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makes the task more difficult for SOTA feature extraction methods, which typically deal

with texture and local writing structure. In this step, deep convolutional neural networks

(CNNs) are used as a powerful approach to handle the writing variability for robust and

reliable feature extraction. Thanks to a suitable deep modeling and learning strategy, the

writing style can be automatically learned to obtain the desired and more representative

features for writer identification.

We propose an effective deep learning-based approach called WriterINet, which consists

of ResNet-50 (He et al. (2016a)) and DenseNet-201 (Huang et al. (2017)) CNN models

combined for feature extraction. These two networks are used simultaneously over two

paths to enhance the identification performance. As shown in Figure 4.1, WriterINet

segments the input writing sample into word images and connected component sub-

images. To enrich the learning process, the word images are the input of DenseNet-

201, and the connected component sub-images are the input of ResNet-50. First, the

DenseNet-201 and ResNet-50 models are pre-trained using word images and connected

component sub-images from the IAM database, respectively. These pre-trained models

are then used as a starting point for feature learning. Next, as shown in Figure 4.3, we

fine-tune the two CNN models on each tested database by transfer learning. This is

performed by replacing the last layers with new layers adapted to the tested database.

Since both the ResNet-50 and DenseNet-201 models require input images of size 224-

by- 224-by-3, we automatically resize them before inputting them to the two networks.

After fine-tuning, deep features are learned from Net1 and Net2 and used to train an

artificial neural network for classification, as shown in Figure 4.1.

As illustrated in Figure 4.4, the Net1 and Net2 models construct a hierarchical represen-

tation of the input document image where higher-level features are extracted from deeper

layers. Global average pooling layer activations of Net1 and Net2 are used to capture

features of the handwritten input document. As a result, the learned features are pooled

over all spatial locations, yielding 2048 and 1920 bins in the feature dimension for each

connected component sub-image by Net1 and for each word image through Net2, respec-

tively. In other words, Given a handwritten input document, each extracted word image is

characterized by its Net2 learned feature (dimension of 1920), and each extracted con-

nected component sub-image is characterized by its Net1 learned feature (dimension of

2048). Net1 and Net2 deep features of the same input document are arranged separately

in matrix form. The zero-padding method is applied to the features learned from Net2 to

obtain the same feature matrix size as that derived from Net1. In this way, we can easily

concatenate the two feature matrices of Net1 and Net2 vertically to form a holistic feature

representation of the input writing document.
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Figure 4.3: Overview of the fine-tuning process.
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4.2.3/ WRITER IDENTIFICATION PROCESS

At this level of our framework, we dispose of learned features that characterize all ex-

tracted connected components and words from each writing sample. Note that the num-

ber of extracted component sub-images and word images corresponds to the number of

feature vectors representing its relevant document sample. To perform the identification

(classification) process, a simple end-to-end artificial neural network (ANN) is trained on

the learned features, as shown in Figure 4.5. The ANN architecture consists of a 1D in-

put, two fully connected layers, a softmax layer, and a classification layer. Given a unseen

writing sample, the testing process is performed as follows (see Figure 4.5): (i) according

to the methodology in Section 4.2.2, we compute the learned features (represented by

the feature matrix) corresponding to the segmented connected component sub-images

and the word images; (ii) the ith feature vector, i.e., ith row of the feature matrix, is fed

into the trained ANN classifier to compute its similarity score vector S i, where i = 1, ..., F,

F (C + W, the number of rows of the feature matrix, as shown in Figure 4.4) denotes

the number of segmented images (words and components). S i contains similarity scores

related to the classes (writers), and its dimension size is the number of writers (classes);

(iii) computing the final score of j − th class by accumulating its scores obtained for all F

feature vectors: S C j = 1
F

∑F
i=1 S i j, j = 1, ....,N, N is the number of classes (writers); (iv)

return the writer ( j− th class) with the highest similarity score S C j∗. Note that the similar-

ity score vector returned by the trained classifier ANN for each feature vector (row) of the

feature matrix is considered as a probability distribution over all writers. Therefore, the

similarity score vectors of all observations (segmented images, i.e., words and connected

components represented by the rows of the feature matrix) are averaged to produce the

final prediction of the input writing sample. The testing pipeline is shown in Figure 4.5.
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Figure 4.5: Classification process.

4.3/ AN EFFECTIVE DEEPWINET CNN MODEL FOR WRITER IDEN-

TIFICATION

The proposed system consists of a three-stage writer identification model: (i) image pre-

processing and segmentation to extract all connected components contained in each writ-

ing page, (ii) an effective end-to-end CNN model: DeepWINet to characterize and classify

each single connected component sub-image, and (iii) a classification process that in-

cludes the two following scenarios to identify unseen documents: (1) the DeepWINet

model is used as feature extraction, and the deep features (test and training features) are

passed to a nearest-neighbor classifier for writer identification; (2) DeepWINet is evalu-

ated as an end-to-end CNN network to compute predicted scores. Then, we perform a

score-averaging component-decision combiner to identify unseen documents. Figure 4.6

illustrates the concept of the proposed system. Each step is described in detail below.
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Figure 4.6: Architecture of the proposed system.

4.3.1/ COMPONENT SEGMENTATION

Each handwritten document is segmented into words and then from word images into

connected component sub-images. In this step, we need to separate each word from the

others. Therefore, we use blob analysis and Gaussian filters as reported in (Manmatha

and Srimal (1999)) to perform scale-space coding for word segmentation. This technique

gives better results which is conceptually simple 2 yet fast in processing time. The seg-

mented words are then fed to a labeling approach to extract different regions of interest

called connected components, which are the main input of our DeepWINet CNN network.

This labeling algorithm detects all connected neighbor pixels that form a connected writ-

ing trace, and then assigns a bounding box to each of them. Each connected component

sub-image is labeled to specify its respective writer (class). Non-significant components

such as diacritics and accidental writing traces are discarded using a size-based thresh-

old with a small threshold of σ (50×50). An example of component segmentation is shown

2code: https://github.com/githubharald/WordSegmentation
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in Figure 4.7.

4.3.2/ DEEPWINET CNN NETWORK

At this level, the objective is to find and capture descriptive details contained in the seg-

mented components that reflect the writing habits of each writer. For this, we take advan-

tage of the power of deep convolutional neural networks (CNNs) to characterize individ-

ual writing style information. With proper network modeling, handwriting can be deeply

learned for writer identification. As mentioned before, the previously obtained connected

components will be the main input of our CNN model. We propose an effective and reli-

able deep CNN architecture called DeepWINet. As shown in Figure 4.8, our DeepWINet

model, inspired by VGG networks (Simonyan and Zisserman (2014)), is mainly designed

based on the following two layout settings: (i) DeepWINet layers have the same number of

filters when the feature map size remains unchanged. (ii) across the DeepWINet pipeline,

when the feature map size is changed, we double the number of filters to balance the time

complexity per layer. CNN down-sampling is performed using max-pooling layers with a

kernel size of 3 × 3 and a stride step of 2.

This directly divides the input feature map into rectangular pooling regions and computes

Original document image

Gaussian filter-based 
scale space

for word segmentation

<

Ignoring non-significant
details

Figure 4.7: Component segmentation of English-Chinese document taken from CERUG-
MIXED (He and Schomaker (2017b)) database.



92 CHAPTER 4. DEEP LEARNING FOR WRITER IDENTIFICATION

Previous DeepWINet
module

Conv: 3×3, NF

Conv: 3×3, NF

Conv: 3×3, NF

Conv: 3×3, NF

Conv: 5×5, NF

Conv: 5×5, NF

Conv: 7×7, NF

ConcatLayer, Dim 3

Conv: 3×3, 2×NF

Conv: 3×3, 2×NF

Conv: 3×3, 2×NF

Conv: 3×3, 2×NF

Conv: 5×5, 2×NF

Conv: 5×5, 2×NF

Conv: 7×7, 2×NF

MaxPool: 3×3, Stride (2)

ConcatLayer, Dim 3

Next
DeepWINet

module

MaxPool: 3×3, Stride (2)

DeepWINet
module

Figure 4.8: Structure and design of the proposed DeepWINet module.

the maximum of each region. Batch normalization followed by layers of rectified linear

units are applied directly after each convolution layer. These layers are run over a mini-

batch to speed up the training of DeepWINet.

As shown in Figure 4.8, DeepWINet branches into three paths for each feature map size:

(1) The middle CNN baseline consists of four 2-D convolutional layers with filters of size

3×3. This applies sliding convolutional filters to the input map to compute the dot product

of the weights and the input; (2) right CNN baseline with two 2-D convolutional layers

and 5 × 5 in kernel size; (3) left CNN baseline has one 2-D convolutional layer with a

filter size of 7 × 7. An increase in the filter size accompanies the reduction in the number

of 2-D convolutional layers. This is related to the fact that a larger filter size is likely to

capture more detail than smaller ones. Therefore, fewer CNN layers are used when filter

size is important to preserve per-layer time complexity and reduce sensitivity to network

initialization. Throughout the DeepWINet pipeline, the outputs of the three paths are

merged using the concatenation layer to form a holistic deep feature map with more

discriminative details. The DeepWINet pipeline ends with average-down sampling, i.e.,

the mean of the height and width dimensions of the last feature map is computed, using a

global average-pooling layer. The last layers are fully connected (the number of neurons
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is equal to the number of classes), followed by soft-max and classification layers. This

calculates the cross-entropy loss for the multi-class writer identification problem and can

then be used to return the scores and labels of the sub-images of the input connected

components.

As shown in Figure. 4.9, we design the full and light versions of DeepWINet. Since the

input image size in the light version of DeepWINet is 80-by-80-by-3, we remove the first

2-D convolutional layer with the filter size of 7 × 7. This balances the feature map size

and preserves more handwriting details to be processed by the next convolutional block.

In total, DeepWINet consists of 30-weighted layers (full version) and 24-weighted layers

(light version). In terms of network complexity, our DeepWINet model (light) has lower

complexity compared to VGG models with 22 million parameters, which is the only 15%

of the VGG-19 model (144 million parameters). The full version of DeepWINet has 65

million parameters.
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Figure 4.9: Architecture of DeepWINet CNN Network with two versions (Full and Light).
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4.3.3/ WRITER IDENTIFICATION

Scenario 1: Writer classification using a distance metric. For reliable feature ex-

traction, we exploit the ability and effectiveness the DeepWINet CNN model as a feature

learning representation for writer identification. First, we pre-trained the DeepWINet net-

work with connected components of the training set of the IAM database (Marti and Bunke

(2002)) to use the model as a starting point for feature learning. Next, DeepWINet is fine-

tuned through transfer learning by replacing the last three layers with new layers adapted

to the tested dataset. DeepWINet forms a hierarchical CNN representation where higher-

level features are captured from deeper layers. Therefore, the global average pooling

layer is used to extract feature activations related to each sub-image of the input con-

nected components. This procedure performs feature pooling over all spatial locations,

resulting in a feature dimension of 6144 (full DeepWINet) and 8192 (light DeepWINet). For

each handwriting document, the number of learned feature vectors is equal to the num-

ber of extracted sub-images. The learned features are then fed to the nearest neighbor

classifier to perform the writer identification. For this, we experimentally tested several

distance metrics to explore the system performance. These include Correlation, Ham-

ming, Chi-Square, Bhattacharyya, Cosine, and Euclidean distance metrics. The highest

performance is obtained using the Chi-Square metric, which is considered as efficient

distance in pattern recognition problems. The identification process used to classify a

query document Q is summarized as follows: (1) Chi-Square distances between each

connected component CP j
Q in the query sample Q and all components CPk (k=1,..,NR)

R in the

training sample R are calculated. NR = card(R) is the number of connected component

sub-images in the training document R; (2) the training component reporting the smallest

Chi-Square distance is considered to be the one that matches the test component CP j
Q in

the query document Q; and (3) we compute the final dissimilarity metric DIS M(Q,R) be-

tween the query document Q (unseen to be identified) and the training document (known)

R:

DIS M(Q,R) =
1

NQ

NQ∑
j=1

min{dist
(
CP j

Q,CP1
R

)
, dist

(
CP j

Q,CP2
R

)
, . . . ,

dist
(
CP j

Q,CPNR
R

)
}

(4.1)

where NQ = card(Q) is the number of connected component sub-images cropped from

test document Q, and dist
(
CP j

Q,CPk
R

)
is the Chi-Square distance between component

number j (i.e., CP j
Q) in the query document Q and the component number k (i.e., CPk

R) in

the training document R. Chi-Square distance dist(·, ·) is defined as follows:

dist
(
CP j

Q,CPk
R

)
=

Dims∑
t=1

(VCP j
Q(t) − VCPk

R(t))2

VCP j
Q(t) + VCPk

R(t)
(4.2)
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where Dims is the feature vector dimensionality, VCP j
Q is the extracted deep feature vector

of the connected component CP j
Q, and VCPk

R is the deep feature vector of the connected

component CPk
R. Next, we arrange in a hit-list all dissimilarity measures between the

query document Q and all the training ones Rn, n = 1, ..., η. η is the total number of training

documents. The authenticity of the query document Q is then recognized as the writer of

the training document that records the minimum dissimilarity:

WriterID (Q) =argmin{DIS M (Q,R1) , . . . ,

, . . . ,DIS M
(
Q,Rη)

} (4.3)

Scenario 2: scores averaging using the proposed DeepWINet (deployed as an end-
to-end CNN network). In this scenario, the writer identification is performed based on

prediction scores of the tested connected components, obtained from DeepWINet CNN

model (cf. Figure 4.6). Given a query document, the classification procedure is as fol-

lows: (1) the computation of the predicted scores corresponding to the input connected

components using DeepWINet. In doing so, we inputted the ith connected component

into the trained DeepWINet to return its similarity score vector S Ci, where i = 1, ...,N, N

denotes the number of segmented components. The prediction scores in S Ci, i.e., the

probability distribution over all classes, indicate the similarity to the writers (classes). The

size of S Ci is equal to the number of classes; (2) the final score of the jth writer (for

each unseen document) is calculated by averaging its scores obtained for all N input con-

nected components: W j
sc = 1

N
∑N

i=1 S Ci j, j = 1, ....,W, W is the number of writers (classes);

(3) as the final prediction decision, the writer of the query document is the jth class with

the highest similarity score W j∗
sc . The score averaging-connected component process is

shown in Figure 4.10.
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Figure 4.10: Writer identification using scores averaging.

4.4/ IMAGE RETRIEVAL FOR HISTORICAL HANDWRITTEN FRAG-

MENTS

4.4.1/ ICFHR2020 COMPETITION

Analyzing historical documents is a difficult task that is usually accomplished by trained

humanists. However, there are still challenges in identifying historical writers when docu-

ments have particularly complex handwriting styles. The ICFHR2020 competition (Seuret

et al. (2020)) investigates the performance of large-scale retrieval of historical document

fragments based on document identification, i.e., identifying both the page and writer IDs.

To simulate fragments, Seuret et al. (2020) extracted random snippets of text from his-

torical document images called historical fragments. The authors used a semi-automatic

technique to generate a large database consisting of more than 120 000 historical frag-

ments written by 9800 writers from about 20 000 document images.

These fragments with random shapes and non-straight edges are generated using a free,
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open-source fragmentation technique3 developed by Seuret et al. (2020) based on the

use of the diamond-square algorithm originally proposed in (Fournier et al. (1982)) and

mainly used to create height maps in video games. In this way, they generated two types

of fragments: (i) fragments with holes and completely random shapes, with no constraint

other than being in one piece. (ii) fragments generated by cutting the historical documents

using horizontal and vertical non-linear polygonal chains, resulting in a more rectangular

shape, with the constraint that the chains must always move forward along an axis. Figure

4.11 shows some examples of historical fragments used in the competition. The database

is publicly available in (Seuret et al. (2020)).

The historical documents are collected by many institutions and made available as

manuscripts, letters, and charters. Some historical documents are collected from the

publicly available Historical-IR19 test set in (Christlein et al. (2019)). Some other histori-

cal samples include a corpus of books written in the European Middle Ages, mainly from

the 9th to 15th centuries CE. The letters were provided by the University Library Basel 4

where the IDs of the writers are given in a metadata.

The two main tasks of the ICFHR2020 contest are: (1) finding all similar fragment patches

belonging to the same writer ID based on writing style, and (2) retrieving all fragment

images segmented from the same page ID. As for the compilation of the ICFHR2020

competition database, Seuret et al. (2020) provided 101 706 fragments as the training

set collected from 8717 writers from 17 222 historical documents. The test set consists

of 20 019 fragments from 1152 writers generated from 2732 historical documents. Note

that the IDs of the writers in the training set are different from those in the test set, and

there is no overlap between the two sets. Seuret et al. (2020) found that the number of

fragments provided is sufficient to train and test deep neural networks for the competition

tasks.
3https://github.com/seuretm/diamond-square-fragmentation
4https://www.unibas.ch/de

Figure 4.11: Examples of generated historical document fragments. The two examples
on the left have rectangular shapes. The two examples on the right have completely
random shapes.
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4.4.2/ PARTICIPANTS OF THE ICFHR2020 COMPETITION

Five methods, including our proposed approach (with two variants), from different univer-

sities, are evaluated in the ICFHR2020 competition. Since the test set includes 20019

historical fragments, participants are asked to submit a CSV file containing 20019× 20019

distance matrix. The leave-one-image-out-cross-validation rule is used as the evaluation

strategy for participants’ results. In other words, each of the 20019 fragment images in

the test set is used as a query sample, while the other samples are ranked in a hit list ac-

cording to their distance similarities (the smaller, the more similar). The metrics are then

averaged over all the queries. The error metrics and experimental results are discussed

in detail in Chapter 5 (cf. Section 5.6.1). The approaches presented are briefly explained

in the following.

4.4.2.1/ CONTEST BASELINE

The competition baseline is the system presented in (Nicolaou et al. (2015)). They used

an image descriptor called Sparse Radial Sampling Local Binary Patterns (SRS-LBP),

a variant of Local Binary Patterns (LBP) originally proposed for document image analy-

sis. The SRS-LBP operator transforms each image pixel into multiple SRS-LBP codes

representing the relationship between the central pixel and its surrounding pixels. This

encodes the input image as multiple 8-bit images, with a histogram of SRS-LBP codes

computed for each radius (for radii 1 to 12). A global SRS-LBP pooling is performed

to form a normalized histogram with 256 bins for each radius, and then all histograms

are concatenated into a 3072-dimensional block-normalized descriptor. Using the Princi-

pal Component Analysis (PCA) projection, the 3072-dimensional vector is mapped to the

first 200 principal components. The Hellinger kernel is applied to the 200-projected vector

(representing each historical fragment image), followed by l2 normalization. Manhattan

similarity was used as a metric to calculate the distances.

4.4.2.2/ UNIVERSITY OF GRONINGEN

Sheng He and Lambert Schomaker from the University of Groningen used a CNN net-

work called FragNet, which was previously proposed for writer identification in (He and

Schomaker (2020)). The FragNet architecture is structured into two streams: a feature

pyramid stream used to extract feature maps and a CNN fragment stream (fragments as

input) trained to identify the writer based on the predicted scores of fragment images and

feature maps (computed from the feature pyramid). Note that only the cross-entropy loss

is used for the FragNet model instead of the triplets loss. Horizontal/vertical projections

remove some black edges created during historical fragment generation. Since the CNN
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FragNet model requires input images of size 64 × 128, each fragment is partitioned into

non-overlapping blocks of dimension 64 × 128. For each historical fragment, the FragNet

features of all extracted blocks are averaged into a 512-dimensional feature vector. The

Euclidean metric is used as the distance measure for the competition tasks.

4.4.2.3/ UNIVERSITY OF BOURGOGNE FRANCHE-COMTE

Michel Chammas, Abdallah Makhoul, and Jacques Demerjian from the Femto- ST Re-

search Institute at the University of Bourgogne Franche-Comte have proposed a CNN-

based approach. The overall system is based on the approach presented in (Christlein

et al. (2017b)) with some improvements. First, scale-invariant keypoint descriptors (SIFT)

are computed from the fragment images. Principal component analysis (PCA) is used

to reduce the dimension of SIFT descriptors from 128 to 32 and then clustered using

the K-means algorithm originally proposed in (MacQueen et al. (1967)). A deep residual

network (ResNet20) is trained with the cluster IDs (targets) using patches extracted from

each SIFT location (from the same SIFT keypoints). The deep features are extracted

from the penultimate CNN activation layer, encoded, and normalized to produce a global

feature vector. The authors used the multi-VLAD approach (Vector of Locally Aggregated

Descriptors) to aggregate all features into a holistic global descriptor. An incremental

PCA algorithm (Goel (2019)) with whitening was used to reduce the dimension of the

global descriptor. The distance matrix is calculated using the Cosine similarity.

4.4.2.4/ UNIVERSITY OF TEBESSA

Abdeljalil Gattal and Chawki Djeddi from the University of Tebessa used the oriented

Basic Image Features (oBIFs) column histograms as in their earlier work in (Gattal et al.

(2016)) and (Abdeljalil et al. (2018)). Two different configurations of oBIFs, i.e. σ= 2, 4

and σ= 1, 8, are extracted directly from the historical fragments and concatenated into a

feature descriptor. The oBIF parameter ε is set to 0.01, and the Correlation distance is

calculated to obtain the results as similarity measures.

4.4.2.5/ PROPOSED DEEP LEARNING-BASED APPROACH

For robust and reliable feature extraction, we use deep convolutional neural networks

(CNNs) to characterize the writing style of historical handwritten fragments. In our

method, the CNN activations of the ResNet-50 model (He et al. (2016a)) are used as

deep features. In particular, two ResNet-50 models are trained and fine-tuned with dif-

ferent input data (fragment images of the ICFHR2020 training set). As shown in Figure

4.12, each fragment image is fed into two CNN path-ways: Net1 uses the entire fragment
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image, while for Net2 the input image is split into four sub-blocks, i.e., a vertical split and

a horizontal split. Therefore, Net2 uses a total of about 400 000 training samples.

Figure 4.12: Overview of the proposed approach.
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For training, the Adam optimizer proposed in (Kingma and Ba (2014)) is used with a

learning rate of 0.0001, 10 epochs, and a mini-batch size of 40. In the CNN architec-

ture, higher-level features are captured by deeper layers. The average pooling layer is

activated to extract learned deep features of the test fragment images. More specifically,

the activations of the average pooling layer, which consists of a 2048-deep feature vector

of each network (Net1 and Net2), are concatenated, resulting in a 4096-global feature

representation for each fragment image. Finally, the distance computation is performed

using the χ2 distance metric. Note that we experimentally evaluated several distance met-

rics, including correlation, Hamming, Manhattan, Chi-Square, Bhattacharyya, cosine, and

Euclidean. The correct performance (on the training set) is obtained with the Chi-Square

metric, which is considered as an efficient distance in pattern recognition problems.

We have submitted two variants of our approach. The first model (TwoPathwriter) is trained

with writer labels, and the second one (TwoPathpage) is trained with page labels. Both

models achieved excellent results, and our TwoPathwriter won the first place in Task 2 (Im-

age Retrieval) of the ICFHR2020 competition. The experimental results and discussions

are reported in Chapter 5 (Section 5.6.2).

4.5/ CONCLUSION

To further improve the task of offline text-independent writer identification, we exploited

the effectiveness of Convolutional Neural Network as a powerful deep learning tool to

characterize writing variability. In this chapter, two different CNN-based approaches,

namely WriterINet and DeepWINet are presented. The former approach segments hand-

written documents into word and connected component images, from which deep fea-

tures are computed. To obtain a discriminative feature representation, we proposed a

multi-path deep network consisting of two CNN streams trained and fine-tuned with dif-

ferent input data. A conceptually simple and effective artificial neural network (1D- ANN)

was designed to classify CNN features for writer identification in the classification phase.

The second proposed approach involves a reliable and efficient deep CNN architecture,

called DeepWINet, which has 30-weighted layers for the full version and 24-weighted lay-

ers for the light version. Compared to the VGG network structure (144 million param-

eters), our DeepWINet (light version) has lower network complexity with only 22 million

parameters.

The DeepWINet model was used as a first scenario to compute CNN activation features

from the connected components of the writing. Then, the features are fed into a nearest-

neighbor classifier using Chi-square similarity as a distance metric to perform writer iden-

tification. The second scenario aims to train DeepWINet as an end-to-end CNN network,

where the predicted scores are averaged using a new and efficient strategy, the score-
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averaging component-decision combiner. The next chapter is devoted to validating the

effectiveness and superiority of our methods by comparing their performance with the

literature.

This chapter also presented our proposal for retrieving historical documents based on

writer identification. In this context, a competition was announced at the ICFHR2020

conference to award the best performing learning system in image retrieval for historical

handwritten fragments. The goal is to find all similar fragment images belonging to the

same writer ID (Task 1) and find all fragment images segmented from the same page ID

(Task 2). We contributed with an effective approach based on two CNN networks sharing

the same feature learning process, each trained with different fragment patches. The

Ch-square distance metric was used to compute the similarities between fragments. The

overall approach achieved higher retrieval scores and won first place in Task 2 (Page

Retrieval) and second place in Task 1 (Writer Retrieval). These results are discussed in

the next chapter.





5

EXPERIMENTS AND DISCUSSIONS

5.1/ INTRODUCTION

In order to evaluate our proposals in Chapters 3 and 4 and rank them in the literature,

this chapter is devoted to the study of experimental results obtained with our different

approaches to text-independent offline writer identification. A detailed description of the

benchmarks used with the standard protocol setup are provided for the evaluations. To

the best of our knowledge, we were one of the first to perform extensive experiments on 10

challenging handwritten databases with different languages (English, Arabic, Dutch, Chi-

nese, French, German, and Greek). For each proposed texture-based system (reported

in Chapter 3), a series of experiments are performed to investigate and evaluate the sta-

bility of the system performance under different configurations. This includes analyzing

the key parameters of each method and studying the system sensitivity as a function of

the number of writers and the amount of data for each benchmark studied. For the CNN-

based approaches discussed in Chapter 4, we list comprehensive evaluations to validate

their effectiveness in better characterizing the writing variability. The implementation de-

tails and training options of the CNN models are also presented. In a separate section,

we compare and discuss our achieved performance (complete results of our proposals)

with the current state-of-the-art.

This chapter also presents the evaluation protocol and error metrics used in the ICFH2020

competition for image retrieval for historical handwritten fragments and provides the re-

trieval results with a performance comparison with the participants’ approaches.

5.2/ BENCHMARK AND EXPERIMENTAL SETUP

Availability of datasets is one of the basic requirements for development and evaluation

in any research area. For writer identification, there are various handwriting databases

reported in the literature with diverse script languages. This section provides a detailed

105
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description of well-known benchmarks used to evaluate the performance and effective-

ness of our proposed approaches along with the current state- of- the- art. Extensive

experiments are conducted on 10 popular publicly handwritten databases: (1) English

IAM (Marti and Bunke (2002)), (2) Arabic IFN/ENIT (Pechwitz et al. (2002)), (3) En-

glish ICDAR2013 (Louloudis et al. (2013)), (4) Dutch Firemaker (Schomaker and Vu-

urpijl (2000)), (5) English CVL (Kleber et al. (2013)), (6) English CERUG-EN (He and

Schomaker (2017b)), (7) Chinese CERUG-CN (He and Schomaker (2017b)), (8) Mixed

Chinese and English CERUG-MIXED (He and Schomaker (2017b)), (9) Arabic AHTID/

MW (Mezghani et al. (2012)), and (10) hybrid language ICDAR2011 (Louloudis et al.

(2011)). The description and evaluation setup for each tested database are presented in

the following:

IAM. The IAM database (Marti and Bunke (2002)) is one of the most widely used En-

glish handwriting databases in the literature for both writer identification/verification and

handwriting recognition. It contains 1539 forms with 13353 isolated and labeled hand-

written English text lines with variable content. Each form was scanned at 300 dpi and

provided as a PNG image with 256 gray levels. An example of handwritten document is

given in Figure 5.1. In total, 657 writers contributed one to 59 pages of their handwriting.

In the experiments, we set the following two default settings: # Document Setup: Two

documents are used per writer: 1 document for training and 1 document for testing. For

writers who created only one document, the page image is split into two sub-pages. #

Text Line Setup: A maximum of 14 text lines are used for each writer. 60% of the data is

used for training and the remaining 40% is used for testing.

IFN/ENIT. The IFN/ENIT database (Pechwitz et al. (2002)), the most popular Arabic hand-

writing database, was developed primarily for training and evaluation of Arabic handwrit-

ing recognition systems and has been widely used for the problem of writer identification.

It contains 2200 forms scanned at a resolution of 300 dpi. The forms (cf. Figure 5.2),

which are also in binary image format, include 26000 handwritten Tunisian city/village

names written by 411 writers. A maximum of 50-word binary images is used per writer.

60% of the word images are selected for the training set, and 40% are used for testing.

ICDAR2013. The ICDAR2013 (Louloudis et al. (2013)) database consists of 1000 Greek

and English handwritten document samples collected from 250 scribes (2 documents in

English and 2 in Greek per writer ). In the experiments, we use two documents for testing

and the others for training. An example of English and Greek handwriting produced by

the same writer is shown in Figure 5.3.

Firemaker. The Firemaker database (Schomaker and Vuurpijl (2000)) contains Dutch

document samples of handwritten text of variable content, scanned at 300 dpi and

grayscale, collected from 250 writers, mainly students. Each writer was asked to com-

plete four different A4 pages of handwritten text (cf. example in Figure 5.4). On page 1,
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five short paragraphs are written in normal handwriting, i.e., lowercase letters with some

capital letters at the beginning of sentences and names. Page 2 contains another hand-

written text of two paragraphs with only capital letters. On page 3, writers were asked to

Figure 5.1: An example of a filled form taken from IAM database

Figure 5.2: Filled form and words from IFN/ENIT database
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Figure 5.3: Image samples from the same writer written in English and Greek language
from ICDAR2013 database

Figure 5.4: Image samples with the same content written by two different writers from
Firemaker database

produce a forged text, while on page 4, they were asked to write and describe the content

of a given cartoon in their own words. Only two pages are selected in the experiments
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(half-half setup): Page 4 is used for testing, while Page 1 was used for training.

CVL. The CVL database (Kleber et al. (2013)) is a publicly available standard database

of handwritten documents for writer identification and word spotting. It contains English

and German handwritten texts written by 310 scribes, of whom 283 wrote five written

documents (four in English and one in German) and 27 wrote seven documents (six in

English and one in German). The scanned text images are in RGB color format with a

resolution of 300 dpi. We set two standard protocols: # Setup-1: only English documents

are used (one document for testing, while the last three are used for training). # Setup-2:

only the first five documents are used in our experiments to ensure an evenly distributed

dataset. The first two documents are used as a test set, and the other three are used as

the training set.

CERUG. This dataset disposes of Chinese-English documents scanned at 300 dpi, 8

bits/pixel, grayscale, and produced by 105 writers. Each writer is asked to fill four differ-

ent A4 documents: two pages in Chinese, one page in English, and the fourth page is

mixed. The English page is divided into two sub-pages, each containing one paragraph.

According to this arrangement, the English CERUG-EN subset is collected. Similarly, the

English-Chinese pages are divided into two subsets to form the CERUG-MIXED dataset.

The third subset is called CERUG-CN and contains only the Chinese pages. A half-half

setting is applied to the three subsets, where one sub-page in the testing and the other

for training. An example of image samples from the same writer is shown in Figure 5.5.

AHTID/MW. The Arabic Handwritten Text Images Database of Multiple Writers

(AHTID/MW) (Mezghani et al. (2012)) is an open-access database for researchers work-

ing on Arabic handwritten text recognition worldwide. It involves 53 individuals from dif-

ferent educational levels and ages with free choice of pen. Each person was asked to

write 70 lines of text, collecting a total of 3710 lines of text, where each line contains an

average of 6.17 words and each word has 5.53 characters. Then, 22896 word images

are collected for all writers. The handwritten words are scanned and saved in PNG format

as grayscale images with a resolution of 300 dpi. The database was divided into 4 sets

of word images, where 3 sets are used for training and the last set is used for testing.

ICDAR2011. The ICDAR2011 (Louloudis et al. (2011)) database contains English,

French, Greek, and German handwritten texts written by 26 writers. Two full pages of

handwritten text for each language, for a total of 8 pages per writer. We used a subset

of the ICDAR2011 database, the so-called CICDAR2011 dataset, where only the first two

lines of text are truncated from each handwritten page (cf. Figure 5.6). The first five

pages are used as the training dataset, and the other three pages are used as the test

dataset.

Standard protocols used in our experimental study are summarized in Table 5.1.
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(a)

(b)
(c)

Figure 5.5: Image samples from the same writer: (a) English sample from CERUG-EN
dataset; (b) Chinese sample from CERUG-CN dataset; (c) English-Chinese sample from
CERUG-MIXED dataset

German

French

Greek

English

Figure 5.6: English, French, Greek, and German samples from ICDAR2011 database
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Table 5.1: Experimental setup. The use of 2 or 3 documents in testing is more challenging
than using 1 document.

Dataset Script
Classes
(Writers) Year Query sample

Total number of
query documents

CERUG-CN Chinese 105 2017 He and Schomaker (2017b) 1 document 105
CERUG-EN English 105 2017 He and Schomaker (2017b) 1 document 105
CERUG-MIXED Chinese/English 105 2017 He and Schomaker (2017b) 1 document 105
CVL (setup-1) English 310 2013 Kleber et al. (2013) 1 document 310
CVL (setup-2) English/German 310 2013 Kleber et al. (2013) 2 documents 620
IFN/ENIT Arabic 411 2002 Pechwitz et al. (2002) 20 words at most 411
IAM (document setup) English 657 2002 Marti and Bunke (2002) 1 document 657
IAM (text-line setup) English 657 2002 Marti and Bunke (2002) about 6 text lines 657
Firemaker Dutch 250 2000 Schomaker and Vuurpijl (2000) 1 document 250
ICDAR2013 Greek/English 250 2013 Louloudis et al. (2013) 2 documents 500
ICDAR2011 Hybrid 26 2011 Louloudis et al. (2011) 3 documents 78

5.3/ EXPERIMENTAL RESULTS: TEXTURE FEATURES-BASED SYS-

TEMS

Our proposed texture-based approaches, explained earlier in Chapter 3, are performed

in a text-independent manner, i.e., each writer has completely different handwriting sam-

ples in the training and testing sets. Moreover, each handwritten document (or set of

words/lines of text) is considered as a scanned image characterized by a set of feature

vectors computed from all its segmented connected components. In the proposed frame-

work (cf. Chapter 3), the classification process is performed over the Nearest Neighbor

-classifier (1-NN), which is applied to the normalized feature vectors using the Hamming

distance metric. The system performance is given by % (Writer Identification Rate). For

all writers, the performance score is the number of testing samples, which are correctly

classified divided by the total number of test samples (unseen documents).

5.3.1/ PERFORMANCE OF THE BWLBC-BASED APPROACH

5.3.1.1/ CLASSIFICATION RESULTS

The BWLBC-based approach is evaluated on the IFN/ENIT, IAM (text-line setup), CVL

(setup-1), and AHTID/MW databases. Unlike most existing works in the literature (Abdi

and Khemakhem (2015); Hannad et al. (2016); Khan et al. (2017)) where the standard

evaluation protocol is used, i.e., only one subdivision into training and testing sets is

used, the proposed system is evaluated using 10 different split permutations randomly

generated for each writer to assess its performance stability over the IFN/ENIT and IAM

databases. Thus, the identification procedure is repeated 10 times, each time with a

different split between training and test sets, and the average accuracy is reported as

the final result. In the CVL and AHTID/MW databases, a quad validation strategy (cross

setting) is specified in the setup of the CVL benchmark. This experimentation strategy

thoroughly evaluates the performance of our system. It generates and tests all possible
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splits since we used one sample in testing and three samples in training. The identi-

fication process is iterated four times with different split configurations. The final result

is the average rate over the four sets. The performance of BW-LBC (Block Wise Lo-

cal Binary Count) descriptor is compared with LBP (Local Binary Patterns), LTP (Local

Ternary Patterns), and LPQ (Local Phase Quantization) texture descriptors, which are

the most commonly used descriptors in writer identification (Hannad et al. (2016); Khan

et al. (2016); Bertolini et al. (2013)).

Tables 5.2 and 5.3 report the average top-1 identification rates achieved across all splits

tested, as well as the rates recorded across each split separately on IFN/ENIT and IAM

databases (cf. Table 5.2) and CVL and AHTID/MW (cf. Table 5.3), respectively. From

these tables, it is clear that the BW-LBC operator is significantly and consistently the best

descriptor in terms of overall writer identification rate on all tested databases compared to

the evaluated methods. Moreover, it is easy to see that the BW-LBC operator shows sig-

nificant performance stability for all subdivisions (in training and test sets) across the four

tested datasets, where the identification rates tend to converge to the average accuracy.

As for the optimal parameters of the BW-LBC method, it is noteworthy that they are em-

pirically determined for all tested databases through the extensive experiment reported in

Section 5.3.1.2.

The window size W ×W of 300× 300 pixels of the connected components with the number

of blocks N × N = 49 enable to achieve the best top-1 average accuracies of 96.47%

and 88.99% on the IFN/ENIT and IAM databases, respectively, while the top-1 average of

98.38% is recorded for the CVL database with the window size W ×W of 400 × 400 pixels

and the number of blocks N × N = 49. For the AHTID/MW database, an identification

rate of 99.53% is recorded as the top-1 average accuracy with the number of blocks

N × N = 16 and 300 × 300 pixels in the window size. As for the evaluated state-of-the-art

descriptors, none of them performs well in the tested datasets. For example, considering

the LTP descriptor, which is considered the 2nd best descriptor in the IFN/ENIT database,

Table 5.2: Identification rates on the IFN/ENIT (411 writers) and IAM (657 writers)
databases

Descriptor Database
Split Average

Dimension
Sp.1 Sp.2 Sp.3 Sp.4 Sp.5 Sp.6 Sp.7 Sp.8 Sp.9 Sp.10 accuracy

BW-LBC
IFN/ENIT 95.37 96.83 96.59 97.08 97.56 96.35 96.83 96.59 94.89 96.59 96.47%

49
IAM 90.11 88.58 88.89 90.11 88.89 88.13 88.43 88.74 89.49 88.58 88.99%

LPQ
IFN/ENIT 73.24 74.69 73.48 75.42 74.94 73.72 72.75 72.99 74.28 75.18 74.07%

256
IAM 74.12 72.75 73.66 73.21 73.82 75.49 72.45 72.3 73.51 72.60 73.39%

LBP
IFN/ENIT 69.83 70.32 70.07 71.29 71.05 68.86 67.4 67.64 70.07 71.05 69.76%

256
IAM 68.49 68.19 63.01 63.47 68.04 66.97 66.51 65.45 65.90 63.77 65.98%

LTP
IFN/ENIT 82.72 82.97 82.48 83.45 82.97 82.48 80.29 80.53 82.24 83.21 82.33%

512
IAM 73.06 69.25 70.17 70.01 72.60 72.91 73.51 72.75 70.93 68.49 71.37%
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Table 5.3: Identification rates on the CVL (310 writers) and AHTID/MW (53 writers)
databases

Descriptor Database
Split Average

Dimension
Sp.1 Sp.2 Sp.3 Sp.4 accuracy

BW-LBC
CVL 98.7 99.03 97.41 98.38 98.38% 49

AHTID/MW 100 100 100 98.11 99.53% 16

LPQ
CVL 83.82 78.64 69.9 78.32 77.67%

256
AHTID/MW 69.81 58.49 69.81 73.58 67.92%

LBP
CVL 75.4 71.2 65.69 72.49 71.19%

256
AHTID/MW 64.15 50.94 66.04 69.81 62.73%

LTP
CVL 85.44 79.29 74.11 82.52 80.34%

512
AHTID/MW 66.04 52.82 67.92 71.70 64.62%

it achieves an identification rate of 82.33%, which is low compared to the one obtained

with BW-LBC descriptor (96.47%).

Figure 5.7 shows the processing time (in seconds), including the time for feature ex-

traction, distance calculation, and classification process by BW-LBC, LBP, LTP, and LPQ

descriptors to identify a class over the four databases tested. It can be seen that the

BW-LBC operator is very efficient in terms of feature extraction and classification execu-

tion time (CVL: 7.8s, IAM: 4.9s, IFN/ENIT: 4.1s, AHTID/MW: 2.9s), which is faster than

the traditional LBP for all the tested databases (about 12 and 5.5 times faster than LBP

for AHTID/MW and CVL databases, respectively). This performance is achieved thanks

to the small BWLBC feature size (7x7=49 different patterns for the IFN/ENIT, CVL, and

IAM databases and 4x4=16 for the AHTID/MW database). It is also evident from Figure

5.7 that the LTP descriptor is the most computationally expensive method compared to

the BW-LBC, LBP, and LPQ methods, as it takes 105.7, 23.4, 14.8, and 79.15 seconds

to identify the writer n◦1 from the CVL, IAM, IFN/ENIT and AHTID/MW databases, re-

spectively. This limitation is mainly due to the dimensionality of the LTP features (512

possible patterns), which requires more time to compare the writing samples based on

the Hamming distance of their respective feature histograms.

5.3.1.2/ IMPACT OF BW-LBC-PARAMETERS ON THE SYSTEM PERFORMANCE

The construction of the BW-LBC code requires that all extracted connected components

be resized into the same uniform window size W ×W and scanned from top to bottom and

left to right to partition them into N × N non-overlapping blocks. Since the setting of these

two parameters can significantly impact feature extraction performance, special attention

should be paid when evaluating the BW-LBC operator. Therefore, it seems worthwhile to

present the results of some key analytical experiments to quantify the impact of these two

user-specific parameters (i.e., the window size W ×W and the number of blocks N ×N) on
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Figure 5.7: The processing time (in seconds) taken by the four tested descriptors to
identify the writer n◦1 (class n◦1) from IAM (657 Writers), CVL (310 Writers), IFN/ENIT
(411 Writers) and AHTID/MW (53 Writers) databases.

the performance of the proposed writer identification system. Note that all components

are fitted into the same uniform window size W ×W for both the training and test sets.

For each setting of the parameter W ×W, the number N×N is varied from 16 to 81 blocks,

and for each pair of values (W × W, N × N), the average accuracy is recorded over ten

random splits on the IAM and IFN/ENIT databases and over 4-fold cross-validation on the

CVL and AHTID/MW databases. The effect of the parameter (W×W, N×N) on the system

performance can be observed in Figures 5.8, 5.9, 5.10, and 5.11 for the IFN/ENIT, IAM,

CVL, and AHTID/MW databases, respectively.
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Figure 5.8: Performance stability as a function of BW-LBC-parameters on IFN/ENIT
database.
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Figure 5.9: Performance stability as a function of BW-LBC-parameter on IAM databases.
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Figure 5.10: Performance stability as a function of BW-LBC-parameters on CVL
database.

From the results shown in Figures 5.8 and 5.9, it can be seen that the pair of values

(300 × 300 pixels, 7 × 7) is more suitable for characterizing the writing style for both the

IFN/ENIT and IAM databases, as it allows recording the highest scores of 88.99% and

96.47%, respectively. The window size of 400 × 400 pixels with (N×N=49) and (N×N=64)

prove to be the best configurations in the CVL database, as shown in Figure 5.10 since it

gives an identification rate of 98.38%. On the AHTID/MW database, the highest identifi-

cation rate (99.53%) is obtained with block numbers of 16 and 25, and this is independent

of the window size, as shown in Figure 5.11. Moreover, it can be seen from Figure 5.11

that the window size W×W does not affect the identification rate since the BW-LBC de-

scriptor seems to be matched to the word images available in the AHTID/MW database.

The small size of the feature vector leads to a reduced computation time for the classifi-

cation. Thus, since both the number of blocks (N×N=64) and (N×N=49) performed better
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Figure 5.11: Performance stability as a function of BW-LBC-parameter on AHTID/MW
database.

in the CVL database, the second value is set, which corresponds to a 49-dimensional

feature vector. Similarly, the number of blocks of (N×N=16) is used as the optimal value

in experiments for the AHTID/MW database. From the variation of the identification rate

as a function of the number of blocks, it can be concluded that the block size should be

sufficiently large to contain a significant amount of information about the writing style for

better characterization of the writer to ensure acceptable identification performance.

5.3.1.3/ IMPACT OF THE NUMBER OF WRITERS ON THE SYSTEM PERFORMANCE

In this section, our motivation to perform a second set of experiments is to investigate

the system performance’s stability as a function of the number of writers. The idea is

to analyze how the system behaves while varying the number of writers Nb from 10 to

the complete set of writers in each database. It is worth noting that the average top-1

identification rate for each value of Nb and each descriptor is recorded over ten random

subdivisions for the IAM and IFN-ENIT databases and after 4-fold cross-validation for the

CVL and AHTID-MW databases. Figures 5.12, 5.13, 5.14 and 5.15 illustrate the obtained

top-1 writer identification results. On the one hand, it can be observed that the higher the

number of writers, the lower the system performance, especially when LBP, LTP, and LPQ

are used as feature extraction methods. From the Figures 5.12, 5.13, 5.14 and 5.15, it can

be seen that the performance of writer identification gradually decreases as the number

of writers increases, which is quite normal since the classification is done by comparing

the dissimilarity measure of each writer with those of a large number of writers (the com-

plexity of identification between writers is gradually increased). The results obtained from

these figures are consistent with the expected relative behavior of the proposed BW-LBC

operator. It achieves the highest average accuracy on all tested databases and shows the
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Figure 5.12: Writer identification rates under different numbers of writers on the IFN/ENIT
database.
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Figure 5.13: Writer identification rates under different numbers of writers on the IAM
database.

consistent performance when the number of writers exceeds 150 and 200 writers on the

IFN/ENIT and IAM databases, respectively. As for the CVL and AHTID/MW databases,

the system performance shows significant performance stability for all Nb values over the

evaluated LTP, LBP, and LPQ descriptors when using the BW-LBC model.

5.3.1.4/ IMPACT OF THE NUMBER OF HANDWRITING SAMPLES ON THE SYSTEM PER-

FORMANCE

The main reason for performing this evaluation is to further assess the stability of sys-

tem performance as a function of the amount of handwritten data used in the training

and test sets. To this end, we conduct extensive experiments that record the accuracy of

writer identification over a varying number of training images. On the IFN/ENIT and IAM

databases, the writer identification process starts with at least 30% of the handwritten
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Figure 5.14: Writer identification rates under different numbers of writers on the CVL
database.
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Figure 5.15: Writer identification rates under different numbers of writers on the
AHTID/MW database.

images available per writer in the training set versus 70% in the evaluation set. We then

gradually increase the training set until we reach a percentage of 70%. This setup cannot

be applied to the remaining two databases (CVL and AHTID/MW) as they only offer three

configuration possibilities. These include 75%/25% (i.e., 75% of handwritten images in

the training set versus 25% in the test set) and 25%/75% configurations with average

accuracy after 4-fold cross-validation. The final result in the case of the 50%/50% con-

figuration (half-half setup) is recorded after 6-fold cross-validation (i.e., six permutations).

This constraint is directly related to the number of samples used per writer where the

AHTID/MW database is provisionally divided into four subsets, while the CVL database

(setup-1) contains four documents for each writer. Tables 5.4 and 5.5 report the classi-

fication results obtained. It can be easily observed that the identification rates recorded
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Table 5.4: Identification rates (in percentage) on the IFN/ENIT and IAM databases over a
variable number of training and test handwritten images.

Descriptor Database Train setup (%) /Test setup (%)
30/70 40/60 50/50 60/40 70/30

BW-LBC
IAM 80.67 85.99 87.67 89.49 89.04

IFN/ENIT 86.86 92.94 96.35 96.59 96.11

LPQ
IAM 64.53 70.01 71.54 73.51 74.43

IFN/ENIT 64.96 70.07 73.96 75.18 73.72

LBP
IAM 56.01 65.29 64.99 65.9 64.84

IFN/ENIT 57.18 65.45 70.08 71.05 68.61

LTP
IAM 62.71 69.86 70.01 70.93 72.3

IFN/ENIT 70.8 77.13 82.24 83.21 81.99

Table 5.5: Identification rates (in percentage) on the CVL and AHTID/MW databases over
a variable number of training and test handwritten images.

Descriptor Database Train setup (%) /Test setup (%)
25/75 50/50 75/25

BW-LBC
CVL 93.44 98.76 98.38

AHTID/MW 95.75 100 99.53

LPQ
CVL 63.59 75.78 77.67

AHTID/MW 54.24 70.44 67.92

LBP
CVL 61.41 70.76 71.19

AHTID/MW 45.75 62.89 62.73

LTP
CVL 71.76 80.2 80.34

AHTID/MW 49.05 69.49 64.62

for each descriptor decrease as the number of images in training set decreases. Obvi-

ously, the system needs more learning samples to train the classifier to perform the writer

identification with high precision. In fact, the best results are obtained when there is an

acceptable amount of handwritten samples in both training and test sets. On IAM and

IFN/ENIT databases, the best performance (89.49 % for IAM and 96.59% for IFN/ENIT)

is obtained when 60% of data available per writer is used in the training set, while the

(50%/50%) setup allows to record the higher values of 98.76% and 100% for CVL and

AHTID/MW databases, respectively.

Note that we assess all possible scenarios in each configuration of CVL and AHTID/MW

databases (i.e., the 4- and 6-fold cross-validation) to demonstrate the effectiveness of our

system on a variable number of samples.
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5.3.2/ PERFORMANCE OF THE HANDCRAFTED-BASED APPROACH

5.3.2.1/ INFLUENCE OF THE NUMBER OF ZONES (Nz × Nz) AND THE DIMENSIONALITY

REDUCTION FACTOR (F) ON SYSTEM PERFORMANCE

The handcrafted-based approach is evaluated on IAM (text-line setup), IFN/ENIT, CVL

(setup-1), and AHTID databases. A first analysis is conducted to investigate, through ex-

tensive experiments, the performance of the proposed identification system as a function

of the feature extraction parameters. We defined, as indicated in Chapter 3 (cf. Sec-

tion 3.2.2.2), the following two parameters: dimensionality reduction factor F and number

of zones Nz × Nz of the normalized feature image (FC
F ). The number Nz × Nz is set for

each value of parameter F from 4 to 36 zones and the identification rate is recorded for

each setting of (F, Nz × Nz). Figures 5.16 and 5.17 show the impact of the feature ex-

traction parameters on the overall system performance for the IFN/ENIT, IAM, CVL, and

AHTID/MW databases. For CVL and AHTID/MW databases, the average accuracy after

4-fold cross-validation is plotted for each pair of values (F, Nz × Nz) to assess the system

performance.

Analyzing the classification rates shown in Figures 5.16 (a) and 5.17 (c), it is clear that

the LPQ operator with the settings (Nz × Nz=16, F=8), (Nz × Nz=16, F=11) and (Nz ×

Nz=16, F=14) has the highest scores of 97.81% and 98.62% on the IFN/ENIT and CVL

databases, respectively. As summarized in Table 5.6, (Nz × Nz=16, F=14) is set as the

optimal parameter value for the IFN/ENIT and CVL databases, resulting in a reduced

length of the final LPQ feature histogram (304 bins). Similarly, for LBP and LTP operators,

(a) IFN/ENIT (b) IAM

Figure 5.16: System performance as a function of the number of zones (Nz × Nz) and
dimensionality reduction factor (F) on IFN/ENIT and IAM databases.
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(c) CVL (d) AHTID/MW

Figure 5.17: System performance as a function of the number of zones (Nz × Nz) and
dimensionality reduction factor (F) on CVL and AHTID/MW databases.

Table 5.6: Optimal (Nz × Nz) and (F) parameter values for the 4 tested databases.

Database Feature extraction Identification (Nz × Nz, F):[Dc]method rate (%)

IFN/ENIT

LPQ 97.81
(16, 8):[512]
(16, 11):[384]
(16, 14):[304]

LTP 96.84 (36, 11):[1692]Ï

LBP 95.13
(9, 8):[512]

(9, 11):[216]

IAM

LPQ 91.17 (16, 8):[512]

LTP 90.56
(36, 11):[1692]
(36, 14):[1332]

LBP 88.73 (36, 8):[1152]

CVL
LPQ 98.62

(16, 8):[512]
(16, 11):[384]
(16, 14):[304]

LTP 98.14 (16, 11):[752]
LBP 98.30 (16, 11):[384]

AHTID/MW

LPQ 99.53 (9, 8):[288]

LTP 95.75
(9, 11):[423]
(16, 11):[752]

LBP 95.75
(16, 11):[384]
(16, 14):[304]

the optimal value of (Nz×Nz, F) is the one, that minimizes the dimensionality (Dc=(Nz×Nz)×

( Dim
F )) of the feature histogram, as shown in Table 5.6 (the lower the dimensionality Dc, the

higher the dimensionality reduction factor). For the English IAM database, when LPQ is

used as the feature extraction method, the setting (Nz × Nz=16, F=8) as shown in Figure
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5.16 (b) proves to be more suitable for characterizing the writing style as it realizes the

higher identification rate of 91.17% with Dc = 512. On the Arabic AHTID/MW database,

the setting (Nz × Nz=9, F=8) using the LPQ operator proved to be the best configuration,

yielding an average top-1 accuracy of 99.53% with Dc = 288. From these results, the

variation in identification rate as a function of the number of zones Nz × Nz suggests that

the feature zones of the normalized feature image ( FC
F ) should be sufficiently wide to

include more discriminative measures in characterizing writer individuality for acceptable

identification performance.

5.3.2.2/ CLASSIFICATION RESULTS

Table 5.7 summarizes the average top-1 identification rates of the proposed system over

the four tested splits on CVL and AHTID/MW databases, and the top-1, top-3, and top-5

writer identification rates on IFN/ENIT and IAM databases are shown in Table 5.8. As

can be seen from these tables, the identification rates recorded by the evaluated texture

descriptors are more or less consistent across the four tested databases. Furthermore,

as shown in Table 5.7, the evaluated descriptors show significant performance stability

across the four splits of the CVL and AHTID/MW databases, with identification rates tend-

ing to be close to average accuracy. Comparing the effectiveness of the tested descriptors

in characterizing the handwritten images, the LPQ operator consistently emerges as the

best descriptor, providing high identification rates in all tested databases. The results

presented in Tables 5.7 and 5.8 correspond to the best configurations of Nz × Nz and F,

which can be used to obtain the highest identification rates. The optimal settings of these

parameters are given as follows:

• In the CVL database, the best average accuracy (98.62% using the LPQ descriptor)

is recorded with the number of zones Nz × Nz = 16 and the dimensionality reduction

factor F = 14, yielding 304 bins of the final LPQ feature histogram (according to

Dc=(Nz × Nz) × ( Dim
F )).

• The number of zones Nz×Nz = 9 with dimensionality reduction factor F = 8 allows the

LPQ descriptor to achieve the highest performance (score of 99.53% with Dc = 288)

on the AHTID/MW database.

• In the IFN/ENIT database, the best top-1 identification rate of 97.81% is obtained

when the LPQ descriptor is used as a feature extraction method with a number of

zones of Nz × Nz = 16 and F = 14 for the dimensionality reduction factor (Dc = 304).

• Using the LPQ descriptor, the setting (Nz×Nz=16, F=8) proved to be the best config-

uration for characterizing the writing style on the IAM database, achieving the best

top-1 identification rate of 91.17% with Dc = 512.
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Table 5.7: Writer identification rates of the proposed system on CVL (310 writers) and
AHTID/MW (53 writers) databases

Feature extraction
Database

Split Average
Dimension(Dc)

method Sp.1 Sp.2 Sp.3 Sp.4 accuracy

LPQ
CVL 99.03 99.35 97.41 98.70 98.62% 304

AHTID/MW 100 100 100 98.11 99.53% 288

LTP
CVL 98.70 99.35 96.11 98.38 98.14% 752

AHTID/MW 98.11 96.22 98.11 90.56 95.75% 423

LBP
CVL 98.38 99.35 97.41 98.06 98.30% 384

AHTID/MW 96.23 96.23 98.11 92.45 95.75% 304

Table 5.8: Writer identification rates of the proposed system on IFN/ENIT (411 writers)
and IAM (657 writers) databases

Feature extraction
Database

Identification rate (%)
Dimension (Dc)

method Top-1 Top-3 Top-5

LPQ
IFN/ENIT 97.81 99.51 100 304

IAM 91.17 94.21 96.04 512

LTP
IFN/ENIT 96.84 98.78 99.27 1692

IAM 90.56 94.21 95.43 1332

LBP
IFN/ENIT 95.13 98.78 100 216

IAM 88.73 93.15 93.91 1152

Tables 5.9, 5.10, 5.11, and 5.12 show the top 1 identification rates along with the pro-

cessing time for each feature extraction method and under different values of parameter

F on a subset of writers (150 writers) from the IAM, IFN/ENIT, and CVL databases, and

on 53 writers from AHTID/MW database.

In this experiment, the optimal value of the parameter Nz × Nz is determined for each

feature extraction method and each database. It can be seen that there is a general

trend of increasing the identification rate, depending on the descriptor and dimensionality

reduction factor F used.

The processing time for the classification of 150 writers from IAM and IFN/ENIT gradually

decreases as the dimensionality reduction factor (F) increases, which is natural as it

corresponds to the decrease in the final dimensionality of the feature histogram, i.e., high

vector dimensionality requires more time to compare the writing samples based on the

Hamming distance of their respective feature vectors. The best results (identification

rates and processing time) are shown in bold in Tables 5.9, 5.10, 5.11, and 5.12. From
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Table 5.9: System performance as a function of dimensionality reduction factor (F) on
IAM database (150 writers)

Feature extraction
method

Dimensionality
reduction factor (F)

Identification
rate (%)

Processing
time (in seconds)

Number of
zones Nz × Nz

Dimension (Dc)

LPQ

1 95.33 17293 16 4096
8 94 1642.2 16 512

11 94 1187.4 16 384
14 95.33 993.23 16 304

LTP

1 92.66 39803 36 18432
8 92.66 3924.2 36 2304

11 92.66 2378.9 36 1692
14 92 1725.7 36 1332

LBP

1 92 15271 36 9216
8 92 1171.7 36 1152

11 92 695.5599 36 864
14 92 478.1355 36 684

Table 5.10: System performance as a function of dimensionality reduction factor (F) on
IFN/ENIT database (150 writers)

Feature extraction
method

Dimensionality
reduction factor (F)

Identification
rate (%)

Processing
time (in seconds)

Number of
zones Nz × Nz

Dimension (Dc)

LPQ

1 99.33 9442.8 16 4096
8 98.66 720.32 16 512

11 99.33 369.25 16 384
14 99.33 180.50 16 304

LTP

1 98.66 19983 36 18432
8 98.66 2296.1 36 2304

11 98 1546.2 36 1692
14 98.66 1193.2 36 1332

LBP

1 97.33 5059.7 9 2304
8 96.66 165.31 9 288

11 97.33 131.71 9 216
14 97.33 104.23 9 171

these results, we can deduce that with the factor F (where F > 1), we achieve the same

identification rates (on IAM and IFN/ENIT) as without dimensionality reduction (F = 1)

with lower processing time. For example, considering the LPQ operator, which gives top

results in the IAM database, the highest score of 95.33 % is recorded for both F = 1 and

F = 14, and the computation time is significantly reduced with a rate of 17.41% with F=14.

As shown in Tables 5.11 and 5.12, the best results (identification rates and processing

time) in CVL and AHTID/MW databases are obtained with the dimensionality reduction

factor F (F > 1).
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Table 5.11: System performance as a function of dimensionality reduction factor (F) on
CVL database (150 writers)

Feature extraction
method

Dimensionality
reduction factor (F)

Identification
rate (%)

Processing
time (in seconds)

Number of
zones Nz × Nz

Dimension (Dc)

LPQ

1 98.66 112820 16 4096
8 98.66 13332 16 512

11 97.33 8688.5 16 384
14 97.33 6938.7 16 304

LTP

1 96.66 211760 16 8192
8 97.33 25894 16 1024

11 98 19690 16 752
14 98 15397 16 592

LBP

1 98 106600 16 4096
8 98.66 12773 16 512

11 98 86675 16 384
14 98 6323.6 16 304

Table 5.12: System performance as a function of dimensionality reduction factor (F) on
AHTID/MW database (53 writers)

Feature extraction
method

Dimensionality
reduction factor (F)

Identification
rate (%)

Processing
time (in seconds)

Number of
zones Nz × Nz

Dimension (Dc)

LPQ

1 92.45 11475 9 2304
8 98.11 1257.7 9 288

11 96.22 863.08 9 216
14 96.22 629.75 9 171

LTP

1 77.35 23208 9 4608
8 88.67 2920.6 9 576

11 90.56 2149.8 9 423
14 88.67 1693 9 333

LBP

1 81.13 9175 16 4096
8 86.79 1027.7 16 512

11 88.67 633.08 16 384
14 92.45 399.74 16 304

5.3.2.3/ STABILITY OF THE SYSTEM PERFORMANCE AS A FUNCTION OF THE NUMBER

OF WRITERS

This experiment evaluates the stability of the system performance according to a differ-

ent number of writers. For this purpose, we studied the system behavior by varying the

number of writers Nw from 10 to the total amount of writers for each database. Similar to

the previous experiments, the full 4-fold cross-validation is used in CVL and AHTID/MW

databases, recording the average top-1 identification rate for each descriptor and each

value of Nw. The top-1 identification accuracy vs. the number of writers Nw for the

IFN/ENIT, IAM, CVL, and AHTID/MW databases is shown in Figures 5.18, 5.19, 5.20,

and 5.21, respectively. For all tested descriptors, it can be seen that the identification per-

formance gradually decreases as the number of writers grows. For example, considering

the IFN/ENIT database, the identification rate starts at 100% for 30 writers and drops to
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Figure 5.18: Identification rate vs. number of writers ranging from 10 to 411 writers on
IFN/ENIT database.
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Figure 5.19: Identification rate vs. number of writers ranging from 10 to 657 writers on
IAM database.

97.81%, 96.84%, and 95.13% for a total of 411 writers when LPQ, LTP, and LBP are used

as feature extraction methods, respectively. This slight drop in performance is mainly due

to the complexity of classification, as the dissimilarity measure of each writer is compared

with those of a large number of writers and a large number of handwritten samples in

both the test and training sets (writer identification becomes much more difficult when the

number of classes is increased).
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Figure 5.20: Identification rate vs. number of writers ranging from 10 to 310 writers on
CVL database.
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Figure 5.21: Identification rate vs. number of writers ranging from 10 to 53 writers on
AHTD/MW database.

With LPQ, as expected, the overall system achieves the highest identification rates on

the complete set of writers over each tested database. Moreover, it shows significant and

consistent performance on the AHTID/MW database for all Nw values (cf. Figure 5.21).
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5.3.2.4/ STABILITY OF THE SYSTEM PERFORMANCE AS A FUNCTION OF THE NUMBER

OF HANDWRITING SAMPLES

This experiment evaluates the stability of the system performance on a different number

of handwritten samples (used in the training and test sets). In other words, we empirically

record the writer identification rate corresponding to different training and test partitions

for each tested database. Then, for IFN/ENIT and IAM databases, the classification pro-

cess is performed using 70% of the handwritten images available per writer in the test set,

and the remaining 30% are used as the training set. After that, the number of samples in

the training set is progressively increased by 10%, until 70% is reached. As for the CVL

and AHTID/MW databases, we cannot use the training/testing partition of (30%/70% up to

70%/30%) because the AHTID/MW database is divided into 4 subsets in advance, while

the CVL database (setup-1) contains four documents for each writer. For this reason,

we could only apply the following configurations: 1) 75%/25% (i.e., 75% of handwritten

images in the training set versus 25% in the test set) and 25%/75% partitions with an

average accuracy recorded after 4-fold cross-validation; 2) 50%/50% partition (half-half

configuration) using a 6-fold cross-validation setup (i.e., 6 possible permutations). The

obtained classification results are summarized in Tables 5.13 and 5.14. As depicted in

Table 5.13, the highest identification performance (for all tested feature extraction oper-

ators) on the IFN/ENIT and IAM databases is obtained when an appropriate amount of

handwritten samples is used in both the test and training sets (partitioning of 60%/40%).

For example, in the case of the LPQ operator, using 60% of the handwritten samples avail-

able per writer in the training set, the system achieves a score of 97.81% and 91.17% on

the IFN/ENIT and IAM databases, respectively. The same observation can be made in

Table 5.14. The partition of (75%/25%) performed better on CVL (best score of 98.62%

using LPQ) and AHTID/MW (best score of 99.53% using LPQ) databases for all evaluated

feature extraction operators.

Table 5.13: Identification rate (in percentage) on the IFN/ENIT and IAM databases over
different training /testing partitions.

Feature extraction
Database Partition (training (%)/testing (%))

method 30/70 40/60 50/50 60/40 70/30

LPQ
IAM 81.43 87.21 89.34 91.17 89.95

IFN/ENIT 88.56 93.67 97.32 97.81 96.59

LTP
IAM 81.28 86.45 87.36 90.56 89.34

IFN/ENIT 87.10 93.43 95.13 96.84 96.10

LBP
IAM 77.47 82.64 85.08 88.43 86.30

IFN/ENIT 83.45 90.51 94.16 95.13 94.65
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Table 5.14: Identification rate (average in percentage) on CVL and AHTID/MW databases
over different training /testing partitions.

Feature extraction
Database Partition (training (%)/testing (%))

method 25/75 50/50 75/25

LPQ
CVL 92.80 98.24 98.62

AHTID/MW 95.28 99.37 99.53

LTP
CVL 89.4 97.46 98.14

AHTID/MW 91.51 95.59 95.75

LBP
CVL 90.37 97.78 98.30

AHTID/MW 82.55 93.39 95.75

5.3.3/ PERFORMANCE OF THE CLGP-BASED APPROACH

5.3.3.1/ RESULTS AND ANALYSIS

Comprehensive experiments are conducted on six handwritten databases to evaluate the

performance and effectiveness of the proposed CLGP-based approach. The databases

studied are: IFN/ENIT (411 writers/Arabic), AHTID/MW (53 writers/Arabic), CVL (setup-1

with 310 writers/English), IAM (text line setup with 657 writers/English), Firemaker (250

writers/Dutch) and ICDAR2011 (26 writers/hybrid language). On CVL and AHTID/MW

databases, a full 4-fold cross-validation is performed, generating four split permutations

for each writer. To illustrate the ability of the CLGP (Cross multi-scale Locally encoded

Gradient Patterns) feature method, its feasibility and effectiveness in characterizing the

large variability of handwriting, we compared its performance with the block-wise local

binary count (BW-LBC) operator (Chahi et al. (2018)), LBP (Ojala et al. (2002)), LTP

(Tan and Triggs (2010)), LETRIST (Song et al. (2017)), and LPQ (Ojansivu and Heikkilä

(2008)) feature methods.

Table 5.15 shows the top-1, top-3, and top-5 writer identification rates recorded by the

CLGP method along with those from LETRIST, LPQ, LTP, LBP, and BW-LBC on the

IFN/ENIT, IAM, Firemaker, and ICDAR2011 databases. Table 5.16 depicts the average

top-1 identification rates over the four splits tested on the AHTID/MW and CVL databases.

The CLGP operator performs impressively and systematically best over the evaluated

descriptors on all tested databases. Moreover, it can be seen from Table 5.16 that the

CLGP operator shows consistent classification performance over all splits on the CVL

and AHTID/MW databases as the identification accuracies converge to their average.

As stated in Chapter 3 (cf. Section 3.2.2.3), the CLGP is a (Ncell × 9 × Nb × (Nσ = 3))-

dimensional image feature descriptor. Indeed, setting the number of blocks Nb and the

number of cells Ncell has an impact on the overall performance of the system. The CLGP

classification results reported in Tables 5.15 and 5.16 correspond to the optimal setup

of these two parameters (Nb and Ncell), which are empirically determined for each tested
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Table 5.15: Classification rates on IFN/ENIT (411 writers), IAM (657 writers), Firemaker
(250 writers), and ICDAR2011 (26 writers) databases. The highest classification scores
are in bold.

Feature representation Database Classification accuracy (%)
method Top-1 Top-3 Top-5

CLGP

IFN/ENIT 98.54 100 100
IAM 94.06 97.25 99.23

Firemaker 97.60 98.40 99.2
ICDAR2011 100 100 100

BW-LBC

IFN/ENIT 97.56 99.27 100
IAM 90.11 93.15 94.98

Firemaker 94.40 97.60 98.40
ICDAR2011 97.43 98.71 100

LPQ
IFN/ENIT 75.42 77.12 78.08

IAM 75.49 78.68 80.66
Firemaker 37.20 54.40 64

ICDAR2011 88.46 98.71 98.71

LTP
IFN/ENIT 83.45 85.63 86.59

IAM 73.51 76.85 78.68
Firemaker 30.4 45.6 54

ICDAR2011 82.05 96.15 100

LBP
IFN/ENIT 71.29 74.43 76.11

IAM 68.49 72.43 75.01
Firemaker 33.60 48 55.60

ICDAR2011 79.48 96.15 98.71

LETRIST
IFN/ENIT 77.85 80.29 81.99

IAM 79.14 80.66 82.19
Firemaker 35.60 52 60.4

ICDAR2011 85.89 97.43 98.71

Table 5.16: Classification rates on CVL (310 writers) and AHTID/MW (53 writers)
databases. The highest classification scores are in bold

Feature representation Database Split Average
method Sp.1 Sp.2 Sp.3 Sp.4 accuracy

CLGP
CVL 99.35 99.67 99.67 99.35 99.51%

AHTID/MW 100 100 100 98.11 99.53%

BW-LBC
CVL 98.7 99.03 97.41 98.38 98.38%

AHTID/MW 100 100 100 98.11 99.53%

LPQ
CVL 83.82 78.64 69.9 78.32 77.67%

AHTID/MW 69.81 58.49 69.81 73.58 67.92%

LBP
CVL 75.4 71.2 65.69 72.49 71.19%

AHTID/MW 64.15 50.94 66.04 69.81 62.73%

LTP
CVL 85.44 79.29 74.11 82.52 80.34%

AHTID/MW 66.04 52.82 67.92 71.70 64.62%

LETRIST
CVL 85.16 78.70 73.22 81.29 79.59%

AHTID/MW 67.92 54.71 69.81 69.81 65.56 %

database through a comprehensive evaluation described in detail later in this section. The

number of blocks Nb = 4 with Ncell = 9 are considered as optimal settings for IAM (result

of 94.06%), CVL (average result of 99.51%), Firemaker (result of 97.60%), ICDAR2011
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(score of 100%), and AHTID/MW (average score of 99.53%), resulting in 972 bins of the

final CLGP feature histogram (according to Dim = Ncell × 9 × Nb × (Nσ = 3)). As for the

IFN/ENIT database, the best top-1 identification accuracy of 98.54% is obtained when

the CLGP method is used as a feature extraction operator with a number of blocks Nb = 1

(segmentation into blocks is unnecessary) and a number of cells Ncell = 16. In this case,

we obtain a reduced length of the CLGP feature histogram (Dim = Ncell × 9× 1× (Nσ = 3) =

432). The processing time in seconds taken by the proposed system to classify a writer

(class) using CLGP with different feature methods on IAM, IFN/ENIT, CVL, Firemaker,

AHTID/MW, and ICDAR2011 databases is shown in Figure 5.22.
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Figure 5.22: The processing time (in seconds) required by the proposed system to identify
writer N◦1 (class N◦1) from IAM, Firemaker, CVL, IFN/ENIT, ICDAR2011, and AHTID/MW
databases.
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It can be seen that the recorded processing time increases when evaluating feature meth-

ods with high histogram dimensions. This limitation is quite natural since the overall sys-

tem needs more time to compare and classify the writing samples when their respective

Hamming distances are used. In this experiment, the BW-LBC descriptor is the compu-

tationally fastest method (IAM: 4.9s, CVL: 7.8s, AHTID/MW: 3.9s, IFN/ENIT: 4.1s, Fire-

maker: 6.8s, ICDAR2011: 9.4s) thanks to its small histogram size (49 different patterns

over all tested databases). From Figure 5.22, the CLGP feature method significantly out-

performs all other tested feature methods (in terms of identification accuracy) across all

evaluated databases. The CLGP certainly takes more time to classify writers compared

to the BW-LBC descriptor. However, the processing time is not necessarily an important

performance indicator for offline writer identification since no real-time applications are

required (offline mode). Moreover, none of the old and current state-of-the-art systems

have specified their total evaluation processing time.

5.3.3.2/ CLGP-KEY PARAMETERS ANALYSIS

This section presents the results of a comprehensive experiment to evaluate the system’s

overall performance with respect to the number of blocks Nb and the number of cells Ncell.

These two settings are the key user-defined parameters of the CLGP feature method.

The identification accuracy is recorded for each pair of values (Nb, Ncell), where the pa-

rameter Nb is set for each setting of the parameter Ncell from 1 to 16 blocks. Figures

5.23, 5.24, and 5.25 show the system performance as a function of (Nb, Ncell) on the

IFN/ENIT, IAM, CVL, Firemaker, ICDAR2011, and AHTID/MW databases, respectively.

In order to assess all possible scenarios and evaluate the system stability performance

on CVL and AHTID/MW databases, the average accuracy is reported according to the

4-fold cross-validation scheme for each (Nb, Ncell) setting.

From the results plotted in Figure 5.23 (a), we can clearly see that the highest identifica-

tion rate in the IFN/ENIT database (score of 98.54%) is achieved with (Nb = 1 × 1,Ncell =

16) and (Nb = 2 × 2,Ncell = 16). Since these two parameter settings perform better on

the IFN/ENIT database, the first one corresponding to a 432-dimensional CLGP feature

histogram is selected, resulting in reduced classification computation time.

As shown in Figures 5.23 (b) and 5.24 (c), (Nb = 2× 2,Ncell = 9) and (Nb = 2× 2,Ncell = 16)

turn out to be the best settings on the IAM and Firemaker databases with scores of

94.06% and 97.6%, respectively. Therefore, as with the IFN/ENIT database, the setting

(Nb = 2 × 2,Ncell = 9) is set as the optimal value, resulting in a CLGP feature dimension

of 972 according to Dim = Ncell × 9 × 1 × (Nσ = 3). Similarly, (Nb = 2 × 2,Ncell = 9) and

(Nb = 3×3,Ncell = 9) parameter configurations seem to be empirically the appropriate way

to characterize the writing style on the AHTID/MW database, as they allow to achieve
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(a) IFN/ENIT (b) IAM

Figure 5.23: System performance with respect to the number of blocks Nb and number of
cells Ncell on IFN/ENIT and IAM databases.

(c) Firemaker (d) AHTID/MW

Figure 5.24: System performance with respect to the number of blocks Nb and number of
cells Ncell on Firemaker and AHTID/MW databases.

the highest average score of 99.53% (cf. Figure 5.24 (d)). Obviously, the first parameter

value is chosen to obtain a reduced length of the CLGP feature histogram (972 bins).

In the case of the ICDAR2011 database (cf. Figure 5.25 (e)), the highest identification rate

of 100% is recorded with the settings (Nb = 2 × 2,Ncell = 9) and (Nb = 4 × 4,Ncell = 4). The

optimal value of (Nb = 2 × 2,Ncell = 9) is set as the one that minimizes the dimensionality

of the CLGP feature histogram. In the CVL database, the setting (Nb = 2 × 2,Ncell = 9)



134 CHAPTER 5. EXPERIMENTS AND DISCUSSIONS

(e) ICDAR2011 (f) CVL

Figure 5.25: System performance with respect to the number of blocks Nb and number of
cells Ncell on ICDAR2011 and CVL databases.

allows the highest performance with an average accuracy of 99.51%, as shown in Figure

5.25 (f). The variation in the classification rate is due to the number of blocks and the

number of cells. For acceptable performance in writer identification, we use uniform block

and cell sizes to capture a considerable amount of writing features, i.e., the window size

must be wide enough and appropriate to ensure better characterization of writing style in

it.

5.3.3.3/ STABILITY OF THE SYSTEM PERFORMANCE ACCORDING TO THE NUMBER OF

WRITERS

Through this experiment, we evaluate and study the stability of the system performance

by varying the number of writers Nbw from 10 to the total number of writers. The top-1

identification accuracy for the number of writers Nbw on the IAM database (text line setup)

is shown in Figure 5.26. For the BW-LBC and CLGP feature methods, it can be seen

that a gradual increase in the number of writers leads to a regular and slight decrease in

the system performance. However, for LETRIST, LBP, LPQ, and LTP, a sharp decrease

in classification performance is observed when the number of writers increases. The two

best-performing feature methods are CLGP followed by BW-LBC, all of which provide high

classification accuracy starting at 96% for 25 writers and declines to 94.06% and 90.11%

for 657 writers, respectively. Concerning LETRIST, LPQ, LTP, and LBP, a classification

accuracy of 90% is recorded using Nbw = 10, and thereafter the performance acutely

starts to drop to 79.14%, 75.49%, 73.51% and 68.49% respectively for a total of 657

writers. The same system behavior, i.e., performance drop, is observed in the other five
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Figure 5.26: System performance with respect to the number of writers ranging from 10
to 657 writers on IAM database.

databases tested. The reason for this is the complexity of classification when comparing

the dissimilarity measure of each writer with those of a large number of writers, i.e.,

a large amount of available handwritten data in the test and training datasets. In this

case, the classification process gradually becomes more difficult as the number of classes

(writers) increases. The classification results reported in Figure 5.26 are congruent with

the classification results shown in Table 5.15. The proposed CLGP achieves the highest

classification rates, making it the best performing method compared to the evaluated

feature methods.

5.3.3.4/ STABILITY OF THE SYSTEM PERFORMANCE ACCORDING TO THE NUMBER OF

HANDWRITING SAMPLES

This evaluation explores the stability of system performance with respect to the amount

of handwritten training data on the IAM (text line setup) and CVL (setup-1) databases.

Different training/testing configurations are examined, and the result of the writer identi-

fication is recorded for each configuration. In the IAM database, the writer identification

process is first performed with at least 30% of handwritten data per writer for training and

70% for testing. Then, the amount of training data is gradually increased (by 10%) until

reaching 70%. With the CVL database, the setup configuration 30%/70% up to 70%/30%

cannot be set since four handwritten samples are available per writer. In other words,

CVL only allows the specification of three possible partitions, including 75%/25% (i.e.,

75% in the training data versus 25% in the test data), 25%/75%, and 50%/50% (half-
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half partition) at an average rate recorded under a 6-fold cross-validation scheme (4-fold

cross-validation in the cases of 75%/25% and 25%/75% partitions). By this, we evaluate

and investigate all likely scenarios for performing writer identification. The goal here is

to validate the effectiveness and stability of the overall system in characterizing writers

under different conditions.

The classification results for IAM and CVL databases are given in Table 5.17 and Figure

5.27, respectively. From the plotted results, it can be seen that the classification results

obtained by each feature method increase progressively as the training data grows. The

overall system typically requires an acceptable amount of learning data (suitable train-

ing/test partition) to train the classifier to identify the writers in question with high precision.

The 60%/40% partition proved to be the convenient IAM database setup, as it allows the

highest performance (a result of 94.06%) when using the CLGP feature method (cf. Table

5.17). In the CVL database, the best average accuracy of 99.51% (by CLGP method)

is obtained when the database configuration 75%/25% is used. From Table 5.17 and

the Figure 5.27, the proposed CLGP method has significant performance stability overall

database partitions compared to the evaluated descriptors.

Table 5.17: Classification results on IAM database over different data partitions

Database setup
training-set(%)/test-set(%)

Feature methods
CLGP BW-LBC LPQ LTP LBP LETRIST

30/70 91.62 80.67 64.53 62.71 56.01 68.04
40/60 93.45 85.99 70.01 69.86 65.29 72.75
50/50 93.75 87.67 73.51 70.01 64.99 74.12
60/40 94.06 90.11 75.49 73.51 68.49 79.14
70/30 94.06 89.04 74.43 72.3 64.84 75.49
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Figure 5.27: Classification results on CVL database over different data partitions.
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5.3.4/ PERFORMANCE OF THE LSTP-BASED APPROACH

5.3.4.1/ RESULTS AND ANALYSIS

The LSTP-based approach is evaluated on seven benchmark databases: CVL (setup-

1), IFN/ENIT, Firemaker, ICDAR2011, IAM (text line setup), CERUG, and ICDAR2013

databases. The performance of LSTP (Local gradient full-Scale Transform Patterns) is

compared with BW-LBC, LBP, LTP, and LPQ feature methods. The classification results

for the tested datasets are shown in Tables 5.18, 5.19, and 5.20. From these tables, it

can be seen that LSTP is the best performing method. This high performance is due to

the flexibility of LSTP and its effectiveness in characterizing local gradient variations of

the writing. Moreover, the classification results in Table 5.20 show the ability of LSTP to

keep the identification performance constant across all the evaluated splits.

The LSTP is a (Nc × 9 × Nbk)-dimensional image feature descriptor. Therefore, tuning

the number of blocks Nbk and the number of cells Nc can have a direct impact on the

final results, i.e, writer identification rates. Optimal parameter values of Nbk and Nc are

used to obtain LSTP classification results in Tables 5.18, 5.19, and 5.20. These two

parameters are set experimentally for all databases tested. The optimal values of Nbk and

Nc are summarized for each handwritten database in the following: (1) IAM & CERUG-

Table 5.18: Performance evaluation on ICDAR2013 (250 writers), CERUG-EN (105 writ-
ers), CERUG-CN (105 writers), and CERUG-MIXED (105 writers) databases.

Feature extraction Database Classification rate (%)
model Top-1 Top-3 Top-5

LSTP

ICDAR2013 98% 100 100
CERUG-EN 98.09 100 100
CERUG-CN 100 100 100

CERUG-MIXED 94.28 98.09 100

BW-LBC

ICDAR2013 96.80 98.4 99.2
CERUG-EN 91.43 93.33 96.19
CERUG-CN 92.38 94.28 99.04

CERUG-MIXED 83.80 85.71 91.42

LPQ
ICDAR2013 82.20 86.4 88
CERUG-EN 66.66 71.42 79.04
CERUG-CN 54.28 57.14 64.76

CERUG-MIXED 59.04 65.71 71.42

LTP
ICDAR2013 72 79.2 85.2
CERUG-EN 83.81 90.41 96.19
CERUG-CN 69.52 75.23 81.90

CERUG-MIXED 64.76 70.47 77.14

LBP
ICDAR2013 70.40 75.2 78
CERUG-EN 78.09 84.76 92.38
CERUG-CN 65.71 72.38 78.09

CERUG-MIXED 61.90 64.76 70.47
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Table 5.19: Performance evaluation on IFN/ENIT (411 writers), IAM (657 writers), Fire-
maker (250 writers), and ICDAR2011 (26 writers) databases.

Feature extraction Database Classification rate (%)
model Top-1 Top-3 Top-5

LSTP

IFN/ENIT 98.28 100 100
IAM 96.80 98.17 99.54

Firemaker 98 98.80 99.60
ICDAR2011 100 100 100

BW-LBC

IFN/ENIT 97.56 99.27 100
IAM 90.11 93.15 94.98

Firemaker 94.40 97.60 98.40
ICDAR2011 97.43 98.71 100

LPQ
IFN/ENIT 75.42 77.12 78.08

IAM 75.49 78.68 80.66
Firemaker 37.20 54.40 64

ICDAR2011 88.46 98.71 98.71

LTP
IFN/ENIT 83.45 85.63 86.59

IAM 73.51 76.85 78.68
Firemaker 30.4 45.6 54

ICDAR2011 82.05 96.15 100

LBP
IFN/ENIT 71.29 74.43 76.11

IAM 68.49 72.43 75.01
Firemaker 33.60 48 55.60

ICDAR2011 79.48 96.15 98.71

Table 5.20: Performance evaluation on CVL (310 writers) database. The highest classifi-
cation rates are in bold

Feature extraction Split Average
model Sp.1 Sp.2 Sp.3 Sp.4 rate
LSTP 99.67 100 100 99.67 99.83%

BW-LBC 98.7 99.03 97.41 98.38 98.38%
LPQ 83.82 78.64 69.9 78.32 77.67%
LBP 75.4 71.2 65.69 72.49 71.19%
LTP 85.44 79.29 74.11 82.52 80.34%

EN. The number of blocks Nbk = 4 with Nc = 16 represents the best way to handle the

writing variations in IAM (score of 96.80%) and CERUG-EN (score of 98.09%). This

configuration results in 576 bins in the final LSTP feature histogram (according to Dim =

Nc × 9 × Nbk). (2) Firemaker, CERUG-MIXED, IFN/ENIT & CERUG-CN. The best results

of 98% (Firemaker), 94.28% (CERUG-MIXED), 98.28% (IFN/ENIT) and 100% (CERUG-

CN) are obtained when LSTP is used with the number of blocks Nbk = 9 and the number

of cells Nc = 16 (Dim = 1296). (3) ICDAR2013. We experimentally found that the best

top-1 identification rate of 98% is achieved with Nbk = 16 and Nc = 9, resulting in 1296

bins of LSTP feature histogram dimension Dim. (4) ICDAR2011 & CVL. The number of
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blocks Nbk = 9 with Nc = 9 are set as the optimal settings lead to highest performance

with a score of 100% on the ICDAR2011 and CVL databases (Dim = 729).

Figures 5.28, 5.29 and 5.30 illustrate the processing time and identification accuracy

recorded by the proposed system when using the feature methods LSTP, BW-LBC, LPQ,

LBP, and LTP. The processing time increases when the feature dimension is high. The

overall system needs more time to classify the writing samples. This happened when

comparing and matching feature histograms of samples using Hamming distance. Our

previous BW-LBC descriptor (Chahi et al. (2018)) is the computationally fastest method

across all databases tested (IAM: 4.9s, IFN/ENIT: 4.1s, ICDAR2011: 6.7s, CVL: 7.8s,

Firemaker: 6.8s, ICDAR2013: 12.6s, CERUG-CN: 4.8s, CERUG-EN: 5.19s, CERUG-

MIXED: 4.96s). This system behavior is due to its reduced feature histogram size (49

bins). Nevertheless, across all tested databases, the LSTP method outperforms all eval-

uated feature methods in writer identification accuracy. Since the writer identification task

does not require a real-time response (offline mode), the processing time is not always

considered as a key performance indicator. Moreover, none of the old and current state-

of-the-art systems have recorded the computation time of their frameworks.
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Figure 5.28: The processing time of the proposed system to identify one writer from IAM,
IFN/ENIT, and Firemaker databases.



140 CHAPTER 5. EXPERIMENTS AND DISCUSSIONS

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

LSTP BW-LBC LBP LPQ LTP

Processing time (in seconds) for 1 writer

Accuracy (%) over 250 writers

20

30

40

50

60

70

80

90

100

0

5

10

15

20

25

30

35

40

45

50

LSTP BW-LBC LBP LPQ LTP

Processing time (in seconds) for 1 writer

Accuracy (%) over 26 writers

Feature method Dimension

LSTP

CVL: 729

ICDAR2011: 729

ICDAR2013: 1296

BW-LBC 49

LBP 256

LPQ 256

LTP 512

ICDAR2013 database

W
ri

te
r

id
e
n

ti
fi

c
a
ti

o
n

 a
c
c
u

ra
c
y

(%
)

W
ri

te
r

id
e
n

ti
fi

c
a
ti

o
n

 a
c
c
u

ra
c

y
(%

)
W

ri
te

r
id

e
n

ti
fi

c
a
ti

o
n

 a
c
c
u

ra
c
y

(%
)

P
ro

c
e
s
s
in

g
ti

m
e
 i

n
 s

e
c

o
n

d
s

P
ro

c
e
s
s
in

g
ti

m
e
 i
n

 s
e
c
o

n
d

s
P

ro
c
e
s
s
in

g
ti

m
e
 i
n

 s
e
c
o

n
d

s

20

30

40

50

60

70

80

90

100

0

20

40

60

80

100

120

LSTP BW-LBC LBP LPQ LTP

Processing time (in seconds) for 1 writer

Accuracy (%) over 310 writers

CVL database ICDAR2011 database

Figure 5.29: The processing time of the proposed system to identify one writer from CVL,
ICDAR2011, and ICDAR2013 databases.
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Figure 5.30: The processing time of the proposed system to identify one writer from
CERUG-CN, CERUG-EN, and CERUG-MIXED databases.
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5.3.4.2/ CLASSIFICATION PERFORMANCE CONFORMING TO THE NUMBER OF WRITERS

This experiment investigates the sensitivity of the system when new writers are added

to the evaluations. The number of writers Nwriters is tuned from 10 to the total number

of writers. Figure 5.31 shows the system performance (writer identification rate) as a

function of the number of writers Nwriters in the IAM database. For LBP, LPQ, and LTP

descriptors, an expected peak drop in classification rate with gradually increasing Nwriters

is clearly noticed. However, the best performance is achieved by LSTP and BW-LBC with

superiority of LSTP. They are least affected when the number of writers increases, i.e.,

the system’s performance slightly decreases over Nwriters.

As shown in Figure 5.31, the classification rate for LSTP and BW-LBC methods starts at

96% for 25 writers and decreases to 96.80% and 90.11% for 657 writers, respectively.

The next ranked feature methods are LPQ, followed by LTP and LBP, all of which fail

in correctly identifying writers, especially after more than 200 writers. At Nwriter = 10, a

classification result of 90% is reported, which gradually drops to 75.49% (LPQ), 73.51%

(LTP), and 68.49% (LBP) for a total of 657 writers. This justifies the difficulty and chal-

lenge in carrying out the classification process when comparing the dissimilarity measure

of each writer with that of a large number of writers. In other words, the classification pro-
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database.
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cess becomes progressively complex as the number of classes (writers) increases. Note

that the same behavior is recorded experimentally for the other handwritten databases

tested. As expected, the classification results recorded in Figure 5.31 show the validity

and performance stability of the proposed system. These results confirm the findings in

Section 5.3.4.1, i.e., LSTP is experimentally the best performing method compared to the

evaluated feature methods.

5.4/ EXPERIMENTAL RESULTS: DEEP LEARNING-BASED SYS-

TEMS

As presented in Chapter 4, we proposed two approaches based on deep learning: -

WriterINet- and DeepWINet-based writer identification systems. The writer identification

result, expressed in %, is defined as the number of correctly classified samples by the

total number of test instances over all writers.

The CNN models are pre-trained using the training set of the IAM database for all tested

databases. The evaluations are performed on two Alienware Aurora R8 with Core i9-

9900K-9th processor 5GHz Boost, 16 threads, two GPU NVIDIA-RTX2080-8GB, and 64

GB RAM. The CNN network training options are set as follows: (1) training solver:
CNN models are trained using the Adam optimizer (Kingma and Ba (2014)); (2) initial
learning rate: The weights of earlier layers in the CNN networks are frozen by setting

the initial learning rate to 0 in these layers. This speeds up the network’s training and

prevents overfitting of the frozen layers when performing the fine-tuning process (transfer

learning). Overall, the initial learning rate for the first 24 layers is set to 0 and changed

to a small value of 0.0001 to slow down the learning of the network in the transferred

layers that are not yet frozen; (3) training cycle: The entire training process took 8 to

10 epochs to update the weights of our CNN models. 60 is the mini-batch size for each

training iteration; (4) execution environment: four GPUs are used in the local parallel

pool.

5.4.1/ PERFORMANCE OF THE WriterINet-BASED APPROACH

As explained in Chapter 4 (cf. Section 4.2), the WriterINet model is used to extract

deep features characterizing all segmented connected components and words from each

writing sample. These features are fed into a simple end-to-end artificial neural network

(ANN) to perform the identification (classification) process. The ANN network consists of

a 1D input, two fully connected layers (FC1 and FC2), a softmax layer, and a classification

layer (cf. Figure 4.5). The WriterINet-based system is evaluated on the IAM (document

and text-line setups), IFN/ENIT, CVL (setup-1), Firemaker, ICDAR2013, ICDAR2011, and
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CERUG databases.

To investigate the performance stability and effectiveness of the proposed WriterINet, we

study how the number of neurons of the fully connected layer FC1 of the ANN network af-

fects the overall performance. The number of neurons is set to 512, 1024, 2048, and 4096

as indicated in Table 5.21, and the identification accuracy for each setting is recorded

across all benchmarks evaluated. From the results in Table 5.21, it can be clearly

seen that the highest performance is achieved for IFN/ENIT, ICDAR2013, CERUG-CN,

CERUG-EN, and CERUG-MIXED databases when 512 is set as the number of neurons

of the fully connected layer FC1. The number of neurons of 1024 experimentally proves to

be the best configuration on CVL (setup-1), ICDAR2013, and CERUG-EN databases with

the highest score of 100%. The best configuration of (FC1 − 2048) gives a performance

of 99.54% and 98.4% on the IAM (text-line setup) and Firemaker databases, respectively.

On the ICDAR2011 database, all tested configurations of FC1 allow reaching 100%.

5.4.2/ PERFORMANCE OF THE DeepWINet-BASED APPROACH

The proposed DeepWINet CNN model is employed in two scenarios as explained in Chap-

ter 4 (cf. Section 4.3). Scenario 1: DeepWINet CNN model is used as a feature learning

method, where deep features are classified using Chi-Square -nearest neighbour classi-

fier. Scenario 2: DeepWINet model is implemented as an end-to-end CNN network. The

overall system is evaluated on the IAM (document and text line setups), IFN/ENIT, CVL

Table 5.21: The impact of the number of neurons of the fully connected FC1 on system
performance across all benchmarks tested.

IFN/ENIT CVL ICDAR2013
Top-1 Top-2 Top-1 Top-2 Top-1 Top-2

FC1-512 99.75 100 99.67 100 99 99.6
FC1-1024 99.27 99.75 100 100 99 99.6
FC1-2048 99.02 99.51 99.03 100 98.6 99
FC1-4096 98.54 99.27 97.09 97.74 98 98.6

IAM Firemaker ICDAR2011
Top-1 Top-2 Top-1 Top-2 Top-1 Top-2

FC1-512 99.39 99.69 98 99.2 100 100
FC1-1024 99.39 99.69 98.4 99.6 100 100
FC1-2048 99.54 99.54 98.4 99.6 100 100
FC1-4096 99.23 99.54 97.6 98.4 100 100

CERUG-CN CERUG-EN CERUG-MIXED
Top-1 Top-2 Top-1 Top-2 Top-1 Top-2

FC1-512 95.24 99.04 100 100 100 100
FC1-1024 93.33 97.14 100 100 99.04 100
FC1-2048 92.38 94.28 98.09 100 97.14 99.04
FC1-4096 90.47 92.38 95.24 98.09 96.19 98.09
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(setup-2), Firemaker, ICDAR2013 and CERUG databases.

To investigate the ability of the DeepWINet model in characterizing the writer’s style when

using scenario 1, we compared its performance, i.e., top-1 and top-5 identification ac-

curacies, with those of traditional hand-crafted descriptors (cf. Tables 5.22 and 5.23).

These include BW-LBC (Chahi et al. (2018)), LBP (Ojala et al. (2002)), LTP (Tan and

Triggs (2010)), CLGP (Chahi et al. (2020a)), and LPQ (Ojansivu and Heikkilä (2008))

handcrafted descriptors, which are the best known feature methods for the task of writer

identification (Chahi et al. (2018); Hannad et al. (2016); Khan et al. (2016); Bertolini et al.

(2013); Chahi et al. (2019)). Note that these feature methods are applied using the same

classification process as the DeepWINet model.

From the Tables 5.22 and 5.23, it can be seen that the DeepWINet model with its two ver-

sions (full and light) far outperforms all the evaluated feature methods. The performance

of the hand-crafted descriptors, especially the LBP, LPQ, and LTP methods, is somewhat

low as they require a large amount of texture information to perform proper feature repre-

sentation. However, the features captured by our DeepWINet model are deeply learned

in a convolutional pixel-wise mode, which provides much better performance.

Table 5.22: Writer identification results on IAM (document setup), CVL, Firemaker, and
CERUG-EN databases. DeepWINet model is used as CNN deep feature extraction
method

Feature
method

IAM CVL Firemaker CERUG-EN
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

LBP 66.66 70.01 65.80 70.32 33.60 55.60 78.09 92.38
LPQ 69.86 72.90 67.74 70.96 37.20 64 66.66 79.04
LTP 72.29 75.34 69.83 71.61 30.4 54 83.81 96.19
BW-LBC 90.11 94.9 96.77 98.22 94.40 97.60 91.43 96.19
CLGP 92.99 96.95 98.38 99.35 97.60 99.2 97.14 100
DeepWINet (full) 98.32 98.93 100 100 98.4 99.60 100 100
DeepWINet (light) 98.02 98.78 100 100 97.6 99.2 100 100

Table 5.23: Writer identification results on IFN/ENIT, CERUG-CN, CERUG-MIXED, and
ICDAR2013 databases. DeepWINet model is used as a CNN deep feature extraction
method

Feature
method

IFN/ENIT CERUG-CN CERUG-MIXED ICDAR2013
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

LBP 71.29 76.11 65.71 78.09 61.90 70.47 70.40 78
LPQ 75.42 78.08 54.28 64.76 59.04 71.42 82.20 88
LTP 30.4 54 69.52 81.90 64.76 77.14 72 85.2
BW-LBC 97.56 100 92.38 99.04 83.80 91.42 96.80 99.2
CLGP 98.54 100 90.47 98.09 93.33 100 97 99.6
DeepWINet (full) 99.27 100 94.28 100 100 100 99.8 100
DeepWINet (light) 99.02 100 93.33 100 100 100 99.2 100
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As the evaluation of scenario 2, the performance of the DeepWINet network (full

and light configurations) is compared with VGG-19 (Simonyan and Zisserman (2014)),

WorldImgNet (He and Schomaker (2020)), FragNet-64 (He and Schomaker (2020)) and

AlexNet (Krizhevsky et al. (2012)) CNN networks. The identification results are reported

in Tables 5.24 and 5.25, which indicate that DeepWINet CNN model provides the best top

1 identification results over all tested databases.

For the Firemaker database, the top-1 performance of the DeepWINet model is compet-

itive with that of WorldImgNet and FragNet-64 networks. This high performance demon-

strates the effectiveness of the proposed DeepWINet for writer identification based on

connected component sub-images. The performance of our system using scenario 1

(DeepWINet as deep feature representation; Tables 5.22 and 5.23) is better than using

scenario 2 (DeepWINet as an end-to-end CNN network; Tables 5.24 and 5.25), as shown

in Table 5.26. The classification process in scenario 1 uses a double comparison mech-

anism to classify the deep feature vectors. Both distance and dissimilarity metrics are

jointly used to compare and match the common details contained in the feature vectors

in an efficient manner, which further improves the results.

For both scenarios 1 and 2, the full configuration of DeepWINet leads to better perfor-

mance compared to the light configuration.

Table 5.24: Writer identification results on CERUG, CVL, and IFN/ENIT databases.
DeepWINet, VGG-19, and AlexNet are implemented and used as an end-to-end CNN
networks

CNN model CERUG-CN CERUG-EN CERUG-MIXED CVL IFN/ENIT
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

VGG-19 88.57 95.24 92.38 96.19 90.47 99.05 96.77 98.38 79.07 81.50
WordImgNet — — 97.1 100 — — 98.8 99.4 — —
FragNet-64 — — 98.1 100 — — 99.1 99.4 — —
AlexNet 92.38 97.14 98.1 100 97.14 100 98.71 99.03 88.80 96.59
DeepWINet (full) 94.28 100 100 100 100 100 100 100 98.78 99.75
DeepWINet (light) 92.38 100 100 100 100 100 100 100 98.78 99.51

Table 5.25: Writer identification results on IAM (document setup), Firemaker, and IC-
DAR2013 databases. DeepWINet, VGG-19, and AlexNet are implemented and used as
an end-to-end CNN networks

CNN model IAM Firemaker ICDAR2013
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

VGG-19 94.36 96.65 88 92 96 97.8
WordImgNet 95.8 98 97.6 98.8 — —
FragNet-64 96.3 98 97.6 99.6 — —
AlexNet 96.49 97.26 92 95.2 98.6 99
DeepWINet (full) 97.41 98.93 97.6 99.2 99 100
DeepWINet (light) 96.95 98.78 97.2 99.2 99 99.8
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Table 5.26: Writer identification performance. (S1): DeepWINet is used as a CNN deep
feature extraction method. (S2): DeepWINet is used as an end-to-end CNN network.

Database
DeepWINet (Full) DeepWINet (Light)

S1 S2 S1 S2
TOP-1 TOP-5 TOP-1 TOP-5 TOP-1 TOP-5 TOP-1 TOP-5

IAM 98.32 98.93 97.41 98.93 98.02 98.78 96.95 98.78
IFN/ENIT 99.27 100 98.78 99.75 99.02 100 98.78 99.51
CVL 100 100 100 100 100 100 100 100
CERUG-CN 94.28 100 94.28 100 93.33 100 92.38 100
CERUG-EN 100 100 100 100 100 100 100 100
CERUG-MIXED 100 100 100 100 100 100 100 100
ICDAR2013 99.8 100 99 100 99.2 100 99 99.8
Firemaker 98.4 99.60 97.6 99.2 97.6 99.2 97.2 99.2

5.5/ PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART

In recent years, significant progress has been made in the field of offline text-independent

writer identification. Extensive effort in this area of research has focused primarily on

developing new and efficient yet robust frameworks that would produce a higher perfor-

mance for writer identification. However, most of these researches differ in terms of the

database setting tested. Even with a common database, direct one-to-one comparisons

with state-of-the-art systems are still not straightforward, mainly related to the following

factors: (i) imprecision about which writers are selected for the identification process be-

cause the authors used only a subset of the evaluated handwritten database, especially

in the case of the IAM and IFN/ENIT databases, and (ii) different numbers of handwrit-

ten samples (for training and test sets) per writer is used. In order to provide a fair and

meaningful performance comparison of our system with the state-of-the-art systems, we

only consider well-known systems evaluated on the entire set of writers for the ten tested

databases in our comparative evaluation.

Tables 5.27, 5.28 and 5.29 summarize the top-1 classification results obtained by our

approaches together with those of the current state-of-the-art systems on IFN/ENIT, CVL,

ICDAR2013, IAM, Firemaker, ICDAR2011, AHTID/MW, CERUG-CN, CERUG-EN, and

CERUG-MIXED databases.

• Results on IFN/ENIT. # BWLBC-based approach: The proposed system allows

achieving the highest average accuracy of 96.47% over 10 subdivisions in the

IFN/ENIT database, which outperforms the nearest performing system presented

in (Hannad et al. (2016)) by 1.58%, while their result was recorded only over one

subdivision in training and testing sets. # Handcrafted-based approach: This ap-

proach provides a very accurate and efficient solution for identifying the writers from

the Arabic IFN/ENIT database. Using the LPQ descriptor in feature extraction, our



5.5. PERFORMANCE COMPARISON WITH THE STATE-OF-THE-ART 147

Table 5.27: Performance comparison on IFN/ENIT, CVL, and ICDAR2013 databases.
S1: Scenario 1, DeepWINet is applied as deep CNN feature method; S2: Scenario 2,
DeepWINet is used as an end-to-end CNN network;

Approach #Year #Script Benchmark #Classes #Feature + Classifier Writer identification
Top-1 accuracy

Bulacu et al. 2007 Arabic IFN/ENIT 350 Contour & Grapheme + Nearest Neighbor 88%
Abdi and Khemakhem 2015 Arabic IFN/ENIT 411 Synthetic codebooks + Chi-square 90.02%
Hannad et al. 2016 Arabic IFN/ENIT 411 LPQ + Hamming 94.89%
Khan et al. 2017 Arabic IFN/ENIT 411 BDCT + Nearest-center 76%
Proposed BWLBC-based approach (Chahi et al.) 2018 Arabic IFN/ENIT 411 BWLBC + NN-Hamming 96.47%
Hadjadji and Chibani 2018 Arabic IFN/ENIT 411 LPQ, RL, and oBIF + OC-K-Means 97.56%
Proposed LPQ-based approach (Chahi et al.) 2019 Arabic IFN/ENIT 411 LPQ + NN-Hamming 97.81%
Proposed LTP-based approach (Chahi et al.) 2019 Arabic IFN/ENIT 411 LTP + NN-Hamming 96.84%
Proposed LBP-based approach (Chahi et al.) 2019 Arabic IFN/ENIT 411 LBP + NN-Hamming 95.13%
Khan et al. 2019 Arabic IFN/ENIT 411 SIFT and RootSIFT with GMM 97.28%
Kumar and Sharma 2019 Arabic IFN/ENIT 411 DCWI + SVM and SBC 97.50%
Proposed LSTP-based approach (Chahi et al.) 2020 Arabic IFN/ENIT 411 LSTP + NN-Hamming 98.28%
Proposed CLGP-based approach (Chahi et al.) 2020 Arabic IFN/ENIT 411 CLGP + NN-Hamming 98.54%
Kumar and Sharma 2020 Arabic IFN/ENIT 411 CNN 98.24%
Proposed WriterINet-based approach Arabic IFN/ENIT 411 CNN + ANN 99.75%
Proposed DeepWINet-based approach (S2) Arabic IFN/ENIT 411 DeepWINet (full & light) 98.78%
Proposed DeepWINet-based approach (S1) Arabic IFN/ENIT 411 DeepWINet (full) + NN-Chi-square 99.27%
Proposed DeepWINet-based approach (S1) Arabic IFN/ENIT 411 DeepWINet (light) + NN-Chi-square 99.02%
Fiel and Sablatnig 2013 English & German CVL 309 SIFT + Cosine 97.8%
Fiel and Sablatnig 2015 English & German CVL 309 CNN + Nearest Neighbor 98.9%
Kanetkar et al. 2016 English & German CVL 308 LDP + Chi-square 98.1%
Khan et al. 2017 English & German CVL 310 BDCT + Nearest-center 99.6%
Proposed BWLBC-based approach (Chahi et al.) 2018 English & German CVL 310 BWLBC + NN-Hamming 99.03%
Kessentini et al. 2018 English & German CVL 310 SVM with DST 94.83%
Proposed handcrafted-based approach (Chahi et al.) 2019 English & German CVL 310 LBP & LPQ & LTP + NN-Hamming 99.35%
Khan et al. 2019 English & German CVL 310 SIFT and RootSIFT with GMM 99.03%
Chen et al. 2019 English & German CVL 310 CNN-WLSR 99.2%
Proposed CLGP-based approach (Chahi et al.) 2020 English & German CVL 310 CLGP + NN-Hamming 99.51%
Proposed LSTP-based approach (Chahi et al.) 2020 English & German CVL 310 LSTP + NN-Hamming 99.83%
Javidi and Jampour 2020 English & German CVL 310 CNN + HTD 96.16%
He and Schomaker 2020 English & German CVL 310 CNN 99.1%
Kumar and Sharma 2020 English & German CVL 310 CNN 99.35%
Proposed WriterINet-based approach - English & German CVL 310 CNN + ANN 100%
Proposed DeepWINet-based approach (S2) English & German CVL 310 DeepWINet (full & light) 100%
Proposed DeepWINet-based approach (S1) English & German CVL 310 DeepWINet (full & light) + NN-Chi-square 100%
CVL-IPK method. (Louloudis et al.) 2013 English & Greek ICDAR2013 250 Fisher Vector + Cosine 90.9%
TEBESSA-c method. (Louloudis et al.) 2013 English & Greek ICDAR2013 250 Hinge with Run-length + Manhattan 93.4%
HIT-ICG method. (Louloudis et al.) 2013 English & Greek ICDAR2013 250 SIFT + Chi-square 94.8%
CS-UMD-b method. (Louloudis et al.) 2013 English & Greek ICDAR2013 250 Contour gradient + K-means 95%
Christlein et al. 2014 English & Greek ICDAR2013 250 RootSIFT with GMM 97.1%
Fiel and Sablatnig 2015 English & Greek ICDAR2013 250 CNN + Nearest Neighbor 88.5%
Chen et al. 2019 English & Greek ICDAR2013 250 CNN-WLSR 97.7%
Proposed LSTP-based approach (Chahi et al.) 2020 English & Greek ICDAR2013 250 LSTP + NN-Hamming 98.4%
Proposed WriterINet-based approach English & Greek ICDAR2013 250 CNN + ANN 99%
Proposed DeepWINet-based approach (S2) English & Greek ICDAR2013 250 DeepWINet (full & light) 99%
Proposed DeepWINet-based approach (S1) English & Greek ICDAR2013 250 DeepWINet (full) + NN-Chi-square 99.8%
Proposed DeepWINet-based approach (S1) English & Greek ICDAR2013 250 DeepWINet (light) + NN-Chi-square 99.2%

system reaches the highest top-1 identification rate of 97.81%, which is an im-

provement over our previous BWLBC-based approach and the system presented

in (Hadjadji and Chibani (2018)) by 1.34% and 0.25%, respectively. # (CLGP &

LSTP)-based approaches: From the Table 5.27, it can be clearly seen that the pro-

posed system with CLGP and LSTP gives the best performance with top 1 scores

of 98.28% (LSTP) and 98.54% (CLGP) among all the compared studied systems. #

(WriterINet & DeepWINet)-based approaches: The WriterINet- and full DeepWINet-

based approaches outperform all investigated SOTA systems in the top-1 identifi-

cation accuracy (high scores of 99.75% (WriterINet), 99.27% (full DeepWINet with

scenarios 1), and 98.78% (full DeepWINet with scenarios 2)). Even with the light

version of DeepWINet, the overall approach still performs the best in this database.
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Table 5.28: Performance comparison on IAM, Firemaker, ICDAR2011, and AHTID/MW
databases. S1: Scenario 1, DeepWINet is applied as deep CNN feature method; S2:
Scenario 2, DeepWINet is used as an end-to-end CNN network;

Approach #Year #Script #Benchmark #Classes #Feature + Classifier Writer identification
Top-1 accuracy

Khalifa et al. 2015 English IAM 650 Multiple codebooks + Nearest Neighbor 92%
Hannad et al. 2016 English IAM (text-line setup) 657 LPQ + Hamming 89.54%
Proposed BWLBC-based approach (Chahi et al.) 2018 English IAM (text-line setup) 657 BWLBC + NN-Hamming 90.11%
Hadjadji and Chibani 2018 English IAM (text-line setup) 657 LPQ, RL, and oBIF + OC-K-Means 94.51%
Proposed LPQ-based approach (Chahi et al.) 2019 English IAM (text-line setup) 657 LPQ + NN-Hamming 91.17%
Kumar and Sharma 2019 English IAM (text-line setup) 657 DCWI + SVM and SBC 97.80%
Durou et al. 2019 English IAM 650 OBI and Grapheme + K-nearest neighbour 92%
Proposed CLGP-based approach (Chahi et al.) 2020 English IAM (text-line setup) 657 CLGP + NN-Hamming 94.06%
Proposed LSTP-based approach (Chahi et al.) 2020 English IAM (text-line setup) 657 LSTP + NN-Hamming 96.80%
Bulacu and Schomaker 2007 English IAM (document setup) 650 Contour & Grapheme + Nearest Neighbor 89%
Siddiqi and Vincent 2010 English IAM (document setup) 650 Codebook & Contour + Chi-square 91%
Kumar et al. 2014 English IAM (document setup) 650 Fourier & wavelet + Nearest Neighbor 88.43%
Wu et al. 2014 English IAM (document setup) 657 SDS + SOH 98.5%
He et al. 2015 English IAM (document setup) 650 Junclets 91.10%
He and Schomaker 2017 English IAM (document setup) 650 COLD-LBPruns + Nearest Neighbor 89.90%
Khan et al. 2017 English IAM (document setup) 650 BDCT + Nearest-center 97.2%
Nguyen et al. 2019 English IAM (document setup) 650 CNN 90.12%
Khan et al. 2019 English IAM (document setup) 650 SIFT and RootSIFT with GMM 97.85%
He and Schomaker 2020 English IAM 657 CNN 96.3%
Kumar and Sharma 2020 English IAM (document setup) 657 CNN 97.27%
Javidi and Jampour 2020 English IAM 657 CNN + HTD 97.50%
Proposed WriterINet-based approach English IAM (text-line setup) 657 CNN + ANN 99.54%
Proposed WriterINet-based approach English IAM (document setup) 657 CNN + ANN 98.17%
Proposed DeepWINet-based approach (S2) English IAM (text-line setup) 657 DeepWINet (full) 98.93%
Proposed DeepWINet-based approach (S1) English IAM (text-line setup) 657 DeepWINet (full) + NN-Chi-square 99.54%
Proposed DeepWINet-based approach (S1) English IAM (document setup) 657 DeepWINet (full) + NN-Chi-square 98.32%
Proposed DeepWINet-based approach (S1) English IAM (document setup) 657 DeepWINet (light) + NN-Chi-square 98.02%
Ghiasi and Safabakhsh 2013 Dutch Firemaker 250 Contour codebook fragments + Nearest Neighbor 91.80%
Wu et al. 2014 Dutch Firemaker 250 SDS + SOH 92.40%
He et al. 2015 Dutch Firemaker 250 Junclets 89.80%
He and Schomaker 2017 Dutch Firemaker 250 COLD-LBPruns + Nearest Neighbor 86.2%
Nguyen et al. 2019 Dutch Firemaker 250 CNN 92.38
Khan et al. 2019 Dutch Firemaker 250 SIFT and RootSIFT with GMM 97.98%
Proposed CLGP-based approach (Chahi et al.) 2020 Dutch Firemaker 250 CLGP + NN-Hamming 97.60%
Proposed LSTP-based approach (Chahi et al.) 2020 Dutch Firemaker 250 LSTP + NN-Hamming 98%
He and Schomaker 2020 Dutch Firemaker 250 CNN 97.6%
Javidi and Jampour 2020 Dutch Firemaker 250 CNN + HTD 99.6%
Proposed WriterINet-based approach Dutch Firemaker 250 CNN + ANN 98.4%
Proposed DeepWINet-based approach (S1) Dutch Firemaker 250 DeepWINet (full)+ NN-Chi-square 98.4%
TEBESSA method (Louloudis et al.) 2011 Hybrid ICDAR2011 26 GLRL + Manhattan 87.50%
TSINGHUA method (Louloudis et al.) 2011 Hybrid ICDAR2011 26 GMSF + Variance Weighted Chi-square 90.90%
Wu et al. 2014 Hybrid ICDAR2011 26 SDS + SOH 95.20%
Fiel and Sablatnig 2015 Hybrid ICDAR2011 26 CNN + Nearest Neighbor 94.7%
Mohammed et al. 2017 Hybrid ICDAR2011 26 FAST keypoints + Local NBNN 98.6%
Khan et al. 2019 Hybrid ICDAR2011 26 SIFT and RootSIFT with GMM 100%
Proposed CLGP-based approach (Chahi et al.) 2020 Hybrid ICDAR2011 26 CLGP + NN-Hamming 100%
Proposed LSTP-based approach (Chahi et al.) 2020 Hybrid ICDAR2011 26 LSTP + NN-Hamming 100%
Proposed WriterINet-based approach Hybrid ICDAR2011 26 CNN + ANN 100%
Slimane and Märgner 2014 Arabic AHTID/MW 53 Gaussian Mixture Model (GMM) 69.48%
Khan et al. 2016 Arabic AHTID/MW 53 MSLTPH + majority voting 87.5%
Khan et al. 2017 Arabic AHTID/MW 53 BDCT + Nearest-center 71.6%
Schomaker and Bulacu (implemented in Khan et al.) 2017 Arabic AHTID/MW 53 Contour features + Nearest Neighbor 66.4%
Hannad et al (implemented in Khan et al.) 2017 Arabic AHTID/MW 53 LPQ + Hamming 77.3%
Proposed BWLBC-based approach (Chahi et al.) 2018 Arabic AHTID/MW 53 BWLBC + NN-Hamming 99.53%
Proposed LPQ-based approach (Chahi et al.) 2019 Arabic AHTID/MW 53 LPQ + NN-Hamming 99.53%
Khan et al. 2019 Arabic AHTID/MW 53 SIFT and RootSIFT with GMM 95.60%
Proposed CLGP-based approach (Chahi et al.) 2020 Arabic AHTID/MW 53 CLGP + NN-Hamming 99.53%

• Results on CVL. # BWLBC-based approach: The system reaches a classification

rate of 99.03% in split.2 (see Table 5.3), only outperformed by 0.57%, compared

to the best result obtained in (Khan et al. (2017)) over one split in training and test

sets. # Handcrafted-based approach: Comparing the overall performance on the

CVL database, the LPQ-based system reaches an average accuracy of 98.62% and

a maximum score of 99.35% in split.2 (cf. Table 5.7), which is exceeded by only
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Table 5.29: Performance comparison on CERUG-CN, CERUG-EN, and CERUG-MIXED
databases (105 writers). S1: Scenario 1, DeepWINet is applied as deep CNN feature
method; S2: Scenario 2, DeepWINet is used as an end-to-end CNN network;

Approach #Year #Classes CERUG-CN (%) CERUG-EN (%) CERUG-MIXED (%)
Hinge (Bulacu and Schomaker) 2007 105 90.8 12.3 84.7
Quill (Brink et al.) 2012 105 82.7 15.8 74.8
Junclets (He et al.) 2015 105 90.4 87.1 85.7
COLD + LBPruns (He and Schomaker) 2017 105 93.8 97.1 98.5
Proposed LSTP-based approach (Chahi et al.) 2020 105 100 98.09 94.28
FragNet-64 (He and Schomaker) 2020 105 - 100 -
Proposed WriterINet-based approach 105 95.24 100 100
Proposed DeepWINet-based approach (full) (S2 & S1) 105 94.28 100 100
Proposed DeepWINet-based approach (light) (S1) 105 93.33 100 100

0.25%, compared to the most competitive system in (Khan et al. (2017)), which

reaches a score of 99.6% over one split. # (CLGP & LSTP)-based approaches:

The CLGP-based system reaches the highest average accuracy of 99.51% and a

maximum score of 99.67% in split.2 and split.3 (cf. Table 5.16) compared to most

state-of-the-art systems, including deep learning ones. This performance is com-

petitive to the classification score of 99.6% achieved in (Khan et al. (2017)). The

LSTP-based system provides a reliable and efficient solution to accurately iden-

tify writers with a top-1 score of 99.83%, which outperforms all SOTA systems in-

vestigated. # (WriterINet & DeepWINet)-based approaches: Both WriterINet and

DeepWINet approaches achieve further improvements over our previous systems.

They manage to perfectly differentiate all classes with a score of 100%. This high

performance confirms the reliability and validity of our CNN-based frameworks for

writer identification.

• Results on ICDAR2013. # LSTP-based approach: As shown in Table 5.27, the

LSTP-based approach performs better in the ICDAR2013 database with a score of

98.4%. It outperforms all other SOTA systems so far. # WriterINet-based approach:

The framework improves the overall performance with a score of 99% outperform-

ing our previous LSTP-based approach. # DeepWINet-based approach: From Ta-

ble 5.27, it is clear that the proposed framework with the full and light versions of

DeepWINet outperforms all the studied SOTA systems with identification rates of

99.8% (full) and 99.2% (light).

• Results on IAM. # BWLBC-based approach: As shown in Table 5.28, the system

records a promising result on the IAM database (text line setup) with an identification

rate of 90.11% (split.4 in Table 5.2). Our framework outperforms the hand-crafted

system presented in (Hannad et al. (2016)) but is still competitive to (Khalifa et al.

(2015)). Note that the system in (Khalifa et al. (2015)) used a different IAM setup

in its evaluations. # (LPQ & CLGP & LSTP)-based approaches: The proposed ap-

proaches improve the performance in the IAM database (text line setup) over the

previous BWLBC-based approach. The LSTP-based approach is the top 2 system
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with a classification result of 96.80%, which is outperformed by Kumar and Sharma

(2019) with a result of 97.80%. For this database, we believe that the performance

drop using our texture-based approaches is due to the bad adaptation of the fea-

ture extraction methods with the segmented component sub-images. The original

text line images contain unwanted random traces. As a result, some representa-

tive writing traces are lost during the image segmentation step. This affects the

overall system to perform correct writer identification. # (WriterINet & DeepWINet)-

based approaches: Our deep learning proposals provide further enhancements to

the IAM database with text line and document setups. As shown in Table 5.2, the

highest identification accuracy of 99.54% is reached on IAM (text line setup) with

WriterINet-based and DeepWINet (S1 & full)-based approaches, outperforming all

SOTA systems. In the IAM database with document setup, the second-best SOTA

system is the DeepWINet-based approach (S1 & full) with a classification result of

98.32%, slightly outperformed by 0.18% versus the system presented in (Wu et al.

(2014)) (score of 98.5%). However, our deep learning-based approaches outper-

form the same system in (Wu et al. (2014)) by 6% and 4.8% on Firemaker and

ICDAR2011 databases, respectively ( cf. Table 5.28).

• Results on Firemaker. # CLGP-based approach: As depicted in Table 5.28, the

top 1 identification accuracy of 97.60% is achieved on the Firemaker database,

slightly outperformed by the nearest best system in (Khan et al. (2019)) by about

0.38%. # LSTP-based approach: Using the LSTP-based approach, the classifica-

tion results are improved in this database with a top-1 score of 98%, outperforming

the system introduced in (Khan et al. (2019)). # (WriterINet & DeepWINet)-based

approaches: The experimental results show that the approach presented in (Javidi

and Jampour (2020)) is the best performing system with a classification score of

99.61%. However, (WriterINet & DeepWINet)-based approaches are still compet-

itive with the best second score of 98.4%. Our approaches outperform the same

work in (Javidi and Jampour (2020)) on CVL and IAM databases, respectively.

• Results on ICDAR2011 and AHTID/MW. In the ICDAR2011 database, all our pro-

posals (with the system in Khan et al.) report a top 1 writer identification accuracy

of 100%, outperforming all experimental classification results reported in the liter-

ature. Our approaches achieve the highest SOTA performance (score of 99.53%)

on the AHTID/MW database. They show a significant improvement of 3.93% and

12.03% over the nearest best-performing systems presented in (Khan et al. (2019))

and (Khan et al. (2016)), respectively.

• Results on CERUG. # LSTP-based approach: As shown in Table 5.29, top-1

identification rates of 100% and 98.09% are reached in the Chinese CERUG-CN

and English CERUG-EN databases, respectively, which exceed all experimen-
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tal results reported in the literature. In the English-Chinese CERUG-MIXED, a

score of 94.28% is recorded, which still rivals the score of 98.5% obtained by He

and Schomaker (2017b). # (WriterINet & DeepWINet)-based approaches: In the

CERUG-CN database, the highest performance (score of 95.24%) is reached with

our WriterINet-based approach but outperformed by 4.76% over the LSTP-based

approach. In CERUG-EN and CERUG-MIXED databases, 100% accuracy in writer

identification is achieved using (WriterINet & DeepWINet)-based approaches.

5.6/ RESULTS OF THE ICFHR2020 COMPETITION

5.6.1/ EVALUATION PROTOCOL AND ERROR METRICS

As indicated in Chapter 4 (cf. Section 4.4), contestants are asked to hand a 20019×20019

distance matrix, since the test set consists of 20019 fragment images. The evaluation is

performed using a leave-one-image-out cross-validation strategy. This means that each

fragment image of the test set is used as a query, for which the other test fragment

images are ranked in a hit list according to their distance similarities (the smaller, the

more similar). The metrics are then averaged over all unseen images. Participants’

methods are assessed in two ways (two main tasks): (i) writer task, i.e., finding all similar

fragment images belonging to the same writer ID based on the writing style, and (ii) page

task, i.e., finding all fragment images generated from the same page ID.

The test set includes 20 019 fragments from 1152 writers generated from 2732 historical

documents. Seuret et al. (2020) report that the test set is class imbalanced. More pre-

cisely, the test set consists of four relevant samples per writer, up to 69 fragment samples

that need to be identified and retrieved. Note that the IDs of the writers in the training

set are different from those in the test set, and that there is no overlap between the two

sets. Details of the origin and arrangement of the database can be found in Chapter 4 (cf.

Section 4.4).

Mean average precision (mAP), or sometimes referred to as AP, is a popular metric for

evaluating the performance of systems and models for document/information retrieval and

object detection tasks (Nicolaou et al. (2018)). The mAP is used as the key performance

metric to rank the winners of the two contest tasks (writer-level & page-level ). It is calcu-

lated from the submitted participants’ distance matrices given in a CSV file format. The

first row and the first column of the CSV file denote the query fragment and the gallery

file, where the corresponding cell entries contain the per- patch distances. The average

precision (AP) is computed for each query fragment Q. Thus, the precision is calculated

over all ranks i of the retrieved list.
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APQ =
1
D

R∑
i=1

PrQ (i) × IFQ (i) (5.1)

The parameter R is the size of the retrieved list, where D is the number of relevant frag-

ments to the query Q. PrQ (i) is the precision at rank i and IFQ (i) is an indication function

that returns 1 if the fragment at rank i is relevant and 0 otherwise. An evaluation platform
1 to measure the mAP was provided to participants to perform validation tests (from the

training set). Top-1 accuracy is also used as an evaluation metric in the competition. It is

defined as the average accuracy at rank 1. In addition, Pr@10 and Pr@100 are provided

as error metrics to investigate the participants’ methods’ performance further. Formally,

the Pr@K is calculated as follows:

Pr@K =
1
N

N∑
j=1

R j, K

min
(
R j, N ,K

) (5.2)

where N is the total number of fragments and R j, n is the number of relevant samples for

query fragment j up to rank n. The min(,K) is added to indicate whether a method can

achieve higher precision for each fragment.

5.6.2/ EXPERIMENTAL RESULTS

As mentioned earlier, the 20 019 test fragments are classified at two different levels:

(1) writer level (Task 1) and (2) page level (Task 2). The fragment images have the

following naming convention: WID-PID-FID.jpg, where WID=Writer-ID, PID: Page-ID,

FID=Fragment-ID. The evaluation is based on five methods submitted by different uni-

versities. These include the University of Bourgogne Franche-Comte (UBFC), the Univer-

sity of Groningen (RUG), the University of Tebessa (ULT), and the University of Belfort-

Montbeliard Technology (UTBM). The description of the approaches including our pro-

posed system (submitted with two variants (TwoPathwriter) and (TwoPathpage)) is provided

in Chapter 4 (cf. Section 4.4).

The performance is evaluated using the error metrics mAP, top-1 accuracy, Pr@10 and

Pr@100. The results of Task 1, i.e., retrieving all similar fragment images matching the

same writer ID, are summarized in Table 5.30. From the results of Task 1, it can be seen

that the UBFC method achieved the best mAP score of 33.7%, followed by our CNN

model TwoPathwriter with a score of 33.5%. However, the TwoPathwriter network is the

best-performing system with the highest scores on top-1 accuracy, Pr@10 and Pr@100.

The TwoPathpage network is competitive in terms of accuracy; it is the top 3 best perform-

1https://github.com/anguelos/wi19evaluate
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ing system with a score of 61.1%, and the top 4 system in terms of mAP, Pr@10 and

Pr@100. As for the results of Task 2 (cf. Table 5.31) (retrieving all similar fragment im-

ages corresponding to the same page ID), the highest performance is achieved with our

TwoPathwriter network over all error metrics. The TwoPathpage network is ranked second

best method regarding the top 1 accuracy metric with a score of 27.4% and ranked the

top 4 system in terms of the mAP, Pr@10 and Pr@100 metrics. We believe that the drop

in performance when using the TwoPathpage network compared to the other TwoPathwriter

variant is related to the training process. Since validation data was not available during

the submission phase, the TwoPathpage network was over-fitted, which affected the over-

all performance for fragment retrieval (from the test set). The performance of the RUG

method is somewhat low. One possible reason for this could be the complex irregular

shapes of the fragments, as the method fails to characterize the different amounts of text

within these fragments accurately. Seuret et al. (2020) explained that this method was

initially introduced for word images and had some training issues.

In summary, the mean Average Precision (mAP) determines the winner of the two tasks.

Our proposed approach won first place in Task 2 and second place in Task 1.

Table 5.30: Experimental results of Task 1 (writer-level).

#Method + Distance Metric #mAP #Top-1 Accuracy #Pr@10 #Pr@100
RUG FragNet + Euclidean 6.4 32.5 16.8 14.5
ULT oBIF + Correlation 24.1 55.4 39.2 37.9
ICFHR2020 Baseline SRS-LBP + Manhattan 33.4 60 46.8 45.9
UBFC ResNet20ssl + Cosine 33.7 68.9 52.5 46.5

UTBM
TwoPathwriter + Chi-square 33.5 77.1 53.1 50.4
TwoPathpage + Chi-square 25.2 61.1 41.2 44.1

Table 5.31: Experimental results of Task 2 (page-level).

#Method + Distance Metric #mAP #Top-1 Accuracy #Pr@10 #Pr@100
RUG FragNet + Euclidean 4.1 8.4 6.9 16.6
ULT oBIF + Correlation 16.1 23 22.4 45.5
ICFHR2020 Baseline SRS-LBP + Manhattan 18.5 25.7 25.9 53.1
UBFC ResNet20ssl + Cosine 18.4 24.1 26.2 53.2

UTBM
TwoPathwriter + Chi-square 22.6 36.4 31.2 58.9
TwoPathpage + Chi-square 17.4 27.4 24.6 52.6

5.7/ CONCLUSION

In this chapter, we presented the experimental results obtained with the different meth-

ods we proposed, including CNN-based and texture-based writer identification systems.

A comprehensive description of the benchmarks used with their standard protocol setup

is also given. Extensive experiments are conducted on 10 challenging handwritten
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databases in different languages, including English, Arabic, Dutch, Chinese, French, Ger-

man, and Greek. For texture-based systems, we analyzed the key parameters of each

feature technique and investigated the sensitivity of system performance as a function of

the number of writers and the amount of data for each database tested. All of our pro-

posed feature methods showed a high ability to handle and better characterize the writing

variability. Moreover, the BWLBC method proved to be very efficient in computation time

due to its small dimension size. Texture-based approaches achieved competitive, or the

highest SOTA performance in the benchmarks studied.

CNN-based systems are evaluated under different conditions and configurations. For the

WriterINet framework, we analyzed how the number of neurons of the fully connected

layer FC1 of the ANN network affects the overall performance through an extensive ex-

periment. The DeepWINet network was evaluated in two scenarios: scenario 1 consists

of using DeepWINet as a feature learning representation and the Chi-Square -nearest

neighbor rule as a classifier; scenario 2 evaluates DeepWINet as an end-to-end CNN

network. Experiments have shown that scenario 1 leads to better performance compared

to scenario 2. This is due to the dual comparison mechanism used in scenario 1 to clas-

sify deep feature vectors. In fact, the performance is further improved as distance and

dissimilarity metrics are jointly used to compare and efficiently match deep features. In

summary, our CNN-based systems proved their effectiveness and significantly improved

the task of writer identification achieving excellent SOTA results. We also presented the

experimental results of our submitted approach in the ICFHR2020 competition. Our ap-

proach achieved excellent results compared to the participants’ methods.
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6

CONCLUSIONS AND FUTURE WORKS

This chapter summarizes the contributions and research results presented in this thesis

along with its main conclusions and recommendations for future research directions.

6.1/ SUMMARY AND CONTRIBUTIONS

Handwriting-based writer identification is based on two fundamental principles. Their

clear statements are as follows: (1) no two individuals produce exactly the same writing

style twice, and (2) no two individuals have the same writing style. These two natural fac-

tors make the writer identification a challenging task, considering the large within-writer

and between-writer style variability. The main goal of this work was to automate the pro-

cess of writer identification using scanned handwritten images (offline mode) to provide

a complete computer analysis of the writing variability. Our proposed approaches for

writer identification have an impact on forensic science. They enable the ”one-to-many”

searching in an extensive handwritten database, where the output is a predicted sorted

list of writer candidates corresponding to the samples matching the handwriting style of

the query sample. In this way, the search space for comparing handwritten samples is

reduced, and a hit list is an output that scribe analysts and forensic experts can quickly

examine. The present thesis addressed all the main steps of an automatic system for

writer identification using handwriting images. Our proposals contributed to the numer-

ous challenges encountered in these steps: (i) image preprocessing and segmentation

to discard background noise and extract local regions of interest (words, characters, con-

nected components, etc.) from the handwriting images; (ii) feature extraction to capture a

synthetic feature representation of the writing style to be recognized in a two-dimensional

space. It consequently characterizes and indexes common writing patterns belonging to

the same writing style; (iii) classification to compare and match the previously extracted

features to identify the authorship of handwritten documents accurately.

Chapter 2 of the dissertation presented a comprehensive literature review of recent pub-
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lications in the field of writer identification and provided the necessary context in which to

place our research work. We have classified the state-of-the-art, in chronological order,

into texture-based, grapheme-based, contour-based, and deep learning-based methods.

We have also addressed he challenges, factors, performance, and criticisms of these ap-

proaches to better characterize the handwriting variability. After a careful review of the

literature, we concluded that texture-based methods are conceptually simple but some-

times have a higher number of parameters, leading to an increase in processing time

when used in conjunction with a classifier. In general, these methods capture recurring

writing features and allow correct performance when using an appropriate classifier. For

grapheme- and contour-based methods, the recognition and identification performance

highly depends on the capability of the image segmentation phase as they are based on

extracting features from small parts of the writing like graphemes, strokes, edges, and

contours. With the advent of deep learning, the writing variability can be automatically

extracted and learned using Convolutional Neural Network (CNN). CNN-based methods

provide an accurate solution for the in-depth computation of features representing the

individual’s handwriting style. However, one of the drawbacks of these methods is the

limitation of data size. Large labeled data is required for the training process to learn how

to capture the within-writer and between-writer style variability. With less training data,

traditional methods can perform better or equivalent to deep learning.

Our contributions in Chapter 3 focused on the feature extraction phase, as it is chal-

lenging to model the writing style patterns in the image. If the writing features are inap-

propriately captured from the writing, it will have an unfavorable impact on the classifier

used to determine the writer’s identity for the documents in question. Indeed, extracting

relevant features allows to reduce misclassification and improve the writer identification

task. We have proposed four texture-based systems for text-independent offline writer

identification. An image preprocessing and segmentation step was commonly used for

the four texture-based approaches. It consists of removing background noise and dia-

critical marks from the writing and segmenting the document image into connected com-

ponent sub-images. In the feature extraction phase (for all texture-based approaches),

these connected components are input to capture the texture information of the writing,

which is represented by feature vectors. The classification phase is performed using the

Hamming-based nearest neighbor method with a new strategy to compute similarities

between handwritten documents. Our first approach is based on the Block Wise Local

Binary Count (BWLBC) descriptor. It characterizes individual writing styles in small blocks

by capturing the white pixels’ distribution corresponding to the ink in binary component

sub-images. The encoding of BW-LBC feature vectors depends on the number of blocks

and the component sub-image window size. Therefore, these two parameters were tuned

experimentally to find the optimal setting for better writing characterization.

The overall system was evaluated on four challenging handwritten databases, the Arabic
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IFN/ENIT and AHTID/MW databases, and the English IAM and CVL databases. Unlike

other SOTA approaches, where only a partition into training and test sets was used in

the IFN/ENIT and IAM databases, the proposed BWLBC-based system was evaluated

on ten different subsets randomly generated for each writer. For the CVL and AHTID/MW

databases, the four cross-validation setup was used to test all possible subsets. These

two protocol strategies were used to evaluate and validate the performance stability of

the system thoroughly. Overall, the experimental results reported in Chapter 5 showed

that the BWLBC-based approach achieved superior SOTA performance in the IFN/ENIT

and AHTID/MW and competitive performance in the CVL and IAM. Moreover, the BW-

LBC feature method offers an excellent trade-off between classification accuracy and

computational complexity thanks to its smaller feature histogram length. The second ap-

proach relies on the hand-crafted LBP, LPQ, and LTP descriptors applied to small regions

(zones) of interest in connected components to capture textural features of the writing

style. The final feature histogram representing each connected component comprises

a set of sub-histograms computed sequentially within each zone. In this approach, we

introduced a dimensionality reduction rule to reduce the computational cost of the sub-

sequent classification process. As with the BWLBC method, the optimal settings of the

feature extraction step’s key parameters were determined through extensive experimen-

tation for each database. From the results in Chapter 5, it can be concluded that the

overall system achieved further improvements in writer identification performance over

the previous BWLBC-based approach for the same benchmarks investigated.

Furthermore, we proposed two feature extraction methods, namely Cross multi-scale Lo-

cally encoded Gradient Patterns (CLGP) and Local gradient full- Scale Transform Pat-

terns (LSTP). The CLGP descriptor computes the distribution of local intensity gradients

within small regions, called cells, over multiple feature code maps. These feature code

maps were uniformly computed from resized handwritten connected components using a

cross-scale joint coding process. The LSTP method is an extended variant of CLGP for

capturing relevant gradient representations of the writing patterns using the HOG opera-

tor. The gradient information is computed within non-overlapping blocks (of the compo-

nent sub-image) in a full-scale code map (obtained using transformation features across

multiple scale-spaces). The CLGP-based and LSTP-based approaches outperformed or

provided competitive performance to SOTA systems on several benchmarks with different

scripts, including English, Dutch, Chinese, Arabic, French, Greek, and German (results

were reported in Chapter 5). For each texture-based approach proposed in Chapter 3, a

series of experiments were conducted in Chapter 5 to evaluate and validate the stability

of the system performance under different conditions. This includes the analysis of each

approach’s key parameters and the evaluation of the system sensitivity as a function of

the number of writers and the amount of data for each benchmark studied.

In this thesis, we also investigated CNN-based deep learning approaches to improve
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writer identification (Chapter 4). Our first CNN-based approach, called WriterINet, con-

sists of the following steps: (1) segmenting handwritten samples (documents or lines of

text) into word images and related component sub-images. Words were segmented using

a scale-space approach based on blob analysis and Gaussian filters. Connected compo-

nents were collected from the previously segmented words using a label-based bounding

box technique to detect connected neighbor pixels, i.e., connected writing traces; (2) fine-

tuning our multi-stream CNN model with different input data for feature learning. The

global average pooling layers of the proposed model were activated to extract deep fea-

tures of the input word and its associated component sub-images; (3) feeding the learned

features into a conceptually simple and effective artificial neural network (1D- ANN) to

identify the authorship of the query documents. We adapted the 1D- ANN classifier with

two fully connected layers FC1 and FC2 to classify the CNN features efficiently. The

number of neurons in the FC2 layer is defined as the number of output classes, while

the number of neurons in the FC1 layer was experimentally tuned to find the optimal

setting for better identification performance. This analysis experiment was provided in

Chapter 5. Our second contribution using deep learning proposed a reliable and efficient

deep CNN architecture, called DeepWINet: a full network version with 30-weighted layers

and 24-weighted layers for the light network version (Chapter 4). Compared to the VGG

network structure (144 million parameters), our DeepWINet (light version) has a lower

network complexity with only 22 million parameters. The DeepWINet model was imple-

mented and evaluated in two ways. The first scenario aimed to use the DeepWINet model

as a feature learning representation to extract deep features from the connected compo-

nents of the writing. In the classification phase, the learned features were passed to a

nearest-neighbor classifier that used the Chi-square metric as distance similarity to iden-

tify the query samples. For the second scenario, the DeepWINet model was trained as

an end-to-end CNN network, where the predicted scores are averaged using a new and

efficient strategy, namely the score-averaging component-decision combiner. The results

reported in Chapter 5 showed that our CNN-based approaches delivered high state-of-

the-art performance and showed significant improvement over our previous texture-based

systems for the task of writer identification.

To the best of our knowledge, we were one of the first to perform extensive experiments on

ten challenging handwritten databases with different languages (English, Arabic, Dutch,

Chinese, French, German, and Greek).

Another major finding of this thesis contributed to the task of historical documents re-

trieval based on writer identification. At the well-known ICFHR2020 conference, a com-

petition was held to award the best approach to image retrieval of historical handwritten

fragments. There were two main tasks: retrieving all similar fragments corresponding

to the same writer ID (task 1) and the same page ID (task 2). We proposed an effec-

tive CNN-based approach consisting of two CNN streams, both used for deep feature
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learning, each trained with different fragment patches from the ICFHR2020 training set.

For the retrieval process, the Chi-square similarity measure was used to compute the

distances between the fragment images (of the test set) characterized by their learned

features (Chapter 4). Four contestant’s approaches were submitted by different univer-

sities, including University Bourgogne Franche-Comte (UBFC), University of Groningen

(RUG), and Tebessa University (ULT). As reported in Chapter 5, the proposed approach

achieved excellent results, winning first place in task 2 (page retrieval) and second place

in task 1 (writer retrieval).

6.2/ RESEARCH DIRECTIONS

This thesis has proposed several approaches based on texture and deep learning meth-

ods for automatic text-independent offline writer identification from handwriting. Although

we have tried to explore as many aspects of the pipeline as possible, the scope of the

work is a flourishing research topic with much room for further improvement. Here we

provide some research suggestions and ideas.

The texture-based approaches presented in this work typically use a pre-processing step

to clearly distinguish the writing ink from the background of the image (binarization pro-

cess) and remove unwanted background noise while preserving the useful maximal infor-

mation in the scanned image. In some databases like IAM, the original background of the

samples is filled with unwanted random traces. During the processing of these samples,

some representative writing traces are misclassified as noise and then discarded or lost

during the segmentation step to extract related components. This limitation can affect

the overall system to correctly identifying writers. To improve this pre-processing step,

we plan to evaluate a deep binarization based on CNNs instead of the classical Otsu

binarization method (Otsu (1979)), such as the U-Net model, which has been shown

to be well suited to deal with the degradation of documents with complex backgrounds

(Sadekar et al. (2021)). This will reduce the complexity of the subsequent segmentation

algorithm to extract the connected component sub-images properly.

Recall that after image segmentation (Chapter 3), we resized the connected components

to the same fixed window size to uniform the number of regions of interest in those com-

ponents. The reason for using a fixed window size is to normalize the final dimension of

the histogram output for the feature extraction step for all components. The original com-

ponents (without resizing the window) consist of different characters with various shapes

stored in separate bounding boxes. Therefore, after resizing the image, some of the

components are either enlarged or compressed, which could affect the feature method to

characterize the writing content within these resized components correctly. To solve this

problem, we can perform dynamic resizing of the window based on the original pixels,
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i.e., the process can be performed iteratively depending on the number of writing pixels

(the ink) on each component sub-image separately. For example, if one or more words

become mostly a single connected component, the algorithm will roughly segment the

component into a number of subcomponents based on the fixed threshold representing

the writing pixels’ distribution and the selected window size. This would unify the regions

of interest of the writing without overwriting the original shape of the text content.

To increase the scale complexity of the benchmarks studied in this work, it will be in-

teresting to mix English handwritten databases (IAM + CVL + ICDAR2011) to create a

large-scale database with more data and classes (the same suggestion can be made

for the other languages). The interest is to investigate further writer identification in a

mixed-script environment, which could be very potential and challenging for researchers

who want to evaluate their proposals on large-scale benchmarks. Additionally, we plan to

evaluate the robustness of our proposals (to be compared with other SOTA methods) by

adding noise density (salt and pepper), contrast change, distortion, and blur to the hand-

written samples. Moreover, it could be valuable to extend the evaluation of our proposals

to other challenging databases such as the QUWI and other datasets of the ICFHR and

ICDAR conference series, while proposing to evaluate other types of feature methods with

their possible combinations and to develop new and effective algorithms for characterizing

writing style.

Methods based on CNN offer an accurate solution for writer identification. However, large

handwriting training data is needed to learn how to characterize the individual’s handwrit-

ing style, which is not always provided in some benchmarks. In this case, we believe that

the Generative Adversarial Networks or GANs can be used as a tool for data augmen-

tation by generating slightly modified handwriting samples of the benchmark in question

while preserving the writer-related features, i.e., creating synthetic handwriting data from

other existing benchmarks with the same script. Specifically, the generator model (in the

GAN architecture) will learn how to generate new possible handwriting data relying on the

adversarial discriminator feedback, which attempts to discriminate between real images

from the training datasets and new images output by the generator model. The aug-

mented data would allow the CNN models to reduce the overfitting of the training process

and then improve the identification task.

From the results in Chapter 5, it can be seen that our proposed CLGP-based and LSTP-

based approaches require more time to compare the writing samples based on the Ham-

ming distance of their respective feature histograms. This is mainly due to the size di-

mensionality of the CLGP and LSTP features, although processing time is not neces-

sarily a critical performance indicator for offline writer identification since real-time ap-

plications are not required (offline mode). Post-processing methods such as principal

component analysis (PCA), linear discriminant analysis (LDA), generalized discriminant
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analysis (GDA), and auto-encoders can be used to transform the CLGP and LSTP fea-

tures into a low-dimensional representation space. This helps to reduce the overcount

of feature co-occurrences and results in fewer parameters and computations in the clas-

sification phase. Moreover, Field-Programmable Gate Array (FPGA) devices can also

be used as implementation platforms to speed up the system thanks to their structure

capable of exploiting spatial and temporal parallelism.

Writer identification can be applied to historical documents. Automatic algorithms for

script identification of historical documents can serve as a valuable means for historians.

Our proposal in the competition on image retrieval of historical handwritten fragments

(Chapter 4) motivates us to investigate this topic further, which may be a worthwhile future

research direction. To this end, we plan to evaluate the fusion of textural features, mainly

the oriented Basic Image Feature (oBIF) and CNN-based features (design of a new CNN

architecture). Technically, the feature map of oBIF (instead of the original image pixels)

is fed into the CNN model to improve the deep feature extraction step. Note that oBIF

features have shown their effectiveness for high-level characterization of texture patterns

in character recognition (Newell and Griffin (2011)) and texture recognition (Timofte and

Van Gool (2012); Newell et al. (2010)). Identifying writers in historical documents would

open up some interesting perspectives, such as identifying the printing house in machine-

printed documents, automatically dating historical documents, and indexing and retrieving

manuscripts based on writing style.

We would also like to explore signature verification, one of the most potential applica-

tions of handwriting analysis. It is a challenging task considering the between-genuine

signature variability, i.e., the same person can produce quite different signatures. The

interest is to evaluate our previous approaches (for writer identification) and develop a

new framework to deal with the individual’s signature style. A well-defined automated sig-

nature verification system can assist human experts in verifying bank checks’ authenticity

and reducing fraud. Similarly, gender classification based on handwriting will be inves-

tigated as another research direction, using new feature methods to capture visual and

recurring patterns that distinguish between male and female handwriting.

In the classification step, an additional verification step can be added to improve the iden-

tification results. The idea is to develop a verification system based on the handwriting

that rechecks whether the probe sample matches the class predicted by the classification

module. This may correct the prediction output. Technically, the k-predicted handwriting

samples that are most similar to the query are retrieved from the reference database in a

hit list. This list will be element-wise examined by the verification system using a binary

classification rule. The query is compared to each sample in the list, and this process

is repeated k times. Each time, the verification system would answer the question of

whether these two handwriting samples (query and another sample from the k-hit list) are
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from the same person or not. If the decision matches the class predicted by the clas-

sification system, the probe class is validated as the final output of the overall system.

If the two decisions are mismatching, the probe sample is reclassified, ignoring the first

predicted class. The mismatching procedure is repeated until reaching the match.
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system to support forensic studies on handwritten documents”. In International

Journal on Document Analysis and Recognition 3 (2001), number 4, pages 218–231.

– ISSN 1433-2833

[Freeman et al. 1991] FREEMAN, William T. ; ADELSON, Edward H. ; OTHERS: “The
design and use of steerable filters”. In IEEE Transactions on Pattern analysis and

machine intelligence 13 (1991), number 9, pages 891–906

[Frias-Martinez et al. 2006] FRIAS-MARTINEZ, Enrique ; SANCHEZ, Angel ; VELEZ, Jose:

“Support vector machines versus multi-layer perceptrons for efficient off-line
signature recognition”. In Engineering Applications of Artificial Intelligence 19 (2006),

number 6, pages 693–704

[Gaceb et al. 2006] GACEB, Djamel ; EGLIN, Véronique ; BRES, Stéphane ; EMPTOZ,

Hubert: “Handwriting similarities as features for the characterization of writer’s
style invariants and image compression”. In International Conference Image Anal-

ysis and Recognition Springer (event), 2006, pages 776–789



170 BIBLIOGRAPHY
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GIO, Samy ; MARIÉTHOZ, Johnny ; RICHIARDI, Jonas: Writer Identification for Smart

http://www.doi.org/10.1109/EUVIP.2016.7764587


174 BIBLIOGRAPHY

Meeting Room Systems. pages 186–195. In Document Analysis Systems VII: 7th Inter-

national Workshop, DAS 2006, Nelson, New Zealand, February 13-15, 2006. Proceed-

ings. Berlin, Heidelberg : Springer Berlin Heidelberg, 2006. – ISBN 978-3-540-32157-6

[Louloudis et al. 2013] LOULOUDIS, Georgios ; GATOS, Basilios ; STAMATOPOULOS,

Nikolaos ; PAPANDREOU, A: “Icdar 2013 competition on writer identification”. In

2013 12th International Conference on Document Analysis and Recognition IEEE

(event), 2013, pages 1397–1401

[Louloudis et al. 2011] LOULOUDIS, Georgios ; STAMATOPOULOS, Nikolaos ; GATOS,

Basilios: “ICDAR 2011 writer identification contest”. In Document analysis

and recognition (ICDAR), 2011 international conference on IEEE (event), 2011,

pages 1475–1479

[MacQueen et al. 1967] MACQUEEN, James ; OTHERS: “Some methods for classifica-
tion and analysis of multivariate observations”. In Proceedings of the fifth Berkeley

symposium on mathematical statistics and probability Volume 1 Oakland, CA, USA

(event), 1967, pages 281–297

[Manmatha and Srimal 1999] MANMATHA, Raghavan ; SRIMAL, Nitin: “Scale space
technique for word segmentation in handwritten documents”. In International con-

ference on scale-space theories in computer vision Springer (event), 1999, pages 22–

33

[Marti and Bunke 2002] MARTI, U-V ; BUNKE, Horst: “The IAM-database: an English
sentence database for offline handwriting recognition”. In International Journal on

Document Analysis and Recognition 5 (2002), number 1, pages 39–46

[Mezghani et al. 2012] MEZGHANI, A. ; KANOUN, S. ; KHEMAKHEM, M. ; ABED, H. E.: “A
Database for Arabic Handwritten Text Image Recognition and Writer Identifica-
tion”. In 2012 International Conference on Frontiers in Handwriting Recognition, Sept

2012, pages 399–402

[Miller et al. 2017] MILLER, John J. ; PATTERSON, Robert B. ; GANTZ, Donald T. ; SAUN-

DERS, Christopher P. ; WALCH, Mark A. ; BUSCAGLIA, JoAnn: “A set of handwriting
features for use in automated writer identification”. In Journal of forensic sciences

62 (2017), number 3, pages 722–734

[Mohammed et al. 2017] MOHAMMED, Hussein ; MÄERGNER, Volker ; KONIDARIS,
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Abstract:

Handwriting-based writer identification has
experienced a resurgence in recent years and
continues to attract a great deal of interest and
attention in the field of biometrics and pattern
recognition. It is a challenging task considering
the large within-writer and between-writer style
variability. The automatic offline writer identification
systems consider handwriting as scanned image
containing certain recurring patterns that need to
be analyzed. The motivation for this work stems
from the need to improve behavioral biometric tasks
that have been mainly used for writer identification
to enhance security and forensic applications in
today’s world. The interest is to develop near
real-time, effective, and robust approaches for
writer identification by leveraging theoretical and
technical advances in image analysis and artificial
intelligence. This dissertation contributes to the
numerous challenges encountered in all the main
steps of an automatic system for offline writer
identification, including image pre-processing and
segmentation, feature extraction, and classification
methods. Our first contribution investigates writer
identification based on texture features. We
propose four texture-based approaches to improve
the task of writer identification: (1) The first
approach, namely the Block Wise Local Binary
Count (BWLBC)-based system, characterizes the
variability of writing style within small blocks by
capturing the pixels’ distribution corresponding
to writing ink in binary components ; (2) In the
second approach, the Local Binary Patterns (LBP),
Local Ternary Patterns (LTP), and Local Phase
Quantization (LPQ) hand-crafted descriptors are
applied to small regions of interest in the writing,

called zones, to extract related texture features.
They are performed in an efficient way using a
new learning framework ; (3) The task of writer
identification is improved thanks to a well-defined
approach based on the Cross multi-scale Locally
encoded Gradient Patterns (CLGP) descriptor to
better represent salient local writing structures.
It extracts transform features from connected
components and encodes the obtained texture
codes in multiple scales over the Histograms of
Oriented Gradients (HOG) ; (4) The fourth approach
computes local intensity gradients of the writing
within non-overlapping blocks using the Local
gradient full- Scale Transform Patterns (LSTP)
method. This feature gives the overall system
the ability to extract more relevant information
to characterize the writing better. Convolutional
Neural Networks (CNN) are also investigated to
further improve the identification performance. Two
computationally efficient and high-quality deep
CNN-based approaches named DeepWINet and
WriterINet are proposed. Extensive experiments
are conducted on ten challenging handwritten
benchmarks in different languages (English, Arabic,
French, German, Chinese, Dutch, Greek, and
hybrid). All the proposed approaches achieve
competitive, or the highest SOTA performance in
the benchmarks studied. We also participated
in the ICFHR2020 competition to award the
best approach for image retrieval for historical
handwritten fragments. We proposed an effective
deep learning-based approach based on multi-path
CNN streams trained with different input data. The
overall approach achieved excellent results and won
first place in one of two tracks of the contest.
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Résumé :

L’identification des scripteurs à partir de l’écriture
manuscrite constitue un domaine de recherche en
pleine expansion. Elle est devenue une thématique
de recherche importante avec de nombreux verrous
scientifiques/techniques et challenges/potentiels
applicatifs, avec un besoin croissant de
développement de systèmes biométriques destinés
à de nombreuses applications sécuritaires.
Les systèmes d’identification automatique des
scripteurs (hors ligne) reposent sur des informations
statiques. Les représentations numériques se
présentent généralement sous la forme d’une
image d’écriture manuscrite contenant des motifs
récurrents à analyser et à caractériser. L’objectif
ici est de développer des approches efficaces
et robustes pour l’identification des scripteurs
en tirant profit des avancées théoriques et
techniques de l’analyse d’images et de l’intelligence
artificielle. Cette thèse de doctorat aborde
toutes les étapes essentielles d’un processus
automatique de l’identification des scripteurs, y
compris la phase de prétraitement, normalisation
et segmentation, l’extraction des primitives, et
l’étape de classification des scripteurs. Notre
première contribution étudie l’identification des
scripteurs en fonction des caractéristiques de
texture. Nous proposons quatre approches basées
sur la texture pour améliorer l’identification des
documents de test : (1) le premier système
proposé est basé sur la méthode Block Wise Local
Binary Count (BWLBC). Il s’agit d’un descripteur
d’image local pour caractériser la variabilité du style
d’écriture en petits blocs en capturant la distribution
des pixels correspondant à l’écriture dans des
composantes connexes binaires ; (2) dans la
seconde approche, les descripteurs de texture Local
Binary Patterns (LBP), Local Ternary Patterns (LTP),
and Local Phase Quantization (LPQ) sont appliqués
sur des petites régions d’intérêt de l’écriture
appelées zones, pour extraire les caractéristiques

de texture associées. Les trois descripteurs sont
utilisés efficacement dans un nouveau processus
d’identification des scripteurs ; (3) la tâche de la
caractérisation de l’écriture est améliorée par une
approche basée sur le descripteur Cross multi-scale
Locally encoded Gradient Patterns (CLGP). La
méthode CLGP proposée caractérise les structures
locales saillantes des composantes connexes de
l’écriture. Elle encode la transformation de texture
obtenue à plusieurs échelles en utilisant l’opérateur
Histograms of Oriented Gradients (HOG) ; (4)
la quatrième approche utilise la méthode LSTP
(Local gradient full-scale Transform Patterns) pour
calculer des histogrammes locaux de l’orientation du
gradient sur des blocs non superposés de l’écriture.
Cette caractéristique permet d’obtenir de meilleures
performances en capturant des informations plus
pertinentes sur la variabilité du style d’écriture.
Les réseaux de neurones convolutifs (CNN) sont
également étudiés pour améliorer l’identification
des scripteurs. Deux approches efficaces basées
sur les CNNs, appelées DeepWINet et WriterINet,
sont proposées. Des expériences approfondies
sont menées sur 10 bases de données manuscrites
dans différentes langues (Anglais, Arabe, Français,
Allemand, Chinois, Néerlandais, Grec et hybride).
Toutes les approches proposées atteignent des
performances compétitives ou supérieures à celles
de la littérature pour les benchmarks étudiés. Nous
avons également participé au concours ICFHR2020
pour récompenser la meilleure approche de � la
récupération des fragments manuscrits historiques
sur la base de l’identification des scripteurs �.
Nous avons proposé une approche basée sur
l’apprentissage profond en utilisant des multi-flux
CNN entrainés avec différentes données d’entrée.
L’approche globale a obtenu d’excellents résultats
et a remporté la première place dans l’une des deux
catégories de la compétition.

Université Bourgogne Franche-Comté
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25000 Besançon, France
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