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Context

Concentrating Solar Power (CSP) technologies have an undeniably significant potential to
produce electricity and heat. This Ph.D. thesis is motivated by issues related to optimization
and inverse problems, where the sensitivities of different parameters in a CSP system are
needed. These parameters could be, for example, the positions and the properties of reflection
of heliostats. In a recent study [5], Caliot et al. inversely calculate the reflective property of
a heliostat from a measured flux map on the receiver of a CSP facility. In order to achieve
this, the sensitivity of the reflective property to the flux was needed. Moreover, sensitivities
to design parameters (such as positions, rotations, and sizes of heliostats) are required to
optimize the optical performance of a STP system. However, to the author’s knowledge, no
methods are available in the CSP community to estimate the sensitivities involving geometric
parameters. Therefore, this thesis aims to fill this gap.

(a) Ray-tracing for one heliostat (b) Flux map

Figure 1 – Based on the measured flux map and the sensitivity of the rms-slope
parameters, which characterizes the error of reflection on a heliostat, researchers can
determine the real rms-slope parameters of the heliostat by inverse methods [5].

Before focusing on the sensitivities, the evaluation of optical performance in CSP systems is
mainly based on the Monte Carlo method [62]. This specific numerical tool has the advantage
of dealing with the complexity of the studied geometry, the coupling of different physical
phenomena, or the large timescale [6, 15, 24, 57]. The complexity of the studied geometry
means that the geometric scales for different elements in a radiative system are very different.
For example, studies have been done on thermal analysis for a teapot in a city (Fig.2). The
geometric scales of elements are very different, from a large modern building to a tree near
the road and a small window on the wall of a garage in a city. Villefranque et al. studied
the thermal condition of this teapot [58]. Thermal radiation among all the elements, even
the thermal diffusion in a thermally isolated wall, and the transmittance of double-glazed
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Context

Figure 2 – The thermal condition of a teapot on a table, in a city, and under the
cumulus clouds can be simulated by the developed Monte Carlo method [58]

windows must be considered. Such a Monte Carlo method makes thermal transfer modeling
with geometric complexity possible. The geometry can also be very complex in a CSP system.
For example, Ivanpah solar power facility is the largest solar facility in the world in 2022
and is composed of 173500 heliostats (Fig.3). Each heliostat follows the sun position during
the day and can shade other heliostats. The Monte Carlo method is well adapted to deal
with this geometric complexity.

Figure 3 – The Ivanpah Solar Electric Generating System [41]

The work in this thesis is developed within a research group (RAPSODEE1, LAPLACE2,
Mesostar3 and EDstar group 4) where the principal activities are about the numerical
simulation of radiative transfer by Monte Carlo method. Estimating sensitivity by the
Monte Carlo method in CSP systems remains an open research problem, and only very few
studies have been done [9, 15, 31]. Physicians in the group have been working on estimating
sensitivities by the Monte Carlo method since 2002. De Lataillade studied the heating ratio

1Recherche d’Albi en génie des Procédés, des SOlides Divisés, de l’Énergie et de l’Environnement
2Le Laboratoire Plasma et Conversion d’Energie
3https://www.meso-star.com/
4http://www.edstar.cnrs.fr/prod/fr/
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sensitivity to the species concentration in a 𝐶𝐻4 flame [10]. However, the estimation of
sensitivities involving geometric parameters still needed to be possible. In 2006, Roger et al.
developed a Monte Carlo method to estimate the sensitivities geometric parameters [50, 51].
This method is noted as the “method of observable derivation” in this thesis. The physical
meaning of this name will be discussed in Chapter.2. After that, De la Torre attempted to
apply the method of observable derivation to estimate the geometric sensitivities in CSP
systems in his thesis in 2011 [9]. Unfortunately, the author did not consider the blocking
and shadowing effects. It is because applying the method of observable derivation for cases
involving complex geometry requires a great effort of formal development. The geometry of a
CSP system with heliostats is too complex to take all blocking and shadowing into account,
which limits the application of this method in CSP system. In 2021, a general transport model
of geometric sensitivity was proposed by Lapeyre et al., which is also dedicated to estimating
sensitivities in radiative systems. This method is noted “method of sensitivity model” in this
thesis. The physical meaning of the name will be discussed in Chapter.2. Unlike the method
of observable derivation, less formal development is required for the method of sensitivity
model to be applied in cases involving complex geometries. This method has the potential to
be applied to CSP applications.

However, the method of sensitivity model has a weakness compared to that of observable
derivation. For the method of observable derivation, when an observable is evaluated,
its sensitivity to any parameter is also evaluated at the expense of a low supplementary
computation effort. This advantage is because the Monte Carlo method estimates a vector
containing the observable and all its sensitivities to different parameters. Therefore, the
estimation of observable and all its sensitivities are completely “vectorized”. This method
will be detailed in Chapter.3. For the method of sensitivity model, it loses this advantage
of complete vectorization. Users must build a model for each sensitivity corresponding to
each parameter. Therefore, at least one Monte Carlo estimation is needed for each model.
Nevertheless, when applying the method in cases involving complex geometries, sources in a
sensitivity model can be found on the surface or on the segments, which makes the model
difficult to be solved by the Monte Carlo method. Unlike the method of observable derivation,
the sensitivity model performs Monte Carlo estimations for scalars. At least one Monte Carlo
estimation is needed for each source to solve such a sensitivity model. This inconvenience
makes the coding development heavier and the required calculating time very consuming.
Here comes an interesting problem to solve, which is to regain the advantage of vectorization
for the method of sensitivity model. The advantage of complete vectorization is hard to be
regained following the method of sensitivity model, but a strategy of partial vectorization is
provided in Chapter.4. Following this strategy, a method of estimating sensitivities for a STP
system is developed in Chapter.5. Finally, in Chapter.6, we attempt to achieve complete
vectorization following the method of sensitivity model by transforming all line sources in
the system to surface sources. Some academic cases are developed, and some limitations will
be discussed.

Lastly, efforts are also made to understand and compare the research in the image synthesis
community for similar radiative transfer problems about sensitivities. Rendering images
of high quality is one of the main challenges in image synthesis. It is about producing a
2D image from a description of a 3D scene. There are many ways to render images, but
physically based rendering is one of the most realistic. It is because the physically based
rendering follows the principles of physics to model the interaction of light and matter (by
ray-tracing) to simulate reality [46]. Ray tracing is a straightforward algorithm based on
following the path of a ray of light through a scene as it interacts with and bounces off objects
in an environment. Nowadays, almost all the images of synthesis in the cinema industry
are done by the Monte Carlo method and ray-tracing algorithms. Thanks to the numerical
tools and libraries [46] developed in the field of image synthesis, the implementation of the
Monte Carlo method in this thesis becomes possible. Furthermore, researchers in image
synthesis also work in the estimation of sensitivities. The corresponding method is developed
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Figure 4 – A spotlight is shining on a sphere through the frog, where the spotlight’s
lighting distribution and the sphere’s shadow are visible due to the additional scattering
in the semi-transparent medium [46].

and studied in Chapter.2 and Chapter.3 and is called differentiable rendering [70]. This
method has already been used in many applications involving complex geometries. Coupled
with the optimization algorithms and neutral network [26], the sensitivities are used for the
reconstruction of 3D objects [27, 28, 56, 65], the body shapes [4, 45], hand shapes [1, 72],
face shapes [20], etc. However, although we share similar research problems in estimating
sensitivities, the viewpoints and vocabularies between researchers in image synthesis and our
group have significant differences. The differential rendering method mainly focuses on the
mathematical solution and the algorithms. Less attention has been paid to interpreting the
sensitivities physically. This method is compared with the other two methods mentioned in
the last paragraph in Chapter.3, where we explain, analyze and compare the three approaches.
It is found that sensitivity analysis is hard to perform following the method of differentiable
rendering. However, sensitivity analysis is performed following the method of sensitivity
model in Chapter.5 for a CSP application. We will see in this thesis that the two communities
have many connections in the research problems of sensitivity and can benefit from the
research of each other.

Finally, this thesis is organized into six chapters:

• Chapter.1 aims to prepare a theoretical basis for readers unfamiliar with the physics of
radiation or the method of Monte Carlo. We will review the integral and statistical
radiation approaches and introduce the Monte Carlo method.

• Chapter.2 introduces the objective and the research problem of this thesis. We firstly
review the different CSP optical systems, the standard numerical tools for evaluating
the optical performance, and the needs of estimating sensitivities in CSP system. This
thesis aims to develop a method to estimate sensitivities in CSP system. To achieve
this objective, we review the three methods in the community of radiative transfer
and image synthesis: the method of observable derivation, the method of differentiable
rendering, and the method of sensitivity model. The advantages and disadvantages
are listed for each method. After that, we define the research problem of this thesis:
regain the advantage of vectorization for the method of sensitivity model.

4



• Chapter.3 compares and reviews the three viewpoints for the estimations of sensitivities
in a radiative system by applying them to a simple one-dimension radiative problem.
The three viewpoints consist of the method of observable derivation developed in the
thesis of Maxime Roger [51], the method of differentiable rendering used in image
synthesis community [70], and the method of sensitivity model developed in the thesis of
Paule Lapeyre [32]. The theoretical link between the three methods will be distinguished,
and each method’s advantages and conveniences will be discussed.

• Chapter.4 aims to apply the method of sensitivity model in cases involving complex
geometry. To achieve this, we will introduce a strategy of vectorization to deal with a
large number of sources in the models of sensitivities. This chapter will prepare the
more complex application in a STP system for the following chapter.

• In Chapter.5, we apply the method of sensitivity model in a STP system, following
the strategy of vectorization presented in the last chapter. Also, thanks to the models
of sensitivities, the physical interpretation of the sensitivities can be realized. The
contributions of different physical events in a STP system (blocking, shadowing, spillage,
etc.) to the sensitivities can be analyzed in detail, helping engineers to understand and
optimize the system.

• Following the method of sensitivity model, Chapter.6 aims to regain the advantage
of the method of observable derivation: a complete vectorization. It will be done by
transforming the line sources to surface sources in the sensitivity model. Some academic
examples are developed, and some limitations are discussed.
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1.1 Introduction
This chapter introduces the physical basis of radiative transfer and the Monte Carlo method,
a numerical tool to simulate the physics of radiative transfer. An example demonstrates
how to solve radiative transfer problems using the Monte Carlo method. Through this
example, we introduce essential physical concepts used in this thesis, such as “path spaces”,
“forward and reverse ray-tracing”, “vectorization”, etc. Last but not least, Monte Carlo
algorithms are attached to a physical image since they are deeply linked with the physics of
radiative transfer. Therefore, at the end of this chapter, we discuss the relation between the
Monte Carlo algorithm, the proposed physical image, and the corresponding mathematical
formulation.
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Monte-Carlo method and radiative transfer

1.2 Review of statistics
It is necessary to review the basis of statistical concepts before introducing the Monte Carlo
method. The following parts of this thesis, the random variables will be denoted by capital
letters. In contrast, the minuscule letters will be used to denote their possible values, which
is also called a realization or a sampling of the random variable. For example, 𝑐 is noted as a
realization of random variable 𝐶.

The value of a random variable is not predictable, and it can only be determined by an
experiment. Furthermore, the random variable is classified by two families: discrete random
variables and continuous random variables.

Definition
Letting 𝐴 be a discrete random variable, it can be defined by:

• a set of its all possible values 𝐴 ∈ {𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛} and

• the probabilities P𝐴(𝑎𝑖) that 𝐴 takes the value of 𝑎𝑖, ∀𝑖 ∈ {1, 2, . . . , 𝑛}.

The sum of the probabilities has to be normalized:

𝑛∑︁
𝑖=1

P𝐴(𝑎𝑖) = 1 (1.1)

Letting 𝐵 be a continuous random variable, it can be defined by:

• the continuous domain of its all possible values 𝐵 ∈ [𝑏𝑚𝑖𝑛, 𝑏𝑚𝑎𝑥] and

• the pdf (Probability density function) P𝐵(𝑏).

The integral of P𝐵(𝑏) in the domain of 𝐵 ∈ [𝑏𝑚𝑖𝑛, 𝑏𝑚𝑎𝑥] has to be normalised:

∫︁ 𝑏𝑚𝑎𝑥

𝑏𝑚𝑖𝑛

P𝐵(𝑏) = 1 (1.2)

Besides these two definitions, a random variable can be defined by applying a function to
another random variable. For example, if 𝐶 is defined as a function of a random variable 𝐵:

𝐶 = 𝑓(𝐵), (1.3)

𝐶 is also itself a random variable.

Expected Value
The expected value corresponds to the first moment of the random variable. For the discrete
random variable 𝐴, it is defined mathematically by:

E[𝐴] =
𝑛∑︁

𝑖=1
𝑎𝑖P𝐴(𝑎𝑖). (1.4)

8
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For the continuous random variable 𝐵:

E[𝐵] =
∫︁ 𝑏𝑚𝑎𝑥

𝑏𝑚𝑖𝑛

𝑏P𝐵(𝑏)𝑑𝑏. (1.5)

For the random variable 𝐶 which is defined by Eq.1.3, its expected value can be written as:

E[𝐶] = E[𝑓(𝐵)] =
∫︁ 𝑏𝑚𝑎𝑥

𝑏𝑚𝑖𝑛

𝑓(𝑏)P𝐵(𝑏)𝑑𝑏 (1.6)

It is a very important property because Eq.1.6 means that the estimation of the expected
value of 𝐶 (or 𝑓(𝐵)) needs only the knowledge of the pdf of 𝐵, but not of 𝑓(𝐵).

Furthermore, if 𝐵1, 𝐵2, . . . , 𝐵𝑛 are some independent continuous random variables, with
𝑏1 ∈ [𝑏1𝑚𝑖𝑛, 𝑏1𝑚𝑎𝑥], . . . , 𝑏𝑛 ∈ [𝑏𝑛𝑚𝑖𝑛, 𝑏𝑛𝑚𝑎𝑥], the value of the function 𝑔(𝑏1, 𝑏2, . . . , 𝑏𝑛) will be
also a random variable and its expected value can be written as:

E
[︀
𝑔(𝐵1, . . . , 𝐵𝑛)

]︀
=
∫︁ 𝑏1𝑚𝑎𝑥

𝑏1𝑚𝑖𝑛

P𝐵1(𝑏1)𝑑𝑏1 · · ·
∫︁ 𝑏𝑛𝑚𝑎𝑥

𝑏𝑛𝑚𝑖𝑛

P𝐵𝑛(𝑏𝑛)𝑑𝑏𝑛𝑔(𝑏1, . . . , 𝑏𝑛) (1.7)

Variance and standard deviation
The variance of a random variable can describe the distribution of its possible values, also
called its second central moment.

The following equations show the mathematical definitions of the variance of the random
variable 𝐴 and 𝐵.

V[𝐴] =
𝑛∑︁

𝑖=1
(𝑎𝑖 − E[𝐴])2P𝐴(𝑎𝑖)

= E[(𝐴− E[𝐴])2]
= E[𝐴2 − 2E[𝐴]𝐴+ E2[𝐴]]
= E[(𝐴2)]− E2[𝐴]

(1.8)

V[𝐵] =
∫︁ 𝑏𝑚𝑎𝑥

𝑏𝑚𝑖𝑛

(𝑏− E[𝐵])2P𝐵(𝑏)𝑑𝑏

= E[(𝐵 − E[𝐵])2]
= E[𝐵2 − 2E[𝐵]𝐵 + E2[𝐵]]
= E[(𝐵2)]− E2[𝐵]

(1.9)

The positive square root of the variance of a random variable is its standard deviation.

𝜎[𝐴] =
√︀

V[𝐴] =
√︀

E[(𝐴2)]− E2[𝐴] (1.10)

𝜎[𝐵] =
√︀
V[𝐵] =

√︀
E[(𝐵2)]− E2[𝐵] (1.11)

While for the random variable 𝐶, it shares the same form of variance and standard deviation
with 𝐵 since it is defined as a function of 𝐵 and remains continuous. Its variance is:

V[𝐶] = E[(𝐶2)]− E2[𝐶] (1.12)

9
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and its standard deviation is:

𝜎[𝐶] =
√︀

V[𝐶] =
√︀

E[(𝐶2)]− E2[𝐶] (1.13)

1.3 Monte Carlo method
The Monte Carlo method can be seen as a numerical method to estimate the values of
an integral statistically [14]. The idea of the Monte Carlo method is firstly developed by
Stanislaw Ulam, as part of the Manhattan Project during World War II, with John von
Neumann, Enrico Fermi, Nicholas Metropolis, and others. Metropolis and Ulam published
the first paper in the open literature on the method [42].

1.3.1 Estimation of expected values
The Monte Carlo method is based on the law of large numbers. If 𝑛𝑀𝐶 is the number of
independent realization of 𝑋(𝑋 can be discrete or continuous), and 𝑥𝑗 denoted the value of
the 𝑗𝑡ℎ realization, the expected value of 𝑋 can be estimated without bias when 𝑛𝑀𝐶 tends
to infinity:

E[𝑋] = lim
𝑛𝑀𝐶→+∞

(︀ 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

𝑥𝑗

)︀
. (1.14)

For the three random variables defined previously: 𝐴, 𝐵 and 𝐶, their expected value can be
written as Eq.1.4, Eq.1.5 and Eq.1.6, which leads to the following equations:

E[𝐴] =
𝑛∑︁

𝑖=1
𝑎𝑖P𝐴(𝑎𝑖) = lim

𝑛𝑀𝐶→+∞

(︀ 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

𝑎𝑗

)︀
(1.15)

E[𝐵] =
∫︁ 𝑏𝑚𝑎𝑥

𝑏𝑚𝑖𝑛

𝑏P𝐵(𝑏)𝑑𝑏 = lim
𝑛𝑀𝐶→+∞

(︀ 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

𝑏𝑗

)︀
(1.16)

E[𝐶] =
∫︁ 𝑏𝑚𝑎𝑥

𝑏𝑚𝑖𝑛

𝑓(𝑏)P𝐵(𝑏)𝑑𝑏 = lim
𝑛𝑀𝐶→+∞

(︀ 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

𝑓(𝑏𝑗)
)︀

(1.17)

It’s noted that 𝑏𝑗 ∈ [𝑏𝑚𝑖𝑛, 𝑏𝑚𝑎𝑥] and the index 𝑗 signifies the 𝑗𝑡ℎ realization of the random
variable 𝐵. The 𝑗𝑡ℎ realization of 𝐴 follows the pdf P𝐴 giving the value of 𝑎𝑗 , and the 𝑗𝑡ℎ

realization of 𝐵 follows the pdf P𝐵 giving the value of 𝑏𝑗 .

However, practically 𝑛𝑀𝐶 can not be infinite. Nevertheless, following the law of large
numbers, with the increase of 𝑛𝑀𝐶 , this estimation can be almost always convergent, which
leads to the following equations when 𝑛𝑀𝐶 is large enough:

𝑛∑︁
𝑖=1

𝑎𝑖P𝐴(𝑎𝑖) ≈
1

𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

𝑎𝑗 (1.18)

∫︁ 𝑏𝑚𝑎𝑥

𝑏𝑚𝑖𝑛

𝑏P𝐵(𝑏)𝑑𝑏 ≈ 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

𝑏𝑗 (1.19)
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∫︁ 𝑏𝑚𝑎𝑥

𝑏𝑚𝑖𝑛

𝑓(𝑏)P𝐵(𝑏)𝑑𝑏 ≈ 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

𝑓(𝑏𝑗) (1.20)

Eq.1.18, Eq.1.19 and Eq.1.20 are also called the Monte Carlo estimators [46].

Example.1.3.1 shows an application of the Monte Carlo method in playing a die.

Example 1.3.1

Playing a die.
If our random variable 𝐴 is now the result of playing a die, while the action of playing
for once is called one realization or one sampling. The result will have six possible
values, which are:

𝐴 ∈ {1, 2, 3, 4, 5, 6} (1.21)

If we have a perfect die, then the probability of the fact that 𝐴 takes each value in
the set will be the same: P𝐴(𝑎𝑖) = 1

6 , ∀𝑖 ∈ {1, 2, 3, 4, 5, 6}.
Therefore, the expected value of 𝐴 is given by:

E[𝐴] =
6∑︁

𝑖=1
P𝐴(𝑎𝑖)

= 1× 1
6 + 2× 1

6 + 3× 1
6 + 4× 1

6 + 5× 1
6 + 6× 1

6
= 7

2 .

(1.22)

Now, if we estimate the E[𝐴] by the Monte Carlo method, we need to:

• play the die numerous times, noted 𝑛𝑀𝐶 ;

• save the value of 𝑎𝑗 for the 𝑗𝑡ℎ time of estimation;

• calculate the mean of all saved 𝑎𝑗 , which is:

E[𝐴] ≈ 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

𝑎𝑗 (1.23)

Finally, with a large enough 𝑛𝑀𝐶 , the value of E[𝐴] estimated by the Monte Carlo
method will tend to 7

2 .

Based on Eq.1.20, one can estimate the value of any integrals by the Monte Carlo method. It
will be sufficient to transform the integral to a form of expected value (Eq.1.20). The form
of expected value consists of a pdf of Monte Carlo (normalised in its domain of integral),
and a weight of Monte Carlo (which is 𝑓(𝑏𝑗) in this case).

It is also noted that the two boundaries of the integral domain can tend to infinity. It requires
only insuring that the normalisation of the pdf (Eq.1.2) is satisfied.

The Monte Carlo method has advantages compared to other methods when the dimension
of integral increases. For example the random variable taking the value of a function
𝑔(𝐵1, 𝐵2, . . . , 𝐵𝑛) is defined previously and its expected value is defined in Eq.1.7. Based on
the law of large numbers, the following equation can be established:

11
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∫︁ 𝑏1𝑚𝑎𝑥

𝑏1𝑚𝑖𝑛

P𝐵1(𝑏1)𝑑𝑏1 · · ·
∫︁ 𝑏𝑛𝑚𝑎𝑥

𝑏𝑛𝑚𝑖𝑛

P𝐵𝑛(𝑏𝑛)𝑑𝑏𝑛𝑔(𝑏1, . . . , 𝑏𝑛)

≈ 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

𝑔𝑗(𝑏1, . . . , 𝑏𝑛) (1.24)

𝑔𝑗(𝑏1, . . . , 𝑏𝑛) denotes the 𝑗𝑡ℎ realization of the function 𝑔(𝐵1, . . . , 𝐵𝑛). Each of such realiza-
tion needs 𝑛 realizations to determinate 𝑏1, 𝑏2, . . . , 𝑏𝑛, following the pdf P𝐵1,P𝐵2, . . . ,P𝐵𝑛.

1.3.2 Double randomization
A form of expected value consists of a pdf and a weight of Monte Carlo, as shown in Eq.1.20.
We will often see in the rest of this thesis that the weight of Monte Carlo includes an expected
value of another random number. In other words, from an algorithmic point of view, the
knowledge of Monte Carlo weight for each realization requires the knowledge of another
expected value, which also needs to be estimated by the Monte Carlo method.
We consider here an integral with a form of expected value:∫︁ 𝑏1𝑚𝑎𝑥

𝑏1𝑚𝑖𝑛

P𝐵1(𝑏1)𝑓
(︀
𝑏1,E𝐵2|𝐵1 [𝐵2|𝐵1]

)︀
𝑑𝑏1 ≡ E𝐵1

[︀
𝑓(𝐵1,E𝐵2|𝐵1 [𝐵2|𝐵1])

]︀
(1.25)

reminding 𝐵1 and 𝐵2|𝐵1 are the random variables. The notation 𝐵2|𝐵1 signifies that the
random number 𝐵2 depends on 𝐵1, read as 𝐵2 knowing 𝐵1. P𝐵1 is the pdf of 𝐵1 and P𝐵2|𝐵1

is the pdf of 𝐵2|𝐵1. In order to distinguish the two expected values, E𝐵1 [𝐵1] is the expected
value of 𝐵1 and E𝐵1|𝐵2 [𝐵1|𝐵2] is the expected value of 𝐵2|𝐵1. E𝐵2|𝐵1 [𝐵2|𝐵1] in Eq.1.25 can
be written as:

E[𝐵2|𝐵1] =
∫︁ 𝑏2𝑚𝑎𝑥

𝑏2𝑚𝑖𝑛

P𝐵2|𝐵1(𝑏2)𝑏2𝑑𝑏2 (1.26)

In order to estimate the value of integral in Eq.1.25, the first strategy consists of (for each
realization):

• sampling 𝑏1 following the pdf P𝐵1 ;

• estimate the expected value of E𝐵2|𝐵1 [𝐵2|𝐵1 = 𝑏1] by Monte Carlo method;

• use the result of estimation of E𝐵2|𝐵1 [𝐵2|𝐵1 = 𝑏1] (noted 𝑒) as the second input of the
function 𝑓 and 𝑏1 as the first input of the function 𝑓 . 𝑓(𝑏1, 𝑒) is then the result of one
realization.

However, this strategy is not practicable. If the number of sampling for 𝐵1 is 𝑛1 and that
for 𝐵2|𝐵1 is 𝑛2, the total number of sampling following this strategy will be 𝑛1𝑛2. The
calculating time will be huge if more expected values appear in the function 𝑓 in Eq.1.25.
It is then necessary to introduce the strategy of Double randomization here. The idea of
double randomization is that: The expected value of an expected value is also an expected
value:

E𝐵1

[︀
𝑓(𝐵1,E𝐵2|𝐵1 [𝐵2|𝐵1])

]︀
=E𝐵1,𝐵2|𝐵1 [𝑓(𝐵1, 𝐵2)]

=
∫︁ 𝑏1𝑚𝑎𝑥

𝑏1𝑚𝑖𝑛

P𝐵1(𝑏1)
∫︁ 𝑏2𝑚𝑎𝑥

𝑏2𝑚𝑖𝑛

P𝐵2|𝐵1=𝑏1(𝑏2)𝑓 (𝑏1, 𝑏2) 𝑑𝑏1𝑑𝑏2

. (1.27)
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However, the function 𝑓 needs to be linear to apply this strategy. Since the non-linear Monte
Carlo estimation is not studied in this thesis, readers can be directed to the Ph.D. work of
Jean-Marc Tregan for more details [55].

1.3.3 Estimation of variances and standard deviations
The Monte Carlo method can estimate an expected value and also evaluate the uncertainty of
this estimation. This property is based on another important law in the statistic: the central
limit theorem, which establishes that when independent random variables are summed up,
the distribution of this sum tends to a Gaussian distribution. This theorem indicates that
the estimation of an expected value by the Monte Carlo method is also a random variable, of
which the distribution tends to the Gaussian distribution when the number of realizations
𝑛𝑀𝐶 increases. Therefore, this Gaussian distribution of the estimations can be characterized
by its variance and its standard deviation.

Suppose we try to estimate the expected value of a random variable 𝑋 by the Monte Carlo
method. In that case, the value of such estimation is also a random number, denoted �̌�:

�̌� = 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

𝑥𝑗 (1.28)

If 𝑛𝑀𝐶 is large enough, according to the central limit theorem, the distribution of �̌� will
follow the Gaussian distribution, characterized by its variance V[�̌�] or its standard deviation
𝜎[�̌�] [14]:

𝜎[�̌�] =
√︁

V[�̌�] =

⎯⎸⎸⎷ 1
𝑛𝑀𝐶 − 1( 1

𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

(𝑥𝑗)2 −
(︀ 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

𝑥𝑗

)︀2 (1.29)

Example.1.3.2 demonstrates the process of estimating an integral of such a form:∫︁ 𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

𝑓(𝑥)𝑑𝑥 (1.30)

Example 1.3.2

Considering an integral of which the analytical solution is known, a Monte Carlo
method is applied to estimate this same solution:∫︁ 1

2

0
𝑒−𝑥𝑑𝑥 = 1− 1√

𝑒
≈ 0.39346. (1.31)

This integral can be rewritten and be transformed into a form of the expected value
of a random variable 𝑌 :

E(𝑌 ) =
∫︁ 1

2

0
𝑒−𝑥𝑑𝑥 =

∫︁ 1
2

0
P(𝑥) 𝑒

−𝑥

P(𝑥)𝑑𝑥 (1.32)

In Eq.1.32, the only constraint is that the P(𝑥) needs to be normalized in the domain
of integral, which leads to infinite possible choices for building this pdf. In this
example, P(𝑥) = 2 is chosen, which means 𝑥 is uniformly sampled within the domain
of integral 𝑥 ∈ [0, 1

2 ].
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Furthermore, we note 𝑌 as the result of E(𝑌 ) estimated by the Monte Carlo method.
It is then given by:

𝑌 = 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

(︀ 𝑒−𝑥𝑗

P(𝑥𝑗)
)︀

= 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

(︀
�̂�𝑗

)︀
. (1.33)

Also, its standard deviation 𝜎[𝑌 ] is given by:

𝜎[𝑌 ] =

⎯⎸⎸⎷ 1
𝑛𝑀𝐶 − 1( 1

𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

�̂�2
𝑗 −

(︀ 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

�̂�𝑗

)︀2
. (1.34)

𝑥𝑗 is the 𝑗𝑡ℎ realization of the value 𝑥 following the pdf P(𝑥). The term 𝑒−𝑥𝑗

P(𝑥𝑗) is called
the weight of Monte Carlo, denoted �̂�𝑗 . This estimation is based on the following
algorithm:

• uniformly sample a value of 𝑥𝑗 for 𝑥𝑗 ∈ [0, 1
2 ];

• compute and save the weight �̂�𝑗 and �̂�2
𝑗 :

�̂�𝑗 = 𝑒−𝑥𝑗

P(𝑥𝑗) , (1.35)

�̂�2
𝑗 =

(︀ 𝑒−𝑥𝑗

P(𝑥𝑗)
)︀2; (1.36)

• after 𝑛𝑀𝐶 times of realization, calculate the expected value and the standard
deviation following Eq.1.33 and Eq.1.34.

In Fig.1.1 and Table.1.2 (at the end of this chapter), the estimations by Monte Carlo
method are run with different 𝑛𝑀𝐶 . Obviously, with the increase of the 𝑛𝑀𝐶 , the
value of estimations tends to be convergent to the analytical solution, and the variance
of the estimations is reduced.

1.3.4 Variance reduction by importance sampling
In Example.1.3.2, the pdf P(𝑥) is chosen arbitrarily. However, this choice enormously
influences convergence performance: the standard deviation will change with different choices
of pdf. The importance sampling technique allows optimizing the choice of this pdf.

In order to estimate the value of an integral such as Eq.1.30, the strategy of choosing a
“good” pdf is to find a function 𝑓*(𝑥) which is closed to 𝑓(𝑥), then a normalised pdf P*(𝑥)
can be generated [14]:

P*(𝑥) = 𝑓*(𝑥)∫︀ 𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛
𝑓*(𝑥)𝑑𝑥

(1.37)

Eq.1.30 becomes: ∫︁ 𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

P*(𝑥) 𝑓(𝑥)
P*(𝑥)𝑑𝑥 (1.38)

Nowadays, it is common to generate the pseudo-random number numerically by the widely
used pseudo-random number generators such as Mersen Twister and RANLUX [14, 25]. It is
always more challenging to generate random numbers with a non-uniform pdf.
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𝑛𝑀𝐶
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Estimation by Monte Carlo
Analytical solution

Figure 1.1 – Estimations of expected values and standard deviations. A confidence
interval of ±𝜎 is shown in this figure.

Practically, in order to generate a specifically distributed random number, we generate a
random number 𝑟𝑖 uniformly between 0 and 1, and we reverse the following equation:

𝑟𝑖 = 𝑐𝑑𝑓(𝑥) (1.39)

which is:
𝑥 = 𝑐𝑑𝑓−1(𝑟𝑖) (1.40)

cdf (Cumulative distribution function) is the integral of the pdf:

𝑐𝑑𝑓(𝑥) =
∫︁ 𝑥

𝑥𝑚𝑖𝑛

P*(𝑥′)𝑑𝑥′ (1.41)

However, this technique of sampling is feasible only when the inversion of 𝑐𝑑𝑓 is possible (a
solution exists for the reformulation from Eq.1.39 to Eq.1.40). In the Example.1.3.3, we will
apply the technique of importance sampling to estimate the value of the integral in Eq.1.31.

Example 1.3.3

Considering the integral of Eq.1.31, 𝑓*(𝑥) will be chosen as the first order of expansion
𝑒−𝑥 to build P*:

𝑓*(𝑥) = 1− 𝑥 (1.42)

The integral can then be rewritten and transformed into a form of the expected value
of a random number 𝑌 *:

E(𝑌 *) =
∫︁ 1

2

0
𝑒−𝑥𝑑𝑥 =

∫︁ 1
2

0
P*(𝑥) 𝑒−𝑥

P*(𝑥)𝑑𝑥 (1.43)
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where

P*(𝑥) = 𝑓*(𝑥)∫︀ 1
2

0 𝑓*(𝑥)𝑑𝑥
= (1− 𝑥)8

3 . (1.44)

Its cdf is therefore:

𝑐𝑑𝑓(𝑥) =
∫︁ 𝑥

0
P*(𝑥′)𝑑𝑥′ = −𝑥

2

4 + 8𝑥
3 (1.45)

We uniformly generate a random number 𝑟0 between 0 and 1 so that the random
number 𝑋 can be sampled following P*(𝑥):

𝑥 = 𝑐𝑑𝑓−1(𝑟0) = −
√
−3𝑟0 + 4− 2

2 (1.46)

Furthermore, we note 𝑌 * as the result of E(𝑌 *) estimated by the Monte Carlo method.
It is then given by:

𝑌 * = 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

(︀ 𝑒−𝑥𝑗

P*(𝑥𝑗)
)︀

= 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

(︀
�̂�*𝑗
)︀
. (1.47)

Also, its standard deviation 𝜎[𝑌 *] is given by:

𝜎[𝑌 *] =

⎯⎸⎸⎷ 1
𝑛𝑀𝐶 − 1( 1

𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

�̂�*2𝑗 −
(︀ 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

�̂�*𝑗
)︀2
. (1.48)

𝑥𝑗 is the 𝑗𝑡ℎ realization of the value 𝑥 following the pdf P*(𝑥). The term 𝑒−𝑥𝑗

P(𝑥𝑗) is
called the weight of Monte Carlo, denoted �̂�𝑗 .
This estimation is based on the following algorithm:

• uniformly sample a value of 𝑟0 for 𝑟0 ∈ [0, 1];

• calculate 𝑥𝑗 based on the sampled 𝑟0;

• calculate and save the weight �̂�*𝑗 and �̂�*2𝑗 :

�̂�*𝑗 = 𝑒−𝑥𝑗

P*(𝑥𝑗) , (1.49)

�̂�*2𝑗 =
(︀ 𝑒−𝑥𝑗

P*(𝑥𝑗)
)︀2; (1.50)

• after 𝑛𝑀𝐶 times of realization, calculate the expected value and the variance
following Eq.1.47 and Eq.1.48.

Table.1.3 lists the results of estimations (at the end of this chapter), using the
optimized pdf P. In Fig.1.2, the estimations by Monte Carlo method with two pdfs
are compared.

1.3.5 Vectorization
When the integrals to be estimated have the same integral domain, the process of estimation
by the Monte Carlo method can be vectorized using a single and the same pdf. As an
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3.94
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𝑌
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𝑌 * with P*(𝑥)
𝑌 with P(𝑥)

Analytical solution

Figure 1.2 – Estimations of expected values and standard deviations. A confidence
interval of ±𝜎 is shown in this figure. The convergence performance is better for the
estimation with P*(𝑥) using the importance sampling technique.

example, we would like to estimate the three following integrals simultaneously:∫︁ 𝑡2

𝑡1

𝑓1(𝑥)𝑑𝑥,
∫︁ 𝑡2

𝑡1

𝑓2(𝑥)𝑑𝑥,
∫︁ 𝑡2

𝑡1

𝑓3(𝑥)𝑑𝑥 (1.51)

We choose a common pdf P𝑐 and rewritten Eq.1.51 into a form of a vector of expected values
of three random number 𝑌1, 𝑌2 and 𝑌3:⎡⎣E(𝑌1)

E(𝑌2)
E(𝑌3)

⎤⎦ =
∫︁ 𝑡2

𝑡1

P𝑐(𝑥)

⎡⎣𝑓1(𝑥)
𝑓2(𝑥)
𝑓3(𝑥)

⎤⎦(︂ 1
P𝑐(𝑥)

)︂
𝑑𝑥 (1.52)

Furthermore, we note 𝑌1, 𝑌2 and 𝑌3 as the results of E(𝑌1), E(𝑌2) and E(𝑌3) estimated by
Monte Carlo method. They are then given by:

⎡⎣𝑌1
𝑌2
𝑌3

⎤⎦ = 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

⎡⎣𝑓1(𝑥𝑗)
𝑓2(𝑥𝑗)
𝑓3(𝑥𝑗)

⎤⎦(︂ 1
P𝑐(𝑥𝑗)

)︂
(1.53)

This technique can then be generalized to 𝑛 integrals:

⎡⎢⎢⎣
𝑌1
𝑌2
· · ·
𝑌𝑛

⎤⎥⎥⎦ = 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

⎡⎢⎢⎣
𝑓1(𝑥𝑗)
𝑓2(𝑥𝑗)
· · ·

𝑓𝑛(𝑥𝑗)

⎤⎥⎥⎦(︂ 1
P𝑐(𝑥𝑗)

)︂
(1.54)

The interest of this vectorization technique is that the 𝑛 integrals with the same integral
domain can be estimated based on the same set of random numbers, which requires 𝑛𝑀𝐶

realizations of 𝑋. However, without vectorization, 𝑛 Monte Carlo estimations are needed
to estimate the 𝑛 integral, which requires 𝑛 × 𝑛𝑀𝐶 realizations of 𝑋. Since most of the
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calculating time is spent on generating random numbers, this vectorization technique can
reduce the calculating time for almost a factor of 𝑛, which is the dimension of the vector
composing of integrals.

The vectorization technique can also be used for integrals with different integral domains.
The strategy is first to homogenize the integral domain and, secondly, apply the previously
mentioned technique to vectorize the estimations. Mathematically, lots of methods can be
used to homogenize the integral domains. Herein, only the technique of variable substitution
is introduced. Let us consider two integrals with different integral domains:∫︁ 𝑥𝑚𝑎𝑥

1

𝑥𝑚𝑖𝑛
1

𝑓1(𝑥)𝑑𝑥,
∫︁ 𝑥𝑚𝑎𝑥

2

𝑥𝑚𝑖𝑛
2

𝑓2(𝑥)𝑑𝑥 (1.55)

The first integral in Eq.1.55 can be rewritten:

∫︁ 𝑥𝑚𝑎𝑥
1

𝑥𝑚𝑖𝑛
1

𝑓1(𝑥)𝑑𝑥 =
∫︁ 𝑥𝑚𝑎𝑥

1

0
𝑓1(𝑥)𝑑𝑥−

∫︁ 𝑥𝑚𝑖𝑛
1

0
𝑓1(𝑥)𝑑𝑥 (1.56)

We then choose a constant �̇� to homogenise the integral domains into [0, �̇�].

We impose:
𝑢1 = 𝑥

�̇�

𝑥𝑚𝑎𝑥
1

(1.57)

and
𝑣1 = 𝑥

�̇�

𝑥𝑚𝑖𝑛
1

(1.58)

Eq.1.56 becomes:

∫︁ 𝑥𝑚𝑎𝑥
1

𝑥𝑚𝑖𝑛
1

𝑓1(𝑥)𝑑𝑥 =
∫︁ �̇�

0
𝑓(𝑢1

𝑥𝑚𝑎𝑥
1
�̇�

)𝑥
𝑚𝑎𝑥
1
�̇�

𝑑𝑢1 −
∫︁ �̇�

0
𝑓(𝑣1

𝑥𝑚𝑖𝑛
1
�̇�

)𝑥
𝑚𝑖𝑛
1
�̇�

𝑑𝑣1 (1.59)

A similar technique can be applied to the second integral in Eq.1.55:

∫︁ 𝑥𝑚𝑎𝑥
2

𝑥𝑚𝑖𝑛
2

𝑓2(𝑥)𝑑𝑥 =
∫︁ �̇�

0
𝑓(𝑢2

𝑥𝑚𝑎𝑥
2
�̇�

)𝑥
𝑚𝑎𝑥
2
�̇�

𝑑𝑢2 −
∫︁ �̇�

0
𝑓(𝑣2

𝑥𝑚𝑖𝑛
2
�̇�

)𝑥
𝑚𝑖𝑛
2
�̇�

𝑑𝑣2 (1.60)

with
𝑢2 = 𝑥

�̇�

𝑥𝑚𝑎𝑥
2

(1.61)

and
𝑣2 = 𝑥

�̇�

𝑥𝑚𝑖𝑛
2

(1.62)

Finally, the 2 integrals in Eq.1.55 can be vectorized:

[︃∫︀ 𝑥𝑚𝑎𝑥
1

𝑥𝑚𝑖𝑛
1

𝑓1(𝑥)𝑑𝑥∫︀ 𝑥𝑚𝑎𝑥
2

𝑥𝑚𝑖𝑛
2

𝑓2(𝑥)𝑑𝑥

]︃
=
∫︁ �̇�

0

[︃
𝑓(𝑥𝑥𝑚𝑎𝑥

1
�̇� ) 𝑥𝑚𝑎𝑥

1
�̇� − 𝑓(𝑥𝑥𝑚𝑖𝑛

1
�̇� ) 𝑥𝑚𝑖𝑛

1
�̇�

𝑓(𝑥𝑥𝑚𝑎𝑥
2
�̇� ) 𝑥𝑚𝑎𝑥

2
�̇� − 𝑓(𝑥𝑥𝑚𝑖𝑛

2
�̇� ) 𝑥𝑚𝑖𝑛

2
�̇�

]︃
𝑑𝑥 (1.63)
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The two integrals can then be estimated by one set of random numbers following the
previously mentioned vectorization technique. It is then possible to generalize this technique
to 𝑛 dimension:⎡⎢⎢⎢⎢⎣

∫︀ 𝑥𝑚𝑎𝑥
1

𝑥𝑚𝑖𝑛
1

𝑓1(𝑥)𝑑𝑥∫︀ 𝑥𝑚𝑎𝑥
2

𝑥𝑚𝑖𝑛
2

𝑓2(𝑥)𝑑𝑥
· · ·∫︀ 𝑥𝑚𝑎𝑥

𝑛

𝑥𝑚𝑖𝑛
𝑛

𝑓𝑛(𝑥)𝑑𝑥

⎤⎥⎥⎥⎥⎦ =
∫︁ �̇�

0

⎡⎢⎢⎢⎣
𝑓(𝑥𝑥𝑚𝑎𝑥

1
�̇� ) 𝑥𝑚𝑎𝑥

1
�̇� − 𝑓(𝑥𝑥𝑚𝑖𝑛

1
�̇� ) 𝑥𝑚𝑖𝑛

1
�̇�

𝑓(𝑥𝑥𝑚𝑎𝑥
2
�̇� ) 𝑥𝑚𝑎𝑥

2
�̇� − 𝑓(𝑥𝑥𝑚𝑖𝑛

2
�̇� ) 𝑥𝑚𝑖𝑛

2
�̇�

· · ·
𝑓(𝑥𝑥𝑚𝑎𝑥

𝑛

�̇� ) 𝑥𝑚𝑎𝑥
𝑛

�̇� − 𝑓(𝑥𝑥𝑚𝑖𝑛
𝑛

�̇� ) 𝑥𝑚𝑖𝑛
𝑛

�̇�

⎤⎥⎥⎥⎦ 𝑑𝑥 (1.64)

We will then apply this technique to calculate two integrals in the Example.1.3.4.

Example 1.3.4

Considering the following two integrals with different integral domains:∫︁ 1
2

0
𝑒−𝑥𝑑𝑥;

∫︁ 1

0
𝑒−𝑥𝑑𝑥 (1.65)

The first integral can be then rewritten:∫︁ 1
2

0
𝑒−𝑥𝑑𝑥 =

∫︁ 1

0

1
2𝑒
− 𝑥

2 𝑑𝑥 (1.66)

We then vectorize the estimations of the two integrals, choosing a uniform pdf and
transformed it into an expected value form of random numbers 𝑌1 and 𝑌2:[︂

E(𝑌1)
E(𝑌2)

]︂
=
∫︁ 1

0
P(𝑥)

[︂ 1
2𝑒
− 𝑥

2

𝑒−𝑥

]︂(︂
1

P(𝑥)

)︂
𝑑𝑥 (1.67)

where

P(𝑥) = 1. (1.68)

Furthermore, we note 𝑌1 and 𝑌2 as the results of E(𝑌1) and E(𝑌2) estimated by Monte
Carlo method:

[︂
𝑌1
𝑌2

]︂
= 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

⎡⎣ 𝑒−
𝑥𝑗
2

2P(𝑥𝑗)
𝑒−𝑥𝑗

P(𝑥𝑗)

⎤⎦ = 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

[︂
�̂�𝑗,1
�̂�𝑗,2

]︂
(1.69)

The standard deviation of this estimation of the Monte Carlo method can also be
established:

[︂
𝜎[𝑌1]
𝜎[𝑌2]

]︂
=

⎯⎸⎸⎷ 1
𝑛𝑀𝐶 − 1( 1

𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

[︂
�̂�𝑗,1
�̂�𝑗,2

]︂2
)−

(︀ 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

[︂
�̂�𝑗,1
�̂�𝑗,2

]︂ )︀2
. (1.70)

This estimation is based on the following algorithm:

• uniformly sample a value of 𝑟0 for 𝑟0 ∈ [0, 1];

• calculate 𝑥𝑗 based on the sampled 𝑟0;

• count and save the weight �⃗�𝑗 and �⃗�2
𝑗 :

�⃗�𝑗 =

⎡⎣ 𝑒−
𝑥𝑗
2

2P(𝑥𝑗)
𝑒−𝑥𝑗

P(𝑥𝑗)

⎤⎦ (1.71)
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�⃗�2
𝑗 =

⎡⎣ 𝑒−
𝑥𝑗
2

2P(𝑥𝑗)
𝑒−𝑥𝑗

P(𝑥𝑗)

⎤⎦2

; (1.72)

• after 𝑛𝑀𝐶 times of realization, calculate the expected value and the variance
following Eq.1.69 and Eq.1.70.

In Fig.1.3, the vectorized estimations by Monte Carlo method for the two integrals in
Eq.1.65 are plotted. The numerical results are in Table.1.4 and Table.1.5 (at the end
of this chapter).

103 104 105 106
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6.4
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Figure 1.3 – The estimations use the same set of random numbers, which accelerates
the calculation. A confidence interval of ±𝜎 is shown in this figure. However, it is found
that the convergence performance for the estimations of the two integrals is different.
As it is discussed in Section.1.3.4, the choice of pdf has enormous influence on the
convergence performance. When we apply the vectorization technique, the same pdf is
used for all integrals. Therefore, this common pdf must be chosen carefully.

1.3.6 Sensitivity
We have shown in the previous subsections how to estimate the value of an integral by
applying the Monte Carlo method. In this subsection, we focus on estimating the derivative
of the integral with respect to a parameter (which is called the estimation of sensitivity).

Suppose the following integral:

𝐹 (�̈�) =
∫︁ 𝑥𝑚𝑎𝑥(�̈�)

𝑥𝑚𝑖𝑛(�̈�)
𝑓(𝑥, �̈�)𝑑𝑥 (1.73)

where �̈� is a parameter of the integral. For each �̈� in its space of definition, the value of 𝐹 (�̈�)
can be estimated by Monte Carlo method. Furthermore, its derivative with respect to �̈�:
𝜕�̈�𝐹 is also an integral which can also be estimated by Monte Carlo method [10, 51]. Before
introducing the sensitivity estimation directly, we will first introduce a deterministic method:
finite difference method to approximate the sensitivity [21]. However, the severe limitations
and inconveniences of the latter method will also be discussed hereafter.
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Approximation by finite difference method
When 𝐹 is derivable around �̈�:

𝜕�̈�𝐹 = lim
𝜖→0

𝐹 (�̈� + 𝜖)− 𝐹 (�̈� − 𝜖)
2𝜖 (1.74)

The finite difference method approximates 𝜕�̈�𝐹 by giving a non-zero fixed value to 𝜖. We
note its value of approximation as 𝜕�̈�𝐹 :

𝜕�̈�𝐹 ≈
𝐹 (�̈� + Δ�̈�)− 𝐹 (�̈� −Δ�̈�)

2Δ�̈� (1.75)

Since the integral 𝐹 is estimated by the Monte Carlo method, its statistical standard
deviation 𝜎(𝐹 ) is also estimated at the same time [14]. When approximating 𝜕�̈�𝐹 , its
standard deviation 𝜎

[︀
𝜕�̈�𝐹

]︀
can be obtained [21]:

𝜎
[︀
𝜕�̈�𝐹

]︀
≈ 𝜎(𝐹 (�̈� + Δ�̈�)) + 𝜎(𝐹 (�̈� −Δ�̈�))

2Δ�̈� (1.76)

The finite difference method has mainly two inconveniences:

1. It approximates 𝜕�̈�𝐹 by the discretization of the parameter �̈�. Mathematically, when
𝐹 (�̈�) is discontinued between (�̈� −Δ�̈�) and (�̈� + Δ�̈�), the approximation is unreliable.

2. The related standard deviation 𝜎
[︀
𝜕�̈�𝐹

]︀
is hard to control[21]. According to Eq.1.74

and Eq.1.75, with an Δ�̈� tending to 0, the bias of approximation decreases. However,
the 𝜎

[︀
𝜕�̈�𝐹

]︀
will become huge since Δ�̈� tends to 0.

Direct differentiation of the integral
Instead of approximating the sensitivity 𝜕�̈�𝐹 by finite difference method, we reformulate the
sensitivity into a new integral form, and estimate it by Monte Carlo method [10, 51].
We differentiate Eq.1.73 with respect to �̈�:

𝜕�̈�𝐹 = 𝜕�̈�𝑥𝑚𝑎𝑥(�̈�)𝑓 (𝑥𝑚𝑎𝑥(�̈�); �̈�)− 𝜕�̈�𝑥𝑚𝑖𝑛(�̈�)𝑓 (𝑥𝑚𝑖𝑛(�̈�); �̈�)

+
∫︁ 𝑥𝑚𝑎𝑥(�̈�)

𝑥𝑚𝑖𝑛(�̈�)
𝜕�̈�𝑓(𝑥, �̈�)𝑑𝑥 (1.77)

which can be transformed into a single integral[51]:

𝜕�̈�𝐹 =
∫︁ 𝑥𝑚𝑎𝑥(�̈�)

𝑥𝑚𝑖𝑛(�̈�)
[𝜕�̈�𝑓(𝑥, �̈�) + 𝜕𝑥(𝑣(𝑥)𝑓(𝑥, �̈�))] 𝑑𝑥 (1.78)

where 𝑣 is called the deformation velocity[51]:

𝑣(𝑥) = 𝜕�̈�𝑥𝑚𝑖𝑛(�̈�) + 𝜕�̈�𝑥𝑚𝑎𝑥(�̈�)− 𝜕�̈�(𝑥𝑚𝑖𝑛(�̈�))
𝑥𝑚𝑎𝑥(�̈�)− 𝑥𝑚𝑖𝑛(�̈�) (𝑥− 𝑥𝑚𝑖𝑛(�̈�)) (1.79)

The method can be generalized to an integral of n dimensions:

𝐹𝑛 =
∫︁ 𝑥𝑚𝑎𝑥

1 (�̈�)

𝑥𝑚𝑖𝑛
1 (�̈�)

𝑑𝑥1

∫︁ 𝑥𝑚𝑎𝑥
2 (�̈�)

𝑥𝑚𝑖𝑛
2 (�̈�)

𝑑𝑥2 · · ·
∫︁ 𝑥𝑚𝑎𝑥

𝑛 (�̈�)

𝑥𝑚𝑖𝑛
𝑛 (�̈�)

𝑑𝑥𝑛𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛; �̈�) (1.80)
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of which the derivative with respect to �̈� is:

𝜕�̈�𝐹𝑛 =
∫︁ 𝑥𝑚𝑎𝑥

1 (�̈�)

𝑥𝑚𝑖𝑛
1 (�̈�)

𝑑𝑥1

∫︁ 𝑥𝑚𝑎𝑥
2 (�̈�)

𝑥𝑚𝑖𝑛
2 (�̈�)

𝑑𝑥2 · · ·
∫︁ 𝑥𝑚𝑎𝑥

𝑛 (�̈�)

𝑥𝑚𝑖𝑛
𝑛 (�̈�)

𝑑𝑥𝑛(︁
𝜕�̈�𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛; �̈�) + ∇⃗𝑥 · �⃗� 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛; �̈�)

)︁ (1.81)

where the vector of deformation velocity �⃗� = [𝑣1, 𝑣2, . . . , 𝑣𝑛] is built component by component,
for 𝑖 ∈ [1, 2, . . . , 𝑛]:

𝑣𝑖(𝑥𝑖) = 𝜕�̈�𝑥
𝑚𝑖𝑛
𝑖 (�̈�) + 𝜕�̈�𝑥

𝑚𝑎𝑥
𝑖 (�̈�)− 𝜕�̈�(𝑥𝑚𝑖𝑛

𝑖 (�̈�))
𝑥𝑚𝑎𝑥

𝑖 (�̈�)− 𝑥𝑚𝑖𝑛
𝑖 (�̈�)

(𝑥𝑖 − 𝑥𝑚𝑖𝑛
𝑖 (�̈�)) (1.82)

Concerning this method, it can be pointed out that:

1. The formulations of 𝐹 and 𝜕�̈�𝐹 have the same integral domain, meaning they can be
vectorized and estimated by the same set of random numbers.

2. Since the derivative 𝜕�̈�𝐹 is rewritten in an integral formulation (Eq.1.81), it can then
be estimated by Monte Carlo method, benefiting from the variance reduction technique
(by using the importance sampling technique).

3. Compared to the method of approximation (finite difference method), this method
estimates the exact value of the integral without bias. Moreover, unlike the finite
difference method, the standard deviation does not depend on the discretization
parameter (Δ�̈� in Eq.1.75).

4. The difficulty of applying this method is mainly about defining the deformation velocity
vector (see Eq.1.81). In some exceptional cases, for example, when the integral domain is
independent of the parameter �̈�, the deformation velocity vector is 0⃗. In this particular
case, it is referred to as the problem of parametric sensitivity [10].

The following example (Example.1.3.5) compares the results of estimations by this technique
and approximations by finite difference method.

Example 1.3.5

Consider the following integral which is a function of �̈�, ∀�̈� ∈ R:

𝐹 (�̈�) =
∫︁ 2�̈�

0
𝑒−�̈�𝑥𝑑𝑥 (1.83)

For each �̈� in its space of definition, we apply Monte Carlo method to estimate the
value of the integral 𝐹 (�̈�) and the standard deviation of the estimation 𝜎[𝐹 (�̈�)] will
be calculated respectfully:

𝐹 (�̈�) =
∫︁ 2�̈�

0
P(𝑥, �̈�) 𝑒−�̈�𝑥

P(𝑥, �̈�)𝑑𝑥 (1.84)

where P(𝑥, �̈�) is chosen to be uniform:

P(𝑥, �̈�) = 1
2�̈� (1.85)

We apply the finite difference method to approximate its derivative 𝜕�̈�𝐹 and the
standard deviation of the approximation 𝜎[𝜕�̈�𝐹 ] by Eq.1.75 and Eq.1.76.
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Alternatively, applying Eq.1.78 and Eq.1.79 to this example, its derivative can be
rewritten in an integral formulation. We apply the Monte Carlo method to estimate
its value, and the standard deviation of its estimation will be calculated respectfully:

𝜕�̈�𝐹 =
∫︁ 2�̈�

0
P(𝑥, �̈�)

[︀
𝜕�̈�(𝑒−�̈�𝑥)𝜕𝑥(𝑣(𝑥)𝑒−�̈�𝑥)

]︀
P(𝑥, �̈�) 𝑑𝑥 (1.86)

To be noted that Eq.1.86 and Eq.1.84 have the same integral domain. Therefore, the
estimations of 𝐹 and 𝜕�̈�𝐹 can be vectorized.
Finally, the analytical solution of its derivative is available for validation purposes:

𝜕�̈�𝐹 = −−4�̈�2𝑒−2�̈�2 − 𝑒−2�̈�2 + 1
�̈�2 (1.87)

In the Fig.1.4, the analytical solution, estimations and approximations of 𝜕�̈�𝐹 are
plotted. The results are also listed in Table.1.6. Most of the time, if the value of the
integral is estimated by the Monte Carlo method, the approximation of its sensitivity
by the finite difference method is usually inaccurate.

1 1.2 1.4 1.6 1.8 2
−5

−4

−3

−2

·10−1

�̈�

𝜕
𝜋

(︁ ∫︀ 2𝜋 0
𝑒−

𝜋
𝑥
𝑑
𝑥
)︁

Approximation of 𝜕�̈�𝐹 by Difference Finite Method
Estimations of 𝜕�̈�𝐹 by our technique

Analytical solutions of 𝜕�̈�𝐹

Figure 1.4 – A confidence interval of ±𝜎 is shown in this figure. Each point of
approximation requires two estimations of 𝐹 , which includes 20000 realizations of
random numbers. In contrast, each point of estimation requires only one estimation
of 𝜕�̈�𝐹 , which includes 100000 realizations of random numbers. The calculating time
of an approximation is, therefore, approximately two times the calculating time of
estimation. However, even with a double calculation time, the standard deviation of the
approximations is still huge compared to the estimations.

1.4 Modeling a radiative system
Similar to other physical systems, the modeling of a radiative system is based on several
requirements: the equation that governs the physical interactions in the medium and on the
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boundaries. In the following part of this chapter, we will establish the RTE, which governs
the transport phenomena in the medium of a radiative system. After that, we will also show
different boundary conditions in a radiative system.

1.4.1 Mesoscopic and corpuscular description of the
radiation

There is more than one way to describe the physics of radiation. This thesis has a corpuscular
vision of this physic [7]. More precisely, the description of the physics of radiation in this
thesis is mesoscopic [8] (which is distinguished from the microscopic description [30] and
macroscopic description [47]).

In the mesoscopic point of view, the descriptor of a system is the function of distribution:
𝑓(�⃗�, �⃗�, 𝑡), of which the variables �⃗�, �⃗�, 𝑡 are independent. They are defined in the domain of
geometry �⃗� ∈ Dx, the domain of velocity �⃗� ∈ Dv and 𝑡 denotes the dimension of the time. It
is considered continuous in Dx, Dv and in time.

𝑓(�⃗�, �⃗�, 𝑡) represents the distribution of the particles in Dx and Dv. Statistically, it can also
be regarded as the probability of the number of photons in Dx and Dv at the moment of
𝑡. This statistical vision makes using statistical methods possible (such as the Monte Carlo
method).

1.4.2 Radiative Transport Equation
In a system of radiation, 𝑓𝜈(�⃗�, �⃗�, 𝑡) is used to describe the distribution of photons of which
the frequency is [Hz].

Firstly, it is assumed that the photons do not interact with each other but only with the
medium. The photons have a velocity of light 𝑐 in the medium. The domain of velocity
Dv can be then referred to DΩ and the descriptor 𝑓𝜈(�⃗�, �⃗�, 𝑡) can be referred to 𝑓𝜈(�⃗�, �⃗�, 𝑡).
Physically, it represents the number of photons at position �⃗�, at the moment 𝑡 and having
a velocity 𝑐 on the normalized vector of direction �⃗� (within an infinitesimal solid angle
characterized by the vector of direction �⃗�). Therefore, its unit is [m−3 · sr−1 · s−1 ·Hz−1].
We can note that the value of 𝑓𝜈(�⃗�, �⃗�, 𝑡) represents the number of photons on the position �⃗�,
following the direction �⃗� at the moment of 𝑡.

Radiative transport in transparent medium
Firstly, we consider a system of radiation with a transparent medium.

For an infinitive short period of time 𝛿𝑡, a photon can travel �⃗� + 𝑐�⃗�𝛿𝑡 in Dx. For the
transparent medium, Eq.1.88 can be established.

𝑓𝜈(�⃗�, �⃗�, 𝑡) = 𝑓𝜈(�⃗�+ 𝑐𝛿𝑡�⃗�, �⃗�, 𝑡+ 𝛿𝑡) (1.88)

We expend the right size of the Eq.1.88 around �⃗� and 𝑡:

𝑓𝜈(�⃗�, �⃗�, 𝑡) = 𝑓𝜈(�⃗�, �⃗�, 𝑡) + 𝑐𝛿𝑡�⃗� · 𝜕1𝑓𝜈(�⃗�, �⃗�, 𝑡) + 𝜕𝑡𝑓𝜈(�⃗�, �⃗�, 𝑡), (1.89)

implying to:

𝜕𝑡𝑓𝜈(�⃗�, �⃗�, 𝑡)
𝑐𝛿𝑡

+ �⃗� · 𝜕1𝑓𝜈(�⃗�, �⃗�, 𝑡) = 0. (1.90)
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The first term of Eq.1.90 represents the variation of the number of photons at different
moments. In contrast, the second term represents the spatial derivative of the number of
photons in the direction of propagation.
For most engineering questions, the radiative transfer is much faster than other physical
phenomena, it is very often that we study it only in a stationary state, and its unit becomes
[m−3 · sr−1 ·Hz−1]. In other words, the distribution of the photons does not depend on time:

�⃗� · 𝜕1𝑓𝜈(�⃗�, �⃗�) = 0. (1.91)

Radiative transport in semi-transparent medium
When the medium becomes semi-transparent, a photon can be absorbed, scattered, or emitted
in the medium[18].
Absorption If the absorption is the only collision that happens in the medium, the transport
of photons can be described by:

�⃗� · 𝜕1𝑓𝜈(�⃗�, �⃗�) = −𝑘𝑎,𝜈𝑓𝜈(�⃗�, �⃗�) (1.92)

𝑘𝑎,𝜈 [m−1] is a property of the medium, called the absorption coefficient. Herein, the medium
is homogeneous but can also depend on 𝑥 in an inhomogeneous medium. It is defined as the
inverse value of the mean free path of absorption (the average length traveling for a photon
before being absorbed in the medium). In a purely absorbent medium, when the 𝑘𝑎,𝜈 is
large, we say that the medium is optically thick, which means that the photon will have
more chance to be absorbed in a relatively short path. In the opposite case, the medium is
called optically thin.
Scattering In this thesis, several assumptions are made to describe the physics of scattering
[29, 54]:

• The polarization of the photon is not considered.

• The photon is conserved (not disappearing) when the scattering happens.

• The scattering of one photon does not influence the scattering of other photons.

If the scattering is the only collision that happens in the medium, the transport of photons
can be described by:

�⃗� · 𝜕1𝑓𝜈(�⃗�, �⃗�) = −𝑘𝑑,𝜈𝑓𝜈(�⃗�, �⃗�) + 𝑘𝑑,𝜈

∫︁
Ω′

P(−�⃗�′| − �⃗�)𝑑�⃗�′𝑓𝜈(�⃗�, �⃗�′) (1.93)

Similar to 𝑘𝑎,𝜈 , 𝑘𝑑,𝜈 [m−1] is called the scattering coefficient, defined as the inverse value of
the mean free path of scattering. The first term of the right side of Eq.1.93 represents the
extinction of photons when scattering happens in the medium, representing a loss term to
the radiative balance. The second term of the right side of Eq.1.93 indicates the photons
scattered to the direction �⃗�, coming from all other directions, which is considered as a gain.
The function of P(−�⃗�′| − �⃗�) is called the Phase-function. It characterizes the probability
of the fact that a photon is scattered to the direction −�⃗�′, coming from the direction −�⃗�.
This formulation favors a reciprocal/adjoint interpretation thanks to the micro-reversibility
relation P(−�⃗�′| − �⃗�) = P(�⃗�|�⃗�′). For example, one of the common Phase-functions is the
isotropic Phase-function:

P𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑖𝑐(−�⃗�′| − �⃗�) = 1
4𝜋 (1.94)
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General case Besides the absorption and the scattering, the medium may also have the
capacity to emit some photons (see Sec.1.4.3 for more details). The emission of photons
is represented by a term of source S in this section. In order to characterize these three
phenomena, the general case of radiative transport of photons can be described by Eq.1.95,
of which S means the source of emission in the medium:

�⃗� · 𝜕1𝑓𝜈(�⃗�, �⃗�) = −𝑘𝑎,𝜈𝑓𝜈(�⃗�, �⃗�)− 𝑘𝑑,𝜈𝑓𝜈(�⃗�, �⃗�) + S + 𝑘𝑑,𝜈

∫︁
Ω′

P(−�⃗�′| − �⃗�)𝑑�⃗�′𝑓𝜈(�⃗�, �⃗�′) (1.95)

The right side of Eq.1.95 is also written as an operator C:

�⃗� · 𝜕1𝑓𝜈(�⃗�, �⃗�) = C(𝑓𝜈(�⃗�, �⃗�)) + S (1.96)

C is called the collision operator. Physically, the left side of Eq.1.95 and Eq.1.96 represent
the projection of the spatial gradient of the distribution function of photons on the direction
of propagation. The right side represents the collisions and emissions of photons in the
propagation direction, including absorption and scattering.

1.4.3 Transport of intensity
The corpuscular vision of radiation is proposed by M.Planck and A.Einstein at the beginning
of the 20𝑡ℎ century. In this vision, the photons are considered to have no mass, but they
carry a quantity of energy 𝐸, which is a function of their frequency:

𝐸 = ℎ𝜈 (1.97)

where ℎ = 6.62607× 10−34𝐽𝑠 is called the constant of Plank.

Most of the time, we are more interested in the energy in a system of radiation than the
number of photons. Therefore, a mesoscopic physical quantity 𝐼 is defined, which is called
the intensity (Luminance in French). It describes the energy flow crossing a perpendicular
unit surface, which is proportional to the number of photons crossing this unit surface and
their speed:

𝐼𝜈(�⃗�, �⃗�) = ℎ𝜈𝑐𝑓𝜈(�⃗�, �⃗�) (1.98)

Therefore, the unit of 𝐼𝜈(�⃗�, �⃗�) is [W ·m−2 · sr−1 ·Hz−1].

We now use 𝐼𝜈 as the descriptor of the physical system of radiation. The transport of energy
in the mesoscopic point of view in the medium can be described by:

�⃗� · 𝜕1𝐼𝜈(�⃗�, �⃗�) = 0 (1.99)

and

�⃗� · 𝜕1𝐼𝜈(�⃗�, �⃗�) = C(𝐼𝜈(�⃗�, �⃗�)) + 𝑆. (1.100)

Eq.1.99 describes the transport of 𝐼𝜈 in transparent medium and Eq.1.100 in semi-transparent
medium. In order to characterize the term of source 𝑆, the assumption of local thermodynamic
equilibrium is needed.
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Emission Under the assumption of local thermodynamic equilibrium, the emission of a point
in the medium is based on its intrinsic properties and temperature, which is not influenced
by other collisions and the incoming radiation on this point. There are some cases where it
can not be applied. For example, when the medium is at low pressure.
Based on this assumption, we apply the Planck’s law and the Kirchhoff’s law.

Planck’s law

All bodies of which the temperature is higher than 0𝐾 emit energy. According to the
Planck’s law, the monochromatic intensity 𝐼𝜈 emitted by a 𝑏𝑙𝑎𝑐𝑘𝑏𝑜𝑑𝑦 is a function
of its temperature. It is called the monochromatic equilibrium intensity 𝐼𝑒𝑞

𝜈 (See
Eq.1.101).

𝐼𝑒𝑞
𝜈 (𝑇 ) = 2ℎ𝜈3

𝑐2
1

𝑒𝑥𝑝( ℎ𝜈
𝑘𝐵𝑇 )− 1

(1.101)

𝑘𝐵 = 1.38065× 10−23𝐽 ·𝐾−1 is the Boltzmann constant.

Kirchhoff’s law

When a system is in radiative equilibrium,

𝛼𝜈,�⃗� = 𝜖𝜈,�⃗�. (1.102)

𝛼𝜈,�⃗� is the monochromatic and directional absorptivity and the 𝜖𝜈,�⃗� is the monochro-
matic and directional emissivity.

If we apply the assumption of local thermodynamic equilibrium to all points of the medium
of which the field of temperature is inhomogeneous, following the Planck’s law and the
Kirchhoff’s law, the term of source 𝑆 in Eq.1.100 becomes:

S(�⃗�) = 𝑘𝑎,𝜈𝐼
𝑒𝑞
𝜈

(︀
𝑇 (�⃗�)

)︀
. (1.103)

Finally, the general equation of RTE is developed:

�⃗� · 𝜕1𝐼𝜈(�⃗�, �⃗�) = −𝑘𝑎,𝜈𝐼𝜈(�⃗�, �⃗�)− 𝑘𝑑,𝜈𝐼𝜈(�⃗�, �⃗�) + 𝑘𝑎,𝜈𝐼
𝑒𝑞
𝜈

(︀
𝑇 (�⃗�)

)︀
+ 𝑘𝑑,𝜈

∫︁
Ω′

P(−�⃗�′| − �⃗�)𝑑�⃗�′𝐼𝜈(�⃗�, �⃗�′) (1.104)

However, the study of frequency 𝜈 and the heterogeneity of the medium are not the objectives
of this thesis. We will use the homogeneous (properties of the medium do not depend on �⃗�)
version of the RTE and the integrated intensity (on wavelength) 𝐼[W/m2sr] in this thesis.
Also, the medium will always be “cold” (no emission) in all the examples developed in this
thesis:

�⃗� · 𝜕1𝐼(�⃗�, �⃗�) = −𝑘𝑎𝐼(�⃗�, �⃗�)− 𝑘𝑑𝐼(�⃗�, �⃗�) + 𝑘𝑑

∫︁
Ω′

P(−�⃗�′| − �⃗�)𝑑�⃗�′𝐼(�⃗�, �⃗�′) (1.105)

1.4.4 Boundary conditions
The RTE demonstrated in this stage describes the interactions of the descriptor (intensity 𝐼)
in the medium. In order to fully describe a radiative system, the boundary conditions are
also needed.
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On the boundary, noting C𝑏 as the reflection operator and �̊� as the source of emission on the
boundary, the incoming intensity equation is:

𝐼(�⃗�, �⃗�) = C𝑏[𝐼(�⃗�, �⃗�′)] + �̊�(�⃗�, �⃗�) (1.106)

with

C𝑏[𝐼] = 𝜌(�⃗�,−�⃗�)
∫︁

2𝜋(�⃗�)
P𝑏(−�⃗�′|�⃗�,−�⃗�)𝑑�⃗�′𝐼(�⃗�, �⃗�′) (1.107)

where �⃗� is the normal to the boundary at �⃗�, �⃗� the direction within the hemisphere 2𝜋
characterised by �⃗�, 𝜌(�⃗�,−�⃗�) the surface reflectivity for a photon impacting the boundary
in direction −�⃗�, and P𝑏 the probability density that the reflection direction is −�⃗�′ for
a photon reflected at �⃗� coming from direction −�⃗� (the product of 𝜌P𝑏 is called BRDF).
Eq.1.107 favors a reciprocal/adjoint interpretation thanks to the micro-reversibility relation
(�⃗� · �⃗�)𝜌(�⃗�,−�⃗�)P𝑏(−�⃗�′|�⃗�,−�⃗�) = −(�⃗�′ · �⃗�)𝜌(�⃗�, �⃗�)P𝑏(�⃗�′|�⃗�, �⃗�). The physical picture then
becomes that of a photon initially in direction −�⃗� reflected in direction −�⃗�′ (see Fig.1.5).

�⃗�

�⃗�

𝐼(�⃗�, �⃗�) 𝐼(�⃗�, �⃗�′, 𝜌)

�⃗�′

Figure 1.5 – Reflection of the intensity on the boundary.

For example, if the boundary is diffuse, the P𝑏 corresponding is:

P𝑏(−�⃗�′|�⃗�,−�⃗�) = | − �⃗�
′ · �⃗�|
𝜋

(1.108)

In this thesis, the boundaries are usually defined under some physical assumptions. We list
some of them here:

1. The boundary is black means that the boundary is a black body. No intensity is
reflected, but the boundary still emits intensity: 𝜌(�⃗�,−�⃗�) = 0

2. The boundary is cold means that the boundary is not emitting intensity: �̊� = 0.

3. The boundary is Lambertian means that the emitting intensity does not depend on
the direction of emission: �̊�(�⃗�, �⃗�) ≡ �̊�(�⃗�).

1.4.5 Observable
In this stage, the RTE is established, and the boundary conditions are built. Therefore, the
transport model of intensity for a radiative system is completed. An observable is a physical
quantity that can be measured in the system. It can be simply the intensity 𝐼 on a location
�⃗�𝑜𝑏𝑠 towards a direction �⃗�𝑜𝑏𝑠: 𝐼(�⃗�𝑜𝑏𝑠, �⃗�𝑜𝑏𝑠). Also, it can be some macroscopic descriptors.
The transformation from the mesoscopic descriptor (intensity 𝐼) to different macroscopic
descriptors is done by integrations.
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Scalar flux 𝐺 [W · m−2] The irradiance of a unit surface is the integral of 𝐼 for all incoming
solid angles:

𝐺(�⃗�𝑜𝑏𝑠) =
∫︁

Ω
𝐼(�⃗�𝑜𝑏𝑠, �⃗�)𝑑�⃗� (1.109)

When we consider a 3D radiative system, Ω = 4𝜋.

Total incident irradiance 𝜑 [W · m−2] The radiance flux is the energy flux traveling
perpendicularly to a unit surface:

𝜑(�⃗�𝑜𝑏𝑠) =
∫︁

Ω
𝐼(�⃗�𝑜𝑏𝑠, �⃗�)|�⃗� · �⃗�|𝑑�⃗� (1.110)

Impacting power 𝑃 [W] The impacting power on a surface is the integral of radiance flux
over all the surface:

𝑃 =
∫︁
S

∫︁
Ω
𝐼(�⃗�, �⃗�)|�⃗� · �⃗�|𝑑�⃗�𝑑�⃗� (1.111)

where S is the area of the surface being impacted.

1.5 Simulation of a radiative transfer problem
In this section, we solve a simple radiative problem by the Monte Carlo method. As an
essential objective of this chapter, we discuss some algorithmic concepts (forward ray-tracing
and reverse ray-tracing) and some physical concepts (ray path, path space, etc.). We consider
a transparent medium with an emitter E , which is a square, and a receiver R, which is also
a square (see Fig.1.6). The emitter E is “black” and the receiver R is “cold” and “black”.
We aim to determine the impacting power 𝑃 [W] (the observable) on the receiver R.

�⃗�1

�⃗�2

�⃗�3

E

�⃗�𝑐,𝑒

R

�⃗�𝑐,𝑟

Figure 1.6 – Configuration of the radiative system. E is the emitter, its geometric centre
is on �⃗�𝑐,𝑒 = (−1, 1, 0). R is the receiver, its geometric centre is on �⃗�𝑐,𝑟 = (0,−2.5, 0).
The length of E is 𝑙𝑒 = 𝑙0 and the length of R is 𝑙𝑟 = 2𝑙0.

1.5.1 Building the model
Firstly, a complete model is needed to solve the radiative problem. Referring to Eq.1.105,
the radiative transport equation in a transparent medium is:

�⃗� · 𝜕1𝐼(�⃗�, �⃗�) = 0 (1.112)

where �⃗� is the position vector and �⃗� is the direction of propagation.
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Referring to Eq.1.106 and the assumptions we made, the boundary conditions can be built:

{︃
𝐼(�⃗�𝑒, �⃗�𝑒) = 𝐼0

𝐼(�⃗�𝑟, �⃗�𝑟) = 0
(1.113)

where the index 𝑒 is used for the boundary condition on E and 𝑟 is used for the boundary
condition of R.

1.5.2 Building the integral formulation
Our objective is the impacting power 𝑃 [W] on the receiver R. Referring to Eq.1.111, the
impacting power can be formulated as:

𝑃 =
∫︁
S𝑟

∫︁
Ω
𝐼(�⃗�𝑟, �⃗�)|�⃗� · �⃗�|𝑑�⃗�𝑑�⃗�𝑟 (1.114)

where S𝑟 is the area of the surface of R and Ω = 2𝜋. The intensity in Eq.1.114 is the
incoming intensity on the position �⃗�𝑟, following the direction −�⃗� ≡ �⃗�𝑟, seeing Fig.1.7a.
Therefore, we can launch a ray path from �⃗�𝑟, following the direction �⃗�𝑟. If the ray hits the
emitter E , the intensity 𝐼(�⃗�𝑟, �⃗�) = 𝐼0. Otherwise, 𝐼(�⃗�𝑟, �⃗�) = 0.

R

E

�⃗�𝑟

�⃗�𝑟

�⃗�

(a) Reverse ray-tracing

R

E�⃗�𝑒

�⃗�𝑒

(b) Forward ray-tracing

Figure 1.7 – Reverse and Forward ray-tracing. The forward ray-tracing algorithm
searches where the photon is going (from the emitter). The backward ray-tracing
algorithm searches where the photon comes from (to the receiver).

This ray-tracing test can be expressed mathematically as a Heaviside function:

𝑃 =
∫︁
S𝑟

∫︁
Ω
𝐼0H(�⃗�ℎ𝑖𝑡 ∈ E )|�⃗�𝑟 · �⃗�|𝑑�⃗�𝑟𝑑�⃗�𝑟 (1.115)

where �⃗�ℎ𝑖𝑡 is the first point of intersection of the ray staring from �⃗�𝑟, towards �⃗�𝑟 (or −�⃗�).
The Heaviside function H(�⃗�ℎ𝑖𝑡 ∈ E ) will be set to 1 when �⃗� is on E . Otherwise, it will be
set to 0.

We then reformulate 𝑃 into an expected value form to be solved by the Monte Carlo method:

𝑃 =
∫︁
S𝑟

P𝑋𝑟
(�⃗�𝑟)𝑑�⃗�𝑟

∫︁
Ω
PΩ𝑟

(�⃗�𝑟)𝑑�⃗�𝑟 {𝐼0H(�⃗�ℎ𝑖𝑡 ∈ E )S𝑟𝜋} (1.116)
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where P𝑋𝑟
and PΩ𝑟

are the pdfs:

P𝑋𝑟
(�⃗�𝑟) = 1

S𝑟
;PΩ𝑟

(�⃗�𝑟) = |�⃗�𝑟 · �⃗�|
𝜋

(1.117)

Finally, if we note the estimation of 𝑃 by the Monte Carlo method as 𝑃 , it is then given by:

𝑃 = 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

(︀
𝐼0H(�⃗�ℎ𝑖𝑡,𝑗 ∈ E )S𝑟𝜋

)︀
= 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

(︀
�̂�𝑗

)︀
. (1.118)

where �⃗�ℎ𝑖𝑡,𝑗 and �̂�𝑗 refer to the 𝑗𝑡ℎ Monte Carlo realization. Algorithmically, for each Monte
Carlo realization:

1. we sample a position on R based on P𝑋𝑟
.

2. we sample a direction �⃗�𝑟 in the hemisphere characterised by �⃗�, based on PΩ𝑟 .

3. we launch a ray-tracing test from the point �⃗�𝑟 towards �⃗�𝑟.

4. if the first intersection point �⃗�ℎ𝑖𝑡 is found on E , �̂�𝑗 = 𝐼0S𝑟𝜋.

5. otherwise, �̂�𝑗 = 0.

This algorithm is also called reverse ray-tracing. There is another possibility to construct
the algorithm called forward ray-tracing.

1.5.3 Forward ray-tracing and reverse ray-tracing
In the algorithm of reverse ray-tracing, the rays are launched from the receiver R. On the
contrary, the rays are launched from the emitter (the source) E in the forward ray-tracing
algorithm. Following the definition of a solid angle, we have the following:

𝑑�⃗�𝑟 = |�⃗�𝑟 · �⃗�|𝑑�⃗�𝑒

𝑟2 ; 𝑑�⃗�𝑒 = |�⃗�𝑒 · �⃗�|𝑑�⃗�𝑟

𝑟2 (1.119)

where 𝑟 is the distance between �⃗�𝑟 and �⃗�𝑒.

We substitute Eq.1.119 into Eq.1.115 and we have:

𝑃 =
∫︁
S𝑒

∫︁
Ω
𝐼0H(�⃗�′ℎ𝑖𝑡 ∈ R)|�⃗�𝑒 · �⃗�|𝑑�⃗�𝑒𝑑�⃗�𝑒 (1.120)

where �⃗�′ℎ𝑖𝑡 is the first point of intersection of the ray staring from �⃗�𝑒, towards �⃗�𝑒 and S𝑒 is
the area of the surface of emitter E .

The corresponding expected value form of the observable 𝑃 will be:

𝑃 =
∫︁
S𝑒

P𝑋𝑒(�⃗�𝑒)𝑑�⃗�𝑒

∫︁
Ω
PΩ𝑒(�⃗�𝑒)𝑑�⃗�𝑒 {𝐼0H(�⃗�′ℎ𝑖𝑡 ∈ R)S𝑒𝜋} (1.121)

where P𝑋𝑟 and PΩ are the pdfs:

P𝑋𝑒(�⃗�𝑒) = 1
S𝑒

;PΩ𝑒
(�⃗�𝑒) = |�⃗�𝑒 · �⃗�|

𝜋
(1.122)
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Finally, if we note the estimation of 𝑃 by the Monte Carlo method with a forward ray-tracing
algorithm as 𝑃 ′ ( 𝑃 for the reverse tray-tracing algorithm), it is then given by:

𝑃 ′ = 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

(︀
𝐼0H(�⃗�′ℎ𝑖𝑡,𝑗 ∈ E )S𝑒𝜋

)︀
= 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

(︀
�̂�𝑗

)︀
. (1.123)

where �⃗�′ℎ𝑖𝑡,𝑗 and �̂�𝑗 refer to the 𝑗𝑡ℎ Monte Carlo realization. Algorithmically, for each Monte
Carlo realization:

1. we sample a position on E based on P𝑋𝑒 .

2. we sample a direction �⃗�𝑒 in the hemisphere characterised by �⃗�, based on PΩ𝑒
.

3. we launch a ray-tracing test from the point �⃗�𝑒 towards �⃗�𝑒.

4. if the first intersection point �⃗�′ℎ𝑖𝑡 is found on R, �̂�𝑗 = 𝐼0S𝑒𝜋.

5. otherwise, �̂�𝑗 = 0.

The impacting power 𝑃 can be estimated using the forward or reverse ray-tracing algorithm.
Both of these algorithms suggest their own physical image (Fig.1.7). For the forward ray-
tracing algorithm, we try to follow “all” the photons emitted from the emitter to see if they
arrive at the receiver. As for the reverse ray-tracing algorithm, we try to observe “all” the
incoming directions on all receivers to see if photons are coming from the emitter.

reverse ray-tracing forward ray-tracing

𝑃 𝜎[𝑃 ] 𝑃 ′ 𝜎[𝑃 ′]
253.69× 10−3 1.77× 10−3 253.62× 10−3 855.83× 10−6

Table 1.1 – Results of estimations of reverse ray-tracing algorithm and forward ray-
tracing algorithms, 𝑛𝑀𝐶 = 1000000.

The results of estimations for the two algorithms are compared in Table.1.1. The two results
have almost the same value estimated for the impacting power. However, the corresponding
standard deviations are different. The choice of inverse or forward ray-tracing algorithm
significantly impacts the convergence performance. In this specific case, the convergence
performance of the forward ray-tracing algorithm is better than that of reverse ray-tracing
because the receiver R has a higher area than the emitter E . When we launch the rays from
the receiver R, most of them will not hit the emitter E , and the Monte Carlo weight �̂�𝑗 is
often null, resulting in a high standard deviation. On the contrary, when we launch the rays
from the emitter E following the forward ray-tracing algorithm, there will be more chance
that the rays can hit the receiver R, leading to a better convergence performance.

To sum up, the size of the receiver and the sources (the emitter) directly influence the
ray-tracing algorithm’s convergence performance. In the following parts of this thesis, we
will see some sources on a segment or point. In this case, we prefer the forward ray-tracing
algorithm (sampling from the sources), or we can propose a special treatment to perform the
estimation.
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Conclusion of the chapter

1.5.4 Integral domains, path spaces, samplings, and
vectorization

It is noticed that when an integral formulation is formulated (especially in an expected value
form), a clear physical image and a Monte Carlo algorithm are attached to it. An integral
formulation has three interpretations in mathematics, physics, and algorithmic.

Here, we take the example of the forward ray-tracing algorithm (Eq.1.121). Mathematically,
we formulate a product of a spatial integral (about �⃗�𝑒) and an angular integral (about �⃗�𝑒),
where the integral domain is on all the surface of E and over 2𝜋 around the normal of the
surface �⃗�.

Physically, we define path spaces, where the rays are launched, starting from all points on
the emitter E , towards all directions over 2𝜋 around �⃗�.

From an algorithmic point of view, we construct an algorithm where we sample a position
on the surface of E and then a direction over 2𝜋 around �⃗�.

Then we create the following correspondence:

𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑑𝑜𝑚𝑎𝑖𝑛 ⇐⇒ 𝑝𝑎𝑡ℎ 𝑠𝑝𝑎𝑐𝑒 ⇐⇒ 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

This is important as part of this thesis since we practice the idea of “vectorization”. As
already introduced in Section.1.3.5, the Monte Carlo estimations of integrals can be vectorized
when they have a common integral domain, and the same set of sampling random numbers
can be used to estimate them. Now, when we solve the radiative problems by the Monte
Carlo method, we say that if we have the same path space for different observables, their
estimations can be vectorized. The same sampling set (for example, positions and directions)
can then be used for these estimations.

An example is herein given: the receiver R is separated into R1 and R2. Now, we aim to
estimate two observable 𝑃1 and 𝑃2, corresponding to the impacting power on R1 and R2
respectively (Fig.1.8). Their estimations can be easily vectorized:

[︂
𝑃1
𝑃2

]︂
=
∫︁
S𝑒

P𝑋𝑒
(�⃗�𝑒)𝑑�⃗�𝑒

∫︁
Ω
PΩ𝑒

(�⃗�𝑒)𝑑�⃗�𝑒

{︂[︂
𝐼0H(�⃗�′ℎ𝑖𝑡 ∈ R1)
𝐼0H(�⃗�′ℎ𝑖𝑡 ∈ R2)

]︂
S𝑒𝜋

}︂
(1.124)

where the pdf P𝑋𝑒
and PΩ𝑒

are already defined in Eq.1.122.

From an algorithmic point of view, we sample a position on E and a direction on 2𝜋 around
�⃗�. After that, we launch a ray following the sampled �⃗�𝑒 and �⃗�𝑒, to see if the ray intersects
R1, R2 or neither of them. Therefore, we say that mathematically, the estimations of the two
observables (𝑃1 and 𝑃2) are based on the same integral domain. Physically, the estimations
are based on the same path space. From an algorithmic point of view, the estimations use
only one set of sampling (for �⃗�𝑒 and �⃗�𝑒).

1.6 Conclusion of the chapter
After a quick review of basic statistics, we have introduced the Monte Carlo method, which
is used to estimate an integral in an expected value form. The result is always given with a
confidence interval that relies on variance. When the variance is too high, reduction variance
techniques such as importance sampling can be applied. When several expected values have
to be estimated simultaneously, the vectorization technique can sometimes be implemented
to reuse the set of random numbers. This method can be applied when the expected values
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�⃗�1

�⃗�2

�⃗�3

E

�⃗�𝑐,𝑒

R2R1

�⃗�𝑐,𝑟

Figure 1.8 – Same configuration of Fig.1.6 but the receiver is split into two parts.

share the same pdf. By reducing random number generation, the computation time is greatly
improved.

Finite differences can naively achieve approximating sensitivities or derivatives. It relies on
estimating two expected values with an infinitesimal variation of a chosen parameter. This
inefficient approach results in biased sensitivity estimation with a very high variance. We
have shown that direct differentiation of the expected value is much more appropriate since
the estimation is unbiased and gives an acceptable error bar.

In the second part of this chapter, the physics of radiative transfer is introduced with a
corpuscular and mesoscopic point of view. The physics of radiative transfer in the medium is
described by RTE, using the intensity as the descriptor. The boundary condition governs
the transport of intensity on the boundaries. In order to build a Monte Carlo algorithm to
estimate a physical observable, the observable has to be reformulated as an integral in an
expected value form.

An example of solving radiative transfer problem by Monte Carlo method is given at the
end. Similarly to the reciprocity of rays, the Monte Carlo algorithm can be built differently.
It can be built from the emitter to the receiver or, inversely, from the receiver to the emitter.
These two strategies refer to the forward and reverse ray-tracing algorithms. Last but not
least, we link the vocabulary of integral formulations, physics, and algorithms to prepare
further studies about vectorization in the radiative systems in the following chapters.

1.7 Numerical results
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Numerical results

𝑛𝑀𝐶 1000000 788046 621017 489390 385662

𝑌 393.45× 10−3 393.54× 10−3 393.46× 10−3 393.46× 10−3 393.22× 10−3

𝜎[𝑌 ] 57× 10−6 64× 10−6 72× 10−6 81× 10−6 91× 10−6

𝑛𝑀𝐶 303920 239503 188739 148735 117210

𝑌 393.37× 10−3 393.54× 10−3 393.41× 10−3 393.46× 10−3 393.39× 10−3

𝜎[𝑌 ] 103× 10−6 116× 10−6 131× 10−6 147× 10−6 166× 10−6

𝑛𝑀𝐶 92367 72790 57362 45204 35622

𝑌 393.55× 10−3 393.56× 10−3 393.13× 10−3 393.61× 10−3 394.04× 10−3

𝜎[𝑌 ] 187× 10−6 210× 10−6 236× 10−6 268× 10−6 301× 10−6

𝑛𝑀𝐶 28072 22122 17433 13738 10826

𝑌 393.29× 10−3 393.09× 10−3 392.88× 10−3 393.46× 10−3 392.48× 10−3

𝜎[𝑌 ] 340× 10−6 381× 10−6 429× 10−6 483× 10−6 544× 10−6

𝑛𝑀𝐶 8532 6723 5298 4175 3290

𝑌 393.48× 10−3 392.49× 10−3 393.40× 10−3 393.18× 10−3 393.84× 10−3

𝜎[𝑌 ] 616× 10−6 696× 10−6 777× 10−6 883× 10−6 985× 10−6

𝑛𝑀𝐶 2593 2043 1610 1269 1000

𝑌 392.93× 10−3 390.59× 10−3 393.97× 10−3 392.89× 10−3 394.52× 10−3

𝜎[𝑌 ] 1.12× 10−3 1.24× 10−3 1.41× 10−3 1.57× 10−3 1.79× 10−3

Table 1.2 – Expected values and variances of estimations
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𝑛𝑀𝐶 1000000 788046 621017 489390 385662

𝑌 * 393.47× 10−3 393.53× 10−3 393.50× 10−3 393.49× 10−3 393.48× 10−3

𝜎[𝑌 *] 21× 10−6 24× 10−6 26× 10−6 30× 10−6 34× 10−6

𝑛𝑀𝐶 303920 239503 188739 148735 117210

𝑌 * 393.43× 10−3 393.47× 10−3 393.62× 10−3 393.51× 10−3 393.57× 10−3

𝜎[𝑌 *] 38× 10−6 43× 10−6 48× 10−6 54× 10−6 61× 10−6

𝑛𝑀𝐶 92367 72790 57362 45204 35622

𝑌 * 393.50× 10−3 393.51× 10−3 393.64× 10−3 393.37× 10−3 393.52× 10−3

𝜎[𝑌 *] 69× 10−6 77× 10−6 87× 10−6 98× 10−6 111× 10−6

𝑛𝑀𝐶 28072 22122 17433 13738 10826

𝑌 * 393.32× 10−3 393.35× 10−3 393.38× 10−3 393.75× 10−3 393.27× 10−3

𝜎[𝑌 *] 124× 10−6 139× 10−6 158× 10−6 178× 10−6 200× 10−6

𝑛𝑀𝐶 8532 6723 5298 4175 3290

𝑌 * 393.19× 10−3 393.54× 10−3 393.69× 10−3 393.62× 10−3 393.29× 10−3

𝜎[𝑌 *] 222× 10−6 253× 10−6 287× 10−6 327× 10−6 362× 10−6

𝑛𝑀𝐶 2593 2043 1610 1269 1000

𝑌 * 392.24× 10−3 393.77× 10−3 393.78× 10−3 393.76× 10−3 393.28× 10−3

𝜎[𝑌 *] 395× 10−6 466× 10−6 532× 10−6 599× 10−6 666× 10−6

Table 1.3 – Expected values and standard deviation of estimations with the important
sampling technique.
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𝑛𝑀𝐶 1000000 788046 621017 489390 385662

𝑌1 631.95× 10−3 632.19× 10−3 631.78× 10−3 631.97× 10−3 631.66× 10−3

𝜎[𝑌1] 181× 10−6 204× 10−6 230× 10−6 259× 10−6 292× 10−6

𝑛𝑀𝐶 303920 239503 188739 148735 117210

𝑌1 631.94× 10−3 631.78× 10−3 632.20× 10−3 631.62× 10−3 631.96× 10−3

𝜎[𝑌1] 328× 10−6 370× 10−6 417× 10−6 469× 10−6 529× 10−6

𝑛𝑀𝐶 92367 72790 57362 45204 35622

𝑌1 632.58× 10−3 632.82× 10−3 632.58× 10−3 632.23× 10−3 633.34× 10−3

𝜎[𝑌1] 596× 10−6 671× 10−6 756× 10−6 850× 10−6 957× 10−6

𝑛𝑀𝐶 28072 22122 17433 13738 10826

𝑌1 632.53× 10−3 630.54× 10−3 631.85× 10−3 632.78× 10−3 631.62× 10−3

𝜎[𝑌1] 1.08× 10−3 1.21× 10−3 1.37× 10−3 1.54× 10−3 1.75× 10−3

𝑛𝑀𝐶 8532 6723 5298 4175 3290

𝑌1 635.20× 10−3 631.89× 10−3 629.34× 10−3 634.24× 10−3 633.51× 10−3

𝜎[𝑌1] 1.97× 10−3 2.21× 10−3 2.46× 10−3 2.79× 10−3 3.15× 10−3

𝑛𝑀𝐶 2593 2043 1610 1269 1000

𝑌1 635.53× 10−3 627.10× 10−3 641.86× 10−3 624.09× 10−3 626.76× 10−3

𝜎[𝑌1] 3.58× 10−3 3.95× 10−3 4.62× 10−3 4.96× 10−3 5.64× 10−3

Table 1.4 – Expected values and standard deviation of estimations with the vectorization
technique for 𝑌1.
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𝑛𝑀𝐶 1000000 788046 621017 489390 385662

𝑌 393.42× 10−3 393.49× 10−3 393.36× 10−3 393.41× 10−3 393.32× 10−3

𝜎[𝑌 ] 57× 10−6 64× 10−6 72× 10−6 81× 10−6 91× 10−6

𝑛𝑀𝐶 303920 239503 188739 148735 117210

𝑌 393.42× 10−3 393.36× 10−3 393.49× 10−3 393.32× 10−3 393.41× 10−3

𝜎[𝑌 ] 103× 10−6 116× 10−6 131× 10−6 147× 10−6 166× 10−6

𝑛𝑀𝐶 92367 72790 57362 45204 35622

𝑌 393.61× 10−3 393.69× 10−3 393.62× 10−3 393.52× 10−3 393.88× 10−3

𝜎[𝑌 ] 187× 10−6 210× 10−6 237× 10−6 266× 10−6 300× 10−6

𝑛𝑀𝐶 28072 22122 17433 13738 10826

𝑌 393.59× 10−3 392.99× 10−3 393.38× 10−3 393.70× 10−3 393.25× 10−3

𝜎[𝑌 ] 338× 10−6 380× 10−6 429× 10−6 482× 10−6 549× 10−6

𝑛𝑀𝐶 8532 6723 5298 4175 3290

𝑌 394.43× 10−3 393.39× 10−3 392.66× 10−3 394.18× 10−3 393.94× 10−3

𝜎[𝑌 ] 615× 10−6 692× 10−6 771× 10−6 874× 10−6 985× 10−6

𝑛𝑀𝐶 2593 2043 1610 1269 1000

𝑌 394.52× 10−3 391.98× 10−3 396.38× 10−3 391.08× 10−3 391.87× 10−3

𝜎[𝑌 ] 1.12× 10−3 1.24× 10−3 1.44× 10−3 1.56× 10−3 1.77× 10−3

Table 1.5 – Expected values and standard deviation of estimations with the vectorization
technique for 𝑌2.

�̈� 𝜕𝐹 (�̈�) 𝜎[𝜕𝐹 (�̈�)] 𝜕𝐹 (�̈�) 𝜎[𝜕𝐹 (�̈�)] analytical solution
2.00 −251.91× 10−3 1.37× 10−3 −248.57× 10−3

1.95 −232.00× 10−3 −51.19× 10−3 −260.91× 10−3 1.39× 10−3 −261.53× 10−3

1.89 −285.89× 10−3 −50.85× 10−3 −278.83× 10−3 1.41× 10−3 −275.29× 10−3

1.84 −331.89× 10−3 −50.25× 10−3 −290.47× 10−3 1.44× 10−3 −289.85× 10−3

1.79 −360.14× 10−3 −49.85× 10−3 −305.18× 10−3 1.48× 10−3 −305.15× 10−3

1.74 −322.65× 10−3 −49.16× 10−3 −318.86× 10−3 1.52× 10−3 −321.11× 10−3

1.68 −310.05× 10−3 −48.48× 10−3 −337.39× 10−3 1.54× 10−3 −337.58× 10−3

1.63 −347.24× 10−3 −47.61× 10−3 −355.63× 10−3 1.58× 10−3 −354.33× 10−3

1.58 −351.43× 10−3 −46.64× 10−3 −370.07× 10−3 1.62× 10−3 −371.04× 10−3

1.53 −438.99× 10−3 −45.75× 10−3 −385.26× 10−3 1.66× 10−3 −387.29× 10−3

1.47 −410.94× 10−3 −44.52× 10−3 −401.33× 10−3 1.72× 10−3 −402.51× 10−3

1.42 −375.15× 10−3 −43.40× 10−3 −417.88× 10−3 1.76× 10−3 −416.00× 10−3

1.37 −418.01× 10−3 −42.00× 10−3 −427.06× 10−3 1.83× 10−3 −426.88× 10−3

1.32 −429.15× 10−3 −40.59× 10−3 −432.62× 10−3 1.90× 10−3 −434.10× 10−3

1.26 −446.04× 10−3 −39.05× 10−3 −434.78× 10−3 1.98× 10−3 −436.46× 10−3

1.21 −450.26× 10−3 −37.34× 10−3 −431.64× 10−3 2.07× 10−3 −432.58× 10−3

1.16 −453.30× 10−3 −35.44× 10−3 −417.82× 10−3 2.17× 10−3 −420.94× 10−3

1.11 −373.79× 10−3 −33.44× 10−3 −397.15× 10−3 2.25× 10−3 −399.95× 10−3

1.05 −332.83× 10−3 −31.27× 10−3 −368.31× 10−3 2.33× 10−3 −367.95× 10−3

1.00 −325.07× 10−3 2.41× 10−3 −323.32× 10−3

Table 1.6 – Comparison of the results obtained by finite difference and Monte Carlo
method.
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2.1 Introduction
In the last chapter, we introduced some necessary elements of radiative transfer and the
Monte Carlo method. Herein, we provide a more specific context about the realized work in
this thesis.
Firstly, a literature study about the need to estimate sensitivities in a radiative system will
be introduced. This literature study mainly focuses on the field of CSP, which is the starting
point of this thesis. Monte Carlo methods are widely used to compute optical efficiency in
CSP research. Indeed, deterministic methods are not used to compute optical efficiencies of
CSP system due to complex geometries. However, evaluating sensitivity with respect to the
geometric parameters (translation, rotation, and heliostat size) remains an open research
problem. We will see in this chapter that our objective is to develop a tool to estimate this
kind of geometric sensitivities in CSP systems.
Researchers in EDstar group1 and image synthesis have focused on sensitivity estimation for
years. Therefore, we review the available tools in the physics of radiative transfer and image
synthesis that deal with estimating sensitivities by the Monte Carlo method. Difficulties are
found when we want to apply these tools to estimate sensitivities in CSP system or, more
generally, in a system with complex (non-convex) geometry. These difficulties are thoroughly
distinguished and discussed in this chapter. The research problem we address is to overcome
these difficulties by using the method of sensitivity model, which is relevant to estimate
sensitivities in a radiative system with complex geometry. In addition, we investigate the
technique of vectorization, which becomes crucial when the number of sensitivities to estimate
increases. We will also introduce and discuss why we chose to follow this strategy.

1http://www.edstar.cnrs.fr/prod/fr/
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2.2 Needs of estimating sensitivities by Monte
Carlo method in CSP systems

2.2.1 Optical system of CSP
The thermodynamic production of electricity by solar energy can be dated back to the
1980s [43]. Nowadays, the technology of CSP is also used for heat production for industrial
processes [49]. An optical system is designed to concentrate the solar radiance to attain
a high temperature on the solar receiver. The energy concentrated on the receiver is then
transformed into electricity, stored in chemical energy, or used by industrial processes.

We distinguish here two prominent families of concentration technology:

The linear concentrators Solar radiance is concentrated on a long tube. Heat transfer
fluid flows inside the tube and carries the concentrated energy to the applications. The tubes
are set on the focal line of the reflectors concentrating solar radiance. The Linear Fresnel
reflector and the Parabolic trough reflectors (Fig.2.1) are in this category.

The point-focus concentrators Solar radiance is concentrated on a point where a receiver
is located. The concentrators follow the sun in a day by two-axis rotations: azimuth and
elevation. The technology of STP and the parabolic dish (Fig.2.1) are in this category.

Figure 2.1 – The four main CSP technologies. Parabolic through and linear Fresnel
reflector are linear concentrators. Parabolic dish and central receiver (STP) are point-
focus concentrators.

2.2.2 Monte Carlo method in CSP
If we focus on the optical system of CSP facilities (Fig.2.1), it is firstly based on radiative
transfer phenomena. Researchers focus on how to evaluate the optical performances of the
optical system. For example, how much power (noted 𝑃 in [W]) can a receiver capture from
the reflected solar power at a given time during the day?

There are two main families of numerical tools in the CSP community [62], evaluating the
optical performances and answering this question:

1. MCRT method [3, 5, 35, 48, 63].

2. Cone optics convolution-based method [12, 39, 53, 59, 60].

Cone optics convolution-based method
The first codes following this concept can be dated back to the 1970s in the project of
Solar One in US [19]. Following this method, the mirror shape, optical errors, and sun
shape are represented by analytical distribution, usually Gaussian distributions. After that,
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the reflected image on the receiver is obtained by the convolution of these three analytical
distributions.

Researchers use the codes following this concept mainly for faster optical modeling. Some
codes remain very popular (HFLCAL [53], and SolarPILOT [60], etc). However, the accuracy
of this kind of method is generally lower than the MCRT methods [62].

MCRT method

Some articles review and compare different tools of simulation [19, 36, 37, 62]. Compared to
the other method, MCRT method is justified to be more versatile [19] because the real points
of interactions of photons in complex geometries can be produced. Several Monte-Carlo-based
tools are compared to the convolution-based methods in the study of [62], revealing that the
Monte Carlo methods have better performances concerning accuracy.

Figure 2.2 – SolTrace uses a MCRT method [63], shown here being applied to a linear
Fresnel CSP configuration. Rays are randomly launched from the plane above reflectors.

Moreover, different MCRT methods can be further classified:

• Collision-based algorithms

• Integral Formulation Monte Carlo (IFMC) [11]

Collision-based algorithms The Collision-based algorithms are also called “analog Monte
Carlo” in a Monte Carlo point of view [14]. They mimic the physical phenomena of photon
transport. The most widely used codes in this category includes MIRVAL [35], Tonatiuh [3],
SolTrace [63], Traceri [61], etc.

This kind of MCRT method has similar algorithms, which are also commonly labeled the
algorithms of “Russian roulette”. Starting from a plane above all reflectors, some solar rays
are launched according to the solar position. The rays are associated with a random number
in the range of 0 to 1. Rays will be reflected when the random number is higher than the
reflectivity; otherwise, they are absorbed by the surface. It is then tested if the rays are
reflected and hit the receiver (Fig.2.2). The impacting power 𝑃 [W] on the receiver is then
estimated according to the portion of solar rays arriving at the receiver.

Since the rays are launched from the source of intensity, the plane above heliostats, those
algorithms are regarded as forward ray-tracing algorithms (Section.1.5.3 in Chapter.1).
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IFMC In the framework of IFMC, the impacting power 𝑃 [W] on the receiver is written as
an integral formulation based on the physics of radiative transfer, and more specifically on
the RTE. It is also the aspect of working in our research group [11], corresponding to one
of the spirits of this thesis, which is “formulating the integral formulation and solving it by
Monte Carlo method”. In our group, based on this approach, a numerical tool, SOLSTICE,
has been developed by Mesostar2. The algorithm of SOLSTICE is very efficient compared to
the Collision-based algorithms [62] because the techniques of variance reduction are used to
construct the corresponding Monte Carlo algorithm [14]. Some of them are introduced in
Chapter.1.

For example, instead of launching solar rays from a plane over the reflectors, SOLSTICE
launches the solar rays from the surfaces of reflectors according to the solar cone (Fig.2.3). It
avoids launching massive solar rays hitting the ground but not the reflectors [9]. Referring to
the example shown in Section.1.4 in Chapter.1, the Monte Carlo weight is more often null for
collision-based algorithms, resulting that SOLSTICE converges faster than the collision-based
algorithms [62].

Figure 2.3 – The SOLSTICE algorithm relies on the first sampling of a position on the
reflector, followed by sampling in a direction in the solar cone to calculate the reflected
rays and check if it intercepts the receiver.

The highlight of IFMC methods is that the observable (usually it is the power 𝑃 ) is
expressed as an integral formulation with an expected value form. The corresponding Monte
Carlo algorithm is then built based on this integral formulation to estimate the observable.
Compared to other collision-based algorithms, it has mainly the following interests:

• Techniques of variance reduction can be applied to improve the convergence perfor-
mance.

• The spectral properties can be considered in SOLSTICE, for example, in modeling
the Fresnel Concentrator Lens. This is because the power 𝑃 [W] is expressed as the
product of spatial integral, angular integral and spectral integral of monochromatic
intensity 𝐼𝜈 [W ·m−3 · sr−1].

• The annual received energy 𝐸[kWh] is easy to be calculated by IFMC method because
it is just a temporal integral of the power 𝑃 . A study concerning this research problem
can be referred to [16].

• Other physical modelings (heat transfer modeling of the receiver) can be coupled
with the radiative transfer model. The coupling model can be solved numerically by
the Monte Carlo method. For example, a numerical tool, STARDIS, is developed
by Mesostar to simulate heat transfer problems using the Monte Carlo method. The
temperature 𝑇 is the observable formulated as an integral formulation in STARDIS. It

2https://www.meso-star.com/
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is then possible to formulate the observable in the CSP system, usually the power 𝑃 , as
a function of intensity 𝐼 and temperature 𝑇 , in an integral formulation. By doing this,
the heat transfer phenomena can be considered in the evaluation of the CSP optical
performance.

Therefore, we choose to work in this thesis in the framework of IFMC to maximize its
potential in CSP applications.

2.2.3 Sensitivity studies in CSP systems
Simulation tools that evaluate the optical performance for CSP systems are various. However,
estimating gradient (sensitivities) remains challenging in the CSP community. Only a few
studies calculating the gradient have been realized because the sensitivities are hard to obtain.
Sensitivities are usually required to solve the inverse problem and for optimization purposes.

Solving inverse problems
Solving a physical problem with a complete model (with modeling equations, physical
properties, and boundary conditions) is called a direct problem or forward problem.

Now, for example, if the physical properties are missing, the physical model can not be solved.
However, some inversion procedures may evaluate the missing physical properties by fitting
the model output with real ones that can be obtained through experiments. The problem of
evaluating such missing physical properties is called an inverse or backward problem. Solving
an inverse problem often requires sensitivities [17].

For example, researchers aim to determinate a reflective property (noted �̈�) of a heliostat
[5]. They need to measure the real flux map of this heliostat on the receiver and simulate
the flux map with an initial �̈� for the same heliostat. If the impact of �̈� to the flux map
(the sensitivity) can be known, they can then adjust the value of �̈� so that the simulated
flux map corresponds to the measured one. The adjusted value of �̈� represents the reflective
property corresponding to the real heliostat.

Geometric optimizations
The geometry of a CSP system can be very complex. For example, it can be composed of a
massive number of heliostats. It is challenging to optimize the geometric design of a STP
system to maximize the impacting power on the receiver, to homogenize the flux map on the
receiver, or to maximize gathered energy over time.

Usually, researchers couple an MCRT method (see section 2.2.2) with gradient-free opti-
mization algorithms such as the genetic algorithms, PSO, etc [13, 16, 73]. However, the
gradient-free optimization algorithm is used as a “black box tool”. Nevertheless, it is hard to
know which parameters are the most sensitive.

Few researchers calculate the sensitivities of geometric parameters for optimization purposes.
The geometric sensitivities are approximated by the finite difference method to optimize
some simple solar concentrators [40]. However, as discussed in Chapter.1, the corresponding
standard deviation is very hard to control. Therefore, in the literature, this method of
approximation is only used for simple geometries of the solar concentrator. Also, another
attempt to approximate the gradient has been suggested by [66] by the “area-ratio” method.
However, this method is based on specific assumptions and induces an empiric weight.

In Chapter.5, we introduce and develop a method to estimate geometric sensitivities based
on the derivation of RTE followed by a reformulation as an integral formulation. In an STP
system, the sensitivities of impacting power with respect to the translation, rotation, and the
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length of edge for each heliostat in the field can be obtained. We will not only distinguish
the system’s most sensitive parameters but also physically understand why they are sensitive.
Heliostat position, orientation, and size can be adjusted to optimize the optical performance
of a STP system by knowing those sensitivities.

Last but not least, it makes using gradient-based optimization algorithms possible. For
an optimization problem, when the parameter space dimension is large, the gradient-based
optimization algorithm is usually used [17]. The optimization problems in CSP usually have
a significant parameter space dimension because many parameters have to be optimized.
Since the optimization processes are limited to gradient-free methods, researchers use empiric
parameterization techniques to decrease the numbers of parameters [16, 67]. With the
information on sensitivities, gradient-based optimization algorithms can be used to avoid
these empiric approaches. However, regardless of the Monte Carlo method to compute the
gradient (sensitivities), it is always given with a standard deviation of this gradient, which
needs to be better handled by optimization algorithms.

2.3 Estimate sensitivities by Monte Carlo method
in radiative system

More generally, researchers in physics and image synthesis have been working around the
question of estimating sensitivities in radiative systems for years. Specially in image synthesis,
coupling with the algorithm of optimizations and neutral network [26], the sensitivities are
then served to the 3D object reconstruction [27, 28, 56, 65], the body shape estimation [4,
45], hand shape estimation [1, 72], face reconstruction [20], etc.

Referring to Chapter.1, researchers focus on estimating the sensitivity of observable with
respect to a parameter that characterizes the radiative system (for example, �̈�). It could be
the sensitivity of the intensity on a location �⃗�𝑜𝑏𝑠 towards a direction �⃗�𝑜𝑏𝑠:

𝜕�̈�𝐼(�⃗�, �⃗�, �̈�), (2.1)

the sensitivity of Irradiance:

𝜕�̈�𝐺, (2.2)

the sensitivity of radiance flux:

𝜕�̈�𝜑, (2.3)

or the sensitivity of impacting power:

𝜕�̈�𝑃. (2.4)

We classify the available methods which can be used to estimate these sensitivities of
observables into three categories. They are detailed in the next paragraph:

1. Method of observable derivation

2. Method of differentiable rendering

3. Method of sensitivity model
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2.3.1 Approximation by Finite Difference method
Before introducing the three methods of estimating sensitivity, we first review the finite
difference method, which is a naive approach to approximate sensitivities. It is already
introduced in Chapter.1.

This method suffers from several drawbacks:

• The approximation is biased because of discretization.

• The standard deviation tends to infinity when the discretization parameter tends to
zero.

Despite these drawbacks, this method is used for validation purposes in this thesis, in the
community of radiative transfer [34, 51] and the community of image synthesis [71].

2.3.2 Method of observable derivation
This method is based on differentiating the integral of an expected value form. An example
can be found in Chapter.3. In his Ph.D. work, Roger distinguished two cases [51]. Firstly,
when the integration domain is independent of the parameter to be differentiated, the
required formal development is relatively simple [10]. The related sensitivity is named a
"parametric sensitivity". Otherwise, if the integration domain depends on the parameter
to be differentiated, the formal development is more complicated since it introduces a
domain-deformation velocity [51]. In this case, it is referred to as a "geometric sensitivity".

Advantages

This method allows us to estimate the observable and its gradient “simultaneously”. In other
words, the estimations of the observable and its sensitivities are entirely vectorized.

Therefore, “simultaneously” means:

1. Mathematically, the observable (usually is the intensity 𝐼) and its sensitivity with
respect to a parameter (for example �̈� and the sensitivity 𝜕�̈�𝐼) are formulated as two
expected values to be solved by Monte Carlo method. When these integrals are defined
on the same domain, they can be vectorized (seeing Example.1.3.5 in Chapter.1) and
be solved by Monte Carlo method “simultaneously”.

2. Physically, when we simulate a radiative system by the Monte Carlo method, we
generate the ray paths within their path space. These ray paths contain information as
the intensity or its sensitivities. When the path space of intensity and the path space
of its sensitivities are the same, the same ray path simulated can contain information
on the intensity and its gradient. The transfer of intensity and its sensitivities can then
be simulated “simultaneously”.

3. In an algorithmic point of view, the estimation of Monte Carlo requires samplings
according to a pdf. If the estimation of observable and its sensitivities have the same
pdf, they can then be estimated “simultaneously”. Practically, a sampled random
number is used twice, but the corresponding weights are different.
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Disadvantages

A complete review of the difficulties found when applying this method in a CSP context has
been realized by De La Torre [9]. He detailed three examples to estimate the sensitivity of
the impacting power with respect to the tower height.

1. The required formal development is huge, even if only one heliostat is considered.
Therefore, it is almost impractical to consider the blocking and shadowing effects when
considering more than one heliostat.

2. An issue of convergence is found when considering a heliostat that is not perfectly
specular.

This method seems limited to academic examples.

2.3.3 Method of differentiable rendering
Attention has also been paid to the research field of image synthesis around the problem of
estimating the sensitivities by Monte Carlo. There are different techniques to render a 2D
image from a 3D scene. Among them, the PBR is one of the most realistic ways [46], which
is also based on the Monte Carlo method. Researchers in image synthesis are also motivated
to calculate the sensitivities for the applications in 3D object reconstruction, body shape
estimation, hand shape estimation, etc.

Unlike the method of observable derivation, researchers in image synthesis construct an
integral formulation for the observable and another for its sensitivity. Furthermore, according
to different sensitivities, their integral formulations can be different. This process is called
differentiable rendering in the literature of image synthesis [26], and in this thesis, we call it
the method of differentiable rendering. The method of differentiable rendering is adapted to
complex geometries. More details about this method can be found in Chapter.3.

Advantages

This method is used widely in the community of image synthesis, where complex geometry
is regarded as a major challenge. Studies are realized to render images of sensitivity for
complex geometries [38, 68, 71]. Therefore, this method is well adapted to be applied in
radiative systems involving complex geometry.

Disadvantages

This method focuses on rendering images of sensitivities. Therefore, the corresponding
algorithm is based on a reverse ray-tracing algorithm [46]. However, the reverse ray-tracing
algorithm is proved to have poor convergence performance in evaluating optical performance
in CSP [9]. Integrating this method to CSP applications will be inconvenient.

Furthermore, sensitivities’ physical interpretations seem less important in the image synthesis
community. The studies focus more on the solution of the partial differential equations, the
algorithm, and the pipelines [26]. However, the physical interpretations of the sensitivities
are essential for engineers and physicians.
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2.3.4 Method of sensitivity model
The sensitivity model method was first developed by Lapeyre [32]. It relies on building physical
models for the sensitivities by differentiating the model (which consists of differentiating the
RTE and the boundary conditions). The sensitivities in the system are regarded as physical
quantities transported in the radiative system. They behave similarly to the intensity:
absorbed, scattered, emitted, and reflected in the system. The similitude of the transport of
intensity and of sensitivity is studied in [31, 32, 34].
In a radiative system, the intensity 𝐼 is the descriptor, a function of position �⃗� and a direction
of propagation �⃗�. If �̈� is one of the parameters characterizing the system, the intensity is
also a function of �̈�. If we note the intensity 𝐼 ≡ 𝐼(�⃗�, �⃗�, �̈�), the sensitivity (noted 𝑠) is then
its derivative with respect to the parameter �̈�:

𝑠(�⃗�, �⃗�, �̈�) ≡ 𝜕�̈�𝐼(�⃗�, �⃗�, �̈�) (2.5)

Physically, it can be regarded as the local perturbation of intensity on �⃗�, following �⃗�, with
respect to the parameter �̈�. This perturbation is also transported in the radiative system, as
shown in Fig.2.4.

�̈�

R

𝐼

𝑠

Figure 2.4 – Intensity 𝐼 is emitted from the bulb and scattered in the semi-transparent
medium. If �̈� characterizes the position of the bulb, a perturbation of intensity with
respect to �̈�, noted 𝑠, can be regarded as being emitted from the bulb and scattered in
the medium too.

We have seen in the last chapter that we created a model of transport for intensity. We then
formulate the integral formulation for an observable, on which a physical image of “photons”
and a Monte Carlo algorithm are proposed. Following the method of sensitivity model, we
create models for different sensitivities. We also formulate integral formulations for the
sensitivities of observable. Physical images and Monte Carlo algorithms are also proposed
for these integral formulations for sensitivities.
In order to build a model of sensitivity with respect to a parameter �̈�, we need to differentiate
the model of intensity (differentiate the RTE and the boundary conditions). We will see in
the following chapters of this thesis that the boundary condition of the sensitivity is usually
coupled with the spatial derivative and angular derivative of the intensity.
The spatial derivative is defined by

𝜕1𝐼(�⃗�, �⃗�, �̈�) (2.6)

and the angular derivative is defined by

𝜕2𝐼(�⃗�, �⃗�, �̈�). (2.7)
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Similarly to the sensitivity 𝑠(�⃗�, �⃗�, �̈�), the spatial derivative and the angular derivative are
also regarded as physical quantities being transported in the system. The similitude of
the transports for intensity, sensitivity, spatial derivative, and angular derivative have been
considered for the first time in the Ph.D. work of Paule Lapeyre [32, 34].

Advantages
The main advantage of this method is the convenience of interpreting the sensitivities
physically. We will see later in Chapter.5 that the sensitivities of the impacting power
in a CSP system, with respect to the translation, rotation, and the size of each heliostat
are estimated based on this method. Nevertheless, a detailed analysis of how the physical
phenomena in STP system (blocking, shadowing, spillage, etc.) affect the sensitivities is
done. Engineers and researchers can then understand which parameters are more sensitive
than others and why they are more sensitive.

This advantage benefits from the existence of the sensitivity model. The sensitivity model
uses the sensitivity of intensity as the descriptor. It describes how the sensitivity of intensity
is transported in the system and distinguishes the sources of sensitivity. The sources of
sensitivity are related to the perturbation of intensity caused by the perturbation of the
corresponding parameter of the system. By analyzing the sensitivity models, the physical
interpretations of sensitivities become possible. More details about analyzing the sensitivity
in a CSP system can be referred to Chapter.5.

Disadvantages
When the number of sensitivities becomes large, the calculating time becomes consuming,
and the coding development becomes a heavy task. Compared to the method of observable
derivation, the method of sensitivity model is more adapted to complex configurations (for
example, a STP system). However, a radiative system can depend on many parameters, and
each parameter must have its corresponding sensitivity model.

For example, in Fig.2.5, �̈�1 and �̈�2 characterize the two directions of translation of the bulb.
If we want to estimate an observable and its derivatives with respect to the two parameters,
three models have to be built: the model of intensity 𝐼, the model of sensitivity for �̈�1:
𝑠1 ≡ 𝜕�̈�1𝐼 and the model of sensitivity for �̈�2: 𝑠2 ≡ 𝜕�̈�2𝐼. For CSP applications, the order of
magnitude of sensitivities depends on the number of heliostats and the number of considered
parameters for each heliostat (translation, rotation, size...). For example, Ivanpah solar
power facility is the largest solar facility in the world in 2022 and is composed of 173500
heliostats. This very high number of parameters has motivated the vectorization technique
to decrease the computing time, which is the research problem of this thesis. The research
problem is discussed in detail in the following section.

Moreover, we will see in the following chapters that when the boundary conditions of intensity
are not mathematically smooth (for example, the borders of heliostats make the boundary
conditions discontinuous), surface and line sources can both appear in each sensitivity model.
Therefore, for each sensitivity model, the path spaces of different sources are different because
they have different locations: on the surfaces and the segments. As discussed in Chapter1,
different path spaces mean that different Monte Carlo samplings are needed, making the
coding development heavier and the computing time-consuming.

2.4 The research problem
The method of observable derivation estimates an observable and all its sensitivities “simul-
taneously” because they have the same path space (Fig.2.6). In other words, the estimations
of the observable and all its sensitivities are naturally vectorized because the intensity and
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�̈�1
�̈�2

R

𝐼

𝑠1

𝑠2

Figure 2.5 – For the two parameters characterizing the position of the bulb (�̈�1 and
�̈�2), two sensitivity models are needed. In order to solve the problems of intensity and
sensitivities, three models must be built.

the sensitivities are all transported as a vectorized form (Fig.2.6). However, it can not be
applied to complex CSP systems, especially when shadowing or blocking between heliostats
cannot be neglected. In addition, we will see in the next chapter that the formal development
required following this method is cumbersome.

�̈�1
�̈�2

R

⎡⎣ 𝐼
𝑠1
𝑠2

⎤⎦

Figure 2.6 – The method of observable derivation has only one path space for the
intensity and all sensitivities. The transports of the intensity and the sensitivities are
vectorized.

On the other hand, the image synthesis community has developed efficient algorithms to
estimate sensitivities that can be applied to complex geometries. However, it focuses on
producing rendering images, but the reverse ray-tracing algorithms have poor convergence
performances in CSP.
The method of sensitivity model can be applied to complex problems, but the number of path
spaces increases, and the sensitivities are estimated separately. It becomes almost hardly
practicable when the number of sensitivities to evaluate is high. Therefore, in this work, the
research problem is to regain the advantages of “vectorization” for the method of sensitivity
model.
Therefore, in this thesis, we tackle this research problem step by step. In Chapter.3, we
will apply and compare the three methods mentioned in Section.2.3 into a simple 1-D
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radiative transfer case. Secondly, we will apply the method of sensitivity model to radiative
transfer cases involving complex geometries. We will distinguish different sources having
the same path space in the sensitivity model. Sometimes it is obvious, but sometimes,
mathematical reformulation efforts are needed. We will then only vectorize the sources
sharing the same path space (in Chapter.4). In Chapter.5, we address the estimation of
thousands of sensitivities for a CSP system composed of thousands of heliostats that can
shade each other. The massive estimation of sensitivities becomes achievable only with
this strategy of vectorization. Lastly, we reformulate the sensitivity models to vectorize all
the sources. This last chapter will rely on the use of Stokes’ theorem. By doing this, the
advantages of the method of observable derivation (a perfect vectorization) can be regained,
but some limitations are identified.
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3.1 Introduction
In this chapter, we will discuss and review the three viewpoints found in the literature to
estimate sensitivities in a radiative system announced in Chapter.2

1. The method of observable derivation [50, 51].

2. The method of differentiable rendering [38, 68, 70, 71].

3. The method of sensitivity model [32, 33].

To better understand the three methods, we apply them to a one-dimension radiative
problem, which is a typical, widely studied radiative problem for which an analytical solution
is available [2]. Their performances, conveniences, and limitations will be compared and
discussed in this application context.
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3.2 Case study: radiation in a 1d-rod
A one-dimension rod (Fig.3.1) is considered, which extends from 0 to �̈� We denote a generic
point in the rod by 𝑥. A source of radiation locates on the left side of rod where 𝑥 = 0 and
there is no source of radiation on the right side at 𝑥 = �̈�. These are two Dirichlet boundary
conditions. The photons move to the right and left along this rod without interacting with
each other, but collisions happen in the medium. The absorption and scattering in the rod
are considered homogeneous and isotropic (𝑘𝑎 and 𝑘𝑠 are constant), and the medium is
considered “cold” (no emission).

�⃗�𝑥𝑥 = 0 𝑥 = �̈�

𝐼+(0) = 𝐼0 𝐼−(�̈�) = 0

𝐼+(𝑥)𝐼−(𝑥)

Figure 3.1 – Configuration of 1-D rod

In standard radiative transfer modeling, the intensity is a function of position �⃗� and direction
of propagation �⃗�. Since we focus now on a 1-D problem, the position is noted by a scalar
𝑥, ∀𝑥 ∈ [0, �̈�]. The direction is noted by index + and −. Therefore, 𝐼+(𝑥) represents the
intensity at position 𝑥, propagating toward the right side and 𝐼−(𝑥) represents the intensity
at position 𝑥, propagating toward the left side (Fig.3.1).

We address the two following questions:

1. What is the intensity at each point and of the two directions in the rod: 𝐼+(𝑥) and
𝐼−(𝑥)? The intensity is the observable.

2. What is the sensitivity of the observable (the intensity) at each point and toward
the two directions in the rod, with respect to the length of the rod �̈�: 𝜕�̈�𝐼

+(𝑥) and
𝜕�̈�𝐼
−(𝑥)?

In order to answer the first question, standard radiative transfer modeling and a Monte-Carlo
algorithm will be built to estimate 𝐼+(𝑥) and 𝐼−(𝑥). The process will be detailed in the
following section. Furthermore, in order to estimate 𝜕�̈�𝐼

+(𝑥) and 𝜕�̈�𝐼
−(𝑥), the three methods

will be applied.

3.3 Estimation of intensity
The standard radiative transfer modeling process to estimate the intensity of all points 𝐼+(𝑥)
and 𝐼−(𝑥) has three steps:

1. Build a model of intensity, including the equation of transport in the medium (RTE)
and the boundary conditions.

2. Formulate the observable in an integral form (also called Fredholm equation of the
second kind, seeing the following box).

3. Transform the Fredholm equation into an expected value form to evaluate the observable
by Monte Carlo methods.
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Fredholm equation of the second kind

A Fredholm equation of the second kind is given as:

𝜑(𝑡) = 𝑓(𝑡) + 𝜆

∫︁ 𝑏

𝑎

𝐾(𝑡, 𝑠)𝜑(𝑠)𝑑𝑠 (3.1)

Given the kernel 𝐾(𝑡, 𝑠), a constant 𝜆 and the function 𝑓(𝑡), the problem is typically
to find the function 𝜑(𝑡).

3.3.1 The model of intensity
Referring to Chapter.1, the RTE in a homogeneous cold medium is:

�⃗� · 𝜕1𝐼(�⃗�, �⃗�) = −𝑘𝑎𝐼(�⃗�, �⃗�)− 𝑘𝑠𝐼(�⃗�, �⃗�) + 𝑘𝑠

∫︁
Ω′

P(−�⃗�′| − �⃗�)𝑑�⃗�′𝐼(�⃗�, �⃗�′). (3.2)

Since this example is a one-dimensional problem, the direction of propagation �⃗� will be a
one-dimensional vector, which has only two possible values: �⃗� ∈ {−�⃗�𝑥, �⃗�𝑥}, seeing Fig.3.1.
�⃗� = �⃗�𝑥 represents the right propagation of the intensity and vice-versa. The position vector
�⃗� can be noted as a scalar 𝑥 because it is also a vector of one dimension. Finally, we note:
𝐼+(𝑥) = 𝐼(�⃗�, �⃗�)|�⃗�=�⃗�𝑥

representing the right-side propagation and 𝐼−(𝑥) = 𝐼(�⃗�, �⃗�)|�⃗�=−�⃗�𝑥
the

left-side propagation.

Since the scattering is isotropic, in this one-dimensional problem, the phase-function becomes:
P(−�⃗�′| − �⃗�) = 1

2 , because only two directions are available for the transport of intensity.

Therefore, we have:

∫︁
Ω′

P(−�⃗�′| − �⃗�)𝑑�⃗�′𝐼(�⃗�, �⃗�′) = 𝐼(�⃗�, �⃗�′)
2 |�⃗�′=�⃗�𝑥

+ 𝐼(�⃗�, �⃗�′)
2 |�⃗�′=−�⃗�𝑥

= 𝐼−(𝑥) + 𝐼+(𝑥)
2 (3.3)

The RTE in this 1-D rod problem becomes:⎧⎪⎪⎨⎪⎪⎩
𝑑𝐼+(𝑥)
𝑑𝑥

= −𝑘𝑎𝐼
+(𝑥)− 𝑘𝑠𝐼

+(𝑥) + 𝑘𝑠(𝐼
+(𝑥)
2 + 𝐼−(𝑥)

2 )

−𝑑𝐼
−(𝑥)
𝑑𝑥

= −𝑘𝑎𝐼
−(𝑥)− 𝑘𝑠𝐼

−(𝑥) + 𝑘𝑠(𝐼
+(𝑥)
2 + 𝐼−(𝑥)

2 ).
(3.4)

Alternatively, let 𝑘𝑒 be the extinction coefficient: 𝑘𝑒 = 𝑘𝑠 + 𝑘𝑎 and 𝜆 be the single-scattering
albedo: 𝜆 = 𝑘𝑠

𝑘𝑒
. The RTE in this 1-D rod problem can also be written as:⎧⎪⎪⎨⎪⎪⎩

𝑑𝐼+(𝑥)
𝑑𝑥

= −𝑘𝑒𝐼
+(𝑥) + 𝑘𝑒𝜆(𝐼

+(𝑥)
2 + 𝐼−(𝑥)

2 )

−𝑑𝐼
−(𝑥)
𝑑𝑥

= −𝑘𝑒𝐼
−(𝑥) + 𝑘𝑒𝜆(𝐼

+(𝑥)
2 + 𝐼−(𝑥)

2 ).
(3.5)

Eq.3.4 and Eq.3.5 are then equivalent. A source of intensity locates on 𝑥 = 0, which yields
the Dirichlet boundary conditions:

{︃
𝐼+(0) = 𝐼0

𝐼−(�̈�) = 0
(3.6)
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Herein, Eq.3.5 (or Eq.3.4) and Eq.3.6 compose the complete model of intensity 𝐼. This model
is already mathematically solved[2]. The analytical solution exists for the intensity at all
points in the rod propagating to the left 𝐼−(𝑥) and to the right 𝐼+(𝑥):

𝐼+(𝑥|𝜆, 𝑘𝑒, �̈�) =
2(−1 + 𝜆) cosh

(︀
(�̈� − 𝑥)

√
1− 𝜆𝑘𝑒

)︀
+
√

1− 𝜆(−2 + 𝜆) sinh
(︀
(�̈� − 𝑥)

√
1− 𝜆𝑘𝑒

)︀
2(−1 + 𝜆) cosh

(︀
�̈�
√

1− 𝜆𝑘𝑒

)︀
+
√

1− 𝜆(−2 + 𝜆) sinh
(︀
�̈�
√

1− 𝜆𝑘𝑒

)︀ (3.7)

and

𝐼−(𝑥|𝜆, 𝑘𝑒, �̈�) =
−𝜆
√

1− 𝜆 sinh
(︀
(�̈� − 𝑥)

√
1− 𝜆𝑘𝑒

)︀
2(−1 + 𝜆) cosh

(︀
�̈�
√

1− 𝜆𝑘𝑒

)︀
+
√

1− 𝜆(−2 + 𝜆) sinh
(︀
�̈�
√

1− 𝜆𝑘𝑒

)︀ (3.8)

Now, we try to solve the model of intensity 𝐼 numerically by the Monte Carlo method. The
analytical solutions will then be used to validate our results obtained by the Monte Carlo
method.

3.3.2 Fredholm Equation
The model of intensity is described by differential equations (Eq.3.5), but the Monte-Carlo
method estimates the value of an integral (in an expected value form).

Based on the model of intensity, we build an integral equation for the intensity 𝐼+(𝑥) and
𝐼−(𝑥) (the observable) so that we transfer the problem to the estimation of an expected
value, which can be estimated by Monte-Carlo method.

Mathematically, the Eq.3.5 is composed of two First-order non-homogeneous linear differential
equation, of which the solution is an integral formulation (the Fredholm equation).

Solution of the first-order homogeneous linear differential equation

Let’s consider a First-order non-homogeneous linear differential equation and a
boundary condition at 𝑥0: ⎧⎨⎩

𝑑𝑦

𝑑𝑥
+ 𝛼𝑦 = 𝛽(𝑥)

𝑦(𝑥0) = 𝑦0

(3.9)

where 𝑦 and 𝛽 are functions of 𝑥 (𝑥 ∈ [0, 𝑥0]) and 𝛼 is a constant, supposing that the
boundary condition is known 𝑦(𝑥0) = 𝑦0.
Following the integrating factor method, we multiply the equation by 𝑒𝛼𝑥 for two
sides:

𝑑𝑦

𝑑𝑥
𝑒𝛼𝑥 + 𝛼𝑦𝑒𝛼𝑥 = 𝛽(𝑥)𝑒𝛼𝑥 (3.10)

which is:

(𝑦𝑒𝛼𝑥)′ = 𝛽(𝑥)𝑒𝛼𝑥, (3.11)
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implying that ∫︁ 𝑥0

𝑥

(︁
𝑦(𝑥′)𝑒𝛼𝑥′

)︁′
𝑑𝑥′ =

∫︁ 𝑥0

𝑥

𝛽(𝑥′)𝑒𝛼𝑥′
𝑑𝑥′. (3.12)

Eq.3.12 yields to

𝑦(𝑥0)𝑒𝛼𝑥0 − 𝑦𝑒𝛼𝑥 =
∫︁ 𝑥0

𝑥

𝛽(𝑥′)𝑒𝛼𝑥′
𝑑𝑥′. (3.13)

Finally, we have:

𝑦(𝑥) = 𝑦(𝑥0)𝑒𝛼(𝑥0−𝑥) −
∫︁ 𝑥0

𝑥

𝛽(𝑥′)𝑒𝛼(𝑥′−𝑥)𝑑𝑥′. (3.14)

Specially, when 𝑥0 = 0:

𝑦(𝑥) = 𝑦(0)𝑒−𝛼𝑥 +
∫︁ 𝑥

0
𝛽(𝑥′)𝑒−𝛼(𝑥−𝑥′)𝑑𝑥′ (3.15)

Eq.3.15 and Eq.3.14 are both the solutions of Eq.3.10. The two solutions correspond
to the two boundary conditions.

Therefore, based on Eq.3.5, the observable 𝐼+(𝑥) and 𝐼−(𝑥) can be formulated in an integral
form:

⎧⎪⎪⎨⎪⎪⎩
𝐼+(𝑥) = 𝐼+(0)𝑒−𝑘𝑒𝑥 +

∫︁ 𝑥

0
𝑒−𝑘𝑒(𝑥−𝑥′) 𝑘𝑒𝜆

2 (𝐼+(𝑥′) + 𝐼−(𝑥′))𝑑𝑥′

𝐼−(𝑥) = 𝐼−(�̈�)𝑒−𝑘𝑒(�̈�−𝑥) +
∫︁ �̈�

𝑥

𝑒−𝑘𝑒(𝑥′−𝑥) 𝑘𝑒𝜆

2 (𝐼+(𝑥′) + 𝐼−(𝑥′))𝑑𝑥′
(3.16)

Eq.3.16 is called the Fredholm Equation of the second kind. The intensity appears on both
sides of the equation. In this work, we will use the Monte-Carlo method to find the solution
of this Fredholm Equation (find 𝐼+(𝑥) and 𝐼−(𝑥)), which requires reformulating it into an
expected value form.

3.3.3 Expected value form
Expected value reformulation requires introducing a pdf. On the first equation of Eq.3.16,
we let 𝜉+ = 𝑥− 𝑥′, so that we have 𝑥′ = 𝑥− 𝜉+ and 𝑑𝑥′ = −𝑑𝜉+:

𝐼+(𝑥) =𝐼+(0)𝑒−𝑘𝑒𝑥 +
∫︁ 𝑥

0
𝑒−𝑘𝑒𝜉+ 𝑘𝑒𝜆

2 (𝐼+(𝑥− 𝜉+) + 𝐼−(𝑥− 𝜉+))𝑑𝜉+

=𝐼+(0)𝑒−𝑘𝑎𝑥

∫︁ ∞
𝑥

𝑘𝑠𝑒
−𝑘𝑠𝜉+

𝑑𝜉+

+
∫︁ 𝑥

0
𝑒−𝑘𝑒𝜉+ 𝑘𝑒𝜆

2 (𝐼+(𝑥− 𝜉+) + 𝐼−(𝑥− 𝜉+))𝑑𝜉+.

(3.17)

With 𝑘𝑒 = 𝑘𝑎 + 𝑘𝑠 and 𝜆 = 𝑘𝑠

𝑘𝑒
, Eq.3.17 yields to:

𝐼+(𝑥) =
∫︁ ∞

0
𝑘𝑠𝑒
−𝑘𝑠𝜉𝑑𝜉

⎛⎜⎜⎜⎜⎝
𝐼+(0)𝑒−𝑘𝑎𝑥H(𝜉 > 𝑥)

+1
2𝐼

+(𝑥− 𝜉)𝑒−𝑘𝑎𝜉H(𝜉 < 𝑥)

+1
2𝐼
−(𝑥− 𝜉)𝑒−𝑘𝑎𝜉H(𝜉 < 𝑥)

⎞⎟⎟⎟⎟⎠ (3.18)
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where 𝑘𝑠𝑒
−𝑘𝑠𝜉 is the normalised pdf (

∫︀∞
0 𝑘𝑠𝑒

−𝑘𝑠𝜉𝑑𝜉 = 1) of the random variable Ξ (𝜉 is a
realization of Ξ). H is the Heaviside function that is equal to 1 if the condition is true and 0
if it is not. Physically, 𝜉 is the sampled path length of scattering. We will also generate a
probability for the direction of scattering: 1

2 for the right side propagation and 1
2 for the left

side. Eq.3.18 is then reformulated as:

𝐼+(𝑥) =
∫︁ ∞

0
𝑘𝑠𝑒
−𝑘𝑠𝜉𝑑𝜉

∫︁ 1

0
𝑑𝑟

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝐼+(0)𝑒−𝑘𝑎𝑥H(𝜉 > 𝑥)

+𝐼+(𝑥− 𝜉)𝑒−𝑘𝑎𝜉H(𝜉 < 𝑥)H(𝑟 < 1
2)

+𝐼−(𝑥− 𝜉)𝑒−𝑘𝑎𝜉H(𝜉 < 𝑥)H(𝑟 > 1
2)⏟  ⏞  

�̂�+

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.19)

The sum in the parentheses is called the weight of Monte-Carlo, noted �̂�+.

Let 𝜉− = 𝑥′ − 𝑥, so that we have 𝑥′ = 𝜉− + 𝑥 and 𝑑𝑥′ = 𝑑𝜉−:

𝐼−(𝑥) =𝐼−(�̈�)𝑒−𝑘𝑒(�̈�−𝑥) +
∫︁ �̈�−𝑥

0
𝑒−𝑘𝑒𝜉− 𝑘𝑒𝜆

2 (𝐼+(𝑥+ 𝜉−) + 𝐼−(𝑥+ 𝜉−))𝑑𝜉−

=𝐼−(�̈�)𝑒−𝑘𝑎𝑥

∫︁ ∞
�̈�−𝑥

𝑘𝑠𝑒
−𝑘𝑠𝜉−

𝑑𝜉−

+
∫︁ �̈�−𝑥

0
𝑒−𝑘𝑒(𝜉−) 𝑘𝑒𝜆

2 (𝐼+(𝑥+ 𝜉−) + 𝐼−(𝑥+ 𝜉−))𝑑𝜉−

(3.20)

which yields:

𝐼−(𝑥) =
∫︁ ∞

0
𝑘𝑠𝑒
−𝑘𝑠𝜉𝑑𝜉

⎛⎜⎜⎜⎜⎝
𝐼−(�̈�)𝑒−𝑘𝑎(�̈�−𝑥)H(𝜉 > �̈� − 𝑥)

+1
2𝐼

+(𝑥+ 𝜉)𝑒−𝑘𝑎𝜉H(𝜉 < �̈� − 𝑥)

+1
2𝐼
−(𝑥+ 𝜉)𝑒−𝑘𝑎𝜉H(𝜉 < �̈� − 𝑥)

⎞⎟⎟⎟⎟⎠ . (3.21)

In the same way as previously, Eq.3.21 is then reformulated as:

𝐼−(𝑥) =
∫︁ ∞

0
𝑘𝑠𝑒
−𝑘𝑠𝜉𝑑𝜉

∫︁ 1

0
𝑑𝑟

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼−(�̈�)𝑒−𝑘𝑎(�̈�−𝑥)H(𝜉 > �̈� − 𝑥)

+𝐼+(𝑥+ 𝜉)𝑒−𝑘𝑎𝜉H(𝜉 < �̈� − 𝑥)H(𝑟 < 1
2)

+𝐼−(𝑥+ 𝜉)𝑒−𝑘𝑎𝜉H(𝜉 < �̈� − 𝑥)H(𝑟 > 1
2)⏟  ⏞  

�̂�−

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.22)

The sum in the parentheses is called the weight of Monte-Carlo, noted �̂�−.

At this stage, the integral formulation of 𝐼+(𝑥) and 𝐼−(𝑥) are transformed into two expected
value forms (Eq.3.19 and Eq.3.22). It is noticed that the Monte-Carlo weight of Eq.3.19 and
Eq.3.22 consist of 𝐼+ and 𝐼−. Therefore, a recursive process is used to estimate 𝐼+(𝑥) and
𝐼−(𝑥).

A continuous random variable Ξ corresponds to the sampling of path length.
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It is defined by its domain of definition and its pdf PΞ:

{︃
Ξ ∈ [0,+∞)
PΞ(𝜉) = 𝑘𝑠𝑒

−𝑘𝑠𝜉
(3.23)

Another continuous random number 𝑅 corresponds to the sampling of direction. It is defined
by its domain of definition and its pdf P𝑅:

{︃
𝑅 ∈ [0, 1)
P𝑅(𝑟) = 1

(3.24)

Recursively, series of the path length 𝜉 and direction 𝑟 of scattering will be sampled, until
the boundary is reached (until the Heaviside function H(𝜉 > 𝑥) in 3.19 or the Heaviside
function H(𝜉 > �̈� − 𝑥) in 3.22 is true). Finally, these recursive samplings define a random
variable Γ. Its domain of definition and its pdf are then the following:

{︃
Γ ∈ [0,+∞)× [0, 1]× [0,+∞)× [0, 1] . . .
PΓ(𝛾) = 𝑘𝑠𝑒

−𝑘𝑠𝜉 × 1× 𝑘𝑠𝑒
−𝑘𝑠𝜉 . . .

(3.25)

Therefore, 𝐼+(𝑥) and 𝐼−(𝑥) can be expressed as expected values of Γ:

𝐼+(𝑥) = E[�̂�+(Γ)] (3.26)

and

𝐼−(𝑥) = E[�̂�−(Γ)]. (3.27)

Two Monte-Carlo estimators are then built to estimate the value of 𝐼+(𝑥) and 𝐼−(𝑥):

𝐼+(𝑥) ≈ 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

(�̂�+
𝑗 (Γ)) (3.28)

and

𝐼−(𝑥) ≈ 1
𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

(�̂�−𝑗 (Γ)) (3.29)

Eq.3.28 and Eq.3.29 are called the estimators of 𝐼+(𝑥) and of 𝐼−(𝑥), where the index 𝑗
corresponds to its 𝑗𝑡ℎ realization. A corresponding Monte-Carlo algorithm can then be
developed to estimate these expected values (Algo.1).

However, we will continue to write a general equation of Eq.3.18 and Eq.3.21 to interpret a
clear physical image of this algorithm.

As discussed in the previous chapters, almost always, when we write the integral formulation
as the solution to the transport problems in radiation, we can see the physical image of
transport and the corresponding algorithm directly from the integral formulation.
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3.3.4 Integral formulation, algorithm, and a physical image
The notations of 𝐼+(𝑥) and 𝐼−(𝑥) are used for the previous parts of this chapter to facilitate
the reading. However, in this subsection, we will use another nomenclature, which leads to a
clear physical image.

We will note the intensity as a function of two scalars: 𝐼 ≡ 𝐼(𝑥, 𝜔), ∀𝑥 ∈ [0, �̈�], ∀𝜔 ∈ {−1, 1}.
When 𝜔 = 1, the propagation is toward the right side and vice-versa. Therefore, the intensity
to be estimated 𝐼+(𝑥) and 𝐼−(𝑥) become:

𝐼+(𝑥) ≡ 𝐼(𝑥, 𝜔)|𝜔=1; 𝐼−(𝑥) ≡ 𝐼(𝑥, 𝜔)|𝜔=−1 (3.30)

The boundary conditions (referring to Eq.3.6) are noted:

𝐼+(0) ≡ �̊�(𝜔)|𝜔=1; 𝐼−(�̈�) ≡ �̊�(𝜔)|𝜔=−1 (3.31)

The intensity 𝐼 on the boundary is noted as �̊� to indicate that it is a source of intensity.

The Phase-function of 𝜔 is discontinuous, but we extend it here to a smooth function of pdf,
satisfying:

∫︁ 1

−1
𝑃Ω(𝜔)𝑑𝜔 = 1 (3.32)

Finally, we have a general integral formulation for 𝐼+(𝑥) and 𝐼−(𝑥), with a index 𝑗, ∀𝑗 ∈ N0
for 𝜔, 𝜉 and 𝑑:

𝐼(𝑥, 𝜔) =
∫︁ ∞

0
𝑘𝑠𝑒
−𝑘𝑠𝜉0𝑑𝜉0

{︃
H(𝜉0 − 𝑑0)�̊�(𝜔0)𝑒−𝑘𝑎𝑑0+

H(𝑑0 − 𝜉0)
∫︁ 1

−1
𝑃Ω(𝜔1)𝑑𝜔1

∫︁ ∞
0

𝑘𝑠𝑒
−𝑘𝑠𝜉1𝑑𝜉1

{︂
H(𝜉1 − 𝑑1)�̊�(𝜔1)𝑒−𝑘𝑎(𝜉0+𝑑1)+

H(𝑑1 − 𝜉1)
∫︁ 1

−1
𝑃Ω(𝜔2)𝑑𝜔2 . . .

}︂}︃
(3.33)

with

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑑0 = 𝜔0𝑥−

�̈�(𝜔0 − 1)
2

𝑑𝑗 = (𝑥−
𝑗−1∑︁
𝑘=0

𝜔𝑘𝜉𝑘)𝜔𝑗 −
�̈�(𝜔𝑗 − 1)

2 , 𝑗 > 0
(3.34)

where 𝜉0 and 𝜉1 represent respectively the path length of the photon for its 1𝑠𝑡 and 2𝑛𝑑

scattering; 𝜔0 = 𝜔 which is the initial direction of propagation; 𝜔1 and 𝜔2 represent
respectively the direction of propagation of the photon after its 1𝑠𝑡 and 2𝑛𝑑 scattering; 𝑑0
represents the distance that the path of photon needs to go through to escape the rod without
scattering; 𝑑1 represents the distance that, starting from the position where located the 1𝑠𝑡

scattering, the photon need to go through to escape the rod without 2𝑛𝑑 scattering.

The Monte-Carlo algorithm can be read from Eq.3.33. A clear physical image (see Fig.3.2) is
linked to this formulation (Eq.3.33).
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�⃗�𝑥𝑥 = 0 𝑥 = �̈�𝐼(𝑥, 𝜔)

𝜔0𝑑0 𝜉0 𝑥0

𝜔1 𝑑1𝜉1𝑥1

Figure 3.2 – Proposed physical image. Two scatterings are shown before the photon
arrives at the point 𝑥, following the direction 𝜔.

In order to determine the intensity 𝐼(𝑥, 𝜔), we will inversely trace the optical path from the
position 𝑥 in the direction 𝜔, searching its origin (𝑥 = 0 or 𝑥 = �̈� at the beginning of the
path) and its optical path length that it has gone through. We will sample a path length
for each realization according to PΞ on the direction −𝜔 to determine the position where
scattering happens.

• If the scattering point is out of the rod, we consider that the path arrived at position 𝑥
without scattering. In this case (the Heaviside function H(𝜉0 − 𝑑0) will be true), the
optical path length of this photon is counted, and this photon carries the intensity
from the boundary condition, attenuated by the absorption along the optical path.

• If the point of scattering is inside the rod (the Heaviside function H(𝑑0 − 𝜉0) will be
true), we sample a direction of scattering and then sample a path length again to
determine the next scattering point.

We repeat this process again and again until the scattering point is out of the rod. Then
we calculate how much intensity the photon carries to the point 𝑥 in the direction 𝜔0 after
all attenuation on its optical path length. Finally, we simulate the behaviors of millions
of optical paths in this way. The estimated intensity of 𝐼(𝑥, 𝜔) will be the mean intensity
carried by each photon.

In a particular case, when the scattering coefficient is null (𝑘𝑠 = 0), no scattering happens
in the medium. The photons arrived at the position 𝑥, propagating toward the right side
(𝐼(𝑥, 𝜔)|𝜔=1) will all originate from the left boundary. The arriving intensity will then be
attenuated along the optical path in the medium. Therefore, when 𝑘𝑠 = 0:

𝐼(𝑥, 𝜔) = �̊�(𝜔0)𝑒−𝑘𝑎𝑑0 (3.35)

and according to Eq.3.34, when 𝜔 = 1:

𝑑0 = 𝑥 (3.36)

and when 𝜔 = −1:

𝑑0 = �̈� − 𝑥. (3.37)

The corresponding algorithm to estimate 𝐼(𝑥, 𝜔) will be Algo.1.

Algorithm 1 Estimation of 𝐼(𝑥, 𝜔)
Input: 𝑥, 𝜔, 𝑘𝑎, 𝑘𝑠, 𝑛𝑀𝐶 , �̈�

1: Initialize the sum, and the sum of square 𝑊 ← 0, and 𝑉 ← 0

59



Three viewpoints on estimating sensitivities in radiative systems

2: for 𝑖 = 0→ 𝑛𝑀𝐶 do
3: Initialize the weight of Monte-Carlo 𝑤 ← 0
4: Initialize the total length of optical path 𝑙𝑡𝑜𝑡 ← 0
5: Initialize the keeprunning flag 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 1
6: while keeprunning do
7: if 𝜔 = 1 then
8: Sample a path length 𝜉 following pdf: 𝑝Ξ(𝜉) = 𝑘𝑠𝑒

−𝑘𝑠𝜉

9: if 𝜉 >= 𝑥 then
10: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + 𝑥
11: 𝑤 ← 𝐼+(0)𝑒−𝑘𝑎𝑙𝑡𝑜𝑡

12: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
13: else
14: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + 𝜉
15: 𝑥← 𝑥− 𝜉
16: Sample a random number r uniformly for 𝑟 ∈ [0, 1]
17: if 𝑟 < 1

2 then
18: 𝜔 ← 1
19: else
20: 𝜔 ← −1
21: end if
22: end if
23: end if
24: if 𝜔 = −1 then
25: Sample a path length 𝜉 following pdf: 𝑝Ξ(𝜉) = 𝑘𝑠𝑒

−𝑘𝑠𝜉

26: if 𝜉 >= (�̈� − 𝑥) then
27: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + (�̈� − 𝑥)
28: 𝑤 ← 𝐼+(0)𝑒−𝑘𝑎𝑙𝑡𝑜𝑡

29: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
30: else
31: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + 𝜉
32: 𝑥← 𝑥+ 𝜉
33: Sample a random number r uniformly for 𝑟 ∈ [0, 1]
34: if 𝑟 < 1

2 then
35: 𝜔 ← 1
36: else
37: 𝜔 ← −1
38: end if
39: end if
40: end if
41: end while
42: 𝑊 ←𝑊 + 𝑤
43: 𝑉 ← 𝑉 + 𝑤2

44: end for

Output: 𝐼(𝑥, 𝜔)← 𝑊
𝑛𝑀𝐶

, 𝜎[𝐼(𝑥, 𝜔)]←
√︂

𝑉
𝑛𝑀𝐶

−( 𝑊
𝑛𝑀𝐶

)2

𝑛𝑀𝐶−1

3.4 Estimate sensitivities
Herein we remind that the objective is to estimate the sensitivity of intensity with respect to
the length of the rod: 𝜕�̈�𝐼

+ and 𝜕�̈�𝐼
−. The previous section (Sec.3.3) shows the three steps

to estimate the intensity by Monte Carlo methods.

In the following part of this chapter, we will apply three different methods to estimate the
sensitivity:
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1. The method of observable derivation in which the expected value formulation is derived
(Eq.3.33)

2. The method of differentiable rendering, which consists of differentiating the Fredholm
Equation(Eq.3.16)

3. The method of sensitivity model in which the sensitivity is seen as a physical value
that is transported over the domain. It requires to differentiate the radiative model of
intensity (Eq.3.6 and Eq.3.5).

These three methods are detailed in the following subsections.

3.4.1 Method of observable derivation
The principle of this method is briefly introduced in Chapter.1. Theories and applications
are developed in [9, 50, 51] and four steps are to be followed when applying this method [50]:

1. Formulate the integral formulation in an expected value form for Monte-
Carlo algorithm which is already done at this stage (Eq.3.33).

2. Transform the integral formulation to adapt the calculation of derivative.
This is because in Eq.3.33, the targeting parameter �̈� is in the expression of 𝑑𝑗 and 𝑑0
in the Heaviside function. However, The method of observable derivation can only be
applied when the targeting parameter �̈� is in the integral domain. Therefore, we will
make efforts to formulate the integral domain depending on �̈� and Heaviside functions
independent of �̈�.

3. Calculate the deformation velocity of the integral domain and build the in-
tegral formulation for estimating the sensitivity. We will apply the formulations
in [50, 51] to calculate the deformation velocity.

4. Re-adapt the integral formulation to a form of expected value, as the same
form of estimating the intensity. This allows us to vectorize the estimations of
intensity and sensitivity, which is the main advantage of this method compared to the
other two methods.

Reformulation of the integral formulation
Based on Eq.3.33, we apply the Heaviside function to the integral domain, so that with
Eq.3.38, no more Heaviside function is appearing and the integral domain is now depending
on the parameter �̈�. We remind here ∀𝑗 ∈ N0, 𝑑𝑗 ≡ 𝑑𝑗(�̈�) (Eq.3.34).

𝐼(𝑥, 𝜔) =
∫︁ ∞

𝑑0

𝑘𝑠𝑒
−𝑘𝑠𝜉0𝑑𝜉0�̊�(𝜔0)𝑒−𝑘𝑎𝑑0+∫︁ 𝑑0

0
𝑘𝑠𝑒
−𝑘𝑠𝜉0𝑑𝜉0

∫︁ 1

−1
𝑃Ω(𝜔1)𝑑𝜔1

∫︁ ∞
𝑑1

𝑘𝑠𝑒
−𝑘𝑠𝜉1𝑑𝜉1�̊�(𝜔1)𝑒−𝑘𝑎(𝜉0+𝑑1)+∫︁ 𝑑1

0
𝑘𝑠𝑒
−𝑘𝑠𝜉1𝑑𝜉1

∫︁ 1

−1
𝑃Ω(𝜔2)𝑑𝜔2 . . . (3.38)

We can now apply the method of observable derivation.
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Calculation of the deformation velocity of the integral domain and
construction of the integral formulation for estimating the sensitivity
However, the formulation Eq.3.38 is still too complex to be differentiated. We will continue
the development to simplify it.
The formulation of intensity 𝐼(𝑥, 𝜔) in Eq.3.38 is the sum of integrals: 𝐼(𝑥, 𝜔) = 𝐼0(𝑥, 𝜔) +
𝐼1(𝑥, 𝜔) + . . . + 𝐼𝑖(𝑥, 𝜔) + . . . where ∀𝑖 ∈ N0. A physical interpretation exists for this
decomposition of 𝐼(𝑥, 𝜔) [50]. 𝐼(𝑥, 𝜔) is the intensity arriving at 𝑥, following the direction 𝜔.
𝐼(𝑥, 𝜔) is composed of all intensity coming without scattering, with once scattering, twice
scatterings, etc. The index 𝑖 indicates the number of scattering events before the path arrived
on 𝑥, following the direction 𝜔.
𝐼𝑖(𝑥, 𝜔), which represents the intensity arriving to 𝑥, following the direction 𝜔 after 𝑖
scatterings, is therefore written as:

𝐼𝑖(𝑥, 𝜔) =
∫︁ 𝑑0

0
𝑘𝑠𝑒
−𝑘𝑠𝜉0𝑑𝜉0

∫︁ 1

−1
𝑃Ω(𝜔1)𝑑𝜔1

∫︁ 𝑑1

0
𝑘𝑠𝑒
−𝑘𝑠𝜉1𝑑𝜉1

∫︁ 1

−1
𝑃Ω(𝜔2)𝑑𝜔2

. . .

∫︁ 1

−1
𝑃Ω(𝜔𝑖)𝑑𝜔𝑖

∫︁ ∞
𝑑𝑖

𝑘𝑠𝑒
−𝑘𝑠𝜉𝑖𝑑𝜉𝑖

{︁
�̊�(𝜔𝑖)𝑒−𝑘𝑎(𝜉0+𝜉1...+𝜉𝑖−1+𝑑𝑖)

}︁
=
∫︁ 𝑑0

0
𝑑𝜉0

∫︁ 1

−1
𝑑𝜔1

∫︁ 𝑑1

0
𝑑𝜉1

∫︁ 1

−1
𝑑𝜔2 . . .

∫︁ ∞
𝑑𝑖

𝑑𝜉𝑖𝑔𝑖(𝑥, 𝜔0, 𝜉0, 𝜔1, . . . , 𝜉𝑖)

(3.39)

specially when 𝑖 = 0,

𝐼0(𝑥, 𝜔) =
∫︁ ∞

𝑑0

𝑘𝑠𝑒
−𝑘𝑠𝜉0𝑑𝜉0

{︁
�̊�(𝜔0)𝑒−𝑘𝑎𝑑0

}︁
=
∫︁ ∞

𝑑0

𝑑𝜉0𝑔0(𝑥, 𝜔0, 𝜉0)
(3.40)

with

𝑔𝑖(𝑥, 𝜔0, 𝜉0, 𝜔1, . . . , 𝜉𝑖) = 𝑘𝑠𝑒
−𝑘𝑑𝜉0𝑃Ω(𝜔1)𝑘𝑠𝑒

−𝑘𝑑𝜉1 . . . �̊�(𝜔𝑖)𝑒−𝑘𝑎(𝜉0+𝜉1...+𝜉𝑖−1+𝑑𝑖) (3.41)

and

𝑔0(𝑥, 𝜔0, 𝜉0) = 𝑘𝑠𝑒
−𝑘𝑠𝜉0 �̊�(𝜔0)𝑒−𝑘𝑎𝑑0 (3.42)

𝐼𝑖(𝑥, 𝜔) has therefore, an integral domain noted 𝐷𝑖:

𝐷𝑖 = [0, 𝑑0]× [−1, 1]× [0, 𝑑1]× · · · × [𝑑𝑖,+∞] (3.43)

As for the sensitivity 𝜕�̈�𝐼(𝑥, 𝜔), it can then be decomposed in the same way:

𝜕�̈�𝐼(𝑥, 𝜔) = 𝜕�̈�𝐼0(𝑥, 𝜔) + 𝜕�̈�𝐼1(𝑥, 𝜔) + 𝜕�̈�𝐼2(𝑥, 𝜔) . . . (3.44)

with ∀𝑖 ∈ N0:

𝜕�̈�𝐼𝑖(𝑥, 𝜔) =
∫︁ 𝑑0

0
𝑑𝜉0

∫︁ 1

−1
𝑑𝜔1 . . .

∫︁ ∞
𝑑𝑖

𝑑𝜉𝑖

{︃
𝜕�̈�𝑔𝑖 + ∇⃗ ·

(︁
𝑔𝑖�⃗��̈�𝑖

)︁}︃
(3.45)
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where �⃗��̈�𝑖 is the domain deformation velocity, which is studied in [50, 51].

Formulation of domain deformation velocity [50, 51]

We consider the following integral with an expected value form:

< 𝑂 >=
∫︁
D1

P𝜑1(𝑥1)𝑑𝑥1

∫︁
D2

P𝜑2(𝑥2)𝑑𝑥2

· · ·
∫︁
D𝑛

P𝜑𝑛
(𝑥𝑛)𝑑𝑥𝑛𝑂(𝑥1, 𝑥2, . . . , 𝑥𝑛) (3.46)

where P𝜑1 ,P𝜑2 , . . . are the pdfs of a random variables 𝑋1, 𝑋2, . . . and D1,D2 . . . are
the definition domains of 𝑋1, 𝑋2, . . ..
If < 𝑂 > is a function of a parameter �̈�:

< 𝑂 >≡< 𝑂 > (�̈�), (3.47)

the derivative of < 𝑂 > with respect to �̈� is formulated as follows:

𝜕�̈� < 𝑂 >=
∫︁
D1(�̈�)

𝑑𝑥1

∫︁
D2(�̈�)

𝑑𝑥2 · · ·
∫︁
D𝑛(�̈�)

𝑑𝑥𝑛

P𝜑(𝑥)
(︃
𝜕�̈�𝑂(𝑥) +𝑂(𝑥)𝜕�̈�P𝜑(𝑥)

P𝜑(𝑥) + ∇⃗ · (P𝜑(𝑥)𝑂(𝑥)�⃗��̈�(𝑥))
P𝜑(𝑥)

)︃
(3.48)

with

P𝜑(𝑥) =
𝑛∏︁

𝑘=1
P𝜑𝑘

(𝑥𝑘), (3.49)

𝑂(𝑥) = 𝑂(𝑥1, 𝑥2, . . . , 𝑥𝑛) (3.50)

Also, �⃗��̈�(𝑥) is called the deformation velocity. It is built component by component,
starting with 𝑉�̈�,1 which is a function of 𝑦1 only. For 𝑦𝑖 ∈ D𝑖, where D𝑖 ≡ [𝑎𝑖, 𝑏𝑖]:

𝑉�̈�,1(𝑦1; �̈�) = 𝜕�̈�𝑎1 + 𝜕�̈�𝑏1 − 𝜕�̈�𝑎1
𝑏1 − 𝑎1

(𝑦1 − 𝑎1) (3.51)

𝑉�̈�,𝑖(𝑦1, 𝑦2, . . . , 𝑦𝑖; �̈�) = 𝑉�̈�,𝑖|𝑦𝑖=𝑎𝑖
+ 𝑉�̈�,𝑖|𝑦𝑖=𝑏𝑖

− 𝑉�̈�,𝑖|𝑦𝑖=𝑎𝑖

𝑏𝑖 − 𝑎𝑖
(𝑦𝑖 − 𝑎𝑖) (3.52)

with

𝑉�̈�,𝑖|𝑦𝑖=𝑎𝑖
≡ 𝑉�̈�,𝑖(𝑦1, 𝑦2, . . . , 𝑦𝑖−1, 𝑦𝑖 = 𝑎𝑖; �̈�)

= 𝜕�̈�𝑎𝑖 +
𝑖−1∑︁
𝑘=1

𝑉�̈�,𝑘(𝑦1, 𝑦2, . . . , 𝑦𝑘; �̈�)𝜕𝑦𝑘
𝑎𝑖.

(3.53)

63



Three viewpoints on estimating sensitivities in radiative systems

Its dimension is the same as the dimension of the integral domain 𝐷𝑖:

�⃗��̈�𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑉�̈�𝑖,𝜉0

𝑉�̈�𝑖,𝜔1

𝑉�̈�𝑖,𝜉1

𝑉�̈�𝑖,𝜔2

. . .
𝑉�̈�𝑖,𝜉𝑖

⎤⎥⎥⎥⎥⎥⎥⎦ (3.54)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑉�̈�𝑖,𝜉0 = − (𝜔0 − 1)𝜉0
2𝑑0

𝑉�̈�𝑖,𝜉𝑗
=
[︃
−𝜔𝑗 − 1

2 +
𝑗−1∑︁
𝑘=0

𝑉�̈�,𝑘(𝜉0, 𝜉1, . . . , 𝜉𝑘; �̈�)(−𝜔𝑘𝜔𝑗)
]︃
𝜉𝑗

𝑑𝑗
, 0 < 𝑗 < 𝑖

𝑉�̈�𝑖,𝜉𝑖 = −𝜔𝑖 − 1
2 +

𝑖−1∑︁
𝑘=0

𝑉�̈�,𝑘(𝜉0, 𝜉1, . . . , 𝜉𝑘; �̈�)(−𝜔𝑘𝜔𝑖)

𝑉�̈�𝑖,𝜔0 = 𝑉�̈�𝑖,𝜔𝑗 = 𝑉�̈�𝑖,𝜔𝑖 = 0

(3.55)

𝜕�̈�𝐼(𝑥, 𝜔) will then become:

𝜕�̈�𝐼(𝑥, 𝜔) =
∫︁ ∞

𝑑0

𝑘𝑠𝑒
−𝑘𝑠𝜉0𝑑𝜉0

⎡⎣𝜕�̈�𝑔0 + ∇⃗ ·
(︁
𝑔0�⃗��̈�0

)︁
𝑘𝑠𝑒−𝑘𝑠𝜉0

⎤⎦+

∫︁ 𝑑0

0
𝑘𝑠𝑒
−𝑘𝑠𝜉0𝑑𝜉0

∫︁ 1

−1
𝑃Ω(𝜔1)𝑑𝜔1

∫︁ ∞
𝑑1

𝑘𝑠𝑒
−𝑘𝑠𝜉1𝑑𝜉1

⎡⎣𝜕�̈�𝑔1 + ∇⃗ ·
(︁
𝑔1�⃗��̈�1

)︁
𝑘𝑠

2𝑒−𝑘𝑠(𝜉0+𝜉1)

⎤⎦+

∫︁ 𝑑0

0
𝑘𝑠𝑒
−𝑘𝑠𝜉0𝑑𝜉0

∫︁ 1

−1
𝑃Ω(𝜔1)𝑑𝜔1

∫︁ 𝑑1

0
𝑘𝑠𝑒
−𝑘𝑠𝜉1𝑑𝜉1

∫︁ 1

−1
𝑃Ω(𝜔2)𝑑𝜔2 . . . (3.56)

Construction of the same pdf for the intensity and for the sensitivity
We now transform the Eq.3.56 to an expected value form:

𝜕�̈�𝐼(𝑥, 𝜔) =
∫︁ ∞

0
𝑘𝑠𝑒
−𝑘𝑠𝜉0𝑑𝜉0

{︃
H(𝜉0 − 𝑑0)

⎡⎣𝜕�̈�𝑔0 + ∇⃗ ·
(︁
𝑔0�⃗��̈�0

)︁
𝑘𝑠𝑒−𝑘𝑠𝜉0

⎤⎦+

H(𝑑0 − 𝜉0)
∫︁ 1

−1
𝑃Ω(𝜔1)𝑑𝜔1

∫︁ ∞
0

𝑘𝑠𝑒
−𝑘𝑠𝜉1𝑑𝜉1

{︂
H(𝜉1 − 𝑑1)

⎡⎣ 𝜕�̈�𝑔1 + ∇⃗ ·
(︁
𝑔1�⃗��̈�1

)︁
𝑘𝑠

2𝑒−𝑘𝑠(𝜉0+𝜉1)𝑃Ω(𝜔1)

⎤⎦+

H(𝑑1 − 𝜉1)
∫︁ 1

−1
𝑃Ω(𝜔2)𝑑𝜔2 . . .

}︂}︃
(3.57)

At this stage, one can easily find out that the integral formulation for 𝐼(𝑥, 𝜔) and 𝜕�̈�𝐼(𝑥, 𝜔)
share the same integral domain and the same pdf. Therefore, an optical path propagated in
the rod can carry the intensity and the sensitivity at the same time. In other words, the

64



Estimate sensitivities

intensity and the sensitivity have the same path space. The estimations of the two values
can be then vectorized:

[︂
𝐼(𝑥, 𝜔)
𝜕�̈�𝐼(𝑥, 𝜔)

]︂
=
∫︁ ∞

0
𝑘𝑠𝑒
−𝑘𝑠𝜉0𝑑𝜉0

{︃
H(𝜉0 − 𝑑0)

[︃
�̊�(𝜔0)𝑒−𝑘𝑎𝑑0

𝜕�̈�𝑔0+∇⃗·(𝑔0𝑉�̈�0)
𝑘𝑠𝑒−𝑘𝑠𝜉0

]︃
+

H(𝑑0 − 𝜉0)
∫︁ 1

−1
𝑃Ω(𝜔1)𝑑𝜔1

∫︁ ∞
0

𝑘𝑠𝑒
−𝑘𝑠𝜉1𝑑𝜉1

{︂
H(𝜉1 − 𝑑1)

[︃
�̊�(𝜔1)𝑒−𝑘𝑎(𝜉0+𝑑1)

𝜕�̈�𝑔1+∇⃗·(𝑔1𝑉�̈�1)
(𝑘𝑠)2𝑒−𝑘𝑠(𝜉0+𝜉1)𝑃Ω(𝜔1)

]︃
+

H(𝑑1 − 𝜉1)
∫︁ 1

−1
𝑃Ω(𝜔2)𝑑𝜔2 . . .

}︂}︃
(3.58)

This is a massive advantage because the intensity and the sensitivity share the same path
space. As it is interpreted in Section.3.3.4, we simulate the scattering history of millions
of optical paths. When we reach the boundary, we calculate how much intensity the path
carries to the point of observation 𝑥 and the direction of observation 𝜔0. In our case of
estimating sensitivity, we can also calculate how much sensitivity the path carries to the
point 𝑥 in the direction 𝜔.

Instead of simulating one path for intensity and another for sensitivity, each path carries two
kinds of information simultaneously, which is the main interest of vectorizing the estimation
of the intensity and the sensitivity.

However, the information on the sensitivity of the boundary is very complicated to obtain
(even in this one-dimension example), which makes this method difficult to be applied to
more realistic cases.

The corresponding algorithm simultaneously estimates the intensity and the sensitivity is
Algo.2.

Algorithm 2 Evaluation of 𝐼(𝑥, 𝜔) and 𝜕�̈�𝐼(𝑥, 𝜔)
Input: 𝑥, 𝜔, 𝑘𝑎, 𝑘𝑠, 𝑛𝑀𝐶 , �̈�

1: Initialize the sum of 𝑤𝐿 and the sum of 𝑤𝐿
2 𝑊𝐿 ← 0 and 𝑉𝐿 ← 0

2: Initialize the sum of 𝑤𝑆 and the sum of 𝑤𝑆
2 𝑊𝑆 ← 0 and 𝑉𝑆 ← 0

3: for 𝑖 = 0→ 𝑛𝑀𝐶 do
4: Initialize the weight of Monte-Carlo for L 𝑤𝐿 ← 0
5: Initialize the weight of Monte-Carlo for 𝜕�̈�𝐿 𝑤𝑆 ← 0
6: Initialize the scattering counter 𝑖← 0
7: Initialize the total length of optical path 𝑙𝑡𝑜𝑡 ← 0
8: Initialize the keeprunning flag 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 1
9: Initialize the tables 𝜉, 𝜔, 𝑥

10: Initialize the position 𝑥[0]← 𝑥
11: Initialize the position 𝜔[0]← 𝜔
12: while keeprunning do
13: if 𝜔[𝑖] = 1 then
14: Sample a path length 𝜉′ following pdf: 𝑝Ξ(𝜉′) = 𝑘𝑠𝑒

−𝑘𝑠𝜉′

15: 𝜉[𝑖]← 𝜉′

16: if 𝜉[𝑖] >= 𝑥[𝑖] then
17: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + 𝑥[𝑖]
18: 𝑤𝐿 ← �̊�(𝜔[𝑖])𝑒−𝑘𝑎𝑙𝑡𝑜𝑡

19: 𝑤𝑆 ←
𝜕�̈�𝑔𝑖+∇⃗·(𝑔𝑖𝑉�̈�𝑖)

(𝑘𝑠)𝑖+1𝑒−𝑘𝑠(𝜉0+𝜉1+...+𝜉𝑖) ∏︀𝑖
𝑘=1 𝑃Ω(𝜔𝑘)

20: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
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21: else
22: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + 𝜉[𝑖]
23: 𝑥[𝑖+ 1]← 𝑥[𝑖]− 𝜉[𝑖]
24: 𝑖← 𝑖+ 1
25: Sample a random number r uniformly for 𝑟 ∈ [0, 1]
26: if 𝑟 < 1

2 then
27: 𝜔[𝑖]← 1
28: else
29: 𝜔[𝑖]← −1
30: end if
31: end if
32: end if
33: if 𝜔[𝑖] = −1 then
34: Sample a path length 𝜉′ following pdf: 𝑝Ξ(𝜉′) = 𝑘𝑠𝑒

−𝑘𝑠𝜉′

35: 𝜉[𝑖]← 𝜉′

36: if 𝜉[𝑖] >= (�̈� − 𝑥[𝑖]) then
37: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + (�̈� − 𝑥[𝑖])
38: 𝑤𝐿 ← �̊�(𝜔[𝑖])𝑒−𝑘𝑎𝑙𝑡𝑜𝑡

39: 𝑤𝑆 ←
𝜕�̈�𝑔𝑖+∇⃗·(𝑔𝑖𝑉�̈�𝑖)

(𝑘𝑠)𝑖+1𝑒−𝑘𝑠(𝜉0+𝜉1+...+𝜉𝑖) ∏︀𝑖
𝑘=1 𝑃Ω(𝜔𝑘)

40: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
41: else
42: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + 𝜉[𝑖]
43: 𝑥[𝑖+ 1]← 𝑥[𝑖] + 𝜉[𝑖]
44: 𝑖← 𝑖+ 1
45: Sample a random number r uniformly for 𝑟 ∈ [0, 1]
46: if 𝑟 < 1

2 then
47: 𝜔[𝑖]← 1
48: else
49: 𝜔[𝑖]← −1
50: end if
51: end if
52: end if
53: end while
54: 𝑊𝐿 ←𝑊𝐿 + 𝑤𝐿

55: 𝑉𝐿 ← 𝑉𝐿 + 𝑤2
𝐿

56: 𝑊𝑆 ←𝑊𝑆 + 𝑤𝑆

57: 𝑉𝑆 ← 𝑉𝑆 + 𝑤2
𝑆

58: end for
Output:

59: 𝐼(𝑥, 𝜔)← 𝑊𝐿

𝑛𝑀𝐶
, 𝜎[𝐼(𝑥, 𝜔)]←

√︂
𝑉𝐿

𝑛𝑀𝐶
−( 𝑊𝐿

𝑛𝑀𝐶
)2

𝑛𝑀𝐶−1

60: 𝜕�̈�𝐼(𝑥, 𝜔)← 𝑊𝑆

𝑛𝑀𝐶
, 𝜎[𝜕�̈�𝐼(𝑥, 𝜔)]←

√︂
𝑉𝑆

𝑛𝑀𝐶
−( 𝑊𝑆

𝑛𝑀𝐶
)2

𝑛𝑀𝐶−1

3.4.2 Method of differentiable rendering
Before introducing the method, we review the concept of an “estimator” [46] in the research
field of image synthesis. In our example, the intensity on a point 𝑥 of two directions 𝐼+(𝑥)
and 𝐼−(𝑥) are written in Eq.3.19 and Eq.3.22. They can therefore be written as two expected
values in Eq.3.26 and Eq.3.27. Finally, two Monte-Carlo estimators are built to estimate the
value of 𝐼+(𝑥) and 𝐼−(𝑥) (Eq.3.28 and Eq.3.29)
In this subsection, we aim to build the two corresponding estimators for sensitivities 𝜕�̈�𝐼

+(𝑥)
and 𝜕�̈�𝐼

−(𝑥).
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This method of differentiable rendering consists in differentiating the Fredholm Equation
(Eq.3.16). We differentiate here Eq.3.16 with respect to �̈�:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜕�̈�𝐼
+(𝑥) =

∫︁ 𝑥

0
𝑒−𝑘𝑒(𝑥−𝑥′) 𝑘𝑒𝜆

2 (𝜕�̈�𝐼
+(𝑥′) + 𝜕�̈�𝐼

−(𝑥′))𝑑𝑥′

𝜕�̈�𝐼
−(𝑥) =

∫︁ �̈�

𝑥

𝑒−𝑘𝑒(𝑥′−𝑥) 𝑘𝑒𝜆

2 (𝜕�̈�𝐼
+(𝑥′) + 𝜕�̈�𝐼

−(𝑥′))𝑑𝑥′

+𝑒−𝑘𝑒(�̈�−𝑥) 𝑘𝑒𝜆

2 𝐼+(�̈�)

(3.59)

Eq.3.59 is then the Fredholm Equation of sensitivity. After that, we must transform it into
an expected value form, generating the pdfs. Following the similar process in Section.3.3.3,
the expected value form of 𝜕�̈�𝐼

+(𝑥) is following:

𝜕�̈�𝐼
+(𝑥) =

∫︁ ∞
0

𝑘𝑠𝑒
−𝑘𝑠𝜉𝑑𝜉

∫︁ 1

0
𝑑𝑟

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 H(𝜉 > 𝑥)

+𝜕�̈�𝐼
+(𝑥− 𝜉)𝑒−𝑘𝑎𝜉 H(𝜉 < 𝑥)H(𝑟 < 1

2)

+𝜕�̈�𝐼
−(𝑥− 𝜉)𝑒−𝑘𝑎𝜉 H(𝜉 < 𝑥)H(𝑟 > 1

2)⏟  ⏞  
�̂�+

𝑠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.60)

and the expected value form of 𝜕�̈�𝐼
−(𝑥) is:

𝜕�̈�𝐼
−(𝑥) =

∫︁ ∞
0

𝑘𝑠𝑒
−𝑘𝑠𝜉𝑑𝜉

∫︁ 1

0
𝑑𝑟

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑘𝑠

2 𝐼
+(�̈�)𝑒−𝑘𝑎(�̈�−𝑥) H(𝜉 > �̈� − 𝑥)

+𝜕�̈�𝐼
+(𝑥+ 𝜉)𝑒−𝑘𝑎𝜉 H(𝜉 < �̈� − 𝑥)H(𝑟 < 1

2)

+𝜕�̈�𝐼
−(𝑥+ 𝜉)𝑒−𝑘𝑎𝜉 H(𝜉 < �̈� − 𝑥)H(𝑟 > 1

2)⏟  ⏞  
�̂�−

𝑠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.61)

At this stage, the integral formulation of 𝜕�̈�𝐼
+(𝑥) and 𝜕�̈�𝐼

−(𝑥) are transformed into two
expected value forms (Eq.3.60 and Eq.3.61). Similar to the process described in Section.3.3.3,
a recursive process is used to estimate these two sensitivity values. Recursively, series of the
path length 𝜉 (the random variable Ξ is defined in Eq.3.23) and the direction 𝑟 (𝑅 is defined
in Eq.3.24) of scattering will be sampled, until the boundary is reached. A random number
Γ𝑠 is defined by these recursive samplings. Its domain of definition and its pdf is then:

{︃
Γ𝑠 ∈ [0,+∞)× [0, 1]× [0,+∞)× [0, 1] . . .
PΓ𝑠

(𝛾𝑠) = 𝑘𝑠𝑒
−𝑘𝑠𝜉 × 1× 𝑘𝑠𝑒

−𝑘𝑠𝜉 . . .
(3.62)

The definition of random variable Γ𝑠 is the same as Γ (defined in Eq.3.25) used when solving
the intensity model. It is still necessary to use the index 𝑠 in Γ𝑠 to distinguish the samplings
when we solve the two models: the model of intensity and the model of sensitivity.
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It is noticed that the value of 𝐼+(�̈�) is required in the Monte-Carlo weight �̂�−𝑠 of Eq.3.61.
Using the expected value form of 𝐼+ in Eq.3.26, the expected value form of 𝜕�̈�𝐼

+(𝑥) and
𝜕�̈�𝐼
−(𝑥) can be written as:

𝜕�̈�𝐼
+(𝑥) = EΓ𝑠

[�̂�+
𝑠 (Γ𝑠,EΓ|Γ𝑠

[�̂�+(Γ|Γ𝑠)])] (3.63)

and

𝜕�̈�𝐼
−(𝑥) = EΓ𝑠

[�̂�−𝑠 (Γ𝑠,EΓ|Γ𝑠
[�̂�+(Γ|Γ𝑠)])] (3.64)

where EΓ𝑠 is the expected value corresponding to the sampling of Γ𝑠 and EΓ|Γ𝑠
is the expected

value corresponding to the sampling of Γ knowing Γ𝑠. The Monte-Carlo weight �̂�+ and �̂�−
are given by Eq.3.19 and Eq.3.22.

As discussed in Chapter.1, a Monte-Carlo estimator can be built naively. For each Monte-
Carlo realization, the path lengths and scattering directions are sampled. When the value of
𝐼+(�̈�) is needed to compose the weight of this realization, we start up another Monte-Carlo
estimator which estimates the value of 𝐼+(�̈�). However, the corresponding calculating time
becomes huge, following this process of estimation of 𝜕�̈�𝐼

+(𝑥) and 𝜕�̈�𝐼
−(𝑥).

Fortunately, via the statistic technique of Double Randomization, introduced in Chapter.1,
we can avoid this difficulty. Since the Monte-Carlo weight �̂�+, �̂�−, �̂�+

𝑠 and �̂�−𝑠 are linear
functions, the expected value forms of 𝜕�̈�𝐼

+(𝑥) and 𝜕�̈�𝐼
−(𝑥) can be reformulated:

𝜕�̈�𝐼
+(𝑥) = EΓ𝑠,Γ|Γ𝑠

[�̂�+
𝑠 (Γ𝑠, �̂�

+(Γ|Γ𝑠))] (3.65)

and

𝜕�̈�𝐼
−(𝑥) = EΓ𝑠,Γ|Γ𝑠

[�̂�−𝑠 (Γ𝑠, �̂�
+(Γ|Γ𝑠))] (3.66)

The corresponding estimators are:

𝜕�̈�𝐼
+(𝑥) ≈ 1

𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

(�̂�+
𝑠 (Γ𝑠, �̂�

+(Γ|Γ𝑠))) (3.67)

and

𝜕�̈�𝐼
−(𝑥) ≈ 1

𝑛𝑀𝐶

𝑛𝑀𝐶∑︁
𝑗=1

(�̂�−𝑠 (Γ𝑠, �̂�
+(Γ|Γ𝑠))) (3.68)

Using the estimators shown in Eq.3.67 and Eq.3.68, the path lengths 𝜉 and the directions
of scattering 𝑟 are sampled. These recursive processes sample a realization of the random
variable Γ𝑠 for the sensitivity estimator. If the Monte-Carlo weight requires the knowledge
of 𝐼+(�̈�), instead of estimating it by another Monte-Carlo estimator, a recursive process of
sampling 𝜉 and 𝑟 is started up following the expected value form of 𝐼+(𝑥)|𝑥=�̈� (Eq.3.19). The
Monte-Carlo weight of intensity is retrieved to compose the Monte-Carlo weight of sensitivity.

The corresponding algorithm which estimates the sensitivity following this method is Algo.3.

Algorithm 3 Estimation of 𝜕�̈�𝐼
+(𝑥) or 𝜕�̈�𝐼

−(𝑥)
Input: 𝑥, 𝜔, 𝑘𝑎, 𝑘𝑠, 𝑛𝑀𝐶 , �̈� ◁ 𝜔 ∈ {−1, 1}
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1: if 𝜔 = 1 then ◁ Initialize the flag
2: 𝑓𝑙𝑎𝑔 ← 𝑆+

3: else
4: 𝑓𝑙𝑎𝑔 ← 𝑆−

5: end if
6: Initialize the sum of the weight of Monte-Carlo 𝑊𝑆 ← 0
7: Initialize the sum of the square of the weight of Monte-Carlo 𝑉𝑆 ← 0
8: for 𝑖 = 0→ 𝑛𝑀𝐶 do
9: Initialize the weight of Monte-Carlo 𝑤 ← 0

10: Initialize the total length of optical path 𝑙𝑡𝑜𝑡 ← 0
11: Initialize the keeprunning flag 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 1
12: while keeprunning do
13: if 𝑓𝑙𝑎𝑔 = 𝑆+ then
14: Sample a path length 𝜉 following pdf: 𝑝Ξ(𝜉) = 𝑘𝑠𝑒

−𝑘𝑠𝜉

15: if 𝜉 >= 𝑥 then
16: 𝑤 ← 0
17: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
18: else
19: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + 𝜉
20: 𝑥← 𝑥− 𝜉
21: Sample a random number r uniformly for 𝑟 ∈ [0, 1]
22: if 𝑟 < 1

2 then
23: 𝑓𝑙𝑎𝑔 ← 𝑆+

24: else
25: 𝑓𝑙𝑎𝑔 ← 𝑆−

26: end if
27: end if
28: end if
29: if 𝑓𝑙𝑎𝑔 = 𝑆− then
30: Sample a path length 𝜉 following pdf: 𝑝Ξ(𝜉) = 𝑘𝑠𝑒

−𝑘𝑠𝜉

31: if 𝜉 >= (�̈� − 𝑥) then
32: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + (�̈� − 𝑥)
33: 𝑓𝑙𝑎𝑔 ← 𝐼+

34: 𝑥← �̈�
35: else
36: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + 𝜉
37: 𝑥← 𝑥+ 𝜉
38: Sample a random number r uniformly for 𝑟 ∈ [0, 1]
39: if 𝑟 < 1

2 then
40: 𝑓𝑙𝑎𝑔 ← 𝑆+

41: else
42: 𝑓𝑙𝑎𝑔 ← 𝑆−

43: end if
44: end if
45: end if
46: if 𝑓𝑙𝑎𝑔 = 𝐼+ then
47: Sample a path length 𝜉 following pdf: 𝑝Ξ(𝜉) = 𝑘𝑠𝑒

−𝑘𝑠𝜉

48: if 𝜉 >= 𝑥 then
49: 𝑤 ← 𝑘𝑠

2 𝐼
+(0)𝑒−𝑘𝑎𝑙𝑡𝑜𝑡

50: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
51: else
52: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + 𝜉
53: 𝑥← 𝑥− 𝜉
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54: Sample a random number r uniformly for 𝑟 ∈ [0, 1]
55: if 𝑟 < 1

2 then
56: 𝑓𝑙𝑎𝑔 ← 𝐼+

57: else
58: 𝑓𝑙𝑎𝑔 ← 𝐼−

59: end if
60: end if
61: end if
62: if 𝑓𝑙𝑎𝑔 = 𝐼− then
63: Sample a path length 𝜉 following pdf: 𝑝Ξ(𝜉) = 𝑘𝑠𝑒

−𝑘𝑠𝜉

64: if 𝜉 >= (�̈� − 𝑥) then
65: 𝑤 ← 0
66: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
67: else
68: 𝑙𝑡𝑜𝑡 ← 𝑙𝑡𝑜𝑡 + 𝜉
69: 𝑥← 𝑥+ 𝜉
70: Sample a random number r uniformly for 𝑟 ∈ [0, 1]
71: if 𝑟 < 1

2 then
72: 𝑓𝑙𝑎𝑔 ← 𝐼+

73: else
74: 𝑓𝑙𝑎𝑔 ← 𝐼−

75: end if
76: end if
77: end if
78: end while
79: 𝑊𝑆 ←𝑊𝑆 + 𝑤
80: 𝑉𝑆 ← 𝑉𝑆 + 𝑤2

81: end for

Output: 𝜕�̈�𝐼
+(𝑥) or 𝜕�̈�𝐼

−(𝑥)← 𝑊𝑆

𝑛𝑀𝐶
, 𝜎[𝜕�̈�𝐼

+(𝑥)] or 𝜎[𝜕�̈�𝐼
−(𝑥)]←

√︂
𝑉𝑆

𝑛𝑀𝐶
−( 𝑊𝑆

𝑛𝑀𝐶
)2

𝑛𝑀𝐶−1

3.4.3 Method of the model of sensitivity

This method differentiates the intensity model to finally build a model of sensitivity [32,
33]. Compared to the method of observable derivation, this method is more flexible to be
applied to complex problems. While compared to the method of differentiable rendering,
this method has a very clear physical image. In the model of intensity, the intensity is the
descriptor. We will see in the following part of this chapter that by building its own model,
the sensitivity can be regarded as a descriptor of the model of intensity. The sensitivity
then carries the local perturbation of intensity in the system as information. The intensity
is absorbed and scattered following the model of intensity, while similarly, the sensitivity
is absorbed and scattered following the model of sensitivity. We can then benefit from the
well-developed tools of modeling and simulating the transport of intensity to model and
simulate the sensitivities in the system.

In this section, based on the model of intensity 𝐼+ and 𝐼−, we will build a model of the
sensitivity 𝜕�̈�𝐼

+ and 𝜕�̈�𝐼
−. Also, we will study and discuss the physical behaviors of 𝜕�̈�𝐼

+

and 𝜕�̈�𝐼
− in the system.
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RTE for the sensitivity
The RTE describes the transport of intensity in the medium, shown in Eq.3.5. We differentiate
Eq.3.5 with respect to �̈� and we obtain the RTE for 𝜕�̈�𝐼

+ and 𝜕�̈�𝐼
−:

⎧⎪⎪⎨⎪⎪⎩
𝑑𝜕�̈�𝐼

+(𝑥)
𝑑𝑥

= −𝑘𝑒𝜕�̈�𝐼
+(𝑥) + 𝑘𝑒𝜆(𝜕�̈�𝐼

+(𝑥)
2 + 𝜕�̈�𝐼

−(𝑥)
2 )

−𝑑𝜕�̈�𝐼
−(𝑥)
𝑑𝑥

= −𝑘𝑒𝜕�̈�𝐼
−(𝑥) + 𝑘𝑒𝜆(𝜕�̈�𝐼

+(𝑥)
2 + 𝜕�̈�𝐼

−(𝑥)
2 ).

(3.69)

The development from Eq.3.5 to Eq.3.69 is straightforward because the properties of the
medium (𝑘𝑒 and 𝜆) are independent of �̈�. At this stage, we consider the sensitivity 𝜕�̈�𝐼

+ and
𝜕�̈�𝐼
− propagating in the system as the intensity does. Moreover, it is transported in exactly

the same way as the intensity: it is also absorbed and scattered in the medium, following the
properties of the medium (𝑘𝑒 and 𝜆).

Boundary conditions for the sensitivity
However, the derivative of the boundary condition of intensity is less straightforward. We
apply here the method developed by Lapeyre to obtain the corresponding boundary conditions
for sensitivity [32].

The left boundary is not characterized by the parameter �̈�. Therefore, the boundary condition
on this boundary differentiated by �̈� is 0:

𝜕�̈�𝐼
+(0) = 0 (3.70)

The right boundary is characterized by �̈�. Therefore, its boundary condition for sensitivity
is not null. It is considered a “cold black” wall because no intensity is emitted or reflected on
this boundary. The boundary condition of sensitivity for a “cold black” wall is formulated as
following [32]:

𝜕�̈�𝐼
−(�̈�) = 𝜕�̈�𝐼(𝑥, 𝜔)|𝑥=�̈�,𝜔=−1 = −𝛼

(︂
−𝑑𝐼

−(𝑥)
𝑑𝑥

)︂ ⃒⃒⃒⃒
⃒
𝑥=�̈�

(3.71)

𝑥 = 0 𝑥 = �̈�

𝑣 = 1𝜔 = −1

Figure 3.3 – Schema of 𝑣 and 𝜔. In the 3D and 2D configuration [32], 𝛼 = �⃗�·�⃗�
�⃗�·�⃗� where

�⃗� is the normal. This formulation can then be generalized in this 1-D example: 𝛼 = 𝑣
𝜔 .

where 𝛼 = −𝑣 and 𝑣 = 1, called the “velocity of spatial deformation” seeing Fig.3.3, which is
distinguished from the “deformation velocity” in Sec.3.4.1. We imply the Eq.3.5 into Eq.3.71
and we obtain the boundary condition of sensitivity on 𝑥 = �̈�:

𝜕�̈�𝐼
−(�̈�) = 𝑘𝑠

2 𝐼
+(�̈�) (3.72)

Finally, we obtain a boundary condition coupled with the model of intensity. As mentioned,
we can apply the principle of Double Randomization to solve the two coupling models.

Alternatively, a full development of this boundary condition is detailed below:
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Development of the boundary condition for the sensitivity [32–34]

In order to obtain the boundary condition for the sensitivity in this example, we need
to define a material space M and a geometrical space G for the point of boundary
(where 𝑥 = �̈�).
In general, the material space keeps the material’s properties and is independent of
the deformation (independent of �̈� in this case). While in the material space, we note
this point as �⃗� ∈ M, which is independent of �̈�. While in the geometric space, we
note this point as ⃗̌𝑦 ∈ G which depends on �̈�: ⃗̌𝑦 ≡ ⃗̌𝑦(�̈�).
The two spaces are then linked by a function 𝑍:

⃗̌𝑦 = 𝑍(�⃗�, �̈�) = �̈� (3.73)

We keep the notation 𝑍(�⃗�, �̈�), because in a general case, the function 𝑍 is a function
of �⃗�.
Also, we denote the radiative intensity in geometric space as 𝐼−(⃗̌𝑦, �̈�) and 𝐼+(⃗̌𝑦, �̈�)
and in material space as 𝐿−(�⃗�, �̈�) and 𝐿+(�⃗�, �̈�).
Therefore, we have: {︃

𝐼+(⃗̌𝑦, �̈�) = 𝐿+(�⃗�, �̈�)
𝐼−(⃗̌𝑦, �̈�) = 𝐿−(�⃗�, �̈�)

(3.74)

We take the derivative of Eq 3.74 with respect to �̈�:{︃
𝜕�̈�𝐼

+(⃗̌𝑦, �̈�) = 𝜕�̈�𝐿
+(�⃗�, �̈�)

𝜕�̈�𝐼
−(⃗̌𝑦, �̈�) = 𝜕�̈�𝐿

−(�⃗�, �̈�)
(3.75)

The following equations are then yielded:{︃
𝜕1𝐼

+(⃗̌𝑦, �̈�)𝜕�̈�
⃗̌𝑦 + 𝜕2𝐼

+(⃗̌𝑦, �̈�) = 𝜕�̈�𝐿
+(�⃗�, �̈�)

𝜕1𝐼
−(⃗̌𝑦, �̈�)𝜕�̈�

⃗̌𝑦 + 𝜕2𝐼
−(⃗̌𝑦, �̈�) = 𝜕�̈�𝐿

−(�⃗�, �̈�)
(3.76)

𝜕1𝐼
−(⃗̌𝑦, �̈�) and 𝜕1𝐼

+(⃗̌𝑦, �̈�) are the spatial gradient of 𝐼+ and 𝐼−, which can be
replaced by the collision terms in RTE (Eq.3.5). 𝜕�̈�

⃗̌𝑦 is the derivative of function
𝑍: 𝜕�̈�

⃗̌𝑦 = 𝜕�̈�𝑍 = 1 and the source of intensity on the boundary is independent to �̈�,
therefore 𝜕�̈�𝐿

+ = 𝜕�̈�𝐿
− = 0.

Therefore, now we have the following:{︃
𝜕2𝐼

+(⃗̌𝑦, �̈�) = 𝑘𝑒𝐼
+(⃗̌𝑦)− 𝑘𝑠

2 𝐼
+(⃗̌𝑦)− 𝑘𝑠

2 𝐼
−(⃗̌𝑦)

𝜕2𝐼
−(⃗̌𝑦, �̈�) = −𝑘𝑒𝐼

−(⃗̌𝑦) + 𝑘𝑠

2 𝐼
+(⃗̌𝑦) + 𝑘𝑠

2 𝐼
−(⃗̌𝑦)

(3.77)

with ⃗̌𝑦 = �̈�:

𝜕�̈�𝐼
−(�̈�) = 𝜕2𝐼

−(⃗̌𝑦, �̈�)|⃗̌𝑦=�̈� = 𝑘𝑠

2 𝐼
+(�̈�) (3.78)

The transport of sensitivity
Herein, the model of sensitivity is built. We describe the transport of sensitivity and compare
it with the transport of intensity. For the intensity, Eq.3.5 describes its transport in the
medium and Eq.3.6 describes its boundary conditions. A schema of its transport model is
shown in Fig.3.4. A laser gun emits intensity on the left boundary, whereas the source of
intensity is null on the right boundary towards the left direction. The intensity travels inside
the rod, being absorbed or scattered.
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𝑥 = 0 𝑥 = �̈�

𝐼+(0) = 𝐼0 𝐼−(�̈�) = 0

Figure 3.4 – The schema of the transport of intensity with a source of intensity (a
laser gun) on the left boundary.

𝑥 = 0 𝑥 = �̈�

𝜕�̈�𝐼
+(0) = 0 𝜕�̈�𝐼

−(�̈�) = 𝑘𝑠

2 𝐼
+(�̈�)

Figure 3.5 – The schema of the transport of intensity with a source of sensitivity (a
laser gun of sensitivity) on the right boundary.

Similarly, the transport of sensitivity in the medium is described by the Eq.3.69 and the
boundary conditions of sensitivity are described in Eq.3.70 and Eq.3.71. A schema of its
model of transport is shown in Fig.3.5. Since the parameter �̈� characterizes the rod’s right
boundary, the sensitivity source is located on the right boundary. We can imagine that a
laser of sensitivity is set on the right side of the rod. On the contrary, the left boundary
is not characterized by �̈�. Therefore, the source of sensitivity is null on the point 𝑥 = 0.
Similar to the intensity, the sensitivity travels in the rod, absorbed and scattered.

Solve the model of sensitivity
The model of sensitivity is similar to the model of intensity. In this example, we can use
exactly the same mathematical tools to solve the model of sensitivity.
We found that the corresponding Fredholm Equation is exactly the same as Eq.3.59. Therefore,
we write exactly the same integral formulation as a shape of expected value of 𝜕�̈�𝐼

+ and
𝜕�̈�𝐼
− as Eq.3.60 and Eq.3.61. Consequently, the algorithm corresponding to this method is

exactly the same as Algo.3.

3.5 Results and discussions
3.5.1 Intensity
The results of estimations for 𝐼+(𝑥) and 𝐼−(𝑥) in the rod are plotted in Fig.3.6 and Fig.3.7
for two cases of different 𝑘𝑒. Each point in the figure corresponds to one estimation by Algo.1.
The analytical results are also plotted in the figure, which is well correlated with the results
of estimations.
Furthermore, the results show the tendency of the law of beer lambert. Since the source
of intensity exists only on the left side, the two figures show the tendency of attenuation
of intensity. For the first case (Fig.3.6), the intensity is attenuated almost linearly with
a reasonable small value of 𝑘𝑒. The medium is “thin” in this case. For the second case
(Fig.3.7), the intensity is attenuated almost exponentially, with a reasonable big value of 𝑘𝑒.
The medium is “thick” in this case.

3.5.2 Sensitivity
The results of estimations for 𝜕�̈�𝐼

+(𝑥) and 𝜕�̈�𝐼
−(𝑥) are plotted in Fig.3.8 and Fig.3.9 for

two cases of different 𝑘𝑒. Each point in the figure corresponds to one estimation by Algo.2 or
Algo.3. Results obtained by the three methods fit the analytical solution.
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Figure 3.7 – Estimations of intensity (𝜆 = 0.7, 𝑘𝑒 = 3𝑚−1, �̈� = 2𝑚, 𝑛𝑀𝐶 = 104,
𝐼0 = 1𝑤/𝑚2𝑠𝑟)

74



Conclusion of the chapter

It is interesting to find the tendency of law of beer lambert for the propagation of sensitivity.
As shown in Fig.3.5, a sensitivity source appears on the rod’s right boundary. Therefore, a
nearly linear attenuation of sensitivity is found in Fig.3.8 because of the “thin” medium, while
for the sensitivity, it is attenuated from right to left. Similarly, an exponential attenuation of
sensitivity is observed in Fig.3.9 because of the “thick” medium from the right side to the
left.

Last but not least, it is observed that the sensitivity estimations for the points near the
right boundary converge slower for the method of observable derivation. Further studies are
needed to explain it.
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3.6 Conclusion of the chapter
In this chapter, we investigate three methods to compute the sensitivity of intensity in
a one-dimensional radiative case study. The analytical solution is known for comparison
purposes. RTE is used to describe the transport of intensity in the medium, and the boundary
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conditions are set. The medium is assumed to be cold with homogeneous absorption and
scattering properties. Two Dirichlet boundary conditions are set on the boundaries. After
building the transport model, the observable 𝐼 is formulated into a Fredholm equation using
standard mathematical tools. After that, the Fredholm Equation is transformed into an
expected value. Finally, as mentioned in Chapter.1, the expected value can be estimated by
the Monte Carlo method. Moreover, the Monte Carlo algorithm helps build a physical image
since each path mimics the transport of photons.

After that, three methods of estimating sensitivity are introduced and compared. The method
of observable derivation relies on differentiating directly the observable in an expected value
form. The method of differentiable rendering is based on the derivation of the observable in
a Fredholm Equation form. The resulting formulation is then reformulated into an expected
value form. The last method relies on differentiating the model of intensity to build the model
of sensitivity. The sensitivity of intensity becomes the descriptor of the sensitivity model,
absorbed and scattered in the system. The resulting sensitivity model is then solved, having
the same process as solving the model of intensity. The model of intensity and sensitivity
are coupled, but this is algorithmically handled by Double Randomization.

Model of transport (𝐼)

Fredholm Equation (𝐼)

Expected Value (𝐼)

Algo.1

Intensity

Expected Value (𝜕�̈�𝐼)

Algo.2

Intensity & Sensitivity

Model of transport (𝜕�̈�𝐼)

Fredholm Equation (𝜕�̈�𝐼)

Expected Value (𝜕�̈�𝐼)

Algo.3

Sensitivity

Method 1

Method 2

Method 3

Figure 3.10 – A roadmap for the estimation of sensitivity with method 1: method of
observable derivation; method 2: method of differentiable rendering; method 3: method
of sensitivity model.

Fig.3.10 sums up the differences between the three methods we investigated in this chapter.
Compared to the other two methods, the method of observable derivation is perfectly
vectorized to simultaneously estimate the intensity and the sensitivity (as discussed in
Chapter.2). However, the corresponding formal development is very demanding. Few
applications are developed following this method [9].

The method of differentiable rendering is more relevant than the former method to address
complex geometries. More applications are found to improve the reconstruction of 3D scenes
and designing materials with specified optical properties [44]. However, it loses the advantage
of vectorization.

The method of sensitivity model shares the same algorithm as the method of differentiable
rendering and remains adapted for more complex applications. Furthermore, this method is
of great interest to physicians and engineers because of the attached physical image. The
sensitivity can be described physically as the intensity helping physicians and engineers
better understand their systems.

However, this method also loses the advantage of vectorization. A radiative system can be
characterized by thousands of parameters (for example, the concentrated solar power system).
Sensitivities of all these parameters are of great importance for optimization purposes. In
order to estimate all the sensitivities, we need to build a model of sensitivity for each of them.
If we estimate them one by one, it becomes very costly for calculation resources. Herein,
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we suggest to partially vectorize the estimations of sensitivities. We will study and
analyze the models of sensitivity in the radiative system carefully, trying to regroup and
vectorize the estimations of sensitivities.

In the following chapters, we will apply the method of sensitivity model in some geometrically
complex systems. We will study and analyze the models of sensitivity carefully, regroup dif-
ferent kinds of sensitivities and vectorize their estimations. Nevertheless, We will also address
the estimation of thousands of sensitivities that remains out of range if the vectorization
technique is not applied.

77





4
The method of sensitivity model

applied to radiative systems
involving complex geometries:

implementation via vectorization

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1.1 Research problem of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.1.2 Proposition: Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.1.3 Structure of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 First Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.1 Description of the case study . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.2 Transport model of intensity with the boundary condition for each triangle

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.3 Estimation of the observable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.4 Transport model of sensitivity with the boundary condition for each
triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.5 Estimation of the sensitivity of the observable . . . . . . . . . . . . . . . . 87
4.2.6 Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Second example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.1 Description of the case study . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.2 Definition of the sensitivity of intensity and the sensitivity of the observ-
able . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3.3 Transport model of intensity for triangulated geometries . . . . . . . . . 94
4.3.4 Transport model of sensitivity with the boundary condition of each
triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.5 Estimation of the observable and its sensitivities . . . . . . . . . . . . . . 97
4.3.6 The vectorized Monte-Carlo method . . . . . . . . . . . . . . . . . . . . . . 101
4.3.7 Validation of the estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4 Conclusion of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.1 Introduction

79



The method of sensitivity model applied to radiative systems involving complex geometries

In the last chapter, we reviewed the three viewpoints (methods) of estimating sensitivities in
a radiative system: the method of observable derivation, the method of differential rendering,
and the method of sensitivity model. In the following parts of this thesis, we will focus on
the method of sensitivity model, which is detailed in [32–34]. We choose the method of
sensitivity model to achieve the objective of this thesis: building an algorithm to estimate the
geometric sensitivities in a STP system. This chapter dedicates to preparing this application,
which is introduced in the next chapter, by firstly applying the method of sensitivity method
to cases involving complex geometries.

Compared to the method of observable derivation, as mentioned in Chapter.3, the method of
sensitivity model is more flexible and more adapted to complex geometry. Indeed, De la Torre
attempted to apply the method of observable derivation in CSP system [9]. However, as it is
discussed in Chapter.2, the effects of blocking and shadowing in CSP system are not able to
be taken into account [9] because of the difficulty of formal mathematical development.

Compared to the method of differential rendering, the method of sensitivity model physically
interprets the contributions of sensitivity because it is based on transport models for sensi-
tivities. Then, applying the method of sensitivity model instead of the method of differential
rendering allows us to physically interpret the contributions of physical events (blocking,
shadowing, and spillage) in CSP system to the sensitivities, as we will show in the next
chapter.

Therefore, we focus on the method of sensitivity model instead of the other two methods in
the following parts of this thesis.

In the previous study of Paule Lapeyre in her Ph.D. thesis, she has proposed this method of
sensitivity model [32–34]. The implementation has been performed only for academic cases.
We propose extending this method to real applications involving complex geometries with
many parameters, such as CSP systems. In this chapter, we apply the method of sensitivity
models to cases involving complex geometries described by the triangles. Complex geometries
could be described by triangles. We make this choice here because we use computer graphics
libraries, where the most commonly used shapes to describe complex geometries are the
triangles [46].

4.1.1 Research problem of the chapter
The main difficulty of applying the method of sensitivity models to triangulated geometries
is the high number of sources appearing in the models of sensitivities.

In order to illustrate this difficulty in an intuitive manner, we take a triangle as an example.
en Fig.4.1, we suppose that a gradient of temperature is on the surface of a single triangle.
The emitted intensity is then a function of the position on the surface �⃗�𝑝: 𝐼𝑒𝑚𝑖𝑡 ≡ 𝐼(�⃗�𝑝). A
geometric parameter �̈� characterizes the translation of this triangle. The perturbation of
�̈� causes the perturbation of the local emitted intensity 𝐼(�⃗�𝑝). This local perturbation is
defined as the source of sensitivity. However, two perturbations of intensity are distinguished:
the perturbation on the surface of the triangle �̇�(�⃗�𝑝) and the perturbation on the segments of
the triangle 𝑠(�⃗�𝑙), where �⃗�𝑝 represents the points on the surface and �⃗�𝑙 represents the points
on the segments. �̇�(�⃗�𝑝) is originated from the spatial gradient of emitted intensity (emitted
intensity is a function of the position: 𝐼(�⃗�𝑝)). 𝐼(�⃗�𝑝) is derivable around �⃗�𝑝:

�̇�(�⃗�𝑝) = lim
Δ�̈�←0

𝐼(�⃗�𝑝 −Δ�̈��⃗�1)− 𝐼(�⃗�𝑝)
Δ�̈� (4.1)

𝑠(�⃗�𝑙) originated from the discontinuous profile of emitted intensity on the borders of the
triangle. However, 𝐼(�⃗�𝑙) is not smooth around �⃗�𝑙, because �⃗�𝑙 is defined on the borders. When
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we differentiate the intensity on the borders, we will obtain a Dirac. 𝑠(�⃗�𝑙) is studied in [34]
and the detailed development of this term is shown in the following sections of this chapter.
It is just essential to note here only surface sources exist in the model of intensity, while the
model of sensitivity consists of surface sources on the surface and line sources on the segments
(Fig.4.1). However, complex geometry is usually described by thousands of triangles. The
sources of sensitivity might locate on the surface and segments of all triangles. The question
addressed in this chapter is to propose a strategy: the vectorization.

𝐼(�⃗�𝑝)

�̈��⃗�1

�⃗�2

(a) Surface source of intensity.

�̇�(�⃗�𝑝)

𝑠(�⃗�𝑙)

�̈��⃗�1

�⃗�2

(b) Surface source and line source of
sensitivity.

Figure 4.1 – The model of intensity consists of line sources, while the model of sensitivity
often consists of line sources and surface sources. �⃗�1 and �⃗�2 are the global coordinate
vectors and �̈� characterises the translation of triangle following �⃗�2. �⃗�𝑝 represents the
position on the surface, where located the surface sources. �⃗�𝑙 represents the position
on the edge, where located the line sources. 𝐼 is the emitted intensity, �̇� is the surface
source of sensitivity, and 𝑠 is the line source of sensitivity.

4.1.2 Proposition: Vectorization
The idea of vectorization is that, instead of propagating a scalar as the descriptor of the
transport model (for example, the descriptor of the model of intensity is the intensity), we
propagate a vector as the descriptor of the transport. We follow the four steps to apply the
method of sensitivity model to cases involving complex geometries (see also Fig.4.2):

• Firstly, we build the transport models for intensity and for all sensitivities interested
in scalar forms (each sensitivity corresponds to a parameter of the system). In order
to tackle the cases with triangulated and complex geometry, boundary conditions are
developed for each triangle.

• Following the standard process described in Chapter.3, we formulate the observable
by an integral of intensity, and we formulate the sensitivities of the observable by
integrals of sensitivities of intensity (into a form of Fredolhm Equation and then a form
of expected value).

• After that, we analyze the path spaces corresponding to the integral formulations (for
the observable and for all the sensitivities of the observable).

• We distinguish the sources belonging to the same path space and vectorize the transport
of intensity or sensitivities with the same optical paths.

81



The method of sensitivity model applied to radiative systems involving complex geometries

Model of 𝐼 Model of 𝜕�̈�1𝐼 Model of 𝜕�̈�2𝐼 Model of 𝜕�̈�𝑛
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𝑂

Analyse the path spaces and vectorize the transport of 𝐼, 𝜕�̈�1𝐼, 𝜕�̈�2𝐼, . . ., 𝜕�̈�𝑛
𝐼

Build the Monte-Carlo corresponding estimators

· · ·

Figure 4.2 – A roadmap of vectorization. 𝐼 is the intensity, the descriptor of the
model of intensity. �̈�1, �̈�2, . . ., �̈�𝑛 are the parameters of the system and 𝜕�̈�1𝐼, 𝜕�̈�2𝐼, . . .,
𝜕�̈�𝑛

𝐼 are the corresponding sensitivities, which are the descriptors of the corresponding
models of sensitivities. This strategy consists of formulating the expected value form of
the observable 𝑂, and its sensitivity 𝜕�̈�1𝑂, 𝜕�̈�2𝑂, . . ., 𝜕�̈�𝑛

𝑂 separately. After that, we
analyse the path spaces to vectorize the transport of 𝐼, 𝜕�̈�1𝐼, 𝜕�̈�2𝐼, . . ., 𝜕�̈�𝑛𝐼.

4.1.3 Structure of the chapter
This strategy will be applied to two examples of applications involving complex and triangu-
lated geometries: To apply the process defined in Fig.4.2, we have chosen two examples that
involve complex geometries that have been triangulated:

• The first example concerns a diffuse multi-reflection case. We are interested in estimating
the observable 𝐼(�⃗�𝑜𝑏𝑠, �⃗�𝑜𝑏𝑠) and its sensitivity with respect to the unique reflectivity of
the geometry 𝜕𝜌𝐼(�⃗�𝑜𝑏𝑠, �⃗�𝑜𝑏𝑠), where �⃗�𝑜𝑏𝑠 is the point of observation, 𝜌 the reflectivity of
the diffuse reflection and �⃗�𝑜𝑏𝑠 is the direction of observation . The two estimations will
be vectorized following the proposed strategy in Fig.4.2. Once the estimations of 𝐼 and
𝜕𝜌𝐼 are vectorized, an image of 𝐼 and an image of 𝑠𝜌 can be rendered simultaneously.
In the computer graphics community, the image of sensitivity is used for inversion
processes and machine learning process [26]

• The second example concerns an emitter in a semi-transparent medium. We are
interested firstly in estimating the observable 𝑃 , which is the impacting power on a
receiver in the radiative system. We are also interested in estimating the sensitivities
of the power 𝜕�̈�𝑃 , with respect to the translations and rotations of the emitter, where
�̈� is the vector of parameters that characterize the translations and rotations of the
emitter. After building the models of intensity and its sensitivities, the observable and
sensitivities are formulated into an integral form. The path spaces of estimating the
observable and the sensitivities are analyzed. Finally, vectorization is performed for
the optical paths of different descriptors (intensity and sensitivities) in the same path
space.

82



First Example

Os

Ol

Ti

T

Figure 4.3 – Configuration of the example. The object is presented by a triangulated
cube in the figure, but it can be replaced by any triangulated shape.

4.2 First Example
4.2.1 Description of the case study
The configuration is shown in Fig.4.3. The transport of 𝐼 in the medium is governed by a
partial differential equation at any locations �⃗�, following a vector of direction �⃗� in a unit
sphere S (RTE). The model is closed by the two boundaries: the “sky” (noted O𝑠) and the
“ground” (noted O𝑙). An “object” described by triangles are placed between O𝑠 and O𝑙. A
triangle is noted T𝑖 with the index 𝑖 for 𝑖𝑡ℎ triangle, and the set of all T𝑖 composes the
“object” noted T ≡ {T𝑖}, ∀𝑖 ∈ {1, 2, . . . , 𝑛T }, where 𝑛T is the number of triangles.

The following assumptions are imposed:

1. The medium is transparent.

2. O𝑙 is a cold black body that does not emit or reflect any intensity.

3. O𝑠 is a black body that does not reflect any intensity but emits intensity.

4. T is a cold opaque body with a surface of diffuse reflection. The reflectivity 𝜌 is
homogeneous for all the surfaces of T .

Herein we have an objective of estimating two values on the point of observation in the
system �⃗�, following a direction of observation �⃗�.

1. The observable is the intensity 𝐼(�⃗�, �⃗�).

2. The sensitivity of the observable with respect to 𝜌 is 𝑠𝜌(�⃗�, �⃗�) ≡ 𝜕𝜌𝐼(�⃗�, �⃗�).

We will build two models of transport, one for 𝑠𝜌 and the other for 𝐼, and estimate them by
the Monte Carlo method. After that, we analyze the path spaces of estimating 𝐼 and 𝑠𝜌 and
vectorize the two estimations.
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4.2.2 Transport model of intensity with the boundary
condition for each triangle

Since the medium is considered transparent, the RTE for intensity is written as:

�⃗� · 𝜕1𝐼(�⃗�, �⃗�, 𝜌) = 0 (4.2)

The boundary conditions for O𝑙 and O𝑠 are noted with an index of 𝑂𝑠 and 𝑂𝑙 respectively:

{︃
𝐼(�⃗�𝑂𝑠 , �⃗�𝑂𝑠) = �̊�(�⃗�𝑂𝑠 , �⃗�𝑂𝑠) = 𝐼0

𝐼(�⃗�𝑂𝑙
, �⃗�𝑂𝑙

) = 0
(4.3)

A source of intensity is located on the boundary condition of O𝑠. To distinguish the source
of intensity and the transport of intensity, we note �̊� for the source on the boundary. In this
example, the source of intensity is constant 𝐼0.

After that, we build the boundary condition of intensity for each triangle. The boundary
condition of intensity on the 𝑖𝑡ℎ triangle T𝑖 is noted 𝐼𝑖, with the index 𝑝 for the position �⃗�𝑝

and direction �⃗�𝑝:

𝐼𝑖(�⃗�𝑝, �⃗�𝑝, 𝜌) =
∫︁

2𝜋(�⃗�𝑖)
PΩ′

𝑝
(�⃗�′𝑝)𝑑�⃗�′𝑝𝜌𝐼(�⃗�𝑝, �⃗�

′
𝑝, 𝜌) (4.4)

with

PΩ′
𝑝
(�⃗�′𝑝) = |�⃗�′𝑝 · �⃗�𝑖| (4.5)

which is the normalized pdf (
∫︀

2𝜋(�⃗�𝑖) PΩ𝑝(�⃗�𝑝)𝑑�⃗�𝑝 = 1). The product of 𝜌PΩ′
𝑝

is also called
BRDF of a diffuse surface, �⃗�′𝑝 the direction of the incoming intensity at the point �⃗�𝑝 and �⃗�𝑖

is the normal of the triangle T𝑖.

The outgoing intensity of the 𝑖𝑡ℎ triangle at the point �⃗�𝑝 following the direction �⃗�𝑝 is the
reflected intensity at the same point following the incoming direction �⃗�′𝑝, multiplied by
the reflectivity 𝜌. A physical image of the reflection on the triangle is shown in Fig.4.4.
To be noted that the reflection is diffuse (Eq.4.5). Therefore the reflected direction �⃗�𝑝 is
independent of the incoming direction �⃗�′𝑝.

T𝑖

�⃗�𝑝

�⃗�𝑝

𝐼𝑖(�⃗�𝑝, �⃗�𝑝, 𝜌) 𝐼(�⃗�𝑝, �⃗�′
𝑝, 𝜌)

�⃗�′
𝑝

Figure 4.4 – Reflection of the intensity on the 𝑖𝑡ℎ triangle. This figure shows a physical
image of reflection governed by Eq.4.4.
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4.2.3 Estimation of the observable
A model of intensity is built at this stage. It is then possible to measure the observable in the
system, which is the intensity 𝐼 of a point �⃗�, following the propagation direction �⃗�: 𝐼(�⃗�, �⃗�) .
Following the model of 𝐼 described in Sec.4.2.2, the observed intensity 𝐼(�⃗�, �⃗�) can be
formulated as:

𝐼(�⃗�, �⃗�, 𝜌) = 𝐼𝑖(�⃗�𝑝, �⃗�𝑝, 𝜌)H(�⃗�ℎ𝑖𝑡 ∈ T𝑖) + 𝐼0H(�⃗�ℎ𝑖𝑡 ∈ O𝑠) + 0H(�⃗�ℎ𝑖𝑡 ∈ O𝑙) (4.6)

where �⃗�ℎ𝑖𝑡 is the first intersection of the ray-tracing test starting from �⃗�, following −�⃗� and
H is the Heaviside function. Eq.4.6 means that the intensity 𝐼(�⃗�, �⃗�, 𝜌) has three possible
origins. It can be from the three boundary conditions, seeing Fig.4.5.

�⃗� �⃗�

O𝑠

O𝑙

T𝑖

T

𝐼(�⃗�, �⃗�, 𝜌)

Figure 4.5 – The observable is 𝐼(�⃗�, �⃗�, 𝜌), the intensity propagated from �⃗�, following �⃗�.
Three possible events can happen: the ray hits the O𝑠, and 𝐼(�⃗�, �⃗�, 𝜌) = 𝐼0; the ray hits
the O𝑙 and 𝐼(�⃗�, �⃗�, 𝜌) = 0; the ray hits the T𝑖, 𝐼(�⃗�, �⃗�, 𝜌) = 𝐼𝑖(�⃗�𝑝, �⃗�𝑝, 𝜌).

We finally substitute the boundary condition Eq.4.4 into Eq.4.6 and we reformulate it
iteratively:

𝐼(�⃗�, �⃗�, 𝜌) = 𝐼0H(�⃗�0,ℎ𝑖𝑡 ∈ O𝑠)

+ H(�⃗�0,ℎ𝑖𝑡 ∈ T𝑖)
∫︁

2𝜋(�⃗�𝑖)
PΩ′

𝑝
(�⃗�′𝑝1)𝑑�⃗�′𝑝1

[︀
𝜌𝐼0H(�⃗�1,ℎ𝑖𝑡 ∈ O𝑠) + H(�⃗�1,ℎ𝑖𝑡 ∈ T𝑖) . . .

]︀
(4.7)

where �⃗�0,ℎ𝑖𝑡 and �⃗�1,ℎ𝑖𝑡 are the points of intersection after 0 and 1 reflection; �⃗�′𝑝1 is the
direction of propagation after 1 reflection.
At this stage, the observable 𝐼(�⃗�, �⃗�) is formulated into a form of integral, which is then
possible to be estimated by a Monte-Carlo algorithm. For each realization, we proceed with a
reverse ray-tracing process, starting from the point �⃗�, following the direction −�⃗�. If the first
intersection is found on O𝑠, we count 𝐼0 for this realization; if the first intersection is found
on O𝑙, we count 0; if the first intersection is found on T𝑖, we will continue to search for the
incoming intensity, sampling a direction following PΩ′

𝑝
. Systematically, for each Monte-Carlo

realization, we note �⃗�𝑘,ℎ𝑖𝑡, ∀𝑘 ∈ N0 as the point of intersection after 𝑘 reflections, when
�⃗�𝑘,ℎ𝑖𝑡 ∈ O𝑠, we count 𝜌𝑘𝐼0 for this realization; when �⃗�𝑘,ℎ𝑖𝑡 ∈ O𝑙, we count 0; when �⃗�𝑘,ℎ𝑖𝑡 ∈ T ,
we continue the (𝑘 + 1)𝑡ℎ reflection.
Before going further, we first build the model of transport for the sensitivity and formulate
the sensitivity of observable into an integral form.
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4.2.4 Transport model of sensitivity with the boundary
condition for each triangle

In this subsection, we build the transport model for sensitivity 𝑠𝜌. With this transport model,
the sensitivity 𝑠𝜌 is considered as a physical quantity that is transported in the system.
The transport model of sensitivity is built based on differentiating the transport model of
intensity mathematically, but we propose to give an image of the “transport of sensitivity”
at each stage.

We differentiate Eq.4.2 to obtain the RTE for sensitivity:

�⃗� · 𝜕1𝑠𝜌(�⃗�, �⃗�, 𝜌) = 0 (4.8)

A physical image of transport of sensitivity can be created based on Eq.4.8. Comparing to
Eq.4.2, we can imagine that the medium is also “transparent” for 𝑠𝜌:

Secondly, we differentiate then the boundary conditions for O𝑙 and O𝑠 (Eq.4.3).

{︃
𝑠𝜌(�⃗�𝑂𝑠

, �⃗�𝑂𝑠
) = 0

𝑠𝜌(�⃗�𝑂𝑙
, �⃗�𝑂𝑙

) = 0
(4.9)

Since the boundary conditions of O𝑙 and O𝑠 are not characterised by the parameter 𝜌, the
boundary conditions on O𝑠 and O𝑙 are null. Based on Eq.4.9, we propose an image of
“radiative physics” for sensitivity. We consider that these boundaries are “cold black” bodies
for the sensitivity 𝑠𝜌. The sensitivity 𝑠𝜌 arriving on these two boundaries is then “absorbed”,
and no sensitivity is “emitted” on these boundaries.

After that, we build the boundary condition of sensitivity for each triangle of the object T .
We differentiate the boundary conditions in Eq.4.4 with respect to 𝜌 to obtain the boundary
conditions of 𝑠𝜌, where 𝑠𝜌𝑖 is the boundary condition of sensitivity for the 𝑖𝑡ℎ triangle T𝑖:

𝑠𝜌𝑖(�⃗�𝑝, �⃗�𝑝, 𝜌) =
∫︁

2𝜋(�⃗�𝑖)
PΩ′

𝑝
(�⃗�′𝑝)𝜌𝑠𝜌(�⃗�𝑝, �⃗�

′
𝑝, 𝜌)𝑑�⃗�′𝑝 + �̊�(�⃗�𝑝, �⃗�

′
𝑝, 𝜌) (4.10)

In Eq.4.10, two terms are identified: the first term is a term of transport, and the second
term is a term of the source.

The first term is about the diffuse reflection of the sensitivity 𝑠𝜌, where PΩ′
𝑖

has been shown
in Eq.4.5. This term is regarded as a reflection term to create a similar image of transport
compared to the transport of intensity. Similar to the transport of intensity on the triangle
(Eq.4.4), the “reflected” sensitivity 𝑠𝜌𝑖 is the incoming sensitivity 𝑠𝜌 on the same point
following the incoming direction �⃗�′𝑖 and multiplied by the reflectivity 𝜌.

The second term �̊�𝜌 is the source of sensitivity:

�̊�𝜌𝑖(�⃗�𝑝, �⃗�𝑝, 𝜌) =
∫︁

2𝜋(�⃗�𝑖)
PΩ′

𝑝
(�⃗�′𝑝)𝐼(�⃗�𝑝, �⃗�

′
𝑝, 𝜌)𝑑�⃗�′𝑝 (4.11)

Unlike the first term, the source of sensitivity (Eq.4.11) is not a function of sensitivity 𝑠𝜌

but a function of the intensity. We remind here the physical definition of the sensitivity: the
local perturbation of the intensity due to the perturbation of the corresponding parameter.
Therefore, the source of sensitivity is the origin of the sensitivity of the system. In other words,
it is the origin of the perturbation of intensity due to the perturbation of the corresponding
parameter. In our example, the parameter is the reflectivity 𝜌. The perturbation of 𝜌 perturbs
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T𝑖
�⃗�𝑝

�⃗�𝑝

𝜌𝑠𝜌(�⃗�𝑝, �⃗�𝑝, 𝜌)

�̊�𝜌𝑖(�⃗�𝑝, �⃗�𝑝, 𝜌)

𝑠𝜌(�⃗�𝑝, �⃗�′
𝑝, 𝜌)

�⃗�′
𝑝

Figure 4.6 – Reflection of the sensitivity on the 𝑖𝑡ℎ triangle. This figure shows a
physical image of reflection governed by Eq.4.10. The incoming sensitivity 𝑠𝜌 is reflected
with a supplementary source �̊�𝜌𝑖.

the reflected intensity on the triangle. Therefore, the source of sensitivity �̊�𝜌𝑖 characterizes
this perturbation of reflected intensity due to the perturbation of 𝜌. It is then a function of
the incoming intensity 𝐼(�⃗�𝑝, �⃗�

′
𝑝, 𝜌) (Eq.4.11).

At this stage, we have built a transport model of sensitivity 𝑠𝜌. It is important to note that
a physical image of the transport of sensitivity is proposed. In the medium, the sensitivity
is transported following Eq.4.8. The medium is considered transparent for the sensitivity.
On the boundaries of O𝑠 and O𝑙, the arriving sensitivities are absorbed, and no sensitivities
are emitted. On the triangles T𝑖, the sensitivity arriving is reflected, and the triangles emit
also sensitivity (Fig.4.6). Finally, the sensitivity of the observable, which is the sensitivity
𝑠𝜌(�⃗�, �⃗�, 𝜌) on a point �⃗�, following the direction �⃗�, can be estimated following the model
developed.

4.2.5 Estimation of the sensitivity of the observable
Following the model of 𝑠𝜌 described in Sec.4.2.4, the observed sensitivity 𝑠𝜌 can be formulated
as:

𝑠𝜌(�⃗�, �⃗�, 𝜌) = 𝑠𝜌𝑖(�⃗�𝑝, �⃗�𝑝, 𝜌)H(�⃗�ℎ𝑖𝑡 ∈ T𝑖) + 0H(�⃗�ℎ𝑖𝑡 ̸∈ T ) (4.12)

�⃗� �⃗�

O𝑠

O𝑙

T𝑖

T

𝑠𝜌(�⃗�, �⃗�, 𝜌)

Figure 4.7 – The sensitivity of observable is 𝑠𝜌(�⃗�, �⃗�, 𝜌), the sensitivity of intensity
propagated from �⃗�, following �⃗�. Two possible events can happen: the ray hits the O𝑠 or
O𝑙, then 𝑠𝜌(�⃗�, �⃗�, 𝜌) = 0; the ray hits the T𝑖, 𝑠𝜌(�⃗�, �⃗�, 𝜌) = 𝑠𝜌𝑖(�⃗�𝑝, �⃗�𝑝, 𝜌).
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Since the medium is transparent for the sensitivity, the observed sensitivity 𝑠𝜌(�⃗�, �⃗�, 𝜌) directly
comes from the boundary conditions (Fig.4.7). We perform the reverse ray-tracing test
from �⃗�, following −�⃗�. Eq.4.12 signifies the fact that 2 events can happen when a ray is
launched from the position �⃗� towards the direction −�⃗�: hitting or not hitting the object T
(Fig.4.7). When the ray hits T , the boundary condition on the triangle 𝑠𝜌𝑖 is referred to
Eq.4.10. Herein, we rewrite the boundary condition on the triangles, using the same pdf for
the transport of sensitivity and the transport of intensity:

𝑠𝜌𝑖(�⃗�𝑝, �⃗�𝑝, 𝜌) =
∫︁

2𝜋(�⃗�𝑖)
PΩ′

𝑝
(�⃗�′𝑝)

[︀
𝜌𝑠𝜌(�⃗�𝑝, �⃗�

′
𝑝, 𝜌) + 𝐼(�⃗�𝑝, �⃗�

′
𝑝, 𝜌)

]︀
𝑑�⃗�′𝑝 (4.13)

Eq.4.13 is then exactly equivalent to Eq.4.10. The reason that we propose this reformulation
is that Eq.4.10 separates the transport term (the reflection) and the source term to indicate
a physical image of the transport of the sensitivity, as it is shown in Fig.4.6. Herein, Eq.4.13
allows to study the path space of the transport of 𝑠𝜌 and 𝐼. The transport of the two
quantities shares the same path space, which is indicated by Eq.4.13. The reflected sensitivity
𝑠𝜌𝑖(�⃗�𝑝, �⃗�𝑝, 𝜌) is the incoming sensitivity 𝑠𝜌(�⃗�𝑝, �⃗�𝑝, 𝜌) multiplied by the reflectivity, plus the
intensity coming from the same direction (�⃗�′𝑝), the corresponding physical image is Fig.4.8.
The incoming sensitivity 𝑠𝜌 and intensity 𝐼 are then associated to another ray-tracing test,
which are indicated in Eq.4.6 and Eq.4.12. It is important to note here that the two ray-
tracing tests, one for sensitivity and the other one for sensitivity, can be carried by only one
ray, as it is shown in Fig.4.8. Therefore, the transport of the sensitivity 𝑠𝜌 and the intensity
𝐼 in the medium and on the boundaries is exactly the same.

T𝑖
�⃗�𝑝

�⃗�𝑝

𝑠𝜌𝑖(�⃗�𝑝, �⃗�𝑝, 𝜌) 𝜌𝑠𝜌(�⃗�𝑝, �⃗�′
𝑝, 𝜌) + 𝐼(�⃗�𝑝, �⃗�′

𝑝, 𝜌)

�⃗�′
𝑝

Figure 4.8 – Reflection of the sensitivity on the 𝑖𝑡ℎ triangle. This figure shows a
physical image of reflection governed by Eq.4.13. The reflected sensitivity 𝑠𝜌𝑖 is the sum
of the sensitivity incoming multiplied by the reflectivity 𝜌𝑠𝜌 and the incoming intensity
following the same direction �⃗�′𝑝.

Finally, based on Eq.4.12, we substitute Eq.4.13, Eq.4.6 and Eq.4.4 recursively, we get the
following iterative formulation for the sensitivity at point �⃗�, following �⃗�:

𝑠𝜌(�⃗�, �⃗�, 𝜌) = 0H(�⃗�0,ℎ𝑖𝑡 ̸∈ T )

+ H(�⃗�0,ℎ𝑖𝑡 ∈ T𝑖)
∫︁

2𝜋(�⃗�𝑖)
PΩ𝑝

(�⃗�𝑝1)𝑑�⃗�′𝑝1
[︀
𝐼0H(�⃗�1,ℎ𝑖𝑡 ∈ O𝑠)+

H(�⃗�1,ℎ𝑖𝑡 ∈ T𝑖)
∫︁

2𝜋(�⃗�𝑖)
PΩ𝑝(�⃗�𝑝2)𝑑�⃗�′𝑝2

(︀
2𝜌𝐼0H(�⃗�2,ℎ𝑖𝑡 ∈ O𝑠)+

H(�⃗�2,ℎ𝑖𝑡 ∈ T𝑖) . . .
)︀]︀

(4.14)

where �⃗�0,ℎ𝑖𝑡, �⃗�1,ℎ𝑖𝑡, �⃗�2,ℎ𝑖𝑡 are the points of intersection after 0, 1 and 2 reflection(s) respec-
tively; �⃗�𝑝1 and �⃗�𝑝2 are the directions of propagation after 1 and 2 reflection(s).
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At this stage, the sensitivity of the observable 𝑠𝜌 is also formulated into an integral form,
which is possible to be estimated by a Monte-Carlo algorithm. Systematically, for each
Monte-Carlo realization, if we note �⃗�𝑘,ℎ𝑖𝑡, ∀𝑘 ∈ N0 as the point of intersection after 𝑘
reflection, when �⃗�𝑘,ℎ𝑖𝑡 ∈ O𝑠, we count 𝑘𝜌(𝑘−1)𝐼0 for this realization; when �⃗�𝑘,ℎ𝑖𝑡 ∈ O𝑙, we
count 0 for this realization; when �⃗�𝑘,ℎ𝑖𝑡 ∈ T , we continue the (𝑘 + 1)𝑡ℎ reflection.

4.2.6 Vectorization
The observable 𝐼(�⃗�, �⃗�, 𝜌) is formulated in a integral form in Eq.4.7 in Section.4.2.3. The
sensitivity of the observable 𝑠𝜌(�⃗�, �⃗�, 𝜌) is formulated in a integral form in Eq.4.14 in Sec-
tion.4.2.5.

It is interesting to find out that the two integral formulations have the same integral domains
and the same pdfs. In other words, the path space of 𝐼 and 𝑠𝜌 is the same. We benefit from
this fact to write Eq.4.7 and Eq.4.14 in a vectorized form:

[︂
𝐼(�⃗�, �⃗�, 𝜌)
𝑠𝜌(�⃗�, �⃗�, 𝜌)

]︂
=
[︂
𝜌𝐼0
0

]︂
H(�⃗�0,ℎ𝑖𝑡 ∈ O𝑠)

+ H(�⃗�0,ℎ𝑖𝑡 ∈ T𝑖)
∫︁

2𝜋(�⃗�𝑖)
PΩ𝑝

(�⃗�𝑝1)𝑑�⃗�′𝑝1

[︁ [︂𝜌𝐼0
𝐼0

]︂
H(�⃗�1,ℎ𝑖𝑡 ∈ O𝑠)+

H(�⃗�1,ℎ𝑖𝑡 ∈ T𝑖)
∫︁

2𝜋(�⃗�𝑖)
PΩ𝑝

(�⃗�𝑝2)𝑑�⃗�′𝑝2
(︀ [︂𝜌2𝐼0

2𝜌𝐼0

]︂
𝐼0H(�⃗�2,ℎ𝑖𝑡 ∈ O𝑠)+

H(�⃗�2,ℎ𝑖𝑡 ∈ T𝑖) . . .
)︀]︁

(4.15)

The reformulation has a significant impact on the algorithms to estimate 𝐼 and 𝑠𝜌: Before
formulating the vectorized form (Eq.4.15), we build different optical paths for the estimation
of observable 𝐼 (Fig.4.5) and its sensitivity 𝑠𝜌 (Fig.4.7). After formulating the vectorized
form (Eq.4.15), we build the same optical paths for the estimation of observable and its
sensitivity (Fig.4.9).

�⃗� �⃗�

O𝑠

O𝑙

T𝑖

T[︂
𝐼(�⃗�, �⃗�, 𝜌)
𝑠𝜌(�⃗�, �⃗�, 𝜌)

]︂

Figure 4.9 – 𝐼 and 𝑠𝜌 are transported in a vectorized form. Instead of launching optical
paths for the estimation of 𝐼 and other optical paths for the estimation of 𝑠𝜌. The same
optical paths are used for the estimation of the vector of these two descriptors.

Systematically, for each Monte-Carlo realization, if we note �⃗�𝑘,ℎ𝑖𝑡, ∀𝑘 ∈ N0 as the point
of intersection after 𝑘 reflections, when �⃗�𝑘,ℎ𝑖𝑡 ∈ O𝑠, we count 𝜌𝑘𝐼0 for the Monte-Carlo
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weight of intensity and 𝑘𝜌(𝑘−1)𝐼0 for the sensitivity; when �⃗�𝑘,ℎ𝑖𝑡 ∈ O𝑙, we count 0 for the
Monte-Carlo weight of intensity and for the sensitivity; when �⃗�𝑘,ℎ𝑖𝑡 ∈ T , we continue the
(𝑘 + 1)𝑡ℎ reflection.

Finally, with this algorithm (Eq.4.15), only one ray is needed for each Monte-Carlo realization.
The information on intensity and sensitivity is carried out on the same ray. It is because the
path space of intensity and sensitivity is the same.

4.2.7 Results
At this stage, the estimations of observable 𝐼 and its sensitivity 𝑠𝜌 are vectorized. In order
to show how powerful the vectorized form (Eq.4.15) is, we benefit from this vectorized form
to render an image of 𝐼 and another image of 𝑠𝜌 simultaneously. In other words, at the
same time that an image of 𝐼 is rendered, the image of 𝑠𝜌 can also be rendered at a price
of a low supplementary computation effort. As we already indicated that the image 𝑠𝜌 can
serve as necessary information to process optimization and machine learning process in the
community of image synthesis [26].

Since rendering an image is not the objective of this chapter, the corresponding developments
and algorithms are in Appendix.B. We render the images under the Monte-Carlo ray-tracing
library of Star-engine1. The open source codes can be found on this page2. Finally, the
image is converted to a PGM format3.

We remind that the method we developed in this chapter can be applied to all kinds of
triangulated geometry and that the models are built generally by the boundary condition
of each triangle. In this example, we use two referential triangulated geometries, standford
bunny and the standford dragon4, as the reflecting object. The corresponding image of 𝐼
is shown in Fig.4.10a and Fig.4.11a. The rendered image of 𝑠𝜌 is shown in Fig.4.10b and
Fig.4.11b.

As mentioned in Section.4.3.1, the “sky” is a black body, the “ground” is a cold black body
and the “object” has diffuse reflected surface. For the rendered image of intensity 𝐼 (Fig.4.10a
and Fig.4.11a), the “sky” is white, the ground is black and the object is gray. However, for
the rendered image of sensitivity 𝑠𝜌 (Fig.4.10b and Fig.4.11b), the “sky” and “ground” are
black because they are independent of the reflectivity 𝜌.

The calculating time for rendering the image of intensity Fig.4.10a is 30.494s and 31.575s for
Fig.4.11a. Furthermore, the calculating time for rendering the two images of Fig.4.10a and
Fig.4.10b is only 34.436s. The corresponding time for rendering the two images of Fig.4.11a
and Fig.4.11b is 32.385s.

To sum up, at the same time that an image of 𝐼 is rendered, the image of 𝑠𝜌 can also be
rendered at a price of a low supplementary computation effort (around 3s more for Fig.4.10
and 2s more for Fig.4.11). All rendering algorithms that we used in this section are performed
on an ordinary laptop5. The calculation is run parallelly on the CPUs.

1git@gitlab.com:meso-star/star-engine.git
2git@gitlab.com:hzl007x/partial_renderer.git
3http://netpbm.sourceforge.net/doc/pgm.html
4http://graphics.stanford.edu/data/3Dscanrep/
54 CPUs of i5 Intel™, 8th generation
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(a) Image of intensity 𝐼 (b) Image of sensitivity 𝑠𝜌

Figure 4.10 – 𝐼0 = 1W/(m2 sr) and 𝜌 = 0.1. 800× 600 pixels; 𝑛𝑀𝐶 = 1024 for each
pixel. The color scale is proportional to the value of average intensity arrived on the
pixel (see Appendix.B). The white color corresponds to 1W/(m2 sr) and the black color
corresponds to 0.

(a) Image of intensity 𝐼. (b) Image of sensitivity 𝑠𝜌

Figure 4.11 – 𝐼0 = 1W/(m2 sr) and 𝜌 = 0.4. 800× 600 pixels; 𝑛𝑀𝐶 = 1024 for each
pixel. The color scale is proportional to the value of average sensitivity arrived on the
pixel (see Appendix.B). The white color corresponds to 1W/(m2 sr) and the black color
corresponds to 0.
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4.3 Second example
4.3.1 Description of the case study
The boundaries are closed by a “box”, noted B. A receiver R and a triangulated “object”
are located in the box. A triangle is noted T𝑖 with the index 𝑖 for the 𝑖𝑡ℎ triangle, and the
set of all T𝑖 composes the “object” noted T ≡ {T𝑖}, ∀𝑖 ∈ {1, 2, . . . , 𝑛T }, where 𝑛T is the
number of triangles. The configuration is shown in Fig.4.12.

B

Ti

T

R

Figure 4.12 – Configuration of the example. The object is presented by a triangulated
cube in the figure, but it can be replaced by any triangulated shape.

It is assumed that:

1. The medium is semi-transparent and homogeneous. The absorption is characterized
by the absorption coefficient 𝑘𝑎, and the scattering is isotropic, characterized by the
scattering coefficient 𝑘𝑠.

2. B and R are cold black bodies (which do not emit or reflect any intensity).

3. T is a black body (a Lambertian emitter) with a homogeneous temperature (which
emits intensity in a spatially and angularly homogeneous way).

4.3.2 Definition of the sensitivity of intensity and the
sensitivity of the observable

In this example, we aim to estimate the following:

1. The observable is the impacting power 𝑃 on the receiver R.

2. The sensitivities (gradient) of the observable with respect to a vector �̈� ≡ [�̈�𝑗 ],∀𝑗 ∈
{1, 2, 3, 4}, seeing Fig.4.13 for each component. We note this gradient as 𝑆 ≡ 𝜕�̈�𝑃 ≡
[𝑆𝑗 ].

As it is discussed in Chapter.1, the observable is usually the integral of the descriptor
(intensity). Herein, the sensitivity of the observable is also the integral of the descriptor
(sensitivity of the intensity). Intensity is the descriptor of the model of intensity. The
sensitivity of the intensity is the descriptor of the model of sensitivity.
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~e1

~e2

~e3

C
π̈1

π̈2

π̈3

π̈4

~a

~xa

Ti

T

Figure 4.13 – Components of �̈�. Point 𝐶 is the geometric center of T ; �⃗�1, �⃗�2 and
�⃗�3 compose the global coordinate system; �̈�1, �̈�2 and �̈�3 characterise respectively the
translation of T following �⃗�1, �⃗�2, �⃗�3; �⃗� is an axis of rotation through a fixed point �⃗�𝑎

and �̈�4 characterizes the rotation of T around �⃗�.

Sensitivity of the intensity
As usual, we build a model following the standard radiative transfer physics, using the
intensity 𝐼 as the descriptor. The transport of 𝐼 in the medium is governed by a partial
differential equation (RTE) at any locations �⃗� inside the volume G, following a vector of
direction �⃗� in a unit sphere S. On the boundaries 𝜕G, the transport of 𝐼 is governed by the
boundary conditions, where the locations are noted with an index. For example, in Eq.4.19,
the position and direction are noted with an index 𝑟 because they describe the boundary
condition of the receiver R.

The specific intensity in the system is then defined as 𝐼 ≡ 𝐼(�⃗�, �⃗�, �̈�), where �̈� is the geometric
vector composed of �̈�𝑗 (see Fig.4.13). �⃗�, �⃗� and �̈� are independent variables and the vector 𝑠
is defined as the derivative of 𝐼 with respect to �̈�, which is called also the sensitivity of the
intensity:

𝑠(�⃗�, �⃗�, �̈�) = [𝑠𝑗(�⃗�, �⃗�, �̈�)] = 𝜕�̈�𝐼(�⃗�, �⃗�, �̈�) (4.16)

Sensitivity of the observable
The impacting power 𝑃 is the observable. It can be formulated by the product of spatial
integral and angular integral of the incoming 𝐼 on the receiver R:

𝑃 =
∫︁

R

𝑑�⃗�𝑟

∫︁
2𝜋

|�⃗�𝑟 · �⃗�𝑟|𝑑�⃗�𝑟𝐼(�⃗�𝑟, �⃗�𝑟, �̈�) (4.17)

where �⃗�𝑟 is a position on the receiver, �⃗�𝑟 the direction of observation, �⃗�𝑟 the normal of the
receiver R.

Vector 𝑆 is defined as the derivative of 𝑃 with respect to �̈�, which can be developed in a
straightforward way since �⃗�𝑟 and �⃗�𝑟 are independent of �̈� who characterises only the object
T :

𝑆(�̈�) ≡ [𝑆𝑗(�̈�)] =
∫︁

R

𝑑�⃗�𝑟

∫︁
2𝜋(�⃗�𝑖)

|�⃗�𝑟 · �⃗�𝑟|𝑑�⃗�𝑟𝑠(�⃗�𝑟, �⃗�𝑟, �̈�) (4.18)

93



The method of sensitivity model applied to radiative systems involving complex geometries

and the components of 𝑆 are defined by:

𝑆𝑗(�̈�) =
∫︁

R

𝑑�⃗�𝑟

∫︁
2𝜋(�⃗�𝑖)

|�⃗�𝑟 · �⃗�𝑟|𝑑�⃗�𝑟𝑠𝑗(�⃗�𝑟, �⃗�𝑟, �̈�) (4.19)

Therefore, the sensitivity of the power with respect to a geometric parameter 𝑆𝑗 is formulated
by the product of spatial integral and angular integral of the incoming 𝑠𝑗 on the receiver R.
Note that 𝑆𝑗 is the sensitivity of the power, and 𝑠𝑗 is the sensitivity of the intensity, which is
also the descriptor of the system of the sensitivity. To estimate 𝑃 (�̈�) and 𝑆(�̈�), we need to
build a transport model of 𝐼 and a transport model of 𝑠𝑗 in the system. Moreover, in order
to apply the method to all kinds of triangulated geometries, the boundary conditions for
each triangle needed to be built.

4.3.3 Transport model of intensity for triangulated
geometries

As it is discussed in the introduction of this chapter, the triangle is one of the most common
shapes to describe complex geometries. In this chapter, all geometries are triangulated.

The medium is considered semi-transparent with homogeneous and isotropic properties of
absorption and scattering. The RTE for intensity is written as:

�⃗� · 𝜕1𝐼(�⃗�, �⃗�, �̈�) = C[𝐼(�⃗�, �⃗�, �̈�)]

= −𝑘𝑎𝐼(�⃗�, �⃗�, �̈�)− 𝑘𝑠𝐼(�⃗�, �⃗�, �̈�) + 𝑘𝑠

∫︁
4𝜋

1
4𝜋𝑑�⃗�

′𝐼(�⃗�, �⃗�′, �̈�)
(4.20)

where C is the collision operator.

The boundary conditions for B and R are noted with index of 𝐵 and 𝑟. As it is mentioned
previously, these boundaries are cold and black:

{︃
𝐼(�⃗�𝐵 , �⃗�𝐵) = 0
𝐼(�⃗�𝑟, �⃗�𝑟) = 0

(4.21)

The boundary condition for T𝑖 is noted with an index of 𝑝. The object T is a black body:

𝐼𝑖(�⃗�𝑝, �⃗�𝑝, �̈�) = �̊�𝑖(�⃗�𝑝, �⃗�𝑝, �̈�) = 𝐼0 (4.22)

Similar to the last example, we distinguish �̊� as the source and 𝐼 as the transport of intensity
in the medium or on the boundary. The triangle T𝑖 has only a source term. It does not
reflect the coming intensity.

At this stage, the transport model of intensity is built, with the transport equation in the
medium (the RTE in Eq.4.20), the boundary conditions of B and R (Eq.4.21), as well as
the boundary condition for each triangle. In the following subsection, we build the model of
transport for sensitivity.
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4.3.4 Transport model of sensitivity with the boundary
condition of each triangle

Transport equation in the medium
We differentiate Eq.4.20 with respect to a component of �̈� and we obtain the RTE for the
sensitivity:

�⃗� · 𝜕1𝑠𝑗(�⃗�, �⃗�, �̈�) = −𝑘𝑎𝑠𝑗(�⃗�, �⃗�, �̈�)− 𝑘𝑠𝑠𝑗(�⃗�, �⃗�, �̈�) + 𝑘𝑠

∫︁
4𝜋

1
4𝜋𝑑�⃗�

′𝑠𝑗(�⃗�, �⃗�′, �̈�) (4.23)

If we compare the RTE of 𝐼 (Eq.4.20) and the RTE of 𝑠𝑗 (Eq.4.23), we observe that the
intensity 𝐼 and the sensitivity of intensity 𝑠𝑗 share the same model of transport in the medium.
This is a new and interesting point of view because we can associate all the knowledge we
have built concerning the solution of the model of intensity. We propose to build a similar
image for the sensitivity 𝑠𝑗 , which could be absorbed and scattered in the medium as the
intensity 𝐼.

Boundary conditions for the box and the receiver
We differentiate then the boundary conditions of intensity (Eq.4.21) for B and R:{︃

𝑠𝑗(�⃗�𝑟, �⃗�𝑟) = 0
𝑠𝑗(�⃗�𝐵 , �⃗�𝐵) = 0

(4.24)

Since the boundary conditions of B and R do not depended on the geometric vector �̈�, the
boundary conditions on B and R are null. Based on the results of derivation (Eq.4.24),
we propose an image of the “physics of radiation” for sensitivity. We can consider these
two boundary conditions as “cold black” bodies for sensitivity 𝑠𝑗 . Physically, it means that
the sensitivity arriving at the two boundaries is all “absorbed” and the two boundaries do
not “emit” sensitivity. This similar image of sensitivity can help a lot in understanding and
analyzing these sensitivities.

Boundary condition for each triangle of the object
The development of the boundary condition of each triangle is less straightforward and
represents tough work. We apply the method developed in the Ph.D. work of Paule Lapeyre
to build the boundary condition of sensitivity for each triangle of the object [32–34]. However,
the formal development of the boundary condition is not the objective of this chapter. This
chapter aims to illustrate how the strategy of vectorization is implemented. Therefore, we
only present the result of the boundary condition of sensitivity for each triangle of the object.
We make a choice to put one part of the formal developments to Appendix.C. It corresponds
to the application of the method developed by Paule Lapeyre [32] in her Ph.D. thesis into this
specific example. Herein, we focus on the physical interpretation of the boundary condition
of sensitivity.

Eq.4.25 is the boundary condition of sensitivity for the 𝑖𝑡ℎ triangle and 𝑗𝑡ℎ parameter,
resulted from applying method of Paule Lapeyre. Only the source of sensitivity, which is
noted �̊�𝑖,𝑗 , exists for the boundary condition of sensitivity:

𝑠𝑖,𝑗(�⃗�𝑝, �⃗�𝑝, �̈�) = �̊�𝑖,𝑗(�⃗�𝑝, �⃗�𝑝, �̈�) (4.25)

Sources of sensitivity are found on each triangle. We remind here the physical definition
of the sensitivity: the local perturbation of the intensity due to the perturbation of the
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corresponding parameter. Therefore, the source of sensitivity is the origin of the sensitivity
of the system. In other words, it is the origin of the perturbation of intensity due to the
perturbation of the corresponding parameter. In this example, the parameter �̈� characterises
the translation and the rotation of the object T (see Fig.4.13). With the perturbation of �̈�,
the perturbation of the position and rotation of each triangle is created, which creates the
perturbation of intensity on the triangles. Therefore, the sources of sensitivity are found on
all the triangles, of which the position and rotation are characterized by �̈�.

However, two kinds of sources are distinguished. As it is discussed earlier in the introduction
of this chapter in Section.4.1.1, the intensity on the borders of triangles is discontinuous, and
its gradient induces a Dirac term. The source of sensitivity �̊�𝑖,𝑗 is then composed by a surface
source �̇�𝑖,𝑗 and a line source 𝑠𝑖,𝑗,𝑘, where 𝑘 is the index of the border of a given triangle:

�̊�𝑖,𝑗(�⃗�𝑝, �⃗�𝑝, �̈�) = �̇�𝑖,𝑗(�⃗�𝑝, �⃗�𝑝, �̈�) +
3∑︁

𝑘=1
𝑠𝑖,𝑗,𝑘(�⃗�𝑙, �⃗�𝑙, �̈�) (4.26)

We also propose here a physical radiative image for sensitivities. Based on Eq.4.26, the
surface and each edge of the triangles “emit” sensitivities because the surface source and line
sources appear by differentiating the boundary condition of intensity.

For the surface source:

�̇�𝑖,𝑗(�⃗�𝑝, �⃗�𝑝, �̈�) = −𝛼𝑖,𝑗C[𝐼𝑖(�⃗�𝑝, �⃗�𝑝, �̈�)] (4.27)

C is the collision operator, referring to Eq.4.20. 𝛼𝑖,𝑗 can be regarded as a geometric factor,
of which the mathematical formulation is shown and developed in Appendix.C.

The surface sources represent the perturbation of intensity of all the points on the surface.
This perturbation is due to the perturbation of �̈�. With the perturbation of �̈�, the triangle
will be translated or rotated and interacts with the semi-transparent medium. Therefore,
the absorption and scattering effect in the medium will be affected. This is why the surface
sources of sensitivity on the triangles depend on the radiative properties of the medium
(Eq.4.27).

For the line source on the 𝑘𝑡ℎ border of the triangle:

𝑠𝑖,𝑗,𝑘(�⃗�𝑙, �⃗�𝑙, �̈�) = 𝛽𝑖,𝑗,𝑘

(︀
𝐼0 − 𝐼 ′(�⃗�𝑙, �⃗�𝑙, �̈�)

)︀
H(�⃗�𝑙 · �⃗�𝑖′ < 0) (4.28)

𝛽𝑖,𝑗,𝑘 is also a geometric factor, corresponding to the 𝑗𝑡ℎ parameter and the 𝑘𝑡ℎ segment of
the 𝑖𝑡ℎ triangle. The detailed demonstrations can be found in Appendix.C.

A position on the edge of T𝑖 is noted �⃗�𝑙, ∀�⃗�𝑙 ∈ 𝜕T𝑖. Respectively, the direction of emission
on the edge is noted �⃗�𝑙, ∀�⃗�𝑙 ∈ S. �⃗�𝑖′ is the normal of the triangle T𝑖′ who shares the edge
(where located the line source) with T𝑖 and 𝐼 ′ is the intensity coming backward, following the
direction of �⃗�𝑙 and passing through �⃗�𝑙, seeing Fig.4.14. The Heaviside function in Eq.4.28
indicates that this line source depends on the scalar product of the normal of the neighboring
triangle (�⃗�𝑖′) and the direction of emission �⃗�𝑙.

Physically, the line source of sensitivity comes from the discontinuous profile of the triangles,
as it is discussed in the introduction of the chapter (Section.4.1.1). The perturbation of
intensity is not smooth on the edge of triangles, and two cases exist. For the case in Fig.4.14a,
the perturbation of �̈� does not cause the perturbation of intensity on the segment sharing
by the two triangles. It is because the two triangles have the same emitted intensity. The
translation and rotation of the triangles have no impact on the intensity of the shared segment,
following �⃗�𝑙 in Fig.4.14a. However, in the other case (Fig.4.14b), the perturbation of �̈� has
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an impact on the perturbation of the emitted intensity on the segment. It is because with
the translation and rotation of the triangles, the intensity on the shared segment, following
�⃗�𝑙 in Fig.4.14b might take the value of the coming intensity from the backward.

�⃗�𝑖

�⃗�𝑙
�⃗�𝑖′

T𝑖

T𝑖′

(a) �⃗�𝑙 · �⃗�𝑖′ > 0

�⃗�𝑖�⃗�𝑙

�⃗�𝑖′

T𝑖

T𝑖′

𝐼 ′(�⃗�𝑙, �⃗�𝑙, �̈�)

(b) �⃗�𝑙 · �⃗�𝑖′ < 0

Figure 4.14 – The schema of the line source on edge shared by T𝑖 and T𝑖′ . When
�⃗�𝑙 · �⃗�𝑖′ > 0, the line source is null in this case because the triangles have homogeneous
emitted intensity. When �⃗�𝑙 · �⃗�𝑖′ < 0, the line source is not null. 𝐼 ′ is then the intensity
coming backward, following �⃗�𝑙, passing through �⃗�𝑙.

To sum up, it is just important to note here that at each triangle, a surface source is found
on the surface, and a line source is found on each edge. These two kinds of sources have
different path spaces because of their different location. In the following sections, we have to
deal with these different path spaces through the strategy of vectorization.

4.3.5 Estimation of the observable and its sensitivities
The model of 𝐼 and of 𝑠𝑗 have been built in this stage. Based on these models, we can now
estimate the observable, which is the impacting power 𝑃 on the receiver R, as well as its
vector of sensitivities 𝑆 with respect to the geometric parameters �̈�.

Estimation of the observable
A general model for the intensity 𝐼 (Eq.4.29) has been completely built at this stage.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
�⃗� · 𝜕1𝐼(�⃗�, �⃗�, �̈�) = −𝑘𝑎𝐼(�⃗�, �⃗�, �̈�)− 𝑘𝑠𝐼(�⃗�, �⃗�, �̈�) + 𝑘𝑠

∫︁
4𝜋

1
4𝜋𝑑�⃗�

′𝐼(�⃗�, �⃗�′, �̈�)

𝐼(�⃗�𝐵 , �⃗�𝐵) = 0
𝐼(�⃗�𝑟, �⃗�𝑟) = 0

𝐼𝑖(�⃗�𝑝, �⃗�𝑝, �̈�) = �̊�𝑖(�⃗�𝑝, �⃗�𝑝, �̈�) = 𝐼0

(4.29)

Based on this model, we aim to build algorithms to estimate the impacting power 𝑃 by the
Monte Carlo method.

Concerning the model of intensity 𝐼, the only source is the intensity from the emitter �̊�
located on the surface of T . 𝑃 will be estimated by summing the source �̊� captured on the
receiver R (see also Eq.4.17).

The corresponding statistical ray tracing process can start from the receiver looking for the
sources or, inversely, from the sources located on T𝑖, looking for the receiver. The strategy
of proceeding statistical ray tracing process has enormous influences on the convergence rate.

Herein, unlike the previous example where the reverse ray-tracing process proceeded (the
one-dimensional example in Chapter.3 and the example of rendering in this chapter), we
choose to proceed with a forward ray-tracing process (start the statistical ray-tracing process
by the sources, looking for the receiver R). The interests of forward ray-tracing and reverse
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ray-tracing process are already discussed in Chapter.1. We choose the forward ray-tracing
here to have better convergence performance for the estimation of sensitivities. This choice
will be discussed in the next subsection.
The impacting power on R is the sum of all sources of intensity emitted spatially and
angularly, hitting the receiver after the scattering walks in the medium. The sources are only
on the object T because B, R and the medium are cold:

𝑃 (�̈�) =
∫︁

T

P𝑋𝑝(�⃗�𝑝)𝑑�⃗�𝑝

∫︁
2𝜋(�⃗�𝑖)

PΩ𝑝(�⃗�𝑝)𝑑�⃗�𝑝

{︁
𝜋ST �̊�𝑖,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�)

}︁
(4.30)

with the pdfs:

P𝑋𝑝
(�⃗�𝑝) = 1

ST
;PΩ𝑝

(�⃗�𝑝) = |�⃗�𝑝 · �⃗�𝑖|
𝜋

(4.31)

where ST is the area of the surface of T and �̊�𝑖,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�) is the intensity emitted on
the point �⃗�𝑝 (�⃗�𝑝 is on the surface of the triangles), following the direction �⃗�𝑝, arriving at
the receiver R, after the scattering events in the medium and attenuated by the absorption
event all along the ray path. Based on the model (Eq.4.29), the same process as it is shown
in Chapter.3 will be applied in this example. We write the Fredholm equation, and we
reformulate it into an expected value form. Finally, we get an iterative integral formulation
for �̊�𝑖,ℎ𝑖𝑡:

�̊�𝑖,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�) =
∫︁ ∞

0
𝑘𝑠𝑒
−𝑘𝑠𝜎0𝑑𝜎0

{︃
H(𝜎0 − 𝑑0)H(�⃗�0,ℎ𝑖𝑡 ∈ R)𝐼0𝑒

−𝑘𝑎𝑑0+

H(𝑑0 − 𝜎0)
∫︁

4𝜋

1
4𝜋𝑑�⃗�1

∫︁ ∞
0

𝑘𝑠𝑒
−𝑘𝑠𝜎1𝑑𝜎1

{︂
H(𝜎1 − 𝑑1)H(�⃗�1,ℎ𝑖𝑡 ∈ R)𝐼0𝑒

−𝑘𝑎(𝜎0+𝑑1)+

H(𝑑1 − 𝜎1)
∫︁

4𝜋

1
4𝜋𝑑�⃗�2 . . .

}︂}︃
(4.32)

where 𝜎0 and 𝜎1 represent respectively the path length of the photon for its 1𝑠𝑡 and 2𝑛𝑑

scattering; �⃗�0,ℎ𝑖𝑡, �⃗�1,ℎ𝑖𝑡 are the points of intersection after 0 and 1 scattering respectively; �⃗�1
and �⃗�2 represent respectively the direction of propagation of the photon after its 1𝑠𝑡 and 2𝑛𝑑

scattering; 𝑑0 represents the distance that the photon needs to go through to hit a boundary
without scattering; 𝑑1 represents the distance that, starting from the position where located
the 1𝑠𝑡 scattering, the photon need to go through to hit a boundary without 2𝑛𝑑 scattering.
The corresponding Algorithm is Algo.4, referring to Eq.4.30. In Algo.4, each realization of
�̊�𝑖,ℎ𝑖𝑡 for sampled �⃗�𝑝 and �⃗�𝑝 is done by Algo.5, referring to Eq.4.32.

Algorithm 4 Evaluation of 𝑃 (�̈�)
Input: B, T , R, 𝑛𝑀𝐶 , 𝑘𝑎, 𝑘𝑠

◁ 𝑛𝑀𝐶 : number of Monte-Carlo realization.
◁ B: the geometry of the box.

◁ T : the triangulated geometry of an object.
◁ R: the geometry of the receiver.
◁ 𝑘𝑎: the coefficient of absorption.
◁ 𝑘𝑠: the coefficient of scattering.

1: 𝑊𝐼 ← 0 and 𝑉𝐼 ← 0.
◁ Initialize the sum and the sum of square
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2: for 𝑖𝑀𝐶 = 0→ 𝑛𝑀𝐶 do
3: Initialize the weight of Monte-Carlo 𝑤𝐼 ← 0
4: Compute the area of the surface of T : ST

5: Sample uniformly a position �⃗�𝑝 on T
6: Sample a direction �⃗�𝑝 based on PΩ𝑝

(�⃗�𝑝)
7: Get �̊�𝑖,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�) by Algo.5
8: 𝑤𝐼 ← �̊�𝑖,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�)ST 𝜋
9: 𝑊𝐼 ←𝑊𝐼 + 𝑤𝐼

10: 𝑉𝐼 ← 𝑉𝐼 + 𝑤2
𝐼

11: 𝑖𝑀𝐶 ← 𝑖𝑀𝐶 + 1
12: end for

Output: 𝑃 ← 𝑊𝐼

𝑛𝑀𝐶
, 𝜎[𝑃 ]←

√︂
𝑉𝐼

𝑛𝑀𝐶
−( 𝑊𝐼

𝑛𝑀𝐶
)2

𝑛𝑀𝐶−1

Algorithm 5 Get �̊�𝑖,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�) with the sampled �⃗�𝑝 and �⃗�𝑝

Input: B, T , R, �⃗�𝑝, �⃗�𝑝, 𝑘𝑎, 𝑘𝑠

◁ T : the triangulated geometry of an object.
◁ R: the geometry of the receiver.

◁ B: the geometry of the box.
◁ 𝑘𝑎: the coefficient of absorption.
◁ 𝑘𝑠: the coefficient of scattering.

1: Initialize the keeprunning flag 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 1
2: Initialize the total length of optical path L𝑡𝑜𝑡 ← 0
3: Initialize the ray-tracing process: �⃗�← �⃗�𝑝, �⃗� ← �⃗�𝑝

4: while keeprunning do
5: Get the first intersection point of the ray (�⃗�, �⃗�): �⃗�ℎ𝑖𝑡

6: Get the distance between �⃗�ℎ𝑖𝑡 and �⃗�: 𝑑← ||�⃗�ℎ𝑖𝑡 − �⃗�||
7: Sample a length based on PΣ(𝜎) = 𝑘𝑠𝑒

−𝑘𝑠𝜎

8: if 𝜎 < 𝑑 then
9: Accumulate the length of optical path L𝑡𝑜𝑡 ← L𝑡𝑜𝑡 + 𝜎

10: Sample a direction �⃗�′ based on PΩ′(�⃗�′) = 1
4𝜋

11: Update the position �⃗�← �⃗�+ �⃗�𝜎
12: Update the direction of propagation �⃗� ← �⃗�′

13: else if �⃗�ℎ𝑖𝑡 ∈ R then
14: �̊�𝑖,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�)← 𝐼0𝑒

−𝑘𝑎L𝑡𝑜𝑡ST 𝜋
15: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
16: else
17: �̊�𝑖,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�)← 0
18: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
19: end if
20: end while
Output: 𝐼𝑖,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�)
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Estimation of sensitivities
The general model for the sensitivities 𝑠𝑗 (Eq.4.33) has also been built in this stage.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�⃗� · 𝜕1𝑠𝑗(�⃗�, �⃗�, �̈�) = −𝑘𝑎𝑠𝑗(�⃗�, �⃗�, �̈�)− 𝑘𝑠𝑠𝑗(�⃗�, �⃗�, �̈�) + 𝑘𝑠

∫︁
4𝜋

1
4𝜋𝑑�⃗�

′𝑠𝑗(�⃗�, �⃗�′, �̈�)

𝑠(�⃗�𝐵 , �⃗�𝐵) = 0
𝑠(�⃗�𝑟, �⃗�𝑟) = 0

�̇�𝑖,𝑗(�⃗�𝑝, �⃗�𝑝, �̈�) = −𝛼𝑖,𝑗

(︂
−𝑘𝑎𝐼(�⃗�, �⃗�, �̈�)− 𝑘𝑠𝐼(�⃗�, �⃗�, �̈�) + 𝑘𝑠

∫︁
4𝜋

1
4𝜋𝑑�⃗�

′𝐼(�⃗�, �⃗�′, �̈�)
)︂

𝑠𝑖,𝑗,𝑘(�⃗�𝑙, �⃗�𝑙, �̈�) = 𝛽𝑖,𝑗,𝑘

(︀
𝐼0 − 𝐼 ′(�⃗�𝑙, �⃗�𝑙, �̈�)

)︀
H(�⃗�𝑙 · �⃗�𝑖′ < 0)

(4.33)

Concerning the model of 𝑠𝑗 , there are sources of sensitivities �̇�(�⃗�𝑝, �⃗�𝑝, �̈�) on the surface of
the triangle T𝑖 and sources of sensitivities 𝑠(�⃗�𝑙, �⃗�𝑙, �̈�) on the edges of the triangle T𝑖. 𝑆𝑗

will be estimated by summing all the sources �̇�𝑖,𝑗 and 𝑠𝑖,𝑗,𝑘 for all the “object” T , captured
on the receiver R(see Eq.4.18 and 4.19).

Therefore, the sensitivity of impacting power with respect to the parameter �̈�𝑗 is the sum
of all sources of sensitivities emitted spatially and angularly, on the surfaces T𝑖 and on the
edges 𝜕T𝑖, hitting the receiver after the scattering walks in the medium:

𝑆𝑗(�̈�𝑗) =
𝑛T∑︁
𝑖=1

∫︁
T𝑖

P𝑋𝑝,𝑖
(�⃗�𝑝)𝑑�⃗�𝑝

∫︁
2𝜋(�⃗�𝑖)

PΩ𝑝
(�⃗�𝑝)𝑑�⃗�𝑝 {�̇�𝑖,𝑗,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�)ST𝑖

𝜋}

+
𝑛T∑︁
𝑖=1

3∑︁
𝑘=1

∫︁
𝜕T𝑖,𝑘

P𝑋𝑙,𝑖,𝑘
(�⃗�𝑙)𝑑�⃗�𝑙

∫︁
2𝜋(�⃗�𝑖)

PΩ𝑙
(�⃗�𝑙)𝑑�⃗�𝑙

{︂
𝑠𝑖,𝑗,𝑘,ℎ𝑖𝑡(�⃗�𝑙, �⃗�𝑙, �̈�) L𝑖,𝑘𝜋

|�⃗�𝑝 · �⃗�𝑖|

}︂
(4.34)

with the pdfs:

P𝑋𝑝,𝑖(�⃗�𝑝) = 1
S𝑖

;P𝑋𝑙,𝑖,𝑘
(�⃗�𝑙) = 1

L𝑖,𝑘
;PΩ𝑙

(�⃗�𝑙) = |�⃗�𝑙 · �⃗�𝑖|
𝜋

(4.35)

where S𝑖 is the area of the surface of T𝑖, L𝑖,𝑘 the length of the 𝑘𝑡ℎ edge of the triangle
T𝑖. �̇�𝑖,𝑗,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�) and 𝑠𝑖,𝑗,𝑘,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�) are the sensitivity emitted on the point �⃗�𝑝 and
point �⃗�𝑙, following the direction �⃗�𝑝 and �⃗�𝑙 respectively, arriving at the receiver R, after the
scattering events in the medium and attenuated by the absorption event all along the ray
path. As usual, we write the Fredholm equation, and we reformulate it into an expected
value form. Finally, we get an iterative integral formulation for �̇�𝑖,𝑗 and 𝑠𝑖,𝑗,𝑘:

�̇�𝑖,𝑗,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�) =
∫︁ ∞

0
𝑘𝑠𝑒
−𝑘𝑠𝜎0𝑑𝜎0

{︃
H(𝜎0 − 𝑑0)H(�⃗�0,ℎ𝑖𝑡 ∈ R)

�̇�𝑖,𝑗(�⃗�𝑝, �⃗�𝑝, �̈�)𝑒−𝑘𝑎𝑑0 + H(𝑑0 − 𝜎0)
∫︁

4𝜋

1
4𝜋𝑑�⃗�1

∫︁ ∞
0

𝑘𝑠𝑒
−𝑘𝑠𝜎1𝑑𝜎1{︂

H(𝜎1 − 𝑑1)H(�⃗�1,ℎ𝑖𝑡 ∈ R)�̇�𝑖,𝑗(�⃗�𝑝, �⃗�𝑝, �̈�)𝑒−𝑘𝑎(𝜎0+𝑑1)+

H(𝑑1 − 𝜎1)
∫︁

4𝜋

1
4𝜋𝑑�⃗�2 . . .

}︂}︃
(4.36)
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𝑠𝑖,𝑗,𝑘,ℎ𝑖𝑡(�⃗�𝑙, �⃗�𝑙, �̈�) =
∫︁ ∞

0
𝑘𝑠𝑒
−𝑘𝑠𝜎0𝑑𝜎0

{︃
H(𝜎0 − 𝑑0)H(�⃗�0,ℎ𝑖𝑡 ∈ R)

𝑠𝑖,𝑗,𝑘(�⃗�𝑙, �⃗�𝑙, �̈�)𝑒−𝑘𝑎𝑑0 + H(𝑑0 − 𝜎0)
∫︁

4𝜋

1
4𝜋𝑑�⃗�1

∫︁ ∞
0

𝑘𝑠𝑒
−𝑘𝑠𝜎1𝑑𝜎1{︂

H(𝜎1 − 𝑑1)H(�⃗�1,ℎ𝑖𝑡 ∈ R)𝑠𝑖,𝑗,𝑘(�⃗�𝑙, �⃗�𝑙, �̈�)𝑒−𝑘𝑎(𝜎0+𝑑1)+

H(𝑑1 − 𝜎1)
∫︁

4𝜋

1
4𝜋𝑑�⃗�2 . . .

}︂}︃
(4.37)

In the first term of Eq.4.34, the surface sources are counted triangle by triangle, which
requires performing a Monte-Carlo estimation for each triangle. In the second term of
Eq.4.34, the line sources are counted edge by edge for each triangle, which is, performing
three Monte-Carlo estimations for each triangle (for its three edges).

Moreover, Eq.4.34 is dedicated only to estimate 𝑆𝑗 . The same process is repeated to estimate
𝑆1, 𝑆2, 𝑆3 and 𝑆4 separately. The corresponding coding development is heavy, and the
calculating time is consuming. In order to optimize the algorithm, we will use again the
technique of vectorization, aiming to estimate the 𝑆 ≡ [𝑆1, 𝑆2, 𝑆3, 𝑆4]𝑇 in vectorized form.
The reason that we can perform this vectorization is that, ∀𝑗, the corresponding line sources
share the same path space, and the surface sources share the other same path space.

4.3.6 The vectorized Monte-Carlo method
In this subsection, we vectorize firstly the estimation of 𝑆, by vectorizing the transport of
line sources and surface sources separately. Secondly, efforts are made to vectorize also the
estimation of the observable 𝑃 and the estimation of 𝑆, by vectorizing the transport of the
surface sources of intensity and the surface sources of sensitivity.

Vectorization of the sensitivities

We remain that 𝑆(�̈�) = ∇⃗𝑃 (�̈�) = [ 𝜕𝑃
𝜕�̈�1

𝜕𝑃
𝜕�̈�2

𝜕𝑃
𝜕�̈�3

𝜕𝑃
𝜕�̈�4

]𝑇 . We rewrite the Eq.4.34 into a vectorized
form:

𝑆(�̈�) =
𝑛T∑︁
𝑖=1

∫︁
T𝑖

P𝑋𝑝,𝑖
(�⃗�𝑝)𝑑�⃗�𝑝

∫︁
2𝜋(�⃗�𝑖)

PΩ𝑝
(�⃗�𝑝)𝑑�⃗�𝑝 {�̇�𝑖,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�)S𝑖𝜋}

+
𝑛T∑︁
𝑖=1

3∑︁
𝑘=1

∫︁
𝜕T𝑖,𝑘

P𝑋𝑙,𝑖,𝑘
(�⃗�𝑙)𝑑�⃗�𝑙

∫︁
2𝜋(�⃗�𝑖)

PΩ𝑙
(�⃗�𝑙)𝑑�⃗�𝑙

{︂
𝑠𝑖,𝑘,ℎ𝑖𝑡(�⃗�𝑙, �⃗�𝑙, �̈�) L𝑖,𝑘𝜋

|�⃗�𝑝 · �⃗�𝑖|

}︂
(4.38)

where

�̇�𝑖,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�) =

⎡⎢⎢⎣
�̇�𝑖,1,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�)
�̇�𝑖,2,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�)
�̇�𝑖,3,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�)
�̇�𝑖,4,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�)

⎤⎥⎥⎦ (4.39)
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and

𝑠𝑖,𝑘,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�) =

⎡⎢⎢⎣
𝑠𝑖,1,𝑘,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�)
𝑠𝑖,2,𝑘,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�)
𝑠𝑖,3,𝑘,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�)
𝑠𝑖,4,𝑘,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�)

⎤⎥⎥⎦ (4.40)

In fact, the only effort that is made is to write Eq.4.34 for the case where 𝑗 = 1, 2, 3, 4.
Physically, this vectorized form (Eq.4.38) regroups the space path of different sources. The
surface sources �̇�𝑖,𝑗,ℎ𝑖𝑡, ∀𝑗 ∈ {1, 2, 3, 4} share the same path spaces. Therefore, they are
rewritten in a vectorized form in Eq.4.39 and the same pdf in Eq.4.38 is used to transport
the vector of surface sources �̇�𝑖,ℎ𝑖𝑡. A similar treatment is done for line sources.

The propagations of the sensitivities �̇�𝑖,ℎ𝑖𝑡 and 𝑠𝑖,𝑘,ℎ𝑖𝑡 can be referred to Eq.4.36 and Eq.4.37:

�̇�𝑖,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�) =
∫︁ ∞

0
𝑘𝑠𝑒
−𝑘𝑠𝜎0𝑑𝜎0

{︃
H(𝜎0 − 𝑑0)H(�⃗�0,ℎ𝑖𝑡 ∈ R)

�̇�𝑖(�⃗�𝑝, �⃗�𝑝, �̈�)𝑒−𝑘𝑎𝑑0 + H(𝑑0 − 𝜎0)
∫︁

4𝜋

1
4𝜋𝑑�⃗�1

∫︁ ∞
0

𝑘𝑠𝑒
−𝑘𝑠𝜎1𝑑𝜎1{︂

H(𝜎1 − 𝑑1)H(�⃗�1,ℎ𝑖𝑡 ∈ R)�̇�𝑖(�⃗�𝑝, �⃗�𝑝, �̈�)𝑒−𝑘𝑎(𝜎0+𝑑1)+

H(𝑑1 − 𝜎1)
∫︁

4𝜋

1
4𝜋𝑑�⃗�2 . . .

}︂}︃
(4.41)

𝑠𝑖,𝑘,ℎ𝑖𝑡(�⃗�𝑙, �⃗�𝑙, �̈�) =
∫︁ ∞

0
𝑘𝑠𝑒
−𝑘𝑠𝜎0𝑑𝜎0

{︃
H(𝜎0 − 𝑑0)H(�⃗�0,ℎ𝑖𝑡 ∈ R)

𝑠𝑖,𝑘(�⃗�𝑙, �⃗�𝑙, �̈�) · �⃗�𝑖𝑒−𝑘𝑎𝑑0 + H(𝑑0 − 𝜎0)
∫︁

4𝜋

1
4𝜋𝑑�⃗�1

∫︁ ∞
0

𝑘𝑠𝑒
−𝑘𝑠𝜎1𝑑𝜎1{︂

H(𝜎1 − 𝑑1)H(�⃗�1,ℎ𝑖𝑡 ∈ R)𝑠𝑖,𝑘(�⃗�𝑙, �⃗�𝑙, �̈�)𝑒−𝑘𝑎(𝜎0+𝑑1)+

H(𝑑1 − 𝜎1)
∫︁

4𝜋

1
4𝜋𝑑�⃗�2 . . .

}︂}︃
(4.42)

where �̇�𝑖(�⃗�𝑝, �⃗�𝑝, �̈�) =

⎡⎢⎢⎣
�̇�𝑖,1(�⃗�𝑝, �⃗�𝑝, �̈�)
�̇�𝑖,2(�⃗�𝑝, �⃗�𝑝, �̈�)
�̇�𝑖,3(�⃗�𝑝, �⃗�𝑝, �̈�)
�̇�𝑖,4(�⃗�𝑝, �⃗�𝑝, �̈�)

⎤⎥⎥⎦ and 𝑠𝑖(�⃗�𝑙, �⃗�𝑙, �̈�) =

⎡⎢⎢⎣
𝑠𝑖,1,𝑘(�⃗�𝑙, �⃗�𝑙, �̈�)
𝑠𝑖,2,𝑘(�⃗�𝑙, �⃗�𝑙, �̈�)
𝑠𝑖,3,𝑘(�⃗�𝑙, �⃗�𝑙, �̈�)
𝑠𝑖,4,𝑘(�⃗�𝑙, �⃗�𝑙, �̈�)

⎤⎥⎥⎦ are the bound-

ary conditions, seeing Eq.4.33.

Adding the observable to the vectorized form
Secondly, we aim to vectorize also the estimation of the observable (𝑃 ). When we observe
Eq.4.30, which estimates the observable, and Eq.4.38, which estimates the sensitivities, we
find that they do not have the same pdfs, because the integral domains are not the same.
Herein, we make efforts to rewrite the Eq.4.30, in order to homogenize the pdfs in Eq.4.30
and in Eq.4.38.
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In Eq.4.30, the sources of intensity are accumulated by the integral of all the surfaces of T .
We can rewrite Eq.4.30, so that the sources �̊�𝑖,ℎ𝑖𝑡 arrived to the receiver R are accumulated
triangle by triangle:

𝑃 (�̈�) =
𝑛T∑︁
𝑖=1

∫︁
T

P𝑋𝑝,𝑖(�⃗�𝑝)𝑑�⃗�𝑝

∫︁
2𝜋(�⃗�𝑖)

PΩ𝑝(�⃗�𝑝)𝑑�⃗�𝑝

{︁
�̊�𝑖,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�)S𝑖𝜋

}︁
(4.43)

By this simple reformulation, the pdfs of estimating 𝑃 become the same as the pdfs of
accumulating surface sources of 𝑆 (the first term in Eq.4.38). Therefore, we can write Eq.4.43
and Eq.4.38 in a vectorized form:

[︂
𝑃 (�̈�)
𝑆(�̈�)

]︂
=

𝑛T∑︁
𝑖=1

∫︁
T𝑖

P𝑋𝑝,𝑖
(�⃗�𝑝)𝑑�⃗�𝑝

∫︁
2𝜋(�⃗�𝑖)

PΩ𝑝
(�⃗�𝑝)𝑑�⃗�𝑝

{︂[︂
�̊�𝑖,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�)
�̇�𝑖,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�)

]︂
S𝑖𝜋

}︂

+
𝑛T∑︁
𝑖=1

∫︁
𝜕T𝑖

P𝑋𝑙,𝑖,𝑘
(�⃗�𝑙)𝑑�⃗�𝑙

∫︁
2𝜋(�⃗�𝑖)

PΩ𝑙
(�⃗�𝑙)𝑑�⃗�𝑝

{︂[︂
0

𝑠𝑖,𝑘(�⃗�𝑙, �⃗�𝑙, �̈�)

]︂
L𝑖,𝑘𝜋

|�⃗�𝑝 · �⃗�𝑖|

}︂
(4.44)

From Eq.4.32 and Eq.4.36, we can also observe that �̊�𝑖,ℎ𝑖𝑡 and �̇�𝑖,ℎ𝑖𝑡 have the same path
space in the medium (they share the same domains of integral in the medium). Therefore,
the propagation of �̊�𝑖,ℎ𝑖𝑡 and �̇�𝑖,ℎ𝑖𝑡 in the medium can be also vectorized:

[︂
�̊�𝑖,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�)
�̇�𝑖,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�)

]︂
=
∫︁ ∞

0
𝑘𝑠𝑒
−𝑘𝑠𝜎0𝑑𝜎0

{︃
H(𝜎0 − 𝑑0)H(�⃗�0,ℎ𝑖𝑡 ∈ R)[︂

�̊�0
�̇�𝑖(�⃗�𝑝, �⃗�𝑝, �̈�)

]︂
𝑒−𝑘𝑎𝑑0 + H(𝑑0 − 𝜎0)

∫︁
4𝜋

1
4𝜋𝑑�⃗�1

∫︁ ∞
0

𝑘𝑠𝑒
−𝑘𝑠𝜎1𝑑𝜎1{︂

H(𝜎1 − 𝑑1)H(�⃗�1,ℎ𝑖𝑡 ∈ R)
[︂

�̊�0
�̇�𝑖(�⃗�𝑝, �⃗�𝑝, �̈�)

]︂
𝑒−𝑘𝑎(𝜎0+𝑑1)+

H(𝑑1 − 𝜎1)
∫︁

4𝜋

1
4𝜋𝑑�⃗�2 . . .

}︂}︃
(4.45)

To summarize, in order to estimate 𝑃 (�̈�) and 𝑆(�̈�), we need Algo.6 to sum the surface
sources and Algo.7 to sum the line sources. The vector 𝑆(�̈�) is then separated by a surface
part �̇� and a line part 𝑆, which are to be estimated by Algo.6 and Algo.7 respectively:

𝑆(�̈�) = �̇�(�̈�) + 𝑆(�̈�) (4.46)

At this stage, the estimation of 𝑃 and 𝑆 are vectorized. Instead of performing Monte-Carlo
estimations for 𝑃 , 𝑆1, 𝑆2, 𝑆3 and 𝑆4 separately, we vectorize the transport of sources sharing
the same path space and estimate 𝑃 and 𝑆 by performing Algo.6 and Algo.7. It reduces the
complexity of coding development and largely reduces the required computing time.

Algorithm 6 Evaluation of 𝑃 (�̈�) and �̇�(�̈�)
Input: B, T , R, 𝑛𝑀𝐶 , 𝑘𝑎, 𝑘𝑠

◁ 𝑛𝑀𝐶 : number of Monte-Carlo realization.
◁ B: the geometry of the box.

◁ T : the triangulated geometry of an object.
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◁ R: the geometry of the receiver.
◁ 𝑘𝑎: the coefficient of absorption.
◁ 𝑘𝑠: the coefficient of scattering.

1: 𝑃 (�̈�)← 0, 𝜎[𝑃 (�̈�)]← 0 and �̇�(�̈�)← 0, 𝜎[�̇�(�̈�)]← 0
2: Get the number of triangles composing T : 𝑛T

3: for 𝑖T = 1→ 𝑛T do
4: Get the index 𝑖← 𝑖T
5: 𝑊𝐼 ← 0, 𝑊𝑠 ← 0 and 𝑉𝐼 ← 0, 𝑉𝑠 ← 0

◁ Initialize the sum and the sum of square
6: for 𝑖𝑀𝐶 = 0→ 𝑛𝑀𝐶 do
7: Initialize the weight of Monte-Carlo 𝑤𝐼 ← 0 and 𝑤𝑠 ← 0
8: Initialize the keeprunning flag 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 1
9: Initialize the total optical path length L𝑡𝑜𝑡 ← 0

10: Sample uniformly a position �⃗�𝑝 on T𝑖

11: Sample a direction �⃗�𝑝 based on PΩ𝑝
(�⃗�𝑝)

12: Initialize the ray-tracing process: �⃗�← �⃗�𝑝, �⃗� ← �⃗�𝑝

13: while keeprunning do
14: get the first intersection point of the ray (�⃗�, �⃗�): �⃗�ℎ𝑖𝑡

15: Get the distance between �⃗�ℎ𝑖𝑡 and �⃗�: 𝑑← ||�⃗�ℎ𝑖𝑡 − �⃗�||
16: Sample a length based on PΣ(𝜎) = 𝑘𝑠𝑒

−𝑘𝑠𝜎

17: if 𝜎 < 𝑑 then
18: Accumulate the length of optical path L𝑡𝑜𝑡 ← L𝑡𝑜𝑡 + 𝜎
19: Sample a direction �⃗�′ based on PΩ′(�⃗�′) = 1

4𝜋
20: Update the position �⃗�← �⃗�+ �⃗�𝜎
21: Update the direction of propagation �⃗� ← �⃗�′

22: else if �⃗�ℎ𝑖𝑡 ∈ R then
23: 𝑤𝐼 ← 𝐼0𝑒

−𝑘𝑎L𝑡𝑜𝑡ST 𝜋
24: Sample a direction �⃗�′

25: if �⃗�′ · �⃗�𝑖 > 0 then
26: �⃗�𝑝 ← �⃗�′

27: Get 𝐼𝑖,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�) by Algo.5
28: Calculate �⃗�𝑗 ,∀𝑗 ∈ {1, 2, 3, 4}, following Tabel.C.1
29: Calculate 𝛼𝑖 ≡ [𝛼𝑖,𝑗 ],∀𝑗 ∈ {1, 2, 3, 4}, following Eq.C.16
30: 𝑤𝑠 ← −𝛼𝑖 (−𝑘𝑎𝐼0 − 𝑘𝑠𝐼0 + 𝑘𝑠𝐼𝑖,ℎ𝑖𝑡(�⃗�𝑝, �⃗�𝑝, �̈�)) 𝑒−𝑘𝑎L𝑡𝑜𝑡ST 𝜋
31: else
32: 𝑤𝑠 ← −𝛼𝑖 (−𝑘𝑎𝐼0 − 𝑘𝑠𝐼0) 𝑒−𝑘𝑎L𝑡𝑜𝑡ST 𝜋
33: end if
34: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
35: else
36: 𝑤𝐼 ← 0
37: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
38: end if
39: end while
40: 𝑊𝐼 ←𝑊𝐼 + 𝑤𝐼

41: 𝑉𝐼 ← 𝑉𝐼 + 𝑤2
𝐼

42: 𝑊𝑠 ←𝑊𝑠 + 𝑤𝑠

43: 𝑉𝑠 ← 𝑉𝑠 + 𝑤2
𝑠

44: 𝑖𝑀𝐶 ← 𝑖𝑀𝐶 + 1
45: end for
46: 𝑃 (�̈�)← 𝑃 (�̈�) + 𝑊𝐼

𝑛𝑀𝐶

47: 𝜎[𝑃 (�̈�)]← 𝜎[𝑃 (�̈�)] +
√︂

𝑉𝐼
𝑛𝑀𝐶

−( 𝑊𝐼
𝑛𝑀𝐶

)2

𝑛𝑀𝐶−1

48: �̇�(�̈�)← �̇�(�̈�) + 𝑊𝑠

𝑛𝑀𝐶
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49: 𝜎[�̇�(�̈�)]← 𝜎[�̇�(�̈�)] +
√︂

𝑉𝑠
𝑛𝑀𝐶

−( 𝑊𝑠
𝑛𝑀𝐶

)2

𝑛𝑀𝐶−1
50: 𝑖T ← 𝑖T + 1
51: end for
Output: 𝑃 (�̈�), 𝜎[𝑃 (�̈�)], �̇�(�̈�), 𝜎[�̇�(�̈�)]

Algorithm 7 Evaluation of 𝑆(�̈�)
Input: B, T , R, 𝑛𝑀𝐶 , 𝑘𝑎, 𝑘𝑠

◁ 𝑛𝑀𝐶 : number of Monte-Carlo realization.
◁ B: the geometry of the box.

◁ T : the triangulated geometry of an object.
◁ R: the geometry of the receiver.
◁ 𝑘𝑎: the coefficient of absorption.
◁ 𝑘𝑠: the coefficient of scattering.

1: 𝑆(�̈�)← 0, 𝜎[𝑆(�̈�)]← 0
2: Get the number of triangles composing T : 𝑛T

3: for 𝑖T = 1→ 𝑛T do
4: Get the index 𝑖← 𝑖T
5: for 𝑘 = 1← 3 do
6: 𝑊𝑠 ← 0, 𝑉𝑠 ← 0

◁ Initialize the sum and the sum of square
7: for 𝑖𝑀𝐶 = 0→ 𝑛𝑀𝐶 do
8: Initialize the weight of Monte-Carlo 𝑤𝑠 ← 0
9: Initialize the keeprunning flag 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 1

10: Initialize the total optical path length L𝑡𝑜𝑡 ← 0
11: Sample uniformly a position �⃗�𝑙 on 𝜕T𝑖,𝑘

12: Sample a direction �⃗�𝑙 based on PΩ𝑙
(�⃗�𝑙)

13: Initialize the ray-tracing process: �⃗�← �⃗�𝑙, �⃗� ← �⃗�𝑙

14: while keeprunning do
15: Get the first intersection point of the ray (�⃗�, �⃗�): �⃗�ℎ𝑖𝑡

16: Get the distance between �⃗�ℎ𝑖𝑡 and �⃗�: 𝑑← ||�⃗�ℎ𝑖𝑡 − �⃗�||
17: Sample a length based on PΣ(𝜎) = 𝑘𝑠𝑒

−𝑘𝑠𝜎

18: if 𝜎 < 𝑑 then
19: Accumulate the length of optical path L𝑡𝑜𝑡 ← L𝑡𝑜𝑡 + 𝜎
20: Sample a direction �⃗�′ based on PΩ′(�⃗�′) = 1

4𝜋
21: Update the position �⃗�← �⃗�+ �⃗�𝜎
22: Update the direction of propagation �⃗� ← �⃗�′

23: else if �⃗�ℎ𝑖𝑡 ∈ R then
24: Calculate �⃗�𝑗 ,∀𝑗 ∈ {1, 2, 3, 4}, following Tabel.C.1
25: Get �⃗�𝑘 of the edge
26: if �⃗�𝑙 · �⃗�𝑖′ > 0 then
27: 𝐼𝑖,ℎ𝑖𝑡(�⃗�, �⃗�𝑙, �̈�) = 𝐼0
28: else
29: Get 𝐼𝑖,ℎ𝑖𝑡(�⃗�𝑙, �⃗�𝑙, �̈�) by Algo.5
30: end if

31: 𝑤𝑠 ←

⎡⎢⎢⎣
(�⃗�𝑙 × �⃗�1) · �⃗�𝑘
(�⃗�𝑙 × �⃗�2) · �⃗�𝑘
(�⃗�𝑙 × �⃗�3) · �⃗�𝑘
(�⃗�𝑙 × �⃗�4) · �⃗�𝑘

⎤⎥⎥⎦(︀𝐼0 − 𝐼𝑖,ℎ𝑖𝑡(�⃗�𝑙, �⃗�𝑙, �̈�)
)︀
𝑒−𝑘𝑎L𝑡𝑜𝑡ST 𝜋

32: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
33: else
34: 𝑤𝐼 ← 0
35: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
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36: end if
37: end while
38: 𝑊𝑠 ←𝑊𝑠 + 𝑤𝑠

39: 𝑉𝑠 ← 𝑉𝑠 + 𝑤2
𝑠

40: 𝑖𝑀𝐶 ← 𝑖𝑀𝐶 + 1
41: end for
42: 𝑘 ← 𝑘 + 1
43: end for
44: 𝑆(�̈�)← 𝑆(�̈�) + 𝑊𝑠

𝑛𝑀𝐶

45: 𝜎[𝑆(�̈�)]← 𝜎[𝑆(�̈�)] +
√︂

𝑉𝑠
𝑛𝑀𝐶

−( 𝑊𝑠
𝑛𝑀𝐶

)2

𝑛𝑀𝐶−1
46: 𝑖T ← 𝑖T + 1
47: end for
Output: 𝑆(�̈�), 𝜎[𝑆(�̈�)]

4.3.7 Validation of the estimation
This section of results is dedicated to validation purposes. Reminding that our method can
be used for all kinds of triangulated geometry, herein, we take a geometry of a dodecahedron
as the “object” T in this example. It consists of 20 points and 36 triangles. The geometric
configuration is shown in Fig.4.15. The impacting power 𝑃 on the receiver R of this
configuration will be estimated by Algo.6. The corresponding vector of sensitivity 𝑆(�̈�) will
be estimated by Algo.6 and Algo.7 for different coefficients of absorption and scattering.
Also, the vector 𝑆(�̈�) will be approximated by the finite difference method and the results
of approximation will be noted 𝑆(�̈�) ≡ [𝑆𝑗 ],∀𝑗 ∈ {1, 2, 3, 4}.
As it is introduced in Chapter.1, finite difference method is a common method to approximate
the sensitivities. When 𝑃 is derivable around �̈�𝑗 :

𝑆𝑗 = lim
𝜖→0

𝑃 (�̈�𝑗 + 𝜖)− 𝑃 (�̈�𝑗 − 𝜖)
2𝜖 (4.47)

The finite difference method approximates 𝑆𝑗 by giving a non-zero fixed value to 𝜖. We note
the result of approximation as 𝑆𝑗 :

𝑆𝑗 ≈
𝑃 (�̈�𝑗 + Δ�̈�𝑗)− 𝑃 (�̈�𝑗 −Δ�̈�𝑗)

2Δ�̈�𝑗
≡ 𝑆𝑗 (4.48)

Practically, the approximation of 𝑆𝑗 requires estimating 𝑃 twice. Since the impacting power
𝑃 is estimated by the Monte-Carlo method, its statistical standard deviation 𝜎(𝑃 ) is also
estimated at the same time [14]. When approximating 𝑆𝑗 , its standard deviation 𝜎(𝑆𝑗) can
be obtained [21]:

𝜎(𝑆𝑗) ≈ 𝜎(𝑃 (�̈�𝑗 + Δ�̈�𝑗)) + 𝜎(𝑃 (�̈�𝑗 −Δ�̈�𝑗))
2Δ�̈�𝑗

(4.49)

The major drawback of the finite difference method is that the related standard deviation
𝜎(𝑆𝑗) is hard to control[21] and tends to infinity as Δ�̈�𝑗 tends to zero. Furthermore, it
is important to be noted that if 𝑃 is not smooth between �̈�𝑗 − Δ�̈�𝑗 and �̈�𝑗 + Δ�̈�𝑗 , the
approximation is not reliable.
However, we will still use the results approximated by Finite Difference method 𝑆(�̈�) to
validate our estimations 𝑆(�̈�).
The impacting power 𝑃 and the vector 𝑆(�̈�) are estimated by Algo.6 and Algo.7. Also, 𝑆(�̈�)
is approximated by the Finite Difference method, where the impacting power 𝑃 in Eq.4.47 is
estimated by Algo.4. The corresponding results are shown in Table.4.1.
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B

R

T �⃗�𝑎

�⃗�

Figure 4.15 – Geometric configuration. The geometric centres of R, B, T are
�⃗�𝑐,𝑟 ≡ (1, 0.5,−2), �⃗�𝑐,𝑏 ≡ (0, 0, 0) and �⃗�𝑐,𝑡 ≡ (0, 0, 0). The length of B is L𝑏 = 9 m and
the length of R is L𝑟 ≡ 1 m. The axis of rotation �⃗� is characterised by a vector [1, 0, 0],
passing through the point �⃗�𝑎 ≡ (0, 1, 1).

4.4 Conclusion of the chapter
This chapter is dedicated to introducing the vectorized Monte-Carlo method, which allows
preparing the application of the method of sensitivity model to a CSP system. We implement
the method of sensitivity model into two examples involving complex and triangulated
geometry using the technique of vectorization. This technique helps to accelerate the
estimations and facilitate coding development.

Firstly, we built a model of intensity where the sources of intensity are specified. Based
on this model, models of sensitivities can be built by using the tools in [32–34], where the
sources of sensitivities are specified.

Secondly, following the three steps mentioned in Chapter.3 to solve a radiative model, we
formulated the iterative integral formulation following the propagations of all the sources
(Eq.4.7 and Eq.4.14 in the first example and Eq.4.17,4.32,4.34,4.36 and Eq.4.37 in the second
example).

Finally, we distinguished the integrals having the same domains of integrations, and we
wrote them into a vectorized form (Eq.4.15, Eq.4.44 and Eq.4.36). From this vectorized form,
Monte Carlo algorithms can be designed to solve the radiative models.

This strategy of vectorization is about vectorizing the transport of the sources that
share the same path space. If we wish to distinguish the sources that share the same path
space, we need to verify the locations of the sources on the boundaries and the transport
of the sources in the medium. When the sources are in the same locations on the boundary
and transported by the same RTE in the medium, the sources can be vectorized.
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The method of sensitivity model applied to radiative systems involving complex geometries

𝑘𝑎 = 0, 𝑘𝑠 = 0
𝑃 1.61 W
𝜎[𝑃 ] 4.00× 10−3 W
𝑆1 674.68× 10−3 W/m 𝑆1 679× 10−3 W/m
𝜎[𝑆1] 16.94× 10−3 W/m 𝜎[𝑆1] 71.22× 10−3 W/m
𝑆2 351.04× 10−3 W/m 𝑆2 348.50× 10−3 W/m
𝜎[𝑆2] 15.38× 10−3 W/m 𝜎[𝑆2] 71.22× 10−3 W/m
𝑆3 −1.03 W/m 𝑆3 −1.03 W/m
𝜎[𝑆3] 9.37× 10−3 W/m 𝜎[𝑆3] 71.22× 10−3 W/m
𝑆4 1.42 W/rad 𝑆4 1.43 W/rad
𝜎[𝑆4] 17.47× 10−3 W/rad 𝜎[𝑆4] 71.22× 10−3 W/rad

𝑘𝑎 = 1, 𝑘𝑠 = 1
𝑃 146.89× 10−3 W
𝜎[𝑃 ] 542.32× 10−6 W
𝑆1 123.65× 10−3 W/m 𝑆1 113.70× 10−3 W/m
𝜎[𝑆1] 2.52× 10−3 W/m 𝜎[𝑆1] 9.24× 10−3 W/m
𝑆2 74.53× 10−3 W/m 𝑆2 53.60× 10−3 W/m
𝜎[𝑆2] 2.52× 10−3 W/m 𝜎[𝑆2] 9.24× 10−3 W/m
𝑆3 −342.57× 10−3 W/m 𝑆3 −324.40× 10−3 W/m
𝜎[𝑆3] 2.76× 10−3 W/m 𝜎[𝑆3] 9.24× 10−3 W/m
𝑆4 404.06× 10−3 W/rad 𝑆4 388.15× 10−3 W/rad
𝜎[𝑆4] 4.27× 10−3 W/rad 𝜎[𝑆4] 9.24× 10−3 W/rad

𝑘𝑎 = 0.1, 𝑘𝑠 = 0.2
𝑃 1.12 W
𝜎[𝑃 ] 3.15× 10−3 W
𝑆1 552.40× 10−3 W/m 𝑆1 530.50× 10−3 W/m
𝜎[𝑆1] 15.69× 10−3 W/m 𝜎[𝑆1] 49.70× 10−3 W/m
𝑆2 285.64× 10−3 W/m 𝑆2 275× 10−3 W/m
𝜎[𝑆2] 15.59× 10−3 W/m 𝜎[𝑆2] 49.70× 10−3 W/m
𝑆3 −991.82× 10−3 W/m 𝑆3 −972× 10−3 W/m
𝜎[𝑆3] 10.10× 10−3 W/m 𝜎[𝑆3] 49.70× 10−3 W/m
𝑆4 1.30 W/rad 𝑆4 1.29 W/rad
𝜎[𝑆4] 20.12× 10−3 W/rad 𝜎[𝑆4] 49.71× 10−3 W/rad

Table 4.1 – Validations for three different groups of medium properties. 𝑘𝑠 and 𝑘𝑎 are
the coefficients of scattering and the coefficient of absorption, respectively. In the left
column, 𝑃 and 𝑆 are estimated by Algo.6 and Algo.7 with 106 Monte-Carlo realizations
for each surface and for each edge of the triangles composing T . In the right column,
𝑆 is approximated by Finite Difference method (Eq.4.48), where 𝑃 (�̈�𝑗 + Δ�̈�𝑗) and
𝑃 (�̈�𝑗 −Δ�̈�𝑗) are estimated with 108 Monte-Carlo realizations.

For the first example, 𝐼 and 𝑠𝜌 are transported in the same way in the medium (Eq.4.2 and
Eq.4.8). On the boundary, the source �̊� and �̊�𝜌 are all on all the surfaces of T . Therefore,
the propagation of 𝐼 and 𝑠𝜌 can be vectorized.

For the second example, 𝐼 and 𝑠𝑖,∀𝑗 ∈ {1, 2, 3, 4} are transported also in the same way in the
medium (Eq.4.20 and Eq.4.23). However, sources of sensitivities �̇�𝑖,𝑗 ,∀𝑖 ∈ {1, 2, . . . , 𝑛T },∀𝑗 ∈
{1, 2, 3, 4} are found on each surface of T and 𝑠𝑖,𝑗,𝑘,∀𝑖 ∈ {1, 2, . . . , 𝑛T },∀𝑗 ∈ {1, 2, 3, 4},∀𝑘 ∈
{1, 2, 3} are found on each edge of each triangle T𝑖. Therefore, the propagations of �̇�𝑖,𝑗 and 𝐼
(which is also a surface source) and the propagations of the line sources 𝑠𝑖,𝑗,𝑘 are vectorized
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Conclusion of the chapter

separately. Even with this strategy of vectorization, it is still not easy to manage all the
surface sources and line sources on every triangle of a complex and triangulated geometry.
Therefore, later in Chapter.6, efforts will be made to transform all line sources into surface
sources. Consequently, only surface sources are left, and the estimations of the observable
and all its sensitivities can be completely vectorized.
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5.1 Introduction
In the previous chapter, we introduced a strategy of vectorization, aiming to apply the
method of sensitivity model to complex and triangulated geometries. In this chapter, we
will apply the method of sensitivity method to estimate the sensitivities in STP system by
Monte-Carlo, following the same strategy of vectorization. We choose to study the heliostat
field of Sierra SunTower CSP project which is composed of 24360 flat heliostats of 1.14𝑚2.
The heliostat field is located in Lancaster, USA (34.731 N, 118.139 W). Additional data
can be found on https://solarpaces.nrel.gov/project/sierra-suntower. Contrarily
to the majority of STP systems, heliostats are flat. We restrict our study to only one quarter
of the heliostat field (6090 heliostats). In this chapter, surfaces are not described by triangles
but only by flat rectangles. We choose to estimate the sensitivities of the translation of three
directions (horizontal, vertical, and height), two rotations (elevation and azimuth), as well
as the size of each heliostat. It represents 36540 sensitivities. Therefore, the vectorization
technique becomes crucial to handle the large number of parameters.

We benefit from the models of sensitivity to interpret the sensitivities physically and to
perform sensitivity analysis. Thanks to the sensitivity models, the contribution of physical
events (blocking, spillage, and shadowing) to each of the 36540 sensitivities can also be
estimated and analyzed.

This paper has been accepted by the journal Solar Energy [22]: He, Zili, Paule Lapeyre,
Stephane Blanco, Simon Eibner, Mouna El Hafi, and Richard Fournier. “Monte-Carlo
Estimation of Geometric Sensitivities in Solar Power Tower Systems of Flat Mirrors.” Solar
Energy 253 (March 15, 2023): 9–29. https://doi.org/10.1016/j.solener.2023.02.013.

5.2 Estimating the geometric sensitivities
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Abstract

Optical optimizations for a Concentrated Solar Power (CSP) system
are currently limited largely to gradient-free methods, since the gradient is
hard to obtain by using the existing numerical optics tools available in the
community. This article aims to build new algorithms of the Monte-Carlo
type, which numerically estimate the gradient of power impacting the
receiver with respect to the geometric parameters that characterize the
geometric status of the heliostats in the heliostats field, for a Solar Power
Tower (SPT) system.

Physical models will be built for the specific intensity and also for
its derivatives to the geometric parameters of the heliostats, also called
geometric sensitivities of intensity. Similar to the intensity but with their
own models, they are regarded as physical quantities emitted, absorbed
and reflected in the system. They carry the perturbations of intensity
as information, corresponding to the relations between the geometric
parameters and the physical events in the SPT system: blocking, spillage,
shadowing, etc. These relations will be distinguished and discussed.

Finally, not only the gradient but also the contributions of physical
events (blocking, spillage, shadowing, etc.) to the gradient can be estimated
for further sensitivity analysis and optimization processes.
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Nomenclature

I Intensity

N Number of realizations of
Monte-Carlo estimation

P Total power impacting receiver

Si,j Sensitivity of Power

S Matrix of sensitivity of power

π̈ Matrix of parameters

π̈i,j Geometric parameter of a helio-
stat

G Total set of the position in the
system

S Unit Sphere

I̊ Source of intensity

s̊ Source of sensitivity

s̊blo Source of sensitivity: backward
blocking

s̊shad−b Source of sensitivity: back-
ward shadowing

s̊shad−f Source of sensitivity: forward
shadowing

s̊tar Source of sensitivity: targeting

H Heliostats, H ⊂ ∂G
Hi A Heliostat, Hi ⊂H

H +
i Reflecting surface of a heliostat,

H +
i ⊂Hi

H −
i Rearward surface of a heliostat,

H −
i ⊂Hi

Ol Lower outline, Ol ⊂ ∂G
Os Upper outline, Os ⊂ ∂G
R Receiver, R ⊂ ∂G
∂G Total set of the position on the

boundaries, ∂G ⊂ G
~ω Direction in the system, ~ω ∈ S
~ωb Direction attached on ~xb, ~ωb ∈

S
~ωc Solar position: pointing from

the center of the sun to ~xp.

~ωp Direction attached on ~xp, ~ωp ∈
S

~ωr Direction attached on ~xr, ~ωr ∈
S

~ai,φ Axis of a heliostat for azimuth
angle

~ai,θ Axis of a heliostat for elevation
angle

~ni Normal of a heliostat, ~ni ∈ S
~nr Normal of the receiver, ~nr ∈ S
~v Velocity of deformation

~x Position in the system, ~x ∈ G
~xb Position on rearward surface of

a heliostat, ~xb ∈H −
i

~xp Position on reflecting surface of
a heliostat, ~xp ∈H +

i

~xr Position on receiver, ~xr ∈ R

nπ̈ Number of parameters for each
heliostat

nH Number of heliostats

si,j Sensitivity of Intensity

Acronyms

CBMC Collision-Based Monte-Carlo
algorithms

CSP Concentrated Solar Power

DNI Direct Normal Irradiation

IFMC Integral Formulation Monte-
Carlo

RTE Radiative Transfer Equation

SPT Solar Power Tower

Greek symbols

ρ Reflectivity

σ Standard deviation

Subscrips

b Rearward surface of a heliostat

i Index of heliostat

j Index of parameter of a helio-
stat

k Index of borders of a heliostat

l Lower outline

p Reflecting surface of a heliostat

r Receiver

s Upper outline
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1 Introduction

Concentrating solar power (CSP) technology is one of the promising options to
replace fossil fuel resources. Solar Power Tower (SPT) is a mature technology,
and commercial facilities that follow this principle are currently in operation [1].
The optical system described by the heliostats field usually contributes to about
40% of the total cost of an SPT system[2]. The optical study of SPT systems
has been an active research field [3–5]. Evaluations and optimizations of optical
performance for SPT systems are essential.

As regards the evaluation of optical performance, there are two common
categories of optical modeling methods: Monte-Carlo ray-tracing methods [6–
9] and the cone optics convolution-based methods [10–12]. Compared to the
latter kinds of method, the Monte-Carlo ray tracing methods are more versatile
and can reproduce the real intersections of photons in complex geometries[13].
Several Monte-Carlo-based tools are compared to the convolution methods in
the study[14], revealing that the Monte-Carlo methods have better performance
in accuracy.

However, the optimizations of optical performance, which are usually related
to geometric optimizations are limited largely to gradient-free methods [15, 16].
An important reason for choosing gradient-free methods is usually that ‘no
gradient information is available from Monte-Carlo ray tracing methods’ [17,
18]. The gradient-based methods are usually used when the dimension of the
parameter space of optimization is large [19], which is often the case in CSP
optimization. Limited by the dimension of the parameter space, researchers
can only perform optimization with small numbers of parameters. Diago et
al. optimized only the height and the diameter of the tertiary concentrator in
a Beam-Down system. In order to decrease the number of parameters to be
optimized, Yu et al. optimized the aiming strategy by regrouping the heliostats,
which point to some fixed points on the receiver. Furthermore, the gradient-free
methods are usually treated as a “black box” tool, and the knowledge of the
gradient helps to understand the parameters’ influences on the optimization’s
objective.

Only a few studies have applied gradient-based methods to optimize the
geometry of solar concentrators. Yang et al. [20] suggested approximating it
by using area ratios. However, this method introduces an empiric weight. In
studies carried out by Marston et al., the gradient is approximated by a finite
difference [21, 22], which is also called the resimulation method by Gobet [23].
However, beyond the fact that these studies deal only with simple geometrical
situations, these authors claim that associated uncertainties are difficult to control.
Regarding complex geometries such as a heliostat field in an SPT system with a
large number of parameters, they cannot be treated in such a way (using finite
difference approximation) because of the huge computational time and the lack of
accuracy. Besides this approach of approximation, in the framework of Integral
Formulation Monte-Carlo (IFMC) [24], the impacting power on the receiver in an
SPT system is written as an integral formulation based on the physics of radiation.
By differentiating and reformulating the corresponding integral formulation (for
example, with respect to the angular spreading coefficient [24]), the gradient
is also formulated as an integral formulation and can be estimated through
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Hi

R

(a) Spillage effect.

HiHi′

R

(b) Blocking effect.

Hi

Hi′

R

(c) Shadowing effect.

Figure 1: Spillage, blocking, and shadowing effects are common physical events
in the SPT system. In this work, we further classify them into spillage, forward-
blocking, backward-blocking, forward-shadowing, and backward-shadowing ef-
fects to estimate and analyze the sensitivity of geometric parameters. In the
figure, Hi and Hi′ are the heliostats and R is the receiver.

the Monte-Carlo method[25]. However, when the differentiated parameter is a
geometric parameter that interacts in the integral domain (for example, the size
of heliostats), great formal development efforts are needed[26]. Integrating this
approach to a complex system such as the heliostats field of an SPT system seems
nowadays to be impracticable. A very recent work [27] proposes an alternative
to the work performed by [26]. This new approach proposes that the intensity
and the geometric sensitivity of intensity (the derivative of the intensity with
respect to a geometric parameter) should be regarded as two physical quantities
emitted, transported, and intersected in a radiative system [27]. Based on this
point of view, we can benefit from years of research in the radiative transfer field,
on modeling the intensity to model the geometric sensitivity in an SPT system,
making estimating the gradient in such a complex system possible. In parallel
to our works, the literature shows that shape sensitivity calculations using the
radiative transfer equation and its derivative has been the subject of much work
in the computer graphics community [28–31]. Their objective is to reconstitute
shapes to create the desired image by inversion. For many applications, such
as remote sensing or deep neural networks for artificial intelligence [32] this
“differentiable rendering” will become increasingly important in the coming years
in this community. While we can take advantage of computer graphics tools to
deal with the complex geometry of an SPT system, we still need to understand
how the phenomena in SPT systems (blocking in Fig.1b, shadowing in Fig.1c,
and spillage in Fig.1a) influence the sensitivities, which is also the objective of
this work. Therefore, we will build a model of sensitivity and analyze the sources
of the sensitivities in this model, which is specific to our approach [27, 33]. The
sensitivities are propagated instead of the intensities following the Radiative
Transport Equation (RTE) and the sensitivity sources are identified by this
approach on the borders or on the surfaces of the studied system when we change
geometric parameters. Consequently, we will see in this work that sensitivities
can be presented in an intuitive manner: displacements and rotations of heliostats
create sensitivity sources on the edges and surfaces of the heliostats that move
according to different parameters of displacement and rotation.

As stated above, this paper aims to develop a method to estimate the
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unit W/m

Star676,1 70.63 ± 0.94
Sblo676,1 -30.69 ± 0.58

S676,1 39.93 ± 1.51

Table 1: Sensitivity and its contributions (estimated values and their standard
deviations) for the translation X of the 676th heliostat. For the 676th heliostat in
Fig.2 (indexed as 676 in the table), the sensitivity of its translation X (indexed as
1 in the table) has two contributions. The translation will block its neighboring
heliostat in its back (Sblo676,1 is negative). However, the translation helps it to
be blocked less by its neighboring heliostat on its front (Star676,1 is positive).
The sensitivity of translation X for this heliostat is then the sum of these two
contributions (S676,1).

geometric gradient (sensitivities) of SPT systems and to indicate how the blocking,
spillage, and shadowing effects contribute to the gradient (sensitivities). The
implementation of this method leads to different results that will be of interest to
the SPT community to design (Fig.2a,2b,2c,2d) solar power plants, and also for
their remote control (Fig.2e,2f). In Fig.2, x-y represents the ground plane, z is
the height of the heliostat position, and each point is dedicated to a heliostat in
the field. Furthermore, for each parameter of each heliostat, a detailed analysis
of the contributions (spillage, blocking, shadowing) of sensitivity can be carried
out (Table.1).

Finally, the article is organized into three parts:

- Section.2 provides the models of transport for the intensity and its derivative
towards each heliostat five degrees of freedom (three translations and two
rotations) and its size.

- Section.3 provides the integral formulations and algorithms to estimate
the power collected by the receiver and the different sensitivities towards
these six geometric parameters for each heliostat.

- Section.4 is dedicated to validation purposes: the estimation of the different
sensitivities is compared to the approximation by the finite difference
method. Comparisons and discussions about these two methods will be
undertaken.

2 General models

In this work, we address the question of estimating the power P impacting
the receiver of an SPT system with flat squared heliostats (Fig.3), as well as
its derivatives Si,j ≡ ∂π̈i,j

P of geometric parameters π̈ with i the index of
a heliostat in the heliostats field and j the index of a geometric parameter
(j ∈ {1, 2, 3, 4, 5, 6}, see Fig.4).

In order to numerically estimate P , we will build a model following the
standard radiative transfer physics, using the intensity I as the descriptor. The
transport of I in the medium is governed by a partial differential equation at any

5



−75 −50 −25 0 25 50 75

x [m]

10

20

30

40

50

60

70

80

y
[m

]

Translation: X

−600

−400

−200

0

200

400

600

S
en

si
ti

vi
ty

[w
/m

]
(a) Sensitivity of position-x for each
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(d) Sensitivity of the length of borders for
each heliostat.
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(e) Sensitivity of elevation angle for each
heliostat.
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(f) Sensitivity of azimuth angle for each
heliostat.

Figure 2: Sensitivity of the total impacting power P [w] for each heliostat
in the field. Each point is dedicated to a heliostat, pointing to the center of
the receiver at the moment of solar noon at the summer solstice. The layout
corresponds to a real heliostat field: Sierra SunTower [34] (receiver at 50 m height
at (0,0) and more details of the heliostats field are in Table.6 and Section.4.2).
The corresponding color indicates its sensitivity with respect to its positions,
rotations, and lengths. (106 Monte-Carlo realizations on each border of each
heliostat and 108 Monte-Carlo realizations on each surface of heliostats).
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Hi
· · · Hi+1 Hi+2

· · ·

R
~xr~nr

~ωr

Figure 3: An SPT system consists of heliostats Hi (with an index of i) on the
ground and a receiver R at the top of a tower.

~e1
~e2

~e3

π̈i,1
π̈i,2

π̈i,3

π̈i,4

π̈i,5

π̈i,6

~ni

~ai,φ

~ai,θ

Hi

~ai,θ

Figure 4: A heliostat (Hi) has 5 degrees of freedom, which includes the translation
(π̈i,1,π̈i,2 and π̈i,3), following the three axes in the global coordinate system (~e1,
~e2 and ~e3) and the rotation (π̈i,4 and π̈i,5) corresponding to an altazimuth mount
according to the two vectors of rotation (~ai,θ and ~ai,φ). Also, the length of the
size of the heliostat is included in this study (π̈i,6). Those six parameters are
indexed by j.

locations ~x inside the field G, following a vector of direction ~ω in a unit sphere S
(RTE). On the boundaries ∂G, the transport of I is governed by the boundary
conditions, where the locations are noted with index, see Section.2.4 for details.

Equivalent to P , in order to numerically estimate Si,j , we will build a
radiative model in the medium and on the boundaries using the geometric
sensitivity of intensity s ≡ ∂π̈i,j

I as the descriptor[27]. This descriptor carries
the perturbation of I as information, corresponding to the relations between the
geometric parameters π̈i,j and the physical events in the SPT system: blocking,
spillage, shadowing, etc.

I and si,j will be modeled locally in the medium and boundary conditions.
After that, P and Si,j can be observed by formulating integral formulations of I
and of si,j .
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2.1 Definitions

2.1.1 Geometric sensitivity of intensity

The specific intensity used to model the STP system is considered independent
of the wavelength [14, 35]. It is defined as I ≡ I(~x, ~ω, π̈), where π̈ is the matrix
composed of π̈i,j (see Fig.4):

π̈ ≡ [π̈i,j ] . (1)

~x, ~ω and π̈ are independent variables and matrix s is defined as the derivative
of I with respect to π̈ [33]:

s(~x, ~ω, π̈) ≡ [si,j(~x, ~ω, π̈)] = ∂π̈I(~x, ~ω, π̈). (2)

The components of s are:

si,j(~x, ~ω, π̈) = ∂π̈i,j
I(~x, ~ω, π̈). (3)

2.1.2 Geometric sensitivity of power

We implement this work within the framework of IFMC [24]. P can be estimated
by the product of spatial integral and angular integral of incoming I on the
receiver:

P (π̈) =

∫

R

d~xr

∫

2π

|~ωr · ~nr|d~ωrI(~xr, ~ωr, π̈) (4)

where ~xr is a position on the receiver, ~ωr the direction of observation, ~nr the
normal of the receiver, and R the absorbing surface of the receiver (see Fig.3).

Matrix S is defined as the derivative of P with respect to π̈, which can be
developed in a straight forward way since ~xr and ~ωr are independent of π̈ that
characterizes only the heliostats:

S(π̈) ≡ [Si,j(π̈)] =

∫

R

d~xr

∫

2π

|~ωr · ~nr|d~ωrs(~xr, ~ωr, π̈). (5)

The components of S are:

Si,j(π̈) =

∫

R

d~xr

∫

2π

|~ωr · ~nr|d~ωrsi,j(~xr, ~ωr, π̈). (6)

We aim to estimate P (π̈) and Si,j(π̈) by building a model of I and a model
of si,j in an SPT system.

2.2 Assumptions

The following assumptions are made for modeling I and si,j in an SPT system:

1. The Pill-Box model is used to describe the sun shape (Eq.15).

2. The heliostats are considered perfectly specular, and beam pointing error
is neglected.

3. The reflectivity of heliostats is considered homogeneous on the surface.

4. The medium between heliostats and the receiver is considered transparent.
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It is noted that even though they are typical assumptions for modeling an
SPT system, more realistic modelings can be realized based on the theoretical
studies[27, 33] without specific difficulties (more realistic sun shape model,
spatially and angularly inhomogeneous reflectivity, imperfect reflection, semi-
transparent medium, etc.). In this work, we aim to build a basic model for
I and si,j in an SPT system. More realistic assumptions can be taken into
account based on the developed basic model in this work. For example, if an
angularly inhomogeneous reflectivity is considered in future work, it will have
extra influences on the sensitivity with respect to the rotations of the heliostats.
These extra influences can be considered as an additional source of sensitivity
based on the developed model in this work.

2.3 Transport in the medium

2.3.1 Transport of intensity

The transport of intensity in the medium is modeled by RTE [36]. In an
inhomogeneous medium, the collisions of absorption and scattering are described
by the collision operator C [29]:

∂I(~x, ~ω, π̈)

∂~x
= C[I(~x, ~ω, π̈)] + κa(~x)Ib(~x) (7)

with

C[I(~x, ~ω, π̈)] =

− κa(~x)I(~x, ~ω, π̈)

− κs(~x)I(~x, ~ω, π̈)

+
1

4π

∫

ω′=4π

κs(~x)I(~x, ~ω′, π̈)Φ(~ω′, ~ω)d~ω′

(8)

where κa is the absorption coefficient, κs the scattering coefficient, ~x the
position vector in the medium, ~ω the vector of propagation and Φ(~ω′, ~ω) is the
phase-function. Under the assumption of local thermal equilibrium, the source
κa(~x)Ib(~x) (in Eq.7) is isotropic and is a function of temperature, and Ib is the
specific intensity at equilibrium following the Planck’s law.

In this work, we will consider a transparent and cold medium (where κs = 0,
κa = 0, and Ib(~x) = 0). Therefore, the equation of transport for I used in this
work is:

∂I(~x, ~ω, π̈)

∂~x
= 0 (9)

2.3.2 Transport of geometric sensitivity of intensity

We differentiate Eq.7 with respect to the geometric parameter π̈ on the both
sides:

∂2I(~x, ~ω, π̈)

∂~x∂π̈
=
∂
[
C[I(~x, ~ω, π̈)]

]

∂π̈
(10)

Referring to the definition of the sensitivity (Eq.2), the following equation
transport is yielded:
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∂s(~x, ~ω, π̈)

∂~x
= C[s(~x, ~ω, π̈)] (11)

The development from Eq.7 to Eq.11 is relatively straightforward. First, it is
because the medium’s properties (κa, κs,Φ and Ib) are not dependent on π̈, and
secondly, ~x, ~ω and π̈ are three independent variables.

Referring to Eq.2 and Eq.3, the equation of transport of each of the component
si,j is [33]:

∂si,j(~x, ~ω, π̈)

∂~x
= C[si,j(~x, ~ω, π̈)] (12)

with C the same collision operator as it is in Eq.8:

C[si,j(~x, ~ω, π̈)] =

− κa(~x)si,j(~x, ~ω, π̈)

− κs(~x)si,j(~x, ~ω, π̈)

+
1

4π

∫

ω′=4π

κs(~x)si,j(~x, ~ω
′, π̈)Φ(~ω′, ~ω)d~ω′

(13)

Finally, the collision operator C is also applied to the geometric sensitivities
when describing its transport in the medium. si,j can be regarded as a physical
quantity transported in the medium. Similar to the intensity I, the sensitivity
of intensity si,j is also absorbed and scattered. This new point of view allows us
to study the geometric sensitivity of intensity practically, benefiting from years
of research in the transport of intensity in the physics of radiative transfer.

In this work, we will consider a transparent and cold medium. The intensity
and the geometric sensitivity will have the same model of transport in the
medium:

∂si,j(~x, ~ω, π̈)

∂~x
= 0 (14)

In order to create a similar physical picture for the transport of I and si,j
in the medium, we can consider that the medium is also ‘transparent’ for the
geometric sensitivities si,j .

2.4 Boundary conditions

I and si,j are transported following Eq.9 and Eq.14 in the medium, while on the
boundaries, they can be emitted, reflected, or absorbed.

Seeing Fig.5, positions and directions on the boundaries are noted with an
index of s on Os, r on R, p on H +

i , b on H −
i and Ol on Ol. We will build the

boundary conditions for I and then differentiate them with respect to π̈i,j to
establish the boundary conditions for si,j .

2.4.1 Upper outline Os

In an SPT system, the only source of intensity is the sun. Most of the time, we
use the sun-shape models, which are usually angular functions, to describe the
arriving intensity in the system[14, 37, 38]. To be noticed that this work is a
stationary study, which means it is established for a fixed solar position.

The pill-box sun shape is used in this work:
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Hi
· · · Hi+1 Hi+2

· · ·

R

Os

Ol

~xp
~xb

~xr

~x

~xOl

~xs

~nr

~ni
~ωs

~ωr
~ω

~ωp

~ωb

~ωOl

Figure 5: The system consists of heliostats Hi (with index of i) on the ground
with H +

i its reflecting surface and H −
i its rearward surface, a receiver R, an

upper outline Os and an lower outline Ol. Solar intensity is reflected by H +
i

and collected on the R.

I(~xs, ~ωs, π̈) ≡ I̊(~ωs) = I0H(~ωs · ~ωc − cos (θdisk)) (15)

where ~ωc is a vector that characterizes the solar position (fixed in this work),
I0 the constant intensity coming from the sun, H the Heaviside function and
θisk = 0.0046 rad the radial angular radius of the solar disk. Moreover, this
boundary condition is noted I̊ because it is the source of I in the system.

The upper outline Os can be considered emitting intensity towards the system,
but it is not reflecting the incoming intensity. Therefore, this boundary can be
considered as a ‘black body’ for I.

The derivative of I on Os with respect to π̈i,j is therefore null, because π̈i,j
characterizes the geometry of heliostats instead of Os:

si,j(~xs, ~ωs, π̈) = 0. (16)

Following Eq.16, no si,j is emitted by the sun, and all si,j transported to the
upper outline Os are not reflected but absorbed. Therefore, in order to create
a similar physical picture for the transport of I and si,j on the boundaries, Os
can be regarded as a ‘cold black body’ for si,j .

2.4.2 Receiver R and lower outline Ol

R and Ol in our system (Fig.5) are considered ‘cold black body’ for I. All the
intensity is not hitting the heliostats, and the receiver will be lost. The radiative
emission of the receiver is not included in the model since the heat transfer of
the receiver is out of the scope of this work.

The boundary conditions of receiver R and lower outline Ol are then estab-
lished:
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{
I(~xr,−~ωr, π̈) = 0

I(~xOl
,−~ωOl

, π̈) = 0
(17)

where −~ωr and −~ωOl
are the outgoing direction of propagation of I from the

receiver and the lower outline (Fig.5).
Since π̈i,j only characterizes the heliostats, there are no si,j going out from

these boundaries:

{
si,j(~xr,−~ωr, π̈) = 0

si,j(~xOl
,−~ωOl

, π̈) = 0.
(18)

In order to create a similar physical picture for the transport of I and si,j on
the boundaries, R and Ol can also be regarded as ‘cold black body’ for si,j . All
si,j that are not hitting the heliostat or the receiver will be lost, and si,j are not
emitted from these boundaries.

2.4.3 Heliostat Hi

Intensity: We define ~ni as the normal of the reflecting surface of Hi. The
boundary conditions of I on a heliostat Hi are modeled separately by two parts:
one for the reflecting surface H +

i (where ~ωp ·~ni > 0), the other for the rearward
surface H −

i (where ~ωb · ~ni < 0), see Fig.6. Also, the heliostats are considered
‘cold’, which means they do not emit intensity.

~ni

H +
i

~xp
~ωs

~ωp

(a) Reflecting surface where ~ωp · ~ni > 0

~ni

H −
i

~xb ~ωb

(b) Rearward surface where ~ωb · ~ni < 0

Figure 6: Orientation convention of the heliostat Hi

The transport of intensity on the reflecting surface of the heliostat can be
described by:

I(~xp, ~ωp, π̈) = ρI(~xp, ~ωs, π̈) (19)

where ρ is the reflectivity, I(~xp, ~ωs, π̈) the incoming intensity and ~ωp the
direction reflected by heliostat of ~ωs (Fig.6a).

The transport of I on the rearward surface of Hi can be described by:

I(~xb, ~ωb, π̈) = 0. (20)

The rearward surface of Hi is also considered a ‘cold black body’.
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Geometric sensitivity of intensity: The development of the boundary con-
ditions of si,j for Hi is less straightforward. [33] proposed a model of geometric
sensitivity on reflecting surfaces. Based on this model, the boundary conditions
of si,j is yielded for reflecting surface (Eq.21, referring to Fig.6a) and also for
the rearward surface (Eq.22, referring to Fig.6b). It is found that the boundary
condition of the reflecting surface contains emission terms (the sources) and a
reflection term, see details in Appendix.A.

si,j(~xp, ~ωp, π̈) =s̊i,j(~xp, ~ωp, π̈)

+ρsi,j(~xp, ~ωs, π̈)
(21)

si,j(~xb, ~ωb, π̈) = s̊i,j(~xb, ~ωb, π̈) (22)

We note s̊i,j as the sources of si,j (as we noted I̊ as the source of I).
The sources s̊i,j can be physically regarded as the local perturbations of I

with respect to π̈i,j on Hi, while si,j is such perturbations transported in the
radiative system (see Fig.7). Usually, the sources of sensitivity s̊i,j are functions
of I, where the two models of transport are coupled.

HiHi′

R

I̊Os

Ol

(a) Source of intensity I̊

HiHi

R

π̈i,1

I̊Os

Ol

Hi′

s̊i,1

si,1

I

(b) Source of sensitivity s̊i,1: An example.

Figure 7: The source of intensity is on the boundary Os. In this example, The
source of sensitivity is on the border of heliostat Hi because the perturbation of
π̈i,1 will create locally a perturbation of I on the border of Hi, which causes a

perturbation of P . Also, the source s̊i,j is coupled with the arrived intensity I̊.
Therefore, the model of si,j is coupled with the model of I. The optical path of
si,j is in red, and the coupled optical path of I is in brown.

Moreover, different types of perturbations (sources) are distinguished, related
to blocking, shadowing, and spillage effects. Therefore, we further classify the
sources by their contributions to these different physical effects.

For the reflecting surface H +
i :

s̊i,j(~xp, ~ωp, π̈) = s̊tari,j (~xp, ~ωp, π̈) + s̊bloi,j (~xp, ~ωp, π̈)

+ s̊shad−bi,j (~xp, ~ωp, π̈)
(23)
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and for the rearward surface H −
i :

s̊i,j(~xb, ~ωb, π̈) = s̊shad−fi,j (~xb, ~ωs, π̈). (24)

s̊tari,j is named the source of targeting. It is the perturbation caused by the

targeting or missing of the reflected intensity on H +
i , with respect to π̈i,j . It is

separated into two parts:

s̊tari,j = s̊tar,spatiali,j + s̊tar,angulari,j . (25)

s̊tar,spatiali,j is originated from the change of position of Hi with respect to

π̈i,j , located on the border of H +
i (see Fig.8 for an example of π̈i,1). s̊tar,angulari,j

is originated from the change of normal, located on the surface of H +
i (see Fig.9

for an example of π̈i,4, but to be noted that perturbation of π̈i,4 leads to the
change of position and also the change of normal).

Concerning the change of position, the sources s̊tar,spatiali,j are located on the
border of the heliostat (see formal developments in Appendix.A and Appendix.B).

If we note the sum of s̊tar,spatiali,j captured on R to be Star,spatiali,j , it will be 0

when s̊tar,spatiali,j are all captured or all missed, see Fig.8. However, when the
spillage effect (Fig.8c), forward-blocking effect (Fig.8d) or backward-shadowing
effect (Fig.8e) occurs, the perturbation of π̈i,j will perturb these effects and

s̊tar,spatiali,j will be partially captured. Therefore, Star,spatiali,j will be non-null .

Concerning the change of normal, the sources s̊tar,angulari,j are located on the
surface of the heliostat (see details in Appendix.A and Appendix.B). If we note

the sum of s̊tar,angulari,j captured on R to be Star,angulari,j , it will be non-null when

s̊tar,angulari,j is all captured on R since the perturbation of π̈i,j perturbs the cosine
effect, and it will be 0 when all is missing, see Fig.9. Moreover, when the spillage
effect (Fig.9c), forward-blocking effect (Fig.9d) or backward-shadowing effect

(Fig.9e) occurs, the perturbation of π̈i,j will perturb these effects and s̊tar,angulari,j

will be partially captured.
We must distinguish the contributions from backward and forward shadowing

in the model of si,j . Backward-shadowing means that the perturbation of π̈i,j
affects the shadows on the heliostat itself Fig.10a. Forward-shadowing means
that the perturbation of π̈i,j affects the shadows on a neighboring heliostat
Fig.11.

s̊shad−bi,j is named the source of backward-shadowing. This perturbation is

observed on the surface of H +
i , but originated from the border of a neighboring

heliostat, see Fig.10a and 10b. It is also separated by two parts, corresponding
to the change of position and direction of Hi:

s̊shad−bi,j = s̊shad−b,spatiali,j + s̊shad−b,angulari,j (26)

We note Sshad−b,spatiali,j as the sum of the source s̊shad−b,spatiali,j captured on
R. When backward-shadowing occurs, the perturbation of π̈i,j will perturb the
effect of backward-shadowing by the change of position (see an example of π̈i,1
in Fig.10a) and Sshad−b,spatiali,j 6= 0.

We note Sshad−b,angulari,j as the sum of the source s̊shad−b,angulari,j captured
on R. When backward-shadowing occurs, the perturbation of π̈i,j will perturb
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Hi

R

π̈i,1

Hi

s̊tar,spatiali,1

(a) All the sources are captured.

Hi

R

π̈i,1

Hi

s̊tar,spatiali,1

(b) All the sources are missing

HiHi

R

π̈i,1

s̊tar,spatiali,1

(c) Sources are partially
captured:
Spillage effect.

HiHi

R

π̈i,1

s̊tar,spatiali,1

(d) Sources are partially
captured:

Forward-blocking effect.

HiHi

R

π̈i,1

s̊tar,spatiali,1

(e) Sources are partially
captured:

Backward-shadowing effect.

Figure 8: The optical path of I is in yellow, and that of si,j is in red. When

all the sources of s̊tar,spatiali,1 are all captured by R or they are all missing, the

perturbation of π̈i,1 is not causing the perturbation of P and Star,spatiali,1 = 0.
When spillage effect, forward-blocking effect, or backward-shadowing effect
occurs, s̊tar,spatiali,1 is partially captured by R and Star,spatiali,1 6= 0.
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Hi

R

π̈i,4

s̊tar,angulari,4

(a) All the sources are captured

Hi

R

π̈i,4

s̊tar,angulari,4

(b) All the sources is missed

Hi

R

π̈i,4

s̊tar,angulari,4

(c) Sources are partially
captured:
Spillage effect

Hi

R

π̈i,4

s̊tar,angulari,4

(d) Sources are partially
captured:

Forward-blocking effect

Hi

R

π̈i,4

s̊tar,angulari,4

(e) Sources are partially
captured:

Backward-shadowing
effect

Figure 9: With a perturbation of π̈i,4, the perturbation of I is observed on
all surfaces of Hi and borders of Ωs (the solar cone). When all the sources of

s̊tar,angulari,1 is all captured on Ri,1, the perturbation of π̈ causes the perturbation

of P because of the cosine effect and Star,angulari,1 6= 0. When all the sources

are missing, Star,angulari,1 = 0. Finally, when the spillage effect, forward-blocking

effect or backward-shadowing effect occurs, s̊tar,angulari,1 is partially captured by

R and Star,angulari,1 6= 0.
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HiHi

R

π̈i,1

s̊shad−bi,1

(a) Perturbation due to the change of
position

Hi

R

π̈i,4

s̊shad−b,angulari,4

(b) Perturbation due to the change of
normal

Figure 10: When the backward shadowing effect occurs, with a perturbation of
π̈i,4, P is perturbed because of its change of normal. The source of sensitivity
s̊shad−bi,4 is on the border of the neighboring heliostat. P is also perturbed because

of its change of position. The source of sensitivity s̊shad−bi,1 is on the border of the
neighboring heliostat. The backward-shadowing is about the shadowing effect
created by the neighboring heliostat.

the effect of backward-shadowing by the change of normal (see an example of

π̈i,4 in Fig.10b) and Sshad−b,spatiali,j 6= 0.

s̊shad−fi,j is named the source of forward-shadowing. This perturbation of I is
caused by the creation of shadows. With a perturbation of π̈i,j , shadows might
be created on another heliostat in the field.

We note Sshad−fi,j as the sum of the source s̊shad−fi,j captured on R. When
forward-shadowing occurs, a perturbation of π̈i,j will perturb the effect of

forward-shadowing (see an example of π̈i,1 in Fig.11) and Sshad−fi,j 6= 0.

s̊bloi,j is named the source of backward-blocking. This perturbation of I is
caused by blocking. With a perturbation of π̈i,j , Hi might block the I reflected
on another heliostat in the field.

We note Sbloi,j as the sum of the source s̊bloi,j captured on R. When backward-
blocking occurs, a perturbation of π̈i,j will perturb the effect of backward-blocking
(see an example of π̈i,1 in Fig.12) and Sbloi,j 6= 0. Finally, the geometric sensitivity
of power Si,j is the sum of all captured sources:

Si,j = Stari,j + Sbloi,j + Sshad−bi,j + Sshad−fi,j (27)

with

Stari,j = Star,spatiali,j + Star,angulari,j (28)

and

Sshad−bi,j = Sshad−b,spatiali,j + Sshad−b,angulari,j . (29)
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Hi

R

π̈i,1

Hi

s̊shad−fi,1

Figure 11: When the forward-shadowing effect occurs, with a perturbation of
π̈i,1, a perturbation of P is observed. The source of sensitivity s̊shad−fi,1 is on the
border of the heliostat itself. The forward-shadowing is about the shadowing
effect created by the heliostat itself.

HiHi

R

π̈i,1

s̊bloi,1

Figure 12: When the backward-blocking effect occurs, a perturbation of π̈i,1
causes the perturbation of P . This is because π̈ characterizes how much intensity
reflected is blocked by Hi. The source of sensitivity s̊bloi,j is on the border of H +

i .

Each contribution in Eq.27 is the sum of the sources s̊i,j captured by the
receiver respectively:




Stari,j (π̈)
Sbloi,j (π̈)

Sshad−bi,j (π̈)

Sshad−fi,j (π̈)


 =

∫

R

d~xr

∫

2π

|~ωr · ~nr|d~ωr




s̊tari,j (~xr, ~ωr, π̈)
s̊bloi,j (~xr, ~ωr, π̈)

s̊shad−bi,j (~xr, ~ωr, π̈)

s̊shad−fi,j (~xr, ~ωr, π̈)


 . (30)

3 Algorithms

In the previous section, general models for the intensity I and its derivatives si,j
are built for an SPT system. Based on the models, we aim to build algorithms
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to estimate the impacting power P and the matrix S by the Monte-Carlo ray
tracing method.

Concerning the model of intensity I, the only source is the intensity from
the sun I̊ located on the surface that delimits the sky, Os. P will be estimated
by summing the source I̊ captured on the receiver R(see Eq.4).

Concerning the model of si,j , there are several sources of sensitivities on the
heliostat Hi. Si,j will be estimated by summing all the sources s̊i,j captured on
the receiver R(see Eq.5).

The corresponding statistical ray tracing process can start from the receiver
looking for the sources or, inversely, from the sources located on the heliostat,
looking for the receiver. The strategy of proceeding statistical ray tracing process
has enormous influences on the convergence rate.

In order to estimate the impacting power P , unlike the Collision-Based
Monte-Carlo algorithms (CBMC) where the ray-tracing starts from a plane
above reflectors (Os in our case)[7], we integrate this work in the framework of
IFMC, starting the ray-tracing process from the reflecting surfaces (H + in our
case), which improves convergence rate[14, 24].

In order to estimate the matrix of sensitivity S, we start the statistical
ray-tracing process by the sources, looking for the receiver R.

3.1 Estimation of impacting power

The algorithm to compute the impacting power by IFMC has been thoroughly
described by [24, 39]. Here is a quick reminder of the integral formulation for
estimating P under the assumptions made in Section.2.2:

P =

∫

H +

pX(~xp1)d~xp1

∫

Ωs

pΩs
(~ωs)d~ωs

{H(~xp0 ∈ Os)H(~xp2 ∈ R)ŵ} (31)

with

pX(~xp1) =
1

SH +

, (32)

pΩs
(~ωs) =

1∫
C
d~ωs

=
1

2π(1− cos θdisk)
(33)

ŵ = DNIρ|~ωs · ~ni|SH + (34)

where SH + is the area of all reflected surfaces of the heliostats field.
Equation 31 is the integral formulation of the model to compute the impacting

power P and can also be seen as an expected value which is the core of an IFMC
algorithm. The expected value P can be estimated by the mean operator (Algo.2
in Appendix.E):

P ≈ 1

N

N∑

q=1

[H(~xp0,q ∈ Os)H(~xp2,q ∈ R)ŵq] (35)
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Hi
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~xp1

~xp0

~xp2

~ni
~ωs

~ωp

Figure 13: In order to estimate P , for each realization, the algorithm starts by
uniformly sampling a random position ~xp1 (following Eq.32) on the reflected
surface of the whole heliostat field H +. Then, a direction is sampled within
the solar cone Ωs of angular radius θdisk following the density of probability pΩs

(Eq.33). In order to check if the shadowing effect occurs, ~xp0 is defined as the
first intersection with a boundary of the system, starting at ~xp1 in the direction
−~ωs, and it is tested if ~xp0 belongs to Os. If there is no shadowing, the reflected
direction ~ωp is computed based on the law of reflection for specular surfaces from
the sampled ~ωs and the local normal ~ni at position ~xp1. In order to check if the
spillage or the blocking effect occurs, ~xp2 is defined as the first intersection with
a boundary of the system, starting at ~xp1 in the direction ~ωp, and it is tested if
~xp2 belongs to R. Finally, if no shadowing nor blocking occurs, the weight of
Monte-Carlo for this realization ŵ is computed.

where ~xp0,q and ~xp2,q are obtained through the described ray-tracing al-
gorithm on Fig.13 for the qth realization. ŵq is the value of ŵ for the qth

realization.
The standard deviation σ(P ) is computed simultaneously with P [40].

3.2 Estimation of the geometric sensitivities of power

The whole matrix of sensitivity of impacting power S has a dimension of nH ×nπ̈,
where nH is the number of heliostats and nπ̈ = 6 is the number of geometric
parameters of each heliostat, referring to Fig.4. When the number of heliostats
nH becomes large, it will be very costly in computing time if we estimate them
one by one.

Herein, we will build an efficient algorithm to estimate S. The matrix of S

is composed of the vectors of sensitivities for each heliostat S ≡
[
~Si

]
(reminding

the index i for ith Heliostat in the field):
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~Si(π̈) ≡




Si,1(π̈)
Si,2(π̈)
Si,3(π̈)
Si,4(π̈)
Si,5(π̈)
Si,6(π̈)




T

(36)

Following Eq.27, each Si,j has 4 contributions. We defined the vectors of
contributions as well as the vectors of sources similarly, and finally, we have:

~Si = ~Stari + ~Sbloi + ~Sshad−bi + ~Sshad−fi (37)

and

~̊si = ~̊stari + ~̊sbloi + ~̊sshad−bi + ~̊sshad−fi . (38)

The contributions will then be the sum of captured sources respectively on
the R. The corresponding integral formulations are detailed in Appendix.B. The
algorithm to estimate S and its standard deviation σ(S) is Algo.1.

Algorithm 1 Estimate S and σ(S)

Input: Geometries of heliostats and receiver, ~ωc
. ~ωc characterizes the solar position (Eq.15)

Initialization: i← 0
while i < nH do . nH number of heliostats

Estimate ~Stari and ~σ(~Stari ) by Algo.3

Estimate ~Sbloi and ~σ(~Sbloi ) by Algo.4

Estimate ~Sshad−bi and ~σ(~Sshad−bi ) by Algo.6

Estimate ~Sshad−fi and ~σ(~Sshad−fi ) by Algo.5
~Si ← ~Stari + ~Sbloi + ~Sshad−bi + ~Sshad−fi

~σ(~Si)← ~σ(~Smati ) + ~σ(~Sbloi ) + ~σ(~Sshad−bi ) + ~σ(~Sshad−fi )
i← i+ 1

end while
Output: S ←

[
~Si

]
, σ(S)←

[
~σ(~Si)

]

In the following part of this section, we will discuss the estimation of each
vector of contribution in Eq.37.

3.2.1 Contribution of the effect of targeting ~Stari

Stari,j is a component of ~Stari , estimated by the sum of the sources of targeting
s̊tari,j (π̈) arriving to the receiver. The corresponding integral formulation is
yielded in Appendix.B and is separated into two parts, corresponding to the
change of position (Fig.8) and the change of normal (Fig.9), noted ~Star,spatiali

and ~Star,angulari respectively. The corresponding sources of sensitivities are

separated by s̊tar,spatiali,j and s̊tar,angulari,j in Eq.25. Those sources correspond
to the spatial gradient of intensity I and the angular gradient of I [33]. It is
noted that the π̈i,4 and the π̈i,5 characterize the change of normal and also the
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change of positions (because they are related to the rotations). In contrast, other
parameters characterize only the change of position.

Hi

R

Os

Ol

~x′p1

~x′p0

~x′p2

~ni
~ωs

~ωp

~xp1

~xp0

~xp2

~ω′s

~ω′p

Figure 14: Algorithm to compute ~Stari . ~x′p1 is on the 4 borders of the heliostat
∂Hi having k as the index of the border, ~x′p0 the first intersection starting by
~x′p1 following -~ωs, ~x

′
p2 the first intersection starting by ~x′p1 following ~ωp, ~ω

′
s the

direction on the border of solar cone ∂Ωs, ~ω
′
p the direction of reflection of ~ω′s, ~xp0

the first intersection starting by ~xp1 following -~ω′s and ~xp2 the first intersection

starting by ~xp1 following ~ω′p. For each realization of estimating ~Star,spatiali , we
sample ~x′p1 and ~ωs. If ~x′p0 hits Os and ~x′p2 hits R we count ~w1 (Eq.42). For each

realization of estimating ~Star,angulari , we sample ~xp1 and ~ω′s. If ~xp0 hits Os and
~x′p2 hits R we count ~w2 (Eq.43).

The integral formulation for estimating ~Stari is detailed in Eq. 39 and Eq.
40. Corresponding probability density functions are given in Eq. 41. In Eq. 40,
k refers to the four sides of the squared heliostat.

~Stari (π̈) = ~Star,spatiali (π̈) + ~Star,angulari (π̈) (39)





~Star,spatiali (π̈) =
4∑

k=1

∫

lk

pX′(~x
′
p1)d~x′p

∫

Ωs

pΩs
(~ωs)d~ωs

{
~w1H(~x′p0 ∈ Os)H(~x′p2 ∈ R)

}

~Star,angulari (π̈) =

∫

H +
i

pXi
(~xp1)d~xp

∫

∂Ωs

pΩ′s(~ω′s)d~ω
′
s

{~w2H(~xp0 ∈ Os)H(~xp2 ∈ R)}

(40)

where
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pXi(~xp1) =
1

SH +
i

; pX′(~x
′
p1) =

1

lk
; pΩ′s(~ω′s) =

1

2π
(41)

~w1 =
~̊star,spatiali (~xp, ~ωp, π̈)

pX′(~x′p1)pΩs
(~ωs)

; (42)

~w2 =
~̊star,angulari (~xp, ~ωp, π̈)

pXi
(~xp1)pΩ′s(~ω′s)

. (43)

The notation and the Monte-Carlo ray-tracing algorithm are shown in Fig.14.
See also Algo.3 for the complete algorithm and Appendix.C for the explicit
expression of ~w1 and ~w2.

3.2.2 Contribution of backward-blocking effect ~Sbloi

Sbloi,j is a component of ~Sbloi , estimated by the sum of the sources of backward-

blocking s̊bloi,j (π̈) arriving to the receiver. The corresponding integral formulation
is yielded in Appendix.B.

Unlike the source of targeting, the evolution of π̈i,j has no effects on the
change of normal of the reflected intensity (Fig.15). Intensity is reflected following
~ni′ on H +

i′ , while π̈i,j characterizes the heliostat Hi. Therefore, s̊bloi,j is only
about the change of position.

Hi′

R

Hi

Os

Ol

~ni′
~x′p2

~x′p1

~x′p0

~x′p3

~ωs

~ωp

Figure 15: Algorithm to compute ~Sbloi . ~x′p1 is the first intersection starting by
~x′p2, following -~ωp, ~x

′
p0 the first intersection starting by ~x′p1 following -~ωs, ~x

′
p3 the

first intersection starting by ~x′p1 following ~ωp. For each realization of estimating
~Sbloi , we sample ~x′p2 and ~ωs, and we calculate ~ωp. If ~x′p0 hits Os, ~x′p1 hits Hi′

and ~x′p2 hits R we count ~w3.

Seeing Fig.15 for the ray-tracing algorithm, the integral formulation for
estimating ~Sbloi is as following:
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~Sbloi (π̈) =

nH ,i′ 6=i∑

i′=1

4∑

k=1

∫

lk

pX′(~x
′
p2)d~x′p2

∫

Ωs

pΩs(~ωs)d~ωs

{
~w3H(~x′p0 ∈ Os)H(~x′p1 ∈H +

i′ )H(~x′p3 ∈ R)
}

(44)

where

~w3 =
~̊sblo(~x′p2, ~ωp, π̈)

pX′(~x′p2)pΩs
(~ωs)

(45)

with nH the number of heliostats in the field.
Moreover, the blocked heliostat Hi′ can be all other heliostats except Hi

in the heliostats field. In order to capture all the sources s̊bloi,j (π̈i,j), we need to
proceed ray-tracing test for all other heliostats except Hi in the field to detect
the blocking effect. However, most of them will not be blocked by Hi since the
distance between the two heliostats is large. In order to accelerate and optimize
the algorithm, we will proceed with the ray-tracing tests on the heliostats, of
which the distance to Hi is within a limited length. This length is defined as ld.
See Algo.4 for the complete algorithm and Appendix.C for the explicit expression
of ~w3.

3.2.3 Contribution of forward-shadowing ~Sshad−fi,j

Sshad−fi,j is a component of ~Sshad−fi,j , estimated by the sum of the sources of

forward-shadowing s̊shad−fi,j (π̈) arriving to the receiver. The corresponding
integral formulation is yielded in Appendix.B.

Seeing the ray-tracing algorithms on Fig.16, ~Sshad−fi can be estimated by
the following integral formulation:

~Sshad−fi (π̈) =

4∑

k=1

∫

lk

pX′(~x
′
p1)d~x′p1

∫

Ωs

pΩs(~ωs)d~ωs

{
~w4H(~x′p0 ∈ Os)H(~x′p2 ∈H +)H(~x′p3 ∈ R)

}
, (46)

where

~w4 =
~̊sshad−fi (~x′p1, ~ωp, π̈)

pX′(~x′p1)pΩs
(~ωs)

. (47)

See also Algo.5 for the complete algorithm and Appendix.C for the explicit
expression of ~w4.

3.2.4 Contribution of backward-shadowing effect ~Sshad−bi

Sshad−bi,j is a component of ~Sshad−bi , estimated by the sum of the sources of

backward-shadowing s̊shad−bi,j (π̈) arriving to the receiver. The corresponding
integral formulation is yielded in Appendix.B. Similar to the targeting effect, the
evolution of π̈i,j might have two possible impacts on the heliostat Hi: the change
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Hi′
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~ni′
~x′p1

~x′p2

~x′p0

~x′p3

~ωs

~ωp

Figure 16: Algorithm to compute ~Sshad−fi . ~x′p0 is the first intersection starting
by ~x′p1, following -~ωs, ~x

′
p2 the first intersection starting by ~x′p1 following ~ωs,

~x′p3 the first intersection starting by ~x′p2 following ~ωp. For each realization of

estimating ~Sbloi , we sample ~x′p1 and ~ωs, and we calculate ~ωp. ~ωp is reflected

following the normal ~ni′ which is the normal of Hi′ . If ~x′p0 hits Os, ~x′p2 hits H +
i′

and ~x′p3 hits R we count ~w4.

of position and the change of normal, impacting the backward-shadowing effect.
Therefore, the contribution ~Sshad−bi can be divided by two parts: ~Sshad−b,spatiali

for the change of position and ~Sshad−b,angulari for the change of normal. Also,

the sources s̊shad−b,spatiali,j are divided by two parts respectively: s̊shad−b,spatiali,j

and s̊shad−b,angulari,j in Eq.26. They correspond to the spatial and the angular

gradient of intensity I on the reflecting surface of the heliostat H +
i [33].

Seeing Fig.10a and Fig.10b, these two gradients (spatial and angular) are
both originated from the borders of another heliostat (from point ~x′p1 in Fig.17).

Seeing the algorithm of ray-tracing in Fig17, ~Sshad−bi can be estimated
through the following integral formulation:

~Sshad−bi (π̈) =

4×nH∑

k=1

∫

lk

pX′(~x
′
p1)d~x′p1

∫

Ωs

pΩs
(~ωs)d~ωs

{
(~w5 + ~w6)H(~x′p0 ∈ Os)H(~x′p2 ∈H +

i )H(~x′p3 ∈ R)
}
, (48)

where

~w5 =
~̊sshad−b,spatiali (~x′p1, ~ωp, π̈)

pX′(~x′p1)pΩs
(~ωs)

; (49)

~w6 =
~̊sshad−b,angulari (~x′p1, ~ωp, π̈)

pX′(~x′p1)pΩs
(~ωs)

. (50)
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Hi

R

Hi′
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Ol

~ni
~x′p1

~x′p2

~x′p0

~x′p3

~ωs

~ωp

Figure 17: Algorithm to compute ~Sshad−bi . ~x′p0 is the first intersection starting
by ~x′p1, following -~ωs, ~x

′
p2 the first intersection starting by ~x′p1 following ~ωs, ~x

′
p3

the first intersection starting by ~x′p2 following ~ωp, ~ti′,k the vector of circulation
on the shadowing heliostat Hi′ , lshad−b the length of the optical path between

~x′p1 and ~x′p2. For each realization of estimating ~Sbloi , we sample ~x′p1 and ~ωs, and
we calculate ~ωp. ~ωp is reflected following the normal ~ni which is the normal of
Hi. If ~x′p0 hits Os, ~x′p2 hits H +

i and ~x′p3 hits R we count ~w5 + ~w6.

Similar to the backward-blocking effect, Hi′ can be all other heliostats except
Hi itself in the heliostats field. In order to detect all backward-shadowing effects,
we need to proceed with ray-tracing tests for all the borders of all heliostats in
the field except the borders of Hi (4× (nH −1) in total where nH is the number
of heliostats in the field). However, most of them will not create shadows on Hi

since they are too far from each other. In order to accelerate and optimize the
algorithm, we will only proceed with the ray-tracing tests for the heliostats, of
which the distance to Hi is within ld. See also Algo.6 for the complete algorithm
and Appendix.C for the explicit expression of ~w5 and ~w6.

4 Results, validations, and comparisons

In this section, we will proceed with the following:

1. Validations of our method by finite difference method using four examples.

2. A comparison of the finite difference method with our method in calculating
time.

4.1 Validations

We will here proceed with four simple examples (see Fig.18) where we apply our
method and finite difference method for validation purposes. The sensitivities of
H1 are calculated and results are shwon in Table.2, 3, 4 and 5. In case 1, only
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the spillage effect is detected. In case 2, the blocking effect is detected. In case
3, the backward-shadowing effect is detected. In case 4, the forward-shadowing
effect is detected. The estimation results by our method are validated by the
finite difference method, which will be discussed in the following subsection.

~e1

~e2

~e3

h1 θ1

H1

r1

R

(a) Case 1: r1 = (0, 0, 0), h1 = (1, 5, 1)
and θ1 = 30◦. Solar elevation angle =
60◦.

~e1

~e2

~e3 h1

H1

h2

H2

r1

R

(b) Case 2: r1 = (0, 0, 2), h1 =
(0.25, 2, 0) and h2 = (0, 3, 0). Solar ele-
vation angle = 60◦.

~e1

~e2

~e3 h1

H1

h2

H2

r1

R

(c) Case 3: r1 = (0, 0, 2), h1 =
(0.25, 2, 0) and h2 = (0, 3, 0). Solar ele-
vation angle = 30◦.

~e1

~e2

~e3 h2

H2

h1

H1

r1

R

(d) Case 4: r1 = (0, 0, 2), h2 =
(0.25, 2, 0) and h1 = (0, 3, 0). Solar ele-
vation angle = 30◦.

Figure 18: The receiver R is a rectangular with lengths of 1.50 m and r1 is its
geometric center. The heliostats H1 and H2 are two rectangles with lengths
of 1 m and h1, h2 are their geometric centers respectively. In case 1, θ1 is the
horizontal angle of H1. In case 2, 3 and 4, the heliostat H1 and H2 point to r1

according to the solar elevation angle.

4.1.1 Approximation by finite difference method

The finite difference method is a standard method to approximate the sensitivities.
When P is derivable around π̈i,j :

Si,j = lim
ε→0

P (π̈i,j + ε)− P (π̈i,j − ε)
2ε

. (51)

The finite difference method approximates Si,j by giving a non-zero fixed

value to ε. We note the result of approximation as S̃i,j :

Si,j ≈
P (π̈i,j + ∆π̈i,j)− P (π̈i,j −∆π̈i,j)

2∆π̈i,j
≡ S̃i,j . (52)
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unit W/m W/m W/m W/rad W/rad W/m

j 1 2 3 4 5 6

Star,spatial1,j −4.56 244.82× 10−3 −125.12 54.24 −2.02 33.45

Star,angular1,j 0.00 0.00 0.00 1.14× 103 −10.37 0.00

Sblo1,j 0.00 0.00 0.00 0.00 0.00 0.00

Sshad−b,spatial1,j 0.00 0.00 0.00 0.00 0.00 0.00

Sshad−b,angular1,j 0.00 0.00 0.00 0.00 0.00 0.00

Sshad−f1,j 0.00 0.00 0.00 0.00 0.00 0.00

S1,j −4.56 244.82× 10−3 −125.12 1.20× 103 −12.39 33.45
σ
(
S1,j

)
47.41× 10−3 876.00× 10−6 331.02× 10−3 2.19 382.67× 10−3 106.14× 10−3

S̃1,j −4.50 244.00× 10−3 −124.91 1.19× 103 −12.27 33.41

σ
(
S̃1,j

)
235.23× 10−3 235.23× 10−3 238.22× 10−3 2.38 2.35 236.04× 10−3

Table 2: Validation - Case 1: 106 realizations on each border and 108 realizations
on the surface for an estimation of S1,j and 107 realizations for each estimation

of P when approximating S̃1,j by finite difference method.

unit W/m W/m W/m W/rad W/rad W/m

j 1 2 3 4 5 6

Star,spatial1,j −793.35 143.71× 10−3 141.22× 10−3 456.62 356.02× 10−3 991.76

Star,angular1,j 0.00 0.00 0.00 −912.74 −463.55 0.00

Sblo1,j 139.39 −277.29 −415.94 −188.09 14.84 −234.30

Sshad−b,spatial1,j 0.00 0.00 0.00 0.00 0.00 0.00

Sshad−b,angular1,j 0.00 0.00 0.00 0.00 0.00 0.00

Sshad−f1,j 0.00 0.00 0.00 0.00 0.00 0.00

S1,j −653.96 −277.15 −415.80 −644.22 −448.36 757.46
σ
(
S1,j

)
270.41× 10−3 890.09× 10−3 1.03 13.81 2.08 643.34× 10−3

S̃1,j −654.25 −277.20 −415.90 −640.00 −450.50 757.50

σ
(
S̃1,j

)
180.35× 10−3 181.87× 10−3 181.38× 10−3 18.23 1.82 1.82

Table 3: Validation - Case 2: 106 realizations on each border and 109 realizations
on the surface for an estimation of S1,j and 109 realizations for each estimation

of P when approximating S̃1,j by finite difference method.

Practically, the approximation of S̃i,j requires estimating P twice. Since
the impacting power P is estimated by the Monte-Carlo method, its statisti-
cal standard deviation σ(P ) is also estimated at the same time [40]. When
approximating S̃i,j , its standard deviation σ(S̃i,j) can be obtained [23]:

σ(S̃i,j) ≈
σ(P (π̈i,j + ∆π̈i,j)) + σ(P (π̈i,j −∆π̈i,j))

2∆π̈i,j
. (53)

The major drawback of the finite difference method is that the related
standard deviation σ(S̃i,j) is hard to control[23] and tends to infinity as ∆π̈i,j
tends to zero.

4.2 Comparison with the finite difference method

In this section, we will apply and discuss the algorithms previously introduced
in the context of a functioning solar tower station: Sierra SunTower [34]. This
case study has been chosen since our sensitivity model was developed for flat
heliostats.

This solar tower station is located in Mojave Desert, California, at a latitude
of 34.7◦. It consists of 2 solar towers, each with north and south heliostat
subfields[34].

The heliostat field and the two towers are symmetrically distributed. There-
fore, we only focus on the field on the southwest side and its related tower,
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unit W/m W/m W/m W/rad W/rad W/m

j 1 2 3 4 5 6

Star,spatial1,j −236.19 −531.19 −530.35 −493.65 35.84 801.24

Star,angular1,j 0.00 0.00 0.00 1.64× 103 137.89 0.00

Sblo1,j 0.00 0.00 0.00 0.00 0.00 0.00

Sshad−b,spatial1,j 0.00 155.41 1.18× 103 −461.94 −19.41 12× 10−6

Sshad−b,angular1,j 0.00 0.00 0.00 −200.32 −1.56 0.00

Sshad−f1,j 0.00 0.00 0.00 0.00 0.00 0.00

S1,j −236.19 −375.79 650.09 479.69 152.76 801.24
σ
(
S1,j

)
496.41× 10−3 427.22× 10−3 1.02 11.88 1.53 393.25× 10−3

S̃1,j −236.00 −376.00 649.50 490.00 150.00 800.50

σ
(
S̃1,j

)
780.28× 10−3 771.28× 10−3 770.40× 10−3 7.72 7.72 773.85× 10−3

Table 4: Validation - Case 3: 106 realizations on each border and 109 realizations
on the surface for an estimation of S1,j and 109 realizations for each estimation

of P when approximating S̃1,j by finite difference method.

unit W/m W/m W/m W/rad W/rad W/m

j 1 2 3 4 5 6

Star,spatial1,j −1.29× 10−3 −2.10× 10−3 −2.31× 10−3 −849.47 242.46× 10−3 1.06× 103

Star,angular1,j 0.00 0.00 0.00 1.69× 103 −88.94× 10−3 0.00

Sblo1,j 0.00 0.00 0.00 0.00 0.00 0.00

Sshad−b,spatial1,j 0.00 0.00 0.00 0.00 0.00 0.00

Sshad−b,angular1,j 0.00 0.00 0.00 0.00 0.00 0.00

Sshad−f1,j −68.35 375.08 −649.65 −318.62 17.21 −232.07

S1,j −68.35 375.08 −649.66 523.12 17.37 823.17
σ
(
S1,j

)
181.08× 10−3 220.47× 10−3 382.90× 10−3 10.45 973.89× 10−3 206.71× 10−3

S̃1,j −68.50 375.00 −649.50 530.00 15.00 823.00

σ
(
S̃1,j

)
771.70× 10−3 771.28× 10−3 770.40× 10−3 7.72 7.72 771.70× 10−3

Table 5: Validation - Case 4: 106 realizations on each border and 109 realizations
on the surface for an estimation of S1,j and 109 realizations for each estimation

of P when approximating S̃1,j by finite difference method.
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which includes 6090 flat heliostats. It is easy to extend the calculation for the
whole field in the south (including 12180 heliostats). However, extra efforts are
needed for the field on the north side since the towers’ shadows will impact the
sensitivities.

Table.6 shows the geometric parameters of the radiative system, as well as
the solar positions for the summer solstice.

Characteristic Value

Overall north-south length 95 [m]
Overall east-west length 175 [m]

Distance between the tower and the first row of heliostats 12.5 [m]
Number of heliostats per column 58

Number of heliostats per row 105
Size of heliostats 1.067× 1.067 [m2]

Height of the centre of receiver 50 [m]
Size of receiver 4× 4 [m2]

Zenith angle for the summer solstice at solar noon 79◦

Table 6: Geometric configuration of the system[34]

The present work focuses on the optical performance (the impacting power
P ). It is assumed that:

1. The sun’s position is fixed (solar noon for the summer solstice)

2. Incoming Direct Normal Intensity (DNI) is considered homogeneous for
the whole heliostat field (DNI = 1000W/m2).

The incoming power, P (π̈) and its derivatives S(π̈) towards geometric
parameters π̈ ≡ [π̈i,j ] are estimated. It is reminded that i refers to the ith

heliostat (i ∈ {1, 2 . . . , 6090}) and j to one of the six geometric parameters
(j ∈ {1, 2, . . . , 6}) as shown on Fig.4.

Results have already been shown at the beginning of this article (Fig.2). It
is noted that the accuracy of the simulation depends on the number of Monte
Carlo realizations. Each Monte-Carlo realization consists of the corresponding
sampling process and the ray-tracing tests described in Section.3.

When we focus on one parameter of one heliostat in the field (for example, the
size of the 5297th heliostat: π̈5297,6), it has a tinny impact on the total impacting
power P . It causes a poor convergence performance when applying the finite
difference method, as shown in Table.7. Compared to our method, the method of
approximation by finite difference takes much more time to converge because the
choice of ∆π̈ enormously impacts the convergence rate and the precision for the
approximation method of finite difference. In contrast, our method of estimation
avoids this choice. These calculations are run parallelly in an ordinary laptop1,
and our method converges in 0.188s. According to [40], to reduce ten times the
standard deviation of a Monte-Carlo estimation, approximately 100 times the
calculation time is needed. In this application case, the approximation of the

14 CPUs of i5 Intel™, 8th generation
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finite difference method will then spend approximately 2× 1011 more times of
calculating time to attend the same order of standard deviation of our method.

Last but not least, it is found that in Table.2, Table.3, Table.4 and Table.5,
the advantage of our method in convergence performance is not that significant
compared to the finite difference method. We have the following comments:

1. The four cases are dedicated to validation purposes. Therefore, the geome-
tries are relatively simple compared to a functioning SPT system. However,
the finite difference method will become impracticable when the geometries
become more complex.

2. Even with simple geometries, the standard derivation of the finite difference
method (σ(S̃i,j)) is hard to be controlled. It is strongly dependent on the
value of ∆π̈i,j chosen in Eq.52 and Eq.53.

3. The derivation related to the discretization can not be handled for the
finite difference method. It is also largely related to the choice of ∆π̈ in
Eq.52 and Eq.53. However, our method can handle the statistical standard
derivation. We avoid the derivation related to the discretization and the
choice of ∆π̈i,j .

Finite difference method Value standard deviation calculation time

P (π̈5297,6 −∆π̈5297,6) 3231.62[w] 0.0389[w] 272.5[s]
P (π̈5297,6 + ∆π̈5297,6) 3231.85[w] 0.0389[w] 272.5[s]

S̃5297,6(π̈5297,6) 1.15[w/m] 0.389[w/m] 545[s]

Our method Value standard deviation calculation time

S5297,6(π̈5297,6) 1.14974[w/m] 0.000041[w/m] 0.188[s]

Table 7: π̈5297,6 is originally equal to 1.067 (see Table.6), while herein, a rea-
sonable value of ∆π̈5297,6 is chosen: ∆π̈5297,6 = 0.1[m]. Two estimations of
impacting power (P (π̈5297,6 −∆π̈5297,6) and P (π̈5297,6 + ∆π̈5297,6)) are realized

following Algo.2 (109 Monte-Carlo realizations) . The sensitivity of power S̃5297,6

is approximated based on these two estimations. Also, the sensitivity of power
S5297,6 is estimated following Algo.1 (104 Monte-Carlo realizations for each
border of the heliostats).

5 Conclusion

We have presented general models for the intensity I and the sensitivity of
intensity si,j in a radiative system of an SPT system, as well as the complete
algorithms for estimating the matrix of sensitivity of power S. These algorithms
are validated by the finite difference method using four typical examples. Since
the sensitivity of a heliostat of a geometric parameter Si,j is estimated by

the accumulation of four contributions: Stari,j , Sbloi,j , Sshad−bi,j and Sshad−fi,j , the
contributions of different physical events to the sensitivity Si,j in an SPT system
(blocking, shadowing, spillage) can be analyzed in detail. After that, an actual
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functioning SPT system was used as a test-case study. Firstly, a comparison
of computing time was made for estimating sensitivity by our method and its
approximation by the finite difference method. Secondly, the matrix of sensitivity
of power S was calculated. Engineers can benefit from this information on
sensitivities to optimize the optical design and the aiming strategy for the SPT
system. Last but not least, this work makes the integration of gradient-based
optimizations for the optical system in an SPT becomes possible. However, the
sensitivity model developed in the present paper is only applied to a field of
flat heliostats. Thus, a promising perspective would be to extend this model to
curved heliostats.

This work received financial support from the from Region Occitanie and the
SOLSTICE laboratory of Excellence (ANR-10-LABX-22-01).

A Boundary conditions of geometric sensitivi-
ties for a heliostat

In this work, a heliostat is modeled by two surfaces without thickness: the
reflecting surface H +

i and the rearward surface H −
i .

Based on the general model in[33], the boundary condition of geometric
sensitivities for a cold, specular mirror with homogeneous reflectivity is developed,
where I(~xp, ~ωp, π̈) and I(~xp, ~ωs, π̈) are spatially and angularly smooth:

si,j(~xp, ~ωp, π̈) =− ∂1,~vi,jI(~xp, ~ωp, π̈)

+ ρ∂1,~vi,jI(~xp, ~ωs, π̈)

− ρ∂~aRI(~xp, ~ωs, π̈)

+ ρ∂~a
′
R I(~xp, ~ωs, π̈)

+ ρsi,j(~xp, ~ωs, π̈)

(54)

where ∂1,~vi,j is the operator for spatial gradient following the vector ~vi,j which

are the velocity of deformation (yielded in Appendix.D), ∂~aR the operator for
angular gradient following the vector of rotation ~a, and ~a′ the reflected vector of
−~a on H +

i [33]. However, when we model the reflecting surface H +
i , I(~xp, ~ωp, π̈)

is spatially discontinued because the heliostat has 4 edges and I(~xp, ~ωs, π̈) can
be angularly discontinued (when backward-shadowing occurs, see Fig.10b).

In [33], the discontinuity of spatial gradient and angular gradient of intensity I
are studied. The boundary condition of H +

i can then be yielded. Furthermore, in
this work, we classify the different sources of sensitivity based on the background
of CSP applications:

si,j(~xp, ~ωp, π̈) = s̊tari,j (~xp, ~ωp, π̈) + s̊bloi,j (~xp, ~ωp, π̈)

+ s̊shad−bi,j (~xp, ~ωp, π̈) + ρsi,j(~xp, ~ωs, π̈). (55)

s̊tari,j is separated into the source s̊tar,spatiali,j on the border of heliostat ∂H +
i

and the source s̊tar,angulari,j on the surface H +
i : s̊tari,j = s̊tar,spatiali,j + s̊tar,angulari,j ,

where:

s̊tar,spatiali,j (~xp, ~ωp, π̈) = −(~ωp × ~vi,j) · ~ti,kρI(~xp, ~ωs, π̈) (56)
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and

s̊tar,angulari,j (~xp, ~ωp, π̈) = −ρ∂~aRI(~xp, ~ωs, π̈)

+ ρ∂~a
′
R I(~xp, ~ωs, π̈). (57)

~ti,k are the vectors of circulation of H +
i , depending on ~xp, see Fig.19.

When the backward-shadowing does not occur, the angular gradient in
Eq.57 will be the angular derivative of the boundary condition of Os (previously
defined in Eq.15, which is the Pill-box sun shape model). The development is
straightforward, and they are the sources on the border of the solar cone ∂Ωs:

∂~aRI(~xp, ~ωs, π̈) = I0(~ωs × ~a) · ~ωcH(hitb ∈ Os) (58)

∂~a
′
R I(~xp, ~ωs, π̈) = I0(~ωs × ~a′) · ~ωcH(hitb ∈ Os) (59)

where H(hitb ∈ Os) corresponds to a backward ray-tracing test which will be
true if the direction of −~ωs starting from ~xp is not shadowed by other heliostats
in the field.

s̊bloi,j is the source on the border of heliostat ∂H +
i :

s̊bloi,j (~xp, ~ωp, π̈) = (~ωp × ~vi,j) · ~ti,kI(~xp, ~ωp, π̈) (60)

When backward-shadowing effect occurs, H +
i is shadowed by another helio-

stat H +
i′ , a spatial gradient exists on the surface of H +

i (Fig.10a). An angular
gradient exists within the solar cone Ωs (Fig.10b). Furthermore, in our case,
these sources on the surface of H + and within the cone Ωs all come from the
border of the shadowing heliostat ∂H +

i′ .
Following the models of spatial gradient and angular gradient in [33], the

source s̊shad−bi,j is on the borders of all heliostats in the field except the heliostat

Hi, which is ∂H +
i′ , i

′ 6= i. Similar to the source of targeting, we separate the

source s̊shad−bi,j by s̊shad−b,spatiali,j and s̊shad−b,angular:

s̊shad−bi,j (~xp, ~ωp, π̈) = s̊shad−b,spatiali,j (~xp, ~ωp, π̈)

+ s̊shad−b,angulari,j (~xp, ~ωp, π̈) (61)

where

s̊shad−b,spatiali,j (~xp, ~ωp, π̈) =

ρ
~vi,j · ~ni
~ωp · ~ni

(~ωs × ~ωp) · ~ti′,kI(~xp′ , ~ωs, π̈) (62)

and
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s̊shad−b,angulari,j (~xp, ~ωp, π̈) =

− ρlshad−b(~ωs × ~a× ~ωs) · ~ti′,kI(~xp′ , ~ωs, π̈)

+ ρlshad−b(~ωs × ~a′ × ~ωs) · ~ti′,kI(~xp′ , ~ωs, π̈). (63)

~ti′,k are the vectors of circulation of H +
i′ [33], see Fig.19 and lshad−b is the

length of optical path between ~x′p and ~xp (Fig.17).

The boundary condition of the rearward surface H −
i can be developed based

on the general model of opaque-black surface in [33]:

s(~xb, ~ωs, π̈) = s̊shad−fi,j (~xb, ~ωs, π̈) (64)

and s̊shad−fi,j is the source on the border of the heliostat H −
i :

s̊shad−fi,j (~xb, ~ωb, π̈) =

(~ωs × ~vi,j) · ~ti,kI(~xb, ~ωs, π̈) (65)

B Integral formulations

The vectors of contributions of S defined in Section.3.2 are the sum of the vectors
of sources captured by the receiver R respectively. ~Star,spatiali (π̈) is estimated

by integrating ~̊star,spatiali on ∂H +
i and on Ωs:

~Star,spatiali (π̈) =

∮

∂H +
i

d~xp

∫

Ωs

d~ωs

{
H (hitf ∈ R)~̊star,spatiali (~xp, ~ωp, π̈)

}
(66)

where the Heaviside function H(hitf ∈ R) corresponds to a forward ray-
tracing test which will be true if the source arrives at R (the ray staring at ~xp,
following ~ωp impacts the receiver R).

~Star,angulari (π̈) is estimated by integrating ~̊star,angulari on H +
i and on ∂Ωs:

~Star,angulari (π̈) =

∫

H +
i

d~xp

∮

∂Ωs

d~ωs

{
H (hitf ∈ R)~̊star,angulari (~xp, ~ωp, π̈)

}
(67)

~Sbloi (π̈) is estimated by integrating ~̊sbloi on ∂H +
i and on Ωs:

~Sbloi (π̈) =

∮

∂H +
i

d~xp

∫

Ωs

d~ωs

{
H (hitf ∈ R)~̊sbloi (~xp, ~ωp, π̈)

}
(68)
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~Sshad−bi (π̈) is estimated by integrating ~̊sshad−bi on all the borders of other
heliostats in the field ∂H +

i′ and on Ωs:

~Sshad−bi (π̈) =

nH ,i′ 6=i∑

i′=1

∮

∂H +

i′

d~xp

∫

Ωs

d~ωs

{
H (hitf ∈ R)~̊sshad−bi (~xp, ~ωp, π̈)

}
(69)

~Sshad−fi (π̈) is estimated by integrating ~̊sshad−fi on ∂H −
i and on Ωs:

~Sshad−fi (π̈) =

∮

∂H −
i

d~xb

∫

Ωs

d~ωs

{
H (hitf ∈ R)~̊sshad−fi (~xb, ~ωb, π̈)

}
(70)

Finally, the corresponding integral formulations of ~Star(π̈), ~Star(π̈), ~Sblo(π̈),
~Sshad−b(π̈) and ~Sshad−f (π̈) are shown in Section.3.

C Explicit expression of Monte-Carlo weight

C.1 Contribution of targeting

We substitute Eq.56 into Eq.42, as well as Eq.57 into Eq.43. The following
explicit expressions of Monte-Carlo weight are then yielded:

~w1 = −lkDNI




(~ωp × ~vi,1) · ~ti,k
(~ωp × ~vi,2) · ~ti,k
(~ωp × ~vi,3) · ~ti,k
(~ωp × ~vi,4) · ~ti,k
(~ωp × ~vi,5) · ~ti,k
(~ωp × ~vi,6) · ~ti,k




; (71)

~w2 = 2πI0SH +
i
|~ω′s · ~ni|




0
0
0

−2(~ω′s × ~ai,θ) · ~ωc(
~ω′s × (~a′i,φ − ~ai,φ)

)
· ~ωc

0



. (72)

where SH +
i

the area of the reflecting surface of the heliostat H +
i , lk the

length of kth side of the heliostat Hi and ~ti,k the vectors of circulation which is
clockwise around the normal ~ni following the convention of[33], see Fig.19. ~vi,j
is the velocity of deformation linked to the point ~x′p1. Generally, it is a function
of a point ~x on the heliostat Hi:

~vi,j ≡ ~vi,j(~x). (73)
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~ni
~ai,φ

~a′i,φ

~ai,θ

Hi

~ai,θ
~ti,1

~ti,2

~ti,3

~ti,4

Figure 19: ~ti,k are the clockwise vectors of circulation around ~ni

The vectors of ~vi,j are given by Table.8, where ~e = ~x− ~xc,i and ~xc,i is the
central position of the heliostat Hi. The demonstrations are in Appendix.D and
for example, the field of ~vi,4(~xp) and ~vi,5(~xp) are shown in Fig.20 and Fig.21.

~vi,1 ~vi,2 ~vi,3 ~vi,4 ~vi,5 ~vi,6
[1, 0, 0] [0, 1, 0] [0, 0, 1] ~ai,θ × ~e ~ai,φ × ~e ~e

lk

Table 8: Components of ~vi,j for a point ~x on Hi

In Eq.72, ~ai,θ is the axis of rotation related to π̈i,4 and ~ai,φ the axis of rotation
related to π̈i,5. ~a′i,φ is the vector reflected by H +

i from -~ai,φ [33], see Fig.19.

~ai,θ

~vi,4(~xp)

Figure 20: Schema of the field of ~vi,4(~xp)
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~ai,φ

~vi,5(~xp)

Figure 21: Schema of the field of ~vi,5(~xp)

C.2 Contribution of backward-blocking

We substitute Eq.60 into Eq.45. The following explicit expression of Monte-Carlo
weight is then yielded:

~w3 = lkDNI




(~ωp × ~vi,1) · ~ti,k
(~ωp × ~vi,2) · ~ti,k
(~ωp × ~vi,3) · ~ti,k
(~ωp × ~vi,4) · ~ti,k
(~ωp × ~vi,5) · ~ti,k
(~ωp × ~vi,6) · ~ti,k




; (74)

C.3 Contribution of forward-shadowing

We substitute Eq.65 into Eq.47. The following explicit expression of Monte-Carlo
weight is then yielded:

~w4 = −lkDNI




(~ωs × ~vi,1) · ~ti,k
(~ωs × ~vi,2) · ~ti,k
(~ωs × ~vi,3) · ~ti,k
(~ωs × ~vi,4) · ~ti,k
(~ωs × ~vi,5) · ~ti,k
(~ωs × ~vi,6) · ~ti,k




. (75)

C.4 Contribution of backward-shadowing

We substitute Eq.62 into Eq.49, as well as Eq.63 into Eq.50. The following
explicit expressions of Monte-Carlo weight are then yielded:

with
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~w5 = ρlkDNI




~vi,1 · ~ni
~ωp · ~ni

(~ωs × ~ωp) · ~ti′,k
~vi,2 · ~ni
~ωp · ~ni

(~ωs × ~ωp) · ~ti′,k
~vi,3 · ~ni
~ωp · ~ni

(~ωs × ~ωp) · ~ti′,k
~vi,4 · ~ni
~ωp · ~ni

(~ωs × ~ωp) · ~ti′,k
~vi,5 · ~ni
~ωp · ~ni

(~ωs × ~ωp) · ~ti′,k
~vi,6 · ~ni
~ωp · ~ni

(~ωs × ~ωp) · ~ti′,k




(76)

and

~w6 =ρlkDNIlshad−b


0
0
0

−2(~ωs × ~ai,θ × ~ωs) · ~ti′,k
(~ωs × (~ai,φ − ~ai,φ′)× ~ωs) · ~ti′,k

0




(77)

D Velocity of deformation

Following [33], we need to define a geometric space, and a material space for
a heliostat Hi, and special notations are needed to calculate the velocity of
deformation. In geometric space, the positions ~̌y and directions ~̌ω are functions
of the geometric parameter π̈i,j , while in material space, the positions are noted
~y and directions are noted ~ω. They are not depended on π̈i,j .

The function Z and Ω link the two spaces so that the positions and directions
in one space can refer to the other space:

~̌y = Z(~y, π̈i,j); ~̌ω = Ω(~ω, π̈) (78)

We define the velocity of deformation ~vi,j as the derivative of Z with respect
to π̈i,j :

~vi,j ≡ ∂π̈i,j
Z(~y, π̈i,j) (79)

For different π̈i,j , the velocities of deformations ~vi,j are summarized in Table.9,
where ~aθ and ~aφ are two axes of rotation for the heliostat Hi (in Fig.4) and lk
the original length of size of the heliostat.
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Z(~y, π̈i,j) ~v = ∂π̈Z

π̈i,1



π̈i,1
0
0


+ ~y ~v =




1
0
0




π̈i,2




0
π̈i,2
0


+ ~y ~v =




0
1
0




π̈i,3




0
0
π̈i,3


+ ~y ~v =




0
0
1




π̈i,4 ~y + π̈i,4(~ai,θ × ~y) ~ai,θ × ~y

π̈i,5 ~y + π̈i,5(~ai,φ × ~y) ~ai,φ × ~y

π̈i,6
π̈i,6

lk
~y ~y

lk

Table 9: The functions Z and ~v for the 6 geometric parameters of heliostat

E Algorithms

Algorithm 2 Estimate P

Input: Geometry of heliostats and receiver, ~ωc, N
. N number of realizations

Initialization: n← 0, sum← 0, sum2← 0
while n < N do

Sample ~xp1 on SH + based on pX
Sample ~ωs within Ωs based on pΩs .
Compute ~ωp by the law of specular reflection
Get ~xp0 from ~xp1 following −~ωs
Get ~xp2 from ~xp1 following ~ωp
if ~xp0 ∈ Os & ~xp2 ∈ R then

Compute ŵ
sum← sum+ ŵ
sum2← sum2 + ŵ2

else
sum← sum+ 0
sum2← sum2 + 0

end if
n← n+ 1

end while

Output: P ← sum
N , σ(P )←

√
sum2

N −( sum
N )2

N−1
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Algorithm 3 Estimate ~Stari and ~σ(~Stari )

Input: Geometry of heliostats and receiver, ~ωc, N
. N number of realizations

Initialization: ~Stari ← 0, ~σ(~Stari )← 0
while k < 4 do . Hi has 4 borders

Initialization: n← 0, −−→sum← 0,
−−−→
sum2← 0

while n < N do
Sample ~x′p1 on lk based on pX′
Sample ~ωs within Ωs based on pΩs

.
Compute ~ωp based on ~ωs and ~ni by the law of specular reflection
Get ~x′p0 from ~x′p1 following −~ωs
Get ~x′p2 from ~x′p1 following ~ωp
if ~x′p0 ∈ Os & ~x′p2 ∈ R then

Compute ~w1−−→sum← −−→sum+ ~w1−−−→
sum2← −−−→sum2 + ~w2

1

else−−→sum← −−→sum+ 0−−−→
sum2← −−−→sum2 + 0

end if
n← n+ 1

end while

~Stari ← ~Stari +
−−→sum
N , ~σ(~Stari )← ~σ(~Stari ) + σ(P )←

√
−−−→
sum2

N −(
−−→sum
N )2

N−1

k ← k + 1
end while
Initialization: n← 0, −−→sum← 0,

−−−→
sum2← 0

while n < N do . N number of realizations
Sample ~xp1 on SH +

i
based on pXi

Sample ~ω′s on ∂Ωs based on pΩ′s .
Compute ~ω′p based on ~ω′s and ~ni by the law of specular reflection
Get ~xp0 from ~xp1 following −~ω′s
Get ~xp2 from ~xp1 following ~ω′p
if ~xp0 ∈ Os & ~xp2 ∈ R then

Compute ~w2−−→sum← −−→sum+ ~w2−−−→
sum2← −−−→sum2 + ~w2

2

else−−→sum← −−→sum+ 0−−−→
sum2← −−−→sum2 + 0

end if
n← n+ 1

end while

~Stari ← ~Stari +
−−→sum
N , ~σ(~Stari )← ~σ(~Stari ) + σ(P )←

√
−−−→
sum2

N −(
−−→sum
N )2

N−1

Output: ~Stari , ~σ(~Stari )
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Algorithm 4 Estimate ~Sbloi and ~σ(~Sbloi )

Input: Geometry of heliostats and receiver, ~ωc, N , i
. N number of realizations

Initialization: i′ ← 0, ~Sbloi ← 0, ~σ(~Sbloi )← 0 . i′ index of heliostat being
blocked
while i′ < nH do . nH number of heliostats

Compute the distance li,i′ between Hi and Hi′

if li,i′ < ld & i′ 6= i then
. Ignore the too-far-away heliostats for backward-blocking effect

Initialization: k ← 0
while k < 4 do . Hi has 4 borders

Initialization: n← 0, −−→sum← 0,
−−−→
sum2← 0

while n < N do
Sample ~x′p2 on lk based on pX′
Sample ~ωs within Ωs based on pΩs

.
Compute ~ωp based on ~ωs and ~ni′ by the law of specular reflection
Get ~x′p1 from ~x′p2 following −~ωp
Get ~x′p0 from ~x′p1 following −~ωs
Get ~x′p3 from ~x′p2 following ~ωp
if ~x′p0 ∈ Os & ~x′p1 ∈H +

i′ & ~x′p3 ∈ R then
Compute ~w−−→sum← −−→sum− ~w1−−−→
sum2← −−−→sum2− ~w2

1

else−−→sum← −−→sum+ 0−−−→
sum2← −−−→sum2 + 0

end if
n← n+ 1

end while
k ← k + 1

~Sbloi ← ~Sbloi +
−−→sum
N , ~σ(~Sbloi )← ~σ(~Sbloi ) + σ(P )←

√
−−−→
sum2

N −(
−−→sum
N )2

N−1

end while
end if
i′ ← i′ + 1

end while
Output: ~Sbloi , ~σ(~Sbloi )

41



Algorithm 5 Estimate ~Sshad−fi and ~σ(~Sshad−fi )

Input: Geometry of heliostats and receiver, ~ωc, N
. N number of realizations

Initialization: k ← 0, ~Sshad−fi ← 0, ~σ(~Sshad−fi )← 0
while k < 4 do . Hi has 4 borders

Initialization: n← 0, −−→sum← 0,
−−−→
sum2← 0

while n < N do
Sample ~x′p1 on lk of H +

i based on pX′
Sample ~ωs within Ωs based on pΩs

.
Get ~x′p2 from ~x′p1 following ~ωs
Get the normal ~ni′ on ~xp2
Compute ~ωp based on ~ωs and ~ni′ by the law of specular reflection
Get ~x′p0 from ~x′p1 following −~ωs
Get ~x′p3 from ~x′p2 following ~ωp
if ~x′p0 ∈ Os & ~x′p1 ∈H + & ~x′p3 ∈ R then

Compute ~w−−→sum← −−→sum+ ~w3−−−→
sum2← −−−→sum2 + ~w2

3

else−−→sum← −−→sum+ 0−−−→
sum2← −−−→sum2 + 0

end if
n← n+ 1

end while
k ← k + 1

end while
~Sshad−fi ← ~Sshad−fi +

−−→sum
N , ~σ(~Sshad−fi ) ← ~σ(~Sshad−fi ) + σ(P ) ←√

−−−→
sum2

N −(
−−→sum
N )2

N−1

Output: ~Sshad−fi , ~σ(~Sshad−fi )
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Algorithm 6 Estimate ~Sshad−bi and ~σ(~Sshad−bi )

Input: Geometry of heliostats and receiver, ~ωc, N , i
. N number of realizations

Initialization: i′ ← 0, ~Sshad−bi ← 0, ~σ(~Sshad−bi )← 0 . i′ index of shadowing
heliostat
while i′ < nH do . nH number of heliostats

Compute the distance li,i′ between Hi and Hi′

if li,i′ < ld & i′ 6= i then
. Ignore the too-far-away heliostats for backward-shadowing effect

Initialization: k ← 0
while k < 4 do . loop all borders onHi′

Initialization: n← 0, −−→sum← 0,
−−−→
sum2← 0

while n < N do
Sample ~x′p1 on lk of Hi′ based on pX′
Sample ~ωs within Ωs based on pΩs

.
Get ~x′p2 from ~x′p1 following ~ωs
Compute ~ωp based on ~ωs and ~ni by the law of specular reflection
Get ~x′p0 from ~x′p1 following −~ωs
Get ~x′p3 from ~x′p2 following ~ωp
if ~x′p0 ∈ Os & ~x′p2 ∈H +

i & ~x′p3 ∈ R then
Compute ~w4 and ~w5−−→sum← −−→sum+ ~w4 + ~w5−−−→
sum2← −−−→sum2 + (~w4 + ~w5)2

else−−→sum← −−→sum+ 0−−−→
sum2← −−−→sum2 + 0

end if
n← n+ 1

end while
k ← k + 1
~Sshad−bi ← ~Sshad−bi +

−−→sum
N , ~σ(~Sshad−bi ) ← ~σ(~Sshad−bi ) + σ(P ) ←√

−−−→
sum2

N −(
−−→sum
N )2

N−1

end while
end if
i′ ← i′ + 1

end while
Output: ~Sshad−bi , ~σ(~Sshad−bi )
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6.1 Introduction
In the last chapter, the method of sensitivity model has been applied to the research field of
CSP, using the technique of vectorization. Now, let’s first take a step back and review the
previous chapters.
In Chapter.2, three methods are distinguished to tackle the problem of “estimating the
sensitivities of a radiative system by Monte-Carlo method”. They are then applied to a
one-dimensional problem in Chapter.3. After that, Chapter.4 aims to apply the method of
sensitivity model to complex, triangulated geometries. We also proposed the strategy of
vectorization in Chapter.4 to manage the increase of the sources in the models of sensitivity.
Also, following the same strategy of vectorization, the method of sensitivity model is applied
to a CSP system in Chapter.5.
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Transforming line sources into surface sources by Stokes’ theorem

In Chapter.4 and Chapter.5, the boundary conditions are discontinuous (on the junction of
two triangles in Chapter.4, seeing Fig.6.1a and the borders of heliostats in Chapter.5, seeing
Fig.6.1b).

𝑠

�̇�

(a) Junction of two triangles.

𝑠�̇�

(b) A heliostat.

Figure 6.1 – The schema of line source 𝑠 and the surface source �̇� for the junction of
two triangles and a heliostat.

In this case, the sources of sensitivity are found on the surface (noted �̇�) and on the edge
(noted 𝑠), these sources have then different path spaces on the boundary. Therefore, when we
integrate all emitted sources to get the outgoing sensitivity of power (noted 𝑆), it is required
to build an integral formulation for the surface sources and the other one for the line sources:

𝑆 =
∫︁
S

∫︁
2𝜋(�⃗�)

|�⃗� · �⃗�|�̇�𝑑�⃗�𝑝𝑑�⃗� +
∮︁
L

∫︁
2𝜋(�⃗�)

|�⃗� · �⃗�|𝑠𝑑�⃗�𝑙𝑑�⃗� (6.1)

where S is the area of the surface of the triangle or heliostat, L the length of the junction or
the border of the heliostat, �⃗�𝑝 a vector of position on the surface and �⃗�𝑙 a vector of position
on the junction or on the border of a heliostat.

More generally, it is required to estimate the observable O and all of its sensitivities
𝑆1, 𝑆2, . . . , 𝑆𝑛 for a given radiative system. Following the strategy of vectorization proposed
in Chapter.4 and Chapter.5, the line sources and surface sources are vectorized separately:

⎡⎢⎢⎢⎢⎣
O

𝑆1
𝑆2
. . .
𝑆𝑛

⎤⎥⎥⎥⎥⎦ =
∫︁
S

∫︁
2𝜋(�⃗�)

|�⃗� · �⃗�|

⎡⎢⎢⎢⎢⎣
�̊�
�̇�1
�̇�2
. . .
�̇�𝑛

⎤⎥⎥⎥⎥⎦ 𝑑�⃗�𝑝𝑑�⃗� +
∮︁
L

∫︁
2𝜋(�⃗�)

|�⃗� · �⃗�|

⎡⎢⎢⎢⎢⎣
0
𝑠1
𝑠2
. . .
𝑠𝑛

⎤⎥⎥⎥⎥⎦ 𝑑�⃗�𝑙𝑑�⃗� (6.2)

where �̊� is the source of intensity, which is usually a surface source. �̇�1, �̇�2, . . . , �̇�𝑛 are the
surface sources of sensitivity and 𝑠1, 𝑠2, . . . , 𝑠𝑛 are the line sources of sensitivity.

However, the line integral in Eq.6.2 implies two inconveniences when applying the Monte-Carlo
method:

1. For a complex, triangulated geometry, it is complicated to sample over all edges. Some
complex algorithms are developed to achieve this kind of sampling in the community
of image synthesis [69].

2. On the boundary, a surface sampling and a line sampling are needed, corresponding to
two path spaces (or two integral formulations as it is shown in Eq.6.1). However, this
means that the two integral requires two Monte-Carlo estimations.
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Introduction

In this chapter, we explore the possibility of transforming the line sources 𝑠 into surface
sources. The line source 𝑠 is transformed to surface source ˙̂𝑠. After that, only one space path
is found on the boundary, as shown in Fig.6.2, corresponding to only one integral formulation.
Eq.6.1 becomes:

𝑆 =
∫︁
S

∫︁
2𝜋(�⃗�)

|�⃗� · �⃗�|(�̇�+ ˙̂𝑠)𝑑�⃗�𝑝𝑑�⃗� (6.3)

Consequently, line integral no longer existed in Eq.6.3. The line sampling is avoided, and the
path space of the sources �̇� and ˙̂𝑠 is the same.

𝑠

(�̇� + ˙̂𝑠)

Figure 6.2 – Transforming line source 𝑠 into surface source ˙̂𝑠.

More generally, we perform this technique to the line sources of all sensitivities in Eq.6.2. It
becomes:

⎡⎢⎢⎢⎢⎣
O

𝑆1
𝑆2
. . .
𝑆𝑛

⎤⎥⎥⎥⎥⎦ =
∫︁
S

∫︁
2𝜋(�⃗�)

|�⃗� · �⃗�|

⎡⎢⎢⎢⎢⎣
�̊�

�̇�1 + ˙̂𝑠1
�̇�2 + ˙̂𝑠2
. . .

�̇�𝑛 + ˙̂𝑠𝑛

⎤⎥⎥⎥⎥⎦ 𝑑�⃗�𝑝𝑑�⃗� (6.4)

Finally, all sources of sensitivity and intensity are surface sources, sharing only one path space
in Eq.6.4. The observable and all its sensitivities are estimated in a vectorized form, with
only one Monte-Carlo estimation. We remind that this is the significant advantage of the
method of observable estimation that is introduced in Chapter.2 and Chapter.3. Therefore,
following the method of sensitivity model, the vectorization advantage of the method of
observable derivation is completely regained. This chapter dedicates to introducing this
technique of transformation.

The model of sensitivity is coupled with the model of intensity, the model of spatial derivative,
and the model of angular derivative [34]. As it is mentioned in Chapter.4, the origin of the
line source of sensitivity always comes from the model of spatial derivative. Therefore, we
focus on it, and the chapter is organized as follows:

• In Section.6.2, we first define a radiative case study. After that, we build a radiative
transport model both for the intensity and for its spatial derivative. We also discuss
how the line sources appear in this section.

• In Section.6.3, we reformulate the emitted line sources, transforming them into surface
sources so that only surface sources exist in the system.

• The technique of transforming line sources into surface sources is tested in different
case with different medium: transparent (Section.6.4), absorbent (Section.6.5) and
scattering (Section.6.6).

• Section.6.7 is for validation purposes. Also, a convergence issue is distinguished and
discussed.
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Transforming line sources into surface sources by Stokes’ theorem

6.2 Modeling of the study case
6.2.1 Description of the study case
We begin with an example of a convex domain bounded by plane surfaces (Fig.6.3). The
geometric domain is noted G ⊂ R3, bounded by the boundary 𝜕G. Also, the edges between
two plane surfaces are noted L ⊂ G. The set G includes then the interior of the geometric
domain, its boundary and the edges: G = G̊ ∪ 𝜕G ∪L.

�⃗�𝑜𝑏𝑠

G̊

𝜕G

L

Figure 6.3 – A convex domain bounded by plane surfaces where G = G̊ ∪ 𝜕G ∪L. It
is noted that the 3D geometry is presented as a 2D figure here. Therefore, the volume
G̊, the surface 𝜕G, and the lines L are presented with one-dimension less.

The intensity 𝐼 ≡ 𝐼(�⃗�, �⃗�) has 2 independent variables:

• The position �⃗� is a vector of R3 that belongs to the set G ⊂ R3.

• The direction �⃗� is an element of the unit sphere S.

We also make the following assumptions:

1. The medium is cold, homogeneous, and isotropic with transparent, absorbent, or
scattering medium (the three cases are studied differently in the following sections).

2. The bounded plane surfaces are all “black bodies”.

An observation point �⃗�𝑜𝑏𝑠 ∈ G is set in the domain (Fig.6.3). The observable is the angular
integral of intensity around �⃗�𝑜𝑏𝑠 , which is noted 𝐺 (Eq.6.5), as well as its spatial gradient
projected to a unit vector �⃗� (Eq.6.6).

𝐺(�⃗�𝑜𝑏𝑠) =
∫︁

4𝜋

𝐼(�⃗�𝑜𝑏𝑠, �⃗�)𝑑�⃗� (6.5)

𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠) =
∫︁

4𝜋

𝜕1,�⃗�𝐼(�⃗�𝑜𝑏𝑠, �⃗�)𝑑�⃗� (6.6)

In order to estimate 𝐺 and 𝜕1,�⃗�𝐺, we will build a model of intensity and a model of spatial
derivative, and we solve them by the Monte Carlo method.
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6.2.2 The model of intensity
The model of intensity is already introduced in Chapter.1. Noting C as the collision operator,
the stationary RTE with the assumptions we made for this chapter is:

�⃗� · 𝜕1𝐼 = C[𝐼] �⃗� ∈ G (6.7)

with

C[𝐼(�⃗�, �⃗�)] = −𝑘𝑎𝐼(�⃗�, �⃗�)− 𝑘𝑠𝐼(�⃗�, �⃗�) + 𝑘𝑠

∫︁
4𝜋

1
4𝜋𝑑�⃗�

′𝐼(�⃗�, �⃗�′) (6.8)

where 𝑘𝑎 is the absorption coefficient, 𝑘𝑠 the scattering coefficient, 1
4𝜋 the single scattering

phase function in an isotropic scattering medium, which can be regarded as the density of
probability that the scattering direction becomes �⃗� for a photon coming from the direction
of �⃗�′.

The boundary 𝜕G is only composed of black bodies. Therefore, they only emit intensity, and
no intensity is reflected:

𝐼 = �̊� �⃗� ∈ 𝜕G; �⃗� · �⃗� > 0 (6.9)

with �̊�, which is noted as the source of intensity and �⃗� the normal of the plane surface,
pointing to the inside of the domain G̊.

Intensity is the radiant flux emitted, reflected, transmitted, or received by a given surface per
unit solid angle per unit projected area. Its unit is W/m2 sr, and it is a physical quantity
defined on a surface. Therefore, we do not define the boundary condition of intensity forL.

L

𝜕G

�⃗�𝑙

�⃗�𝑝

�⃗�𝑝

�⃗� �⃗�𝑙

Figure 6.4 – A schema of notations on the boundaries. �⃗�𝑝 and �⃗�𝑝 are on the surface,
where the normal is noted �⃗�. �⃗�𝑙 and �⃗�𝑙 are on the edge.

To sum up, we use the index 𝑝 for the boundary condition on 𝜕G, so that �⃗�𝑝 ∈ 𝜕G and
�⃗�𝑝 ∈ Ś, where Ś is the hemisphere characterized by �⃗�𝑝 · �⃗� > 0. We use the index 𝑙 for the
boundary conditions on L, so that �⃗�𝑙 ∈ L and �⃗�𝑙 ∈ S, (seeing a schema of notations in
Fig.6.4). The model of transport of intensity becomes:

{︃
�⃗� · 𝜕1𝐼(�⃗�, �⃗�) = C[𝐼(�⃗�, �⃗�)]

𝐼(�⃗�𝑝, �⃗�𝑝) = �̊�(�⃗�𝑝, �⃗�𝑝)
(6.10)

It can be noticed that in the model of intensity (Eq.6.10), the only source in the system is
on the surface boundary 𝜕G.
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6.2.3 The model of spatial derivative
The model of the spatial derivative is well studied in [34]. This subsection is a brief summary
of the model of spatial derivative. The spatial derivative is made along a given direction,
namely along a unit vector �⃗�, which means that:

𝜕1,�⃗�𝐼 = �⃗� · ∇⃗𝐼 = 𝜕1,�⃗�𝐼(�⃗�, �⃗�) = lim
𝜏→0

𝐼(�⃗�+ 𝜏 �⃗�)− 𝐼(�⃗�, �⃗�)
𝜏

(6.11)

Therefore, the spatial derivative 𝜕1,�⃗�𝐼 has three independent variables: (�⃗�, �⃗�, �⃗�) they are the
position �⃗�, the direction of propagation �⃗� and the direction of differentiation �⃗� (Fig.6.5).

�⃗�

�⃗�
�⃗�

�⃗�

�⃗�

�⃗�
�⃗�

�⃗� + 𝜏 �⃗�

Figure 6.5 – The spatial derivative 𝜕1,�⃗�𝐼 pictured as an elementary displacement
following the direction of differentiation �⃗� (Eq.6.11). When picturing the physical
model of spatial derivative of intensity, we need to draw the location �⃗�, the direction of
propagation �⃗� and also the direction of differentiation �⃗�.

The spatial derivative 𝜕1,�⃗�𝐼 is also considered as a physical quantity that could be absorbed,
scattered in the medium, and also reflected, emitted on the boundaries (seeing Fig.6.6 for a
multiple-scattering schema).

�⃗�1

�⃗�2

�⃗�

�⃗�

(a) Scattering of 𝐼 in the medium.

�⃗�1

�⃗�2

�⃗�

�⃗�

�⃗� �⃗�

�⃗�

(b) Scattering of 𝜕1,�⃗�𝐼 in the medium.

Figure 6.6 – A multiple-scattering photon trajectory leading to location �⃗� and transport
direction �⃗�. Nothing changes for the transport of 𝜕1,�⃗�𝐼, compared to the transport of 𝐼.
The differentiation direction �⃗� is conserved at each scattering event.

Following the assumptions made for this chapter (homogeneous and cold medium), the spatial
derivative follows the same equation of transport as the intensity does in the system:

�⃗� · 𝜕1(𝜕1,�⃗�𝐼) = C[𝜕1,�⃗�𝐼] �⃗� ∈ G (6.12)
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On the boundary of 𝜕G, it composts only the black bodies. Therefore, no spatial derivative
is reflected [34]. On the surface, only the sources of spatial derivative Ṡ𝑏,�⃗� are found on the
boundaries. The index 𝑏 means the source is on the “boundary”.

𝜕1,�⃗�𝐼 = Ṡ𝑏,�⃗�[𝐼] �⃗� ∈ 𝜕G; �⃗� · �⃗� > 0 (6.13)

with Ṡ𝑏,�⃗�[𝐼] = 𝛼C[𝐼] + 𝛽𝜕1,�⃗��̊� , leading to

Ṡ𝑏,�⃗� = −𝛼𝑘𝑎�̊� − 𝛼𝑘𝑠�̊�

+ 𝛼𝑘𝑠

∫︁
4𝜋

1
4𝜋𝑑�⃗�

′𝐼(�⃗�, �⃗�′)

+ 𝛽𝜕1,�⃗��̊�

(6.14)

In Eq.6.13 and Eq.6.14, �⃗� is decomposed as the sum of two vectors: �⃗� and �⃗�, which is tangent
to the boundary 𝜕G (Fig.6.7):

�⃗� = 𝛼�⃗� + 𝛽�⃗� (6.15)

with [34]:

𝛼 = �⃗� · �⃗�
�⃗� · �⃗�

;𝛽 = ||�⃗�− 𝛼�⃗�||; �⃗� = �⃗�− 𝛼�⃗�
𝛽

or 𝛽�⃗� = (�⃗� × �⃗�)× �⃗�
�⃗� · �⃗�

(6.16)

�⃗�

𝛽�⃗�

𝛼�⃗�

𝜕G

Figure 6.7 – Decomposition of the spatial velocity of deformation. The gradient of
intensity projected to �⃗� is unknown. It is then decomposed to the direction of �⃗�, and �⃗�,
where the gradients are described by RTE and the boundary condition.

In our case, the boundary is triangulated as an ensemble of plane surfaces (Fig.6.3). The
intensity in a given direction becomes discontinuous at the edge because the intensity sources
�̊� are different on the two plane surfaces. The outgoing intensity is then discontinuous when
crossing the edge of two plane surfaces. The spatial derivative of outgoing intensity on the
boundary requires then a Dirac formulation on the edges. When this Dirac formulation is
integrated on the surface, only the integral over the edge remains. Therefore, it is considered
that line emissions of the spatial gradient of intensity are on the edges L [34]:

𝜕1,�⃗�𝐼 = Ŝ𝑏,�⃗�[𝐼] �⃗� ∈ L (6.17)

If we name each plane surface with an index 𝑖, 𝜕G𝑖 ∈ 𝜕G,∀𝑖 ∈ [1, 2, . . . , 𝑛], where 𝑛 is
the total number of the plane surfaces, each edge can be named with two indexes of
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(𝑖, 𝑖′),∀𝑖 ∈ [1, 2, . . . , 𝑛], which are the two indexes of the two surfaces sharing the same edge.
The line source on the edge of L𝑖,𝑖′ is:

Ŝ𝑏,�⃗� = (�⃗� × �⃗�) · �⃗�𝑖(𝐼𝑖 − 𝐼𝑖′) �⃗� ∈ L𝑖,𝑖′ (6.18)

According to the convention made in Fig.6.8 [34]. 𝐼𝑖 and 𝐼𝑖′ are the two intensity values at
the edge L𝑖,𝑖′ . �⃗�𝑖 and �⃗�𝑖′ are the two unit vectors defined locally on the two triangles and
are tangent to the edge. In this chapter, we only study a convex domain (Fig.6.3). As it is
discussed in Fig.4.14 in Chapter.4, when the geometry is convex (�⃗�𝑙 · 𝑛𝑖′ > 0) the value of 𝐼𝑖

takes the value of outgoing intensity of 𝜕G𝑖 and the value of 𝐼𝑖′ takes the value of outgoing
intensity of 𝜕G𝑖′ :

𝐼𝑖 = lim
𝜖→0

�̊�(�⃗�𝑙 − 𝜖�⃗�𝑖, �⃗�𝑙) (6.19)

and

𝐼𝑖′ = lim
𝜖→0

�̊�(�⃗�𝑙 − 𝜖�⃗�𝑖′ , �⃗�𝑙) (6.20)

Therefore, the boundary condition on the edge L𝑖,𝑖′ can be separated into two parts, with
the outgoing intensity 𝐼𝑖 coming from the plane surface 𝜕G𝑖 and 𝐼𝑖′ from the plane surface
𝜕G𝑖′ :

Ŝ𝑏,�⃗� = (�⃗� × �⃗�) · �⃗�𝑖𝐼𝑖 + (�⃗� × �⃗�) · �⃗�𝑖′𝐼𝑖′ �⃗� ∈ L𝑖,𝑖′ (6.21)

�⃗�𝑖

�⃗�𝑖

�⃗�𝑖

�⃗�𝑖′

�⃗�𝑖′
−�⃗�𝑖′

𝜕G𝑖

𝜕G𝑖′

Figure 6.8 – The units vectors attached to 𝜕G𝑖 and T𝑖′ form two orthonormal basis:
(�⃗�𝑖, �⃗�, �⃗�𝑖) and (�⃗�𝑖′ ,−�⃗�, �⃗�𝑖′).

To sum up, we use the index 𝑝 for the boundary condition on 𝜕G and the index 𝑙 for the
boundary conditions on L. The model of transport of intensity becomes:{︃

�⃗� · 𝜕1(𝜕1,�⃗�𝐼(�⃗�𝑝, �⃗�𝑝)) = C[𝜕1,�⃗�𝐼(�⃗�, �⃗�)]
𝜕1,�⃗�𝐼(�⃗�𝑝, �⃗�𝑝) = Ṡ𝑏,�⃗�(�⃗�𝑝, �⃗�𝑝)

(6.22)

It can be noticed that in the model of spatial derivative of intensity (Eq.6.22), the sources in
the system are on the surface boundary 𝜕G and also on the line boundary L.
If we have an overlook of the model of intensity (Eq.6.10) and the model of spatial derivative
of intensity (Eq.6.22), we find that sources are located on the surface 𝜕G and on the edges
L. In the following part of this chapter, we focus on the line source Ŝ𝑏,�⃗�, transforming it
into a surface source so that only surface sources remain in the system.
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6.3 Transforming line sources into surface sources
with Stokes’ theorem

In this stage, the model of transport for the spatial derivative is developed. Before considering
𝜕1,�⃗�𝐺 in Eq.6.6, at the point �⃗�𝑜𝑏𝑠, we consider a solid angle Ω under which a subpart of the
boundary 𝜕G is viewed, noted 𝜕GΩ and a subpart of the boundary L𝑖,𝑖′ is viewed, noted
LΩ

𝑖,𝑖′ , seeing Fig.6.9. If we address the integration over Ω of the surface sources as they are
viewed from �⃗�𝑜𝑏𝑠 (temporarily ignoring the extinction by absorption and scattering), each
elementary solid angle 𝑑�⃗� defines an elementary surface 𝑑�⃗�𝑝 at the boundary according to
𝑑�⃗� = (�⃗�·�⃗�)𝑑�⃗�𝑝

𝑟2 , where 𝑟 is the distance between �⃗�𝑜𝑏𝑠 and �⃗�𝑝: 𝑟 = ||�⃗�𝑝 − �⃗�𝑜𝑏𝑠||. The angular
integration becomes:

∫︁
Ω
𝜕1,�⃗�𝐼(�⃗�𝑜𝑏𝑠, �⃗�)𝑑�⃗� =

∫︁
𝜕GΩ

(�⃗�𝑝 · �⃗�)
𝑟2 Ṡ𝑏,�⃗�𝑑�⃗�𝑝

+
∫︁
LΩ

𝑖,𝑖′

(�⃗�𝑙 × �⃗�) · �⃗�𝑖
𝑟2 𝐼𝑖𝑑�⃗�𝑙

+
∫︁
LΩ

𝑖,𝑖′

(�⃗�𝑙 × �⃗�) · �⃗�𝑖′

𝑟2 𝐼𝑖′𝑑�⃗�𝑙

(6.23)

L𝑖,𝑖′

𝜕G

�⃗�𝑜𝑏𝑠

LΩ
𝑖,𝑖′

𝜕GΩ

Figure 6.9 – An angular integral at �⃗�𝑜𝑏𝑠. A subpart of L𝑖,𝑖′ is viewed, noted LΩ
𝑖,𝑖′ . A

subpart of 𝜕G is viewed, noted 𝜕GΩ.

Following the same pattern, a solid angle Ω(𝜕G𝑖) can be considered. It corresponds exactly
to the solid angle by which 𝜕G𝑖 is viewed from �⃗�𝑜𝑏𝑠 (Fig.6.10). The angular integral over
Ω(𝜕G𝑖) is only one part of the angular integral over 4𝜋. Again, since the geometry is convex,
the boundary 𝜕G can be totally viewed from the observation point �⃗�𝑜𝑏𝑠. Therefore, 𝜕1,�⃗�𝐺 is
the sum of all angular integrals over Ω(𝜕G𝑖),∀𝑖 ∈ {1, 2, . . . , 𝑛}:

∫︁
4𝜋

𝜕1,�⃗�𝐼(�⃗�𝑜𝑏𝑠, �⃗�)𝑑�⃗� =
𝑛∑︁

𝑖=1

∫︁
Ω(𝜕G𝑖)

𝜕1,�⃗�𝐼(�⃗�𝑜𝑏𝑠, �⃗�)𝑑�⃗� (6.24)

167



Transforming line sources into surface sources by Stokes’ theorem

L𝑖

Ω(𝜕G𝑖)

�⃗�𝑜𝑏𝑠

𝜕G𝑖
�⃗�𝑝

�⃗�𝑙

Figure 6.10 – The surface 𝜕G𝑖 is viewed from the point �⃗�𝑜𝑏𝑠 by a solid angle Ω(𝜕G𝑖).

As it is shown in Eq.6.23 and Eq.6.21, the line source is separated into two parts, corresponding
to the two plane surfaces sharing the same edge. In the angular integral over Ω(𝜕G𝑖), the
part of line source corresponding to the outgoing intensity 𝐼𝑖 on the plane surface 𝜕G𝑖 is
taken into account:

∫︁
Ω(𝜕G𝑖)

𝜕1,�⃗�𝐼(�⃗�𝑜𝑏𝑠, �⃗�)𝑑�⃗� =
∫︁

𝜕G𝑖

(�⃗�𝑝 · �⃗�)
𝑟2 Ṡ𝑏,�⃗�𝑑�⃗�𝑝

+
∮︁
L𝑖

(�⃗�𝑙 × �⃗�) · �⃗�𝑖
𝑟2 𝐼𝑖𝑑�⃗�𝑙

(6.25)

where L𝑖 is the total set of the edges of the plane surface 𝜕G𝑖.

We restrict here the analysis only to the line integral since the aim of this chapter is to
transform line sources into surface sources:

∮︁
L𝑖

(�⃗�𝑙 × �⃗�) · �⃗�𝑖
𝑟2 𝐼𝑖𝑑�⃗�𝑙 (6.26)

This line integral is along a closed contour, and Stokes’ Theorem can be used to transform
it into a surface integral. This application requires only an extension I𝑖 of 𝐼𝑖 to the entire
surface 𝜕G𝑖. It is chosen here to extend 𝐼𝑖 in a straight forward way because 𝐼𝑖 is also defined
on the plane surface 𝜕G𝑖: I𝑖(�⃗�𝑝, �⃗�𝑝) = 𝐼𝑖(�⃗�𝑝, �⃗�𝑝). For the outside of the surface 𝜕G𝑖, an
invariant value is taken for I𝑖.

Then, we have:

∮︁
L𝑖

(�⃗�𝑙 × �⃗�) · �⃗�𝑖
𝑟2 𝐼𝑖𝑑�⃗�𝑙 = −

∫︁
𝜕G𝑖

∇⃗ ×
(︂
�⃗�𝑝 × �⃗�
𝑟2 I𝑖

)︂
· �⃗�𝑖𝑑�⃗�𝑝

=−
∫︁

𝜕G𝑖

I𝑖∇⃗ ×
(︂

(�⃗�𝑝 × �⃗�)
𝑟2

)︂
· �⃗�𝑖𝑑�⃗�𝑝 −

∫︁
𝜕G𝑖

[︂
∇⃗(I𝑖)× ( �⃗�𝑝 × �⃗�

𝑟2 )
]︂
· �⃗�𝑖𝑑�⃗�𝑝

=−
∫︁

𝜕G𝑖

I𝑖∇⃗ ×
(︂

(�⃗�𝑝 × �⃗�)
𝑟2

)︂
· �⃗�𝑖𝑑�⃗�𝑝 −

∫︁
𝜕G𝑖

[︂
( �⃗�𝑝 × �⃗�

𝑟2 )× �⃗�𝑖

]︂
· ∇⃗(I𝑖)𝑑�⃗�𝑝

=−
∫︁

𝜕G𝑖

I𝑖∇⃗ ×
(︂

(�⃗�𝑝 × �⃗�)
𝑟2

)︂
· �⃗�𝑖𝑑�⃗�𝑝 −

∫︁
𝜕G𝑖

(�⃗�𝑝 · �⃗�𝑖)𝛽�⃗�
𝑟2 · ∇⃗(I𝑖)𝑑�⃗�𝑝

=−
∫︁

𝜕G𝑖

I𝑖∇⃗ ×
(︂

(�⃗�𝑝 × �⃗�)
𝑟2

)︂
· �⃗�𝑖𝑑�⃗�𝑝 −

∫︁
𝜕G𝑖

(�⃗�𝑝 · �⃗�𝑖)
𝑟2 𝛽𝜕1,�⃗�I𝑖𝑑�⃗�𝑝

(6.27)
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In Eq.6.27, line 2 and line 3 can be referred to standard algebra; line 4 introduces the product
(𝛽�⃗�) from Eq.6.16; line 5 introduces the definition of the spatial derivation. With �⃗� which is
tangent to 𝜕G𝑖 and I𝑖(�⃗�𝑝, �⃗�𝑝) = 𝐼𝑖(�⃗�𝑝, �⃗�𝑝) on 𝜕G𝑖, we finally get:

∮︁
L𝑖

(�⃗�𝑙 × �⃗�) · �⃗�𝑖
𝑟2 𝐼𝑖𝑑�⃗�𝑙 =−

∫︁
𝜕G𝑖

𝐼𝑖(�⃗�𝑝, �⃗�𝑝)∇⃗ ×
(︂

(�⃗�𝑝 × �⃗�)
𝑟2

)︂
· �⃗�𝑖𝑑�⃗�𝑝

−
∫︁

𝜕G𝑖

(�⃗�𝑝 · �⃗�𝑖)
𝑟2 𝛽𝜕1,�⃗�𝐼𝑖(�⃗�𝑝, �⃗�𝑝)𝑑�⃗�𝑝

(6.28)

We have made an effort to write the intensity 𝐼𝑖 outside the term of curl. It is to build the
curl term only with geometric terms (�⃗�𝑝, �⃗�, and 𝑟 are geometric terms). The final line of
Eq.6.28 can be applied directly to cases with a different profile of 𝐼𝑖. For example, when 𝐼𝑖 is
homogeneous on 𝜕G𝑖, the second term of Eq.6.28 becomes null.

In this stage, the line sources have been transformed to surface sources via the application of
Stokes’ Theorem.

However, we note that the development of this section is based on temporarily ignoring
the extinction by absorption and scattering. In the following sections, we will apply this
development (from line sources to surface sources) to cases with different properties of the
medium: transparent, absorbent, and scattering medium.

6.4 Example with a transparent medium
When the medium is transparent, the model of intensity 𝐼 becomes:

{︃
�⃗� · 𝜕1𝐼(�⃗�, �⃗�) = 0

𝐼(�⃗�𝑝, �⃗�𝑝) = �̊�(�⃗�𝑝, �⃗�𝑝)
(6.29)

where the index 𝑝 is used for the boundary conditions on the surfaces, and 𝑙 is used for the
boundary conditions on the edges.

The model of spatial derivative 𝜕1,�⃗�𝐼 becomes:

⎧⎪⎨⎪⎩
�⃗� · 𝜕1(𝜕1,�⃗�𝐼(�⃗�𝑝, �⃗�𝑝)) = 0

𝜕1,�⃗�𝐼(�⃗�𝑝, �⃗�𝑝) = 𝛽𝜕1,�⃗��̊�(�⃗�𝑝, �⃗�𝑝)
𝜕1,�⃗�𝐼(�⃗�𝑙, �⃗�𝑙) = (�⃗�𝑙 × �⃗�) · �⃗�𝑖(𝐼𝑖 − 𝐼𝑖′)

(6.30)

where 𝑖 and 𝑖′ are the two indexes of surfaces sharing the edge. The value of 𝐼𝑖 and of 𝐼𝑖′ on
the edge are expressed in Eq.6.19 and Eq.6.20. 𝛽 and �⃗� are calculated based on Eq.6.16. It
is noted that �̊�(�⃗�𝑝, �⃗�𝑝), 𝐼𝑖 and 𝐼𝑖′ are all known by the boundary conditions of the model of
intensity. The angular integral of intensity over 4𝜋[sr] on the point �⃗�𝑜𝑏𝑠 is then:

𝐺(�⃗�𝑜𝑏𝑠) =
∫︁

4𝜋

�̊�(�⃗�𝑝, �⃗�𝑝)𝑑�⃗�𝑝. (6.31)

We now investigate two ways to estimate 𝜕1,�⃗�𝐺. For the first one, we do not apply Stokes’
theorem. The transport of surface sources and line sources are vectorized separately following
the same strategy as in Chapters 4 and 5. The second one consists in applying Stokes’
Theorem to transform the line sources into surface sources so that the transport of all sources
can be vectorized together. Also, when we investigate to solve also the model of intensity,
the sources in the model of intensity can also be vectorized together.
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6.4.1 Vectorization with line and surface sources
The spatial gradient of 𝐺(�⃗�𝑜𝑏𝑠) towards �⃗� direction (𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠)) depends on both surface
sources and the line sources:

𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠) =
∫︁

𝜕G

(�⃗� · �⃗�)
𝑟2 𝛽𝜕1,�⃗��̊�(�⃗�𝑝, �⃗�𝑝)𝑑�⃗�𝑝

+
∫︁
L

(�⃗�𝑙 × �⃗�) · �⃗�𝑖
𝑟2 (𝐼𝑖 − 𝐼𝑖′)𝑑�⃗�𝑙

(6.32)

𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠) corresponds to the gradient of the angular integral of intensity projected to the
direction �⃗�.

Similarly to what we have done in Chapter.4 and Chapter.5, we vectorize the transport
of sources sharing the same path space. Therefore, the estimation of 𝐺 and 𝜕1,�⃗�𝐺 can be
written in a vectorized form:

[︂
𝐺(�⃗�𝑜𝑏𝑠)

𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠)

]︂
=
∫︁

𝜕G

PΩ𝑝
(�⃗�𝑝)

[︂
�̊�(�⃗�𝑝, �⃗�𝑝)

𝛽𝜕1,�⃗��̊�(�⃗�𝑝, �⃗�𝑝)

]︂
4𝜋𝑑�⃗�𝑝

+
∫︁
L

P𝑋𝑙
(�⃗�𝑙)

[︃
0

(�⃗�𝑙×�⃗�)·⃗𝑡𝑖

𝑟2 (𝐼𝑖 − 𝐼𝑖′)

]︃
L𝑡𝑜𝑡𝑑�⃗�𝑙

(6.33)

with the pdf:

PΩ𝑝
(�⃗�𝑝) = 1

4𝜋 ;P𝑋𝑙
(�⃗�𝑙) = 1

L𝑡𝑜𝑡
(6.34)

where L𝑡𝑜𝑡 is the total length of all edges. The integral formulation Eq.6.33 can be seen as
a Monte-Carlo algorithm. It could be noticed that the observable 𝐺(�⃗�𝑜𝑏𝑠) only requires a
surface integration. Therefore the Monte Carlo weight of the line integral is null. On the
other hand, the spatial gradient of the observable 𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠) is estimated through both
surface and line integrations. Mathematically, two integral with different intervals appears.
Physically, two path spaces are found for the transport of intensity and its spatial derivative.
The corresponding Monte-Carlo algorithm is the Algo.8.

Algorithm 8 Evaluation of 𝐺 and 𝜕1,�⃗�𝐺 with line sources in transparent medium
Input: G , 𝑛𝑀𝐶 , �⃗�𝑜𝑏𝑠

◁ 𝑛𝑀𝐶 : number of Monte-Carlo realization.
◁ G : the convex geometry bounded by plane surfaces.

◁ �⃗�𝑜𝑏𝑠: the observation point.
1: 𝑊1 ← 0, 𝑊1 ← 0 and 𝑉2 ← 0, 𝑉2 ← 0

◁ Initialize the sum and the sum of square
2: for 𝑖𝑀𝐶 = 0→ 𝑛𝑀𝐶 do ◁ First Monte-Carlo for surface sources.
3: Initialize the weight of Monte-Carlo 𝑤1 ← 0 and 𝑤2 ← 0
4: Sample uniformly a direction �⃗�
5: Get the intersection point of the ray (�⃗�𝑜𝑏𝑠, �⃗�) on 𝜕G: �⃗�ℎ𝑖𝑡

6: Get the normal �⃗� on the point �⃗�ℎ𝑖𝑡

7: �⃗�𝑝 ← �⃗�ℎ𝑖𝑡

8: �⃗�𝑝 ← −�⃗�
9: Calculate the length of optical path 𝑟 ← ||�⃗�𝑝 − �⃗�𝑜𝑏𝑠||

10: Compute the weight 𝑤1 ← 4𝜋�̊�(�⃗�𝑝, �⃗�𝑝)
11: Compute the weight 𝑤2 ← 𝛽𝜕1,�⃗��̊�(�⃗�𝑝, �⃗�𝑝)
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12: 𝑊1 ←𝑊1 + 𝑤1
13: 𝑉1 ← 𝑉1 + 𝑤2

1
14: 𝑊2 ←𝑊2 + 𝑤2
15: 𝑉2 ← 𝑉2 + 𝑤2

2
16: 𝑖𝑀𝐶 ← 𝑖𝑀𝐶 + 1
17: end for
18: for 𝑖𝑀𝐶 = 0→ 𝑛𝑀𝐶 do ◁ Second Monte-Carlo for line sources.
19: Initialize the weight of Monte-Carlo 𝑤2 ← 0
20: Sample uniformly a position �⃗�𝑙 on L
21: Get the intensity of two surfaces sharing the sampled point �⃗�𝑙: 𝐼𝑖 and 𝐼𝑖′

22: Calculate the length of optical path 𝑟 ← ||�⃗�𝑙 − �⃗�𝑜𝑏𝑠||
23: Get �⃗�𝑖
24: Calculate the direction �⃗�𝑝 = �⃗�𝑜𝑏𝑠−�⃗�𝑙

||�⃗�𝑜𝑏𝑠−�⃗�𝑙||

25: Compute the weight 𝑤2 ← (�⃗�𝑝×�⃗�)·⃗𝑡𝑖

𝑟2 (𝐼𝑖 − 𝐼𝑖′)
26: 𝑊2 ←𝑊2 + 𝑤2
27: 𝑉2 ← 𝑉2 + 𝑤2

2
28: 𝑖𝑀𝐶 ← 𝑖𝑀𝐶 + 1
29: end for

Output: 𝐺← 𝑊1
𝑛𝑀𝐶

, 𝜎[𝐺]←
√︂

𝑉1
𝑛𝑀𝐶

−( 𝑊1
𝑛𝑀𝐶

)2

𝑛𝑀𝐶−1 , 𝜕1,�⃗�𝐺← 𝑊2
𝑛𝑀𝐶

, 𝜎[𝜕1,�⃗�𝐺]←
√︂

𝑉2
𝑛𝑀𝐶

−( 𝑊2
𝑛𝑀𝐶

)2

𝑛𝑀𝐶−1

6.4.2 Vectorization with surface sources only
As it is shown in Eq.6.24, 𝜕1,�⃗�𝐺 is also the sum of all angular integral over a solid angle Ω(𝜕G𝑖),
which is already developed in Eq.6.25. We now substitute the result of the development in
Eq.6.28 (from line sources to surface sources) into Eq.6.25 and we have:

∫︁
Ω(𝜕G𝑖)

𝜕1,�⃗�𝐼(�⃗�𝑜𝑏𝑠, �⃗�)𝑑�⃗� = −
∫︁

𝜕G𝑖

�̊�(�⃗�𝑝, �⃗�𝑝)
[︂
∇⃗ ×

(︂
(�⃗�𝑝 × �⃗�)

𝑟2

)︂
· �⃗�𝑖

]︂
𝑑�⃗�𝑝 (6.35)

We substitute Eq.6.35 into Eq.6.24:

𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠) = −
∫︁

𝜕G

�̊�(�⃗�𝑝, �⃗�𝑝)
[︂
∇⃗ ×

(︂
(�⃗�𝑝 × �⃗�)

𝑟2

)︂
· �⃗�𝑖

]︂
𝑑�⃗�𝑝 (6.36)

Eq.6.36 is a spatial integral, while Eq.6.31 is an angular integral. In order to have the same
interval for the two integrals, we choose to change Eq.6.36 into an angular integral. It is noted
that it is also possible to change the angular integral into spatial integral. It is chosen to use
angular integral here because it is more common in the community of radiative transfer. We
remind that the solid angle is 𝑑�⃗� = (�⃗�·�⃗�)𝑑�⃗�𝑝

𝑟2 :

𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠) = −
∫︁

4𝜋

�̊�(�⃗�𝑝, �⃗�𝑝)
[︂
∇⃗ ×

(︂
(�⃗�𝑝 × �⃗�)

𝑟2

)︂
· �⃗�
]︂

𝑟2

(�⃗�𝑝 · �⃗�)𝑑�⃗�𝑝 (6.37)

Finally, the value 𝐺 and its spatial derivative 𝜕1,�⃗�𝐺 share a same interval. Physically, they
share the same path space. Therefore, their estimations can be vectorized:

[︂
𝐺(�⃗�𝑜𝑏𝑠)

𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠)

]︂
=
∫︁

4𝜋

PΩ𝑝
(�⃗�𝑝)𝑑�⃗�𝑝

[︃
1(︁

∇⃗ ×
(︁

(�⃗�𝑝×�⃗�)
𝑟2

)︁
· �⃗�
)︁

𝑟2

(�⃗�𝑝·�⃗�)

]︃
4𝜋�̊�(�⃗�𝑝, �⃗�𝑝) (6.38)

with the pdf PΩ𝑝
(�⃗�𝑝) already shown in Eq.6.34.
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Eq.6.38 can then be translated into a Monte-Carlo algorithm. In order to estimate 𝐺(�⃗�𝑜𝑏𝑠),
we sum all the source of intensity coming from the full solid angle 4𝜋[sr]. The sources of
intensity are on the surfaces. Concerning its spatial derivative 𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠), we sum also all
the source of spatial derivative coming form the full solid angle 4𝜋[sr]. The sources of the
spatial derivative are also on the surfaces. Therefore, the transport of the sources of intensity
and spatial derivative can be vectorized. The corresponding algorithm is the Algo.9.

To sum up, Eq.6.38 and Eq.6.33 represent two algorithms, which are both dedicated to
estimate the observable 𝐺(�⃗�𝑜𝑏𝑠) and its spatial derivative 𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠) in a vectorized form.
We will discuss their differences here.

In Eq.6.33, both the surface integral and line integral exist. They are the integrals of surface
sources and line sources. The surface sources and the line sources have different integral
domains, which means different path spaces. Therefore, from an algorithmic point of view, a
Monte-Carlo estimation is needed for the surface sources and another for the line sources.

In Eq.6.38, only the integral of surface sources exists. It is because of the efforts that are
made to transform the line sources in Eq.6.33 into surface sources. Therefore, from an
algorithmic point of view, only one Monte-Carlo estimation is needed for all the surface
sources because they now all share the same path space (or, mathematically, they share the
same integral domain.)

Finally, by transforming Eq.6.33 to Eq.6.38, we optimized the algorithm of estimating 𝐺(�⃗�𝑜𝑏𝑠)
and 𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠). We are successful to firstly avoid sampling on a line and secondly, vectorized
completely the estimation of 𝐺(�⃗�𝑜𝑏𝑠) and 𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠). Our strategy of transforming line
sources into surface sources works well for transparent mediums.

Algorithm 9 Evaluation of 𝐺 and 𝜕1,�⃗�𝐺 with surface sources in transparent medium
Input: G , 𝑛𝑀𝐶 , �⃗�𝑜𝑏𝑠

◁ 𝑛𝑀𝐶 : number of Monte-Carlo realization.
◁ G : the convex geometry bounded by plane surfaces.

◁ �⃗�𝑜𝑏𝑠: the observation point.
1: 𝑊1 ← 0, 𝑊1 ← 0 and 𝑉2 ← 0, 𝑉2 ← 0

◁ Initialize the sum and the sum of square
2: for 𝑖𝑀𝐶 = 0→ 𝑛𝑀𝐶 do
3: Initialize the weight of Monte-Carlo 𝑤1 ← 0 and 𝑤2 ← 0
4: Sample uniformly a direction �⃗�
5: Get the intersection point of the ray (�⃗�𝑜𝑏𝑠, �⃗�) on 𝜕G: �⃗�ℎ𝑖𝑡

6: Get the normal �⃗� on the point �⃗�ℎ𝑖𝑡

7: �⃗�𝑝 ← �⃗�ℎ𝑖𝑡

8: �⃗�𝑝 ← −�⃗�
9: Calculate the length of optical path 𝑟 ← ||�⃗�𝑝 − �⃗�𝑜𝑏𝑠||

10: Compute the weight 𝑤1 ← 4𝜋�̊�(�⃗�𝑝, �⃗�𝑝)
11: Compute the weight 𝑤2 ← 4𝜋�̊�(�⃗�𝑝, �⃗�𝑝)

(︁
∇⃗ ×

(︁
(�⃗�𝑝×�⃗�)

𝑟2

)︁
· �⃗�
)︁

𝑟2

(�⃗�𝑝·�⃗�)
12: 𝑊1 ←𝑊1 + 𝑤1
13: 𝑉1 ← 𝑉1 + 𝑤2

1
14: 𝑊2 ←𝑊2 + 𝑤2
15: 𝑉2 ← 𝑉2 + 𝑤2

2
16: 𝑖𝑀𝐶 ← 𝑖𝑀𝐶 + 1
17: end for

Output: 𝐺← 𝑊1
𝑛𝑀𝐶

, 𝜎[𝐺]←
√︂

𝑉1
𝑛𝑀𝐶

−( 𝑊1
𝑛𝑀𝐶

)2

𝑛𝑀𝐶−1 , 𝜕1,�⃗�𝐺← 𝑊2
𝑛𝑀𝐶

, 𝜎[𝜕1,�⃗�𝐺]←
√︂

𝑉2
𝑛𝑀𝐶

−( 𝑊2
𝑛𝑀𝐶

)2

𝑛𝑀𝐶−1
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6.5 Example with an absorbent medium
When the medium is purely absorbent and described by a constant absorption coefficient 𝑘𝑎,
the model of intensity 𝐼 becomes:{︃

�⃗� · 𝜕1𝐼(�⃗�, �⃗�) = −𝑘𝑎𝐼(�⃗�, �⃗�)
𝐼(�⃗�𝑝, �⃗�𝑝) = �̊�(�⃗�𝑝, �⃗�𝑝)

(6.39)

where the index 𝑝 is used for the boundary conditions on the surfaces, and 𝑙 is used for the
boundary conditions on the edges.
The model of spatial derivative 𝜕1,�⃗�𝐼 becomes:

⎧⎪⎨⎪⎩
�⃗� · 𝜕1(𝜕1,�⃗�𝐼(�⃗�𝑝, �⃗�𝑝)) = −𝑘𝑎𝜕1,�⃗�𝐼(�⃗�, �⃗�)

𝜕1,�⃗�𝐼(�⃗�𝑝, �⃗�𝑝) = −𝛼𝑘𝑎�̊�(�⃗�𝑝, �⃗�𝑝) + 𝛽𝜕1,�⃗��̊�(�⃗�𝑝, �⃗�𝑝)
𝜕1,�⃗�𝐼(�⃗�𝑙, �⃗�𝑙) = (�⃗�𝑙 × �⃗�) · �⃗�𝑖(𝐼𝑖 − 𝐼𝑖′)

(6.40)

where 𝑖 and 𝑖′ are the two indices of surfaces sharing the edge. The value of 𝐼𝑖 and of 𝐼𝑖′

can be referred to Eq.6.19 and Eq.6.20. 𝛽 and �⃗� can be referred to Eq.6.16. The model
of intensity can be solved following the process in Chapter.3 (by formulating a Fredholm
equation and then writing in an expected value form). The solution of 𝐺 is then:

𝐺(�⃗�𝑜𝑏𝑠) =
∫︁

4𝜋

�̊�(�⃗�𝑝, �⃗�𝑝)𝑒−𝑘𝑎𝑟𝑑�⃗�𝑝. (6.41)

where 𝑟 is the length of the optical path: 𝑟 = ||�⃗�𝑜𝑏𝑠 − �⃗�𝑝||. Compared to Eq.6.31, the
exponential attenuation by absorption 𝑒−𝑘𝑎𝑟 is taken into account in Eq.6.41. As it is done
for the transparent medium in the last section, we will also provide the solution of 𝜕1,�⃗�𝐺
with and without the application of Stokes’ Theorem.

6.5.1 Vectorization with line and surface sources
Compared to the model of spatial derivative in a transparent model Eq.6.30, a surface source
−𝛼𝑘𝑎�̊�(�⃗�𝑝, �⃗�𝑝) appears on the boundary conditions of the model in absorbent medium. Also,
the exponential attenuation due to the absorption along the optical path is also taken into
account. Finally, we vectorize the transport of the sources sharing the same path space, and
the following integral formulation is obtained:

[︂
𝐺(�⃗�𝑜𝑏𝑠)

𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠)

]︂
=
∫︁

𝜕G

PΩ𝑝
(�⃗�𝑝)

[︂
�̊�(�⃗�𝑝, �⃗�𝑝)

−𝛼𝑘𝑎�̊�(�⃗�𝑝, �⃗�𝑝) + 𝛽𝜕1,�⃗��̊�(�⃗�𝑝, �⃗�𝑝)

]︂
4𝜋𝑒−𝑘𝑎𝑟𝑑�⃗�𝑝

+
∫︁
L

P𝑋𝑙
(�⃗�𝑙)

[︃
0

(�⃗�𝑙×�⃗�)·⃗𝑡𝑖

𝑟2 (𝐼𝑖 − 𝐼𝑖′)

]︃
L𝑡𝑜𝑡𝑒

−𝑘𝑎𝑟𝑑�⃗�𝑙

(6.42)

with the pdf PΩ𝑝 and P𝑋𝑙
already shown in Eq.6.34. In fact, the algorithm of an absorbent

medium with line sources is similar to the case of a transparent medium. Compared to
Eq.6.33, only the factor of exponential attenuation 𝑒−𝑘𝑎𝑟 is added in Eq.6.42. If we have
𝑘𝑎 = 0, the medium becomes transparent, and the algorithm would be exactly the same as
the case of a transparent medium.
The corresponding Monte-Carlo algorithm is the Algo.10.

Algorithm 10 Evaluation of 𝐺 and 𝜕1,�⃗�𝐺 with line sources in absorbent medium
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Input: G , 𝑛𝑀𝐶 , �⃗�𝑜𝑏𝑠, 𝑘𝑎

◁ 𝑛𝑀𝐶 : number of Monte-Carlo realization.
◁ G : the convex geometry bounded by plane surfaces.

◁ �⃗�𝑜𝑏𝑠: the observation point.
◁ �⃗�𝑎: coefficient of absorption.

1: 𝑊1 ← 0, 𝑊1 ← 0 and 𝑉2 ← 0, 𝑉2 ← 0
◁ Initialize the sum and the sum of square

2: for 𝑖𝑀𝐶 = 0→ 𝑛𝑀𝐶 do ◁ First Monte-Carlo for surface sources.
3: Initialize the weight of Monte-Carlo 𝑤1 ← 0 and 𝑤2 ← 0
4: Sample uniformly a direction �⃗�
5: Get the intersection point of the ray (�⃗�𝑜𝑏𝑠, �⃗�) on 𝜕G: �⃗�ℎ𝑖𝑡

6: Get the normal �⃗� on the point �⃗�ℎ𝑖𝑡

7: �⃗�𝑝 ← �⃗�ℎ𝑖𝑡

8: �⃗�𝑝 ← −�⃗�
9: Calculate the length of optical path 𝑟 ← ||�⃗�𝑝 − �⃗�𝑜𝑏𝑠||

10: Compute the weight 𝑤1 ← 4𝜋�̊�(�⃗�𝑝, �⃗�𝑝)𝑒−𝑘𝑎𝑟

11: Compute the weight 𝑤2 ← (−𝛼𝑘𝑎�̊�(�⃗�𝑝, �⃗�𝑝) + 𝛽𝜕1,�⃗��̊�(�⃗�𝑝, �⃗�𝑝))L𝑡𝑜𝑡𝑒
−𝑘𝑎𝑟

12: 𝑊1 ←𝑊1 + 𝑤1
13: 𝑉1 ← 𝑉1 + 𝑤2

1
14: 𝑊2 ←𝑊2 + 𝑤2
15: 𝑉2 ← 𝑉2 + 𝑤2

2
16: 𝑖𝑀𝐶 ← 𝑖𝑀𝐶 + 1
17: end for
18: for 𝑖𝑀𝐶 = 0→ 𝑛𝑀𝐶 do ◁ Second Monte-Carlo for line sources.
19: Initialize the weight of Monte-Carlo 𝑤2 ← 0
20: Sample uniformly a position �⃗�𝑙 on L
21: Get the intensity of two surfaces sharing the sampled point �⃗�𝑙: 𝐼𝑖 and 𝐼𝑖′

22: Get �⃗�𝑖
23: Calculate the direction �⃗�𝑝 = �⃗�𝑜𝑏𝑠−�⃗�𝑙

||�⃗�𝑜𝑏𝑠−�⃗�𝑙||
24: Calculate the length of optical path 𝑟 ← ||�⃗�𝑙 − �⃗�𝑜𝑏𝑠||
25: Compute the weight 𝑤2 ← (�⃗�𝑝×�⃗�)·⃗𝑡𝑖

𝑟2 (𝐼𝑖 − 𝐼𝑖′)
26: 𝑊2 ←𝑊2 + 𝑤2
27: 𝑉2 ← 𝑉2 + 𝑤2

2
28: 𝑖𝑀𝐶 ← 𝑖𝑀𝐶 + 1
29: end for

Output: 𝐺← 𝑊1
𝑛𝑀𝐶

, 𝜎[𝐺]←
√︂

𝑉1
𝑛𝑀𝐶

−( 𝑊1
𝑛𝑀𝐶

)2

𝑛𝑀𝐶−1 , 𝜕1,�⃗�𝐺← 𝑊2
𝑛𝑀𝐶

, 𝜎[𝜕1,�⃗�𝐺]←
√︂

𝑉2
𝑛𝑀𝐶

−( 𝑊2
𝑛𝑀𝐶

)2

𝑛𝑀𝐶−1

6.5.2 Vectorization with surface sources only

The angular integral of 𝜕1,�⃗�𝐼 over Ω(𝜕G𝑖) is developed in Eq.6.25 without considering the
absorption attenuation. When the absorption in the medium is taken into account, Eq.6.25
becomes:

∫︁
Ω(𝜕G𝑖)

𝜕1,�⃗�𝐼(�⃗�𝑜𝑏𝑠, �⃗�)𝑑�⃗� =
∫︁

𝜕G𝑖

(�⃗�𝑝 · �⃗�)
𝑟2

(︁
−𝛼𝑘𝑎�̊�(�⃗�𝑝, �⃗�𝑝) + 𝛽𝜕1,�⃗��̊�(�⃗�𝑝, �⃗�𝑝)

)︁
𝑒−𝑘𝑎𝑟𝑑�⃗�𝑝

+
∮︁
L𝑖

(�⃗�𝑙 × �⃗�) · �⃗�𝑖
𝑟2 𝐼𝑖𝑒

−𝑘𝑎𝑟𝑑�⃗�𝑙

(6.43)
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Herein, as we have done in Section.6.3, we only focus on the analysis of the line integral,
taking the absorption attenuation into account:

∮︁
L𝑖

(�⃗�𝑙 × �⃗�) · �⃗�𝑖
𝑟2 𝐼𝑖𝑒

−𝑘𝑎𝑟𝑑�⃗�𝑙 (6.44)

Following the same extension I𝑖 of 𝐼𝑖 (as it is chosen in Section.6.3) from the edges to the
entire surface, we apply Stokes’ Theorem to Eq.6.44:

∮︁
L𝑖

(�⃗�𝑙 × �⃗�) · �⃗�𝑖
𝑟2 𝐼𝑖𝑒

−𝑘𝑎𝑟𝑑�⃗�𝑙 =−
∫︁

𝜕G𝑖

�̊�(�⃗�𝑝, �⃗�𝑝)∇⃗ ×
(︂

(�⃗�𝑝 × �⃗�)
𝑟2 𝑒−𝑘𝑎𝑟

)︂
· �⃗�𝑖𝑑�⃗�𝑝

−
∫︁

𝜕G𝑖

(�⃗�𝑝 · �⃗�𝑖)
𝑟2 𝛽𝜕1,�⃗��̊�(�⃗�𝑝, �⃗�𝑝)𝑒−𝑘𝑎𝑟𝑑�⃗�𝑝

(6.45)

We then substitute Eq.6.45 to Eq.6.43 and the following integral is yielded:

∫︁
Ω(𝜕G𝑖)

𝜕1,�⃗�𝐼(�⃗�𝑜𝑏𝑠, �⃗�)𝑑�⃗� =
∫︁

𝜕G𝑖

(�⃗�𝑝 · �⃗�)
𝑟2

(︁
−𝛼𝑘𝑎�̊�(�⃗�𝑝, �⃗�𝑝)

)︁
𝑒−𝑘𝑎𝑟𝑑�⃗�𝑝

−
∫︁

𝜕G𝑖

�̊�(�⃗�𝑝, �⃗�𝑝)∇⃗ ×
(︂

(�⃗�𝑝 × �⃗�)
𝑟2 𝑒−𝑘𝑎𝑟

)︂
· �⃗�𝑖𝑑�⃗�𝑝

(6.46)

After that, we extend this angular integral over Ω(𝜕G𝑖) to 4𝜋, following Eq.6.24. The angular
integral of 𝜕1,�⃗�𝐺 without line sources in an absorbent medium is yielded:

𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠) = −
∫︁

4𝜋

�̊�(�⃗�𝑝, �⃗�𝑝)
(︂
𝛼𝑘𝑎𝑒

−𝑘𝑎𝑟 + ∇⃗ ×
(︂

(�⃗�𝑝 × �⃗�)
𝑟2 𝑒−𝑘𝑎𝑟

)︂
· �⃗� 𝑟2

(�⃗�𝑝 · �⃗�)

)︂
𝑑�⃗�𝑝 (6.47)

Finally, 𝐺 and 𝜕1,�⃗�𝐺 can be written in a vectorized form:

[︂
𝐺(�⃗�𝑜𝑏𝑠)

𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠)

]︂
=
∫︁

4𝜋

PΩ𝑝(�⃗�𝑝)𝑑�⃗�𝑝[︃
𝑒−𝑘𝑎𝑟

𝛼𝑘𝑎𝑒
−𝑘𝑎𝑟 + ∇⃗ ×

(︁
(�⃗�𝑝×�⃗�)

𝑟2 𝑒−𝑘𝑎𝑟
)︁
· �⃗� 𝑟2

(�⃗�𝑝·�⃗�)

]︃
4𝜋�̊�(�⃗�𝑝, �⃗�𝑝) (6.48)

with the pdf PΩ𝑝
already defined in Eq.6.34.

Finally, the algorithm represented by Eq.6.48 is similar to that represented by Eq.6.38. If
𝑘𝑎 = 0, the medium becomes transparent, and they become exactly the same. The minor
differences between these two algorithms are that, firstly, the curl is applied to two different
formulations. In the case of an absorbent medium, the curl operator is applied to a term
with exponential attenuation. Also, an extra surface source 𝛼𝑘𝑎𝑒

−𝑘𝑎𝑟 appears where the
formulation of 𝛼 is referred to Eq.6.16. The corresponding Monte-Carlo algorithm is the
Algo.11

Algorithm 11 Evaluation of 𝐺 and 𝜕1,�⃗�𝐺 with surface sources in absorbent medium
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Input: G , 𝑛𝑀𝐶 , �⃗�𝑜𝑏𝑠, 𝑘𝑎

◁ 𝑛𝑀𝐶 : number of Monte-Carlo realization.
◁ G : the convex geometry bounded by plane surfaces.

◁ �⃗�𝑜𝑏𝑠: the observation point.
◁ �⃗�𝑎: coefficient of absorption.

1: 𝑊1 ← 0, 𝑊1 ← 0 and 𝑉2 ← 0, 𝑉2 ← 0
◁ Initialize the sum and the sum of square

2: for 𝑖𝑀𝐶 = 0→ 𝑛𝑀𝐶 do ◁ First Monte-Carlo for surface sources.
3: Initialize the weight of Monte-Carlo 𝑤1 ← 0 and 𝑤2 ← 0
4: Sample uniformly a direction �⃗�
5: Get the intersection point of the ray (�⃗�𝑜𝑏𝑠, �⃗�) on 𝜕G: �⃗�ℎ𝑖𝑡

6: Get the normal �⃗� on the point �⃗�ℎ𝑖𝑡

7: �⃗�𝑝 ← �⃗�ℎ𝑖𝑡

8: �⃗�𝑝 ← −�⃗�
9: Calculate the length of optical path 𝑟 ← ||�⃗�𝑝 − �⃗�𝑜𝑏𝑠||

10: Compute the weight 𝑤1 ← 4𝜋�̊�(�⃗�𝑝, �⃗�𝑝)𝑒−𝑘𝑎𝑟

11: Compute the weight
𝑤2 ←

(︁
𝛼𝑘𝑎𝑒

−𝑘𝑎𝑟 + ∇⃗ ×
(︁

(�⃗�𝑝×�⃗�)
𝑟2 𝑒−𝑘𝑎𝑟

)︁
· �⃗� 𝑟2

(�⃗�𝑝·�⃗�)

)︁
4𝜋�̊�(�⃗�𝑝, �⃗�𝑝)

12: 𝑊1 ←𝑊1 + 𝑤1
13: 𝑉1 ← 𝑉1 + 𝑤2

1
14: 𝑊2 ←𝑊2 + 𝑤2
15: 𝑉2 ← 𝑉2 + 𝑤2

2
16: 𝑖𝑀𝐶 ← 𝑖𝑀𝐶 + 1
17: end for

Output: 𝐺← 𝑊1
𝑛𝑀𝐶

, 𝜎[𝐺]←
√︂

𝑉1
𝑛𝑀𝐶

−( 𝑊1
𝑛𝑀𝐶

)2

𝑛𝑀𝐶−1 , 𝜕1,�⃗�𝐺← 𝑊2
𝑛𝑀𝐶

, 𝜎[𝜕1,�⃗�𝐺]←
√︂

𝑉2
𝑛𝑀𝐶

−( 𝑊2
𝑛𝑀𝐶

)2

𝑛𝑀𝐶−1

6.6 Example with a scattering medium
When the medium is purely diffusive, described by a constant scattering coefficient 𝑘𝑠, the
model of intensity 𝐼 becomes:

⎧⎨⎩�⃗� · 𝜕1𝐼(�⃗�, �⃗�) = −𝑘𝑠𝐼(�⃗�, �⃗�) + 𝑘𝑠

∫︁
4𝜋

1
4𝜋𝑑�⃗�

′𝐼(�⃗�, �⃗�′)

𝐼(�⃗�𝑝, �⃗�𝑝) = �̊�(�⃗�𝑝, �⃗�𝑝)
(6.49)

The model of spatial derivative 𝜕1,�⃗�𝐼 becomes:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
�⃗� · 𝜕1(𝜕1,�⃗�𝐼(�⃗�𝑝, �⃗�𝑝)) = −𝑘𝑠𝐼(�⃗�, �⃗�) + 𝑘𝑠

∫︁
4𝜋

1
4𝜋𝑑�⃗�

′𝐼(�⃗�, �⃗�′)

𝜕1,�⃗�𝐼(�⃗�𝑝, �⃗�𝑝) = −𝛼𝑘𝑠�̊�(�⃗�𝑝, �⃗�𝑝) + 𝛼𝑘𝑠

∫︁
4𝜋

1
4𝜋𝑑�⃗�

′𝐼(�⃗�, �⃗�′) + 𝛽𝜕1,�⃗��̊�(�⃗�𝑝, �⃗�𝑝)

𝜕1,�⃗�𝐼(�⃗�𝑙, �⃗�𝑙) = (�⃗�𝑙 × �⃗�) · �⃗�𝑖(𝐼𝑖 − 𝐼𝑖′)

(6.50)

The solution of 𝐺 is then:
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𝐺(�⃗�𝑜𝑏𝑠) =
∫︁

4𝜋

1
4𝜋𝑑�⃗�0

∫︁ ∞
0

𝑘𝑠𝑒
−𝑘𝑠𝜉0𝑑𝜉0

{︃
H(𝜉0 − 𝑑0)�̊�(�⃗�ℎ𝑖𝑡,0, �⃗�0)4𝜋+

H(𝑑0 − 𝜉0)
∫︁

4𝜋

1
4𝜋𝑑�⃗�1

∫︁ ∞
0

𝑘𝑠𝑒
−𝑘𝑠𝜉1𝑑𝜉1

{︂
H(𝜉1 − 𝑑1)�̊�(�⃗�ℎ𝑖𝑡,1, �⃗�1)4𝜋+

H(𝑑1 − 𝜉1)
∫︁

4𝜋

1
4𝜋𝑑�⃗�2 . . .

}︂}︃
(6.51)

where 𝜉0 represents the path length of the photon before its 1𝑠𝑡 scattering and 𝜉1 represent
the path length of the photon after its 1𝑠𝑡 scattering; �⃗�0 is the direction of propagation of
the photon before its 1𝑠𝑡 scattering, and �⃗�1 and �⃗�2 represent the direction of propagation of
the photon respectively after its 1𝑠𝑡 and 2𝑛𝑑 scattering; 𝑑0 represents the distance that the
photon needs to go through to hit a boundary without scattering; 𝑑1 represents the distance
that, starting from the position where located the 1𝑠𝑡 scattering, the photon need to go
through to hit a boundary without 2𝑛𝑑 scattering. �⃗�ℎ𝑖𝑡,0 represents the hit point without
scattering, and �⃗�ℎ𝑖𝑡,1 represents the hit point after one scattering.

As it is discussed in the previous chapters, a “random walk” algorithm corresponding to a
physical picture is attached to Eq.6.51. 𝐺 can be regarded as the sum of intensity carried by
all photons coming from all directions (angular integration over 4𝜋). In order to determine
the intensity coming from one direction �⃗�0, we will inversely trace the arriving photons at the
position, �⃗�𝑜𝑏𝑠 in the direction �⃗�0, searching from where they are coming. We will sample a
path length according to the exponential law in the direction −�⃗�0 to determine the position
where scattering happens. If the sampled path length is larger than the distance to the
boundary following the direction of −�⃗�0, we consider that the photon is not scattered. In this
case (the Heaviside function H(𝜉0 − 𝑑0) will be true), the photon comes from the hit-point
�⃗�ℎ𝑖𝑡,0 on the boundary, following the direction of �⃗�0. Otherwise, (the Heaviside function
H(𝑑0 − 𝜉0) will be true), we sample a direction of scattering and then another sample of the
path length to determine the next scattering point. We repeat this process again and again
until the photon reaches the boundary.

−�⃗�0

−�⃗�1

−�⃗�2

�⃗�𝑜𝑏𝑠

𝜕G
L

Figure 6.11 – After the random walks in the medium with a reverse point of view, a
photon can hit a surface boundary 𝜕G, but it can never hit a line boundary L.

However, following the above algorithm, the photon can only intersect the surface 𝜕G, but
it can not intersect an edge L (seeing Fig.6.11). As a consequence, this “random walks”
algorithm can not be implemented directly to the model of spatial derivative because the line
sources on L can not be reached. In the following part of this section, we will implement a
special treatment to deal with this problem.
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6.6.1 Vectorization with line and surface sources
The line sources can be accumulated using the techniques developed to handle collimated
Dirac sources for solar/laser applications or satellite observation [5, 11, 16, 52, 57]. At each
scattering event, the directions of the Dirac sources are first sampled, specifically, before
continuing the path in another sampled reflected or scattered direction. We apply this
algorithm in our case in this section.
In the model of spatial gradient (Eq.6.50), sources are found on the surfaces 𝜕G and on the
edges L. We separate here the two contributions of 𝜕1,�⃗�𝐺, corresponding to the sum of the
two kinds of source, respectively:

𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠) =
∙

(𝜕1,�⃗�𝐺)(�⃗�𝑜𝑏𝑠) + ̂(𝜕1,�⃗�𝐺)(�⃗�𝑜𝑏𝑠) (6.52)

For the surface source
∙

(𝜕1,�⃗�𝐺), an integral formulation similar to Eq.6.51 can be built. Eq.6.51
and Eq.6.53 have the same integrals domains and pdf. The only difference is the surface
sources on the boundary. Therefore, the surface sources in Eq.6.51 and in Eq.6.53 can be
accumulated by the same “random walks” algorithm (same as Fig.6.11):

∙
(𝜕1,�⃗�𝐺)(�⃗�𝑜𝑏𝑠) =

∫︁
4𝜋

1
4𝜋𝑑�⃗�0

∫︁ ∞
0

𝑘𝑠𝑒
−𝑘𝑠𝜉0𝑑𝜉0

{︃
H(𝜉0 − 𝑑0)Ṡ𝑠𝑐𝑎𝑡

𝑏,�⃗� (�⃗�ℎ𝑖𝑡,0, �⃗�0)4𝜋+

H(𝑑0 − 𝜉0)
∫︁

4𝜋

1
4𝜋𝑑�⃗�1

∫︁ ∞
0

𝑘𝑠𝑒
−𝑘𝑠𝜉1𝑑𝜉1

{︂
H(𝜉1 − 𝑑1)Ṡ𝑠𝑐𝑎𝑡

𝑏,�⃗� (�⃗�ℎ𝑖𝑡,1, �⃗�1)4𝜋+

H(𝑑1 − 𝜉1)
∫︁

4𝜋

1
4𝜋𝑑�⃗�2 . . .

}︂}︃
(6.53)

where Ṡ𝑠𝑐𝑎𝑡
𝑏,�⃗� is the surface source in Eq.6.50:

Ṡ𝑠𝑐𝑎𝑡
𝑏,�⃗� (�⃗�𝑝, �⃗�𝑝) = −𝛼𝑘𝑠�̊�(�⃗�𝑝, �⃗�𝑝) + 𝛼𝑘𝑠

∫︁
4𝜋

1
4𝜋𝑑�⃗�

′𝐼(�⃗�, �⃗�′) + 𝛽𝜕1,�⃗��̊�(�⃗�𝑝, �⃗�𝑝) (6.54)

It is noticed that the physical image and the attached algorithm of Eq.6.53 are very similar
to those attached to Eq.6.51. The only subtlety is that Eq.6.54 is coupled with the model
of intensity (via 𝐼(�⃗�, �⃗�′)). Therefore, a new optical path is generated, which represents the
coupling with the intensity of the boundary condition. The coupling is done through the
double randomization process as shown in Fig.6.12.

However, the estimation of the sum of line source ̂(𝜕1,�⃗�𝐺) is not that straightforward. The
line sources are emitted on the boundary L. They arrive at the point �⃗�𝑜𝑏𝑠 after different
numbers of scattering in the medium. The sum of these arrival sources after 0 scattering, 1
scattering, . . ., infinitive scatterings, is then ̂(𝜕1,�⃗�𝐺). For example, Fig.6.13 shows an optical
path of a line source, arriving at the point �⃗�𝑜𝑏𝑠, following �⃗�0, after two scattering events.
Herein, we classify it following the number of scattering that happens before arriving at �⃗�𝑜𝑏𝑠,
∀𝑗 ∈ N:

̂(𝜕1,�⃗�𝐺)(�⃗�𝑜𝑏𝑠) =
+∞∑︁
𝑗=0

̂(𝜕1,�⃗�𝐺)𝑗(�⃗�𝑜𝑏𝑠) (6.55)

where 𝑗 is the index of the number of scattering. ̂(𝜕1,�⃗�𝐺)𝑗 is then the sources of spatial
derivative on the boundary L arriving to the point �⃗�𝑜𝑏𝑠, after 𝑗 times of scattering:

178



Example with a scattering medium

−�⃗�0

−�⃗�1

−�⃗�2

�⃗�𝑜𝑏𝑠

𝜕G
L

�̊�

Figure 6.12 – The boundary condition of the spatial derivative on the surface Ṡ𝑠𝑐𝑎𝑡
𝑏,�⃗�

is coupled with the model of intensity. A supplementary optical path (in yellow) is
generated on the hit point to search for the boundary condition of 𝐼 and complete the
boundary condition of Ṡ𝑠𝑐𝑎𝑡

𝑏,�⃗� . To be reminded that the source of intensity is noted �̊�

̂(𝜕1,�⃗�𝐺)𝑗(�⃗�𝑜𝑏𝑠) =
∫︁

4𝜋

1
4𝜋𝑑�⃗�0

∫︁ 𝑑0

0
𝑘𝑠𝑒
−𝑘𝑠𝜉0𝑑𝜉0 . . .∫︁

4𝜋

1
4𝜋𝑑�⃗�𝑗−1

∫︁ 𝑑𝑗−1

0
𝑘𝑠𝑒
−𝑘𝑠𝜉𝑗−1𝑑𝜉𝑗−1∫︁

L

𝑑�⃗�𝑙𝑗
Ŝ𝑠𝑐𝑎𝑡,𝑗

𝑏,�⃗� (�⃗�𝑗 , �⃗�𝑙𝑗
) (6.56)

where

Ŝ𝑠𝑐𝑎𝑡,𝑗
𝑏,�⃗� (�⃗�𝑗 , �⃗�𝑙𝑗

) =
(�⃗�𝑙𝑗
× �⃗�) · �⃗�𝑖
𝑟2

𝑙𝑗

(𝐼𝑖 − 𝐼𝑖′)𝑒−𝑘𝑠𝑟𝑙𝑗
1

4𝜋 , (6.57)

𝑟𝑙𝑗
= ||�⃗�𝑗 − �⃗�𝑙𝑗

||; �⃗�𝑙𝑗
=
�⃗�𝑗 − �⃗�𝑙𝑗

𝑟𝑙𝑗

(6.58)

and

�⃗�𝑗 =
𝑗−1∑︁
𝑘=0

�⃗�𝑜𝑏𝑠 + �⃗�𝑘𝜉𝑘,∀𝑗 > 0; �⃗�0 = �⃗�𝑜𝑏𝑠 (6.59)

We trace inversely the path of a photon that arrives at �⃗�𝑜𝑏𝑠 after 𝑗 scatterings. �⃗�𝑗 is the
position of the photon where 𝑗𝑡ℎ scattering happens; �⃗�𝑙𝑗 is on the edge L; 𝑟𝑙𝑗 is the distance
between �⃗�𝑙𝑗 and �⃗�𝑗 ; �⃗�𝑙,𝑗 is the vector of direction linking �⃗�𝑗 and �⃗�𝑙𝑗 ; Ŝ𝑠𝑐𝑎𝑡,𝑗

𝑏,�⃗� is the source
emitted from �⃗�𝑙𝑗 , arriving to �⃗�𝑗 , which is attenuated (exponentially) along the optical path
because of the scattering. For example, a schema of the contribution ̂(𝜕1,�⃗�𝐺)𝑗 |𝑗=2 is shown
on Fig.6.13.

After that, we substitute Eq.6.56 into Eq.6.55 and we reformulate it as an expected value:
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�⃗�𝑜𝑏𝑠

L
�⃗�𝑙2

�⃗�𝑙2

�⃗�2

Ŝ𝑠𝑐𝑎𝑡,2
𝑏,�⃗�

𝜕G

Figure 6.13 – A schema of ̂(𝜕1,�⃗�𝐺)𝑗 |𝑗=2. The line source Ŝ𝑠𝑐𝑎𝑡,2
𝑏,�⃗� arrives at �⃗�𝑜𝑏𝑠 after 2

scattering events.

̂(𝜕1,�⃗�𝐺)(�⃗�𝑜𝑏𝑠) =
∫︁
L

1
L𝑡𝑜𝑡

𝑑�⃗�𝑙0

∫︁
4𝜋

1
4𝜋𝑑�⃗�0

∫︁ +∞

0
𝑘𝑠𝑒
−𝑘𝑠𝜉0𝑑𝜉0

{︁
H(𝜉0 − 𝑑0)Ŝ𝑠𝑐𝑎𝑡,0

𝑏,�⃗� 4𝜋L𝑡𝑜𝑡

+ H(𝑑0 − 𝜉0)
∫︁
L

1
L𝑡𝑜𝑡

𝑑�⃗�𝑙1

∫︁
4𝜋

1
4𝜋𝑑�⃗�1

∫︁ +∞

0
𝑘𝑠𝑒
−𝑘𝑠𝜉1𝑑𝜉1

{︀
H(𝜉1 − 𝑑1)(Ŝ𝑠𝑐𝑎𝑡,0

𝑏,�⃗� + Ŝ𝑠𝑐𝑎𝑡,1
𝑏,�⃗� )4𝜋L𝑡𝑜𝑡

+ H(𝑑1 − 𝜉1)
∫︁
L

1
L𝑡𝑜𝑡

𝑑�⃗�𝑙2

∫︁
4𝜋

1
4𝜋𝑑�⃗�2

∫︁ +∞

2
𝑘𝑠𝑒
−𝑘𝑠𝜉2𝑑𝜉2 . . .

}︀}︁
(6.60)

where L𝑡𝑜𝑡 is the total length of all the edges L; The notations in this equation are the same
as those in Eq.6.51. A “random walks” algorithm and a physical image are also attached
on Eq.6.60. The photon is scattered in the medium until it hit the boundaries. But in
this algorithm, the contribution of line sources is separated. At each scattering event, the
corresponding contribution is accumulated. This technique is used also in [52, 57], shown in
Fig.6.14.

�⃗�𝑜𝑏𝑠

L

Ŝ𝑠𝑐𝑎𝑡,0
𝑏,�⃗�

Ŝ𝑠𝑐𝑎𝑡,1
𝑏,�⃗�

Ŝ𝑠𝑐𝑎𝑡,2
𝑏,�⃗�

𝜕G

Figure 6.14 – In order to accumulate the line sources in a scattering medium, its
contribution is accumulated at each position of the scattering events.

Finally, we write Eq.6.51, Eq.6.60 and Eq.6.53 into a vectorized form, reminding that
𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠) = ̂(𝜕1,�⃗�𝐺)(�⃗�𝑜𝑏𝑠) +

∙
(𝜕1,�⃗�𝐺)(�⃗�𝑜𝑏𝑠):
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[︂
𝐺(�⃗�𝑜𝑏𝑠)

𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠)

]︂
=
∫︁
L

1
L𝑡𝑜𝑡

𝑑�⃗�𝑙0

∫︁
4𝜋

1
4𝜋𝑑�⃗�0

∫︁ +∞

0
𝑘𝑠𝑒
−𝑘𝑠𝜉0𝑑𝜉0{︁

H(𝜉0 − 𝑑0)
[︃

�̊�

Ŝ𝑠𝑐𝑎𝑡,0
𝑏,�⃗� L𝑡𝑜𝑡 + Ṡ𝑠𝑐𝑎𝑡

𝑏,�⃗�

]︃
4𝜋

+ H(𝑑0 − 𝜉0)
∫︁
L

1
L𝑡𝑜𝑡

𝑑�⃗�𝑙1

∫︁
4𝜋

1
4𝜋𝑑�⃗�1

∫︁ +∞

0
𝑘𝑠𝑒
−𝑘𝑠𝜉1𝑑𝜉1

{︀
H(𝜉1 − 𝑑1)

[︃
�̊�

(Ŝ𝑠𝑐𝑎𝑡,0
𝑏,�⃗� + Ŝ𝑠𝑐𝑎𝑡,1

𝑏,�⃗� )L𝑡𝑜𝑡 + Ṡ𝑠𝑐𝑎𝑡
𝑏,�⃗�

]︃
4𝜋

+ H(𝑑1 − 𝜉1)
∫︁
L

1
L𝑡𝑜𝑡

𝑑�⃗�𝑙2

∫︁
4𝜋

1
4𝜋𝑑�⃗�2

∫︁ +∞

2
𝑘𝑠𝑒
−𝑘𝑠𝜉2𝑑𝜉2 . . .

}︀}︁
(6.61)

At this stage, a Monte-Carlo algorithm dedicated to accumulating all surface sources and
line sources is developed (Eq.6.61). The same “random walk” algorithm, which is discussed
earlier in this section, is used to accumulate the surface sources. Also, the surface sources of
intensity and those of spatial derivative are accumulated in a vectorized form.

Moreover, compared to Eq.6.53 and Eq.6.51, in Eq.6.61, an extra line sampling is needed
at each scattering events, so that the contribution of line sources can be accumulated. The
corresponding Algorithm is Algo.12.

Algorithm 12 Evaluation of 𝐺 and 𝜕1,�⃗�𝐺 with line sources in scattering medium
Input: G , 𝑛𝑀𝐶 , �⃗�𝑜𝑏𝑠, 𝑘𝑠

◁ 𝑛𝑀𝐶 : number of Monte-Carlo realization.
◁ G : the convex geometry bounded by plane surfaces.

◁ �⃗�𝑜𝑏𝑠: the observation point.
◁ �⃗�𝑠: coefficient of scattering.

1: 𝑊1 ← 0, 𝑊1 ← 0 and 𝑉2 ← 0, 𝑉2 ← 0
◁ Initialize the sum and the sum of square

2: for 𝑖𝑀𝐶 = 0→ 𝑛𝑀𝐶 do ◁ First Monte-Carlo for surface sources.
3: Initialize the weight of Monte-Carlo 𝑤1 ← 0 and 𝑤2 ← 0
4: Initialize the keeprunning flag 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 1
5: Sample uniformly a position on L: �⃗�𝑙

6: �⃗�𝑙𝑗 ← �⃗�𝑙

7: �⃗�𝑗 ← �⃗�𝑜𝑏𝑠

8: Calculate Ŝ𝑠𝑐𝑎𝑡,𝑗
𝑏,�⃗� (�⃗�𝑗 , �⃗�𝑙𝑗

) (Eq.6.57).
9: Accumulate the weight 𝑤2 ← 𝑤2 + Ŝ𝑠𝑐𝑎𝑡,𝑗

𝑏,�⃗� 4𝜋L𝑡𝑜𝑡

10: Sample uniformly a direction �⃗�
11: Initialize the position for ray tracing �⃗�← �⃗�𝑜𝑏𝑠

12: while 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 do
13: Get the intersection point of the ray (�⃗�, �⃗�) on 𝜕G: �⃗�ℎ𝑖𝑡

14: Get the distance between �⃗�ℎ𝑖𝑡 and �⃗�: 𝑑← ||�⃗�ℎ𝑖𝑡 − �⃗�||
15: Sample a length based on PΣ(𝜎) = 𝑘𝑠𝑒

−𝑘𝑠𝜎

16: if 𝜎 < 𝑑 then
17: Update the position �⃗�← �⃗�+ �⃗�𝜎
18: �⃗�𝑗 ← �⃗�
19: Sample uniformly a position on L: �⃗�𝑙

20: �⃗�𝑙𝑗 ← �⃗�𝑙
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21: Calculate Ŝ𝑠𝑐𝑎𝑡,𝑗
𝑏,�⃗� (�⃗�𝑗 , �⃗�𝑙𝑗

) (Eq.6.57).
22: Accumulate the weight 𝑤2 ← 𝑤2 + Ŝ𝑠𝑐𝑎𝑡,𝑗

𝑏,�⃗� 4𝜋L𝑡𝑜𝑡

23: Sample uniformly a new direction �⃗�
24: else
25: Get the normal on the hitting point �⃗�ℎ𝑖𝑡: �⃗�
26: Get �̊�(�⃗�ℎ𝑖𝑡, �⃗�)
27: Calculate the weight 𝑤1 ← �̊�(�⃗�ℎ𝑖𝑡, �⃗�)4𝜋
28: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
29: Sample uniformly a new direction �⃗�′

30: if �⃗�′ · �⃗� > 0 then
31: Compute 𝛼 (Eq.6.16)
32: Get 𝐼(�⃗�, �⃗�′) by Algo.13
33: Compute the weight

𝑤2 ← 𝑤2 − 𝛼𝑘𝑠�̊�(�⃗�𝑝, �⃗�𝑝) + 𝛼𝑘𝑠

∫︀
4𝜋

1
4𝜋𝑑�⃗�

′𝐼(�⃗�, �⃗�′) + 𝛽𝜕1,�⃗��̊�(�⃗�𝑝, �⃗�𝑝)
34: else
35: Compute 𝛼 (Eq.6.16)
36: Compute the weight

𝑤2 ← 𝑤2 − 𝛼𝑘𝑠�̊�(�⃗�𝑝, �⃗�𝑝) + 𝛽𝜕1,�⃗��̊�(�⃗�𝑝, �⃗�𝑝)
37: end if
38: end if
39: 𝑊1 ←𝑊1 + 𝑤1
40: 𝑉1 ← 𝑉1 + 𝑤2

1
41: 𝑊2 ←𝑊2 + 𝑤2
42: 𝑉2 ← 𝑉2 + 𝑤2

2
43: 𝑖𝑀𝐶 ← 𝑖𝑀𝐶 + 1
44: end while
45: end for

Output: 𝐺← 𝑊1
𝑛𝑀𝐶

, 𝜎[𝐺]←
√︂

𝑉1
𝑛𝑀𝐶

−( 𝑊1
𝑛𝑀𝐶

)2

𝑛𝑀𝐶−1 , 𝜕1,�⃗�𝐺← 𝑊2
𝑛𝑀𝐶

, 𝜎[𝜕1,�⃗�𝐺]←
√︂

𝑉2
𝑛𝑀𝐶

−( 𝑊2
𝑛𝑀𝐶

)2

𝑛𝑀𝐶−1

Algorithm 13 Get 𝐼(�⃗�, �⃗�′) with the sampled �⃗� and �⃗�′

Input: G , �⃗�, �⃗�′, 𝑘𝑠

◁ 𝑛𝑀𝐶 : number of Monte-Carlo realization.
◁ G : the convex geometry bounded by plane surfaces.

◁ �⃗�𝑠: coefficient of scattering.
1: Initialize the keeprunning flag 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 1
2: Initialize the ray-tracing process: �⃗� ← �⃗�′

3: while keeprunning do
4: Get the first intersection point of the ray (�⃗�, �⃗�): �⃗�ℎ𝑖𝑡

5: Get the distance between �⃗�ℎ𝑖𝑡 and �⃗�: 𝑑← ||�⃗�ℎ𝑖𝑡 − �⃗�||
6: Sample a length based on PΣ(𝜎) = 𝑘𝑠𝑒

−𝑘𝑠𝜎

7: if 𝜎 < 𝑑 then
8: Sample a direction �⃗�′ based on PΩ′(�⃗�′) = 1

4𝜋
9: Update the position �⃗�← �⃗�+ �⃗�𝜎

10: Update the direction of propagation �⃗� ← �⃗�′

11: else
12: 𝐼 ← �̊�(�⃗�ℎ𝑖𝑡, �⃗�)
13: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
14: end if
15: end while
Output: 𝐼
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6.6.2 Vectorization with surface sources only
In this section, we apply our method to transform the line sources in Eq.6.61 into surface
sources. It helps to avoid the line sampling at each scattering event in Algo.13. In order to
achieve this, we focus on the analysis of line integral in Eq.6.56:

∫︁
L

𝑑�⃗�𝑙𝑗 Ŝ𝑠𝑐𝑎𝑡,𝑗
𝑏,�⃗� (�⃗�𝑗 , �⃗�𝑙𝑗 ) =

∫︁
L

𝑑�⃗�𝑙𝑗

(�⃗�𝑙𝑗
× �⃗�) · �⃗�𝑖
𝑟2

𝑙𝑗

(𝐼𝑖 − 𝐼𝑖′)𝑒−𝑘𝑠𝑟𝑙𝑗 (6.62)

As it is shown in Section.6.3, the integral over L can be transformed into the sum of the
integral over the edges of each plane surface:

∫︁
L

𝑑�⃗�𝑙𝑗

(�⃗�𝑙𝑗
× �⃗�) · �⃗�𝑖
𝑟2

𝑙𝑗

(𝐼𝑖 − 𝐼𝑖′)𝑒−𝑘𝑠𝑟𝑙𝑗 =
𝑛∑︁

𝑖=1

∮︁
L𝑖

𝑑�⃗�𝑙𝑗

(�⃗�𝑙𝑗
× �⃗�) · �⃗�𝑖
𝑟2

𝑙𝑗

𝐼𝑖(�⃗�𝑙𝑗 , �⃗�𝑙𝑗 )𝑒−𝑘𝑠𝑟𝑙𝑗 (6.63)

The left side of Eq.6.63 accumulates the line sources by a line integral, while the right side
accumulates the line sources surface by surface. Both sides of Eq.6.63 represent the sum of
all line sources. The value of 𝐼𝑖 and of 𝐼𝑖′ can be referred to Eq.6.19 and Eq.6.20; L𝑖 is the
edges of the 𝑖𝑡ℎ plane surface (𝜕G𝑖).

By applying the Stokes’ Theorem to Eq.6.63 (following the same development of Eq.6.28 in
Section.6.3), the line integral is transformed to a surface integral:

𝑛∑︁
𝑖=1

∮︁
L𝑖

𝑑�⃗�𝑙𝑗

(�⃗�𝑙𝑗
× �⃗�) · �⃗�𝑖
𝑟2

𝑙𝑗

𝐼𝑖(�⃗�𝑙𝑗
, �⃗�𝑙𝑗

)𝑒−𝑘𝑠𝑟𝑙𝑗

=
𝑛∑︁

𝑖=1

∫︁
𝜕G𝑖

𝑑�⃗�𝑝𝑗
∇⃗ × (

�⃗�𝑝𝑗 × �⃗�
𝑟2

𝑙𝑗

𝑒−𝑘𝑠𝑟𝑝𝑗 ) · �⃗�𝑖�̊�(�⃗�𝑝𝑗
, �⃗�𝑝𝑗

)

−
𝑛∑︁

𝑖=1

∫︁
𝜕G𝑖

(�⃗�𝑝𝑗 · �⃗�𝑖)
𝑟2

𝑝𝑗

𝛽𝜕1,�⃗��̊�(�⃗�𝑝𝑗
, �⃗�𝑝𝑗

)𝑑�⃗�𝑗 (6.64)

where

𝑟𝑝𝑗
= ||�⃗�𝑗 − �⃗�𝑝𝑗

||; �⃗�𝑝𝑗
=
�⃗�𝑗 − �⃗�𝑝𝑗

𝑟𝑝𝑗

(6.65)

Therefore, Eq.6.62 can be reformulated in a surface integral:

∫︁
L

𝑑�⃗�𝑙𝑗

(�⃗�𝑙𝑗 × �⃗�) · �⃗�𝑖
𝑟2

𝑗

(𝐼𝑖 − 𝐼𝑖′)𝑒−𝑘𝑠𝑟𝑙𝑗

=
∫︁

𝜕G

𝑑�⃗�𝑝𝑗
∇⃗ × (

�⃗�𝑝𝑗 × �⃗�
𝑟2

𝑝𝑗

𝑒−𝑘𝑠𝑟𝑝𝑗 ) · �⃗��̊�(�⃗�𝑝𝑗
, �⃗�𝑝𝑗

)

−
∫︁

𝜕G

𝑑�⃗�𝑝𝑗

(�⃗�𝑝𝑗
· �⃗�𝑖)

𝑟2
𝑝𝑗

𝛽𝜕1,�⃗��̊�(�⃗�𝑝𝑗 , �⃗�𝑝𝑗 ) (6.66)
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We then substitute Eq.6.66 into Eq.6.56 and Eq.6.55. The line contribution before applying
the Stokes’ Theorem is noted ̂(𝜕1,�⃗�𝐺). After applying the Stokes’ Theorem, the line integral

no longer exists and the same contribution is noted
∙

̂(𝜕1,�⃗�𝐺).

Therefore, referring to Eq.6.52, we have:

𝜕1,�⃗�𝐺 =
∙

(𝜕1,�⃗�𝐺) + ̂(𝜕1,�⃗�𝐺) =
∙

(𝜕1,�⃗�𝐺) +
∙

̂(𝜕1,�⃗�𝐺). (6.67)

Herein, we separate the source
∙

̂(𝜕1,�⃗�𝐺) as we have done to separate the source ̂(𝜕1,�⃗�𝐺) in
Eq.6.55. We classify it following the number of scattering events before arriving at �⃗�𝑜𝑏𝑠,
∀𝑗 ∈ N:

∙
̂(𝜕1,�⃗�𝐺) =

+∞∑︁
𝑗=0

∙
̂(𝜕1,�⃗�𝐺)𝑗 (6.68)

where 𝑗 is the index of the number of scattering.
∙

̂(𝜕1,�⃗�𝐺)𝑗 is then the sources of spatial
derivative on the boundary 𝜕G arriving to the point �⃗�𝑜𝑏𝑠, after 𝑗 scattering events:

∙
̂(𝜕1,�⃗�𝐺)𝑗 =

∫︁
4𝜋

1
4𝜋𝑑�⃗�0

∫︁ 𝑑0

0
𝑘𝑠𝑒
−𝑘𝑠𝜎0𝑑𝜎0 . . .∫︁

4𝜋

1
4𝜋𝑑�⃗�𝑗−1

∫︁ 𝑑𝑗−1

0
𝑘𝑠𝑒
−𝑘𝑠𝜎𝑗−1𝑑𝜎𝑗−1∫︁

𝜕G

𝑑�⃗�𝑝𝑗

˙̂S
𝑠𝑐𝑎𝑡,𝑗

𝑏,�⃗� (�⃗�𝑗 , �⃗�𝑙𝑗
) (6.69)

where

˙̂S
𝑠𝑐𝑎𝑡,𝑗

𝑏,�⃗� (�⃗�𝑗 , �⃗�𝑙𝑗
) = ∇⃗ × (

�⃗�𝑝𝑗
× �⃗�

𝑟2
𝑝𝑗

𝑒−𝑘𝑠𝑟𝑝𝑗 ) · �⃗��̊�(�⃗�𝑝𝑗
, �⃗�𝑝𝑗

) 1
4𝜋

−
(�⃗�𝑝𝑗 · �⃗�)
𝑟2

𝑝𝑗

𝛽𝜕1,�⃗��̊�(�⃗�𝑝𝑗
, �⃗�𝑝𝑗

) 1
4𝜋 (6.70)

In Eq.6.57, �⃗�𝑗 is referred to Eq.6.59; �⃗�𝑝𝑗
and 𝑟𝑝𝑗

are referred to Eq.6.65. Finally, reminding

𝜕1,�⃗�𝐺 =
∙

(𝜕1,�⃗�𝐺) +
∙

̂(𝜕1,�⃗�𝐺). we formulate the vectorized form to estimate
[︂

𝐺(�⃗�𝑜𝑏𝑠)
𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠)

]︂
:
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[︂
𝐺(�⃗�𝑜𝑏𝑠)

𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠)

]︂
=
∫︁

𝜕G

1
S𝑡𝑜𝑡

𝑑�⃗�𝑙0

∫︁
4𝜋

1
4𝜋𝑑�⃗�0

∫︁ +∞

0
𝑘𝑠𝑒
−𝑘𝑠𝜎0𝑑𝜎0

{︁
H(𝜎0 − 𝑑0)

[︃
�̊�

˙̂S
𝑠𝑐𝑎𝑡,0
𝑏,�⃗� S𝑡𝑜𝑡 + Ṡ𝑠𝑐𝑎𝑡

𝑏,�⃗�

]︃
4𝜋

+ H(𝑑0 − 𝜎0)
∫︁

𝜕G

1
S𝑡𝑜𝑡

𝑑�⃗�𝑙1

∫︁
4𝜋

1
4𝜋𝑑�⃗�1

∫︁ +∞

0
𝑘𝑠𝑒
−𝑘𝑠𝜎1𝑑𝜎1

{︀
H(𝜎1 − 𝑑1)

[︃
�̊�

( ˙̂S
𝑠𝑐𝑎𝑡,0
𝑏,�⃗� + ˙̂S

𝑠𝑐𝑎𝑡,1
𝑏,�⃗� )S𝑡𝑜𝑡 + Ṡ𝑠𝑐𝑎𝑡

𝑏,�⃗�

]︃
4𝜋

+ H(𝑑1 − 𝜎1)
∫︁

𝜕G

1
S𝑡𝑜𝑡

𝑑�⃗�𝑙2

∫︁
4𝜋

1
4𝜋𝑑�⃗�2

∫︁ +∞

2
𝑘𝑠𝑒
−𝑘𝑠𝜎2𝑑𝜎2 . . .

}︀}︁
(6.71)

Form Eq.6.71, a “random walks” algorithm and a physical image are proposed. The photon is
scattered in the medium until it hits the boundaries. But in this algorithm, the contribution of
surface sources on 𝜕G is separated. At each scattering event, the corresponding contribution
is accumulated, seeing the schema in Fig.6.15. The corresponding Algorithm is Algo.14.

�⃗�𝑜𝑏𝑠

Ŝ𝑠𝑐𝑎𝑡,0
𝑏,�⃗�

Ŝ𝑠𝑐𝑎𝑡,1
𝑏,�⃗�

Ŝ𝑠𝑐𝑎𝑡,2
𝑏,�⃗�

𝜕G

Figure 6.15 – In order to accumulate the surface sources in a scattering medium, its
contribution is accumulated at each position of the scattering events.

To sum up, Eq.6.61 and Eq.6.71 are both dedicated to estimate the observable 𝐺 and
its spatial derivative 𝜕1,�⃗�𝐺. In Eq.6.61, the line sources ̂(𝜕1,�⃗�𝐺) are accumulated at each

scattering event. In Eq.6.53, the line sources are transformed to surface sources
∙

̂(𝜕1,�⃗�𝐺).
However, the surface sources are accumulated at each scattering event. Therefore, if we
compare Algo.12 and Algo.14, we avoid sampling on the lines by transforming the line
sources into surface sources. At each scattering event, surface sampling is still required to
accumulate the surface sources. We remind that the Fig.6.14 corresponds to Eq.6.61 and
Algo.12, without applying the Stokes’ theorem. Fig.6.15 corresponds to Eq.6.71 and Algo.14,
after applying the Stokes’ theorem.

Algorithm 14 Evaluation of 𝐺 and 𝜕1,�⃗�𝐺 with surface sources in scattering medium
Input: G , 𝑛𝑀𝐶 , �⃗�𝑜𝑏𝑠, 𝑘𝑠

◁ 𝑛𝑀𝐶 : number of Monte-Carlo realization.
◁ G : the convex geometry bounded by plane surfaces.

◁ �⃗�𝑜𝑏𝑠: the observation point.
◁ �⃗�𝑠: coefficient of scattering.
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Transforming line sources into surface sources by Stokes’ theorem

1: 𝑊1 ← 0, 𝑊1 ← 0 and 𝑉2 ← 0, 𝑉2 ← 0
◁ Initialize the sum and the sum of square

2: for 𝑖𝑀𝐶 = 0→ 𝑛𝑀𝐶 do ◁ First Monte-Carlo for surface sources.
3: Initialize the weight of Monte-Carlo 𝑤1 ← 0 and 𝑤2 ← 0
4: Initialize the keeprunning flag 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 1
5: Sample uniformly a position on 𝜕G: �⃗�𝑝

6: �⃗�𝑝𝑗 ← �⃗�𝑝

7: �⃗�𝑗 ← �⃗�𝑜𝑏𝑠

8: Calculate ˙̂S
𝑠𝑐𝑎𝑡,𝑗

𝑏,�⃗� (�⃗�𝑗 , �⃗�𝑙𝑗
) (Eq.6.70).

9: Accumulate the weight 𝑤2 ← 𝑤2 + ˙̂S
𝑠𝑐𝑎𝑡,𝑗

𝑏,�⃗� 4𝜋S𝑡𝑜𝑡

10: Sample uniformly a direction �⃗�
11: Initialize the position for ray tracing �⃗�← �⃗�𝑜𝑏𝑠

12: while 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 do
13: Get the intersection point of the ray (�⃗�, �⃗�) on 𝜕G: �⃗�ℎ𝑖𝑡

14: Get the distance between �⃗�ℎ𝑖𝑡 and �⃗�: 𝑑← ||�⃗�ℎ𝑖𝑡 − �⃗�||
15: Sample a length based on PΣ(𝜎) = 𝑘𝑠𝑒

−𝑘𝑠𝜎

16: if 𝜎 < 𝑑 then
17: Update the position �⃗�← �⃗�+ �⃗�𝜎
18: �⃗�𝑗 ← �⃗�
19: Sample uniformly a position on 𝜕G: �⃗�𝑝

20: �⃗�𝑝𝑗 ← �⃗�𝑙

21: Calculate Ŝ𝑠𝑐𝑎𝑡,𝑗
𝑏,�⃗� (�⃗�𝑗 , �⃗�𝑙𝑗

) (Eq.6.70).
22: Accumulate the weight 𝑤2 ← 𝑤2 + Ŝ𝑠𝑐𝑎𝑡,𝑗

𝑏,�⃗� 4𝜋S𝑡𝑜𝑡

23: Sample uniformly a new direction �⃗�
24: else
25: Get the normal on the hitting point �⃗�ℎ𝑖𝑡: �⃗�
26: Get �̊�(�⃗�ℎ𝑖𝑡, �⃗�)
27: Calculate the weight 𝑤1 ← �̊�(�⃗�ℎ𝑖𝑡, �⃗�)4𝜋
28: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
29: Sample uniformly a new direction �⃗�′

30: if �⃗�′ · �⃗� > 0 then
31: Compute 𝛼 (Eq.6.16)
32: Get 𝐼(�⃗�, �⃗�′) by Algo.13
33: Compute the weight

𝑤2 ← 𝑤2 − 𝛼𝑘𝑠�̊�(�⃗�𝑝, �⃗�𝑝) + 𝛼𝑘𝑠

∫︀
4𝜋

1
4𝜋𝑑�⃗�

′𝐼(�⃗�, �⃗�′) + 𝛽𝜕1,�⃗��̊�(�⃗�𝑝, �⃗�𝑝)
34: else
35: Compute 𝛼 (Eq.6.16)
36: Compute the weight

𝑤2 ← 𝑤2 − 𝛼𝑘𝑠�̊�(�⃗�𝑝, �⃗�𝑝) + 𝛽𝜕1,�⃗��̊�(�⃗�𝑝, �⃗�𝑝)
37: end if
38: end if
39: 𝑊1 ←𝑊1 + 𝑤1
40: 𝑉1 ← 𝑉1 + 𝑤2

1
41: 𝑊2 ←𝑊2 + 𝑤2
42: 𝑉2 ← 𝑉2 + 𝑤2

2
43: 𝑖𝑀𝐶 ← 𝑖𝑀𝐶 + 1
44: end while
45: end for

Output: 𝐺← 𝑊1
𝑛𝑀𝐶

, 𝜎[𝐺]←
√︂

𝑉1
𝑛𝑀𝐶

−( 𝑊1
𝑛𝑀𝐶

)2

𝑛𝑀𝐶−1 , 𝜕1,�⃗�𝐺← 𝑊2
𝑛𝑀𝐶

, 𝜎[𝜕1,�⃗�𝐺]←
√︂

𝑉2
𝑛𝑀𝐶

−( 𝑊2
𝑛𝑀𝐶

)2

𝑛𝑀𝐶−1
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Validations, results and discussion

6.7 Validations, results and discussion
In this section, the developed algorithms are tested. We use a cube as our convex geometry
(Fig.6.16). Also, all assumptions and definitions made in Section.6.2 still remain. E ⊂ 𝜕G is
the surface on the top of the cube, which is an emitter. E is a black body with a homogeneous
temperature. It means that the intensity emitted on E is considered homogeneous and equal
to 𝐼0 (the source of intensity �̊� = 𝐼0 is independent of the position �⃗�𝑝). Other surfaces of the
cube are the “cold black” surfaces, noted B ⊂ 𝜕G. The observation point �⃗�𝑜𝑏𝑠 is initially set

at the center of the cube. The differentiation direction in this section is chosen as �⃗�0 ≡

⎡⎣1
0
0

⎤⎦.

We aim to estimate the angular integral of intensity arriving at �⃗�𝑜𝑏𝑠: 𝐺 ≡ 𝐺(�⃗�𝑜𝑏𝑠) and its
spatial derivative 𝜕1,�⃗�0𝐺 ≡ 𝜕1,�⃗�0𝐺(�⃗�𝑜𝑏𝑠), referred to Eq.6.5 and Eq.6.6.

�⃗�1

�⃗�2

�⃗�3

�⃗�0

B

�⃗�𝑜𝑏𝑠

E

𝑙0

Figure 6.16 – The configuration for validations. Point �⃗�𝑜𝑏𝑠 is the observation point;
The geometric center of the cube is the origin 𝑂 ∈ [0, 0, 0]𝑇 ; �⃗�1, �⃗�2 and �⃗�3 compose the
global coordinate system. �⃗�0 is the differentiation direction chosen for validations in
this section. 𝑙0 is the length of the border of the cube.

As it is introduced in Chapter.1, for validation purposes, the spatial derivative 𝜕1,�⃗�0𝐺(�⃗�𝑜𝑏𝑠)
estimated will also be approximated by Finite Different method. The result of approximation
is noted 𝜕1,�⃗�0�̃�(�⃗�𝑜𝑏𝑠):
When 𝐺 is derivable around �⃗�𝑜𝑏𝑠:

𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠) = lim
𝜖→0

𝐺(�⃗�𝑜𝑏𝑠 + 𝜖�⃗�)−𝐺(�⃗�𝑜𝑏𝑠 − 𝜖�⃗�)
2𝜖 (6.72)

The finite difference method approximates 𝜕1,�⃗�𝐺 by giving a non-zero fixed value Δ to 𝜖.
We note the result of approximation as 𝜕1,�⃗��̃�(�⃗�𝑜𝑏𝑠):

𝜕1,�⃗�𝐺(�⃗�𝑜𝑏𝑠) ≈ 𝐺(�⃗�𝑜𝑏𝑠 + Δ�⃗�)−𝐺(�⃗�𝑜𝑏𝑠 + Δ�⃗�)
2Δ ≡ 𝜕1,�⃗��̃�(�⃗�𝑜𝑏𝑠) (6.73)

Practically, the approximation of 𝜕1,�⃗��̃� requires estimating 𝐺 twice. Since 𝐺 is estimated
by the Monte-Carlo method, its statistical standard deviation 𝜎(𝐺) is also estimated at the
same time [14]. When approximating 𝑆𝑗 , its standard deviation 𝜕1,�⃗��̃� can be obtained [21]:

𝜎(𝜕1,�⃗��̃�(�⃗�𝑜𝑏𝑠)) ≈ 𝜎(𝐺(�⃗�𝑜𝑏𝑠 + Δ�⃗�)) + 𝜎(𝐺(�⃗�𝑜𝑏𝑠 −Δ�⃗�))
2Δ (6.74)

The limitations of this method have already been discussed in the previous chapters. However,
we still use the results approximated by Finite Difference method 𝜕1,�⃗��̃� to validate our
estimations of 𝜕1,�⃗�𝐺.
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Transforming line sources into surface sources by Stokes’ theorem

We remind our proposal for this chapter, which is transforming the line sources into surface
sources to avoid the line integrals. Since the algorithms of estimating 𝜕1,�⃗�𝐺 is built with or
without the line sources, we note (𝜕1,�⃗�𝐺)𝑙 as the results obtained by the algorithm with line
sources and (𝜕1,�⃗�𝐺)𝑠 as the results obtained by the algorithm with surface sources.

6.7.1 Transparent medium
Firstly, we will validate Algo.8 and Algo.9 for transparent medium. The observation point

�⃗�𝑜𝑏𝑠 is defined as a function of 𝑥0, which is the first component of �⃗�𝑜𝑏𝑠 ≡

⎡⎣𝑥0
0
0

⎤⎦, 𝑥0 ∈ [− 𝑙
2 ,

𝑙
2 ].

Results for different positions of observations are shown in Table.6.3 and Fig.6.17. In the
Table.6.3, 𝐺 and (𝜕1,�⃗�𝐺)𝑙 are estimated by Algro.8 and (𝜕1,�⃗�𝐺)𝑠 is estimated by Algo.9. The
approximation is calculated following Eq.6.73, based on the results of 𝐺, estimated by Algo.8.
The x-axis of Fig.6.17 is non-dimensional The y-axis of Fig.6.17a physically represents the
solid angle, under which the surface E is viewed from the point �⃗�𝑜𝑏𝑠 [23]. The y-axis of
Fig.6.17b represents the gradient of solid angle, under which the surface E is viewed from
the point �⃗�𝑜𝑏𝑠.
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(a) Results of 𝐺.
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𝜕1,�⃗��̃�: finite difference
(𝜕1,�⃗�𝐺)𝑙: Monte-Carlo (line source)

(𝜕1,�⃗�𝐺)𝑠: Monte-Carlo (surface source)

(b) Results of 𝜕1,�⃗�𝐺.

Figure 6.17 – Results and validations of Algo.8 and of Algo.9 for transparent medium.
Number of Monte-Carlo realization 𝑛𝑀𝐶 = 100000.

From Fig.6.17b, the results of Aglo.8, Algo.9 are validated. Our method of transforming the
line sources into surface sources works well in the case of an absorbent medium. Following
Algo.9, we successfully avoid the line samplings and vectorize completely the estimations of
𝐺 and 𝜕1,�⃗�𝐺.
In order to study the convergence performance, we realized tests in the condition of a trans-
parent medium, with different positions of �⃗�𝑜𝑏𝑠. The interesting results we obtained are shown
in Table.6.1, where the observation point �⃗�𝑜𝑏𝑠 is set as a function of 𝑧0: �⃗�𝑜𝑏𝑠 = [0.25𝑙0, 0, 𝑧0]𝑇 .
It is found that with the �⃗�𝑜𝑏𝑠 closer to the emitter, the ratio 𝜎((𝜕1,�⃗�𝐺))𝑠/(𝜕1,�⃗�𝐺)𝑠 increases
significantly. This convergence issue can also be found when the medium is absorbent.

6.7.2 Absorbent medium
Then, we validate Algo.10 and Algo.11 for absorbent medium. Two absorption coefficients
are chosen (for 𝑘𝑎/𝑙0 = 0.25 and 𝑘𝑎/𝑙0 = 1.5).
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Validations, results and discussion

𝑧0/
𝑙0
2 (𝜕1,�⃗�𝐺)𝑠 𝜎((𝜕1,�⃗�𝐺))𝑠 𝜎((𝜕1,�⃗�𝐺))𝑠/(𝜕1,�⃗�𝐺)𝑠

0 −61.12× 10−3 37.71× 10−6 0.06%
0.5 −112.79× 10−3 203.18× 10−6 0.18%
0.9 −53.70× 10−3 5.46× 10−3 10.17%
0.95 −29.18× 10−3 21.72× 10−3 74.40%
0.99 −265.49× 10−3 547.89× 10−3 200.36%

Table 6.1 – Following Algo.9, estimations of (𝜕1,�⃗�𝐺)𝑠 with the observation point closer
or further from the surface where the surface sources locate.

Results for different positions of observations are shown in Table.6.4, Table.6.5, Fig.6.18
and Fig.6.19. In the Table.6.4, 𝐺 and (𝜕1,�⃗�𝐺)𝑙 are estimated by Algo.10 and (𝜕1,�⃗�𝐺)𝑠 is
estimated by Algo.11. The approximation is calculated following Eq.6.73, based on the
results of 𝐺, estimated by Algo.10.
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𝜕1,�⃗��̃�: finite difference
(𝜕1,�⃗�𝐺)𝑙: Monte-Carlo (line source)

(𝜕1,�⃗�𝐺)𝑠: Monte-Carlo (surface source)

(b) Results of 𝜕1,�⃗�𝐺.

Figure 6.18 – Results and validations of Algo.10 and of Algo.11 for absorbent medium
(𝑘𝑎/𝑙0 = 0.25 ). Number of Monte-Carlo realization 𝑛𝑀𝐶 = 100000.

From Fig.6.18 and Fig.6.19, the results of Aglo.10, Algo.11 are validated. Our method of
transforming the line sources into surface sources works well in the case of an absorbent
medium. Following Algo.9, we successfully avoid the line samplings and vectorize completely
the estimations of 𝐺 and 𝜕1,�⃗�𝐺.

6.7.3 Scattering medium
Then, we validate Algo.12 and Algo.14 for scattering medium. Only a small absorption
coefficients is chosen (for 𝑘𝑠 = 0.01m−1), because of the convergence issues observed. Only a
small absorption coefficients is chosen (for 𝑘𝑠/𝑙0 = 0.005), because of the convergence issues
observed. This issue will be discussed later in this section.

Results for different positions of observations are shown in Table.6.6 and Fig.6.20. In the
Table.6.6, 𝐺 and (𝜕1,�⃗�𝐺)𝑙 are estimated by Algo.12 and (𝜕1,�⃗�𝐺)𝑠 is estimated by Algo.14.
The approximation is calculated following Eq.6.73, based on the results of 𝐺, estimated by
Algo.12.
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𝜕1,�⃗��̃�: finite difference
(𝜕1,�⃗�𝐺)𝑙: Monte-Carlo (line source)

(𝜕1,�⃗�𝐺)𝑠: Monte-Carlo (surface source)

(b) Results of 𝜕1,�⃗�𝐺.

Figure 6.19 – Results and validations of Algo.10 and of Algo.11 for absorbent medium
(𝑘𝑎/𝑙0 = 1.5 ). Number of Monte-Carlo realization 𝑛𝑀𝐶 = 100000.
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𝜕1,�⃗��̃�: finite difference
(𝜕1,�⃗�𝐺)𝑙: Monte-Carlo (line source)

(𝜕1,�⃗�𝐺)𝑠: Monte-Carlo (surface source)

(b) Results of 𝜕1,�⃗�𝐺.

Figure 6.20 – Results and validations of Algo.12 and of Algo.14 for scattering medium.
Number of Monte-Carlo realization 𝑛𝑀𝐶 = 1000000.

It is found in Fig.6.20, the result of the point where 𝑥0/
𝑙0
2 = 0.5 is not converged well for

(𝜕1,�⃗�𝐺)𝑠. However, the result of (𝜕1,�⃗�𝐺)𝑙 does not have this problem of convergence. This
convergence issue is discussed in the following section.

An issue of convergence is observed when estimating (𝜕1,�⃗�𝐺)𝑠 by Algo.14. As it is found
in Fig.6.20 and Table.6.6, when the observation point is set at [0.25𝑙0, 0, 0]𝑇 , the standard
deviation 𝜎((𝜕1,�⃗�𝐺)𝑠) is very large. In order to better observe the convergence issue, a larger
𝑘𝑠 is set (𝑘𝑠 = 1m−1), remaining the position of the observation point �⃗�𝑜𝑏𝑠. Algo.14 is then
tested for several number of Monte-Carlo realization (𝑛𝑀𝐶) and results are in Table.6.2.

In Table.6.2, results obtained through Algo.12 (the (𝜕1,�⃗�𝐺)𝑙) don’t have specific convergence
issue. In Algo.12, one part of the contribution from the line sources is accumulated at each
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𝑛𝑀𝐶 (𝜕1,�⃗�𝐺)𝑠 𝜎((𝜕1,�⃗�𝐺)𝑠) (𝜕1,�⃗�𝐺)𝑙 𝜎((𝜕1,�⃗�𝐺)𝑙)
100000 −437.42× 10−3 262.16× 10−3 −87.07× 10−3 1.47× 10−3

1000000 116.29× 10−3 166.38× 10−3 −85.38× 10−3 642.91× 10−6

10000000 −124.85× 10−3 41.66× 10−3 −86.07× 10−3 224.32× 10−6

100000000 −58.23× 10−3 36.75× 10−3 −85.38× 10−3 642.91× 10−6

Table 6.2 – Following Algo.14, results of (𝜕1,�⃗�𝐺)𝑠 are not reliable when 𝑘𝑠[m−1] is
larger because of the convergence issue.

scattering, even in the medium (Fig.6.14). As for Algo.14, the line sources are extended
to surface sources. At each scattering event, one part of the contribution from the surface
sources is accumulated (Fig.6.15). Therefore, it seems that the convergence issue is principally
due to the process of transformation from line sources into surface sources.

Finally, we understand the convergence issue of Algo.14 in a scattering medium. In Algo.14,
the contribution of surface sources is accumulated at each scattering event in the medium.
When the scattering coefficient 𝑘𝑠 increases, more scattering events happen in the medium.
Therefore, some scattering events are very close to the emitter. The contributions accumulated
for these scattering events will be divergent, as it is observed in Table.6.1. We temporarily
do not have solutions for this convergence problem. The strategy to tackle this convergence
issue could be using the variance control techniques of the Monte-Carlo method [14].

6.8 Conclusion of the chapter
The method of sensitivity model introduces both line and surface sources. Inconveniences
are due to the line sources when applying the Monte Carlo method to solve this kind
of problem. In this chapter, we investigate the transformation of line sources into surface
sources with Stokes’ theorem under some assumptions (such as convex geometry, cold medium,
homogeneous properties, etc.). No more line sources exist in the system, and line sampling is
avoided. Also, all surface sources share the same path space. The observable and its spatial
derivative are then estimated in a vectorized form, and only one Monte Carlo estimation is
needed. This is a significant advantage for the method of observable derivation, introduced
in Chapter.2 and Chapter.3. Herein, following the method of sensitivity model, we regain
this advantage completely in this Chapter.

However, a convergence issue is found when applying this technique to a scattering medium.
We do not have solutions for it for now, but the potential solution could be applying the
variance control techniques of the Monte-Carlo method [14].
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6.9 Results of simulations

𝑥0/
𝑙0
2

𝐺 𝜕1,�⃗��̃� (𝜕1,�⃗�𝐺)𝑙 (𝜕1,�⃗�𝐺)𝑠

𝜎(𝐺) 𝜎(𝜕1,�⃗��̃�) 𝜎((𝜕1,�⃗�𝐺)𝑙) 𝜎((𝜕1,�⃗�𝐺)𝑠)

0.0 166.47× 10−3 −10× 10−6 3× 10−6

118× 10−6 42× 10−6 117× 10−6

0.1 166.09× 10−3 −10.84× 10−3 −12.18× 10−3 −12.38× 10−3

118× 10−6 1.18× 10−3 42× 10−6 116× 10−6

0.2 164.30× 10−3 −24.28× 10−3 −24.46× 10−3 −24.69× 10−3

117× 10−6 1.17× 10−3 44× 10−6 115× 10−6

0.3 161.23× 10−3 −37.32× 10−3 −36.86× 10−3 −37.00× 10−3

116× 10−6 1.16× 10−3 47× 10−6 113× 10−6

0.4 156.84× 10−3 −49.13× 10−3 −49.11× 10−3 −49.27× 10−3

115× 10−6 1.15× 10−3 50× 10−6 110× 10−6

0.5 151.41× 10−3 −61.54× 10−3 −61.08× 10−3 −61.11× 10−3

113× 10−6 1.13× 10−3 54× 10−6 107× 10−6

0.6 144.53× 10−3 −72.27× 10−3 −72.41× 10−3 −72.59× 10−3

111× 10−6 1.11× 10−3 58× 10−6 104× 10−6

0.7 136.95× 10−3 −81.17× 10−3 −82.45× 10−3 −82.60× 10−3

109× 10−6 1.09× 10−3 62× 10−6 102× 10−6

0.8 128.30× 10−3 −90.62× 10−3 −90.63× 10−3 −90.87× 10−3

106× 10−6 1.06× 10−3 65× 10−6 100× 10−6

0.9 118.83× 10−3 −96.67× 10−3 −96.67× 10−3

102× 10−6 67× 10−6 100× 10−6

Table 6.3 – Validations for different position of observation (from (0, 0, 0) to
(0.45𝑙0, 0, 0)), for a number of Monte-Carlo realization 𝑛𝑀𝐶 = 10000000.
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𝑘𝑎 = 0.5m−1

𝑥0/
𝑙0
2

𝐺 𝜕1,�⃗��̃� (𝜕1,�⃗�𝐺)𝑙 (𝜕1,�⃗�𝐺)𝑠

𝜎(𝐺) 𝜎(𝜕1,�⃗��̃�) 𝜎((𝜕1,�⃗�𝐺)𝑙) 𝜎((𝜕1,�⃗�𝐺)𝑠)

0.0 90.89× 10−3 −11× 10−6 −76× 10−6

64.94× 10−6 29× 10−6 75× 10−6

0.1 90.30× 10−3 −7.82× 10−3 −7.26× 10−3 −7.25× 10−3

64.94× 10−6 642× 10−6 29× 10−6 75× 10−6

0.2 89.33× 10−3 −14.13× 10−3 −14.59× 10−3 −14.58× 10−3

64.94× 10−6 638× 10−6 31× 10−6 74× 10−6

0.3 87.48× 10−3 −21.87× 10−3 −21.95× 10−3 −22.05× 10−3

63.94× 10−6 633× 10−6 33× 10−6 72× 10−6

0.4 84.96× 10−3 −29.72× 10−3 −29.44× 10−3 −29.46× 10−3

63.94× 10−6 624× 10−6 37× 10−6 70× 10−6

0.5 81.53× 10−3 −36.55× 10−3 −36.82× 10−3 −36.85× 10−3

61.94× 10−6 613× 10−6 41× 10−6 67× 10−6

0.6 77.65× 10−3 −43.11× 10−3 −43.90× 10−3 −43.96× 10−3

60.94× 10−6 599× 10−6 44× 10−6 65× 10−6

0.7 72.91× 10−3 −50.61× 10−3 −50.19× 10−3 −50.24× 10−3

58.94× 10−6 581× 10−6 48× 10−6 63× 10−6

0.8 67.53× 10−3 −55.04× 10−3 −55.36× 10−3 −55.34× 10−3

56.94× 10−6 560× 10−6 51× 10−6 61× 10−6

0.9 61.90× 10−3 −58.98× 10−3 −59.04× 10−3

54.94× 10−6 53× 10−6 61× 10−6

Table 6.4 – Validations for different position of observation (from (0, 0, 0) to
(0.45𝑙0, 0, 0)), for a number of Monte-Carlo realization 𝑛𝑀𝐶 = 10000000.
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𝑘𝑎 = 3m−1

𝑥0/
𝑙0
2

𝐺 𝜕1,�⃗��̃� (𝜕1,�⃗�𝐺)𝑙 (𝜕1,�⃗�𝐺)𝑠

𝜎(𝐺) 𝜎(𝜕1,�⃗��̃�) 𝜎((𝜕1,�⃗�𝐺)𝑙) 𝜎((𝜕1,�⃗�𝐺)𝑠)

0.0 4.71× 10−3 2× 10−6 −3× 10−6

4.09× 10−6 5× 10−6 7× 10−6

0.1 4.68× 10−3 −387× 10−6 −358× 10−6 −354× 10−6

4.09× 10−6 36× 10−6 5× 10−6 7× 10−6

0.2 4.63× 10−3 −717× 10−6 −739× 10−6 −735× 10−6

4.09× 10−6 36× 10−6 5× 10−6 6× 10−6

0.3 4.54× 10−3 −1.16× 10−3 −1.16× 10−3 −1.16× 10−3

4.09× 10−6 36× 10−6 −1.64× 10−3 6× 10−6

0.4 4.40× 10−3 −1.66× 10−3 −1.64× 10−3 −1.64× 10−3

4.09× 10−6 36× 10−6 8× 10−6 6× 10−6

0.5 4.20× 10−3 −2.18× 10−3 −2.17× 10−3 −2.18× 10−3

4.09× 10−6 35× 10−6 9× 10−6 6× 10−6

0.6 3.96× 10−3 −2.71× 10−3 −2.74× 10−3 −2.75× 10−3

3.09× 10−6 34× 10−6 11× 10−6 5× 10−6

0.7 3.66× 10−3 −3.30× 10−3 −3.31× 10−3 −3.30× 10−3

3.09× 10−6 33× 10−6 12× 10−6 5× 10−6

0.8 3.30× 10−3 −3.74× 10−3 −3.79× 10−3 −3.77× 10−3

3.09× 10−6 31× 10−6 14× 10−6 5× 10−6

0.9 2.91× 10−3 −4.10× 10−3 −4.10× 10−3

3.09× 10−6 15× 10−6 5× 10−6

Table 6.5 – Validations for different position of observation (from (0, 0, 0) to
(0.45𝑙0, 0, 0)), for a number of Monte-Carlo realization 𝑛𝑀𝐶 = 10000000.
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𝑘𝑠 = 0.01m−1

𝑥0/
𝑙0
2

𝐺 𝜕1,�⃗��̃� (𝜕1,�⃗�𝐺)𝑙 (𝜕1,�⃗�𝐺)𝑠

𝜎(𝐺) 𝜎(𝜕1,�⃗��̃�) 𝜎((𝜕1,�⃗�𝐺)𝑙) 𝜎((𝜕1,�⃗�𝐺)𝑠)

0.0 166.67× 10−3 30× 10−6 −565× 10−6

118× 10−6 42× 10−6 674× 10−6

0.1 165.98× 10−3 −12.65× 10−3 −12.27× 10−3 −13.56× 10−3

118× 10−6 1.18× 10−3 45× 10−6 1.04× 10−3

0.2 164.15× 10−3 −24.63× 10−3 −24.60× 10−3 −24.69× 10−3

117× 10−6 1.17× 10−3 44× 10−6 224× 10−6

0.3 161.06× 10−3 −37.02× 10−3 −36.94× 10−3 −37.36× 10−3

116× 10−6 1.16× 10−3 49× 10−6 564× 10−6

0.4 156.74× 10−3 −49.56× 10−3 −49.26× 10−3 −49.38× 10−3

115× 10−6 1.15× 10−3 51× 10−6 151× 10−6

0.5 151.14× 10−3 −60.82× 10−3 −61.37× 10−3 −65.64× 10−3

113× 10−6 1.13× 10−3 56× 10−6 4.41× 10−3

0.6 144.58× 10−3 −70.85× 10−3 −72.88× 10−3 −72.93× 10−3

111× 10−6 1.11× 10−3 60× 10−6 420× 10−6

0.7 136.97× 10−3 −82.98× 10−3 −82.94× 10−3 −83.11× 10−3

109× 10−6 1.08× 10−3 63× 10−6 134× 10−6

0.8 127.98× 10−3 −93.10× 10−3 −91.40× 10−3 −91.79× 10−3

106× 10−6 1.05× 10−3 69× 10−6 278× 10−6

0.9 118.35× 10−3 −97.48× 10−3 −97.96× 10−3

102× 10−6 68× 10−6 497× 10−6

Table 6.6 – Validations for different position of observation (from (0, 0, 0) to
(0.45𝑙0, 0, 0)), for a number of Monte-Carlo realization 𝑛𝑀𝐶 = 10000000.
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Conclusion

Radiative Transfer

Image
Synthesis

Concentrated
Solar
Power

My PhD
work

Figure 1 – The general positioning of this thesis.

In these three years of Ph.D. life, the author works between the interface of the CSP, the
physics of radiative transfer, and the community of image synthesis (Fig.1). Because of the
multi-disciplinary character of this thesis, it is concluded in these three viewpoints.

In the viewpoint of the CSP, a method to estimate sensitivities in a STP system is
provided in Chapter.5. It extends the first attempt to estimate sensitivities suggested by the
Ph.D. work of De la Torre, which is valid only when shadowing and blocking are neglected.
The present work fills the blank concerning sensitivity estimation in the CSP community. The
sensitivities of the translations, rotations and the size of each heliostat to the impacting power
on the receiver can be estimated accurately. The vectorization strategy makes estimating
thousands of sensitivities feasible within a reasonable calculating time. Also, each sensitivity
can be interpreted physically, telling how the physical events in STP system (blocking,
spillage, shadowing, etc.) affect the sensitivities, making some more sensitive than others. All
kinds of STP systems with flat mirrors can benefit from this method. With the information
provided by this method, engineers and researchers can:

1. Analyse the optical field of a STP system and improve the optical performance by
adjusting the more sensitive parameters during operation.
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2. Realize a detailed analysis of the optical field. The information on the contributions
of physical events (blocking, spillage, shadowing, etc.) to the sensitivities is provided,
helping engineers understand better the optical system and perform the sensitivity
analysis.

3. Couple the information on sensitivities (the gradient) with a gradient-based algorithm
for optimization purposes. This is of great interest to the CSP community since
optimization mainly relies on gradient-free algorithms such as genetic algorithms or
particle swarm optimization.

In the viewpoint of physics radiative transfer, the idea of vectorization has been
proposed and implemented after the recent Ph.D. work of Paule Lapeyre [31–34]. Thanks to
this vectorization strategy, the sensitivity model method can be applied to cases involving
complex, triangulated geometries with a reasonable calculating time and less coding effort.

Nevertheless, a technique of transforming line sources into surface sources is presented in
Chapter.6. This technique helps to avoid line sampling and vectorize the observable and its
spatial derivation estimation completely.

In the viewpoint of image synthesis, all results obtained in this thesis are based on the
computer graphic libraries in the community of image synthesis.

The technique studied in Chapter.6 helps to avoid the “sampling on segments,” which is
regarded as a complex subject in the community. The researchers of image synthesis provide
some complicated methods to overcome this difficulty [64]. However, herein, we try to solve
this problem physically (by transforming the line sources into surface sources).

In Chapter.4, by applying the strategy of vectorization, a sensitivity image is rendered at
the price of a low supplementary computation effort when the image of intensity is rendered.
The image of sensitivity helps perform optimization and machine learning in the community
of image synthesis[26].

Moreover, the literature on image synthesis about estimating sensitivities by Monte-Carlo is
reviewed. Although the vocabularies and the viewpoints are different, we compared their
methods and ours (developed in the EDstar group1) in Chapter.3. It is exciting to find out
that even though the viewpoints are different, the method of differentiable rendering used by
the image synthesis community and the method of sensitivity model converge to the same
algorithm in the example developed in Chapter.3.

Perspectives
This Ph.D. work inspires the following perspectives:

1. The method developed in Chapter.5 is limited to flat mirrors. However, many STP
systems are constructed based on curved mirrors (hemispheric or parabolic). There are
two ways to describe the curvature of heliostat: 1) using the quadric surface of curved
heliostat; 2) using a meshed geometry composed of triangles. Further work is required
to highlight the differences and/or the practicability of the two approaches.

2. Even if it is possible to estimate only the impacting power at the top of a STP, it
would also be possible to build a "flux map" of sensitivity. This would be useful to
avoid the "hot spot" and to homogenize the flux on the receiver.

1http://www.edstar.cnrs.fr/prod/fr/
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3. The sensitivities provided by our method have uncertainties. To our knowledge,
uncertainties are not taken into account in gradient-based optimization algorithms.
This would become crucial when the gradient tends to zero since it would not be
possible to distinguish if the estimated gradient is positive or negative. A naive way
to handle it would be to increase the Monte Carlo iterations. However, this approach
requires more development.

4. In Chapter.6, the convergence problem is distinguished when the technique of trans-
forming line sources to surface sources is applied in a scattering medium. Applying
variance reduction methods might be a potential solution for this convergence problem.

5. The study of Chapter.6 is restricted to convex geometries. Applying the technique of
transforming line sources to surface sources in a non-convex geometry is challenging.
Stokes’ theorem can not be applied directly when the triangles are blocked from each
others.

6. Finally, the method of differentiable rendering is well adapted to complex geometry.
Applying it in CSP applications can be a promising way of estimating sensitivities.
The main challenge would be linking the different research problems in the two com-
munities. In image synthesis, the main challenge is to render images which means that
algorithms are based on reverse ray-tracing. Therefore, efforts are required to adapt
those algorithms to the CSP field.
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A.1 Introduction
The idea of vectorization is that, instead of propagating a scalar as the descriptor of the
transport model, we propagate a vector as the descriptor of the transport. In this appendix,
we build the transport models in a vectorized form (see Fig.1). This way of vectorization
requires great formal efforts. Further studies are needed if we want to apply it to specific
applications.

In this appendix, we will firstly introduce the method of sensitivity model developed during
the PhD work of Paule Lapeyre (Lapeyre, 2021b; Lapeyre et al., 2019). In this section, the
general transport model of intensity will be reviewed. Depending on the need of different
applications, observables are estimated based on the general transport model of intensity.
Herein, the sensitivities of an observable with respect to different parameters are also
estimated, following the method of sensitivity model. The method of sensitivity model aims
to build a transport model for the sensitivity of intensity, which is similar to the transport
model of intensity. The observable is usually formulated as the spatial or angular integral of
the intensity. While following the method of sensitivity model, the sensitivity of an observable
is usually formulated as the spatial or angular integral of the sensitivity of the intensity.
Therefore, we introduce then the general transport model for the sensitivity of intensity.
However, the model of sensitivity is coupled with two other quantities: the spatial derivative
of intensity and the angular derivative of intensity. Their definitions are also given, and the
general transport models are introduced respectively. Finally, the estimation of the sensitivity
of an observable requires solving the four coupled models of transport: the model of intensity,
the model of sensitivity, the model of spatial derivative, and the model of angular derivative.
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Model of 𝐼 Model of 𝜕�̈�1𝐼 Model of 𝜕�̈�2𝐼 Model of 𝜕�̈�𝑛𝐼

Model of

⎡⎢⎢⎢⎢⎣
𝐼

𝜕�̈�1𝐼
𝜕�̈�2𝐼
· · ·
𝜕�̈�𝑛𝐼

⎤⎥⎥⎥⎥⎦

Fredholm Equation of

⎡⎢⎢⎢⎢⎣
𝐼

𝜕�̈�1𝐼
𝜕�̈�2𝐼
· · ·
𝜕�̈�𝑛𝐼

⎤⎥⎥⎥⎥⎦

Expected value form of

⎡⎢⎢⎢⎢⎣
𝑂

𝜕�̈�1𝑂
𝜕�̈�2𝑂
· · ·
𝜕�̈�𝑛𝑂

⎤⎥⎥⎥⎥⎦

Monte-Carlo estimator of

⎡⎢⎢⎢⎢⎣
𝑂

𝜕�̈�1𝑂
𝜕�̈�2𝑂
· · ·
𝜕�̈�𝑛

𝑂

⎤⎥⎥⎥⎥⎦

· · ·

Figure 1 – A roadmap for the first way of vectorization. It aims to formulate a
vectorized transport model and formulate the Fredolhme equation, expected value form,
and the Monte-Carlo estimator in a vectorized form. 𝐼 is the intensity, �̈�1, �̈�2, . . .,
�̈�𝑛 are the parameters of the system and 𝜕�̈�1𝐼, 𝜕�̈�2𝐼, . . ., 𝜕�̈�𝑛

𝐼 are the sensitivities
corresponding. 𝑂 is observable, which is usually formulated as the integral of intensity 𝐼.
The sensitivity of 𝑂 is usually formulated as the integral of the sensitivity of intensity.

After that, we will introduce the strategy of vectorization. The four models introduced
describe the transport of four scalars: intensity, sensitivity, spatial derivative, and angular
derivative. Following the strategy of vectorization, we simply rewrite the four models into
a vectorized form, where the four models are built for a vector of sensitivities, a vector of
spatial derivatives, and a vector of angular derivatives. This simple gesture allows us to
transport the descriptors in a vectorized form. For example, instead of transporting each
sensitivity corresponding to a parameter by its own path in the system, we can transport a
vector of sensitivities corresponding to each parameter by only one pathway.

A.2 The method of sensitivity model
The method of sensitivity model aims to estimate the sensitivity of an observable with respect
to a parameter in a radiative system. In this section, we review this method developed
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by Paule Lapeyre during her PhD work [31–34]. It has already been introduced briefly in
Chapter.3, and it will be introduced in detail in this section.

Beginning with the definition of a general radiative system, the general model of intensity will
be introduced. After that, observables and the sensitivities of observables will be formulated
in integral forms. The transport model of the sensitivity of intensity is then introduced,
from which the sensitivity of the observable can be estimated. Lastly, the transport model
of sensitivity is coupled with two other transport models: the transport model of spatial
derivative and the transport model of angular derivative, which are also introduced. The
estimation of an observable needs to solve the model of intensity. While the estimation of
the sensitivity of an observable needs to solve the four mentioned coupled models.

A.2.1 Definition of a radiative system

We consider a radiative system. The descriptor of the system is the intensity 𝐼 ≡ 𝐼(�⃗�, �⃗�, �̈�)
which has 3 independent variables:

• The position �⃗� is a vector of R3 that belongs to the set G ⊂ R3. The geometric domain
is bounded by 𝜕G. The set G includes then the interior of the geometric domain and
its boundary: G = G̊ ∪ 𝜕G.

• The direction of propagation �⃗� is an element of the unit sphere S.

• The parameter �̈� is an element of R. The intensity in the system is sensitive to a
parameter for all positions �⃗� of G and every direction �⃗� of S. It will then be referred
as 𝐼 ≡ 𝐼(�⃗�, �⃗�, �̈�) and the domain G ≡ G(�̈�) = G̊(�̈�) ∪G(�̈�).

A.2.2 Model of intensity

In the medium, noting C as the collision operator, the stationary RTE has already been
announced in Chapter.1.

�⃗� · 𝜕1𝐼 = C[𝐼] + S �⃗� ∈ G (A.1)

with

C[𝐼(�⃗�, �⃗�)] = −𝑘𝑎(�⃗�)𝐼(�⃗�, �⃗�)− 𝑘𝑠(�⃗�)𝐼(�⃗�, �⃗�) + 𝑘𝑠(�⃗�)
∫︁

Ω′
P(−�⃗�′|�⃗�,−�⃗�)𝑑�⃗�′𝐼(�⃗�, �⃗�′) (A.2)

𝑘𝑎 is the absorption coefficient, and 𝑘𝑠 is the scattering coefficient. S is the source of
emission in the medium. It is null when the medium is considered “cold”. The function
of P(−�⃗�′|�⃗�,−�⃗�) is called the Phase-function. It characterizes the probability of the fact
that a photon is scattered to the direction −�⃗�′, coming from the direction −�⃗�. This
formulation favors a reciprocal/adjoint interpretation thanks to the micro-reversibility relation
P(−�⃗�′| − �⃗�) = P(�⃗�|�⃗�′).
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On the boundary, noting C𝑏 as the reflection operator and �̊� as the source of emission on
the boundary, the incoming intensity equation is:

𝐼 = C𝑏[𝐼] + �̊� �⃗� ∈ 𝜕G; �⃗� · �⃗� > 0 (A.3)

with

C𝑏[𝐼] = 𝜌(�⃗�,−�⃗�)
∫︁

2𝜋(�⃗�)
PΩ′,𝑏(−�⃗�′|�⃗�,−�⃗�)𝑑�⃗�′𝐼(�⃗�, �⃗�′) (A.4)

where �⃗� is the normal to the boundary at �⃗�, �⃗� the direction within the hemisphere 2𝜋
characterised by �⃗�, 𝜌(�⃗�,−�⃗�) the surface reflectivity for a photon impacting the boundary
in direction −�⃗�, and PΩ′,𝑏 the probability density that the reflection direction is −�⃗�′ for a
photon reflected at �⃗� coming from direction −�⃗� (the product of 𝜌PΩ′,𝑏 is called BRDF).

To summarize, the model of transport for intensity is:

{︃
�⃗� · 𝜕1𝐼 = C[𝐼] + S �⃗� ∈ G

𝐼 = C𝑏[𝐼] + �̊� �⃗� ∈ 𝜕G; �⃗� · �⃗� > 0
(A.5)

with S the source in the medium (Fig.2) and �̊� the source on the boundaries (Fig.3). Also,
distinguished from the sources of the system, 𝐼 is the transport term of intensity.

�⃗� �⃗�′�⃗�
�⃗�

�⃗�Absorption

Scattering Emission (S)

Figure 2 – Source (emission) and collisions (absorption and scattering) within the
volume at point �⃗�.

�⃗��⃗�′

�⃗�

�⃗�

Reflection Emission (�̊�)

Figure 3 – Source (emission) and collisions (reflection) on the boundary at point �⃗�.
The collision of absorption is described by the reflectivity 𝜌 ∈ [0, 1], which is a factor of
intensity reflected.

A.2.3 Observable in a radiative system
Some typical observables in a radiative system are reviewed in Chapter.1. Herein, we have a
brief reminder.

The observable can be simply the descriptor itself: intensity 𝐼 on a location �⃗�𝑜𝑏𝑠 towards a
direction �⃗�𝑜𝑏𝑠: 𝐼(�⃗�𝑜𝑏𝑠, �⃗�𝑜𝑏𝑠, �̈�). Also, it can be some macroscopic value. The transformation
from the mesoscopic descriptor (intensity 𝐼) to different macroscopic values is done by
integrations.
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Scalar flux 𝐺 [w · m−2] The irradiance of a unit surface is the integral of 𝐼 for all incoming
solid angles:

𝐺(�⃗�𝑜𝑏𝑠) =
∫︁

Ω
𝐼(�⃗�𝑜𝑏𝑠, �⃗�, �̈�)𝑑�⃗� (A.6)

When we consider a 3D radiative system, Ω = 4𝜋.

Total incident irradiance 𝜑 [w · m−2] The radiance flux is the energy flux traveling
perpendicularly to a unit surface:

𝜑(�⃗�𝑜𝑏𝑠) =
∫︁

Ω
𝐼(�⃗�𝑜𝑏𝑠, �⃗�, �̈�)|�⃗� · �⃗�|𝑑�⃗� (A.7)

Impacting power 𝑃 [w] The impacting power on a surface is the integral of radiance flux
over all the surface:

𝑃 =
∫︁
S

∫︁
Ω
𝐼(�⃗�, �⃗�, �̈�)|�⃗� · �⃗�|𝑑�⃗�𝑑�⃗� (A.8)

where S is the area of the surface being impacted.

A.2.4 Sensitivity of an observable with respect to a
parameter

Firstly, we define the sensitivity of intensity 𝑠(�⃗�, �⃗�, �̈�). It is the derivative of intensity with
respect to a parameter �̈�:

𝑠(�⃗�, �⃗�, �̈�) = 𝜕�̈�𝐼(�⃗�, �⃗�, �̈�) = 𝜕3𝐼(�⃗�, �⃗�, �̈�) (A.9)

The observables are expressed as the integral of the descriptor 𝐼 in Section.A.2.3. We now
differentiate the observables introduced in Section.A.2.3, with respect to the parameter �̈�.
We will find that the sensitivity of the observable with respect to the parameter �̈� is expressed
as the integral of 𝑠, the sensitivity of intensity defined in Eq.A.9.

Sensitivity of irradiance 𝜕�̈�𝐺 The sensitivity of the irradiance of a unit surface is the
integral of 𝑠 for all incoming solid angles:

𝜕�̈�𝐺(�⃗�𝑜𝑏𝑠) =
∫︁

Ω
𝑠(�⃗�𝑜𝑏𝑠, �⃗�, �̈�)𝑑�⃗� (A.10)

When we consider a 3D radiative system, Ω = 4𝜋.

Sensitivity of radiance flux 𝜕�̈�𝜑 The sensitivity of the radiance flux is the sensitivity of
energy flux traveling perpendicularly to a unit surface:

𝜕�̈�𝜑(�⃗�𝑜𝑏𝑠) =
∫︁

Ω
𝑠(�⃗�𝑜𝑏𝑠, �⃗�, �̈�)|�⃗� · �⃗�|𝑑�⃗� (A.11)

Sensitivity of impacting power 𝑃 The sensitivity of impacting power on a surface is the
integral of the sensitivity of radiance flux over all the surface:

𝜕�̈�𝑃 =
∫︁
S

∫︁
Ω
𝑠(�⃗�, �⃗�, �̈�)|�⃗� · �⃗�|𝑑�⃗�𝑑�⃗� (A.12)
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where S is the area of the surface being impacted.

It is noted that the development from the expressions of observable in Section.A.2.3 to the
expressions of sensitivity beyond is mathematically straightforward, based on the definition
of the sensitivity of intensity 𝑠 (in Eq.A.9). However, in the framework of the method of
sensitivity model, Paule Lapeyre tried to read the expressions of sensitivity physically: The
sensitivity of intensity 𝑠 and also be regarded as a descriptor of a radiative system, and the
sensitivities of the observable are then the measure of this descriptor. Therefore, it is decided
to build a transport model for 𝑠. The way of building a model for 𝑠 is then differentiating
the transport equation (the RTE) and the boundary conditions of the model of intensity
(Eq.A.5) with respect to the parameter �̈�.

A.2.5 Model of sensitivity
The model of sensitivity is developed in [32–34]. The sensitivity of intensity 𝑠 is used as
the descriptor of this model. In the medium, 𝑠 is then absorbed, scattered in the medium,
governed by the same collision operator C in the model of intensity. On the boundary, 𝑠
is reflected, absorbed, and governed by the same reflection operator C𝑏 in the model of
intensity:

{︃
�⃗� · 𝜕1𝑠 = C[𝑠] + S�̈�[𝐼] �⃗� ∈ G

𝑠 = C𝑏[𝑠] + �̊�[𝐼, 𝜕1,�⃗�𝐼, 𝜕2,�⃗�𝐼] �⃗� ∈ 𝜕G; �⃗� · �⃗� > 0
(A.13)

with the source of sensitivity in the medium S�̈�[𝐼] (Fig.4) and the source of sensitivity on
the boundary �̊�[𝐼, 𝜕1,�⃗�𝐼, 𝜕2,�⃗�𝐼] (Fig.5).

In the model of intensity, the sources in the medium S and on the boundary �̊� are given
(functions of the properties in the medium and on the boundaries). But in the model of
sensitivity, the sources S�̈� and �̊� are coupled with the model of 𝐼, 𝜕1,�⃗�𝐼, and 𝜕2,�⃗�𝐼, which are
respectively the model of intensity, the model of spatial derivative, and the model of angular
derivative. More details can be found in [34].

�⃗� �⃗�′�⃗�
�⃗�

�⃗�Absorption

Scattering Emission (S�̈�[𝐼])

Figure 4 – Source (emission) and collisions (absorption and scattering) within the
volume at point �⃗�. The source of sensitivity (S�̈�) is a function of intensity at this point �⃗�
and following the same direction �⃗�. The model of 𝑠 is then coupled with the model of 𝐼.

A.2.6 Model of spatial derivative
The spatial derivative is made along a given direction, namely along a unit vector �⃗�, which
means that:

𝜕1,�⃗�𝐼 = �⃗� · ∇⃗𝐼 = 𝜕1,�⃗�𝐼(�⃗�, �⃗�) = lim
𝜏→0

𝐼(�⃗�+ 𝜏 �⃗�)− 𝐼(�⃗�, �⃗�)
𝜏

(A.14)

Therefore, the spatial derivative 𝜕1,�⃗�𝐼 has tree independent variables: (�⃗�, �⃗�, �⃗�) they are the
position �⃗�, the direction of propagation �⃗� and the direction of differentiation �⃗� (Fig.6).

206



The method of sensitivity model

�⃗��⃗�′

�⃗�

�⃗�

Reflection Emission (̊𝑠[𝐼, 𝜕1,�⃗�𝐼, 𝜕2,�⃗�𝐼])

Figure 5 – Source (emission) and collisions (reflection) on the boundary at point �⃗�.
The collision of absorption is described by the reflectivity 𝜌 ∈ [0, 1], which is a factor
of intensity reflected. The source of sensitivity on the boundary (̊𝑠) is a function of
intensity, the spatial derivative of intensity and angular derivative of intensity at this
point �⃗� and following the same direction �⃗�. The model of 𝑠 is then coupled with the
model of 𝐼, 𝜕1,�⃗�𝐼 and 𝜕2,�⃗�𝐼.

�⃗�

�⃗�
�⃗�

�⃗�

�⃗�

�⃗�
�⃗�

�⃗� + 𝜏 �⃗�

Figure 6 – The spatial derivative 𝜕1,�⃗�𝐼 pictured as an elementary displacement following
the direction of differentiation �⃗� (Eq.A.14). When picturing the physical model of spatial
derivative of intensity, we need to draw the location �⃗�, the direction of propagation �⃗�
and also the direction of differentiation �⃗�.

The model of spatial derivative is developed in [34]:

{︃
�⃗� · 𝜕1(𝜕1,�⃗�𝐼) = C[𝜕1,�⃗�𝐼] + S�⃗�[𝐼] �⃗� ∈ G

𝜕1,�⃗�𝐼 = 𝛽C𝑏[𝜕1,�⃗�𝐼] + S𝑏,�⃗�[𝐼] �⃗� ∈ 𝜕G; �⃗� · �⃗� > 0
(A.15)

with the source in the medium S�⃗�[𝐼] (Fig.7).

�⃗� �⃗�′�⃗�
�⃗�

�⃗�Absorption

Scattering Emission (S�̃�[𝐼])

Figure 7 – Source (emission) and collisions (absorption and scattering) within the
volume at point �⃗�. The source of spatial derivative (S�⃗�) is a function of intensity at this
point �⃗� and following the same direction �⃗�. The model of 𝜕1,�⃗�𝐼 is then coupled with
the model of 𝐼.
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On the boundary, �⃗� is decomposed as the sum of two vectors, one parallel to the direction of
�⃗�, the other parallel to a direction �⃗�, which is parallel to the boundary:

�⃗� = 𝛼�⃗� + 𝛽�⃗� (A.16)

with

𝛼 = �⃗� · �⃗�
�⃗� · �⃗�

;𝛽 = ||�⃗�− 𝛼�⃗�||; �⃗� = �⃗�− 𝛼�⃗�
𝛽

(A.17)

�⃗�

𝛽�⃗�

𝛼�⃗�

Figure 8 – Decomposition of the spatial velocity of deformation. The gradient of
intensity projected to �⃗� is unknown. It is then decomposed to the direction of �⃗�, and �⃗�,
where the gradients are described by RTE and the boundary condition.

The source on the boundary S𝑏,�⃗� is coupled with the model of 𝐼 (see more details in [34] and
Fig.9). It is noted that in Eq.A.15, the reflection operator on the boundary C𝑏 is applied to
𝜕1,�⃗�𝐼, instead of 𝜕1,�⃗�𝐼 (seeing Fig.9). In other words, the differentiation direction for the
incoming spatial derivative is �⃗�, but after the reflection, the differentiation direction becomes
�⃗�, which is parallel to the boundary. The corresponding physical image of reflection still
exists, but the direction of the differentiation changes, and the collision operator is multiplied
by 𝛽 after each reflection (see Eq.A.15).

�⃗�

�⃗�′

�⃗�

(a) Incoming spatial derivative.

�⃗� �⃗�

�⃗� Emission (S𝑏,�⃗�[𝐼])
Reflection

(b) Reflected spatial derivative.

Figure 9 – Source (emission) and collisions (reflection) on the boundary at point �⃗�.
The collision of absorption is described by the reflectivity 𝜌 ∈ [0, 1], which is a factor of
the spatial derivative reflected. The source of spatial derivative on the boundary (S𝑏,�⃗�)
is a function of intensity at this point �⃗� and following the same direction �⃗�. The model
of 𝜕1,�⃗�𝐼 is then coupled with the model of 𝐼.

S�⃗�[𝐼] is the source of spatial derivative in the medium, and S𝑏,�⃗�[𝐼] is the source of spatial
derivative on the boundaries. It is noted that the source S𝑏,�⃗�[𝐼] will include a surface part
and a lineic part when the boundary has a discontinuity at the junction of two plane surfaces
(for example two triangles). When the boundary is smooth, only the surface source exists,
noted Ṡ𝑏,�⃗� :

S𝑏,�⃗�[𝐼] = Ṡ𝑏,�⃗�[𝐼]. (A.18)
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When the boundary is discretized as an ensemble of plane surfaces, typically an ensemble of
triangles, then the intensity in a given direction becomes discontinuous at the edge of the
surface. It induces line sources on the edges:

S𝑏,�⃗�[𝐼] = Ṡ𝑏,�⃗�[𝐼] + Ŝ𝑏,�⃗�[𝐼]. (A.19)

A.2.7 Model of angular derivative
The angular derivative corresponds to a rotation around the direction of the unit vector �⃗�:

𝜕2,�⃗�𝐼 = lim
𝛿𝜑→0

𝐼(�⃗�, �⃗��⃗�
𝛿𝜑)− 𝐼(�⃗�, �⃗�)
𝛿𝜑

(A.20)

�⃗�

�⃗� �⃗�

�⃗�

�⃗� �⃗�

𝛿𝜑

�⃗��⃗�
𝛿𝜑

Figure 10 – The angular derivative 𝜕2,�⃗�𝐼 pictured as an elementary rotation around the
rotation direction �⃗� (Eq.A.14). When picturing the physical model of spatial derivative
of intensity, we need to draw the location �⃗�, the direction of propagation �⃗� and also the
direction of rotation �⃗�.

The model of angular derivative is developed in [34]:

{︃
�⃗� · 𝜕1(𝜕2,�⃗�𝐼) = C̃[𝜕2,�⃗�𝐼] + S�⃗� [𝐼] �⃗� ∈ G

𝜕2,�⃗�𝐼 = S𝑏,�⃗� [𝐼] �⃗� ∈ 𝜕G; �⃗� · �⃗� > 0
(A.21)

The transport of the angular derivative is not classical radiative transport. The corresponding
collision operator C̃ is:

C̃[𝜕2,�⃗�𝐼] = −𝑘𝑎(�⃗�)𝜕2,�⃗�𝐼 − 𝑘𝑠(�⃗�)𝜕2,�⃗�𝐼 (A.22)

and the source S�⃗� in the medium is expressed as:

S�⃗� [𝐼] = 𝜕2,�⃗�C[𝐼] + 𝜕2,�⃗�S− C̃[𝐼] (A.23)

There is no reflection for angular derivative on the boundary, but only a source of angular
derivative S𝑏,�⃗� [𝐼] can be found on the boundary (see [34] for more details).

A.2.8 A road map of the method
The objective of using the method of sensitivity model is to estimate the sensitivity of an
observable with respect to a parameter. The model of sensitivity is built by differentiating
the model of intensity. The observable is then formulated as an integral of intensity, which is
the descriptor of the model of intensity. The sensitivity is then formulated as an integral of
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�⃗�
�⃗�

�⃗�Absorption

Emission (S𝛾 [𝐼])

Figure 11 – Source (emission) and collisions (absorption) within the volume at point �⃗�.
The angular derivative is not scattered in the medium. The source of angular derivative
(S�⃗�) is a function of intensity at this point �⃗� and following the same direction �⃗�. The
model of 𝜕2,�⃗�𝐼 is then coupled with the model of 𝐼.

�⃗� �⃗�

Emission (S𝑏,�⃗� [𝐼])

Figure 12 – Source (emission) on the boundary at point �⃗�. The angular derivative is
not reflected on the boundary, and the source of angular derivative on the boundary
(S𝑏,�⃗�) is a function of intensity at this point �⃗� and following the same direction �⃗�. The
model of 𝜕2,�⃗�𝐼 is then coupled with the model of 𝐼.

the sensitivity of the intensity, which is the descriptor of the model of sensitivity. However,
the model of sensitivity is coupled with three other models: the model of intensity, the model
of spatial derivative, and the model of angular derivative. We deal with this coupling by the
statistical technique of Double Randomization, which is already introduced in Chapter.1 and
Chapter.3.

Model of spatial derivative

Model of intensity

Model of sensitivity

Model of angular derivative

Observable

Sensitivity

CouplingDifferentiation

Figure 13 – A roadmap for the method of sensitivity model, of which the objective is
to estimate the sensitivity of an observable.

A.3 Vectorization of the transports
Following the method of sensitivity model, in order to estimate the sensitivity of an observable
in a radiative system, the four coupling models are built. They are built following the standard
radiative transport, where the descriptors are scalars (𝐼, 𝑠, 𝜕1,�⃗�𝐼 or 𝜕2,�⃗�𝐼). This is because,
as it is mentioned in Section.A.2, the parameter we focus on is an element �̈� ∈ R. However,
we are usually interested in more than one parameter in a radiative system. We note all these
parameters as �̈� ∈ R𝑛 and �̈� ≡ [�̈�𝑗 ],∀𝑗 ∈ {1, 2, . . . , 𝑛}, where 𝑛 is the number of parameters.
It will be convenient to formulate the model in vectorized forms rather than formulating
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4× 𝑛 coupling models to be solved. In this chapter, the letters in bold are used to represent
a vector (for example, �̈� is a vector of �̈�𝑗).

We define now the vector of sensitivity of �̈�:

𝑠(�⃗�, �⃗�, �̈�) = 𝜕�̈�𝐼(�⃗�, �⃗�, �̈�) = 𝜕3𝐼(�⃗�, �⃗�, �̈�) (A.24)

with 𝑠 ∈ R𝑛 and 𝑠 ≡ [𝑠𝑗 ],∀𝑗 ∈ {1, 2, . . . , 𝑛}.

The model of sensitivity in a vectorized form is then developed:

{︃
�⃗� · 𝜕1𝑠 = C[𝑠] + S�̈�[𝐼] �⃗� ∈ G

𝑠 = C𝑏[𝑠] + �̊�[𝐼, 𝜕1,𝜒𝐼, 𝜕2,𝛾𝐼] �⃗� ∈ 𝜕G; �⃗� · �⃗� > 0
(A.25)

where S�̈�[𝐼] is the source in the medium in a vectorized form: S�̈� ≡ [S�̈�𝑗
] and �̊� is the source

on the boundary in a vectorized form: �̊� ≡ [̊𝑠𝑗 ]. Also, the source �̊� is a function of 𝐼, 𝜕1,𝜒𝐼
and 𝜕2,𝛾𝐼, where 𝜒 ≡ [�⃗�𝑗 ] and 𝛾 ≡ [�⃗�𝑗 ].

𝜕1,𝜒𝐼 is the spatial derivative in a vectorized form:

𝜕1,𝜒𝐼 = 𝜒 · ∇⃗𝐼 (A.26)

and 𝜕2,𝛾𝐼 is the angular derivative in a vectorized form:

𝜕2,𝛾𝐼 = lim
𝛿𝜑→0

𝐼(�⃗�, �⃗�𝛾
𝛿𝜑)− 𝐼(�⃗�, �⃗�)
𝛿𝜑

(A.27)

The model of spatial derivative in a vectorized form is then developed:

{︃
�⃗� · 𝜕1(𝜕1,𝜒𝐼) = C[𝜕1,𝜒𝐼] + S𝜒[𝐼] �⃗� ∈ G

𝜕1,𝜒𝐼 = 𝛽C𝑏[𝜕1,𝑢𝐼] + S𝑏,𝜒[𝐼] �⃗� ∈ 𝜕G; �⃗� · �⃗� > 0
(A.28)

with 𝛽 ∈ R𝑛 and 𝑢 ∈ R3×𝑛. Each component of 𝛽 and 𝑢 are referred to Eq.A.16 and
Eq.A.17. S𝜒 and S𝑏,𝜒 are then the sources in the medium and on the boundaries respectively:
S𝜒 ≡ [S�⃗�𝑗

] and S𝑏,𝜒 ≡ [S𝑏,�⃗�𝑗
].

Also, the model of angular derivative in a vectorized form is developed:

{︃
�⃗� · 𝜕1(𝜕2,𝛾𝐼) = C̃[𝜕2,𝛾𝐼] + S𝛾 [𝐼] �⃗� ∈ G

𝜕2,𝛾𝐼 = S𝑏,𝛾 [𝐼] �⃗� ∈ 𝜕G; �⃗� · �⃗� > 0
(A.29)

with S𝛾 ∈ [𝑆�⃗�𝑗
] and S𝑏,𝛾 ∈ [𝑆𝑏,�⃗�𝑗

] the source in the medium and on the boundary respectively.

At this stage, the four coupling models in vectorized forms are built. Mathematically, the
models are simply written in a vectorized form, but there is also a physical image attached
to this reformulation. In fact, we are regrouping the propagations of the sources by their
path spaces.

For the model of sensitivities, different sensitivities 𝑠1, 𝑠2, 𝑠3, . . . share the same path
space in the medium and on the boundaries because they have the same model of transport
in the medium and on the boundaries. Therefore, the transport of different sensitivities can
be vectorized, seeing Fig.14. The propagation of the vectorized source �̊� has, therefore, only
one path space in the system.
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S�̈�1

S�̈�2

�̊�1
�̊�2
�̊�3

𝑠1

𝑠2

𝑠3

R
(a) Transport in the medium before vec-
torization.

�̊� 𝑠

R

S�̈�

(b) Transport in the medium after vec-
torization.

�̊�1
�̊�2
�̊�3

𝑠2
𝑠1

𝑠3

𝑠1
𝑠2
𝑠3

𝑠1𝑠2𝑠3

(c) Transport on the boundary before
vectorization.

�̊�

𝑠
𝑠

𝑠

(d) Transport on the boundary after vec-
torization.

Figure 14 – The sensitivities propagate from the source (in red) to the sensor (noted
R in black). Before vectorization, three models of transport for 𝑠 are needed. After
vectorization, only one model is needed to be solved. This is because the sensitivities
𝑠1, 𝑠2, 𝑠3 in a radiative system have the same model of transport in the medium.
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S𝑏,𝜒 𝜕1,𝜒𝐼

R

𝜕1,𝜒𝐼

(a) Transport in the medium.

Ṡ𝑏,𝜒 Ŝ𝑏,𝜒

𝜕1,𝜒𝐼
𝜕1,𝜒𝐼

𝜕1,𝜒𝐼

𝜕1,𝜒𝐼

(b) Transport on the boundaries.

Figure 15 – The spatial derivatives propagate from the source (in red) to the sensor
(noted R in black). When the boundary is discontinued, the surface source Ṡ𝑏,𝜒 and
the lineic source Ŝ𝑏,𝜒 have their own path space.

S𝑏,𝛾

𝜕2,𝛾𝐼

R
(a) Transport in the medium.

S𝑏,𝛾

𝜕2,𝛾𝐼

(b) Transport on the boundaries.

Figure 16 – The angular derivatives propagate from the source (in red) to the sensor
(noted R in black).

For the model of spatial derivative, different spatial derivatives 𝜕1,�⃗�1𝐼, 𝜕1,�⃗�2𝐼, 𝜕1,�⃗�3𝐼,
. . . share the same path space in the medium and on the boundaries, because they have the
same model of transport in the medium and on the boundaries. Therefore, the transport
of different spatial derivatives can be vectorized in the medium and on the boundaries,
seeing Fig.15. When the boundary is discontinued, the vectorized source S𝑏,𝜒 consists of two
different sources: Ṡ𝑏,𝜒 ≡ [Ṡ𝑏,�⃗�𝑗

] on the surface and Ŝ𝑏,𝜒 ≡ [Ŝ𝑏,�⃗�𝑗
] on the edge:

S𝑏,𝜒 = Ṡ𝑏,𝜒 + Ŝ𝑏,𝜒 (A.30)

As it is shown in Fig.15, the two sources are propagated in the medium and reflected on the
boundaries. However, they have different path spaces because Ṡ𝑏,𝜒 is emitted on the surface
and Ŝ𝑏,𝜒 is emitted on the edge.

For the model of angular derivative, different angular derivatives 𝜕2,�⃗�1𝐼, 𝜕2,�⃗�2𝐼, 𝜕2,�⃗�3𝐼,
. . . share the same path space in the medium and on the boundaries, because they have the
same model of transport in the medium and on the boundaries. Therefore, the transport
of different spatial derivatives can be vectorized, seeing Fig.16. The propagation of the
vectorized source S𝛾 has, therefore, only one path space in the system.

Sometimes, we can vectorize them together. If we observe the RTE of intensity
(Eq.A.1) and the RTE of sensitivity (Eq.A.25), they are almost the same, except that a
source is emitted in the medium in Eq.A.1. Therefore, when the medium is “cold” (no
emission in the medium), the intensity and the sensitivity will share the same model of
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transport in the medium. The path space of 𝐼 and of 𝑠 will then be the same in the medium.
The following equation of transport can be formulated:

�⃗� · 𝜕1

[︂
𝐼
𝑠

]︂
= C[

[︂
𝐼
𝑠

]︂
] (A.31)

Furthermore, we observe the RTE of spatial derivative (Eq.A.28). When the medium is
homogeneous (𝑘𝑎 and 𝑘𝑠 and the phase function is independent of �⃗�), the spatial derivative
will share the same model of transport with the intensity and the sensitivity in the medium.
The path space of 𝜕1,𝜒𝐼, 𝐼 and 𝑠 will then be the same in the medium:

�⃗� · 𝜕1

⎡⎣ 𝐼
𝑠

𝜕1,𝜒𝐼

⎤⎦ = −𝑘𝑎

⎡⎣ 𝐼
𝑠

𝜕1,𝜒𝐼

⎤⎦− 𝑘𝑠

⎡⎣ 𝐼
𝑠

𝜕1,𝜒𝐼

⎤⎦+ 𝑘𝑠

∫︁
Ω′

P(−�⃗�′| − �⃗�)𝑑�⃗�′
⎡⎣ 𝐼

𝑠
𝜕1,𝜒𝐼

⎤⎦ (A.32)

Moreover, we observe the RTE of angular derivative (Eq.A.29). When the medium is purely
absorbent (𝑘𝑠 = 0), the angular derivative will share the same model of transport with others
in the medium. The path space of 𝜕2,𝛾𝐼, 𝜕1,𝜒𝐼, 𝐼 and 𝑠 will then be the same in the medium:

�⃗� · 𝜕1

⎡⎢⎢⎣
𝐼
𝑠

𝜕1,𝜒𝐼
𝜕2,𝛾𝐼

⎤⎥⎥⎦ = −𝑘𝑎

⎡⎢⎢⎣
𝐼
𝑠

𝜕1,𝜒𝐼
𝜕2,𝛾𝐼

⎤⎥⎥⎦ (A.33)

To sum up, the basic strategy of vectorization is to vectorize the propagation of the sources
having the same path space.

We can vectorize the model of sensitivity, the model of spatial derivatives, and the model
of angular derivatives separately. For example, for the sensitivities, instead of constructing
statistic paths for each component 𝑠1, 𝑠2, . . ., only one statistic path for 𝑠 is then enough to
solve the model.

Furthermore, the vectorization of different descriptors is not always possible. The corre-
sponding strategy of vectorization is very flexible, depending on the specific problem.

In the following part of this chapter, we will practice this technique of vectorization in
two examples: calculate the sensitivities of reflectivity and the sensitivities of geometric
parameters. The strategy of vectorization is then adapted to these two examples.
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B.1 Introduction
In the first example of Chapter.4, the estimations of observable 𝐼 and its sensitivity 𝑠𝜌 are
vectorized. In this section, we benefit from this vectorized form (Eq.4.15) to render an image
of 𝐼 and another image of 𝑠𝜌 simultaneously. In other words, at the same time that an image
of 𝐼 is rendered, the image of 𝑠𝜌 can also be rendered at a price of a low supplementary
computation effort. The image 𝑠𝜌 can serve as necessary information to process optimization
and machine learning process in the community of image synthesis [26].

B.2 Render an image of intensity
Our algorithm of rendering is based on the calculation of the mean intensity (which is our
observable) captured by each pixel of a grid within a solid angle corresponding to this pixel:

< 𝐼 >𝑗=
∫︁

ΔΩ𝑗

1
Ω𝑗
𝑑�⃗� {𝐼(�⃗�, �⃗�, 𝜌)} (B.1)

Eq.B.1 is a formulation of the mean intensity < 𝐼 >𝑗 captured by a pixel of 𝑗 as its index.
This formulation can be read directly as an algorithm of Monte-Carlo estimation, consisting
of uniformly sampling an initial direction �⃗� within a solid angle ΔΩ𝑗 corresponding to the
pixel. This correspondence depends on the camera. In this example, we will use a pinhole
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Rendering an image of intensity and an image of sensitivity simultaneously by vectorized Monte-Carlo method

�⃗�𝑓

�⃗�

�⃗�

solid angle of 𝑖𝑡ℎ pixel
𝑖𝑡ℎ pixel

pixel grid

Figure 1 – Schema of a pinhole camera used in this example: the position of departure
position of ray-tracing �⃗� and the direction of departure �⃗� from a given pixel is linked by
the camera focal �⃗�𝑓 .

camera. The position of the departure of the ray from the pixel �⃗� and its initial direction
are linked via a camera focal �⃗�𝑓 , seeing Fig.1 for the definition of a camera.

In Section.4.2.3, Eq.4.6 signifies the fact that the intensity 𝐼(�⃗�, �⃗�, 𝜌) has three possible origins.
It can be from the three boundary conditions, seeing Fig.2.

�⃗�𝑓

�⃗�

�⃗�

O𝑠

O𝑙

T𝑖

T

𝐼(�⃗�, �⃗�, 𝜌)

Figure 2 – A pinhole camera (Fig.1) is put in the scene. The intensity to be integrated
is 𝐼(�⃗�, �⃗�, 𝜌), the intensity propagated from �⃗�, following �⃗�. Three possible events can
happen: the ray hits the O𝑠, and 𝐼(�⃗�, �⃗�, 𝜌) = 1; the ray hits the O𝑙 and 𝐼(�⃗�, �⃗�, 𝜌) = 0;
the ray hits the T𝑖, 𝐼(�⃗�, �⃗�, 𝜌) = 𝐼𝑖(�⃗�𝑝, �⃗�𝑝, 𝜌).

Finally, the expected value form of < 𝐼 >𝑗 can be formulated:

< 𝐼 >𝑗=
∫︁

ΔΩ𝑗

1
Ω𝑗
𝑑�⃗�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐼0H(�⃗�ℎ𝑖𝑡 ∈ O𝑠)+
0H(�⃗�ℎ𝑖𝑡 ∈ O𝑙)+∫︁

2𝜋(�⃗�𝑖)
PΩ′

𝑝
(�⃗�′𝑝)𝑑�⃗�′𝑝𝜌𝐼𝑖(�⃗�𝑝, �⃗�

′
𝑝, 𝜌)H(�⃗�ℎ𝑖𝑡 ∈ T𝑖)

(B.2)

A Monte-Carlo algorithm estimating the mean intensity impacting the 𝑗𝑡ℎ pixel can be read
from Eq.B.2. For each realization, we sample a direction of observation �⃗� following the pdf
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Render an image of sensitivity

1
Ω𝑗

, and we calculate the associated position of observation �⃗� according to the position focal
point. After that, we proceed with a ray-tracing process. If the first intersection is found on
O𝑠, we count 𝐼0 for this realization; if the first intersection is found on O𝑙, we count 0; if
the first intersection is found on T𝑖, we will continue to search for the incoming intensity,
sampling a direction following PΩ′

𝑝
.

We will finally reformulate Eq.B.2 iteratively to interpret a final algorithm and an attached
physical picture:

< 𝐼 >𝑗=
∫︁

ΔΩ𝑗

1
Ω𝑗
𝑑�⃗�
{︁
𝜌0𝐼0H(�⃗�0,ℎ𝑖𝑡 ∈ O𝑠)

+ H(�⃗�0,ℎ𝑖𝑡 ∈ T𝑖)
∫︁

2𝜋(�⃗�𝑖)
PΩ𝑝

(�⃗�𝑝1)𝑑�⃗�′𝑝1
[︀
𝜌1𝐼0H(�⃗�1,ℎ𝑖𝑡 ∈ O𝑠) + H(�⃗�1,ℎ𝑖𝑡 ∈ T𝑖) . . .

]︀}︁
(B.3)

where �⃗�0,ℎ𝑖𝑡 and �⃗�1,ℎ𝑖𝑡 are the points of intersection after 0 and 1 reflection; �⃗�𝑝1 is the
direction of propagation after 1 reflection.

Systematically, for each Monte-Carlo realization, if we note �⃗�𝑘,ℎ𝑖𝑡, ∀𝑘 ∈ N0 as the point of
intersection after 𝑘 reflections, when �⃗�𝑘,ℎ𝑖𝑡 ∈ O𝑠, we count 𝜌𝑘𝐼0 for this realization; when
�⃗�𝑘,ℎ𝑖𝑡 ∈ O𝑙, we count 0; when �⃗�𝑘,ℎ𝑖𝑡 ∈ T , we continue the (𝑘 + 1)𝑡ℎ reflection.

B.3 Render an image of sensitivity
Similar to the Eq.B.1, the rendering of an image of sensitivity 𝑠𝜌 is based on the estimation
of the mean sensitivity captured by each pixel of a grid within a solid angle corresponding to
this pixel:

< 𝑠𝜌 >𝑗=
∫︁

ΔΩ𝑗

1
Ω𝑗
𝑑�⃗� {𝑠𝜌(�⃗�, �⃗�, 𝜌)} (B.4)

In Section.4.2.5, Eq.4.12 signifies the fact that 2 events can happen when a ray is lanced
from the position �⃗� towards the direction −�⃗�: hitting or not hitting the object T (Fig.3).

Therefore, the expected value form of 𝑠𝜌 can be formulated:

< 𝑠𝜌 >𝑗=
∫︁

ΔΩ𝑗

1
Ω𝑗
𝑑�⃗�

⎧⎪⎨⎪⎩
0H(�⃗�ℎ𝑖𝑡 ̸∈ T )+∫︁

2𝜋(�⃗�𝑖)
PΩ′

𝑝
(�⃗�′𝑝)𝑑�⃗�′𝑝

(︀
𝜌𝑠𝜌𝑖(�⃗�𝑝, �⃗�

′
𝑝, 𝜌) + 𝐼𝑖(�⃗�𝑝, �⃗�

′
𝑝, 𝜌)

)︀
H(�⃗�ℎ𝑖𝑡 ∈ T𝑖)

(B.5)

A Monte-Carlo algorithm estimating the mean sensitivity impacting the 𝑗𝑡ℎ pixel can be
read from Eq.B.5. For each realization, we sample a direction of observation �⃗� following the
pdf 1

Ω𝑗
, and we calculate the associated position of observation �⃗� according to the position

focal point. After that, we proceed with a ray-tracing process from �⃗� towards −�⃗�. If the
first intersection is not found on T , we count 0 for this realization; if the first intersection is
found on T𝑖, we will continue to search for the incoming sensitivity 𝑠𝜌, sampling a direction
�⃗�′𝑝 following PΩ′

𝑝
and in the same time, we need to also search for the intensity 𝐼 following

the direction �⃗�′𝑝. In other words, we continue the ray-tracing process after the reflection,
searching for the incoming 𝑠𝜌 the 𝐼 at the same time.

We will herein reformulate Eq.B.5 iteratively to interpret a final algorithm:
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Rendering an image of intensity and an image of sensitivity simultaneously by vectorized Monte-Carlo method

�⃗�𝑓

�⃗�

�⃗�

O𝑠

O𝑙

T𝑖

T

𝑠𝜌(�⃗�, �⃗�, 𝜌)

Figure 3 – A pinhole camera (Fig.1) is put in the scene. The sensitivity to be integrated
is 𝑠𝜌(�⃗�, �⃗�, 𝜌), the sensitivity of intensity propagated from �⃗�, following �⃗�. Two possible
events can happen: the ray hits the O𝑠 or O𝑙, then 𝑠𝜌(�⃗�, �⃗�, 𝜌) = 0; the ray hits the T𝑖,
𝑠𝜌(�⃗�, �⃗�, 𝜌) = 𝑠𝜌𝑖(�⃗�𝑝, �⃗�𝑝, 𝜌).

< 𝑠𝜌 >𝑗=
∫︁

ΔΩ𝑗

1
Ω𝑗
𝑑�⃗�
{︁

0H(�⃗�0,ℎ𝑖𝑡 ̸∈ T )

+ H(�⃗�0,ℎ𝑖𝑡 ∈ T𝑖)
∫︁

2𝜋(�⃗�𝑖)
PΩ𝑝(�⃗�𝑝1)𝑑�⃗�′𝑝1

[︀
𝜌0𝐼0H(�⃗�1,ℎ𝑖𝑡 ̸∈ T )+

H(�⃗�1,ℎ𝑖𝑡 ∈ T𝑖)
∫︁

2𝜋(�⃗�𝑖)
PΩ𝑝(�⃗�𝑝2)𝑑�⃗�′𝑝2

(︀
2𝜌1𝐼0H(�⃗�2,ℎ𝑖𝑡 ̸∈ T )+

H(�⃗�2,ℎ𝑖𝑡 ∈ T𝑖) . . .
)︀]︀}︁

(B.6)

where �⃗�0,ℎ𝑖𝑡, �⃗�1,ℎ𝑖𝑡, �⃗�2,ℎ𝑖𝑡 are the points of intersection after 0, 1 and 2 reflection(s) respec-
tively; �⃗�𝑝1 and �⃗�𝑝2 are the directions of propagation after 1 and 2 reflection(s).

Systematically, for each Monte-Carlo realization, if we note �⃗�𝑘,ℎ𝑖𝑡, ∀𝑘 ∈ N0 as the point of
intersection after 𝑘 reflection, when �⃗�𝑘,ℎ𝑖𝑡 ̸∈ T , we count 𝑘𝜌(𝑘−1)𝐼0 for this realization; when
�⃗�𝑘,ℎ𝑖𝑡 ∈ T , we continue the (𝑘 + 1)𝑡ℎ reflection.

B.4 Render the two images simultaneously

In this stage, we have formulated the expected value form for estimating < 𝐼 >𝑗 and < 𝑠𝜌 >𝑗 .
Instead of proceeding two Monte-Carlo to estimate < 𝐼 >𝑗 and < 𝑠𝜌 >𝑗 for each pixel, in
fact, only one Monte-Carlo per pixel is needed to render an image of 𝑠𝜌 and an image of 𝐼.
It is because the propagation of 𝐼 and of 𝑠𝜌 can be vectorized.

When we compare Eq.B.2 and Eq.B.5 (or compare Eq.B.3 or Eq.B.6), we found that their
domains of integration are exactly the same. It means that they have the same path
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space of propagation so that we can vectorize their propagations by simply writing Eq.B.2
and Eq.B.5 into a vectorized form:

[︂
< 𝐼 >𝑗

< 𝑠𝜌 >𝑗

]︂
=
∫︁

ΔΩ𝑗

1
Ω𝑗
𝑑�⃗�

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[︂
𝐼0
0

]︂
H(�⃗�ℎ𝑖𝑡 ∈ O𝑠)+[︂

0
0

]︂
H(�⃗�ℎ𝑖𝑡 ∈ O𝑙)+∫︁

2𝜋(�⃗�𝑖)
PΩ′

𝑝
(�⃗�′𝑝)𝑑�⃗�′𝑝

[︂
𝜌𝐼𝑖(�⃗�𝑝, �⃗�

′
𝑝, 𝜌)

𝜌𝑠𝜌𝑖(�⃗�𝑝, �⃗�
′
𝑝, 𝜌) + 𝐼𝑖(�⃗�𝑝, �⃗�

′
𝑝, 𝜌)

]︂
H(�⃗�ℎ𝑖𝑡 ∈ T𝑖)

(B.7)

By formulating a vectorized form, from an algorithmic point of view, the ray-tracing test for
𝐼 and for 𝑠𝜌 can be done by the same ray (Fig.4).

�⃗�𝑓

�⃗�

�⃗�

O𝑠

O𝑙

T𝑖

T[︂
𝐼(�⃗�, �⃗�, 𝜌)
𝑠𝜌(�⃗�, �⃗�, 𝜌)

]︂

Figure 4 – A pinhole camera (Fig.1) is put in the scene. Instead of launching a ray for
the estimation of 𝐼 and another ray for the estimation of 𝑠𝜌. The same ray is used for
the estimation of the vector of these two descriptors.

Finally, we reformulate Eq.B.7 iteratively:

[︂
< 𝐼 >𝑗

< 𝑠𝜌 >𝑗

]︂
=
∫︁

ΔΩ𝑗

1
Ω𝑗
𝑑�⃗�
{︁[︂

𝐼0
0

]︂
H(�⃗�0,ℎ𝑖𝑡 ∈ O𝑠)

+ H(�⃗�0,ℎ𝑖𝑡 ∈ T𝑖)
∫︁

2𝜋(�⃗�𝑖)
PΩ𝑝

(�⃗�𝑝1)𝑑�⃗�′𝑝1
[︀ [︂𝜌𝐼0

𝐼0

]︂
H(�⃗�1,ℎ𝑖𝑡 ∈ O𝑠)+

H(�⃗�1,ℎ𝑖𝑡 ∈ T𝑖)
∫︁

2𝜋(�⃗�𝑖)
PΩ𝑝(�⃗�𝑝2)𝑑�⃗�′𝑝2

(︀ [︂𝜌2𝐼0
2𝜌𝐼0

]︂
𝐼0H(�⃗�2,ℎ𝑖𝑡 ∈ O𝑠)+

H(�⃗�2,ℎ𝑖𝑡 ∈ T𝑖) . . .
)︀]︀}︁

(B.8)

Systematically, for each Monte-Carlo realization, if we note �⃗�𝑘,ℎ𝑖𝑡, ∀𝑘 ∈ N0 as the point of
intersection after 𝑘 reflection, when �⃗�𝑘,ℎ𝑖𝑡 ∈ O𝑠, we count 𝜌𝑘𝐼0 for intensity and 𝑘𝜌(𝑘−1)𝐼0
for sensitivity for this realization; when �⃗�𝑘,ℎ𝑖𝑡 ∈ O𝑙, we count 0 for intensity and sensitivity;
when �⃗�𝑘,ℎ𝑖𝑡 ∈ T , we continue the (𝑘 + 1)𝑡ℎ reflection. The corresponding Algorithm is the
Algo.15.
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Rendering an image of intensity and an image of sensitivity simultaneously by vectorized Monte-Carlo method

Algorithm 15 Evaluation of < 𝐼 >𝑗 and < 𝑠𝜌 >𝑗 (for the 𝑗𝑡ℎ pixel)
Input: T , 𝑛𝑀𝐶 , �⃗�𝑓 , P𝑖

◁ 𝑛𝑀𝐶 : number of Monte-Carlo realization.
◁ T : the triangulated geometry of an object.

◁ P𝑖: the geometry of the 𝑗𝑡ℎ pixel.
◁ �⃗�𝑓 : the position of the focal point.

1: 𝑊𝐼 ← 0, 𝑊𝑠 ← 0 and 𝑉𝐼 ← 0, 𝑉𝑠 ← 0
◁ Initialize the sum and the sum of square

2: for 𝑖𝑀𝐶 = 0→ 𝑛𝑀𝐶 do
3: Initialize the weight of Monte-Carlo 𝑤𝐼 ← 0 and 𝑤𝑠 ← 0
4: Initialize the reflection counter 𝑐← 0
5: Initialize the keeprunning flag 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 1
6: Sample uniformly a position �⃗� on P𝑖

7: Calculate the direction based on �⃗� and �⃗�𝑓 : �⃗� ← �⃗�−�⃗�0
||�⃗�−𝑥0||

8: while keeprunning do
9: get the first intersection point of the ray (�⃗�, �⃗�): �⃗�ℎ𝑖𝑡

10: if �⃗�ℎ𝑖𝑡 ∈ T𝑖 then
11: 𝑐← 𝑐+ 1
12: Sample a direction of diffuse reflection �⃗�′𝑝 based on P′Ω(�⃗�′)
13: Update the position �⃗�← �⃗�ℎ𝑖𝑡

14: Update the direction of propagation �⃗� ← �⃗�′𝑝
15: else if �⃗�ℎ𝑖𝑡 ∈ O𝑠 then
16: 𝑤𝐼 ← 𝜌𝑐𝐼0
17: 𝑤𝑠 ← 𝑐𝜌𝑐−1𝐼0
18: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
19: else
20: 𝑤𝐼 ← 0
21: 𝑤𝑠 ← 0
22: 𝑘𝑒𝑒𝑝𝑟𝑢𝑛𝑛𝑖𝑛𝑔 ← 0
23: end if
24: end while
25: 𝑊𝐼 ←𝑊𝐼 + 𝑤𝐼

26: 𝑉𝐼 ← 𝑉𝐼 + 𝑤2
𝐼

27: 𝑊𝑠 ←𝑊𝑠 + 𝑤𝑠

28: 𝑉𝑠 ← 𝑉𝑠 + 𝑤2
𝑠

29: 𝑖𝑀𝐶 ← 𝑖𝑀𝐶 + 1
30: end for

Output: < 𝐼 >𝑗← 𝑊𝐼

𝑛𝑀𝐶
, 𝜎[< 𝐼 >𝑗 ] ←

√︂
𝑉𝐼

𝑛𝑀𝐶
−( 𝑊𝐼

𝑛𝑀𝐶
)2

𝑛𝑀𝐶−1 , < 𝑠𝜌 >𝑗← 𝑊𝑠

𝑛𝑀𝐶
, 𝜎[< 𝑠𝜌 >𝑗 ] ←√︂

𝑉𝑠
𝑛𝑀𝐶

−( 𝑊𝑠
𝑛𝑀𝐶

)2

𝑛𝑀𝐶−1
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C
Boundary conditions of sensitivity
on each triangle for Example 2 in

Chapter.4

In order to define the boundary condition of 𝑠𝑖,𝑗 on T𝑖 (which is the sensitivity of intensity
with respect to the 𝑗𝑡ℎ parameter on the 𝑖𝑡ℎ triangle), we differentiate the boundary condition
of 𝐼, but this process is not that straight forward. This is because the geometric vector �̈�
characterises the geometric status of T𝑖:

�⃗�𝑝 ≡ �⃗�𝑝(�̈�); �⃗�𝑝 ≡ �⃗�𝑝(�̈�) (C.1)

However, the sensitivity 𝑠𝑖 is defined as the derivative of intensity 𝐼(�⃗�, �⃗�, �̈�) where �⃗�, �⃗� and
�̈� are independent. The Ph.D. thesis [32] studies the development of boundary conditions for
sensitivity in detail. The boundary condition of sensitivity for a black surface is formulated
in a general form:

𝑠𝑖,𝑗(�⃗�𝑝, �⃗�𝑝, �̈�) = −𝜕1,�⃗�𝑗
𝐼𝑖(�⃗�𝑝, �⃗�𝑝, �̈�)− 𝜕2,�⃗�𝑗

𝐼𝑖(�⃗�𝑝, �⃗�𝑝, �̈�) (C.2)

where 𝜕1,�⃗�𝑗
is the operator for the spatial gradient projected to the vector �⃗�𝑗 , 𝜕2,�⃗�𝑗

is the
operator for the angular gradient projected to the vector �⃗�𝑗 . �⃗�𝑗 are the spatial velocities of
deformation, and �⃗�𝑗 are the angular velocities of deformation.
The definition of �⃗�𝑗 , �⃗�𝑗 and the demonstration of Eq.C.2 are in the following box:

Formulating the boundary conditions of sensitivity

Following [32], we note the domain that we defined 𝜕G as the geometric space,
and we define another domain as material space 𝜕M. Special notations are needed
to formulate the boundary condition of sensitivity on T𝑖. In geometric space, the
positions ⃗̌𝑦𝑝 ∈ 𝜕G and directions ⃗̌𝜔𝑝 ∈ S are functions of the geometric parameter �̈�𝑗 ,
while in material space, the positions are noted �⃗�𝑝 ∈ 𝜕M and directions are noted
⃗̌𝜔 ∈ S. They are not dependent on �̈�𝑗 .
The function 𝑍 : 𝜕M×R→ 𝜕G and Ω : 𝜕M×R×S → S link the two space, so that
the positions and directions in one space can refer to the other space:

⃗̌𝑦𝑝 = 𝑍(�⃗�𝑝, �̈�𝑗); ⃗̌𝜔 = Ω(�⃗�𝑝, �⃗�, �̈�𝑗) (C.3)
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Boundary conditions of sensitivity on each triangle for Example 2 in Chapter.4

Also, we denote the intensity in geometric space as 𝐼𝑖(⃗̌𝑦𝑝, ⃗̌𝜔𝑝, �̈�𝑗) and in material space
as 𝐿𝑖(�⃗�𝑝, �⃗�𝑝, �̈�𝑗), so that we can build the following equation:

𝐼𝑖(⃗̌𝑦𝑝, ⃗̌𝜔𝑝, �̈�𝑗) = 𝐿𝑖(�⃗�𝑝, �⃗�𝑝, �̈�𝑗) (C.4)

We take the derivative of Eq.C.4 with respect to �̈�𝑗 :

𝜕�̈�𝑗
𝐼𝑖(⃗̌𝑦𝑝, ⃗̌𝜔𝑝, �̈�𝑗) = 𝜕�̈�𝑗

𝐿𝑖(�⃗�𝑝, �⃗�𝑝, �̈�𝑗) (C.5)

implying to the following equation, where we find the boundary condition of sensitivity
𝑠𝑗(⃗̌𝑦𝑝, ⃗̌𝜔𝑝, �̈�𝑗) :

𝜕1𝐼𝑖(⃗̌𝑦𝑝, ⃗̌𝜔𝑝, �̈�𝑗)𝜕�̈�𝑗
𝑍(�⃗�𝑝, �̈�𝑗) + 𝜕2𝐼𝑖(⃗̌𝑦𝑝, ⃗̌𝜔𝑝, �̈�𝑗)𝜕�̈�𝑗

Ω(�⃗�𝑝, �⃗�𝑝, �̈�𝑗)

+ 𝑠𝑗(⃗̌𝑦𝑝, ⃗̌𝜔𝑝, �̈�𝑗) = 𝜕�̈�𝑗
𝐿𝑖(�⃗�𝑝, �⃗�𝑝, �̈�𝑗) (C.6)

We define the derivative of 𝑍 with respect to �̈�𝑗 as the spatial velocity of defor-
mation �⃗�𝑗 :

�⃗�𝑗 ≡ 𝜕�̈�𝑗
𝑍(�⃗�𝑝, �̈�𝑗) (C.7)

For different �̈�𝑗 , the velocities of deformations �⃗�𝑗 are summarized in Table.C.1.
Furthermore, we define the derivative of Ω with respect to �̈�𝑗 as the angular velocity
of deformation �⃗�𝑗 :

�⃗�𝑗 ≡ 𝜕�̈�𝑗 Ω(�⃗�𝑝, �⃗�𝑝, �̈�𝑗) (C.8)

Also, we notice that the material properties are not dependent on the geometric
parameters �̈�𝑗 in this example, which means:

𝜕�̈�𝑗
𝐿𝑖(�⃗�𝑝, �⃗�𝑝, �̈�𝑗) = 0 (C.9)

Finally, Eq.C.2 is yielded.

𝑗 𝑍(�⃗�, �̈�𝑗) �⃗�1 = 𝜕�̈�1𝑍

1

⎡⎣�̈�1
0
0

⎤⎦+ �⃗�

⎡⎣1
0
0

⎤⎦

2

⎡⎣ 0
�̈�2
0

⎤⎦+ �⃗�

⎡⎣0
1
0

⎤⎦

3

⎡⎣ 0
0
�̈�3

⎤⎦+ �⃗�

⎡⎣0
0
1

⎤⎦
4 �⃗� + �̈�4(⃗𝑎× (�⃗� − �⃗�𝑎) �⃗�× (�⃗� − �⃗�𝑎)

Table C.1 – The functions 𝑍 the spatial velocity of deformation corresponding to 4
geometric parameters of the object T .
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Following Eq.C.2, the boundary conditions for sensitivity consist of a term of spatial gradient
and a term of the angular gradient.
The first term on the right of Eq.C.2 is a spatial gradient. It quantifies the variation of the
intensity 𝐼𝑖(�⃗�𝑝, �⃗�𝑝, �̈�) with respect to a translation of the position �⃗�𝑝 for an infinitely short
length path in the domain G. The direction of the translation follows the unit vector �⃗�𝑗 ,
which is the spatial velocity of deformation:

𝜕1,�⃗�𝑗
𝐼𝑖(�⃗�𝑝, �⃗�𝑝, �̈�) = lim

𝛿𝑟→0

𝐼𝑖(�⃗�𝑝 + �⃗�𝑗𝛿𝑟, �⃗�𝑝, �̈�)− 𝐼𝑖(�⃗�𝑝, �⃗�𝑝, �̈�)
𝛿𝜑

(C.10)

The second term on the right of Eq.C.2 is an angular gradient. It quantifies the variation of
the intensity 𝐼𝑖(�⃗�𝑝, �⃗�𝑝, �̈�) with respect to a rotation of the direction �⃗�𝑝 for an infinitely small
angle on the unit sphere S. The rotation of �⃗�𝑝 is around the direction of the unit vector �⃗�𝑖,
which is the angular velocity of deformation:

𝜕2,�⃗�𝑗
𝐼𝑖(�⃗�𝑝, �⃗�𝑝, �̈�) = lim

𝛿𝜑→0

𝐼𝑖(�⃗�𝑝, �⃗�
�⃗�𝑗

𝑝𝛿𝜑, �̈�)− 𝐼𝑖(�⃗�𝑝, �⃗�𝑝, �̈�)
𝛿𝜑

(C.11)

In this case, the object T is a Lambertian emitter. Therefore, the angular gradient is null:

𝜕2,�⃗�𝑗
𝐼𝑖(�⃗�𝑝, �⃗�𝑝, �̈�) = 0 (C.12)

The boundary condition of sensitivity is then only about the spatial gradient, which can be
regarded as the emission term of the sensitivity (the source of sensitivity is noted �̊�𝑖,𝑗):

𝑠𝑖,𝑗(�⃗�𝑝, �⃗�𝑝, �̈�) = �̊�𝑖,𝑗(�⃗�𝑝, �⃗�𝑝, �̈�) = −𝜕1,�⃗�𝑗
𝐼𝑖(�⃗�𝑝, �⃗�𝑝, �̈�) (C.13)

The spatial gradient of intensity is studied in [34]. In our example, the object is triangulated.
The intensity on the borders of triangles is discontinuous, and its gradient induces a Dirac
term. The source of sensitivity �̊�𝑖,𝑗 is then composed with a surface source �̇�𝑖,𝑗 and a line
source 𝑠𝑖,𝑗,𝑘:

�̊�𝑖,𝑗(�⃗�𝑝, �⃗�𝑝, �̈�) = �̇�𝑖,𝑗(�⃗�𝑝, �⃗�𝑝, �̈�) +
3∑︁

𝑘=1
𝑠𝑖,𝑗,𝑘(�⃗�𝑙, �⃗�𝑙, �̈�) (C.14)

For the surface source:

�̇�𝑖,𝑗(�⃗�𝑝, �⃗�𝑝, �̈�) = −𝛼𝑖,𝑗C[𝐼𝑖(�⃗�𝑝, �⃗�𝑝, �̈�)] (C.15)

C is the collision operator, referring to Eq.4.22. 𝛼𝑖,𝑗 is the norm of the projected vector �⃗�𝑗

on the vector �⃗�𝑙, seeing Fig.3:

𝛼𝑖,𝑗 = �⃗�𝑗 · �⃗�𝑖

�⃗�𝑙 · �⃗�𝑖
(C.16)

For the line source:

𝑠𝑖,𝑗,𝑘(�⃗�𝑙, �⃗�𝑙, �̈�) =
(︀
𝐼0 − 𝐼 ′(�⃗�𝑙, �⃗�𝑙, �̈�)

)︀
(�⃗�𝑙 × �⃗�𝑗) · �⃗�𝑖,𝑘H(�⃗�𝑙 · �⃗�𝑖′ < 0) (C.17)

A position on the edge of T𝑖 is noted �⃗�𝑙 ∈ 𝜕T𝑖. Respectively, the direction of emission
on edge is noted �⃗�𝑙 ∈ S. �⃗�𝑖,𝑘 is the vector of circulation of the triangle, where index 𝑘
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Boundary conditions of sensitivity on each triangle for Example 2 in Chapter.4

signifies the 𝑘𝑡ℎ edge of the triangle T𝑖. The vectors of �⃗�𝑖,𝑘 follow the convention made in
[34]: �⃗�𝑖,𝑘 = �⃗�𝑖,𝑘 × �⃗�𝑖, seeing Fig.1. �⃗�𝑖′ is the normal of the triangle T𝑖′ who shares the edge
(where located the line source) with T𝑖 and 𝐼 ′ is the intensity coming backward, following
the direction of �⃗�𝑙 and passing through �⃗�𝑙, seeing Fig.2.

�⃗�𝑖,1
�⃗�𝑖,1

�⃗�𝑖,2
�⃗�𝑖,2

�⃗�𝑖,3 �⃗�𝑖,3
�⃗�𝑖

Figure 1 – convention of �⃗�𝑖,𝑘, �⃗�𝑖,𝑘 and �⃗�𝑖 for �⃗�𝑖,𝑘 = �⃗�𝑖,𝑘 × �⃗�𝑖

�⃗�𝑖

�⃗�𝑙
�⃗�𝑖′

T𝑖

T𝑖′

(a) when �⃗�𝑙 · �⃗�𝑖′ > 0, the line source is
null in this case, because the triangles
have homogeneous emitted intensity.

�⃗�𝑖�⃗�𝑙

�⃗�𝑖′

T𝑖

T𝑖′

𝐼 ′(�⃗�𝑙, �⃗�𝑙, �̈�)

(b) when �⃗�𝑙 · �⃗�𝑖′ < 0, the line source is
not null. 𝐼 ′ is then the intensity coming
backward, following �⃗�𝑙, passing through
�⃗�𝑙.

Figure 2 – The schema of the line source on edge shared by T𝑖 and T𝑖′ .

The demonstration of Eq.C.14,C.15 and C.17 are given in the following box.

Developing the boundary condition of spatial gradient

Following Eq.C.13, the boundary condition of sensitivity is only about the spatial
gradient:

𝜕1,�⃗�𝑗
𝐼𝑖(�⃗�𝑝, �⃗�𝑝, �̈�) = �⃗�𝑗 · ∇⃗𝐼𝑖(�⃗�𝑝, �⃗�𝑝, �̈�) (C.18)

The gradient of intensity ∇⃗𝐼𝑖 following the direction �⃗�𝑗 is unknown. We will then
decompose the vector �⃗�𝑗 into two other vectors, where the gradient of intensity is
given, seeing Fig.3:

�⃗�𝑗 = 𝛼𝑖,𝑗�⃗�𝑝 + 𝛽𝑖,𝑗 �⃗�𝑝 (C.19)

�⃗�𝑝 is the tangential vector with a norm of 𝛽𝑖,𝑗 , following which the gradient �⃗�𝑝 · ∇⃗𝐼𝑖

is given by the boundary condition of intensity. On the direction of �⃗�𝑝 with a norm
of 𝛼𝑖,𝑗 , the gradient �⃗�𝑝 · ∇⃗𝐼𝑖 is given by the RTE (Eq.4.23). The following equation
is then yielded:

𝜕1,�⃗�𝑗
𝐼𝑖(�⃗�𝑝, �⃗�𝑝, �̈�) = 𝛼C[𝐼𝑖(�⃗�𝑝, �⃗�𝑝, �̈�)] + 𝛽𝜕1,�⃗�𝑝

𝐼𝑖(�⃗�𝑝, �⃗�𝑝, �̈�) (C.20)

The second term on the right of Eq.C.20 is the spatial gradient of intensity following
the direction of �⃗�𝑝 (which is a tangential vector on the surface of T𝑖). This term
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induces a Dirac term because of the discontinuous intensity profile on the boundary
of T𝑖, seeing Fig.4. This Dirac term becomes a line source of sensitivity. The
demonstration is following.
Line source We decompose vector �⃗�𝑗 using the non-orthogonal basis on an edge of
the triangle T𝑖: (�⃗�𝑝, �⃗�𝑖, �⃗�𝑖), following the convention made in Fig.4. Since we focus
on only one edge, the index of edges 𝑘 is not specified. For the 𝑘𝑡ℎ edge of the 𝑖𝑡ℎ

triangle:

�⃗�𝑗 = 𝛼𝑖,𝑗�⃗�𝑝 + 𝜁𝑖,𝑗�⃗�𝑖 + 𝜓𝑖,𝑗 �⃗�𝑖 (C.21)

𝛽𝑖,𝑗 �⃗�𝑝 = 𝜁𝑖,𝑗�⃗�𝑖 + 𝜓𝑖,𝑗 �⃗�𝑖 (C.22)

where

𝜁𝑖,𝑗 = − �⃗�𝑗 · (�⃗�𝑝 × �⃗�𝑖)
�⃗�𝑝 · �⃗�𝑖

;𝜓𝑖,𝑗 = �⃗�𝑗 · (�⃗�𝑝 × �⃗�𝑖)
�⃗�𝑝 · �⃗�𝑖

(C.23)

For any location �⃗�𝑝 ∈ T𝑖, we note here (𝑦, 𝑙) the coordinates of �⃗�𝑝 in a two dimension
cartesien system of (�⃗�𝑖, �⃗�𝑖). On the edge, the term 𝛽𝑖,𝑗𝜕1,�⃗�𝑝

𝐼(�⃗�𝑝, �⃗�𝑝, �̈�) in Eq.C.20
induces a Dirac term of 𝑦, because �⃗�𝑖 is orthogonal to the edge.

𝜁𝑖,𝑗𝜕1,𝜁𝑖,𝑗
𝐼𝑖(�⃗�𝑝, �⃗�𝑝, �̈�) = 𝜁𝑖,𝑗𝛿(𝑦)(𝐼𝑖𝑛 − 𝐼𝑜𝑢𝑡) (C.24)

where 𝐼𝑖𝑛 = 𝐼𝑖 is the intensity emitted on T𝑖 and 𝐼𝑜𝑢𝑡 is the intensity following the
direction �⃗�𝑝 out of the edge.
When �⃗�𝑝 · �⃗�𝑖′ > 0 (Fig.5a):

𝐼𝑜𝑢𝑡 = 𝐼𝑖′ = lim
𝜖→0

𝐼(�⃗�+ 𝜖�⃗�𝑖′ , �⃗�𝑝, �̈�) (C.25)

and when �⃗�𝑝 · �⃗�𝑖′ < 0 (Fig.5b):

𝐼𝑜𝑢𝑡 = 𝐼 ′𝑖 = lim
𝜖→0

𝐼(�⃗�− 𝜖�⃗�𝑖, �⃗�𝑝, �̈�) (C.26)

where 𝐼𝑖′ is the emitted intensity of the T𝑖′ and 𝐼 ′𝑖 is the backward incoming intensity
following �⃗�𝑝.
We then multiply Eq.C.24 by (�⃗�𝑝 · �⃗�𝑖) to get a flux density of sensitivity, and we
substitute Eq.C.23 into it.
When �⃗�𝑝 · �⃗�𝑖′ > 0:

(�⃗�𝑝 · �⃗�𝑖)𝜁𝛿(𝑦)(𝐼𝑖 − 𝐼𝑖′) = (�⃗�𝑝 × �⃗�𝑗) · 𝑡𝑖(𝐼𝑖 − 𝐼𝑖′)𝛿(𝑦) (C.27)

and when �⃗�𝑝 · �⃗�𝑖′ < 0:

(�⃗�𝑝 · �⃗�𝑖)𝜁𝛿(𝑦)(𝐼𝑖 − 𝐼 ′𝑖) = (�⃗�𝑝 × �⃗�𝑗) · 𝑡𝑖(𝐼𝑖 − 𝐼 ′𝑖)𝛿(𝑦) (C.28)

After that, we integrate Eq.C.27 and Eq.C.28 over the surface of T𝑖, with the
differential surface 𝑑𝜉 = 𝑑𝑦𝑑𝑙.
When �⃗�𝑙 · �⃗�𝑖′ > 0:∫︁

T𝑖

(�⃗�𝑝 × �⃗�𝑗) · 𝑡𝑖(𝐼𝑖 − 𝐼𝑖′)𝛿(𝑦)𝑑𝜉 =
∫︁

𝜕T𝑖,𝑖′

(�⃗�𝑙 × �⃗�𝑗) · 𝑡𝑖(𝐼𝑖 − 𝐼𝑖′)𝑑𝑙 (C.29)
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Boundary conditions of sensitivity on each triangle for Example 2 in Chapter.4

and when �⃗�𝑝 · �⃗�𝑖′ < 0:∫︁
T𝑖

(�⃗�𝑝 × �⃗�𝑗) · 𝑡𝑖(𝐼𝑖 − 𝐼 ′𝑖)𝛿(𝑦)𝑑𝜉 =
∫︁

𝜕T𝑖,𝑖′

(�⃗�𝑙 × �⃗�𝑗) · 𝑡𝑖(𝐼𝑖 − 𝐼 ′𝑖)𝑑𝑙 (C.30)

where 𝜕T𝑖,𝑖′ ≡ 𝜕T𝑖 ∪ 𝜕T𝑖′ , is the edge shared by T𝑖 and T𝑖′ . The integral on the
surface is then changed to the integral on edge. We then note the direction as �⃗�𝑙

instead of �⃗�𝑝.
In this example, the emitter is homogeneous: 𝐼𝑖 = 𝐼𝑖′ = 𝐼0. Therefore, when �⃗�𝑙·�⃗�𝑖′ < 0,
the line source is null and when �⃗�𝑝 · �⃗�𝑖′ < 0, Eq.C.30 becomes:∫︁

𝜕T𝑖,𝑖′

(�⃗�𝑙 × �⃗�𝑗) · 𝑡𝑖(𝐼0 − 𝐼 ′(�⃗�𝑙, �⃗�𝑙, �̈�))𝑑𝑙 (C.31)

In Eq.C.31, (�⃗�𝑝 × �⃗�𝑗) · �⃗�𝑖(𝐼0 − 𝐼 ′(�⃗�𝑙, �⃗�𝑙, �̈�)) is then the line source of the boundary
condition of T𝑖.
Finally, the boundary condition on T𝑖, Eq.C.14, C.15 and 𝐶.17 are yielded.

�⃗�𝑗

𝛽𝑖,𝑗�⃗�𝑝

𝛼𝑖,𝑗�⃗�𝑝

T𝑖

Figure 3 – Decomposition of the spatial velocity of deformation. The gradient of
intensity projected to �⃗�𝑗 is unknown. It is then decomposed to the direction of �⃗�𝑝, and
�⃗�𝑝, where the gradients are described by RTE and the boundary condition.

�⃗�𝑖

�⃗�𝑖

�⃗�𝑖

�⃗�𝑖′

�⃗�𝑖′
�⃗�𝑖′

T𝑖

T𝑖′

Figure 4 – The units vectors attached to T𝑖 and T𝑖′ form two orthonormal basis:
(�⃗�𝑖, �⃗�𝑖, �⃗�𝑖) and (�⃗�𝑖′ , �⃗�𝑖′ , �⃗�𝑖′).
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�⃗�𝑖 �⃗�𝑖′

T𝑖 T𝑖′

�⃗�𝑝

(a) �⃗�𝑝 · �⃗�𝑖′ > 0

�⃗�𝑖 �⃗�𝑖′

T𝑖 T𝑖′

�⃗�𝑝

(b) �⃗�𝑝 · �⃗�𝑖′ < 0

Figure 5 – Schema of 𝐼𝑜𝑢𝑡. 𝐼𝑜𝑢𝑡 is the intensity following �⃗� out of the edge of T𝑖.
When �⃗�𝑝 · �⃗�𝑖′ > 0, 𝐼𝑜𝑢𝑡 will take the value of the intensity emitted on T𝑖′ : 𝐼𝑖′ . When
�⃗�𝑝 · �⃗�𝑖′ < 0, 𝐼𝑜𝑢𝑡 will take the value of intensity coming backward, following �⃗�𝑝: 𝐼 ′𝑖.
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Contexte Le réchauffement climatique et la crise climatique sont des défis majeurs de notre
époque, qui menacent la santé de notre planète et de ses habitants. Les activités humaines,
en particulier les émissions de gaz à effet de serre résultant de la combustion de combustibles
fossiles, sont la principale cause du réchauffement climatique et de l’augmentation des
températures moyennes à travers le monde.

Pour lutter contre cette crise, une transition énergétique mondiale est nécessaire, visant à
remplacer les sources d’énergie fossile par des sources d’énergie renouvelable. Les sources
d’énergie renouvelable, telles que l’énergie solaire, l’énergie éolienne et l’énergie hydroélec-
trique, sont des solutions durables qui peuvent réduire les émissions de gaz à effet de serre et
atténuer l’impact du réchauffement climatique.

La transition numérique et énergétique est un défi majeur de notre époque, visant à trans-
former notre société en une économie plus durable, résiliente et économe en ressources.
Cette transition implique une utilisation accrue des technologies numériques pour améliorer
l’efficacité énergétique, augmenter la part des énergies renouvelables et réduire les émissions
de gaz à effet de serre.

Dans le cadre de cette transition, les simulations numériques sont devenues un outil essentiel
pour optimiser la performance des systèmes énergétiques. En particulier, la méthode de
Monte-Carlo est largement utilisée pour simuler des systèmes énergétiques complexes, en
raison de sa capacité à générer des résultats fiables même dans des conditions d’incertitude
importantes.

Tout d’abord, permettez-moi de vous présenter la méthode de Monte-Carlo. Il s’agit d’une
technique de simulation numérique utilisée pour résoudre des problèmes complexes en générant
des échantillons aléatoires. Cette méthode est couramment utilisée dans les domaines de la
physique, des mathématiques, de l’informatique et de l’ingénierie, entre autres. L’idée centrale
de la méthode de Monte-Carlo est d’estimer une quantité inconnue en générant de nombreux
échantillons aléatoires et en calculant une moyenne. Cette méthode est particulièrement utile
pour les problèmes qui ne peuvent pas être résolus analytiquement ou qui nécessitent des
calculs complexes.

Parmi les sources d’énergie renouvelable, la CSP est une technologie prometteuse qui peut
offrir une production d’électricité constante et prévisible, contrairement à d’autres sources
d’énergie renouvelable telles que l’énergie solaire photovoltaïque ou l’énergie éolienne. Cepen-
dant, la performance de la CSP dépend de nombreux facteurs, tels que les conditions
météorologiques, la géométrie du système et les propriétés du matériau utilisé. Par con-
séquent, il est crucial de simuler la performance de ces systèmes de manière précise pour
maximiser leur efficacité.
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La synthèse d’images est un autre outil numérique important qui peut être utilisé pour
visualiser les résultats de simulations numériques. En utilisant des techniques de modélisation,
d’éclairage et de rendu, la synthèse d’images peut créer des images numériques réalistes et
convaincantes qui peuvent aider les chercheurs à comprendre les performances des systèmes
énergétiques et à communiquer leurs résultats de manière efficace.

Résumé Les technologies d’énergie solaire à concentration (CSP) ont un potentiel indéni-
ablement important pour produire de l’électricité et de la chaleur. Ce doctorat. La thèse est
motivée par des problèmes liés à l’optimisation et aux problèmes inverses, où les sensibilités
de différents paramètres dans un système CSP sont nécessaires. Ces paramètres pourraient
être, par exemple, les positions et les propriétés de réflexion des héliostats. Dans une étude
récente [5], Caliot et al. calcule inversement la propriété réfléchissante d’un héliostat à partir
d’une carte de flux mesuré sur le récepteur d’une installation CSP. Pour y parvenir, la
sensibilité de la propriété réfléchissante au flux était nécessaire. De plus, des sensibilités aux
paramètres de conception (tels que les positions, les rotations et les tailles des héliostats)
sont nécessaires pour optimiser les performances optiques d’un système STP. Cependant,
à la connaissance de l’auteur, aucune méthode n’est disponible dans la communauté CSP
pour estimer les sensibilités impliquant des paramètres géométriques. Cette thèse vise donc
à combler cette lacune.

Avant de se concentrer sur les sensibilités, l’évaluation des performances optiques dans les
systèmes CSP est principalement basée sur la méthode de Monte Carlo [62]. Cet outil
numérique spécifique a l’avantage de traiter la complexité de la géométrie étudiée, le couplage
de différents phénomènes physiques, ou la grande échelle de temps [6, 15, 24, 57]. La
complexité de la géométrie étudiée fait que les échelles géométriques des différents éléments
d’un système radiatif sont très différentes. Par exemple, des études ont été faites sur l’analyse
thermique d’une théière dans une ville. Les échelles géométriques des éléments sont très
différentes, d’un grand bâtiment moderne à un arbre près de la route et une petite fenêtre
sur le mur d’un garage dans une ville. Villefranque et al. a étudié l’état thermique de cette
théière [58]. Le rayonnement thermique entre tous les éléments, même la diffusion thermique
dans un mur isolé thermiquement, et la transmission des fenêtres à double vitrage doivent
être pris en compte. Une telle méthode de Monte Carlo rend possible la modélisation du
transfert thermique avec une complexité géométrique. La géométrie peut également être
très complexe dans un système CSP. Par exemple, la centrale solaire d’Ivanpah est la plus
grande centrale solaire au monde en 2022 et est composée de 173 500 héliostats. Chaque
héliostat suit la position du soleil pendant la journée et peut ombrager d’autres héliostats.
La méthode de Monte Carlo est bien adaptée pour traiter cette complexité géométrique.

Les travaux de cette thèse sont développés au sein d’un groupe de recherche (RAPSODEE1,
LAPLACE2, Mesostar3 et le groupe EDstar 4) où les principales activités portent sur la
simulation numérique du transfert radiatif par la méthode de Monte Carlo. L’estimation
de la sensibilité par la méthode Monte Carlo dans les systèmes CSP reste un problème de
recherche ouvert, et très peu d’études ont été réalisées [9, 15, 31]. Les médecins du groupe
travaillent depuis 2002 sur l’estimation des sensibilités par la méthode de Monte Carlo. De
Lataillade a étudié la sensibilité du rapport de chauffe à la concentration en espèces dans
une flamme 𝐶𝐻4 [10]. Cependant, l’estimation des sensibilités impliquant des paramètres
géométriques devait encore être possible. En 2006, Roger et al. a développé une méthode
de Monte Carlo pour estimer les sensibilités Villefranque2022impliquant des paramètres
géométriques [50, 51]. Cette méthode est notée comme la “ méthode de dérivation observable
” dans cette thèse. La signification physique de ce nom sera discutée au chapitre.2. Après
cela, De la Torre a tenté d’appliquer la méthode de dérivation observable pour estimer les

1Recherche d’Albi en génie des Procédés, des SOlides Divisés, de l’Énergie et de l’Environnement
2Le Laboratoire Plasma et Conversion d ’Energie
3https://www.meso-star.com/
4http://www.edstar.cnrs.fr/prod/fr/
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sensibilités géométriques dans les systèmes CSP dans sa thèse en 2011 [9]. Malheureusement,
l’auteur n’a pas tenu compte des effets de blocage et d’ombrage. C’est que l’application
de la méthode de dérivation observable pour les cas impliquant une géométrie complexe
demande un gros effort de développement formel. La géométrie d’un système CSP avec
héliostats est trop complexe pour prendre en compte tous les blocages et ombrages, ce qui
limite l’application de cette méthode dans le système CSP. Jusqu’en 2021, un modèle général
de transport de la sensibilité géométrique était proposé par Lapeyre et al., également dédié à
l’estimation des sensibilités dans les systèmes radiatifs. Cette méthode est notée “méthode
du modèle de sensibilité” dans cette thèse. La signification physique du nom sera discutée au
chapitre.2. Contrairement à la méthode de dérivation observable, un développement moins
formel est nécessaire pour que la méthode du modèle de sensibilité soit appliquée dans les
cas impliquant des géométries complexes. Cette méthode a le potentiel d’être appliquée aux
applications CSP.

Cependant, la même méthode a une faiblesse par rapport à celle de la dérivation observable.
Pour la méthode de dérivation d’observables, lorsqu’une observable est évaluée, sa sensibilité
à tout paramètre est également évaluée au prix d’un faible effort de calcul supplémentaire.
Cet avantage est dû au fait que la méthode de Monte Carlo estime un vecteur contenant
l’observable et toutes ses sensibilités à différents paramètres. Par conséquent, l’estimation de
l’observable et toutes ses sensibilités sont complètement “vectorisées”. Cette méthode sera
détaillée au chapitre.3. Pour la méthode du modèle de sensibilité, on perd cet avantage de
vectorisation complète. Les utilisateurs doivent construire un modèle pour chaque sensibilité
correspondant à chaque paramètre. Par conséquent, au moins une estimation de Monte Carlo
est nécessaire pour chaque modèle. Néanmoins, lors de l’application de la méthode dans des
cas impliquant des géométries complexes, les sources d’un modèle de sensibilité peuvent se
trouver sur la surface ou sur les segments, ce qui rend le modèle difficile à résoudre par la
méthode de Monte Carlo. Contrairement à la méthode de dérivation observable, le modèle
de sensibilité effectue des estimations de Monte Carlo pour les scalaires. Au moins une
estimation de Monte Carlo est nécessaire pour chaque source pour résoudre un tel modèle
de sensibilité. Cet inconvénient rend le développement du codage plus lourd et le temps
de calcul nécessaire très consommateur. Ici vient un problème intéressant à résoudre, qui
est de retrouver l’avantage de la vectorisation pour la méthode du modèle de sensibilité.
L’avantage de la vectorisation complète est difficile à retrouver en suivant la méthode du
modèle de sensibilité, mais une stratégie de vectorisation partielle est fournie au Chapitre.4.
Suivant cette stratégie, une méthode d’estimation des sensibilités pour un système STP est
développée au chapitre.5. Enfin, dans le chapitre.6, nous tentons d’obtenir une vectorisation
complète en suivant la méthode du modèle de sensibilité en transformant toutes les sources
linéaires du système en sources surfaciques. Quelques cas académiques sont développés, et
certaines limites seront discutées.

Enfin, des efforts sont également faits pour comprendre et comparer les recherches dans
la communauté de la synthèse d’images pour des problèmes de transfert radiatif similaires
sur les sensibilités. Le rendu d’images de haute qualité est l’un des principaux défis de la
synthèse d’images. Il s’agit de produire une image 2D à partir d’une description d’une scène
3D. Il existe de nombreuses façons de rendre des images, mais le rendu physique est l’un
des plus réalistes. C’est parce que le rendu basé sur la physique suit les principes de la
physique pour modéliser l’interaction de la lumière et de la matière (par lancer de rayons)
pour simuler la réalité [46]. Le lancer de rayons est un algorithme simple basé sur le suivi
du chemin d’un rayon de lumière à travers une scène lorsqu’il interagit avec et rebondit
sur des objets dans un environnement. De nos jours, presque toutes les images de synthèse
dans l’industrie cinématographique sont réalisées par la méthode de Monte Carlo et les
algorithmes de lancer de rayons. Grâce aux outils numériques et librairies [46] développées
dans le domaine de la synthèse d’images, l’implémentation de la méthode de Monte Carlo
dans cette thèse devient possible. Par ailleurs, les chercheurs en synthèse d’images travaillent
également sur l’estimation des sensibilités. La méthode correspondante est développée et
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étudiée au Chapitre.2 et au Chapitre.3 et est appelée rendu différentiable [70]. Cette méthode
a déjà été utilisée dans de nombreuses applications impliquant des géométries complexes.
Couplées aux algorithmes d’optimisation et réseau neutre [26], les sensibilités sont utilisées
pour la reconstruction d’objets 3D [27, 28, 56, 65], les morphologies [4, 45], formes de main
[1, 72], formes de visage [20], etc.
Cependant, bien que nous partagions des problèmes de recherche similaires dans l’estimation
des sensibilités, les points de vue et les vocabulaires entre les chercheurs en synthèse d’images
et notre groupe présentent des différences significatives. La méthode de rendu différentiel se
concentre principalement sur la solution mathématique et les algorithmes. Moins d’attention a
été accordée à l’interprétation physique des sensibilités. Cette méthode est comparée aux deux
autres méthodes mentionnées dans le dernier paragraphe du chapitre.3, où nous expliquons,
analysons et comparons les trois approches. On constate que l’analyse de sensibilité est
difficile à réaliser en suivant la méthode de rendu différentiable. Cependant, l’analyse de
sensibilité est effectuée en suivant la méthode du modèle de sensibilité au chapitre.5 pour une
application CSP. Nous verrons dans cette thèse que les deux communautés ont de nombreux
liens dans les problématiques de recherche de sensibilité et peuvent bénéficier des recherches
de l’autre.
Enfin, cette thèse est organisée en six chapitres :

• Chapitre.1 vise à préparer une base théorique pour les lecteurs non familiarisés avec la
physique des rayonnements ou la méthode de Monte Carlo. Nous passerons en revue
les approches intégrales et statistiques du rayonnement et introduirons la méthode de
Monte Carlo.
Après un rapide examen des statistiques de base, nous avons introduit la méthode
de Monte Carlo, qui est utilisée pour estimer une intégrale sous une forme de valeur
attendue. Le résultat est toujours donné avec un intervalle de confiance qui repose sur la
variance. Lorsque la variance est trop élevée, des techniques de réduction de la variance
telles que échantillonnage d’importance peuvent être appliquées. Lorsque plusieurs
valeurs attendues doivent être estimées simultanément, la technique de vectorisation
peut parfois être mise en œuvre pour réutiliser l’ensemble des nombres aléatoires. Cette
méthode peut être appliquée lorsque les valeurs attendues partagent le même pdf.
En réduisant la génération de nombres aléatoires, le temps de calcul est grandement
amélioré.
Les différences finies peuvent naïvement atteindre des sensibilités ou des dérivées
approximatives. Elle repose sur l’estimation de deux valeurs attendues avec une
variation infinitésimale d’un paramètre choisi. Cette approche inefficace entraîne une
estimation biaisée de la sensibilité avec une variance très élevée. Nous avons montré que
la différenciation directe de la valeur attendue est beaucoup plus appropriée puisque
l’estimation est sans biais et donne une barre d’erreur acceptable.
Dans la deuxième partie de ce chapitre, la physique du transfert radiatif est introduite
d’un point de vue corpusculaire et mésoscopique. La physique du transfert radiatif dans
le milieu est décrite par RTE, en utilisant l’intensité comme descripteur. La condition
aux limites régit le transport de l’intensité sur les frontières. Afin de construire un
algorithme de Monte Carlo pour estimer une observable physique, l’observable doit
être reformulée comme une intégrale sous une forme de valeur attendue.
Un exemple de résolution de problème de transfert radiatif par la méthode de Monte
Carlo est donné à la fin. De même que la réciprocité des rayons, l’algorithme de Monte
Carlo peut être construit différemment. Il peut être construit de l’émetteur vers le
récepteur ou, à l’inverse, du récepteur vers l’émetteur. Ces deux stratégies font référence
aux algorithmes de lancer de rayons direct et inverse. Enfin, nous relions le vocabulaire
des formulations intégrales, de la physique et des algorithmes pour préparer d’autres
études sur la vectorisation dans les systèmes radiatifs dans les chapitres suivants.
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• Chapitre.1 introduit l’objectif et la problématique de recherche de cette thèse. Nous
passons d’abord en revue les différents systèmes optiques CSP, les outils numériques
standard pour évaluer les performances optiques et les besoins d’estimation des sensibil-
ités dans le système CSP. Cette thèse vise à développer une méthode pour estimer les
sensibilités dans le système CSP. Pour atteindre cet objectif, nous passons en revue les
trois méthodes de la communauté du transfert radiatif et de la synthèse d’images : la
méthode de dérivation observable, la méthode de rendu différentiable et la méthode de
modèle de sensibilité. Les avantages et les inconvénients sont répertoriés pour chaque
méthode. Après cela, nous définissons la problématique de recherche de cette thèse :
retrouver l’avantage de la vectorisation pour la méthode du modèle de sensibilité.

• Chapitre.2 compare et passe en revue les trois points de vue pour les estimations de
sensibilités dans un système radiatif en les appliquant à un problème radiatif simple à
une dimension. Les trois points de vue consistent en la méthode de dérivation observable
développée dans la thèse de Maxime Roger [51], la méthode de rendu différentiable
utilisée dans la communauté de synthèse d’images [70], et la méthode de modèle de
sensibilité développée dans la thèse de Paule Lapeyre [32]. Le lien théorique entre les
trois méthodes sera distingué, et les avantages et inconvénients de chaque méthode
seront discutés.
Dans ce chapitre, nous étudions trois méthodes pour calculer la sensibilité de l’intensité
dans une étude de cas radiative unidimensionnelle. La solution analytique est connue
à des fins de comparaison. RTE est utilisé pour décrire le transport d’intensité dans
le milieu, et les conditions aux limites sont fixées. Le milieu est supposé froid avec
des propriétés homogènes d’absorption et de diffusion. Deux conditions aux limites de
Dirichlet sont posées sur les frontières. Après avoir construit le modèle de transport, le
𝐼 observable est formulé dans une équation de Fredholm à l’aide d’outils mathématiques
standard. Après cela, l’équation de Fredholm est transformée en une valeur attendue.
Enfin, comme mentionné au chapitre.1, la valeur attendue peut être estimée par la
méthode de Monte Carlo. De plus, l’algorithme de Monte Carlo permet de construire
une image physique puisque chaque chemin mime le transport des photons.
Ensuite, trois méthodes d’estimation de la sensibilité sont introduites et comparées. La
méthode de dérivation observable repose sur la différenciation directe de l’observable
sous une forme de valeur attendue. La méthode de rendu différentiable est basée sur la
dérivation de l’observable sous la forme d’une équation de Fredholm. La formulation
résultante est ensuite reformulée sous une forme de valeur attendue. La dernière
méthode repose sur la différenciation du modèle d’intensité pour construire le modèle
de sensibilité. La sensibilité de l’intensité devient le descripteur du modèle de sensibilité,
absorbée et diffusée dans le système. Le modèle de sensibilité résultant est ensuite
résolu, suivant le même processus que la résolution du modèle d’intensité. Le modèle
d’intensité et de sensibilité sont couplés, mais cela est géré de manière algorithmique
par la double randomisation.
Par rapport aux deux autres méthodes, la méthode de dérivation observable est
parfaitement vectorisée pour estimer simultanément l’intensité et la sensibilité (comme
discuté au Chapitre.2). Cependant, le développement formel correspondant est très
exigeant. Peu d’applications sont développées suivant cette méthode [9].
La méthode de rendu différentiable est plus pertinente que la méthode précédente pour
traiter des géométries complexes. D’autres applications sont trouvées pour améliorer
la reconstruction de scènes 3D et concevoir des matériaux aux propriétés optiques
spécifiées [44]. Cependant, il perd l’avantage de la vectorisation.
La méthode du modèle de sensibilité partage le même algorithme que la méthode de
rendu différentiable et reste adapté pour des applications plus complexes. De plus,
cette méthode est d’un grand intérêt pour les médecins et les ingénieurs en raison
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de l’image physique attachée. La sensibilité peut être décrite physiquement comme
l’intensité aidant les médecins et les ingénieurs à mieux comprendre leurs systèmes.
Cependant, cette méthode perd également l’avantage de la vectorisation. Un système
radiatif peut être caractérisé par des milliers de paramètres (par exemple, le système
solaire à concentration). Les sensibilités de tous ces paramètres sont d’une grande
importance à des fins d’optimisation. Afin d’estimer toutes les sensibilités, nous devons
construire un modèle de sensibilité pour chacune d’entre elles. Si on les estime une à
une, cela devient très coûteux en ressources de calcul. Ici, nous suggérons de vectoriser
partiellement les estimations de sensibilités. Nous étudierons et analyserons avec
soin les modèles de sensibilité dans le système radiatif, en essayant de regrouper et de
vectoriser les estimations de sensibilités.
Dans les chapitres suivants, nous appliquerons la méthode du modèle de sensibilité
dans certains systèmes géométriquement complexes. Nous étudierons et analyserons
avec soin les modèles de sensibilité, regrouperons différentes sortes de sensibilités et
vectoriserons leurs estimations. Néanmoins, nous aborderons également l’estimation de
milliers de sensibilités qui reste hors gamme si la technique de vectorisation n’est pas
appliquée.

• Chapitre.3 vise à appliquer la méthode du modèle de sensibilité dans des cas impliquant
une géométrie complexe. Pour y parvenir, nous allons introduire une stratégie de
vectorisation pour traiter un grand nombre de sources dans les modèles de sensibilités.
Ce chapitre préparera l’application la plus complexe dans un système STP pour le
chapitre suivant.
Ce chapitre est consacré à l’introduction de la méthode de Monte-Carlo vectorisée,
qui permet de préparer l’application de la méthode du modèle de sensibilité à un
système CSP. Nous implémentons la méthode du modèle de sensibilité dans deux
exemples impliquant une géométrie complexe et triangulée en utilisant la technique
de vectorisation. Cette technique permet d’accélérer les estimations et de faciliter le
développement du codage.
Premièrement, nous avons construit un modèle d’intensité où les sources d’intensité
sont spécifiées. Sur la base de ce modèle, des modèles de sensibilités peuvent être
construits en utilisant les outils de [32–34], où les sources de sensibilités sont spécifiées.
Dans un second temps, en suivant les trois étapes mentionnées au Chapitre.3 pour
résoudre un modèle radiatif, nous avons formulé la formulation intégrale itérative suivant
les propagations de toutes les sources (Eq.4.7 et Eq.4.14 dans le premier exemple et
Eq.4.17,4.32,4.34,4.36 et Eq.4.37 dans le deuxième exemple).
Enfin, nous avons distingué les intégrales ayant les mêmes domaines d’intégrations, et
nous les avons écrites sous une forme vectorisée (Eq.4.15, Eq.4.44 et Eq.4.36). A partir
de cette forme vectorisée, des algorithmes de Monte Carlo peuvent être conçus pour
résoudre les modèles radiatifs.
Cette stratégie de vectorisation consiste à vectoriser le transport des sources qui
partagent le même espace de chemin. Si l’on veut distinguer les sources qui
partagent le même espace de chemin, il faut vérifier les localisations des sources sur
les frontières et le transport des sources dans le milieu. Lorsque les sources sont aux
mêmes endroits sur la frontière et transportées par le même RTE dans le milieu, les
sources peuvent être vectorisées.
Pour le premier exemple, 𝐼 et 𝑠𝜌 sont transportés de la même manière dans le milieu
(Eq.4.2 et Eq.4.8). Sur la frontière, la source �̊� et �̊�𝜌 sont toutes sur toutes les surfaces
de T . Ainsi, la propagation de 𝐼 et 𝑠𝜌 peut être vectorisée.
Pour le deuxième exemple, 𝐼 et 𝑠𝑖,∀𝑗 ∈ {1, 2, 3, 4} sont transportés également de
la même manière dans le milieu (Eq.4.20 et Eq.4.23). Cependant, les sources de
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sensibilités �̇�𝑖,𝑗 ,∀𝑖 ∈ {1, 2, . . . , 𝑛T },∀𝑗 ∈ {1, 2, 3, 4} sont trouvés sur chaque surface de
T et 𝑠𝑖,𝑗,𝑘,∀𝑖 ∈ {1, 2, . . . , 𝑛T },∀𝑗 ∈ {1, 2, 3, 4},∀𝑘 ∈ {1, 2, 3} sont trouvés sur chaque
bord de chaque triangle T𝑖. Ainsi, les propagations de �̇�𝑖,𝑗 et 𝐼 (qui est aussi une source
surfacique) et les propagations des sources linéaires 𝑠𝑖,𝑗,𝑘 sont vectorisés séparément.
Même avec cette stratégie de vectorisation, il n’est toujours pas facile de gérer toutes les
sources surfaciques et les sources linéaires sur chaque triangle d’une géométrie complexe
et triangulée. Par conséquent, plus tard dans le chapitre.6, des efforts seront faits pour
transformer toutes les sources linéaires en sources surfaciques. Par conséquent, il ne
reste que des sources de surface, et les estimations de l’observable et de toutes ses
sensibilités peuvent être complètement vectorisées.

• Au chapitre.5, nous appliquons la méthode du modèle de sensibilité dans un système
STP, en suivant la stratégie de vectorisation présentée dans le dernier chapitre. Aussi,
grâce aux modèles de sensibilités, l’interprétation physique des sensibilités peut être
réalisée. Les contributions de différents événements physiques dans un système STP
(blocage, ombrage, déversement, etc.) aux sensibilités peuvent être analysées en détail,
aidant les ingénieurs à comprendre et à optimiser le système. Nous avons présenté des
modèles généraux pour l’intensité 𝐼 et la sensibilité d’intensité 𝑠𝑖,𝑗 dans un système
radiatif d’un système SPT, ainsi que les algorithmes complets d’estimation de la
matrice de sensibilité de puissance 𝑆. Ces algorithmes sont validés par la méthode des
différences finies à l’aide de quatre exemples types. Puisque la sensibilité d’un héliostat
à un paramètre géométrique 𝑆𝑖,𝑗 est estimé par le cumul de 4 contributions : 𝑆𝑡𝑎𝑟

𝑖,𝑗 , 𝑆𝑏𝑙𝑜
𝑖,𝑗 ,

𝑆𝑠ℎ𝑎𝑑−𝑏
𝑖,𝑗 et 𝑆𝑠ℎ𝑎𝑑−𝑓

𝑖,𝑗 , les contributions de différents événements physiques à la sensibilité
𝑆𝑖,𝑗 dans un système SPT (blocage, masquage, déversement) peut être analysée en
détail. Après cela, un système SPT fonctionnel réel a été utilisé comme étude de cas
test. Dans un premier temps, une comparaison des temps de calcul a été faite pour
l’estimation de la sensibilité par notre méthode et son approximation par la méthode
des différences finies. Dans un second temps, la matrice de sensibilité de puissance 𝑆 a
été calculée. Les ingénieurs peuvent bénéficier de ces informations sur les sensibilités
pour optimiser la conception optique et la stratégie de visée du système SPT. Enfin et
surtout, à la suite de ce travail, l’intégration d’optimisations basées sur le gradient pour
le système optique dans un SPT devient possible. Cependant, le modèle de sensibilité
développé dans le présent article n’est appliqué qu’à un champ d’héliostats plats. Ainsi,
une perspective prometteuse serait d’étendre ce modèle aux héliostats courbes.

• Suivant la méthode du modèle de sensibilité, le Chapitre.6 vise à retrouver l’avantage
de la méthode de dérivation observable : une vectorisation complète. Cela se fera en
transformant les sources linéaires en sources superficielles dans le modèle de sensibilité.
Quelques exemples académiques sont développés, et certaines limites sont discutées.

La méthode du modèle de sensibilité introduit à la fois des sources linéaires et de
surface. Les inconvénients sont dus aux lignes sources lors de l’application de la
méthode de Monte Carlo pour résoudre ce genre de problème. Dans ce chapitre,
nous étudions la transformation de sources linéaires en sources surfaciques avec le
théorème de Stokes sous certaines hypothèses (telles que géométrie convexe, milieu
froid, propriétés homogènes, etc.). Il n’existe plus de source de ligne dans le système et
l’échantillonnage de ligne est évité. De plus, toutes les sources de surface partagent le
même espace de chemin. L’observable et sa dérivée spatiale sont alors estimées sous
une forme vectorisée, et une seule estimation de Monte Carlo est nécessaire. C’est
un avantage non négligeable pour la méthode de dérivation observable, introduite au
Chapitre.2 et au Chapitre.3. Ici, en suivant la méthode du modèle de sensibilité, nous
retrouvons complètement cet avantage dans ce chapitre.

Cependant, un problème de convergence est rencontré lors de l’application de cette
technique à un milieu diffusant. Nous n’avons pas de solutions pour le moment, mais la
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solution potentielle pourrait être d’appliquer les techniques de contrôle de la variance
de la méthode de Monte-Carlo [14].

• Annexe A vises à construire les modèles de transport pour la sensitbilité, le gradient
spatiale et le gradient angulaire. L’idée de la vectorisation est qu’au lieu de propager un
scalaire en tant que descripteur du modèle de transport, nous propageons un vecteur en
tant que descripteur du transport. Dans cette annexe, nous construisons les modèles de
transport sous forme vectorielle (voir Fig.1). Cette méthode de vectorisation nécessite
de grands efforts formels. Des études supplémentaires sont nécessaires si nous voulons
l’appliquer à des applications spécifiques.
Dans cette annexe, nous allons d’abord présenter la méthode de modèle de sensibilité
développée lors du travail de thèse de Paule Lapeyre. Dans cette section, le modèle
général de transport d’intensité sera examiné. Selon les besoins des différentes ap-
plications, les observables sont estimés en fonction du modèle général de transport
d’intensité. Ici, les sensibilités d’un observable par rapport à différents paramètres sont
également estimées, en suivant la méthode du modèle de sensibilité. La méthode du
modèle de sensibilité vise à construire un modèle de transport pour la sensibilité de
l’intensité, similaire au modèle de transport de l’intensité. L’observable est généralement
formulé comme l’intégrale spatiale ou angulaire de l’intensité. En suivant la méthode du
modèle de sensibilité, la sensibilité d’un observable est généralement formulée comme
l’intégrale spatiale ou angulaire de la sensibilité de l’intensité. Nous présentons donc le
modèle général de transport pour la sensibilité de l’intensité. Cependant, le modèle
de sensibilité est couplé avec deux autres quantités : la dérivée spatiale de l’intensité
et la dérivée angulaire de l’intensité. Leurs définitions sont également données, et les
modèles de transport généraux sont introduits respectivement. Enfin, l’estimation de
la sensibilité d’un observable nécessite la résolution des quatre modèles de transport
couplés : le modèle d’intensité, le modèle de sensibilité, le modèle de dérivée spatiale et
le modèle de dérivée angulaire.
Ensuite, nous allons introduire la stratégie de vectorisation. Les quatre modèles
introduits décrivent le transport de quatre scalaires : l’intensité, la sensibilité, la dérivée
spatiale et la dérivée angulaire. En suivant la stratégie de vectorisation, nous réécrivons
simplement les quatre modèles sous forme vectorisée, où les quatre modèles sont
construits pour un vecteur de sensibilités, un vecteur de dérivées spatiales et un vecteur
de dérivées angulaires. Ce geste simple nous permet de transporter les descripteurs sous
forme vectorisée. Par exemple, au lieu de transporter chaque sensibilité correspondant
à un paramètre par son propre chemin dans le système, nous pouvons transporter un
vecteur de sensibilités correspondant à chaque paramètre en un seul chemin.

Au cours de ces trois années, l’auteur travaille entre l’interface du CSP, la physique du
transfert radiatif, et la communauté de la synthèse d’images (Fig.1). Du fait du caractère
pluridisciplinaire de cette thèse, elle se conclut sur ces trois points de vue.

Du point de vue du CSP, une méthode pour estimer les sensibilités dans un système
STP est fournie au chapitre.5. Il prolonge la première tentative d’estimation des sensibilités
proposée par la thèse. travail de De la Torre, qui n’est valable que lorsque l’ombrage et
le blocage sont négligés. Le présent travail comble le vide concernant l’estimation de la
sensibilité dans la communauté CSP. Les sensibilités des translations, des rotations et la
taille de chaque héliostat à la puissance d’impact sur le récepteur peuvent être estimées avec
précision. La stratégie de vectorisation rend possible l’estimation de milliers de sensibilités
dans un temps de calcul raisonnable. De plus, chaque sensibilité peut être interprétée
physiquement, indiquant comment les événements physiques dans le système STP (blocage,
déversement, ombrage, etc.) affectent les sensibilités, rendant certaines plus sensibles que
d’autres. Tous les types de systèmes STP avec des miroirs plats peuvent bénéficier de cette
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méthode. Grâce aux informations fournies par cette méthode, les ingénieurs et les chercheurs
peuvent :

1. Analysez le champ optique d’un système STP et améliorez les performances optiques
en ajustant les paramètres les plus sensibles pendant le fonctionnement.

2. Réaliser une analyse détaillée du champ optique. Les informations sur les contributions
des événements physiques (blocage, déversement, ombrage, etc.) aux sensibilités sont
fournies, aidant les ingénieurs à mieux comprendre le système optique et à effectuer
l’analyse de sensibilité.

3. Associez les informations sur les sensibilités (le gradient) à un algorithme basé sur le
gradient à des fins d’optimisation. Ceci est d’un grand intérêt pour la communauté
CSP car l’optimisation repose principalement sur des algorithmes sans gradient tels
que les algorithmes génétiques ou l’optimisation par essaim de particules.

Du point de vue de la physique des transferts radiatifs l’idée de vectorisation a été
proposé et mis en œuvre après le récent doctorat. oeuvre de Paule Lapeyre [31–34]. Grâce à
cette stratégie de vectorisation, la méthode du modèle de sensibilité peut être appliquée aux
cas impliquant des géométries complexes et triangulées avec un temps de calcul raisonnable
et un moindre effort de codage.

Néanmoins, une technique de transformation de sources linéaires en sources surfaciques est
présentée au chapitre.6. Cette technique permet d’éviter l’échantillonnage linéaire et de
vectoriser complètement l’observable et son estimation de dérivation spatiale.

Du point de vue de la synthèse d’images , tous les résultats obtenus dans cette thèse
s’appuient sur les bibliothèques d’infographie de la communauté de la synthèse d’images.

La technique étudiée au chapitre.6 permet d’éviter le “sampling on segments” considéré comme
un sujet complexe dans la communauté. Les chercheurs en synthèse d’images proposent des
méthodes compliquées pour surmonter cette difficulté [64]. Cependant, ici, nous essayons
de résoudre physiquement ce problème (en transformant les sources linéaires en sources
surfaciques).

Au chapitre.4, en appliquant la stratégie de vectorisation, une image de sensibilité est rendue
au prix d’un faible effort de calcul supplémentaire lors du rendu de l’image d’intensité.
L’image de sensibilité permet d’effectuer de l’optimisation et du machine learning dans la
communauté de la synthèse d’images[26].

De plus, la littérature sur la synthèse d’images concernant l’estimation des sensibilités par
Monte-Carlo est passée en revue. Bien que les vocabulaires et les points de vue soient
différents, nous avons comparé leurs méthodes et les nôtres (développées dans le groupe
EDstar5) au chapitre.3. Il est passionnant de constater que même si les points de vue sont
différents, la méthode de rendu différentiable utilisée par la communauté de la synthèse
d’images et la méthode du modèle de sensibilité convergent vers le même algorithme dans
l’exemple développé au chapitre.3.

Ce doctorat. travail inspire les perspectives suivantes :

1. La méthode développée au chapitre.5 est limitée aux miroirs plans. Cependant, de
nombreux systèmes STP sont construits à partir de miroirs courbes (hémisphériques
ou paraboliques). Il existe deux manières de décrire la courbure de l’héliostat : 1)
en utilisant la surface quadrique de l’héliostat courbe ; 2) en utilisant une géométrie
maillée composée de triangles. Des travaux supplémentaires sont nécessaires pour
mettre en évidence les différences et/ou la praticabilité des deux approches.

5http://www.edstar.cnrs.fr/prod/fr/
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2. Même s’il est possible d’estimer uniquement la puissance d’impact au sommet d’un
STP, il serait également possible de construire une "flux map" de sensibilité. Cela serait
utile pour éviter le "point chaud" et homogénéiser le flux sur le récepteur.

3. Les sensibilités fournies par notre méthode comportent des incertitudes. A notre connais-
sance, les incertitudes ne sont pas prises en compte dans les algorithmes d’optimisation
par gradient. Cela deviendrait crucial lorsque le gradient tend vers zéro puisqu’il ne
serait pas possible de distinguer si le gradient estimé est positif ou négatif. Une façon
naïve de gérer cela serait d’augmenter les itérations de Monte Carlo. Cependant, cette
approche nécessite plus de développement.

4. Au chapitre.6, le problème de convergence est distingué lorsque la technique de trans-
formation des sources linéaires en sources surfaciques est appliquée dans un milieu
diffusant. L’application de méthodes de réduction de la variance pourrait être une
solution potentielle à ce problème de convergence.

5. L’étude de Chapitre.6 est restreinte aux géométries convexes. L’application de la
technique de transformation de sources linéaires en sources de surface dans une géométrie
non convexe est un défi. Le théorème de Stokes ne peut pas être appliqué directement
lorsque les triangles sont bloqués les uns des autres.

6. Enfin, la méthode de rendu différentiable est bien adaptée à la géométrie complexe.
L’appliquer dans des applications CSP peut être un moyen prometteur d’estimer les
sensibilités. Le principal défi serait de lier les différents problèmes de recherche dans
les deux communautés. En synthèse d’images, le principal défi est de rendre les images
ce qui signifie que les algorithmes sont basés sur le lancer de rayons inversé. Par
conséquent, des efforts sont nécessaires pour adapter ces algorithmes au champ CSP.
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Résumé

La méthode Monte-Carlo vectorisée pour les modèles de sensibilité en transfert
radiatif : application en solaire à concentration

Les travaux présentés dans ce manuscrit abordent la question de la vectorisation des éva-
luations de sensibilité pour les systèmes de transfert radiatif impliquant des milieux semi-
transparents. La luminance est la descriptrice principale du transfert radiatif. Dans ce travail,
les sensibilités de la luminance par rapport aux paramètres caractérisant le système radiatif
sont également utilisées comme descripteurs du transfert radiatif. Elles portent l’information
comme les perturbations de la luminance causées par les perturbations des paramètres. Des
modèles de transport de la luminance et de sensibilité peuvent alors être construits. Ensuite,
une traduction standard de l’intégrale de chemin est effectuée pour concevoir des algorithmes
de Monte-Carlo résolvant le modèle de luminance et les modèles de sensibilités. Des difficultés
sont trouvées lorsque le nombre de sensibilités augmente et lorsque la dérivation de propriété
radiative fait intervenir des discontinuités. Les chemins de rayons statistiques nécessaires
deviennent nombreux.

Dans cette thèse, les espaces des chemins statistiques de la luminance et des sensibilités sont
étudiés et reformulés. Le transport de la luminance et des sensibilités peut être donc vectorisé.
Cette technique de vectorisation permet de transporter un vecteur (luminance et sensibilités
sont écrites dans le même vecteur) au lieu d’un scalaire (luminance ou sensibilité séparément).
Enfin, cette technique est ensuite appliquée pour estimer les sensibilités géométriques dans
les systèmes d’énergie solaire concentrée, et la physique des sensibilités est interprétée et
discutée.
Mots-clés : Méthodes de Monte Carlo, Transfert radiatif, Vectorisation, Solaire à concentration, Modèle de
sensibilité

Abstract

Vectorized Monte-Carlo Method for sensitivity models in radiative transfer: ap-
plication to Concentrated Solar Power

The present manuscript addresses the question of vectorizing the sensitivity evaluations for
radiative transfer systems involving semi-transparent media. Intensity is the usual descriptor
of radiative transfer. In this work, the sensitivities of intensity with respect to parameters
characterizing the radiative system are also used as descriptors of radiative transfer. They
characterize the perturbations to intensity, originating from the perturbations of parameters.
Transport models of intensity and sensitivity can then be built. After that, a standard path
integral translation is made to design Monte-Carlo algorithms solving the model of intensity
and the models of sensitivities. Inconveniences are found when the number of sensitivities
increases and when the discontinuities of radiative properties are encountered because the
number of required statistical ray paths becomes very high.

In this thesis, the statistical path space of intensity and sensitivities are studied and refor-
mulated, and then their transports can be vectorized. Instead of constructing ray paths
for the transport of a scalar (intensity or sensitivity separately), ray paths are constructed
for the transport of a vector (intensity and sensitivities are written into the same vector).
Last but not least, this technique is then applied to estimate the geometric sensitivities in
concentrated solar power systems, and the physics of the sensitivities is interpreted and
discussed.
Keywords: Monte Carlo methods, Radiative transfer, Vectorization, Concentrated solar power, Model of
sensitivity
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