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SUMMARY

Drug discovery and development are very time and resources consuming
processes, which can be significantly facilitated by computer-aided drug design
methods. Among such methods force field-based are arguably the most used. The goal
of this PhD was to develop the force field (FF) model for a large number of biologically

important molecules.

In the first part, I focused on extending the CHARMM force field to a large set
of 333 nonstandard amino acids. These nonstandard amino acids are frequent in the
protein structures available in the protein data bank. These are biologically
important molecules produced as a result of post-translational modifications (PTMs)
in the cell, but also can be synthetized and incorporated in labs. For parametrization,
amino acids with nonstandard sidechains as well as amino acids with modified
backbone groups were considered. Amino acids were parametrized for the most
important protonation states at physiological pH and, for some more common
residues, in both D- and L-stereoisomers. Both inter- and intramolecular terms were
parametrized targeting quantum mechanics (QM) data. Validation was performed by

molecular dynamics simulations of 20 protein systems.

During my PhD, I also worked on the development of a force field model for
the phenylalanyl group covalently linked to tRNAPre, This model was used to predict
the structure of an enzyme of the novel cyclodipeptide synthases family bound to
phenylated tRNAFPe, In collaboration with an experimental group, I showed that the

proposed model is compatible with experimental data.

Another part of my PhD was dedicated to improving the force field
development method, where I developed and tested a new method for bond and
valence angle terms parametrization to improve transferability and robustness of
developed parameters. The novelty of the method is that it allows explicitly structural
deviations between QM and CHARMM structures during optimization. The results
demonstrate that without any need for additional restraints the new method
produces robust and transferable force field parameters. The new method also
improves the agreement for the QM normal modes for all molecules in the set.

Thus, the new method will allow parametrization of molecules under the structural



Summary

deviation, common for force fields for small molecules, producing robust and

transferable parameters.

In the final part of the project, I am performing a large-scale parametrization
of drug-like molecules. Around 300,000 ligands were selected from the ZINC20
database to cover a broad region of the chemical space. The selection criteria
accounted for the drug-likeness and chemical diversity of molecules, which are not
parametrized in the current CHARMM force field. Based on the sorting method to
find molecules containing common atom groups, 7000 molecules were subjected to the
force field development. A special attention was given to the optimization of non-

planar rings, which can exist in different puckering states.

Overall, the current PhD project represents a significant step forward in
extending the CHARMM FF to a wide variety of chemical entities. The FF model for
both, nonstandard amino acids and the ligand library, apart from structure/function
studies can be used for virtual screening studies. To make available for the scientific
community, the FFs developed in this work are included into the standard CHARMM
package of FF.



RESUME

La découverte et le développement de médicaments sont des processus trés
colteux en termes de temps et de ressources, qui peuvent étre considérablement
facilités par des méthodes de conception de médicaments assistées par 'ordinateur.
Parmi ces méthodes, celles basées sur les champs de force sont sans doute les plus
utilisées. L'objectif de cette thése était de développer un modéle de champ de force

pour un grand nombre de molécules biologiquement importantes.

Dans la premiére partie, je me suis concentrée sur l'extension du champ de
force CHARMM a un large ensemble de 333 acides aminés non standard. Ces acides
aminés non standard sont fréquents dans les structures protéiques disponibles dans
la banque de données des protéines. Il s'agit de molécules biologiquement
importantes produites a la suite de modifications post-traductionnelles dans la
cellule, mais elles peuvent également étre synthétisées et incorporées dans les
laboratoires. Pour la paramétrisation, les acides aminés avec des chaines latérales
non standard ainsi que les acides aminés avec des groupes de squelette carboné
modifiés ont été considérés. Les acides aminés ont été paramétrés pour les états de
protonation les plus importants au pH physiologique et, pour certains résidus plus
communs, dans les formes stéréoisomeéres D et L. Les termes inter- et
intramoléculaires ont été paramétrés en fonction des données de la mécanique
quantique (MQ). La validation a été effectuée par des simulations de dynamique
moléculaire de 20 systémes protéiques chacun contenant un acide aminé non

standard différent.

Au cours de mon doctorat, j’ai également travaillé a I’élaboration d'un modéle
de champ de force pour le groupement phénylalanyle lié de facon covalente a
’ARNtPre, Ce modele a été utilisé pour prédire la structure ’ARNtPre phénylalanylé
liée a AlbC, une enzyme représentante d'une nouvelle famille enzymatique appelée
synthétases de cyclodipeptides. Le modéle a été obtenu d’abord utilisant ’'amarrage
moléculaire rigide et ensuite raffiné par des longues simulations de dynamique
moléculaire au cours desquelles le complexe de TARNt et AlbC est maintenu avec une
interaction stable entre les deux partenaires moléculaires. En collaboration avec une
équipe d’expérimentalistes, jal montré que le modele théorique proposé est

compatible avec les résultats expérimentaux.



Résumé

Pour améliorer la méthode de développement du champ de force, j'ai développé
et testé une nouvelle méthode de paramétrage des termes de liaison et d'angle de
valence afin d'améliorer la transférabilité et la robustesse des parameétres
développés. La nouveauté de la méthode consiste a en permettre explicitement les
déviations structurelles entre les structures MQ et CHARMM pendant l'optimisation
du champ de force. Les résultats démontrent que sans aucun besoin de contraintes
supplémentaires, la nouvelle méthode produit des parameétres de champ de force
robustes et transférables. La nouvelle méthode améliore également 1'accord
CHARMM et MQ pour les modes normaux pour toutes les molécules de 1'ensemble
utilisé. Ainsi, la nouvelle méthode permettra la paramétrisation des molécules sous
une déviation structurelle, courante pour les champs de force des petites molécules,

produisant des parametres robustes et transférables.

Dans la derniére partie du projet, je réalise une paramétrisation a grande
échelle de molécules de type médicament. Environ 300.000 ligands ont été
sélectionnés dans la base de données ZINC20 pour couvrir une large région de
l'espace chimique. Les critéres de sélection tiennent compte de la similitude avec les
médicaments et de la diversité chimique des molécules, qui ne sont pas paramétrées
dans le champ de force CHARMM actuel. En se basant sur la méthode de tri pour
trouver les molécules contenant des groupes d'atomes en commun, 7000 molécules
ont été soumises au développement du champ de force. Une attention particuliére a
été accordée a l'optimisation des cycles non-planaires, qui peuvent exister dans

différents états de conformation.

Dans I'ensemble, le projet de thése actuel représente une avancée significative
dans l'extension du champ de force CHARMM a une grande variété d'entités
chimiques. Le modeéle de champ de force pour les acides aminés non standard et la
bibliothéque de ligands, en plus des études structure/fonction, peut étre utilisé pour
des études de criblage virtuel. Afin de les mettre a la disposition de la communauté

scientifique, les champs de force développés dans ce travail sont inclus dans le paquet

standard du champ de force CHARMM.
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Chapter 1
INTRODUCTION

In silico studies have been become routine for biomedical and material
research nowadays, thanks to advances in algorithms as well as hardware. They
allow reducing the time and cost for experimental studies, and in particular, for
expensive drug design campaigns. Among in silico tools, molecular mechanics
(MM) based methods are arguably the most popular computational techniques for
studies of biomolecular systems owing the system size and timescales that can be
accessed. The highest accuracy of modelling is obtained by quantum mechanics
(QM) methods that find solutions to the Schrodinger equation. However, such
methods are still computationally expensive and cannot be applied to simulate
biological processes occurring on long timescales, such ligand-protein binding or
protein conformational changes. MM methods approximate QM Hamiltonian
using an empirical function, also called a force field (FF) that defines the energies

and forces acting on the molecular system.

The notion of a force field includes an empirical energy function, a set of
associated empirical parameters that need to be fitted, and a parametrization
strategy. The parameter set and potential energy function combined allow to
calculate the energy and forces as a function of coordinates of the particles in the
system. Using atomic forces, it is possible to solve numerically Newton's equations
of motion, by molecular dynamics (MD) simulation techniques. The quality of such
simulations depends dramatically on the accuracy of the underlying FF model,
and in particular FF parameters. The major requirement for performing such MD
simulations is the existence of MM force field parameters. While FF models exist
for a set of standard molecules such as standard amino acids, nucleic acids, lipids,
carbohydrates, and a limited number of drug-like small compounds, in general, a

FF model is not available for every molecule in the infinite chemical space.

The main goal of this thesis was to extend the CHARMM force field family
to cover a larger domain of the chemical space. The first objective was to generate
high-quality (i.e. specifically optimized) FF parameters for a large set of frequent

nonstandard amino acids. The second objective was to develop a new improved
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Chapter 1. Introduction

method for the FF development for bonded terms. The final goal of the thesis was
to perform large-scale FF parametrization for small drug-like molecules from a
library, which can be used in in silico drug design endeavors. In what follows, 1
will give a brief introduction to FFs with an accent on the additive version of the

CHARMM family of FFs.

FORCE FIELDS (FFS)

Force fields can be classified by the smallest entity, which degrees of freedom
are explicitly present in the model: electrons, atoms, groups of atoms, tissues and so
on. The coarse-grained models like SIRAH?!, VAMM?2 or MARTINI? represent groups
of atoms as a single entity, called a “bead”. Often, the beads have a dipole moment or
higher order electric moments, and complicated functions are used for bonded
interactions and hydrogen bonds to restore physical properties lost by atoms in the
bead model. Coarse-grained models provide benefits for simulating massive
biomolecular systems and to study functional processes occurring on larger time
scales,* however, in the context of computer aided drug design a more precise all-
atom force field is needed. Similar to the current coarse-grained models, the initial
versions of OPLS, CHARMM, AMBER used the united-atom concept,57 while the
GROMOS force field still inherits this approximation.® The united-atom model does
not include explicitly nonpolar hydrogens, instead parent atom parameters are
optimized to account implicitly for steric effects due to missing hydrogens. By
contrast, polar hydrogens are treated explicitly to model hydrogen bonds and any

other polar interactions.?

All atom FFs typically have two contributions, one from intermolecular and
one from intramolecular interactions. Both types of interactions are present even in
a small molecule in vacuum. Generally, the intermolecular part is due to electrostatic
and van der Waals (vdW) interactions. Intramolecular interactions are related to the
covalent structure of the molecule. Depending on the type of terms included to the
potential energy function, FFs can be divided into three classes. In the Class I force
fields, deformations of bonds and angles are described by simple harmonic oscillator.
Thus, the magnitude of the restoring force is assumed proportional to the
displacement from the equilibrium position. However, bond stretching and angle
bending are harmonic only near the equilibrium values, in the limit of small
vibrations, and higher-order terms may be required for a more accurate description

of molecular motions. Force fields in the class II include anharmonic cubic and higher

14



Chapter 1. Introduction

order contributions to the potential energy for bonds and angles, and can also include
cross-terms describing the coupling between bonds, angles and dihedral angles
resulting in a more accurate reproduction of experimental bond and angle vibrations.
However, FF models of this class (such as MMFF941°, UFF!) require more

parameters to be fitted in comparison to class I.

Class I and IT employ the Coulomb law to model electrostatic interactions with
fixed point (partial) charges centered on atoms. This model is referred to as
“additive”, as electrostatic interactions between atom pairs are pairwise in nature,
i.e. not affected by the presence of other charges in the system. The main
disadvantage of additive FFs is that it does not account explicitly for polarization.
With partial charges being fixed during simulations, the induced polarization is
treated implicitly in a mean-field way. By contrast, the electronic density of the
molecule is not static and can adjust in response to the external electric field,
affecting interactions with other molecules, but also with itself. To solve this problem,
Class III FFs have been developed that treat explicitly electronic degrees of freedom.
Examples of Class III FF are AMBER ff0212-15, AMOEBA!6-21, CHARMM-FQ22-26 and
CHARMM Drude?7-53,

In this work, I focus on the additive version of FF's for its computer efficiency,
appreciated in the field of CADD. Typically, for bio-systems molecular dynamics
simulations are performed close to room temperature and energy of bond and angles
vibrations stay low enough to be modelled by harmonic terms®* of Class I FF (even at
temperatures specific to thermophiles). Although the Class I FF lacks the explicit
treatment of electronic polarizability, a common strategy (as for the additive
CHARMM FF) is to include it implicitly by overestimating the corresponding gas-
phase molecular dipole moment by ~20-30%.55 This strategy is based on the fact that
dipole moments of molecules in condensed phases are normally larger than those in
the gas phase. As consequence, the CHARMM fixed charge model has shown good
agreement with condensed phase properties, including experimental molecular

volumes and enthalpies of vaporization.9.56-63

In all-atom additive force fields, each atom is represented by a point in space
with a mass, a partial charge, van der Waals parameters, and connected to other
atomic points by bonded terms. The dynamics of such systems of atoms system can

be described by Newton’s equations of motion. The classical molecular force fields
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Chapter 1. Introduction

share essentially the same empirical expression for the potential energy proposed by

Levitt and Lifson in 1969:64
Epot (?) = Ebond (F) + Eangle (?) + Etorsion (F) + Eimproper (F) + Eelec (7_2) + EvdW(F)
(Eq 1.1)
7 are the coordinates of atoms. Epong, Eangtes Etorsions a0d Ejmproper are bonded terms
due to bond stretching, angle bending, dihedral angle bending, and improper dihedral
angle bending. The non-bonded terms E,,.. and E,qy describe the Coulomb
(electrostatic) and van der Waals interactions between atoms not directly connected

via covalent bonds and bond angles (1-4 atoms in the CHARMM FF). A graphical

representation of the terms in the potential energy function are shown in Figure 1.1.

6)0 O/OVO & O
o060

nonbonded __ vdW ele
E =E""+F

E improper

Euu gle w

Figure 1.1. Schematic illustration of the terms in a classical fixed-charge force field. Bond
stretching (Ebtond), angle bending (Eangle), dihedral angle torsion (Etorsion) and improper angle
bending (Eimprorer) as well as van der Waals (Ev@%) and electrostatic (E¢) interactions are
shown.65

The major families of all-atom additive force fields are Amber (Assisted Model
Building with Energy Refinement)66:67 OPLS (Optimized Potentials for Liquid
Simulations),?868 and CHARMM (Chemistry at Harvard Macromolecular
Mechanics).%%7! These force fields employ atom types to define bonded and non-
bonded parameters. For a given molecule, from atom types and connectivity
information it is sufficient to determine all bonded parameters.% The notion of atom
type is related to the fundamental assumption behind FFs, called transferability that
the same group of atoms behave similarly in different chemical species. For example,
the angle between protons of the methyl group as well as vibrations along this angle
are very similar in different molecules. The transferability feature allows developing
FF's for novel molecules in a hierarchical manner, where fitted parameters for novel
molecules are included to the force field to serve for other molecules not present yet

in the transferable force field.™ There are fewer atom types in a FF in comparison to
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Chapter 1. Introduction

a number of molecules that can be represented by the force field model. Generally,
the number of atom types is increasing with the number of molecules, requiring more
"specialized" atom types. For example, the current CHARMS36 force field for proteins
contains 53 atom types, while the CHARMM FF for small molecules (CGenFF) has
already 163 different atom types.6® Including additional atom types for the same set
of molecules generally improves agreement with QM data allowing capturing more
subtleties, but also leads to more parameters to fit. Before going into details of force
fields for biomolecules, the MM models for water will be described, as the water

molecule was historically one of the first molecule described by MM.

Application of FFs in the context of biological systems requires to include the
effect of solvent as most of protein biological function take place in an aqueous
environment. Aqueous solvent plays a determining role in the majority of biological
processes, including protein folding and ligand-protein binding. For example, upon
formation of ligand-protein complexes the solvent content of the binding site changes
significantly by replacement of the polar aqueous solvent by polar and non-polar
groups of the ligand. In general, the ligand-protein binding represents a fine balance
between ligand-protein, protein-solvent, and ligand-solvent interactions. Another
example is protein folding, where an amino acid in the polypeptide chain changes its
solvent environment to the folded-protein environment, which can be significantly
non-polar. The fine balance of interactions between solutes-solutes, solutes-solvent
and solvent-solvent needs to be reproduced by FF in simulations. To model these
interactions, the most accurate approach is to use atomistic models (explicit solvent),
which provides the highest level of detail of biomolecular systems. However, implicit
solvent models, though not developed or used in the current work, also should be
mentioned in this context, as a significant amount of effort has been invested in the

development of approximate schemes.”

Creating models for water is a complicated task due to water’s unusual
physical and chemical properties. Hundreds of potential models for explicit water
have been proposed aiming to reproduce a specific nature of the molecule, with the
first models dating to the first half of the twentieth century. Similar to force fields
for biomolecules, water models can be classified by the treatment of electrostatic
interactions, i.e. polarizable and with fixed charges. The fixed charge models can be
further classified by whether the water geometry is flexible or rigid, by the number

of sites that need to describe vdW and electrostatic interactions.
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Figure 1.2 gives a schematic representation of the different water models
available™ and also outlines a historical aspect on the development of water FF
models. One of first water models was proposed by Mecke and Baumann in circa
193075, The model consists of two positive charges on each hydrogen and a negative
charge on the HOH bisector, while the vdW interaction site was centred on the oxygen
atom. A 4-sites water model was proposed later by Bernal and Fowler,™
parametrized to reproduce experimental data (structure of ice, dipole moment,
diffraction pattern of liquid water). In this model, each hydrogen had a positive
charge, and two negative charges were placed “behind” the oxygen atom to form a
tetrahedral geometry. A different model was proposed by Rowllinson (Figure 1.2c)
similar to Bernal and Fowler, also with four electrostatic sites: in addition to the two
positive charges on the hydrogen atoms, two negative charges were placed near the
oxygen atom?6. This model better accounts for the lattice energy and intermolecular
spacing in ice, including the effects of polarization and induced dipole. Ben-Naim and
Stillinger (BNS) model, proposed in 197277 and represented in Figure 1.2d, was used
to perform the first molecular dynamics study of water. This model, similar to
Rowllinson's model, has four-point charges, but the two negative charges near the
oxygen atom were placed by the authors in a tetrahedral geometry. The Transferable
Intermolecular Potential, with three centres (TIP3P) was developed by Jorgensen’
in 1981 yr. with the purpose of a simple and efficient water potential that can be
transferable to solute-solvent systems and requires less computer resources (Figure
1.2b) in contrast to 4-site models. This model is based on three sites, two positive
charges on each hydrogen and one negative charge on the oxygen atom, with the only
vdW site placed on the oxygen centre, again to reduce the computational cost. The
parameters were based on gas-phase dimers and pure liquids structures and
energies. Analogous to TIP3P, Berendsen and co-workers derived the Simple Point
Charge (SPC) water potential,” the difference being that the parameters were

optimized to reproduce experimental potential energies and pressure of liquid water.
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(b)

s

Figure 1.2. Schematic representation of different water models. a) TIPS2, TIP4P; b) SPC and
TIP3P; ¢) Rowlinson; d) Ben-Naim and Stillinger (BNS) and Stillinger (ST2). The plane of the
molecule is indicated by a green parallelogram, oxygens and hydrogens are in blue and red,
respectively. & is the absolute value of partial charges.™
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As it was shown,® Bernal and Fowler potential does not reproduce well the
bulk properties of water, such as density and heat of vaporization. Later models, such
as TIPS2 and TIP4P follow the Bernal and Fowler's idea by adding one dummy atom
near of the oxygen atom along the bisector of the HOH angle and aim to reduce these
inconsistencies. These models, shown in Figure 1.2a, are able to reproduce with a

better accuracy the bulk properties.8°

Historically, the water model used with the first version of CHARMM FF was
ST2. ST28! potential was developed by Raman and Stillinger by slightly modifying
the BNS model. The main difference between BNS and ST2 is the distance from the
oxygen atom at which the negative charges are placed. Modern simulations with the
additive CHARMM force field mostly use a modified version of the TIP3P water
model, (ambiguously) called TIP3P (modified version), which is also a water model of
choice for simulations with the Amber force field. The modified TIP3P is similar to
the unmodified TIP3P but contains additional vdW interaction sites apart from the
oxygen site, which are placed at hydrogens. In particular, TIP3P water model
appears, while being computer efficient, to reproduce reasonably well different
physical properties of water at room temperature, though some inconsistences are
present including high self-diffusion and some disagreement of the water structure
in comparison with experimental data. Generally, TIP3P is used in a rigid variant,
using for example the SHAKE algorithm to constrain the bond lengths, and H-O-H
angle (constrained by including a fictitious H-H bond). It allows increasing the time-
step during MD simulations to a typical value of 2 fs, needed to perform longer
simulations. By contrast to the other FFs, in the CHARMM FF the TIP3P water
model also plays a role during FF development, since interactions with TIP3P waters
(the TIP3P geometry is also used for QM calculations) are used to derive point

charges.

ADDITIVE CHARMM FF
CHARMM FF for proteins: history and the current state

The first additive CHARMM FF (version C4) was released in 1983, and similar
to AMBER and GROMACS, was intended for proteins, while OPLS FF was initially
created for organic liquids.82 C4 was an united-atom model with an option to choose
whether only aliphatic or all hydrogens are combined to heavy atoms. The empirical
expression used for potential energy (Eq 2) contained the terms

Ep,Eq,Ep,Eo, Eety Evaw, and Ep, for bonds, angles, dihedrals, improper torsions,
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electrostatic interactions, van der Waals interactions, and hydrogen bonds,

respectively:82
E=E,+Eg+Ep+E,~+Ee + Epqw + Enp (Eq1.2),
where bonded terms are given by:
Ey= ) ky(r—1)? (Eq13)
Eg = Yko(0 — 6,)* (Eq 1.4)
Ey = Ylky| — kg cos(ng), wheren = 1,2,3,4,6 (Eq 1.5)

E, =Yk,(w— wy)? (Eq1.6)
by, 8y, wy are the bond, angle and improper dihedral angle equilibrium values,
respectively; and the k, are the force constants. Force constants for bond, angle and
stiff dihedral terms were obtained by fitting to vibrational data from experiments or
from QM Normal Mode Analysis (NMA). Equilibrium values are typically adapted

from crystallographic data,? with no or very small adjustment.

In C4 electrostatic interactions are modelled by Coulomb's law:

_ qi9;
Eq = z <—47T€(r)eorij> (Eq1.7)

where g, €y, 7;j are the atomic charge, the electric constant and the distance
between atoms i and j, respectively; e(r) is the distant dependent dielectric constant.

The vdW interactions were modelled by the Lenard-Jones (LdJ) potential:

B = . (-4 @a19)
Uy

contain the repulsive (4;;) and attractive (B;;) parameters for the LJ 6-12
potential. Hydrogen bond term was present explicitly in the CHARMM FF only in the
first version. Next versions of CHARMM FF did not explicitly include hydrogen bond
terms, treating it implicitly by reducing the repulsive contribution of E,q4y term for

the atoms involved in a hydrogen bond.

As a major step in the CHARMM development, CHARMM19 (version C19) was
released in 1985 and was the last CHARMM FF employing a united-atom paradigm.®
The C19 force field was popular until the end of the last century when all-atom
version of the CHARMM FF became available. In C19, the dihedral torsion term was
modified by adding a phase dependence with two phase values possible 0° or 180°

allowing the force constant to be always positive (needed for implementation reasons
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only). Polar hydrogens were treated explicitly in C19 and only hydrogens bonded to
sulfur and carbon were still included to extended atoms (carbon atoms with larger
vdW radii). In this update, the hydrogen bonds term was dropped, and a major
revision of partial charges was accomplished to obtain hydrogen bonding interactions
consistent with QM calculations of formamide—water interactions. The TIP3P water
model was used and a scaling factor of 0.4 was applied to Coulomb interactions of 1-
4 atoms and distance-depended dielectric parameter was still applied.”® The
modified TIP3P water model was retained for the following versions of the CHARMM
FF, while AMBER and OPLS use the initial TIP3P model (without vdW sites on
hydrogens).

With C19, the parameters enter the vdW interaction term in a different form:

6
vdW z EU { U -2 <r_l]> ] Eq (1-9)
t

in which ¢; 1s the well depth and is the g;; radius at which the Lenard-Jones
potential has a minimum (in contrast to A and B in the previous version). In addition,

the LJ parameters for pairs of atoms i and j are constructed using:
gj = \/‘E and o;; = (al- + O'j) Eq (1.10)

As computer hardware was improving, CHARMM227 (C22) was released in
1991 and is considered to be the first all-atom protein FF and was used as a basis for
all the following all-atom additive CHARMM FFs. The later attempts, except the
introduction of the CMAP term, mostly focused on expanding parameters to other
molecules. Thus, the CHARMM FF was supplemented with parameters for nucleic
acids®* and lipids.8® Starting with this version (>22), the non-bonded terms were
modified: the LJ atomic radius for atom pairs is also computed with the Lorentz-
Berthelot combination rule, but as an arithmetic mean of the individual atomic radii.
Obviously, it only reduces the values of vdW radii by two. However, the vdW
parameters need to be redefined for the parent carbon atom, since all hydrogens are
present in C22. For electrostatic term, the distance-depended dielectric parameter
was replaced by a dielectric constant of unity. For the bonded part, the Urey-Bradley
(UB) term (currently is considered as obsolete) was added to improve the agreement

with vibrational spectra when a harmonic term alone would not adequately fit:
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2
Eyp = kUB(7”1—3 _7"1—30) Eq(1.11)
where kyp is the force constant and ry_3, is Urey-Bradley equilibrium value,

713 1s the distance between 1-3 atoms forming a valence angle. The parameterization
of internal terms was based targeting experimental gas-phase geometries,
vibrational spectra, and torsional energy surfaces completed with QM data. The
bonded parameters for the peptide backbone were also optimized by fitting QM data
for N-methylacetamide and the alanine dipeptide.”® The C22 parametrization
procedure extensively targeted experimental data in the condensed phase. In
particular, the optimization included dipole moments, experimental heats and free
energies of vaporization, solvation and sublimation, molecular volumes, and crystal
pressures.’0 C22 fitting of partial charges relied on reproducing QM interactions
energies and geometries between small fragments and a probe water molecule in
vacuum testing different interaction sites. In addition to probe water interactions
(modelled as TIP3P), the QM dipole moment was also included for neutral fragments
only.

Another important methodological update was the addition of “CMAP”86
(correction map) term for dihedral cross-term corrections in order to improve the
accuracy of protein backbone conformational behavior during simulations. CMAP
represents an error function between QM and MM potential energy surfaces, and
mathematically is a 2-dimensional (2D) grid based correction (using cubic splines) for
the backbone ¢, Y torsion angles, which allows to capture better the features of the
2D distribution of ¢, i angles observed in structures deposited in the Protein Data
Bank.86:87 OPLS and AMBER FFs use the CMAP term to improve the conformational

behavior of the protein backbone.?88

The following updates of the FF, C27,399 concerned parameters for nucleic
acids and lipids and for carbohydrates (C35).91 The results on simulations in longer-
time scales indicated flaws of the FF. The identified shortcomings were remedied in
the subsequent version, C36, released in 201292, In parallel to backbone improvement
(CMAP), C36 includes a systematic reparameterization of sidechains dihedrals
(X1, x2). Sidechain dihedral terms were optimized by fitting to backbone-dependent
QM PES scans, compared to crystal data from the Protein Data Bank®® and followed
by additional empirical optimization targeting NMR couplings for unfolded

proteins.b? The revised C36 parameters represent an improved FF for the treatment
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of conformational sampling of the backbone with more accurate secondary structure

propensities and also for the better sidechain sampling of y rotamers.

As a significant interest appeared for intrinsically disordered, or partially
ordered proteins that may be involved in cellular functions, a refined version of C36
was released in 20177, called C36m, with the CMAP term improved and also with
atom pair-specific Lenard-Jones (L-J) parameters introduced (e.g. NBFIX in
CHARMM nomenclature). The latter was needed to correct over-stabilized salt
bridges in C36. The C36m is the latest version of the CHARMM FF (on the day of

writing this memoire).
CHARMM FF for Small Molecules

Historically, classical force field models (CHARMM, Amber, and OPLS as
example) were first created for important biopolymers like proteins, nucleic acids and
lipids, presented above. However, for function these macromolecules need assistance
from small molecules. For example, chemical reactions catalysed by enzymes
frequently employ cofactors. The coverage of the much wider chemical space is needed
to model these molecules, however in contrast to biological polymers (proteins, nucleic
acids and lipids), which are assembled from a relatively small number of possible
chemical blocks, small molecules have practically an infinite number of possible
chemical compositions, making it challenging for a force field model. A significant
effort was made to extend force fields to small molecules during the last decade, and
as a result of this effort, force fields for small molecules were developed including the
General Amber Force Field (GAFF)%, CHARMM force fields for small molecules
(CGenFF)%, OPENFF? and OPLS-AA?".

CGenFTF force field was created to be used along with the standard CHARMM
force field for proteins and nucleic acids and the CHARMM TIP3P water model.
CGenFF explicitly aims at simulating small molecules in a biological environment
described by the CHARMM classical force field. To this end, the same form of the
potential energy function was adopted for CGenFF and mostly the same protocol for
parameter optimization as for the standard CHARMM force fields. Differences with
the standard force field for proteins include the absence of CMAP term, which is
exclusively used to correct conformational dynamics around ¢ and ¥ in the current
C36m version of the CHARMM FF (vide supra); the lack of UB terms for newly
developed parameters; the presence of explicit lone-pairs (LP) for halogen atoms.%

Initially for CGenFF, two classes of model compounds were considered for the
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parameter development. The first group includes a wide range of heterocycles, as
these act as scaffolds of many important pharmaceutical agents; for the second group
frequent and simple functional groups were considered that could be added to those

heterocycles.

The development of force fields for small molecules, including CGenFF, is
accompanied in parallel by advances in algorithms for automatically identifying atom
types and generating (assigning) parameters for molecules from parameters
explicitly optimized in other molecules. For example, for GAFF the Antechamber
toolkit was created to allow the user to generate an Amber force field model for an
arbitrary input molecule.?® As for CGenFF, the CGenFF standalone program also
available as web server (https://cgenff.umaryland.edu/) was designed to generate
CHARMM topologies and parameters based on the CGenFF force field from atom
connectivity.?9190 Starting from the connectivity graph, which can be defined simply
by using the distance matrix, the CGenFF program assigns atom types to atoms. The
starting point is to discriminate atoms forming rings and acyclic structures. At the
present, structures are considered as rings with less than 8 atoms; larger cyclic
structures are treated as acyclic chemical moieties as they possess small ring
strains.?® Bond order is given to the CGenFF program in the mol2 file generated by
OpenBabel!! (or any other tool); the resonance structure, important to define partial
charges, is resolved through calculations of the empirical score, which is a
combination of the molecule net charge, atomic charges, potential (5,6,7-membered
rings) and the number of aromatic rings. The atom types are defined through a set of
condition rules, such as the number of protons bound to a carbon or nitrogen atom,
valence and in-ring or acyclic atoms. Once atom types are assigned, the CGenFF tool
defines parameters. These parameters may include already existing parameters, i.e.
optimized previously for other molecules and included to the CGenFF, and new
unknown parameters, assigned by analogy to the existing parameters. To this end,
the score is computed between the missing term and existing terms as a sum of the
scores for substituting the atom types defining parameters with the atom type in the
missing parameter. The existing parameter with the lowest (best) score is then used

for the missing one.?

The CGenFF program, in addition to parameters, also reports the associated

fitness for parameter approximation, called penalty (P). The high penalty indicate
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that the parameter may need further optimization, however these penalties only
approximate the fitness by the analogy of the generated parameters with available
parameters in CGenFF. Thus, in many cases explicit parametrization and validation
are needed even for low-score terms. The parameters generated by the CGenFF
program may serve as a good starting guess, facilitating initial stages of the FF
development. The developed and validated FF model for novel molecules may be
included to the standard CGenFF force field, which can be used for other similar

groups and molecules in future.
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The rest of this thesis is organized as follows:

The details of computational approaches used in this work are described in
Chapter 2. The CHARMM FF functional form as well as the optimization strategy
are discussed in detail. Methods for molecular dynamics simulations applied to test

different aspects of the developed FFs are also described.

Chapter 3 presents the results of the FF development for nonstandard amino
acids, which can be both, abundant in nature where they play a key role in various
cellular processes and can be produced in laboratories. In this work, we have also
extended the additive all-atom C36 to a large set of 333 nonstandard amino acids and

CGenFF to 188 small molecules.

In Chapter 4 the development of a force field model for the phenylalanyl
group covalently linked to tRNA 1is described. This model is used to predict the
structure of novel enzyme bound to tRNA in collaboration with the experimental

group.

To obtain better FF bonded parameters we developed a new method based on
the potential energy surface (PES) scans, presented in Chapter 5. This work was
motivated by the fact that the conventional FF development methods can lead to the
FF model significantly softer that the corresponding QM model under structural
inconsistency, frequently present due to parameters transferred from existing

molecules in the force field.

Typical drug design projects deal with large collections of small molecules,
which are tested against a known receptor. In silico tests can be performed using a
FF model to evaluate ligand-receptor interactions, requiring that such FF model
being available. In this work, we are parametrizing a large collection of small
molecules from the ZINC20 library, on order of hundreds of thousands, which can

serve as fragments in drug design projects. This study is presented in Chapter 6.

This thesis is in part based on published papers: Chapter 3 and 4 are largely
adapted from refs 192 and 193, respectively. The paper corresponding to Chapter 5 was
submitted for publication, and Chapter 6 presents unpublished results. Finally,

conclusions and perspectives for this work are given in Chapter 7.
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Chapter 2
METHODS

CHARMM PARAMETRIZATION STRATEGY

Overall, the parametrization protocol adapted in this work follows the same
steps of the C36 FF/CGenFF to ensure compatibility with the already available
parameters, but with improvements to increase parameter transferability and
stability (see Chapter 5). The potential energy (U) function from C36/CGenFF

forcefields!% was adapted without any modification:

q:q; Rminij\'
U= Z i4j z &) < mm,u) _2< mlnu) z Kb(b bo)z
4me, 1i; < Tij

bonds
+ z Ky (6 - 60)2+ZKUB(r1 3~ T 30)

angles

N

+ z z K, (1 + cos(ng — 6,))
dihedral n=1

+ z K, (¢ — 9o)* + CMAP (Eq 2.1)

improper

The individual terms were described in the Chapter 1, while here the accent
is made on the parameters. The electrostatic term described by Coulomb’s law with
atomic partial charges {q;} as empirical parameters; 7;; is the distance between atoms
i and j. The partial charges are typically placed at the centre of nuclei, however, in
special cases, the point charges can be placed at off-atomic-centre positions,
representing for example lone-pairs. In the latter case, which is currently only
applied in CGenFF, the out-of-atomic-centre is constructed using geometrical means
and positions of parent atoms as a molecular frame. The geometrical parameters (the
distance from the parent atom, for example) to find the place for LPs can be

considered as empirical.
The vdW term is treated by the LdJ 6-12 potential in which ¢;; is the well depth,
Rpmin,ij 1s the radius at which the LJ potential has a minimum. The intramolecular or

bonded part of the potential energy function is contributed by terms for the bonds,
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valence angles, dihedral angles, improper dihedral angles, and selected
Urey—Bradley terms, where b0, 8y, 1130, and ¢, are the bond, angle, Urey—Bradley,
and improper dihedral angle equilibrium values, respectively; the K’s are the force
constants; and n and §,, are the dihedral multiplicity and phase. In contrast to other
bonded terms, a dihedral term, taking into account its importance for molecular
conformations and dynamics, is represented as a Fourier series with N number of
multiplicities to allow modelling complicated potential energy surfaces due to
rotation around the dihedral angle. The current C36 FF uses multiplicities n =1, 2,
3, 4 and 6 for a dihedral term, while multiplicity of n=5 is not generally recommended.
The phase can take only two values §,, = 0° or 180°, to reduce the total number of
parameters for fitting. Note, that, in principle, with this convention the phase is not
needed if the force constant can take also negative values. The CMAP term is a grid-
based dihedral correction map (an error function) applied to the protein backbone,
taken the importance of its conformational properties for the protein structure and
dynamics, and which was not considered explicitly for optimization in this work (as

described in Chapter 3).87

The optimization protocol is shown in Figure 1 of Chapter 3. In the first step,
a geometry was produced for each molecule, if no experimental structure is available,
to generate atom types and initial predictions for the parameters using the CGenFF
program.1% All parameters needed for the MM model for the molecule were separated
into two groups: parameters that do not need adjustment, as indicated by the good
analogy mitigated in the low penalty, and parameters that need further any
adjustments, “missing” from the existing force field. In all cases, all partial charges
were optimized with a few exceptions such as aliphatic and aromatic hydrogens (see
below). Based on the “missing” parameters that need to be further optimized, the
compound is further broken into simple model compounds that are “representative”
for optimization. The order of the parametrization, i.e. steps of optimization of
intramolecular and intermolecular terms, plays an important role and can lead to
different sets of parameters and affect the quality of the force field model.
Optimization starts with adjusting the intermolecular terms followed then by the
optimization of intramolecular terms, since intramolecular interactions are also
affected by intermolecular interactions. For example, the rotational energy of a
hydroxyl group depends on the corresponding charges on the -OH group as well as
the point charges on the parent molecule. The reverse dependence also exists, so

typically the partial charges are tested and/or re-optimized with empirical CHARMM
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structures after intramolecular terms were fitted, which implies an iteration process.
The FF parameters are iteratively modified until reaching the specified convergence

between QM and CHARMM calculations.

Prior to processing compounds with the CGenFF tool, hydrogens were added
with OpenBabel!0!, The CGenFF program (should be distinguished from the CGenFF
force field) is proprietary, some features of which can be accessed via

https://cgenff.umaryland.edu (in our case, the access to the program was provided by

Alex MacKerell). This tool performs atom typing and the assignment of parameters
by analogy to the CGenFF force field in a fully automated fashion when provided a
mol2 file.99:100 PDB files containing the structures of molecules were converted to mol2
format with the help of OpenBabel!°! program. Along with coordinates, the mol2 file
contains the complete information on the covalent structure including the bond order,
which can be used by the CGenFF program. For the special case of nonstandard
amino acids, which were described by a mixture of CGenFF and C36 atom types, atom

types were manually corrected in CGenFF generated files.

When assigning parameters, the CGenFF programs also provides the
“penalty” value, a crude estimation on analogy. A high value (P>10) for the penalty
indicates that the given parameter has poor analogy with the molecules for which the
FF is available. We subjected all parameters with penalties P>10 to optimization,
while the low penalty parameters were not optimized. However, if the optimization
of the high penalty parameters fails in specific molecular contexts, low penalty
parameters were also optimized, as the penalty is only a rough estimation of analogy.
If a bonded term was present in multiple molecules, it was optimized only in one
model compound, and further then adopted to the other molecules. However, tests
were performed in multiple molecules sharing substructures with the model
compound in special cases. Typically, a model compound, in which the term was
optimized, was chosen to have fewer atoms and preferably neutral among molecules

sharing the term.

Prior to optimization of intermolecular and intramolecular parameters, the
molecular geometries were fully optimized with QM to default tight tolerances. All
QM calculations in this work were performed with Gaussian091%, Optimization was
performed in vacuum using the MP2/6-31G* model chemistry for neutral and cationic
molecules. For anionic molecules, the MP2/6-311G(d) model chemistry was applied.

Since optimization was performed in vacuum, for model compounds containing
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carboxylic acid and amine fragments, and that can exist in zwitterionic forms in
aqueous solvent, the distance between protons on the amine group and the amine
nitrogen was constrained during optimization to prevent the formation of the neutral
form, dominant in vacuum, by the self-proton transfer to the carboxylic acid. In
special situations where water probing of some atoms was not possible due to steric
inaccessibility, a second geometry minimized with constraints of the molecule was

used.

The parameters are first determined for small fragments, called model
compounds, and subsequently transferred or adapted for the larger complete
molecule. Large molecules are fragmented as to minimize the effects of “cutting”
bonds and adding additional hydrogens, so that parameters optimized in smaller
compounds can be used for larger molecule without any further adjustments. For this
reason, fragmenting of molecules is performed by cleaving sites chosen between two
acyclic saturated carbons to minimize effects on parameters due to cutting, i.e. by the
smallest-possible perturbation of the system. The chemical structure of the model
compound is completed by adding a proton to the acyclic saturated carbon on the
cleavage site. The fragmentation of molecules and addition of missing hydrogens was

accomplished manually using OpenBabel%! or PyMOL software.107

INTERMOLECULAR TERM PARAMETRIZATION

The intermolecular parameters are optimized in accord with the standard
CHARMM parametrization strategy. Optimization of LJ parameters is done in an
iterative manner using expensive MD simulations to calculate condensed-phase
properties (including densities and enthalpies of vaporization) which are compared
with target experimental values. These iterations are done until a satisfactory
agreement is reached. Since the results of these MD simulations also depend on
partial charges, this protocol implies self-consistent iterations, where charges and LdJ
parameters are adjusted iteratively. Taking into account the importance of vdW
parameters that affect all other parameters, creating new vdW types in the
CHARMM FF is done by the laboratory managing the CHARMM FF (Prof. Alex
MacKerell at Univ. of Maryland). In this work, no attempt to introduce new atom

types or optimization of LJ parameters was made.
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After vdW atom types and associated LdJ parameters are defined for all atoms,
partial charges are derived. Charges of aliphatic protons were not optimized and were
set to +0.09¢e in accord with the standard CHARMM protocol. However, they were
still probed by water interactions to allow a better charge density distribution on
parent atoms. Aromatic CH protons also had the standard value of +0.115e. Charges
of symmetrical atoms were set to have an identical value during the charge
optimization. The charge of a group of atoms was also constrained to a net value. The
QM target data included: 1) interactions between the model compound and individual
water molecules, including interaction energies and geometries; i1) the electrostatic

potential (ESP); and iii) the dipole moment for neutral molecules.

QM water interaction energies and geometries were obtained as follows. For
a compound, for which charge optimization is performed, the QM-optimized geometry
at the previous step (section 2.1) is used. For the water molecule, the TIP3P model
geometry is employed. Atoms of the molecule that can form hydrogen bonds were
probed by individual water molecules. Aliphatic hydrogens were probed with a single
water orientation; aromatic hydrogens were probed with two water orientations.
Hydrogen atoms that can form hydrogen bonds were probed by at least four water
orientations. In cationic molecules, only positively charged atoms were probed and in
anionic molecules, only negatively charged atoms were probed, as interactions with
probe waters with ionized molecules are strongly dominated by the monopole of the

molecule (net charge) in vacuum.

The interaction distance between a selected atom of the compound and the
water molecule in an idealized linear orientation, i.e. where the interaction with a
probe water is likely to be the strongest, was optimized. In the CHARMM standard
protocol, optimization and energy calculations with probed water molecules are done
at the Hartree-Fock (HF)/6-31G(d) level.7%9 For simulations in the condensed phase,
the target QM data computed in vacuum are empirically corrected, which is also
needed to correct the deficiencies of the low-level QM used (HF). QM water
interactions in vacuum were scaled by factor 1.16 only for neutral polar molecules to
account for the physical behaviour in the bulk phase; the QM minimum interaction
distance is corrected by subtracting 0.2 A for all polar interactions involving neutral
compounds. The use of HF of QM theory is essential to maintain compatibility with
the rest of the CHARMM FF, although higher levels of theory may produce more
accurate hydrogen bond geometries and energies. In the case of sulfur atoms, the

model compound-water interactions were calculated at the MP2/6-31G* level
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including the basis set superposition error (BSSE) correction of Boys and Bernardi0®

and without applying standard scaling and offset rules.

The dipole moment defined by the charge distribution was used to provide
additional target data for the optimization of the atomic charges for neutral
molecules. The QM dipole moment was calculated in vacuum at the MP2/6-31G*
model chemistry using the QM-optimized conformation.? The QM dipole moment was
increased by 30% according to the standard CHARMM protocol, similar to the TIP3P
water model which has the empirical dipole of 2.35 D, which is 30% higher than the
experimental gas-phase value of 1.86 D.% Both, the magnitude and direction of QM
calculated dipole moment were targeted in charge fitting.1%° In particular, we use a
simple term in the target function given by: |DQM — DMMl, where D,y and Dy are

the QM and CHARMM dipole moments, respectively.

Electrostatic potential (ESP) was also included to the QM target data. ESP
was computed at the MP2/6-31G* model chemistry (MP2/6-311G(d) for anions) in
vacuum, similar to the RESP protocol adopted for the Amber force field.!!° Partial
charges in large molecules optimized only targeting water interactions may lack the
robustness, i.e. very different charge sets can reproduce equally well interaction
energies, since only water interactions with few hydrogen-bond donors and acceptors
at the molecular surface are probed. This is especially critical for charged molecules,
where the QM dipole moment is not included to fitting and only fewer probe water

positions are considered due to the dominant effect of the net charge.

The charge optimization was accomplished with a C++ program based on
Powell minimization algorithms from Numerical Recipes.!'! The partial charges were
adjusted iteratively to reproduce the QM target data. For charge optimization, the
fitness or target function was constructed and included the following terms: the Root
Mean Square (RMS) deviation of minimum interaction energies and distances for
water interactions; the magnitude of the difference vector between the QM and MM
dipole moments for neutral molecules; the RMS deviation between the QM and MM
ESPs; and a term restraining charges to the initial charges. The latter term was
introduced to prevent large deviations from the starting guess for charges, similar to
the RESP method. These terms are appropriately weighted in the fitness function
with the weights given in Table 2.1.
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The reproduction of water-compound interaction energies and geometries has
the largest weight in the cost function of all terms. The different scaling applied to
the optimization of partial charges are also summarized in Table 2.1. The
contribution due to water interaction distances to the fitness function is the smallest,

as 1t 1s mostly a function of LJ parameters rather than atomic charges.

Table 2.1. Weights in the fitness function for optimization of partial charges and scaling
factors for QM data.

Scaling of Target Weight for the term in
QM target data QM data function term target function
Water Energy x 1.16* 10.0 kcal™* x mol
RMS between
interaction . MM and QM o
Distance —02A" 1.0A-1
Absolute
Dipole moment x 1.3* difference 3.0 Debye™!
P ' between MM ' y
and QM
Electrostatic potential . RMS between _1
(ESP) no scaling MM and QM 1.0 kcal™! - mol - A

* scaling of the QM data and shifting of interaction distances were performed only for neutral
molecules

BONDED TERM PARAMETRIZATION

Intramolecular interactions are modelled in the CHARMM FF by bond,
valence angle, Urey-Bradley cross interaction, dihedral angle, improper dihedral, and

CMAP term. In this work, the CMAP term was not considered for optimization.

Flexible dihedrals, also known as soft or rotatable, have a shallow potential
energy surface having several minima that can be accessible during MD simulations
at room temperature. To parametrize dihedral terms, PES scans were performed for
each torsion, by adiabatically relaxing all other degrees of freedom, with the scanned
dihedral angle constrained. In most of cases, a molecule has N rotatable dihedrals,
and in this case, during the adiabatic scans all other rotatable dihedrals were also
constrained to values in the minimum-energy structure. Note that this corresponds
to the assumption that transitions in PES along rotatable dihedral angles are
orthogonal and these degrees of freedom are independent. However, this assumption

may break for ring structures, and multi-dimensional dihedral scans may be needed,
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as it was done to parametrize the standard CHARMM FF for the dihedral angles in

ribose.

Rotatable dihedrals were scanned in the range from -180° to 180° in 10°
increments to cover a complete rotation. QM calculations were performed at MP2/6-
31G* model chemistry (MP2/6-311G(d) for anions). CHARMM conformations were
obtained starting from the geometries extracted from the QM scan, and by
minimizing them with the CHARMM program''2. No correction was applied to QM
PES energies, in accord with the standard CHARMM protocol. During CHARMM
minimization, a harmonic restraint with a large force constant of 5-104 kcal ‘mol-! rad-
2 was applied on the target torsion, while other rotatable dihedrals were restrained
to the values corresponding to the minimum energy geometry. The dihedral
parameters were adjusted until a satisfactory agreement was achieved between the
QM and MM surfaces for the low-energy regions, which are defined as PES regions

with energies lower than 10 kcal mol-! from the minimum energy.

PES associated with non-rotatable dihedrals are typically characterized by a
single minimum and high energy for small deformations. This type of dihedral is
considered rigid/stiff and followed the same optimization method as for bond, valence
angle, Urey-Bradley and improper torsion terms. As a major deviation from the
standard CHARMM protocol, the stiff terms were optimized by adiabatic PES scans
in my work. PES scans were performed for 7 equally spaced distortions for each
internal degree of freedom. A similar method was used in CGenFF parametrization
to determine force constants when the assignment of contributions of the internal
coordinates to the vibrations was ambiguous, however, for CGenFF three-point PES
scans were performed with deformations constant for all scanned degrees of freedom
(We can name it as a constant-max-deformation PES scan ).199.113 In contrast, in our
work, to ensure that only regions of PES sampled during MD simulations are
parametrized, the value of increments were adjusted as in the previous work.114 We
name this method a constant-max-energy PES scan. In this simple method, the initial
distortion increments from QM minimum energy structure were 0.06 A, 4.0°, 25.0°,
and 25.0° for the bond length, valence angle, dihedral and improper angle,
respectively. While performing PES scans, even for relatively small deformations,

energy may become very high and unreachable in MD simulations. For this reason,

36



Chapter 2. Methods

the above initial values for the distortions are then corrected using the following

equation:

Ax' = /2 AEpq,/k [Eq.2.2]

with k = ZW [Eq 2.3]

where Ax and Ax’ are the initial and adjusted maximum distortions,
respectively; E, and E(Ax) are the minimum energy and energy of the deformed
structure, respectively. AE,,,, defines the highest energy on scanned PES. To
optimize each bonded term, the seven equally spaced points used for PES were in the
range of x € [x, — Ax', xy + Ax'], including the minimum energy structure at x = x,.
In Equation 2.3, AE,;4, = 2.0 kcal - mol™! was used. All PES scan energies are limited
by this AE,,,, value, hence the name constant-max-energy PES scan. PES scans were

performed at the same MP2/6-31G* model chemistry and MP2/6-311G(d) for anions
with G09 software!06,

Similar to soft dihedral optimization, each conformation for the CHARMM
calculation was extracted from the QM scan and minimized with a harmonic restraint
force constant of 5-10% keal mol-! ‘A2 or 5104 keal mol-! radian-? on the target bond
and valence angle, respectively. At each optimization iteration, PES adiabatic scans

were performed with CHARMM program using a new set of CHARMM parameters.

To adjust the different CHARMM bonded parameters simultaneously, the C++
program described for charge optimization was used. The program is based on Powell
minimization algorithms from Numerical Recipes.!'! The target function for bonded
terms optimization included RMS deviation between QM and empirical PES
energies, RMS deviation between QM and CHARMM geometries; and restraints to
the initial set of parameters provided by the Penalty term of CGenFF program
predictions. In addition, the weighted RMS deviation between cartesian components
of QM and CHARMM forces was added to the target function. At each optimization
iteration, the empirical PES scans were performed with the CHARMM program 112
using a updated set of parameters. The bonded parameters were iteratively modified

until the target function could not be reduced further.
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MOLECULAR DYNAMICS (MD) SIMULATIONS

MD simulations of protein complexes were performed starting from crystal
structures retrieved from the Protein Data Bank (PDB). To prepare the MD model,
protonation states of residues were determined with the PROPKA115.116 tool, that
assigns pKa's to titratable residues using an empirical scoring function. In the case of
histidines, the protonation was assigned by visual inspection and 1ideal
stereochemistry. Water molecules present in protein crystal structures were
preserved in the MD model. In addition to crystal waters, a cubic box of water was
overlaid and waters overlapping the protein and crystal water molecules were
removed based on a minimum distance of 3.5 A between non-hydrogen atoms. With
this distance, voids, which can be hydrophobic in nature, inside the protein are not
filled with waters from the overlaid water box. The size of the water box was chosen
so that the sides of the box were at least 10-12 A away from any atom of the protein.
An appropriate number of potassium or chloride counterions was included to render

the system electrically neutral.

The system preparation was done with the CHARMM?!!2 program of version
c41b1, while MD simulations were performed with the NAMD package version 2.2117,
typically running on GPUs for efficiency.!!” Periodic boundary conditions were
applied, and the entire box was replicated periodically in all directions. All long-range
electrostatic interactions were computed efficiently by the particle mesh Ewald
method!!® using a real-space cut-off of 11 A. Long range electrostatic forces were
evaluated every 4 steps, while short-range non-bonded interactions were computed
at each step. All vdW interactions were truncated at the distance of 11 A with a
smooth switching function. MD simulations were performed at NPT ensemble at
constant room temperature and pressure, after 200 ps of thermalization. Constant
pressure was maintained using the Berendsen pressure bath coupling!!® with the
relaxation of 500 fs, the compressibility parameter of liquid water, by rescaling
coordinates of atoms. Constant temperature was maintained by coupling to a heat
bath with a room temperature by correcting forces as implemented in the NAMD

program.!1?

We used two types of the system setup depending on the protein size and goals
of the study. In one setup, considered complete setup, all protein residues were
present in the MD model. In this case, the centre of mass of the protein heavy atoms

was weakly restrained to the initial position of the system by a harmonic potential
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with a force constant of 0.1 kcal x mol2x A2 to prevent the drift of the protein in MD

simulations, so that the protein atoms interact with the same cell unit.

The second setup is suited when one is only interested in the
structure/dynamics of “central” region.!20.121 The centre of interest can be a catalytic
site or a nonstandard amino acid as in Chapter 3. The residues situated within 24
A around the centre of interest were maintained in the MD model, while the residues
beyond the 24 A radius sphere were removed. To preserve the net charge of the
system, which can be further neutralized by adding counter ions, the truncation was
done based on the CHARMM "groups", which are groups of atoms in a residue having
a net charge. Similar to the first system setup described above, the spherical protein
region was overlaid by a water box with its edges at least 10-12 A away from protein
atoms. The system was neutralized with appropriate number of counterions. The rest
of the setup follows the complete protein setup presented above, except restraints
acting during MD simulations. For the spherical region, no restraint to the centre of
mass was applied, but atoms between 20 and 24 A from the sphere’s centre were

harmonically restrained to their experimentally determined positions.

In all simulations, the C36 force field was used for the protein®110 and the
CHARMM standard model for water (modified TIP3P).7080.83 The nonstandard
groups/molecules such as nonstandard amino acids were modelled using the force

field parameters specifically developed in this work.
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Chapter 3
ADDITIVE CHARMM FORCE FIELD FOR
NONSTANDARD AMINO ACIDS

Protein activity, participating in almost every process within cell, whether is
catalytic or not is defined by its 3-dimensional structure, which in it turn defined by
the composition of amino acids. There are 20 amino acids that have their own
designated codons and 2 additional amino acids, selenocysteine and pyrrolysine, for
which special coding mechanisms exist depending on the concerned organism, also

encoded by the translational machinery. Thus, there are 22 standard amino acids.

In contrast to the standard amino acids, there are many more nonstandard
amino acids that are not encoded in the genetic code. However, they are naturally
abundant as post-translational modifications (PTM), as intermediaries in metabolic
pathways, and born due to oxidative stress reactions. Additionally, they can be of

artificial origin and synthesized for specific applications.

In this work, we selected a set of 333 nonstandard amino acids, which did not
have a model in the CHARMM FF, for force field development. It includes 198 non-
canonical amino acids from the SwissSidechain database of amino acids!?? and an
additional 135 most frequent nonstandard amino from the Protein Data Bank
(PDB).123 The latter were selected based on the survey of PDB. In particular, each
selected amino acid was present in PDB structures of at least two significantly
different proteins (with the sequence identity < 90%). At the moment of writing of
this thesis, there are at least 16,000 structures in PDB containing amino acids from

the selected set.

Nonstandard amino acids can be classified in two group, first, those which
share standard a backbone group and, second, those that have backbone modified
groups. The standard amino acids, except proline and glycine, have different
sidechains and share a backbone constituted out of a carboxyl (-COOH) and an amine
group (-NHz2) attached to carbon a (Ca). Considering the type of modification they
have, in the selected nonstandard amino acids there are 42 that present modifications
at the level of backbone and the remaining 291 amino acids have modified sidechains

with a standard backbone. Two important residues were considered only as
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standalone ligands as they are not present in polypeptides in the PDB. Amongst the
amino acids with modified backbone, four of them presented the modification at the

level of N-terminus and were optimized only as N-termini peptides.

Examples of a sidechain modified amino acid included in this work are 2-
amino-3-cyclohexyl-propionic acid (ALC) and seleno-methionine (MSE). ALC was
included in the peptide WW61 computationally designed as an inhibitor for amyloid
fibril formation. Amyloid fibril formation is associated with pathologies as
Alzheimer’s disease.'?? MSE has antioxidant activities and play a role in the
formation and recycling of glutathione.?5-126 Also, MSE can be incorporated into
proteins, replacing methionines, and it is used to help resolve the structure of
proteins by X-ray crystallography using single- or multi-wavelength anomalous
diffraction.!?” Backbone modified amino acids considered for the FF parametrization
include the example of the chromophore (GYS) of the green fluorescent protein. The
green light emitting fluorophore is the result of cyclisation of serine, tyrosine and
glycine. MDO, another backbone modified amino acid, is the result of serine alanine
and glycine cyclization and ensures the catalysis of the first reaction in histidine
catabolism by histidine ammonia-lyase enzyme. MDO was also used to study the GFP

chromophore biosynthesis.128

For sidechain modified amino acids, dipeptides were created by adding an
acetyl group at the N-terminus and a N-methylamide group at the C-terminus. For
the modified backbone amino acids tripeptides were created with the sequence ALA -
X-ALA, with X the nonstandard amino acid as shown in Figure 3.1. The first alanine
is acetylated and the last one is methylated allowing the parametrization of the
dihedrals of modified backbone. The peptides were created to parametrize the torsion

term corresponding to the rotation around the bond C, — Cz (x;) for sidechain

modified amino acids and is similar to the C36 parametrization protocol. In C36,
dihedral potentials were optimized against QM energies from dipeptides and NMR
data from unfolded proteins. The same dipeptide model was used for Gly, Pro and Ala
for sidechain dihedral optimization, considering that such dipeptides are
representative of the amino acid sidechains in the local environment of peptide
backbone.®® Alanine was representative of the remaining standard amino acids,
excluding proline and glycine. This is the reason why the sidechain modified amino
acids were also parametrized in the dipeptide form. Similarly, the CMAP term

optimization was performed by targeting QM data for short peptides of poly-alanines
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for standard amino acids, except Pro ang Gly. We adapted the existing CMAP from

alanine to all sidechain modified nonstandard amino acids.

For backbone modified amino acids, the CMAP correction term was not
specifically developed, however with the accurate optimization of dihedral
parameters of the backbone was performed using tripeptides. During optimization of
the rotatable dihedral torsions the QM target constituted of 36-point potential energy

surface scans similarly to y; and y, of sidechain modified amino acids.

A. Sidechain modified

X2 &Rw/

B. Backbone modified

CR i ]
o \

CAY — O - N-T 8 — = A~ N—iC — T —NI—CAT

| | | | | |
oY O O

Figure 3.1. Model compounds to optimize bonded terms for (A) sidechain modified amino
acids; the torsions y; and y, are shown by a black arrow; for (B) backbone modified amino
acids were incorporated into tripeptides with the sequence ALA-X-ALA, with X the
nonstandard amino acid.

For FF parametrization, the D- and L- stereoisomers were considered for 61
residues. The most important protonation and tautomeric states at physiological pH
of 7 were also included. The pKa values and tautomeric forms were determined with
MarvinSketch software version 19.19.129 In total, 406 distinct forms were selected in
which the atom names for heavy atoms were retained from Protein Data Bank, that
were actually defined in the PDB Chemical Component Dictionary (CCD).123.130
Hydrogen atom names were assigned according to the parent heavy atom to which
they are bonded. Parameters were optimized using 188 small compounds
representing the totality of functional groups present in the nonstandard amino

acids.

The coordinates for peptides and small compounds were constructed in

PyMOL software!®” from experimental PDB structures and the names of constructed
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atoms had been taken from CHARMM FF. Once the PDB files together with the atom
names for the molecules were created, I obtained atom types and initial guesses for
the parameters. An important tool in this sense is the CGenFF program at
https://cgenff.umaryland.edu/. It performs atom typing and assignment of
parameters by analogy to CGenFF in a fully automated fashion when provided a mol2
file.99-100 PDB files containing the structures of molecules were converted to mol2
format with the help of OpenBabel!°! program and CGenFF program was used for the
assignment of atom type and initial parameters. For the nonstandard amino acids, I
ensured that the backbone atom types and associated parameters are from the C36,
while the sidechains up to the CB atom have CGenFF atom types if no modifications
are present at the level of backbone. The amino acids with backbone groups different
from the standard backbone have CGenFF atom types and parameters for all atoms

as indicated in Figure 3.1.

When assigning parameters, the CGenFF programs also gives a “penalty”
value. A high value for the penalty indicates that the given parameter has poor
analogy with the molecules for which the FF is available. Further, we considered that
all penalties higher than ten require optimization, while the low penalty parameters
will be adopted as they are. However, if the optimization of the high penalty
parameters fails in specific molecular contexts, low penalty parameters will also be

optimized.

If a bonded term was present in multiple molecules, it was optimized in a
single molecule and then adopted to the other molecules. The molecule, in which the
term was optimized, was chosen to be the smallest in size and preferably neutral

compared to the other molecules sharing the term.

After optimization of all the parameters typical CHARMM topology and
parameter files were created. CHARMM optimized geometries of nonstandard amino
acids were used to generate internal coordinates tables for the topology files.
Additionally, we performed testing of parameters to ensure lack of parameter
duplicates and also detect any missing parameters in these files. First, we generated
pentapeptides, Ala-Ala-X-Ala-Ala, with CHARMM program directly from topology
and parameter files for each nonstandard amino acid and then the structures were
minimized with CHARMM. Tests also included glycine and proline as flanking

residues, since their backbone has different CMAP from alanine. For the final test,
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we generated a single chain containing all optimized amino acids separated by

alanines, 1.e. having the sequence: ...-X;-A-Xj+1-....

To validate the created parameters, we performed MD simulations of proteins
containing nonstandard amino acids. While the validation of the CHARMM FF for
the standard amino acids was done using different experimental data, including
spectroscopic and NMR, in this work, the validation step was mainly done using
experimental structures available from PDB. We note that such comparison of
modelled structures with experimental structures is not straightforward, as MD
simulations are performed at different conditions as crystallographic experiments.
For example, X-Ray experiments are frequently performed at cryo-temperatures,
while modelling using the FF model is often done at temperatures close to the room
temperature. In principle, modelling at cryo-temperatures could be done, however,
due to low kinetic energy structural fluctuations are very limited. Other factors
include: dewatering of crystal structures, additional ligands present, and
crystallographic packing effects. Overall, such comparison, while being a good test on
force fields, especially in the case of absence of other experimental data available,

should be done with additional care.

The validation the force field for the nonstandard amino acids was performed
by MD simulations of 20 different proteins containing either sidechain or backbone
modified amino acids. During the simulations, the conformations of protein heavy
atoms as well as conformations of the nonstandard amino acid fluctuated around the
experimental structures in all systems. The average deviation of heavy atoms 10 A
around the nonstandard amino acid from the experimental was only 0.4 Aon average.
Moreover, the torsion angles of important backbone and sidechain dihedrals of the
nonstandard amino acids in the simulations have a low deviation from dihedral
values in the crystal structures of only 5.4°. The hydrogen bonds with the
nonstandard amino acid present in the experimental structure are also maintained
in the simulations. The ensemble of given results demonstrates the accuracy for both,
the optimized charges and bonded terms parameters, and that the forcefield
developed for nonstandard amino acids performs as well as CHARMM force field for

standard amino acids.

In the next part of this chapter the published work for nonstandard amino

acids parametrization is included.1%2 Additional information on structures and
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nomenclature of nonstandard amino acids considered in this work can be found in

Appendix for this thesis.
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ABSTRACT: Nonstandard amino acids are both abundant in nature, where they play a key
role in various cellular processes, and can be synthesized in laboratories, for example, for the
manufacture of a range of pharmaceutical agents. In this work, we have extended the
additive all-atom CHARMM36 and CHARMM General force field (CGenFF) to a large set
of 333 nonstandard amino acids. These include both amino acids with nonstandard side
chains, such as post-translationally modified and artificial amino acids, as well as amino acids
with modified backbone groups, such as chromophores composed of several amino acids.
Model compounds representative of the nonstandard amino acids were parametrized for
protonation states that are likely at the physiological pH of 7 and, for some more common
residues, in both D- and L-stereoisomers. Considering all protonation, tautomeric, and
stereoisomeric forms, a total of 406 nonstandard amino acids were parametrized. Emphasis
was placed on the quality of both intra- and intermolecular parameters. Partial charges were
derived using quantum mechanical (QM) data on model compound dipole moments,
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electrostatic potentials, and interactions with water. Optimization of all intramolecular parameters, including torsion angle
parameters, was performed against information from QM adiabatic potential energy surface (PES) scans. Special emphasis was put
on the quality of terms corresponding to PES around rotatable dihedral angles. Validation of the force field was based on molecular
dynamics simulations of 20 protein complexes containing different nonstandard amino acids. Overall, the presented parameters will
allow for computational studies of a wide range of proteins containing nonstandard amino acids, including natural and artificial

residues.

B INTRODUCTION

Proteins are built from amino acids that are mostly
incorporated biosynthetically into proteins during translation.
The side chains of amino acids, defined by their distinct
chemical characteristics, compose binding interfaces for
partners in macromolecular complexes, create ligand binding
sites, and assist chemical reactions occurring in enzyme
catalytic sites. There are 20 amino acids in the standard
genetic code and two additional amino acids that can be
incorporated by special translation mechanisms."” Apart from
these amino acids, however, there are many more nonstandard
amino acids that are produced as a result of post-translational
modifications (PTMs) in the cell or can be synthesized and
incorporated in laboratories.”* PTMs of proteins significantly
expand the chemical space, increase the complexity of the
proteome, and play an important role in a wide range of
functions in the cell.”® PTMs not only can be incorporated by
enzymes but also can arise as a consequence of oxidative
stress.” Beyond natural ways of nonstandard amino acid
incorporation, there has been a remarkable advance in the
synthesis of nonstandard amino acids with novel characteristics
and their incorporation into proteins.”® Site-specific incorpo-
ration of nonstandard amino acids has been used to study
protein structure, dynamics, and function by unique IR, X-ray,
and fluorescent probes.” Furthermore, incorporation of
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nonstandard amino acids opened the door to novel
biomaterials, enzymes,” and therapeutics.'”""

Molecular mechanics (MM) based simulation methods have
become the most popular computational techniques for
computational studies of biomolecular systems owing the
system size and time scale that can be accessed.'”'* The major
requirement for such computer simulations is the existence of a
MM force field that defines the energies and forces acting on
the molecular system. As such, the MM force field largely
dictates the quality of these atomistic simulations. A number of
force fields for nonstandard amino acids were derived
previously, and tools for the development of such force fields
were reported.'”'> AMBER parameters for 32 frequently
occurring post-translational modifications were derived'®
which were later extended to include 147 noncanonical
amino acids. Petrov et al. developed force field parameters
for 256 different types of PTMs compatible with the
GROMOS force field'” and later provided a web tool to
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Figure 1. Workflow of force field parametrization. For anionic species, the MP2/6-311G(d) model chemistry was used for optimization and

potential energy surface (PES) scans of the compounds.

incorporate PTMs into a 3D protein structure.'® For the
additive CHARMM force field, a number of nonstandard
amino acids were parametrized specifically in previous
works.'”~*" Seventeen artificial amino acids were parametrized
in our previous work.'”>” CHARMM compatible topologies
were created for 210 nonstandard alpha amino acid side
chains®” and were made available as an online service.”> The
set of the nonstandard amino acids included only amino acids
that differ from the canonical amino acids by modifications in
the side chains. These topologies and parameters for unknown
functional groups were generated using the SwissParam web
service,”* which provides topologies based on the Merck
molecular force field (MMFF).>® However, no optimization of
parameters was performed, and the force field model is
incompatible with the additive all-atom CHARMM36 force
field.

The present study represents a systematic extension of the
CHARMM36 additive force field to nonstandard amino
acids,”*™*’ also representing an extension of the additive
CHARMM General Force Field (CGenFF) for small
molecules.®® The force field parameters, including charges
and intramolecular parameters, were derived for the physio-
logically important protonation states and are of similar quality
to those for the standard amino acids. The parametrization
method is based on the same protocol that is used to derive the
CGenFF force field. The parametrization was done against
quantum mechanical (QM) data, with a special emphasis on
the dihedral terms corresponding to rotatable torsions. Results
from MD simulations with the developed parameters of
protein complexes containing nonstandard amino acids were
then compared to the experimental structures for validation.
To summarize, the extension of the CHARMM36 (C36) force
field developed in this work is suitable to investigate
interactions of nonstandard amino acids in the context of
proteins.

B MATERIALS AND METHODS

CHARMM Potential Energy Function. The potential
energy function of the nonpolarizable all-atom CHARMM
force field was adopted in this work for nonstandard amino
acids."> This potential energy function is used for the
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remainder of the CHARMMZ36/CGenFF force field. The
CHARMM potential energy is

U=Uy, t+ U

inter intra

(1)

The intermolecular or nonbonded energy is due to electro-
static and van der Waals (vdW) interactions:
]s

12
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o i
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nonbonded
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The electrostatic term is described by Coulomb’s law with g;
and g; being the respective partial atomic charges on atoms i
and j, and r; is the distance between atoms i and j. The vdW
term is treated by the Lennard-Jones (LJ) 6-12 potential in
which g; is the well depth, and Ry, ; is the radius at which the
L] potential has a minimum. In the additive CHARMM force
field, the LJ parameters for pairs of atoms i and j are
constructed using the Lorentz—Berthelot combination rule.”’

R, + R,

u 94,

inter = 4.
nonbonded €0t

elec

& EE

i = JEE; and R; =

3)

The intramolecular or bonded part of the potential energy
function in eq 1 is contributed by terms for the bonds, valence
angles, dihedral angles, improper dihedral angles, and selected
Urey—Bradley terms. In addition, the bonded energy function
has been extended to include the CMAP cross-term applied to
improve the conformational properties associated with the ¢
and y torsion angles of the peptide backbone. The intra-
molecular part is given by

U = 2 Ky(b = b + ) Ky — 6)°

bonds angles

N
+ Z Kyp(n_3 — ’1—3;0)2 + Z Z K,(1 + cos(ng — 8,))

Urey—Bradley dihedral n=1
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where by, 0, r1_3, o, and @, are the bond, angle, Urey—Bradley,
and improper dihedral angle equilibrium values, respectively;
the K’s are the force constants; and n and J, are the dihedral
multiplicity and phase. A dihedral term is represented as a
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Fourier series with N number of multiplicities, and the CMAP
term is a special grid-based dihedral correction map applied to
the protein backbone.”” The current CHARMM force field
uses less than seven multiplicities (N < 7) for a dihedral term
with only two possible values for phases: 0° or 180°. An
improper dihedral angle is defined between four atoms; but in
contrast to the dihedral angle, three of the atoms are bonded to
the central atom, and in the CHARMM force field, ¢, is
typically set to zero.

Parametrization Protocol. The atom types were adapted
from CGenFF.>° The ParamChem web server (https: //cgentl.
umaryland.edu/) was used to assign existing atomic types and
to obtain initial guesses of the partial atomic charges and
bonded parameters for the model compounds.*”*® Partial
charges that were assigned a zero penalty by ParamChem, i.e,,
already optimized in CGenFF, were not considered for
optimization in the present study with the exception of
selected zero-penalty atoms covalently linked to high-penalty
atoms. Parameters of the L] potential were taken from the
CGenFF force field and were not further optimized in this
work. We use the atom names from the Protein Data Bank
(PDB) for non-hydrogen atoms in residues, which itself uses
the convention defined in the PDB Chemical Component
Dictionary (CCD).**** The atom names for hydrogens were
assigned according to the parent heavy atom to which they are
bonded. The parametrization protocol is shown in Figure 1.

Given a model compound, the protocol starts by defining
bonded parameters that need to be optimized for this
molecule. These parameters are those that do not explicitly
exist in CGenFF but are assigned based on analogy with
known CGenFF parameters by the CGenFF program (see
below). The initial geometry for the model compound is
constructed using the available PDB coordinates for the
corresponding nonstandard amino acid and by adding protons
using Babel software.’® The geometry is further optimized at
the MP2/6-31G(d) model chemistry or MP2/6-311G(d)
model chemistry for anionic molecules. The resulting QM
geometry is then used to optimize atomic charges as described
below. The MM model with optimized charges is used to
optimize bonded terms in the next step. Adiabatic potential
energy scans with QM, discussed in detail below, are
performed along the degrees of freedom for high-penalty
parameters, which are those not explicitly present in CGenFF.
Those bonded parameters are optimized to minimize differ-
ences between QM and MM geometries and potential energy
surfaces. In this work, we first optimized terms associated with
dihedral angles including soft dihedral angles, along which
large conformational fluctuations are possible; then, bonded
terms associated with other degrees of freedom were adjusted.
The steps were repeated iteratively at least two times, and the
optimization was stopped when no significant improvement
was obtained in further iterations.

Choice of Atom Types and Model Compounds. The
nonstandard amino acids parametrized in this work represent a
broad and heterogeneous set of molecules. The set of
nonstandard amino acids was divided into two groups of
residues depending on the need to parametrize the backbone
group. For the residues of the first group, the backbone atom
types and associated parameters from the C36 force field are
used, while the side chains up to the Cf atom have CGenFF
atom types. The terms corresponding to the bond Ca—Cp
between the backbone group and side chain have both
CGenFF and C36 atom types. This allows the use of well-
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developed parameters from the C36 force field for the
backbone of these residues including the CMAP term. The
amino acids with backbone groups different from the backbone
of the standard amino acids have CGenFF atom types and
parameters for all atoms of the nonstandard amino acid. For
the residues in this group, the bonded terms corresponding to
the peptide bonds between the nonstandard residues and
neighboring residues have both CGenFF and C36 atom types
as represented in Figure S1. The CMAP term was not included
for this class of residues; however, all dihedral angles including
those associated with the backbone atoms were carefully
parametrized using potential energy surface (PES) scans.

Charges and bonded parameters for nonstandard amino
acids were optimized using model compounds. In the charge
optimization for amino acids with the standard backbone atom
types, the model compound included the side chain group up
to Ca or Cp to parametrize the bonded terms associated with
the side chain. However, if it was possible, smaller compounds
were used, and several compounds were included for large side
chains. Such amino acids were further broken down into
several parts with the cleavage sites chosen between two acyclic
saturated carbons. A proton was added to the acyclic saturated
carbon of the cleavage site to complete the chemical structure
of the model compound. All the nonstandard amino acids and
the associated model compounds are presented in the
Supporting Information. For the bonded terms of the amino
acids with the standard backbone group, the torsion terms
corresponding to the rotation around the bond Ca—Cf (y1)
were optimized using dipeptides as model compounds, which
represented a modified residue with acetylated N-terminus and
N-methylamide C-terminus. Dihedral angles ¢ and y of the
backbone were constrained to —60° and —45°, respectively,
corresponding to the ideal values in an a-helix. For
nonstandard amino acids with backbone groups different
from the standard backbone, tetrapeptides were used to
optimize the parameters corresponding to the peptide bonds
between the nonstandard residues and neighboring residues.
The tetrapeptides had the sequence ALA-X-ALA with
acetylated N-terminus and N-methylamide C-terminus,
where X is a nonstandard amino acid, with the backbone
groups of the flanking residues constrained to the ideal a-helix
geometry.

Determination of the Intermolecular Force Field
Parameters. The intermolecular energy is due to Coulomb
and Lennard—Jones terms. Consistent with the development
of the CHARMM force field, atomic charges were optimized
targeting interactions between the model compound and
individual water molecules and the dipole moment of the
model compound. Quantum mechanical electrostatic poten-
tials (ESPs) have also been used as additional target data in the
charge fitting similar to the other work.”” However, the
weighting of the ESPs was smaller than that used for water
interactions (see below). The charge optimization was
performed on the compound structures optimized with the
MP2 level of theory®® and 6-31G(d) basis set’” and 6-311G(d)
for anionic molecules. Gaussian09* was used for all QM
calculations. All QM optimizations were performed to default
tight tolerances. Since optimization is performed in vacuum,
for model compounds containing carboxylic acid and amine
fragments, and that can exist in zwitterionic forms in aqueous
solvent, the distance between protons on the amine group and
the amine nitrogen was constrained to prevent protonation of
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the carboxylic group by proton transfer from the protonated
amine group.

Atoms of the model compound that can participate in
hydrogen bonds were probed by individual water molecules
placed in idealized linear orientations.” Different orientations
of the water molecule were considered around the interaction
axis: the complex was calculated every 45° or 90° of the water
probe rotation for polar atoms and one or two orientations for
nonpolar atoms. All model compound-water interaction
orientations are presented in the Supporting Information.
Each water-model compound complex was optimized by
varying the interaction distance between the water and the
model compound with the monomer geometries fixed to find
the minimum interaction energy distance. The QM-optimized
gas-phase geometry was used for the model compounds as
described above, and TIP3P model geometry was used for the
water molecule. The angle defining the orientation of the water
molecule around the interacting axis was held fixed during the
optimization. The interaction energy was calculated for the
minimum interaction energy distance. Calculations were done
at the HE/6-31G(d) level.”*** Following the CHARMM
standard protocol, the ab initio interaction energies were scaled
(made more favorable) by an empirical factor of 1.16 only for
neutral polar compounds, and the HF/6-31G(d) minimum
interaction distance was corrected by subtracting 0.2 A for all
polar interactions involving neutral compounds.”® In the case
of sulfur atoms, the model compound-water interactions were
calculated at the MP2/6-31G(d) level including the basis set
superposition error (BSSE) correction of Boys and Bernardi*'
and without applying standard scaling and offset rules.

The molecular dipole moment, which is defined by the
charge distribution, was used to provide additional target data
for the optimization of the atomic charges. The dipole moment
was included only for the neutral compounds in the charge
fitting.*> The dipole moment was calculated in vacuum at the
MP2/6-31G(d) model chemistry using the QM-optimized
conformation.* Following the standard CHARMM protocol,
to account for the molecular polarizability implicitly, the MM
optimization targeted dipole moments increased by 30% with
respect to the QM values.” Both the magnitude and direction
of the dipole moment were targeted."”

QM water interaction data may not be sufficient to define
partial charges on all atoms for large compounds, since only
water interactions with a few hydrogen-bond donors and
acceptors at the molecular surface are probed. Therefore, ESP
calculations were performed at the MP2/6-31G(d) model
chemistry and at MP2/6-311G(d) for anions,”” with the
resulting ESPs used in the charge optimization to facilitate the
determination of charges on atoms not involved in hydrogen
bond interactions with water. At each iteration during the
charge optimization, the root-mean-square deviation (RMSD)
between QM and MM ESPs was evaluated and added with the
corresponding weight to the target function. However, the
weight for the ESPs (the corresponding weight: 1.0 kcal™"-mol-
A) was kept small relative to the weights for water-interaction
(10.0 keal™"-mol) and dipole moment contributions (3.0 D),
as the reproduction of water-compound interaction energies
and geometries is important to balance the solvent—solvent,
solvent—solute, and solute—solute interactions.

The charge optimization was performed with the C++
program that was used to parametrize a large number of
modified nucleotides in our previous work.”” The following
terms were included with different weights in the target
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function: the RMS deviation between empirical and ab initio
minimum interaction energies, the RMS deviation between ab
initio and empirical minimum interaction distances, the
absolute difference between the norms of the empirical and
ab initio dipole moments, the angle between the empirical and
ab initio dipole moments, the RMS deviation between ab initio
and empirical ESPs, and a term associated with restraints on
the charges. The latter term was introduced to prevent large
deviations from the starting guess for the charges. Charges of
symmetrical atoms had identical values during the charge
optimization. The initial partial charges were obtained from the
ParamChem online server (https:// cgenfl.umaryland.edu/ ).
Charges that were already optimized in CGenFF, for example
for benzene, were not further adjusted in this work. Charges of
aliphatic hydrogen atoms were not optimized, in accord with
the standard CHARMM method with aliphatic hydrogen
atoms having a charge of +0.09¢. The L] parameters were not
considered for optimization. For seven complex model
compounds, two local minimum geometries were used
simultaneously in charge fitting. In each geometry, different
hydrogen-bond sites were probed by water interactions, which
are not accessible in the other geometry due to interactions
with other groups of the compound.

Optimization of Flexible Dihedral Parameters. Dihe-
drals within a molecule can be classed in two groups, soft or
rotatable versus stiff or nonrotatable. PES associated with
nonrotatable dihedrals (e.g, dihedral angles about double
bonds or in ring systems) are typically characterized by a single
minimum and high energy for small deformations. Rotatable
dihedrals have a shallow energy surface with relative small
barriers between minima and, thus, may undergo large
fluctuations during simulations. Since the molecule can
undergo large conformational motions along rotatable
dihedrals, accurate treatment of these dihedral terms is
paramount. Each compound has 1 to N, {y}, rotatable
dihedrals. To parametrize these terms, adiabatic PES scans
were performed for each torsion, y;, in which the torsion angle
was scanned in the range from —180° to 180° in 10°
increments. During these scan calculations, the compound was
energetically optimized along all degrees of freedom, except for
the soft dihedral angles. The scanned soft dihedral y; was
constrained to the target value, while all other soft dihedrals
{Xiz1} were constrained to the values corresponding to the
minimum-energy geometry of the model compound. QM
calculations were performed at the MP2/6-31G(d) model
chemistry (MP2/6-311G(d) for anions). Each conformation
for the MM calculations was extracted from the QM scan and
minimized with a harmonic restraint with the force constant of
5 X 10* kcal'mol™'-radian™ on the target torsion. All other
rotatable dihedrals were restrained with the same force
constant to the values corresponding to the minimum-energy
geometry. Using these dihedral restraints, we ensure that the
QM and MM structures for each dihedral PES scan are close to
each other, i.e., that we compare the same region on QM and
MM PES surfaces. The dihedral parameters were optimized to
achieve a minimum deviation between the QM and MM
surfaces only in the low-energy regions with energies <10 kcal-
mol™' above the minimum energy.

Optimization of Bonded Harmonic Energy Terms.
Parameters for the intramolecular terms described by harmonic
potentials; bonds, valence angles, Urey—Bradley terms, and
improper dihedrals, as well as nonrotatable dihedral angles
were optimized using the following protocol. The initial guess
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for force constants was provided by the ParamChem online
server as described above. The initial equilibrium values for
bonds, valence angles, and Urey—Bradley distances were taken
directly from MP2/6-31G(d) geometries (MP2/6-311G(d)
for anions). Only parameters with the ParamChem penalty
>10 were considered for optimization. The equilibrium angle
for improper terms was set to zero and was not optimized. An
adiabatic PES scan for each degree of freedom that has
adjustable parameters in the force field was performed. The
same method was also used in CGenFF to determine force
constants by three-point PES scans, when the assignment of
contributions of the internal coordinates to the vibrations was
ambiguous.””* During the PES scans performed by varying
one stiff degree of freedom, the potential energy may become
very high, even for relatively small deformations. Such high-
energy regions of PES are not sampled during typical MD
simulations. To ensure that only relevant regions of PES are
parametrized, we use the method from our previous work™ to
limit deformations and corresponding energies. In this method
using initial values for distortions, force constants of energy
terms are estimated. The initial values for the distortions are
then corrected using the following equation

Ax' = \2AE . /k (s)

where k = 2(E(Ax) — E;)/Ax*. Ax and Ax’ are the initial and
adjusted maximum distortions, respectively; E, and E(Ax) are
the minimum energy and energy of the deformed structure.
AE,,,,, defines the highest energy on scanned PES. To optimize
each bonded term, seven points were used on PES equally
spaced in the range of x € [x, — Ax/, xy + Ax’], including the
minimum-energy structure at x = x,. In eq S, 2.0 kcal-mol™
was used for AE_ .. All PES scans were performed at the MP2/
6-31G(d) model chemistry and MP2/6-311G(d) for anions.
The equilibrium values of the MM parameters and force
constants were adjusted simultaneously using a C++ program
based on the Powell minimization algorithms from Numerical
Recipes.”” Each conformation for the MM calculation was
extracted from the QM scan and minimized with a harmonic
restraint force constant of 5 X 10* kcal'mol ™A™ or § X 10*
kcal-mol™'radian™ on the target bond and valence angle,
respectively. At each optimization iteration of bonded
parameters, PES adiabatic scans were performed with
CHARMM using a new set of MM parameters. The target
function included RMS deviation between QM and empirical
PES energies, QM and MM geometries, and restraints to the
initial set of parameters provided by the ParamChem server. In
addition, the weighted RMS deviation between Cartesian
components of QM and CHARMM forces was added to the
target function. The MM parameters were adjusted until the
target function could not be reduced further. The MM
calculations were performed with the CHARMM program.*®
Molecular Dynamics Simulations. To evaluate the
quality of the force field model for nonstandard amino acids,
molecular dynamics (MD) simulations of 20 protein
complexes were performed. The protein complexes are
summarized in Table S1. The crystal structures with a high
to medium resolution were retrieved from the PDB. Each
system contained all protein residues for small and medium
size proteins, and a spherical truncated model centered on the
modified residue was used for large protein complexes.
Protonation states of residues were assigned using PROP-
KA,*”* while protonation states of histidines were assigned by
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visual inspection and ideal stereochemistry. In addition to
crystal waters, a cubic box of water was overlaid, and waters
overlapping the protein and crystal water molecules were
removed based on a minimum distance of 3.5 A between non-
hydrogen atoms. The size of the water box was chosen so that
the shortest distance between protein atoms and the box edges
was 10 A. Periodic boundary conditions were assumed, and all
long-range electrostatic interactions were computed efficiently
by the particle mesh Ewald method"” using a real-space cutoff
of 11 A. The appropriate number of potassium or chloride
counterions was included to render the system electrically
neutral. A smooth switching function was used to truncate all
van der Waals interactions at the distance of 11 A. Long-range
electrostatic forces were evaluated every four steps, while
short-range nonbonded interactions were computed at each
step. MD simulations were performed at constant room
temperature and pressure, after 200 ps of thermalization.
Constant pressure was maintained using the Berendsen
pressure bath coupling’’ with the relaxation of 500 fs, the
compressibility parameter of liquid water. Constant temper-
ature was maintained by coupling to a heat bath with room
temperature by correcting forces as implemented in the
NAMD program.”’ For truncated protein systems, the
simulation setup was similar to previous studies.”*> In brief,
the simulations included protein residues within a 24 A sphere
around the nonstandard amino acid. Protein atoms between 20
and 24 A from the sphere’s center were harmonically
restrained to their experimentally determined positions. The
CHARMMS36m force field was used for the protein®*"” and
the TIP3P model for water.”***** The nonstandard amino
acid was modeled using the force field parameters specifically
developed in this work. Calculations were done with the
NAMD program running on GPUs for efficiency.”’ MD
simulations of the protein complexes were continued for 100
ns.

B RESULTS AND DISCUSSION

Set of Parametrized Molecules. In this work, a total of
333 nonstandard amino acids were parametrized. Chemical
structures and amino acid names are given in Figure S2 and
Table S2 in the Supporting Information. This set of residues
includes 198 amino acids from the SwissSide chain database of
nonstandard amino acids.”” In addition, another 134 frequent
nonstandard amino acids were considered, including 42
nonstandard amino acids with modified backbone moieties.
The p- and L- stereoisomers were considered for 61 residues.
To designate D-stereoisomers, the letter D was added at the
beginning of the three letter code of the residue. The pK,’s and
tautomeric states were predicted with MarvinSketch software
version 19.19.°° The most important protonation and
tautomeric states at the physiological pH of 7 were considered.
We use the three letter code for deprotonated forms of
residues and the four letter code with the letter P at the end to
designate the protonated form. These residues are TPQ
(TPQP), PHD (PHDP), MHS (MHSP), LLP (LLPP), IT1
(IT1P), HIC (HICP), DDE (DDEP), CYQ (CYQP), CGU
(CGUP), and GGB (GGBP). For 2-fluoro-L-histidine (residue
name: 2HF), two tautomeric forms were considered for the
neutral state: protonated on N¢ and protonated on NJ, named
2HFE and 2HFD, respectively. Four amino acids, AYA, CXM,
FME, and PR4, are present at the N-terminus as they appear in
the PDB structures only in N-termini. Two residues, C2N and
FLA, are present in the force field model only as standalone

https://doi.org/10.1021/acs.jctc.1c00254
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Figure 2. Corrected QM and CHARMM water interaction energies for the compound-water monohydrates. The CHARMM energies were
computed using A) the initial ParamChem charges and B) the optimized atomic charges. C) and D) Percentage of water interactions vs energy
deviation in A) and B), respectively. Interaction energies are shown in red and black for ionized and neutral compounds, respectively. The linear
regression line between QM and CHARMM data is shown by the solid line. The diagonal dashed lines represent deviations of +1.0 kcal'mol™

from the regression line.

ligands as they are not present in polypeptides in the PDB. The
set of amino acids with the standard C36 backbone group
includes 358 residues, and the set of amino acids with
nonstandard backbone groups includes 42 residues. Overall,
considering all protonation, tautomeric, and stereoisomeric
forms, 406 nonstandard amino acids were parametrized based
on a total of 188 model compounds.

Charge Optimization. The CHARMM partial charges
were derived targeting water-compound interactions, the
dipole moment magnitude and its orientation, and ESP. The
amino acids were broken down into smaller compounds as
described in the Materials and Methods section, giving 188
model compounds that were not previously optimized in the
CGenFF force field and required charge optimization. The
model compounds include 52 ionized compounds and 136
neutral compounds. Atomic charges of these molecules were
further optimized. One QM minimum-energy geometry was
considered for 181 model compounds, and two local-minimum
geometries were considered for seven complex molecules. A
total of 3857 monohydrate probe water-model compound
interaction complexes were used as target data as explained in
the Materials and Methods section. This includes 906 probe
water-model compound interactions for ionized compounds
and 2951 for neutral compounds.

Figure 2 compares QM and MM interactions energies. The
statistics for water-compound interactions for all compounds
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are given in Table 1. Empirical and ab initio interaction
energies and distances are given in Tables S3—S678 in the
Supporting Information. The RMS deviation for interaction

energies with the initial ParamChem and optimized charges is

Table 1. Statistics for Intermolecular Parameter
Development and Agreement with Respect to Selected
Target Data for All Model Compounds Used to Parametrize
Nonstandard Amino Acids

RMSD optimal/ MAE optimal/
property N points initial initial
norm of u* 141 0.59/1.72 0.41/1.28
direction of u” 141 24/163 5.1/32.7
water-solute E; 3857 0.46/1.79 0.32/0.95
water-solute d,;, 3857 0.20/0.66 0.16/0.28
Pae 195 238/4.19 1.96/3.39

“The magnitude of the dipole moment (i) is given in Debye. bAngle
(deg) between the ab initio and empirical dipole moment vectors, the
numbers in the RMSD and MAE columns correspond to the average
angle and the average dipole moment-weighted angle (using Y.¢;p:/
Y p; where p; is the magnitude of the QM dipole moment, and ¢; is
the angle between the MM and QM dipole moments), respectively.
“Probe water-model compound interaction energies are in kcal-mol ™.
¥Probe water-model compound interaction distances are in A.
“Electrostatic potential is in kcal-mol™"-A™".

https://doi.org/10.1021/acs.jctc.1c00254
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Figure 3. Comparison between the scaled QM (increased by 30%) and CHARMM dipole moments for 141 neutral model compounds. The
CHARMM dipole moment was computed using A) the initial ParamChem charges and B) the optimized atomic charges. The linear regression line
is shown by the solid line; the dashed lines represent deviations of +1 D from the regression line.

1.79 kcal'mol™ and 0.46 kcal'mol™, respectively, while the
mean absolute error (MAE) is 0.95 kcal-mol™ and 0.32 kcal-
mol™!, respectively. In this work, several probe water
orientations were considered for a compound atom that can
participate in H-bonds, in contrast to the C36 force field where
usually one interaction was considered to probe each atomic
site in the molecule. Some of these orientations have much
higher interaction energies due to interactions with other
groups in the molecule and are more difficult to reproduce by
the simple additive form of the force field. This explains why
the RMS deviation between QM and MM interaction energies
of 0.46 kcal'mol™" obtained in this work is slightly higher
relative to 0.34 kcal'mol™'reported for the CGenFF force
field.*® The initial ParamChem charges assigned by analogy
systematically overestimate interaction energies with probe
water molecules in Figure 2 by 6%. However, with Para-
mChem charges, interactions can be significantly under-
estimated or overestimated as demonstrated in Figure 2, if
the analogous groups are not available in CGenFF. The slope
for the interaction energies computed with both the initial
guess and optimal charges is close to one, demonstrating that
the force field model can reproduce solvent interactions for a
wide range of the nonstandard amino acids. The RMS
deviation for minimum-energy interaction distances is 0.28 A
with the initial ParamChem guess, which decreased to 0.16 A
with the optimized atomic charges. The agreement for
interaction distances is comparable to that previously reported
for CGenFF with the distance RMS deviation of 0.20 A.*°
The statistics for empirical and ab initio dipole moments are
given in Table 1. The dipole moment was included only for
neutral compounds consistent with the standard CHARMM
protocol. The CHARMM additive force field charge
optimization targets systematically overestimated interactions
with water to implicitly include the contribution of electronic
polarization of molecules in an aqueous environment.
Consistent with this, the empirical dipole moments should
overestimate the gas-phase dipole moments by ~30%.%° The
initial ParamChem charges yield dipole moments that are
within 1 D of the target scaled QM values for the majority of
compounds, though significant deviations are present in a
number of cases (Figure 3 and Tables S3—S678). The dipole
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moments with the optimal charges are significantly improved
relative to the dipole moments computed using the initial set
of ParamChem charges. The RMS deviation between scaled
QM and MM dipole moments averaged over all model
compounds is 1.7 and 0.6 D computed with the initial
ParamChem and optimal charges, respectively. The orientation
of the dipole moment is also improved, and the angle between
the QM and MM dipole moment averaged over the neutral
model compounds is 32.7° and 5.0° with the initial and
optimal set of charges, respectively. The RMSD for the dipole
moment direction in this work is comparable to or better than
the agreement of 8.5° obtained for the original CGenFF force
field.”” The angle between the QM and MM dipole moments
for all model compounds except for three cases is smaller than
10° and larger than 10° only for three molecules with a very
small dipole moment (<0.5 D). Consistent with this, the
average dipole moment-weighted angle between the QM and
MM dipole moments (computed using Y @;p;/ Y p; where p; is
the magnitude of the QM dipole moment and ¢; is the angle
between the MM and QM dipole moments) is 16.3° and 2.4°
with the initial and optimal charges.

ESPs were included as an additional restraint to provide
better charge distribution in the model compound as in a
previous study.g’7 However, the weight for the ESP potential
was weak to achieve a better agreement for the water
interactions. Nonetheless, for all model compounds, including
ionized molecules, the ESPs are significantly improved relative
to the initial values. The relative number of molecules vs ESP
RMS deviation with the initial and optimal set of charges is
shown in Figure S3. The RMS deviation between MM and
QM electrostatic potentials averaged over 195 compounds and
geometries is 4.2 and 2.4 kcal'mol ™A™ with the initial
ParamChem and optimal set of charges, respectively. Targeting
the QM ESP was found to be particularly important for ionized
compounds, since the number of probe water interactions was
fewer than for neutral compounds, due to the dominant
contribution of the net charge to water interactions, as well as
to the lack of the inclusion of dipole moments as target data.

The largest absolute difference between the initial Para-
mChem and optimized charges was observed for atoms in
residues SUN (O-[(R)-(dimethylamino)(ethoxy)phosphoryl]-

https://doi.org/10.1021/acs.jctc.1c00254
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Figure 4. Model compounds used to parametrize 4-fluorotryptophane (4FW), S-hydroxycystein (CSO), and S-(pyridin-3-ylcarbonyl)-L-cysteine
(JJ))- The rotatable dihedral angles parametrized in this work are indicated by arrows.

L-serine) and SVX (O-[(R)-ethoxy(methyl)phosphoryl]-L-
serine). Both residues are similar: instead of the methyl
group in SVX, SUN has the dimethylamino group bonded to
the phosphorus atom. In both cases, the largest difference
(qmiﬁal—qopﬁmal) was obtained for the phosphorus (P) atom
charge, 1.14 ¢ and 0.857 e in the SUN and SVX model
compounds, respectively. The ParamChem penalty is relatively
high, 31.6 and 83.9 for the P atom in the SUN and SVX model
compounds, respectively, indicating that the initial charges
should be optimized. With the initial ParamChem charges (the
charge of the phosphorus atom of 2.154 ¢), the dipole moment
in SUN is just 0.9 D versus 5.2 D computed with QM, while
with the optimal charges (the charge of the phosphorus atom
of 1.014 ¢), the MM dipole moment improves to 4.2 D. The
RMS deviation for ESP also improves from 14.1 kcal-mol -
A~ to 1.4 kcal'mol™-A™". The interaction energies were also
improved from 0.97 kcal'mol™ to 0.51 kcal'mol™". Similar
improvements were observed for the SVX residue, its results
can be found in Tables S571—S573. Overall, these results
justify the need to adjust the charge of the phosphoryl group in
these compounds.

Finally, to test the impact of the final CHARMM
intramolecular geometry on the reproduction of the target
water-model compound interactions and dipole moments, they
were recomputed with the optimal charge set using the
CHARMM optimized geometries. Model compound geo-
metries were optimized using the optimal charges and
optimized bonded parameters (see below). The RMS
deviation between QM and CHARMM water-compound
interaction energies is 0.50 kcal'mol™' very close to 0.46
kcal-mol ™" computed using the QM optimized structures. The
RMS deviation between QM and CHARMM dipole moments
computed with the MM structures of 0.6 D is practically
identical to 0.6 D computed with the CHARMM optimized
structures. The angle between QM and CHARMM dipole
moments averaged over all model compounds is 5.0° and 7.7°
computed with the MP2/6-31G(d) and CHARMM-optimized
geometries, respectively. The RMS deviation between MM and
QM ESPs averaged over all molecules is 2.4 and 2.6 kcal-
mol™"-A™" with the QM and CHARMM optimized geometries,
respectively. Accordingly, use of the QM gas-phase geometries
for optimization of the atomic charges yields parameters that
are suitable for use with the CHARMM optimized geometries.

Case Studies: Optimization of Atomic Charges for 4-
Fluorotryptophane (4FW), S-hydroxycystein (CSO), and
S-(pyridin-3-ylcarbonyl)-L-cysteine (JJJ). In this section,
the charge optimization is exemplified for three amino acids
with nonstandard side chains: 4-fluorotryptophane (4FW), S-
hydroxycystein (CSO), and S-(pyridin-3-ylcarbonyl)-L-cys-
teine (JJJ). 4FW is an artificial amino acid, which can be
incorporated into proteins to probe thermodynamic and
structural properties.””*® CSO (also known as sulfenic acid)
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is an important post-translational modification in proteins,
which represents the critical intermediate oxoform in oxidative
reactions leading to formation of disulfides, sulfenamides, and
higher order sulfinic or sulfonic acid species.””® JJJ is a
cysteine covalently bound to nicotinaldehyde, an inhibitor of
nicotinamidase enzymes’"*> used to study nicotinamidase
function and structure.”*** These particular compounds were
selected due to their different types of functional groups and,
therefore, the presence of different types of interactions with
water as well as different polarities. Currently, there are 804, S,
and 2 entries in the PDB for CSO, 4FW, and JJJ, respectively.
For the charge optimization, the appropriate small model
compounds were created. The model compounds include the
side chain up to Ca for CSO and JJJ and up to Cp for 4FW as
presented in Figure 4.

The improvement for selected water interactions is
demonstrated in Figure S. In all cases, the dipole moment
with the optimized charges is strongly improved relative to the
QM dipole moment both in the magnitude and direction. The
QM and optimized MM dipole moments for 4FW are 4.5 and
4.2 D, respectively, while the MM dipole moment with the
initial charges is 3.0 D. This improvement was obtained by
making the NE1 atom less negative from —0.58 e to —0.38 ¢,
which also improved the water interaction with the HE1 atom
from the absolute error of 0.56 kcal-mol™ to 0.32 kcal-mol~},
with the initial and optimized charges, respectively. However,
the charges for the 4FW compound needed only small
adjustments, consistent with the small ParamChem penalty for
the 4FW compound (the largest penalty of 13.8 is for atom
CE3). Larger adjustments of charges were necessary for the
CSO model compound. In the CSO model compound, the
penalty for atoms OD and SG is very high, 235.7 in both cases,
indicating that close analogous groups do not exist in CGenFF.
Consistent with this, the water interaction energy computed
with the initial charges is 2.95 and 3.60 kcal-mol™" off from the
target QM interaction energy, for atoms OD and SG,
respectively. The optimized charge for atom OD (—0.56 ¢)
is more positive than the initial ParamChem charge (—0.74 ¢),
while the charge for SG became more negative: 0.31 ¢ against
—0.0S e for the initial and optimized charge, respectively. The
interaction energies with the optimized charges are strongly
improved with the absolute deviation from the QM energy of
0.03 and 0.81 kcal'mol™ for atoms OD and SG, respectively.
In the JJJ] model compound, the dipole moment and angle
were improved by making atom O7 less negative from —0.51 e
to —0.39 e and by increasing the negative charge of atom SG
from —0.01 e to —0.08 ¢, which also helped to improve the
water interaction to absolute deviation of 0.11 kcal-mol™" and
0.10 kcal'mol™" for atoms O7 and SG, respectively, compared
to the QM results. Atom N1 charge modification from —0.60 e
to —0.56 e lowered the absolute water interaction energy error

https://doi.org/10.1021/acs.jctc.1c00254
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Figure S. Selected water interactions with model compounds used to
parametrize (A) 4FW, (B) CSO, and (C) JJJ. The water-compound
interaction energies are given in the rectangular box: MM interaction
energies are computed with the initial and optimal charges, and QM
interaction energies are shown in blue, red, and black, respectively. In
the oval, the ParamChem initial and optimized charges are shown in
blue and red, respectively. The dipole moment computed with the
ParamChem charges, optimized charges, and the QM dipole moment
are shown as blue, red, and black arrows, respectively.

to 0.06 kcal'mol™" after optimization from initial 0.63 keal-
mol ™.

Optimization of Bonded Terms. All bonded terms
including harmonic terms were parametrized based on the
reproduction of QM PES. Parameters with the ParamChem
penalty >10 were identified for each amino acid including all
accessible protonation/tautomeric forms. A total of 189 model
compounds were created to parametrize the bonded terms of
406 nonstandard amino acids. The same terms and associated
parameters can be used in several compounds. In such cases, a
representative model compound, normally with a fewer
number of atoms and with a zero net charge, was chosen for
optimization of a particular bonded term. The optimized
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parameters were then used for the other model compounds
having the same term without further adjustments. Based on
this hierarchal approach, all model compounds were divided
into four groups that contained 132, 24, 14, and 19 model
compounds. The first group had all unique parameters, and the
subsequent groups have decreasing numbers of free parameters
to optimize with the remaining penalty >10 parameters being
optimized in the prior groups. For each term with missing
parameters, a PES scan was performed. To parametrize all the
necessary bonded terms, a total of 11194 QM optimizations
were performed.

The phase and multiplicity of nonrotatable dihedral angles
were taken from the ParamChem guess and were not further
varied during optimization, with a few exceptions. In particular,
for dihedral angles in conjugated systems, the multiplicity was
set to two, and phase was set to 180°. For improper terms, the
equilibrium values were set to zero. The results for bonded
term parametrization are presented in this section except for
rotatable dihedral angles. The results for empirical and ab initio
structures and conformation energies are summarized in Table
2. The RMS deviation between the ab initio and CHARMM-

Table 2. Comparison between Empirical and Ab Initio
Optimized Geometries for Equilibrium Structures

property N points MAE optimal/initial RMSD optimal/initial
RMSD (A)“ 189 0.14/0.18 0.18/0.24
bond (A) 3519 0.015/0.016 0.020/0.023
angle (deg) 5968 1.4/1.6 1.9/2.7
dihedral (deg) 7133 4.6/5.8 9.6/11.7

“RMS deviation between QM- and MM-optimized equilibrium
structures for all atoms.

optimized all Cartesian coordinates averaged over 189 model
compounds is 0.18 A (SD: 0.24 A) and 0.14 (SD: 0.18 A) A
for the initial and optimal and parameters, respectively. The
values for bonds, valence angles, and torsion angles for the
structures optimized with the MM model are in good
agreement with the QM values. For bonds, the RMSD
between bond distances in QM- and MM-optimized structures
is 0.023 and 0.020 A, with the initial and optimal parameters,
respectively, with the values for valence angles being 1.6° and
1.4°, respectively. For torsions, the RMS deviation is 5.8° and
4.6° with the initial ParamChem and optimized parameters,
respectively. Overall, with the optimized bonded parameters,
the CHARMM model reproduces the QM geometries very
well.

The RMS deviation between ab initio and optimized
empirical energies for PES scans is 0.11, 0.31, and 0.43, kcal-
mol™' for bond, angle, dihedral and improper angle terms,
respectively. For nonrotatable dihedral angles, the RMSD is
0.55 keal-mol™!. The MAE is 0.08, 0.16, 0.30, and 0.23 kcal-
mol™! for bond, angle, dihedral, and improper angle terms,
respectively. Overall, good agreement between QM and MM
energies was achieved with correlations between QM and MM
relative energies of each data point in the PES of over 90%,
except improper angles (86% correlation) as indicated in Table
3. It was found, in agreement with previous studies, that the
force field model well reproduces energies for bonds and
angles but less accurately for dihedral angles.”® Optimization of
parameters improves the agreement between QM and MM
energies for all terms. For example, the RMSD for bonds
improves from 3.27 to 0.11 kcal'‘mol™ with the initial and

https://doi.org/10.1021/acs.jctc.1c00254
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Table 3. Comparison between Empirical and Ab Initio
Energies of PES Scans

RMSD MAE R
N N optimal optimal optimal/
term terms”  points” /initial® initial’ initial®
bond 57 399 0.11/3.27 0.08/1.59 99/17
angle $29 3703 0.31/3.50 0.16/1.39 93/22
stiff S16 3612 0.55/4.05 0.30/1.07 93/80
dihedral
rotatable 212 7844 0.72/2.29 0.43/1.44 96/68
dihedral
improper 24 168 0.43/1.72 0.23/0.78 86/56
angle

“Number of terms parametrized in this work. “Number of PES points
used to optimize bonded parameters. “‘RMS deviation between QM
and MM energies. “Mean absolute error. “Linear correlation, R.

optimal set of parameters, respectively. The significant
improvement is explained by the fact that for stiff degrees of
freedom even a small deviation in equilibrium values leads to
significant deviations in energy. For rotatable dihedrals, the
improvement is smaller relative to other degrees of freedom,
from 2.29 kcal'mol™ to 0.72 kcal'mol™" with the initial and
optimal sets of parameters, respectively.

Rotatable dihedrals are degrees of freedom along which the
molecule can undergo large structural fluctuations during MD
simulations, hence accurate treatment of these dihedral PES is
important to describe adequately the conformational space of
molecules. Note that the dihedral terms associated with the
rotation of the methyl group hydrogens with penalties >10
were optimized in the present study, although the structural
fluctuations due to the rotation of methyl groups are very small
due to their being symmetric rotors. Thus, the dihedral terms
associated with the rotation of methyl hydrogens were
optimized using the method described in the previous section.
The parameters of the rotatable dihedrals were determined
based on points of PES scans to reproduce the complete
rotation of 360° in 10° increments, with the exception of
methyl groups which were subjected to a 7 point scan due to
their symmetry. For all model compounds, there were 212

rotatable dihedrals total. The PES points also included the
local minimum geometry giving 36 points for each dihedral
angle, yielding a total of 7632 QM optimizations to produce
the QM target data, which contained 7844 data points.

For rotatable dihedral angles, in contrast to stiff torsion
angles, additional Fourier terms (multiplicities or harmonics)
were considered, and phases were allowed to change from 0 to
180°. In particular, for the residues that have standard C36
parameters for the backbone, three multiplicities (n = 1, 2, and
3) were introduced for the torsion terms associated with the
rotation around the bond Ca—Cp (y1), since y1 is particularly
important for the conformation of the entire side chain. For all
other dihedral angles, Fourier series were sought with a
minimum number of multiplicities that could fit the energy
profiles. However, if a satisfactory agreement was not possible,
additional multiplicities were tried. The RMS deviation
between QM and CHARMM PES energies for all rotatable
dihedral angles and all PES points (7844 total) is 0.72 kcal-
mol™!, while MAE is 0.43 kcal-mol™!, demonstrating that the
rotatable dihedrals are well reproduced by the force field
model. Figure S4 shows the distribution of RMS energy
deviation for local minima along PES against the number of
molecules. RMS deviation for energy of local minima along
PES is lower than 0.5 kcal mol™ for 57% and 80% of the soft
dihedral PES scans with the initial and optimized parameters,
respectively. As expected, due to the substantial impact of
nonbond interactions on their PES, the rotatable dihedrals
were found the most difficult to fit, and the largest RMS
deviation with respect to the QM data was observed relative to
other harmonic terms and stiff dihedral angles.

Case Studies: Optimization of Bonded Terms for
Model Compounds CSO and JJJ. Here, we briefly illustrate
the parametrization of bonded terms for CSO and JJJ. Model
compounds for bonded term parametrization are shown in
Figure 4, and the agreement for geometries is illustrated in
Figure 6. In all cases, the MM geometry with the optimized
parameters is very close to the QM geometry with the RMS
deviation for the Cartesian coordinates of all atoms less than
0.1 A. The geometries with the initial ParamChem parameters
for these two residues are also close to the QM geometries, as

67.45 94 35
62.97° CA-CB-SG-OD -96.72° CB-SG-OD-HD
63.22° -94.48°

HD

-177.15° CA-CB-SG-C7 -
177.90°

-179.80 ).99
25.74° CA-CB-SG-C7

-22.30¢°

/>

/%i
Cm*f/és\sc,/\}
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Figure 6. Comparison between QM and MM geometries of (A) CSO and (B) JJJ. The superposition of the QM structure and the structure
optimized using the initial and optimal parameters is shown in the upper and bottom panels, respectively. The values for selected degrees of
freedom are also given for the QM structure and the structure optimized with the initial and optimized parameters in black, blue, and red,

respectively.
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can be seen in Figure 6, demonstrating that ParamChem
provides a very good guess for these parameters.

The agreement between MM and QM energies is
demonstrated in Figure 7 and Figure 8 for selected bonded
terms in the CSO and JJJ model compounds, respectively, with
the initial and optimal sets of bonded parameters. All energies
for stiff degrees of freedom are within 2.0 kcal'mol™ of the
minimum energy, as described in the Materials and Methods
section. Overall, the models reproduce well the QM
equilibrium conformations of the model compounds as well
as QM energies of various deformations along parametrized
degrees of freedom. Notable is agreement for rotatable
dihedral angles of the CSO model, which involve the rotation
of the hydroxyl (C) and the sulfenic (D) groups shown in
Figure 7. The position of the local minima and energy barrier
heights is well reproduced in both cases. However, the force
field model does not reproduce asymmetry of QM PES scans
relative to zero degree. In particular, for the rotation of the
sulfenic group, the local minimum at —60° is ~0.4 kcal-mol™'
higher in energy relative to the minimum at 60°, while with
CHARMM, both energy minima have the same energy. This is
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explained by the fact that in the current CHARMM force field,
by convention, the dihedral phases are allowed to be 0° or
180°, so the parameters can be applied for different
stereoisomers associated with that dihedral.*® For the JJJ
compound, the deformations along the angle shown in Figure
8(B) has a nonharmonic energy profile due to the rearrange-
ment of the rotatable dihedral during the PES scan. Similar to
the CSO compound, for the JJJ model compound, the force
field model well reproduces the PES surfaces associated with
the rotatable dihedral angles involving the rotation of pyridine
(C) and thiol (D) groups shown in Figure 8. Finally, we note
that the positions of wells and barriers for PES in Figure 7 and
Figure 8 are in a good agreement for QM energies and MM
energies computed with the ParamChem parameters, demon-
strating that ParamChem provides a good guess for this
molecule.

Molecular Dynamics Simulations of Protein Com-
plexes. To illustrate the quality of the model, MD simulations
of proteins containing nonstandard amino acids were
performed. Twenty protein structures with a high-to-medium
resolution were chosen for MD simulations of 100 ns. The

https://doi.org/10.1021/acs.jctc.1c00254
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information on the proteins is given in Table S1. Nine systems
contained all protein atoms, which were not restrained during
MD simulations. A spherical protein model was used with
restrained atoms beyond 20 A for 11 protein systems. Note
that our goal was to assess the quality of the force field model
for nonstandard amino acids, which should affect primarily the
structure and dynamics of the nonstandard amino acid and
adjacent residues. The superposition of structures observed in
MD simulations on the experimental structures is shown in
Figures 9 and 10. For each protein complex, 10 snapshots

pBEC/
&

Figure 9. Comparison of structures from MD simulations (in gray)
with the experimental structures (in color). Ten snapshots were taken
every 10 ns from 100 ns MD simulations and superimposed on the
experimental structure using the protein backbone atoms.

taken every 10 ns from the 100 ns MD simulations were
superimposed on the experimental structure based on protein

backbone atoms within 10 A of the nonstandard amino acid.
Conformations observed in MD simulations in all protein
simulations are very similar to the position of nonstandard
amino acids in the crystal structures as shown in Figures 9 and
10. The RMS deviations between simulation and experimental
structures are given in Tables 4 and S870. The RMS deviation

Table 4. Root-Mean-Square (RMSD) Deviation in
Molecular Dynamics Simulations

amino PDB RMSD (A)

acid ref backbone” backbone” residue”

MDO  1IYF  0.54 (0.05)/ 0.58 (0.08)/ 0.33 (0.07)/
049 (0.03) 049 (0.05) 024 (0.07)

AFW  65ZZ 072 (0.12)/ 0.81 (0.16)/ 0.18 (0.06)/
0.70 (0.12) 0.78 (0.16) 0.18 (0.05)

CSO  6Q00  0.80 (0.13)/ 0.67 (0.11)/ 0.80 (0.12)/
0.78 (0.12) 0.62 (0.11) 0.68 (0.24)

“RMSD was computed for unrestrained backbone atoms after
superposition on the experimental structure. PRMSD was computed
based on backbone heavy atoms within 10 A sphere around the
nonstandard amino acid. “RMSD was computed for the heavy atoms
of the nonstandard amino acid; the numbers are given for MD
simulations with the initial and optimized parameters, respectively.

for non-hydrogen atoms within 10 A of nonstandard amino
acids in all MD simulations is in the range of 0.37 A to 0.99 A.
The RMS deviation for nonstandard amino acids after
superimposing on the crystal structure based on the non-
hydrogen atoms of the nonstandard amino acid is in the range
between 0.11 and 0.91 A; however, the RMS deviation is small
for all residues (the mean value for all proteins is 0.40 A). The
largest RMS deviation, 0.91 A, was observed for carbox-
ymethylated cysteine (residue CCS). CCS106 has a flexible
carboxylate group, which rotates during MD simulations
starting with the crystal structure 6ESZ.°° The RMS deviation
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Figure 10. Comparison of structures from MD simulations (in gray) with the experimental structures (in black) for (A) 4FW, (B) CSO, and (C)
MDO (PDB access codes: 6SZZ, 6Q00, and 1IYF, respectively). Ten snapshots were taken every 10 ns from 100 ns MD simulations and
superimposed on the experimental structure using the protein backbone atoms. Right panel: RMS deviation for backbone atoms within 10 A of the

nonstandard amino acids; the average RMS deviation is shown in gray.
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computed based on non-hydrogen atoms of CCS without the
carboxylate oxygens is much lower 049 A (SD: 0.12 A),
showing that the main contribution to the observed RMS
deviation for CCS is due to rotation of the carboxylate moiety.
Overall, the RMS deviation for the non-hydrogen atoms of the
nonstandard amino acid in all cases is lower than the RMS
deviation for unrestrained protein backbone atoms, demon-
strating that the model performs as well as the standard
CHARMM force field for proteins in protein simulations.
Tables 5 and S871 summarize selected nonbond interaction
distances. The RMS deviation for distances between non-

Table S. Selected Average Nonbond Distances (A) in MD
Simulations of Proteins with the Nonstandard Amino Acids

X-ray

residue atom pair” str MD simulation”* abs diff”

MDO  N2yposs—Ovaet 2.89  3.04 (0.22)/ 0.15/0.05
2.84 (0.12)

MDO  Ouyposs—NE2gos 419 4.06 (0.65)/ 0.13/0.21
3.98 (1.07)

MDO  O2ypoes— 275 291 (0.25)/ 0.16/0.13
NH2,,06 2.88 (0.21)

4FW  FE34rws—Naamio 327  3.45(0.31)/ 0.18/0.16
343 (0.28)

4FW  FE3,pws—Npheo 294 3.8 (0.22)/ 0.24/0.19
3.13 (0.18)

CSO  Ncs029—Ouargps 3.05  3.04 (0.21)/ 0.01/0.01
3.04 (0.20)

CSO  Ocso20—Naps3 293 295 (0.19)/ 0.02/0.05
2.98 (0.17)

“Protein atoms (left) are labeled by their amino acid. ®Values in
parentheses are the RMS fluctuations. “MD simulations were
performed with the initial and optimized parameters, respectively.

hydrogen atoms implicated in hydrogen bonds is in the range
between 0.0 and 0.59 A. The largest deviation was observed for
residues OCS between N of Lys42 and ODI of OCS48. In the
crystal structure (PDB code: SIMV),” this distance is too
short, 2.36 A, for a hydrogen bond, while in MD simulations,
the distance between N of Lys42 and OD1 of OCS48 increases
to 2.95 (SD: 0.27 A) A. The RMS deviation averaged over all
distances in Table S871 is 0.18 A. Thus, important hydrogen
bonds between nonstandard amino acids and other protein
residues are in very good agreement with the experimental X-
ray structures. As an additional test, the rotatable dihedral
angles parametrized in this work were further investigated. The
torsion angles are given in Table S872. All dihedral angles are
well reproduced in MD simulations with the mean absolute
deviation from those in the experimental crystal structures of
just 5.4° and the RMS deviation of 11.0°. The largest deviation
of 55.5° from the value in the crystal structure (PDB code:
4Y4G)? is observed for residue GGB along the dihedral angle
defined by atoms Ca, Cf, Cy, and O6. Further analysis
revealed that at the location of atoms Cy and OJ there are
areas of poor electron density, suggesting that the positions of
these atoms were not well-defined in the crystal model o7
Indeed, in the crystal structure, the distance between atoms
CG and NHI of residue GGB is short, 3.0 A, so that the
distance between their protons of just 1.7 A creates a repulsion
between these groups. In MD simulations, this strain is relieved
by the rotation around the bond Cp—Cy leading to the
deviation in the dihedral angle.

In the following, MD simulation results will be presented for
three residues CSO, 4FW, and MDO in detail (PDB access
codes 1IYF, 6SZZ, and 6Q00, respectively), while the results
for simulations of other protein complexes are given in the
Supporting Information. Details of the optimization of the
parameters associated with CSO and 4FW were presented
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above. MDO, the 4-methylidene-imidazole-S-one prosthetic
group present in phenylalanine-2,3-aminomutase proteins, is
formed by autocatalytic post-translational modifications of
three amino residues (A-S-G) in the polypeptide chain.”® The
RMS deviation, given in Table 4, for the non-hydrogen atoms
of the nonstandard amino acid is very low, 0.45 (SD of RMSD:
0.03 A) A and 0.18 (SD: 0.05 A) A, for MDO and 4FW,
respectively. For CSO, the RMSD for the non-hydrogen atoms
is higher, 0.68 A, which is explained by the fact that CSO, in
contrast to MDO and 4FW, has two predominant
conformations as demonstrated by the analysis of the dihedral
angles below. The superposition of the experimental structures
for ten snapshots is shown in Figure 10. In all simulations, the
nonstandard amino acids fluctuate in the vicinity of the
experimental position.

Important distances between non-hydrogen atoms are given
in Table S for MD simulations of MDO, 4FW, and CSO. All
average distances observed in the MD simulations are within
the RMS fluctuations of the corresponding distances observed
in the experimental structures and are within 0.2 A of the
experimental distance. The torsion angles are within the RMS
fluctuations from those in the experimental structure for all
torsions and residues. Notable is the agreement for CSO. In
the PDB structure 6Q00, two models for the side chain of
CS029 are present with y1 of 63.6° and 164.3° (models A and
B, respectively). Fluctuations around y1 shown in Figure 11
demonstrate that there are two populated rotamers for CSO in
the protein structure with y1 of 63.2° and 176.1°, and both are
very close to the experimental values (see also Table 6). Thus,

Table 6. Rotatable Dihedral Angles Observed in MD
Simulations and Experimental Structures”

residue dihedral X-ray MD“ abs diff”

MDO CB-CAl-— —168.7 —160.9 (10.7)/ 7.8/4.3
C1-N3 —164.4 (10.3)

MDO CI-N3- 101.9 89.2 (9.1)/ 12.7/5.3
CA3-C 96.6 (11.1)

MDO N3-CA3-C— -324 —86.5 (22.2)/ 54.1/18.5
Nyes —50.8 (28.4)

4FW  C-CA-CB —374 —37.7 (7.8)/ 0.3/0.2
CG (y1) —37.6 (8.6)

4FW  CA-CB- —89.3 —86.1 (9.0)/ 32/0.7
CG-CD1 —88.6 (8.6)

CSO  C-CA-CB-— 63.6/164.3  64.6/170.1/63.2/  1.0/5.8/
SD (y1) 176.1 0.4/11.8

CSO  CA-CB-SD-— —149.8 —186.4 (22.3)/ 36.6/28.4
oD —178.1 (40.7)

“MD simulations were Eerformed with the initial and optimized
parameters, respectively. "RMS fluctuations are given in parentheses.

starting from model A, MD simulations with the force field
model were able to reproduce both structural models A and B
for the CSO side chain. With the initial parameters, the two
conformations were also observed in MD simulations (64.6°
and 170.1°); however, the conformation with y1 of ~60° was
much less populated, 5.9% and 32.6% with the initial and
optimized parameters, respectively. This is due to over-
estimation of the energy of the conformation at 180° by 1.2
keal'‘mol™ relative to 60° by CHARMM with the initial
parameters shown in Figure 7D. MDO, which has a
nonstandard backbone group, has three rotatable torsion
angles and does not have any associated CMAP term. All three
torsions can be regarded as dihedral angles in the peptide
backbone. The angles observed in MD simulations with MDO
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are again in very good agreement with those in the X-ray
structure, which is important to reproduce the geometry of the
entire polypeptide chain. For 4FW, both angles y1 and y2 are
in excellent agreement with the experimental structure, which
is also reflected in the very low RMS deviation between the
experimental structure and those observed in the MD
simulation. Overall, the model reproduces well the structure
of the nonstandard amino acids and their interactions.

To test the initial parameters, MD simulations were also
performed using the initial CGenFF parameters for CSO,
4FW, and MDO. The system setup was identical to the one
described above, except the initial CGenFF parameters were
used for the modified amino acid. The RMS deviations given
Table 4 are systematically larger not only for the non-hydrogen
atoms of the nonstandard amino acids but also for the protein
backbone atoms within 10 A of the modified amino acid. For
example, for MDO, the RMS deviation is 0.58 and 0.49 A for
the backbone atoms, with the initial and optimized parameters,
respectively. For the non-hydrogen atoms of the modified
amino acids, the RMS deviation is also larger with the initial
parameters: 0.33 A vs 0.24 A with the optimized parameters.
Selected dihedral angles given in Table 6 are also systematically
better with the optimized parameters. The average nonbond
distances, given in Table 5, do not show larger deviations
relative to distances in the experimental structures, demon-
strating that the ParamChem online server provides a good

guess for charges.
B CONCLUSION

The present study represents a systematic development of a
force field model for a large set of nonstandard amino acids in
the most important protonation states. The parametrization
was performed consistent with the standard method used to
develop the CHARMM36 additive force field, and thus the
model should be compatible with the other components in the
CHARMM36 additive force field, including the CHARMM
TIP3P water model, the C36 force field for macromolecules,
and CGenFF for small molecules. The initial guess for both
charges and bonded parameters was provided by the
ParamChem online server that assigns parameters by analogy
from the CGenFF force field. The parameters of the empirical
force field were optimized to reproduce QM data and validated
against experimental structural data. The charges were adjusted
to reproduce interactions of a large number of model
compound-water monohydrate complexes, which was impor-
tant to maintain the balance between interactions of
nonstandard amino acids with solvent and other protein
residues. In addition, the model reproduces the scaled
magnitude and direction of the ab initio dipole moment for
neutral compounds as well as the electrostatic potential.
Importantly, charge optimization of the neutral species
involved systematically overestimating the charges, and thus
the dipole moment relative to gas-phase QM data, to introduce
implicit electronic polarization corresponding to the condense
phase. Including the QM electrostatic potential in the charge
optimization, in accord with the previous studies,””** was
found useful to obtain a better charge distribution in ionized
molecules. Finally, to test that the model well reproduces water
interactions with empirical structures of model compounds,
probe water interactions were recomputed using the
CHARMM optimized structures, demonstrating practically
the same level of agreement between force field model results
and corresponding QM data.

https://doi.org/10.1021/acs.jctc.1c00254
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Special emphasis was given to the quality of all bonded
parameters, including soft torsions and stiff harmonic terms,
which were adjusted using computationally intensive PES
scans. Given the large set of nonstandard amino acids
parametrized in this work (406 molecules and their accessible
protonation and tautomeric forms), a hierarchical optimization
approach, similar to the method used for CGenFF, was used
for bonded parameters. In this approach, only new parameters
that had not been previously available in the force field were
optimized, as each new model compound was added to the
force field. The order of compounds for bonded parameter
optimization was chosen so that the parameters were adjusted
in compounds with the minimal possible number of atoms
among molecules that share those parameters.

Model validation was based on MD simulations of 20
proteins containing selected nonstandard amino acids. The
results demonstrate that the model reproduces very well
conformations of nonstandard amino acids in the experimental
structures and, in particular, rotatable torsions, indicating the
quality of both the optimized charges and dihedral parameters.
Importantly, the force field model reproduces nonbonded
interactions involving the nonstandard amino acids, demon-
strating a good balance in the interactions with other
components of the system: standard amino acids and water.

The presented parameters represent an extension of the
CHARMM36 force field that will allow for reliable molecular
simulations of proteins containing nonstandard amino acids.
Beyond the parameters for nonstandard amino acids, the
parameters developed in this work will be included in the
CGenFF force field further expanding its coverage of chemical
space. The presented parameters will be incorporated in the
program CHARMM®® and will be available from the
MacKerell lab web page (https://mackerell.umaryland.edu/)
and CHARMM-GUI (http:// www.charmm—gui.org),15’69 facil-
itating their utilization in a range of molecular simulation
software packages.
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Chapter 3. Additive CHARMM Force Field for Nonstandard Amino Acids

CONCLUSION
The goal of this work was to extend the CHAMM FF and CGenFF to a large

set of 333 nonstandard amino acids frequently present in PDB structures and
SwissSidechain database. The nonstandard amino acids were selected to be of both
natural and artificial origin and to present chemical modifications at the level of
sidechain and/or at the level of the backbone group. Force field parameters including
partial charges, bond, valence angle, dihedral and improper torsion terms were
considered for optimization. The optimization was performed according to the
standard CHARMM method to ensure the compatibility between nonstandard amino
acids force field developed in this work and with other components of the simulation
system, described by the standard CHARMM FF. The validation of the developed
force field was achieved through MD simulations of protein systems containing
nonstandard amino acids. The protein models in the MD simulations mostly

fluctuated around the experimental structures as demonstrated by different criteria.

The main drawback of the current implementation is that the backbone
modified nonstandard amino acids are represented as a mixture of atom types and
corresponding parameters from both C36 and CGenFF. Many parameters overlap in
C36 and CGenFF, and in future these FFs will be united, using uniform atom types
for standard, nonstandard amino acids, and small molecules. However, the current
implementation is efficient and can be used to study various molecular interactions
systems. One such study is present in Chapter 4 to predict the interaction between
a phenylalanyl group covalently bond to tRNA and its partner, a cyclodipeptide

synthase.

During the FF development for the nonstandard amino acids, we observed that
the empirical model not always reproduces the QM geometry of molecules in vacuum,
which can be due to the limited FF functional form. As we demonstrated, while not
being important for applications in a general case, this structural deviation between
QM and FF structures leads to suboptimal force constants in the FF development. To

address this issue, in Chapter 5 we developed a new method for the FF development.
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Chapter 4

FF DEVELOPMENT TO STUDY MODIFIED
TRNA AND ITS INTERACTION WITH THE
PROTEIN

Transfer RNA (tRNA) is frequently chemically modified (by methylation, and
other types of modifications), and during it function, an amino acid becomes
covalently bonded to the 3'-hydroxyl group on the CCA tail, which is catalysed by
aminoacyl tRNA synthetases. In the current chapter the development and application
of the CHARMM force field for an aminoacyl group linked to aa-tRNA is presented,
which was reported in our previous publication.!%3 Precisely, the interaction of a
cyclodipeptide synthase (CDPS) and its substrate, an aminoacylated tRNA, is
structurally characterized by computer modelling. Simulations results were further
related to biochemical experiments performed by the experimental collaborators in

12BC (Dr. Muriel Gondry).

CDPSs form a family of recently-discovered enzymes catalysing the formation
of cyclodipeptides via a sequential ping-pong mechanism using two aminoacyl-tRNA
substrates.!3:132 CDPSs were structurally characterized in tRNA-free forms,!33-136
but there was no available structural detail of the CDPS:tRNA complex at the
moment of publication. In this work, using AlbC CDPS from Streptomyces noursei
that mainly produces cyclo(Li-Phe-L-Phe) as model system, the interaction between

the CDPS with its Phe-tRNAPPe was investigated by a range of simulation techniques.

Ten initial binding poses of AlbC:tRNA were produced by rigid body docking
of AIbC on the tRNA molecule. The models were further refined using MD
simulations and ranked by binding free energy calculations leading to the creation of
a final model. This model is characterized by multiple interactions between AlbC and
tRNA and is stable over the simulation time. In this model, the a4 helix is positioned
inside the major groove of the acceptor stem of tRNA with a4 positively charged
residues interacting with the phosphate groups of tRNA. The residue component
analysis of the binding free energy identified residues contributing to the binding
affinity in a very good agreement with available biochemical data!3> and the results

of in vivo assay experiments performed in this work by the experimental
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Chapter 4. FF development to study modified tRNA and its interaction with the
protein

collaborators. The proposed model of the complex is also compatible with the

available experimental structure of AlbC in the dipeptide intermediate state!s’.

The details of FF development for the aminoacyl group of tRNA can be found
in Appendix. The paper describing the application of the developed FF model is
included to the end of this chapter.
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ABSTRACT: Cyclodipeptide synthases (CDPSs) perform nonribosomal protein
synthesis using two aminoacyl-tRNA substrates to produce cyclodipeptides. At
present, there are no structural details of the CDPS:tRNA interaction available. Using
AIbC, a CDPS that produces cyclo(1-Phe-L-Phe), the interaction between AlbC and
its Phe-tRNA substrate was investigated. Simulations of models of the AIbC:tRNA
complex, proposed by rigid-body docking or homology modeling, demonstrated that
interactions with residues of an AlbC a-helix, @4, significantly contribute to the free
energy of binding of AIbC to tRNA. Individual residue contributions to the tRNA
binding free energy of the discovered binding mode explain well the available
biochemical data, and the results of in vivo assay experiments performed in this work
and guided by simulations. In molecular dynamics simulations, the phenylalanyl group predominantly occupied the two positions
observed in the experimental structure of AIbC in the dipeptide intermediate state, suggesting that tRNAs of the first and second
substrates interact with AIbC in a similar manner. Overall, given the high degree of sequence and structural similarity among the
members of the CDPS NYH protein subfamily, the mechanism of the protein:tRNA interaction is expected to be pertinent to a wide
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range of proteins interacting with tRNA.

yclodipeptide synthases (CDPSs) make up a family of

enzymes that use two aminoacyl-tRNAs (aa-tRNAs) to
synthesize cyclodipeptides.”” Cyclodipeptides belong to the
diketopiperazine family of secondary metabolites produced in
many bacteria. This class of compounds is of broad interest
due to its wide range of biological activities, including
antibacterial, antifungal, antiviral, antiprion, antitumor, and
immunosuppressive functions.”~'* AIbC was the first member
of the CDPS family identified during the characterization of
the biosynthetic pathway of the antibacterial cyclodipeptide
albonoursin in Streptomyces noursei.'' It mainly catalyzes the
formation of cyclo(L-Phe-L-Phe) (cFF) by incorporating two
phenylalanines, and cyclo(L-Phe-1-Leu) (cFL) from phenyl-
alarllilnli and leucine, depending on the substrate availabil-
ity. "

To date, seven CDPSs, listed in Table S1, have been
structurally characterized in tRNA free forms."*™'° These
CDPSs contain a Rossmann-fold domain and exist as
monomers, except Nbra-CDPS, which is supposedly a
homodimer in solution.'* Interestingly, two residue sequences
are mainly found in CDPSs at positions 40, 202, and 203
(AIbC numbering), NYH and XYP, which allowed CDPSs to
be divided into two subfamilies based on residue types at these
positions. AIbC belongs to the NYH subfamily. In the XYP
subfamily, a proline substitutes for the histidine beside the
conserved tyrosine and a nonconserved residue is found at the
asparagine position.'” NYH members incorporate 17 different
amino acids into cyclodipeptides, except for His, Asp, and Lys;
XYP members also incorporate 17 amino acids, differing from
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NYH members by the exclusion of Arg.'®"” Structural analysis
of the two subfamilies demonstrated that the main difference is
in the first half of their Rossmann fold, but the catalytic
residues are identical in the two families and adopt similar
positions. Moreover, mutations of these residues have a similar
effect on the function in both CDPS subfamilies, strongly
suggesting that CDPSs of the two subfamilies share the same
catalytic mechanism. Thus, it was proposed that the XYP and
NYH motifs appeared as alternative solutions to the same
enzymatic problem but were adopted for differences in the
Rossmann fold in the two subfamilies."*

The catalytic mechanism has been extensively studied
experimentally for the structurally characterized
CDPSs.'»'>19?%21 In particular, AIbC was structurally
characterized with a covalently attached dipeptide analogue
corresponding to the reaction intermediate state before the
final cyclization step.”””" The catalytic cycle begins with the
binding of the first aa-tRNA with the aminoacyl group
accommodated in the deep and hydrophobic P1 pocket that
contains the conserved catalytic residues.”” The subsequent
transfer of the aminoacyl moiety to the conserved serine
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residue, Ser37, leads to the formation of an aminoacyl enzyme
intermediate. For the second step, the tRNA™ part of the first
substrate dissociates from AIbC and a second aa-tRNA binds
to the enzyme with its aminoacyl group accommodated in the
wider P2 cavity close to the P1 pocket. The phenylalanyl-AlbC
reacts with the second aa-tRNA to form a dipeptidyl-AIbC
intermediate.'>” In the last step, the cyclodipeptide product is
obtained through intramolecular cyclization. Residues impor-
tant for the reaction in AIbC were identified through site-
directed mutagenesis and biochemical studies.'””’ These
residues including Ser37, Tyr202, Tyrl78, Glul82, Asn40,
and His203. Tyrl78 and Glul82 are involved in the
stabilization of the aminoacyl moiety (named Phel) of the
first phenylalanyl-tRNA throughout the catalytic cycle as
suggested by the crystal structure of the diphenylalanyl-enzyme
intermediate mimic. The hydroxyl group of Tyr202 serves as a
proton relay in the last step of the cyclization reaction, as
demonstrated recently by computer modeling.”’ Three
residues in AIbC, Asn40, Tyr178, and His203, help to maintain
the correct reactive conformation of the dipeptidyl group™
during the last cyclization step.

The binding of AIbC to the first tRNA appears to be
contributed by interactions of the substrate aminoacyl moiety
in pocket P1 and interactions of the tRNA moiety with the
patch of basic residues on helix a4."> Residues Arg80, Arg91,
Lys94, Arg98, Arg99, and Argl02, all except Arg80 belonging
to a4, were identified as being important for the cyclo-
dipeptide-synthesizing activity. Their mutation to alanine
decreases considerably the level of production in vivo and in
vitro.'">*° The AIbC specificity for the first substrate is also
contributed by interactions with the aminoacyl moiety, and not
at the sequence of the tRNA. However, AIbC seems to handle
differently its second substrate. In particular, Asn159, Argl60,
and Asp163 of the a6—a7 loop and Asp205 of the f6—a8 loop
of AIbC together with the aminoacyl moiety and the G'-C”*
base pair of the acceptor arm appear to be important for
interactions with the second aa-tRNA substrate.'” CDPSs are
structurally similar to the catalytic domains of class Ic
aminoacyl tRNA synthetases (aaRSs), suggesting that CDPSs
probably evolved from these aaRSs'>** or from a common
ancestor. In class Ic aaRSs, the loops equivalent to the AIbC
a6—a7 loop are known to be implicated in tRNA binding,"
which made Moutiez et al. suggest that the interaction of the
second substrate with AIbC could be similar to that observed
for tRNA binding to class Ic aaRSs.

Nevertheless, CDPSs and TyrRSs differ significantly. CDPSs
do not have the C-terminal domain present in aaRSs and
needed to recognize the anticodon and also lack the ATP
binding motifs, because there is no need to activate amino
acids. Two other protein families, FemX aminoacyl-trans-
ferases and aa-tRNA protein transferases, bind aa-tRNAs to
create peptide bonds; however, they are structurally different
from CDPSs because they possess a GCNS-related N-
acetyltransferase (GNAT) fold.”””** FemX from Weissella
viridescens, widely used as a model transferase for experimental
purposes, catalyzes the addition of alanine from Ala-tRNA*® to
the UDP-MurNAc-pentapeptide.”*° It interacts with the
acceptor arm of the tRNA moiety, as it is still able to interact
with an artificial helix mimicking the acceptor arm of tRNA.
Similar to CDPSs, the G>-C”' base pair was shown to be
important for the tRNA recognition in addition to the
aminoacyl moiety.”> In the second protein family, leucyl/
phenylalanyl-tRNA protein transferase (L/F transferase)

catalyzes peptide bond formation by using Leu-tRNA“" (or
Phe-tRNA™*) as a donor substrate and its terminal Arg (or
Lys) as an acceptor substrate. Biochemical and structural
studies indicate that L/F transferase interacts with two
sequence regions in the acceptor stem of tRNA, the G*-C”
base pair and a set of four nucleotides (C”, A*-U®, C%).
Similar to FemX, L/F transferase can efficiently interact with a
helical mimic of the tRNA acceptor stem. Moreover, similar to
AIbC, L/F transferase has a strong preference for the CAG
isoacceptor of Leu-tRNA".'>***” Finally, a recent crystallo-
graphic and biochemical study showed that the CDPS from
Candidatus Glomeribacter gigasporarum belonging to the XYP
subfamily interacts with the major groove of the acceptor stem
of tRNA through the basic residues of strands 42 and f7."*
However, these residues, as demonstrated by biochemical
experiments, are not implicated in interactions with tRNA in
CPDPs of the NYH subfamily, demonstrating that CDPSs of
the two subfamilies do not share the same mode of interaction
with tRNA.'>"

Here we show for the first time structural details of how
NYH CDPSs interact with the tRNA moiety of their
substrates. We studied the interaction between AIbC and its
Phe-tRNA substrate using computational techniques, including
molecular dynamics (MD) simulations and binding free energy
calculations. We propose a model that explains previous
biochemical and structural experiments. On the basis of this
model, mutagenesis experiments were performed in this work
that further corroborate the model. In particular, two residues
untested previously were tested in in vivo assays, demonstrating
effects in agreement with the binding contributions of these
residues in the model. In this model, the acceptor stem of the
tRINA substrate interacts with the basic residues of an a-helix,
a4, present in all CDPSs, while the phenylalanyl moiety
predominantly occupies the two positions previously identified
for the first and second substrate. The total charge of the a-
helix is well-conserved in enzymes of the NYH subfamily,
suggesting that the binding mode of tRNA is shared by all
NYH CDPSs. Moreover, residues that were proposed to be
important for binding of the first and second tRNA substrates
were found to interact with tRNA in this model, strongly
suggesting that the first and second tRNA substrates both
interact with helix @4 in a similar binding mode.

B METHODS

Residue and Charge Conservation Analysis. The
sequences of CDPSs with a level of sequence identity of
<90% were selected for analysis from ref 18. These sequences
were further divided into two groups according to the signature
sequences NYH and XYP identified previously.'” Structural
alignments were used to guide the sequence alignment with
Clustal Omega software”® for each subfamily. For the NYH
subfamily, AIbC [Protein Data Bank (PDB) entry 4Q24°°],
Rv2275 (PDB entry 2X9Q'?), and YvinC (PDB entry
30QH") were used. For the XYP subfamily, Nbra-CDPS
(PDB entry SMLQ'*), Rgry-CDPS (PDB entry SMLP'*), and
Fdum-CDPS (PDB entry SOCD"'*) were used. The structural
alignment was performed with the PyMOL software.”” To
understand better the residue conservation in the context of
interactions with tRNA, the average total charge of different
protein regions was calculated as follows. From the NYH
alignment, the region corresponding to helix a4 in AIbC
(residues 81—106) was considered for each sequence and the
total charge of the region was calculated by subtracting the
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number of negatively charged residues, aspartates and
glutamates, from the number of positive residues, lysines and
arginines. Histidines were assumed to be neutral. In the XYP
alignment, the region corresponding to helix a4 in Nbra-CDPS
(residues 78—102) was used. A similar approach was used for
helices @S and 6.

AIbC:tRNA Model Building. The structure of tRNA*
was retrieved from the PDB, entry 4YCO (chain D),
corresponding to dihydrouridine synthase in complex with
tRNA™® from Escherichia coli with resolution of 2.1 A.*° The
chosen tRNA™* structure is one of the most complete tRNA™*
structures available in the PDB and contains 74 residues of 76
with defined coordinates. This tRNAF" structure has no post-
transcriptional modifications; however, it is similar to the
mature tRNA and can be efficiently used by AIbC as
demonstrated previously.'” This tRNA contains two trans-
versions, C3-G70 and G3-C70, in the acceptor stem, which
were modeled as in the crystal structure.’’ The structure of
4YCO was obtained at very high concentrations of Mg ions
(200 mM MgCl,),* explaining the high level of magnesium
ions found in the crystal structure (25 Mg ions total). Thus, of
eight magnesium ions present in chain D of the crystallo-
graphic structure, four magnesium ions interacting with
phosphate groups of tRNA were maintained in the model.
The other four magnesium ions were not considered, because
they interact with fewer than two phosphates of the tRNA
backbone, and were not observed in the other crystal structure
of tRNA™ (PDB entry 119V).”” The aminoacyl group and
missing residues 75 and 76 were initially built in the extended
conformation and were energetically minimized with the rest
of the tRNA structure fixed. The CHARMM36 force field was
used for the protein®** and the TIP3P model for water.”> >’
The phenylalanyl group was modeled using the force field
model specifically developed as a part of this work. The details
of the force field development as well as the force field model
are given in the Supporting Information.

The crystal structure of AIbC, PDB entry 4Q24,*° was used
for the AIbC model. As previously described,”’ the structure of
wild-type AIbC was built from the existing crystal structure by
converting Sy of Cys37 into an oxygen and deleting the ZPK
ligand (N-carbobenzyloxy-L-Phe-methyl ketone). The same
protein protonation state was assigned as in the previous
study,”’ except Glul82, which was in the deprotonated form.
This glutamate acts as a catalytic base and becomes protonated
only after the reaction with the first aa-tRNA.”'

To acquire models of the AIbC:tRNA interaction, rigid-body
docking was applied with the ZDOCK server,’ proven to be a
valuable tool for protein:RNA complex docking.’” The
docking of tRNA to AIbC was performed with ZDOCK
3.0.3 default parameters using the coordinates of AIbC and
Phe-tRNA™®. The results from the top 2000 ZDOCK
predictions were filtered using the condition that amino-
acylated adenosine of tRNA interacts with residues 35, 37, 178,
182, and 202 of AIbC to position the aminoacyl moiety in the
catalytic pocket. Predictions were kept only if all selected
residues were within 6 A of the docked tRNA and resulted in
32 models. The first 10 top score models were selected for
further analysis. An additional model of the AIbC:tRNA
interaction was created on the basis of the structural homology
between CDPSs and synthetases as described in the
Supporting Information.

Preliminary calculations on AIbC:tRNA interactions were
performed using smaller models. In the small models, tRNA

residues that are distant from the protein and, thus, not
expected to contribute to the protein binding were excluded
from simulations. In particular, tRNA nucleotides with a
distance to the protein of >26 A were deleted; hence, residues
23—45 of phe-tRNA™® were not considered.

Molecular Dynamics Simulations. MD simulations were
performed with the NAMD simulation package.”’ Each
protein:tRNA complex was immersed in a box of water, the
sides of which were at least 12 A from any atom of the tRNA
protein. Water molecules overlapping the protein and tRNA
were removed. Periodic boundary conditions were applied, and
the entire box was replicated periodically in all directions. All
long-range electrostatic interactions were computed efficiently
by the particle mesh Ewald method,*" while the short-range
nonbonded interactions were calculated with a cutoff of 11 A.
An appropriate number of potassium counterions was included
to render the system electrically neutral. MD simulations were
performed at constant room temperature and pressure, after
thermalization for 31 ps. The CHARMM36 force field*****
was used for the protein, tRNA, and the modified version of
the TIP3P water model.”

For the small models, harmonic restraints with a force
constant of 1 kcal mol™ A™* were applied on heavy atoms
within 6 A of the truncation region using the tRNA crystal
structure as a reference. Initiallyy, MD simulations were
performed for 30 ns on each model and continued for at
least 200 ns for three models (9, 2, and 7) characterized by the
strongest interactions between the protein and tRNA.

The model with the complete tRNA and protein molecules
was built on the basis of the tRNA position observed in model
7 characterized by the lowest binding free energy among the
models. The crystal structure of PDB entry 4Q24°° was
superposed on the snapshot of model 7 with the lowest
protein:tRNA binding free energy using the protein backbone
atoms, and the coordinates of tRNA residues were retained.
The coordinates of the nucleotides missing in the truncated
model were taken from the complete tRNA™® crystal structure
of PDB entry 4YCO.*" However, the tRNA aminoacyl group in
model 7 was misoriented relative to the experimental structure
(PDB entry 4Q24), as shown in Figure S1, suggesting that MD
simulations of model 7 have not converged. To correct the
position of the aminoacyl group in model 7, we used its
position in model 9, which is close to the experimental position
in the crystal structure (as demonstrated in Figure S1) as
follows. The tRNA was superimposed on the lowest-energy
structure of model 9, and tRNA terminal residues 75 and 76
with the aminoacyl group were retained for the final model.
The model was then energetically minimized using 200
minimization steps in the CHARMM software with restraints
applied on residues 75 and 76 of the nucleic acid.”> The model
with the complete tRNA contained around 162000 atoms, and
the small models contained around 127000 atoms each. For
the model with the complete tRNA molecule, a 1 us MD
simulation was performed with the center of mass of the
protein and tRNA heavy atoms weakly restrained to the origin
of the system by a harmonic potential with a force constant of
0.1 kcal mol™ A% to prevent the drift of the AIbC:tRNA
complex in MD simulations.

Binding Free Energy Calculations. The free energy of
binding of Phe-tRNA™ to the AIbC protein was estimated as
the difference in the total free energy of the complex and the
free energies of the separated partners:

https://dx.doi.org/10.1021/acs.biochem.0c00761
Biochemistry XXXX, XXX, XXX—XXX



Biochemistry

pubs.acs.org/biochemistry

A. Electrostatic potential
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Argl02
Argl01
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catalytic pocket

Figure 1. (A) Electrostatic potential on the AlbC surface and (B) conservation of the residue charge in the NYH subfamily of CDPSs. Green dots
show the centers of mass of the important indicated residues. (A) Positive and negative potentials are colored blue and red, respectively. (B)
Average residue charge obtained from the sequence alignment and considering lysines and arginines positively charged and aspartates and

glutamates negatively charged.

AGpm'c:'cRNA = Gprot:tRNA - Gprot - GtRNA (1)

The free energy (G) has three contributions from polar
interactions computed using the Poisson—Boltzmann model
(Gpp), the nonpolar (Gg,) term, and the vibrational entropy:

G=Gpg+ Ggy — TS (2)

where T is room temperature. The Poisson—Boltzmann
equation was solved numerically with the PBEQ module***’
implemented in CHARMM version c41b1.”> The dielectric
constants for the solute and solvent volumes were set to 4 and
80, respectively. The solute—solvent dielectric boundary was
defined as a molecular surface using a water probe with a
radius of 1.4 A. The Poisson—Boltzmann equation was solved
using a cubic grid and a finite difference algorithm. A two-step
protocol was used with an initial calculation performed using a
large box with a coarse grid providing the boundary conditions
for a second calculation with a smaller box using a finer grid.**
The coarse grid spacing and fine grid spacing were set to 0.8
and 0.4 A, respectively, and the grid size was chosen to include
the entire protein:tRNA complex in both calculations. A
physiological ionic strength with a monovalent ion concen-
tration of 0.15 M was used in addition to the four structural
magnesium ions. The nonpolar contribution was estimated by
the term proportional to the solvent accessible surface area
(SASA):

Ggy = a X SASA 3)

where the surface tension @ = 6 cal mol™' A72*

Separate tRNA and protein structures were obtained by
simply discarding the unwanted partner. Thus, structural
relaxation upon dissociation was not explicitly modeled but
included implicitly in the higher protein internal dielectric
constant.””*" Calculations were performed for 300 snapshots
taken each 100 ps from the 30 ns MD simulations for each
small model. For models 9, 2, and 7, binding free energy
calculations were performed for at least 2000 snapshots taken
each 100 ps from the MD simulations. For the model with the
complete tRNA molecule, free energy calculations were
performed on 1000 structures taken each 1 ns from the 1 us
MD simulation.

The conformational entropy was estimated by normal mode
analysis (NMA)>>* on 10 snapshots taken each nanosecond
during the last 10 ns of MD simulations. To calculate normal
modes, all water molecules were removed and the system
containing the protein and tRNA was energetically minimized
using the Adopted Basis Newton—Raphson minimizer
implemented in CHARMM." The distant-dependent dielec-
tric constant of four was used in this calculations. The
tolerance applied to the average gradient of 0.0001 was used as
the convergence criterion. The error of the vibrational entropy
calculations was estimated by dividing energies corresponding

https://dx.doi.org/10.1021/acs.biochem.0c00761
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Figure 2. Distribution of the total charge of a-helices 4—a6 in the NYH and XYP subfamilies of CDPSs obtained after the sequence alignment.

The dashed line represents the mean charge.

to the 10 snapshots into two batches and computing the
difference.

To estimate long-range electrostatic effects of residue Asp95
in the catalytic center, the Poisson—Boltzmann (PB) model
was used.”® The electrostatic potential on atoms of the
catalytic residues was computed using the PB model and
averaged over structures taken from 100 ns MD simulations
with the protein in the dipeptide—intermediate state. The same
setup described above was used for Poisson—Boltzmann
calculations. Calculations were repeated with zero charges on
the Asp9S side chain, and the difference in the electrostatic
potential was calculated to obtain the electrostatic potential
due to the charge on Asp95 and the associated solvent
response.

Individual Residue Contribution to the Binding Free
Energy. The individual contribution of protein residues to
protein:tRNA binding was estimated by component analysis, as
described previously.”* Only the electrostatic contribution
was calculated, as it is expected to be dominant in interactions
between the protein and tRNA. Charges on a side chain up to
Cp of the residue were zeroed during binding free energy
calculations. The energy contribution of the residue is
calculated as the difference between the binding free energy
of the wild-type complex and the energy of the complex with
zero charges on the residue side chain.

In Vivo Assays for Wild-Type AlbC and Lys46Ala and
Asp95Ala Variants. The expression plasmid encoding AlbC
was previously constructed.”” The plasmids encoding AlbC
variants were generated by PCR mutagenesis according to the
QuikChange method (Stratagene). The plasmids were used to
transform E. coli BL21AI [pREP4] cells. The strains were
grown at 37 °C in the M9 minimum medium supplemented
with trace elements and vitamins, 0.5% glycerol (0.5% glucose
for starter cultures), 200 pg/mL ampicillin, and 25 pg/mL
kanamycin. CDPS expression was induced by isopropyl f-p-
thiogalactopyranoside (IPTG, final concentration of 2 mM),
and cultivations were continued for 18 h at 20 °C. The cultures
were centrifuged at 4000g for 45 min: supernatants and cell
pellets were analyzed for cyclodipeptide-synthesizing activities
and protein expression, respectively. Supernatants were

acidified with trifluoroacetic acid at a final concentration of
2% (v:v) and submitted to LC-MS analyses as previously
described.”” Cell pellets were frozen at —80 °C and broken as
described in ref 1. The soluble protein fractions were separated
from the insoluble fractions by centrifugation at 20000g for 45
min. Both fractions were analyzed by 12% sodium dodecyl
sulfate—polyacrylamide gel electrophoresis with Coomassie
blue staining.

B RESULTS

Conservation of the Positive Charge of CDPS Helix
a4 Belonging to the NYH Family. The residue conservation
was first analyzed in the context of interactions with tRNA. In
particular, positive charges of protein residues may contribute
strongly to tRNA binding. The electrostatic potential on the
AIbC surface calculated using the experimental structure of
PDB entry 4Q24°" is shown in Figure 1. The total charge of
AIbC at pH 8 is —4 ¢; however, the protein is strongly
polarized at this pH, which is manifested in relatively large
patches of positive and negative electrostatic potential on the
protein surface in Figure 1. It was shown that proteins with
such strong polarization are implicated in binding to the
ribosome or interact with nucleic acids.”® In particular, a
significant region of positive potential is found on helix a4.
Helix a4 is comprised of 26 residues, with 13 residues being
ionized at pH 8, including seven arginines, two lysines, three
glutamates, and one aspartate. The total charge of helix a4 at
pH 8 is, thus, +5 e. The potential on the protein surface,
particularly in the catalytic pocket and around helix o4,
correlates well with the elevated level of charge conservation in
the NYH subfamily of CDPSs (Figure 1B).

The residue charge conservation shown in Figure 1 is clearly
visible for the residues in the catalytic pocket, and in particular
for Glu182, implicated in the enzymatic activity."> Positively
charged residues of helix a4 possess a relatively significant level
of conservation of the ionization state but demonstrate no
strict conservation. More precisely, helix a4 is enriched in
arginines and lysines in CDPSs in the entire NYH subfamily;
however, these residues have scattered positions in the
alignments published previously.”'*'® Thus, in the NYH
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Figure 3. Initial models of the AIbC:Phe-tRNA™ complex derived by docking and homology modeling. Ten models were obtained by rigid-body
docking, and one additional model was based on the experimental structure of the TyrRS:tRNA complex. The models were superimposed using the
protein atoms and classified according to structural similarity. The model number corresponds to their docking scoring rank.

subfamily (272 sequences), the total positive charge of helix a4
is conserved with an average charge of +5.5 e and a standard
deviation (SD) of 1.5 ¢ as shown in Figure 2. This suggests that
the positive residues of helix @4 could be implicated in tRNA
binding. In contrast to other solvent-exposed helices, helix a4
is the longest helix and the only helix having significant positive
charge. Other helices on the protein surface, @S and a6, have
average total charges of 0.3 e (SD of 1.7 ¢) and —0.2 ¢ (SD of
2.2 e), respectively (Figure 2). Interestingly, in the XYP
subfamily (231 sequences), the charge of helix a4 is small and
slightly negative with an average of —1.2 + 2.6 ¢, while helices
a5 and a6 are almost neutral, suggesting that helix a4 may
accomplish different functions in tRNA binding in these two
subfamilies.

Rigid-Body Docking Study of AIbC:tRNA Interactions.
To design initial models of the AIbC:tRNA complex, rigid-
body docking of the first tRNA substrate to AIbC was
performed with the ZDOCK server.”® The models of the
docked complex were filtered on the basis of the proximity of
the important residues in the catalytic site to tRNA as
described in Methods. However, the proximity requirement
with the minimal distance set to 6 A was not strict, and no
filtering restraints were applied to interactions with other
protein residues, including residues of helix a4. Thus, rigid-
body docking provided 10 initial models for the AIbC:tRNA
complex. One additional model for the first substrate binding

was designed on the basis of the structural similarity between
AIbC and tyrosyl-tRNA synthetase.'® Eleven models were then
classified on the basis of the root-mean-square deviation
(RMSD) (Table S2) giving four groups of models shown in
Figure 3. Among the 11 considered models, only one subgroup
of models § and 9 and the model based on TyrRS presented no
interactions with helix @4."> This group of models cannot
explain the experimental evidence of the contribution of
residues of helix a4 to binding of the first tRNA substrate.
Nevertheless, these models were also investigated to elucidate
the source of the difference between interactions of CDPS and
TyrRS with tRNA substrates and to probe a hypothesis that
helix a4 is involved in binding of the second tRNA substrate
despite what was previously suggested.'” Additionally, the
Poisson—Boltzmann binding free energy was computed for
2000 structures generated with ZDOCK after structural
relaxation as described in the Supporting Information. The
results show that the binding free energy for strongly
interacting AlbC and tRNA correlates well with the
contribution of helix a4, as shown in Figure S2, and the five
models with the lowest binding free energy are all similar and
also similar to model 7, shown in Figure S2 and Figure 3.
MD simulations were performed for each of 11 models in
the explicit solvent. In preliminary calculations on the docked
structures, Phe-tRNA™ residues that are at least 26 A from
AIbC were not present, as these distant residues do not
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contribute to AIbC binding. Indeed, in these calculations, the
contribution of distant groups is approximated as the
contribution of the solvent occupying their space. We
estimated this contribution of the truncated region using the
Poisson—Boltzmann model as described in Methods and found
that it contributes <0.1 kcal mol™ in all cases in agreement
with the previous studies.”” To maintain the tRNA structure
near the truncated region, harmonic restraints were applied on
heavy atoms around the truncated region, and initially MD
simulations for 30 ns were performed to evaluate the free
energy of binding between AIbC and tRNA. In the MD
simulations, tRNA remained positioned close to the protein
and the aminoacyl group remained in the AIbC catalytic pocket
in all models. Similar to their starting poses, the TyrRS-based
model and models S and 9 did not interact with helix a4
during the simulation, while in the remaining models, tRNA
preferred to interact with helix 4. To evaluate the binding free
energy, Poisson—Boltzmann/surface area (PB/SA) free energy
calculations were performed using the structures drawn from
the MD simulations. The vibrational entropy was estimated
using normal mode analysis. The results are summarized in
Table S3. Model 7 presented the lowest binding free energy,
i.e, with the strongest interaction between the protein and
tRNA as shown in Figure S3, and the entropy estimate
decreased further the total binding free energy for model 7
relative to those of other models. Model 2 demonstrated a
lower binding free energy toward the end of the simulation,
suggesting that the MD simulation has not converged for this
model with 30 ns. Model 9 was included in subsequent analysis
because it represents the TyrRS binding pose. Thus, on the
basis of the preliminary calculations, MD simulations were
continued for representative models 2, 7, and 9: 300 ns for
models 2 and 7 and 200 ns for model 9. The binding free
energy and RMSD shown in Figure S4 did not demonstrate
large fluctuations after simulations for 20 ns for models 7 and
9, suggesting that these simulations converged. The average
PB/SA binding free energies observed for models 2 and 7 in
MD simulations were —41.0 kcal mol™" (SD of 7 kcal mol™")
and —47.0 kcal mol™" (SD of 7 kcal mol™"), respectively. The
average binding free energy for model 9 is —20.5 kcal mol™*
(SD of 3 kcal mol™"). Including the vibrational entropy
estimate decreased the binding free energy for model 9 relative
to models 7 and 2; however, model 7 still has a total binding
free energy that is 14.2 kcal mol™" lower in comparison with
that of model 9. Thus, the models based on TyrRS are
characterized by significantly weaker interactions with AIbC
due to the lack of interaction with helix a4, because helix a4 is
one of structural elements providing the strongest contribution
to the first tRNA binding. In contrast to NYH CDPSs, the total
charge of helix a4 in TyrRS from Thermus thermophilus is
zero,”’ suggesting that the binding mode of the NYH CDPS
and TyrRS can be different.

Individual residue contributions to the total binding free
energy for each model, listed in Table S4, were further
correlated with the experimental data. In the four best models,
Glul82 contributes favorably to aa-tRNA binding with an
average of —5.7 keal mol™" through ionic interactions with the
charged amino group of the phenylalanyl moiety (Figure S5).
Glul82 is a conserved residue in all CDPSs and has an
important role in the catalytic reaction by participating in the
reaction and maintaining the correct orientation of the reactant
groups.' " In both models 2 and 7, residues Lys94, Arg98,
Arg99, and Argl02 contribute strongly to the binding free

energy, while Lys46 contributes mostly in model 2 and Arg91
in model 7. Biochemical experiments indicate that Arg9l,
Arg9s, Ar$99g and Argl02 are important for cyclodipeptide
formation.' "> The mutation of Lys46 into an alanine does not
have any significant effect on the cyclodipeptide production
and protein expression (Table SS and Figure S6), suggesting
that this residue is not implicated in AIbC:tRNA interaction;
however, a positive residue, lysine or arginine, is frequently
found at this position in the CDPS NYH subfamily. In model 9
based on the TyrRS:tRNA structure, suggested previously to
explain the second substrate binding, Arg231 has the strongest
contribution to the total binding free energy of —8.3 kcal
mol ™", but residues Aspl63 and Asp20S do not contribute
practically to interactions with the tRNA substrate. Impor-
tantly, biochemical experiments demonstrate that the con-
tribution of Arg231 to tRNA binding is negligible and Asp163
and Asp205 are both implicated in tRNA interactions.”"
Overall, this demonstrates that model 9 is unlikely for the
complex with the first or second tRNA substrate.

The individual residue contributions for models 2 and 7 are
very similar. In model 2, residues 94—102 of helix a4 interact
with the phosphate backbone of nucleotides 65—67, while in
model 7, interactions occur mainly between residues 91—103
and nucleotides 62—6S, as shown in Figure SS. Thus, models 2
and 7 that are representative of two groups of structures
predicted by rigid-body docking converged to similar binding
modes relying on the a4:tRNA interaction.

Interactions with Helix a4 Are Maintained in Long
Molecular Dynamics Simulations. On the basis of the
preliminary calculations described above, a model with the
complete tRNA molecule was built using the tRNA position
observed in model 7, which is characterized by the strongest
interaction between the protein and tRNA. In the model with
the complete tRNA, the orientation of the aminoacyl group in
model 7 was improved using the information available from the
experimental structure (PDB entry 4Q24). In particular, the
orientation in model 9, where the structure of the aminoacyl
group is close to its position in the experimental structure of
AIbC complexed with the dipeptide analogue, as shown in
Figure S1, was used as described in Methods. The model was
subjected to a long MD simulation of 1 ys with no restraints
applied to the protein and tRNA atoms. The RMSD is shown
in Figure S7. The average backbone RMSD for the protein
referenced to the crystal structures of the protein (PDB entry
4Q24) was 1.8 A with a standard deviation of 0.2 A. In
agreement with previous studies, tRNA demonstrates greater
structural fluctuations than the protein with the backbone
average RMSD of 4.0 A (SD of 1.8 A) referenced to the crystal
structure of tRNA™® (PDB entry 4YCO). However, the
position of AIbC relative to tRNA is well maintained during
the entire simulation with the tRNA acceptor arm preserving
the contact with helix a4 (Figure 4A). Moreover, the
covariance of atomic displacements of the two partners
indicates that the AIbC catalytic site and helix a4 fluctuations
are correlated with those of the tRNA during the MD
simulations, indicating that AIbC interacts strongly with tRNA
through its catalytic site and helix a4 (Figure 4B).

The free energy of binding of AIbC to tRNA observed in
MD simulations is shown in Figure S8. The binding free
energy fluctuates near the average value of —40.3 kcal mol ™},
but fluctuations are small with a standard deviation of 5.0 kcal
mol ™. Overall, small variations in the binding free energy and
RMSD given above suggest that MD simulations of the
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Figure 4. (A) Interactions between AlbC and tRNA observed in MD
simulations of the AIbC:tRNA complex. Twenty superimposed
snapshots are shown and were taken each 50 ns from 1 us MD
simulations. (B) Absolute covariance for the atomic displacements of
the protein backbone Ca atoms and tRNA backbone phosphate
groups. Darker areas correspond to large values of the absolute
covariance.

AIbC:tRNA complex have mostly converged. The individual
residue contributions to the total free energy for binding of
AIbC to tRNA are listed in Table 1. Residues that are
contributing to a total binding free energy of less than —7 kcal

Table 1. Contributions of Individual Residues to the
Binding Free Energy in Kilocalories per Mole”

residue calculated experimental
Lys46 —-1.9 (3.0) no effect”
Arg80 —2.6 (1.2) strong
Arg87 —3.4 (1.6) no effect
Arg91 -11.3 (3.3) strong
Lys94 -9.2 (2.6) strong
Asp95 4.4 (0.9)/8.9 (6.3)° strong”
Arg98 -74 (22) strong
Arg99 —9.0 (2.8) strong
Argl02 -3.1(2.1) strong
Glu182 —6.4 (1.2) strong
Arg231 —0.4 (0.2) no effect

“Average values over 100 frames are given. The standard deviation is
given in parentheses. The energies are given only for residues with the
absolute contribution to the total binding free energy being >1.0 kcal
mol™" (except Arg231). ®In vivo assay results from this study (Table
SS); the experimental data for the remaining residues were compiled
from previous studies.'”'>*° “Results from the component analysis of
MD simulations of the wild-type protein and binding free energy
difference computed using MD simulations with the Asp9SAla variant
are given.

mol ™" (Arg91, Lys94, Arg98, and Arg99) all belong to helix a4.
Positively charged residues of helix a4, Arg80, Arg87, Arg9l,
Lys94, Arg98, Arg99, and Argl02, create multiple salt bridges
with the phosphate backbone as shown in Figure SA.
Interestingly, in MD simulations, both Arg80 and Arg99 stay
very close to the tRNA substrate [5.4 and 4.0 A, respectively
(Figure SA)] and thus can contribute through long-range
electrostatic interactions. Arg80 interacts through long-range
electrostatic interactions with Asp163, and Arg99 is relatively
close to the C72 nucleotide both involved in the second
substrate binding,'” suggesting that the second substrate
binding pose could be similar to that of the first substrate.
Asp95 belonging to the same helix makes a positive
contribution to the total binding free energy of 4.4 kcal
mol ™', weakening tRNA binding. To further study the role of
Asp95, we performed 200 ns MD simulations of the Asp95Ala
variant with the complete tRNA. The free energy of binding of
the AIbC Asp95SAla variant to tRNA observed in MD
simulations has small fluctuations shown in Figure S9 with
an average value of —49.2 kcal mol™ (SD of 6.3 kcal mol™).
Compared to the wild-type MD simulations, the average
binding free energy of the mutant is 9 kcal mol™! lower,
suggesting that Asp95 has a destabilizing role in the
AIbC:tRNA interaction, due to repulsive electrostatic inter-
actions between the Asp9S carboxylate group and tRNA
phosphates. This mutation was further tested using in vivo
experiments. The Asp95Ala variant was shown to be
approximately 2—3 times less efficient than the wild-type
protein (Table SS and Figure S6), which demonstrate that
Asp9S is implicated in interactions with tRNA. However, the
effect of the Asp9SAla mutation found experimentally is
reversed in comparison to the simulation results. We further
tested if Asp9S can affect the enzymatic activity through long-
range electrostatic effects. In particular, the electrostatic
potential due to the charge of Asp95 was estimated as
described in Methods using MD simulations of the AIbC in the
dipeptide state. Asp9S is far from the catalytic center: the
shortest distance in the experimental structure of PDB entry
4Q24 between the dipeptide and Asp95 (Cy of Asp95 and C of
Phel) is 16.4 A, and the distance between C§ of the catalytic
Glul82 and Cy of Asp95 is 20.3 A. In agreement with the long
distance from the catalytic center and the fact that this residue
is solvent-exposed, the results show that the electrostatic effects
due to Asp95 in the catalytic center are very small. For
example, the free energy of interaction between Asp9S and the
bound dipeptide is just —0.04 (0.01) kcal mol™!, while
electrostatic potential due to Asp95 on the closest atom Oy of
Ser37 is just 0.09 (0.01) kcal mol ™" ¢~". Overall, the long-range
electrostatic effects of Asp9S can be neglected. Finally, we
tested if allosteric effects can be implicated with the Asp95Ala
mutation. Figure S10 compares average structures observed in
MD simulation with Asp95 and Asp95Ala with AIbC in the
dipeptide state and in complex with tRNA. The positions of
the catalytic residues, surface residues participating in
interactions with tRNA, as well as the tRNA phosphates are
all practically identical, demonstrating the absence of allosteric
effects. On the basis of these insights, and the fact that the
computed effect of Asp95Ala is particularly strong, we propose
that the Asp9SAla mutation increases the strength of
interactions with Phe-tRNA™ but also with other tRNA
forms, including tRNA without the aminoacyl group. This can
have a total negative effect on the cyclodipeptide production in
the cellular context, where AIbC should specifically bind to the
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Figure S. Interactions observed in 1 ys MD simulations of the AIbC:Phe-tRNA™ complex. The protein and Phe-tRNA™ are colored blue and
green, respectively. The important interatom distances are shown in angstroms. The conformation with the binding free energy close to the average
value in Figure S8 is shown. (A) Helix a4 and tRNA major groove interaction. (B) Close-up view of the catalytic center. (C) Twenty superimposed
snapshots taken each 50 ns from the MD simulation demonstrating two predominant conformations of Phel colored yellow and orange. The
structure of the dipeptide intermediate in the crystal structure (PDB entry 4Q24) is colored pink. (D) Superposition of the conformation from the

MD simulation with the experimental structure of PDB entry 4Q24.”°

correct tRNAs (Phe-tRNA™®) and dissociate from tRNA when
the aminoacyl group is transferred to the protein to become
available for the next catalytic cycles.

Glu182 has one of the largest contributions to tRNA binding
via strong electrostatic interactions with the protonated amine
group of Phel and helps orient and stabilize the aminoacyl in
the catalytic pocket, shown in Figure 5B. Important catalytic
residues Tyr202, His203, Tyr178, and Asn40 help stabilize the
aminoacyl moiety through a network of hydrogen bonds.
Overall, the structure of the catalytic center observed in the
MD simulations is in good agreement with the crystal structure
with the dipeptide substrate analogue (PDB entry 4Q24).
Importantly, residues Tyr178, Glul82, and His203 essential for
the catalytic function are found in a position similar to that in
the crystallographic structure, shown in Figure SD. However,
two important residues, Asn40 and Ser37, are found in
different orientations compared to the crystallographic
structure (PDB entry 4Q24). In the crystal structure, Asn40
is solvent-exposed and close to Ser37 with a Cf—Cp distance
of 3.9 A. Arguably, this is an artifact of rigid-body docking,
where the protein can be trapped in a higher-energy
conformation, which cannot be relaxed in the presence of
tRNA. Simulations of the dissociation of the protein and tRNA
are complex and beyond the scope of this study. However, the
effect of the misorientation of Ser37 and Asn40 is expected to
be small, because these residues do not contribute significantly
to tRNA binding, and thus cannot change the overall binding
position of tRNA relative to the protein.

It was previously suggested'” that residues Asn139, Argl60,
Asp163, and Asp20S contribute to the second substrate
binding. Importantly, the model proposed in this work can
rationalize all of these contributions as shown in Figure 5B. In
particular, Argl60 and Asp205 create salt bridges with Asp78
and Arg231, respectively, stabilizing a6—a7 and 6—a8 loops;
Asn159 makes a hydrogen bond with the ribose of A76, and
Asp163 has a repulsive electrostatic effect on the G1 phosphate
group. Overall, this suggests that the binding poses for the first
and second substrate may be similar. Notably, the phenyl-
alanine group of Phe-tRNA™® occupied in MD simulations
predominantly two positions, shown in Figure SC. The two
dominant orientations are compatible with the first and second
phenylalanine residues of the dipeptide analogue in the crystal
structure (Figure S). This demonstrates that the first substrate
can bind by its aminoacyl group into both binding pockets, P1
and P2. These pockets are occupied by the first and second
phenylalanine groups in the protein crystal structure with the
dipeptide analogue.

Overall, the new model presents an extended interaction
between Phe-tRNA™ and AIbC through helix a4 consistent
with positive charge conservation of the helix in the NYH
subfamily and consistent with experimental data.

Effect of tRNA Interactions on the AlbC Conforma-
tion. Finally, to determine whether AIbC can change its
conformation during its function cycle, 100 ns MD simulations
were performed for AIbC in the apo and intermediate states to
compare with the MD simulation of the AIbC:tRNA complex.
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In particular, for the apo form two intendent simulations were
performed using the crystal structures of PDB entries 4Q24”°
and 30QV." For AIbC in the intermediate state with Phel
attached to Ser37, the starting structure was obtained from the
structure with the dipeptide analogue by deleting Phe2 of the
dipeptide analogue. The RMSD between backbone atoms of
the available crystal, 4Q24, and the average structure in the
MD simulations is given in Table 2.

Table 2. RMSDs Computed between the Average Structure
from MD Simulations and the Crystal Structure (PDB entry

4Q24)°

state RMSD (A)
apo form modeled 1.05
apo form 4Q24 1.0S
AlbC-Phel IS 1.0S
AIbC:tRNA 133

“The RMSD was computed after the structures were superimposed
on the protein Car atoms, excluding atoms of the N- and C-termini
(residues 1—14 and 231-239, respectively), due to their large
structural fluctuations.

The MD simulations of the apo form starting from two
different crystal structures converge to a very similar protein
conformation with a 1.05 A RMSD from the crystal structure
with a dipeptide analogue. Indeed, the two crystal structures of
AIbC in the apo state and in the dipeptide analogue state used
for the initial structures for MD simulations are very similar,
with the RMSD being 0.9 A computed for 169 Ca atoms.*
The RMSD for AIbC in the intermediate state, with Phel, is
practically the same as for the apoprotein, demonstrating that
the bound Phel does not perturb the protein conformation.
However, the RMSD computed for AIbC in the tRNA:AIbC
complex is 1.33 A, which is greater than 1.05 A, demonstrating
that for tRNA interactions the protein adopts a slightly
different conformation. In particular, flexible loops between a2
and 3 (CL1) and between a6 and a7 are mainly contributing
to the RMSD. However, the position of the backbone of the -
strands and a-helices, including a4, is very similar. The a2—f3
loop, so-called CL1,”° contributes to the structure of the
catalytic site, and in all available crystal structures in the tRNA
free form, the conformation of this loop is very similar,
suggesting that its flexibility may be involved in tRNA binding.

B DISCUSSION

In this work, using a synergy of in vivo experiments and
simulations, the AIbC:Phe-tRNA" complex was investigated.
Eleven initial models were obtained by rigid docking and
through homology modeling based on the sequence and
structure similarity with TyrRS, without imposing strict
restraints on possible protein:tRNA interactions. The models
were classified into four groups of possible tRNA binding
positions. In all studied models, the interaction of the
aminoacyl moiety with AIbC persisted in preliminary MD
simulations, indicating that AIbC:tRNA binding relies on the
interaction of the aminoacyl moiety with the active site
residues as suggested previously.'” Furthermore, the models
from the two groups with the lowest protein:tRNA binding
free energies converged to very similar structures of the
AIbC:tRNA complex in MD simulations, which suggests that
this binding pose is the solution to the binding problem. In all
models with the lowest energy, AIbC interacts with the tRNA

via helix a4 in agreement with the biochemical experiments.
Notably, the analysis of the charge conservation showed that
helix a4 has the total charge well conserved in the entire NYH
subfamily. The average charge of helix a4 is +5.5 e (SD of 1.5
¢), suggesting that the binding mode of tRNA is shared by the
NYH CDPSs.

The model with the lowest binding free energy was then
used to study the protein:tRNA complex in 1 us long MD
simulations. The model was stable as indicated by the RMSD
and the protein:tRNA binding free energy. Analysis of
individual residue contributions identified residues Lys46,
Arg80, Arg87, Arg91, Lys94, Arg98, Arg99, and Argl02 as
strongly contributing to the complex formation and stability.
Asp95 was also identified by simulations to be implicated in
tRNA interactions and further validated by in vivo experiments
in this work. Arg80, Arg87, Arg91, Lys94, Arg98, Arg99, and
Argl02 have been previously studied by mutations, demon-
strating that all, except Arg87, are necessary for AIbC
function.'”"> All of these residues except Arg80 belong to
helix 4. In MD simulations, helix a4 makes multiple ionic
interactions by positively charged residues with the phosphate
groups of both strands delimiting the major groove of the
tRNA acceptor stem. Similar interactions were observed in
other families of enzymes using aa-tRNA to form peptide
bonds. Both FemX aminoacyl-transferases and aa-tRNA
protein transferases recognize the cognate aa-tRNA via its
acceptor stem.”””* Moreover, a proposed model for L/F
transferase suggests that tRNA recognition occurs from a
positive cluster located on a small solvent-exposed a-helix.”**"

However, interaction of FemX aminoacyl-transferases and
aa-tRNA protein transferases with tRNA strongly depends on
the tRNA sequence of the acceptor stem.”””* Interestingly, it
was suggested that AIbC:tRNA interaction was different for the
first or second tRNA."? For the binding of the first substrate,
the interaction with the basic patch of helix a4 is essential. The
binding of the second substrate is highly dependent on both
the aminoacyl moiety and the tRNA sequence itself. It would
involve the a6—a7 loop delimiting the P2 pocket but not helix
a4."> AIbC distinguishes between the G'-C’* and C'-G" pairs,
similar to TyrRSs and FemX aminoacyl-transferases.”>~** This
indicates that the modeled AIbC:Phe-tRNA™ interaction
corresponds to the pose of the first substrate as in our model,
and there is no specific interaction with the G'-C”* base pair, in
agreement with the experimental evidence. However, in the 1
us MD simulation, the phenylalanine of the bound tRNA
inside the catalytic site predominantly occupied one of two
positions compatible with Phel and Phe2 observed in the
crystal structure (PDB entry 4Q24°°) in the intermediate state.
The conformational transitions between the Phel and Phe2
positions were accomplished without significant conforma-
tional rearrangements of the protein atoms. In MD
simulations, the phenylalanyl group of tRNA spends around
2 times more time in the Phel position than in the Phe2
position, in agreement with the previous suggestion that Phel
is more specific for the phenylalanine than Phe2, because the
second substrate type is less strict in AIbC. This suggests that
with the same tRNA binding mode, the phenylalanine group in
principle can be poised for the second step of the catalytic
reaction, and both tRNAs for the first and second steps of the
enzymatic reaction bind in a mode similar to that of AIbC.
This conjecture will be tested in future studies.

Interestingly, the previous experiments demonstrate a
significant decrease in the enzymatic activity or a complete
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loss for Nbra-CDPS or AIbC, respectively, when the XYP and
NYH motifs in these CDPSs were converted to the NYH and
XYP motifs, respectively.'* This clearly demonstrates that the
difference in the XYP and NYH motifs is just a reflection of
more profound differences between the two subfamilies. We
could propose that this distinction may be contributed by the
difference in interactions of CDPSs with tRNA. Indeed, the
overall positive charge of helix a4, proposed in this work to be
important for the interactions of NYH CDPS with tRNA, is
not observed in the XYP family, suggesting that helix a4 is not
significantly involved in the tRNA recognition in a$reement
with recent crystallographic and biochemical studies. *
Overall, the simulation results are corroborated by
biochemical experiments. In particular, the AIbC variants
with basic residues belonging to helix a4 to be important for
tRNA binding identified through mutation and conservation in
sequence alignment are also the key residues for the AIbC:Phe-
tRNA™*® complex in our simulations. Overall, the mechanism
of recognition of tRNA by CDPS AIbC discovered in this work
is expected to be pertinent for other members of the CDPS
NYH subfamily, because the CDPS:tRNA interaction involves
the CDPS secondary structure with a conserved positive
charge in the subfamily. This is also in line with the fact that
CDPS:tRNA binding involves the tRNA acceptor stem, which
is observed for other noncanonical enzymes such as FemX
aminoacyl-transferases and aa-tRNA protein transferases.”””’
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Chapter 4. FF development to study modified tRNA and its interaction with the
protein

CONCLUSION

In this work, using molecular modelling tools, I studied the interaction of
cyclodipeptide synthases with their first substrate, the aminoacylated tRNA. Initial
interaction poses were obtained with rigid docking and further refined with MD
simulations to propose a model of interaction for the complex. CHARMM force field
development was needed for the parameters of the phenylalanyl group covalently
bonded to tRNA. In collaboration with an experimental group, we showed that the

proposed model is compatible with the experimental data.

This study 1s a fine example of the necessity of force field development in order
to accommodate the chemical modifications of standard biopolymers. The next step

1s to improve the force field optimization method presented in Chapter 5.
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Chapter 5

DEVELOPMENT OF A NEW METHOD FOR BOND
AND VALENCE ANGLE BONDED TERMS
PARAMETRIZATION

One of the important features of the force field is the transferability of
parameters which implies that the same parameters can be used to model an
ensemble of similar molecules, rather than creating an individual set of parameters
for each individual molecule. Generally, parametrization of force fields is performed
in small molecules and then adapted to the larger complete molecule. Force fields for
small molecules are constructed in incremental parametrization procedures, where
parameters developed previously are retained for novel molecules, followed by
optimization of missing, not previously optimized parameters. However, equilibrium
QM and MM geometries of molecules can deviate due to parameters transferred from
existing molecules in the force field. We demonstrate that conventional
parametrization methods based on fitting QM energies and/or forces to derive
parameters for bond and angle terms produce largely suboptimal force constants
when MM and QM equilibrium structures deviate even slightly. We propose a new
method to derive force field parameters based on the PES scans where a structural
deviation between QM and MM optimized geometries is explicitly allowed during

parametrization.

The test of the developed method was performed on a diverse set of 32 small
molecules. Starting from random initial force constant, the parameters for bond and
angle terms optimized by the new method converge to the optimal value. We further
demonstrate using the test molecules that the bond and angle parameters produced
by the new method are largely transferable, with the force constants optimized in
different molecules deviating by less than 2% on average. An additional test was
performed for normal modes. The new method also improves the agreement for the
normal modes for all molecules in the set, reducing the average error in the
reproduction of QM normal mode frequencies for optimized parameters compared to
initial ones. The new method will allow parametrization of molecules under

structural deviations, common for force fields for small molecules, producing robust
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parametrization

and transferable parameters. The presented chapter is a based on a submitted

article.

In this work, we mainly focus on bond and angle terms of the bonded part of
the total FF energy. In widely used Class I additive force fields these terms are
modeled by harmonic functions to describe deformations along bonds and angles
around their equilibrium values. Parameters for these terms can be obtained by
reproducing the experimental or/and QM vibrational spectrum, Hessian matrix!38139,
and deformation energies and forces.*? In the later methods, also known as the Force
Matching methods, MM parameters are fitted to reproduce the forces in non-
equilibrium structures, which can be generated, for example, by classical MD
simulations.'40-14¢ For the CHARMM force field, historically, to parametrize stiff
degrees of freedom a symbolic potential energy distribution (PED) analysis was
performed in the internal coordinate space.!4® This allows estimating relative
contributions of the valence coordinates to frequencies. These contributions are
computed using the MM Hessian calculated using the trial parameters, and
compared with the corresponding QM PED; parameters are iteratively varied until
satisfactory agreement is reached. In practice, the fitting is difficult since QM and
MM frequencies of a normal mode as well as QM and MM contributions of internal
coordinates to the same normal mode are different. With this, the quality of the fit is
difficult to quantify and in addition, one needs to define a non-unique mapping

between internal coordinates and normal modes, which is difficult to automate.

Apart from PED analysis, a method to determine force constants by three-
point PES scans was used for CGenFF when the assignment of the internal
coordinate contributions to the vibrations was ambiguous.!'3 This method is also
implemented in the Force Field Toolkit (ffTk), a VMD plugin'4¢ that can be used to
parametrize the CHARMM force field for small molecules.*” In this method, a small
distortion in two opposing directions is generated and the corresponding increase in
potential energy relative to the undistorted conformation is computed. The QM
Hessian is used to compute QM energy for the small distortions about the minimized
geometry. The energies are scaled to improve the agreement with experimental
vibrational frequencies.!!? Since no optimization is done for the deformed structures,
in principle different sets of parameters can reproduce QM energies equally well.
Thus, the parameter optimization problem is ill-defined in this case, and requires a
restraining strategy. Different such restraint strategies have been proposed.113.147-149

However, introducing such artificial restraints may result in a poor transferability of
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parameters for molecules that were not used for the optimization. In particular, bond
and angle parameters are developed typically only in one molecule and used for all

other molecules in the chemical universe sharing the same term defined by atom
types.

Equilibrium QM and MM geometries of molecules can deviate due to
parameters transferred from existing molecules in the force field, even with FF
parameters for new terms optimized against QM reference data. For example, in the
previous work on the parametrization of the large set of nonstandard amino acids we
found that bonds and angles deviate on average by 0.02 A and 2°, respectively, for a
large set of 189 compounds after optimization of new parameters not existing in
CGenFF. In this work, we demonstrate that, while these MM structural
inconsistences relative to QM optimized structures can be negligible for applications,
they strongly impact the quality of new parameters optimized in novel molecules. We
further show that the conventional methods to derive parameters for bond and angle
terms produce largely suboptimal force constants when MM and QM equilibrium
structures deviate even slightly. This problem arises if the same structures (for
example, QM optimized structures) are used during parametrization for QM and MM
calculations, or QM and MM structures have the same value of the deformed bond or
angle. We further developed and tested a new method to derive force field parameters
based on the PES scans where a structural deviation between QM and MM structures
1s explicitly allowed and show that the new method produces stable and transferable

parameters for bond and angle terms without any need for additional restraints.

OPTIMIZATION AND COST FUNCTION

Typically, to optimize bonded parameters a cost function is constructed using
energy differences between QM and MM structures, for example from PES scans,
which is further minimized to give an optimal set of bonded parameters. In the
simplest form, the RMS deviation between QM and MM energies for a set of

structures can be used for the cost function:

Fener = \[% Yi(EM (x;) — EMM(x))?2, [Eq 5.4]

where the sum is over a set of N structures; E?Y and EM™ are QM and MM
energies, respectively, computed using the same set of coordinates, x;. The structures
can be generated in different ways, however, in this work, we will focus on potential

energy surface scans, described above. For calculations with the force field model,
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structures can correspond to QM optimized structures, or typically, they can be re-
optimized with the force field model. Thus, QM and MM structures can be different,
however, the scanned valence coordinate (for example a dihedral angle) has the same

value in the QM and MM structures. In this case, the RMS deviation 1s given by:

Fener — J%Zi(EQM(x?M) _ EMM(in\/IM))z, [Eq 5.5]

Q

where the two sets of coordinates, x" and x!"™ have the same value along the

. M
scanned internal degree of freedom, k: x?k = x%(M.

NORMAL MODE ANALYSIS

The quality of the optimized parameters was tested using normal mode
analysis (NMA). QM NMA was performed for the molecules in the data set using the
optimized structures at the MP2/6-31G* level of theory. The structures were fully
optimized with quadratically convergent SCF procedure!5® and there were no normal
modes with negative frequencies. The correspondence between QM and MM
normalized normal modes was determined based on the dot product before further
comparison. For this purpose, normal modes were considered as collinear if their
absolute dot product is >0.5. If a QM normal mode is contributed by several

CHARMM normal modes, the MM mode with the largest dot product was considered.

To characterize the fit between QM and MM frequencies, Mean Percentage
Absolute Error (MPAE) was calculated using:
MM

QM
% av —v;
MPAE= 222 51 =l —|, [Eq 5.6]

i

where n is number of colinear NM; viQMand VJMM are the frequency of QM NM

and the frequency of corresponding collinear CHARMM and QM NM; a = 0.9432 is
the vibrational scaling factor.? MPAE was adapted from a previous work.!®2 The
bonded parameters were optimized with the scaling factor of a? applied to QM
energies to obtain scaling factor of a for QM frequencies. The comparison was also
done with the QM frequencies scaled by this factor in Equation 11. Bonded
parameters were derived starting from initial CHARMM parameters for force
constants and equilibrium values obtained from ab initio optimized geometry of the

molecule.
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TEST MOLECULES AND ATOM TYPES

To test different parametrization methods, 32 molecules were selected with

available CHARMM parameters. The set of molecules comprises molecules with

diverse chemical structures and includes three, four, five and six-atom ring

structures. In total, the set contains 74 unique bond terms and 127 unique angle

terms with an average of 4 and 6 terms per molecule respectively. Chemical

structures of these molecules are shown in Figure 5.1 and their chemical names and

formulae are given in Table 5.1.
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Figure 5.1. Chemical structures of 32 molecules used in this work. 2D representations were
prepared with MarvinSketch.129
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Table 5.1 Nomenclature of the 32 molecules test set.

CHARMM residue name Chemical formula IUPAC name
13db C4He6 1,3-dibutene
13dp C5H8 1,3-dipentene
1box C4H80 1-butene oxide
leox C2H40 1-ethylene oxide
aald C2H40 acetaldehyde
aceh C2H402 acetic acid
acem C2H5NO acetamide

aco C3H60 acetone
benz C6He6 benzene
bte2 C4HS8 2-butene
bton C4H80 butanone
buta C4H10 butane
c2h4 C2H4 ethylene
chlb C6H5C1 chlorobenzene
dma C4HONO dimethylacetamide
dmam C2H7N dimethylamine
dmee C2H60 dimethylether
dmso C2H60S dimethylsulfoxide
etha C2H6 ethane
etoh C2H60 ethanol
etsh C2H6S ethanethiol
flub C6H5F fluorobenzene
form CH3NO formamide
maml CH5N methylamine
nitb C6H5NO2 nitrobenzene
oxtn C3H60 oxetane
pald C3H60 propionaldehyde
phen C6H60 phenol
prpa C3HS8 propane
prpe C3H6 propene
pyrl C5H5N pyridine
pyrl C4H5N pyrrole

The force field parameters for the molecules in the test set were taken from
CGenFF.% For simplicity, these parameters will be further referred as initial
CHARMM parameters. The geometry of molecules was generated from the existing
tables of internal coordinates in the CGenFF force field files. The geometries were
further optimized at the MP2/6-31G* model chemistry, or MP2/6-311G(d) model

chemistry for anionic molecules. Adiabatic potential energy surface (PES) scans with
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QM were performed along selected degrees of freedom as described above. MM
calculations were performed with CHARMM program and QM calculation were

performed with Gaussian09.106

RESULTS

Deviation between QM and MM relaxed structures leads to

suboptimal force constants

In this section, the arguments will be illustrated on selected molecules. Figure
5.2A shows the PE surface for C-C bond stretching in ethylene computed with QM
and optimal CHARMM parameters. The Root Mean Square (RMS) deviation between
QM and MM energies computed with Formula 5 is shown in Figure 5.2 (panels B and
C) computed with different force field equilibrium bond distance values, by; and with
different force constant values, K;,. For these calculations, the optimal values for the
term were used for b, and Kj,, respectively; the other terms optimized in PES scans
were also treated with the optimal parameters. The MM structures were optimized
using the same value for the valence coordinate (bond or angle), which was used for

the QM optimizations, 1.e. le,fI = x%(M. As it can be seen, even relatively small

deviations in by lead to large deviations between QM and MM energies, and thus the
RMS deviation. For example, a deviation of just 0.05 A from the optimal value for b,
leads to a value of 2.6 kcal ‘mol-! for the RMS deviation (a deviation of 0.1 A leads to
~8 kcal mol'!). In contrast, relatively large deviations in K, produce only a small
increase in the RMS deviation. For example, in ethylene, reducing the force constant
by 300 kcal ‘mol-! ‘A2 would increase the RMS deviation only by 0.35 kcal ‘mol-1. Thus,
if the RMS deviation is used for the cost function, the optimization would be largely
balanced toward a better equilibrium distance b, to improve the RMS deviation,
while the quality of the force constants could be sacrificed. In practice, this is strongly
undesirable since force constants are important to reproduce the molecular flexibility.
This can be further demonstrated on the heatmap of the RMS deviation between QM
and MM energies computed with different by, and K, on Figure 5.3A. With a deviation
of just 0.02 A in the equilibrium value, the optimized value for the force constant is
on order of 300 kcal mol-!, which 1s ~300 kcal ‘mol-! off from the optimal force constant

needed to reproduce the C-C bond stretching in ethylene.

We shall consider another example of the valence angle in acetaldehyde.
Figure 5.2 panel A shows the PE surface for O-C-C valence angle bending in
acetaldehyde computed with QM and optimal CHARMM parameters; while the RMS
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deviation between QM energies and MM energies calculated at different equilibrium
angle values, 6, and force constants, K, is shown in panels B and C of the same
figure. The Figure 5.3B shows the heatmap of the RMS deviation between QM and
MM energies at different 8, and K,. It can be seen that similar to the bond term
relatively small deviations in 6, increase significantly the difference in QM and MM
energies and hence the RMS deviation. For example, the RMS deviation of 0.6
kcal mol! corresponds to just less than 3° deviation from the optimal equilibrium
valence angle and the same RMSD corresponds to 38 kcal mol-! deviation for the force

constant K, (over 100%).
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Figure 5.2. Potential energy surfaces and energy RMS deviations as a function of the force
field parameters. (A) Left, the PE surface for the C-C bond stretching in ethylene, and right,
for the O-C-C angle bending for acetaldehyde. (B) The RMS deviation between QM and
CHARMM energies of structures from the PES scans as a function of the equilibrium bond
distance, by, and valence angle, 6o. (C) RMS deviation between QM and CHARMM energies
as a function of the force constant for the bond term in ethylene (left) and the force constant
of the angle term in acetaldehyde, right, respectively. The optimal values for the equilibrium
bond distance, valence angle and force constants are colored in orange.

The above reasoning was illustrated PES energies; however, they can be
generalized to force matching methods. The average RMS deviation between QM and
MM atomic forces in structures from the PES scans is shown in Figure 5.3. Overall,

the behavior of the force RMS deviation is very similar to the energy RMS deviation,
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1.e. small deviations from the optimal equilibrium value for the bond in ethylene and
the valence angle in acetaldehyde lead to significantly suboptimal force constants
relative to the QM model. We find that deviations in equilibrium values for the bond
and angle lead to the same force constants: with a deviation of 0.02 A in the
equilibrium value, the optimized value for the force constant is on order of 300
kecal ‘mol-?, which is ~300 kcal mol?! off from the optimal force constant needed to
reproduce the C-C bond stretching in ethylene. For the valence angle in acetaldehyde
3° deviation from the optimal equilibrium valence angle results in ~40 kcal mol?!

deviation for the force constant K.

In both considered cases for the bond and angle terms, structural deviations
between the QM and MM optimized structures along the corresponding bond and
angle lead to force constants that are smaller compared to the values optimized in
the absence of these deviations. In general, the resulting MM model under a
structural inconsistency as demonstrated in Figure 5.3, is softer than the QM model,
and in other words, it allows larger amplitudes of deformations at the same energy

values compared to the QM model.
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Figure 5.3. The RMS deviation between QM and CHARMM energies and forces of structures
from PES scans as a function of FF parameters. (A) The energy RMS deviation and (B) the
force RMS deviation as a function of the equilibrium bond distance, bo, and force constant, Kb,
of the C—C bond term in ethylene. (C) The energy RMS deviation and (D) the force RMS
deviation as a function of the equilibrium angle, 8y, and force constant, Ks, of the O—C—C angle
term in acetaldehyde. The optimal values for the force field parameters are shown in a white
dotted square.

Modification of the cost function

To remove the strong dependence on equilibrium parameters, demonstrated
above, we allow structural deviations along the scanned degree of freedom, where
energy differences are computed between different structures used for QM and MM
calculations. These QM and MM structures are now different, in principle, in all
coordinates. One of the requirements for such MM structures is that QM and MM
structures, which energies are compared in Formula 5 are close to each other in the
configurational space, in another words the MM and QM PES approximately match.

We use a similar method described above where the MM structures are optimized
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with one internal coordinate constrained, however, in the new method the value x}™

of the constrained coordinate, &, is allowed to deviate from x,?M and is given by:

XYM = M (2 —ka [Eq 5.7]

M

where xM and ng are values in the MM and QM structures optimized

structures without any constraints; x,(gM is the value in the corresponding QM

structure. The terms in the later formula can be regrouped:

XM = 52 +AxQM MM 1Eq 5.8]

where AxQM —MM = x{'r —xg?f is the deviation in the optimal values in the QM

and MM optimized structures, which can be considered as a correction term. As it
will be illustrated in the next section, the RMS deviation computed with the new
definition of x}™ depends on the MM equilibrium values only slightly. As mentioned
before, one of requirements is that the QM and MM structures should be close on in
the configurational space, which can be achieved by introducing an additional term,
also needed to provide a bias in optimization of equilibrium parameters. In particular,

we introduced an additional simple term given by:

Pt = ARGt — x21Y2, (Bq 5.9

where x;/}" and x is the scanned internal coordinate in the i MM and QM

optimized structure, respectively.
Additional term for angle terms

Let's consider deformations along the valence angles involving the ortho
hydrogen atom of pyridine shown in Figure 5.4. In a previous work the conclusion
was drawn that defining force constants for the valence angles for this atom is an ill-
defined problem.!!? To derive this conclusion the ring structure was assumed to be
rigid with all reference angles having 120°. In this case, indeed, the in-plane
hydrogen bending can be described by only one valence angle, and energy in Formula
2 can be expressed as one harmonic term with the force constant given by the sum of
the force constants of the two angle terms involving the hydrogen atom (Keffective =
K; + K,). However, this is not the case if minimization is done as the pyridine ring is
not rigid. The angles with the atomic center are defined as shown in Figure 5.4. In
practice, with the angle 6; between N-C-H bent out of its equilibrium value, the other

two angles 6, (C-C-N) and 8; (C-C-H) would also assume values different from their
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values in the minimized structures. In particular, the valence angle 6; would be
different than 120° with in-plane hydrogen bending. Figure 5.4A shows the
dependence of 8, and 65 on 6;. For example, with 6, bending of 5°, the structure is

bent along 6, and 65 by around 1° and 4°, respectively.
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Figure 5.4. Angle bending involving ortho-hydrogen in pyridine. (A) Angles involving ortho-
hydrogen in pyridine in the PES scan along 6; angle between N—C—H. Values corresponding
to the minimum energy structure are in orange. (B) RMS deviation between QM and
CHARMM energies from the PES scan as a function of the force constants of the two angle
terms defined for ortho-hydrogen in pyridine (6; and 63) (C) The cost function that includes
the new term proposed in this work as a function of the two force constants K; and Ks. The
optimal values for the force constants are marked by dotted line squares.

At a particular bending along 6; in the MM optimized structure, the other two
angles depend on the force constants of the corresponding angle terms Ky, and Kp,,
which should be sufficient to define these force constants. This conjecture we will test
numerically in the next section. To improve further the distribution of force constants
of angle terms, we tested an additional term to the cost function. We note that at a
particular value of the angle, 6;, the position of the atom N, and thus angles 6, and
05 depend on the corresponding force constants in the MM model. Thus, including the
deformations along the adjacent angles, in principle, is expected to improve the
distribution of the force constant. For an atomic center, which has angle terms to
parametrize, the following deformation-based term is included to the cost function in

addition to the restraints on the scanned degree of freedom given by Formula 8:

pdef — Jg ;01 —6) — (62" — 62 )2, [Eq 5.10]
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where the summing is done over all structures and all angles involving this atomic
center with adjustable parameters in the FF model. In this formula, angles in the
MM and QM structures, are subtracted between subsequent structures on PES
similar to Equation 6 to remove strong dependences on the equilibrium values. The
total cost function is a sum of different contributions given by Formulae 5.5, 5.9 and

5.10:
Feost = Wener * FET + Wegq * Fe1 + Wgef * Fdef’ [Eq 5.11]

where Wener , Waep, and wgq, are corresponding weights. These weights were
defined based on our previous experience with parametrizing a large set of molecules.
In particular, the weights were defined in such a way that the terms in Formula 10
give equal contributions (of a unity by definition) with the RMS deviations for
energies and structural parameters obtained in the previous work.192 The values for

the weights are given in Table 5.2.

Table 5.2 Weights for the cost function

Term Weight, w

Fener 10.0/3.3
Feqbond 66.7
Fé gngie 0.67

Faes 0.87

Stability relative to the initial parameters

Since we employ optimization as a method to derive force field parameters, in
principle, different sets of bonded parameters can be obtained starting from different
initial values. To characterize the stability of optimized parameters with the new
method we performed a numerical test where optimization was initiated from
different initial force constants. Force constants, K, for bond terms were assigned
randomly from a wide range of values between 100 and 800 kcal ‘mol-! A2 for angle
terms, force constants, K, were randomly assigned in the range of 10 to 100 kcal ‘mol-
L.rad2. The optimization was repeated five times starting from different random force
constants; initial equilibrium bond lengths and angles were taken from QM
structures. Relative and absolute standard deviation (SD) for bond and angle terms
averaged over terms in individual molecules from the data set are shown in Figure

5.4 and SD averaged over all molecules in the data set, is given in Table 5.3.
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Table 5.3. Standard deviation for bonded term parameters averaged over 32 molecules in the
data set.

Force constants, K, or Equilibrium parameters, b, or
Kh 90
Optimized terms Average RSD SD Average RSD SD
Bonds 0.3(0.5)%  1.29(1.94) 0.01(0.01)% 0.00011 (0.00018)
Angles without the new 1.2 (2.8% 0.69 (1.91) 0.06 (0.19)% 0.07 (0.17)
terma
Angles with the new term? 0.7(1.49%  0.40(0.88) 0.13(0.31)% 0.15 (0.36)

abFor angles, force field parametrization was done without and with the additional
deformation-based term given by Equation 9 included to the cost function, respectively; the
standard deviations for the computed values are shown in parenthesis. K, and K, are in
keal moll ‘A2 and keal mol-! Tad2, respectively; the equilibrium parameters, b, or 6,, are in
A and °, respectively.

The results demonstrate that the new method produces practically the same
force constants starting from very different initial parameters. The relative SD for
the force constants for bond terms, K, averaged over all bond terms (74 total) in 32
molecules is just 0.3%. For angle terms, the relative SD for K, averaged over a total
of 127 angle terms is also very small, 1.2%. The later value can be further improved
to 0.7% by introducing the deformation-based term given by Formula 9 to the cost
function. Though, this improvement is small on average, for some angle terms it can
present a significant improvement, for example for oxetane and 1,3-dibutene it
improves the relative SD from 14% to 6%, and 7% to ~0%, respectively. The
equilibrium parameters deviate only insignificantly in five optimization tests. The
relative SD is 0.01% and ~0.1% for the equilibrium bond length and angle. Overall,
bond and angle parameters derived by the new method are very stable regardless of

the initial values used for the optimization.
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Figure 5.5. Robustness of optimized FF force constants relative to the initial parameters.
The relative standard deviation of force constants for (A) bond and (B) angle terms is shown.
Five optimizations started with random force constants were performed to compute the
relative SD, which was averaged over bonded terms in individual molecules. The relative SD
averaged over all molecules is shown as a horizontal line.

Transferability of optimized parameters

In the previous section we showed that the optimized parameters are robust
and do not depend on initial parameters. In this section we will demonstrate that the
optimized bonded parameters for bond and angle terms using the new method are
transferable. For this, the comparison of the same bonded terms optimized in
different molecules is performed. Indeed, 23 bond parameters and 24 angle
parameters are shared by 2 to 17 molecules in the data set. For example, the bond
term defined between atom types CG331-HGAS3, i.e. between methyl hydrogen and
carbon, is shared by 17 molecules, while the angle term, CG2R61- CG2R61-CG2R61,
i.e. defined for the angle between carbon atoms in an aromatic ring is shared by 6
molecules. For this test, bond and angle terms were optimized using the new method;
for angles, the optimization was done with and without the deformation-based term
given by Equation 9. Bonds or angles in two or more molecules were identified and
the SD and relative SD for the same bonded parameters optimized in different

molecules were computed. The SD for bond and angle terms are shown in Figure 5.6
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and given in Table 5.4 for individual terms. The following analysis does not include
the angle term in two molecules having the three-atom ring (1box and 1eox), since by
contrast to other molecules, a bending along the angle and stretching along the
opposite bond in the three atom ring have two contributions: from the opposite bond
and the contribution from the angle, and the bond term can be considered as an Urey-

Bradley term for the angle.
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Figure 5.6. Transferability of optimized FF force constants relative to the initial parameters.
The relative standard deviation is shown for bond (A) and angle (B) force constants optimized
in different molecules. On panel (B) black and gray bars correspond to the results with and
without the new angle term given by Equation 9, respectively. The horizontal lines show the
average relative SD. The number of molecules sharing the term is given in parenthesis.

Table 5.4 Standard deviation for bonded term parameters optimized in different molecules.
The results were averaged over 23 bond terms and 24 angle terms

Equilibrium parameters,

Force constants, K, and K, bo(A) and 6,°
0 0

Optimized terms Relative SD% SD Relative SD% SD
Bonds 1.0 (1.0) 4.31 (6.7) 0.1 (0.1) 0.0016 (0.0013)
Angles without 2.1 (4.3) 0.63 (0.88) 0.7 (0.6) 0.75 (0.73)
the new terma
Angles with the 2.1 (4.3) 0.65 (0.89) 0.6 (0.6) 0.72 (0.72)
new termb”

abFor angles, force field parametrization was done without and with the additional
deformation-based term included to the cost function; the standard deviations foor the
computed values are shown in parenthesis; the force constants are in kcal moll-A-2 and
kcal 'mol-! rad-2 for bond and angle terms, respectively.
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The SD averaged over all bond terms for the force constant, K, is just 4.3
keal ‘mol-? .A.z, with the maximum relative value of 4.5% for the bond term defined for
atom types CG201-OG2D1. All bond terms except this bond have the relative SD less
than 3%. The SD for the equilibrium bond length averaged over all bond terms is just
0.0016 A. For angle terms, the SD for force constants K, optimized in different
molecules is again very small 0.6 kcal mol!rad? (the relative SD 1s 2%). After
optimization in different molecules, the equilibrium angles 6, are practically
identical with SD of 0.8°. Since the force constants and equilibrium parameters
deviate insignificantly, the force field parameters optimized by the new method are
largely transferable, i.e. can be optimized in one molecule and used for the other

molecules, at least as demonstrated for the molecules in the data set.
Normal modes

We further tested the quality of the optimized parameters using normal mode
analysis. We note that, typically, for comparison, QM and MM normal modes are
sorted based on the magnitude of frequencies.%.152 However, as shown in Table 5.5,
around ~50% of normal modes do not match , i.e. pairs of QM and MM normal modes
with the absolute dot product (d) between normalized NMs lower than d < 0.5, if they
are sorted based on the magnitude of frequencies. Figure 5.7 shows dot product
between QM and MM normalized normal modes sorted based on the frequency
magnitude for benzene, ethylene, dimethylsulfoxide and butanol. As it can be seen,
many corresponding MM normal modes are not in the same order as QM normal
modes, and also QM normal modes may have several contributions from MM normal
modes. Thus, if QM and MM modes are sorted only based on their frequencies, one
may compare QM and MM normal modes which can be even orthogonal. To solve this
problem, in this work we establish the correspondence between QM and MM
normalized normal modes based on the dot product before the comparison as
described in the methods section. With matching normal modes based on the dot
product, 100% of QM and MM normal modes have d > 0.5, and ~90% have d > 0.75
as indicated in Table 5.5. However, if normal modes are sorted based on their
frequencies, only ~51% of pairs of QM and MM normal modes have d > 0.5, and ~45%
have d > 0.75.
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Table 5.5 Analysis of QM and MM normal modes pairs based on the absolute value of dot
product between normalized NM vectors. The results are averaged for 32 molecules set.

. Pairs of normal modes matched
Pairs of normal modes matched
. based on largest absolute dot
based on frequency magnitude
product value
Proportio | Proportio | Proportio | Proportio | Proportio | Proportio
n of dot n of dot n of dot n of dot n of dot n of dot
product product product product product product
> 0.5 >0.75 > 0.9 > 0.5 > 0.75 >0.9
Initial terms 0.5 0.43 0.33 0.99 0.89 0.64
Bond terms
optimized 0.52 0.45 0.35 1 0.89 0.63
Angle terms
optimized 0.51 0.43 0.33 1 0.88 0.62
Both
bond/angle 0.52 0.47 0.38 1 0.9 0.67
terms
optimized

98




Chapter 5. Development of a new method for bond and valence angle bonded terms

parametrization
A B C
l; l; M1
£ 3
g 10 g 10 0.8
Ethylene || = = . 0.6
£ £ =
H,C—CH, é 5 .. [ | 25 0.4
= M [ =
< .. o .. 0.2
1 1 - Yo
1 5 10 1 5 10
= o1
- "
»n 30 »n 30
Butanol "qé )5 ."f "qé ’s -"J 08
= . £ |:".__
e = 20 "-_ = 20 . 0.6
_>:O g 15 ln JOIY §15 " '-'..' 0.4
H3C (=] L = Fl éfl
2 10 " e e E 10 . . % 02
=4 5 r.-'.. 1 o 5 r..'.. il ’
1 1 )
1 5 10 15 20 25 30 1 5 10 15 20 25 30
30 =, " -_.. 30/ = N ._.." 1
3 25 A - 3 25 " e m ._' 0.8
Benzene g Ol g s
20 . " S0 "
= 3] - -~ [ g -I " 0.6
15m " " 1 "
@ g " TR | [
z 10 l-'. .. | | ! E 10 H n "
<o 5 l..- n . o 5 If. = = 0.2
B
o =T - 1,
1 5 10 15 20 25 30 1 5 10 15 20 25 30
" 1TE
8 .-ll‘. % I l
. 20 8
Dimethyl- é - -~ é 20 ’
sulfoxide = 15 ..'. = 15 . 0.6
E " B L. é ||
//o g 1o e g 10 e ™ ._ 04
HSC_S\ 2 o I..-ﬂl l.. 2 ... .. 0.2
CH, os o o5 ..l-. li-.- )
1 1 0
1 5 10 15 20 1 5 10 15 20
CHARMM normal modes CHARMM normal modes

Figure 5.7 Dot product between QM and MM normalized normal modes (NMs) for selected
molecules. NMs were computed with the initial CHARMM parameters (B) and with the
optimized parameters (C). In (B) and (C), MM and QM normal modes were sorted based on
the frequency magnitude. 2D structure representations were prepared with MarvinSketch129

To characterize the fit between QM and MM frequencies, Mean Percentage
Absolute Error was calculated, after matching QM and MM normal modes based on
the dot product. Figure 5.8 demonstrates the improvement of normal modes relative
to QM NM for each individual molecule. Table 5.6 gives the mean MPAE for the 32-
molecule set. We note that the initial CHARMM parameters were derived to
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reproduce normal modes and thus are expected to give very good results relative to
the QM normal modes. Indeed, a mean MPAE is 9.5% with the initial CHARMM
parameters. With the bond term parameters optimized using the term given by
Equation 9, the mean error is lower 8.3%. With both bond and angle terms optimized
the MPAE is getting even lower to 6.8%. It should be noted that without matching
normal modes based on the dot product, the MPAE is consistently lower with an
average of 6.9% with initial CHARMM parameters and with 5.4% for optimized bond
and angle terms. However, the optimized parameters still give better results than

with the initial parameters.
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Figure 5.8 Mean Percentage Absolute Error between QM and MM normal modes computed
with initial and optimized bonded term parameters. QM and MM normal modes were matched
based on the dot product. Average values are represented as horizontal lines. The data are
shown for all molecules in the data set, except acetamide (acem) due to its large value, 26.19%
and 25.73% with the initial and optimized parameters, respectively.
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Table 5.6 Mean Percentage Absolute Error between QM and MM normal mode frequencies
averaged over 32 molecules in the test set. The pairs of QM and MM NMs were matched based
on the dot product between normalized QM and MM NMs.

anitial bond terms cangle terms 9both bond/angle terms

MPAE2% 9.46 8.30 8.04 6.84

aMM NMs were obtained with the initial parameters, Pwith the bond term parameters
optimized, cwith the angle term parameters optimized, and with both the bond and angle
parameters optimized;

Figure 5.9 compares initial and optimized force constants. For bond terms, as
expected, the optimized parameters are in good agreement with the standard
CHARMM force constants with the linear correlation coefficient of 90% and RMS
deviation of 68.4 kcal mol-1-A-2 (18%). For angles, the correlation is smaller 69% and

the RMS deviation is 14.7 kcal 'mol-! rad-2 (31%).
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CONCLUSION

In the present study we demonstrate that optimization of force field
parameters based on comparing QM and MM energies and/or forces of structures
leads to suboptimal force constants for bond and angle terms, if structural deviations
between QM and MM equilibrium structures are present. The presented results show
that conventional parametrization methods based on fitting QM energies and forces
are largely balanced toward accuracies in force field equilibrium bond length and
angle, while the accuracy in force constants is sacrificed. With the structural
deviation present, the optimized force constants cannot adequately describe the QM
flexibility of the molecule, as exemplified on several test molecules. Structural
deviations always lead to force constants smaller in comparison to those in the
absence of such structural deviations, and to a softer MM model relative to the QM

model.

To solve this problem, we developed and implemented a new method to derive
force field parameters for bond and angle terms. The new method derives force field
parameters based on PES scans where a structural deviation between QM and MM
structures is allowed. We tested the method on a set of 32 molecules, and the results
show that the optimized force field parameters are robust relative to random initial
force constants. Starting from five sets of random force constants, we obtained
relative SDs of just 0.3% and 1.2% for the bond and angle force constants,
respectively. FF parameters derived by the new method are largely transferable, as
demonstrated by the low relative SD (< 2%) for equilibrium bond and angle values
and force constants for the same terms optimized in different molecules. We further
tested the method to reproduce QM normal modes. The results indicate that there is
only 45% correspondence between MM and QM normal modes, if they are sorted
based on the frequency magnitude for the comparison, underlying the importance of
establishing the correct correspondence based on the dot product. Furthermore,
without correctly matching QM and MM normal modes, the agreement for normal
modes defined by MPAE may appear better (6.9%) than after matching normal modes
based on the dot product (9.5%).
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Overall, the new method will allow to parametrize molecules with structural
deviations present between QM and MM equilibrium structures, common for force
fields for small molecules, producing robust and transferable parameters. In future,

the method will be extended to derive parameters for dihedral angle terms.

103






Chapter 6
FORCE FIELD DEVELOPMENT FOR THE ZINC
CUSTOM LIBRARY

In this project, which is ongoing at the moment of writing of this manuscript,
we are performing the large-scale parametrization of a ligand library. This chapter
will start with a brief discussion of the CADD tools based on force field methods;
followed by the presentation of available compound libraries; and types of compounds
they contain of interest for drug design. Although many compound libraries exist
today (Molport!53, ZINC20%5¢, Enamine!®®, AllChem!5, SCUBIDOO}7, SAVI8 etc.)
in this work, the choice was made for the ZINCZ20 library, which will be discussed in
detail.

Force field methods can be used at different levels in computationally assisted
drug design. Generally, CADD methods for ligand identification can be classified into
structure-based (SB) and ligand-based (LLB) drug discovery. In this work, we focus on
structure-based methods, and in particular physics-based, which will be shortly
introduced in what follows. SB methods require information on the 3D structure of
the target, which is usually obtained experimentally, but can be also obtained
through modelling, if structures of homologous proteins are present. In recent years,
powerful methods have appeared for structure modelling based on the artificial
intelligence, with arguably the most known AlphaFold,'5® making it possible to apply
SB methods to a much wider range of protein targets with unknown structures. Once
the 3D structure of the target is available, it is possible to apply docking/scoring
methods for virtual screening. Docking consists in positioning the ligand in the
binding site of the target and finding the optimal pose for highest binding affinity,
while scoring consists in evaluating binding properties of ligands with binding poses
obtained from docking. Typically, a set of compounds or a library is tried against the
target in the virtual screening. Scoring consists in evaluating the affinity of ligands
to the target by calculating (scoring) functions, which use three main approaches:
knowledge-based, empirical, and force field-based functions.16% The notion of scoring
can be also used for selecting different binding poses and different scoring functions

can be used at different steps (docking, post re-scoring etc.; see below).
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Force field-based scoring functions estimate the binding energy using force
fields by summing the contributions of bonded and non-bonded terms, and can be
supplemented with implicit solvent models (MM/PBSA or MM/GBSA).6! Table 6.1
provides a list of several scoring functions implemented in the most frequently used
molecular docking programs.!®?2 Docking methods can be reasonably successful in
predicting the conformation of the ligand within the target binding site. However, the
difficulty is to reproduce the absolute binding free energy, and relative binding
affinity between significantly different ligands.!62 The problem is due to the fact that
ligand binding represent a large cancelation of different contributions due to
solvation/desolvation, favourable interactions with the receptor, and loss/gain of
entropy. All these contributions should be estimated with a significant accuracy. To
this end, FF-based scoring methods, which in principle take all details of the
atomistic structure, can bring the accuracy in solving this problem. Current force
fields for small molecules, such as the CHARMM CGenFF reached the level, where
parameters are available for thousands of small compounds. However, to be applied
to real screening studies, typically done with libraries containing sub-million and

million molecules, FF models should be further developed.

Table 6.1. Frequently used scoring functions adapted from Ferreira et al (2015)162

Force-Field-Based Empirical Knowledge-Based
Dock AutoDock SMoG
AutoDock GlideScore DrugScore
GoldScore ChemScore PMF_Score
ICM X_Score MotifScore
LigandFit F_Score RF_Score
Molegro Virtual Docker Fresno PESD_SVM
SYBYL_G-score SCORE PoseScore
SYBYL_D-score LUDI
MedusaScore SFCscore
HYDE
LigScore

It should be noted in the context of FFs in CADD, recent methods based on
MD simulations appeared as an alternative to rigid-body docking. In these methods,
MD simulations are typically performed with the target immersed into water and
small molecules. Typically, to simulate more frequently association/dissociation
processes of such small molecules to/from the target the concentration of small

molecules has to be large. These small molecules can be from the library, or just
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fragments, as it is done, for example, in Site-Identification by Ligand Competitive
Saturation (SILCS)63, SILCS relies on classical molecular dynamics simulations to
model competitive binding of small molecules to obtain the affinity pattern of target

macromolecules (proteins) for chemically diverse functional groups

Compound databases are widely used in CADD.%* Ligand databases may
contain different properties, such as 1D, 2D and/or 3D structures of the compounds;
chemical and/or physical properties; information about their synthesis reactions;
information about their reactions in biological pathways; potential biological targets
and importantly vendors for a compound. Most of the times, the databases also
provide online tools to perform searches amongst their compounds. Table 6.2 lists
some of the largest databases. For this work, we chose the ZINC library that can be

freely accessed with all ligands available for purchase. 54

Sampling the drug-likeness of ligands is a complicated task given the immense
number of possible unique organic molecules, referred to as the chemical space. The
covered chemical space depends on the size of ligands. For instance, molecules
containing 17 heavy atoms (only C, N, O, S and halogens) can form up to 166.4 billion
possible organic molecules.!> However, the space of possible compounds that can be
actually synthesized by organic chemists is very limited. For example, chemical
abstract service (CAS) registry that documents every chemical substance described
in the open scientific literature contains 196 million organic and inorganic substances

in total.166
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Table 6.2 Available compound libraries adapted from van Hilten ef. al (2019)164

Name Size fvoarﬁggﬁii Comments
GDB-17167 ~ 166 x 10° - freely accessible
ZINC20154 ~ 500 x 10° purchasable freely accessible
Enamine REAL!% > 300 x 10° purchasable commercial
SCUIBIDOO?57 ~21x10° synthesizable freely accessible
CHIPMUNK!168 ~ 95 x 10° synthesizable freely accessible
AllChem!169 > 1020 synthesizable commercial
PLC17 ~ 1011 synthesizable commercial
ZINC20

ZINC (an acronym for “ZINC is not commercial”’) is a publicly accessible
chemical database that contains commercially available and annotated compounds,
and is very popular for ligand discovery purposes.!5¢ It is updated and curated on a
regular basis. ZINC was developed by John Irwin in the Shoichet Laboratory in the
Department of Pharmaceutical Chemistry at the University of California, San
Francisco,!”™ with the most recent version, ZINC20.15¢ ZINC library represents a
broad spectrum of chemical space and is widely used by the scientific community. The
ZINC website is extensively used by thousands of investigators (monthly), and many

terabytes of data are downloaded each week.!5*

ZINC was conceived to provide subsets of molecules with variable properties
such as functional groups, molecular weight, and calculated polarity (logP) that
should be easy to create and manipulate. The database supports multiple protonation
models, tautomeric forms, stereochemistries, suppliers, and 3D conformational
sampling. Other databases and libraries, such as HMDB?$ ChEMBL!"72, and
DrugBank!?® were used to obtain the biological annotations, the identification of
molecules as metabolites, drugs, or natural products and the identification of
molecules as ligands for particular proteins and processes.!’ The above-mentioned
properties of ligands can be used to perform queries in the library. In addition,
structural characteristics of the molecules can be used to perform: whole-molecule

search in which molecules that most resemble the entire query are prioritized;
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substructure search in which the molecules that contain the entire query molecule
are identified; and pattern search in which molecules containing specified molecular
pattern(s) are selected.'®* For more general queries, ZINC20 provides the Tranche
Browser shown in figure 6.1. The Tranche Browser divides the physical property
space of the ligands into 121 tranches based on two properties in 11 bins each: the
horizontal axis i1s molecular weight, and the vertical axis is logP. The Tranche
Browser allows the selection of the characteristics of the database subset required
and then to download it, in SMILES or 3D formats.!” Additional options like
purchasability, reactivity, the different protonation states in function of pH and the
net charge of the ligand are proposed. However, the last are possible only for

molecules with a 3D available structure which are also called protomers. 17

Properties for the protomers in ZINC20 are obtained with ChemAxon package
that determine protonation states and tautomers at physiologically relevant pH in
three pH tranches. These pH tranches covered reference pH (6.4 to 8.4), high pH (8.4
to 9.0), and low pH (5.8 to 6.4). Each protomer was rendered into 3D using the
ChemAxon package (ChemAxon, Budapest, Hungary) and conformationally sampled
using Omegal00 (OpenEye Scientific Software, Santa Fe NM). Files formats for
docking are accessible under the multiple formats (mol2, sdf, and pdbqt). 1>+

Figure 6.1. Extract from Zinc database accessed on 07/11/2021 showing tranches of molecules
https://zinc20.docking.org/

Rep, | 2D React, Clean~  Purch. | WaitOK~  pH | Rel~ | Charge | 2-10+1+2~  Hi~ | &
Molecular Weight (up to, Daltons)

Totals, by
LogP

-% SR

e et _- S

35 350 375 400 425 450 500 >500

o

9,762,067 14,581,231 25,145,659 X 64,133,930

"

19110339 25618147 32516384 21,077,290 X 109,153,451

b o] Fel LA __-- '
a e el B R * “_-- TozmIs

Lo!!F (up :u)
&

47,044,068

- FLoosas

1.500.835

1,561,473

478,064,168

Totals, by Weight 917,027 10,935,245 63949731 98,787,767 157453868 86598526 43686217 10,925,389 1,228,405 2,558,972 1,023,021 Profomers
4.9K Tranches

109



Chapter 6. Force Field development for the ZINC custom library

CUSTOM LIBRARY

We created a selection of molecules for further parametrization using the
following criteria: potential molecules with drug-like properties; a manageable size
of the library for performing extensive ab initio calculations; and molecules

representative of wide regions of the chemical space.

DRUG-LIKE PROPERTIES

The goal was to create a library of molecules with “general” drug-like
properties. As there is no such universal gold standard measure to contour the drug-
like chemical space, we could apply the popular selection methods based on the “Rule
of 5” of Lipinski, the work of Veber based around PSA, the “GSK 4/400” for lead-like
molecules or the “Rule of 3” for fragment molecules.!”> We decided to use the available
information for compounds that are actually validated drugs or that are still in

clinical trials.

The fundamental building blocks of approved drugs are ring systems.
Moreover, rings are of great interest for modern medicinal chemists, since they play
an important role in molecular properties such as the electronic distribution, three
dimensionality, and scaffold rigidity.1”® There are approximately 450,000 unique ring
systems derived from 2.24 billion molecules currently available in synthesized
chemical space, and molecules in clinical trials utilize only 0.1% of this available
pool.'" The recent work of Jonathan Shearer and al. shows that current drug
approved space comprises only 378 ring systems and each year and, on average, only
33% of new drugs contain one new ring system. Furthermore, approximately 50% of
the novel ring systems entering clinical trials are systematic changes of up to two

atoms on existing drug resulting in a set of 3,902 future clinical trial ring systems.176
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SELECTING LIGANDS

In order to obtain a set of molecules for performing extensive ab initio

calculations we applied the following criteria:

i. 3D geometry available;
1.  available for sale directly or on demand,;
1i.  a predominant form at pH 7;
1v.  not reactive;
v. molecular weights between 150 — 250 Da;
vi.  contain rings;
vil.  no more than one rotatable bond between heavy atoms; however, there can
be any number of rotatable bonds with hydrogens;

viil.  contain only the most abondant elements: C, N, O, H, S, F;

Although ZINC20 is supposed to perform fast research in its database by
applying specific criteria, like the ones listed above, it failed to provide such a custom
library (the source of the error is unknown for us). With the help of ZINC20 tranches
browser only criteria i to iv could be used to obtain an initial library of 75.8 billion
molecules that have a molecular weight lower than 300 Da. Next, criteria v, vii and
viii were successfully applied with the help of OpenBabel!0! software. Molecules
between 150 and 250 Da with one or no rotatable dihedrals contain by default ring
substructures, so criterion vi was also applied. The custom library applying the

described selection contains 285,041 molecules.

The availability of 3D geometries is necessary to obtain correct structures of
the molecules with a unique form that is a specific stereoisomer, tautomer and has a
single protonation form. This information would be missing if 2D formats were used.
Although ZINC is supposed to have commercially available compounds, some of them
cannot be provided immediately upon request. However, since we wanted to include
an extended set of molecules, compounds available directly for sale or on demand
were considered. Following the experience with nonstandard amino acids
optimization, we preferred directly obtaining the predominant protonation at
physiological pH between 6.4 and 8.4. Also, to limit the amount of QM computations
we decided to have relatively small molecules containing rings and thus the
molecular weight limitation. Also, since rotatable dihedrals require 6 times more QM
target data compared to any other bonded term, we wanted to limit their number

based on limited number of rotatable bonds. We included only molecules containing
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the atoms C, N, O, H, S, F as these are the atoms generally present in drugs. P and
other halogens except F were excluded because typically they are longer to optimize.
Finally, only non-reactive molecules were included, as the CGenFF force field is not

adapted for radicals.

To parametrize selected 285,041 molecules, representative compounds were
selected and created as follows. First, we generated initial parameters with CGenFF
program'%. Secondly, we produced a list of ZINC molecules to represent the entire
chemical space in the 285,041 molecules based on bonded terms sorting. Finally,
when possible, we fragmented the molecules in this list, and we repeated the second
step to obtain a reduced size library that contains ZINC molecules as well as
fragments. The reduced library contained all the parameters present in the 285,041

molecules.

The mol2 structures for the 285,041 molecules were downloaded from ZINC20
database and atom names were conserved with hydrogens already present. CGenFF
initial parametrization was done in the MacKerell lab at the University of Maryland,
where a python pipeline using CGenFF program was set up locally. However, not all
molecules were processed successfully, that resulted in 0.36% data loss as shown in

Table 6.3.

Table 6.3 Pipeline statistics of concurrent CGenFF processing

Pipeline metric Value
| T
CGenFF Compounds 974 736
Passed
CGenFF Compounds
Failed 10305
Total Compounds 985 041
Processed
Data Loss 0.36%
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BONDED TERMS-BASED SORTING

The initial parameters and topologies were generated with the CGenFF
program'% from the 3D geometry and the covalent structure for each molecules.
Additional to initial parameter CGenFF program also provided a penalty term. Only
parameters with penalty >10 were considered for optimization. A lower penalty

indicates that the substructure is already present in the CGenFF force field.

The CGenFF processed compounds contained in total 180,992 bonded terms
with high penalties that need optimization and 123,992 bonded terms with low
penalty that can be adapted as they are. When we eliminated the duplicates, we
obtained 34,500 (73.6%) unknown terms and 12,363 (26.4%) known terms. Known
terms have low penalties and unknown terms have high penalties. The proportion of
molecules that had parameters that require optimization according to our criteria is

11.8% (32,500 molecules).

The list of unique parameters was created from all parameters by removing
repeated bonded terms and the information on molecules containing particular
bonded terms was stored. We obtained two such lists, one for parameters with high
penalties and one for low penalty parameters. Next, we used the list with unique
unknown parameters to determine the lowest number of molecules containing all of
them and also the order of optimization for these molecules so each bonded term
would be optimized only once. Moreover, the order of optimization would be organized
by groups. First group to be optimized would be constituted by molecules that do not
share any bonded terms between them. Second group will also be made by molecules
that don’t share any bonded terms between them inside the group. However, the
second group can share parameters with the first group. So, these shared terms are
optimized in group I and then adapted in group II. In group II, a new set of terms is

optimized. The number of groups was adjusted to include all bonded terms.

Molecules in a group were selected in three steps. First, neutral molecules
were prioritized. Second, among the molecules of the same charge, compounds with
the largest number of unknown bonded parameters had higher priority. Finally,
among molecules with the same charge and the same number of unknown
parameters, compounds having a smaller number of atoms were selected. To prepare
the second group, the terms included in the first list were removed from the initial
list of unique bonded parameters. The iteration of the selection described above to

create the first group of molecules is repeated giving a second group of molecules. The
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iteration is repeated until the list of unique bonded parameters does not contain any

unknown parameter. Figure 6.2 summarizes the entire process.
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Figure 6.2 Schematic representation of the iterative creation of groups of order containing
molecules to be submitted for force field optimization. Molecules are named with lower letter
“m”, while the terms are named “t_ ”. All terms are combined and sorted to obtain a list of
unique terms. Using the list of unique terms and information about molecules, iterations for
group selection can be started. In each iteration, a term from the unique list is examined, here
t_a being the first term. If multiple molecules share this term, the neutral molecule with a
higher number of terms and lower number of atoms is selected for inclusion in the first group.
t_a 1s present in m1 and m3. According to selection criterion, m1 is retained. In the first
iteration, all terms of the selected molecule m1, are added to group 1 and molecules sharing
terms with m1, like m2, can’t be in the same group. Then, all terms contained by m1 are
removed from unique list of terms and information about molecules is updated. In the second
iteration, the next term is examined: t_c. Since t_c is only present in m2, m2 can directly be
added to group 2. The lists are updated, and the iteration is continued until the list of unique
terms becomes empty. In the example, three iterations were sufficient.
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We applied different orders to select representative molecules in groups to
optimize bonded terms, based on number of atoms, the net charge of the molecule and
number of bonded terms that need parameters to optimize. The results of the
obtained 6 different lists are summarized in Table 6.4. All six lists have similar
lengths comprised between 6,188 and 6,756 molecules, similar average number of
atoms per molecule varying from 26.5 to 28.4, and comparable number of charged
molecules going from 3,990 to 4,412 molecules per list. During the parameterization
process it is preferable to have neutral molecules, which let us choose the list with
6,497 molecules with priority inclusion criteria being charge more important than
number of terms, number of terms being more important than number of atoms (1.
Charge II. Terms III. Atoms). The selected list has 6,497 molecules with only 3,990
being charged. On average there are 25 unknown terms and 28.1 atoms per molecule
in this list. More importantly, 34.9 % of the list contains molecules that share terms
with more than 100 other molecules and 86.7 % of the list share terms with at least

10 other molecules from the 200,000 molecules list.

116



Chapter 6. Force Field development for the ZINC custom library

Table 6.4. Different selection methods by varying the priority of the inclusion in the list. The
3 criteria for inclusion were the charge, the number of atoms and the number of unknown
terms contained by the molecule which gave 6 different lists. The priority of inclusion is
indicated by roman numbers.

Proportion Proportion Proportion
of of of

N Average .. . . Number Average molecules molecules molecules
umber b Minimum Maximum P ber of shari hari hari
' o number of number of o number of sharing sharing sharing
Type of list of atoms charged unknown terms with terms with terms with
molecul atoms per atoms per
os e molecule  molecule molecules terms per more than more than more than
molecule (%) molecule 10 50 100
molecules molecules molecules
(%) (%) (%)
All 32410  29.7 10 49 2,3832 18.3
molecules (73.53%)
with
unknown
terms
I. Charge 6,762 27.3 10 48 4,147 24.6 86.7 57.6 34.9
II. Atoms (61.33%)
III. Terms
I. Charge 6,497 28.1 11 48 3,990 25 86.6 57.5 35.1
II. Terms (61.58%)
III. Atoms
1. Atoms 6,756 26.5 10 48 4,401 24.4 86.7 56.4 33.9
II. Charge (65.14%)
III. Terms
I. Atoms 6,721 26.5 10 48 4,412 24.4 86.7 56.4 33.9
II. Terms (65.65%)
III. Charge
I. Terms 6,174 28.3 11 48 4,099 25.2 86.5 56.8 34.1
II. Atoms (66.39%)
III. Charge
I. Terms 6,188 28.4 11 48 4,080 25.2 86.5 56.8 34
II. Charge (65.93%)
III. Atoms
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When possible, we added additional molecules containing neutral functional
groups that initially were ionized in the original ZINC compound. Such compounds
were renamed with the ZINC ID plus “n” letter. The neutralized functional groups by
protonation/deprotonation included hydroxyls, thiols, amines, and imines. In total,

890 neutral compounds were added resulting in a list of 7387 compounds to optimize.

Our library is made up of ring containing molecules. Fragmenting a ring is not
optimal for bonded terms transferability. However, rings separated by a rotatable
bond can easily be used as fragments. We developed a Python3 script to automatically
detect such bonds, cut these bonds, and replace the eliminated ring by a methyl group
as shown in Figure 6.3. However, rings connected through the rotatable bond to a
nitrogen atom were not accepted as fragments because of the planar conformation

the nitrogen has in a ring that cannot be approximated by a simple functional group.

A B
Rl C_C RZ Rl C_N Rz
R, C—C C-C R, C-N R,

Figure 6.3 Fragmentation of model compounds containing two or more ring structures. (A)
When rings R1 and R2 are connected by a rotatable bond containing carbon terminal atoms,
the cleavage results in the creation of two rings containing a methyl at the cleavage point. (B)
When the rotatable bond contains a carbon and a nitrogen atom, only the ring on the nitrogen
side (R2) will be used as a small compound with a methyl at the separation of point.

The Python script used RDKit module'”” and PyMOL" program python
compatible interface. RDKit is an open-source toolkit for cheminformatics. It has

multiple functionalities, but we were interested in 2D and 3D molecular operations.

In total, there were 2,997 soft bonds between rings that after cleavage resulted
in 4,313 fragments. These rings are not representative for the totality of chemical set
in the library, so optimization of complete molecules was also performed. In total,
there are 6,688 soft rings that can have different puckering states and 4,110 rigid

rings for fragments and complete molecules combined.
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Next, we established the order of compound optimization only for rigid rings.
First, we applied the sorting method based on bonded terms on the fragment rigid
rings that were reduced to 387 to be optimized in seven groups. The bonded terms
present in the 387 fragments were excluded from the list of bonded terms of complete
molecules made only of rigid rings. The same method was applied to complete
molecules which resulted in 8 groups for optimization with a total of 1,955 molecules.

So, the final list for rigid rings was reduced from 4,110 to a total of 2,342 molecules.

In the process of minimizing the library size, it was important to maintain the
chemical diversity that can actually be useful for the scientific community. Our
collaborators in the MacKerell lab at the University of Maryland created a tool called
GlobalChem! that identifies whether the functional groups in a library are present
in important collections of compounds. Our library contains an important number of
functional groups that are already used by the scientific community as shown in
Table 6.5. For instance, in our library there are 8,311 functions found in the common
ring scaffolds in FDA approved drugs'’. Our library is not only representative of
existing chemical space in the literature, but also is very rich in substructures absent

from CGenFF force field as indicated by the abondance of high penalty terms present.

Table 6.5 Availability of the selected chemical space in the literature

Chemical List Functional Group Match Count
Amino Acids 20,923
Organic Solvents!7 20,722
Open Smiles?80 25,069
TUPAC Blue Book Common Rings!8! 5856
Common Heterocyclic Rings in Phase 2182 10,585
Rings in Drugs?®3 8,311
Privileged Scaffolds84 1798
Common Warheads!® 776
Common Polymer Repeating Units!8! 1,235
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Through the devised protocol explained above, we selected 285,041 molecules
from ZINC20 database for their potential drug-like properties, representing a wide
part of chemical space and absent from CGenFF. We also applied the necessary
measures to be able to perform the force field optimization for this custom library in
a limited amount of time and resources. Using our method based on bonded terms
sorting we reduced the size of the library to less than 8,000 molecules. Additionally,
we created fragments, also called model compounds, to decrease the workload for QM

computations.

For the force field development, we automatized the identification of soft
dihedrals and fragmentation. The process of optimization is currently performing

using high performance computers available to our lab.
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CONCLUSIONS AND PERSPECTIVES

The main goal of my PhD work was to significantly extend the coverage of the
chemical space by the CHARMM FF and develop new tools for the improved FF
development. To this end, during the first 18 months of my thesis, I extended the
CHAMM FF and CGenFF to a large set of nonstandard amino acids frequently
present in PDB structures and to a set of small molecules, respectively. The selected
nonstandard amino acids are of both natural and artificial origin and present
chemical modifications at the level of sidechain and/or at the level of the backbone
group. For the force field development, I created a set of small compounds
representing different functional groups in nonstandard amino acids, including
different dipeptides and tripeptides to account for the peptide bond. Partial charges,
bond, valence angle, dihedral and improper torsion terms were considered for
optimization, which was performed according to the standard CHARMM method to
balance interactions with nonstandard amino acids and with other components of the
simulation system, described by the FF developed in this work and by the standard
CHARMM FF, respectively. The optimization of intra- and inter-molecular terms
largely relied on fitting the target ab initio data, mainly due to the absence of
available experimental data, and demonstrate agreement with QM and experimental
data similar to the one achieved for the standard C36 FF and CGenFF. In particular,
the protein models in the MD simulations mostly fluctuated around the experimental
structures as demonstrated by different criteria which include amongst others
important dihedral torsions for backbone modified, and sidechain-associated y; and
x> for sidechain modified amino acids. For both types of chemical variants of amino
acids, sidechain or backbone modified, it was difficult to integrate the force field into
the general framework of the standard CHARMM FF requiring adjustments and
compromises for the general protocol. The main drawback of the current
implementation is that the nonstandard amino acids are represented as a mixture of
atom types and corresponding parameters from both C36m and CGenFF. It should
be noted that C36m and CGenFF largely overlap, as many parameters used in C36m
were adapted for CGenFF. Obviously, in the current state of the development it

represents a compromise, as many parameters are simply repeated in C36m and
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CGenFF, and in future these FFs will be united, using uniform atom types for

standard, nonstandard amino acids, and small molecules.

The CMAP term, considered only for the sidechain-modified amino acids in my
work, can be specifically developed for backbone-modified amino acids if a better
treatment for peptide backbone conformation is needed in future. Force field
development can be continued to other nonstandard amino acids, which were
considered as "rare" in this work, and for this reason, not included to the FF
development. In addition, other types of modifications can be considered, which
cannot be classified as amino acids, such as imines. It should be also noted that in
the current CHARMM force field, selenium-containing groups are treated as sulfur-
analogs (for example seleno-cysteine and seleno-methionine are modeled as cysteine
and methionine, respectively), with the same parameters used for both atoms (S and
Se). The main difficulty (our unpublished results and personal communication with
Alex MacKerell) is that for the sulfur-containing molecules, including cysteine and
methionine, the standard additive form of the CHARMM FF does not reproduce
interactions with solvent well at all interaction distances in comparison to QM data,
suggesting that a different FF functional form is required. Finally, the validation, or
better to define as an illustration, of the force field developed for the nonstandard
amino acids was performed by MD simulations of twenty selected different protein
systems. Similar to the standard CHARMM FF, where the validation and corrections
are mostly done a posteriori through a large body of subsequent studies, as
exemplified by a recent revision of the standard CHARMM FF needed to better
simulate properties of intrinsically disordered proteins, the validation of the FF

developed in my work will be done in future studies.

Based on the FF development for the nonstandard amino acids, we made a
trivial observation that the empirical model not always reproduces the QM geometry
of molecules in vacuum, which can be due to the limited FF functional form, such as
the absence of higher order contributions to bonded terms; or due to the adaptation
of existing parameters, i.e. not specifically optimized for this molecule, which is done
to avoid the need to optimize all parameters for novel molecules. As we demonstrated,
while not being important for applications in a general case, this structural deviation
between QM and FF structures leads to suboptimal force constants in the FF
development. To address this issue, we developed a new method for the FF
development of bond and valence angle terms, which does not require that QM and

FF geometries coincide in the conformational space. Similar to the parametrization
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of soft dihedral angles, this method relies on reproducing the target QM PE surfaces,
produced by one-dimensional adiabatic scans in PES. The novelty of the method is
that it allows a structural deviation between QM and MM structures as long as
agreement for PE surfaces is obtained. The method was extensively tested on a set of
32 small molecules with available CHARMM parameters. We showed that the new
method produces stable parameters regardless the initial parameters. As our tests
show, the parameters are also transferable, i.e. which can be optimized in one
molecule and used in other similar chemical contexts. We also demonstrated that the
FF model produced by the new method is described by a better or equal agreement
with QM normal modes, than the standard CHARMM FF, demonstrating the quality
of the optimized force constants. As a perspective, the method can be further
developed for rotatable dihedral angles; however, changes to the methods are
required as PES associated with soft dihedrals may have several minima. The
optimization tool will be released as a standalone program for the scientific

community.

In the final part of my thesis, I focused on extending the CGenFF force field
for the ZINC20 library of drug-like molecules. I devised a general and largely
automated protocol to select representative molecules from the library based on
principles that the selected molecules should significantly cover the chemical space
of drug-like molecules and also increase the coverage of CGenFF for new molecules.
Representative molecules were further selected for FF optimization based on the
principle that a molecule should contain a maximum number of missing parameters,
in addition to other criteria, mostly for the ease and convenience of QM calculations.
By applying this protocol from the initial 285,041 molecules comprising ring
substructures and a few to no rotatable bonds, the library was reduced to 7,387 to
represent the entire chemical space of the initial library and to be further optimized.
The extraction of properties like rotatable dihedrals, rotatable bonds separating
rings, and types of rings was perform in an automated manner. Currently, the
optimization of parameters is in progress. QM target data were generated for water
interactions, dipole moment and electrostatic potential required for partial charge
optimization. QM PES scans needed for bonded terms optimization were generated
for molecules containing rings that are planar (rigid). As a perspective, QM
multidimensional PES scans will be performed for non-planar rings (soft), which can

exist in different puckering states. The validation part of this project will be done by
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MD simulation of small molecule crystal structures available from the Cambridge

Crystallographic Data Centre (CCDC).186

The number of available chemicals is increasing exponentially as witnessed
by the geometrical growth of small molecule libraries of commercially available
compounds (for example ZINC20 currently contains several hundreds of 106
molecules). This growth is accompanied by the recent development of force fields for
small molecules, mostly during the last decade: CGenFF9:99.10 QpenFF initiative?¢
etc. Force field based in silico tools have gained a popularity especially in the domain
of drug design. However, available FFs do not contain parameters for all molecules,
including commercially available compounds, underlining the need to expand the
force field to accommodate additional molecular variations. The present thesis
provides such work for the CHARMM force field and CGenFF extension to a large set
of molecules for a wide chemical space. It also presents a new optimization method
for improved parameters that maintain compatibility with existing force field while

assuring generation of robust and transferable parameters.
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Titre : Développement de méthodes de champ de force

Mots clés : champ de force ; CHARMM ; ZINC20 ; acide aminés non standards

Résumé : La découverte et le développement de
molécules actives sont des processus coliteux en
termes de ressources et temps qui peuvent étre
améliorés par la conception de médicaments
assistée par ordinateur. Le but de cette thése a
¢té de développer le champ de force pour un
large nombre de molécules d’importance
biologique.

Dans un premier temps, je me suis concentrée
sur 'extension du champ de force CHARMM a
un large ensemble de 333 acides aminés non
standards. J'ai considéré des acides aminés avec
des chaines latérales ainsi que des acides aminés
avec les squelettes carbonés modifiés. Les
termes inter- et intramoléculaires ont été
paramétrés en ciblant des données ab initio.
Une attention particulicre a été donnée aux
angles di¢dres. La validation a été effectuée par
des simulations de dynamique moléculaire de
20 systémes protéiques.

Dans la deuxiéme partie, j'ai testé la mise en
ceuvre d'une nouvelle méthode d'optimisation
des termes de liaison et d'angle de valence. Pour
améliorer la transférabilité et la robustesse des
paramétres  développés, les  déviations
structurelles entre les structures ab initio et
CHARMM ont ¢été autorisées pendant
l'optimisation.

Dans la derniére partie du projet, j'ai effectué
une paramétrisation a grande échelle de ~300
000 ligands de la base de données ZINC20. En
utilisant le tri basé sur les termes de liaison, la
taille de la bibliothéque a été réduite a 7 387
molécules. Une attention particuliére a été
accordée a l'optimisation des cycles non
planaires.

Dans 1’ensemble, cette thése constitue une
immense extension du champs de force
CHARMM et sera d’un grand intérét pour la
communité scientifique.

Title : Development of Force Field Methods

Keywords : force field ; CHARMM ; ZINC20 ; nonstandard amino acids

Abstract : Drug discovery and development
are very time and resources consuming
processes, which can be significantly facilitated
by force field-based computer-aided drug
design. The goal of this PhD was to develop
the force field for a large number of
biologically important molecules.

In the first part, I focused on extending the
CHARMM force field to a large set of 333
nonstandard amino acids. I included amino
acids with nonstandard side chains as well as
amino acids with modified backbone groups.
Both inter- and intramolecular terms were
parametrized targeting ab initio data. A special
emphasis was given to rotatable dihedrals.
Validation was performed by molecular

dynamics simulations of 20 protein systems.

In the second part, I tested the implementation
of a new method for bond and valence angle
terms optimization. To improve transferability
and robustness of developed parameters,
structural deviations between ab initio and
CHARMM structures were allowed during
optimization.

In the final part of the project, I performed
large-scale parametrization of ~300 000 ligands
from ZINC20 database. Based on bond term
sorting the size of the library was decreased to
7 387 molecules. A special attention was given
to the optimization of non-planar rings.

Overall, this work represents an immense
extension for CHARMM force field and will be
of great use for the scientific community.
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