Supplementary Information

For

Additive CHARMM Force Field for Nonstandard Amino Acids

Contents

1	The	Detail of Water-Compound Complexes Which Were Involved in Charge Opti	-
	miza	ation	79
	1.1	Small molecule used for 7-hydroxy-l-tryptophan(0AF)	79
	1.2	Small molecule used for (3S)-3-(methylsulfanyl)-L-asparticacid(0TD)	81
	1.3	Small molecule A of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine(143)	83
	1.4	Small molecule B of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine(143)	85
	1.5	Small molecule used for 2-amino-6-oxopimelicacid(26P)	87
	1.6	Small molecule used for S-hydroperoxycysteine(2CO)	89
	1.7	Small molecule used for s-(difluoromethyl)-homocysteine(2FM)	91
	1.8	Small molecule used for 2-fluoro-l-histidine(2HF)	93
	19	Small molecule used for 2-fluoro-l-histidine(2HFD)	95
	1 10	Small molecule used for 2-fluoro-Lhistidine(2HFE)	07
	1 11	Small molecule used for 1.2 amine 6 methylone pimelicacid(2ND)	00
	1 10	Small molecule used for 2 (4II this p_{1} = 2 h house 16 million (2017)	99 101
	1.14	Small molecule used for $3-(4\pi-\text{theno}(5,2-5)\text{pyrrol}-0-y1)-1-\text{alamine}(521)$	101
	1.13	Small molecule used for 4-hydroxy-glutamic-acid($3GL$)	103
	1.14	The dipeptide of (4S)-4-fluoro-L-proline (4FB)	105
	1.15	Small molecule used for 4-fluoro-tryptophan(4FW)	107
	1.16	Small molecule A of O-[(S)-hydroxy[(3R)-3-hydroxy-2,2-dimethyl-4-oxo-4-(3-oxo-3-](2-	
		sulfanylethyl)amino propylamino)butyl oxyphosphoryl -L-serine(4HH)	109
	1.17	Small molecule used for 4-hydroxy-tryptophan(4HT)	111
	1.18	Small molecule used for 4-amino-l-tryptophan(4IN)	113
	1.19	Small molecule used for 2-amino-3-(cystein-S-yl)-isoxazolidin-5-yl-aceticacid(5CS)	115
	1.20	Small molecule A of hypusine(5CT)	117
	1.21	Small molecule used for 6-carboxylysine(6CL)	119
	1.22	Small molecule used for (2R)-2-azanyl-3-[(3R)-1-ethyl-2,5-bis(oxidanylidene)pyrrolidin-	
		3-vllsulfanyl-propanoicacid(6V1)	121
	1.23	The dipeptide of (2S)-2.3-dihydro-1H-pyrrole-2-carboxylic acid (8LJ)	123
	1 24	Small molecule used for cis-amiclenomycin(ACZ)	125
	1.25	Small molecule used for 5-methyl-arginine(AGM)	127
	1.20	Small molecule A of S (S) amino[(A aminobuty])amino[mothyl L cystoine(AGT)]	120
	1.20	Small molecule x of 5-(5)-annio[(4-anniobuty)/annio]nethyl-1-cysteme(xor)	123
	1.27	Small molecule used for (2C) 2 (cult curve) L curve (ALC)	101
	1.20	Small molecule used for (55) -5- $(suff oxy)$ -L-serine $(AL5)$	100
	1.29	Small molecule A of 5'-O-[(5)-[(5)-b-amino-b-oxonexyi]amino(nydroxy)pnospnoryi]ade	1.05
	1 00	$\operatorname{nosine}(\operatorname{APK})$	135
	1.30	Small molecule used for c-gamma-hydroxyarginine(ARO)	137
	1.31	Small molecule used for asparticacid-4-carboxymethylester(ASB)	139
	1.32	The dipeptide of N-acetylalanine (AYA)	141
	1.33	Small molecule used for azido-alanine(AZDA)	143
	1.34	Small molecule used for azidohomoalanine(AZH)	145
	1.35	Small molecule A of Chromophore(Thr, Trp, Gly)(B2H)	147
	1.36	Small molecule B of Chromophore(Thr, Trp, Gly)(B2H)	149
	1.37	Small molecule used for phenylserine(BB8)	151
	1.38	Small molecule used for benzylcysteine(BCS)	153
	1.39	Small molecule used for beta-hvdroxyasparticacid(BHD)	155
	1.40	Small molecule used for 3-(3-benzothienvl)-alanine(BTH3)	157
	1 41	Small molecule used for (2S)-2-azanyl-3-[ethyl(methyl)carbamoylloxy-propanoicacid(BXT	159
	1 /2	Small molecule 4 of (C12)	161
	1 / 2	Small molecule used for 3 chlore D alanine(C2N)	163
	1.40	Small molecule used for some (CAN)	165
	1.44	Small molecule used for canaline (OAN)	100
	1.40	Small molecule used for carboxymethylatedcysteine(CCS)	107
	1.46	Small molecule used for gamma-carboxy-glutamicacid(UGU)	169
	1.47	Small molecule used for gamma-carboxy-glutamicacid(CGUP)	171
	1.48	Small molecule used for S-[(R)-carboxy(hydroxy)methyl]-L-cysteine(CGV)	173
	1.49	Small molecule A of (4Z)-2-[(1S)-1-amino-3-(methylsulfanyl)propyl]-4-[(4-hydroxypheny	
		l)methylidene]-5-oxo-4acetic5-dihydro-1H-imidazol-1-ylaceticacid(CH6)	175
	1.50	Small molecule B of (4Z)-2-[(1S)-1-amino-3-(methylsulfanyl)propyl]-4-[(4-hydroxypheny	
		l)methylidene]-5-oxo-4acetic5-dihydro-1H-imidazol-1-ylaceticacid(CH6)	177
	1.51	Small molecule used for citrulline(CIR)	179
	1.52	Small molecule used for S,S-(2-hydroxyethyl)thiocysteine(CME)	181

1.53	Small molecule used for (2S)-2- $[(2R)$ -2-amino-2-carboxyethyl]sulfanylbutanedioicacid (CML)	1.83
1.54	Small molecule A of (47)-2-(aminomethyl)-4-[(4-hydroxynhenyl)methylidenel-5-ovo-4ace	100
1.04	tic5-dihydro-1H-imidazol-1-ylaceticacid(CR2)	185
1.55	Small molecule B of (4Z)-2-(aminomethyl)-4-[(4-hydroxyphenyl)methylidene]-5-oxo-4ace	
	tic5-dihydro-1H-imidazol-1-ylaceticacid(CR2)	187
1.56	Small molecule A of 2-[1-amino-2-(1h-imidazol-5-yl)ethyl]-1-(carbOymethyl)-4-[(4-Oocy	
	clohexa-2,5-dien-1-ylidene)methyl]-1h-imidazol-5-olate(CR8D)	189
1.57	Small molecule B of 2-[1-amino-2-(1h-imidazol-5-yl)ethyl]-1-(carbOymethyl)-4-[(4-Oocy	
	clohexa-2,5-dien-1-ylidene)methyl]-1h-imidazol-5-olate(CR8D)	191
1.58	Small molecule A of [(4Z)-2-[(1R,2R)-1-amino-2-hydroxypropyl]-4-(1H-indol-3-ylmethy	
	lidene)-5-oxo-4,5-dihydro-1H-imidazol-1-yl]aceticacid(CRF)	193
1.59	Small molecule B of [(4Z)-2-[(1R,2R)-1-amino-2-hydroxypropyl]-4-(1H-indol-3-ylmethyli	
	dene)-5-oxo-4,5-dihydro-1H-imidazol-1-yl]aceticacid(CRF)	195
1.60	Small molecule A of 2-[(1R,2R)-1-amino-2-hydroxypropyl]-4-(4-hydroxybenzylidene)-5-	
	oxo-4acetic5-dihydro-1H-imidazol-1-ylaceticacid(CRO)	197
1.61	Small molecule B of 2-[(1R,2R)-1-amino-2-hydroxypropyl]-4-(4-hydroxybenzylidene)-5-	
	oxo-4acetic5-dihydro-1H-imidazol-1-ylaceticacid(CRO)	199
1.62	Small molecule A of [2-(3-carbamoyl-1-imino-propyl)-4-(4-hydroxy-benzylidene)-5-oxo-	
	4,5-dihydro-imidazol-1-yl]-aceticacid(CRQ)	201
1.63	Small molecule B of [2-(3-carbamoyl-1-imino-propyl)-4-(4-hydroxy-benzylidene)-5-oxo-	
	4,5-dihydro-imidazol-1-yl]-aceticacid(CRQ)	203
1.64	Small molecule C of [2-(3-carbamoyl-1-imino-propyl)-4-(4-hydroxy-benzylidene)-5-oxo-	
	4,5-dihydro-imidazol-1-yl]-aceticacid(CRQ)	205
1.65	Small molecule D of [2-(3-carbamoyl-1-imino-propyl)-4-(4-hydroxy-benzylidene)-5-oxo-	
	4,5-dihydro-imidazol-1-yl]-aceticacid(CRQ)	207
1.66	Small molecule used for s-acetonylcysteine(CSA)	209
1.67	Small molecule used for S-hydroxycysteine(CSO)	211
1.68	Small molecule used for S-mercaptocysteine(CSS)	213
1.69	Small molecule used for cysteine-S-sulfonicacid(CSU)	215
1.70	Small molecule used for S-oxycysteine(CSX)	217
1.71	Small molecule A of N-carboxymethionine(CXM)	219
1.72	Small molecule A of 2-amino-6-(cystein-5-yl)-5-oxo-hexanoicacid((CYD)	221
1.73	Small molecule A of 5-[2-(2-amino-2-carbamoyi-etnyisultanyi)-acetyiamino]-2-(3,0-diny	00.9
1 74	Groxy-9,9a-Ginydro-5n-Xantnen-9-yi)-Denzoicacid(UYF)	223
1.74	Small molecule D of $3-[2-(2-a)]$ molecule D of $3-[2-(3,0-a)]$	าาะ
1 75	droxy-9,9a-dinydro-3n-xanthen-9-yi)-benzoicacid(01F)	220
1.70	Small molecule R of 2-amino-4-(amino-3-oxo-propylsulfanylcarbonyl)-butylicacid(CYC).	221
1.70	Small molecule used for 2 amino 3 phosphonomethylsulfanyl propionic (CVO) .	229
1.77	Small molecule used for 2-amino-3-phosphonomethylsulfanyl-propionicacid (CYQ) .	201
1 79	Small molecule used for 2- (henzovlamino)-L-alanine(DBZ)	235
1.80	Small molecule A of 3-[4-(2-amino-2-carboxy-ethyl)-1H-imidazol-2-yll-1-carbamoyl-prop	200
1.00	vl-trimethyl-ammonium(DDE)	237
1.81	Small molecule B of 3-[4-(2-amino-2-carboxy-ethyl)-1H-imidazol-2-yll-1-carbamoyl-prop	
	vl-trimethyl-ammonium(DDE)	239
1.82	Small molecule A of 3-[4-(2-amino-2-carboxy-ethyl)-1H-imidazol-2-yl]-1-carbamoyl-prop	
	yl-trimethyl-ammonium(DDEP)	241
1.83	Small molecule B of 3-[4-(2-amino-2-carboxy-ethyl)-1H-imidazol-2-yl]-1-carbamoyl-prop	
	yl-trimethyl-ammonium(DDEP)	243
1.84	Small molecule used for 3,3-dihydroxy-alanine(DDZ)	245
1.85	The dipeptide of Didehydroaspartate (DYA)	247
1.86	Small molecule A of Didehydroaspartate(DYA)	249
1.87	Small molecule A of (3S)-3-amino-3-[(4Z)-1-(carboxymethyl)-4-[(4-hydroxyphenyl)met	
	$\label{eq:hylidene} hylidene] - 5- oxo-imidazol-2-yl] propanoicacid (DYG) \qquad \dots \qquad $	251
1.88	Small molecule B of (3S)-3-amino-3-[(4Z)-1-(carboxymethyl)-4-[(4-hydroxyphenyl)met	
	hylidene]-5-oxo-imidazol-2-yl]propanoicacid(DYG)	253
1.89	Small molecule used for ethionine(ESC)	255
1.90	Small molecule used for 3,4-diffuoro-phenylalanine(F2F)	257
1.91	Small molecule used for 4-fluoro-glutamicacid (FGA4)	259
1.92	The dipeptide of 2-aminopropanedioic acid (FGL)	261

1.93 Small molecule A of N5-formyl-N5-hydroxy-L-ornithine(FHO)	263
1.94 Small molecule used for Trifluoroalanine(FLA)	265
1.95 Small molecule A of N-formylmethionine(FME)	267
1.96 Small molecule used for 2-fluoro-phenylalanine(FPH2)	269
1.97 Small molecule used for 6-fluoro-l-tryptophan(FT6)	271
1.98 Small molecule used for 5-fluoro-tryptophan(FTR)	273
1.99 Small molecule used for (2-furyl)-alanine(FUA2)	275
1.100Small molecule used for 3-fluoro-valine(FVAL)	277
$1.101 Small molecule A of (2S)-2-amino-6-{[(1Z)-1-{[(2R,3R,4S,5R)-5-({[(R)-{[(R)-{[(R)-{[(2R,3S,4R,4S),5R)-5-({[(R)-{(R)-{(R)-{[(R)-{(R)-{(R)-{(R)-{(R)-{(R)-{(R)-{(R)-{$	5R)-
5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methoxy}(hydroxy)phosp	
horyl]oxy}(hydroxy)phosphoryl]oxy}methyl)-3,4-dihydroxytetrahydrofuran-2-yl]sulfany	
l}ethylidene amino}hexanoicacid(FZN)	279
$1.102 Small molecule B of (2S)-2-amino-6-{[(1Z)-1-{[(2R,3R,4S,5R)-5-({[(R)-{[(R)-{[(2R,3S,4R,4S),5R)-5-({[(R)-{(R)-{(R)-{[(R)-{(R)-{[(R)-{(R)-{(R)-{(R)}}}}}} 1.1 1111111111111111111111111111$	5R)-
5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methoxy}(hydroxy)phosp	
horyl]oxy}(hydroxy)phosphoryl]oxy}methyl)-3,4-dihydroxytetrahydrofuran-2-yl sulfany	
l}ethylidene amino}hexanoicacid(FZN)	281
1.103Small molecule used for Canavanine(GGB)	283
1.104Small molecule used for (2s,4s)-2,5-diamino-4-hydroxy-5-oxopentanoicacid(GHG)	285
1.105Small molecule A of [(4Z)-2-(1-amino-2-hydroxyethyl)-4-(4-hydroxybenzylidene)-5-oxo-	
4,5-dihydro-1h-imidazol-1-yl]aceticacid(GYS)	287
1.106Small molecule B of [(4Z)-2-(1-amino-2-hydroxyethyl)-4-(4-hydroxybenzylidene)-5-oxo-	
4,5-dihydro-1h-imidazol-1-yl]aceticacid(GYS)	289
1.107Small molecule used for glutaminehydroxamate(HGA)	291
1.108Small molecule used for 4-methyl-histidine(HICP)	293
1.109Small molecule used for ND1-phosphonohistidine(HIP)	295
1.110Small molecule used for 3-(1H-1,2,3-triazol-5-yl)-L-alanine(HIX)	297
1.111Small molecule used for 4-amino-L-phenylalanine(HOX)	299
1.112Small molecule A of (4S)-4-[(2S)-2-amino-3-oxopropyl]sulfanyl-L-homoserine(HTI)	301
1.113Small molecule used for beta-hydroxy-tryptophane(HTR)	303
1.114Small molecule A of N-(2-methylpropyl)glycine(I4G)	305
1.115Small molecule A of 4-[(isopropylamino)methyl]phenylalanine(IAM)	307
1.116Small molecule used for alpha-amino-2-indanaceticacid(IGL)	309
1.117Small molecule A of (2S)-2-amino-6-[[3-hydroxy-2-methyl-5-(phosphonooxymethyl)pyr	
idin-4-yl]methylideneamino]hexanoicacid(IT1P)	311
1.118Small molecule used for S-(pyridin-3-ylcarbonyl)-L-cysteine(JJJ)	313
1.119Small molecule used for N-6-crotonyl-L-lysine(KCR)	315
1.120Small molecule used for lysineNZ-carboxylicacid(KCX)	317
1.121Small molecule A of (2S)-2-amino-6-[(1-hydroxy-1-oxo-propan-2-ylidene)amino]hexanoi	
cacid(KPI)	319
1.122Small molecule used for kynurenine(KYN)	321
1.123Small molecule A of N6-[(6R)-6,8-disulfanyloctanoyl]-L-lysine(LA2)	323
1.124Small molecule used for Penicillamine(LE1)	325
1.125Small molecule used for (4r)-5-oxo-l-leucine(LED)	327
1.126Small molecule used for (4s)-5-fluoro-l-leucine(LEF)	329
1.127Small molecule A of (2S)-2-amino-6-[[3-hydroxy-2-methyl-5-(phosphonooxymethyl)pyr	
idin-4-yl]methylideneamino]hexanoicacid(LLPP)	331
1.128Small molecule used for (3r)-3-methyl-l-glutamicacid(LME)	333
1.129Small molecule used for 4-oxo-l-valine(LVN)	335
1.130Small molecule A of N''- (2-coenzymeA)-propanoyl-lysine(LYX)	337
1.131Small molecule used for S-(hydroxymethyl)-L-cysteine(M0H)	339
1.132Small molecule used for 3,3-dimethyl-methioninesulfoxide(M2S)	341
1.133The dipeptide of N-methyl-L-alanine (MAA)	343
1.134Small molecule A of N-methyl-L-alanine(MAA)	345
1.135Small molecule A of NZ-(1-carboxyethyl)-lysine(MCL)	347
1.136Small molecule used for malonylcysteine(MCS)	349
1.137Small molecule A of [2-((1S)-1-aminoethyl)-4-methylidene-5-oxo-4,5-dihydro-1H-imida	
zol-1-yl]aceticacid(MDO)	351
1.138Small molecule B of [2-((1S)-1-aminoethyl)-4-methylidene-5-oxo-4,5-dihydro-1H-imida	
zol-1-yl]aceticacid(MDO)	353
1.139Small molecule C of [2-((1S)-1-aminoethyl)-4-methylidene-5-oxo-4,5-dihydro-1H-imida	
zol-1-yl]aceticacid(MDO)	355

1.140Small molecule used for hydroxy-l-methionine(ME0)	. 357
1.141Small molecule used for N1-methylatedhistidine(MHS)	. 359
1.142Small molecule used for N1-methylatedhistidine(MHS)	. 361
1.143Small molecule used for N1-methylatedhistidine(MHSP)	. 363
1.144Small molecule used for N1-methylatedhistidine(MHSP)	. 365
1.145Small molecule used for N-methyl-lysine(MLZ)	. 367
1.146Small molecule used for N1-phosphonohistidine(NEP)	. 369
1.147Small molecule used for meta-nitro-tyrosine(NIY)	. 371
1.148Small molecule A of (4Z)-4-(4-hydroxybenzylidene)-2-[3-(methylthio)propanimidoyl]-5-	
oxo-4acetic5-dihydro-1H-imidazol-1-ylaceticacid (NRQ)	. 373
1.149Small molecule B of (4Z)-4-(4-hydroxybenzylidene)-2-[3-(methylthio)propanimidoyl]-5-	
oxo-4acetic5-dihydro-1H-imidazol-1-ylaceticacid (NRQ)	. 375
1.150Small molecule C of (4Z)-4-(4-hydroxybenzylidene)-2-[3-(methylthio)propanimidoyl]-5-	
oxo-4acetic5-dihydro-1H-imidazol-1-ylaceticacid (NRQ)	. 377
1.151Small molecule D of (4Z)-4-(4-hydroxybenzylidene)-2-[3-(methylthio)propanimidoyl]-5-	
oxo-4acetic5-dihydro-1H-imidazol-1-ylaceticacid (NRQ)	. 379
$1.152 Small\ molecule\ E\ of\ (4Z)-4-(4-hydroxybenzylidene)-2-[3-(methylthio)\ propanimid oyl]-5-oxo-2-(3-(methylthio)\ propanimid oyl)-5-oxo-2-(3-(methylthio)\ propanimid oyl)-5-oxo-2-(3-(methylthio$	
4acetic 5-dihydro-1H-imidazol-1-ylacetic acid (NRQ)	. 381
1.153Small molecule used for (2s)-2-amino-4,4-diffuorobutanoicacid(OBF)	. 383
1.154Small molecule used for s-(2-hydroxyethyl)-l-cysteine(OCY)	. 385
1.155Small molecule used for (betar)-beta-hydroxy-l-tyrosine(OMX)	. 387
1.156Small molecule used for 4-benzoyl-phenylalanine(PBF)	. 389
1.157Small molecule used for pentafluoro-phenylalanine(PF5)	. 391
1.158Small molecule used for aspartylphosphate(PHD)	. 393
1.159Small molecule used for aspartylphosphate(PHD)	. 395
1.160Small molecule used for aspartylphosphate(PHDP)	. 397
1.161Small molecule used for aspartylphosphate(PHDP)	. 399
1.162Small molecule A of [(4Z)-2-[(1S)-1-aminoethyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di	
hydro-1H-imidazol-1-yl]aceticacid(PIA)	. 401
1.163Small molecule B of [(4Z)-2-[(1S)-1-aminoethyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di	100
$hydro-1H-imidazol-1-yl]aceticacid(PIA) \dots h h h h h h h h h h h h h h h h h h $. 403
1.164Small molecule A of $1 - [(2R) - 2 - carboxy - 2 - hydroxyethyl] - L - proline(PR4)$. 405
1.165Small molecule B of 1-[(2R)-2-carboxy-2-nydroxyetnyl]-L-proline(PR4)	. 407
1.100 I ne dipeptide of I nioprofile (PR5)	. 409
1.1675 main molecule used for (2π) -anniho(2-introprienty)/ethanoicacid($\Gamma(\tau)$)	411
1 160Small molecule used for 3 (2 Duridul) alapine(PVR2)	415
1.170Small molecule used for 3 (1. pyrazelyl) alanine(PV71)	.410
1.170Small molecule used for S carbamovi I cystoine(Ω CS)	. 417 410
1.172Small molecule used for S [(1S) 1 carboxy 1 (phosphonoxy) othy]] L cystoine(QOA)	. 413 491
1.173Small molecule used for 3-(2-quinovaly)-alanine(OX32)	423
1 174Small molecule A of 3-[(2.2.5.5-tetramethyl-1-oxo-2.5-dibydro-1H-pyrrolium-3-yl)methy	. 120
lldisulfanvl-D-alanine(R1A)	. 425
1.175Small molecule B of 3-[(2.2.5.5-tetramethy]-1-oxo-2.5-dihydro-1H-pyrrolium-3-y])methy	
lldisulfanvl-D-alanine(R1A)	. 427
1.176Small molecule used for O-I(S)-hydroxy(methyl)phosphoryll-L-serine(SBG)	429
1.177Small molecule used for O-benzylsulfonyl-serine(SEB)	431
1.178Small molecule used for O-[N.N-dimethylphosphoramidate]-L-serine(SEN)	. 433
1.179Small molecule A of O-[(S)-methyl(1-methylethoxy)phosphoryl]-L-serine(SGB)	. 435
1.180Small molecule used for S-nitroso-cysteine(SNC)	. 437
1.181Small molecule used for Styrylalanine(STYA)	. 439
1.182The dipeptide of (3-amino-2,5-dioxo-1-pyrrolidinyl)acetic acid (SUI)	. 441
1.183Small molecule A of (3-amino-2,5-dioxo-1-pyrrolidinyl)aceticacid(SUI)	. 443
1.184Small molecule A of O-[(R)-(dimethylamino)(ethoxy)phosphoryl]-L-serine(SUN)	. 445
1.185Small molecule A of O-[(R)-ethoxy(methyl)phosphoryl]-L-serine(SVX)	. 447
1.186Small molecule A of O-[bis(1-methylethoxy)phosphoryl]-L-serine(SVY)	. 449
1.187Small molecule A of 2-[(4Z)-2-[(1R)-1-amino-2-hydroxy-ethyl]-4-(1H-indol-3-ylmethyli	
$dene) - 5 - oxo - imidazol - 1 - yl] ethanoicacid (SWG) \dots \dots$. 451
1.188Small molecule B of 2-[(4Z)-2-[(1R)-1-amino-2-hydroxy-ethyl]-4-(1H-indol-3-ylmethyli	
dene)-5-oxo-imidazol-1-yl]ethanoicacid(SWG)	. 453
1.189Small molecule used for 3-(2-tetrazolyl)-alanine(TEZA)	. 455

	1.190Small molecule used for 2-(trifluoromethyl)-phenylglycine(TFG2)	457
	1.191Small molecule used for 3-(trifluoromethyl)-phenylglycine(TFG3)	. 459
	1.192Small molecule used for 4-(trifluoromethyl)-phenylglycine(TFG4)	. 461
	1.193Small molecule used for 5,5,5-trifluoro-leucine(TFLE)	463
	1.194Small molecule used for 2-(trifluoromethyl)-phenylalanine(TFP2)	. 465
	1.195Small molecule used for 3-(trifluoromethyl)-phenylalanine(TFP3)	. 467
	1.196Small molecule used for 4-(Trifluoromethyl)-phenylalanine(TFP4)	. 469
	1.197Small molecule used for 2-thienylglycine(THG2)	. 471
	1.198Small molecule used for 3-thienylglycine(THG3)	. 473
	1.199Small molecule used for thio-citrulline(THIC)	. 475
	1.200Small molecule used for 3-(2-thienyl)-alanine(TIH)	. 477
	1.201Small molecule used for 1-hydroperoxy-L-tryptophan(TOX)	. 479
	1.202Small molecule used for 5-(2-carboxy-2-aminoethyl)-2-hydroxy-1,4-benzoquinone(TPQ)	481
	1.203Small molecule used for 5-(2-carboxy-2-aminoethyl)-2-hydroxy-1,4-benzoquinone(TPQP)	483
	1.204Small molecule used for (S)-2-amino-3-(6,7-dihydro-6-imino-7-oxo-1H-indol-3-yl)propa	
	noicacid(TQQ)	485
	1.205Small molecule used for 2-hydroxy-tryptophan(TRO)	. 487
	1.206Small molecule used for 2-amino-3-(6,7-dioxo-6,7-dihydro-1H-indol-3-yl)-propionicaci	
	d(TRQ)	. 489
	1.207Small molecule used for TRW3-(2-amino-3-hydroxy-propyl)-6-(N ² -cyclohexyl-hydrazin	
	o) octahydro-indol-7-ol(TRW)	. 491
	1.208Small molecule used for (2S,3S,4R)-2-amino-3,4-dihydroxy-3-methylpentanoicacid(TS9)	. 493
	1.209Small molecule used for 6-amino-7-hydroxy-l-tryptophan(TTQ)	. 495
	1.210Small molecule used for 3-amino-L-tyrosine(TY2)	. 497
	1.211Small molecule used for 3-amino-6-hydroxy-tyrosine(TYQ) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$. 499
	1.212Small molecule used for O-sulfo-L-tyrosine(TYS)	. 501
	1.213Small molecule used for (4-thiazolyl)-alanine(TZA4)	. 503
	1.214Small molecule used for S-cyano-L-cysteme(XCN)	. 505
	1.215Small molecule A of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di	
	hydro-1h-imidazol-1-yljaceticacid(XYG)	. 507
	1.210Small molecule B of $\left[(4Z)-2-\left[(1Z)-etnanlmidoyi\right]-4-(4-nydroxydenzylidene)-5-oxo-4,5-d1\right]$	
	$\mathbf{h}_{\mathbf{v}}$	F 00
	hydro-1h-imidazol-1-yl]aceticacid(XYG)	509
	hydro-1h-imidazol-1-yl]aceticacid(XYG)	509
	hydro-1h-imidazol-1-yl]aceticacid(XYG)	509. 511
	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro 1h imidazol 1 yllageticacid(XYC) 	509 511
	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.210Small molecule used for systems a castamide(VCM) 	509 511 513
	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for cysteine-s-acetamide(YCM) 	509 511 513 513 515
	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for 3-fluorotyrosine(YOF) 	509 511 513 513 515 517
2	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for 3-fluorotyrosine(YOF) The Detail of Small Molecules Used in Bonded Terms Optimization 	509 511 513 513 515 517 519
2	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for 3-fluorotyrosine(YOF) The Detail of Small Molecules Used in Bonded Terms Optimization 2.1 The small molecule used for bonded terms optimization of phenylglycine (004) 	509 511 513 515 515 517 519 519
2	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for 3-fluorotyrosine(YOF) The Detail of Small Molecules Used in Bonded Terms Optimization 2.1 The small molecule used for bonded terms optimization of phenylglycine (004) 2.2 The small molecule used for bonded terms optimization of 7-hydroxy-l-tryptophan (0AF) 	509 511 513 515 515 517 519 519 521
2	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for 3-fluorotyrosine(YOF) The Detail of Small Molecules Used in Bonded Terms Optimization 2.1 The small molecule used for bonded terms optimization of phenylglycine (004) 2.2 The small molecule used for bonded terms optimization of 7-hydroxy-l-tryptophan (0AF) 2.3 The small molecule used for bonded terms optimization of (3S)-3-(methylsulfanyl)-L-as 	. 509 . 511 . 513 . 515 . 517 519 . 519 . 519 . 521
2	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.219Small molecule used for 3-fluorotyrosine(YOF) The Detail of Small Molecules Used in Bonded Terms Optimization 2.1 The small molecule used for bonded terms optimization of phenylglycine (004) 2.2 The small molecule used for bonded terms optimization of 7-hydroxy-l-tryptophan (0AF) 2.3 The small molecule used for bonded terms optimization of (3S)-3-(methylsulfanyl)-L-as particacid (0TD) 	509 511 513 515 517 519 521 522
2	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for 3-fluorotyrosine(YOF) The Detail of Small Molecules Used in Bonded Terms Optimization 2.1 The small molecule used for bonded terms optimization of phenylglycine (004) 2.2 The small molecule used for bonded terms optimization of 7-hydroxy-l-tryptophan (0AF) 2.3 The small molecule used for bonded terms optimization of (3S)-3-(methylsulfanyl)-L-as particacid (0TD) 2.4 The small molecule 1 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- 	509 511 513 515 517 517 519 521 522
2	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for 3-fluorotyrosine(YOF) The Detail of Small Molecules Used in Bonded Terms Optimization 2.1 The small molecule used for bonded terms optimization of phenylglycine (004) 2.2 The small molecule used for bonded terms optimization of 7-hydroxy-1-tryptophan (0AF) 2.3 The small molecule used for bonded terms optimization of (3S)-3-(methylsulfanyl)-L-as particacid (0TD) 2.4 The small molecule 1 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 	509 511 513 515 515 517 519 521 522 522 523
2	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for 3-fluorotyrosine(YOF) The Detail of Small Molecules Used in Bonded Terms Optimization 2.1 The small molecule used for bonded terms optimization of phenylglycine (004) 2.2 The small molecule used for bonded terms optimization of 7-hydroxy-l-tryptophan (0AF) 2.3 The small molecule used for bonded terms optimization of (3S)-3-(methylsulf anyl)-L-as particacid (0TD) 2.4 The small molecule 1 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.5 The small molecule 2 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- 	509 511 513 515 517 519 519 521 522 522 523
2	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for 3-fluorotyrosine(YOF) The Detail of Small Molecules Used in Bonded Terms Optimization 2.1 The small molecule used for bonded terms optimization of 7-hydroxy-l-tryptophan (0AF) 2.3 The small molecule used for bonded terms optimization of (3S)-3-(methylsulf anyl)-L-as particacid (0TD) 2.4 The small molecule 1 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.5 The small molecule 2 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 	509 511 513 515 515 517 519 521 522 522 522 523 523
2	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for 3-fluorotyrosine(YOF) The Detail of Small Molecules Used in Bonded Terms Optimization 2.1 The small molecule used for bonded terms optimization of phenylglycine (004) 2.2 The small molecule used for bonded terms optimization of 7-hydroxy-l-tryptophan (0AF) 2.3 The small molecule used for bonded terms optimization of (3S)-3-(methylsulf anyl)-L-as particacid (0TD) 2.4 The small molecule 1 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.5 The small molecule 2 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.6 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- 	509 511 513 515 515 517 519 521 522 522 523 523
2	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for 3-fluorotyrosine(YOF) The Detail of Small Molecules Used in Bonded Terms Optimization 2.1 The small molecule used for bonded terms optimization of 7-hydroxy-1-tryptophan (0AF) 2.3 The small molecule used for bonded terms optimization of (3S)-3-(methylsulfanyl)-L-as particacid (0TD) 2.4 The small molecule 1 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.5 The small molecule 2 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.6 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 	509 511 513 515 515 519 521 522 522 523 524 524
2	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for 3-fluorotyrosine(YOF) The Detail of Small Molecules Used in Bonded Terms Optimization 2.1 The small molecule used for bonded terms optimization of phenylglycine (004) 2.2 The small molecule used for bonded terms optimization of 7-hydroxy-1-tryptophan (0AF) 2.3 The small molecule used for bonded terms optimization of (3S)-3-(methylsulf anyl)-L-as particacid (0TD) 2.4 The small molecule 1 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.5 The small molecule 2 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.6 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.7 The small molecule used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.6 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.6 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.7 The small molecule 4 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.7 The small molecule used for bonded terms optimization of 2-amino-6-oxopimelicacid (26P 	$\begin{array}{c} 509\\ 511\\ 513\\ 515\\ 515\\ 517\\ 519\\ 521\\ 522\\ 522\\ 523\\ 524\\ 525\\ 526\end{array}$
2	 hydro-1h-imidazol-1-yl]aceticacid (XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid (XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid (XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for 3-fluorotyrosine(YOF) The Detail of Small Molecules Used in Bonded Terms Optimization 2.1 The small molecule used for bonded terms optimization of phenylglycine (004) 2.2 The small molecule used for bonded terms optimization of 7-hydroxy-1-tryptophan (0AF) 2.3 The small molecule used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.5 The small molecule 2 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.6 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.7 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.7 The small molecule used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.7 The small molecule used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.7 The small molecule used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.7 The small molecule used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.7 The small molecule used for bonded terms optimization of 2-amino-6-oxopimelicacid (26P 2.8 The small molecule used for bonded terms optimization of 2-allyl-glycine (2AG) 	509 511 513 515 517 519 521 522 523 524 525 526 527
2	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for 3-fluorotyrosine(YOF) The Detail of Small Molecules Used in Bonded Terms Optimization 2.1 The small molecule used for bonded terms optimization of phenylglycine (004) 2.2 The small molecule used for bonded terms optimization of (3S)-3-(methylsulfanyl)-L-as particacid (0TD) 2.3 The small molecule 1 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 5.5 The small molecule 2 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 6 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 7 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 7 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 7 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 7 The small molecule a used for bonded terms optimization of 2-amino-6-oxopimelicacid (26P 2.8 The small molecule used for bonded terms optimization of 2-amino-6-oxopimelicacid (26P 2.8 The small molecule used for bonded terms optimization of 2-allyl-glycine (2AG) 9 The small molecule used for bonded terms optimization of S-hydroperoxycysteine (2CO) 	 509 511 513 515 517 519 521 522 523 524 525 526 527 528
2	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4- (4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4- (4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.210Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for 3-fluorotyrosine(YOF) The Detail of Small Molecules Used in Bonded Terms Optimization 2.1 The small molecule used for bonded terms optimization of 7-hydroxy-1-tryptophan (0AF) 2.3 The small molecule used for bonded terms optimization of (3S)-3-(methylsulfanyl)-L-as particacid (0TD) 2.4 The small molecule 1 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.5 The small molecule 2 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.6 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.7 The small molecule used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.7 The small molecule used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.6 The small molecule 2 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.7 The small molecule used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.7 The small molecule used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.7 The small molecule used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.9 The small molecule used for bonded terms optimization of 2-amino-6-oxopimelica	509 511 513 515 517 519 521 522 523 524 525 525 526 527 528
2	 hydro-1h-imidazol-1-yl]aceticacid (XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid (XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid (XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for 3-fluorotyrosine(YOF) The Detail of Small Molecules Used in Bonded Terms Optimization 2.1 The small molecule used for bonded terms optimization of phenylglycine (004) 2.2 The small molecule used for bonded terms optimization of 7-hydroxy-l-tryptophan (0AF) 2.3 The small molecule used for bonded terms optimization of (3S)-3-(methylsulfanyl)-L-as particacid (0TD) 2.4 The small molecule 1 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.5 The small molecule 2 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.6 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.7 The small molecule used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.7 The small molecule used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.7 The small molecule used for bonded terms optimization of 2-amino-6-oxopimelicacid (26P 2.8 The small molecule used for bonded terms optimization of 2-allyl-glycine (2AG) 2.9 The small molecule used for bonded terms optimization of S-14lyl-glycine (2AG) 2.9 The small molecule used for bonded terms optimization of S-14lyl-glycine (2AG) 2.9 The small molecule used for bonded terms optimization of S-14lyl-glycine (2AG) 2.9 The small molecule used	509 511 513 515 517 519 521 522 523 524 525 525 526 527 528 529
2	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for 3-fluorotyrosine(YOF) The Detail of Small Molecules Used in Bonded Terms Optimization 2.1 The small molecule used for bonded terms optimization of phenylglycine (004) 2.2 The small molecule used for bonded terms optimization of (3S)-3-(methylsulf anyl)-L-as particacid (0TD) 2.3 The small molecule 1 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.5 The small molecule 2 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.6 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.7 The small molecule used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.6 The small molecule 2 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.7 The small molecule 3 used for bonded terms optimization of 2-amino-6-oxopimelicacid (26P 2.8 The small molecule used for bonded terms optimization of 2-amino-6-oxopimelicacid (26P 2.9 The small molecule used for bonded terms optimization of 2-allyl-glycine (2AG) 2.10 The small molecule used for bonded terms optimization of 2-allyl-glycine (2AG) 2.11 The small molecule used for bonded terms optimization of s-(difluoromethyl)-homocystei ne (2FM) 2.11 The small molecule used for bonded terms optimization of 2-fluoro-1-histidine (2HF) 	509 511 513 515 517 519 521 522 523 524 525 525 526 527 528 529 530
2	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for 3-fluorotyrosine(YOF) The Detail of Small Molecules Used in Bonded Terms Optimization 2.1 The small molecule used for bonded terms optimization of phenylglycine (004) 2.2 The small molecule used for bonded terms optimization of 3S)-3-(methylsulf anyl)-L-as particacid (0TD) 3 The small molecule 1 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.5 The small molecule 2 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.6 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.7 The small molecule used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.6 The small molecule 2 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.7 The small molecule used for bonded terms optimization of 2-amino-6-oxopimelicacid (26P 2.8 The small molecule used for bonded terms optimization of 2-amino-6-oxopimelicacid (26P 2.9 The small molecule used for bonded terms optimization of 2-amino-6-oxopimelicacid (26P 2.9 The small molecule used for bonded terms optimization of 2-amino-6-oxopimelicacid (26P 2.9 The small molecule used for bonded terms optimization of 2-amino-6-oxopimelicacid (26P 2.9 The small molecule used for bonded terms optimization of 2-amino-6-oxopimelicacid (26P 2.9 The small molecule used for bonded terms optimization of 2-aflyd-plycine (2AG) 2.10 The small molecule	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for 3-fluorotyrosine(YOF) The Detail of Small Molecules Used in Bonded Terms Optimization 2.1 The small molecule used for bonded terms optimization of phenylglycine (004) 2.2 The small molecule used for bonded terms optimization of 7-hydroxy-1-tryptophan (0AF) 2.3 The small molecule used for bonded terms optimization of (3S)-3-(methylsulfanyl)-L-as particacid (0TD) 2.4 The small molecule 1 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.5 The small molecule 2 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.6 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.7 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.7 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.8 The small molecule used for bonded terms optimization of S-1,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.9 The small molecule used for bonded terms optimization of S-1,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.9 The small molecule used for bonded terms optimization of S-1,4-dipto-1,-1,4-1,0	 509 511 513 515 517 519 521 522 523 524 525 526 527 528 529 530 531
2	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for zysteine-s-acetamide(YCM) 1.220Small molecule used for 3-fluorotyrosine(YOF) The Detail of Small Molecules Used in Bonded Terms Optimization 2.1 The small molecule used for bonded terms optimization of phenylglycine (004) 2.2 The small molecule used for bonded terms optimization of 7-hydroxy-1-tryptophan (0AF) 2.3 The small molecule used for bonded terms optimization of (3S)-3-(methylsulfanyl)-L-as particacid (0TD) 2.4 The small molecule 1 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.5 The small molecule 2 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.6 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.7 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl- isoxazol-3-yl-cysteine (143) 2.6 The small molecule 4 for bonded terms optimization of S-1gly-dipycine (2AG) 2.7 The small molecule used for bonded terms optimization of 2-allyl-glycine (2AG) 2.9 The small molecule used for bonded terms optimization of s-hydroperoxycysteine (2CO) 2.10 The small molecule used for bonded terms optimization of s-diffuoromethyl)-homocystei ne (2FM) 2.11 The small molecule used for bonded terms optimization of 2-fluoro-1-histidine (2HF) 2.12 The small molecule used for bonded terms optimization of 2-fluoro-1-histidine (2HF) 2.13 The small molecule used for bonded t	509 511 513 515 517 519 521 522 523 524 525 525 526 527 528 528 529 530 531 532
2	 hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.217Small molecule C of [(42)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.218Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5-oxo-4,5-di hydro-1h-imidazol-1-yl]aceticacid(XYG) 1.219Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for cysteine-s-acetamide(YCM) 1.220Small molecule used for 3-fluorotyrosine(YOF) The Detail of Small Molecules Used in Bonded Terms Optimization 2.1 The small molecule used for bonded terms optimization of phenylglycine (004) 2.2 The small molecule used for bonded terms optimization of 7-hydroxy-1-tryptophan (0AF) 2.3 The small molecule used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxacl-3-yl-cysteine (143) 2.5 The small molecule 1 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxacol-3-yl-cysteine (143) 2.6 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.7 The small molecule used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.6 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.7 The small molecule used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.8 The small molecule used for bonded terms optimization of S-1,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine (143) 2.9 The small molecule used for bonded terms optimization of 2-aliyl-glycine (2AG) 2.9 The small molecule used for bonded terms optimization of 2-fluoro-1-histidine (2HF) 2.10 The small molecule used for bonded terms optimization of S-1,4,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	509 511 513 515 517 519 521 522 523 524 525 526 527 528 527 528 529 5230 531 531

2.15	The small molecule used for bonded terms optimization of 3-chloro-tyrosine (3MY) 534
2.16	The small molecule 1 used for bonded terms optimization of (4S)-4-fluoro-L-proline (4FB) 535
2.17	The small molecule 2 used for bonded terms optimization of (4S)-4-fluoro-L-proline (4FB) 537
2.18	The small molecule used for bonded terms optimization of 4-fluoro-tryptophan (4FW) \therefore 538
2.19	The small molecule used for bonded terms optimization of $O-[(S)-hydroxy](3R)-3-hydrox$
	y-2, 2-dimethyl-4-oxo-4-(3-oxo-3-[(2-sulfanylethyl)amino] propylamino) butyl] oxyphosphone (2-sulfanylethyl) butyl] oxyphosphone (2-sulfanylethyl) butyl] oxyphosphone (2-sulfanylethyl) butyl] buty
	oryl]-L-serine (4HH)
2.20	The small molecule used for bonded terms optimization of 4-hydroxy-tryptophan (4HT) . 540
2.21	The small molecule used for bonded terms optimization of 4-amino-l-tryptophan (4IN) 541
2.22	The small molecule used for bonded terms optimization of 2-amino-3-(cystein-S-yl)-isox
	azolidin-5-yl-aceticacid $(5CS)$
2.23	The small molecule used for bonded terms optimization of (2R)-2-azanyl-3-[(3R)-1-ethy
	l-2,5-bis(oxidanylidene)pyrrolidin-3-yl sulfanyl-propanoicacid (6V1)
2.24	The small molecule 1 used for bonded terms optimization of (2S)-2,3-dihydro-1H-pyrrole
	-2-carboxylicacid (8LJ)
2.25	The small molecule 2 used for bonded terms optimization of (2S)-2,3-dihydro-1H-pyrrole
0.00	-2-carboxylicacid (8LJ)
2.26	The small molecule used for bonded terms optimization of cis-amiclenomycin (ACZ) 549
2.27	The small molecule used for bonded terms optimization of S-(S)-amino[(4-aminobutyl)a
0.00	mino]methyl-L-cysteine (AGT)
2.28	The small molecule used for bonded terms optimization of $(3S)$ -3-(sulfooxy)-L-serine (ALS)552
2.29	The small molecule used for bonded terms optimization of 5° -O-[(S)-[(5S)-5-amino-6-ox
<u>9</u> 90	onexyljamino(nydroxy)pnospnoryljadenosine (APK)
2.30	The small molecule used for bonded terms optimization of e-gamma-nydroxyarginine (ARO) 554
2.31	actor (ASD)
0 20	The small molecule used for handed terms entimization of expertiseed 4 entherwathule
2.32	ator (ASL)
0 33	The small molecule 1 used for bonded terms optimization of azide algorithm $(A7DA)$ 557
2.00	The small molecule 2 used for bonded terms optimization of azido alanine $(AZDA)$
2.04 2.35	The small molecule used for bonded terms optimization of azido-ataline (AZH) ~ 559
2.00 2.36	The small molecule 1 used for bonded terms optimization of Chromophore(Thr Trn Glv)
2.00	(B2H) 560
2.37	The small molecule 2 used for bonded terms optimization of Chromophore(Thr Trp Glv)
2.01	(B2H) (561)
2.38	The small molecule used for bonded terms optimization of benzylcysteine (BCS)
2.39	The small molecule used for bonded terms optimization of 5-bromo-l-isoleucine (BIU) 564
2.40	The small molecule used for bonded terms optimization of (2S)-2-azanvl-3-[ethvl(meth
	vl)carbamovlloxy-propanoicacid (BXT)
2.41	The small molecule used for bonded terms optimization of (C12)
2.42	The small molecule used for bonded terms optimization of 3-chloro-D-alanine (C2N) 567
2.43	The small molecule used for bonded terms optimization of canaline (CAN)
2.44	The small molecule used for bonded terms optimization of carboxymethylatedcysteine
	(CCS)
2.45	The small molecule used for bonded terms optimization of gamma-carboxy-glutamicacid
	(CGU)
2.46	The small molecule used for bonded terms optimization of gamma-carboxy-glutamicacid
	(CGUP)
2.47	The small molecule used for bonded terms optimization of S-[(R)-carboxy(hydroxy)met
	hyl]-L-cysteine (CGV)
2.48	The small molecule used for bonded terms optimization of 3-chloro-4-hydroxy-phenylgly
	cine (CHP)
2.49	The small molecule used for bonded terms optimization of S,S-(2-hydroxyethyl)thiocyste
	ine (CME)
2.50	The small molecule used for bonded terms optimization of (2S)-2-[(2R)-2-amino-2-carb
	oxyethyl]sulfanylbutanedioicacid (CML)
2.51	The small molecule used for bonded terms optimization of 2-cyano-phenylalanine (CNP2) 576
2.52	The small molecule used for bonded terms optimization of 2,4-dichloro-phenylalanine
a = -	(CP24)
2.53	The small molecule used for bonded terms optimization of 2-chloro-phenylglycine (CPG2) 578

2.54	The small molecule 1 used for bonded terms optimization of 2-[1-amino-2-(1h-imidazol- 5-yl)ethyl]-1-(carbOymethyl)-4-[(4-Oocyclohexa-2,5-dien-1-ylidene)methyl]-1h-imidazo l-5-olate (CB8D)	579
2.55	The small molecule 2 used for bonded terms optimization of 2-[1-amino-2-(1h-imidazol- 5-yl)ethyl]-1-(carbOymethyl)-4-[(4-Oocyclohexa-2,5-dien-1-ylidene)methyl]-1h-imidazo	
	l-5-olate (CR8D)	580
2.56	The small molecule used for bonded terms optimization of s-acetonyl cysteine (CSA) \ldots	581
2.57	The small molecule used for bonded terms optimization of S-hydroxycysteine (CSO)	582
2.58	The small molecule used for bonded terms optimization of (CSP)	583
2.59	The small molecule used for bonded terms optimization of (CSPP)	584
2.60	The small molecule used for bonded terms optimization of S-mercaptocysteine (CSS)	585
2.61	The small molecule used for bonded terms optimization of cysteine-S-sulfonicacid (CSU) .	586
2.62	The small molecule used for bonded terms optimization of S-oxycysteine (CSX)	587
2.63	The small molecule used for bonded terms optimization of 7-chloro-tryptophan (CTE) $$.	588
2.64	The small molecule used for bonded terms optimization of 4-chloro-threonine (CTH)	589
2.65	The small molecule used for bonded terms optimization of N-carboxymethionine (CXM) .	590
2.66	The small molecule used for bonded terms optimization of 2-amino-6-(cystein-S-yl)-5-ox	
	o-hexanoicacid (CYD)	591
2.67	The small molecule used for bonded terms optimization of 5-[2-(2-amino-2-carbamoyl-et hylsulfanyl)-acetylamino]-2-(3,6-dihydroxy-9,9a-dihydro-3h-xanthen-9-yl)-benzoicacid (CVF)	502
2 68	The small melocule 1 used for handed terms optimization of 2 amine A (amine 3 ave pr	094
2.00	onvesultanvestion of 2-annio-4-(annio-5-oxo-pr	503
2 60	The small molecule 2 used for handed terms optimization of 2 amine 4 (amine 3 ave pr	090
2.03	onvisultanvication of 2-annio-4-(annio-5-oxo-pr	504
2 70	The small molecule used for bonded terms optimization of 2 amino 3 phosphonomethyle	034
2.10	ulfanyl propionicacid (CVO)	505
2 71	The small molecule used for bonded terms optimization of 2-amino-3-phosphonomethyls	0.00
2.11	ulfanyl-propionicacid (CVOP)	506
2 72	The small molecule used for bonded terms ontimization of NG NG-dimethyl-L-arginine	0.00
2.12	(DA2)	597
2.73	The small molecule used for bonded terms optimization of 3,4-Dihydroxy-phenylalanine (DAH)	598
2.74	The small molecule used for bonded terms optimization of 3.5-dibromotyrosine (DBY)	599
2.75	The small molecule used for bonded terms optimization of 3-(benzovlamino)-L-alanine	
	(DBZ)	600
2.76	The small molecule used for bonded terms optimization of 3-[4-(2-amino-2-carboxy-ethy	
	l)-1H-imidazol-2-vl]-1-carbamovl-propvl-trimethyl-ammonium (DDE)	602
2.77	The small molecule 1 used for bonded terms optimization of 3-[4-(2-amino-2-carboxy-et	00-
	hvl)-1H-imidazol-2-vll-1-carbamovl-propyl-trimethvl-ammonium (DDEP)	603
2.78	The small molecule 2 used for bonded terms optimization of 3-[4-(2-amino-2-carboxy-et	000
	hvl)-1H-imidazol-2-vll-1-carbamovl-propyl-trimethyl-ammonium (DDEP)	604
2.79	The small molecule used for bonded terms optimization of 3.3-dihydroxy-alanine (DDZ)	605
2.80	The small molecule used for bonded terms optimization of (DYAP)	606
2.81	The small molecule used for bonded terms optimization of (3S)-3-amino-3-[(4Z)-1-(carb	
	oxymethyl)-4-[(4-hydroxyphenyl)methylidene]-5-oxo-imidazol-2-yl]propanoicacid (DYG)	607
2.82	The small molecule used for bonded terms optimization of 3,4-diffuoro-phenylalanine (F2F)608
2.83	The small molecule used for bonded terms optimization of 4-fluoro-glutamicacid (FGA4).	609
2.84	The small molecule used for bonded terms optimization of 2-aminopropanedioicacid (FGL)610
2.85	The small molecule used for bonded terms optimization of N5-formyl-N5-hydroxy-L-orn	·
	ithine (FHO)	611
2.86	The small molecule used for bonded terms optimization of Trifluoroalanine (FLA)	612
2.87	The small molecule used for bonded terms optimization of N-formylmethionine (FME)	613
2.88	The small molecule used for bonded terms optimization of (2-furyl)-alanine (FUA2)	614
2.89	The small molecule 1 used for bonded terms optimization of 3-fluoro-valine (FVAL)	615
2.90	The small molecule 2 used for bonded terms optimization of 3-fluoro-valine (FVAL)	616
2.91	$\label{eq:constraint} \begin{array}{l} The small molecule 1 used for bonded terms optimization of (2S)-2-amino-6-[1-[(2R,3R,4S,5S)-5-(6-aminopurin-9-yl)-3,4-dihydroxy-oxolan-2-yl]methoxy-hydroxy optimization of (2S)-2-aminopurin-9-yl]methoxy-hydroxy optimization of (2S)-2-aminopurin-9-yl]methoxy-hydroxy optimization of (2S)-2-yl]methoxy-hydroxy optimization op$	R)-
	-phosphoryl] oxy-hydroxy-phosphoryl] oxymethyl] - 3, 4-dihydroxy-oxolan-2-yl] sulfanyleth hydroxy-byll oxymethyl] - 3, 4-dihydroxy-oxolan-2-yl] sulfanyleth hydroxy-byll oxymethyl] - 3, 4-dihydroxy-byll oxymethyll oxymethyl] - 3, 4-dihydroxy-byll oxymethyll oxyme	
	ylideneamino]hexanoicacid (FZN)	617

2.92 The small molecule 2 used for bonded terms optimization of (2S)-2-amino-6-[1-[(2R,3R,4S,5R 5-[[[((2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxy-oxolan-2-yl]methoxy-hydroxy -phosphorylloxy-hydroxy-phosphorylloxymethyll-3 4-dihydroxy-oxolan-2-yl]sulfapyleth	₹)-
-phosphotyljoxy-nydroxy-phosphotyljoxymethylj-0,4-dmydroxy-oxolan-2-yljounanyreth	610
2.93 The small molecule used for bonded terms optimization of 2-amino-3-guanidinopropionic	010
acid (GDPR)	620
2.94 The small molecule used for bonded terms optimization of Canavanine (GGB)	622
2.95 The small molecule used for bonded terms optimization of (2s.4s)-2.5-diamino-4-hydrox	
v-5-oxopentanoicacid (GHG)	624
2.96 The small molecule 1 used for bonded terms optimization of Thioglycin (GL3)	625
2.50 The small molecule 2 used for bonded terms optimization of Thioglycin (CL3)	627
2.97 The small molecule 2 used for bonded terms optimization of rinogrychi (GL5) \ldots \ldots	620
2.98 The small molecule used for bolded terms optimization of glutaminenydroxamate (HGA)	028
2.99 The small molecule used for bonded terms optimization of 4-methyl-histidine (HICP)	629
2.100The small molecule used for bonded terms optimization of NDI-phosphonohistidine (HIP)	630
2.101The small molecule used for bonded terms optimization of 3-(1H-1,2,3-triazol-5-yl)-L-al	
anine (HIX) \ldots	631
2.102The small molecule used for bonded terms optimization of (4S)-4-[(2S)-2-amino-3-oxop	
ropyl sulfanyl-L-homoserine (HTI)	632
2.103The small molecule used for bonded terms optimization of beta-hydroxy-tryptophane	
(HTR)	633
2.104The small molecule used for bonded terms optimization of N-(2-methylpropyl)glycine (I4G)	634
2 105 The small molecule 1 used for bonded terms optimization of alpha-amino-2-indanacetica	001
cid (IGL)	636
2 106The small molecule 2 used for hended terms entimization of alpha amine 2 independence	000
2.100 The small molecule 2 used for bolided terms optimization of alpha-annio-2-indanacetica	627
$CIU(IGL) \dots If I I I I I I I I I I I I I I I I I $	037
2.107The small molecule used for bonded terms optimization of (2S)-2-amino-o-[[3-hydroxy-2-	
methyl-5-(phosphonooxymethyl)pyridin-4-yl]methylideneamino]hexanoicacid (ITTP)	639
2.108The small molecule used for bonded terms optimization of 3-iodo-tyrosine (IYR)	640
2.109The small molecule used for bonded terms optimization of S-(pyridin-3-ylcarbonyl)-L-cy	
steine (JJJ)	641
2.110The small molecule used for bonded terms optimization of N-6-crotonyl-L-lysine (KCR) .	643
2.111The small molecule used for bonded terms optimization of lysineNZ-carboxylicacid (KCX)	644
2.112The small molecule used for bonded terms optimization of (2S)-2-amino-6-[(1-hydroxy-	
1-oxo-propan-2-vlidene)amino hexanoicacid (KPI)	645
2.113The small molecule used for bonded terms optimization of kynurenine (KYN)	646
2 114 The small molecule 1 used for bonded terms optimization of Penicillamine (LE1)	647
2.115The small molecule 2 used for bonded terms optimization of Penicillamine (LE1)	648
2.116 The small molecule 1 used for bonded terms optimization of $(4s)$ 5 fluore 1 lougine (LEF)	650
2.117 The small molecule 2 used for bonded terms optimization of $(4s)$ 5 fluoro 1 leucine (LEF)	000 651
2.117 The small molecule 2 used for bolded terms optimization of $(4s)$ -5-huoro-1-feucine (LEF)	091
2.118 I ne small molecule used for bonded terms optimization of (25)-2-amino-o-[[3-nydroxy-2-	05 D
methyl-5-(phosphonooxymethyl)pyridin-4-yl]methylideneamino]hexanoicacid (LLPP)	653
2.119The small molecule used for bonded terms optimization of vinylglycine (LVG)	654
2.120The small molecule used for bonded terms optimization of N ⁷ -(2-coenzymeA)-propanoy	
l-lysine (LYX)	655
2.121 The small molecule used for bonded terms optimization of S-(hydroxymethyl)-L-cysteine	
(M0H)	656
2.122The small molecule used for bonded terms optimization of 3,3-dimethyl-methioninesulfo	
xide (M2S)	657
2.123The small molecule used for bonded terms optimization of N-trimethyllysine (M3L)	658
2.124The small molecule used for bonded terms optimization of N-methyl-L-alanine (MAA).	660
2.125The small molecule used for bonded terms optimization of NZ-(1-carboxyethyl)-lysine	
(MCL)	661
2 126The small molecule used for bonded terms optimization of malonyleysteine (MCS)	662
2.120 The small molecule used for bonded terms optimization of $[2, (/1S), 1]$ aminosthyl) 4 me	002
thulidana 5 and 4.5 dibudra 111 imidagal 1 ullasationaid (MDO)	661
2.128 The small male sub-scale 2 word for here did terms activization of $[2, (/12)]$	004
2.1201 ne sman molecule 2 used for bonded terms optimization of [2-((15)-1-aminoethyl)-4-me	005
tnyiidene-5-oxo-4,5-dihydro-1H-imidazol-1-yi]aceticacid (MDO)	005
2.1291 ne small molecule used for bonded terms optimization of hydroxy-l-methionine (MEO)	667
2.1301 he small molecule used for bonded terms optimization of N1-methylated histidine (MHS)	668
2.131 The small molecule used for bonded terms optimization of N1-methylated histidine (MHSP)	669
2.132The small molecule used for bonded terms optimization of N1-phosphonohistidine (NEP)	670

2.133 The small molecule used for bonded terms optimization of meta-nitro-tyrosine (NIY)	671
2.134The small molecule 1 used for bonded terms optimization of (4Z)-4-(4-hydroxybenzylide ne)-2-[3-(methylthio)propanimidoyl]-5-oxo-4acetic5-dihydro-1H-imidazol-1-ylaceticacid	
(NRQ)	672
2.135 The small molecule 2 used for bonded terms optimization of (4Z)-4-(4-hydroxybenzylide	
ne)-2-[3-(methylthio)propanimidoyl]-5-oxo-4acetic5-dihydro-1H-imidazol-1-ylaceticacid	
(NRQ)	673
2.136 The small molecule 3 used for bonded terms optimization of (47) -4- $(4$ -hydroxybenzylide	010
ne)-2-[3- (methylthio)propanimidoyl]-5-oyo-4acetic5-dihydro-1H-imidayol-1-ylaceticacid	
(NRO)	675
2.137The small molecule used for bonded terms optimization of o-acetylserine (OAS)	676
2.138 The small molecule 1 used for bonded terms optimization of $(2s)_2$ -amino-4 4-diffuorob	010
utanoicacid (OBE)	677
2 130 The small molecule 2 used for handed terms optimization of $(2s)_{-2}$ -amino-4 4-diffuorab	011
utanoicacid (OBF)	678
2.140 The small molecule used for handed terms entimization of cysteinesulfonicacid (OCS)	670
2.141 The small molecule used for bonded terms optimization of s (2 hydroxyothyl) l systeme	015
(OCV)	680
2.142The small melecule used for handed terms entimization of (hete P) 2 shlere hete hydrox	080
y I tyrosing (OMV)	681
2 143 The small melocule used for hended terms entimization of 4 henzoul phenylelenine (PRF)	685
2.145 The small molecule used for bonded terms optimization of 4-benzoyi-phenylaianne (FDF)	683
2.145 The small molecule used for bonded terms optimization of aspartylphosphate (PHDP)	684
2.146 The small molecule used for bonded terms optimization of $1 [(2R) 2]$ carboxy 2 hydroxyce	004
2.1401 he small molecule used for bolided terms optimization of $1-[(2R)-2-carboxy-2-nydroxye thull L proline (DP4)$	695
2.147The small molecule 1 used for bonded terms entimization of Thioproline (DDS)	697
2.147 The small molecule 1 used for bonded terms optimization of Thioproline (PRS)	601
2.140 The small molecule 2 used for bonded terms optimization of (PR) aming(2 nitrophonyl) at	009
2.1491 ne small molecule used for bonded terms optimization of $(2R)$ -amino(2-mtropnenyi)eth $(2R)$ -amino(2-mtropnenyi)eth	600
allocated (\mathbf{P}, \mathbf{V})	090 601
2.150 The small molecule 1 used for bonded terms optimization of 2-hydroxy-L-profine (PAU).	602
2.151 The small molecule 2 used for bonded terms optimization of S asymptoxy-L-profile (PXO) .	604
2.152 The small molecule used for bonded terms optimization of S $[(1S)]$ as a shown 1 (phosph	094
2.155 The small molecule used for bonded terms optimization of 5-[(15)-1-carboxy-1-(phosphosphosphosphosphosphosphosphosphos	COF
2 154The small molecule 1 used for bonded terms entimization of 2 [(2.2.5.5 tetramethyl 1 ev	095
2.154 The small molecule T used for bolided terms optimization of 3-[(2,2,5,5-tetramethyl-1-ox	607
2.5 -2,5-qmy qro-rm-pyrronum-5-yr) methyl qrisunanyr-D-alamne (RTA) $\ldots \ldots \ldots \ldots \ldots$	097
2.155 The small molecule 2 used for bolided terms optimization of 3 -[(2,2,0,5-terramethyl-1-ox	608
2.56 The small melocule used for handed terms entimization of $O[(S)$ hydroxy(methyl) block	090
borvil L sorino (SBC)	600
2 157The small molecule used for handed terms optimization of O benzylsulfonyl-serine (SEB)	700
2.158 The small molecule used for bonded terms optimization of O-IN N-dimethylphosphoram	100
idatel-L-serine (SEN)	702
2.159 The small molecule used for bonded terms optimization of $O_{-}[(S)_{-}$ methyl(1-methyletho	102
xy)phosphoryll-L-serine (SGB)	703
2 160 The small molecule used for bonded terms optimization of S-nitroso-cysteine (SNC)	704
2.160 The small molecule used for bonded terms optimization of Styrylalanine (STVA)	705
2.162 The small molecule used for bonded terms optimization of (3-amino-2.5-diovo-1-pyrrolid	100
invl)aceticacid (SUI)	706
2 163 The small molecule used for bonded terms optimization of O-[(B)-(dimethylamino)(etho	100
xy)phosphoryll-L-serine (SUN)	708
2 164 The small molecule used for bonded terms optimization of O-[(R)-ethoxy(methyl)phosp	100
horvll-L-serine (SVX)	709
2 165 The small molecule used for bonded terms optimization of 2-[(4Z)-2-[(1B)-1-amino-2-by	100
droxy-ethyll-4-(1H-indol-3-vlmethylidene)-5-oxo-imidazol-1-vllethanoicacid (SWG)	710
2.166 The small molecule 1 used for bonded terms optimization of $3-(2-tetrazolvl)$ -alapine (TEZA))711
2.167 The small molecule 2 used for bonded terms optimization of 3-(2-tetrazolyl)-alarine ($TEZA$))719
2.168 The small molecule used for bonded terms optimization of 2-(trifluoromethyl)-phenylol	,
vcine (TFG2)	713
2.169The small molecule used for bonded terms optimization of 5.5.5-trifluoro-leucine (TFLE)	714
2.170The small molecule used for bonded terms optimization of 2-thienvlglvcine (THG2)	715
	0

2.171The small molecule used for bonded terms optimization of thio-citrulline (THIC)	716
2.172 The small molecule 1 used for bonded terms optimization of 3-(2-thienyl)-alanine (TIH) .	717
2.173The small molecule 2 used for bonded terms optimization of 3-(2-thienyl)-alanine (TIH) .	718
2.174The small molecule used for bonded terms optimization of 1-hydroperoxy-L-tryptophan	
(TOX)	719
2.175The small molecule 1 used for bonded terms optimization of 5-(2-carboxy-2-aminoethyl)-	
2-hydroxy-1,4-benzoquinone (TPQ)	721
2.176The small molecule 2 used for bonded terms optimization of 5-(2-carboxy-2-aminoethyl)-	
2-hydroxy-1,4-benzoquinone (TPQ)	722
2.177The small molecule used for bonded terms optimization of 5-(2-carboxy-2-aminoethyl)-	
2-hydroxy-1,4-benzoquinone (TPQP)	723
2.178The small molecule used for bonded terms optimization of (S)-2-amino-3-(6,7-dihydro-6-	
imino-7-oxo-1H-indol-3-yl)propanoicacid (TQQ)	724
2.179 The small molecule used for bonded terms optimization of 2-hydroxy-tryptophan (TRO).	725
2.180The small molecule used for bonded terms optimization of 2-amino-3-(6,7-dioxo-6,7-dihy	
dro-1H-indol-3-yl)-propionicacid (TRQ)	726
2.181The small molecule used for bonded terms optimization of TRW3-(2-amino-3-hydroxy-	
propyl)-6-(N'-cyclohexyl-hydrazino)octahydro-indol-7-ol (TRW)	727
2.182The small molecule used for bonded terms optimization of (2S,3S,4R)-2-amino-3,4-dihy	
droxy-3-methylpentanoicacid (TS9)	728
2.183The small molecule used for bonded terms optimization of O-sulfo-L-tyrosine (TYS)	729
2.184 The small molecule used for bonded terms optimization of (4-thiazolyl)-alanine (TZA4) .	730
2.185 The small molecule used for bonded terms optimization of S-cyano-L-cysteine (XCN) \ldots	731
2.186 The small molecule 1 used for bonded terms optimization of $[(4Z)-2-[(1Z)-ethanimidoy]]-$	
4- (4-hydroxybenzylidene)-5-oxo-4,5-dihydro-1h-imidazol-1-yl]aceticacid (XYG)	732
2.187The small molecule 2 used for bonded terms optimization of $[(4Z)-2-[(1Z)-ethanimidoy]]-$	
4- (4-hydroxybenzylidene)-5-oxo-4,5-dihydro-1h-imidazol-1-yl]aceticacid (XYG)	733
2.188 The small molecule 3 used for bonded terms optimization of $[(4Z)-2-[(1Z)-ethanimidoy]]-$	
4- (4-hydroxybenzylidene)-5-oxo-4,5-dihydro-1h-imidazol-1-yl]aceticacid (XYG)	734
$2.189 \mathrm{The}\ \mathrm{small}\ \mathrm{molecule}\ \mathrm{used}\ \mathrm{for}\ \mathrm{bonded}\ \mathrm{terms}\ \mathrm{optimization}\ \mathrm{of}\ \mathrm{cysteine-s-acetamide}\ \mathrm{(YCM)}$. $'$	736
The details of MD simulations for proteins containing modified amino acids 7	737
References 7	738

4 References

3

List of Figures

S1	Regions of the non-standard amino acids represented by the CGenFF (blue) or CHARMM36 (red) atom types for the A) sidechain modified and B) backbone modified amino acids.	56
S2	Chemical structures of nonstandard amino acids parametrized in this work. Sidechains and amino acids are represented for sidechain modified and backbone modified amino	
	acids, respectively.	57
S3	Percentage of molecules vs RMS deviation between ab initio and $CHARMM$ electrostatic	
	potential with A) predicted parameters and with B) optimized parameters. \ldots \ldots	71
S4	Percentage number of rotatable dihedrals vs RMS deviation between <i>ab initio</i> and CHARMM	
	energy at minima points with A) predicted parameters and with B) optimized parameters.	71
S5	The molecule used for water complex calculations corresponding to 3-methyl-1H-indol-	
	7-olate, with possible interacting water positions. NOTE, only one water molecule was	-0
C C	included in each calculation. \ldots	79
50	I ne molecule used for water complex calculations corresponding to 2- (methylsulfanyl)p	
	was included in each calculation	Q 1
S 7	The molecule used for water complex calculations corresponding to $(3R)$ -2- (ethylsulfany	01
51	1)-5-methyl-2.3-dihydro-1.2-oxazole, with possible interacting water positions. NOTE.	
	only one water molecule was included in each calculation.	83
$\mathbf{S8}$	The molecule used for water complex calculations corresponding to 5-methyl-2,3-dihydr	
	o-1,2-oxazole, with possible interacting water positions. NOTE, only one water molecule	
	was included in each calculation.	85
$\mathbf{S9}$	The molecule used for water complex calculations corresponding to 2-oxopentanoicacid,	
	with possible interacting water positions. NOTE, only one water molecule was included	
	in each calculation.	87

S10	The molecule used for water complex calculations corresponding to (ethylsulfanyl)peroxol, with possible interacting water positions. NOTE, only one water molecule was included	
	in each calculation.	89
S11	The molecule used for water complex calculations corresponding to [(difluoromethyl)sul fanyl]ethane, with possible interacting water positions. NOTE, only one water molecule	0.1
S12	The molecule used for water complex calculations corresponding to 2-fluoro-4-methyl-2,3- dihydro-1H-imidazole, with possible interacting water positions. NOTE, only one water	91
~	molecule was included in each calculation.	93
S13	The molecule used for water complex calculations corresponding to 2-fluoro-5-methyl-1 H-imidazole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation	95
S14	The molecule used for water complex calculations corresponding to 2-fluoro-4-methyl-1 H-imidazole, with possible interacting water positions. NOTE, only one water molecule	50
S15	was included in each calculation	97
	included in each calculation.	99
S16	The molecule used for water complex calculations corresponding to 6-methyl-4H-thieno [3,2-b]pyrrole, with possible interacting water positions. NOTE, only one water molecule	
S17	was included in each calculation	101
	included in each calculation.	103
S18	The molecule used for water complex calculations corresponding to 4-fluoro-3-methyl-1 H-indole, with possible interacting water positions. NOTE, only one water molecule was	
_	included in each calculation.	107
S19	The molecule used for water complex calculations corresponding to (2R)-N-ethyl-2-hy droxypropapamide with possible interacting water positions. NOTE only one water	
	molecule was included in each calculation.	109
S20	The molecule used for water complex calculations corresponding to 3-methyl-1H-indol- 4-olate, with possible interacting water positions. NOTE, only one water molecule was	
	included in each calculation.	111
S21	The molecule used for water complex calculations corresponding to 3-methyl-1H-indol- 4-amine, with possible interacting water positions. NOTE, only one water molecule was	
S22	included in each calculation	113
S23	positions. NOTE, only one water molecule was included in each calculation	115
520	possible interacting water positions. NOTE, only one water molecule was included in each calculation	117
S24	The molecule used for water complex calculations corresponding to 2-aminopentanoicacid, with possible interacting water positions. NOTE, only one water molecule was included	111
	in each calculation	119
S25	The molecule used for water complex calculations corresponding to (3R)-1-ethyl-3- (ethy lsulfanyl)pyrrolidine-2,5-dione, with possible interacting water positions. NOTE, only	101
S26	one water molecule was included in each calculation	121
	hexa-2,5-dien-1-amine, with possible interacting water positions. NOTE, only one water	
S27	molecule was included in each calculation	125
	included in each calculation.	127
S28	The molecule used for water complex calculations corresponding to [(S)-amino(methylsu	
0.00	lfanyl)methyl](methyl)amine, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.	129
529	I ne molecule used for water complex calculations corresponding to (25)-2-hydroxypropa namide with possible interacting water positions. NOTE only one water molecule was	
	included in each calculation.	131

S30	The molecule used for water complex calculations corresponding to [(1S)-1-hydroxyethox y]sulfonicacid, with possible interacting water positions. NOTE, only one water molecule	~
S31	was included in each calculation	3
S32	oxy)phosphinicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation	5
S33	pylguanidine, with possible interacting water positions. NOTE, only one water molecule was included in each calculation	7
	ticacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation	9
S34	The molecule used for water complex calculations corresponding to (2S)-2-[(1S)-1-hydrox yethyl]amino-N-methylpropanamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.	1
S35	The molecule used for water complex calculations corresponding to 1-ethyl-2lambda4-tri aza-1,2-diene, with possible interacting water positions. NOTE, only one water molecule	1
S36	was included in each calculation	3
S37	was included in each calculation. 145 The molecule used for water complex calculations corresponding to trimethyl-1H-imida zol-5-ol, with possible interacting water positions. NOTE, only one water molecule was	5
S38	included in each calculation	7
S39	interacting water positions. NOTE, only one water molecule was included in each calculation. 149 The molecule used for water complex calculations corresponding to (1R)-1-phenyletha	9
S40	included in each calculation	1
S41	was included in each calculation	3
S42	included in each calculation	5
S43	included in each calculation	7
S44	hylcarbamate, with possible interacting water positions. NOTE, only one water molecule was included in each calculation	9
544	xo-4,5-dihydro-1H-imidazol-1-yl)acetaldehyde, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.	1
S45	The molecule used for water complex calculations corresponding to 3-chloro-D-alanine, with possible interacting water positions. NOTE, only one water molecule was included in each calculation	•
S46	The molecule used for water complex calculations corresponding to O-ethylhydroxylamine, with possible interacting water positions. NOTE, only one water molecule was included	2
S47	in each calculation	5
S48	included in each calculation	7
S49	in each calculation	9
	d, with possible interacting water positions. NOTE, only one water molecule was included in each calculation	1

S50	The molecule used for water complex calculations corresponding to (2R)-2- (ethylsulfany l)-2-hydroxyaceticacid, with possible interacting water positions. NOTE, only one water	1 = 0
S51	molecule was included in each calculation	173
	-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.	175
S52	The molecule used for water complex calculations corresponding to propylurea, with	
	calculation.	179
S53	The molecule used for water complex calculations corresponding to 2-(ethyldisulfanyl)e	
	than-1-ol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation	181
S54	The molecule used for water complex calculations corresponding to 2-(ethylsulfanyl)but	101
	anedioicacid, with possible interacting water positions. NOTE, only one water molecule	
S 55	was included in each calculation. \dots calculations corresponding to $(47)_{-4}$ ethylidene	183
500	-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, with possible interacting water positions.	
050	NOTE, only one water molecule was included in each calculation.	185
S56	The molecule used for water complex calculations corresponding to trimethyl-1H-imida zol-5-ol with possible interacting water positions. NOTE, only one water molecule was	
	included in each calculation.	189
S57	The molecule used for water complex calculations corresponding to 4-ethylidenecycloh	
	exa-2,3-dien-1-one, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.	191
S58	The molecule used for water complex calculations corresponding to (4Z)-4-ethylidene	
	-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, with possible interacting water positions.	109
S59	The molecule used for water complex calculations corresponding to (4Z)-4-ethylidene	195
	-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, with possible interacting water positions.	
560	NOTE, only one water molecule was included in each calculation.	197
500	ne)acetamide, with possible interacting water positions. NOTE, only one water molecule	
Gat	was included in each calculation.	201
S61	The molecule used for water complex calculations corresponding to (4Z)-4-ethylidene	
	NOTE, only one water molecule was included in each calculation.	203
S62	The molecule used for water complex calculations corresponding to $N-[(1E)-1-[(4Z)-4-$	
	possible interacting water positions. NOTE, only one water molecule was included in each	
<i>a</i>	calculation.	207
S63	The molecule used for water complex calculations corresponding to 1-(methylsulfanyl)p ropan-2-one with possible interacting water positions NOTE only one water molecule	
	was included in each calculation.	209
S64	The molecule used for water complex calculations corresponding to ethane-SO-thioperoxo	
	in each calculation.	211
S65	The molecule used for water complex calculations corresponding to ethanedithioperoxol,	
	with possible interacting water positions. NOTE, only one water molecule was included in each calculation.	213
S66	The molecule used for water complex calculations corresponding to (ethylsulfanyl)sulfo	
	nicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation	915
S67	The molecule used for water complex calculations corresponding to ethane-SO-thioperoxo	210
	l, with possible interacting water positions. NOTE, only one water molecule was included	
S68	In each calculation. \dots The molecule used for water complex calculations corresponding to N-I(1S)-1-(methyl	217
	carbamoyl)ethyl]carbamate, with possible interacting water positions. NOTE, only one	
960	water molecule was included in each calculation.	219
509	pan-2-one, with possible interacting water positions. NOTE, only one water molecule was	
	included in each calculation	221

S70	The molecule used for water complex calculations corresponding to 2-(ethylsulfanyl)- N-methylacetamide with possible interacting water positions. NOTE only one water	
	molecule was included in each calculation.	. 223
S71	The molecule used for water complex calculations corresponding to 9 -methyl- 9 H-xanthene	
	-3,6-bis(olate), with possible interacting water positions. NOTE, only one water molecule	
0.70	was included in each calculation.	. 225
572	The molecule used for water complex calculations corresponding to 1-(ethylsulfanyl)eth	
	included in each calculation	997
S73	The molecule used for water complex calculations corresponding to (2S)-2-azaniumylpro	. 221
2.0	panoate, with possible interacting water positions. NOTE, only one water molecule was	
	included in each calculation.	. 229
S74	The molecule used for water complex calculations corresponding to [(ethylsulfanyl)met	
	hyl]phosphonicacid, with possible interacting water positions. NOTE, only one water	
	molecule was included in each calculation.	. 231
575	The molecule used for water complex calculations corresponding to [(ethylsulfanyl)met	
	molecule was included in each calculation	9 33
S76	The molecule used for water complex calculations corresponding to N-ethylbenzamide.	. 200
2.0	with possible interacting water positions. NOTE, only one water molecule was included	
	in each calculation.	. 235
S77	The molecule used for water complex calculations corresponding to 4-ethyl-2-methyl-1H-	
	imidazole, with possible interacting water positions. NOTE, only one water molecule was	~~-
0.70	included in each calculation.	. 237
578	The molecule used for water complex calculations corresponding to $(2R)$ -2-(trimethyla mine) propagamide, with possible interacting water positions. NOTE only one water	
	molecule was included in each calculation	239
S79	The molecule used for water complex calculations corresponding to 2.4-dimethyl-2.3-di	- 200
	hydro-1H-imidazole, with possible interacting water positions. NOTE, only one water	
	molecule was included in each calculation	. 241
S80	The molecule used for water complex calculations corresponding to 2-ethyl-1H-imidazole,	
	with possible interacting water positions. NOTE, only one water molecule was included	0.40
C 0 1	In each calculation.	. 243
201	possible interacting water positions NOTE only one water molecule was included in each	
	calculation.	. 245
S82	The molecule used for water complex calculations corresponding to (4Z)-4-ethylidene	
	-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, with possible interacting water positions.	
	NOTE, only one water molecule was included in each calculation.	251
S83	The molecule used for water complex calculations corresponding to (ethylsulfanyl)ethane,	
	with possible interacting water positions. NOTE, only one water molecule was included in each calculation	955
S84	The molecule used for water complex calculations corresponding to 1 2-diffuoro-4-methyl	. 200
501	benzene, with possible interacting water positions. NOTE, only one water molecule was	
	included in each calculation.	. 257
S85	The molecule used for water complex calculations corresponding to 2-fluorobutanoicacid,	
	with possible interacting water positions. NOTE, only one water molecule was included	
Goo	in each calculation.	. 259
S86	The molecule used for water complex calculations corresponding to N-ethyl-N-hydroxyf	
	included in each calculation	263
S87	The molecule used for water complex calculations corresponding to 2-amino-3.3.3-trif	. 200
201	luoropropanoicacid, with possible interacting water positions. NOTE, only one water	
	molecule was included in each calculation.	. 265
S88	The molecule used for water complex calculations corresponding to (2S)-2-formamido-N-	
	methylpropanamide, with possible interacting water positions. NOTE, only one water	0.05
Con	molecule was included in each calculation.	. 267
209	enzene with possible interacting water positions. NOTE only one water molecule was	
	included in each calculation.	269

S90	The molecule used for water complex calculations corresponding to 6-fluoro-3-methyl-1 H-indole, with possible interacting water positions. NOTE, only one water molecule was	
S91	included in each calculation	. 271
809	H-indole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.	. 273
592	possible interacting water positions. NOTE, only one water molecule was included in each calculation	275
S93	The molecule used for water complex calculations corresponding to 2-fluoro-2-methylpr opane, with possible interacting water positions. NOTE, only one water molecule was	
$\mathbf{S94}$	included in each calculation	. 277
S95	thyl-5-[(1Z)-1- (methylimino)ethyl]sulfanyloxolane-3,4-diol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation The molecule used for water complex calculations corresponding to (Z)-methyl[1-(meth	. 279
	ylsulfanyl)ethylidene]amine, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.	. 281
S96	The molecule used for water complex calculations corresponding to N''-ethoxyguanidine, with possible interacting water positions. NOTE, only one water molecule was included	
$\mathbf{S97}$	in each calculation	. 283
S98	included in each calculation	. 285
500	-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.	. 287
555	mide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.	. 291
S100	The molecule used for water complex calculations corresponding to 4-ethyl-1-methyl-2,3- dihydro-1H-imidazole, with possible interacting water positions. NOTE, only one water	202
S101	The molecule used for water complex calculations corresponding to (5-ethyl-1H-imidazo l-1-yl)phosphonicacid, with possible interacting water positions. NOTE, only one water	. 293
S102	molecule was included in each calculation.	. 295
S103	included in each calculation	. 297
	possible interacting water positions. NOTE, only one water molecule was included in each calculation.	. 299
S104	The molecule used for water complex calculations corresponding to (1R)-1-(methylsulfan yl)ethan-1-ol, with possible interacting water positions. NOTE, only one water molecule	201
S105	The molecule used for water complex calculations corresponding to $(1R)$ -1- $(1H$ -indol-3-y l)ethan-1-ol, with possible interacting water positions. NOTE, only one water molecule	. 501
S106	was included in each calculation	. 303
S107	molecule was included in each calculation	. 305
C100	mine, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.	. 307
5108	o-1H-indene, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.	309
S109	The molecule used for water complex calculations corresponding to 4-[(E)-(ethylimino)m ethyl]-2,5-dimethylpyridin-3-olate, with possible interacting water positions. NOTE, only	200
	one water molecule was included in each calculation.	. 311

S110 The molecule used for water complex calculations corresponding to (ethylsulfanyl)(pyri	
din-3-yl)methanone, with possible interacting water positions. NOTE, only one water	
molecule was included in each calculation.	. 313
S111 The molecule used for water complex calculations corresponding to (2E)-N-pentylbut-2-	
included in each calculation	315
S112 The molecule used for water complex calculations corresponding to pentylcarbamicacid,	. 010
with possible interacting water positions. NOTE, only one water molecule was included	
in each calculation.	. 317
S113 The molecule used for water complex calculations corresponding to $(2E)$ -2- (methylim)	
iniumyl)propanoate, with possible interacting water positions. NOTE, only one water	01.0
molecule was included in each calculation.	. 319
ropan-1-one with possible interacting water positions. NOTE, only one water molecule	
was included in each calculation.	. 321
S115 The molecule used for water complex calculations corresponding to propane-2-thiol, with	
possible interacting water positions. NOTE, only one water molecule was included in each	
$\operatorname{calculation}$. 323
S116 The molecule used for water complex calculations corresponding to 2-methylpropane-	
2-thiol, with possible interacting water positions. NOTE, only one water molecule was	0.0 5
Included in each calculation	. 325
with possible interacting water positions. NOTE only one water molecule was included	
in each calculation.	. 327
S118 The molecule used for water complex calculations corresponding to 1-fluoro-2-methylpr	
opane, with possible interacting water positions. NOTE, only one water molecule was	
included in each calculation.	. 329
S119 The molecule used for water complex calculations corresponding to $2,5$ -dimethyl-4-[(E)-	
(methylimino)methyl]pyridin-3-olate, with possible interacting water positions. NOTE,	991
S120 The molecule used for water complex calculations corresponding to 3-methylbutanoicacid	. 331
with possible interacting water positions. NOTE, only one water molecule was included	
in each calculation.	. 333
S121 The molecule used for water complex calculations corresponding to 2-methylpropanal,	
with possible interacting water positions. NOTE, only one water molecule was included	
in each calculation.	. 335
S122 The molecule used for water complex calculations corresponding to (2S)-N-methyl-2-(me	
thylsulfanyl)propanamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation	227
S123 The molecule used for water complex calculations corresponding to (ethylsulfanyl) met	. 557
hanol, with possible interacting water positions. NOTE, only one water molecule was	
included in each calculation.	. 339
S124 The molecule used for water complex calculations corresponding to (R)-(2,2-dimethylpr	
opyl)(methyl)-lambda3-sulfanol, with possible interacting water positions. NOTE, only	
one water molecule was included in each calculation.	. 341
S125 The molecule used for water complex calculations corresponding to (25)-N-methyl-2-(N-methylagetemide) propagation with pagaible interacting water pagitions. NOTE	
one water molecule was included in each calculation	343
S126 The molecule used for water complex calculations corresponding to N.N-dimethylacet	. 010
amide, with possible interacting water positions. NOTE, only one water molecule was	
included in each calculation.	. 345
S127 The molecule used for water complex calculations corresponding to (2E)-2- (ethylimino) $\rm p$	
ropanoate, with possible interacting water positions. NOTE, only one water molecule was	o (=
Included in each calculation.	. 347
opropanoicacid with possible interacting water positions. NOTE only one water melecule	
was included in each calculation.	349
S129 The molecule used for water complex calculations corresponding to 2.3-Dimethyl-5-met	
hylideneimidazol-4-one, with possible interacting water positions. NOTE, only one water	
molecule was included in each calculation.	. 351

S130 The molecule used for water complex calculations corresponding to N-[(1S)-1-(1-meth vl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-2-vl)ethylacetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation. 353 S131 The molecule used for water complex calculations corresponding to (ethylsulfanyl)met hanol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation. \ldots \ldots 357S132 The molecule used for water complex calculations corresponding to 5-ethyl-1-methyl-2,3dihydro-1H-imidazole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation. 359S133 The molecule used for water complex calculations corresponding to 5-ethyl-1-methyl-1Himidazole, with possible interacting water positions. NOTE, only one water molecule was S134 The molecule used for water complex calculations corresponding to 5-ethyl-1-methyl-2,3dihydro-1H-imidazole, with possible interacting water positions. NOTE, only one water S135 The molecule used for water complex calculations corresponding to 5-ethyl-1-methyl-1Himidazole, with possible interacting water positions. NOTE, only one water molecule was S136 The molecule used for water complex calculations corresponding to methyl(pentyl)amine, with possible interacting water positions. NOTE, only one water molecule was included S137 The molecule used for water complex calculations corresponding to (4-ethyl-1H-imidazo l-1-yl)phosphonicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation. 369S138 The molecule used for water complex calculations corresponding to 4-methyl-2-nitrobe nzen-1-olate, with possible interacting water positions. NOTE, only one water molecule S139 The molecule used for water complex calculations corresponding to N-(propan-2-ylide ne)acetamide, with possible interacting water positions. NOTE, only one water molecule S140 The molecule used for water complex calculations corresponding to (4Z)-4-ethylidene -1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, with possible interacting water positions. S141 The molecule used for water complex calculations corresponding to N-[(1E)-1-[(4Z)-4ethylidene-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethylidene]acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each 379calculation. S142 The molecule used for water complex calculations corresponding to N-[(1E)-1-[(4Z)-4ethylidene-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethylidene]acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each S143 The molecule used for water complex calculations corresponding to 1,1-difluoropropane, with possible interacting water positions. NOTE, only one water molecule was included in each calculation. $\ldots \ldots 383$ S144 The molecule used for water complex calculations corresponding to 2-(ethylsulfanyl)eth an-1-ol, with possible interacting water positions. NOTE, only one water molecule was S145 The molecule used for water complex calculations corresponding to 4-[(1S)-1-hydroxye]thylbenzen-1-olate, with possible interacting water positions. NOTE, only one water S146 The molecule used for water complex calculations corresponding to (4-methylphenyl) (phen yl)methanone, with possible interacting water positions. NOTE, only one water molecule was included in each calculation. 389S147 The molecule used for water complex calculations corresponding to 1,2,3,4,5-pentafluor o-6-methylbenzene, with possible interacting water positions. NOTE, only one water molecule was included in each calculation. 391S148 The molecule used for water complex calculations corresponding to (propanoyloxy)phosp honicacid, with possible interacting water positions. NOTE, only one water molecule was

S149 The molecule used for water complex calculations corresponding to (propanoyloxy)phosp honicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.	5 3 . 395
S150 The molecule used for water complex calculations corresponding to (propanoyloxy)phosp honicacid with possible interacting water positions. NOTE only one water molecule was)
 S151 The molecule used for water complex calculations corresponding to (propanoyloxy)phosp honicacid, with possible interacting water positions. NOTE, only one water molecule was 	. 397 5 5
S152 The molecule used for water complex calculations corresponding to (4Z)-4-ethylidene	. 399 9
 -1,2-dimetnyl-4,5-dihydro-1H-imidazol-5-one, with possible interacting water positions NOTE, only one water molecule was included in each calculation. S153 The molecule used for water complex calculations corresponding to (2S)-N,1-dimethylpy rrolidine-2-carboxamide, with possible interacting water positions. NOTE, only one water 	. 401
molecule was included in each calculation	. 405 9 8
included in each calculation	. 407 1 ,
only one water molecule was included in each calculation	. 409 9
included in each calculation	. 411 1 1
calculation	. 415 ,
in each calculation	. 417 :
S160 The molecule used for water complex calculations corresponding to 2-(ethylsulfanyl)-2- [(trihydroxy lambda4 phoephanyl)oxylpropanoicaeid, with possible interacting water	. 419
 S161 The molecule used for water complex calculations corresponding to 2-methylquinoxaline with possible interacting water positions. NOTE, only one water molecule was included 	. 421 ,
in each calculation	. 423
 water molecule was included in each calculation. S163 The molecule used for water complex calculations corresponding to 3-[(methyldisulfar yl)methyl]-2,5-dihydro-1H-pyrrol-1-ol, with possible interacting water positions. NOTE 	. 425 1
only one water molecule was included in each calculation	. 427 5
included in each calculation	. 429
included in each calculation	. 431 : :
molecule was included in each calculation	. 433 5
included in each calculation	. 435 1 1
in each calculation.	. 437

S169 The molecule used for water complex calculations corresponding to [(1E)-prop-1-en-1- yl]benzene, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.	439
S170 The molecule used for water complex calculations corresponding to 2-[(3S)-3-acetamido-2,5-dioxopyrrolidin-1-yl]-N-methylacetamide, with possible interacting water positions.	1 100
NOTE, only one water molecule was included in each calculation	. 441
one water molecule was included in each calculation	. 443
molecule was included in each calculation	. 445
S174 The molecule used for water complex calculations corresponding to trimethylphosphate, with possible interacting water positions. NOTE, only one water molecule was included	. 447
S175 The molecule used for water complex calculations corresponding to (4Z)-4-ethylidene -1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, with possible interacting water positions.	. 449
NOTE, only one water molecule was included in each calculation	. 451
included in each calculation	. 455
molecule was included in each calculation	. 457
molecule was included in each calculation. S179 The molecule used for water complex calculations corresponding to 1-methyl-4-(triflu oromethyl)benzene, with possible interacting water positions. NOTE, only one water	. 459
molecule was included in each calculation	. 461
was included in each calculation	. 463
molecule was included in each calculation	. 465
molecule was included in each calculation	. 467
 S184 The molecule used for water complex calculations corresponding to 2-methylthiophene, with possible interacting water positions. 	. 469
sine ach calculation.	. 471
with possible interacting water positions. NOTE, only one water molecule was included in each calculation	. 473
possible interacting water positions. NOTE, only one water molecule was included in each calculation.	. 475
with possible interacting water positions. NOTE, only one water molecule was included in each calculation.	. 477
peroxol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.	. 479

S189 The molecule used for water complex calculations corresponding to 5-ethylcyclohex-5-en e-1,2,4-trione, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.	481
S190 The molecule used for water complex calculations corresponding to 2-ethyl-5-hydroxyc yclohexa-2,5-diene-1,4-dione, with possible interacting water positions. NOTE, only one water molecule was included in each calculation	183
S191 The molecule used for water complex calculations corresponding to 3-ethyl-6-imino-6,7- dihydro-1H-indol-7-one, with possible interacting water positions. NOTE, only one water malecule used in each calculation.	405
S192 The molecule used for water complex calculations. NOTE, only one water molecule was included of the state of the stat	480
S193 The molecule used for water complex calculations corresponding to 3-ethyl-6,7-dihydro- 1H-indole-6,7-dione, with possible interacting water positions. NOTE, only one water	487
molecule was included in each calculation	489 491
S195 The molecule used for water complex calculations. NOTE, only one water molecule was included in each calculation.	402
S196 The molecule used for water complex calculations corresponding to 6-amino-3-methyl-1H- indol-7-olate, with possible interacting water positions. NOTE, only one water molecule	490
S197 The molecule used for water complex calculations corresponding to 2-amino-4-methylbe nzen-1-olate, with possible interacting water positions. NOTE, only one water molecule	495
was included in each calculation	497
molecule was included in each calculation	499
 was included in each calculation. S200 The molecule used for water complex calculations corresponding to 4-methyl-1,3-thiazole, with possible interacting water positions. NOTE, only one water molecule was included 	501
S201 The molecule used for water complex calculations corresponding to (ethylsulfanyl)carbo nitrile, with possible interacting water positions. NOTE, only one water molecule was	503
S202 The molecule used for water complex calculations corresponding to N-(propan-2-ylide ne)acetamide, with possible interacting water positions. NOTE, only one water molecule	505
was included in each calculation	507
NOTE, only one water molecule was included in each calculation	509
calculation	513
S206 The molecule used for water complex calculations corresponding to 2-fluoro-4-methylbe nzen-1-olate, with possible interacting water positions. NOTE, only one water molecule	919
was included in each calculation	517 519
S208 The PES scan for flexible dihedral corresponding to (2S)-2-acetamido-N-methyl-2-pheny lacetamide.	520
S209 The energy minimized structure corresponding to 3-methyl-1H-indol-7-olate S210 The energy minimized structure corresponding to 2- (methylsulfanyl)propanoicacid	$\begin{array}{c} 521 \\ 522 \end{array}$

S211	The PES scan for flexible dihedral corresponding to 2 -(methylsulfanyl) propanoicacid	522
S212	The energy minimized structure corresponding to 5-methyl-2,3-dihydro-1,2-oxazole	523
S213	The energy minimized structure corresponding to (3R)-3-(ethylsulfanyl)-5-methyl-2,3-di	
	hydro-1,2-oxazole.	524
S214	The PES scan for flexible dihedrals corresponding to (3R)-3- (ethylsulfanyl)-5-methyl-2,3-	
	dihydro-1.2-oxazole	524
S215	The energy minimized structure corresponding to 2-amino-2-[3-(ethylsulfanyl)-2 3-dihy	0
0210	dro-1 2-ovazol-5-vilacaticacid	525
\$916	The DES scan for flowible dihedral corresponding to 2 amino 2 [3 (athylculfonyl) 2 3 di	040
5210	budro 1.2 sverol 5 vilosetiossid	ະຈະ
0015		525
0217	The energy minimized structure corresponding to 2-oxopentanoicacid.	020 500
5218	The PES scan for flexible difedrals corresponding to 2-oxopentanoicacid.	526
S219	The energy minimized structure corresponding to (2S)-2-acetamido-N-methylpent-4-ena	
		527
S220	The PES scan for flexible dihedral corresponding to (2S)-2-acetamido-N-methylpent-4-e	
	namide	527
S221	The energy minimized structure corresponding to (ethylsulfanyl)peroxol	528
S222	The PES scan for flexible dihedrals corresponding to (ethylsulfanyl)peroxol	528
S223	The energy minimized structure corresponding to [(diffuoromethyl)sulfanyl]ethane	529
S224	The PES scan for flexible dihedrals corresponding to [(difluoromethyl)sulfanyl]ethane.	529
S225	The energy minimized structure corresponding to 2-fluoro-4-methyl-2,3-dihydro-1H-imi	
	dazole	530
S226	The energy minimized structure corresponding to 2-fluoro-5-methyl-1H-imidazole.	531
S227	The energy minimized structure corresponding to 2-methylidenepentanoicacid.	532
S228	The PFS scan for flexible dihedrals corresponding to 2-methylidenepentanoicacid	532
\$220	The energy minimized structure corresponding to 6-methyl-4H-thieno[3.2-blpyrrole	533
S223	The energy minimized structure corresponding to 2.4 dimethylphonol	524
G 9 9 1	The energy minimized structure corresponding to $2,4$ -dimetry predot	004
5251	lidin 2 villormomide N methylesstemide	ຮວຮ
dooo	$\operatorname{III} \qquad \qquad$	999
5232	The energy minimized structure corresponding to (25,45)-1-acetyi-4-11uoro-N-methylpy	F 0 7
COOO	Trondine-2-carboxamide.	031
5233	The energy minimized structure corresponding to 4-nuoro-3-methyl-1H-indole.	538
S234	The energy minimized structure corresponding to $(2R)$ -N-ethyl-2-hydroxypropanamide.	539
S235	The PES scan for flexible dihedrals corresponding to $(2R)$ -N-ethyl-2-hydroxypropanamide	. 539
S236	The energy minimized structure corresponding to 3-methyl-1H-indol-4-olate.	540
S237	The energy minimized structure corresponding to 3-methyl-1H-indol-4-amine	541
S238	The energy minimized structure corresponding to 2-[3-(ethylsulfanyl)-1,2-oxazolidin-5-y	
	l]-2-(trihydridonickelio)aceticacid	542
S239	The PES scan for flexible dihedral corresponding to 2-[3-(ethylsulfanyl)-1,2-oxazolidin-5	
	-yl]-2-(trihydridonickelio)aceticacid.	543
S240	The energy minimized structure corresponding to (3R)-1-ethyl-3-(ethylsulfanyl)pyrrolidi	
	ne-2,5-dione	544
S241	The PES scan for flexible dihedrals corresponding to (3R)-1-ethyl-3-(ethylsulfanyl)pyrro	
	lidine-2.5-dione.	545
S242	The energy minimized structure corresponding to 2-[1-(2-acetamidoacetyl)-2.5-dihydro-	
~	1H-pyrrol-2-yllformamido-N-methylacetamide.	546
S243	The energy minimized structure corresponding to (2S)-1-acetyl-N-methyl-2.5-dihydro-	0 10
0210	1H pyrrolo 2 carboyamido	548
\$944	The operative minimized structure corresponding to $(1_5, 4_5)$ 4 otherwork 2_5 diam 1 a	040
5244	mine mine mine a structure corresponding to (18,48)-4-ethylcyclonexa-2,5-dien-1-a	E 40
0.0.45	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	549
5240	The energy minimized structure corresponding to [(5)-amino(methylsunanyl)methyl(me	550
0010	thyl	550
S246	The PES scan for flexible dihedrals corresponding to [(S)-amino(methylsulfanyl)methy	
a -	l](methyl)amine.	551
S247	The energy minimized structure corresponding to $[(1S)-1-hydroxyethoxy]$ sulfonic acid.	552
S248	The PES scan for flexible dihedrals corresponding to $[(1S)-1$ -hydroxyethoxy]sulfonicacid	552
S249	The energy minimized structure corresponding to $(ethylamino)(methoxy)$ phosphinic cid	553
S250	The PES scan for flexible dihedral corresponding to (ethylamino)(methoxy)phosphinicacid	. 553
S251	The energy minimized structure corresponding to N-[(2R)-2-hydroxy propyl]guanidine	554
S252	The PES scan for flexible dihedral corresponding to $N-[(2R)-2-hydroxypropyl]$ guanidine.	554

S254	The PES scan for flexible dihedral corresponding to 2-(propanoyloxy)aceticacid.	555
S255	The energy minimized structure corresponding to $(2R)$ -2-(propanoyloxy)propanoicacid.	556
S256	The PES scan for flexible dihedral corresponding to (2R)-2-(propanoyloxy)propanoicacid.	556
S257	The energy minimized structure corresponding to 1-ethyl-2lambda4-triaza-1,2-diene	557
S258	The PES scan for flexible dihedral corresponding to 1-ethyl-2lambda 4-triaza-1,2-diene. $\ .$	557
S259	The energy minimized structure corresponding to 2-acetamido-N-methyl-3-(2lambda4-t	
	riaza-1,2-dien-1-yl)propanamide.	558
S260	The PES scan for flexible dihedral corresponding to 2-acetamido-N-methyl-3-(2lambda4	
	-triaza-1,2-dien-1-yl)propanamide.	558
S261	The energy minimized structure corresponding to 1-propyl-2lambda4-triaza-1,2-diene.	559
S262	The PES scan for flexible dihedral corresponding to 1-propyl-2lambda4-triaza-1,2-diene.	559
S263	The energy minimized structure corresponding to trimethyl-1H-imidazol-5-ol.	560
S264	The PES scan for flexible dihedral corresponding to trimethyl-1H-imidazol-5-ol.	560
S265	The energy minimized structure corresponding to 2-(4-ethyl-5-hydroxy-2-methyl-1H-im	
	idazol-1-vl)-N-methylacetamide.	561
S266	The PES scan for flexible dihedral corresponding to 2-(4-ethyl-5-hydroxy-2-methyl-1H-	00-
8-00	imidazol-1-vl)-N-methylacetamide	562
S267	The energy minimized structure corresponding to [(methylsulfanyl)methylbenzene	563
\$268	The PFS scan for flexible dihedrals corresponding to [(methylsulfanyl)methyl]benzene	563
S260	The energy minimized structure corresponding to (3 methylbutyl)berge	564
S203	The DFS gean for flexible dihedral corresponding to (3 methylbutyl)borane.	564
S270 S271	The energy minimized structure corresponding to (5-methyloutyl)bolane.	565
C070	The energy minimized structure corresponding to $2/2.4$ dimethyl 5 are 4.5 dihydro 14	000
0414	i ne energy minimized structure corresponding to 2-(2,4-dimetriyi-5-ox0-4,5-dimydro-fit	566
6070	-Innidazoi-i-yi)acetaidenyde	500
0410	The energy minimized structure corresponding to 5-cmoro-D-alamine.	507
5274 Corr	The PES scan for nexible different corresponding to 3-chloro-D-alanine.	007
5275	The energy minimized structure corresponding to O-ethylnydroxylamine.	508
S276	The PES scan for flexible dihedral corresponding to O-ethylhydroxylamine.	568
S277	The energy minimized structure corresponding to 2- (methylsulfanyl)aceticacid.	569
S278	The PES scan for flexible dihedrals corresponding to 2-(methylsulfanyl)aceticacid.	569
S279	The energy minimized structure corresponding to 2-ethylpropanedioicacid.	570
S280	The PES scan for flexible dihedral corresponding to 2-ethylpropanedioicacid.	570
S281	The energy minimized structure corresponding to 2-ethylpropanedioicacid.	571
S282	The PES scan for flexible dihedrals corresponding to 2-ethylpropanedioicacid.	571
S283	The energy minimized structure corresponding to (2R)-2-(ethylsulfanyl)-2-hydroxyaceti	
	cacid	572
S284	The PES scan for flexible dihedral corresponding to (2R)-2-(ethylsulfanyl)-2-hydroxyace	
	ticacid	572
S285	The energy minimized structure corresponding to 2,4-dimethylphenol	573
S286	The energy minimized structure corresponding to 2- (ethyldisulfanyl)ethan-1-ol	574
S287	The PES scan for flexible dihedral corresponding to 2-(ethyldisulfanyl)ethan-1-ol	574
S288	The energy minimized structure corresponding to 2-(methylsulfanyl)propanoicacid	575
S289	The PES scan for flexible dihedrals corresponding to 2-(methylsulfanyl)propanoicacid	575
S290	The energy minimized structure corresponding to 2-ethylbenzonitrile.	576
S291	The energy minimized structure corresponding to 1-ethyl-2,4-dimethylbenzene.	577
S292	The energy minimized structure corresponding to 1,2-xylene.	578
S293	The energy minimized structure corresponding to 4-ethylidenecyclohexa-2,5-dien-1-one.	579
S294	The energy minimized structure corresponding to 4-ethenyl-1-methyl-1H-imidazol-5-ol.	580
S295	The PES scan for flexible dihedral corresponding to 4-ethenvl-1-methyl-1H-imidazol-5-ol.	580
S296	The energy minimized structure corresponding to 1-(methylsulfanyl)propan-2-one	581
S297	The PES scan for flexible dihedrals corresponding to 1-(methylsulfanyl)propan-2-one.	581
S298	The energy minimized structure corresponding to ethane-SO-thioperoxol.	582
S299	The PES scan for flexible dihedrals corresponding to ethane-SO-thioperoxol.	582
S300	The energy minimized structure corresponding to [(2R)-2-acetamido-2-(methylcarbamov	00-
5000	l)ethyllsulfanylphosphonicacid	583
S301	The PES scan for flexible dihedral corresponding to [(2R)-2-acetamido-2-(methylcarbam	000
0001	ovl)ethyllsulfanylphosphonicacid	582
6300	The energy minimized structure corresponding to (athyleylfonyl) phoenhonic soid	500
S 302	The PES scan for flexible dihedral corresponding to (ethylsullally1) phosphonicaeid	584
5303	The energy minimized structure corresponding to otheredithioperoval	525
5004 520¤	The energy minimized structure corresponding to (athyleylforyl) sulfories aid	500
5005	The energy minimized structure corresponding to (ethylsunanyl)sunonicacia	000

S306 The PES scan for flexible dihedrals corresponding to (ethylsulfanyl)sulfonicacid.	586
S307 The energy minimized structure corresponding to ethane-SO-thioperoxol.	587
S308 The PES scan for flexible dihedral corresponding to ethane-SO-thioperoxol	587
S309 The energy minimized structure corresponding to 3-ethyl-7-methyl-1H-indole	588
S310 The energy minimized structure corresponding to butan-2-ol.	589
S311 The PES scan for flexible dihedral corresponding to butan-2-ol	589
S312 The energy minimized structure corresponding to N-[(1S)-1-(methylcarbamoyl)ethyl]car	
bamate.	590
S313 The PES scan for flexible dihedral corresponding to N-[(1S)-1-(methylcarbamoyl)ethyl]c	
arbamate.	590
S314 The energy minimized structure corresponding to 1-(ethylsulfanyl)propan-2-one.	591
S315 The PES scan for flexible dihedrals corresponding to 1- (ethylsulfanyl)propan-2-one.	591
S316 The energy minimized structure corresponding to 2- (ethylsulfanyl)-N-methylacetamide.	592
S317 The PES scan for flexible dihedrals corresponding to 2- (ethylsulfanyl)-N-methylacetamide	e. 592
S318 The energy minimized structure corresponding to 1- (ethylsulfanyl)ethan-1-one.	593
S319 The PES scan for flexible dihedrals corresponding to 1- (ethylsulfanyl)ethan-1-one.	593
S320 The energy minimized structure corresponding to 1-(methylsulfanyl)propan-1-one	594
S321 The PES scan for flexible dihedrals corresponding to 1-(methylsulfanyl)propan-1-one.	594
S322 The energy minimized structure corresponding to [(ethylsulfanyl)methylphosphonicacid.	595
S323 The PES scan for flexible dihedrals corresponding to [(ethylsulfanyl)methylphosphonicacio	1.595
S324 The energy minimized structure corresponding to [(ethylsulfanyl)methylphosphonicacid.	596
S325 The PES scan for flexible dihedrals corresponding to [(ethylsulfanyl)methylphosphonicacio	1.596
S326 The energy minimized structure corresponding to N.N.N'-trimethylguanidine.	597
S327 The PES scan for flexible dihedral corresponding to N.N.N'-trimethylguanidine.	597
S328 The energy minimized structure corresponding to 4-methylbenzene-1, 2-diol	598
S329 The energy minimized structure corresponding to 2 6-diboranyl-4-ethylphenol	599
S330 The energy minimized structure corresponding to (2S)-2 3-diacetamido-N-methylpropan	000
amide	600
S331 The PES scan for flexible dihedral corresponding to (2S)-2 3-diacetamido-N-methylprop	000
anamide	601
S322 The energy minimized structure corresponding to $(2\mathbf{B})_{-2}$ (trimethylamino) propagamide	602
S333 The PES scan for flexible dihedral corresponding to $(2R)$ -2-(trimethylamino)propanamide	602
S334 The energy minimized structure corresponding to 2 4-dimethyl-2 3-dihydro-1H-imidazole	603
S335 The PES scan for flexible dihedral corresponding to 2.4-dimethyl 2.3-dihydro-1H-imida	000
zolo	603
S336 The energy minimized structure corresponding to 2-ethyl-1H-imidezole	604
S337 The PES scan for flexible dihedral corresponding to 2-ethyl-1H-imidazole	604
S338 The energy minimized structure corresponding to athene-1 1-diol	605
S330 The PES scan for flexible dihedral corresponding to ethane 1,1 diol	605
S340 The energy minimized structure corresponding to (27)-2-acetamide 2 (methylcarbamov	000
Dipron-2-enoicacid	606
S341 The PES scan for flexible dihedrals corresponding to (27)-3-acetamido-3-(methylcarham	000
ov]) prop-2-encicecid	606
S342 The energy minimized structure corresponding to (47) -4 ethylidene-1.2-dimethyl-4.5-di	000
hvdro_1H_imidazol_5-one	607
S242 The PES scap for flowible dihedral corresponding to (47) 4 othylidene 1.2 dimethyl 4.5	007
dibudro 1H imidozol 5 ono	607
C244 The approxy minimized structure corresponding to 1.2 diffuore 4 methylborgone	609
S245 The energy minimized structure corresponding to 1,2-diffuoro-4-methyloenzene.	600
S346 The PFS scan for flowible dihedral corresponding to 2 fluorobutanoicacid.	600
5340 The response minimized structure corresponding to (2P) 2 sectamide 2 (methylearbarrow	009
basetete	610
1) alterate	010
solvestete	610
Oyl)acetate.	01U 611
5349 The energy minimized structure corresponding to N-ethyl-N-hydroxyrormamide.	011 611
Solution of the second provided and a second secon	011
5551 The energy minimized structure corresponding to 2-amino-5,5,5-trifluoropropanoicacid.	012
5332 The rES scal for nextble dimedrals corresponding to 2-amino-3,3,3-trif luoropropanoicacio	. 01Z
5555 The energy minimized structure corresponding to (25) -2-formamido-N-methylpropanamide 2254 The DEC scent for florible dihedral corresponding to (25) . I formamido-N-methylpropanamide	3.013
5554 The PES scan for nexible dihedral corresponding to (25)-2-formamido-N-methylpropan	010
ашие	013

S355	The energy minimized structure corresponding to 2-ethylfuran	614
S356	The PES scan for flexible dihedral corresponding to 2-ethylfuran	614
S357	The energy minimized structure corresponding to 2-fluoro-2-methylpropane	615
S358	The energy minimized structure corresponding to (2S)-2-acetamido-3-fluoro-N,3-dimeth	
	ylbutanamide	616
S359	The PES scan for flexible dihedral corresponding to (2S)-2-acetamido-3-fluoro-N,3-dime	
	thylbutanamide.	616
S360	The energy minimized structure corresponding to (Z)-methyl[1-(methylsulfanyl)ethylid	
0000	enelamine	617
\$361	The PFS scap for flexible dihedrals corresponding to (7) -methyl[1-(methylsulfanyl)ethyl	011
5001	idenelamine	617
0.000	The mean minimized structure connegranding to (2D 2C 4D 5D) 2 methyl 5 [(17) 1 (me	017
5302	The energy minimized structure corresponding to $(2\mathbf{R}, 55, 4\mathbf{R}, 5\mathbf{R})$ -2-methyl-5-[(1Z)-1-(methyl-5-1)]	C10
daca	thy infino β ethyl sun any lox of an e-3,4-diol	018
\$363	The PES scan for flexible dihedral corresponding to $(2R, 3S, 4R, 5R)$ -2-methyl-5-[(1Z)-1-	
~	(methylimino)ethyljsulfanyloxolane-3,4-diol	619
S364	The energy minimized structure corresponding to $(2R)$ -3-carbamimidamido-2-acetamid	
	o-N-methylpropanamide.	620
S365	The PES scan for flexible dihedral corresponding to (2R)-3-carbamimidamido-2-acetam	
	ido-N-methylpropanamide.	621
S366	The energy minimized structure corresponding to N''-ethoxyguanidine.	622
S367	The PES scan for flexible dihedrals corresponding to N''-ethoxyguanidine.	623
S368	The energy minimized structure corresponding to (2S)-2-hydroxypropanamide.	624
S369	The PES scan for flexible dihedral corresponding to (2S)-2-hydroxypropanamide.	624
S370	The energy minimized structure corresponding to 2-acetamido-N-([(methylcarbamov])m	
5010	ethyllcarbamothioylmethyl)acetamide	625
\$371	The PFS scan for flexible dihedrals corresponding to 2-acetamide. N. ([(methylcarbamov	020
0011	l)methyllearbamethiculmethyl)acetamide	696
C 270	The energy minimized structure corresponding to N [(methyleerbornethicyl)methyleerte	020
5514	The energy minimized structure corresponding to N-I(methylcarbamothoyi)methylaceta	607
a n u n		027
5373	The PES scan for nexible dinedral corresponding to N-[(methylcarbamothloyi)methyljace	co -
0.0-4	tamide	027
5374	The energy minimized structure corresponding to N-hydroxypropanamide.	628
S375	The PES scan for flexible dihedrals corresponding to N-hydroxypropanamide.	628
S376	The energy minimized structure corresponding to 4-ethyl-1-methyl-2,3-dihydro-1H-imi	
	dazole	629
S377	The PES scan for flexible dihedral corresponding to 4-ethyl-1-methyl-2,3-dihydro-1H-i	
	midazole.	629
S378	The energy minimized structure corresponding to (5-ethyl-1H-imidazol-1-yl)phosphonica	
	cid	630
S379	The energy minimized structure corresponding to 5-ethyl-1H-1,2,3-triazole.	631
S380	The energy minimized structure corresponding to (1R)-1-(methylsulfanyl)ethan-1-ol.	632
S381	The PES scan for flexible dihedrals corresponding to (1R)-1-(methylsulfanyl)ethan-1-ol.	632
S382	The energy minimized structure corresponding to (1R)-1-(1H-indol-3-vl)ethan-1-ol.	633
S383	The PES scan for flexible dihedrals corresponding to (1R)-1-(1H-indol-3-vl)ethan-1-ol.	633
S384	The energy minimized structure corresponding to 2-(N-ethylacetamido)-N-methylacetam	000
5001	ide	634
C 2 2 5	The DFS gean for flowible dihedrals corresponding to 2 (N athylacetamide) N mathylacet	001
2000	amide	625
deoc		030
5380	I ne energy minimized structure corresponding to 2-methyl-2,3-dinydro-1H-indene.	030
\$387	The energy minimized structure corresponding to (2R)-2-(2,3-dihydro-1H-inden-2-yi)-2-	
	acetamido-N-methylacetamide.	637
S388	The PES scan for flexible dihedral corresponding to (2R)-2-(2,3-dihydro-1H-inden-2-yl)-	
	2-acetamido-N-methylacetamide.	638
S389	The energy minimized structure corresponding to 4-[(E)-(ethylimino)methyl]-2,5-dimeth	
	ylpyridin-3-olate.	639
S390	The energy minimized structure corresponding to 4-ethyl-2-iodophenol	640
S391	The energy minimized structure corresponding to (ethylsulfanyl)(pyridin-3-yl)methanone.	641
S392	The PES scan for flexible dihedrals corresponding to (ethylsulfanyl)(pyridin-3-yl)metha	
	none	642
S393	The energy minimized structure corresponding to (2E)-N-methylbut-2-enamide.	643
\$ 304	The energy minimized structure corresponding to pentylcarbamicacid	644

S395	The PES scan for flexible dihedral corresponding to pentyl carbamicacid	644
S396	The energy minimized structure corresponding to $(2E)$ -2- $(methyliminiumyl)$ propanoate.	645
S397	The energy minimized structure corresponding to 1-(2-aminophenyl)propan-1-one.	646
S398	The energy minimized structure corresponding to 2-methylpropane-2-thiol.	647
S399	The PES scan for flexible dihedral corresponding to 2-methylpropane-2-thiol.	647
\$400	The energy minimized structure corresponding to 2-acetamido-N,3-dimethyl-3-sulfanylb	C 40
S401	The PES scan for flexible dihedral corresponding to 2-acetamido-N,3-dimethyl-3-sulfany	648
	lbutanamide.	649
S402	The energy minimized structure corresponding to 1-fluoro-2-methylpropane	650
S403	The PES scan for flexible dihedral corresponding to 1-fluoro-2-methyl propane	650
S404	The energy minimized structure corresponding to (2S,4S)-2-acetamido-5-fluoro-N,4-dime thylpentanamide	651
S405	The PES scan for flexible dihedral corresponding to (2S,4S)-2-acetamido-5-fluoro-N,4-di	001
G 40.0	methylpentanamide.	652
\$406	The energy minimized structure corresponding to 2,5-dimethyl-4-[(E)-(methylimino)methyl-	659
C 407	The DEC seen for florible dihedral connection to 2.5 dimethyl 4 [(E) (methylimine)m	053
5407	the PES scan for nextble difference of the sponding to 2,0-dimethyl-4-[(E)-(methylimino)methyllowidin 2 older	652
S 108	The energy minimized structure corresponding to (2S) 2 peetsmide N methylbut 3 energy	055
5400	ide	654
S409	The PES scan for flexible dihedral corresponding to (2S)-2-acetamido-N-methylbut-3-en	004
5 100	amide	654
S410	The energy minimized structure corresponding to (2S)-N-methyl-2-(methylsulfanyl)pro	00-
	panamide.	655
S411	The PES scan for flexible dihedrals corresponding to (2S)-N-methyl-2-(methylsulfanyl)p	
	ropanamide.	655
S412	The energy minimized structure corresponding to (ethylsulfanyl)methanol	656
S413	The PES scan for flexible dihedrals corresponding to (ethylsulfanyl)methanol	656
S414	The energy minimized structure corresponding to (R)-(2,2-dimethylpropyl)(methyl)-la	
	$mbda3-sulfanol. \ldots \ldots$	657
S415	The PES scan for flexible dihedral corresponding to (R)-(2,2-dimethylpropyl)(methyl)-la	
	mbda3-sulfanol.	657
S416	The energy minimized structure corresponding to trimethyl(pentyl)amine.	658
S417	The PES scan for flexible dihedral corresponding to trimethyl(pentyl)amine.	659
S418	The energy minimized structure corresponding to N,N-dimethylacetamide.	660
S419	The PES scan for flexible dihedral corresponding to N,N-dimethylacetamide.	660 661
5420	The energy minimized structure corresponding to (2E)-2- (ethylimino) propanoate.	001
5421	The PES scan for nexible differences on the second start of the se	001 669
5422 \$493	The PFS scan for flowible dihedrals corresponding to 3 (ethylsulfanyl) 3 exprepanoicacid.	663
S424	The energy minimized structure corresponding to 2 3-Dimethyl-5-methylideneimidazol-4	005
0121	-one	664
S425	The energy minimized structure corresponding to N-[(1S)-1-(1-methyl-4-methylidene-5	001
	-oxo-4.5-dihvdro-1H-imidazol-2-vl)ethvllacetamide.	665
S426	The PES scan for flexible dihedrals corresponding to N-[(1S)-1-(1-methyl-4-methylidene	
	-5-oxo-4,5-dihydro-1H-imidazol-2-yl)ethyl]acetamide.	666
S427	The energy minimized structure corresponding to (ethylsulfanyl)methanol	667
S428	The PES scan for flexible dihedrals corresponding to (ethylsulfanyl)methanol	667
S429	The energy minimized structure corresponding to 5-ethyl-1-methyl-1H-imidazole	668
S430	The energy minimized structure corresponding to 5-ethyl-1-methyl-2,3-dihydro-1H-imi	
	dazole	669
S431	The energy minimized structure corresponding to (4-ethyl-1H-imidazol-1-yl)phosphonica	
	cid	670
S432	The PES scan for flexible dihedral corresponding to (4-ethyl-1H-imidazol-1-yl)phosphoni	<i>.</i> .
0.405	cacid.	670
5433	The energy minimized structure corresponding to 4-methyl-2-nitrobenzen-1-olate.	671
5434	I ne energy minimized structure corresponding to N-[(1E)-1-[(4Z)-4-ethylidene-1-methy	670
Q 195	1-3-0x0-4, $3-0$ Iny $0-1$ finite for the second structure corresponding to N [(1T) 1 [(47) 4 sthelidens 1 the second structure corresponding to N [(1T) 1 [(47) 4 sthelidens 1 the second structure corresponding to N [(1T) 1 [(47) 4 sthelidens 1 the second structure corresponding to N [(1T) 1 [(47) 4 sthelidens 1 the second structure corresponding to N [(1T) 1 [(47) 4 sthelidens 1 the second structure corresponding to N [(1T) 1 [(47) 4 sthelidens 1 the second structure corresponding to N [(1T) 1 [(47) 4 sthelidens 1 the second structure corresponding to N [(1T) 1 [(47) 4 sthelidens 1 the second structure corresponding to N [(1T) 1 [(47) 4 sthelidens 1 the second structure correspondence to N [(1T) 1 [(47) 4 sthelidens 1 the second structure correspondence to N [(1T) 1 [(47) 4 sthelidens 1 the second structure correspondence to N [(1T) 1 [(47) 4 sthelidens 1 the second structure correspondence to N [(1T) 1 [(47) 4 sthelidens 1 the second structure correspondence to N [(1T) 1 [(47) 4 sthelidens 1 the second structure correspondence to N [(1T) 1 [(47) 4 sthelidens 1 the second structure correspondence to N [(1T) 1 [(47) 4 sthelidens 1 the second structure correspondence to N [(1T) 1 [(47) 4 sthelidens 1	072
5499	The energy minimized structure corresponding to $N = [(1\Delta) - 1 - [(4\Delta) - 4 - ethyhetere - 1 - methy]$ $1 - 5 - ovo - 4 - 5 - dihydro - 1 H_imidexol - 2 - vilothylidonolacotamide$	679
	1 9 oxo 4,5-umyuto-m-mutazor-2-yijetnyntenejacetamitte	010

S436	The PES scan for flexible dihedrals corresponding to N-[(1E)-1-[(4Z)-4-ethylidene-1-met	
	hyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethylidene]acetamide	674
S437	The energy minimized structure corresponding to N-[(2Z)-4-(methylsulfanyl)butan-2-yli	
	$dene]acetamide. \ldots \ldots$	675
S438	The PES scan for flexible dihedral corresponding to N-[(2Z)-4-(methylsulfanyl)butan-2	
	-ylidene]acetamide	675
S439	The energy minimized structure corresponding to (2S)-2-acetamido-2-(methylcarbamoy	
	$l) ethylacetate. \ldots \ldots$	676
S440	The PES scan for flexible dihedral corresponding to (2S)-2-acetamido-2-(methylcarbam	
	oyl)ethylacetate.	676
S441	The energy minimized structure corresponding to 1,1-diffuoropropane	677
S442	The PES scan for flexible dihedrals corresponding to 1,1-difluoropropane.	677
S443	The energy minimized structure corresponding to (2S)-2-acetamido-4,4-diffuoro-N-meth	
	ylbutanamide	678
S444	The PES scan for flexible dihedral corresponding to (2S)-2-acetamido-4,4-diffuoro-N-me	
	thylbutanamide.	678
S445	The energy minimized structure corresponding to (2R)-2-acetamido-2-(methylcarbamov	
	l)ethane-1-sulfonicacid.	679
S446	The PES scan for flexible dihedral corresponding to (2R)-2-acetamido-2-(methylcarbam	
	ovl)ethane-1-sulfonicacid.	679
S447	The energy minimized structure corresponding to 2- (ethylsulfanyl)ethan-1-ol.	680
S448	The PES scan for flexible dihedral corresponding to 2-(ethylsulfanyl)ethan-1-ol.	680
S449	The energy minimized structure corresponding to 4-(1-hydroxyethyl)-2-methylphenol.	681
S450	The energy minimized structure corresponding to (4-methylphenyl)(phenyl)methanone.	682
S451	The PES scan for flexible dihedral corresponding to (4-methylphenyl)(phenyl)methanone	682
S452	The energy minimized structure corresponding to (propanovlovy) phosphonicacid	683
S452	The PES scan for flexible dihedral corresponding to (propanoyloxy) phosphonicacid	683
S450	The energy minimized structure corresponding to (propanoyloxy)phosphonicacid	684
S454	The PFS scan for flowible dihedrals corresponding to (propanovlovy) phosphonicacid	684
S455	The approxy minimized structure corresponding to 2 hydroxy 3 [2 (methylearbamoul) pur	004
5450	rolidin 1 yllpropanoicacid	685
\$457	The PFS scan for flowible dihedrals corresponding to 2 hydroxy 3 [2 (methylcarbamov])	000
5407	unrelidin 1 yllpropanoiaasid	696
0450	The energy minimized structure converse of the 2 [2 (2 contempides sets)] 1.2 this cold is	000
5400	n 4 ulformomide N methylocotomide	607
C 450	Π -4-yijiormamuo-N-methylacetamue	007
5499	The energy minimized structure corresponding to (4R)-5-acetyl-N-methyl-1,5-thiazond	600
0.400	$\mathbf{He} - 4 - \operatorname{carboxamide} \cdot \cdot$	089
5400	The energy minimized structure corresponding to 1-methyl-2-nitrobenzene.	690
5401	The energy minimized structure corresponding to 2-[1-(2-acetamidoacetyi)-2-nydroxypyr	0.01
0.400	rolidin-2-yl formamido-N-methylacetamide. \dots	691
5462	The PES scan for nexible dihedral corresponding to 2-[1-(2-acetamidoacetyi)-2-nydroxyp	<u> </u>
0.460	yrrolidin-2-yljformamido-N-methylacetamide.	692
\$463	The energy minimized structure corresponding to (2R)-1-acetyl-2-hydroxy-N-methylpyr	000
G 101	rolidine-2-carboxamide.	693
S464	The energy minimized structure corresponding to (ethylsulfanyl)formamide.	694
S465	The PES scan for flexible dihedrals corresponding to (ethylsulfanyl)formamide.	694
S466	The energy minimized structure corresponding to 2-(ethylsulfanyl)-2-[(trihydroxy-lambd	
~	a4-phosphanyl)oxy]propanoicacid.	695
S467	The PES scan for flexible dihedrals corresponding to 2-(ethylsulfanyl)-2-[(trihydroxy-lam	
~	bda4-phosphanyl)oxy]propanoicacid.	696
S468	The energy minimized structure corresponding to 2,2,3,5,5-pentamethyl-2,5-dihydro-1H	
_	-pyrrol-1-ol	697
S469	The energy minimized structure corresponding to 3-[(methyldisulfanyl)methyl]-2,5-dihy	
	dro-1H-pyrrol-1-ol.	698
S470	The PES scan for flexible dihedrals corresponding to 3-[(methyldisulfanyl)methyl]-2,5-di	
	hydro-1H-pyrrol-1-ol.	698
S471	The energy minimized structure corresponding to $ethoxy(methyl)phosphinicacid.$	699
S472	The PES scan for flexible dihedral corresponding to $ethoxy(methyl)phosphinicacid$	699
S473	The energy minimized structure corresponding to ethylphenyl methanesulfonate. $\ \ldots \ \ldots$	700
S474	The PES scan for flexible dihedrals corresponding to ethylphenylmethane sulfonate	701
S475	The energy minimized structure corresponding to (dimethylamino)(ethoxy)phosphinicacid.	702

S476 The energy minimized structure corresponding to dimethylmethylphosphonate	. 703
S477 The PES scan for flexible dihedral corresponding to dimethylmethylphosphonate	. 703
S478 The energy minimized structure corresponding to (nitrososulfanyl)ethane	. 704
S479 The PES scan for flexible dihedrals corresponding to (nitrososulfanyl)ethane.	. 704
S480 The energy minimized structure corresponding to [(1E)-prop-1-en-1-yl]benzene	. 705
S481 The energy minimized structure corresponding to 2-[(3S)-3-acetamido-2,5-dioxopyrrolidi	
n-1-yl]-N-methylacetamide.	. 706
S482 The PES scan for flexible dihedrals corresponding to 2-[(3S)-3-acetamido-2.5-dioxopyrro	
lidin-1-vl]-N-methylacetamide.	. 707
S483 The energy minimized structure corresponding to (dimethoxyphosphoryl)dimethylamine.	. 708
S484 The PES scan for flexible dihedrals corresponding to (dimethoxyphosphoryl)dimethylami	
ne.	. 708
S485 The energy minimized structure corresponding to dimethylmethylphosphonate	709
S486 The PES scan for flexible dihedral corresponding to dimethylmethylphosphonate	709
S487 The energy minimized structure corresponding to 3-ethenyl-1H-indole	710
S488 The PFS scan for flexible dihedral corresponding to 3 otherwil 1H indele	710
S400 The anarov minimized structure corresponding to 2 methyl 2H 1 2 3 4 tetragole	711
5469 The energy minimized structure corresponding to 2-methyl-2n-1,2,5,4-tetrazole	. (11
1224 1224	710
-1,2,3,4-tetrazol-2-yl)propanamide	. (12
5491 The PES scan for flexible dihedral corresponding to (2R)-2-acetamido-N-methyl-3-(2H	=10
-1,2,3,4-tetrazol-2-yl)propanamide.	. 712
S492 The energy minimized structure corresponding to 1-methyl-2-(trifluoromethyl)benzene.	. 713
S493 The energy minimized structure corresponding to 1,1,1-trifluoro-2-methylpropane.	. 714
S494 The PES scan for flexible dihedral corresponding to 1,1,1-trifluoro-2-methylpropane.	. 714
S495 The energy minimized structure corresponding to (2S)-2-acetamido-N-methyl-2-(thioph	
en-2-yl)acetamide	. 715
S496 The PES scan for flexible dihedral corresponding to (2S)-2-acetamido-N-methyl-2-(thio	
phen-2-yl)acetamide	. 715
S497 The energy minimized structure corresponding to methylthiourea.	. 716
S498 The PES scan for flexible dihedral corresponding to methylthiourea.	. 716
S499 The energy minimized structure corresponding to 2-methylthiophene.	. 717
S500 The energy minimized structure corresponding to 2-ethylthiophene.	. 718
S501 The PES scan for flexible dihedral corresponding to 2-ethylthiophene.	. 718
S502 The energy minimized structure corresponding to 3-ethyl-1H-indole-1-peroxol.	. 719
S503 The PES scan for flexible dihedrals corresponding to 3-ethyl-1H-indole-1-peroxol.	. 720
S504 The energy minimized structure corresponding to cyclohex-5-ene-1.2.4-trione.	. 721
S505 The energy minimized structure corresponding to 5-ethylcyclohex-5-ene-1.2.4-trione.	722
S506 The PES scan for flexible dihedral corresponding to 5-ethylcyclohex-5-ene-1 2 4-trione	722
S507 The energy minimized structure corresponding to 2-ethyl-5-hydroxycyclohexa-2.5-diene-	• •==
1 4-dione	723
S508 The PES scan for flexible dihedral corresponding to 2-ethyl-5-bydrovycyclobeya-2 5-dien	. 120
o 1.4 diono	793
S500 The energy minimized structure corresponding to 3 othyl 6 imine 6.7 dihydro 1H indel	. 720
⁷ one	794
- <i>i</i> -One	. 724
5510 The energy minimized structure corresponding to 5-methyl-1H-indol-2-ol.	. 720
5011 The PES scan for nexible dihedral corresponding to 3-methyl-1H-indol-2-ol.	. (25
S512 The energy minimized structure corresponding to 3-ethyl-6,7-dihydro-1H-indole-6,7-dion	e. 726
S513 The energy minimized structure corresponding to 1,2-diphenylhydrazine.	. 727
S514 The PES scan for flexible dihedral corresponding to 1,2-diphenylhydrazine.	. 727
S515 The energy minimized structure corresponding to 2-methylbutane-2,3-diol.	. 728
S516 The PES scan for flexible dihedral corresponding to 2-methylbutane-2,3-diol.	. 728
S517 The energy minimized structure corresponding to (4-ethylphenyl)oxidanesulfonicacid.	. 729
S518 The PES scan for flexible dihedral corresponding to (4-ethylphenyl)oxidanesulfonicacid.	. 729
S519 The energy minimized structure corresponding to 4-methyl-1,3-thiazole	. 730
S520 The energy minimized structure corresponding to (ethyl sulfanyl)carbonitrile. \ldots .	. 731
S521 The PES scan for flexible dihedral corresponding to (ethyl sulfanyl)carbonitrile	. 731
S522 The energy minimized structure corresponding to N-methyl-2-(4-methylidene-5-oxo-4,5- $$	
dihydro-1H-imidazol-1-yl)acetamide	. 732
S523 The PES scan for flexible dihedrals corresponding to N-methyl-2-(4-methylidene-5-oxo- $$	
4,5-dihydro-1H-imidazol-1-yl)acetamide	. 732

S524 The energy minimized structure corresponding to (4Z)-1-methyl-4-(phenylmethylidene)-	
4,5-dihydro-1H-imidazol-5-one	733
S525 The PES scan for flexible dihedral corresponding to (4Z)-1-methyl-4-(phenylmethyliden	
e)-4,5-dihydro-1H-imidazol-5-one.	733
S526 The energy minimized structure corresponding to (2S)-2-acetamido-N-(propan-2-ylide	
ne)propanamide	734
S527 The PES scan for flexible dihedrals corresponding to (2S)-2-acetamido-N-(propan-2-yli	
dene)propanamide	735
S528 The energy minimized structure corresponding to 2-(methylsulfanyl)acetamide	736
S529 The PES scan for flexible dihedrals corresponding to 2-(methylsulfanyl)acetamide	736

List of Tables

$\mathbf{S1}$	Experimental protein structures used in this work for Molecular Dynamics simulations	72
S2	List of nonstandard amino acids parametrized in this work	72
S3	Statistics of calculated water interaction and dipole moment for 3-methyl-1H-indol-7-olate.	79
$\mathbf{S4}$	The comparison list of optimized atomic charges and their initial guess for 3-methyl-1H-	
	indol-7-olate, referring to the penalties of initial guess	80
$\mathbf{S5}$	Interaction energies and geometries between probe water and selected 3-methyl-1H-indo	
	l-7-olate site calculated using the optimized and initial charges	80
S6	Statistics of calculated water interaction and dipole moment for 2-(methylsulfanyl)propa	
	noicacid.	81
$\mathbf{S7}$	The comparison list of optimized atomic charges and their initial guess for 2-(methylsulf	-
~.	anyl)propanoicacid, referring to the penalties of initial guess	82
S 8	Interaction energies and geometries between probe water and selected 2-(methylsulfan	-
50	vi)propanoicacid site calculated using the optimized and initial charges	82
59	Statistics of calculated water interaction and dipole moment for (3B)-3- (ethylsulfanyl)-5-	02
55	methyl-9 2-dibydro-1 2-oyazole	83
S10	The comparison list of optimized atomic charges and their initial guess for (3B)-3-(ethyls	00
510	ulfanyl) 5 methyl 2.3 dibydro 1.2 oyazolo, referring to the populties of initial guess	84
S 11	Interaction anargies and geometries between probe water and selected (3R) 3 (ethylsul	04
511	fanyl) 5 methyl 2.3 dihydro 1.2 evagole site calculated using the optimized and initial	
	charges	Q 1
S 19	Statistics of calculated water interaction and dipole moment for 5 methyl 2.3 dihydro	04
512	1.2 example	٥ ٢
C 19	The comparison list of entimized atomic charges and their initial succes for 5 methyl 2.2	00
515	dibudre 1.2 everyla referring to the penalties of initial guess for 5-methyl-2,5-	96
Q14	Interaction energies and memory is between probe water and selected 5 methyl 2.2 diby	00
514	interaction energies and geometries between probe water and selected 5-methyl-2,5-diny	00
015	dro-1,2-oxazole site calculated using the optimized and initial charges	80
510	Statistics of calculated water interaction and dipole moment for 2-oxopentanoicacid.	87
510	I ne comparison list of optimized atomic charges and their initial guess for 2-oxopentano	0.0
015	icacid, referring to the penalties of initial guess	88
517	Interaction energies and geometries between probe water and selected 2-oxopentanoicacid	0.0
010	site calculated using the optimized and initial charges	88
S18	Statistics of calculated water interaction and dipole moment for (ethylsulfanyl)peroxol.	89
S19	The comparison list of optimized atomic charges and their initial guess for (ethylsulfany	00
a a a	I) peroxol, referring to the penalties of initial guess	90
S20	Interaction energies and geometries between probe water and selected (ethylsulfanyl)per	00
0.01	oxol site calculated using the optimized and initial charges	90
S21	Statistics of calculated water interaction and dipole moment for [(diffuoromethyl)sulfany	
<i>a</i>	IJethane.	91
S22	The comparison list of optimized atomic charges and their initial guess for [(diffuoromet	
~	hyl)sulfanyl]ethane, referring to the penalties of initial guess	92
S23	Interaction energies and geometries between probe water and selected [(diffuoromethyl)s	
	ulfanyl]ethane site calculated using the optimized and initial charges	92
S24	Statistics of calculated water interaction and dipole moment for 2-fluoro-4-methyl-2,3-di	
	hydro-1H-imidazole.	93
S25	The comparison list of optimized atomic charges and their initial guess for 2-fluoro-4-me	
	thyl-2,3-dihydro-1H-imidazole, referring to the penalties of initial guess	94
S26	Interaction energies and geometries between probe water and selected 2-fluoro-4-methyl	
	-2,3-dihydro-1H-imidazole site calculated using the optimized and initial charges	94

S27	Statistics of calculated water interaction and dipole moment for 2-fluoro-5-methyl-1H-im idazole.	95
S28	The comparison list of optimized atomic charges and their initial guess for 2-fluoro-5-me thyl-1H-imidazole, referring to the penalties of initial guess	96
S29	Interaction energies and geometries between probe water and selected 2-fluoro-5-methyl -1H-imidazole site calculated using the optimized and initial charges	96
S30	Statistics of calculated water interaction and dipole moment for 2-fluoro-4-methyl-1H-im idazole.	97
S31	The comparison list of optimized atomic charges and their initial guess for 2-fluoro-4-me thyl-1H-imidazole, referring to the penalties of initial guess	98
S32	Interaction energies and geometries between probe water and selected 2-fluoro-4-methyl -1H-imidazole site calculated using the optimized and initial charges	98
S33	Statistics of calculated water interaction and dipole moment for 2-methylidenepentanoic acid.	99
S34	The comparison list of optimized atomic charges and their initial guess for 2-methyliden epentanoicacid, referring to the penalties of initial guess	100
S35	Interaction energies and geometries between probe water and selected 2-methylidenepen tanoicacid site calculated using the optimized and initial charges	100
S36	Statistics of calculated water interaction and dipole moment for 6-methyl-4H-thieno[3,2-b]pyrrole.	101
S37	The comparison list of optimized atomic charges and their initial guess for 6-methyl-4H- thieno[3,2-b]pyrrole, referring to the penalties of initial guess	102
538	Interaction energies and geometries between probe water and selected 6-methyl-4H-thie $no[3,2-b]$ pyrrole site calculated using the optimized and initial charges	102
S39 S40	The comparison list of optimized atomic charges and their initial guess for 2-hydroxypro paneleggid referring to the penelties of initial guess	103
S41	Interaction energies and geometries between probe water and selected 2-hydroxypropano icacid site calculated using the optimized and initial charges	104
S42	The molecule used for water complex calculations corresponding to (4S)-4-fluoro-L-prolin e, with possible interacting water positions. NOTE, only one water molecule was included	104
S43	In each calculation. Statistics of calculated water interaction and dipole moment for $(4S)$ -4-fluoro-L-proline. The comparison list of optimized atomic charges and their initial guess for $(4S)$ 4 fluoro	$\frac{105}{105}$
S45	L-proline, referring to the penalties of initial guess	106
S46	oline site calculated using the optimized and initial charges	106
S47	dole	107
S48	thyl-1H-indole, referring to the penalties of initial guess	108
S49	-1H-indole site calculated using the optimized and initial charges	108
S50	ypropanamide	109
S51	Interaction energies and geometries between probe water and selected (2R)-N-ethyl-2-hy droxypropanamide site calculated using the optimized and initial charges	110
S52	Statistics of calculated water interaction and dipole moment for 3-methyl-1H-indol-4-olate	.111
S53	The comparison list of optimized atomic charges and their initial guess for 3-methyl-1H- indol-4-olate, referring to the penalties of initial guess	112
S54	Interaction energies and geometries between probe water and selected 3-methyl-1H-indo l-4-olate site calculated using the optimized and initial charges	112
$\begin{array}{c} { m S55} \\ { m S56} \end{array}$	Statistics of calculated water interaction and dipole moment for 3-methyl-1H-indol-4-amine The comparison list of optimized atomic charges and their initial guess for 3-methyl-1H-	.113
S57	indol-4-amine, referring to the penalties of initial guess	114
S58	1-4-amine site calculated using the optimized and initial charges	114
	oxazonum-o-yij-2-(timyunuomexenojaeteleaelu	тт9

S59	The comparison list of optimized atomic charges and their initial guess for 2-[3-(ethylsul fanyl)-1,2-oxazolidin-5-yl]-2-(trihydridonickelio)aceticacid, referring to the penalties of	110
S60	Initial guess Interaction energies and geometries between probe water and selected 2-[3- (ethylsulfany l)-1,2-oxazolidin-5-yl]-2-(trihydridonickelio)aceticacid site calculated using the optimized	110
S61	and initial charges	$\frac{116}{117}$
S62	The comparison list of optimized atomic charges and their initial guess for diethylamine, referring to the penalties of initial guess	118
S63	Interaction energies and geometries between probe water and selected diethylamine site calculated using the optimized and initial charges	118
S64 S65	Statistics of calculated water interaction and dipole moment for 2-aminopentanoicacid The comparison list of optimized atomic charges and their initial guess for 2-aminopenta	119
S66	noicacid, referring to the penalties of initial guess	120
S67	acid site calculated using the optimized and initial charges	120
S68	fanyl)pyrrolidine-2,5-dione.	121
S69	3- (ethylsulfanyl)pyrrolidine-2,5-dione, referring to the penalties of initial guess Interaction energies and geometries between probe water and selected (3R)-1-ethyl-3-(et	122
S70	hylsulfanyl)pyrrolidine-2,5-dione site calculated using the optimized and initial charges The molecule used for water complex calculations corresponding to (2S)-2,3-dihydro-1H	122
S 71	-pyrrole-2-carboxylicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.	123
511	role-2-carboxylicacid.	123
S72	The comparison list of optimized atomic charges and their initial guess for (2S)-2,3-dihy dro-1H-pyrrole-2-carboxylicacid, referring to the penalties of initial guess	124
S73	Interaction energies and geometries between probe water and selected (2S)-2,3-dihydro- 1H-pyrrole-2-carboxylicacid site calculated using the optimized and initial charges	124
S74	Statistics of calculated water interaction and dipole moment for (1s,4s)-4-ethylcyclohexa -2,5-dien-1-amine.	125
S75	The comparison list of optimized atomic charges and their initial guess for (1s,4s)-4-ethy lcyclohexa-2,5-dien-1-amine, referring to the penalties of initial guess	126
S76	Interaction energies and geometries between probe water and selected (1s,4s)-4-ethylcyc lohexa-2,5-dien-1-amine site calculated using the optimized and initial charges	126
S77	Statistics of calculated water interaction and dipole moment for N-[(2S)-butan-2-yl]gua nidine.	127
S78	The comparison list of optimized atomic charges and their initial guess for N-[(2S)-buta n-2-yl]guanidine, referring to the penalties of initial guess	128
S79	Interaction energies and geometries between probe water and selected N-[(2S)-butan-2- yl]guanidine site calculated using the optimized and initial charges	128
S80	Statistics of calculated water interaction and dipole moment for [(S)-amino(methylsulfan yl)methyl](methyl)amine.	129
S81	The comparison list of optimized atomic charges and their initial guess for [(S)-amino(me thylsulfanyl)methyl)(methyl)amine, referring to the penalties of initial guess	130
S82	Interaction energies and geometries between probe water and selected [(S)-amino(methyl sulfanyl)methyl)(methyl)amine site calculated using the optimized and initial charges	130
S83	Statistics of calculated water interaction and dipole moment for (2S)-2-hydroxypropana mide	131
S84	The comparison list of optimized atomic charges and their initial guess for (2S)-2-hydrox upropagamide, referring to the populties of initial guess	120
S85	Interaction energies and geometries between probe water and selected (2S)-2-hydroxypro	104
S86	panamide site calculated using the optimized and initial charges	132
S87	The comparison list of optimized atomic charges and their initial guess for [(1S)-1-hydr	104
S88	oxyetnoxy suffonicacid, referring to the penalties of initial guess	134
	oxy]sulfonic acid site calculated using the optimized and initial charges $\ \ldots \ \ldots \ \ldots \ \ldots$	134

S89	Statistics of calculated water interaction and dipole moment for (ethylamino)(methoxy)p	
~	hosphinicacid.	135
S90	The comparison list of optimized atomic charges and their initial guess for (ethylami	100
Cot	no)(methoxy)phosphinicacid, referring to the penalties of initial guess	136
S91	Interaction energies and geometries between probe water and selected (ethylamino)(meth	100
<i>a</i>	oxy)phosphinicacid site calculated using the optimized and initial charges	136
S92	Statistics of calculated water interaction and dipole moment for N-[(2R)-2-hydroxypropy	
<i>a</i>	I]guanidine.	137
S93	The comparison list of optimized atomic charges and their initial guess for N-[(2R)-2-hy	
	droxypropyl]guanidine, referring to the penalties of initial guess	138
S94	Interaction energies and geometries between probe water and selected N-[(2R)-2-hydrox	
~ ~	ypropyl]guanidine site calculated using the optimized and initial charges	138
S95	Statistics of calculated water interaction and dipole moment for 2- (propanoyloxy) aceticacid	.139
S96	The comparison list of optimized atomic charges and their initial guess for 2-(propanoylo	
	xy)aceticacid, referring to the penalties of initial guess	140
S97	Interaction energies and geometries between probe water and selected 2-(propanoyloxy)a	
	ceticacid site calculated using the optimized and initial charges	140
$\mathbf{S98}$	Statistics of calculated water interaction and dipole moment for (2S)-2-[(1S)-1-hydroxye	
	thyl]amino-N-methylpropanamide.	141
S99	The comparison list of optimized atomic charges and their initial guess for $(2S)-2- (1S)-$	
	1-hydroxyethyl amino-N-methylpropanamide, referring to the penalties of initial guess	142
S100	Interaction energies and geometries between probe water and selected (2S)-2-[(1S)-1-hy	
	droxyethyl]amino-N-methylpropanamide site calculated using the optimized and initial	
	charges	142
S101	Statistics of calculated water interaction and dipole moment for 1-ethyl-2lambda4-triaz	
	a-1,2-diene	143
S102	The comparison list of optimized atomic charges and their initial guess for 1-ethyl-2lam	
	bda4-triaza-1,2-diene, referring to the penalties of initial guess	144
S103	Interaction energies and geometries between probe water and selected 1-ethyl-2lambda4	
	-triaza-1,2-diene site calculated using the optimized and initial charges	144
S104	Statistics of calculated water interaction and dipole moment for 1-ethyl-2lambda4-triaz	
	a-1,2-diene	145
S105	The comparison list of optimized atomic charges and their initial guess for 1-ethyl-2lam	
	bda4-triaza-1,2-diene, referring to the penalties of initial guess	146
S106	Interaction energies and geometries between probe water and selected 1-ethyl-2lambda4	
	-triaza-1,2-diene site calculated using the optimized and initial charges	146
S107	Statistics of calculated water interaction and dipole moment for trimethyl-1H-imidazol-	
	5-ol	147
S108	The comparison list of optimized atomic charges and their initial guess for trimethyl-1H	
	-imidazol-5-ol, referring to the penalties of initial guess	148
S109	Interaction energies and geometries between probe water and selected trimethyl-1H-imi	
	dazol-5-ol site calculated using the optimized and initial charges	148
S110	Statistics of calculated water interaction and dipole moment for N-I(1S)-1-(1-methyl-4-m	
	ethylidene-5-oxo-4,5-dihydro-1H-imidazol-2-yl)ethyl]acetamide.	149
S111	The comparison list of optimized atomic charges and their initial guess for N-[(1S)-1-(1-	
	methyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-2-yl)ethyl]acetamide, referring to	
~	the penalties of initial guess	150
S112	Interaction energies and geometries between probe water and selected N-[(1S)-1-(1-meth	
	yl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-2-yl)ethyl]acetamide site calculated	
0110	using the optimized and initial charges	150
S113	Statistics of calculated water interaction and dipole moment for (1R)-1-phenylethan-1-ol.	191
S114	The comparison list of optimized atomic charges and their initial guess for (IR)-1-phenyl	
	ethan-1-ol, referring to the penalties of initial guess	152
S115	Interaction energies and geometries between probe water and selected (1R)-1-phenyletha	4 2 4
0	n-1-ol site calculated using the optimized and initial charges	152
S116	Statistics of calculated water interaction and dipole moment for [(methylsulfanyl)methy	4
011-	IJ benzene.	153
S117	The comparison list of optimized atomic charges and their initial guess for [(methylsulfan	1 .
0110	yı)metnyi]benzene, referring to the penalties of initial guess	154
5118	Interaction energies and geometries between probe water and selected [(methylsulfanyl)m	1 1 4
	etnyijoenzene site calculated using the optimized and initial charges	154

S119	Statistics of calculated water interaction and dipole moment for 2-hydroxypropanoicacid.	155
S120	The comparison list of optimized atomic charges and their initial guess for 2-hydroxypropanoicacid, referring to the penalties of initial guess	156
S121	Interaction energies and geometries between probe water and selected 2-hydroxypropano	
	icacid site calculated using the optimized and initial charges	156
S122	Statistics of calculated water interaction and dipole moment for 3-methyl-1-benzothiophene.	157
S123	The comparison list of optimized atomic charges and their initial guess for 3-methyl-1-b	150
0104	enzothiophene, referring to the penalties of initial guess	158
5124	Interaction energies and geometries between probe water and selected 3-methyl-1-benzo	150
S195	Statistics of calculated water interaction and dipole moment for ethylN ethyl N methyle	100
5120	arbamate	159
S126	The comparison list of optimized atomic charges and their initial guess for ethylN-ethyl	100
01-0	-N-methylcarbamate, referring to the penalties of initial guess	160
S127	Interaction energies and geometries between probe water and selected ethylN-ethyl-N-m	
	ethylcarbamate site calculated using the optimized and initial charges	160
S128	Statistics of calculated water interaction and dipole moment for 2-(2,4-dimethyl-5-oxo	
	-4,5-dihydro-1H-imidazol-1-yl)acetaldehyde	161
S129	The comparison list of optimized atomic charges and their initial guess for 2-(2,4-dimeth	
	yl-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetaldehyde, referring to the penalties of initial	1.00
0190	guess	162
5130	Interaction energies and geometries between probe water and selected 2-(2,4-dimethyl-5 over 4.5 dihydro 1H imidazol 1 yl)agetaldahyda site ealeylated ysing the antimized and	
	initial charges	162
S131	Statistics of calculated water interaction and dipole moment for 3-chloro-D-alanine	163
S132	The comparison list of optimized atomic charges and their initial guess for 3-chloro-D-a	100
	lanine, referring to the penalties of initial guess	164
S133	Interaction energies and geometries between probe water and selected 3-chloro-D-alanine	
	site calculated using the optimized and initial charges	164
S134	$Statistics \ of \ calculated \ water \ interaction \ and \ dipole \ moment \ for \ O-ethylhydroxylamine. \ .$	165
S135	The comparison list of optimized atomic charges and their initial guess for O-ethylhydro	
0190	xylamine, referring to the penalties of initial guess	166
\$136	Interaction energies and geometries between probe water and selected O-ethylhydroxyla	166
\$137	Statistics of calculated water interaction and dipole moment for 2 (methylsulfanyl)aceti	100
5101	cacid	167
S138	The comparison list of optimized atomic charges and their initial guess for 2-(methylsulf	101
	anyl)aceticacid, referring to the penalties of initial guess	168
S139	Interaction energies and geometries between probe water and selected 2-(methylsulfan	
	yl) acetic acid site calculated using the optimized and initial charges \ldots \ldots \ldots \ldots \ldots	168
S140	Statistics of calculated water interaction and dipole moment for 2-ethylpropanedioicacid.	169
S141	The comparison list of optimized atomic charges and their initial guess for 2-ethylpropa	1 = 0
C149	nedioicacid, referring to the penalties of initial guess	170
5142	care calculated using the entimized and initial charges	170
S143	Statistics of calculated water interaction and dipole moment for 2-ethylpropanedioicacid	170
S140	The comparison list of optimized atomic charges and their initial guess for 2-ethylpropa	111
0111	nedioicacid, referring to the penalties of initial guess	172
S145	Interaction energies and geometries between probe water and selected 2-ethylpropanedioi	
	cacid site calculated using the optimized and initial charges	172
S146	Statistics of calculated water interaction and dipole moment for (2R)-2-(ethylsulfanyl)-2-	
	hydroxyaceticacid.	173
S147	The comparison list of optimized atomic charges and their initial guess for (2R)-2-(ethyls	
0140	ulfanyl)-2-hydroxyaceticacid, referring to the penalties of initial guess	174
5148	Interaction energies and geometries between probe water and selected $(2R)$ -2- (ethylsulfa pul) 2, bud power and selected distance the entimized and initial shares	1 17 4
S140	1917-2-nyuroxyaceticacid site calculated using the optimized and initial charges Statistics of calculated water interaction and dipole moment for (47) 4 athylidene 1.2 di	1(4
0149	methyl-4 5-dibydro-1H-imidazol-5-one	175
S150	The comparison list of optimized atomic charges and their initial guess for (4Z)-4-ethyli	110
20	dene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, referring to the penalties of initial guess	5176
	-	

S151	Interaction energies and geometries between probe water and selected (4Z)-4-ethylidene -1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one site calculated using the optimized and initial charges	176
S152	The molecule used for water complex calculations corresponding to N-methyl-2-(2-methyl -4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, with possible interacting	170
S153	water positions. NOTE, only one water molecule was included in each calculation. Statistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4	177
S154	-methylidene-5-oxo-4,5-dinydro-1H-imidazol-1-yl)acetamide	177
S155	the penalties of initial guess	178
S156 S157	the optimized and initial charges	$\frac{178}{179}$
S157	referring to the penalties of initial guess	180
S159	calculated using the optimized and initial charges	180
S160	-1-ol	181 182
S161	Interaction energies and geometries between probe water and selected 2- (ethyldisulfany l)ethan-1-ol site calculated using the optimized and initial charges	182
S162	Statistics of calculated water interaction and dipole moment for 2-(ethylsulfanyl)butaned ioicacid.	183
S163	The comparison list of optimized atomic charges and their initial guess for 2-(ethylsulfa nyl)butanedioicacid, referring to the penalties of initial guess	184
S164	Interaction energies and geometries between probe water and selected 2-(ethylsulfanyl)b utanedioicacid site calculated using the optimized and initial charges \dots	184
S165	methyl-4,5-dihydro-1H-imidazol-5-one	185
S167	dene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, referring to the penalties of initial guess Interaction energies and geometries between probe water and selected (4Z)-4-ethylidene -1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one site calculated using the optimized and	s186
S168	initial charges	186
S169	water positions. NOTE, only one water molecule was included in each calculation Statistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4	187
S170	-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide	187
S171	the penalties of initial guess	188
S172	the optimized and initial charges	188
S173	The comparison list of optimized atomic charges and their initial guess for trimethyl-1H -imidazol-5-ol, referring to the penalties of initial guess	109
S174	Interaction energies and geometries between probe water and selected trimethyl-1H-imi dazol-5-ol site calculated using the optimized and initial charges	190
S175	Statistics of calculated water interaction and dipole moment for 4-ethylidenecyclohexa- 2,5-dien-1-one.	191
S176	The comparison list of optimized atomic charges and their initial guess for 4-ethylidenecy clohexa-2,5-dien-1-one, referring to the penalties of initial guess	192
S177	Interaction energies and geometries between probe water and selected 4-ethylidenecycloh exa-2,5-dien-1-one site calculated using the optimized and initial charges	192

S178	Statistics of calculated water interaction and dipole moment for (4Z)-4-ethylidene-1,2-di	
0.1 70	methyl-4,5-dihydro-1H-imidazol-5-one	93
5179	The comparison list of optimized atomic charges and their initial guess for (4Z)-4-ethyli done 1.2 dimethyl 4.5 dibydro 1H imidozol 5 one referring to the popultice of initial guess	04
S180	Interaction energies and geometries between probe water and selected (4Z)-4-ethylidene	94
5100	-1.2-dimethyl-4.5-dihydro-1H-imidazol-5-one site calculated using the optimized and	
	initial charges	94
S181	The molecule used for water complex calculations corresponding to N-methyl-2-(2-methyl	
	-4-methylidene-5-oxo-4, 5-dihydro-1H-imidazol-1-yl) acetamide, with possible interacting	
~	water positions. NOTE, only one water molecule was included in each calculation 1	95
S182	Statistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4	05
G193	-methylidene-5-oxo-4,5-dinydro-1H-imidazoi-1-yi)acetamide.	95
5105	-(2-methyl-4-methylidene-5-oxo-4 5-dihydro-1H-imidazol-1-yl)acetamide referring to	
	the penalties of initial guess	96
S184	Interaction energies and geometries between probe water and selected N-methyl-2-(2-me	
	thyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide site calculated using	
	the optimized and initial charges \ldots	96
S185	Statistics of calculated water interaction and dipole moment for (4Z)-4-ethylidene-1,2-di	_
0100	methyl-4,5-dihydro-1H-imidazol-5-one	97
5186	The comparison list of optimized atomic charges and their initial guess for (4Z)-4-ethyli dong 1.2 dimethyl 4.5 dibudro 1H imidogol 5 one referring to the popultice of initial guess	00
S187	Interaction energies and geometries between probe water and selected (47)-4-ethylidene	90
5101	-1.2-dimethyl-4.5-dihydro-1H-imidazol-5-one site calculated using the optimized and	
	initial charges	98
S188	The molecule used for water complex calculations corresponding to N-methyl-2-(2-methyl	
	-4-methylidene-5-oxo-4, 5-dihydro-1H-imidazol-1-yl) acetamide, with possible interacting	
_	water positions. NOTE, only one water molecule was included in each calculation 1	99
S189	Statistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4	~~
S100	-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide.	99
2190	- (2-methyl-4-methylidene-5-oxo-4.5-dihydro-1H-imidazol-1-yl)acetamide referring to	
	the penalties of initial guess	00
S191	Interaction energies and geometries between probe water and selected N-methyl-2-(2-me	00
	thyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide site calculated using	
	the optimized and initial charges $\ldots \ldots 2$	00
S192	Statistics of calculated water interaction and dipole moment for N-(propan-2-ylidene)ace	
0100	tamide	01
\$193	The comparison list of optimized atomic charges and their initial guess for N-(propan-2 ulidene) easternide, referring to the penelties of initial guess.	0.9
S194	-yndene)acetamide, referring to the penalties of mitial guess	02
5151	ne)acetamide site calculated using the optimized and initial charges	02
S195	Statistics of calculated water interaction and dipole moment for (4Z)-4-ethylidene-1,2-di	
	methyl-4,5-dihydro-1H-imidazol-5-one2	03
S196	The comparison list of optimized atomic charges and their initial guess for (4Z)-4-ethyli	
~	dene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, referring to the penalties of initial guess2	04
S197	Interaction energies and geometries between probe water and selected (4Z)-4-ethylidene	
	-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one site calculated using the optimized and	04
S198	Initial charges	04
5150	-4-methylidene-5-oxo-4.5-dihydro-1H-imidazol-1-vl)acetamide, with possible interacting	
	water positions. NOTE, only one water molecule was included in each calculation 2	05
S199	Statistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4	
	-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide.	05
S200	The comparison list of optimized atomic charges and their initial guess for N-methyl-2	
	-(2-methyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, referring to	00
S201	the penalties of initial guess $\dots \dots $	υb
5401	thy]-4-methylidene-5-oxo-4.5-dihydro-1H-imidazol-1-vl)acetamide site calculated using	
	the optimized and initial charges $\ldots \ldots \ldots$	06

S202	Statistics of calculated water interaction and dipole moment for N-[(1E)-1-[(4Z)-4-ethyli	
C 202	dene-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethylidenelacetamide.	207
5205	[(4Z)-4-ethylidene-1-methyl-5-oxo-4.5-dihydro-1H-imidazol-2-yllethylidenelacetamide.	
	referring to the penalties of initial guess	208
S204	Interaction energies and geometries between probe water and selected N-[(1E)-1-[(4Z)-	
	$\label{eq:constraint} 4-ethylidene-1-methyl-5-oxo-4, \\ 5-dihydro-1H-imidazol-2-yl]ethylidene] acetamide site and the set of the se$	
	calculated using the optimized and initial charges	208
S205	Statistics of calculated water interaction and dipole moment for 1-(methylsulfanyl)propa	200
C 2006	n-2-one	209
5200	anyl)propan-2-one referring to the penalties of initial guess	210
S207	Interaction energies and geometries between probe water and selected 1-(methylsulfan	210
5201	vl)propan-2-one site calculated using the optimized and initial charges	210
S208	Statistics of calculated water interaction and dipole moment for ethane-SO-thioperoxol.	211
S209	The comparison list of optimized atomic charges and their initial guess for ethane-SO-th	
	ioperoxol, referring to the penalties of initial guess	212
S210	Interaction energies and geometries between probe water and selected ethane-SO-thiope	
0011	roxol site calculated using the optimized and initial charges	212
5211	Statistics of calculated water interaction and dipole moment for ethanedithioperoxol.	213
0414	peroxol referring to the penalties of initial guess	214
S213	Interaction energies and geometries between probe water and selected ethanedithioperoxol	
	site calculated using the optimized and initial charges	214
S214	Statistics of calculated water interaction and dipole moment for (ethylsulfanyl)sulfonicacid	. 215
S215	The comparison list of optimized atomic charges and their initial guess for (ethylsulfany	
	l)sulfonicacid, referring to the penalties of initial guess	216
S216	Interaction energies and geometries between probe water and selected (ethylsulfanyl)sul	01.0
S017	fonicacid site calculated using the optimized and initial charges	210
S217	The comparison list of optimized atomic charges and their initial guess for ethane-SO-th	217
5210	ioperoxol, referring to the penalties of initial guess	218
S219	Interaction energies and geometries between probe water and selected ethane-SO-thiope	
	roxol site calculated using the optimized and initial charges	218
S220	Statistics of calculated water interaction and dipole moment for N-[(1S)-1-(methylcarb	
Goot	amoyl)ethyl]carbamate.	219
S221	The comparison list of optimized atomic charges and their initial guess for N-[(1S)-1-(me	990
<u>ຊາງງ</u>	thylicarbamoyi)ethyljcarbamate, referring to the penalties of initial guess \dots \dots .	220
0222	carbamov])ethyllcarbamate site calculated using the optimized and initial charges	220
S223	Statistics of calculated water interaction and dipole moment for 1-(ethylsulfanyl)propan-	
	2-one	221
S224	The comparison list of optimized atomic charges and their initial guess for 1-(ethylsulfa	
_	nyl)propan-2-one, referring to the penalties of initial guess	222
S225	Interaction energies and geometries between probe water and selected 1-(ethylsulfanyl)p	
Conc	ropan-2-one site calculated using the optimized and initial charges	222
5220	thylacetamide	<u> </u>
S227	The comparison list of optimized atomic charges and their initial guess for 2-(ethylsulfa	220
8	nyl)-N-methylacetamide, referring to the penalties of initial guess	224
S228	Interaction energies and geometries between probe water and selected 2- (ethylsulfanyl)-	
	N-methylacetamide site calculated using the optimized and initial charges \ldots .	224
S229	Statistics of calculated water interaction and dipole moment for 9-methyl-9H-xanthene	
deec	-3,6-bis(olate).	225
5230	I ne comparison list of optimized atomic charges and their initial guess for 9-methyl-9H-	99 <i>e</i>
S221	Interaction energies and geometries between probe water and selected 0 methyl 0H yeart	220
10201	hene-3.6-bis(olate) site calculated using the optimized and initial charges	226
S232	Statistics of calculated water interaction and dipole moment for 1-(ethylsulfanyl)ethan-1	
	-one	227
S233	The comparison list of optimized atomic charges and their initial guess for 1-(ethylsulfa	
--------------	---	------
0.0.0.4	nyl)ethan-1-one, referring to the penalties of initial guess	228
\$234	Interaction energies and geometries between probe water and selected 1-(ethylsulfanyl)e	000
C025	than-1-one site calculated using the optimized and initial charges \dots \dots statistics of calculated water interaction and dipole moment for (2S) 2 aganium/lpropa	228
5255	noste	220
\$236	The comparison list of optimized atomic charges and their initial guess for $(2S)$ -2-azaniu	223
0200	mylpropanoate referring to the penalties of initial guess	230
\$237	Interaction energies and geometries between probe water and selected $(2S)$ -2-azaniumylp	200
5201	ropanoate site calculated using the optimized and initial charges	230
S238	Statistics of calculated water interaction and dipole moment for [(ethylsulfanyl)methylp	200
5200	hosphonicacid.	231
S239	The comparison list of optimized atomic charges and their initial guess for [(ethylsulfany	
	l)methyl phosphonicacid, referring to the penalties of initial guess	232
S240	Interaction energies and geometries between probe water and selected [(ethylsulfanyl)met	
	hyl]phosphonicacid site calculated using the optimized and initial charges	232
S241	Statistics of calculated water interaction and dipole moment for [(ethylsulfanyl)methyl]p	
	hosphonicacid.	233
S242	The comparison list of optimized atomic charges and their initial guess for [(ethylsulfany	
	l)methyl]phosphonicacid, referring to the penalties of initial guess	234
S243	Interaction energies and geometries between probe water and selected [(ethylsulfanyl)met	
	hyl]phosphonicacid site calculated using the optimized and initial charges $\ldots \ldots \ldots$	234
S244	Statistics of calculated water interaction and dipole moment for N-ethylbenzamide	235
S245	The comparison list of optimized atomic charges and their initial guess for N-ethylbenza	
~	mide, referring to the penalties of initial guess	236
S246	Interaction energies and geometries between probe water and selected N-ethylbenzamide	
go (=	site calculated using the optimized and initial charges	236
S247	Statistics of calculated water interaction and dipole moment for 4-ethyl-2-methyl-1H-im	~~~
0040	Idazole.	237
\$248	The comparison list of optimized atomic charges and their initial guess for 4-ethyl-2-me	
S940	thyl-In-initiazole, referring to the penalties of initial guess	238
5249	Interaction energies and geometries between probe water and selected 4-ethyl-2-methyl-1	020
S 250	Statistics of calculated water interaction and dipole moment for (2P) 2 (trimethylami	230
5250	no)propagamide	230
S251	The comparison list of optimized atomic charges and their initial guess for (2B)-2-(trim	205
5201	ethylamino)propanamide referring to the penalties of initial guess	240
S252	Interaction energies and geometries between probe water and selected (2B)-2-(trimethyla	-10
5202	mino) propanamide site calculated using the optimized and initial charges	240
S253	Statistics of calculated water interaction and dipole moment for 2.4-dimethyl-2.3-dihydr	
	o-1H-imidazole.	241
S254	The comparison list of optimized atomic charges and their initial guess for 2,4-dimethyl	
	-2,3-dihydro-1H-imidazole, referring to the penalties of initial guess	242
S255	Interaction energies and geometries between probe water and selected 2,4-dimethyl-2,3-	
	dihydro-1H-imidazole site calculated using the optimized and initial charges	242
S256	Statistics of calculated water interaction and dipole moment for 2-ethyl-1H-imidazole	243
S257	The comparison list of optimized atomic charges and their initial guess for 2-ethyl-1H-i	
	midazole, referring to the penalties of initial guess	244
S258	Interaction energies and geometries between probe water and selected 2-ethyl-1H-imida	
	zole site calculated using the optimized and initial charges	244
S259	Statistics of calculated water interaction and dipole moment for ethane-1,1-diol.	245
S260	The comparison list of optimized atomic charges and their initial guess for ethane-1,1-diol,	0.40
0.0.01	referring to the penalties of initial guess	246
5261	Interaction energies and geometries between probe water and selected ethane-1,1-diol site	946
ຊາດາ	The melecule used for water complex calculations corresponding to Didebudroesportate.	240
5202	with possible interacting water positions. NOTE, only one water molecule was included	
	in each calculation	247
S263	Statistics of calculated water interaction and dipole moment for Didehvdroaspartate	247
S264	The comparison list of optimized atomic charges and their initial guess for Didehvdroasp	
	artate, referring to the penalties of initial guess	248

S265	Interaction energies and geometries between probe water and selected Didehydroaspartate	
~	site calculated using the optimized and initial charges	248
S266	The molecule used for water complex calculations corresponding to (2Z)-2-acetamido-N-	
	methylbut-2-enamide, with possible interacting water positions. NOTE, only one water	2.40
a a a =	molecule was included in each calculation.	249
5267	Statistics of calculated water interaction and dipole moment for (2Z)-2-acetamido-N-me	0.40
COCO	thy lotted the second	249
5268	The comparison list of optimized atomic charges and their initial guess for (22)-2-acetam	250
0.000	Ido-N-methylout-2-enamide, referring to the penalties of initial guess	250
5209	Interaction energies and geometries between probe water and selected $(2L)$ -2-acetamido-	จะก
\$270	N-methylout-2-enamore site calculated using the optimized and initial charges \ldots \ldots . Statistics of calculated water interaction and dipole moment for (47) 4 ethylidene 1.2 di	200
5210	methyl-4 5-dihydro-1H-imidezol-5-one	251
S271	The comparison list of optimized atomic charges and their initial guess for (47)-4-ethyli	201
5211	dene-1 2-dimethyl-4 5-dihydro-1H-imidazol-5-one referring to the penalties of initial guess	s252
S272	Interaction energies and geometries between probe water and selected (4Z)-4-ethylidene	
5-1-	-1.2-dimethyl-4.5-dihydro-1H-imidazol-5-one site calculated using the optimized and	
	initial charges	252
S273	The molecule used for water complex calculations corresponding to N-methyl-2-(2-methyl	
	-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, with possible interacting	
	water positions. NOTE, only one water molecule was included in each calculation	253
S274	Statistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4	
	-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide.	253
S275	The comparison list of optimized atomic charges and their initial guess for N-methyl-2	
	-(2-methyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, referring to	
	the penalties of initial guess	254
S276	Interaction energies and geometries between probe water and selected N-methyl-2-(2-me	
	thyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide site calculated using	
a	the optimized and initial charges	254
S277	Statistics of calculated water interaction and dipole moment for (ethylsulfanyl)ethane.	255
\$278	The comparison list of optimized atomic charges and their initial guess for (ethylsulfany	250
0.070	I)ethane, referring to the penalties of initial guess	256
5219	interaction energies and geometries between probe water and selected (ethylsunanyl)eth	95 <i>6</i>
5000	Statistics of calculated water interaction and dipole moment for 1.2 diffuero 4 methylbo	200
5260	statistics of calculated water interaction and dipole moment for 1,2-diffuoro-4-methylpe	257
\$281	The comparison list of optimized atomic charges and their initial guess for 1.2-diffuoro-4-	201
5201	methylbenzene referring to the penalties of initial guess	258
S282	Interaction energies and geometries between probe water and selected 1.2-diffuoro-4-me	200
5-0-	thylbenzene site calculated using the optimized and initial charges	258
S283	Statistics of calculated water interaction and dipole moment for 2-fluorobutanoicacid	259
S284	The comparison list of optimized atomic charges and their initial guess for 2-fluorobutan	
	oicacid, referring to the penalties of initial guess	260
S285	Interaction energies and geometries between probe water and selected 2-fluorobutanoicacid	
	site calculated using the optimized and initial charges $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	260
S286	The molecule used for water complex calculations corresponding to 2-aminopropanedi	
	oicacid, with possible interacting water positions. NOTE, only one water molecule was	
	included in each calculation	261
S287	Statistics of calculated water interaction and dipole moment for 2-aminopropanedioicacid.	261
S288	The comparison list of optimized atomic charges and their initial guess for 2-aminopropa	
daga	nedioicacid, referring to the penalties of initial guess	262
S289	Interaction energies and geometries between probe water and selected 2-aminopropaned	000
0.000	olcacid site calculated using the optimized and initial charges	262
5 2 90	pransuls of calculated water interaction and upole moment for in-ethyl-in-hydroxylorma mide	იცი
S201	The comparison list of optimized atomic charges and their initial guess for N other N by	203
5291	droxyformamide referring to the penalties of initial guess	264
S292	Interaction energies and geometries between probe water and selected N-ethyl-N-bydrov	204
0202	vformamide site calculated using the optimized and initial charges	264
S293	Statistics of calculated water interaction and dipole moment for 2-amino-3.3.3-trifluorop	
2.0	ropanoicacid.	265

S294	The comparison list of optimized atomic charges and their initial guess for 2-amino-3,3,3-	
GOOF	trifluoropropanoicacid, referring to the penalties of initial guess	266
S295	Interaction energies and geometries between probe water and selected 2-amino-3,3,3-trif	200
0.000	Iuoropropanoicacid site calculated using the optimized and initial charges	266
5290	Statistics of calculated water interaction and dipole moment for (25)-2-formamido-N-me	967
8907	The comparison list of antimized etermic changes and their initial guess for (25) 2 formore	207
5297	The comparison list of optimized atomic charges and their initial guess for (25) -2-formalities of initial guess.	260
0.000	Ido-N-methylpropanamide, referring to the penalties of initial guess	208
5290	N methylpropagamide site calculated using the optimized and initial charges	268
5 200	N-methylpropanalmude site calculated using the optimized and mitial charges	200
S299	The comparison list of optimized atomic charges and their initial guess for 1 othyl 2 fluor	209
0060	chargene referring to the populties of initial guess	270
\$ 201	Interaction onergies and geometries between probe water and selected 1 other 2 fluoreb	270
5001	any and site calculated using the optimized and initial charges	270
\$302	Statistics of calculated water interaction and dipole moment for 6-fluoro-2-methyl-1H-in	210
5502	dolo	971
\$303	The comparison list of optimized atomic charges and their initial guess for 6-fluoro-3-me	211
5000	the comparison list of optimized atomic charges and then initial guess for 0 nacro 5 me	272
S304	Interaction energies and geometries between probe water and selected 6-fluoro-3-methyl	212
5001	-1H-indole site calculated using the optimized and initial charges	272
S305	Statistics of calculated water interaction and dipole moment for 5-fluoro-3-methyl-1H-in	
0000	dole.	273
S306	The comparison list of optimized atomic charges and their initial guess for 5-fluoro-3-me	
	thyl-1H-indole, referring to the penalties of initial guess	274
S307	Interaction energies and geometries between probe water and selected 5-fluoro-3-methyl	
	-1H-indole site calculated using the optimized and initial charges	274
S308	Statistics of calculated water interaction and dipole moment for 2-ethylfuran	275
S309	The comparison list of optimized atomic charges and their initial guess for 2-ethylfuran,	
	referring to the penalties of initial guess	276
S310	Interaction energies and geometries between probe water and selected 2-ethylfuran site	
	calculated using the optimized and initial charges	276
S311	Statistics of calculated water interaction and dipole moment for 2-fluoro-2-methylpropane.	277
S312	The comparison list of optimized atomic charges and their initial guess for 2-fluoro-2-me	
	thyl propane, referring to the penalties of initial guess	278
S313	Interaction energies and geometries between probe water and selected 2-fluoro-2-methyl	
	propane site calculated using the optimized and initial charges $\ldots \ldots \ldots \ldots \ldots$	278
S314	Statistics of calculated water interaction and dipole moment for (2R,3S,4R,5R)-2-methyl	
	-5-[(1Z)-1-(methylimino)ethyl] sulfanyloxolane-3, 4-diol	279
S315	The comparison list of optimized atomic charges and their initial guess for (2R,3S,4R,5R)-	
	2-methyl-5-[(1Z)-1-(methylimino)ethyl]sulfanyloxolane-3,4-diol, referring to the penalties	
COLO	of initial guess	280
\$316	Interaction energies and geometries between probe water and selected $(2R, 3S, 4R, 5R)$ -2-	
	methyl-5-[(1Z)-1-(methylimino)ethyl]sulfanyloxolane-3,4-diol site calculated using the	000
0917	optimized and initial charges \dots	280
5317	Statistics of calculated water interaction and dipole moment for (Σ) -methyl[1-(methylsu lformul) at bull depolements	991
C 91 0	The comparison list of optimized etermic charges and their initial guess for (7) methyl	201
2010	The comparison list of optimized atomic charges and then initial guess for (Σ) -methyl[1- (methylsulfanyl) of hylidenelamine, referring to the populties of initial guess	<u> </u>
\$210	(Interny) is an analysis of the penalties of initial guess	202
5015	thy sulfary between prove water and selected (2) -interry $[1-(methy)]$	282
S320	Statistics of calculated water interaction and dipole moment for N"-ethoxyguanidine	283
S321	The comparison list of optimized atomic charges and their initial guess for N'-ethoxygu	200
~ • • • • •	anidine, referring to the penalties of initial guess	284
S322	Interaction energies and geometries between probe water and selected N"-ethoxyguanidine	-01
~ ~ = =	site calculated using the optimized and initial charges	284
S323	Statistics of calculated water interaction and dipole moment for (2S)-2-hvdroxvpropana	
2	mide.	285
S324	The comparison list of optimized atomic charges and their initial guess for (2S)-2-hydrox	
	ypropanamide, referring to the penalties of initial guess	286

S325 Interaction energies and geometries between probe water and selected (2S)-2-hydroxypro	
panamide site calculated using the optimized and initial charges	286
methyl-4,5-dihydro-1H-imidazol-5-one.	287
S327 The comparison list of optimized atomic charges and their initial guess for (4Z)-4-ethyli dene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, referring to the penalties of initial gues	s288
S328 Interaction energies and geometries between probe water and selected (4Z)-4-ethylidene	
-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one site calculated using the optimized and	
initial charges	288
S329 The molecule used for water complex calculations corresponding to N-methyl-2-(2-methyl -4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, with possible interacting	
water positions. NOTE, only one water molecule was included in each calculation.	289
S330 Statistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4	
methylidene 5 eve 4.5 dihydre 1H imidazel 1 yl)acetamide	280
S221 The comparison list of optimized stomic charges and their initial guess for N methyl 2	205
(2) mothed 4 mothedidate 5 and 45 librate 11 incident 1 miles for N-methyl-2	
-(2-metnyl-4-metnylidene-5-oxo-4,5-dinydro-1H-imidazoi-1-yi)acetamide, referring to	
the penalties of initial guess	290
S332 Interaction energies and geometries between probe water and selected N-methyl-2-(2-me	
thyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide site calculated using	
the optimized and initial charges \ldots	290
S333 Statistics of calculated water interaction and dipole moment for N-hydroxypropanamide.	291
S334 The comparison list of optimized atomic charges and their initial guess for N-hydroxypro	
panamide, referring to the penalties of initial guess	292
S335 Interaction energies and geometries between probe water and selected N-hydroxypropana	
mide site calculated using the optimized and initial charges	292
S336 Statistics of calculated water interaction and dipole moment for 4-athyl-1-methyl-2 3-di	202
budro 1U imidazolo	202
IIyuIO-III-IIIIuuazoie	295
5337 The comparison list of optimized atomic charges and their initial guess for 4-ethyl-1-me	20.4
thyl-2,3-dihydro-1H-imidazole, referring to the penalties of initial guess	294
S338 Interaction energies and geometries between probe water and selected 4-ethyl-1-methyl	
$-2,3$ -dihydro-1H-imidazole site calculated using the optimized and initial charges \ldots \ldots	294
S339 Statistics of calculated water interaction and dipole moment for (5-ethyl-1H-imidazol-1-	
yl phosphonicacid	295
S340 The comparison list of optimized atomic charges and their initial guess for (5-ethyl-1H-i	
midazol-1-yl)phosphonicacid, referring to the penalties of initial guess	296
S341 Interaction energies and geometries between probe water and selected (5-ethyl-1H-imida	
zol-1-yl)phosphonicacid site calculated using the optimized and initial charges	296
S342 Statistics of calculated water interaction and dipole moment for 5-ethyl-1H-1.2.3-triazole.	297
S343 The comparison list of ontimized atomic charges and their initial guess for 5-ethyl-1H	
1.2.3 triazolo referring to the populties of initial guess	208
S244 Interaction operations and geometrics between probe water and selected 5 other 1 H 1 2 3	200
triagole site calculated using the entimized and initial charges	200
C245 Ctatistics of calculated meter interaction and direly memory for A methodeniling	290
S345 Statistics of calculated water interaction and dipole moment for 4-methylamine.	299
5346 The comparison list of optimized atomic charges and their initial guess for 4-methylaniline,	800
referring to the penalties of initial guess	300
S347 Interaction energies and geometries between probe water and selected 4-methylaniline site	
calculated using the optimized and initial charges	300
S348 Statistics of calculated water interaction and dipole moment for (1R)-1-(methylsulfanyl)e	
than-1-ol	301
S349 The comparison list of optimized atomic charges and their initial guess for (1R)-1-(meth	
ylsulfanyl)ethan-1-ol, referring to the penalties of initial guess	302
S350 Interaction energies and geometries between probe water and selected (1R)-1-(methylsulf	
anvl)ethan-1-ol site calculated using the optimized and initial charges	302
S351 Statistics of calculated water interaction and dipole moment for (1R)-1-(1H-indol-3-vl)e	
than-1-ol	303
S252 The comparison list of optimized atomic charges and their initial guess for (1B) 1 (1H i	000
ndol-3-yl)athan_1_ol referring to the nonalties of initial guess for (11)-1-(111-1	হ∩⊿
C252 Interaction operation and geometrics between probe water and calculat (1D) 1 (111 :- 1-1.2)	004
yl) other 1 of site coloulated using the optimized and initial changes	9 ∩ 4
-yijounan-i-or site calculated using the optimized and finitial charges	JU4
5554 Statistics of calculated water interaction and dipole moment for N-methyl-N-(2-methylpr	0.05
opyi)acetamide.	- 305

S355	The comparison list of optimized atomic charges and their initial guess for N-methyl-N (2 methylphonyl) settemide, referring to the populties of initial guess.	206
S356	Interaction energies and geometries between probe water and selected N-methyl-N-(2-me	300
	thylpropyl)acetamide site calculated using the optimized and initial charges	306
S357	Statistics of calculated water interaction and dipole moment for ethyl(propan-2-yl)amine.	307
S358	The comparison list of optimized atomic charges and their initial guess for ethyl(propan	
	-2-yl)amine, referring to the penalties of initial guess	308
S359	Interaction energies and geometries between probe water and selected ethyl(propan-2-y	
Gago	I) amine site calculated using the optimized and initial charges	308
S360	Statistics of calculated water interaction and dipole moment for 2-methyl-2,3-dihydro-1H	0.00
0.961	-Indene.	309
2201	dibudge 1H independent of optimized atomic charges and their initial guess for 2-methyl-2, 3-	910
5360	Interaction onergies and geometrics between probe water and selected 2 methyl 2.3 diby	310
5502	dro-1H-indene site calculated using the optimized and initial charges	310
S363	Statistics of calculated water interaction and dipole moment for 4-I(E)-(ethylimino)met	010
5000	hvll-2.5-dimethylpyridin-3-olate	311
S364	The comparison list of optimized atomic charges and their initial guess for 4-[(E)-(ethyli	0
	mino)methyl]-2,5-dimethylpyridin-3-olate, referring to the penalties of initial guess	312
S365	Interaction energies and geometries between probe water and selected 4-[(E)-(ethylimi	
	no)methyl]-2,5-dimethylpyridin-3-olate site calculated using the optimized and initial	
	charges	312
S366	Statistics of calculated water interaction and dipole moment for (ethylsulfanyl)(pyridin-	
~	3-yl)methanone.	313
S367	The comparison list of optimized atomic charges and their initial guess for (ethylsulfany	
daco	l)(pyridin-3-yl)methanone, referring to the penalties of initial guess	314
5308	interaction energies and geometries between probe water and selected (ethylsulianyl)(py ridin 2 u) motherane site colculated using the entimized and initial changes	914
\$360	Statistics of calculated water interaction and dipole moment for (2E) N pontylbut 2 on	314
5003	amide	315
S370	The comparison list of optimized atomic charges and their initial guess for (2E)-N-pentyl	010
	but-2-enamide, referring to the penalties of initial guess	316
S371	Interaction energies and geometries between probe water and selected (2E)-N-pentylbut-	
	2-enamide site calculated using the optimized and initial charges	316
S372	Statistics of calculated water interaction and dipole moment for pentyl carbamicacid	317
S373	The comparison list of optimized atomic charges and their initial guess for pentylcarbam	
_	icacid, referring to the penalties of initial guess	318
S374	Interaction energies and geometries between probe water and selected pentylcarbamicacid	
COFF	site calculated using the optimized and initial charges	318
5379	Statistics of calculated water interaction and dipole moment for $(2E)$ -2-(methyliminiumy l) propagate	210
\$376	The comparison list of optimized atomic charges and their initial guess for $(2F)$ 2 (meth	919
0010	vliminiumvl)propanoate referring to the penalties of initial guess	320
S377	Interaction energies and geometries between probe water and selected (2E)-2-(methylim	020
	iniumvl)propanoate site calculated using the optimized and initial charges	320
S378	Statistics of calculated water interaction and dipole moment for 1-(2-aminophenyl)propa	
	n-1-one	321
S379	The comparison list of optimized atomic charges and their initial guess for 1-(2-aminophe	
	nyl)propan-1-one, referring to the penalties of initial guess	322
S380	Interaction energies and geometries between probe water and selected 1-(2-aminopheny	
0.001	l)propan-1-one site calculated using the optimized and initial charges	322
\$381	Statistics of calculated water interaction and dipole moment for propane-2-thiol.	323
5382	I ne comparison list of optimized atomic charges and their initial guess for propane-2-thiol,	<u>90</u> 4
6383	Interaction energies and geometries between probe water and selected propage 2 thiel site	324
0000	calculated using the optimized and initial charges	324
S384	Statistics of calculated water interaction and dipole moment for 2-methylpropane-2-thiol.	325
S385	The comparison list of optimized atomic charges and their initial guess for 2-methylprop	
	ane-2-thiol, referring to the penalties of initial guess	326
S386	Interaction energies and geometries between probe water and selected 2-methylpropane-	
	2-thiol site calculated using the optimized and initial charges	326

 anal, referring to the penalties of initial guess 323 3239 Interaction energies and geometries between probe water and selected 2-methylpropanal site calculated using the optimized atomic charges and their initial guess for 1-fluoro-2-methyl propane, referring to the penalties of initial guess. 333 334 335 336 336 336 336 337 336 337 336 337 336 337 336 337 336 337 337 337 338 337 338 3395 336 337 338 3395 338 3395 3395 3395 3395 3396 3395 3396 3396 3396 3397 3398 3397 3398 340 340 340 341 340 341 3400 341 342 341 342 343 3435 344 344 344 345 344 345 344 345 344 345 344 346 346 347 347 348 3400 348 3400 348 3400 349 3401 3402 344 344 345 344 344 345 344 345 344 345 344 345 344 345 344 344 345 344 344 345 344 345 344 345 344 34	S387 S388	Statistics of calculated water interaction and dipole moment for 2-methylpropanal The comparison list of optimized atomic charges and their initial guess for 2-methylprop	327
 site calculated using the optimized and initial charges	S389	anal, referring to the penalties of initial guess	328
 Sauo Statistics of calculated warer interaction and dipole moment for 1-fluoro-2-methylpropane. 32. Sau The comparison list of optimized atomic charges and their initial guess for 1-fluoro-2-methyl propane site calculated using the optimized and initial charges		site calculated using the optimized and initial charges	328
 S391 The comparison list of optimized atomic charges and their initial guess for 1-fluoro-2-methyl propane, referring to the penaltics of initial guess. S392 Interaction energies and geometries between probe water and selected 1-fluoro-2-methyl propane site calculated water interaction and flipo moment for 2,5-dimethyl-4-([£])-(methylimino)methyl[pyridin-3-olate, efferring to the penalties of initial guess. S393 Staristics of calculated water interaction and flipole moment for 2,5-dimethyl -4-([£])-(methylimino)methyl[pyridin-3-olate, referring to the penalties of initial guess. S395 Interaction energies and geometries between probe water and selected 2,5-dimethyl -4-([£])-(methylimino)methyl[pyridin-3-olate, site calculated using the optimized and initial charges calculated water interaction and flipole moment for 3-methylbutanoicarid. S395 The comparison list of optimized atomic charges and their initial guess for 3-methylbutanoicarid site calculated using the optimized and initial charges calculated using the optimized atomic charges calculated set calculated using the optimized atomic charges can be set of 2-methylpropanal. S400 The comparison list of optimized atomic charges and their initial guess for 2-methylpropanal site calculated water interaction and flipole moment for 22-methylpropanal site calculated water interaction and flipole moment for (25)-N-methyl-2-(methylufanyl)propanamide. S402 Staristics of calculated water interaction and dipole moment for (25)-N-methyl-2-(methylufanyl)propanamide. S403 Staristics of calculated water interaction and dipole moment for (25)-N-methyl-2-(methylufanyl)propanamide. S403 Staristics of calculated water interaction and dipole moment for (25)-N-methyl-2-(methylufanyl)propanamide. S403 Staristics of calculated water interaction and dipole moment for (25)-N-methyl-2-(methylufanyl)propanamide. S403 Staristics of calculated wa	S390	Statistics of calculated water interaction and dipole moment for 1-fluoro-2-methylpropane.	329
chylpropane, referring to the penaltics of initial guess. 33 S392 Interaction energies and geometries between probe water and selected 1-fluoro-2-methyl propane site calculated using the optimized and initial charges 33 S393 The comparison list of optimized atomic charges and their initial guess for 2,5-dimethyl-4-(E). (methylimino)methyl[pyridin-3-olate, referring to the penalties of initial guess 33 S395 Interaction energies and geometries between probe water and selected 2,5-dimethyl-4-(E). (methylimino)methyl[pyridin-3-olate, referring to the penalties of initial guess 33 S395 Interaction energies and geometries between probe water and selected 2,5-dimethyl-4-(E). (methylimino)methyl[pyridin-3-olate, referring to the penalties of initial guess 33 S395 Interaction energies and geometries between probe water and selected 3-methylbutanoic acid site calculated using the optimized and initial charges 33 S395 Interaction energies and geometries between probe water and selected 3-methylbutanoic acid site calculated water interaction and dipole moment for 2-methylpropanal 33 S400 The comparison list of optimized and initial charges 33 S401 Interaction energies and geometries between probe water and selected 2-methylpropanal site calculated water interaction and dipole moment for (25)-N-methyl-2 (methylsulfanyl)propanamide. 33 S400 The comparison list of optimized and initial charges 33 S401 Interaction energies and geometries between probe water and selected (25)-N-methyl-2 (methylsulfanyl)propanamide. </td <td>S391</td> <td>The comparison list of optimized atomic charges and their initial guess for 1-fluoro-2-me</td> <td></td>	S391	The comparison list of optimized atomic charges and their initial guess for 1-fluoro-2-me	
 Sige Interaction energies and geometries between probe water and selected 1-fluoro-2-methyl propane site calculated using the optimized and initial charges		thylpropane, referring to the penalties of initial guess	330
propane site calculated using the optimized and initial charges	S392	Interaction energies and geometries between probe water and selected 1-fluoro-2-methyl	
 S333 Štaistics of calculated warer interaction and dipole moment for 2,5-dimethyl-4-[(E)-(methylimino)methyl]pyridin-3-olate. S35 S47 The comparison list of optimized atomic charges and their initial guess for 2,5-dimethyl -4-[(E)-(methylimino)methyl]pyridin-3-olate, referring to the penaltics of initial guess. S33 S1 Interaction energies and geometrics between probe water and selected 2,5-dimethyl -4-[(E)-(methylimino)methyl]pyridin-3-olate site calculated using the optimized and initial charges. S33 S40 The comparison list of optimized atomic charges and their initial guess for 3-methylbutanoicacid. S33 S40 The comparison list of optimized is of initial guess. S33 S40 The comparison list of optimized atomic charges and their initial guess for 3-methylbutanoicacid site calculated using the optimized and initial charges. S400 The comparison list of optimized atomic charges and their initial guess for 2-methylpropanal. S400 The comparison list of optimized atomic charges and their initial guess for 2-methylpropanal site calculated using the optimized and initial charges. S401 Interaction energies and geometries between probe water and selected 2-methylpropanal site calculated water interaction and dipole moment for (25)-N-methyl-2-(methylsulfanyl)propanamide. S403 The comparison list of optimized atomic charges and their initial guess for (28)-N-methyl-2-(methylsulfanyl)propanamide, referring to the penalties of initial guess. S403 The comparison list of optimized atomic charges and their initial guess for (28)-N-methyl-2-(methylsulfanyl)propanamide, referring to the penalties of initial guess. S403 The comparison list of optimized atomic charges and their initial guess for (28)-N-methyl-2-(methylsulfanyl)propanamide, referring to the penalties of initial guess. S403 The comparison list of optimized atomic charges and their initial guess for (28)-N-methyl-2-(methylsulfanyl)propanamide. S4		propane site calculated using the optimized and initial charges	330
thylimino)methyl[pyridin-3-olate. 33 S394 The comparison list of optimized atomic charges and their initial guess for 2.5-dimethyl-4-[(E)-(methylimino)methyl[pyridin-3-olate, referring to the penalties of initial guess. 33 S385 Interaction energies and geometries between probe water and selected 2.5-dimethyl-4 -((E)-(methylimino)methyl[pyridin-3-olate site calculated using the optimized and initial charges. 33 S396 Statistics of calculated water interaction and dipole moment for 3-methylbutanoicacid, referring to the penaltics of initial guess. 33 S398 Interaction energies and geometries between probe water and selected 3-methylbutanoic acid site calculated using the optimized and initial charges. 33 S400 The comparison list of optimized atomic charges and their initial guess for 2-methylpropanal site calculated water interaction and dipole moment for 2-methylpropanal site calculated water interaction and dipole moment for 2-methylpropanal site calculated water interaction and dipole moment for (2S)-N-methyl-2-(methylsulfanyl)propanamide. 33 S403 The comparison list of optimized atomic charges and their initial guess for (2S)-N-methyl-2-(methylsulfanyl)propanamide. referring to the penalties of initial guess. 33 S403 The comparison list of optimized atomic charges and their initial guess for (4S)-N-methyl-2 33 S404 Interaction energies and geometries between probe water and selected (2S)-N-methyl-2 33 S405 Statistics of calculated water interaction and dipole moment for (2S)-N-methyl-2 33	S393	Statistics of calculated water interaction and dipole moment for 2.5-dimethyl-4-[(E)-(me	
 S394 The comparison list of optimized atomic charges and their initial guess for 2,5-dimethyl -4-[(E)-(methylimino)methyl]pyridin-3-olate, referring to the penalties of initial guess and geometries between probe water and selected 2,5-dimethyl-4 -[(E)-(methylimino)methyl]pyridin-3-olate site calculated using the optimized and initial charges 33 S396 Statistics of calculated water interaction and dipole moment for 3-methylbutanoicacid. 33 S397 The comparison list of optimized atomic charges and their initial guess for 3-methylbutanoic acid site calculated water interaction energies and geometries between probe water and selected 3-methylbutanoic acid site calculated water interaction charges and their initial guess for 2-methylpropanal. 33 S400 The comparison list of optimized atomic charges and their initial guess for 2-methylpropanal site calculated water interaction and dipole moment for 2-methylpropanal site calculated using the optimized atomic charges and their initial guess for 2-methylpropanal site calculated using the optimized atomic charges and their initial guess for (25)-N-methyl-2-(meth ylsulfanyl)propanamide. 33 S402 Statistics of calculated water interaction and dipole moment for (25)-N-methyl-2-(methylsulfanyl)propanamide is the calculated using the optimized atomic charges and their initial guess for (25)-N-methyl-2-(methylsulfanyl)propanamide site calculated using the optimized and initial charges . 34 S403 The comparison list of optimized atomic charges and their initial guess for (45)-N-methyl-2-(methylsulfanyl)propanamide site calculated using the optimized and initial charges . 34 S405 Statistics of calculated water interaction and dipole moment for (45)-(2,2-dimethylsulfanyl)methanol, referring to the penalties of initial guess for (44)-sulfanyl)methanol, see (44)-4-(44)-4-4-4-4-4-4-4-4-4-4-4-4-4-4-		thylimino)methyl]pyridin-3-olate.	331
 4-[[E]-((methylimino)methyl]pyridin-3-olate, referring to the penalties of initial guess. 33: S195 Interaction energies and geometries between probe water and selected 2.5-dimethyl-4-[[E]-(methyliminomethyl]pyridin-3-olate site calculated using the optimized and initial charges. 33: S396 Statistics of calculated water interaction and dipole moment for 3-methylbutanoicacid. 33: S398 Interaction energies and geometries between probe water and selected 3-methylbutanoic acid site calculated using the optimized atomic charges and their initial guess for 3-methylbutanoic acid site calculated using the optimized atomic drages and their initial gues for 2-methylpropo anal, referring to the penalties of initial guess. S400 The comparison list of optimized atomic charges and their initial gues for 2-methylprop anal, referring to the penalties of initial guess. S401 Interaction energies and geometries between probe water and selected 2-methylprop anal, site calculated water interaction and dipole moment for (25)-N-methylprop anal, site of calculated water interaction and dipole moment for (25)-N-methylprop anal site calculated water interaction and dipole moment for (25)-N-methyl-2-(methylsulfanyl)propanamide, referring to the penalties of initial guess. S403 The comparison list of optimized atomic charges and their initial guess for (25)-N-methyl-2-(methylsulfanyl)propanamide, referring to the penalties of initial guess. S403 The comparison list of optimized atomic charges and their initial guess for (25)-N-methyl-2-(methylsulfanyl)propanamide site calculated using the optimized and initial charges. S403 The comparison list of optimized atomic charges and their initial guess for (25)-N-methyl-2-(methylsulfanyl)propanamide site calculated using the optimized and initial charges. S403 The comparison list of optimized atomic charges and their initial guess for (2)-N-methyl-2-(N-methyl-2-(N-methyl-2-(N-methyl-	S394	The comparison list of optimized atomic charges and their initial guess for 2.5-dimethyl	
 S395 Interaction energies and geometries between probe water and selected 2.5-dimethyl-4 -(IC)- (methylimino)methyllpyridin-3-olate site calculated using the optimized and initial charges 333 S396 Statistics of calculated water interaction and dipole moment for 3-methylbutanoicacid. 333 S397 The comparison list of optimized atomic charges and their initial guess for 3-methylbutanoic acid, referring to the penaltics of initial guess. 33 S400 The comparison list of optimized atomic charges and their initial guess for 2-methylpropanal. 33 S400 The comparison list of optimized atomic charges and their initial guess for 2-methylpropanal site calculated using the optimized atomic charges and their initial guess for 2-methylpropanal site calculated water interaction and dipole moment for (25)-N-methyl-2-(meth ylsulfanyl)propanamide. 3403 The comparison list of optimized atomic charges and their initial guess for (25)-N-methyl-2-(methylsulfanyl)propanamide, referring to the penaltics of initial guess. 3404 Interaction energies and geometries between probe water and selected (25)-N-methyl-2-(methylsulfanyl)propanamide, referring to the penaltics of initial guess. 3405 Statistics of calculated water interaction and dipole moment for (ethylsulfanyl)methanol. 3405 The comparison list of optimized atomic charges and their initial guess for (25)-N-methyl-2-(methylsulfanyl)propanamide, referring to the penaltics of initial guess. 3404 Theraction energies and geometries between probe water and selected (25)-N-methyl-2. 4407 Theteraction energies and geometries between probe water and selected (18)-N-(methyl-24)-		-4-[(E)-(methylimino)methyllpyridin-3-olate, referring to the penalties of initial guess	332
 -[(E)- (methylimino)methyl]pyridin-3-olate site calculated using the optimized and initial charges 336 S396 Statistics of calculated water interaction and dipole moment for 3-methylbutanoicacid. 337 S397 The comparison list of optimized atomic charges and their initial guess for 3-methylbutanoicacid. 338 S398 Interaction energies and geometries between probe water and selected 3-methylburopanal. 338 S400 The comparison list of optimized atomic charges and their initial guess for 2-methylpropanal. 338 S401 Interaction energies and geometries between probe water and selected 2-methylpropanal site calculated using the optimized and initial charges 3401 Interaction energies and geometries between probe water and selected 2-methylpropanal site calculated using the optimized atomic charges and their initial guess for (2S)-N-methyl-2- (methylsulfanyl)propanamide. 3403 The comparison list of optimized atomic charges and their initial guess for (2S)-N-methyl-2- (methylsulfanyl)propanamide, referring to the penalties of initial guess for (2S)-N-methyl-2 - (methylsulfanyl)propanamide site calculated using the optimized and initial charges . 3403 G The comparison list of optimized atomic charges and their initial guess for (2S)-N-methyl-2 - (methylsulfanyl)propanamide site calculated using the optimized and initial charges . 3404 Interaction energies and geometries between probe water and selected (2S)-N-methyl-2 - (methylsulfanyl)propanamide atomic charges and their initial guess for (2thylsulfanyl) methanol. 3506 Statistics of calculated water interaction and dipole moment for (R)-(2,2-dimethylprop yl) (methyl)-lambda3-sulfanol. 340 S40 The comparison list of optimized atomic charges and their initial guess for (R)-(2,2-dimethylprop yl) (methyl)-lambda3-sulfanol. 341 Statistics of calculated water interaction and dipole moment for (R)-(2,2-dimethylprop yl) (meth	S395	Interaction energies and geometries between probe water and selected 2.5-dimethyl-4	
charges 33 Statistics of calculated water interaction and dipole moment for 3-methylbutanoicacid. 33 S397 The comparison list of optimized atomic charges and their initial guess for 3-methylbutanoic acid site calculated using the optimized and initial charges 33 S398 Interaction energies and geometries between probe water and selected 3-methylbutanoic acid site calculated using the optimized and initial charges 33 S400 The comparison list of optimized and initial charges 33 S401 Interaction energies and geometries between probe water and selected 2-methylpropanal site calculated using the optimized and initial charges 33 S402 Statistics of calculated water interaction and dipole moment for (2S)-N-methyl-2-(methylsulfanyl)propanamide. 33 S403 The comparison list of optimized atomic charges and their initial guess for (2S)-N-methyl-2-(methylsulfanyl)propanamide, referring to the penalties of initial guess. 33 S403 The comparison list of optimized atomic charges and their initial guess for (ethylsulfanyl)methanol. 33 S405 Statistics of calculated water interaction and dipole moment for (chylsulfanyl)methanol. 33 S405 The comparison list of optimized atomic charges and their initial guess for (ethylsulfanyl)methanol. 33 S406 The comparison list of optimized atomic charges and their initial guess for (ethylsulfanyl)methanol. 34 S406 The comparison list of optimized atomic charges and their initial guess for (-[(E)-(methylimino)methylpyridin-3-olate site calculated using the optimized and initial	
 S396 Statistics of calculated water interaction and dipole moment for 3-methylbutanoicacid		charges	332
 S397 The comparison list of optimized atomic charges and their initial guess for 3-methylbuta noicacid, referring to the penalties of initial guess	S396	Statistics of calculated water interaction and dipole moment for 3-methylbutanoicacid.	333
noicacid, referring to the penalties of initial guess 33 S398 Interaction energies and geometries between probe water and selected 3-methylpotanal. 33 S400 The comparison list of optimized atomic charges and their initial guess for 2-methylpropanal. 33 S400 The comparison list of optimized atomic charges and their initial guess for 2-methylpropanal. 33 S401 Interaction energies and geometries between probe water and selected 2-methylpropanal site calculated using the optimized atomic charges and their initial guess for 2-methyl-2-(methyluflanyl)propanamide. 33 S403 The comparison list of optimized atomic charges and their initial guess for (2S)-N-methyl-2-(methyluflanyl)propanamide, referring to the penalties of initial guess. 33 S404 Interaction energies and geometries between probe water and selected (2S)-N-methyl-2 -(methylsulfanyl)propanamide, referring to the penalties of initial guess. 33 S405 Statistics of calculated water interaction and dipole moment for (ethylsulfanyl)methanol. 33 S406 The comparison list of optimized atomic charges and their initial guess for (ethylsulfanyl)methanol, referring to the penalties of initial guess. 34 S407 Interaction energies and geometries between probe water and selected (R)-(2,2-dimethyl humbda-sulfanol. 34 S408 Statistics of calculated water interaction and dipole moment for (ethylsulfanyl)methanol. 34 S408 The comparison list of optimized atomic charges and their initial guess for (R)-(2,2-dimethyl propyl)	S397	The comparison list of ontimized atomic charges and their initial guess for 3-methylbuta	000
S398 Interaction energies and geometries between probe water and selected 3-methylbutanoic acid site calculated using the optimized and initial charges	5001	noicacid referring to the penalties of initial guess	334
Substitute Substitute <td>S398</td> <td>Interaction energies and geometries between probe water and selected 3-methylbutanoic</td> <td>001</td>	S398	Interaction energies and geometries between probe water and selected 3-methylbutanoic	001
S399 Statistics of calculated water interaction and dipole moment for 2-methylpropanal. 33 S400 The comparison list of optimized atomic charges and their initial guess for 2-methylprop anal, referring to the penalties of initial guess. 33 S401 Interaction energies and geometries between probe water and selected 2-methylpropanal site calculated using the optimized atomic charges and their initial guess for (2S)-N-methyl-2-(methylpropananide. 33 S403 The comparison list of optimized atomic charges and their initial guess for (2S)-N-methyl-2-(methylsulfanyl)propananide, referring to the penalties of initial guess. 33 S404 Interaction energies and geometries between probe water and selected (2S)-N-methyl-2 -(methylsulfanyl)propananide, referring to the penalties of initial guess for (ethylsulfanyl)methanol, referring to the penalties of initial guess. 34 S406 The comparison list of optimized atomic charges and their initial guess for (ethylsulfanyl)methanol, referring to the penalties of initial guess. 34 S407 Interaction energies and geometries between probe water and selected (2H)sulfanyl)methanol, referring to the penalties of initial guess for (R)-(2,2-dimethylnopyl)(methyl)-lambda3-sulfanol. 34 S408 Statistics of calculated water interaction and dipole moment for (R)-(2,2-dimethylnopyl)(methyl)-lambda3-sulfanol. 34 S409 The comparison list of optimized atomic charges and their initial guess for (R)-(2,2-dimethyl propyl)(methyl)-lambda3-sulfanol, referring to the penalties of initial guess. 34 S409 The comparison list of optimized at	5050	acid site calculated using the optimized and initial charges	334
S400 The comparison list of optimized atomic charges and their initial guess for 2-methylprop anal, referring to the penalties of initial guess 33 S401 Interaction energies and geometries between probe water and selected 2-methylpropanal site calculated using the optimized and initial charges 33 S402 Statistics of calculated water interaction and dipole moment for (2S)-N-methyl-2-(meth ylsulfanyl)propanamide. 33 S403 The comparison list of optimized atomic charges and their initial guess for (2S)-N-methyl-2 (methylsulfanyl)propanamide, referring to the penalties of initial guess 33 S404 Interaction energies and geometries between probe water and selected (2S)-N-methyl-2 -(methylsulfanyl)propanamide site calculated using the optimized and initial charges 33 S405 The comparison list of optimized atomic charges and their initial guess for (ethylsulfanyl)met hanol, referring to the penalties of initial guess 34 S407 Interaction energies and geometries between probe water and selected (ethylsulfanyl)met hanol site calculated water interaction and dipole moment for (R)-(2,2-dimethylprop yl)(methyl)-lambda3-sulfanol. 34 S409 The comparison list of optimized atomic charges and their initial guess for (R)-(2,2-dimethylprop yl)(methyl)-lambda3-sulfanol, referring to the penalties of initial guess. 34 S410 Interaction energies and geometries between probe water and selected (R)-(2,2-dimethylprop yl)(methyl)-lambda3-sulfanol site calculated using the optimized and initial charges 34 S410 Interaction energies and geometries between probe water and selected (R)-	S399	Statistics of calculated water interaction and dipole moment for 2-methylpropanal	335
 anal, referring to the penalties of initial guess	S400	The comparison list of optimized atomic charges and their initial guess for 2-methylprop	000
 S401 Interaction energies and geometries between probe water and selected 2-methylpropanal site calculated using the optimized and initial charges	5 100	anal referring to the penalties of initial guess	336
S101 matrix of the gravity of the point of the probement of the conservation of the point o	S401	Interaction energies and geometries between probe water and selected 2-methylpropanal	000
 Subscription of the optimized atom in the barged structure interaction in the optimized atom in the optimized atom in the optimized atom in the optimized atom in the initial guess for (2S)-N-meth yl-2 (methylsulfanyl)propanamide, referring to the penalties of initial guess in the initial guess of calculated water interaction and dipole moment for (cHylsulfanyl)methanol. 33: Sub Interaction energies and geometries between probe water and selected (2S)-N-methyl-2 - (methylsulfanyl)propanamide site calculated using the optimized and initial charges . 33: Sub Statistics of calculated water interaction and dipole moment for (cHylsulfanyl)methanol. 33: Sub Statistics of calculated water interaction and dipole moment for (cHylsulfanyl)methanol. 33: Sub The comparison list of optimized atomic charges and their initial guess for (ethylsulfanyl)methanol site calculated water interaction and dipole moment for (R)-(2,2-dimethyl-1)methanol site calculated water interaction and dipole moment for (R)-(2,2-dimethyl-1)/(methyl)-lambda3-sulfanol	0 101	site calculated using the ontimized and initial charges	336
 Stor Statistics of calculated water interaction and upper home there for (2)-N-methyling and the store interaction energies and geometries between probe water and selected (2)-N-methyling and the penalties of initial guess in the store of the store of a store of the st	S402	Statistics of calculated water interaction and dipole moment for (2S)-N-methyl-2-(meth	000
 S403 The comparison list of optimized atomic charges and their initial guess for (2S)-N-meth yl-2-(methylsulfanyl)propanamide, referring to the penalties of initial guess	0102	visulfanvi)pronanamide	337
 Stor The comparison hist of optimized atomic using the optimized and initial guess in the second s	S403	The comparison list of optimized atomic charges and their initial guess for (2S)-N-meth	001
 Stude Interaction energies and geometries between probe water and selected (2S)-N-methyl-2 -(methylsulfanyl)propanamide site calculated using the optimized and initial charges	0100	vl-2-(methylsulfanyl)propagamide referring to the penalties of initial guess	338
 Stor interfactor and geometries between probe water and selected (2S)-N-methyl 2 (N-methylacetamido) propanamide site calculated using the optimized and initial charges	S404	Interaction energies and geometries between probe water and selected (2S)-N-methyl-2	000
 (Interp) problem (interp) (production of the contract of any price optimized and index on general systems). S405 Statistics of calculated water interaction and dipole moment for (ethylsulfanyl)methanol S406 The comparison list of optimized atomic charges and their initial guess for (ethylsulfanyl)methanol. S407 Interaction energies and geometries between probe water and selected (ethylsulfanyl)methanol. S408 Statistics of calculated using the optimized and initial charges . S408 Statistics of calculated water interaction and dipole moment for (R)-(2,2-dimethylpropyl) (methyl)-lambda3-sulfanol. S409 The comparison list of optimized atomic charges and their initial guess for (R)-(2,2-dimethylpropyl) (methyl)-lambda3-sulfanol, referring to the penalties of initial guess . S410 Interaction energies and geometries between probe water and selected (R)-(2,2-dimethylpropyl) (methyl)-lambda3-sulfanol site calculated using the optimized and initial charges . S411 Statistics of calculated water interaction and dipole moment for (2S)-N-methyl-2-(N-methylacetamido)propanamide. S413 Interaction energies and geometries between probe water and selected (2S)-N-methyl-2-(N-methylacetamido)propanamide, referring to the penalties of initial guess . S413 Statistics of calculated water interaction and dipole moment for N,N-dimethyl-2 (N-methylacetamido)propanamide site calculated using the optimized and initial charges . S414 Statistics of calculated water interaction and dipole moment for N,N-dimethyl-2 (N-methylacetamido)propanamide site calculated using the optimized and initial charges . S415 The comparison list of optimized atomic charges and their initial guess for N,N-dimethyl acetamide. S415 The comparison list of optimized atomic charges and their initial guess for N,N-dimethyl acetamide. S414 Statistics of calculated water interaction and dipole moment for N,N-dimethyla	0101	-(methylsulfanyl)propanamide site calculated using the optimized and initial charges	338
 Stor bar and the analysis of the main and the analysis of the problem for (cm) mainly in the problem for the problem	S405	Statistics of calculated water interaction and dipole moment for (ethylsulfanyl)methanol	339
 a) a) a) and a set of a primed using the optimized and initial guess in (enhybridient) and (enhybri	S406	The comparison list of optimized atomic charges and their initial guess for (ethylsulfany	000
 S407 Interaction energies and geometries between probe water and selected (ethylsulfanyl)met hanol site calculated using the optimized and initial charges	0 100	l)methanol, referring to the penalties of initial guess	340
 handl site calculated using the optimized and initial charges	S407	Interaction energies and geometries between probe water and selected (ethylsulfanyl)met	010
 S408 Statistics of calculated water interaction and dipole moment for (R)-(2,2-dimethylpropyl) (methyl)-lambda3-sulfanol. S409 The comparison list of optimized atomic charges and their initial guess for (R)-(2,2-dimethylpropyl) (methyl)-lambda3-sulfanol, referring to the penalties of initial guess. S410 Interaction energies and geometries between probe water and selected (R)-(2,2-dimethylpropyl) (methyl)-lambda3-sulfanol site calculated using the optimized and initial charges. S411 Statistics of calculated water interaction and dipole moment for (2S)-N-methyl-2-(N-methylacetamido)propanamide. S412 The comparison list of optimized atomic charges and their initial guess for (2S)-N-methyl-2-(N-methylacetamido)propanamide, referring to the penalties of initial guess. S413 Interaction energies and geometries between probe water and selected (2S)-N-methyl-2 - (N-methylacetamido)propanamide site calculated using the optimized and initial charges 34: S414 Statistics of calculated water interaction and dipole moment for N,N-dimethyl-2 - (N-methylacetamido)propanamide site calculated using the optimized and initial charges 34: S414 Statistics of calculated water interaction and dipole moment for N,N-dimethylacetamide. S415 The comparison list of optimized atomic charges and their initial guess for N,N-dimethyl acetamide, referring to the penalties of initial guess. S416 Interaction energies and geometries between probe water and selected N,N-dimethylacet amide site calculated water interaction and dipole moment for (2E)-2- (ethylimino)propanoate. S417 Statistics of calculated water interaction and dipole moment for (2E)-2- (ethylimino)propanoate, referring to the penalties of initial guess. S418 The comparison list of optimized atomic charges and their initial guess for (2E)-2- (ethylimino)propanoate, referring to the penalties of initial guess. S418 Statistics of calculated water interaction and dipole mo	~ - 0 .	hanol site calculated using the optimized and initial charges	340
 solution of the second secon	S408	Statistics of calculated water interaction and dipole moment for (R)-(2.2-dimethylprop	0 - 0
 S409 The comparison list of optimized atomic charges and their initial guess for (R)-(2,2-dime thylpropyl) (methyl)-lambda3-sulfanol, referring to the penalties of initial guess	200	vl)(methyl)-lambda3-sulfanol.	341
 thylpropyl) (methyl)-lambda3-sulfanol, referring to the penalties of initial guess	S409	The comparison list of optimized atomic charges and their initial guess for (R)-(2,2-dime	-
 S410 Interaction energies and geometries between probe water and selected (R)-(2,2-dimethyl propyl)(methyl)-lambda3-sulfanol site calculated using the optimized and initial charges . 34: S411 Statistics of calculated water interaction and dipole moment for (2S)-N-methyl-2-(N-me thylacetamido)propanamide		thylpropyl)(methyl)-lambda3-sulfanol, referring to the penalties of initial guess	342
 propyl)(methyl)-lambda3-sulfanol site calculated using the optimized and initial charges . 343 S411 Statistics of calculated water interaction and dipole moment for (2S)-N-methyl-2-(N-methylacetamido)propanamide	S410	Interaction energies and geometries between probe water and selected (R)-(2,2-dimethyl	
 S411 Statistics of calculated water interaction and dipole moment for (2S)-N-methyl-2-(N-me thylacetamido)propanamide. S412 The comparison list of optimized atomic charges and their initial guess for (2S)-N-meth yl-2-(N-methylacetamido)propanamide, referring to the penalties of initial guess . S413 Interaction energies and geometries between probe water and selected (2S)-N-methyl-2 - (N-methylacetamido)propanamide site calculated using the optimized and initial charges 34-S414 Statistics of calculated water interaction and dipole moment for N,N-dimethylacetamide. S415 The comparison list of optimized atomic charges and their initial guess for N,N-dimethylacetamide. S416 Interaction energies and geometries between probe water and selected N,N-dimethylacet amide site calculated using the optimized and initial charges . S417 Statistics of calculated water interaction and dipole moment for (2E)-2- (ethylimino)propanoate. S418 The comparison list of optimized atomic charges and their initial guess for (2E)-2- (ethylimino)propanoate. S418 The comparison list of optimized atomic charges and their initial guess for (2E)-2- (ethylimino)propanoate. S418 The comparison list of optimized atomic charges and their initial guess for (2E)-2- (ethylimino)propanoate. S419 Interaction energies and geometries between probe water and selected (2E)-2- (ethylimino)propanoate, referring to the penalties of initial guess. S418 The comparison list of optimized atomic charges and their initial guess for (2E)-2- (ethylimino)propanoate. S419 Interaction energies and geometries between probe water and selected (2E)-2- (ethylimino)propanoate site calculated using the optimized and initial charges . S419 Interaction energies and geometries between probe water and selected (2E)-2- (ethylimino)propanoate site calculated using the optimized and initial charges . S419 S419 Interaction energies and geometries between probe		propyl)(methyl)-lambda3-sulfanol site calculated using the optimized and initial charges .	342
 thylacetamido)propanamide. 34. S412 The comparison list of optimized atomic charges and their initial guess for (2S)-N-meth yl-2-(N-methylacetamido)propanamide, referring to the penalties of initial guess S413 Interaction energies and geometries between probe water and selected (2S)-N-methyl-2 - (N-methylacetamido)propanamide site calculated using the optimized and initial charges S414 Statistics of calculated water interaction and dipole moment for N,N-dimethylacetamide. S415 The comparison list of optimized atomic charges and their initial guess for N,N-dimethylacetamide, referring to the penalties of initial guess. S416 Interaction energies and geometries between probe water and selected N,N-dimethylacetamide atomic charges. S417 Statistics of calculated water interaction and dipole moment for (2E)-2- (ethylimino)propanoate. S418 The comparison list of optimized atomic charges and their initial guess for (2E)-2- (ethylimino)propanoate. S418 The comparison list of optimized atomic charges and their initial guess for (2E)-2- (ethylimino)propanoate. S419 Interaction energies and geometries between probe water and selected (2E)-2- (ethylimino)propanoate, referring to the penalties of initial guess. S418 The comparison list of optimized atomic charges and their initial guess for (2E)-2- (ethylimino)propanoate. S419 Interaction energies and geometries between probe water and selected (2E)-2- (ethylimino)propanoate, referring to the penalties of initial guess. S419 Interaction energies and geometries between probe water and selected (2E)-2- (ethylimino)propanoate, referring to the penalties of initial guess. S419 Interaction energies and geometries between probe water and selected (2E)-2- (ethylimino)propanoate site calculated using the optimized and initial charges. S419 Interaction energies and geometries between probe water and selected (2E)-2- (ethylimino)propanoate sit	S411	Statistics of calculated water interaction and dipole moment for (2S)-N-methyl-2-(N-me	
 S412 The comparison list of optimized atomic charges and their initial guess for (2S)-N-meth yl-2-(N-methylacetamido)propanamide, referring to the penalties of initial guess		thylacetamido)propanamide.	343
 yl-2-(N-methylacetamido)propanamide, referring to the penalties of initial guess	S412	The comparison list of optimized atomic charges and their initial guess for (2S)-N-meth	
 S413 Interaction energies and geometries between probe water and selected (2S)-N-methyl-2 -(N-methylacetamido) propanamide site calculated using the optimized and initial charges 344 S414 Statistics of calculated water interaction and dipole moment for N,N-dimethylacetamide. 344 S415 The comparison list of optimized atomic charges and their initial guess for N,N-dimethylacetamide, referring to the penalties of initial guess		yl-2-(N-methylacetamido)propanamide, referring to the penalties of initial guess	344
 -(N-methylacetamido) propanamide site calculated using the optimized and initial charges 34- S414 Statistics of calculated water interaction and dipole moment for N,N-dimethylacetamide. 34- S415 The comparison list of optimized atomic charges and their initial guess for N,N-dimethyl acetamide, referring to the penalties of initial guess	S413	Interaction energies and geometries between probe water and selected (2S)-N-methyl-2	
 S414 Statistics of calculated water interaction and dipole moment for N,N-dimethylacetamide. S415 The comparison list of optimized atomic charges and their initial guess for N,N-dimethyl acetamide, referring to the penalties of initial guess		-(N-methylacetamido)propanamide site calculated using the optimized and initial charges	344
 S415 The comparison list of optimized atomic charges and their initial guess for N,N-dimethyl acetamide, referring to the penalties of initial guess	S414	Statistics of calculated water interaction and dipole moment for N,N-dimethylacetamide.	345
 acetamide, referring to the penalties of initial guess	S415	The comparison list of optimized atomic charges and their initial guess for N,N-dimethyl	
 S416 Interaction energies and geometries between probe water and selected N,N-dimethylacet amide site calculated using the optimized and initial charges		acetamide, referring to the penalties of initial guess	346
amide site calculated using the optimized and initial charges	S416	Interaction energies and geometries between probe water and selected N,N-dimethylacet	
 S417 Statistics of calculated water interaction and dipole moment for (2E)-2- (ethylimino)propanoate. S418 The comparison list of optimized atomic charges and their initial guess for (2E)-2- (ethylimino)propanoate, referring to the penalties of initial guess. S419 Interaction energies and geometries between probe water and selected (2E)-2- (ethylimino)propanoate site calculated using the optimized and initial charges. S418 S419 Interaction energies and geometries between probe water and selected (2E)-2- (ethylimino)propanoate site calculated using the optimized and initial charges. 		amide site calculated using the optimized and initial charges	346
 panoate	S417	Statistics of calculated water interaction and dipole moment for (2E)-2-(ethylimino)pro	
 S418 The comparison list of optimized atomic charges and their initial guess for (2E)-2-(ethyli mino)propanoate, referring to the penalties of initial guess		panoate	347
mino)propanoate, referring to the penalties of initial guess	S418	The comparison list of optimized atomic charges and their initial guess for (2E)-2-(ethyli	
S419 Interaction energies and geometries between probe water and selected (2E)-2-(ethylimi no)propanoate site calculated using the optimized and initial charges		mino)propanoate, referring to the penalties of initial guess	348
no)propanoate site calculated using the optimized and initial charges 34	S419	Interaction energies and geometries between probe water and selected (2E)-2-(ethylimi	
		no) propanoate site calculated using the optimized and initial charges 	348

S420 Statistics of calculated water interaction and dipole moment	for $3-(ethylsulfanyl)-3-oxop$	
ropanoicacid.		349
S421 The comparison list of optimized atomic charges and their i	initial guess for 3-(ethylsulfa	
nyl)-3-oxopropanoicacid, referring to the penalties of initial	guess	350
S422 Interaction energies and geometries between probe water an	id selected 3-(ethylsulfanyl)-	
3-oxopropanoicacid site calculated using the optimized and i	initial charges	350
S423 Statistics of calculated water interaction and dipole moment	t for $2,3$ -Dimethyl-5-methyli	
deneimidazol-4-one.		351
S424 The comparison list of optimized atomic charges and their is	nitial guess for $2,3$ -Dimethyl	
-5-methylideneimidazol-4-one, referring to the penalties of in	$nitial guess \dots \dots \dots \dots \dots \dots$	352
S425 Interaction energies and geometries between probe water an	d selected 2,3-Dimethyl-5-m	
ethylideneimidazol-4-one site calculated using the optimized	and initial charges \ldots \ldots	352
S426 Statistics of calculated water interaction and dipole moment	for $N-[(1S)-1-(1-methyl-4-m)]$	
ethylidene-5-oxo-4,5-dihydro-1H-imidazol-2-yl)ethyl]acetam	ide.	353
S427 The comparison list of optimized atomic charges and their i	nitial guess for $N-[(1S)-1-(1-$	
methyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-2-yl)	ethyl]acetamide, referring to	
the penalties of initial guess		354
S428 Interaction energies and geometries between probe water and	d selected N-[(1S)-1-(1-meth	
yl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-2-yl)eth	ylacetamide site calculated	
using the optimized and initial charges		354
S429 The molecule used for water complex calculations correspond	ling to N-methyl-2-(2-methyl	
-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetami	ide, with possible interacting	
water positions. NOTE, only one water molecule was includ	ed in each calculation.	355
S430 Statistics of calculated water interaction and dipole moment	for N-methyl-2-(2-methyl-4	
-methylidene-5-oxo-4.5-dihydro-1H-imidazol-1-yl)acetamide		355
S431 The comparison list of optimized atomic charges and their	initial guess for N-methyl-2	
-(2-methyl-4-methylidene-5-oxo-4.5-dihydro-1H-imidazol-	-1-vl)acetamide, referring to	
the penalties of initial guess		356
S432 Interaction energies and geometries between probe water and	d selected N-methyl-2-(2-me	000
thyl-4-methylidene-5-oyo-4 5-dihydro-1H-imidazol-1-yl)ace	etamide site calculated using	
the optimized and initial charges	stannige site calculated using	356
S433 Statistics of calculated water interaction and dipole moment	for (ethylsulfanyl)methanol	357
S434 The comparison list of optimized atomic charges and their i	initial guess for (ethylsulfany	001
l)methanol referring to the penalties of initial guess	initial guess for (congistinany	358
S435 Interaction energies and geometries between probe water an	d selected (ethylsulfanyl)met	000
hand site calculated using the optimized and initial charges		358
S436 Statistics of calculated water interaction and dipole moment	t for 5-ethyl-1-methyl-2 3-di	000
hvdro-1H-imidazole	tion of complete meetings 2,0 di	350
S437 The comparison list of optimized atomic charges and their i	initial guess for 5-ethyl-1-me	000
thyl-2 3-dihydro-1H-imidazole referring to the penalties of i	initial guess for 5-conyr-1-me	360
S438 Interaction energies and geometries between probe water ar	nd selected 5-ethyl-1-methyl	000
-2 3-dihydro-1H-imidazole site calculated using the optimize	ed and initial charges	360
S439 Statistics of calculated water interaction and dipole moment	for 5-ethyl-1-methyl-1H-im	000
idazole	ior o congr i meengr in mi	361
S440 The comparison list of optimized atomic charges and their i	initial guess for 5-ethyl-1-me	001
thyl-1H-imidazole referring to the penalties of initial guess	intra guess for 5-ethyr-1-me	369
S441 Interaction energies and geometries between probe water and	d selected 5-ethyl-1-methyl-1	002
H-imidazole site calculated using the optimized and initial c	hardes	369
S442 Statistics of calculated water interaction and dipole moment	t for 5 othyl 1 mothyl 2.3 di	502
hvdro-1H-imidazolo	101 9-cenyi-i-meenyi-2,9-di	363
S443 The comparison list of optimized atomic charges and their i	initial guess for 5 othyl 1 mo	000
thyl 2.3 dihydro 1H imidazolo, referring to the populties of i	initial guess for 5-comyr-1-me	364
S444 Interaction operation and geometrics between probe water as	nd selected 5 othyl 1 methyl	504
2.3 dibudro 1H imidagolo site colculated using the optimize	a selected J-ethyl-1-methyl	26 A
-2,0-unyuro-m-induzore site calculated using the optimize	t for 5 other 1 mother 1 U im	504
idazolo	J IOI J-ethyl-1-methyl-1n-lm	965
S446 The comparison list of optimized storie changes and their:	initial guage for 5 other 1 me	909
thy 1H imidagola referring to the penaltice of initial energy	initial guess for D-ethyl-1-file	266
S447 Interaction energies and geometrics between probe water and	d selected 5 othyl 1 mothyl 1	500
H-imidazole site calculated using the entimized and initial e	hardes	366
S448 Statistics of calculated water interaction and dipolo moment	for methyl(nentyl)emino	367
STIC Statistics of calculated water interaction and dipote moment	, ioi moonyi(ponoyi)ammo,	007

S449	The comparison list of optimized atomic charges and their initial guess for methyl(pent	
	yl)amine, referring to the penalties of initial guess	368
S450	Interaction energies and geometries between probe water and selected methyl(pentyl)ami	
	ne site calculated using the optimized and initial charges	368
S451	Statistics of calculated water interaction and dipole moment for (4-ethyl-1H-imidazol-1-	
	yl)phosphonicacid.	369
S452	The comparison list of optimized atomic charges and their initial guess for (4-ethyl-1H-i	
	midazol-1-yl)phosphonicacid, referring to the penalties of initial guess	370
S453	Interaction energies and geometries between probe water and selected (4-ethyl-1H-imida	
	zol-1-yl)phosphonicacid site calculated using the optimized and initial charges	370
S454	Statistics of calculated water interaction and dipole moment for 4-methyl-2-nitrobenzen	
	-1-olate	371
S455	The comparison list of optimized atomic charges and their initial guess for 4-methyl-2-n	
	itrobenzen-1-olate, referring to the penalties of initial guess	372
S456	Interaction energies and geometries between probe water and selected 4-methyl-2-nitrobe	
	nzen-1-olate site calculated using the optimized and initial charges	372
S457	Statistics of calculated water interaction and dipole moment for N-(propan-2-ylidene)ace	
	tamide	373
S458	The comparison list of optimized atomic charges and their initial guess for N-(propan-2	
	-ylidene)acetamide, referring to the penalties of initial guess	374
S459	Interaction energies and geometries between probe water and selected N-(propan-2-ylide	
	ne)acetamide site calculated using the optimized and initial charges	374
S460	Statistics of calculated water interaction and dipole moment for (4Z)-4-ethylidene-1,2-di	
	methyl-4,5-dihydro-1H-imidazol-5-one	375
S461	The comparison list of optimized atomic charges and their initial guess for (4Z)-4-ethyli	
	dene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, referring to the penalties of initial gues	s376
S462	Interaction energies and geometries between probe water and selected (4Z)-4-ethylidene	
	-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one site calculated using the optimized and	
	initial charges	376
S463	The molecule used for water complex calculations corresponding to N-methyl-2-(2-methyl	
	-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, with possible interacting	
	water positions. NOTE, only one water molecule was included in each calculation	377
S464	Statistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4	
	-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide.	377
S465	The comparison list of optimized atomic charges and their initial guess for N-methyl-2	
	-(2-methyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, referring to	
	the penalties of initial guess	378
S466	Interaction energies and geometries between probe water and selected N-methyl-2-(2-me	
	thyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide site calculated using	
	the optimized and initial charges	378
S467	Statistics of calculated water interaction and dipole moment for N-[(1E)-1-[(4Z)-4-ethyli	
	$dene-1-methyl-5-oxo-4, 5-dihydro-1H-imidazol-2-yl]ethylidene] acetamide. \ . \ . \ . \ . \ . \ . \ . \ . \ . \$	379
S468	The comparison list of optimized atomic charges and their initial guess for N-[(1E)-1-	
	[(4Z)-4-ethylidene-1-methyl-5-oxo-4, 5-dihydro-1H-imidazol-2-yl]ethylidene] acetamide,	
	referring to the penalties of initial guess	380
S469	Interaction energies and geometries between probe water and selected N-[(1E)-1-[(4Z)-	
	$\label{eq:constraint} 4-ethylidene-1-methyl-5-oxo-4, \\ 5-dihydro-1H-imidazol-2-yl]ethylidene] acetamide site and the set of the se$	
	calculated using the optimized and initial charges	380
S470	Statistics of calculated water interaction and dipole moment for N-[(1E)-1-[(4Z)-4-ethyli	
	dene-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethylidene]acetamide	381
S471	The comparison list of optimized atomic charges and their initial guess for N-[(1E)-1-	
	[(4Z)-4-ethylidene-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethylidene]acetamide,	
	referring to the penalties of initial guess	382
S472	Interaction energies and geometries between probe water and selected $N-[(1E)-1-[(4Z)-$	
	$\label{eq:constraint} 4-ethylidene-1-methyl-5-oxo-4, 5-dihydro-1H-imidazol-2-yl]ethylidene] acetamide site and the set of the set $	
	calculated using the optimized and initial charges	382
S473	Statistics of calculated water interaction and dipole moment for 1,1-diffuor opropane	383
S474	The comparison list of optimized atomic charges and their initial guess for 1,1-difluorop	
<i>a</i> .	ropane, referring to the penalties of initial guess	384
S475	Interaction energies and geometries between probe water and selected 1,1-diffuoropropane	<i></i>
	site calculated using the optimized and initial charges	384

S476 S477	Statistics of calculated water interaction and dipole moment for 2-(ethylsulfanyl)ethan-1-of. The comparison list of optimized atomic charges and their initial guess for 2-(ethylsulfanyl)ethan-1-ol, referring to the penalties of initial guess	l. 385 386
S478	Interaction energies and geometries between probe water and selected 2-(ethylsulfanyl)e	000
	than-1-ol site calculated using the optimized and initial charges	386
S479	Statistics of calculated water interaction and dipole moment for 4-[(1S)-1-hydroxyethyl]b enzen-1-olate.	387
S480	The comparison list of optimized atomic charges and their initial guess for 4-[(1S)-1-hydr oxyethyl]benzen-1-olate, referring to the penalties of initial guess	388
S481	Interaction energies and geometries between probe water and selected 4-[(1S)-1-hydroxye	
S482	thyl]benzen-1-olate site calculated using the optimized and initial charges Statistics of calculated water interaction and dipole moment for (4-methylphenyl)(phen vl)methanone	388 380
S483	The comparison list of optimized atomic charges and their initial guess for (4-methylph enyl)(phenyl)methanone, referring to the penalties of initial guess	390
S484	Interaction energies and geometries between probe water and selected (4-methylphen yl)(phenyl)methanone site calculated using the optimized and initial charges	3 90
S485	Statistics of calculated water interaction and dipole moment for 1,2,3,4,5-pentafluoro-6- methylbenzene.	391
S486	The comparison list of optimized atomic charges and their initial guess for 1,2,3,4,5-pent	201
S487	Interaction energies and geometries between probe water and selected 1,2,3,4,5-pentaflu oro-6-methylbenzene site calculated using the optimized and initial charges	392
S488	Statistics of calculated water interaction and dipole moment for (propanoyloxy)phospho nicacid	393
S489	The comparison list of optimized atomic charges and their initial guess for (propanoylo un) phoephonic acid referring to the penelties of initial guess	201
S490	Interaction energies and geometries between probe water and selected (propanoyloxy)pho sphonicacid site calculated using the optimized and initial charges	394
S491	Statistics of calculated water interaction and dipole moment for (propanoyloxy)phospho nicacid	395
S492	The comparison list of optimized atomic charges and their initial guess for (propanoylo xy)phosphonicacid referring to the penalties of initial guess	396
S493	Interaction energies and geometries between probe water and selected (propanoyloxy)pho sphonicacid site calculated using the optimized and initial charges	396
S494	Statistics of calculated water interaction and dipole moment for (propanoyloxy)phospho nicacid	397
S495	The comparison list of optimized atomic charges and their initial guess for (propanoylo xy)phosphonicacid referring to the penalties of initial guess	398
S496	Interaction energies and geometries between probe water and selected (propanoyloxy)pho sphenicacid site calculated using the optimized and initial charges	308
S497	Statistics of calculated water interaction and dipole moment for (propanoyloxy)phospho picacid	300
S498	The comparison list of optimized atomic charges and their initial guess for (propanoylo	400
S499	Interaction energies and geometries between probe water and selected (propanoyloxy)pho	400
S500	Statistics of calculated water interaction and dipole moment for (4Z)-4-ethylidene-1,2-di	400
S501	methyl-4,5-dihydro-1H-imidazol-5-one	401
S502	dene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, referring to the penalties of initial gues Interaction energies and geometries between probe water and selected (4Z)-4-ethylidene -1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one site calculated using the optimized and	s402
S503	initial charges	402
a	-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.	403
S504	Statistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide.	403

S505	The comparison list of optimized atomic charges and their initial guess for N-methyl-2 -(2-methyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, referring to the penaltice of initial guess	404
S506	Interaction energies and geometries between probe water and selected N methyl 2 (2 me	404
2000	thyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide site calculated using	404
8507	the optimized and initial charges \dots and dipole moment for (2S) N 1 dimethylpurrol.	404
2001	idino 2 carboxamido	405
\$508	The comparison list of optimized atomic charges and their initial guess for (2S)-N 1-dime	400
S500	thylpyrrolidine-2-carboxamide, referring to the penalties of initial guess	406
2008	pyrroliding-2-carboy amide site calculated using the optimized and initial charges	406
S510	Statistics of calculated water interaction and dipole moment for (2R)-2-hydroxypropapoate	407
S511	The comparison list of optimized atomic charges and their initial guess for (2R)-2-hydrox	. 101
	vpropanoate, referring to the penalties of initial guess	408
S512	Interaction energies and geometries between probe water and selected (2R)-2-hydroxypro	
	panoate site calculated using the optimized and initial charges	408
S513	Statistics of calculated water interaction and dipole moment for (4R)-3-acetyl-N-methyl-	
	1,3-thiazolidine-4-carboxamide.	409
S514	The comparison list of optimized atomic charges and their initial guess for (4R)-3-acetyl	
	-N-methyl-1,3-thiazolidine-4-carboxamide, referring to the penalties of initial guess	410
S515	Interaction energies and geometries between probe water and selected (4R)-3-acetyl-N-m	
0 5 4 0	ethyl-1,3-thiazolidine-4-carboxamide site calculated using the optimized and initial charges	5410
S516	Statistics of calculated water interaction and dipole moment for 1-methyl-2-nitrobenzene.	411
\$517	The comparison list of optimized atomic charges and their initial guess for 1-methyl-2-n	41.0
0510	Itrobenzene, referring to the penalties of initial guess	412
2019	interaction energies and geometries between probe water and selected 1-methyl-2-mtrobe	419
\$510	The molecule used for water complex calculations corresponding to 2 hydroxy I proline	412
0019	with possible interacting water positions. NOTE only one water molecule was included	
	in each calculation.	413
S520	Statistics of calculated water interaction and dipole moment for 2-hydroxy-L-proline.	413
S521	The comparison list of optimized atomic charges and their initial guess for 2-hydroxy-L-	
	proline, referring to the penalties of initial guess	414
S522	Interaction energies and geometries between probe water and selected 2-hydroxy-L-proline	
	site calculated using the optimized and initial charges $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	414
S523	Statistics of calculated water interaction and dipole moment for 2-ethylpyridine.	415
S524	The comparison list of optimized atomic charges and their initial guess for 2-ethylpyridine,	
~	referring to the penalties of initial guess	416
S525	Interaction energies and geometries between probe water and selected 2-ethylpyridine site	41.0
Q F Q C	calculated using the optimized and initial charges	410
5020 8597	The comparison list of optimized atomic charges and their initial guess for 1 other 1 H p	417
0041	versale referring to the penalties of initial guess	/18
S528	Interaction energies and geometries between probe water and selected 1-ethyl-1H-pyrazole	410
0020	site calculated using the optimized and initial charges	418
S529	Statistics of calculated water interaction and dipole moment for (ethylsulfanyl)formamide.	419
S530	The comparison list of optimized atomic charges and their initial guess for (ethylsulfany	
	l)formamide, referring to the penalties of initial guess	420
S531	Interaction energies and geometries between probe water and selected (ethylsulfanyl)for	
	mamide site calculated using the optimized and initial charges $\ldots \ldots \ldots \ldots \ldots \ldots$	420
S532	Statistics of calculated water interaction and dipole moment for 2-(ethylsulfanyl)-2-[(trih	
	ydroxy-lambda4-phosphanyl)oxy]propanoicacid.	421
S533	The comparison list of optimized atomic charges and their initial guess for 2-(ethylsulfa	
	nyl)-2-[(trihydroxy-lambda4-phosphanyl)oxy]propanoicacid, referring to the penalties of	400
0594	Initial guess	422
5034	Interaction energies and geometries between probe water and selected 2- (ethylsulfanyl)-2-	
	and initial charges	499
S535	Statistics of calculated water interaction and dipole moment for 2-methylquinoxaline.	423

S536	The comparison list of optimized atomic charges and their initial guess for 2-methylquin	10.4
0F9F	oxaline, referring to the penalties of initial guess	424
5037	Interaction energies and geometries between probe water and selected 2-methylquinoxaline	40.4
0500	site calculated using the optimized and initial charges	424
\$538	Statistics of calculated water interaction and dipole moment for 2,2,3,5,5-pentamethyl-	105
0500	2,5-d1hydro-1H-pyrrol-1-ol.	425
S539	The comparison list of optimized atomic charges and their initial guess for 2,2,3,5,5-pent	
	amethyl-2,5-dihydro-1H-pyrrol-1-ol, referring to the penalties of initial guess	426
S540	Interaction energies and geometries between probe water and selected 2,2,3,5,5-pentamet	
	hyl-2,5-dihydro-1H-pyrrol-1-ol site calculated using the optimized and initial charges	426
S541	Statistics of calculated water interaction and dipole moment for 3-[(methyldisulfanyl)m	
	ethyl]-2,5-dihydro-1H-pyrrol-1-ol.	427
S542	The comparison list of optimized atomic charges and their initial guess for 3-[(methyldi	
	sulfanyl)methyl]-2,5-dihydro-1H-pyrrol-1-ol, referring to the penalties of initial guess	428
S543	Interaction energies and geometries between probe water and selected 3-[(methyldisulf	
	anyl)methyl]-2,5-dihydro-1H-pyrrol-1-ol site calculated using the optimized and initial	
	charges	428
S544	Statistics of calculated water interaction and dipole moment for ethoxy(methyl)phosphi	
	nicacid.	429
S545	The comparison list of optimized atomic charges and their initial guess for ethoxy(meth	
	vl)phosphinicacid, referring to the penalties of initial guess	430
S546	Interaction energies and geometries between probe water and selected ethoxy(methyl)pho	
	sphinicacid site calculated using the optimized and initial charges	430
S547	Statistics of calculated water interaction and dipole moment for ethylphenylmethanesulf	
5011	onate.	431
S548	The comparison list of optimized atomic charges and their initial guess for ethylphenylm	101
5010	ethanesulfonate referring to the penalties of initial guess	432
\$549	Interaction energies and geometries between probe water and selected ethylphenylmetha	104
0040	negultanets site calculated using the optimized and initial charges	429
\$550	Statistics of calculated water interaction and dipole moment for (dimethylamine) (othe	404
5000	vu) phosphinicacid	/33
S 551	The comparison list of optimized atomic charges and their initial guess for (dimethylam	400
0001	ine (of here) has been been been been been been been bee	121
Q K K 9	Interestion energies and geometries between probe water and selected (dimethylamine) (et	494
5002	herewyhear him and site and geometries between probe water and selected (dimetry anniho) (et	121
OFFO	noxy)phosphinicacid site calculated using the optimized and initial charges	454
2003	Statistics of calculated water interaction and dipole moment for dimethylmethylphosph	495
OFF 4		430
5004	I ne comparison list of optimized atomic charges and their initial guess for dimethylmeth	40.0
arre	yipnosphonate, referring to the penalties of initial guess	430
2000	Interaction energies and geometries between probe water and selected dimetnyimetnyiph	49.0
OFFC	osphonate site calculated using the optimized and initial charges	430
5000	Statistics of calculated water interaction and dipole moment for (hitrososultanyl)ethane.	437
2007	I ne comparison list of optimized atomic charges and their initial guess for (nitrososulfa	49.0
arro	nyl)etnane, referring to the penalties of initial guess	438
\$558	Interaction energies and geometries between probe water and selected (nitrososulfanyl)e	40.0
	thane site calculated using the optimized and initial charges	438
S559	Statistics of calculated water interaction and dipole moment for [(IE)-prop-1-en-1-yl]ben	
a	zene	439
S560	The comparison list of optimized atomic charges and their initial guess for [(1E)-prop-1-e	
_	n-1-yl]benzene, referring to the penalties of initial guess	440
S561	Interaction energies and geometries between probe water and selected [(1E)-prop-1-en-1-	
	yl benzene site calculated using the optimized and initial charges	440
S562	Statistics of calculated water interaction and dipole moment for 2-[(3S)-3-acetamido-2,5-	
	dioxopyrrolidin-1-yl]-N-methylacetamide.	441
S563	The comparison list of optimized atomic charges and their initial guess for 2-[(3S)-3-acet	
	amido-2,5-dioxopyrrolidin-1-yl]-N-methylacetamide, referring to the penalties of initial	
	guess	442
S564	Interaction energies and geometries between probe water and selected 2-[(3S)-3-acetamid	
	o-2,5-dioxopyrrolidin-1-yl]-N-methylacetamide site calculated using the optimized and optimized and optimized by the optimi	
	initial charges	442

S565	Statistics of calculated water interaction and dipole moment for N-[(3S)-1-methyl-2,5-di	
a =	oxopyrrolidin-3-yl]acetamide.	443
S566	The comparison list of optimized atomic charges and their initial guess for N-[(3S)-1-me	
a	thyl-2,5-dioxopyrrolidin-3-yl]acetamide, referring to the penalties of initial guess	444
S567	Interaction energies and geometries between probe water and selected N-[(3S)-1-methyl	
0 - 00	-2,5-dioxopyrrolidin-3-yl[acetamide site calculated using the optimized and initial charges	444
S568	Statistics of calculated water interaction and dipole moment for (dimethoxyphosphoryl)d	
a =	imethylamine.	445
S569	The comparison list of optimized atomic charges and their initial guess for (dimethoxyp	
	hosphoryl)dimethylamine, referring to the penalties of initial guess	446
S570	Interaction energies and geometries between probe water and selected (dimethoxyphosp	
	horyl)dimethylamine site calculated using the optimized and initial charges	446
S571	Statistics of calculated water interaction and dipole moment for dimethylmethylphosph	
	onate.	447
S572	The comparison list of optimized atomic charges and their initial guess for dimethylmeth	
	ylphosphonate, referring to the penalties of initial guess	448
S573	Interaction energies and geometries between probe water and selected dimethylmethylph	
	osphonate site calculated using the optimized and initial charges	448
S574	Statistics of calculated water interaction and dipole moment for trimethylphosphate	449
S575	The comparison list of optimized atomic charges and their initial guess for trimethylpho	
	sphate, referring to the penalties of initial guess	450
S576	Interaction energies and geometries between probe water and selected trimethylphosphate	
	site calculated using the optimized and initial charges	450
S577	Statistics of calculated water interaction and dipole moment for (4Z)-4-ethylidene-1,2-di	
	methyl-4,5-dihydro-1H-imidazol-5-one	451
S578	The comparison list of optimized atomic charges and their initial guess for (4Z)-4-ethyli	
	dene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, referring to the penalties of initial gues	s452
S579	Interaction energies and geometries between probe water and selected (4Z)-4-ethylidene	
	-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one site calculated using the optimized and	
	initial charges	452
S580	The molecule used for water complex calculations corresponding to N-methyl-2-(2-methyl	
	-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, with possible interacting	
	water positions. NOTE, only one water molecule was included in each calculation	453
S581	Statistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4	
	-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide.	453
S582	The comparison list of optimized atomic charges and their initial guess for N-methyl-2	
	-(2-methyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, referring to	
	the penalties of initial guess	454
S583	Interaction energies and geometries between probe water and selected N-methyl-2-(2-me	
	thyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide site calculated using	
	the optimized and initial charges	454
S584	Statistics of calculated water interaction and dipole moment for 2-methyl-2H-1,2,3,4-tetr	
	azole	455
S585	The comparison list of optimized atomic charges and their initial guess for 2-methyl-2H-	
	1,2,3,4-tetrazole, referring to the penalties of initial guess	456
S586	Interaction energies and geometries between probe water and selected 2-methyl-2H-	
	1,2,3,4-tetrazole site calculated using the optimized and initial charges	456
S587	Statistics of calculated water interaction and dipole moment for 1-methyl-2-(trifluoromet	
	hyl)benzene	457
S588	The comparison list of optimized atomic charges and their initial guess for 1-methyl-2-(tr	
	if luoromethyl) benzene, referring to the penalties of initial guess	458
S589	Interaction energies and geometries between probe water and selected 1-methyl-2-(triflu	
	oromethyl)benzene site calculated using the optimized and initial charges	458
S590	Statistics of calculated water interaction and dipole moment for 1-methyl-3-(trifluoromet	
	hyl)benzene	459
S591	The comparison list of optimized atomic charges and their initial guess for 1-methyl-3-(tr	
	if luoromethyl) benzene, referring to the penalties of initial guess	460
S592	Interaction energies and geometries between probe water and selected 1-methyl-3-(triflu	
	oromethyl)benzene site calculated using the optimized and initial charges	460
S593	Statistics of calculated water interaction and dipole moment for 1-methyl-4-(trifluoromet	
	hyl)benzene	461

S594	The comparison list of optimized atomic charges and their initial guess for 1-methyl-4-(tr $$	
_	if luoromethyl) benzene, referring to the penalties of initial guess	462
S595	Interaction energies and geometries between probe water and selected 1-methyl-4-(triflu	
0500	oromethyl)benzene site calculated using the optimized and initial charges	462
S596	Statistics of calculated water interaction and dipole moment for 1,1,1-trifluoro-2-methyl	
a	propane.	463
S597	The comparison list of optimized atomic charges and their initial guess for 1,1,1-trifluor	
a F a a	o-2-methylpropane, referring to the penalties of initial guess	464
S598	Interaction energies and geometries between probe water and selected 1,1,1-trifluoro-2-	
a = 00	methylpropane site calculated using the optimized and initial charges	464
5599	Statistics of calculated water interaction and dipole moment for 1-methyl-2-(trifluoromet	105
9,000	The second	400
5000	The comparison list of optimized atomic charges and their initial guess for 1-methyl-2-(tr ifluenemethyl) happens, referring to the penalties of initial guess	166
S 601	Interaction energies and geometrics between probe water and selected 1 methyl 2 (triflu	400
2001	aromethyl) honzono site calculated using the optimized and initial charges	466
5605	Statistics of calculated water interaction and dipole moment for 1-methyl-3-(trifluoromet	400
5002	hyl)benzene	467
S603	The comparison list of optimized atomic charges and their initial guess for 1-methyl-3-(tr	101
5000	if uoromethyl) benzene referring to the penalties of initial guess	468
S604	Interaction energies and geometries between probe water and selected 1-methyl-3-(triflu	100
	oromethyl)benzene site calculated using the optimized and initial charges	468
S605	Statistics of calculated water interaction and dipole moment for 1-methyl-4-(trifluoromet	
	hyl)benzene	469
S606	The comparison list of optimized atomic charges and their initial guess for 1-methyl-4-(tr	
	if luoromethyl) benzene, referring to the penalties of initial guess	470
S607	Interaction energies and geometries between probe water and selected 1-methyl-4-(triflu	
	oromethyl)benzene site calculated using the optimized and initial charges	470
S608	Statistics of calculated water interaction and dipole moment for 2-methylthiophene. \ldots .	471
S609	The comparison list of optimized atomic charges and their initial guess for 2-methylthio	
	phene, referring to the penalties of initial guess	472
S610	Interaction energies and geometries between probe water and selected 2-methylthiophene	
0.011	site calculated using the optimized and initial charges	472
S611	Statistics of calculated water interaction and dipole moment for 3-methylthiophene.	473
5612	The comparison list of optimized atomic charges and their initial guess for 3-methylthic	477.4
8619	Internetion energies and geometries between probe water and selected 2 methylthionhene	474
2012	site calculated using the optimized and initial charges	474
S614	Statistics of calculated water interaction and dipole moment for methylthiourea	475
S615	The comparison list of optimized atomic charges and their initial guess for methylthiourea	110
5010	referring to the penalties of initial guess	476
S616	Interaction energies and geometries between probe water and selected methylthiourea site	1.0
	calculated using the optimized and initial charges	476
S617	Statistics of calculated water interaction and dipole moment for 2-methylthiophene	477
S618	The comparison list of optimized atomic charges and their initial guess for 2-methylthio	
	phene, referring to the penalties of initial guess	478
S619	Interaction energies and geometries between probe water and selected 2-methylthiophene	
	site calculated using the optimized and initial charges	478
S620	Statistics of calculated water interaction and dipole moment for 3-ethyl-1H-indole-1-pero	
	xol	479
S621	The comparison list of optimized atomic charges and their initial guess for 3-ethyl-1H-i	
a	ndole-1-peroxol, referring to the penalties of initial guess	480
S622	Interaction energies and geometries between probe water and selected 3-ethyl-1H-indole-	100
C A A A	1-peroxol site calculated using the optimized and initial charges	480
5623	Statistics of calculated water interaction and dipole moment for 5-ethylcyclohex-5-ene-	401
CCO A	1,2,4-trione.	481
5024	The comparison list of optimized atomic charges and their initial guess for β -ethylcyclone $x = 5$ one 1.2.4 trione, referring to the penalties of initial guess.	100
S625	x -5-ene-1,2,4-thome, referring to the penanties of initial guess	402
0020	ene-1.2.4-trione site calculated using the optimized and initial charges	489
	and 1,2,1 shows sive executived using the optimized and initial charges	104

S626	Statistics of calculated water interaction and dipole moment for 2-ethyl-5-hydroxycyclo	
~	hexa-2,5-diene-1,4-dione.	483
S627	The comparison list of optimized atomic charges and their initial guess for 2-ethyl-5-hy	
0.000	droxycyclohexa-2,5-diene-1,4-dione, referring to the penalties of initial guess	484
S628	Interaction energies and geometries between probe water and selected 2-ethyl-5-hydroxyc	
a aaa	yclohexa-2,5-diene-1,4-dione site calculated using the optimized and initial charges	484
S629	Statistics of calculated water interaction and dipole moment for 3-ethyl-6-imino-6,7-dihy	
~	dro-1H-indol-7-one.	485
S630	The comparison list of optimized atomic charges and their initial guess for 3-ethyl-6-imin	
	o-6,7-dihydro-1H-indol-7-one, referring to the penalties of initial guess	486
S631	Interaction energies and geometries between probe water and selected 3-ethyl-6-imino-	
	6,7-dihydro-1H-indol-7-one site calculated using the optimized and initial charges	486
S632	Statistics of calculated water interaction and dipole moment for 3-methyl-1H-indol-2-ol.	487
S633	The comparison list of optimized atomic charges and their initial guess for 3-methyl-1H-	
	indol-2-ol, referring to the penalties of initial guess	488
S634	Interaction energies and geometries between probe water and selected 3-methyl-1H-indo	
	1-2-ol site calculated using the optimized and initial charges	488
S635	Statistics of calculated water interaction and dipole moment for 3-ethyl-6,7-dihydro-1H-i	
	ndole-6.7-dione.	489
S636	The comparison list of optimized atomic charges and their initial guess for 3-ethyl-6,7-di	
	hvdro-1H-indole-6.7-dione, referring to the penalties of initial guess	490
S637	Interaction energies and geometries between probe water and selected 3-ethyl-6.7-dihydr	
	o-1H-indole-6.7-dione site calculated using the optimized and initial charges	490
S638	Statistics of calculated water interaction and dipole moment for 3-ethyl-6-(2-phenylhydr	
0000	azin-1-vl)-1H-indol-7-ol	491
S639	The comparison list of optimized atomic charges and their initial guess for 3-ethyl-6-(2-	101
5005	nhenvilhydrazin-1-yl)-1H-indol-7-ol referring to the penalties of initial guess	102
\$640	Interaction onergies and geometries between probe water and selected 3 other 6 (2 phon	454
040	ulbudragin 1 yl) 1H indol 7 ol site calculated using the entimized and initial charges	409
S641	Statistics of calculated water interaction and dinale moment for 2 methylbutane 2.2 dial	492
S041 S649	The comparison list of optimized atomic charges and their initial guess for 2 methylbutate	490
5042	ne 2.2 dial referring to the penaltics of initial guess for 2-methylouta	40.4
0.649	Interaction and a second as a second se	494
5045	2.2 list site solution the entire of and selected 2-methylbutane	40.4
acri	-2,3-diol site calculated using the optimized and initial charges	494
5644	Statistics of calculated water interaction and dipole moment for 6-amino-3-methyl-1H-in	105
0015	dol-7-olate.	495
S645	The comparison list of optimized atomic charges and their initial guess for 6-amino-3-me	10.0
a	thyl-1H-indol-7-olate, referring to the penalties of initial guess	496
S646	Interaction energies and geometries between probe water and selected 6-amino-3-methyl	
	-1H-indol-7-olate site calculated using the optimized and initial charges	496
S647	Statistics of calculated water interaction and dipole moment for 2-amino-4-methylbenzen	
	-1-olate	497
S648	The comparison list of optimized atomic charges and their initial guess for 2-amino-4-me	
	thylbenzen-1-olate, referring to the penalties of initial guess	498
S649	Interaction energies and geometries between probe water and selected 2-amino-4-methyl	
	benzen-1-olate site calculated using the optimized and initial charges	498
S650	Statistics of calculated water interaction and dipole moment for 4-amino-6-methylbenzen	
	e-1,3-bis(olate)	499
S651	The comparison list of optimized atomic charges and their initial guess for 4-amino-6-me	
	thylbenzene-1,3-bis(olate), referring to the penalties of initial guess	500
S652	Interaction energies and geometries between probe water and selected 4-amino-6-methyl	
	benzene-1,3-bis(olate) site calculated using the optimized and initial charges	500
S653	Statistics of calculated water interaction and dipole moment for (4-ethylphenyl)oxidane	
	sulfonicacid.	501
S654	The comparison list of optimized atomic charges and their initial guess for (4-ethylpheny	
	l)oxidanesulfonicacid, referring to the penalties of initial guess	502
S655	Interaction energies and geometries between probe water and selected (4-ethylphenyl)oxi	
	danesulfonicacid site calculated using the optimized and initial charges	502
S656	Statistics of calculated water interaction and dipole moment for 4-methyl-1.3-thiazole	503
S657	The comparison list of optimized atomic charges and their initial guess for 4-methyl-1.3-	-
	thiazole, referring to the penalties of initial guess	504

S658 In	nteraction energies and geometries between probe water and selected 4-methyl-1,3-thia	
ZC	ble site calculated using the optimized and initial charges	504
S659 St	tatistics of calculated water interaction and dipole moment for (ethylsulfanyl)carbonitrile.	505
S660 T.	he comparison list of optimized atomic charges and their initial guess for (ethylsulfany	
l) (carbonitrile, referring to the penalties of initial guess	506
S661 In	iteraction energies and geometries between probe water and selected (ethylsulfanyl)car	
bo	onitrile site calculated using the optimized and initial charges	506
S662 St	tatistics of calculated water interaction and dipole moment for N-(propan-2-ylidene)ace	
ta	amide.	507
S663 T	he comparison list of optimized atomic charges and their initial guess for N-(propan-2	
- y	vlidene)acetamide, referring to the penalties of initial guess	508
S664 In	nteraction energies and geometries between probe water and selected N-(propan-2-ylide	
ne	e)acetamide site calculated using the optimized and initial charges	508
S665 St	tatistics of calculated water interaction and dipole moment for (4Z)-4-ethylidene-1,2-di	
m	ethyl-4,5-dihydro-1H-imidazol-5-one	509
S666 T	he comparison list of optimized atomic charges and their initial guess for (4Z)-4-ethyli	
d€	ene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, referring to the penalties of initial guess	510
S667 In	α teraction energies and geometries between probe water and selected (4Z)-4-ethylidene	
-1	,2-dimethyl-4,5-dihydro-1H-imidazol-5-one site calculated using the optimized and	
in	itial charges	510
S668 T	he molecule used for water complex calculations corresponding to N-methyl-2-(2-methyl	
-4	4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, with possible interacting	
Wa	ater positions. NOTE, only one water molecule was included in each calculation.	511
S669 St	tatistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4	
-n	nethylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide	511
S670 T	he comparison list of optimized atomic charges and their initial guess for N-methyl-2	
-(2-methyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, referring to	
$^{\mathrm{th}}$	$ \text{ ne penalties of initial guess} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	512
S671 In	nteraction energies and geometries between probe water and selected N-methyl-2-(2-me	
th	nyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide site calculated using	
$^{\mathrm{th}}$	ne optimized and initial charges	512
S672 St	tatistics of calculated water interaction and dipole moment for $N-[(1E)-1-[(4Z)-4-ethyli)]$	
de	ene-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethylidene acetamide	513
S673 T	he comparison list of optimized atomic charges and their initial guess for $N-[(1E)-1-$	
[(*	4Z)- 4 -ethylidene- 1 -methyl- 5 -oxo- 4 , 5 -dihydro- $1H$ -imidazol- 2 -yl]ethylidene acetamide,	
re	ferring to the penalties of initial guess	514
S674 In	teraction energies and geometries between probe water and selected N-[(1E)-1-[(4Z)-	
4-	ethylidene-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethylidene]acetamide site	
ca	alculated using the optimized and initial charges	514
S675 St	tatistics of calculated water interaction and dipole moment for 2-(methylsulfanyl)aceta	
m		515
S676 T.	he comparison list of optimized atomic charges and their initial guess for 2-(methylsulf	F10
ar	nyi)acetamide, referring to the penalties of initial guess	910
50// In	iteraction energies and geometries between probe water and selected 2-(methylsulian	F10
yl ac z o a	Dacetamide site calculated using the optimized and initial charges	910
5678 St	tatistics of calculated water interaction and dipole moment for 2-fluoro-4-methylbenzen	F 1 F
1- נות היים היים	l-olate.	517
S679 T	he comparison list of optimized atomic charges and their initial guess for 2-fluoro-4-me	-10
th	hylbenzen-1-olate, referring to the penalties of initial guess	518
S680 In	iteraction energies and geometries between probe water and selected 2-fluoro-4-methyl	-10
be December	enzen-1-olate site calculated using the optimized and initial charges	518
S681 T	he calculated geometric terms of (2S)-2-acetamido-N-methyl-2-phenylacetamide.	519
S682 T	he calculated geometric terms of 3-methyl-1H-indol-7-olate.	521
5683 T	ne calculated geometric terms of 2-(methylsulfanyl)propanoicacid.	522 F00
5684 T	he calculated geometric terms of 5-methyl-2,3-dihydro-1,2-oxazole.	523
5685 T	ne calculated geometric terms of (3R)-3- (ethylsulfanyl)-5-methyl-2,3-dihydro-1,2-oxazole.	524
S686 T.	ne calculated geometric terms of 2-amino-2-[3-(ethylsulfanyl)-2,3-dihydro-1,2-oxazol-5	
-y		525
5687 T	ne calculated geometric terms of 2-oxopentanoicacid.	526
5688 T	ne calculated geometric terms of (2S)-2-acetamido-N-methylpent-4-enamide.	527 F02
5689 T.	ne calculated geometric terms of (ethylsulfanyl)peroxol.	528

S690 The calculated geometric terms of [(difluoromethyl)sulfanyl]ethane	. 529
S691 The calculated geometric terms of 2-fluoro-4-methyl-2,3-dihydro-1H-imidazole	. 530
S692 The calculated geometric terms of 2-fluoro-5-methyl-1H-imidazole.	. 531
S693 The calculated geometric terms of 2-methylidenepentanoicacid.	. 532
S694 The calculated geometric terms of 6-methyl-4H-thieno[3,2-b]pyrrole.	. 533
S695 The calculated geometric terms of 2,4-dimethylphenol.	. 534
S696 The calculated geometric terms of 2-[1-(2-acetamidoacetyl)-4-fluoropyrrolidin-2-yl]forma	
mido-N-methylacetamide.	. 535
S697 The calculated geometric terms of (2S,4S)-1-acetyl-4-fluoro-N-methylpyrrolidine-2-carb	
oxamide	. 537
S698 The calculated geometric terms of 4-fluoro-3-methyl-1H-indole.	. 538
Soyy The calculated geometric terms of (2R)-N-ethyl-2-hydroxypropanamide.	. 539
S700 The calculated geometric terms of 3-methyl-1H-indol-4-olate.	. 540
5701 The calculated geometric terms of 3-methyl-1H-indol-4-amine.	. 341
5702 The calculated geometric terms of 2-[3-(ethylsunanyi)-1,2-oxazondin-5-yi]-2-(trinydrido	5 49
C702 The calculated magnetic terms of (2D) 1 ethyl 2 (ethylaulfenyl) numeliding 2.5 diagonal	. 042
5705 The calculated geometric terms of $2 [1 (2 sectar-idesect)] 2.5 dibudro 1H purel 2 ulf$. 944
s704 The calculated geometric terms of 2-[1-(2-acetamidoacetyi)-2,3-dinydro-1ff-pyfroi-2-yi]i	546
C705 The calculated geometric terms of (28) 1 sectul N methyl 2.5 dibudre 1H purple 2 can	. 940
boxamida	548
S706 The calculated geometric terms of $(1s 4s) A$ othyleyclohoya 2.5 dion 1 amino	540 540
S700 The calculated geometric terms of [(S) amino(mothyloulfanyl)mothyl](mothyl)amino	550
5707 The calculated geometric terms of $[(5)$ -annio(methylsunanyl)methyl(methyl)annie	. 000 550
5700 The calculated geometric terms of (cthylamino)(methovy)phogphinicacid	. 004 552
5709 The calculated geometric terms of (ethylamino)(methoxy)phosphilicacid	. 000
S710 The calculated geometric terms of N-[(2R)-2-hydroxypropyl]guandine	. 004
S711 The calculated geometric terms of 2-(propanoyloxy)aceticacid.	. 000
S/12 The calculated geometric terms of (2R)-2- (propanoyloxy) propanoicacid.	. 330
S/13 The calculated geometric terms of 1-etnyl-2lambda4-triaza-1,2-diene.	. 337
S714 The calculated geometric terms of 2-acetamido-N-methyl-3-(2lambda4-triaza-1,2-dien-1	F F 0
	. 558
S715 The calculated geometric terms of 1-propyl-2lambda4-triaza-1,2-diene	. 559
S716 The calculated geometric terms of trimethyl-1H-imidazol-5-ol.	. 560
S717 The calculated geometric terms of 2-(4-ethyl-5-hydroxy-2-methyl-1H-imidazol-1-yl)-N-	F (1
$methylacetamide. \dots \dots$. 561
S718 The calculated geometric terms of [(methylsulfanyl)methyl]benzene.	. 563
S719 The calculated geometric terms of (3-methylbutyl)borane.	. 564
S720 The calculated geometric terms of ethyl-N-methylcarbamate.	. 565
S721 The calculated geometric terms of 2-(2,4-dimethyl-5-oxo-4,5-dihydro-1H-imidazol-1-yl)a	F 0.0
cetaldehyde	. 566
S722 The calculated geometric terms of 3-chloro-D-alanine.	. 567
S723 The calculated geometric terms of O-ethylhydroxylamine.	. 568
S724 The calculated geometric terms of 2-(methylsulfanyl)aceticacid.	. 569
S725 The calculated geometric terms of 2-ethylpropanedioicacid.	570
S726 The calculated geometric terms of 2-ethylpropanedioicacid.	. 571
S727 The calculated geometric terms of (2R)-2- (ethylsulfanyl)-2-hydroxyaceticacid	. 572
S728 The calculated geometric terms of 2,4-dimethylphenol.	. 573
S729 The calculated geometric terms of 2-(ethyldisulfanyl)ethan-1-ol.	. 574
S730 The calculated geometric terms of 2-(methylsulfanyl)propanoicacid.	. 575
S731 The calculated geometric terms of 2-ethylbenzonitrile.	. 576
S732 The calculated geometric terms of 1-ethyl-2,4-dimethylbenzene	. 577
S733 The calculated geometric terms of 1,2-xylene.	. 578
S734 The calculated geometric terms of 4-ethylidenecyclohexa-2,5-dien-1-one.	. 579
S735 The calculated geometric terms of 4-ethenyl-1-methyl-1H-imidazol-5-ol.	580
S736 The calculated geometric terms of 1-(methylsulfanyl)propan-2-one.	. 581
S737 The calculated geometric terms of ethane-SO-thioperoxol.	. 582
S738 The calculated geometric terms of [(2R)-2-acetamido-2-(methylcarbamoyl)ethyl]sulfany	
Iphosphonicacid.	583
S739 The calculated geometric terms of (ethylsulfanyl)phosphonicacid.	. 584
S740 The calculated geometric terms of ethanedithioperoxol.	585
S741 The calculated geometric terms of (ethylsulfanyl)sulfonicacid.	. 586

S742	The	$\operatorname{calculated}$	$\operatorname{geometric}$	terms	of	$ethane - SO-thioperoxol. \dots \dots$	587
S743	The	calculated	$\operatorname{geometric}$	terms	of	3-ethyl-7-methyl-1H-indole.	588
S744	The	calculated	geometric	terms	of	butan-2-ol	589
S745	The	calculated	geometric	terms	of	N-[(1S)-1-(methylcarbamoyl)ethyl]carbamate.	590
S746	The	calculated	geometric	terms	of	1-(ethylsulfanyl)propan-2-one.	591
S747	The	calculated	geometric	terms	of	2-(ethylsulfanyl)-N-methylacetamide.	592
S748	The	calculated	geometric	terms	of	1-(ethylsulfanyl)ethan-1-one	593
S749	The	calculated	geometric	terms	of	1-(methylsulfanyl)propan-1-one.	594
S750	The	calculated	geometric	terms	of	[(ethylsulfanyl)methyl]phosphonicacid.	595
S751	The	calculated	geometric	terms	of	[(ethylsulfanyl)methyl]phosphonicacid.	596
S752	The	calculated	geometric	terms	of	N,N,N'-trimethylguanidine.	597
S753	The	calculated	geometric	terms	of	4-methylbenzene-1,2-diol.	598
S754	The	calculated	geometric	terms	of	2,6-diboranyl-4-ethylphenol	599
S755	The	calculated	geometric	terms	of	(2S)-2,3-diacetamido-N-methylpropanamide	600
S756	The	calculated	geometric	terms	of	(2R)-2-(trimethylamino)propanamide	602
S757	The	calculated	geometric	terms	of	2,4-dimethyl-2,3-dihydro-1H-imidazole	603
S758	The	calculated	geometric	terms	of	2-ethyl-1H-imidazole	604
S759	The	calculated	geometric	terms	of	ethane-1,1-diol.	605
S760	The	calculated	geometric	terms	of	(2Z)-3-acetamido-3-(methylcarbamoyl)prop-2-enoicacid	.606
S761	The	calculated	geometric	terms	of	(4Z)-4-ethylidene-1,2-dimethyl-4,5-dihydro-1H-imida	
_	zol-5	ó-one			•		607
S762	The	calculated	geometric	terms	of	1,2-difluoro-4-methylbenzene.	608
S763	The	calculated	geometric	terms	of	2-fluorobutanoicacid.	609
S764	The	calculated	geometric	terms	of	(2R)-2-acetamido-2-(methylcarbamoyl)acetate	610
S765	The	calculated	geometric	terms	of	N-ethyl-N-hydroxyformamide	611
S766	The	calculated	geometric	terms	of	2-amino-3,3,3-trifluoropropanoicacid	612
S767	The	calculated	geometric	terms	of	(2S)-2-formamido-N-methylpropanamide.	613
S768	The	calculated	$\operatorname{geometric}$	terms	of	2-ethylfuran.	614
S769	The	calculated	$\operatorname{geometric}$	terms	of	2-fluoro-2-methylpropane.	615
S770	The	calculated	geometric	terms	of	(2S)-2-acetamido-3-fluoro-N,3-dimethylbutanamide.	616
S771	The	calculated	$\operatorname{geometric}$	terms	of	(Z)-methyl[1-(methylsulfanyl)ethylidene]amine.	617
S772	The	calculated	geometric	terms	of	(2R, 3S, 4R, 5R)-2-methyl-5-[$(1Z)$ -1-(methylimino)eth	
	yl]su	lfanyloxola	ane-3,4-dio	l	•		618
S773	The	calculated	$\operatorname{geometric}$	terms	of	(2R)-3-carbamimidamido-2-acetamido-N-methylprop	
	anar	nide			•		620
S774	The	calculated	$\operatorname{geometric}$	terms	of	N''-ethoxyguanidine.	622
S775	The	calculated	$\operatorname{geometric}$	terms	of	(2S)-2-hydroxypropanamide	624
S776	The	calculated	$\operatorname{geometric}$	terms	of	$2\-acetamido-N\-([(methylcarbamoyl)methyl]carbamoth$	
	ioylı	nethyl)ace	tamide				625
S777	The	calculated	$\operatorname{geometric}$	terms	of	N-[(methylcarbamothioyl)methyl]acetamide	627
S778	The	calculated	$\operatorname{geometric}$	terms	of	N-hydroxypropanamide.	628
S779	The	calculated	$\operatorname{geometric}$	terms	of	4-ethyl-1-methyl-2,3-dihydro-1H-imidazole	629
S780	The	calculated	$\operatorname{geometric}$	terms	of	(5-ethyl-1H-imidazol-1-yl)phosphonicacid	630
S781	The	$\operatorname{calculated}$	$\operatorname{geometric}$	terms	of	5-ethyl-1H-1,2,3-triazole	631
S782	The	$\operatorname{calculated}$	$\operatorname{geometric}$	terms	of	(1R)-1- $(methylsulfanyl)$ ethan-1-ol	632
S783	The	$\operatorname{calculated}$	$\operatorname{geometric}$	terms	of	(1R)-1- $(1H$ -indol-3-yl)ethan-1-ol	633
S784	The	$\operatorname{calculated}$	geometric	terms	of	2-(N-ethylacetamido)-N-methylacetamide.	634
S785	The	${\rm calculated}$	geometric	terms	of	2-methyl-2,3-dihydro-1H-indene	636
S786	The	calculated	geometric	terms	of	(2R)-2-(2,3-dihydro-1H-inden-2-yl)-2-acetamido-N-	
	metl	nylacetami	de				637
S787	The	$\operatorname{calculated}$	geometric	terms	of	$4\mbox{-}[(E)\mbox{-}(ethylimino)methyl]\mbox{-}2, 5\mbox{-}dimethylpyridin\mbox{-}3\mbox{-}olate.$	639
S788	The	$\operatorname{calculated}$	geometric	terms	of	4-ethyl-2-iodophenol	640
S 789	The	calculated	$\operatorname{geometric}$	terms	of	(ethyl sulfanyl)(pyridin-3-yl)methanone	641
S790	The	calculated	geometric	terms	of	(2E)-N-methylbut-2-enamide.	643
S791	The	calculated	geometric	terms	of	pentylcarbamicacid	644
S792	The	calculated	geometric	terms	of	(2E)-2-(methyliminiumyl)propanoate	645
S 793	The	calculated	geometric	terms	of	1-(2-aminophenyl)propan-1-one	646
S794	The	calculated	$\operatorname{geometric}$	terms	of	2-methylpropane-2-thiol	647
S795	The	calculated	geometric	terms	of	2-acetamido-N,3-dimethyl-3-sulfanylbutanamide.	648
	THO		0			, v v	
S796	The	calculated	geometric	terms	of	1-fluoro-2-methylpropane	650

S 798	The calcu	ilated	$\operatorname{geometric}$	terms	of	2,5-dimethyl- 4 -[(E)-(methylimino)methyl]pyridin- 3 -o	
	late						653
S799	The calcu	lated	$\operatorname{geometric}$	terms	of	(2S)-2-acetamido-N-methylbut-3-enamide	654
S800	The calcu	lated	$\operatorname{geometric}$	terms	of	(2S)-N-methyl-2-(methylsulfanyl)propanamide	655
S801	The calcu	ilated	$\operatorname{geometric}$	terms	of	$(ethyl sulfanyl) methanol. \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	656
S802	The calcu	lated	$\operatorname{geometric}$	terms	of	(R)-(2,2-dimethylpropyl)(methyl)-lambda 3-sulfanol.	657
S803	The calcu	lated	$\operatorname{geometric}$	terms	of	trimethyl(pentyl)amine	658
S804	The calcu	lated	$\operatorname{geometric}$	terms	\mathbf{of}	N,N-dimethylacetamide.	660
S805	The calcu	lated	geometric	terms	of	(2E)-2-(ethylimino)propanoate.	661
S806	The calcu	lated	geometric	terms	of	3-(ethylsulfanyl)-3-oxopropanoicacid.	662
S807	The calcu	lated	geometric	terms	of	2,3-Dimethyl-5-methylideneimidazol-4-one	664
S808	The calcu	lated	geometric	terms	of	N-[(1S)-1-(1-methyl-4-methylidene-5-oxo-4,5-dihydr	
	o-1H-imio	dazol-1	2-yl)ethyl]	acetan	nid	2	665
S809	The calcu	ilated	geometric	terms	of	(ethylsulfanyl)methanol.	667
S810	The calcu	ilated	geometric	terms	of	5-ethyl-1-methyl-1H-imidazole.	668
S811	The calcu	lated	geometric	terms	of	5-ethyl-1-methyl-2,3-dihydro-1H-imidazole.	669
S812	The calcu	lated	geometric	terms	of	(4-ethyl-1H-imidazol-1-yl)phosphonicacid.	670
S813	The calcu	ulated	geometric	terms	of	4-methyl-2-nitrobenzen-1-olate.	671
S814	The calcu	ilated	geometric	terms	of	N-[(1E)-1-[(4Z)-4-ethylidene-1-methyl-5-oxo-4,5-dihy]	
	dro-1H-in	nidazo	ol-2-vllethy	vlidene	lac	etamide	672
S815	The calcu	ilated	geometric	terms	of	N-[(1E)-1-[(4Z)-4-ethylidene-1-methyl-5-oxo-4,5-dihy]	•••
0010	dro-1H-ir	nidazo	ol-2-vllethy	vlidene	lac	etamide.	673
S816	The calcu	ilated	geometric	terms	of	N-[(2Z)-4-(methylsulfanyl)butan-2-ylidenelacetamide.	675
S817	The calcu	ilated	geometric	terms	of	(2S)-2-acetamido-2-(methylcarbamoyl)ethylacetate	676
S818	The calcu	ilated	geometric	terms	of	1 1-difluoropropane	677
S819	The calcu	ilated	geometric	terms	of	(2S)-2-acetamido-4 4-difluoro-N-methylbutanamide	678
S820	The calcu	ilated	geometric	terms	of	(2B)-2-acetamido-2-(methylcarbamoyl)ethane-1-sulf	010
5020	onicacid	ilauca	Scometrie	0011115	01	(210) 2 accounted 2 (methylearbanioyi)ethane i sun	679
S821	The calcu	ılated	geometric	terms	of	2-(ethylsulfanyl)ethan-1-ol	680
S822	The calcu	ilated	geometric	terms	of	4-(1-hydroxyethyl)-2-methylphenol	681
S823	The calcu	ilated	geometric	terms	of	(4-methylphenyl) (phenyl) methynonone	682
S824	The calcu	ilated	geometric	terms	of	(propanovlovy)phosphonicacid	683
S825	The calcu	ilated	geometric	terms	of	(propanoyloxy)phosphonicacid	684
5826	The calcu	ilated	geometric	torms	of	2-hydroxy_3_[2-(methylcarbamov])pyrrolidin_1-y]]pro	004
0020	nanoicaci	d d	geometric	0011113	01	2-ny droxy-5-[2-(methytear banloy)) pyrrondin-1-yijpro	685
\$827	The calcu	u ilatod		torme	of	2-[3-(2-acetamidoacety])-1.3-thiazolidin-4-y]]formami	000
0041	do N mot	hvlac	otamido	tei 1115	01	2^{-1}	687
5828	The coler	llatod	goomotric	torme	of	$(4\mathbf{R})$ 3 acotyl N mothyl 1 3 thiazolidino 4 carbovani	001
5020	do	nateu	geometric	terms	or	(410)-5-acetyi-iv-methyi-i,5-tinazondine-4-carboxann	680
6820	The color	i i i i ilstod		torma	of	1 mothyl 9 nitrohonzona	600
5049 6830	The calcu	lated	geometric	terms	of	2 [1 (2 acetamideaeetul) 2 hudrovupurrelidin 2 ullfor	090
2020	mamida I	Mateu Marrot	bulacetera	ide IIIs	or	2-[1-(2-acetamidoacetyi)-2-mydroxypyirondm-2-yipor	601
0091	The color	N-met dotod	roometrie	torma	of	(2D) 1 sectul 2 budroux N methylpupyalidine 2 eerbo	091
2001	rne calcu	nateu	geometric	terms	or	(2π) -1-acetyi-2-iiydroxy-iv-methyipyirondine-2-carbo	602
0000	The selen	lotod	 maamaatria	 torma	of	(athulaulfanul)fannamida	093
0004	The calcu		geometric	terms	or	(ethy)sunany)) or manuae	094
2000	1 ne caicu	nated	geometric	terms	OI	2- (etnyisunanyi)-2- [(trinydroxy-iambda4-phosphany	COF
0.09.4	i) oxy proj	panoic			r		095
5834	The calcu	llated	geometric	terms	OI	2,2,3,5,5-pentametnyi- $2,5$ -dinydro-1H-pyrrol-1-ol	697
\$835	The calcu	llated	geometric	terms	of	3-[(methyldisulfanyl)methyl]-2,5-dihydro-1H-pyrrol-	<u>coo</u>
doac	1-01						098
5830	The calcu	lated	geometric	terms	OI	etnoxy(metnyl)pnospninicacia	699 700
5837	The calcu	llated	geometric	terms	of	ethylphenylmethanesulfonate.	700
5838	The calcu	lated	geometric	terms	ot	(dimethylamino)(ethoxy)phosphinicacid.	702
5839	The calcu	lated	geometric	terms	ot	dimethylmethylphosphonate.	703
5840	The calcu	llated	geometric	terms	of	(nitrososulfanyl)ethane	704
S841	The calcu	liated	geometric	terms	of	[(1E)-prop-1-en-1-yl]benzene.	705
S 842	The calcu	ilated	geometric	terms	of	2-[(38)-3-acetamido-2,5-dioxopyrrolidin-1-yl]-N-meth	_
00.15	ylacetami	ıde.			•		706
S843	The calcu	lated	geometric	terms	of	(dimethoxyphosphoryl)dimethylamine.	708
S844	The calcu	llated	geometric	terms	of	dimethylmethylphosphonate.	709
S845	The calcu	ilated	geometric	terms	of	3-ethenyl-1H-indole	710

S846	The calculated geometric terms of 2-methyl-2H-1,2,3,4-tetrazole.	711
S847	The calculated geometric terms of (2R)-2-acetamido-N-methyl-3-(2H-1,2,3,4-tetrazol-2	
	-yl)propanamide.	712
S848	The calculated geometric terms of 1-methyl-2-(trifluoromethyl)benzene.	713
S849	The calculated geometric terms of 1,1,1-trifluoro-2-methylpropane	714
S850	The calculated geometric terms of (2S)-2-acetamido-N-methyl-2-(thiophen-2-yl)acetami	
	de	715
S851	The calculated geometric terms of methylthiourea.	716
S852	The calculated geometric terms of 2-methylthiophene.	717
S853	The calculated geometric terms of 2-ethylthiophene.	718
S854	The calculated geometric terms of 3-ethyl-1H-indole-1-peroxol.	719
S855	The calculated geometric terms of cyclohex-5-ene-1,2,4-trione.	721
S856	The calculated geometric terms of 5-ethylcyclohex-5-ene-1,2,4-trione.	722
S857	The calculated geometric terms of 2-ethyl-5-hydroxycyclohexa-2,5-diene-1,4-dione	723
S858	The calculated geometric terms of 3-ethyl-6-imino-6,7-dihydro-1H-indol-7-one.	724
S859	The calculated geometric terms of 3-methyl-1H-indol-2-ol	725
S860	The calculated geometric terms of 3-ethyl-6,7-dihydro-1H-indole-6,7-dione.	726
S861	The calculated geometric terms of 1,2-diphenylhydrazine.	727
S862	The calculated geometric terms of 2-methylbutane-2,3-diol	728
S863	The calculated geometric terms of (4-ethylphenyl)oxidanesulfonicacid.	729
S864	The calculated geometric terms of 4-methyl-1,3-thiazole.	730
S865	The calculated geometric terms of (ethylsulfanyl)carbonitrile.	731
S866	The calculated geometric terms of N-methyl-2-(4-methylidene-5-oxo-4,5-dihydro-1H-imi	
	dazol-1-yl)acetamide	732
S867	The calculated geometric terms of (4Z)-1-methyl-4-(phenylmethylidene)-4,5-dihydro-1H	
	-imidazol-5-one.	733
S868	The calculated geometric terms of (2S)-2-acetamido-N-(propan-2-ylidene)propanamide.	734
S869	The calculated geometric terms of 2-(methylsulfanyl)acetamide.	736
S870	Root Mean Square (RMSD) deviation in molecular dynamics simulations	737
S871	Selected average non-bond distances (Å) in MD simulations of proteins with the non-	
	standard amino acids. Values in parenthesis represent the standard deviation.	737
S872	Rotatable dihedral angles observed in MD simulations and experimental structures. Stan-	
	dard deviations are given in parenthesis.	738

Figure S1: Regions of the non-standard amino acids represented by the CGenFF (blue) or CHARMM36 (red) atom types for the A) sidechain modified and B) backbone modified amino acids. A)

B)

$$\begin{array}{cccc} R_{i-1} & R_{i+1} \\ | & | \\ \dots - N - CA - C - A_i - N - CA - C - \dots \\ \| & \| \\ O & O \end{array}$$

.

Figure S2: Chemical structures of nonstandard amino acids parametrized in this work. Sidechains and amino acids are represented for sidechain modified and backbone modified amino acids, respectively.

Figure S4: Percentage number of rotatable dihedrals vs RMS deviation between *ab initio* and CHARMM energy at minima points with A) predicted parameters and with B) optimized parameters.

Table S1: Experimental protein structures used in this work for Molecular Dynamics simulations.

amino acid	protein	PDB ref. code	resolution (A)	MD model
MDO	Aequorea victoria green fluorescent protein	1yjf (Barondeau et al. 2005)	1.35	sphere
NRQ	red fluorescent protein, eqFP611	3e5t (Nienhaus et al. 2008)	1.1	$_{\rm sphere}$
MAA	human insulin analogue	4cxn (Kosinova et al. 2014)	1.7	$_{\rm complete}$
XYG	Red fluorescent protein zRFP574	2ICR (Pletneva et al. 2007)	1.51	sphere
4FB	E. coli thioredoxin variant with (4S)-FluoroPro76	4hu9 (Rubini et al. 2013)	1.55	sphere
CSO	TDP2 UBA Domain Bound to Ubiquitin	6q00 (Schellenberg et al. 2020)	0.85	sphere
LE1	Designed Peptides	3h5f (Peacock, Stuckey, and Pecoraro 2009)	1.86	complete
2 HF	protective antigen (PA) component of the anthrax toxin	3mhz (Wimalasena et al. 2010)	1.7	sphere
BCS	Human O(6)-alkylguanine-DNA alkyltransferase	1eh8 (Daniels et al. 2000)	2.5	sphere
GGB	Endothiapepsin in complex with fragment B53	4y4g (Huschmann et al. 2016)	1.44	sphere
PBF	E. coli chorismate mutase	5vht (Koh et al. 2017)	2	$_{\rm complete}$
HTI	aspartate-beta-semialdehyde dehydrogenase	1nwh (Blanco, Moore, and Viola 2003)	2	sphere
4 FW	Cold Shock Protein B (CspB)	6szz (Welte et al. 2020)	2.05	$_{\rm complete}$
	containing the modified residue 4-F-Trp			
CSS	Sulfur-substituted rhodanese	1rhs (Gliubich et al. 1998)	1.36	sphere
OCS	Xanthomonas campestris Peroxiredoxin Q-F6	5imv (Perkins et al. 2016)	1.05	$_{\rm complete}$
LLP	Aedes aegypti kynurenine aminotrasferase	1yiz (Han et al. 2005)	1.55	sphere
CME	Soybean bet a-amylase	1wdr (Kang et al. 2005)	1.35	$_{\rm complete}$
KCX	Apo OXA-143 carbapenemase	5iy2 (Toth et al. 2017)	1.15	$_{\rm complete}$
SNC	S-nitroso thioredoxin	2hxk (Weichsel, Brailey, and Montfort 2007)	1.65	$_{\rm complete}$
\mathbf{CCS}	Human DJ-1 with a natural modification on Cys-106 $$	6e5z (Mussakhmetov et al. 2018)	1.35	$\operatorname{complete}$

Complete protein and spherical protein systems were simulated using periodic boundary conditions in all cases; spherical protein systems included protein atoms within 24 Å sphere centered on the nonstandard amino acid with atoms beyond 20 Å restrained to the experimental position during MD simulations.

Table S2:	List of	nonstandard	amino	acids	parametrized	in th	nis work
-----------	---------	-------------	------------------------	-------	--------------	-------	----------

PDB residue	Name
004	phenylglycine
0A1	4-methoxy-phenylalanine
$0 \mathrm{AF}$	7-hydroxy-l-tryptophan
0BN	4-carbamimidoyl-l-phenylalanine
$0 \mathrm{TD}$	(3S)-3-(methylsulfanyl)-L-aspartic acid
143	S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine
200	4-chloro-phenylalanine
26P	2-amino-6-oxopimelic acid
2AG	2-allyl-glycine
2AS	3-methyl-aspartic acid
$2\mathrm{CO}$	S-hydroperoxycysteine
$2\mathrm{FM}$	s-(difluoromethyl)-homocysteine
$2 \mathrm{GX}$	beta-phenyl-L-phenylalanine
$2\mathrm{HF}$	2-fluoro-l-histidine
2LT	3,5-dichloro-L-tyrosine
$2\mathrm{MR}$	N3, N4-dimethylarginine
2NP	l-2-amino-6-methylene-pimelic acid
$32\mathrm{T}$	3-(4H-thieno[3,2-b]pyrrol-6-yl)-L-alanine
$3\mathrm{CF}$	3-cyano-phenylalanine
$3\mathrm{CT}$	3-chloro-L-tyrosine
$3 \mathrm{FG}$	(2s)-amino $(3,5$ -dihydroxyphenyl)-ethanoic acid
$3 { m GL}$	4-hydroxy-glutamic-acid
3 MY	3-chloro-tyrosine
$4\mathrm{BF}$	4-bromo-phenylalanine
$4\mathrm{CF}$	4-cyano-phenylalanine
$4\mathrm{CY}$	nitrilo-l-methionine
4 FB	(4S)-4-fluoro-L-proline
4 FW	4-fluoro-tryptophan
$4\mathrm{HH}$	O-[(S)-hydroxy[(3R)-3-hydroxy-2,2-dimethyl- amino]propylamino)butyl]oxyphosphoryl]-L-serine
$4 \mathrm{HMP}$	4-hydroxymethyl-phenylalanine
$4 \mathrm{HT}$	4-hydroxy-tryptophan
4IN	4-amino-l-tryptophan
PDB residue	Name
----------------	---
$4\mathrm{PH}$	4-methyl-phenylalanine
$5\mathrm{CS}$	2-amino-3-(cystein-S-yl)-isoxazolidin-5-yl-acetic acid
$5\mathrm{CT}$	hypusine
$6\mathrm{CL}$	6-carboxylysine
$6\mathrm{CW}$	6-chloro-l-tryptophan
01.11	(2R)-2-azanyl-3-[(3R)-1-ethyl-2,5-bis(oxidanylidene)pyrrolidin-3-yl sulfanyl-
6V1	propanoic acid
8LJ	(2S)-2.3-dihydro-1H-pyrrole-2-carboxylic acid
9R1	(2S)-2-aminooctanedioic acid
AA4	2-amino-5-hydroxypentanoic acid
ABA	2-aminobutyric acid
ACZ	cis-amiclenomycin
AGM	5-methyl-arginine
AGT	S-(S)-aminol(4-aminobutyl)aminolmethyl-L-cysteine
AHB	beta-hydroxyasparagine
AHP	2-aminohentanoic acid
ALC	3-cvclohexvl-alanine
ALN	1-nanhthyl-alanine
ALO	allo-threenine
ALS	(3S)-3-(sulfooxy)-L-serine
	3-(0-anthryl)-alaning
APD	3 Mothyl phonylalaning
	5' $\Omega \left[(S) \right] \left[(5S) 5 \text{ amino } 6 \text{ ovobovullamino} (hvdrovu) phosphorulladonosino$
	m amidinophonyl 3 alanino
	c commo hydroxy orginino
152	(2r) 2 amino 4 avabutanoic acid
ASB	aspartie acid 4 carboxymethyl ester
ASD	aspartic acid 4 carboxymethyl ester
	N sastulalonino
	(2C) 2 aminabutancia acid
DOA	(35)-3-ammobulanoic acid
B9E D9V	(35)-5-annihonexanedioic acid
DOU	(35)- 3 , i -unaminoneptanoic acid
BOD	$(3\mathbf{K})$ -3-amino-4-mydroxybutanoic acid
Бэд	(35)- $3,5$ -diamino- 3 -oxopentanoic acid
BƏY	(35)-5-ammo-4-(4-nydroxypnenyi)butanoic acid
BB8 DCC	pnenyiserine
BUS	
	deta-nydroxyaspartic acid
BIF	4,4-bipnenyialanine
BIU	o-bromo-i-isoleucine
ВІПЭ ртр	5-(5-benzotnienyi)-alanine
BIR	o-bromo-tryptopnan
BUG	tertieucine
BAI	(25)-2-azanyi-3-letnyi(metnyi)carbamoyiloxy-propanoic acid
BYR	3-bromo-L-tyrosine
C2N CAN	3-chloro-D-alanine
CAN	canaline
CUS	carboxymethylated cystelle
CGU	gamma-carboxy-glutamic acid
CGV	$S_{-[(K)-carboxy(nydroxy)methyl]-L-cysteine}$
CH6	(42)-2-[(15)-1-ammo-5-(methylsunanyl)propyl] -4-[(4-nydroxypnenyl) methylidene]-
aua	o-oxo-4acetic o-dinydro-in-imidaZol-1-ylacetic acid
CHG	Uycionexyigiycine
CHP	3-cnioro-4-hydroxy-phenyiglycine
CIK	citruiine

PDB residue	Name
CME	S,S-(2-hydroxyethyl)thiocysteine
CML	(2S)-2- $[(2R)$ -2-amino-2-carboxyethyl $]$ sulfanylbutanedioic acid
CNP2	2-cyano-phenylalanine
CP24	2,4-dichloro-phenylalanine
CP34	3.4-dichloro-phenylalanine
CPA3	3-cvclopentyl-alanine
CPG2	2-chloro-phenylglycine
CPC3	2 chloro phonylghycino
CPC 4	4 ablere phenylghydine
CDU9	4-chloro-phenylglychle
ULUZ	2-cinoro-pitenyiaianine (47) 2 (aminomothyl) 4 $[(4 \text{ hydrosymbolsevel})$ methylidene] 5 ave 4 electric 5 dihydros
$\operatorname{CR2}$	(4Z)-2-(anniomethyl)-4-[(4-nydroxypnenyl)methylidene]-5-oxo-4acetic 5-dinydro-
	1 H-ImidaZoI-I-yiacetic acid 2 $\begin{bmatrix} 1 & -min = 0 \\ 1 & -min = 0 \end{bmatrix}$ $\begin{bmatrix} 1 & -min = 0 \\ 1 & -min = 0 \end{bmatrix}$ $\begin{bmatrix} 1 & -min = 0 \\ 1 & -min = 0 \end{bmatrix}$ $\begin{bmatrix} 1 & -min = 0 \\ 1 & -min = 0 \end{bmatrix}$
CR8D	2-[1-ammo-2-(1n- midazoi-5-yi)etnyi]-1- (carbO ymetnyi)-4-[(4-O ocycionexa -2,5-
	dien-1-ylidene/methyl] -1h-imidazol-5-olate
CRF	[(4Z)-2-[(1R,2R) -1-amino-2-hydroxypropyl] -4-(1H-indol-3-ylmethylidene) -5-oxo -
010	4,5-dihydro -1H-imidazol-1-yl]acetic acid
CRO	2-[(1R,2R)-1-amino-2-hydroxypropyl] -4-(4-hydroxybenzylidene) -5-oxo -4acetic 5-
0110	dihydro -1H-imidazol-1-ylacetic acid
CBO	[2-(3-carbamoyl-1-imino-propyl)-4-(4-hydroxy-benzylidene)-5-oxo-4,5-dihydro-
Ong	imidazol-1-yl]-acetic acid
CSA	s-acetonyl cysteine
CSO	S-hydroxycysteine
\mathbf{CSS}	S-mercaptocysteine
CSU	cysteine-S-sulfonic acid
CSX	S-oxy cysteine
CTE	7-chloro-tryptophan
СТН	4-chloro-threonine
CXM	N-carboxymethionine
CYD	2-amino-6-(cystein-S-yl)-5-oyo-beyanoic acid
OID	5-[2-(2-amino-2-carbamovl-ethylsulfanyl)-acetylaminol-2-(3.6-dihydroxy-9.9a-
CYF	dihydro-3h-yanthan-9-yl)-benzoic acid
CVC	2 amino 4 (amino 3 ovo propulsulfanulearbonul) huturie acid
CYO	2-amino-4-(amino-5-oxo-propyisunanyicarbonyi)-butyic acid
	4. Herde som all same laboring
	4-nydroxy-phenyigiychie
	NG,NG-dimethyl-L-arginine
DAB	diaminobutyric acid
DAH	3,4-Dihydroxy-phenylalanine
DBB	D-alpha-aminobutyric acid
DBY	3,5-dibromotyrosine
DBZ	3-(benzoylamino)-L-alanine
DDE	3-[4-(2-amino-2-carboxy-ethyl)-1H-imidazol-2-yl]-1-carbamoyl-propyl-trimethyl-
DDL	ammonium
DDZ	3,3-dihydroxy-alanine
DILE	diethylalanine
DIPH	3,3-diphenylalanine
DMK	3,3-dimethyl aspartic acid
DMP3	3-ethyl-phenylalanine
DNP	3-amino-alanine
DPP	2.3-Diaminopropanoic acid
DYA	Didehvdroaspartate
	(3S)-3-amino-3-[(4Z)-1-(carboxymethyl)-4-[(4-hydroxyphenyl)methylidenel-5-oxo-
DYG	imidazol-2-vllpropanoic acid
ESC	ethionine
E95	3 1-difluoro-phenylalanine
r 2r FCI	3 ablere Dhenylalanine
	4 fluoro glutomia paid
FGA4 ECI	4-muoro-grutamic acia
FGL	2-anniopropanedioic acid
FHO	N5-formyl-N5-hydroxy-L-ornithine

PDB residue	Name
FLA	Trifluoroalanine
\mathbf{FME}	N-formylmethionine
FP9	(4R)-4-fluoro-L-proline
FPG2	2-fluoro-phenylglycine
FPG3	3-fluoro-phenylglycine
FPG4	4-fluoro-phenylglycine
FPH2	2-fluoro-phenylalanine
FPH3	3-fluoro-phenylalanine
FT6	6-fluoro-l-tryptophan
FTB	5-fluoro-tryptophan
	(2 furyl) alanina
FUAL	2 fluore value
L AT	$(2S) = 2 \min_{n \in \mathbb{N}} 6 \int [(17) + \int [(2R) 3R 4S 5R) 5 \int [(R) \int [(2R) 3S 4R 5R) 5 (6 - 5 $
	$(25)^{-2-anno-0-} [(12)^{-1} [(210,50,45,500)^{-5-} ((10)^{-} [(10)^{-} [(210,55,400,500)^{-5-} (0)^{-5-$
FZN	ammo-9n-purm-9-yi) -3,4-umydroxytetranydroruran -2-yijmetnoxy {(hydroxy)
	2 chlorife and statistical series because a side
CDUT	-2-yijsunanyietnyiidenej aminonexanoic acid
GBUT	2-amino-4-guanidinobutryric acid
GDPR	2-amino-3-guanidinopropionic acid
GGB	Canavanine
GHG	(2s,4s)-2,5-diamino-4-hydroxy-5-oxopentanoic acid
GL3	Thioglycin
GME	5-o-methyl-glutamic acid
GPL	lysine guanosine-5'-monophosphate
CVS	[(4Z)-2-(1-amino-2-hydroxyethyl)-4-(4-hydroxybenzylidene)-5-oxo-4,5-dihydro-1h-
GID	imidazol-1-yl]acetic acid
HCS	homocysteine
HGA	glutamine hydroxamate
HHK	(2s)-2,8-diaminooctanoic acid
HIC	4-methyl-histidine
HIL4	4-hvdroxy-L-isoleucine
HIP	ND1-phosphonohistidine
HIX	3-(1H-1,2,3-triazol-5-vl)-L-alanine
HL2	Histidine
HLEU	homoleucine
HLU	hete hydroxyleucine
HMB	heta-homoarginine
HOY	4 amino I. phonylalanino
	4-annio-1-pitenyiaiannie
	2 (9 budnounduinelin 2 ul) l elemine
	5-(8-nydroxyquinoini-5-yi)-i-aianine
	o-nydroxy-tryptopnan
HSER	nomoserine
HT7	(3S)-3-amino-4-(1h-indol-3-yl)butanoic acid
HTT	(4S)-4-[(2S)-2-amino-3-oxopropyl]sultanyl-L-homoserine
HTR	beta-hydroxy-tryptophane
ΗVA	3-hydroxy-l-valine
HZP	(4S)-4-hydroxy-L-proline
I2M	3-methyl-l-alloisoleucine
I4G	N-(2-methylpropyl)glycine
IAM	4-[(isopropylamino)methyl]phenylalanine
IAS	beta-L-aspartic acid
IGL	alpha-amino-2-indanacetic acid
IIL	Allo-Isoleucine
ILX	4,5-dihydroxy-isoleucine
T/T) 4	(2S)-2-amino-6-[[3-hydroxy-2-methyl-5-(phosphonooxymethyl)pyridin-4-
$\Gamma\Gamma\Gamma$	yl]methylideneamino]hexanoic acid
IYR	3-iodo-tyrosine
.J.J.I	S-(pyridin-3-vlcarbonyl)-L-cysteine
000	~ (r) 0 (100020000) - 0(0000000

PDB residue	Name
KCR	N-6-crotonyl-L-lysine
KCX	lysine NZ-carboxylic acid
KHB	N6-[(3S)-3-hydroxybutanoyl]-L-lysine
KPI	(2S)-2-amino-6-[(1-hydroxy-1-oxo-propan-2-ylidene)amino]hexanoic acid
KYN	kynurenine
LA2	N6-[(6R)-6,8-disulfanyloctanoyl]-L-lysine
LDO	6-hydroxy-l-norleucine
LE1	Penicillamine
LED	(4r)-5-oxo-l-leucine
	(4s)-5-fluoro-l-leucine
	(2S)-2-amino-6-[[3-hvdroxy-2-methy]-5-(phosphonooxymethy])pyridin-4-
LLP	vllmethylideneaminolhexanoic acid
LME	(3r)-3-methyl-l-glutamic acid
LMO	3-methyl-Lolutamine
LVG	vinylalycing
	4-ovo-l-valine
	$N'' (2 \text{ coongame } \Lambda)$ propancyl lycing
	5 bydrowylycino
	S (hudnowynethyl) I awsteine
MUL	S-(nydroxymetnyi)-L-cysteme
M25	5,5-dimetriyi-metrionine suifoxide
MJL	N-trimetnyilysine
MAA	N-methyl-L-alanine
MCL	NZ-(1-carboxyethyl)-lysine
MCS	malonyl cysteine
MDO	[2-((15)-1-aminoetnyi)-4-metnyildene-5-oxo-4,5-dinydro-1H-imidazoi-1-yi]acetic
1 (20)	acid
ME0	hydroxy-l-methionine
MEG	(3s)-3-methyl-l-glutamic acid
MEN	n-methyl-asparagine
${ m MEQ}$	n5-methyl-glutamine
MHO	s-oxymethionine
MHS	N1-methylated histidine
MIR	${ m monoet}{ m hylphosphorylserine}$
MLY	N-dimet hyl-lysine
MLZ	N-methyl-lysine
MOT5	$5 ext{-methoxy-tryptophan}$
MP34	$3,4 ext{-dimethyl-phenylalanine}$
MP8	(4R)-4-methyl-L-proline
MPH2	2-methyl-phenylalanine
MTR5	5-methyl-tryptophan
MTR6	6-methyl-tryptophan
MTY	meta-tyrosine
NAL	2-naphthyl-alanine
NAO1	5-hydroxy-1-naphthalene
NAO2	6-hydroxy-2-naphthalene
NEP	N1-phosphonohistidine
NIY	meta-nitro-tyrosine
NMM	(2S)-2-amino-5-l(N-methylcarbamimidoyl)aminolpentanoic acid
0	(4Z)-4-(4-hvdroxybenzylidene)-2-[3-(methylthio)propanimidoyl]-5-oxo-4acetic
NRQ	5-dihydro-1H-imidazol-1-ylacetic acid
NVA	norvaline
OAS	o-acetylserine
OBF	(2s)-2-amino-4 4-difluorobutanoic acid
OCS	cysteinesulfonic acid
OCV	s-(2-hvdroxyethyl)-l-cysteine
	o-met hvl-l-t hreonine
OMT	methionine sulfone
OWL	(hotar) hota hydroxy l tyrosing
OWIA	(botar)-beta-nyutoxy-i-tyrosine

PDB residue	Name
OMY	(betaR)-3-chloro-beta-hydroxy-L-tyrosine
ONL	5-oxo-l-norleucine
ORN	ornithine
OSE	O-sulfo-L-serine
OTYR	o-tyrosine
PBF	4-benzovl-phenylalanine
PF5	pentafluoro-phenylalanine
DEE	4 fluoro phonylalanino
	4-indoto-pitenyialainine
	A Jada Dhamlalanina
РПІ	4-1000-Phenylalanine $\left[\left(47 \right) \right] = \left[\left(18 \right) \right] = \left[47 \right] = \left[\left(18 \right) \right] = \left[47 \right] = \left[\left(18 \right) \right] = \left[18 \right]$
PIA	[(4Z)-2-[(1S)-1-ammoetnyi]-4-(4-nydroxybenzyndene)-5-oxo-4,5-dinydro-1H- imidazol-1-yl]acetic acid
PM3	2-amino-3-(4-phosphonomethyl-phenyl)-propionic acid
PPN	4-nitro-phenylalanine
PB3	S S-propylthiocysteine
PR4	1.[(2B)-2.carboxy-2.bydroxyethyl]-L.proline
PRK	N6-propanovl-L-lysine
DBS	Thioproline
	(PD) aming (2 mituan hanvi) at hangia agid
	2 hardeneer Lagrading
PAU	2-nydroxy-L-proline
PYR2	3-(2-Pyridyl)-alanine
PYR3	3-(3-Pyridyl)-alanine
PYR4	3-(4-pyridyl)-alanine
PYZ1	3-(1-pyrazolyl)-alanine
\mathbf{QCS}	S-carbamoyl-L-cysteine
\mathbf{QPA}	S-[(1S)-1-carboxy-1-(phosphonooxy)ethyl]-L-cysteine
QU32	3-(2-Quinolyl)-alanine
QU33	3-(3-quinolyl)-alanine
QU34	3-(4-quinolyl)-alanine
QU35	3-(5-quinolyl)-alanine
QU36	3-(6-quinolvl)-alanine
QX32	3-(2-quinoxalvl)-alanine
	3-[(2,2,5,5-tetramethyl-1-oxo-2,5-dihydro-1H-pyrrolium-3-yl)methyl]disulfanyl-D-
RIA	alanine
SBG	O-[(S)-hydroxy(methyl)phosphoryl]-L-serine
SCH	m S-methyl-thio-cysteine
\mathbf{SCS}	3-(ethyldisulfanyl)-L-alanine
SDP	2-amino-3-(diethoxy-phosphoryloxy)-propionic acid
SEB	O-benzylsulfonyl-serine
SEN	O-[N,N-dimethylphosphoramidate]-L-serine
SGB	O-[(S)-methyl(1-methylethoxy)phosphoryl]-L-serine
SLZ	thialysine
SMC	S-methylcysteine
SME	methionine sulfoxide
SNC	S-nitroso-cystaine
STVA	Sturylalaning
SIIA	(3 amino 2.5 diavo 1 purrolidinul)acotic acid
SUI	$O[(\mathbf{P})]$ (dimethylemine) (ethewy) been heavily L conine
SUN	$O_{1}(\mathbf{n}) - (\alpha \operatorname{Internylamino}) (e Internyla$
SVV	$O_{-[(5)-annno(nydroxy)pnospnoryl]-L-serine}$
5VA GVV	O - [(n) - et noxy(metnyi)pnospnoryi] - L-serine
SVY	O-[bis(1-methylethoxy)phosphoryl]-L-serine
SWG	2-[(4Z)-2-[(1R)-1-amino-2-hydroxy-ethyl]-4-(1H-indol-3-ylmethylidene)-5-oxo- imidazol 1 yllethanois asid
CVM	nniuazor-i-yijetilallolt atlu 2a 4n 4 mathulalitamata
SIM TDD4	28,41-4-methyigiutamate
	4-tert-butyi-pnenyiaianine
TEZA	3-(2-tetrazolyl)-alanine
TFG2	2-(trifluoromethyl)-phenylglycine
${ m TFG3}$	3-(trifluoromethyl)-phenylglycine

PDB residue	Name
TFG4	4-(trifluoromethyl)-phenylglycine
TFLE	5,5,5-trifluoro-leucine
$\mathrm{TFP2}$	$2-({ m trifluoromethyl})-{ m phenylalanine}$
TFP3	3-(trifluoromethyl)-phenylalanine
TFP4	4-(Trifluoromethyl)-phenylalanine
TH6	4-hydroxy-l-threonine
THA3	3-(3-thienyl)-alanine
$\mathrm{THG2}$	2-thienylglycine
THG3	3-thienylglycine
THIC	thio-citrulline
T IH	3-(2-thienyl)-alanine
TOX	1-hydroperoxy-L-tryptophan
TPQ	5-(2-carboxy-2-aminoethyl)-2-hydroxy-1,4-benzoquinone
$\mathrm{T}\mathrm{Q}\mathrm{Q}$	(S)-2-amino-3-(6,7-dihydro-6-imino-7-oxo-1H-indol-3-yl)propanoic acid
TRO	2-hydroxy-tryptophan
TRQ	2-amino-3-(6,7-dioxo-6,7-dihydro-1H-indol-3-yl)-propionic acid
TRW TRW3-(2-amino-3-hydroxy-propyl)-6-(N'-cyclohexyl-hydrazino)octahydro-in	
TRV	6 hydroyy tryptophan
TSO	(2S 3S 4B) 2 amino 3.4 dihydroyy 3 methylpontanoic acid
159 TTO	6 amine 7 hydroxy 1 trustenhan
11Q TV9	3 amino I turosino
1 1 2 TVI	3.5 dijodotvrosino
	3. amino 6 hydroxy tyrosino
	O-sulfo-L-tyrosine
TZA4	(4-thiazolyl)-alanine
UN1	2-Aminoadinic acid
VAH	hydroxynorvaline
WFP	3 5-diffuoro-phenylalanine
XCN	S. cvano L. cvsteine
[(4Z)-2-[(1Z)-ethanimidov]]-4-(4-hydroxybenzylidene)-5-oxo-4 5-dihydro-1]	
XYG	imidazol-1-yl]acetic acid
YCM	cysteine-s-acetamide
YOF	3-fluorotyrosine

- 1 The Detail of Water-Compound Complexes Which Were Involved in Charge Optimization
- 1.1 Small molecule used for 7-hydroxy-l-tryptophan(0AF)

Figure S5: The molecule used for water complex calculations corresponding to 3-methyl-1H-indol-7olate, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S3: Statistics of calculated water interaction and dipole moment for 3-methyl-1H-indol-7-olate.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.72/1.45	0.10/0.27	3.305	1.18/1.13	91.47
Optimal	0.52/1.43	0.08/0.23	1.146	1.18/1.53	0.26

Table S4: The comparison list of optimized atomic charges and their initial guess for 3-methyl-1H-indol-7-olate, referring to the penalties of initial guess

Atom	Charges			
Atom	Optimal	Initial	$\mathbf{Penalty}$	
HB3	0.090	0.090	0.000	
CB	-0.270	-0.278	0.000	
HB1	0.090	0.090	0.000	
HB2	0.090	0.090	0.000	
CG	-0.070	-0.038	0.000	
CD1	-0.079	-0.163	0.000	
HD1	0.163	0.220	0.000	
CD2	0.078	0.107	2.500	
NE1	-0.431	-0.502	2.500	
HE1	0.356	0.363	0.000	
CE2	0.244	0.220	3.576	
CZ2	0.058	0.007	3.582	
OZ2	-0.536	-0.530	3.568	
HZ2	0.434	0.420	0.075	
CE3	-0.276	-0.259	0.000	
HE3	0.177	0.201	0.000	
CZ3	-0.260	-0.234	0.000	
HZ3	0.174	0.196	0.000	
CH2	-0.189	-0.196	0.000	
HH2	0.157	0.196	0.000	

Table S5: Interaction energies and geometries between probe water and selected 3-methyl-1H-indo l-7-olate site calculated using the optimized and initial charges

	N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	14	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
	1	HB3-CB	0.0	-0.48/-0.32/-0.39	2.82/2.77/2.78
	2	HB1-CB	0.0	-0.98/-0.74/-0.74	2.79/2.78/2.78
	3	HB2-CB	0.0	-0.47/-0.30/-0.43	2.82/2.77/2.77
	4	HD1-CD1	0.0	-1.94/-2.39/-2.66	2.52/2.29/2.25
	5	HD1-CD1	90.0	-2.22/-2.51/-2.77	2.45/2.28/2.24
	6	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	0.0	-5.45/-5.53/-4.27	1.82/1.85/1.87
	7	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	90.0	-4.88/-5.20/-3.94	1.84/1.86/1.88
	8	OZ2-CZ2	0.0	-5.70/-7.13/-7.15	1.77/1.83/1.84
	9	OZ2-CZ2	90.0	-6.92/-5.79/-6.25	1.77/1.84/1.84
	10	OZ2-CZ2	270.0	-6.90/-5.77/-6.23	1.77/1.84/1.84
	11	HZ2-OZ2	0.0	-7.27/-7.65/-6.79	1.78/1.82/1.85
	12	HZ2-OZ2	45.0	-7.78/-7.88/-7.14	1.77/1.82/1.84
	13	HZ2-OZ2	90.0	-8.19/-8.09/-7.45	1.77/1.81/1.83
	14	HZ2-OZ2	135.0	-7.78/-7.89/-7.14	1.77/1.82/1.84
	15	$\operatorname{HE} 3$ - $\operatorname{CE} 3$	0.0	-0.90/-0.76/-1.56	2.71/2.71/2.63
	16	$\operatorname{HE} 3$ - $\operatorname{CE} 3$	90.0	-1.07/-0.84/-1.66	2.64/2.70/2.62
	17	HZ3-CZ3	0.0	-0.86/-0.70/-1.56	2.75/2.72/2.64
	18	HZ3-CZ3	90.0	-1.05/-0.80/-1.69	2.68/2.71/2.63
	19	$\rm HH2\text{-}CH2$	0.0	-1.66/-1.90/-2.49	2.70/2.65/2.60
-	20	$\rm HH2\text{-}CH2$	90.0	-2.24/-2.17/-2.76	2.52/2.62/2.57

1.2 Small molecule used for (3S)-3-(methylsulfanyl)-L-asparticacid(0TD)

Figure S6: The molecule used for water complex calculations corresponding to 2-(methylsulfanyl)pro panoicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S6: Statistics of calculated water interaction and dipole moment for 2-(methylsulfanyl)propanoic acid.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.41/1.99	0.18/0.32	5.195	6.16/8.33	3.79
Optimal	0.22/0.34	0.22/0.39	2.714	6.16/6.34	2.06

Table S7: The comparison list of optimized atomic charges and their initial guess for 2-(methylsulf anyl)propanoicacid, referring to the penalties of initial guess

Atom		$\operatorname{Charges}$				
Atom	Optimal	Initial	Penalty			
HA3	0.090	0.090	0.300			
HA2	0.090	0.090	0.300			
\mathbf{CA}	-0.270	-0.269	0.671			
\mathbf{HA}	0.090	0.090	0.300			
CB	-0.221	-0.188	17.609			
HB	0.090	0.090	0.424			
\mathbf{SB}	-0.167	-0.072	17.610			
CSB	-0.245	-0.220	2.563			
HSB1	0.090	0.090	0.030			
HSB2	0.090	0.090	0.030			
HSB3	0.090	0.090	0.030			
CG	0.669	0.639	4.568			
OD1	-0.698	-0.760	2.500			
OD2	-0.698	-0.760	2.500			

Table S8: Interaction energies and geometries between probe water and selected 2-(methylsulfan yl)propanoicacid site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	SB-CB	0.0	-4.61/-4.64/-3.48	2.71/2.32/2.40
2	SB-CB	90.0	-5.52/-5.64/-4.59	2.64/2.29/2.35
3	SB-CB	180.0	-5.13/-5.41/-4.32	2.69/2.29/2.36
4	SB-CB	270.0	-4.84/-4.54/-3.36	2.66/2.32/2.40
5	OD1-CG	0.0	-13.33/-13.48/-14.66	1.74/1.67/1.65
6	OD1-CG	90.0	-13.42/-13.76/-15.07	1.74/1.67/1.65
7	OD1-CG	180.0	-13.56/-13.77/-15.54	1.73/1.67/1.64
8	OD1-CG	270.0	-13.15/-13.33/-14.98	1.74/1.67/1.65
9	OD2-CG	0.0	-13.16/-12.89/-14.18	1.74/1.67/1.65
10	OD2-CG	90.0	-13.43/-13.20/-14.85	1.74/1.67/1.65
11	OD2-CG	180.0	-13.91/-13.71/-15.47	1.73/1.67/1.64
12	OD2-CG	270.0	-13.37/-13.30/-14.67	1.74/1.67/1.65

1.3 Small molecule A of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine(143)

Figure S7: The molecule used for water complex calculations corresponding to (3R)-3-(ethylsulfanyl)-5-methyl-2,3-dihydro-1,2-oxazole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S9: Statistics of calculated water interaction and dipole moment for (3R)-3-(ethylsulfanyl)-5-me thyl-2,3-dihydro-1,2-oxazole.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	1.48/3.08	0.25/0.54	3.654	1.12/2.13	21.59
Optimal	0.56/1.34	0.23/0.54	1.599	1.12/1.45	0.00

 Table S10:
 The comparison list of optimized atomic
 charges and their initial guess for (3R)-3-(ethylsul tween probe water and selected (3R)-3-(ethylsulfa fanyl)-5-methyl-2,3-dihydro-1,2-oxazole, referring nyl)-5-methyl-2,3-dihydro-1,2-oxazole site calcuto the penalties of initial

Optimal -0.270

0.090

0.090

0.090

-0.064

0.090

0.090

-0.213

0.3120.090

-0.479

0.307

-0.473

0.212

-0.178

0.168

0.111

0.009

0.009

0.009

0.090

2.500

Atom

CAHA

HA3

HA2

CB

HB1

HB2

 \mathbf{SG}

CD

HD $\mathbf{N}\mathbf{X}$

HX

CE

HE

OF

 \mathbf{CF}

 CI

HI1

HI2

HI3

guess		1	ate	d using 1	the op	timi
Charges			N	Probe	Angle	Ene
T 1			11	site	(°)	QM/
Initial	Penalty	_	1	${ m HA3-CA}$	0.0	-1.
-0.269	0.545		2	$\mathrm{HA2}\text{-}\mathrm{CA}$	0.0	-0.
0.000	0.000		3	HA-CA	0.0	-0.
0.030	0.000		4	HB1-CB	0.0	-2.
0.090	0.000		5	HB2-CB	0.0	-1.
0.090	0.000		6	SG-CB	0.0	-1.
0.074	4 491		6	SG-UB	90.0	-1.
-0.074	4.421		0	SG CB	270.0	-1.
0.090	0.500		3 10	HD-CD	270.0	-1
0.090	0.500		11	NX-CD	0.0	-5.
-0.201	111 156		12	NX-CD	90.0	-5.
0.201	111.100		13	NX-CD	180.0	-4.
0.158	137.577		14	NX-CD	270.0	-4.
0.090	6.130		15	HX-NX	0.0	-3.
-0.324	$312\ 245$		16	HX-NX	45.0	-4.
0.021	012.240		17	HX-NX	90.0	-3.
0.368	4.587		18	HX-NX	135.0	-2.
-0.538	74.935		19	HE-CE	0.0	-1
0.380	3 250		20	HE-CE	45.0	-1.4
0.000	0.200		21 22	HE CE	90.0 125.0	-1.
-0.189	313.583		22	OF-NX	155.0	-1.
0.098	105.715		23 24	OF-NX	90.0	-3.
-0 219	90.288		25	OF-NX	180.0	-3.
-0.213	30.200		26	OF-NX	270.0	-3.
0.090	2.500		27	HI1-CI	0.0	-1.
0.090	2.500		28	HI2-CI	0.0	-1.4

Table S11: Interaction energies and geometries beized and initial charges

Ν	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	${ m HA3-CA}$	0.0	-1.13/-1.02/-1.03	2.76/2.73/2.73
2	${ m HA2-CA}$	0.0	-0.59/-0.50/-0.46	2.76/2.76/2.77
3	HA-CA	0.0	-0.94/-0.63/-0.70	2.68/2.73/2.73
4	$\operatorname{HB1-CB}$	0.0	-2.74/-2.46/-2.92	2.55/2.61/2.63
5	$\mathrm{HB2}\text{-}\mathrm{CB}$	0.0	-1.59/-1.87/-1.70	2.66/2.65/2.66
6	SG-CB	0.0	-1.64/-2.65/-2.94	2.88/2.34/2.33
7	SG-CB	90.0	-1.89/-2.77/-2.96	2.83/2.35/2.34
8	SG-CB	180.0	-1.60/-2.48/-2.43	2.90/2.36/2.37
9	SG-CB	270.0	-1.77/-2.43/-2.35	2.84/2.36/2.37
10	HD-CD	0.0	-1.57/-1.82/-1.57	2.63/2.65/2.69
11	NX-CD	0.0	-5.82/-4.90/-3.31	1.96/1.99/2.09
12	NX-CD	90.0	-5.80/-5.28/-4.39	1.96/1.98/2.03
13	NX-CD	180.0	-4.80/-3.76/-2.79	1.99/2.02/2.10
14	NX-CD	270.0	-4.84/-3.51/-1.94	1.99/2.03/2.15
15	HX-NX	0.0	-3.68/-3.70/-6.36	2.02/1.99/1.87
16	HX-NX	45.0	-4.46/-3.88/-6.54	1.98/1.98/1.87
17	HX-NX	90.0	-3.61/-3.49/-6.13	2.05/2.00/1.88
18	HX-NX	135.0	-2.82/-3.27/-5.90	2.12/2.02/1.89
19	HE-CE	0.0	-1.42/-1.37/-3.11	2.56/2.65/2.50
20	HE-CE	45.0	-1.42/-1.38/-3.12	2.56/2.65/2.50
21	HE-CE	90.0	-1.65/-1.47/-3.20	2.50/2.64/2.50
22	HE-CE	135.0	-1.64/-1.46/-3.20	2.51/2.64/2.50
23	OF-NX	0.0	-3.02/-2.87/-4.05	2.16/1.86/1.82
24	OF-NX	90.0	-3.87/-3.77/-4.27	2.09/1.83/1.81
25	OF-NX	180.0	-3.54/-3.79/-3.46	2.13/1.83/1.84
26	OF-NX	270.0	-3.55/-3.37/-3.75	2.11/1.84/1.82
27	HI1-CI	0.0	-1.18/-0.58/-0.11	2.59/2.73/2.78
28	HI2-CI	0.0	-1.42/-1.00/-0.84	2.67/2.74/2.79
29	HI3-CI	0.0	-1.16/-0.53/-0.08	2.59/2.73/2.78

1.4 Small molecule B of S-2,3-dihydro-5-glycin-2-yl-isoxazol-3-yl-cysteine(143)

Figure S8: The molecule used for water complex calculations corresponding to 5-methyl-2,3-dihydro-1,2-oxazole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S12: Statistics of calculated water interaction and dipole moment for 5-methyl-2,3-dihydro-1,2-oxazole.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	${\rm Energy}\;(\rm kcal/mol)$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	1.45/2.77	0.18/0.32	5.065	2.72/3.14	37.99
Optimal	0.22/0.53	0.16/0.28	2.231	2.72/3.25	5.34

Table S13: The comparison list of optimized atomic charges and their initial guess for 5-methyl-2,3-dihydro-1,2-oxazole, referring to the penalties of initial guess

Table S14: Interaction energies and geometries be-
tween probe water and selected 5-methyl-2,3-dihy
dro-1,2-oxazole site calculated using the optimized
and initial charges

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HD2	0.090	0.090	2.400
CD	0.182	0.246	36.061
HD	0.090	0.090	2.400
NX	-0.595	-0.438	300.764
$_{\rm HX}$	0.346	0.368	3.466
CE	-0.479	-0.643	34.137
\mathbf{HE}	0.233	0.329	0.207
OF	-0.162	-0.191	314.296
\mathbf{CF}	0.219	0.098	105.686
CI	-0.194	-0.219	90.288
HI1	0.090	0.090	2.500
HI2	0.090	0.090	2.500
HI3	0.090	0.090	2.500

	N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	14	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
	1	HD2-CD	0.0	-1.54/-1.61/-2.33	2.65/2.65/2.61
	2	HD-CD	0.0	-0.62/-0.59/-1.04	2.77/2.72/2.66
	3	NX-CD	0.0	-6.17/-6.21/-4.14	1.95/1.94/2.02
	4	NX-CD	90.0	-6.18/-6.44/-4.67	1.95/1.93/2.00
	5	NX-CD	180.0	-4.99/-4.80/-2.63	1.99/1.97/2.07
	6	NX-CD	270.0	-5.22/-4.86/-2.45	1.97/1.97/2.08
	7	HX-NX	0.0	-3.60/-3.70/-5.67	1.99/1.91/1.85
	8	HX-NX	45.0	-3.73/-3.77/-5.86	1.98/1.91/1.84
	9	HX-NX	90.0	-3.57/-3.72/-5.83	1.99/1.91/1.84
	10	HX-NX	135.0	-3.45/-3.65/-5.64	2.01/1.92/1.85
	11	HE-CE	0.0	-1.78/-1.96/-2.30	2.42/2.62/2.57
	12	HE-CE	45.0	-1.92/-2.02/-2.35	2.38/2.61/2.56
	13	HE-CE	90.0	-2.00/-2.05/-2.38	2.36/2.61/2.56
	14	HE-CE	135.0	-1.86/-1.99/-2.33	2.40/2.62/2.57
	15	OF-NX	0.0	-3.28/-2.86/-4.20	2.14/1.87/1.82
	16	OF-NX	90.0	-4.41/-4.51/-5.05	2.08/1.82/1.80
	17	OF-NX	180.0	-4.71/-5.24/-4.98	2.08/1.80/1.80
	18	OF-NX	270.0	-3.92/-3.70/-4.22	2.10/1.84/1.82
	19	$\rm HI1\text{-}CI$	0.0	-1.04/-0.91/-0.11	2.68/2.69/2.82
	20	$\mathrm{HI2} ext{-}\mathrm{CI}$	0.0	-1.31/-1.36/-0.57	2.71/2.70/2.83
=	21	HI3-CI	0.0	-1.10/-0.81/0.03	2.61/2.67/2.79

1.5 Small molecule used for 2-amino-6-oxopimelicacid(26P)

Figure S9: The molecule used for water complex calculations corresponding to 2-oxopentanoicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S15: Statistics of calculated water interaction and dipole moment for 2-oxopentanoicacid.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.96/1.29	0.14/0.21	2.346	10.38/10.91	0.44
Optimal	0.08/0.20	0.12/0.18	3.294	10.38/9.95	1.71

Table S16: The comparison list of optimized atomic charges and their initial guess for 2-oxopentanoic acid, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.270	-0.270	0.045
HB2	0.090	0.090	0.000
HB1	0.090	0.090	0.000
CG	-0.180	-0.181	1.496
HG2	0.090	0.090	0.000
HG1	0.090	0.090	0.000
CD	-0.244	-0.165	16.172
HD2	0.090	0.090	1.450
HD1	0.090	0.090	1.450
CE	0.249	0.280	19.162
OE	-0.421	-0.490	0.000
CZ	0.626	0.716	20.067
OZ1	-0.695	-0.760	2.500
OZ2	-0.695	-0.760	2.500

Table S17: Interaction energies and geometries between probe water and selected 2-oxopentanoicac id site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	${ m QM}/{ m Optimal}/{ m Initial}$	$\rm QM/Optimal/Initial$
1	OE-CE	0.0	-8.43/-8.23/-9.08	1.86/1.68/1.66
2	OE-CE	90.0	-9.05/-9.12/-10.14	1.86/1.68/1.65
3	OE-CE	180.0	-9.82/-9.96/-11.11	1.84/1.67/1.64
4	OE-CE	270.0	-8.97/-9.04/-10.04	1.86/1.68/1.65
5	OZ1-CZ	0.0	-12.54/-12.56/-13.27	1.75/1.68/1.66
6	OZ1-CZ	90.0	-13.08/-13.07/-14.07	1.75/1.67/1.66
7	OZ1-CZ	180.0	-13.24/-13.17/-14.18	1.74 / 1.67 / 1.65
8	OZ1-CZ	270.0	-12.55/-12.55/-13.28	1.75/1.68/1.66
9	OZ2-CZ	0.0	-12.69/-12.73/-13.55	1.75/1.68/1.66
10	OZ2-CZ	90.0	-12.49/-12.57/-13.35	1.76/1.68/1.66
11	OZ2-CZ	180.0	-13.10/-13.11/-14.10	1.75/1.67/1.66
12	OZ2-CZ	270.0	-13.08/-13.14/-14.16	1.75/1.67/1.66

1.6 Small molecule used for S-hydroperoxycysteine(2CO)

Figure S10: The molecule used for water complex calculations corresponding to (ethylsulfanyl)perox ol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S18: Statistics of calculated water interaction and dipole moment for (ethylsulfanyl)peroxol.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.94/4.42	1.38/6.24	5.449	1.65/3.24	25.66
Optimal	0.31/0.60	1.25/5.69	1.421	1.65/1.80	2.42

Table S19: The comparison list of optimized atomic charges and their initial guess for (ethylsulfanyl)p eroxol, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
CA	-0.270	-0.270	2.500
\mathbf{HA}	0.090	0.090	0.000
CB	0.023	-0.100	5.706
HB1	0.090	0.090	2.500
HB2	0.090	0.090	2.500
\mathbf{SG}	-0.012	0.308	194.038
OD	-0.213	-0.477	388.136
OE	-0.421	-0.411	337.812
HE	0.443	0.500	27.169

Table S20: Interaction energies and geometries between probe water and selected (ethylsulfanyl)per oxol site calculated using the optimized and initial charges

N		Probe	Angle	Energy (kcal/mol)	Distance (Å)
	18	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
	1	HA3-CA	0.0	-1.14/-1.02/-1.36	2.67/2.69/2.68
	2	${ m HA2-CA}$	0.0	-1.09/-0.98/-1.35	2.69/2.70/2.69
	3	HA-CA	0.0	-1.39/-1.27/-1.02	2.69/2.69/2.71
	4	${ m HB1-CB}$	0.0	-1.22/-1.10/-0.50	2.56/2.65/2.69
	5	$\mathrm{HB2} ext{-}\mathrm{CB}$	0.0	-0.80/-0.57/-0.13	2.53/2.67/2.72
	6	SG-CB	0.0	-0.95/-0.39/0.25	4.40/4.75/5.00
	7	SG-CB	45.0	-7.52/-7.13/-8.43	4.19/4.24/4.21
	8	SG-CB	90.0	-0.52/-0.91/-1.91	4.46/4.20/3.87
	9	SG-CB	135.0	-0.03/-0.17/-1.75	9.66/3.97/3.42
	10	OD-SG	0.0	-3.63/-4.22/-8.04	1.98/1.80/1.67
	11	OD-SG	90.0	-3.34/-3.75/-6.87	1.98/1.82/1.69
	12	OD-SG	180.0	-3.52/-3.93/-6.87	1.98/1.81/1.69
	13	OD-SG	270.0	-3.66/-4.25/-8.07	1.97/1.80/1.67
	14	OE-OD	0.0	-3.72/-3.86/-3.59	1.94/1.95/1.97
	15	OE-OD	90.0	-4.49/-4.69/-5.03	1.90/1.93/1.92
	16	OE-OD	180.0	-3.60/-3.98/-4.75	1.95/1.93/1.92
	17	OE-OD	270.0	-3.36/-3.41/-3.41	1.94/1.95/1.96
	18	HE-OE	0.0	-7.89/-8.00/-9.29	1.70/1.76/1.73
	19	HE-OE	45.0	-8.03/-7.93/-9.28	1.69/1.76/1.73
	20	HE-OE	90.0	-8.00/-7.86/-9.06	1.69/1.76/1.74
	21	HE-OE	135.0	-7.85/-7.93/-9.06	1.70/1.76/1.74

1.7 Small molecule used for s-(diffuoromethyl)-homocysteine(2FM)

Figure S11: The molecule used for water complex calculations corresponding to [(difluoromethyl)sulfa nyl]ethane, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S21: Statistics of calculated water interaction and dipole moment for [(diffuoromethyl)sulfanyl]e thane.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.73/1.43	0.32/0.65	3.184	1.07/0.17	149.66
Optimal	0.31/0.59	0.31/0.56	1.372	1.07/1.32	2.97

Table S22: The comparison list of optimized atomic charges and their initial guess for [(difluoromethyl)s ulfanyl]ethane, referring to the penalties of initial guess

Atom	Charges				
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$		
HB3	0.090	0.090	0.000		
CB	-0.270	-0.271	4.079		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
CG	0.019	-0.065	4.459		
HG1	0.090	0.090	0.600		
${ m HG2}$	0.090	0.090	0.600		
$^{\mathrm{SD}}$	-0.124	-0.216	91.761		
CE	0.011	0.290	93.470		
\mathbf{HE}	0.218	0.100	6.220		
FZ1	-0.152	-0.144	17.599		
FZ2	-0.152	-0.144	17.599		

Table S23: Interaction energies and geometries between probe water and selected [(diffuoromethyl)s ulfanyl]ethane site calculated using the optimized and initial charges

N		Probe	Angle	Energy (kcal/mol)	Distance (Å)
	11	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
	1	HB3-CB	0.0	-1.34/-1.24/-0.83	2.70/2.69/2.74
	2	HB1-CB	0.0	-1.12/-0.92/-0.45	2.66/2.70/2.76
	3	HB2-CB	0.0	-1.13/-0.92/-0.45	2.66/2.70/2.76
	4	HG1-CG	0.0	-1.20/-1.04/-0.86	2.50/2.65/2.69
	5	HG2-CG	0.0	-1.19/-1.03/-0.86	2.50/2.65/2.69
	6	$\operatorname{SD-CG}$	0.0	-0.72/-1.20/-1.61	3.01/2.47/2.41
	7	$\operatorname{SD-CG}$	90.0	-0.93/-1.33/-1.94	2.93/2.45/2.38
	8	$\operatorname{SD-CG}$	180.0	-0.69/-1.28/-2.12	3.02/2.45/2.37
	9	$\operatorname{SD-CG}$	270.0	-0.93/-1.33/-1.94	2.93/2.45/2.38
	10	HE-CE	0.0	-2.96/-2.62/-2.29	2.34/2.49/2.53
	11	HE-CE	45.0	-2.99/-2.62/-2.27	2.33/2.49/2.53
	12	HE-CE	90.0	-3.02/-2.62/-2.26	2.33/2.49/2.53
	13	HE-CE	135.0	-2.99/-2.62/-2.27	2.33/2.49/2.53
	14	FZ1-CE	0.0	-1.80/-1.94/-1.36	2.23/1.91/1.97
	15	FZ1-CE	90.0	-1.94/-2.21/-1.37	2.22/1.90/1.97
	16	FZ1-CE	180.0	-2.15/-2.48/-1.42	2.21/1.89/1.97
	17	FZ1-CE	270.0	-2.04/-2.23/-1.39	2.21/1.90/1.97
	18	FZ2-CE	0.0	-1.80/-1.94/-1.35	2.23/1.91/1.97
	19	FZ2-CE	90.0	-2.04/-2.23/-1.39	2.21/1.90/1.97
ź	20	FZ2-CE	180.0	-2.15/-2.48/-1.42	2.21/1.89/1.97
	21	FZ2-CE	270.0	-1.94/-2.21/-1.37	2.21/1.90/1.97

1.8 Small molecule used for 2-fluoro-l-histidine(2HF)

Figure S12: The molecule used for water complex calculations corresponding to 2-fluoro-4-methyl-2,3-dihydro-1H-imidazole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S24: Statistics of calculated water interaction and dipole moment for 2-fluoro-4-methyl-2,3-dihy dro-1H-imidazole.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.48/0.96	0.11/0.23	3.757	0.81/1.86	9.47
Optimal	0.27/0.50	0.10/0.20	2.215	0.81/1.32	34.22

Table S25: The comparison list of optimized atomic charges and their initial guess for 2-fluoro-4-me thyl-2,3-dihydro-1H-imidazole, referring to the penalties of initial guess

Atom	Charges				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HB3	0.090	0.090	0.450		
CB	-0.086	-0.227	0.891		
HB1	0.090	0.090	0.450		
HB2	0.090	0.090	0.450		
CG	0.192	0.287	6.108		
ND1	-0.534	-0.531	35.431		
HD1	0.443	0.440	2.500		
CD2	0.000	0.185	2.526		
HD2	0.208	0.130	0.000		
CE1	0.726	0.727	84.808		
NE2	-0.580	-0.529	34.990		
HE2	0.474	0.440	2.500		
$\mathbf{F1}$	-0.113	-0.192	86.487		

Table S26: Interaction energies and geometries between probe water and selected 2-fluoro-4-methyl -2,3-dihydro-1H-imidazole site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-6.87/-6.36/-5.91	2.32/2.51/2.54
2	HB1-CB	0.0	-6.87/-6.36/-5.91	2.32/2.51/2.54
3	HB2-CB	0.0	-6.99/-6.54/-6.21	2.31/2.51/2.53
4	HD1-ND1	0.0	-16.67/-16.84/-17.10	1.71/1.73/1.73
5	HD1-ND1	45.0	-16.98/-16.98/-17.16	1.70/1.73/1.73
6	HD1-ND1	90.0	-17.29/-17.13/-17.22	1.69/1.73/1.73
7	HD1-ND1	135.0	-16.98/-16.98/-17.16	1.70/1.73/1.73
8	$\mathrm{HD2} ext{-}\mathrm{CD2}$	0.0	-9.44/-9.56/-9.68	2.13/2.15/2.16
9	$\mathrm{HD2} ext{-}\mathrm{CD2}$	90.0	-10.16/-9.84/-9.89	2.09/2.14/2.15
10	$\operatorname{HE}2\text{-}\operatorname{NE}2$	0.0	-16.84/-17.03/-17.17	1.70/1.72/1.73
11	$\operatorname{HE}2\text{-}\operatorname{NE}2$	45.0	-17.14/-17.14/-17.23	1.69/1.72/1.73
12	$\operatorname{HE}2\text{-}\operatorname{NE}2$	90.0	-17.44/-17.24/-17.29	1.68/1.72/1.73
13	$\operatorname{HE}2\text{-}\operatorname{NE}2$	135.0	-17.14/-17.14/-17.23	1.69/1.72/1.73

1.9 Small molecule used for 2-fluoro-l-histidine(2HFD)

Figure S13: The molecule used for water complex calculations corresponding to 2-fluoro-5-methyl-1Himidazole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S27: Statistics of calculated water interaction and dipole moment for 2-fluoro-5-methyl-1H-imid azole.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.46/0.92	0.18/0.32	3.140	4.51/5.50	9.59
Optimal	0.10/0.27	0.14/0.26	2.018	4.51/5.21	0.95

Table S28: The comparison list of optimized atomic Table S29: Interaction energies and geometries becharges and their initial guess for 2-fluoro-5-meth yl-1H-imidazole, referring to the penalties of initial guess

Atom	Charges				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HB3	0.090	0.090	0.000		
CB	-0.163	-0.178	0.000		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
CG	-0.083	-0.045	2.500		
CD2	0.151	0.220	2.500		
HD2	0.104	0.102	0.000		
ND1	-0.371	-0.385	23.567		
HD1	0.348	0.338	17.781		
NE2	-0.668	-0.713	15.466		
CE1	0.583	0.607	76.596		
$\mathbf{F1}$	-0.171	-0.216	76.060		

tween probe water and selected 2-fluoro-5-methyl -1H-imidazole site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-1.78/-1.86/-1.95	2.65/2.65/2.64
2	HB1-CB	0.0	-1.78/-1.86/-1.95	2.65/2.65/2.64
3	HB2-CB	0.0	-1.83/-1.84/-2.10	2.59/2.63/2.62
4	$\mathrm{HD2} ext{-}\mathrm{CD2}$	0.0	-1.28/-1.30/-1.86	2.59/2.35/2.31
5	$\mathrm{HD2} ext{-}\mathrm{CD2}$	90.0	-1.37/-1.29/-1.85	2.54/2.35/2.31
6	HD1-ND1	0.0	-7.93/-8.01/-7.63	1.80/1.83/1.84
7	HD1-ND1	45.0	-8.02/-8.03/-7.63	1.79/1.83/1.84
8	HD1-ND1	90.0	-8.12/-8.05/-7.63	1.78/1.83/1.84
9	HD1-ND1	135.0	-8.02/-8.03/-7.63	1.79/1.83/1.84
10	$\rm NE2\text{-}CD2$	0.0	-6.58/-6.60/-7.16	1.96/1.93/1.92
11	$\rm NE2\text{-}CD2$	90.0	-6.51/-6.46/-6.74	1.95/1.93/1.92
12	$\rm NE2\text{-}CD2$	180.0	-6.06/-6.19/-6.22	1.97/1.94/1.93
13	$\rm NE2\text{-}CD2$	270.0	-6.51/-6.46/-6.74	1.95/1.93/1.92
14	F1-CE1	0.0	-0.98/-0.76/-1.36	2.34/2.10/2.02
15	F1-CE1	90.0	-1.52/-1.54/-2.16	2.30/2.04/1.98
16	F1-CE1	180.0	-2.02/-2.29/-2.93	2.26/2.00/1.95
17	F1-CE1	270.0	-1.52/-1.54/-2.16	2.30/2.04/1.98

1.10 Small molecule used for 2-fluoro-l-histidine(2HFE)

Figure S14: The molecule used for water complex calculations corresponding to 2-fluoro-4-methyl-1Himidazole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S30: Statistics of calculated water interaction and dipole moment for 2-fluoro-4-methyl-1H-imid azole.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.41/0.90	0.16/0.32	3.127	3.91/4.72	8.86
Optimal	0.17/0.34	0.13/0.26	2.193	3.91 / 4.45	1.08

Table S31: The comparison list of optimized atomic charges and their initial guess for 2-fluoro-4-meth yl-1H-imidazole, referring to the penalties of initial guess

Atom	Charges				
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$		
HB3	0.090	0.090	0.450		
CB	-0.270	-0.247	6.472		
HB1	0.090	0.090	0.450		
HB2	0.090	0.090	0.450		
CG	0.297	0.305	7.285		
CD2	-0.099	-0.050	2.500		
HD2	0.115	0.089	0.000		
ND1	-0.659	-0.710	16.437		
NE2	-0.385	-0.387	23.567		
HE2	0.348	0.338	17.781		
CE1	0.549	0.608	76.597		
$\mathbf{F1}$	-0.166	-0.216	76.060		

Table S32: Interaction energies and geometries between probe water and selected 2-fluoro-4-methyl -1H-imidazole site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-0.40/-0.06/-0.23	2.78/2.79/2.75
2	HB1-CB	0.0	-0.40/-0.06/-0.23	2.78/2.79/2.75
3	HB2-CB	0.0	-1.16/-1.27/-1.53	2.76/2.71/2.68
4	HD2-CD2	0.0	-2.36/-2.49/-2.42	2.48/2.32/2.34
5	HD2-CD2	90.0	-2.69/-2.63/-2.57	2.41/2.31/2.33
6	$\rm ND1-CG$	0.0	-6.65/-6.64/-7.28	1.96/1.94/1.92
7	ND1-CG	90.0	-6.50/-6.44/-6.87	1.94/1.94/1.92
8	ND1-CG	180.0	-5.96/-6.13/-6.35	1.97/1.94/1.93
9	ND1-CG	270.0	-6.50/-6.44/-6.86	1.94/1.94/1.92
10	$\operatorname{HE}\operatorname{2-NE}\operatorname{2}$	0.0	-7.91/-8.04/-7.85	1.80/1.83/1.83
11	$\operatorname{HE}\operatorname{2-NE}\operatorname{2}$	45.0	-8.02/-8.04/-7.83	1.79/1.83/1.83
12	$\operatorname{HE}\operatorname{2-NE}\operatorname{2}$	90.0	-8.14/-8.04/-7.81	1.78/1.83/1.83
13	$\operatorname{HE} 2\operatorname{\!-NE} 2$	135.0	-8.02/-8.04/-7.83	1.79/1.83/1.83
14	F1-CE1	0.0	-1.94/-2.24/-2.84	2.27/2.01/1.95
15	F1-CE1	90.0	-1.47/-1.52/-2.08	2.30/2.05/1.99
16	F1-CE1	180.0	-0.96/-0.77/-1.29	2.35/2.10/2.03
17	F1-CE1	270.0	-1.47/-1.52/-2.08	2.30/2.05/1.99

1.11 Small molecule used for l-2-amino-6-methylene-pimelicacid(2NP)

Figure S15: The molecule used for water complex calculations corresponding to 2-methylidenepentano icacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S33: Statistics of calculated water interaction and dipole moment for 2-methylidenepentanoicacid.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	1.49/2.32	0.11/0.26	5.104	9.09/10.42	8.88
Optimal	0.48/1.30	0.16/0.33	2.405	9.09/9.13	1.50

Table S34: The comparison list of optimized atomic charges and their initial guess for 2-methylidenep entanoicacid, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$					
Atom	Optimal	$\operatorname{Initial}$	Penalty			
HB3	0.090	0.090	0.000			
CB	-0.270	-0.270	0.025			
HB2	0.090	0.090	0.000			
HB1	0.090	0.090	0.000			
CG	-0.180	-0.184	2.806			
HG1	0.090	0.090	0.000			
$\mathrm{HG2}$	0.090	0.090	0.000			
CD	-0.321	-0.256	6.589			
HD2	0.090	0.090	0.425			
HD1	0.090	0.090	0.425			
CE	0.241	-0.015	7.839			
CZ1	0.581	0.617	6.943			
CZ2	-0.681	-0.422	1.329			
HZ22	0.210	0.210	0.045			
HZ21	0.210	0.210	0.045			
OJ1	-0.710	-0.760	2.500			
OJ2	-0.710	-0.760	2.500			

Table S35: Interaction energies and geometries between probe water and selected 2-methylidenepen tanoicacid site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	OJ1-CZ1	0.0	-13.50/-13.25/-13.87	1.73/1.67/1.65
2	OJ1-CZ1	90.0	-13.76/-13.69/-14.76	1.73/1.66/1.65
3	OJ1-CZ1	180.0	-14.23/-14.26/-15.81	1.72/1.66/1.64
4	OJ1-CZ1	270.0	-13.84/-13.79/-15.03	1.73/1.66/1.65
5	$OJ_{2}-CZ_{1}$	0.0	-13.26/-13.67/-14.96	1.73/1.66/1.65
6	OJ2-CZ1	90.0	-13.61/-13.98/-15.39	1.73/1.66/1.65
7	OJ2-CZ1	180.0	-14.18/-14.36/-15.83	1.72/1.66/1.64
8	OJ2-CZ1	270.0	-13.70/-13.90/-15.27	1.73/1.66/1.65
9	CZ2-CE	0.0	-3.97/-3.54/-1.65	2.53/2.21/2.49
10	CZ2-CE	180.0	-7.45/-8.75/-8.12	2.42/2.10/2.16

1.12 Small molecule used for 3-(4H-thieno[3,2-b]pyrrol-6-yl)-L-alanine(32T)

Figure S16: The molecule used for water complex calculations corresponding to 6-methyl-4H-thieno [3,2-b]pyrrole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S36: Statistics of calculated water interaction and dipole moment for 6-methyl-4H-thieno[3,2-b]p yrrole.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	${\rm Energy}\;(\rm kcal/mol)$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.59/1.04	0.27/0.54	2.167	2.68/2.14	2.21
Optima	$1 \qquad 0.28/0.53$	0.23/0.49	1.942	2.68/3.19	0.04

Table S37: The comparison list of optimized atomic charges and their initial guess for 6-methyl-4H-thie no[3,2-b]pyrrole, referring to the penalties of initial guess

=

Atom	$\operatorname{Charges}$					
Atom	Optimal	Initial	$\mathbf{Penalty}$			
HB3	0.090	0.090	0.000			
CB	-0.270	-0.244	2.526			
HB1	0.090	0.090	0.000			
HB2	0.090	0.090	0.000			
CG	-0.060	-0.077	2.528			
CD1	0.002	-0.068	0.000			
HD1	0.115	0.161	0.000			
CD2	-0.064	0.039	11.030			
NE1	-0.345	-0.471	14.035			
HE1	0.318	0.389	0.000			
CE2	0.132	0.109	13.233			
SUL	0.007	-0.078	9.884			
CZ2	-0.235	-0.255	0.000			
HZ2	0.207	0.125	0.000			
CZ3	-0.266	-0.080	0.000			
HZ3	0.189	0.180	0.000			

Table S38: Interaction energies and geometries between probe water and selected 6-methyl-4H-thie no[3,2-b]pyrrole site calculated using the optimized and initial charges

_					
_	N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	1	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
	1	HB3-CB	0.0	-0.47/-0.07/-0.21	2.76/2.80/2.77
	2	HB1-CB	0.0	-0.47/-0.07/-0.21	2.76/2.80/2.77
	3	HB2-CB	0.0	-1.00/-0.69/-0.78	2.77/2.79/2.77
	4	HD1-CD1	0.0	-1.84/-2.16/-2.33	2.55/2.32/2.30
	5	HD1-CD1	90.0	-2.16/-2.29/-2.49	2.47/2.31/2.29
	6	$\operatorname{H\!E} \operatorname{1-N\!E} \operatorname{1}$	0.0	-6.07/-6.35/-6.83	1.88/1.87/1.84
	7	$\operatorname{H\!E} \operatorname{1-N\!E} \operatorname{1}$	45.0	-6.35/-6.45/-6.91	1.86/1.87/1.84
	8	$\operatorname{H\!E} \operatorname{1-N\!E} \operatorname{1}$	90.0	-6.64/-6.55/-6.98	1.85/1.87/1.84
	9	$\operatorname{H\!E} \operatorname{1-N\!E} \operatorname{1}$	135.0	-6.35/-6.45/-6.91	1.86/1.87/1.84
	10	SUL-CD2	0.0	-0.94/-1.29/-1.34	3.00/2.54/2.49
	11	SUL-CD2	90.0	-1.15/-1.43/-1.57	2.92/2.52/2.47
	12	SUL-CD2	180.0	-0.97/-1.50/-1.69	3.00/2.51/2.45
	13	SUL-CD2	270.0	-1.15/-1.43/-1.57	2.92/2.52/2.47
	14	HZ2-CZ2	0.0	-1.61/-1.87/-0.76	2.61/2.62/2.79
	15	HZ2-CZ2	90.0	-1.96/-2.03/-0.92	2.52/2.61/2.76
	16	HZ3-CZ3	0.0	-1.71/-1.59/-2.56	2.50/2.31/2.26
_	17	HZ3-CZ3	90.0	-1.88/-1.65/-2.58	2.45/2.31/2.26
_					

1.13 Small molecule used for 4-hydroxy-glutamic-acid(3GL)

Figure S17: The molecule used for water complex calculations corresponding to 2-hydroxypropanoic acid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S39: Statistics of calculated water interaction and dipole moment for 2-hydroxypropanoicacid.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	1.45/1.85	0.08/0.10	2.967	4.73/5.67	0.52
Optimal	0.14/0.27	0.06/0.08	2.588	4.73/4.42	7.16

Table S40: The comparison list of optimized atomic charges and their initial guess for 2-hydroxypropa noicacid, referring to the penalties of initial guess

Atom	Charges					
Atom	Optimal	Initial	$\mathbf{Penalty}$			
HB3	0.090	0.090	0.000			
CB	-0.270	-0.270	0.000			
HB2	0.090	0.090	0.000			
HB1	0.090	0.090	0.000			
CG	0.035	0.060	3.837			
HG	0.090	0.090	0.000			
OH	-0.729	-0.613	3.613			
HH	0.420	0.369	3.268			
CD	0.576	0.614	3.551			
OE1	-0.696	-0.760	0.250			
OE2	-0.696	-0.760	0.250			

Table S41: Interaction energies and geometries between probe water and selected 2-hydroxypropano icacid site calculated using the optimized and initial charges

N	Probe	Angle	Energy $(kcal/mol)$	Distance (Å)
14	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	OH-CG	0.0	-10.70/-10.61/-9.03	1.81/1.80/1.84
2	OH-CG	90.0	-11.02/-10.90/-9.17	1.79/ 1.79/ 1.83
3	OH-CG	180.0	-10.78/-11.01/-9.13	1.81/ 1.79/ 1.83
4	OH-CG	270.0	-10.95/-10.85/-9.12	1.80/1.80/1.84
5	OE1-CD	0.0	-12.89/-12.63/-13.66	1.74/ 1.67/ 1.66
6	OE1-CD	90.0	-13.16/-13.16/-14.36	1.74/ 1.67/ 1.65
7	OE1-CD	180.0	-13.60/-13.74/-15.10	1.73/ 1.67/ 1.65
8	OE1-CD	270.0	-13.15/-13.16/-14.35	1.74/ 1.67/ 1.65
9	OE2-CD	0.0	-11.92/-11.86/-12.88	1.76/1.69/1.67
10	OE2-CD	90.0	-12.33/-12.35/-13.60	1.75/ 1.68/ 1.66
11	OE2-CD	180.0	-12.68/-12.91/-14.38	1.75/ 1.67/ 1.65
12	OE2-CD	270.0	-12.34/-12.43/-13.69	1.75/1.67/1.65

Table S42: The molecule used for water complex calculations corresponding to (4S)-4-fluoro-L-prol ine, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

		RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
		${\rm Energy}~(\rm kcal/mol)$	Distance $(Å)$	$\rm RMS~(\rm kcal/\rm mol/\rm \AA)$	QM/MM (Debye)	difference $(`)$
Geometry 1	Initial	$0.34\ /\ 0.92$	$0.18 \ / \ 0.44$	1.422	$5.41 \ / \ 5.47$	5.41
Geometry 2	Initial	$0.47\ /\ 1.35$	$0.11\ /\ 0.27$	1.741	$3.79 \;/\; 4.25$	3.79
Sum of geometries	Initial	$0.42\ /\ 1.35$	$0.15\ /\ 0.44$	3.163	-	-
Geometry 1	Optimal	$0.35 \ / \ 0.77$	$0.18 \ / \ 0.44$	1.369	$5.41 \ / \ 5.58$	5.41
Geometry 2	Optimal	$0.45\ /\ 1.11$	$0.11\ /\ 0.26$	1.784	$3.79 \;/\; 4.39$	3.79
Sum of geomeries	Optimal	$0.41 \ / \ 1.11$	$0.15\ /\ 0.44$	3.154	-	-

Table S43: Statistics of calculated water interaction and dipole moment for (4S)-4-fluoro-L-proline.

Table S44: The comparison list of optimized atomic charges and their initial guess for (4S)-4-fluoro-L-proline, referring to the penalties of initial guess

Atom	Charges					
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$			
CL	-0.270	-0.270	0.000			
HL1	0.090	0.090	0.000			
HL2	0.090	0.090	0.000			
HL3	0.090	0.090	0.000			
CLP	0.510	0.510	0.000			
OL	-0.510	-0.510	0.000			
Ν	-0.265	-0.284	12.667			
\mathbf{CA}	-0.047	0.022	2.012			
HA	0.090	0.090	0.000			
CBX	-0.101	-0.167	2.425			
HB1	0.090	0.090	0.000			
HB2	0.090	0.090	0.000			
CGX	0.044	0.054	4.339			
$\mathbf{H}\mathbf{G}$	0.099	0.111	0.497			
FGX	-0.207	-0.220	12.335			
CDX	0.027	0.033	2.383			
HD1	0.090	0.090	0.000			
HD2	0.090	0.090	0.000			
\mathbf{C}	0.510	0.509	0.020			
Ο	-0.510	-0.501	0.000			
\mathbf{NR}	-0.470	-0.47	0.000			
\mathbf{HR}	0.310	0.31	0.000			
\mathbf{CR}	-0.110	-0.11	0.000			
$\mathrm{HR1}$	0.090	0.090	0.000			
$\mathrm{HR2}$	0.090	0.090	0.000			
HR3	0.090	0.090	0.000			

Table S45: Interaction energies and geometries between probe water and selected (4S)-4-fluoro-L-pr oline site calculated using the optimized and initial charges

NT	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
	Geometry	1	• • •	• • • •
1	HL1-CL	0.0	2 60/-2 53/-2 53	2 54/2 60/2 60
2	HL2-CL	0.0	-1 12/-0 80/-0 80	2 58/2 68/2 68
2	HI3 CI	0.0	3.04/2.88/2.87	2.56/2.00/2.00
4	OL CLD	0.0	= 0.04/=2.00/=2.01	1.99/1.76/1.76
4	OL-CLP	0.0	-5.24/-5.50/-5.50	1.65/1.70/1.70
5	OL-CLP	90.0	-5.14/-5.62/-5.56	1.84/1.76/1.76
6	OL-CLP	180.0	-4.78/-5.07/-4.93	1.85/1.78/1.78
7	OL-CLP	270.0	-4.48/-4.81/-4.76	1.86/1.78/1.78
8	O-C	0.0	-6.22/-6.59/-6.52	1.83/1.76/1.76
9	O-C	90.0	-7.03/-7.40/-7.27	1.80/1.75/1.75
10	O-C	180.0	-6.82/-7.17/-6.93	1.82/1.75/1.76
11	O-C	270.0	-6.61/-6.79/-6.58	1.82/1.76/1.76
12	NR-C	0.0	-3.47/-2.95/-2.76	2.23/2.24/2.26
13	HR2-CR	0.0	-0.13/-0.17/-0.24	2.85/2.72/2.72
14	HR3-CR	0.0	-0.91/-0.84/-0.87	2.72/2.68/2.68
15	N-CLP	0.0	-3.28/-3.24/-3.24	$3.32^{\prime}/3.51^{\prime}/3.51$
16	N-CLP	90.0	121/121/123	$3\ 50/3\ 94/3\ 94$
17	N-CLP	180.0	-1 10/-0 84/-0 80	3 61/3 92/3 94
18	N-CLP	270.0	-1 37/-2 12/-2 02	3 85/3 46/3 48
10	HA CA	210.0	1.45/1.02/1.23	2 42/2 64/2 62
20	UD1 CDV	0.0	212/220/200	2.42/2.04/2.02
20	HC CCV	0.0	-2.12/-2.50/-2.09	2.01/2.05/2.05
21	HG-CGX	0.0	-2.31/-2.23/-2.29	2.52/2.58/2.57
22	HG-CGX	90.0	-2.35/-2.25/-2.30	2.52/2.58/2.56
23	FGX-CGX	0.0	-4.62/-5.39/-5.54	2.08/1.83/1.82
24	FGX-CGX	90.0	-3.22/-3.44/-3.67	2.17/1.91/1.89
25	FGX-CGX	180.0	-2.37/-2.11/-2.32	2.20/1.95/1.93
26	FGX-CGX	270.0	-2.70/-3.15/-3.30	2.18/1.90/1.89
27	HD1-CDX	0.0	-2.38/-2.46/-2.43	2.52/2.60/2.60
28	HD2-CDX	0.0	-3.16/-3.54/-3.51	2.52/2.57/2.57
29	HA-CA	0.0	-1.45/-1.02/-1.23	2.42/2.64/2.62
	Geometry	2		
30	HL1-CL	0.0	1.99/ 1.72/ 1.76	2.50/2.59/2.59
31	HL2-CL	0.0	-0.67/-0.34/-0.35	2.64/2.71/2.71
32	HL3-CL	0.0	2 36/ 2 30/ 2 30	2 59/2 63/2 64
33	OL-CLP	0.0	7 78/-8 10/-8 07	1.77/1.74/1.74
34	OL CIP	0.0	7.22/6.01/6.84	1.77/1.75/1.75
25	OL CIP	190.0	4 56 / 4 72 / 4 57	1.04/1.79/1.79
20	OL CLD	270.0	7 10 / 7 17 / 7 06	1.77/1.74/1.74
50	OL-CLP	270.0	-7.10/-7.17/-7.00	1.77/1.74/1.74
37	0-0	0.0	-6.56/-7.37/-7.23	1.82/1.75/1.75
38	0-0	90.0	-6.14/-6.98/-6.72	1.83/1.76/1.76
39	O-C	180.0	-6.67/-7.55/-7.30	1.83/1.75/1.76
40	O-C	270.0	-7.50/-8.31/-8.19	1.80/1.74/1.75
41	NR-C	0.0	-2.96/-2.35/-2.07	2.09/2.13/2.15
42	HR-NR	0.0	-4.97/-5.68/-5.90	1.91/1.89/1.89
43	HR-NR	45.0	-4.06/-5.17/-5.41	1.95/1.90/1.90
44	HR-NR	90.0	-5.61/-5.86/-6.12	1.88/1.88/1.88
45	HR-NR	135.0	-6.67/-6.43/-6.67	1.84/1.87/1.87
46	HR1-CR	0.0	0.45 / -0.27 / -0.33	2.62/2.64/2.64
47	HR3-CR	0.0	-1.16/-1.08/-1.12	$2.73^{\prime}/2.69^{\prime}/2.69$
48	N-CLP	0.0	-0.83/-0.44/-0.54	2.16/2.23/2.22
49	N-CLP	90.0	2.23/2.03/196	2.08/2.15/2.16
50	N-CLP	180.0	2.25/2.05/1.00	2.06/2.14/2.15
51	N-CIP	270.0	-1.36/-0.89/-0.81	9 19/9 99/9 99
51 51	HA CA	210.0	-1.50/-0.04/-0.01	2.14/2.22/2.22 2.46/2.62/2.60
J∠ ⊑9	ID1 CDV	0.0	-2.22/-2.00/-2.29	2.40/2.02/2.00
03 E4	HD1-UBA	0.0	-2.00/-2.27/-2.00	2.09/2.03/2.00
ə4	HB2-UBX	0.0	-1.17/-0.95/-0.70	2.51/2.04/2.07
55	HG-CGX	0.0	-2.00/-2.14/-2.19	2.57/2.58/2.57
56	HG-CGX	90.0	-2.05/-2.17/-2.21	2.56/2.58/2.57
57	FGX-CGX	0.0	-3.72/-4.12/-4.34	2.12/1.87/1.85
58	FGX-CGX	90.0	-2.77/-2.39/-2.64	2.17/1.93/1.91
59	FGX-CGX	180.0	-2.91/-2.66/-2.86	2.17/1.93/1.91
60	FGX-CGX	270.0	-4.44/-4.86/-5.00	2.08/1.84/1.83
61	HD1-CDX	0.0	-1.07/-0.91/-0.92	2.48/2.60/2.60
62	HD2-CDX	0.0	-2.45/-2.94/-2.95	2.58/2.59/2.59
63	HA-CA	0.0	-2.22/-2.08/-2.29	2.46/2.62/2.60

Figure S18: The molecule used for water complex calculations corresponding to 4-fluoro-3-methyl-1H-indole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S46: Statistics of calculated water interaction and dipole moment for 4-fluoro-3-methyl-1H-indole.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.75/1.70	0.16/0.25	4.213	3.42/2.98	38.48
Optimal	0.19/0.32	0.13/0.21	2.140	3.42/4.16	0.19

Table S47: The comparison list of optimized atomic charges and their initial guess for 4-fluoro-3-meth yl-1H-indole, referring to the penalties of initial guess

Atom	Charges					
Atom	Optimal	Initial	$\mathbf{Penalty}$			
HB3	0.090	0.090	0.000			
CB	-0.270	-0.278	0.474			
HB1	0.090	0.090	0.000			
HB2	0.090	0.090	0.000			
CG	-0.014	-0.046	7.217			
CD1	-0.058	-0.163	0.075			
HD1	0.133	0.220	0.000			
CD2	-0.022	-0.021	12.100			
NE1	-0.381	-0.518	0.639			
HE1	0.316	0.363	0.000			
CE2	0.274	0.236	2.888			
CE3	0.078	0.186	13.802			
FE3	-0.151	-0.207	3.590			
CZ2	-0.219	-0.278	0.000			
HZ2	0.163	0.195	0.000			
CZ3	-0.198	-0.048	11.106			
HZ3	0.165	0.180	0.707			
$\rm CH2$	-0.295	-0.287	0.570			
HH2	0.209	0.196	0.000			

Table S48: Interaction energies and geometries between probe water and selected 4-fluoro-3-methyl -1H-indole site calculated using the optimized and initial charges

Ν	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-0.36/-0.04/0.36	2.73/2.74/2.84
2	HB1-CB	0.0	-0.98/-0.80/-0.46	2.79/2.77/2.83
3	HD1-CD1	0.0	-2.15/-2.41/-2.66	2.50/2.31/2.25
4	HD1-CD1	90.0	-2.46/-2.54/-2.79	2.43/2.30/2.25
5	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	0.0	-6.33/-6.65/-5.77	1.87/1.87/1.87
6	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	90.0	-6.98/-6.88/-6.07	1.84/1.86/1.87
7	FE3-CE3	0.0	-2.43/-2.52/-3.05	2.17/1.97/1.93
8	FE3-CE3	90.0	-2.58/-2.70/-2.82	2.16/1.96/1.94
9	FE3-CE3	180.0	-2.60/-2.74/-2.49	2.16/1.96/1.95
10	FE3-CE3	270.0	-2.58/-2.70/-2.82	2.16/1.96/1.94
11	HZ2-CZ2	0.0	-1.55/-1.87/-1.81	2.69/2.65/2.64
12	HZ2-CZ2	90.0	-2.02/-2.09/-2.02	2.56/2.63/2.62
13	HZ3-CZ3	0.0	-1.08/-0.91/-2.78	2.59/2.48/2.37
14	HZ3-CZ3	90.0	-1.10/-0.90/-2.74	2.57/2.48/2.38
15	$\rm HH2\text{-}CH2$	0.0	-1.29/-1.34/-1.80	2.64/2.65/2.63
16	$\rm HH2\text{-}CH2$	90.0	-1.48/-1.43/-1.91	2.58/2.64/2.62
1.16 Small molecule A of

O-[(S)-hydroxy[(3R)-3-hydroxy-2,2-dimethyl-4-oxo-4-(3-oxo-3-[(2-su lfanylethyl)amino]propylamino)butyl]oxyphosphoryl]-L-serine(4HH)

Figure S19: The molecule used for water complex calculations corresponding to (2R)-N-ethyl-2-hydrox ypropanamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S49: Statistics of calculated water interaction and dipole moment for (2R)-N-ethyl-2-hydroxypro panamide.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	$\rm QM/MM~(Debye)$	difference (°)
Initial	0.35/0.69	0.07/0.18	1.524	4.62/5.06	1.40
Optimal	0.27/0.57	0.07/0.17	2.249	4.62/5.38	2.11

Table S50: The comparison list of optimized atomic charges and their initial guess for (2R)-N-ethyl-2-hydroxypropanamide, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$
CK	-0.270	-0.268	0.000
HK1	0.090	0.090	0.000
$\rm HK2$	0.090	0.090	0.000
HK3	0.090	0.090	0.000
\mathcal{CM}	0.188	0.171	21.973
HM	0.090	0.090	0.000
OM	-0.607	-0.623	22.440
HOM	0.285	0.369	1.783
CL3	0.580	0.513	12.496
ON	-0.477	-0.501	1.525
NN	-0.568	-0.535	17.934
HN	0.312	0.312	0.000
CO	0.017	0.017	0.539
HO1	0.090	0.090	0.000
HO2	0.090	0.090	0.000
CP	-0.270	-0.265	0.359
HP1	0.090	0.090	0.000
HP2	0.090	0.090	0.000
HP3	0.090	0.090	0.000

Table S51: Interaction energies and geometries between probe water and selected (2R)-N-ethyl-2-hy droxypropanamide site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HK1-CK	0.0	-0.82/-0.76/-0.66	2.65/2.65/2.67
2	HK2-CK	0.0	-2.74/-2.92/-2.81	2.65/2.61/2.62
3	$\rm HK3-CK$	0.0	-0.65/-0.33/-0.29	2.74/2.75/2.76
4	HM-CM	0.0	-1.71/-2.27/-2.09	2.61/2.62/2.63
5	OM-CM	0.0	-6.30/-6.49/-6.16	1.84/1.86/1.86
6	OM-CM	90.0	-6.15/-5.90/-5.76	1.82/1.86/1.87
7	OM-CM	180.0	-5.18/-5.18/-5.19	1.86/1.87/1.87
8	OM-CM	270.0	-5.97/-5.99/-5.82	1.83/1.86/1.86
9	ON-CL3	0.0	-5.16/-5.47/-5.55	1.87/1.79/1.78
10	ON-CL3	90.0	-5.17/-5.15/-5.60	1.85/1.79/1.77
11	ON-CL3	180.0	-5.04/-4.93/-5.55	1.85/1.79/1.77
12	ON-CL3	270.0	-5.38/-5.33/-5.71	1.85/1.79/1.77
13	NN-CL3	180.0	-1.70/-1.96/-2.20	2.27/2.18/2.17
14	NN-CL3	270.0	-1.12/-1.61/-1.79	2.27/2.16/2.16
15	HN-NN	0.0	-6.79/-7.23/-7.16	1.93/1.90/1.90
16	HN-NN	45.0	-7.03/-7.36/-7.29	1.91/1.90/1.90
17	HN-NN	90.0	-7.12/-7.40/-7.31	1.90/1.90/1.89
18	HN-NN	135.0	-6.83/-7.25/-7.18	1.91/1.90/1.90
19	HO1-CO	0.0	-1.71/-1.80/-1.81	2.69/2.67/2.67
20	HO2-CO	0.0	-0.39/-0.42/-0.19	2.59/2.69/2.70
21	$\operatorname{HP1-CP}$	0.0	-1.02/-0.68/-0.33	2.47/2.64/2.65
22	HP2-CP	0.0	-1.14/-1.30/-1.29	2.89/2.77/2.76
23	$\mathrm{HP3}\text{-}\mathrm{CP}$	0.0	-1.05/-1.04/-1.03	2.78/2.72/2.72

Figure S20: The molecule used for water complex calculations corresponding to 3-methyl-1H-indol-4olate, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	${\rm Energy}\;(\rm kcal/mol)$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.37/0.88	0.09/0.27	1.934	3.61/3.40	12.46
Optimal	0.16/0.34	0.07/0.20	2.779	3.61/4.53	0.06

Table S53: The comparison list of optimized atomic charges and their initial guess for 3-methyl-1H-indo l-4-olate, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.270	-0.278	0.000
HB2	0.090	0.090	0.000
HB1	0.090	0.090	0.000
CG	0.017	-0.046	2.500
CD1	-0.044	-0.163	0.000
HD1	0.120	0.220	0.000
CD2	0.095	0.113	3.576
NE1	-0.408	-0.518	0.000
HE1	0.322	0.363	0.000
CE2	0.244	0.236	2.500
CZ2	-0.297	-0.285	0.000
HZ2	0.177	0.195	0.000
CE3	0.030	0.041	3.582
OE3	-0.484	-0.530	3.568
HE3	0.346	0.420	0.075
CZ3	-0.300	-0.237	0.000
HZ3	0.227	0.196	0.000
CH2	-0.245	-0.193	0.000
HH2	0.200	0.196	0.000

Table S54: Interaction energies and geometries between probe water and selected 3-methyl-1H-indo l-4-olate site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
18	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-1.55/-1.48/-1.37	2.57/2.60/2.62
2	HB2-CB	0.0	-1.53/-1.47/-1.35	2.57/2.61/2.62
3	HB1-CB	0.0	-1.54/-1.42/-1.11	2.68/2.70/2.75
4	HD1-CD1	0.0	-2.19/-2.53/-3.07	2.51/2.31/2.25
5	HD1-CD1	90.0	-2.55/-2.68/-3.23	2.43/2.30/2.24
6	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	0.0	-6.20/-6.45/-6.05	1.88/1.87/1.87
7	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	45.0	-6.50/-6.56/-6.21	1.86 / 1.87 / 1.87
8	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	90.0	-6.82/-6.66/-6.36	1.84/1.86/1.86
9	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	135.0	-6.51/-6.56/-6.21	1.86 / 1.87 / 1.87
10	HZ2-CZ2	0.0	-1.25/-1.45/-1.83	2.75/2.68/2.64
11	HZ2-CZ2	90.0	-1.69/-1.67/-2.05	2.61/2.65/2.61
12	OE3-CE3	0.0	-4.58/-4.80/-4.85	1.91/1.91/1.91
13	OE3-CE3	90.0	-5.32/-5.18/-5.20	1.86/1.90/1.89
14	OE3-CE3	180.0	-4.53/-4.81/-4.78	1.92/1.91/1.90
15	OE3-CE3	270.0	-5.32/-5.18/-5.21	1.86/1.90/1.89
16	$\operatorname{HE3-OE3}$	0.0	-0.68/-0.85/-0.65	5.17/5.00/5.00
17	HE3-OE3	45.0	-0.87/-0.93/-0.72	5.10/5.00/5.00
18	HE3-OE3	90.0	-1.04/-0.99/-0.77	5.06/5.00/5.00
19	HE3-OE3	135.0	-0.86/-0.92/-0.72	5.10/5.00/5.00
20	HZ3-CZ3	0.0	-0.36/-0.21/-0.35	2.70/2.68/2.68
21	HZ3-CZ3	90.0	-0.30/-0.16/-0.31	2.72/2.69/2.69
22	$\rm HH2\text{-}CH2$	0.0	-0.97/-0.90/-1.47	2.69/2.68/2.63
23	$\rm HH2\text{-}CH2$	90.0	-1.13/-0.98/-1.55	2.63/2.66/2.62

1.18 Small molecule used for 4-amino-l-tryptophan(4IN)

Figure S21: The molecule used for water complex calculations corresponding to 3-methyl-1H-indol-4amine, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S55:	Statistics of	calculated	water	interaction	and	dipole	moment	for a	3-methyl-	1H-indo	l-4-amine.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	${\rm Energy}\;(\rm kcal/mol)$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.50/0.92	0.14/0.30	2.756	1.84/2.08	34.59
Optimal	0.13/0.26	0.12/0.23	1.840	1.84/2.23	2.09

Table S56: The comparison list of optimized atomic charges and their initial guess for 3-methyl-1H-indo l-4-amine, referring to the penalties of initial guess

Atom	Charges					
Atom	Optimal	Initial	$\mathbf{Penalty}$			
HB3	0.090	0.090	0.000			
CB	-0.270	-0.278	0.000			
HB1	0.090	0.090	0.000			
HB2	0.090	0.090	0.000			
CG	0.014	-0.046	2.500			
CD1	-0.098	-0.163	0.000			
HD1	0.141	0.220	0.000			
CD2	0.142	0.121	12.931			
NE1	-0.479	-0.518	0.000			
HE1	0.350	0.363	0.000			
CE2	0.234	0.237	12.649			
CZ2	-0.313	-0.285	0.000			
HZ2	0.175	0.195	0.000			
CZ3	-0.236	-0.231	0.000			
HZ3	0.179	0.196	0.000			
CE3	0.049	-0.013	18.759			
NZ1	-0.858	-0.838	18.086			
HZ11	0.365	0.382	0.075			
HZ12	0.365	0.382	0.075			
CH2	-0.206	-0.190	0.000			
HH2	0.176	0.196	0.000			

Table S57: Interaction energies and geometries between probe water and selected 3-methyl-1H-indo l-4-amine site calculated using the optimized and initial charges

NT.	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(°)	${ m QM}/{ m Optimal}/{ m Initial}$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-1.05/-1.30/-0.87	2.81/2.69/2.74
2	HB1-CB	0.0	-1.07/-0.97/-0.70	2.76/2.74/2.79
3	HD1-CD1	0.0	-1.83/-2.04/-2.75	2.55/2.32/2.25
4	HD1-CD1	90.0	-2.14/-2.18/-2.90	2.47/2.31/2.24
5	HE1-NE1	0.0	-5.78/-6.01/-5.78	1.89/1.87/1.87
6	HE1-NE1	45.0	-6.08/-6.11/-5.94	1.87/1.87/1.87
7	HE1-NE1	90.0	-6.37/-6.21/-6.09	1.85/1.86/1.87
8	HE1-NE1	135.0	-6.06/-6.11/-5.93	1.87/1.87/1.87
9	HZ2-CZ2	0.0	-1.06/-1.20/-1.71	2.79/2.70/2.64
10	HZ2-CZ2	90.0	-1.48/-1.41/-1.94	2.64/2.67/2.62
11	HZ3-CZ3	0.0	-0.95/-1.07/-1.47	2.81/2.69/2.65
12	HZ3-CZ3	90.0	-1.41/-1.27/-1.72	2.62/2.66/2.62
13	HZ 11-NZ 1	0.0	-3.72/-3.84/-4.37	2.05/1.95/1.93
14	HZ 11-NZ 1	45.0	-3.62/-3.81/-4.35	2.06/1.95/1.93
15	HZ 11-NZ 1	90.0	-4.11/-4.07/-4.69	2.02/1.94/1.91
16	HZ 11-NZ 1	135.0	-4.23/-4.12/-4.72	2.01/1.93/1.91
17	$\mathrm{HZ}12\text{-}\mathrm{NZ}1$	0.0	-1.22/-1.17/-0.92	3.72/3.90/3.91
18	$\mathrm{HZ}12\text{-}\mathrm{NZ}1$	45.0	-1.29/-1.20/-0.93	3.71/3.90/3.91
19	$\mathrm{HZ}12\text{-}\mathrm{NZ}1$	90.0	-1.20/-1.13/-0.87	3.68/3.91/3.92
20	$\rm HZ12\text{-}NZ1$	135.0	-1.13/-1.10/-0.86	3.70/3.92/3.93
21	$\rm HH2$ - $\rm CH2$	0.0	-0.82/-0.85/-1.49	2.74/2.70/2.63
22	HH2-CH2	90.0	-1.00/-0.94/-1.61	2.67/2.68/2.62

1.19 Small molecule used for 2-amino-3-(cystein-S-yl)-isoxazolidin-5-yl-aceticacid(5CS)

Figure S22: The molecule used for water complex calculations corresponding to 2-[3-(ethylsulfanyl)-1,2-oxazolidin-5-yl]-2-(trihydridonickelio)aceticacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S58: Statistics of calculated water interaction and dipole moment for 2-[3-(ethylsulfanyl)-1,2-ox azolidin-5-yl]-2-(trihydridonickelio) aceticacid.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	2.58/7.15	0.41/2.09	7.048	9.49/13.29	2.60
Optimal	1.24/3.57	0.15/0.49	5.718	9.49/12.34	0.00

Table S59: The comparison list of optimized atomic charges and their initial guess for 2-[3-(ethylsulfa nyl)-1,2-oxazolidin-5-yl]-2-(trihydridonickelio)ace ticacid, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.270	0.545
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
CB	-0.088	-0.065	4.421
HB1	0.090	0.090	0.500
HB2	0.090	0.090	0.500
\mathbf{SG}	-0.188	-0.209	99.339
CD	0.170	0.243	120.751
HD	0.090	0.090	6.130
NX	-0.312	-0.394	334.919
HX	0.264	0.361	4.283
OF	-0.208	-0.354	324.573
CE	-0.134	-0.207	46.322
HE1	0.090	0.090	2.648
HE2	0.090	0.090	2.648
\mathbf{CF}	0.018	0.030	76.052
$_{\mathrm{HF}}$	0.090	0.090	4.887
CI	0.262	0.393	120.760
$_{\rm HI}$	0.090	0.090	5.902
NI	-0.162	-0.346	37.955
HN1	0.259	0.330	2.642
HN2	0.259	0.330	2.642
HN3	0.259	0.330	2.642
CJ	0.095	0.448	100.308
OJ1	-0.562	-0.760	8.256
OJ2	-0.562	-0.760	8.256

Table S60: Interaction energies and geometries between probe water and selected 2-[3-(ethylsulfany l)-1,2-oxazolidin-5-yl]-2-(trihydridonickelio)aceti cacid site calculated using the optimized and initial charges

	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA3-CA	0.0	-0.95/-0.85/-0.93	2.72/2.74/2.73
2	${ m HA2-CA}$	0.0	-0.61/-0.57/-0.69	2.91/2.95/5.00
3	HA-CA	0.0	-1.20/-1.05/-1.13	2.75/2.74/2.73
4	${ m HB1-CB}$	0.0	-1.50/-1.84/-2.01	2.73/2.69/2.68
5	SG-CB	0.0	-3.28/-4.10/-4.21	2.79/2.40/2.38
6	SG-CB	270.0	-1.24/-2.05/-2.56	2.82/2.34/2.31
7	HD-CD	0.0	-2.76/-3.09/-3.32	2.47/2.59/2.58
8	HX-NX	0.0	-5.89/-6.68/-8.53	1.95/1.89/1.82
9	HX-NX	45.0	-5.87/-6.66/-8.49	1.95/1.89/1.82
10	HX-NX	90.0	-5.91/-6.77/-8.61	1.95/1.89/1.82
11	HX-NX	135.0	-5.92/-6.79/-8.65	1.95/1.89/1.82
12	OF-NX	90.0	-1.98/-2.56/-5.44	1.85/1.75/1.66
13	OF-NX	180.0	-1.78/-5.34/-8.92	1.88/1.71/1.62
14	$\operatorname{HE}\operatorname{1-CE}$	0.0	-2.42/-2.22/-2.04	2.52/2.61/2.63
15	HF-CF	0.0	-2.88/-2.17/-2.35	2.35/2.57/2.55
16	HN1-NI	0.0	-11.41/-11.09/-13.52	1.71/1.78/1.74
17	HN1-NI	45.0	-11.73/-11.37/-13.83	1.70/1.78/1.74
18	HN1-NI	90.0	-11.88/-11.31/-13.84	1.70/1.78/1.74
19	HN1-NI	135.0	-11.55/-11.04/-13.53	1.70/1.78/1.74
20	HN3-NI	0.0	-4.73/-5.52/-5.68	1.97/2.28/2.20
21	HN3-NI	45.0	-3.38/-5.40/-5.33	2.23/2.32/2.25
22	HN3-NI	90.0	-1.91/-4.83/-4.44	2.62/2.36/2.32
23	HN3-NI	135.0	-2.45/-4.88/-4.66	2.28/2.34/2.28
24	OJ1-CJ	0.0	-5.18/-4.66/-6.14	1.79/1.76/1.70
25	OJ1-CJ	90.0	-7.80/-8.02/-9.93	1.73/1.71/1.66
26	OJ1-CJ	180.0	-9.91/-11.30/-13.81	1.71/1.68/1.63
27	OJ1-CJ	270.0	-8.25/-8.66/-10.86	1.73/1.70/1.65
28	OJ2-CJ	0.0	-7.58/-8.33/-10.47	1.77/1.72/1.67
29	OJ2-CJ	90.0	-8.14/-9.43/-11.84	1.75/1.70/1.66
30	OJ2-CJ	180.0	-9.57/-11.34/-13.78	1.74 / 1.69 / 1.64
31	OJ2-CJ	270.0	-8.89/-10.20/-12.34	1.75/1.70/1.66

1.20 Small molecule A of hypusine(5CT)

Figure S23: The molecule used for water complex calculations corresponding to diethylamine, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S61: Statistics of calculated water interaction and dipole moment for diethylamine.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	${\rm Energy}\;(\rm kcal/mol)$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.48/1.11	0.15/0.24	2.371	0.45/0.27	179.75
Optimal	0.46/1.10	0.15/0.24	2.449	0.45/0.31	179.76

Table S62: The comparison list of optimized atomic charges and their initial guess for diethylamine, referring to the penalties of initial guess

Table S63: Interaction energies and geometries be-
tween probe water and selected diethylamine site
calculated using the optimized and initial charges

Atom	Charges				
Atom	Optimal	Initial	Penalty		
HD3	0.090	0.090	0.045		
CD	-0.270	-0.270	0.709		
HD1	0.090	0.090	0.045		
HD2	0.090	0.090	0.045		
CE	0.197	0.200	0.810		
HE1	0.090	0.090	0.000		
HE2	0.090	0.090	0.000		
NZ	-0.394	-0.420	0.869		
HZ1	0.320	0.330	0.064		
HZ2	0.320	0.330	0.064		
C1	0.197	0.200	0.810		
H11	0.090	0.090	0.000		
H12	0.090	0.090	0.000		
C2	-0.270	-0.270	0.709		
H21	0.090	0.090	0.045		
H22	0.090	0.090	0.045		
H23	0.090	0.090	0.045		

	Decha	Annla	E (h 1 / 1)	Distance (Å)
Ν	r robe	Angle	Energy (kcai/moi)	Distance (A)
	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HD3-CD	0.0	-6.45/-5.34/-5.34	2.32/2.55/2.55
2	$\mathrm{HD1}\text{-}\mathrm{CD}$	0.0	-6.81/-6.32/-6.33	2.41/2.55/2.55
3	$\mathrm{HD2}\text{-}\mathrm{CD}$	0.0	-6.81/-6.32/-6.33	2.41/2.55/2.55
4	$\operatorname{HE1-CE}$	0.0	-8.82/-8.52/-8.49	2.25/2.49/2.49
5	$\rm HE2\text{-}CE$	0.0	-8.82/-8.52/-8.49	2.25/2.49/2.49
6	HZ1-NZ	0.0	-16.12/-16.34/-16.51	1.77/1.78/1.77
7	HZ1-NZ	45.0	-16.02/-16.32/-16.49	1.77/1.78/1.77
8	HZ1-NZ	90.0	-16.59/-16.46/-16.63	1.77/1.78/1.77
9	HZ1-NZ	135.0	-16.67/-16.48/-16.65	1.77/1.78/1.77
10	HZ2-NZ	0.0	-16.11/-16.34/-16.51	1.77/1.78/1.77
11	HZ2-NZ	45.0	-16.67/-16.48/-16.65	1.77/1.78/1.77
12	HZ2-NZ	90.0	-16.59/-16.46/-16.63	1.77/1.78/1.77
13	HZ2-NZ	135.0	-16.02/-16.32/-16.49	1.78/1.78/1.77
14	H11-C1	0.0	-8.57/-8.46/-8.43	2.27/2.49/2.49
15	$\rm H12\text{-}C1$	0.0	-8.57/-8.46/-8.43	2.27/2.49/2.49
16	${ m H21-C2}$	0.0	-6.78/-6.31/-6.31	2.42/2.55/2.55
17	$\mathrm{H22}\text{-}\mathrm{C2}$	0.0	-6.33/-5.28/-5.28	2.33/2.55/2.55
18	$\mathrm{H23}\text{-}\mathrm{C2}$	0.0	-6.78/-6.31/-6.31	2.42/2.55/2.55

1.21 Small molecule used for 6-carboxylysine(6CL)

Figure S24: The molecule used for water complex calculations corresponding to 2-aminopentanoicac id, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S64: Statistics of calculated water interaction and dipole moment for 2-aminopentanoicacid.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	${\rm Energy}\;(\rm kcal/mol)$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	5.22/7.56	0.18/0.27	16.483	5.81/13.57	2.02
Optimal	0.44/1.12	0.09/0.18	2.920	5.81/6.79	1.97

Table S65: The comparison list of optimized atomic charges and their initial guess for 2-aminopentano icacid, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal Initial		$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.270	-0.204	0.572
HB2	0.090	0.090	0.000
HB1	0.090	0.090	0.000
CG	-0.095	-0.185	2.592
$\mathrm{HG2}$	0.090	0.090	0.000
HG1	0.090	0.090	0.000
CD	-0.253	-0.195	30.356
HD1	0.090	0.090	2.500
HD2	0.090	0.090	2.500
CE	0.129	0.314	102.108
HE	0.090	0.090	3.979
CZ	0.374	0.448	99.425
NZ	-0.339	-0.368	37.376
HZ1	0.210	0.330	2.536
HZ3	0.210	0.330	2.536
HZ2	0.210	0.330	2.536
OH1	-0.448	-0.760	8.256
OH2	-0.448	-0.760	8.256

Table S66: Interaction energies and geometries between probe water and selected 2-aminopentanoic acid site calculated using the optimized and initial charges

N	Probe	Angle	Energy $(kcal/mol)$	Distance (Å)
1	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-0.89/-0.91/-1.22	2.80/2.73/2.68
2	HB2-CB	0.0	-0.99/-0.83/-1.20	2.74/2.70/2.63
3	HB1-CB	0.0	-1.06/-1.14/-1.89	2.87/2.76/2.72
4	HG2-CG	0.0	-1.25/-0.14/1.13	2.43/2.61/2.51
5	HG1-CG	0.0	-1.61/-2.20/-3.47	2.74/2.71/2.71
6	HD1-CD	0.0	-0.33/-0.14/0.26	2.65/2.71/2.66
7	HD2-CD	0.0	-2.06/-2.15/-4.06	2.67/2.68/2.59
8	HE-CE	0.0	-1.71/-2.16/-3.36	2.57/2.62/2.55
9	HE-CE	90.0	-2.12/-2.32/-3.67	2.49/2.61/2.53
10	HZ1-NZ	0.0	-5.55/-5.89/-12.23	1.96/1.91/1.77
11	HZ1-NZ	45.0	-5.60/-5.85/-12.12	1.95/1.91/1.77
12	HZ1-NZ	90.0	-5.66/-5.99/-12.40	1.95/1.91/1.77
13	$\mathrm{HZ1}\text{-}\mathrm{NZ}$	135.0	-5.61/-6.02/-12.51	1.96/1.91/1.77
14	HZ2-NZ	0.0	-5.31/-5.79/-12.13	2.01/1.95/1.80
15	HZ2-NZ	45.0	-5.33/-5.83/-12.21	2.01/1.95/1.80
16	HZ2-NZ	90.0	-5.56/-5.81/-12.27	2.00/1.95/1.80
17	HZ2-NZ	135.0	-5.56/-5.79/-12.20	2.00/1.95/1.80
18	OH1-CZ	0.0	-3.57/-3.80/-7.50	2.00/1.86/1.73
19	OH1-CZ	90.0	-4.31/-4.85/-9.88	1.96/1.83/1.70
20	OH1-CZ	180.0	-5.60/-6.47/-13.17	1.92/1.80/1.67
21	OH1-CZ	270.0	-4.37/-4.92/-9.79	1.96/1.83/1.70
22	OH2-CZ	0.0	-5.23/-5.31/-10.60	1.88/1.80/1.67
23	OH2-CZ	90.0	-5.70/-5.96/-11.97	1.87/1.79/1.66
24	OH2-CZ	180.0	-6.26/-6.75/-13.56	1.86/1.78/1.65
25	OH2-CZ	270.0	-5.61/-6.07/-12.17	1.87/1.79/1.66

1.22 Small molecule used for (2R)-2-azanyl-3-[(3R)-1-ethyl-2,5-bis(oxidan ylidene)pyrrolidin-3-yl]sulfanyl-propanoicacid(6V1)

Figure S25: The molecule used for water complex calculations corresponding to (3R)-1-ethyl-3-(ethylsul fanyl)pyrrolidine-2,5-dione, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S67: Statistics of calculated water interaction and dipole moment for (3R)-1-ethyl-3-(ethylsulfa nyl)pyrrolidine-2,5-dione.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.78/1.37	0.25/0.60	3.020	2.22/3.15	20.30
Optimal	0.40/0.91	0.23/0.55	2.055	2.22/2.88	0.00

Table S68: The comparison list of optimized atomic charges and their initial guess for (3R)-1-ethyl-3- (ethylsulfanyl)pyrrolidine-2,5-dione, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	Penalty		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.270	-0.270	0.545		
\mathbf{HA}	0.090	0.090	0.000		
CB	-0.053	-0.065	4.421		
HB1	0.090	0.090	0.500		
HB2	0.090	0.090	0.500		
\mathbf{SG}	-0.149	-0.208	92.548		
C1	0.014	0.159	95.619		
H1	0.090	0.090	5.604		
C2	0.377	0.314	10.961		
07	-0.428	-0.487	2.819		
C5	-0.109	-0.028	42.610		
H51	0.090	0.090	2.508		
H52	0.090	0.090	2.508		
C4	0.275	0.312	7.374		
08	-0.423	-0.487	0.134		
N3	-0.112	-0.171	10.607		
C6	0.012	0.030	9.503		
H61	0.090	0.090	0.638		
H62	0.090	0.090	0.638		
C3	-0.304	-0.270	3.551		
H31	0.090	0.090	0.050		
H32	0.090	0.090	0.050		
H33	0.090	0.090	0.050		

Table S69: Interaction energies and geometries between probe water and selected (3R)-1-ethyl-3-(et hylsulfanyl)pyrrolidine-2,5-dione site calculated using the optimized and initial charges

	D L	A 1	E (l 1/ 1)	D: ((Å)
Ν	Probe	Angle	Energy (kcal/mol)	Distance (A)
	site	(*)	QM/Optimal/Initial	QM/Optimal/Initial
1	${ m HA3-CA}$	0.0	-1.22/-1.02/-0.89	2.71/2.71/2.72
2	${ m HA2-CA}$	0.0	-0.97/-0.84/-0.69	2.71/2.73/2.76
3	HA-CA	0.0	-1.01/-0.82/-0.59	2.69/2.72/2.74
4	$\mathrm{HB2}\text{-}\mathrm{CB}$	0.0	-1.43/-1.75/-1.72	2.69/2.67/2.68
5	SG-CB	0.0	-0.90/-1.45/-1.34	3.00/2.46/2.44
6	SG-CB	90.0	-1.18/-1.73/-2.04	2.88/2.41/2.37
7	SG-CB	180.0	-0.77/-1.29/-1.72	2.96/2.42/2.36
8	SG-CB	270.0	-0.87/-1.05/-1.11	2.90/2.44/2.41
9	H1-C1	0.0	-2.51/-2.53/-3.24	2.44/2.61/2.57
10	O7-C2	0.0	-4.57/-4.35/-5.55	1.88/1.81/1.77
11	O7-C2	90.0	-4.64/-4.72/-6.01	1.88/1.80/1.77
12	O7-C2	180.0	-4.94/-4.97/-6.21	1.87/1.80/1.76
13	O7-C2	270.0	-4.99/-4.81/-5.99	1.87/1.80/1.77
14	${ m H51-C5}$	0.0	-2.78/-2.11/-2.98	2.42/2.61/2.56
15	m H52-C5	0.0	-2.26/-1.36/-2.12	2.34/2.63/2.57
16	O8-C4	0.0	-5.04/-5.31/-6.02	1.88/1.80/1.77
17	O8-C4	90.0	-4.84/-5.12/-5.95	1.89/1.80/1.77
18	O8-C4	180.0	-4.73/-5.11/-6.00	1.89/1.80/1.77
19	O8-C4	270.0	-4.99/-5.41/-6.22	1.89/1.80/1.77
20	$\rm H61{\text{-}C6}$	0.0	-0.73/-0.48/-0.28	2.51/2.65/2.65
21	m H62-C6	0.0	-0.63/-0.71/-0.31	2.53/2.65/2.66
22	m H31-C3	0.0	-0.22/-0.45/-0.35	2.80/2.69/2.64
23	m H32-C3	0.0	-1.21/-0.40/-0.41	2.46/2.62/2.60
24	H33-C3	0.0	-1.00/-0.68/-0.81	2.76/2.75/2.72

Table S70: The molecule used for water complex calculations corresponding to (2S)-2,3-dihydro-1H-p yrrole-2-carboxylicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S71:	Statistics	of	$\operatorname{calculated}$	water	interaction	and	dipole	moment	\mathbf{for}	(2S)-2,3-dihydro-1H-pyri	°0
le-2-carbox	ylicacid.										

		RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
		Energy (kcal/mol)	Distance (Å)	${f RMS}~({ m kcal}/{ m mol}/{ m \AA})$	$\rm QM/MM~(Debye)$	difference (°)
Geometry 1	Initial	$0.51\ /\ 1.05$	$0.14\ /\ 0.27$	2.940	4.07 / 3.72	4.07
Geometry 2	Initial	$0.73\ /\ 1.41$	$0.13\ /\ 0.25$	2.919	$6.45 \ / \ 6.75$	6.45
Sum of geometries	Initial	$0.64\ /\ 1.41$	$0.13\ /\ 0.27$	5.859	-	-
Geometry 1	Optimal	$0.32 \ / \ 0.83$	$0.15\ /\ 0.34$	2.035	4.07 / 4.00	4.07
Geometry 2	Optimal	$0.60 \ / \ 1.06$	$0.14\ /\ 0.29$	2.054	$6.45 \ / \ 6.52$	6.45
Sum of geomeries	Optimal	$0.49 \ / \ 1.06$	$0.15\ /\ 0.34$	4.089	_	-

Table S72: The comparison list of optimized atomic charges and their initial guess for (2S)-2,3-dihydr o-1H-pyrrole-2-carboxylicacid, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	$\operatorname{Initial}$	Penalty
CL	-0.270	-0.270	0.000
HL1	0.090	0.090	0.000
HL2	0.090	0.090	0.000
HL3	0.090	0.090	0.000
CLP	0.510	0.510	0.000
OL	-0.510	-0.510	0.000
Ν	-0.229	-0.245	59.884
\mathbf{CA}	0.065	0.133	50.455
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.346
CB	-0.380	-0.539	61.416
HB	0.284	0.401	36.583
CG	-0.358	-0.514	52.251
HG	0.273	0.367	33.391
CD	0.075	0.128	38.429
HD1	0.090	0.090	0.000
HD2	0.090	0.090	0.000
С	0.510	0.500	26.738
Ο	-0.510	-0.499	2.500
\mathbf{NR}	-0.470	-0.47	0.000
\mathbf{HR}	0.310	0.31	0.000
\mathbf{CR}	-0.110	-0.11	0.000
HR1	0.090	0.090	0.000
$\mathrm{HR2}$	0.090	0.090	0.000
HR3	0.090	0.090	0.000

Table S73: Interaction energies and geometries between probe water and selected (2S)-2,3-dihydro-1H-pyrrole-2-carboxylicacid site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance(Å)
	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
	Geometry	1		
1	O-C	0.0	-6.61/-6.91/-6.83	1.81/1.75/1.75
2	O-C	90.0	-6.80/-7.20/-7.27	1.81/1.75/1.75
3	O-C	180.0	-6.91/-7.16/-7.09	1.81/1.75/1.76
4	O-C	270.0	-6.78/-7.00/-6.79	1.81/1.75/1.76
5	NR-C	0.0	-2.18/-1.99/-2.06	2.18/2.19/2.19
6	HA-CA	0.0	-1.12/-0.87/-0.86	2.46/2.65/2.65
7	HL1-CL	0.0	-2.30/-2.55/-2.52	2.63/2.62/2.62
8	HL2-CL	0.0	-1.11/-0.79/-0.75	2.58/2.68/2.69
9	HL3-CL	0.0	-2.57/-2.17/-2.07	2.50/2.61/2.61
10	OL-CLP	0.0	-5.20/-5.61/-5.67	1.83/1.75/1.75
11	OL-CLP	90.0	-5.19/-5.58/-5.61	1.83/1.76/1.76
12	OL-CLP	180.0	-4.46/-4.39/-4.36	1.86/1.79/1.80
13	OL-CLP	270.0	-4.14/-4.37/-4.39	1.86/1.78/1.78
14	N-CLP	0.0	-2.46/-3.29/-3.51	3.12/2.89/2.85
15	HB-CB	0.0	-1.46/-1.57/-2.52	2.30/2.57/2.50
16	HB-CB	90.0	-1.93/-1.75/-2.73	2.22/2.56/2.49
17	HG-CG	0.0	-2.21/-2.43/-2.96	2.34/2.57/2.52
18	HG-CG	90.0	-2.42/-2.54/-3.10	2.29/2.56/2.52
19	HD1-CD	0.0	-1.90/-1.96/-1.82	2.55/2.61/2.62
20	HD2-CD	0.0	-2.49/-2.73/-2.60	2.77/2.66/2.67
	Geometry	2		
21	O-C	0.0	-6.15/-7.19/-7.26	1.84/1.75/1.75
22	O-C	90.0	-6.36/-7.14/-7.07	1.83/1.76/1.76
23	O-C	180.0	-5.62/-6.54/-6.42	1.84 / 1.76 / 1.77
24	O-C	270.0	-5.84/-6.81/-6.81	1.83/1.75/1.76
25	HR-NR	0.0	-6.67/-7.73/-7.86	1.96/1.90/1.90
26	HR-NR	45.0	-7.22/-7.91/-8.02	1.93/1.90/1.90
27	HR-NR	90.0	-7.48/-7.92/-8.02	1.92/1.89/1.89
28	HR-NR	135.0	-6.94/-7.74/-7.86	1.94 / 1.90 / 1.90
29	$\mathrm{HR2} ext{-}\mathrm{CR}$	0.0	-1.47/-1.44/-1.45	2.72/2.68/2.68
30	HR3-CR	0.0	-1.57/-1.59/-1.60	2.70/2.67/2.67
31	HA-CA	0.0	-3.59/-4.00/-4.00	2.64/2.61/2.61
32	HL1-CL	0.0	-2.01/-2.20/-2.16	2.66/2.63/2.63
33	HL2-CL	0.0	-0.61/-0.38/-0.36	2.63/2.70/2.70
34	OL-CLP	0.0	-6.62/-6.45/-6.48	1.82/1.76/1.76
35	OL-CLP	90.0	-6.79/-6.65/-6.67	1.82/1.76/1.76
36	OL-CLP	180.0	-6.34/-6.12/-6.15	1.83/1.77/1.77
37	OL-CLP	270.0	-6.34/-6.14/-6.19	1.83/1.77/1.77
38	N-CLP	0.0	-4.49/-5.46/-5.51	3.94/3.70/3.70
39	N-CLP	90.0	-3.30/-3.33/-3.39	4.10/3.96/3.95
40	N-CLP	180.0	-2.92/-2.73/-2.75	4.12/4.00/4.00
41	N-CLP	270.0	-3.37/-4.21/-4.18	4.01/3.76/3.76
42	N-CLP	0.0	-4.49/-5.46/-5.51	3.94/3.70/3.70
43	HB-CB	0.0	-2.18/-2.65/-3.59	2.36/2.56/2.49
44	HB-CB	90.0	-2.59/-2.90/-3.87	2.29/2.55/2.48
45	HG-CG	0.0	-2.21/-2.21/-2.74	2.32/2.57/2.53
46	HG-CG	90.0	-2.39/-2.31/-2.87	2.28/2.56/2.52

1.24 Small molecule used for cis-amiclenomycin(ACZ)

Figure S26: The molecule used for water complex calculations corresponding to (1s,4s)-4-ethylcyclohe xa-2,5-dien-1-amine, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S74: Statistics of calculated water interaction and dipole moment for (1s, 4s)-4-ethylcyclohexa -2,5-dien-1-amine.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.51/3.66	0.56/1.92	7.352	7.77/11.64	6.28
Optimal	0.82/3.66	0.56/1.96	1.434	7.77/8.06	1.80

Table S75: The comparison list of optimized atomic charges and their initial guess for (1s,4s)-4-ethylcyc lohexa-2,5-dien-1-amine, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.270	-0.269	0.424
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
CG	-0.180	-0.177	6.811
HG1	0.090	0.090	0.424
$\mathrm{HG2}$	0.090	0.090	0.424
CD	0.155	-0.100	8.405
HD	0.090	0.090	0.735
CE1	-0.132	-0.147	8.988
HE11	0.165	0.150	0.997
CE2	-0.132	-0.147	8.988
HE22	0.165	0.150	0.997
CZ1	-0.231	-0.143	60.717
HZ11	0.127	0.150	4.413
CZ2	-0.231	-0.143	60.717
HZ22	0.127	0.150	4.413
CH	0.241	0.280	87.332
HH	0.090	0.090	5.377
NJ	-0.409	-0.374	43.451
HJ1	0.325	0.330	2.985
HJ2	0.325	0.330	2.985
HJ3	0.325	0.330	2.985

Table S76: Interaction energies and geometries between probe water and selected (1s,4s)-4-ethylcyc lohexa-2,5-dien-1-amine site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(*)	${ m QM}/{ m Optimal}/{ m Initial}$	${ m QM}/{ m Optimal}/{ m Initial}$
1	HB3-CB	0.0	-3.60/-2.99/-2.47	2.56/2.67/2.71
2	HB1-CB	0.0	-3.70/-3.81/-2.94	2.82/2.75/2.92
3	HB2-CB	0.0	-3.90/-3.61/-2.56	2.59/2.64/2.70
4	HG1-CG	0.0	-4.65/-4.46/-3.27	2.53/2.62/2.70
5	HG2-CG	0.0	-7.43/-6.26/-6.01	3.01/3.21/3.46
6	HD-CD	0.0	-5.64/-5.34/-3.40	2.37/2.56/2.68
7	HE11-CE1	0.0	-6.20/-5.96/-5.04	2.34/2.46/2.50
8	HE11-CE1	90.0	-6.23/-6.03/-5.09	2.34/2.46/2.50
9	HE22-CE2	0.0	-6.00/-5.94/-5.01	2.32/2.45/2.49
10	$\operatorname{HE}22\text{-}\operatorname{CE}2$	90.0	-6.30/-6.03/-5.07	2.29/2.45/2.48
11	HZ11-CZ1	0.0	-6.53/-6.22/-7.45	2.38/2.49/2.44
12	HZ11-CZ1	90.0	-6.94/-6.38/-7.61	2.33/2.48/2.43
13	HZ22-CZ2	0.0	-6.53/-6.25/-7.48	2.38/2.49/2.44
14	HZ22-CZ2	90.0	-6.94/-6.41/-7.65	2.33/2.48/2.43
15	HH-CH	0.0	-8.39/-7.41/-8.70	2.24/2.52/2.49
16	HJ1-NJ	0.0	-16.20/-16.29/-18.08	1.75/1.75/1.74
17	HJ1-NJ	45.0	-16.44/-16.38/-18.26	1.75/1.75/1.74
18	HJ1-NJ	90.0	-16.52/-16.40/-18.30	1.74/1.75/1.74
19	HJ1-NJ	135.0	-16.27/-16.30/-18.12	1.74/1.75/1.74
20	$\mathrm{HJ}2\text{-}\mathrm{NJ}$	0.0	-16.21/-16.30/-18.10	1.75/1.75/1.74
21	$\mathrm{HJ}2\text{-}\mathrm{NJ}$	45.0	-16.28/-16.31/-18.13	1.74/1.75/1.74
22	$\mathrm{HJ}2\text{-}\mathrm{NJ}$	90.0	-16.53/-16.41/-18.32	1.74/1.75/1.74
23	$\mathrm{HJ}2\text{-}\mathrm{NJ}$	135.0	-16.45/-16.40/-18.28	1.74/1.75/1.74
24	HJ3-NJ	0.0	-5.50/-6.07/-6.29	3.33/3.70/3.65
25	HJ3-NJ	45.0	-6.00/-6.19/-6.31	3.06/3.69/3.64
26	HJ3-NJ	90.0	-9.88/-6.22/-6.23	1.73/3.69/3.66
27	HJ3-NJ	135.0	-6.83/-6.10/-6.21	1.75/3.71/3.66

1.25 Small molecule used for 5-methyl-arginine(AGM)

Figure S27: The molecule used for water complex calculations corresponding to N-[(2S)-butan-2-yl]gua nidine, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S77: Statistics of calculated water interaction and dipole moment for N-[(2S)-butan-2-yl]guanidine.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.44/2.49	0.15/0.36	2.712	5.36/6.65	4.07
Optimal	0.42/1.26	0.15/0.42	1.845	5.36/5.40	6.16

Table S78: The comparison list of optimized atomic charges and their initial guess for N-[(2S)-butan-2-yl]guanidine, referring to the penalties of initial guess

Optimal 0.090

-0.270

0.090

0.090

-0.180

0.090

0.090

0.341

0.090

-0.620

0.356

-0.263

0.090

0.090

0.090

0.706

-0.706

0.385

0.385

-0.706

0.381

0.381

0.460

0.000

Atom

HB3 CB

HB2

HB1

CG

HG1

HG2

 CD

HD

NE1

HE1

CE2

HE21

HE22

HE23

CZ

NH2

HH22

HH21

NH1

HH12

HH11

		1	11101	lai chaige	5	
Charges		-	N	Probe	Angle	Eı
T 1				site	(*)	QN
Initial	Penalty	_	1	HB3-CB	0.0	-4
0.090	0.030		2	HB2-CB	0.0	-4
0.262	3 071		3	HB1-CB	0.0	-:
-0.202	0.071		4	HGI-CG	0.0	
0.090	0.030		Э с	HG2-CG	0.0	- :
0.090	0.030		7	HE1-NE1	0.0	-12
0 1 0 2	0.002		8	HE1-NE1	45.0	-12
-0.192	9.002		9	HE1-NE1	90.0	- 14
0.090	0.303		10	HE1-NE1	135.0	-13
0.090	0.303		11	HE21-CE2	0.0	- ;
0.000	15 075		12	$\operatorname{HE}22\text{-}\operatorname{CE}2$	0.0	-4
0.262	15.875		13	$\operatorname{HE}23\operatorname{-}\operatorname{CE}2$	0.0	- ;
0.090	0.738		14	$\rm HH22\text{-}NH2$	0.0	-13
-0 706	11 015		15	HH22-NH2	45.0	-13
-0.700	11.310		16	HH22-NH2	90.0	-14
0.440	0.630		17	HH22-NH2	135.0	-14
-0.230	13.551		18	HH21-NH2 HH21 NH2	0.0	-12
0.000	0.025		19 20	HH21-NH2	40.0 90.0	-13
0.090	0.920		21	HH21-NH2	135.0	-13
0.090	0.925		22	HH12-NH1	0.0	-13
0.090	0.925		23	HH12-NH1	45.0	-13
0 629	1 090		24	HH12-NH1	90.0	-14
0.030	1.909		25	$\rm HH12\text{-}NH1$	135.0	- 14
-0.800	0.030		26	HH11-NH1	0.0	-1
0.460	0.000		27	HH11-NH1	45.0	-1
0.100	0.000		28	HH11-NH1	90.0	-1
0.460	0.000		29	HH11-NH1	135.0	-8
-0.800	0.030					
0.460	0.000					

Table S79: Interaction energies and geometries between probe water and selected N-[(2S)-butan-2yl]guanidine site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(*)	$\rm QM/Optimal/Initial$	${ m QM}/{ m Optimal}/{ m Initial}$
1	HB3 CB	0.0	-4.02/-3.36/-3.16	2.51/2.64/2.65
2	HB2-CB	0.0	-4.85/-4.79/-4.79	4.10/4.12/4.27
3	HB1-CB	0.0	-3.76/-3.94/-3.43	2.67/2.67/2.71
4	HG1-CG	0.0	-5.81/-5.46/-5.16	2.47/2.59/2.61
5	HG2-CG	0.0	-5.12/-4.85/-4.38	2.46/2.59/2.61
6	HD-CD	0.0	-6.40/-7.67/-6.85	2.57/2.57/2.61
7	HE1-NE1	0.0	-12.41/-13.02/-14.12	1.88/1.84/1.80
8	HE1-NE1	45.0	-12.84/-13.23/-14.33	1.87/1.83/1.80
9	HE1-NE1	90.0	-14.04/-13.85/-15.08	1.84/1.82/1.79
10	HE1-NE1	135.0	-13.63/-13.66/-14.89	1.85/1.82/1.79
11	HE21-CE2	0.0	-5.42/-6.02/-5.77	2.67/2.63/2.65
12	$\operatorname{HE}22\operatorname{-}\operatorname{CE}2$	0.0	-4.99/-5.06/-4.80	2.54/2.59/2.60
13	$\operatorname{HE}23$ - $\operatorname{CE}2$	0.0	-5.18/-5.13/-4.89	2.44/2.55/2.56
14	$\rm HH22-NH2$	0.0	-13.03/-13.41/-15.23	1.83/1.80/1.77
15	$\rm HH22\text{-}NH2$	45.0	-13.03/-13.41/-15.21	1.83/1.80/1.77
16	$\rm HH22\text{-}NH2$	90.0	-14.02/-13.87/-15.79	1.80/1.80/1.76
17	$\rm HH22\text{-}NH2$	135.0	-14.00/-13.87/-15.81	1.80/1.80/1.76
18	$\rm HH21\text{-}NH2$	0.0	-12.86/-13.53/-15.35	1.84/1.80/1.77
19	$\rm HH21\text{-}NH2$	45.0	-13.20/-13.67/-15.46	1.83/1.80/1.77
20	$\rm HH21\text{-}NH2$	90.0	-14.20/-14.11/-15.99	1.80/1.79/1.76
21	$\rm HH21\text{-}NH2$	135.0	-13.85/-13.97/-15.88	1.81/1.80/1.76
22	$\rm HH12-NH1$	0.0	-13.11/-13.33/-15.15	1.83/1.81/1.77
23	$\rm HH12-NH1$	45.0	-13.14/-13.34/-15.16	1.83/1.81/1.77
24	$\rm HH12-NH1$	90.0	-14.14/-13.82/-15.77	1.80/1.80/1.76
25	$\rm HH12-NH1$	135.0	-14.10/-13.81/-15.75	1.80/1.80/1.76
26	$\rm HH11\text{-}NH1$	0.0	-7.70/-7.92/-8.18	2.32/2.74/2.68
27	HH11-NH1	45.0	-7.48/-8.06/-8.39	2.32/2.73/2.67
28	HH11-NH1	90.0	-7.88/-8.43/-8.71	2.35/2.71/2.65
29	HH11-NH1	135.0	-8.22/-8.30/-8.52	2.34/2.72/2.67

1.26 Small molecule A of S-(S)-amino[(4-aminobutyl)amino]methyl-L-cysteine(AGT)

Figure S28: The molecule used for water complex calculations corresponding to [(S)-amino(methylsulf anyl)methyl](methyl)amine, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S80: Statistics of calculated water interaction and dipole moment for [(S)-amino(methylsulfan yl)methyl](methyl)amine.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	2.66/4.13	0.15/0.34	7.602	5.62/8.16	19.80
Optimal	0.51/1.57	0.13/0.31	2.106	5.62/5.89	2.75

Table S81: The comparison list of optimized atomic charges and their initial guess for [(S)-amino(meth ylsulf anyl)methyl](methyl)amine, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.850
CB	-0.027	-0.220	11.408
HB1	0.090	0.090	0.850
HB2	0.090	0.090	0.850
\mathbf{SG}	-0.215	-0.076	115.754
CZ	0.424	0.484	187.553
HZ	0.159	0.090	7.361
NH2	-0.432	-0.318	54.685
HH21	0.300	0.330	3.377
HH22	0.300	0.330	3.377
HH23	0.300	0.330	3.377
NE	-0.672	-0.733	137.988
\mathbf{HE}	0.340	0.380	7.984
CD	-0.017	-0.137	13.840
HD1	0.090	0.090	1.195
HD2	0.090	0.090	1.195
HD3	0.090	0.090	1.195

Table S82: Interaction energies and geometries between probe water and selected [(S)-amino(meth ylsulfanyl)methyl](methyl)amine site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initia$
1	HB3 CB	0.0	-6.56/-4.99/-4.10	2.25/2.53/2.59
2	HB1-CB	0.0	-8.20/-7.60/-7.26	2.46/2.56/2.62
3	HB2-CB	0.0	-5.86/-5.77/-4.90	2.37/2.52/2.56
4	HZ-CZ	0.0	-9.96/-9.08/-8.79	2.16/2.46/2.48
5	$\rm HH21\text{-}NH2$	0.0	-14.62/-14.40/-17.64	1.83/1.83/1.76
6	$\rm HH21\text{-}NH2$	45.0	-15.05/-14.84/-17.80	1.83/1.82/1.76
7	$\rm HH21\text{-}NH2$	90.0	-14.76/-14.84/-17.75	1.84/1.82/1.76
8	$\rm HH21\text{-}NH2$	135.0	-14.21/-14.38/-17.55	1.84/1.83/1.76
9	$\rm HH22\text{-}NH2$	0.0	-13.85/-14.14/-17.98	1.86/1.82/1.75
10	$\rm HH22\text{-}NH2$	45.0	-15.10/-14.82/-18.36	1.84/1.81/1.75
11	$\rm HH22\text{-}NH2$	90.0	-15.75/-15.18/-18.65	1.82/1.81/1.75
12	$\rm HH22\text{-}NH2$	135.0	-14.62/-14.53/-18.30	1.84/1.82/1.75
13	$\mathrm{H}\mathrm{H}23\text{-}\mathrm{N}\mathrm{H}2$	0.0	-15.47/-15.54/-19.34	1.75/1.77/1.72
14	$\mathrm{H}\mathrm{H}23\text{-}\mathrm{N}\mathrm{H}2$	45.0	-15.84/-15.64/-19.42	1.74/1.76/1.72
15	$\rm HH23$ - $\rm NH2$	90.0	-15.56/-15.48/-19.36	1.75/1.77/1.72
16	$\mathrm{H}\mathrm{H}23\text{-}\mathrm{N}\mathrm{H}2$	135.0	-15.20/-15.39/-19.28	1.76/1.77/1.72
17	HE-NE	0.0	-7.99/-8.01/-7.34	2.54/2.74/2.71
18	HE-NE	45.0	-8.16/-8.10/-7.50	2.52/2.73/2.69
19	HE-NE	90.0	-8.09/-8.40/-7.48	2.60/2.70/2.69
20	HE-NE	135.0	-7.94/-8.31/-7.33	2.61/2.70/2.71
21	HD1-CD	0.0	-6.55/-6.22/-5.22	2.40/2.54/2.60
22	HD2-CD	0.0	-7.08/-6.93/-6.52	2.51/2.57/2.64
23	HD3-CD	0.0	-5.95/-4.85/-3.86	2.35/2.56/2.62

1.27 Small molecule used for beta-hydroxyasparagine(AHB)

Figure S29: The molecule used for water complex calculations corresponding to (2S)-2-hydroxypropana mide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S83: Statistics of calculated water interaction and dipole moment for (2S)-2-hydroxypropanamide.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.45/0.81	0.07/0.19	2.012	4.49/5.05	1.04
Optimal	0.28/0.49	0.07/0.25	2.406	4.49/5.22	1.81

Table S84: The comparison list of optimized atomic charges and their initial guess for (2S)-2-hydrox ypropanamide, referring to the penalties of initial guess

Table S85: Interaction energies and geometries between probe water and selected (2S)-2-hydroxypro panamide site calculated using the optimized and initial charges

Atom		Charges	
Atom	Optimal	Initial	Penalty
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.268	0.050
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
CB	0.209	0.165	22.240
$_{\mathrm{HB}}$	0.090	0.090	0.050
OB	-0.609	-0.623	22.694
HOB	0.308	0.369	1.783
CG	0.495	0.540	12.508
OD1	-0.471	-0.534	1.525
ND2	-0.688	-0.629	18.343
HD21	0.333	0.310	0.262
HD22	0.333	0.310	0.262

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(*)	${ m QM}/{ m Optimal}/{ m Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HA3-CA	0.0	-0.92/-0.63/-0.68	2.61/2.66/2.66
2	HA2-CA	0.0	-0.65/-0.34/-0.28	2.75/2.75/2.77
3	HA-CA	0.0	-2.08/-2.44/-2.44	2.72/2.66/2.66
4	HB-CB	0.0	-2.05/-2.43/-2.31	2.58/2.62/2.63
5	OB-CB	0.0	-6.18/-6.31/-6.15	1.84/1.86/1.86
6	OB-CB	90.0	-5.89/-5.87/-5.84	1.83/1.86/1.86
7	OB-CB	180.0	-5.06/-5.04/-5.15	1.86/1.88/1.87
8	OB-CB	270.0	-5.98/-5.71/-5.68	1.83/1.87/1.87
9	OD1-CG	0.0	-4.81/-5.19/-5.62	1.89/1.80/1.78
10	OD1-CG	90.0	-5.03/-5.06/-5.70	1.87/1.80/1.77
11	OD1-CG	180.0	-4.91/-4.82/-5.62	1.87/1.80/1.76
12	OD1-CG	270.0	-5.02/-5.08/-5.76	1.87/1.79/1.77
13	ND2-CG	0.0	-0.67/-0.27/-0.00	2.48/2.35/2.43
14	ND2-CG	180.0	-1.42/-1.52/-1.21	2.51/2.26/2.32
15	HD21-ND2	0.0	-7.16/-7.65/-7.44	1.88/1.87/1.88
16	HD21-ND2	45.0	-7.25/-7.68/-7.46	1.88/1.87/1.88
17	HD21-ND2	90.0	-7.59/-7.82/-7.58	1.86/1.87/1.88
18	HD21-ND2	135.0	-7.51/-7.79/-7.56	1.86/1.87/1.88
19	HD22-ND2	0.0	-6.10/-5.74/-5.49	1.84/1.87/1.88
20	HD22-ND2	45.0	-5.90/-5.59/-5.32	1.84 / 1.88 / 1.89
21	HD22-ND2	90.0	-5.70/-5.47/-5.19	1.85/1.88/1.89
22	HD22-ND2	135.0	-5.88/-5.61/-5.35	1.85/1.88/1.89

Figure S30: The molecule used for water complex calculations corresponding to [(1S)-1-hydroxyethoxy]s ulfonicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S86: Statistics of calculated water interaction and dipole moment for [(1S)-1-hydroxyethoxy] sulfo nicacid.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.43/2.51	0.13/0.17	5.756	5.04/2.97	21.08
Optimal	0.27/0.58	0.15/0.28	3.583	5.04/3.54	1.72

Table S87: The comparison list of optimized atomic charges and their initial guess for [(1S)-1-hydroxye thoxy]sulfonicacid, referring to the penalties of initial guess

Table S88: Interaction energies and geometries between probe water and selected [(1S)-1-hydroxyeth oxy]sulfonicacid site calculated using the optimized and initial charges

Atom		Charges	
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.271	2.620
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
CB	0.059	-0.039	8.625
HB	0.090	0.090	0.300
OG	-0.585	-0.658	9.244
$\mathbf{H}\mathbf{G}$	0.399	0.413	0.750
OS1	-0.285	-0.184	7.568
\mathbf{S}	0.873	1.329	2.549
OS2	-0.517	-0.650	0.030
OS3	-0.517	-0.650	0.030
OS4	-0.517	-0.650	0.030

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(°)	$\rm QM/Optimal/Initial$	${ m QM}/{ m Optimal}/{ m Initial}$
1	OG-CB	0.0	-8.75/-8.50/-9.77	1.86/1.86/1.83
2	OG-CB	90.0	-8.57/-8.42/-9.88	1.85/1.85/1.82
3	OG-CB	180.0	-8.40/-8.98/-10.36	1.88/1.84/1.81
4	OG-CB	270.0	-9.22/-9.27/-10.40	1.84/1.84/1.82
5	OS1-CB	0.0	-9.95/-9.99/-7.44	2.00/1.77/1.87
6	OS1-CB	90.0	-8.12/-8.30/-6.22	2.04/1.80/1.91
7	OS1-CB	180.0	-6.29/-6.47/-4.76	2.12/1.83/1.94
8	OS1-CB	270.0	-7.56/-7.35/-5.12	2.06/1.82/1.95
9	OS2-S	0.0	-9.25/-9.63/-10.47	1.86/1.74/1.71
10	OS2-S	90.0	-9.40/-9.63/-10.67	1.86/1.74/1.71
11	OS2-S	180.0	-9.63/-9.65/-10.50	1.85/1.74/1.71
12	OS2-S	270.0	-9.64/-9.70/-10.39	1.85/1.74/1.71
13	OS3-S	0.0	-9.56/-9.91/-10.46	1.86/1.74/1.71
14	OS3-S	90.0	-9.48/-9.71/-10.37	1.86/1.74/1.71
15	OS3-S	180.0	-9.41/-9.60/-10.43	1.86/1.74/1.71
16	OS3-S	270.0	-9.54/-9.81/-10.56	1.86/1.74/1.71
17	OS4-S	0.0	-7.87/-8.28/-9.54	1.90/1.77/1.73
18	OS4-S	90.0	-8.32/-8.47/-9.23	1.85/1.74/1.71
19	OS4-S	180.0	-7.95/-8.43/-9.16	1.87 / 1.74 / 1.71
20	OS4-S	270.0	-8.14/-8.34/-9.45	1.86/1.75/1.72

1.29 Small molecule A of 5'-O-[(S)-[(5S)-5-amino-6-oxohexyl]amino(hydrox y)phosphoryl]adenosine(APK)

Figure S31: The molecule used for water complex calculations corresponding to (ethylamino)(methoxy)p hosphinicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S89: Statistics of calculated water interaction and dipole moment for (ethylamino)(methoxy)pho sphinicacid.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	${\rm Energy}\;(\rm kcal/mol)$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.10/0.19	0.14/0.24	3.513	7.28/6.19	2.07
Optimal	0.42/0.78	0.20/0.39	3.222	7.28/6.12	2.46

Table S90: The comparison list of optimized atomic charges and their initial guess for (ethylamino)(me thoxy)phosphinicacid, referring to the penalties of initial guess

Atom	Charges				
Atom	Optimal	Initial	Penalty		
HD3	0.090	0.090	0.000		
CD	-0.346	-0.270	1.000		
HD1	0.090	0.090	0.000		
HD2	0.090	0.090	0.000		
CE	-0.049	-0.111	4.194		
HE1	0.090	0.090	0.450		
HE2	0.090	0.090	0.450		
NZ	-0.746	-0.847	4.197		
HZ	0.330	0.330	0.000		
Р	1.287	1.568	1.324		
O1P	-0.785	-0.820	0.045		
O2P	-0.785	-0.820	0.045		
O5P	-0.463	-0.561	0.418		
C5P	-0.163	-0.189	0.000		
H5P1	0.090	0.090	0.000		
H5P2	0.090	0.090	0.000		
HT	0.090	0.090	0.000		

Table S91: Interaction energies and geometries between probe water and selected (ethylamino)(meth oxy)phosphinicacid site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
18	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	$\rm QM/Optimal/Initial$
1	NZ-CE	0.0	-2.96/-3.53/-2.89	4.24/3.91/4.07
2	NZ-CE	90.0	-2.05/-2.63/-1.95	4.33/3.96/4.12
3	NZ-CE	180.0	-2.22/-3.00/-2.26	4.31/3.92/4.07
4	NZ-CE	270.0	-3.14/-3.84/-3.27	4.23/3.89/4.01
5	O1P-P	0.0	-13.41/-13.73/-13.51	1.75/1.66/1.66
6	O1P-P	90.0	-13.82/-14.00/-13.82	1.75/1.65/1.66
7	O1P-P	180.0	-14.14/-14.40/-14.12	1.75/1.65/1.65
8	O1P-P	270.0	-13.87/-14.25/-13.90	1.75/1.65/1.65
9	O2P-P	0.0	-13.37/-13.49/-13.45	1.75/1.66/1.66
10	O2P-P	90.0	-13.45/-13.70/-13.64	1.75/1.65/1.66
11	O2P-P	180.0	-14.04/-14.21/-14.00	1.74/1.65/1.65
12	O2P-P	270.0	-13.86/-13.95/-13.78	1.74/1.65/1.66
13	O5P-P	0.0	-7.72/-7.25/-7.55	1.91/1.76/1.75
14	O5P-P	90.0	-9.02/-9.33/-9.02	1.88/1.73/1.73
15	O5P-P	180.0	-12.80/-13.29/-12.93	1.81/1.68/1.68
16	O5P-P	270.0	-9.83/-9.78/-9.90	1.87/1.73/1.72

1.30 Small molecule used for c-gamma-hydroxyarginine(ARO)

Figure S32: The molecule used for water complex calculations corresponding to N-[(2R)-2-hydroxypro pyl]guanidine, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S92: Statistics of calculated water interaction and dipole moment for N-[(2R)-2-hydroxypropyl]g uanidine.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.52/2.41	0.12/0.37	3.225	6.04/7.59	2.54
Optimal	0.26/0.61	0.11/0.36	1.320	6.04/5.87	2.12

Table S93: The comparison list of optimized atomic charges and their initial guess for N-[(2R)-2-hydr oxypropyl]guanidine, referring to the penalties of initial guess

Table S94: Interaction energies and geometries between probe water and selected N-[(2R)-2-hydrox ypropyl]guanidine site calculated using the optimized and initial charges

Atom	Charges					
Atom	Optimal	Initial	$\mathbf{Penalty}$			
HB3	0.090	0.090	0.300			
CB	-0.270	-0.270	3.009			
HB1	0.090	0.090	0.300			
HB2	0.090	0.090	0.300			
CG	0.273	0.139	4.744			
HG	0.090	0.090	0.300			
OH	-0.596	-0.645	2.500			
HH	0.385	0.419	0.000			
CD	0.064	0.200	4.150			
HD1	0.090	0.090	0.045			
HD2	0.090	0.090	0.045			
NE	-0.681	-0.700	3.838			
\mathbf{HE}	0.411	0.440	0.030			
CZ	0.746	0.637	0.030			
NH1	-0.689	-0.800	0.000			
HH11	0.377	0.460	0.000			
HH12	0.377	0.460	0.000			
NH2	-0.689	-0.800	0.000			
HH21	0.376	0.460	0.000			
HH22	0.376	0.460	0.000			

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(°)	$\rm QM/Optimal/Initial$	${ m QM}/{ m Optimal}/{ m Initial}$
1	HB3-CB	0.0	-4.32/-3.84/-3.30	2.45/2.59/2.62
2	HB1-CB	0.0	-5.21/-5.15/-4.92	2.49/2.57/2.59
3	HB2-CB	0.0	-4.52/-4.54/-4.23	2.52/2.60/2.62
4	HG-CG	0.0	-4.77/-5.04/-4.18	2.48/2.59/2.64
5	HH-OH	0.0	-10.17/-10.40/-10.35	1.85/1.84/1.83
6	HH-OH	45.0	-10.32/-10.47/-10.37	1.85/1.83/1.82
7	HH-OH	90.0	-10.65/-10.62/-10.55	1.85/1.83/1.82
8	HH-OH	135.0	-10.54/-10.57/-10.54	1.85/1.83/1.82
9	HD1-CD	0.0	-6.52/-6.68/-6.99	2.44/2.55/2.54
10	HD2-CD	0.0	-6.78/-7.02/-7.18	2.42/2.56/2.55
11	HE-NE	0.0	-4.65/-4.72/-4.39	2.69/3.05/3.06
12	HE-NE	45.0	-3.93/-4.53/-4.15	3.01/3.10/3.14
13	HE-NE	90.0	-4.55/-4.85/-4.51	2.93/3.06/3.08
14	HE-NE	135.0	-5.37/-5.05/-4.76	2.65/3.01/3.02
15	$\rm HH11\text{-}NH1$	0.0	-11.38/-11.57/-13.54	1.92/1.92/1.87
16	$\rm HH11\text{-}NH1$	45.0	-11.69/-11.66/-13.67	1.91/1.92/1.87
17	$\rm HH11\text{-}NH1$	90.0	-12.32/-12.42/-14.59	1.91/1.91/1.85
18	$\rm HH11\text{-}NH1$	135.0	-12.08/-12.35/-14.48	1.91/1.91/1.85
19	$\rm HH12-NH1$	0.0	-12.97/-13.29/-15.13	1.83/1.81/1.77
20	$\rm HH12$ - $\rm NH1$	45.0	-13.09/-13.34/-15.19	1.83/1.81/1.77
21	$\rm HH12$ - $\rm NH1$	90.0	-14.11/-13.83/-15.80	1.80/1.80/1.76
22	$\rm HH12-NH1$	135.0	-13.99/-13.78/-15.74	1.80/1.80/1.76
23	$\rm HH21\text{-}NH2$	0.0	-12.86/-13.24/-15.07	1.84/1.81/1.77
24	$\rm HH21\text{-}NH2$	45.0	-12.87/-13.25/-15.07	1.84/1.81/1.77
25	$\rm HH21\text{-}NH2$	90.0	-13.87/-13.72/-15.66	1.80/1.80/1.76
26	$\rm HH21\text{-}NH2$	135.0	-13.84/-13.71/-15.66	1.80/1.80/1.76
27	$\rm HH22\text{-}NH2$	0.0	-13.14/-13.47/-15.42	1.82/1.80/1.76
28	$\rm HH22\text{-}NH2$	45.0	-13.32/-13.50/-15.39	1.81/1.80/1.76
29	$\rm HH22\text{-}NH2$	90.0	-13.94/-13.73/-15.62	1.79/ 1.79/ 1.75
30	$\rm HH22\text{-}NH2$	135.0	-13.72/-13.70/-15.64	1.80/1.79/1.75

Figure S33: The molecule used for water complex calculations corresponding to 2- (propanoyloxy) aceti cacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

|--|

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.50/3.13	0.13/0.31	4.255	12.47/14.55	2.58
Optimal	0.59/1.28	0.11/0.25	3.110	12.47/12.17	4.51

Table S96: The comparison list of optimized atomic charges and their initial guess for 2-(propanoylo xy)aceticacid, referring to the penalties of initial guess

Atom	Charges				
Atom	Optimal	Initial	Penalty		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.270	-0.269	0.000		
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000		
CB	-0.340	-0.220	0.000		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
CG	0.826	0.908	2.500		
OD2	-0.550	-0.642	0.000		
OD1	-0.379	-0.472	3.629		
C2	-0.100	0.021	4.338		
HC21	0.090	0.090	0.000		
HC22	0.090	0.090	0.000		
C1	0.597	0.564	4.409		
01	-0.707	-0.760	0.325		
O2	-0.707	-0.760	0.325		

Table S97: Interaction energies and geometries between probe water and selected 2-(propanoyloxy)a ceticacid site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1,	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	OD2-CG	0.0	-6.69/-6.64/-7.41	1.90/1.77/1.73
2	OD2-CG	90.0	-7.35/-7.58/-8.52	1.90/1.76/1.73
3	OD2-CG	180.0	-8.44/-8.75/-9.83	1.88/1.75/1.72
4	OD2-CG	270.0	-7.34/-7.57/-8.51	1.90/1.76/1.73
5	OD1-CG	0.0	-14.66/-15.67/-17.79	2.08/1.83/1.77
6	OD1-CG	90.0	-6.70/-5.42/-5.52	2.55/2.55/2.52
7	OD1-CG	270.0	-6.69/-5.40/-5.51	2.55/2.55/2.53
8	O1-C1	0.0	-13.32/-12.76/-13.86	1.73/1.67/1.66
9	O1-C1	90.0	-13.53/-13.25/-14.53	1.73/1.67/1.65
10	O1-C1	180.0	-13.99/-13.83/-15.29	1.72/1.66/1.64
11	O1-C1	270.0	-13.53/-13.25/-14.53	1.73/1.67/1.65
12	O2-C1	0.0	-13.39/-13.63/-14.69	1.74/1.67/1.65
13	O2-C1	90.0	-13.46/-13.78/-15.24	1.74/1.67/1.65
14	O2-C1	180.0	-13.88/-14.11/-15.87	1.73/1.66/1.64
15	O2-C1	270.0	-13.46/-13.78/-15.24	1.74/1.67/1.65

1.32 The dipeptide of N-acetylalanine (AYA)

Figure S34: The molecule used for water complex calculations corresponding to (2S)-2-[(1S)-1-hydrox yethyl]amino-N-methylpropanamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S98: Statistics of calculated water interaction and dipole moment for (2S)-2-[(1S)-1-hydroxyeth yl]amino-N-methylpropanamide.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.46/0.89	0.07/0.14	1.413	7.40/7.26	2.56
Optimal	0.43/0.83	0.07/0.14	1.379	7.40/7.24	2.16

Table S99: The comparison list of optimized atomic charges and their initial guess for (2S)-2-[(1S)-1-hy droxyethyl]amino-N-methylpropanamide, referring to the penalties of initial guess

_

Table S100: Interaction energies and geometries be-
tween probe water and selected (2S)-2-[(1S)-1-hy
droxyethyl]amino-N-methylpropanamide site cal-
culated using the optimized and initial charges

Atom	Charges					
Atom	Optimal	Initial	Penalty			
CM	-0.270	-0.270	0.000			
HM1	0.090	0.090	0.000			
HM2	0.090	0.090	0.000			
HM3	0.090	0.090	0.000			
CT	0.510	0.512	0.000			
OT	-0.510	-0.510	0.000			
Ν	-0.470	-0.467	0.000			
HN1	0.310	0.307	0.000			
\mathbf{CA}	0.070	0.071	0.000			
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000			
CB	-0.270	-0.269	0.000			
HB1	0.090	0.090	0.000			
HB2	0.090	0.090	0.000			
HB3	0.090	0.090	0.000			
С	0.510	0.509	0.000			
Ο	-0.510	-0.513	0.000			
\mathbf{NR}	-0.470	-0.474	0.000			
$_{\mathrm{HR}}$	0.310	0.312	0.000			
\mathbf{CR}	-0.110	-0.108	0.000			
HR1	0.090	0.090	0.000			
$\mathrm{HR2}$	0.090	0.090	0.000			
$\mathrm{HR3}$	0.090	0.090	0.000			

N Probe		Angle	Energy (kcal/mol)	Distance (Å)
1	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	O-C	0.0	-5.41/-5.90/-5.97	1.86/1.77/1.77
2	O-C	90.0	-5.54/-6.04/-6.12	1.85/1.77/1.76
3	O-C	180.0	-4.91/-5.73/-5.80	1.86/1.76/1.76
4	O-C	270.0	-5.07/-5.79/-5.86	1.85/1.76/1.76
5	NR-C	0.0	-0.02/-0.27/-0.29	2.56/2.52/2.52
6	$\mathrm{HR} ext{-}\mathrm{NR}$	0.0	-6.63/-7.46/-7.48	1.94/1.90/1.90
7	$\mathrm{HR} ext{-}\mathrm{NR}$	45.0	-7.17/-7.68/-7.70	1.92/1.89/1.89
8	$\mathrm{HR} ext{-}\mathrm{NR}$	90.0	-7.64/-7.89/-7.92	1.90/ 1.89/ 1.89
9	$\mathrm{HR} ext{-}\mathrm{NR}$	135.0	-7.12/-7.68/-7.70	1.92/1.89/1.89
10	$\mathrm{HR2} ext{-}\mathrm{CR}$	0.0	-1.69/-1.61/-1.61	2.68/2.67/2.67
11	$\mathrm{HR3} ext{-}\mathrm{CR}$	0.0	-1.52/-1.46/-1.46	2.68/2.66/2.67
12	HA-CA	0.0	-3.27/-4.04/-4.06	2.79/2.69/2.69
13	N-CT	0.0	-1.50/-1.66/-1.68	2.23/2.25/2.25
14	HN1-N	0.0	-2.38/-2.10/-2.03	1.87/2.01/2.01
15	HN1-N	135.0	-0.79/-1.37/-1.30	2.00/2.05/2.06
16	$\mathrm{HM1}\text{-}\mathrm{CM}$	0.0	-2.05/-2.02/-2.04	2.61/2.67/2.66
17	$\mathrm{HM2}\text{-}\mathrm{CM}$	0.0	-1.78/-1.89/-1.91	3.21/3.21/3.21
18	${ m HM3-CM}$	0.0	-0.62/-0.29/-0.30	2.63/2.72/2.71
19	OT-CT	0.0	-6.35/-6.22/-6.20	1.83/1.77/1.77
20	OT-CT	90.0	-6.51/-6.38/-6.37	1.83/1.77/1.77
21	OT-CT	180.0	-6.63/-6.47/-6.47	1.83/1.77/1.77
22	OT-CT	270.0	-6.43/-6.34/-6.33	1.83/1.77/1.77
23	${ m HB1-CB}$	0.0	-1.30/-0.85/-0.84	2.47/2.61/2.61
24	$\mathrm{HB2}\text{-}\mathrm{CB}$	0.0	-2.11/-2.04/-2.05	2.79/2.76/2.76
25	HB3-CB	0.0	-1.39/-1.81/-1.81	2.79/2.68/2.68

1.33 Small molecule used for azido-alanine(AZDA)

Figure S35: The molecule used for water complex calculations corresponding to 1-ethyl-2lambda4-triaz a-1,2-diene, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S101: Statistics of calculated water interaction and dipole moment for 1-ethyl-2lambda4-triaza-1,2-diene.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	-/-	-/-	-	-/-	-
Optimal	0.18/0.33	0.10/0.17	1.626	2.40/2.79	4.73

Table S102: The comparison list of optimized atomic charges and their initial guess for 1-ethyl-2l ambda4-triaza-1,2-diene, referring to the penalties of initial guess

Table S103: Interaction energies and geometries be-
tween probe water and selected 1-ethyl-2lambda4-t
riaza-1,2-diene site calculated using the optimized
and initial charges

Atom		Charges	
Atom	Optimal	$\operatorname{Initial}$	Penalty
HA3	0.090	-	
HA2	0.090	-	
\mathbf{CA}	-0.270	-	
$\mathbf{H}\mathbf{A}$	0.090	-	
CB	0.117	-	
HB1	0.090	-	
HB2	0.090	-	
NG	-0.525	-	
ND	0.489	-	
NE	-0.261	-	

Ν	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	NG-CB	0.0	-4.49/-4.65/-	2.01/1.93/-
2	NG-CB	90.0	-4.47/-4.45/-	1.98/1.92/-
3	NG-CB	180.0	-3.88/-3.93/-	2.02/1.94/-
4	NG-CB	270.0	-4.56/-4.33/-	1.98/1.93/-
5	NE-ND	0.0	-2.02/-2.24/-	2.26/2.09/-
6	NE-ND	90.0	-1.94/-2.02/-	2.26/2.10/-
7	NE-ND	180.0	-1.71/-1.80/-	2.28/2.11/-
8	NE-ND	270.0	-1.92/-2.03/-	2.26/2.10/-
9	${ m HA3-CA}$	0.0	-1.12/-0.80/-	2.68/2.70/-
10	${ m HA2-CA}$	0.0	-1.42/-1.50/-	2.71/2.68/-
11	HA-CA	0.0	-1.51/-1.52/-	2.62/2.63/-
12	$\operatorname{HB1-CB}$	0.0	-1.73/-2.06/-	2.62/2.61/-
13	$\mathrm{HB2}\text{-}\mathrm{CB}$	0.0	-1.46/-1.27/-	2.60/2.67/-
1.34 Small molecule used for azidohomoalanine(AZH)

Figure S36: The molecule used for water complex calculations corresponding to 1-ethyl-2lambda4-triaz a-1,2-diene, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S104: Statistics of calculated water interaction and dipole moment for 1-ethyl-2lambda4-triaza-1,2-diene.

	RMS/Max Deviation from QM Energy (kcal/mol) Distance (Å)		Electrostatic potential	Dipole moment	Dipole angle
			m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	-/-	-/-	-	-/-	-
Optimal	0.18/0.33	0.10/0.17	1.626	2.40/2.79	4.73

Table S105: The comparison list of optimized atomic charges and their initial guess for 1-ethyl-2l ambda4-triaza-1,2-diene, referring to the penalties of initial guess

Table S106: Interaction energies and geometries be-
tween probe water and selected 1-ethyl-2lambda4-t
riaza-1,2-diene site calculated using the optimized
and initial charges

Atom		Charges	
Atom	Optimal	$\operatorname{Initial}$	Penalty
HA3	0.090	-	
HA2	0.090	-	
\mathbf{CA}	-0.270	-	
$\mathbf{H}\mathbf{A}$	0.090	-	
CB	0.117	-	
HB1	0.090	-	
HB2	0.090	-	
NG	-0.525	-	
ND	0.489	-	
NE	-0.261	-	

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	NG-CB	0.0	-4.49/-4.65/-	2.01/1.93/-
2	NG-CB	90.0	-4.47/-4.45/-	1.98/1.92/-
3	NG-CB	180.0	-3.88/-3.93/-	2.02/1.94/-
4	NG-CB	270.0	-4.56/-4.33/-	1.98/1.93/-
5	NE-ND	0.0	-2.02/-2.24/-	2.26/2.09/-
6	NE-ND	90.0	-1.94/-2.02/-	2.26/2.10/-
7	NE-ND	180.0	-1.71/-1.80/-	2.28/2.11/-
8	NE-ND	270.0	-1.92/-2.03/-	2.26/2.10/-
9	${ m HA3-CA}$	0.0	-1.12/-0.80/-	2.68/2.70/-
10	${ m HA2-CA}$	0.0	-1.42/-1.50/-	2.71/2.68/-
11	HA-CA	0.0	-1.51/-1.52/-	2.62/2.63/-
12	$\operatorname{HB1-CB}$	0.0	-1.73/-2.06/-	2.62/2.61/-
13	$\mathrm{HB2}\text{-}\mathrm{CB}$	0.0	-1.46/-1.27/-	2.60/2.67/-

Figure S37: The molecule used for water complex calculations corresponding to trimethyl-1H-imidazo l-5-ol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

|--|

	RMS/Max Deviation from QM Energy (kcal/mol) Distance (Å)		Electrostatic potential	Dipole moment	Dipole angle
			m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.92/1.99 0.12/0.25		3.944	2.69/1.12	16.07
Optimal	0.27/0.51	0.07/0.14	2.347	2.69/3.46	1.48

Table S108: The comparison list of optimized atomic charges and their initial guess for trimet hyl-1H-imidazol-5-ol, referring to the penalties of initial guess

_

Table S109: Interaction energies and geometries be-
tween probe water and selected trimethyl-1H-imi
dazol-5-ol site calculated using the optimized and
initial charges

Atom	Charges				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
CA1	-0.229	-0.113	14.764		
HA1	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
HA3	0.090	0.090	0.000		
C1	0.379	0.239	26.194		
N2	-0.700	-0.679	20.607		
N3	-0.040	-0.042	33.417		
CA2	0.165	0.325	33.412		
C2	0.104	0.071	73.413		
O2	-0.504	-0.554	65.809		
HO	0.432	0.420	4.985		
CB2	-0.270	-0.246	6.867		
HB21	0.090	0.090	0.450		
HB22	0.090	0.090	0.450		
HB23	0.090	0.090	0.450		
CA3	-0.147	-0.231	3.536		
HA31	0.090	0.090	0.000		
HA32	0.090	0.090	0.000		
HA33	0.090	0.090	0.000		

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	$\rm QM/Optimal/Initial$
1	HA1-CA1	0.0	-1.45/-1.66/-1.80	2.67/2.64/2.61
2	HA2-CA1	0.0	-1.56/-1.69/-1.84	2.63/2.64/2.61
3	N2-C1	0.0	-7.90/-8.33/-7.36	1.89/1.89/1.90
4	N2-C1	90.0	-8.35/-8.07/-7.42	1.86/1.89/1.90
5	N2-C1	180.0	-7.33/-7.26/-6.73	1.91/1.91/1.91
6	N2-C1	270.0	-8.37/-8.04/-7.40	1.86/1.89/1.90
7	N3-C1	0.0	-0.63/-0.73/-2.25	2.56/2.47/2.31
8	N3-C1	180.0	-1.70/-2.21/-2.59	2.48/2.37/2.31
9	O2-C2	0.0	-3.08/-3.12/-3.61	2.05/2.19/2.17
10	O2-C2	90.0	-2.09/-2.25/-3.34	2.20/2.22/2.18
11	O2-C2	180.0	-1.32/-1.68/-3.31	2.33/2.25/2.17
12	O2-C2	270.0	-3.13/-3.24/-3.96	2.07/2.17/2.15
13	HO-O2	0.0	-6.62/-6.22/-5.38	1.87/1.97/2.04
14	HO-O2	45.0	-6.61/-6.36/-5.67	1.84/1.96/2.02
15	HO-O2	90.0	-6.03/-6.20/-5.59	1.87/1.97/2.02
16	HO-O2	135.0	-5.91/-6.02/-5.28	1.91/1.98/2.05
17	HB22-CB2	0.0	-2.22/-2.47/-2.94	2.71/2.65/2.60
18	HB23-CB2	0.0	-0.39/-0.09/-0.75	2.84/2.80/2.69
19	HA32-CA3	0.0	-2.00/-2.35/-1.67	2.72/2.64/2.73
20	HA33-CA3	0.0	-1.60/-1.66/-0.80	2.61/2.62/2.71

Figure S38: The molecule used for water complex calculations corresponding to N-[(1S)-1-(1-methyl -4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-2-yl)ethyl]acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S110: Statistics of calculated water interaction and dipole moment for N-[(1S)-1-(1-methyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-2-yl)ethyl] acetamide.

	RMS/Max Deviation from QM Energy (kcal/mol) Distance (Å) 0.97/1.76 0.44/2.26		Electrostatic potential	Dipole moment	Dipole angle
			m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial			6.449	4.14/4.46	51.78
Optimal	0.51/1.11	0.08/0.19	1.846	4.14/4.25	8.20

Table S111: The comparison list of optimized atomic charges and their initial guess for N-[(1S)-1-(1-methyl-4-methylidene-5-oxo-4,5-dihydro-1H -imidazol-2-yl)ethyl]acetamide, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	Penalty
CL	-0.270	-0.270	0.000
HL1	0.090	0.090	0.000
HL2	0.090	0.090	0.000
HL3	0.090	0.090	0.000
CLP	0.510	0.513	6.342
OL	-0.510	-0.510	0.000
Ν	-0.470	-0.452	12.613
Н	0.310	0.287	8.293
\mathbf{CA}	0.270	0.234	17.154
HA	0.090	0.090	0.520
CB	-0.270	-0.267	2.233
HB1	0.090	0.090	0.300
HB2	0.090	0.090	0.300
HB3	0.090	0.090	0.300
C1	0.233	0.058	27.526
N2	-0.679	-0.703	41.131
N3	-0.080	-0.073	17.082
C2	0.407	0.510	20.808
O2	-0.489	-0.482	6.517
CA2	0.466	0.510	42.290
CB2	-0.593	-0.444	13.655
HB21	0.230	0.230	0.950
HB22	0.230	0.230	0.950
CA3	-0.195	-0.271	3.821
HA31	0.090	0.090	0.000
HA32	0.090	0.090	0.000
HA33	0.090	0.090	0.000

Table S112: Interaction energies and geometries between probe water and selected N-[(1S)-1-(1-meth yl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-2-yl)ethyl]acetamide site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(°)	${ m QM}/{ m Optimal}/{ m Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HL1-CL	0.0	-2.68/-2.54/-2.07	2.50/2.60/2.61
2	HL2-CL	0.0	-2.37/-1.88/-1.35	2.49/2.62/2.65
3	HL3-CL	0.0	-1.37/-0.81/-0.56	2.53/2.68/2.69
4	OL-CLP	0.0	-6.07/-6.66/-6.66	1.81/1.76/1.77
5	OL-CLP	90.0	-5.68/-6.12/-6.38	1.82/1.76/1.77
6	OL-CLP	180.0	-4.51/-4.80/-5.83	1.85/1.79/1.78
7	OL-CLP	270.0	-4.97/-5.68/-6.34	1.85/1.78/1.77
8	H-N	0.0	-5.97/-6.89/-4.95	1.87/1.86/1.90
9	H-N	45.0	-5.79/-6.66/-4.68	1.87/1.86/1.91
10	H-N	90.0	-6.64/-7.14/-5.01	1.83/1.85/1.89
11	H-N	135.0	-6.88/-7.41/-5.31	1.83/1.84/1.88
12	HA-CA	0.0	-1.17/-1.68/-0.23	2.81/2.73/2.82
13	HB1-CB	0.0	-0.31/-0.41/0.11	2.74/2.72/5.00
14	HB2-CB	0.0	-1.35/-1.76/-1.16	2.69/2.64/2.67
15	HB3-CB	0.0	-1.43/-1.66/-0.82	2.69/2.65/2.72
16	N2-C1	0.0	-6.44/-6.58/-6.00	1.90/ 1.98/ 1.98
17	N2-C1	90.0	-7.30/-6.19/-6.79	1.90/1.99/1.97
18	N2-C1	180.0	-3.96/-3.69/-5.44	2.10/2.05/2.00
19	N2-C1	270.0	-5.92/-4.96/-5.69	1.91/2.00/1.98
20	N3-C1	0.0	-2.09/-2.13/-2.47	2.71/2.52/2.48
21	O2-C2	0.0	-5.35/-5.70/-5.42	1.87/1.78/1.79
22	O2-C2	90.0	-5.52/-5.68/-4.88	1.86/1.78/1.80
23	O2-C2	180.0	-5.44/-5.54/-4.18	1.86/1.78/1.81
24	O2-C2	270.0	-5.48/-5.72/-4.91	1.86/1.78/1.80
25	HB21-CB2	0.0	-1.64/-1.45/-3.39	2.32/2.47/2.41
26	HB22-CB2	0.0	-1.38/-0.95/-2.47	2.50/2.56/2.47
27	HA31-CA3	0.0	-1.49/-1.55/-0.63	2.65/2.64/2.73

1.37 Small molecule used for phenylserine(BB8)

Figure S39: The molecule used for water complex calculations corresponding to (1R)-1-phenylethan-1-ol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S113: Statistics of calculated water interaction and dipole moment for (1R)-1-phenylethan-1-ol.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.41/0.97	0.07/0.23	2.021	1.67/2.48	2.26
Optimal	0.27/0.71	0.08/0.24	1.517	1.67/2.21	1.47

atomic charges and their initial guess for (1R)-1phenylethan-1-ol, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.269	0.000
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
CB	0.110	0.132	3.300
$_{\mathrm{HB}}$	0.090	0.090	0.000
OG2	-0.575	-0.643	4.339
$\mathrm{HG2}$	0.384	0.413	0.300
CG1	-0.037	-0.001	4.230
CD2	-0.101	-0.111	2.130
HD2	0.115	0.115	0.000
CD1	-0.101	-0.111	2.130
HD1	0.115	0.115	0.000
CE2	-0.115	-0.115	0.000
HE2	0.115	0.115	0.000
CE1	-0.115	-0.115	0.000
HE1	0.115	0.115	0.000
CZ	-0.115	-0.115	0.000
HZ	0.115	0.115	0.000

Table S114: The comparison list of optimized Table S115: Interaction energies and geometries between probe water and selected (1R)-1-phenyletha n-1-ol site calculated using the optimized and initial charges

-					
	N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	14	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
	1	HA3-CA	0.0	-0.83/-0.75/-0.85	2.73/2.73/2.72
	2	HB-CB	0.0	-1.39/-1.52/-1.61	2.70/2.69/2.68
	3	OG2-CB	0.0	-5.58/-5.22/-5.95	1.85/1.89/1.87
	4	OG2-CB	90.0	-5.87/-5.54/-6.27	1.83/1.88/1.86
	5	OG2-CB	180.0	-5.41/-5.68/-6.38	1.87/1.88/1.85
	6	OG2-CB	270.0	-5.66/-5.49/-6.20	1.84/1.88/1.86
	7	HG2-OG2	0.0	-5.93/-5.91/-6.29	1.79/1.83/1.82
	8	HG2-OG2	45.0	-5.48/-5.67/-6.07	1.80/1.84/1.82
	9	HG2-OG2	90.0	-5.91/-5.84/-6.25	1.79/1.83/1.82
	10	HG2-OG2	135.0	-6.37/-6.09/-6.48	1.78/1.83/1.81
	11	HD2-CD2	0.0	-1.60/-1.72/-1.82	2.64/2.66/2.65
	12	HD2-CD2	90.0	-1.82/-1.77/-1.87	2.56/2.65/2.64
	13	HD1-CD1	0.0	-1.08/-0.38/-0.28	2.44/2.68/2.68
	14	HE2-CE2	0.0	-1.32/-1.20/-1.23	2.66/2.70/2.70
	15	HE2-CE2	90.0	-1.49/-1.26/-1.29	2.60/2.69/2.69
	16	HE1-CE1	0.0	-1.29/-1.07/-1.08	2.65/2.70/2.70
	17	HE1-CE1	90.0	-1.42/-1.10/-1.10	2.60/2.70/2.70
	18	HZ-CZ	0.0	-1.28/-1.10/-1.12	2.66/2.71/2.71
_	19	HZ-CZ	90.0	-1.45/-1.16/-1.18	2.61/2.70/2.70

Figure S40: The molecule used for water complex calculations corresponding to [(methylsulfanyl)met hyl]benzene, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S116: Statistics of calculated water interaction and dipole moment for [(methylsulfanyl)methyl]b enzene.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	$\rm QM/MM~(Debye)$	difference (°)
Initial	0.88/1.15	0.19/0.42	6.735	1.61/4.22	54.50
Optimal	0.44/0.94	0.23/0.51	2.306	1.61/1.93	1.74

Table S117: The comparison list of optimized atomic charges and their initial guess for [(methyl sulfanyl)methyl]benzene, referring to the penalties of initial guess

_

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HB3	0.090	0.090	0.000		
CB	-0.268	-0.220	2.500		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
\mathbf{SG}	-0.147	-0.058	20.033		
CD	0.118	0.288	31.010		
HD1	0.090	0.090	0.000		
HD2	0.090	0.090	0.000		
CE	-0.153	-0.364	33.323		
CZ1	-0.115	-0.170	17.051		
HZ1	0.115	0.115	0.000		
CZ2	-0.115	-0.170	17.051		
HZ2	0.115	0.115	0.000		
CH1	-0.115	-0.108	0.000		
HH1	0.115	0.115	0.000		
CH2	-0.115	-0.108	0.000		
HH2	0.115	0.115	0.000		
CJ	-0.115	-0.115	0.000		
$_{ m HJ}$	0.115	0.115	0.000		

Table S118: Interaction energies and geometries between probe water and selected [(methylsulfanyl)m ethyl]benzene site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	${ m HB3-CB}$	0.0	-1.31/-0.37/-1.34	2.60/2.78/2.67
2	${ m HB1-CB}$	0.0	-1.24/-1.12/-2.27	2.71/2.73/2.63
3	$\mathrm{HB}2\text{-}\mathrm{CB}$	0.0	-1.24/-1.12/-2.27	2.71/2.73/2.63
4	HD1-CD	0.0	-1.73/-2.24/-2.87	2.58/2.60/2.56
5	$\mathrm{HD}2\text{-}\mathrm{C}\mathrm{D}$	0.0	-1.73/-2.24/-2.87	2.58/2.60/2.56
6	HZ1-CZ1	0.0	-1.07/-1.15/-0.55	2.65/2.70/2.84
7	HZ1-CZ1	90.0	-1.52/-1.33/-0.83	2.54/2.68/2.78
8	HZ2-CZ2	0.0	-1.07/-1.15/-0.55	2.65/2.70/2.84
9	HZ2-CZ2	90.0	-1.52/-1.33/-0.83	2.54/2.68/2.78
10	$\rm HH1\text{-}CH1$	0.0	-1.23/-0.84/-0.26	2.66/2.73/2.79
11	HH1-CH1	90.0	-1.41/-0.91/-0.33	2.60/2.72/2.78
12	$\rm HH2\text{-}CH2$	0.0	-1.23/-0.84/-0.26	2.66/2.73/2.79
13	$\rm HH2\text{-}CH2$	90.0	-1.41/-0.91/-0.33	2.60/ 2.72/ 2.78
14	HJ-CJ	0.0	-1.23/-0.84/-0.36	2.66/ 2.73/ 2.77
15	HJ-CJ	90.0	-1.40/-0.90/-0.42	2.60/2.72/2.76
16	SG-CB	0.0	-2.08/-2.81/-2.60	2.87/2.38/2.45
17	SG-CB	90.0	-1.78/-2.09/-1.11	2.87/2.43/2.62
18	SG-CB	180.0	-1.38/-1.75/-0.24	2.96/2.45/2.81
19	SG-CB	270.0	-1.78/-2.09/-1.11	2.88/2.43/2.62

1.39 Small molecule used for beta-hydroxyasparticacid(BHD)

Figure S41: The molecule used for water complex calculations corresponding to 2-hydroxypropanoic acid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S119: Statistics of calculated water interaction and dipole moment for 2-hydroxypropanoicacid.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	1.45/1.85	0.08/0.10	2.985	4.73/5.68	0.49
Optimal	0.14/0.26	0.06/0.08	2.589	4.73/4.41	7.16

Table S120: The comparison list of optimized
atomic charges and their initial guess for 2-hydr
oxypropanoicacid, referring to the penalties of ini-
tial guessTable S121: Interaction energies and geometries be-
tween probe water and selected 2-hydroxypropano
icacid site calculated using the optimized and initial
charges

-

7

8 9

12

OD1-CG

OD2-CG

OD2-CG

10 OD2-CG

11 OD2-CG

: 1 - i	tween probe water and selected 2-hydroxypropano icacid site calculated using the optimized and initial					
(char	rges				
	N	Probe	Angle	Energy (kcal/mol)	Distance (Å)	
	14	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$	
	1	OB-CB	0.0	-10.70/-10.61/-9.04	1.81/1.80/1.84	
	2	OB-CB	90.0	-11.02/-10.91/-9.17	1.79/1.79/1.83	
	3	OB-CB	180.0	-10.78/-11.01/-9.13	1.81/1.79/1.83	
	4	OB-CB	270.0	-10.95/-10.85/-9.13	1.80/1.80/1.84	
	5	OD1-CG	0.0	-11.92/-11.86/-12.88	1.77/1.69/1.67	
	6	OD1-CG	90.0	-12.33/-12.35/-13.61	1.75/1.68/1.66	

180.0 -12.68/-12.91/-14.38

90.0 -13.15/-13.16/-14.36

180.0 -13.60/-13.74/-15.10

-12.89/-12.63/-13.66

-13.15/-13.15/-14.36

OD1-CG 270.0 -12.34/-12.43/-13.69

0.0

270.0

1.75/1.67/1.65

1.75/1.67/1.65

1.74/1.67/1.66

1.74/1.67/1.65

1.73/1.67/1.65

1.74/1.67/1.65

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
CA	-0.270	-0.268	0.000
\mathbf{HA}	0.090	0.090	0.000
CB	0.035	0.058	3.837
HB	0.090	0.090	0.000
CG	0.576	0.614	3.551
OB	-0.729	-0.613	3.613
HOB	0.420	0.369	3.268
OD1	-0.696	-0.760	0.250
OD2	-0.696	-0.760	0.250

1.40 Small molecule used for 3-(3-benzothienyl)-alanine(BTH3)

Figure S42: The molecule used for water complex calculations corresponding to 3-methyl-1-benzothio phene, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S122: Statistics of calculated water interaction and dipole moment for 3-methyl-1-benzothiophene.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.67/1.56	0.29/0.61	3.306	1.26/1.36	70.31
Optimal	0.21/0.39	0.24/0.51	1.646	1.26/1.50	0.57

Table S123: The comparison list of optimized atomic charges and their initial guess for 3-meth yl-1-benzothiophene, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.270	-0.277	2.500
HB2	0.090	0.090	0.000
HB1	0.090	0.090	0.000
$\mathbf{C}\mathbf{G}$	0.053	-0.030	2.500
CD2	0.184	0.204	0.000
CD1	-0.233	-0.095	2.500
HD1	0.170	0.201	0.000
CE3	-0.243	-0.339	0.000
HE3	0.163	0.201	0.000
CE2	0.012	0.140	0.000
SE1	-0.031	-0.167	2.500
CZ3	-0.112	-0.236	0.000
HZ3	0.164	0.196	0.000
CZ2	-0.287	-0.208	0.000
HZ2	0.225	0.230	0.000
CH2	-0.267	-0.286	0.000
HH2	0.202	0.196	0.000

Table S124: Interaction energies and geometries between probe water and selected 3-methyl-1-benzo thiophene site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-1.06/-1.09/-0.97	2.71/2.69/2.69
2	HB2-CB	0.0	-1.49/-1.18/-1.50	2.68/2.71/2.70
3	HB1-CB	0.0	-1.07/-1.10/-0.91	2.70/2.69/2.70
4	HD1-CD1	0.0	-1.97/-2.03/-3.54	2.49/2.30/2.22
5	HD1-CD1	90.0	-2.23/-2.09/-3.57	2.42/2.30/2.22
6	$\operatorname{HE3-CE3}$	0.0	-1.61/-1.81/-1.44	2.65/2.66/2.67
7	HE3-CE3	90.0	-1.81/-1.94/-1.55	2.62/2.64/2.65
8	SE1-CD1	0.0	-0.72/-1.09/-1.50	3.04/2.53/2.43
9	SE1-CD1	90.0	-0.96/-1.21/-1.66	2.94/2.51/2.41
10	SE1-CD1	180.0	-0.76/-1.15/-1.56	3.03/2.52/2.42
11	SE1-CD1	270.0	-0.96/-1.21/-1.66	2.94/2.51/2.41
12	HZ3-CZ3	0.0	-1.28/-1.45/-0.87	2.66/2.65/2.69
13	HZ3-CZ3	90.0	-1.47/-1.55/-0.97	2.60/2.64/2.67
14	HZ2-CZ2	0.0	-1.59/-1.45/-2.08	2.54/2.61/2.56
15	HZ2-CZ2	90.0	-1.75/-1.49/-2.08	2.48/2.61/2.56
16	$\rm HH2\text{-}CH2$	0.0	-1.34/-1.34/-1.05	2.64/2.65/2.68
17	HH2-CH2	90.0	-1.53/-1.44/-1.15	2.58/2.64/2.66

1.41 Small molecule used for (2S)-2-azanyl-3-[ethyl(methyl)carbamoyl]oxy-propanoicacid(BXT)

Figure S43: The molecule used for water complex calculations corresponding to ethylN-ethyl-N-methy lcarbamate, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S125: Statistics of calculated water interaction and dipole moment for ethylN-ethyl-N-methylcar bamate.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.72/2.30	0.19/0.52	3.181	2.47/2.29	4.70
Optimal	0.23/0.51	0.33/1.32	1.714	2.47/2.91	2.66

Table S126: The comparison list of optimized atomic charges and their initial guess for ethylN -ethyl-N-methylcarbamate, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.270	-0.271	0.000		
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000		
CB	0.007	0.160	0.497		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
OG	-0.188	-0.316	5.561		
C1	0.383	0.198	11.820		
O2	-0.460	-0.389	0.888		
N3	-0.168	-0.236	13.936		
C5	-0.135	-0.094	5.912		
H51	0.090	0.090	0.181		
H52	0.090	0.090	0.181		
H53	0.090	0.090	0.181		
C4	-0.069	0.047	7.392		
H41	0.090	0.090	0.675		
H42	0.090	0.090	0.675		
C2	-0.270	-0.269	2.571		
H21	0.090	0.090	0.050		
H22	0.090	0.090	0.050		
H23	0.090	0.090	0.050		

Table S127: Interaction energies and geometries between probe water and selected ethylN-ethyl-N-m ethylcarbamate site calculated using the optimized and initial charges

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	N		Probe	Angle	Energy $(kcal/mol)$	Distance (Å)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		14	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	${ m HA3-CA}$	0.0	-1.15/-0.99/-1.29	2.73/2.71/2.68
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	$\mathrm{HA2}\text{-}\mathrm{CA}$	0.0	-0.74/-0.69/-0.56	2.80/2.75/2.74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	HA-CA	0.0	-0.70/-0.66/-0.52	2.80/2.76/2.75
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		4	${ m HB1-CB}$	0.0	-0.82/-0.52/-0.65	2.56/2.67/2.64
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5	$\mathrm{HB2}\text{-}\mathrm{CB}$	0.0	-0.78/-0.44/-0.60	2.56/2.68/2.65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6	OG-CB	90.0	-0.13/-0.27/-0.89	3.70/3.33/3.20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7	OG-CB	180.0	-0.20/-0.66/-1.29	3.78/3.27/3.16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	OG-CB	270.0	-0.22/-0.33/-1.01	3.66/3.34/3.20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		9	O2-C1	0.0	-5.93/-5.87/-5.49	1.84/1.78/1.79
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	O2-C1	90.0	-6.04/-6.15/-5.86	1.84/1.77/1.79
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		11	O2-C1	180.0	-6.03/-6.25/-5.93	1.84/1.77/1.79
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		12	O2-C1	270.0	-6.18/-6.19/-5.95	1.83/1.77/1.78
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		13	N3-C1	0.0	-1.37/-1.09/-1.83	2.37/2.28/2.21
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		14	N3-C1	90.0	-1.60/-1.44/-3.03	2.34/2.25/2.14
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		15	N3-C1	180.0	-2.32/-2.83/-4.63	2.32/2.18/2.08
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		16	N3-C1	270.0	-2.22/-2.37/-3.17	2.32/2.21/2.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		17	${ m H51-C5}$	0.0	-0.41/-0.83/-0.15	4.10/2.78/4.62
19 H53-C5 0.0 -1.23/-1.43/-1.04 2.71/2.65/2.67 20 H42-C4 0.0 -1.29/-1.32/-1.71 2.75/2.70/2.66 21 H22-C2 0.0 -1.10/-1.09/-1.13 2.86/2.78/2.77 20 H42-C4 0.0 -52/0.00/-1.00/-1.13 2.86/2.78/2.77		18	m H52-C5	0.0	-1.54/-1.65/-1.68	2.70/2.65/2.65
20 H42-C4 0.0 -1.29/-1.32/-1.71 2.75/2.70/2.66 21 H22-C2 0.0 -1.10/-1.09/-1.13 2.86/2.78/2.77 20 H32-C2 0.0 -52/-0.29/-0.09 2.36/2.78/2.77		19	m H53-C5	0.0	-1.23/-1.43/-1.04	2.71/2.65/2.67
21 H22-C2 0.0 -1.10/-1.09/-1.13 2.86/2.78/2.77 22 H22-C2 0.0 -0.72/0.000/-0.000 0.000/-0.000 0.000/-0.000		20	$\rm H42{\text{-}C4}$	0.0	-1.29/-1.32/-1.71	2.75/2.70/2.66
		21	$\rm H22\text{-}C2$	0.0	-1.10/-1.09/-1.13	2.86/2.78/2.77
<u>22 H23-U2 0.0 -0.79/-0.63/-0.90 2.82/2.75/2.72</u>		22	${ m H23-C2}$	0.0	-0.79/-0.63/-0.90	2.82/2.75/2.72

1.42 Small molecule A of (C12)

Figure S44: The molecule used for water complex calculations corresponding to 2-(2,4-dimethyl-5-oxo -4,5-dihydro-1H-imidazol-1-yl)acetaldehyde, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S128: Statistics of calculated water interaction and dipole moment for 2-(2,4-dimethyl-5-oxo-4,5-dihydro-1H-imidazol-1-yl) acetaldehyde.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	3.04/6.28	0.11/0.21	10.344	4.36/8.57	16.00
Optimal	0.17/0.48	0.07/0.13	3.178	4.36/4.01	4.79

Table S129: The comparison list of optimized atomic charges and their initial guess for 2-(2,4-dimethyl-5-oxo-4,5-dihydro-1H-imidazol-1-yl)ace taldehyde, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.270	-0.113	14.764		
\mathbf{HA}	0.090	0.090	0.000		
C1	0.220	0.334	18.884		
N2	-0.705	-0.678	15.120		
CA2	-0.004	0.319	31.349		
C2	0.348	-0.159	78.743		
O2	-0.740	-0.788	75.409		
N3	-0.072	-0.465	35.013		
CA3	-0.167	0.173	15.307		
HA31	0.090	0.090	0.125		
HA32	0.090	0.090	0.125		
C3	0.284	0.215	17.419		
H3	0.090	0.089	2.500		
O3	-0.434	-0.401	12.965		
CB2	-0.270	-0.246	6.938		
HB21	0.090	0.090	0.450		
HB22	0.090	0.090	0.450		
HB23	0.090	0.090	0.450		

Table S130: Interaction energies and geometries between probe water and selected 2-(2,4-dimethyl-5-o xo-4,5-dihydro-1H-imidazol-1-yl)acetaldehyde site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	N2-C1	0.0	-12.41/-12.55/-11.23	1.89/1.85/1.87
2	N2-C1	90.0	-12.16/-12.02/-10.44	1.88/1.86/1.88
3	N2-C1	180.0	-11.21/-11.28/-9.13	1.92/1.87/1.90
4	N2-C1	270.0	-12.21/-12.06/-10.57	1.88/1.86/1.88
5	O2-C2	0.0	-13.56/-13.41/-17.32	1.71/1.70/1.66
6	O2-C2	90.0	-13.29/-13.27/-17.12	1.72/1.70/1.66
7	O2-C2	180.0	-12.86/-13.10/-16.69	1.73/1.70/1.66
8	O2-C2	270.0	-13.31/-13.28/-17.14	1.72/1.70/1.66
9	N3-C1	0.0	-5.53/-5.53/-11.01	2.32/2.29/2.01
10	N3-C1	90.0	-3.54/-3.06/-4.95	2.44/2.49/2.17
11	N3-C1	180.0	-5.44/-5.55/-7.80	2.33/2.27/2.07
12	N3-C1	270.0	-7.58/-7.82/-13.85	2.24/2.19/1.96
13	O3-C3	0.0	-6.99/-7.08/-6.25	1.91/1.79/1.81
14	O3-C3	90.0	-6.90/-7.06/-6.74	1.92/1.79/1.80
15	O3-C3	180.0	-6.95/-6.88/-6.50	1.91/1.79/1.80
16	O3-C3	270.0	-6.94/-6.95/-6.04	1.92/1.79/1.81

1.43 Small molecule used for 3-chloro-D-alanine(C2N)

Figure S45: The molecule used for water complex calculations corresponding to 3-chloro-D-alanine, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S131: Statistics of calculated water interaction and dipole moment for 3-chloro-D-alanine.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	2.97/4.82	0.11/0.22	10.904	8.95/14.10	10.10
Optimal	0.55/1.10	0.08/0.23	5.904	8.95/11.40	2.23

Table S132: The comparison list of optimized atomic charges and their initial guess for 3-chlo ro-D-alanine, referring to the penalties of initial guess

-

_

Table S133: Interaction energies and geometries between probe water and selected 3-chloro-D-alani ne site calculated using the optimized and initial charges

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	Penalty		
N	-0.162	-0.358	39.263		
HN1	0.259	0.330	2.536		
HN2	0.259	0.330	2.536		
HN3	0.259	0.330	2.536		
$\mathbf{C}\mathbf{A}$	0.293	0.181	104.048		
$\mathbf{H}\mathbf{A}$	0.090	0.090	4.186		
CL	-0.151	-0.151	15.677		
LP1	0.050	0.050	-		
CB	-0.168	0.090	35.711		
HB1	0.090	0.090	2.500		
HB2	0.090	0.090	2.500		
\mathbf{C}	0.119	0.448	99.425		
OXT	-0.514	-0.760	8.256		
0	-0.514	-0.760	8.256		

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HN1-N	0.0	-12.82/-12.31/-13.60	1.70/1.78/1.75
2	HN1-N	45.0	-12.44/-12.10/-13.36	1.71/1.78/1.75
3	HN1-N	90.0	-12.61/-12.07/-13.31	1.70/1.78/1.75
4	HN1-N	135.0	-12.99/-12.28/-13.55	1.69/1.78/1.75
5	$\operatorname{HA-CA}$	0.0	-3.38/-3.33/-3.48	2.33/2.56/2.55
6	OXT-C	0.0	-6.99/-7.23/-10.18	1.79/1.74/1.67
7	OXT-C	90.0	-8.09/-8.32/-12.22	1.77/1.73/1.65
8	OXT-C	180.0	-9.01/-9.55/-13.75	1.76/1.72/1.64
9	OXT-C	270.0	-7.82/-8.47/-11.76	1.78/1.73/1.66
10	O-C	0.0	-4.18/-3.08/-5.95	1.82/1.80/1.70
11	O-C	90.0	-7.36/-7.09/-10.54	1.75/1.73/1.65
12	O-C	180.0	-9.24/-9.82/-14.06	1.73/1.70/1.63
13	O-C	270.0	-7.21/-6.64/-10.45	1.75/1.73/1.66

1.44 Small molecule used for canaline(CAN)

Figure S46: The molecule used for water complex calculations corresponding to O-ethylhydroxylami ne, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S134: Statistics of calculated water interaction and dipole moment for O-ethylhydroxylamine.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.62/0.83	0.14/0.26	1.526	0.52/0.48	21.06
Optimal	0.25/0.66	0.15/0.28	1.899	0.52/0.09	129.06

Table S135: The comparison list of optimized atomic charges and their initial guess for O-ethy lhydroxylamine, referring to the penalties of initial guess

Table S136: Interaction energies and geometries between probe water and selected O-ethylhydroxyla mine site calculated using the optimized and initial charges

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.270	-0.270	1.950
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
CG	0.060	-0.011	5.264
HG1	0.090	0.090	1.950
${ m HG2}$	0.090	0.090	1.950
OD	-0.224	-0.177	26.724
NE	-0.704	-0.684	35.462
HE1	0.344	0.346	24.150
HE2	0.344	0.346	24.150

N	Probe	Angle	Energy $(kcal/mol)$	Distance (Å)
11	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-0.80/-0.92/-0.70	2.82/2.72/2.75
2	HB1-CB	0.0	-0.35/-0.24/-0.14	2.86/2.80/2.83
3	HB2-CB	0.0	-0.35/-0.24/-0.14	2.86 / 2.80 / 2.83
4	HG1-CG	0.0	-0.46/-0.44/-0.21	2.86/2.77/2.82
5	HG2-CG	0.0	-0.46/-0.44/-0.21	2.86/2.77/2.82
6	OD-CG	0.0	-4.06/-4.06/-3.32	2.08/1.80/1.84
7	OD-CG	90.0	-4.61/-4.38/-3.82	2.04/1.79/1.82
8	OD-CG	180.0	-4.55/-4.38/-4.03	2.07/1.79/1.81
9	OD-CG	270.0	-4.61/-4.38/-3.82	2.04/1.79/1.82
10	NE-OD	0.0	-5.41/-5.42/-4.82	2.02/1.98/2.01
11	NE-OD	90.0	-5.25/-4.94/-4.62	2.04/1.99/2.01
12	NE-OD	180.0	-4.40/-3.74/-3.92	2.11/2.02/2.03
13	NE-OD	270.0	-5.24/-4.94/-4.61	2.04/1.99/2.01
14	$\rm HE1\text{-}NE$	0.0	-3.53/-3.75/-4.25	2.02/1.89/1.87
15	$\rm HE1\text{-}NE$	45.0	-3.55/-3.72/-4.21	2.02/1.89/1.87
16	$\rm HE1\text{-}NE$	90.0	-3.31/-3.59/-4.09	2.04/1.90/1.88
17	$\rm HE1\text{-}NE$	135.0	-3.30/-3.61/-4.12	2.04/1.89/1.88
18	HE2-NE	0.0	-3.53/-3.74/-4.24	2.02/1.89/1.87
19	HE2-NE	45.0	-3.30/-3.61/-4.12	2.04/1.89/1.88
20	HE2-NE	90.0	-3.31/-3.59/-4.09	2.04/1.90/1.88
21	HE2-NE	135.0	-3.55/-3.72/-4.21	2.01/1.89/1.88

1.45 Small molecule used for carboxymethylatedcysteine(CCS)

Figure S47: The molecule used for water complex calculations corresponding to 2-(methylsulfanyl)aceti cacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S137: Statistics of calculated water interaction and dipole moment for 2-(methylsulfanyl)acetica cid.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	1.59/2.62	0.19/0.36	5.570	9.62/11.68	5.23
Optimal	0.62/1.13	0.20/0.36	3.011	9.62/8.82	2.33

Table S138: The comparison list of optimized Table S139: Interaction energies and geometries beatomic charges and their initial guess for 2-(meth ylsulfanyl)aceticacid, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$		
HB3	0.090	0.090	0.000		
CB	-0.327	-0.220	2.500		
HB2	0.090	0.090	0.000		
HB1	0.090	0.090	0.000		
\mathbf{SG}	-0.102	-0.045	13.516		
CD	-0.217	-0.258	13.516		
HD2	0.090	0.090	0.000		
HD1	0.090	0.090	0.000		
CE	0.590	0.593	4.482		
OZ1	-0.697	-0.760	2.500		
OZ2	-0.697	-0.760	2.500		

tween probe water and selected 2-(methylsulfan yl)aceticacid site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
18	site	(°)	${ m QM}/{ m Optimal}/{ m Initial}$	$\rm QM/Optimal/Initial$
1	OZ1-CE	0.0	-13.58/-13.96/-15.05	1.75/1.67/1.65
2	OZ1-CE	90.0	-13.16/-13.80/-15.37	1.75/1.67/1.65
3	OZ1-CE	180.0	-13.24/-13.92/-15.86	1.75/1.67/1.64
4	OZ1-CE	270.0	-13.16/-13.80/-15.37	1.75/1.67/1.65
5	OZ2-CE	0.0	-13.40/-12.77/-14.29	1.73/1.67/1.65
6	OZ2-CE	90.0	-13.77/-13.34/-15.00	1.73/1.67/1.65
7	OZ2-CE	180.0	-14.33/-13.97/-15.77	1.72/1.66/1.64
8	OZ2-CE	270.0	-13.77/-13.34/-15.00	1.73/1.67/1.65
9	SG-CB	0.0	-8.36/-9.49/-9.54	2.62/2.25/2.27
10	SG-CB	90.0	-4.97/-4.85/-4.24	2.80/2.45/2.55
11	SG-CB	180.0	-3.20/-2.21/-1.35	2.93/2.69/3.29
12	SG-CB	270.0	-4.97/-4.84/-4.24	2.80/2.45/2.55

Figure S48: The molecule used for water complex calculations corresponding to 2-ethylpropanedioica cid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S140: Statistics of calculated water interaction and dipole moment for 2-ethylpropanedioicacid.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	${\rm Energy}\;(\rm kcal/mol)$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.36/2.03	0.03/0.04	3.936	8.34/9.27	1.17
Optimal	0.53/0.92	0.05/0.06	3.825	8.34/9.75	2.80

Table S141: The comparison list of optimized atomic charges and their initial guess for 2-ethylp ropanedioicacid, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.277	0.507
\mathbf{HA}	0.090	0.090	0.000
CB	-0.202	-0.169	0.064
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
CG	-0.380	-0.414	48.124
$\mathbf{H}\mathbf{G}$	0.090	0.090	0.000
CD1	0.890	0.680	41.904
OE12	-0.867	-0.760	2.350
OE11	-0.867	-0.760	2.350
CD2	0.890	0.680	41.904
OE22	-0.867	-0.760	2.350
OE21	-0.867	-0.760	2.350

Table S142: Interaction energies and geometries between probe water and selected 2-ethylpropanedioi cacid site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	$\rm QM/Optimal/Initial$
1	OE12-CD1	0.0	-19.26/-18.48/-17.49	1.66/1.62/1.64
2	OE12-CD1	90.0	-18.30/-17.38/-16.27	1.67/1.63/1.65
3	OE12-CD1	180.0	-18.72/-18.08/-16.82	1.66/1.62/1.64
4	OE12-CD1	270.0	-19.45/-19.10/-17.95	1.66/1.62/1.64
5	OE11-CD1	0.0	-19.72/-20.21/-19.13	1.67/1.62/1.64
6	OE11-CD1	90.0	-19.03/-19.59/-18.50	1.68/1.62/1.64
7	OE11-CD1	180.0	-17.61/-17.29/-16.13	1.68/1.63/1.65
8	OE11-CD1	270.0	-17.56/-17.28/-16.20	1.69/1.63/1.65
9	OE22-CD2	0.0	-19.48/-19.15/-18.19	1.67/1.62/1.64
10	OE22-CD2	90.0	-19.24/-19.27/-18.18	1.67/1.62/1.64
11	OE22-CD2	180.0	-18.16/-17.66/-16.46	1.67/1.63/1.65
12	OE22-CD2	270.0	-17.88/-17.21/-16.16	1.68/1.63/1.65
13	OE21-CD2	0.0	-19.02/-19.48/-18.38	1.67/1.62/1.64
14	OE21-CD2	90.0	-17.68/-17.55/-16.46	1.68/1.63/1.65
15	OE21-CD2	180.0	-18.00/-18.22/-16.99	1.67/1.62/1.64
16	OE21-CD2	270.0	-19.18/-20.03/-18.81	1.67/1.62/1.64

1.47 Small molecule used for gamma-carboxy-glutamicacid(CGUP)

Figure S49: The molecule used for water complex calculations corresponding to 2-ethylpropanedioica cid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S143: Statistics of calculated water interaction and dipole moment for 2-ethylpropanedioicacid.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.42/2.46	0.10/0.13	5.471	7.75/10.25	6.14
Optimal	0.22/0.47	0.09/0.12	2.391	7.75/7.81	1.43

Table S144: The comparison list of optimized atomic charges and their initial guess for 2-ethylp ropanedioicacid, referring to the penalties of initial guess

Table S145: Interaction energies and geometries be-
tween probe water and selected 2-ethylpropanedioi
cacid site calculated using the optimized and initial
charges

Atom		Charges	
Atom	Optimal	Initial	Penalty
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.286	1.687
\mathbf{HA}	0.090	0.090	0.000
CB	-0.298	-0.166	2.361
HB1	0.090	0.090	0.125
HB2	0.090	0.090	0.125
CG	-0.206	-0.269	37.703
HG	0.090	0.090	0.436
CD1	0.677	0.625	30.570
OE12	-0.694	-0.760	2.150
OE11	-0.694	-0.760	2.150
CD2	0.744	0.846	40.123
OE22	-0.561	-0.631	4.829
OE21	-0.528	-0.568	4.482
HE22	0.290	0.429	0.262

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
18	site	(°)	${ m QM}/{ m Optimal}/{ m Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	OE12-CD1	0.0	-12.37/-12.58/-13.54	1.76/1.68/1.66
2	OE12-CD1	90.0	-12.52/-12.54/-14.45	1.76/1.68/1.65
3	OE12-CD1	180.0	-12.93/-12.87/-15.38	1.75/1.68/1.65
4	OE12-CD1	270.0	-13.00/-13.00/-14.91	1.75/1.68/1.65
5	OE11-CD1	0.0	-12.40/-12.52/-14.01	1.75/1.68/1.65
6	OE11-CD1	90.0	-12.84/-12.95/-14.67	1.75/1.67/1.65
7	OE11-CD1	180.0	-13.25/-13.18/-15.33	1.74 / 1.67 / 1.64
8	OE11-CD1	270.0	-12.74/-12.67/-14.64	1.75/1.68/1.65
9	OE22-CD2	0.0	-4.46/-4.48/-3.72	2.03/1.94/1.96
10	OE22-CD2	90.0	-4.84/-4.37/-3.69	2.00/1.95/1.96
11	OE22-CD2	180.0	-7.29/-7.74/-8.14	2.01/1.92/1.91
12	OE22-CD2	270.0	-8.01/-8.20/-8.53	1.94 / 1.89 / 1.89
13	OE21-CD2	0.0	-8.73/-9.05/-9.15	1.87/1.75/1.74
14	OE21-CD2	90.0	-7.59/-7.41/-7.13	1.89/1.77/1.76
15	OE21-CD2	180.0	-7.51/-7.39/-7.06	1.89/1.77/1.77
16	OE21-CD2	270.0	-8.92/-9.19/-9.38	1.87/1.75/1.74

1.48 Small molecule used for S-[(R)-carboxy(hydroxy)methyl]-L-cysteine(CGV)

Figure S50: The molecule used for water complex calculations corresponding to (2R)-2-(ethylsulfany l)-2-hydroxyaceticacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S146: Statistics of calculated water interaction and dipole moment for (2R)-2-(ethylsulfanyl)-2-hydroxyaceticacid.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	1.51/2.37	0.22/0.43	3.976	9.59/11.50	3.41
Optimal	0.34/1.04	0.20/0.40	3.134	9.59/8.99	6.19

Table S147: The comparison list of optimized atomic charges and their initial guess for (2R)-2-(ethylsulfanyl)-2-hydroxyaceticacid, referring to the penalties of initial guess

Atom	Charges				
Atom	Optimal	$\operatorname{Initial}$	Penalty		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.270	-0.270	0.075		
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000		
CB	-0.181	-0.065	3.549		
HB1	0.090	0.090	0.030		
HB2	0.090	0.090	0.030		
\mathbf{SG}	-0.139	-0.200	32.582		
CD1	0.052	0.113	32.478		
HD1	0.090	0.090	0.424		
OD2	-0.603	-0.604	18.795		
HD2	0.363	0.363	4.115		
CE1	0.544	0.643	5.786		
OZ2	-0.653	-0.760	2.512		
OZ3	-0.653	-0.760	2.512		

Table S148: Interaction energies and geometries between probe water and selected (2R)-2- (ethylsulfa nyl)-2-hydroxyaceticacid site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(*)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	$\rm QM/Optimal/Initial$
1	SG-CB	0.0	-6.75/-7.78/-8.50	2.69/2.29/2.26
2	SG-CB	90.0	-4.43/-4.64/-4.74	2.79/2.40/2.39
3	SG-CB	180.0	-3.00/-2.58/-2.27	2.89/2.50/2.51
4	SG-CB	270.0	-4.64/-4.71/-4.85	2.77/2.39/2.38
5	OD2-CD1	0.0	-8.80/-8.46/-8.77	1.86/1.90/1.89
6	OD2-CD1	90.0	-8.80/-8.66/-8.77	1.85/1.89/1.89
7	OD2-CD1	180.0	-8.73/-8.89/-7.80	1.89/1.89/1.90
8	OD2-CD1	270.0	-8.34/-8.74/-7.98	1.91/1.90/1.90
9	OZ2-CE1	0.0	-10.94/-11.03/-12.58	1.79/1.70/1.67
10	OZ2-CE1	90.0	-11.64/-11.69/-13.55	1.77/1.69/1.66
11	OZ2-CE1	180.0	-11.86/-12.05/-14.18	1.77/1.68/1.65
12	OZ2-CE1	270.0	-11.40/-11.45/-13.31	1.77/1.69/1.66
13	OZ3-CE1	0.0	-12.31/-12.21/-13.85	1.77/1.69/1.66
14	OZ3-CE1	90.0	-11.97/-12.14/-14.01	1.77/1.69/1.66
15	OZ3-CE1	180.0	-12.43/-12.68/-14.80	1.76/1.68/1.65
16	OZ3-CE1	270.0	-12.50/-12.67/-14.58	1.77/1.68/1.65

1.49 Small molecule A of (4Z)-2-[(1S)-1-amino-3-(methylsulfanyl)propyl]-4-[(4-hydroxyphenyl)methylidene]-5-oxo-4acetic5-dihydro-1H-imidaz ol-1-ylaceticacid(CH6)

Figure S51: The molecule used for water complex calculations corresponding to (4Z)-4-ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S149: Statistics of calculated water interaction and dipole moment for (4Z)-4-ethylidene-1,2-dime thyl-4,5-dihydro-1H-imidazol-5-one.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	${ m Energy}~({ m kcal/mol}) { m Distance}~({ m \AA})$		m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.92/1.64	0.10/0.25	6.526	3.17/0.45	27.81
Optimal	0.49/1.31	0.09/0.22	3.053	3.17/3.55	14.34

Table S150: The comparison list of optimized atomic charges and their initial guess for (4Z)-4-ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$					
Atom	Optimal	Initial	Penalty			
CA1	-0.070	-0.115	13.925			
\mathbf{HA}	0.090	0.090	0.000			
HA2	0.090	0.090	0.000			
HA3	0.090	0.090	0.000			
C1	0.233	0.074	23.781			
N2	-0.679	-0.703	41.871			
N3	-0.080	-0.079	15.706			
C2	0.407	0.509	24.002			
O2	-0.489	-0.482	6.710			
CA2	0.288	0.516	47.153			
CB2	-0.105	-0.135	25.469			
HB2	0.150	0.150	3.270			
CG2	-0.270	-0.274	15.277			
$\mathrm{HG21}$	0.090	0.090	1.175			
$\mathrm{HG}22$	0.090	0.090	1.175			
${ m HG23}$	0.090	0.090	1.175			
CA3	-0.195	-0.271	3.821			
HA31	0.090	0.090	0.000			
HA32	0.090	0.090	0.000			
HA33	0.090	0.090	0.000			

Table S151: Interaction energies and geometries between probe water and selected (4Z)-4-ethylidene -1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HA-CA1	0.0	-2.17/-2.61/-1.51	2.59/2.58/2.65
2	HA2-CA1	0.0	-0.97/-0.86/0.05	2.58/2.64/2.77
3	HA3-CA1	0.0	-2.55/-2.73/-1.57	2.52/2.57/2.64
4	N2-C1	0.0	-4.99/-6.30/-5.60	2.09/2.01/2.02
5	N2-C1	90.0	-7.07/-6.37/-6.45	1.90/1.99/1.99
6	N2-C1	180.0	-5.35/-5.42/-6.38	1.95/2.01/1.99
7	N2-C1	270.0	-7.07/-6.37/-6.45	1.90/1.99/1.99
8	N3-C1	0.0	-0.26/-0.82/-0.78	2.74/2.52/2.49
9	O2-C2	0.0	-5.51/-5.57/-5.00	1.85/1.78/1.80
10	O2-C2	90.0	-5.87/-5.71/-4.73	1.84/1.78/1.80
11	O2-C2	180.0	-5.92/-5.61/-4.27	1.84/1.78/1.81
12	O2-C2	270.0	-5.87/-5.71/-4.73	1.84/1.78/1.80
13	HB2-CB2	0.0	-1.40/-1.60/-2.82	2.32/2.47/2.44
14	HG21-CG2	0.0	-1.01/-0.46/-0.86	2.72/2.77/2.74
15	HG23-CG2	0.0	-1.01/-0.46/-0.86	2.72/2.77/2.74
16	HA32-CA3	0.0	-2.16/-2.10/-1.23	2.59/2.63/2.70
17	HA 33-CA 3	0.0	-2.16/-2.10/-1.23	2.59/2.63/2.70

1.50 Small molecule B of (4Z)-2-[(1S)-1-amino-3-(methylsulfanyl)propyl]-4-[(4-hydroxyphenyl)methylidene]-5-oxo-4acetic5-dihydro-1H-imidaz ol-1-ylaceticacid(CH6)

Table S152: The molecule used for water complex calculations corresponding to N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

		RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
		$\fbox{Energy (kcal/mol)}$	Distance (Å)	${f RMS}~({ m kcal}/{ m mol}/{ m \AA})$	QM/MM (Debye)	difference (°)
Geometry 1	Initial	$0.86 \ / \ 2.05$	$0.07 \ / \ 0.17$	6.601	1.19 / 4.07	1.19
Geometry 2	Initial	$1.02\ /\ 2.07$	$0.09 \ / \ 0.23$	6.126	$6.37 \ / \ 4.43$	6.37
Sum of geometries	Initial	$0.95\ /\ 2.07$	$0.08\ /\ 0.23$	12.727	-	-
Geometry 1	Optimal	0.36 / 0.81	$0.07 \ / \ 0.16$	2.460	$1.19\ /\ 1.37$	1.19
Geometry 2	Optimal	$0.51\ /\ 0.91$	$0.08 \ / \ 0.19$	2.701	$6.37 \ / \ 7.25$	6.37
Sum of geomeries	Optimal	$0.45 \ / \ 0.91$	$0.08 \ / \ 0.19$	5.161	-	=

Table S153: Statistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide.

Table S154: The comparison list of optimized atomic charges and their initial guess for N-methyl -2-(2-methyl-4-methylidene-5-oxo-4,5-dihydro-1H -imidazol-1-yl)acetamide, referring to the penalties of initial guess

=

Atom	$\operatorname{Charges}$					
Atom	Optimal	Initial	$\mathbf{Penalty}$			
HA1	0.090	0.090	0.000			
HA2	0.090	0.090	0.000			
CA	-0.070	-0.115	13.925			
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000			
C1	0.233	0.164	24.002			
N2	-0.679	-0.703	41.104			
N3	-0.031	-0.499	22.994			
C2	0.407	0.613	23.378			
O2	-0.489	-0.482	6.517			
CA2	0.466	0.512	42.773			
CB2	-0.593	-0.444	13.655			
HB21	0.230	0.230	0.950			
HB22	0.230	0.230	0.950			
CA3	-0.154	0.043	13.461			
HA31	0.090	0.090	0.177			
HA32	0.090	0.090	0.177			
С	0.510	0.499	10.097			
Ο	-0.510	-0.517	3.479			
\mathbf{NR}	-0.470	-0.442	6.773			
$_{\mathrm{HR}}$	0.310	0.299	0.000			
\mathbf{CR}	-0.110	-0.108	0.239			
HR1	0.090	0.090	0.000			
HR2	0.090	0.090	0.000			
HR3	0.090	0.090	0.000			

Table S155: Interaction energies and geometries between probe water and selected N-methyl-2-(2-me thyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazo l-1-yl)acetamide site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
	Geometry	1		
1	O-C	0.0	-5.45/-5.47/-6.22	1.84/1.77/1.76
2	O-C	90.0	-6.01/-6.48/-6.53	1.83/1.75/1.76
3	O-C	180.0	-5.96/-6.64/-6.64	1.83/1.75/1.75
4	O-C	270.0	-5.67/-5.94/-6.62	1.84/1.76/1.75
5	NR-C	0.0	-1.32/-1.50/-1.08	2.24/2.20/2.22
6	HR2-CR	0.0	-1.10/-1.26/-1.09	2.71/2.66/2.67
7	HR3-CR	0.0	-1.39/-1.22/-1.32	2.66/2.67/2.67
8	N2-C1	0.0	-5.74/-6.45/-6.04	1.95/1.92/1.92
9	N2-C1	90.0	-6.51/-6.37/-7.24	1.90/1.92/1.90
10	N2-C1	180.0	-5.60/-5.66/-7.65	1.96/1.93/1.90
11	N2-C1	270.0	-6.64/-6.59/-7.43	1.90/1.91/1.89
12	O2-C2	0.0	-3.88/-3.93/-3.54	1.88/1.80/1.81
13	O2-C2	90.0	-4.94/-5.15/-4.46	1.84/1.77/1.79
14	O2-C2	180.0	-4.95/-5.20/-4.05	1.84/1.77/1.79
15	O2-C2	270.0	-3.93/-4.12/-3.39	1.87/1.79/1.81
16	HB21-CB2	0.0	-1.84/-1.64/-3.47	2.32/2.48/2.42
17	HB22-CB2	0.0	-1.82/-1.01/-2.42	2.42/2.54/2.46
18	HA31-CA3	0.0	-2.08/-2.47/-1.68	2.70/2.69/2.70
19	HA-CA	0.0	-2.47/-2.76/-1.19	2.49/2.56/2.66
	Geometry	2		
20	O-C	0.0	-6.06/-6.90/-7.24	1.86/1.76/1.75
21	O-C	90.0	-5.25/-6.15/-7.32	1.87/1.77/1.75
22	O-C	180.0	-4.71/-5.63/-6.52	1.88/1.77/1.76
23	O-C	270.0	-5.56/-6.46/-6.85	1.86/1.76/1.76
24	HR-NR	0.0	-7.09/-7.67/-7.53	1.93/1.90/1.90
25	HR-NR	45.0	-7.71/-7.90/-7.71	1.91/1.89/1.89
26	HR-NR	90.0	-7.79/-7.84/-7.79	1.90/ 1.89/ 1.89
27	HR-NR	135.0	-7.18/-7.62/-7.61	1.92/1.90/1.89
28	HR1-CR	0.0	-0.71/-0.04/0.30	2.50/2.69/2.67
29	HR2-CR	0.0	-1.54/-1.44/-1.38	2.68/2.66/2.66
30	HR3-CR	0.0	-1.84/-1.82/-1.70	2.68/2.67/2.66
31	N2-C1	0.0	-6.46/-6.98/-6.58	1.93/1.91/1.91
32	N2-C1	90.0	-6.88/-6.47/-7.35	1.89/1.91/1.89
33	N2-C1	180.0	-5.73/-5.60/-7.60	1.95/1.93/1.90
34	N2-C1	270.0	-7.31/-7.09/-7.94	1.88/1.91/1.89
35	N3-C1	0.0	-0.22/0.03/-2.15	2.60/2.67/2.17
36	O2-C2	0.0	-4.96/-5.34/-4.95	1.88/1.79/1.80
37	O2-C2	90.0	-5.32/-5.37/-4.66	1.87/1.78/1.80
38	O2-C2	180.0	-5.74 / -5.89 / -4.71	1.87/1.78/1.81
39	O2-C2	270.0	-5.94/-6.25/-5.51	1.85/1.77/1.79
40	HB21-CB2	0.0	-1.43/-1.20/-3.03	2.33/2.48/2.41
41	HB22-CB2	0.0	-1.29/-0.66/-2.05	2.47/2.56/2.47
42	HA31-CA3	0.0	-3.71/-4.08/-3.49	2.50/2.57/2.57
43	HA-CA	0.0	-267/-345/-193	2.59/2.58/2.69

1.51 Small molecule used for citrulline(CIR)

Figure S52: The molecule used for water complex calculations corresponding to propylurea, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S156: Statistics of calculated water interaction and dipole moment for propylurea.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	${\rm Energy}\;(\rm kcal/mol)$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.39/0.71	0.07/0.16	2.728	3.59/4.17	11.01
Optimal	0.28/0.57	0.05/0.13	2.469	3.59/4.19	0.72

Table S157: The comparison list of optimized Table S158: Interaction energies and geometries beatomic charges and their initial guess for propyl tween probe water and selected propylurea site calurea, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.270	-0.286	3.464
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
CG	-0.180	-0.182	2.854
${ m HG2}$	0.090	0.090	0.000
HG1	0.090	0.090	0.000
CD	-0.037	0.080	5.289
HD1	0.090	0.090	0.000
HD2	0.090	0.090	0.000
NE	-0.309	-0.404	7.397
\mathbf{HE}	0.267	0.272	5.020
CZ	0.284	0.375	6.124
OH	-0.450	-0.484	0.000
NH	-0.525	-0.681	5.894
HH1	0.295	0.340	0.050
HH2	0.295	0.340	0.050

culated using the optimized and initial charges

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	_					
ite (*) QM/Optimal/Initial QM/Optimal/Initial 1 HB3-CB 0.0 $-0.66/-0.49/-0.52$ $2.84/2.77/2.77$ 2 HB1-CB 0.0 $-0.66/-0.49/-0.52$ $2.84/2.77/2.77$ 2 HB1-CB 0.0 $-0.77/-0.80/-1.00$ $2.88/2.77/2.75$ 3 HB2-CB 0.0 $-0.52/-0.33/-0.53$ $2.77/2.72/2.71$ 4 HG2-CG 0.0 $-0.98/-1.01/-1.17$ $2.90/2.77/2.74$ 5 HD1-CD 0.0 $-1.19/-1.39/-1.90$ $2.76/2.69/2.64$ 6 HE-NE 0.0 $-4.98/-5.30/-4.90$ $1.95/1.93/1.94$ 7 HE-NE 45.0 $-5.70/-5.61/-5.26$ $1.91/1.91/1.92$ 8 HE-NE 90.0 $-5.76/-5.69/-5.31$ $1.91/1.91/1.92$ 9 HE-NE 135.0 $-5.05/-5.39/-4.97$ $1.95/1.92/1.94$ 10 OH-CZ 0.0 $-6.14/-6.58/-6.73$ $1.83/1.77/1.76$ 11 OH-CZ 90.0 $-6.38/-6.5/-0.22/-7.02$ $1.82/1.77/1.76$ 13 OH-CZ <td></td> <td>N</td> <td>Probe</td> <td>Angle</td> <td>Energy (kcal/mol)</td> <td>Distance (Å)</td>		N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		18	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	HB3-CB	0.0	-0.66/-0.49/-0.52	2.84/2.77/2.77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	HB1-CB	0.0	-0.77/-0.80/-1.00	2.88/2.77/2.75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	HB2-CB	0.0	-0.52/-0.33/-0.53	2.77/2.72/2.71
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	HG2-CG	0.0	-0.98/-1.01/-1.17	2.90/2.77/2.74
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5	HD1-CD	0.0	-1.19/-1.39/-1.90	2.76/2.69/2.64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6	HE-NE	0.0	-4.98/-5.30/-4.90	1.95/1.93/1.94
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		7	HE-NE	45.0	-5.70/-5.61/-5.26	1.91/1.91/1.92
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	HE-NE	90.0	-5.76/-5.69/-5.31	$\bf 1.91/1.91/1.92$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		9	HE-NE	135.0	-5.05/-5.39/-4.97	1.95/1.92/1.94
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10	OH-CZ	0.0	-6.14/-6.58/-6.73	1.83/1.77/1.76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11	OH-CZ	90.0	-6.38/-6.71/-7.09	1.82/1.77/1.75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		12	OH-CZ	180.0	-6.40/-6.52/-7.02	1.82/1.77/1.76
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		13	OH-CZ	270.0	-6.38/-6.55/-6.88	1.82/1.77/1.76
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		14	$\rm HH1\text{-}NH$	0.0	-5.66/-5.92/-5.88	1.92/1.90/1.89
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		15	$\rm HH1\text{-}NH$	45.0	-5.83/-6.08/-6.04	1.91/1.89/1.88
17 HH1-NH 135.0 -5.10/-5.67/-5.64 1.95/1.91/1.89 18 HH2-NH 0.0 -4.66/-4.30/-4.39 1.88/1.90/1.88 19 HH2-NH 45.0 -4.30/-4.10/-4.19 1.90/1.90/1.89 20 HH2-NH 90.0 -3.93/-3.88/-3.96 1.92/1.91/1.90 21 HH2-NH 135.0 -4.27/-4.06/-4.15 1.90/1.91/1.89		16	$\rm HH1\text{-}NH$	90.0	-5.29/-5.84/-5.80	1.94/1.90/1.89
18 HH2- NH 0.0 -4.66/-4.30/-4.39 1.88/1.90/1.88 19 HH2- NH 45.0 -4.30/-4.10/-4.19 1.90/1.90/1.89 20 HH2- NH 90.0 -3.93/-3.88/-3.96 1.92/1.91/1.90 21 HH2- NH 135.0 -4.27/-4.06/-4.15 1.90/1.91/1.89		17	$\rm HH1\text{-}NH$	135.0	-5.10/-5.67/-5.64	1.95/1.91/1.89
19 HH2- NH 45.0 -4.30/-4.10/-4.19 1.90/1.90/1.89 20 HH2- NH 90.0 -3.93/-3.88/-3.96 1.92/1.91/1.90 21 HH2- NH 135.0 -4.27/-4.06/-4.15 1.90/1.91/1.89		18	$\rm HH2\text{-}NH$	0.0	-4.66/-4.30/-4.39	1.88/1.90/1.88
20 HH2-NH 90.0 -3.93/-3.88/-3.96 1.92/1.91/1.90 21 HH2-NH 135.0 -4.27/-4.06/-4.15 1.90/1.91/1.89		19	$\rm HH2\text{-}NH$	45.0	-4.30/-4.10/-4.19	1.90/1.90/1.89
21 HH2-NH 135.0 -4.27/-4.06/-4.15 1.90/1.91/1.89		20	$\rm HH2\text{-}NH$	90.0	-3.93/-3.88/-3.96	1.92/1.91/1.90
	_	21	HH2-NH	135.0	-4.27/-4.06/-4.15	1.90/1.91/1.89
1.52 Small molecule used for S,S-(2-hydroxyethyl)thiocysteine(CME)

Figure S53: The molecule used for water complex calculations corresponding to 2-(ethyldisulfanyl)eth an-1-ol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S159: Statistics of calculated water interaction and dipole moment for 2-(ethyldisulfanyl)ethan-1 -ol.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)} \fbox{Distance (Å)}$		${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.41/0.98	0.29/0.53	2.928	1.23/1.19	57.65
Optimal	0.60/1.43	0.34/0.63	1.495	1.23/1.43	2.97

Table S160: The comparison list of optimized atomic charges and their initial guess for 2-(ethy ldisulfanyl)ethan-1-ol, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.270	0.000
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
CB	-0.026	-0.099	0.000
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
\mathbf{SG}	-0.136	-0.081	0.045
SD	-0.215	-0.091	21.353
CE	0.071	-0.088	21.695
HE1	0.090	0.090	0.000
HE2	0.090	0.090	0.000
CZ	-0.004	0.048	14.547
HZ1	0.090	0.090	0.050
HZ2	0.090	0.090	0.050
OH	-0.650	-0.649	2.300
HH	0.420	0.420	0.000

Table S161: Interaction energies and geometries between probe water and selected 2-(ethyldisulfany l)ethan-1-ol site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA3-CA	0.0	-0.84/-0.55/-0.51	2.71/2.73/2.75
2	$\mathrm{HA2}\text{-}\mathrm{CA}$	0.0	-1.05/-1.01/-0.80	2.78/2.72/2.74
3	$\operatorname{HB1-CB}$	0.0	-1.61/-1.23/-0.93	2.57/2.68/2.72
4	$\mathrm{HB2}\text{-}\mathrm{CB}$	0.0	-2.56/-2.52/-1.91	2.67/2.71/2.73
5	SG-CB	0.0	-1.27/-2.02/-1.27	2.92/2.35/2.42
6	SG-CB	90.0	-1.09/-1.48/-1.03	2.89/2.38/2.44
7	SG-CB	180.0	-1.13/-1.81/-1.48	2.94/2.37/2.42
8	SG-CB	270.0	-1.60/-2.37/-1.76	2.85/2.34/2.39
9	SD-SG	0.0	-1.03/-2.11/-1.35	2.96/2.34/2.44
10	SD-SG	90.0	-1.40/-2.53/-1.44	2.88/2.31/2.42
11	SD-SG	180.0	-1.31/-2.73/-1.59	2.92/2.30/2.41
12	SD-SG	270.0	-1.16/-2.25/-1.42	2.90/2.32/2.43
13	$\operatorname{H\!E}\operatorname{1-\!C}\operatorname{E}$	0.0	-1.13/-1.27/-0.75	2.93/2.87/2.94
14	$\operatorname{HE}2\text{-}\operatorname{CE}$	0.0	-1.37/-0.91/-0.39	2.52/2.66/2.73
15	$\mathrm{HZ2}\text{-}\mathrm{CZ}$	0.0	-0.94/-1.19/-1.36	2.73/2.67/2.66
16	OH-CZ	0.0	-5.65/-6.09/-5.94	1.84/1.85/1.86
17	OH-CZ	90.0	-5.74/-5.96/-6.07	1.83/1.85/1.86
18	OH-CZ	180.0	-4.72/-4.87/-5.59	1.88/1.87/1.86
19	OH-CZ	270.0	-5.56/-5.66/-5.89	1.83/1.85/1.86
20	HH-OH	0.0	-6.38/-6.50/-6.56	1.80/1.82/1.82
21	HH-OH	45.0	-6.47/-6.53/-6.60	1.79/1.82/1.82
22	HH-OH	90.0	-6.58/-6.56/-6.65	1.79/1.82/1.82
23	HH-OH	135.0	-6.49/-6.54/-6.61	1.79/1.82/1.82

1.53 Small molecule used for (2S)-2-[(2R)-2-amino-2-carboxyethyl]sulfanylbutanedioicacid(CML)

Figure S54: The molecule used for water complex calculations corresponding to 2-(ethylsulfanyl)butan edioicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S162: Statistics of calculated water interaction and dipole moment for 2-(ethylsulfanyl)butanedio icacid.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)} \fbox{Distance (Å)}$		m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.74/1.65	0.17/0.38	4.739	10.13/12.41	3.62
Optimal	0.45/1.18	0.18/0.41	2.449	10.13/10.35	3.26

Table S163: The comparison list of optimized atomic charges and their initial guess for 2-(ethy lsulfanyl)butanedioicacid, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.270	-0.270	0.075		
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000		
CB	-0.203	-0.066	3.154		
HB1	0.090	0.090	0.030		
HB2	0.090	0.090	0.030		
\mathbf{SG}	-0.226	-0.197	18.760		
C2	0.016	-0.136	18.900		
H2	0.090	0.090	0.424		
C1	0.714	0.645	4.583		
01	-0.803	-0.760	2.500		
O2	-0.803	-0.760	2.500		
C3	-0.219	-0.277	7.209		
H31	0.090	0.090	0.300		
H32	0.090	0.090	0.300		
C4	0.738	0.621	2.564		
O4	-0.832	-0.760	0.000		
O5	-0.832	-0.760	0.000		

Table S164: Interaction energies and geometries between probe water and selected 2-(ethylsulfanyl)b utanedioicacid site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	SG-CB	0.0	-10.99/-12.17/-12.65	2.60/2.24/2.23
2	SG-CB	90.0	-6.93/-7.15/-7.08	2.71/2.33/2.34
3	SG-CB	180.0	-4.08/-3.03/-2.61	2.85/2.44/2.51
4	SG-CB	270.0	-6.19/-6.08/-6.13	2.74/2.35/2.36
5	O1-C1	0.0	-17.26/-16.91/-16.85	1.69/1.64/1.65
6	O1-C1	90.0	-16.82/-16.58/-16.66	1.69/1.64/1.64
7	O1-C1	180.0	-16.34/-16.03/-15.66	1.69/1.64/1.65
8	O1-C1	270.0	-16.27/-16.05/-15.46	1.70/1.64/1.65
9	O2-C1	0.0	-17.57/-17.65/-17.60	1.70/1.64/1.64
10	O2-C1	90.0	-16.12/-16.54/-15.86	1.71/1.64/1.65
11	O2-C1	180.0	-15.82/-16.00/-15.62	1.70/1.64/1.65
12	O2-C1	270.0	-16.55/-16.74/-16.89	1.70/1.64/1.64
13	O4-C4	0.0	-17.94/-18.26/-18.06	1.69/1.63/1.64
14	O4-C4	90.0	-17.19/-17.50/-16.91	1.69/1.63/1.64
15	O4-C4	180.0	-16.22/-16.43/-15.80	1.69/1.63/1.65
16	O4-C4	270.0	-16.44/-16.75/-16.44	1.70/1.63/1.65
17	O5-C4	0.0	-17.86/-17.28/-16.84	1.68/1.63/1.64
18	O5-C4	90.0	-17.26/-16.86/-16.31	1.68/1.63/1.65
19	O5-C4	180.0	-17.49/-17.20/-16.42	1.67/1.63/1.64
20	O5-C4	270.0	-17.76/-17.45/-16.76	1.68/1.63/1.64

1.54 Small molecule A of (4Z)-2-(aminomethyl)-4-[(4-hydroxyphenyl)met hylidene]-5-oxo-4acetic5-dihydro-1H-imidazol-1-ylaceticacid(CR2)

Figure S55: The molecule used for water complex calculations corresponding to (4Z)-4-ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S165: Statistics of calculated water interaction and dipole moment for (4Z)-4-ethylidene-1,2-dime thyl-4,5-dihydro-1H-imidazol-5-one.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	Energy (kcal/mol) Distance (Å)		m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.92/1.64	0.10/0.25	6.526	3.17/0.45	27.81
Optimal	0.49/1.31	0.09/0.22	3.053	3.17/3.55	14.34

Table S166: The comparison list of optimized atomic charges and their initial guess for (4Z)-4ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	Penalty		
CA1	-0.070	-0.115	13.925		
\mathbf{HA}	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
HA3	0.090	0.090	0.000		
C1	0.233	0.074	23.781		
N2	-0.679	-0.703	41.871		
N3	-0.080	-0.079	15.706		
C2	0.407	0.509	24.002		
O2	-0.489	-0.482	6.710		
CA2	0.288	0.516	47.153		
CB2	-0.105	-0.135	25.469		
HB2	0.150	0.150	3.270		
CG2	-0.270	-0.274	15.277		
$\mathrm{HG21}$	0.090	0.090	1.175		
$\mathrm{HG}22$	0.090	0.090	1.175		
$\mathrm{HG23}$	0.090	0.090	1.175		
CA3	-0.195	-0.271	3.821		
HA31	0.090	0.090	0.000		
HA32	0.090	0.090	0.000		
HA33	0.090	0.090	0.000		

Table S167: Interaction energies and geometries between probe water and selected (4Z)-4-ethylidene -1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HA-CA1	0.0	-2.17/-2.61/-1.51	2.59/2.58/2.65
2	HA2-CA1	0.0	-0.97/-0.86/0.05	2.58/2.64/2.77
3	HA3-CA1	0.0	-2.55/-2.73/-1.57	2.52/2.57/2.64
4	N2-C1	0.0	-4.99/-6.30/-5.60	2.09/2.01/2.02
5	N2-C1	90.0	-7.07/-6.37/-6.45	1.90/1.99/1.99
6	N2-C1	180.0	-5.35/-5.42/-6.38	1.95/2.01/1.99
7	N2-C1	270.0	-7.07/-6.37/-6.45	1.90/1.99/1.99
8	N3-C1	0.0	-0.26/-0.82/-0.78	2.74/2.52/2.49
9	O2-C2	0.0	-5.51/-5.57/-5.00	1.85/1.78/1.80
10	O2-C2	90.0	-5.87/-5.71/-4.73	1.84/1.78/1.80
11	O2-C2	180.0	-5.92/-5.61/-4.27	1.84/1.78/1.81
12	O2-C2	270.0	-5.87/-5.71/-4.73	1.84/1.78/1.80
13	HB2-CB2	0.0	-1.40/-1.60/-2.82	2.32/2.47/2.44
14	HG21-CG2	0.0	-1.01/-0.46/-0.86	2.72/2.77/2.74
15	HG23-CG2	0.0	-1.01/-0.46/-0.86	2.72/2.77/2.74
16	HA32-CA3	0.0	-2.16/-2.10/-1.23	2.59/2.63/2.70
17	HA 33-CA 3	0.0	-2.16/-2.10/-1.23	2.59/2.63/2.70

1.55 Small molecule B of (4Z)-2-(aminomethyl)-4-[(4-hydroxyphenyl)met hylidene]-5-oxo-4acetic5-dihydro-1H-imidazol-1-ylaceticacid(CR2)

Table S168: The molecule used for water complex calculations corresponding to N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

		RMS/Max Deviat	Max Deviation from QM Electrostati		Dipole moment	Dipole angle
		${\rm Energy}~({\rm kcal/mol})$	Distance $(Å)$	${ m RMS}~({ m kcal}/{ m mol}/{ m \AA})$	$\rm QM/MM~(Debye)$	difference (°)
Geometry 1	Initial	$0.86 \ / \ 2.05$	$0.07 \ / \ 0.17$	6.601	1.19 / 4.07	1.19
Geometry 2	Initial	$1.02\ /\ 2.07$	$0.09 \ / \ 0.23$	6.126	$6.37 \ / \ 4.43$	6.37
Sum of geometries	Initial	$0.95\ /\ 2.07$	$0.08\ /\ 0.23$	12.727	-	-
Geometry 1	Optimal	0.36 / 0.81	$0.07 \ / \ 0.16$	2.460	1.19 / 1.37	1.19
Geometry 2	Optimal	$0.51\ /\ 0.91$	$0.08 \ / \ 0.19$	2.701	$6.37 \ / \ 7.25$	6.37
Sum of geomeries	Optimal	$0.45 \ / \ 0.91$	$0.08 \ / \ 0.19$	5.161	-	-

Table S169: Statistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide.

Table S170: The comparison list of optimized atomic charges and their initial guess for N-methyl -2-(2-methyl-4-methylidene-5-oxo-4,5-dihydro-1H -imidazol-1-yl)acetamide, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HA1	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
CA	-0.070	-0.115	13.925		
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000		
C1	0.233	0.164	24.002		
N2	-0.679	-0.703	41.104		
N3	-0.031	-0.499	22.994		
C2	0.407	0.613	23.378		
O2	-0.489	-0.482	6.517		
CA2	0.466	0.512	42.773		
CB2	-0.593	-0.444	13.655		
HB21	0.230	0.230	0.950		
HB22	0.230	0.230	0.950		
CA3	-0.154	0.043	13.461		
HA31	0.090	0.090	0.177		
HA32	0.090	0.090	0.177		
С	0.510	0.499	10.097		
Ο	-0.510	-0.517	3.479		
\mathbf{NR}	-0.470	-0.442	6.773		
$_{\mathrm{HR}}$	0.310	0.299	0.000		
\mathbf{CR}	-0.110	-0.108	0.239		
HR1	0.090	0.090	0.000		
HR2	0.090	0.090	0.000		
HR3	0.090	0.090	0.000		

Table S171: Interaction energies and geometries between probe water and selected N-methyl-2-(2-me thyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazo l-1-yl)acetamide site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
	Geometry	1		
1	O-C	0.0	-5.45/-5.47/-6.22	1.84/1.77/1.76
2	O-C	90.0	-6.01/-6.48/-6.53	1.83/1.75/1.76
3	O-C	180.0	-5.96/-6.64/-6.64	1.83/1.75/1.75
4	O-C	270.0	-5.67/-5.94/-6.62	1.84/1.76/1.75
5	NR-C	0.0	-1.32/-1.50/-1.08	2.24/2.20/2.22
6	HR2-CR	0.0	-1.10/-1.26/-1.09	2.71/2.66/2.67
7	HR3-CR	0.0	-1.39/-1.22/-1.32	2.66/2.67/2.67
8	N2-C1	0.0	-5.74/-6.45/-6.04	1.95/1.92/1.92
9	N2-C1	90.0	-6.51/-6.37/-7.24	1.90/1.92/1.90
10	N2-C1	180.0	-5.60/-5.66/-7.65	1.96/1.93/1.90
11	N2-C1	270.0	-6.64/-6.59/-7.43	1.90/ 1.91/ 1.89
12	O2-C2	0.0	-3.88/-3.93/-3.54	1.88/1.80/1.81
13	O2-C2	90.0	-4.94/-5.15/-4.46	1.84/1.77/1.79
14	O2-C2	180.0	-4.95/-5.20/-4.05	1.84/1.77/1.79
15	O2-C2	270.0	-3.93/-4.12/-3.39	1.87/1.79/1.81
16	HB21-CB2	0.0	-1.84/-1.64/-3.47	2.32/2.48/2.42
17	HB22-CB2	0.0	-1.82/-1.01/-2.42	2.42/2.54/2.46
18	HA31-CA3	0.0	-2.08/-2.47/-1.68	2.70/2.69/2.70
19	HA-CA	0.0	-2.47/-2.76/-1.19	2.49/2.56/2.66
	Geometry	2		
20	O-C	0.0	-6.06/-6.90/-7.24	1.86/1.76/1.75
21	O-C	90.0	-5.25/-6.15/-7.32	1.87/1.77/1.75
22	O-C	180.0	-4.71/-5.63/-6.52	1.88/1.77/1.76
23	O-C	270.0	-5.56/-6.46/-6.85	1.86/1.76/1.76
24	HR-NR	0.0	-7.09/-7.67/-7.53	1.93/1.90/1.90
25	HR-NR	45.0	-7.71/-7.90/-7.71	1.91/1.89/1.89
26	HR-NR	90.0	-7.79/-7.84/-7.79	1.90/ 1.89/ 1.89
27	HR-NR	135.0	-7.18/-7.62/-7.61	1.92/1.90/1.89
28	HR1-CR	0.0	-0.71/-0.04/0.30	2.50/2.69/2.67
29	HR2-CR	0.0	-1.54/-1.44/-1.38	2.68/2.66/2.66
30	HR3-CR	0.0	-1.84/-1.82/-1.70	2.68/2.67/2.66
31	N2-C1	0.0	-6.46/-6.98/-6.58	1.93/1.91/1.91
32	N2-C1	90.0	-6.88/-6.47/-7.35	1.89/1.91/1.89
33	N2-C1	180.0	-5.73/-5.60/-7.60	1.95/1.93/1.90
34	N2-C1	270.0	7.31/ $7.09/$ 7.94	1.88/1.91/1.89
35	N3-C1	0.0	-0.22/0.03/-2.15	2.60/2.67/2.17
36	O2-C2	0.0	-4.96/-5.34/-4.95	1.88/1.79/1.80
37	O2-C2	90.0	-5.32/-5.37/-4.66	1.87/1.78/1.80
38	O2-C2	180.0	-5.74/-5.89/-4.71	1.87/1.78/1.81
39	O2-C2	270.0	-5.94/-6.25/-5.51	1.85/1.77/1.79
40	HB21-CB2	0.0	-1.43/-1.20/-3.03	2.33/2.48/2.41
41	HB22-CB2	0.0	-1.29/-0.66/-2.05	2.47/2.56/2.47
42	HA31-CA3	0.0	-3.71/-4.08/-3.49	2.50/2.57/2.57
43	HA-CA	0.0	2.67 / 3.45 / 1.93	2.59/2.58/2.69

1.56 Small molecule A of

```
2-[1-amino-2-(1h-imidazol-5-yl)ethyl]-1-(carbOymethyl)-4-[(4-Oocycl ohexa-2,5-dien-1-ylidene)methyl]-1h-imidazol-5-olate(CR8D)
```


Figure S56: The molecule used for water complex calculations corresponding to trimethyl-1H-imidazo l-5-ol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S172: Statistics of calculated water interaction and dipole moment for trimethyl-1H-imidazol-5-ol.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.92/1.99	0.12/0.25	3.944	2.69/1.12	16.07
Optimal	0.27/0.51	0.07/0.14	2.347	2.69/3.46	1.48

Table S173: The comparison list of optimized atomic charges and their initial guess for trimet hyl-1H-imidazol-5-ol, referring to the penalties of initial guess

Table S174: Interaction energies and geometries be-
tween probe water and selected trimethyl-1H-imi
dazol-5-ol site calculated using the optimized and
initial charges

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
CA1	-0.229	-0.113	14.764
HA1	0.090	0.090	0.000
HA2	0.090	0.090	0.000
HA3	0.090	0.090	0.000
C1	0.379	0.239	26.194
N2	-0.700	-0.679	20.607
N3	-0.040	-0.042	33.417
CA2	0.165	0.325	33.412
C2	0.104	0.071	73.413
O2	-0.504	-0.554	65.809
HO	0.432	0.420	4.985
CB2	-0.270	-0.246	6.867
HB21	0.090	0.090	0.450
HB22	0.090	0.090	0.450
HB23	0.090	0.090	0.450
CA3	-0.147	-0.231	3.536
HA31	0.090	0.090	0.000
HA32	0.090	0.090	0.000
HA33	0.090	0.090	0.000

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(°)	${ m QM}/{ m Optimal}/{ m Initial}$	${ m QM}/{ m Optimal}/{ m Initial}$
1	HA1-CA1	0.0	-1.45/-1.66/-1.80	2.67/2.64/2.61
2	HA2-CA1	0.0	-1.56/-1.69/-1.84	2.63/2.64/2.61
3	N2-C1	0.0	-7.90/-8.33/-7.36	1.89/1.89/1.90
4	N2-C1	90.0	-8.35/-8.07/-7.42	1.86/1.89/1.90
5	N2-C1	180.0	-7.33/-7.26/-6.73	1.91/1.91/1.91
6	N2-C1	270.0	-8.37/-8.04/-7.40	1.86/1.89/1.90
7	N3-C1	0.0	-0.63/-0.73/-2.25	2.56/2.47/2.31
8	N3-C1	180.0	-1.70/-2.21/-2.59	2.48/2.37/2.31
9	O2-C2	0.0	-3.08/-3.12/-3.61	2.05/2.19/2.17
10	O2-C2	90.0	-2.09/-2.25/-3.34	2.20/2.22/2.18
11	O2-C2	180.0	-1.32/-1.68/-3.31	2.33/2.25/2.17
12	O2-C2	270.0	-3.13/-3.24/-3.96	2.07/2.17/2.15
13	HO-O2	0.0	-6.62/-6.22/-5.38	1.87/1.97/2.04
14	HO-O2	45.0	-6.61/-6.36/-5.67	1.84/1.96/2.02
15	HO-O2	90.0	-6.03/-6.20/-5.59	1.87/1.97/2.02
16	HO-O2	135.0	-5.91/-6.02/-5.28	1.91/1.98/2.05
17	HB22-CB2	0.0	-2.22/-2.47/-2.94	2.71/2.65/2.60
18	HB23- $CB2$	0.0	-0.39/-0.09/-0.75	2.84/2.80/2.69
19	HA32-CA3	0.0	-2.00/-2.35/-1.67	2.72/2.64/2.73
20	HA33-CA3	0.0	-1.60/-1.66/-0.80	2.61/2.62/2.71

1.57 Small molecule B of

2-[1-amino-2-(1h-imidazol-5-yl)ethyl]-1-(carbOymethyl)-4-[(4-Oocycl ohexa-2,5-dien-1-ylidene)methyl]-1h-imidazol-5-olate(CR8D)

Figure S57: The molecule used for water complex calculations corresponding to 4-ethylidenecyclohexa-2,5-dien-1-one, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S175: Statistics of calculated water interaction and dipole moment for 4-ethylidenecyclohexa-2,5-dien-1-one.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.64/1.14	0.10/0.15	4.864	6.34/3.76	7.20
Optimal	0.43/0.99	0.08/0.15	2.506	6.34/6.76	5.10

Table S176: The comparison list of optimized atomic charges and their initial guess for 4-ethy lidenecyclohexa-2,5-dien-1-one, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
C9	-0.270	-0.270	0.000
H9	0.090	0.090	0.000
H91	0.090	0.090	0.000
H92	0.090	0.090	0.000
C8	-0.021	-0.153	0.000
H8	0.150	0.150	0.000
C7	0.084	0.015	4.010
C5	-0.159	-0.159	20.897
H5	0.150	0.150	2.456
C6	-0.159	-0.159	20.897
H6	0.150	0.150	2.456
C2	-0.144	-0.082	12.094
H2	0.150	0.150	2.500
C4	-0.144	-0.082	12.094
H4	0.150	0.150	2.500
C1	0.198	0.311	17.406
O3	-0.405	-0.441	0.247

Table S177: Interaction energies and geometries between probe water and selected 4-ethylidenecycloh exa-2,5-dien-1-one site calculated using the optimized and initial charges

	Probe	Angle	Energy (kcal/mol)	Distance (Å)
Ν	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
1	H9-C9	0.0	-3.17/-2.69/-2.03	2.78/2.84/2.92
2	H91-C9	0.0	-1.84/-1.58/-0.78	2.62/2.68/2.76
3	H92-C9	0.0	-1.84/-1.58/-0.78	2.62/2.68/2.76
4	H8-C8	0.0	-2.64/-3.63/-2.22	2.53/2.48/2.56
5	$\mathrm{H8} ext{-}\mathrm{C8}$	90.0	-3.17/-3.80/-2.42	2.44/2.47/2.54
6	${ m H5-C5}$	0.0	-2.40/-2.24/-1.99	2.75/2.72/2.73
7	${ m H5-C5}$	90.0	-3.02/-2.42/-2.11	2.64/2.70/2.71
8	${ m H6-C6}$	0.0	-2.20/-2.84/-2.51	2.55/2.53/2.53
9	${ m H6-C6}$	90.0	-2.73/-3.08/-2.68	2.45/2.50/2.51
10	$\mathrm{H2}\text{-}\mathrm{C2}$	0.0	-1.14/-0.91/-1.78	2.51/2.57/2.52
11	$\mathrm{H2}\text{-}\mathrm{C2}$	90.0	-0.93/-0.80/-1.66	2.55/2.59/2.53
12	$\rm H4{\-}C4$	0.0	-1.20/-0.83/-1.70	2.51/2.57/2.52
13	$\rm H4{\text-}C4$	90.0	-0.98/-0.72/-1.57	2.55/2.59/2.53
14	O3-C1	0.0	-6.27/-6.42/-6.02	1.84/1.69/1.69
15	O3-C1	90.0	-6.25/-6.51/-6.11	1.84/1.69/1.69
16	O3-C1	180.0	-6.24/-6.45/-6.05	1.84/1.69/1.69
17	O3-C1	270.0	-6.25/-6.51/-6.11	1.84/1.69/1.69

1.58 Small molecule A of

```
[(4Z)-2-[(1R,2R)-1-amino-2-hydroxypropyl]-4-(1H-indol-3-ylmethyli
dene)-5-0x0-4,5-dihydro-1H-imidazol-1-yl]aceticacid(CRF)
```


Figure S58: The molecule used for water complex calculations corresponding to (4Z)-4-ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S178: Statistics of calculated water interaction and dipole moment for (4Z)-4-ethylidene-1,2-dime thyl-4,5-dihydro-1H-imidazol-5-one.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.92/1.64	0.10/0.25	6.526	3.17/0.45	27.81
Optimal	0.49/1.31	0.09/0.22	3.053	3.17/3.55	14.34

Table S179: The comparison list of optimized atomic charges and their initial guess for (4Z)-4ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
CA1	-0.070	-0.115	13.925
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
HA2	0.090	0.090	0.000
HA3	0.090	0.090	0.000
C1	0.233	0.074	23.781
N2	-0.679	-0.703	41.871
N3	-0.080	-0.079	15.706
C2	0.407	0.509	24.002
O2	-0.489	-0.482	6.710
CA2	0.288	0.516	47.153
CB2	-0.105	-0.135	25.469
HB2	0.150	0.150	3.270
CG2	-0.270	-0.274	15.277
$\mathrm{HG21}$	0.090	0.090	1.175
$\mathrm{HG}22$	0.090	0.090	1.175
${ m HG23}$	0.090	0.090	1.175
CA3	-0.195	-0.271	3.821
HA31	0.090	0.090	0.000
HA32	0.090	0.090	0.000
HA33	0.090	0.090	0.000

Table S180: Interaction energies and geometries between probe water and selected (4Z)-4-ethylidene -1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HA-CA1	0.0	-2.17/-2.61/-1.51	2.59/2.58/2.65
2	HA2-CA1	0.0	-0.97/-0.86/0.05	2.58/2.64/2.77
3	HA3-CA1	0.0	-2.55/-2.73/-1.57	2.52/2.57/2.64
4	N2-C1	0.0	-4.99/-6.30/-5.60	2.09/2.01/2.02
5	N2-C1	90.0	-7.07/-6.37/-6.45	1.90/1.99/1.99
6	N2-C1	180.0	-5.35/-5.42/-6.38	1.95/2.01/1.99
7	N2-C1	270.0	-7.07/-6.37/-6.45	1.90/1.99/1.99
8	N3-C1	0.0	-0.26/-0.82/-0.78	2.74/2.52/2.49
9	O2-C2	0.0	-5.51/-5.57/-5.00	1.85/1.78/1.80
10	O2-C2	90.0	-5.87/-5.71/-4.73	1.84/1.78/1.80
11	O2-C2	180.0	-5.92/-5.61/-4.27	1.84/1.78/1.81
12	O2-C2	270.0	-5.87/-5.71/-4.73	1.84/1.78/1.80
13	HB2-CB2	0.0	-1.40/-1.60/-2.82	2.32/2.47/2.44
14	HG21-CG2	0.0	-1.01/-0.46/-0.86	2.72/2.77/2.74
15	HG23-CG2	0.0	-1.01/-0.46/-0.86	2.72/2.77/2.74
16	HA32-CA3	0.0	-2.16/-2.10/-1.23	2.59/2.63/2.70
17	HA 33-CA 3	0.0	-2.16/-2.10/-1.23	2.59/2.63/2.70

1.59 Small molecule B of

[(4Z)-2-[(1R,2R)-1-amino-2-hydroxypropyl]-4-(1H-indol-3-ylmethyli dene)-5-0x0-4,5-dihydro-1H-imidazol-1-yl]aceticacid(CRF)

Table S181: The molecule used for water complex calculations corresponding to N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

		RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
		$\fbox{Energy (kcal/mol)}$	Distance (Å)	${f RMS}~({ m kcal}/{ m mol}/{ m \AA})$	QM/MM (Debye)	difference (°)
Geometry 1	Initial	$0.86 \ / \ 2.05$	$0.07 \ / \ 0.17$	6.601	1.19 / 4.07	1.19
Geometry 2	Initial	$1.02\ /\ 2.07$	$0.09 \ / \ 0.23$	6.126	$6.37 \ / \ 4.43$	6.37
Sum of geometries	Initial	$0.95\ /\ 2.07$	$0.08\ /\ 0.23$	12.727	-	-
Geometry 1	Optimal	0.36 / 0.81	$0.07 \ / \ 0.16$	2.460	$1.19\ /\ 1.37$	1.19
Geometry 2	Optimal	$0.51\ /\ 0.91$	$0.08 \ / \ 0.19$	2.701	$6.37 \ / \ 7.25$	6.37
Sum of geomeries	Optimal	$0.45 \ / \ 0.91$	$0.08 \ / \ 0.19$	5.161	-	=

Table S182: Statistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide.

Table S183: The comparison list of optimized atomic charges and their initial guess for N-methyl -2-(2-methyl-4-methylidene-5-oxo-4,5-dihydro-1H -imidazol-1-yl)acetamide, referring to the penalties of initial guess

_

Atom	$\operatorname{Charges}$					
Atom	Optimal	Initial	$\mathbf{Penalty}$			
HA1	0.090	0.090	0.000			
HA2	0.090	0.090	0.000			
\mathbf{CA}	-0.070	-0.115	13.925			
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000			
C1	0.233	0.164	24.002			
N2	-0.679	-0.703	41.104			
N3	-0.031	-0.499	22.994			
C2	0.407	0.613	23.378			
O2	-0.489	-0.482	6.517			
CA2	0.466	0.512	42.773			
CB2	-0.593	-0.444	13.655			
HB21	0.230	0.230	0.950			
HB22	0.230	0.230	0.950			
CA3	-0.154	0.043	13.461			
HA31	0.090	0.090	0.177			
HA32	0.090	0.090	0.177			
С	0.510	0.499	10.097			
Ο	-0.510	-0.517	3.479			
\mathbf{NR}	-0.470	-0.442	6.773			
$_{\mathrm{HR}}$	0.310	0.299	0.000			
CR	-0.110	-0.108	0.239			
$\mathrm{HR1}$	0.090	0.090	0.000			
$\mathrm{HR2}$	0.090	0.090	0.000			
$_{ m HR3}$	0.090	0.090	0.000			

Table S184: Interaction energies and geometries between probe water and selected N-methyl-2-(2-me thyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazo l-1-yl)acetamide site calculated using the optimized and initial charges

Ν	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
	Geometry	1		
1	O-C	0.0	-5.45/-5.47/-6.22	1.84/1.77/1.76
2	O-C	90.0	-6.01/-6.48/-6.53	1.83/1.75/1.76
3	O-C	180.0	-5.96/-6.64/-6.64	1.83/1.75/1.75
4	O-C	270.0	-5.67/-5.94/-6.62	1.84/1.76/1.75
5	NR-C	0.0	-1.32/-1.50/-1.08	2.24/2.20/2.22
6	HR2-CR	0.0	-1.10/-1.26/-1.09	2.71/2.66/2.67
7	HR3-CR	0.0	-1.39/-1.22/-1.32	2.66/2.67/2.67
8	N2-C1	0.0	-5.74/-6.45/-6.04	1.95/1.92/1.92
9	N2-C1	90.0	-6.51/-6.37/-7.24	1.90/1.92/1.90
10	N2-C1	180.0	-5.60/-5.66/-7.65	1.96/1.93/1.90
11	N2-C1	270.0	-6.64/-6.59/-7.43	1.90/1.91/1.89
12	O2-C2	0.0	-3.88/-3.93/-3.54	1.88/1.80/1.81
13	O2-C2	90.0	-4.94/-5.15/-4.46	1.84/1.77/1.79
14	O2-C2	180.0	-4.95/-5.20/-4.05	1.84/1.77/1.79
15	O2-C2	270.0	-3.93/-4.12/-3.39	1.87/1.79/1.81
16	HB21-CB2	0.0	-1.84 / -1.64 / -3.47	2.32/2.48/2.42
17	HB22-CB2	0.0	-1.82/-1.01/-2.42	2.42/2.54/2.46
18	HA31-CA3	0.0	-2.08/-2.47/-1.68	2.70/2.69/2.70
19	HA-CA	0.0	-2.47/-2.76/-1.19	2.49/2.56/2.66
	Geometry	2		
20	O-C	0.0	-6.06/-6.90/-7.24	1.86/1.76/1.75
21	O-C	90.0	-5.25/-6.15/-7.32	1.87/1.77/1.75
22	O-C	180.0	-4.71/-5.63/-6.52	1.88/1.77/1.76
23	O-C	270.0	-5.56/-6.46/-6.85	1.86/1.76/1.76
24	HR-NR	0.0	-7.09/-7.67/-7.53	1.93/1.90/1.90
25	HR-NR	45.0	-7.71/-7.90/-7.71	1.91/1.89/1.89
26	HR-NR	90.0	-7.79/-7.84/-7.79	1.90/1.89/1.89
27	HR-NR	135.0	-7.18/-7.62/-7.61	1.92/1.90/1.89
28	HR1-CR	0.0	-0.71/-0.04/0.30	2.50/2.69/2.67
29	HR2-CR	0.0	-1.54/-1.44/-1.38	2.68/2.66/2.66
30	HR3-CR	0.0	-1.84/-1.82/-1.70	2.68/2.67/2.66
31	N2-C1	0.0	-6.46/-6.98/-6.58	1.93/1.91/1.91
32	N2-C1	90.0	-6.88/-6.47/-7.35	1.89/1.91/1.89
33	N2-C1	180.0	-5.73/-5.60/-7.60	1.95/1.93/1.90
34	N2-C1	270.0	-7.31/-7.09/-7.94	1.88/1.91/1.89
35	N3-C1	0.0	-0.22/0.03/-2.15	2.60/2.67/2.17
36	O2-C2	0.0	-4.96/-5.34/-4.95	1.88/1.79/1.80
37	O2-C2	90.0	-5.32/-5.37/-4.66	1.87/1.78/1.80
38	O2-C2	180.0	-5.74/-5.89/-4.71	1.87/1.78/1.81
39	O2-C2	270.0	-5.94/-6.25/-5.51	1.85/1.77/1.79
40	HB21-CB2	0.0	-1.43/-1.20/-3.03	2.33/2.48/2.41
41	HB22-CB2	0.0	-1.29/-0.66/-2.05	2.47/2.56/2.47
42	HA31-CA3	0.0	-3.71/-4.08/-3.49	2.50/2.57/2.57
43	HA-CA	0.0	-2.67/-3.45/-1.93	2.59/2.58/2.69

1.60 Small molecule A of

2-[(1R,2R)-1-amino-2-hydroxypropyl]-4-(4-hydroxybenzylidene)-5-ox o-4acetic5-dihydro-1H-imidazol-1-ylaceticacid(CRO)

Figure S59: The molecule used for water complex calculations corresponding to (4Z)-4-ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S185: Statistics of calculated water interaction and dipole moment for (4Z)-4-ethylidene-1,2-dime thyl-4,5-dihydro-1H-imidazol-5-one.

	${ m RMS}/{ m Max}$ Deviation from ${ m QM}$		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.92/1.64	0.10/0.25	6.526	3.17/0.45	27.81
Optimal	0.49/1.31	0.09/0.22	3.053	3.17/3.55	14.34

Table S186: The comparison list of optimized atomic charges and their initial guess for (4Z)-4-ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	Penalty
CA1	-0.070	-0.115	13.925
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
HA2	0.090	0.090	0.000
HA3	0.090	0.090	0.000
C1	0.233	0.074	23.781
N2	-0.679	-0.703	41.871
N3	-0.080	-0.079	15.706
C2	0.407	0.509	24.002
O2	-0.489	-0.482	6.710
CA2	0.288	0.516	47.153
CB2	-0.105	-0.135	25.469
HB2	0.150	0.150	3.270
CG2	-0.270	-0.274	15.277
$\mathrm{HG21}$	0.090	0.090	1.175
$\mathrm{HG}22$	0.090	0.090	1.175
$\mathrm{HG23}$	0.090	0.090	1.175
CA3	-0.195	-0.271	3.821
HA31	0.090	0.090	0.000
HA32	0.090	0.090	0.000
HA33	0.090	0.090	0.000

Table S187: Interaction energies and geometries between probe water and selected (4Z)-4-ethylidene -1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HA-CA1	0.0	-2.17/-2.61/-1.51	2.59/2.58/2.65
2	HA2-CA1	0.0	-0.97/-0.86/0.05	2.58/2.64/2.77
3	HA3-CA1	0.0	-2.55/-2.73/-1.57	2.52/2.57/2.64
4	N2-C1	0.0	-4.99/-6.30/-5.60	2.09/2.01/2.02
5	N2-C1	90.0	-7.07/-6.37/-6.45	1.90/1.99/1.99
6	N2-C1	180.0	-5.35/-5.42/-6.38	1.95/2.01/1.99
7	N2-C1	270.0	-7.07/-6.37/-6.45	1.90/1.99/1.99
8	N3-C1	0.0	-0.26/-0.82/-0.78	2.74/2.52/2.49
9	O2-C2	0.0	-5.51/-5.57/-5.00	1.85/1.78/1.80
10	O2-C2	90.0	-5.87/-5.71/-4.73	1.84/1.78/1.80
11	O2-C2	180.0	-5.92/-5.61/-4.27	1.84/1.78/1.81
12	O2-C2	270.0	-5.87/-5.71/-4.73	1.84/1.78/1.80
13	HB2-CB2	0.0	-1.40/-1.60/-2.82	2.32/2.47/2.44
14	HG21-CG2	0.0	-1.01/-0.46/-0.86	2.72/2.77/2.74
15	HG23-CG2	0.0	-1.01/-0.46/-0.86	2.72/2.77/2.74
16	HA32-CA3	0.0	-2.16/-2.10/-1.23	2.59/2.63/2.70
17	HA 33-CA 3	0.0	-2.16/-2.10/-1.23	2.59/2.63/2.70

1.61 Small molecule B of

 $\begin{array}{l} 2\text{-}[(1\text{R},2\text{R})\text{-}1\text{-}amino\text{-}2\text{-}hydroxypropyl]\text{-}4\text{-}(4\text{-}hydroxybenzylidene)\text{-}5\text{-}ox\\ \text{o-}4acetic5\text{-}dihydro\text{-}1\text{H}\text{-}imidazo\text{-}1\text{-}ylaceticacid(CRO) \end{array}$

Table S188: The molecule used for water complex calculations corresponding to N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

		RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
		$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal}/{ m mol}/{ m \AA})$	$\rm QM/MM~(Debye)$	difference (°)
Geometry 1	Initial	$0.86 \ / \ 2.05$	$0.07 \ / \ 0.17$	6.601	$1.19 \ / \ 4.07$	1.19
Geometry 2	Initial	$1.02\ /\ 2.07$	$0.09 \ / \ 0.23$	6.126	$6.37\ /\ 4.43$	6.37
Sum of geometries	Initial	$0.95\ /\ 2.07$	$0.08\ /\ 0.23$	12.727	-	-
Geometry 1	Optimal	0.36 / 0.81	$0.07 \ / \ 0.16$	2.460	$1.19 \ / \ 1.37$	1.19
Geometry 2	Optimal	$0.51 \ / \ 0.91$	$0.08 \ / \ 0.19$	2.701	$6.37 \ / \ 7.25$	6.37
Sum of geomeries	Optimal	$0.45 \ / \ 0.91$	$0.08 \ / \ 0.19$	5.161	-	=

Table S189: Statistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide.

Table S190: The comparison list of optimized atomic charges and their initial guess for N-methyl -2-(2-methyl-4-methylidene-5-oxo-4,5-dihydro-1H -imidazol-1-yl)acetamide, referring to the penalties of initial guess

=

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HA1	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
CA	-0.070	-0.115	13.925		
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000		
C1	0.233	0.164	24.002		
N2	-0.679	-0.703	41.104		
N3	-0.031	-0.499	22.994		
C2	0.407	0.613	23.378		
O2	-0.489	-0.482	6.517		
CA2	0.466	0.512	42.773		
CB2	-0.593	-0.444	13.655		
HB21	0.230	0.230	0.950		
HB22	0.230	0.230	0.950		
CA3	-0.154	0.043	13.461		
HA31	0.090	0.090	0.177		
HA32	0.090	0.090	0.177		
С	0.510	0.499	10.097		
Ο	-0.510	-0.517	3.479		
\mathbf{NR}	-0.470	-0.442	6.773		
$_{\mathrm{HR}}$	0.310	0.299	0.000		
\mathbf{CR}	-0.110	-0.108	0.239		
HR1	0.090	0.090	0.000		
HR2	0.090	0.090	0.000		
HR3	0.090	0.090	0.000		

Table S191: Interaction energies and geometries between probe water and selected N-methyl-2-(2-me thyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazo l-1-yl)acetamide site calculated using the optimized and initial charges

N	\mathbf{Probe}	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
	Geometry	1		
1	O-C	0.0	-5.45/-5.47/-6.22	1.84/1.77/1.76
2	O-C	90.0	-6.01/-6.48/-6.53	1.83/1.75/1.76
3	O-C	180.0	-5.96/-6.64/-6.64	1.83/1.75/1.75
4	O-C	270.0	-5.67/-5.94/-6.62	1.84/1.76/1.75
5	NR-C	0.0	-1.32/-1.50/-1.08	2.24/2.20/2.22
6	HR2-CR	0.0	-1.10/-1.26/-1.09	2.71/2.66/2.67
7	HR3-CR	0.0	-1.39/-1.22/-1.32	2.66/2.67/2.67
8	N2-C1	0.0	-5.74/-6.45/-6.04	1.95/1.92/1.92
9	N2-C1	90.0	-6.51/-6.37/-7.24	1.90/1.92/1.90
10	N2-C1	180.0	-5.60/-5.66/-7.65	1.96/1.93/1.90
11	N2-C1	270.0	-6.64/-6.59/-7.43	1.90/1.91/1.89
12	O2-C2	0.0	-3.88/-3.93/-3.54	1.88/1.80/1.81
13	O2-C2	90.0	-4.94/-5.15/-4.46	1.84/1.77/1.79
14	O2-C2	180.0	-4.95/-5.20/-4.05	1.84/1.77/1.79
15	O2-C2	270.0	-3.93/-4.12/-3.39	1.87/1.79/1.81
16	HB21-CB2	0.0	-1.84/-1.64/-3.47	2.32/2.48/2.42
17	HB22-CB2	0.0	-1.82/-1.01/-2.42	2.42/2.54/2.46
18	HA31-CA3	0.0	-2.08/-2.47/-1.68	2.70/2.69/2.70
19	HA-CA	0.0	-2.47/-2.76/-1.19	2.49/2.56/2.66
	Geometry	2		
20	O-C	0.0	-6.06/-6.90/-7.24	1.86/1.76/1.75
21	O-C	90.0	-5.25/-6.15/-7.32	1.87/1.77/1.75
22	O-C	180.0	-4.71/-5.63/-6.52	1.88/1.77/1.76
23	O-C	270.0	-5.56/-6.46/-6.85	1.86/1.76/1.76
24	HR-NR	0.0	-7.09/-7.67/-7.53	1.93/1.90/1.90
25	HR-NR	45.0	-7.71/-7.90/-7.71	1.91/1.89/1.89
26	HR-NR	90.0	-7.79/-7.84/-7.79	1.90/1.89/1.89
27	HR-NR	135.0	-7.18/-7.62/-7.61	1.92/1.90/1.89
28	HR1-CR	0.0	-0.71/-0.04/0.30	2.50/2.69/2.67
29	HR2-CR	0.0	-1.54/-1.44/-1.38	2.68/2.66/2.66
30	HR3-CR	0.0	-1.84/-1.82/-1.70	2.68/2.67/2.66
31	N2-C1	0.0	-6.46/-6.98/-6.58	1.93/1.91/1.91
32	N2-C1	90.0	-6.88/-6.47/-7.35	1.89/1.91/1.89
33	N2-C1	180.0	-5.73/-5.60/-7.60	1.95/1.93/1.90
34	N2-C1	270.0	-7.31/-7.09/-7.94	1.88/1.91/1.89
35	N3-C1	0.0	-0.22/0.03/-2.15	2.60/2.67/2.17
36	O2-C2	0.0	-4.96/-5.34/-4.95	1.88/1.79/1.80
37	O2-C2	90.0	-5.32/-5.37/-4.66	1.87/1.78/1.80
38	O2-C2	180.0	-5.74/-5.89/-4.71	1.87/1.78/1.81
39	O2-C2	270.0	-5.94/-6.25/-5.51	1.85/1.77/1.79
40	HB21-CB2	0.0	-1.43/-1.20/-3.03	2.33/2.48/2.41
41	HB22-CB2	0.0	-1.29/-0.66/-2.05	2.47/2.56/2.47
42	HA31-CA3	0.0	-3.71/-4.08/-3.49	2.50/2.57/2.57
43	HA-CA	0.0	-2.67/-3.45/-1.93	2.59/2.58/2.69

1.62 Small molecule A of [2-(3-carbamoyl-1-imino-propyl)-4-(4-hydroxy-be nzylidene)-5-oxo-4,5-dihydro-imidazol-1-yl]-aceticacid(CRQ)

Figure S60: The molecule used for water complex calculations corresponding to N-(propan-2-ylidene)a cetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S192: Statistics of calculated water interaction and dipole moment for N-(propan-2-ylidene)aceta mide.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	3.41/7.36	0.12/0.26	9.096	4.63/6.88	17.09
Optimal	0.43/0.73	0.08/0.13	2.495	4.63/5.33	4.69

Table S193: The comparison list of optimized atomic charges and their initial guess for N-(prop an-2-ylidene)acetamide, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
CL	-0.270	-0.270	0.000
HL1	0.090	0.090	0.000
HL2	0.090	0.090	0.000
HL3	0.090	0.090	0.000
CLP	0.510	0.510	0.000
OL	-0.510	-0.510	0.000
Ν	-0.410	-0.844	113.808
CB	0.166	-0.261	53.301
CG	-0.148	-0.040	36.206
$\mathrm{HG1}$	0.090	0.090	0.250
$\mathrm{HG2}$	0.090	0.090	0.250
${ m HG3}$	0.090	0.090	0.250
CA	-0.148	-0.040	36.206
HA1	0.090	0.090	0.250
HA2	0.090	0.090	0.250
HA3	0.090	0.090	0.250

Table S194: Interaction energies and geometries between probe water and selected N-(propan-2-ylide ne)acetamide site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HG1-CG	0.0	-1.84/-1.60/-2.23	2.51/2.61/2.55
2	HG2-CG	0.0	-0.66/-0.55/-0.14	2.49/2.61/2.57
3	HG3-CG	0.0	-1.81/-2.15/-2.97	2.66/2.62/2.55
4	HA1-CA	0.0	-2.42/-2.18/-2.80	2.49/2.60/2.54
5	HA2-CA	0.0	-2.47/-2.48/-3.52	2.53/2.59/2.53
6	HA3-CA	0.0	-1.75/-2.07/-1.91	2.71/2.66/2.68
7	HL1-CL	0.0	-1.27/-0.69/-1.35	2.61/2.71/2.61
8	HL2-CL	0.0	-0.80/-0.95/-0.30	2.79/2.73/2.74
9	HL3-CL	0.0	-0.74/-0.16/-0.82	2.63/2.73/2.61
10	OL-CLP	0.0	-6.39/-7.08/-6.92	1.84/1.76/1.77
11	OL-CLP	90.0	-5.91/-6.59/-6.51	1.85/1.76/1.77
12	OL-CLP	180.0	-6.06/-6.64/-6.97	1.84/1.76/1.76
13	OL-CLP	270.0	-6.51/-7.24/-7.59	1.84/1.75/1.76
14	N-CLP	0.0	-2.98/-2.93/-10.35	2.10/2.06/1.84
15	N-CLP	90.0	-3.47/-3.01/-9.79	2.05/2.06/1.85
16	N-CLP	180.0	-4.10/-4.16/-10.84	2.06/2.04/1.85
_17	N-C LP	270.0	-4.41/-4.22/-11.64	2.02/2.03/1.83

1.63 Small molecule B of [2-(3-carbamoyl-1-imino-propyl)-4-(4-hydroxy-be nzylidene)-5-oxo-4,5-dihydro-imidazol-1-yl]-aceticacid(CRQ)

Figure S61: The molecule used for water complex calculations corresponding to (4Z)-4-ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S195: Statistics of calculated water interaction and dipole moment for (4Z)-4-ethylidene-1,2-dime thyl-4,5-dihydro-1H-imidazol-5-one.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	$\rm QM/MM~(Debye)$	difference (°)
Initial	0.92/1.64	0.10/0.25	6.526	3.17/0.45	27.81
Optimal	0.49/1.31	0.09/0.22	3.053	3.17/3.55	14.34

Table S196: The comparison list of optimized atomic charges and their initial guess for (4Z)-4-ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	Penalty
CA1	-0.070	-0.115	13.925
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
HA2	0.090	0.090	0.000
HA3	0.090	0.090	0.000
C1	0.233	0.074	23.781
N2	-0.679	-0.703	41.871
N3	-0.080	-0.079	15.706
C2	0.407	0.509	24.002
O2	-0.489	-0.482	6.710
CA2	0.288	0.516	47.153
CB2	-0.105	-0.135	25.469
HB2	0.150	0.150	3.270
CG2	-0.270	-0.274	15.277
$\mathrm{HG21}$	0.090	0.090	1.175
$\mathrm{HG}22$	0.090	0.090	1.175
$\mathrm{HG23}$	0.090	0.090	1.175
CA3	-0.195	-0.271	3.821
HA31	0.090	0.090	0.000
HA32	0.090	0.090	0.000
HA33	0.090	0.090	0.000

Table S197: Interaction energies and geometries between probe water and selected (4Z)-4-ethylidene -1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HA-CA1	0.0	-2.17/-2.61/-1.51	2.59/2.58/2.65
2	HA2-CA1	0.0	-0.97/-0.86/0.05	2.58/2.64/2.77
3	HA3-CA1	0.0	-2.55/-2.73/-1.57	2.52/2.57/2.64
4	N2-C1	0.0	-4.99/-6.30/-5.60	2.09/2.01/2.02
5	N2-C1	90.0	-7.07/-6.37/-6.45	1.90/1.99/1.99
6	N2-C1	180.0	-5.35/-5.42/-6.38	1.95/2.01/1.99
7	N2-C1	270.0	-7.07/-6.37/-6.45	1.90/1.99/1.99
8	N3-C1	0.0	-0.26/-0.82/-0.78	2.74/2.52/2.49
9	O2-C2	0.0	-5.51/-5.57/-5.00	1.85/1.78/1.80
10	O2-C2	90.0	-5.87/-5.71/-4.73	1.84/1.78/1.80
11	O2-C2	180.0	-5.92/-5.61/-4.27	1.84/1.78/1.81
12	O2-C2	270.0	-5.87/-5.71/-4.73	1.84/1.78/1.80
13	HB2-CB2	0.0	-1.40/-1.60/-2.82	2.32/2.47/2.44
14	HG21-CG2	0.0	-1.01/-0.46/-0.86	2.72/2.77/2.74
15	HG23-CG2	0.0	-1.01/-0.46/-0.86	2.72/2.77/2.74
16	HA32-CA3	0.0	-2.16/-2.10/-1.23	2.59/2.63/2.70
17	HA 33-CA 3	0.0	-2.16/-2.10/-1.23	2.59/2.63/2.70

1.64 Small molecule C of [2-(3-carbamoyl-1-imino-propyl)-4-(4-hydroxy-be nzylidene)-5-oxo-4,5-dihydro-imidazol-1-yl]-aceticacid(CRQ)

Table S198: The molecule used for water complex calculations corresponding to N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

		RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
		${\rm Energy}~({\rm kcal/mol})$	Distance $(Å)$	${ m RMS}~({ m kcal}/{ m mol}/{ m \AA})$	$\rm QM/MM~(Debye)$	difference (°)
Geometry 1	Initial	$0.86 \ / \ 2.05$	$0.07 \ / \ 0.17$	6.601	1.19 / 4.07	1.19
Geometry 2	Initial	$1.02\ /\ 2.07$	$0.09 \ / \ 0.23$	6.126	$6.37 \ / \ 4.43$	6.37
Sum of geometries	Initial	$0.95\ /\ 2.07$	$0.08\ /\ 0.23$	12.727	-	-
Geometry 1	Optimal	0.36 / 0.81	$0.07 \ / \ 0.16$	2.460	1.19 / 1.37	1.19
Geometry 2	Optimal	$0.51\ /\ 0.91$	$0.08 \ / \ 0.19$	2.701	$6.37 \ / \ 7.25$	6.37
Sum of geomeries	Optimal	$0.45 \ / \ 0.91$	$0.08 \ / \ 0.19$	5.161	-	-

Table S199: Statistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide.

Table S200: The comparison list of optimized atomic charges and their initial guess for N-methyl -2-(2-methyl-4-methylidene-5-oxo-4,5-dihydro-1H -imidazol-1-yl)acetamide, referring to the penalties of initial guess

=

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HA1	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.070	-0.115	13.925		
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000		
C1	0.233	0.164	24.002		
N2	-0.679	-0.703	41.104		
N3	-0.031	-0.499	22.994		
C2	0.407	0.613	23.378		
O2	-0.489	-0.482	6.517		
CA2	0.466	0.512	42.773		
CB2	-0.593	-0.444	13.655		
HB21	0.230	0.230	0.950		
HB22	0.230	0.230	0.950		
CA3	-0.154	0.043	13.461		
HA31	0.090	0.090	0.177		
HA32	0.090	0.090	0.177		
С	0.510	0.499	10.097		
Ο	-0.510	-0.517	3.479		
\mathbf{NR}	-0.470	-0.442	6.773		
$_{\mathrm{HR}}$	0.310	0.299	0.000		
\mathbf{CR}	-0.110	-0.108	0.239		
$\mathrm{HR1}$	0.090	0.090	0.000		
$\mathrm{HR2}$	0.090	0.090	0.000		
HR3	0.090	0.090	0.000		

Table S201: Interaction energies and geometries between probe water and selected N-methyl-2-(2-me thyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazo l-1-yl)acetamide site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
	Geometry	1		
1	O-C	0.0	-5.45/-5.47/-6.22	1.84/1.77/1.76
2	O-C	90.0	-6.01/-6.48/-6.53	1.83/1.75/1.76
3	O-C	180.0	-5.96/-6.64/-6.64	1.83/1.75/1.75
4	O-C	270.0	-5.67/-5.94/-6.62	1.84/1.76/1.75
5	NR-C	0.0	-1.32/-1.50/-1.08	2.24/2.20/2.22
6	HR2-CR	0.0	-1.10/-1.26/-1.09	2.71/2.66/2.67
7	HR3-CR	0.0	-1.39/-1.22/-1.32	2.66/2.67/2.67
8	N2-C1	0.0	-5.74/-6.45/-6.04	1.95/1.92/1.92
9	N2-C1	90.0	-6.51/-6.37/-7.24	1.90/1.92/1.90
10	N2-C1	180.0	-5.60/-5.66/-7.65	1.96/1.93/1.90
11	N2-C1	270.0	-6.64/-6.59/-7.43	1.90/1.91/1.89
12	O2-C2	0.0	-3.88/-3.93/-3.54	1.88/1.80/1.81
13	O2-C2	90.0	-4.94/-5.15/-4.46	1.84/1.77/1.79
14	O2-C2	180.0	-4.95/-5.20/-4.05	1.84/1.77/1.79
15	O2-C2	270.0	-3.93/-4.12/-3.39	1.87/1.79/1.81
16	HB21-CB2	0.0	-1.84/-1.64/-3.47	2.32/2.48/2.42
17	HB22-CB2	0.0	-1.82/-1.01/-2.42	2.42/2.54/2.46
18	HA31-CA3	0.0	-2.08/-2.47/-1.68	2.70/2.69/2.70
19	HA-CA	0.0	-2.47/-2.76/-1.19	2.49/2.56/2.66
	Geometry	2		
20	O-C	0.0	-6.06/-6.90/-7.24	1.86/1.76/1.75
21	O-C	90.0	-5.25/-6.15/-7.32	1.87/1.77/1.75
22	O-C	180.0	-4.71/-5.63/-6.52	1.88/1.77/1.76
23	O-C	270.0	-5.56/-6.46/-6.85	1.86/1.76/1.76
24	HR-NR	0.0	-7.09/-7.67/-7.53	1.93/1.90/1.90
25	HR-NR	45.0	-7.71/-7.90/-7.71	1.91/1.89/1.89
26	HR-NR	90.0	-7.79/-7.84/-7.79	1.90/ 1.89/ 1.89
27	HR-NR	135.0	-7.18/-7.62/-7.61	1.92/1.90/1.89
28	HR1-CR	0.0	-0.71/-0.04/0.30	2.50/2.69/2.67
29	HR2-CR	0.0	-1.54/-1.44/-1.38	2.68/2.66/2.66
30	HR3-CR	0.0	-1.84/-1.82/-1.70	2.68/2.67/2.66
31	N2-C1	0.0	-6.46/-6.98/-6.58	1.93/1.91/1.91
32	N2-C1	90.0	-6.88/-6.47/-7.35	1.89/1.91/1.89
33	N2-C1	180.0	-5.73/-5.60/-7.60	1.95/1.93/1.90
34	N2-C1	270.0	-7.31/-7.09/-7.94	1.88/1.91/1.89
35	N3-C1	0.0	-0.22/0.03/-2.15	2.60/2.67/2.17
36	O2-C2	0.0	-4.96/-5.34/-4.95	1.88/1.79/1.80
37	O2-C2	90.0	-5.32/-5.37/-4.66	1.87/1.78/1.80
38	O2-C2	180.0	-5.74/-5.89/-4.71	1.87/1.78/1.81
39	O2-C2	270.0	-5.94/-6.25/-5.51	1.85/1.77/1.79
40	HB21-CB2	0.0	-1.43/-1.20/-3.03	2.33/2.48/2.41
41	HB22-CB2	0.0	-1.29/-0.66/-2.05	2.47/2.56/2.47
42	HA31-CA3	0.0	-3.71/-4.08/-3.49	2.50/2.57/2.57
43	HA-CA	0.0	-2.67/-3.45/-1.93	2.59/2.58/2.69

1.65 Small molecule D of [2-(3-carbamoyl-1-imino-propyl)-4-(4-hydroxy-be nzylidene)-5-oxo-4,5-dihydro-imidazol-1-yl]-aceticacid(CRQ)

Figure S62: The molecule used for water complex calculations corresponding to N-[(1E)-1-[(4Z)-4-ethy lidene-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethylidene] acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S202: Statistics of calculated water interaction and dipole moment for N-[(1E)-1-[(4Z)-4-ethylide ne-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethylidene]acetamide.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.75/1.32	0.29/1.19	7.323	3.33/3.51	2.28
Optimal	0.66/1.40	0.23/0.78	2.685	3.33/3.51	4.68

Table S203: The comparison list of optimized atomic charges and their initial guess for N-[(1E)-1-[(4Z)-4-ethylidene-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethylidene]acetamide, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	Penalty
CL	-0.270	-0.268	11.341
HL1	0.090	0.090	0.800
HL2	0.090	0.090	0.800
HL3	0.090	0.090	0.800
CLP	0.510	1.166	104.329
OL	-0.510	-0.523	7.580
N1	-0.410	-0.867	109.915
CA1	0.442	-0.250	80.747
CB1	-0.148	-0.039	37.119
HB11	0.090	0.090	1.152
HB12	0.090	0.090	1.152
HB13	0.090	0.090	1.152
C1	0.208	0.430	75.868
N2	-0.541	-0.578	44.740
N3	-0.080	-0.049	29.029
C2	0.407	0.514	21.806
O2	-0.489	-0.482	6.710
CA2	0.221	0.396	48.462
CB2	-0.105	-0.135	25.469
HB2	0.150	0.150	3.270
CG2	-0.270	-0.274	15.277
H01	0.090	0.090	1.175
H02	0.090	0.090	1.175
H03	0.090	0.090	1.175
CA3	-0.195	-0.271	3.821
H1	0.090	0.090	0.000
H2	0.090	0.090	0.000
H3	0.090	0.090	0.000

Table S204: Interaction energies and geometries between probe water and selected N-[(1E)-1-[(4Z)-4ethylidene-1-methyl-5-oxo-4,5-dihydro-1H-imida zol-2-yl]ethylidene]acetamide site calculated using the optimized and initial charges

	Probe	Angle	Energy (kcal/mol)	Distance (Å)
Ν	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
1	HL1-CL	0.0	-2.10/-1.55/-1.57	2.54/2.67/2.61
2	HL2-CL	0.0	-2.25/-2.36/-1.62	2.54/2.64/2.61
3	HL3-CL	0.0	-1.15/-0.60/-2.15	2.59/2.70/2.58
4	OL-CLP	0.0	-4.98/-6.25/-4.00	1.89/1.76/1.82
5	OL-CLP	90.0	-5.11/-6.50/-4.99	1.89/1.76/1.80
6	OL-CLP	180.0	-4.85/-5.78/-5.34	1.89/1.77/1.79
7	OL-CLP	270.0	-4.63/-5.54/-4.21	1.90/1.77/1.82
8	N1-CLP	0.0	-0.23/-0.37/-1.31	5.78/5.00/4.59
9	HB11-CB1	0.0	-1.38/-2.00/-0.49	2.55/2.57/2.69
10	HB12-CB1	0.0	-0.72/-1.46/-1.85	2.81/2.73/2.91
11	HB13-CB1	0.0	-1.01/-1.73/-0.25	2.74/2.62/2.82
12	N2-C1	0.0	-2.51/-3.29/-3.20	2.28/2.38/2.41
13	N3-C1	0.0	-0.77/-1.40/-1.19	2.73/2.46/2.76
14	O2-C2	0.0	-5.45/-5.66/-5.15	1.86/1.78/1.80
15	O2-C2	90.0	-5.58/-5.60/-4.69	1.85/1.78/1.80
16	O2-C2	180.0	-5.46/-5.40/-4.13	1.85/1.78/1.81
17	O2-C2	270.0	-5.62/-5.67/-4.75	1.85/1.78/1.80
18	HB2-CB2	0.0	-2.03/-1.80/-2.78	2.28/2.47/2.44
19	HB2-CB2	0.0	-2.03/-1.80/-2.78	2.28/2.47/2.44
20	H01-CG2	0.0	-1.49/-0.84/-1.05	2.64/2.74/2.72
21	H02-CG2	0.0	-0.52/-0.97/-0.31	5.47/5.00/5.00
22	H03-CG2	0.0	-1.46/-0.82/-1.02	2.65/2.74/2.72

Figure S63: The molecule used for water complex calculations corresponding to 1-(methylsulfanyl)pro pan-2-one, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S205: Statistics of calculated water interaction and dipole moment for 1-(methylsulfanyl) propan-2-one.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	$\rm QM/MM~(Debye)$	difference (°)
Initial	1.06/2.15	0.22/0.43	2.483	4.71/4.63	7.40
Optimal	0.71/1.54	0.30/0.62	2.368	4.71/5.29	0.33

Table S206: The comparison list of optimized atomic charges and their initial guess for 1-(meth ylsulfanyl)propan-2-one, referring to the penalties of initial guess

Atom	Charges		
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.185	-0.220	2.500
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
\mathbf{SG}	-0.209	-0.045	9.916
CD	0.051	-0.137	9.916
HD2	0.090	0.090	0.000
HD1	0.090	0.090	0.000
CE	0.154	0.392	3.789
OE	-0.362	-0.481	1.080
CZ	-0.169	-0.229	2.500
HZ1	0.090	0.090	0.000
HZ2	0.090	0.090	0.000
HZ3	0.090	0.090	0.000

Table S207: Interaction energies and geometries between probe water and selected 1-(methylsulf an yl)propan-2-one site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-1.45/-0.71/-0.93	2.57/2.71/2.70
2	$\operatorname{HB1-CB}$	0.0	-1.31/-1.44/-1.35	2.72/2.69/2.70
3	$\operatorname{HB2-CB}$	0.0	-1.31/-1.44/-1.35	2.72/2.69/2.70
4	SG-CB	0.0	-2.89/-4.43/-3.52	2.83/2.31/2.40
5	SG-CB	90.0	-1.76/-2.70/-1.58	2.96/2.41/2.61
6	SG-CB	180.0	-1.08/-1.74/-0.56	3.10/2.48/2.84
7	SG-CB	270.0	-1.76/-2.70/-1.58	2.96/2.41/2.61
8	HD2-CD	0.0	-2.41/-2.55/-2.13	2.51/2.60/2.64
9	HD1-CD	0.0	-2.41/-2.55/-2.13	2.51/2.60/2.64
10	OE-CE	0.0	-5.40/-6.29/-7.15	1.90/1.71/1.67
11	OE-CE	90.0	-4.83/-5.67/-6.90	1.92/1.72/1.67
12	OE-CE	180.0	-4.53/-5.21/-6.69	1.92/1.73/1.68
13	OE-CE	270.0	-4.83/-5.67/-6.90	1.92/1.72/1.67
14	HZ1-CZ	0.0	-1.35/-0.79/-0.63	2.52/2.66/2.67
15	HZ2-CZ	0.0	-2.12/-2.13/-1.90	2.58/2.62/2.63
16	HZ3-CZ	0.0	-2.12/-2.13/-1.90	2.58/2.62/2.63

1.67 Small molecule used for S-hydroxycysteine(CSO)

Figure S64: The molecule used for water complex calculations corresponding to ethane-SO-thiopero xol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S208: Statistics of calculated water interaction and dipole moment for ethane-SO-thioperoxol.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	2.39/4.13	5.02/15.11	6.943	2.36/3.47	44.63
Optimal	0.34/0.82	0.27/0.60	1.922	2.36/2.77	2.83

Table S209: The comparison list of optimized atomic charges and their initial guess for ethane-S O-thioperoxol, referring to the penalties of initial guess

Table S210: Interaction energies and geometries be-
tween probe water and selected ethane-SO-thiope
roxol site calculated using the optimized and initial
charges

Atom	Charges				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
CA	-0.270	-0.270	2.500		
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000		
CB	-0.005	-0.100	5.706		
HB1	0.090	0.090	2.500		
HB2	0.090	0.090	2.500		
\mathbf{SG}	-0.053	0.308	235.194!		
OD	-0.563	-0.739	235.697		
HD	0.441	0.351	17.884		

	Ν	Probe	Angle	Energy $(kcal/mol)$	Distance (Å)
		site	(°)	$\rm QM/Optimal/Initial$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
	1	${ m HA3-CA}$	0.0	-1.16/-1.20/-1.00	2.76/2.70/2.72
	2	$\mathrm{HA2}\text{-}\mathrm{CA}$	0.0	-1.06/-1.29/-0.30	2.92/2.78/2.76
	3	HA-CA	0.0	-1.08/-1.21/-1.37	2.74/2.70/2.70
	4	$\operatorname{HB1-CB}$	0.0	-1.76/-1.49/-1.94	2.56/2.66/2.64
	5	$\mathrm{HB2}\text{-}\mathrm{CB}$	0.0	-0.93/-0.71/-0.53	2.63/2.69/2.71
	6	SG-CB	0.0	-1.03/-1.84/-2.83	2.98/2.40/3.30
	7	SG-CB	90.0	-1.11/-1.74/1.85	2.93/2.41/5.00
	8	SG-CB	180.0	-0.52/-0.98/-2.83	3.08/2.49/3.30
	9	SG-CB	270.0	-0.74/-1.08/-1.03	2.98/2.47/3.44
	10	OD-SG	0.0	-4.73/-4.70/-7.68	1.88/1.91/1.82
	11	OD-SG	90.0	-4.72/-4.89/-7.40	1.87 / 1.89 / 1.82
	12	OD-SG	180.0	-5.25/-5.80/-7.34	1.87/1.87/1.82
	13	OD-SG	270.0	-5.51/-5.69/-7.84	1.85/1.88/1.81
	14	HD-OD	0.0	-7.49/-7.34/-3.36	1.73/1.79/1.93
	15	HD-OD	45.0	-7.24/-7.24/-3.37	1.74 / 1.79 / 1.92
	16	HD-OD	90.0	-7.11/-7.24/-3.42	1.74 / 1.79 / 1.92
-	17	HD-OD	135.0	-7.36/-7.34/-3.41	1.74/1.79/1.92

Figure S65: The molecule used for water complex calculations corresponding to ethanedithioperoxol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S211: Statistics of calculated water interaction and dipole moment for ethanedithioperoxol.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.81/1.39	0.41/0.61	2.766	2.16/1.59	27.43
Optimal	0.60/1.08	0.43/0.63	1.866	2.16/2.38	4.80

Table S212: The comparison list of optimized atomic charges and their initial guess for ethane dithioperoxol, referring to the penalties of initial guess

Table S213: Interaction energies and geometries between probe water and selected ethanedithiopero xol site calculated using the optimized and initial charges

Atom	Charges				
Atom	Optimal	$\operatorname{Initial}$	Penalty		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.270	-0.270	0.100		
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000		
CB	0.015	-0.099	2.585		
HB1	0.090	0.090	0.100		
HB2	0.090	0.090	0.100		
\mathbf{SG}	-0.173	-0.125	67.191		
SD	-0.154	-0.116	67.188		
HD	0.132	0.160	6.178		

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	${ m HA3-CA}$	0.0	-0.95/-0.74/-0.42	2.69/2.70/2.75
2	$\mathrm{HA2}\text{-}\mathrm{CA}$	0.0	-1.12/-1.20/-0.76	2.77/2.70/2.75
3	$\operatorname{HB1-CB}$	0.0	-1.76/-1.44/-0.79	2.55/2.66/2.73
4	$\mathrm{HB2}\text{-}\mathrm{CB}$	0.0	-1.65/-1.74/-1.25	2.62/2.65/2.72
5	SG-CB	0.0	-1.31/-2.39/-1.83	2.95/2.33/2.38
6	SG-CB	90.0	-1.13/-1.85/-1.52	2.92/2.36/2.40
7	SG-CB	180.0	-0.81/-1.61/-1.58	3.02/2.38/2.40
8	SG-CB	270.0	-1.27/-2.19/-1.91	2.91/2.34/2.38
9	SD-SG	0.0	-0.81/-1.53/-0.95	3.03/2.45/2.53
10	SD-SG	90.0	-1.18/-1.99/-1.37	2.94/2.42/2.48
11	SD-SG	180.0	-0.95/-1.93/-1.53	3.01/2.41/2.46
12	SD-SG	270.0	-0.79/-1.43/-1.07	2.99/2.45/2.51
13	HD-SD	0.0	-2.42/-2.49/-3.78	2.27/2.01/1.95
14	HD-SD	45.0	-2.52/-2.53/-3.79	2.25/2.01/1.95
15	HD-SD	90.0	-2.42/-2.44/-3.73	2.25/2.01/1.95
16	HD-SD	135.0	-2.33/-2.40/-3.72	2.27/2.01/1.95

1.69 Small molecule used for cysteine-S-sulfonicacid(CSU)

Figure S66: The molecule used for water complex calculations corresponding to (ethylsulfanyl)sulfoni cacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S214: Statistics of calculated water interaction and dipole moment for (ethylsulfanyl)sulfonicacid.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.44/1.83	0.13/0.14	3.948	7.12/8.70	6.69
Optimal	0.09/0.18	0.10/0.11	2.213	7.12/6.78	1.46

Table S215: The comparison list of optimized Table S216: Interaction energies and geometries beatomic charges and their initial guess for (ethyls tween probe water and selected (ethylsulfanyl)sul ulfanyl)sulfonicacid, referring to the penalties of fonicacid site calculated using the optimized and initial guess

Atom	Charges				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.270	-0.270	1.150		
\mathbf{HA}	0.090	0.090	0.000		
CB	-0.125	-0.099	8.696		
HB1	0.090	0.090	1.150		
HB2	0.090	0.090	1.150		
\mathbf{SG}	-0.222	-0.099	83.884		
SD	0.532	0.668	99.367		
OD1	-0.455	-0.550	60.312		
OD2	-0.455	-0.550	60.312		
OD3	-0.455	-0.550	60.312		

initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	OD1-SD	0.0	-9.70/-9.73/-10.75	1.84/1.75/1.72
2	OD1-SD	90.0	-9.80/-9.77/-11.14	1.84/1.75/1.71
3	OD1-SD	180.0	-10.14/-10.11/-11.84	1.84/1.74/1.71
4	OD1-SD	270.0	-10.20/-10.11/-11.56	1.84/1.74/1.71
5	OD2-SD	0.0	-9.80/-9.97/-11.03	1.85/1.75/1.72
6	OD2-SD	90.0	-9.86/-9.97/-11.39	1.85/1.75/1.71
7	OD2-SD	180.0	-9.83/-9.95/-11.66	1.85/1.75/1.71
8	OD2-SD	270.0	-9.86/-9.97/-11.39	1.85/1.75/1.71
9	OD3-SD	0.0	-9.70/-9.73/-10.75	1.85/1.75/1.72
10	OD3-SD	90.0	-10.20/-10.11/-11.56	1.83/1.74/1.71
11	OD3-SD	180.0	-10.14/-10.11/-11.84	1.83/1.74/1.71
12	OD3-SD	270.0	-9.80/-9.77/-11.14	1.84/1.75/1.71
1.70 Small molecule used for S-oxycysteine(CSX)

Figure S67: The molecule used for water complex calculations corresponding to ethane-SO-thiopero xol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S217: Statistics of calculated water interaction and dipole moment for ethane-SO-thioperoxol.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	11.09/11.21	0.10/0.10	16.851	5.86/11.29	20.86
Optimal	0.04/0.07	0.01/0.01	4.219	5.86/7.03	4.83

Table S218: The comparison list of optimized atomic charges and their initial guess for ethane-S O-thioperoxol, referring to the penalties of initial guess

Atom	Charges				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
CA	-0.270	-0.270	2.500		
\mathbf{HA}	0.090	0.090	0.000		
CB	-0.173	-0.100	5.414		
HB1	0.090	0.090	2.500		
HB2	0.090	0.090	2.500		
\mathbf{SG}	-0.232	0.309	363.158!		
OD	-0.775	-1.389	363.158!		

Table S219: Interaction energies and geometries between probe water and selected ethane-SO-thiope roxol site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	OD-SG	0.0	-17.14/-17.21/-28.17	1.66/1.66/1.56
2	OD-SG	90.0	-17.33/-17.30/-28.39	1.65/1.66/1.56
3	OD-SG	180.0	-17.34/-17.35/-28.55	1.65/1.66/1.56
4	OD-SG	270.0	-17.32/-17.27/-28.37	1.65/1.66/1.56

1.71 Small molecule A of N-carboxymethionine(CXM)

Figure S68: The molecule used for water complex calculations corresponding to N-[(1S)-1-(methylcarb amoyl)ethyl]carbamate, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S220: Statistics of calculated water interaction and dipole moment for N-[(1S)-1-(methylcarbam oyl)ethyl] carbamate.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	2.44/4.21	0.11/0.14	7.462	6.22/10.01	6.35
Optimal	0.52/0.84	0.08/0.09	4.373	6.22/6.67	10.98

Table S221: The comparison list of optimized atomic charges and their initial guess for N-[(1S)-1-(methylcarbamoyl)ethyl]carbamate, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
Ν	-0.521	-0.462	43.746		
Η	0.256	0.307	3.555		
CN	0.562	0.518	44.474!		
ON1	-0.628	-0.760	17.521		
ON2	-0.628	-0.760	17.521		
CA	-0.131	0.070	4.473		
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.375		
CB	-0.270	-0.269	2.372		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
HB3	0.090	0.090	0.000		
С	0.510	0.509	0.375		
0	-0.510	-0.513	0.000		
\mathbf{NR}	-0.470	-0.474	0.000		
\mathbf{HR}	0.310	0.312	0.000		
\mathbf{CR}	-0.110	-0.108	0.000		
HR1	0.090	0.090	0.000		
$\mathrm{HR2}$	0.090	0.090	0.000		
HR3	0.090	0.090	0.000		

Table S222: Interaction energies and geometries between probe water and selected N-[(1S)-1-(methyl carbamoyl)ethyl]carbamate site calculated using the optimized and initial charges

N	Probe	Angle	Energy $(kcal/mol)$	Distance (Å)
14	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	ON1-CN	0.0	-12.22/-11.75/-14.21	1.76/1.69/1.65
2	ON1-CN	90.0	-12.41/-12.01/-14.92	1.76/1.69/1.64
3	ON1-CN	180.0	-12.99/-12.51/-15.98	1.74/1.69/1.64
4	ON1-CN	270.0	-12.70/-12.23/-15.31	1.75/1.69/1.64
5	ON2- CN	0.0	-10.75/-11.07/-12.98	1.80/1.71/1.66
6	ON2-CN	90.0	-10.07/-10.57/-13.49	1.80/1.71/1.65
7	ON2- CN	180.0	-10.98/-11.65/-15.19	1.78/1.69/1.64
8	ON2- CN	270.0	-10.70/-11.54/-14.20	1.78/1.70/1.65
9	O-C	0.0	-9.66/-9.30/-8.42	1.82/1.74/1.75
10	O-C	90.0	-9.77/-9.38/-8.81	1.82/1.74/1.74
11	O-C	180.0	-9.53/-8.77/-8.45	1.82/1.74/1.74
12	O-C	270.0	-9.40/-8.83/-8.23	1.82/1.74/1.75
13	NR-C	0.0	-4.86/-4.59/-4.91	2.20/2.15/2.14

1.72 Small molecule A of 2-amino-6-(cystein-S-yl)-5-oxo-hexanoicacid(CYD)

Figure S69: The molecule used for water complex calculations corresponding to 1-(ethylsulfanyl)propa n-2-one, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S223: Statistics of calculated water interaction and dipole moment for 1-(ethylsulfanyl)propan-2-one.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	1.10/2.10	0.27/0.54	2.161	4.70/5.38	3.99
Optimal	0.80/1.80	0.29/0.62	2.713	4.70/5.59	0.00

Table S224: The comparison list of optimized atomic charges and their initial guess for 1-(ethy lsulfanyl)propan-2-one, referring to the penalties of initial guess

Atom		$\operatorname{Charges}$				
Atom	Optimal	Initial	Penalty			
HA3	0.090	0.090	0.000			
HA2	0.090	0.090	0.000			
\mathbf{CA}	-0.270	-0.270	0.045			
\mathbf{HA}	0.090	0.090	0.000			
CB	-0.076	-0.065	2.500			
HB1	0.090	0.090	0.000			
HB2	0.090	0.090	0.000			
\mathbf{SG}	-0.227	-0.175	9.916			
C1	0.088	-0.072	9.916			
H11	0.090	0.090	0.000			
H12	0.090	0.090	0.000			
C2	0.099	0.392	3.789			
O1	-0.360	-0.481	1.080			
C3	-0.154	-0.229	2.500			
H31	0.090	0.090	0.000			
H32	0.090	0.090	0.000			
H33	0.090	0.090	0.000			

Table S225: Interaction energies and geometries between probe water and selected 1-(ethylsulfanyl)p ropan-2-one site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA3-CA	0.0	-1.01/-0.89/-0.97	2.79/2.75/2.74
2	$\mathrm{HA2}\text{-}\mathrm{CA}$	0.0	-0.87/-0.46/-0.61	2.67/2.73/2.72
3	HA-CA	0.0	-0.87/-0.46/-0.61	2.67/2.73/2.72
4	$\operatorname{HB1-CB}$	0.0	-1.24/-1.63/-1.62	2.77/2.69/2.69
5	$\mathrm{HB2}\text{-}\mathrm{CB}$	0.0	-1.24/-1.63/-1.62	2.77/2.69/2.69
6	SG-CB	0.0	-3.03/-4.83/-4.68	2.81/2.29/2.31
7	SG-CB	90.0	-1.85/-2.98/-2.60	2.94/2.39/2.44
8	SG-CB	180.0	-1.15/-1.96/-1.47	3.07/2.45/2.52
9	SG-CB	270.0	-1.85/-2.98/-2.60	2.94/2.39/2.44
10	H11-C1	0.0	-2.35/-2.75/-2.49	2.52/2.59/2.61
11	$\rm H12{\text -}C1$	0.0	-2.35/-2.75/-2.49	2.52/2.59/2.61
12	O1-C2	0.0	-5.46/-6.51/-7.53	1.90/1.71/1.67
13	O1-C2	90.0	-4.88/-5.87/-6.98	1.92/1.72/1.68
14	O1-C2	180.0	-4.58/-5.40/-6.57	1.92/1.73/1.68
15	O1-C2	270.0	-4.88/-5.87/-6.98	1.92/1.72/1.68
16	${ m H31-C3}$	0.0	-2.09/-2.14/-2.05	2.58/2.62/2.62
17	${ m H32-C3}$	0.0	-2.09/-2.14/-2.05	2.58/2.62/2.62
18	H33-C3	0.0	-1.32/-0.72/-0.68	2.52/2.66/2.66

1.73 Small molecule A of

5-[2-(2-amino-2-carbamoyl-ethylsulfanyl)-acetylamino]-2-(3,6-dihydroxy-9,9a-dihydro-3h-xanthen-9-yl)-benzoicacid(CYF)

Figure S70: The molecule used for water complex calculations corresponding to 2-(ethylsulfanyl)-N-me thylacetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S226: Statistics of calculated water interaction and dipole moment for 2-(ethylsulfanyl)-N-meth ylacetamide.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.68/1.73	0.27/0.59	1.736	5.38/5.85	2.19
Optimal	0.84/1.94	0.24/0.62	2.833	5.38/6.59	1.06

Table S227: The comparison list of optimized atomic charges and their initial guess for 2-(ethy lsulfanyl)-N-methylacetamide, referring to the penalties of initial guess

Atom	Charges				
Atom	Optimal	Initial	Penalty		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.270	-0.270	0.045		
\mathbf{HA}	0.090	0.090	0.000		
CB	-0.055	-0.065	2.500		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
\mathbf{SG}	-0.266	-0.175	10.789		
CAL	0.038	-0.109	10.789		
HAL1	0.090	0.090	0.000		
HAL2	0.090	0.090	0.000		
CL	0.360	0.482	4.079		
OL	-0.500	-0.516	1.805		
\mathbf{NL}	-0.381	-0.438	2.500		
HNL	0.282	0.299	0.000		
C17	-0.108	-0.108	0.239		
H171	0.090	0.090	0.000		
H172	0.090	0.090	0.000		
H173	0.090	0.090	0.000		

Table S228: Interaction energies and geometries between probe water and selected 2- (ethylsulfanyl)-N-methylacetamide site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HA3-CA	0.0	-0.97/-0.90/-0.92	2.80/2.74/2.74
2	HA2-CA	0.0	-0.84/-0.38/-0.53	2.68/2.73/2.72
3	HA-CA	0.0	-0.87/-0.40/-0.55	2.66/2.72/2.71
4	HB1-CB	0.0	-1.11/-1.58/-1.46	2.80/2.71/2.71
5	HB2-CB	0.0	-1.21/-1.60/-1.46	2.76/2.69/2.69
6	SG-CB	0.0	-3.83/-5.77/-5.04	2.60/2.26/2.30
7	SG-CB	90.0	-2.37/-3.61/-2.96	2.74/2.36/2.43
8	SG-CB	180.0	-1.34/-2.21/-1.58	2.90/2.43/2.52
9	SG-CB	270.0	-2.11/-3.30/-2.63	2.77/2.38/2.44
10	HAL1-CAL	0.0	-2.43/-3.29/-2.77	2.58/2.58/2.61
11	HAL2-CAL	0.0	-1.94/-2.32/-1.82	2.50/2.59/2.64
12	CL-CAL	90.0	-0.54/-0.02/-0.12	2.98/3.60/3.57
13	CL-CAL	135.0	-0.55/-0.01/-0.09	3.00/3.60/3.57
14	OL-CL	0.0	-6.73/-8.10/-7.84	1.84 / 1.74 / 1.75
15	OL-CL	90.0	-6.19/-7.48/-7.32	1.85/1.75/1.75
16	OL-CL	180.0	-5.51/-6.63/-6.64	1.87/1.76/1.76
17	OL-CL	270.0	-5.97/-7.18/-7.13	1.86/1.76/1.75
18	NL-CL	0.0	-0.87/-0.34/-0.54	2.23/2.28/2.26
19	NL-CL	180.0	-2.16/-2.29/-2.41	2.19/2.18/2.18
20	NL-CL	270.0	-2.35/-2.66/-2.66	2.15/2.16/2.15
21	HNL-NL	0.0	-5.87/-6.70/-6.56	1.95/1.91/1.90
22	HNL-NL	45.0	-6.27/-6.87/-6.70	1.93/1.91/1.90
23	HNL-NL	90.0	-6.61/-7.15/-6.91	1.91/1.90/1.89
24	HNL-NL	135.0	-6.21/-6.99/-6.77	1.93/1.90/1.90
25	$\rm H171\text{-}C17$	0.0	-1.47/-1.58/-1.48	2.71/2.67/2.67
26	H172-C17	0.0	-0.96/-0.99/-0.95	2.74/2.67/2.68

1.74 Small molecule B of

5-[2-(2-amino-2-carbamoyl-ethylsulfanyl)-acetylamino]-2-(3,6-dihydr oxy-9,9a-dihydro-3h-xanthen-9-yl)-benzoicacid(CYF)

Figure S71: The molecule used for water complex calculations corresponding to 9-methyl-9H-xanthene -3,6-bis(olate), with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S229: Statistics of calculated water interaction and dipole moment for 9-methyl-9H-xanthene-3,6-bis(olate).

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	${\rm Energy}\;(\rm kcal/mol)$	Distance (Å)	m RMS~(kcal/mol/Å)	$\rm QM/MM~(Debye)$	difference (°)
Initial	0.35/0.70	0.10/0.20	1.587	3.74/3.77	0.32
Optimal	0.36/0.69	0.10/0.21	1.810	3.74/4.42	1.12

Table S230: The comparison list of optimized atomic charges and their initial guess for 9-methyl -9H-xanthene-3,6-bis(olate), referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	Penalty
H141	0.090	0.090	0.000
H142	0.090	0.090	0.000
H143	0.090	0.090	0.000
C14	-0.270	-0.271	0.000
C10	0.062	-0.095	6.735
H10	0.090	0.090	0.000
C9	-0.027	-0.001	6.311
C8	-0.151	-0.109	1.897
H8	0.115	0.115	0.000
C7	-0.115	-0.116	0.000
H7	0.115	0.115	0.000
C6	0.110	0.109	0.000
O3	-0.530	-0.530	0.000
HO3	0.420	0.420	0.000
C5	-0.115	-0.115	0.000
H5	0.115	0.115	0.000
C4	0.109	0.131	5.109
O2	-0.244	-0.262	6.708
C3	0.109	0.131	5.109
C11	-0.027	-0.001	6.311
C12	-0.151	-0.109	1.897
H12	0.115	0.115	0.000
C13	-0.115	-0.116	0.000
H13	0.115	0.115	0.000
C1	0.110	0.109	0.000
01	-0.530	-0.530	0.000
HO1	0.420	0.420	0.000
C2	-0.115	-0.115	0.000
HC2	0.115	0.115	0.000

Table S231: Interaction energies and geometries between probe water and selected 9-methyl-9H-xant hene-3,6-bis(olate) site calculated using the optimized and initial charges

	Prohe	Angle	Energy (kcal/mol)	Distance (Å)
Ν	site	(°)	OM/Ontimal/Initial	OM/Ontimal/Initial
1	H141-C14	0.0	-0.14/-0.32/-0.00	2 71/2 70/2 75
2	H142-C14	0.0	-0.81/-1.17/-0.83	2.83/2.71/2.77
2	H143-C14	0.0	-0.81/-1.17/-0.83	2.83/2.71/2.77
4	H10-C10	0.0	-2.08/-2.25/-1.61	2.55/2.11/2.11
5	H8-C8	0.0	-170/-154/-149	2.60/2.68/2.67
6	H8-C8	90.0	-2.01/-1.67/-1.58	2.52/2.67/2.66
7	H7-C7	0.0	-1.28/-0.89/-1.02	2.60/2.72/2.70
8	H7-C7	90.0	-1.29/-0.90/-1.03	2.60/2.72/2.70
9	O3-C6	0.0	-4.28/-3.60/-3.58	1.91/1.94/1.94
10	O3-C6	90.0	-4.82/-4.46/-4.40	1.88/1.92/1.92
11	O3-C6	180.0	-5.03/-5.10/-5.00	1.89/1.90/1.91
12	O3-C6	270.0	-4.67/-4.20/-4.14	1.88/1.92/1.92
13	HO3-O3	0.0	-7.52/-7.51/-7.62	1.74 / 1.79 / 1.79
14	HO3-O3	45.0	-7.51/-7.49/-7.60	1.74 / 1.79 / 1.79
15	HO3-O3	90.0	-7.45/-7.43/-7.54	1.74 / 1.79 / 1.79
16	HO3-O3	135.0	-7.47/-7.45/-7.56	1.74 / 1.79 / 1.79
17	H5-C5	0.0	-1.09/-0.40/-0.46	2.51/2.72/2.72
18	H5-C5	90.0	-0.95/-0.36/-0.42	2.56/2.74/2.73
19	O2-C4	0.0	-3.62/-3.71/-3.80	1.94/ 1.83/ 1.82
20	O2-C4	90.0	-4.21/-4.05/-4.09	1.90/1.82/1.81
21	O2-C4	180.0	-3.63/-3.71/-3.80	1.94/ 1.83/ 1.82
22	O2-C4	270.0	-4.40/-3.96/-4.18	1.88/ 1.81/ 1.80
23	$\mathrm{H12}\text{-}\mathrm{C12}$	0.0	-1.70/-1.54/-1.49	2.60/2.68/2.67
24	$\mathrm{H12}\text{-}\mathrm{C12}$	90.0	-2.01/-1.67/-1.57	2.52/2.67/2.66
25	m H13-C13	0.0	-1.28/-0.89/-1.02	2.60/2.72/2.70
26	m H13-C13	90.0	-1.29/-0.90/-1.03	2.60/2.72/2.70
27	O1-C1	0.0	-4.28/-3.60/-3.58	1.91/1.94/1.94
28	O1-C1	90.0	-4.67/-4.20/-4.14	1.88/ 1.92/ 1.92
29	O1-C1	180.0	-5.03/-5.10/-5.00	1.89/1.90/1.91
30	O1-C1	270.0	-4.82/-4.46/-4.40	1.88/ 1.92/ 1.92
31	HO1-O1	0.0	-7.53/-7.51/-7.62	1.74 / 1.79 / 1.79
32	HO1-O1	45.0	-7.47/-7.45/-7.56	1.74/1.79/1.79
33	HO1-O1	90.0	-7.46/-7.43/-7.54	1.74 / 1.79 / 1.79
34	HO1-O1	135.0	-7.51/-7.49/-7.60	1.74/1.79/1.79
35	$\mathrm{HC}2\text{-}\mathrm{C}2$	0.0	-1.09/-0.40/-0.46	2.51/2.72/2.72
36	HC2-C2	90.0	-0.95/-0.36/-0.42	2.56/2.74/2.73

1.75 Small molecule A of

2-amino-4-(amino-3-oxo-propylsulfanylcarbonyl)-butyricacid(CYG)

Figure S72: The molecule used for water complex calculations corresponding to 1-(ethylsulfanyl)ethan -1-one, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S232: Statistics of calculated water interaction and dipole moment for 1-(ethylsulfanyl)ethan-1-o ne.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	1.32/2.81	0.27/0.53	2.763	1.48/2.50	13.44
Optimal	0.31/0.64	0.25/0.50	1.827	1.48/1.80	0.39

Table S233: The comparison list of optimized atomic charges and their initial guess for 1-(ethy lsulfanyl)ethan-1-one, referring to the penalties of initial guess

Table S234: Interaction energies and geometries be-
tween probe water and selected 1-(ethylsulfanyl)e
than-1-one site calculated using the optimized and
initial charges

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.270	0.620
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
CB	-0.075	0.002	9.073
HB1	0.090	0.090	0.575
HB2	0.090	0.090	0.575
\mathbf{SG}	-0.126	-0.194	68.838
CD1	0.480	0.693	62.403
OE2	-0.453	-0.639	57.902
CG1	-0.276	-0.312	53.675
${ m HG13}$	0.090	0.090	2.500
HG12	0.090	0.090	2.500
HG1	0.090	0.090	2.500

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	$\rm QM/Optimal/Initial$
1	HA3-CA	0.0	-1.17/-0.86/-1.15	2.72/2.73/2.69
2	HA2-CA	0.0	-0.96/-0.70/-0.93	2.70/2.74/2.71
3	HA-CA	0.0	-0.96/-0.70/-0.93	2.70/2.74/2.71
4	HB1-CB	0.0	-0.97/-0.65/-0.88	2.52/2.67/2.63
5	HB2-CB	0.0	-0.97/-0.65/-0.88	2.52/2.67/2.63
6	SG-CB	0.0	-0.78/-0.76/-0.88	2.98/2.52/2.48
7	SG-CB	90.0	-1.11/-1.08/-1.19	2.89/2.47/2.44
8	SG-CB	180.0	-1.01/-1.29/-1.35	2.96/2.45/2.42
9	SG-CB	270.0	-1.11/-1.08/-1.19	2.89/2.47/2.44
10	OE2-CD1	0.0	-4.53/-4.76/-6.82	1.90/1.80/1.73
11	OE2-CD1	90.0	-4.85/-5.12/-7.46	1.89/1.80/1.72
12	OE2-CD1	180.0	-5.06/-5.33/-7.86	1.89/1.79/1.72
13	OE2-CD1	270.0	-4.85/-5.12/-7.46	1.89/1.80/1.72
14	HG13-CG1	0.0	-1.81/-1.40/-1.47	2.50/2.65/2.64
15	HG12-CG1	0.0	-1.81/-1.40/-1.47	2.50/2.65/2.64
16	HG1-CG1	0.0	-1.33/-0.69/-0.51	2.52/2.68/2.68

1.76 Small molecule B of

2-amino-4-(amino-3-oxo-propylsulfanylcarbonyl)-butyricacid(CYG)

Figure S73: The molecule used for water complex calculations corresponding to (2S)-2-azaniumylpropa noate, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S235: Statistics of calculated water interaction and dipole moment for (2S)-2-azaniumylpropano ate.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	$\rm QM/MM~(Debye)$	difference (°)
Initial	2.56/4.03	0.09/0.25	9.229	10.93/14.80	1.11
Optimal	0.76/1.42	0.09/0.26	6.266	10.93/13.35	1.00

Table S236: The comparison list of optimized atomic charges and their initial guess for (2S)-2-azaniumylpropanoate, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB	0.090	0.090	2.536
CB1	-0.224	-0.280	30.643
HB12	0.090	0.090	2.536
HB13	0.090	0.090	2.536
CA1	0.278	0.348	102.188
HA1	0.090	0.090	4.013
N1	-0.162	-0.346	37.381
HN11	0.259	0.330	2.536
HN12	0.259	0.330	2.536
HN13	0.259	0.330	2.536
C1	0.095	0.448	99.500
O1	-0.562	-0.760	8.256
02	-0.562	-0.760	8.256

Table S237: Interaction energies and geometries between probe water and selected (2S)-2-azaniumylp ropanoate site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(°)	${ m QM}/{ m Optimal}/{ m Initial}$	$\rm QM/Optimal/Initial$
1	HB-CB1	0.0	-2.37/-3.69/-3.74	2.73/2.59/2.60
2	HB12-CB1	0.0	-1.31/-0.27/-0.08	2.31/2.57/2.56
3	HB13-CB1	0.0	-2.97/-2.75/-3.01	2.45/2.54/2.54
4	HA1-CA1	0.0	-3.23/-3.44/-4.18	2.39/2.56/2.53
5	HN12-N1	0.0	-11.22/-11.62/-13.65	1.75/1.80/1.76
6	HN12-N1	45.0	-11.51/-11.64/-13.69	1.74/1.80/1.76
7	HN12-N1	90.0	-11.61/-11.92/-13.93	1.75/1.80/1.76
8	HN12-N1	135.0	-11.34/-11.90/-13.90	1.75/1.80/1.76
9	$\mathrm{H}\mathrm{N}13\text{-}\mathrm{N}1$	0.0	-11.67/-12.25/-14.35	1.74/1.79/1.75
10	$\mathrm{H}\mathrm{N}13\text{-}\mathrm{N}1$	45.0	-11.73/-12.35/-14.45	1.74/1.78/1.75
11	$\mathrm{H}\mathrm{N}13\text{-}\mathrm{N}1$	90.0	-11.88/-12.40/-14.53	1.73/1.78/1.75
12	$\mathrm{H}\mathrm{N}13\text{-}\mathrm{N}1$	135.0	-11.83/-12.29/-14.43	1.73/1.78/1.75
13	O1-C1	0.0	-7.69/-8.28/-10.51	1.77/1.72/1.67
14	O1-C1	90.0	-8.62/-9.66/-12.10	1.76/1.71/1.66
15	O1-C1	180.0	9.77/ 11 19/ 13.76	1.74/1.69/1.65
16	O1-C1	270.0	-8.84/-9.89/-12.24	1.75/1.70/1.66
17	O2-C1	0.0	-4.83/-4.13/-5.62	1.80/1.76/1.71
18	O2-C1	90.0	-8.19/-8.41/-10.58	1.73/1.70/1.65
19	O2-C1	180.0	-9.96/-11.32/-13.99	1.72/1.68/1.63
20	O2-C1	270.0	-7.76/-7.89/-10.04	1.73/1.71/1.66

1.77 Small molecule used for 2-amino-3-phosphonomethylsulfanyl-propionicacid(CYQ)

Figure S74: The molecule used for water complex calculations corresponding to [(ethylsulfanyl)methyl]p hosphonicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S238: Statistics of calculated water interaction and dipole moment for [(ethylsulfanyl)methyl]pho sphonicacid.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	$\rm QM/MM~(Debye)$	difference (°)
Initial	0.78/2.45	0.19/0.40	5.132	16.73/18.77	2.78
Optimal	0.61/1.58	0.18/0.37	2.469	16.73/17.03	1.89

Table S239: The comparison list of optimized atomic charges and their initial guess for [(ethyls ulfanyl)methyl]phosphonicacid, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	$\operatorname{Initial}$	Penalty
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.270	0.045
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
CB	-0.255	-0.064	8.855
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
\mathbf{SG}	-0.171	-0.206	10.841
CD	-0.429	-0.651	10.841
HD1	0.090	0.090	0.000
HD2	0.090	0.090	0.000
Р	1.885	1.951	9.856
O1P	-1.130	-1.130	2.500
O2P	-1.130	-1.130	2.500
O3P	-1.130	-1.130	2.500

Table S240: Interaction energies and geometries between probe water and selected [(ethylsulfanyl)met hyl]phosphonicacid site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
19	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	SG-CB	0.0	-12.45/-14.02/-14.90	2.57/2.21/2.18
2	SG-CB	90.0	-7.53/-7.45/-7.86	2.73/2.37/2.33
3	SG-CB	180.0	-4.48/-2.91/-2.88	2.89/2.62/2.60
4	SG-CB	270.0	-7.54/-7.46/-7.87	2.73/2.36/2.33
5	O1P-P	0.0	-23.38/-23.36/-23.73	1.62/1.57/1.57
6	O1P-P	90.0	-23.54/-23.60/-23.84	1.62/1.57/1.57
7	O1P-P	180.0	-23.15/-23.19/-23.36	1.62/1.57/1.57
8	O1P-P	270.0	-23.05/-23.02/-23.33	1.62/1.57/1.57
9	O2P-P	0.0	-23.38/-23.35/-23.72	1.62/1.57/1.57
10	O2P-P	90.0	$\hbox{-}23.05/\hbox{-}23.02/\hbox{-}23.33$	1.62/1.57/1.57
11	O2P-P	180.0	-23.16/-23.19/-23.36	1.62/1.57/1.57
12	O2P-P	270.0	-23.54/-23.60/-23.84	1.62/1.57/1.57
13	O3P-P	0.0	-23.21/-22.65/-23.17	1.62/1.57/1.57
14	O3P-P	90.0	-23.64/-23.11/-23.40	1.61/1.57/1.57
15	O3P-P	180.0	-23.79/-23.36/-23.48	1.61/1.57/1.57
16	O3P-P	270.0	-23.64/-23.10/-23.40	1.61/1.57/1.57

1.78 Small molecule used for 2-amino-3-phosphonomethylsulfanyl-propionicacid(CYQP)

Figure S75: The molecule used for water complex calculations corresponding to [(ethylsulfanyl)methyl]p hosphonicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S241: Statistics of calculated water interaction and dipole moment for [(ethylsulfanyl)methyl]pho sphonicacid.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	$\rm QM/MM~(Debye)$	difference (°)
Initial	1.25/2.58	0.24/0.51	3.359	10.12/9.47	1.81
Optimal	0.45/0.74	0.18/0.37	5.446	10.12/7.65	5.46

Table S242: The comparison list of optimized atomic charges and their initial guess for [(ethyls ulfanyl)methyl]phosphonicacid, referring to the penalties of initial guess

Atom	Charges				
Atom	Optimal	Initial	Penalty		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.270	-0.270	0.045		
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000		
CB	-0.258	-0.064	8.855		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
\mathbf{SG}	-0.022	-0.206	10.841		
CD	-0.506	-0.525	10.841		
HD1	0.090	0.090	0.000		
HD2	0.090	0.090	0.000		
Р	1.425	1.538	9.856		
O1P	-0.741	-0.741	2.500		
O2P	-0.809	-0.861	2.500		
O3P	-0.809	-0.861	2.500		
HO3P	0.360	0.360	0.000		

Table S243: Interaction energies and geometries between probe water and selected [(ethylsulfanyl)met hyl]phosphonicacid site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	SG-CB	0.0	-7.63/-8.37/-10.21	2.67/2.31/2.22
2	SG-CB	90.0	-4.21/-4.20/-5.38	2.87/2.51/2.36
3	SG-CB	270.0	-4.33/-4.35/-5.68	2.86/2.50/2.35
4	O1P-P	0.0	-6.85/-7.13/-6.74	1.95/1.87/1.89
5	O1P-P	90.0	-9.10/-9.39/-9.38	1.90/1.85/1.85
6	O1P-P	180.0	-11.39/-11.97/-12.60	1.88/1.82/1.82
7	O1P-P	270.0	-8.95/-9.39/-9.32	1.90/1.84/1.86
8	O2P-P	0.0	-13.44/-14.13/-15.31	1.76/1.65/1.64
9	O2P-P	90.0	-13.14/-13.69/-14.61	1.76/1.66/1.64
10	O2P-P	180.0	-13.25/-13.70/-14.56	1.76/1.66/1.64
11	O2P-P	270.0	-13.45/-14.13/-15.20	1.76/1.65/1.64
12	O3P-P	0.0	-13.08/-13.10/-13.86	1.75/1.66/1.64
13	O3P-P	90.0	-12.82/-12.53/-13.30	1.75/1.66/1.65
14	O3P-P	180.0	-13.62/-13.16/-14.06	1.74/1.66/1.64
15	O3P-P	270.0	-13.77/-13.60/-14.49	1.74/1.65/1.64

1.79 Small molecule used for 3-(benzoylamino)-L-alanine(DBZ)

Figure S76: The molecule used for water complex calculations corresponding to N-ethylbenzamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S244: Statis	stics of calculated	water interaction	and dipole momen	t for N-ethylbenzamide.
--------------------	---------------------	-------------------	------------------	-------------------------

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.46/1.08	0.08/0.14	1.712	3.87/3.66	5.44
Optimal	0.37/0.79	0.07/0.14	2.124	3.87/4.43	3.66

Table S246: Interaction energies and geometries be-
tween probe water and selected N-ethylbenzami
de site calculated using the optimized and initial
charges

Atom	$\operatorname{Charges}$				
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.270	-0.270	0.359		
HA	0.090	0.090	0.000		
CB	-0.004	0.045	5.332		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
NG	-0.409	-0.549	5.332		
$\mathbf{H}\mathbf{G}$	0.288	0.305	0.000		
CD2	0.330	0.433	3.532		
OD2	-0.460	-0.428	0.000		
C1	-0.143	-0.117	3.514		
C2	-0.006	-0.067	0.000		
H2	0.115	0.115	0.000		
C6	-0.006	-0.067	0.000		
H6	0.115	0.115	0.000		
C3	-0.115	-0.100	0.000		
H3	0.115	0.115	0.000		
C5	-0.115	-0.100	0.000		
H5	0.115	0.115	0.000		
C4	-0.115	-0.115	0.000		
H4	0.115	0.115	0.000		

N	\mathbf{Probe}	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA3-CA	0.0	-1.01/-0.95/-0.98	2.86/2.76/2.74
2	HA2-CA	0.0	-0.82/-0.73/-0.89	2.80/2.74/2.72
3	HB1-CB	0.0	-1.36/-1.46/-1.49	2.72/2.68/2.68
4	NG-CB	0.0	-1.72/-1.53/-2.42	2.21/2.20/2.12
5	NG-CB	90.0	-3.51/-4.30/-4.59	2.09/2.07/2.04
6	NG-CB	180.0	-2.09/-2.50/-2.87	2.15/2.14/2.09
7	NG-CB	270.0	-1.17/-0.67/-1.49	2.18/2.23/2.14
8	HG-NG	0.0	-5.38/-5.23/-4.75	1.97/2.00/2.00
9	HG-NG	45.0	-4.58/-4.96/-4.45	2.01/2.01/2.02
10	HG-NG	90.0	-4.75/-5.29/-4.71	2.01/2.00/2.01
11	HG-NG	135.0	-5.48/-5.54/-4.98	1.98/1.99/2.00
12	OD2-CD2	0.0	-6.17/-6.69/-5.71	1.83/1.76/1.79
13	OD2-CD2	90.0	-6.61/-6.99/-6.10	1.82/1.76/1.78
14	OD2-CD2	180.0	-6.40/-6.69/-5.91	1.82/1.76/1.79
15	OD2-CD2	270.0	-6.13/-6.57/-5.69	1.83/1.76/1.79
16	H6-C6	0.0	-2.23/-2.53/-1.97	2.49/2.60/2.63
17	H6-C6	90.0	-1.92/-2.50/-1.92	2.61/2.61/2.65
18	H3-C3	0.0	-1.54/-1.30/-1.21	2.60/2.68/2.68
19	H3-C3	90.0	-1.69/-1.33/-1.24	2.55/2.67/2.68
20	H5-C5	0.0	-1.63/-1.62/-1.46	2.62/2.67/2.68
21	H5-C5	90.0	-1.84/-1.70/-1.54	2.56/2.66/2.67
22	H4-C4	0.0	-1.66/-1.33/-1.28	2.59/2.69/2.69
23	H4-C4	90.0	-1.84/-1.40/-1.35	2.54/2.68/2.68

1.80 Small molecule A of 3-[4-(2-amino-2-carboxy-ethyl)-1H-imidazol-2yl]-1-carbamoyl-propyl-trimethyl-ammonium(DDE)

Figure S77: The molecule used for water complex calculations corresponding to 4-ethyl-2-methyl-1H-im idazole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S247: Statistics of calculated water interaction and dipole moment for 4-ethyl-2-methyl-1H-imid azole.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	$\rm QM/MM~(Debye)$	difference (°)
Initial	0.78/2.22	0.10/0.19	3.455	3.57/3.48	9.15
Optimal	0.29/0.60	0.08/0.20	2.467	3.57/4.32	1.14

Table S248: The comparison list of optimized atomic charges and their initial guess for 4-ethy l-2-methyl-1H-imidazole, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.276	0.474
\mathbf{HA}	0.090	0.090	0.000
CB	-0.180	-0.080	0.570
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
CG	0.198	0.221	13.641
ND1	-0.715	-0.699	13.836
CD2	-0.067	-0.028	13.494
HD2	0.109	0.089	0.000
NE2	-0.402	-0.442	16.020
HE2	0.310	0.338	0.000
CE1	0.567	0.270	18.260
CAT	-0.270	-0.113	14.550
HAT1	0.090	0.090	0.000
HAT2	0.090	0.090	0.000
HAT3	0.090	0.090	0.000

Table S249: Interaction energies and geometries between probe water and selected 4-ethyl-2-methyl -1H-imidazole site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(*)	${ m QM}/{ m Optimal}/{ m Initial}$	${ m QM}/{ m Optimal}/{ m Initial}$
1	HA2-CA	0.0	-0.25/-0.10/-0.46	2.95/2.84/2.78
2	HB2-CB	0.0	-0.66/-0.69/-1.32	2.87/2.78/2.69
3	ND1-CG	0.0	-7.28/-7.05/-8.05	1.90/1.92/1.89
4	ND1-CG	90.0	-8.49/-8.07/-8.82	1.85/1.90/1.88
5	ND1-CG	180.0	-7.95/-8.55/-8.77	1.90/1.89/1.88
6	ND1-CG	270.0	-8.33/-7.90/-8.68	1.86/1.90/1.88
7	HD2-CD2	0.0	-1.78/-1.90/-1.57	2.55/2.35/2.39
8	HD2-CD2	90.0	-2.05/-2.02/-1.73	2.48/2.34/2.37
9	NE2-CD2	0.0	-0.49/-0.04/-1.48	2.49/2.63/2.32
10	NE2-CD2	90.0	-2.46/-2.73/-4.68	2.28/2.25/2.12
11	NE2-CD2	180.0	-2.11/-2.08/-3.35	2.28/2.28/2.18
12	$\operatorname{HE2-NE2}$	0.0	-6.50/-6.70/-6.12	1.87/1.87/1.87
13	$\operatorname{HE2-NE2}$	45.0	-6.72/-6.78/-6.23	1.85/1.87/1.87
14	$\operatorname{HE2-NE2}$	90.0	-6.94/-6.86/-6.35	1.84/1.87/1.87
15	$\operatorname{HE2-NE2}$	135.0	-6.72/-6.78/-6.24	1.85/1.87/1.87
16	HAT1-CAT	0.0	-0.72/-0.15/-0.07	2.55/2.68/2.67
17	HAT2-CAT	0.0	-1.40/-1.58/-1.55	2.68/2.65/2.64
18	HAT3-CAT	0.0	-1.42/-1.61/-1.57	2.68/2.65/2.63

1.81 Small molecule B of 3-[4-(2-amino-2-carboxy-ethyl)-1H-imidazol-2yl]-1-carbamoyl-propyl-trimethyl-ammonium(DDE)

Figure S78: The molecule used for water complex calculations corresponding to (2R)-2-(trimethylami no)propanamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S250: Statistics of calculated water interaction and dipole moment for (2R)-2-(trimethylamino)p ropanamide.

	m RMS/Max Deviation from $ m QM$		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	$\rm QM/MM~(Debye)$	difference (°)
Initial	1.71/4.67	0.31/0.99	4.921	4.97/7.21	9.76
Optimal	0.71/1.73	0.36/1.26	2.711	4.97/4.92	13.32

Table S251: The comparison list of optimized atomic charges and their initial guess for (2R)-2-(trimethylamino)propanamide, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HAU3	0.090	0.090	2.536
CAU	-0.270	-0.280	28.858
HAU1	0.090	0.090	2.536
HAU2	0.090	0.090	2.536
CBW	0.246	0.246	62.835
HBW	0.090	0.250	6.349
CBI	0.581	0.473	57.630
OAG	-0.462	-0.510	5.225
NAD	-0.570	-0.618	6.995
HAD1	0.313	0.310	2.712
HAD2	0.313	0.310	2.712
NCB	-0.543	-0.576	44.914
CAA	-0.406	-0.375	24.333
HAA1	0.250	0.250	0.030
HAA2	0.250	0.250	0.030
HAA3	0.250	0.250	0.030
CAB	-0.406	-0.375	24.333
HAB1	0.250	0.250	0.030
HAB2	0.250	0.250	0.030
HAB3	0.250	0.250	0.030
CAC	-0.406	-0.375	24.333
HAC1	0.250	0.250	0.030
HAC2	0.250	0.250	0.030
HAC3	0.250	0.250	0.030

Table S252: Interaction energies and geometries be-
tween probe water and selected $(2R)$ -2-(trimethy
lamino)propanamide site calculated using the opti-
mized and initial charges

				/1>
Ν	Probe	Angle	Energy (kcal/mol)	Distance (A)
	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
1	HAU3-CAU	0.0	-6.67/-5.84/-5.71	2.37/2.56/2.56
2	HAU1-CAU	0.0	-5.65/-4.95/-4.53	2.43/2.61/2.62
3	HAU2-CAU	0.0	-7.52/-6.55/-7.03	2.52/2.59/2.59
4	HBW-CBW	0.0	-11.01/-11.00/-15.01	2.26/2.10/1.98
5	HBW-CBW	45.0	-10.47/-10.67/-14.70	2.28/2.11/1.99
6	HBW-CBW	90.0	-9.40/-10.14/-14.08	2.35/2.14/2.00
7	HBW-CBW	135.0	-9.97/-10.50/-14.43	2.32/2.12/2.00
8	HAD1-NAD	0.0	-10.70/-11.70/-11.07	1.93/1.85/1.88
9	HAD1-NAD	45.0	-11.11/-11.83/-11.32	1.91/1.85/1.87
10	HADI-NAD	90.0	-12.02/-12.26/-12.05	1.88/1.84/1.86
11	HAD1-NAD	135.0	-11.62/-12.14/-11.82	1.90/1.84/1.86
12	HAD2-NAD	0.0	-10.22/-10.17/-8.55	1.83/1.83/1.86
13	HAD2-NAD	45.0	-10.11/-10.07/-8.43	1.83/1.83/1.86
14	HAD2-NAD	90.0	-9.96/-9.95/-8.27	1.83/1.84/1.86
15	HAD2-NAD	135.0	-10.06/-10.04/-8.39	1.83/1.83/1.86
16	HAA1-CAA	0.0	-8.18/-8.89/-9.40	2.30/2.14/2.13
17	HAA1-CAA	45.0	-8.57/-9.07/-9.60	2.27/2.13/2.12
18	HAA1-CAA	90.0	-8.88/-9.18/-9.71	2.25/2.13/2.12
19	HAA1-CAA	135.0	-8.47/-8.99/-9.50	2.27/2.14/2.13
20	HAA2-CAA	0.0	-3.59/-3.99/-3.25	2.87/3.02/3.03
21	HAA2-CAA	45.0	-3.65/-3.81/-3.19	2.77/3.03/3.02
22	HAA2-CAA	90.0	-2.18/-3.23/-2.48	3.38/3.20/3.24
23	HAA2-CAA	135.0	-2.31/-3.40/-2.56	3.43/3.18/3.24
24	HAA3- CAA	0.0	-7.80/-9.53/-10.23	2.37/2.14/2.14
25	HAA3- CAA	45.0	-8.49/-9.83/-10.78	2.32/2.13/2.12
26	HAA3-CAA	90.0	-8.36/-9.54/-10.69	2.30/2.14/2.12
27	HAA3-CAA	135.0	-7.61/-9.21/-10.11	2.35/2.15/2.14
28	HAB1-CAB	0.0	-8.17/-7.40/-8.15	2.54/2.58/2.55
29	HAB1-CAB	45.0	-8.75/-7.48/-8.19	2.49/2.57/2.54
30	HAB1-CAB	90.0	-8.52/-7.45/-8.12	2.51/2.57/2.55
31	HAB1-CAB	135.0	-7.89/-7.36/-8.07	2.57/2.59/2.55
32	HAB2-CAB	0.0	-8.21/-9.06/-10.65	2.31/2.14/2.12
33	HAB2-CAB	45.0	-8.25/-9.16/-10.64	2.31/2.14/2.12
34	HAB2-CAB	90.0	-8.83/-9.47/-11.06	2.27/2.13/2.10
35	HAB2-CAB	135.0	-8.77/-9.37/-11.05	2.28/2.13/2.11
36	HAB3-CAB	0.0	-8.50/-9.04/-9.77	2.28/2.14/2.12
37	HAB3-CAB	45.0	-8.71/-9.11/-9.85	2.26/2.13/2.12
38	HAB3-CAB	90.0	-9.05/-9.24/-9.97	2.24/2.13/2.11
39	HAB3-CAB	135.0	-8.82/-9.15/-9.88	2.25/2.13/2.12
40	HAC1-CAC	0.0	-7.81/-8.41/-8.80	2.32/2.15/2.15
41	HAC1-CAC	45.0	-8.17/-8.60/-9.01	2.30/2.15/2.14
42	HAC1-CAC	90.0	-8.54/-8.75/-9.19	2.27/2.14/2.13
43	HAC1-CAC	135.0	-8.15/-8.55/-8.97	2.29/2.15/2.14
44	HAC2-CAC	0.0	-7.44/-8.04/-8.30	2.43/2.21/2.21
45	HAC2-CAC	45.0	-7.76/-8.23/-8.57	2.38/2.20/2.19
46	HAC2-CAC	90.0	-8.09/-8.36/-8.72	2.38/2.20/2.19
47	HAC2-CAC	135.0	-7.79/-8.16/-8.46	2.43/2.21/2.20
48	HAC3-CAC	0.0	-1.31/-1.68/-1.17	5.99/4.73/5.00
49	HAC3-CAC	45.0	-1.37/-1.74/-1.18	5.92/4.80/5.00
50	HAC3-CAC	90.0	-1.38/-1.75/-1.19	5.91/4.81/5.00
51	HAC3-CAC	135.0	-1.32/-1.70/-1.17	5.99/4.76/5.00

1.82 Small molecule A of 3-[4-(2-amino-2-carboxy-ethyl)-1H-imidazol-2yl]-1-carbamoyl-propyl-trimethyl-ammonium(DDEP)

Figure S79: The molecule used for water complex calculations corresponding to 2,4-dimethyl-2,3-dihydr o-1H-imidazole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S253: Statistics of calculated water interaction and dipole moment for 2,4-dimethyl-2,3-dihydro-1H-imidazole.

	m RMS/Max Deviation from $ m QM$		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.90/1.42	0.14/0.27	2.824	2.04/1.69	24.92
Optimal	0.43/0.91	0.12/0.25	1.650	2.04/1.90	1.82

Table S254: The comparison list of optimized atomic charges and their initial guess for 2,4-dime thyl-2,3-dihydro-1H-imidazole, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.450
CB	-0.074	-0.227	0.891
HB1	0.090	0.090	0.450
HB2	0.090	0.090	0.450
CG	0.074	0.290	12.309
ND1	-0.519	-0.532	19.667
HD1	0.413	0.440	1.296
CD2	0.058	0.188	10.981
HD2	0.181	0.130	0.000
NE2	-0.519	-0.530	18.863
HE2	0.413	0.440	1.295
CE1	0.508	0.352	23.944
CAT	-0.075	-0.091	17.924
HAT1	0.090	0.090	2.263
HAT2	0.090	0.090	2.263
HAT3	0.090	0.090	2.263

Table S255: Interaction energies and geometries between probe water and selected 2,4-dimethyl-2,3dihydro-1H-imidazole site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(*)	${ m QM}/{ m Optimal}/{ m Initial}$	${ m QM}/{ m Optimal}/{ m Initial}$
1	HB3-CB	0.0	-6.16/-5.58/-5.38	2.36/2.54/2.56
2	HB1-CB	0.0	-6.15/-5.57/-5.37	2.36/ 2.54/ 2.56
3	HB2-CB	0.0	-6.31/-5.81/-5.73	2.34/2.53/2.54
4	HD1-ND1	0.0	-14.50/-14.80/-15.72	1.78/1.77/1.75
5	HD1-ND1	45.0	-14.91/-15.06/-15.92	1.76/1.77/1.75
6	HD1-ND1	90.0	-15.46/-15.34/-16.14	1.75/1.76/1.75
7	HD1-ND1	135.0	-15.04/-15.08/-15.94	1.76/1.77/1.75
8	HD2-CD2	0.0	-8.43/-8.47/-8.90	2.17/2.17/2.17
9	HD2-CD2	90.0	-9.10/-8.73/-9.12	2.13/2.16/2.16
10	$\operatorname{HE2-NE2}$	0.0	-14.63/-14.84/-15.78	1.77/1.77/1.75
11	$\operatorname{HE2-NE2}$	45.0	-15.20/-15.09/-16.00	1.75/1.76/1.75
12	$\operatorname{HE2-NE2}$	90.0	-15.64/-15.31/-16.21	1.74/1.76/1.74
13	$\operatorname{HE2-NE2}$	135.0	-15.07/-15.07/-15.98	1.76/1.76/1.75
14	HAT1-CAT	0.0	-7.65/-7.01/-6.54	2.29/2.49/2.52
15	HAT2-CAT	0.0	-7.70/-7.12/-6.63	2.30/2.50/2.52
16	HAT3-CAT	0.0	-7.58/-6.67/-6.17	2.24/2.49/2.51

1.83 Small molecule B of 3-[4-(2-amino-2-carboxy-ethyl)-1H-imidazol-2yl]-1-carbamoyl-propyl-trimethyl-ammonium(DDEP)

Figure S80: The molecule used for water complex calculations corresponding to 2-ethyl-1H-imidazo le, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S256: Statistics of calculated water interaction and dipole moment for 2-ethyl-1H-imidazole.

	m RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.62/1.19	0.10/0.22	3.978	1.18/2.80	17.18
Optimal	0.49/1.03	0.09/0.20	2.277	1.18/1.78	4.13

Table S257: The comparison list of optimized atomic charges and their initial guess for 2-ethy l-1H-imidazole, referring to the penalties of initial guess

Table S258: Interaction energies and geometries be-
tween probe water and selected 2-ethyl-1H-imida
zole site calculated using the optimized and initial
charges

Atom		Charges	
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$
CG	0.140	0.195	10.634
$\mathbf{H}\mathbf{G}$	0.130	0.130	0.000
ND1	-0.519	-0.524	23.692
HD1	0.413	0.440	1.250
CD2	0.058	0.195	10.634
HD2	0.181	0.130	0.000
NE2	-0.519	-0.524	23.692
HE2	0.413	0.440	1.250
CE1	0.508	0.321	33.613
CAT	0.015	0.005	22.769
HAT1	0.090	0.090	1.768
HAT2	0.090	0.090	1.768
CAU	-0.270	-0.258	14.620
HAU1	0.090	0.090	0.000
HAU2	0.090	0.090	0.000
HAU3	0.090	0.090	0.000

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
18	site	(°)	${ m QM}/{ m Optimal}/{ m Initial}$	$\rm QM/Optimal/Initial$
1	HG-CG	0.0	-8.87/-8.10/-8.92	2.14/2.19/2.17
2	HG-CG	60.0	-9.28/-8.25/-9.07	2.11/2.18/2.16
3	HG-CG	120.0	-9.28/-8.25/-9.07	2.11/2.18/2.16
4	HD1-ND1	0.0	-14.91/-15.36/-15.80	1.76/1.76/1.75
5	HD1-ND1	45.0	-15.37/-15.55/-15.98	1.75/1.76/1.75
6	HD1-ND1	90.0	-15.84/-15.77/-16.18	1.74/1.75/1.74
7	HD1-ND1	135.0	-15.38/-15.59/-16.00	1.75/1.76/1.75
8	HD2-CD2	0.0	-8.87/-8.82/-8.92	2.14/2.16/2.17
9	HD2-CD2	90.0	-9.42/-9.01/-9.12	2.10/2.15/2.16
10	$\operatorname{HE}2\operatorname{-}\operatorname{NE}2$	0.0	-14.90/-15.26/-15.80	1.76/1.76/1.75
11	$\operatorname{HE}2\operatorname{-}\operatorname{NE}2$	45.0	-15.38/-15.49/-16.01	1.75/1.76/1.75
12	$\operatorname{HE}2\operatorname{-}\operatorname{NE}2$	90.0	-15.85/-15.69/-16.19	1.74/1.76/1.74
13	$\operatorname{HE}2\operatorname{-}\operatorname{NE}2$	135.0	-15.37/-15.46/-15.98	1.75/1.76/1.75
14	HAT1-CAT	0.0	-7.52/-7.29/-6.61	2.32/2.51/2.54
15	HAT2-CAT	0.0	-7.52/-7.28/-6.62	2.32/2.51/2.54
16	HAU1-CAU	0.0	-5.51/-4.57/-4.32	2.39/2.58/2.59
17	HAU2-CAU	0.0	-5.17/-5.07/-4.69	2.59/2.64/2.67
18	HAU3-CAU	0.0	-5.18/-5.12/-4.72	2.59/2.64/2.68

Figure S81: The molecule used for water complex calculations corresponding to ethane-1,1-diol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S259: Statistics of calculated water interaction and dipole moment for ethane-1,1-diol.

	m RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	$\rm QM/MM~(Debye)$	difference (°)
Initial	0.64/1.17	0.05/0.08	1.754	0.18/0.49	89.66
Optimal	0.21/0.34	0.03/0.05	1.015	0.18/0.17	68.86

-1,1-diol, referring to the penalties of initial guess

Table S260: The comparison list of optimized Table S261: Interaction energies and geometries beatomic charges and their initial guess for ethane tween probe water and selected ethane-1,1-diol site calculated using the optimized and initial charges

Atom	Charges					
Atom	Optimal	Initial	Penalty			
HA3	0.090	0.090	0.000			
HA2	0.090	0.090	0.000			
\mathbf{CA}	-0.270	-0.267	0.000			
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000			
CB	0.360	0.403	10.860			
$_{\mathrm{HB}}$	0.090	0.090	0.000			
OG1	-0.636	-0.617	8.199			
HG1	0.411	0.369	8.913			
OG2	-0.636	-0.617	8.199			
$\mathrm{HG2}$	0.411	0.369	8.913			

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA3-CA	0.0	-0.81/-0.52/-0.68	2.71/2.74/2.72
2	HA2-CA	0.0	-0.87/-0.80/-0.94	2.73/2.70/2.69
3	HA-CA	0.0	-0.97/-0.77/-0.80	2.79/2.75/2.73
4	HB-CB	0.0	-1.03/-1.22/-1.42	2.72/2.68/2.66
5	OG1-CB	0.0	-5.15/-4.91/-4.79	1.87/1.88/1.89
6	OG1-CB	90.0	-4.99/-4.65/-4.51	1.86/1.88/1.89
7	OG1-CB	180.0	-4.68/-4.53/-4.20	1.88/1.88/1.90
8	OG1-CB	270.0	-5.34/-4.99/-4.71	1.85/1.87/1.88
9	HG1-OG1	0.0	-6.09/-6.27/-5.28	1.81/1.82/1.85
10	HG1-OG1	45.0	-6.56/-6.36/-5.39	1.79/1.82/1.85
11	HG1-OG1	90.0	-6.09/-6.03/-5.08	1.81/1.83/1.86
12	HG1-OG1	135.0	-5.63/-5.93/-4.97	1.82/1.83/1.86
13	OG2-CB	0.0	-5.27/-5.35/-5.24	1.87/1.88/1.88
14	OG2-CB	90.0	-5.10/-5.17/-5.01	1.85/1.88/1.88
15	OG2-CB	180.0	-4.70/-5.03/-4.68	1.89/1.88/1.89
16	OG2-CB	270.0	-5.44/-5.42/-5.14	1.85/1.87/1.88
17	HG2-OG2	0.0	-6.32/-6.37/-5.36	1.77/1.81/1.84
18	HG2-OG2	45.0	-6.53/-6.39/-5.40	1.76/1.81/1.84
19	HG2-OG2	90.0	-5.93/-6.05/-5.08	1.78/1.82/1.85
20	HG2-OG2	135.0	-5.74/-6.03/-5.04	1.79/1.82/1.85

1.85 The dipeptide of Didehydroaspartate (DYA)

Table S262: The molecule used for water complex calculations corresponding to Didehydroaspartate, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

		RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
		Energy (kcal/mol)	Distance (Å)	${ m RMS}~({ m kcal}/{ m mol}/{ m \AA})$	$\rm QM/MM~(Debye)$	difference (°)
Geometry 1	Initial	$1.42 \ / \ 3.06$	$0.10 \ / \ 0.13$	6.267	10.19 / 13.37	10.19
Geometry 2	Initial	$1.36 \ / \ 2.46$	$0.64\ /\ 2.54$	5.428	$9.45 \ / \ 12.66$	9.45
Sum of geometries	Initial	$1.39 \ / \ 3.06$	$0.46\ /\ 2.54$	11.695	-	-
Geometry 1	Optimal	0.64 / 1.39	$0.10\ /\ 0.12$	3.772	10.19 / 11.31	10.19
Geometry 2	Optimal	$0.57\ /\ 1.22$	$0.23 \ / \ 0.60$	2.787	$9.45 \ / \ 9.65$	9.45
Sum of geomeries	Optimal	$0.61 \ / \ 1.39$	$0.18 \ / \ 0.60$	6.559	-	-

Table S263: Statistics of calculated water interaction and dipole moment for Didehydroaspartate.

Table S264: The comparison list of optimized atomic charges and their initial guess for Didehy droaspartate, referring to the penalties of initial guess

-

Atom	Charges					
Atom	Optimal	Initial	Penalty			
CL	-0.270	-0.273	8.367			
HL1	0.090	0.090	0.000			
HL2	0.090	0.090	0.000			
HL3	0.090	0.090	0.000			
CLP	0.510	0.525	15.975			
OL	-0.510	-0.523	7.454			
Ν	-0.350	-0.526	168.861			
Η	0.193	0.325	3.688			
\mathbf{CA}	-0.115	0.158	173.452			
CB	-0.128	-0.193	41.581			
$_{\mathrm{HB}}$	0.110	0.150	3.536			
CG	0.644	0.620	3.713			
OD1	-0.677	-0.760	0.175			
OD2	-0.677	-0.760	0.175			
С	0.510	0.479	57.375			
Ο	-0.510	-0.499	15.568			
\mathbf{NR}	-0.470	-0.477	4.377			
$_{\rm HR}$	0.310	0.296	1.596			
\mathbf{CR}	-0.110	-0.082	1.853			
HR1	0.090	0.090	0.000			
$\mathrm{HR2}$	0.090	0.090	0.000			
$\mathrm{HR3}$	0.090	0.090	0.000			

Table S265: Interaction energies and geometries between probe water and selected Didehydroasparta te site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
	Geometry	1		
1	OL-CLP	0.0	-6.80/-7.00/-7.47	1.87/1.77/1.76
2	OL-CLP	90.0	-7.55/-8.07/-8.36	1.86/1.76/1.75
3	OL-CLP	180.0	-7.33/-7.57/-7.44	1.89/1.77/1.77
4	OL-CLP	270.0	-6.48/-6.38/-6.55	1.89/1.78/1.77
5	O-C	0.0	-9.20/-9.74/-9.05	1.85/1.74/1.75
6	O-C	90.0	-8.24/-8.44/-7.69	1.86/1.75/1.76
7	O-C	180.0	-7.57/-7.29/-6.49	1.86/1.76/1.77
8	O-C	270.0	-8.32/-8.47/-7.72	1.86/1.75/1.76
9	NR-C	0.0	-3.16/-2.60/-2.35	2.23/2.17/2.17
10	OD1-CG	0.0	-5.80/-6.03/-6.10	2.02/2.04/1.98
11	OD1-CG	90.0	-9.61/-8.21/-9.01	1.75/1.86/1.79
12	OD1-CG	180.0	-9.95/-8.68/-10.00	1.75/1.84/1.76
13	OD1-CG	270.0	-6.94/-6.67/-7.34	1.89/1.95/1.85
14	OD2-CG	0.0	-11.43/-12.02/-13.74	1.78/1.69/1.66
15	OD2-CG	90.0	-11.42/-12.21/-14.20	1.78/1.68/1.65
16	OD2-CG	180.0	-11.68/-12.50/-14.74	1.77 / 1.68 / 1.65
17	OD2-CG	270.0	-11.43/-12.20/-14.20	1.78/1.68/1.65
	Geometry	2		
18	OL-CLP	0.0	-8.22/-8.81/-9.20	1.88/1.76/1.75
19	OL-CLP	90.0	-10.57/-11.70/-12.46	1.85/1.73/1.72
20	OL-CLP	180.0	-8.29/-9.13/-9.08	1.88/1.75/1.75
21	OL-CLP	270.0	-7.26/-7.40/-7.25	1.89/1.76/1.76
22	O-C	0.0	-8.70/-9.41/-8.53	1.85/1.74/1.75
23	O-C	90.0	-8.21/-8.51/-7.78	1.86/1.75/1.75
24	O-C	180.0	-7.71/-7.75/-7.10	1.86/1.75/1.76
25	O-C	270.0	-8.30/-8.73/-8.03	1.86/1.75/1.75
26	NR-C	0.0	-0.74/-0.65/-0.06	2.46/2.33/5.00
27	N-CLP	0.0	-7.86/-7.54/-6.82	2.13/2.12/2.11
28	OD1-CG	0.0	-4.70/-5.61/-5.74	2.29/2.57/2.55
29	OD1-CG	90.0	-6.01/-6.46/-7.23	1.93/2.53/2.48
30	OD1-CG	180.0	-6.49/-6.67/-7.95	1.93/2.52/2.47
31	OD1-CG	270.0	-4.52/-5.74/-6.56	2.62/2.58/2.53
32	OD2-CG	0.0	-12.08/-11.79/-13.60	1.76 / 1.69 / 1.66
33	OD2-CG	90.0	-12.83/-12.87/-15.01	1.75/1.68/1.65
34	OD2-CG	180.0	-13.02/-13.10/-15.48	1.75/1.68/1.64
35	OD2-CG	270.0	-12.30/-12.15/-14.23	1.76/1.68/1.65

Table S266: The molecule used for water complex calculations corresponding to (2Z)-2-acetamido-N-methylbut-2-enamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S267:	Statistics of	of calculated	water	interaction	and	dipole	moment	for	(2Z)-2-acet	amido-N	N-meth
ylbut-2-enar	mide.										

		RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
		Energy (kcal/mol)	Distance (Å)	${f RMS}~({ m kcal}/{ m mol}/{ m \AA})$	$\rm QM/MM~(Debye)$	difference (°)
Geometry 1	Initial	$0.55 \ / \ 0.89$	0.08 / 0.18	3.603	$5.30 \ / \ 3.56$	5.30
Geometry 2	Initial	$0.92 \ / \ 1.98$	$0.08 \ / \ 0.25$	3.138	$3.66 \ / \ 3.44$	3.66
Sum of geometries	Initial	0.80 / 1.98	$0.08\ /\ 0.25$	6.742	-	-
Geometry 1	Optimal	$0.26 \ / \ 0.54$	$0.07 \ / \ 0.15$	1.898	$5.30 \ / \ 5.64$	5.30
Geometry 2	Optimal	0.46 / 0.94	$0.12\ /\ 0.56$	2.284	$3.66 \ / \ 4.72$	3.66
Sum of geomeries	Optimal	$0.40 \ / \ 0.94$	$0.11\ /\ 0.56$	4.182	_	-

Table S268: The comparison list of optimized atomic charges and their initial guess for (2Z)-2acetamido-N-methylbut-2-enamide, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$					
Atom	Optimal	Initial	Penalty			
CL	-0.270	-0.273	8.367			
HL1	0.090	0.090	0.000			
HL2	0.090	0.090	0.000			
HL3	0.090	0.090	0.000			
CLP	0.510	0.525	15.975			
OL	-0.510	-0.523	7.454			
Ν	-0.311	-0.526	168.861			
Η	0.280	0.325	3.688			
\mathbf{CA}	-0.064	0.156	174.206			
CB	-0.148	-0.044	44.661			
$_{\mathrm{HB}}$	0.110	0.150	3.536			
CG	-0.137	-0.316	11.520			
HG1	0.090	0.090	0.175			
$\mathrm{HG2}$	0.090	0.090	0.175			
${ m HG3}$	0.090	0.090	0.175			
\mathbf{C}	0.510	0.478	58.380			
0	-0.510	-0.499	15.568			
\mathbf{NR}	-0.470	-0.477	4.377			
$_{\rm HR}$	0.310	0.296	1.596			
CR	-0.110	-0.082	1.853			
HR1	0.090	0.090	0.000			
$\mathrm{HR2}$	0.090	0.090	0.000			
HR3	0.090	0.090	0.000			

Table S269: Interaction energies and geometries between probe water and selected (2Z)-2-acetamido-N-methylbut-2-enamide site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
	Geometry	1		
1	HL1-CL	0.0	-2.73/-2.91/-2.49	2.55/2.59/2.62
2	HL2-CL	0.0	-1.62/-1.08/-0.77	2.51/2.66/2.68
3	$\rm HL3-CL$	0.0	-2.45/-1.99/-1.56	2.49/2.63/2.64
4	O-C	0.0	-6.47/-6.66/-5.66	1.81/1.76/1.77
5	O-C	90.0	-6.90/-6.93/-6.22	1.80/1.75/1.76
6	O-C	180.0	-7.01/-7.05/-6.38	1.80/1.75/1.76
7	O-C	270.0	-6.83/-6.98/-6.10	1.80/1.75/1.77
8	NR-C	0.0	-3.67/-3.58/-3.47	2.12/2.11/2.12
9	$\mathrm{HR3} ext{-}\mathrm{CR}$	0.0	-0.82/-0.76/-1.01	2.73/2.69/2.66
10	N-CLP	0.0	-2.04/-1.61/-1.58	3.29/3.40/3.35
11	H-N	0.0	-7.00/-7.43/-7.11	1.89/1.90/1.89
12	H-N	45.0	-6.91/-7.25/-7.13	1.89/1.90/1.89
13	H-N	90.0	-7.42/-7.38/-7.27	1.87 / 1.90 / 1.89
14	H-N	135.0	-7.50/-7.56/-7.25	1.87/1.90/1.89
15	HG2-CG	0.0	-1.57/-1.52/-0.90	2.63/2.64/2.73
16	HG3-CG	0.0	-1.81/-1.85/-1.21	2.63/2.63/2.71
	Geometry	2		
17	HL1-CL	0.0	-1.72/-1.16/-0.88	2.46/2.61/2.63
18	HL2-CL	0.0	-0.84/-0.43/-0.20	2.62/2.71/2.73
19	HL3-CL	0.0	-2.41/-2.36/-1.98	2.55/2.62/2.63
20	OL-CLP	0.0	-7.53/-8.10/-8.69	1.79/1.74/1.73
21	OL-CLP	90.0	-7.02/-7.11/-7.60	1.79/1.75/1.74
22	OL-CLP	180.0	-4.85/-5.57/-5.46	1.85/1.77/1.77
23	OL-CLP	270.0	-7.02/-7.59/-7.68	1.79/1.74/1.73
24	O-C	0.0	-6.23/-6.53/-6.26	1.82/1.76/1.76
25	O-C	90.0	-6.65/-7.16/-6.91	1.81/1.75/1.75
26	O-C	180.0	-6.93/-7.44/-6.85	1.81/1.75/1.76
27	O-C	270.0	-6.78/-7.14/-6.52	1.81/1.75/1.76
28	NR-C	0.0	-3.17/-2.40/-2.07	2.09/2.18/2.13
29	HR-NR	0.0	-4.18/-4.71/-5.84	1.87 / 1.88 / 1.88
30	HR-NR	45.0	-3.20/-4.15/-5.19	1.91/1.90/1.89
31	HR-NR	90.0	-3.93/-4.59/-5.64	1.89/1.89/1.88
32	HR-NR	135.0	-5.00/-5.20/-6.34	1.85/1.87/1.87
33	$\mathrm{HR2}\text{-}\mathrm{CR}$	0.0	-1.08/-0.96/-1.37	2.74/2.70/2.67
34	HB-CB	0.0	-1.60/-1.57/-3.07	2.48/2.56/2.47
35	HB-CB	90.0	-1.17/-1.39/-2.88	2.62/2.59/2.48
36	H-N	0.0	-6.03/-6.37/-6.21	1.88/1.89/1.88
37	H-N	45.0	-6.42/-6.44/-6.39	1.86/1.88/1.87
38	H-N	90.0	-6.80/-6.66/-6.55	1.84 / 1.88 / 1.87
39	H-N	135.0	-6.41/-6.59/-6.37	1.86/1.88/1.88
40	HG1-CG	0.0	-1.05/-1.69/-1.10	4.53/3.98/4.29
41	HG2-CG	0.0	-1.32/-1.64/-0.99	2.71/2.65/2.74
42	HG3-CG	0.0	-1.53/-1.82/-1.17	2.68/2.63/2.72

1.87 Small molecule A of (3S)-3-amino-3-[(4Z)-1-(carboxymethyl)-4-[(4-hy droxyphenyl)methylidene]-5-oxo-imidazol-2-yl]propanoicacid(DYG)

Figure S82: The molecule used for water complex calculations corresponding to (4Z)-4-ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S270: Statistics of calculated water interaction and dipole moment for (4Z)-4-ethylidene-1,2-dime thyl-4,5-dihydro-1H-imidazol-5-one.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	$\rm QM/MM~(Debye)$	difference (°)
Initial	0.92/1.64	0.10/0.25	6.526	3.17/0.45	27.81
Optimal	0.49/1.31	0.09/0.22	3.053	3.17/3.55	14.34

Table S271: The comparison list of optimized atomic charges and their initial guess for (4Z)-4ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$					
Atom	Optimal	Initial	Penalty			
CA1	-0.070	-0.115	13.925			
\mathbf{HA}	0.090	0.090	0.000			
HA2	0.090	0.090	0.000			
HA3	0.090	0.090	0.000			
C1	0.233	0.074	23.781			
N2	-0.679	-0.703	41.871			
N3	-0.080	-0.079	15.706			
C2	0.407	0.509	24.002			
O2	-0.489	-0.482	6.710			
CA2	0.288	0.516	47.153			
CB2	-0.105	-0.135	25.469			
HB2	0.150	0.150	3.270			
CG2	-0.270	-0.274	15.277			
$\mathrm{HG21}$	0.090	0.090	1.175			
$\mathrm{HG}22$	0.090	0.090	1.175			
$\mathrm{HG23}$	0.090	0.090	1.175			
CA3	-0.195	-0.271	3.821			
HA31	0.090	0.090	0.000			
HA32	0.090	0.090	0.000			
HA33	0.090	0.090	0.000			

Table S272: Interaction energies and geometries between probe water and selected (4Z)-4-ethylidene -1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HA-CA1	0.0	-2.17/-2.61/-1.51	2.59/2.58/2.65
2	HA2-CA1	0.0	-0.97/-0.86/0.05	2.58/2.64/2.77
3	HA3-CA1	0.0	-2.55/-2.73/-1.57	2.52/2.57/2.64
4	N2-C1	0.0	-4.99/-6.30/-5.60	2.09/2.01/2.02
5	N2-C1	90.0	-7.07/-6.37/-6.45	1.90/1.99/1.99
6	N2-C1	180.0	-5.35/-5.42/-6.38	1.95/2.01/1.99
7	N2-C1	270.0	-7.07/-6.37/-6.45	1.90/1.99/1.99
8	N3-C1	0.0	-0.26/-0.82/-0.78	2.74/2.52/2.49
9	O2-C2	0.0	-5.51/-5.57/-5.00	1.85/1.78/1.80
10	O2-C2	90.0	-5.87/-5.71/-4.73	1.84/1.78/1.80
11	O2-C2	180.0	-5.92/-5.61/-4.27	1.84/1.78/1.81
12	O2-C2	270.0	-5.87/-5.71/-4.73	1.84/1.78/1.80
13	HB2-CB2	0.0	-1.40/-1.60/-2.82	2.32/2.47/2.44
14	HG21-CG2	0.0	-1.01/-0.46/-0.86	2.72/2.77/2.74
15	HG23-CG2	0.0	-1.01/-0.46/-0.86	2.72/2.77/2.74
16	HA32-CA3	0.0	-2.16/-2.10/-1.23	2.59/2.63/2.70
17	HA 33-CA 3	0.0	-2.16/-2.10/-1.23	2.59/2.63/2.70
1.88 Small molecule B of (3S)-3-amino-3-[(4Z)-1-(carboxymethyl)-4-[(4-hy droxyphenyl)methylidene]-5-oxo-imidazol-2-yl]propanoicacid(DYG)

Table S273: The molecule used for water complex calculations corresponding to N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

		RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
		${\rm Energy}~({\rm kcal/mol})$	Distance $(Å)$	${ m RMS}~({ m kcal}/{ m mol}/{ m \AA})$	$\rm QM/MM~(Debye)$	difference (°)
Geometry 1	Initial	$0.86 \ / \ 2.05$	$0.07 \ / \ 0.17$	6.601	1.19 / 4.07	1.19
Geometry 2	Initial	$1.02\ /\ 2.07$	$0.09 \ / \ 0.23$	6.126	$6.37 \ / \ 4.43$	6.37
Sum of geometries	Initial	$0.95\ /\ 2.07$	$0.08\ /\ 0.23$	12.727	-	-
Geometry 1	Optimal	0.36 / 0.81	$0.07 \ / \ 0.16$	2.460	1.19 / 1.37	1.19
Geometry 2	Optimal	$0.51\ /\ 0.91$	$0.08 \ / \ 0.19$	2.701	$6.37 \ / \ 7.25$	6.37
Sum of geomeries	Optimal	$0.45 \ / \ 0.91$	$0.08 \ / \ 0.19$	5.161	-	-

Table S274: Statistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide.

Table S275: The comparison list of optimized atomic charges and their initial guess for N-methyl -2-(2-methyl-4-methylidene-5-oxo-4,5-dihydro-1H -imidazol-1-yl)acetamide, referring to the penalties of initial guess

=

Atom	$\operatorname{Charges}$					
Atom	Optimal	Initial	$\mathbf{Penalty}$			
HA1	0.090	0.090	0.000			
HA2	0.090	0.090	0.000			
\mathbf{CA}	-0.070	-0.115	13.925			
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000			
C1	0.233	0.164	24.002			
N2	-0.679	-0.703	41.104			
N3	-0.031	-0.499	22.994			
C2	0.407	0.613	23.378			
O2	-0.489	-0.482	6.517			
CA2	0.466	0.512	42.773			
CB2	-0.593	-0.444	13.655			
HB21	0.230	0.230	0.950			
HB22	0.230	0.230	0.950			
CA3	-0.154	0.043	13.461			
HA31	0.090	0.090	0.177			
HA32	0.090	0.090	0.177			
С	0.510	0.499	10.097			
Ο	-0.510	-0.517	3.479			
\mathbf{NR}	-0.470	-0.442	6.773			
$_{\mathrm{HR}}$	0.310	0.299	0.000			
\mathbf{CR}	-0.110	-0.108	0.239			
HR1	0.090	0.090	0.000			
$\mathrm{HR2}$	0.090	0.090	0.000			
HR3	0.090	0.090	0.000			

Table S276: Interaction energies and geometries between probe water and selected N-methyl-2-(2-me thyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazo l-1-yl)acetamide site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
	Geometry	1		
1	O-C	0.0	-5.45/-5.47/-6.22	1.84/1.77/1.76
2	O-C	90.0	-6.01/-6.48/-6.53	1.83/1.75/1.76
3	O-C	180.0	-5.96/-6.64/-6.64	1.83/1.75/1.75
4	O-C	270.0	-5.67/-5.94/-6.62	1.84/1.76/1.75
5	NR-C	0.0	-1.32/-1.50/-1.08	2.24/2.20/2.22
6	HR2-CR	0.0	-1.10/-1.26/-1.09	2.71/2.66/2.67
7	HR3-CR	0.0	-1.39/-1.22/-1.32	2.66/2.67/2.67
8	N2-C1	0.0	-5.74/-6.45/-6.04	1.95/1.92/1.92
9	N2-C1	90.0	-6.51/-6.37/-7.24	1.90/1.92/1.90
10	N2-C1	180.0	-5.60/-5.66/-7.65	1.96/1.93/1.90
11	N2-C1	270.0	-6.64/-6.59/-7.43	1.90/1.91/1.89
12	O2-C2	0.0	-3.88/-3.93/-3.54	1.88/1.80/1.81
13	O2-C2	90.0	-4.94/-5.15/-4.46	1.84/1.77/1.79
14	O2-C2	180.0	-4.95/-5.20/-4.05	1.84/1.77/1.79
15	O2-C2	270.0	-3.93/-4.12/-3.39	1.87/1.79/1.81
16	HB21-CB2	0.0	-1.84/-1.64/-3.47	2.32/2.48/2.42
17	HB22-CB2	0.0	-1.82/-1.01/-2.42	2.42/2.54/2.46
18	HA31-CA3	0.0	-2.08/-2.47/-1.68	2.70/2.69/2.70
19	HA-CA	0.0	-2.47/-2.76/-1.19	2.49/2.56/2.66
	Geometry	2		
20	O-C	0.0	-6.06/-6.90/-7.24	1.86/1.76/1.75
21	O-C	90.0	-5.25/-6.15/-7.32	1.87/1.77/1.75
22	O-C	180.0	-4.71/-5.63/-6.52	1.88/1.77/1.76
23	O-C	270.0	-5.56/-6.46/-6.85	1.86/1.76/1.76
24	HR-NR	0.0	-7.09/-7.67/-7.53	1.93/1.90/1.90
25	HR-NR	45.0	-7.71/-7.90/-7.71	1.91/1.89/1.89
26	HR-NR	90.0	-7.79/-7.84/-7.79	1.90/1.89/1.89
27	HR-NR	135.0	-7.18/-7.62/-7.61	1.92/1.90/1.89
28	HR1-CR	0.0	-0.71/-0.04/0.30	2.50/2.69/2.67
29	HR2-CR	0.0	-1.54/-1.44/-1.38	2.68/2.66/2.66
30	HR3-CR	0.0	-1.84/-1.82/-1.70	2.68/2.67/2.66
31	N2-C1	0.0	-6.46/-6.98/-6.58	1.93/1.91/1.91
32	N2-C1	90.0	-6.88/-6.47/-7.35	1.89/1.91/1.89
33	N2-C1	180.0	-5.73/-5.60/-7.60	1.95/1.93/1.90
34	N2-C1	270.0	-7.31/-7.09/-7.94	1.88/1.91/1.89
35	N3-C1	0.0	-0.22/0.03/-2.15	2.60/2.67/2.17
36	O2-C2	0.0	-4.96/-5.34/-4.95	1.88/1.79/1.80
37	O2-C2	90.0	-5.32/-5.37/-4.66	1.87/1.78/1.80
38	O2-C2	180.0	-5.74/-5.89/-4.71	1.87/1.78/1.81
39	O2-C2	270.0	-5.94/-6.25/-5.51	1.85/1.77/1.79
40	HB21-CB2	0.0	-1.43/-1.20/-3.03	2.33/2.48/2.41
41	HB22-CB2	0.0	-1.29/-0.66/-2.05	2.47/2.56/2.47
42	HA31-CA3	0.0	-3.71/-4.08/-3.49	2.50/2.57/2.57
43	HA-CA	0.0	-2.67/-3.45/-1.93	2.59/2.58/2.69

1.89 Small molecule used for ethionine(ESC)

Figure S83: The molecule used for water complex calculations corresponding to (ethylsulfanyl)eth ane, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.77/1.21	0.35/0.55	1.274	1.75/1.92	0.08
Optimal	0.26/0.40	0.30/0.48	1.743	1.75/1.32	0.10

Table S278: The comparison list of optimized atomic charges and their initial guess for (ethyls ulfanyl)ethane, referring to the penalties of initial guess

=

Table S279: Interaction energies and geometries be-
tween probe water and selected (ethylsulfanyl)eth
ane site calculated using the optimized and initial
charges
$\frac{1}{2} \frac{1}{2} \frac{1}$

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.270	-0.270	0.045
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
CG	-0.114	-0.065	0.064
HG1	0.090	0.090	0.000
${ m HG2}$	0.090	0.090	0.000
SD	-0.131	-0.230	0.064
CE	-0.115	-0.065	0.064
HE2	0.090	0.090	0.000
HE1	0.090	0.090	0.000
CZ	-0.270	-0.270	0.045
HZ1	0.090	0.090	0.000
HZ2	0.090	0.090	0.000
HZ3	0.090	0.090	0.000

N	Probe	Angle	${\rm Energy}~(\rm kcal/mol)$	Distance (Å)
11	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-0.92/-0.69/-0.81	2.80/2.76/2.75
2	HB1-CB	0.0	-0.62/-0.36/-0.29	2.73/2.77/2.76
3	HB2-CB	0.0	-0.62/-0.36/-0.29	2.73/2.77/2.76
4	HG1-CG	0.0	-1.04/-0.97/-1.15	2.75/2.73/2.71
5	HG2-CG	0.0	-1.04/-0.97/-1.15	2.75/2.73/2.71
6	$\operatorname{SD-CG}$	0.0	-1.70/-2.10/-2.91	2.88/2.40/2.33
7	$\operatorname{SD-CG}$	90.0	-1.93/-2.13/-2.95	2.82/2.40/2.32
8	$\operatorname{SD-CG}$	180.0	-1.70/-2.10/-2.91	2.88/2.40/2.33
9	$\operatorname{SD-CG}$	270.0	-1.93/-2.13/-2.95	2.82/2.40/2.32

Figure S84: The molecule used for water complex calculations corresponding to 1,2-diffuoro-4-methylbe nzene, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S280: Statistics of calculated water interaction and dipole moment for 1,2-diffuoro-4-methylbenz ene.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.54/0.88	0.20/0.27	2.068	3.44/3.07	6.12
Optimal	0.08/0.16	0.15/0.22	2.039	3.44/4.16	0.52

Table S281: The comparison list of optimized Table S282: Interaction energies and geometries beatomic charges and their initial guess for $1,2\mbox{-}{\rm diflu}$ oro-4-methylbenzene, referring to the penalties of initial guess

=

twee thyll initia	n probe penzene al charg	e water site ca es	and selected 1.	,2-difluoro-4-me he optimized and
N	Probe	Angle (°)	Energy (kcal/mol) OM/Optimal/Initial	Distance (Å)

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.270	-0.267	0.474
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
CG	0.134	-0.033	0.741
CD1	-0.175	-0.128	5.819
HD1	0.150	0.177	0.707
CD2	-0.077	-0.167	0.570
HD2	0.115	0.115	0.000
CE1	0.085	0.189	9.696
FE1	-0.138	-0.207	0.973
CE2	-0.198	-0.101	5.794
HE2	0.171	0.180	0.707
CZ	0.069	0.179	9.696
FZ	-0.136	-0.207	0.973

N	J Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-1.31/-1.35/-0.86	2.69/2.68/2.74
2	2 HB1-CB	0.0	-1.68/-1.62/-1.31	2.63/2.66/2.70
3	B HB2-CB	0.0	-1.82/-1.80/-1.06	2.63/2.66/2.73
4	HD1-CD1	0.0	-2.04/-2.07/-2.67	2.47/2.43/2.38
5	5 HD1-CD1	90.0	-2.08/-2.05/-2.61	2.44/2.43/2.39
6	6 HD2-CD2	0.0	-1.92/-2.02/-1.39	2.58/2.64/2.70
7	HD2-CD2	90.0	-2.24/-2.12/-1.48	2.50/2.63/2.68
8	FE1-CE1	0.0	-1.78/-1.69/-2.00	2.25/2.03/1.98
ç	FE1-CE1	90.0	-2.06/-2.10/-2.43	2.23/2.01/1.96
1	0 FE1-CE1	180.0	-2.36/-2.52/-2.89	2.21/1.99/1.94
1	1 FE1-CE1	270.0	-2.06/-2.10/-2.43	2.23/2.01/1.96
1	2 HE2-CE2	0.0	-2.04/-2.04/-2.92	2.45/2.42/2.37
1	3 HE2-CE2	90.0	-2.05/-2.01/-2.85	2.44/2.42/2.38
1^{-1}	4 FZ-CZ	0.0	-2.38/-2.53/-2.90	2.21/1.99/1.94
1	5 FZ-CZ	90.0	-2.09/-2.14/-2.41	2.23/2.01/1.96
1	6 FZ-CZ	180.0	-1.83/-1.76/-1.94	2.24/2.03/1.98
1	7 FZ-CZ	270.0	-2.09/-2.13/-2.41	2.23/2.01/1.96

1.91 Small molecule used for 4-fluoro-glutamicacid(FGA4)

Figure S85: The molecule used for water complex calculations corresponding to 2-fluorobutanoicaci d, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S283: Statistics of calculated water interaction and dipole moment for 2-fluorobutanoicacid.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.27/1.67	0.09/0.10	3.871	8.32/9.91	0.75
Optimal	0.27/0.37	0.07/0.08	2.812	8.32/8.26	1.88

Table S284: The comparison list of optimized atomic charges and their initial guess for 2-fluor obutanoicacid, referring to the penalties of initial guess

Atom		$\operatorname{Charges}$				
Atom	Optimal	Initial	$\mathbf{Penalty}$			
HA3	0.090	0.090	0.600			
HA2	0.090	0.090	0.600			
\mathbf{CA}	-0.270	-0.270	4.493			
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.600			
CB	-0.201	-0.115	10.678			
HB1	0.090	0.090	2.585			
HB2	0.090	0.090	2.585			
CG	-0.018	-0.012	80.608			
$\mathbf{H}\mathbf{G}$	0.047	0.110	5.793			
CD	0.644	0.591	77.800			
\mathbf{FG}	-0.220	-0.234	20.695			
OE1	-0.716	-0.760	6.586			
OE2	-0.716	-0.760	6.586			

Table S285: Interaction energies and geometries between probe water and selected 2-fluorobutanoica cid site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(*)	QM/Optimal/Initial	QM/Optimal/Initial
1	OE1-CD	0.0	-13.68/-13.90/-15.02	1.74/1.66/1.65
2	OE1-CD	90.0	-13.51/-13.83/-15.14	1.74/ 1.67/ 1.65
3	OE1-CD	180.0	-13.63/-13.87/-15.29	1.74/ 1.66/ 1.65
4	OE1-CD	270.0	-13.31/-13.67/-14.89	1.75/ 1.67/ 1.65
5	OE2-CD	0.0	-13.28/-12.96/-13.68	1.73/ 1.67/ 1.66
6	OE2-CD	90.0	-13.65/-13.42/-14.48	1.73/ 1.67/ 1.65
7	OE2-CD	180.0	-14.27/-14.04/-15.48	1.72/1.66/1.64
8	OE2-CD	270.0	-13.73/-13.49/-14.64	1.73/ 1.67/ 1.65

Table S286: The molecule used for water complex calculations corresponding to 2-aminopropanedioi cacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

		RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
		$\fbox{Energy (kcal/mol)}$	Distance (Å)	${f RMS}~({ m kcal}/{ m mol}/{ m \AA})$	$\rm QM/MM~(Debye)$	difference (°)
Geometry 1	Initial	1.79 / 3.10	$0.12\ /\ 0.17$	5.383	8.39 / 10.89	8.39
Geometry 2	Initial	$1.53 \ / \ 3.07$	0.11 / 0.16	5.126	$8.53 \ / \ 10.95$	8.53
Sum of geometries	Initial	1.66 / 3.10	$0.11\ /\ 0.17$	10.510	-	-
Geometry 1	Optimal	$0.58 \ / \ 1.67$	0.10 / 0.15	3.049	8.39 / 8.37	8.39
Geometry 2	Optimal	$0.48 \ / \ 1.23$	$0.11\ /\ 0.23$	2.795	$8.53 \ / \ 8.52$	8.53
Sum of geometries	Optimal	$0.53 \ / \ 1.67$	0.10 / 0.23	5.845	-	-

Table S287: Statistics of calculated water interaction and dipole moment for 2-aminopropanedioicacid.

Table S288: The comparison list of optimized atomic charges and their initial guess for 2-amin opropanedioicacid, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	Penalty		
CL	-0.270	-0.270	0.000		
HL1	0.090	0.090	0.000		
HL2	0.090	0.090	0.000		
HL3	0.090	0.090	0.000		
CLP	0.510	0.506	0.000		
OL	-0.510	-0.510	0.000		
Ν	-0.412	-0.532	0.000		
Η	0.224	0.477	0.000		
\mathbf{CA}	-0.038	-0.177	45.246		
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000		
CB	0.588	0.619	40.284		
OG1	-0.642	-0.760	2.150		
OG2	-0.642	-0.760	2.150		
\mathbf{C}	0.273	0.571	47.922		
Ο	-0.441	-0.519	19.435		
\mathbf{NR}	-0.470	-0.479	18.726		
\mathbf{HR}	0.310	0.312	0.000		
\mathbf{CR}	-0.110	-0.108	0.000		
$\mathrm{HR1}$	0.090	0.090	0.000		
$\mathrm{HR2}$	0.090	0.090	0.000		
HR3	0.090	0.090	0.000		

Table S289: Interaction energies and geometries between probe water and selected 2-aminopropanedi oicacid site calculated using the optimized and initial charges

	D I	A 1	T (1, 1 / 1)	D: ((Å)
Ν	Probe	Angle	OM/Ortinal/Initial	OM/Ontine (A)
	Casta	<u> </u>	QM/Optimal/Initia	QM/Optimal/Initial
	Geometry	1	6 00 1 6 60 1 6 44	1 00 /1 70 /1 70
1	OL-CLP	0.0	-0.96/-0.02/-0.44	1.09/1.70/1.70
2	OL-CLP	100.0	-1.00/-1.11/-1.90	1.09/1.77/1.77
ວ ∡	OL-CLP	160.0	-10.24/-11.05/-11.00	1.00/1.74/1.74
4 5	OL-CLF	210.0	0.54/0.89/10.92	1.00/1.75/1.70
6	0-0	0.0	-9.04/-9.02/-10.22 8.80/0.07/0.26	1.65/1.75/1.74
7	0-0	190.0	- 0.09/-9.01/-9.30 9.17/9.16/9.01	1.80/1.70/1.75
8	0-0	270.0	0.05/0.21/0.16	1.86/1.76/1.75
0	OG1 CB	210.0	-5.05/-5.21/-5.10 0.02/0.82/10.24	1.78/1.70/1.75
10	OGI-CB	0.0	-9.92/-9.82/-10.24	1.76/1.70/1.07
11	OGI-CB	190.0	-10.79/-10.88/-12.70	1.70/1.09/1.03
10	OGI-CB	270.0	-11.60/-11.96/-14.07	1.74/1.08/1.03
12	OGI-CB	210.0	-10.77/-10.83/-12.23	1.70/1.09/1.05
14	OG2-CB	0.0	-11.44/-11.94/-14.44	1.79/1.70/1.00
14	0G2-CB	180.0	-10.94/-11.50/-15.99 11.17/11.51/14.90	1.79/1.70/1.00
16	OG2-CB	270.0	-11 35/-12 00/-14 45	1.79/1.09/1.05 1.79/1.69/1.65
17	N-CLP	210.0	-5 73/-6 73/-7 41	2 94 /9 14 /9 19
18	N-CLP	90.0	-4 76/-5 92/-6 60	2.24/2.14/2.12 2.30/2.17/2.13
10	N-CLP	180.0	-2 40/-2 50/-2 00	2.30/2.11/2.13
20	N-CLP	270.0	-2.09/-2.24/-1.53	2.49/2.35/2.52
21	NR-C	180.0	-6 46/-6 26/-4 87	2.16/1.96/1.99
22	NR-C	270.0	-2.90/-1.23/-0.06	2.06/2.01/2.03
	Geometry	2		
23	OL-CLP	0.0	-6.76/-6.66/-6.37	1.90/1.78/1.78
24	OL-CLP	90.0	-7.38/-7.74/-7.74	1.90/1.77/1.77
25	OL-CLP	180.0	-10.38/-11.60/-11.36	1.86 / 1.73 / 1.74
26	OL-CLP	270.0	-8.69/-9.85/-9.22	1.89/1.75/1.76
27	O-C	0.0	-9.46/-9.78/-10.20	1.85 / 1.75 / 1.74
28	O-C	90.0	-9.01/-9.23/-9.54	1.86 / 1.76 / 1.74
29	O-C	180.0	-8.29/-8.37/-8.23	1.87/1.77/1.76
30	O-C	270.0	-9.03/-9.27/-9.22	1.86 / 1.75 / 1.74
31	OG1-CB	0.0	-9.92/-9.78/-10.22	1.78/1.70/1.67
32	OG1-CB	90.0	-10.90/-11.01/-12.86	1.76 / 1.69 / 1.65
33	OG1-CB	180.0	-11.89/-12.10/-14.72	1.74 / 1.68 / 1.63
34	OG1-CB	270.0	-10.85/-10.87/-12.24	1.76 / 1.69 / 1.65
35	OG2-CB	0.0	-11.50/-11.97/-14.44	1.79/1.70/1.66
36	OG2-CB	90.0	-10.94/-11.25/-13.91	1.79/1.70/1.66
37	OG2-CB	180.0	-11.21/-11.52/-14.19	1.79/1.69/1.65
38	OG2-CB	270.0	-11.46/-12.09/-14.53	1.79/1.69/1.65
39	N-CLP	0.0	-5.99/-6.13/-6.74	2.15/2.10/2.08
40	N-CLP	90.0	-5.70/-6.13/-6.81	2.17/2.10/2.06
41	N-CLP	180.0	-3.93/-3.52/-3.22	2.22/2.16/2.16
42	N-CLP	270.0	-3.41/-2.85/-2.29	2.24/2.21/2.25
43	NR-C	0.0	-2.12/-1.92/-1.58	4.76/4.70/4.76
44	NR-C	90.0	-2.54/-2.54/-2.15	4.86/4.63/4.70
45	NR-C	180.0	-5.20/-5.79/-5.46	4.34/4.20/4.21

1.93 Small molecule A of N5-formyl-N5-hydroxy-L-ornithine(FHO)

Figure S86: The molecule used for water complex calculations corresponding to N-ethyl-N-hydroxyfor mamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S290: Statistics of calculated water interaction and dipole moment for N-ethyl-N-hydroxyforma mide.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.87/1.41	0.11/0.19	3.177	3.69/3.02	14.05
Optimal	0.42/0.94	0.08/0.15	3.448	3.69/4.80	0.00

Table S291: The comparison list of optimized atomic charges and their initial guess for N-ethy l-N-hydroxyformamide, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$
${ m HG3}$	0.090	0.090	0.050
CG	-0.223	-0.265	5.022
HG1	0.090	0.090	0.050
$\mathrm{HG2}$	0.090	0.090	0.050
CD	0.069	0.047	10.074
HD1	0.090	0.090	2.541
HD2	0.090	0.090	2.541
NE	-0.230	-0.381	346.670
CZ	0.494	0.415	26.672
HZ	0.013	0.080	2.295
OH	-0.477	-0.519	14.518
ΟZ	-0.307	-0.247	346.084
HOZ	0.211	0.420	19.754

Table S292: Interaction energies and geometries between probe water and selected N-ethyl-N-hydrox yformamide site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HG1-CG	0.0	-2.09/-2.29/-1.64	2.62/2.60/2.65
2	HG2-CG	0.0	-0.43/-0.66/-0.48	2.70/2.68/2.82
3	HG3-CG	0.0	-1.47/-1.88/-1.29	2.71/2.64/2.70
4	HD1-CD	0.0	-3.14/-3.16/-2.47	2.48/2.57/2.61
5	HD2-CD	0.0	-1.39/-1.57/-1.06	2.59/2.64/2.69
6	NE-CD	0.0	-2.24/-2.86/-3.62	2.21/2.15/2.07
7	$\rm NE-CD$	90.0	-0.78/-0.59/-2.15	2.32/2.32/2.13
8	NE-CD	180.0	-0.60/-0.17/-1.79	2.32/2.33/2.14
9	$\rm NE-CD$	270.0	-2.19/-2.50/-3.26	2.16/2.15/2.07
10	HZ-CZ	0.0	-3.12/-2.64/-2.80	2.39/2.33/2.28
11	HZ-CZ	90.0	-3.40/-2.77/-2.89	2.35/2.32/2.27
12	OH-CZ	0.0	-4.38/-5.32/-4.67	1.90/1.80/1.79
13	OH-CZ	90.0	-4.84/-5.25/-5.50	1.88/1.79/1.77
14	OH-CZ	180.0	-5.23/-5.30/-6.24	1.86/1.79/1.75
15	OH-CZ	270.0	-5.10/-5.44/-5.83	1.86/1.79/1.76
16	OZ-NE	0.0	-3.78/-4.44/-2.37	2.10/1.95/2.06
17	OZ-NE	90.0	-3.82/-4.11/-2.64	2.08/1.95/2.03
18	OZ-NE	180.0	-2.71/-2.65/-2.16	2.14/1.99/2.04
19	OZ-NE	270.0	-3.22/-3.25/-2.11	2.11/1.97/2.05

1.94 Small molecule used for Trifluoroalanine(FLA)

Figure S87: The molecule used for water complex calculations corresponding to 2-amino-3,3,3-trifluor opropanoicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S293: Statistics of calculated water interaction and dipole moment for 2-amino-3,3,3-trifluoropro panoicacid.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	$\rm QM/MM~(Debye)$	difference (°)
Initial	2.30/4.85	0.53/2.42	9.504	10.38/14.48	5.52
Optimal	0.72/1.26	0.27/0.49	4.986	10.38/12.36	0.89

Table S294: The comparison list of optimized atomic charges and their initial guess for 2-amin o-3,3,3-trifluoropropanoicacid, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
N	-0.162	-0.346	38.086
HN3	0.259	0.330	2.674
HN1	0.259	0.330	2.674
HN2	0.259	0.330	2.674
CA	0.386	0.408	127.776
$\mathbf{H}\mathbf{A}$	0.090	0.090	5.911
F1	-0.164	-0.140	8.256
F2	-0.164	-0.140	8.256
F3	-0.164	-0.140	8.256
CB	0.374	0.350	82.802
С	0.029	0.448	100.499
Ο	-0.501	-0.760	8.256
OXT	-0.501	-0.760	8.256

Table S295: Interaction energies and geometries between probe water and selected 2-amino-3,3,3-trif luoropropanoicacid site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HN1-N	0.0	-13.94/-13.68/-15.70	1.68/1.77/1.74
2	HN1-N	45.0	-13.69/-13.64/-15.65	1.69/1.77/1.74
3	HN1-N	90.0	-13.35/-13.45/-15.45	1.70/1.77/1.74
4	HN1-N	135.0	-13.59/-13.49/-15.49	1.69/1.77/1.74
5	HN2-N	0.0	-12.99/-12.16/-14.37	1.68/1.79/1.76
6	HN2-N	45.0	-13.56/-12.32/-14.42	1.66 / 1.79 / 1.76
7	HN2-N	90.0	-13.69/-12.50/-14.61	1.66 / 1.79 / 1.75
8	HN2-N	135.0	-13.08/-12.32/-14.53	1.68/1.79/1.76
9	$\operatorname{HA-CA}$	0.0	-4.92/-4.69/-5.34	2.22/2.51/2.49
10	F1-CB	90.0	-0.86/-0.50/0.05	2.30/1.93/1.98
11	F1-CB	180.0	-1.35/-1.51/-0.95	2.27/1.88/1.92
12	F2-CB	0.0	-1.68/-2.45/-2.33	2.38/1.93/1.98
13	F2-CB	90.0	-2.14/-3.30/-3.22	2.35/1.89/1.92
14	F2-CB	180.0	-0.72/-0.99/-0.36	2.51/2.02/2.19
15	F2-CB	270.0	-0.30/-0.19/0.12	2.58/2.13/5.00
16	F3-CB	0.0	-0.75/-1.30/-0.83	2.46/1.98/2.09
17	F3-CB	180.0	-0.56/-0.85/-0.08	2.44 / 1.98 / 2.10
18	F3-CB	270.0	-1.82/-3.07/-2.67	2.33/1.88/1.92
19	O-C	0.0	-3.49/-2.50/-4.89	1.84/1.81/1.71
20	O-C	90.0	-6.65/-6.40/-9.51	1.76/1.74/1.66
21	O-C	180.0	-8.85/-9.79/-13.61	1.74 / 1.70 / 1.63
22	O-C	270.0	-6.98/-6.78/-10.07	1.75/1.73/1.66
23	OXT-C	0.0	-7.07/-7.61/-10.50	1.81/1.75/1.67
24	OXT-C	90.0	-7.39/-8.19/-11.59	1.81/1.74/1.66
25	OXT-C	180.0	-8.22/-9.32/-13.07	1.79/1.72/1.65
26	OXT-C	270.0	-7.64/-8.64/-11.88	1.80/1.73/1.66

1.95 Small molecule A of N-formylmethionine(FME)

Figure S88: The molecule used for water complex calculations corresponding to (2S)-2-formamido-N-methylpropanamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S296: Statistics of calculated water interaction and dipole moment for (2S)-2-formamido-N-meth ylpropanamide.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.37/0.70	0.14/0.28	1.563	3.31/3.35	5.58
Optimal	0.27/0.65	0.13/0.29	1.453	3.31/3.54	0.67

Table S297: The comparison list of optimized atomic charges and their initial guess for (2S)-2-formamido-N-methylpropanamide, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	Penalty
CN	0.265	0.324	5.356
HCN	0.070	0.080	1.187
01	-0.469	-0.498	0.000
Ν	-0.298	-0.395	10.787
Η	0.286	0.340	5.664
\mathbf{CA}	0.056	0.062	9.615
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
CB	-0.270	-0.269	0.000
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
HB3	0.090	0.090	0.000
С	0.510	0.509	0.000
Ο	-0.510	-0.513	0.000
\mathbf{NR}	-0.470	-0.474	0.000
\mathbf{HR}	0.310	0.312	0.000
\mathbf{CR}	-0.110	-0.108	0.000
HR1	0.090	0.090	0.000
$\mathrm{HR2}$	0.090	0.090	0.000
$\mathrm{HR3}$	0.090	0.090	0.000

Table S298: Interaction energies and geometries between probe water and selected (2S)-2-formamido-N-methylpropanamide site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(°)	${\rm QM/Optimal/Initial}$	$\rm QM/Optimal/Initial$
1	HCN-CN	0.0	-2.11/-1.97/-2.40	2.48/2.31/2.29
2	HCN-CN	45.0	-2.09/-1.96/-2.40	2.48/2.31/2.29
3	HCN-CN	90.0	-2.08/-1.95/-2.39	2.47/2.31/2.29
4	HCN-CN	135.0	-2.10/-1.96/-2.40	2.47/2.31/2.29
5	O1-CN	0.0	-6.80/-6.94/-7.23	1.82/1.76/1.75
6	O1-CN	90.0	-6.28/-6.49/-6.84	1.83/ 1.77/ 1.75
7	O1-CN	180.0	-5.51/-5.62/-6.04	1.84/ 1.77/ 1.76
8	O1-CN	270.0	-6.23/-6.31/-6.66	1.83/ 1.77/ 1.76
9	N-CN	0.0	-0.01/-0.11/-0.19	3.59/3.39/3.34
10	N-CN	90.0	-0.22/-0.46/-0.61	3.44/3.26/3.21
11	N-CN	180.0	-0.43/-1.08/-1.13	3.40/3.15/3.13
12	N-CN	270.0	-0.16/-0.47/-0.45	3.43/3.28/3.27
13	H-N	0.0	-1.19/-1.19/-1.72	2.15/2.43/2.37
14	HA-CA	0.0	-1.39/-1.56/-1.37	2.49/2.62/2.63
15	HB1-CB	0.0	-1.40/-1.92/-1.86	2.89/2.70/2.70
16	HB2-CB	0.0	-1.06/-1.06/-0.98	2.62/2.64/2.65
17	O-C	0.0	-4.82/-4.86/-4.75	1.86/ 1.78/ 1.78
18	O-C	90.0	-5.38/-5.49/-5.48	1.83/1.77/1.76
19	O-C	180.0	-5.47/-6.01/-6.13	1.83/ 1.76/ 1.75
20	O-C	270.0	-5.59/-5.85/-5.92	1.83/1.76/1.76
21	HR-NR	0.0	-7.55/-8.01/-7.98	1.89/ 1.87/ 1.87
22	HR-NR	45.0	-7.53/-7.90/-7.85	1.88/ 1.87/ 1.87
23	HR-NR	90.0	-7.66/-7.87/-7.82	1.87/ 1.87/ 1.87
24	HR-NR	135.0	-7.67/-7.97/-7.93	1.88/ 1.87/ 1.87
25	HR2-CR	0.0	-1.64/-1.60/-1.58	2.68/2.66/2.66
26	HR3-CR	0.0	-1.51/-1.51/-1.49	2.69/2.66/2.66

Figure S89: The molecule used for water complex calculations corresponding to 1-ethyl-2-fluoroben zene, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	${\rm Energy}\;(\rm kcal/mol)$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.50/0.87	0.16/0.27	1.950	1.55/2.03	6.96
Optimal	0.17/0.40	0.12/0.21	1.572	1.55/1.99	1.66

Table S300: The comparison list of optimized atomic charges and their initial guess for 1-ethyl-2-fluorobenzene, referring to the penalties of initial guess

Table S301: Interaction energies and geometries be-
tween probe water and selected 1-ethyl-2-fluoroben
zene site calculated using the optimized and initial
charges

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.270	0.474
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
CB	-0.180	-0.194	0.986
HB1	0.090	0.090	0.075
HB2	0.090	0.090	0.075
CG	0.129	0.223	1.211
CD1	-0.031	0.053	1.265
FD1	-0.138	-0.223	0.452
CD2	-0.115	-0.166	0.000
HD2	0.115	0.115	0.000
CE1	-0.109	-0.130	0.499
HE1	0.149	0.180	0.000
CE2	-0.115	-0.095	0.000
HE2	0.115	0.115	0.000
CZ	-0.115	-0.173	0.000
HZ	0.115	0.115	0.000

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA3-CA	0.0	-0.62/-0.59/-0.77	2.81/2.75/2.73
2	HA2-CA	0.0	-0.69/-0.52/-0.57	2.85/2.78/2.77
3	HB1-CB	0.0	-0.39/-0.17/-0.20	2.78/2.77/2.76
4	HB2-CB	0.0	-1.42/-1.30/-1.44	2.70/2.71/2.69
5	FD1-CD1	0.0	-2.24/-2.35/-3.11	2.18/1.98/1.91
6	FD1-CD1	90.0	-2.33/-2.37/-3.16	2.18/1.98/1.91
7	FD1-CD1	180.0	-2.35/-2.36/-3.16	2.18/1.98/1.91
8	FD1-CD1	270.0	-2.36/-2.40/-3.19	2.17/1.97/1.91
9	HD2-CD2	0.0	-1.59/-1.59/-1.61	2.62/2.66/2.66
10	HD2-CD2	90.0	-1.86/-1.66/-1.68	2.54/2.65/2.65
11	$\operatorname{H\!E}\operatorname{1-}\operatorname{C\!E}\operatorname{1}$	0.0	-1.53/-1.52/-1.91	2.52/2.45/2.41
12	$\operatorname{H\!E}\operatorname{1-}\operatorname{C\!E}\operatorname{1}$	90.0	-1.53/-1.48/-1.83	2.51/2.45/2.42
13	$\operatorname{HE}2\text{-}\operatorname{CE}2$	0.0	-1.41/-1.29/-1.21	2.64/2.69/2.70
14	$\operatorname{HE}2 ext{-}\operatorname{CE}2$	90.0	-1.60/-1.35/-1.27	2.58/2.68/2.69
15	HZ-CZ	0.0	-1.53/-1.24/-1.01	2.61/2.69/2.73
16	HZ-CZ	90.0	-1.71/-1.30/-1.08	2.55/2.68/2.71

1.97 Small molecule used for 6-fluoro-l-tryptophan(FT6)

Figure S90: The molecule used for water complex calculations corresponding to 6-fluoro-3-methyl-1H-indole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S302: Statistics of calculated water interaction and dipole moment for 6-fluoro-3-methyl-1H-indole.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	${\rm Energy}\;(\rm kcal/mol)$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	1.21/2.31	0.16/0.38	3.473	3.16/1.59	17.76
Optimal	0.12/0.26	0.12/0.21	2.158	3.16/3.89	0.92

Table S303: The comparison list of optimized Table S304: Interaction energies and geometries beinitial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.270	-0.278	0.000
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
CG	-0.003	-0.038	0.000
CD1	-0.091	-0.163	0.000
HD1	0.135	0.220	0.000
CD2	0.145	0.140	0.825
NE1	-0.360	-0.490	0.696
HE1	0.318	0.363	0.000
CE2	0.163	0.089	1.521
CE3	-0.383	-0.337	0.685
HE3	0.225	0.201	0.000
CZ2	-0.187	-0.196	1.812
HZ2	0.146	0.156	0.000
CZ3	-0.290	-0.195	1.076
HZ3	0.218	0.261	0.658
CH2	0.146	0.207	1.850
FAP	-0.182	-0.210	0.075

atomic charges and their initial guess for 6-fluor tween probe water and selected 6-fluoro-3-methyl o-3-methyl-1H-indole, referring to the penalties of -1H-indole site calculated using the optimized and initial charges

	Probe	Angle	Energy (kcal/mol)	Distance (Å)
Ν	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
1	HB3-CB	0.0	-0.77/-0.86/-0.42	2.80/2.72/2.79
2	HB1-CB	0.0	-1.17/-1.07/-0.78	2.76/2.74/2.79
3	HB2-CB	0.0	-0.79/-0.82/-0.47	2.78/2.72/2.78
4	HD1-CD1	0.0	-2.14/-2.40/-2.86	2.51/2.31/2.25
5	HD1-CD1	90.0	-2.47/-2.54/-3.00	2.44/2.30/2.24
6	NE1-CD1	0.0	-1.12/-1.12/-2.93	2.44/2.33/2.16
7	NE1-CD1	90.0	-2.41/-2.68/-4.73	2.30/2.20/2.08
8	NE1-CD1	180.0	-1.54/-1.47/-3.85	2.33/2.24/2.09
9	NE1-CD1	270.0	-0.37/-0.21/-2.15	2.56/2.39/2.19
10	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	0.0	-6.42/-6.68/-5.86	1.87/1.87/1.87
11	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	45.0	-6.74/-6.77/-5.98	1.85/1.86/1.87
12	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	90.0	-7.05/-6.85/-6.10	1.83/1.86/1.86
13	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	135.0	-6.73/-6.77/-5.98	1.85/1.86/1.87
14	$\operatorname{HE} 3$ - $\operatorname{CE} 3$	0.0	-1.49/-1.43/-1.62	2.59/2.64/2.64
15	$\operatorname{HE} 3$ - $\operatorname{CE} 3$	90.0	-1.68/-1.53/-1.72	2.54/2.63/2.63
16	HZ2-CZ2	0.0	-1.64/-1.74/-1.61	2.55/2.46/2.46
17	HZ2-CZ2	90.0	-1.91/-1.86/-1.71	2.49/2.45/2.45
18	HZ3-CZ3	0.0	-1.29/-1.23/-3.28	2.38/2.44/2.34
19	HZ3-CZ3	45.0	-1.28/-1.22/-3.26	2.38/2.44/2.34
20	HZ3-CZ3	90.0	-1.28/-1.21/-3.23	2.37/2.44/2.34
21	HZ3-CZ3	135.0	-1.28/-1.22/-3.26	2.37/2.44/2.34
22	FAP-CH2	0.0	-2.46/-2.49/-2.56	2.17/1.96/1.94
23	FAP-CH2	90.0	-2.61/-2.68/-2.52	2.17 / 1.95 / 1.95
24	FAP-CH2	180.0	-2.61/-2.75/-2.32	2.17 / 1.95 / 1.96
25	FAP-CH2	270.0	-2.61/-2.68/-2.52	2.17 / 1.95 / 1.95

1.98 Small molecule used for 5-fluoro-tryptophan(FTR)

Figure S91: The molecule used for water complex calculations corresponding to 5-fluoro-3-methyl-1H-indole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S305: Statistics of calculated water interaction and dipole moment for 5-fluoro-3-methyl-1H-indole.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.11/2.30	0.15/0.34	3.697	3.99/2.89	26.27
Optimal	0.18/0.36	0.11/0.22	2.546	3.99 / 4.95	0.50

Table S306: The comparison list of optimized Table S307: Interaction energies and geometries beatomic charges and their initial guess for 5-fluor tween probe water and selected 5-fluoro-3-methyl o-3-methyl-1H-indole, referring to the penalties of -1H-indole site calculated using the optimized and initial guess

Atom	Charges				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HB3	0.090	0.090	0.000		
CB	-0.270	-0.278	0.000		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
CG	-0.000	-0.038	0.806		
CD1	-0.055	-0.163	0.000		
HD1	0.137	0.220	0.000		
CD2	-0.004	-0.008	1.556		
NE1	-0.424	-0.518	0.000		
HE1	0.323	0.363	0.000		
CE2	0.320	0.269	0.825		
CE3	-0.263	-0.194	1.808		
HE3	0.191	0.182	0.478		
CZ2	-0.287	-0.363	0.685		
HZ2	0.183	0.195	0.000		
CZ3	0.063	0.166	1.795		
FZ3	-0.183	-0.210	0.075		
$\rm CH2$	-0.192	-0.154	1.076		
HH2	0.191	0.261	0.658		

initial charges

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
N site (*) QM/Optimal/Initial QM/Optimal/Initial 1 HB3-CB 0.0 -0.79/-0.74/-0.42 2.76/2.72/2.77 2 HB1-CB 0.0 -0.79/-0.74/-0.42 2.76/2.72/2.77 3 HB2-CB 0.0 -1.17/-1.08/-0.68 2.76/2.72/2.77 3 HB2-CB 0.0 -1.17/-1.08/-0.68 2.76/2.72/2.77 4 HD1-CD1 0.0 -2.23/-2.58/-2.77 2.50/2.30/2.25 5 HD1-CD1 90.0 -2.56/-2.72/-2.91 2.43/2.29/2.25 6 NE1-CD1 90.0 -2.54/-2.71/-4.61 2.29/2.20/2.09 8 NE1-CD1 180.0 -1.62/-1.57/-3.92 2.33/2.24/2.10 9 NE1-CD1 270.0 -0.35/-0.13/-2.00 2.54/2.38/2.20 10 HE1-NE1 0.0 -6.62/-6.59/-5.78 1.88/1.87/1.87 11 HE1-NE1 90.0 -6.65/-6.72/-5.93 1.86/1.87/1.87 12 HE1-NE1 135.0 -6.65/-6.72/-5.93 1.86/1.87/1.87 13 HE1-NE1 135.0	N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	HB3-CB	0.0	-0.79/-0.74/-0.42	2.76/2.72/2.77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	HB1-CB	0.0	-0.79/-0.74/-0.42	2.76/2.72/2.77
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	HB2-CB	0.0	-1.17/-1.08/-0.68	2.76/2.74/2.80
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	HD1-CD1	0.0	-2.23/-2.58/-2.77	2.50/2.30/2.25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	HD1-CD1	90.0	-2.56/-2.72/-2.91	2.43/2.29/2.25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	NE1-CD1	0.0	-1.03/-0.90/-2.55	2.43/2.33/2.17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	NE1-CD1	90.0	-2.54/-2.71/-4.61	2.29/2.20/2.09
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	NE1-CD1	180.0	-1.62/-1.57/-3.92	2.33/2.24/2.10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	NE1-CD1	270.0	-0.35/-0.13/-2.00	2.54/2.38/2.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	0.0	-6.32/-6.59/-5.78	1.88/1.87/1.87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	45.0	-6.65/-6.72/-5.93	1.86/1.87/1.87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	90.0	-6.99/-6.84/-6.08	1.84/1.86/1.87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	135.0	-6.65/-6.72/-5.93	1.86/1.87/1.87
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	14	HE3-CE3	0.0	-1.34/-1.21/-1.70	2.52/2.45/2.42
16 HZ2-CZ2 0.0 -1.75/-2.05/-1.85 2.63/2.63/2.65 17 HZ2-CZ2 90.0 -2.22/-2.27/-2.08 2.52/2.61/2.62 18 FZ3-CZ3 0.0 -2.71/-3.04/-2.73 2.16/1.94/1.94 19 FZ3-CZ3 180.0 -2.68/-2.91/-2.31 2.16/1.94/1.95 20 HH2-CH2 0.0 -1.45/-1.44/-3.47 2.35/2.43/2.33 21 HH2-CH2 90.0 -1.45/-1.40/-3.43 2.35/2.44/2.33	15	$\operatorname{HE} 3$ - $\operatorname{CE} 3$	90.0	-1.34/-1.19/-1.64	2.51/2.46/2.43
17 HZ2-CZ2 90.0 -2.22/-2.27/-2.08 2.52/2.61/2.62 18 FZ3-CZ3 0.0 -2.71/-3.04/-2.73 2.16/1.94/1.94 19 FZ3-CZ3 180.0 -2.68/-2.91/-2.31 2.16/1.94/1.95 20 HH2-CH2 0.0 -1.45/-1.44/-3.47 2.35/2.43/2.33 21 HH2-CH2 90.0 -1.45/-1.40/-3.43 2.35/2.44/2.33	16	HZ2-CZ2	0.0	-1.75/-2.05/-1.85	2.63/2.63/2.65
18 FZ3-CZ3 0.0 -2.71/-3.04/-2.73 2.16/1.94/1.94 19 FZ3-CZ3 180.0 -2.68/-2.91/-2.31 2.16/1.94/1.95 20 HH2-CH2 0.0 -1.45/-1.44/-3.47 2.35/2.43/2.33 21 HH2-CH2 90.0 -1.45/-1.40/-3.43 2.35/2.44/2.33	17	HZ2-CZ2	90.0	-2.22/-2.27/-2.08	2.52/2.61/2.62
19 FZ3-CZ3 180.0 -2.68/-2.91/-2.31 2.16/1.94/1.95 20 HH2-CH2 0.0 -1.45/-1.44/-3.47 2.35/2.43/2.33 21 HH2-CH2 90.0 -1.45/-1.40/-3.43 2.35/2.44/2.33	18	FZ3-CZ3	0.0	-2.71/-3.04/-2.73	2.16/1.94/1.94
20 HH2-CH2 0.0 -1.45/-1.44/-3.47 2.35/2.43/2.33 21 HH2-CH2 90.0 -1.45/-1.40/-3.43 2.35/2.44/2.33	19	FZ3-CZ3	180.0	-2.68/-2.91/-2.31	2.16/1.94/1.95
21 HH2-CH2 90.0 -1.45/-1.40/-3.43 2.35/2.44/2.33	20	$\rm HH2\text{-}CH2$	0.0	-1.45/-1.44/-3.47	2.35/2.43/2.33
	21	$\rm HH2\text{-}CH2$	90.0	-1.45/-1.40/-3.43	2.35/2.44/2.33

1.99 Small molecule used for (2-furyl)-alanine(FUA2)

Figure S92: The molecule used for water complex calculations corresponding to 2-ethylfuran, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S308: Statistics of calculated water interaction and dipole moment for 2-ethylfuran.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	${\rm Energy}\;(\rm kcal/mol)$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.51/1.10	0.10/0.17	2.029	0.66/1.14	6.25
Optimal	0.09/0.17	0.08/0.16	1.360	0.66/0.86	4.85

Table S309: The comparison list of optimized atomic charges and their initial guess for 2-ethy lfuran, referring to the penalties of initial guess

Table S310: Interaction energies and geometries be-
tween probe water and selected 2-ethylfuran site
calculated using the optimized and initial charges

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.269	19.182
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
CB	-0.115	-0.090	35.599
HB1	0.090	0.090	2.250
HB2	0.090	0.090	2.250
CG	0.186	0.155	34.610
CD2	-0.287	-0.234	0.000
HD2	0.191	0.168	0.000
OD1	-0.269	-0.341	25.596
CE2	-0.292	-0.245	0.000
HE2	0.204	0.175	0.000
CE1	0.063	0.093	2.500
HE1	0.139	0.138	0.000

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA2-CA	0.0	-0.77/-0.72/-0.74	2.84/2.75/2.75
2	HA-CA	0.0	-0.39/-0.32/-0.32	2.87/2.77/2.78
3	HB1-CB	0.0	-0.72/-0.60/-0.53	2.75/2.73/2.74
4	HB2-CB	0.0	-1.24/-1.30/-1.37	2.71/2.70/2.69
5	HD2-CD2	0.0	-1.31/-1.32/-1.30	2.64/2.66/2.68
6	HD2-CD2	90.0	-1.51/-1.41/-1.38	2.57/2.65/2.67
7	OD1-CG	0.0	-3.76/-3.82/-4.76	1.95/1.90/1.85
8	OD1-CG	90.0	-3.94/-3.80/-4.75	1.94 / 1.89 / 1.84
9	OD1-CG	180.0	-3.51/-3.67/-4.60	1.99/1.89/1.84
10	OD1-CG	270.0	-4.12/-4.01/-4.98	1.92/1.89/1.84
11	$\operatorname{H\!E} 2\text{-}\operatorname{C\!E} 2$	0.0	-1.34/-1.36/-1.31	2.61/2.65/2.67
12	$\operatorname{HE}2 ext{-}\operatorname{CE}2$	90.0	-1.50/-1.43/-1.37	2.56/2.65/2.66
13	$\operatorname{H\!E} \operatorname{1-}\!\operatorname{C\!E} \operatorname{1}$	0.0	-1.81/-1.84/-1.90	2.46/2.30/2.30
14	$\operatorname{H\!E} 1\text{-}\operatorname{C\!E} 1$	90.0	-1.89/-1.85/-1.89	2.44/2.30/2.30

1.100 Small molecule used for 3-fluoro-valine(FVAL)

Figure S93: The molecule used for water complex calculations corresponding to 2-fluoro-2-methylprop ane, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S311: Statistics of calculated water interaction and dipole moment for 2-fluoro-2-methylpropane.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.16/0.23	0.13/0.23	1.334	2.03/2.27	0.00
Optimal	0.13/0.20	0.14/0.24	0.941	2.03/2.19	0.00

Table S312: The comparison list of optimized Table S313: Interaction energies and geometries beatomic charges and their initial guess for 2-fluor o-2-methylpropane, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	3.536
HA2	0.090	0.090	3.536
\mathbf{CA}	-0.270	-0.210	8.660
\mathbf{HA}	0.090	0.090	3.536
CB	0.265	0.040	10.607
FG3	-0.265	-0.220	0.000
CG1	-0.270	-0.210	8.660
HG11	0.090	0.090	3.536
$\mathrm{HG12}$	0.090	0.090	3.536
HG13	0.090	0.090	3.536
CG2	-0.270	-0.210	8.660
HG21	0.090	0.090	3.536
HG22	0.090	0.090	3.536
${ m HG23}$	0.090	0.090	3.536

tween probe water and selected 2-fluoro-2-methyl propane site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HA 3- CA	0.0	-0.78/-0.60/-0.56	2.77/2.74/2.74
2	HA2-CA	0.0	-0.78/-0.60/-0.56	2.77/2.74/2.74
3	HA-CA	0.0	-1.32/-1.28/-1.24	2.71/2.69/2.70
4	FG3-CB	0.0	-3.68/-3.72/-3.62	2.07/1.83/1.84
5	FG3-CB	90.0	-3.68/-3.72/-3.62	2.07/1.83/1.84
6	FG3-CB	180.0	-3.68/-3.72/-3.62	2.07/1.83/1.84
7	FG3-CB	270.0	-3.68/-3.72/-3.62	2.07/1.83/1.84
8	HG11-CG1	0.0	-1.24/-1.25/-1.22	2.75/2.70/2.70
9	HG12-CG1	0.0	-0.86/-0.66/-0.63	2.75/2.72/2.73
10	HG13-CG1	0.0	-0.86/-0.66/-0.63	2.75/2.72/2.73
11	HG21-CG2	0.0	-0.86/-0.66/-0.63	2.75/2.72/2.73
12	HG22-CG2	0.0	-0.86/-0.66/-0.63	2.75/2.72/2.73
13	$\mathrm{HG23}\text{-}\mathrm{CG2}$	0.0	-1.24/-1.25/-1.22	2.75/2.70/2.70

Figure S94: The molecule used for water complex calculations corresponding to (2R,3S,4R,5R)-2-me thyl-5-[(1Z)-1-(methylimino)ethyl]sulfanyloxolane-3,4-diol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S314: Statistics of calculated water interaction and dipole moment for (2R, 3S, 4R, 5R)-2-methyl-5 -[(1Z)-1-(methylimino)ethyl]sulfanyloxolane-3,4-diol.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	${\rm Energy}\;(\rm kcal/mol)$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.68/1.60	0.40/1.49	3.237	2.20/3.06	24.23
Optimal	0.65/2.07	0.45/1.85	3.079	2.20/2.86	0.07

Table S315: The comparison list of optimized atomic charges and their initial guess for (2R,3S,4R,5R)-2-methyl-5-[(1Z)-1-(methylimin o)ethyl]sulfanyloxolane-3,4-diol, referring to the penalties of initial guess

Atom	Charges					
Atom	Optimal	Initial	$\mathbf{Penalty}$			
H53	0.090	0.090	0.150			
C5	-0.066	-0.052	12.054			
H51	0.090	0.090	0.150			
H52	0.090	0.090	0.150			
N2	-0.668	-0.599	60.280			
C6	0.436	0.434	186.398			
C7	-0.179	-0.268	63.361			
H71	0.090	0.090	2.919			
H72	0.090	0.090	2.919			
H73	0.090	0.090	2.919			
$\mathbf{S1}$	-0.150	-0.115	203.836			
C8	0.103	0.171	108.923			
H8	0.064	0.090	5.590			
O3	-0.348	-0.391	62.418			
C9	0.119	0.117	42.299			
H9	0.090	0.090	2.500			
O1	-0.565	-0.649	2.500			
HO1	0.420	0.420	0.000			
C10	0.116	0.147	2.500			
H10	0.090	0.090	0.000			
O2	-0.649	-0.649	0.000			
HO2	0.420	0.420	0.000			
C11	0.137	0.116	2.500			
H11	0.090	0.090	0.000			
C12	-0.270	-0.272	0.000			
H121	0.090	0.090	0.000			
H122	0.090	0.090	0.000			
H123	0.090	0.090	0.000			

Table S316: Interaction energies and geometries between probe water and selected (2R, 3S, 4R, 5R)-2methyl-5-[(1Z)-1-(methylimino)ethyl]sulfanyloxola ne-3,4-diol site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	m H51-C5	0.0	-0.54/-0.60/-1.20	2.66/2.72/2.65
2	m H52-C5	0.0	-0.05/-0.47/-0.92	3.07/4.92/2.84
3	N2-C5	0.0	-5.83/-5.53/-5.07	1.96/1.95/1.97
4	N2-C5	90.0	-7.35/-6.80/-5.75	1.87/1.92/1.95
5	N2-C5	180.0	-6.84/-7.61/-6.25	1.90/1.91/1.95
6	N2-C5	270.0	-7.52/-7.14/-6.16	1.88/ 1.92/ 1.95
7	m H71-C7	0.0	-1.97/-2.22/-2.14	2.60/2.62/2.65
8	m H72-C7	0.0	-0.35/-0.20/0.04	2.63/2.68/2.74
9	S1-C6	0.0	-0.38/-0.27/-0.60	2.90/2.46/2.46
10	S1-C6	90.0	-1.85/-2.64/-2.23	2.69/2.29/2.33
11	S1-C6	180.0	-1.04/-1.88/-0.86	2.81/2.33/2.40
12	S1-C6	270.0	-0.34/-0.07/0.36	2.83/2.43/2.52
13	H8-C8	0.0	-2.53/-2.96/-3.15	2.93/2.93/2.89
14	O3-C8	0.0	-0.45/-1.29/-1.43	3.04/2.81/2.83
15	O3-C8	90.0	-0.41/-0.55/-0.83	2.97/2.88/2.89
16	O3-C8	180.0	-0.42/-0.23/-0.80	3.29/3.12/2.99
17	O3-C8	270.0	-1.09/-1.46/-1.67	2.91/2.85/2.85
18	H9-C9	0.0	-2.62/-2.93/-2.96	2.50/2.59/2.59
19	O1-C9	180.0	-0.57/-1.12/-2.14	2.55/2.06/1.98
20	HO1-O1	0.0	-6.67/-8.40/-7.56	1.78/1.82/1.84
21	HO1-O1	45.0	-6.34/-8.42/-7.59	1.78/1.82/1.84
22	HO1-O1	90.0	-7.51/-8.69/-7.73	1.73/1.81/1.83
23	HO1-O1	135.0	-7.91/-8.69/-7.71	1.72/1.81/1.84
24	H10-C10	0.0	-1.49/-1.29/-1.36	2.64/2.70/2.69
25	O2-C10	0.0	-5.43/-5.82/-5.91	1.85/1.86/1.86
26	O2-C10	90.0	-5.40/-5.74/-5.73	1.84/1.86/1.86
27	O2-C10	180.0	-4.89/-5.64/-5.62	1.87/1.86/1.86
28	O2-C10	270.0	-5.36/-5.87/-5.95	1.84/1.86/1.86
29	HO2-O2	0.0	-0.23/-0.56/-0.14	4.76/4.23/5.00
30	HO2-O2	45.0	-0.15/-0.46/-0.09	5.95/4.54/5.00
31	$\mathrm{HO}2\text{-}\mathrm{O}2$	90.0	-0.26/-0.61/-0.19	3.84/4.15/5.00
32	$\mathrm{HO}2\text{-}\mathrm{O}2$	135.0	-0.65/-0.75/-0.23	3.51/3.96/5.00
33	H11-C11	0.0	-0.45/-0.83/-0.33	2.69/2.72/2.76
34	$\rm H121\text{-}C12$	0.0	-0.49/-0.04/0.08	2.63/2.71/2.72
35	$\rm H122\text{-}C12$	0.0	-0.68/-0.60/-0.46	2.84/2.78/2.81
36	$\rm H123\text{-}C12$	0.0	-0.84/-0.71/-0.46	2.74/2.74/2.76

Figure S95: The molecule used for water complex calculations corresponding to (Z)-methyl[1-(methylsu lfanyl)ethylidene]amine, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S317: Statistics of calculated water interaction and dipole moment for (Z)-methyl[1-(methylsulf anyl)ethylidene]amine.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.77/1.58	0.24/0.50	2.485	2.61/2.43	16.26
Optimal	0.43/0.71	0.24/0.51	2.935	2.61/3.38	0.00

Table S318: The comparison list of optimized atomic charges and their initial guess for (Z)-me thyl[1-(methylsulfanyl)ethylidene]amine, referring to the penalties of initial guess

Atom		$\operatorname{Charges}$				
Atom	Optimal	Initial	Penalty			
C5	-0.066	-0.052	12.054			
H51	0.090	0.090	0.150			
H52	0.090	0.090	0.150			
H53	0.090	0.090	0.150			
N2	-0.668	-0.599	60.280			
C6	0.436	0.440	186.976			
C7	-0.179	-0.268	63.361			
H71	0.090	0.090	2.919			
H72	0.090	0.090	2.919			
H73	0.090	0.090	2.919			
$\mathbf{S1}$	-0.150	-0.128	181.376			
C8	-0.183	-0.203	20.062			
H8	0.090	0.090	1.250			
H82	0.090	0.090	1.250			
H83	0.090	0.090	1.250			

Table S319: Interaction energies and geometries between probe water and selected (Z)-methyl[1-(me thylsulfanyl)ethylidene]amine site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(*)	$\rm QM/Optimal/Initial$	${ m QM}/{ m Optimal}/{ m Initial}$
1	H51-C5	0.0	-0.03/-0.33/-0.76	2.87/2.75/2.69
2	H52-C5	0.0	-0.03/-0.33/-0.76	2.87/2.75/2.69
3	N2-C5	0.0	-5.83/-5.44/-5.09	1.96/1.95/1.97
4	N2-C5	90.0	-7.67/-7.05/-6.08	1.87/1.92/1.95
5	N2-C5	180.0	-7.14/-7.81/-6.45	1.90/1.91/1.94
6	N2-C5	270.0	-7.67/-7.05/-6.08	1.87/1.92/1.95
7	m H71-C7	0.0	-2.16/-2.29/-1.70	2.63/2.61/2.66
8	m H72-C7	0.0	-0.44/-0.27/0.07	2.60/2.67/2.74
9	m H73-C7	0.0	-2.16/-2.29/-1.70	2.63/2.61/2.66
10	S1-C6	0.0	-1.07/-1.71/-1.67	2.91/2.40/2.40
11	S1-C6	90.0	-1.37/-1.75/-1.51	2.83/2.40/2.42
12	S1-C6	180.0	-1.15/-1.53/-1.03	2.92/2.43/2.47
13	S1-C6	270.0	-1.37/-1.75/-1.51	2.83/2.40/2.42
14	${ m H8-C8}$	0.0	-2.47/-2.33/-1.92	2.54/2.62/2.64
15	H82-C8	0.0	-1.93/-1.22/-1.09	2.52/2.67/2.69
16	H83-C8	0.0	-2.47/-2.33/-1.92	2.54/2.62/2.64

1.103 Small molecule used for Canavanine(GGB)

Figure S96: The molecule used for water complex calculations corresponding to N''-ethoxyguanid ine, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S320: Statistics of calculated water interaction and dipole moment for N''-ethoxyguanidine.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.15/3.27	0.13/0.19	3.917	1.34/2.37	15.19
Optimal	0.36/1.02	0.10/0.15	2.016	1.34/1.71	1.01

Table S321: The comparison list of optimized atomic charges and their initial guess for N''-et hoxyguanidine, referring to the penalties of initial guess

Table S322: Interaction energies and geometries be-
tween probe water and selected N''-ethoxyguanid
ine site calculated using the optimized and initial
charges

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.270	-0.270	2.250
HB2	0.090	0.090	0.000
HB1	0.090	0.090	0.000
CG	0.040	0.112	29.909
HG1	0.090	0.090	2.250
${ m HG2}$	0.090	0.090	2.250
OD	-0.218	-0.398	271.857
NE	-0.572	-0.555	269.601
CZ	0.704	0.699	26.922
NH2	-0.841	-0.599	17.431
HH21	0.387	0.290	0.000
HH22	0.387	0.290	0.000
NH1	-0.841	-0.599	17.431
HH12	0.387	0.290	0.000
HH11	0.387	0.290	0.000

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-0.75/-0.71/-0.68	2.82/2.74/2.74
2	HB2-CB	0.0	-0.27/-0.13/0.24	2.94/2.86/2.96
3	HB1-CB	0.0	-0.31/-0.07/0.31	2.85/2.80/2.87
4	NE-OD	0.0	-4.78/-4.50/-4.53	1.98/1.96/1.96
5	NE-OD	90.0	-7.09/-6.54/-6.43	1.87/1.91/1.91
6	NE-OD	180.0	-6.54/-7.00/-6.97	1.93/1.90/1.91
7	NE-OD	270.0	-7.09/-6.60/-6.59	1.87/1.90/1.91
8	NH2-CZ	0.0	-4.92/-3.90/-1.65	1.96/1.96/2.08
9	NH2-CZ	180.0	-3.96/-3.38/-1.38	2.00/1.97/2.11
10	$\rm HH21\text{-}NH2$	0.0	-4.91/-5.05/-4.73	1.92/2.04/2.07
11	$\rm HH21\text{-}NH2$	45.0	-4.61/-4.86/-4.57	1.94/2.05/2.08
12	$\rm HH21\text{-}NH2$	90.0	-4.46/-4.80/-4.55	1.94/2.05/2.08
13	$\rm HH21\text{-}NH2$	135.0	-4.76/-4.98/-4.71	1.93/2.05/2.08
14	$\rm HH22\text{-}NH2$	0.0	-4.16/-3.98/-3.39	1.89/2.05/2.08
15	$\rm HH22\text{-}NH2$	45.0	-3.79/-3.80/-3.20	1.91/2.06/2.09
16	$\rm HH22\text{-}NH2$	90.0	-3.27/-3.55/-2.96	1.95/2.06/2.10
17	$\rm HH22\text{-}NH2$	135.0	-3.61/-3.73/-3.14	1.93/2.06/2.09
18	NH1-CZ	0.0	-4.37/-3.82/-2.04	2.00/1.97/2.09
19	NH1-CZ	180.0	-3.73/-3.65/-1.71	2.03/1.98/2.11
20	$\rm HH12\text{-}NH1$	0.0	-4.87/-4.66/-4.24	1.91/2.05/2.09
21	HH12-NH1	45.0	-4.47/-4.45/-4.10	1.93/2.06/2.10
22	HH12-NH1	90.0	-4.27/-4.40/-4.11	1.94/2.06/2.10
23	HH12-NH1	135.0	-4.65/-4.60/-4.25	1.92/2.06/2.09

1.104 Small molecule used for (2s,4s)-2,5-diamino-4-hydroxy-5-oxopentanoicacid(GHG)

Figure S97: The molecule used for water complex calculations corresponding to (2S)-2-hydroxypropana mide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S323: Statistics of calculated water interaction and dipole moment for (2S)-2-hydroxypropanamide.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.61/1.43	0.13/0.44	1.704	2.84/2.44	7.70
Optimal	0.45/0.85	0.11/0.40	1.670	2.84/3.28	1.36

Table S324: The comparison list of optimized atomic charges and their initial guess for (2S)-2-hydroxypropanamide, referring to the penalties of initial guess

Table S325: Interaction energies and geometries be-
tween probe water and selected (2S)-2-hydroxy pro
panamide site calculated using the optimized and
initial charges

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.270	-0.268	0.050
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
$\mathbf{C}\mathbf{G}$	0.202	0.165	22.240
$\mathbf{H}\mathbf{G}$	0.090	0.090	0.050
OG1	-0.591	-0.623	22.694
HG1	0.396	0.369	1.783
CD	0.385	0.540	12.508
OE1	-0.513	-0.534	1.525
NE2	-0.663	-0.629	18.343
HE21	0.347	0.310	0.262
HE22	0.347	0.310	0.262

Ν	Probe	Angle	Energy $(kcal/mol)$	Distance (Å)
1	site	(*)	${ m QM}/{ m Optimal}/{ m Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HB3-CB	0.0	-1.11/-1.01/-0.88	2.70/2.69/2.70
2	HB2-CB	0.0	-1.94/-1.73/-1.75	2.58/2.63/2.63
3	HG-CG	0.0	-1.35/-1.01/-1.10	2.55/2.67/2.67
4	OG1-CG	0.0	-4.32/-3.60/-4.46	1.87/1.90/1.88
5	OG1-CG	90.0	-4.89/-4.43/-5.18	1.85/1.89/1.86
6	OG1-CG	180.0	-4.28/-4.05/-4.57	1.88/1.90/1.88
7	OG1-CG	270.0	-3.70/-3.04/-3.72	1.89/1.92/1.90
8	HG1-OG1	0.0	-7.02/-7.56/-6.28	1.81/1.83/1.87
9	HG1-OG1	45.0	-7.06/-7.38/-6.17	1.80/1.83/1.87
10	HG1-OG1	90.0	-7.60/-7.58/-6.35	1.79/ 1.83/ 1.86
11	HG1-OG1	135.0	-7.58/-7.77/-6.46	1.80/1.82/1.86
12	OE1-CD	0.0	-6.00/-6.55/-6.16	1.84/1.76/1.76
13	OE1-CD	90.0	-6.12/-6.68/-6.29	1.84/1.75/1.76
14	OE1-CD	180.0	-6.16/-6.72/-6.33	1.83/1.75/1.76
15	OE1-CD	270.0	-6.18/-6.74/-6.34	1.83/1.75/1.76
16	NE2-CD	0.0	-2.62/-1.79/-1.42	2.09/2.10/2.13
17	NE2-CD	180.0	-2.39/-2.54/-1.60	2.14/2.06/2.12
18	HE21-NE2	0.0	-3.04/-2.20/-1.61	2.10/2.50/2.54
19	HE21-NE2	45.0	-1.49/-1.75/-1.11	2.49/2.59/2.65
20	HE21-NE2	90.0	-0.79/-1.39/-0.80	2.69/2.66/2.73
21	HE21-NE2	135.0	-1.87/-1.78/-1.23	2.27/2.57/2.61
22	HE22-NE2	0.0	-5.19/-5.32/-4.95	1.87/1.87/1.89
23	HE22-NE2	45.0	-4.98/-5.18/-4.82	1.88/1.87/1.89
24	HE22-NE2	90.0	-4.73/-4.99/-4.64	1.88/1.88/1.90
25	HE22-NE2	135.0	-4.92/-5.12/-4.76	1.88/1.87/1.90

1.105 Small molecule A of [(4Z)-2-(1-amino-2-hydroxyethyl)-4-(4-hydrox ybenzylidene)-5-oxo-4,5-dihydro-1h-imidazol-1-yl]aceticacid(GYS)

Figure S98: The molecule used for water complex calculations corresponding to (4Z)-4-ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S326: Statistics of calculated water interaction and dipole moment for (4Z)-4-ethylidene-1,2-dime thyl-4,5-dihydro-1H-imidazol-5-one.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.92/1.64	0.10/0.25	6.526	3.17/0.45	27.81
Optimal	0.49/1.31	0.09/0.22	3.053	3.17/3.55	14.34

Table S327: The comparison list of optimized atomic charges and their initial guess for (4Z)-4ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
	Optimal	Initial	Penalty		
CA1	-0.070	-0.115	13.925		
\mathbf{HA}	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
HA3	0.090	0.090	0.000		
C1	0.233	0.074	23.781		
N2	-0.679	-0.703	41.871		
N3	-0.080	-0.079	15.706		
C2	0.407	0.509	24.002		
O2	-0.489	-0.482	6.710		
CA2	0.288	0.516	47.153		
CB2	-0.105	-0.135	25.469		
HB2	0.150	0.150	3.270		
CG2	-0.270	-0.274	15.277		
$\mathrm{HG21}$	0.090	0.090	1.175		
$\mathrm{HG}22$	0.090	0.090	1.175		
$\mathrm{HG23}$	0.090	0.090	1.175		
CA3	-0.195	-0.271	3.821		
HA31	0.090	0.090	0.000		
HA32	0.090	0.090	0.000		
HA33	0.090	0.090	0.000		

Table S328: Interaction energies and geometries between probe water and selected (4Z)-4-ethylidene -1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HA-CA1	0.0	-2.17/-2.61/-1.51	2.59/2.58/2.65
2	HA2-CA1	0.0	-0.97/-0.86/0.05	2.58/2.64/2.77
3	HA3-CA1	0.0	-2.55/-2.73/-1.57	2.52/2.57/2.64
4	N2-C1	0.0	-4.99/-6.30/-5.60	2.09/2.01/2.02
5	N2-C1	90.0	-7.07/-6.37/-6.45	1.90/1.99/1.99
6	N2-C1	180.0	-5.35/-5.42/-6.38	1.95/2.01/1.99
7	N2-C1	270.0	-7.07/-6.37/-6.45	1.90/1.99/1.99
8	N3-C1	0.0	-0.26/-0.82/-0.78	2.74/2.52/2.49
9	O2-C2	0.0	-5.51/-5.57/-5.00	1.85/1.78/1.80
10	O2-C2	90.0	-5.87/-5.71/-4.73	1.84/1.78/1.80
11	O2-C2	180.0	-5.92/-5.61/-4.27	1.84/1.78/1.81
12	O2-C2	270.0	-5.87/-5.71/-4.73	1.84/1.78/1.80
13	HB2-CB2	0.0	-1.40/-1.60/-2.82	2.32/2.47/2.44
14	HG21-CG2	0.0	-1.01/-0.46/-0.86	2.72/2.77/2.74
15	HG23-CG2	0.0	-1.01/-0.46/-0.86	2.72/2.77/2.74
16	HA32-CA3	0.0	-2.16/-2.10/-1.23	2.59/2.63/2.70
17	HA 33-CA 3	0.0	-2.16/-2.10/-1.23	2.59/2.63/2.70
1.106 Small molecule B of [(4Z)-2-(1-amino-2-hydroxyethyl)-4-(4-hydrox ybenzylidene)-5-oxo-4,5-dihydro-1h-imidazol-1-yl]aceticacid(GYS)

Table S329: The molecule used for water complex calculations corresponding to N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

		RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
		${\rm Energy}~({\rm kcal/mol})$	Distance $(Å)$	${ m RMS}~({ m kcal}/{ m mol}/{ m \AA})$	$\rm QM/MM~(Debye)$	difference (°)
Geometry 1	Initial	$0.86 \ / \ 2.05$	$0.07 \ / \ 0.17$	6.601	1.19 / 4.07	1.19
Geometry 2	Initial	$1.02\ /\ 2.07$	$0.09 \ / \ 0.23$	6.126	$6.37 \ / \ 4.43$	6.37
Sum of geometries	Initial	$0.95\ /\ 2.07$	$0.08\ /\ 0.23$	12.727	-	-
Geometry 1	Optimal	0.36 / 0.81	$0.07 \ / \ 0.16$	2.460	1.19 / 1.37	1.19
Geometry 2	Optimal	$0.51\ /\ 0.91$	$0.08 \ / \ 0.19$	2.701	$6.37 \ / \ 7.25$	6.37
Sum of geomeries	Optimal	$0.45 \ / \ 0.91$	$0.08 \ / \ 0.19$	5.161	-	-

Table S330: Statistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide.

Table S331: The comparison list of optimized atomic charges and their initial guess for N-methyl -2-(2-methyl-4-methylidene-5-oxo-4,5-dihydro-1H -imidazol-1-yl)acetamide, referring to the penalties of initial guess

=

Atom	$\operatorname{Charges}$					
Atom	Optimal	Initial	$\mathbf{Penalty}$			
HA1	0.090	0.090	0.000			
HA2	0.090	0.090	0.000			
CA	-0.070	-0.115	13.925			
\mathbf{HA}	0.090	0.090	0.000			
C1	0.233	0.164	24.002			
N2	-0.679	-0.703	41.104			
N3	-0.031	-0.499	22.994			
C2	0.407	0.613	23.378			
O2	-0.489	-0.482	6.517			
CA2	0.466	0.512	42.773			
CB2	-0.593	-0.444	13.655			
HB21	0.230	0.230	0.950			
HB22	0.230	0.230	0.950			
CA3	-0.154	0.043	13.461			
HA31	0.090	0.090	0.177			
HA32	0.090	0.090	0.177			
С	0.510	0.499	10.097			
Ο	-0.510	-0.517	3.479			
\mathbf{NR}	-0.470	-0.442	6.773			
$_{\mathrm{HR}}$	0.310	0.299	0.000			
\mathbf{CR}	-0.110	-0.108	0.239			
HR1	0.090	0.090	0.000			
HR2	0.090	0.090	0.000			
HR3	0.090	0.090	0.000			

Table S332: Interaction energies and geometries between probe water and selected N-methyl-2-(2-me thyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazo l-1-yl)acetamide site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
	Geometry	1		
1	O-C	0.0	-5.45/-5.47/-6.22	1.84/1.77/1.76
2	O-C	90.0	-6.01/-6.48/-6.53	1.83/1.75/1.76
3	O-C	180.0	-5.96/-6.64/-6.64	1.83/1.75/1.75
4	O-C	270.0	-5.67/-5.94/-6.62	1.84/1.76/1.75
5	NR-C	0.0	-1.32/-1.50/-1.08	2.24/2.20/2.22
6	HR2-CR	0.0	-1.10/-1.26/-1.09	2.71/2.66/2.67
7	HR3-CR	0.0	-1.39/-1.22/-1.32	2.66/2.67/2.67
8	N2-C1	0.0	-5.74/-6.45/-6.04	1.95/1.92/1.92
9	N2-C1	90.0	-6.51/-6.37/-7.24	1.90/1.92/1.90
10	N2-C1	180.0	-5.60/-5.66/-7.65	1.96/1.93/1.90
11	N2-C1	270.0	-6.64/-6.59/-7.43	1.90/1.91/1.89
12	O2-C2	0.0	-3.88/-3.93/-3.54	1.88/1.80/1.81
13	O2-C2	90.0	-4.94/-5.15/-4.46	1.84/1.77/1.79
14	O2-C2	180.0	-4.95/-5.20/-4.05	1.84/1.77/1.79
15	O2-C2	270.0	-3.93/-4.12/-3.39	1.87/1.79/1.81
16	HB21-CB2	0.0	-1.84/-1.64/-3.47	2.32/2.48/2.42
17	HB22-CB2	0.0	-1.82/-1.01/-2.42	2.42/2.54/2.46
18	HA31-CA3	0.0	-2.08/-2.47/-1.68	2.70/2.69/2.70
19	HA-CA	0.0	-2.47/-2.76/-1.19	2.49/2.56/2.66
	Geometry	2		
20	O-C	0.0	-6.06/-6.90/-7.24	1.86/1.76/1.75
21	O-C	90.0	-5.25/-6.15/-7.32	1.87/1.77/1.75
22	O-C	180.0	-4.71/-5.63/-6.52	1.88/1.77/1.76
23	O-C	270.0	-5.56/-6.46/-6.85	1.86/1.76/1.76
24	HR-NR	0.0	-7.09/-7.67/-7.53	1.93/1.90/1.90
25	HR-NR	45.0	-7.71/-7.90/-7.71	1.91/1.89/1.89
26	HR-NR	90.0	-7.79/-7.84/-7.79	1.90/ 1.89/ 1.89
27	HR-NR	135.0	-7.18/-7.62/-7.61	1.92/1.90/1.89
28	HR1-CR	0.0	-0.71/-0.04/0.30	2.50/2.69/2.67
29	HR2-CR	0.0	-1.54/-1.44/-1.38	2.68/2.66/2.66
30	HR3-CR	0.0	-1.84/-1.82/-1.70	2.68/2.67/2.66
31	N2-C1	0.0	-6.46/-6.98/-6.58	1.93/1.91/1.91
32	N2-C1	90.0	-6.88/-6.47/-7.35	1.89/1.91/1.89
33	N2-C1	180.0	-5.73/-5.60/-7.60	1.95/1.93/1.90
34	N2-C1	270.0	-7.31/-7.09/-7.94	1.88/1.91/1.89
35	N3-C1	0.0	-0.22/0.03/-2.15	2.60/2.67/2.17
36	O2-C2	0.0	-4.96/-5.34/-4.95	1.88/1.79/1.80
37	O2-C2	90.0	-5.32/-5.37/-4.66	1.87/1.78/1.80
38	O2-C2	180.0	-5.74/-5.89/-4.71	1.87/1.78/1.81
39	O2-C2	270.0	-5.94/-6.25/-5.51	1.85/1.77/1.79
40	HB21-CB2	0.0	-1.43/-1.20/-3.03	2.33/2.48/2.41
41	HB22-CB2	0.0	-1.29/-0.66/-2.05	2.47/2.56/2.47
42	HA31-CA3	0.0	-3.71/-4.08/-3.49	2.50/2.57/2.57
43	HA-CA	0.0	-2.67/-3.45/-1.93	2.59/2.58/2.69

1.107 Small molecule used for glutaminehydroxamate(HGA)

Figure S99: The molecule used for water complex calculations corresponding to N-hydroxypropana mide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S333: Statistics of calculated water interaction and dipole moment for N-hydroxypropanamide.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.10/2.34	0.10/0.21	4.734	3.62/2.64	33.02
Optimal	0.28/0.72	0.05/0.12	2.247	3.62/4.27	5.18

Table S334: The comparison list of optimized atomic charges and their initial guess for N-hydr oxypropanamide, referring to the penalties of initial guess

Table S335: Interaction energies and geometries be-
tween probe water and selected N-hydroxypropana
mide site calculated using the optimized and initial
charges

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.270	-0.262	0.436
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
CG	-0.071	-0.213	25.279
${ m HG2}$	0.090	0.090	0.000
HG1	0.090	0.090	0.000
CD	0.462	0.489	37.419
OE1	-0.454	-0.508	21.222
NE2	-0.385	-0.426	326.447
\mathbf{HE}	0.338	0.343	24.297
ΟZ	-0.398	-0.293	325.112
ΗZ	0.328	0.420	19.754

N	Probe	Angle	Energy $(kcal/mol)$	Distance (Å)
11	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-1.31/-1.37/-0.70	2.74/2.70/2.77
2	HB1-CB	0.0	-0.48/-0.35/0.45	2.55/2.67/2.76
3	HB2-CB	0.0	-1.28/-1.25/-0.57	2.65/2.65/2.72
4	HG2-CG	0.0	-1.93/-2.13/-1.03	2.55/2.61/2.71
5	HG1-CG	0.0	-2.46/-3.13/-2.06	2.59/2.59/2.67
6	OE1-CD	0.0	-4.83/-4.85/-6.13	1.87/1.80/1.76
7	OE1-CD	90.0	-4.93/-5.11/-5.74	1.87/1.79/1.76
8	OE1-CD	180.0	-4.40/-4.81/-4.48	1.90/1.81/1.80
9	OE1-CD	270.0	-4.70/-4.77/-5.29	1.88/1.80/1.77
10	NE2-CD	0.0	-3.01/-3.00/-2.28	2.13/2.10/2.13
11	NE2-CD	90.0	-3.75/-4.12/-3.18	2.09/2.06/2.09
12	NE2-CD	180.0	-1.93/-1.96/-2.45	2.23/2.16/2.13
13	NE2-CD	270.0	-1.63/-0.91/-1.40	2.20/2.23/2.19
14	$\operatorname{HE-NE2}$	0.0	-6.70/-6.86/-7.03	1.85/1.86/1.85
15	$\operatorname{HE-NE2}$	45.0	-6.92/-6.97/-7.06	1.84/1.85/1.85
16	$\operatorname{HE-NE2}$	90.0	-6.90/-7.01/-7.06	1.84/1.85/1.85
17	$\operatorname{HE-NE2}$	135.0	-6.68/-6.89/-7.02	1.85/1.86/1.85
18	OZ-NE2	0.0	-4.27/-4.17/-1.93	1.93/1.95/2.07
19	OZ-NE2	90.0	-4.57/-4.31/-2.29	1.90/1.93/2.04
20	OZ-NE2	180.0	-3.46/-3.41/-1.72	1.95/1.96/2.06
21	OZ-NE2	270.0	-3.85/-3.53/-1.61	1.92/1.95/2.07

1.108 Small molecule used for 4-methyl-histidine(HICP)

Figure S100: The molecule used for water complex calculations corresponding to 4-ethyl-1-methyl-2,3-dihydro-1H-imidazole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S336: Statistics of calculated water interaction and dipole moment for 4-ethyl-1-methyl-2, 3-dihy dro-1H-imidazole.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.81/1.55	0.15/0.26	2.506	3.17/3.29	15.71
Optimal	0.41/1.01	0.14/0.24	2.671	3.17/3.95	15.86

Table S337: The comparison list of optimized atomic charges and their initial guess for 4-ethy l-1-methyl-2,3-dihydro-1H-imidazole, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$					
Atom	Optimal	$\operatorname{Initial}$	Penalty			
HA1	0.090	0.090	0.000			
HA2	0.090	0.090	0.000			
\mathbf{CA}	-0.270	-0.270	0.000			
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000			
CB	0.004	-0.049	0.000			
HB1	0.090	0.090	0.000			
HB2	0.090	0.090	0.000			
CG	0.131	0.191	14.989			
ND1	-0.486	-0.511	9.726			
HD1	0.407	0.440	0.000			
CD2	0.108	0.213	54.233			
HD2	0.142	0.116	23.270			
CE1	0.337	0.336	48.268			
HE1	0.185	0.157	14.504			
NE2	-0.486	-0.503	91.228			
CZ	0.208	0.160	80.059			
HZ1	0.090	0.090	3.537			
HZ2	0.090	0.090	3.537			
HZ3	0.090	0.090	3.537			

Table S338: Interaction energies and geometries between probe water and selected 4-ethyl-1-methyl -2,3-dihydro-1H-imidazole site calculated using the optimized and initial charges

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	N	Probe	Angle	Energy $(kcal/mol)$	Distance (Å)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	HA1-CA	0.0	-4.88/-3.95/-3.92	2.41/2.60/2.60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	HA2-CA	0.0	-5.02/-4.78/-5.01	2.56/2.61/2.61
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	HA-CA	0.0	-5.03/-4.78/-5.01	2.56/2.61/2.61
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	HB1-CB	0.0	-5.56/-5.43/-5.54	2.39/2.56/2.56
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	HB2-CB	0.0	-5.56/-5.43/-5.54	2.39/2.56/2.56
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	HD1-ND1	0.0	-12.84/-12.69/-13.80	1.86/1.88/1.84
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	HD1-ND1	45.0	-12.81/-12.85/-13.94	1.87/1.87/1.84
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	HD1-ND1	90.0	-12.82/-13.04/-14.11	1.87/1.87/1.84
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	HD1-ND1	135.0	-12.80/-12.85/-13.94	1.87/1.87/1.84
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	HD2-CD2	0.0	-8.28/-8.17/-8.46	2.18/2.19/2.19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	HD2-CD2	90.0	-8.90/-8.55/-8.79	2.14/2.18/2.18
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	$\operatorname{HE1-CE1}$	0.0	-11.04/-11.27/-10.43	2.07/1.99/2.01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	HE1-CE1	90.0	-11.95/-11.70/-10.83	2.03/1.98/2.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	$\mathrm{HZ}1\text{-}\mathrm{CZ}$	0.0	-7.07/-6.62/-6.36	2.27/2.50/2.52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	$\mathrm{HZ}1\text{-}\mathrm{CZ}$	90.0	-7.14/-6.66/-6.43	2.27/2.50/2.51
17 HZ 2-CZ 90.0 -8.98/-7.98/-7.44 2.24/2.48/2.50 18 HZ 3-CZ 0.0 -7.06/-6.61/-6.36 2.27/2.50/2.52 19 HZ 3-CZ 90.0 -7.13/-6.65/-6.43 2.27/2.50/2.51	16	$\mathrm{HZ}2\text{-}\mathrm{CZ}$	0.0	-7.49/-7.43/-6.93	2.35/2.51/2.52
18 HZ 3-CZ 0.0 -7.06/-6.61/-6.36 2.27/2.50/2.52 19 HZ 3-CZ 90.0 -7.13/-6.65/-6.43 2.27/2.50/2.51	17	$\mathrm{HZ}2\text{-}\mathrm{CZ}$	90.0	-8.98/-7.98/-7.44	2.24/2.48/2.50
19 HZ 3-CZ 90.0 -7.13/-6.65/-6.43 2.27/2.50/2.51	18	HZ 3-CZ	0.0	-7.06/-6.61/-6.36	2.27/2.50/2.52
	19	HZ 3-CZ	90.0	-7.13/-6.65/-6.43	2.27/2.50/2.51

Figure S101: The molecule used for water complex calculations corresponding to (5-ethyl-1H-imidazo l-1-yl)phosphonicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S339: Statistics of calculated water interaction and dipole moment for (5-ethyl-1H-imidazol-1-yl) phosphonicacid.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	2.86/5.81	0.16/0.36	9.920	8.02/13.19	7.41
Optimal	0.52/1.37	0.08/0.18	4.666	8.02/8.68	10.59

Table S340: The comparison list of optimized atomic charges and their initial guess for (5-ethy l-1H-imidazol-1-yl)phosphonicacid, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$					
Atom	Optimal	Initial	$\mathbf{Penalty}$			
HA3	0.090	0.090	0.000			
HA2	0.090	0.090	0.000			
\mathbf{CA}	-0.270	-0.269	0.000			
HA	0.090	0.090	0.000			
CB	-0.088	-0.088	2.500			
HB1	0.090	0.090	0.000			
HB2	0.090	0.090	0.000			
CG	-0.177	-0.105	71.310			
CD2	-0.027	0.217	2.500			
HD2	0.130	0.102	0.000			
ND1	-0.118	-0.478	97.938			
Р	1.405	1.323	98.286			
O1P	-0.939	-0.949	8.944			
O2P	-0.939	-0.949	8.944			
O3P	-0.939	-0.949	8.944			
CE1	0.253	0.257	52.247			
HE1	0.168	0.131	2.500			
NE2	-0.909	-0.693	2.500			

Table S341: Interaction energies and geometries between probe water and selected (5-ethyl-1H-imida zol-1-yl)phosphonicacid site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(*)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	$\rm QM/Optimal/Initial$
1	ND1-CG	0.0	-11.42/-11.90/-15.43	2.66/2.54/2.30
2	ND1-CG	90.0	-14.20/-15.56/-20.00	2.46/2.28/2.11
3	ND1-CG	180.0	-8.51/-8.03/-8.55	2.91/2.75/2.57
4	ND1-CG	270.0	-8.08/-7.58/-7.93	2.86/2.81/2.64
5	O1P-P	0.0	-19.77/-19.09/-20.67	1.67/1.61/1.60
6	O1P-P	90.0	-19.77/-19.20/-20.91	1.66/1.61/1.60
7	O1P-P	180.0	-19.32/-18.90/-20.75	1.66/1.60/1.60
8	O1P-P	270.0	-19.69/-19.03/-20.80	1.66/1.61/1.60
9	O2P-P	0.0	-20.11/-20.20/-21.42	1.66/1.60/1.59
10	O2P-P	90.0	-19.71/-19.55/-21.09	1.66/1.61/1.60
11	O2P-P	180.0	-19.45/-19.43/-21.29	1.66/1.61/1.60
12	O2P-P	270.0	-19.86/-20.01/-21.68	1.66/1.60/1.59
13	O3P-P	0.0	-19.73/-20.30/-21.59	1.67/1.61/1.60
14	O3P-P	90.0	-19.20/-19.94/-21.63	1.66/1.61/1.60
15	O3P-P	180.0	-18.78/-19.37/-21.19	1.66/1.61/1.60
16	O3P-P	270.0	-19.35/-19.60/-21.12	1.67/1.61/1.60
17	NE2-CD2	0.0	-16.57/-16.43/-12.93	1.84/1.81/1.87
18	NE2-CD2	90.0	-16.30/-16.14/-11.78	1.82/1.80/1.88
19	NE2-CD2	180.0	-15.55/-15.59/-10.44	1.84/1.81/1.89
20	NE2-CD2	270.0	-16.32/-16.17/-11.82	1.82/1.80/1.88

1.110 Small molecule used for 3-(1H-1,2,3-triazol-5-yl)-L-alanine(HIX)

Figure S102: The molecule used for water complex calculations corresponding to 5-ethyl-1H-1,2,3-tria zole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S342: Statistics of ca	alculated water interaction a	and dipole moment for 5-eth	yl-1H-1,2,3-triazole.
------------------------------	-------------------------------	-----------------------------	-----------------------

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	1.17/2.63	0.09/0.23	3.492	5.31/6.25	5.92
Optimal	0.37/0.85	0.06/0.19	3.574	5.31/6.81	1.24

Table S343: The comparison list of optimized atomic charges and their initial guess for 5-ethy l-1H-1,2,3-triazole, referring to the penalties of initial guess

Table S344: Interaction energies and geometries be-
tween probe water and selected 5 -ethyl-1H-1,2,3-tr
iazole site calculated using the optimized and initial
charges

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.269	0.000
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
CB	0.011	-0.088	1.500
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
CG	-0.279	-0.257	1.500
ND1	0.237	0.283	13.416
HD1	0.256	0.313	0.000
CD2	0.275	0.245	0.000
HD2	0.077	0.107	0.000
NE1	-0.345	-0.372	13.416
NE2	-0.412	-0.412	0.000

	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(*)	$\rm QM/Optimal/Initial$	QM/Optimal/Initia
1	HA3-CA	0.0	-1.50/-1.72/-1.38	2.72/2.67/2.70
2	HA2-CA	0.0	-2.79/-3.14/-3.26	2.69/2.64/2.67
3	HA-CA	0.0	-1.65/-1.77/-1.53	2.62/2.63/2.66
4	HB1-CB	0.0	-2.22/-2.82/-2.46	2.59/2.60/2.64
5	HB2-CB	0.0	-2.16/-2.45/-1.90	2.57/2.62/2.66
6	ND1-CG	45.0	-0.16/-0.59/-1.02	3.53/3.55/3.44
7	ND1-CG	90.0	-0.34/-0.70/-1.09	3.53/3.53/3.43
8	ND1-CG	135.0	-0.14/-0.55/-0.90	3.68/3.58/3.48
9	HD1-ND1	0.0	-7.99/-8.13/-10.63	1.79/1.83/1.78
10	HD1-ND1	45.0	-8.18/-8.14/-10.60	1.78/1.83/1.78
11	HD1-ND1	90.0	-8.18/-8.12/-10.54	1.78/1.83/1.78
12	HD1-ND1	135.0	-7.97/-8.10/-10.56	1.79/1.83/1.78
13	$\mathrm{HD2} ext{-}\mathrm{CD2}$	0.0	-1.66/-1.74/-2.09	2.52/2.33/2.29
14	$\mathrm{HD2} ext{-}\mathrm{CD2}$	90.0	-1.76/-1.76/-2.07	2.49/2.33/2.29
15	NE1-ND1	0.0	-6.10/-6.59/-6.73	1.99/1.96/1.95
16	NE1-ND1	90.0	-5.19/-4.85/-4.80	2.00/2.00/2.00
17	NE1-ND1	180.0	-3.77/-2.91/-2.60	2.06/2.07/2.07
18	NE1-ND1	270.0	-5.20/-4.84/-4.78	2.00/2.00/2.00
19	NE2-CD2	0.0	-6.67/-6.92/-6.94	1.96/1.95/1.95
20	NE2-CD2	90.0	-6.17/-5.85/-5.88	1.96/1.98/1.98
21	$\rm NE2\text{-}CD2$	180.0	-5.32/-4.72/-4.75	2.00/2.01/2.01
22	NE2-CD2	270.0	-6.15/-5.86/-5.90	1.97/1.98/1.97

1.111 Small molecule used for 4-amino-L-phenylalanine(HOX)

Figure S103: The molecule used for water complex calculations corresponding to 4-methylaniline, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S345: Statistics of calculated water interaction and dipole moment for 4-methylaniline.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.54/0.98	0.08/0.13	1.224	1.50/1.58	6.16
Optimal	0.26/0.48	0.07/0.12	1.258	1.50/1.44	9.99

ylaniline, referring to the penalties of initial guess

Table S346: The comparison list of optimized Table S347: Interaction energies and geometries beatomic charges and their initial guess for 4-meth tween probe water and selected 4-methylaniline site calculated using the optimized and initial charges

		Charges	
Atom	Optimal	Initial	Penalty
HB3	0.090	0.090	0.000
CB	-0.270	-0.270	0.000
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
CG	-0.000	0.002	0.000
CD1	-0.115	-0.111	0.000
HD1	0.115	0.115	0.000
CD2	-0.115	-0.111	0.000
HD2	0.115	0.115	0.000
CE1	-0.126	-0.110	0.000
HE1	0.115	0.115	0.000
CE2	-0.125	-0.110	0.000
HE2	0.115	0.115	0.000
CZ	0.125	0.054	0.000
NH	-0.802	-0.838	0.000
HH1	0.349	0.382	0.000
HH2	0.349	0.382	0.000

N	Probe	Angle	Energy $(kcal/mol)$	Distance (Å)
11	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-0.51/-0.44/-0.44	2.85/2.78/2.78
2	HB1-CB	0.0	-0.95/-0.76/-0.76	2.74/2.74/2.73
3	HB2-CB	0.0	-0.95/-0.76/-0.76	2.74/2.74/2.73
4	HD1-CD1	0.0	-1.09/-0.96/-0.96	2.71/2.71/2.71
5	HD1-CD1	90.0	-1.30/-1.03/-1.04	2.62/2.70/2.70
6	HD2-CD2	0.0	-1.09/-0.96/-0.96	2.71/2.71/2.71
7	HD2-CD2	90.0	-1.30/-1.03/-1.04	2.62/2.70/2.70
8	$\operatorname{H\!E}\operatorname{1-}\operatorname{C\!E}\operatorname{1}$	0.0	-1.25/-1.03/-1.00	2.72/2.72/2.73
9	$\operatorname{H\!E}\operatorname{1-}\!\operatorname{C\!E}\operatorname{1}$	90.0	-1.64/-1.18/-1.17	2.58/2.70/2.70
10	$\operatorname{HE2-CE2}$	0.0	-1.25/-1.03/-1.00	2.72/2.72/2.73
11	$\operatorname{HE2-CE2}$	90.0	-1.64/-1.18/-1.17	2.58/2.70/2.70
12	NH-CZ	0.0	-4.98/-4.50/-4.71	1.97/1.97/1.96
13	NH-CZ	90.0	-5.26/-5.20/-5.57	1.97/1.95/1.94
14	NH-CZ	180.0	-6.15/-6.34/-6.93	1.95/1.93/1.91
15	NH-CZ	270.0	-5.26/-5.20/-5.57	1.97/1.95/1.94
16	HH1-NH	0.0	-4.08/-4.33/-4.92	2.02/1.93/1.90
17	HH1-NH	45.0	-3.83/-4.23/-4.81	2.04/1.93/1.90
18	HH1-NH	90.0	-4.28/-4.42/-5.01	2.00/1.92/1.90
19	HH1-NH	135.0	-4.52/-4.51/-5.11	1.99/1.92/1.89
20	HH2-NH	0.0	-4.08/-4.33/-4.92	2.02/1.93/1.90
21	HH2-NH	45.0	-4.52/-4.51/-5.11	1.99/1.92/1.89
22	HH2-NH	90.0	-4.28/-4.42/-5.01	2.00/1.92/1.90
23	HH2-NH	135.0	-3.83/-4.23/-4.81	2.04/1.93/1.90

1.112 Small molecule A of (4S)-4-[(2S)-2-amino-3-oxopropyl]sulfanyl-L-homoserine(HTI)

Figure S104: The molecule used for water complex calculations corresponding to (1R)-1-(methylsulf an yl)ethan-1-ol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S348: Statistics of calculated water interaction and dipole moment for (1R)-1-(methylsulfanyl)e than-1-ol.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.58/1.16	0.19/0.46	3.398	0.21/1.05	160.34
Optimal	0.31/0.58	0.23/0.52	1.952	0.21/0.36	135.11

Table S349: The comparison list of optimized atomic charges and their initial guess for (1R)-1-(methylsulfanyl)ethan-1-ol, referring to the penalties of initial guess

Table S350: Interaction energies and geometries be-
tween probe water and selected (1R)-1-(methylsulf
anyl)ethan-1-ol site calculated using the optimized
and initial charges

Atom		Charges	
Atom	Optimal	Initial	Penalty
CB	-0.162	-0.220	2.563
HB1	0.090	0.090	0.030
HB2	0.090	0.090	0.030
HB3	0.090	0.090	0.030
\mathbf{S}	-0.204	-0.125	28.177
CAH	0.196	0.211	27.793
HAH	0.090	0.090	0.424
OAI	-0.565	-0.641	18.445
HAI	0.375	0.413	2.500
CAJ	-0.270	-0.268	0.671
HAJ1	0.090	0.090	0.300
HAJ2	0.090	0.090	0.300
HAJ3	0.090	0.090	0.300

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(*)	$\rm QM/Optimal/Initial$	${ m QM}/{ m Optimal}/{ m Initial}$
1	HB2 CB	0.0	-1.29/-1.08/-0.88	2.64/2.68/2.71
2	HB3-CB	0.0	-1.27/-0.80/-0.65	2.62/2.71/2.74
3	S-CB	0.0	-1.32/-1.64/-0.95	2.91/2.40/2.49
4	S-CB	90.0	-1.67/-1.98/-1.34	2.83/2.38/2.45
5	S-CB	180.0	-1.46/-2.04/-1.47	2.90/2.38/2.44
6	S-CB	270.0	-1.53/-1.76/-1.12	2.85/2.39/2.47
7	HAH-CAH	0.0	-1.65/-1.47/-1.68	2.57/2.66/2.65
8	HAH-CAH	90.0	-1.46/-1.36/-1.57	2.60/2.67/2.66
9	OAI-CAH	0.0	-5.17/-4.99/-5.76	1.86/1.90/1.87
10	OAI-CAH	90.0	-5.02/-4.98/-5.88	1.85/1.89/1.86
11	OAI-CAH	180.0	-4.72/-5.06/-5.88	1.88/1.89/1.86
12	OAI-CAH	270.0	-5.39/-5.20/-5.94	1.84/1.89/1.86
13	HAI-OAI	0.0	-6.20/-6.00/-6.60	1.77/1.83/1.82
14	HAI-OAI	45.0	-6.64/-6.10/-6.72	1.75/1.83/1.81
15	HAI-OAI	90.0	-5.76/-5.88/-6.58	1.78/1.84/1.82
16	HAI-OAI	135.0	-5.36/-5.78/-6.46	1.80/ 1.84 / 1.82
17	HAJ1-CAJ	0.0	-0.60/-0.19/-0.08	2.77/2.80/2.82
18	HAJ2-CAJ	0.0	-0.96/-0.70/-0.46	2.96/2.97/2.97
19	HAJ3-CAJ	0.0	-0.89/-0.83/-0.94	2.70/2.71/2.70

1.113 Small molecule used for beta-hydroxy-tryptophane(HTR)

Figure S105: The molecule used for water complex calculations corresponding to (1R)-1-(1H-indol-3-y l)ethan-1-ol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S351: Statistics of calculated water interaction and dipole moment for (1R)-1-(1H-indol-3-yl) eth an-1-ol.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.74/1.88	0.10/0.26	2.071	2.39/2.53	23.04
Optimal	0.18/0.34	0.06/0.16	1.834	2.39/2.98	1.03

Table S352: The comparison list of optimized atomic charges and their initial guess for (1R)-1-(1H-indol-3-yl)ethan-1-ol, referring to the penalties of initial guess

Atom	Charges				
Atom	Optimal	Initial	Penalty		
HA3	0.090	0.090	0.300		
HA2	0.090	0.090	0.300		
\mathbf{CA}	-0.270	-0.275	5.465		
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.300		
CB	0.152	0.135	22.147		
$_{\mathrm{HB}}$	0.090	0.090	0.520		
OH	-0.632	-0.639	8.063		
HH	0.392	0.413	0.725		
CG	-0.068	-0.053	30.497		
CD1	-0.077	-0.147	19.460		
HD1	0.148	0.220	0.030		
CD2	0.080	0.095	20.161		
NE1	-0.393	-0.517	0.213		
HE1	0.319	0.363	0.000		
CE2	0.271	0.231	0.331		
CE3	-0.284	-0.258	0.274		
HE3	0.177	0.201	0.000		
CZ2	-0.251	-0.285	0.000		
HZ2	0.166	0.195	0.000		
CZ3	-0.261	-0.236	0.000		
HZ3	0.181	0.196	0.000		
CH2	-0.185	-0.195	0.000		
HH2	0.175	0.196	0.000		

Table S353: Interaction energies and geometries between probe water and selected (1R)-1-(1H-indol-3 -yl)ethan-1-ol site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA3-CA	0.0	-0.58/-0.41/-0.80	3.96/3.94/3.95
2	HA2-CA	0.0	-0.56/-0.37/-0.32	2.79/2.75/2.76
3	HA-CA	0.0	-0.81/-1.15/-1.03	2.83/2.70/2.70
4	HB-CB	0.0	-0.50/-0.26/-0.18	2.74/2.75/2.77
5	OH-CB	0.0	-5.47/-5.32/-5.29	1.85/1.87/1.87
6	OH-CB	90.0	-5.79/-5.58/-5.69	1.83/1.87/1.86
7	OH-CB	180.0	-5.74/-6.00/-6.14	1.85/1.86/1.86
8	OH-CB	270.0	-5.93/-5.88/-5.90	1.83/1.86/1.86
9	HH-OH	0.0	-5.75/-5.81/-6.40	1.85/1.86/1.84
10	HH-OH	45.0	-6.09/-5.84/-6.49	1.84/1.86/1.84
11	HH-OH	90.0	-5.53/-5.56/-6.10	1.85/1.87/1.85
12	HH-OH	135.0	-5.21/-5.54/-6.02	1.87/1.87/1.85
13	HD1-CD1	0.0	-2.20/-2.41/-3.04	2.41/2.28/2.23
14	HD1-CD1	90.0	-1.87/-2.12/-2.76	2.46/2.30/2.25
15	NE1-CD1	0.0	-1.64/-1.58/-3.22	2.35/2.28/2.15
16	NE1-CD1	90.0	-0.77/-0.64/-2.13	2.44/2.33/2.18
17	NE1-CD1	180.0	-1.37/-1.47/-3.09	2.32/2.23/2.11
18	NE1-CD1	270.0	-2.93/-3.05/-4.81	2.24/2.17/2.07
19	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	0.0	-6.17/-6.44/-5.92	1.88/1.87/1.87
20	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	45.0	-6.44/-6.54/-6.05	1.86/1.87/1.87
21	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	90.0	-6.79/-6.66/-6.21	1.84/1.87/1.86
22	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	135.0	-6.51/-6.57/-6.09	1.86/1.87/1.87
23	$\operatorname{HE3-CE3}$	0.0	-1.63/-1.57/-2.19	2.71/2.72/2.66
24	$\operatorname{HE3-CE3}$	90.0	-1.67/-1.59/-2.19	2.71/2.71/2.65
25	HZ2-CZ2	0.0	-1.45/-1.76/-1.70	2.71/2.66/2.65
26	HZ2-CZ2	90.0	-1.90/-1.98/-1.92	2.57/2.63/2.62
27	HZ3-CZ3	0.0	-0.90/-0.76/-1.38	2.75/2.71/2.65
28	HZ3-CZ3	90.0	-1.08/-0.84/-1.49	2.68/2.70/2.64
29	$\rm HH2\text{-}CH2$	0.0	-1.03/-1.08/-1.46	2.71/2.68/2.64
30	HH2-CH2	90.0	-1.21/-1.17/-1.57	2.64/2.67/2.63

1.114 Small molecule A of N-(2-methylpropyl)glycine(I4G)

Figure S106: The molecule used for water complex calculations corresponding to N-methyl-N-(2-me thylpropyl)acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S354: Statistics of calculated water interaction and dipole moment for N-methyl-N-(2-methylpr opyl)acetamide.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.47/1.15	0.10/0.28	2.210	4.23/4.90	3.84
Optimal	0.31/1.06	0.09/0.30	1.462	4.23/3.94	2.92

Table S355: The comparison list of optimized atomic charges and their initial guess for N-meth yl-N-(2-methylpropyl)acetamide, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$					
Atom	Optimal	Initial	$\mathbf{Penalty}$			
CL	-0.270	-0.186	0.483			
HL1	0.090	0.090	0.000			
HL2	0.090	0.090	0.000			
HL3	0.090	0.090	0.000			
CLP	0.510	0.425	5.875			
OL	-0.510	-0.531	0.285			
Ν	-0.224	-0.376	10.783			
\mathbf{CA}	-0.158	-0.088	2.581			
HA2	0.090	0.090	0.045			
HA3	0.090	0.090	0.045			
HA1	0.090	0.090	0.045			
CB	-0.068	0.038	9.992			
HB2	0.090	0.090	0.638			
HB3	0.090	0.090	0.638			
CG	-0.090	-0.090	5.579			
HG	0.090	0.090	0.350			
CD1	-0.270	-0.271	0.350			
HD11	0.090	0.090	0.000			
HD12	0.090	0.090	0.000			
HD13	0.090	0.090	0.000			
CD2	-0.270	-0.271	0.350			
HD21	0.090	0.090	0.000			
HD22	0.090	0.090	0.000			
HD23	0.090	0.090	0.000			

Table S356: Interaction energies and geometries be-
tween probe water and selected N-methyl-N-(2-me
thylpropyl)acetamide site calculated using the op-
timized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(*)	${ m QM}/{ m Optimal}/{ m Initial}$	${ m QM}/{ m Optimal}/{ m Initial}$
1	HL1-CL	0.0	-1.34/-1.27/-1.47	3.55/3.51/3.48
2	HL2-CL	0.0	-1.83/-1.67/-1.85	2.57/2.64/2.62
3	HL3-CL	0.0	-0.44/-0.24/-0.26	2.65/2.71/2.69
4	OL-CLP	0.0	-6.90/-6.63/-7.51	1.81/1.76/1.74
5	OL-CLP	90.0	-6.75/-6.56/-7.49	1.81/1.76/1.74
6	OL-CLP	180.0	-6.54/-6.31/-7.23	1.82/1.76/1.74
7	OL-CLP	270.0	-6.74/-6.51/-7.43	1.81/1.76/1.74
8	HA2-CA	0.0	-0.39/-0.34/-0.11	2.71/2.70/2.71
9	HA3-CA	0.0	-1.79/-1.58/-1.76	2.81/2.70/2.69
10	HB2-CB	0.0	-1.89/-2.20/-2.60	3.03/2.89/2.87
11	HB3-CB	0.0	-1.94/-1.70/-2.04	2.64/2.67/2.65
12	HG-CG	0.0	-1.64/-1.68/-1.73	2.97/2.95/2.96
13	HD11-CD1	0.0	-1.14/-0.91/-1.03	2.78/2.74/2.73
14	HD12-CD1	0.0	-1.29/-1.39/-1.65	2.81/2.72/2.71
15	HD13-CD1	0.0	-1.20/-1.13/-1.37	2.81/2.73/2.71
16	HD21-CD2	0.0	-1.00/-0.76/-0.80	2.81/2.76/2.76
17	HD22-CD2	0.0	-1.38/-1.16/-1.32	2.76/2.73/2.72
18	HD23-CD2	0.0	-2.63/-1.57/-1.48	3.15/3.45/3.43

1.115 Small molecule A of 4-[(isopropylamino)methyl]phenylalanine(IAM)

Figure S107: The molecule used for water complex calculations corresponding to ethyl(propan-2-yl)a mine, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S357: Statistics of calculated water interaction and dipole moment for ethyl(propan-2-yl)amine.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.76/1.58	0.14/0.25	2.931	1.36/0.84	58.77
Optimal	0.42/0.89	0.14/0.25	1.152	1.36/1.36	7.41

Table S358: The comparison list of optimized $\$ atomic charges and their initial guess for ethyl(propan-2-yl)amine, referring to the penalties of initial guess _____

_

Table S359: Interaction energies and geometries be-
tween probe water and selected ethyl(propan-2-yl)a
mine site calculated using the optimized and initial
charges
Deska Anala Engene (kaal (mal) Distance (Å)

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	Penalty		
CZ	-0.210	-0.344	0.788		
HZ1	0.090	0.090	0.045		
HZ2	0.090	0.090	0.045		
HZ3	0.090	0.090	0.045		
CT	0.122	0.202	1.038		
HT1	0.090	0.090	0.000		
HT2	0.090	0.090	0.000		
NH	-0.402	-0.364	1.579		
HH1	0.313	0.320	0.078		
HH2	0.313	0.320	0.078		
CI	0.242	0.244	11.678		
HI	0.090	0.090	0.738		
$\rm CK1$	-0.229	-0.229	10.255		
HK11	0.090	0.090	0.674		
HK12	0.090	0.090	0.674		
HK13	0.090	0.090	0.674		
$\rm CK2$	-0.229	-0.229	10.255		
HK21	0.090	0.090	0.674		
HK22	0.090	0.090	0.674		
HK23	0.090	0.090	0.674		

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HZ1-CZ	0.0	-6.64/-6.34/-5.75	2.42/2.54/2.58
2	HZ2-CZ	0.0	-6.30/-5.41/-4.72	2.33/2.54/2.58
3	HZ3-CZ	0.0	-7.37/-6.69/-6.11	2.35/2.52/2.56
4	HT1-CT	0.0	-8.03/-7.92/-8.25	2.40/2.56/2.54
5	HT2-CT	0.0	-8.59/-7.99/-8.34	2.27/2.51/2.49
6	HH1-NH	0.0	-15.77/-15.72/-16.63	1.79/1.79/1.77
7	HH1-NH	45.0	-16.15/-15.85/-16.68	1.79/1.79/1.77
8	HH1-NH	90.0	-15.88/-15.76/-16.64	1.79/1.79/1.77
9	HH1-NH	135.0	-15.52/-15.64/-16.59	1.79/1.79/1.77
10	HH2-NH	0.0	-15.34/-15.61/-16.45	1.81/1.80/1.78
11	HH2-NH	45.0	-15.25/-15.56/-16.43	1.81/1.80/1.79
12	HH2-NH	90.0	-15.95/-15.84/-16.61	1.81/1.80/1.78
13	HH2-NH	135.0	-16.02/-15.89/-16.63	1.81/1.80/1.78
14	HI-CI	0.0	-8.23/-8.10/-8.57	2.30/2.51/2.50
15	HI-CI	90.0	-8.82/-8.27/-8.72	2.26/2.51/2.50
16	HK11-CK1	0.0	-6.31/-5.56/-5.77	2.36/2.54/2.54
17	HK12-CK1	0.0	-6.82/-6.59/-6.92	2.44 / 2.54 / 2.53
18	HK13-CK1	0.0	-7.01/-6.90/-7.37	2.47/2.58/2.56
19	HK21-CK2	0.0	-6.86/-6.67/-7.01	2.42/2.53/2.52
20	$\rm HK22-CK2$	0.0	-6.70/-6.50/-6.80	2.43/2.54/2.53
21	HK23-CK2	0.0	-6.34/-5.53/-5.72	2.35/2.54/2.54

Figure S108: The molecule used for water complex calculations corresponding to 2-methyl-2,3-dihydro-1H-indene, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S360: Statistics of calculated water interaction and dipole moment for 2-methyl-2,3-dihydro-1H-i ndene.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.18/0.29	0.07/0.13	1.537	0.48/0.78	13.01
Optimal	0.03/0.04	0.06/0.09	1.101	0.48/0.65	8.40

Table S361: The comparison list of optimized atomic charges and their initial guess for 2-meth yl-2,3-dihydro-1H-indene, referring to the penalties of initial guess

Atom	Charges				
Atom	Optimal	Initial	Penalty		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.270	-0.306	25.816		
HA	0.090	0.090	0.000		
CB	-0.090	-0.112	29.338		
$_{\mathrm{HB}}$	0.090	0.090	0.283		
CG1	-0.180	-0.169	18.106		
HG11	0.090	0.090	0.000		
HG12	0.090	0.090	0.000		
CG2	-0.180	-0.169	18.106		
HG21	0.090	0.090	0.000		
HG22	0.090	0.090	0.000		
CD1	0.123	0.208	13.892		
CD2	0.125	0.208	13.892		
CE1	-0.328	-0.373	0.224		
HE1	0.186	0.204	0.000		
CE2	-0.328	-0.373	0.224		
HE2	0.186	0.204	0.000		
CH1	-0.141	-0.217	0.000		
HH1	0.159	0.196	0.000		
$\rm CH2$	-0.141	-0.217	0.000		
HH2	0.159	0.196	0.000		

Table S362: Interaction energies and geometries between probe water and selected 2-methyl-2,3-dihy dro-1H-indene site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HA3-CA	0.0	-0.72/-0.70/-0.55	2.86/2.76/2.81
2	HA2-CA	0.0	-0.72/-0.70/-0.55	2.86/2.76/2.81
3	HA-CA	0.0	-0.85/-0.84/-0.79	2.80/2.73/2.76
4	HB-CB	0.0	-0.69/-0.68/-0.85	2.80/2.74/2.73
5	HG11-CG1	0.0	-0.81/-0.80/-1.04	2.82/2.75/2.71
6	HG12-CG1	0.0	-0.68/-0.70/-0.97	2.84/2.75/2.71
7	HG21-CG2	0.0	-0.68/-0.70/-0.97	2.84/2.75/2.71
8	HG22-CG2	0.0	-0.81/-0.80/-1.04	2.82/2.75/2.71
9	$\operatorname{HE}\operatorname{1-CE}\operatorname{1}$	0.0	-1.07/-1.10/-1.27	2.70/2.68/2.66
10	$\operatorname{HE}\operatorname{1-CE}\operatorname{1}$	90.0	-1.22/-1.19/-1.37	2.64/2.66/2.65
11	$\operatorname{HE2-CE2}$	0.0	-1.07/-1.10/-1.27	2.71/2.68/2.66
12	$\operatorname{HE2-CE2}$	90.0	-1.22/-1.19/-1.37	2.64/2.66/2.65
13	HH1-CH1	0.0	-1.00/-1.05/-1.01	2.71/2.68/2.67
14	HH1-CH1	90.0	-1.16/-1.13/-1.11	2.65/2.67/2.66
15	$\rm HH2\text{-}CH2$	0.0	-1.00/-1.05/-1.01	2.71/2.68/2.67
16	$\rm HH2\text{-}CH2$	90.0	-1.16/-1.13/-1.11	2.65/2.67/2.66

1.117 Small molecule A of (2S)-2-amino-6-[[3-hydroxy-2-methyl-5-(phosph onooxymethyl)pyridin-4-yl]methylideneamino]hexanoicacid(IT1P)

Figure S109: The molecule used for water complex calculations corresponding to 4-[(E)-(ethylimino)m ethyl]-2,5-dimethylpyridin-3-olate, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S363: Statistics of calculated water interaction and dipole moment for 4-[(E)-(ethylimino)methyl]-2,5-dimethylpyridin-3-olate.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.77/1.54	0.12/0.25	4.499	4.76/5.26	26.66
Optimal	0.29/0.65	0.09/0.20	2.640	4.76/6.19	0.00

Table S364: The comparison list of optimized atomic charges and their initial guess for 4-[(E)-(ethylimino)methyl]-2,5-dimethylpyridin-3-olate, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HD3	0.090	0.090	0.000
CD	-0.270	-0.263	0.597
HD1	0.090	0.090	0.000
HD2	0.090	0.090	0.000
CE	0.117	0.021	3.263
HE1	0.090	0.090	0.025
HE2	0.090	0.090	0.025
NZ	-0.467	-0.591	3.218
C4A	-0.161	-0.098	15.004
H4A	0.139	0.240	0.250
C4	0.305	0.245	20.733
C3	0.075	0.091	2.104
O3	-0.532	-0.529	2.104
HO3	0.420	0.420	0.000
C2	0.327	0.357	17.715
C2A	-0.323	-0.267	16.637
H2A1	0.112	0.090	2.250
H2A2	0.093	0.090	2.250
H2A3	0.089	0.090	2.250
N1	-0.582	-0.621	14.965
C6	0.077	0.153	2.500
H6	0.121	0.121	0.000
C5	0.010	-0.002	12.965
C5A	-0.270	-0.267	12.965
H5A1	0.090	0.090	0.000
H5A2	0.090	0.090	0.000
H5A3	0.090	0.090	0.000

Table S365: Interaction energies and geometries between probe water and selected 4-[(E)-(ethylimi no)methyl]-2,5-dimethylpyridin-3-olate site calculated using the optimized and initial charges

	Probe	Angle	Energy (kcal/mol)	Distance (Å)
Ν	site	(°)	OM/Optimal/Initial	OM/Optimal/Initial
1	HD3-CD	0.0	-1.22/-1.46/-0.87	2.76/2.68/2.74
2	HD1-CD	0.0	-1.31/-1.05/-0.49	2.76/2.74/2.86
3	HD2-CD	0.0	-1.42/-1.29/-0.41	2.64/2.67/2.74
4	HE1-CE	0.0	-2.25/-2.58/-2.33	2.68/2.63/2.67
5	HE2-CE	0.0	-1.33/-1.63/-0.50	2.68/2.65/2.77
6	NZ-CE	0.0	-3.21/-3.51/-3.41	4.04/3.96/3.95
7	NZ-CE	90.0	-2.20/-2.06/-2.40	4.19/4.17/4.12
8	NZ-CE	180.0	-1.61/-1.14/-1.81	4.27/4.33/4.23
9	NZ-CE	270.0	-2.25/-2.05/-2.47	4.18/4.16/4.11
10	H4A-C4A	0.0	-2.59/-2.75/-4.00	2.74/2.69/2.56
11	H4A-C4A	45.0	-2.62/-2.86/-4.10	2.77/2.68/2.55
12	H4A-C4A	90.0	-2.67/-2.98/-4.22	2.79/2.67/2.55
13	H4A-C4A	135.0	-2.63/-2.87/-4.11	2.77/2.68/2.55
14	O3-C3	0.0	-3.06/-2.87/-3.26	2.20/2.33/2.31
15	O3-C3	90.0	-2.79/-2.86/-2.93	2.38/2.34/2.33
16	O3-C3	180.0	-2.56/-3.10/-2.50	2.52/2.34/2.38
17	O3-C3	270.0	-2.81/-3.07/-2.94	2.38/2.33/2.33
18	N1-C2	0.0	-6.05/-6.07/-5.84	1.95/1.86/1.85
19	N1-C2	90.0	-6.93/-6.65/-6.42	1.91/1.85/1.84
20	N1-C2	180.0	-5.94/-6.59/-6.28	1.98/1.86/1.85
21	N1-C2	270.0	-6.93/-6.60/-6.42	1.91/1.85/1.84
22	H6-C6	0.0	-1.12/-1.49/-2.15	2.66/2.47/2.43
23	H6-C6	90.0	-1.34/-1.52/-2.18	2.58/2.47/2.43
24	H5A1-C5A	0.0	-1.88/-1.94/-2.64	2.62/2.63/2.59
25	H5A2-C5A	0.0	-1.89/-1.95/-2.66	2.61/2.63/2.59
26	H5A3-C5A	0.0	-1.74/-1.97/-2.38	2.67/2.63/2.61

1.118 Small molecule used for S-(pyridin-3-ylcarbonyl)-L-cysteine(JJJ)

Figure S110: The molecule used for water complex calculations corresponding to (ethylsulfanyl)(pyri din-3-yl)methanone, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S366: Statistics of calculated water interaction and dipole moment for (ethyl sulfanyl)(pyridin-3-yl)methanone.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.01/2.24	0.44/1.94	3.907	0.70/1.43	111.87
Optimal	0.26/0.91	0.18/0.48	1.850	0.70/0.91	0.00

Table S367: The comparison list of optimized atomic charges and their initial guess for (ethyls ulfanyl)(pyridin-3-yl)methanone, referring to the penalties of initial guess

Atom	Charges			
Atom	Optimal	Initial	$\mathbf{Penalty}$	
HA3	0.090	0.090	0.000	
HA2	0.090	0.090	0.000	
\mathbf{CA}	-0.270	-0.270	0.620	
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000	
CB	-0.043	0.002	9.073	
HB1	0.090	0.090	0.575	
HB2	0.090	0.090	0.575	
\mathbf{SG}	-0.077	-0.012	99.241	
C7	0.234	0.250	99.637	
07	-0.391	-0.505	57.902	
C3	0.056	0.084	81.121	
C2	0.177	0.192	2.645	
H2	0.075	0.105	0.050	
C4	-0.060	-0.108	2.500	
H4	0.115	0.115	0.000	
N1	-0.564	-0.602	0.745	
C5	-0.116	-0.117	0.000	
H5	0.115	0.115	0.000	
C6	0.186	0.177	0.000	
H6	0.113	0.124	0.000	

Table S368: Interaction energies and geometries between probe water and selected (ethylsulfanyl)(py ridin-3-yl)methanone site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
18	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA3-CA	0.0	-1.26/-1.02/-1.32	2.71/2.71/2.68
2	$\mathrm{HA2}\text{-}\mathrm{CA}$	0.0	-1.14/-0.98/-1.42	2.68/2.71/2.68
3	HA-CA	0.0	-1.14/-0.98/-1.42	2.68/2.71/2.68
4	$\operatorname{HB1-CB}$	0.0	-1.02/-0.72/-0.96	2.50/2.67/2.62
5	$\mathrm{HB2}\text{-}\mathrm{CB}$	0.0	-1.02/-0.72/-0.96	2.50/2.67/2.62
6	SG-CB	0.0	-0.61/-0.87/-0.17	3.06/2.64/5.00
7	SG-CB	180.0	-0.20/-0.30/0.55	2.96/2.49/2.59
8	O7-C7	0.0	-4.59/-4.59/-6.05	1.89/1.81/1.76
9	O7-C7	90.0	-4.79/-4.80/-6.63	1.88/1.81/1.75
10	O7-C7	180.0	-4.50/-4.61/-6.75	1.89/1.81/1.75
11	O7-C7	270.0	-4.79/-4.80/-6.63	1.88/1.81/1.75
12	H2-C2	0.0	-0.57/-0.89/-1.68	2.75/2.76/2.69
13	H2-C2	90.0	-0.54/-0.77/-1.71	3.01/2.81/2.70
14	H4-C4	0.0	-1.58/-0.67/0.24	2.32/2.64/2.68
15	H4-C4	90.0	-0.48/-0.30/0.70	2.58/2.70/2.82
16	N1-C2	0.0	-5.33/-5.27/-5.96	1.97/1.86/1.84
17	N1-C2	90.0	-5.89/-5.72/-6.18	1.93/1.85/1.84
18	N1-C2	180.0	-5.52/-5.66/-5.77	1.97 / 1.86 / 1.85
19	N1-C2	270.0	-5.89/-5.71/-6.18	1.93/1.85/1.84
20	H5-C5	0.0	-2.15/-2.03/-1.72	2.52/2.63/2.64
21	H5-C5	90.0	-2.33/-2.07/-1.75	2.47/2.62/2.64
22	H6-C6	0.0	-1.93/-1.87/-1.78	2.48/2.44/2.44
23	H6-C6	90.0	-1.93/-1.85/-1.76	2.47/2.44/2.44

1.119 Small molecule used for N-6-crotonyl-L-lysine(KCR)

Figure S111: The molecule used for water complex calculations corresponding to (2E)-N-pentylbut-2-en amide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S369: Statistics of calculated water interaction and dipole moment for (2E)-N-pentylbut-2-enam ide.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.48/0.86	0.08/0.16	2.530	3.87/3.81	17.91
Optimal	0.66/2.01	0.07/0.22	3.234	3.87/5.04	0.34

Table S370: The comparison list of optimized atomic charges and their initial guess for (2E)-N-pentylbut-2-enamide, referring to the penalties of initial guess

-

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.270	-0.270	0.000		
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000		
CB	-0.180	-0.180	0.000		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
CG	-0.180	-0.196	3.012		
HG1	0.090	0.090	0.000		
${ m HG2}$	0.090	0.090	0.000		
CD	-0.180	-0.177	2.481		
HD1	0.090	0.090	0.000		
HD2	0.090	0.090	0.000		
CE	-0.032	0.069	2.667		
HE1	0.090	0.090	0.000		
HE2	0.090	0.090	0.000		
ΝZ	-0.402	-0.555	2.451		
HZ	0.257	0.305	0.000		
CH	0.378	0.515	11.796		
OH	-0.555	-0.499	0.000		
$\mathbf{C}\mathbf{X}$	0.050	-0.157	10.830		
ΗX	0.144	0.150	0.000		
CY	-0.127	-0.143	10.116		
$_{\rm HY}$	0.107	0.150	1.425		
CH3	-0.270	-0.272	0.000		
HH31	0.090	0.090	0.000		
HH32	0.090	0.090	0.000		
HH33	0.090	0.090	0.000		

Table S371: Interaction energies and geometries between probe water and selected (2E)-N-pentylbut-2-enamide site calculated using the optimized and initial charges

N	Probe	Angle	${\rm Energy}~(\rm kcal/mol)$	Distance (Å)
	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	$\rm QM/Optimal/Initial$
1	HA3-CA	0.0	-0.66/-0.56/-0.60	2.88/2.79/2.79
2	HA2-CA	0.0	-0.83/-0.69/-0.72	2.85/2.77/2.78
3	HA-CA	0.0	-0.83/-0.69/-0.72	2.85/2.77/2.78
4	HB1-CB	0.0	-0.75/-0.66/-0.77	2.90/2.81/2.80
5	HB2-CB	0.0	-0.75/-0.66/-0.77	2.90/2.81/2.80
6	HG1-CG	0.0	-1.13/-0.92/-1.14	2.76/2.72/2.72
7	HG2-CG	0.0	-1.13/-0.92/-1.14	2.76/2.72/2.72
8	HD1-CD	0.0	-1.04/-1.16/-1.40	2.84/2.75/2.71
9	HD2-CD	0.0	-1.04/-1.16/-1.40	2.84/2.75/2.71
10	HE1-CE	0.0	-0.39/-0.10/-0.78	2.66/2.71/2.65
11	HE2-CE	0.0	-0.39/-0.10/-0.78	2.66/2.71/2.65
12	NZ-CE	0.0	-1.22/-0.76/-1.58	2.32/2.34/2.24
13	NZ-CE	90.0	-2.93/-3.62/-3.43	2.20/2.16/2.14
14	NZ-CE	180.0	-1.34/-2.31/-1.80	2.33/2.22/2.22
15	NZ-CE	270.0	-0.48/-0.36/-0.61	2.38/2.35/2.28
16	HZ-NZ	0.0	-5.13/-5.78/-5.99	1.98/1.97/1.93
17	HZ-NZ	45.0	-5.56/-6.06/-6.20	1.95/1.95/1.93
18	HZ-NZ	90.0	-5.97/-6.34/-6.41	1.94/1.94/1.92
19	HZ-NZ	135.0	-5.56/-6.06/-6.20	1.95/1.95/1.93
20	OH-CH	0.0	-7.03/-7.81/-6.23	1.80/1.73/1.76
21	OH-CH	90.0	-7.10/-7.86/-6.50	1.80/1.73/1.76
22	OH-CH	180.0	-6.84/-7.70/-6.48	1.81/1.73/1.76
23	OH-CH	270.0	-7.10/-7.86/-6.50	1.80/1.73/1.76
24	HX-CX	0.0	-1.90/-3.91/-2.68	2.69/2.46/2.53
25	HX-CX	90.0	-2.57/-4.15/-2.95	2.50/2.45/2.51
26	HH31-CH3	0.0	-1.30/-0.77/-0.56	2.69/2.73/2.76
27	$\rm HH32-CH3$	0.0	-1.23/-1.18/-0.63	2.69/2.73/2.79
28	HH33-CH3	0.0	-1.23/-1.18/-0.63	2.69/2.73/2.79

1.120 Small molecule used for lysineNZ-carboxylicacid(KCX)

Figure S112: The molecule used for water complex calculations corresponding to pentylcarbamicac id, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S372: Statistics of calculated water interaction and dipole moment for pentylcarbamicacid.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.87/3.51	0.08/0.10	6.278	15.20/18.93	2.02
Optimal	0.38/1.06	0.06/0.11	3.491	15.20/16.45	2.36

Table S373: The comparison list of optimized atomic charges and their initial guess for pentyl carbamicacid, referring to the penalties of initial guess

_

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.270	-0.270	0.000		
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000		
CB	-0.180	-0.180	0.000		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
CG	-0.180	-0.196	3.012		
HG1	0.090	0.090	0.000		
$\mathrm{HG2}$	0.090	0.090	0.000		
CD	-0.180	-0.177	3.884		
HD1	0.090	0.090	0.000		
HD2	0.090	0.090	0.000		
CE	-0.046	0.045	7.615		
HE1	0.090	0.090	0.375		
HE2	0.090	0.090	0.375		
NZ	-0.660	-0.539	44.036		
HZ	0.191	0.314	3.555		
$\mathbf{C}\mathbf{X}$	0.777	0.533	44.612		
OQ1	-0.721	-0.760	17.521		
OQ2	-0.721	-0.760	17.521		

Table S374: Interaction energies and geometries between probe water and selected pentylcarbamicac id site calculated using the optimized and initial charges

N	Probe	Angle	Energy $(kcal/mol)$	Distance (Å)
14	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	NZ-CE	0.0	-10.85/-11.13/-10.09	1.97/1.97/2.01
2	NZ-CE	90.0	-8.89/-7.83/-5.38	2.03/2.02/2.13
3	NZ-CE	180.0	-8.15/-8.24/-6.14	2.12/2.02/2.11
4	NZ-CE	270.0	-11.67/-12.04/-11.49	1.97/1.95/1.98
5	OQ1-CX	0.0	-13.36/-13.58/-14.85	1.73/1.66/1.64
6	OQ1-CX	90.0	-13.71/-13.74/-15.48	1.72/1.66/1.64
7	OQ1-CX	180.0	-14.24/-14.37/-16.69	1.72/1.66/1.63
8	OQ1-CX	270.0	-13.91/-14.19/-16.12	1.72/1.66/1.64
9	OQ2-CX	0.0	-13.66/-13.53/-14.58	1.73/1.67/1.65
10	OQ2-CX	90.0	-14.18/-13.96/-15.77	1.72/1.66/1.64
11	OQ2-CX	180.0	-14.49/-14.12/-16.40	1.72/1.66/1.64
12	OQ2-CX	270.0	-13.86/-13.62/-15.24	1.73/1.67/1.64

1.121 Small molecule A of (2S)-2-amino-6-[(1-hydroxy-1-oxo-propan-2-yli dene)amino]hexanoicacid(KPI)

Figure S113: The molecule used for water complex calculations corresponding to (2E)-2-(methyliminiu myl)propanoate, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S375: Statistics of calculated water interaction and dipole moment for (2E)-2-(methyliminiumy l)propanoate.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	1.55/3.86	0.12/0.33	4.010	8.47/10.13	0.79
Optimal	0.78/2.21	0.10/0.18	3.551	8.47/8.16	6.11

Table S376: The comparison list of optimized atomic charges and their initial guess for (2E)-2-(methyliminiumyl)propanoate, referring to the penalties of initial guess

Atom		$\operatorname{Charges}$			
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HE3	0.090	0.090	0.025		
CE	-0.111	-0.078	2.530		
HE1	0.090	0.090	0.025		
HE2	0.090	0.090	0.025		
NZ	-0.706	-0.553	26.076		
CX1	0.336	0.237	30.463		
C1	-0.356	-0.300	12.408		
H11	0.090	0.090	0.862		
H12	0.090	0.090	0.862		
H13	0.090	0.090	0.862		
CX2	0.777	0.674	26.186		
O1	-0.740	-0.760	3.186		
O2	-0.740	-0.760	3.186		

Table S377: Interaction energies and geometries between probe water and selected (2E)-2-(methylim iniumyl)propanoate site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	NZ-CE	0.0	-17.41/-18.50/-17.99	2.01/1.89/1.92
2	NZ-CE	90.0	-9.47/-9.14/-7.82	2.29/2.10/2.23
3	NZ-CE	180.0	-7.28/-5.07/-3.42	2.29/2.25/2.61
4	NZ-CE	270.0	-9.46/-9.13/-7.82	2.29/2.10/2.23
5	O1-CX2	0.0	-14.23/-14.69/-15.29	1.73/1.66/1.65
6	O1-CX2	90.0	-13.64/-13.77/-14.86	1.75/1.67/1.65
7	O1-CX2	180.0	-13.72/-13.38/-14.83	1.74 / 1.67 / 1.65
8	O1-CX2	270.0	-13.64/-13.77/-14.86	1.75/1.67/1.65
9	O2-CX2	0.0	-12.82/-12.41/-13.36	1.74/1.67/1.66
10	O2-CX2	90.0	-13.48/-13.04/-14.25	1.72/1.67/1.65
11	O2-CX2	180.0	-13.97/-13.68/-15.09	1.72/1.66/1.65
12	O2-CX2	270.0	-13.48/-13.04/-14.25	1.72/1.67/1.65

1.122 Small molecule used for kynurenine(KYN)

Figure S114: The molecule used for water complex calculations corresponding to 1-(2-aminophenyl)pro pan-1-one, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S378: Statistics of calculated water interaction and dipole moment for 1-(2-aminophenyl) propan-1-one.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	$\rm QM/MM~(Debye)$	difference (°)
Initial	0.87/1.69	0.12/0.21	3.192	2.46/3.76	11.50
Optimal	0.27/0.53	0.10/0.18	2.022	2.46/2.93	3.43

Table S379: The comparison list of optimized atomic charges and their initial guess for 1-(2-am inophenyl)propan-1-one, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	Penalty		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.270	-0.269	0.000		
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000		
CB	-0.190	-0.172	0.000		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
CG	0.310	0.340	2.100		
OG	-0.390	-0.470	0.000		
CD	0.011	0.118	18.783		
CE2	0.156	0.089	22.398		
NE2	-0.763	-0.866	20.858		
HE21	0.343	0.382	0.000		
HE22	0.343	0.382	0.000		
CE1	-0.115	-0.111	0.000		
HE1	0.115	0.115	0.000		
CZ2	-0.115	-0.109	0.000		
HZ2	0.115	0.115	0.000		
CZ1	-0.115	-0.114	0.000		
HZ1	0.115	0.115	0.000		
CH	-0.115	-0.110	0.000		
$_{\rm HH}$	0.115	0.115	0.000		

Table S380: Interaction energies and geometries between probe water and selected 1-(2-aminopheny l)propan-1-one site calculated using the optimized and initial charges

N	Probe	Angle	Energy $(kcal/mol)$	Distance (Å)
14	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HA2-CA	0.0	-0.74/-0.56/-0.68	2.87/2.79/2.77
2	HB1-CB	0.0	-1.69/-1.45/-1.84	2.59/2.67/2.65
3	HB2-CB	0.0	-1.60/-1.36/-1.77	2.58/2.67/2.64
4	OG-CG	0.0	-5.08/-5.60/-6.77	1.85/1.69/1.66
5	OG-CG	90.0	-5.37/-5.35/-6.62	1.82/1.70/1.66
6	OG-CG	180.0	-3.69/-3.79/-5.01	1.90/1.75/1.70
7	OG-CG	270.0	-4.85/-4.76/-5.93	1.83/1.71/1.67
8	NE2-CE2	0.0	-4.41/-4.42/-5.70	2.04/2.00/1.95
9	NE2-CE2	90.0	-4.93/-5.40/-6.58	2.01/1.97/1.93
10	NE2-CE2	180.0	-4.61/-4.91/-5.92	2.03/1.97/1.93
11	NE2-CE2	270.0	-4.00/-3.96/-5.15	2.05/2.00/1.96
12	HE21-NE2	0.0	-4.29/-4.35/-4.31	2.00/1.93/1.92
13	HE21-NE2	45.0	-4.83/-4.56/-4.52	1.97/1.93/1.91
14	HE21-NE2	90.0	-4.75/-4.55/-4.51	1.97/1.93/1.91
15	HE21-NE2	135.0	-4.21/-4.34/-4.30	2.01/1.94/1.92
16	HE1-CE1	0.0	-1.95/-2.35/-2.84	2.87/2.77/2.74
17	HE1-CE1	90.0	-1.99/-2.34/-2.86	2.95/2.77/2.74
18	HZ2-CZ2	0.0	-1.66/-1.55/-1.39	2.67/2.68/2.69
19	HZ2-CZ2	90.0	-2.17/-1.71/-1.56	2.51/2.66/2.67
20	HZ1-CZ1	0.0	-1.28/-1.41/-1.60	2.70/2.69/2.67
21	HZ1-CZ1	90.0	-1.50/-1.48/-1.68	2.62/2.68/2.66
22	HH-CH	0.0	-1.64/-1.31/-1.38	2.58/2.69/2.68
23	HH-CH	90.0	-1.82/-1.38/-1.45	2.53/2.68/2.68

1.123 Small molecule A of N6-[(6R)-6,8-disulfanyloctanoyl]-L-lysine(LA2)

Figure S115: The molecule used for water complex calculations corresponding to propane-2-thiol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S381: Statistics of calculated water interaction and dipole moment for propane-2-thiol.

	m RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	${\rm Energy}\;(\rm kcal/mol)$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.64/1.14	0.29/0.45	2.174	1.87/1.60	12.76
Optimal	0.47/0.97	0.27/0.42	1.888	1.87/2.00	3.48

Table S382:The comparison list of optimizedatomic charges and their initial guess for propane-2-thiol, referring to the penalties of initial guess

Table S383: Interaction energies and geometries between probe water and selected propane-2-thiol site calculated using the optimized and initial charges

Atom	Charges				
Atom	Optimal	Initial	Penalty		
H53	0.090	0.090	0.300		
C5	-0.270	-0.269	0.671		
H51	0.090	0.090	0.300		
H52	0.090	0.090	0.300		
C6	0.075	0.006	6.485		
H6	0.090	0.090	0.424		
$\mathbf{S6}$	-0.289	-0.258	6.485		
HS6	0.124	0.160	0.520		
C7	-0.270	-0.269	0.671		
H71	0.090	0.090	0.300		
H72	0.090	0.090	0.300		
H73	0.090	0.090	0.300		

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
18	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	${ m H53-C5}$	0.0	-0.46/-0.58/-0.49	2.81/2.73/2.75
2	${ m H51-C5}$	0.0	-1.34/-1.09/-1.12	2.73/2.71/2.72
3	H52-C5	0.0	-1.13/-1.13/-0.90	2.77/2.71/2.74
4	${ m H6-C6}$	0.0	-1.39/-0.96/-0.63	2.61/2.71/2.76
5	S6-C6	0.0	-1.67/-2.61/-2.19	2.74/2.34/2.37
6	S6-C6	90.0	-1.76/-2.53/-2.24	2.69/2.34/2.37
7	S6-C6	180.0	-1.40/-2.38/-2.23	2.77/2.35/2.37
8	S6-C6	270.0	-1.76/-2.53/-2.24	2.69/2.34/2.37
9	HS6-S6	0.0	-1.70/-1.76/-2.84	2.45/2.08/2.00
10	HS6-S6	45.0	-1.86/-1.80/-2.86	2.42/2.08/2.00
11	HS6-S6	90.0	-2.04/-1.84/-2.90	2.38/2.07/2.00
12	HS6-S6	135.0	-1.86/-1.80/-2.86	2.42/2.08/2.00
13	m H71-C7	0.0	-1.11/-1.12/-0.91	2.78/2.71/2.74
14	m H72-C7	0.0	-1.17/-1.06/-1.05	2.78/2.72/2.74
15	m H73-C7	0.0	-0.68/-0.68/-0.58	2.74/2.71/2.73
1.124 Small molecule used for Penicillamine(LE1)

Figure S116: The molecule used for water complex calculations corresponding to 2-methylpropane-2-thiol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

|--|

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.93/1.94	0.32/0.54	3.419	1.88/1.08	47.89
Optimal	0.64/1.39	0.32/0.62	1.901	1.88/2.22	0.09

Table S385: The comparison list of optimized atomic charges and their initial guess for 2-meth ylpropane-2-thiol, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	0.810
HA2	0.090	0.090	0.810
\mathbf{CA}	-0.270	-0.329	10.272
\mathbf{HA}	0.090	0.090	0.810
CB	0.107	0.218	21.447
SG3	-0.279	-0.201	15.950
${ m HG3}$	0.114	0.160	1.561
CG2	-0.241	-0.329	10.272
HG23	0.090	0.090	0.810
HG21	0.090	0.090	0.810
HG22	0.090	0.090	0.810
CG1	-0.241	-0.329	10.272
HG11	0.090	0.090	0.810
HG12	0.090	0.090	0.810
HG13	0.090	0.090	0.810

Table S386: Interaction energies and geometries between probe water and selected 2-methylpropane-2-thiol site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${ m QM}/{ m Optimal}/{ m Initial}$
1	HA3-CA	0.0	-0.97/-0.47/-0.33	2.65/2.74/2.78
2	HA2-CA	0.0	-1.26/-1.06/-0.56	2.73/2.73/2.78
3	HA-CA	0.0	-0.64/-0.34/-0.27	2.75/2.77/2.80
4	SG3-CB	0.0	-1.55/-2.83/-1.61	2.92/2.33/2.43
5	SG3-CB	90.0	-1.60/-2.78/-1.75	2.87/2.33/2.42
6	SG3-CB	180.0	-1.28/-2.67/-1.88	2.95/2.33/2.40
7	SG3-CB	270.0	-1.60/-2.78/-1.75	2.87/2.33/2.42
8	HG3-SG3	0.0	-1.70/-1.58/-3.65	2.46/2.11/1.97
9	HG3-SG3	45.0	-1.88/-1.63/-3.67	2.42/2.11/1.97
10	HG3-SG3	90.0	-2.06/-1.68/-3.70	2.38/2.10/1.97
11	HG3-SG3	135.0	-1.88/-1.63/-3.67	2.42/2.11/1.97
12	HG23-CG2	0.0	-1.13/-1.24/-0.66	2.78/2.70/2.77
13	HG21-CG2	0.0	-0.70/-0.74/-0.54	2.74/2.70/2.75
14	HG22-CG2	0.0	-1.20/-1.20/-1.09	2.78/2.70/2.74
15	HG11-CG1	0.0	-1.13/-1.24/-0.66	2.78/2.70/2.77
16	HG12-CG1	0.0	-1.20/-1.20/-1.09	2.78/2.69/2.74
17	$\mathrm{HG13}\text{-}\mathrm{CG1}$	0.0	-0.70/-0.74/-0.54	2.74/2.70/2.75

1.125 Small molecule used for (4r)-5-oxo-l-leucine(LED)

Figure S117: The molecule used for water complex calculations corresponding to 2-methylpropanal, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S387: Statistics of calculated water interaction and dipole moment for 2-methylpropanal.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	${\rm Energy}\;(\rm kcal/mol)$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.36/0.74	0.14/0.33	1.505	3.13/3.32	1.10
Optimal	0.20/0.42	0.13/0.29	2.205	3.13/3.63	5.38

Table S388: The comparison list of optimized atomic charges and their initial guess for 2-methyl propanal, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	Penalty
HB3	0.090	0.090	0.150
CB	-0.270	-0.269	2.044
HB1	0.090	0.090	0.150
HB2	0.090	0.090	0.150
CG	0.010	0.002	5.265
$\mathbf{H}\mathbf{G}$	0.090	0.090	0.408
CD1	-0.225	-0.269	2.044
HD11	0.090	0.090	0.150
HD12	0.090	0.090	0.150
HD13	0.090	0.090	0.150
CD2	0.158	0.217	5.309
HD2	0.074	0.089	0.587
OE	-0.377	-0.400	0.579

Table S389: Interaction energies and geometries between probe water and selected 2-methylpropan al site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(*)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HB3-CB	0.0	-0.63/-0.21/-0.26	2.68/2.72/2.72
2	HB1-CB	0.0	-1.01/-1.11/-1.01	2.81/2.73/2.73
3	HB2-CB	0.0	-0.42/-0.12/-0.08	2.80/2.78/2.78
4	HG-CG	0.0	-1.66/-1.75/-1.77	2.65/2.67/2.67
5	HD11-CD1	0.0	-1.60/-1.83/-1.72	2.72/2.64/2.67
6	HD12-CD1	0.0	-1.45/-1.26/-1.07	2.64/2.64/2.66
7	HD13-CD1	0.0	-1.35/-1.54/-1.25	2.72/2.67/2.70
8	HD2-CD2	0.0	-1.84/-1.92/-2.57	2.58/2.29/2.24
9	HD2-CD2	90.0	-1.83/-1.93/-2.57	2.57/2.29/2.24
10	OE-CD2	0.0	-4.80/-4.89/-5.01	1.90/1.82/1.81
11	OE-CD2	90.0	-4.85/-5.02/-5.07	1.90/1.82/1.81
12	OE-CD2	180.0	-5.03/-5.11/-5.13	1.90/1.82/1.81
13	OE-CD2	270.0	-4.83/-5.01/-5.11	1.91/1.82/1.81

1.126 Small molecule used for (4s)-5-fluoro-l-leucine(LEF)

Figure S118: The molecule used for water complex calculations corresponding to 1-fluoro-2-methylpr opane, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S390: Statistics of calculated water interaction and dipole moment for 1-fluoro-2-methylpropane.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	${\rm Energy}\;(\rm kcal/mol)$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.08/0.17	0.13/0.24	1.066	2.01/2.19	1.53
Optimal	0.06/0.12	0.14/0.24	1.213	2.01/2.31	2.11

Table S391: The comparison list of optimized atomic charges and their initial guess for 1-fluor o-2-methylpropane, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.600
CB	-0.270	-0.271	6.162
HB2	0.090	0.090	0.600
HB1	0.090	0.090	0.600
CG	0.008	-0.023	15.062
HG	0.090	0.090	1.460
CD1	-0.171	-0.065	16.199
HD11	0.141	0.110	3.626
HD12	0.141	0.110	3.626
F1	-0.209	-0.220	3.626
CD2	-0.270	-0.271	6.162
HD21	0.090	0.090	0.600
HD22	0.090	0.090	0.600
HD23	0.090	0.090	0.600

Table S392: Interaction energies and geometries between probe water and selected 1-fluoro-2-methyl propane site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(*)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${ m QM}/{ m Optimal}/{ m Initial}$
1	HB3-CB	0.0	-1.06/-1.00/-0.94	2.77/2.72/2.73
2	HB2 CB	0.0	-1.22/-1.27/-1.25	2.77/2.70/2.70
3	HB1-CB	0.0	-1.22/-1.21/-1.18	2.76/2.71/2.71
4	HG-CG	0.0	-0.85/-0.73/-0.72	2.76/2.74/2.74
5	HD11-CD1	0.0	-1.36/-1.38/-1.29	2.66/2.61/2.63
6	HD11-CD1	90.0	-1.44/-1.42/-1.33	2.63/2.61/2.63
7	HD12-CD1	0.0	-1.31/-1.31/-1.22	2.68/2.62/2.64
8	HD12-CD1	90.0	-1.42/-1.34/-1.25	2.64/2.62/2.63
9	F1-CD1	0.0	-3.21/-3.29/-3.23	2.10/1.85/1.86
10	F1-CD1	90.0	-3.33/-3.36/-3.30	2.09/1.85/1.85
11	F1-CD1	180.0	-3.38/-3.39/-3.33	2.09/1.85/1.85
12	F1-CD1	270.0	-3.30/-3.34/-3.28	2.09/1.85/1.85
13	HD21-CD2	0.0	-0.83/-0.77/-0.76	2.86/2.76/2.76
14	HD22-CD2	0.0	-0.81/-0.78/-0.74	2.84/2.75/2.76

1.127 Small molecule A of (2S)-2-amino-6-[[3-hydroxy-2-methyl-5-(phosph onooxymethyl)pyridin-4-yl]methylideneamino]hexanoicacid(LLPP)

Figure S119: The molecule used for water complex calculations corresponding to 2,5-dimethyl-4-[(E)-(methylimino)methyl]pyridin-3-olate, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S393: Statistics of calculated water interaction and dipole moment for 2,5-dimethyl-4-[(E)-(methylimino)) methyl]pyridin-3-olate.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.65/1.45	0.11/0.24	4.628	4.78/5.30	25.14
Optimal	0.23/0.53	0.08/0.16	2.847	4.78/6.21	0.00

Table S394: The comparison list of optimized atomic charges and their initial guess for 2,5-dime thyl-4-[(E)-(methylimino)methyl]pyridin-3-olate, referring to the penalties of initial guess

Table S395: Interaction energies and geometries between probe water and selected 2,5-dimethyl-4 -[(E)-(methylimino)methyl]pyridin-3-olate site calculated using the optimized and initial charges

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
$\rm HE3$	0.090	0.090	0.025
CE	0.030	-0.052	3.180
HE1	0.090	0.090	0.025
HE2	0.090	0.090	0.025
ΝZ	-0.507	-0.600	3.182
C4P	-0.032	-0.099	14.915
H4P	0.105	0.240	0.250
C4	0.234	0.245	20.733
C3	0.050	0.091	2.104
O3	-0.495	-0.529	2.104
HO3	0.382	0.420	0.000
C2	0.302	0.357	17.715
C2P	-0.270	-0.267	16.637
H2P1	0.090	0.090	2.250
H2P2	0.090	0.090	2.250
H2P3	0.090	0.090	2.250
N1	-0.577	-0.621	14.965
C6	0.074	0.153	2.500
H6	0.099	0.121	0.000
C5	0.065	-0.002	12.965
C5P	-0.270	-0.267	12.965
H5P1	0.090	0.090	0.000
H5P2	0.090	0.090	0.000
H5P3	0.090	0.090	0.000

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(*)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HE3-CE	0.0	-1.47/-1.59/-0.58	2.64/2.63/2.74
2	$\operatorname{HE} 1\text{-}\operatorname{CE}$	0.0	-1.47/-1.59/-0.58	2.64/2.63/2.74
3	HE2-CE	0.0	-2.31/-2.58/-2.31	2.65/2.61/2.65
4	NZ-CE	0.0	-3.19/-3.45/-3.38	4.04/3.96/3.95
5	NZ-CE	90.0	-2.23/-2.13/-2.40	4.19/4.15/4.12
6	NZ-CE	180.0	-1.64/-1.27/-1.77	4.27/4.30/4.24
7	NZ-CE	270.0	-2.23/-2.13/-2.40	4.19/4.15/4.12
8	H4P-C4P	0.0	-2.62/-2.76/-3.94	2.74/2.71/2.57
9	H4P-C4P	90.0	-2.72/-3.00/-4.17	2.79/2.68/2.55
10	O3-C3	0.0	-3.06/-2.88/-3.23	2.20/2.34/2.31
11	O3-C3	90.0	-2.77/-2.89/-2.91	2.39/2.35/2.33
12	O3-C3	180.0	-2.52/-2.84/-2.48	2.52/2.37/2.38
13	O3-C3	270.0	-2.78/-2.89/-2.91	2.39/2.35/2.33
14	N1-C2	0.0	-6.04/-6.25/-5.84	1.95/1.86/1.85
15	N1-C2	90.0	-6.92/-6.66/-6.42	1.91/1.85/1.84
16	N1-C2	180.0	-5.93/-6.46/-6.28	1.98/1.86/1.85
17	N1-C2	270.0	-6.92/-6.66/-6.42	1.91/1.85/1.84
18	H6-C6	0.0	-1.13/-1.18/-2.14	2.66/2.50/2.43
19	H6-C6	90.0	-1.35/-1.22/-2.18	2.58/2.50/2.43
20	$\rm H5P1\text{-}C5P$	0.0	-1.91/-2.08/-2.63	2.62/2.62/2.59
21	$\rm H5P2\text{-}C5P$	0.0	-1.91/-2.08/-2.63	2.62/2.62/2.59
22	H5P 3-C5P	0.0	-1.75/-1.98/-2.38	2.67/2.62/2.61

1.128 Small molecule used for (3r)-3-methyl-l-glutamicacid(LME)

Figure S120: The molecule used for water complex calculations corresponding to 3-methylbutanoic acid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S396: Statistics of calculated water interaction and dipole moment for 3-methylbutanoicacid.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)} \fbox{Distance (Å)}$		m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.56/0.78	0.07/0.07	3.170	9.13/10.07	1.82
Optimal	0.16/0.26	0.06/0.06	3.122	$\boldsymbol{9.13/9.52}$	2.66

Table S397: The comparison list of optimized atomic charges and their initial guess for 3-meth ylbutanoicacid, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
CA	-0.270	-0.271	0.345		
\mathbf{HA}	0.090	0.090	0.000		
CB	-0.090	-0.086	3.888		
$_{\mathrm{HB}}$	0.090	0.090	0.000		
CG2	-0.270	-0.271	0.345		
HG21	0.090	0.090	0.000		
${ m HG22}$	0.090	0.090	0.000		
${ m HG23}$	0.090	0.090	0.000		
CG1	-0.404	-0.344	5.345		
$\mathrm{HG12}$	0.090	0.090	0.000		
HG11	0.090	0.090	0.000		
CD	0.694	0.682	5.469		
OE1	-0.735	-0.760	0.000		
OE2	-0.735	-0.760	0.000		

Table S398: Interaction energies and geometries between probe water and selected 3-methylbutanoic acid site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	${ m QM}/{ m Optimal}/{ m Initial}$	$\rm QM/Optimal/Initial$
1	OE1-CD	0.0	-13.90/-14.03/-14.42	1.72/1.66/1.65
2	OE1-CD	90.0	-14.23/-14.41/-14.93	1.72/ 1.66/ 1.65
3	OE1-CD	180.0	-14.74/-14.89/-15.52	1.71/1.65/1.64
4	OE1-CD	270.0	-14.23/-14.41/-14.92	1.72/1.66/1.65
5	OE2-CD	0.0	-14.05/-13.79/-14.19	1.72/ 1.66/ 1.65
6	OE2-CD	90.0	-14.31/-14.20/-14.72	1.72/ 1.66/ 1.65
7	OE2-CD	180.0	-14.81/-14.71/-15.33	1.71/1.65/1.65
8	OE2-CD	270.0	-14.31/-14.20/-14.72	1.72/ 1.66/ 1.65

1.129 Small molecule used for 4-oxo-l-valine(LVN)

Figure S121: The molecule used for water complex calculations corresponding to 2-methylpropanal, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S399: Statistics of calculated water interaction and dipole moment for 2-methylpropanal.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	${\rm Energy}\;(\rm kcal/mol)$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.26/0.72	0.11/0.34	1.256	3.29/3.32	1.82
Optimal	0.19/0.33	0.11/0.32	1.940	$\boldsymbol{3.29/3.75}$	4.47

Table S400: The comparison list of optimized atomic charges and their initial guess for 2-methyl propanal, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	0.150
HA2	0.090	0.090	0.150
\mathbf{CA}	-0.270	-0.269	2.044
HA	0.090	0.090	0.150
CB	0.044	0.002	5.265
$_{\mathrm{HB}}$	0.090	0.090	0.408
CG1	0.140	0.217	5.309
HG11	0.088	0.089	0.587
OG1	-0.391	-0.400	0.579
CG2	-0.241	-0.269	2.044
HG21	0.090	0.090	0.150
HG22	0.090	0.090	0.150
${ m HG23}$	0.090	0.090	0.150

Table S401: Interaction energies and geometries between probe water and selected 2-methylpropan al site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HA3-CA	0.0	-1.41/-1.40/-1.24	2.72/2.69/2.71
2	HA2-CA	0.0	-1.31/-0.98/-1.00	2.63/2.66/2.66
3	HA-CA	0.0	-1.68/-1.67/-1.66	2.69/2.67/2.67
4	HB-CB	0.0	-0.74/-0.82/-0.69	2.70/2.70/2.71
5	HG11-CG1	0.0	-1.77/-2.03/-2.48	2.59/2.28/2.25
6	OG1-CG1	0.0	-4.86/-4.96/-4.85	1.90/1.82/1.82
7	OG1-CG1	90.0	-4.88/-5.13/-4.93	1.90/1.81/1.82
8	OG1-CG1	180.0	-5.05/-5.22/-4.98	1.90/1.81/1.82
9	OG1-CG1	270.0	-4.88/-5.09/-4.93	1.91/1.81/1.82
10	HG21-CG2	0.0	-1.45/-1.24/-1.08	2.61/2.63/2.65
11	HG22-CG2	0.0	-1.57/-1.74/-1.61	2.72/2.66/2.68
12	${ m HG23-CG2}$	0.0	-1.39/-1.53/-1.24	2.72/2.67/2.71

Figure S122: The molecule used for water complex calculations corresponding to (2S)-N-methyl-2-(me thylsulfanyl)propanamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S402: Statistics of calculated water interaction and dipole moment for (2S)-N-methyl-2-(methyl sulfanyl)propanamide.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.38/0.67	0.20/0.47	2.243	4.82/4.84	7.50
Optimal	0.40/0.72	0.21/0.49	2.014	4.82/4.89	5.58

Table S403: The comparison list of optimized atomic charges and their initial guess for (2S)-Nmethyl-2-(methylsulfanyl)propanamide, referring to the penalties of initial guess

_

Atom	$\operatorname{Charges}$					
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$			
HE3	0.090	0.090	0.000			
CE	-0.110	-0.108	0.000			
HE1	0.090	0.090	0.000			
HE2	0.090	0.090	0.000			
NZ	-0.470	-0.470	2.500			
ΗZ	0.310	0.312	0.000			
C23	0.510	0.498	4.288			
O33	-0.510	-0.508	2.105			
C21	-0.040	-0.063	15.051			
H21	0.090	0.090	0.424			
C22	-0.270	-0.269	0.671			
H221	0.090	0.090	0.300			
H222	0.090	0.090	0.300			
H223	0.090	0.090	0.300			
S20	-0.100	-0.072	15.052			
C19	-0.220	-0.220	2.563			
H191	0.090	0.090	0.030			
H192	0.090	0.090	0.030			
H193	0.090	0.090	0.030			

Table S404: Interaction energies and geometries between probe water and selected (2S)-N-methyl-2 -(methylsulfanyl)propanamide site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HE3-CE	0.0	-1.19/-1.10/-1.07	2.70/2.67/2.67
2	HE1-CE	0.0	-1.74/-1.64/-1.63	2.66/2.66/2.66
3	HZ-NZ	0.0	-6.41/-7.10/-7.02	1.96/1.91/1.91
4	HZ-NZ	45.0	-6.65/-7.16/-7.09	1.94/1.90/1.90
5	HZ-NZ	90.0	-6.91/-7.26/-7.17	1.93/1.90/1.90
6	HZ-NZ	135.0	-6.67/-7.19/-7.10	1.94/1.90/1.90
7	O33-C23	0.0	-5.85/-6.45/-6.52	1.84/ 1.76/ 1.76
8	O33-C23	90.0	-6.09/-6.65/-6.74	1.84/ 1.76/ 1.76
9	O33-C23	180.0	-6.53/-7.02/-7.06	1.83/ 1.76/ 1.75
10	O33-C23	270.0	-6.45/-6.95/-6.97	1.83/1.76/1.75
11	H21-C21	0.0	-2.66/-2.99/-2.89	2.60/2.63/2.63
12	$\rm H221\text{-}C22$	0.0	-0.78/-0.64/-0.63	2.69/ 2.74/ 2.74
13	$\rm H223\text{-}C22$	0.0	-0.82/-0.70/-0.61	2.80/ 2.74/ 2.75
14	S20-C21	0.0	-1.22/-1.51/-1.28	2.96/2.46/2.49
15	S20-C21	90.0	-1.86/-2.15/-1.95	2.85/2.42/2.45
16	S20-C21	180.0	-1.39/-1.72/-1.56	2.94/2.45/2.47
17	S20-C21	270.0	-1.28/-1.22/-1.02	2.89/2.48/2.51
18	m H191- m C19	0.0	-0.68/-0.57/-0.57	4.67/4.50/4.50
19	$\rm H192\text{-}C19$	0.0	-2.17/-2.17/-2.19	2.66/2.67/2.67
20	H193-C19	0.0	-1.50/-0.78/-0.85	2.57/2.71/2.71

1.131 Small molecule used for S-(hydroxymethyl)-L-cysteine(M0H)

Figure S123: The molecule used for water complex calculations corresponding to (ethylsulfanyl)metha nol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S405: Statistics of calculated water interaction and dipole moment for (ethylsulfanyl)methanol.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	Energy (kcal/mol) Distance (Å)		m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.70/1.26	0.25/0.57	2.430	2.67/3.26	11.81
Optimal	0.52/1.12	0.25/0.56	1.653	2.67/2.96	4.12

Table S406: The comparison list of optimized atomic charges and their initial guess for (ethyls ulfanyl)methanol, referring to the penalties of initial guess

Table S407: Interaction energies and geometries be-
tween probe water and selected (ethylsulfanyl)met
hanol site calculated using the optimized and initial
charges

=

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.270	0.045
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
CB	-0.048	-0.066	14.230
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
\mathbf{SG}	-0.211	-0.226	29.077
CD	0.073	0.162	24.057
HD1	0.090	0.090	0.000
HD2	0.090	0.090	0.000
OE	-0.572	-0.650	21.538
HE	0.398	0.420	2.500

Ν	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA3-CA	0.0	-0.89/-0.73/-0.63	2.79/2.75/2.76
2	HA2-CA	0.0	-0.66/-0.33/-0.25	2.74/2.77/2.78
3	HA-CA	0.0	-0.54/-0.09/0.04	2.70/2.75/2.77
4	$\operatorname{HB1-CB}$	0.0	-0.97/-1.15/-1.11	2.80/2.73/2.74
5	SG-CB	0.0	-1.50/-2.46/-2.40	2.91/2.36/2.36
6	SG-CB	90.0	-1.89/-2.94/-3.03	2.83/2.33/2.33
7	SG-CB	180.0	-1.49/-2.61/-2.75	2.91/2.35/2.34
8	SG-CB	270.0	-1.60/-2.28/-2.28	2.85/2.37/2.36
9	HD1-CD	0.0	-1.72/-1.99/-2.34	2.64/2.64/2.61
10	HD2-CD	0.0	-1.44/-1.11/-1.47	2.60/2.68/2.64
11	OE-CD	0.0	-5.06/-4.65/-5.28	1.89/1.93/1.90
12	OE-CD	90.0	-4.46/-4.77/-5.52	1.92/1.92/1.89
13	OE-CD	180.0	-6.28/-6.68/-7.41	1.86/1.87/1.85
14	OE-CD	270.0	-6.03/-5.94/-6.53	1.86/1.90/1.87
15	HE-OE	0.0	-6.61/-6.85/-7.14	1.80/1.82/1.81
16	HE-OE	45.0	-6.72/-6.89/-7.20	1.79/1.82/1.81
17	HE-OE	90.0	-6.84/-6.95/-7.27	1.78/1.82/1.81
18	HE-OE	135.0	-6.73/-6.91/-7.21	1.79/1.82/1.81

1.132 Small molecule used for 3,3-dimethyl-methioninesulfoxide(M2S)

Figure S124: The molecule used for water complex calculations corresponding to (R)-(2,2-dimethyl propyl)(methyl)-lambda3-sulfanol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S408: Statistics of calculated water interaction and dipole moment for (R)-(2,2-dimethylprop yl) (methyl)-lambda3-sulfanol.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.55/1.06	0.08/0.15	2.444	4.35/5.28	3.89
Optimal	0.40/1.18	0.09/0.17	1.984	4.35/5.01	1.02

Table S409: The comparison list of optimized atomic charges and their initial guess for (R)-(2,2-dimethylpropyl)(methyl)-lambda3-sulfanol, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.270	1.300
\mathbf{HA}	0.090	0.090	0.000
CB	-0.000	0.003	2.264
CG1	-0.270	-0.270	1.300
HG13	0.090	0.090	0.000
HG11	0.090	0.090	0.000
HG12	0.090	0.090	0.000
CG2	-0.270	-0.270	1.300
$\mathrm{HG21}$	0.090	0.090	0.000
$\mathrm{HG}22$	0.090	0.090	0.000
${ m HG23}$	0.090	0.090	0.000
CG	-0.041	-0.064	2.264
HG1	0.090	0.090	0.000
$\mathrm{HG2}$	0.090	0.090	0.000
SD	0.261	0.311	2.264
OE	-0.505	-0.550	0.135
CE	-0.165	-0.150	0.135
HE1	0.090	0.090	0.000
HE2	0.090	0.090	0.000
HE3	0.090	0.090	0.000

Table S410: Interaction energies and geometries between probe water and selected (R)-(2,2-dimethyl propyl)(methyl)-lambda3-sulfanol site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${ m QM}/{ m Optimal}/{ m Initial}$
1	HA 3- CA	0.0	-1.16/-1.25/-1.20	2.77/2.71/2.71
2	HA2-CA	0.0	-1.14/-0.88/-0.86	2.74/2.73/2.73
3	HA-CA	0.0	-1.38/-1.49/-1.46	2.76/2.71/2.71
4	HG13-CG1	0.0	-0.48/-0.37/-0.28	2.91/2.80/2.82
5	HG11-CG1	0.0	-0.68/-0.43/-0.39	2.87/2.80/2.80
6	HG21-CG2	0.0	-1.07/-1.33/-1.36	2.87/2.73/2.74
7	HG22-CG2	0.0	-2.39/-1.21/-1.33	2.41/2.57/2.56
8	${ m HG23-CG2}$	0.0	-1.00/-0.70/-0.70	2.78/2.76/2.76
9	HG1-CG	0.0	-2.39/-2.75/-2.78	2.59/2.61/2.62
10	HG2-CG	0.0	-1.65/-1.62/-1.53	2.61/2.64/2.65
11	OE-SD	0.0	-7.08/-7.30/-7.99	1.79/1.74/1.73
12	OE-SD	90.0	-7.39/-7.68/-8.35	1.78/1.74/1.72
13	OE-SD	180.0	-7.53/-7.70/-8.33	1.78/1.74/1.72
14	OE-SD	270.0	-7.18/-7.32/-7.96	1.78/1.74/1.73
15	$\operatorname{HE}1\text{-}\operatorname{CE}$	0.0	-1.92/-1.54/-1.63	2.49/2.61/2.60
16	HE2-CE	0.0	-1.84/-1.09/-1.25	2.47/2.64/2.62
17	HE3-CE	0.0	-2.42/-2.45/-2.63	2.52/2.60/2.59

Figure S125: The molecule used for water complex calculations corresponding to (2S)-N-methyl-2-(N-methylacetamido)propanamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S411: Statistics of calculated water interaction and dipole moment for (2S)-N-methyl-2-(N-meth ylacetamido)propanamide.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.68/1.96	0.22/0.96	1.508	1.58/1.84	9.41
Optimal	0.44/1.49	0.22/0.94	1.157	1.58/1.77	7.63

Table S412: The comparison list of optimized atomic charges and their initial guess for (2S)-N-methyl-2-(N-methylacetamido) propanamide, referring to the penalties of initial guess

Table S413: Interaction energies and geometries between probe water and selected (2S)-N-methyl-2 -(N-methylacetamido)propanamide site calculated using the optimized and initial charges

Atom		Charges	
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$
N	-0.224	-0.297	11.002
CA	0.022	0.063	8.807
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.945
CB	-0.270	-0.270	4.112
HB1	0.090	0.090	0.050
HB2	0.090	0.090	0.050
HB3	0.090	0.090	0.050
CM	-0.158	-0.088	3.627
HM1	0.090	0.090	0.075
HM2	0.090	0.090	0.075
HM3	0.090	0.090	0.075
С	0.510	0.508	2.616
0	-0.510	-0.513	0.414

N	Probe	Angle	Energy $(kcal/mol)$	Distance (Å)
14	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	O-C	0.0	-5.95/-6.22/-6.19	1.83/1.76/1.76
2	O-C	90.0	-6.08/-6.39/-6.39	1.83/1.76/1.76
3	O-C	180.0	-5.88/-6.28/-6.31	1.83/1.76/1.76
4	O-C	270.0	-6.00/-6.28/-6.28	1.83/1.76/1.76
5	NR-C	0.0	-1.42/-1.22/-1.45	2.22/2.22/2.21
6	$\mathrm{HR} ext{-}\mathrm{NR}$	0.0	-1.81/-0.31/0.15	3.29/4.24/4.25
7	$\mathrm{HR2} ext{-}\mathrm{CR}$	0.0	-1.32/-1.41/-1.40	2.73/2.68/2.68
8	$\mathrm{HR3} ext{-}\mathrm{CR}$	0.0	-1.39/-1.48/-1.49	2.72/2.67/2.67
9	HA-CA	0.0	-2.16/-2.50/-2.80	3.20/3.15/3.15
10	$\rm HL1\text{-}CL$	0.0	-2.70/-2.42/-2.60	2.53/2.61/2.59
11	$\mathrm{HL2}\text{-}\mathrm{CL}$	0.0	-0.84/-0.58/-0.63	2.61/2.69/2.67
12	$\mathrm{HL3}\text{-}\mathrm{CL}$	0.0	-2.48/-3.09/-3.27	2.51/2.56/2.55
13	OL-CLP	0.0	-6.07/-6.27/-7.09	1.84/1.76/1.74
14	OL-CLP	90.0	-5.78/-5.97/-6.79	1.84/1.77/1.75
15	OL-CLP	180.0	-5.63/-5.86/-6.60	1.84/1.77/1.75
16	OL-CLP	270.0	-6.00/-6.26/-7.06	1.84/1.76/1.74
17	$\operatorname{HB1-CB}$	0.0	-1.12/-1.19/-1.35	2.79/2.71/2.71
18	$\mathrm{HB2}\text{-}\mathrm{CB}$	0.0	-1.79/-1.83/-1.77	2.67/2.64/2.64
19	$\mathrm{HM1}\text{-}\mathrm{CM}$	0.0	-0.31/-0.29/-0.13	2.67/2.70/2.69
20	$\mathrm{HM2}\text{-}\mathrm{C}\mathrm{M}$	0.0	-0.93/-0.99/-1.02	2.71/2.67/2.65
21	${ m HM3-CM}$	0.0	-3.46/-2.73/-2.95	2.45/2.57/2.56

Figure S126: The molecule used for water complex calculations corresponding to N,N-dimethylacetam ide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S414: Statistics of calculated water interaction and dipole moment for N,N-dimethylacetamide.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.70/1.48	0.06/0.13	2.251	4.09/4.73	1.30
Optimal	0.12/0.24	0.07/0.12	1.005	4.09/3.99	0.76

Table S415: The comparison list of optimized atomic charges and their initial guess for N,N-di methylacetamide, referring to the penalties of initial guess

Table S416: Interaction energies and geometries be-
tween probe water and selected N,N-dimethylacet
amide site calculated using the optimized and ini-
tial charges

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
CL	-0.270	-0.186	0.000
HL1	0.090	0.090	0.000
HL2	0.090	0.090	0.000
HL3	0.090	0.090	0.000
CLP	0.510	0.430	0.000
OL	-0.510	-0.531	0.000
Ν	-0.224	-0.347	0.000
\mathbf{CA}	-0.158	-0.088	0.000
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
HA1	0.090	0.090	0.000
HA2	0.090	0.090	0.000
CM	-0.158	-0.088	0.000
HM1	0.090	0.090	0.000
HM2	0.090	0.090	0.000
HM3	0.090	0.090	0.000

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(°)	$\rm QM/Optimal/Initial$	${ m QM/Optimal/Initial}$
1	$\rm HL1\text{-}CL$	0.0	-1.68/-1.58/-1.78	2.63/2.66/2.65
2	$\mathrm{HL2} ext{-}\mathrm{CL}$	0.0	-0.41/-0.18/-0.24	2.67/2.72/2.69
3	$\rm HL3-CL$	0.0	-1.85/-1.61/-1.79	2.58/2.64/2.62
4	OL-CLP	0.0	-6.65/-6.55/-7.36	1.82/1.76/1.74
5	OL-CLP	90.0	-6.54/-6.48/-7.35	1.82/1.76/1.74
6	OL-CLP	180.0	-6.18/-6.23/-7.06	1.83/1.77/1.75
7	OL-CLP	270.0	-6.51/-6.44/-7.27	1.82/1.76/1.74
8	N-CLP	0.0	-1.05/-1.12/-1.81	2.19/2.26/2.18
9	N-CLP	90.0	-2.60/-2.69/-3.89	2.11/2.19/2.11
10	N-CLP	180.0	-2.34/-2.51/-3.82	2.14/2.21/2.11
11	N-CLP	270.0	-0.84/-0.87/-1.57	2.20/2.28/2.19
12	HA-CA	0.0	-1.93/-2.08/-2.41	3.02/2.96/2.94
13	$\operatorname{HA1-CA}$	0.0	-1.59/-1.67/-1.86	2.69/2.64/2.62
14	$\mathrm{HA2}\text{-}\mathrm{CA}$	0.0	-1.69/-1.61/-1.81	2.67/2.66/2.64
15	$\mathrm{HM2}\text{-}\mathrm{C}\mathrm{M}$	0.0	-0.89/-0.99/-1.04	2.82/2.70/2.69
16	${ m HM3-CM}$	0.0	-1.15/-1.15/-1.25	2.76/2.69/2.68

Figure S127: The molecule used for water complex calculations corresponding to (2E)-2-(ethylimino)p ropanoate, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S417: Statistics of calculated water interaction and dipole moment for (2E)-2-(ethylimino) propa noate.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	$\rm QM/MM~(Debye)$	difference (°)
Initial	1.51/3.20	0.07/0.09	4.083	10.56/12.05	5.28
Optimal	0.24/0.48	0.07/0.08	3.028	10.56/10.12	1.79

Table S418: The comparison list of optimized atomic charges and their initial guess for (2E)-2- (ethylimino)propanoate, referring to the penalties of initial guess

Atom	Charges				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HD3	0.090	0.090	0.000		
CD	-0.270	-0.263	0.597		
HD1	0.090	0.090	0.000		
HD2	0.090	0.090	0.000		
CE	-0.019	0.021	3.263		
HE1	0.090	0.090	0.025		
HE2	0.090	0.090	0.025		
NZ	-0.693	-0.511	24.027		
CX1	0.340	0.222	28.145		
C1	-0.341	-0.332	8.472		
H11	0.090	0.090	0.862		
H12	0.090	0.090	0.862		
H13	0.090	0.090	0.862		
CX2	0.761	0.663	22.110		
O1	-0.749	-0.760	3.186		
O2	-0.749	-0.760	3.186		

Table S419: Interaction energies and geometries between probe water and selected (2E)-2-(ethylimi no)propanoate site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	NZ-CE	0.0	-14.15/-14.31/-13.28	1.92/1.88/1.93
2	NZ-CE	90.0	-9.47/-9.31/-7.33	1.99/1.93/2.02
3	NZ-CE	180.0	-7.39/-6.91/-4.19	2.03/1.95/2.07
4	NZ-CE	270.0	-10.37/-10.54/-8.47	1.97/1.91/1.99
5	O1-CX2	0.0	-13.29/-13.09/-13.98	1.73/1.67/1.66
6	O1-CX2	90.0	-13.88/-13.86/-14.76	1.73/1.66/1.65
7	O1-CX2	180.0	-14.14/-13.96/-15.13	1.72/1.66/1.65
8	O1-CX2	270.0	-13.41/-13.13/-14.30	1.73/1.67/1.65
9	O2-CX2	0.0	-13.43/-13.69/-14.38	1.74 / 1.66 / 1.65
10	O2-CX2	90.0	-13.19/-13.21/-14.34	1.74/1.67/1.65
11	O2-CX2	180.0	-13.79/-13.84/-15.04	1.73/1.66/1.65
12	O2-CX2	270.0	-13.79/-14.16/-14.95	1.74 / 1.66 / 1.65

1.136 Small molecule used for malonylcysteine(MCS)

Figure S128: The molecule used for water complex calculations corresponding to 3-(ethylsulfanyl)-3-ox opropanoicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S420: Statistics of calculated water interaction and dipole moment for 3-(ethylsulfanyl)-3-oxopro panoicacid.

	m RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	$\rm QM/MM~(Debye)$	difference (°)
Initial	2.09/3.21	0.22/0.40	7.157	9.98/13.65	3.16
Optimal	0.57/1.90	0.23/0.45	3.036	9.98/10.20	1.25

Table S421: The comparison list of optimized atomic charges and their initial guess for 3-(ethyls ulfanyl)-3-oxopropanoicacid, referring to the penalties of initial guess

Atom	Charges				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.270	-0.270	0.620		
\mathbf{HA}	0.090	0.090	0.000		
CB	-0.172	0.002	9.073		
HB1	0.090	0.090	0.575		
HB2	0.090	0.090	0.575		
\mathbf{SAI}	-0.202	-0.194	68.838		
CAK	0.712	0.772	87.575		
OAC	-0.485	-0.650	57.956		
CAG	-0.454	-0.344	69.883		
HG1	0.090	0.090	2.500		
${ m HG2}$	0.090	0.090	2.500		
CAJ	0.569	0.574	34.780		
OAE	-0.664	-0.760	2.450		
OAB	-0.664	-0.760	2.450		

Table S422: Interaction energies and geometries between probe water and selected 3- (ethylsulfanyl)-3-oxopropanoicacid site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
18	site	(°)	${ m QM}/{ m Optimal}/{ m Initial}$	${ m QM}/{ m Optimal}/{ m Initial}$
1	SAI-CB	0.0	-4.22/-4.82/-4.32	2.80/2.37/2.40
2	SAI-CB	90.0	-4.37/-4.99/-4.44	2.75/2.34/2.37
3	SAI-CB	180.0	-2.48/-2.56/-1.50	2.87/2.42/2.50
4	SAI-CB	270.0	-2.74/-2.38/-1.46	2.81/2.44/2.53
5	OAC-CAK	0.0	-7.03/-7.10/-8.68	1.91/1.79/1.72
6	OAC-CAK	90.0	-8.52/-9.10/-11.65	1.88/1.76/1.70
7	OAC-CAK	180.0	-8.20/-8.49/-11.41	1.89/1.77/1.70
8	OAC-CAK	270.0	-7.03/-6.68/-8.88	1.90/1.79/1.72
9	OAE-CAJ	0.0	-12.51/-12.37/-14.19	1.75/1.68/1.65
10	OAE-CAJ	90.0	-12.86/-12.84/-15.03	1.75/1.68/1.65
11	OAE-CAJ	180.0	-13.35/-13.29/-15.62	1.74 / 1.67 / 1.64
12	OAE-CAJ	270.0	-12.85/-12.76/-14.73	1.75/1.68/1.65
13	OAB-CAJ	0.0	-9.03/-10.93/-12.21	1.99/1.77/1.72
14	OAB-CAJ	90.0	-11.13/-10.89/-12.48	1.78/1.75/1.70
15	OAB-CAJ	180.0	-11.37/-11.18/-13.93	1.76/1.74/1.69
16	OAB-CAJ	270.0	-11.50/-11.31/-14.02	1.77/1.74/1.69

1.137 Small molecule A of [2-((1S)-1-aminoethyl)-4-methylidene-5-oxo-4,5dihydro-1H-imidazol-1-yl]aceticacid(MDO)

Figure S129: The molecule used for water complex calculations corresponding to 2,3-Dimethyl-5-met hylideneimidazol-4-one, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S423: Statistics of calculated water interaction and dipole moment for 2,3-Dimethyl-5-methylide neimidazol-4-one.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	$\rm QM/MM~(Debye)$	difference (°)
Initial	1.03/1.73	0.13/0.32	7.443	3.52/0.38	91.17
Optimal	0.29/0.55	0.09/0.24	2.372	3.52/4.22	3.15

Table S424: The comparison list of optimized atomic charges and their initial guess for 2,3-Di methyl-5-methylideneimidazol-4-one, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$					
Atom	Optimal	Initial	$\mathbf{Penalty}$			
HA1	0.090	0.090	0.000			
HA2	0.090	0.090	0.000			
\mathbf{CA}	-0.070	-0.115	13.925			
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000			
C1	0.233	0.074	23.781			
N2	-0.679	-0.703	41.101			
N3	-0.080	-0.079	15.264			
C2	0.407	0.510	20.683			
O2	-0.489	-0.482	6.517			
CA2	0.466	0.510	42.336			
CB2	-0.593	-0.444	13.655			
HB21	0.230	0.230	0.950			
HB22	0.230	0.230	0.950			
CA3	-0.195	-0.271	3.821			
HA31	0.090	0.090	0.000			
HA32	0.090	0.090	0.000			
HA33	0.090	0.090	0.000			

Table S425: Interaction energies and geometries between probe water and selected 2,3-Dimethyl-5-m ethylideneimidazol-4-one site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(°)	${ m QM}/{ m Optimal}/{ m Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	N2-C1	0.0	-6.45/-6.93/-6.29	1.93/1.91/1.91
2	N2-C1	90.0	-7.05/-6.72/-7.36	1.88/1.91/1.89
3	N2-C1	180.0	-5.75/-5.60/-7.43	1.95/1.93/1.90
4	N2-C1	270.0	-7.05/-6.72/-7.36	1.88/1.91/1.89
5	N 3-C 1	0.0	-0.04/-0.59/-0.97	2.80/2.56/2.49
6	O2-C2	0.0	-5.18/-5.47/-5.21	1.87/1.78/1.79
7	O2-C2	90.0	-5.56/-5.72/-4.91	1.86/1.78/1.80
8	O2-C2	180.0	-5.66/-5.75/-4.38	1.86/1.78/1.81
9	O2-C2	270.0	-5.56/-5.72/-4.91	1.86/1.78/1.80
10	HB21-CB2	0.0	-1.50/-1.27/-3.23	2.33/2.48/2.41
11	HA31-CA3	0.0	-2.30/-2.21/-1.14	2.57/2.63/2.70
12	HA33-CA3	0.0	-2.30/-2.21/-1.14	2.57/2.63/2.70
13	HA1-CA	0.0	-2.29/-2.75/-1.43	2.57/2.58/2.65
14	HA2-CA	0.0	-1.07/-1.00/0.16	2.54/2.63/2.78
15	HA-CA	0.0	-2.69/-2.87/-1.49	2.50/2.57/2.64

1.138 Small molecule B of [2-((1S)-1-aminoethyl)-4-methylidene-5-oxo-4,5dihydro-1H-imidazol-1-yl]aceticacid(MDO)

Figure S130: The molecule used for water complex calculations corresponding to N-[(1S)-1-(1-methyl -4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-2-yl)ethyl]acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

 $\label{eq:statistics} Table S426: Statistics of calculated water interaction and dipole moment for N-[(1S)-1-(1-methyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-2-yl)ethyl] acetamide.$

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.97/1.76	0.44/2.26	6.449	4.14/4.46	51.78
Optimal	0.51/1.11	0.08/0.19	1.846	4.14/4.25	8.20

Table S427: The comparison list of optimized atomic charges and their initial guess for N-[(1S)-1-(1-methyl-4-methylidene-5-oxo-4,5-dihydro-1H -imidazol-2-yl)ethyl]acetamide, referring to the penalties of initial guess

Atom	Charges					
Atom	Optimal	Initial	$\mathbf{Penalty}$			
CL	-0.270	-0.270	0.000			
HL1	0.090	0.090	0.000			
HL2	0.090	0.090	0.000			
HL3	0.090	0.090	0.000			
CLP	0.510	0.513	6.342			
OL	-0.510	-0.510	0.000			
Ν	-0.470	-0.452	12.613			
Η	0.310	0.287	8.293			
\mathbf{CA}	0.270	0.234	17.154			
HA	0.090	0.090	0.520			
CB	-0.270	-0.267	2.233			
HB1	0.090	0.090	0.300			
HB2	0.090	0.090	0.300			
HB3	0.090	0.090	0.300			
C1	0.233	0.058	27.526			
N2	-0.679	-0.703	41.131			
N3	-0.080	-0.073	17.082			
C2	0.407	0.510	20.808			
O2	-0.489	-0.482	6.517			
CA2	0.466	0.510	42.290			
CB2	-0.593	-0.444	13.655			
HB21	0.230	0.230	0.950			
HB22	0.230	0.230	0.950			
CA3	-0.195	-0.271	3.821			
HA31	0.090	0.090	0.000			
HA32	0.090	0.090	0.000			
HA33	0.090	0.090	0.000			

Table S428: Interaction energies and geometries between probe water and selected N-[(1S)-1-(1-meth yl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-2-yl)ethyl]acetamide site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HL1-CL	0.0	-2.68/-2.54/-2.07	2.50/2.60/2.61
2	HL2-CL	0.0	-2.37/-1.88/-1.35	2.49/2.62/2.65
3	HL3-CL	0.0	-1.37/-0.81/-0.56	2.53/2.68/2.69
4	OL-CLP	0.0	-6.07/-6.66/-6.66	1.81/1.76/1.77
5	OL-CLP	90.0	-5.68/-6.12/-6.38	1.82/1.76/1.77
6	OL-CLP	180.0	-4.51/-4.80/-5.83	1.85/1.79/1.78
7	OL-CLP	270.0	-4.97/-5.68/-6.34	1.85/1.78/1.77
8	H-N	0.0	-5.97/-6.89/-4.95	1.87/1.86/1.90
9	H-N	45.0	-5.79/-6.66/-4.68	1.87/1.86/1.91
10	H-N	90.0	-6.64/-7.14/-5.01	1.83/1.85/1.89
11	H-N	135.0	-6.88/-7.41/-5.31	1.83/1.84/1.88
12	HA-CA	0.0	-1.17/-1.68/-0.23	2.81/2.73/2.82
13	HB1-CB	0.0	-0.31/-0.41/0.11	2.74/2.72/5.00
14	HB2-CB	0.0	-1.35/-1.76/-1.16	2.69/2.64/2.67
15	HB3-CB	0.0	-1.43/-1.66/-0.82	2.69/2.65/2.72
16	N2-C1	0.0	-6.44/-6.58/-6.00	1.90/ 1.98/ 1.98
17	N2-C1	90.0	-7.30/-6.19/-6.79	1.90/1.99/1.97
18	N2-C1	180.0	-3.96/-3.69/-5.44	2.10/2.05/2.00
19	N2-C1	270.0	-5.92/-4.96/-5.69	1.91/2.00/1.98
20	N3-C1	0.0	-2.09/-2.13/-2.47	2.71/2.52/2.48
21	O2-C2	0.0	-5.35/-5.70/-5.42	1.87/1.78/1.79
22	O2-C2	90.0	-5.52/-5.68/-4.88	1.86/1.78/1.80
23	O2-C2	180.0	-5.44/-5.54/-4.18	1.86/1.78/1.81
24	O2-C2	270.0	-5.48/-5.72/-4.91	1.86/1.78/1.80
25	HB21-CB2	0.0	-1.64/-1.45/-3.39	2.32/2.47/2.41
26	HB22-CB2	0.0	-1.38/-0.95/-2.47	2.50/2.56/2.47
27	HA31-CA3	0.0	-1.49/-1.55/-0.63	2.65/2.64/2.73

1.139 Small molecule C of [2-((1S)-1-aminoethyl)-4-methylidene-5-oxo-4,5dihydro-1H-imidazol-1-yl]aceticacid(MDO)

Table S429: The molecule used for water complex calculations corresponding to N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

		RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
		Energy (kcal/mol)	Distance (Å)	${f RMS}~({ m kcal}/{ m mol}/{ m \AA})$	$\rm QM/MM~(Debye)$	difference (°)
Geometry 1	Initial	$0.86 \ / \ 2.05$	$0.07 \ / \ 0.17$	6.601	1.19 / 4.07	1.19
Geometry 2	Initial	$1.02\ /\ 2.07$	$0.09 \ / \ 0.23$	6.126	$6.37 \ / \ 4.43$	6.37
Sum of geometries	Initial	$0.95\ /\ 2.07$	$0.08 \ / \ 0.23$	12.727	-	-
Geometry 1	Optimal	0.36 / 0.81	0.07 / 0.16	2.460	1.19 / 1.37	1.19
Geometry 2	Optimal	$0.51\ /\ 0.91$	$0.08 \ / \ 0.19$	2.701	$6.37 \ / \ 7.25$	6.37
Sum of geomeries	Optimal	$0.45\ /\ 0.91$	$0.08 \ / \ 0.19$	5.161	-	-

Table S430: Statistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide.

Table S431: The comparison list of optimized atomic charges and their initial guess for N-methyl -2-(2-methyl-4-methylidene-5-oxo-4,5-dihydro-1H -imidazol-1-yl)acetamide, referring to the penalties of initial guess

=

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HA1	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
CA	-0.070	-0.115	13.925		
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000		
C1	0.233	0.164	24.002		
N2	-0.679	-0.703	41.104		
N3	-0.031	-0.499	22.994		
C2	0.407	0.613	23.378		
O2	-0.489	-0.482	6.517		
CA2	0.466	0.512	42.773		
CB2	-0.593	-0.444	13.655		
HB21	0.230	0.230	0.950		
HB22	0.230	0.230	0.950		
CA3	-0.154	0.043	13.461		
HA31	0.090	0.090	0.177		
HA32	0.090	0.090	0.177		
С	0.510	0.499	10.097		
Ο	-0.510	-0.517	3.479		
\mathbf{NR}	-0.470	-0.442	6.773		
$_{\mathrm{HR}}$	0.310	0.299	0.000		
\mathbf{CR}	-0.110	-0.108	0.239		
$\mathrm{HR1}$	0.090	0.090	0.000		
HR2	0.090	0.090	0.000		
HR3	0.090	0.090	0.000		

Table S432: Interaction energies and geometries between probe water and selected N-methyl-2-(2-me thyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazo l-1-yl)acetamide site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1.	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
	Geometry	1		
1	O-C	0.0	-5.45/-5.47/-6.22	1.84/1.77/1.76
2	O-C	90.0	-6.01/-6.48/-6.53	1.83/1.75/1.76
3	O-C	180.0	-5.96/-6.64/-6.64	1.83/1.75/1.75
4	O-C	270.0	-5.67/-5.94/-6.62	1.84/1.76/1.75
5	NR-C	0.0	-1.32/-1.50/-1.08	2.24/2.20/2.22
6	HR2-CR	0.0	-1.10/-1.26/-1.09	2.71/2.66/2.67
7	HR3-CR	0.0	-1.39/-1.22/-1.32	2.66/2.67/2.67
8	N2-C1	0.0	-5.74/-6.45/-6.04	1.95/1.92/1.92
9	N2-C1	90.0	-6.51/-6.37/-7.24	1.90/1.92/1.90
10	N2-C1	180.0	-5.60/-5.66/-7.65	1.96/1.93/1.90
11	N2-C1	270.0	-6.64/-6.59/-7.43	1.90/1.91/1.89
12	O2-C2	0.0	-3.88/-3.93/-3.54	1.88/1.80/1.81
13	O2-C2	90.0	-4.94/-5.15/-4.46	1.84/1.77/1.79
14	O2-C2	180.0	-4.95/-5.20/-4.05	1.84/1.77/1.79
15	O2-C2	270.0	-3.93/-4.12/-3.39	1.87/1.79/1.81
16	HB21-CB2	0.0	-1.84/-1.64/-3.47	2.32/2.48/2.42
17	HB22-CB2	0.0	-1.82/-1.01/-2.42	2.42/2.54/2.46
18	HA31-CA3	0.0	-2.08/-2.47/-1.68	2.70/2.69/2.70
19	HA-CA	0.0	-2.47/-2.76/-1.19	2.49/2.56/2.66
	Geometry	2		
20	O-C	0.0	-6.06/-6.90/-7.24	1.86/1.76/1.75
21	O-C	90.0	-5.25/-6.15/-7.32	1.87/1.77/1.75
22	O-C	180.0	-4.71/-5.63/-6.52	1.88/1.77/1.76
23	O-C	270.0	-5.56/-6.46/-6.85	1.86/1.76/1.76
24	HR-NR	0.0	-7.09/-7.67/-7.53	1.93/1.90/1.90
25	HR-NR	45.0	-7.71/-7.90/-7.71	1.91/1.89/1.89
26	HR-NR	90.0	-7.79/-7.84/-7.79	1.90/1.89/1.89
27	HR-NR	135.0	-7.18/-7.62/-7.61	1.92/1.90/1.89
28	HR1-CR	0.0	-0.71/-0.04/0.30	2.50/2.69/2.67
29	HR2-CR	0.0	-1.54/-1.44/-1.38	2.68/2.66/2.66
30	HR3-CR	0.0	-1.84/-1.82/-1.70	2.68/2.67/2.66
31	N2-C1	0.0	-6.46/-6.98/-6.58	1.93/1.91/1.91
32	N2-C1	90.0	-6.88/-6.47/-7.35	1.89/1.91/1.89
33	N2-C1	180.0	-5.73/-5.60/-7.60	1.95/1.93/1.90
34	N2-C1	270.0	-7.31/-7.09/-7.94	1.88/1.91/1.89
35	N3-C1	0.0	-0.22/0.03/-2.15	2.60/2.67/2.17
36	O2-C2	0.0	-4.96/-5.34/-4.95	1.88/1.79/1.80
37	O2-C2	90.0	-5.32/-5.37/-4.66	1.87/1.78/1.80
38	O2-C2	180.0	-5.74/-5.89/-4.71	1.87/1.78/1.81
39	O2-C2	270.0	-5.94/-6.25/-5.51	1.85/1.77/1.79
40	HB21-CB2	0.0	-1.43/-1.20/-3.03	2.33/2.48/2.41
41	HB22-CB2	0.0	-1.29/-0.66/-2.05	2.47/2.56/2.47
42	HA31-CA3	0.0	-3.71/-4.08/-3.49	2.50/2.57/2.57
43	HA-CA	0.0	-2.67/-3.45/-1.93	2.59/2.58/2.69

1.140 Small molecule used for hydroxy-l-methionine(ME0)

Figure S131: The molecule used for water complex calculations corresponding to (ethylsulfanyl)metha nol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S433: Statistics of calculated water interaction and dipole moment for (ethylsulfanyl)methanol.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.70/1.26	0.25/0.57	2.430	2.67/3.27	11.80
Optimal	0.62/1.34	0.26/0.58	1.739	2.67/3.09	2.55

Table S434: The comparison list of optimized atomic charges and their initial guess for (ethyls ulfanyl)methanol, referring to the penalties of initial guess

Table S435: Interaction energies and geometries be-
tween probe water and selected (ethylsulfanyl)met
hanol site calculated using the optimized and initial
charges

=

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.270	-0.270	0.045
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
CG	-0.035	-0.066	14.230
HG1	0.090	0.090	0.000
${ m HG2}$	0.090	0.090	0.000
$^{\mathrm{SD}}$	-0.240	-0.226	29.077
CE	0.091	0.162	24.057
HE1	0.090	0.090	0.000
HE2	0.090	0.090	0.000
ΟZ	-0.574	-0.650	21.538
ΗZ	0.398	0.420	2.500

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-0.87/-0.74/-0.61	2.80/2.75/2.76
2	HB1-CB	0.0	-0.54/-0.07/0.04	2.70/2.75/2.77
3	HB2-CB	0.0	-0.66/-0.31/-0.25	2.74/2.77/2.78
4	HG1-CG	0.0	-0.97/-1.20/-1.11	2.80/2.72/2.74
5	$\operatorname{SD-CG}$	0.0	-1.50/-2.67/-2.40	2.91/2.34/2.36
6	$\operatorname{SD-CG}$	90.0	-1.89/-3.17/-3.03	2.83/2.32/2.33
7	$\operatorname{SD-CG}$	180.0	-1.49/-2.83/-2.75	2.91/2.33/2.34
8	$\operatorname{SD-CG}$	270.0	-1.60/-2.50/-2.28	2.85/2.35/2.36
9	HE1-CE	0.0	-1.44/-1.14/-1.47	2.60/2.67/2.64
10	HE2-CE	0.0	-1.72/-2.06/-2.34	2.64/2.64/2.61
11	OZ-CE	0.0	-5.07/-4.61/-5.28	1.89/1.93/1.90
12	OZ-CE	90.0	-4.46/-4.72/-5.52	1.92/1.92/1.89
13	OZ-CE	180.0	-6.28/-6.75/-7.41	1.86/1.87/1.85
14	OZ-CE	270.0	-6.03/-5.97/-6.53	1.86/1.90/1.87
15	HZ-OZ	0.0	-6.61/-6.91/-7.14	1.80/1.82/1.81
16	HZ-OZ	45.0	-6.71/-6.95/-7.20	1.79/1.82/1.81
17	HZ-OZ	90.0	-6.83/-7.01/-7.27	1.78/1.82/1.81
18	HZ-OZ	135.0	-6.72/-6.97/-7.22	1.79/1.82/1.81

1.141 Small molecule used for N1-methylatedhistidine(MHS)

Figure S132: The molecule used for water complex calculations corresponding to 5-ethyl-1-methyl-2,3-dihydro-1H-imidazole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S436: Statistics of calculated water interaction and dipole moment for 5-ethyl-1-methyl-2, 3-dihy dro-1H-imidazole.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.65/1.25	0.13/0.25	2.462	4.23/3.95	7.33
Optimal	0.34/0.71	0.12/0.24	2.275	4.23/3.91	9.92

Table S437: The comparison list of optimized atomic charges and their initial guess for 5-ethy l-1-methyl-2,3-dihydro-1H-imidazole, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.270	-0.270	0.000		
\mathbf{HA}	0.090	0.090	0.000		
CB	-0.020	-0.049	2.500		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
CG	0.163	0.197	48.680		
ND1	-0.446	-0.505	90.023		
\mathcal{CM}	0.173	0.162	78.311		
HM1	0.090	0.090	3.537		
HM2	0.090	0.090	3.537		
HM3	0.090	0.090	3.537		
CD2	0.089	0.191	14.989		
HD2	0.169	0.130	0.000		
CE1	0.323	0.336	48.268		
HE1	0.192	0.157	14.504		
NE2	-0.535	-0.509	9.726		
HE2	0.442	0.440	0.000		

Table S438: Interaction energies and geometries between probe water and selected 5-ethyl-1-methyl -2,3-dihydro-1H-imidazole site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA3-CA	0.0	-4.52/-3.93/-3.87	2.46/2.61/2.61
2	HA2-CA	0.0	-4.19/-4.22/-4.32	2.60/2.65/2.65
3	HA-CA	0.0	-5.81/-5.10/-4.98	2.81/3.05/3.05
4	HB1-CB	0.0	-6.20/-5.99/-6.07	2.36/2.55/2.55
5	HB2-CB	0.0	-7.24/-6.83/-6.63	2.49/2.59/2.60
6	HM1-CM	0.0	-7.58/-6.91/-6.62	2.26/2.50/2.51
7	$\rm HM2\text{-}CM$	0.0	-5.77/-5.69/-5.48	2.89/3.04/3.06
8	HM3-CM	0.0	-7.63/-7.41/-6.99	2.35/2.51/2.52
9	HD2-CD2	0.0	-8.49/-8.58/-8.74	2.17/2.17/2.17
10	HD2-CD2	90.0	-9.11/-8.82/-8.97	2.13/2.16/2.17
11	$\operatorname{H\!E} \operatorname{1-C\!E} \operatorname{1}$	0.0	-11.19/-11.40/-10.46	2.06/1.99/2.01
12	$\operatorname{H\!E}\operatorname{1-}\operatorname{C\!E}\operatorname{1}$	90.0	-12.13/-11.84/-10.88	2.02/1.98/2.00
13	$\operatorname{HE} 2\operatorname{\!-NE} 2$	0.0	-14.87/-15.08/-15.73	1.75/1.75/1.74
14	$\operatorname{HE} 2\operatorname{\!-NE} 2$	45.0	-15.26/-15.26/-15.89	1.74 / 1.75 / 1.74
15	$\operatorname{HE} 2\operatorname{\!-NE} 2$	90.0	-15.64/-15.43/-16.04	1.73/1.75/1.74
16	$\operatorname{HE}\operatorname{2-NE}\operatorname{2}$	135.0	-15.25/-15.26/-15.89	1.74/1.75/1.74
1.142 Small molecule used for N1-methylatedhistidine(MHS)

Figure S133: The molecule used for water complex calculations corresponding to 5-ethyl-1-methyl-1Himidazole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S439: Statistics of calculated water interaction and dipole moment for 5-ethyl-1-methyl-1H-imid azole.

	m RMS/Max Deviation from $ m QM$		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.53/0.89	0.14/0.37	2.487	4.33/4.05	14.46
Optimal	0.22/0.45	0.12/0.33	2.735	4.33/5.58	0.38

Table S440: The comparison list of optimized Table S441: Interaction energies and geometries beatomic charges and their initial guess for 5-ethy l-1-methyl-1H-imidazole, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.269	0.000
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
CB	-0.041	-0.088	2.500
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
CG	-0.306	-0.139	2.500
ND1	-0.038	0.028	2.500
CM	-0.044	-0.231	2.500
HM1	0.090	0.090	0.000
HM2	0.090	0.090	0.000
HM3	0.090	0.090	0.000
CD2	0.218	0.218	0.000
HD2	0.102	0.102	0.000
CE1	0.240	0.240	0.000
HE1	0.097	0.097	0.000
NE2	-0.678	-0.678	0.000

tween probe water and selected 5-ethyl-1-methyl -1H-imidazole site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA3-CA	0.0	-0.96/-1.06/-1.07	2.82/2.73/2.73
2	HA2-CA	0.0	-1.04/-0.89/-1.24	2.69/2.69/2.68
3	HA-CA	0.0	-1.76/-1.78/-1.32	3.16/3.30/3.28
4	HB1-CB	0.0	-1.31/-1.24/-1.63	2.66/2.69/2.67
5	HB2-CB	0.0	-2.10/-2.14/-1.81	2.76/2.71/2.70
6	ND1-CG	0.0	-0.09/-0.23/-0.48	3.73/3.84/3.70
7	ND1-CG	45.0	-0.19/-0.34/-0.64	3.76/3.78/3.65
8	ND1-CG	90.0	-0.16/-0.36/-0.66	3.80/3.79/3.65
9	ND1-CG	135.0	-0.07/-0.24/-0.50	3.77/3.85/3.70
10	HM1-CM	0.0	-2.26/-2.45/-1.57	2.53/2.58/2.66
11	$\mathrm{HM2}\text{-}\mathrm{CM}$	0.0	-1.86/-2.15/-1.45	2.95/2.93/3.04
12	HM3-CM	0.0	-2.54/-2.99/-1.98	2.56/2.56/2.63
13	HD2-CD2	0.0	-0.71/-0.69/-1.44	2.70/2.37/2.33
14	HD2-CD2	90.0	-0.76/-0.67/-1.41	2.67/2.38/2.33
15	$\operatorname{H\!E} \operatorname{1-}\!\operatorname{C\!E} \operatorname{1}$	0.0	-2.01/-1.94/-1.95	2.48/2.31/2.30
16	$\operatorname{H\!E} \operatorname{1-}\!\operatorname{C\!E} \operatorname{1}$	90.0	-2.27/-2.05/-1.97	2.42/2.31/2.30
17	NE2-CD2	0.0	-7.28/-7.01/-6.73	1.92/1.91/1.92
18	NE2-CD2	90.0	-7.87/-7.46/-7.01	1.89/1.91/1.91
19	NE2-CD2	180.0	-7.67/-7.49/-6.88	1.91/1.91/1.92
20	NE2-CD2	270.0	-7.87/-7.43/-6.99	1.89/1.91/1.91

1.143 Small molecule used for N1-methylatedhistidine(MHSP)

Figure S134: The molecule used for water complex calculations corresponding to 5-ethyl-1-methyl-2,3-dihydro-1H-imidazole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S442: Statistics of calculated water interaction and dipole moment for 5-ethyl-1-methyl-2, 3-dihy dro-1H-imidazole.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.65/1.25	0.13/0.25	2.462	4.23/3.95	7.33
Optimal	0.34/0.71	0.12/0.24	2.275	4.23/3.91	9.92

Table S443: The comparison list of optimized atomic charges and their initial guess for 5-ethy l-1-methyl-2,3-dihydro-1H-imidazole, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.270	0.000
\mathbf{HA}	0.090	0.090	0.000
CB	-0.020	-0.049	2.500
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
CG	0.163	0.197	48.680
ND1	-0.446	-0.505	90.023
\mathcal{CM}	0.173	0.162	78.311
HM1	0.090	0.090	3.537
HM2	0.090	0.090	3.537
HM3	0.090	0.090	3.537
CD2	0.089	0.191	14.989
HD2	0.169	0.130	0.000
CE1	0.323	0.336	48.268
HE1	0.192	0.157	14.504
NE2	-0.535	-0.509	9.726
HE2	0.442	0.440	0.000

Table S444: Interaction energies and geometries between probe water and selected 5-ethyl-1-methyl -2,3-dihydro-1H-imidazole site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA3-CA	0.0	-4.52/-3.93/-3.87	2.46/2.61/2.61
2	HA2-CA	0.0	-4.19/-4.22/-4.32	2.60/2.65/2.65
3	HA-CA	0.0	-5.81/-5.10/-4.98	2.81/3.05/3.05
4	HB1-CB	0.0	-6.20/-5.99/-6.07	2.36/2.55/2.55
5	HB2-CB	0.0	-7.24/-6.83/-6.63	2.49/2.59/2.60
6	HM1-CM	0.0	-7.58/-6.91/-6.62	2.26/2.50/2.51
7	$\rm HM2\text{-}CM$	0.0	-5.77/-5.69/-5.48	2.89/3.04/3.06
8	HM3-CM	0.0	-7.63/-7.41/-6.99	2.35/2.51/2.52
9	HD2-CD2	0.0	-8.49/-8.58/-8.74	2.17/2.17/2.17
10	HD2-CD2	90.0	-9.11/-8.82/-8.97	2.13/2.16/2.17
11	$\operatorname{H\!E} \operatorname{1-C\!E} \operatorname{1}$	0.0	-11.19/-11.40/-10.46	2.06/1.99/2.01
12	$\operatorname{H\!E} \operatorname{1-C\!E} \operatorname{1}$	90.0	-12.13/-11.84/-10.88	2.02/1.98/2.00
13	$\operatorname{HE} 2\operatorname{\!-NE} 2$	0.0	-14.87/-15.08/-15.73	1.75/1.75/1.74
14	$\operatorname{HE} 2\operatorname{\!-NE} 2$	45.0	-15.26/-15.26/-15.89	1.74 / 1.75 / 1.74
15	$\operatorname{HE} 2\operatorname{\!-NE} 2$	90.0	-15.64/-15.43/-16.04	1.73/1.75/1.74
16	$\operatorname{HE}\operatorname{2-NE}\operatorname{2}$	135.0	-15.25/-15.26/-15.89	1.74/1.75/1.74

1.144 Small molecule used for N1-methylatedhistidine(MHSP)

Figure S135: The molecule used for water complex calculations corresponding to 5-ethyl-1-methyl-1Himidazole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S445: Statistics of calculated water interaction and dipole moment for 5-ethyl-1-methyl-1H-imid azole.

	m RMS/Max Deviation from $ m QM$		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.53/0.89	0.14/0.37	2.487	4.33/4.05	14.46
Optimal	0.22/0.45	0.12/0.33	2.735	4.33/5.58	0.38

Table S446: The comparison list of optimized Table S447: Interaction energies and geometries beatomic charges and their initial guess for 5-ethy l-1-methyl-1H-imidazole, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	Penalty
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.269	0.000
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
CB	-0.041	-0.088	2.500
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
CG	-0.306	-0.139	2.500
ND1	-0.038	0.028	2.500
CM	-0.044	-0.231	2.500
HM1	0.090	0.090	0.000
HM2	0.090	0.090	0.000
HM3	0.090	0.090	0.000
CD2	0.218	0.218	0.000
HD2	0.102	0.102	0.000
CE1	0.240	0.240	0.000
HE1	0.097	0.097	0.000
NE2	-0.678	-0.678	0.000

tween probe water and selected 5-ethyl-1-methyl -1H-imidazole site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA3-CA	0.0	-0.96/-1.06/-1.07	2.82/2.73/2.73
2	HA2-CA	0.0	-1.04/-0.89/-1.24	2.69/2.69/2.68
3	HA-CA	0.0	-1.76/-1.78/-1.32	3.16/3.30/3.28
4	HB1-CB	0.0	-1.31/-1.24/-1.63	2.66/2.69/2.67
5	HB2-CB	0.0	-2.10/-2.14/-1.81	2.76/2.71/2.70
6	ND1-CG	0.0	-0.09/-0.23/-0.48	3.73/3.84/3.70
7	ND1-CG	45.0	-0.19/-0.34/-0.64	3.76/3.78/3.65
8	ND1-CG	90.0	-0.16/-0.36/-0.66	3.80/3.79/3.65
9	ND1-CG	135.0	-0.07/-0.24/-0.50	3.77/3.85/3.70
10	HM1-CM	0.0	-2.26/-2.45/-1.57	2.53/2.58/2.66
11	$\mathrm{HM2}\text{-}\mathrm{CM}$	0.0	-1.86/-2.15/-1.45	2.95/2.93/3.04
12	HM3-CM	0.0	-2.54/-2.99/-1.98	2.56/2.56/2.63
13	HD2-CD2	0.0	-0.71/-0.69/-1.44	2.70/2.37/2.33
14	HD2-CD2	90.0	-0.76/-0.67/-1.41	2.67/2.38/2.33
15	$\operatorname{H\!E} \operatorname{1-}\!\operatorname{C\!E} \operatorname{1}$	0.0	-2.01/-1.94/-1.95	2.48/2.31/2.30
16	$\operatorname{H\!E} \operatorname{1-}\!\operatorname{C\!E} \operatorname{1}$	90.0	-2.27/-2.05/-1.97	2.42/2.31/2.30
17	NE2-CD2	0.0	-7.28/-7.01/-6.73	1.92/1.91/1.92
18	NE2-CD2	90.0	-7.87/-7.46/-7.01	1.89/1.91/1.91
19	NE2-CD2	180.0	-7.67/-7.49/-6.88	1.91/1.91/1.92
20	NE2-CD2	270.0	-7.87/-7.43/-6.99	1.89/1.91/1.91

1.145 Small molecule used for N-methyl-lysine(MLZ)

Figure S136: The molecule used for water complex calculations corresponding to methyl(pentyl)ami ne, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S448: Statistics of calculated water interaction and dipole moment for methyl(pentyl)amine.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.34/0.80	0.12/0.24	4.398	10.00/12.47	4.41
Optimal	0.34/0.84	0.12/0.25	2.705	10.00/11.35	2.76

Table S449: The comparison list of optimized atomic charges and their initial guess for methyl (pentyl)amine, referring to the penalties of initial guess

Table S450: Interaction energies and geometries be-
tween probe water and selected methyl(pentyl)ami
ne site calculated using the optimized and initial
charges

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.270	0.000
\mathbf{HA}	0.090	0.090	0.000
CB	-0.180	-0.194	0.000
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
CG	-0.180	-0.183	0.000
HG1	0.090	0.090	0.000
HG2	0.090	0.090	0.000
CD	-0.123	-0.167	0.844
HD1	0.090	0.090	0.000
HD2	0.090	0.090	0.000
CE	0.178	0.190	1.239
HE1	0.090	0.090	0.085
HE2	0.090	0.090	0.085
NZ	-0.472	-0.455	1.237
HZ1	0.337	0.329	0.000
HZ2	0.337	0.329	0.000
\mathcal{CM}	0.113	0.161	1.104
HCM1	0.090	0.090	0.085
HCM3	0.090	0.090	0.085
HCM2	0.090	0.090	0.085

Ν	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initia$
1	HA3-CA	0.0	-2.82/-2.17/-2.02	2.63/2.71/2.73
2	HA2-CA	0.0	-2.63/-2.18/-1.99	2.75/2.78/2.80
3	HA-CA	0.0	-2.63/-2.18/-1.99	2.75/2.78/2.80
4	HB1-CB	0.0	-3.32/-3.10/-2.78	2.75/2.75/2.78
5	HB2-CB	0.0	-3.32/-3.10/-2.78	2.75/2.75/2.78
6	HG1-CG	0.0	-4.62/-4.60/-4.34	2.61/2.65/2.66
7	HG2-CG	0.0	-4.62/-4.60/-4.34	2.61/2.65/2.66
8	HD1-CD	0.0	-6.60/-6.82/-6.46	2.47/2.55/2.57
9	HD2-CD	0.0	-6.60/-6.82/-6.46	2.47/2.55/2.57
10	$\operatorname{HE} 1\text{-}\operatorname{CE}$	0.0	-8.70/-8.38/-8.48	2.26/2.49/2.49
11	HE2-CE	0.0	-8.70/-8.38/-8.48	2.26/2.49/2.49
12	HZ1-NZ	0.0	-16.42/-16.49/-16.60	1.75/1.77/1.77
13	HZ1-NZ	45.0	-16.41/-16.44/-16.54	1.75/1.78/1.78
14	HZ1-NZ	90.0	-16.70/-16.57/-16.64	1.75/1.77/1.77
15	HZ1-NZ	135.0	-16.70/-16.63/-16.70	1.75/1.77/1.77
16	HZ2-NZ	0.0	-16.42/-16.49/-16.60	1.75/1.77/1.77
17	HZ2-NZ	45.0	-16.70/-16.63/-16.70	1.75/1.77/1.77
18	HZ2-NZ	90.0	-16.71/-16.57/-16.65	1.75/1.77/1.77
19	HZ2-NZ	135.0	-16.42/-16.44/-16.54	1.75/1.78/1.78
20	HCM1-CM	0.0	-8.75/-8.19/-8.70	2.24/2.48/2.46
21	HCM3-CM	0.0	-8.75/-8.19/-8.70	2.24/2.48/2.46
22	HCM2-CM	0.0	-8.77/-7.93/-8.42	2.22/2.48/2.46

1.146 Small molecule used for N1-phosphonohistidine(NEP)

Figure S137: The molecule used for water complex calculations corresponding to (4-ethyl-1H-imidazo l-1-yl)phosphonicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S451: Statistics of calculated water interaction and dipole moment for (4-ethyl-1H-imidazol-1-yl)phosphonicacid.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	$\rm QM/MM~(Debye)$	difference (°)
Initial	2.06/4.34	0.13/0.33	9.076	13.10/18.69	1.14
Optimal	0.39/1.18	0.07/0.16	3.488	13.10/13.76	3.29

Table S452: The comparison list of optimized atomic charges and their initial guess for (4-ethy l-1H-imidazol-1-yl)phosphonicacid, referring to the penalties of initial guess

Atom		$\operatorname{Charges}$				
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$			
HA3	0.090	0.090	0.000			
HA2	0.090	0.090	0.000			
\mathbf{CA}	-0.270	-0.276	0.474			
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000			
CB	-0.205	-0.080	0.570			
HB1	0.090	0.090	0.000			
HB2	0.090	0.090	0.000			
CG	0.160	0.229	2.564			
ND1	-0.886	-0.691	2.545			
CD2	-0.121	-0.144	71.310			
HD2	0.159	0.095	2.500			
CE1	0.268	0.258	52.247			
HE1	0.181	0.131	2.500			
NE2	-0.314	-0.448	97.938			
Р	1.539	1.323	98.286			
O1P	-0.987	-0.949	8.944			
O2P	-0.987	-0.949	8.944			
O3P	-0.987	-0.949	8.944			

Table S453: Interaction energies and geometries between probe water and selected (4-ethyl-1H-imida zol-1-yl)phosphonicacid site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
10	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	ND1-CG	0.0	-16.25/-16.10/-13.55	1.83/1.82/1.86
2	ND1-CG	90.0	-16.08/-15.88/-12.45	1.82/1.81/1.87
3	ND1-CG	180.0	-15.30/-15.42/-11.01	1.85/1.81/1.88
4	ND1-CG	270.0	-16.02/-15.76/-12.34	1.83/1.81/1.87
5	NE2-CD2	0.0	-11.65/-11.72/-14.37	2.62/2.46/2.29
6	NE2-CD2	90.0	-8.31/-7.12/-7.44	2.79/2.75/2.61
7	NE2-CD2	180.0	-8.46/-7.73/-8.47	2.84/2.69/2.53
8	NE2-CD2	270.0	-15.39/-16.22/-19.73	2.34/2.18/2.08
9	O1P-P	0.0	-20.86/-20.82/-21.45	1.66/1.60/1.60
10	O1P-P	90.0	-20.63/-20.61/-21.32	1.66/1.60/1.60
11	O1P-P	180.0	-20.24/-20.08/-20.94	1.66/1.60/1.60
12	01P-P	270.0	-20.44/-20.24/-21.11	1.66/1.60/1.60
13	O2P-P	0.0	-20.84/-20.85/-21.48	1.66/1.60/1.60
14	O2P-P	90.0	-20.42/-20.25/-21.11	1.66/1.60/1.60
15	O2P-P	180.0	-20.23/-20.07/-20.94	1.66/1.60/1.60
16	O2P-P	270.0	-20.63/-20.62/-21.33	1.66/1.60/1.60
17	O3P-P	0.0	-20.20/-19.84/-20.60	1.66/1.60/1.60
18	O3P-P	90.0	-20.27/-20.07/-20.85	1.65/1.60/1.60
19	O3P-P	180.0	-19.91/-19.94/-20.76	1.66/1.59/1.60
20	O3P-P	270.0	-20.27/-20.06/-20.84	1.65/1.60/1.60

1.147 Small molecule used for meta-nitro-tyrosine(NIY)

Figure S138: The molecule used for water complex calculations corresponding to 4-methyl-2-nitrobenz en-1-olate, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S454: Statistics of calculated water interaction and dipole moment for 4-methyl-2-nitrobenzen-1 -olate.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.67/1.15	0.21/0.40	3.411	4.72/3.25	12.17
Optimal	0.72/1.14	0.27/0.61	3.509	4.72/6.14	0.00

Table S455: The comparison list of optimized atomic charges and their initial guess for 4-meth yl-2-nitrobenzen-1-olate, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.270	-0.267	0.000
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
CG	0.044	0.001	0.000
CD1	-0.251	-0.181	0.000
HD1	0.168	0.160	0.000
CD2	0.044	-0.114	0.000
HD2	0.115	0.115	0.000
CE1	0.275	0.322	5.679
NN	0.215	0.402	6.076
ON1	-0.288	-0.340	0.000
ON2	-0.288	-0.340	0.000
CE2	-0.110	-0.114	0.000
HE2	0.115	0.115	0.000
CZ	0.126	0.083	5.060
OH	-0.508	-0.532	5.679
HH	0.343	0.420	0.000

Table S456: Interaction energies and geometries between probe water and selected 4-methyl-2-nitro benzen-1-olate site calculated using the optimized and initial charges

				(8)
N 1	Probe	Angle	Energy (kcal/mol)	Distance (A)
	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-1.52/-1.70/-1.12	2.69/2.68/2.72
2	HB1-CB	0.0	-2.41/-2.02/-1.89	2.55/2.63/2.65
3	HB2-CB	0.0	-1.64/-1.79/-1.15	2.67/2.67/2.71
4	HD1-CD1	0.0	-2.10/-1.57/-2.07	2.37/2.59/2.57
5	HD1-CD1	90.0	-1.46/-1.17/-1.66	2.52/2.63/2.61
6	HD2-CD2	0.0	-2.58/-3.01/-1.57	2.47/2.58/2.67
7	HD2-CD2	90.0	-2.76/-3.05/-1.61	2.43/2.57/2.66
8	NN-CE1	0.0	-1.31/-0.23/-2.05	2.82/3.43/3.21
9	NN-CE1	45.0	-1.26/-0.35/-2.14	2.83/3.40/3.20
10	NN-CE1	90.0	-1.17/-0.36/-2.07	2.83/3.40/3.20
11	NN-CE1	135.0	-1.23/-0.24/-1.99	2.81/3.42/3.21
12	ON1-NN	0.0	-1.74/-2.52/-2.27	2.10/1.91/1.90
13	ON1-NN	90.0	-2.64/-3.59/-3.26	2.04/1.87/1.87
14	ON1-NN	180.0	-3.30/-4.44/-4.04	2.02/1.86/1.85
15	ON1-NN	270.0	-2.64/-3.59/-3.26	2.04/1.87/1.87
16	ON2-NN	0.0	-0.79/-1.74/-0.80	2.23/1.99/2.05
17	ON2-NN	90.0	-1.54/-2.32/-1.59	2.05/1.92/1.92
18	ON2-NN	180.0	-1.89/-2.95/-2.37	2.07/1.88/1.87
19	ON2-NN	270.0	-1.54/-2.32/-1.59	2.05/1.92/1.92
20	$\operatorname{H\!E} 2\text{-}\operatorname{C\!E} 2$	0.0	-1.93/-1.50/-0.78	2.45/2.64/2.70
21	$\operatorname{HE}2 ext{-}\operatorname{CE}2$	90.0	-1.83/-1.41/-0.70	2.46/2.65/2.71
22	OH-CZ	0.0	-4.20/-5.13/-4.43	1.93/1.91/1.92
23	OH-CZ	90.0	-4.27/-4.44/-4.28	1.89/1.91/1.91
24	OH-CZ	180.0	-2.64/-3.07/-3.60	1.99/1.94/1.93
25	OH-CZ	270.0	-4.27/-4.44/-4.28	$\bf 1.89/1.91/1.91$

1.148 Small molecule A of

(4Z)-4-(4-hydroxybenzylidene)-2-[3-(methylthio)propanimidoyl]-5-ox o-4acetic5-dihydro-1H-imidazol-1-ylaceticacid(NRQ)

Figure S139: The molecule used for water complex calculations corresponding to N- (propan-2-ylidene)a cetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S457: Statistics of calculated water interaction and dipole moment for N-(propan-2-ylidene)aceta mide.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	3.41/7.36	0.12/0.26	9.096	4.63/6.88	17.09
Optimal	0.43/0.73	0.08/0.13	2.495	4.63/5.33	4.69

Table S458: The comparison list of optimized atomic charges and their initial guess for N-(prop an-2-ylidene)acetamide, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
CL	-0.270	-0.270	0.000
HL1	0.090	0.090	0.000
HL2	0.090	0.090	0.000
HL3	0.090	0.090	0.000
CLP	0.510	0.510	0.000
OL	-0.510	-0.510	0.000
Ν	-0.410	-0.844	113.808
CB	0.166	-0.261	53.301
CG	-0.148	-0.040	36.206
HG1	0.090	0.090	0.250
$\mathrm{HG2}$	0.090	0.090	0.250
${ m HG3}$	0.090	0.090	0.250
\mathbf{CA}	-0.148	-0.040	36.206
HA1	0.090	0.090	0.250
HA2	0.090	0.090	0.250
HA3	0.090	0.090	0.250

Table S459: Interaction energies and geometries between probe water and selected N-(propan-2-ylide ne)acetamide site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HG1-CG	0.0	-1.84/-1.60/-2.23	2.51/2.61/2.55
2	HG2-CG	0.0	-0.66/-0.55/-0.14	2.49/2.61/2.57
3	HG3-CG	0.0	-1.81/-2.15/-2.97	2.66/2.62/2.55
4	HA1-CA	0.0	-2.42/-2.18/-2.80	2.49/2.60/2.54
5	HA2- CA	0.0	-2.47/-2.48/-3.52	2.53/2.59/2.53
6	HA3-CA	0.0	-1.75/-2.07/-1.91	2.71/2.66/2.68
7	HL1-CL	0.0	-1.27/-0.69/-1.35	2.61/2.71/2.61
8	HL2-CL	0.0	-0.80/-0.95/-0.30	2.79/2.73/2.74
9	HL3-CL	0.0	-0.74/-0.16/-0.82	2.63/2.73/2.61
10	OL-CLP	0.0	-6.39/-7.08/-6.92	1.84/1.76/1.77
11	OL-CLP	90.0	-5.91/-6.59/-6.51	1.85/1.76/1.77
12	OL-CLP	180.0	-6.06/-6.64/-6.97	1.84/1.76/1.76
13	OL-CLP	270.0	-6.51/-7.24/-7.59	1.84/1.75/1.76
14	N-CLP	0.0	-2.98/-2.93/-10.35	2.10/2.06/1.84
15	N-CLP	90.0	-3.47/-3.01/-9.79	2.05/2.06/1.85
16	N-CLP	180.0	-4.10/-4.16/-10.84	2.06/2.04/1.85
17	N-C LP	270.0	-4.41/-4.22/-11.64	2.02/2.03/1.83

1.149 Small molecule B of

(4Z)-4-(4-hydroxybenzylidene)-2-[3-(methylthio)propanimidoyl]-5-ox o-4acetic5-dihydro-1H-imidazol-1-ylaceticacid(NRQ)

Figure S140: The molecule used for water complex calculations corresponding to (4Z)-4-ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S460: Statistics of calculated water interaction and dipole moment for (4Z)-4-ethylidene-1,2-dime thyl-4,5-dihydro-1H-imidazol-5-one.

	m RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.92/1.64	0.10/0.25	6.526	3.17/0.45	27.81
Optimal	0.49/1.31	0.09/0.22	3.053	3.17/3.55	14.34

Table S461: The comparison list of optimized atomic charges and their initial guess for (4Z)-4ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
CA1	-0.070	-0.115	13.925
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
HA2	0.090	0.090	0.000
HA3	0.090	0.090	0.000
C1	0.233	0.074	23.781
N2	-0.679	-0.703	41.871
N3	-0.080	-0.079	15.706
C2	0.407	0.509	24.002
O2	-0.489	-0.482	6.710
CA2	0.288	0.516	47.153
CB2	-0.105	-0.135	25.469
HB2	0.150	0.150	3.270
CG2	-0.270	-0.274	15.277
$\mathrm{HG21}$	0.090	0.090	1.175
$\mathrm{HG}22$	0.090	0.090	1.175
${ m HG23}$	0.090	0.090	1.175
CA3	-0.195	-0.271	3.821
HA31	0.090	0.090	0.000
HA32	0.090	0.090	0.000
HA33	0.090	0.090	0.000

Table S462: Interaction energies and geometries between probe water and selected (4Z)-4-ethylidene -1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HA-CA1	0.0	-2.17/-2.61/-1.51	2.59/2.58/2.65
2	HA2-CA1	0.0	-0.97/-0.86/0.05	2.58/2.64/2.77
3	HA3-CA1	0.0	-2.55/-2.73/-1.57	2.52/2.57/2.64
4	N2-C1	0.0	-4.99/-6.30/-5.60	2.09/2.01/2.02
5	N2-C1	90.0	-7.07/-6.37/-6.45	1.90/1.99/1.99
6	N2-C1	180.0	-5.35/-5.42/-6.38	1.95/2.01/1.99
7	N2-C1	270.0	-7.07/-6.37/-6.45	1.90/1.99/1.99
8	N3-C1	0.0	-0.26/-0.82/-0.78	2.74/2.52/2.49
9	O2-C2	0.0	-5.51/-5.57/-5.00	1.85/1.78/1.80
10	O2-C2	90.0	-5.87/-5.71/-4.73	1.84/1.78/1.80
11	O2-C2	180.0	-5.92/-5.61/-4.27	1.84/1.78/1.81
12	O2-C2	270.0	-5.87/-5.71/-4.73	1.84/1.78/1.80
13	HB2-CB2	0.0	-1.40/-1.60/-2.82	2.32/2.47/2.44
14	HG21-CG2	0.0	-1.01/-0.46/-0.86	2.72/2.77/2.74
15	HG23-CG2	0.0	-1.01/-0.46/-0.86	2.72/2.77/2.74
16	HA32-CA3	0.0	-2.16/-2.10/-1.23	2.59/2.63/2.70
17	HA 33-CA 3	0.0	-2.16/-2.10/-1.23	2.59/2.63/2.70

1.150 Small molecule C of

(4Z)-4-(4-hydroxybenzylidene)-2-[3-(methylthio)propanimidoyl]-5-ox o-4acetic5-dihydro-1H-imidazol-1-ylaceticacid(NRQ)

Table S463: The molecule used for water complex calculations corresponding to N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

		RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
		$\fbox{Energy (kcal/mol)}$	Distance (Å)	${f RMS}~({ m kcal}/{ m mol}/{ m \AA})$	$\rm QM/MM~(Debye)$	difference (°)
Geometry 1	Initial	$0.86 \ / \ 2.05$	$0.07 \ / \ 0.17$	6.601	1.19 / 4.07	1.19
Geometry 2	Initial	$1.02\ /\ 2.07$	$0.09 \ / \ 0.23$	6.126	$6.37 \ / \ 4.43$	6.37
Sum of geometries	Initial	$0.95\ /\ 2.07$	$0.08\ /\ 0.23$	12.727	-	-
Geometry 1	Optimal	0.36 / 0.81	$0.07 \ / \ 0.16$	2.460	$1.19 \ / \ 1.37$	1.19
Geometry 2	Optimal	$0.51\ /\ 0.91$	$0.08 \ / \ 0.19$	2.701	$6.37 \ / \ 7.25$	6.37
Sum of geomeries	Optimal	$0.45 \ / \ 0.91$	$0.08 \ / \ 0.19$	5.161	-	-

 $\label{eq:statistics} Table S464: Statistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl) acetamide.$

Table S465: The comparison list of optimized atomic charges and their initial guess for N-methyl -2-(2-methyl-4-methylidene-5-oxo-4,5-dihydro-1H -imidazol-1-yl)acetamide, referring to the penalties of initial guess

=

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HA1	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.070	-0.115	13.925		
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000		
C1	0.233	0.164	24.002		
N2	-0.679	-0.703	41.104		
N3	-0.031	-0.499	22.994		
C2	0.407	0.613	23.378		
O2	-0.489	-0.482	6.517		
CA2	0.466	0.512	42.773		
CB2	-0.593	-0.444	13.655		
HB21	0.230	0.230	0.950		
HB22	0.230	0.230	0.950		
CA3	-0.154	0.043	13.461		
HA31	0.090	0.090	0.177		
HA32	0.090	0.090	0.177		
С	0.510	0.499	10.097		
Ο	-0.510	-0.517	3.479		
\mathbf{NR}	-0.470	-0.442	6.773		
$_{\mathrm{HR}}$	0.310	0.299	0.000		
\mathbf{CR}	-0.110	-0.108	0.239		
HR1	0.090	0.090	0.000		
$\mathrm{HR2}$	0.090	0.090	0.000		
HR3	0.090	0.090	0.000		

Table S466: Interaction energies and geometries between probe water and selected N-methyl-2-(2-me thyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazo l-1-yl)acetamide site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
	Geometry	1		
1	O-C	0.0	-5.45/-5.47/-6.22	1.84/1.77/1.76
2	O-C	90.0	-6.01/-6.48/-6.53	1.83/1.75/1.76
3	O-C	180.0	-5.96/-6.64/-6.64	1.83/1.75/1.75
4	O-C	270.0	-5.67/-5.94/-6.62	1.84/1.76/1.75
5	NR-C	0.0	-1.32/-1.50/-1.08	2.24/2.20/2.22
6	HR2-CR	0.0	-1.10/-1.26/-1.09	2.71/2.66/2.67
7	HR3-CR	0.0	-1.39/-1.22/-1.32	2.66/2.67/2.67
8	N2-C1	0.0	-5.74/-6.45/-6.04	1.95/1.92/1.92
9	N2-C1	90.0	-6.51/-6.37/-7.24	1.90/1.92/1.90
10	N2-C1	180.0	-5.60/-5.66/-7.65	1.96/1.93/1.90
11	N2-C1	270.0	-6.64/-6.59/-7.43	1.90/1.91/1.89
12	O2-C2	0.0	-3.88/-3.93/-3.54	1.88/1.80/1.81
13	O2-C2	90.0	-4.94/-5.15/-4.46	1.84/1.77/1.79
14	O2-C2	180.0	-4.95/-5.20/-4.05	1.84/1.77/1.79
15	O2-C2	270.0	-3.93/-4.12/-3.39	1.87/1.79/1.81
16	HB21-CB2	0.0	-1.84/-1.64/-3.47	2.32/2.48/2.42
17	HB22-CB2	0.0	-1.82/-1.01/-2.42	2.42/2.54/2.46
18	HA31-CA3	0.0	-2.08/-2.47/-1.68	2.70/2.69/2.70
19	HA-CA	0.0	-2.47/-2.76/-1.19	2.49/2.56/2.66
	Geometry	2		
20	O-C	0.0	-6.06/-6.90/-7.24	1.86/1.76/1.75
21	O-C	90.0	-5.25/-6.15/-7.32	1.87/1.77/1.75
22	O-C	180.0	-4.71/-5.63/-6.52	1.88/1.77/1.76
23	O-C	270.0	-5.56/-6.46/-6.85	1.86/1.76/1.76
24	HR-NR	0.0	-7.09/-7.67/-7.53	1.93/1.90/1.90
25	HR-NR	45.0	-7.71/-7.90/-7.71	1.91/1.89/1.89
26	HR-NR	90.0	-7.79/-7.84/-7.79	1.90/ 1.89/ 1.89
27	HR-NR	135.0	-7.18/-7.62/-7.61	1.92/1.90/1.89
28	HR1-CR	0.0	-0.71/-0.04/0.30	2.50/2.69/2.67
29	HR2-CR	0.0	-1.54/-1.44/-1.38	2.68/2.66/2.66
30	HR3-CR	0.0	-1.84/-1.82/-1.70	2.68/2.67/2.66
31	N2-C1	0.0	-6.46/-6.98/-6.58	1.93/1.91/1.91
32	N2-C1	90.0	-6.88/-6.47/-7.35	1.89/1.91/1.89
33	N2-C1	180.0	-5.73/-5.60/-7.60	1.95/1.93/1.90
34	N2-C1	270.0	-7.31/-7.09/-7.94	1.88/1.91/1.89
35	N3-C1	0.0	-0.22/0.03/-2.15	2.60/2.67/2.17
36	O2-C2	0.0	-4.96/-5.34/-4.95	1.88/1.79/1.80
37	O2-C2	90.0	-5.32/-5.37/-4.66	1.87/1.78/1.80
38	O2-C2	180.0	-5.74/-5.89/-4.71	1.87/1.78/1.81
39	O2-C2	270.0	-5.94/-6.25/-5.51	1.85/1.77/1.79
40	HB21-CB2	0.0	-1.43/-1.20/-3.03	2.33/2.48/2.41
41	HB22-CB2	0.0	-1.29/-0.66/-2.05	2.47/2.56/2.47
42	HA31-CA3	0.0	-3.71/-4.08/-3.49	2.50/2.57/2.57
43	HA-CA	0.0	-2.67/-3.45/-1.93	2.59/2.58/2.69

1.151 Small molecule D of

(4Z)-4-(4-hydroxybenzylidene)-2-[3-(methylthio)propanimidoyl]-5-ox o-4acetic5-dihydro-1H-imidazol-1-ylaceticacid(NRQ)

Figure S141: The molecule used for water complex calculations corresponding to N-[(1E)-1-[(4Z)-4-et hylidene-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethylidene]acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S467: Statistics of calculated water interaction and dipole moment for N-[(1E)-1-[(4Z)-4-ethylide ne-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethylidene]acetamide.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.75/1.32	0.29/1.19	7.323	3.33/3.51	2.28
Optimal	0.66/1.40	0.23/0.78	2.685	3.33/3.51	4.68

Table S468: The comparison list of optimized atomic charges and their initial guess for N-[(1E)-1-[(4Z)-4-ethylidene-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethylidene]acetamide, referring to the penalties of initial guess

Atom	Charges				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
CL	-0.270	-0.268	11.341		
HL1	0.090	0.090	0.800		
HL2	0.090	0.090	0.800		
HL3	0.090	0.090	0.800		
CLP	0.510	1.166	104.329		
OL	-0.510	-0.523	7.580		
N1	-0.410	-0.867	109.915		
CA1	0.442	-0.250	80.747		
CB1	-0.148	-0.039	37.119		
HB11	0.090	0.090	1.152		
HB12	0.090	0.090	1.152		
HB13	0.090	0.090	1.152		
C1	0.208	0.430	75.868		
N2	-0.541	-0.578	44.740		
N3	-0.080	-0.049	29.029		
C2	0.407	0.514	21.806		
O2	-0.489	-0.482	6.710		
CA2	0.221	0.396	48.462		
CB2	-0.105	-0.135	25.469		
HB2	0.150	0.150	3.270		
CG2	-0.270	-0.274	15.277		
H01	0.090	0.090	1.175		
H02	0.090	0.090	1.175		
H03	0.090	0.090	1.175		
CA3	-0.195	-0.271	3.821		
H1	0.090	0.090	0.000		
H2	0.090	0.090	0.000		
H3	0.090	0.090	0.000		

Table S469: Interaction energies and geometries between probe water and selected N-[(1E)-1-[(4Z)-4ethylidene-1-methyl-5-oxo-4,5-dihydro-1H-imida zol-2-yl]ethylidene]acetamide site calculated using the optimized and initial charges

	Probe	Angle	Energy (kcal/mol)	Distance (Å)
Ν	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
1	HL1-CL	0.0	-2.10/-1.55/-1.57	2.54/2.67/2.61
2	HL2-CL	0.0	-2.25/-2.36/-1.62	2.54/2.64/2.61
3	HL3-CL	0.0	-1.15/-0.60/-2.15	2.59/2.70/2.58
4	OL-CLP	0.0	-4.98/-6.25/-4.00	1.89/1.76/1.82
5	OL-CLP	90.0	-5.11/-6.50/-4.99	1.89/1.76/1.80
6	OL-CLP	180.0	-4.85/-5.78/-5.34	1.89/1.77/1.79
7	OL-CLP	270.0	-4.63/-5.54/-4.21	1.90/1.77/1.82
8	N1-CLP	0.0	-0.23/-0.37/-1.31	5.78/5.00/4.59
9	HB11-CB1	0.0	-1.38/-2.00/-0.49	2.55/2.57/2.69
10	HB12-CB1	0.0	-0.72/-1.46/-1.85	2.81/2.73/2.91
11	HB13-CB1	0.0	-1.01/-1.73/-0.25	2.74/2.62/2.82
12	N2-C1	0.0	-2.51/-3.29/-3.20	2.28/2.38/2.41
13	N3-C1	0.0	-0.77/-1.40/-1.19	2.73/2.46/2.76
14	O2-C2	0.0	-5.45/-5.66/-5.15	1.86/1.78/1.80
15	O2-C2	90.0	-5.58/-5.60/-4.69	1.85/1.78/1.80
16	O2-C2	180.0	-5.46/-5.40/-4.13	1.85/1.78/1.81
17	O2-C2	270.0	-5.62/-5.67/-4.75	1.85/1.78/1.80
18	HB2-CB2	0.0	-2.03/-1.80/-2.78	2.28/2.47/2.44
19	HB2-CB2	0.0	-2.03/-1.80/-2.78	2.28/2.47/2.44
20	H01-CG2	0.0	-1.49/-0.84/-1.05	2.64/2.74/2.72
21	H02-CG2	0.0	-0.52/-0.97/-0.31	5.47/5.00/5.00
22	H03-CG2	0.0	-1.46/-0.82/-1.02	2.65/2.74/2.72

1.152 Small molecule E of (4Z)-4-(4-hydroxybenzylidene)-2-[3-(methylthio)propanimidoyl]-5-oxo-4acetic 5-dihydro-1H-imidazol-1-ylacetic acid (NRQ)

Figure S142: The molecule used for water complex calculations corresponding to N-[(1E)-1-[(4Z)-4-et hylidene-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethylidene]acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S470: Statistics of calculated water interaction and dipole moment for N-[(1E)-1-[(4Z)-4-ethylide ne-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethylidene]acetamide.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.19/2.12	0.07/0.13	7.647	2.46/0.89	158.38
Optimal	0.94/2.13	0.10/0.17	2.146	2.46/2.55	8.93

Table S471: The comparison list of optimized atomic charges and their initial guess for N-[(1E)-1-[(4Z)-4-ethylidene-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethylidene]acetamide, referring to the penalties of initial guess

Atom		Charges				
Atom	Optimal	Initial	$\mathbf{Penalty}$			
C1	0.199	0.106	19.346			
HC1	0.163	0.105	1.731			
N2	-0.541	-0.710	39.437			
N3	-0.080	-0.069	12.754			
C2	0.407	0.513	21.676			
O2	-0.489	-0.482	6.710			
CA2	0.221	0.527	45.069			
CB2	-0.105	-0.135	25.469			
HB2	0.150	0.150	3.270			
CG2	-0.270	-0.274	15.277			
H01	0.090	0.090	1.175			
H02	0.090	0.090	1.175			
H03	0.090	0.090	1.175			
CA3	-0.195	-0.271	2.890			
H1	0.090	0.090	0.000			
H2	0.090	0.090	0.000			
H3	0.090	0.090	0.000			

Table S472: Interaction energies and geometries between probe water and selected N-[(1E)-1-[(4Z)-4ethylidene-1-methyl-5-oxo-4,5-dihydro-1H-imida zol-2-yl]ethylidene]acetamide site calculated using the optimized and initial charges

Ν	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HC1-C1	0.0	-3.15/-4.11/-1.43	2.34/2.20/2.33
2	HC1-C1	90.0	-3.21/-4.10/-1.37	2.33/2.20/2.34
3	N2-C1	0.0	-4.51/-4.26/-4.86	2.11/2.08/2.03
4	N2-C1	90.0	-6.59/-4.46/-5.93	1.93/2.06/2.00
5	N2-C1	180.0	-5.43/-3.99/-6.34	1.95/2.08/1.99
6	N2-C1	270.0	-6.59/-4.46/-5.93	1.93/2.06/2.00
7	O2-C2	0.0	-5.42/-5.56/-4.81	1.86/1.78/1.80
8	O2-C2	90.0	-5.74/-5.68/-4.53	1.85/1.78/1.80
9	O2-C2	180.0	-5.75/-5.56/-4.05	1.85/1.78/1.82
10	O2-C2	270.0	-5.74/-5.68/-4.53	1.85/1.78/1.80
11	$\operatorname{HB2-CB2}$	0.0	-1.63/-1.62/-3.04	2.31/2.47/2.43
12	$\operatorname{HB2-CB2}$	90.0	-0.37/-1.03/-2.49	2.51/2.52/2.46
13	H01-CG2	0.0	-1.15/-0.59/-0.97	2.69/2.76/2.73
14	H03-CG2	0.0	-1.15/-0.59/-0.97	2.69/2.76/2.73
15	H1-CA3	0.0	-2.00/-1.85/-1.10	2.59/2.64/2.69
16	$\operatorname{H3-CA3}$	0.0	-2.00/-1.85/-1.10	2.59/2.64/2.69

1.153 Small molecule used for (2s)-2-amino-4,4-difluorobutanoicacid(OBF)

Figure S143: The molecule used for water complex calculations corresponding to 1,1-diffuoropropa ne, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S473: Statistics of calculate	d water interaction and d	lipole moment for 1	,1-difluoropropane.
-------------------------------------	---------------------------	---------------------	---------------------

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.19/0.34	0.22/0.30	1.148	2.42/2.29	3.15
Optimal	0.16/0.30	0.22/0.31	1.168	2.42/2.63	2.71

Table S474: The comparison list of optimized atomic charges and their initial guess for 1,1-difluor opropane, referring to the penalties of initial guess

Atom		$\operatorname{Charges}$			
Atom	Optimal	Initial	Penalty		
HA3	0.090	0.090	0.600		
HA2	0.090	0.090	0.600		
\mathbf{CA}	-0.270	-0.270	4.493		
\mathbf{HA}	0.090	0.090	0.600		
CB	-0.059	-0.119	8.327		
HB1	0.090	0.090	0.786		
HB2	0.090	0.090	0.786		
$\mathbf{C}\mathbf{G}$	0.092	0.219	8.333		
$\mathbf{H}\mathbf{G}$	0.149	0.100	2.580		
FG1	-0.181	-0.190	2.615		
FG2	-0.181	-0.190	2.615		

Table S475: Interaction energies and geometries between probe water and selected 1,1-difluoropropa ne site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
19	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	${ m HA3-CA}$	0.0	-0.82/-0.57/-0.56	2.64/2.70/2.70
2	${ m HA2-CA}$	0.0	-1.23/-1.17/-1.03	2.74/2.71/2.72
3	HA-CA	0.0	-1.59/-1.56/-1.45	2.69/2.67/2.68
4	$\mathrm{HB1}\text{-}\mathrm{CB}$	0.0	-1.15/-0.89/-0.83	2.62/2.68/2.70
5	${ m HB2-CB}$	0.0	-1.62/-1.64/-1.49	2.62/2.65/2.66
6	HG-CG	0.0	-2.19/-2.16/-1.92	2.48/2.54/2.57
7	HG-CG	90.0	-2.30/-2.21/-1.96	2.46/2.54/2.56
8	FG1-CG	0.0	-2.12/-2.29/-2.17	2.19/1.89/1.89
9	FG1-CG	90.0	-2.57/-2.88/-2.68	2.17/1.87/1.87
10	FG1-CG	180.0	-2.54/-2.76/-2.56	2.17/1.87/1.88
11	FG1-CG	270.0	-2.15/-2.22/-2.09	2.19/1.89/1.90
12	FG2-CG	0.0	-2.20/-2.11/-2.00	2.19 / 1.90 / 1.91
13	FG2-CG	90.0	-2.18/-2.06/-1.93	2.19/1.90/1.91
14	FG2-CG	180.0	-2.51/-2.61/-2.41	2.18/1.88/1.89
15	FG2-CG	270.0	-2.56/-2.72/-2.52	2.18/1.87/1.88
_				

1.154 Small molecule used for s-(2-hydroxyethyl)-l-cysteine(OCY)

Figure S144: The molecule used for water complex calculations corresponding to 2-(ethylsulfanyl)ethan -1-ol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S476: Statistics of calculated water interaction and dipole moment for 2-(ethylsulfanyl)ethan-1-ol.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.49/1.32	0.23/0.56	1.584	0.16/0.48	52.88
Optimal	0.19/0.50	0.20/0.49	1.952	0.16/0.24	61.17

Table S477: The comparison list of optimized atomic charges and their initial guess for 2-(ethy lsulfanyl)ethan-1-ol, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.270	0.045
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
CB	-0.125	-0.066	0.045
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
\mathbf{SG}	-0.151	-0.236	20.887
CD	0.024	-0.058	21.222
HD1	0.090	0.090	0.000
HD2	0.090	0.090	0.000
CE	-0.113	0.049	14.230
HE2	0.090	0.090	0.000
HE1	0.090	0.090	0.000
ΟZ	-0.593	-0.649	2.250
ΗZ	0.418	0.420	0.000

Table S478: Interaction energies and geometries between probe water and selected 2- (ethylsulfanyl)e than-1-ol site calculated using the optimized and initial charges

_					
_	N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	14	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
	1	HA3-CA	0.0	-0.67/-0.38/-0.30	2.72/2.77/2.77
	2	$\operatorname{HA2-CA}$	0.0	-1.00/-0.71/-0.82	2.78/2.76/2.74
	3	HA-CA	0.0	-0.48/-0.33/-0.24	2.78/2.79/2.79
	4	$\operatorname{HB1-CB}$	0.0	-1.25/-1.22/-1.21	2.69/2.70/2.69
	5	$\mathrm{HB2}\text{-}\mathrm{CB}$	0.0	-1.25/-1.22/-1.21	2.69/2.70/2.69
	6	SG-CB	0.0	-1.37/-1.69/-2.12	2.90/2.41/2.35
	7	SG-CB	90.0	-1.81/-2.00/-2.69	2.82/2.39/2.32
	8	SG-CB	180.0	-1.68/-2.17/-3.00	2.87/2.38/2.31
	9	SG-CB	270.0	-1.81/-2.00/-2.69	2.82/2.39/2.32
	10	$\mathrm{HD1}\text{-}\mathrm{CD}$	0.0	-0.89/-0.85/-0.59	2.65/2.68/2.72
	11	$\mathrm{HD2}\text{-}\mathrm{CD}$	0.0	-0.89/-0.85/-0.59	2.65/2.69/2.72
	12	$\rm HE2\text{-}CE$	0.0	-0.90/-0.74/-1.16	2.69/2.74/2.67
	13	$\operatorname{HE1-CE}$	0.0	-0.90/-0.74/-1.16	2.69/2.74/2.67
	14	OZ-CE	0.0	-5.69/-5.77/-6.05	1.85/1.87/1.86
	15	OZ-CE	90.0	-5.76/-5.63/-6.00	1.83/1.87/1.86
	16	OZ-CE	180.0	-4.89/-4.82/-5.39	1.88/1.88/1.86
	17	OZ-CE	270.0	-5.76/-5.63/-6.00	1.83/1.87/1.86
	18	HZ-OZ	0.0	-6.26/-6.37/-6.56	1.81/1.82/1.82
	19	HZ-OZ	45.0	-6.37/-6.39/-6.60	1.80/1.82/1.82
1	20	HZ-OZ	90.0	-6.47/-6.41/-6.64	1.79/1.82/1.82
_	21	HZ-OZ	135.0	-6.37/-6.39/-6.60	1.80/1.82/1.82

1.155 Small molecule used for (betar)-beta-hydroxy-l-tyrosine(OMX)

Figure S145: The molecule used for water complex calculations corresponding to 4-[(1S)-1-hydroxye thyl]benzen-1-olate, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S479: Statistics of calculated water interaction and dipole moment for 4-[(1S)-1-hydroxyethyl]b enzen-1-olate.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.40/0.79	0.08/0.21	2.209	2.79/3.69	2.55
Optimal	0.40/0.75	0.08/0.21	2.179	2.79/3.63	0.05

Table S480: The comparison list of optimized atomic charges and their initial guess for 4-[(1S)-1-hydroxyethyl]benzen-1-olate, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	$\operatorname{Initial}$	Penalty		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.270	-0.269	0.000		
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000		
CB	0.091	0.132	3.300		
HB	0.090	0.090	0.000		
OG	-0.621	-0.643	4.339		
HG	0.412	0.413	0.300		
CG	0.028	-0.001	4.230		
CD1	-0.115	-0.109	2.130		
HD1	0.115	0.115	0.000		
CD2	-0.115	-0.109	2.130		
HD2	0.115	0.115	0.000		
CE1	-0.115	-0.116	0.000		
HE1	0.115	0.115	0.000		
CE2	-0.115	-0.116	0.000		
HE2	0.115	0.115	0.000		
CZ	0.110	0.108	0.000		
OH	-0.530	-0.530	0.000		
HH	0.420	0.420	0.000		

Table S481: Interaction energies and geometries between probe water and selected 4-[(1S)-1-hydroxye thyl]benzen-1-olate site calculated using the optimized and initial charges

N	Probe	Angle	${\rm Energy}~(\rm kcal/mol)$	Distance (Å)
	site	(*)	${ m QM}/{ m Optimal}/{ m Initial}$	QM/Optimal/Initial
1	HA3-CA	0.0	-1.29/-1.45/-1.50	2.71/2.68/2.67
2	HA2-CA	0.0	-0.41/-0.12/-0.18	2.85/2.81/2.79
3	HA-CA	0.0	-1.14/-1.36/-1.45	2.73/2.68/2.67
4	HB-CB	0.0	-0.63/-0.29/-0.40	2.76/2.78/2.76
5	OG-CB	0.0	-5.66/-5.25/-5.48	1.84/1.88/1.87
6	OG-CB	90.0	-5.84/-5.57/-5.73	1.82/1.87/1.86
7	OG-CB	180.0	-5.41/-5.58/-5.69	1.85/1.87/1.86
8	OG-CB	270.0	-5.68/-5.40/-5.60	1.83/1.87/1.87
9	HG-OG	0.0	-5.54/-5.73/-5.63	1.82/1.86/1.86
10	HG-OG	45.0	-5.19/-5.63/-5.52	1.83/1.86/1.86
11	HG-OG	90.0	-5.73/-5.85/-5.76	1.81/1.86/1.86
12	HG-OG	135.0	-6.08/-5.96/-5.88	1.80/1.85/1.86
13	HD1-CD1	0.0	-1.59/-2.00/-2.04	2.84/2.77/2.76
14	HD1-CD1	90.0	-1.62/-2.06/-2.12	2.89/2.75/2.75
15	HD2-CD2	0.0	-0.84/-0.23/-0.20	2.47/2.68/2.68
16	$\operatorname{H\!E}\operatorname{1-}\operatorname{C\!E}\operatorname{1}$	0.0	-2.07/-2.36/-2.34	2.65/2.64/2.64
17	$\operatorname{H\!E}\operatorname{1-}\operatorname{C\!E}\operatorname{1}$	90.0	-2.68/-2.60/-2.58	2.49/2.61/2.61
18	$\operatorname{HE}2\operatorname{-}\operatorname{CE}2$	0.0	-0.92/-0.24/-0.22	2.60/2.75/2.75
19	$\operatorname{HE}2\text{-}\operatorname{CE}2$	90.0	-0.81/-0.17/-0.14	2.62/2.77/2.77
20	OH-CZ	0.0	-4.11/-3.91/-3.93	1.92/1.93/1.93
21	OH-CZ	90.0	-4.78/-4.32/-4.35	1.87/1.92/1.92
22	OH-CZ	180.0	-3.82/-4.25/-4.29	1.95/1.92/1.92
23	OH-CZ	270.0	-4.82/-4.38/-4.40	1.87/1.92/1.92
24	HH-OH	0.0	-7.18/-6.97/-6.93	1.81/1.87/1.87
25	HH-OH	45.0	-7.69/-7.19/-7.15	1.80/1.87/1.87
26	HH-OH	90.0	-8.15/-7.39/-7.35	1.79/1.86/1.86
27	HH-OH	135.0	-7.72/-7.20/-7.16	1.80/1.87/1.87

Figure S146: The molecule used for water complex calculations corresponding to (4-methylphenyl)(phen yl)methanone, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S482: Statistics of calculated water interaction and dipole moment for (4-methylphenyl)(phen yl)methanone.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.67/1.50	0.12/0.26	1.977	3.76/3.41	7.55
Optimal	0.78/1.79	0.12/0.25	2.009	3.76/4.01	0.31

Table S483: The comparison list of optimized atomic charges and their initial guess for (4-methyl phenyl)(phenyl)methanone, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.270	-0.267	0.000
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
CG	-0.000	-0.001	0.000
CD1	-0.115	-0.115	0.000
HD1	0.115	0.115	0.000
CD2	-0.115	-0.115	0.000
HD2	0.115	0.115	0.000
CE1	-0.115	-0.117	1.700
HE1	0.115	0.115	0.000
CE2	-0.115	-0.117	1.700
HE2	0.115	0.115	0.000
CZ	0.173	0.028	3.400
\mathbf{CF}	0.179	0.407	3.400
CJ	0.082	0.028	3.400
OF	-0.434	-0.459	0.000
CH1	-0.115	-0.117	1.700
HH1	0.115	0.115	0.000
CH2	-0.115	-0.117	1.700
HH2	0.115	0.115	0.000
CM1	-0.115	-0.114	0.000
HM1	0.115	0.115	0.000
CM2	-0.115	-0.114	0.000
HM2	0.115	0.115	0.000
CL	-0.115	-0.115	0.000
HL	0.115	0.115	0.000

Table S484: Interaction energies and geometries between probe water and selected (4-methylphen yl)(phenyl)methanone site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HB3-CB	0.0	-1.32/-0.99/-0.89	2.70/2.73/2.73
2	HB1-CB	0.0	-1.32/-1.03/-0.94	2.72/2.74/2.74
3	HB2-CB	0.0	-1.12/-0.77/-0.66	2.72/2.75/2.76
4	HD1-CD1	0.0	-1.58/-1.57/-1.40	2.64/2.67/2.68
5	HD1-CD1	90.0	-1.83/-1.63/-1.47	2.56/2.66/2.67
6	HD2-CD2	0.0	-1.53/-1.30/-1.15	2.63/2.68/2.69
7	HD2-CD2	90.0	-1.73/-1.33/-1.19	2.55/2.67/2.68
8	HE1-CE1	0.0	-1.25/-2.34/-2.19	2.60/2.61/2.62
9	HE1-CE1	90.0	-0.40/-1.71/-1.56	2.69/2.65/2.66
10	HE2-CE2	0.0	-0.85/-0.20/-0.23	2.40/2.65/2.66
11	OF-CF	0.0	-5.57/-6.27/-5.98	1.86/1.69/1.69
12	OF-CF	90.0	-5.63/-6.47/-6.05	1.86/1.68/1.69
13	OF-CF	180.0	-5.60/-6.51/-6.00	1.86/1.68/1.69
14	OF-CF	270.0	-5.62/-6.46/-6.04	1.86/1.68/1.69
15	$\rm HH2$ - $\rm CH2$	0.0	-0.95/-2.54/-2.37	2.58/2.64/2.63
16	$\rm HH2-CH2$	90.0	-0.35/-2.14/-1.86	2.68/2.66/2.66
17	HM1-CM1	0.0	-1.52/-1.08/-1.14	2.60/2.69/2.69
18	HM1-CM1	90.0	-1.67/-1.11/-1.17	2.55/2.69/2.69
19	$\mathrm{HM2}\text{-}\mathrm{CM2}$	0.0	-1.57/-1.39/-1.38	2.62/2.69/2.69
20	$\mathrm{HM2}\text{-}\mathrm{CM2}$	90.0	-1.74/-1.45/-1.43	2.56/2.68/2.68
21	HL-CL	0.0	-1.65/-1.20/-1.22	2.59/2.70/2.70
22	HL-CL	90.0	-1.83/-1.26/-1.28	2.54/2.69/2.69

1.157 Small molecule used for pentafluoro-phenylalanine(PF5)

Figure S147: The molecule used for water complex calculations corresponding to 1,2,3,4,5-pentafluor o-6-methylbenzene, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S485: Statistics of calculated water interaction and dipole moment for 1, 2, 3, 4, 5-pentafluoro-6-me thylbenzene.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.70/1.19	0.30/0.36	4.619	2.41/3.83	0.17
Optimal	0.09/0.19	0.23/0.26	2.055	2.41/2.96	0.36

Table S486: The comparison list of optimized atomic charges and their initial guess for 1,2,3,4,5pentafluoro-6-methylbenzene, referring to the penalties of initial guess

Atom	Charges			
Atom	Optimal	Initial	$\mathbf{Penalty}$	
HB3	0.090	0.090	0.000	
CB	-0.270	-0.323	0.845	
HB1	0.090	0.090	0.000	
HB2	0.090	0.090	0.000	
CG	0.182	0.269	10.912	
CD1	0.208	0.268	12.535	
FD1	-0.155	-0.194	7.300	
CD2	0.208	0.268	12.535	
FD2	-0.155	-0.194	7.300	
CE1	-0.133	-0.087	16.044	
FE1	-0.082	-0.191	7.365	
CE2	-0.133	-0.087	16.044	
FE2	-0.082	-0.191	7.365	
CZ	0.264	0.370	18.462	
\mathbf{FZ}	-0.122	-0.178	10.324	

Table S487: Interaction energies and geometries between probe water and selected 1,2,3,4,5-pentaflu oro-6-methylbenzene site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(*)	$\rm QM/Optimal/Initial$	${ m QM}/{ m Optimal}/{ m Initial}$
1	HB3-CB	0.0	-1.96/-1.96/-2.25	2.56/2.62/2.61
2	HB1-CB	0.0	-1.48/-1.60/-1.77	2.58/2.64/2.64
3	HB2-CB	0.0	-1.48/-1.60/-1.77	2.58/2.64/2.64
4	FD1-CD1	0.0	-0.92/-0.73/-0.73	2.33/2.09/2.06
5	FD1-CD1	90.0	-1.29/-1.26/-1.37	2.30/2.05/2.02
6	FD1-CD1	180.0	-1.62/-1.80/-2.11	2.27/2.01/1.98
7	FD1-CD1	270.0	-1.27/-1.26/-1.38	2.30/2.05/2.02
8	FD2-CD2	0.0	-0.92/-0.73/-0.73	2.33/2.09/2.06
9	FD2-CD2	90.0	-1.27/-1.26/-1.38	2.30/2.05/2.02
10	FD2-CD2	180.0	-1.62/-1.80/-2.11	2.27/2.01/1.98
11	FD2-CD2	270.0	-1.29/-1.26/-1.37	2.30/2.05/2.02
12	FE1-CE1	0.0	-1.33/-1.31/-2.34	2.32/2.09/1.96
13	FE1-CE1	90.0	-1.31/-1.35/-2.40	2.32/2.09/1.97
14	FE1-CE1	180.0	-1.42/-1.49/-2.62	2.32/2.08/1.96
15	FE1-CE1	270.0	-1.31/-1.36/-2.41	2.32/2.09/1.96
16	FE2-CE2	0.0	-1.33/-1.31/-2.34	2.32/2.09/1.96
17	FE2-CE2	90.0	-1.31/-1.36/-2.41	2.32/2.09/1.96
18	FE2-CE2	180.0	-1.42/-1.49/-2.62	2.32/2.08/1.96
19	FE2-CE2	270.0	-1.31/-1.35/-2.40	2.32/2.09/1.97
20	FZ-CZ	0.0	-1.31/-1.38/-1.81	2.33/2.08/2.03
21	FZ-CZ	90.0	-1.23/-1.32/-1.69	2.34/2.09/2.04
22	FZ-CZ	180.0	-1.31/-1.38/-1.81	2.33/2.08/2.03
23	FZ-CZ	270.0	-1.23/-1.33/-1.70	2.35/2.09/2.04

1.158 Small molecule used for aspartylphosphate(PHD)

Figure S148: The molecule used for water complex calculations corresponding to (propanoyloxy)phosp honicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S488: Statistics of calculated water interaction and dipole moment for (propanoyloxy)phosphoni cacid.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.96/4.11	0.13/0.22	6.150	8.11/7.00	18.52
Optimal	0.35/0.73	0.12/0.22	3.565	8.11/6.93	1.26

Table S489: The comparison list of optimized atomic charges and their initial guess for (propan oyloxy)phosphonicacid, referring to the penalties of initial guess

Atom	Charges			
Atom	Optimal	Initial	$\mathbf{Penalty}$	
HA3	0.090	0.090	0.000	
HA2	0.090	0.090	0.000	
\mathbf{CA}	-0.270	-0.269	0.125	
HA	0.090	0.090	0.000	
CB	-0.295	-0.220	2.765	
HB1	0.072	0.090	0.125	
HB2	0.091	0.090	0.125	
CG	0.604	0.541	35.037	
OD2	-0.450	-0.649	2.778	
OD1	-0.454	-0.366	33.024	
Р	1.183	1.408	30.526	
OP1	-0.719	-0.760	15.770	
OP2	-0.719	-0.760	15.770	
OP3	-0.651	-0.713	14.910	
H3O	0.338	0.338	0.000	

Table S490: Interaction energies and geometries between probe water and selected (propanoyloxy)pho sphonicacid site calculated using the optimized and initial charges

Ν	Probe	Angle	Energy~(kcal/mol)	Distance (Å)
	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	OD2-CG	0.0	-6.68/-6.16/-9.83	1.94/1.82/1.72
2	OD2-CG	90.0	-8.55/-8.73/-12.36	1.91/1.79/1.70
3	OD2-CG	180.0	-10.33/-10.81/-14.44	1.87/1.76/1.68
4	OD2-CG	270.0	-7.64/-7.63/-11.33	1.92/1.80/1.70
5	OD1-CG	0.0	-10.64/-10.78/-8.92	1.90/1.76/1.81
6	OD1-CG	90.0	-7.29/-7.23/-5.48	2.01/1.84/1.91
7	OD1-CG	180.0	-4.99/-4.96/-3.23	2.12/1.90/2.02
8	OD1-CG	270.0	-6.85/-6.83/-5.33	2.02/1.85/1.92
9	OP1-P	0.0	-12.37/-13.09/-13.46	1.79/1.68/1.67
10	OP1-P	90.0	-12.01/-12.34/-11.93	1.79/1.68/1.68
11	OP1-P	180.0	-12.17/-12.52/-12.29	1.79/1.68/1.68
12	OP1-P	270.0	-12.80/-13.41/-13.96	1.78/1.67/1.67
13	OP2-P	0.0	-12.37/-12.26/-11.85	1.77/1.68/1.67
14	OP2-P	90.0	-11.81/-11.63/-11.48	1.78/1.68/1.68
15	OP2-P	180.0	-12.42/-12.17/-12.05	1.77/1.68/1.67
16	OP2-P	270.0	-12.77/-12.66/-12.32	1.77/1.67/1.67
17	OP 3-P	0.0	-5.78/-5.41/-5.05	2.05/1.96/1.98
18	OP 3-P	90.0	-9.48/-9.74/-11.17	1.94/1.88/1.86
19	OP 3-P	180.0	-11.51/-12.20/-13.22	1.90/1.85/1.84
20	OP3-P	270.0	-7.48/-7.45/-6.81	1.99/1.92/1.94

1.159 Small molecule used for aspartylphosphate(PHD)

Figure S149: The molecule used for water complex calculations corresponding to (propanoyloxy)phosp honicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S491: Statistics of calculated water interaction and dipole moment for (propanoyloxy) phosphoni cacid.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	2.25/6.01	0.09/0.32	6.673	11.79/15.54	2.20
Optimal	0.82/1.83	0.09/0.21	4.019	11.79/13.31	2.71

Table S492: The comparison list of optimized atomic charges and their initial guess for (propan oyloxy)phosphonicacid, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal Initial		$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.269	0.125
HA	0.090	0.090	0.000
CB	-0.229	-0.220	2.765
HB1	0.128	0.090	0.125
HB2	0.017	0.090	0.125
CG	0.691	0.535	41.288
OD2	-0.644	-0.649	2.778
OD1	-0.632	-0.233	37.616
Р	1.402	0.897	39.985
OP1	-0.911	-0.837	22.078
OP2	-0.911	-0.837	22.078
OP3	-0.911	-0.837	22.078

Table S493: Interaction energies and geometries between probe water and selected (propanoyloxy)pho sphonicacid site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	OD2-CG	0.0	-11.99/-10.44/-10.51	1.78/1.72/1.72
2	OD2-CG	90.0	-13.88/-13.56/-13.74	1.77/1.70/1.69
3	OD2-CG	180.0	-17.18/-17.84/-18.40	1.74/1.67/1.66
4	OD2-CG	270.0	-14.16/-13.93/-14.27	1.77/1.69/1.69
5	OD1-CG	0.0	-18.80/-18.95/-15.33	1.89/1.76/1.88
6	OD1-CG	90.0	-12.82/-12.36/-8.34	2.05/1.88/2.12
7	OD1-CG	180.0	-10.06/-8.23/-4.05	2.19/1.98/2.51
8	OD1-CG	270.0	-13.08/-11.82/-8.37	2.03/1.90/2.12
9	OP1-P	0.0	-20.98/-20.89/-20.50	1.66/1.61/1.62
10	OP1-P	90.0	-19.93/-19.38/-19.28	1.67/1.61/1.62
11	OP1-P	180.0	-19.71/-19.03/-19.45	1.67/1.62/1.62
12	OP1-P	270.0	-20.93/-20.61/-20.80	1.66/1.61/1.61
13	OP2-P	0.0	-21.14/-20.41/-19.51	1.65/1.61/1.62
14	OP2-P	90.0	-20.90/-19.92/-19.80	1.65/1.61/1.61
15	OP2-P	180.0	-20.56/-19.48/-19.92	1.66/1.61/1.61
16	OP2-P	270.0	-20.90/-20.02/-19.83	1.65/1.61/1.61
17	OP 3-P	0.0	-20.95/-20.74/-20.43	1.66/1.61/1.62
18	OP 3-P	90.0	-20.96/-20.65/-20.81	1.66/1.61/1.61
19	OP3-P	180.0	-19.75/-19.11/-19.47	1.67/1.62/1.62
20	OP 3-P	270.0	-19.95/-19.33/-19.25	1.67/1.61/1.62
1.160 Small molecule used for aspartylphosphate(PHDP)

Figure S150: The molecule used for water complex calculations corresponding to (propanoyloxy)phosp honicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S494: Statistics of calculated water interaction and dipole moment for (propanoyloxy)phosphoni cacid.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.96/4.11	0.13/0.22	6.150	8.11/7.00	18.52
Optimal	0.35/0.73	0.12/0.22	3.565	8.11/6.93	1.26

Table S495: The comparison list of optimized atomic charges and their initial guess for (propan oyloxy)phosphonicacid, referring to the penalties of initial guess

Atom		Charges				
Atom	Optimal	Initial	$\mathbf{Penalty}$			
HA3	0.090	0.090	0.000			
HA2	0.090	0.090	0.000			
\mathbf{CA}	-0.270	-0.269	0.125			
HA	0.090	0.090	0.000			
CB	-0.295	-0.220	2.765			
HB1	0.072	0.090	0.125			
HB2	0.091	0.090	0.125			
CG	0.604	0.541	35.037			
OD2	-0.450	-0.649	2.778			
OD1	-0.454	-0.366	33.024			
Р	1.183	1.408	30.526			
OP1	-0.719	-0.760	15.770			
OP2	-0.719	-0.760	15.770			
OP3	-0.651	-0.713	14.910			
H3O	0.338	0.338	0.000			

Table S496: Interaction energies and geometries between probe water and selected (propanoyloxy)pho sphonicacid site calculated using the optimized and initial charges

Ν	Probe	Angle	Energy $(kcal/mol)$	Distance (Å)
	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	OD2-CG	0.0	-6.68/-6.16/-9.83	1.94/1.82/1.72
2	OD2-CG	90.0	-8.55/-8.73/-12.36	1.91/1.79/1.70
3	OD2-CG	180.0	-10.33/-10.81/-14.44	1.87/1.76/1.68
4	OD2-CG	270.0	-7.64/-7.63/-11.33	1.92/1.80/1.70
5	OD1-CG	0.0	-10.64/-10.78/-8.92	1.90/1.76/1.81
6	OD1-CG	90.0	-7.29/-7.23/-5.48	2.01/1.84/1.91
7	OD1-CG	180.0	-4.99/-4.96/-3.23	2.12/1.90/2.02
8	OD1-CG	270.0	-6.85/-6.83/-5.33	2.02/1.85/1.92
9	OP1-P	0.0	-12.37/-13.09/-13.46	1.79/1.68/1.67
10	OP1-P	90.0	-12.01/-12.34/-11.93	1.79/1.68/1.68
11	OP1-P	180.0	-12.17/-12.52/-12.29	1.79/1.68/1.68
12	OP1-P	270.0	-12.80/-13.41/-13.96	1.78/1.67/1.67
13	OP2-P	0.0	-12.37/-12.26/-11.85	1.77/1.68/1.67
14	OP2-P	90.0	-11.81/-11.63/-11.48	1.78/1.68/1.68
15	OP2-P	180.0	-12.42/-12.17/-12.05	1.77/1.68/1.67
16	OP2-P	270.0	-12.77/-12.66/-12.32	1.77/1.67/1.67
17	OP 3-P	0.0	-5.78/-5.41/-5.05	2.05/1.96/1.98
18	OP 3-P	90.0	-9.48/-9.74/-11.17	1.94/1.88/1.86
19	OP 3-P	180.0	-11.51/-12.20/-13.22	1.90/1.85/1.84
20	OP3-P	270.0	-7.48/-7.45/-6.81	1.99/1.92/1.94

1.161 Small molecule used for aspartylphosphate(PHDP)

Figure S151: The molecule used for water complex calculations corresponding to (propanoyloxy)phosp honicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S497: Statistics of calculated water interaction and dipole moment for (propanoyloxy)phosphoni cacid.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	2.25/6.01	0.09/0.32	6.673	11.79/15.54	2.20
Optimal	0.82/1.83	0.09/0.21	4.019	11.79/13.31	2.71

Table S498: The comparison list of optimized atomic charges and their initial guess for (propan oyloxy)phosphonicacid, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
CA	-0.270	-0.269	0.125
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
CB	-0.229	-0.220	2.765
HB1	0.128	0.090	0.125
HB2	0.017	0.090	0.125
CG	0.691	0.535	41.288
OD2	-0.644	-0.649	2.778
OD1	-0.632	-0.233	37.616
Р	1.402	0.897	39.985
OP1	-0.911	-0.837	22.078
OP2	-0.911	-0.837	22.078
OP3	-0.911	-0.837	22.078

Table S499: Interaction energies and geometries between probe water and selected (propanoyloxy)pho sphonicacid site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
- 19	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	OD2-CG	0.0	-11.99/-10.44/-10.51	1.78/1.72/1.72
2	OD2-CG	90.0	-13.88/-13.56/-13.74	1.77/1.70/1.69
3	OD2-CG	180.0	-17.18/-17.84/-18.40	1.74/1.67/1.66
4	OD2-CG	270.0	-14.16/-13.93/-14.27	1.77/1.69/1.69
5	OD1-CG	0.0	-18.80/-18.95/-15.33	1.89/1.76/1.88
6	OD1-CG	90.0	-12.82/-12.36/-8.34	2.05/1.88/2.12
7	OD1-CG	180.0	-10.06/-8.23/-4.05	2.19/1.98/2.51
8	OD1-CG	270.0	-13.08/-11.82/-8.37	2.03/1.90/2.12
9	OP1-P	0.0	-20.98/-20.89/-20.50	1.66/1.61/1.62
10	OP1-P	90.0	-19.93/-19.38/-19.28	1.67/1.61/1.62
11	OP1-P	180.0	-19.71/-19.03/-19.45	1.67/1.62/1.62
12	OP1-P	270.0	-20.93/-20.61/-20.80	1.66/1.61/1.61
13	OP2-P	0.0	-21.14/-20.41/-19.51	1.65/1.61/1.62
14	OP2-P	90.0	-20.90/-19.92/-19.80	1.65/1.61/1.61
15	OP2-P	180.0	-20.56/-19.48/-19.92	1.66/1.61/1.61
16	OP2-P	270.0	-20.90/-20.02/-19.83	1.65/1.61/1.61
17	OP 3-P	0.0	-20.95/-20.74/-20.43	1.66/1.61/1.62
18	OP3-P	90.0	-20.96/-20.65/-20.81	1.66/1.61/1.61
19	OP3-P	180.0	-19.75/-19.11/-19.47	1.67/1.62/1.62
20	OP 3-P	270.0	-19.95/-19.33/-19.25	1.67/1.61/1.62

1.162 Small molecule A of [(4Z)-2-[(1S)-1-aminoethyl]-4-(4-hydroxybenzyli dene)-5-0x0-4,5-dihydro-1H-imidazol-1-yl]aceticacid(PIA)

Figure S152: The molecule used for water complex calculations corresponding to (4Z)-4-ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S500: Statistics of calculated water interaction and dipole moment for (4Z)-4-ethylidene-1,2-dime thyl-4,5-dihydro-1H-imidazol-5-one.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	$\rm QM/MM~(Debye)$	difference (°)
Initial	0.92/1.64	0.10/0.25	6.526	3.17/0.45	27.81
Optimal	0.49/1.31	0.09/0.22	3.053	3.17/3.55	14.34

Table S501: The comparison list of optimized atomic charges and their initial guess for (4Z)-4ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	Penalty		
CA1	-0.070	-0.115	13.925		
\mathbf{HA}	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
HA3	0.090	0.090	0.000		
C1	0.233	0.074	23.781		
N2	-0.679	-0.703	41.871		
N3	-0.080	-0.079	15.706		
C2	0.407	0.509	24.002		
O2	-0.489	-0.482	6.710		
CA2	0.288	0.516	47.153		
CB2	-0.105	-0.135	25.469		
HB2	0.150	0.150	3.270		
CG2	-0.270	-0.274	15.277		
$\mathrm{HG21}$	0.090	0.090	1.175		
$\mathrm{HG}22$	0.090	0.090	1.175		
$\mathrm{HG23}$	0.090	0.090	1.175		
CA3	-0.195	-0.271	3.821		
HA31	0.090	0.090	0.000		
HA32	0.090	0.090	0.000		
HA33	0.090	0.090	0.000		

Table S502: Interaction energies and geometries between probe water and selected (4Z)-4-ethylidene -1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HA-CA1	0.0	-2.17/-2.61/-1.51	2.59/2.58/2.65
2	HA2-CA1	0.0	-0.97/-0.86/0.05	2.58/2.64/2.77
3	HA3-CA1	0.0	-2.55/-2.73/-1.57	2.52/2.57/2.64
4	N2-C1	0.0	-4.99/-6.30/-5.60	2.09/2.01/2.02
5	N2-C1	90.0	-7.07/-6.37/-6.45	1.90/1.99/1.99
6	N2-C1	180.0	-5.35/-5.42/-6.38	1.95/2.01/1.99
7	N2-C1	270.0	-7.07/-6.37/-6.45	1.90/1.99/1.99
8	N3-C1	0.0	-0.26/-0.82/-0.78	2.74/2.52/2.49
9	O2-C2	0.0	-5.51/-5.57/-5.00	1.85/1.78/1.80
10	O2-C2	90.0	-5.87/-5.71/-4.73	1.84/1.78/1.80
11	O2-C2	180.0	-5.92/-5.61/-4.27	1.84/1.78/1.81
12	O2-C2	270.0	-5.87/-5.71/-4.73	1.84/1.78/1.80
13	HB2-CB2	0.0	-1.40/-1.60/-2.82	2.32/2.47/2.44
14	HG21-CG2	0.0	-1.01/-0.46/-0.86	2.72/2.77/2.74
15	HG23-CG2	0.0	-1.01/-0.46/-0.86	2.72/2.77/2.74
16	HA32-CA3	0.0	-2.16/-2.10/-1.23	2.59/2.63/2.70
17	HA 33-CA 3	0.0	-2.16/-2.10/-1.23	2.59/2.63/2.70

1.163 Small molecule B of [(4Z)-2-[(1S)-1-aminoethyl]-4-(4-hydroxybenzyli dene)-5-0x0-4,5-dihydro-1H-imidazol-1-yl]aceticacid(PIA)

Table S503: The molecule used for water complex calculations corresponding to N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

		RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
		Energy (kcal/mol)	Distance (Å)	${f RMS}~({ m kcal}/{ m mol}/{ m \AA})$	$\rm QM/MM~(Debye)$	difference (°)
Geometry 1	Initial	$0.86 \ / \ 2.05$	$0.07 \ / \ 0.17$	6.601	1.19 / 4.07	1.19
Geometry 2	Initial	$1.02\ /\ 2.07$	$0.09 \ / \ 0.23$	6.126	$6.37 \ / \ 4.43$	6.37
Sum of geometries	Initial	$0.95\ /\ 2.07$	$0.08 \ / \ 0.23$	12.727	-	-
Geometry 1	Optimal	0.36 / 0.81	0.07 / 0.16	2.460	1.19 / 1.37	1.19
Geometry 2	Optimal	$0.51\ /\ 0.91$	$0.08 \ / \ 0.19$	2.701	$6.37 \ / \ 7.25$	6.37
Sum of geomeries	Optimal	$0.45 \ / \ 0.91$	$0.08 \ / \ 0.19$	5.161	-	-

Table S504: Statistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide.

Table S505: The comparison list of optimized atomic charges and their initial guess for N-methyl -2-(2-methyl-4-methylidene-5-oxo-4,5-dihydro-1H -imidazol-1-yl)acetamide, referring to the penalties of initial guess

=

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HA1	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
CA	-0.070	-0.115	13.925		
\mathbf{HA}	0.090	0.090	0.000		
C1	0.233	0.164	24.002		
N2	-0.679	-0.703	41.104		
N3	-0.031	-0.499	22.994		
C2	0.407	0.613	23.378		
O2	-0.489	-0.482	6.517		
CA2	0.466	0.512	42.773		
CB2	-0.593	-0.444	13.655		
HB21	0.230	0.230	0.950		
HB22	0.230	0.230	0.950		
CA3	-0.154	0.043	13.461		
HA31	0.090	0.090	0.177		
HA32	0.090	0.090	0.177		
С	0.510	0.499	10.097		
Ο	-0.510	-0.517	3.479		
\mathbf{NR}	-0.470	-0.442	6.773		
$_{\mathrm{HR}}$	0.310	0.299	0.000		
\mathbf{CR}	-0.110	-0.108	0.239		
HR1	0.090	0.090	0.000		
HR2	0.090	0.090	0.000		
HR3	0.090	0.090	0.000		

Table S506: Interaction energies and geometries between probe water and selected N-methyl-2-(2-me thyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazo l-1-yl)acetamide site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
	Geometry	1		
1	O-C	0.0	-5.45/-5.47/-6.22	1.84/1.77/1.76
2	O-C	90.0	-6.01/-6.48/-6.53	1.83/1.75/1.76
3	O-C	180.0	-5.96/-6.64/-6.64	1.83/1.75/1.75
4	O-C	270.0	-5.67/-5.94/-6.62	1.84/1.76/1.75
5	NR-C	0.0	-1.32/-1.50/-1.08	2.24/2.20/2.22
6	HR2-CR	0.0	-1.10/-1.26/-1.09	2.71/2.66/2.67
7	HR3-CR	0.0	-1.39/-1.22/-1.32	2.66/2.67/2.67
8	N2-C1	0.0	-5.74/-6.45/-6.04	1.95/1.92/1.92
9	N2-C1	90.0	-6.51/-6.37/-7.24	1.90/1.92/1.90
10	N2-C1	180.0	-5.60/-5.66/-7.65	1.96/1.93/1.90
11	N2-C1	270.0	-6.64/-6.59/-7.43	1.90/1.91/1.89
12	O2-C2	0.0	-3.88/-3.93/-3.54	1.88/1.80/1.81
13	O2-C2	90.0	-4.94/-5.15/-4.46	1.84/1.77/1.79
14	O2-C2	180.0	-4.95/-5.20/-4.05	1.84/1.77/1.79
15	O2-C2	270.0	-3.93/-4.12/-3.39	1.87/1.79/1.81
16	HB21-CB2	0.0	-1.84/-1.64/-3.47	2.32/2.48/2.42
17	HB22-CB2	0.0	-1.82/-1.01/-2.42	2.42/2.54/2.46
18	HA31-CA3	0.0	-2.08/-2.47/-1.68	2.70/2.69/2.70
19	HA-CA	0.0	-2.47/-2.76/-1.19	2.49/2.56/2.66
	Geometry	2		
20	O-C	0.0	-6.06/-6.90/-7.24	1.86/1.76/1.75
21	O-C	90.0	-5.25/-6.15/-7.32	1.87/1.77/1.75
22	O-C	180.0	-4.71/-5.63/-6.52	1.88/1.77/1.76
23	O-C	270.0	-5.56/-6.46/-6.85	1.86/1.76/1.76
24	HR-NR	0.0	-7.09/-7.67/-7.53	1.93/1.90/1.90
25	HR-NR	45.0	-7.71/-7.90/-7.71	1.91/1.89/1.89
26	HR-NR	90.0	-7.79/-7.84/-7.79	1.90/ 1.89/ 1.89
27	HR-NR	135.0	-7.18/-7.62/-7.61	1.92/1.90/1.89
28	HR1-CR	0.0	-0.71/-0.04/0.30	2.50/2.69/2.67
29	HR2-CR	0.0	-1.54/-1.44/-1.38	2.68/2.66/2.66
30	HR3-CR	0.0	-1.84/-1.82/-1.70	2.68/2.67/2.66
31	N2-C1	0.0	-6.46/-6.98/-6.58	1.93/1.91/1.91
32	N2-C1	90.0	-6.88/-6.47/-7.35	1.89/1.91/1.89
33	N2-C1	180.0	-5.73/-5.60/-7.60	1.95/1.93/1.90
34	N2-C1	270.0	-7.31/-7.09/-7.94	1.88/1.91/1.89
35	N3-C1	0.0	-0.22/0.03/-2.15	2.60/2.67/2.17
36	O2-C2	0.0	-4.96/-5.34/-4.95	1.88/1.79/1.80
37	O2-C2	90.0	-5.32/-5.37/-4.66	1.87/1.78/1.80
38	O2-C2	180.0	-5.74/-5.89/-4.71	1.87/1.78/1.81
39	O2-C2	270.0	-5.94/-6.25/-5.51	1.85/1.77/1.79
40	HB21-CB2	0.0	-1.43/-1.20/-3.03	2.33/2.48/2.41
41	HB22-CB2	0.0	-1.29/-0.66/-2.05	2.47/2.56/2.47
42	HA31-CA3	0.0	-3.71/-4.08/-3.49	2.50/2.57/2.57
43	HA-CA	0.0	-2.67/-3.45/-1.93	2.59/2.58/2.69

1.164 Small molecule A of 1-[(2R)-2-carboxy-2-hydroxyethyl]-L-proline(PR4)

Figure S153: The molecule used for water complex calculations corresponding to (2S)-N,1-dimethylpy rrolidine-2-carboxamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S507: Statistics of calculated water interaction and dipole moment for (2S)-N,1-dimethylpyrrolid ine-2-carboxamide.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.75/1.21	0.34/0.80	4.523	4.33/2.88	21.86
Optimal	0.31/0.66	0.11/0.23	2.800	4.33/5.15	1.72

Table S508: The comparison list of optimized atomic charges and their initial guess for (2S)-N,1-dimethylpyrrolidine-2-carboxamide, referring to the penalties of initial guess

_

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HAB3	0.090	0.090	3.539
CAB	-0.135	-0.270	!
HAB1	0.090	0.090	3.539
HAB2	0.090	0.090	3.539
Ν	-0.458	-0.699	52.285
\mathbf{CA}	0.022	0.206	38.641
\mathbf{HA}	0.090	0.090	1.773
CB	-0.289	-0.228	17.056
HB1	0.090	0.090	0.200
HB2	0.090	0.090	0.200
CG	-0.117	-0.225	14.835
HG1	0.090	0.090	0.000
$\mathrm{HG2}$	0.090	0.090	0.000
CD	0.077	0.124	32.046
HD1	0.090	0.090	1.550
HD2	0.090	0.090	1.550
С	0.510	0.510	27.543
0	-0.510	-0.510	!
\mathbf{NR}	-0.470	-0.47	0.000
$_{\mathrm{HR}}$	0.310	0.31	0.000
CR	-0.110	-0.11	0.000
HR1	0.090	0.090	0.000
$\mathrm{HR2}$	0.090	0.090	0.000
HR3	0.090	0.090	0.000

Table S509: Interaction energies and geometries between probe water and selected (2S)-N,1-dimethyl pyrrolidine-2-carboxamide site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(*)	${ m QM}/{ m Optimal}/{ m Initial}$	$\rm QM/Optimal/Initial$
1	O-C	0.0	-7.12/-6.93/-6.10	1.80/1.76/1.77
2	O-C	90.0	-7.03/-6.95/-6.11	1.80/1.76/1.77
3	O-C	180.0	-7.03/-6.78/-6.13	1.80/1.76/1.77
4	O-C	270.0	-7.13/-6.85/-6.28	1.80/1.76/1.77
5	NR-C	0.0	-1.62/-1.94/-1.84	2.33/2.36/2.36
6	HR-NR	0.0	-1.02/-0.95/-0.12	4.32/4.50/5.00
7	HR-NR	45.0	-1.22/-1.08/-0.23	4.26/4.38/5.00
8	HR-NR	90.0	-1.31/-1.10/-0.21	4.20/4.37/5.00
9	HR-NR	135.0	-1.10/-0.96/-0.10	4.27/4.50/5.00
10	HR1-CR	0.0	-0.22/-0.15/-0.62	2.81/2.73/2.67
11	HR2-CR	0.0	-1.24/-1.09/-1.46	2.73/2.70/2.64
12	HA-CA	0.0	-1.02/-0.63/-1.29	2.64/2.72/2.64
13	HAB1-CAB	0.0	-1.78/-1.53/-0.63	2.61/2.62/2.76
14	HAB2-CAB	0.0	-1.28/-1.50/-0.65	2.78/2.66/2.81
15	HAB3-CAB	0.0	-1.28/-1.29/-0.07	2.75/2.71/3.04
16	HG1-CG	0.0	-1.20/-1.42/-1.30	2.75/2.69/2.71
17	$\operatorname{HG2-CG}$	0.0	-1.12/-1.29/-0.94	2.75/2.69/2.74
18	HB1-CB	0.0	-1.06/-0.52/-1.28	2.75/2.81/2.69
19	HD1-CD	0.0	-1.23/-1.85/-1.17	2.77/2.65/2.69
20	HD2-CD	0.0	-1.22/-1.88/-1.58	2.83/2.65/2.66

1.165 Small molecule B of 1-[(2R)-2-carboxy-2-hydroxyethyl]-L-proline(PR4)

Figure S154: The molecule used for water complex calculations corresponding to (2R)-2-hydroxypropa noate, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S510: Statistics of calculated water interaction and dipole moment for (2R)-2-hydroxypropanoate.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	${\rm Energy}\;(\rm kcal/mol)$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.97/1.44	0.07/0.09	3.308	8.05/9.03	2.51
Optimal	0.56/0.97	0.07/0.08	2.417	8.05/7.92	3.23

Table S511: The comparison list of optimized atomic charges and their initial guess for (2R)-2-hydroxypropanoate, referring to the penalties of initial guess

Table S512: Interaction energies and geometries be-
tween probe water and selected $(2R)$ -2-hydroxyp
ropanoate site calculated using the optimized and
initial charges

Atom		Charges	
Atom	Optimal	Initial	Penalty
OAE	-0.729	-0.760	0.250
OAF	-0.729	-0.760	0.250
CAD	0.671	0.614	3.551
CAC	-0.071	0.058	3.837
HAC	0.090	0.090	0.000
OAG	-0.579	-0.613	3.613
HOAG	0.347	0.369	3.268
CAB	-0.270	-0.268	0.000
HAB1	0.090	0.090	0.000
HAB2	0.090	0.090	0.000
HAB3	0.090	0.090	0.000

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(*)	${ m QM}/{ m Optimal}/{ m Initial}$	$\rm QM/Optimal/Initial$
1	OAE-CAD	0.0	-14.28/-14.57/-15.56	1.73/1.66/1.65
2	OAE-CAD	90.0	-14.26/-14.83/-15.70	1.73/1.66/1.65
3	OAE-CAD	180.0	-14.42/-14.99/-15.67	1.73/1.65/1.64
4	OAE-CAD	270.0	-13.89/-14.38/-15.19	1.74/1.66/1.65
5	OAF-CAD	0.0	-14.93/-14.61/-15.59	1.71/1.65/1.64
6	OAF-CAD	90.0	-14.25/-13.77/-14.53	1.72/1.66/1.65
7	OAF-CAD	180.0	-13.93/-13.19/-13.73	1.72/1.67/1.66
8	OAF-CAD	270.0	-14.43/-13.98/-14.77	1.72/1.66/1.65
9	OAG-CAC	90.0	-10.10/-9.86/-9.83	2.01/1.94/1.94
10	OAG-CAC	180.0	-15.89/-16.56/-17.02	1.87/1.82/1.81
11	OAG-CAC	270.0	-8.05/-7.08/-6.91	2.09/2.01/2.03

1.166 The dipeptide of Thioproline (PRS)

Figure S155: The molecule used for water complex calculations corresponding to (4R)-3-acetyl-N-met hyl-1,3-thiazolidine-4-carboxamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S513: Statistics of calculated water interaction and dipole moment for (4R)-3-acetyl-N-methyl-1,3-thiazolidine-4-carboxamide.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.42/0.90	0.25/0.58	1.788	2.89/2.65	6.94
Optimal	0.39/1.00	0.23/0.55	2.313	2.89/3.50	3.37

Table S514: The comparison list of optimized atomic charges and their initial guess for (4R)-3-acetyl-N-methyl-1,3-thiazolidine-4-carboxamide, referring to the penalties of initial guess

Table S515: Interaction energies and geometries between probe water and selected (4R)-3-acetyl-N-m ethyl-1,3-thiazolidine-4-carboxamide site calculated using the optimized and initial charges

Atom	Charges		
Atom	Optimal	Initial	$\mathbf{Penalty}$
CL	-0.270	-0.270	0.000
HL1	0.090	0.090	0.000
HL2	0.090	0.090	0.000
HL3	0.090	0.090	0.000
CLP	0.510	0.510	0.000
OL	-0.510	-0.510	0.000
Ν	-0.150	-0.286	50.298
\mathbf{CA}	-0.036	0.014	43.879
$\mathbf{H}\mathbf{A}$	0.090	0.090	2.500
CB	-0.159	-0.090	93.808
HB1	0.090	0.090	5.590
HB2	0.090	0.090	5.590
\mathbf{SG}	-0.128	-0.178	131.241
CD	0.023	0.087	98.508
HD1	0.090	0.090	5.590
HD2	0.090	0.090	5.590
\mathbf{C}	0.510	0.509	2.500
0	-0.510	-0.501	0.000
\mathbf{NR}	-0.470	-0.47	0.000
\mathbf{HR}	0.310	0.31	0.000
CR	-0.110	-0.11	0.000
$\mathrm{HR1}$	0.090	0.090	0.000
$\mathrm{HR2}$	0.090	0.090	0.000
HR3	0.090	0.090	0.000

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(°)	$\mathrm{QM}/\mathrm{Optimal}/\mathrm{Initial}$	$\rm QM/Optimal/Initial$
1	O-C	0.0	-5.85/-6.36/-5.95	1.83/1.76/1.77
2	O-C	90.0	-6.00/-6.31/-6.11	1.82/1.76/1.76
3	O-C	180.0	-6.22/-6.65/-6.44	1.82/1.76/1.76
4	O-C	270.0	-6.23/-6.80/-6.41	1.82/1.75/1.76
5	NR-C	0.0	-2.13/-1.81/-1.95	2.17/2.17/2.16
6	$\mathrm{HR2}\text{-}\mathrm{CR}$	0.0	-1.23/-1.10/-1.10	2.68/2.67/2.67
7	$\mathrm{HR3} ext{-}\mathrm{CR}$	0.0	-0.35/-0.52/-0.51	2.87/2.73/2.72
8	HA-CA	0.0	-1.27/-1.17/-1.26	2.45/2.63/2.62
9	$\mathrm{HL1}\text{-}\mathrm{CL}$	0.0	-2.60/-2.70/-2.43	2.52/2.59/2.61
10	$\mathrm{HL2}\text{-}\mathrm{CL}$	0.0	-1.24/-0.93/-0.73	2.56/2.67/2.69
11	HL3-CL	0.0	-2.74/-2.53/-2.27	2.44/2.58/2.59
12	OL-CLP	0.0	-5.00/-5.57/-5.90	1.83/1.75/1.74
13	OL-CLP	90.0	-5.02/-5.44/-5.66	1.83/1.75/1.75
14	OL-CLP	180.0	-3.88/-3.93/-4.03	1.87/1.80/1.80
15	OL-CLP	270.0	-3.88/-4.14/-4.40	1.85/1.78/1.78
16	N-CLP	0.0	-2.51/-2.76/-2.83	3.30/3.22/3.15
17	$\operatorname{HB1-CB}$	0.0	-1.87/-0.88/-1.30	2.52/2.71/2.66
18	SG-CB	0.0	-0.67/-0.89/-1.21	3.02/2.49/2.44
19	SG-CB	90.0	-1.14/-1.41/-1.62	2.92/2.45/2.42
20	SG-CB	180.0	-0.98/-1.61/-1.77	2.99/2.44/2.41
21	SG-CB	270.0	-0.94/-1.17/-1.48	2.94/2.47/2.42
22	HD1-CD	0.0	-2.44/-2.07/-2.17	2.31/2.54/2.54
23	$\mathrm{HD2} ext{-}\mathrm{CD}$	0.0	-2.70/-2.84/-2.71	2.92/2.90/2.90

1.167 Small molecule used for (2R)-amino(2-nitrophenyl)ethanoicacid(PRV)

Figure S156: The molecule used for water complex calculations corresponding to 1-methyl-2-nitrobe nzene, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S516: Statistics of calculated water interaction and dipole moment for 1-methyl-2-nitrobenzene.

	RMS/Max Deviation from QM Energy (kcal/mol) Distance (Å)		Electrostatic potential	Dipole moment	Dipole angle
			m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.60/0.92	0.18/0.32	2.529	4.96/4.35	8.41
Optimal	0.67/1.05	0.25/0.58	3.270	4.96/6.18	0.66

Table S517: The comparison list of optimized atomic charges and their initial guess for 1-meth yl-2-nitrobenzene, referring to the penalties of initial guess

$\operatorname{charges}$	
nzene site calculated using the optimized	and initial
tween probe water and selected 1-methy	l-2-nitrobe
Table S518: Interaction energies and geo	metries be-

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.267	1.500
\mathbf{HA}	0.090	0.090	0.000
CG	0.043	-0.033	13.121
CD1	-0.091	-0.114	0.000
HD1	0.115	0.115	0.000
CD2	0.283	0.345	15.880
N1	0.204	0.384	14.898
O1	-0.279	-0.340	0.000
O2	-0.279	-0.340	0.000
CE1	-0.015	-0.115	0.000
HE1	0.115	0.115	0.000
CE2	-0.322	-0.182	0.000
HE2	0.188	0.160	0.000
CZ	-0.077	-0.113	0.000
HZ	0.115	0.115	0.000

	N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	1	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
	1	HA3-CA	0.0	-2.05/-1.72/-1.39	2.62/2.68/2.69
	2	HA2-CA	0.0	-1.03/-0.53/-0.47	2.53/2.68/2.69
	3	HA-CA	0.0	-1.86/-0.86/-1.14	2.45/2.61/2.61
	4	HD1-CD1	0.0	-2.26/-2.46/-1.76	2.55/2.61/2.66
	5	HD1-CD1	90.0	-2.64/-2.55/-1.83	2.46/2.60/2.65
	6	N1-CD2	0.0	-1.11/-0.05/-0.74	3.64/4.22/3.96
	7	N1-CD2	45.0	-0.75/-0.02/-0.68	3.75/4.26/3.98
	8	N1-CD2	90.0	-0.67/-0.06/-0.68	3.84/4.25/3.99
	9	N1-CD2	135.0	-1.02/-0.10/-0.74	3.70 / 4.21 / 3.97
	10	01-N1	0.0	-2.31/-3.06/-3.23	2.04/1.89/1.88
	11	01-N1	90.0	-3.42/-4.15/-4.11	1.98/1.86/1.85
	12	01-N1	180.0	-3.80/-4.75/-4.67	1.98/1.85/1.84
	13	01-N1	270.0	-2.99/-3.79/-3.88	1.99/1.87/1.86
	14	O2-N1	0.0	-2.52/-3.01/-2.77	2.04/1.90/1.89
	15	O2-N1	90.0	-3.24/-3.88/-3.79	2.01/1.87/1.86
	16	O2-N1	180.0	-3.68/-4.43/-4.37	1.99/1.86/1.85
	17	O2-N1	270.0	-2.90/-3.59/-3.39	2.03/1.88/1.87
	18	$\operatorname{H\!E}\operatorname{1-}\operatorname{C\!E}\operatorname{1}$	0.0	-2.33/-2.52/-1.62	2.50/2.61/2.67
	19	$\operatorname{H\!E} \operatorname{1-}\!\operatorname{C\!E} \operatorname{1}$	90.0	-2.55/-2.59/-1.68	2.46/2.60/2.66
	20	$\operatorname{H\!E} 2\text{-}\operatorname{C\!E} 2$	0.0	-2.23/-1.28/-2.04	2.32/2.59/2.55
	21	$\operatorname{H\!E} 2\text{-}\operatorname{C\!E} 2$	90.0	-1.57/-0.96/-1.69	2.41/2.62/2.58
	22	HZ-CZ	0.0	-2.21/-1.89/-1.73	2.52/2.65/2.66
-	23	HZ-CZ	90.0	-2.41/-1.95/-1.78	2.47/2.64/2.65

Table S519: The molecule used for water complex calculations corresponding to 2-hydroxy-L-prol ine, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S520: Statistics of calculated water interaction and	l dipole moment for 2-hydroxy-L-proline.
--	--

		RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
		${\rm Energy}~({\rm kcal/mol})$	Distance $(Å)$	${ m RMS}~({ m kcal}/{ m mol}/{ m \AA})$	$\rm QM/MM~(Debye)$	difference (°)
Geometry 1	Initial	$0.31 \ / \ 0.58$	$0.09\ /\ 0.22$	1.875	4.68 / 4.87	4.68
Geometry 2	Initial	$0.50\ /\ 1.07$	$0.09 \ / \ 0.20$	2.030	$6.91 \ / \ 7.45$	6.91
Sum of geometries	Initial	$0.42\ /\ 1.07$	$0.09\ /\ 0.22$	3.905	-	-
Geometry 1	Optimal	$0.24 \ / \ 0.44$	$0.08 \ / \ 0.19$	1.788	$4.68 \ / \ 5.36$	4.68
Geometry 2	Optimal	$0.48 \ / \ 1.04$	$0.08 \ / \ 0.16$	2.127	$6.91 \ / \ 7.90$	6.91
Sum of geomeries	Optimal	$0.39\ /\ 1.04$	$0.08 \ / \ 0.19$	3.915	-	-

Table S521: The comparison list of optimized atomic charges and their initial guess for 2-hydr oxy-L-proline, referring to the penalties of initial guess

=

Atom		$\operatorname{Charges}$				
Atom	Optimal	Initial	Penalty			
CL	-0.270	-0.268	0.406			
HL1	0.090	0.090	0.000			
HL2	0.090	0.090	0.000			
HL3	0.090	0.090	0.000			
CLP	0.510	0.512	4.992			
OL	-0.510	-0.515	0.350			
Ν	-0.193	-0.288	32.038			
\mathbf{CA}	0.358	0.334	46.920			
OA	-0.617	-0.648	40.709			
HO	0.379	0.420	3.573			
CB	-0.166	-0.184	7.607			
HB1	0.090	0.090	0.694			
HB2	0.090	0.090	0.694			
CG	-0.169	-0.176	2.921			
HG1	0.090	0.090	0.040			
${ m HG2}$	0.090	0.090	0.040			
CD	-0.036	-0.001	2.628			
HD1	0.090	0.090	0.040			
HD2	0.090	0.090	0.040			
\mathbf{C}	0.370	0.502	27.258			
Ο	-0.466	-0.499	4.731			
\mathbf{NR}	-0.470	-0.473	5.334			
$_{\rm HR}$	0.310	0.315	0.371			
\mathbf{CR}	-0.110	-0.111	0.350			
HR1	0.090	0.090	0.000			
$\mathrm{HR2}$	0.090	0.090	0.000			
HR3	0.090	0.090	0.000			

Table S522: Interaction energies and geometries between probe water and selected 2-hydroxy-L-prol ine site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
10	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
	Geometry	1		
1	O-C	0.0	-6.02/-6.03/-6.20	1.82/1.77/1.77
2	O-C	90.0	-6.03/-5.94/-5.99	1.82/1.77/1.77
3	O-C	180.0	-6.52/-6.62/-6.51	1.81/1.76/1.76
4	O-C	270.0	-6.68/-6.88/-6.86	$1.81^{\prime}/1.76^{\prime}/1.76$
5	NR-C	0.0	-0.98/-1.15/-0.53	2.43 / 2.30 / 2.38
6	HR2-CR	0.0	-1.27/-1.06/-1.25	$2.66^{\prime}/2.67^{\prime}/2.66$
7	HR3-CR	0.0	-0.16/-0.20/-0.43	2.91/2.77/2.73
8	HL1-CL	0.0	-2.58/-2.65/-2.51	2.54/2.60/2.61
9	HL2-CL	0.0	-1.23/-1.05/-0.95	2.58/2.67/2.68
10	HL3-CL	0.0	-2.99/-2.93/-2.73	2.54/2.59/2.60
11	OL-CLP	0.0	-4 05/-4 39/-4 63	1.84/1.76/1.75
12	OL-CLP	90.0	-4 01/-4 30/-4 39	1 85/1 78/1 77
13	OL-CLP	180.0	-3 34/-3 35/-3 03	1.89/1.82/1.82
14	OL-CLP	270.0	-2 94/-3 24/-3 16	1.88/1.80/1.79
15	N-CLP	210.0	-1 68/-1 98/-1 87	3 87/3 88/3 89
16	OA-CA	0.0	-5 17/-5 48/-5 65	1 88 / 1 88 / 1 87
17	HB1CB	0.0	0.73/0.57/0.93	2 71/2 74/2 78
18	HG1-CG	0.0	-1 48/-1 49/-1 34	2.69/2.69/2.70
10	HG2 CG	0.0	-1.40/-1.43/-1.04 0.50/0.14/0.08	2.03/2.03/2.10
20	HD1 CD	0.0	2 57/ 2 08/ 2 86	2.47/2.00/2.08
20	HD2-CD	0.0	-2.57/-2.56/-2.60	2.05/2.00/2.01
	Geometry	<u>0.0</u>	2.46/ 2.04/ 2.01	2.00/2.00/2.00
- 22		0.0	5 76/6 00/5 07	1 96 /1 79 /1 79
22	0.0	0.0	5.63/5.06/5.86	1.85/1.78/1.78
20	0-0	180.0	-5.57/-6.01/-5.87	1.85/1.78/1.77
25	0-0	270.0	-6.03/-6.40/-6.26	1.85/1.77/1.77
26	NRC	210.0	2.06/1.57/1.00	9 17 /9 39 /9 37
20	HR NR	0.0	2.00/-1.07/-1.09	4.95/4.95/4.96
21	HR NR	45.0	-2.03/-3.02/-2.03	4.25/4.25/4.20
20	UD ND	40.0	2.31/-3.10/-3.03	4.27/4.21/4.25
29	III ND	125.0	- 3, 30/ - 3, 33/ - 3, 16 9, 15/ 9, 17/ 9, 09	4.14/4.10/4.18
21	HR-INK	133.0	-3.15/-3.17/-3.03	4.17/4.20/4.22
20	HR2-CR	0.0	1 22 / 1 27 / 1 42	2.55/2.01/2.00
-0⊿ 33	HI1CI	0.0	-1.33/-1.27/-1.42	2.14/2.10/2.09
24	HL1-CL	0.0	-2.35/-2.04/-2.47	2.02/2.03/2.04
25	HL2-UL	0.0	-1.00/-0.71/-0.00	2.00/2.01/2.00
20 26	DI CIP	0.0	-2.02/-2.00/-2.02	2.04/2.00/2.01
30 37	OL-CLP	0.0	-4.05/-5.07/-5.37	1.09/1.79/1.77
31 90	OL CLP	90.0 190.0	-4.90/-9.91/-0.03	1.90/1.79/1.70
20 20	OL-CLP	100.0	-1.24/-0.00/-1.19	1.04/1.70/1.70
39		210.0	-4.01/-0.04/-0.80	1.09/1./0/1.//
40	UA-UA UD1 CD	0.0	-0.16/-1.01/-1.21	1.02/1.00/1.00
41	HBI-CB	0.0	-0.88/-0.40/-0.12	2.30/2.72/2.70
42	HB2-UB	0.0	-1.35/-1.33/-1.39	2.54/2.62/2.62
43	HGI-UG	0.0	-1.79/-1.88/-1.73	2.65/2.67/2.68
44		0.0	-2.49/-0.20/-0.14	2.02/2.00/2.01
40	HD1-UD	0.0	-2.02/-3.48/-3.32	2.74/2.03/2.03
40	HD2-UD	0.0	-2.10/-2.30/-2.10	2.34/2.38/2.39

Figure S157: The molecule used for water complex calculations corresponding to 2-ethylpyridine, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S523: Statistics of calculated water interaction and dipole moment for 2-ethylpyridine.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	$\rm QM/MM~(Debye)$	difference (°)
Initial	0.33/0.89	0.09/0.16	2.479	1.95/2.72	1.03
Optimal	0.15/0.29	0.09/0.14	1.983	1.95/2.54	1.04

Table S524: The comparison list of optimized Table S525: Interaction energies and geometries beatomic charges and their initial guess for 2-ethy lpyridine, referring to the penalties of initial guess

tween probe water and selected 2-ethylpyridine site calculated using the optimized and initial charges

Atom		Charges				
Atom	Optimal	Initial	$\mathbf{Penalty}$			
HA3	0.090	0.090	0.000			
HA2	0.090	0.090	0.000			
\mathbf{CA}	-0.270	-0.270	14.230			
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000			
CB	-0.180	-0.182	29.874			
HB1	0.090	0.090	2.250			
HB2	0.090	0.090	2.250			
CG	0.378	0.335	32.587			
ND1	-0.582	-0.617	34.071			
CE1	0.111	0.149	2.500			
HE1	0.127	0.124	0.000			
CD2	-0.209	-0.110	0.000			
HD2	0.115	0.115	0.000			
CE2	-0.032	-0.107	0.000			
HE2	0.115	0.115	0.000			
CZ	-0.138	-0.117	0.000			
HZ	0.115	0.115	0.000			

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA3-CA	0.0	-0.47/-0.42/-0.44	2.86/2.77/2.78
2	HA2-CA	0.0	-0.59/-0.45/-0.41	2.87/2.79/2.80
3	HB1-CB	0.0	-1.32/-1.37/-1.47	2.72/2.70/2.69
4	ND1-CG	0.0	-6.63/-6.56/-6.95	1.92/1.86/1.85
5	ND1-CG	90.0	-6.98/-6.78/-7.28	1.90/1.86/1.84
6	ND1-CG	180.0	-6.30/-6.59/-7.19	1.95/1.86/1.84
7	ND1-CG	270.0	-6.72/-6.62/-7.12	1.92/1.86/1.84
8	$\operatorname{H\!E}\operatorname{1-}\operatorname{C\!E}\operatorname{1}$	0.0	-1.21/-1.21/-1.31	2.60/2.47/2.46
9	$\operatorname{H\!E} \operatorname{1-C\!E} \operatorname{1}$	90.0	-1.21/-1.19/-1.29	2.58/2.48/2.47
10	HD2-CD2	0.0	-1.60/-1.57/-1.88	2.62/2.67/2.64
11	HD2-CD2	90.0	-1.88/-1.66/-1.96	2.53/2.66/2.63
12	$\operatorname{HE}2\text{-}\operatorname{CE}2$	0.0	-1.82/-1.64/-1.50	2.56/2.66/2.68
13	$\operatorname{HE}2\text{-}\operatorname{CE}2$	90.0	-2.00/-1.70/-1.57	2.51/2.65/2.67
14	HZ-CZ	0.0	-1.55/-1.52/-1.59	2.62/2.67/2.66
15	HZ-CZ	90.0	-1.73/-1.59/-1.65	2.56/2.66/2.65

1.170 Small molecule used for 3-(1-pyrazolyl)-alanine(PYZ1)

Figure S158: The molecule used for water complex calculations corresponding to 1-ethyl-1H-pyraz ole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S526: Statistics of calculated water interaction and dipole moment for 1-ethyl-1H-pyrazole.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.19/3.27	0.22/0.44	2.849	2.41/3.23	4.13
Optimal	0.32/0.87	0.12/0.25	2.040	2.41/2.98	3.82

Table S527: The comparison list of optimized atomic charges and their initial guess for 1-ethy l-1H-pyrazole, referring to the penalties of initial guess

Table S528: Interaction energies and geometries be-
tween probe water and selected 1-ethyl-1H-pyraz
ole site calculated using the optimized and initial
charges

Atom		Charges	
Atom	Optimal	$\operatorname{Initial}$	Penalty
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.270	0.000
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
CB	-0.040	0.113	0.045
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
NG	0.266	-0.074	0.285
CD2	-0.013	-0.035	0.000
HD2	0.096	0.169	0.000
ND1	-0.572	-0.513	0.285
CE2	-0.319	-0.249	0.000
HE2	0.165	0.157	0.000
CE1	0.105	0.096	0.045
HE1	0.132	0.156	0.000

Ν	Probe	Angle	Energy (kcal/mol)	Distance(A)
	site	(*)	$\rm QM/Optimal/Initial$	QM/Optimal/Initial
1	HA2-CA	0.0	-1.08/-1.07/-1.24	2.77/2.71/2.69
2	HA-CA	0.0	-0.79/-1.00/-0.72	2.79/2.70/2.74
3	HB1-CB	0.0	-0.81/-0.75/-0.69	2.65/2.68/2.67
4	HB2-CB	0.0	-2.35/-2.50/-2.69	2.56/2.61/2.60
5	NG-CB	0.0	-1.98/-2.66/-5.01	2.50/2.31/2.12
6	NG-CB	90.0	-2.04/-2.91/-5.31	2.48/2.30/2.11
7	NG-CB	180.0	-0.61/-0.44/-2.05	2.72/2.65/2.28
8	NG-CB	270.0	-0.81/-0.46/-2.20	2.62/2.59/2.25
9	HD2-CD2	0.0	-2.40/-2.41/-3.17	2.46/2.32/2.26
10	HD2-CD2	90.0	-2.74/-2.56/-3.37	2.39/2.31/2.25
11	ND1-NG	0.0	-6.76/-6.87/-7.13	1.92/1.93/1.93
12	ND1-NG	90.0	-6.63/-6.45/-6.83	1.91/1.93/1.93
13	ND1-NG	180.0	-5.77/-5.69/-6.07	1.95/1.94/1.94
14	ND1-NG	270.0	-6.92/-6.54/-6.96	1.90/1.93/1.92
15	$\operatorname{HE}2 ext{-}\operatorname{CE}2$	0.0	-1.21/-1.02/-1.16	2.65/2.71/2.69
16	$\operatorname{HE2-CE2}$	90.0	-1.39/-1.08/-1.24	2.59/2.70/2.68
17	$\operatorname{HE}1\operatorname{-}\operatorname{CE}1$	0.0	-1.07/-1.01/-1.40	2.59/2.34/2.30
18	$\operatorname{HE}1\operatorname{-}\operatorname{CE}1$	90.0	-1.09/-0.97/-1.37	2.57/2.34/2.30

1.171 Small molecule used for S-carbamoyl-L-cysteine(QCS)

Figure S159: The molecule used for water complex calculations corresponding to (ethylsulfanyl)forma mide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S529: Statistics of calculated water interaction and dipole moment for (ethylsulfanyl)formamide.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.52/1.46	0.49/2.28	1.552	2.15/2.05	10.39
Optimal	0.32/0.79	0.17/0.33	1.835	2.15/2.64	1.84

Table S530: The comparison list of optimized atomic charges and their initial guess for (ethyls ulfanyl)formamide, referring to the penalties of initial guess

Table S531: Interaction energies and geometries between probe water and selected (ethylsulfanyl)for mamide site calculated using the optimized and initial charges

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.270	0.620
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
CB	-0.046	0.008	5.711
HB1	0.090	0.090	0.450
HB2	0.090	0.090	0.450
\mathbf{SG}	-0.122	-0.254	92.712
CD	0.426	0.517	93.354
NE2	-0.686	-0.646	71.455
OE1	-0.468	-0.485	63.776
HE1	0.358	0.340	2.500
HE2	0.358	0.340	2.500

Ν	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(°)	${ m QM}/{ m Optimal}/{ m Initial}$	$\rm QM/Optimal/Initial$
1	HA3-CA	0.0	-1.14/-0.84/-0.95	2.72/2.72/2.71
2	HA2-CA	0.0	-0.89/-0.62/-0.51	2.71/2.74/2.74
3	HA-CA	0.0	-0.89/-0.62/-0.51	2.71/2.74/2.74
4	HB1-CB	0.0	-0.81/-0.31/-0.50	2.49/2.67/2.66
5	HB2-CB	0.0	-0.81/-0.30/-0.49	2.49/2.67/2.66
6	SG-CB	0.0	-0.45/-0.46/-1.31	2.84/2.52/2.39
7	SG-CB	90.0	-1.28/-1.30/-2.26	2.67/2.43/2.33
8	SG-CB	180.0	-1.26/-1.73/-2.72	2.73/2.40/2.31
9	SG-CB	270.0	-1.28/-1.31/-2.26	2.67/2.43/2.33
10	NE2-CD	0.0	-0.14/-0.04/0.15	2.72/2.39/5.00
11	NE2-CD	90.0	-0.77/-0.63/-0.50	2.49/2.29/2.36
12	NE2-CD	180.0	-1.61/-2.40/-1.87	2.41/2.15/2.21
13	NE2-CD	270.0	-1.12/-1.64/-1.02	2.45/2.21/2.30
14	OE1-CD	0.0	-5.45/-5.75/-5.57	1.86/1.78/1.78
15	OE1-CD	90.0	-5.74/-6.06/-5.93	1.85/1.77/1.77
16	OE1-CD	180.0	-5.76/-6.09/-5.98	1.85/1.77/1.77
17	OE1-CD	270.0	-5.74/-6.06/-5.93	1.85/1.77/1.77
18	$\operatorname{H\!E} 1\text{-}\operatorname{N\!E} 2$	0.0	-5.74/-5.64/-5.70	1.84/1.86/1.86
19	$\operatorname{H\!E} 1\text{-}\operatorname{N\!E} 2$	45.0	-5.57/-5.51/-5.57	1.84/1.86/1.87
20	$\operatorname{HE}\operatorname{1-NE2}$	90.0	-5.41/-5.38/-5.45	1.85/1.87/1.87
21	$\operatorname{HE}\operatorname{1-NE2}$	135.0	-5.57/-5.51/-5.57	1.85/1.86/1.87
22	$\operatorname{HE}2\text{-}\operatorname{NE}2$	0.0	-6.52/-6.48/-6.24	1.85/1.86/1.87
23	$\operatorname{HE}2\text{-}\operatorname{NE}2$	45.0	-6.64/-6.46/-6.15	1.84/1.86/1.87
24	$\operatorname{HE}2\text{-}\operatorname{NE}2$	90.0	-6.76/-6.45/-6.07	1.83/1.86/1.87
25	$\operatorname{HE}2\text{-}\operatorname{NE}2$	135.0	-6.65/-6.46/-6.15	1.84/1.86/1.87

1.172 Small molecule used for S-[(1S)-1-carboxy-1-(phosphonooxy)ethyl]-L-cysteine(QPA)

Figure S160: The molecule used for water complex calculations corresponding to 2-(ethylsulfanyl)-2-[(trihydroxy-lambda4-phosphanyl)oxy]propanoicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S532: Statistics of calculated water interaction and dipole moment for 2-(ethylsulfanyl)-2-[(trih ydroxy-lambda4-phosphanyl)oxy]propanoicacid.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	1.67/5.10	0.14/0.35	6.691	12.15/15.11	4.54
Optimal	0.58/1.59	0.11/0.36	2.797	12.15/12.38	0.33

Table S533: The comparison list of optimized atomic charges and their initial guess for 2-(ethy lsulfanyl)-2-[(trihydroxy-lambda4-phosphanyl)o xy]propanoicacid, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.271	-0.271	0.854
HA	0.090	0.090	0.000
CB	-0.255	-0.066	6.947
HB1	0.090	0.090	0.090
HB2	0.090	0.090	0.090
\mathbf{SG}	-0.232	-0.169	35.536
C8	0.319	0.138	48.526
C9	-0.281	-0.331	11.909
H91	0.090	0.090	0.824
H92	0.090	0.090	0.824
H93	0.090	0.090	0.824
C10	0.533	0.273	5.648
O9	-0.678	-0.600	2.504
O10	-0.746	-0.600	2.504
O14	-0.459	-0.617	39.778
P2	1.330	1.503	3.776
O11	-0.825	-0.825	0.639
O12	-0.825	-0.825	0.639
O13	-0.668	-0.668	0.090
HO13	0.338	0.338	0.000

Table S534: Interaction energies and geometries between probe water and selected 2-(ethylsulfanyl)-2-[(trihydroxy-lambda4-phosphanyl)oxy]propanoic acid site calculated using the optimized and initial charges

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					
site (*) QM/Optimal/Initial QM/Optimal/Initial 1 SG-CB 0.0 $-11.35/-12.95/-12.98$ $2.54/2.19/2.19$ 2 O9-C10 0.0 $-17.73/-17.78/-18.34$ $1.73/1.66/1.67$ 3 O9-C10 90.0 $-15.32/-15.32/-15.87$ $1.74/1.67/1.68$ 4 O9-C10 180.0 $-13.67/-12.98/-13.36$ $1.74/1.68/1.68$ 6 O10-C10 270.0 $-14.75/-14.50/-14.96$ $1.74/1.68/1.68$ 6 O10-C10 0.0 $-16.90/-16.66/-15.64$ $1.70/1.65/1.67$ 7 O10-C10 90.0 $-16.61/-16.67/-15.41$ $1.70/1.65/1.67$ 9 O10-C10 270.0 $-16.05/-16.02/-15.31$ $1.71/1.65/1.67$ 9 O10-C10 270.0 $-16.05/-16.02/-15.31$ $1.71/1.65/1.67$ 10 O14-C8 0.0 $-12.33/-11.86/-14.71$ $1.93/1.81/1.71$ 11 O14-C8 90.0 $-12.29/-17.90$ $1.66/-18.11/-51$ 12 O14-C8 270.0 $-8.92/-8.88/-10.55$ $2.10/1.92/1.79$	N	Probe	Angle	Energy $(kcal/mol)$	Distance (Å)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	SG-CB	0.0	-11.35/-12.95/-12.98	2.54/2.19/2.19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	O9-C10	0.0	-17.73/-17.78/-18.34	1.73/1.66/1.67
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3	O9-C10	90.0	-15.32/-15.32/-15.87	1.74 / 1.67 / 1.68
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	4	O9-C10	180.0	-13.67/-12.98/-13.36	1.74 / 1.68 / 1.69
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	O9-C10	270.0	-14.75/-14.50/-14.96	1.74 / 1.68 / 1.68
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	6	$\rm O10\text{-}C10$	0.0	-16.90/-16.66/-15.64	1.70/1.65/1.67
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7	$\rm O10\text{-}C10$	90.0	-16.61/-16.67/-15.41	1.70/1.64/1.67
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	$\rm O10\text{-}C10$	180.0	-16.12/-16.17/-15.20	1.70/1.65/1.67
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	$\rm O10\text{-}C10$	270.0	-16.05/-16.02/-15.31	1.71/1.65/1.67
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	O14-C8	0.0	-12.33/-11.86/-14.71	1.93/1.81/1.71
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	11	O14-C8	90.0	-12.76/-13.25/-17.86	1.96/1.81/1.69
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	12	O14-C8	180.0	-12.29/-11.99/-16.15	1.97/1.84/1.70
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	13	O14-C8	270.0	-8.92/-8.88/-10.55	2.10/1.92/1.79
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	14	O11-P2	0.0	-16.66/-18.11/-18.79	1.74/1.64/1.64
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	15	O11-P2	90.0	-15.55/-16.54/-16.33	1.74 / 1.64 / 1.65
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	16	O11-P2	180.0	-14.12/-14.47/-13.76	1.75/1.65/1.66
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	17	O11-P2	270.0	-14.82/-15.54/-15.54	1.75/1.65/1.65
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	18	O12-P 2	0.0	-16.64/-16.81/-16.63	1.72/1.64/1.64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	O12-P 2	90.0	-14.99/-14.73/-14.06	1.73/1.65/1.66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	${\rm O}12\text{-}{\rm P}2$	180.0	-15.28/-14.83/-14.32	1.72/1.65/1.65
22 O13-P2 0.0 -7.45/-6.70/-5.61 1.94/1.95/1.99 23 O13-P2 90.0 -10.47/-10.36/-10.34 1.96/1.93/1.94 24 O13-P2 180.0 -12.75/-12.94/-13.51 1.88/1.87/1.88 25 O13-P2 270.0 -9.01/-8.81/-8.10 1.89/1.91/1.93	21	${\rm O}12\text{-}{\rm P}2$	270.0	-16.54/-16.61/-16.52	1.72/1.64/1.64
23 O13-P2 90.0 -10.47/-10.36/-10.34 1.96/1.93/1.94 24 O13-P2 180.0 -12.75/-12.94/-13.51 1.88/1.87/1.88 25 O13-P2 270.0 -9.01/-8.81/-8.10 1.89/1.91/1.93	22	${\rm O}13\text{-}{\rm P}2$	0.0	-7.45/-6.70/-5.61	$\bf 1.94/1.95/1.99$
24 O13-P2 180.0 -12.75/-12.94/-13.51 1.88/1.87/1.88 25 O13-P2 270.0 -9.01/-8.81/-8.10 1.89/1.91/1.93	23	O13-P2	90.0	-10.47/-10.36/-10.34	1.96/1.93/1.94
25 O13-P2 270.0 -9.01/-8.81/-8.10 1.89/1.91/1.93	24	${\rm O}13\text{-}{\rm P}2$	180.0	-12.75/-12.94/-13.51	1.88/1.87/1.88
	25	O13-P 2	270.0	-9.01/-8.81/-8.10	1.89/1.91/1.93

1.173 Small molecule used for 3-(2-quinoxalyl)-alanine(QX32)

Figure S161: The molecule used for water complex calculations corresponding to 2-methylquinoxal ine, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S535: Statistics of calculated water interaction and dipole moment for 2-methylquinoxaline.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.44/1.34	0.11/0.18	3.245	0.40/0.93	143.59
Optimal	0.39/0.65	0.11/0.18	1.748	0.40/0.51	0.02

Table S536: The comparison list of optimized atomic charges and their initial guess for 2-meth ylquinoxaline, referring to the penalties of initial guess

Table S537: Interaction energies and geometries be-
tween probe water and selected 2-methylquinoxal
ine site calculated using the optimized and initial
$\operatorname{charges}$

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	2.250
CB	-0.270	-0.269	16.630
HB1	0.090	0.090	2.250
HB2	0.090	0.090	2.250
CG	0.433	0.293	17.706
ND1	-0.595	-0.613	14.965
CE1	0.245	0.316	2.500
CD2	0.080	0.113	0.000
HD2	0.109	0.133	0.000
NE2	-0.541	-0.599	0.000
CZ	0.269	0.344	0.000
CH1	-0.115	-0.109	0.000
HH1	0.115	0.115	0.000
CH2	-0.115	-0.109	0.000
HH2	0.115	0.115	0.000
CJ1	-0.115	-0.115	0.000
HJ1	0.115	0.115	0.000
CJ2	-0.115	-0.115	0.000
HJ2	0.115	0.115	0.000

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-1.45/-1.65/-1.18	2.66/2.64/2.68
2	HB1-CB	0.0	-0.42/-0.15/0.36	2.74/2.77/2.92
3	HB2-CB	0.0	-1.52/-1.68/-1.22	2.64/2.63/2.67
4	$\rm ND1-CG$	0.0	-5.21/-5.62/-5.67	1.98/1.87/1.86
5	ND1-CG	90.0	-6.70/-6.05/-6.63	1.90/1.85/1.84
6	ND1-CG	180.0	-5.07/-5.32/-6.41	2.00/1.87/1.85
7	ND1-CG	270.0	-6.70/-6.05/-6.63	1.90/1.85/1.84
8	HD2-CD2	0.0	-1.91/-2.05/-2.12	2.50/2.44/2.42
9	HD2-CD2	90.0	-1.93/-2.06/-2.11	2.48/2.44/2.42
10	NE2-CD2	0.0	-4.89/-5.10/-5.19	2.00/1.87/1.86
11	NE2-CD2	90.0	-6.08/-5.80/-6.17	1.93/1.86/1.84
12	NE2-CD2	180.0	-5.32/-5.61/-6.15	1.97 / 1.86 / 1.84
13	NE2-CD2	270.0	-6.08/-5.80/-6.17	1.93/1.86/1.84
14	$\rm HH1\text{-}CH1$	0.0	-1.00/-0.44/-0.67	2.54/2.72/2.68
15	$\rm HH1\text{-}CH1$	90.0	-0.90/-0.39/-0.58	2.58/2.74/2.71
16	$\rm HH2\text{-}CH2$	0.0	-1.09/-0.49/-0.76	2.52/2.71/2.68
17	$\rm HH2\text{-}CH2$	90.0	-0.94/-0.41/-0.67	2.56/2.73/2.70
18	HJ1-CJ1	0.0	-1.56/-1.30/-1.54	2.60/2.68/2.67
19	HJ1-CJ1	90.0	-1.73/-1.34/-1.59	2.54/2.68/2.66
20	${ m HJ2-CJ2}$	0.0	-1.54/-1.31/-1.56	2.60/2.68/2.66
21	HJ2-CJ2	90.0	-1.71/-1.35/-1.61	2.55/2.67/2.66

1.174 Small molecule A of 3-[(2,2,5,5-tetramethyl-1-oxo-2,5-dihydro-1H-p yrrolium-3-yl)methyl]disulfanyl-D-alanine(R1A)

Figure S162: The molecule used for water complex calculations corresponding to 2,2,3,5,5-pentamethy l-2,5-dihydro-1H-pyrrol-1-ol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S538: Statistics of calculated water interaction and dipole moment for 2, 2, 3, 5, 5-pentamethyl-2, 5-dihydro-1H-pyrrol-1-ol.

	m RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	5.61/7.68	0.12/0.21	6.541	7.36/9.54	9.28
Optimal	0.18/0.39	0.03/0.04	2.985	7.36/8.00	2.58

Table S539: The comparison list of optimized atomic charges and their initial guess for 2,2,3,5,5-pentamethyl-2,5-dihydro-1H-pyrrol-1-ol, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$					
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$			
HE3	0.090	0.090	2.500			
CE	-0.242	-0.143	70.198			
HE1	0.090	0.090	2.500			
HE2	0.090	0.090	2.500			
C3	-0.202	-0.169	78.304			
C2	0.519	0.341	67.082			
C8	-0.362	-0.289	42.916			
H81	0.090	0.090	2.409			
H82	0.090	0.090	2.409			
H83	0.090	0.090	2.409			
C9	-0.362	-0.289	42.916			
H91	0.090	0.090	2.409			
H92	0.090	0.090	2.409			
H93	0.090	0.090	2.409			
C4	-0.345	-0.218	51.612			
H4	0.107	0.143	38.183			
N1	-0.587	-1.106	358.514			
O1	-0.671	-0.382	351.344			
C5	0.519	0.340	66.691			
C6	-0.362	-0.289	42.897			
H61	0.090	0.090	2.409			
H62	0.090	0.090	2.409			
H63	0.090	0.090	2.409			
C7	-0.362	-0.289	42.897			
H71	0.090	0.090	2.409			
H72	0.090	0.090	2.409			
H73	0.090	0.090	2.409			

Table S540: Interaction energies and geometries between probe water and selected 2,2,3,5,5-pentamet hyl-2,5-dihydro-1H-pyrrol-1-ol site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	N1-C2	0.0	-13.63/-13.79/-21.26	1.93/1.95/1.81
2	N1-C2	90.0	-11.92/-11.53/-18.96	2.01/2.00/1.83
3	N1-C2	180.0	-11.67/-11.69/-19.09	2.04/2.00/1.83
4	N1-C2	270.0	-14.24/-14.44/-21.92	1.91/1.94/1.81
5	O1-N1	0.0	-16.03/-15.96/-13.22	1.66/1.68/1.74
6	O1-N1	90.0	-16.10/-15.95/-13.14	1.66/1.68/1.74
7	O1-N1	180.0	-16.17/-16.17/-13.59	1.66/1.68/1.74
8	O1-N1	270.0	-16.28/-16.24/-13.73	1.65/1.68/1.73

1.175 Small molecule B of 3-[(2,2,5,5-tetramethyl-1-oxo-2,5-dihydro-1H-p yrrolium-3-yl)methyl]disulfanyl-D-alanine(R1A)

Figure S163: The molecule used for water complex calculations corresponding to 3-[(methyldisulfanyl)m ethyl]-2,5-dihydro-1H-pyrrol-1-ol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S541: Statistics of calculated water interaction and dipole moment for 3-[(methyldisulfanyl)met hyl]-2,5-dihydro-1H-pyrrol-1-ol.

	m RMS/Max Deviation from $ m QM$		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	3.63/7.36	0.28/0.50	9.609	15.42/18.92	7.94
Optimal	1.08/1.53	0.30/0.52	6.895	15.42/18.40	8.93

Table S542: The comparison list of optimized atomic charges and their initial guess for 3-[(meth yldisulfanyl)methyl]-2,5-dihydro-1H-pyrrol-1-ol, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	Penalty		
CB	-0.112	-0.190	0.000		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
HB3	0.090	0.090	0.000		
\mathbf{SG}	-0.080	-0.080	2.500		
\mathbf{SD}	-0.080	-0.070	17.486		
CE	-0.185	0.327	69.910		
HE1	0.090	0.090	2.500		
HE2	0.090	0.090	2.500		
C3	0.007	-0.536	70.011		
C2	0.024	0.247	0.169		
H21	0.090	0.090	3.500		
H22	0.090	0.090	3.500		
C4	-0.302	-0.283	3.841		
H4	0.096	0.215	0.000		
N1	-0.554	-1.154	352.849		
01	-0.648	-0.378	352.611		
C5	0.024	0.170	34.907		
H51	0.090	0.090	2.450		
H52	0.090	2.450			

Table S543: Interaction energies and geometries between probe water and selected 3-[(methyldisulfan yl)methyl]-2,5-dihydro-1H-pyrrol-1-ol site calculated using the optimized and initial charges

N	Probe	Angle	Energy $(kcal/mol)$	Distance (Å)
	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	SG-CB	0.0	-3.21/-3.01/-2.50	2.81/2.39/2.41
2	SG-CB	180.0	-2.30/-1.41/-1.73	2.85/2.48/2.44
3	SD-SG	0.0	-4.47/-5.82/-5.67	2.85/2.33/2.36
4	SD-SG	180.0	-1.23/-0.59/-0.28	3.03/2.54/2.75
5	N1-C2	0.0	-16.11/-15.69/-23.47	1.83/1.85/1.74
6	01-N1	0.0	-17.12/-15.59/-13.02	1.65/1.69/1.74
7	01-N1	90.0	-17.10/-15.69/-12.91	1.65/1.69/1.74
8	01-N1	180.0	-17.17/-16.01/-13.45	1.65/1.68/1.74
9	01-N1	270.0	-17.22/-15.94/-13.58	1.65/1.68/1.74

1.176 Small molecule used for O-[(S)-hydroxy(methyl)phosphoryl]-L-serine(SBG)

Figure S164: The molecule used for water complex calculations corresponding to ethoxy(methyl)phosp hinicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S544: Statistics of calculated water interaction and dipole moment for ethoxy(methyl)phosphini cacid.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	${\rm Energy}\;(\rm kcal/mol)$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	2.27/5.00	0.14/0.24	7.420	5.75/4.10	31.08
Optimal	0.13/0.31	0.10/0.14	2.174	5.75/5.57	1.12

Table S545: The comparison list of optimized atomic charges and their initial guess for ethoxy (methyl)phosphinicacid, referring to the penalties of initial guess

Atom		Charges				
Atom	Optimal	Initial	Penalty			
HA3	0.090	0.090	0.000			
HA2	0.090	0.090	0.000			
\mathbf{CA}	-0.270	-0.268	0.045			
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000			
CB	-0.132	-0.079	17.851			
HB1	0.090	0.090	0.000			
HB2	0.090	0.090	0.000			
OG	-0.388	-0.700	29.649			
$\mathbf{P1}$	1.037	1.700	31.490			
01	-0.765	-0.818	6.232			
O2	-0.765	-0.818	6.232			
C1	-0.437	-0.737	27.083			
HC11	0.090	0.090	1.431			
HC12	0.090	0.090	1.431			
HC13	0.090	0.090	1.431			

Table S546: Interaction energies and geometries between probe water and selected ethoxy(methyl)pho sphinicacid site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	OG-CB	0.0	-9.96/-10.26/-14.96	1.88/1.74/1.64
2	OG-CB	90.0	-9.54/-9.45/-12.69	1.86/1.75/1.66
3	OG-CB	180.0	-8.57/-8.53/-11.40	1.89/1.76/1.66
4	OG-CB	270.0	-9.46/-9.33/-12.77	1.86/1.75/1.66
5	O1-P1	0.0	-13.99/-14.11/-13.33	1.74/1.65/1.66
6	O1-P1	90.0	-14.39/-14.52/-13.11	1.73/1.65/1.66
7	O1-P1	180.0	-14.33/-14.30/-13.10	1.73/1.65/1.66
8	O1-P1	270.0	-13.96/-13.87/-13.31	1.74/1.66/1.66
9	O2-P1	0.0	-14.04/-14.14/-13.37	1.74/1.65/1.66
10	O2-P1	90.0	-13.96/-13.86/-13.31	1.74/1.66/1.66
11	O2-P1	180.0	-14.30/-14.27/-13.07	1.74/1.65/1.66
12	O2-P1	270.0	-14.39/-14.52/-13.12	1.74/1.65/1.66

1.177 Small molecule used for O-benzylsulfonyl-serine(SEB)

Figure S165: The molecule used for water complex calculations corresponding to ethylphenylmethanesu lfonate, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S547: Statistics of calculated water interaction and dipole moment for ethylphenylmethanesulfon ate.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	1.07/2.12	0.18/0.34	7.361	4.68/7.04	36.64
Optimal	0.44/0.79	0.15/0.31	3.110	4.68/6.09	0.00

Table S548: The comparison list of optimized atomic charges and their initial guess for ethylp henylmethanesulfonate, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$					
Atom	Optimal	Initial	Penalty			
HA3	0.090	0.090	0.000			
HA2	0.090	0.090	0.000			
\mathbf{CA}	-0.270	-0.271	2.241			
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000			
CB	0.080	0.119	2.592			
HB1	0.090	0.090	0.250			
HB2	0.090	0.090	0.250			
OG	-0.177	-0.236	2.959			
SD	0.173	0.285	13.130			
OD1	-0.315	-0.291	2.500			
OD2	-0.315	-0.291	2.500			
CE	0.281	0.515	18.833			
HE1	0.090	0.090	0.450			
HE2	0.090	0.090	0.450			
CZ	-0.297	-0.364	19.476			
CH1	-0.052	-0.170	9.744			
HH1	0.115	0.115	0.000			
CH2	0.018	-0.170	9.744			
HH2	0.115	0.115	0.000			
CI1	-0.108	-0.108	0.000			
HI1	0.115	0.115	0.000			
CI2	-0.108	-0.108	0.000			
HI2	0.115	0.115	0.000			
CJ	-0.115	-0.115	0.000			
$_{ m HJ}$	0.115	0.115	0.000			

Table S549: Interaction energies and geometries between probe water and selected ethylphenylmetha nesulfonate site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(°)	$\rm QM/Optimal/Initial$	${ m QM/Optimal/Initial}$
1	${ m HA3-CA}$	0.0	-1.61/-1.47/-1.96	2.67/2.68/2.65
2	$\mathrm{HA2}\text{-}\mathrm{CA}$	0.0	-1.37/-0.93/-1.40	2.59/2.66/2.65
3	HA-CA	0.0	-1.34/-1.40/-2.04	2.72/2.72/2.70
4	$\operatorname{HB}1\text{-}\operatorname{C}B$	0.0	-1.62/-0.84/-1.92	2.37/2.61/2.57
5	$\operatorname{HB2-CB}$	0.0	-3.06/-3.27/-5.18	2.62/2.65/2.58
6	OG-CB	0.0	-3.70/-4.35/-3.52	2.15/1.86/1.86
7	OG-CB	90.0	-1.91/-1.45/-0.73	2.22/1.97/1.97
8	OG-CB	180.0	-1.89/-1.76/-1.32	2.26/1.95/1.92
9	OG-CB	270.0	-3.56/-4.25/-3.75	2.15/1.87/1.85
10	OD1-SD	0.0	-4.07/-3.98/-2.24	1.93/1.85/1.91
11	OD1-SD	90.0	-3.91/-3.51/-2.76	1.93/1.85/1.89
12	OD1-SD	180.0	-5.28/-5.48/-4.99	1.89/1.81/1.84
13	OD1-SD	270.0	-5.44/-5.91/-4.38	1.89/1.81/1.85
14	OD2-SD	0.0	-5.05/-5.10/-3.51	1.91/1.83/1.88
15	OD2-SD	90.0	-5.50/-5.94/-4.53	1.90/1.82/1.86
16	OD2-SD	180.0	-4.97/-5.32/-4.69	1.91/1.82/1.86
17	OD2-SD	270.0	-4.15/-4.23/-3.35	1.94/1.85/1.89
18	HE1-CE	0.0	-3.14/-3.89/-5.05	2.57/2.60/2.54
19	HE2-CE	0.0	-3.08/-2.86/-4.22	2.31/2.53/2.48
20	$\rm HH1\text{-}CH1$	0.0	-1.30/-1.00/-0.61	2.48/2.63/2.72
21	$\rm HH1\text{-}CH1$	90.0	-2.10/-1.31/-1.01	2.36/2.60/2.66
22	$\rm HH2\text{-}CH2$	0.0	-1.03/-1.64/-0.78	2.65/2.65/2.86
23	$\rm HH2\text{-}CH2$	90.0	-2.25/-2.29/-1.51	2.44/2.61/2.72
24	$\rm HI1\text{-}CI1$	0.0	-1.51/-1.06/-0.29	2.59/2.69/2.77
25	$\rm HI1\text{-}CI1$	90.0	-1.71/-1.13/-0.36	2.54/2.68/2.76
26	$\rm HI2\text{-}CI2$	0.0	-1.49/-1.35/-0.36	2.61/2.68/2.78
27	$\rm HI2\text{-}CI2$	90.0	-1.72/-1.46/-0.45	2.55/2.67/2.76
28	HJ-CJ	0.0	-1.55/-1.11/-0.42	2.60/2.70/2.76
29	HJ-CJ	90.0	-1.75/-1.19/-0.48	2.55/2.69/2.75
1.178 Small molecule used for O-[N,N-dimethylphosphoramidate]-L-serine(SEN)

Figure S166: The molecule used for water complex calculations corresponding to (dimethylamino)(et hoxy)phosphinicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S550: Statistics of calculated water interaction and dipole moment for (dimethylamino)(ethoxy)p hosphinicacid.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	1.15/2.82	0.12/0.21	3.624	5.16/3.96	7.30
Optimal	0.26/0.56	0.09/0.13	3.115	5.16/4.27	4.43

Table S551: The comparison list of optimized atomic charges and their initial guess for (dimeth ylamino)(ethoxy)phosphinicacid, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$					
Atom	Optimal	Initial	$\mathbf{Penalty}$			
HA3	0.090	0.090	0.000			
HA2	0.090	0.090	0.000			
\mathbf{CA}	-0.270	-0.268	0.045			
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000			
CB	-0.193	-0.099	0.538			
HB1	0.090	0.090	0.000			
HB2	0.090	0.090	0.000			
OG	-0.393	-0.568	0.526			
Р	1.411	1.579	0.288			
O2	-0.786	-0.822	0.000			
O3	-0.786	-0.822	0.000			
N1	-0.591	-0.610	6.132			
C1	-0.191	-0.190	6.124			
H11	0.090	0.090	2.500			
H12	0.090	0.090	2.500			
H13	0.090	0.090	2.500			
C2	-0.191	-0.190	6.124			
H21	0.090	0.090	2.500			
H22	0.090	0.090	2.500			
H23	0.090	0.090	2.500			

Table S552: Interaction energies and geometries between probe water and selected (dimethylamino)(et hoxy)phosphinicacid site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
18	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	OG-CB	0.0	-11.88/-12.45/-14.71	1.84/1.73/1.67
2	OG-CB	90.0	-9.70/-9.44/-11.55	1.89/1.79/1.71
3	OG-CB	180.0	-8.06/-7.54/-9.50	1.94/1.80/1.72
4	OG-CB	270.0	-8.98/-9.23/-11.34	1.91/1.78/1.71
5	O2-P	0.0	-13.35/-13.65/-13.87	1.75/1.66/1.65
6	O2-P	90.0	-13.92/-13.89/-14.06	1.74/1.65/1.65
7	O2-P	180.0	-13.93/-13.80/-14.07	1.74/1.65/1.65
8	O2-P	270.0	-13.51/-13.55/-13.89	1.74/1.66/1.65
9	O3-P	0.0	-13.60/-13.78/-14.17	1.75/1.66/1.65
10	O3-P	90.0	-13.33/-13.61/-13.98	1.75/1.66/1.65
11	O3-P	180.0	-13.50/-13.56/-13.79	1.75/1.66/1.65
12	O3-P	270.0	-13.72/-13.74/-13.97	1.75/1.66/1.65
13	N1-P	0.0	-7.09/-6.78/-6.65	2.09/2.03/2.05
14	N1-P	90.0	-9.23/-9.19/-9.05	2.05/2.00/2.02
15	N1-P	180.0	-12.58/-12.50/-13.15	1.96/1.95/1.95
16	N1-P	270.0	-9.29/-9.41/-9.87	2.03/1.99/1.99

1.179 Small molecule A of O-[(S)-methyl(1-methylethoxy)phosphoryl]-L-serine(SGB)

Figure S167: The molecule used for water complex calculations corresponding to dimethylmethylphosph onate, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S553: Statistics of calculated water interaction and dipole moment for dimethylmethylphosphon ate.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	1.53/2.64	0.16/0.32	9.464	4.80/0.94	27.40
Optimal	0.91/1.69	0.14/0.26	2.450	4.80/5.00	6.45

Table S554: The comparison list of optimized atomic charges and their initial guess for dimeth ylmethylphosphonate, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	Penalty
HB1	0.090	0.090	0.000
CB	0.035	-0.164	19.915
HB3	0.090	0.090	0.000
HB2	0.090	0.090	0.000
OG	-0.613	-0.655	51.582
$\mathbf{P1}$	1.673	2.154	83.881
C1	-0.503	-0.644	71.769
HC11	0.090	0.090	3.476
HC12	0.090	0.090	3.476
HC13	0.090	0.090	3.476
O1	-0.804	-0.682	23.311
O2	-0.474	-0.655	51.582
C2	-0.124	-0.164	19.915
H2	0.090	0.090	0.000
H21	0.090	0.090	0.000
H22	0.090	0.090	0.000

Table S555: Interaction energies and geometries between probe water and selected dimethylmethylph osphonate site calculated using the optimized and initial charges

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	site	(°)	${ m QM/Optimal/Initial}$	$\rm QM/Optimal/Initial$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	HB1-CB	0.0	-1.57/-2.13/-0.35	2.79/2.64/2.78
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	${ m HB3-CB}$	0.0	-1.71/-1.62/-0.30	2.56/2.63/2.81
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	HB2-CB	0.0	-2.37/-2.85/-1.45	2.59/2.56/2.65
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	OG-CB	0.0	-6.11/-7.03/-4.54	1.89/ 1.72/ 1.75
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	OG-CB	90.0	-3.69/-4.75/-4.68	1.96/ 1.75/ 1.73
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	OG-CB	180.0	-2.41/-3.37/-5.05	2.02/1.76/1.71
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	OG-CB	270.0	-3.71/-4.62/-4.41	1.96/ 1.75/ 1.73
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	$\rm HC11$ - $\rm C1$	0.0	-2.08/-2.18/-1.34	2.62/2.69/2.69
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	$\mathrm{HC12}\text{-}\mathrm{C1}$	0.0	-1.67/-1.09/-1.38	2.47/2.65/2.65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	$\rm HC13$ - $\rm C1$	0.0	-1.99/-1.31/-1.58	2.46/2.63/2.63
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	O 1-P 1	0.0	-7.83/-9.39/-5.31	1.80/1.68/1.76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	O 1-P 1	90.0	-7.63/-9.20/-5.01	1.80/1.69/1.77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	O 1-P 1	180.0	-7.30/-8.86/-4.83	1.81/ 1.69/ 1.77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	O 1-P 1	270.0	-7.19/-8.88/-4.98	1.81/1.69/1.77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	O2-P1	0.0	-4.09/-4.27/-5.95	1.88/ 1.77/ 1.70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	O2-P1	90.0	-4.71/-4.35/-5.22	1.85/ 1.77/ 1.72
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	O2-P1	180.0	-2.66/-2.39/-4.04	1.96/1.83/1.76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	O2-P1	270.0	-3.45/-2.31/-4.70	1.88/ 1.81/ 1.73
20 H21-C2 0.0 -1.54/-0.91/-0.36 2.61/2.72/2.80 21 H22-C2 0.0 -1.10/-1.25/-1.34 2.59/2.63/2.60	19	H2-C2	0.0	-0.61/-0.15/-1.07	2.41/2.59/2.60
21 H22-C2 0.0 -1.10/-1.25/-1.34 2.59/2.63/2.60	20	H21-C2	0.0	-1.54/-0.91/-0.36	2.61/2.72/2.80
	21	H22-C2	0.0	-1.10/-1.25/-1.34	2.59/2.63/2.60

Figure S168: The molecule used for water complex calculations corresponding to (nitrososulfanyl)eth ane, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S556:	Statistics of	calculated	water interaction	and dipole	moment for	(nitrososulfanyl))ethane.
-------------	---------------	------------	-------------------	------------	------------	-------------------	----------

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.61/1.22	0.35/0.76	2.664	3.09/3.35	10.33
Optimal	0.38/0.81	0.31/0.58	2.565	3.09/3.71	3.09

Table S557: The comparison list of optimized Table S558: Interaction energies and geometries beatomic charges and their initial guess for (nitros tween probe water and selected (nitrososulfanyl)e osulfanyl)ethane, referring to the penal tial guess

 $\mathbf{H}\mathbf{A}$

 \mathbf{SG}

ND

OE

-0.106

-0.101

lties of ini-	that	ne site ca	lculat	ed using the opti	mized and initial
	char	ges			
	N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	IN	site	(°)	$\rm QM/Optimal/Initial$	${ m QM}/{ m Optimal}/{ m Initial}$
alty	1	HA3-CA	0.0	-1.46/-1.61/-1.79	2.71/2.67/2.64
00	2	${ m HA2-CA}$	0.0	-1.56/-1.43/-1.46	2.65/2.66/2.64
0.0	3	HA-CA	0.0	-1.45/-1.32/-1.50	2.64/2.64/2.62
00	4	$\operatorname{HB1-CB}$	0.0	-1.01/-1.60/-1.54	2.73/2.64/2.66
00	5	${ m HB1-CB}$	90.0	-1.52/-1.79/-1.66	2.55/2.62/2.65
00	6	$\mathrm{HB2} ext{-}\mathrm{CB}$	0.0	-1.97/-2.25/-1.69	2.54/2.61/2.64
00	7	$\mathrm{HB2}\text{-}\mathrm{CB}$	90.0	-1.94/-2.23/-1.70	2.55/2.61/2.64
839	8	SG-CB	0.0	-0.87/-1.48/-2.09	3.07/2.51/2.42
00	9	SG-CB	90.0	-0.56/-0.86/-1.54	3.09/2.58/2.45

Charges Atom Optimal Initial Pena HA30.090 0.090 0.00HA20.0900.0900.00 CA-0.270-0.2702.500.0900.0900.0CB0.050-0.09928.8HB1 0.090 0.0902.500HB20.0900.0902.500-0.023-0.126238.595

-0.048

-0.093

317.641

245.109

N	Probe	Angle	Energy (kcal/mol)	Distance (A)
IN	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA3-CA	0.0	-1.46/-1.61/-1.79	2.71/2.67/2.64
2	$\mathrm{HA2}\text{-}\mathrm{CA}$	0.0	-1.56/-1.43/-1.46	2.65/2.66/2.64
3	HA-CA	0.0	-1.45/-1.32/-1.50	2.64/2.64/2.62
4	$\operatorname{HB1-CB}$	0.0	-1.01/-1.60/-1.54	2.73/2.64/2.66
5	$\operatorname{HB1-CB}$	90.0	-1.52/-1.79/-1.66	2.55/2.62/2.65
6	$\mathrm{HB2}\text{-}\mathrm{CB}$	0.0	-1.97/-2.25/-1.69	2.54/2.61/2.64
7	$\operatorname{HB2-CB}$	90.0	-1.94/-2.23/-1.70	2.55/2.61/2.64
8	SG-CB	0.0	-0.87/-1.48/-2.09	3.07/2.51/2.42
9	SG-CB	90.0	-0.56/-0.86/-1.54	3.09/2.58/2.45
10	SG-CB	180.0	-0.13/-0.25/-1.09	3.25/2.68/2.49
11	SG-CB	270.0	-0.58/-0.81/-1.62	3.08/2.59/2.45
12	ND-SG	0.0	-2.33/-3.14/-2.30	2.39/2.16/2.24
13	ND-SG	90.0	-2.14/-1.79/-1.37	2.38/2.22/2.29
14	ND-SG	270.0	-2.07/-1.95/-1.32	2.38/2.21/2.28
15	OE-ND	0.0	-1.77/-2.17/-1.76	2.34/2.01/2.06
16	OE-ND	180.0	-1.87/-2.21/-1.55	2.33/2.01/2.08
17	OE-ND	270.0	-1.75/-2.19/-1.63	2.35/2.01/2.07

1.181 Small molecule used for Styrylalanine(STYA)

Figure S169: The molecule used for water complex calculations corresponding to [(1E)-prop-1-en-1-yl]b enzene, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S559: Statistics of calculated water interaction and dipole moment for [(1E)-prop-1-en-1-yl]benze ne.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.24/0.35	0.07/0.13	1.120	0.37/0.02	100.62
Optimal	0.25/0.38	0.07/0.13	0.789	0.37/0.48	0.00

Table S560: The comparison list of optimized atomic charges and their initial guess for [(1E)-pr op-1-en-1-yl]benzene, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$					
Atom	Optimal	Initial	$\mathbf{Penalty}$			
HB3	0.090	0.090	0.000			
CB	-0.270	-0.271	7.986			
HB1	0.090	0.090	0.000			
HB2	0.090	0.090	0.000			
CG	-0.078	-0.142	10.803			
HG	0.132	0.150	1.125			
CD	-0.164	-0.150	11.540			
HD	0.146	0.150	0.000			
CE	-0.032	-0.007	9.749			
CZ1	-0.119	-0.115	1.107			
HZ1	0.115	0.115	0.000			
CZ2	-0.115	-0.115	1.107			
HZ2	0.115	0.115	0.000			
CH1	-0.115	-0.115	0.000			
HH1	0.115	0.115	0.000			
$\rm CH2$	-0.115	-0.115	0.000			
HH2	0.115	0.115	0.000			
CJ	-0.115	-0.115	0.000			
HJ	0.115	0.115	0.000			

Table S561: Interaction energies and geometries between probe water and selected [(1E)-prop-1-en-1yl]benzene site calculated using the optimized and initial charges

_					
-	N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	14	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
	1	${ m HB3-CB}$	0.0	-0.87/-0.71/-0.53	2.78/2.75/2.78
	2	$\operatorname{HB}\operatorname{1-C}\operatorname{B}$	0.0	-0.84/-0.68/-0.50	2.78/2.75/2.78
	3	$\operatorname{HB}2\text{-}\operatorname{C}B$	0.0	-1.11/-0.95/-0.81	2.73/2.73/2.76
	4	HG-CG	0.0	-1.41/-1.64/-1.60	2.67/2.59/2.59
	5	HG-CG	90.0	-1.30/-1.60/-1.58	2.73/2.60/2.60
	6	HD-CD	0.0	-1.21/-1.41/-1.47	2.70/2.59/2.58
	7	HD-CD	90.0	-1.51/-1.50/-1.56	2.59/2.58/2.57
	8	HZ1-CZ1	0.0	-1.19/-0.98/-1.14	2.68/2.72/2.70
	9	HZ1-CZ1	90.0	-1.48/-1.10/-1.25	2.58/2.70/2.68
	10	HZ2-CZ2	0.0	-1.26/-1.32/-1.37	2.71/2.70/2.69
	11	HZ2-CZ2	90.0	-1.38/-1.38/-1.38	2.72/2.70/2.69
	12	$\rm HH1\text{-}CH1$	0.0	-1.16/-0.88/-0.97	2.68/2.72/2.71
	13	$\rm HH1\text{-}CH1$	90.0	-1.33/-0.95/-1.03	2.62/2.71/2.70
	14	$\rm HH2\text{-}CH2$	0.0	-1.15/-0.91/-0.97	2.68/2.72/2.72
	15	$\rm HH2\text{-}CH2$	90.0	-1.32/-0.97/-1.03	2.62/2.71/2.71
	16	HJ-CJ	0.0	-1.14/-0.90/-0.96	2.68/2.72/2.72
_	17	HJ-CJ	90.0	-1.31/-0.96/-1.02	2.62/2.71/2.71
-					

1.182 The dipeptide of (3-amino-2,5-dioxo-1-pyrrolidinyl)acetic acid (SUI)

Figure S170: The molecule used for water complex calculations corresponding to 2-[(3S)-3-acetamido-2,5-dioxopyrrolidin-1-yl]-N-methylacetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S562: Statistics of calculated water interaction and dipole moment for 2-[(3S)-3-acetamido-2,5-di oxopyrrolidin-1-yl]-N-methylacetamide.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.40/3.56	0.13/0.24	3.083	6.43/7.77	3.76
Optimal	0.65/1.65	0.13/0.29	2.321	6.43/7.00	7.58

Table S563: The comparison list of optimized atomic charges and their initial guess for 2-[(3S)-3-acetamido-2,5-dioxopyrrolidin-1-yl]-N-methylacet amide, referring to the penalties of initial guess

		Charges	
Atom	Optimal	Initial	Penalty
CL	-0.270	-0.271	3.550
HL1	0.090	0.090	0.000
HL2	0.090	0.090	0.000
HL3	0.090	0.090	0.000
CLP	0.510	0.484	12.328
OL	-0.510	-0.510	4.716
Ν	-0.284	-0.357	34.427
Η	0.229	0.349	6.899
C1A	0.053	0.100	30.298
\mathbf{HA}	0.090	0.090	2.724
CB	-0.113	-0.026	5.250
HB1	0.090	0.090	0.224
HB2	0.090	0.090	0.224
CG	0.247	0.312	7.374
OD	-0.411	-0.487	0.134
C1	0.346	0.313	25.834
O1	-0.439	-0.487	2.819
N2	-0.044	-0.139	10.878
C2A	-0.034	-0.002	9.803
HA1	0.090	0.090	0.638
HA2	0.090	0.090	0.638
С	0.510	0.499	4.549
0	-0.510	-0.517	0.316
\mathbf{NR}	-0.470	-0.442	2.789
$_{\mathrm{HR}}$	0.310	0.299	0.000
CR	-0.110	-0.108	0.239
$\mathrm{HR1}$	0.090	0.090	0.000
$\mathrm{HR2}$	0.090	0.090	0.000
HR3	0.090	0.090	0.000

Table S564: Interaction energies and geometries between probe water and selected 2-[(3S)-3-acetam ido-2,5-dioxopyrrolidin-1-yl]-N-methylacetam ide site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1.4	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	O-C	0.0	-6.30/-6.57/-6.87	1.84/1.77/1.76
2	O-C	90.0	-6.18/-6.61/-6.85	1.84/ 1.76/ 1.76
3	O-C	180.0	-5.64/-5.94/-6.07	1.85/1.77/1.77
4	O-C	270.0	-5.82/-6.02/-6.22	1.85/1.77/1.77
5	NR-C	0.0	-3.18/-1.53/-1.82	2.12/2.21/2.23
6	$\mathrm{HR2} ext{-}\mathrm{CR}$	0.0	-0.72/-0.84/-0.83	2.77/2.69/2.68
7	$\mathrm{HR3} ext{-}\mathrm{CR}$	0.0	-1.12/-1.26/-1.18	2.74/2.69/2.71
8	HA-C1A	0.0	-2.56/-2.40/-2.70	2.40/2.59/2.57
9	$\rm HL1\text{-}CL$	0.0	-2.64/-2.70/-3.10	2.52/2.60/2.59
10	$\rm HL2\text{-}CL$	0.0	-2.52/-2.13/-2.32	2.49/2.61/2.61
11	$\rm HL3-CL$	0.0	-1.59/-1.06/-1.10	2.51/2.66/2.66
12	OL-CLP	0.0	-5.58/-6.03/-6.09	1.83/1.76/1.75
13	OL-CLP	90.0	-5.42/-5.81/-5.63	1.83/1.76/1.76
14	OL-CLP	180.0	-4.36/-5.03/-4.69	1.88/1.78/1.79
15	OL-CLP	270.0	-5.23/-5.52/-5.49	1.83/1.76/1.76
16	H-N	0.0	-3.78/-4.51/-7.34	2.13/ 2.03/ 1.89
17	H-N	45.0	-2.42/-3.89/-6.37	2.32/ 2.08/ 1.93
18	H-N	90.0	-3.07/-4.24/-6.73	$2.26/\left(2.07/1.92 ight)$
19	H-N	135.0	-4.56/-4.90/-7.75	2.10/ 2.02/ 1.88
20	$\operatorname{HB}1\text{-}\operatorname{C}B$	0.0	-1.72/-0.70/-1.28	2.34/2.63/2.58
21	$\operatorname{HB2-CB}$	0.0	-2.23/-1.81/-2.31	2.41/2.63/2.59
22	OD-CG	0.0	-3.78/-4.64/-5.51	1.95/1.82/1.78
23	OD-CG	90.0	-4.43/-5.28/-6.31	1.94/1.81/1.77
24	OD-CG	180.0	-4.35/-5.02/-6.20	1.95/1.82/1.78
25	OD-CG	270.0	-3.56/-4.37/-5.39	1.96/1.82/1.78
26	O1-C1	0.0	-3.02/-3.28/-3.78	1.90/1.81/1.78
27	O1-C1	90.0	-3.87/-4.09/-5.11	1.88/1.79/1.76
28	O1-C1	180.0	-3.23/-3.19/-4.29	1.91/1.83/1.79
29	O1-C1	270.0	-2.58/-2.60/-3.27	1.92/1.83/1.80
30	HA1-C2A	0.0	-2.41/-2.50/-2.07	2.38/2.56/2.58

1.183 Small molecule A of (3-amino-2,5-dioxo-1-pyrrolidinyl)aceticacid(SUI)

Figure S171: The molecule used for water complex calculations corresponding to N-[(3S)-1-methyl-2,5-di oxopyrrolidin-3-yl]acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S565: Statistics of calculated water interaction and dipole moment for N-[(3S)-1-methyl-2,5-diox opyrrolidin-3-yl] acetamide.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	$\rm QM/MM~(Debye)$	difference (°)
Initial	1.36/3.40	0.12/0.22	3.230	3.06/4.07	16.29
Optimal	0.38/0.84	0.12/0.26	1.945	3.06/3.61	0.81

Table S566: The comparison list of optimized atomic charges and their initial guess for N-[(3S)-1-methyl-2,5-dioxopyrrolidin-3-yl]acetamide, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
CL	-0.270	-0.271	3.550
HL1	0.090	0.090	0.000
HL2	0.090	0.090	0.000
HL3	0.090	0.090	0.000
CLP	0.510	0.484	12.328
OL	-0.510	-0.510	4.716
Ν	-0.284	-0.357	34.427
Η	0.229	0.349	6.899
C1A	0.053	0.100	30.298
$\mathbf{H}\mathbf{A}$	0.090	0.090	2.724
CB	-0.113	-0.026	5.250
HB1	0.090	0.090	0.224
HB2	0.090	0.090	0.224
CG	0.247	0.310	5.205
OD	-0.411	-0.487	0.126
C1	0.346	0.311	25.302
01	-0.439	-0.487	2.819
N2	-0.044	-0.117	2.626
C2A	-0.124	-0.109	0.072
HA1	0.090	0.090	0.000
HA2	0.090	0.090	0.000
HA3	0.090	0.090	0.000

Table S567: Interaction energies and geometries between probe water and selected N-[(3S)-1-methyl -2,5-dioxopyrrolidin-3-yl]acetamide site calculated using the optimized and initial charges

				D: (Å)
Ν	Probe	Angle	Energy (kcal/mol)	Distance (A)
	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
1	HA-C1A	0.0	-2.04/-2.00/-2.34	2.43/2.60/2.58
2	HL1-CL	0.0	-2.45/-2.52/-2.96	2.51/2.59/2.58
3	$\mathrm{HL2}\text{-}\mathrm{CL}$	0.0	-2.28/-1.94/-2.13	2.50/2.61/2.61
4	$\rm HL3-CL$	0.0	-1.38/-0.94/-0.98	2.53/2.66/2.67
5	OL-CLP	0.0	-5.87/-6.15/-6.21	1.82/ 1.76/ 1.75
6	OL-CLP	90.0	-5.71/-5.88/-5.71	1.82/ 1.76/ 1.76
7	OL-CLP	180.0	-4.77/-5.20/-4.83	1.86/ 1.78/ 1.78
8	OL-CLP	270.0	-5.58/-5.72/-5.68	1.82/ 1.76/ 1.76
9	H-N	0.0	-4.70/-4.35/-7.29	1.89/2.01/1.87
10	H-N	45.0	-2.60/-3.44/-6.01	2.06/2.06/1.91
11	H-N	90.0	-2.89/-3.52/-6.08	2.03/2.06/1.91
12	H-N	135.0	-5.06/-4.44/-7.36	1.87/ 2.00/ 1.87
13	$\operatorname{HB}1\text{-}\operatorname{C}B$	0.0	-1.34/-0.58/-1.19	2.38/2.64/2.59
14	$\operatorname{HB2-CB}$	0.0	-1.82/-1.54/-2.07	2.45/2.65/2.60
15	OD-CG	0.0	-4.98/-5.26/-6.11	1.89/1.80/1.77
16	OD-CG	90.0	-4.66/-4.93/-5.94	1.90/1.81/1.77
17	OD-CG	180.0	-4.33/-4.59/-5.74	1.91/1.82/1.78
18	OD-CG	270.0	-4.73/-5.03/-6.04	1.90/1.81/1.77
19	O1-C1	0.0	-4.00/-3.95/-4.39	1.91/1.82/1.79
20	O1-C1	90.0	-4.71/-4.77/-5.74	1.89/1.80/1.77
21	O1-C1	180.0	-4.72/-4.81/-5.93	1.89/1.80/1.76
22	O1-C1	270.0	-4.26/-4.25/-4.92	1.90/1.81/1.78
23	HA1-C2A	0.0	-1.30/-1.22/-0.80	2.55/2.63/2.65
24	HA2-C2A	0.0	-1.03/-0.33/0.13	2.44/2.64/2.65
25	${ m HA3-C2A}$	0.0	-1.31/-1.28/-0.93	2.61/2.64/2.67

1.184 Small molecule A of O-[(R)-(dimethylamino)(ethoxy)phosphoryl]-L-serine(SUN)

Figure S172: The molecule used for water complex calculations corresponding to (dimethoxyphosphory l)dimethylamine, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S568: Statistics of calculated water interaction and dipole moment for (dimethoxyphosphoryl)d imethylamine.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	$\rm QM/MM~(Debye)$	difference (°)
Initial	0.97/2.55	0.16/0.50	7.050	3.97/0.93	14.10
Optimal	0.51/1.05	0.20/0.86	1.408	3.97/4.17	3.45

Table S569: The comparison list of optimized atomic charges and their initial guess for (dimeth oxyphosphoryl)dimethylamine, referring to the penalties of initial guess

Atom	Charges				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HB3	0.090	0.090	0.000		
CB	-0.047	-0.185	10.207		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
OG	-0.412	-0.513	18.359		
$\mathbf{P1}$	1.133	1.990	31.632		
01	-0.671	-0.686	11.045		
N1	-0.287	-0.606	25.668		
O2	-0.412	-0.513	18.359		
C1	-0.169	-0.191	9.045		
H11	0.090	0.090	2.502		
H12	0.090	0.090	2.502		
H13	0.090	0.090	2.502		
C2	-0.169	-0.191	9.045		
H21	0.090	0.090	2.502		
H22	0.090	0.090	2.502		
H23	0.090	0.090	2.502		
C3	-0.046	-0.185	10.207		
H31	0.090	0.090	0.000		
H32	0.090	0.090	0.000		
H33	0.090	0.090	0.000		

Table S570: Interaction energies and geometries between probe water and selected (dimethoxyphosp horyl)dimethylamine site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-1.45/-1.16/-0.56	2.63/2.68/2.77
2	HB1-CB	0.0	-1.64/-1.44/-1.62	2.48/2.59/2.60
3	HB2-CB	0.0	-0.98/-0.30/-1.14	2.36/2.58/2.58
4	OG-CB	0.0	-4.01/-3.78/-4.09	1.93/1.86/1.87
5	OG-CB	90.0	-3.05/-3.79/-3.22	2.03/1.88/1.92
6	OG-CB	180.0	-3.65/-4.20/-3.58	1.95/1.86/1.89
7	OG-CB	270.0	-3.31/-3.53/-3.36	1.96/1.88/1.91
8	O1-P1	0.0	-7.10/-8.15/-5.58	1.81/1.71/1.75
9	O1-P1	90.0	-7.34/-8.35/-5.68	1.80/1.71/1.75
10	O1-P1	180.0	-7.78/-8.81/-5.94	1.80/1.70/1.75
11	O1-P1	270.0	-7.79/-8.76/-5.93	1.80/1.70/1.75
12	N1-P1	0.0	-0.37/-0.50/-0.94	3.51/3.51/3.52
13	N1-P1	90.0	-0.55/-0.57/-0.96	3.50/3.49/3.52
14	O2-P1	0.0	-2.68/-2.69/-3.36	2.00/1.84/1.78
15	O2-P1	90.0	-4.01/-4.17/-3.26	1.94/1.81/1.80
16	O2-P1	180.0	-6.16/-6.36/-3.61	1.88/ 1.76/ 1.81
17	O2-P1	270.0	-3.68/-3.80/-3.07	1.96/1.82/1.81
18	H11-C1	0.0	-0.33/-0.33/-0.10	4.75/4.64/4.62
19	H12-C1	0.0	-1.09/-1.12/-1.37	2.60/2.61/2.63
20	H13-C1	0.0	-1.30/-1.22/-0.48	2.73/2.70/2.79
21	H21-C2	0.0	-1.44/-1.33/-0.58	2.70/2.68/2.77
22	H22-C2	0.0	-0.76/-0.81/-1.18	2.62/2.62/2.64
23	$\rm H23-C2$	0.0	-0.41/-0.59/-0.99	2.75/2.76/2.67
24	H31-C3	0.0	-0.32/-0.93/-0.55	3.04/2.75/2.72
25	$\rm H32\text{-}C3$	0.0	-0.59/-1.26/-0.30	4.10/3.24/3.60
26	H33-C3	0.0	-1.54/-1.25/-0.48	2.59/2.65/2.77

1.185 Small molecule A of O-[(R)-ethoxy(methyl)phosphoryl]-L-serine(SVX)

Figure S173: The molecule used for water complex calculations corresponding to dimethylmethylphosph onate, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S571: Statistics of calculated water interaction and dipole moment for dimethylmethylphosphon ate.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	1.37/2.62	0.15/0.22	7.595	2.16/1.20	117.46
Optimal	0.45/0.78	0.10/0.16	1.215	2.16/2.44	3.44

Table S572: The comparison list of optimized atomic charges and their initial guess for dimeth ylmethylphosphonate, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.042	-0.164	19.915
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
OG	-0.394	-0.655	51.582
$\mathbf{P1}$	1.014	2.154	83.881
O6	-0.653	-0.682	23.311
O5	-0.394	-0.655	51.582
C4	-0.299	-0.644	71.769
H41	0.090	0.090	3.476
H42	0.090	0.090	3.476
H43	0.090	0.090	3.476
C2	-0.042	-0.164	19.915
H21	0.090	0.090	0.000
H22	0.090	0.090	0.000
H23	0.090	0.090	0.000

Table S573: Interaction energies and geometries between probe water and selected dimethylmethylph osphonate site calculated using the optimized and initial charges

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	HB3-CB	0.0	-1.43/-1.18/-0.36	2.62/2.67/2.80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	HB2-CB	0.0	-1.64/-1.80/-1.47	2.89/2.76/2.76
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	OG-CB	0.0	-2.94/-3.03/-4.14	1.99/1.83/1.77
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	OG-CB	90.0	-4.18/-3.76/-4.66	1.88/1.80/1.74
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	OG-CB	180.0	-3.81/-3.99/-5.49	1.91/1.80/1.72
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	OG-CB	270.0	-4.49/-3.97/-5.19	1.87/1.80/1.73
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	O6-P1	0.0	-7.06/-7.79/-4.84	1.80/1.71/1.77
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	O6-P1	90.0	-7.64/-8.42/-5.02	1.79/1.71/1.76
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	O6-P1	180.0	-7.47/-8.25/-4.98	1.79/1.71/1.76
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	O6-P1	270.0	-6.90/-7.61/-4.77	1.80/ 1.72/ 1.77
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	O5-P1	0.0	-3.81/-3.99/-5.49	1.91/1.80/1.72
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	O5-P1	90.0	-4.18/-3.76/-4.66	1.88/1.80/1.74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	O5-P1	180.0	-2.94/-3.03/-4.14	1.99/1.83/1.77
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	O5-P1	270.0	-4.49/-3.97/-5.19	1.87/1.80/1.73
16 H42-C4 0.0 -1.42/-1.00/-1.26 2.52/2.64/2.66 17 H43-C4 0.0 -1.42/-1.00/-1.26 2.52/2.64/2.66 18 H22-C2 0.0 -2.04/-2.00/-1.70 2.79/2.72/2.72 10 H22-C2 0.0 -2.04/-2.00/-1.70 2.61/9/6.67/2.70	15	H41-C4	0.0	-1.20/-0.91/-0.42	2.52/2.66/2.70
17 H43-C4 0.0 -1.42/-1.00/-1.26 2.52/2.64/2.66 18 H22-C2 0.0 -2.04/-2.00/-1.70 2.79/2.72/2.72 10 H22-C2 0.0 -1.42/-1.18/-0.27 2.61/2.66	16	H42-C4	0.0	-1.42/-1.00/-1.26	2.52/2.64/2.66
18 H22-C2 0.0 -2.04/-2.00/-1.70 2.79/2.72/2.72 10 H22-C2 0.0 1.42/-1.18/-0.27 2.61/2.66/2.70	17	H43-C4	0.0	-1.42/-1.00/-1.26	2.52/2.64/2.66
	18	H22-C2	0.0	-2.04/-2.00/-1.70	2.79/2.72/2.72
19 H25-C2 0.0 -1.45/-1.18/-0.57 2.01/2.00/2.79	19	H23-C2	0.0	-1.43/-1.18/-0.37	2.61/2.66/2.79

1.186 Small molecule A of O-[bis(1-methylethoxy)phosphoryl]-L-serine(SVY)

Figure S174: The molecule used for water complex calculations corresponding to trimethylphospha te, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S574: Statistics of calculated water interaction and dipole moment for trimethylphosphate.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.63/0.99	0.12/0.23	4.331	0.66/0.32	179.58
Optimal	0.22/0.66	0.11/0.23	1.092	0.66/0.77	0.33

Table S575: The comparison list of optimized atomic charges and their initial guess for trimet hylphosphate, referring to the penalties of initial guess

Table S576: Interaction energies and geometries between probe water and selected trimethylphospha te site calculated using the optimized and initial charges

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.032	-0.164	1.634
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
OG	-0.341	-0.486	3.100
Р	0.884	1.818	3.937
O3P	-0.573	-0.678	0.000
O2P	-0.341	-0.486	3.100
O1P	-0.341	-0.486	3.100
C1	-0.033	-0.164	1.634
H11	0.090	0.090	0.000
H12	0.090	0.090	0.000
H13	0.090	0.090	0.000
C1P	-0.033	-0.164	1.634
HP1	0.090	0.090	0.000
HP2	0.090	0.090	0.000
HP3	0.090	0.090	0.000

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
18	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-0.82/-0.97/-1.14	2.60/2.63/2.62
2	$\operatorname{HB1-CB}$	0.0	-1.45/-1.15/-0.58	2.60/2.66/2.75
3	$\mathrm{HB2}\text{-}\mathrm{CB}$	90.0	-1.38/-0.73/-1.26	2.33/2.56/2.56
4	OG-CB	0.0	-4.43/-4.47/-3.84	1.90/1.80/1.81
5	OG-CB	90.0	-3.28/-3.25/-2.93	1.94/1.84/1.83
6	OG-CB	180.0	-3.74/-3.80/-3.74	1.94/1.83/1.80
7	OG-CB	270.0	-4.91/-4.82/-4.15	1.88/1.80/1.80
8	O3P-P	0.0	-6.91/-7.13/-5.92	1.81/1.74/1.75
9	O3P-P	90.0	-6.90/-7.12/-5.91	1.81/1.74/1.75
10	O3P-P	180.0	-6.91/-7.13/-5.92	1.81/1.74/1.75
11	O3P-P	270.0	-6.92/-7.14/-5.93	1.81/1.74/1.75
12	O2P-P	0.0	-3.74/-3.80/-3.75	1.94/1.83/1.80
13	O2P-P	90.0	-4.92/-4.83/-4.15	1.88/1.80/1.80
14	O2P-P	180.0	-4.44/-4.47/-3.84	1.90/1.80/1.81
15	O2P-P	270.0	-3.28/-3.25/-2.93	1.94/1.84/1.83
16	O1P-P	0.0	-3.73/-3.79/-3.74	1.94/1.83/1.80
17	O1P-P	90.0	-4.91/-4.82/-4.15	1.88/1.80/1.80
18	O1P-P	180.0	-4.44/-4.48/-3.84	1.90/1.80/1.81
19	O1P-P	270.0	-3.28/-3.24/-2.93	1.94/1.84/1.83
20	H11-C1	0.0	-0.78/-0.47/-1.02	2.41/2.59/2.59
21	$\mathrm{H12} ext{-}\mathrm{C1}$	0.0	-1.08/-1.08/-1.31	2.53/2.62/2.61
22	$\rm H13{\text -}C1$	0.0	-1.52/-1.18/-0.62	2.58/2.66/2.75
23	$\mathrm{HP}1\text{-}\mathrm{C}1\mathrm{P}$	0.0	-0.78/-0.47/-1.02	2.41/2.59/2.59
24	$\mathrm{HP}2\text{-}\mathrm{C}1\mathrm{P}$	0.0	-1.07/-1.08/-1.31	2.53/2.62/2.60
25	$\operatorname{HP}\operatorname{3-C}\operatorname{1P}$	0.0	-1.52/-1.18/-0.62	2.58/2.66/2.75

1.187 Small molecule A of 2-[(4Z)-2-[(1R)-1-amino-2-hydroxy-ethyl]-4-(1H -indol-3-ylmethylidene)-5-oxo-imidazol-1-yl]ethanoicacid(SWG)

Figure S175: The molecule used for water complex calculations corresponding to (4Z)-4-ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S577: Statistics of calculated water interaction and dipole moment for (4Z)-4-ethylidene-1,2-dime thyl-4,5-dihydro-1H-imidazol-5-one.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	$\rm QM/MM~(Debye)$	difference (°)
Initial	0.92/1.64	0.10/0.25	6.526	3.17/0.45	27.81
Optimal	0.49/1.31	0.09/0.22	3.053	3.17/3.55	14.34

Table S578: The comparison list of optimized atomic charges and their initial guess for (4Z)-4ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$					
Atom	Optimal	Initial	Penalty			
CA1	-0.070	-0.115	13.925			
\mathbf{HA}	0.090	0.090	0.000			
HA2	0.090	0.090	0.000			
HA3	0.090	0.090	0.000			
C1	0.233	0.074	23.781			
N2	-0.679	-0.703	41.871			
N3	-0.080	-0.079	15.706			
C2	0.407	0.509	24.002			
O2	-0.489	-0.482	6.710			
CA2	0.288	0.516	47.153			
CB2	-0.105	-0.135	25.469			
HB2	0.150	0.150	3.270			
CG2	-0.270	-0.274	15.277			
$\mathrm{HG21}$	0.090	0.090	1.175			
$\mathrm{HG}22$	0.090	0.090	1.175			
$\mathrm{HG23}$	0.090	0.090	1.175			
CA3	-0.195	-0.271	3.821			
HA31	0.090	0.090	0.000			
HA32	0.090	0.090	0.000			
HA33	0.090	0.090	0.000			

Table S579: Interaction energies and geometries between probe water and selected (4Z)-4-ethylidene -1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HA-CA1	0.0	-2.17/-2.61/-1.51	2.59/2.58/2.65
2	HA2-CA1	0.0	-0.97/-0.86/0.05	2.58/2.64/2.77
3	HA3-CA1	0.0	-2.55/-2.73/-1.57	2.52/2.57/2.64
4	N2-C1	0.0	-4.99/-6.30/-5.60	2.09/2.01/2.02
5	N2-C1	90.0	-7.07/-6.37/-6.45	1.90/1.99/1.99
6	N2-C1	180.0	-5.35/-5.42/-6.38	1.95/2.01/1.99
7	N2-C1	270.0	-7.07/-6.37/-6.45	1.90/1.99/1.99
8	N3-C1	0.0	-0.26/-0.82/-0.78	2.74/2.52/2.49
9	O2-C2	0.0	-5.51/-5.57/-5.00	1.85/1.78/1.80
10	O2-C2	90.0	-5.87/-5.71/-4.73	1.84/1.78/1.80
11	O2-C2	180.0	-5.92/-5.61/-4.27	1.84/1.78/1.81
12	O2-C2	270.0	-5.87/-5.71/-4.73	1.84/1.78/1.80
13	HB2-CB2	0.0	-1.40/-1.60/-2.82	2.32/2.47/2.44
14	HG21-CG2	0.0	-1.01/-0.46/-0.86	2.72/2.77/2.74
15	HG23-CG2	0.0	-1.01/-0.46/-0.86	2.72/2.77/2.74
16	HA32-CA3	0.0	-2.16/-2.10/-1.23	2.59/2.63/2.70
17	HA 33-CA 3	0.0	-2.16/-2.10/-1.23	2.59/2.63/2.70

1.188 Small molecule B of 2-[(4Z)-2-[(1R)-1-amino-2-hydroxy-ethyl]-4-(1H -indol-3-ylmethylidene)-5-oxo-imidazol-1-yl]ethanoicacid(SWG)

Table S580: The molecule used for water complex calculations corresponding to N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

		RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
		${\rm Energy}~({\rm kcal/mol})$	Distance $(Å)$	${ m RMS}~({ m kcal}/{ m mol}/{ m \AA})$	$\rm QM/MM~(Debye)$	difference (°)
Geometry 1	Initial	$0.86 \ / \ 2.05$	$0.07 \ / \ 0.17$	6.601	1.19 / 4.07	1.19
Geometry 2	Initial	$1.02\ /\ 2.07$	$0.09 \ / \ 0.23$	6.126	$6.37 \ / \ 4.43$	6.37
Sum of geometries	Initial	$0.95\ /\ 2.07$	$0.08\ /\ 0.23$	12.727	-	-
Geometry 1	Optimal	0.36 / 0.81	$0.07 \ / \ 0.16$	2.460	1.19 / 1.37	1.19
Geometry 2	Optimal	$0.51\ /\ 0.91$	$0.08 \ / \ 0.19$	2.701	$6.37 \ / \ 7.25$	6.37
Sum of geomeries	Optimal	$0.45 \ / \ 0.91$	$0.08 \ / \ 0.19$	5.161	-	-

Table S581: Statistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide.

Table S582: The comparison list of optimized atomic charges and their initial guess for N-methyl -2-(2-methyl-4-methylidene-5-oxo-4,5-dihydro-1H -imidazol-1-yl)acetamide, referring to the penalties of initial guess

=

Atom	$\operatorname{Charges}$					
Atom	Optimal	Initial	$\mathbf{Penalty}$			
HA1	0.090	0.090	0.000			
HA2	0.090	0.090	0.000			
\mathbf{CA}	-0.070	-0.115	13.925			
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000			
C1	0.233	0.164	24.002			
N2	-0.679	-0.703	41.104			
N3	-0.031	-0.499	22.994			
C2	0.407	0.613	23.378			
O2	-0.489	-0.482	6.517			
CA2	0.466	0.512	42.773			
CB2	-0.593	-0.444	13.655			
HB21	0.230	0.230	0.950			
HB22	0.230	0.230	0.950			
CA3	-0.154	0.043	13.461			
HA31	0.090	0.090	0.177			
HA32	0.090	0.090	0.177			
С	0.510	0.499	10.097			
Ο	-0.510	-0.517	3.479			
\mathbf{NR}	-0.470	-0.442	6.773			
$_{\mathrm{HR}}$	0.310	0.299	0.000			
\mathbf{CR}	-0.110	-0.108	0.239			
$\mathrm{HR1}$	0.090	0.090	0.000			
$\mathrm{HR2}$	0.090	0.090	0.000			
HR3	0.090	0.090	0.000			

Table S583: Interaction energies and geometries between probe water and selected N-methyl-2-(2-me thyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazo l-1-yl)acetamide site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
	Geometry	1		
1	O-C	0.0	-5.45/-5.47/-6.22	1.84/1.77/1.76
2	O-C	90.0	-6.01/-6.48/-6.53	1.83/1.75/1.76
3	O-C	180.0	-5.96/-6.64/-6.64	1.83/1.75/1.75
4	O-C	270.0	-5.67/-5.94/-6.62	1.84/1.76/1.75
5	NR-C	0.0	-1.32/-1.50/-1.08	2.24/2.20/2.22
6	HR2-CR	0.0	-1.10/-1.26/-1.09	2.71/2.66/2.67
7	HR3-CR	0.0	-1.39/-1.22/-1.32	2.66/2.67/2.67
8	N2-C1	0.0	-5.74/-6.45/-6.04	1.95/1.92/1.92
9	N2-C1	90.0	-6.51/-6.37/-7.24	1.90/1.92/1.90
10	N2-C1	180.0	-5.60/-5.66/-7.65	1.96/1.93/1.90
11	N2-C1	270.0	-6.64/-6.59/-7.43	1.90/1.91/1.89
12	O2-C2	0.0	-3.88/-3.93/-3.54	1.88/1.80/1.81
13	O2-C2	90.0	-4.94/-5.15/-4.46	1.84/1.77/1.79
14	O2-C2	180.0	-4.95/-5.20/-4.05	1.84/1.77/1.79
15	O2-C2	270.0	-3.93/-4.12/-3.39	1.87/1.79/1.81
16	HB21-CB2	0.0	-1.84/-1.64/-3.47	2.32/2.48/2.42
17	HB22-CB2	0.0	-1.82/-1.01/-2.42	2.42/2.54/2.46
18	HA31-CA3	0.0	-2.08/-2.47/-1.68	2.70/2.69/2.70
19	HA-CA	0.0	-2.47/-2.76/-1.19	2.49/2.56/2.66
	Geometry	2		
20	O-C	0.0	-6.06/-6.90/-7.24	1.86/1.76/1.75
21	O-C	90.0	-5.25/-6.15/-7.32	1.87/1.77/1.75
22	O-C	180.0	-4.71/-5.63/-6.52	1.88/1.77/1.76
23	O-C	270.0	-5.56/-6.46/-6.85	1.86/1.76/1.76
24	HR-NR	0.0	-7.09/-7.67/-7.53	1.93/1.90/1.90
25	HR-NR	45.0	-7.71/-7.90/-7.71	1.91/1.89/1.89
26	HR-NR	90.0	-7.79/-7.84/-7.79	1.90/ 1.89/ 1.89
27	HR-NR	135.0	-7.18/-7.62/-7.61	1.92/1.90/1.89
28	HR1-CR	0.0	-0.71/-0.04/0.30	2.50/2.69/2.67
29	HR2-CR	0.0	-1.54/-1.44/-1.38	2.68/2.66/2.66
30	HR3-CR	0.0	-1.84/-1.82/-1.70	2.68/2.67/2.66
31	N2-C1	0.0	-6.46/-6.98/-6.58	1.93/1.91/1.91
32	N2-C1	90.0	-6.88/-6.47/-7.35	1.89/1.91/1.89
33	N2-C1	180.0	-5.73/-5.60/-7.60	1.95/1.93/1.90
34	N2-C1	270.0	-7.31/-7.09/-7.94	1.88/1.91/1.89
35	N3-C1	0.0	-0.22/0.03/-2.15	2.60/2.67/2.17
36	O2-C2	0.0	-4.96/-5.34/-4.95	1.88/1.79/1.80
37	O2-C2	90.0	-5.32/-5.37/-4.66	1.87/1.78/1.80
38	O2-C2	180.0	-5.74/-5.89/-4.71	1.87/1.78/1.81
39	O2-C2	270.0	-5.94/-6.25/-5.51	1.85/1.77/1.79
40	HB21-CB2	0.0	-1.43/-1.20/-3.03	2.33/2.48/2.41
41	HB22-CB2	0.0	-1.29/-0.66/-2.05	2.47/2.56/2.47
42	HA31-CA3	0.0	-3.71/-4.08/-3.49	2.50/2.57/2.57
43	HA-CA	0.0	-2.67/-3.45/-1.93	2.59/2.58/2.69

1.189 Small molecule used for 3-(2-tetrazolyl)-alanine(TEZA)

Figure S176: The molecule used for water complex calculations corresponding to 2-methyl-2H-1,2,3,4-te trazole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S584: Statistics of calculated water interaction and dipole moment for 2-methyl-2H-1,2,3,4-tetr azole.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	1.51/2.95	0.10/0.19	6.754	2.91/5.35	5.61
Optimal	0.40/1.00	0.12/0.21	2.307	2.91/3.52	0.03

Table S585: The comparison list of optimized
atomic charges and their initial guess for 2-meth
yl-2H-1,2,3,4-tetrazole, referring to the penaltiesTable S586: Interaction energies and geometries
between probe water and selected 2-methyl-2H-
1,2,3,4-tetrazole site calculated using the optimized
and initial charges

=

1, 2,	3,4-tetra	zole si	te calculated usi	$\operatorname{ngthe}\operatorname{optimize}$
and	initial cl	narges		
	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(°)	$\rm QM/Optimal/Initial$	QM/Optimal/Initia
1	HB3-CB	0.0	-2.42/-2.34/-2.99	2.43/2.57/2.54
2	HB1-CB	0.0	-2.19/-2.26/-3.02	2.40/2.55/2.52
3	HB2-CB	0.0	-2.30/-2.29/-2.95	2.45/2.57/2.54
4	ND1-NG	0.0	-4.09/-4.70/-4.48	2.24/2.02/2.05
5	ND1-NG	180.0	-1.92/-0.92/0.22	2.34/2.20/2.41
6	ND2-NG	0.0	-4.09/-4.20/-3.70	2.04/1.98/2.00
7	ND2-NG	180.0	-3.27/-2.92/-1.73	2.07/2.01/2.06
8	NE1-ND1	0.0	-4.40/-4.08/-7.05	2.04/2.02/1.91

-5.52/-5.87/-8.46

-2.63/-2.62/-2.04

-2.55/-2.50/-1.90

 $2.00/\,1.96/\,1.88$

2.34/2.25/2.27

2.34/2.26/2.28

9 NE1-ND1 180.0

0.0

90.0

10 HE2-CE2

HE2-CE2

11

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.180	-0.192	0.289
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
NG	0.721	0.844	27.443
ND1	-0.275	-0.173	23.965
ND2	-0.619	-0.576	28.875
NE1	-0.475	-0.706	10.325
CE2	0.462	0.428	12.354
HE2	0.096	0.105	0.000

1.190 Small molecule used for 2-(trifluoromethyl)-phenylglycine(TFG2)

Figure S177: The molecule used for water complex calculations corresponding to 1-methyl-2-(trifluorom ethyl)benzene, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S587: Statistics of calculated water interaction and dipole moment for 1-methyl-2-(trifluoromet hyl)benzene.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.97/1.25	0.20/0.31	7.054	2.84/1.00	137.65
Optimal	0.47/0.94	0.27/0.43	1.827	2.84/3.51	1.17

Table S588: The comparison list of optimized atomic charges and their initial guess for 1-methyl -2-(trifluoromethyl)benzene, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$		
CA	-0.270	-0.267	0.645		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
HB3	0.090	0.090	0.000		
CB	0.242	0.035	19.145		
CG1	-0.354	-0.424	28.706		
CH1	0.512	0.813	35.236		
FH1	-0.183	-0.159	9.970		
FH2	-0.183	-0.159	9.970		
FH3	-0.183	-0.159	9.970		
CG2	-0.115	-0.115	0.632		
$\mathrm{HG2}$	0.115	0.115	0.000		
CD1	0.007	-0.201	19.185		
HD1	0.142	0.250	1.432		
CD2	-0.115	-0.115	0.000		
HD2	0.115	0.115	0.000		
CE	-0.115	-0.114	0.632		
HE	0.115	0.115	0.000		

Table S589: Interaction energies and geometries between probe water and selected 1-methyl-2-(triflu oromethyl)benzene site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	${ m HB1-CA}$	0.0	-1.53/-1.61/-0.74	2.70/2.67/2.74
2	${ m HB3-CA}$	0.0	-1.00/-0.74/-0.38	2.60/2.67/2.75
3	$\rm FH1 ext{-}CH1$	0.0	-0.92/-1.27/0.09	2.35/1.92/2.13
4	${ m FH1-CH1}$	180.0	-1.69/-2.63/-0.60	2.28/1.85/2.00
5	$\rm FH2{-}CH1$	0.0	-1.45/-2.01/-1.21	2.29/1.88/1.98
6	$\rm FH2{-}CH1$	180.0	-1.79/-2.57/-0.56	2.27/1.86/2.04
7	${ m FH3-CH1}$	0.0	-1.32/-1.92/-1.17	2.28/1.88/1.97
8	${ m FH3-CH1}$	180.0	-1.88/-2.75/-0.71	2.24/1.85/2.02
9	$\mathrm{HG2}\text{-}\mathrm{CG2}$	0.0	-1.81/-1.97/-0.82	2.61/2.64/2.73
10	$\mathrm{HG2}\text{-}\mathrm{CG2}$	90.0	-2.16/-2.06/-0.91	2.51/2.63/2.71
11	HD1-CD1	0.0	-1.73/-1.55/-2.60	2.45/2.61/2.56
12	HD1-CD1	90.0	-1.43/-1.35/-2.61	2.54/2.63/2.56
13	HD2-CD2	0.0	-1.82/-1.52/-0.75	2.57/2.68/2.74
14	HD2-CD2	90.0	-2.02/-1.59/-0.81	2.52/2.67/2.72
15	HE-CE	0.0	-1.73/-1.61/-0.92	2.59/2.66/2.73
16	HE-CE	90.0	-1.92/-1.67/-1.02	2.53/2.66/2.71

1.191 Small molecule used for 3-(trifluoromethyl)-phenylglycine(TFG3)

Figure S178: The molecule used for water complex calculations corresponding to 1-methyl-3-(trifluorom ethyl)benzene, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S590: Statistics of calculated water interaction and dipole moment for 1-methyl-3-(trifluoromethyl) benzene.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	1.15/2.09	0.33/0.80	8.039	3.31/1.00	177.37
Optimal	0.50/1.15	0.29/0.48	2.233	3.31/3.99	6.69

Table S591: The comparison list of optimized atomic charges and their initial guess for 1-methyl -3-(trifluoromethyl)benzene, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	Penalty		
CA	-0.270	-0.267	0.000		
HA1	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
HA3	0.090	0.090	0.000		
CB	-0.000	0.000	0.632		
CG1	0.093	-0.202	19.185		
HG1	0.115	0.250	1.432		
CG2	-0.115	-0.116	0.000		
$\mathrm{HG2}$	0.115	0.115	0.000		
CD1	-0.332	-0.427	28.711		
CH1	0.523	0.804	35.242		
FH1	-0.202	-0.159	9.970		
FH2	-0.202	-0.159	9.970		
FH3	-0.202	-0.159	9.970		
CD2	-0.115	-0.114	0.632		
HD2	0.115	0.115	0.000		
CE	0.092	-0.201	19.185		
HE	0.115	0.250	1.432		

Table S592: Interaction energies and geometries between probe water and selected 1-methyl-3-(triflu oromethyl)benzene site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
18	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA1-CA	0.0	-1.39/-1.18/-0.45	2.71/2.72/2.78
2	HA2-CA	0.0	-1.64/-1.65/-0.92	2.66/2.66/2.76
3	HA3-CA	0.0	-1.27/-1.08/-0.27	2.69/2.71/2.79
4	HG1-CG1	0.0	-1.91/-1.80/-2.54	2.43/2.59/2.55
5	HG1-CG1	90.0	-1.79/-1.64/-2.62	2.45/2.60/2.54
6	$\mathrm{HG2}\text{-}\mathrm{CG2}$	0.0	-1.86/-1.63/-0.62	2.59/2.67/2.75
7	$\mathrm{HG2} ext{-}\mathrm{CG2}$	90.0	-2.12/-1.71/-0.70	2.52/2.66/2.74
8	$\rm FH1\text{-}CH1$	0.0	-1.16/-1.72/-0.48	2.32/1.88/2.04
9	$\rm FH1 ext{-}CH1$	180.0	-1.84/-2.93/-0.57	2.27/1.83/2.02
10	$\rm FH2\text{-}CH1$	0.0	-1.63/-2.21/-1.20	2.28/1.86/1.98
11	$\rm FH2\text{-}CH1$	180.0	-1.88/-2.81/-0.47	2.27/1.85/2.06
12	${ m FH3-CH1}$	0.0	-1.17/-1.64/-0.41	2.32/1.88/2.04
13	${ m FH3-CH1}$	180.0	-1.79/-2.94/-0.58	2.27/1.83/2.01
14	$\mathrm{HD}2\text{-}\mathrm{CD}2$	0.0	-1.80/-1.89/-0.79	2.57/2.64/2.74
15	$\mathrm{HD2} ext{-}\mathrm{CD2}$	90.0	-2.00/-1.95/-0.88	2.52/2.64/2.72
16	HE-CE	0.0	-1.85/-1.81/-2.53	2.42/2.59/2.55
17	HE-CE	90.0	-1.64/-1.64/-2.59	2.46/2.60/2.55
18	CE-CD1	0.0	-0.63/-0.03/-2.72	3.03/2.87/2.23
19	CG1-CB	0.0	-1.65/-2.05/-2.82	2.81/2.43/2.24
20	CG2-CB	0.0	-0.93/-1.01/-2.82	2.82/2.34/2.28
21	CD2-CG2	0.0	-1.18/-0.75/-2.48	2.85/2.45/2.28

1.192 Small molecule used for 4-(trifluoromethyl)-phenylglycine(TFG4)

Figure S179: The molecule used for water complex calculations corresponding to 1-methyl-4-(trifluorom ethyl)benzene, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S593: Statistics of calculated water interaction and dipole moment for 1-methyl-4-(trifluoromethyl) benzene.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.04/1.45	0.20/0.30	8.332	3.52/1.02	179.96
Optimal	0.24/0.47	0.24/0.40	2.390	3.52/4.14	0.57

Table S594: The comparison list of optimized atomic charges and their initial guess for 1-methyl -4-(trifluoromethyl)benzene, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$		
CA	-0.270	-0.267	0.000		
HA1	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
HA3	0.090	0.090	0.000		
CB	0.162	-0.001	0.000		
CG1	-0.068	-0.115	0.632		
HG1	0.115	0.115	0.000		
CG2	-0.068	-0.115	0.632		
$\mathrm{HG2}$	0.115	0.115	0.000		
CD1	-0.181	-0.201	19.185		
HD1	0.211	0.250	1.432		
CD2	-0.181	-0.201	19.185		
HD2	0.211	0.250	1.432		
CE	-0.374	-0.427	28.711		
CH	0.553	0.804	35.242		
FH1	-0.165	-0.159	9.970		
FH2	-0.165	-0.159	9.970		
FH3	-0.165	-0.159	9.970		

Table S595: Interaction energies and geometries between probe water and selected 1-methyl-4-(triflu oromethyl)benzene site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA1-CA	0.0	-1.31/-1.38/-0.17	2.68/2.67/2.81
2	HA2-CA	0.0	-1.73/-1.77/-0.52	2.63/2.65/2.77
3	HA3-CA	0.0	-1.72/-1.76/-0.51	2.63/2.65/2.77
4	HG1-CG1	0.0	-1.83/-1.91/-0.79	2.60/2.64/2.74
5	HG1-CG1	90.0	-2.10/-2.01/-0.89	2.52/2.63/2.72
6	HG2-CG2	0.0	-1.83/-1.91/-0.79	2.60/2.64/2.74
7	HG2-CG2	90.0	-2.10/-2.02/-0.90	2.52/2.63/2.72
8	HD1-CD1	0.0	-1.90/-1.73/-2.53	2.41/2.58/2.55
9	HD1-CD1	90.0	-1.69/-1.66/-2.59	2.45/2.59/2.55
10	HD2-CD2	0.0	-1.90/-1.73/-2.53	2.41/2.58/2.55
11	HD2-CD2	90.0	-1.69/-1.65/-2.59	2.45/2.59/2.55
12	FH1-CH	0.0	-1.18/-1.47/-0.43	2.32/1.92/2.04
13	FH1-CH	180.0	-1.82/-2.28/-0.57	2.27/1.88/2.01
14	FH2-CH	0.0	-1.65/-2.13/-1.20	2.28/1.89/1.98
15	FH2-CH	180.0	-1.92/-2.16/-0.47	2.27/1.91/2.06
16	FH3-CH	0.0	-1.18/-1.47/-0.42	2.32/1.92/2.04
17	FH3-CH	180.0	-1.83/-2.28/-0.57	2.27/1.88/2.01

1.193 Small molecule used for 5,5,5-trifluoro-leucine(TFLE)

Figure S180: The molecule used for water complex calculations corresponding to 1,1,1-trifluoro-2-meth ylpropane, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S596: Statistics of calculated water interaction and dipole moment for 1,1,1-trifluoro-2-methylpr opane.

	m RMS/Max Deviation from $ m QM$		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.21/0.39	0.24/0.37	1.303	2.52/2.06	2.78
Optimal	0.24/0.52	0.25/0.37	1.439	2.52/3.02	2.23

Table S597: The comparison list of optimized atomic charges and their initial guess for 1,1,1-trif luoro-2-methylpropane, referring to the penalties of initial guess

Table S598: Interaction energies and geometries be-
tween probe water and selected 1,1,1-trifluoro-2-
methylpropane site calculated using the optimized
and initial charges

Atom		Charges	
Atom	Optimal	Initial	Penalty
HB3	0.090	0.090	0.600
CB	-0.270	-0.271	6.162
HB1	0.090	0.090	0.600
HB2	0.090	0.090	0.600
CG	0.122	-0.010	12.449
$\mathbf{H}\mathbf{G}$	0.090	0.090	0.600
CD1	0.138	0.342	13.805
FD1	-0.121	-0.140	3.557
FD2	-0.121	-0.140	3.557
FD3	-0.121	-0.140	3.557
CD2	-0.257	-0.271	6.162
HD21	0.090	0.090	0.600
HD22	0.090	0.090	0.600
HD23	0.090	0.090	0.600

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
18	site	(*)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HB3-CB	0.0	-1.56/-1.56/-1.17	2.67/2.67/2.71
2	HB1-CB	0.0	-1.26/-1.03/-0.91	2.60/2.66/2.68
3	HB2-CB	0.0	-1.08/-0.98/-0.92	2.62/2.67/2.68
4	HG-CG	0.0	-1.75/-1.84/-1.51	2.55/2.64/2.67
5	FD1-CD1	0.0	-1.20/-1.38/-1.30	2.31 / 1.94 / 1.94
6	FD1-CD1	180.0	-1.88/-2.40/-1.99	2.26/1.89/1.91
7	FD2-CD1	0.0	-1.24/-1.25/-1.14	2.31/1.95/1.96
8	FD2-CD1	180.0	-1.86/-2.27/-1.86	2.26/1.89/1.91
9	FD3-CD1	0.0	-1.24/-1.22/-1.14	2.31/1.95/1.96
10	FD3-CD1	180.0	-1.86/-2.27/-1.86	2.26/1.89/1.91
11	HD21-CD2	0.0	-1.09/-1.03/-0.87	2.65/2.67/2.69
12	HD22-CD2	0.0	-1.45/-1.57/-1.14	2.72/2.67/2.71
13	HD23-CD2	0.0	-1.04/-1.03/-0.89	2.63/2.66/2.69

1.194 Small molecule used for 2-(trifluoromethyl)-phenylalanine(TFP2)

Figure S181: The molecule used for water complex calculations corresponding to 1-methyl-2-(trifluorom ethyl)benzene, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S599: Statistics of calculated water interaction and dipole moment for 1-methyl-2-(trifluoromethyl) benzene.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.97/1.25	0.20/0.31	7.053	2.84/1.00	137.58
Optimal	0.47/0.94	0.26/0.43	1.860	2.84/3.53	1.17

Table S600: The comparison list of optimized atomic charges and their initial guess for 1-methyl -2-(trifluoromethyl)benzene, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.270	-0.267	0.645
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
CG	0.246	0.035	19.145
CD1	-0.360	-0.424	28.706
CH1	0.503	0.813	35.236
FH1	-0.180	-0.159	9.970
FH2	-0.180	-0.159	9.970
FH3	-0.180	-0.159	9.970
CD2	-0.115	-0.115	0.632
HD2	0.115	0.115	0.000
CE1	0.009	-0.201	19.185
HE1	0.142	0.250	1.432
CE2	-0.115	-0.115	0.000
HE2	0.115	0.115	0.000
CZ	-0.115	-0.114	0.632
HZ	0.115	0.115	0.000

Table S601: Interaction energies and geometries between probe water and selected 1-methyl-2-(triflu oromethyl)benzene site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-0.84/-0.62/-0.40	2.66/2.69/2.76
2	HB2-CB	0.0	-1.77/-1.70/-0.81	2.63/2.66/2.73
3	FH1-CH1	0.0	-1.33/-1.91/-1.17	2.28/1.88/1.97
4	FH1-CH1	180.0	-1.88/-2.74/-0.71	2.24/1.85/2.02
5	FH2-CH1	0.0	-1.45/-2.00/-1.21	2.29/1.88/1.98
6	FH2-CH1	180.0	-1.79/-2.56/-0.56	2.27/1.86/2.04
7	FH3-CH1	0.0	-0.91/-1.27/0.09	2.35/1.92/2.13
8	FH3-CH1	180.0	-1.69/-2.63/-0.60	2.28/1.85/2.00
9	HD2-CD2	0.0	-1.81/-1.98/-0.82	2.61/2.64/2.73
10	HD2-CD2	90.0	-2.16/-2.07/-0.91	2.51/2.63/2.71
11	$\operatorname{H\!E}\operatorname{1-}\operatorname{C\!E}\operatorname{1}$	0.0	-1.73/-1.54/-2.60	2.45/2.61/2.56
12	$\operatorname{H\!E}\operatorname{1-}\operatorname{C\!E}\operatorname{1}$	90.0	-1.43/-1.35/-2.61	2.54/2.63/2.56
13	$\operatorname{HE}2 ext{-}\operatorname{CE}2$	0.0	-1.82/-1.52/-0.75	2.57/2.68/2.74
14	$\operatorname{HE}2\operatorname{-}\operatorname{CE}2$	90.0	-2.02/-1.60/-0.81	2.52/2.67/2.72
15	HZ-CZ	0.0	-1.73/-1.61/-0.92	2.59/2.66/2.73
16	HZ-CZ	90.0	-1.92/-1.67/-1.02	2.53/2.66/2.71

1.195 Small molecule used for 3-(trifluoromethyl)-phenylalanine(TFP3)

Figure S182: The molecule used for water complex calculations corresponding to 1-methyl-3-(trifluorom ethyl)benzene, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S602: Statistics of calculated water interaction and dipole moment for 1-methyl-3-(trifluoromethyl) benzene.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.01/1.42	0.20/0.30	8.039	3.31/1.00	177.42
Optimal	0.24/0.47	0.25/0.40	2.181	3.31/3.84	1.85

Table S603: The comparison list of optimized atomic charges and their initial guess for 1-methyl -3-(trifluoromethyl)benzene, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$		
HB3	0.090	0.090	0.000		
CB	-0.270	-0.267	0.000		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
CG	0.126	0.000	0.632		
CD1	-0.139	-0.202	19.185		
HD1	0.190	0.250	1.432		
CD2	-0.063	-0.116	0.000		
HD2	0.115	0.115	0.000		
CE1	-0.374	-0.427	28.711		
CH1	0.553	0.804	35.242		
FH1	-0.167	-0.159	9.970		
FH2	-0.167	-0.159	9.970		
FH3	-0.167	-0.159	9.970		
CE2	-0.051	-0.114	0.632		
HE2	0.115	0.115	0.000		
CZ	-0.177	-0.201	19.185		
HZ	0.206	0.250	1.432		

Table S604: Interaction energies and geometries between probe water and selected 1-methyl-3-(triflu oromethyl)benzene site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
18	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-1.23/-1.16/-0.28	2.70/2.69/2.79
2	HB1-CB	0.0	-1.83/-1.70/-1.09	2.60/2.64/2.72
3	HB2-CB	0.0	-1.62/-1.61/-0.53	2.65/2.67/2.76
4	HD1-CD1	0.0	-1.91/-1.84/-2.54	2.43/2.58/2.55
5	HD1-CD1	90.0	-1.79/-1.78/-2.62	2.45/2.59/2.54
6	HD2-CD2	0.0	-1.86/-2.06/-0.62	2.59/2.63/2.75
7	$\mathrm{HD2} ext{-}\mathrm{CD2}$	90.0	-2.12/-2.16/-0.70	2.52/2.62/2.74
8	FH1-CH1	0.0	-1.63/-2.09/-1.20	2.28/1.89/1.98
9	FH1-CH1	180.0	-1.88/-2.15/-0.47	2.27/1.90/2.06
10	FH2-CH1	0.0	-1.17/-1.44/-0.49	2.32/1.92/2.04
11	FH2-CH1	180.0	-1.84/-2.29/-0.57	2.27/1.88/2.02
12	FH3-CH1	0.0	-1.17/-1.47/-0.41	2.32/1.92/2.05
13	FH3-CH1	180.0	-1.79/-2.26/-0.58	2.27/1.88/2.01
14	$\operatorname{HE2-CE2}$	0.0	-1.80/-1.73/-0.79	2.57/2.65/2.74
15	$\operatorname{HE2-CE2}$	90.0	-2.00/-1.82/-0.88	2.52/2.64/2.72
16	HZ-CZ	0.0	-1.85/-1.68/-2.53	2.42/2.58/2.55
17	HZ-CZ	90.0	-1.64/-1.59/-2.59	2.46/2.59/2.55
1.196 Small molecule used for 4-(Trifluoromethyl)-phenylalanine(TFP4)

Figure S183: The molecule used for water complex calculations corresponding to 1-methyl-4-(trifluorom ethyl)benzene, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S605: Statistics of calculated water interaction and dipole moment for 1-methyl-4-(trifluoromethyl)benzene.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	$\rm QM/MM~(Debye)$	difference (°)
Initial	1.04/1.45	0.20/0.30	8.333	3.53/1.02	179.81
Optimal	0.24/0.48	0.24/0.40	2.396	3.53/4.14	0.52

Table S606: The comparison list of optimized atomic charges and their initial guess for 1-methyl -4-(trifluoromethyl)benzene, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$		
HB3	0.090	0.090	0.000		
CB	-0.270	-0.267	0.000		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
CG	0.165	-0.001	0.000		
CD1	-0.068	-0.115	0.632		
HD1	0.115	0.115	0.000		
CD2	-0.068	-0.115	0.632		
HD2	0.115	0.115	0.000		
CE1	-0.181	-0.201	19.185		
HE1	0.211	0.250	1.432		
CE2	-0.181	-0.201	19.185		
HE2	0.211	0.250	1.432		
CZ	-0.374	-0.427	28.711		
CH	0.553	0.804	35.242		
FH1	-0.166	-0.159	9.970		
FH2	-0.166	-0.159	9.970		
FH3	-0.166	-0.159	9.970		

Table S607: Interaction energies and geometries between probe water and selected 1-methyl-4-(triflu oromethyl)benzene site calculated using the optimized and initial charges

_					
_	N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	14	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
	1	HB3-CB	0.0	-1.31/-1.38/-0.17	2.68/2.67/2.81
	2	HB1-CB	0.0	-1.72/-1.77/-0.51	2.63/2.65/2.77
	3	HB2-CB	0.0	-1.72/-1.77/-0.51	2.63/2.65/2.77
	4	HD1-CD1	0.0	-1.83/-1.91/-0.79	2.59/2.64/2.74
	5	HD1-CD1	90.0	-2.10/-2.02/-0.90	2.52/2.63/2.72
	6	HD2-CD2	0.0	-1.83/-1.91/-0.79	2.59/2.64/2.74
	7	HD2-CD2	90.0	-2.10/-2.02/-0.90	2.52/2.63/2.72
	8	$\operatorname{H\!E}\operatorname{1-}\operatorname{C\!E}\operatorname{1}$	0.0	-1.90/-1.73/-2.53	2.41/2.58/2.55
	9	$\operatorname{H\!E} \operatorname{1-}\!\operatorname{C\!E} \operatorname{1}$	90.0	-1.69/-1.66/-2.59	2.45/2.59/2.55
	10	$\operatorname{H\!E} 2\text{-}\operatorname{C\!E} 2$	0.0	-1.90/-1.73/-2.53	2.41/2.58/2.55
	11	$\operatorname{H\!E} 2\text{-}\operatorname{C\!E} 2$	90.0	-1.69/-1.65/-2.59	2.45/2.59/2.55
	12	FH1-CH	0.0	-1.19/-1.47/-0.43	2.32/1.92/2.04
	13	FH1-CH	180.0	-1.83/-2.28/-0.57	2.27/1.88/2.01
	14	FH2-CH	0.0	-1.65/-2.13/-1.19	2.28/1.89/1.98
	15	FH2-CH	180.0	-1.92/-2.16/-0.47	2.27/1.91/2.06
	16	FH3-CH	0.0	-1.18/-1.47/-0.43	2.32/1.92/2.04
_	17	FH3-CH	180.0	-1.83/-2.28/-0.58	2.27/1.88/2.01
_					

1.197 Small molecule used for 2-thienylglycine(THG2)

Figure S184: The molecule used for water complex calculations corresponding to 2-methylthiophene, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S608: Statistics of calculated water interaction and dipole moment for 2-methylthiophene.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	$\rm QM/MM~(Debye)$	difference (°)
Initial	0.63/1.09	0.24/0.50	2.933	0.84/0.55	112.81
Optimal	0.21/0.50	0.22/0.49	1.370	0.84/1.03	1.31

Table S609: The comparison list of optimized atomic charges and their initial guess for 2-methyl thiophene, referring to the penalties of initial guess

Atom	Charges				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
CA	-0.270	-0.229	43.092		
HA1	0.090	0.090	2.500		
HA2	0.090	0.090	2.500		
HA3	0.090	0.090	2.500		
CB	0.125	0.013	60.735		
SG1	-0.003	-0.013	59.406		
CG2	-0.174	-0.217	0.483		
$\mathrm{HG2}$	0.160	0.137	0.025		
CD1	-0.259	-0.085	2.500		
HD1	0.196	0.180	0.000		
CD2	-0.254	-0.226	0.452		
HD2	0.209	0.170	0.000		

Table S610: Interaction energies and geometries between probe water and selected 2-methylthioph ene site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA1-CA	0.0	-1.32/-0.82/-0.68	2.59/2.70/2.72
2	HA2-CA	0.0	-0.99/-0.82/-0.55	2.72/2.73/2.75
3	HA3-CA	0.0	-0.99/-0.82/-0.55	2.72/2.73/2.75
4	SG1-CB	0.0	-0.80/-1.12/-0.80	3.02/2.53/2.57
5	SG1-CB	180.0	-0.65/-0.85/-0.98	3.05/2.57/2.54
6	$\mathrm{HG2} ext{-}\mathrm{CG2}$	0.0	-1.30/-1.43/-0.57	2.66/2.66/2.77
7	$\mathrm{HG2} ext{-}\mathrm{CG2}$	90.0	-1.47/-1.50/-0.64	2.60/2.65/2.76
8	HD1-CD1	0.0	-1.73/-1.73/-2.81	2.50/2.30/2.25
9	HD1-CD1	90.0	-1.89/-1.78/-2.85	2.46/2.30/2.25
10	$\mathrm{HD2} ext{-}\mathrm{CD2}$	0.0	-1.31/-1.40/-1.16	2.63/2.65/2.68
11	HD2-CD2	90.0	-1.48/-1.47/-1.23	2.57/2.64/2.68

1.198 Small molecule used for 3-thienylglycine(THG3)

Figure S185: The molecule used for water complex calculations corresponding to 3-methylthiophene, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S611: Statistics of calculated water interaction and dipole moment for 3-methylthiophene.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.74/1.28	0.35/0.61	1.783	1.08/0.99	7.93
Optimal	0.14/0.25	0.27/0.48	1.360	1.08/1.25	1.58

Table S612: The comparison list of optimized atomic charges and their initial guess for 3-methyl thiophene, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	Penalty
\mathbf{CA}	-0.270	-0.244	2.531
HA1	0.090	0.090	0.000
HA2	0.090	0.090	0.000
HA3	0.090	0.090	0.000
CB	0.152	-0.045	2.534
CG1	-0.247	-0.088	2.500
HG1	0.167	0.201	0.000
CG2	-0.233	-0.242	0.483
${ m HG2}$	0.185	0.170	0.025
SD1	0.020	-0.131	2.500
CD2	-0.232	-0.071	0.452
HD2	0.188	0.180	0.000

Table S613: Interaction energies and geometries between probe water and selected 3-methylthioph ene site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA1-CA	0.0	-1.32/-1.10/-1.25	2.71/2.71/2.72
2	HA2-CA	0.0	-0.86/-0.79/-0.50	2.78/2.74/2.78
3	HA3-CA	0.0	-0.86/-0.79/-0.50	2.78/2.74/2.78
4	HG1-CG1	0.0	-1.76/-1.81/-3.04	2.52/2.31/2.23
5	HG1-CG1	90.0	-2.00/-1.88/-3.08	2.45/2.31/2.23
6	$\mathrm{HG2}\text{-}\mathrm{CG2}$	0.0	-1.41/-1.52/-1.18	2.63/2.65/2.68
7	$\mathrm{HG2}\text{-}\mathrm{CG2}$	90.0	-1.57/-1.58/-1.25	2.57/2.64/2.68
8	SD1-CG1	0.0	-0.73/-0.98/-1.69	3.04/2.57/2.43
9	SD1-CG1	90.0	-0.91/-1.03/-1.74	2.96/2.56/2.42
10	SD1-CG1	180.0	-0.74/-0.98/-1.62	3.04/2.56/2.43
11	SD1-CG1	270.0	-0.91/-1.03/-1.74	2.96/2.56/2.42
12	HD2-CD2	0.0	-1.86/-1.89/-2.53	2.48/2.30/2.26
13	$\mathrm{HD2} ext{-}\mathrm{CD2}$	90.0	-2.02/-1.94/-2.55	2.44/2.29/2.26

1.199 Small molecule used for thio-citrulline(THIC)

Figure S186: The molecule used for water complex calculations corresponding to methylthiourea, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S614: Statistics of calculated water interaction and dipole moment for methylthiourea.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	${\rm Energy}\;(\rm kcal/mol)$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	1.10/1.89	0.19/0.39	2.385	5.94/5.75	0.39
Optimal	1.18/2.64	0.19/0.43	3.326	5.94/7.10	1.67

Table S615: The comparison list of optimized atomic charges and their initial guess for methyl thiourea, referring to the penalties of initial guess

Table S616: Interaction energies and geometries between probe water and selected methylthiourea site calculated using the optimized and initial charges

	Charges			
Atom		T 1. 1		
	Optimal	Initial	Penalty	
HD3	0.090	0.090	0.000	
CD	0.033	-0.029	4.704	
HD1	0.090	0.090	0.000	
HD2	0.090	0.090	0.000	
NE	-0.376	-0.354	59.360	
\mathbf{HE}	0.315	0.263	5.608	
CZ	0.039	0.197	77.359	
SZ	-0.420	-0.377	90.710	
NH	-0.555	-0.650	59.856	
HH1	0.347	0.340	2.500	
HH2	0.347	0.340	2.500	

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	SZ-CZ	0.0	-2.03/-4.61/-3.87	2.73/2.31/2.34
2	SZ-CZ	90.0	-2.04/-4.64/-3.88	2.73/2.31/2.34
3	SZ-CZ	180.0	-2.07/-4.67/-3.92	2.73/2.31/2.34
4	SZ-CZ	270.0	-2.10/-4.74/-3.99	2.73/2.30/2.34
5	$\rm HH1\text{-}NH$	0.0	-4.69/-4.67/-4.03	2.30 / 2.40 / 2.44
6	$\rm HH1\text{-}NH$	45.0	-4.74/-4.47/-3.87	2.27/2.42/2.45
7	$\rm HH1\text{-}NH$	90.0	-5.48/-4.96/-4.27	2.21/2.36/2.40
8	$\rm HH1\text{-}NH$	135.0	-5.43/-5.17/-4.43	2.23/2.34/2.38
9	$\rm HH2\text{-}NH$	0.0	-5.55/-5.27/-4.82	1.82/1.86/1.88
10	$\rm HH2\text{-}NH$	45.0	-4.84/-4.96/-4.57	1.84/1.87/1.89
11	$\rm HH2\text{-}NH$	90.0	-4.32/-4.74/-4.39	1.87/1.88/1.90
12	$\rm HH2\text{-}NH$	135.0	-5.00/-5.03/-4.63	1.84/1.87/1.89
13	HE-NE	0.0	-5.67/-5.02/-4.13	1.81/1.88/1.93
14	HE-NE	45.0	-5.48/-4.94/-4.07	1.82/1.88/1.93
15	HE-NE	90.0	-4.67/-4.61/-3.81	1.85/1.89/1.94
16	HE-NE	135.0	-4.85/-4.68/-3.86	1.84/1.89/1.94
17	NH-CZ	0.0	-2.33/-1.92/-2.57	2.12/2.12/2.07
18	NH-CZ	90.0	-0.96/-0.84/-1.59	2.25/2.16/2.10
19	NH-CZ	180.0	-3.44/-4.76/-4.73	2.10/2.01/2.00
20	$\rm NH\text{-}CZ$	270.0	-3.82/-4.89/-4.92	2.08/2.03/2.01
21	HD1-CD	0.0	-2.74/-2.92/-2.40	2.48/2.56/2.59
22	$\mathrm{HD2}\text{-}\mathrm{CD}$	0.0	-2.95/-3.34/-2.86	2.51/2.55/2.57
23	HD3-CD	0.0	-1.88/-2.15/-1.74	2.51/2.58/2.61

1.200 Small molecule used for 3-(2-thienyl)-alanine(TIH)

Figure S187: The molecule used for water complex calculations corresponding to 2-methylthiophene, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S617: Statistics of calculated water interaction and dipole moment for 2-methylthiophene.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.64/1.05	0.24/0.49	2.847	0.83/0.55	106.95
Optimal	0.15/0.29	0.22/0.48	1.355	0.83/1.02	0.97

Table S618: The comparison list of optimized atomic charges and their initial guess for 2-methyl thiophene, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$
HB3	0.090	0.090	2.500
CB	-0.270	-0.229	43.092
HB1	0.090	0.090	2.500
HB2	0.090	0.090	2.500
CG	0.114	0.013	60.735
CD2	-0.172	-0.217	0.483
HD2	0.162	0.137	0.025
SD1	-0.003	-0.013	59.406
CE2	-0.253	-0.226	0.452
HE2	0.207	0.170	0.000
CE1	-0.250	-0.085	2.500
HE1	0.195	0.180	0.000

Table S619: Interaction energies and geometries between probe water and selected 2-methylthioph ene site calculated using the optimized and initial charges

_					
_	N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	14	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
	1	$\operatorname{HE}1\operatorname{-}\operatorname{CE}1$	0.0	-1.76/-1.78/-2.81	2.50/2.30/2.25
	2	$\operatorname{H\!E} \operatorname{1-}\!\operatorname{C\!E} \operatorname{1}$	45.0	-1.84/-1.81/-2.83	2.48/2.30/2.25
	3	$\operatorname{H\!E}\operatorname{1-}\operatorname{C\!E}\operatorname{1}$	90.0	-1.92/-1.83/-2.85	2.45/2.30/2.25
	4	$\operatorname{H\!E}\operatorname{1-}\operatorname{C\!E}\operatorname{1}$	135.0	-1.84/-1.81/-2.83	2.48/2.30/2.25
	5	$\operatorname{HE}2\text{-}\operatorname{CE}2$	0.0	-1.33/-1.41/-1.16	2.62/2.65/2.68
	6	$\operatorname{HE}2\text{-}\operatorname{CE}2$	45.0	-1.42/-1.44/-1.20	2.60/2.64/2.68
	7	$\operatorname{HE}2\text{-}\operatorname{CE}2$	90.0	-1.50/-1.48/-1.23	2.57/2.64/2.68
	8	$\operatorname{HE}2 ext{-}\operatorname{CE}2$	135.0	-1.42/-1.44/-1.20	2.60/2.64/2.68
	9	HD2-CD2	0.0	-1.36/-1.51/-0.63	2.65/2.66/2.76
	10	HD2-CD2	45.0	-1.49/-1.55/-0.67	2.60/2.65/2.76
	11	HD2-CD2	90.0	-1.62/-1.59/-0.71	2.56/2.65/2.75
	12	HD2-CD2	135.0	-1.49/-1.55/-0.67	2.61/2.65/2.76
	13	SD1-CG	0.0	-0.81/-1.09/-0.79	3.02/2.54/2.57
	14	SD1-CG	90.0	-0.95/-1.06/-0.97	2.95/2.54/2.54
	15	SD1-CG	180.0	-0.72/-0.92/-1.03	3.03/2.56/2.54
	16	SD1-CG	270.0	-0.95/-1.06/-0.97	2.95/2.54/2.54
	17	HB1-CB	0.0	-1.01/-0.73/-0.60	2.68/2.72/2.73
	18	HB2-CB	0.0	-1.43/-1.20/-0.80	2.68/2.71/2.73
_	19	HB3-CB	0.0	-1.01/-0.73/-0.60	2.68/2.72/2.73

1.201 Small molecule used for 1-hydroperoxy-L-tryptophan(TOX)

Figure S188: The molecule used for water complex calculations corresponding to 3-ethyl-1H-indole-1-peroxol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S620: Statistics of calculated water interaction and dipole moment for 3-ethyl-1H-indole-1-peroxol.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	3.05/6.66	0.52/2.80	7.625	1.72/4.71	39.54
Optimal	0.25/0.62	0.13/0.23	1.500	1.72/2.04	2.40

Table S621: The comparison list of optimized atomic charges and their initial guess for 3-ethy l-1H-indole-1-peroxol, referring to the penalties of initial guess

=

Atom	$\operatorname{Charges}$			
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$	
HA3	0.090	0.090	0.000	
HA2	0.090	0.090	0.000	
\mathbf{CA}	-0.270	-0.277	0.000	
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000	
CB	-0.133	-0.187	0.000	
HB1	0.090	0.090	0.000	
HB2	0.090	0.090	0.000	
CG	-0.072	-0.037	17.090	
CD1	-0.227	-0.233	41.493	
HD1	0.211	0.230	17.929	
CD2	0.092	0.119	22.534	
NE1	-0.023	-0.169	286.320	
O1	-0.142	-0.486	440.722	
O2	-0.332	-0.088	337.960	
HO2	0.373	0.500	27.169	
CE2	0.337	0.364	40.160	
CE3	-0.258	-0.258	0.000	
HE3	0.201	0.201	0.000	
CZ2	-0.363	-0.285	2.500	
HZ2	0.195	0.195	0.000	
CZ3	-0.236	-0.236	0.000	
HZ3	0.196	0.196	0.000	
CH2	-0.195	-0.195	0.000	
HH2	0.196	0.196	0.000	

Table S622: Interaction energies and geometries between probe water and selected 3-ethyl-1H-indole-1-peroxol site calculated using the optimized and initial charges

				0
Ν	Probe	Angle	Energy (kcal/mol)	Distance (A)
	site	(*)	QM/Optimal/Initial	QM/Optimal/Initial
1	HA3-CA	0.0	-0.78/-0.75/-0.48	2.85/2.76/2.80
2	HA2-CA	0.0	-0.85/-0.88/-0.71	3.18/3.07/3.16
3	HA-CA	0.0	-0.93/-0.72/-0.09	2.72/2.71/2.83
4	HB1-CB	0.0	-1.38/-1.09/-0.58	2.70/2.73/2.77
5	HB2-CB	0.0	-1.07/-1.14/-0.73	2.73/2.71/2.75
6	HD1-CD1	0.0	-2.08/-2.09/-1.29	2.38/2.25/2.27
7	HD1-CD1	45.0	-2.03/-2.02/-1.22	2.38/2.26/2.27
8	HD1-CD1	90.0	-2.13/-2.04/-1.09	2.36/2.26/2.28
9	HD1-CD1	135.0	-2.18/-2.11/-1.15	2.36/2.25/2.27
10	NE1-CD1	0.0	-1.65/-1.89/-4.75	2.50/2.30/2.09
11	NE1-CD1	90.0	-1.92/-2.02/-4.06	2.47/2.29/2.13
12	NE1-CD1	180.0	-1.54/-1.79/-4.63	2.50/2.29/2.09
13	NE1-CD1	270.0	-1.63/-1.98/-5.75	2.50/2.27/2.05
14	01-NE1	0.0	-2.49/-2.82/-7.12	2.07/1.87/1.68
15	01-NE1	90.0	-2.02/-2.18/-6.95	2.10/1.91/1.68
16	01-NE1	180.0	-2.56/-2.91/-9.22	2.07/1.88/1.65
17	01-NE1	270.0	-2.72/-3.27/-9.09	2.05/1.86/1.66
18	02-01	0.0	-2.81/-2.62/0.16	2.20/2.04/5.00
19	O 2-O 1	90.0	-3.32/-3.15/-0.72	2.15/2.01/2.32
20	O 2-O 1	180.0	-2.89/-3.31/-1.73	2.19/1.99/2.18
21	O 2-O 1	270.0	-2.94/-3.01/-0.73	2.16/2.00/2.30
22	HO2-O2	0.0	-4.18/-4.78/-10.39	1.87/1.86/1.72
23	HO2-O2	45.0	-5.09/-5.22/-11.08	1.79/1.85/1.71
24	HO2-O2	90.0	-6.88/-6.25/-11.88	1.75/1.83/1.71
25	HO2-O2	135.0	-6.17/-6.06/-11.45	1.80/1.83/1.71
26	$\operatorname{HE} 3$ - $\operatorname{CE} 3$	0.0	-1.74/-1.99/-1.99	2.58/2.61/2.60
27	$\operatorname{HE} 3$ - $\operatorname{CE} 3$	45.0	-1.81/-2.00/-1.97	2.58/2.62/2.61
28	$\operatorname{HE} 3$ - $\operatorname{CE} 3$	90.0	-1.98/-2.04/-1.97	2.54/2.61/2.61
29	$\operatorname{HE} 3$ - $\operatorname{CE} 3$	135.0	-1.92/-2.03/-1.99	2.54/2.61/2.60
30	HZ2-CZ2	0.0	-2.41/-2.15/-2.47	2.45/2.59/2.57
31	HZ2-CZ2	90.0	-1.91/-1.90/-1.88	2.51/2.61/2.61
32	HZ3-CZ3	0.0	-1.24/-1.48/-1.67	2.68/2.64/2.63
33	HZ3-CZ3	90.0	-1.43/-1.59/-1.77	2.62/2.63/2.62
34	$\rm HH2\text{-}CH2$	0.0	-1.42/-1.53/-1.92	2.64/2.64/2.62
35	$\rm HH2\text{-}CH2$	90.0	-1.60/-1.62/-2.00	2.59/2.63/2.61

1.202 Small molecule used for 5-(2-carboxy-2-aminoethyl)-2-hydroxy-1,4-benzoquinone(TPQ)

Figure S189: The molecule used for water complex calculations corresponding to 5-ethylcyclohex-5-ene-1,2,4-trione, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S623: Statistics of calculated water interaction and dipole moment for 5-ethylcyclohex-5-ene-1,2,4-trione.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	5.63/9.53	0.17/0.23	14.991	8.18/14.94	16.22
Optimal	0.09/0.23	0.14/0.20	2.736	8.18/7.65	1.87

Table S624: The comparison list of optimized atomic charges and their initial guess for 5-ethylcyc lohex-5-ene-1,2,4-trione, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$			
Atom	Optimal	Initial	$\mathbf{Penalty}$	
HA3	0.090	0.090	0.025	
HA2	0.090	0.090	0.025	
\mathbf{CA}	-0.270	-0.269	2.343	
\mathbf{HA}	0.090	0.090	0.025	
CB	-0.262	-0.236	4.152	
HB1	0.090	0.090	0.150	
HB2	0.090	0.090	0.150	
C1	0.222	0.151	23.696	
C2	0.177	0.327	28.959	
O2	-0.495	-0.437	12.156	
C3	-0.371	-0.250	28.590	
H3	0.068	0.230	13.596	
C4	0.380	0.121	147.002!	
O4	-0.610	-1.009	143.829	
C5	0.274	0.350	56.660	
O5	-0.394	-0.441	3.633	
C6	-0.185	-0.137	31.411	
H6	0.016	0.150	2.878	

Table S625: Interaction energies and geometries between probe water and selected 5-ethylcyclohex-5ene-1,2,4-trione site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	O2-C2	0.0	-10.22/-10.23/-7.38	1.79/1.64/1.68
2	O2-C2	90.0	-10.66/-10.65/-7.94	1.78/1.63/1.68
3	O2-C2	180.0	-11.11/-11.14/-8.37	1.78/1.63/1.68
4	O2-C2	270.0	-10.59/-10.61/-7.80	1.78/1.63/1.68
5	O4-C4	0.0	-10.79/-10.78/-19.39	1.80/1.75/1.63
6	O4-C4	90.0	-10.79/-10.85/-19.96	1.80/1.75/1.63
7	O4-C4	180.0	-11.40/-11.32/-20.94	1.79/1.75/1.62
8	O4-C4	270.0	-10.93/-10.99/-20.19	1.80/1.75/1.63
9	O5-C5	0.0	-9.24/-9.42/-12.55	1.87/1.68/1.64
10	O5-C5	90.0	-8.11/-8.19/-9.77	1.89/1.70/1.67
11	O5-C5	180.0	-7.47/-7.24/-7.31	1.90/1.71/1.70
12	O5-C5	270.0	-8.06/-8.09/-9.48	1.90/1.70/1.68

1.203 Small molecule used for 5-(2-carboxy-2-aminoethyl)-2-hydroxy-1,4-benzoquinone(TPQP)

Figure S190: The molecule used for water complex calculations corresponding to 2-ethyl-5-hydroxycyc lohexa-2,5-diene-1,4-dione, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S626: Statistics of calculated water interaction and dipole moment for 2-ethyl-5-hydroxycyclohe xa-2,5-diene-1,4-dione.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.96/1.85	0.16/0.25	3.314	2.16/1.90	51.22
Optimal	0.10/0.21	0.13/0.21	2.294	2.16/2.66	3.26

Table S627: The comparison list of optimized atomic charges and their initial guess for 2-ethyl-5-hydroxycyclohexa-2,5-diene-1,4-dione, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$			
Atom	Optimal	Initial	$\mathbf{Penalty}$	
HA3	0.090	0.090	0.025	
HA2	0.090	0.090	0.025	
CA	-0.270	-0.269	2.343	
\mathbf{HA}	0.090	0.090	0.025	
CB	-0.128	-0.236	4.152	
HB1	0.090	0.090	0.150	
HB2	0.090	0.090	0.150	
C1	0.114	0.151	23.696	
C2	0.239	0.322	28.827	
O2	-0.335	-0.437	12.156	
C3	-0.311	-0.237	23.419	
H3	0.231	0.230	4.824	
C4	0.123	0.118	69.392	
O4	-0.445	-0.434	60.945	
HO4	0.357	0.420	9.376	
C5	0.376	0.350	53.822	
O5	-0.365	-0.441	3.633	
C6	-0.178	-0.137	31.411	
H6	0.142	0.150	2.878	

Table S628: Interaction energies and geometries between probe water and selected 2-ethyl-5-hydroxyc yclohexa-2,5-diene-1,4-dione site calculated using the optimized and initial charges

N	Probe	Angle	Energy $(kcal/mol)$	Distance (Å)
1	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	${ m HA3-CA}$	0.0	-1.35/-1.55/-1.33	2.78/2.70/2.73
2	$\operatorname{HA2-CA}$	0.0	-1.17/-0.96/-0.52	2.74/2.73/2.78
3	$\operatorname{HB1-CB}$	0.0	-0.53/-0.55/0.28	2.68/2.71/2.83
4	${ m HB2-CB}$	0.0	-2.26/-2.31/-1.80	2.59/2.64/2.68
5	O2-C2	0.0	-4.11/-4.18/-5.96	1.91/1.75/1.69
6	O2-C2	90.0	-4.49/-4.53/-5.93	1.91/1.74/1.69
7	O2-C2	180.0	-4.74/-4.73/-5.83	1.90/1.74/1.70
8	O2-C2	270.0	-4.39/-4.49/-5.91	1.91/1.74/1.69
9	H3-C3	0.0	-1.95/-1.75/-2.49	2.36/2.48/2.45
10	H3-C3	90.0	-1.52/-1.53/-2.24	2.41/2.50/2.47
11	O4-C4	0.0	-3.33/-3.45/-2.65	1.96/1.96/1.98
12	O4-C4	90.0	-3.52/-3.45/-2.60	1.93/1.95/1.98
13	O4-C4	180.0	-2.79/-2.96/-2.00	2.01/1.97/2.01
14	O4-C4	270.0	-3.54/-3.45/-2.59	1.93/1.95/1.98
15	O5-C5	0.0	-2.75/-2.83/-3.41	1.99/1.79/1.74
16	O5-C5	90.0	-3.32/-3.32/-4.36	1.95/1.76/1.71
17	O5-C5	180.0	-3.51/-3.47/-4.82	1.94/1.75/1.70
18	O5-C5	270.0	-3.31/-3.32/-4.37	$\bf 1.95/1.76/1.71$
19	H6-C6	0.0	-2.67/-2.66/-2.77	2.38/2.50/2.48
20	H6-C6	90.0	-2.62/-2.61/-2.63	2.38/2.50/2.49

1.204 Small molecule used for (S)-2-amino-3-(6,7-dihydro-6-imino-7-oxo-1H-indol-3-yl)propanoicacid(TQQ)

Figure S191: The molecule used for water complex calculations corresponding to 3-ethyl-6-imino-6,7-di hydro-1H-indol-7-one, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S629: Statistics of calculated water interaction and dipole moment for 3-ethyl-6-imino-6,7-dihydr o-1H-indol-7-one.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.51/1.03	0.17/0.50	3.474	5.14/5.15	11.95
Optimal	0.29/0.62	0.12/0.25	3.019	5.14/6.67	0.18

Table S630: The comparison list of optimized atomic charges and their initial guess for 3-ethy l-6-imino-6,7-dihydro-1H-indol-7-one, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.270	-0.276	0.000		
\mathbf{HA}	0.090	0.090	0.000		
CB	-0.057	-0.055	1.450		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
CG	-0.019	-0.034	25.153		
CD1	-0.069	-0.067	10.117		
HD1	0.129	0.161	0.000		
NE1	-0.140	-0.240	13.334		
HE1	0.316	0.380	2.500		
CD2	-0.096	-0.133	74.256		
CE2	-0.295	-0.379	43.482		
CE3	-0.238	-0.215	72.008		
HE3	0.188	0.150	3.561		
CZ2	0.629	0.716	47.404		
O2	-0.469	-0.456	17.100		
CZ3	-0.096	-0.078	32.341		
HZ3	0.155	0.150	3.078		
$\rm CH2$	0.287	0.315	82.825		
N2	-0.668	-0.715	72.331		
HN21	0.263	0.326	59.000		

Table S631: Interaction energies and geometries between probe water and selected 3-ethyl-6-imino-6,7-dihydro-1H-indol-7-one site calculated using the optimized and initial charges

_					
_	N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	14	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
	1	HA3-CA	0.0	-0.96/-1.06/-0.71	2.82/2.74/2.77
	2	HA2-CA	0.0	-1.01/-1.25/-1.01	2.82/2.71/2.73
	3	HA-CA	0.0	-0.75/-1.22/-0.69	3.25/3.32/3.75
	4	HB1-CB	0.0	-1.70/-2.00/-1.77	2.70/2.66/2.68
	5	HB2-CB	0.0	-1.66/-1.89/-1.32	2.67/2.66/2.69
	6	HD1-CD1	0.0	-2.96/-2.98/-3.24	2.41/2.29/2.27
	7	HD1-CD1	90.0	-3.27/-3.15/-3.42	2.36/2.28/2.26
	8	NE1-CD1	0.0	-1.14/-1.76/-2.17	2.64/2.39/2.30
	9	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	0.0	-8.02/-7.86/-8.70	1.74 / 1.81 / 1.79
	10	$\operatorname{HE} 3$ - $\operatorname{CE} 3$	0.0	-2.24/-2.26/-1.43	2.51/2.55/2.62
	11	O_{2} - CZ_{2}	0.0	-4.42/-4.22/-3.65	1.88/1.71/1.73
	12	O_{2} - CZ_{2}	90.0	-5.10/-5.18/-4.42	1.86/1.70/1.72
	13	O_2 - CZ_2	180.0	-5.21/-5.75/-4.68	1.87/1.70/1.72
	14	O_{2} - CZ_{2}	270.0	-5.07/-5.16/-4.39	1.86/1.70/1.72
	15	HZ3-CZ3	0.0	-1.29/-1.18/-1.16	2.48/2.54/2.54
	16	N2-CH2	0.0	-6.53/-6.91/-6.59	1.94/1.92/1.92
_	17	N2-CH2	180.0	-5.10/-4.77/-4.84	1.99/1.96/1.95
-					

1.205 Small molecule used for 2-hydroxy-tryptophan(TRO)

Figure S192: The molecule used for water complex calculations corresponding to 3-methyl-1H-indol-2-ol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S632: Statistics of calculated water interaction and dipole moment for 3-methyl-1H-indol-2-ol.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)} \fbox{Distance (Å)}$		m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.22/2.23	0.23/0.56	4.298	1.57/1.45	96.87
Optimal	0.31/0.69	0.19/0.49	1.692	1.57/2.04	0.03

Table S633: The comparison list of optimized atomic charges and their initial guess for 3-meth yl-1H-indol-2-ol, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.270	-0.277	2.295
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
CG	-0.073	0.036	31.983
CD1	0.156	0.179	76.468
OD1	-0.529	-0.546	70.649
HD1	0.475	0.420	4.985
CD2	0.006	0.062	23.091
NE1	-0.405	-0.574	39.295
HE1	0.346	0.363	2.250
CE2	0.332	0.254	23.966
CE3	-0.291	-0.259	0.000
HE3	0.197	0.201	0.000
CZ2	-0.298	-0.285	0.000
HZ2	0.174	0.195	0.000
CZ3	-0.247	-0.236	0.000
HZ3	0.202	0.196	0.000
CH2	-0.247	-0.195	0.000
HH2	0.202	0.196	0.000

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-0.77/-0.64/-1.03	2.77/2.73/2.70
2	HB1-CB	0.0	-4.29/-4.15/-3.73	2.52/2.56/2.55
3	HB2-CB	0.0	-0.76/-0.61/-1.06	2.76/2.73/2.69
4	OD1-CD1	0.0	-3.86/-4.12/-4.96	1.91/1.91/1.89
5	OD1-CD1	90.0	-4.15/-4.00/-5.04	1.87/1.90/1.88
6	OD1-CD1	180.0	-2.07/-2.61/-3.99	2.00/1.95/1.91
7	OD1-CD1	270.0	-4.15/-4.00/-5.03	1.87/1.90/1.88
8	HD1-OD1	0.0	-3.76/-3.32/-2.58	2.60/3.01/3.08
9	HD1-OD1	45.0	-3.95/-3.36/-2.65	2.55/3.00/3.07
10	HD1-OD1	90.0	-4.10/-3.41/-2.72	2.50/2.99/3.06
11	HD1-OD1	135.0	-3.96/-3.36/-2.66	2.54/3.00/3.07
12	NE1-CD1	0.0	-1.13/-1.41/-3.11	2.51/2.40/2.18
13	NE1-CD1	180.0	-1.39/-1.96/-3.62	2.40/2.27/2.13
14	HE1-NE1	0.0	-6.07/-6.17/-4.39	1.84/1.85/1.88
15	HE1-NE1	45.0	-6.14/-6.14/-4.37	1.83/1.85/1.88
16	HE1-NE1	90.0	-6.21/-6.11/-4.34	1.82/1.85/1.88
17	HE1-NE1	135.0	-6.14/-6.14/-4.37	1.83/1.85/1.88
18	HE3-CE3	0.0	-0.95/-0.87/-1.70	2.72/2.70/2.63
19	HE3-CE3	90.0	-1.17/-1.00/-1.85	2.65/2.68/2.62
20	$\mathrm{HZ}2\text{-}\mathrm{CZ}2$	0.0	-1.33/-1.41/-1.56	2.71/2.67/2.64
21	$\mathrm{HZ}2\text{-}\mathrm{CZ}2$	90.0	-1.73/-1.61/-1.71	2.58/2.65/2.62
22	HZ3-CZ3	0.0	-0.72/-0.84/-1.33	2.78/2.68/2.65
23	HZ3-CZ3	90.0	-0.88/-0.94/-1.44	2.71/2.67/2.64
24	$\rm HH2\text{-}CH2$	0.0	-0.82/-0.96/-1.43	2.75/2.67/2.64
25	HH2-CH2	90.0	-0.99/-1.06/-1.53	2.68/2.66/2.63
_				

1.206 Small molecule used for 2-amino-3-(6,7-dioxo-6,7-dihydro-1H-indol-3 -yl)-propionicacid(TRQ)

Figure S193: The molecule used for water complex calculations corresponding to 3-ethyl-6,7-dihydro-1H-indole-6,7-dione, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S635: Statistics of calculated water interaction and dipole moment for 3-ethyl-6, 7-dihydro-1H-i ndole-6, 7-dione.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.88/2.80	0.27/1.04	3.816	7.14/5.84	3.74
Optimal	0.54/1.30	0.14/0.34	3.983	7.14/8.82	0.68

Table S636: The comparison list of optimized atomic charges and their initial guess for 3-ethy l-6,7-dihydro-1H-indole-6,7-dione, referring to the penalties of initial guess

_

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	Penalty		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.270	-0.276	0.000		
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000		
CB	-0.036	-0.055	1.450		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
CG	-0.010	-0.034	25.153		
CD1	-0.049	-0.067	10.117		
HD1	0.104	0.161	0.000		
CD2	-0.028	-0.129	74.811		
NE1	-0.094	-0.240	13.334		
HE1	0.309	0.380	2.500		
CE2	-0.272	-0.379	38.858		
CE3	-0.189	-0.222	73.213		
HE3	0.196	0.150	3.836		
CZ2	0.507	0.737	36.138		
07	-0.422	-0.485	17.934		
CZ3	-0.186	-0.101	24.820		
HZ3	0.182	0.150	2.741		
CH2	0.155	0.430	24.389		
O6	-0.347	-0.470	6.189		

Table S637: Interaction energies and geometries between probe water and selected 3-ethyl-6,7-dihydr o-1H-indole-6,7-dione site calculated using the optimized and initial charges

N	Probe	Angle	${\rm Energy}~(\rm kcal/mol)$	Distance (Å)
1	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA3-CA	0.0	-1.17/-1.55/-1.07	2.79/2.69/2.73
2	HA2-CA	0.0	-1.15/-1.47/-0.82	2.79/2.70/2.77
3	HA-CA	0.0	-2.32/-2.37/-0.88	2.87/2.83/3.91
4	HB1-CB	0.0	-2.01/-2.57/-1.42	2.65/2.62/2.69
5	HB2-CB	0.0	-1.90/-2.44/-1.85	2.67/2.64/2.68
6	HD1-CD1	0.0	-3.14/-3.06/-3.29	2.40/2.31/2.26
7	HD1-CD1	90.0	-3.46/-3.23/-3.47	2.35/2.29/2.25
8	NE1-CD1	0.0	-1.06/-1.85/-2.31	2.67/2.43/2.29
9	NE1-CD1	90.0	-0.68/-1.99/-3.49	2.67/2.32/2.17
10	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	0.0	-8.67/-8.23/-8.85	1.73/1.81/1.79
11	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	45.0	-8.03/-7.88/-8.54	1.74 / 1.81 / 1.79
12	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	90.0	-7.35/-7.52/-8.22	1.75/1.82/1.79
13	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	135.0	-7.93/-7.85/-8.50	1.74 / 1.81 / 1.79
14	$\operatorname{HE} 3$ - $\operatorname{CE} 3$	0.0	-2.83/-2.86/-1.64	2.45/2.52/2.61
15	$\operatorname{HE} 3$ - $\operatorname{CE} 3$	90.0	-3.15/-3.07/-1.78	2.42/2.51/2.60
16	O7-CZ2	0.0	-3.69/-4.03/-4.02	1.93/1.74/1.72
17	O7-CZ2	90.0	-4.83/-5.54/-5.28	1.91/1.71/1.70
18	O7-CZ2	180.0	-5.95/-6.88/-6.38	1.88/1.69/1.69
19	O7-CZ2	270.0	-4.81/-5.52/-5.27	1.91/1.71/1.70
20	HZ3-CZ3	0.0	-1.75/-1.43/-1.95	2.45/2.53/2.51
21	HZ3-CZ3	45.0	-1.67/-1.39/-1.88	2.46/2.53/2.51
22	HZ3-CZ3	90.0	-1.58/-1.34/-1.81	2.47/2.54/2.52
23	HZ3-CZ3	135.0	-1.66/-1.39/-1.88	2.47/2.53/2.51
24	O6-CH2	0.0	-5.37/-6.09/-6.23	1.91/1.72/1.69
25	O6-CH2	90.0	-4.65/-5.43/-5.64	1.94/1.74/1.70
26	O6-CH2	180.0	-4.30/-4.89/-5.18	1.94/1.74/1.71
27	O6-CH2	270.0	-4.67/-5.46/-5.66	1.94/1.73/1.70

1.207 Small molecule used for TRW3-(2-amino-3-hydroxy-propyl)-6-(N'-c yclohexyl-hydrazino)octahydro-indol-7-ol(TRW)

Figure S194: The molecule used for water complex calculations corresponding to 3-ethyl-6-(2-phenylhy drazin-1-yl)-1H-indol-7-ol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S638: Statistics of calculated water interaction and dipole moment for 3-ethyl-6-(2-phenylhydraz in-1-yl)-1H-indol-7-ol.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	1.12/2.55	0.48/2.29	4.082	1.23/2.98	39.42
Optimal	0.52/1.53	0.10/0.23	1.723	1.23/1.60	0.00

Table S639: The comparison list of optimized atomic charges and their initial guess for 3-ethyl-6-(2-phenylhydrazin-1-yl)-1H-indol-7-ol, referring to the penalties of initial guess

A .		Charges	
Atom	Optimal	Initial	Penalty
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.277	0.000
HA	0.090	0.090	0.000
CB	-0.180	-0.187	0.000
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
CG	-0.016	-0.039	0.000
CD1	-0.172	-0.161	0.000
HD1	0.196	0.220	0.000
CD2	0.061	0.109	2.500
NE1	-0.382	-0.501	2.500
HE1	0.366	0.363	0.000
CE2	0.106	0.240	3.577
CE3	-0.329	-0.258	0.000
HE3	0.205	0.201	0.000
CZ2	0.159	0.010	5.568
07	-0.569	-0.530	3.603
HO7	0.417	0.420	0.075
CZ3	-0.292	-0.235	0.000
HZ3	0.181	0.196	0.000
CH2	0.373	0.298	6.452
N6	-0.679	-0.792	6.540
HN6	0.399	0.473	0.000
N1	-0.528	-0.716	0.000
HN1	0.324	0.473	0.000
C1	0.180	0.245	0.000
C2	-0.115	-0.116	0.000
HC2	0.115	0.115	0.000
C3	-0.115	-0.115	0.000
HC3	0.115	0.115	0.000
C4	-0.115	-0.115	0.000
HC4	0.115	0.115	0.000
C5	-0.115	-0.115	0.000
HC5	0.115	0.115	0.000
C6	-0.115	-0.116	0.000
HC6	0.115	0.115	0.000

Table S640: Interaction energies and geometries between probe water and selected 3-ethyl-6-(2-phenyl hydrazin-1-yl)-1H-indol-7-ol site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA3-CA	0.0	-0.57/-0.53/-0.59	2.90/2.79/2.79
2	HA2-CA	0.0	-0.40/-0.33/-0.48	2.88/2.81/2.78
3	HA-CA	0.0	-0.41/-0.34/-1.00	3.10/3.07/3.12
4	HB1-CB	0.0	-0.63/-0.62/-0.98	2.82/2.77/2.76
5	HB2-CB	0.0	-1.05/-0.87/-0.98	2.79/2.78/2.77
6	HD1-CD1	0.0	-2.07/-2.69/-2.97	2.50/2.26/2.24
7	HD1-CD1	90.0	-2.34/-2.80/-3.06	2.44/2.26/2.24
8	NE1-CD1	0.0	-2.00/-2.91/-4.02	2.34/2.21/2.13
9	NE1-CD1	90.0	-2.64/-3.66/-3.96	2.29/2.16/2.12
10	NE1-CD1	180.0	-1.70/-2.83/-3.09	2.34/2.18/2.13
11	NE1-CD1	270.0	-0.96/-1.77/-2.55	2.49/2.28/2.20
12	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	0.0	-6.00/-6.25/-5.03	1.80/1.82/1.85
13	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	45.0	-5.51/-5.92/-4.71	1.81/1.83/1.86
14	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	90.0	-5.16/-5.67/-4.45	1.82/1.84/1.87
15	$\operatorname{H\!E} \operatorname{1-N\!E} \operatorname{1}$	135.0	-5.63/-5.98/-4.75	1.81/1.83/1.86
16	$\operatorname{HE} 3$ - $\operatorname{CE} 3$	0.0	-1.35/-1.51/-2.36	2.63/2.64/2.59
17	$\operatorname{HE} 3$ - $\operatorname{CE} 3$	90.0	-1.54/-1.51/-2.35	2.59/2.64/2.59
18	O7-CZ2	0.0	-6.91/-8.45/-8.31	1.76/1.81/1.82
19	O7-CZ2	90.0	-7.69/-6.70/-6.93	1.75/1.82/1.83
20	O7-CZ2	180.0	-0.56/-0.43/-1.29	2.29/2.07/2.05
21	O7-CZ2	270.0	-7.79/-6.71/-6.80	1.75/1.82/1.83
22	HZ3-CZ3	0.0	-1.78/-1.95/-2.77	2.61/2.61/2.56
23	HZ3-CZ3	90.0	-1.92/-1.91/-2.67	2.54/2.61/2.56
24	N6-CH2	90.0	-0.53/-0.73/-1.14	4.28/4.27/4.06
25	N6-CH2	180.0	-1.17/-1.28/-1.84	4.02/3.95/3.80
26	N6-CH2	270.0	-0.43/-0.42/-0.78	4.23/4.29/4.07
27	HN6-N6	0.0	-4.15/-4.52/-4.78	1.97/1.92/1.90
28	HN6-N6	45.0	-4.54/-4.74/-5.12	1.95/1.91/1.89
29	HN6-N6	90.0	-4.14/-4.52/-4.87	1.97/1.92/1.89
30	HN6-N6	135.0	-3.75/-4.29/-4.52	1.99/1.93/1.91
31	N1-N6	0.0	-5.27/-5.38/-6.85	1.95/2.00/1.95
32	N1-N6	90.0	-4.30/-4.13/-5.33	1.96/2.03/1.97
33	N1-N6	180.0	-3.79/-4.24/-5.99	2.00/2.03/1.96
34	N1-N6	270.0	-5.41/-5.82/-7.87	1.94/1.99/1.93
35	HN1-N1	0.0	-4.68/-4.42/-6.22	1.98/2.00/1.91
36	HN1-N1	45.0	-3.06/-3.67/-5.57	2.07/2.03/1.92
37	HN1-N1	90.0	-3.44/-3.83/-5.99	2.05/2.02/1.91
38	HN1-N1	135.0	-4.94/-4.50/-6.57	1.98/2.00/1.90
39	HC2-C2	0.0	-1.58/-1.49/-1.63	2.61/2.66/2.66
40	HC2-C2	90.0	-2.22/-1.70/-1.97	2.46/2.63/2.63
41	$\rm HC3-C3$	0.0	-1.25/-1.05/-1.03	2.65/2.70/2.71
42	$\rm HC3-C3$	90.0	-1.43/-1.12/-1.11	2.59/2.69/2.69
43	HC4-C4	0.0	-1.08/-1.01/-0.95	2.70/2.71/2.71
44	HC4-C4	90.0	-1.25/-1.07/-1.01	2.63/2.70/2.70
45	$\mathrm{HC5}\text{-}\mathrm{C5}$	0.0	-1.25/-0.98/-0.84	2.63/2.70/2.71
46	$\mathrm{HC5}\text{-}\mathrm{C5}$	90.0	-1.42/-1.04/-0.89	2.59/2.69/2.70
47	HC6-C6	0.0	-0.59/-0.02/0.39	2.76/2.96/5.00
48	HC6-C6	90.0	-1.02/-0.27/0.30	2.71/2.88/5.00

1.208 Small molecule used for (2S,3S,4R)-2-amino-3,4-dihydroxy-3-methylpentanoicacid(TS9)

Figure S195: The molecule used for water complex calculations corresponding to 2-methylbutane-2,3-diol, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S641: Statistics of calculated water interaction and dipole moment for 2-methylbutane-2,3-diol.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.52/1.20	0.04/0.12	1.241	0.27/0.34	41.13
Optimal	0.14/0.30	0.04/0.10	1.048	0.27/0.35	0.00

Table S642: The comparison list of optimized atomic charges and their initial guess for 2-meth ylbutane-2,3-diol, referring to the penalties of initial guess

Table S643: Interaction energies and geometries be-
tween probe water and selected 2-methylbutane
-2,3-diol site calculated using the optimized and
initial charges

Atom	Charges				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.270	-0.273	4.792		
\mathbf{HA}	0.090	0.090	0.000		
CB	0.208	0.222	9.357		
OG3	-0.603	-0.640	6.477		
${ m HG3}$	0.377	0.420	0.075		
CG2	-0.254	-0.273	4.792		
$\mathrm{HG21}$	0.090	0.090	0.000		
$\mathrm{HG22}$	0.090	0.090	0.000		
${ m HG23}$	0.090	0.090	0.000		
CG1	0.154	0.148	5.143		
HG1	0.090	0.090	0.550		
OD2	-0.638	-0.655	1.498		
HD2	0.396	0.419	0.512		
CD1	-0.270	-0.268	3.555		
HD11	0.090	0.090	0.060		
HD12	0.090	0.090	0.060		
HD13	0.090	0.090	0.060		

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
11	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HA3-CA	0.0	-0.55/-0.47/-0.42	2.84/2.76/2.77
2	HA2-CA	0.0	-1.60/-1.65/-1.77	2.68/2.64/2.64
3	HA-CA	0.0	-0.40/-0.10/-0.05	2.70/2.80/2.81
4	OG3-CB	0.0	-5.76/-5.68/-5.84	1.84/1.88/1.87
5	OG3-CB	90.0	-6.10/-5.97/-6.28	1.82/1.87/1.86
6	OG3-CB	180.0	-5.26/-5.50/-5.93	1.86/1.87/1.86
7	OG3-CB	270.0	-5.68/-5.46/-5.72	1.83/1.88/1.87
8	HG3-OG3	0.0	-6.03/-6.16/-7.23	1.87/1.87/1.83
9	HG3-OG3	45.0	-6.21/-6.16/-7.23	1.85/1.86/1.83
10	HG3-OG3	90.0	-6.32/-6.19/-7.26	1.85/1.86/1.83
11	HG3-OG3	135.0	-6.13/-6.19/-7.25	1.87/1.86/1.83
12	HG21-CG2	0.0	-2.50/-2.33/-2.31	2.58/2.60/2.61
13	HG22-CG2	0.0	-0.55/-0.28/-0.12	2.81/2.79/2.83
14	HG23-CG2	0.0	-0.81/-0.70/-0.56	2.83/2.79/2.82
15	HG1-CG1	0.0	-1.28/-1.42/-1.49	2.77/2.70/2.70
16	OD2-CG1	0.0	-5.67/-5.69/-5.80	1.84/1.86/1.86
17	OD2-CG1	90.0	-5.58/-5.50/-5.65	1.83/1.86/1.86
18	OD2-CG1	180.0	-5.27/-5.46/-5.58	1.85/1.86/1.86
19	OD2-CG1	270.0	-5.89/-5.91/-6.02	1.82/1.86/1.85
20	HD2-OD2	0.0	-5.80/-5.83/-6.33	1.91/1.91/1.88
21	HD2-OD2	45.0	-5.97/-5.83/-6.36	1.91/1.91/1.88
22	HD2-OD2	90.0	-5.80/-5.79/-6.29	1.92/1.91/1.89
23	HD2-OD2	135.0	-5.65/-5.79/-6.27	1.92/1.91/1.89
24	HD11-CD1	0.0	-0.77/-0.70/-0.71	2.77/2.72/2.72
25	HD12-CD1	0.0	-1.57/-1.76/-1.75	2.75/2.68/2.68

Figure S196: The molecule used for water complex calculations corresponding to 6-amino-3-methyl-1H-indol-7-olate, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S644: Statistics of calculated water interaction and dipole moment for 6-amino-3-methyl-1H-indo l-7-olate.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.95/1.47	0.37/1.25	3.685	0.79/2.45	29.27
Optimal	0.37/1.13	0.38/1.25	1.700	0.79/1.03	1.28

Table S645: The comparison list of optimized atomic charges and their initial guess for 6-amino-3-methyl-1H-indol-7-olate, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HB3	0.090	0.090	0.000		
CB	-0.270	-0.278	0.000		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
$\mathbf{C}\mathbf{G}$	-0.093	-0.038	0.000		
CD1	-0.144	-0.163	0.000		
HD1	0.189	0.220	0.000		
CD2	0.089	0.107	2.500		
NE1	-0.431	-0.502	2.500		
HE1	0.361	0.363	0.000		
CE2	0.283	0.244	3.630		
CE3	-0.292	-0.254	0.000		
HE3	0.166	0.201	0.000		
CZ2	0.082	0.010	4.614		
OZ2	-0.639	-0.532	4.789		
HZ2	0.526	0.420	0.075		
CZ3	-0.188	-0.229	0.000		
HZ3	0.173	0.196	0.000		
CH2	0.108	0.049	3.250		
N2	-0.869	-0.848	3.474		
H21	0.338	0.382	0.000		
H22	0.341	0.382	0.000		

Table S646: Interaction energies and geometries between probe water and selected 6-amino-3-methyl -1H-indol-7-olate site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
18	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HB3-CB	0.0	-0.44/-0.27/-0.57	2.83/2.80/2.76
2	HB1-CB	0.0	-0.44/-0.26/-0.56	2.83/2.80/2.76
3	HB2-CB	0.0	-0.98/-0.62/-0.83	2.79/2.80/2.77
4	HD1-CD1	0.0	-1.91/-2.41/-2.75	2.52/2.28/2.25
5	HD1-CD1	90.0	-2.19/-2.52/-2.86	2.45/2.27/2.24
6	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	0.0	-5.75/-5.81/-4.69	1.81/1.83/1.85
7	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	45.0	-5.35/-5.50/-4.42	1.82/1.84/1.86
8	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	90.0	-5.00/-5.23/-4.18	1.83/1.85/1.87
9	$\operatorname{HE}\operatorname{1-NE}\operatorname{1}$	135.0	-5.37/-5.51/-4.43	1.82/1.84/1.86
10	$\operatorname{HE}3\text{-}\operatorname{CE}3$	0.0	-0.93/-0.98/-1.82	2.72/2.70/2.62
11	$\operatorname{HE} 3$ - $\operatorname{CE} 3$	90.0	-1.11/-1.06/-1.92	2.65/2.69/2.61
12	OZ2-CZ2	0.0	-6.95/-8.09/-7.59	1.77/1.81/1.84
13	OZ2-CZ2	90.0	-7.82/-6.88/-6.65	1.75/1.81/1.84
14	OZ2-CZ2	180.0	-1.64/-1.90/-2.32	2.10/1.96/1.98
15	OZ2-CZ2	270.0	-7.85/-6.92/-6.68	1.75/1.81/1.84
16	HZ2-OZ2	0.0	-0.17/-0.26/-0.31	6.25/5.00/5.00
17	HZ2-OZ2	45.0	-0.20/-0.30/-0.36	5.93/4.94/5.00
18	HZ2-OZ2	90.0	-0.24/-0.34/-0.43	5.48/4.77/4.80
19	HZ2-OZ2	135.0	-0.20/-0.30/-0.37	5.91/4.94/5.00
20	HZ3-CZ3	0.0	-1.21/-1.61/-2.00	2.77/2.66/2.64
21	HZ3-CZ3	90.0	-1.48/-1.73/-2.20	2.67/2.64/2.62
22	N2-CH2	180.0	-0.70/-0.61/-1.21	4.33/4.61/4.20
23	H21-N2	0.0	-4.00/-4.06/-5.37	2.00/1.93/1.87
24	H21-N2	45.0	-3.89/-4.03/-5.36	2.01/1.93/1.87
25	H21-N2	90.0	-3.79/-3.92/-5.22	2.01/1.93/1.88
26	H21-N2	135.0	-3.90/-3.94/-5.22	2.00/1.93/1.88
27	H22-N2	0.0	-4.01/-4.13/-5.36	2.00/1.92/1.87
28	H22-N2	45.0	-3.90/-4.01/-5.21	2.00/1.93/1.88
29	H22-N2	90.0	-3.79/-3.99/-5.21	2.01/1.93/1.88
30	H22-N2	135.0	-3.90/-4.11/-5.36	2.01/1.93/1.87

1.210 Small molecule used for 3-amino-L-tyrosine(TY2)

Figure S197: The molecule used for water complex calculations corresponding to 2-amino-4-methylbenz en-1-olate, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S647: Statistics of calculated water interaction and dipole moment for 2-amino-4-methylbenzen-1 -olate.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.93/1.58	0.36/1.13	1.916	3.09/3.71	2.36
Optimal	0.25/0.75	0.39/1.22	1.966	3.09/3.65	3.21

Table S648: The comparison list of optimized atomic charges and their initial guess for 2-amin o-4-methylbenzen-1-olate, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$					
Atom	Optimal	Initial	Penalty			
HB3	0.090	0.090	0.000			
CB	-0.270	-0.267	0.000			
HB1	0.090	0.090	0.000			
HB2	0.090	0.090	0.000			
CG	-0.000	0.004	0.000			
CD2	-0.115	-0.114	0.000			
HD2	0.115	0.115	0.000			
CD1	-0.078	-0.109	0.000			
HD1	0.115	0.115	0.000			
CE2	-0.115	-0.111	0.000			
HE2	0.115	0.115	0.000			
CE1	0.110	0.065	3.195			
NE1	-0.719	-0.848	3.418			
HE11	0.303	0.382	0.000			
HE12	0.303	0.382	0.000			
CZ	0.085	0.113	2.846			
ΟZ	-0.545	-0.532	3.195			
HZ	0.426	0.420	0.000			

Table S649: Interaction energies and geometries between probe water and selected 2-amino-4-methyl benzen-1-olate site calculated using the optimized and initial charges

N	Probe	Angle	Energy $(kcal/mol)$	Distance (Å)
14	site	(*)	${ m QM}/{ m Optimal}/{ m Initial}$	${ m QM}/{ m Optimal}/{ m Initial}$
1	HB3-CB	0.0	-0.71/-0.75/-0.66	2.81/2.74/2.75
2	HB1-CB	0.0	-1.09/-0.99/-0.94	2.72/2.71/2.72
3	HB2-CB	0.0	-1.22/-1.23/-1.07	2.74/2.72/2.73
4	HD2-CD2	0.0	-1.22/-1.07/-1.03	2.67/2.70/2.70
5	HD2-CD2	90.0	-1.40/-1.12/-1.08	2.60/2.69/2.69
6	HD1-CD1	0.0	-1.68/-1.92/-1.71	2.69/2.66/2.70
7	HD1-CD1	90.0	-2.02/-2.07/-1.90	2.59/2.64/2.67
8	HE2-CE2	0.0	-0.78/-0.04/-0.07	2.59/2.76/2.75
9	HE11-NE1	0.0	-4.35/-4.45/-5.86	1.99/1.93/1.86
10	HE11-NE1	45.0	-4.26/-4.36/-5.77	1.99/1.93/1.87
11	HE11-NE1	90.0	-4.20/-4.39/-5.77	1.99/1.93/1.87
12	HE11-NE1	135.0	-4.28/-4.48/-5.86	1.99/1.93/1.87
13	HE12-NE1	0.0	-4.35/-4.45/-5.87	1.99/1.93/1.86
14	HE12-NE1	45.0	-4.28/-4.48/-5.86	2.00/1.93/1.87
15	HE12-NE1	90.0	-4.19/-4.39/-5.77	2.00/1.93/1.87
16	HE12-NE1	135.0	-4.26/-4.36/-5.77	1.99/1.93/1.87
17	OZ-CZ	0.0	-5.25/-5.15/-5.03	1.88/1.90/1.91
18	OZ-CZ	90.0	-5.61/-5.41/-5.27	1.85/1.89/1.89
19	OZ-CZ	180.0	-4.70/-5.23/-5.06	1.91/1.89/1.90
20	OZ-CZ	270.0	-5.61/-5.42/-5.28	1.85/1.89/1.89
21	HZ-OZ	0.0	-0.24/-0.42/-0.52	6.00/4.77/4.87
22	HZ-OZ	45.0	-0.28/-0.48/-0.59	5.63/4.63/4.71
23	HZ-OZ	90.0	-0.34/-0.54/-0.67	4.70/4.50/4.56
24	HZ-OZ	135.0	-0.28/-0.48/-0.59	5.62/4.63/4.71

1.211 Small molecule used for 3-amino-6-hydroxy-tyrosine(TYQ)

Figure S198: The molecule used for water complex calculations corresponding to 4-amino-6-methylbe nzene-1,3-bis(olate), with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S650: Statistics of calculated water interaction and dipole moment for 4-amino-6-methylbenzene-1,3-bis(olate).

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.95/1.82	0.33/1.19	1.894	1.92/2.58	10.40
Optimal	0.33/0.67	0.33/1.19	1.762	1.92/2.35	0.71

Table S651: The comparison list of optimized atomic charges and their initial guess for 4-amin o-6-methylbenzene-1,3-bis(olate), referring to the penalties of initial guess

Atom	Charges				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HB3	0.090	0.090	0.000		
CB	-0.270	-0.266	0.474		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
CG	0.030	0.001	0.570		
CD1	0.036	0.109	0.474		
OD1	-0.521	-0.529	0.474		
HD1	0.427	0.420	0.000		
CD2	-0.052	-0.107	0.000		
HD2	0.115	0.115	0.000		
CE1	-0.088	-0.112	0.000		
HE1	0.115	0.115	0.000		
CE2	0.091	0.065	3.195		
NE2	-0.732	-0.848	3.418		
HE21	0.302	0.382	0.000		
HE22	0.302	0.382	0.000		
CZ	0.100	0.115	2.846		
OH	-0.560	-0.532	3.195		
HH	0.435	0.420	0.000		

Table S652: Interaction energies and geometries between probe water and selected 4-amino-6-methyl benzene-1,3-bis(olate) site calculated using the optimized and initial charges

Ν	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	${ m QM}/{ m Optimal}/{ m Initial}$	QM/Optimal/Initia
1	HE21-NE2	0.0	-4.28/-4.45/-6.05	2.00/1.93/1.86
2	HE21-NE2	45.0	-4.19/-4.36/-5.96	2.00/1.93/1.86
3	HE21-NE2	90.0	-4.12/-4.38/-5.94	2.00/1.93/1.87
4	HE21-NE2	135.0	-4.21/-4.47/-6.02	2.00/1.93/1.86
5	HE22-NE2	0.0	-4.28/-4.45/-6.05	2.00/1.93/1.86
6	HE22-NE2	45.0	-4.21/-4.47/-6.02	2.00/1.93/1.86
7	HE22-NE2	90.0	-4.12/-4.38/-5.94	2.00/1.93/1.87
8	HE22-NE2	135.0	-4.19/-4.36/-5.96	2.00/1.93/1.86
9	HH-OH	0.0	-0.25/-0.45/-0.63	5.95/4.76/4.76
10	HH-OH	45.0	-0.29/-0.51/-0.71	5.58/4.62/4.61
11	HH-OH	90.0	-0.36/-0.57/-0.79	4.60/4.50/4.49
12	HH-OH	135.0	-0.29/-0.51/-0.71	5.58/4.62/4.61
13	HD1-OD1	0.0	-7.45/-7.61/-7.46	1.80/1.84/1.84
14	HD1-OD1	45.0	-7.91/-7.71/-7.56	1.78/1.83/1.84
15	HD1-OD1	90.0	-8.27/-7.79/-7.64	1.78/1.83/1.83
16	HD1-OD1	135.0	-7.91/-7.71/-7.56	1.78/1.83/1.84
17	OH-CZ	0.0	-5.38/-5.44/-5.18	1.88/1.89/1.90
18	OH-CZ	90.0	-5.61/-5.42/-5.17	1.84/1.88/1.89
19	OH-CZ	180.0	-4.23/-4.69/-4.47	1.91/1.89/1.90
20	OH-CZ	270.0	-5.61/-5.42/-5.17	1.84/1.88/1.89
21	OD1-CD1	0.0	-2.46/-2.84/-2.79	2.36/2.44/2.44
22	OD1-CD1	90.0	-2.28/-2.82/-2.82	2.53/2.43/2.43
23	OD1-CD1	180.0	-2.00/-2.61/-2.68	2.64/2.43/2.43
24	OD1-CD1	270.0	-2.28/-2.82/-2.82	2.53/2.43/2.43
25	HE1-CE1	0.0	-1.65/-1.24/-1.23	2.56/2.67/2.67
26	HE1-CE1	45.0	-1.80/-1.27/-1.26	2.51/2.66/2.66
27	HE1-CE1	90.0	-1.97/-1.31/-1.30	2.46/2.65/2.65
28	HE1-CE1	135.0	-1.80/-1.27/-1.26	2.51/2.66/2.66
29	HD2-CD2	0.0	-1.76/-2.09/-1.73	2.66/2.64/2.69
30	HD2-CD2	45.0	-1.94/-2.16/-1.82	2.60/2.63/2.67
31	HD2-CD2	90.0	-2.13/-2.22/-1.91	2.55/2.63/2.66
32	HD2-CD2	135.0	-1.94/-2.16/-1.82	2.60/2.63/2.67
33	HB1-CB	0.0	-1.12/-1.17/-0.87	2.79/2.73/2.77

1.212 Small molecule used for O-sulfo-L-tyrosine(TYS)

Figure S199: The molecule used for water complex calculations corresponding to (4-ethylphenyl)oxida nesulfonicacid, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S653: Statistics of calculated water interaction and dipole moment for (4-ethylphenyl) oxidanesu lfonicacid.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	$\rm QM/MM~(Debye)$	difference (°)
Initial	3.36/6.62	0.21/0.33	5.419	12.20/15.21	4.23
Optimal	0.28/0.63	0.14/0.19	3.826	12.20/10.34	1.25

Table S654: The comparison list of optimized atomic charges and their initial guess for (4-ethylp henyl)oxidanesulfonicacid, referring to the penalties of initial guess

Atom	$\operatorname{Charges}$				
Atom	Optimal	Initial	$\mathbf{Penalty}$		
HA3	0.090	0.090	0.000		
HA2	0.090	0.090	0.000		
\mathbf{CA}	-0.270	-0.270	0.000		
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000		
CB	-0.180	-0.184	0.000		
HB1	0.090	0.090	0.000		
HB2	0.090	0.090	0.000		
CG	-0.000	-0.004	0.000		
CD1	-0.224	-0.108	0.000		
HD1	0.115	0.115	0.000		
CD2	-0.224	-0.108	0.000		
HD2	0.115	0.115	0.000		
CE1	-0.158	-0.111	2.483		
HE1	0.115	0.115	0.000		
CE2	-0.158	-0.111	2.483		
HE2	0.115	0.115	0.000		
CZ	0.309	0.323	39.769		
OH	-0.400	-0.721	38.172		
\mathbf{S}	0.970	1.334	30.940		
O1	-0.525	-0.650	2.500		
O2	-0.525	-0.650	2.500		
O3	-0.525	-0.650	2.500		

Table S655: Interaction energies and geometries between probe water and selected (4-ethylphenyl)o xidanesulfonicacid site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	OH-CZ	0.0	-10.02/-10.27/-16.64	1.89/1.72/1.60
2	OH-CZ	90.0	-7.62/-7.78/-13.00	1.96/1.77/1.63
3	OH-CZ	180.0	-6.55/-6.44/-10.70	1.98/1.79/1.65
4	OH-CZ	270.0	-7.62/-7.77/-13.00	1.96/1.77/1.63
5	O1-S	0.0	-9.15/-9.77/-11.26	1.86/1.74/1.70
6	O1-S	90.0	-9.44/-9.37/-11.93	1.85/1.74/1.69
7	O1-S	180.0	-9.56/-9.49/-11.94	1.85/1.74/1.70
8	O1-S	270.0	-9.79/-10.12/-11.64	1.85/1.74/1.70
9	O2-S	0.0	-9.14/-9.77/-11.26	1.86/1.74/1.70
10	O2-S	90.0	-9.78/-10.12/-11.64	1.85/1.74/1.70
11	O2-S	180.0	-9.56/-9.49/-11.94	1.85/1.74/1.70
12	O2-S	270.0	-9.44/-9.37/-11.93	1.85/1.74/1.69
13	O3-S	0.0	-9.57/-9.79/-12.25	1.86/1.74/1.69
14	O3-S	90.0	-9.50/-9.62/-11.80	1.86/1.74/1.70
15	O3-S	180.0	-9.40/-9.45/-11.41	1.86/1.74/1.70
16	O3-S	270.0	-9.50/-9.62/-11.80	1.86/1.74/1.70

1.213 Small molecule used for (4-thiazolyl)-alanine(TZA4)

Figure S200: The molecule used for water complex calculations corresponding to 4-methyl-1,3-thia zole, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S656: Statistics of calculated water interaction and dipole moment for 4-methyl-1,3-thiazole.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.46/0.81	0.17/0.40	2.085	1.25/1.54	16.99
Optimal	0.27/0.60	0.15/0.36	1.978	1.25/1.63	0.00

Table S657: The comparison list of optimized atomic charges and their initial guess for 4-meth yl-1,3-thiazole, referring to the penalties of initial guess

Table S658: Interaction energies and geometries between probe water and selected 4-methyl-1,3-thia zole site calculated using the optimized and initial charges

Atom	Charges				
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$		
HB3	0.090	0.090	0.450		
CB	-0.270	-0.246	6.938		
HB1	0.090	0.090	0.450		
HB2	0.090	0.090	0.450		
CG	0.423	0.338	7.285		
CD1	-0.280	-0.314	2.500		
HD1	0.163	0.177	0.000		
ND2	-0.637	-0.603	5.563		
SE1	-0.023	0.012	2.500		
CE2	0.227	0.226	0.424		
HE2	0.127	0.140	0.000		

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	ND2-CG	0.0	-5.83/-5.79/-5.48	1.97 / 1.94 / 1.95
2	ND2-CG	90.0	-6.21/-6.03/-5.88	1.94/1.94/1.94
3	ND2-CG	180.0	-5.75/-5.82/-5.80	1.97/1.94/1.94
4	ND2-CG	270.0	-6.21/-6.03/-5.88	1.94/1.94/1.94
5	SE1-CD1	0.0	-2.55/-2.82/-3.23	4.44/4.26/4.24
6	SE1-CD1	45.0	-1.59/-2.01/-2.36	3.92/3.73/3.71
7	SE1-CD1	90.0	-0.18/-0.78/-0.99	3.99/3.64/3.59
8	SE1-CD1	135.0	-0.09/-0.46/-0.66	4.02/3.71/3.65
9	$\operatorname{HE}2\text{-}\operatorname{CE}2$	0.0	-2.52/-2.54/-2.97	2.37/2.25/2.23
10	$\operatorname{HE}2\text{-}\operatorname{CE}2$	90.0	-2.53/-2.48/-2.92	2.36/2.26/2.24
11	HD1-CD1	0.0	-2.20/-2.36/-2.23	2.46/2.30/2.30
12	HD1-CD1	90.0	-2.44/-2.43/-2.31	2.40/2.29/2.29
13	HB1-CB	0.0	-1.41/-1.51/-1.33	2.70/2.67/2.69
14	HB2-CB	0.0	-0.63/-0.32/-0.22	2.74/2.75/2.76
15	HB3-CB	0.0	-0.76/-0.41/-0.30	2.69/2.72/2.74
1.214 Small molecule used for S-cyano-L-cysteine(XCN)

Figure S201: The molecule used for water complex calculations corresponding to (ethylsulfanyl)carbo nitrile, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S659: Statistics of calculated water interaction and dipole moment for (ethylsulfan	yl)carbor	nitrile.
---	-----------	----------

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	0.92/1.33	0.40/0.77	5.192	4.60/2.37	9.16
Optimal	0.34/0.64	0.27/0.58	3.019	4.60/5.71	0.52

Table S660: The comparison list of optimized atomic charges and their initial guess for (ethyls ulfanyl)carbonitrile, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	$\operatorname{Initial}$	$\mathbf{Penalty}$
HA3	0.090	0.090	0.000
HA2	0.090	0.090	0.000
\mathbf{CA}	-0.270	-0.271	15.147
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
CB	0.095	-0.065	4.723
HB1	0.090	0.090	2.350
HB2	0.090	0.090	2.350
\mathbf{SG}	-0.002	-0.237	305.871
\mathbf{CS}	0.123	0.583	305.774
NC	-0.396	-0.460	40.429

Table S661: Interaction energies and geometries between probe water and selected (ethylsulfanyl)car bonitrile site calculated using the optimized and initial charges

Ν	Probe	Angle	Energy $(kcal/mol)$	Distance (Å)
11	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HA3-CA	0.0	-2.00/-2.08/-1.15	2.61/2.64/2.71
2	$\mathrm{HA2}\text{-}\mathrm{CA}$	0.0	-1.93/-2.00/-0.84	2.58/2.63/2.73
3	HA-CA	0.0	-1.93/-2.00/-0.84	2.58/2.63/2.73
4	${ m HB1-CB}$	0.0	-2.67/-2.87/-2.04	2.40/2.54/2.62
5	${ m HB2-CB}$	0.0	-2.67/-2.87/-2.04	2.40/2.54/2.62
6	SG-CB	0.0	-0.44/-0.88/-1.48	3.18/2.60/2.43
7	SG-CB	90.0	-0.18/-0.20/-1.51	3.18/2.71/2.42
8	SG-CB	270.0	-0.18/-0.20/-1.51	3.18/2.71/2.42
9	NC-CS	0.0	-4.62/-5.25/-3.98	2.05/1.94/1.96
10	NC-CS	90.0	-4.51/-5.01/-3.86	2.05/1.94/1.96
11	NC-CS	180.0	-4.32/-4.74/-3.72	2.06/1.94/1.97
12	NC-CS	270.0	-4.51/-5.01/-3.86	2.05/1.94/1.96

1.215 Small molecule A of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzyli dene)-5-0x0-4,5-dihydro-1h-imidazol-1-yl]aceticacid(XYG)

Figure S202: The molecule used for water complex calculations corresponding to N-(propan-2-ylidene)a cetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S662: Statistics of calculated water interaction and dipole moment for N-(propan-2-ylidene)aceta mide.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	3.41/7.36	0.12/0.26	9.096	4.63/6.88	17.09
Optimal	0.43/0.73	0.08/0.13	2.495	4.63/5.33	4.69

Table S663: The comparison list of optimized atomic charges and their initial guess for N-(prop an-2-ylidene)acetamide, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
CL	-0.270	-0.270	0.000
HL1	0.090	0.090	0.000
HL2	0.090	0.090	0.000
HL3	0.090	0.090	0.000
CLP	0.510	0.510	0.000
OL	-0.510	-0.510	0.000
Ν	-0.410	-0.844	113.808
CB	0.166	-0.261	53.301
CG	-0.148	-0.040	36.206
$\mathrm{HG1}$	0.090	0.090	0.250
$\mathrm{HG2}$	0.090	0.090	0.250
${ m HG3}$	0.090	0.090	0.250
CA	-0.148	-0.040	36.206
HA1	0.090	0.090	0.250
HA2	0.090	0.090	0.250
HA3	0.090	0.090	0.250

Table S664: Interaction energies and geometries between probe water and selected N-(propan-2-ylide ne)acetamide site calculated using the optimized and initial charges

_	N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
		site	(°)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
	1	HG1-CG	0.0	-1.84/-1.60/-2.23	2.51/2.61/2.55
1	2	HG2-CG	0.0	-0.66/-0.55/-0.14	2.49/2.61/2.57
1	3	${ m HG3-CG}$	0.0	-1.81/-2.15/-2.97	2.66/2.62/2.55
4	4	HA1-CA	0.0	-2.42/-2.18/-2.80	2.49/2.60/2.54
	5	HA2-CA	0.0	-2.47/-2.48/-3.52	2.53/2.59/2.53
	6	${ m HA3-CA}$	0.0	-1.75/-2.07/-1.91	2.71/2.66/2.68
	7	HL1-CL	0.0	-1.27/-0.69/-1.35	2.61/2.71/2.61
i	8	HL2-CL	0.0	-0.80/-0.95/-0.30	2.79/2.73/2.74
1	9	HL3-CL	0.0	-0.74/-0.16/-0.82	2.63/2.73/2.61
1	10	OL-CLP	0.0	-6.39/-7.08/-6.92	1.84/1.76/1.77
1	11	OL-CLP	90.0	-5.91/-6.59/-6.51	1.85/1.76/1.77
1	12	OL-CLP	180.0	-6.06/-6.64/-6.97	1.84/1.76/1.76
1	13	OL-CLP	270.0	-6.51/-7.24/-7.59	1.84/1.75/1.76
1	14	N-CLP	0.0	-2.98/-2.93/-10.35	2.10/2.06/1.84
1	15	N-CLP	90.0	-3.47/-3.01/-9.79	2.05/2.06/1.85
1	16	N-CLP	180.0	-4.10/-4.16/-10.84	2.06/2.04/1.85
_1	17	N-CLP	270.0	-4.41/-4.22/-11.64	2.02/2.03/1.83

1.216 Small molecule B of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzyli dene)-5-0x0-4,5-dihydro-1h-imidazol-1-yl]aceticacid(XYG)

Figure S203: The molecule used for water complex calculations corresponding to (4Z)-4-ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S665: Statistics of calculated water interaction and dipole moment for (4Z)-4-ethylidene-1,2-dime thyl-4,5-dihydro-1H-imidazol-5-one.

	RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
	$\fbox{Energy (kcal/mol)}$	Distance (Å)	${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.92/1.64	0.10/0.25	6.526	3.17/0.45	27.81
Optimal	0.49/1.31	0.09/0.22	3.053	3.17/3.55	14.34

Table S666: The comparison list of optimized atomic charges and their initial guess for (4Z)-4ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	Penalty
CA1	-0.070	-0.115	13.925
\mathbf{HA}	0.090	0.090	0.000
HA2	0.090	0.090	0.000
HA3	0.090	0.090	0.000
C1	0.233	0.074	23.781
N2	-0.679	-0.703	41.871
N3	-0.080	-0.079	15.706
C2	0.407	0.509	24.002
O2	-0.489	-0.482	6.710
CA2	0.288	0.516	47.153
CB2	-0.105	-0.135	25.469
HB2	0.150	0.150	3.270
CG2	-0.270	-0.274	15.277
$\mathrm{HG21}$	0.090	0.090	1.175
$\mathrm{HG}22$	0.090	0.090	1.175
$\mathrm{HG23}$	0.090	0.090	1.175
CA3	-0.195	-0.271	3.821
HA31	0.090	0.090	0.000
HA32	0.090	0.090	0.000
HA33	0.090	0.090	0.000

Table S667: Interaction energies and geometries between probe water and selected (4Z)-4-ethylidene -1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
IN	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HA-CA1	0.0	-2.17/-2.61/-1.51	2.59/2.58/2.65
2	HA2-CA1	0.0	-0.97/-0.86/0.05	2.58/2.64/2.77
3	HA3-CA1	0.0	-2.55/-2.73/-1.57	2.52/2.57/2.64
4	N2-C1	0.0	-4.99/-6.30/-5.60	2.09/2.01/2.02
5	N2-C1	90.0	-7.07/-6.37/-6.45	1.90/1.99/1.99
6	N2-C1	180.0	-5.35/-5.42/-6.38	1.95/2.01/1.99
7	N2-C1	270.0	-7.07/-6.37/-6.45	1.90/1.99/1.99
8	N3-C1	0.0	-0.26/-0.82/-0.78	2.74/2.52/2.49
9	O2-C2	0.0	-5.51/-5.57/-5.00	1.85/1.78/1.80
10	O2-C2	90.0	-5.87/-5.71/-4.73	1.84/1.78/1.80
11	O2-C2	180.0	-5.92/-5.61/-4.27	1.84/1.78/1.81
12	O2-C2	270.0	-5.87/-5.71/-4.73	1.84/1.78/1.80
13	HB2-CB2	0.0	-1.40/-1.60/-2.82	2.32/2.47/2.44
14	HG21-CG2	0.0	-1.01/-0.46/-0.86	2.72/2.77/2.74
15	HG23-CG2	0.0	-1.01/-0.46/-0.86	2.72/2.77/2.74
16	HA32-CA3	0.0	-2.16/-2.10/-1.23	2.59/2.63/2.70
17	HA 33-CA 3	0.0	-2.16/-2.10/-1.23	2.59/2.63/2.70

1.217 Small molecule C of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzyli dene)-5-0x0-4,5-dihydro-1h-imidazol-1-yl]aceticacid(XYG)

Table S668: The molecule used for water complex calculations corresponding to N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

		RMS/Max Deviation from QM		Electrostatic potential	Dipole moment	Dipole angle
		${\rm Energy}~({\rm kcal/mol})$	Distance $(Å)$	${ m RMS}~({ m kcal}/{ m mol}/{ m \AA})$	$\rm QM/MM~(Debye)$	difference (°)
Geometry 1	Initial	$0.86 \ / \ 2.05$	$0.07 \ / \ 0.17$	6.601	1.19 / 4.07	1.19
Geometry 2	Initial	$1.02\ /\ 2.07$	$0.09 \ / \ 0.23$	6.126	$6.37 \ / \ 4.43$	6.37
Sum of geometries	Initial	$0.95\ /\ 2.07$	$0.08\ /\ 0.23$	12.727	-	-
Geometry 1	Optimal	0.36 / 0.81	$0.07 \ / \ 0.16$	2.460	1.19 / 1.37	1.19
Geometry 2	Optimal	$0.51\ /\ 0.91$	$0.08 \ / \ 0.19$	2.701	$6.37 \ / \ 7.25$	6.37
Sum of geomeries	Optimal	$0.45 \ / \ 0.91$	$0.08 \ / \ 0.19$	5.161	-	-

Table S669: Statistics of calculated water interaction and dipole moment for N-methyl-2-(2-methyl-4 -methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide.

Table S670: The comparison list of optimized atomic charges and their initial guess for N-methyl -2-(2-methyl-4-methylidene-5-oxo-4,5-dihydro-1H -imidazol-1-yl)acetamide, referring to the penalties of initial guess

=

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HA1	0.090	0.090	0.000
HA2	0.090	0.090	0.000
CA	-0.070	-0.115	13.925
$\mathbf{H}\mathbf{A}$	0.090	0.090	0.000
C1	0.233	0.164	24.002
N2	-0.679	-0.703	41.104
N3	-0.031	-0.499	22.994
C2	0.407	0.613	23.378
O2	-0.489	-0.482	6.517
CA2	0.466	0.512	42.773
CB2	-0.593	-0.444	13.655
HB21	0.230	0.230	0.950
HB22	0.230	0.230	0.950
CA3	-0.154	0.043	13.461
HA31	0.090	0.090	0.177
HA32	0.090	0.090	0.177
С	0.510	0.499	10.097
Ο	-0.510	-0.517	3.479
\mathbf{NR}	-0.470	-0.442	6.773
$_{\mathrm{HR}}$	0.310	0.299	0.000
\mathbf{CR}	-0.110	-0.108	0.239
HR1	0.090	0.090	0.000
$\mathrm{HR2}$	0.090	0.090	0.000
HR3	0.090	0.090	0.000

Table S671: Interaction energies and geometries between probe water and selected N-methyl-2-(2-me thyl-4-methylidene-5-oxo-4,5-dihydro-1H-imidazo l-1-yl)acetamide site calculated using the optimized and initial charges

N	\mathbf{Probe}	Angle	Energy (kcal/mol)	Distance (Å)
	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
	Geometry	1		
1	O-C	0.0	-5.45/-5.47/-6.22	1.84/1.77/1.76
2	O-C	90.0	-6.01/-6.48/-6.53	1.83/1.75/1.76
3	O-C	180.0	-5.96/-6.64/-6.64	1.83/1.75/1.75
4	O-C	270.0	-5.67/-5.94/-6.62	1.84/1.76/1.75
5	NR-C	0.0	-1.32/-1.50/-1.08	2.24/2.20/2.22
6	HR2-CR	0.0	-1.10/-1.26/-1.09	2.71/2.66/2.67
7	HR3-CR	0.0	-1.39/-1.22/-1.32	2.66/2.67/2.67
8	N2-C1	0.0	-5.74/-6.45/-6.04	1.95/1.92/1.92
9	N2-C1	90.0	-6.51/-6.37/-7.24	1.90/1.92/1.90
10	N2-C1	180.0	-5.60/-5.66/-7.65	1.96/1.93/1.90
11	N2-C1	270.0	-6.64/-6.59/-7.43	1.90/1.91/1.89
12	O2-C2	0.0	-3.88/-3.93/-3.54	1.88/1.80/1.81
13	O2-C2	90.0	-4.94/-5.15/-4.46	1.84/1.77/1.79
14	O2-C2	180.0	-4.95/-5.20/-4.05	1.84/1.77/1.79
15	O2-C2	270.0	-3.93/-4.12/-3.39	1.87/1.79/1.81
16	HB21-CB2	0.0	-1.84/-1.64/-3.47	2.32/2.48/2.42
17	HB22-CB2	0.0	-1.82/-1.01/-2.42	2.42/2.54/2.46
18	HA31-CA3	0.0	-2.08/-2.47/-1.68	2.70/2.69/2.70
19	HA-CA	0.0	-2.47/-2.76/-1.19	2.49/2.56/2.66
	Geometry	2		
20	O-C	0.0	-6.06/-6.90/-7.24	1.86/1.76/1.75
21	O-C	90.0	-5.25/-6.15/-7.32	1.87/1.77/1.75
22	O-C	180.0	-4.71/-5.63/-6.52	1.88/1.77/1.76
23	O-C	270.0	-5.56/-6.46/-6.85	1.86/1.76/1.76
24	HR-NR	0.0	-7.09/-7.67/-7.53	1.93/1.90/1.90
25	HR-NR	45.0	-7.71/-7.90/-7.71	1.91/1.89/1.89
26	HR-NR	90.0	-7.79/-7.84/-7.79	1.90/1.89/1.89
27	HR-NR	135.0	-7.18/-7.62/-7.61	1.92/1.90/1.89
28	HR1-CR	0.0	-0.71/-0.04/0.30	2.50/2.69/2.67
29	HR2-CR	0.0	-1.54/-1.44/-1.38	2.68/2.66/2.66
30	HR3-CR	0.0	-1.84/-1.82/-1.70	2.68/2.67/2.66
31	N2-C1	0.0	-6.46/-6.98/-6.58	1.93/1.91/1.91
32	N2-C1	90.0	-6.88/-6.47/-7.35	1.89/1.91/1.89
33	N2-C1	180.0	-5.73/-5.60/-7.60	1.95/1.93/1.90
34	N2-C1	270.0	-7.31/-7.09/-7.94	1.88/1.91/1.89
35	N3-C1	0.0	-0.22/0.03/-2.15	2.60/2.67/2.17
36	O2-C2	0.0	-4.96/-5.34/-4.95	1.88/1.79/1.80
37	O2-C2	90.0	-5.32/-5.37/-4.66	1.87/1.78/1.80
38	O2-C2	180.0	-5.74/-5.89/-4.71	1.87/1.78/1.81
39	O2-C2	270.0	-5.94/-6.25/-5.51	1.85/1.77/1.79
40	HB21-CB2	0.0	-1.43/-1.20/-3.03	2.33/2.48/2.41
41	HB22-CB2	0.0	-1.29/-0.66/-2.05	2.47/2.56/2.47
42	HA31-CA3	0.0	-3.71/-4.08/-3.49	2.50/2.57/2.57
43	HA-CA	0.0	-2.67/-3.45/-1.93	2.59/2.58/2.69

1.218 Small molecule D of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzyli dene)-5-0x0-4,5-dihydro-1h-imidazol-1-yl]aceticacid(XYG)

Figure S204: The molecule used for water complex calculations corresponding to N-[(1E)-1-[(4Z)-4-et hylidene-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethylidene]acetamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S672: Statistics of calculated water interaction and dipole moment for N-[(1E)-1-[(4Z)-4-ethylide ne-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethylidene]acetamide.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	Energy (kcal/mol) Distance (Å)		${ m RMS}~({ m kcal/mol/\AA})$	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.75/1.32	0.29/1.19	7.323	3.33/3.51	2.28
Optimal	0.66/1.40	0.23/0.78	2.685	3.33/3.51	4.68

Table S673: The comparison list of optimized atomic charges and their initial guess for N-[(1E)-1-[(4Z)-4-ethylidene-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethylidene]acetamide, referring to the penalties of initial guess

Atom	Charges					
Atom	Optimal	Initial	Penalty			
CL	-0.270	-0.268	11.341			
HL1	0.090	0.090	0.800			
HL2	0.090	0.090	0.800			
HL3	0.090	0.090	0.800			
CLP	0.510	1.166	104.329			
OL	-0.510	-0.523	7.580			
N1	-0.410	-0.867	109.915			
CA1	0.442	-0.250	80.747			
CB1	-0.148	-0.039	37.119			
HB11	0.090	0.090	1.152			
HB12	0.090	0.090	1.152			
HB13	0.090	0.090	1.152			
C1	0.208	0.430	75.868			
N2	-0.541	-0.578	44.740			
N3	-0.080	-0.049	29.029			
C2	0.407	0.514	21.806			
O2	-0.489	-0.482	6.710			
CA2	0.221	0.396	48.462			
CB2	-0.105	-0.135	25.469			
HB2	0.150	0.150	3.270			
CG2	-0.270	-0.274	15.277			
H01	0.090	0.090	1.175			
H02	0.090	0.090	1.175			
H03	0.090	0.090	1.175			
CA3	-0.195	-0.271	3.821			
H1	0.090	0.090	0.000			
H2	0.090	0.090	0.000			
H3	0.090	0.090	0.000			

Table S674: Interaction energies and geometries between probe water and selected N-[(1E)-1-[(4Z)-4ethylidene-1-methyl-5-oxo-4,5-dihydro-1H-imida zol-2-yl]ethylidene]acetamide site calculated using the optimized and initial charges

	Probe	Angle	Energy (kcal/mol)	Distance (Å)
Ν	site	(°)	QM/Optimal/Initial	QM/Optimal/Initial
1	HL1-CL	0.0	-2.10/-1.55/-1.57	2.54/2.67/2.61
2	HL2-CL	0.0	-2.25/-2.36/-1.62	2.54/2.64/2.61
3	HL3-CL	0.0	-1.15/-0.60/-2.15	2.59/2.70/2.58
4	OL-CLP	0.0	-4.98/-6.25/-4.00	1.89/1.76/1.82
5	OL-CLP	90.0	-5.11/-6.50/-4.99	1.89/1.76/1.80
6	OL-CLP	180.0	-4.85/-5.78/-5.34	1.89/1.77/1.79
7	OL-CLP	270.0	-4.63/-5.54/-4.21	1.90/1.77/1.82
8	N1-CLP	0.0	-0.23/-0.37/-1.31	5.78/5.00/4.59
9	HB11-CB1	0.0	-1.38/-2.00/-0.49	2.55/2.57/2.69
10	HB12-CB1	0.0	-0.72/-1.46/-1.85	2.81/2.73/2.91
11	HB13-CB1	0.0	-1.01/-1.73/-0.25	2.74/2.62/2.82
12	N2-C1	0.0	-2.51/-3.29/-3.20	2.28/2.38/2.41
13	N3-C1	0.0	-0.77/-1.40/-1.19	2.73/2.46/2.76
14	O2-C2	0.0	-5.45/-5.66/-5.15	1.86/1.78/1.80
15	O2-C2	90.0	-5.58/-5.60/-4.69	1.85/1.78/1.80
16	O2-C2	180.0	-5.46/-5.40/-4.13	1.85/1.78/1.81
17	O2-C2	270.0	-5.62/-5.67/-4.75	1.85/1.78/1.80
18	HB2-CB2	0.0	-2.03/-1.80/-2.78	2.28/2.47/2.44
19	HB2-CB2	0.0	-2.03/-1.80/-2.78	2.28/2.47/2.44
20	H01-CG2	0.0	-1.49/-0.84/-1.05	2.64/2.74/2.72
21	H02-CG2	0.0	-0.52/-0.97/-0.31	5.47/5.00/5.00
22	H03-CG2	0.0	-1.46/-0.82/-1.02	2.65/2.74/2.72

Figure S205: The molecule used for water complex calculations corresponding to 2-(methylsulfanyl)ace tamide, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S675: Statistics of calculated water interaction and dipole moment for 2-(methylsulfanyl) acetami de.

	RMS/Max Deviation from QM Energy (kcal/mol) Distance (Å)		Electrostatic potential	Dipole moment	Dipole angle
			m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}$ (Debye)	difference (°)
Initial	1.30/2.74	0.42/1.15	3.113	3.99/4.28	12.98
Optimal	0.87/1.62	0.41/1.03	2.270	3.99 / 4.59	3.28

Table S676: The comparison list of optimized atomic charges and their initial guess for 2-(meth ylsulf anyl)acetamide, referring to the penalties of initial guess

Table S677: Interaction energies and geometries be-
tween probe water and selected 2 -(methylsulfan
yl)acetamide site calculated using the optimized
and initial charges

Atom			
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.067	-0.220	2.500
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
\mathbf{SG}	-0.229	-0.045	10.789
CD	-0.163	-0.182	10.789
HD2	0.090	0.090	0.000
HD1	0.090	0.090	0.000
CE	0.525	0.542	4.071
OZ1	-0.510	-0.542	1.805
NZ2	-0.624	-0.623	2.500
HZ21	0.309	0.310	0.000
HZ22	0.309	0.310	0.000

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
14	site	(°)	${\rm QM}/{\rm Optimal}/{\rm Initial}$	${\rm QM}/{\rm Optimal}/{\rm Initial}$
1	HB3-CB	0.0	-1.90/-1.64/-1.15	2.53/2.63/2.70
2	HB1-CB	0.0	-1.95/-2.02/-1.44	2.57/2.60/2.66
3	HB2-CB	0.0	-2.00/-2.22/-1.65	2.61/2.61/2.67
4	$\mathrm{HZ}21\text{-}\mathrm{NZ}2$	0.0	-0.21/-1.76/-2.95	2.85/2.54/2.50
5	$\mathrm{HZ}21\text{-}\mathrm{NZ}2$	45.0	-0.29/-1.91/-2.99	3.15/2.56/2.50
6	$\mathrm{HZ}21\text{-}\mathrm{NZ}2$	90.0	-0.26/-1.64/-2.86	3.67/2.65/2.53
7	$\mathrm{HZ}21\text{-}\mathrm{NZ}2$	135.0	-0.11/-1.48/-2.81	3.67/2.64/2.53
8	$\mathrm{HZ}22\text{-}\mathrm{NZ}2$	0.0	-5.22/-4.54/-4.80	1.86/1.89/1.89
9	$\mathrm{HZ}22\text{-}\mathrm{NZ}2$	45.0	-5.02/-4.41/-4.65	1.87/1.90/1.89
10	$\mathrm{HZ}22\text{-}\mathrm{NZ}2$	90.0	-4.78/-4.25/-4.47	1.88/1.90/1.90
11	$\mathrm{HZ}22\text{-}\mathrm{NZ}2$	135.0	-4.97/-4.37/-4.61	1.87/1.90/1.89
12	OZ1-CE	0.0	-6.00/-6.39/-6.84	1.85/1.77/1.75
13	OZ1-CE	90.0	-5.99/-6.36/-6.83	1.85/1.77/1.75
14	OZ1-CE	180.0	-5.92/-6.30/-6.67	1.85/1.77/1.75
15	OZ1-CE	270.0	-6.05/-6.47/-6.80	1.85/1.77/1.75
16	SG-CB	0.0	-0.79/-1.89/-0.38	2.97/2.36/2.56
17	SG-CB	180.0	-0.90/-1.96/-0.73	2.94/2.35/2.50
18	HD1-CD	0.0	-1.26/-0.42/-0.44	2.48/2.72/2.70
19	HD1-CD	90.0	-1.27/-0.43/-0.47	2.48/2.71/2.70
20	HD2-CD	0.0	-2.25/-1.62/-1.61	2.51/2.68/2.66
21	HD2-CD	90.0	-2.40/-1.61/-1.58	2.47/2.67/2.66

1.220 Small molecule used for 3-fluorotyrosine(YOF)

Figure S206: The molecule used for water complex calculations corresponding to 2-fluoro-4-methylbenz en-1-olate, with possible interacting water positions. NOTE, only one water molecule was included in each calculation.

Table S678: Statistics of calculated water interaction and dipole moment for 2-fluoro-4-methylbenzen-1 -olate.

	RMS/Max Deviat	ion from QM	Electrostatic potential	Dipole moment	Dipole angle
	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		m RMS~(kcal/mol/Å)	${ m QM}/{ m MM}~({ m Debye})$	difference (°)
Initial	0.64/1.53	0.26/0.66	1.565	1.74/1.42	11.80
Optimal	0.45/1.27	0.24/0.63	1.537	1.74/2.07	0.92

Table S679: The comparison list of optimized atomic charges and their initial guess for 2-fluoro-4-methylbenzen-1-olate, referring to the penalties of initial guess

Atom		Charges	
Atom	Optimal	Initial	$\mathbf{Penalty}$
HB3	0.090	0.090	0.000
CB	-0.270	-0.270	0.474
HB1	0.090	0.090	0.000
HB2	0.090	0.090	0.000
CG	0.073	-0.037	0.474
CD1	-0.163	-0.126	5.351
HD1	0.165	0.177	0.000
CD2	-0.103	-0.101	0.000
HD2	0.115	0.115	0.000
CE1	-0.002	0.104	26.541
FE1	-0.162	-0.223	23.041
CE2	-0.109	-0.164	0.000
HE2	0.115	0.115	0.000
CZ	0.174	0.246	27.391
OH	-0.574	-0.526	18.309
HH	0.471	0.420	0.075

Table S680: Interaction energies and geometries between probe water and selected 2-fluoro-4-methyl benzen-1-olate site calculated using the optimized and initial charges

N	Probe	Angle	Energy (kcal/mol)	Distance (Å)
1	site	(*)	$\rm QM/Optimal/Initial$	$\rm QM/Optimal/Initial$
1	HH-OH	0.0	-2.71/-1.44/-1.18	2.28/2.91/2.94
2	HH-OH	45.0	-1.89/-1.28/-1.00	2.51/2.95/2.99
3	HH-OH	90.0	-1.36/-1.15/-0.85	2.68/2.98/3.04
4	HH-OH	135.0	-1.91/-1.29/-1.00	2.50/2.95/2.99
5	OH-CZ	0.0	-4.36/-4.54/-3.79	1.91/1.91/1.94
6	OH-CZ	90.0	-4.71/-4.72/-3.94	1.87/1.90/1.93
7	OH-CZ	180.0	-3.60/-4.33/-3.63	1.95/1.91/1.94
8	OH-CZ	270.0	-4.72/-4.72/-3.94	1.87 / 1.90 / 1.93
9	FE1-CE1	0.0	-1.83/-1.93/-2.27	2.20/1.97/1.93
10	FE1-CE1	90.0	-1.75/-1.65/-2.00	2.20/1.99/1.94
11	FE1-CE1	180.0	-1.30/-1.04/-1.42	2.27/2.05/1.99
12	FE1-CE1	270.0	-1.75/-1.65/-2.01	2.20/1.99/1.94
13	$\operatorname{HE2-CE2}$	0.0	-1.34/-0.59/-0.58	2.52/2.71/2.72
14	$\operatorname{HE2-CE2}$	90.0	-1.26/-0.52/-0.53	2.52/2.72/2.73
15	HD1-CD1	0.0	-1.83/-1.98/-2.42	2.49/2.43/2.40
16	HD1-CD1	90.0	-1.90/-1.98/-2.38	2.47/2.43/2.40
17	HD2-CD2	0.0	-1.59/-1.58/-1.21	2.62/2.66/2.69
18	HD2-CD2	90.0	-1.86/-1.65/-1.26	2.54/2.65/2.68
19	HB3-CB	0.0	-1.03/-1.01/-0.74	2.74/2.71/2.75
20	HB1-CB	0.0	-1.53/-1.40/-1.02	2.65/2.68/2.72
21	HB2-CB	0.0	-1.44/-1.34/-1.20	2.65/2.68/2.71

- 2 The Detail of Small Molecules Used in Bonded Terms Optimization
 - 2.1 The small molecule used for bonded terms optimization of phenylglycine (004)

Figure S207: The energy minimized structure corresponding to (2S)-2-acetamido-N-methyl-2-phe nylacetamide.

	Fable	S681:	The	calculated	geometric	terms	of
((2S)-2	-acetan	nido-N	N-methyl-2-	phenylacet	amide.	

Terms	QM	CHARMM	Abs. diff.
N-HN	1.02	0.99	0.02
N-CA	1.46	1.46	0.01
N-CY	1.38	1.34	0.04
CA-HA	1.10	1.08	0.02
CA-CB	1.51	1.52	0.01
CA-C	1.54	1.52	0.01
CB-CG1	1.40	1.41	0.01
CB-CG2	1.40	1.41	0.01
CG1-HG1	1.09	1.08	0.01
CG1-CD1	1.40	1.40	0.01
CG2-HG2	1.09	1.08	0.01
CG2-CD2	1.40	1.40	0.01
CD1-HD1	1.09	1.08	0.01
CD1-CE	1.40	1.40	0.00
CD2-HD2	1.09	1.08	0.01
CD2-CE	1.40	1.40	0.00
CE-HE	1.09	1.08	0.01
C-O	1.23	1.23	0.00
C-NT	1.36	1.35	0.02
NT-HNT	1.01	0.99	0.02
NT-CAT	1.45	1.44	0.01
CAT-HT1	1.09	1.12	0.03
CAT-HT2	1.09	1.11	0.02
CAT-HT3	1.10	1.11	0.02
CAY-HY1	1.09	1.11	0.02
CAY-HY2	1.09	1.11	0.02
CAY-HY3	1.09	1.11	0.02
CAY-CY	1.51	1.48	0.03
CY-OY	1.23	1.22	0.01

Terms	QM	CHARMM	Abs. diff.
N-CA-HA	110.15	106.73	3.42
N-CA-CB	110.87	112 43	1 55
N-CA-C	112.18	115 23	3.05
N-CY-CAY	112.10 115.11	116.20 116.42	1.32
N-CY-OY	121.51	122 75	1.02 1.24
HN_N_CA	115.05	115 55	0.40
HN-N-CY	117.00	118.00	1 32
CANCY	110.15	124.80	5.74
CA CB CC1	119.10	110.28	0.25
CA CB CC2	191.61	19.20	0.25
	121.01	121.80	0.13 0.17
	11468	117.08	3 30
	100 79	100 54	0.20
	109.76	109.34	0.23 0.76
CP CA C	104.00	104.81 107.74	1.96
CD-CA-C	109.00	107.74	1.80
CD-CGI-HGI	119.37	119.81	0.44
CB-CGI-CDI	120.35	120.62	0.27
CB-CG2-HG2	120.08	120.41	0.33
CB-CG2-CD2	120.23	120.45	0.21
CG1-CB-CG2	119.31	118.92	0.39
CGI-CDI-HDI	119.72	120.04	0.32
CGI-CDI-CE	120.18	119.95	0.23
HG1-CG1-CD1	120.28	119.56	0.72
CG2-CD2-HD2	119.71	120.16	0.45
CG2-CD2-CE	120.24	120.03	0.22
HG2-CG2-CD2	119.69	119.14	0.55
CD1-CE-CD2	119.68	120.04	0.36
CD1-CE-HE	120.18	119.91	0.28
HD1-CD1-CE	120.10	120.01	0.10
CD2-CE-HE	120.13	120.05	0.08
HD2-CD2-CE	120.05	119.82	0.23
C-NT-HNT	115.66	119.27	3.60
C-NT-CAT	119.26	121.80	2.54
O-C-NT	124.18	121.18	3.00
NT-CAT-HT1	108.22	111.12	2.90
NT-CAT-HT2	108.97	110.54	1.57
NT-CAT-HT3	112.02	110.31	1.71
HNT-NT-CAT	117.87	118.50	0.62
HT1-CAT-HT2	109.49	108.10	1.39
HT1-CAT-HT3	108.52	108.07	0.45
HT2-CAT-HT3	109.59	108.62	0.97
CAY-CY-OY	123.38	120.82	2.56
HY1-CAY-HY2	108.44	109.71	1.27
HY1-CAY-HY3	108.43	108.59	0.16
HY1-CAY-CY	109.55	109.72	0.17
HY2-CAY-HY3	109.81	108.75	1.07
HY2-CAY-CY	111.97	111.02	0.95
HY3-CAY-CY	108.58	109.00	0.43

Figure S208: The PES scan for flexible dihedral corresponding to (2S)-2-acetamido-N-methyl-2-p henylacetamide.

2.2 The small molecule used for bonded terms optimization of 7-hydroxy-l-tryptophan (0AF)

Figure S209: The energy minimized structure corresponding to 3-methyl-1H-indol-7-olate.

Table S682: The calculated geometric terms of 3-methyl-1H-indol-7-olate.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.10	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.10	1.11	0.01
CB-CG	1.50	1.51	0.01
CG-CD1	1.38	1.37	0.01
CG-CD2	1.43	1.44	0.00
CD1-HD1	1.08	1.08	0.00
CD1-NE1	1.38	1.38	0.00
CD2-CE2	1.42	1.40	0.02
CD2-CE3	1.41	1.39	0.02
NE1-HE1	1.01	1.01	0.00
NE1-CE2	1.37	1.38	0.01
CE2-CZ2	1.40	1.40	0.00
CZ2-OZ2	1.38	1.42	0.04
CZ2-CH2	1.39	1.40	0.01
OZ2-HZ2	0.97	0.96	0.01
CE3-HE3	1.09	1.08	0.01
CE3-CZ3	1.39	1.40	0.01
CZ3-HZ3	1.09	1.08	0.00
CZ3-CH2	1.42	1.40	0.01
CH2-HH2	1.09	1.08	0.01
HB3-CB-HB1	107.81	108.80	0.99
HB3-CB-HB2	107.41	108.86	1.45
HB3-CB-CG	111.42	109.75	1.68
CB-CG-CD1	127.03	128.00	0.96
CB-CG-CD2	126.46	124.62	1.84
HB1-CB-HB2	107.81	108.88	1.07
HB1-CB-CG	110.79	110.72	0.07
HB2-CB-CG	111.42	109.81	1.62
CG-CD1-HD1	129.59	128.15	1.44
CG-CD1-NE1	109.83	107.72	2.11
CG-CD2-CE2	106.83	107.90	1.07
CG-CD2-CE3	134.23	132.18	2.05
CD1-CG-CD2	106.51	107.38	0.87

Terms	QM	CHARMM	Abs. diff.
CD1-NE1-HE1	126.55	127.47	0.92
CD1-NE1-CE2	108.77	111.07	2.30
HD1-CD1-NE1	120.59	124.13	3.55
CD2-CE2-NE1	108.07	105.94	2.13
CD2-CE2-CZ2	122.41	120.73	1.68
CD2-CE3-HE3	120.95	119.67	1.28
CD2-CE3-CZ3	118.50	119.79	1.28
NE1-CE2-CZ2	129.51	133.33	3.82
HE1-NE1-CE2	124.69	121.47	3.22
CE2-CD2-CE3	118.94	119.92	0.98
CE2-CZ2-OZ2	116.57	122.20	5.63
CE2-CZ2-CH2	117.78	119.17	1.39
CZ2-OZ2-HZ2	108.07	107.36	0.71
CZ2-CH2-CZ3	120.52	120.27	0.25
CZ2-CH2-HH2	119.75	120.51	0.76
OZ2-CZ2-CH2	125.64	118.63	7.01
CE3-CZ3-HZ3	119.75	119.91	0.16
CE3-CZ3-CH2	121.83	120.12	1.71
HE3-CE3-CZ3	120.55	120.54	0.00
CZ3-CH2-HH2	119.72	119.21	0.51
HZ3-CZ3-CH2	118.42	119.97	1.55

2.3 The small molecule used for bonded terms optimization of (3S)-3-(methylsulfanyl)-L-aspa rticacid (0TD)

Terms	QM	CHARMM	Abs. diff.
HSB2-CSB-HSB3	109.08	107.56	1.52
OD1-CG-OD2	129.42	127.28	2.15

Figure S211: The PES scan for flexible dihedral corresponding to 2-(methylsulfanyl)propanoicacid.

Figure S210: The energy minimized structure corresponding to 2-(methylsulfanyl)propanoicacid.

Table	S683:	The	$\operatorname{calculated}$	geometric	terms	of	2-
(meth	ylsulf a	nyl)p	ropanoicac	id.			

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.01
HA2-CA	1.10	1.11	0.01
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.56	0.03
CB-HB	1.10	1.11	0.02
CB-SB	1.83	1.84	0.01
CB-CG	1.56	1.55	0.01
SB-CSB	1.81	1.82	0.01
CSB-HSB1	1.10	1.11	0.01
CSB-HSB2	1.09	1.11	0.02
CSB-HSB3	1.09	1.11	0.02
CG-OD1	1.27	1.26	0.01
CG-OD2	1.27	1.26	0.01
HA3-CA-HA2	108.26	109.02	0.77
HA3-CA-HA	108.43	108.51	0.08
HA3-CA-CB	109.27	110.21	0.94
HA2-CA-HA	109.68	108.89	0.78
HA2-CA-CB	111.98	110.42	1.56
CA-CB-HB	110.80	107.28	3.52
CA-CB-SB	107.84	111.87	4.03
CA-CB-CG	111.45	110.68	0.77
HA-CA-CB	109.16	109.73	0.58
CB-SB-CSB	99.98	97.74	2.24
CB-CG-OD1	115.98	117.18	1.20
CB-CG-OD2	114.59	115.53	0.94
HB-CB-SB	107.77	107.92	0.15
HB-CB-CG	107.45	106.36	1.09
SB-CB-CG	111.49	112.40	0.92
SB-CSB-HSB1	107.23	111.14	3.91
SB-CSB-HSB2	109.99	110.67	0.68
SB-CSB-HSB3	111.42	110.78	0.64
HSB1-CSB-HSB2	109.66	107.94	1.71
HSB1-CSB-HSB3	109.44	108.62	0.82

2.4 The small molecule 1 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isox azol-3-yl-cysteine (143)

Terms	QM	CHARMM	Abs. diff.
HI1-CI-HI3	107.74	109.03	1.30
HI2-CI-HI3	108.88	109.24	0.36

Figure S212: The energy minimized structure corresponding to 5-methyl-2,3-dihydro-1,2-oxazole.

Table S684: The calculated geometric terms of 5-methyl-2,3-dihydro-1,2-oxazole.

Terms	QM	CHARMM	Abs. diff.
HD2-CD	1.10	1.10	0.01
CD-HD	1.10	1.10	0.01
CD-NX	1.48	1.48	0.00
CD-CE	1.51	1.50	0.01
NX-HX	1.03	1.02	0.01
NX-OF	1.47	1.48	0.01
CE-HE	1.08	1.08	0.00
CE-CF	1.34	1.35	0.01
OF-CF	1.39	1.37	0.02
CF-CI	1.49	1.49	0.01
CI-HI1	1.09	1.11	0.02
CI-HI2	1.09	1.11	0.02
CI-HI3	1.09	1.11	0.02
HD2-CD-HD	108.22	106.48	1.74
HD2-CD-NX	108.59	111.69	3.10
HD2-CD-CE	115.32	117.54	2.22
CD-NX-HX	105.84	105.85	0.01
CD-NX-OF	104.12	104.15	0.03
CD-CE-HE	126.48	125.66	0.82
CD-CE-CF	106.80	107.25	0.44
HD-CD-NX	109.09	107.73	1.36
HD-CD-CE	111.98	109.31	2.66
NX-CD-CE	103.40	103.77	0.37
NX-OF-CF	106.12	106.18	0.06
HX-NX-OF	100.55	100.56	0.01
CE-CF-OF	113.13	113.29	0.15
CE-CF-CI	133.07	132.76	0.31
HE-CE-CF	126.20	126.50	0.30
OF-CF-CI	113.77	113.85	0.07
CF-CI-HI1	110.69	109.54	1.14
CF-CI-HI2	110.29	110.30	0.01
CF-CI-HI3	109.98	109.48	0.50
HI1-CI-HI2	109.20	109.21	0.01

2.5 The small molecule 2 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isox azol-3-yl-cysteine (143)

Figure S213: The energy minimized structure corresponding to (3R)-3- (ethylsulfanyl)-5-methyl-2,3-dihydro-1,2-oxazole.

Table S685: The calculated geometric terms of (3R)-3-(ethylsulfanyl)-5-methyl-2,3-dihydro-1,2-oxazole.

Terms	QM	CHARMM	Abs. diff.
HB1-CB-SG	109.40	109.87	0.47
HB2-CB-SG	108.57	109.87	1.30
SG-CD-HD	108.06	107.91	0.15
SG-CD-NX	110.86	110.84	0.02
SG-CD-CE	113.69	112.31	1.39
CD-NX-HX	104.79	105.18	0.39
CD-NX-OF	104.55	105.37	0.82
CD-CE-HE	125.57	124.73	0.84
CD-CE-CF	107.17	107.76	0.59
HD-CD-NX	108.76	111.43	2.67
HD-CD-CE	111.96	111.33	0.63
NX-CD-CE	103.39	103.04	0.36
NX-OF-CF	105.97	105.57	0.40
HX-NX-OF	101.01	105.31	4.29
CE-CF-OF	113.46	113.05	0.41
CE-CF-CI	132.67	133.32	0.66
HE-CE-CF	126.74	127.41	0.67
OF-CF-CI	113.84	113.43	0.41
CF-CI-HI1	110.48	109.95	0.53
CF-CI-HI2	110.30	110.32	0.03
CF-CI-HI3	110.02	109.97	0.05
HI1-CI-HI2	109.22	108.83	0.39
HI1-CI-HI3	107.79	108.94	1.15
HI2-CI-HI3	108.97	108.79	0.19

1.0

Terms	QM	CHARMM	Abs. diff.
CA-HA	1.09	1.11	0.02
CA-HA3	1.09	1.11	0.02
CA-HA2	1.09	1.11	0.02
CA-CB	1.52	1.53	0.01
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SG	1.82	1.82	0.00
SG-CD	1.81	1.81	0.00
CD-HD	1.10	1.10	0.00
CD-NX	1.49	1.47	0.01
CD-CE	1.50	1.50	0.00
NX-HX	1.03	1.02	0.01
NX-OF	1.48	1.48	0.00
CE-HE	1.08	1.08	0.01
CE-CF	1.34	1.35	0.01
OF-CF	1.38	1.37	0.01
CF-CI	1.49	1.50	0.02
CI-HI1	1.09	1.11	0.02
CI-HI2	1.09	1.11	0.02
CI-HI3	1.09	1.11	0.02
CA-CB-HB1	110.69	108.68	2.02
CA-CB-HB2	110.42	108.76	1.65
CA-CB-SG	109.58	112.56	2.97
HA-CA-HA3	108.09	108.40	0.31
HA-CA-HA2	108.31	108.29	0.02
HA-CA-CB	111.14	110.53	0.61
HA3-CA-HA2	108.24	108.43	0.18
HA3-CA-CB	109.89	110.61	0.72
HA2-CA-CB	111.07	110.51	0.55
CB-SG-CD	99.35	98.09	1.26
HB1-CB-HB2	108.14	106.94	1.20

Figure S214: The PES scan for flexible dihedrals corresponding to (3R)-3-(ethylsulfanyl)-5-methyl -2,3-dihydro-1,2-oxazole.

2.6 The small molecule 3 used for bonded terms optimization of S-2,3-dihydro-5-glycin-2-yl-isox azol-3-yl-cysteine (143)

Figure S215: The energy minimized structure corresponding to 2-amino-2-[3-(ethylsulfanyl)-2,3-di hydro-1,2-oxazol-5-yl]aceticacid.

Table S686: The calculated geometric terms of 2amino-2-[3-(ethylsulfanyl)-2,3-dihydro-1,2-oxazol -5-yl]aceticacid.

Terms	${ m QM}$	CHARMM	Abs. diff.
CA-HA	1.09	1.11	0.02
CA-HA3	1.09	1.11	0.02
CA-HA2	1.09	1.11	0.02
CA-CB	1.52	1.53	0.01
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SG	1.82	1.82	0.00
SG-CD	1.83	1.81	0.02
CD-HD	1.10	1.10	0.01
CD-NX	1.48	1.48	0.01
CD-CE	1.49	1.49	0.00
NX-HX	1.03	1.02	0.01
NX-OF	1.48	1.48	0.01
CE-HE	1.08	1.08	0.00
CE-CF	1.34	1.35	0.02
OF-CF	1.38	1.38	0.01
CF-CI	1.49	1.53	0.04
CI-HI	1.09	1.11	0.01
CI-NI	1.51	1.49	0.02
CI-CJ	1.60	1.54	0.06
NI-HI1	1.03	1.01	0.01
NI-HI2	1.02	1.01	0.01
NI-HI3	1.05	1.03	0.03
CJ-OJ1	1.27	1.26	0.01
CJ-OJ2	1.24	1.26	0.02
CA-CB-HB1	109.89	108.75	1.14
CA-CB-HB2	110.23	108.64	1.59
CA-CB-SG	109.63	111.94	2.31
HA-CA-HA3	108.18	108.44	0.26
HA-CA-HA2	108.29	108.15	0.14
HA-CA-CB	111.10	110.58	0.51

Terms	QM	CHARMM	Abs. diff.
HA3-CA-HA2	108.30	108.28	0.02
HA3-CA-CB	109.99	110.87	0.88
HA2-CA-CB	110.88	110.42	0.46
CB-SG-CD	99.64	100.64	1.00
HB1-CB-HB2	108.04	107.10	0.95
HB1-CB-SG	110.15	110.34	0.20
HB2-CB-SG	108.88	109.94	1.05
SG-CD-HD	107.77	108.55	0.78
SG-CD-NX	116.38	111.52	4.86
SG-CD-CE	109.74	113.03	3.30
CD-NX-HX	109.09	111.88	2.80
CD-NX-OF	104.91	105.27	0.36
CD-CE-HE	126.80	126.64	0.16
CD-CE-CF	107.27	108.54	1.27
HD-CD-NX	107.38	110.40	3.02
HD-CD-CE	114.00	110.29	3.71
NX-CD-CE	101.70	102.97	1.28
NX-OF-CF	103.66	106.06	2.40
HX-NX-OF	100.07	102.27	2.20
CE-CF-OF	113.95	111.84	2.11
CE-CF-CI	132.25	132.81	0.57
HE-CE-CF	125.63	124.46	1.17
OF-CF-CI	113.80	114.43	0.62
CF-CI-HI	111.78	108.89	2.89
CF-CI-NI	109.12	110.33	1.21
CF-CI-CJ	111.97	112.12	0.15
CI-NI-HI1	111.44	110.42	1.02
CI-NI-HI2	113.34	111.01	2.33
CI-NI-HI3	97.89	101.24	3.35
CI-CJ-OJ1	111.42	117.43	6.00
CI-CJ-OJ2	114.93	115.23	0.30
HI-CI-NI	109.26	108.74	0.52
HI-CI-CJ	110.10	108.70	1.40
NI-CI-CJ	104.31	107.98	3.67
HI1-NI-HI2	109.04	112.99	3.95
HI1-NI-HI3	114.15	110.75	3.40
HI2-NI-HI3	110.71	109.81	0.90
OJ1-CJ-OJ2	133.65	127.33	6.31

Figure S216: The PES scan for flexible dihedral corresponding to 2-amino-2-[3-(ethylsulfanyl)-2,3-dihydro-1,2-oxazol-5-yl]aceticacid.

2.7 The small molecule used for bonded terms optimization of 2-amino-6-oxopimelicacid (26P)

нвз Нв2 08 нв1	HG2 CG HD2 HG1 GD HD1	*
	nor	021

Figure S217: The energy minimized structure corresponding to 2-oxopentanoicacid.

Table S687: The calculated geometric terms of 2-oxopentanoicacid.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.10	1.11	0.01
CB-HB2	1.10	1.11	0.01
CB-HB1	1.10	1.11	0.01
CB-CG	1.53	1.53	0.00
CG-HG2	1.10	1.11	0.02
CG-HG1	1.10	1.11	0.02
CG-CD	1.52	1.54	0.02
CD-HD2	1.10	1.11	0.01
CD-HD1	1.10	1.11	0.01
CD-CE	1.52	1.51	0.01
CE-OE	1.24	1.24	0.00
CE-CZ	1.53	1.57	0.04
CZ-OZ1	1.27	1.27	0.00
CZ-OZ2	1.27	1.27	0.00
HB3-CB-HB2	107.84	108.69	0.85
HB3-CB-HB1	107.86	108.66	0.80
HB3-CB-CG	111.63	110.57	1.06
CB-CG-HG2	110.14	109.44	0.70
CB-CG-HG1	110.16	109.41	0.75
CB-CG-CD	112.22	113.06	0.84
HB2-CB-HB1	107.57	108.46	0.89
HB2-CB-CG	110.90	110.23	0.68
HB1-CB-CG	110.88	110.19	0.70
CG-CD-HD2	111.02	109.00	2.03
CG-CD-HD1	111.35	109.02	2.33
CG-CD-CE	114.38	115.06	0.68
HG2-CG-HG1	105.94	107.29	1.36
HG2-CG-CD	109.13	108.71	0.41
HG1-CG-CD	109.05	108.75	0.30
CD-CE-OE	121.18	120.95	0.24
CD-CE-CZ	114.71	114.87	0.15
HD2-CD-HD1	105.80	107.85	2.06
HD2-CD-CE	107.02	107.85	0.83
HD1-CD-CE	106.78	107.83	1.05

 $\begin{array}{c} \text{Ign} 0.5 \\ -200 \\ -200 \\ -200 \\ -200 \\ -200 \\ -100 \\ -200 \\ -100 \\ -100 \\ -$

Figure S218: The PES scan for flexible dihedrals corresponding to 2-oxopentanoicacid.

2.8 The small molecule used for bonded terms optimization of 2-allyl-glycine (2AG)

Figure S219: The energy minimized structure corresponding to (2S)-2-acetamido-N-methylpent-4-e namide.

Table S688:The calculated geometric terms of
(2S)-2-acetamido-N-methylpent-4-enamide.

Terms	QM	CHARMM	Abs. diff.
N-HN	1.02	0.99	0.02
N-CA	1.46	1.46	0.00
N-CY	1.38	1.34	0.04
CA-HA	1.10	1.08	0.02
CA-CB	1.54	1.56	0.02
CA-C	1.53	1.53	0.00
CB-HB1	1.10	1.11	0.02
CB-HB2	1.10	1.11	0.02
CB-CG	1.50	1.51	0.01
CG-HG	1.09	1.11	0.01
CG-CD	1.34	1.34	0.00
CD-HD1	1.09	1.10	0.02
CD-HD2	1.09	1.10	0.01
C-O	1.23	1.23	0.00
C-NT	1.37	1.35	0.02
NT-HNT	1.01	0.99	0.02
NT-CAT	1.45	1.44	0.01
CAT-HT1	1.09	1.11	0.03
CAT-HT2	1.09	1.11	0.02
CAT-HT3	1.10	1.11	0.02
CAY-HY1	1.09	1.11	0.02
CAY-HY2	1.09	1.11	0.02
CAY-HY3	1.09	1.11	0.02
CAY-CY	1.51	1.48	0.03
CY-OY	1.23	1.22	0.01
N-CA-HA	110.47	107.24	3.24
N-CA-CB	109.30	110.33	1.03
N-CA-C	112.29	115.05	2.76
N-CY-CAY	115.12	116.31	1.19
N-CY-OY	121.63	122.96	1.33
HN-N-CA	115.82	114.06	1.76
HN-N-CY	118.00	119.43	1.44
CA-N-CY	119.61	125.53	5.92

Terms	QM	CHARMM	Abs. diff.
CA-CB-HB1	109.00	108.99	0.02
CA-CB-HB2	107.29	108.48	1.19
CA-CB-CG	111.48	112.66	1.18
CA-C-O	120.97	121.15	0.18
CA-C-NT	114.52	117.44	2.92
HA-CA-CB	109.95	108.86	1.09
HA-CA-C	104.86	105.72	0.85
CB-CA-C	109.88	109.38	0.50
CB-CG-HG	116.54	115.66	0.88
CB-CG-CD	124.05	125.89	1.85
HB1-CB-HB2	107.68	106.65	1.03
HB1-CB-CG	110.44	110.69	0.25
HB2-CB-CG	110.82	109.17	1.64
CG-CD-HD1	121.77	121.11	0.67
CG-CD-HD2	121.39	120.87	0.51
HG-CG-CD	119.39	118.45	0.94
HD1-CD-HD2	116.81	118.00	1.19
C-NT-HNT	115.17	118.99	3.82
C-NT-CAT	119.08	121.89	2.81
O-C-NT	123.79	121.38	2.41
NT-CAT-HT1	108.33	111.19	2.86
NT-CAT-HT2	108.97	110.62	1.66
NT-CAT-HT3	111.96	110.19	1.77
HNT-NT-CAT	117.67	118.48	0.81
HT1-CAT-HT2	109.50	108.18	1.32
HT1-CAT-HT3	108.48	108.01	0.47
HT2-CAT-HT3	109.58	108.56	1.01
CAY-CY-OY	123.25	120.72	2.53
HY1-CAY-HY2	109.81	108.92	0.89
HY1-CAY-HY3	108.39	109.61	1.22
HY1-CAY-CY	111.99	110.92	1.07
HY2-CAY-HY3	108.43	108.60	0.17
HY2-CAY-CY	108.65	108.96	0.31
HY3-CAY-CY	109.51	109.78	0.27

Figure S220: The PES scan for flexible dihedral corresponding to (2S)-2-acetamido-N-methylpent -4-enamide.

2.9 The small molecule used for bonded terms optimization of S-hydroperoxycysteine (2CO)

Figure S221: The energy minimized structure corresponding to (ethylsulfanyl)peroxol.

Table S689: The calculated geometric terms of (et hylsulfanyl)peroxol.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.53	0.01
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SG	1.80	1.82	0.01
SG-OD	1.68	1.68	0.00
OD-OE	1.49	1.50	0.01
OE-HE	0.98	0.96	0.02
HA3-CA-HA2	108.43	108.48	0.06
HA3-CA-HA	107.95	108.49	0.54
HA3-CA-CB	111.39	110.51	0.88
HA2-CA-HA	107.98	108.40	0.42
HA2-CA-CB	111.33	110.47	0.86
CA-CB-HB1	111.13	109.66	1.47
CA-CB-HB2	110.97	109.63	1.34
CA-CB-SG	108.91	112.23	3.32
HA-CA-CB	109.64	110.42	0.78
CB-SG-OD	100.07	100.46	0.39
HB1-CB-HB2	108.84	107.31	1.52
HB1-CB-SG	108.68	108.93	0.26
HB2-CB-SG	108.24	108.94	0.70
SG-OD-OE	109.38	109.50	0.12
OD-OE-HE	98.64	98.42	0.22

Figure S222: The PES scan for flexible dihedrals corresponding to (ethylsulfanyl)peroxol.

2.10 The small molecule used for bonded terms optimization of s-(difluoromethyl)-homocystei ne (2FM)

Figure S223: The energy minimized structure corresponding to [(difluoromethyl)sulfanyl]ethane.

Table S690: The calculated geometric terms of [(di fluoromethyl)sulfanyl]ethane.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-CG	1.52	1.53	0.01
CG-HG1	1.09	1.11	0.02
CG-HG2	1.09	1.11	0.02
CG-SD	1.82	1.82	0.00
SD-CE	1.79	1.79	0.01
CE-HE	1.09	1.08	0.01
CE-FZ1	1.37	1.35	0.02
CE- $FZ2$	1.37	1.35	0.02
HB3-CB-HB1	108.12	108.41	0.29
HB3-CB-HB2	108.11	108.43	0.32
HB3-CB-CG	109.60	110.49	0.89
CB-CG-HG1	110.95	108.59	2.35
CB-CG-HG2	110.94	108.66	2.29
CB-CG-SD	109.40	112.87	3.47
HB1-CB-HB2	108.42	108.48	0.06
HB1-CB-CG	111.24	110.47	0.77
HB2-CB-CG	111.25	110.49	0.76
CG-SD-CE	97.80	97.42	0.39
HG1-CG-HG2	108.66	106.93	1.73
HG1-CG-SD	108.41	109.79	1.37
HG2-CG-SD	108.40	109.82	1.42
SD-CE-HE	109.95	110.11	0.16
SD-CE-FZ1	111.57	111.39	0.18
SD-CE-FZ2	111.57	111.42	0.15
HE-CE-FZ1	108.86	108.33	0.53
HE-CE-FZ2	108.87	108.37	0.50
FZ1-CE-FZ2	105.90	107.11	1.21

Figure S224: The PES scan for flexible dihedrals corresponding to [(difluoromethyl)sulfanyl]ethane.

2.11	The small molecule used for
	bonded terms optimization of
	2-fluoro-l-histidine (2HF)

Terms	QM	CHARMM	Abs. diff.
NE2-CE1-F1	125.64	125.61	0.03

Figure S225: The energy minimized structure corresponding to 2-fluoro-4-methyl-2,3-dihydro-1H-i midazole.

Table S691: The calculated geometric terms of 2-fluoro-4-methyl-2,3-dihydro-1H-imidazole.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-CG	1.49	1.50	0.01
CG-ND1	1.40	1.37	0.03
CG-CD2	1.37	1.35	0.02
ND1-HD1	1.02	1.00	0.02
ND1-CE1	1.33	1.31	0.02
CD2-HD2	1.08	1.09	0.01
CD2-NE2	1.39	1.38	0.01
CE1-NE2	1.33	1.32	0.01
CE1- $F1$	1.30	1.34	0.03
NE2-HE2	1.02	1.00	0.02
HB3-CB-HB1	108.86	108.89	0.04
HB3-CB-HB2	108.18	108.44	0.26
HB3-CB-CG	111.16	110.21	0.95
CB-CG-ND1	122.51	122.24	0.27
CB-CG-CD2	131.92	131.09	0.83
HB1-CB-HB2	108.16	108.42	0.26
HB1-CB-CG	111.14	110.19	0.95
HB2-CB-CG	109.25	110.63	1.38
CG-ND1-HD1	126.34	126.96	0.62
CG-ND1-CE1	109.44	109.27	0.17
CG-CD2-HD2	130.72	128.19	2.53
CG-CD2-NE2	107.55	106.55	1.00
ND1-CG-CD2	105.57	106.67	1.10
ND1-CE1-NE2	108.77	108.72	0.05
ND1-CE1-F1	125.59	125.66	0.08
HD1-ND1-CE1	124.21	123.77	0.45
CD2-NE2-CE1	108.66	108.79	0.12
CD2-NE2-HE2	126.89	128.32	1.43
HD2-CD2-NE2	121.72	125.26	3.53
CE1-NE2-HE2	124.45	122.90	1.55

2.12 The small molecule used for bonded terms optimization of 2-fluoro-l-histidine (2HFD)

Figure S226: The energy minimized structure corresponding to 2-fluoro-5-methyl-1H-imidazole.

Table S692: The calculated geometric terms of 2-fluoro-5-methyl-1H-imidazole.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.10	1.11	0.02
CB-HB1	1.10	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-CG	1.49	1.50	0.01
CG-CD2	1.38	1.37	0.01
CG-ND1	1.39	1.38	0.01
CD2-HD2	1.08	1.08	0.00
CD2-NE2	1.39	1.39	0.00
ND1-HD1	1.01	1.00	0.01
ND1-CE1	1.36	1.35	0.01
NE2-CE1	1.30	1.31	0.01
CE1-F1	1.34	1.34	0.00
HB3-CB-HB1	108.09	109.06	0.96
HB3-CB-HB2	107.80	108.65	0.85
HB3-CB-CG	111.95	110.02	1.93
CB-CG-CD2	132.88	130.95	1.93
CB-CG-ND1	122.97	123.35	0.38
HB1-CB-HB2	107.81	108.65	0.84
HB1-CB-CG	111.97	110.02	1.95
HB2-CB-CG	109.05	110.41	1.36
CG-CD2-HD2	127.42	129.44	2.02
CG-CD2-NE2	111.96	110.79	1.18
CG-ND1-HD1	127.62	128.64	1.02
CG-ND1-CE1	106.38	105.95	0.43
CD2-CG-ND1	104.15	105.70	1.55
CD2-NE2-CE1	103.18	103.51	0.33
HD2-CD2-NE2	120.62	119.77	0.85
ND1-CE1-NE2	114.33	114.06	0.27
ND1-CE1-F1	119.40	119.61	0.21
HD1-ND1-CE1	126.00	125.41	0.59
NE2-CE1-F1	126.26	126.33	0.06

The small molecule used for 2.13bonded terms optimization of l-2-amino-6-methylene-pimeli cacid (2NP)

Terms CHARMM Abs. diff. QM HD2-CD-HD1 108.42 106.212.21HD2-CD-CE 108.67108.19 0.47HD1-CD-CE 109.88 112.542.66CE-CZ1-OJ1 118.922.16116.76CE-CZ1-OJ2 1.75114.33116.08CE-CZ2-HZ22 121.77120.631.14CE-CZ2-HZ21 119.80118.461.34CZ1-CE-CZ2120.96123.302.34HZ22-CZ2-HZ21 118.43120.902.47OJ1-CZ1-OJ2 128.91124.973.94

corresponding to 2-methylidenepentanoicacid.

Figure S228: The PES scan for flexible dihedrals

Figure S227: The energy minimized structure corresponding to 2-methylidenepentanoicacid.

Table S693: The calculated geometric terms of 2methylidenepentanoicacid.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.10	1.11	0.01
CB-HB2	1.10	1.11	0.02
CB-HB1	1.10	1.11	0.01
CB-CG	1.53	1.53	0.00
CG-HG1	1.09	1.12	0.02
CG-HG2	1.10	1.11	0.01
CG-CD	1.53	1.54	0.01
CD-HD2	1.10	1.11	0.02
CD-HD1	1.10	1.11	0.01
CD-CE	1.50	1.52	0.02
CE-CZ1	1.54	1.53	0.02
CE-CZ2	1.35	1.36	0.01
CZ1-OJ1	1.27	1.27	0.00
CZ1-OJ2	1.27	1.27	0.00
CZ2-HZ22	1.09	1.09	0.00
CZ2-HZ21	1.09	1.10	0.01
HB3-CB-HB2	107.87	108.70	0.83
HB3-CB-HB1	107.85	108.95	1.10
HB3-CB-CG	111.70	110.56	1.13
CB-CG-HG1	110.10	109.08	1.02
CB-CG-HG2	109.87	109.42	0.46
CB-CG-CD	112.48	112.76	0.29
HB2-CB-HB1	107.80	108.47	0.67
HB2-CB-CG	110.35	109.82	0.52
HB1-CB-CG	111.12	110.28	0.84
CG-CD-HD2	108.33	107.26	1.08
CG-CD-HD1	109.47	108.58	0.89
CG-CD-CE	111.99	113.67	1.68
HG1-CG-HG2	107.57	107.43	0.14
HG1-CG-CD	107.76	108.74	0.98
HG2-CG-CD	108.92	109.27	0.35
CD-CE-CZ1	117.25	121.83	4.58
CD-CE-CZ2	121.79	114.59	7.20

2.14 The small molecule used for bonded terms optimization of 3-(4H-thieno[3,2-b]pyrrol-6yl)-L-alanine (32T)

Terms	QM	CHARMM	Abs. diff.
CD2-CE2-NE1	106.81	111.28	4.46
CD2-CE2-CZ2	114.58	121.00	6.42
CD2-SUL-CZ3	90.99	87.58	3.41
NE1-CE2-CZ2	138.60	127.72	10.88
HE1-NE1-CE2	126.11	128.03	1.93
CE2-CD2-SUL	110.52	113.02	2.50
CE2-CZ2-HZ2	126.44	127.32	0.88
CE2-CZ2-CZ3	110.09	105.70	4.39
SUL-CZ3-CZ2	113.82	112.71	1.12
SUL-CZ3-HZ3	119.04	119.18	0.14
CZ2-CZ3-HZ3	127.14	128.11	0.97
HZ2-CZ2-CZ3	123.47	126.98	3.50

Figure S229: The energy minimized structure corresponding to 6-methyl-4H-thieno[3,2-b]pyrrole.

Table S694: The calculated geometric terms of 6-methyl-4H-thieno[3,2-b]pyrrole.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.10	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-CG	1.49	1.51	0.01
CG-CD1	1.39	1.41	0.02
CG-CD2	1.42	1.35	0.07
CD1-HD1	1.08	1.08	0.00
CD1-NE1	1.38	1.42	0.03
CD2-CE2	1.40	1.27	0.14
CD2- SUL	1.73	1.69	0.04
NE1-HE1	1.01	1.01	0.00
NE1-CE2	1.37	1.36	0.02
CE2-CZ2	1.42	1.35	0.07
SUL-CZ3	1.74	1.78	0.03
CZ2-HZ2	1.09	1.08	0.01
CZ2-CZ3	1.38	1.40	0.03
CZ3-HZ3	1.08	1.08	0.00
HB3-CB-HB1	107.48	108.76	1.27
HB3-CB-HB2	107.85	108.81	0.96
HB3-CB-CG	111.38	109.87	1.51
CB-CG-CD1	127.07	128.99	1.92
CB-CG-CD2	127.96	128.64	0.68
HB1-CB-HB2	107.84	108.82	0.98
HB1-CB-CG	111.45	109.88	1.57
HB2-CB-CG	110.66	110.66	0.01
CG-CD1-HD1	129.29	127.68	1.61
CG-CD1-NE1	110.02	109.35	0.67
CG-CD2-CE2	109.31	113.85	4.54
CG-CD2-SUL	140.17	133.13	7.04
CD1-CG-CD2	104.98	102.38	2.60
CD1-NE1-HE1	125.01	128.83	3.82
CD1-NE1-CE2	108.88	103.14	5.74
HD1-CD1-NE1	120.69	122.97	2.27

2.15 The small molecule used for bonded terms optimization of 3-chloro-tyrosine (3MY)

Terms	QM	CHARMM	Abs. diff.
HD2-CD2-CE2	118.93	119.73	0.81
CE1-CZ-CE2	118.31	119.89	1.58
CE1-CZ-OH	117.79	119.09	1.31
HE1-CE1-CZ	118.00	119.59	1.59
CE2-CZ-OH	123.91	121.02	2.89
CLE-CE2-CZ	118.87	121.31	2.44
CZ-OH-HH	108.31	106.37	1.94

Figure S230: The energy minimized structure corresponding to 2,4-dimethylphenol.

Table S695:	The calculated	$\operatorname{geometric}$	terms of	$^{2,4-}$
dimethylphe	enol.			

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.10	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-CG	1.51	1.50	0.01
CG-CD1	1.40	1.40	0.00
CG-CD2	1.40	1.40	0.01
CD1-HD1	1.09	1.08	0.01
CD1-CE1	1.39	1.40	0.01
CD2-HD2	1.09	1.08	0.01
CD2-CE2	1.39	1.40	0.01
CE1-HE1	1.09	1.08	0.01
CE1-CZ	1.40	1.40	0.00
CE2-CLE	1.75	1.74	0.00
CE2-CZ	1.40	1.41	0.01
CZ-OH	1.37	1.41	0.05
OH-HH	0.98	0.96	0.02
HB3-CB-HB1	107.76	109.75	1.98
HB3-CB-HB2	107.65	109.84	2.19
HB3-CB-CG	111.22	108.66	2.56
CB-CG-CD1	121.09	120.20	0.89
CB-CG-CD2	120.70	120.13	0.57
HB1-CB-HB2	108.02	109.22	1.20
HB1-CB-CG	111.09	109.84	1.25
HB2-CB-CG	110.94	109.52	1.42
CG-CD1-HD1	119.55	119.81	0.26
CG-CD1-CE1	121.32	120.17	1.15
CG-CD2-HD2	120.55	119.89	0.66
CG-CD2-CE2	120.52	120.38	0.15
CD1-CG-CD2	118.18	119.66	1.49
CD1-CE1-HE1	121.53	120.31	1.22
CD1-CE1-CZ	120.47	120.10	0.37
HD1-CD1-CE1	119.13	120.02	0.89
CD2-CE2-CLE	119.93	118.90	1.03
CD2-CE2-CZ	121.20	119.79	1.41

2.16 The small molecule 1 used for bonded terms optimization of (4S)-4-fluoro-L-proline (4FB)

Figure S231: The energy minimized structure corresponding to 2-[1-(2-acetamidoacetyl)-4-fluorop yrrolidin-2-yl]formamido-N-methylacetamide.

Table S696:	The	calculated	$\operatorname{geometric}$	terms	of 2-
$[1-(2-\arctan$	nidoa	cetyl)-4-flu	oropyrroli	din-2-g	yl]for
mamido-N-n	nethy	lacetamide			

Terms	QM	CHARMM	Abs. diff.
N1AL-HNN1	1.01	0.99	0.02
N1AL-C1AL	1.46	1.46	0.00
N1AL-CY	1.37	1.34	0.03
C1AL-H1AL	1.09	1.08	0.01
C1AL-CB11	1.53	1.54	0.01
C1AL-C11	1.54	1.54	0.01
CB11-H111	1.10	1.11	0.01
CB11-H211	1.10	1.11	0.01
CB11-H311	1.09	1.11	0.02
C11-O11	1.23	1.23	0.00
C11-N	1.36	1.38	0.01
CAY-HY1	1.09	1.11	0.02
CAY-HY2	1.09	1.11	0.02
CAY-HY3	1.09	1.11	0.02
CAY-CY	1.52	1.48	0.04
CY-OY	1.23	1.22	0.00
N-CA	1.50	1.46	0.03
N-CDX	1.46	1.46	0.00
CA-HA	1.10	1.10	0.01
CA-CBX	1.54	1.56	0.02
CA-C	1.56	1.53	0.03
CBX-HB1	1.09	1.10	0.00
CBX-HB2	1.09	1.10	0.01
CBX-CGX	1.53	1.53	0.00
CGX-HG	1.10	1.09	0.01
CGX-FGX	1.39	1.37	0.02
CGX-CDX	1.53	1.51	0.02
CDX-HD1	1.10	1.10	0.01
CDX-HD2	1.09	1.10	0.01
C-O	1.23	1.22	0.00
C-N2AL	1.36	1.35	0.01
N2AL-HNN2	1.02	1.00	0.02

	011	CHADMA	Ab- Jur
Lerms	QM		ADS. diff.
NZAL-UZAL	1.47	1.45	0.01
C2AL-H2AL	1.10	1.08	0.01
C2AL-CB22	1.53	1.55	0.01
C2AL-C22	1.54	1.53	0.01
CB22-H122	1.10	1.11	0.02
CB22-H222	1.10	1.11	0.01
CB22-H322	1.09	1.11	0.02
C22-O22	1.22	1.23	0.01
C22-NT	1.37	1.35	0.02
NT-HNT	1.01	0.99	0.02
NT-CAT	1.45	1.44	0.01
CAT-HT1	1.09	1 12	0.03
CAT-HT2	1.00	1 11	0.02
CAT-HT3	1 10	1 11	0.02
N1AL_C1AL_H1AL	108 78	105 59	319
NIAL CIAL CB11	111 15	111 03	0.78
NIAL-OIAL-ODII	112 71	116.95	0.78
NIAL-OIAL-OII	116.71	110.20	2.55
NIAL-UI-UAI NIAL OV OV	110.31	110.70	0.44
NIAL-UY-UY	121.01	122.05	1.04
HNNI-NIAL-CIAL	118.89	116.97	1.92
HNNI-NIAL-CY	119.73	119.16	0.57
C1AL-N1AL-CY	119.99	123.79	3.80
C1AL-CB11-H111	110.33	110.34	0.01
C1AL-CB11-H211	112.53	112.04	0.48
C1AL-CB11-H311	109.45	109.82	0.37
C1AL-C11-O11	117.42	117.28	0.13
C1AL-C11-N	120.92	123.31	2.38
H1AL-C1AL-CB11	108.59	106.60	1.98
H1AL-C1AL-C11	101.88	104.80	2.92
CB11-C1AL-C11	112.18	110.81	1.36
H111-CB11-H211	108.25	108.48	0.23
H111-CB11-H311	108.01	107.65	0.36
H211-CB11-H311	108.15	108.39	0.24
C11-N-CA	121.34	123.53	2.19
C11-N-CDX	127.63	125 53	2.11
011-C11-N	121.53	119.41	2.11
CAV-CV-OV	121.00	121.20	1.48
HV1 CAV HV2	100.18	100.01	0.18
HV1 CAV HV9	108.26	100.19	0.10
HTT-OAT-HTJ HV1 CAV CV	112 76	103.14	0.20
HII-UAI-UI HV9 CAV HV9	110.70 107.00	111.10	2.02 1 of
	107.29	100.33 100 51	1.00
IIV2 CAY-UY	108.71	109.01	0.80
HY3-UAY-UY	108.84	109.68	0.84
N-CA-HA	107.34	110.41	3.07
N-CA-CBX	104.31	104.41	0.10
N-CA-C	112.77	112.79	0.02
N-CDX-CGX	101.86	103.43	1.57
N-CDX-HD1	112.70	107.72	4.98
N-CDX-HD2	111.69	113.41	1.72
CA-N-CDX	109.84	110.21	0.37
CA-CBX-HB1	112.36	112.76	0.40
CA-CBX-HB2	108.56	113.17	4.61
CA-CBX-CGX	105.10	105.08	0.03
CA-C-O	120.96	119.17	1.79
CA-C-N2AL	115.57	118.57	3.00
HA-CA-CBX	112.41	106.95	5.46
HA-CA-C	108.27	108.57	0.30
CBX-CA-C	111.68	113.52	1.84

Terms	QM	CHARMM	Abs. diff.
CBX-CGX-HG	112.23	109.62	2.62
CBX-CGX-FGX	112.34	112.89	0.55
CBX-CGX-CDX	103.31	103.03	0.29
HB1-CBX-HB2	108.56	105.26	3.30
HB1-CBX-CGX	113.24	111.85	1.39
HB2-CBX-CGX	108.87	108.81	0.06
CGX-CDX-HD1	108.64	111.19	2.55
CGX-CDX-HD2	112.99	112.62	0.37
HG-CGX-FGX	107.46	108.53	1.08
HG-CGX-CDX	110.82	110.02	0.80
FGX-CGX-CDX	110.71	112.66	1.94
HD1-CDX-HD2	108.85	108.36	0.50
C-N2AL-HNN2	115.33	116.39	1.06
C-N2AL-C2AL	120.46	124.77	4.32
O-C-N2AL	123.45	122.26	1.19
N2AL-C2AL-H2AL	108.97	107.24	1.72
N2AL-C2AL-CB22	109.55	109.40	0.15
N2AL-C2AL-C22	113.08	114.64	1.55
HNN2-N2AL-C2AL	117.20	115.32	1.88
C2AL-CB22-H122	110.39	109.81	0.58
C2AL- $CB22$ - $H222$	111.29	111.23	0.06
C2AL- $CB22$ - $H322$	109.51	110.55	1.04
C2AL-C22-O22	120.94	121.40	0.45
C2AL-C22-NT	114.78	116.85	2.07
H2AL-C2AL-CB22	109.50	108.95	0.54
H2AL-C2AL-C22	104.79	106.33	1.54
CB22-C2AL-C22	110.81	110.08	0.73
H122-CB22-H222	108.81	108.42	0.39
H122-CB22-H322	108.36	108.02	0.34
H222-CB22-H322	108.41	108.72	0.31
C22-NT-HNT	116.13	117.88	1.75
C22-NT-CAT	121.34	123.08	1.74
O22-C22-NT	123.74	121.75	1.98
NT-CAT-HT1	107.74	111.96	4.22
NT-CAT-HT2	110.09	110.31	0.21
NT-CAT-HT3	112.18	109.88	2.30
HNT-NT-CAT	118.12	118.32	0.19
HT1-CAT-HT2	109.42	108.03	1.39
HT1-CAT-HT3	108.38	108.07	0.31
HT2-CAT-HT3	108.98	108.49	0.49

2.17 The small molecule 2 used for bonded terms optimization of (4S)-4-fluoro-L-proline (4FB)

Figure S232: The energy minimized structure corresponding to (2S,4S)-1-acetyl-4-fluoro-N-methyl pyrrolidine-2-carboxamide.

Table S697: The calculated geometric terms of (2S,4S)-1-acetyl-4-fluoro-N-methylpyrrolidine-2-carboxamide.

Terms	QM	CHARMM	Abs. diff.
C1AL-H11	1.09	1.11	0.02
C1AL-H12	1.09	1.11	0.02
C1AL-H13	1.09	1.11	0.02
C1AL-C11	1.51	1.49	0.03
C11-O11	1.24	1.23	0.02
C11-N	1.36	1.37	0.00
N-CA	1.48	1.47	0.01
N-CDX	1.46	1.47	0.01
CA-HA	1.10	1.10	0.01
CA-CBX	1.53	1.55	0.02
CA-C	1.54	1.52	0.02
CBX-HB1	1.09	1.10	0.01
CBX-HB2	1.09	1.10	0.01
CBX-CGX	1.52	1.52	0.00
CGX-HG	1.10	1.09	0.01
CGX-FGX	1.39	1.37	0.03
CGX-CDX	1.52	1.52	0.01
CDX-HD1	1.10	1.10	0.00
CDX-HD2	1.09	1.10	0.01
C-O	1.24	1.23	0.01
C-N2AL	1.35	1.34	0.01
N2AL-HNN2	1.02	1.00	0.02
N2AL-C2AL	1.45	1.44	0.01
C2AL-H21	1.09	1.11	0.02
C2AL-H22	1.09	1.11	0.02
C2AL-H23	1.10	1.11	0.02
C1AL-C11-O11	121.44	118.84	2.61
C1AL-C11-N	117.24	118.09	0.85
H11-C1AL-H12	108.87	108.43	0.44
H11-C1AL-H13	109.57	108.55	1.01
H11-C1AL-C11	107.51	108.99	1.48
H12-C1AL-H13	108.14	109.82	1.68

Terms	QM	CHARMM	Abs. diff.
H12-C1AL-C11	111.14	110.39	0.76
H13-C1AL-C11	111.57	110.61	0.97
C11-N-CA	120.39	123.01	2.62
C11-N-CDX	127.74	123.30	4.44
O11-C11-N	121.32	123.07	1.76
N-CA-HA	107.92	110.20	2.28
N-CA-CBX	104.02	103.49	0.53
N-CA-C	109.70	114.92	5.21
N-CDX-CGX	101.36	103.90	2.54
N-CDX-HD1	111.80	108.09	3.71
N-CDX-HD2	111.93	113.90	1.97
CA-N-CDX	110.75	111.34	0.59
CA-CBX-HB1	112.53	113.10	0.57
CA-CBX-HB2	108.88	112.03	3.15
CA-CBX-CGX	104.91	103.73	1.18
CA-C-O	122.27	119.80	2.47
CA-C-N2AL	113.81	118.08	4.27
HA-CA-CBX	113.35	106.96	6.39
HA-CA-C	109.82	108.45	1.37
CBX-CA-C	111.78	112.50	0.73
CBX-CGX-HG	112.51	110.00	2.51
CBX-CGX-FGX	111.97	113.12	1.16
CBX-CGX-CDX	103.44	102.34	1.09
HB1-CBX-HB2	108.77	106.36	2.41
HB1-CBX-CGX	113.26	113.18	0.07
HB2-CBX-CGX	108.33	108.47	0.15
CGX-CDX-HD1	108.93	111.52	2.59
CGX-CDX-HD2	113.44	111.38	2.06
HG-CGX-FGX	107.53	108.50	0.97
HG-CGX-CDX	110.60	110.05	0.55
FGX-CGX-CDX	110.82	112.72	1.89
HD1-CDX-HD2	109.20	108.03	1.17
C-N2AL-HNN2	116.36	117.96	1.61
C-N2AL-C2AL	120.14	122.51	2.36
O-C-N2AL	123.92	122.12	1.81
N2AL-C2AL-H21	108.93	110.76	1.84
N2AL-C2AL-H22	108.71	110.41	1.70
N2AL-C2AL-H23	111.97	110.55	1.43
HNN2-N2AL-C2AL	119.98	118.85	1.14
H21-C2AL-H22	109.57	108.42	1.16
H21-C2AL-H23	108.30	108.19	0.10
H22-C2AL-H23	109.33	108.43	0.91

2.18 The small molecule used for bonded terms optimization of 4-fluoro-tryptophan (4FW)

Figure S233: The energy minimized structure corresponding to 4-fluoro-3-methyl-1H-indole.

Table S698: The calculated geometric terms of 4-fluoro-3-methyl-1H-indole.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-CG	1.50	1.50	0.01
CG-CD1	1.38	1.37	0.01
CG-CD2	1.43	1.44	0.01
CD1-HD1	1.08	1.08	0.00
CD1-NE1	1.38	1.39	0.00
CD2-CE2	1.42	1.40	0.02
CD2-CE3	1.40	1.39	0.01
NE1-HE1	1.01	1.01	0.00
NE1-CE2	1.38	1.37	0.01
CE2-CZ2	1.40	1.39	0.02
CE3-FE3	1.36	1.36	0.00
CE3-CZ3	1.38	1.39	0.01
CZ2-HZ2	1.09	1.08	0.01
CZ2-CH2	1.39	1.40	0.01
CZ3-HZ3	1.09	1.08	0.00
CZ3-CH2	1.41	1.40	0.01
CH2- $HH2$	1.09	1.08	0.00
HB3-CB-HB1	108.18	108.91	0.73
HB3-CB-HB2	107.23	108.56	1.33
HB3-CB-CG	111.31	109.74	1.57
CB-CG-CD1	127.44	127.59	0.15
CB-CG-CD2	126.93	125.44	1.49
HB1-CB-HB2	108.18	108.91	0.72
HB1-CB-CG	110.49	110.95	0.47
HB2-CB-CG	111.31	109.74	1.57
CG-CD1-HD1	129.37	128.20	1.17
CG-CD1-NE1	110.05	107.85	2.20
CG-CD2-CE2	108.43	108.04	0.39
CG-CD2-CE3	134.50	133.36	1.14
CD1-CG-CD2	105.63	106.96	1.34
CD1-NE1-HE1	125.19	125.79	0.60

	015	OTLIDIO	11 1100
Terms	QM	CHARMM	Abs. diff.
CD1-NE1-CE2	109.56	111.00	1.44
HD1-CD1-NE1	120.58	123.95	3.37
CD2-CE2-NE1	106.33	106.14	0.19
CD2-CE2-CZ2	122.94	121.08	1.85
CD2-CE3-FE3	118.51	121.16	2.65
CD2-CE3-CZ3	121.60	121.21	0.40
NE1-CE2-CZ2	130.73	132.78	2.05
HE1-NE1-CE2	125.24	123.20	2.04
CE2-CD2-CE3	117.07	118.60	1.53
CE2-CZ2-HZ2	121.69	119.56	2.12
CE2-CZ2-CH2	117.19	120.05	2.86
CE3-CZ3-HZ3	119.34	119.84	0.51
CE3-CZ3-CH2	119.51	119.75	0.24
FE3-CE3-CZ3	119.89	117.63	2.26
CZ2-CH2-CZ3	121.69	119.32	2.38
CZ2-CH2-HH2	119.50	120.62	1.12
HZ2-CZ2-CH2	121.12	120.39	0.74
CZ3-CH2-HH2	118.81	120.06	1.26
HZ3-CZ3-CH2	121.15	120.41	0.74

2.19 The small molecule used for bonded terms optimization of O-[(S)-hydroxy[(3R)-3-hydrox y-2,2-dimethyl-4-oxo-4-(3-oxo-3-[(2-sulfanylethyl)amino]pro pylamino)butyl]oxyphosphor yl]-L-serine (4HH)

Figure S234: The energy minimized structure corresponding to (2R)-N-ethyl-2-hydroxypropanami de.

Table	S699:	The	calculated	geometric	terms	\mathbf{of}
(2R)-I	N-ethyl-	2-hyo	łroxypropai	namide.		

Terms	QM	CHARMM	Abs. diff.
CK-HK1	1.09	1.11	0.02
CK-HK2	1.10	1.11	0.01
CK-HK3	1.09	1.11	0.02
CK-CM	1.53	1.55	0.02
CM-HM	1.10	1.11	0.01
CM-OM	1.41	1.43	0.02
CM-CL3	1.53	1.53	0.00
OM-HOM	0.98	0.96	0.02
CL3-ON	1.24	1.23	0.01
CL3-NN	1.35	1.35	0.00
NN-HN	1.01	0.99	0.02
NN-CO	1.46	1.44	0.02
CO-HO1	1.09	1.12	0.02
CO-HO2	1.09	1.12	0.03
CO-CP	1.52	1.53	0.00
CP-HP1	1.09	1.11	0.02
CP-HP2	1.09	1.11	0.02
CP-HP3	1.09	1.11	0.02
CK-CM-HM	109.84	108.60	1.23
CK-CM-OM	110.36	107.41	2.95
CK-CM-CL3	110.41	112.64	2.23
HK1-CK-HK2	108.92	109.09	0.17
HK1-CK-HK3	108.53	107.72	0.81
HK1-CK-CM	109.29	110.22	0.93
HK2-CK-HK3	108.77	108.12	0.65
HK2-CK-CM	112.14	111.99	0.15
HK3-CK-CM	109.12	109.59	0.46
CM-OM-HOM	104.13	106.30	2.16

Terms	QM	CHARMM	Abs. diff.
CM-CL3-ON	119.92	121.74	1.81
CM-CL3-NN	117.02	117.52	0.50
HM-CM-OM	108.51	107.31	1.19
HM-CM-CL3	109.19	106.83	2.36
OM-CM-CL3	108.50	113.82	5.33
CL3-NN-HN	118.88	120.38	1.50
CL3-NN-CO	121.36	122.91	1.55
ON-CL3-NN	123.05	120.72	2.33
NN-CO-HO1	107.51	108.01	0.50
NN-CO-HO2	107.06	110.72	3.65
NN-CO-CP	112.47	115.88	3.41
HN-NN-CO	119.23	116.47	2.76
CO-CP-HP1	109.64	109.95	0.31
CO-CP-HP2	110.89	110.47	0.41
CO-CP-HP3	110.52	110.72	0.20
HO1-CO-HO2	107.97	105.35	2.62
HO1-CO-CP	111.28	108.02	3.27
HO2-CO-CP	110.33	108.32	2.01
HP1-CP-HP2	108.86	108.40	0.45
HP1-CP-HP3	108.50	108.44	0.06
HP2-CP-HP3	108.38	108.79	0.41

Figure S235: The PES scan for flexible dihedrals corresponding to (2R)-N-ethyl-2-hydroxypropana mide.

2.20 The small molecule used for bonded terms optimization of 4-hydroxy-tryptophan (4HT)

Figure S236: The energy minimized structure corresponding to 3-methyl-1H-indol-4-olate.

Table S700: The calculated geometric terms of 3-methyl-1H-indol-4-olate.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.10	1.11	0.01
CB-HB2	1.10	1.11	0.01
CB-HB1	1.09	1.11	0.02
CB-CG	1.50	1.51	0.01
CG-CD1	1.38	1.37	0.01
CG-CD2	1.44	1.44	0.00
CD1-HD1	1.08	1.08	0.00
CD1-NE1	1.38	1.38	0.01
CD2-CE2	1.42	1.40	0.02
CD2-CE3	1.41	1.40	0.01
NE1-HE1	1.01	1.01	0.00
NE1-CE2	1.38	1.37	0.01
CE2-CZ2	1.40	1.38	0.02
CZ2-HZ2	1.09	1.08	0.01
CZ2-CH2	1.39	1.40	0.01
CE3-OE3	1.38	1.41	0.03
CE3-CZ3	1.39	1.39	0.01
OE3-HE3	0.97	0.96	0.01
CZ3-HZ3	1.09	1.08	0.00
CZ3-CH2	1.41	1.40	0.01
CH2-HH2	1.09	1.08	0.00
HB3-CB-HB2	108.21	109.28	1.07
HB3-CB-HB1	106.86	108.49	1.62
HB3-CB-CG	112.13	109.96	2.18
CB-CG-CD1	125.70	127.00	1.30
CB-CG-CD2	128.26	126.00	2.25
HB2-CB-HB1	106.89	108.50	1.61
HB2-CB-CG	112.13	109.97	2.15
HB1-CB-CG	110.34	110.60	0.26
CG-CD1-HD1	129.27	128.36	0.91
CG-CD1-NE1	109.88	107.96	1.93
CG-CD2-CE2	107.72	107.77	0.05
CG-CD2-CE3	134.46	133.03	1.43
CD1-CG-CD2	106.04	107.00	0.96

Terms	QM	CHARMM	Abs. diff.
CD1-NE1-HE1	125.24	126.10	0.86
CD1-NE1-CE2	109.66	111.02	1.36
HD1-CD1-NE1	120.85	123.68	2.83
CD2-CE2-NE1	106.70	106.26	0.44
CD2-CE2-CZ2	123.32	121.41	1.90
CD2-CE3-OE3	122.73	123.52	0.80
CD2-CE3-CZ3	119.55	119.54	0.00
NE1-CE2-CZ2	129.99	132.33	2.34
HE1-NE1-CE2	125.10	122.88	2.22
CE2-CD2-CE3	117.83	119.20	1.38
CE2-CZ2-HZ2	121.78	119.99	1.79
CE2-CZ2-CH2	116.71	119.48	2.77
CZ2-CH2-CZ3	121.75	119.48	2.27
CZ2-CH2-HH2	119.44	120.42	0.98
HZ2-CZ2-CH2	121.51	120.53	0.99
CE3-OE3-HE3	108.38	107.57	0.81
CE3-CZ3-HZ3	118.37	118.58	0.21
CE3-CZ3-CH2	120.85	120.88	0.03
OE3-CE3-CZ3	117.73	116.93	0.79
CZ3-CH2-HH2	118.81	120.10	1.29
HZ3-CZ3-CH2	120.78	120.54	0.23
2.21 The small molecule used for bonded terms optimization of 4-amino-l-tryptophan (4IN)

Figure S237: The energy minimized structure corresponding to 3-methyl-1H-indol-4-amine.

Table S701: The calculated geometric terms of 3-methyl-1H-indol-4-amine.

	CD1-NE1-HE1	125.31	126.38	1.07	
	CD1-NE1-CE2	109.53	110.96	1.43	
	HD1-CD1-NE1	120.78	123.85	3.07	
	CD2-CE2-NE1	106.88	106.46	0.42	
	CD2-CE2-CZ2	123.36	121.47	1.89	
	CD2-CE3-CZ3	118.11	119.13	1.01	
	CD2-CE3-NZ1	120.11	123.81	3.70	
	NE1-CE2-CZ2	129.70	132.07	2.37	
	HE1-NE1-CE2	125.13	122.66	2.46	
	CE2-CD2-CE3	118.46	119.25	0.79	
	CE2-CZ2-HZ2	121.86	119.96	1.89	
	CE2-CZ2-CH2	116.54	119.47	2.93	
	CZ2-CH2-CZ3	121.53	119.69	1.84	
	CZ2-CH2-HH2	119.57	120.35	0.78	
	HZ2-CZ2-CH2	121.57	120.56	1.00	
	CZ3-CE3-NZ1	121.40	117.06	4.34	
	CZ3-CH2-HH2	118.87	119.96	1.08	
	HZ3-CZ3-CE3	118.99	119.83	0.84	
	HZ3-CZ3-CH2	119.14	119.17	0.03	
	CE3-CZ3-CH2	121.78	120.99	0.80	
	CE3-NZ1-HZ11	111.75	111.35	0.40	
=	CE3-NZ1-HZ12	112.60	111.64	0.96	

109.14

120.05

QM

106.09

CHARMM

107.05

Abs. diff.

0.96

10.91

Terms

CD1-CG-CD2

 $\rm HZ11\text{-}NZ1\text{-}HZ12$

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.10	1.11	0.01
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-CG	1.50	1.51	0.01
CG-CD1	1.38	1.37	0.01
CG-CD2	1.44	1.44	0.01
CD1-HD1	1.08	1.08	0.00
CD1-NE1	1.38	1.38	0.01
CD2-CE2	1.42	1.40	0.02
CD2-CE3	1.42	1.41	0.01
NE1-HE1	1.01	1.01	0.00
NE1-CE2	1.38	1.37	0.01
CE2-CZ2	1.40	1.38	0.02
CZ2-HZ2	1.09	1.08	0.01
CZ2-CH2	1.39	1.40	0.01
CZ3-HZ3	1.09	1.08	0.01
CZ3-CE3	1.39	1.40	0.00
CZ3-CH2	1.41	1.40	0.01
CE3-NZ1	1.41	1.39	0.02
NZ1-HZ11	1.02	1.00	0.02
NZ1-HZ12	1.02	1.00	0.02
CH2-HH2	1.09	1.08	0.00
HB3-CB-HB1	106.99	108.67	1.68
HB3-CB-HB2	107.78	109.15	1.37
HB3-CB-CG	112.32	109.88	2.44
CB-CG-CD1	125.43	126.40	0.97
CB-CG-CD2	128.46	126.55	1.92
HB1-CB-HB2	107.97	108.64	0.67
HB1-CB-CG	110.18	110.74	0.57
HB2-CB-CG	111.40	109.72	1.68
CG-CD1-HD1	129.35	128.13	1.21
CG-CD1-NE1	109.88	108.02	1.86
CG-CD2-CE2	107.62	107.51	0.11
CG-CD2-CE3	133.84	133.23	0.61

2.22 The small molecule used for bonded terms optimization of 2-amino-3-(cystein-S-yl)-isox azolidin-5-yl-aceticacid (5CS)

Figure S238: The energy minimized structure corresponding to 2-[3-(ethylsulfanyl)-1,2-oxazolidin-5 -yl]-2-(trihydridonickelio)aceticacid.

Table S702:	The calculated	geometric	terms of $2-$
[3-(ethylsulf	anyl)-1,2-oxazo	olidin-5-yl]	-2-(trihydri
donickelio)a	ceticacid.		

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.53	0.01
CB-HB1	1.10	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SG	1.82	1.82	0.00
SG-CD	1.81	1.82	0.01
CD-HD	1.10	1.10	0.00
CD-NX	1.47	1.48	0.01
CD-CE	1.53	1.51	0.02
NX-HX	1.03	1.02	0.01
NX-OF	1.44	1.47	0.03
OF-CF	1.46	1.44	0.02
CE-HE1	1.09	1.10	0.01
CE-HE2	1.09	1.10	0.01
CE-CF	1.53	1.53	0.00
CF-HF	1.10	1.10	0.00
CF-CI	1.52	1.55	0.04
CI-HI	1.09	1.11	0.02
CI-NI	1.50	1.49	0.01
CI-CJ	1.57	1.54	0.03
NI-HN1	1.03	1.03	0.01
NI-HN2	1.04	1.05	0.01
NI-HN3	1.03	1.04	0.01
CJ-OJ1	1.27	1.26	0.01
CJ-OJ2	1.24	1.25	0.01
HA3-CA-HA2	108.29	108.26	0.03
HA3-CA-HA	108.14	108.40	0.26
HA3-CA-CB	111.29	110.50	0.79
HA2-CA-HA	108.12	108.43	0.30

Terms	QM	CHARMM	Abs. diff.
HA2-CA-CB	111.04	110.54	0.50
CA-CB-HB1	110.28	108.48	1.81
CA-CB-HB2	111.21	108.74	2.47
CA-CB-SG	109.78	112.64	2.86
HA-CA-CB	109.84	110.63	0.79
CB-SG-CD	98.96	97.90	1.06
HB1-CB-HB2	108.33	107.15	1.18
HB1-CB-SG	108.92	109.97	1.05
HB2-CB-SG	108.27	109.70	1.44
SG-CD-HD	109.26	108.64	0.62
SG-CD-NX	111.58	112.22	0.65
SG-CD-CE	110.80	109.88	0.92
CD-NX-HX	106.70	112.77	6.08
CD-NX-OF	104.03	102.04	1.98
CD-CE-HE1	109.54	110.47	0.93
CD-CE-HE2	115.34	113.80	1.53
CD-CE-CF	102.27	103.84	1.57
HD-CD-NX	107.52	111.55	4.03
HD-CD-CE	112.74	112.36	0.38
NX-CD-CE	104.86	102.11	2.74
NX-OF-CF	109.22	107.81	1.41
HX-NX-OF	103.96	105.49	1.52
OF-CF-CE	106.38	105.60	0.78
OF-CF-HF	107.91	107.17	0.74
OF-CF-CI	107.55	108.92	1.37
CE-CF-HF	112.25	111.51	0.75
CE-CF-CI	112.91	113.29	0.38
HE1-CE-HE2	107.86	105.27	2.60
HE1-CE-CF	110.57	108.88	1.69
HE2-CE-CF	111.19	114.60	3.40
CF-CI-HI	110.74	110.97	0.23
CF-CI-NI	108.43	110.97	2.54
CF-CI-CJ	109.54	109.08	0.46
HF-CF-CI	109.56	110.05	0.49
CI-NI-HN1	111.73	110.10	1.63
CI-NI-HN2	98.88	101.89	3.02
CI-NI-HN3	112.16	109.82	2.34
CI-CJ-OJ1	112.00	117.65	5.65
CI-CJ-OJ2	114.92	114.94	0.02
HI-CI-NI	109.39	108.62	0.77
HI-CI-CJ	113.50	109.29	4.21
NI-CI-CJ	104.97	107.84	2.87
HN1-NI-HN2	108.64	109.27	0.63
HN1-NI-HN3	108.84	112.98	4.15
HN2-NI-HN3	116.32	112.21	4.11
OJ1-CJ-OJ2	132.96	127.41	5.56

Figure S239: The PES scan for flexible dihedral corresponding to 2-[3-(ethylsulfanyl)-1,2-oxazolid in-5-yl]-2-(trihydridonickelio)aceticacid.

2.23 The small molecule used for bonded terms optimization of (2R)-2-azanyl-3-[(3R)-1-ethyl-2,5-bis(oxidanylidene)pyrrolidi n-3-yl]sulfanyl-propanoicacid (6V1)

Figure S240: The energy minimized structure corresponding to (3R)-1-ethyl-3-(ethylsulfanyl)pyrro lidine-2,5-dione.

Table S703: The calculated geometric terms of (3R)-1-ethyl-3-(ethylsulfanyl)pyrrolidine-2,5-di one.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.53	0.01
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SG	1.82	1.82	0.00
SG-C1	1.82	1.83	0.01
C1-H1	1.09	1.10	0.00
C1-C2	1.52	1.54	0.01
C1-C5	1.53	1.53	0.01
C2-O7	1.22	1.23	0.01
C2-N3	1.39	1.38	0.01
C5-H51	1.10	1.10	0.01
C5-H52	1.09	1.10	0.00
C5-C4	1.52	1.52	0.00
C4-O8	1.22	1.23	0.01
C4-N3	1.39	1.38	0.01
N3-C6	1.46	1.44	0.01
C6-H61	1.09	1.12	0.02
C6-H62	1.09	1.12	0.02
C6-C3	1.52	1.53	0.01
C3-H31	1.09	1.11	0.02
C3-H32	1.09	1.11	0.02
C3-H33	1.09	1.11	0.02
HA3-CA-HA2	108.19	108.40	0.21
HA3-CA-HA	108.10	108.30	0.20
HA3-CA-CB	109.65	110.49	0.83
HA2-CA-HA	108.37	108.42	0.05

Terms	QM	CHARMM	Abs. diff.
HA2-CA-CB	111.34	110.65	0.69
CA-CB-HB1	111.16	108.33	2.83
CA-CB-HB2	110.49	108.67	1.81
CA-CB-SG	109.00	112.66	3.66
HA-CA-CB	111.08	110.51	0.58
CB-SG-C1	100.62	100.66	0.04
HB1-CB-HB2	108.20	106.98	1.21
HB1-CB-SG	109.27	110.18	0.91
HB2-CB-SG	108.68	109.84	1.16
SG-C1-H1	109.28	111.34	2.06
SG-C1-C2	109.40	107.37	2.03
SG-C1-C5	109.66	109.37	0.29
C1-C2-O7	127.48	127.01	0.48
C1-C2-N3	107.74	105.20	2.54
C1-C5-H51	111.44	110.75	0.70
C1-C5-H52	114.37	114.58	0.20
C1-C5-C4	104.76	105.27	0.50
H1-C1-C2	110.25	111.41	1.17
H1-C1-C5	113.90	112.43	1.48
C2-C1-C5	104.20	104.59	0.40
C2-N3-C4	113.53	116.99	3.45
C2-N3-C6	123.01	121.11	1.90
O7-C2-N3	124.76	127.80	3.04
C5-C4-O8	128.03	126.43	1.59
C5-C4-N3	107.24	105.15	2.08
H51-C5-H52	107.54	105.80	1.74
H51-C5-C4	108.42	108.17	0.25
H52-C5-C4	110.17	112.20	2.03
C4-N3-C6	123.26	121.59	1.67
O8-C4-N3	124.70	128.39	3.69
N3-C6-H61	106.73	109.16	2.43
N3-C6-H62	106.75	108.80	2.05
N3-C6-C3	111.23	117.72	6.49
C6-C3-H31	110.24	110.54	0.29
C6-C3-H32	110.22	110.40	0.18
С6-С3-Н33	110.26	110.56	0.30
H61-C6-H62	109.24	104.97	4.27
H61-C6-C3	111.34	107.64	3.69
H62-C6-C3	111.34	107.81	3.53
H31-C3-H32	109.07	108.52	0.55
H31-C3-H33	108.48	108.41	0.08
H32-C3-H33	108.52	108.35	0.17

Figure S241: The PES scan for flexible dihedrals corresponding to (3R)-1-ethyl-3-(ethylsulfanyl)pyr rolidine-2,5-dione.

2.24 The small molecule 1 used for bonded terms optimization of (2S)-2,3-dihydro-1H-pyrrole-2 -carboxylicacid (8LJ)

Figure S242: The energy minimized structure corresponding to 2-[1-(2-acetamidoacetyl)-2,5-dihydr o-1H-pyrrol-2-yl]formamido-N-methylacetamide.

Table S704: The calculated geometric terms of 2-[1-(2-acetamidoacetyl)-2,5-dihydro-1H-pyrrol-2yl]formamido-N-methylacetamide.

Terms	QM	CHARMM	Abs. diff.	Η
N1AL-HNN1	1.01	0.99	0.02	ł
N1AL-C1AL	1.46	1.45	0.01	(
N1AL-CY	1.37	1.34	0.03	I
C1AL-H1AL	1.10	1.08	0.01	I
C1AL-CB11	1.53	1.54	0.01	I
C1AL-C11	1.54	1.54	0.01	
CB11-H111	1.10	1.11	0.01	
CB11-H211	1.10	1.11	0.01	
CB11-H311	1.09	1.11	0.02	
C11-O11	1.23	1.23	0.00	
C11-N	1.36	1.37	0.01	
CAY-HY1	1.09	1.11	0.01	
CAY-HY2	1.09	1.11	0.02	
CAY-HY3	1.10	1.11	0.02	
CAY-CY	1.52	1.48	0.04	
CY-OY	1.23	1.22	0.01	
N-CA	1.48	1.45	0.03	
N-CD	1.48	1.46	0.02	
CA-HA	1.10	1.10	0.01	
CA-CB	1.51	1.52	0.02	
CA-C	1.55	1.52	0.02	
CB-HB	1.08	1.09	0.00	
CB-CG	1.33	1.37	0.04	
CG-HG	1.08	1.08	0.00	
CG-CD	1.51	1.51	0.00	
CD-HD1	1.10	1.10	0.00	
CD-HD2	1.10	1.10	0.00	
C-O	1.22	1.23	0.01	
C-N2AL	1.36	1.35	0.01	
N2AL-HNN2	1.02	1.00	0.02	
N2AL-C2AL	1.46	1.45	0.01	

Terms	QM	CHARMM	Abs. diff.
C2AL-H2AL	1.09	1.08	0.01
C2AL-CB22	1.53	1.54	0.01
C2AL-C22	1.55	1.53	0.02
CB22-H122	1.10	1.11	0.01
CB22-H222	1.09	1.11	0.02
CB22-H322	1.00	1 11	0.02
$C_{22} O_{22}$	1.00	1.23	0.00
C22-022	1.22	1.25	0.00
NT INT	1.07	1.00	0.02
	1.02	1.00	0.02
NT-CAT	1.45	1.45	0.01
CAT-HT1	1.09	1.11	0.02
CAT-HT2	1.09	1.11	0.02
CAT-HT3	1.10	1.11	0.01
N1AL-C1AL-H1AL	108.80	106.37	2.43
N1AL-C1AL-CB11	110.61	110.30	0.31
N1AL-C1AL-C11	114.25	116.95	2.69
N1AL-CY-CAY	116.49	117.05	0.56
N1AL-CY-OY	121.32	121.96	0.64
HNN1-N1AL-C1AL	117.30	116.13	1.16
HNN1-N1AL-CY	118.32	119.35	1.04
C1AL-N1AL-CY	120.84	123.26	2.42
C1AL-CB11-H111	110 50	110.05	0.45
CIAL CB11 H211	112.50	111.00	0.45
C1AL CD11 H211	100.27	110.44	1.06
CIAL CII OII	109.37	110.44	1.00
CIAL-CII-OII	117.82	110.28	1.04
CIAL-CII-N	120.92	124.01	3.09
HIAL-CIAL-CBII	108.86	106.90	1.96
H1AL-C1AL-C11	102.47	104.76	2.29
CB11-C1AL-C11	111.40	110.84	0.56
H111-CB11-H211	108.38	108.44	0.06
H111-CB11-H311	107.92	107.70	0.22
H211-CB11-H311	108.29	108.32	0.03
C11-N-CA	118.55	121.28	2.73
C11-N-CD	129.29	125.40	3.88
O11-C11-N	121.18	119.71	1.47
CAY-CY-OY	122.18	120.98	1.20
HY1-CAY-HY2	109.32	108.91	0.41
HY1-CAY-HY3	108.69	109.09	0.40
HY1-CAY-CY	113 62	111 49	2.13
HV2-CAV-HV3	107.34	108.21	0.88
HV2 CAV CV	107.54	100.21	0.88
HV3 CAV CV	108.31	109.02	0.71
	100.77	109.45	0.08
N-CA-HA	109.97	111.20	1.23
N-CA-CB	102.23	102.90	0.67
N-CA-C	117.01	115.48	1.53
N-CD-CG	102.23	103.39	1.16
N-CD-HD1	111.55	110.72	0.83
N-CD-HD2	111.77	109.85	1.92
CA-N-CD	111.95	112.98	1.02
CA-CB-HB	120.96	122.35	1.39
CA-CB-CG	111.76	110.53	1.23
CA-C-O	118.00	118.42	0.42
CA-C-N2AL	117.72	120.03	2.31
HA-CA-CB	112.37	109.47	2.90
HA-CA-C	$104\ 23$	108 95	472
CB-CA-C	111 20	108 56	2 73
CB-CC-HC	126 45	196.15	0.30
CB-CC-CD	111 70	110 02	1 69
00-00-00	TTT'IO	110.00	1.04

Terms	QM	CHARMM	Abs. diff.
HB-CB-CG	127.26	127.11	0.15
CG-CD-HD1	112.35	112.31	0.03
CG-CD-HD2	112.00	112.32	0.32
HG-CG-CD	121.84	123.74	1.90
HD1-CD-HD2	107.03	108.20	1.17
C-N2AL-HNN2	119.46	119.83	0.37
C-N2AL-C2AL	120.73	123.22	2.50
O-C-N2AL	124.26	121.55	2.71
N2AL-C2AL-H2AL	107.88	107.03	0.85
N2AL-C2AL-CB22	110.56	110.29	0.27
N2AL-C2AL-C22	113.30	114.73	1.43
HNN2-N2AL-C2AL	117.18	115.29	1.89
C2AL-CB22-H122	110.47	110.04	0.43
C2AL-CB22-H222	111.40	111.00	0.40
C2AL-CB22-H322	109.20	110.48	1.28
C2AL-C22-O22	120.33	121.31	0.98
C2AL-C22-NT	115.44	117.27	1.83
H2AL-C2AL-CB22	109.82	108.36	1.47
H2AL-C2AL-C22	104.16	105.66	1.49
CB22-C2AL-C22	110.85	110.44	0.41
H122-CB22-H222	108.38	108.42	0.04
H122-CB22-H322	108.55	108.07	0.48
H222-CB22-H322	108.78	108.76	0.02
C22-NT-HNT	117.94	119.58	1.64
C22-NT-CAT	120.08	122.69	2.60
O22-C22-NT	123.60	121.40	2.21
NT-CAT-HT1	108.68	111.19	2.51
NT-CAT-HT2	109.17	110.36	1.19
NT-CAT-HT3	112.34	110.76	1.58
HNT-NT-CAT	116.50	117.44	0.93
HT1-CAT-HT2	109.59	107.96	1.62
HT1-CAT-HT3	108.15	108.12	0.03
HT2-CAT-HT3	108.88	108.33	0.55

2.25 The small molecule 2 used for bonded terms optimization of (2S)-2,3-dihydro-1H-pyrrole-2 -carboxylicacid (8LJ)

Figure S243: The energy minimized structure corresponding to (2S)-1-acetyl-N-methyl-2,5-dihydr o-1H-pyrrole-2-carboxamide.

Table S705: The calculated geometric terms of (2S)-1-acetyl-N-methyl-2,5-dihydro-1H-pyrrole -2-carboxamide.

Terms	QM	CHARMM	Abs. diff.
C1AL-H11	1.09	1.11	0.02
C1AL-H12	1.09	1.11	0.02
C1AL-H13	1.09	1.11	0.01
C1AL-C11	1.51	1.49	0.02
C11-O11	1.24	1.23	0.02
C11-N	1.36	1.36	0.00
N-CA	1.48	1.44	0.03
N-CD	1.47	1.45	0.01
CA-HA	1.10	1.10	0.00
CA-CB	1.50	1.53	0.03
CA-C	1.54	1.54	0.00
CB-HB	1.08	1.08	0.00
CB-CG	1.34	1.37	0.03
CG-HG	1.08	1.08	0.00
CG-CD	1.50	1.51	0.01
CD-HD1	1.10	1.10	0.01
CD-HD2	1.10	1.10	0.00
C-O	1.24	1.23	0.01
C-N2AL	1.35	1.35	0.01
N2AL-HNN2	1.02	1.00	0.02
N2AL-C2AL	1.45	1.44	0.01
C2AL-H21	1.09	1.11	0.02
C2AL-H22	1.09	1.11	0.02
C2AL-H23	1.10	1.11	0.02
C1AL-C11-O11	121.53	118.83	2.70
C1AL-C11-N	116.63	118.34	1.71
H11-C1AL-H12	109.71	108.48	1.24
H11-C1AL-H13	108.00	109.93	1.93
H11-C1AL-C11	111.69	110.47	1.22
H12-C1AL-H13	108.88	108.48	0.41
H12-C1AL-C11	107.81	108.98	1.17

Terms	QM	CHARMM	Abs. diff.
H13-C1AL-C11	110.72	110.46	0.26
C11-N-CA	120.73	122.58	1.85
C11-N-CD	125.50	124.09	1.41
O11-C11-N	121.84	122.83	0.98
N-CA-HA	108.64	112.04	3.40
N-CA-CB	102.00	101.79	0.21
N-CA-C	112.54	114.90	2.37
N-CD-CG	102.10	102.22	0.12
N-CD-HD1	111.02	111.23	0.21
N-CD-HD2	111.64	109.50	2.14
CA-N-CD	112.07	113.32	1.24
CA-CB-HB	122.09	122.75	0.66
CA-CB-CG	111.61	110.44	1.17
CA-C-O	121.58	121.28	0.30
CA-C-N2AL	114.35	117.43	3.08
HA-CA-CB	113.62	107.46	6.16
HA-CA-C	109.26	109.51	0.25
CB-CA-C	110.67	110.70	0.02
CB-CG-HG	126.08	126.07	0.01
CB-CG-CD	111.64	109.98	1.66
HB-CB-CG	126.22	126.55	0.33
CG-CD-HD1	112.36	112.29	0.08
CG-CD-HD2	112.01	113.03	1.02
HG-CG-CD	122.26	123.52	1.25
HD1-CD-HD2	107.71	108.47	0.76
C-N2AL-HNN2	117.15	118.36	1.21
C-N2AL-C2AL	120.33	122.51	2.18
O-C-N2AL	124.05	121.29	2.77
N2AL-C2AL-H21	109.24	110.69	1.45
N2AL-C2AL-H22	108.68	110.47	1.80
N2AL-C2AL-H23	111.88	110.58	1.30
HNN2-N2AL-C2AL	120.96	118.92	2.04
H21-C2AL-H22	109.56	108.36	1.20
H21-C2AL-H23	108.20	108.24	0.04
H22-C2AL-H23	109.26	108.42	0.84

2.26 The small molecule used for bonded terms optimization of cis-amiclenomycin (ACZ)

Figure S244: The energy minimized structure corresponding to (1s, 4s)-4-ethylcyclohexa-2,5-dien-1 - amine.

Table S706: The calculated geometric terms of (1s, 4s)-4-ethylcyclohexa-2,5-dien-1-amine.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-CG	1.53	1.54	0.01
CG-HG1	1.10	1.12	0.02
CG-HG2	1.10	1.11	0.01
CG-CD	1.55	1.56	0.01
CD-HD	1.10	1.11	0.01
CD-CE1	1.50	1.53	0.03
CD-CE2	1.50	1.53	0.03
CE1-HE11	1.09	1.10	0.02
CE1-CZ1	1.34	1.36	0.01
CE2-HE22	1.09	1.10	0.01
CE2-CZ2	1.34	1.36	0.01
CZ1-HZ11	1.09	1.10	0.01
CZ1-CH	1.49	1.52	0.03
CZ2-HZ22	1.09	1.10	0.01
CZ2-CH	1.49	1.52	0.03
CH-HH	1.10	1.12	0.02
CH-NJ	1.56	1.48	0.08
NJ-HJ1	1.03	1.04	0.01
NJ-HJ2	1.03	1.04	0.01
NJ-HJ3	1.03	1.04	0.01
HB3-CB-HB1	107.48	107.57	0.09
HB3-CB-HB2	107.71	107.75	0.03
HB3-CB-CG	110.19	110.27	0.08
CB-CG-HG1	109.59	107.16	2.43
CB-CG-HG2	110.31	109.01	1.30
CB-CG-CD	113.71	114.45	0.73
HB1-CB-HB2	108.31	108.48	0.17
HB1-CB-CG	112.08	111.70	0.38
HB2-CB-CG	110.90	110.92	0.02
CG-CD-HD	106.52	106.78	0.25

Terms	QM	CHARMM	Abs. diff.
CG-CD-CE1	111.87	110.44	1.43
CG-CD-CE2	110.09	109.34	0.75
HG1-CG-HG2	106.60	106.98	0.38
HG1-CG-CD	107.95	108.86	0.91
HG2-CG-CD	108.41	110.09	1.67
CD-CE1-HE11	117.42	116.46	0.96
CD-CE1-CZ1	124.04	122.75	1.29
CD-CE2-HE22	116.85	116.41	0.44
CD-CE2-CZ2	124.29	122.78	1.51
HD-CD-CE1	107.89	107.77	0.12
HD-CD-CE2	108.05	107.61	0.44
CE1-CD-CE2	112.16	114.56	2.41
CE1-CZ1-HZ11	120.63	120.41	0.22
CE1-CZ1-CH	121.74	121.57	0.17
HE11-CE1-CZ1	118.53	120.67	2.14
CE2- $CZ2$ - $HZ22$	120.73	120.44	0.29
CE2-CZ2-CH	121.52	121.54	0.01
HE22-CE2-CZ2	118.86	120.72	1.86
CZ1-CH-CZ2	114.56	115.76	1.19
CZ1-CH-HH	111.83	109.16	2.67
CZ1-CH-NJ	107.16	107.26	0.10
HZ11-CZ1-CH	117.62	117.84	0.22
CZ2-CH-HH	111.92	109.14	2.77
CZ2-CH-NJ	107.09	107.31	0.22
HZ22-CZ2-CH	117.74	117.83	0.09
CH-NJ-HJ1	111.95	109.90	2.04
CH-NJ-HJ2	111.92	109.94	1.99
CH-NJ-HJ3	108.52	107.29	1.23
HH-CH-NJ	103.42	107.93	4.51
HJ1-NJ-HJ2	108.20	110.53	2.33
HJ1-NJ-HJ3	108.07	109.54	1.47
HJ2-NJ-HJ3	108.05	109.58	1.53

2.27 The small molecule used for bonded terms optimization of S-(S)-amino[(4-aminobutyl)a mino]methyl-L-cysteine (AGT)

Terms	QM	CHARMM	Abs. diff.
HZ-CZ-NE	115.50	109.38	6.12
NH2-CZ-NE	105.06	105.51	0.45
HH21-NH2-HH22	107.25	108.51	1.27
HH21-NH2-HH23	108.84	111.30	2.46
HH22-NH2-HH23	109.32	110.38	1.07
NE-CD-HD1	112.99	111.48	1.51
NE-CD-HD2	110.42	111.93	1.51
NE-CD-HD3	108.11	110.35	2.25
HE-NE-CD	110.39	105.86	4.53
HD1-CD-HD2	108.96	108.30	0.66
HD1-CD-HD3	109.17	107.43	1.74
HD2-CD-HD3	107.02	107.15	0.13

Figure S245: The energy minimized structure corresponding to [(S)-amino(methylsulfanyl)methy l](methyl)amine.

Table S707: The calculated geometric terms of [(S)-amino(methylsulfanyl)methyl](methyl)amine.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SG	1.82	1.83	0.01
SG-CZ	1.79	1.81	0.02
CZ-HZ	1.10	1.12	0.02
CZ-NH2	1.55	1.45	0.10
CZ-NE	1.42	1.46	0.04
NH2-HH21	1.03	1.04	0.01
NH2-HH22	1.03	1.04	0.01
NH2-HH23	1.03	1.04	0.01
NE-HE	1.02	1.03	0.01
NE-CD	1.47	1.48	0.01
CD-HD1	1.10	1.11	0.02
CD-HD2	1.09	1.11	0.02
CD-HD3	1.09	1.12	0.03
HB3-CB-HB1	107.66	107.10	0.56
HB3-CB-HB2	108.42	106.97	1.45
HB3-CB-SG	104.79	110.33	5.54
CB-SG-CZ	101.82	100.95	0.87
HB1-CB-HB2	110.25	108.17	2.08
HB1-CB-SG	112.97	112.14	0.83
HB2-CB-SG	112.41	111.88	0.53
SG-CZ-HZ	106.05	107.20	1.15
SG-CZ-NH2	109.52	110.51	1.00
SG-CZ-NE	116.21	116.63	0.41
CZ-NH2-HH21	111.41	109.12	2.30
CZ-NH2-HH22	108.20	106.69	1.51
CZ-NH2-HH23	111.71	110.71	1.00
CZ-NE-HE	110.12	111.86	1.74
CZ-NE-CD	115.06	116.88	1.82
HZ-CZ-NH2	103.72	107.28	3.55

Figure S246: The PES scan for flexible dihedrals corresponding to [(S)-amino(methylsulfanyl)met hyl](methyl)amine.

2.28 The small molecule used for bonded terms optimization of (3S)-3-(sulfooxy)-L-serine (ALS)

Figure S247: The energy minimized structure corresponding to [(1S)-1-hydroxyethoxy]sulfonicacid.

Table S708: The calculated geometric terms of [(1S)-1-hydroxyethoxy]sulfonicacid.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.51	1.53	0.02
CB-HB	1.10	1.12	0.02
CB-OG	1.42	1.42	0.00
CB-OS1	1.43	1.41	0.01
OG-HG	0.99	0.97	0.02
OS1-S	1.71	1.56	0.15
S-OS2	1.48	1.45	0.03
S-OS3	1.47	1.45	0.02
S-OS4	1.50	1.45	0.04
HA3-CA-HA2	109.77	109.12	0.65
НАЗ-СА-НА	109.24	108.92	0.32
HA3-CA-CB	109.78	110.52	0.74
HA2-CA-HA	109.45	108.61	0.85
HA2-CA-CB	109.87	109.80	0.07
CA-CB-HB	111.87	106.68	5.19
CA-CB-OG	108.11	106.58	1.53
CA-CB-OS1	107.03	107.58	0.55
HA-CA-CB	108.70	109.84	1.13
CB-OG-HG	103.75	100.27	3.49
CB-OS1-S	113.15	112.76	0.38
HB-CB-OG	109.96	109.54	0.41
HB-CB-OS1	108.30	114.15	5.85
OG-CB-OS1	111.57	111.87	0.31
OS1-S-OS2	104.81	104.33	0.48
OS1-S-OS3	101.61	103.54	1.93
OS1-S-OS4	102.53	105.20	2.66
OS2-S-OS3	116.25	114.04	2.21
OS2-S-OS4	113.50	114.15	0.65
OS3-S-OS4	115.57	114.00	1.57

Figure S248: The PES scan for flexible dihedrals corresponding to [(1S)-1-hydroxyethoxy] sulfonica cid.

2.29 The small molecule used for bonded terms optimization of 5'-O-[(S)-[(5S)-5-amino-6-oxoh exyl]amino(hydroxy)phosphory l]adenosine (APK)

Terms	QM	CHARMM	Abs. diff.
NZ-P-O2P	105.36	107.65	2.29
NZ-P-O5P	98.72	102.65	3.93
HZ-NZ-P	108.55	110.28	1.73
P-O5P-C5P	115.83	117.84	2.01
01P-P-02P	124.68	119.47	5.21
01P-P-05P	104.96	108.63	3.67
O2P-P- $O5P$	109.48	108.38	1.09
O5P-C5P-H5P1	110.93	111.01	0.08
O5P-C5P-H5P2	110.74	111.01	0.27
O5P-C5P-HT	106.59	109.42	2.83
H5P1-C5P-H5P2	109.00	109.00	0.01
H5P1-C5P-HT	109.90	108.14	1.76
H5P2-C5P-HT	109.65	108.18	1.47

Figure S250: The PES scan for flexible dihedral corresponding to (ethylamino)(methoxy)phosphini

cacid.

Figure S249: The energy minimized structure corresponding to (ethylamino)(methoxy)phosphinica cid.

Table S709: The calculated geometric terms of (et hylamino)(methoxy)phosphinicacid.

Terms	QM	CHARMM	Abs. diff.
HD3-CD	1.10	1.11	0.01
CD-HD1	1.09	1.11	0.02
CD-HD2	1.10	1.11	0.01
CD-CE	1.53	1.52	0.00
CE-HE1	1.10	1.12	0.02
CE-HE2	1.09	1.12	0.02
CE-NZ	1.46	1.42	0.04
NZ-HZ	1.02	1.02	0.00
NZ-P	1.74	1.71	0.03
P-O1P	1.51	1.50	0.01
P-O2P	1.52	1.50	0.01
P-O5P	1.68	1.63	0.05
O5P-C5P	1.43	1.43	0.00
C5P-H5P1	1.10	1.11	0.02
C5P-H5P2	1.10	1.11	0.02
C5P-HT	1.10	1.11	0.02
HD3-CD-HD1	108.95	108.24	0.70
HD3-CD-HD2	107.83	108.29	0.46
HD3-CD-CE	111.16	109.95	1.21
CD-CE-HE1	110.24	111.39	1.15
CD-CE-HE2	109.94	111.10	1.16
CD-CE-NZ	110.49	104.83	5.65
HD1-CD-HD2	107.94	108.67	0.73
HD1-CD-CE	110.19	110.59	0.40
HD2-CD-CE	110.68	111.03	0.34
CE-NZ-HZ	111.81	109.48	2.34
CE-NZ-P	116.76	116.07	0.69
HE1-CE-HE2	106.48	110.25	3.77
HE1-CE-NZ	112.48	109.90	2.58
HE2-CE-NZ	107.08	109.22	2.14
NZ-P-O1P	110.66	108.76	1.89

2.30 The small molecule used for bonded terms optimization of c-gamma-hydroxyarginine (ARO)

Terms	QM	CHARMM	Abs. diff.
HG-CG-CD	108.15	109.08	0.92
OH-CG-CD	108.12	112.56	4.44
CD-NE-HE	112.88	116.84	3.96
CD-NE-CZ	126.78	125.01	1.77
HD1-CD-HD2	109.27	107.81	1.46
HD1-CD-NE	110.28	109.22	1.06
HD2-CD-NE	109.93	111.47	1.54
NE-CZ-NH1	120.93	120.77	0.16
NE-CZ-NH2	120.12	119.52	0.59
HE-NE-CZ	120.17	116.56	3.62
CZ-NH1-HH11	121.31	117.98	3.32
CZ-NH1-HH12	121.09	120.12	0.98
CZ-NH2-HH21	121.15	119.55	1.60
CZ-NH2-HH22	120.76	119.43	1.34
NH1-CZ-NH2	118.94	119.71	0.77
HH11-NH1-HH12	117.58	121.89	4.31
HH21-NH2-HH22	117.33	121.03	3.70

Figure S252: The PES scan for flexible dihedral corresponding to N-[(2R)-2-hydroxypropyl]guanidi ne.

Figure S251:	The ener	gy minimiz	ed structu	re cor-
responding to) N-[(2R)-	2-hydroxy	propyl]gua	nidine.

Table S710: The calculated geometric terms of N-[(2R)-2-hydroxypropyl]guanidine.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB1	1.10	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-CG	1.52	1.53	0.02
CG-HG	1.09	1.11	0.02
CG-OH	1.43	1.42	0.01
CG-CD	1.53	1.56	0.03
OH-HH	0.97	0.96	0.01
CD-HD1	1.10	1.11	0.01
CD-HD2	1.09	1.10	0.01
CD-NE	1.46	1.49	0.03
NE-HE	1.02	1.00	0.02
NE-CZ	1.33	1.35	0.02
CZ-NH1	1.34	1.34	0.00
CZ-NH2	1.34	1.34	0.00
NH1-HH11	1.01	0.99	0.02
NH1-HH12	1.01	0.99	0.02
NH2-HH21	1.01	0.99	0.02
NH2-HH22	1.01	0.99	0.02
HB3-CB-HB1	108.74	108.29	0.45
HB3-CB-HB2	108.32	107.82	0.50
HB3-CB-CG	109.81	110.59	0.77
CB-CG-HG	110.31	109.63	0.69
CB-CG-OH	112.81	107.82	4.99
CB-CG-CD	112.25	109.09	3.16
HB1-CB-HB2	108.12	108.20	0.09
HB1-CB-CG	110.65	111.00	0.35
HB2-CB-CG	111.13	110.83	0.30
CG-OH-HH	108.61	106.51	2.09
CG-CD-HD1	110.24	107.03	3.21
CG-CD-HD2	110.45	108.38	2.08
CG-CD-NE	106.65	112.73	6.08
HG-CG-OH	104.83	108.63	3.80

2.31 The small molecule used for bonded terms optimization of asparticacid-4-carboxymethyl ester (ASB)

		HB2	назназ
Ĩ		НВ1	HA
	001	002	
HCZ	1 HC22		

Terms	QM	CHARMM	Abs. diff.
OD1-C2-C1	111.53	116.59	5.06
C2-C1-O1	112.51	114.62	2.12
C2-C1-O2	116.61	117.40	0.79
HC21- $C2$ - $HC22$	109.83	107.35	2.48
HC21-C2-C1	110.35	105.97	4.38
HC22-C2-C1	110.25	106.94	3.31
O1-C1-O2	130.88	127.97	2.91

Figure S253: The energy minimized structure corresponding to 2-(propanoyloxy) acetic acid.

Table S711: The calculated geometric terms of 2-(propanoyloxy)aceticacid.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.01
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.54	0.02
CB-HB1	1.10	1.11	0.01
CB-HB2	1.10	1.11	0.01
CB-CG	1.51	1.54	0.03
CG-OD2	1.23	1.22	0.01
CG-OD1	1.35	1.33	0.02
OD1-C2	1.45	1.46	0.01
C2-HC21	1.09	1.11	0.02
C2-HC22	1.09	1.11	0.02
C2-C1	1.55	1.54	0.01
C1-O1	1.27	1.26	0.01
C1-O2	1.26	1.26	0.01
HA3-CA-HA2	108.73	108.51	0.21
HA3-CA-HA	108.41	108.76	0.36
HA3-CA-CB	110.56	110.64	0.07
HA2-CA-HA	107.62	108.16	0.54
HA2-CA-CB	110.34	110.12	0.21
CA-CB-HB1	111.92	110.37	1.55
CA-CB-HB2	111.54	110.11	1.44
CA-CB-CG	113.04	112.73	0.31
HA-CA-CB	111.10	110.58	0.52
CB-CG-OD2	124.59	124.69	0.10
CB-CG-OD1	110.43	108.31	2.12
HB1-CB-HB2	106.65	108.67	2.03
HB1-CB-CG	108.44	107.96	0.48
HB2-CB-CG	104.81	106.85	2.05
CG-OD1-C2	114.56	115.25	0.69
OD2-CG-OD1	124.97	126.91	1.94
OD1-C2-HC21	104.74	108.63	3.89
OD1-C2-HC22	110.01	110.91	0.90

Figure S254: The PES scan for flexible dihedral corresponding to 2-(propanoyloxy)aceticacid.

2.32 The small molecule used for bonded terms optimization of asparticacid-4-carboxyethylest er (ASL)

Terms	QM	CHARMM	Abs. diff.
CG-OD1-C2	114.94	113.21	1.73
OD2-CG-OD1	124.98	126.66	1.68
OD1-C2-H2	108.66	110.46	1.80
OD1-C2-C1	110.12	115.77	5.65
OD1-C2-C3	105.69	105.91	0.22
C2-C1-O1	112.80	115.54	2.73
C2-C1-O2	116.70	117.01	0.31
C2-C3-H31	111.12	110.13	0.99
C2-C3-H32	108.65	110.04	1.39
C2-C3-H33	109.77	109.59	0.18
H2-C2-C1	108.83	106.23	2.60
H2-C2-C3	111.18	107.73	3.45
C1-C2-C3	112.28	110.53	1.75
O1-C1-O2	130.50	127.46	3.04
H31-C3-H32	109.78	109.30	0.48
Н31-С3-Н33	108.81	109.08	0.27
Н32-С3-Н33	108.68	108.68	0.00

Figure S255: The energy minimized structure corresponding to (2R)-2-(propanoyloxy)propanoicac id.

Table S712: The calculated geometric terms of (2R)-2-(propanoyloxy)propanoicacid.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.01
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.55	0.02
CB-HB1	1.10	1.11	0.01
CB-HB2	1.10	1.11	0.01
CB-CG	1.51	1.54	0.03
CG-OD2	1.23	1.22	0.01
CG-OD1	1.35	1.32	0.03
OD1-C2	1.46	1.45	0.01
C2-H2	1.10	1.11	0.02
C2-C1	1.56	1.56	0.00
C2-C3	1.52	1.55	0.03
C1-O1	1.27	1.26	0.01
C1-O2	1.26	1.26	0.00
C3-H31	1.10	1.11	0.01
C3-H32	1.09	1.11	0.02
C3-H33	1.10	1.11	0.02
HA3-CA-HA2	108.72	108.58	0.14
HA3-CA-HA	108.40	108.91	0.52
HA3-CA-CB	110.56	110.65	0.09
HA2-CA-HA	107.63	108.12	0.49
HA2-CA-CB	110.32	110.00	0.32
CA-CB-HB1	111.93	110.55	1.37
CA-CB-HB2	111.59	110.12	1.48
CA-CB-CG	113.06	113.05	0.01
HA-CA-CB	111.11	110.51	0.60
CB-CG-OD2	124.60	124.99	0.39
CB-CG-OD1	110.41	108.28	2.13
HB1-CB-HB2	106.70	108.70	2.00
HB1-CB-CG	108.43	107.95	0.48
HB2-CB-CG	104.68	106.29	1.61

Figure S256: The PES scan for flexible dihedral corresponding to (2R)-2-(propanoyloxy)propanoic acid.

2.33 The small molecule 1 used for bonded terms optimization of azido-alanine (AZDA)

Figure S257: The energy minimized structure corresponding to 1-ethyl-2lambda4-triaza-1,2-diene.

Table S713: The calculated geometric terms of 1-ethyl-2lambda4-triaza-1,2-diene.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.53	0.01
CB-HB1	1.10	1.12	0.02
CB-HB2	1.09	1.11	0.02
CB-NG	1.48	1.49	0.01
NG-ND	1.24	1.25	0.00
ND-NE	1.16	1.24	0.08
HA3-CA-HA2	108.75	108.48	0.27
НАЗ-СА-НА	108.52	108.37	0.15
HA3-CA-CB	110.23	110.13	0.10
HA2-CA-HA	108.11	108.45	0.34
HA2-CA-CB	110.23	110.49	0.26
CA-CB-HB1	111.18	109.94	1.24
CA-CB-HB2	111.16	109.06	2.10
CA-CB-NG	112.33	112.69	0.36
HA-CA-CB	110.93	110.85	0.08
CB-NG-ND	115.14	115.55	0.41
HB1-CB-HB2	107.92	107.09	0.83
HB1-CB-NG	109.63	109.87	0.24
HB2-CB-NG	104.32	108.00	3.68
NG-ND-NE	172.76	172.26	0.51

Figure S258: The PES scan for flexible dihedral corresponding to 1-ethyl-2lambda4-triaza-1,2-dien e.

2.34 The small molecule 2 used for bonded terms optimization of azido-alanine (AZDA)

Figure S259: The energy minimized structure corresponding to 2-acetamido-N-methyl-3-(2lambda4 -triaza-1,2-dien-1-yl)propanamide.

Table S714: The calculated geometric terms of 2acetamido-N-methyl-3-(2lambda4-triaza-1,2-dien -1-yl)propanamide.

Terms	QM	CHARMM	Abs. diff.
N-HN	1.02	0.99	0.02
N-CA	1.46	1.46	0.00
N-CY	1.38	1.34	0.04
CA-HA	1.10	1.08	0.02
CA-CB	1.53	1.55	0.03
CA-C	1.53	1.52	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-NG	1.49	1.50	0.02
NG-ND	1.25	1.25	0.00
ND-NE	1.16	1.24	0.08
C-O	1.23	1.23	0.00
C-NT	1.36	1.35	0.01
NT-HNT	1.01	0.99	0.02
NT-CAT	1.45	1.44	0.01
CAT-HT1	1.09	1.11	0.02
CAT-HT2	1.09	1.11	0.02
CAT-HT3	1.10	1.11	0.02
CAY-HY1	1.09	1.11	0.02
CAY-HY2	1.09	1.11	0.02
CAY-HY3	1.09	1.11	0.02
CAY-CY	1.51	1.48	0.03
CY-OY	1.23	1.22	0.01
N-CA-HA	106.52	104.31	2.21
N-CA-CB	112.14	113.12	0.98
N-CA-C	111.71	116.18	4.46
N-CY-CAY	114.96	116.55	1.59
N-CY-OY	121.51	122.82	1.31
HN-N-CA	115.19	116.56	1.37
HN-N-CY	115.63	117.31	1.69
CA-N-CY	118.94	123.45	4.51
CA-CB-HB1	110.52	111.10	0.58

Terms	QM	CHARMM	Abs. diff.
CA-CB-HB2	109.74	108.48	1.26
CA-CB-NG	110.20	111.61	1.41
CA-C-O	121.09	121.12	0.03
CA-C-NT	114.37	117.11	2.73
HA-CA-CB	109.27	106.61	2.66
HA-CA-C	107.10	105.83	1.26
CB-CA-C	109.89	109.91	0.03
CB-NG-ND	115.24	115.54	0.30
HB1-CB-HB2	108.54	107.18	1.37
HB1-CB-NG	111.58	110.37	1.21
HB2-CB-NG	106.14	107.93	1.79
NG-ND-NE	172.58	172.45	0.14
C-NT-HNT	115.80	119.33	3.53
C-NT-CAT	119.43	121.63	2.20
O-C-NT	124.09	121.74	2.35
NT-CAT-HT1	108.36	111.59	3.23
NT-CAT-HT2	108.92	110.87	1.95
NT-CAT-HT3	111.78	109.81	1.97
HNT-NT-CAT	118.16	117.55	0.61
HT1-CAT-HT2	109.50	108.05	1.44
HT1-CAT-HT3	108.60	108.03	0.58
HT2-CAT-HT3	109.65	108.38	1.26
CAY-CY-OY	123.52	120.63	2.89
HY1-CAY-HY2	109.88	108.99	0.89
HY1-CAY-HY3	108.34	109.50	1.16
HY1-CAY-CY	111.65	111.14	0.51
HY2-CAY-HY3	108.83	108.58	0.25
HY2-CAY-CY	108.66	108.65	0.02
HY3-CAY-CY	109.44	109.94	0.49

Figure S260: The PES scan for flexible dihedral corresponding to 2-acetamido-N-methyl-3-(2lam bda4-triaza-1,2-dien-1-yl)propanamide.

Figure S261: The energy minimized structure corresponding to 1-propyl-2lambda4-triaza-1,2-diene.

Table S715: The calculated geometric terms of 1-propyl-2lambda4-triaza-1,2-diene.

Terms	OM	CHARMM	Abs. diff.
НАЗ-СА	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.53	0.01
CB-HB1	1.09	1.11	0.02
CB-HB2	1.10	1.11	0.02
CB-CG	1.52	1.54	0.01
CG-HG1	1.09	1.11	0.02
CG-HG2	1.10	1.11	0.02
CG-ND	1.48	1.50	0.01
ND-NE	1.24	1.25	0.00
NE-NZ	1.16	1.24	0.08
HA3-CA-HA2	107.85	108.17	0.32
HA3-CA-HA	107.85	108.30	0.45
HA3-CA-CB	110.90	110.50	0.40
HA2-CA-HA	107.98	108.46	0.48
HA2-CA-CB	110.98	110.59	0.40
CA-CB-HB1	110.52	109.06	1.46
CA-CB-HB2	109.97	108.71	1.26
CA-CB-CG	111.67	114.08	2.41
HA-CA-CB	111.14	110.74	0.39
CB-CG-HG1	110.77	108.64	2.13
CB-CG-HG2	110.81	109.66	1.15
CB-CG-ND	112.73	112.93	0.20
HB1-CB-HB2	106.94	107.31	0.38
HB1-CB-CG	108.47	108.26	0.21
HB2-CB-CG	109.14	109.20	0.07
CG-ND-NE	115.13	115.96	0.82
HG1-CG-HG2	107.85	107.23	0.62
HG1-CG-ND	104.55	108.25	3.70
HG2-CG-ND	109.86	109.95	0.10
ND-NE-NZ	172.65	172.25	0.41

Figure S262: The PES scan for flexible dihedral corresponding to 1-propyl-2lambda4-triaza-1,2-di ene.

2.36 The small molecule 1 used for bonded terms optimization of Chromophore(Thr,Trp,Gly) (B2H)

Figure S263: The energy minimized structure corresponding to trimethyl-1H-imidazol-5-ol.

Table S716: The calculated geometric terms of tr imethyl-1H-imidazol-5-ol.

Terms	QM	CHARMM	Abs. diff.
CA1-HA1	1.10	1.11	0.01
CA1-HA2	1.10	1.11	0.01
CA1-HA3	1.09	1.11	0.02
CA1-C1	1.49	1.50	0.01
C1-N2	1.33	1.31	0.01
C1-N3	1.38	1.38	0.00
N2-CA2	1.38	1.38	0.00
N3-C2	1.37	1.38	0.01
N3-CA3	1.45	1.47	0.02
CA2-C2	1.38	1.37	0.01
CA2-CB2	1.49	1.50	0.00
C2-O2	1.37	1.38	0.00
O2-HO	0.97	0.96	0.01
CB2-HB21	1.09	1.11	0.02
CB2-HB22	1.10	1.11	0.01
CB2-HB23	1.10	1.11	0.01
CA3-HA31	1.09	1.11	0.02
CA3-HA32	1.09	1.11	0.02
CA3-HA33	1.09	1.11	0.02
CA1-C1-N2	125.81	122.97	2.84
CA1-C1-N3	123.01	123.54	0.54
HA1-CA1-HA2	107.78	109.91	2.13
HA1-CA1-HA3	108.51	108.76	0.25
HA1-CA1-C1	112.22	109.96	2.26
HA2-CA1-HA3	108.37	108.78	0.41
HA2-CA1-C1	112.33	109.73	2.60
HA3-CA1-C1	107.51	109.67	2.16
C1-N2-CA2	106.39	103.94	2.45
C1-N3-C2	106.35	105.44	0.91
C1-N3-CA3	128.00	127.17	0.83
N2-C1-N3	111.19	113.48	2.30
N2-CA2-C2	108.80	111.32	2.52
N2-CA2-CB2	122.20	117.01	5.18

Terms	QM	CHARMM	Abs. diff.
N3-C2-CA2	107.27	105.82	1.45
N3-C2-O2	118.06	120.76	2.71
N3-CA3-HA31	108.28	111.49	3.21
N3-CA3-HA32	109.48	111.07	1.59
N3-CA3-HA33	111.09	110.38	0.71
CA2-C2-O2	134.66	133.41	1.25
CA2-CB2-HB21	110.01	109.43	0.58
CA2-CB2-HB22	111.27	111.00	0.27
CA2-CB2-HB23	112.13	109.39	2.75
C2-N3-CA3	125.57	127.39	1.83
C2- $CA2$ - $CB2$	128.98	131.67	2.69
C2-O2-HO	107.17	107.34	0.17
HB21-CB2-HB22	107.61	109.19	1.58
HB21-CB2-HB23	107.66	108.49	0.84
HB22-CB2-HB23	107.99	109.30	1.31
HA31-CA3-HA32	109.43	107.47	1.96
HA31-CA3-HA33	109.17	107.80	1.37
НА32-СА3-НА33	109.36	108.50	0.86

2.37The small molecule 2 used for bonded terms optimization of Chromophore(Thr,Trp,Gly) (B2H)

Figure S265: The energy minimized structure corresponding to 2-(4-ethyl-5-hydroxy-2-methyl-1Himidazol-1-yl)-N-methylacetamide.

Table S717: The calculated geometric terms of 2-(4-ethyl-5-hydroxy-2-methyl-1H-imidazol-1-yl)-N-methylacetamide.

Terms	QM	CHARMM	Abs. diff.
CA1-HA1	1.09	1.11	0.02
CA1-HA3	1.10	1.11	0.01
CA1-HA2	1.09	1.11	0.02
CA1-C1	1.49	1.50	0.01
C1-N2	1.33	1.32	0.01
C1-N3	1.38	1.38	0.00
N2-CA2	1.38	1.38	0.00
N3-C2	1.37	1.38	0.01
N3-CA3	1.45	1.47	0.02
CA2-C2	1.38	1.37	0.01
CA2-CB2	1.49	1.51	0.01
C2-O2	1.38	1.38	0.00
O2-HO	0.97	0.96	0.01
CB2-HB21	1.10	1.11	0.02
CB2-HB22	1.10	1.11	0.01
CB2-CG2	1.53	1.54	0.01
CA3-HA31	1.09	1.11	0.02
CA3-HA32	1.09	1.11	0.02
CA3-C3	1.53	1.50	0.03
CG2-HG1	1.09	1.11	0.02
CG2-HG2	1.09	1.11	0.02
CG2-HG3	1.09	1.11	0.02
C3-O3	1.23	1.22	0.01
C3-N2AL	1.36	1.34	0.02
N2AL-HNN2	1.02	1.00	0.02
N2AL-C2AL	1.45	1.44	0.01
C2AL-H2AL	1.09	1.11	0.02
C2AL-H2A1	1.09	1.11	0.02
C2AL-H2A2	1.09	1.11	0.02
CA1-C1-N2	126.49	122.77	3.72
CA1-C1-N3	122.62	123.75	1.13

Terms	QM	CHARMM	Abs. diff.
HA1-CA1-HA3	107.99	109.83	1.84
HA1-CA1-HA2	109.23	108.67	0.56
HA1-CA1-C1	111.47	110.08	1.39
HA3-CA1-HA2	108.30	108.95	0.65
HA3-CA1-C1	112.08	109.69	2.38
HA2-CA1-C1	107.70	109.60	1.90
C1-N2-CA2	106.69	104.24	2.45
C1-N3-C2	106.42	104.93	1.49
C1-N3-CA3	127.78	128.28	0.50
N2-C1-N3	110.88	113.43	2.54
N2-CA2-C2	108.55	110.58	2.03
N2-CA2-CB2	121.75	118.58	3.17
N3-C2-CA2	107.43	106.81	0.62
N3-C2-O2	117.42	120.73	3.31
N3-CA3-HA31	108.25	110.92	2.66
N3-CA3-HA32	109.23	111.15	1.92
N3-CA3-C3	110.39	110.99	0.61
CA2-C2-O2	135.10	132.46	2.64
CA2-CB2-HB21	108.98	107.99	0.99
CA2-CB2-HB22	109.67	109.12	0.55
CA2-CB2-CG2	112.25	114.41	2.17
C2-N3-CA3	125.43	126.72	1.29
C2-CA2-CB2	129.66	130.82	1.16
C2-O2-HO	107.42	107.07	0.35
CB2-CG2-HG1	109.54	109.97	0.42
CB2-CG2-HG2	111.33	110.54	0.79
CB2-CG2-HG3	110.65	111.08	0.42
HB21-CB2-HB22	106.10	106.89	0.79
HB21-CB2-CG2	109.56	108.85	0.70
HB22-CB2-CG2	110.10	109.30	0.80
CA3-C3-O3	121.48	120.58	0.90
CA3-C3-N2AL	113.91	117.17	3.25
HA31-CA3-HA32	109.33	107.10	2.23
HA31-CA3-C3	111.58	108.50	3.08
HA32-CA3-C3	108.04	108.04	0.00
HG1-CG2-HG2	108.73	108.17	0.57
HG1-CG2-HG3	108.04	108.33	0.30
HG2-CG2-HG3	108.46	108.68	0.22
C3-N2AL-HNN2	118.00	119.12	1.12
C3-N2AL-C2AL	121.36	122.15	0.80
O3-C3-N2AL	124.60	122.25	2.35
N2AL-C2AL-H2AL	111.70	110.50	1.20
N2AL-C2AL-H2A1	109.79	110.57	0.78
N2AL-C2AL-H2A2	107.63	110.83	3.20
HNN2-N2AL-C2AL	119.24	118.37	0.87
H2AL-C2AL-H2A1	109.26	108.24	1.02
H2AL-C2AL-H2A2	108.85	108.20	0.65
H2A1-C2AL-H2A2	109.57	108.41	1.16

Figure S266: The PES scan for flexible dihedral corresponding to 2-(4-ethyl-5-hydroxy-2-methyl-1 H-imidazol-1-yl)-N-methylacetamide.

2.38 The small molecule used for bonded terms optimization of benzylcysteine (BCS)

Terms	QM	CHARMM	Abs. diff.
CE-CZ1-HZ1	119.46	119.98	0.52
CE-CZ1-CH1	120.54	120.39	0.15
CE-CZ2-HZ2	119.46	120.04	0.58
CE-CZ2-CH2	120.54	120.34	0.21
CZ1-CE-CZ2	119.02	119.23	0.21
CZ1-CH1-HH1	119.85	119.98	0.13
CZ1-CH1-CJ	120.07	120.02	0.05
HZ1-CZ1-CH1	120.00	119.63	0.38
CZ2-CH2-HH2	119.85	120.02	0.17
CZ2-CH2-CJ	120.07	120.05	0.02
HZ2-CZ2-CH2	120.00	119.62	0.38
CH1-CJ-CH2	119.75	119.97	0.22
CH1-CJ-HJ	120.13	119.97	0.16
HH1-CH1-CJ	120.08	120.00	0.07
CH2-CJ-HJ	120.13	120.07	0.06
$\rm HH2\text{-}CH2\text{-}CJ$	120.08	119.93	0.15

Figure S267: The energy minimized structure corresponding to [(methylsulfanyl)methyl]benzene.

Table S718: The calculated geometric terms of [(me thylsulfanyl)methyl]benzene.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SG	1.81	1.82	0.01
SG-CD	1.82	1.82	0.00
CD-HD1	1.10	1.11	0.02
CD-HD2	1.10	1.11	0.02
CD-CE	1.50	1.51	0.00
CE-CZ1	1.40	1.41	0.01
CE-CZ2	1.40	1.41	0.01
CZ1-HZ1	1.09	1.08	0.01
CZ1-CH1	1.40	1.40	0.01
CZ2-HZ2	1.09	1.08	0.01
CZ2-CH2	1.40	1.40	0.01
CH1-HH1	1.09	1.08	0.01
CH1-CJ	1.40	1.40	0.00
CH2-HH2	1.09	1.08	0.01
CH2-CJ	1.40	1.40	0.00
CJ-HJ	1.09	1.08	0.01
HB3-CB-HB1	108.55	107.64	0.91
HB3-CB-HB2	108.55	107.60	0.95
HB3-CB-SG	107.52	110.68	3.16
CB-SG-CD	98.69	96.69	2.00
HB1-CB-HB2	109.43	108.19	1.24
HB1-CB-SG	111.34	111.30	0.04
HB2-CB-SG	111.34	111.27	0.07
SG-CD-HD1	109.23	111.04	1.81
SG-CD-HD2	109.22	111.06	1.83
SG-CD-CE	109.39	109.69	0.31
CD-CE-CZ1	120.47	120.43	0.04
CD-CE-CZ2	120.48	120.34	0.14
HD1-CD-HD2	108.25	107.89	0.35
HD1-CD-CE	110.37	108.51	1.85
HD2-CD-CE	110.36	108.57	1.79

Figure S268: The PES scan for flexible dihedrals corresponding to [(methylsulfanyl)methyl]benzene.

2.39 The small molecule used for bonded terms optimization of 5-bromo-l-isoleucine (BIU)

Terms	QM	CHARMM	Abs. diff.
HG21-CG2-HG22	108.06	108.78	0.72
HG21-CG2-HG23	107.83	108.31	0.48
HG22-CG2-HG23	107.47	108.22	0.75
CG1-CD-HD1	112.10	111.23	0.87
CG1-CD-HD2	113.03	111.86	1.17
CG1-CD-BR	110.87	111.31	0.44
HG12-CG1-HG11	106.78	107.28	0.51
HG12-CG1-CD	108.63	108.35	0.27
HG11-CG1-CD	109.26	109.27	0.01
HD1-CD-HD2	109.56	109.50	0.06
HD1-CD-BR	105.67	106.50	0.83
HD2-CD-BR	105.13	106.18	1.05

Figure S270: The PES scan for flexible dihedral corresponding to (3-methylbutyl)borane.

Figure S269: The energy minimized structure corresponding to (3-methylbutyl)borane.

Table S719: The calculated geometric terms of (3-methylbutyl) borane.

0.1

m

Ierms	QM	CHARMM	Abs. dif.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.10	1.11	0.01
CA-CB	1.53	1.53	0.00
CB-HB	1.10	1.12	0.02
CB-CG2	1.53	1.53	0.01
CB-CG1	1.53	1.54	0.00
CG2-HG21	1.10	1.11	0.01
CG2-HG22	1.09	1.11	0.01
CG2-HG23	1.09	1.11	0.02
CG1-HG12	1.10	1.11	0.02
CG1-HG11	1.10	1.11	0.02
CG1-CD	1.52	1.54	0.02
CD-HD1	1.09	1.11	0.02
CD-HD2	1.09	1.11	0.02
CD-BR	1.97	1.97	0.00
HA3-CA-HA2	108.11	108.65	0.55
HA3-CA-HA	108.01	108.45	0.43
HA3-CA-CB	111.28	110.35	0.93
HA2-CA-HA	107.93	108.63	0.71
HA2-CA-CB	110.98	110.61	0.38
CA-CB-HB	108.03	107.91	0.12
CA-CB-CG2	110.47	110.29	0.18
CA-CB-CG1	109.65	109.58	0.07
HA-CA-CB	110.40	110.09	0.31
CB-CG2-HG21	110.31	110.01	0.30
CB-CG2-HG22	112.39	111.28	1.12
CB-CG2-HG23	110.61	110.17	0.44
CB-CG1-HG12	109.40	108.33	1.08
CB-CG1-HG11	109.52	109.08	0.44
CB-CG1-CD	113.05	114.30	1.25
HB-CB-CG2	108.33	108.49	0.16
HB-CB-CG1	107.92	108.69	0.77
CG2-CB-CG1	112.29	111.78	0.52

2.40 The small molecule used for bonded terms optimization of (2S)-2-azanyl-3-[ethyl(meth yl)carbamoyl]oxy-propanoicac id (BXT)

Terms	QM	CHARMM	Abs. diff.
HB1-CB-OG	109.12	110.16	1.04
HB2-CB-OG	109.08	110.18	1.10
OG-C1-O2	123.73	122.30	1.43
OG-C1-N3	111.10	112.33	1.23
C1-N3-C5	121.43	122.17	0.74
C1-N3-C4	116.45	117.32	0.87
O2-C1-N3	125.16	125.37	0.21
N3-C5-H51	109.69	110.41	0.72
N3-C5-H52	108.00	107.12	0.88
N3-C5-H53	112.65	107.35	5.30
N3-C4-H41	107.25	109.31	2.06
N3-C4-H42	107.15	107.85	0.70
N3-C4-C2	113.00	117.83	4.83
C5-N3-C4	118.33	117.77	0.56
H51-C5-H52	108.99	109.67	0.69
H51-C5-H53	108.67	111.37	2.70
H52-C5-H53	108.77	110.81	2.04
C4-C2-H21	109.66	109.99	0.33
C4-C2-H22	111.31	110.58	0.73
C4-C2-H23	110.54	110.70	0.16
H41-C4-H42	108.05	105.13	2.92
H41-C4-C2	110.23	107.74	2.48
H42-C4-C2	110.96	108.25	2.71
H21-C2-H22	108.86	108.38	0.49
H21-C2-H23	108.35	108.42	0.07
H22-C2-H23	108.04	108.71	0.66

Figure S271: The energy minimized structure corresponding to ethylN-ethyl-N-methylcarbamate.

Table S720: The calculated geometric terms of et hylN-ethyl-N-methylcarbamate.

Terms	QM	CHARMM	Abs. diff
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.51	1.53	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.12	0.02
CB-OG	1.45	1.45	0.00
OG-C1	1.37	1.36	0.01
C1-O2	1.23	1.23	0.00
C1-N3	1.37	1.38	0.01
N3-C5	1.46	1.45	0.00
N3-C4	1.46	1.46	0.00
C5-H51	1.09	1.11	0.02
C5-H52	1.09	1.11	0.02
C5-H53	1.10	1.11	0.01
C4-H41	1.09	1.12	0.03
C4-H42	1.10	1.11	0.02
C4-C2	1.52	1.53	0.01
C2-H21	1.09	1.11	0.02
C2-H22	1.09	1.11	0.02
C2-H23	1.09	1.11	0.02
HA3-CA-HA2	108.55	108.53	0.01
HA3-CA-HA	108.56	108.62	0.06
HA3-CA-CB	109.92	110.56	0.64
HA2-CA-HA	108.61	108.41	0.20
HA2-CA-CB	110.59	110.33	0.26
CA-CB-HB1	112.17	109.73	2.44
CA-CB-HB2	112.22	109.55	2.67
CA-CB-OG	106.40	108.80	2.40
HA-CA-CB	110.56	110.33	0.23
CB-OG-C1	113.73	115.34	1.61
HB1-CB-HB2	107.80	108.41	0.62

Figure S272: The energy minimized structure corresponding to 2-(2,4-dimethyl-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetaldehyde.

Table S721: The calculated geometric terms of 2-(2,4-dimethyl-5-oxo-4,5-dihydro-1H-imidazol-1yl)acetaldehyde.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.10	1.11	0.01
CA-HA	1.10	1.11	0.01
CA-C1	1.49	1.50	0.01
C1-N2	1.34	1.31	0.02
C1-N3	1.38	1.38	0.00
N2-CA2	1.38	1.39	0.00
CA2-C2	1.41	1.38	0.03
CA2-CB2	1.49	1.50	0.01
C2-O2	1.28	1.29	0.00
C2-N3	1.43	1.39	0.04
N3-CA3	1.43	1.47	0.04
CA3-HA31	1.10	1.11	0.01
CA3-HA32	1.10	1.11	0.01
CA3-C3	1.51	1.50	0.01
C3-H3	1.11	1.11	0.00
C3-O3	1.23	1.22	0.02
CB2-HB21	1.10	1.11	0.01
CB2-HB22	1.10	1.11	0.01
CB2-HB23	1.10	1.11	0.01
HA3-CA-HA2	107.96	109.05	1.08
HA3-CA-HA	108.34	108.97	0.62
HA3-CA-C1	107.53	109.51	1.98
HA2-CA-HA	107.14	109.74	2.60
HA2-CA-C1	112.71	109.26	3.45
CA-C1-N2	125.48	122.32	3.16
CA-C1-N3	123.36	123.36	0.00
HA-CA-C1	112.98	110.30	2.68
C1-N2-CA2	106.71	103.45	3.26
C1-N3-C2	109.19	105.52	3.67
C1-N3-CA3	128.48	126.79	1.69
N2-C1-N3	110.04	113.89	3.85

Terms	QM	CHARMM	Abs. diff.
N2-CA2-C2	111.77	111.64	0.13
N2-CA2-CB2	122.15	116.79	5.37
CA2-C2-O2	136.03	134.56	1.47
CA2-C2-N3	102.14	105.38	3.24
CA2-CB2-HB21	112.70	109.47	3.22
CA2-CB2-HB22	111.45	109.42	2.03
CA2-CB2-HB23	109.01	109.87	0.86
C2-CA2-CB2	125.90	131.56	5.66
C2-N3-CA3	121.34	126.47	5.12
O2-C2-N3	121.83	119.98	1.85
N3-CA3-HA31	112.94	110.22	2.73
N3-CA3-HA32	105.07	110.69	5.61
N3-CA3-C3	111.05	110.90	0.15
САЗ-СЗ-НЗ	114.43	115.90	1.48
CA3-C3-O3	124.66	125.42	0.76
HA31-CA3-HA32	109.59	107.46	2.14
HA31-CA3-C3	109.78	108.91	0.87
HA32-CA3-C3	108.20	108.58	0.37
H3-C3-O3	120.91	118.62	2.29
HB21-CB2-HB22	107.24	109.22	1.99
HB21-CB2-HB23	107.72	109.39	1.67
HB22-CB2-HB23	108.59	109.46	0.87

2.42 The small molecule used for bonded terms optimization of 3-chloro-D-alanine (C2N)

Figure S273: The energy minimized structure corresponding to 3-chloro-D-alanine.

Table S722: The calculated geometric terms of 3-chloro-D-alanine.

Terms	QM	CHARMM	Abs. diff.
N-HN1	1.02	1.01	0.01
N-HN2	1.03	1.01	0.01
N-HN3	1.05	1.03	0.03
N-CA	1.50	1.49	0.01
CA-HA	1.09	1.11	0.02
CA-CB	1.51	1.55	0.04
CA-C	1.59	1.54	0.05
CL-CB	1.80	1.80	0.00
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
C-OXT	1.24	1.26	0.02
C-O	1.27	1.26	0.01
N-CA-HA	109.54	108.95	0.59
N-CA-CB	111.56	110.10	1.46
N-CA-C	104.19	109.08	4.88
HN1-N-HN2	108.22	112.72	4.50
HN1-N-HN3	109.61	109.60	0.01
HN1-N-CA	112.55	110.77	1.77
HN2-N-HN3	114.65	111.23	3.42
HN2-N-CA	113.82	109.67	4.14
HN3-N-CA	97.77	102.37	4.61
CA-CB-CL	112.32	112.14	0.18
CA-CB-HB1	110.95	111.25	0.30
CA-CB-HB2	108.18	109.68	1.50
CA-C-OXT	114.60	114.81	0.22
CA-C-O	111.71	117.62	5.91
HA-CA-CB	111.26	110.20	1.07
HA-CA-C	111.66	108.58	3.08
CL-CB-HB1	107.30	108.33	1.03
CL-CB-HB2	108.97	106.98	1.99
CB-CA-C	108.42	109.90	1.48
HB1-CB-HB2	109.07	108.29	0.77
OXT-C-O	133.63	127.57	6.07

Figure S274: The PES scan for flexible dihedral corresponding to 3-chloro-D-alanine.

2.43 The small molecule used for bonded terms optimization of canaline (CAN)

Figure S275: The energy minimized structure corresponding to O-ethylhydroxylamine.

Table S723: The calculated geometric terms of O-ethylhydroxylamine.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-CG	1.51	1.53	0.02
CG-HG1	1.10	1.11	0.02
CG-HG2	1.10	1.11	0.02
CG-OD	1.43	1.42	0.01
OD-NE	1.45	1.46	0.01
NE-HE1	1.02	1.02	0.00
NE-HE2	1.02	1.02	0.00
HB3-CB-HB1	108.63	108.81	0.18
HB3-CB-HB2	108.62	108.77	0.15
HB3-CB-CG	110.27	110.60	0.33
CB-CG-HG1	111.50	109.61	1.89
CB-CG-HG2	111.51	109.58	1.93
CB-CG-OD	106.30	109.41	3.11
HB1-CB-HB2	108.51	108.35	0.17
HB1-CB-CG	110.37	110.14	0.23
HB2-CB-CG	110.37	110.12	0.26
CG-OD-NE	107.46	107.52	0.07
HG1-CG-HG2	107.77	108.71	0.94
HG1-CG-OD	109.88	109.78	0.09
HG2-CG-OD	109.89	109.74	0.15
OD-NE-HE1	102.65	102.64	0.00
OD-NE-HE2	102.65	102.62	0.03
HE1-NE-HE2	105.27	109.10	3.82

Figure S276: The PES scan for flexible dihedral corresponding to O-ethylhydroxylamine.

2.44 The small molecule used for bonded terms optimization of carboxymethylatedcysteine (CCS)

Figure S277: The energy minimized structure corresponding to 2-(methylsulfanyl)aceticacid.

Table S724: The calculated geometric terms of 2-(methylsulfanyl)aceticacid.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.10	1.11	0.02
CB-HB2	1.10	1.11	0.02
CB-HB1	1.10	1.11	0.01
CB-SG	1.81	1.81	0.00
SG-CD	1.82	1.82	0.00
CD-HD2	1.10	1.11	0.01
CD-HD1	1.10	1.11	0.01
CD-CE	1.56	1.52	0.03
CE-OZ1	1.26	1.26	0.01
CE-OZ2	1.27	1.26	0.01
HB3-CB-HB2	108.26	108.16	0.10
HB3-CB-HB1	108.26	108.18	0.08
HB3-CB-SG	108.16	110.84	2.68
CB-SG-CD	97.27	93.40	3.88
HB2-CB-HB1	108.59	108.06	0.53
HB2-CB-SG	111.73	110.74	0.99
HB1-CB-SG	111.73	110.76	0.97
SG-CD-HD2	109.66	110.56	0.90
SG-CD-HD1	109.66	110.56	0.90
SG-CD-CE	113.03	113.06	0.03
CD-CE-OZ1	116.87	120.61	3.74
CD-CE-OZ2	112.90	112.62	0.28
HD2-CD-HD1	107.84	108.29	0.45
HD2-CD-CE	108.25	107.08	1.17
HD1-CD-CE	108.25	107.08	1.17
OZ1-CE-OZ2	130.23	126.77	3.46

Figure S278: The PES scan for flexible dihedrals corresponding to 2-(methylsulfanyl)aceticacid.

2.45The small molecule used for bonded terms optimization of gamma-carboxy-glutamicacid (CGU)

HG-CG-CD2106.23106.460.23CD1-CG-CD2 115.32114.880.44**OE12-CD1-OE11** 126.83125.591.24OE22-CD2-OE21126.68125.591.093 – – QM — CHARMM Relative Energy, kcal-mol⁻¹ 2.5 2 1.5

QM

105.66

Terms

HG-CG-CD1

1 0.5 CHARMM

104.23

Abs. diff.

1.44

Figure S279: The energy minimized structure corresponding to 2-ethylpropanedioicacid.

Table S725: The calculated geometric terms of 2ethylpropanedioicacid.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.01
HA2-CA	1.10	1.11	0.01
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.53	0.00
CB-HB1	1.09	1.11	0.02
CB-HB2	1.10	1.11	0.01
CB-CG	1.53	1.58	0.05
CG-HG	1.10	1.10	0.01
CG-CD1	1.56	1.50	0.07
CG-CD2	1.56	1.49	0.07
CD1-OE12	1.28	1.26	0.02
CD1-OE11	1.27	1.26	0.01
CD2-OE22	1.28	1.27	0.01
CD2-OE21	1.28	1.26	0.01
HA3-CA-HA2	107.73	109.38	1.65
HA3-CA-HA	108.51	108.76	0.26
HA3-CA-CB	111.79	110.88	0.91
HA2-CA-HA	108.57	108.01	0.56
HA2-CA-CB	110.76	109.92	0.84
CA-CB-HB1	110.21	110.13	0.08
CA-CB-HB2	109.47	109.46	0.01
CA-CB-CG	112.93	112.45	0.48
HA-CA-CB	109.40	109.83	0.43
CB-CG-HG	109.64	106.00	3.64
CB-CG-CD1	108.41	112.76	4.34
CB-CG-CD2	111.32	111.61	0.30
HB1-CB-HB2	107.88	107.43	0.46
HB1-CB-CG	107.28	108.62	1.34
HB2-CB-CG	108.93	108.62	0.31
CG-CD1-OE12	116.12	116.70	0.58
CG-CD1-OE11	116.93	117.66	0.73
CG-CD2-OE22	115.80	116.07	0.27
CG-CD2-OE21	117.47	118.30	0.83

-200 -100 0 100 OG2D2-CG2O3-CG311-CG2O3, ° 200 Figure S280: The PES scan for flexible dihedral

corresponding to 2-ethylpropanedioicacid.

2.46 The small molecule used for bonded terms optimization of gamma-carboxy-glutamicacid (CGUP)

Figure S281: The energy minimized structure corresponding to 2-ethylpropanedioicacid.

Table S726: The calculated geometric terms of 2-ethylpropanedioicacid.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.01
HA2-CA	1.10	1.11	0.01
CA-HA	1.10	1.11	0.02
CA-CB	1.53	1.53	0.00
CB-HB1	1.10	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-CG	1.53	1.57	0.05
CG-HG	1.10	1.11	0.01
CG-CD1	1.59	1.51	0.08
CG-CD2	1.49	1.51	0.02
CD1-OE12	1.26	1.26	0.00
CD1-OE11	1.26	1.26	0.00
CD2-OE22	1.37	1.40	0.02
CD2-OE21	1.23	1.22	0.01
OE22-HE22	0.98	0.96	0.02
HA3-CA-HA2	107.74	108.64	0.90
HA3-CA-HA	107.77	108.35	0.58
HA3-CA-CB	111.25	110.39	0.86
HA2-CA-HA	108.23	108.58	0.35
HA2-CA-CB	110.63	110.35	0.29
CA-CB-HB1	109.83	109.97	0.14
CA-CB-HB2	110.75	109.27	1.47
CA-CB-CG	113.50	112.46	1.04
HA-CA-CB	111.08	110.48	0.60
CB-CG-HG	109.93	108.00	1.93
CB-CG-CD1	110.96	113.00	2.04
CB-CG-CD2	112.13	112.84	0.71
HB1-CB-HB2	107.45	107.61	0.16
HB1-CB-CG	108.58	108.92	0.34
HB2-CB-CG	106.52	108.49	1.97
CG-CD1-OE12	115.97	117.55	1.58
CG-CD1-OE11	113.40	115.15	1.76
CG-CD2-OE22	112.28	114.02	1.74

Terms	QM	CHARMM	Abs. diff.
CG-CD2-OE21	127.12	127.38	0.27
HG-CG-CD1	106.18	106.89	0.71
HG-CG-CD2	108.35	107.89	0.47
CD1-CG-CD2	109.08	107.94	1.14
OE12-CD1-OE11	130.64	127.30	3.34
CD2-OE22-HE22	104.66	109.33	4.67
OE22-CD2-OE21	120.60	118.59	2.01

Figure S282: The PES scan for flexible dihedrals corresponding to 2-ethylpropanedioicacid.

2.47 The small molecule used for bonded terms optimization of S-[(R)-carboxy(hydroxy)methy l]-L-cysteine (CGV)

Terms QM CHARMM Abs. diff. CD1-CE1-OZ3 116.73116.87 0.14HD1-CD1-OD2 109.39105.613.78HD1-CD1-CE1 110.35104.605.75OD2-CD1-CE1 109.74112.642.90OZ2-CE1-OZ3 130.53126.583.94

Figure S283: The energy minimized structure corresponding to (2R)-2-(ethylsulfanyl)-2-hydroxyace ticacid.

Table S727: The calculated geometric terms of (2R)-2-(ethylsulfanyl)-2-hydroxyaceticacid.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.01
HA2-CA	1.10	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.53	0.01
CB-HB1	1.09	1.11	0.02
CB-HB2	1.10	1.11	0.01
CB-SG	1.82	1.82	0.01
SG-CD1	1.84	1.84	0.00
CD1-HD1	1.10	1.11	0.01
CD1-OD2	1.41	1.44	0.03
CD1-CE1	1.57	1.56	0.00
OD2-HD2	1.00	0.97	0.03
CE1-OZ2	1.28	1.27	0.01
CE1-OZ3	1.26	1.26	0.00
HA3-CA-HA2	108.14	108.67	0.53
HA3-CA-HA	108.23	108.69	0.46
HA3-CA-CB	110.48	110.50	0.03
HA2-CA-HA	108.01	108.39	0.38
HA2-CA-CB	111.21	110.26	0.95
CA-CB-HB1	110.71	109.17	1.54
CA-CB-HB2	109.93	109.28	0.65
CA-CB-SG	110.41	113.07	2.66
HA-CA-CB	110.66	110.27	0.39
CB-SG-CD1	97.57	98.86	1.29
HB1-CB-HB2	108.06	106.75	1.31
HB1-CB-SG	108.08	109.17	1.09
HB2-CB-SG	109.59	109.21	0.38
SG-CD1-HD1	107.34	107.00	0.34
SG-CD1-OD2	111.74	115.22	3.48
SG-CD1-CE1	108.25	110.88	2.63
CD1-OD2-HD2	99.57	100.85	1.28
CD1-CE1-OZ2	112.74	116.46	3.72

Figure S284: The PES scan for flexible dihedral corresponding to (2R)-2-(ethylsulfanyl)-2-hydrox yaceticacid.

2.48 The small molecule used for bonded terms optimization of 3-chloro-4-hydroxy-phenylgly cine (CHP)

HG2	HD2		
на	G 2 B	GE HE	
HA2 HA3	Cel	CLD	
	HĜ1	LP1	

Terms	QM	CHARMM	Abs. diff.
CG2-CD2-CE	120.48	120.14	0.35
HG2-CG2-CD2	119.12	120.08	0.96
CD2-CE-CD1	118.29	119.91	1.62
CD2-CE-OE	117.79	119.10	1.31
HD2-CD2-CE	118.00	119.64	1.64
CD1-CE-OE	123.92	120.99	2.93
CLD-CD1-CE	118.86	121.33	2.47
CE-OE-HE	108.34	106.41	1.93

Figure S285: The energy minimized structure corresponding to 2,4-dimethylphenol.

Table S728: The calculated geometric terms of 2,4-dimethylphenol.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.10	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.51	1.50	0.01
CB-CG1	1.40	1.40	0.00
CB-CG2	1.40	1.40	0.00
CG1-HG1	1.09	1.08	0.01
CG1-CD1	1.39	1.40	0.01
CG2-HG2	1.09	1.08	0.01
CG2-CD2	1.39	1.40	0.01
CD2-HD2	1.09	1.08	0.01
CD2-CE	1.40	1.40	0.00
CD1-CLD	1.75	1.74	0.00
CD1-CE	1.40	1.41	0.01
CE-OE	1.37	1.41	0.05
OE-HE	0.98	0.96	0.01
HA3-CA-HA2	107.75	109.81	2.06
HA3-CA-HA	108.02	109.23	1.21
HA3-CA-CB	111.09	109.84	1.25
HA2-CA-HA	107.66	109.85	2.20
HA2-CA-CB	111.22	108.66	2.56
CA-CB-CG1	120.71	120.13	0.58
CA-CB-CG2	121.09	120.19	0.89
HA-CA-CB	110.94	109.43	1.51
CB-CG1-HG1	120.55	119.87	0.68
CB-CG1-CD1	120.53	120.43	0.10
CB-CG2-HG2	119.55	119.79	0.24
CB-CG2-CD2	121.32	120.13	1.19
CG1-CB-CG2	118.16	119.67	1.51
CG1-CD1-CLD	119.93	118.95	0.99
CG1-CD1-CE	121.21	119.73	1.48
HG1-CG1-CD1	118.91	119.70	0.79
CG2-CD2-HD2	121.52	120.23	1.30

2.49 The small molecule used for bonded terms optimization of S,S-(2-hydroxyethyl)thiocyste ine (CME)

Terms	QM	CHARMM	Abs. diff.
CE-CZ-HZ1	109.77	109.73	0.03
CE-CZ-HZ2	109.65	109.33	0.32
CE-CZ-OH	106.06	109.90	3.83
HE1-CE-HE2	107.91	107.43	0.48
HE1-CE-CZ	110.00	108.88	1.12
HE2-CE-CZ	109.67	108.59	1.08
CZ-OH-HH	107.59	107.89	0.29
HZ1-CZ-HZ2	108.25	108.59	0.35
HZ1-CZ-OH	111.47	109.52	1.95
HZ2-CZ-OH	111.62	109.74	1.89

- Figure S287: The PES scan for flexible dihedral corresponding to 2-(ethyldisulfanyl)ethan-1-ol.

Figure S286: The energy minimized structure corresponding to 2-(ethyldisulfanyl)ethan-1-ol.

Table S729: The calculated geometric terms of 2- (ethyldisulfanyl)ethan-1-ol.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.53	0.01
CB-HB1	1.10	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SG	1.82	1.82	0.01
SG-SD	2.06	2.03	0.03
SD-CE	1.82	1.82	0.00
CE-HE1	1.09	1.11	0.02
CE-HE2	1.09	1.11	0.02
CE-CZ	1.52	1.54	0.02
CZ-HZ1	1.10	1.11	0.02
CZ-HZ2	1.10	1.11	0.01
CZ-OH	1.43	1.43	0.00
OH-HH	0.97	0.96	0.01
HA3-CA-HA2	108.59	108.50	0.08
HA3-CA-HA	108.44	108.21	0.23
HA3-CA-CB	110.74	110.46	0.28
HA2-CA-HA	108.16	108.40	0.23
HA2-CA-CB	110.09	110.60	0.51
CA-CB-HB1	110.94	109.15	1.79
CA-CB-HB2	111.32	109.48	1.83
CA-CB-SG	113.96	111.94	2.02
HA-CA-CB	110.74	110.60	0.15
CB-SG-SD	102.20	103.85	1.65
HB1-CB-HB2	107.29	107.48	0.19
HB1-CB-SG	104.09	109.09	5.00
HB2-CB-SG	108.81	109.60	0.78
SG-SD-CE	102.18	103.97	1.79
SD-CE-HE1	110.26	109.93	0.33
SD-CE-HE2	105.86	109.46	3.59
SD-CE-CZ	112.94	112.42	0.53

2.50 The small molecule used for bonded terms optimization of (2S)-2-[(2R)-2-amino-2-carbox yethyl]sulfanylbutanedioicacid (CML)

Terms	QM	CHARMM	Abs. diff.
H31-C3-H32	108.43	108.52	0.09
H31-C3-H33	108.26	109.17	0.91
Н32-С3-Н33	109.68	108.85	0.83

Figure S288: The energy minimized structure corresponding to 2-(methylsulfanyl)propanoicacid.

Table S730): The	calculated	geometric	terms	\mathbf{of}	2-
(methylsul	f anyl) j	propanoicad	eid.			

Terms	QM	CHARMM	Abs. diff.
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-HB3	1.10	1.11	0.01
CB-SG	1.81	1.82	0.01
SG-C2	1.83	1.84	0.01
C2-H2	1.10	1.11	0.02
C2-C1	1.56	1.55	0.01
C2-C3	1.52	1.55	0.03
C1-O1	1.27	1.26	0.01
C1-O2	1.27	1.26	0.00
C3-H31	1.10	1.11	0.01
C3-H32	1.09	1.11	0.02
C3-H33	1.10	1.11	0.01
CB-SG-C2	99.98	100.06	0.09
HB1-CB-HB2	109.08	107.59	1.48
HB1-CB-HB3	109.44	108.54	0.90
HB1-CB-SG	111.42	110.94	0.48
HB2-CB-HB3	109.66	107.68	1.97
HB2-CB-SG	110.00	110.91	0.91
HB3-CB-SG	107.23	111.05	3.82
SG-C2-H2	107.78	108.48	0.71
SG-C2-C1	111.49	109.60	1.89
SG-C2-C3	107.84	112.37	4.53
C2-C1-O1	114.59	115.49	0.90
C2-C1-O2	115.98	117.29	1.31
C2-C3-H31	109.27	110.26	1.00
C2-C3-H32	109.16	109.54	0.38
C2-C3-H33	111.98	110.45	1.53
H2-C2-C1	107.45	106.79	0.66
H2-C2-C3	110.80	107.99	2.82
C1-C2-C3	111.45	111.40	0.05
O1-C1-O2	129.43	127.08	2.35

Figure S289: The PES scan for flexible dihedrals corresponding to 2-(methylsulfanyl)propanoicacid.

2.51 The small molecule used for bonded terms optimization of 2-cyano-phenylalanine (CNP2)

Terms	QM	CHARMM	Abs. diff.
CG-CD1-CE1	121.58	119.88	1.69
CG-CD2-HD2	118.82	119.68	0.86
CG-CD2-CE2	121.57	120.62	0.95
CD1-CG-CD2	117.38	119.21	1.83
CD1-CH-NJ	179.58	179.73	0.15
CD1-CE1-HE1	119.52	120.39	0.87
CD1-CE1-CZ	119.56	120.26	0.70
CH-CD1-CE1	118.91	118.92	0.02
CD2-CE2-HE2	119.84	119.93	0.10
CD2-CE2-CZ	120.10	120.02	0.08
HD2-CD2-CE2	119.61	119.70	0.10
CE1-CZ-CE2	119.80	120.01	0.21
CE1-CZ-HZ	119.85	120.04	0.19
HE1-CE1-CZ	120.91	119.35	1.57
CE2-CZ-HZ	120.35	119.96	0.40
HE2-CE2-CZ	120.06	120.05	0.01

Figure S290: The energy minimized structure corresponding to 2-ethylbenzonitrile.

Table S731: The calculated geometric terms of 2-ethylbenzonitrile.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.53	0.00
CB-HB1	1.10	1.11	0.02
CB-HB2	1.10	1.11	0.02
CB-CG	1.51	1.51	0.01
CG-CD1	1.41	1.41	0.00
CG-CD2	1.40	1.40	0.01
CD1-CH	1.44	1.44	0.00
CD1-CE1	1.40	1.41	0.00
CH-NJ	1.18	1.18	0.00
CD2-HD2	1.09	1.08	0.01
CD2-CE2	1.40	1.40	0.00
CE1-HE1	1.09	1.08	0.00
CE1-CZ	1.39	1.40	0.01
CE2-HE2	1.09	1.08	0.01
CE2-CZ	1.40	1.40	0.00
CZ-HZ	1.09	1.08	0.01
HA3-CA-HA2	108.39	108.08	0.31
HA3-CA-HA	108.34	108.47	0.13
HA3-CA-CB	110.57	111.06	0.49
HA2-CA-HA	108.06	107.81	0.25
HA2-CA-CB	110.70	110.19	0.51
CA-CB-HB1	109.54	110.83	1.29
CA-CB-HB2	109.85	110.21	0.36
CA-CB-CG	111.94	109.69	2.25
HA-CA-CB	110.69	111.11	0.42
CB-CG-CD1	121.32	122.11	0.79
CB-CG-CD2	121.22	118.68	2.54
HB1-CB-HB2	106.89	107.53	0.63
HB1-CB-CG	109.79	109.46	0.33
HB2-CB-CG	108.69	109.08	0.38
CG-CD1-CH	119.51	121.19	1.69
2.52 The small molecule used for bonded terms optimization of 2,4-dichloro-phenylalanine (CP24)

Terms	QM	CHARMM	Abs. diff.
CG-CD1-CE1	122.36	120.09	2.28
CG-CD2-HD2	118.51	119.62	1.11
CG-CD2-CE2	122.50	120.45	2.05
CD1-CG-CD2	116.68	119.17	2.49
CD1-CE1-HE1	120.47	119.90	0.56
CD1-CE1-CZ	118.76	120.28	1.52
CLD-CD1-CE1	117.31	118.46	1.15
CD2-CE2-HE2	121.03	120.60	0.43
CD2-CE2-CZ	118.71	119.99	1.29
HD2-CD2-CE2	118.99	119.93	0.95
CE1-CZ-CE2	120.97	120.02	0.96
CE1-CZ-CLZ	119.17	120.05	0.88
HE1-CE1-CZ	120.77	119.82	0.95
CE2-CZ-CLZ	119.85	119.93	0.08
HE2-CE2-CZ	120.26	119.41	0.85

Figure S291: The energy minimized structure corresponding to 1-ethyl-2,4-dimethylbenzene.

Table S732: The calculated geometric terms of 1-ethyl-2,4-dimethylbenzene.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.53	0.00
CB-HB1	1.09	1.11	0.02
CB-HB2	1.10	1.11	0.02
CB-CG	1.51	1.51	0.00
CG-CD1	1.40	1.41	0.01
CG-CD2	1.40	1.41	0.00
CD1-CLD	1.74	1.74	0.00
CD1-CE1	1.40	1.40	0.00
CD2-HD2	1.09	1.08	0.01
CD2-CE2	1.39	1.40	0.01
CE1-HE1	1.09	1.08	0.01
CE1-CZ	1.39	1.40	0.01
CE2-HE2	1.09	1.08	0.01
CE2-CZ	1.39	1.40	0.00
CZ-CLZ	1.74	1.74	0.00
HA3-CA-HA2	108.32	108.19	0.12
HA3-CA-HA	108.26	108.37	0.11
HA3-CA-CB	110.47	111.13	0.66
HA2-CA-HA	108.23	107.93	0.31
HA2-CA-CB	110.74	110.36	0.39
CA-CB-HB1	109.85	110.74	0.90
CA-CB-HB2	109.67	110.45	0.78
CA-CB-CG	111.99	109.69	2.30
HA-CA-CB	110.73	110.76	0.03
CB-CG-CD1	122.83	121.73	1.10
CB-CG-CD2	120.41	119.09	1.32
HB1-CB-HB2	106.89	107.84	0.95
HB1-CB-CG	109.87	109.02	0.85
HB2-CB-CG	108.43	109.06	0.62
CG-CD1-CLD	120.32	121.45	1.13

2.53 The small molecule used for bonded terms optimization of 2-chloro-phenylglycine (CPG2)

Terms	QM	CHARMM	Abs. diff.
CLG-CG2-CD2	118.22	118.97	0.75
CD1-CE-CD2	119.84	119.90	0.06
CD1-CE-HE	120.53	120.11	0.42
HD1-CD1-CE	120.29	119.95	0.35
CD2-CE-HE	119.63	119.99	0.36
HD2-CD2-CE	120.99	120.42	0.57

Figure S292: The energy minimized structure corresponding to 1,2-xylene.

Table S733: The calculated geometric terms of 1,2-xylene.

	011	CILLED DI	<u>A 1 1:00</u>
Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.50	1.50	0.00
CB-CG1	1.40	1.40	0.00
CB-CG2	1.40	1.41	0.01
CG1-HG1	1.09	1.08	0.01
CG1-CD1	1.40	1.40	0.01
CG2-CLG	1.75	1.74	0.01
CG2-CD2	1.39	1.40	0.01
CD1-HD1	1.09	1.08	0.01
CD1-CE	1.40	1.40	0.01
CD2-HD2	1.09	1.08	0.01
CD2-CE	1.39	1.40	0.01
CE-HE	1.09	1.08	0.01
HA3-CA-HA2	108.46	109.63	1.17
HA3-CA-HA	107.20	109.79	2.59
HA3-CA-CB	111.18	108.74	2.44
HA2-CA-HA	108.46	109.57	1.12
HA2-CA-CB	110.26	110.42	0.16
CA-CB-CG1	121.19	120.13	1.06
CA-CB-CG2	121.83	120.47	1.36
HA-CA-CB	111.18	108.68	2.50
CB-CG1-HG1	118.57	119.76	1.19
CB-CG1-CD1	121.80	120.39	1.41
CB-CG2-CLG	119.56	120.89	1.33
CB-CG2-CD2	122.22	120.14	2.08
CG1-CB-CG2	116.98	119.40	2.42
CG1-CD1-HD1	119.94	120.06	0.13
CG1-CD1-CE	119.77	119.99	0.22
HG1-CG1-CD1	119.63	119.86	0.23
CG2-CD2-HD2	119.62	119.40	0.23
CG2-CD2-CE	119.38	120.18	0.80

2.54 The small molecule 1 used for bonded terms optimization of 2-[1-amino-2-(1h-imidazol-5yl)ethyl]-1-(carbOymethyl)-4-[(4-Oocyclohexa-2,5-dien-1-yli dene)methyl]-1h-imidazol-5-ol ate (CR8D)

Terms	QM	CHARMM	Abs. diff.
C7-C5-C4	121.28	122.00	0.72
C7-C6-H6	117.58	119.14	1.55
C7-C6-C2	122.05	122.17	0.12
C5-C7-C6	117.16	117.15	0.01
C5-C4-H4	121.66	118.99	2.66
C5-C4-C1	122.01	121.31	0.70
H5-C5-C4	119.48	118.46	1.02
C6-C2-H2	121.95	119.14	2.81
C6-C2-C1	121.31	121.14	0.17
H6-C6-C2	120.37	118.69	1.67
C2-C1-C4	116.19	116.23	0.05
C2-C1-O3	122.09	121.85	0.24
H2-C2-C1	116.74	119.72	2.98
C4-C1-O3	121.73	121.92	0.20
H4-C4-C1	116.34	119.70	3.36

Figure S293: The energy minimized structure corresponding to 4-ethylidenecyclohexa-2,5-dien-1-o ne.

Table S	734:	The	calculated	$\operatorname{geometric}$	terms	of	4-
ethylide	enecyc	clohe	xa-2,5-dier	n-1-one.			

OM	CILLDMM	
@141	CHARMM	Abs. diff.
1.09	1.11	0.02
1.10	1.11	0.02
1.10	1.11	0.02
1.49	1.51	0.02
1.09	1.10	0.01
1.36	1.35	0.01
1.46	1.49	0.03
1.46	1.49	0.03
1.09	1.10	0.01
1.35	1.36	0.01
1.09	1.10	0.01
1.35	1.36	0.01
1.09	1.10	0.01
1.47	1.51	0.04
1.09	1.10	0.01
1.47	1.51	0.04
1.24	1.23	0.01
115.14	114.69	0.45
128.07	128.11	0.04
108.14	107.02	1.12
108.13	106.92	1.21
113.21	113.97	0.76
106.72	107.27	0.54
110.21	110.68	0.48
110.19	110.67	0.47
123.84	123.05	0.79
118.99	119.80	0.81
116.79	117.20	0.41
119.24	119.54	0.30
	$\begin{array}{c} 1.09\\ 1.10\\ 1.10\\ 1.10\\ 1.49\\ 1.09\\ 1.36\\ 1.46\\ 1.46\\ 1.46\\ 1.09\\ 1.35\\ 1.09\\ 1.35\\ 1.09\\ 1.35\\ 1.09\\ 1.47\\ 1.24\\ 115.14\\ 128.07\\ 108.14\\ 108.13\\ 113.21\\ 106.72\\ 110.21\\ 110.19\\ 123.84\\ 118.99\\ 116.79\\ 119.24\\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

2.55 The small molecule 2 used for bonded terms optimization of 2-[1-amino-2-(1h-imidazol-5yl)ethyl]-1-(carbOymethyl)-4-[(4-Oocyclohexa-2,5-dien-1-yli dene)methyl]-1h-imidazol-5-ol ate (CR8D)

Terms	QM	CHARMM	Abs. diff.
H171-C17-H172	109.53	108.24	1.29
H171-C17-H173	109.21	107.96	1.25
H172-C17-H173	109.54	108.16	1.38
C12-O25-HO	106.08	106.34	0.26
C12-C9-N15	109.04	106.73	2.31
C12-C9-C8	127.43	129.65	2.22
O25-C12-C9	133.82	131.75	2.07
N15-C9-C8	123.43	123.59	0.17
С9-С8-Н8	115.70	114.85	0.85
C9-C8-C7	124.58	127.74	3.16
C8-C7-H71	121.33	120.55	0.78
C8-C7-H72	122.05	121.67	0.38
H8-C8-C7	119.71	117.36	2.35
H71-C7-H72	116.53	117.58	1.06

Figure S294: The energy minimized structure corresponding to 4-ethenyl-1-methyl-1H-imidazol-5-o l.

Table	S735:	The	calculated	geometric	terms	of	4-
etheny	rl−1-me	ethyl-	1H-imidaz	ol-5-ol.			

Terms	QM	CHARMM	Abs. diff
C14-H14	1.08	1.09	0.01
C14-N13	1.38	1.36	0.02
C14-N15	1.32	1.32	0.00
N13-C17	1.45	1.47	0.01
N13-C12	1.37	1.37	0.01
C17-H171	1.09	1.11	0.02
C17-H172	1.09	1.11	0.02
C17-H173	1.09	1.11	0.02
C12-O25	1.36	1.38	0.02
C12-C9	1.39	1.38	0.01
O25-HO	0.98	0.96	0.01
N15-C9	1.38	1.40	0.01
C9-C8	1.45	1.44	0.01
C8-H8	1.09	1.10	0.01
C8-C7	1.35	1.36	0.01
C7-H71	1.08	1.10	0.02
C7-H72	1.09	1.10	0.01
C14-N13-C17	128.36	127.63	0.73
C14-N13-C12	106.01	105.22	0.79
C14-N15-C9	105.44	106.55	1.10
H14-C14-N13	121.58	122.53	0.95
H14-C14-N15	126.08	124.89	1.19
N13-C14-N15	112.34	112.59	0.25
N13-C17-H171	110.50	110.11	0.39
N13-C17-H172	108.16	112.05	3.89
N13-C17-H173	109.89	110.20	0.31
N13-C12-O25	118.98	119.22	0.24
N13-C12-C9	107.15	108.91	1.76
C17-N13-C12	125.63	127.15	1.52

- Figure S295: The PES scan for flexible dihedral corresponding to 4-ethenyl-1-methyl-1H-imidazol -5-ol.

2.56 The small molecule used for bonded terms optimization of s-acetonylcysteine (CSA)

Figure S296: The energy minimized structure corresponding to 1-(methylsulfanyl)propan-2-one.

Table S736:	The	calculated	geometric	${\rm terms}$	\mathbf{of}	1-
(methylsulfa	anyl)p	oropan-2-or	ne.			

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SG	1.81	1.82	0.01
SG-CD	1.81	1.83	0.02
CD-HD2	1.10	1.11	0.01
CD-HD1	1.10	1.11	0.01
CD-CE	1.52	1.51	0.01
CE-OE	1.23	1.23	0.00
CE-CZ	1.51	1.50	0.02
CZ-HZ1	1.09	1.11	0.02
CZ-HZ2	1.09	1.11	0.02
CZ-HZ3	1.09	1.11	0.01
HB3-CB-HB1	108.40	107.62	0.79
HB3-CB-HB2	108.40	107.62	0.79
HB3-CB-SG	107.13	110.61	3.48
CB-SG-CD	97.12	96.78	0.33
HB1-CB-HB2	109.41	108.23	1.18
HB1-CB-SG	111.68	111.31	0.38
HB2-CB-SG	111.69	111.31	0.38
SG-CD-HD2	110.89	110.26	0.63
SG-CD-HD1	110.89	110.26	0.63
SG-CD-CE	110.89	111.08	0.19
CD-CE-OE	121.89	123.81	1.92
CD-CE-CZ	115.86	115.75	0.11
HD2-CD-HD1	106.85	108.35	1.50
HD2-CD-CE	108.60	108.41	0.19
HD1-CD-CE	108.60	108.41	0.19
CE-CZ-HZ1	109.15	109.02	0.13
CE-CZ-HZ2	110.40	110.10	0.30
CE-CZ-HZ3	110.41	110.14	0.27
OE-CE-CZ	122.25	120.44	1.81
HZ1-CZ-HZ2	109.70	108.89	0.81
HZ1-CZ-HZ3	109.70	108.92	0.78

Figure S297: The PES scan for flexible dihedrals corresponding to 1-(methylsulfanyl)propan-2-one.

2.57 The small molecule used for bonded terms optimization of S-hydroxycysteine (CSO)

Figure S298: The energy minimized structure corresponding to ethane-SO-thioperoxol.

Table S737: The calculated geometric terms of et hane-SO-thioperoxol.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.53	0.01
CB-HB1	1.10	1.11	0.01
CB-HB2	1.09	1.11	0.02
CB-SG	1.80	1.82	0.01
SG-OD	1.70	1.70	0.00
OD-HD	0.98	0.96	0.01
HA3-CA-HA2	107.77	108.19	0.42
HA3-CA-HA	108.58	108.45	0.12
HA3-CA-CB	110.54	110.38	0.16
HA2-CA-HA	108.67	108.60	0.07
HA2-CA-CB	110.23	110.54	0.30
CA-CB-HB1	111.12	109.23	1.89
CA-CB-HB2	111.01	109.36	1.65
CA-CB-SG	113.95	112.70	1.25
HA-CA-CB	110.96	110.60	0.36
CB-SG-OD	99.60	99.79	0.19
HB1-CB-HB2	107.48	107.51	0.03
HB1-CB-SG	104.42	108.96	4.53
HB2-CB-SG	108.47	108.95	0.48
SG-OD-HD	106.13	106.20	0.07

Figure S299: The PES scan for flexible dihedrals corresponding to ethane-SO-thioperoxol.

2.58 The small molecule used for bonded terms optimization of (CSP)

Figure S300: The energy minimized structure corresponding to [(2R)-2-acetamido-2-(methylcarbam oyl)ethyl]sulfanylphosphonicacid.

Table S738: The calculated geometric terms of [(2R)-2-acetamido-2-(methylcarbamoyl)ethyl]s ulfanylphosphonicacid.

-

Terms	QM	CHARMM	Abs. diff.
N-HN	1.03	1.00	0.03
N-CA	1.46	1.45	0.01
N-CY	1.35	1.34	0.01
CA-HA	1.10	1.08	0.02
CA-CB	1.54	1.55	0.01
CA-C	1.52	1.52	0.00
CB-HB1	1.10	1.12	0.02
CB-HB2	1.10	1.12	0.02
CB-SG	1.82	1.86	0.04
SG-P	2.34	1.53	0.81
P-O1P	1.54	1.48	0.06
P-O2P	1.54	1.48	0.06
P-O3P	1.53	1.48	0.06
C-O	1.24	1.23	0.01
C-NT	1.37	1.34	0.02
NT-HNT	1.01	1.00	0.02
NT-CAT	1.45	1.44	0.01
CAT-HT1	1.10	1.11	0.01
CAT-HT2	1.09	1.11	0.02
CAT-HT3	1.09	1.11	0.02
CAY-HY1	1.09	1.11	0.01
CAY-HY2	1.10	1.11	0.01
CAY-HY3	1.09	1.11	0.02
CAY-CY	1.52	1.48	0.04
CY-OY	1.25	1.23	0.02
N-CA-HA	110.49	109.21	1.28
N-CA-CB	106.51	108.02	1.51
N-CA-C	111.24	114.54	3.31
N-CY-CAY	114.81	117.56	2.75
N-CY-OY	124.34	123.08	1.25
HN-N-CA	110.78	110.26	0.52
HN-N-CY	120.20	123.08	2.88

Terms	QM	CHARMM	Abs. diff.
CA-N-CY	124.53	125.42	0.89
CA-CB-HB1	109.24	109.35	0.12
CA-CB-HB2	110.88	111.29	0.41
CA-CB-SG	111.82	113.48	1.66
CA-C-O	123.38	123.37	0.01
CA-C-NT	114.65	114.77	0.12
HA-CA-CB	110.65	109.95	0.70
HA-CA-C	107.11	108.87	1.76
CB-CA-C	110.89	106.16	4.74
CB-SG-P	94.11	104.02	9.90
HB1-CB-HB2	107.60	108.75	1.15
HB1-CB-SG	108.99	107.44	1.55
HB2-CB-SG	108.20	106.34	1.86
SG-P-O1P	99.15	110.55	11.41
SG-P-O2P	99.48	111.92	12.44
SG-P-O3P	99.48	111.41	11.93
O1P-P-O2P	116.08	107.42	8.67
O1P-P-O3P	117.88	107.53	10.36
O2P-P- $O3P$	118.24	107.82	10.42
C-NT-HNT	117.05	115.61	1.44
C-NT-CAT	120.57	122.99	2.42
O-C-NT	121.82	121.86	0.04
NT-CAT-HT1	111.71	109.61	2.10
NT-CAT-HT2	108.58	109.86	1.28
NT-CAT-HT3	109.64	110.56	0.92
HNT-NT-CAT	119.55	119.67	0.12
HT1-CAT-HT2	109.37	108.89	0.48
HT1-CAT-HT3	108.20	108.73	0.53
HT2-CAT-HT3	109.31	109.15	0.15
CAY-CY-OY	120.78	119.36	1.43
HY1-CAY-HY2	108.99	109.39	0.40
HY1-CAY-HY3	109.78	109.19	0.58
HY1-CAY-CY	112.66	111.50	1.17
HY2-CAY-HY3	108.00	108.56	0.56
HY2-CAY-CY	108.85	109.47	0.62
HY3-CAY-CY	108.46	108.68	0.22

Figure S301: The PES scan for flexible dihedral corresponding to [(2R)-2-acetamido-2-(methylcarb amoyl)ethyl|sulfanylphosphonicacid.

Figure S302: The energy minimized structure corresponding to (ethylsulfanyl)phosphonicacid.

Table S739: The calculated geometric terms of (et hylsulfanyl)phosphonicacid.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.01
HA2-CA	1.10	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.53	0.01
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SG	1.82	1.83	0.01
SG-P	2.16	2.00	0.15
P-O1P	1.51	1.47	0.03
P-O2P	1.51	1.47	0.04
P-O3P	1.68	1.61	0.08
O3P-HO3P	0.98	0.96	0.01
HA3-CA-HA2	108.18	108.50	0.32
HA3-CA-HA	108.25	108.44	0.19
HA3-CA-CB	110.36	110.14	0.22
HA2-CA-HA	107.99	108.57	0.58
HA2-CA-CB	111.14	110.60	0.54
CA-CB-HB1	111.04	110.64	0.40
CA-CB-HB2	110.42	110.76	0.35
CA-CB-SG	110.56	110.75	0.19
HA-CA-CB	110.82	110.53	0.29
CB-SG-P	98.64	99.39	0.75
HB1-CB-HB2	107.79	109.03	1.25
HB1-CB-SG	107.99	107.71	0.28
HB2-CB-SG	108.96	107.84	1.12
SG-P-O1P	107.77	118.22	10.44
SG-P-O2P	104.83	117.42	12.59
SG-P-O3P	100.89	102.43	1.54
P-O3P-HO3P	105.99	112.70	6.70
O1P-P-O2P	126.89	112.07	14.82
O1P-P-O3P	105.99	103.00	2.99
O2P-P-O3P	107.59	100.00	7.59

Figure S303: The PES scan for flexible dihedral corresponding to (ethylsulfanyl)phosphonicacid.

2.60 The small molecule used for bonded terms optimization of S-mercaptocysteine (CSS)

Figure S304: The energy minimized structure corresponding to ethanedithioperoxol.

Table S740: The calculated geometric terms of et hane dithioperoxol.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.53	0.01
CB-HB1	1.10	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SG	1.82	1.82	0.00
SG-SD	2.06	2.07	0.01
SD-HD	1.35	1.33	0.02
HA3-CA-HA2	108.60	108.49	0.11
HA3-CA-HA	108.46	108.29	0.16
HA3-CA-CB	110.73	110.35	0.39
HA2-CA-HA	108.12	108.46	0.34
HA2-CA-CB	110.07	110.55	0.48
CA-CB-HB1	110.82	109.16	1.67
CA-CB-HB2	111.39	109.50	1.89
CA-CB-SG	114.12	111.85	2.27
HA-CA-CB	110.79	110.63	0.16
CB-SG-SD	102.47	104.07	1.60
HB1-CB-HB2	107.42	107.48	0.06
HB1-CB-SG	103.71	109.08	5.37
HB2-CB-SG	108.92	109.68	0.76
SG-SD-HD	99.30	99.30	0.01

2.61 The small molecule used for bonded terms optimization of cysteine-S-sulfonicacid (CSU)

Figure S305: The energy minimized structure corresponding to (ethylsulfanyl)sulfonicacid.

Table S741: The calculated geometric terms of (et hylsulfanyl)sulfonicacid.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.10	1.11	0.02
CA-HA	1.10	1.11	0.01
CA-CB	1.53	1.53	0.01
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SG	1.82	1.82	0.00
SG-SD	2.18	2.19	0.01
SD-OD1	1.49	1.45	0.04
SD-OD2	1.48	1.45	0.03
SD-OD3	1.49	1.45	0.04
HA3-CA-HA2	108.12	108.44	0.32
HA3-CA-HA	108.20	108.74	0.54
HA3-CA-CB	111.07	110.17	0.90
HA2-CA-HA	108.18	108.79	0.61
HA2-CA-CB	111.05	110.19	0.86
CA-CB-HB1	110.64	109.73	0.92
CA-CB-HB2	110.62	109.71	0.91
CA-CB-SG	110.38	111.30	0.92
HA-CA-CB	110.12	110.46	0.34
CB-SG-SD	96.77	97.00	0.22
HB1-CB-HB2	108.16	107.36	0.80
HB1-CB-SG	108.47	109.33	0.86
HB2-CB-SG	108.48	109.32	0.84
SG-SD-OD1	104.10	104.52	0.42
SG-SD-OD2	101.58	103.20	1.62
SG-SD-OD3	104.08	104.49	0.41
OD1-SD-OD2	115.47	113.76	1.71
OD1-SD-OD3	113.81	115.36	1.55
OD2-SD-OD3	115.46	113.72	1.74

Figure S306: The PES scan for flexible dihedrals corresponding to (ethylsulfanyl)sulfonicacid.

Figure S307: The energy minimized structure corresponding to ethane-SO-thioperoxol.

Table S742: The calculated geometric terms of et hane-SO-thioperoxol.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.01
HA2-CA	1.10	1.11	0.01
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.53	0.01
CB-HB1	1.10	1.11	0.01
CB-HB2	1.10	1.11	0.01
CB-SG	1.82	1.81	0.01
SG-OD	1.62	1.62	0.00
HA3-CA-HA2	108.81	109.54	0.73
HA3-CA-HA	108.08	107.94	0.13
HA3-CA-CB	110.43	110.17	0.26
HA2-CA-HA	109.13	109.01	0.12
HA2-CA-CB	111.90	111.06	0.83
CA-CB-HB1	111.38	109.98	1.40
CA-CB-HB2	109.26	109.36	0.10
CA-CB-SG	112.24	111.51	0.73
HA-CA-CB	108.41	109.04	0.63
CB-SG-OD	103.13	103.46	0.33
HB1-CB-HB2	108.28	108.34	0.06
HB1-CB-SG	106.99	109.61	2.62
HB2-CB-SG	108.56	107.96	0.60

Figure S308: The PES scan for flexible dihedral corresponding to ethane-SO-thioperoxol.

2.63 The small molecule used for bonded terms optimization of 7-chloro-tryptophan (CTE)

Figure S309: The energy minimized structure corresponding to 3-ethyl-7-methyl-1H-indole.

Table S743: The calculated geometric terms of 3-ethyl-7-methyl-1H-indole.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.54	0.00
CB-HB1	1.10	1.11	0.02
CB-HB2	1.10	1.11	0.02
CB-CG	1.50	1.51	0.01
CG-CD1	1.38	1.37	0.01
CG-CD2	1.43	1.44	0.00
CD1-HD1	1.08	1.08	0.00
CD1-NE1	1.38	1.39	0.01
CD2-CE2	1.42	1.40	0.02
CD2-CE3	1.41	1.39	0.01
NE1-HE1	1.01	1.01	0.00
NE1-CE2	1.37	1.38	0.01
CE2-CZ2	1.40	1.39	0.00
CE3-HE3	1.09	1.08	0.01
CE3-CZ3	1.39	1.40	0.01
CZ2-CL	1.74	1.74	0.00
CZ2-CH2	1.39	1.40	0.01
CZ3-HZ3	1.09	1.08	0.00
CZ3-CH2	1.41	1.40	0.01
CH2-HH2	1.09	1.08	0.01
HA3-CA-HA2	108.42	108.21	0.21
НАЗ-СА-НА	107.79	108.28	0.49
HA3-CA-CB	110.24	110.58	0.34
HA2-CA-HA	108.31	108.30	0.01
HA2-CA-CB	111.19	110.42	0.77
CA-CB-HB1	109.65	108.80	0.85
CA-CB-HB2	109.62	109.47	0.14
CA-CB-CG	112.52	113.86	1.34
HA-CA-CB	110.79	110.95	0.17
CB-CG-CD1	127.06	127.72	0.66
CB-CG-CD2	126.57	124.92	1.66

Terms	QM	CHARMM	Abs. diff.
HB1-CB-HB2	106.28	106.94	0.66
HB1-CB-CG	109.08	109.07	0.01
HB2-CB-CG	109.50	108.47	1.03
CG-CD1-HD1	129.53	127.60	1.92
CG-CD1-NE1	109.98	107.75	2.23
CG-CD2-CE2	107.04	107.94	0.91
CG-CD2-CE3	134.02	132.13	1.88
CD1-CG-CD2	106.29	107.35	1.06
CD1-NE1-HE1	126.21	127.45	1.23
CD1-NE1-CE2	108.98	111.06	2.08
HD1-CD1-NE1	120.49	124.65	4.16
CD2-CE2-NE1	107.71	105.89	1.81
CD2-CE2-CZ2	121.61	120.68	0.92
CD2-CE3-HE3	120.76	119.47	1.30
CD2-CE3-CZ3	118.85	119.72	0.87
NE1-CE2-CZ2	130.69	133.43	2.74
HE1-NE1-CE2	124.79	121.49	3.30
CE2-CD2-CE3	118.93	119.92	1.00
CE2-CZ2-CL	119.40	122.03	2.63
CE2-CZ2-CH2	118.80	119.20	0.40
CE3-CZ3-HZ3	119.77	120.09	0.32
CE3-CZ3-CH2	121.74	119.97	1.76
HE3-CE3-CZ3	120.38	120.81	0.43
CZ2-CH2-CZ3	120.07	120.50	0.43
CZ2-CH2-HH2	119.46	118.75	0.71
CL-CZ2-CH2	121.80	118.77	3.03
CZ3-CH2-HH2	120.47	120.75	0.28
HZ3-CZ3-CH2	118.49	119.93	1.45

2.64 The small molecule used for bonded terms optimization of 4-chloro-threonine (CTH)

Figure S310: The energy minimized structure corresponding to butan-2-ol.

Table S744: The calculated geometric terms of bu tan-2-ol.

Terms	QM	CHARMM	Abs. diff	
HA3-CA	1.10	1.11	0.02	
HA2-CA	1.09	1.11	0.02	
CA-HA	1.09	1.11	0.02	
CA-CB	1.52	1.53	0.01	
CB-HB	1.09	1.12	0.02	
CB-OG1	1.42	1.42	0.00	
CB-CG2	1.52	1.55	0.03	
OG1-HG1	0.97	0.96	0.01	
CG2-HG21	1.09	1.11	0.02	
CG2-HG22	1.09	1.11	0.02	-200 -100 0 100 200 CLGA1-CG321-CG311-CG331 °
CG2-CL2	1.78	1.79	0.01	CLOAT-CO521-CO511-CO551,
HA3-CA-HA2	108.30	108.28	0.02 _E	Figure S311: The PES scan for flexible dihedral
HA3-CA-HA	108.14	108.51	0.38	orresponding to butan-2-ol
HA3-CA-CB	110.51	111.18	0.66	orresponding to butan 2 or.
HA2-CA-HA	108.78	108.03	0.74	
HA2-CA-CB	109.32	110.18	0.86	
CA-CB-HB	109.91	108.72	1.19	
CA-CB-OG1	111.34	107.03	4.31	
CA-CB-CG2	110.25	113.54	3.29	
HA-CA-CB	111.72	110.56	1.15	
CB-OG1-HG1	107.46	107.67	0.21	
CB-CG2-HG21	110.56	109.59	0.97	
CB-CG2-HG22	110.13	110.04	0.08	
CB-CG2-CL2	112.32	114.32	2.00	
HB-CB-OG1	104.43	107.75	3.31	
HB-CB-CG2	108.69	108.07	0.61	
OG1-CB-CG2	112.04	111.56	0.48	
HG21-CG2-HG22	108.53	108.87	0.34	
HG21-CG2-CL2	107.62	106.73	0.89	
HG22-CG2-CL2	107.55	107.10	0.45	

2.65 The small molecule used for bonded terms optimization of N-carboxymethionine (CXM)

Figure S312: The energy minimized structure corresponding to N-[(1S)-1-(methylcarbamoyl)ethyl]c arbamate.

Table S745: The calculated geometric terms of N-[(1S)-1-(methylcarbamoyl)ethyl]carbamate.

Terms	QM	CHARMM	Abs. diff.
N-H	1.02	0.99	0.03
N-CN	1.44	1.34	0.10
N-CA	1.46	1.46	0.01
CN-ON1	1.26	1.25	0.01
CN-ON2	1.28	1.25	0.03
CA-HA	1.10	1.11	0.01
CA-CB	1.52	1.54	0.02
CA-C	1.54	1.53	0.01
CB-HB1	1.09	1.11	0.02
CB-HB2	1.10	1.11	0.01
CB-HB3	1.09	1.11	0.02
C-O	1.25	1.23	0.02
C-NR	1.35	1.34	0.01
NR-HR	1.04	1.01	0.03
NR-CR	1.45	1.44	0.01
CR-HR1	1.09	1.11	0.02
CR-HR2	1.09	1.11	0.02
CR-HR3	1.10	1.11	0.01
N-CN-ON1	115.41	110.59	4.83
N-CN-ON2	115.21	115.39	0.18
N-CA-HA	109.06	107.83	1.23
N-CA-CB	110.24	109.33	0.91
N-CA-C	109.88	113.21	3.34
H-N-CN	109.91	113.01	3.10
H-N-CA	113.96	117.73	3.77
CN-N-CA	120.54	128.79	8.25
ON1-CN-ON2	129.36	134.01	4.65
CA-CB-HB1	110.80	110.91	0.11
CA-CB-HB2	109.66	109.64	0.02
CA-CB-HB3	110.29	110.19	0.10
CA-C-O	123.31	122.75	0.56
CA-C-NR	113.16	115.45	2.29
HA-CA-CB	109.78	108.51	1.27

Terms	QM	CHARMM	Abs. diff.
HA-CA-C	107.13	106.87	0.26
CB-CA-C	110.69	110.92	0.23
HB1-CB-HB2	109.15	108.78	0.36
HB1-CB-HB3	107.57	108.75	1.17
HB2-CB-HB3	109.33	108.53	0.80
C-NR-HR	115.01	113.85	1.16
C-NR-CR	120.85	124.46	3.62
O-C-NR	123.53	121.78	1.74
NR-CR-HR1	110.43	110.51	0.07
NR-CR-HR2	108.33	110.01	1.68
NR-CR-HR3	111.61	110.20	1.41
HR-NR-CR	122.00	121.46	0.53
HR1-CR-HR2	109.37	108.74	0.63
HR1-CR-HR3	107.78	108.65	0.88
HR2-CR-HR3	109.30	108.68	0.61

Figure S313: The PES scan for flexible dihedral corresponding to N-[(1S)-1-(methylcarbamoyl)eth yl]carbamate.

2.66 The small molecule used for bonded terms optimization of 2-amino-6-(cystein-S-yl)-5-ox o-hexanoicacid (CYD)

Terms	QM	CHARMM	Abs. diff.
C1-C2-C3	115.81	115.94	0.13
H11-C1-H12	106.83	108.31	1.47
H11-C1-C2	108.53	108.35	0.18
H12-C1-C2	108.53	108.37	0.17
C2-C3-H31	110.40	110.14	0.27
C2-C3-H32	110.40	110.14	0.26
C2-C3-H33	109.15	109.06	0.09
O1-C2-C3	122.22	120.33	1.89
H31-C3-H32	107.46	109.72	2.26
Н31-С3-Н33	109.70	108.87	0.83
H32-C3-H33	109.70	108.87	0.83

Figure S314: The energy minimized structure corresponding to 1-(ethylsulfanyl)propan-2-one.

Table S74	6: The	calculated	geometric	terms	of	1-
(ethylsulfa)	nyl)pro	opan-2-one.				

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.53	0.01
CB-HB1	1.10	1.11	0.02
CB-HB2	1.10	1.11	0.02
CB-SG	1.82	1.82	0.00
SG-C1	1.81	1.83	0.02
C1-H11	1.10	1.11	0.01
C1-H12	1.10	1.11	0.01
C1-C2	1.52	1.51	0.01
C2-O1	1.23	1.23	0.00
C2-C3	1.51	1.50	0.02
C3-H31	1.09	1.11	0.02
C3-H32	1.09	1.11	0.02
C3-H33	1.09	1.11	0.02
HA3-CA-HA2	108.22	108.45	0.23
НАЗ-СА-НА	108.22	108.45	0.23
HA3-CA-CB	110.14	110.70	0.56
HA2-CA-HA	108.26	108.20	0.06
HA2-CA-CB	110.95	110.48	0.47
CA-CB-HB1	110.08	108.70	1.39
CA-CB-HB2	110.08	108.68	1.40
CA-CB-SG	109.51	112.41	2.90
HA-CA-CB	110.95	110.48	0.47
CB-SG-C1	97.43	97.22	0.21
HB1-CB-HB2	107.93	107.25	0.68
HB1-CB-SG	109.61	109.84	0.23
HB2-CB-SG	109.61	109.82	0.21
SG-C1-H11	110.92	110.26	0.66
SG-C1-H12	110.91	110.27	0.64
SG-C1-C2	110.97	111.20	0.23
C1-C2-O1	121.97	123.72	1.75

Figure S315: The PES scan for flexible dihedrals corresponding to 1-(ethylsulfanyl)propan-2-one.

2.67 The small molecule used for bonded terms optimization of 5-[2-(2-amino-2-carbamoyl-et hylsulfanyl)-acetylamino]-2-(3,6-dihydroxy-9,9a-dihydro-3 h-xanthen-9-yl)-benzoicacid (CYF)

Figure S316: The energy minimized structure corresponding to 2-(ethylsulfanyl)-N-methylacetamid e.

Table	e S747:	The	calculated	$\operatorname{geometric}$	${\rm terms}$	of	2-
(ethy	lsulfany	vl)-N-	-methylace	tamide.			

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.53	0.01
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SG	1.82	1.82	0.00
SG-CAL	1.81	1.83	0.02
CAL-HAL1	1.09	1.11	0.02
CAL-HAL2	1.10	1.11	0.02
CAL-CL	1.53	1.50	0.03
CL-OL	1.23	1.23	0.01
CL-NL	1.36	1.35	0.01
NL-HNL	1.01	1.00	0.02
NL-C17	1.45	1.44	0.01
C17-H171	1.09	1.11	0.02
C17-H172	1.09	1.11	0.02
C17-H173	1.09	1.11	0.02
HA3-CA-HA2	108.13	108.51	0.38
HA3-CA-HA	108.19	108.44	0.25
HA3-CA-CB	109.90	110.65	0.74
HA2-CA-HA	108.29	108.30	0.01
HA2-CA-CB	111.13	110.47	0.66
CA-CB-HB1	110.56	108.63	1.93
CA-CB-HB2	110.47	108.81	1.66
CA-CB-SG	110.00	112.18	2.18
HA-CA-CB	111.10	110.41	0.69
CB-SG-CAL	98.72	97.61	1.11

Terms	QM	CHARMM	Abs. diff.
HB1-CB-HB2	108.19	106.91	1.27
HB1-CB-SG	108.96	110.22	1.26
HB2-CB-SG	108.62	109.94	1.33
SG-CAL-HAL1	110.53	110.47	0.06
SG-CAL-HAL2	106.52	109.68	3.16
SG-CAL-CL	117.31	115.21	2.10
CAL-CL-OL	119.84	120.62	0.78
CAL-CL-NL	116.11	117.33	1.22
HAL1-CAL-HAL2	107.31	106.61	0.70
HAL1-CAL-CL	106.73	107.57	0.84
HAL2-CAL-CL	108.02	106.89	1.13
CL-NL-HNL	117.85	119.64	1.80
CL-NL-C17	121.75	121.85	0.10
OL-CL-NL	124.01	121.33	2.68
NL-C17-H171	107.47	110.62	3.16
NL-C17-H172	110.14	110.49	0.36
NL-C17-H173	111.59	110.50	1.09
HNL-NL-C17	120.26	118.48	1.78
H171-C17-H172	109.66	108.47	1.19
H171-C17-H173	108.84	108.14	0.70
H172-C17-H173	109.11	108.54	0.57

Figure S317: The PES scan for flexible dihedrals corresponding to 2-(ethylsulfanyl)-N-methylacet amide.

2.68 The small molecule 1 used for bonded terms optimization of 2-amino-4-(amino-3-oxo-prop ylsulfanylcarbonyl)-butyricaci d (CYG)

Terms	QM	CHARMM	Abs. diff.
HG13-CG1-HG12	108.60	109.46	0.87
HG13-CG1-HG1	108.55	109.18	0.62
HG12-CG1-HG1	110.31	109.10	1.20

Figure S318: The energy minimized structure corresponding to 1-(ethylsulfanyl)ethan-1-one.

Table S748	: The	$\operatorname{calculated}$	$\operatorname{geometric}$	terms	of	1-
(ethyl sulfar	ıyl)eth	ian-1-one.				

Terms	QM	CHARMM	Abs. diff
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.53	0.01
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SG	1.82	1.83	0.01
SG-CD1	1.78	1.78	0.00
CD1-OE2	1.22	1.22	0.00
CD1-CG1	1.51	1.52	0.01
CG1-HG13	1.09	1.11	0.02
CG1-HG12	1.09	1.11	0.02
CG1-HG1	1.09	1.11	0.02
HA3-CA-HA2	108.23	108.18	0.05
HA3-CA-HA	108.42	108.47	0.05
HA3-CA-CB	109.89	110.45	0.56
HA2-CA-HA	108.85	108.56	0.30
HA2-CA-CB	110.24	110.41	0.17
CA-CB-HB1	110.90	108.94	1.96
CA-CB-HB2	111.56	108.53	3.03
CA-CB-SG	113.12	113.09	0.04
HA-CA-CB	111.13	110.69	0.44
CB-SG-CD1	98.91	99.64	0.72
HB1-CB-HB2	108.47	106.29	2.17
HB1-CB-SG	106.95	110.61	3.66
HB2-CB-SG	105.54	109.14	3.60
SG-CD1-OE2	122.89	123.06	0.16
SG-CD1-CG1	114.04	114.28	0.24
CD1-CG1-HG13	108.69	110.00	1.31
CD1-CG1-HG12	112.07	110.01	2.06
CD1-CG1-HG1	108.55	109.07	0.52
OE2-CD1-CG1	123.05	122.67	0.38

Figure S319: The PES scan for flexible dihedrals corresponding to 1-(ethylsulfanyl)ethan-1-one.

2.69 The small molecule 2 used for bonded terms optimization of 2-amino-4-(amino-3-oxo-prop ylsulfanylcarbonyl)-butyricaci d (CYG)

Terms	QM	CHARMM	Abs. diff.
HB12-CB1-HB13	107.72	108.11	0.39
HB12-CB1-HB11	108.56	108.53	0.02
HB13-CB1-HB11	108.68	108.31	0.37

HB1 HB12 HB2 CB1 HB3 SG HG12 HB13

Figure S320: The energy minimized structure corresponding to 1-(methylsulfanyl)propan-1-one.

Table S749: The calculated geometric terms of 1-
(methylsulfanyl)propan-1-one.

=

Terms	QM	CHARMM	Abs. di
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-HB3	1.09	1.11	0.02
CB-SG	1.81	1.82	0.01
SG-CD1	1.79	1.79	0.01
CD1-OE2	1.22	1.22	0.00
CD1-CG1	1.52	1.53	0.02
CG1-HG13	1.10	1.11	0.02
CG1-HG12	1.10	1.11	0.01
CG1-CB1	1.52	1.54	0.02
CB1-HB12	1.09	1.11	0.02
CB1-HB13	1.09	1.11	0.02
CB1-HB11	1.09	1.11	0.02
CB-SG-CD1	98.16	98.32	0.16
HB1-CB-HB2	109.23	107.63	1.60
HB1-CB-HB3	109.92	107.97	1.95
HB1-CB-SG	110.36	111.08	0.73
HB2-CB-HB3	109.90	107.96	1.94
HB2-CB-SG	110.45	111.00	0.55
HB3-CB-SG	106.95	111.04	4.09
SG-CD1-OE2	121.98	122.31	0.33
SG-CD1-CG1	114.14	113.37	0.77
CD1-CG1-HG13	108.34	107.93	0.41
CD1-CG1-HG12	107.72	109.91	2.19
CD1-CG1-CB1	111.99	110.97	1.01
OE2-CD1-CG1	123.88	124.31	0.44
CG1-CB1-HB12	110.80	110.71	0.09
CG1-CB1-HB13	110.76	110.41	0.35
CG1-CB1-HB11	110.24	110.68	0.44
HG13-CG1-HG12	106.09	108.51	2.42
HG13-CG1-CB1	111.36	105.91	5.45
HG12-CG1-CB1	111.10	113.37	2.27

Figure S321: The PES scan for flexible dihedrals corresponding to 1-(methylsulfanyl)propan-1-one.

2.70 The small molecule used for bonded terms optimization of 2-amino-3-phosphonomethyls ulfanyl-propionicacid (CYQ)

Terms	QM	CHARMM	Abs. diff.
CD-P-O3P	98.72	98.20	0.51
HD1-CD-HD2	109.93	108.43	1.50
HD1-CD-P	106.62	105.24	1.38
HD2-CD-P	106.66	105.19	1.47
01P-P-02P	115.92	118.12	2.20
01P-P-03P	115.55	116.12	0.57
O2P-P-O3P	115.53	116.04	0.51

Figure S322: The energy minimized structure corresponding to [(ethylsulfanyl)methyl]phosphonica cid.

Table S750:	The	calculated	$\operatorname{geometric}$	terms	of [(et
hylsulfanyl)r	neth	yl]phospho	nicacid.		

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.01
HA2-CA	1.10	1.11	0.01
CA-HA	1.10	1.11	0.02
CA-CB	1.53	1.53	0.01
CB-HB1	1.10	1.11	0.01
CB-HB2	1.10	1.11	0.01
CB-SG	1.82	1.82	0.00
SG-CD	1.82	1.84	0.03
CD-HD1	1.10	1.10	0.00
CD-HD2	1.10	1.10	0.00
CD-P	1.92	1.86	0.06
P-O1P	1.55	1.52	0.04
P-O2P	1.55	1.52	0.04
P-O3P	1.56	1.52	0.04
HA3-CA-HA2	108.30	108.99	0.69
HA3-CA-HA	108.30	108.98	0.68
HA3-CA-CB	111.37	110.53	0.83
HA2-CA-HA	107.77	108.43	0.66
HA2-CA-CB	110.49	109.96	0.54
CA-CB-HB1	109.57	109.44	0.13
CA-CB-HB2	109.57	109.42	0.15
CA-CB-SG	111.19	113.22	2.04
HA-CA-CB	110.50	109.91	0.59
CB-SG-CD	99.85	92.63	7.22
HB1-CB-HB2	107.20	106.99	0.21
HB1-CB-SG	109.60	108.83	0.77
HB2-CB-SG	109.62	108.74	0.88
SG-CD-HD1	108.52	110.63	2.11
SG-CD-HD2	108.54	110.67	2.13
SG-CD-P	116.46	116.25	0.22
CD-P-O1P	103.90	101.62	2.28
CD-P-O2P	103.90	101.59	2.31

Figure S323: The PES scan for flexible dihedrals corresponding to [(ethylsulfanyl)methyl]phosphoni cacid.

2.71 The small molecule used for bonded terms optimization of 2-amino-3-phosphonomethyls ulfanyl-propionicacid (CYQP)

Figure S324: The energy minimized structure corresponding to [(ethylsulfanyl)methyl]phosphonica cid.

Table S751:	The	calculated	$\operatorname{geometric}$	terms	of	[(et
hylsulfanyl)	meth	yl]phospho	nicacid.			

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.01
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.54	0.01
CB-HB1	1.10	1.11	0.02
CB-HB2	1.10	1.11	0.01
CB-SG	1.82	1.82	0.00
SG-CD	1.81	1.82	0.01
CD-HD1	1.10	1.10	0.00
CD-HD2	1.10	1.10	0.00
CD-P	1.85	1.85	0.00
P-O1P	1.69	1.59	0.10
P-O2P	1.51	1.50	0.01
P-O3P	1.52	1.50	0.02
O1P-HO3P	0.98	0.96	0.01
HA3-CA-HA2	108.27	108.64	0.37
HA3-CA-HA	108.22	108.64	0.42
HA3-CA-CB	110.67	110.54	0.13
HA2-CA-HA	108.02	108.41	0.39
HA2-CA-CB	110.79	110.21	0.57
CA-CB-HB1	109.89	109.06	0.83
CA-CB-HB2	109.83	108.97	0.86
CA-CB-SG	110.39	113.62	3.23
HA-CA-CB	110.78	110.34	0.44
CB-SG-CD	98.17	92.11	6.06
HB1-CB-HB2	107.68	106.92	0.76
HB1-CB-SG	109.55	109.02	0.53
HB2-CB-SG	109.46	109.03	0.42
SG-CD-HD1	109.76	110.18	0.41
SG-CD-HD2	109.59	111.06	1.47
SG-CD-P	114.29	114.36	0.07
CD-P-O1P	100.39	95.16	5.22

Terms	QM	CHARMM	Abs. diff.
CD-P-O2P	108.60	106.03	2.57
CD-P-O3P	105.84	103.21	2.63
HD1-CD-HD2	108.64	108.08	0.56
HD1-CD-P	106.83	106.05	0.78
HD2-CD-P	107.55	106.79	0.75
P-O1P-HO3P	104.65	107.80	3.15
01P-P-02P	108.86	114.20	5.34
O1P-P-O3P	105.57	109.30	3.74
O2P-P-O3P	124.88	124.05	0.83

Figure S325: The PES scan for flexible dihedrals corresponding to [(ethylsulfanyl)methyl]phosphoni cacid.

2.72 The small molecule used for bonded terms optimization of NG,NG-dimethyl-L-arginine (DA2)

Figure S326: The energy minimized structure corresponding to N,N,N'-trimethylguanidine.

Table S752: The calculated geometric terms of N,N,N'-trimethyl guanidine.

Terms	QM	CHARMM	Abs. diff.
HD3-CD	1.09	1.11	0.03
CD-HD1	1.09	1.12	0.02
CD-HD2	1.09	1.11	0.02
CD-NE	1.46	1.47	0.01
NE-HE	1.01	0.99	0.02
NE-CZ	1.34	1.35	0.01
CZ-NH2	1.35	1.33	0.01
CZ-NH1	1.34	1.36	0.03
NH2-HH21	1.01	0.99	0.02
NH2-HH22	1.01	0.99	0.02
NH1-C1	1.47	1.48	0.01
NH1-C2	1.47	1.48	0.01
C1-HC11	1.09	1.11	0.02
C1-HC12	1.09	1.11	0.02
C1-HC13	1.09	1.12	0.02
C2-HC21	1.09	1.11	0.02
C2-HC22	1.09	1.11	0.02
C2-HC23	1.09	1.11	0.02
HD3-CD-HD1	108.61	106.80	1.80
HD3-CD-HD2	108.33	106.94	1.39
HD3-CD-NE	107.75	110.72	2.97
CD-NE-HE	117.41	120.03	2.62
CD-NE-CZ	124.17	125.32	1.15
HD1-CD-HD2	110.33	108.53	1.80
HD1-CD-NE	111.99	111.82	0.17
HD2-CD-NE	109.72	111.77	2.05
NE-CZ-NH2	119.25	119.37	0.12
NE-CZ-NH1	120.58	120.39	0.19
HE-NE-CZ	117.20	114.64	2.57
CZ-NH2-HH21	121.25	118.54	2.70
CZ-NH2-HH22	121.02	118.23	2.79
CZ-NH1-C1	121.46	121.55	0.09
CZ-NH1-C2	121.24	121.33	0.09

Terms	QM	CHARMM	Abs. diff.
NH2-CZ-NH1	120.16	120.24	0.07
HH21-NH2-HH22	117.14	123.19	6.05
NH1-C1-HC11	111.23	111.61	0.38
NH1-C1-HC12	110.00	111.72	1.72
NH1-C1-HC13	108.09	111.50	3.41
NH1-C2-HC21	111.36	111.54	0.19
NH1-C2-HC22	108.07	111.57	3.51
NH1-C2-HC23	109.93	111.77	1.85
C1-NH1-C2	117.30	117.12	0.18
HC11-C1-HC12	110.31	108.63	1.68
HC11-C1-HC13	108.95	106.66	2.29
HC12-C1-HC13	108.18	106.45	1.73
HC21-C2-HC22	108.87	106.60	2.27
HC21- $C2$ - $HC23$	110.28	108.58	1.71
HC22- $C2$ - $HC23$	108.24	106.50	1.75

Figure S327: The PES scan for flexible dihedral corresponding to N,N,N'-trimethylguanidine.

2.73 The small molecule used for bonded terms optimization of 3,4-Dihydroxy-phenylalanine (DAH)

Terms	QM	CHARMM	Abs. diff.
CD1-CE1-OE1	119.89	118.84	1.05
CD1-CE1-CZ	119.67	119.99	0.31
HD1-CD1-CE1	118.09	119.72	1.63
CE2-CZ-CE1	120.22	119.57	0.65
CE2-CZ-OZ	125.12	118.87	6.24
HE2-CE2-CZ	120.00	120.51	0.52
CE1-OE1-HE1	106.77	105.37	1.40
CE1-CZ-OZ	114.66	121.56	6.90
OE1-CE1-CZ	120.44	121.17	0.74
CZ-OZ-HZ	108.88	107.66	1.22

Figure S328: The energy minimized structure corresponding to 4-methylbenzene-1,2-diol.

Table S753: The calculated geometric terms of 4-methylbenzene-1,2-diol.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.10	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-CG	1.51	1.50	0.01
CG-CD2	1.40	1.40	0.00
CG-CD1	1.40	1.40	0.00
CD2-HD2	1.09	1.08	0.01
CD2-CE2	1.40	1.40	0.00
CD1-HD1	1.09	1.08	0.01
CD1-CE1	1.39	1.40	0.01
CE2-HE2	1.09	1.08	0.01
CE2-CZ	1.39	1.40	0.01
CE1-OE1	1.37	1.41	0.04
CE1-CZ	1.40	1.41	0.01
OE1-HE1	0.98	0.96	0.01
CZ-OZ	1.38	1.42	0.03
OZ-HZ	0.97	0.96	0.01
HB3-CB-HB2	107.53	109.84	2.32
HB3-CB-HB1	107.78	109.88	2.10
HB3-CB-CG	111.31	108.69	2.61
CB-CG-CD2	121.13	120.21	0.92
CB-CG-CD1	120.08	120.11	0.03
HB2-CB-HB1	107.99	109.16	1.18
HB2-CB-CG	111.14	109.60	1.54
HB1-CB-CG	110.94	109.65	1.29
CG-CD2-HD2	119.87	119.61	0.26
CG-CD2-CE2	120.88	120.32	0.56
CG-CD1-HD1	121.08	119.95	1.13
CG-CD1-CE1	120.83	120.34	0.49
CD2-CG-CD1	118.77	119.68	0.91
CD2-CE2-HE2	120.38	119.38	1.01
CD2-CE2-CZ	119.62	120.11	0.49
HD2-CD2-CE2	119.25	120.07	0.82

2.74 The small molecule used for bonded terms optimization of 3,5-dibromotyrosine (DBY)

Terms	QM	CHARMM	Abs. diff.
CG-CD1-CE1	119.95	120.55	0.60
CG-CD2-HD2	120.29	119.75	0.54
CG-CD2-CE2	120.79	120.57	0.22
CD1-CG-CD2	118.54	119.46	0.92
CD1-CE1-BR1	119.59	117.92	1.67
CD1-CE1-CZ	122.43	119.98	2.45
HD1-CD1-CE1	119.42	119.81	0.39
CD2-CE2-BR2	119.70	117.50	2.20
CD2-CE2-CZ	121.56	119.92	1.63
HD2-CD2-CE2	118.91	119.68	0.77
CE1-CZ-CE2	116.72	119.51	2.79
CE1-CZ-OH	124.40	119.22	5.17
BR1-CE1-CZ	117.98	122.10	4.12
CE2-CZ-OH	118.88	121.27	2.38
BR2-CE2-CZ	118.74	122.57	3.83
CZ-OH-HH	107.90	106.33	1.57

Figure S329: The energy minimized structure corresponding to 2,6-diboranyl-4-ethylphenol.

Table S754: The calculated geometric terms of 2,6-diboranyl-4-ethylphenol.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.53	0.00
CB-HB1	1.10	1.11	0.02
CB-HB2	1.10	1.11	0.02
CB-CG	1.51	1.50	0.00
CG-CD1	1.40	1.40	0.00
CG-CD2	1.40	1.40	0.00
CD1-HD1	1.09	1.08	0.01
CD1-CE1	1.39	1.40	0.01
CD2-HD2	1.09	1.08	0.01
CD2-CE2	1.39	1.40	0.01
CE1-BR1	1.91	1.91	0.00
CE1-CZ	1.40	1.41	0.01
CE2-BR2	1.90	1.91	0.01
CE2-CZ	1.40	1.41	0.01
CZ-OH	1.36	1.41	0.06
OH-HH	0.98	0.96	0.02
HA3-CA-HA2	108.33	107.99	0.34
HA3-CA-HA	107.93	108.36	0.42
HA3-CA-CB	110.55	111.09	0.54
HA2-CA-HA	108.32	108.00	0.32
HA2-CA-CB	111.03	110.25	0.78
CA-CB-HB1	109.82	110.71	0.89
CA-CB-HB2	109.80	110.67	0.87
CA-CB-CG	111.81	109.53	2.28
HA-CA-CB	110.58	111.04	0.46
CB-CG-CD1	120.73	120.23	0.50
CB-CG-CD2	120.63	120.30	0.33
HB1-CB-HB2	106.71	108.24	1.53
HB1-CB-CG	109.31	108.82	0.48
HB2-CB-CG	109.27	108.82	0.45
CG-CD1-HD1	120.62	119.64	0.98

2.75 The small molecule used for bonded terms optimization of 3-(benzoylamino)-L-alanine (DBZ)

Figure S330: The energy minimized structure corresponding to (2S)-2,3-diacetamido-N-methylprop anamide.

Table	S755:	The	calculated	geometric	terms	of
(2S)-2	,3-diace	etami	do-N-methy	lpropanam	ide.	

Terms	QM	CHARMM	Abs. diff.
N-HN	1.02	0.99	0.02
N-CA	1.46	1.46	0.01
N-CY	1.38	1.34	0.04
CA-HA	1.10	1.08	0.02
CA-CB	1.53	1.55	0.03
CA-C	1.53	1.52	0.00
CB-HB1	1.10	1.12	0.02
CB-HB2	1.10	1.11	0.01
CB-NG	1.45	1.45	0.00
NG-HG	1.02	1.00	0.02
NG-CD2	1.36	1.34	0.03
CD2-OD2	1.23	1.22	0.01
CD2-C1	1.51	1.48	0.03
C1-H11	1.09	1.11	0.02
C1-H12	1.09	1.11	0.02
C1-H13	1.09	1.11	0.02
C-O	1.24	1.23	0.01
C-NT	1.36	1.35	0.01
NT-HNT	1.01	0.99	0.02
NT-CAT	1.45	1.45	0.01
CAT-HT1	1.09	1.11	0.02
CAT-HT2	1.09	1.11	0.02
CAT-HT3	1.09	1.11	0.02
CAY-HY1	1.09	1.11	0.02
CAY-HY2	1.09	1.11	0.02
CAY-HY3	1.09	1.11	0.02
CAY-CY	1.51	1.48	0.03
CY-OY	1.23	1.22	0.01
N-CA-HA	110.44	106.78	3.67
N-CA-CB	110.22	112.27	2.05
N-CA-C	112.35	116.23	3.89
N-CY-CAY	115.29	116.37	1.08

Terms	QM	CHARMM	Abs. diff.
N-CY-OY	121.16	122.70	1.54
HN-N-CA	117.17	116.58	0.59
HN-N-CY	117.68	118.38	0.70
CA-N-CY	118.85	124.75	5.90
CA-CB-HB1	110.61	107.43	3.19
CA-CB-HB2	109.85	109.57	0.28
CA-CB-NG	108.90	113.36	4.47
CA-C-O	120.13	120.77	0.64
CA-C-NT	115.09	117.75	2.66
HA-CA-CB	109.38	107.36	2.01
HA-CA-C	104.93	104.98	0.05
CB-CA-C	109.37	108.61	0.76
CB-NG-HG	118.15	117.52	0.63
CB-NG-CD2	120.21	122.12	1.91
HB1-CB-HB2	107.57	107.05	0.52
HB1-CB-NG	108.44	109.63	1.19
HB2-CB-NG	111.46	109.59	1.86
NG-CD2-OD2	121.84	122.08	0.25
NG-CD2-C1	115.37	116.88	1.51
HG-NG-CD2	121.61	120.35	1.26
CD2-C1-H11	112.74	111.04	1.70
CD2-C1-H12	109.11	109.77	0.66
CD2-C1-H13	108.51	109.50	0.99
OD2-CD2-C1	122.78	121.03	1.74
H11-C1-H12	108.72	109.22	0.50
H11-C1-H13	109.66	108.75	0.91
H12-C1-H13	108.00	108.51	0.51
C-NT-HNT	115.81	119.87	4.06
C-NT-CAT	120.04	121.67	1.63
O-C-NT	123.63	121.39	2.23
NT-CAT-HT1	108.19	111.05	2.86
NT-CAT-HT2	108.95	110.68	1.73
NT-CAT-HT3	111.83	110.59	1.24
HNT-NT-CAT	118.23	117.91	0.32
HT1-CAT-HT2	109.60	108.04	1.55
HT1-CAT-HT3	108.64	108.14	0.49
HT2-CAT-HT3	109.61	108.24	1.37
CAY-CY-OY	123.55	120.92	2.63
HY1-CAY-HY2	109.79	108.52	1.27
HY1-CAY-HY3	108.41	109.25	0.84
HY1-CAY-CY	111.96	111.03	0.93
HY2-CAY-HY3	108.46	108.45	0.02
HY2-CAY-CY	108.58	109.37	0.79
HY3-CAY-CY	109.56	110.16	0.60

Figure S331: The PES scan for flexible dihedral corresponding to (2S)-2,3-diacetamido-N-methyl propanamide.

2.76 The small molecule used for bonded terms optimization of 3-[4-(2-amino-2-carboxy-ethy l)-1H-imidazol-2-yl]-1-carbam oyl-propyl-trimethyl-ammoniu m (DDE)

Figure S332: The energy minimized structure corresponding to (2R)-2-(trimethylamino)propanami de.

Table S756: The calculated geometric terms of (2R)-2-(trimethylamino)propanamide.

			<u></u> АА.
Terms	QM	CHARMM	Abs. diffHAA
HAU3-CAU	1.09	1.11	0.02 CAI
CAU-HAU1	1.09	1.11	0.02 HAB
CAU-HAU2	1.09	1.11	0.02 HAB
CAU-CBW	1.52	1.56	0.03 HAB
CBW-HBW	1.10	1.11	0.02 HAC
CBW-CBI	1.54	1.54	0.00 HAC
CBW-NCB	1.53	1.56	0.03 HAC:
CBI-OAG	1.23	1.24	0.00
CBI-NAD	1.35	1.36	0.01 20
NAD-HAD1	1.01	1.00	0.02
NAD-HAD2	1.01	1.00	0.02 🖁 15
NCB-CAA	1.51	1.51	<u>5</u> 00.0
NCB-CAB	1.50	1.50	0.00 👻 📘
NCB-CAC	1.51	1.50	0.00 턁 10는
CAA-HAA1	1.09	1.08	0.01 👸 📘
CAA-HAA2	1.09	1.09	0.00 💈 🖕
CAA-HAA3	1.09	1.08	0.01
CAB-HAB1	1.09	1.09	0.00 🖉 ╞
CAB-HAB2	1.09	1.08	0.01 g
CAB-HAB3	1.09	1.09	0.00 -200
CAC-HAC1	1.09	1.08	0.01
CAC-HAC2	1.09	1.08	$0.01\mathrm{Figure}$
CAC-HAC3	1.09	1.09	$0.00_{\rm corresp}$
HAU3-CAU-HAU1	107.49	107.41	$0.08 \mathrm{mide.}^{1}$
HAU3-CAU-HAU2	107.23	106.81	0.43
HAU3-CAU-CBW	107.57	110.12	2.54
CAU-CBW-HBW	110.39	105.30	5.09
CAU-CBW-CBI	108.49	108.19	0.30
CAU-CBW-NCB	113.47	110.91	2.55
HAU1-CAU-HAU2	109.98	108.60	1.38

•	Terms	QM	CHARMM	Abs. diff.
of ⁻	HAU1-CAU-CBW	111.05	111.75	0.70
v	HAU2-CAU-CBW	113.24	111.93	1.31
'n	CBW-CBI-OAG	121.35	122.54	1.18
	CBW-CBI-NAD	114.46	117.32	2.86
u	CBW-NCB-CAA	109.54	111.01	1.47
	CBW-NCB-CAB	108.86	112.52	3.66
	CBW-NCB-CAC	112.91	112.05	0.86
	HBW-CBW-CBI	110.37	110.68	0.32
	HBW-CBW-NCB	103.78	104.76	0.98
	CBI-CBW-NCB	110.29	116.43	6.13
	CBI-NAD-HAD1	123.79	121.87	1.91
	CBI-NAD-HAD2	117.81	116.90	0.91
	OAG-CBI-NAD	124.14	120.14	4.00
	HAD1-NAD-HAD2	117.85	121.03	3.17
	NCB-CAA-HAA1	108.13	110.81	2.69
	NCB-CAA-HAA2	108.84	110.75	1.91
	NCB-CAA-HAA3	108.68	111.93	3.25
	NCB-CAB-HAB1	109.57	111.06	1.49
	NCB-CAB-HAB2	108.99	111.72	2.74
	NCB-CAB-HAB3	108.15	110.83	2.68
or-	NCB-CAC-HAC1	107.35	111.66	4.31
mi	NCB-CAC-HAC2	108.92	111.27	2.35
	NCB-CAC-HAC3	108.31	110.36	2.06
	CAA-NCB-CAB	107.88	107.36	0.53
of	CAA-NCB-CAC	108.90	105.80	3.10
	HAA1-CAA-HAA2	110.35	107.05	3.31
	HAA1-CAA-HAA3	109.92	107.60	2.32
os. di	ffHAA2-CAA-HAA3	110.86	108.51	2.35
0.02	CAB-NCB-CAC	108.62	107.75	0.87
0.02	HAB1-CAB-HAB2	110.48	108.15	2.33
0.02	HAB1-CAB-HAB3	109.64	107.28	2.36
0.03	HAB2-CAB-HAB3	109.97	107.62	2.35
0.02	HAC1-CAC-HAC2	109.67	108.13	1.54
0.00	HAC1-CAC-HAC3	111.23	107.93	3.30
0.03	HAC2-CAC-HAC3	111.25	107.32	3.92

01 Figure S333: The PES scan for flexible dihedral 00 corresponding to (2R)-2-(trimethylamino)propana 08 mide.

2.77 The small molecule 1 used for bonded terms optimization of 3-[4-(2-amino-2-carboxy-ethy l)-1H-imidazol-2-yl]-1-carbam oyl-propyl-trimethyl-ammoniu m (DDEP)

Terms	QM	CHARMM	Abs. diff.
ND1-CE1-CAT	127.34	127.13	0.21
HD1-ND1-CE1	123.60	124.87	1.26
CD2-NE2-HE2	125.15	124.66	0.49
CD2-NE2-CE1	110.97	110.71	0.26
HD2-CD2-NE2	122.36	124.86	2.50
NE2-CE1-CAT	127.40	127.15	0.24
HE2-NE2-CE1	123.88	124.63	0.75
CE1-CAT-HAT1	110.32	110.20	0.12
CE1-CAT-HAT2	110.18	110.13	0.05
CE1-CAT-HAT3	110.91	109.69	1.22
HAT1-CAT-HAT2	108.07	108.62	0.56
HAT1-CAT-HAT3	108.67	109.09	0.42
HAT2-CAT-HAT3	108.62	109.07	0.46

Figure S334: The energy minimized structure corresponding to 2,4-dimethyl-2,3-dihydro-1H-imida zole.

Table S757:	The calculate	d geometric	terms of $2,4$ -
dimethyl-2,	3-dihydro-1H-	imidazole.	

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-CG	1.49	1.50	0.02
CG-ND1	1.39	1.37	0.02
CG-CD2	1.37	1.34	0.03
ND1-HD1	1.02	1.00	0.02
ND1-CE1	1.35	1.33	0.02
CD2-HD2	1.08	1.09	0.01
CD2-NE2	1.38	1.37	0.01
NE2-HE2	1.02	1.00	0.02
NE2-CE1	1.34	1.33	0.02
CE1-CAT	1.49	1.50	0.01
CAT-HAT1	1.09	1.11	0.02
CAT-HAT2	1.09	1.11	0.02
CAT-HAT3	1.09	1.11	0.02
HB3-CB-HB1	108.74	108.88	0.14
HB3-CB-HB2	108.12	108.43	0.31
HB3-CB-CG	111.14	110.20	0.94
CB-CG-ND1	123.04	122.30	0.74
CB-CG-CD2	131.88	131.15	0.72
HB1-CB-HB2	108.12	108.42	0.29
HB1-CB-CG	111.15	110.22	0.94
HB2-CB-CG	109.47	110.64	1.17
CG-ND1-HD1	124.61	124.24	0.37
CG-ND1-CE1	111.78	110.89	0.89
CG-CD2-HD2	130.66	128.84	1.82
CG-CD2-NE2	106.98	106.29	0.69
ND1-CG-CD2	105.08	106.54	1.47
ND1-CE1-NE2	105.19	105.56	0.37

Figure S335: The PES scan for flexible dihedral corresponding to 2,4-dimethyl-2,3-dihydro-1H-imi dazole.

2.78The small molecule 2 used for bonded terms optimization of 3-[4-(2-amino-2-carboxy-ethy l)-1H-imidazol-2-yl]-1-carbam oyl-propyl-trimethyl-ammoniu m (DDEP)

Terms	QM	CHARMM	Abs. diff.
CE1-CAT-HAT1	108.24	108.77	0.53
CE1-CAT-HAT2	108.21	108.76	0.56
CE1-CAT-CAU	112.38	113.48	1.10
CAT-CAU-HAU1	109.43	110.23	0.80
CAT-CAU-HAU2	111.19	111.40	0.21
CAT-CAU-HAU3	111.20	111.38	0.19
HAT1-CAT-HAT2	106.38	107.06	0.68
HAT1-CAT-CAU	110.70	109.29	1.42
HAT2-CAT-CAU	110.70	109.28	1.42
HAU1-CAU-HAU2	108.22	107.65	0.57
HAU1-CAU-HAU3	108.20	107.69	0.51
HAU2-CAU-HAU3	108.50	108.33	0.17

Figure S336: The energy minimized structure corresponding to 2-ethyl-1H-imidazole.

Table S758: The calculated geometric terms of 2ethyl-1H-imidazole.

HD2-CD2-NE2

NE2-CE1-CAT

HE2-NE2-CE1

122.66

127.34

123.75

124.76

127.29

124.37

				_
Terms	QM	CHARMM	Abs. diff.	Figure S337: The PES scan for flexible dihedral
CG-HG	1.08	1.09	0.01	corresponding to 2-ethyl-1H-imidazole.
CG-ND1	1.38	1.37	0.01	
CG-CD2	1.37	1.34	0.03	
ND1-HD1	1.02	1.00	0.02	
ND1-CE1	1.35	1.33	0.01	
CD2-HD2	1.08	1.09	0.01	
CD2-NE2	1.38	1.37	0.01	
NE2-HE2	1.02	1.00	0.02	
NE2-CE1	1.35	1.33	0.01	
CE1-CAT	1.49	1.51	0.02	
CAT-HAT1	1.09	1.11	0.02	
CAT-HAT2	1.09	1.11	0.02	
CAT-CAU	1.54	1.54	0.00	
CAU-HAU1	1.09	1.11	0.02	
CAU-HAU2	1.09	1.11	0.02	
CAU-HAU3	1.09	1.11	0.02	
CG-ND1-HD1	125.05	124.28	0.76	
CG-ND1-CE1	111.18	111.00	0.19	
CG-CD2-HD2	131.13	128.77	2.35	
CG-CD2-NE2	106.21	106.46	0.25	
HG-CG-ND1	122.67	124.24	1.57	
HG-CG-CD2	131.11	129.34	1.77	
ND1-CG-CD2	106.22	106.42	0.20	
ND1-CE1-NE2	105.20	105.30	0.10	
ND1-CE1-CAT	127.32	127.30	0.02	
HD1-ND1-CE1	123.77	124.72	0.95	
CD2-NE2-HE2	125.06	124.80	0.26	
CD2-NE2-CE1	111 19	110.82	0.37	

2.100.05

0.62

2.79 The small molecule used for bonded terms optimization of 3,3-dihydroxy-alanine (DDZ)

Figure S338: The energy minimized structure corresponding to ethane-1,1-diol.

Table S759: The calculated geometric terms of et hane-1,1-diol.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.51	1.52	0.01
CB-HB	1.10	1.12	0.02
CB-OG1	1.42	1.40	0.02
CB-OG2	1.42	1.40	0.02
OG1-HG1	0.98	0.96	0.02
OG2-HG2	0.97	0.96	0.02
HA3-CA-HA2	109.54	108.46	1.08
HA3-CA-HA	108.30	108.15	0.15
HA3-CA-CB	110.56	109.97	0.59
HA2-CA-HA	109.29	108.88	0.41
HA2-CA-CB	109.94	110.41	0.48
CA-CB-HB	111.38	110.03	1.35
CA-CB-OG1	112.79	108.00	4.79
CA-CB-OG2	106.69	108.52	1.83
HA-CA-CB	109.19	110.90	1.72
CB-OG1-HG1	105.94	101.12	4.83
CB-OG2-HG2	106.19	102.65	3.54
HB-CB-OG1	103.86	109.22	5.36
HB-CB-OG2	111.15	109.82	1.33
OG1-CB-OG2	111.07	111.23	0.16

Figure S339: The PES scan for flexible dihedral corresponding to ethane-1,1-diol.

2.80 The small molecule used for bonded terms optimization of (DYAP)

Figure S340: The energy minimized structure corresponding to (2Z)-3-acetamido-3-(methylcarbam oyl)prop-2-enoicacid.

Table S760: The calculated geometric terms of (2Z)-3-acetamido-3-(methylcarbamoyl)prop-2-enoicacid.

Terms	QM	CHARMM	Abs. diff.
CL-HL1	1.10	1.11	0.01
CL-HL2	1.09	1.11	0.02
CL-HL3	1.09	1.11	0.02
CL-CLP	1.52	1.48	0.04
CLP-OL	1.23	1.22	0.00
CLP-N	1.38	1.35	0.03
N-H	1.03	1.00	0.03
N-CA	1.40	1.41	0.01
CA-CB	1.36	1.36	0.00
CA-C	1.54	1.54	0.00
CB-HB	1.08	1.10	0.02
CB-CG	1.46	1.49	0.03
CG-OD1	1.23	1.22	0.01
CG-OD2	1.35	1.38	0.03
OD2-HO	0.98	0.96	0.02
C-O	1.23	1.23	0.00
C-NR	1.34	1.34	0.00
NR-HR	1.02	1.01	0.02
NR-CR	1.45	1.44	0.01
CR-HR1	1.10	1.11	0.02
CR-HR2	1.10	1.11	0.02
CR-HR3	1.09	1.11	0.02
CL-CLP-OL	120.30	119.41	0.90
CL-CLP-N	113.23	115.21	1.98
HL1-CL-HL2	107.75	108.67	0.92
HL1-CL-HL3	108.35	109.25	0.90
HL1-CL-CLP	108.85	109.90	1.05
HL2-CL-HL3	109.81	108.88	0.92
HL2-CL-CLP	108.47	109.41	0.95
HL3-CL-CLP	113.46	110.68	2.78
CLP-N-H	114.01	112.49	1.52
CLP-N-CA	136.54	135.23	1.31

Terms	QM	CHARMM	Abs. diff.
OL-CLP-N	126.45	125.38	1.07
N-CA-CB	118.05	118.99	0.94
N-CA-C	128.16	127.72	0.44
H-N-CA	109.44	112.27	2.83
CA-CB-HB	117.03	121.70	4.68
CA-CB-CG	124.60	121.76	2.84
CA-C-O	118.14	121.51	3.37
CA-C-NR	118.94	120.15	1.21
CB-CA-C	113.79	113.24	0.55
CB-CG-OD1	126.64	128.27	1.63
CB-CG-OD2	112.47	112.24	0.23
HB-CB-CG	118.38	116.53	1.84
CG-OD2-HO	106.19	109.14	2.95
OD1-CG-OD2	120.89	119.50	1.40
C-NR-HR	119.65	118.68	0.97
C-NR-CR	119.73	122.77	3.04
O-C-NR	122.93	118.34	4.59
NR-CR-HR1	110.88	110.95	0.06
NR-CR-HR2	110.96	110.63	0.33
NR-CR-HR3	108.49	110.34	1.85
HR-NR-CR	120.61	118.24	2.37
HR1-CR-HR2	107.68	108.28	0.60
HR1-CR-HR3	109.41	108.25	1.16
HR2-CR-HR3	109.40	108.30	1.09

Figure S341: The PES scan for flexible dihedrals corresponding to (2Z)-3-acetamido-3-(methylcarb amoyl)prop-2-enoicacid.

2.81 The small molecule used for bonded terms optimization of (3S)-3-amino-3-[(4Z)-1-(carb oxymethyl)-4-[(4-hydroxyphe nyl)methylidene]-5-oxo-imidaz ol-2-yl]propanoicacid (DYG)

Figure S342: The energy minimized structure corresponding to (4Z)-4-ethylidene-1,2-dimethyl-4,5-dihydro-1H-imidazol-5-one.

Table S761: The calculated geometric terms of (4Z)-4-ethylidene-1,2-dimethyl-4,5-dihydro-1H -imidazol-5-one.

OM	CHARMM	Abs diff
1 09	1 11	0.01
1.00	1 11	0.01
1.00	1 11	0.02
1.05	1.11	0.01
1.10	1.30	0.01 0.02
1.39	1.39	0.00
1 41	1 41	0.00
1.11 1.40	1.38	0.02
1.45	1.47	0.02
1.23	1.24	0.01
1.49	1.48	0.01
1.35	1.35	0.00
1.09	1.10	0.01
1.49	1.51	0.02
1.10	1.11	0.02
1.09	1.11	0.02
1.10	1.11	0.02
1.09	1.11	0.02
1.09	1.11	0.02
1.09	1.11	0.02
124.60	121.77	2.83
120.85	121.89	1.04
109.22	108.67	0.55
107.77	109.67	1.91
111.12	109.93	1.19
109.22	108.67	0.54
108.37	109.93	1.56
111.12	109.93	1.19
104.87	102.65	2.22
	$\begin{array}{r} {\rm QM} \\ {\rm 1.09} \\ {\rm 1.09} \\ {\rm 1.09} \\ {\rm 1.09} \\ {\rm 1.49} \\ {\rm 1.31} \\ {\rm 1.39} \\ {\rm 1.41} \\ {\rm 1.40} \\ {\rm 1.45} \\ {\rm 1.23} \\ {\rm 1.49} \\ {\rm 1.35} \\ {\rm 1.09} \\ {\rm 1.49} \\ {\rm 1.35} \\ {\rm 1.09} \\ {\rm 1.49} \\ {\rm 1.10} \\ {\rm 1.09} \\ {\rm 1.00} \\ {\rm 1.0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Terms	QM	CHARMM	Abs. diff.
C1-N3-C2	108.14	106.52	1.62
C1-N3-CA3	128.47	126.83	1.64
N2-C1-N3	114.55	116.34	1.79
N2-CA2-C2	110.12	110.13	0.01
N2-CA2-CB2	125.91	126.25	0.34
N3-C2-O2	126.32	128.21	1.89
N3-C2-CA2	102.32	104.36	2.04
N3-CA3-HA31	106.27	111.14	4.87
N3-CA3-HA32	111.19	110.98	0.21
N3-CA3-HA33	111.19	110.97	0.23
C2-N3-CA3	123.38	126.65	3.26
C2- $CA2$ - $CB2$	123.97	123.61	0.36
O2-C2-CA2	131.36	127.44	3.92
CA2-CB2-HB2	116.54	116.84	0.30
CA2-CB2-CG2	124.33	124.76	0.44
CB2-CG2-HG21	110.53	110.96	0.43
CB2-CG2-HG22	110.55	112.64	2.09
CB2-CG2-HG23	110.53	111.00	0.47
HB2-CB2-CG2	119.14	118.40	0.74
HG21-CG2-HG22	109.14	107.22	1.92
HG21-CG2-HG23	106.87	107.62	0.75
HG22-CG2-HG23	109.14	107.17	1.97
HA31-CA3-HA32	109.33	107.57	1.77
HA31-CA3-HA33	109.33	107.55	1.78
HA32-CA3-HA33	109.45	108.49	0.96

Figure S343: The PES scan for flexible dihedral corresponding to (4Z)-4-ethylidene-1,2-dimethyl -4,5-dihydro-1H-imidazol-5-one.

2.82 The small molecule used for bonded terms optimization of 3,4-difluoro-phenylalanine (F2F)

Terms	QM	CHARMM	Abs. diff.
HD2-CD2-CE2	119.12	119.89	0.77
CE1-CZ-CE2	120.11	120.71	0.60
CE1-CZ-FZ	119.06	121.07	2.02
FE1-CE1-CZ	118.87	121.11	2.24
CE2-CZ-FZ	120.83	118.21	2.62
HE2-CE2-CZ	118.99	120.59	1.60

Figure S344: The energy minimized structure corresponding to 1,2-difluoro-4-methylbenzene.

Table S762: The calculated geometric terms of 1,2-difluoro-4-methylbenzene.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.10	1.11	0.01
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-CG	1.51	1.50	0.01
CG-CD1	1.40	1.40	0.00
CG-CD2	1.40	1.40	0.00
CD1-HD1	1.09	1.08	0.01
CD1-CE1	1.39	1.39	0.01
CD2-HD2	1.09	1.08	0.01
CD2-CE2	1.40	1.40	0.00
CE1-FE1	1.35	1.36	0.01
CE1-CZ	1.39	1.40	0.01
CE2-HE2	1.09	1.08	0.01
CE2-CZ	1.39	1.39	0.01
CZ- FZ	1.35	1.36	0.01
HB3-CB-HB1	107.69	109.84	2.15
HB3-CB-HB2	107.80	109.98	2.18
HB3-CB-CG	111.13	108.59	2.53
CB-CG-CD1	120.18	119.61	0.58
CB-CG-CD2	121.16	120.29	0.87
HB1-CB-HB2	108.06	109.19	1.12
HB1-CB-CG	111.11	109.65	1.46
HB2-CB-CG	110.91	109.58	1.32
CG-CD1-HD1	121.42	120.01	1.40
CG-CD1-CE1	120.10	119.04	1.05
CG-CD2-HD2	119.63	119.39	0.24
CG-CD2-CE2	121.25	120.73	0.52
CD1-CG-CD2	118.62	120.09	1.47
CD1-CE1-FE1	120.44	118.16	2.29
CD1-CE1-CZ	120.69	120.73	0.04
HD1-CD1-CE1	118.49	120.95	2.46
CD2-CE2-HE2	121.78	120.72	1.06
CD2-CE2-CZ	119.23	118.69	0.54

2.83 The small molecule used for bonded terms optimization of 4-fluoro-glutamicacid (FGA4)

Figure S345: The energy minimized structure corresponding to 2-fluorobutanoicacid.

Table S763: The calculated geometric terms of 2-fluorobutanoicacid.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.01
HA2-CA	1.10	1.11	0.01
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.53	0.01
CB-HB1	1.10	1.11	0.02
CB-HB2	1.10	1.11	0.02
CB-CG	1.52	1.54	0.03
CG-HG	1.10	1.09	0.01
CG-CD	1.55	1.56	0.01
CG-FG	1.43	1.39	0.05
CD-OE1	1.26	1.26	0.00
CD-OE2	1.27	1.27	0.01
HA3-CA-HA2	107.87	108.84	0.97
HA3-CA-HA	107.99	108.45	0.46
HA3-CA-CB	110.65	110.17	0.48
HA2-CA-HA	108.23	108.69	0.46
HA2-CA-CB	111.29	110.48	0.81
CA-CB-HB1	110.94	109.33	1.61
CA-CB-HB2	110.31	109.48	0.83
CA-CB-CG	113.40	113.55	0.15
HA-CA-CB	110.68	110.16	0.52
CB-CG-HG	111.05	107.81	3.25
CB-CG-CD	111.39	111.86	0.46
CB-CG-FG	107.15	108.27	1.12
HB1-CB-HB2	107.57	107.49	0.08
HB1-CB-CG	106.96	108.46	1.50
HB2-CB-CG	107.40	108.34	0.94
CG-CD-OE1	118.21	118.24	0.03
CG-CD-OE2	111.21	113.64	2.43
HG-CG-CD	109.06	109.15	0.09
HG-CG-FG	105.10	106.51	1.41
CD-CG-FG	112.92	112.99	0.07
OE1-CD-OE2	130.53	128.12	2.42

Figure S346: The PES scan for flexible dihedral corresponding to 2-fluorobutanoicacid.

Figure S347: The energy minimized structure corresponding to (2R)-2-acetamido-2-(methylcarbam oyl)acetate.

Table S764: The calculated geometric terms of (2R)-2-acetamido-2-(methylcarbamoyl)acetate.

Terms	QM	CHARMM	Abs. diff.
CL-HL1	1.09	1.11	0.02
CL-HL2	1.09	1.11	0.02
CL-HL3	1.10	1.11	0.01
CL-CLP	1.52	1.48	0.04
CLP-OL	1.24	1.22	0.02
CLP-N	1.35	1.34	0.01
N-H	1.02	0.99	0.03
N-CA	1.46	1.46	0.01
CA-HA	1.09	1.11	0.02
CA-CB	1.57	1.54	0.03
CA-C	1.53	1.50	0.03
CB-OG1	1.28	1.27	0.01
CB-OG2	1.25	1.26	0.01
C-O	1.24	1.23	0.01
C-NR	1.37	1.34	0.03
NR-HR	1.02	1.00	0.02
NR-CR	1.45	1.44	0.01
CR-HR1	1.09	1.11	0.02
CR-HR2	1.09	1.11	0.02
CR-HR3	1.10	1.11	0.01
CL-CLP-OL	120.90	120.12	0.77
CL-CLP-N	115.01	115.49	0.48
HL1-CL-HL2	109.60	109.23	0.37
HL1-CL-HL3	108.89	109.53	0.64
HL1-CL-CLP	112.91	109.88	3.03
HL2-CL-HL3	108.04	109.21	1.17
HL2-CL-CLP	108.64	109.26	0.61
HL3-CL-CLP	108.64	109.71	1.07
CLP-N-H	121.24	120.58	0.65
CLP-N-CA	124.79	125.94	1.15
OL-CLP-N	124.09	124.39	0.29
N-CA-HA	111.23	111.32	0.09

Terms	QM	CHARMM	Abs. diff.
N-CA-CB	106.23	110.57	4.34
N-CA-C	111.75	110.42	1.33
H-N-CA	112.37	113.32	0.95
CA-CB-OG1	112.85	115.68	2.83
CA-CB-OG2	117.07	117.19	0.12
CA-C-O	123.83	121.97	1.87
CA-C-NR	113.06	116.57	3.51
HA-CA-CB	111.43	108.80	2.63
HA-CA-C	108.19	108.46	0.27
CB-CA-C	107.99	107.15	0.83
OG1-CB-OG2	130.07	127.13	2.94
C-NR-HR	113.15	115.97	2.82
C-NR-CR	119.21	122.31	3.10
O-C-NR	123.10	121.44	1.66
NR-CR-HR1	108.67	110.32	1.65
NR-CR-HR2	109.17	110.29	1.12
NR-CR-HR3	112.16	110.05	2.10
HR-NR-CR	118.51	120.09	1.59
HR1-CR-HR2	109.30	108.87	0.43
HR1-CR-HR3	109.42	108.83	0.59
HR2-CR-HR3	108.08	108.42	0.34

Figure S348: The PES scan for flexible dihedrals corresponding to (2R)-2-acetamido-2-(methylcarb amoyl)acetate.

2.85 The small molecule used for bonded terms optimization of N5-formyl-N5-hydroxy-L-orn ithine (FHO)

Figure S349: The energy minimized structure corresponding to N-ethyl-N-hydroxyformamide.

Table S765: The calculated geometric terms of N-ethyl-N-hydroxyformamide.

Terms	QM	CHARMM	Abs. diff.
HG3-CG	1.09	1.11	0.02
CG-HG1	1.09	1.11	0.02
CG-HG2	1.09	1.11	0.02
CG-CD	1.52	1.53	0.01
CD-HD1	1.09	1.11	0.02
CD-HD2	1.09	1.11	0.02
CD-NE	1.45	1.46	0.01
NE-CZ	1.35	1.36	0.01
NE-OZ	1.41	1.42	0.01
CZ-HZ	1.10	1.10	0.00
CZ-OH	1.24	1.23	0.01
OZ-HOZ	0.99	0.96	0.03
HG3-CG-HG1	108.59	108.89	0.31
HG3-CG-HG2	108.77	108.64	0.12
HG3-CG-CD	110.10	110.95	0.84
CG-CD-HD1	111.66	107.58	4.07
CG-CD-HD2	111.14	107.90	3.24
CG-CD-NE	113.00	117.67	4.67
HG1-CG-HG2	108.72	108.06	0.65
HG1-CG-CD	110.49	110.19	0.30
HG2-CG-CD	110.13	110.03	0.10
CD-NE-CZ	126.27	129.51	3.24
CD-NE-OZ	112.41	112.80	0.39
HD1-CD-HD2	107.66	106.56	1.11
HD1-CD-NE	105.89	108.71	2.82
HD2-CD-NE	107.17	107.91	0.74
NE-CZ-HZ	113.38	114.44	1.06
NE-CZ-OH	122.08	124.09	2.01
NE-OZ-HOZ	100.26	101.08	0.83
CZ-NE-OZ	114.52	112.88	1.64
HZ-CZ-OH	124.44	121.36	3.09

Figure S350: The PES scan for flexible dihedrals corresponding to N-ethyl-N-hydroxyformamide.

Figure S351: The energy minimized structure corresponding to 2-amino-3,3,3-trifluoropropanoicac id.

Table S766: The calculated geometric terms of 2-amino-3,3,3-trifluoropropanoicacid.

Terms	QM	CHARMM	Abs. diff.
N-HN3	1.02	1.01	0.01
N-HN1	1.03	1.01	0.01
N-HN2	1.06	1.03	0.03
N-CA	1.50	1.49	0.00
CA-HA	1.09	1.11	0.02
CA-CB	1.50	1.63	0.13
CA-C	1.60	1.53	0.07
F1-CB	1.37	1.37	0.00
F2-CB	1.33	1.37	0.04
F3-CB	1.36	1.37	0.01
C-O	1.27	1.26	0.01
C-OXT	1.23	1.25	0.02
N-CA-HA	109.61	107.48	2.13
N-CA-CB	108.87	110.99	2.12
N-CA-C	103.82	108.70	4.88
HN3-N-HN1	109.13	112.39	3.26
HN3-N-HN2	114.72	110.37	4.36
HN3-N-CA	115.00	111.62	3.39
HN1-N-HN2	108.78	109.38	0.60
HN1-N-CA	111.71	110.96	0.75
HN2-N-CA	96.98	101.59	4.62
CA-CB-F1	110.15	111.07	0.93
CA-CB-F2	112.75	115.15	2.41
CA-CB-F3	110.16	114.71	4.55
CA-C-O	110.08	117.57	7.48
CA-C-OXT	115.59	115.06	0.53
HA-CA-CB	109.36	106.07	3.29
HA-CA-C	110.30	106.84	3.46
F1-CB-F2	108.18	104.75	3.43
F1-CB-F3	105.86	104.52	1.34
F2-CB-F3	109.50	105.63	3.88
CB-CA-C	114.68	116.31	1.64
O-C-OXT	134.32	127.35	6.96

Figure S352: The PES scan for flexible dihedrals corresponding to 2-amino-3,3,3-trifluoropropanoic acid.
2.87 The small molecule used for bonded terms optimization of N-formylmethionine (FME)

Figure S353: The energy minimized structure corresponding to (2S)-2-formamido-N-methylpropan amide.

Table S767: The calculated geometric terms of (2S)-2-formamido-N-methylpropanamide.

Terms	QM	CHARMM	Abs. diff.
CN-HCN	1.10	1.09	0.01
CN-O1	1.23	1.23	0.00
CN-N	1.35	1.34	0.01
N-H	1.02	1.00	0.02
N-CA	1.45	1.44	0.00
CA-HA	1.10	1.11	0.02
CA-CB	1.53	1.55	0.02
CA-C	1.53	1.51	0.02
CB-HB1	1.09	1.11	0.01
CB-HB2	1.09	1.11	0.02
CB-HB3	1.09	1.11	0.02
C-O	1.24	1.23	0.01
C-NR	1.36	1.35	0.01
NR-HR	1.01	0.99	0.02
NR-CR	1.45	1.45	0.01
CR-HR1	1.09	1.11	0.03
CR-HR2	1.09	1.11	0.02
CR-HR3	1.09	1.11	0.02
CN-N-H	122.24	122.28	0.04
CN-N-CA	121.38	122.75	1.37
HCN-CN-O1	122.80	124.75	1.95
HCN-CN-N	112.91	112.37	0.54
O1-CN-N	124.28	122.88	1.40
N-CA-HA	108.08	109.86	1.78
N-CA-CB	111.65	112.13	0.47
N-CA-C	106.87	105.85	1.02
H-N-CA	116.23	114.32	1.91
CA-CB-HB1	111.24	111.85	0.60
CA-CB-HB2	109.59	110.66	1.07
CA-CB-HB3	108.82	109.22	0.39
CA-C-O	121.37	120.30	1.07
CA-C-NR	114.85	117.93	3.08
HA-CA-CB	109.04	110.02	0.98

Terms	QM	CHARMM	Abs. diff.
HA-CA-C	110.33	107.65	2.69
CB-CA-C	110.82	111.18	0.36
HB1-CB-HB2	108.83	109.07	0.24
HB1-CB-HB3	108.93	107.92	1.01
HB2-CB-HB3	109.40	108.01	1.39
C-NR-HR	118.50	120.25	1.75
C-NR-CR	122.33	121.81	0.52
O-C-NR	123.72	121.77	1.95
NR-CR-HR1	107.20	111.08	3.89
NR-CR-HR2	110.41	110.58	0.17
NR-CR-HR3	111.26	110.54	0.72
HR-NR-CR	118.98	117.94	1.04
HR1-CR-HR2	109.55	108.09	1.46
HR1-CR-HR3	109.08	108.07	1.02
HR2-CR-HR3	109.30	108.38	0.91

Figure S354: The PES scan for flexible dihedral corresponding to (2S)-2-formamido-N-methylprop anamide.

2.88 The small molecule used for bonded terms optimization of (2-furyl)-alanine (FUA2)

Terms	QM	CHARMM	Abs. diff.
CD2-CE2-CE1	106.16	107.01	0.85
HD2-CD2-CE2	127.29	127.21	0.08
OD1-CE1-CE2	110.36	110.77	0.41
OD1-CE1-HE1	115.62	118.36	2.73
CE2-CE1-HE1	134.01	130.87	3.14
HE2-CE2-CE1	126.27	126.07	0.20

Figure S355: The energy minimized structure corresponding to 2-ethylfuran.

Table S768: The calculated geometric terms of 2-ethylfuran.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.54	0.01
CB-HB1	1.10	1.11	0.01
CB-HB2	1.10	1.11	0.02
CB-CG	1.49	1.51	0.02
CG-CD2	1.37	1.36	0.01
CG-OD1	1.37	1.37	0.01
CD2-HD2	1.08	1.08	0.00
CD2-CE2	1.43	1.36	0.06
OD1-CE1	1.37	1.37	0.00
CE2-HE2	1.08	1.08	0.00
CE2-CE1	1.37	1.36	0.00
CE1-HE1	1.08	1.08	0.00
HA3-CA-HA2	108.39	108.36	0.03
HA3-CA-HA	108.16	108.35	0.18
HA3-CA-CB	110.42	110.49	0.06
HA2-CA-HA	108.43	108.42	0.01
HA2-CA-CB	110.88	110.48	0.40
CA-CB-HB1	109.73	109.15	0.58
CA-CB-HB2	110.37	108.99	1.38
CA-CB-CG	112.66	114.72	2.06
HA-CA-CB	110.47	110.67	0.20
CB-CG-CD2	134.36	132.71	1.64
CB-CG-OD1	116.18	116.31	0.14
HB1-CB-HB2	106.81	107.24	0.43
HB1-CB-CG	109.47	107.94	1.53
HB2-CB-CG	107.61	108.54	0.93
CG-CD2-HD2	125.81	125.82	0.01
CG-CD2-CE2	106.90	106.98	0.07
CG-OD1-CE1	107.13	104.27	2.86
CD2-CG-OD1	109.45	110.97	1.52
CD2-CE2-HE2	127.57	126.92	0.65

Figure S356: The PES scan for flexible dihedral corresponding to 2-ethylfuran.

2.89 The small molecule 1 used for bonded terms optimization of 3-fluoro-valine (FVAL)

Terms	QM	CHARMM	Abs. diff.
HG21-CG2-HG22	108.54	108.10	0.44
HG21-CG2-HG23	108.76	108.44	0.32
HG22-CG2-HG23	108.76	108.50	0.26

Figure S357: The energy minimized structure corresponding to 2-fluoro-2-methylpropane.

Table S769: The calculated geometric terms of 2-fluoro-2-methyl propane.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.52	0.00
CB-FG3	1.42	1.38	0.04
CB-CG1	1.52	1.52	0.00
CB-CG2	1.52	1.52	0.00
CG1-HG11	1.09	1.11	0.02
CG1-HG12	1.09	1.11	0.02
CG1-HG13	1.09	1.11	0.02
CG2-HG21	1.09	1.11	0.02
CG2-HG22	1.09	1.11	0.02
CG2-HG23	1.09	1.11	0.02
HA3-CA-HA2	108.56	108.21	0.35
HA3-CA-HA	108.75	108.43	0.32
HA3-CA-CB	109.97	110.56	0.59
HA2-CA-HA	108.78	108.40	0.38
HA2-CA-CB	109.98	110.54	0.56
CA-CB-FG3	106.37	106.11	0.26
CA-CB-CG1	112.39	112.60	0.21
CA-CB-CG2	112.39	112.61	0.21
HA-CA-CB	110.76	110.63	0.13
CB-CG1-HG11	110.75	110.63	0.12
CB-CG1-HG12	109.95	110.55	0.59
CB-CG1-HG13	109.96	110.48	0.53
CB-CG2-HG21	109.98	110.53	0.54
CB-CG2-HG22	109.98	110.55	0.57
CB-CG2-HG23	110.77	110.64	0.13
FG3-CB-CG1	106.36	106.15	0.21
FG3-CB-CG2	106.37	106.15	0.22
CG1-CB-CG2	112.39	112.57	0.18
HG11-CG1-HG12	108.79	108.49	0.30
HG11-CG1-HG13	108.77	108.47	0.31
HG12-CG1-HG13	108.57	108.14	0.43

2.90 The small molecule 2 used for bonded terms optimization of 3-fluoro-valine (FVAL)

Figure S358: The energy minimized structure corresponding to (2S)-2-acetamido-3-fluoro-N,3-dime thylbutanamide.

Table S770: The calculated geometric terms of (2S)-2-acetamido-3-fluoro-N,3-dimethylbutana mide.

Terms	QM	CHARMM	Abs. diff.
N-HN	1.01	0.99	0.02
N-CA	1.46	1.47	0.01
N-CY	1.38	1.34	0.04
CA-HA	1.10	1.08	0.02
CA-CB	1.54	1.56	0.02
CA-C	1.54	1.52	0.02
CB-FG3	1.41	1.38	0.03
CB-CG1	1.52	1.52	0.00
CB-CG2	1.52	1.53	0.01
CG1-HG11	1.09	1.11	0.02
CG1-HG12	1.09	1.11	0.02
CG1-HG13	1.09	1.11	0.02
CG2-HG21	1.09	1.11	0.02
CG2-HG22	1.09	1.11	0.02
CG2-HG23	1.10	1.11	0.01
C-O	1.23	1.23	0.00
C-NT	1.37	1.35	0.02
NT-HNT	1.01	0.99	0.02
NT-CAT	1.45	1.45	0.01
CAT-HT1	1.09	1.11	0.02
CAT-HT2	1.09	1.11	0.02
CAT-HT3	1.10	1.11	0.02
CAY-HY1	1.09	1.11	0.02
CAY-HY2	1.09	1.11	0.02
CAY-HY3	1.09	1.11	0.02
CAY-CY	1.51	1.48	0.03
CY-OY	1.23	1.22	0.01
N-CA-HA	105.72	103.18	2.54
N-CA-CB	114.71	114.52	0.19
N-CA-C	110.63	114.99	4.36
N-CY-CAY	114.77	116.57	1.80
N-CY-OY	121.99	122.93	0.94

Terms	QM	CHARMM	Abs. diff.
HN-N-CA	116.00	116.17	0.17
HN-N-CY	116.31	117.39	1.08
CA-N-CY	121.68	125.44	3.76
CA-CB-FG3	103.72	107.21	3.49
CA-CB-CG1	116.95	117.06	0.11
CA-CB-CG2	110.33	111.22	0.89
CA-C-O	123.47	123.29	0.17
CA-C-NT	113.20	116.53	3.33
HA-CA-CB	104.27	103.22	1.06
HA-CA-C	104.93	102.42	2.52
CB-CA-C	115.37	115.91	0.54
CB-CG1-HG11	108.04	110.24	2.20
CB-CG1-HG12	110.00	111.68	1.67
CB-CG1-HG13	111.11	110.83	0.29
CB-CG2-HG21	108.69	109.90	1.20
CB-CG2-HG22	111.46	110.85	0.60
CB-CG2-HG23	110.73	110.91	0.18
FG3-CB-CG1	107.38	106.89	0.49
FG3-CB-CG2	105.68	103.38	2.29
CG1-CB-CG2	111.80	110.04	1.76
HG11-CG1-HG12	109.54	107.74	1.80
HG11-CG1-HG13	109.05	108.12	0.93
HG12-CG1-HG13	109.07	108.11	0.96
HG21-CG2-HG22	108.37	107.98	0.39
HG21-CG2-HG23	108.13	107.86	0.27
HG22-CG2-HG23	109.37	109.25	0.12
C-NT-HNT	116.21	119.69	3.48
C-NT-CAT	118.90	121.60	2.70
O-C-NT	122.88	120.13	2.76
NT-CAT-HT1	108.62	111.27	2.65
NT-CAT-HT2	108.76	110.85	2.09
NT-CAT-HT3	111.89	110.38	1.51
HNT-NT-CAT	117.98	117.88	0.10
HT1-CAT-HT2	109.45	108.15	1.30
HT1-CAT-HT3	108.48	107.59	0.88
HT2-CAT-HT3	109.61	108.48	1.13
CAY-CY-OY	123.23	120.50	2.72
HY1-CAY-HY2	109.72	108.81	0.91
HY1-CAY-HY3	108.29	109.89	1.60
HY1-CAY-CY	111.88	111.16	0.72
HY2-CAY-HY3	108.64	107.74	0.90
HY2-CAY-CY	108.53	109.27	0.74
HY3-CAY-CY	109.72	109.89	0.17

Figure S359: The PES scan for flexible dihedral corresponding to (2S)-2-acetamido-3-fluoro-N,3-di methylbutanamide.

2.91 The small molecule 1 used for bonded terms optimization of (2S)-2-amino-6-[1-[(2R,3R,4S,5R)-5-[[[[(2R,3S,4R,5R)-5-(6-aminop urin-9-yl)-3,4-dihydroxy-oxol an-2-yl]methoxy-hydroxy-pho sphoryl]oxy-hydroxy-phospho ryl]oxymethyl]-3,4-dihydroxyoxolan-2-yl]sulfanylethylidenea mino]hexanoicacid (FZN)

Figure S360: The energy minimized structure corresponding to (Z)-methyl[1-(methylsulfanyl)ethyl idene]amine.

Table S771: The calculated geometric terms of (Z)-methyl [1-(methylsulfanyl)ethylidene]amine.

Terms	QM	CHARMM	Abs. diff.
C5-H51	1.10	1.11	0.02
C5-H52	1.10	1.11	0.02
C5-H53	1.09	1.11	0.02
C5-N2	1.46	1.46	0.00
N2-C6	1.28	1.31	0.03
C6-C7	1.50	1.51	0.00
C6-S1	1.79	1.80	0.01
C7-H71	1.09	1.11	0.01
C7-H72	1.09	1.11	0.02
m C7-H73	1.09	1.11	0.01
S1-C8	1.81	1.83	0.01
C8-H8	1.09	1.11	0.02
C8-H82	1.09	1.11	0.02
C8-H83	1.09	1.11	0.02
C5-N2-C6	118.27	118.34	0.07
H51-C5-H52	107.91	107.12	0.79
H51-C5-H53	108.70	105.37	3.33
H51-C5-N2	111.39	113.70	2.31
H52-C5-H53	108.70	105.38	3.32
H52-C5-N2	111.39	113.72	2.33
H53-C5-N2	108.68	110.89	2.20
N2-C6-C7	118.84	118.80	0.04
N2-C6-S1	121.92	122.03	0.11
C6-C7-H71	111.68	110.97	0.70

Terms	QM	CHARMM	Abs. diff.
C6-C7-H72	107.13	110.97	3.85
C6-C7-H73	111.68	110.97	0.70
C6-S1-C8	103.69	103.68	0.01
C7-C6-S1	119.25	119.17	0.07
H71-C7-H72	109.15	107.33	1.81
H71-C7-H73	108.03	109.11	1.08
H72-C7-H73	109.15	107.33	1.81
S1-C8-H8	112.05	111.68	0.37
S1-C8-H82	105.65	110.27	4.62
S1-C8-H83	112.05	111.73	0.32
H8-C8-H82	108.39	107.17	1.21
H8-C8-H83	110.09	108.64	1.45
H82-C8-H83	108.39	107.14	1.25

Figure S361: The PES scan for flexible dihedrals corresponding to (Z)-methyl[1-(methylsulfanyl)e thylidene]amine.

2.92 The small molecule 2 used for bonded terms optimization of (2S)-2-amino-6-[1-[(2R,3R,4S,5R)-5-[[[[(2R,3S,4R,5R)-5-(6-aminop urin-9-yl)-3,4-dihydroxy-oxol an-2-yl]methoxy-hydroxy-pho sphoryl]oxy-hydroxy-phospho ryl]oxymethyl]-3,4-dihydroxyoxolan-2-yl]sulfanylethylidenea mino]hexanoicacid (FZN)

Figure S362: The energy minimized structure corresponding to (2R,3S,4R,5R)-2-methyl-5-[(1Z)-1-(methylimino)ethyl]sulfanyloxolane-3,4-diol.

Table S772: The calculated geometric terms of (2R,3S,4R,5R)-2-methyl-5-[(1Z)-1-(methylimin o)ethyl]sulfanyloxolane-3,4-diol.

Terms	QM	CHARMM	Abs. diff.
H53-C5	1.09	1.11	0.02
C5-H51	1.10	1.11	0.02
C5-H52	1.10	1.11	0.02
C5-N2	1.46	1.46	0.00
N2-C6	1.28	1.31	0.03
C6-C7	1.50	1.51	0.00
C6-S1	1.80	1.79	0.01
C7-H71	1.10	1.11	0.01
C7-H72	1.09	1.11	0.02
C7-H73	1.09	1.11	0.02
S1-C8	1.82	1.83	0.01
C8-H8	1.09	1.10	0.01
C8-O3	1.43	1.44	0.01
C8-C9	1.54	1.57	0.03
O3-C11	1.44	1.43	0.01
С9-Н9	1.10	1.10	0.00
C9-O1	1.43	1.44	0.01
C9-C10	1.53	1.55	0.02
O1-HO1	0.97	0.96	0.01
C10-H10	1.10	1.10	0.01
C10-O2	1.41	1.43	0.02
C10-C11	1.53	1.53	0.00
O2-HO2	0.98	0.97	0.01

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Terms	QM	CHARMM	Abs. diff.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11-H11	1.10	1.10	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11-C12	1.51	1.53	0.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12-H121	1.09	1.11	0.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12-H122	1.09	1.11	0.02
H53-C5-H51108.65105.22 3.44 H53-C5-H52108.66105.23 3.43 H53-C5-N2108.61110.92 2.31 C5-N2-C6118.87118.850.02H51-C5-H52108.05107.250.80H51-C5-N2111.27113.70 2.43 H52-C5-N2111.52113.83 2.30 N2-C6-C7119.25118.370.88N2-C6-S1121.36121.200.15C6-C7-H72107.10111.144.04C6-C7-H73111.44110.960.48C6-S1-C8102.65103.701.05C7-C6-S1119.38120.421.04H71-C7-H72108.47107.301.17H71-C7-H73108.37108.920.55H72-C7-H73110.18107.163.02S1-C8-C9109.86110.230.37C8-O3-C11108.07110.232.15C8-C9-C10101.90100.251.65H8-C8-O3107.53107.230.30H8-C8-C9110.45109.620.83O3-C11-C10101.87103.361.49O3-C11-C10101.87103.361.49O3-C11-C12108.98109.920.94C9-O1-H01108.73108.510.22C9-C10-C11101.01102.191.18H9-C9-O1110.57109.770.80H9-C9-O110.57109.770.80H9-C9-O110.57109.7410.66 <td>C12-H123</td> <td>1.09</td> <td>1.11</td> <td>0.02</td>	C12-H123	1.09	1.11	0.02
H53-C5-H52108.66105.233.43H53-C5-N2108.61110.922.31C5-N2-C6118.87118.850.02H51-C5-H52108.05107.250.80H51-C5-N2111.52113.832.30N2-C6-C7119.25118.370.88N2-C6-S1121.36121.200.15C6-C7-H71111.24111.190.05C6-C7-H72107.10111.144.04C6-C7-H73111.44110.960.48C6-S1-C8102.65103.701.05C7-C6-S1119.38120.421.04H71-C7-H72108.47107.301.17H71-C7-H73110.18107.163.02S1-C8-H8108.37108.820.45S1-C8-C9109.86110.230.37C8-O3-C11108.07110.232.15C8-C9-C10114.11115.821.70C8-C9-C10101.90100.251.65H8-C8-C9107.53107.230.30H8-C8-C9107.11106.770.34O3-C11-C12108.87108.510.22C9-C10-H10110.11109.920.94C9-C10-C11101.01102.191.18H9-C9-O1110.57109.770.80H9-C9-O1110.57109.770.80H9-C9-O1110.57109.770.80H9-C9-O1110.57109.770.80H9-C9-O1110.57109.631.65C10-C1	H53-C5-H51	108.65	105.22	3.44
H53-C5-N2108.61110.922.31C5-N2-C6118.87118.850.02H51-C5-H52108.05107.250.80H51-C5-N2111.27113.702.43H52-C5-N2111.52113.832.30N2-C6-C7119.25118.370.88N2-C6-S1121.36121.200.15C6-C7-H71111.24111.190.05C6-C7-H72107.10111.144.04C6-C7-H73111.44110.960.48C6-S1-C8102.65103.701.05C7-C6-S1119.38120.421.04H71-C7-H72108.47107.301.17H71-C7-H73110.83108.920.55H72-C7-H73110.18107.163.02S1-C8-H8108.37108.820.45S1-C8-C9109.86110.230.37C8-O3-C11108.07110.232.15C8-C9-C10101.90100.251.65H8-C8-C9110.45109.620.83O3-C12108.98109.920.94O3-C11-C12108.98109.920.94O3-C11-C11101.11109.510.60C9-C10-O2114.03114.540.52C9-C10-C11101.01102.191.18H9-C9-O1110.57109.770.80H9-C9-O110.57109.770.80H9-C9-O110.57109.770.80H9-C9-O1100.57109.770.80H9-C9-O1<	H53-C5-H52	108.66	105.23	3.43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H53-C5-N2	108.61	110.92	2.31
H51-C5-H52108.05107.250.80H51-C5-N2111.27113.702.43H52-C5-N2111.52113.832.30N2-C6-C7119.25118.370.88N2-C6-S1121.36121.200.15C6-C7-H71111.24111.190.05C6-C7-H72107.10111.144.04C6-C7-H73111.44110.960.48C6-S1-C8102.65103.701.05C7-C6-S1119.38120.421.04H71-C7-H72108.47107.301.17H71-C7-H73108.37108.920.55H72-C7-H73110.18107.163.02S1-C8-B4108.37108.820.45S1-C8-O3113.49114.070.58S1-C8-C9109.86110.230.37C8-O3-C11108.07110.232.15C8-C9-C1010.90100.251.65H8-C8-O3107.53107.230.30H8-C8-C9110.45109.620.83O3-C11-C10101.87103.361.49O3-C11-C10101.87103.361.49O3-C11-C10101.87103.361.49O3-C11-C12108.98109.920.94C9-O1-H01106.770.80H9-C9-O1110.57109.770.80H9-C9-O1110.57109.770.80H9-C9-C10113.75108.545.21O1-C9-C10104.36110.726.37C10-O2-HO2 <td< td=""><td>C5-N2-C6</td><td>118.87</td><td>118.85</td><td>0.02</td></td<>	C5-N2-C6	118.87	118.85	0.02
H51-C5-N2111.27113.702.43H52-C5-N2111.52113.832.30N2-C6-C7119.25118.370.88N2-C6-S1121.36121.200.15C6-C7-H71111.24111.190.05C6-C7-H72107.10111.144.04C6-C7-H73111.44110.960.48C6-S1-C8102.65103.701.05C7-C6-S1119.38120.421.04H71-C7-H72108.47107.301.17H71-C7-H73108.37108.920.55H72-C7-H73110.18107.163.02S1-C8-B4108.37108.820.45S1-C8-C9109.86110.230.37C8-O3-C11108.07110.232.15C8-C9-G10101.90100.251.65H8-C8-O3107.53107.230.30H8-C8-C9110.45109.620.83O3-C11-C10101.87103.361.49O3-C11-C10101.87103.361.49O3-C11-C12108.98109.920.94C9-O1-H01100.11102.191.18H9-C9-O1110.57109.770.80H9-C9-C10113.75108.545.21O1-C9-C1004.36110.726.37C10-O2-HO2105.18106.831.65C10-C11-H11109.15109.640.74H10-C10-C11108.45108.240.61H10-C10-C11108.45108.640.18	H51-C5-H52	108.05	107.25	0.80
H52-C5-N2111.52113.832.30N2-C6-C7119.25118.370.88N2-C6-S1121.36121.200.15C6-C7-H71111.24111.190.05C6-C7-H72107.10111.144.04C6-C7-H73111.44110.960.48C6-S1-C8102.65103.701.05C7-C6-S1119.38120.421.04H71-C7-H72108.47107.301.17H71-C7-H73108.37108.920.55H72-C7-H73110.18107.163.02S1-C8-H8108.37108.820.45S1-C8-C9109.86110.230.37C8-O3-C11108.07110.232.15C8-C9-H9111.73111.220.51C8-C9-C10101.90100.251.65H8-C8-C9110.45109.620.83O3-C11-C10101.87103.361.49O3-C11-C11106.770.340.36O3-C11-C12108.98109.920.94C9-O1-HO1108.73108.510.22C9-C10-C11101.01102.191.18H9-C9-O1110.57109.770.80H9-C9-C10113.75108.545.21O1-C9-C10104.36110.726.37C10-O2-HO2105.18106.831.65C10-C11-C12115.30116.040.74H10-C10-C11108.45108.640.18O2-C10-C11105.18106.831.65<	H51-C5-N2	111.27	113.70	2.43
N2-C6-C7119.2118.370.88N2-C6-S1121.36121.200.15C6-C7-H71111.24111.190.05C6-C7-H72107.10111.144.04C6-C7-H73111.44110.960.48C6-S1-C8102.65103.701.05C7-C6-S1119.38120.421.04H71-C7-H72108.47107.301.17H71-C7-H73108.37108.920.55H72-C7-H73110.18107.163.02S1-C8-H8108.37108.820.45S1-C8-O3113.49114.070.58S1-C8-C9109.86110.230.37C8-O3-C11108.07110.232.15C8-C9-H9111.73111.220.51C8-C9-C10101.90100.251.65H8-C8-C9110.45109.620.83O3-C8-C9107.11106.770.34O3-C11-C10101.87103.361.49O3-C11-C12108.98109.920.94C9-O1-HO1108.73108.510.22C9-C10-C1110.11109.510.60C9-C10-C2114.03114.540.52C9-C10-C11101.91102.191.18H9-C9-O1110.57109.770.80H9-C9-C10113.75108.545.21O1-C9-C10104.36110.726.37C10-C1-H12115.30116.040.74H10-C10-C2107.63108.240.61H10	H52-C5-N2	111.52	113.83	2.30
N2-C6-S1121.36121.200.15C6-C7-H71111.24111.190.05C6-C7-H72107.10111.144.04C6-C7-H73111.44110.960.48C6-S1-C8102.65103.701.05C7-C6-S1119.38120.421.04H71-C7-H72108.47107.301.17H71-C7-H73108.37108.920.55H72-C7-H73110.18107.163.02S1-C8-H8108.37108.820.45S1-C8-C9109.86110.230.37C8-O3-C11108.07110.232.15C8-C9-G9114.73111.220.51C8-C9-C10101.90100.251.65H8-C8-O3107.53107.230.30H8-C8-C9110.45109.620.83O3-C11-C10101.87103.361.49O3-C11-C10101.87103.361.49O3-C11-C12108.98109.920.94C9-O1-HO1108.73108.510.22C9-C10-H10110.11109.510.60C9-C10-C2114.03114.540.52C9-C10-C11101.67109.770.80H9-C9-C10113.75108.545.21O1-C9-C10104.36110.726.37C10-C9-C10104.36110.726.37C10-C1-H11109.16110.191.03C10-C11-H11109.16110.191.03C10-C11-C12115.30116.040.74<	N2-C6-C7	119.25	118.37	0.88
$\begin{array}{c} C6-C7-H71 & 111.24 & 111.19 & 0.05 \\ C6-C7-H72 & 107.10 & 111.14 & 4.04 \\ C6-C7-H73 & 111.44 & 110.96 & 0.48 \\ C6-S1-C8 & 102.65 & 103.70 & 1.05 \\ C7-C6-S1 & 119.38 & 120.42 & 1.04 \\ H71-C7-H72 & 108.47 & 107.30 & 1.17 \\ H71-C7-H73 & 108.37 & 108.92 & 0.55 \\ H72-C7-H73 & 110.18 & 107.16 & 3.02 \\ S1-C8-H8 & 108.37 & 108.82 & 0.45 \\ S1-C8-O3 & 113.49 & 114.07 & 0.58 \\ S1-C8-C9 & 109.86 & 110.23 & 0.37 \\ C8-O3-C11 & 108.07 & 110.23 & 2.15 \\ C8-C9-H9 & 111.73 & 111.22 & 0.51 \\ C8-C9-H9 & 111.73 & 111.22 & 0.51 \\ C8-C9-C10 & 101.90 & 100.25 & 1.65 \\ H8-C8-O3 & 107.53 & 107.23 & 0.30 \\ H8-C8-C9 & 110.45 & 109.62 & 0.83 \\ O3-C8+C9 & 110.45 & 109.62 & 0.83 \\ O3-C8+C9 & 110.45 & 109.62 & 0.83 \\ O3-C11-C10 & 101.87 & 103.36 & 1.49 \\ O3-C11-C12 & 108.98 & 109.92 & 0.94 \\ C9-O1-HO1 & 108.73 & 108.51 & 0.22 \\ C9-C10-H10 & 110.11 & 109.51 & 0.60 \\ C9-C10-O2 & 114.03 & 114.54 & 0.52 \\ C9-C10-H10 & 110.17 & 109.77 & 0.80 \\ H9-C9-C10 & 113.75 & 108.54 & 5.21 \\ O1-C9-C10 & 104.36 & 110.72 & 6.37 \\ C10-O2-HO2 & 105.18 & 106.83 & 1.65 \\ C10-C11-H11 & 109.16 & 110.19 & 1.03 \\ C10-C10-C1 & 105.7 & 109.77 & 0.80 \\ H9-C9-C10 & 113.75 & 108.54 & 5.21 \\ O1-C9-C10 & 104.36 & 110.72 & 6.37 \\ C10-O2-HO2 & 105.18 & 106.83 & 1.65 \\ C10-C11-H11 & 109.16 & 110.19 & 1.03 \\ C10-C1-C12 & 115.30 & 116.04 & 0.74 \\ H10-C10-C2 & 107.63 & 108.24 & 0.61 \\ H10-C10-C11 & 108.45 & 108.64 & 0.18 \\ O2-C10-C11 & 115.40 & 113.48 & 1.92 \\ C11-C12-H122 & 109.84 & 110.41 & 0.58 \\ C11-C12-H122 & 109.84 & 110.41 & 0.58 \\ C11-C12-H122 & 109.95 & 108.63 & 0.42 \\ Wet = 100.000000000000000000000000000000000$	N2-C6-S1	121.36	121.20	0.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C7-H71	111 24	111 19	0.05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C7-H72	107 10	111.10	4 04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-C7-H73	111 44	110.96	0.48
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6-S1-C8	102.65	103.70	1.05
120.720 110.50 120.72 110.74 $171-C7-H72$ 108.47 107.30 1.17 $171-C7-H73$ 108.37 108.92 0.55 $172-C7-H73$ 110.18 107.16 3.02 $S1-C8-H8$ 108.37 108.82 0.45 $S1-C8-O3$ 113.49 114.07 0.58 $S1-C8-C9$ 109.86 110.23 0.37 $C8-O3-C11$ 108.07 110.23 2.15 $C8-C9-H9$ 111.73 111.22 0.51 $C8-C9-C10$ 101.90 100.25 1.65 $H8-C8-O9$ 107.53 107.23 0.30 $H8-C8-C9$ 110.45 109.62 0.83 $O3-C8-C9$ 107.11 106.77 0.34 $O3-C11-C10$ 101.87 103.36 1.49 $O3-C11-C12$ 108.98 109.92 0.94 $C9-O1-HO1$ 108.73 108.51 0.22 $C9-C10-H10$ 110.57 109.77 0.80 $H9-C9-O1$ 110.57 109.77 0.80 $H9-C9-O1$ 110.57 109.77 0.80 $H9-C9-O1$ 110.57 109.77 0.80 $H9-C9-O10$ 113.75 108.54 5.21 $O1-C9-C10$ 104.36 110.72 6.37 $C10-O2+HO2$ 105.18 106.83 1.65 $C10-C11-H11$ 109.16 110.19 1.03 $C10-C11-H11$ 109.25 110.14 0.89 $C11-C12-H121$ 109.25 110.14 0.89 <	C7-C6-S1	110 38	100.10 120.42	1.00 1.04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H71-C7-H72	108.00	107.30	1.01
H11 C1 H10 100.01 100.01 100.02 0.00 $H72-C7-H73$ 110.18 107.16 3.02 $S1-C8-H8$ 108.37 108.82 0.45 $S1-C8-C9$ 109.86 110.23 0.37 $C8-O3-C11$ 108.07 110.23 2.15 $C8-C9-H9$ 111.73 111.22 0.51 $C8-C9-H9$ 111.73 111.22 0.51 $C8-C9-C10$ 101.90 100.25 1.65 $H8-C8-O9$ 101.45 109.62 0.83 $O3-C8-C9$ 107.53 107.23 0.30 $H8-C8-C9$ 110.45 109.62 0.83 $O3-C1-C10$ 101.87 103.36 1.49 $O3-C11-C10$ 101.87 103.36 1.49 $O3-C11-C12$ 108.98 109.92 0.94 $C9-O1-HO1$ 108.73 108.51 0.22 $C9-C10-O2$ 114.03 114.54 0.52 $C9-C10-O2$ 114.03 114.54 0.52 $C9-C10-O2$ 114.03 114.54 0.52 $C9-C10-O2$ 110.57 109.77 0.80 $H9-C9-O1$ 110.57 109.77 0.80 $H9-C9-O10$ 104.36 110.72 6.37 $C10-C2+HO2$ 105.18 106.83 1.65 $C10-C11-H11$ 109.16 110.19 1.03 $C10-C11-H11$ 109.45 108.64 0.18 $O2-C10-C11$ 105.18 108.64 0.18 $O2-C10-C11$ 105.40 113.48 1.92	H71_C7_H73	100.41 108.37	107.90	0.55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H72_C7_H73	110.18	107.16	3.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S1-C8-H8	108.37	107.10	0.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S1-C8-O3	113 49	114.07	0.58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S1-C8-C9	109.86	110.23	0.30 0.37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8-O3-C11	108.07	110.23 110.23	2.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С8-С9-Н9	100.01 111 73	110.20 111.22	0.51
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8-C9-O1	114 11	115.82	1.70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8-C9-C10	101.90	100.25	1 65
He cellHe cellHe cellHe cellHe cell $H8-C8-C9$ 110.45109.620.83 $O3-C8-C9$ 107.11106.770.34 $O3-C11-C10$ 101.87103.361.49 $O3-C11-H11$ 110.08106.853.23 $O3-C11-C12$ 108.98109.920.94 $C9-O1-HO1$ 108.73108.510.22 $C9-C10-H10$ 110.11109.510.60 $C9-C10-O2$ 114.03114.540.52 $C9-C10-C11$ 101.01102.191.18 $H9-C9-O1$ 110.57109.770.80 $H9-C9-C10$ 113.75108.545.21 $O1-C9-C10$ 104.36110.726.37 $C10-O2-HO2$ 105.18106.831.65 $C10-C11-H11$ 109.16110.191.03 $C10-C11-C12$ 115.30116.040.74 $H10-C10-O2$ 107.63108.240.61 $H10-C10-C11$ 109.45108.640.18 $O2-C10-C11$ 115.40113.481.92 $C11-C12-H121$ 109.25110.140.89 $C11-C12-H123$ 110.92110.250.67 $H11-C11-C12$ 111.04109.931.11 $H121-C12-H122$ 109.05108.630.42	H8-C8-O3	107.50 107.53	107.23	0.30
O3-C8-C9 107.11 106.77 0.34 $O3-C11-C10$ 101.87 103.36 1.49 $O3-C11-H11$ 110.08 106.85 3.23 $O3-C11-C12$ 108.98 109.92 0.94 $C9-O1-HO1$ 108.73 108.51 0.22 $C9-C10-H10$ 110.11 109.51 0.60 $C9-C10-C11$ 110.11 109.51 0.60 $C9-C10-C2$ 114.03 114.54 0.52 $C9-C10-C11$ 101.01 102.19 1.18 $H9-C9-O1$ 110.57 109.77 0.80 $H9-C9-C10$ 113.75 108.54 5.21 $O1-C9-C10$ 104.36 110.72 6.37 $C10-O2-HO2$ 105.18 106.83 1.65 $C10-C11-H11$ 109.16 110.19 1.03 $C10-C11-C12$ 115.30 116.04 0.74 $H10-C10-O2$ 107.63 108.24 0.61 $H10-C10-C11$ 108.45 108.64 0.18 $O2-C10-C11$ 115.40 113.48 1.92 $C11-C12-H121$ 109.25 110.14 0.89 $C11-C12-H123$ 110.92 110.25 0.67 $H11-C11-C12$ 111.04 109.93 1.11 $H121-C12-H122$ 109.05 108.63 0.42	H8-C8-C9	110.45	109.62	0.83
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O3-C8-C9	107.11	106.77	0.34
O3-C11-H11 110.08 106.85 3.23 $O3-C11-C12$ 108.98 109.92 0.94 $C9-O1-HO1$ 108.73 108.51 0.22 $C9-C10-H10$ 110.11 109.51 0.60 $C9-C10-O2$ 114.03 114.54 0.52 $C9-C10-O2$ 114.03 114.54 0.52 $C9-C10-C11$ 101.01 102.19 1.18 $H9-C9-O1$ 110.57 109.77 0.80 $H9-C9-C10$ 113.75 108.54 5.21 $O1-C9-C10$ 104.36 110.72 6.37 $C10-O2-HO2$ 105.18 106.83 1.65 $C10-C11-C12$ 115.30 116.04 0.74 $H10-C10-O2$ 107.63 108.24 0.61 $H10-C10-C11$ 108.45 108.64 0.18 $O2-C10-C11$ 115.40 113.48 1.92 $C11-C12-H121$ 109.25 110.14 0.89 $C11-C12-H123$ 110.92 110.25 0.67 $H11-C11-C12$ 111.04 109.93 1.11 $H121-C12-H122$ 109.05 108.63 0.42	O3-C11-C10	101.87	103.36	1.49
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O3-C11-H11	110.08	106.85	3.23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3-C11-C12	108.98	109.92	0.94
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С9-О1-НО1	108.73	108.51	0.22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9-C10-H10	110.11	109.51	0.60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9-C10-O2	114.03	114.54	0.52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9-C10-C11	101.01	102.19	1.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H9-C9-O1	110.57	109.77	0.80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H9-C9-C10	113.75	108.54	5.21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1-C9-C10	104.36	110.72	6.37
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-O2-HO2	105.18	106.83	1.65
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-H11	109.16	110.19	1.03
$\begin{array}{ccccccccc} H10\text{-}C10\text{-}O2 & 107.63 & 108.24 & 0.61 \\ H10\text{-}C10\text{-}C11 & 108.45 & 108.64 & 0.18 \\ O2\text{-}C10\text{-}C11 & 115.40 & 113.48 & 1.92 \\ C11\text{-}C12\text{-}H121 & 109.25 & 110.14 & 0.89 \\ C11\text{-}C12\text{-}H122 & 109.84 & 110.41 & 0.58 \\ C11\text{-}C12\text{-}H123 & 110.92 & 110.25 & 0.67 \\ H11\text{-}C11\text{-}C12 & 111.04 & 109.93 & 1.11 \\ H121\text{-}C12\text{-}H122 & 109.05 & 108.63 & 0.42 \\ \end{array}$	C10-C11-C12	115.30	116.04	0.74
$\begin{array}{cccccccc} H10\text{-}C10\text{-}C11 & 108.45 & 108.64 & 0.18 \\ 02\text{-}C10\text{-}C11 & 115.40 & 113.48 & 1.92 \\ C11\text{-}C12\text{-}H121 & 109.25 & 110.14 & 0.89 \\ C11\text{-}C12\text{-}H122 & 109.84 & 110.41 & 0.58 \\ C11\text{-}C12\text{-}H123 & 110.92 & 110.25 & 0.67 \\ H11\text{-}C11\text{-}C12 & 111.04 & 109.93 & 1.11 \\ H121\text{-}C12\text{-}H122 & 109.05 & 108.63 & 0.42 \\ H10\text{-}C12\text{-}H122 & 109.05 & 108.63 & 0.42 \\ H10\text{-}H10$	H10-C10-O2	107.63	108.24	0.61
$\begin{array}{cccccccc} O2\text{-}C10\text{-}C11 & 115.40 & 113.48 & 1.92 \\ C11\text{-}C12\text{-}H121 & 109.25 & 110.14 & 0.89 \\ C11\text{-}C12\text{-}H122 & 109.84 & 110.41 & 0.58 \\ C11\text{-}C12\text{-}H123 & 110.92 & 110.25 & 0.67 \\ H11\text{-}C11\text{-}C12 & 111.04 & 109.93 & 1.11 \\ H121\text{-}C12\text{-}H122 & 109.05 & 108.63 & 0.42 \\ \end{array}$	H10-C10-C11	108.45	108.64	0.18
C11-C12-H121109.25110.140.89C11-C12-H122109.84110.410.58C11-C12-H123110.92110.250.67H11-C11-C12111.04109.931.11H121-C12-H122109.05108.630.42	O2-C10-C11	115.40	113.48	1.92
C11-C12-H122 109.84 110.41 0.58 C11-C12-H123 110.92 110.25 0.67 H11-C11-C12 111.04 109.93 1.11 H121-C12-H122 109.05 108.63 0.42	C11-C12-H121	109.25	110.14	0.89
C11-C12-H123 110.92 110.25 0.67 H11-C11-C12 111.04 109.93 1.11 H121-C12-H122 109.05 108.63 0.42	C11-C12-H122	109.84	110.41	0.58
H11-C11-C12111.04109.931.11H121-C12-H122109.05108.630.42H121-C12-H122109.05108.630.42	C11-C12-H123	110.92	110.25	0.67
H121-C12-H122 109.05 108.63 0.42	H11-C11-C12	111.04	109.93	1.11
	H121-C12-H122	109.05	108.63	0.42
H121-C12-H123 109.00 108.90 0.10	H121-C12-H123	109.00	108.90	0.10
H122-C12-H123 108.75 108.46 0.29	H122-C12-H123	108.75	108.46	0.29

Figure S363: The PES scan for flexible dihedral corresponding to (2R, 3S, 4R, 5R)-2-methyl-5-[(1Z)-1-(methylimino)ethyl]sulfanyloxolane-3,4-diol.

2.93 The small molecule used for bonded terms optimization of 2-amino-3-guanidinopropionic acid (GDPR)

Figure S364: The energy minimized structure corresponding to (2R)-3-carbamimidamido-2-acetam ido-N-methylpropanamide.

Table S773: The calculated geometric terms of (2R)-3-carbamimidamido-2-acetamido-N-meth ylpropanamide.

Terms	QM	CHARMM	Abs. diff.
N-HN	1.01	1.00	0.02
N-CA	1.45	1.47	0.02
N-CY	1.39	1.34	0.04
CA-HA	1.10	1.08	0.02
CA-CB	1.54	1.57	0.03
CA-C	1.54	1.53	0.01
CB-HB1	1.09	1.11	0.01
CB-HB2	1.09	1.11	0.01
CB-NG	1.46	1.48	0.01
NG-HG	1.03	1.00	0.03
NG-CD	1.32	1.34	0.02
CD-NE1	1.34	1.33	0.01
CD-NE2	1.35	1.33	0.01
NE1-HE11	1.01	0.99	0.02
NE1-HE12	1.01	0.99	0.02
NE2-HE22	1.01	0.99	0.02
NE2-HE21	1.01	0.99	0.02
C-O	1.25	1.23	0.02
C-NT	1.34	1.35	0.01
NT-HNT	1.01	0.99	0.02
NT-CAT	1.46	1.45	0.01
CAT-HT1	1.09	1.11	0.03
CAT-HT2	1.09	1.11	0.02
CAT-HT3	1.09	1.11	0.02
CAY-HY1	1.09	1.11	0.02
CAY-HY2	1.09	1.11	0.02
CAY-HY3	1.09	1.11	0.02
CAY-CY	1.51	1.48	0.03
CY-OY	1.23	1.22	0.01
N-CA-HA	107.72	106.13	1.58
N-CA-CB	110.15	112.29	2.14

Terms	QM	CHARMM	Abs. diff.
N-CA-C	110.91	114.56	3.66
N-CY-CAY	115.58	116.88	1.29
N-CY-OY	120.09	122.05	1.96
HN-N-CA	118.45	117.81	0.64
HN-N-CY	118.81	117.89	0.92
CA-N-CY	119.48	124.28	4.81
CA-CB-HB1	108.67	108.99	0.32
CA-CB-HB2	108.15	106.64	1.52
CA-CB-NG	110.31	113.04	2.73
CA-C-O	121.51	121.14	0.37
CA-C-NT	114.92	117.60	2.67
HA-CA-CB	109.06	107.04	2.02
HA-CA-C	106.91	105.41	1.50
CB-CA-C	111.94	110.77	1.17
CB-NG-HG	110.95	113.94	2.98
CB-NG-CD	126.25	125.83	0.42
HB1-CB-HB2	109.98	106.97	3.01
HB1-CB-NG	110.24	109.81	0.43
HB2-CB-NG	109.46	111.16	1.70
NG-CD-NE1	121.68	121.97	0.29
NG-CD-NE2	119.80	118.89	0.91
HG-NG-CD	121.39	116.07	5.32
CD-NE1-HE11	120.71	119.86	0.85
CD-NE1-HE12	121.08	117.96	3.12
CD-NE2-HE22	120.28	119.99	0.29
CD-NE2-HE21	119.48	118.89	0.59
NE1-CD-NE2	118.42	119.13	0.72
HE11-NE1-HE12	117.51	121.83	4.32
HE22-NE2-HE21	116.66	121.02	4.36
C-NT-HNT	117.29	121.05	3.75
C-NT-CAT	120.91	121.67	0.76
O-C-NT	122.91	121.13	1.78
NT-CAT-HT1	108.69	111.48	2.79
NT-CAT-HT2	108.47	110.74	2.26
NT-CAT-HT3	111.16	110.57	0.59
HNT-NT-CAT	118.94	116.92	2.02
HT1-CAT-HT2	109.68	107.79	1.90
HT1-CAT-HT3	108.99	107.90	1.09
HT2-CAT-HT3	109.82	108.24	1.58
CAY-CY-OY	124.32	121.07	3.26
HY1-CAY-HY2	108.27	109.29	1.01
HY1-CAY-HY3	108.60	108.20	0.40
HY1-CAY-CY	109.97	110.27	0.30
HY2-CAY-HY3	109.73	108.53	1.20
HY2-CAY-CY	111.76	111.31	0.45
HY3-CAY-CY	108.45	109.17	0.72

Figure S365: The PES scan for flexible dihedral corresponding to (2R)-3-carbamimidamido-2-acet amido-N-methylpropanamide.

2.94 The small molecule used for bonded terms optimization of Canavanine (GGB)

Terms	QM	CHARMM	Abs. diff.
CZ-NH1-HH11	111.35	98.59	12.76
NH2-CZ-NH1	114.80	106.25	8.55
HH21-NH2-HH22	110.27	107.35	2.93
HH12-NH1-HH11	112.89	103.86	9.02

Figure S366: The energy minimized structure corresponding to N''-ethoxyguanidine.

Table S774: The calculated geometric terms of N' '-ethoxy guanidine.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-CG	1.51	1.53	0.02
CG-HG1	1.10	1.12	0.02
CG-HG2	1.10	1.11	0.02
CG-OD	1.43	1.42	0.01
OD-NE	1.44	1.44	0.01
NE-CZ	1.30	1.30	0.00
CZ-NH2	1.40	1.38	0.02
CZ-NH1	1.38	1.39	0.01
NH2-HH21	1.02	1.01	0.01
NH2-HH22	1.02	1.01	0.01
NH1-HH12	1.01	1.01	0.01
NH1-HH11	1.02	1.01	0.00
HB3-CB-HB2	108.50	108.64	0.14
HB3-CB-HB1	108.61	108.67	0.06
HB3-CB-CG	110.21	110.50	0.29
CB-CG-HG1	111.60	109.57	2.02
CB-CG-HG2	111.64	109.60	2.04
CB-CG-OD	106.45	109.65	3.20
HB2-CB-HB1	108.61	108.57	0.04
HB2-CB-CG	110.49	110.27	0.22
HB1-CB-CG	110.37	110.14	0.23
CG-OD-NE	107.29	107.26	0.04
HG1-CG-HG2	108.12	108.69	0.57
HG1-CG-OD	109.63	109.66	0.03
HG2-CG-OD	109.38	109.65	0.27
OD-NE-CZ	108.39	109.10	0.71
NE-CZ-NH2	118.92	125.22	6.30
NE-CZ-NH1	126.28	128.48	2.20
CZ-NH2-HH21	111.53	101.28	10.25
CZ-NH2-HH22	109.99	100.74	9.25
CZ-NH1-HH12	112.79	100.64	12.15

Figure S367: The PES scan for flexible dihedrals corresponding to N''-ethoxyguanidine.

2.95 The small molecule used for bonded terms optimization of (2s,4s)-2,5-diamino-4-hydroxy-5-oxopentanoicacid (GHG)

Figure S368: The energy minimized structure corresponding to (2S)-2-hydroxypropanamide.

Table S775: The calculated geometric terms of (2S)-2-hydroxypropanamide.

	0.1.6	011 1 D 2 D 2	
Terms	QM	CHARMM	Abs. diff
HB3-CB	1.09	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.10	1.11	0.01
CB-CG	1.52	1.54	0.02
CG-HG	1.10	1.11	0.02
CG-OG1	1.43	1.43	0.00
CG-CD	1.53	1.53	0.00
OG1-HG1	0.97	0.96	0.01
CD-OE1	1.23	1.23	0.00
CD-NE2	1.36	1.36	0.00
NE2-HE21	1.01	1.00	0.01 F
NE2-HE22	1.01	1.00	0.02 c
HB3-CB-HB1	109.83	107.98	1.85
HB3-CB-HB2	108.90	108.92	0.02
HB3-CB-CG	110.11	110.45	0.33
CB-CG-HG	109.73	108.80	0.93
CB-CG-OG1	112.43	106.87	5.56
CB-CG-CD	110.67	110.99	0.32
HB1-CB-HB2	107.87	108.15	0.28
HB1-CB-CG	109.95	110.09	0.13
HB2-CB-CG	110.13	111.16	1.03
CG-OG1-HG1	106.66	104.93	1.73
CG-CD-OE1	121.43	120.14	1.30
CG-CD-NE2	114.33	120.44	6.11
HG-CG-OG1	104.76	107.98	3.23
HG-CG-CD	106.59	106.62	0.03
OG1-CG-CD	112.32	115.41	3.10
CD-NE2-HE21	118.47	119.04	0.57
CD-NE2-HE22	117.29	116.69	0.60
OE1-CD-NE2	124.23	119.41	4.82
HE21-NE2-HE22	119.49	123.47	3.99

Figure S369: The PES scan for flexible dihedral corresponding to (2S)-2-hydroxypropanamide.

2.96 The small molecule 1 used for bonded terms optimization of Thioglycin (GL3)

Figure S370: The energy minimized structure corresponding to 2-acetamido-N-([(methylcarbamoy l)methyl]carbamothioylmethyl)acetamide.

Table S776: The calculated geometric terms of 2acetamido-N-([(methylcarbamoyl)methyl]carbamo thioylmethyl)acetamide.

Terms	QM	CHARMM	Abs. diff.
N1AL-HNN1	1.01	0.99	0.02
N1AL-C1AL	1.46	1.46	0.01
N1AL-CY	1.38	1.34	0.03
C1AL-H1AL	1.10	1.08	0.01
C1AL-CB11	1.53	1.54	0.01
C1AL-C11	1.54	1.53	0.01
CB11-H111	1.10	1.11	0.02
CB11-H211	1.10	1.11	0.02
CB11-H311	1.09	1.11	0.02
C11-O11	1.23	1.23	0.00
C11-N	1.35	1.35	0.00
CAY-HY1	1.09	1.11	0.01
CAY-HY2	1.09	1.11	0.02
CAY-HY3	1.10	1.11	0.01
CAY-CY	1.52	1.48	0.04
CY-OY	1.22	1.22	0.00
N-HN	1.01	0.99	0.02
N-CA	1.46	1.45	0.01
CA-HA1	1.09	1.11	0.02
CA-HA2	1.10	1.11	0.02
CA-C	1.53	1.51	0.03
C-S	1.66	1.63	0.03
C-N2AL	1.35	1.36	0.01
N2AL-HNN2	1.02	1.00	0.02
N2AL-C2AL	1.46	1.45	0.01
C2AL-H2AL	1.09	1.08	0.01
C2AL-CB22	1.53	1.54	0.01
C2AL-C22	1.55	1.53	0.02
CB22-H122	1.10	1.11	0.02
CB22-H222	1.10	1.11	0.01
CB22-H322	1.09	1.11	0.02
C22-O22	1.22	1.23	0.01

r =	Torma	OM	СПАДМИ	Abc diff
r –	Coo NT	UM 1.96		$\frac{\text{AUS. UIII.}}{0.01}$
1	022-IN I NT UNT	1.30	1.30 1.00	0.01
		1.02	1.00	0.02
	NI-UAI CAT IIT1	1.40	1.40	0.01
		1.09	1.12	0.02
	CAT-HT2 CAT HT2	1.09	1.11	0.02
	CAT-HT3	1.10	1.11	0.01
	NIAL-CIAL-HIAL	109.76	107.42	2.35
	NIAL-CIAL-CBII	110.11	109.44	0.67
	NIAL-CIAL-CII	112.32	115.58	3.26
	N1AL-CY-CAY	115.65	116.85	1.20
	N1AL-CY-OY	121.43	122.45	1.02
	HNN1-N1AL-C1AL	117.34	116.22	1.11
	HNN1-N1AL-CY	118.46	119.07	0.62
	C1AL-N1AL-CY	120.80	124.22	3.42
	C1AL-CB11-H111	110.54	110.23	0.31
	C1AL-CB11-H211	111.48	111.26	0.22
	C1AL-CB11-H311	109.95	110.71	0.75
or-	C1AL-C11-O11	120.81	121.09	0.28
ру	C1AL-C11-N	115.91	116.87	0.96
	H1AL-C1AL-CB11	109.80	108.98	0.82
ი	H1AL-C1AL-C11	104.14	105.92	1.78
2-	CB11-C1AL-C11	110.55	109.28	1.27
10	H111-CB11-H211	108.81	108.41	0.40
	H111-CB11-H311	107.92	107.81	0.11
=	H211-CB11-H311	108.03	108.32	0.29
_	C11-N-HN	118.49	119.28	0.79
	C11-N-CA	121.91	124.34	2.43
	O11-C11-N	122.87	122.03	0.84
	CAY-CY-OY	122.92	120.71	2.21
	HY1-CAY-HY2	109.39	108.94	0.45
	HY1-CAY-HY3	108.53	109.21	0.68
	HY1-CAY-CY	113.36	111.45	1.91
	HY2-CAY-HY3	107.53	108.14	0.60
	HY2-CAY-CY	108.77	109.55	0.78
	HY3-CAY-CY	109.10	109.49	0.39
	N-CA-HA1	107.88	109.27	1.39
	N-CA-HA2	108.94	110.30	1.36
	N-CA-C	112.29	111.44	0.84
	HN-N-CA	118.94	116.26	2.68
	CA-C-S	121.37	121.06	0.31
	CA-C-N2AL	112.90	113.21	0.31
	HA1-CA-HA2	108.50	106.79	1.71
	HA1-CA-C	108.42	109.17	0.75
	HA2-CA-C	110.70	109.75	0.96
	C-N2AL-HNN2	114.80	118.03	3.23
	C-N2AL-C2AL	125.78	126.98	1.20
	S-C-N2AL	125.73	125.73	0.01
	N2AL-C2AL-H2AL	107.61	107.63	0.02
	N2AL-C2AL-CB22	109.75	109.25	0.50
	N2AL-C2AL-C22	114.13	114.25	0.12
	HNN2-N2AL-C2AL	115.41	113.07	2.35
	C2AL-CB22-H122	110.77	109.92	0.85
	C2AL-CB22-H222	111.37	110.99	0.38
	C2AL-CB22-H322	109.27	110.75	1.48
	C2AL-C22-O22	120.25	121.19	0.93
	C2AL-C22-NT	115.27	117.26	1.99
	H2AL-C2AL-CB22	110.10	109.03	1.07
	H2AL-C2AL-C22	104.36	106.22	1.86

Terms	QM	CHARMM	Abs. diff.
CB22-C2AL-C22	110.70	110.30	0.40
H122-CB22-H222	108.85	108.44	0.41
H122-CB22-H322	108.53	107.95	0.58
H222-CB22-H322	107.97	108.71	0.74
C22-NT-HNT	119.25	119.34	0.10
C22-NT-CAT	120.55	122.26	1.71
O22-C22-NT	123.85	121.55	2.30
NT-CAT-HT1	108.72	111.27	2.55
NT-CAT-HT2	109.33	110.45	1.11
NT-CAT-HT3	112.29	110.74	1.55
HNT-NT-CAT	117.79	118.30	0.51
HT1-CAT-HT2	109.46	107.81	1.65
HT1-CAT-HT3	107.87	107.97	0.10
HT2-CAT-HT3	109.12	108.49	0.63

Figure S371: The PES scan for flexible dihedrals corresponding to 2-acetamido-N-([(methylcarbam oyl)methyl]carbamothioylmethyl)acetamide.

2.97 The small molecule 2 used for bonded terms optimization of Thioglycin (GL3)

Figure S372: The energy minimized structure corresponding to N-[(methylcarbamothioyl)methyl]a cetamide.

Table S777: The calculated geometric terms of N-[(methylcarbamothioyl)methyl]acetamide.

Terms	QM	CHARMM	Abs. diff.
C1AL-H11	1.09	1.11	0.02
C1AL-H12	1.09	1.11	0.02
C1AL-H13	1.09	1.11	0.02
C1AL-C11	1.51	1.48	0.03
C11-O11	1.24	1.23	0.01
C11-N	1.36	1.34	0.02
N-HN	1.01	0.99	0.02
N-CA	1.46	1.45	0.01
CA-HA1	1.09	1.11	0.02
CA-HA2	1.10	1.12	0.02
CA-C	1.52	1.51	0.02
C-S	1.65	1.64	0.02
C-N2AL	1.34	1.35	0.01
N2AL-HNN2	1.02	1.01	0.02
N2AL-C2AL	1.45	1.44	0.01
C2AL-H21	1.09	1.11	0.02
C2AL-H22	1.09	1.11	0.02
C2AL-H23	1.09	1.11	0.02
C1AL-C11-O11	121.83	120.94	0.89
C1AL-C11-N	116.00	116.66	0.65
H11-C1AL-H12	108.67	109.43	0.76
H11-C1AL-H13	109.58	108.70	0.88
H11-C1AL-C11	112.85	110.39	2.46
H12-C1AL-H13	108.08	108.68	0.60
H12-C1AL-C11	108.89	110.28	1.38
H13-C1AL-C11	108.65	109.33	0.68
C11-N-HN	119.59	119.96	0.37
C11-N-CA	121.67	123.52	1.86
O11-C11-N	122.09	122.40	0.31
N-CA-HA1	108.55	109.21	0.66
N-CA-HA2	107.56	111.65	4.09
N-CA-C	112.24	109.56	2.68
HN-N-CA	118.08	116.46	1.62

QM	CHARMM	Abs. diff.
122.05	121.66	0.39
112.92	113.57	0.64
109.19	106.94	2.24
108.92	110.51	1.60
110.32	108.93	1.40
116.79	118.78	1.99
122.86	124.04	1.17
125.01	124.78	0.24
110.05	110.70	0.65
110.59	110.73	0.15
108.26	110.30	2.04
119.80	117.06	2.74
107.88	108.64	0.76
109.97	108.21	1.76
110.09	108.18	1.92
	QM 122.05 112.92 109.19 108.92 110.32 116.79 122.86 125.01 110.05 110.59 108.26 119.80 107.88 109.97 110.09	QMCHARMM122.05121.66112.92113.57109.19106.94108.92110.51110.32108.93116.79118.78122.86124.04125.01124.78110.05110.70110.59110.73108.26110.30119.80117.06107.88108.64109.97108.21110.09108.18

Figure S373: The PES scan for flexible dihedral corresponding to N-[(methylcarbamothioyl)methy l]acetamide.

2.98 The small molecule used for bonded terms optimization of glutaminehydroxamate (HGA)

Figure S374: The energy minimized structure corresponding to N-hydroxypropanamide.

Table S778: The calculated geometric terms of N-hydroxypropanamide.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-CG	1.53	1.54	0.02
CG-HG2	1.10	1.11	0.02
CG-HG1	1.10	1.11	0.02
CG-CD	1.51	1.50	0.01
CD-OE1	1.24	1.23	0.01
CD-NE2	1.37	1.35	0.02
NE2-HE	1.02	1.00	0.02
NE2-OZ	1.41	1.42	0.01
OZ-HZ	0.99	0.97	0.02
HB3-CB-HB1	108.97	108.01	0.97
HB3-CB-HB2	108.40	108.05	0.35
HB3-CB-CG	110.59	110.04	0.54
CB-CG-HG2	109.97	109.52	0.45
CB-CG-HG1	110.96	110.26	0.70
CB-CG-CD	110.79	112.20	1.41
HB1-CB-HB2	108.30	108.42	0.12
HB1-CB-CG	109.89	110.67	0.78
HB2-CB-CG	110.63	111.54	0.91
CG-CD-OE1	124.17	120.71	3.46
CG-CD-NE2	115.78	117.25	1.47
HG2-CG-HG1	107.50	108.10	0.60
HG2-CG-CD	107.23	107.80	0.56
HG1-CG-CD	110.26	108.84	1.42
CD-NE2-HE	118.83	132.97	14.13
CD-NE2-OZ	114.65	115.77	1.12
OE1-CD-NE2	119.91	122.03	2.12
NE2-OZ-HZ	100.30	100.11	0.19
HE-NE2-OZ	109.09	109.69	0.60

Figure S375: The PES scan for flexible dihedrals corresponding to N-hydroxypropanamide.

2.99 The small molecule used for bonded terms optimization of 4-methyl-histidine (HICP)

Figure S376: The energy minimized structure corresponding to 4-ethyl-1-methyl-2,3-dihydro-1H-i midazole.

Table S779: The calculated geometric terms of 4-ethyl-1-methyl-2,3-dihydro-1H-imidazole.

Terms	QM	CHARMM	Abs. diff.
HA1-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.54	0.00
CB-HB1	1.09	1.11	0.02
CB-HB2	1.10	1.11	0.02
CB-CG	1.49	1.51	0.02
CG-ND1	1.38	1.37	0.01
CG-CD2	1.38	1.35	0.02
ND1-HD1	1.02	1.00	0.02
ND1-CE1	1.34	1.33	0.02
CD2-HD2	1.08	1.09	0.00
CD2-NE2	1.38	1.37	0.00
CE1-HE1	1.08	1.08	0.00
CE1-NE2	1.34	1.33	0.01
NE2-CZ	1.47	1.48	0.01
CZ-HZ1	1.09	1.11	0.02
CZ-HZ2	1.09	1.11	0.02
CZ-HZ3	1.09	1.11	0.02
HA1-CA-HA2	108.31	107.84	0.47
HA1-CA-HA	107.50	107.80	0.31
HA1-CA-CB	109.84	110.26	0.42
HA2-CA-HA	108.38	108.42	0.05
HA2-CA-CB	110.90	111.02	0.12
CA-CB-HB1	110.25	108.44	1.81
CA-CB-HB2	110.54	109.13	1.41
CA-CB-CG	112.77	114.60	1.83
HA-CA-CB	111.79	111.36	0.43
CB-CG-ND1	123.09	122.55	0.54
CB-CG-CD2	131.92	130.62	1.30
HB1-CB-HB2	106.44	106.73	0.29
HB1-CB-CG	107.42	109.02	1.60
HB2-CB-CG	109.17	108.63	0.54

Terms	QM	CHARMM	Abs. diff.
CG-ND1-HD1	125.11	124.36	0.75
CG-ND1-CE1	110.75	109.00	1.74
CG-CD2-HD2	130.24	129.00	1.24
CG-CD2-NE2	107.99	106.99	1.00
ND1-CG-CD2	104.97	106.81	1.84
ND1-CE1-HE1	126.55	125.86	0.69
ND1-CE1-NE2	107.20	108.51	1.32
HD1-ND1-CE1	124.15	126.63	2.48
CD2-NE2-CE1	109.10	108.69	0.41
CD2-NE2-CZ	125.43	124.03	1.40
HD2-CD2-NE2	121.78	124.02	2.24
CE1-NE2-CZ	125.47	127.28	1.81
HE1-CE1-NE2	126.25	125.63	0.62
NE2-CZ-HZ1	109.00	109.45	0.45
NE2-CZ-HZ2	108.62	110.75	2.13
NE2-CZ-HZ3	108.99	109.41	0.42
HZ1-CZ-HZ2	109.82	108.96	0.86
HZ1-CZ-HZ3	110.54	109.32	1.22
HZ2-CZ-HZ3	109.84	108.94	0.90

Figure S377: The PES scan for flexible dihedral corresponding to 4-ethyl-1-methyl-2,3-dihydro-1H -imidazole.

2.100 The small molecule used for bonded terms optimization of ND1-phosphonohistidine (HIP)

Terms	QM	CHARMM	Abs. diff.
CG-CD2-HD2	127.75	128.90	1.15
CG-CD2-NE2	110.88	111.09	0.21
CG-ND1-P	128.61	129.73	1.12
CG-ND1-CE1	105.96	106.65	0.69
CD2-CG-ND1	106.18	105.51	0.67
CD2-NE2-CE1	103.10	103.85	0.76
HD2-CD2-NE2	121.36	120.00	1.36
ND1-P-O1P	99.16	98.77	0.39
ND1-P-O2P	99.86	100.91	1.05
ND1-P-O3P	100.46	100.94	0.48
ND1-CE1-HE1	120.54	119.96	0.59
ND1-CE1-NE2	113.88	112.89	0.99
P-ND1-CE1	125.41	123.61	1.80
01P-P-02P	117.91	116.77	1.15
01P-P-03P	117.45	117.23	0.22
O2P-P-O3P	116.09	116.79	0.70
HE1-CE1-NE2	125.57	127.14	1.57

Figure S378: The energy minimized structure corresponding to (5-ethyl-1H-imidazol-1-yl)phospho nicacid.

Table	S780:	The	calculated	geometric	terms	of	(5-
ethyl-	1H-im	idazol	l-1-yl)phos	sphonicaci	d.		

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.01
HA2-CA	1.10	1.11	0.01
CA-HA	1.10	1.11	0.02
CA-CB	1.54	1.53	0.00
CB-HB1	1.10	1.11	0.02
CB-HB2	1.10	1.11	0.01
CB-CG	1.50	1.51	0.01
CG-CD2	1.39	1.37	0.03
CG-ND1	1.38	1.39	0.01
CD2-HD2	1.09	1.08	0.01
CD2-NE2	1.38	1.39	0.01
ND1-P	1.94	2.02	0.08
ND1-CE1	1.36	1.35	0.01
P-O1P	1.54	1.53	0.01
P-O2P	1.54	1.52	0.02
P-O3P	1.54	1.52	0.02
CE1-HE1	1.08	1.09	0.01
CE1-NE2	1.35	1.33	0.02
HA3-CA-HA2	108.35	109.66	1.31
HA3-CA-HA	109.14	108.26	0.88
HA3-CA-CB	110.82	110.72	0.09
HA2-CA-HA	109.48	108.20	1.27
HA2-CA-CB	110.46	110.62	0.16
CA-CB-HB1	109.18	109.29	0.10
CA-CB-HB2	110.22	109.50	0.71
CA-CB-CG	112.98	113.48	0.50
HA-CA-CB	108.58	109.31	0.73
CB-CG-CD2	130.71	129.92	0.79
CB-CG-ND1	123.10	124.56	1.46
HB1-CB-HB2	108.55	107.39	1.16
HB1-CB-CG	107.86	108.19	0.33
HB2-CB-CG	107.93	108.80	0.88

2.101 The small molecule used for bonded terms optimization of 3-(1H-1,2,3-triazol-5-yl)-L-al anine (HIX)

Terms	QM	CHARMM	Abs. diff.
ND1-NE1-NE2	106.10	104.16	1.94
HD1-ND1-NE1	118.36	118.79	0.43
CD2-NE2-NE1	108.47	110.53	2.06
HD2-CD2-NE2	121.25	120.00	1.25

Figure S379: The energy minimized structure corresponding to 5-ethyl-1H-1,2,3-triazole.

Table S781: The calculated geometric terms of 5-ethyl-1H-1,2,3-triazole.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.53	0.00
CB-HB1	1.10	1.11	0.02
CB-HB2	1.09	1.12	0.02
CB-CG	1.49	1.51	0.01
CG-ND1	1.36	1.37	0.01
CG-CD2	1.39	1.35	0.03
ND1-HD1	1.01	1.01	0.01
ND1-NE1	1.35	1.35	0.00
CD2-HD2	1.08	1.08	0.00
CD2-NE2	1.36	1.38	0.02
NE1-NE2	1.33	1.31	0.02
HA3-CA-HA2	107.96	108.14	0.18
HA3-CA-HA	108.51	108.09	0.41
HA3-CA-CB	110.72	110.35	0.36
HA2-CA-HA	107.90	108.37	0.46
HA2-CA-CB	111.22	111.15	0.06
CA-CB-HB1	110.06	109.52	0.54
CA-CB-HB2	109.90	108.86	1.04
CA-CB-CG	112.84	113.02	0.18
HA-CA-CB	110.43	110.63	0.20
CB-CG-ND1	124.11	125.70	1.59
CB-CG-CD2	133.59	131.74	1.85
HB1-CB-HB2	106.31	107.00	0.69
HB1-CB-CG	109.85	109.07	0.78
HB2-CB-CG	107.66	109.19	1.53
CG-ND1-HD1	128.70	127.41	1.29
CG-ND1-NE1	112.94	113.80	0.86
CG-CD2-HD2	128.52	131.06	2.54
CG-CD2-NE2	110.23	108.95	1.28
ND1-CG-CD2	102.25	102.56	0.30

2.102 The small molecule used for bonded terms optimization of (4S)-4-[(2S)-2-amino-3-oxop ropyl]sulfanyl-L-homoserine (HTI)

Table	S782:	The	calculated	geometric	terms	\mathbf{of}
(1R)-1	-(meth)	ylsulf	anyl)ethan-	1-ol.		

Terms	QM	CHARMM	Abs. diff.
CB-HB1	1.09	1.11	0.02 F
CB-HB2	1.09	1.11	0.02
CB-HB3	1.09	1.11	0.02
CB-S	1.81	1.82	0.01
S-CAH	1.83	1.82	0.01
CAH-HAH	1.10	1.12	0.02
CAH-OAI	1.42	1.42	0.01
CAH-CAJ	1.51	1.53	0.02
OAI-HAI	0.97	0.96	0.01
CAJ-HAJ1	1.09	1.11	0.02
CAJ-HAJ2	1.09	1.11	0.02
CAJ-HAJ3	1.09	1.11	0.02
CB-S-CAH	99.45	100.64	1.19
HB1-CB-HB2	110.10	107.82	2.28
HB1-CB-HB3	108.94	107.81	1.14
HB1-CB-S	109.17	111.26	2.09
HB2-CB-HB3	108.87	107.57	1.30
HB2-CB-S	112.13	111.36	0.78
HB3-CB-S	107.55	110.86	3.31
S-CAH-HAH	103.29	108.34	5.06
S-CAH-OAI	112.21	112.62	0.41
S-CAH-CAJ	114.22	113.44	0.78
CAH-OAI-HAI	107.02	104.89	2.12
CAH-CAJ-HAJ1	108.99	110.12	1.12
CAH-CAJ-HAJ2	110.48	110.88	0.40
CAH-CAJ-HAJ3	110.61	110.46	0.15
HAH-CAH-OAI	111.01	107.47	3.54
НАН-САН-САЈ	109.86	107.43	2.44
OAI-CAH-CAJ	106.31	107.26	0.95
HAJ1-CAJ-HAJ2	108.13	107.96	0.17
HAJ1-CAJ-HAJ3	109.32	108.57	0.75
HAJ2-CAJ-HAJ3	109.25	108.78	0.47

Figure S381: The PES scan for flexible dihedrals corresponding to (1R)-1-(methylsulfanyl)ethan-1 -ol.

2.103 The small molecule used for bonded terms optimization of beta-hydroxy-tryptophane (HTR)

Figure S382: The energy minimized structure corresponding to (1R)-1-(1H-indol-3-yl)ethan-1-ol.

Table S783: The calculated geometric terms of (1R)-1-(1H-indol-3-yl) ethan-1-ol.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.10	1.11	0.01
CA-CB	1.53	1.53	0.01
CB-HB	1.10	1.12	0.02
CB-OH	1.44	1.42	0.02
CB-CG	1.50	1.52	0.02
OH-HH	0.97	0.96	0.01
CG-CD1	1.38	1.37	0.01
CG-CD2	1.44	1.44	0.00
CD1-HD1	1.08	1.08	0.00
CD1-NE1	1.38	1.38	0.01
CD2-CE2	1.42	1.40	0.02
CD2-CE3	1.41	1.39	0.02
NE1-HE1	1.01	1.01	0.00
NE1-CE2	1.38	1.37	0.01
CE2-CZ2	1.40	1.38	0.02
CE3-HE3	1.09	1.08	0.01
CE3-CZ3	1.39	1.40	0.01
CZ2-HZ2	1.09	1.08	0.01
CZ2-CH2	1.39	1.40	0.01
CZ3-HZ3	1.09	1.08	0.00
CZ3-CH2	1.41	1.40	0.01
CH2-HH2	1.09	1.08	0.00
HA3-CA-HA2	109.11	108.07	1.04
HA3-CA-HA	107.62	108.18	0.56
HA3-CA-CB	111.82	110.76	1.06
НА2-СА-НА	108.98	108.49	0.49
HA2-CA-CB	109.82	110.20	0.38
CA-CB-HB	109.22	109.24	0.02
CA-CB-OH	110.03	106.76	3.28
CA-CB-CG	112.56	114.45	1.89
HA-CA-CB	109.43	111.05	1.62

Terms	QM	CHARMM	Abs. diff.
CB-OH-HH	105.85	104.76	1.09
CB-CG-CD1	124.76	130.69	5.92
CB-CG-CD2	128.68	122.57	6.11
HB-CB-OH	103.95	107.73	3.78
HB-CB-CG	109.89	108.27	1.62
OH-CB-CG	110.84	110.20	0.64
CG-CD1-HD1	129.28	127.81	1.47
CG-CD1-NE1	109.67	108.07	1.60
CG-CD2-CE2	107.10	108.09	0.98
CG-CD2-CE3	134.58	132.34	2.24
CD1-CG-CD2	106.55	106.74	0.18
CD1-NE1-HE1	125.14	126.00	0.86
CD1-NE1-CE2	109.50	110.96	1.45
HD1-CD1-NE1	121.03	124.11	3.08
CD2-CE2-NE1	107.16	106.15	1.01
CD2-CE2-CZ2	122.79	121.21	1.59
CD2-CE3-HE3	121.00	120.32	0.68
CD2-CE3-CZ3	119.10	119.59	0.49
NE1-CE2-CZ2	130.04	132.64	2.60
HE1-NE1-CE2	125.29	123.02	2.28
CE2-CD2-CE3	118.28	119.57	1.29
CE2-CZ2-HZ2	121.48	120.12	1.36
CE2-CZ2-CH2	117.31	119.26	1.95
CE3-CZ3-HZ3	119.48	119.92	0.43
CE3-CZ3-CH2	121.39	120.33	1.06
HE3-CE3-CZ3	119.90	120.09	0.19
CZ2-CH2-CZ3	121.10	120.04	1.06
CZ2-CH2-HH2	119.45	120.19	0.74
HZ2-CZ2-CH2	121.21	120.62	0.58
CZ3-CH2-HH2	119.44	119.76	0.32
HZ3-CZ3-CH2	119.13	119.75	0.63

Figure S383: The PES scan for flexible dihedrals corresponding to (1R)-1-(1H-indol-3-yl)ethan-1-ol.

_

Figure S384: The energy minimized structure corresponding to 2-(N-ethylacetamido)-N-methylacet amide.

Table S78	34: The	calculated	geometric	terms	\mathbf{of}	2-
(N-ethyla	cetamid	o)-N-meth	ylacetamid	e.		

Terms	QM	CHARMM	Abs. diff.
CL-HL1	1.09	1.11	0.02
CL-HL2	1.09	1.11	0.02
CL-HL3	1.09	1.11	0.02
CL-CLP	1.52	1.49	0.03
CLP-OL	1.23	1.22	0.01
CLP-N	1.38	1.37	0.01
N-CA	1.46	1.49	0.02
N-CB	1.46	1.47	0.00
CA-HA2	1.10	1.11	0.02
CA-HA3	1.09	1.11	0.02
CA-C	1.53	1.52	0.01
CB-HB2	1.09	1.11	0.02
CB-HB3	1.10	1.12	0.02
CB-CG	1.53	1.53	0.01
CG-HG	1.09	1.11	0.02
CG-HG2	1.09	1.11	0.02
CG-HG3	1.09	1.11	0.02
C-O	1.23	1.23	0.00
C-NR	1.37	1.35	0.02
NR-HR	1.01	0.99	0.02
NR-CR	1.45	1.44	0.01
CR-HR1	1.09	1.11	0.02
CR-HR2	1.10	1.11	0.02
CR-HR3	1.09	1.11	0.02
CL-CLP-OL	121.76	117.69	4.07
CL-CLP-N	117.75	119.79	2.04
HL1-CL-HL2	108.06	110.15	2.09
HL1-CL-HL3	109.06	108.46	0.60
HL1-CL-CLP	111.89	110.46	1.43
HL2-CL-HL3	109.19	108.41	0.78
HL2-CL-CLP	111.56	110.51	1.05
HL3-CL-CLP	107.03	108.79	1.76

Terms	QM	CHARMM	Abs. diff.
CLP-N-CA	115.32	120.03	4.71
CLP-N-CB	122.85	122.32	0.53
OL-CLP-N	120.44	122.52	2.09
N-CA-HA2	111.79	109.15	2.64
N-CA-HA3	107.97	109.99	2.02
N-CA-C	113.42	117.36	3.94
N-CB-HB2	108.69	111.20	2.51
N-CB-HB3	107.32	107.76	0.45
N-CB-CG	113.28	117.00	3.73
CA-N-CB	117.15	115.88	1.27
CA-C-O	121.58	121.14	0.44
CA-C-NR	114.17	117.02	2.85
HA2-CA-HA3	109.02	106.66	2.36
HA2-CA-C	106.19	106.95	0.77
HA3-CA-C	108.34	106.18	2.15
CB-CG-HG	110.49	110.88	0.39
CB-CG-HG2	110.87	110.19	0.68
CB-CG-HG3	110.76	110.35	0.41
HB2-CB-HB3	106.53	103.87	2.65
HB2-CB-CG	110.59	108.30	2.30
HB3-CB-CG	110.16	107.85	2.31
HG-CG-HG2	108.11	108.68	0.57
HG-CG-HG3	108.40	108.75	0.35
HG2-CG-HG3	108.12	107.92	0.20
C-NR-HR	115.26	118.92	3.66
C-NR-CR	119.05	121.69	2.64
O-C-NR	123.58	121.73	1.86
NR-CR-HR1	108.29	111.04	2.75
NR-CR-HR2	112.13	110.23	1.91
NR-CR-HR3	108.96	110.63	1.67
HR-NR-CR	117.58	118.51	0.93
HR1-CR-HR2	108.41	108.08	0.34
HR1-CR-HR3	109.45	108.39	1.06
HR2-CR-HR3	109.56	108.39	1.16

Figure S385: The PES scan for flexible dihedrals corresponding to 2-(N-ethylacetamido)-N-methyl acetamide.

2.105 The small molecule 1 used for bonded terms optimization of alpha-amino-2-indanaceticaci d (IGL)

Figure S386: The energy minimized structure corresponding to 2-methyl-2,3-dihydro-1H-indene.

Table S785: The calculated geometric terms of 2-methyl-2,3-dihydro-1H-indene.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.10	1.11	0.02
CA-CB	1.52	1.53	0.01
CB-HB	1.10	1.11	0.01
CB-CG1	1.54	1.52	0.02
CB-CG2	1.54	1.52	0.02
CG1-HG11	1.10	1.10	0.00
CG1-HG12	1.10	1.10	0.00
CG1-CD1	1.51	1.52	0.01
CG2-HG21	1.10	1.10	0.00
CG2-HG22	1.10	1.10	0.00
CG2-CD2	1.51	1.52	0.01
CD1-CD2	1.40	1.41	0.01
CD1-CE1	1.39	1.39	0.01
CD2-CE2	1.39	1.39	0.01
CE1-HE1	1.09	1.08	0.01
CE1-CH1	1.40	1.40	0.00
CE2-HE2	1.09	1.08	0.01
CE2-CH2	1.40	1.40	0.00
CH1-HH1	1.09	1.08	0.01
CH1-CH2	1.40	1.40	0.00
CH2-HH2	1.09	1.08	0.01
HA3-CA-HA2	107.87	108.60	0.72
HA3-CA-HA	107.99	108.46	0.47
HA3-CA-CB	111.20	110.46	0.74
HA2-CA-HA	107.99	108.46	0.47
HA2-CA-CB	111.21	110.46	0.75
CA-CB-HB	109.12	105.95	3.18
CA-CB-CG1	114.48	115.85	1.37
CA-CB-CG2	114.48	115.85	1.37
HA-CA-CB	110.44	110.33	0.11
CB-CG1-HG11	112.76	113.38	0.61

Terms	QM	CHARMM	Abs. diff.
CB-CG1-HG12	109.95	108.44	1.51
CB-CG1-CD1	102.83	103.61	0.78
CB-CG2-HG21	109.92	108.44	1.48
CB-CG2-HG22	112.76	113.38	0.61
CB-CG2-CD2	102.82	103.61	0.79
HB-CB-CG1	107.27	107.04	0.23
HB-CB-CG2	107.25	107.04	0.20
CG1-CB-CG2	103.75	104.54	0.78
CG1-CD1-CD2	109.82	109.05	0.77
CG1-CD1-CE1	129.63	130.46	0.83
HG11-CG1-HG12	107.14	105.80	1.33
HG11-CG1-CD1	113.69	115.29	1.60
HG12-CG1-CD1	110.47	110.24	0.24
CG2-CD2-CD1	109.83	109.05	0.78
CG2-CD2-CE2	129.62	130.46	0.84
HG21-CG2-HG22	107.14	105.80	1.34
HG21-CG2-CD2	110.48	110.24	0.24
HG22-CG2-CD2	113.71	115.29	1.58
CD1-CD2-CE2	120.54	120.45	0.09
CD1-CE1-HE1	120.78	119.87	0.92
CD1-CE1-CH1	118.95	119.20	0.26
CD2-CD1-CE1	120.54	120.45	0.10
CD2-CE2-HE2	120.78	119.87	0.92
CD2-CE2-CH2	118.95	119.20	0.26
CE1-CH1-HH1	119.83	120.05	0.22
CE1-CH1-CH2	120.51	120.35	0.16
HE1-CE1-CH1	120.27	120.93	0.67
CE2-CH2-CH1	120.51	120.35	0.16
CE2-CH2-HH2	119.82	120.05	0.23
HE2-CE2-CH2	120.27	120.93	0.67
CH1-CH2-HH2	119.66	119.60	0.07
$\rm HH1\text{-}CH1\text{-}CH2$	119.66	119.60	0.06

2.106 The small molecule 2 used for bonded terms optimization of alpha-amino-2-indanaceticaci d (IGL)

Figure S387: The energy minimized structure corresponding to (2R)-2-(2,3-dihydro-1H-inden-2-y l)-2-acetamido-N-methylacetamide.

Table S786: The calculated geometric terms of (2R)-2-(2,3-dihydro-1H-inden-2-yl)-2-acetamid o-N-methylacetamide.

Terms	QM	CHARMM	Abs. diff.
N-HN	1.01	0.99	0.02
N-CA	1.47	1.46	0.00
N-CY	1.38	1.34	0.04
CA-HA	1.10	1.08	0.02
CA-CB	1.53	1.55	0.03
CA-C	1.54	1.53	0.01
CB-HB	1.10	1.11	0.02
CB-CG1	1.55	1.53	0.01
CB-CG2	1.54	1.53	0.01
CG1-HG11	1.10	1.10	0.00
CG1-HG12	1.10	1.10	0.00
CG1-CD1	1.51	1.52	0.01
CG2-HG21	1.09	1.10	0.01
CG2-HG22	1.10	1.10	0.00
CG2-CD2	1.51	1.52	0.01
CD1-CD2	1.40	1.41	0.01
CD1-CE1	1.39	1.38	0.01
CD2-CE2	1.39	1.38	0.01
CE1-HE1	1.09	1.08	0.01
CE1-CH1	1.40	1.40	0.00
CE2-HE2	1.09	1.08	0.01
CE2-CH2	1.40	1.40	0.00
CH1- $HH1$	1.09	1.08	0.01
CH1-CH2	1.40	1.40	0.00
CH2-HH2	1.09	1.08	0.01
C-O	1.23	1.23	0.00
C-NT	1.36	1.35	0.02
NT-HNT	1.01	0.99	0.02
NT-CAT	1.45	1.44	0.01
CAT-HT1	1.09	1.11	0.03
CAT-HT2	1.09	1.11	0.02

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{llllllllllllllllllllllllllllllllllll$		\mathbf{r}	Terms	QM	CHARMM	Abs. dif	Ē.
$ \begin{array}{c} \textbf{i} & \textbf{CAY-HY1} & 1.09 & 1.11 & 0.02 \\ & \textbf{CAY-HY2} & 1.09 & 1.11 & 0.02 \\ & \textbf{CAY-HY3} & 1.09 & 1.11 & 0.02 \\ & \textbf{CAY-CY} & 1.51 & 1.48 & 0.03 \\ & \textbf{CY-OY} & 1.23 & 1.22 & 0.01 \\ & \textbf{N-CA-HA} & 105.86 & 105.71 & 0.14 \\ & \textbf{N-CA-CB} & 112.93 & 111.53 & 1.33 \\ & \textbf{N-CA-C} & 110.09 & 114.43 & 4.33 \\ & \textbf{N-CY-CAY} & 115.05 & 116.66 & 1.61 \\ & \textbf{N-CY-OY} & 121.78 & 122.97 & 1.11 \\ & \textbf{HN-N-CA} & 116.30 & 116.31 & 0.01 \\ & \textbf{HN-N-CY} & 116.64 & 117.80 & 1.16 \\ & \textbf{CA-N-CY} & 119.88 & 124.86 & 4.97 \\ & \textbf{CA-CB-G1} & 112.66 & 115.37 & 2.77 \\ & \textbf{CA-CB-CG2} & 114.14 & 117.94 & 3.75 \\ & \textbf{CA-CB-CG1} & 112.66 & 115.37 & 2.71 \\ & \textbf{CA-CB-CG2} & 114.14 & 117.94 & 3.76 \\ & \textbf{CA-CB-CG2} & 114.14 & 117.94 & 3.77 \\ & \textbf{CA-CB-CG2} & 114.14 & 117.94 & 3.77 \\ & \textbf{CA-CA-CB} & 108.75 & 106.03 & 2.77 \\ & \textbf{HA-CA-CB} & 108.75 & 106.03 & 2.77 \\ & \textbf{HA-CA-CB} & 108.75 & 106.03 & 2.77 \\ & \textbf{HA-CA-CB} & 108.75 & 106.03 & 2.77 \\ & \textbf{HA-CA-CB} & 108.75 & 106.03 & 2.77 \\ & \textbf{HA-CA-CB} & 108.93 & 106.85 & 9.201 \\ & \textbf{id} & \textbf{CB-CG1-HG11} & 110.60 & 108.59 & 2.01 \\ & \textbf{id} & \textbf{CB-CG1-HG12} & 112.20 & 113.38 & 0.58 \\ & \textbf{CB-CG1-CD1} & 102.92 & 104.24 & 1.33 \\ & \textbf{CB-CG2-HG21} & 111.72 & 113.44 & 1.77 \\ & \textbf{CB-CG2-HG22} & 104.43 & 108.77 & 1.66 \\ & \textbf{CB-CG1-CD1} & 102.92 & 104.24 & 1.33 \\ & \textbf{CB-CG2-CD2} & 102.81 & 104.01 & 1.16 \\ & \textbf{HB-CB-CG2} & 108.42 & 106.71 & 1.71 \\ & \textbf{CG1-CD1-CD2} & 109.97 & 109.06 & 0.91 \\ & \textbf{CG1-CD1-CD2} & 109.97 & 109.06 & 0.91 \\ & \textbf{CG1-CD1-CD2} & 109.97 & 109.06 & 0.91 \\ & \textbf{CG1-CD1-CD2} & 109.97 & 109.06 & 0.91 \\ & \textbf{CG1-CD1-CD2} & 109.97 & 109.06 & 0.91 \\ & \textbf{CG1-CD1-CD1} & 113.27 & 114.68 & 1.44 \\ & \textbf{CG2-CD2-CD2} & 106.97 & 105.55 & 1.44 \\ & \textbf{CG2-CD2-CD2} & 106.97 & 105.55 & 1.44 \\ & \textbf{CG2-CD2-CD2} & 110.59 & 110.33 & 0.26 \\ & \textbf{CD1-CD2-CE2} & 120.77 & 120.62 & 0.11 \\ & \textbf{CD2-CE2-HE2} & 120.77 & 120.62 & 0.14 \\ & \textbf{CD2-CE2-CH2} & 118.99 & 119.31 & 0.35 \\ & \textbf{CD2-CE1-CH1} & 118.85 & 119.17 & 0.35 \\ & \textbf{CD2-CE2-CH2} & 118.99 & 119.31 & 0.35 \\ & \textbf{CD2-CE2-CH2} & 118.99 & 119.31 & 0.35 \\ & CD2-CE2-CH2$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	of	CAT-HT3	1.10	1.11	0.02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ci	CAY-HY1	1.09	1.11	0.02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CAY-HY2	1.09	1.11	0.02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X-CY1.511.480.03 $-OY$ 1.231.220.01 $A-HA$ 105.86105.710.14 $A-CB$ 112.93111.531.39 $2A-C$ 110.09114.434.34 $Y-CY$ 121.78122.971.19 $N-CA$ 116.30116.310.01 $N-CY$ 121.64117.801.16 $N-CY$ 119.88124.864.97 $N-CY$ 112.66115.372.71 $B-CG2$ 114.14117.943.79 $-C-O$ 122.31122.740.43 $C-NT$ 114.21116.522.31 $ZA-CB$ 108.75106.032.72 $CA-C$ 102.04113.491.46 $A-HG11$ 110.60108.592.01 $A-HG12$ 112.04113.491.46 $A-HG11$ 110.60108.592.01 $A-HG21$ 11.72113.441.72 $A-HG21$ 11.72113.441.72 $A-HG21$ 103106.832.10 $B-CG2$ 108.42106.711.71 $ZP-HG22$ 104.47103.471.01 $D1-CD2$ 109.97109.060.91 $D1-CE1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CAY-HY3	1.09	1.11	0.02	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-OY1.231.220.01A-HA105.86105.710.14A-CB112.93111.531.39CA-C110.09114.434.34 $-CAY$ 115.05116.661.61Y-OY121.78122.971.19N-CA116.30116.310.01N-CY116.64117.801.16N-CY119.88124.864.97JB-HB108.05105.812.23B-CG1112.66115.372.71B-CG2114.14117.943.79-C-O122.31122.740.43C-NT114.21116.522.31CA-CB108.75106.032.72CA-C106.80104.702.10CA-C112.04113.491.4641-HG11110.60108.592.0141-HG12112.80113.380.5851-CD1102.92104.241.32122-HG2111.72113.441.72122-HG21104.31108.771.6552-CD2102.81104.011.19B-CG2108.42106.711.71ZB-CG2109.97109.060.91D1-CE1129.25130.230.98G1-HG12107.16106.001.41D2-CD1110.40109.001.41D2-CD1110.40109.001.41D2-CE2129.22130.591.37G2-CD2114.35114.71	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CAY-CY	1.51	1.48	0.03	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A-HA 105.86 105.71 0.14 A-CB 112.93 111.53 1.39 CA-C 110.09 114.43 4.34 V-CAY 115.05 116.66 1.61 Y-OY 121.78 122.97 1.19 N-CA 116.30 116.31 0.01 N-CY 116.64 117.80 1.16 N-CY 119.88 124.86 4.97 CB-HB 108.05 105.81 2.23 B-CG1 112.66 115.37 2.71 B-CG2 114.14 117.94 3.79 -C-O 122.31 122.74 0.43 C-NT 114.21 116.52 2.31 CA-C 106.80 104.70 2.10 CA-C 112.04 113.49 1.46 A-HG11 110.60 108.59 2.01 A-CB 108.75 106.03 2.72 CA-C 106.80 104.70 2.10 CA-C 112.04 113.38 0.58 G1-CD1 102.92 104.24 1.32 22 -HG21 111.72 113.44 1.72 22 -HG21 104.33 106.83 2.10 B-CG2 102.81 104.01 1.19 B-CG2 102.81 104.01 1.19 B-CG2 104.47 103.47 1.01 D1-CD2 109.97 109.06 0.91 D1-CE1 29.25 130.23 0.98 G1-CD1 110.12 109.87 0.25 CG1-CD1 <td< th=""><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th></th><th>CY-OY</th><th>1.23</th><th>1.22</th><th>0.01</th><th></th></td<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CY-OY	1.23	1.22	0.01	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A-CB 112.93 111.53 1.39 CA-C 110.09 114.43 4.34 C-CAY 115.05 116.66 1.61 Y-OY 121.78 122.97 1.19 N-CA 116.30 116.31 0.01 N-CY 116.64 117.80 1.16 N-CY 119.88 122.97 1.19 B-CG1 112.66 115.37 2.71 B-CG2 114.14 117.94 3.79 -C-O 122.31 122.74 0.43 C-NT 114.21 116.52 2.31 CA-CB 108.75 106.03 2.72 CA-C 106.80 104.70 2.10 CA-C 112.04 113.49 1.46 A1-HG11 110.60 108.59 2.01 A1-HG12 112.80 113.38 0.58 G1-CD1 102.92 104.24 1.32 22 -HG21 111.72 113.44 1.72 12 -HG22 10.43 108.77 1.65 32 -CD2 102.81 104.01 1.19 B-CG1 108.93 106.83 2.10 B-CG2 109.97 109.06 0.91 D1-CD2 109.97 109.06 0.91 D1-CE1 129.25 130.23 0.98 G1-CD1 110.12 109.87 0.25 CG1-CD1 110.12 109.87 0.25 CG1-CD1 110.12 109.87 0.25 CG1-CD1 110.40 109.00 1.41 <td< th=""><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th><th></th><th>N-CA-HA</th><th>105.86</th><th>105.71</th><th>0.14</th><th></th></td<>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		N-CA-HA	105.86	105.71	0.14	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CA-C 110.09 114.43 4.34 C-CAY 115.05 116.66 1.61 Y-OY 121.78 122.97 1.19 N-CA 116.30 116.31 0.01 N-CY 116.64 117.80 1.16 N-CY 119.88 124.86 4.97 CB-HB 108.05 105.81 2.23 B-CG1 112.66 115.37 2.71 B-CG2 114.14 117.94 3.79 -C-O 122.31 122.74 0.43 C-NT 114.21 116.52 2.31 CA-CB 108.75 106.03 2.72 CA-C 106.80 104.70 2.10 CA-C 112.04 113.49 1.46 41 -HG11 110.60 108.59 2.01 41 -HG12 112.80 113.38 0.58 $G1$ -CD1 102.92 104.24 1.32 22 -HG21 111.72 113.44 1.72 22 -HG21 104.31 108.77 1.65 $G2$ -CD2 102.81 104.01 1.19 B-CG1 108.93 106.83 2.10 B-CG2 104.47 103.47 1.01 D1-CD2 109.97 109.06 0.91 D1-CE1 129.25 130.23 0.98 G1-HG12 107.16 106.00 1.16 CG1-CD1 110.12 109.87 0.25 CG1-CD1 110.43 14.71 0.36 CG2-CD2 114.35 114.71 0.36 <th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th> <th></th> <th>N-CA-CB</th> <th>112.93</th> <th>111.53</th> <th>1.39</th> <th></th>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		N-CA-CB	112.93	111.53	1.39	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Z-CAY115.05116.661.61Y-OY121.78122.971.19N-CA116.30116.310.01N-CY116.64117.801.16N-CY119.88124.864.97CB-HB108.05105.812.23B-CG1112.66115.372.71B-CG2114.14117.943.79-C-O122.31122.740.43C-NT114.21116.522.31CA-CB108.75106.032.72CA-C106.80104.702.10CA-C112.04113.491.46Al-HG11110.60108.592.01Al-HG12112.80113.380.58G1-CD1102.92104.241.32'2-HG21111.72113.441.72'2-HG21111.72113.441.72'2-HG21104.31108.771.65G2-CD2102.81104.011.19B-CG1108.93106.832.10B-CG2104.47103.471.01D1-CD2109.97109.060.91D1-CE1129.25130.230.98G1-HG12107.16106.001.16CG1-CD1110.12109.870.25'CG1-CD1113.27114.681.41D2-CE2120.37120.310.06C2-CD2114.35114.710.36'CG2-CD2110.591.0330.26D2-CE2120.77	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		N-CA-C	110.09	114.43	4.34	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Y-OY 121.78 122.97 1.19 N-CA 116.30 116.31 0.01 N-CY 116.64 117.80 1.16 N-CY 119.88 124.86 4.97 CB-HB 108.05 105.81 2.23 B-CG1 112.66 115.37 2.71 B-CG2 114.14 117.94 3.79 -C-O 122.31 122.74 0.43 C-NT 114.21 116.52 2.31 CA-CB 108.75 106.03 2.72 CA-C 106.80 104.70 2.10 CA-C 112.04 113.49 1.46 H-HG11 110.60 108.59 2.01 H-HG12 112.80 113.38 0.58 G1-CD1 102.92 104.24 1.32 t2-HG21 111.72 113.44 1.72 t2-HG22 110.43 108.77 1.65 G2-CD2 102.81 104.01 1.19 B-CG1 108.93 106.83 2.10 B-CG2 104.47 103.47 1.01 D1-CD2 109.97 109.06 0.91 D1-CD2 109.97 109.06 0.91 D1-CD1 110.12 109.87 0.25 CG1-CD1 110.12 109.87 0.25 CG1-CD1 110.27 114.68 1.41 D2-CD2 114.35 114.71 0.36 CG2-CD2 114.35 114.71 0.36 CG2-CD2 114.35 114.71 0.36 C	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		N-CY-CAY	115.05	116.66	1.61	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N-CA116.30116.310.01N-CY116.64117.801.16N-CY119.88124.864.97CB-HB108.05105.812.23B-CG1112.66115.372.71B-CG2114.14117.943.79-C-O122.31122.740.43C-NT114.21116.522.31CA-CB108.75106.032.72CA-C106.80104.702.10CA-C112.04113.491.46A1-HG11110.60108.592.01A1-HG12112.80113.380.58G1-CD1102.92104.241.3222-HG21111.72113.441.7222-HG21111.72113.441.7222-HG22102.81104.011.19B-CG1108.93106.832.10B-CG2108.42106.711.71CB-CG2104.47103.471.01D1-CD2109.97109.060.91D1-CE1129.25130.230.98G1-HG12107.16106.001.16CG1-CD1110.12109.870.25CG1-CD1113.27114.681.41D2-CE2129.22130.591.37G2-HG22106.97105.551.42CG2-CD2114.35114.710.36CG2-CD2110.59110.330.26D2-CE2120.37120.310.06E1-HE1120.90 <t< th=""><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th><th></th><th>N-CY-OY</th><th>121.78</th><th>122.97</th><th>1.19</th><th></th></t<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		N-CY-OY	121.78	122.97	1.19	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		HN-N-CA	116.30	116.31	0.01	
$\begin{array}{c} \text{CA-N-CY} & 119.88 & 124.86 & 4.99 \\ \text{CA-CB-CB-HB} & 108.05 & 105.81 & 2.25 \\ \text{CA-CB-CG1} & 112.66 & 115.37 & 2.71 \\ \text{CA-CB-CG2} & 114.14 & 117.94 & 3.79 \\ \text{CA-CB-CG2} & 114.14 & 117.94 & 3.79 \\ \text{CA-C-O} & 122.31 & 122.74 & 0.43 \\ \text{P} & \text{CA-C-NT} & 114.21 & 116.52 & 2.31 \\ \text{P} & \text{CA-CA-CB} & 108.75 & 106.03 & 2.72 \\ \text{HA-CA-C} & 106.80 & 104.70 & 2.10 \\ \text{CB-CA-C} & 112.04 & 113.49 & 1.46 \\ \text{of} & \text{CB-CG1-HG11} & 110.60 & 108.59 & 2.01 \\ \text{id} & \text{CB-CG1-HG12} & 112.80 & 113.38 & 0.58 \\ \text{CB-CG1-CD1} & 102.92 & 104.24 & 1.33 \\ \text{CB-CG2-HG21} & 111.72 & 113.44 & 1.72 \\ \text{CB-CG2-HG22} & 110.43 & 108.77 & 1.65 \\ \text{CB-CG2-CD2} & 102.81 & 104.01 & 1.15 \\ \text{HB-CB-CG1} & 108.93 & 106.83 & 2.16 \\ \text{HB-CB-CG2} & 108.42 & 106.71 & 1.71 \\ \text{CG1-CD1-CD2} & 109.97 & 109.06 & 0.99 \\ \text{CG1-CD1-CD2} & 109.97 & 109.06 & 0.99 \\ \text{CG1-CD1-CD1} & 110.12 & 109.87 & 0.25 \\ \text{HG11-CG1-HG12} & 107.16 & 106.00 & 1.16 \\ \text{HG11-CG1-CD1} & 110.12 & 109.87 & 0.25 \\ \text{HG22-CD2-CD2} & 110.43 & 114.71 & 0.36 \\ \text{HG22-CG2-CD2} & 110.43 & 114.71 & 0.36 \\ \text{HG21-CG2-CD2} & 110.97 & 109.06 & 1.44 \\ \text{CG2-CD2-CD2} & 110.49 & 109.00 & 1.44 \\ \text{CG2-CD2-CD1} & 110.12 & 109.87 & 0.25 \\ \text{HG12-CG1-CD1} & 113.27 & 114.68 & 1.44 \\ \text{CG2-CD2-CD2} & 110.59 & 110.33 & 0.26 \\ \text{CD1-CE1-HE1} & 120.90 & 119.95 & 0.93 \\ \text{CD1-CE1-HE1} & 120.90 & 119.95 & 0.93 \\ \text{CD1-CE1-CH1} & 118.85 & 119.17 & 0.35 \\ \text{CD2-CD2-CE2} & 120.37 & 120.31 & 0.06 \\ \text{CD1-CE1-CH1} & 118.85 & 119.17 & 0.35 \\ \text{CD2-CE2-HE2} & 120.70 & 119.80 & 0.88 \\ \text{CD2-CE2-CH2} & 118.99 & 119.31 & 0.32 \\ \text{CE1-CH1-HH1} & 119.82 & 120.08 & 0.26 \\ \text{CE1-CH1-CH2} & 120.47 & 120.28 & 0.18 \\ \text{HE1-CE1-CH1} & 120.55 & 120.29 & 0.57 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \text{CA-N-CY} & 119.88 & 124.86 & 4.97 \\ \text{CA-CB-HB} & 108.05 & 105.81 & 2.23 \\ \text{CA-CB-CG1} & 112.66 & 115.37 & 2.71 \\ \text{CA-CB-CG2} & 114.14 & 117.94 & 3.79 \\ \text{CA-CD} & CA-C-O & 122.31 & 122.74 & 0.43 \\ \text{rt} & \text{CA-C-NT} & 114.21 & 116.52 & 2.31 \\ \text{ry} & \text{HA-CA-C} B & 108.75 & 106.03 & 2.72 \\ \text{HA-CA-C} & 106.80 & 104.70 & 2.10 \\ \text{CB-CA-C} & 112.04 & 113.49 & 1.46 \\ \text{of} & \text{CB-CG1-HG11} & 110.60 & 108.59 & 2.01 \\ \text{id} & \text{CB-CG1-HG12} & 112.80 & 113.38 & 0.58 \\ \text{CB-CG2-HG21} & 111.72 & 113.44 & 1.72 \\ \text{CB-CG2-HG21} & 111.72 & 113.44 & 1.72 \\ \text{CB-CG2-HG22} & 110.43 & 108.77 & 1.65 \\ \text{CB-CG2-HG21} & 108.93 & 106.83 & 2.10 \\ \text{HB-CB-CG2} & 108.42 & 106.71 & 1.71 \\ \text{CG1-CD1-CE1} & 129.25 & 130.23 & 0.98 \\ \text{HG11-CG1-HG12} & 107.16 & 106.00 & 1.16 \\ \text{HG11-CG1-CD1} & 110.12 & 109.87 & 0.25 \\ \text{HG12-CG1-CD1} & 110.22 & 130.59 & 1.37 \\ \text{HG21-CG2-HG22} & 106.97 & 105.55 & 1.42 \\ \text{HG21-CG2-CD2} & 110.59 & 110.33 & 0.26 \\ \text{CD1-CD2-CE2} & 129.22 & 130.59 & 1.37 \\ \text{HG21-CG2-CD2} & 110.59 & 110.33 & 0.26 \\ \text{CD1-CD2-CE2} & 120.77 & 120.61 & 0.63 \\ \text{HG22-CG2-CD2} & 110.59 & 110.33 & 0.26 \\ \text{CD1-CD2-CE2} & 120.77 & 120.62 & 0.15 \\ \text{CD2-CE2-HE2} & 120.77 & 120.62 & 0.18 \\ \text{HG21-CG2-CD2} & 110.59 & 110.33 & 0.26 \\ \text{CD1-CD2-CE2} & 120.77 & 120.62 & 0.18 \\ \text{HG21-CG2-CD2} & 110.59 & 110.33 & 0.26 \\ \text{CD1-CD2-CE2} & 120.77 & 120.62 & 0.18 \\ \text{HG22-CG2-CD2} & 110.59 & 110.33 & 0.26 \\ \text{CD1-CD2-CE2} & 120.77 & 120.62 & 0.18 \\ \text{HG22-CG2-CD2} & 110.59 & 110.33 & 0.26 \\ \text{CD1-CD2-CE2} & 120.77 & 120.62 & 0.18 \\ \text{HE1-CE1-CH1} & 118.85 & 119.17 & 0.32 \\ \text{CD2-CE2-HE2} & 120.70 & 119.80 & 0.89 \\ \text{CD2-CE2-CH2} & 118.99 & 119.31 & 0.32 \\ \text{CE1-CH1-HH1} & 119.82 & 120.08 & 0.57 \\ \text{CH1-CH2-HH2} & 119.66 & 119.59 & 0.07 \\ \text{HH1-CH1-CH2} & 119.71 & 119.63 & 0.08 \\ \text{C-NT-HNT} & 115.74 & 119.04 & 3.31 \\ \text{C-NT-CAT} & 119.11 & 122.25 & 3.14 \\ \text{O-C-NT} & 123.13 & 100.69 \\ \text{C} 3.44 \\ \end{array}$		HN-N-CY	116 64	117.80	1 16	
$\begin{array}{c} \text{CA-CB-HB} & 108.05 & 105.81 & 2.25 \\ \text{CA-CB-CG1} & 112.66 & 115.37 & 2.77 \\ \text{CA-CB-CG2} & 114.14 & 117.94 & 3.75 \\ \text{CA-C-O} & 122.31 & 122.74 & 0.45 \\ \text{or} & \text{CA-C-NT} & 114.21 & 116.52 & 2.31 \\ \text{ev} & \text{HA-CA-CB} & 108.75 & 106.03 & 2.72 \\ \text{HA-CA-C} & 106.80 & 104.70 & 2.10 \\ \text{CB-CA-C} & 112.04 & 113.49 & 1.46 \\ \text{of} & \text{CB-CG1-HG11} & 110.60 & 108.59 & 2.01 \\ \text{id} & \text{CB-CG1-HG12} & 112.80 & 113.38 & 0.58 \\ \text{CB-CG1-HG12} & 112.80 & 113.38 & 0.58 \\ \text{CB-CG1-CD1} & 102.92 & 104.24 & 1.32 \\ \text{CB-CG2-HG21} & 111.72 & 113.44 & 1.72 \\ \text{CB-CG2-HG22} & 110.43 & 108.77 & 1.66 \\ \text{CB-CG2-HG21} & 108.93 & 106.83 & 2.10 \\ \text{HB-CB-CG1} & 108.93 & 106.83 & 2.10 \\ \text{HB-CB-CG2} & 108.42 & 106.71 & 1.71 \\ \text{CG1-CB-CG2} & 108.42 & 106.71 & 1.71 \\ \text{CG1-CD1-CD2} & 109.97 & 109.06 & 0.91 \\ \text{CG1-CD1-CD1} & 129.25 & 130.23 & 0.98 \\ \text{HG11-CG1-HG12} & 107.16 & 106.00 & 1.16 \\ \text{HG11-CG1-HG12} & 107.16 & 106.00 & 1.41 \\ \text{CG2-CD2-CD1} & 110.40 & 109.00 & 1.41 \\ \text{CG2-CD2-CD1} & 110.43 & 114.71 & 0.36 \\ \text{HG21-CG2-HG22} & 106.97 & 105.55 & 1.42 \\ \text{HG21-CG2-HG22} & 106.97 & 105.55 & 1.42 \\ \text{HG21-CG2-CD2} & 110.59 & 110.33 & 0.26 \\ \text{CD1-CD2-CE2} & 120.37 & 120.31 & 0.06 \\ \text{CD1-CD1-CE1} & 120.90 & 119.95 & 0.95 \\ \text{CD1-CE1-HE1} & 120.90 & 119.95 & 0.95 \\ \text{CD1-CE1-CH1} & 118.85 & 119.17 & 0.32 \\ \text{CD2-CD1-CE1} & 120.77 & 120.62 & 0.15 \\ \text{CD2-CE2-HE2} & 120.70 & 119.80 & 0.88 \\ \text{CD2-CE2-CH2} & 118.99 & 119.31 & 0.32 \\ \text{CE1-CH1-HH1} & 19.82 & 120.08 & 0.26 \\ \text{CE1-CH1-CH2} & 120.47 & 120.28 & 0.66 \\ \text{CE2-CH2-CH1} & 120.55 & 120.29 & 0.25 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CA-N-CY	119.88	124.86	4.97	
$\begin{array}{c} \text{CA-CB-CG1} & 112.66 & 115.37 & 2.71 \\ \text{CA-CB-CG2} & 114.14 & 117.94 & 3.76 \\ \text{CA-C-O} & 122.31 & 122.74 & 0.44 \\ \text{or} & \text{CA-C-NT} & 114.21 & 116.52 & 2.33 \\ \text{-y} & \text{HA-CA-CB} & 108.75 & 106.03 & 2.72 \\ \text{HA-CA-C} & 106.80 & 104.70 & 2.10 \\ \text{CB-CA-C} & 112.04 & 113.49 & 1.46 \\ \text{of} & \text{CB-CG1-HG11} & 110.60 & 108.59 & 2.01 \\ \text{id} & \text{CB-CG1-HG12} & 112.80 & 113.38 & 0.58 \\ \text{CB-CG1-CD1} & 102.92 & 104.24 & 1.32 \\ \text{CB-CG2-HG21} & 111.72 & 113.44 & 1.72 \\ \text{CB-CG2-HG22} & 110.43 & 108.77 & 1.66 \\ \text{CB-CG2-CD2} & 102.81 & 104.01 & 1.19 \\ \text{HB-CB-CG2} & 108.93 & 106.83 & 2.10 \\ \text{HB-CB-CG2} & 108.42 & 106.71 & 1.71 \\ \text{CG1-CD-CD2} & 109.97 & 109.06 & 0.91 \\ \text{CG1-CD1-CD2} & 109.97 & 109.06 & 0.91 \\ \text{CG1-CD1-CD1} & 110.12 & 109.87 & 0.22 \\ \text{HG11-CG1-HG12} & 107.16 & 106.00 & 1.16 \\ \text{HG11-CG1-CD1} & 110.12 & 109.87 & 0.22 \\ \text{HG12-CG2-CD2-CD1} & 113.27 & 114.68 & 1.44 \\ \text{CG2-CD2-CD2} & 114.35 & 114.71 & 0.36 \\ \text{HG21-CG2-CD2} & 114.35 & 114.71 & 0.36 \\ \text{HG21-CG2-CD2} & 110.59 & 110.33 & 0.26 \\ \text{CD1-CD1-CE1} & 120.90 & 119.95 & 0.95 \\ \text{CD1-CE1-HE1} & 120.90 & 119.95 & 0.95 \\ \text{CD1-CE1-HE1} & 120.90 & 119.91 & 0.33 \\ \text{CD2-CE2-HE2} & 120.70 & 119.80 & 0.88 \\ \text{CD2-CE2-CH2} & 118.99 & 119.31 & 0.32 \\ \text{CE1-CH1-HH1} & 119.82 & 120.08 & 0.26 \\ \text{CE1-CH1-CH1} & 120.25 & 120.29 & 0.25 \\ \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} \text{CA-CB-CG1} & 112.66 & 115.37 & 2.71 \\ \text{CA-CB-CG2} & 114.14 & 117.94 & 3.79 \\ \text{CA-C-O} & 122.31 & 122.74 & 0.43 \\ \text{OP} & \text{CA-C-NT} & 114.21 & 116.52 & 2.31 \\ \text{PY} & \text{HA-CA-CB} & 108.75 & 106.03 & 2.72 \\ \text{HA-CA-C} & 106.80 & 104.70 & 2.10 \\ \text{CB-CA-C} & 112.04 & 113.49 & 1.46 \\ \text{of} & \text{CB-CG1-HG11} & 110.60 & 108.59 & 2.01 \\ \text{id} & \text{CB-CG1-HG12} & 112.80 & 113.38 & 0.58 \\ \text{CB-CG1-CD1} & 102.92 & 104.24 & 1.32 \\ \text{CB-CG2-HG21} & 111.72 & 113.44 & 1.72 \\ \text{CB-CG2-HG21} & 111.72 & 113.44 & 1.72 \\ \text{CB-CG2-HG22} & 100.43 & 108.77 & 1.65 \\ \text{CB-CG2-CD2} & 102.81 & 104.01 & 1.19 \\ \text{HB-CB-CG2} & 108.42 & 106.71 & 1.71 \\ \text{CG1-CB-CG2} & 108.42 & 106.71 & 1.71 \\ \text{CG1-CB-CG2} & 108.42 & 106.71 & 1.71 \\ \text{CG1-CD1-CD2} & 109.97 & 109.06 & 0.91 \\ \text{CG1-CD1-CD1} & 129.25 & 130.23 & 0.98 \\ \text{HG11-CG1-HG12} & 107.16 & 106.00 & 1.16 \\ \text{HG11-CG1-HG12} & 107.16 & 106.00 & 1.41 \\ \text{CG2-CD2-CD1} & 110.40 & 109.00 & 1.41 \\ \text{CG2-CD2-CD1} & 110.40 & 109.00 & 1.41 \\ \text{CG2-CD2-CD2} & 114.35 & 114.71 & 0.36 \\ \text{HG21-CG2-HG22} & 106.97 & 105.55 & 1.42 \\ \text{HG21-CG2-CD2} & 114.35 & 114.71 & 0.36 \\ \text{HG22-CG2-CD2} & 114.35 & 114.71 & 0.36 \\ \text{HG22-CG2-CD2} & 114.35 & 119.17 & 0.32 \\ \text{CD1-CD1-CE1} & 120.77 & 120.62 & 0.15 \\ \text{CD1-CD2-CE2} & 120.37 & 120.31 & 0.06 \\ \text{CD1-C21-CH1} & 118.85 & 119.17 & 0.32 \\ \text{CD2-CD1-CE1} & 120.77 & 120.62 & 0.15 \\ \text{CD2-CE2-HE2} & 120.70 & 119.80 & 0.89 \\ \text{CD2-CE2-HE2} & 120.70 & 119.80 & 0.89 \\ \text{CD2-CE2-CH2} & 118.99 & 119.31 & 0.32 \\ \text{CE1-CH1-HH1} & 19.82 & 120.08 & 0.26 \\ \text{CE1-CH1-HH1} & 19.82 & 120.08 & 0.26 \\ \text{CE1-CH1-HH1} & 19.80 & 120.12 & 0.32 \\ \text{HE2-CE2-CH2} & 120.31 & 120.88 & 0.57 \\ \text{CH1-CH2-HH2} & 119.66 & 119.59 & 0.07 \\ \text{HH1-CH1-CH2} & 119.71 & 119.63 & 0.08 \\ \text{C-NT-HNT} & 15.74 & 119.04 & 3.31 \\ \text{C-NT-CAT} & 119.11 & 122.25 & 3.14 \\ \text{O-C-NT} & 123.13 & 120.69 & 2.44 \\ \end{array}$		CA-CB-HB	108.05	105.81	223	
$\begin{array}{c} \text{CA-CB-CG2} & 114.14 & 117.94 & 3.73 \\ \text{CA-C-O} & 122.31 & 122.74 & 0.43 \\ \text{CA-C-NT} & 114.21 & 116.52 & 2.31 \\ \text{-y} & \text{HA-CA-CB} & 108.75 & 106.03 & 2.72 \\ \text{HA-CA-C} & 106.80 & 104.70 & 2.10 \\ \text{CB-CA-C} & 112.04 & 113.49 & 1.46 \\ \text{of} & \text{CB-CG1-HG11} & 110.60 & 108.59 & 2.01 \\ \text{id} & \text{CB-CG1-HG12} & 112.80 & 113.38 & 0.58 \\ \text{CB-CG1-CD1} & 102.92 & 104.24 & 1.32 \\ \text{CB-CG2-HG22} & 1101.72 & 113.44 & 1.72 \\ \text{CB-CG2-HG22} & 110.43 & 108.77 & 1.66 \\ \text{CB-CG2-CD2} & 102.81 & 104.01 & 1.19 \\ \text{HB-CB-CG1} & 108.93 & 106.83 & 2.10 \\ \text{HB-CB-CG2} & 104.47 & 103.47 & 1.01 \\ \text{CG1-CD1-CD2} & 109.97 & 109.06 & 0.91 \\ \text{CG1-CD1-CD2} & 109.97 & 109.06 & 0.91 \\ \text{CG1-CD1-CD1} & 110.12 & 109.87 & 0.22 \\ \text{HG11-CG1-HG12} & 107.16 & 106.00 & 1.16 \\ \text{HG11-CG1-CD1} & 110.12 & 109.87 & 0.25 \\ \text{HG12-CG2-CD2} & 114.35 & 114.71 & 0.33 \\ \text{HG21-CG2-CD2} & 114.35 & 114.71 & 0.33 \\ \text{HG21-CG2-CD2} & 110.59 & 110.33 & 0.26 \\ \text{CD1-CD2-CE2} & 120.37 & 120.31 & 0.06 \\ \text{CD1-CD2-CE2} & 120.37 & 120.31 & 0.06 \\ \text{CD1-CD1-CE1} & 120.90 & 119.95 & 0.95 \\ \text{CD1-CE1-HE1} & 120.90 & 119.95 & 0.95 \\ \text{CD1-CE1-CH1} & 118.85 & 119.17 & 0.33 \\ \text{CD2-CD2-CE2} & 120.37 & 120.31 & 0.06 \\ \text{CD1-CD2-CE2} & 120.37 & 120.31 & 0.06 \\ \text{CD2-CE2-HE2} & 120.70 & 119.80 & 0.88 \\ \text{CD2-CE2-CH2} & 118.99 & 119.31 & 0.35 \\ \text{CD2-CE2-CH2} & 118.99 & 119.31 & 0.35 \\ \text{CE1-CH1-CH1} & 120.25 & 120.28 & 0.66 \\ \text{CE2-CH2-CH1} & 120.55 & 120.29 & 0.25 \\ \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} \text{CA-CB-CG2} & 114.14 & 117.94 & 3.79 \\ \text{CA-C-O} & 122.31 & 122.74 & 0.43 \\ \text{pr-} & \text{CA-C-NT} & 114.21 & 116.52 & 2.31 \\ \text{ry} & \text{HA-CA-C} & 106.80 & 104.70 & 2.10 \\ \text{CB-CA-C} & 112.04 & 113.49 & 1.46 \\ \text{of} & \text{CB-CG1-HG11} & 110.60 & 108.59 & 2.01 \\ \text{id} & \text{CB-CG2-HG21} & 112.80 & 113.38 & 0.58 \\ \text{CB-CG2-HG21} & 112.80 & 113.38 & 0.58 \\ \text{CB-CG2-HG21} & 102.92 & 104.24 & 1.32 \\ \text{CB-CG2-HG22} & 110.43 & 108.77 & 1.65 \\ \text{CB-CG2-HG22} & 102.81 & 104.01 & 1.19 \\ \text{HB-CB-CG2} & 108.42 & 106.71 & 1.71 \\ \text{CG1-CB-CG2} & 108.42 & 106.71 & 1.71 \\ \text{CG1-CB-CG2} & 108.42 & 106.71 & 1.71 \\ \text{CG1-CD1-CD2} & 109.97 & 109.06 & 0.91 \\ \text{CG1-CD1-CD2} & 109.97 & 109.06 & 0.91 \\ \text{CG1-CD1-CD1} & 110.12 & 109.87 & 0.25 \\ \text{HG11-CG1-HG12} & 107.16 & 106.00 & 1.16 \\ \text{HG11-CG1-CD1} & 110.12 & 109.87 & 0.25 \\ \text{HG12-CG2-CD2-CD2} & 110.43 & 114.71 & 0.36 \\ \text{HG22-CG2-CD2} & 110.43 & 114.71 & 0.36 \\ \text{HG22-CG2-CD2} & 110.59 & 110.33 & 0.26 \\ \text{CD1-CD2-CE2} & 120.37 & 120.31 & 0.06 \\ \text{CD1-CE1-HE1} & 120.90 & 119.95 & 0.95 \\ \text{CD1-CE1-CH1} & 118.85 & 119.17 & 0.32 \\ \text{CD2-CD1-CE1} & 120.77 & 120.62 & 0.15 \\ \text{CD2-CE2-HE2} & 120.77 & 120.62 & 0.15 \\ \text{CD2-CE2-HE2} & 120.37 & 120.88 & 0.89 \\ \text{CD2-CE2-CH2} & 118.99 & 119.31 & 0.32 \\ \text{CE1-CH1-HH1} & 119.82 & 120.08 & 0.63 \\ \text{CE2-CH2-CH1} & 120.55 & 120.29 & 0.25 \\ \text{CE1-CH1-CH2} & 120.47 & 120.28 & 0.63 \\ \text{CE2-CH2-CH1} & 120.55 & 120.29 & 0.25 \\ \text{CE1-CH1-CH2} & 119.61 & 120.88 & 0.57 \\ \text{CH1-CH2-HH2} & 119.66 & 119.59 & 0.07 \\ \text{HH1-CH1-CH2} & 119.71 & 119.63 & 0.08 \\ \text{C-NT-HNT} & 15.74 & 119.04 & 3.31 \\ \text{C-NT-CAT} & 119.11 & 122.25 & 3.14 \\ \text{OC-NT} & 123.13 & 120.60 & 2.44 \\ \end{array}$		CA-CB-CG1	112.66	115.37	2.20 2.71	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CA-CB-CG2	114 14	117 94	3 79	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CA-C-O	122.31	122.74	0.10 0.43	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccccccc} \text{A}\text{C}\text{A} & \text{C}\text{B} & 108.75 & 106.03 & 2.72 \\ \text{CA-C} & 106.80 & 104.70 & 2.10 \\ \text{CA-C} & 112.04 & 113.49 & 1.46 \\ \text{H-HG11} & 110.60 & 108.59 & 2.01 \\ \text{H-HG12} & 112.80 & 113.38 & 0.58 \\ \text{G1-CD1} & 102.92 & 104.24 & 1.32 \\ \text{Z2-HG21} & 111.72 & 113.44 & 1.72 \\ \text{Z2-HG22} & 110.43 & 108.77 & 1.65 \\ \text{G2-CD2} & 102.81 & 104.01 & 1.19 \\ \text{B-CG1} & 108.93 & 106.83 & 2.10 \\ \text{B-CG2} & 108.42 & 106.71 & 1.71 \\ \text{CB-CG2} & 104.47 & 103.47 & 1.01 \\ \text{D1-CD2} & 109.97 & 109.06 & 0.91 \\ \text{D1-CE1} & 129.25 & 130.23 & 0.98 \\ \text{G1-HG12} & 107.16 & 106.00 & 1.16 \\ \text{CG1-CD1} & 110.12 & 109.87 & 0.25 \\ \text{CG1-CD1} & 110.12 & 109.87 & 0.25 \\ \text{CG2-CD2} & 114.35 & 114.71 & 0.36 \\ \text{CG2-CD2} & 114.35 & 114.71 & 0.36 \\ \text{CG2-CD2} & 110.59 & 110.33 & 0.26 \\ \text{D2-CE2} & 120.37 & 120.31 & 0.06 \\ \text{E1-HE1} & 120.90 & 119.95 & 0.95 \\ \text{E1-CH1} & 118.85 & 119.17 & 0.32 \\ \text{D1-CE1} & 120.77 & 120.62 & 0.15 \\ \text{E2-HE2} & 120.70 & 119.80 & 0.89 \\ \text{E2-CH2} & 118.99 & 119.31 & 0.32 \\ \text{H1-HH1} & 119.82 & 120.08 & 0.26 \\ \text{H1-CH2} & 120.47 & 120.28 & 0.18 \\ \text{E1-CH1} & 120.25 & 120.28 & 0.63 \\ \text{H2-CH1} & 120.55 & 120.29 & 0.25 \\ \text{H2-HH2} & 119.66 & 119.59 & 0.07 \\ \end{array}$	$\begin{array}{c} \text{Y} & \text{HA-CA-CB} & 108.75 & 106.03 & 2.72 \\ & \text{HA-CA-C} & 106.80 & 104.70 & 2.10 \\ & \text{CB-CA-C} & 112.04 & 113.49 & 1.46 \\ \text{of} & \text{CB-CG1-HG11} & 110.60 & 108.59 & 2.01 \\ \text{id} & \text{CB-CG1-HG12} & 112.80 & 113.38 & 0.58 \\ & \text{CB-CG1-CD1} & 102.92 & 104.24 & 1.32 \\ & \text{CB-CG2-HG21} & 111.72 & 113.44 & 1.72 \\ & \text{CB-CG2-HG22} & 100.43 & 108.77 & 1.65 \\ & \text{CB-CG2-CD2} & 102.81 & 104.01 & 1.19 \\ & \text{HB-CB-CG1} & 108.93 & 106.83 & 2.10 \\ & \text{HB-CB-CG2} & 108.42 & 106.71 & 1.71 \\ & \text{CG1-CD1-CD2} & 109.97 & 109.06 & 0.91 \\ & \text{CG1-CD1-CE1} & 129.25 & 130.23 & 0.98 \\ & \text{HG11-CG1-HG12} & 107.16 & 106.00 & 1.16 \\ & \text{HG11-CG1-HG12} & 107.16 & 106.00 & 1.16 \\ & \text{HG11-CG1-CD1} & 110.12 & 109.87 & 0.25 \\ & \text{HG12-CG2-CD2} & 114.35 & 114.71 & 0.36 \\ & \text{HG22-CG2-CD2} & 110.59 & 110.33 & 0.26 \\ & \text{CD1-CD2-CE2} & 120.37 & 120.31 & 0.06 \\ & \text{CD1-CE1-HE1} & 120.90 & 119.95 & 0.95 \\ & \text{CD1-CE1-CH1} & 118.85 & 119.17 & 0.32 \\ & \text{CD2-CD2-CE2} & 120.37 & 120.31 & 0.06 \\ & \text{CD1-CD2-CE2} & 120.77 & 120.62 & 0.15 \\ & \text{CD2-CD2-CE2} & 118.99 & 119.31 & 0.32 \\ & \text{CD2-CD1-CE1} & 120.77 & 120.62 & 0.15 \\ & \text{CD2-CE2-HE2} & 120.70 & 119.80 & 0.89 \\ & \text{CD2-CE2-CH2} & 118.99 & 119.31 & 0.32 \\ & \text{CE1-CH1-HH1} & 119.82 & 120.08 & 0.26 \\ & \text{CE1-CH1-CH2} & 120.47 & 120.28 & 0.18 \\ & \text{HE1-CE1-CH1} & 120.25 & 120.28 & 0.63 \\ & \text{CE2-CH2-CH2} & 119.71 & 119.63 & 0.08 \\ & \text{C-NT-HNT} & 115.74 & 119.04 & 3.31 \\ & \text{C-NT-CAT} & 119.11 & 122.25 & 3.14 \\ & \text{O-C-NT} & 123.13 & 120.69 & 2.44 \\ \end{array}$	or-	CA-C-NT	$114\ 21$	122.11 116.52	2 31	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- v	HA-CA-CB	108 75	106.03	2.01 2.72	
$\begin{array}{c} \text{CB-CA-C} & 112.04 & 113.49 & 1.46 \\ \text{of} & \text{CB-CG1-HG11} & 110.60 & 108.59 & 2.01 \\ \text{id} & \text{CB-CG1-HG12} & 112.80 & 113.38 & 0.58 \\ \text{CB-CG1-CD1} & 102.92 & 104.24 & 1.32 \\ \text{CB-CG2-HG21} & 111.72 & 113.44 & 1.72 \\ \text{CB-CG2-HG22} & 110.43 & 108.77 & 1.65 \\ \text{CB-CG2-CD2} & 102.81 & 104.01 & 1.19 \\ \text{HB-CB-CG1} & 108.93 & 106.83 & 2.10 \\ \text{HB-CB-CG2} & 108.42 & 106.71 & 1.71 \\ \text{CG1-CB-CG2} & 104.47 & 103.47 & 1.01 \\ \text{CG1-CD1-CD2} & 109.97 & 109.06 & 0.91 \\ \text{CG1-CD1-CD1} & 129.25 & 130.23 & 0.98 \\ \text{HG11-CG1-HG12} & 107.16 & 106.00 & 1.16 \\ \text{HG11-CG1-HG12} & 107.16 & 106.00 & 1.16 \\ \text{HG11-CG1-CD1} & 113.27 & 114.68 & 1.41 \\ \text{CG2-CD2-CD2} & 110.43 & 109.87 & 0.25 \\ \text{HG21-CG2-HG22} & 106.97 & 105.55 & 1.42 \\ \text{HG21-CG2-CD2} & 114.35 & 114.71 & 0.36 \\ \text{HG22-CG2-CD2} & 110.59 & 110.33 & 0.26 \\ \text{CD1-CD2-CE2} & 120.37 & 120.31 & 0.06 \\ \text{CD1-CE1-HE1} & 120.90 & 119.95 & 0.95 \\ \text{CD1-CE1-CH1} & 118.85 & 119.17 & 0.32 \\ \text{CD2-CD2-CE2} & 120.77 & 120.62 & 0.15 \\ \text{CD2-CE2-HE2} & 120.77 & 120.62 & 0.15 \\ \text{CD2-CE2-HE2} & 120.77 & 120.88 & 0.85 \\ \text{CD2-CE2-CH2} & 118.99 & 119.31 & 0.32 \\ \text{CE1-CH1-CH1} & 119.82 & 120.08 & 0.26 \\ \text{CE1-CH1-CH1} & 120.25 & 120.28 & 0.65 \\ \text{CE2-CH2-CH1} & 120.55 & 120.29 & 0.25 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	HA-CA-C	106.80	100.00 104 70	2.12 2.10	
of CB-CG1-HG11 110.60 108.59 2.01 id CB-CG1-HG12 112.80 113.38 0.58 CB-CG1-CD1 102.92 104.24 1.32 CB-CG2-HG21 111.72 113.44 1.72 CB-CG2-HG22 110.43 108.77 1.65 CB-CG2-CD2 102.81 104.01 1.19 HB-CB-CG1 108.93 106.83 2.10 HB-CB-CG2 108.42 106.71 1.77 CG1-CB-CG2 104.47 103.47 1.01 CG1-CD1-CD2 109.97 109.06 0.91 CG1-CD1-CE1 129.25 130.23 0.98 HG11-CG1-HG12 107.16 106.00 1.10 HG11-CG1-HG12 107.16 106.00 1.10 HG12-CG1-CD1 110.12 109.87 0.25 HG12-CG2-CD2 110.43 109.00 1.41 CG2-CD2-CE2 129.22 130.59 1.35 HG21-CG2-CD2 114.35 114.71 0.36 CD1-CC2-HG22 106.97 105.55 1.42 HG21-CG2-CD2 110.59 110.33 0.26 CD1-CD2-CE2 120.37 120.31 0.06 CD1-CE1-HE1 120.90 119.95 0.95 CD1-CE1-CE1 120.77 120.62 0.15 CD2-CC2-CE2 120.77 120.62 0.15 CD2-CC2-HE2 120.77 120.62 0.15 CD2-CC2-HE2 120.77 120.62 0.15 CD2-CC2-HE2 120.77 120.62 0.15 CD2-CC2-HE2 120.77 120.62 0.15 CD2-CC2-CE2 118.99 119.31 0.32 CE1-CH1-HH1 119.82 120.08 0.26 CE1-CH1-CH2 120.47 120.28 0.18 HE1-CE1-CH1 120.25 120.88 0.63 CE2-CH2-CH1 120.55 120.29 0.25	Ch C112.04110.451.40 $A1$ -HG11110.60108.592.01 $A1$ -HG12112.80113.380.58 $G1$ -CD1102.92104.241.32 $A2$ -HG21111.72113.441.72 $A2$ -HG21111.72113.441.72 $A2$ -HG21111.72113.441.72 $A2$ -HG21102.92104.241.32 $A2$ -HG22102.81104.011.19 B -CG1108.93106.832.10 B -CG2108.42106.711.71 CB -CG2104.47103.471.01 $D1$ -CD2109.97109.060.91 $D1$ -CE1129.25130.230.98 $G1$ -HG12107.16106.001.16CG1-CD1110.12109.870.25CG1-CD1110.27114.681.41 $D2$ -CE2129.22130.591.37 $G2$ -HG22106.97105.551.42CG2-CD2110.59110.330.26 $D2$ -CE2120.37120.310.06 $E1$ -HE1120.90119.950.95 $E1$ -CH1118.85119.170.32 $D1$ -CE1120.77120.620.15 $E2$ -HE2120.70119.800.89 $E2$ -CH2118.99119.310.32H1-HH1119.82120.080.26H1-CH2120.47120.280.18E1-CH1120.55120.290.25H2-HH2119.80120.	ofCB-CG1-HG11110.60108.592.01idCB-CG1-HG12112.80113.380.58CB-CG1-CD1102.92104.241.32CB-CG2-HG21111.72113.441.72CB-CG2-HG22110.43108.771.65CB-CG2-CD2102.81104.011.19HB-CB-CG1108.93106.832.10HB-CB-CG2108.42106.711.71CG1-CD1-CD2109.97109.060.91CG1-CD1-CD1110.12109.870.25HG11-CG1-HG12107.16106.001.16HG11-CG1-CD1110.12109.870.25HG12-CG2-CD2114.35114.710.36HG21-CG2-CD2114.35114.710.36HG21-CG2-CD2114.35114.710.36HG22-CG2-CD2110.59110.330.26CD1-CD2-CE2120.37120.310.06CD1-CE1-HE1120.90119.950.95CD1-CE1-CH1118.85119.170.32CD2-CE2-CH2118.99119.310.32CE1-CH1-HH1119.82120.080.26CE1-CH1-CH2120.47120.280.18HE1-CE1-CH1120.55120.290.25CE2-CH2-CH2120.3110.080.77CH1-CH2-HH2119.80120.120.32CE2-CH2-CH2120.31120.880.57CH1-CH2-HH2119.66119.590.07HH1-CH1-CH2119.71119.043.31 <th></th> <th>CB-CA-C</th> <th>112.04</th> <th>113 49</th> <th>1 46</th> <th></th>		CB-CA-C	112.04	113 49	1 46	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A LIGT1 110.00 100.00 2.01 A1-HG12 112.80 113.38 0.58 G1-CD1 102.92 104.24 1.32 G2-HG21 111.72 113.44 1.72 G2-HG21 111.72 113.44 1.72 G2-HG22 102.81 104.01 1.19 B-CG1 108.93 106.83 2.10 B-CG2 108.42 106.71 1.71 CB-CG2 104.47 103.47 1.01 D1-CD2 109.97 109.06 0.91 D1-CE1 129.25 130.23 0.98 G1-HG12 107.16 106.00 1.16 CG1-CD1 110.12 109.87 0.25 CG1-CD1 113.27 114.68 1.41 D2-CE2 129.22 130.59 1.37 G2-HG22 106.97 105.55 1.42 CG2-CD2 110.59 110.33 0.26 D2-CE2 120.37 120.31 0.06 E1-HE1 120.90 119.95 0.95 E1-CH1 118.85 119.17 0.32 D1-CE1 120.77 120.62 0.15 E2-HE2 120.70 119.80 0.89 E2-CH2 118.99 119.31 0.32 H1-HH1 119.82 120.08 0.26 H1-CH2 120.47 120.28 0.18 E1-CH1 120.55 120.29 0.25 H2-HH2 119.66 119.59 0.07	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	of	CB-CG1-HG11	110.60	108 59	2.01	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	id	CB-CG1-HG12	112.80	113 38	0.58	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1102.52 104.24 1.52 $12-HG21$ 111.72 113.44 1.72 $12-HG22$ 110.43 108.77 1.65 $52-CD2$ 102.81 104.01 1.19 $B-CG1$ 108.93 106.83 2.10 $B-CG2$ 108.42 106.71 1.71 $CB-CG2$ 104.47 103.47 1.01 $D1-CD2$ 109.97 109.06 0.91 $D1-CE1$ 129.25 130.23 0.98 $G1-HG12$ 107.16 106.00 1.16 $CG1-CD1$ 110.12 109.87 0.25 $CG1-CD1$ 110.40 109.00 1.41 $D2-CE2$ 129.22 130.59 1.37 $G2-HG22$ 106.97 105.55 1.42 $CG2-CD2$ 114.35 114.71 0.36 $CG2-CD2$ 110.59 110.33 0.26 $D2-CE2$ 120.37 120.31 0.06 $E1-HE1$ 120.90 119.95 0.95 $E1-CH1$ 118.85 119.17 0.32 $D1-CE1$ 120.77 120.62 0.15 $E2-HE2$ 120.70 119.80 0.89 $E2-CH2$ 118.99 119.31 0.32 $H1-HH1$ 119.82 120.08 0.26 $H1-CH2$ 120.47 120.28 0.18 $E1-CH1$ 120.55 120.29 0.25 $H2-HH2$ 119.66 119.59 0.07	$\begin{array}{c} \text{CB-CG1-CD1} & 102.32 & 104.24 & 1.52 \\ \text{CB-CG2-HG21} & 111.72 & 113.44 & 1.72 \\ \text{CB-CG2-HG22} & 110.43 & 108.77 & 1.65 \\ \text{CB-CG2-CD2} & 102.81 & 104.01 & 1.19 \\ \text{HB-CB-CG1} & 108.93 & 106.83 & 2.10 \\ \text{HB-CB-CG2} & 108.42 & 106.71 & 1.71 \\ \text{CG1-CD1-CD2} & 109.97 & 109.06 & 0.91 \\ \text{CG1-CD1-CD2} & 109.97 & 109.06 & 0.91 \\ \text{CG1-CD1-CD1} & 129.25 & 130.23 & 0.98 \\ \text{HG11-CG1-HG12} & 107.16 & 106.00 & 1.16 \\ \text{HG11-CG1-HG12} & 107.16 & 106.00 & 1.41 \\ \text{CG2-CD2-CD1} & 110.12 & 109.87 & 0.25 \\ \text{HG12-CG1-CD1} & 113.27 & 114.68 & 1.41 \\ \text{CG2-CD2-CD2} & 110.40 & 109.00 & 1.41 \\ \text{CG2-CD2-CD2} & 110.40 & 109.00 & 1.41 \\ \text{CG2-CD2-CD2} & 114.35 & 114.71 & 0.36 \\ \text{HG21-CG2-HG22} & 106.97 & 105.55 & 1.42 \\ \text{HG21-CG2-CD2} & 114.35 & 114.71 & 0.36 \\ \text{HG22-CG2-CD2} & 110.59 & 110.33 & 0.26 \\ \text{CD1-CD2-CE2} & 120.37 & 120.31 & 0.06 \\ \text{CD1-CD2-CE2} & 120.77 & 120.62 & 0.15 \\ \text{CD2-CD1-CE1} & 120.77 & 120.62 & 0.15 \\ \text{CD2-CE2-HE2} & 120.70 & 119.80 & 0.89 \\ \text{CD2-CE2-HE2} & 120.70 & 119.80 & 0.89 \\ \text{CD2-CE2-HE2} & 18.99 & 119.31 & 0.32 \\ \text{CE1-CH1-HH1} & 119.82 & 120.08 & 0.26 \\ \text{CE1-CH1-CH2} & 120.47 & 120.28 & 0.18 \\ \text{HE1-CE1-CH1} & 120.55 & 120.29 & 0.25 \\ \text{CE2-CH2-CH1} & 119.80 & 120.12 & 0.32 \\ \text{HE2-CE2-CH2} & 119.96 & 119.59 & 0.07 \\ \text{HH1-CH1-CH2} & 119.71 & 119.63 & 0.08 \\ \text{C-NT-HNT} & 115.74 & 119.04 & 3.31 \\ \text{C-NT-CAT} & 119.11 & 122.25 & 3.14 \\ \text{O-C-NT} & 123.13 & 120.69 & 2.44 \\ \end{array}$		CB-CG1-CD1	102.00	104.94	1 32	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-11021 111.12 110.43 108.77 1.65 $22-HG22$ 102.81 104.01 1.19 $B-CG1$ 108.93 106.83 2.10 $B-CG2$ 108.42 106.71 1.71 $2B-CG2$ 104.47 103.47 1.01 $D1-CD2$ 109.97 109.06 0.91 $D1-CE1$ 129.25 130.23 0.98 $G1-HG12$ 107.16 106.00 1.16 $CG1-CD1$ 110.12 109.87 0.25 $CG1-CD1$ 113.27 114.68 1.41 $D2-CE2$ 129.22 130.59 1.37 $G2-HG22$ 106.97 105.55 1.42 $CG2-CD2$ 114.35 114.71 0.36 $CG2-CD2$ 110.59 110.33 0.26 $D2-CE2$ 120.37 120.31 0.06 $E1-HE1$ 120.90 119.95 0.95 $E1-CH1$ 118.85 119.17 0.32 $D1-CE1$ 120.77 120.62 0.15 $E2-HE2$ 120.70 119.80 0.89 $E2-CH2$ 118.99 119.31 0.32 $H1-HH1$ 119.82 120.08 0.26 $H1-CH2$ 120.47 120.28 0.18 $E1-CH1$ 120.55 120.29 0.25 $H2-HH2$ 119.66 119.59 0.07	$\begin{array}{c} \text{CB-CG2-HG22} & 110.43 & 108.77 & 1.65 \\ \text{CB-CG2-HG22} & 102.81 & 104.01 & 1.19 \\ \text{HB-CB-CG1} & 108.93 & 106.83 & 2.10 \\ \text{HB-CB-CG2} & 108.42 & 106.71 & 1.71 \\ \text{CG1-CB-CG2} & 104.47 & 103.47 & 1.01 \\ \text{CG1-CD1-CD2} & 109.97 & 109.06 & 0.91 \\ \text{CG1-CD1-CE1} & 129.25 & 130.23 & 0.98 \\ \text{HG11-CG1-HG12} & 107.16 & 106.00 & 1.16 \\ \text{HG11-CG1-CD1} & 110.12 & 109.87 & 0.25 \\ \text{HG12-CG1-CD1} & 113.27 & 114.68 & 1.41 \\ \text{CG2-CD2-CD1} & 110.40 & 109.00 & 1.41 \\ \text{CG2-CD2-CE2} & 129.22 & 130.59 & 1.37 \\ \text{HG21-CG2-HG22} & 106.97 & 105.55 & 1.42 \\ \text{HG21-CG2-CD2} & 114.35 & 114.71 & 0.36 \\ \text{HG22-CG2-CD2} & 114.35 & 114.71 & 0.36 \\ \text{HG22-CG2-CD2} & 110.59 & 110.33 & 0.26 \\ \text{CD1-CD2-CE2} & 120.37 & 120.31 & 0.06 \\ \text{CD1-CE1-HE1} & 120.90 & 119.95 & 0.95 \\ \text{CD1-CE1-CH1} & 118.85 & 119.17 & 0.32 \\ \text{CD2-CD2-CE2-HE2} & 120.77 & 120.62 & 0.15 \\ \text{CD2-CE2-HE2} & 120.70 & 119.80 & 0.89 \\ \text{CD2-CE2-CH2} & 118.99 & 119.31 & 0.32 \\ \text{CE1-CH1-HH1} & 19.82 & 120.08 & 0.26 \\ \text{CE1-CH1-CH1} & 120.25 & 120.88 & 0.63 \\ \text{CE2-CH2-CH1} & 120.55 & 120.29 & 0.25 \\ \text{CE2-CH2-CH1} & 19.80 & 120.12 & 0.32 \\ \text{HE1-CE1-CH1} & 19.80 & 120.12 & 0.32 \\ \text{HE1-CE1-CH1} & 119.80 & 120.12 & 0.32 \\ \text{HE1-CE1-CH1} & 119.71 & 119.63 & 0.08 \\ \text{C-NT-HNT} & 115.74 & 119.04 & 3.31 \\ \text{C-NT-CAT} & 119.11 & 122.25 & 3.14 \\ \text{O-CNT} & 123.13 & 120.69 & 2.44 \\ \end{array}$		CB-CC2-HC21	102.52 111 79	113 44	1.52 1.72	
$\begin{array}{c} \text{CB-CG2-CD2} & 110.43 & 100.41 & 1.00 \\ \text{CB-CG2-CD2} & 102.81 & 104.01 & 1.19 \\ \text{HB-CB-CG1} & 108.93 & 106.83 & 2.10 \\ \text{HB-CB-CG2} & 108.42 & 106.71 & 1.71 \\ \text{CG1-CB-CG2} & 104.47 & 103.47 & 1.01 \\ \text{CG1-CD1-CD2} & 109.97 & 109.06 & 0.91 \\ \text{CG1-CD1-CE1} & 129.25 & 130.23 & 0.98 \\ \text{HG11-CG1-HG12} & 107.16 & 106.00 & 1.16 \\ \text{HG11-CG1-HG12} & 107.16 & 106.00 & 1.16 \\ \text{HG11-CG1-CD1} & 110.12 & 109.87 & 0.25 \\ \text{HG12-CG1-CD1} & 113.27 & 114.68 & 1.41 \\ \text{CG2-CD2-CD1} & 110.40 & 109.00 & 1.41 \\ \text{CG2-CD2-CE2} & 129.22 & 130.59 & 1.35 \\ \text{HG21-CG2-HG22} & 106.97 & 105.55 & 1.42 \\ \text{HG21-CG2-CD2} & 114.35 & 114.71 & 0.36 \\ \text{HG22-CG2-CD2} & 110.59 & 110.33 & 0.26 \\ \text{CD1-CD2-CE2} & 120.37 & 120.31 & 0.06 \\ \text{CD1-CE1-HE1} & 120.90 & 119.95 & 0.95 \\ \text{CD1-CE1-CH1} & 118.85 & 119.17 & 0.32 \\ \text{CD2-CE2-HE2} & 120.70 & 119.80 & 0.88 \\ \text{CD2-CE2-HE2} & 120.70 & 119.80 & 0.88 \\ \text{CD2-CE2-CH2} & 118.99 & 119.31 & 0.32 \\ \text{CE1-CH1-HH1} & 119.82 & 120.08 & 0.26 \\ \text{CE1-CH1-CH2} & 120.47 & 120.28 & 0.18 \\ \text{HE1-CE1-CH1} & 120.25 & 120.88 & 0.65 \\ \text{CE2-CH2-CH1} & 120.55 & 120.29 & 0.25 \\ \end{array}$	22-11322 110.45 100.47 100.47 $32-CD2$ 102.81 104.01 1.19 $B-CG1$ 108.93 106.83 2.10 $B-CG2$ 108.42 106.71 1.71 $2B-CG2$ 104.47 103.47 1.01 $D1-CD2$ 109.97 109.06 0.91 $D1-CE1$ 129.25 130.23 0.98 $G1-HG12$ 107.16 106.00 1.16 $2G1-CD1$ 110.12 109.87 0.25 $2G1-CD1$ 110.40 109.00 1.41 $D2-CE2$ 129.22 130.59 1.37 $G2-HG22$ 106.97 105.55 1.42 $2G2-CD2$ 114.35 114.71 0.36 $2G2-CD2$ 110.59 110.33 0.26 $D2-CE2$ 120.37 120.31 0.06 $E1-HE1$ 120.90 119.95 0.95 $E1-CH1$ 118.85 119.17 0.32 $D1-CE1$ 120.77 120.62 0.15 $E2-HE2$ 120.70 119.80 0.89 $E2-CH2$ 118.99 119.31 0.32 $H1-HH1$ 119.82 120.08 0.63 $H2-CH1$ 120.55 120.29 0.25 $H2-HH2$ 119.66 119.59 0.07	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CB-CG2-HG22	110.43	108.44	1.72	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CB CC2 CD2	102.81	104.01	1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		HB CB CG1	102.01	104.01	1.19 2.10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		HB CB CG2	108.33	106.33	$\frac{2.10}{1.71}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CC1 CB CC2	104.47	100.71 103.47	1.71 1.01	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CC1 CD1 CD2	109.97	100.47	0.01	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CG1-CD1-CE1	190.97	130.23	0.91	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		HG11-CG1-HG12	107.16	106.00	1 16	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		HG11-CG1-CD1	110.12	100.00	0.25	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		HG12-CG1-CD1	113.12	114 68	1 41	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CG2-CD2-CD1	110.21	109.00	1.41 1 41	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$CG_2 CD_2 CD_1$ $CG_2 CD_2 CE_2$	120.20	130 59	1.41 1.37	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		HG21_CG2_HG22	106.97	105.55	1.01	
HG21-CG2-CD2 114.55 114.11 0.30 HG22-CG2-CD2 110.59 110.33 0.26 CD1-CD2-CE2 120.37 120.31 0.06 CD1-CE1-HE1 120.90 119.95 0.95 CD1-CE1-CH1 118.85 119.17 0.32 CD2-CD1-CE1 120.77 120.62 0.15 CD2-CE2-HE2 120.70 119.80 0.89 CD2-CE2-CH2 118.99 119.31 0.32 CE1-CH1-HH1 119.82 120.08 0.26 CE1-CH1-CH2 120.47 120.28 0.18 HE1-CE1-CH1 120.25 120.88 0.65 CE2-CH2-CH2 120.55 120.29 0.25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		HG21-CG2-CD2	114 35	100.00 114.71	0.36	
CD1-CD2-CE2 120.37 120.31 0.06 CD1-CE1-HE1 120.90 119.95 0.95 CD1-CE1-CH1 118.85 119.17 0.32 CD2-CD1-CE1 120.77 120.62 0.15 CD2-CE2-HE2 120.70 119.80 0.86 CD2-CE2-CE2-CH2 118.99 119.31 0.32 CE1-CH1-HH1 119.82 120.08 0.26 CE1-CH1-CH2 120.47 120.28 0.18 HE1-CE1-CH1 120.25 120.88 0.65 CE2-CH2-CH1 120.55 120.29 0.26	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		HG22-CG2-CD2	110.59	110.33	0.00	
CD1-CE1-HE1 120.90 119.95 0.95 CD1-CE1-CH1 118.85 119.17 0.32 CD2-CD1-CE1 120.77 120.62 0.15 CD2-CE2-HE2 120.70 119.80 0.88 CD2-CE2-CH2 118.99 119.31 0.32 CE1-CH1-HH1 119.82 120.08 0.26 CE1-CH1-CH2 120.47 120.28 0.18 HE1-CE1-CH1 120.25 120.88 0.63 CE2-CH2-CH2 120.55 120.29 0.25	E1-HE1 120.01 119.95 0.95 E1-CH1 118.85 119.17 0.32 D1-CE1 120.77 120.62 0.15 E2-HE2 120.70 119.80 0.89 E2-CH2 118.99 119.31 0.32 H1-HH1 119.82 120.08 0.26 H1-CH2 120.47 120.28 0.18 E1-CH1 120.25 120.88 0.63 H2-CH1 120.55 120.29 0.25 H2-HH2 119.80 120.12 0.32 E2-CH2 120.31 120.88 0.57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CD1-CD2-CE2	120.37	120.31	0.06	
CD1-CE1-CH1 118.85 119.17 0.32 CD2-CD1-CE1 120.77 120.62 0.15 CD2-CE2-HE2 120.70 119.80 0.88 CD2-CE2-CH2 118.99 119.31 0.32 CE1-CH1-HH1 119.82 120.08 0.26 CE1-CH1-CH2 120.47 120.28 0.18 HE1-CE1-CH1 120.25 120.88 0.65 CE2-CH2-CH1 120.55 120.29 0.25	E1-CH1 118.85 119.17 0.32 D1-CE1 120.77 120.62 0.15 E2-HE2 120.70 119.80 0.89 E2-CH2 118.99 119.31 0.32 H1-HH1 119.82 120.08 0.26 H1-CH2 120.47 120.28 0.18 E1-CH1 120.25 120.88 0.63 H2-CH1 120.55 120.29 0.25 H2-HH2 119.80 120.12 0.32 E2-CH2 120.31 120.88 0.57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CD1-CE1-HE1	120.90	119.95	0.95	
CD2-CD1-CE1 120.77 120.62 0.15 CD2-CE2-HE2 120.70 119.80 0.89 CD2-CE2-CH2 118.99 119.31 0.32 CE1-CH1-HH1 119.82 120.08 0.26 CE1-CH1-CH2 120.47 120.28 0.18 HE1-CE1-CH1 120.25 120.88 0.65 CE2-CH2-CH1 120.55 120.29 0.25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CD1-CE1-CH1	118 85	119.00	0.32	
CD2-CE2-HE2 120.70 119.80 0.89 CD2-CE2-CH2 118.99 119.31 0.32 CE1-CH1-HH1 119.82 120.08 0.26 CE1-CH1-CH2 120.47 120.28 0.18 HE1-CE1-CH1 120.25 120.88 0.65 CE2-CH2-CH1 120.55 120.29 0.25	E1 CH1 120.71 120.82 0.13 E2-HE2 120.70 119.80 0.89 E2-CH2 118.99 119.31 0.32 H1-HH1 119.82 120.08 0.26 H1-CH2 120.47 120.28 0.18 E1-CH1 120.25 120.88 0.63 H2-CH1 120.55 120.29 0.25 H2-HH2 119.80 120.12 0.32 E2-CH2 120.31 120.88 0.57 H2-HH2 119.66 119.59 0.07	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CD2-CD1-CE1	120.77	120.62	0.02	
CD2-CE2-CH2 118.99 119.31 0.32 CE1-CH1-HH1 119.82 120.08 0.26 CE1-CH1-CH2 120.47 120.28 0.18 HE1-CE1-CH1 120.25 120.88 0.65 CE2-CH2-CH1 120.55 120.29 0.25	E2-CH2 118.99 119.31 0.32 H1-HH1 119.82 120.08 0.26 H1-CH2 120.47 120.28 0.18 E1-CH1 120.25 120.88 0.63 H2-CH1 120.55 120.29 0.25 H2-HH2 119.80 120.12 0.32 E2-CH2 120.31 120.88 0.57 H2-HH2 119.66 119.59 0.07	CD2-CE2-CH2 118.99 119.31 0.32 CE1-CH1-HH1 119.82 120.08 0.26 CE1-CH1-CH2 120.47 120.28 0.18 HE1-CE1-CH1 120.25 120.88 0.63 CE2-CH2-CH1 120.55 120.29 0.25 CE2-CH2-CH1 120.31 120.88 0.57 CE1-CH2-CH2 120.31 120.88 0.57 CH1-CH2-HH2 119.66 119.59 0.07 HH1-CH1-CH2 119.71 119.63 0.08 C-NT-HNT 115.74 119.04 3.31 C-NT-CAT 119.11 122.25 3.14 O-C-NT 123.13 120.69 2.44		CD2-CE2-HE2	120.71 120.70	119.80	0.10	
CE1-CH1-HH1 119.82 120.08 0.26 CE1-CH1-CH2 120.47 120.28 0.18 HE1-CE1-CH1 120.25 120.88 0.65 CE2-CH2-CH1 120.55 120.29 0.25	H12 H10.07 H10.01 0.02 H1-HH1 119.82 120.08 0.26 H1-CH2 120.47 120.28 0.18 E1-CH1 120.25 120.88 0.63 H2-CH1 120.55 120.29 0.25 H2-HH2 119.80 120.12 0.32 E2-CH2 120.31 120.88 0.57 H2-HH2 119.66 119.59 0.07	CE1-CH1-HH1 119.82 120.08 0.26 CE1-CH1-CH2 120.47 120.28 0.18 HE1-CE1-CH1 120.25 120.88 0.63 CE2-CH2-CH1 120.55 120.29 0.25 CE2-CH2-HH2 119.80 120.12 0.32 HE2-CE2-CH2 120.31 120.88 0.57 CH1-CH2-HH2 119.66 119.59 0.07 HH1-CH1-CH2 119.71 119.63 0.08 C-NT-HNT 115.74 119.04 3.31 C-NT-CAT 119.11 122.25 3.14 O-C-NT 123.13 120.69 2.44		CD2-CE2-CH2	118 99	119.30	0.32	
CE1-CH1-CH2 120.02 120.08 0.20 CE1-CH1-CH2 120.47 120.28 0.18 HE1-CE1-CH1 120.25 120.88 0.65 CE2-CH2-CH1 120.55 120.29 0.25	H1 H11 110.02 120.00 0.20 H1-CH2 120.47 120.28 0.18 E1-CH1 120.25 120.88 0.63 H2-CH1 120.55 120.29 0.25 H2-HH2 119.80 120.12 0.32 E2-CH2 120.31 120.88 0.57 H2-HH2 119.66 119.59 0.07	CE1-CH1-CH2 120.47 120.28 0.18 HE1-CE1-CH1 120.25 120.88 0.63 CE2-CH2-CH1 120.55 120.29 0.25 CE2-CH2-CH2 119.80 120.12 0.32 HE2-CE2-CH2 120.31 120.88 0.57 CH1-CH2-HH2 119.66 119.59 0.07 HH1-CH1-CH2 119.71 119.63 0.08 C-NT-HNT 115.74 119.04 3.31 C-NT-CAT 119.11 122.25 3.14 O-C-NT 123.13 120.69 2.44		CE1-CH1-HH1	110.00	120.08	0.02	
HE1-CE1-CH1 120.25 120.88 0.65 CE2-CH2-CH1 120.55 120.29 0.25	H1 CH2 120.41 120.20 0.10 E1-CH1 120.25 120.88 0.63 H2-CH1 120.55 120.29 0.25 H2-HH2 119.80 120.12 0.32 E2-CH2 120.31 120.88 0.57 H2-HH2 119.66 119.59 0.07	HE1-CE1-CH1 120.25 120.88 0.63 CE2-CH2-CH1 120.55 120.29 0.25 CE2-CH2-HH2 119.80 120.12 0.32 HE2-CE2-CH2 120.31 120.88 0.57 CH1-CH2-HH2 119.66 119.59 0.07 HH1-CH1-CH2 119.71 119.63 0.08 C-NT-HNT 115.74 119.04 3.31 C-NT-CAT 119.11 122.25 3.14 O-C-NT 123.13 120.69 2.44		CE1-CH1-CH2	120.47	120.00	0.20	
CE2-CH2-CH1 120.55 120.29 0.25	H1 CH1 120.20 120.30 0.00 H2-CH1 120.55 120.29 0.25 H2-HH2 119.80 120.12 0.32 E2-CH2 120.31 120.88 0.57 H2-HH2 119.66 119.59 0.07	CE2-CH2-CH1 120.55 120.20 0.25 CE2-CH2-CH2 119.80 120.12 0.32 HE2-CE2-CH2 120.31 120.88 0.57 CH1-CH2-HH2 119.66 119.59 0.07 HH1-CH1-CH2 119.71 119.63 0.08 C-NT-HNT 115.74 119.04 3.31 C-NT-CAT 119.11 122.25 3.14 O-C-NT 123.13 120.69 2.44		HE1-CE1-CH1	120.11 120.25	120.20	0.10	
	H2-HH2 119.80 120.12 0.32 H2-HH2 119.80 120.12 0.32 E2-CH2 120.31 120.88 0.57 H2-HH2 119.66 119.59 0.07	CE2-CH2-HH2 119.80 120.12 0.32 HE2-CE2-CH2 120.31 120.88 0.57 CH1-CH2-HH2 119.66 119.59 0.07 HH1-CH1-CH2 119.71 119.63 0.08 C-NT-HNT 115.74 119.04 3.31 C-NT-CAT 119.11 122.25 3.14 O-C-NT 123.13 120.69 2.44		CE2-CH2-CH1	120.20 120.55	120.00 120.29	0.05 0.25	
CE2-CH2-HH2 119 80 120 12 0 32	E2-CH2 120.31 120.88 0.57 H2-HH2 119.66 119.59 0.07	HE2-CE2-CH2 120.31 120.88 0.57 CH1-CH2-HH2 119.66 119.59 0.07 HH1-CH1-CH2 119.71 119.63 0.08 C-NT-HNT 115.74 119.04 3.31 C-NT-CAT 119.11 122.25 3.14 O-C-NT 123.13 120.69 2.44		СЕ2-СН2-НН2	119.80	120.29 120.12	0.20	
HE2-CE2-CH2 120.31 120.88 0.55	H2-HH2 119.66 119.59 0.07	CH1-CH2-HH2 119.66 119.59 0.07 HH1-CH1-CH2 119.71 119.63 0.08 C-NT-HNT 115.74 119.04 3.31 C-NT-CAT 119.11 122.25 3.14 O-C-NT 123.13 120.69 2.44		HE2-CE2-CH2	120.31	120.88	0.52 0.57	
CH1-CH2-HH2 119.66 119.59 0.05		HH1-CH1-CH2 119.71 119.63 0.08 C-NT-HNT 115.74 119.04 3.31 C-NT-CAT 119.11 122.25 3.14 O-C-NT 123.13 120.69 2.44		CH1-CH2-HH2	119.66	119 59	0.07	
HH1-CH1-CH2 119.71 119.63 0.09	H1-CH2 119 71 119 63 0.08	C-NT-HNT 115.74 119.04 3.31 C-NT-CAT 119.11 122.25 3.14 O-C-NT 123.13 120.69 2.44		HH1-CH1-CH2	119.00	119.63	0.01	
C-NT-HNT 115 74 119.00 9.00	-HNT 115.74 119.04 3.31	C-NT-CAT 119.11 122.25 3.14 O-C-NT 123.13 120.69 2.44		C-NT-HNT	115 74	119.04	3.31	
		O-C-NT 123 13 120 60 2 44		C-NT-CAT	119 11	122.25	3.01	
C-NT-CAT 119.11 122.25 3.14	F-CAT 119.11 122.25 3.14			O-C-NT	123.13	120.69	2.44	
C NT C AT 110.11 122.25 2.17	°CAT 110.11 199.9≍ 9.14			O-NI-UAI O-C-NT	19212	122.20 120.60	0.14 9.44	

Terms	QM	CHARMM	Abs. diff.
NT-CAT-HT1	108.57	111.03	2.47
NT-CAT-HT2	108.85	110.62	1.77
NT-CAT-HT3	111.82	110.30	1.52
HNT-NT-CAT	117.98	118.12	0.14
HT1-CAT-HT2	109.46	108.19	1.27
HT1-CAT-HT3	108.48	108.08	0.40
HT2-CAT-HT3	109.63	108.53	1.11
CAY-CY-OY	123.16	120.37	2.79
HY1-CAY-HY2	109.77	108.86	0.91
HY1-CAY-HY3	108.39	109.81	1.41
HY1-CAY-CY	111.99	111.07	0.92
HY2-CAY-HY3	108.51	108.43	0.07
HY2-CAY-CY	108.57	108.80	0.23
HY3-CAY-CY	109.55	109.82	0.26

Figure S388: The PES scan for flexible dihedral corresponding to (2R)-2-(2,3-dihydro-1H-inden-2 -yl)-2-acetamido-N-methylacetamide.

2.107 The small molecule used for bonded terms optimization of (2S)-2-amino-6-[[3-hydroxy-2-methyl-5-(phosphonooxyme thyl)pyridin-4-yl]methylidene amino]hexanoicacid (IT1P)

Figure S389: The energy minimized structure corresponding to 4-[(E)-(ethylimino)methyl]-2,5-dime thylpyridin-3-olate.

Table S787:	The calcula	ted geometrie	c terms of 4-
[(E)-(ethylin	nino)methyl]	-2,5-dimethy	lpyridin-3-ol
ate.			

Terms	QM	CHARMM	Abs. diff.
HD3-CD	1.09	1.11	0.02
CD-HD1	1.09	1.11	0.02
CD-HD2	1.09	1.11	0.02
CD-CE	1.52	1.53	0.01
CE-HE1	1.10	1.12	0.02
CE-HE2	1.10	1.11	0.02
CE-NZ	1.46	1.46	0.00
NZ-C4A	1.29	1.29	0.00
C4A-H4A	1.10	1.10	0.00
C4A-C4	1.46	1.49	0.03
C4-C3	1.41	1.43	0.02
C4-C5	1.42	1.42	0.01
C3-O3	1.35	1.43	0.08
C3-C2	1.41	1.42	0.01
O3-HO3	1.00	0.97	0.03
C2-C2A	1.50	1.49	0.01
C2-N1	1.34	1.32	0.02
C2A-H2A1	1.09	1.11	0.01
C2A-H2A2	1.09	1.11	0.02
C2A-H2A3	1.09	1.11	0.01
N1-C6	1.35	1.32	0.03
C6-H6	1.09	1.08	0.01
C6-C5	1.39	1.40	0.01
C5-C5A	1.51	1.52	0.01
C5A-H5A1	1.10	1.11	0.02
C5A-H5A2	1.09	1.11	0.02
C5A-H5A3	1.09	1.11	0.02
HD3-CD-HD1	108.53	108.54	0.01
HD3-CD-HD2	108.65	108.65	0.00

Terms	QM	CHARMM	Abs. diff.
HD3-CD-CE	110.49	110.63	0.14
CD-CE-HE1	110.65	108.19	2.46
CD-CE-HE2	110.00	109.58	0.42
CD-CE-NZ	109.85	111.50	1.65
HD1-CD-HD2	108.38	108.21	0.16
HD1-CD-CE	110.38	110.27	0.11
HD2-CD-CE	110.35	110.48	0.13
CE-NZ-C4A	118.01	116.19	1.83
HE1-CE-HE2	107.80	108.41	0.61
HE1-CE-NZ	110.98	111.29	0.31
HE2-CE-NZ	107.50	107.82	0.32
NZ-C4A-H4A	120.26	119.97	0.29
NZ-C4A-C4	121.94	122.03	0.09
C4A-C4-C3	120.78	124.19	3.41
C4A-C4-C5	121.18	117.26	3.91
H4A-C4A-C4	117.80	118.00	0.20
C4-C3-O3	123.37	122.85	0.52
C4-C3-C2	119.64	117.55	2.09
C4-C5-C6	117.53	117.88	0.36
C4-C5-C5A	122.59	124.29	1.71
C3-C4-C5	118.05	118.54	0.49
С3-О3-НОЗ	106.61	106.16	0.45
C3-C2-C2A	119.59	120.66	1.07
C3-C2-N1	121.76	121.97	0.22
O3-C3-C2	116.98	119.59	2.61
C2-C2A-H2A1	110.85	108.60	2.25
C2-C2A-H2A2	108.88	109.47	0.58
C2-C2A-H2A3	110.85	108.55	2.30
C2-N1-C6	118.33	121.38	3.05
C2A-C2-N1	118.65	117.37	1.28
H2A1-C2A-H2A2	109.66	110.03	0.36
H2A1-C2A-H2A3	106.91	110.14	3.23
H2A2-C2A-H2A3	109.66	110.02	0.36
N1-C6-H6	115.44	117.51	2.07
N1-C6-C5	124.70	122.67	2.03
C6-C5-C5A	119.89	117.82	2.07
H6-C6-C5	119.86	119.82	0.03
C5-C5A-H5A1	112.02	109.28	2.73
C5-C5A-H5A2	112.01	109.12	2.89
C5-C5A-H5A3	109.73	110.37	0.64
H5A1-C5A-H5A2	107.77	110.18	2.41
H5A1-C5A-H5A3	107.55	108.80	1.25
H5A2-C5A-H5A3	107.56	109.08	1.52

2.108 The small molecule used for bonded terms optimization of 3-iodo-tyrosine (IYR)

Terms	QM	CHARMM	Abs. diff.
CG-CD1-CE1	121.05	120.69	0.36
CG-CD2-HD2	119.48	119.72	0.24
CG-CD2-CE2	121.01	120.18	0.82
CD1-CG-CD2	118.43	119.47	1.04
CD1-CE1-IE1	119.68	117.64	2.04
CD1-CE1-CZ	119.65	119.49	0.17
HD1-CD1-CE1	119.56	119.96	0.39
CD2-CE2-HE2	121.91	120.18	1.73
CD2-CE2-CZ	120.19	120.27	0.08
HD2-CD2-CE2	119.52	120.10	0.59
CE1-CZ-CE2	119.66	119.90	0.24
CE1-CZ-OZ	124.78	121.55	3.22
IE1-CE1-CZ	120.67	122.87	2.21
CE2-CZ-OZ	115.56	118.55	2.99
HE2-CE2-CZ	117.90	119.55	1.65
CZ-OZ-HZ	112.09	106.35	5.74

Figure S390: The energy minimized structure corresponding to 4-ethyl-2-iodophenol.

Table S788: The calculated geometric terms of 4-ethyl-2-iodophenol.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.11	1.11	0.01
HA2-CA	1.11	1.11	0.01
CA-HA	1.11	1.11	0.01
CA-CB	1.57	1.53	0.03
CB-HB1	1.11	1.11	0.01
CB-HB2	1.11	1.11	0.01
CB-CG	1.53	1.50	0.03
CG-CD1	1.43	1.40	0.02
CG-CD2	1.43	1.40	0.03
CD1-HD1	1.09	1.08	0.02
CD1-CE1	1.43	1.40	0.03
CD2-HD2	1.10	1.08	0.02
CD2-CE2	1.42	1.40	0.01
CE1-IE1	2.16	2.13	0.03
CE1-CZ	1.43	1.41	0.02
CE2-HE2	1.09	1.08	0.01
CE2-CZ	1.42	1.40	0.03
CZ-OZ	1.42	1.41	0.01
OZ-HZ	0.99	0.96	0.03
HA3-CA-HA2	108.57	108.09	0.49
HA3-CA-HA	108.02	108.28	0.27
HA3-CA-CB	110.28	110.91	0.62
HA2-CA-HA	108.61	108.14	0.47
HA2-CA-CB	111.13	110.34	0.79
CA-CB-HB1	109.37	110.68	1.31
CA-CB-HB2	109.41	110.64	1.22
CA-CB-CG	111.65	109.53	2.12
HA-CA-CB	110.15	110.98	0.83
CB-CG-CD1	120.56	120.02	0.54
CB-CG-CD2	120.98	120.50	0.49
HB1-CB-HB2	107.39	108.26	0.86
HB1-CB-CG	109.37	108.87	0.50
HB2-CB-CG	109.54	108.82	0.72
CG-CD1-HD1	119.39	119.35	0.03

2.109 The small molecule used for bonded terms optimization of S-(pyridin-3-ylcarbonyl)-L-cy steine (JJJ)

Terms	QM	CHARMM	Abs. diff.
HB2-CB-SG	108.23	109.65	1.42
SG-C7-O7	122.16	122.13	0.03
SG-C7-C3	115.97	116.19	0.22
C7-C3-C2	123.27	123.89	0.62
C7-C3-C4	118.02	119.25	1.23
O7-C7-C3	121.85	121.63	0.22
C3-C2-H2	120.92	120.15	0.78
C3-C2-N1	123.41	122.74	0.67
C3-C4-H4	119.46	119.97	0.51
C3-C4-C5	118.34	119.85	1.51
C2-C3-C4	118.70	116.83	1.87
C2-N1-C6	117.09	120.35	3.27
H2-C2-N1	115.66	117.12	1.46
C4-C5-H5	121.04	121.11	0.07
C4-C5-C6	118.78	118.33	0.46
H4-C4-C5	122.20	120.18	2.02
N1-C6-C5	123.66	121.90	1.76
N1-C6-H6	115.72	117.69	1.97
C5-C6-H6	120.61	120.41	0.20
H5-C5-C6	120.17	120.56	0.39

Figure S391: The energy minimized structure corresponding to (ethylsulfanyl)(pyridin-3-yl)metha none.

Table S789:	The calculated	geometric	terms of	(et
hylsulfanyl)((pyridin-3-yl)m	ethanone.		

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.53	0.01
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SG	1.82	1.82	0.00
SG-C7	1.78	1.78	0.00
C7-O7	1.23	1.23	0.00
C7-C3	1.49	1.50	0.01
C3-C2	1.40	1.41	0.01
C3-C4	1.40	1.41	0.01
C2-H2	1.09	1.08	0.01
C2-N1	1.34	1.33	0.01
C4-H4	1.09	1.08	0.01
C4-C5	1.39	1.40	0.01
N1-C6	1.34	1.33	0.01
C5-H5	1.09	1.08	0.01
C5-C6	1.40	1.40	0.01
C6-H6	1.09	1.08	0.01
HA3-CA-HA2	108.06	108.41	0.35
HA3-CA-HA	108.12	108.37	0.26
HA3-CA-CB	109.43	110.40	0.97
HA2-CA-HA	108.35	108.38	0.03
HA2-CA-CB	111.40	110.61	0.79
CA-CB-HB1	111.51	108.84	2.68
CA-CB-HB2	111.50	108.66	2.84
CA-CB-SG	109.45	113.14	3.69
HA-CA-CB	111.36	110.58	0.78
CB-SG-C7	98.20	97.29	0.91
HB1-CB-HB2	107.69	106.81	0.89
HB1-CB-SG	108.34	109.55	1.21

Figure S392: The PES scan for flexible dihedrals corresponding to (ethylsulfanyl)(pyridin-3-yl)met hanone.

2.110 The small molecule used for bonded terms optimization of N-6-crotonyl-L-lysine (KCR)

Terms	QM	CHARMM	Abs. diff.
CY-CH3-HH33	111.54	112.96	1.42
HY-CY-CH3	118.04	117.11	0.93
HH31-CH3-HH32	106.85	107.31	0.47
HH31-CH3-HH33	108.36	107.45	0.91
НН32-СН3-НН33	108.38	107.47	0.91

Figure S393: The energy minimized structure corresponding to (2E)-N-methylbut-2-enamide.

Table	S790:	The	calculated	geometric	terms	\mathbf{of}
(2E)-I	N-methy	ylbut-	2-enamide.			

Terms	QM	CHARMM	Abs. diff.
H-CE	1.09	1.11	0.02
CE-HE1	1.09	1.11	0.02
CE-HE2	1.10	1.11	0.02
CE-NZ	1.45	1.44	0.01
NZ-HZ	1.01	0.99	0.02
NZ-CH	1.37	1.35	0.02
CH-OH	1.24	1.23	0.01
CH-CX	1.49	1.49	0.00
CX-HX	1.09	1.10	0.01
CX-CY	1.34	1.35	0.01
CY-HY	1.09	1.10	0.01
CY-CH3	1.49	1.51	0.01
CH3-HH31	1.10	1.11	0.02
CH3-HH32	1.10	1.11	0.02
CH3-HH33	1.09	1.11	0.02
H-CE-HE1	109.62	108.45	1.17
H-CE-HE2	109.27	108.47	0.80
H-CE-NZ	109.32	110.63	1.32
CE-NZ-HZ	118.70	117.17	1.53
CE-NZ-CH	120.89	120.95	0.06
HE1-CE-HE2	108.39	108.03	0.36
HE1-CE-NZ	108.04	110.63	2.59
HE2-CE-NZ	112.17	110.55	1.62
NZ-CH-OH	122.22	120.88	1.34
NZ-CH-CX	114.43	116.55	2.13
HZ-NZ-CH	118.74	121.89	3.15
CH-CX-HX	118.94	117.60	1.35
CH-CX-CY	120.37	124.83	4.46
OH-CH-CX	123.34	122.57	0.77
CX-CY-HY	117.00	118.28	1.28
CX-CY-CH3	124.96	124.61	0.35
HX-CX-CY	120.69	117.57	3.12
CY-CH3-HH31	110.76	110.68	0.07
CY-CH3-HH32	110.80	110.74	0.06

2.111 The small molecule used for bonded terms optimization of lysineNZ-carboxylicacid (KCX)

001	HE1HE2	HG2	51 HA2	jA
002	ни нв	2HD1	HB1	HA3

Figure S394:	The energy	minimized	$\operatorname{structure}$	cor-
responding to	o pentylcarb	amicacid.		

Table S791: The calculated geometric terms of pe ntyl carbamicacid.

-

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.01
HA2-CA	1.10	1.11	0.02
CA-HA	1.10	1.11	0.02
CA-CB	1.53	1.53	0.00
CB-HB1	1.10	1.11	0.02
CB-HB2	1.10	1.11	0.02
CB-CG	1.53	1.54	0.01
CG-HG1	1.10	1.11	0.01
CG-HG2	1.10	1.11	0.01
CG-CD	1.53	1.54	0.01
CD-HD1	1.10	1.11	0.02
CD-HD2	1.10	1.11	0.01
CD-CE	1.53	1.53	0.00
CE-HE1	1.10	1.11	0.01
CE-HE2	1.09	1.12	0.02
CE-NZ	1.45	1.43	0.02
NZ-HZ	1.02	1.00	0.02
NZ-CX	1.46	1.35	0.11
CX-OQ1	1.27	1.25	0.02
CX-OQ2	1.27	1.25	0.02
HA3-CA-HA2	107.91	108.54	0.64
HA3-CA-HA	107.90	108.74	0.84
HA3-CA-CB	111.79	110.74	1.05
HA2-CA-HA	107.66	108.29	0.63
HA2-CA-CB	110.78	110.11	0.67
CA-CB-HB1	109.65	109.41	0.24
CA-CB-HB2	109.59	109.23	0.36
CA-CB-CG	113.03	113.29	0.27
HA-CA-CB	110.65	110.35	0.30
CB-CG-HG1	109.10	109.44	0.34
CB-CG-HG2	108.99	109.12	0.13
CB-CG-CD	113.56	112.71	0.85
HB1-CB-HB2	106.43	107.37	0.93

Terms	QM	CHARMM	Abs. diff.
HB1-CB-CG	108.82	108.70	0.12
HB2-CB-CG	109.11	108.67	0.44
CG-CD-HD1	110.03	110.25	0.21
CG-CD-HD2	109.56	108.83	0.74
CG-CD-CE	112.86	114.04	1.19
HG1-CG-HG2	106.48	107.70	1.22
HG1-CG-CD	108.77	109.34	0.57
HG2-CG-CD	109.70	108.40	1.30
CD-CE-HE1	109.53	110.16	0.63
CD-CE-HE2	108.93	109.20	0.27
CD-CE-NZ	114.80	111.17	3.63
HD1-CD-HD2	107.56	107.73	0.18
HD1-CD-CE	107.46	107.72	0.25
HD2-CD-CE	109.22	108.07	1.14
CE-NZ-HZ	113.94	118.37	4.43
CE-NZ-CX	117.12	124.45	7.33
HE1-CE-HE2	108.02	107.44	0.58
HE1-CE-NZ	108.57	109.30	0.73
HE2-CE-NZ	106.77	109.49	2.72
NZ-CX-OQ1	115.33	114.62	0.70
NZ-CX-OQ2	114.36	110.80	3.56
HZ-NZ-CX	109.17	115.32	6.15
OQ1-CX-OQ2	130.30	134.57	4.27

Figure S395: The PES scan for flexible dihedral corresponding to pentylcarbamicacid.

Terms QM CHARMM Abs. diff.

2.112 The small molecule used for bonded terms optimization of (2S)-2-amino-6-[(1-hydroxy-1-oxo-propan-2-ylidene)ami no]hexanoicacid (KPI)

Figure S396: The energy minimized structure corresponding to (2E)-2-(methyliminiumyl)propanoat e.

Table S792: The calculated geometric terms of (2E)-2-(methyliminiumyl)propanoate.

Terms	QM	CHARMM	Abs. diff.
HE3-CE	1.10	1.12	0.02
CE-HE1	1.10	1.11	0.01
CE-HE2	1.10	1.11	0.01
CE-NZ	1.46	1.45	0.00
NZ-CX1	1.29	1.31	0.02
CX1-C1	1.52	1.52	0.00
CX1-CX2	1.58	1.54	0.04
C1-H11	1.10	1.11	0.01
C1-H12	1.10	1.11	0.01
C1-H13	1.09	1.11	0.02
CX2-O1	1.24	1.27	0.02
CX2-O2	1.26	1.27	0.01
HE3-CE-HE1	108.18	108.08	0.10
HE3-CE-HE2	106.67	104.63	2.04
HE3-CE-NZ	108.52	115.37	6.85
CE-NZ-CX1	118.77	117.20	1.57
HE1-CE-HE2	108.18	105.11	3.07
HE1-CE-NZ	116.37	112.16	4.20
HE2-CE-NZ	108.52	110.73	2.22
NZ-CX1-C1	125.13	124.54	0.59
NZ-CX1-CX2	118.99	121.18	2.19
CX1-C1-H11	111.69	111.26	0.43
CX1-C1-H12	111.69	109.78	1.90
CX1-C1-H13	106.74	111.95	5.21
CX1-CX2-O1	116.01	119.65	3.64
CX1-CX2-O2	113.51	115.57	2.06
C1- $CX1$ - $CX2$	115.88	114.21	1.67
H11-C1-H12	107.47	108.91	1.44
H11-C1-H13	109.63	107.26	2.36
H12-C1-H13	109.62	107.53	2.09
O1-CX2-O2	130.48	124.77	5.71

2.113 The small molecule used for bonded terms optimization of kynurenine (KYN)

Figure S397: The energy minimized structure corresponding to 1-(2-aminophenyl)propan-1-one.

Table S793:	The	calculated	$\operatorname{geometric}$	terms	of	1-
(2-aminophe	nyl)p	oropan-1-or	ıe.			

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.54	0.02
CB-HB1	1.10	1.11	0.01
CB-HB2	1.10	1.11	0.01
CB-CG	1.52	1.51	0.01
CG-OG	1.24	1.23	0.01
CG-CD	1.48	1.50	0.02
CD-CE2	1.42	1.43	0.00
CD-CE1	1.41	1.41	0.00
CE2-NE2	1.38	1.39	0.01
CE2-CZ2	1.41	1.40	0.01
NE2-HE21	1.01	1.00	0.01
NE2-HE22	1.01	1.01	0.01
CE1-HE1	1.09	1.08	0.00
CE1-CZ1	1.39	1.40	0.01
CZ2-HZ2	1.09	1.08	0.01
CZ2-CH	1.39	1.40	0.01
CZ1-HZ1	1.09	1.08	0.00
CZ1-CH	1.40	1.40	0.00
CH-HH	1.09	1.08	0.01
HA3-CA-HA2	108.64	108.30	0.33
HA3-CA-HA	107.57	108.10	0.53
HA3-CA-CB	110.90	110.66	0.23
HA2-CA-HA	108.68	108.37	0.31
HA2-CA-CB	110.08	110.60	0.52
CA-CB-HB1	110.38	108.63	1.74
CA-CB-HB2	110.66	108.90	1.76
CA-CB-CG	112.34	113.34	1.00
HA-CA-CB	110.90	110.71	0.18
CB-CG-OG	118.68	119.09	0.41
CB-CG-CD	119.23	120.30	1.07
HB1-CB-HB2	105.96	108.57	2.61

Terms	QM	CHARMM	Abs. diff.
HB1-CB-CG	108.71	108.63	0.08
HB2-CB-CG	108.56	108.68	0.12
CG-CD-CE2	121.25	121.99	0.74
CG-CD-CE1	119.93	119.67	0.26
OG-CG-CD	122.08	120.60	1.48
CD-CE2-NE2	122.47	123.05	0.58
CD-CE2-CZ2	118.41	119.94	1.52
CD-CE1-HE1	119.37	121.42	2.05
CD-CE1-CZ1	121.98	120.99	0.99
CE2-CD-CE1	118.71	118.32	0.39
CE2-NE2-HE21	115.67	111.90	3.77
CE2-NE2-HE22	115.17	109.65	5.53
CE2-CZ2-HZ2	118.44	120.17	1.73
CE2-CZ2-CH	121.58	120.77	0.80
NE2-CE2-CZ2	118.90	117.01	1.89
HE21-NE2-HE22	116.08	119.99	3.91
CE1-CZ1-HZ1	120.32	120.02	0.30
CE1-CZ1-CH	119.06	120.11	1.05
HE1-CE1-CZ1	118.64	117.59	1.05
CZ2-CH-CZ1	120.22	119.87	0.35
CZ2-CH-HH	119.47	120.01	0.54
HZ2-CZ2-CH	119.97	119.05	0.92
CZ1-CH-HH	120.29	120.12	0.17
HZ1-CZ1-CH	120.60	119.87	0.73

2.114The small molecule 1 used for bonded terms optimization of Penicillamine (LE1)

HG23-CG2-HG22 0.46 108.02 108.470.37HG21-CG2-HG22108.27108.640.53HG11-CG1-HG12 107.98108.51HG11-CG1-HG13 108.60108.500.10HG12-CG1-HG13 108.24108.640.403 – – QM — CHARMM Relative Energy, kcal-mol⁻¹ 2.5 2 1.5

QM

Terms

1

0.5

-200

CHARMM

Abs. diff.

200

Figure S398: The energy minimized structure corresponding to 2-methylpropane-2-thiol.

Table S794: The calculated geometric terms of 2methylpropane-2-thiol.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.01
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.54	0.01
CB-SG3	1.84	1.85	0.01
CB-CG2	1.53	1.53	0.00
CB-CG1	1.53	1.53	0.00
SG3-HG3	1.34	1.32	0.02
CG2-HG23	1.10	1.11	0.01
CG2-HG21	1.09	1.11	0.02
CG2-HG22	1.09	1.11	0.02
CG1-HG11	1.10	1.11	0.01
CG1-HG12	1.09	1.11	0.02
CG1-HG13	1.09	1.11	0.02
HA3-CA-HA2	108.35	108.47	0.12
HA3-CA-HA	108.54	108.48	0.06
HA3-CA-CB	111.10	110.66	0.45
HA2-CA-HA	108.28	108.39	0.11
HA2-CA-CB	109.39	110.18	0.79
CA-CB-SG3	105.57	105.74	0.17
CA-CB-CG2	110.24	108.67	1.56
CA-CB-CG1	110.23	108.63	1.59
HA-CA-CB	111.09	110.59	0.50
CB-SG3-HG3	96.23	94.56	1.67
CB-CG2-HG23	109.74	110.17	0.43
CB-CG2-HG21	110.89	110.56	0.34
CB-CG2-HG22	111.12	110.45	0.66
CB-CG1-HG11	109.84	110.10	0.26
CB-CG1-HG12	111.18	110.47	0.70
CB-CG1-HG13	110.92	110.57	0.35
SG3-CB-CG2	110.12	108.90	1.22
SG3-CB-CG1	110.14	108.88	1.26
CG2-CB-CG1	110.44	115.56	5.12
HG23-CG2-HG21	108.71	108.48	0.23

Figure S399: The PES scan for flexible dihedral corresponding to 2-methylpropane-2-thiol.

-100 0 100 HGP3-SG311-CG301-CG331, °

2.115 The small molecule 2 used for bonded terms optimization of Penicillamine (LE1)

Figure S400: The energy minimized structure corresponding to 2-acetamido-N,3-dimethyl-3-sulfany lbutanamide.

Table S795: The calculated geometric terms of 2-acetamido-N,3-dimethyl-3-sulfanylbutanamide.

Terms	QM	CHARMM	Abs. diff.
N-HN	1.01	0.99	0.02
N-CA	1.46	1.47	0.01
N-CY	1.38	1.34	0.04
CA-HA	1.10	1.08	0.02
CA-CB	1.55	1.55	0.01
CA-C	1.53	1.53	0.00
CB-SG3	1.84	1.86	0.02
CB-CG2	1.53	1.54	0.01
CB-CG1	1.53	1.54	0.01
SG3-HG3	1.34	1.32	0.02
CG2-HG23	1.09	1.11	0.02
CG2-HG21	1.09	1.11	0.02
CG2-HG22	1.10	1.11	0.01
CG1-HG11	1.09	1.11	0.02
CG1-HG12	1.10	1.11	0.01
CG1-HG13	1.09	1.11	0.02
C-O	1.23	1.23	0.00
C-NT	1.37	1.35	0.02
NT-HNT	1.01	0.99	0.02
NT-CAT	1.46	1.44	0.01
CAT-HT1	1.09	1.11	0.02
CAT-HT2	1.09	1.11	0.02
CAT-HT3	1.10	1.11	0.02
CAY-HY1	1.09	1.11	0.02
CAY-HY2	1.09	1.11	0.02
CAY-HY3	1.09	1.11	0.02
CAY-CY	1.51	1.48	0.03
CY-OY	1.23	1.22	0.01
N-CA-HA	109.78	105.87	3.91
N-CA-CB	110.34	111.91	1.57
N-CA-C	110.81	113.61	2.80
N-CY-CAY	115.08	116.52	1.45
N-CY-OY	121.60	122.97	1.37

	OM	CILADMM	Aba diff
	QM 117.06		ADS. CIII.
IIN-IN-OA	116.00	110.00	1.00
CAN CV	110.99	110.09	1.00
CA-N-UY	119.18	120.04 110.50	0.87 5 1 9
CA-CD-5G3	100.32	110.00	0.18
CA-CB-CG2	109.31	108.30	1.02
CA-CB-CGI	112.96	111.92	1.04
CA-C-O	120.58	121.13	0.55
CA-C-NT	115.58	118.15	2.57
HA-CA-CB	107.95	106.24	1.70
HA-CA-C	103.54	103.83	0.28
CB-CA-C	114.12	114.36	0.24
CB-SG3-HG3	93.44	95.29	1.85
CB-CG2-HG23	110.23	110.52	0.30
CB-CG2-HG21	110.82	110.53	0.28
CB-CG2-HG22	111.78	111.26	0.52
CB-CG1-HG11	109.79	109.75	0.04
CB-CG1-HG12	111.13	111.22	0.09
CB-CG1-HG13	110.91	111.13	0.23
SG3-CB-CG2	108.77	105.90	2.88
SG3-CB-CG1	109.94	106.80	3.14
CG2-CB-CG1	110.35	113.27	2.91
HG23-CG2-HG21	108.38	108.42	0.04
HG23-CG2-HG22	106.74	107.66	0.91
HG21-CG2-HG22	108.75	108.34	0.41
HG11-CG1-HG12	107.51	107.90	0.39
HG11-CG1-HG13	108.64	107.60	1.04
HG12-CG1-HG13	108.77	109.12	0.35
C-NT-HNT	115.41	119.70	4.29
C-NT-CAT	118.53	121.47	2.94
O-C-NT	123.48	120.71	2.77
NT-CAT-HT1	108.48	111.04	2.56
NT-CAT-HT2	108.79	110.76	1.97
NT-CAT-HT3	111.80	110.40	1.40
HNT-NT-CAT	117.67	118.35	0.68
HT1-CAT-HT2	109.52	108.21	1.32
HT1-CAT-HT3	108.51	108.05	0.45
HT2-CAT-HT3	109.71	108.29	1.43
CAY-CY-OY	123.33	120.51	2.82
HY1-CAY-HY2	108.49	109.56	1.07
HY1-CAY-HY3	108.37	108.76	0.39
HY1-CAY-CY	109.55	109.67	0.13
HY2-CAY-HY3	109.71	108.73	0.99
HY2-CAY-CY	112.12	111.01	1.10
HY3-CAY-CY	108.54	109.07	0.53

Figure S401: The PES scan for flexible dihedral corresponding to 2-acetamido-N,3-dimethyl-3-sul fanylbutanamide.

2.116 The small molecule 1 used for bonded terms optimization of (4s)-5-fluoro-l-leucine (LEF)

HD23	HD22
9	D2 1021
це	LIB2
	The s
срь-не	12 HB1
	HB2
HD11	

Figure S402: The energy minimized structure corresponding to 1-fluoro-2-methylpropane.

Table S796: The calculated geometric terms of 1-fluoro-2-methylpropane.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-HB1	1.10	1.11	0.02
CB-CG	1.53	1.54	0.01
CG-HG	1.10	1.12	0.02
CG-CD1	1.52	1.52	0.01
CG-CD2	1.53	1.54	0.01
CD1-HD11	1.10	1.08	0.01
CD1-HD12	1.10	1.08	0.01
CD1-F1	1.40	1.37	0.03
CD2-HD21	1.10	1.11	0.01
CD2-HD22	1.09	1.11	0.02
CD2-HD23	1.09	1.11	0.02
HB3-CB-HB2	107.92	108.35	0.42
HB3-CB-HB1	107.74	108.32	0.58
HB3-CB-CG	110.56	110.16	0.41
CB-CG-HG	108.83	108.46	0.37
CB-CG-CD1	109.73	109.93	0.20
CB-CG-CD2	111.81	110.87	0.94
HB2-CB-HB1	108.12	108.67	0.55
HB2-CB-CG	111.67	110.75	0.91
HB1-CB-CG	110.68	110.52	0.16
CG-CD1-HD11	111.51	110.88	0.63
CG-CD1-HD12	110.84	110.78	0.05
CG-CD1-F1	109.96	111.50	1.54
CG-CD2-HD21	110.41	110.52	0.11
CG-CD2-HD22	110.89	110.34	0.55
CG-CD2-HD23	110.71	110.40	0.31
HG-CG-CD1	106.96	108.53	1.57
HG-CG-CD2	108.68	108.40	0.28
CD1-CG-CD2	110.69	110.58	0.11
HD11-CD1-HD12	108.96	107.22	1.74
HD11-CD1-F1	107.69	108.00	0.30
HD12-CD1-F1	107.76	108.31	0.55

Terms	QM	CHARMM	Abs. diff.
HD21-CD2-HD22	107.97	108.60	0.63
HD21-CD2-HD23	108.23	108.52	0.29
HD22-CD2-HD23	108.54	108.41	0.13

Figure S403: The PES scan for flexible dihedral corresponding to 1-fluoro-2-methylpropane.

2.117 The small molecule 2 used for bonded terms optimization of (4s)-5-fluoro-l-leucine (LEF)

Figure S404: The energy minimized structure corresponding to (2S,4S)-2-acetamido-5-fluoro-N,4-di methylpentanamide.

Table S797: The calculated geometric terms of (2S,4S)-2-acetamido-5-fluoro-N,4-dimethylpent anamide.

Terms	QM	CHARMM	Abs. diff.
N-HN	1.01	0.99	0.02
N-CA	1.46	1.46	0.00
N-CY	1.38	1.34	0.04
CA-HA	1.10	1.08	0.01
CA-CB	1.53	1.56	0.03
CA-C	1.53	1.53	0.00
CB-HB1	1.10	1.11	0.02
CB-HB2	1.10	1.11	0.01
CB-CG	1.53	1.55	0.01
CG-HG	1.10	1.12	0.02
CG-CD1	1.52	1.53	0.01
CG-CD2	1.53	1.54	0.01
CD1-HD11	1.10	1.08	0.01
CD1-HD12	1.10	1.08	0.01
CD1-F1	1.40	1.37	0.03
CD2-HD21	1.10	1.11	0.02
CD2-HD22	1.09	1.11	0.02
CD2-HD23	1.09	1.11	0.02
C-O	1.23	1.23	0.00
C-NT	1.37	1.35	0.02
NT-HNT	1.01	0.99	0.02
NT-CAT	1.45	1.44	0.01
CAT-HT1	1.09	1.11	0.02
CAT-HT2	1.09	1.11	0.02
CAT-HT3	1.10	1.11	0.02
CAY-HY1	1.09	1.11	0.02
CAY-HY2	1.09	1.11	0.02
CAY-HY3	1.09	1.11	0.02
CAY-CY	1.51	1.48	0.03
CY-OY	1.23	1.22	0.01
N-CA-HA	109.95	106.95	3.00
N-CA-CB	110.87	111.30	0.44

Terms	QM	CHARMM	Abs. diff.
N-CA-C	112.03	114.97	2.94
N-CY-CAY	115.44	116.55	1.11
N-CY-OY	121.31	122.65	1.34
HN-N-CA	118.05	116.41	1.64
HN-N-CY	118.16	119.05	0.89
CA-N-CY	119.58	124 46	4.88
CA-CB-HB1	106 44	108.09	1.64
CA-CB-HB2	108.75	109.26	0.52
CA-CB-CG	115.05	105.20 115.10	0.05
CA-C-O	120.82	120.02	0.00
CA C NT	120.02 114.72	120.52 117.50	2.87
HA CA CB	110.98	108 78	1.50
	10.20	105.10	0.08
CB CA C	104.14	100.12	0.98
CB CC HC	109.30	109.00	0.03
CB CC CD1	109.07	100.99	0.88
CB-CG-CD1	112.04	109.40	0.82
$UD + UG + UD^2$ $UD + CD + UD^2$	106.00	112.00 107.57	0.01
$\Pi B I - \bigcup B - \Pi B Z$	100.90	107.07	0.08
HBI-UB-UG	109.17	107.90	1.21
HB2-UB-UG	110.18	108.01	1.07
CG-CDI-HDII	110.86	111.03	0.18
CG-CDI-HDI2	111.53	111.22	0.31
CG-CDI-FI	109.59	111.19	1.60
CG-CD2-HD21	110.45	110.61	0.16
CG-CD2-HD22	111.70	110.88	0.82
CG-CD2-HD23	109.94	110.42	0.49
HG-CG-CD1	105.58	107.73	2.16
HG-CG-CD2	108.71	108.18	0.53
CD1-CG-CD2	110.56	109.76	0.80
HD11-CD1-HD12	109.09	107.13	1.96
HD11-CD1-F1	107.91	108.28	0.37
HD12-CD1-F1	107.74	107.82	0.08
HD21-CD2-HD22	108.04	108.52	0.48
HD21-CD2-HD23	108.39	108.38	0.02
HD22-CD2-HD23	108.22	107.94	0.28
C-NT-HNT	115.37	119.51	4.14
C-NT-CAT	119.21	121.96	2.75
O-C-NT	123.73	121.45	2.28
NT-CAT-HT1	108.27	111.08	2.80
NT-CAT-HT2	108.99	110.76	1.78
NT-CAT-HT3	112.00	110.31	1.69
HNT-NT-CAT	117.72	118.08	0.36
HT1-CAT-HT2	109.51	108.06	1.45
HT1-CAT-HT3	108.46	107.96	0.50
HT2-CAT-HT3	109.57	108.57	1.00
CAY-CY-OY	123.15	120.80	2.35
HY1-CAY-HY2	108.30	109.54	1.24
HY1-CAY-HY3	109.57	108.59	0.98
HY1-CAY-CY	112.39	111.07	1.32
HY2-CAY-HY3	108.44	108.63	0.19
HY2-CAY-CY	109.69	110.01	0.32
HY3-CAY-CY	108.37	108.95	0.58

Figure S405: The PES scan for flexible dihedral corresponding to (2S,4S)-2-acetamido-5-fluoro-N,4-dimethylpentanamide.

2.118 The small molecule used for bonded terms optimization of (2S)-2-amino-6-[[3-hydroxy-2-methyl-5-(phosphonooxyme thyl)pyridin-4-yl]methylidene amino]hexanoicacid (LLPP)

Figure S406: The energy minimized structure corresponding to 2,5-dimethyl-4-[(E)-(methylimino)m ethyl]pyridin-3-olate.

Table S798: The calculated geometric terms of 2,5-dimethyl-4-[(E)-(methylimino)methyl]pyridin-3-o late.

Terms	QM	CHARMM	Abs. diff.
HE3-CE	1.09	1.11	0.02
CE-HE1	1.09	1.11	0.02
CE-HE2	1.10	1.12	0.02
CE-NZ	1.45	1.46	0.00
NZ-C4P	1.29	1.29	0.00
C4P-H4P	1.10	1.10	0.00
C4P-C4	1.46	1.49	0.03
C4-C3	1.41	1.43	0.02
C4-C5	1.42	1.42	0.01
C3-O3	1.35	1.43	0.08
C3-C2	1.41	1.41	0.00
O3-HO3	1.00	0.97	0.03
C2-C2P	1.50	1.49	0.01
C2-N1	1.34	1.32	0.01
C2P-H2P1	1.09	1.11	0.02
C2P-H2P2	1.09	1.11	0.02
C2P-H2P3	1.09	1.11	0.01
N1-C6	1.35	1.32	0.02
C6-H6	1.09	1.08	0.01
C6-C5	1.39	1.40	0.01
C5-C5P	1.51	1.51	0.01
C5P-H5P1	1.09	1.11	0.02
C5P-H5P2	1.09	1.11	0.02
C5P-H5P3	1.09	1.11	0.02
HE3-CE-HE1	107.85	105.58	2.27
HE3-CE-HE2	109.23	105.61	3.62
HE3-CE-NZ	108.93	110.89	1.96
CE-NZ-C4P	117.84	116.62	1.22
HE1-CE-HE2	109.22	106.82	2.41

Terms	QM	CHARMM	Abs. diff.
HE1-CE-NZ	108.93	111.74	2.81
HE2-CE-NZ	112.58	115.55	2.97
NZ-C4P-H4P	120.35	120.28	0.07
NZ-C4P-C4	121.89	121.41	0.48
C4P-C4-C3	120.81	124.32	3.51
C4P-C4-C5	121.14	117.65	3.49
H4P-C4P-C4	117.76	118.31	0.55
C4-C3-O3	123.39	122.70	0.69
C4-C3-C2	119.65	118.19	1.46
C4-C5-C6	117.53	118.02	0.49
C4-C5-C5P	122.60	124.07	1.46
C3-C4-C5	118.05	118.03	0.02
С3-О3-НОЗ	106.67	106.22	0.45
C3-C2-C2P	119.59	120.52	0.92
C3-C2-N1	121.76	121.75	0.01
O3-C3-C2	116.96	119.10	2.15
C2-C2P-H2P1	108.89	109.29	0.40
C2-C2P-H2P2	110.85	108.67	2.17
C2-C2P-H2P3	110.85	108.70	2.14
C2-N1-C6	118.32	121.22	2.90
C2P-C2-N1	118.65	117.73	0.92
H2P1-C2P-H2P2	109.66	109.96	0.29
H2P1-C2P-H2P3	109.67	109.94	0.27
H2P2-C2P-H2P3	106.91	110.25	3.34
N1-C6-H6	115.45	117.31	1.86
N1-C6-C5	124.70	122.79	1.91
C6-C5-C5P	119.87	117.90	1.97
H6-C6-C5	119.85	119.90	0.05
C5-C5P-H5P1	112.02	109.06	2.96
C5-C5P-H5P2	112.02	109.25	2.77
C5-C5P-H5P3	109.72	110.38	0.67
H5P1-C5P-H5P2	107.78	110.22	2.44
H5P1-C5P-H5P3	107.55	109.10	1.55
H5P2-C5P-H5P3	107.55	108.82	1.28

Figure S407: The PES scan for flexible dihedral corresponding to 2,5-dimethyl-4-[(E)-(methylimin o)methyl]pyridin-3-olate.

2.119 The small molecule used for bonded terms optimization of vinylglycine (LVG)

Figure S408: The energy minimized structure corresponding to (2S)-2-acetamido-N-methylbut-3-en amide.

Table S799: The calculated geometric terms of (2S)-2-acetamido-N-methylbut-3-enamide.

Terms	QM	CHARMM	Abs. diff.
N-HN	1.02	0.99	0.02
N-CA	1.46	1.46	0.01
N-CY	1.38	1.34	0.04
CA-HA	1.10	1.08	0.01
CA-CB	1.50	1.51	0.01
CA-C	1.53	1.53	0.01
CB-HB	1.09	1.10	0.01
CB-CG	1.34	1.35	0.01
CG-HG1	1.09	1.10	0.02
CG-HG2	1.09	1.10	0.02
C-O	1.23	1.23	0.00
C-NT	1.37	1.35	0.02
NT-HNT	1.01	0.99	0.02
NT-CAT	1.45	1.44	0.01
CAT-HT1	1.09	1.11	0.02
CAT-HT2	1.09	1.11	0.02
CAT-HT3	1.10	1.11	0.02
CAY-HY1	1.09	1.11	0.02
CAY-HY2	1.09	1.11	0.02
CAY-HY3	1.09	1.11	0.02
CAY-CY	1.51	1.48	0.03
CY-OY	1.23	1.22	0.01
N-CA-HA	110.84	107.03	3.81
N-CA-CB	109.11	109.57	0.46
N-CA-C	111.63	115.11	3.47
N-CY-CAY	115.16	116.22	1.06
N-CY-OY	121.49	123.02	1.53
HN-N-CA	116.03	115.02	1.01
HN-N-CY	117.57	117.86	0.29
CA-N-CY	119.34	125.15	5.81
CA-CB-HB	116.33	115.36	0.98
CA-CB-CG	123.03	126.74	3.71
CA-C-O	121.18	120.96	0.22

Terms	QM	CHARMM	Abs. diff.
CA-C-NT	114.26	117.78	3.52
HA-CA-CB	110.50	110.45	0.04
HA-CA-C	105.08	105.61	0.53
CB-CA-C	109.63	108.96	0.67
CB-CG-HG1	121.49	121.29	0.20
CB-CG-HG2	121.48	120.84	0.64
HB-CB-CG	120.62	117.81	2.82
HG1-CG-HG2	117.02	117.85	0.84
C-NT-HNT	115.33	118.73	3.40
C-NT-CAT	118.93	122.27	3.34
O-C-NT	124.00	121.20	2.80
NT-CAT-HT1	108.36	111.27	2.91
NT-CAT-HT2	108.96	110.62	1.66
NT-CAT-HT3	111.94	110.20	1.74
HNT-NT-CAT	117.66	118.26	0.59
HT1-CAT-HT2	109.48	108.23	1.25
HT1-CAT-HT3	108.47	107.97	0.50
HT2-CAT-HT3	109.60	108.46	1.14
CAY-CY-OY	123.35	120.76	2.59
HY1-CAY-HY2	108.42	109.40	0.97
HY1-CAY-HY3	108.45	108.50	0.05
HY1-CAY-CY	109.59	109.97	0.39
HY2-CAY-HY3	109.80	108.89	0.91
HY2-CAY-CY	111.96	110.91	1.06
HY3-CAY-CY	108.56	109.13	0.57

Figure S409: The PES scan for flexible dihedral corresponding to (2S)-2-acetamido-N-methylbut-3-enamide.

2.120 The small molecule used for bonded terms optimization of N''-(2-coenzymeA)-propanoy l-lysine (LYX)

Figure S410: The energy minimized structure corresponding to (2S)-N-methyl-2-(methylsulfanyl)p ropanamide.

Table	S800:	The	$\operatorname{calculated}$	$\operatorname{geometric}$	terms	of
(2S)-N	N-methy	vl-2-(1	${ m nethyl sulfa}$	nyl)propan	amide.	

Terms	QM	CHARMM	Abs. diff.
HE3-CE	1.10	1.11	0.02
CE-HE1	1.09	1.11	0.02
CE-HE2	1.09	1.11	0.02
CE-NZ	1.45	1.45	0.01
NZ-HZ	1.01	0.99	0.02
NZ-C23	1.37	1.35	0.02
C23-O33	1.23	1.23	0.01
C23-C21	1.52	1.51	0.01
C21-H21	1.10	1.11	0.01
C21-C22	1.53	1.55	0.03
C21-S20	1.82	1.83	0.01
C22-H221	1.09	1.11	0.02
C22-H222	1.09	1.11	0.02
C22-H223	1.09	1.11	0.02
S20-C19	1.81	1.82	0.01
C19-H191	1.09	1.11	0.02
C19-H192	1.09	1.11	0.02
C19-H193	1.09	1.11	0.02
HE3-CE-HE1	109.33	108.27	1.06
HE3-CE-HE2	108.43	108.02	0.41
HE3-CE-NZ	112.00	110.90	1.10
CE-NZ-HZ	118.87	118.06	0.81
CE-NZ-C23	120.84	121.42	0.58
HE1-CE-HE2	109.70	108.40	1.30
HE1-CE-NZ	109.27	110.70	1.43
HE2-CE-NZ	108.09	110.46	2.37
NZ-C23-O33	122.61	120.96	1.65
NZ-C23-C21	114.84	116.86	2.02
HZ-NZ-C23	118.82	120.52	1.70
C23- $C21$ - $H21$	110.29	107.12	3.17
C23-C21-C22	109.76	110.13	0.37
C23-C21-S20	110.70	111.30	0.60

Terms	QM	CHARMM	Abs. diff.
O33-C23-C21	122.54	122.18	0.35
C21-C22-H221	110.80	110.16	0.64
C21-C22-H222	109.49	110.30	0.81
C21-C22-H223	109.94	111.31	1.37
C21-S20-C19	100.17	99.30	0.87
H21-C21-C22	109.85	107.52	2.33
H21-C21-S20	107.98	107.93	0.05
C22-C21-S20	108.23	112.60	4.37
H221-C22-H222	109.63	108.07	1.56
H221-C22-H223	108.63	108.38	0.25
H222-C22-H223	108.31	108.53	0.22
S20-C19-H191	111.78	111.27	0.50
S20-C19-H192	111.39	111.42	0.03
S20-C19-H193	106.80	110.55	3.76
H191-C19-H192	109.64	108.25	1.39
H191-C19-H193	108.77	107.29	1.48
H192-C19-H193	108.33	107.89	0.44

Figure S411: The PES scan for flexible dihedrals corresponding to (2S)-N-methyl-2-(methylsulfan yl)propanamide.

Figure S412: The energy minimized structure corresponding to (ethylsulfanyl)methanol.

Table S801: The calculated geometric terms of (et hylsulfanyl)methanol.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.53	0.01
CB-HB1	1.10	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SG	1.82	1.82	0.00
SG-CD	1.79	1.82	0.02
CD-HD1	1.10	1.11	0.01
CD-HD2	1.10	1.11	0.02
CD-OE	1.43	1.42	0.00
OE-HE	0.97	0.96	0.01
HA3-CA-HA2	108.12	108.53	0.42
НАЗ-СА-НА	108.20	108.41	0.21
HA3-CA-CB	109.98	110.56	0.58
HA2-CA-HA	108.30	108.37	0.07
HA2-CA-CB	111.22	110.57	0.65
CA-CB-HB1	110.36	108.87	1.49
CA-CB-HB2	110.84	108.79	2.04
CA-CB-SG	109.88	112.63	2.75
HA-CA-CB	110.93	110.34	0.59
CB-SG-CD	98.61	97.42	1.20
HB1-CB-HB2	108.46	107.05	1.41
HB1-CB-SG	109.17	109.86	0.69
HB2-CB-SG	108.08	109.48	1.40
SG-CD-HD1	109.72	110.56	0.84
SG-CD-HD2	106.29	109.60	3.31
SG-CD-OE	109.43	110.42	0.99
CD-OE-HE	107.17	107.47	0.30
HD1-CD-HD2	108.62	107.97	0.64
HD1-CD-OE	110.90	109.43	1.47
HD2-CD-OE	111.76	108.79	2.96

Figure S413: The PES scan for flexible dihedrals corresponding to (ethylsulfanyl)methanol.

2.122 The small molecule used for bonded terms optimization of 3,3-dimethyl-methioninesulfo xide (M2S)

=

Figure S414: The energy minimized structure corresponding to (R)-(2,2-dimethylpropyl)(methyl)-lambda3-sulfanol.

Table S802: The calculated geometric terms of (R)-	•
(2,2-dimethylpropyl)(methyl)-lambda3-sulfanol.	

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.02
HA2-CA	1.10	1.11	0.01
CA-HA	1.10	1.11	0.01
CA-CB	1.53	1.54	0.01
CB-CG1	1.53	1.54	0.01
CB-CG2	1.53	1.54	0.01
CB-CG	1.54	1.55	0.02
CG1-HG13	1.10	1.11	0.01
CG1-HG11	1.10	1.11	0.01
CG1-HG12	1.09	1.11	0.02
CG2-HG21	1.10	1.11	0.01
CG2-HG22	1.09	1.11	0.02
CG2-HG23	1.09	1.11	0.02
CG-HG1	1.10	1.11	0.01
CG-HG2	1.10	1.11	0.01
CG-SD	1.82	1.82	0.00
SD-OE	1.52	1.53	0.01
SD-CE	1.81	1.79	0.02
CE-HE1	1.09	1.11	0.02
CE-HE2	1.09	1.11	0.02
CE-HE3	1.09	1.11	0.02
HA3-CA-HA2	107.94	108.34	0.40
HA3-CA-HA	108.28	108.80	0.52
HA3-CA-CB	111.00	110.36	0.64
HA2-CA-HA	108.06	108.44	0.38
HA2-CA-CB	110.17	110.18	0.00
CA-CB-CG1	109.13	108.11	1.02
CA-CB-CG2	109.12	108.21	0.91
CA-CB-CG	106.96	108.43	1.47
HA-CA-CB	111.27	110.67	0.61
CB-CG1-HG13	110.52	110.54	0.02
CB-CG1-HG11	109.79	110.36	0.57

Terms	QM	CHARMM	Abs. diff.
CB-CG1-HG12	111.44	110.88	0.56
CB-CG2-HG21	111.28	110.71	0.57
CB-CG2-HG22	111.77	110.96	0.81
CB-CG2-HG23	109.81	109.94	0.13
CB-CG-HG1	109.84	109.65	0.20
CB-CG-HG2	110.15	110.43	0.29
CB-CG-SD	114.79	112.85	1.94
CG1-CB-CG2	109.92	109.16	0.75
CG1-CB-CG	110.77	111.73	0.96
HG13-CG1-HG11	108.01	108.65	0.65
HG13-CG1-HG12	107.80	108.20	0.40
HG11-CG1-HG12	109.20	108.13	1.07
CG2-CB-CG	110.88	111.09	0.21
HG21-CG2-HG22	108.27	108.95	0.68
HG21-CG2-HG23	107.96	108.44	0.48
HG22-CG2-HG23	107.61	107.76	0.15
CG-SD-OE	108.92	107.30	1.62
CG-SD-CE	95.28	95.58	0.30
HG1-CG-HG2	108.73	109.76	1.03
HG1-CG-SD	105.54	107.06	1.52
HG2-CG-SD	107.55	106.98	0.57
SD-CE-HE1	109.34	110.56	1.22
SD-CE-HE2	107.01	110.08	3.07
SD-CE-HE3	110.40	111.33	0.93
OE-SD-CE	106.84	104.57	2.27
HE1-CE-HE2	109.30	107.69	1.61
HE1-CE-HE3	110.93	108.77	2.16
HE2-CE-HE3	109.78	108.31	1.46

Figure S415: The PES scan for flexible dihedral corresponding to (R)-(2,2-dimethylpropyl)(meth yl)-lambda3-sulfanol.

2.123 The small molecule used for bonded terms optimization of N-trimethyllysine (M3L)

Figure S416: The energy minimized structure corresponding to trimethyl(pentyl)amine.

Table	S803:	The	calculated	$\operatorname{geometric}$	terms	of	tr
imeth	yl(pent	yl)ar	nine.				

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.53	0.01
CB-HB1	1.10	1.11	0.02
CB-HB2	1.10	1.11	0.02
CB-CG	1.53	1.53	0.01
CG-HG1	1.10	1.11	0.02
CG-HG2	1.10	1.11	0.02
CG-CD	1.53	1.54	0.00
CD-HD1	1.09	1.11	0.02
CD-HD2	1.09	1.11	0.02
CD-CE	1.52	1.54	0.02
CE-HE1	1.09	1.09	0.01
CE-HE2	1.09	1.09	0.01
CE-NZ	1.52	1.52	0.00
NZ-CM1	1.50	1.50	0.00
NZ-CM2	1.50	1.50	0.00
NZ-CM3	1.50	1.50	0.00
CM1-HM11	1.09	1.08	0.01
CM1-HM12	1.09	1.08	0.01
CM1-HM13	1.09	1.09	0.00
CM2-HM21	1.09	1.09	0.00
CM2-HM22	1.09	1.08	0.01
CM2-HM23	1.09	1.08	0.01
CM3-HM31	1.09	1.08	0.01
CM3-HM32	1.09	1.08	0.01
СМ3-НМ33	1.09	1.08	0.01
HA3-CA-HA2	107.86	108.20	0.34
НАЗ-СА-НА	107.86	108.20	0.34
HA3-CA-CB	110.93	110.54	0.38
HA2-CA-HA	108.05	108.40	0.35
HA2-CA-CB	111.01	110.71	0.30
CA-CB-HB1	109.71	108.90	0.81

Terms	OM	CHARMM	Abs. diff
CA-CB-HB2	109 71	108.91	0.80
CA-CB-CG	112 22	113 19	0.97
HA-CA-CB	111 01	110.10	0.30
CB-CG-HG1	109.32	108.39	0.93
CB-CG-HG2	109.32	108.37	0.94
CB-CG-CD	112 16	11250	0.34
HB1-CB-HB2	106 62	107.31	0.70
HB1-CB-CG	109.21	109.17	0.04
HB2-CB-CG	109.21	109.19	0.02
CG-CD-HD1	108.65	108.07	0.58
CG-CD-HD2	108.65	108.09	0.50
CG-CD-CE	109.46	109.31	0.16
HG1-CG-HG2	105.10 106.75	107.75	1.00
HG1-CG-CD	100.10 109.57	109.86	0.28
HG2-CG-CD	109.57 109.57	109.84	0.20 0.27
CD-CE-HE1	100.01 110.54	107.66	2.88
CD-CE-HE2	110.51 110.54	107.00 107.70	2.80 2.84
CD-CE-NZ	116.18	116 62	0.44
HD1-CD-HD2	107 76	108.17	0.44 0.42
HD1-CD-CE	111 12	111 53	0.40
HD2-CD-CE	111.12 111.19	111.55	0.43
CE-NZ-CM1	110.85	110.52	0.40
CE-NZ-CM1	110.85	110.52	0.32 0.34
CE-NZ-CM3	108.02	110.00	2.06
HE1_CE_HE2	108.02	105.64	$2.00 \\ 2.47$
HE1-CE-NZ	105.11 105.52	109.32	3.80
HE2-CE-NZ	105.52 105.52	109.34	3.83
NZ-CM1-HM11	108.69	105.04 111.47	2.80
NZ-CM1-HM12	108.46	111.59	3.06
NZ-CM1-HM13	100.40	111.52 110.52	1 16
NZ-CM2-HM21	109.36	110.02	1 13
NZ-CM2-HM22	108.69	111 49	2.81
NZ-CM2-HM23	108.46	111.49 111.50	$\frac{2.01}{3.04}$
NZ-CM3-HM31	108.75	111.00	2 69
NZ-CM3-HM32	108.86	110.97	$\frac{2.00}{2.11}$
NZ-CM3-HM33	108.00 108.75	111 48	2.71 2.73
CM1-NZ-CM2	100.10	108.68	0.81
CM1-NZ-CM3	108.79	108.52	0.01
HM11-CM1-HM12	110.10	108.02	2.10
HM11-CM1-HM13	110.10	107.35	2.10 2.96
HM12-CM1-HM13	100.01	107.80	2.08
CM2-NZ-CM3	109.00	107.00	0.30
HM21-CM2-HM22	110.31	107.36	2.95
HM21-CM2-HM23	109.88	107.80	$\frac{2.00}{2.08}$
HM22-CM2-HM23	110 11	108.02	2.00
HM31-CM3-HM39	110.14	107.37	2.05 2.77
HM31-CM3-HM32	110.17	107.99	2.17
HM32-CM3-HM33	110 14	107.00	2.11 2.74
111102 0110-111100	110.14	101.10	4.17

Figure S417: The PES scan for flexible dihedral corresponding to trimethyl(pentyl)amine.

2.124 The small molecule used for bonded terms optimization of N-methyl-L-alanine (MAA)

Figure S418: The energy minimized structure corresponding to N,N-dimethylacetamide.

Table S804: The calculated geometric terms of N,N-dimethylacetamide.

Terms	QM	CHARMM	Abs. diff.
CL-HL1	1.10	1.11	0.01
CL-HL2	1.09	1.11	0.02
CL-HL3	1.09	1.11	0.02
CL-CLP	1.52	1.49	0.03
CLP-OL	1.23	1.23	0.00
CLP-N	1.39	1.38	0.01
N-CA	1.47	1.47	0.00
N-CM	1.46	1.46	0.00
CA-HA	1.09	1.11	0.02
CA-CB	1.54	1.56	0.02
CA-C	1.55	1.52	0.03
CB-HB1	1.09	1.11	0.01
CB-HB2	1.09	1.11	0.02
CB-HB3	1.09	1.11	0.02
CM-HM1	1.09	1.11	0.03
CM-HM2	1.10	1.11	0.02
CM-HM3	1.10	1.11	0.01
C-O	1.23	1.23	0.00
C-NR	1.36	1.35	0.02
NR-HR	1.01	0.99	0.02
NR-CR	1.45	1.45	0.01
CR-HR1	1.09	1.11	0.02
CR-HR2	1.10	1.11	0.02
CR-HR3	1.09	1.11	0.02
CL-CLP-OL	120.73	117.07	3.65
CL-CLP-N	117.50	120.15	2.65
HL1-CL-HL2	108.47	108.26	0.21
HL1-CL-HL3	107.30	109.66	2.36
HL1-CL-CLP	110.62	110.79	0.16
HL2-CL-HL3	109.59	108.29	1.30
HL2-CL-CLP	107.17	108.85	1.69
HL3-CL-CLP	113.60	110.91	2.69
CLP-N-CA	121.94	123.11	1.17
CLP-N-CM	117.44	118.40	0.97

Terms	QM	CHARMM	Abs. diff.
OL-CLP-N	121.76	122.77	1.01
N-CA-HA	108.28	109.35	1.08
N-CA-CB	113.63	114.64	1.02
N-CA-C	113.87	110.93	2.94
N-CM-HM1	107.03	111.45	4.42
N-CM-HM2	111.54	107.75	3.79
N-CM-HM3	112.11	108.30	3.81
CA-N-CM	120.62	118.22	2.40
CA-CB-HB1	112.49	112.04	0.45
CA-CB-HB2	110.90	109.98	0.92
CA-CB-HB3	108.30	110.15	1.85
CA-C-O	120.34	120.74	0.40
CA-C-NR	115.86	117.62	1.76
HA-CA-CB	106.89	105.33	1.56
HA-CA-C	103.72	106.10	2.38
CB-CA-C	109.73	109.99	0.25
HB1-CB-HB2	108.80	108.99	0.19
HB1-CB-HB3	107.97	107.94	0.02
HB2-CB-HB3	108.26	107.61	0.65
HM1-CM-HM2	109.17	109.53	0.37
HM1-CM-HM3	109.01	108.75	0.26
HM2-CM-HM3	107.93	111.06	3.12
C-NR-HR	117.39	119.36	1.97
C-NR-CR	121.84	122.30	0.46
O-C-NR	123.59	121.62	1.97
NR-CR-HR1	107.78	111.45	3.67
NR-CR-HR2	112.07	110.52	1.55
NR-CR-HR3	109.96	110.47	0.51
HR-NR-CR	117.88	118.15	0.26
HR1-CR-HR2	108.59	107.91	0.68
HR1-CR-HR3	109.50	107.97	1.53
HR2-CR-HR3	108.89	108.41	0.49

Figure S419: The PES scan for flexible dihedral corresponding to N,N-dimethylacetamide.

2.125 The small molecule used for bonded terms optimization of NZ-(1-carboxyethyl)-lysine (MCL)

Figure S420: The energy minimized structure corresponding to (2E)-2-(ethylimino)propanoate.

Table S805: The calculated geometric terms of (2E)-2-(ethylimino)propanoate.

Terms	QM	CHARMM	Abs. diff.
HD3-CD	1.10	1.11	0.01
CD-HD1	1.09	1.11	0.02
CD-HD2	1.09	1.11	0.02
CD-CE	1.52	1.53	0.00
CE-HE1	1.10	1.12	0.01
CE-HE2	1.10	1.12	0.01
CE-NZ	1.46	1.45	0.01
NZ-CX1	1.29	1.31	0.01
CX1-C1	1.52	1.52	0.00
CX1-CX2	1.53	1.53	0.00
C1-H11	1.09	1.11	0.02
C1-H12	1.10	1.11	0.01
C1-H13	1.10	1.11	0.01
CX2-O1	1.26	1.27	0.01
CX2-O2	1.27	1.27	0.00
HD3-CD-HD1	108.79	109.01	0.22
HD3-CD-HD2	108.92	108.99	0.08
HD3-CD-CE	111.35	110.84	0.51
CD-CE-HE1	109.43	108.95	0.48
CD-CE-HE2	109.52	108.65	0.87
CD-CE-NZ	109.33	110.51	1.18
HD1-CD-HD2	107.83	108.13	0.31
HD1-CD-CE	109.95	109.91	0.04
HD2-CD-CE	109.93	109.91	0.02
CE-NZ-CX1	117.57	117.28	0.29
HE1-CE-HE2	106.74	109.40	2.66
HE1-CE-NZ	110.37	109.60	0.77
HE2-CE-NZ	111.41	109.71	1.69
NZ-CX1-C1	124.29	125.64	1.35
NZ-CX1-CX2	120.49	120.26	0.23
CX1-C1-H11	109.95	111.73	1.78
CX1-C1-H12	110.61	110.54	0.06
CX1-C1-H13	111.09	110.41	0.68

Terma	OM	CILADMM	Aba diff
Terms		CHARMM	ADS. 01II.
CX1-CX2-O1	117.53	118.01	0.49
CX1-CX2-O2	111.99	116.74	4.75
C1- $CX1$ - $CX2$	115.12	114.06	1.06
H11-C1-H12	107.88	107.47	0.41
H11-C1-H13	109.49	107.83	1.65
H12-C1-H13	107.75	108.75	1.00
O1-CX2-O2	130.41	125.24	5.17
$\begin{array}{c} 20 \\ \hline \\ 16 \\ \hline \\ 12 \\ \hline \\ 8 \\ \hline \\ 8 \\ \hline \\ 8 \\ \hline \\ 8 \\ \hline \\ 9 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	00 31-CG2DC	0 1 C1-NG2D1-CG3	DM CHARMM
3 	100 D2-CG2O3		QM CHARMM 00 200

Figure S421: The PES scan for flexible dihedrals corresponding to (2E)-2-(ethylimino)propanoate.

2.126	The small molecule used for
	bonded terms optimization of
	malonylcysteine (MCS)

Terms	QM	CHARMM	Abs. diff.
OAC-CAK-CAG	125.26	124.49	0.77
CAG-CAJ-OAE	113.02	114.60	1.58
CAG-CAJ-OAB	115.75	117.07	1.31
HG1-CAG-HG2	109.26	108.75	0.52
HG1-CAG-CAJ	108.15	112.85	4.70
HG2-CAG-CAJ	107.94	104.73	3.22
OAE-CAJ-OAB	131.22	128.33	2.89

Figure S422: The energy minimized structure corresponding to 3-(ethylsulfanyl)-3-oxopropanoicac id.

Table S806: The calculated geometric terms of 3- (ethylsulfanyl)-3-oxopropanoicacid.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.10	1.11	0.01
CA-CB	1.53	1.53	0.01
CB-HB1	1.10	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SAI	1.81	1.83	0.01
SAI-CAK	1.81	1.82	0.01
CAK-OAC	1.23	1.22	0.00
CAK-CAG	1.49	1.50	0.01
CAG-HG1	1.10	1.10	0.01
CAG-HG2	1.09	1.12	0.02
CAG-CAJ	1.59	1.50	0.10
CAJ-OAE	1.26	1.26	0.00
CAJ-OAB	1.26	1.25	0.01
HA3-CA-HA2	107.68	107.77	0.09
HA3-CA-HA	108.61	108.94	0.33
HA3-CA-CB	110.79	110.61	0.18
HA2-CA-HA	109.15	108.43	0.71
HA2-CA-CB	110.44	110.05	0.39
CA-CB-HB1	111.60	108.60	2.99
CA-CB-HB2	110.86	109.26	1.60
CA-CB-SAI	111.96	112.06	0.10
HA-CA-CB	110.11	110.95	0.84
CB-SAI-CAK	98.18	100.49	2.31
HB1-CB-HB2	108.50	106.88	1.62
HB1-CB-SAI	106.48	109.35	2.87
HB2-CB-SAI	107.22	110.53	3.31
SAI-CAK-OAC	121.03	121.50	0.47
SAI-CAK-CAG	113.68	113.99	0.31
CAK-CAG-HG1	111.60	113.14	1.54
CAK-CAG-HG2	109.06	106.56	2.49
CAK-CAG-CAJ	110.75	110.26	0.49

Figure S423: The PES scan for flexible dihedrals corresponding to 3-(ethylsulfanyl)-3-oxopropanoic acid.

2.127 The small molecule 1 used for bonded terms optimization of [2-((1S)-1-aminoethyl)-4-me thylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl]aceticacid (MDO)

Terms	QM	CHARMM	Abs. diff.
N2-CA2-CB2	125.79	125.84	0.05
N3-C2-O2	126.56	127.57	1.01
N3-C2-CA2	102.34	104.00	1.67
N3-CA3-HA31	111.17	110.98	0.19
N3-CA3-HA32	106.31	111.23	4.92
N3-CA3-HA33	111.17	110.98	0.19
C2-N3-CA3	123.44	126.55	3.11
C2- $CA2$ - $CB2$	124.25	124.16	0.08
O2-C2-CA2	131.10	128.43	2.68
CA2-CB2-HB21	119.62	120.66	1.04
CA2-CB2-HB22	121.01	118.31	2.69
HB21-CB2-HB22	119.37	121.03	1.65
HA31-CA3-HA32	109.33	107.48	1.85
HA31-CA3-HA33	109.48	108.55	0.93
НА32-СА3-НА33	109.33	107.48	1.85

Figure S424: The energy minimized structure corresponding to 2,3-Dimethyl-5-methylideneimidaz ol-4-one.

Table S807:	The calculated	geometric	terms	of 2,3-
Dimethyl-5-	methylideneim	idazol-4-on	e.	

Terms	QM	CHARMM	Abs. diff.
HA1-CA	1.09	1.11	0.01
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.01
CA-C1	1.49	1.50	0.01
C1-N2	1.31	1.33	0.02
C1-N3	1.40	1.39	0.01
N2-CA2	1.41	1.41	0.00
N3-C2	1.40	1.38	0.02
N3-CA3	1.45	1.47	0.02
C2-O2	1.23	1.24	0.02
C2-CA2	1.50	1.50	0.00
CA2-CB2	1.34	1.34	0.00
CB2-HB21	1.09	1.10	0.01
CB2-HB22	1.08	1.10	0.01
CA3-HA31	1.09	1.11	0.02
CA3-HA32	1.09	1.11	0.02
CA3-HA33	1.09	1.11	0.02
HA1-CA-HA2	109.26	108.63	0.62
HA1-CA-HA	107.79	109.65	1.86
HA1-CA-C1	111.06	109.95	1.11
HA2-CA-HA	109.26	108.63	0.62
HA2-CA-C1	108.37	109.99	1.61
CA-C1-N2	124.55	121.64	2.91
CA-C1-N3	120.72	121.72	1.00
HA-CA-C1	111.06	109.95	1.11
C1-N2-CA2	104.86	102.67	2.19
C1-N3-C2	108.11	106.70	1.42
C1-N3-CA3	128.45	126.75	1.70
N2-C1-N3	114.73	116.64	1.91
N2-CA2-C2	109.96	110.00	0.03

2.128 The small molecule 2 used for bonded terms optimization of [2-((1S)-1-aminoethyl)-4-me thylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl]aceticacid (MDO)

Figure S425: The energy minimized structure corresponding to N-[(1S)-1-(1-methyl-4-methylidene -5-0x0-4,5-dihydro-1H-imidazol-2-yl)ethyl]aceta mide.

Table S808: The calculated geometric terms of N-[(1S)-1-(1-methyl-4-methylidene-5-oxo-4,5-dihydr o-1H-imidazol-2-yl)ethyl]acetamide.

Terms	QM	CHARMM	Abs. diff.
C1AL-H1AL	1.09	1.11	0.02
C1AL-H1A1	1.09	1.11	0.02
C1AL-H1A2	1.09	1.11	0.02
C1AL-C11	1.51	1.48	0.03
C11-O11	1.24	1.22	0.02
C11-N1	1.37	1.33	0.04
N1-HN1	1.01	0.99	0.02
N1-CA1	1.46	1.44	0.02
CA1-HA1	1.09	1.12	0.02
CA1-CB	1.52	1.54	0.02
CA1-C1	1.50	1.53	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-HB3	1.09	1.11	0.02
C1-N2	1.31	1.34	0.03
C1-N3	1.39	1.40	0.01
N2-CA2	1.41	1.41	0.00
N3-C2	1.40	1.38	0.02
N3-CA3	1.45	1.47	0.02
C2-O2	1.23	1.24	0.02
C2-CA2	1.50	1.49	0.00
CA2-CB2	1.34	1.34	0.01
CB2-HB21	1.08	1.10	0.01
CB2-HB22	1.09	1.10	0.01
CA3-HA31	1.09	1.11	0.02
CA3-HA32	1.09	1.11	0.02
CA3-HA33	1.09	1.11	0.02
C1AL-C11-O11	122.15	121.34	0.81

_				
_	Terms	QM	CHARMM	Abs. diff.
_	C1AL-C11-N1	115.08	116.31	1.23
	H1AL-C1AL-H1A1	108.23	108.65	0.43
	H1AL-C1AL-H1A2	109.61	108.73	0.88
	H1AL-C1AL-C11	108.45	109.35	0.90
	H1A1-C1AL-H1A2	108.57	109.56	0.98
	H1A1-C1AL-C11	109.09	110.02	0.93
	H1A2-C1AL-C11	112.79	110.49	2.30
	C11-N1-HN1	119.22	120.44	1.22
	C11-N1-CA1	122.23	124.52	2.30
	O11-C11-N1	122.66	122.35	0.31
	N1-CA1-HA1	105.68	110.28	4.61
	N1-CA1-CB	110.68	108.74	1.94
	N1-CA1-C1	108.52	108.66	0.14
	HN1-N1-CA1	116.27	115.03	1.24
	CA1-CB-HB1	109.66	110.10	0.45
	CA1-CB-HB2	110.21	110.59	0.38
	CA1-CB-HB3	110.25	110.57	0.32
	CA1-C1-N2	121.97	121.03	0.94
	CA1-C1-N3	122.62	122.39	0.22
	HA1-CA1-CB	110.48	106.73	3.75
	HA1-CA1-C1	110.16	109.96	0.19
	CB-CA1-C1	111.17	112.45	1.28
	HB1-CB-HB2	109.69	108.33	1.36
	HB1-CB-HB3	109.08	108.69	0.39
	HB2-CB-HB3	107.93	108.50	0.57
	C1-N2-CA2	104.65	103.49	1.16
	C1-N3-C2	107.70	106.84	0.86
	C1-N3-CA3	128.94	127.71	1.23
	N2-C1-N3	115.24	115.29	0.05
=	N2-CA2-C2	109.80	109.98	0.17
-	N2-CA2-CB2	125.92	125.85	0.07
	N3-C2-O2	126.57	127.77	1.21
	N3-C2-CA2	102.59	104.39	1.79
	N3-CA3-HA31	106.30	111.36	5.06
	N3-CA3-HA32	110.21	110.91	0.71
	N3-CA3-HA33	110.89	111.58	0.69
	C2-N3-CA3	123.28	125.45	2.16
	C2-CA2-CB2	124.27	124.17	0.10
	O2-C2-CA2	130.84	127.84	3.00
	CA2-CB2-HB21	121.10	118.68	2.42
	CA2-CB2-HB22	119 55	120.42	0.87
	HB21-CB2-HB22	119.35	120.90	1.55
	HA31-CA3-HA32	110.51	107 17	3.34
	HA31-CA3-HA33	108.90	107.30	1.59
	НА32-СА3-НА33	109.97	108.33	1.65
		200.01	100.00	1.00

Figure S426: The PES scan for flexible dihedrals corresponding to N-[(1S)-1-(1-methyl-4-methylide ne-5-oxo-4,5-dihydro-1H-imidazol-2-yl)ethyl]aceta mide.

2.129 The small molecule used for bonded terms optimization of hydroxy-l-methionine (ME0)

Figure S427: The energy minimized structure corresponding to (ethylsulfanyl)methanol.

Table S809: The calculated geometric terms of (et hylsulfanyl)methanol.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-CG	1.52	1.53	0.01
CG-HG1	1.10	1.11	0.02
CG-HG2	1.09	1.11	0.02
CG-SD	1.82	1.82	0.00
SD-CE	1.79	1.82	0.02
CE-HE1	1.10	1.11	0.02
CE-HE2	1.10	1.11	0.01
CE-OZ	1.43	1.42	0.00
OZ-HZ	0.97	0.96	0.01
HB3-CB-HB1	108.20	108.48	0.27
HB3-CB-HB2	108.12	108.60	0.48
HB3-CB-CG	109.97	110.63	0.66
CB-CG-HG1	110.36	108.88	1.48
CB-CG-HG2	110.85	108.83	2.02
CB-CG-SD	109.87	112.54	2.67
HB1-CB-HB2	108.29	108.27	0.01
HB1-CB-CG	110.93	110.31	0.62
HB2-CB-CG	111.23	110.48	0.74
CG-SD-CE	98.60	97.36	1.24
HG1-CG-HG2	108.47	107.06	1.41
HG1-CG-SD	109.16	109.84	0.68
HG2-CG-SD	108.07	109.52	1.46
SD-CE-HE1	106.32	109.50	3.18
SD-CE-HE2	109.73	110.55	0.82
SD-CE-OZ	109.43	110.77	1.34
CE-OZ-HZ	107.15	107.46	0.31
HE1-CE-HE2	108.66	107.91	0.75
HE1-CE-OZ	111.73	108.66	3.07
HE2-CE-OZ	110.86	109.39	1.47

Figure S428: The PES scan for flexible dihedrals corresponding to (ethylsulfanyl)methanol.

2.130 The small molecule used for bonded terms optimization of N1-methylatedhistidine (MHS)

Terms	QM	CHARMM	Abs. diff.
CG-ND1-CE1	107.16	106.04	1.12
CG-CD2-HD2	127.11	129.44	2.33
CG-CD2-NE2	111.67	110.94	0.73
ND1-CG-CD2	104.47	105.90	1.43
ND1-CM-HM1	110.61	110.32	0.29
ND1-CM-HM2	110.90	110.04	0.86
ND1-CM-HM3	108.24	111.64	3.39
ND1-CE1-HE1	121.79	122.49	0.69
ND1-CE1-NE2	112.30	112.63	0.34
CM-ND1-CE1	125.82	126.84	1.02
HM1-CM-HM2	109.29	108.42	0.86
HM1-CM-HM3	108.85	108.09	0.76
HM2-CM-HM3	108.91	108.23	0.67
CD2-NE2-CE1	104.40	104.49	0.09
HD2-CD2-NE2	121.22	119.62	1.60
HE1-CE1-NE2	125.91	124.88	1.03

Figure S429: The energy minimized structure corresponding to 5-ethyl-1-methyl-1H-imidazole.

Table S810: The calculated geometric terms of 5-ethyl-1-methyl-1H-imidazole.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.53	0.00
CB-HB1	1.10	1.12	0.02
CB-HB2	1.10	1.11	0.01
CB-CG	1.49	1.51	0.02
CG-ND1	1.38	1.38	0.00
CG-CD2	1.38	1.37	0.02
ND1-CM	1.45	1.46	0.01
ND1-CE1	1.37	1.37	0.00
CM-HM1	1.09	1.11	0.02
CM-HM2	1.09	1.11	0.02
CM-HM3	1.09	1.11	0.02
CD2-HD2	1.08	1.08	0.00
CD2-NE2	1.37	1.38	0.01
CE1-HE1	1.08	1.09	0.01
CE1-NE2	1.33	1.32	0.01
HA3-CA-HA2	108.51	108.29	0.22
HA3-CA-HA	108.00	108.37	0.36
HA3-CA-CB	110.96	110.39	0.57
HA2-CA-HA	107.79	108.28	0.50
HA2-CA-CB	110.06	110.42	0.36
CA-CB-HB1	109.35	108.54	0.82
CA-CB-HB2	109.96	109.80	0.16
CA-CB-CG	113.37	113.34	0.04
HA-CA-CB	111.40	111.00	0.40
CB-CG-ND1	123.68	125.19	1.51
CB-CG-CD2	131.75	128.80	2.95
HB1-CB-HB2	106.03	106.65	0.63
HB1-CB-CG	107.50	108.89	1.40
HB2-CB-CG	110.33	109.39	0.95
CG-ND1-CM	126.93	127.11	0.18

2.131 The small molecule used for bonded terms optimization of N1-methylatedhistidine (MHSP)

Terms	QM	CHARMM	Abs. diff.
HB2-CB-CG	109.54	109.47	0.07
CG-ND1-CM	125.72	125.70	0.02
CG-ND1-CE1	109.91	108.75	1.16
CG-CD2-HD2	130.49	128.31	2.18
CG-CD2-NE2	107.16	107.19	0.03
ND1-CG-CD2	105.81	106.67	0.86
ND1-CM-HM1	109.29	109.54	0.25
ND1-CM-HM2	109.35	109.46	0.11
ND1-CM-HM3	108.39	110.94	2.55
ND1-CE1-HE1	126.30	125.41	0.88
ND1-CE1-NE2	107.29	108.66	1.37
CM-ND1-CE1	124.33	125.54	1.21
HM1-CM-HM2	110.43	109.35	1.08
HM1-CM-HM3	109.69	108.76	0.93
HM2-CM-HM3	109.66	108.77	0.89
CD2-NE2-CE1	109.84	108.73	1.11
CD2-NE2-HE2	125.72	125.08	0.64
HD2-CD2-NE2	122.36	124.50	2.14
CE1-NE2-HE2	124.44	126.19	1.74
HE1-CE1-NE2	126.41	125.92	0.49

Figure S430: The energy minimized structure corresponding to 5-ethyl-1-methyl-2,3-dihydro-1H-i midazole.

Table S811: The calculated geometric terms of 5-
ethyl-1-methyl-2,3-dihydro-1H-imidazole.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.54	0.00
CB-HB1	1.09	1.11	0.02
CB-HB2	1.10	1.11	0.02
CB-CG	1.49	1.52	0.03
CG-ND1	1.39	1.38	0.01
CG-CD2	1.38	1.36	0.02
ND1-CM	1.47	1.48	0.01
ND1-CE1	1.34	1.33	0.01
CM-HM1	1.09	1.11	0.02
CM-HM2	1.09	1.11	0.02
CM-HM3	1.09	1.11	0.02
CD2-HD2	1.08	1.09	0.01
CD2-NE2	1.37	1.37	0.00
CE1-HE1	1.08	1.08	0.00
CE1-NE2	1.34	1.33	0.02
NE2-HE2	1.02	1.00	0.01
HA3-CA-HA2	108.27	107.77	0.50
HA3-CA-HA	107.87	107.89	0.02
HA3-CA-CB	109.85	110.19	0.34
HA2-CA-HA	108.16	108.31	0.15
HA2-CA-CB	110.63	110.95	0.32
CA-CB-HB1	109.85	107.87	1.98
CA-CB-HB2	110.75	109.54	1.21
CA-CB-CG	112.90	115.17	2.27
HA-CA-CB	111.95	111.59	0.35
CB-CG-ND1	123.80	124.73	0.92
CB-CG-CD2	130.31	128.58	1.74
HB1-CB-HB2	106.13	105.90	0.24
HB1-CB-CG	107.39	108.47	1.09

2.132 The small molecule used for bonded terms optimization of N1-phosphonohistidine (NEP)

Figure S431: The energy minimized structure corresponding to (4-ethyl-1H-imidazol-1-yl)phospho nicacid.

Table S812: The calculated geometric terms of (4-ethyl-1H-imidazol-1-yl) phosphonicacid.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.01
HA2-CA	1.10	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.54	0.01
CB-HB1	1.10	1.11	0.01
CB-HB2	1.10	1.11	0.01
CB-CG	1.50	1.51	0.01
CG-ND1	1.38	1.39	0.00
CG-CD2	1.39	1.36	0.03
ND1-CE1	1.35	1.33	0.02
CD2-HD2	1.08	1.08	0.01
CD2-NE2	1.37	1.38	0.01
CE1-HE1	1.08	1.09	0.01
CE1-NE2	1.35	1.35	0.01
NE2-P	1.94	1.96	0.02
P-O1P	1.54	1.52	0.02
P-O2P	1.54	1.52	0.02
P-O3P	1.54	1.52	0.02
HA3-CA-HA2	108.64	109.24	0.61
HA3-CA-HA	108.95	109.06	0.11
HA3-CA-CB	111.96	110.83	1.13
HA2-CA-HA	107.82	108.04	0.22
HA2-CA-CB	109.95	110.13	0.18
CA-CB-HB1	108.72	109.41	0.69
CA-CB-HB2	109.79	109.28	0.52
CA-CB-CG	112.47	114.65	2.18
HA-CA-CB	109.42	109.48	0.06
CB-CG-ND1	121.26	118.89	2.36
CB-CG-CD2	129.08	130.43	1.35
HB1-CB-HB2	106.89	107.57	0.69
HB1-CB-CG	110.11	107.47	2.64
HB2-CB-CG	108.71	108.22	0.49

Terms	QM	CHARMM	Abs. diff.
CG-ND1-CE1	103.60	104.04	0.44
CG-CD2-HD2	132.16	131.81	0.35
CG-CD2-NE2	107.44	105.80	1.64
ND1-CG-CD2	109.64	110.68	1.04
ND1-CE1-HE1	125.27	127.47	2.20
ND1-CE1-NE2	113.79	112.46	1.33
CD2-NE2-CE1	105.53	107.02	1.49
CD2-NE2-P	126.62	126.29	0.33
HD2-CD2-NE2	120.38	122.39	2.01
CE1-NE2-P	127.71	126.67	1.04
HE1-CE1-NE2	120.92	120.06	0.86
NE2-P-O1P	99.22	99.21	0.01
NE2-P-O2P	100.74	99.36	1.38
NE2-P-O3P	99.02	97.91	1.11
O1P-P-O2P	116.77	117.05	0.29
01P-P-03P	117.83	117.79	0.04
O2P-P- $O3P$	117.14	118.23	1.09

Figure S432: The PES scan for flexible dihedral corresponding to (4-ethyl-1H-imidazol-1-yl)phosp honicacid.

2.133 The small molecule used for bonded terms optimization of meta-nitro-tyrosine (NIY)

Terms	QM	CHARMM	Abs. diff.
CD2-CE2-HE2	121.53	119.64	1.89
CD2-CE2-CZ	121.19	120.60	0.59
HD2-CD2-CE2	119.08	120.17	1.09
CE1-NN-ON1	118.89	117.63	1.26
CE1-NN-ON2	118.38	117.75	0.63
CE1-CZ-CE2	117.06	120.84	3.78
CE1-CZ-OH	125.90	124.73	1.17
NN-CE1-CZ	120.94	123.38	2.45
ON1-NN-ON2	122.73	124.62	1.89
CE2-CZ-OH	117.04	114.43	2.61
HE2-CE2-CZ	117.28	119.76	2.48
CZ-OH-HH	106.66	107.70	1.04

Figure S433: The energy minimized structure corresponding to 4-methyl-2-nitrobenzen-1-olate.

Table S813: The calculated geometric terms of 4-methyl-2-nitrobenzen-1-olate.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-CG	1.51	1.50	0.01
CG-CD1	1.39	1.40	0.01
CG-CD2	1.41	1.40	0.01
CD1-HD1	1.09	1.08	0.00
CD1-CE1	1.40	1.42	0.02
CD2-HD2	1.09	1.08	0.01
CD2-CE2	1.39	1.40	0.01
CE1-NN	1.46	1.47	0.02
CE1-CZ	1.41	1.43	0.03
NN-ON1	1.24	1.23	0.01
NN-ON2	1.26	1.23	0.03
CE2-HE2	1.09	1.08	0.00
CE2-CZ	1.40	1.40	0.01
CZ-OH	1.35	1.42	0.07
OH-HH	0.99	0.97	0.02
HB3-CB-HB1	108.05	109.22	1.17
HB3-CB-HB2	107.60	109.91	2.31
HB3-CB-CG	111.01	109.07	1.94
CB-CG-CD1	121.28	120.24	1.04
CB-CG-CD2	120.66	120.01	0.65
HB1-CB-HB2	108.05	109.18	1.14
HB1-CB-CG	110.99	110.37	0.62
HB2-CB-CG	111.01	109.07	1.93
CG-CD1-HD1	121.16	118.56	2.60
CG-CD1-CE1	120.54	122.01	1.47
CG-CD2-HD2	119.46	119.74	0.28
CG-CD2-CE2	121.46	120.10	1.37
CD1-CG-CD2	118.05	119.74	1.69
CD1-CE1-NN	117.37	119.90	2.53
CD1-CE1-CZ	121.69	116.71	4.98
HD1-CD1-CE1	118.30	119.44	1.13

2.134 The small molecule 1 used for bonded terms optimization of (4Z)-4-(4-hydroxybenzylide ne)-2-[3-(methylthio)propani midoyl]-5-oxo-4acetic5-dihyd ro-1H-imidazol-1-ylaceticacid (NRQ)

Terms	QM	CHARMM	Abs. diff.
N3-C2-CA2	102.30	104.02	1.71
N3-CA3-H1	110.97	110.66	0.31
N3-CA3-H2	106.44	111.64	5.20
N3-CA3-H3	110.97	110.66	0.31
C2-N3-CA3	124.10	127.30	3.20
C2-CA2-CB2	124.04	123.81	0.23
O2-C2-CA2	131.39	127.30	4.09
CA2-CB2-HB2	116.47	116.77	0.30
CA2-CB2-CG2	124.42	124.84	0.42
CB2-CG2-H01	110.45	111.12	0.67
CB2-CG2-H02	110.63	112.88	2.26
CB2-CG2-H03	110.45	111.10	0.65
HB2-CB2-CG2	119.11	118.39	0.72
H01-CG2-H02	109.17	107.05	2.13
H01-CG2-H03	106.88	107.38	0.51
H02-CG2-H03	109.18	107.03	2.14
H1-CA3-H2	109.38	107.76	1.61
H1-CA3-H3	109.63	108.15	1.48
H2-CA3-H3	109.38	107.82	1.55

Figure S434: The energy minimized structure corresponding to N-[(1E)-1-[(4Z)-4-ethylidene-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethyliden e]acetamide.

Table S814: The calculated geometric terms of N-[(1E)-1-[(4Z)-4-ethylidene-1-methyl-5-oxo-4,5-di hydro-1H-imidazol-2-yl]ethylidene]acetamide.

Terms	QM	CHARMM	Abs. diff.
C1-HC1	1.09	1.09	0.01
C1-N2	1.30	1.33	0.03
C1-N3	1.39	1.39	0.00
N2-CA2	1.41	1.42	0.00
N3-C2	1.40	1.38	0.02
N3-CA3	1.45	1.47	0.02
C2-O2	1.23	1.24	0.02
C2- $CA2$	1.49	1.48	0.01
CA2-CB2	1.35	1.35	0.00
CB2-HB2	1.09	1.10	0.01
CB2-CG2	1.49	1.52	0.03
CG2-H01	1.10	1.11	0.02
CG2-H02	1.09	1.11	0.02
CG2-H03	1.10	1.11	0.02
CA3-H1	1.09	1.11	0.02
CA3-H2	1.09	1.11	0.02
CA3-H3	1.09	1.11	0.02
C1-N2-CA2	104.00	102.76	1.24
C1-N3-C2	107.62	107.07	0.56
C1-N3-CA3	128.27	125.63	2.64
HC1-C1-N2	123.98	123.47	0.51
HC1-C1-N3	120.20	120.67	0.47
N2-C1-N3	115.82	115.86	0.04
N2-CA2-C2	110.25	110.29	0.05
N2-CA2-CB2	125.72	125.90	0.18
N3-C2-O2	126.30	128.68	2.38

2.135 The small molecule 2 used for bonded terms optimization of (4Z)-4-(4-hydroxybenzylide ne)-2-[3-(methylthio)propani midoyl]-5-oxo-4acetic5-dihyd ro-1H-imidazol-1-ylaceticacid (NRQ)

Figure S435: The energy minimized structure corresponding to N-[(1E)-1-[(4Z)-4-ethylidene-1-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethyliden e]acetamide.

Table S815: The calculated geometric terms of N-[(1E)-1-[(4Z)-4-ethylidene-1-methyl-5-oxo-4,5-di hydro-1H-imidazol-2-yl]ethylidene]acetamide.

Terms	QM	CHARMM	Abs. diff.
CL-HL1	1.09	1.11	0.02
CL-HL2	1.09	1.11	0.02
CL-HL3	1.09	1.11	0.02
CL-CLP	1.51	1.48	0.02
CLP-OL	1.22	1.22	0.00
CLP-N1	1.42	1.42	0.01
N1-CA1	1.29	1.28	0.01
CA1-CB1	1.50	1.52	0.01
CA1-C1	1.47	1.47	0.00
CB1-HB11	1.09	1.11	0.02
CB1-HB12	1.09	1.11	0.02
CB1-HB13	1.09	1.11	0.02
C1-N2	1.32	1.35	0.03
C1-N3	1.39	1.43	0.04
N2-CA2	1.40	1.41	0.01
N3-C2	1.40	1.38	0.02
N3-CA3	1.46	1.47	0.02
C2-O2	1.23	1.24	0.01
C2-CA2	1.49	1.46	0.02
CA2-CB2	1.35	1.35	0.00
CB2-HB2	1.09	1.10	0.01
CB2-CG2	1.49	1.51	0.03
CG2-H01	1.10	1.11	0.02
CG2-H02	1.09	1.11	0.02
CG2-H03	1.10	1.11	0.02
CA3-H1	1.09	1.11	0.02

Terms	QM	CHARMM	Abs. diff.
CA3-H2	1.09	1.11	0.02
CA3-H3	1.09	1.11	0.02
CL-CLP-OL	124.52	123.60	0.92
CL-CLP-N1	113.17	113.51	0.34
HL1-CL-HL2	107.47	109.30	1.83
HL1-CL-HL3	110.06	108.56	1.50
HL1-CL-CLP	109.67	110.33	0.66
HL2-CL-HL3	110.18	108.82	1.35
HL2-CL-CLP	110.13	110.69	0.56
HL3-CL-CLP	109.32	109.10	0.22
CLP-N1-CA1	120.49	120.95	0.46
OL-CLP-N1	122.09	122.54	0.44
N1-CA1-CB1	126.83	129.04	2.21
N1-CA1-C1	117.41	114.77	2.64
CA1-CB1-HB11	109.37	110.04	0.68
CA1-CB1-HB12	111.32	111.89	0.57
CA1-CB1-HB13	109.65	113.34	3.69
CA1-C1-N2	120.81	120.26	0.55
CA1-C1-N3	124.32	127.02	2.70
CB1-CA1-C1	115.76	116.17	0.41
HB11-CB1-HB12	108.49	107.28	1.21
HB11-CB1-HB13	107.16	107.74	0.59
HB12-CB1-HB13	110.75	106.25	4.50
C1-N2-CA2	104.78	105.25	0.47
C1-N3-C2	107.43	107.71	0.28
C1-N3-CA3	130.84	128.87	1.97
N2-C1-N3	114.86	112.08	2.78
N2-CA2-C2	110.07	109.96	0.10
N2-CA2-CB2	125.69	125.79	0.10
N3-C2-O2	126.33	128.22	1.89
N3-C2-CA2	102.86	104.96	2.11
N3-CA3-H1	110.94	110.67	0.26
N3-CA3-H2	105.52	111.72	6.21
N3-CA3-H3	110.70	111.07	0.37
C2-N3-CA3	121.64	123.42	1.78
C2-CA2-CB2	124.25	124.25	0.00
O2-C2-CA2	130.81	126.81	4.00
CA2-CB2-HB2	116.42	117.24	0.81
CA2-CB2-CG2	124.45	124.09	0.35
CB2-CG2-H01	110.40	110.92	0.52
CB2-CG2-H02	110.73	112.86	2.13
CB2-CG2-H03	110.42	110.89	0.47
HB2-CB2-CG2	119.13	118.67	0.46
H01-CG2-H02	109.18	107.11	2.07
H01-CG2-H03	106.82	107.69	0.87
H02-CG2-H03	109.19	107.12	2.07
H1-CA3-H2	110.30	107.50	2.79
H1-CA3-H3	109.08	108.16	0.91
H2-CA3-H3	110.28	107.54	2.74

Figure S436: The PES scan for flexible dihedrals corresponding to N-[(1E)-1-[(4Z)-4-ethylidene-1 -methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl]ethyl idene]acetamide.

2.136 The small molecule 3 used for bonded terms optimization of (4Z)-4-(4-hydroxybenzylide ne)-2-[3-(methylthio)propani midoyl]-5-oxo-4acetic5-dihyd ro-1H-imidazol-1-ylaceticacid (NRQ)

Figure S437: The energy minimized structure corresponding to N-[(2Z)-4-(methylsulfanyl)butan-2 -ylidene]acetamide.

Table S816: The calculated geometric terms of N- [(2Z)-4-(methylsulfanyl)butan-2-ylidene]acetami de.

Terms	QM	CHARMM	Abs. diff.
CL-HL1	1.09	1.11	0.02
CL-HL2	1.09	1.11	0.02
CL-HL3	1.09	1.11	0.02
CL-CLP	1.51	1.49	0.02
CLP-OL	1.23	1.22	0.00
CLP-N1	1.41	1.42	0.01
N1-CA1	1.29	1.27	0.01
CA1-CB1	1.51	1.51	0.00
CA1-C1	1.50	1.50	0.00
CB1-HB11	1.09	1.11	0.01
CB1-HB12	1.09	1.11	0.02
CB1-CG1	1.53	1.55	0.02
CG1-HG11	1.09	1.11	0.02
CG1-HG12	1.10	1.11	0.02
CG1-SD	1.81	1.82	0.01
SD-CE	1.81	1.82	0.01
CE-HE11	1.09	1.11	0.02
CE-HE12	1.09	1.11	0.02
CE-HE13	1.09	1.11	0.02
C1-H11	1.10	1.11	0.01
C1-H13	1.09	1.11	0.02
C1-H14	1.10	1.11	0.02
CL-CLP-OL	123.61	123.41	0.20
CL-CLP-N1	113.15	113.38	0.23
HL1-CL-HL2	107.37	109.24	1.87
HL1-CL-HL3	109.61	108.68	0.93
HL1-CL-CLP	109.05	110.28	1.23

Terms	QM	CHARMM	Abs. diff.
HL2-CL-HL3	110.50	108.77	1.73
HL2-CL-CLP	110.97	110.70	0.26
HL3-CL-CLP	109.30	109.12	0.18
CLP-N1-CA1	121.95	121.55	0.40
OL-CLP-N1	122.84	122.91	0.07
N1-CA1-CB1	124.64	129.87	5.22
N1-CA1-C1	118.32	123.99	5.68
CA1-CB1-HB11	108.79	109.28	0.49
CA1-CB1-HB12	110.18	110.12	0.07
CA1-CB1-CG1	110.32	115.04	4.72
CA1-C1-H11	110.78	111.52	0.73
CA1-C1-H13	110.15	110.99	0.84
CA1-C1-H14	109.76	111.31	1.54
CB1-CA1-C1	117.00	106.14	10.85
CB1-CG1-HG11	109.58	108.13	1.45
CB1-CG1-HG12	111.04	109.80	1.24
CB1-CG1-SD	114.17	114.40	0.23
HB11-CB1-HB12	107.73	105.43	2.30
HB11-CB1-CG1	110.06	109.72	0.34
HB12-CB1-CG1	109.71	106.80	2.91
CG1-SD-CE	99.68	97.61	2.07
HG11-CG1-HG12	107.23	106.76	0.47
HG11-CG1-SD	105.41	108.25	2.84
HG12-CG1-SD	109.04	109.21	0.17
SD-CE-HE11	107.02	110.60	3.57
SD-CE-HE12	111.03	111.18	0.15
SD-CE-HE13	112.28	111.53	0.75
HE11-CE-HE12	108.43	107.71	0.71
HE11-CE-HE13	108.23	107.45	0.79
HE12-CE-HE13	109.70	108.22	1.48
H11-C1-H13	109.59	107.26	2.33
H11-C1-H14	107.12	108.34	1.22
H13-C1-H14	109.37	107.22	2.15

Figure S438: The PES scan for flexible dihedral corresponding to N-[(2Z)-4-(methylsulfanyl)butan -2-ylidene]acetamide.

2.137 The small molecule used for bonded terms optimization of o-acetylserine (OAS)

Figure S439: The energy minimized structure corresponding to (2S)-2-acetamido-2-(methylcarbam oyl)ethylacetate.

Table S817: The calculated geometric terms of (2S)-2-acetamido-2-(methylcarbamoyl)ethylac etate.

Terms	QM	CHARMM	Abs. diff.
N-HN	1.02	1.00	0.02
N-CA	1.46	1.46	0.01
N-CY	1.38	1.34	0.04
CA-HA	1.10	1.08	0.01
CA-CB	1.52	1.55	0.04
CA-C	1.53	1.52	0.01
CB-HB1	1.10	1.11	0.02
CB-HB2	1.09	1.12	0.02
CB-OG	1.44	1.44	0.00
OG-CD	1.38	1.34	0.04
CD-OD	1.21	1.22	0.00
CD-CE	1.51	1.51	0.00
CE-HE3	1.09	1.11	0.02
CE-HE1	1.09	1.11	0.01
CE-HE2	1.09	1.11	0.01
C-O	1.23	1.23	0.00
C-NT	1.37	1.35	0.02
NT-HNT	1.01	0.99	0.02
NT-CAT	1.46	1.44	0.01
CAT-HT1	1.09	1.11	0.02
CAT-HT2	1.09	1.11	0.02
CAT-HT3	1.10	1.11	0.02
CAY-HY1	1.09	1.11	0.02
CAY-HY2	1.09	1.11	0.02
CAY-HY3	1.09	1.11	0.02
CAY-CY	1.51	1.48	0.03
CY-OY	1.23	1.22	0.01
N-CA-HA	111.15	106.75	4.40
N-CA-CB	109.01	112.06	3.05
N-CA-C	112.80	116.10	3.30
N-CY-CAY	115.00	116.37	1.37
N-CY-OY	121.41	122.59	1.18

Terms	QM	CHARMM	Abs. diff.
HN-N-CA	114.30	114.90	0.59
HN-N-CY	117.10	118.18	1.08
CA-N-CY	118.36	124.77	6.41
CA-CB-HB1	110.15	109.57	0.58
CA-CB-HB2	108.95	107.88	1.07
CA-CB-OG	105.93	108.07	2.15
CA-C-O	120.94	120.78	0.16
CA-C-NT	114.21	117.52	3.31
HA-CA-CB	109.47	107.83	1.64
HA-CA-C	105.72	106.10	0.37
CB-CA-C	108.59	107.56	1.02
CB-OG-CD	120.77	121.99	1.22
HB1-CB-HB2	109.70	109.93	0.24
HB1-CB-OG	110.29	110.06	0.23
HB2-CB-OG	111.75	111.26	0.49
OG-CD-OD	118.13	123.77	5.64
OG-CD-CE	117.42	114.23	3.19
CD-CE-HE3	107.74	107.50	0.24
CD-CE-HE1	111.58	110.98	0.59
CD-CE-HE2	110.70	110.66	0.05
OD-CD-CE	124.44	122.00	2.43
HE3-CE-HE1	109.56	108.16	1.40
HE3-CE-HE2	109.32	108.00	1.32
HE1-CE-HE2	107.93	111.38	3.46
C-NT-HNT	114.87	119.25	4.37
C-NT-CAT	118.81	121.78	2.97
O-C-NT	124.05	121.60	2.45
NT-CAT-HT1	108.40	111.31	2.91
NT-CAT-HT2	108.89	110.65	1.76
NT-CAT-HT3	111.80	110.24	1.57
HNT-NT-CAT	117.36	117.87	0.51
HT1-CAT-HT2	109.52	108.20	1.32
HT1-CAT-HT3	108.54	108.08	0.47
HT2-CAT-HT3	109.65	108.27	1.38
CAY-CY-OY	123.58	121.04	2.55
HY1-CAY-HY2	109.93	108.78	1.15
HY1-CAY-HY3	108.24	109.44	1.20
HY1-CAY-CY	111.65	110.62	1.02
HY2-CAY-HY3	108.68	108.54	0.14
HY2-CAY-CY	108.71	109.35	0.64
HY3-CAY-CY	109.58	110.07	0.49

Figure S440: The PES scan for flexible dihedral corresponding to (2S)-2-acetamido-2-(methylcarb amoyl)ethylacetate.

2.138 The small molecule 1 used for bonded terms optimization of (2s)-2-amino-4,4-difluorobut anoicacid (OBF)

Figure S441: The energy minimized structure corresponding to 1,1-difluoropropane.

Table S818: The calculated geometric terms of 1,1-difluoropropane.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.54	0.01
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-CG	1.50	1.53	0.02
CG-HG	1.09	1.08	0.01
CG-FG1	1.38	1.35	0.03
CG-FG2	1.37	1.35	0.02
HA3-CA-HA2	108.40	108.13	0.27
HA3-CA-HA	108.20	108.38	0.18
HA3-CA-CB	110.52	110.63	0.10
HA2-CA-HA	107.82	108.24	0.43
HA2-CA-CB	110.61	110.42	0.19
CA-CB-HB1	111.14	109.35	1.79
CA-CB-HB2	111.20	109.45	1.74
CA-CB-CG	112.21	112.49	0.28
HA-CA-CB	111.19	110.96	0.23
CB-CG-HG	114.18	111.46	2.72
CB-CG-FG1	109.78	111.23	1.45
CB-CG-FG2	109.90	110.86	0.97
HB1-CB-HB2	107.50	107.52	0.03
HB1-CB-CG	106.77	108.83	2.06
HB2-CB-CG	107.79	109.07	1.29
HG-CG-FG1	107.56	108.11	0.55
HG-CG-FG2	107.87	108.20	0.33
FG1-CG-FG2	107.31	106.79	0.52

Figure S442: The PES scan for flexible dihedrals corresponding to 1,1-difluoropropane.

2.139 The small molecule 2 used for bonded terms optimization of (2s)-2-amino-4,4-difluorobut anoicacid (OBF)

Figure S443: The energy minimized structure corresponding to (2S)-2-acetamido-4,4-difluoro-N-me thylbutanamide.

Table S819: The calculated geometric terms of (2S)-2-acetamido-4,4-difluoro-N-methylbutana mide.

$\begin{array}{ccc} \text{RMM} & \text{Abs. di} \\ \hline 00 & 0.02 \\ \hline 12 & 0.02 \\ \hline \end{array}$	iff.
00 0.02	
10 0.00	
46 0.00	
34 0.04	
08 0.02	
56 0.03	
52 0.01	
11 0.02	
11 0.02	
53 0.02	
08 0.01	
35 0.04	
35 0.02	
23 0.00	
35 0.02	
99 0.02	
45 0.01	
11 0.02	
11 0.02	
11 0.02	
11 0.02	
11 0.02	
11 0.02	
48 0.03	
22 0.01	
7.39 3.07	
1.69 2.61	
6.39 1.29	
2.87 1.42	
6.64 0.98	
0.32	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Terms	QM	CHARMM	Abs. diff.
CA-N-CY	118.67	125.00	6.32
CA-CB-HB1	108.25	109.42	1.17
CA-CB-HB2	110.71	109.93	0.78
CA-CB-CG	114.01	113.32	0.70
CA-C-O	120.76	120.80	0.04
CA-C-NT	114.33	117.58	3.25
HA-CA-CB	110.14	109.05	1.09
HA-CA-C	104.25	105.58	1.33
CB-CA-C	108.54	107.89	0.65
CB-CG-HG	114.41	112.14	2.27
CB-CG-FG1	110.11	111.49	1.38
CB-CG-FG2	109.65	110.24	0.59
HB1-CB-HB2	107.91	107.42	0.50
HB1-CB-CG	107.57	107.50	0.07
HB2-CB-CG	108.18	109.07	0.89
HG-CG-FG1	107.18	108.38	1.20
HG-CG-FG2	108.47	107.85	0.62
FG1-CG-FG2	106.72	106.51	0.21
C-NT-HNT	115.38	119.57	4.20
C-NT-CAT	119.26	121.89	2.63
O-C-NT	124.13	121.58	2.54
NT-CAT-HT1	108.30	111.37	3.07
NT-CAT-HT2	108.95	110.57	1.62
NT-CAT-HT3	111.89	110.24	1.65
HNT-NT-CAT	117.82	117.90	0.08
HT1-CAT-HT2	109.52	108.11	1.41
HT1-CAT-HT3	108.53	107.93	0.60
HT2-CAT-HT3	109.60	108.52	1.08
CAY-CY-OY	123.45	120.74	2.71
HY1-CAY-HY2	108.35	109.58	1.23
HY1-CAY-HY3	108.47	108.52	0.04
HY1-CAY-CY	109.53	109.82	0.29
HY2-CAY-HY3	109.85	109.03	0.81
HY2-CAY-CY	111.93	110.99	0.94
HY3-CAY-CY	108.66	108.86	0.20

Figure S444: The PES scan for flexible dihedral corresponding to (2S)-2-acetamido-4,4-difluoro-N-methylbutanamide.

2.140 The small molecule used for bonded terms optimization of cysteinesulfonicacid (OCS)

Figure S445: The energy minimized structure corresponding to (2R)-2-acetamido-2-(methylcarbam oyl)ethane-1-sulfonicacid.

Table S820: The calculated geometric terms of (2R)-2-acetamido-2-(methylcarbamoyl)ethane-1-sulfonicacid.

Terms	QM	CHARMM	Abs. diff.
N-HN	1.03	1.01	0.03
N-CA	1.46	1.45	0.01
N-CY	1.36	1.34	0.02
CA-HA	1.10	1.08	0.01
CA-CB	1.53	1.56	0.03
CA-C	1.53	1.53	0.00
CB-HB1	1.09	1.11	0.01
CB-HB2	1.09	1.11	0.01
CB-SG	1.82	1.80	0.02
SG-OD1	1.51	1.45	0.06
SG-OD2	1.49	1.45	0.04
SG-OD3	1.49	1.45	0.04
C-O	1.24	1.23	0.01
C-NT	1.37	1.35	0.02
NT-HNT	1.02	0.99	0.02
NT-CAT	1.45	1.44	0.01
CAT-HT1	1.09	1.11	0.02
CAT-HT2	1.09	1.11	0.02
CAT-HT3	1.10	1.11	0.02
CAY-HY1	1.09	1.11	0.02
CAY-HY2	1.09	1.11	0.02
CAY-HY3	1.09	1.11	0.02
CAY-CY	1.52	1.48	0.03
CY-OY	1.24	1.22	0.02
N-CA-HA	109.96	108.18	1.78
N-CA-CB	109.87	109.47	0.40
N-CA-C	111.55	113.48	1.93
N-CY-CAY	115.30	115.50	0.19
N-CY-OY	122.97	123.81	0.84
HN-N-CA	113.95	110.67	3.28
HN-N-CY	119.80	118.43	1.37
CA-N-CY	120.89	127.98	7.09

Terms	QM	CHARMM	Abs. diff.
CA-CB-HB1	109.17	110.07	0.90
CA-CB-HB2	111.34	111.80	0.46
CA-CB-SG	113.26	111.96	1.30
CA-C-O	122.38	122.34	0.05
CA-C-NT	114.36	116.25	1.89
HA-CA-CB	109.42	109.51	0.09
HA-CA-C	106.40	107.39	0.99
CB-CA-C	109.57	108.74	0.83
CB-SG-OD1	103.11	103.95	0.83
CB-SG-OD2	104.61	103.55	1.06
CB-SG-OD3	104.62	104.11	0.50
HB1-CB-HB2	109.29	109.40	0.11
HB1-CB-SG	106.94	106.70	0.24
HB2-CB-SG	106.67	106.72	0.04
OD1-SG-OD2	113.60	114.17	0.57
OD1-SG-OD3	113.18	114.40	1.22
OD2-SG-OD3	115.95	114.76	1.18
C-NT-HNT	114.40	117.19	2.80
C-NT-CAT	119.37	122.81	3.44
O-C-NT	122.72	121.41	1.32
NT-CAT-HT1	108.95	110.81	1.85
NT-CAT-HT2	108.68	110.37	1.69
NT-CAT-HT3	111.78	110.11	1.67
HNT-NT-CAT	117.61	119.51	1.90
HT1-CAT-HT2	109.24	108.57	0.67
HT1-CAT-HT3	108.43	108.25	0.18
HT2-CAT-HT3	109.72	108.66	1.06
CAY-CY-OY	121.72	120.69	1.03
HY1-CAY-HY2	110.10	109.42	0.67
HY1-CAY-HY3	108.69	108.86	0.17
HY1-CAY-CY	112.51	110.35	2.16
HY2-CAY-HY3	108.06	109.09	1.02
HY2-CAY-CY	108.97	109.67	0.70
HY3-CAY-CY	108.39	109.42	1.03

Figure S446: The PES scan for flexible dihedral corresponding to (2R)-2-acetamido-2-(methylcarb amoyl)ethane-1-sulfonicacid.

2.141 The small molecule used for bonded terms optimization of s-(2-hydroxyethyl)-l-cysteine (OCY)

Terms	QM	CHARMM	Abs. diff.
CD-CE-OZ	106.09	109.78	3.69
HD1-CD-HD2	108.59	107.08	1.52
HD1-CD-CE	108.86	108.26	0.60
HD2-CD-CE	108.87	108.26	0.61
CE-OZ-HZ	107.57	108.07	0.50
HE2-CE-HE1	108.09	108.71	0.62
HE2-CE-OZ	111.33	109.61	1.73
HE1-CE-OZ	111.33	109.63	1.70

Figure S447: The energy minimized structure corresponding to 2-(ethylsulfanyl)ethan-1-ol.

Table S821: The calculated geometric terms of 2-
(ethylsulfanyl)ethan-1-ol.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.53	0.01
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SG	1.82	1.82	0.00
SG-CD	1.81	1.82	0.01
CD-HD1	1.09	1.11	0.02
CD-HD2	1.09	1.11	0.02
CD-CE	1.52	1.54	0.02
CE-HE2	1.10	1.11	0.01
CE-HE1	1.10	1.11	0.02
CE-OZ	1.43	1.43	0.00
OZ-HZ	0.97	0.96	0.01
HA3-CA-HA2	108.23	108.36	0.13
НАЗ-СА-НА	108.30	108.32	0.03
HA3-CA-CB	111.00	110.54	0.46
HA2-CA-HA	108.19	108.36	0.17
HA2-CA-CB	110.04	110.63	0.59
CA-CB-HB1	110.31	108.68	1.63
CA-CB-HB2	110.31	108.67	1.64
CA-CB-SG	109.96	112.81	2.85
HA-CA-CB	110.99	110.54	0.45
CB-SG-CD	98.58	96.32	2.26
HB1-CB-HB2	108.05	107.06	0.99
HB1-CB-SG	109.08	109.73	0.65
HB2-CB-SG	109.09	109.71	0.63
SG-CD-HD1	110.22	109.77	0.45
SG-CD-HD2	110.23	109.77	0.45
SG-CD-CE	110.03	113.48	3.45
CD-CE-HE2	110.01	109.54	0.47
CD-CE-HE1	109.99	109.56	0.44

Figure S448: The PES scan for flexible dihedral = corresponding to 2-(ethylsulfanyl)ethan-1-ol.

2.142 The small molecule used for bonded terms optimization of (betaR)-3-chloro-beta-hydrox y-L-tyrosine (OMY)

Terms	QM	CHARMM	Abs. diff.
HB-CB-CG	108.77	108.80	0.03
OG-CB-CG	110.59	115.27	4.68
CG-CD1-HD1	121.55	120.26	1.29
CG-CD1-CE1	120.23	121.04	0.82
CG-CD2-HD2	118.96	120.00	1.04
CG-CD2-CE2	121.11	120.79	0.32
CD1-CG-CD2	118.44	118.30	0.14
CD1-CE1-CL	119.80	118.97	0.82
CD1-CE1-CZ	121.38	119.77	1.61
HD1-CD1-CE1	118.22	118.70	0.48
CD2-CE2-HE2	121.44	120.27	1.17
CD2-CE2-CZ	120.59	120.06	0.53
HD2-CD2-CE2	119.93	119.20	0.73
CE1-CZ-CE2	118.25	119.99	1.74
CE1-CZ-OH	123.93	121.10	2.83
CL-CE1-CZ	118.82	121.26	2.44
CE2-CZ-OH	117.83	118.91	1.08
HE2-CE2-CZ	117.97	119.66	1.70
CZ-OH-HH	108.44	106.49	1.95

Figure S449: The energy minimized structure corresponding to 4-(1-hydroxyethyl)-2-methylphenol.

Table S822: The calculated geometric terms of 4-(1-hydroxyethyl)-2-methylphenol.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.54	0.02
CB-HB	1.10	1.11	0.02
CB-OG	1.43	1.42	0.01
CB-CG	1.52	1.53	0.01
OG-HG	0.97	0.96	0.02
CG-CD1	1.40	1.41	0.01
CG-CD2	1.40	1.41	0.01
CD1-HD1	1.09	1.08	0.01
CD1-CE1	1.39	1.40	0.01
CD2-HD2	1.09	1.08	0.01
CD2-CE2	1.39	1.40	0.01
CE1-CL	1.75	1.74	0.00
CE1-CZ	1.40	1.40	0.00
CE2-HE2	1.09	1.08	0.01
CE2-CZ	1.40	1.40	0.00
CZ-OH	1.36	1.41	0.05
OH-HH	0.98	0.96	0.01
HA3-CA-HA2	108.69	108.27	0.42
HA3-CA-HA	108.42	108.61	0.19
HA3-CA-CB	110.53	111.32	0.79
HA2-CA-HA	108.28	107.37	0.91
HA2-CA-CB	108.68	110.10	1.42
CA-CB-HB	108.84	108.27	0.57
CA-CB-OG	110.22	106.48	3.75
CA-CB-CG	114.40	110.79	3.61
HA-CA-CB	112.16	111.04	1.11
CB-OG-HG	106.35	105.42	0.93
CB-CG-CD1	122.43	119.18	3.25
CB-CG-CD2	119.10	122.49	3.39
HB-CB-OG	103.42	106.97	3.55

Figure S450: The energy minimized structure corresponding to (4-methylphenyl)(phenyl)methano ne.

Table S823: The calculated geometric terms of (4-methylphenyl)(phenyl)methanone.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.10	1.11	0.02
CB-CG	1.51	1.50	0.01
CG-CD1	1.40	1.40	0.00
CG-CD2	1.40	1.40	0.00
CD1-HD1	1.09	1.08	0.01
CD1-CE1	1.39	1.40	0.01
CD2-HD2	1.09	1.08	0.01
CD2-CE2	1.39	1.40	0.01
CE1-HE1	1.09	1.08	0.01
CE1-CZ	1.40	1.41	0.01
CE2-HE2	1.09	1.08	0.01
CE2-CZ	1.40	1.41	0.01
CZ- CF	1.49	1.50	0.00
CF-CJ	1.49	1.50	0.00
CF-OF	1.24	1.23	0.00
CJ-CH1	1.40	1.41	0.01
CJ-CH2	1.40	1.41	0.01
CH1-HH1	1.09	1.08	0.01
CH1-CM1	1.39	1.40	0.01
CH2-HH2	1.09	1.08	0.01
CH2-CM2	1.40	1.40	0.00
CM1-HM1	1.09	1.08	0.01
CM1-CL	1.40	1.40	0.00
CM2-HM2	1.09	1.08	0.01
CM2-CL	1.40	1.40	0.00
CL-HL	1.09	1.08	0.01
HB3-CB-HB1	108.16	109.11	0.95
HB3-CB-HB2	107.60	109.75	2.15
HB3-CB-CG	111.07	109.64	1.43
CB-CG-CD1	120.93	120.18	0.75

Terms	QM	CHARMM	Abs. diff.
CB-CG-CD2	120.77	120.15	0.61
HB1-CB-HB2	107.68	109.89	2.20
HB1-CB-CG	111.10	109.76	1.34
HB2-CB-CG	111.07	108.68	2.39
CG-CD1-HD1	119.38	119.63	0.24
CG-CD1-CE1	121.21	120.18	1.03
CG-CD2-HD2	119.36	119.76	0.40
CG-CD2-CE2	121.07	120.21	0.86
CD1-CG-CD2	118.28	119.66	1.39
CD1-CE1-HE1	119.92	118.72	1.20
CD1-CE1-CZ	119.93	120.79	0.86
HD1-CD1-CE1	119.40	120.19	0.78
CD2-CE2-HE2	121.10	119.24	1.86
CD2-CE2-CZ	120.17	120.89	0.72
HD2-CD2-CE2	119.56	120.03	0.47
CE1-CZ-CE2	119.31	118.23	1.08
CE1-CZ-CF	122.39	123.61	1.22
HE1-CE1-CZ	120.12	120.48	0.36
CE2-CZ-CF	118.18	118.07	0.10
HE2-CE2-CZ	118.72	119.87	1.14
CZ-CF-CJ	119.51	119.74	0.22
CZ-CF-OF	120.35	120.12	0.22
CF-CJ-CH1	117.99	118.05	0.06
CF-CJ-CH2	122.14	123.56	1.41
CJ-CF-OF	120.14	120.14	0.00
CJ-CH1-HH1	118.67	119.91	1.24
CJ-CH1-CM1	120.10	120.90	0.80
CJ-CH2-HH2	120.01	120.58	0.56
CJ-CH2-CM2	119.85	120.71	0.86
CH1-CJ-CH2	119.77	118.30	1.47
CH1-CM1-HM1	119.90	119.89	0.01
CH1-CM1-CL	120.10	119.96	0.14
HH1-CH1-CM1	121.23	119.19	2.05
CH2-CM2-HM2	119.77	120.04	0.28
CH2- $CM2$ - CL	120.24	120.05	0.19
HH2-CH2-CM2	120.11	118.70	1.41
CM1- CL - $CM2$	119.93	120.05	0.12
CM1-CL-HL	120.06	119.88	0.18
HM1-CM1-CL	120.00	120.14	0.15
CM2-CL-HL	120.01	120.07	0.05
HM2-CM2-CL	119.99	119.91	0.09

Figure S451: The PES scan for flexible dihedral corresponding to (4-methylphenyl)(phenyl)metha none.

2.144 The small molecule used for bonded terms optimization of aspartylphosphate (PHD)

Figure S453: The PES scan for flexible dihedral corresponding to (propanoyloxy)phosphonicacid.

Figure S452: The energy minimized structure corresponding to (propanoyloxy)phosphonicacid.

Table S824:	The	calculated	geometric	terms	of (pr
opanoyloxy)	phos	phonicacid.	i			

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.01
HA2-CA	1.10	1.11	0.01
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.54	0.02
CB-HB1	1.10	1.11	0.01
CB-HB2	1.10	1.11	0.01
CB-CG	1.55	1.54	0.01
CG-OD2	1.25	1.22	0.03
CG-OD1	1.29	1.30	0.01
OD1-P	2.01	1.56	0.45
P-OP1	1.53	1.51	0.02
P-OP2	1.54	1.52	0.02
P-OP3	1.53	1.52	0.02
HA3-CA-HA2	108.28	109.18	0.90
HA3-CA-HA	109.17	109.36	0.20
HA3-CA-CB	111.54	110.57	0.97
HA2-CA-HA	107.18	108.14	0.96
HA2-CA-CB	110.49	109.69	0.80
CA-CB-HB1	110.23	110.72	0.49
CA-CB-HB2	111.45	109.97	1.49
CA-CB-CG	113.50	112.67	0.83
HA-CA-CB	110.06	109.86	0.21
CB-CG-OD2	118.14	123.96	5.81
CB-CG-OD1	111.04	106.57	4.47
HB1-CB-HB2	106.54	108.71	2.17
HB1-CB-CG	106.74	106.09	0.65
HB2-CB-CG	108.03	108.53	0.50
CG-OD1-P	131.53	132.43	0.90
OD2-CG-OD1	130.79	129.46	1.34
OD1-P-OP1	100.88	104.63	3.74
OD1-P-OP2	94.85	102.36	7.51
OD1-P-OP3	100.38	104.44	4.06
OP1-P-OP2	117.25	113.79	3.46
OP1-P-OP3	118.69	115.98	2.71

2.145 The small molecule used for bonded terms optimization of aspartylphosphate (PHDP)

нв2 НАЗ
HB1 CB HA2
001 062
H30-OP3

Figure S454: The energy minimized structure corresponding to (propanoyloxy)phosphonicacid.

Table S825: The calculated geometric terms of (pr opanoyloxy)phosphonicacid.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.01
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.54	0.02
CB-HB1	1.10	1.11	0.01
CB-HB2	1.10	1.11	0.01
CB-CG	1.52	1.53	0.01
CG-OD2	1.23	1.22	0.01
CG-OD1	1.34	1.32	0.02
OD1-P	1.75	1.59	0.17
P-OP1	1.50	1.50	0.00
P-OP2	1.51	1.50	0.01
P-OP3	1.66	1.59	0.07
OP3-H3O	0.98	0.96	0.01
HA3-CA-HA2	108.72	108.64	0.08
HA3-CA-HA	108.55	108.74	0.20
HA3-CA-CB	110.59	110.65	0.06
HA2-CA-HA	107.39	108.18	0.79
HA2-CA-CB	110.68	110.20	0.48
CA-CB-HB1	111.61	110.25	1.36
CA-CB-HB2	111.27	110.25	1.02
CA-CB-CG	112.98	111.84	1.14
HA-CA-CB	110.81	110.36	0.45
CB-CG-OD2	123.35	124.60	1.25
CB-CG-OD1	109.81	107.63	2.18
HB1-CB-HB2	105.90	108.62	2.72
HB1-CB-CG	107.74	108.17	0.44
HB2-CB-CG	106.96	107.61	0.65
CG-OD1-P	123.82	123.56	0.26
OD2-CG-OD1	126.84	127.78	0.94
OD1-P-OP1	107.37	107.26	0.11
OD1-P-OP2	102.18	105.29	3.11
OD1-P-OP3	99.76	105.86	6.10
Р-ОР3-НЗО	105.28	110.00	4.72

QM	CHARMM	Abs. diff.
126.51	120.04	6.47
109.98	111.23	1.25
107.55	106.19	1.35
	QM 126.51 109.98 107.55	QMCHARMM126.51120.04109.98111.23107.55106.19

Figure S455: The PES scan for flexible dihedrals corresponding to (propanoyloxy)phosphonicacid.
2.146 The small molecule used for bonded terms optimization of 1-[(2R)-2-carboxy-2-hydroxye thyl]-L-proline (PR4)

Figure S456: The energy minimized structure corresponding to 2-hydroxy-3-[2-(methylcarbamoyl)p yrrolidin-1-yl]propanoicacid.

Table S826: The calculated geometric terms of 2-hydroxy-3-[2-(methylcarbamoyl)pyrrolidin-1-yl]p ropanoicacid.

_					$OR^{-}OI$
	Terms	QM	CHARMM	Abs. diff.	CA-C
	OAE-CAD	1.27	1.26	0.01	CA-
	OAF-CAD	1.25	1.26	0.01	CA-C
	CAD-CAC	1.57	1.58	0.02	HA-C
	CAC-HAC	1.10	1.11	0.01	HA-0
	CAC-OAG	1.43	1.46	0.03	CB-C
	CAC-CAB	1.54	1.56	0.02	CB-CC
	OAG-HOAG	1.00	0.98	0.02	CB-CC
	CAB-HAB1	1.10	1.11	0.02	CB-C
	CAB-HAB2	1.10	1.11	0.01	HB1-C
	CAB-N	1.46	1.47	0.01	HB1-C
	N-CA	1.46	1.50	0.04	HB2-C
	N-CD	1.46	1.48	0.02	CG-CI
	CA-HA	1.11	1.10	0.01	CG-CI
	CA-CB	1.55	1.55	0.00	HG1-C
	CA-C	1.54	1.53	0.02	HG1-C
	CB-HB1	1.10	1.10	0.00	HG2-C
	CB-HB2	1.09	1.10	0.01	HD1-C
	CB-CG	1.54	1.53	0.01	C-NF
	CG-HG1	1.10	1.10	0.00	C-NF
	CG-HG2	1.10	1.10	0.01	O-C
	CG-CD	1.53	1.52	0.01	NR-CI
	CD-HD1	1.09	1.10	0.01	NR-CI
	CD-HD2	1.11	1.10	0.01	NR-CI
	C-O	1.24	1.23	0.01	HR-N
	C-NR	1.35	1.35	0.00	HR1-C
	NR-HR	1.03	1.01	0.02	HR1-C
	NR-CR	1.45	1.44	0.01	HR2-C
	CR-HR1	1.10	1.11	0.01 =	
	CR-HR2	1.09	1.11	0.02	
	CR-HR3	1.10	1.11	0.01	
1	OAE-CAD-OAF	129.68	127.54	2.14	

Terms	QM	CHARMM	Abs. diff.
OAE-CAD-CAC	113.50	116.31	2.80
OAF-CAD-CAC	116.82	116.15	0.67
CAD-CAC-HAC	107.30	104.41	2.88
CAD-CAC-OAG	108.65	116.54	7.89
CAD-CAC-CAB	113.77	111.03	2.74
CAC-OAG-HOAG	99.70	100.52	0.82
CAC-CAB-HAB1	108.07	106.43	1.64
CAC-CAB-HAB2	107.98	108.90	0.92
CAC-CAB-N	113.59	114.73	1.14
HAC-CAC-OAG	109.17	107.02	2.16
HAC-CAC-CAB	107.12	107.05	0.07
OAG-CAC-CAB	110.69	110.14	0.55
CAB-N-CA	117.66	117.37	0.29
CAB-N-CD	117.28	117.62	0.34
HAB1-CAB-HAB2	107.66	106.95	0.72
HAB1-CAB-N	107.00 107.67	109.33	1.75
HAB2-CAB-N	111 65	110.07	1.19
N CA HA	119 11	106.00	5.19
N CA CB	105.94	105.08	0.12
N CA C	100.24 113.79	114.08	0.10
N CD CC	102.84	103 31	0.37
N CD UD1	102.04 110.70	111 12	0.48
N CD HD2	111.79	100.56	1.06
CA N CD	100.90	109.50	1.90 2.70
CA CR UR1	109.09	100.17	0.12
CA-CD-IIDI	109.42 111 79	109.00	0.10
= CA-CD-IID2	104.09	115.07	2.14
	104.00	100.27	1.19
CA-C-U	120.00	119.00	1.00
UA-U-NA	110.20	110.90	2.71 0.55
	109.20	109.75	0.55
CR CA C	104.00 111.07	107.32	2.04
CB CC HC1	111.97	113.42	0.50
CB CC HC2	112.00 110.77	110.40	0.09
CP CC CD	109.47	102.12	0.09
	102.47	102.12	0.00
$\Pi D I - \bigcup D - \Pi D Z$	107.30	100.05	1.55
IDI-OD-OG	109.01	110.47	0.00
HB2-UB-UG	114.30	111.94	2.42
CG-CD-HDI	113.72	112.09	1.03
UG-UD-HD2	110.09	112.64	1.95
HGI-UG-HGZ	108.10	107.11	0.99
HGI-UG-UD	112.83	113.25	0.43
HG2-UG-UD	109.70	110.06	0.31
HDI-CD-HD2	107.33	107.50	0.17
C-NR-HR	119.17	115.31	3.86
C-NR-CR	121.49	129.68	8.19
O-C-NR	123.41	121.70	1.71
NK-CK-HKI	111.09	110.36	0.73
NR-CR-HR2	108.25	109.83	1.59
NK-CK-HR3	111.36	110.29	1.07
HK-NK-UK	118.89	114.96	3.93
HRI-UK-HR2	109.38	108.79	0.59
HKI-UK-HK3	107.51	108.74	1.23
пк2-Ск-НК3	109.22	108.78	0.44

Figure S457: The PES scan for flexible dihedrals corresponding to 2-hydroxy-3-[2-(methylcarbamoy l)pyrrolidin-1-yl]propanoicacid.

2.147 The small molecule 1 used for bonded terms optimization of Thioproline (PRS)

Figure S458: The energy minimized structure corresponding to 2-[3-(2-acetamidoacetyl)-1,3-thiazo lidin-4-yl]formamido-N-methylacetamide.

Table S827: The calculated geometric terms of 2-[3-(2-acetamidoacetyl)-1,3-thiazolidin-4-yl]forma mido-N-methylacetamide.

Terms	QM	CHARMM	Abs. diff.
N1AL-HNN1	1.01	0.99	0.02
N1AL-C1AL	1.46	1.45	0.01
N1AL-CY	1.37	1.34	0.03
C1AL-H1AL	1.09	1.08	0.01
C1AL-CB11	1.53	1.54	0.01
C1AL-C11	1.54	1.54	0.01
CB11-H111	1.10	1.11	0.01
CB11-H211	1.10	1.11	0.01
CB11-H311	1.09	1.11	0.02
C11-O11	1.23	1.23	0.00
C11-N	1.37	1.38	0.01
CAY-HY1	1.09	1.11	0.02
CAY-HY2	1.09	1.11	0.02
CAY-HY3	1.10	1.11	0.02
CAY-CY	1.52	1.48	0.04
CY-OY	1.23	1.22	0.01
N-CA	1.48	1.47	0.01
N-CD	1.47	1.48	0.01
CA-HA	1.09	1.10	0.01
CA-CB	1.53	1.54	0.01
CA-C	1.55	1.52	0.03
CB-HB1	1.09	1.10	0.01
CB-HB2	1.09	1.10	0.01
CB-SG	1.84	1.81	0.03
SG-CD	1.83	1.82	0.01
CD-HD1	1.10	1.10	0.00
CD-HD2	1.09	1.10	0.01
C-O	1.23	1.22	0.00
C-N2AL	1.35	1.35	0.00
N2AL-HNN2	1.01	1.00	0.02
N2AL-C2AL	1.46	1.46	0.01
C2AL-H2AL	1.09	1.08	0.01

•	Terms	QM	CHARMM	Abs. diff.
•	C2AL-CB22	1.53	1.54	0.01
	C2AL-C22	1.55	1.53	0.02
	CB22-H122	1.10	1.11	0.01
	CB22-H222	1.09	1.11	0.02
	CB22-H322	1.09	1.11	0.02
	C22-O22	1.22	1.23	0.00
	C22-NT	1.37	1.35	0.02
	NT-HNT	1.01	1.00	0.02
	NT-CAT	1.45	1.45	0.01
	CAT-HT1	1.09	1.11	0.02
	CAT-HT2	1.00	1 11	0.02
	CAT-HT3	1.00	1 11	0.02
	N1AL_C1AL_H1AL	108.82	106 70	2 1 2
	NIAL-CIAL-CB11	110.02	100.70	0.79
	NIAL-CIAL-CII	11/ 08	117.20	9.31
	NIAL CV CAV	116.51	117.25 117.11	2.51
	NIAL-OV OV	191 91	191 73	0.00
-	HNN1.N1AI C1AT	117 04	11618	0.01
)	HNN1 N1AL OV	112 91	110.10	1.00
	CIAL NIAL OV	110.41 190 75	119.44 199.19	1.41
	CIAL-NIAL-UI	140.70	140.10	4.30 0.71
	CIAL-ODII-HIII	110.49 110.16	109.70 111 77	0.71
ı	$C1AL-CD11-\Pi211$ $C1AL-CD11-\Pi211$	112.10	111.74	0.42 1.14
	CIAL-ODII-H3II	109.02 117.41	115.60	1.14 1.70
	CIAL-OII-OII	117.41 191.40	110.02	1.79
	UIAL-UII-N	121.49	124.90	0.49 1.20
	UIAL CIAL CII	100.95	107.03	1.30 2.70
	CP11 C1AL C11	102.10	104.94	2.79
	UDII-UIAL-UII U111 CD11 U911	108 20	110.23	1.00
	ППП-ОДП-П2П П111 СР11 П211	100.52	107.60	0.00
	ППП-ОДП-ПЭП П911 СР11 П911	107.04	107.09	0.10
	C11 N CA	117 47	100.40	0.10
	C11 N CD	126.88	120.43 124.50	2.90
	011 C11 N	120.00	124.09	2.23
	CAV-CV-OV	121.00 122.00	19114	1.07
	HV1_CAV_HV2	122.27 100.27	108.88	0.39
	HV1 CAV HV3	103.21	100.00	0.35
	HV1-CAV-CV	113 65	105.25 111.51	2.49
	HY2-CAV-HV3	107 34	108.33	0 90
	$HV9_CAV_CV$	108.87	100.00	0.53
	HY3_CAV_CV	108.75	109.40	0.00 0.60
	N-CA-HA	108.39	110.95	2.56
	N-CA-CB	107.15	107.34	0.19
	N-CA-C	116.00	113.60	2.40
	N-CD-SG	106.05	105.66	0.38
	N-CD-HD1	110 70	108.63	2.07
	N-CD-HD2	111 75	111 99	0.25
	CA-N-CD	115.03	114.33	0.79
	CA-CB-HB1	1115.00	109.50	2.04
	CA-CB-HB2	110.49	113.00	2.51
	CA-CB-SG	105.06	104.58	0.47
	CA-C-O	11755	117 58	0.03
	CA-C-N2AL	118 54	120.76	2.21
	HA-CA-CB	109.97	107.27	2.70
	HA-CA-C	104 19	105 56	1.13
	CB-CA-C	111 04	111 99	0.95
	CB-SG-CD	88.93	89.13	0.20
	HB1-CB-HB2	109.42	105.24	4.18

Terms	QM	CHARMM	Abs. diff.
HB1-CB-SG	109.93	111.12	1.19
HB2-CB-SG	110.34	113.48	3.14
SG-CD-HD1	110.04	112.40	2.36
SG-CD-HD2	109.20	110.56	1.36
HD1-CD-HD2	109.06	107.63	1.43
C-N2AL-HNN2	120.17	121.12	0.95
C-N2AL-C2AL	120.57	122.43	1.86
O-C-N2AL	123.87	121.66	2.22
N2AL-C2AL-H2AL	108.02	107.32	0.70
N2AL-C2AL-CB22	110.88	110.60	0.28
N2AL-C2AL-C22	112.77	114.18	1.41
HNN2-N2AL-C2AL	117.66	114.93	2.73
C2AL-CB22-H122	110.53	110.14	0.39
C2AL- $CB22$ - $H222$	111.51	111.00	0.51
C2AL-CB22-H322	109.08	110.47	1.40
C2AL-C22-O22	120.47	121.42	0.95
C2AL-C22-NT	115.25	117.01	1.76
H2AL-C2AL-CB22	109.78	108.55	1.23
H2AL-C2AL-C22	104.23	105.89	1.66
CB22-C2AL-C22	110.88	110.02	0.86
H122-CB22-H222	108.29	108.37	0.08
H122-CB22-H322	108.58	108.13	0.45
H222-CB22-H322	108.79	108.65	0.14
C22-NT-HNT	118.05	119.25	1.21
C22-NT-CAT	120.57	122.66	2.09
O22-C22-NT	123.69	121.56	2.14
NT-CAT-HT1	108.32	111.55	3.23
NT-CAT-HT2	109.49	110.28	0.79
NT-CAT-HT3	112.29	110.40	1.89
HNT-NT-CAT	116.91	117.61	0.71
HT1-CAT-HT2	109.62	107.95	1.67
HT1-CAT-HT3	108.27	108.13	0.14
HT2-CAT-HT3	108.82	108.43	0.39

Figure S459: The energy minimized structure corresponding to (4R)-3-acetyl-N-methyl-1,3-thiazoli dine-4-carboxamide.

Table S828: The calculated geometric terms of (4R)-3-acetyl-N-methyl-1,3-thiazolidine-4-car boxamide.

Terms	QM	CHARMM	Abs. diff.
C1AL-H11	1.09	1.11	0.02
C1AL-H12	1.09	1.11	0.02
C1AL-H13	1.09	1.11	0.02
C1AL-C11	1.51	1.49	0.02
C11-O11	1.24	1.23	0.02
C11-N	1.36	1.37	0.00
N-CA	1.47	1.46	0.01
N-CD	1.47	1.47	0.01
CA-HA	1.10	1.10	0.01
CA-CB	1.52	1.54	0.02
CA-C	1.54	1.52	0.02
CB-HB1	1.09	1.10	0.01
CB-HB2	1.09	1.10	0.01
CB-SG	1.81	1.82	0.01
SG-CD	1.81	1.82	0.01
CD-HD1	1.10	1.10	0.00
CD-HD2	1.09	1.10	0.01
C-O	1.24	1.23	0.01
C-N2AL	1.35	1.34	0.01
N2AL-HNN2	1.02	1.00	0.02
N2AL-C2AL	1.45	1.44	0.01
C2AL-H21	1.09	1.11	0.02
C2AL-H22	1.09	1.11	0.02
C2AL-H23	1.09	1.11	0.02
C1AL-C11-O11	121.60	118.70	2.90
C1AL-C11-N	116.86	118.49	1.63
H11-C1AL-H12	109.15	108.35	0.80
H11-C1AL-H13	107.91	109.93	2.02
H11-C1AL-C11	110.89	110.43	0.46
H12-C1AL-H13	109.47	108.35	1.12
H12-C1AL-C11	107.62	108.99	1.37
H13-C1AL-C11	111.78	110.72	1.05

Terms	QM	CHARMM	Abs. diff.
C11-N-CA	120.47	121.82	1.35
C11-N-CD	123.19	122.50	0.70
O11-C11-N	121.53	122.81	1.29
N-CA-HA	107.47	112.22	4.75
N-CA-CB	105.82	106.64	0.82
N-CA-C	113.54	111.75	1.79
N-CD-SG	105.65	106.81	1.16
N-CD-HD1	110.64	108.76	1.88
N-CD-HD2	111.14	110.42	0.72
CA-N-CD	115.31	115.60	0.29
CA-CB-HB1	111.20	109.69	1.51
CA-CB-HB2	110.40	112.82	2.42
CA-CB-SG	104.62	104.91	0.29
CA-C-O	121.81	120.36	1.45
CA-C-N2AL	114.54	117.68	3.14
HA-CA-CB	111.39	106.01	5.38
HA-CA-C	107.99	106.77	1.21
CB-CA-C	110.63	113.40	2.77
CB-SG-CD	89.48	91.44	1.97
HB1-CB-HB2	110.64	105.35	5.30
HB1-CB-SG	110.88	110.74	0.14
HB2-CB-SG	108.93	113.41	4.48
SG-CD-HD1	111.24	111.87	0.62
SG-CD-HD2	108.93	111.64	2.71
HD1-CD-HD2	109.19	107.34	1.85
C-N2AL-HNN2	117.66	118.55	0.89
C-N2AL-C2AL	119.97	122.42	2.45
O-C-N2AL	123.63	121.96	1.67
N2AL-C2AL-H21	108.61	110.54	1.93
N2AL-C2AL-H22	109.38	110.98	1.60
N2AL-C2AL-H23	111.74	110.48	1.26
HNN2-N2AL-C2AL	120.69	118.78	1.91
H21-C2AL-H22	109.53	108.20	1.34
H21-C2AL-H23	109.37	108.39	0.98
H22-C2AL-H23	108.18	108.17	0.02

2.149 The small molecule used for bonded terms optimization of (2R)-amino(2-nitrophenyl)e thanoicacid (PRV)

Terms	QM	CHARMM	Abs. diff.
CD2-N1-O1	117.82	116.61	1.21
CD2-N1-O2	117.46	116.61	0.85
CD2-CE2-HE2	119.26	118.93	0.33
CD2-CE2-CZ	118.95	121.20	2.25
N1-CD2-CE2	116.01	119.82	3.81
O1-N1-O2	124.72	126.12	1.41
CE1-CZ-CE2	119.60	119.92	0.32
CE1-CZ-HZ	120.59	119.87	0.72
HE1-CE1-CZ	120.24	119.93	0.30
CE2-CZ-HZ	119.81	120.21	0.40
HE2-CE2-CZ	121.79	119.87	1.92

Figure S460: The energy minimized structure corresponding to 1-methyl-2-nitrobenzene.

Table S829: The calculated geometric terms of 1-methyl-2-nitrobenzene.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CG	1.51	1.51	0.00
CG-CD1	1.40	1.40	0.00
CG-CD2	1.40	1.43	0.02
CD1-HD1	1.09	1.08	0.01
CD1-CE1	1.39	1.40	0.00
CD2-N1	1.47	1.44	0.02
CD2-CE2	1.39	1.42	0.02
N1-O1	1.24	1.23	0.02
N1-O2	1.24	1.23	0.01
CE1-HE1	1.09	1.08	0.01
CE1-CZ	1.40	1.40	0.00
CE2-HE2	1.09	1.08	0.00
CE2-CZ	1.39	1.40	0.01
CZ-HZ	1.09	1.08	0.00
HA3-CA-HA2	108.80	109.60	0.80
HA3-CA-HA	108.48	108.93	0.45
HA3-CA-CG	109.25	110.81	1.57
HA2-CA-HA	107.01	109.41	2.40
HA2-CA-CG	111.22	108.70	2.52
CA-CG-CD1	119.92	117.66	2.26
CA-CG-CD2	124.46	122.50	1.97
HA-CA-CG	111.97	109.36	2.61
CG-CD1-HD1	118.29	119.61	1.32
CG-CD1-CE1	122.35	120.78	1.57
CG-CD2-N1	120.49	121.95	1.46
CG-CD2-CE2	123.50	118.23	5.27
CD1-CG-CD2	115.61	119.84	4.23
CD1-CE1-HE1	119.79	120.05	0.26
CD1-CE1-CZ	119.98	120.02	0.04
HD1-CD1-CE1	119.36	119.61	0.25

2.150 The small molecule 1 used for bonded terms optimization of 2-hydroxy-L-proline (PXU)

Figure S461: The energy minimized structure corresponding to 2-[1-(2-acetamidoacetyl)-2-hydrox ypyrrolidin-2-yl]formamido-N-methylacetamide.

Table S830: The calculated geometric terms of 2-[1-(2-acetamidoacetyl)-2-hydroxypyrrolidin-2-yl]f ormamido-N-methylacetamide.

Terms	QM	CHARMM	Abs. diff.
N1AL-HNN1	1.01	0.99	0.02
N1AL-C1AL	1.46	1.46	0.00
N1AL-CY	1.38	1.34	0.03
C1AL-H1AL	1.09	1.08	0.01
C1AL-CB11	1.53	1.54	0.01
C1AL-C11	1.54	1.54	0.00
CB11-H111	1.10	1.11	0.02
CB11-H211	1.10	1.11	0.01
CB11-H311	1.09	1.11	0.02
C11-O11	1.24	1.23	0.01
C11-N	1.36	1.37	0.01
CAY-HY1	1.09	1.11	0.01
CAY-HY2	1.10	1.11	0.02
CAY-HY3	1.09	1.11	0.02
CAY-CY	1.51	1.48	0.03
CY-OY	1.23	1.22	0.00
N-CA	1.49	1.45	0.04
N-CD	1.47	1.46	0.00
CA-OA	1.40	1.43	0.03
CA-CB	1.55	1.55	0.01
CA-C	1.56	1.55	0.01
OA-HO	0.99	0.97	0.02
CB-HB1	1.09	1.10	0.01
CB-HB2	1.09	1.10	0.01
CB-CG	1.54	1.55	0.00
CG-HG1	1.09	1.10	0.00
CG-HG2	1.10	1.10	0.01
CG-CD	1.53	1.53	0.01
CD-HD1	1.09	1.10	0.00
CD-HD2	1.10	1.10	0.01
C-O	1.23	1.23	0.00
C-N2AL	1.35	1.35	0.00

for	Terms	QM	CHARMM	Abs. diff.
ı of	N2AL-HNN2	1.01	1.00	0.02
U)	N2AL-C2AL	1.47	1.45	0.01
,	C2AL-H2AL	1.09	1.08	0.01
	C2AL-CB22	1.53	1.54	0.01
	C2AL-C22	1.54	1.53	0.01
	CB22-H122	1.10	1.11	0.01
	CB22-H222	1.10	1.11	0.01
	CB22-H322	1.09	1.11	0.02
	C22-O22	1.22	1.23	0.01
	C22-NT	1.37	1.35	0.02
	NT-HNT	1.01	0.99	0.02
	NT-CAT	1.45	1.45	0.01
	CAT-HT1	1.09	1.11	0.02
	CAT-HT2	1.09	1.11	0.02
	CAT-HT3	1.10	1.11	0.01
	N1AL-C1AL-H1AL	107.51	106.13	1.38
	N1AL-C1AL-CB11	111.95	111.78	0.17
drov	N1AL-C1AL-C11	112.09	115.03	2.94
	N1AL-CY-CAY	116.52	117.55	1.03
ie.	N1AL-CY-OY	120.78	121.43	0.64
of 2_	HNN1-N1AL-C1AL	119.49	117.66	1.83
$v_{\rm vllf}$	HNN1-N1AL-CY	119.60	119.74	0.13
- y 1] 1	CIAL-NIAL-CY	119.75	122.24	2.49
	C1AL-CB11-H111	109.87	109.79	0.08
ff	C1AL-CB11-H211	112.96	112.53	0.42
	CIAL-CBII-H3II	109.67	110.26	0.59
	CIAL-CII-OII	118.31	117.51	0.81
	CIAL-CII-N	120.29	122.40	2.11
	HIAL-CIAL-CBII	108.48	106.67	1.81
	CD11 C1AL C11	101.97	104.31	2.34
	UDII-UIAL-UII U111 CD11 U911	114.09 108.07	112.09	2.00
	ППП-ОБП-П2П Н111 СВ11 Н311	108.07	107.90	0.09
	H911 CB11 H311	107.01	107.00	0.56
	C11 N CA	107.51	191.03	1.41
	C11-N-CD	120.02	121.95	3 5 2
	011-C11-N	125.52 121.38	120.01 120.04	1.33
	CAY-CY-OY	122.68	120.01 121.02	1.66
	HY1-CAY-HY2	109.34	109.21	0.13
	HY1-CAY-HY3	109.41	109.24	0.17
	HY1-CAY-CY	113.75	111.81	1.94
	HY2-CAY-HY3	107.62	107.93	0.32
	HY2-CAY-CY	107.54	108.82	1.28
	HY3-CAY-CY	108.99	109.75	0.75
	N-CA-OA	112.53	112.19	0.34
	N-CA-CB	103.94	103.39	0.55
	N-CA-C	104.19	106.91	2.73
	N-CD-CG	101.86	101.57	0.29
	N-CD-HD1	111.12	113.39	2.27
	N-CD-HD2	110.60	109.29	1.31
	CA-N-CD	109.74	110.57	0.83
	CA-OA-HO	104.85	105.50	0.65
	CA-CB-HB1	109.84	111.73	1.89
	CA-CB-HB2	108.65	112.75	4.10
	CA-CB-CG	105.69	105.94	0.25
	CA-C-O	119.96	118.86	1.10
	CA-C-N2AL	116.03	119.52	3.49
	OA-CA-CB	111.44	108.18	3.27

Terms	QM	CHARMM	Abs. diff.
OA-CA-C	113.72	114.05	0.33
CB-CA-C	110.37	111.64	1.27
CB-CG-HG1	112.79	113.34	0.55
CB-CG-HG2	110.56	109.99	0.57
CB-CG-CD	103.50	103.09	0.41
HB1-CB-HB2	109.25	105.48	3.77
HB1-CB-CG	110.39	110.08	0.30
HB2-CB-CG	112.94	110.94	2.00
CG-CD-HD1	112.75	112.46	0.30
CG-CD-HD2	110.93	111.36	0.43
HG1-CG-HG2	108.26	107.14	1.12
HG1-CG-CD	112.13	113.52	1.40
HG2-CG-CD	109.54	109.73	0.19
HD1-CD-HD2	109.41	108.64	0.77
C-N2AL-HNN2	116.59	118.88	2.29
C-N2AL-C2AL	121.81	124.71	2.90
O-C-N2AL	123.98	121.61	2.37
N2AL-C2AL-H2AL	108.21	107.34	0.87
N2AL-C2AL-CB22	109.88	108.75	1.13
N2AL-C2AL-C22	112.89	114.94	2.06
HNN2-N2AL-C2AL	119.73	115.47	4.26
C2AL-CB22-H122	110.53	109.62	0.91
C2AL-CB22-H222	111.45	110.81	0.64
C2AL-CB22-H322	109.45	110.77	1.32
C2AL-C22-O22	120.82	121.40	0.58
C2AL-C22-NT	114.95	116.95	2.00
H2AL-C2AL-CB22	109.87	109.10	0.77
H2AL-C2AL-C22	105.03	106.17	1.14
CB22- $C2AL$ - $C22$	110.80	110.35	0.45
H122-CB22-H222	108.95	108.67	0.28
H122-CB22-H322	108.13	108.02	0.12
H222-CB22-H322	108.24	108.88	0.65
C22-NT-HNT	116.38	117.80	1.42
C22-NT-CAT	121.38	123.01	1.63
O22-C22-NT	123.73	121.64	2.08
NT-CAT-HT1	107.81	111.66	3.85
NT-CAT-HT2	110.00	110.44	0.44
NT-CAT-HT3	112.18	110.31	1.87
HNT-NT-CAT	117.98	118.50	0.52
HT1-CAT-HT2	109.44	107.92	1.53
HT1-CAT-HT3	108.39	108.02	0.38
HT2-CAT-HT3	108.97	108.39	0.58

Figure S462: The PES scan for flexible dihedral corresponding to 2-[1-(2-acetamidoacetyl)-2-hydr oxypyrrolidin-2-yl]formamido-N-methylacetamide

.

2.151 The small molecule 2 used for bonded terms optimization of 2-hydroxy-L-proline (PXU)

Figure S463: The energy minimized structure corresponding to (2R)-1-acetyl-2-hydroxy-N-methylp yrrolidine-2-carboxamide.

Table S831: The calculated geometric terms of (2R)-1-acetyl-2-hydroxy-N-methylpyrrolidine-2 -carboxamide.

Terms	QM	CHARMM	Abs. diff.
C1AL-H11	1.09	1.11	0.02
C1AL-H12	1.09	1.11	0.02
C1AL-H13	1.09	1.11	0.01
C1AL-C11	1.51	1.49	0.02
C11-O11	1.25	1.23	0.02
C11-N	1.36	1.36	0.00
N-CA	1.46	1.45	0.01
N-CD	1.46	1.47	0.01
CA-OA	1.42	1.43	0.01
CA-CB	1.53	1.54	0.01
CA-C	1.54	1.55	0.00
OA-HO	0.98	0.96	0.02
CB-HB1	1.09	1.10	0.01
CB-HB2	1.09	1.10	0.01
CB-CG	1.53	1.54	0.01
CG-HG1	1.09	1.10	0.00
CG-HG2	1.09	1.10	0.01
CG-CD	1.53	1.53	0.00
CD-HD1	1.09	1.10	0.01
CD-HD2	1.10	1.10	0.00
C-O	1.23	1.23	0.00
C-N2AL	1.35	1.35	0.00
N2AL-HNN2	1.01	1.00	0.01
N2AL-C2AL	1.45	1.44	0.01
C2AL-H21	1.09	1.11	0.02
C2AL-H22	1.09	1.11	0.02
C2AL-H23	1.09	1.11	0.02
C1AL-C11-O11	122.45	119.10	3.35
C1AL-C11-N	117.35	118.04	0.69
H11-C1AL-H12	109.77	108.49	1.29
H11-C1AL-H13	108.15	109.94	1.79
H11-C1AL-C11	110.86	110.59	0.27

Terms	QM	CHARMM	Abs. diff.
H12-C1AL-H13	109.13	108.33	0.80
H12-C1AL-C11	108.02	108.82	0.80
H13-C1AL-C11	110.89	110.62	0.27
C11-N-CA	118.34	120.53	2.19
C11-N-CD	128.64	121.35	7.29
O11-C11-N	120.19	122.83	2.64
N-CA-OA	111.72	111.52	0.20
N-CA-CB	103.38	101.89	1.49
N-CA-C	108.58	113.22	4.64
N-CD-CG	101.30	105.26	3.96
N-CD-HD1	111.07	112.50	1.44
N-CD-HD2	110.67	108.01	2.66
CA-N-CD	112.76	112.74	0.02
CA-OA-HO	102.79	105.40	2.62
CA-CB-HB1	109.27	110.90	1.62
CA-CB-HB2	109.73	113.28	3.54
CA-CB-CG	104.36	104.85	0.49
CA-C-O	120.35	119.47	0.88
CA-C-N2AL	113.90	118.73	4.83
OA-CA-CB	109.91	104.96	4.96
OA-CA-C	112.69	114.81	2.12
CB-CA-C	110.16	109.26	0.90
CB-CG-HG1	113.00	113.51	0.51
CB-CG-HG2	110.25	109.51	0.74
CB-CG-CD	102.59	103.17	0.58
HB1-CB-HB2	109.03	106.21	2.82
HB1-CB-CG	110.15	109.26	0.89
HB2-CB-CG	114.14	112.37	1.77
CG-CD-HD1	113.16	111.50	1.66
CG-CD-HD2	111.49	111.22	0.28
HG1-CG-HG2	108.65	106.86	1.79
HG1-CG-CD	112.68	113.72	1.04
HG2-CG-CD	109.55	110.05	0.49
HD1-CD-HD2	108.99	108.31	0.68
C-N2AL-HNN2	116.27	119.50	3.23
C-N2AL-C2AL	122.03	121.73	0.30
O-C-N2AL	125.50	121.78	3.72
N2AL-C2AL-H21	107.32	110.69	3.38
N2AL-C2AL-H22	110.24	110.62	0.38
N2AL-C2AL-H23	111.41	110.41	0.99
HNN2-N2AL-C2AL	120.91	118.73	2.18
H21-C2AL-H22	109.63	108.42	1.21
H21-C2AL-H23	108.97	108.23	0.74
H22-C2AL-H23	109.24	108.37	0.87

Figure S464: The energy minimized structure corresponding to (ethylsulfanyl)formamide.

Table S832: The calculated geometric terms of (ethylsulfanyl)formamide.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.53	0.01
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SG	1.82	1.83	0.01
SG-CD	1.80	1.75	0.05
CD-NE2	1.36	1.35	0.01
CD-OE1	1.22	1.23	0.01
NE2-HE1	1.01	1.00	0.02
NE2-HE2	1.01	0.99	0.02
HA3-CA-HA2	108.08	108.40	0.32
HA3-CA-HA	108.09	108.39	0.30
HA3-CA-CB	109.47	110.39	0.93
HA2-CA-HA	108.34	108.45	0.12
HA2-CA-CB	111.38	110.57	0.81
CA-CB-HB1	111.39	108.66	2.74
CA-CB-HB2	111.40	108.67	2.73
CA-CB-SG	109.36	112.84	3.49
HA-CA-CB	111.37	110.56	0.81
CB-SG-CD	97.77	97.73	0.05
HB1-CB-HB2	107.83	106.80	1.03
HB1-CB-SG	108.39	109.84	1.45
HB2-CB-SG	108.38	109.84	1.47
SG-CD-NE2	112.95	112.80	0.15
SG-CD-OE1	123.19	124.80	1.61
CD-NE2-HE1	117.65	116.89	0.76
CD-NE2-HE2	122.83	119.38	3.45
NE2-CD-OE1	123.86	122.40	1.46
HE1-NE2-HE2	119.51	123.72	4.21

Figure S465: The PES scan for flexible dihedrals corresponding to (ethylsulfanyl)formamide.

2.153 The small molecule used for bonded terms optimization of S-[(1S)-1-carboxy-1-(phosph onooxy)ethyl]-L-cysteine (QPA)

Figure S466: The energy minimized structure corresponding to 2-(ethylsulfanyl)-2-[(trihydroxy-lam bda4-phosphanyl)oxy]propanoicacid.

Table S833: The calculated geometric terms of 2-(ethylsulfanyl)-2-[(trihydroxy-lambda4-phosphany l)oxy]propanoicacid.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.01
HA2-CA	1.10	1.11	0.02
CA-HA	1.10	1.11	0.02
CA-CB	1.53	1.53	0.00
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SG	1.82	1.82	0.01
SG-C8	1.88	1.90	0.02
C8-C9	1.53	1.56	0.03
C8-C10	1.58	1.60	0.02
C8-O14	1.42	1.43	0.01
C9-H91	1.09	1.11	0.01
C9-H92	1.10	1.11	0.01
C9-H93	1.09	1.11	0.02
C10-O9	1.26	1.27	0.01
C10-O10	1.28	1.27	0.01
O14-P2	1.67	1.58	0.08
P2-O11	1.51	1.50	0.00
P2-O12	1.52	1.50	0.01
P2-O13	1.71	1.60	0.11
O13-HO13	0.98	0.96	0.01
HA3-CA-HA2	108.21	108.83	0.62
HA3-CA-HA	108.19	108.90	0.71
HA3-CA-CB	110.49	110.47	0.01
HA2-CA-HA	107.87	108.47	0.61
HA2-CA-CB	110.74	110.03	0.71
CA-CB-HB1	110.66	109.07	1.60
CA-CB-HB2	110.25	109.25	1.00
CA-CB-SG	109.58	112.78	3.20
HA-CA-CB	111.24	110.09	1.15

Ŧ	011	CITADADA	A.1 1.0°
Terms	QM	CHARMM	Abs. diff.
CB-SG-C8	100.20	104.73	4.53
HB1-CB-HB2	107.81	107.15	0.65
HB1-CB-SG	108.18	108.91	0.73
HB2-CB-SG	110.32	109.52	0.80
SG-C8-C9	109.57	104.45	5.12
SG-C8-C10	102.87	106.74	3.87
SG-C8-O14	106.73	108.17	1.43
C8-C9-H91	108.80	109.79	0.99
C8-C9-H92	111.34	111.35	0.01
C8-C9-H93	107.47	109.71	2.24
C8-C10-O9	118.24	117.66	0.58
C8-C10-O10	112.11	117.94	5.82
C8-O14-P2	129.02	128.84	0.18
C9-C8-C10	109.52	106.22	3.30
C9-C8-O14	114.59	113.90	0.68
H91-C9-H92	108.38	109.35	0.97
H91-C9-H93	110.43	107.96	2.48
H92-C9-H93	110.41	108.62	1.80
C10-C8-O14	112.83	116.49	3.66
O9-C10-O10	129.63	123.39	6.25
O14-P2-O11	112.35	111.79	0.56
O14-P2-O12	104.39	106.52	2.13
O14-P2-O13	101.78	105.86	4.08
P2-O13-HO13	103.53	106.80	3.27
O11-P2-O12	124.84	119.48	5.36
O11-P2-O13	106.09	108.96	2.87
O12-P2-O13	104.87	103.14	1.73

Figure S467: The PES scan for flexible dihedrals corresponding to 2-(ethylsulfanyl)-2-[(trihydroxy-l ambda4-phosphanyl)oxy]propanoicacid.

2.154 The small molecule 1 used for bonded terms optimization of 3-[(2,2,5,5-tetramethyl-1-oxo-2,5-dihydro-1H-pyrrolium-3 -yl)methyl]disulfanyl-D-alan ine (R1A)

Figure S468: The energy minimized structure corresponding to 2,2,3,5,5-pentamethyl-2,5-dihydro-1H-pyrrol-1-ol.

Table S834: The calculated geometric terms of 2,2,3,5,5-pentamethyl-2,5-dihydro-1H-pyrrol-1-ol.

Terms	QM	CHARMM	Abs. diff.
HE3-CE	1.10	1.11	0.01
CE-HE1	1.10	1.11	0.01
CE-HE2	1.10	1.11	0.01
CE-C3	1.50	1.51	0.01
C3-C2	1.51	1.53	0.02
C3-C4	1.35	1.37	0.02
C2-C8	1.54	1.54	0.00
C2-C9	1.53	1.53	0.00
C2-N1	1.50	1.49	0.01
C8-H81	1.10	1.11	0.01
C8-H82	1.10	1.11	0.01
C8-H83	1.10	1.10	0.00
C9-H91	1.10	1.11	0.02
C9-H92	1.10	1.11	0.01
C9-H93	1.10	1.11	0.01
C4-H4	1.09	1.08	0.02
C4-C5	1.50	1.51	0.01
N1-O1	1.41	1.41	0.00
N1-C5	1.50	1.49	0.00
C5-C6	1.53	1.52	0.01
C5-C7	1.54	1.53	0.00
C6-H61	1.10	1.11	0.01
C6-H62	1.10	1.11	0.02
C6-H63	1.10	1.11	0.01
C7-H71	1.10	1.11	0.01
C7-H72	1.10	1.11	0.01
C7-H73	1.09	1.10	0.01
HE3-CE-HE1	106.99	109.23	2.24
HE3-CE-HE2	108.23	108.97	0.73
HE3-CE-C3	111.07	109.78	1.29

Terms	QM	CHARMM	Abs. diff.
CE-C3-C2	122.82	122.84	0.02
CE-C3-C4	127.39	128.86	1.47
HE1-CE-HE2	108.26	108.85	0.59
HE1-CE-C3	111.19	109.79	1.40
HE2-CE-C3	110.94	110.20	0.74
C3-C2-C8	111.71	109.97	1.74
C3-C2-C9	113.81	114.36	0.55
C3-C2-N1	101.75	106.50	4.75
C3-C4-H4	125.08	126.98	1.90
C3-C4-C5	111.40	108.34	3.06
C2-C3-C4	109.78	108.30	1.48
C2-C8-H81	105.90	109.05	3.15
C2-C8-H82	111.34	109.69	1.64
C2-C8-H83	111.73	112.87	1.13
C2-C9-H91	107.56	109.37	1.80
C2-C9-H92	109.69	110.56	0.86
C2-C9-H93	112.18	110.12	2.06
C2-N1-O1	113.30	113.90	0.61
C2-N1-C5	106.90	102.25	4.65
C8-C2-C9	109.05	111.89	2.84
C8-C2-N1	113.67	112.85	0.83
H81-C8-H82	110.75	108.23	2.52
H81-C8-H83	108.72	108.21	0.51
H82-C8-H83	108.37	108.68	0.30
C9-C2-N1	106.68	100.92	5.77
H91-C9-H92	108.43	108.59	0.15
Н91-С9-Н93	109.29	108.77	0.52
H92-C9-H93	109.59	109.41	0.18
C4-C5-N1	101.35	107.14	5.78
C4-C5-C6	113.24	113.63	0.39
C4-C5-C7	111.91	107.30	4.61
H4-C4-C5	123.51	124.25	0.73
N1-C5-C6	107.38	102.90	4.48
N1-C5-C7	113.79	113.74	0.05
O1-N1-C5	113.26	113.64	0.38
C5-C6-H61	111.67	110.31	1.36
C5-C6-H62	108.14	109.12	0.97
C5-C6-H63	109.58	110.42	0.84
C5-C7-H71	110.48	109.44	1.04
C5-C7-H72	107.53	109.33	1.79
C5-C7-H73	111.40	113.00	1.60
C6-C5-C7	109.00	112.15	3.15
H61-C6-H62	109.32	109.01	0.30
H61-C6-H63	109.46	109.44	0.02
H62-C6-H63	108.60	108.50	0.10
H71-C7-H72	110.66	108.05	2.62
H71-C7-H73	108.54	108.26	0.28
H72-C7-H73	108.20	108.65	0.45

2.155 The small molecule 2 used for bonded terms optimization of 3-[(2,2,5,5-tetramethyl-1-oxo-2,5-dihydro-1H-pyrrolium-3 -yl)methyl]disulfanyl-D-alan ine (R1A)

Figure S469: The energy minimized structure corresponding to 3-[(methyldisulfanyl)methyl]-2,5-di hydro-1H-pyrrol-1-ol.

Table S835: The calculated geometric terms of 3-[(methyldisulfanyl)methyl]-2,5-dihydro-1H-pyrro l-1-ol.

Terms	QM	CHARMM	Abs. diff.
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-HB3	1.09	1.11	0.02
CB-SG	1.82	1.81	0.00
SG-SD	2.06	2.03	0.04
SD-CE	1.84	1.82	0.02
CE-HE1	1.10	1.11	0.01
CE-HE2	1.10	1.11	0.01
CE-C3	1.49	1.50	0.01
C3-C2	1.51	1.51	0.00
C3-C4	1.35	1.37	0.01
C2-H21	1.11	1.10	0.01
C2-H22	1.10	1.10	0.00
C2-N1	1.48	1.47	0.00
C4-H4	1.09	1.08	0.01
C4-C5	1.50	1.52	0.01
N1-O1	1.40	1.38	0.02
N1-C5	1.48	1.48	0.00
C5-H51	1.11	1.10	0.01
C5-H52	1.10	1.10	0.00
CB-SG-SD	101.37	102.23	0.85
HB1-CB-HB2	109.40	107.83	1.57
HB1-CB-HB3	108.94	108.39	0.56
HB1-CB-SG	111.05	110.48	0.57
HB2-CB-HB3	109.43	108.46	0.97
HB2-CB-SG	110.84	110.58	0.25
HB3-CB-SG	107.12	111.01	3.89
SG-SD-CE	102.08	103.03	0.95
SD-CE-HE1	107.76	111.83	4.07

Terms	QM	CHARMM	Abs. diff.
SD-CE-HE2	108.83	109.86	1.03
SD-CE-C3	109.25	108.93	0.32
CE-C3-C2	125.18	120.36	4.81
CE-C3-C4	126.70	130.64	3.94
HE1-CE-HE2	109.24	108.39	0.84
HE1-CE-C3	110.44	108.54	1.91
HE2-CE-C3	111.24	109.25	1.99
C3-C2-H21	111.91	105.93	5.98
C3-C2-H22	114.79	119.68	4.89
C3-C2-N1	102.32	104.54	2.22
C3-C4-H4	125.44	126.12	0.68
C3-C4-C5	108.47	108.71	0.24
C2-C3-C4	108.03	108.59	0.56
C2-N1-O1	111.64	112.34	0.70
C2-N1-C5	101.78	104.52	2.74
H21-C2-H22	108.16	106.21	1.96
H21-C2-N1	108.73	105.89	2.84
H22-C2-N1	110.72	113.61	2.89
C4-C5-N1	102.36	104.25	1.89
C4-C5-H51	111.57	107.03	4.55
C4-C5-H52	115.48	119.34	3.87
H4-C4-C5	126.06	124.82	1.24
N1-C5-H51	108.46	107.52	0.94
N1-C5-H52	110.51	111.45	0.94
O1-N1-C5	111.55	112.31	0.76
H51-C5-H52	108.19	106.68	1.51

Figure S470: The PES scan for flexible dihedrals corresponding to 3-[(methyldisulfanyl)methyl]-2,5-dihydro-1H-pyrrol-1-ol.

2.156 The small molecule used for bonded terms optimization of O-[(S)-hydroxy(methyl)phosp horyl]-L-serine (SBG)

Terms	QM	CHARMM	Abs. diff.
O1-P1-O2	121.64	124.27	2.63
O1-P1-C1	110.14	104.18	5.96
O2-P1-C1	109.94	104.22	5.72
HC11-C1-HC12	109.15	110.92	1.77
HC11-C1-HC13	109.84	111.26	1.42
HC12-C1-HC13	108.98	110.98	2.00

Figure S471: The energy minimized structure corresponding to ethoxy(methyl)phosphinicacid.

Table S836: The calculated geometric terms of et hoxy(methyl)phosphinicacid.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.01
HA2-CA	1.10	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.53	0.01
CB-HB1	1.10	1.12	0.02
CB-HB2	1.10	1.12	0.02
CB-OG	1.43	1.43	0.00
OG-P1	1.71	1.63	0.08
P1-O1	1.52	1.51	0.02
P1-O2	1.52	1.51	0.02
P1-C1	1.83	1.83	0.00
C1-HC11	1.09	1.10	0.01
C1-HC12	1.10	1.10	0.00
C1-HC13	1.09	1.10	0.01
HA3-CA-HA2	108.65	108.99	0.34
HA3-CA-HA	108.78	109.04	0.26
HA3-CA-CB	110.69	110.68	0.01
HA2-CA-HA	108.42	108.36	0.06
HA2-CA-CB	110.09	109.88	0.21
CA-CB-HB1	110.59	109.87	0.72
CA-CB-HB2	110.84	109.87	0.96
CA-CB-OG	107.78	106.40	1.38
HA-CA-CB	110.15	109.85	0.30
CB-OG-P1	114.56	116.24	1.67
HB1-CB-HB2	108.20	109.04	0.84
HB1-CB-OG	109.75	110.80	1.05
HB2-CB-OG	109.68	110.84	1.16
OG-P1-O1	107.91	111.56	3.65
OG-P1-O2	108.33	111.60	3.27
OG-P1-C1	95.70	96.45	0.75
P1-C1-HC11	110.23	107.93	2.31
P1-C1-HC12	108.44	107.72	0.72
P1-C1-HC13	110.16	107.86	2.30

Figure S472: The PES scan for flexible dihedral corresponding to ethoxy(methyl)phosphinicacid.

2.157 The small molecule used for bonded terms optimization of O-benzylsulfonyl-serine (SEB)

Table	S837:	The	calculated	geometric	terms	\mathbf{of}	et
hylphe	enylme	than	esulfonate.				

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.51	1.53	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-OG	1.46	1.44	0.02
OG-SD	1.64	1.60	0.04
SD-OD1	1.46	1.44	0.02
SD-OD2	1.46	1.44	0.02
SD-CE	1.79	1.80	0.02
CE-HE1	1.09	1.11	0.02
CE-HE2	1.09	1.11	0.02
CE-CZ	1.50	1.52	0.02
CZ-CH1	1.40	1.41	0.01
CZ-CH2	1.40	1.41	0.01
CH1-HH1	1.09	1.08	0.01
CH1-CI1	1.39	1.40	0.01
CH2-HH2	1.09	1.08	0.01
CH2-CI2	1.39	1.40	0.01
CI1-HI1	1.09	1.08	0.01
CI1-CJ	1.40	1.40	0.00
CI2-HI2	1.09	1.08	0.01
CI2-CJ	1.40	1.40	0.00
CJ-HJ	1.09	1.08	0.01
HA3-CA-HA2	108.66	108.59	0.07
НАЗ-СА-НА	108.66	108.64	0.02
HA3-CA-CB	109.63	110.47	0.84
HA2-CA-HA	108.91	108.52	0.39
HA2-CA-CB	110.47	110.28	0.19
CA-CB-HB1	112.07	110.15	1.92
CA-CB-HB2	112.07	110.11	1.96
CA-CB-OG	106.19	107.55	1.37

Terms	QM	CHARMM	Abs. diff.
HA-CA-CB	110.47	110.29	0.18
CB-OG-SD	113.59	114.48	0.89
HB1-CB-HB2	109.36	108.68	0.68
HB1-CB-OG	108.49	110.11	1.61
HB2-CB-OG	108.49	110.23	1.74
OG-SD-OD1	109.09	108.51	0.58
OG-SD-OD2	109.08	108.54	0.55
OG-SD-CE	96.03	96.61	0.58
SD-CE-HE1	106.33	107.91	1.57
SD-CE-HE2	106.33	107.82	1.49
SD-CE-CZ	109.40	109.83	0.42
OD1-SD-OD2	120.12	121.71	1.58
OD1-SD-CE	109.91	109.26	0.65
OD2-SD-CE	109.91	109.29	0.62
CE-CZ-CH1	120.12	120.42	0.30
CE-CZ-CH2	120.12	120.26	0.14
HE1-CE-HE2	109.32	110.49	1.17
HE1-CE-CZ	112.54	110.25	2.29
HE2-CE-CZ	112.54	110.48	2.06
CZ-CH1-HH1	119.73	120.26	0.53
CZ-CH1-CI1	120.06	120.25	0.19
CZ-CH2-HH2	119.73	120.13	0.40
CZ-CH2-CI2	120.06	120.27	0.21
CH1-CZ-CH2	119.72	119.32	0.40
CH1-CI1-HI1	119.76	119.85	0.09
CH1-CI1-CJ	120.14	120.19	0.05
HH1-CH1-CI1	120.21	119.49	0.73
CH2-CI2-HI2	119.76	119.79	0.02
CH2-CI2-CJ	120.14	120.15	0.01
HH2-CH2-CI2	120.21	119.59	0.62
CI1- CJ - $CI2$	119.88	119.82	0.06
CI1-CJ-HJ	120.06	120.10	0.04
HI1-CI1-CJ	120.10	119.96	0.14
CI2-CJ-HJ	120.06	120.08	0.01
HI2-CI2-CJ	120.10	120.06	0.04

Figure S474: The PES scan for flexible dihedrals corresponding to ethylphenylmethanesulfonate.

2.158 The small molecule used for bonded terms optimization of O-[N,N-dimethylphosphoram idate]-L-serine (SEN)

Terms	QM	CHARMM	Abs. diff.
OG-P-O2	106.61	107.98	1.37
OG-P-O3	110.53	106.65	3.87
OG-P-N1	95.21	102.03	6.81
P-N1-C1	114.75	115.53	0.78
P-N1-C2	114.54	115.75	1.22
O2-P-O3	122.04	118.92	3.12
O2-P-N1	111.38	109.95	1.43
O3-P-N1	107.78	109.90	2.12
N1-C1-H11	109.32	110.21	0.89
N1-C1-H12	112.61	109.56	3.04
N1-C1-H13	109.03	108.89	0.14
N1-C2-H21	108.97	110.35	1.38
N1-C2-H22	109.08	108.91	0.17
N1-C2-H23	112.75	109.56	3.19
C1-N1-C2	111.83	112.83	1.01
H11-C1-H12	108.40	109.76	1.37
H11-C1-H13	108.71	108.86	0.15
H12-C1-H13	108.69	109.52	0.83
H21-C2-H22	109.38	108.75	0.63
H21-C2-H23	108.77	109.82	1.05
H22-C2-H23	107.85	109.43	1.58

Figure S475: The energy minimized structure corresponding to (dimethylamino)(ethoxy)phosphini cacid.

Table S838:	The	calculated	geometric	terms	\mathbf{of}	(di
methylamin	o)(etl	hoxy)phosp	hinicacid.			

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.01
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.53	0.01
CB-HB1	1.10	1.12	0.02
CB-HB2	1.10	1.12	0.02
CB-OG	1.43	1.43	0.00
OG-P	1.69	1.64	0.05
P-O2	1.52	1.51	0.01
P-O3	1.52	1.51	0.00
P-N1	1.73	1.74	0.01
N1-C1	1.46	1.45	0.01
N1-C2	1.46	1.45	0.01
C1-H11	1.09	1.11	0.02
C1-H12	1.10	1.11	0.01
C1-H13	1.10	1.11	0.01
C2-H21	1.09	1.11	0.02
C2-H22	1.10	1.11	0.01
C2-H23	1.11	1.11	0.01
HA3-CA-HA2	108.69	108.96	0.27
HA3-CA-HA	108.84	108.92	0.09
HA3-CA-CB	110.63	110.71	0.07
HA2-CA-HA	108.36	108.29	0.07
HA2-CA-CB	110.06	109.95	0.11
CA-CB-HB1	110.38	110.16	0.22
CA-CB-HB2	111.48	109.98	1.50
CA-CB-OG	107.42	106.27	1.15
HA-CA-CB	110.20	109.96	0.24
CB-OG-P	115.23	118.59	3.35
HB1-CB-HB2	107.96	109.03	1.07
HB1-CB-OG	109.94	110.60	0.66
HB2-CB-OG	109.66	110.78	1.12

2.159 The small molecule used for bonded terms optimization of O-[(S)-methyl(1-methyletho xy)phosphoryl]-L-serine (SGB)

Terms	QM	CHARMM	Abs. diff.
HC11-C1-HC13	109.51	111.15	1.64
HC12-C1-HC13	108.93	110.56	1.63
O1-P1-O2	116.03	110.32	5.71
O2-C2-H2	110.16	111.44	1.28
O2-C2-H21	105.87	109.69	3.81
O2-C2-H22	110.36	111.57	1.22
H2-C2-H21	110.65	107.61	3.04
H2-C2-H22	109.73	108.63	1.11
H21-C2-H22	110.01	107.75	2.26

Figure S476: The energy minimized structure corresponding to dimethylmethylphosphonate.

Table S839: The calculated geometric terms of dimethylmethylphosphonate.

Figure S477: The PES scan for flexible dihedral $\overline{\underline{\underline{f}}}_{\underline{\underline{f}}}$ corresponding to dimethylmethylphosphonate.

Terms	QM	CHARMM	Abs. diff
HB1-CB	1.09	1.12	0.02
CB-HB3	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-OG	1.44	1.42	0.01
OG-P1	1.63	1.59	0.04
P1-C1	1.80	1.80	0.00
P1-O1	1.48	1.47	0.01
P1-O2	1.63	1.59	0.03
C1-HC11	1.09	1.10	0.01
C1-HC12	1.09	1.10	0.01
C1-HC13	1.09	1.10	0.01
O2-C2	1.45	1.43	0.02
C2-H2	1.09	1.12	0.03
C2-H21	1.09	1.11	0.02
C2-H22	1.09	1.12	0.02
HB1-CB-HB3	109.89	106.92	2.97
HB1-CB-HB2	109.87	109.37	0.50
HB1-CB-OG	111.06	112.09	1.03
CB-OG-P1	120.31	118.71	1.60
HB3-CB-HB2	109.30	107.08	2.22
HB3-CB-OG	106.10	109.05	2.95
HB2-CB-OG	110.54	112.07	1.53
OG-P1-C1	106.37	106.75	0.38
OG-P1-O1	111.21	109.84	1.37
OG-P1-O2	104.69	104.85	0.16
P1-C1-HC11	111.58	108.46	3.12
P1-C1-HC12	108.89	107.85	1.04
P1-C1-HC13	109.10	107.99	1.11
P1-O2-C2	116.19	119.20	3.01
C1-P1-O1	117.11	117.27	0.16
C1-P1-O2	100.07	107.04	6.98
HC11-C1-HC12	108.80	110.70	1.91

2.160 The small molecule used for bonded terms optimization of S-nitroso-cysteine (SNC)

Figure S478: The energy minimized structure corresponding to (nitrososulfanyl)ethane.

Table S840: The calculated geometric terms of (ni trososulfanyl)ethane.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.54	0.01
CB-HB1	1.10	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SG	1.81	1.83	0.02
SG-ND	1.81	1.83	0.02
ND-OE	1.21	1.22	0.00
HA3-CA-HA2	108.14	108.57	0.43
HA3-CA-HA	108.48	108.37	0.11
HA3-CA-CB	109.93	110.55	0.63
HA2-CA-HA	108.20	108.39	0.19
HA2-CA-CB	111.36	110.61	0.74
CA-CB-HB1	111.15	108.37	2.78
CA-CB-HB2	111.37	108.87	2.51
CA-CB-SG	113.20	113.18	0.02
HA-CA-CB	110.65	110.27	0.38
CB-SG-ND	94.35	94.54	0.19
HB1-CB-HB2	107.83	106.17	1.66
HB1-CB-SG	104.80	111.06	6.26
HB2-CB-SG	108.14	108.94	0.80
SG-ND-OE	115.33	115.22	0.11

Figure S479: The PES scan for flexible dihedrals corresponding to (nitrososulfanyl)ethane.

2.161 The small molecule used for bonded terms optimization of Styrylalanine (STYA)

Terms	QM	CHARMM	Abs. diff.
CE-CZ1-CH1	120.96	120.59	0.38
CE-CZ2-HZ2	119.53	120.48	0.95
CE-CZ2-CH2	120.72	120.58	0.15
CZ1-CE-CZ2	118.35	118.76	0.41
CZ1-CH1-HH1	119.80	119.95	0.16
CZ1-CH1-CJ	120.09	120.07	0.01
HZ1-CZ1-CH1	119.80	118.82	0.99
CZ2-CH2-HH2	119.67	119.95	0.27
CZ2-CH2-CJ	120.31	120.02	0.29
HZ2-CZ2-CH2	119.73	118.94	0.79
CH1-CJ-CH2	119.55	119.98	0.43
CH1-CJ-HJ	120.25	120.05	0.20
HH1-CH1-CJ	120.11	119.97	0.14
CH2-CJ-HJ	120.20	119.97	0.23
HH2-CH2-CJ	120.01	120.03	0.02

Figure S480: The energy minimized structure corresponding to [(1E)-prop-1-en-1-yl]benzene.

Table S841: The calculated geometric terms of [(1E)-prop-1-en-1-yl] benzene.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.10	1.11	0.02
CB-HB1	1.10	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-CG	1.50	1.51	0.01
CG-HG	1.09	1.10	0.01
CG-CD	1.35	1.35	0.00
CD-HD	1.09	1.10	0.01
CD-CE	1.47	1.47	0.00
CE-CZ1	1.40	1.41	0.00
CE-CZ2	1.41	1.41	0.01
CZ1-HZ1	1.09	1.08	0.01
CZ1-CH1	1.39	1.40	0.01
CZ2-HZ2	1.09	1.08	0.01
CZ2-CH2	1.39	1.40	0.01
CH1-HH1	1.09	1.08	0.01
CH1-CJ	1.40	1.40	0.00
CH2-HH2	1.09	1.08	0.01
CH2-CJ	1.40	1.40	0.00
CJ-HJ	1.09	1.08	0.01
HB3-CB-HB1	106.97	107.58	0.61
HB3-CB-HB2	108.13	107.37	0.76
HB3-CB-CG	111.14	110.84	0.30
CB-CG-HG	116.61	117.17	0.56
CB-CG-CD	124.22	123.90	0.32
HB1-CB-HB2	108.25	107.44	0.81
HB1-CB-CG	111.18	110.79	0.39
HB2-CB-CG	111.01	112.60	1.59
CG-CD-HD	118.53	116.12	2.41
CG-CD-CE	125.25	126.89	1.64
HG-CG-CD	119.17	118.94	0.24
CD-CE-CZ1	119.51	118.21	1.30
CD-CE-CZ2	122.14	123.03	0.88
HD-CD-CE	116.19	116.94	0.75
CE-CZ1-HZ1	119.23	120.60	1.37

2.162 The small molecule used for bonded terms optimization of (3-amino-2,5-dioxo-1-pyrrolid inyl)aceticacid (SUI)

Figure S481: The energy minimized structure corresponding to 2-[(3S)-3-acetamido-2,5-dioxopyrro lidin-1-yl]-N-methylacetamide.

Table S842: The calculated geometric terms of 2-[(3S)-3-acetamido-2,5-dioxopyrrolidin-1-yl]-N-me thylacetamide.

Terms	QM	CHARMM	Abs. diff.
CL-HL1	1.09	1.11	0.02
CL-HL2	1.09	1.11	0.02
CL-HL3	1.09	1.11	0.02
CL-CLP	1.51	1.48	0.03
CLP-OL	1.23	1.22	0.01
CLP-N	1.38	1.34	0.03
N-H	1.02	1.00	0.02
N-C1A	1.44	1.45	0.00
C1A-HA	1.10	1.05	0.05
C1A-CB	1.53	1.52	0.01
C1A-C1	1.52	1.53	0.01
CB-HB1	1.09	1.10	0.01
CB-HB2	1.10	1.10	0.00
CB-CG	1.52	1.52	0.01
CG-OD	1.22	1.23	0.01
CG-N2	1.42	1.39	0.03
C1-O1	1.23	1.23	0.00
C1-N2	1.37	1.39	0.01
N2-C2A	1.46	1.46	0.00
C2A-HA1	1.10	1.11	0.02
C2A-HA2	1.09	1.12	0.03
C2A-C	1.53	1.50	0.03
C-O	1.23	1.23	0.01
C-NR	1.36	1.35	0.01
NR-HR	1.02	1.00	0.02
NR-CR	1.45	1.44	0.01
CR-HR1	1.09	1.12	0.03
CR-HR2	1.09	1.12	0.02
CR-HR3	1.09	1.11	0.02
CL-CLP-OL	123.62	120.21	3.41
CL-CLP-N	115.37	116.84	1.47

Terms	QM	CHARMM	Abs. diff.
HL1-CL-HL2	108.47	109.70	1.23
HL1-CL-HL3	109.82	108.65	1.17
HL1-CL-CLP	111.75	110.81	0.94
HL2-CL-HL3	108.52	108.70	0.18
HL2-CL-CLP	109.62	110.02	0.40
HL3-CL-CLP	108.61	108.90	0.30
CLP-N-H	119.39	120.54	1.15
CLP-N-C1A	118.15	122.86	4.71
OL-CLP-N	121.01	122.95	1.94
N-C1A-HA	110.60	110.79	0.19
N-C1A-CB	115.78	112.63	3.15
N-C1A-C1	108.73	109.88	1.14
H-N-C1A	115.66	116.40	0.74
C1A-CB-HB1	113.98	112.10	1.88
C1A-CB-HB2	110.19	112.74	2.55
C1A-CB-CG	104.24	103.74	0.50
C1A-C1-O1	125.91	127.27	1.35
C1A-C1-N2	108.04	104.87	3.17
HA-C1A-CB	109.27	111.93	2.66
HA-C1A-C1	108.13	107.35	0.78
CB-C1A-C1	103.90	103.90	0.01
CB-CG-OD	129.25	126.77	2.47
CB-CG-N2	107.01	104.54	2.46
HB1-CB-HB2	108.05	106.71	1.33
HB1-CB-CG	111.54	111.14	0.40
HB2-CB-CG	108.74	110.49	1.75
CG-N2-C1	112.76	115.80	3.04
CG-N2-C2A	122.56	122.01	0.55
OD-CG-N2	123.74	128.66	4.92
C1-N2-C2A	124.67	121.81	2.86
O1-C1-N2	126.05	127.85	1.80
N2-C2A-HA1	108.14	111.17	3.03
N2-C2A-HA2	107.28	111.17	3.89
N2-C2A-C	113.68	110.57	3.12
C2A-C-O	121.25	120.95	0.30
C2A-C-NR	114.80	117.35	2.55
HA1-C2A-HA2	110.01	107.28	2.73
HA1-C2A-C	110.21	108.86	1.35
HA2-C2A-C	107.46	107.66	0.20
C-NR-HR	118.38	120.12	1.74
C-NR-CR	120.12	122.07	1.94
O-C-NR	123.94	121.70	2.24
NR-CR-HR1	108.94	111.26	2.31
NR-CR-HR2	111.86	110.33	1.52
NR-CR-HR3	108.84	110.33	1.50
HR-NR-CR	120.05	117.78	2.27
HR1-CR-HR2	108.27	108.18	0.09
HR1-CR-HR3	109.57	108.13	1.44
HR2-CR-HR3	109.34	108.51	0.83

Figure S482: The PES scan for flexible dihedrals corresponding to 2-[(3S)-3-acetamido-2,5-dioxopyr rolidin-1-yl]-N-methylacetamide.

Figure S483: The energy minimized structure corresponding to (dimethoxyphosphoryl)dimethylami ne.

Table S843: The calculated geometric terms of (di methoxyphosphoryl)dimethylamine.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB1	1.09	1.12	0.02
CB-HB2	1.09	1.12	0.03
CB-OG	1.45	1.43	0.02
OG-P1	1.62	1.60	0.02
P1-O1	1.49	1.48	0.01
P1-N1	1.68	1.68	0.00
P1-O2	1.62	1.60	0.02
N1-C1	1.47	1.45	0.01
N1-C2	1.47	1.45	0.02
O2-C3	1.44	1.43	0.02
C1-H11	1.09	1.11	0.03
C1-H12	1.10	1.11	0.02
C1-H13	1.09	1.11	0.02
C2-H21	1.09	1.11	0.02
C2-H22	1.10	1.11	0.02
C2-H23	1.09	1.11	0.02
C3-H31	1.09	1.11	0.02
C3-H32	1.09	1.11	0.02
C3-H33	1.09	1.11	0.02
HB3-CB-HB1	109.93	107.65	2.28
HB3-CB-HB2	110.82	107.45	3.37
HB3-CB-OG	105.66	109.35	3.69
CB-OG-P1	116.16	116.05	0.11
HB1-CB-HB2	109.65	108.90	0.75
HB1-CB-OG	110.31	111.83	1.52
HB2-CB-OG	110.40	111.49	1.09
OG-P1-O1	114.96	112.05	2.92
OG-P1-N1	99.33	100.52	1.19
OG-P1-O2	106.02	107.66	1.64
P1-N1-C1	117.05	115.64	1.40

Terms	QM	CHARMM	Abs. diff.
P1-N1-C2	114.00	115.40	1.39
P1-O2-C3	118.98	118.97	0.01
01-P1-N1	120.64	121.69	1.05
O1-P1-O2	111.11	112.86	1.76
N1-P1-O2	103.07	100.47	2.59
N1-C1-H11	109.46	110.81	1.36
N1-C1-H12	112.25	110.09	2.15
N1-C1-H13	108.19	108.88	0.69
N1-C2-H21	108.48	108.90	0.42
N1-C2-H22	112.19	110.00	2.19
N1-C2-H23	109.66	110.91	1.25
O2-C3-H31	110.44	111.86	1.42
O2-C3-H32	110.49	111.65	1.16
O2-C3-H33	105.74	109.12	3.39
C1-N1-C2	112.27	111.97	0.30
H11-C1-H12	109.49	109.91	0.43
H11-C1-H13	108.81	108.16	0.65
H12-C1-H13	108.58	108.93	0.35
H21-C2-H22	108.93	108.98	0.06
H21-C2-H23	108.77	108.27	0.49
H22-C2-H23	108.76	109.74	0.98
H31-C3-H32	109.53	109.16	0.37
Н31-С3-Н33	110.17	107.41	2.76
H32-C3-H33	110.43	107.44	2.98

Figure S484: The PES scan for flexible dihedrals corresponding to (dimethoxyphosphoryl)dimethyla mine.

2.164 The small molecule used for bonded terms optimization of O-[(R)-ethoxy(methyl)phosp horyl]-L-serine (SVX)

Terms Abs. diff. QM CHARMM 1.27O5-C2-H22 110.17 111.43 O5-C2-H23 106.03109.203.171.26H41-C4-H42109.41110.67H41-C4-H43 109.39110.641.25 $\rm H42\text{-}C4\text{-}H43$ 110.551.08109.47H21-C2-H22109.99109.310.68H21-C2-H23 110.54107.413.14 $\rm H22\text{-}C2\text{-}H23$ 109.53107.561.96

Figure S485: The energy minimized structure corresponding to dimethylmethylphosphonate.

Table S844:The calculated geometric terms of dimethylmethylphosphonate.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB1	1.09	1.12	0.02
CB-HB2	1.09	1.11	0.02
CB-OG	1.44	1.43	0.02
OG-P1	1.63	1.59	0.04
P1-O6	1.49	1.48	0.02
P1-O5	1.63	1.59	0.04
P1-C4	1.79	1.80	0.00
O5-C2	1.44	1.42	0.02
C4-H41	1.09	1.10	0.01
C4-H42	1.09	1.10	0.01
C4-H43	1.09	1.10	0.01
C2-H21	1.09	1.12	0.02
C2-H22	1.09	1.11	0.02
C2-H23	1.09	1.11	0.02
HB3-CB-HB1	110.53	107.50	3.03
HB3-CB-HB2	109.52	107.72	1.80
HB3-CB-OG	106.03	109.28	3.25
CB-OG-P1	118.49	117.82	0.67
HB1-CB-HB2	109.99	108.97	1.02
HB1-CB-OG	110.52	111.32	0.81
HB2-CB-OG	110.17	111.89	1.71
OG-P1-O6	114.19	110.72	3.47
OG-P1-O5	106.36	108.33	1.97
OG-P1-C4	100.50	103.49	2.99
P1-O5-C2	118.50	118.12	0.37
P1-C4-H41	110.01	108.39	1.62
P1-C4-H42	109.28	108.24	1.04
P1-C4-H43	109.27	108.26	1.01
O6-P1-O5	114.19	110.79	3.40
O6-P1-C4	119.16	119.29	0.13
O5-P1-C4	100.50	103.47	2.96
O5-C2-H21	110.51	111.76	1.24

Figure S486: The PES scan for flexible dihedral corresponding to dimethylmethylphosphonate.

2.165 The small molecule used for bonded terms optimization of 2-[(4Z)-2-[(1R)-1-amino-2-hy droxy-ethyl]-4-(1H-indol-3-y lmethylidene)-5-oxo-imidazol -1-yl]ethanoicacid (SWG)

Figure S487: The energy minimized structure corresponding to 3-ethenyl-1H-indole.

Table	S845:	The	$\operatorname{calculated}$	geometric	terms	\mathbf{of}	3-
etheny	vl-1H-i	ndole	9.				

Terms	QM	CHARMM	Abs. diff.
CG-CD2-CE2	107.50	109.80	2.29
CG-CD2-CE3	133.71	131.60	2.11
CD1-CG-CD2	106.23	103.66	2.56
CD1-NE1-HNE	124.94	126.88	1.93
CD1-NE1-CE2	109.62	110.68	1.06
HD1-CD1-NE1	120.83	123.99	3.16
CD2-CE2-NE1	106.98	105.85	1.13
CD2-CE2-CZ2	122.65	121.79	0.86
CD2-CE3-HE3	120.66	119.89	0.77
CD2-CE3-CZ3	118.84	120.17	1.33
NE1-CE2-CZ2	130.36	132.36	2.00
HNE-NE1-CE2	125.22	122.44	2.78
CE2-CD2-CE3	118.79	118.61	0.18
CE2-CZ2-HZ2	121.64	120.16	1.48
CE2-CZ2-CH2	117.14	119.27	2.13
CE3-CZ3-HZ3	119.60	120.04	0.44
CE3-CZ3-CH2	121.31	120.14	1.17
HE3-CE3-CZ3	120.50	119.94	0.56
CZ2-CH2-CZ3	121.27	120.02	1.25
CZ2-CH2-HH	119.37	120.23	0.87
HZ2-CZ2-CH2	121.22	120.57	0.65
CZ3-CH2-HH	119.36	119.75	0.39
HZ3-CZ3-CH2	119.10	119.82	0.73

			<u> </u>
Terms	QM	CHARMM	Abs. diff
HA22-CA2	1.08	1.10	0.02
HA23-CA2	1.09	1.10	0.01
CA2-CB2	1.34	1.35	0.01
CB2-HB2	1.09	1.10	0.01 E
CB2-CG	1.46	1.44	0.02
CG-CD1	1.38	1.38	0.00
CG-CD2	1.44	1.45	0.01 \simeq
CD1-HD1	1.08	1.08	0.00
CD1-NE1	1.38	1.38	0.01
CD2-CE2	1.42	1.40	0.02
CD2-CE3	1.41	1.40	$0.01 \mathrm{F}$
NE1-HNE	1.01	1.01	0.00 c
NE1-CE2	1.38	1.36	0.02
CE2-CZ2	1.40	1.38	0.02
CE3-HE3	1.09	1.08	0.01
CE3-CZ3	1.39	1.40	0.01
CZ2-HZ2	1.09	1.08	0.01
CZ2-CH2	1.39	1.40	0.01
CZ3-HZ3	1.09	1.08	0.01
CZ3-CH2	1.41	1.40	0.01
CH2-HH	1.09	1.08	0.01
HA22-CA2-HA23	116.99	117.77	0.78
HA22-CA2-CB2	121.41	120.88	0.53
HA23-CA2-CB2	121.61	121.35	0.26
CA2-CB2-HB2	118.79	116.59	2.20
CA2-CB2-CG	124.79	126.78	1.98
CB2-CG-CD1	127.11	129.71	2.60
CB2-CG-CD2	126.67	126.63	0.04
HB2-CB2-CG	116.41	116.63	0.22
CG-CD1-HD1	129.49	126.00	3.49
CG-CD1-NE1	109.66	110.02	0.36

Figure S488: The PES scan for flexible dihedral corresponding to 3-ethenyl-1H-indole.

Figure S489: The energy minimized structure corresponding to 2-methyl-2H-1,2,3,4-tetrazole.

Table S846: The calculated geometric terms of 2-methyl-2H-1,2,3,4-tetrazole.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-NG	1.45	1.45	0.00
NG-ND1	1.34	1.34	0.00
NG-ND2	1.33	1.33	0.00
ND1-NE1	1.33	1.30	0.03
ND2-CE2	1.35	1.33	0.02
NE1-CE2	1.35	1.34	0.01
CE2-HE2	1.08	1.09	0.01
HB3-CB-HB1	110.75	108.89	1.86
HB3-CB-HB2	110.11	108.97	1.15
HB3-CB-NG	109.14	109.44	0.30
CB-NG-ND1	122.24	122.48	0.23
CB-NG-ND2	122.93	120.08	2.85
HB1-CB-HB2	110.75	108.85	1.90
HB1-CB-NG	106.85	111.22	4.37
HB2-CB-NG	109.16	109.43	0.27
NG-ND1-NE1	105.16	101.72	3.45
NG-ND2-CE2	100.53	98.54	1.98
ND1-NG-ND2	114.83	117.45	2.62
ND1-NE1-CE2	105.98	109.28	3.30
ND2-CE2-NE1	113.50	113.02	0.49
ND2-CE2-HE2	122.65	123.75	1.10
NE1-CE2-HE2	123.84	123.23	0.61

2.167 The small molecule 2 used for bonded terms optimization of 3-(2-tetrazolyl)-alanine

(TEZA)

Figure S490: The energy minimized structure corresponding to (2R)-2-acetamido-N-methyl-3-(2H -1,2,3,4-tetrazol-2-yl)propanamide.

Table S847: The calculated geometric terms of (2R)-2-acetamido-N-methyl-3-(2H-1,2,3,4-tetr azol-2-yl)propanamide.

Terms	QM	CHARMM	Abs. diff.
N-HN	1.02	0.99	0.02
N-CA	1.46	1.46	0.01
N-CY	1.39	1.34	0.04
CA-HA	1.10	1.08	0.02
CA-CB	1.53	1.56	0.03
CA-C	1.53	1.53	0.00
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-NG	1.45	1.46	0.00
NG-ND1	1.35	1.34	0.00
NG-ND2	1.33	1.34	0.01
ND1-NE1	1.34	1.30	0.04
ND2-CE2	1.35	1.32	0.02
NE1-CE2	1.35	1.34	0.01
CE2-HE2	1.08	1.09	0.01
C-O	1.23	1.23	0.00
C-NT	1.36	1.35	0.01
NT-HNT	1.01	0.99	0.02
NT-CAT	1.45	1.45	0.01
CAT-HT1	1.09	1.11	0.02
CAT-HT2	1.09	1.11	0.02
CAT-HT3	1.09	1.11	0.02
CAY-HY1	1.09	1.11	0.02
CAY-HY2	1.09	1.11	0.02
CAY-HY3	1.09	1.11	0.02
CAY-CY	1.51	1.48	0.03
CY-OY	1.23	1.22	0.01
N-CA-HA	107.16	106.85	0.32
N-CA-CB	111.77	112.11	0.33
N-CA-C	112.29	115.73	3.44
N-CY-CAY	115.13	116.50	1.37

Terms	QM	CHARMM	Abs. diff.
N-CY-OY	120.91	122.65	1.74
HN-N-CA	116.36	116.63	0.27
HN-N-CY	116.33	117.08	0.75
CA-N-CY	118.87	124.73	5.85
CA-CB-HB1	110.40	108.65	1.75
CA-CB-HB2	111.46	109.04	2.42
CA-CB-NG	108.80	117.89	9.09
CA-C-O	120.79	120.64	0.15
CA-C-NT	114.40	118.25	3.85
HA-CA-CB	108.97	106.85	2.12
HA-CA-C	108.03	104.83	3.20
CB-CA-C	108.51	109.80	1.29
CB-NG-ND1	122.02	121.18	0.84
CB-NG-ND2	122.90	119.08	3.82
HB1-CB-HB2	109.92	106.55	3.37
HB1-CB-NG	107.58	107.66	0.07
HB2-CB-NG	108.57	106.51	2.07
NG-ND1-NE1	105.33	101.89	3.44
NG-ND2-CE2	100.70	98.71	1.99
ND1-NG-ND2	114.53	116.97	2.44
ND1-NE1-CE2	105.88	109.39	3.51
ND2-CE2-NE1	113.54	113.02	0.53
ND2-CE2-HE2	122.66	123.82	1.17
NE1-CE2-HE2	123.80	123.14	0.66
C-NT-HNT	115.75	119.90	4.15
C-NT-CAT	119.45	121.63	2.18
O-C-NT	124.37	121.05	3.32
NT-CAT-HT1	108.35	111.37	3.02
NT-CAT-HT2	108.90	110.83	1.93
NT-CAT-HT3	111.74	110.57	1.17
HNT-NT-CAT	118.16	117.97	0.18
HT1-CAT-HT2	109.50	107.86	1.64
HT1-CAT-HT3	108.65	107.80	0.84
HT2-CAT-HT3	109.67	108.28	1.39
CAY-CY-OY	123.96	120.85	3.11
HY1-CAY-HY2	109.90	108.79	1.10
HY1-CAY-HY3	108.65	109.66	1.01
HY1-CAY-CY	111.86	111.08	0.79
HY2-CAY-HY3	109.15	108.26	0.89
HY2-CAY-CY	108.83	109.44	0.61
HY3-CAY-CY	108.40	109.55	1.16

Figure S491: The PES scan for flexible dihedral corresponding to (2R)-2-acetamido-N-methyl-3 -(2H-1,2,3,4-tetrazol-2-yl)propanamide.

2.168 The small molecule used for bonded terms optimization of 2-(trifluoromethyl)-phenylgl ycine (TFG2)

Terms	QM	CHARMM	Abs. diff.
CG1-CH1-FH2	111.81	112.82	1.00
CG1-CH1-FH3	112.00	112.81	0.81
CG1-CD1-HD1	119.70	121.08	1.38
CG1-CD1-CE	120.06	120.79	0.73
CH1-CG1-CD1	118.77	120.41	1.64
FH1-CH1-FH2	106.66	105.12	1.54
FH1-CH1-FH3	106.75	105.09	1.65
FH2-CH1-FH3	106.69	106.26	0.43
CG2-CD2-HD2	119.87	120.28	0.41
CG2-CD2-CE	119.87	119.59	0.28
HG2-CG2-CD2	119.46	119.60	0.13
CD1-CE-CD2	119.61	120.29	0.68
CD1-CE-HE	119.90	119.76	0.14
HD1-CD1-CE	120.24	118.13	2.11
CD2-CE-HE	120.49	119.95	0.54
HD2-CD2-CE	120.27	120.14	0.13

Figure S492: The energy minimized structure corresponding to 1-methyl-2-(trifluoromethyl)benze ne.

Table S848:	The	calculated	geometric	terms	of	1-
methyl-2-(tr	ifluoi	comethyl)b	enzene.			

Terms	QM	CHARMM	Abs. diff.
CA-HB1	1.09	1.11	0.02
CA-HB2	1.09	1.11	0.02
CA-HB3	1.09	1.11	0.02
CA-CB	1.51	1.50	0.01
CB-CG1	1.41	1.42	0.01
CB-CG2	1.40	1.40	0.00
CG1-CH1	1.50	1.49	0.01
CG1-CD1	1.40	1.42	0.02
CH1-FH1	1.35	1.34	0.01
CH1- $FH2$	1.36	1.34	0.02
CH1- $FH3$	1.36	1.34	0.01
CG2-HG2	1.09	1.08	0.01
CG2-CD2	1.40	1.40	0.00
CD1-HD1	1.08	1.08	0.00
CD1-CE	1.39	1.40	0.00
CD2-HD2	1.09	1.08	0.01
CD2-CE	1.39	1.40	0.00
CE-HE	1.09	1.08	0.01
CA-CB-CG1	122.88	122.44	0.44
CA-CB-CG2	119.74	117.76	1.98
HB1-CA-HB2	108.29	109.07	0.78
HB1-CA-HB3	108.21	109.04	0.82
HB1-CA-CB	109.81	110.66	0.84
HB2-CA-HB3	107.58	110.12	2.54
HB2-CA-CB	111.71	108.99	2.72
HB3-CA-CB	111.12	108.96	2.15
CB-CG1-CH1	119.88	120.99	1.11
CB-CG1-CD1	121.31	118.59	2.71
CB-CG2-HG2	118.72	119.46	0.74
CB-CG2-CD2	121.81	120.94	0.87
CG1-CB-CG2	117.34	119.80	2.46
CG1-CH1-FH1	112.54	113.99	1.45

Figure S493: The energy minimized structure corresponding to 1,1,1-trifluoro-2-methylpropane.

Table S849: The calculated geometric terms of 1,1,1-trifluoro-2-methylpropane.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-CG	1.53	1.55	0.02
CG-HG	1.10	1.11	0.02
CG-CD1	1.51	1.53	0.03
CG-CD2	1.53	1.55	0.02
CD1-FD1	1.36	1.34	0.02
CD1-FD2	1.36	1.34	0.02
CD1-FD3	1.36	1.34	0.02
CD2-HD21	1.09	1.11	0.02
CD2-HD22	1.09	1.11	0.02
CD2-HD23	1.09	1.11	0.02
HB3-CB-HB1	108.29	108.20	0.08
HB3-CB-HB2	108.39	108.17	0.22
HB3-CB-CG	109.76	109.97	0.21
CB-CG-HG	109.39	108.42	0.97
CB-CG-CD1	110.39	110.55	0.16
CB-CG-CD2	112.10	110.98	1.12
HB1-CB-HB2	108.55	108.62	0.07
HB1-CB-CG	110.40	110.75	0.35
HB2-CB-CG	111.38	111.05	0.33
CG-CD1-FD1	111.88	112.23	0.35
CG-CD1-FD2	111.82	111.79	0.03
CG-CD1-FD3	111.84	111.78	0.06
CG-CD2-HD21	110.37	110.71	0.33
CG-CD2-HD22	109.73	109.92	0.18
CG-CD2-HD23	111.36	111.15	0.21
HG-CG-CD1	104.98	107.90	2.92
HG-CG-CD2	109.36	108.42	0.94
CD1-CG-CD2	110.37	110.47	0.11
FD1-CD1-FD2	107.01	106.97	0.04
FD1-CD1-FD3	107.04	106.96	0.07

Terms	QM	CHARMM	Abs. diff.
FD2-CD1-FD3	106.93	106.76	0.17
HD21-CD2-HD22	108.30	108.16	0.14
HD21-CD2-HD23	108.56	108.64	0.08
HD22-CD2-HD23	108.44	108.18	0.25

Figure S494: The PES scan for flexible dihedral corresponding to 1,1,1-trifluoro-2-methylpropane.

2.170 The small molecule used for bonded terms optimization of 2-thienylglycine (THG2)

Figure S495: The energy minimized structure corresponding to (2S)-2-acetamido-N-methyl-2-(thio phen-2-yl)acetamide.

Table S850: The calculated geometric terms of (2S)-2-acetamido-N-methyl-2-(thiophen-2-yl)a cetamide.

Terms	QM	CHARMM	Abs. diff.
N-HN	1.02	0.99	0.02
N-CA	1.47	1.47	0.00
N-CY	1.38	1.35	0.04
CA-HA	1.10	1.08	0.02
CA-CB	1.50	1.53	0.03
CA-C	1.54	1.53	0.01
CB-SG1	1.73	1.72	0.02
CB-CG2	1.38	1.37	0.01
SG1-CD1	1.72	1.71	0.01
CG2-HG2	1.08	1.08	0.00
CG2-CD2	1.42	1.38	0.04
CD1-HD1	1.08	1.08	0.00
CD1-CD2	1.38	1.37	0.01
CD2-HD2	1.09	1.08	0.00
C-O	1.23	1.23	0.00
C-NT	1.37	1.35	0.02
NT-HNT	1.01	0.99	0.02
NT-CAT	1.45	1.44	0.01
CAT-HT1	1.09	1.11	0.02
CAT-HT2	1.09	1.11	0.02
CAT-HT3	1.10	1.11	0.02
CAY-HY1	1.09	1.11	0.01
CAY-HY2	1.09	1.11	0.02
CAY-HY3	1.09	1.11	0.01
CAY-CY	1.51	1.48	0.03
CY-OY	1.23	1.22	0.01
N-CA-HA	105.57	104.60	0.97
N-CA-CB	112.42	110.59	1.83
N-CA-C	110.38	115.23	4.85
N-CY-CAY	115.02	116.74	1.73
N-CY-OY	121.70	122.80	1.10
HN-N-CA	114.82	116.00	1.17

Terms	QM	CHARMM	Abs. diff.
HN-N-CY	115.79	117.00	1.20
CA-N-CY	118.82	125.04	6.22
CA-CB-SG1	119.55	119.70	0.14
CA-CB-CG2	129.22	130.64	1.42
CA-C-O	122.89	122.58	0.31
CA-C-NT	113.11	116.71	3.60
HA-CA-CB	109.53	106.23	3.30
HA-CA-C	105.59	104.44	1.15
CB-CA-C	112.85	114.60	1.75
CB-SG1-CD1	92.24	92.82	0.58
CB-CG2-HG2	122.18	122.36	0.18
CB-CG2-CD2	112.58	114.18	1.60
SG1-CB-CG2	110.90	109.35	1.56
SG1-CD1-HD1	120.28	120.41	0.13
SG1-CD1-CD2	111.24	110.25	0.98
CG2-CD2-CD1	113.03	113.38	0.35
CG2-CD2-HD2	124.10	122.80	1.30
HG2-CG2-CD2	125.23	123.46	1.77
CD1-CD2-HD2	122.87	123.82	0.94
HD1-CD1-CD2	128.45	129.33	0.88
C-NT-HNT	115.87	119.68	3.81
C-NT-CAT	118.89	121.83	2.95
O-C-NT	123.54	120.61	2.93
NT-CAT-HT1	108.56	111.13	2.57
NT-CAT-HT2	108.83	110.85	2.02
NT-CAT-HT3	111.80	110.49	1.31
HNT-NT-CAT	117.95	117.82	0.12
HT1-CAT-HT2	109.46	107.91	1.55
HT1-CAT-HT3	108.53	107.79	0.74
HT2-CAT-HT3	109.63	108.56	1.06
CAY-CY-OY	123.28	120.46	2.83
HY1-CAY-HY2	109.84	108.88	0.96
HY1-CAY-HY3	108.43	109.67	1.24
HY1-CAY-CY	111.91	111.42	0.50
HY2-CAY-HY3	108.64	108.29	0.35
HY2-CAY-CY	108.68	108.60	0.08
HY3-CAY-CY	109.29	109.92	0.63

Figure S496: The PES scan for flexible dihedral corresponding to (2S)-2-acetamido-N-methyl-2 -(thiophen-2-yl)acetamide.

Figure S497: The energy minimized structure corresponding to methylthiourea.

Table S851: The calculated geometric terms of me thylthiourea.

Terms	QM	CHARMM	Abs. diff.
HD3-CD	1.09	1.11	0.02
CD-HD1	1.09	1.11	0.02
CD-HD2	1.10	1.11	0.02
CD-NE	1.45	1.44	0.01
NE-HE	1.01	1.00	0.01
NE-CZ	1.36	1.36	0.01
CZ-SZ	1.66	1.60	0.06
CZ-NH	1.37	1.34	0.03
NH-HH1	1.01	0.99	0.02
NH-HH2	1.01	1.00	0.01
HD3-CD-HD1	108.92	108.12	0.79
HD3-CD-HD2	109.03	109.33	0.30
HD3-CD-NE	111.17	110.60	0.56
CD-NE-HE	119.08	118.03	1.05
CD-NE-CZ	124.95	126.00	1.06
HD1-CD-HD2	107.69	108.17	0.48
HD1-CD-NE	108.24	109.98	1.74
HD2-CD-NE	111.69	110.55	1.14
NE-CZ-SZ	122.69	122.90	0.21
NE-CZ-NH	114.48	114.15	0.33
HE-NE-CZ	113.96	115.75	1.80
CZ-NH-HH1	118.92	120.02	1.11
CZ-NH-HH2	113.74	116.39	2.65
SZ-CZ-NH	122.80	122.95	0.15
HH1-NH-HH2	114.90	121.18	6.28

Figure S498: The PES scan for flexible dihedral corresponding to methylthiourea.

2.172 The small molecule 1 used for bonded terms optimization of 3-(2-thienyl)-alanine (TIH)

Figure S499: The energy minimized structure corresponding to 2-methylthiophene.

Table S852: The calculated geometric terms of 2-methylthiophene.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-CG	1.50	1.50	0.01
CG-CD2	1.38	1.37	0.01
CG-SD1	1.73	1.71	0.02
CD2-HD2	1.09	1.08	0.00
CD2-CE2	1.42	1.38	0.04
SD1-CE1	1.72	1.71	0.01
CE2-HE2	1.09	1.08	0.00
CE2-CE1	1.37	1.37	0.01
CE1-HE1	1.08	1.08	0.00
HB3-CB-HB1	107.85	108.96	1.10
HB3-CB-HB2	107.94	108.87	0.93
HB3-CB-CG	111.87	109.78	2.10
CB-CG-CD2	128.06	128.37	0.31
CB-CG-SD1	121.60	121.67	0.07
HB1-CB-HB2	107.93	108.91	0.98
HB1-CB-CG	111.87	109.77	2.10
HB2-CB-CG	109.23	110.54	1.31
CG-CD2-HD2	122.40	122.53	0.13
CG-CD2-CE2	113.42	113.94	0.52
CG-SD1-CE1	92.45	92.41	0.03
CD2-CG-SD1	110.34	109.96	0.38
CD2-CE2-HE2	124.41	123.37	1.04
CD2-CE2-CE1	112.40	113.24	0.84
HD2-CD2-CE2	124.18	123.53	0.65
SD1-CE1-CE2	111.40	110.44	0.95
SD1-CE1-HE1	120.25	119.94	0.31
CE2-CE1-HE1	128.36	129.61	1.26
HE2-CE2-CE1	123.19	123.38	0.20

2.173The small molecule 2 used for bonded terms optimization of 3-(2-thienyl)-alanine (TIH)

HE2	HD2 02	нв2	наз
CET HE1	501	HB1	HA HA

QM CHARMM Abs. diff. Terms 0.80 CD2-CE2-CE1 112.39113.19 HD2-CD2-CE2 124.21123.460.750.96 SD1-CE1-CE2 111.43110.47 ${\rm SD1\text{-}CE1\text{-}HE1}$ 120.24119.950.29CE2-CE1-HE1128.33129.581.25HE2-CE2-CE10.29123.17123.47

Figure S500: The energy minimized structure corresponding to 2-ethylthiophene.

Table S853: The calculated geometric terms of 2ethylthiophene.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.54	0.01
CB-HB1	1.10	1.11	0.02
CB-HB2	1.10	1.11	0.02
CB-CG	1.50	1.51	0.01
CG-CD2	1.38	1.37	0.01
CG-SD1	1.73	1.72	0.02
CD2-HD2	1.09	1.08	0.01
CD2-CE2	1.42	1.38	0.04
SD1-CE1	1.72	1.71	0.01
CE2-HE2	1.09	1.08	0.00
CE2-CE1	1.38	1.37	0.01
CE1-HE1	1.08	1.08	0.00
HA3-CA-HA2	108.50	108.30	0.20
HA3-CA-HA	107.98	108.36	0.38
HA3-CA-CB	110.35	110.78	0.43
HA2-CA-HA	108.18	108.13	0.05
HA2-CA-CB	110.89	110.42	0.46
CA-CB-HB1	109.71	109.21	0.50
CA-CB-HB2	109.71	108.85	0.85
CA-CB-CG	113.05	114.34	1.29
HA-CA-CB	110.85	110.76	0.09
CB-CG-CD2	128.09	128.44	0.35
CB-CG-SD1	121.60	121.68	0.08
HB1-CB-HB2	106.41	106.90	0.49
HB1-CB-CG	110.22	108.38	1.83
HB2-CB-CG	107.50	108.90	1.39
CG-CD2-HD2	122.33	122.52	0.19
CG-CD2-CE2	113.45	114.02	0.57
CG-SD1-CE1	92.45	92.44	0.01
CD2-CG-SD1	110.27	109.88	0.39
CD2-CE2-HE2	124.44	123.35	1.09

Figure S501: The PES scan for flexible dihedral corresponding to 2-ethylthiophene.

2.174 The small molecule used for bonded terms optimization of 1-hydroperoxy-L-tryptophan (TOX)

Figure S502: The energy minimized structure corresponding to 3-ethyl-1H-indole-1-peroxol.

Table S854: The calculated geometric terms of 3-ethyl-1H-indole-1-peroxol.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.54	0.00
CB-HB1	1.10	1.11	0.02
CB-HB2	1.10	1.11	0.02
CB-CG	1.50	1.51	0.01
CG-CD1	1.37	1.37	0.00
CG-CD2	1.45	1.44	0.01
CD1-HD1	1.08	1.08	0.00
CD1-NE1	1.39	1.38	0.01
CD2-CE2	1.41	1.40	0.01
CD2-CE3	1.40	1.39	0.01
NE1-01	1.35	1.36	0.00
NE1-CE2	1.39	1.38	0.01
O1-O2	1.52	1.54	0.02
O2-HO2	0.98	0.96	0.02
CE2-CZ2	1.39	1.39	0.00
CE3-HE3	1.09	1.08	0.01
CE3-CZ3	1.39	1.40	0.01
CZ2-HZ2	1.09	1.08	0.01
CZ2-CH2	1.39	1.40	0.01
CZ3-HZ3	1.09	1.08	0.00
CZ3-CH2	1.41	1.40	0.01
CH2-HH2	1.09	1.08	0.00
HA3-CA-HA2	108.28	108.32	0.03
НАЗ-СА-НА	108.44	108.23	0.21
HA3-CA-CB	111.01	110.40	0.61
HA2-CA-HA	107.84	108.24	0.40
HA2-CA-CB	110.94	110.94	0.00
CA-CB-HB1	109.75	108.81	0.95
CA-CB-HB2	109.72	109.57	0.15
CA-CB-CG	112.15	113.74	1.59

Terms	QM	CHARMM	Abs. diff.
HA-CA-CB	110.21	110.61	0.40
CB-CG-CD1	127.27	127.84	0.57
CB-CG-CD2	126.00	124.96	1.04
HB1-CB-HB2	106.43	106.93	0.50
HB1-CB-CG	109.11	108.98	0.13
HB2-CB-CG	109.51	108.58	0.92
CG-CD1-HD1	131.54	130.21	1.34
CG-CD1-NE1	109.13	107.75	1.38
CG-CD2-CE2	107.79	108.18	0.38
CG-CD2-CE3	133.72	132.16	1.56
CD1-CG-CD2	106.70	107.17	0.47
CD1-NE1-O1	122.19	122.28	0.10
CD1-NE1-CE2	109.46	111.32	1.87
HD1-CD1-NE1	119.23	122.03	2.80
CD2-CE2-NE1	106.43	105.57	0.85
CD2-CE2-CZ2	123.61	120.98	2.63
CD2-CE3-HE3	120.91	119.73	1.18
CD2-CE3-CZ3	118.67	119.61	0.94
NE1-O1-O2	108.21	108.58	0.38
NE1-CE2-CZ2	129.85	133.44	3.59
O1-NE1-CE2	121.92	121.98	0.06
O1-O2-HO2	98.35	98.74	0.38
CE2-CD2-CE3	118.46	119.66	1.20
CE2-CZ2-HZ2	121.53	119.44	2.09
CE2-CZ2-CH2	116.59	119.31	2.72
CE3-CZ3-HZ3	119.48	119.87	0.39
CE3-CZ3-CH2	121.45	120.56	0.89
HE3-CE3-CZ3	120.42	120.66	0.24
CZ2-CH2-CZ3	121.17	119.88	1.29
CZ2-CH2-HH2	119.43	120.29	0.85
HZ2-CZ2-CH2	121.87	121.24	0.63
CZ3-CH2-HH2	119.39	119.83	0.44
HZ3-CZ3-CH2	119.07	119.57	0.50

Figure S503: The PES scan for flexible dihedrals corresponding to 3-ethyl-1H-indole-1-peroxol.
2.175 The small molecule 1 used for bonded terms optimization of 5-(2-carboxy-2-aminoethyl)-2-hydroxy-1,4-benzoquinone (TPQ)

Figure S504: The energy minimized structure corresponding to cyclohex-5-ene-1,2,4-trione.

Table S855: The calculated geometric terms of cy clohex-5-ene-1, 2, 4-trione.

Terms	QM	CHARMM	Abs. diff.
HCB-C1	1.09	1.10	0.01
C1-C2	1.50	1.50	0.00
C1-C6	1.35	1.36	0.00
C2-O2	1.27	1.23	0.04
C2-C3	1.42	1.50	0.09
C3-H3	1.09	1.10	0.01
C3-C4	1.42	1.36	0.05
C4-O4	1.26	1.27	0.01
C4-C5	1.54	1.60	0.05
C5-O5	1.24	1.24	0.01
C5-C6	1.48	1.50	0.02
C6-H6	1.09	1.10	0.01
HCB-C1-C2	115.41	120.11	4.71
HCB-C1-C6	121.88	118.67	3.21
C1-C2-O2	116.42	118.94	2.51
C1-C2-C3	117.69	121.47	3.77
C1-C6-C5	120.06	120.20	0.14
C1-C6-H6	122.85	118.37	4.48
C2-C1-C6	122.63	121.22	1.42
C2-C3-H3	117.73	120.68	2.95
C2-C3-C4	123.36	118.91	4.44
O2-C2-C3	125.86	119.60	6.26
C3-C4-O4	126.34	121.65	4.70
C3-C4-C5	116.35	119.99	3.64
H3-C3-C4	117.88	120.40	2.53
C4-C5-O5	121.76	123.49	1.73
C4-C5-C6	118.26	118.21	0.05
O4-C4-C5	117.21	118.36	1.15
C5-C6-H6	116.82	121.43	4.61
O5-C5-C6	119.98	118.30	1.68

2.176 The small molecule 2 used for bonded terms optimization of 5-(2-carboxy-2-aminoethyl)-2-hydroxy-1,4-benzoquinone (TPQ)

Figure S505: The energy minimized structure corresponding to 5-ethylcyclohex-5-ene-1,2,4-trione.

Table S856: The calculated geometric terms of 5-ethylcyclohex-5-ene-1,2,4-trione.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.02
HA2-CA	1.10	1.11	0.01
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.54	0.01
CB-HB1	1.10	1.11	0.02
CB-HB2	1.10	1.11	0.01
CB-C1	1.50	1.52	0.02
C1-C2	1.51	1.52	0.01
C1-C6	1.35	1.36	0.00
C2-O2	1.27	1.23	0.04
C2-C3	1.41	1.51	0.09
C3-H3	1.09	1.10	0.01
C3-C4	1.42	1.36	0.06
C4-O4	1.26	1.27	0.01
C4-C5	1.54	1.59	0.05
C5-O5	1.24	1.24	0.01
C5-C6	1.47	1.50	0.03
C6-H6	1.09	1.10	0.01
HA3-CA-HA2	108.24	108.56	0.31
HA3-CA-HA	108.85	108.44	0.41
HA3-CA-CB	110.50	110.81	0.31
HA2-CA-HA	108.64	108.22	0.42
HA2-CA-CB	110.88	110.45	0.43
CA-CB-HB1	108.90	107.96	0.94
CA-CB-HB2	110.08	108.95	1.13
CA-CB-C1	111.37	113.14	1.77
HA-CA-CB	109.67	110.28	0.61
CB-C1-C2	117.26	121.10	3.85
CB-C1-C6	122.14	119.26	2.89
HB1-CB-HB2	108.62	106.34	2.28
HB1-CB-C1	108.70	108.62	0.08
HB2-CB-C1	109.11	111.55	2.43

Terms	QM	CHARMM	Abs. diff.
C1-C2-O2	116.74	120.11	3.37
C1-C2-C3	118.15	122.14	3.99
C1-C6-C5	121.62	121.03	0.59
C1-C6-H6	121.89	117.78	4.11
C2-C1-C6	120.60	119.44	1.15
С2-С3-Н3	117.29	120.85	3.56
C2-C3-C4	123.75	118.76	4.99
O2-C2-C3	125.09	117.74	7.35
C3-C4-O4	126.30	121.77	4.53
C3-C4-C5	116.10	119.85	3.74
H3-C3-C4	117.77	120.39	2.63
C4-C5-O5	121.63	123.37	1.75
C4-C5-C6	118.30	118.65	0.34
O4-C4-C5	117.53	118.38	0.86
С5-С6-Н6	116.22	121.18	4.96
O5-C5-C6	120.07	117.98	2.09

Figure S506: The PES scan for flexible dihedral corresponding to 5-ethylcyclohex-5-ene-1,2,4-trio ne.

2.177 The small molecule used for bonded terms optimization of 5-(2-carboxy-2-aminoethyl)-2-hydroxy-1,4-benzoquinone (TPQP)

Figure S507: The energy minimized structure corresponding to 2-ethyl-5-hydroxycyclohexa-2,5-di ene-1,4-dione.

Table S857: The calculated geometric terms of 2-ethyl-5-hydroxycyclohexa-2,5-diene-1,4-dione.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.54	0.01
CB-HB1	1.09	1.11	0.02
CB-HB2	1.10	1.11	0.02
CB-C1	1.50	1.51	0.02
C1-C2	1.50	1.52	0.01
C1-C6	1.35	1.36	0.01
C2-O2	1.24	1.23	0.01
C2-C3	1.46	1.51	0.04
C3-H3	1.09	1.10	0.01
C3-C4	1.35	1.35	0.00
C4-O4	1.34	1.36	0.02
C4-C5	1.49	1.58	0.09
O4-HO4	0.99	0.96	0.02
C5-O5	1.24	1.23	0.01
C5-C6	1.46	1.50	0.03
C6-H6	1.09	1.10	0.01
HA3-CA-HA2	108.24	108.21	0.04
HA3-CA-HA	108.86	108.50	0.36
HA3-CA-CB	110.68	111.16	0.48
HA2-CA-HA	108.37	107.86	0.51
HA2-CA-CB	110.28	110.26	0.02
CA-CB-HB1	109.25	108.04	1.20
CA-CB-HB2	110.12	108.68	1.44
CA-CB-C1	111.66	112.69	1.03
HA-CA-CB	110.34	110.75	0.41
CB-C1-C2	116.95	120.49	3.54
CB-C1-C6	123.24	119.80	3.44
HB1-CB-HB2	108.02	105.94	2.07

0		
QM	CHARMM	Abs. diff.
108.76	109.36	0.60
108.96	111.84	2.88
119.33	120.02	0.69
119.42	122.04	2.62
121.11	120.96	0.15
122.29	118.56	3.73
119.79	119.50	0.28
118.04	120.94	2.90
119.88	118.07	1.81
121.25	117.94	3.32
124.12	124.03	0.09
121.27	121.10	0.18
122.07	120.98	1.09
104.95	105.24	0.29
117.82	121.26	3.44
118.53	118.23	0.30
114.61	114.87	0.26
116.60	120.48	3.87
123.66	120.51	3.15
	$\begin{array}{c} QM \\ \hline 108.76 \\ 108.96 \\ 119.33 \\ 119.42 \\ 121.11 \\ 122.29 \\ 119.79 \\ 118.04 \\ 119.88 \\ 121.25 \\ 124.12 \\ 121.27 \\ 122.07 \\ 104.95 \\ 117.82 \\ 118.53 \\ 114.61 \\ 116.60 \\ 123.66 \end{array}$	QMCHARMM108.76109.36108.96111.84119.33120.02119.42122.04121.11120.96122.29118.56119.79119.50118.04120.94119.88118.07121.25117.94124.12124.03121.27121.10122.07120.98104.95105.24117.82121.26118.53118.23114.61114.87116.60120.48123.66120.51

Figure S508: The PES scan for flexible dihedral corresponding to 2-ethyl-5-hydroxycyclohexa-2,5-diene-1,4-dione.

2.178 The small molecule used for bonded terms optimization of (S)-2-amino-3-(6,7-dihydro-6imino-7-oxo-1H-indol-3-yl)p ropanoicacid (TQQ)

Figure S509: The energy minimized structure corresponding to 3-ethyl-6-imino-6,7-dihydro-1H-ind ol-7-one.

Table S858: The calculated geometric terms of 3-
ethyl-6-imino-6,7-dihydro-1H-indol-7-one.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.10	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.54	0.00
CB-HB1	1.10	1.11	0.02
CB-HB2	1.10	1.11	0.01
CB-CG	1.50	1.51	0.02
CG-CD1	1.40	1.36	0.04
CG-CD2	1.42	1.38	0.04
CD1-HD1	1.08	1.08	0.00
CD1-NE1	1.37	1.37	0.00
NE1-HE1	1.02	1.01	0.00
NE1-CE2	1.37	1.38	0.01
CD2-CE2	1.41	1.38	0.02
CD2-CE3	1.45	1.45	0.00
CE2-CZ2	1.43	1.46	0.02
CE3-HE3	1.09	1.10	0.01
CE3-CZ3	1.36	1.37	0.01
CZ2-O2	1.25	1.24	0.01
CZ2-CH2	1.53	1.54	0.01
CZ3-HZ3	1.09	1.10	0.01
CZ3-CH2	1.47	1.48	0.02
CH2-N2	1.30	1.29	0.01
N2-HN21	1.03	1.00	0.03
HA3-CA-HA2	108.36	108.37	0.01
HA3-CA-HA	107.86	108.25	0.39
HA3-CA-CB	110.43	110.74	0.31
HA2-CA-HA	108.22	108.32	0.10
HA2-CA-CB	110.94	110.51	0.43
CA-CB-HB1	109.75	108.91	0.84
CA-CB-HB2	109.78	109.17	0.61

Terms	QM	CHARMM	Abs. diff.
CA-CB-CG	112.32	113.82	1.50
HA-CA-CB	110.93	110.58	0.35
CB-CG-CD1	126.26	124.49	1.77
CB-CG-CD2	127.35	125.25	2.10
HB1-CB-HB2	106.37	106.62	0.25
HB1-CB-CG	108.97	109.12	0.15
HB2-CB-CG	109.47	108.95	0.52
CG-CD1-HD1	129.92	129.02	0.90
CG-CD1-NE1	109.00	107.08	1.92
CG-CD2-CE2	107.48	105.67	1.81
CG-CD2-CE3	132.56	132.75	0.19
CD1-CG-CD2	106.24	110.26	4.01
CD1-NE1-HE1	126.72	126.48	0.24
CD1-NE1-CE2	109.25	108.21	1.04
HD1-CD1-NE1	121.06	123.90	2.83
NE1-CE2-CD2	107.94	108.79	0.85
NE1-CE2-CZ2	127.14	127.06	0.08
HE1-NE1-CE2	124.02	125.31	1.30
CD2-CE2-CZ2	124.29	124.15	0.14
CD2-CE3-HE3	119.72	120.52	0.80
CD2-CE3-CZ3	120.12	119.71	0.42
CE2-CD2-CE3	119.78	121.58	1.80
CE2-CZ2-O2	125.07	121.17	3.91
CE2-CZ2-CH2	113.70	113.48	0.22
CE3-CZ3-HZ3	121.87	120.97	0.90
CE3-CZ3-CH2	121.64	121.50	0.13
HE3-CE3-CZ3	120.09	119.77	0.32
CZ2-CH2-CZ3	119.69	119.57	0.13
CZ2- $CH2$ - $N2$	120.35	120.51	0.17
O2-CZ2-CH2	121.19	125.35	4.16
CZ3-CH2-N2	119.95	119.92	0.03
HZ3-CZ3-CH2	116.38	117.53	1.15
CH2-N2-HN21	107.72	107.96	0.24

2.179 The small molecule used for bonded terms optimization of 2-hydroxy-tryptophan (TRO)

Figure S510: The energy minimized structure corresponding to 3-methyl-1H-indol-2-ol.

Table S859: The calculated geometric terms of 3-methyl-1H-indol-2-ol. $\,$

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.10	1.11	0.02
CB-HB1	1.10	1.11	0.01
CB-HB2	1.10	1.11	0.02
CB-CG	1.50	1.51	0.02
CG-CD1	1.38	1.37	0.01
CG-CD2	1.44	1.44	0.00
CD1-OD1	1.37	1.37	0.00
CD1-NE1	1.37	1.37	0.01
OD1-HD1	0.97	0.96	0.01
CD2-CE2	1.42	1.41	0.02
CD2-CE3	1.41	1.39	0.01
NE1-HE1	1.01	1.01	0.01
NE1-CE2	1.38	1.37	0.01
CE2-CZ2	1.40	1.38	0.01
CE3-HE3	1.09	1.08	0.01
CE3-CZ3	1.39	1.40	0.01
CZ2-HZ2	1.09	1.08	0.01
CZ2-CH2	1.39	1.40	0.01
CZ3-HZ3	1.09	1.08	0.00
CZ3-CH2	1.41	1.40	0.01
CH2-HH2	1.09	1.08	0.00
HB3-CB-HB1	107.03	108.80	1.78
HB3-CB-HB2	107.63	108.65	1.02
HB3-CB-CG	111.59	109.70	1.88
CB-CG-CD1	127.97	129.82	1.85
CB-CG-CD2	126.82	124.30	2.52
HB1-CB-HB2	107.01	108.78	1.76
HB1-CB-CG	111.75	111.17	0.59
HB2-CB-CG	111.56	109.69	1.88
CG-CD1-OD1	132.86	133.46	0.61
CG-CD1-NE1	111.11	109.56	1.56
CG-CD2-CE2	108.08	107.94	0.14
CG-CD2-CE3	133.27	132.22	1.05
CD1-CG-CD2	105.21	105.89	0.67

Terms	QM	CHARMM	Abs. diff.
CD1-OD1-HD1	107.51	106.10	1.41
CD1-NE1-HE1	123.94	123.90	0.04
CD1-NE1-CE2	108.77	110.36	1.58
OD1-CD1-NE1	116.03	116.98	0.95
CD2-CE2-NE1	106.82	106.26	0.56
CD2-CE2-CZ2	122.70	120.99	1.72
CD2-CE3-HE3	120.58	120.03	0.55
CD2-CE3-CZ3	118.97	119.40	0.43
NE1-CE2-CZ2	130.48	132.75	2.27
HE1-NE1-CE2	127.29	125.75	1.54
CE2-CD2-CE3	118.65	119.84	1.19
CE2-CZ2-HZ2	121.54	119.91	1.63
CE2-CZ2-CH2	117.25	119.34	2.09
CE3-CZ3-HZ3	119.56	119.79	0.23
CE3-CZ3-CH2	121.26	120.48	0.78
HE3-CE3-CZ3	120.45	120.57	0.13
CZ2-CH2-CZ3	121.17	119.96	1.22
CZ2-CH2-HH2	119.33	120.24	0.90
HZ2-CZ2-CH2	121.22	120.75	0.46
CZ3-CH2-HH2	119.49	119.81	0.31
HZ3-CZ3-CH2	119.18	119.73	0.56

Figure S511: The PES scan for flexible dihedral corresponding to 3-methyl-1H-indol-2-ol.

2.180 The small molecule used for bonded terms optimization of 2-amino-3-(6,7-dioxo-6,7-dihy dro-1H-indol-3-yl)-propionica cid (TRQ)

Figure S512: The energy minimized structure corresponding to 3-ethyl-6,7-dihydro-1H-indole-6,7-dione.

Table S860: The calculated geometric terms of 3-ethyl-6,7-dihydro-1H-indole-6,7-dione.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.53	1.54	0.00
CB-HB1	1.10	1.11	0.02
CB-HB2	1.10	1.11	0.02
CB-CG	1.50	1.51	0.02
CG-CD1	1.40	1.36	0.03
CG-CD2	1.42	1.38	0.04
CD1-HD1	1.08	1.08	0.00
CD1-NE1	1.37	1.37	0.00
CD2-CE2	1.40	1.38	0.02
CD2-CE3	1.45	1.45	0.00
NE1-HE1	1.01	1.01	0.00
NE1-CE2	1.37	1.37	0.01
CE2-CZ2	1.44	1.45	0.01
CE3-HE3	1.09	1.10	0.01
CE3-CZ3	1.36	1.37	0.01
CZ2-O7	1.24	1.23	0.00
CZ2-CH2	1.55	1.56	0.01
CZ3-HZ3	1.09	1.10	0.01
CZ3-CH2	1.48	1.51	0.04
CH2-O6	1.23	1.23	0.00
HA3-CA-HA2	108.40	108.30	0.10
HA3-CA-HA	108.30	108.22	0.07
HA3-CA-CB	111.06	110.51	0.55
HA2-CA-HA	107.81	108.25	0.44
HA2-CA-CB	110.37	110.74	0.37
CA-CB-HB1	109.77	109.13	0.64
CA-CB-HB2	109.70	108.92	0.79
CA-CB-CG	112.33	113.82	1.49

Terms	QM	CHARMM	Abs. diff.
HA-CA-CB	110.79	110.72	0.08
CB-CG-CD1	126.30	124.40	1.89
CB-CG-CD2	127.35	125.38	1.98
HB1-CB-HB2	106.24	106.50	0.27
HB1-CB-CG	109.55	109.03	0.51
HB2-CB-CG	109.07	109.18	0.11
CG-CD1-HD1	129.87	129.32	0.55
CG-CD1-NE1	108.87	107.04	1.83
CG-CD2-CE2	107.58	105.48	2.09
CG-CD2-CE3	132.70	132.45	0.25
CD1-CG-CD2	106.23	110.22	3.99
CD1-NE1-HE1	127.11	126.84	0.28
CD1-NE1-CE2	109.43	108.20	1.23
HD1-CD1-NE1	121.25	123.64	2.39
CD2-CE2-NE1	107.87	109.06	1.19
CD2-CE2-CZ2	125.18	123.96	1.22
CD2-CE3-HE3	119.34	119.81	0.46
CD2-CE3-CZ3	120.72	120.90	0.18
NE1-CE2-CZ2	126.88	126.98	0.10
HE1-NE1-CE2	123.45	124.96	1.51
CE2-CD2-CE3	119.67	122.07	2.40
CE2-CZ2-O7	124.84	123.96	0.88
CE2-CZ2-CH2	113.53	113.97	0.44
CE3-CZ3-HZ3	121.91	119.74	2.17
CE3-CZ3-CH2	122.04	119.88	2.16
HE3-CE3-CZ3	119.93	119.29	0.64
CZ2-CH2-CZ3	118.74	119.22	0.49
CZ2-CH2-O6	118.97	119.37	0.39
O7-CZ2-CH2	121.63	122.08	0.45
CZ3-CH2-O6	122.29	121.41	0.88
HZ3-CZ3-CH2	116.02	120.38	4.36

2.181 The small molecule used for bonded terms optimization of TRW3-(2-amino-3-hydroxypropyl)-6-(N'-cyclohexyl-hy drazino)octahydro-indol-7-ol (TRW)

Figure	S513:	The	energy	${\rm minimized}$	$\operatorname{structure}$	cor-
respon	ding to	$^{-1,2}$	diphen	ylhydrazine		

Table S861: The calculated geometric terms of 1,2-diphenyl hydrazine.

Terms	QM	CHARMM	Abs. diff.
CD2-HD2	1.09	1.08	0.01
CD2-CE2	1.40	1.40	0.00
CD2-CE3	1.40	1.40	0.00
CE2-HE2	1.09	1.08	0.01
CE2-CZ2	1.40	1.40	0.01
CE3-HE3	1.09	1.08	0.01
CE3-CZ3	1.39	1.40	0.01
CZ2-HZ2	1.09	1.08	0.01
CZ2-CH2	1.40	1.41	0.01
CZ3-HZ3	1.09	1.08	0.01
CZ3-CH2	1.40	1.41	0.00
CH2-N6	1.41	1.42	0.01
N6-HN6	1.02	1.02	0.00
N6-N1	1.41	1.45	0.04
N1-HN1	1.02	1.02	0.01
N1-C1	1.42	1.42	0.01
C1-C2	1.40	1.41	0.00
C1-C6	1.40	1.41	0.01
C2-HC2	1.09	1.08	0.01
C2-C3	1.39	1.40	0.01
C3-HC3	1.09	1.08	0.01
C3-C4	1.40	1.40	0.00
C4-HC4	1.09	1.08	0.01
C4-C5	1.40	1.40	0.00
C5-HC5	1.09	1.08	0.01
C5-C6	1.39	1.40	0.01
C6-HC6	1.09	1.08	0.01
CD2-CE2-HE2	119.99	120.09	0.10
CD2-CE2-CZ2	120.92	119.91	1.01
CD2-CE3-HE3	120.19	120.07	0.12
CD2-CE3-CZ3	120.41	119.89	0.52

Terms	QM	CHARMM	Abs. diff.
HD2-CD2-CE2	120.40	119.97	0.43
HD2-CD2-CE3	120.34	120.03	0.31
CE2-CD2-CE3	119.25	120.00	0.74
CE2- $CZ2$ - $HZ2$	120.03	119.04	0.99
CE2-CZ2-CH2	119.61	120.91	1.29
HE2-CE2-CZ2	119.08	120.00	0.92
CE3-CZ3-HZ3	120.14	119.04	1.10
CE3-CZ3-CH2	120.23	121.08	0.85
HE3-CE3-CZ3	119.41	120.04	0.64
CZ2-CH2-CZ3	119.57	118.22	1.35
CZ2-CH2-N6	121.27	124.73	3.46
HZ2-CZ2-CH2	120.34	120.04	0.29
CZ3-CH2-N6	119.09	117.05	2.03
HZ3-CZ3-CH2	119.63	119.87	0.24
CH2-N6-HN6	112.47	112.64	0.17
CH2-N6-N1	117.32	121.65	4.33
N6-N1-HN1	111.46	106.48	4.97
N6-N1-C1	115.19	120.17	4.99
HN6-N6-N1	109.00	105.86	3.14
N1-C1-C2	118.77	117.02	1.74
N1-C1-C6	121.37	124.80	3.44
HN1-N1-C1	111.33	111.47	0.14
C1-C2-HC2	119.75	119.89	0.14
C1-C2-C3	120.13	121.12	0.99
C1-C6-C5	119.59	121.04	1.45
С1-С6-НС6	119.15	119.51	0.36
C2-C1-C6	119.72	118.17	1.55
С2-С3-НС3	119.38	120.12	0.73
C2-C3-C4	120.39	119.85	0.54
HC2-C2-C3	120.12	118.98	1.13
C3-C4-HC4	120.36	120.07	0.28
C3-C4-C5	119.21	120.00	0.79
HC3-C3-C4	120.23	120.03	0.19
C4-C5-HC5	119.93	120.27	0.34
C4-C5-C6	120.95	119.82	1.13
HC4-C4-C5	120.43	119.93	0.50
C5-C6-HC6	121.25	119.44	1.80
HC5-C5-C6	119.12	119.91	0.80

Figure S514: The PES scan for flexible dihedral corresponding to 1,2-diphenylhydrazine.

2.182 The small molecule used for bonded terms optimization of (2S,3S,4R)-2-amino-3,4-dihy droxy-3-methylpentanoicacid (TS9)

Figure S515: The energy minimized structure corresponding to 2-methylbutane-2,3-diol.

Table S862: The calculated geometric terms of 2-methylbutane-2,3-diol.

QM	CHARMM	Abs. diff.
1.09	1.11	0.02
1.10	1.11	0.01
1.09	1.11	0.02
1.52	1.53	0.01
1.44	1.42	0.02
1.52	1.54	0.02
1.54	1.55	0.00
0.97	0.96	0.02
1.09	1.11	0.02
1.09	1.11	0.02
1.09	1.11	0.02
1.10	1.12	0.02
1.43	1.42	0.01
1.52	1.54	0.02
0.97	0.96	0.01
1.09	1.11	0.02
1.10	1.11	0.01
1.09	1.11	0.02
108.47	108.90	0.43
109.67	108.32	1.36
109.74	110.59	0.85
107.68	108.13	0.46
110.29	111.01	0.72
109.95	105.77	4.18
110.87	109.44	1.42
109.94	112.06	2.12
110.94	109.82	1.13
106.87	105.04	1.83
110.82	110.54	0.28
109.41	109.90	0.49
110.87	111.02	0.15
106.53	107.33	0.80
	$\begin{array}{r} {\rm QM} \\ {\rm 1.09} \\ {\rm 1.09} \\ {\rm 1.10} \\ {\rm 1.09} \\ {\rm 1.52} \\ {\rm 1.44} \\ {\rm 1.52} \\ {\rm 1.54} \\ {\rm 0.97} \\ {\rm 1.09} \\ {\rm 108.47} \\ {\rm 109.67} \\ {\rm 109.74} \\ {\rm 109.74} \\ {\rm 107.68} \\ {\rm 110.29} \\ {\rm 109.95} \\ {\rm 110.87} \\ {\rm 109.94} \\ {\rm 110.87} \\ {\rm 100.87} \\ {\rm 100.653} \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Terms	QM	CHARMM	Abs. diff.
CB-CG1-OD2	111.23	112.18	0.94
CB-CG1-CD1	114.13	115.61	1.47
OG3-CB-CG2	104.91	106.05	1.14
OG3-CB-CG1	108.45	110.09	1.64
CG2-CB-CG1	112.57	113.01	0.44
HG21-CG2-HG22	108.28	108.19	0.09
HG21-CG2-HG23	109.41	109.20	0.21
HG22-CG2-HG23	107.97	107.91	0.06
CG1-OD2-HD2	106.72	105.26	1.46
CG1-CD1-HD11	109.68	110.19	0.51
CG1-CD1-HD12	110.82	111.32	0.50
CG1-CD1-HD13	110.69	110.12	0.56
HG1-CG1-OD2	104.22	106.86	2.64
HG1-CG1-CD1	108.80	107.73	1.08
OD2-CG1-CD1	111.29	106.74	4.56
HD11-CD1-HD12	108.01	108.44	0.44
HD11-CD1-HD13	109.49	108.33	1.15
HD12-CD1-HD13	108.10	108.35	0.25

Figure S516: The PES scan for flexible dihedral corresponding to 2-methylbutane-2,3-diol.

2.183 The small molecule used for bonded terms optimization of O-sulfo-L-tyrosine (TYS)

Figure S517: The energy minimized structure corresponding to (4-ethylphenyl)oxidanesulfonicacid.

Table S863: The calculated geometric terms of (4-ethylphenyl)oxidanesulfonicacid.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.10	1.11	0.01
HA2-CA	1.10	1.11	0.02
CA-HA	1.10	1.11	0.02
CA-CB	1.53	1.54	0.00
CB-HB1	1.10	1.11	0.01
CB-HB2	1.10	1.11	0.01
CB-CG	1.51	1.50	0.00
CG-CD1	1.40	1.40	0.00
CG-CD2	1.40	1.40	0.00
CD1-HD1	1.09	1.08	0.01
CD1-CE1	1.40	1.40	0.01
CD2-HD2	1.09	1.08	0.01
CD2-CE2	1.40	1.40	0.01
CE1-HE1	1.09	1.08	0.01
CE1-CZ	1.40	1.41	0.00
CE2-HE2	1.09	1.08	0.01
CE2-CZ	1.40	1.41	0.00
CZ-OH	1.37	1.39	0.01
OH-S	1.76	1.58	0.18
S-O1	1.48	1.45	0.03
S-O2	1.48	1.45	0.03
S-O3	1.47	1.45	0.03
HA3-CA-HA2	108.38	108.49	0.11
НАЗ-СА-НА	108.39	108.49	0.10
HA3-CA-CB	111.47	110.45	1.02
HA2-CA-HA	107.73	108.27	0.54
HA2-CA-CB	110.37	110.52	0.14
CA-CB-HB1	109.44	110.89	1.45
CA-CB-HB2	109.44	110.91	1.47
CA-CB-CG	112.29	109.58	2.71
HA-CA-CB	110.38	110.55	0.17
CB-CG-CD1	120.93	120.17	0.76
CB-CG-CD2	120.90	120.17	0.73
HB1-CB-HB2	106.73	108.40	1.67

Terms	QM	CHARMM	Abs. diff.
HB1-CB-CG	109.39	108.49	0.91
HB2-CB-CG	109.40	108.50	0.90
CG-CD1-HD1	119.38	119.91	0.53
CG-CD1-CE1	121.30	120.09	1.21
CG-CD2-HD2	119.35	119.93	0.59
CG-CD2-CE2	121.29	120.09	1.20
CD1-CG-CD2	118.11	119.66	1.54
CD1-CE1-HE1	121.77	120.88	0.89
CD1-CE1-CZ	119.71	120.57	0.86
HD1-CD1-CE1	119.32	120.00	0.68
CD2-CE2-HE2	121.78	120.89	0.88
CD2-CE2-CZ	119.73	120.57	0.85
HD2-CD2-CE2	119.36	119.98	0.61
CE1-CZ-CE2	119.86	118.97	0.89
CE1-CZ-OH	120.04	120.24	0.21
HE1-CE1-CZ	118.48	118.54	0.06
CE2-CZ-OH	120.04	120.24	0.20
HE2-CE2-CZ	118.46	118.52	0.06
CZ-OH-S	114.43	116.42	1.99
OH-S-O1	103.11	105.01	1.91
OH-S-O2	103.11	105.04	1.92
OH-S-O3	99.62	102.51	2.89
O1-S-O2	114.89	114.68	0.22
O1-S-O3	116.30	113.94	2.36
O2-S-O3	116.31	113.96	2.35

Figure S518: The PES scan for flexible dihedral corresponding to (4-ethylphenyl)oxidanesulfonicac id.

2.184 The small molecule used for bonded terms optimization of (4-thiazolyl)-alanine (TZA4)

Figure S519: The energy minimized structure corresponding to 4-methyl-1,3-thiazole.

Table S864: The calculated geometric terms of 4-methyl-1,3-thiazole.

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-CG	1.50	1.49	0.01
CG-CD1	1.38	1.37	0.01
CG-ND2	1.38	1.40	0.02
CD1-HD1	1.08	1.08	0.00
CD1-SE1	1.71	1.71	0.01
ND2-CE2	1.31	1.33	0.01
SE1-CE2	1.73	1.70	0.03
CE2-HE2	1.08	1.09	0.01
HB3-CB-HB1	108.63	109.24	0.60
HB3-CB-HB2	107.67	108.94	1.27
HB3-CB-CG	110.45	109.42	1.03
CB-CG-CD1	126.23	128.48	2.25
CB-CG-ND2	119.11	116.31	2.80
HB1-CB-HB2	108.63	109.24	0.60
HB1-CB-CG	110.90	110.56	0.34
HB2-CB-CG	110.46	109.42	1.03
CG-CD1-HD1	128.13	128.83	0.70
CG-CD1-SE1	110.61	109.99	0.62
CG-ND2-CE2	110.41	108.81	1.60
CD1-CG-ND2	114.65	115.21	0.56
CD1- $SE1$ - $CE2$	88.99	90.05	1.06
HD1-CD1-SE1	121.26	121.18	0.08
ND2-CE2-SE1	115.34	115.94	0.61
ND2-CE2-HE2	123.80	125.52	1.72
SE1-CE2-HE2	120.86	118.53	2.33

2.185 The small molecule used for bonded terms optimization of S-cyano-L-cysteine (XCN)

Figure S520: The energy minimized structure corresponding to (ethylsulfanyl)carbonitrile.

Table S865: The calculated geometric terms of (et hylsulfanyl)carbonitrile.

Terms	QM	CHARMM	Abs. diff.
HA3-CA	1.09	1.11	0.02
HA2-CA	1.09	1.11	0.02
CA-HA	1.09	1.11	0.02
CA-CB	1.52	1.54	0.01
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SG	1.83	1.82	0.01
SG-CS	1.70	1.70	0.00
CS-NC	1.19	1.18	0.01
HA3-CA-HA2	108.09	108.38	0.29
НАЗ-СА-НА	108.11	108.33	0.22
HA3-CA-CB	109.30	110.41	1.11
HA2-CA-HA	108.61	108.49	0.12
HA2-CA-CB	111.31	110.58	0.73
CA-CB-HB1	111.16	108.70	2.46
CA-CB-HB2	111.17	108.70	2.47
CA-CB-SG	108.40	113.41	5.01
HA-CA-CB	111.30	110.56	0.74
CB-SG-CS	98.65	98.73	0.08
HB1-CB-HB2	108.97	106.87	2.10
HB1-CB-SG	108.53	109.46	0.93
HB2-CB-SG	108.53	109.49	0.96
SG-CS-NC	179.10	178.61	0.49

Figure S521: The PES scan for flexible dihedral corresponding to (ethylsulfanyl)carbonitrile.

2.186 The small molecule 1 used for bonded terms optimization of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5oxo-4,5-dihydro-1h-imidazol-1-yl]aceticacid (XYG)

Figure S522: The energy minimized structure corresponding to N-methyl-2-(4-methylidene-5-oxo-4,5-dihydro-1H-imidazol-1-yl)acetamide.

Table S866: The calculated geometric terms of N-methyl-2-(4-methylidene-5-oxo-4,5-dihydro-1H-i midazol-1-yl)acetamide.

Terms	QM	CHARMM	Abs. diff.
C1-H1	1.09	1.09	0.01
C1-N2	1.30	1.33	0.03
C1-N3	1.39	1.39	0.01
N2-CA2	1.41	1.41	0.00
N3-CA3	1.45	1.47	0.02
N3-C2	1.39	1.38	0.01
CA3-HA31	1.10	1.11	0.02
CA3-HA32	1.09	1.11	0.02
CA3-C3	1.53	1.50	0.04
C2-O2	1.23	1.24	0.01
C2-CA2	1.49	1.49	0.01
CA2-CB2	1.34	1.34	0.00
CB2-HB21	1.08	1.10	0.01
CB2-HB22	1.09	1.10	0.01
C3-O3	1.23	1.23	0.01
C3-N2AL	1.36	1.34	0.01
N2AL-HNN2	1.02	1.00	0.02
N2AL-C2AL	1.45	1.44	0.01
C2AL-H2AL	1.09	1.11	0.02
C2AL-H2A1	1.09	1.11	0.02
C2AL-H2A2	1.09	1.11	0.02
C1-N2-CA2	104.17	103.49	0.68
C1-N3-CA3	128.03	126.60	1.43
C1-N3-C2	107.67	106.93	0.75
H1-C1-N2	124.55	123.53	1.02
H1-C1-N3	119.88	120.86	0.98
N2-C1-N3	115.57	115.61	0.04
N2-CA2-C2	109.91	109.49	0.42

Terms	QM	CHARMM	Abs. diff.
N2-CA2-CB2	125.60	128.88	3.28
N3-CA3-HA31	107.71	110.41	2.70
N3-CA3-HA32	109.10	110.42	1.31
N3-CA3-C3	111.83	111.73	0.11
N3-C2-O2	126.06	127.45	1.39
N3-C2-CA2	102.67	104.47	1.80
CA3-N3-C2	124.30	126.47	2.17
CA3-C3-O3	121.20	121.02	0.18
CA3-C3-N2AL	113.61	116.66	3.06
HA31-CA3-HA32	109.44	107.63	1.81
HA31-CA3-C3	110.92	108.66	2.25
HA32-CA3-C3	107.80	107.86	0.06
C2- $CA2$ - $CB2$	124.49	121.63	2.87
O2-C2-CA2	131.27	128.06	3.21
CA2-CB2-HB21	120.88	119.00	1.88
CA2- $CB2$ - $HB22$	119.73	121.06	1.33
HB21-CB2-HB22	119.39	119.94	0.56
C3-N2AL-HNN2	117.97	118.59	0.62
C3-N2AL-C2AL	121.78	122.31	0.53
O3-C3-N2AL	125.19	122.31	2.88
N2AL-C2AL-H2AL	107.47	110.78	3.31
N2AL-C2AL-H2A1	110.22	110.58	0.36
N2AL-C2AL-H2A2	111.32	110.51	0.82
HNN2-N2AL-C2AL	119.76	118.84	0.92
H2AL-C2AL-H2A1	109.52	108.36	1.16
H2AL-C2AL-H2A2	109.16	108.15	1.01
H2A1-C2AL-H2A2	109.11	108.38	0.74

Figure S523: The PES scan for flexible dihedrals corresponding to N-methyl-2-(4-methylidene-5-ox o-4,5-dihydro-1H-imidazol-1-yl)acetamide.

2.187 The small molecule 2 used for bonded terms optimization of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5oxo-4,5-dihydro-1h-imidazol-1-yl]aceticacid (XYG)

Figure S524: The energy minimized structure corresponding to (4Z)-1-methyl-4-(phenylmethyliden e)-4,5-dihydro-1H-imidazol-5-one.

Table S867: The calculated geometric terms of (4Z)-1-methyl-4-(phenylmethylidene)-4,5-dihy dro-1H-imidazol-5-one.

Terms	QM	CHARMM	Abs. diff.
C1-H1	1.09	1.09	0.00
C1-N2	1.31	1.33	0.02
C1-N3	1.38	1.39	0.01
N2-CA2	1.41	1.42	0.01
N3-CA3	1.45	1.47	0.02
N3-C2	1.40	1.38	0.03
CA3-HA33	1.09	1.11	0.02
CA3-HA31	1.09	1.11	0.02
CA3-HA32	1.09	1.11	0.02
C2-O2	1.23	1.24	0.01
C2-CA2	1.49	1.48	0.01
CA2-CB2	1.36	1.35	0.00
CB2-HB2	1.09	1.10	0.01
CB2-CG2	1.45	1.48	0.02
CG2-CD1	1.41	1.41	0.00
CG2-CD2	1.41	1.41	0.00
CD1-HD1	1.09	1.08	0.01
CD1-CE1	1.39	1.40	0.01
CD2-HD2	1.09	1.08	0.01
CD2-CE2	1.39	1.40	0.01
CE1-HE1	1.09	1.08	0.01
CE1-CZ	1.40	1.40	0.00
CE2-HE2	1.09	1.08	0.01
CE2-CZ	1.40	1.40	0.00
CZ-HZ	1.09	1.08	0.01
C1-N2-CA2	104.27	103.09	1.18
C1-N3-CA3	128.40	126.16	2.23
C1-N3-C2	107.55	106.63	0.92
H1-C1-N2	123.83	123.35	0.47

Terms	QM	CHARMM	Abs. diff.
H1-C1-N3	120.51	120.60	0.09
N2-C1-N3	115.67	116.05	0.38
N2-CA2-C2	110.10	109.42	0.68
N2-CA2-CB2	128.26	129.22	0.96
N3-CA3-HA33	110.95	110.96	0.02
N3-CA3-HA31	106.41	111.17	4.76
N3-CA3-HA32	110.95	110.94	0.01
N3-C2-O2	126.11	128.30	2.19
N3-C2-CA2	102.42	104.82	2.39
CA3-N3-C2	124.06	127.21	3.15
HA33-CA3-HA31	109.39	107.61	1.78
HA33-CA3-HA32	109.68	108.40	1.28
HA31-CA3-HA32	109.40	107.61	1.78
C2- $CA2$ - $CB2$	121.65	121.37	0.28
O2-C2-CA2	131.46	126.88	4.58
CA2-CB2-HB2	113.88	113.46	0.42
CA2-CB2-CG2	129.60	129.53	0.07
CB2-CG2-CD1	117.75	115.88	1.87
CB2-CG2-CD2	123.38	126.11	2.73
HB2-CB2-CG2	116.52	117.01	0.49
CG2-CD1-HD1	119.23	120.86	1.63
CG2-CD1-CE1	120.83	121.07	0.24
CG2-CD2-HD2	119.24	121.33	2.09
CG2-CD2-CE2	119.89	120.86	0.97
CD1-CG2-CD2	118.87	118.02	0.86
CD1-CE1-HE1	119.89	120.06	0.17
CD1-CE1-CZ	119.92	120.03	0.11
HD1-CD1-CE1	119.94	118.07	1.88
CD2-CE2-HE2	119.42	119.84	0.42
CD2-CE2-CZ	120.79	120.16	0.63
HD2-CD2-CE2	120.87	117.81	3.06
CE1-CZ-CE2	119.71	119.86	0.15
CE1-CZ-HZ	120.13	120.06	0.07
HE1-CE1-CZ	120.19	119.91	0.28
CE2-CZ-HZ	120.16	120.08	0.08
HE2-CE2-CZ	119.79	120.00	0.21

Figure S525: The PES scan for flexible dihedral corresponding to (4Z)-1-methyl-4-(phenylmethyl idene)-4,5-dihydro-1H-imidazol-5-one.

2.188The small molecule 3 used for bonded terms optimization of [(4Z)-2-[(1Z)-ethanimidoyl]-4-(4-hydroxybenzylidene)-5oxo-4,5-dihydro-1h-imidazol-1-yl]aceticacid (XYG)

Figure S526: The energy minimized structure corresponding to (2S)-2-acetamido-N-(propan-2-ylide ne)propanamide.

Table S868: The calculated geometric terms of (2S)-2-acetamido-N-(propan-2-ylidene)propana mide.

					$\underline{-}$	111
Ì	Terms	QM	CHARMM	Abs. dif	f. CA1-CB1-HB13	109
Ì	N1AL-HNN1	1.01	1.00	0.02	CA1-C1-H11	110
	N1AL-C1AL	1.45	1.45	0.00	CA1-C1-H12	109
	N1AL-CY	1.37	1.34	0.03	CA1-C1-H13	110
	C1AL-H1AL	1.09	1.12	0.03	CB1-CA1-C1	116
	C1AL-CB11	1.53	1.54	0.02	HB11-CB1-HB12	109
	C1AL-C11	1.53	1.54	0.01	HB11-CB1-HB13	108
	CB11-H111	1.09	1.11	0.02	HB12-CB1-HB13	108
	CB11-H211	1.09	1.11	0.02	H11-C1-H12	109
	CB11-H311	1.09	1.11	0.02	H11-C1-H13	109
	C11-O11	1.23	1.23	0.01	H12-C1-H13	106
	C11-N1	1.41	1.45	0.04^{\pm}		
	CAY-HY1	1.09	1.11	0.02		
	CAY-HY2	1.10	1.11	0.02		
	CAY-HY3	1.09	1.11	0.02		
	CAY-CY	1.51	1.48	0.03		
	CY-OY	1.24	1.22	0.01		
	N1-CA1	1.29	1.28	0.01		
	CA1-CB1	1.51	1.51	0.00		
	CA1-C1	1.50	1.50	0.00		
	CB1-HB11	1.09	1.11	0.02		
	CB1-HB12	1.09	1.11	0.02		
	CB1-HB13	1.10	1.11	0.02		
	C1-H11	1.09	1.11	0.02		
	C1-H12	1.10	1.11	0.02		
	C1-H13	1.10	1.11	0.02		
	N1AL-C1AL-H1AL	108.28	106.70	1.58		
	N1AL-C1AL-CB11	110.22	109.59	0.62		
	N1AL-C1AL-C11	112.61	115.67	3.06		
	N1AL-CY-CAY	115.49	117.61	2.12		

	011	GHIDDOL	11 1100
Terms	QM	CHARMM	Abs. diff.
N1AL-CY-OY	121.57	120.17	1.40
HNN1-N1AL-C1AL	117.24	118.46	1.21
HNN1-N1AL-CY	117 81	119.89	2.08
CIAL NIAL CV	110.03	121.00	2.00
CIAL OD11 H111	110.00	100.62	0.75
CIAL-CBII-HIII	110.38	109.03	0.75
CIAL-CBII-H2II	110.42	111.10	0.68
C1AL-CB11-H311	109.43	112.45	3.02
C1AL-C11-O11	121.32	121.80	0.48
C1AL-C11-N1	114.06	114.58	0.52
H1AL-C1AL-CB11	110.09	10756	2.53
HIAL CIAL CII	106.04	107.50	1.46
CD11 C1AL C11	100.04	107.50	0.00
UDII-UIAL-UII	109.01	109.48	0.02
H111-CB11-H211	109.10	107.38	1.72
H111-CB11-H311	109.10	107.24	1.87
H211-CB11-H311	108.36	108.85	0.49
C11-N1-CA1	120.20	126.80	6.60
O11-C11-N1	123.98	123.61	0.36
CAY-CV-OV	122 04	199.91	0.23
$\frac{1}{1}$	100 47	100.91	0.10
	100.47	109.31	0.84
НҮІ-САҮ-НҮЗ	109.79	108.57	1.22
HY1-CAY-CY	111.97	110.69	1.27
HY2-CAY-HY3	108.63	108.52	0.11
HY2-CAY-CY	109.25	110.26	1.01
HY3-CAY-CY	108.67	109.44	0.77
N1-CA1-CB1	125.26	132.58	7 32
NI CAI CI	117.00	102.00	0.82
CALCEL HELL	110.04	127.75	9.65
CAI-CBI-HBII	110.24	110.64	0.40
CA1-CB1-HB12	111.38	112.63	1.25
liff. CA1-CB1-HB13	109.11	111.31	2.21
2 CA1-C1-H11	110.33	110.94	0.61
) CA1-C1-H12	109.97	111.89	1.92
CA1-C1-H13	110 31	111.83	1 5 3
CB1 CA1 C1	116.92	00.68	1714
$ \begin{array}{c} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{D} D$	100.07	33.00 106 52	0.74
HBII-CBI-HBI2	109.27	100.00	2.74
HB11-CB1-HB13	108.24	107.56	0.68
2 HB12-CB1-HB13	108.54	107.92	0.62
P H11-C1-H12	109.56	106.98	2.58
2 H11-C1-H13	109.65	106.91	2.74
H12-C1-H13	106.96	108.03	1.07
[
)			
1			
2			
3			
)			
<i>,</i>)			
)			
5			
2			
2			
2			
)			
2			
,)			

Figure S527: The PES scan for flexible dihedrals corresponding to (2S)-2-acetamido-N-(propan-2-y lidene)propanamide.

2.189 The small molecule used for bonded terms optimization of cysteine-s-acetamide (YCM)

Figure S528: The energy minimized structure corresponding to 2-(methylsulfanyl)acetamide.

Table	S869:	The	calculated	geometric	terms	of	2-
(meth	ylsulf a	nyl)a	cetamide.				

Terms	QM	CHARMM	Abs. diff.
HB3-CB	1.09	1.11	0.02
CB-HB1	1.09	1.11	0.02
CB-HB2	1.09	1.11	0.02
CB-SG	1.81	1.82	0.01
SG-CD	1.82	1.84	0.02
CD-HD2	1.10	1.11	0.01
CD-HD1	1.09	1.11	0.02
CD-CE	1.52	1.50	0.02
CE-OZ1	1.23	1.23	0.00
CE-NZ2	1.37	1.36	0.01
NZ2-HZ21	1.01	0.99	0.02
NZ2-HZ22	1.01	0.99	0.02
HB3-CB-HB1	108.66	107.85	0.81
HB3-CB-HB2	108.80	107.90	0.90
HB3-CB-SG	107.35	110.82	3.48
CB-SG-CD	98.59	95.63	2.96
HB1-CB-HB2	109.67	108.01	1.66
HB1-CB-SG	111.09	111.05	0.03
HB2-CB-SG	111.19	111.07	0.12
SG-CD-HD2	109.04	110.93	1.89
SG-CD-HD1	111.13	110.17	0.96
SG-CD-CE	112.20	113.00	0.80
CD-CE-OZ1	121.64	120.25	1.39
CD-CE-NZ2	115.02	118.43	3.41
HD2-CD-HD1	109.13	107.38	1.75
HD2-CD-CE	108.45	108.29	0.16
HD1-CD-CE	106.79	106.82	0.03
CE-NZ2-HZ21	120.67	118.53	2.14
CE-NZ2-HZ22	116.73	116.69	0.04
OZ1-CE-NZ2	123.20	121.27	1.93
HZ21-NZ2-HZ22	118.22	123.11	4.89

Figure S529: The PES scan for flexible dihedrals corresponding to 2-(methylsulfanyl)acetamide.

3 The details of MD simulations for proteins containing modified amino acids

Amino		RMSD (Å)	
acid	$^{\mathrm{a}}\mathrm{Backbone}$	$^{\rm b}{ m Backbone}$	$^{\rm c}{ m Residue}$
$2 \mathrm{HF}$	$0.53 \ (0.05)$	$0.40 \ (0.06)$	0.15(0.04)
4FB	$0.68 \ (0.10)$	0.59 (0.06)	0.59 (0.17)
BCS	$1.15 \ (0.33)$	$0.81 \ (0.12)$	$0.28 \ (0.09)$
CCS	1.14 (0.28)	0.89(0.21)	0.91 (0.15)
CME	$1.31 \ (0.15)$	0.83 (0.17)	0.57(0.22)
\mathbf{CSS}	$0.82 \ (0.07)$	$0.60 \ (0.05)$	$0.11 \ (0.03)$
GGB	$0.70 \ (0.07)$	$0.81 \ (0.11)$	0.39(0.07)
HTI	$0.45 \ (0.03)$	$0.53\ (0.05)$	$0.32 \ (0.10)$
KCX	1.14 (0.16)	0.64(0.11)	0.76(0.33)
LE1	1.34(0.20)	0.68(0.11)	0.14(0.04)
LLP	0.59 (0.04)	$0.55\ (0.05)$	$0.36\ (0.05)$
MAA	$0.66 \ (0.13)$	$0.37 \ (0.08)$	$0.14 \ (0.06)$
\mathbf{NRQ}	$0.50 \ (0.03)$	$0.53\ (0.05)$	$0.55\ (0.07)$
OCS	$1.65 \ (0.23)$	0.89(0.11)	0.29 (0.22)
PBF	1.48(0.18)	0.99 (0.13)	$0.40 \ (0.09)$
SNC	1.06(0.14)	$0.80 \ (0.18)$	$0.66 \ (0.24)$
XYG	$0.46 \ (0.03)$	$0.46 \ (0.04)$	0.31 (0.09)
MDO	$0.49 \ (0.03)$	$0.49\ (0.05)$	$0.24 \ (0.07)$
4 FW	0.70(0.12)	0.78(0.16)	$0.18 \ (0.05)$
CSO	0.78(0.12)	0.62 (0.11)	0.68(0.24)

Table S870: Root Mean Square (RMSD) deviation in molecular dynamics simulations

^aRMSD was computed for unrestrained backbone atoms after superposition on the experimental structure; ^bRMSD was computed based on backbone heavy atoms within 10 Åsphere around the non-standard amino acid; ^cRMSD was computed for the heavy atoms of the non-standard amino acid.

Table S871: Selected average non-bond distances (Å) in MD simulations of proteins with the non-standard amino acids. Values in parenthesis represent the standard deviation.

Besidue	^a Atom pair	X-ray str	MD simulation	Abs diff
2HF	$\frac{1100 \text{ m pan}}{\text{ND1}_{2\text{HE597}} - \text{OE1}/\text{OE2}_{\text{Glu704}}}$	2.72	$2.70 \ (0.13)$	0.02
4 FB	$O_{4\text{fb}76}$ - $N_{\text{Glv}92}$	2.73	2.92(0.19)	0.19
BCS	OB_{cs145} -HN _{Val148}	2.41	2.71(0.37)	0.30
\mathbf{CCS}	$\mathrm{N}_{\mathrm{Glv75}} ext{-}\mathrm{OZ2}_{\mathrm{Ccs106}}$	2.62	3.19(0.47)	0.57
CME	$\mathrm{O}_{\mathrm{Phe285}} ext{-}\mathrm{N}_{\mathrm{Cme288}}$	2.93	3.03(0.19)	0.10
\mathbf{CSS}	$ m N_{Css247} ext{-}OG_{Ser274}$	2.96	3.19 (0.21)	0.23
\mathbf{CSS}	$\mathrm{SD}_{\mathrm{Css}247} ext{-}\mathrm{OG1}_{\mathrm{Thr}252}$	3.65	3.24 (0.18)	0.41
\mathbf{CSS}	$\mathrm{O}_{\mathrm{Css}247} ext{-}\mathrm{N}_{\mathrm{Trp}275}$	2.86	$3.05\ (0.19)$	0.19
GGB	$\mathrm{NE}_{\mathrm{Ggb1}} ext{-}\mathrm{OD1}/\mathrm{OD2}_{\mathrm{Asp35}}$	2.76	$2.65\ (0.11)$	0.11
GGB	NG_{gb1} - $OD1/OD2_{Asp81}$	2.64	2.70 (0.15)	0.06
GGB	$ m NH2_{Ggb1} ext{-}OD1/OD_{2Asp219}$	2.75	$2.75 \ (0.14)$	0.00
HTI	$\mathrm{O}_{\mathrm{Hti136}} ext{-}\mathrm{N}_{\mathrm{Leu140}}$	3.01	$2.90 \ (0.17)$	0.11
HTI	$\mathrm{NAL}_{\mathrm{Hti136}} ext{-}\mathrm{OE1}/\mathrm{OE2}_{\mathrm{Glu243}}$	2.62	2.76(0.14)	0.14
KCX	$\mathrm{O}_{\mathrm{Kcx84}} ext{-}\mathrm{N}_{\mathrm{Ala88}}$	2.92	$2.93 \ (0.17)$	0.01
KCX	OG_{Ser81} - $OQ1_{Kcx84}$	2.74	$3.38\ (0.90)$	0.64
LE1	$\mathrm{O}_{\mathrm{Leu12}} ext{-}\mathrm{N}_{\mathrm{Leu116}}$	2.94	2.96 (0.17)	0.02
LE1	$\mathrm{O}_{\mathrm{Leu116}} ext{-}\mathrm{N}_{\mathrm{Glu20}}$	2.92	$3.00\ (0.21)$	0.08
LLP	OH_{Tyr73} - $OP2_{Llp255}$	2.65	$2.58\ (0.12)$	0.07
LLP	N_{Ala110} - $OP1_{Llp255}$	2.84	$3.24\ (0.32)$	0.40
LLP	N_{Tyr111} -OP 3_{Llp255}	2.87	$3.04\ (0.21)$	0.17
MAA	${ m O}_{ m Maa8} ext{-}{ m N}_{ m Val12}$	3.10	$3.18\ (0.30)$	0.08
NRQ	$\mathrm{OH}_{\mathrm{Nrq63}} ext{-}\mathrm{OE1}_{\mathrm{Glu145}}$	3.89	3.81 (0.70)	0.08
NRQ	$\mathrm{O2_{Nrq63}\text{-}NH1/NH2_{Arg92}}$	2.97	2.90 (0.29)	0.07
OCS	N_{Lys42} -OD1/OD2/OD3 _{Ocs48}	2.36	2.95 (0.27)	0.59

Residue	^a Atom pair	X-ray str.	MD simulation	Abs. diff
OCS	$\mathrm{NH1}_{\mathrm{arg123}}\text{-}\mathrm{OD1}/\mathrm{OD2}/\mathrm{OD3}_{\mathrm{Ocs48}}$	1.89	3.36(1.82)	1.47
OCS	$\mathrm{NH2}_{\mathrm{arg}123}\text{-}\mathrm{OD1}/\mathrm{OD2}/\mathrm{OD3}_{\mathrm{Ocs}48}$	2.58	3.48(1.80)	0.90
PBF	O_{Pbf72} - $OG1_{Thr76}$	2.74	2.76(0.15)	0.02
\mathbf{SNC}	$ m O_{Val6}- m N_{Snc69}$	2.89	2.94(0.18)	0.05
XYG	$\mathrm{O2}_{\mathrm{Xyg66}} ext{-}\mathrm{NH1/NH2}_{\mathrm{Arg95}}$	2.89	2.83(0.16)	0.06

^aprotein atoms (left) are labeled by the amino acid to which they belong; when several atoms are given, the minimum distance with corresponding atoms is provided.

Table S872: Rotatable dihedral angles observed in MD simulations and experimental structures. Standard deviations are given in parenthesis.

Modified AA	Dihedral	Experimental	Average (sd)	Difference
$2 \mathrm{HF}$	C-CA-CB-CG	-178.2	-175.1 (9.1)	3.1
$2\mathrm{HF}$	CA-CB-CG-ND1	166.0	166.0 (11.3)	0.0
4FB	CA_{ILE75} - C_{ILE75} -N-CA	-1.9	9.4(19.8)	11.3
4FB	$N-CA-C-N_{THR77}$	146.4	154.7(11.3)	8.3
BCS	C-CA-CB-SG	-61.5	-74.0(8.3)	12.5
BCS	CA-CB-SG-CD	168.0	156.4(14.4)	11.6
\mathbf{CCS}	C-CA-CB-SG	77.0	72.9(9.2)	4.1
\mathbf{CCS}	CA-CB-SG-CD	-147.6	-125.4(34.5)	22.2
CME	C-CA-CB-SG	-179.7	-178.8(9.4)	0.9
CME	CA-CB-SG-SD	-81.7	-80.7 (16.3)	1.0
\mathbf{CSS}	C-CA-CB-SG	45.4	44.3 (5.9)	1.0
\mathbf{CSS}	CA-CB-SG-SD	112.1	$113.4\ (7.6)$	1.4
GGB	C-CA-CB-CG	50.6	$53.0 \ (9.2)$	2.5
GGB	CA-CB-CG-OD	108.8	$53.3\ (8.8)$	55.5
GGB	CB-CG-OD-NE	-174.1	-182.1 (6.4)	8.0
HTI	C-CA-CB-S	-80.8	-70.5(6.9)	10.3
HTI	CA-CB-S-CAH	-103.2	-107.1 (11.1)	3.9
\mathbf{KCX}	C-CA-CB-CG	162.3	$157.4\ (28.9)$	4.9
\mathbf{KCX}	CA-CB-CG-CD	-172.6	-171.9(25.5)	0.7
LE1	C-CA-CB-SG3	-177.1	-183.5(8.6)	6.4
LE1	CA-CB-SG3-HG3	70.8	63.9(22.4)	6.9
LLP	C-CA-CB-CG	-161.5	-176.0(8.2)	14.5
LLP	CA-CB-CG-CD	-86.3	-57.4(7.0)	28.9
MAA	CCYS423-N-CA-C	53.1	$56.3\ (11.7)$	3.2
MAA	$N-CA-C-N_{SER441}$	-131.9	-125.7(11.2)	6.2
NRQ	CG1-CB1-CA1-C1	65.0	$83.7 \ (36.2)$	18.7
NRQ	CB1-CA1-C1-N3	-170.0	-176.7 (13.1)	6.7
NRQ	C1-N3-CA3-C	78.1	$60.8 \ (8.8)$	17.3
NRQ	$ m N3-CA3-C-N_{SER66}$	0.3	$32.9\ (40.3)$	32.6
OCS	C-CA-CB-SG	174.3	$171.8\ (8.5)$	2.5
OCS	CA-CB-SG-OD1	66.8	63.0(7.6)	3.8
OCS	CA-CB-SG-OD2	-151.6	-175.7(9.1)	24.1
OCS	CA-CB-SG-OD3	-32.6	-55.8(7.5)	23.2
PBF	C-CA-CB-CG	46.6	$48.2 \ (8.4)$	1.6
PBF	CA-CB-CG-CD1	-114.0	-116.9(12.7)	2.9
SNC	C-CA-CB-SG	168.3	$177.3\ (11.1)$	9.0
SNC	CA-CB-SG-ND	-75.5	-85.8(25.4)	10.3
XYG	CB1-CA1-C1-N3	171.5	$188.6\ (12.8)$	17.1
XYG	C1-N3-CA3-C	93.0	$84.5\ (9.9)$	8.5
XYG	$N3-CA3-C-N_{ASN69}$	-3.8	-9.0(35.2)	5.2

4 References

Barondeau, David P., Carey J. Kassmann, John A. Tainer, and Elizabeth D. Getzoff. 2005. "Understanding GFP Chromophore Biosynthesis: Controlling Backbone Cyclization and Modifying Post-Translational Chemistry." *Biochemistry* 44 (6): 1960–70. https://doi.org/10.1021/bi0479205.

Blanco, Julio, Roger A. Moore, and Ronald E. Viola. 2003. "Capture of an Intermediate in the

Catalytic Cycle of L-Aspartate- β -Semialdehyde Dehydrogenase." Proceedings of the National Academy of Sciences 100 (22): 12613–17. https://doi.org/10.1073/pnas.1634958100.

Daniels, Douglas S., Clifford D. Mol, Andrew S. Arvai, Sreenivas Kanugula, Anthony E. Pegg, and John A. Tainer. 2000. "Active and Alkylated Human AGT Structures: A Novel Zinc Site, Inhibitor and Extrahelical Base Binding." *The EMBO Journal* 19 (7): 1719–30. https://doi.org/10.1093/emboj/19.7.1719.

Gliubich, F., R. Berni, M. Colapietro, L. Barba, and G. Zanotti. 1998. "Structure of Sulfur-Substituted Rhodanese at 1.36 A Resolution." Acta Crystallographica. Section D, Biological Crystallography 54 (Pt 4): 481–86. https://doi.org/10.1107/s090744499701216x.

Han, Qian, Yi Gui Gao, Howard Robinson, Haizhen Ding, Scott Wilson, and Jianyong Li. 2005. "Crystal Structures of Aedes Aegypti Kynurenine Aminotransferase." *The FEBS Journal* 272 (9): 2198–2206. https://doi.org/10.1111/j.1742-4658.2005.04643.x.

Huschmann, Franziska U., Janina Linnik, Karine Sparta, Monika Ühlein, Xiaojie Wang, Alexander Metz, Johannes Schiebel, et al. 2016. "Structures of Endothiapepsin-Fragment Complexes from Crystallographic Fragment Screening Using a Novel, Diverse and Affordable 96-Compound Fragment Library." Acta Crystallographica. Section F, Structural Biology Communications 72 (Pt 5): 346–55. https://doi.org/10.1107/S2053230X16004623.

Kang, You-Na, Aiko Tanabe, Motoyasu Adachi, Shigeru Utsumi, and Bunzo Mikami. 2005. "Structural Analysis of Threonine 342 Mutants of Soybean β -Amylase: Role of a Conformational Change of the Inner Loop in the Catalytic Mechanism,." *Biochemistry* 44 (13): 5106–16. https://doi.org/10.1021/bi0476580.

Koh, Minseob, Fariborz Nasertorabi, Gye Won Han, Raymond C. Stevens, and Peter G. Schultz. 2017. "Generation of an Orthogonal Protein–Protein Interface with a Noncanonical Amino Acid." *Journal of the American Chemical Society* 139 (16): 5728–31. https://doi.org/10.1021/jacs.7b02273.

Kosinová, Lucie, Václav Veverka, Pavlína Novotná, Michaela Collinsová, Marie Urbanová, Nicholas R. Moody, Johan P. Turkenburg, Jiří Jiráček, Andrzej M. Brzozowski, and Lenka Žáková. 2014. "Insight into the Structural and Biological Relevance of the T/R Transition of the N-Terminus of the B-Chain in Human Insulin." *Biochemistry* 53 (21): 3392–3402. https://doi.org/10.1021/bi500073z.

Mussakhmetov, Arman, Igor A. Shumilin, Raushan Nugmanova, Ivan G. Shabalin, Timur Baizhumanov, Daulet Toibazar, Bekbolat Khassenov, Wladek Minor, and Darkhan Utepbergenov. 2018. "A Transient Post-Translational Modification of Active Site Cysteine Alters Binding Properties of the Parkinsonism Protein DJ-1." *Biochemical and Biophysical Research Communications* 504 (1): 328–33. https://doi.org/10.1016/j.bbrc.2018.08.190.

Nienhaus, Karin, Herbert Nar, Ralf Heilker, Jörg Wiedenmann, and G. Ulrich Nienhaus. 2008. "Trans-Cis Isomerization Is Responsible for the Red-Shifted Fluorescence in Variants of the Red Fluorescent Protein EqFP611." *Journal of the American Chemical Society* 130 (38): 12578–79. https://doi.org/10.1021/ja8046443.

Peacock, Anna F. A., Jeanne A. Stuckey, and Vincent L. Pecoraro. 2009. "Switching the Chirality of the Metal Environment Alters the Coordination Mode in Designed Peptides." *Angewandte Chemie International Edition* 48 (40): 7371–74. https://doi.org/10.1002/anie.200902166.

Perkins, Arden, Derek Parsonage, KimberlyJ. Nelson, O. Maduka Ogba, PaulHa-Yeon Cheong, LeslieB. Poole, and P. Andrew Karplus. 2016. "Peroxiredoxin Catalysis at Atomic Resolution." *Structure* 24 (10): 1668–78. https://doi.org/10.1016/j.str.2016.07.012.

Pletneva, Nadezhda, Vladimir Pletnev, Tamara Tikhonova, Alexey A. Pakhomov, Vladimir Popov, Vladimir I. Martynov, Alexander Wlodawer, Zbigniew Dauter, and Sergei Pletnev. 2007. "Refined Crystal Structures of Red and Green Fluorescent Proteins from the Button Polyp Zoanthus." Acta Crystallographica Section D 63 (10): 1082–93. https://doi.org/10.1107/S0907444907042461.

Rubini, Marina, Martin A. Schärer, Guido Capitani, and Rudi Glockshuber. 2013. "(4R)- and (4S)-Fluoroproline in the Conserved Cis-Prolyl Peptide Bond of the Thioredoxin Fold: Tertiary Structure Context Dictates Ring Puckering." *ChemBioChem* 14 (9): 1053–57. https://doi.org/10.1002/cbic.201300178.

Schellenberg, Matthew J, C Denise Appel, Amanda A Riccio, Logan R Butler, Juno M Krahn, Jenna A Liebermann, Felipe Cortés-Ledesma, and R Scott Williams. 2020. "Ubiquitin Stimulated Reversal of Topoisomerase 2 DNA-Protein Crosslinks by TDP2." *Nucleic Acids Research* 48 (11): 6310–25. https://doi.org/10.1093/nar/gkaa318.

Toth, M., Smith Ca, Antunes Nt, Stewart Nk, Maltz L, and Vakulenko Sb. 2017. "The Role of Conserved Surface Hydrophobic Residues in the Carbapenemase Activity of the Class D β -Lactamases." Acta Crystallographica. Section D, Structural Biology 73 (Pt 8): 692–701. https://doi.org/10.1107/s2059798317008671.

Weichsel, Andrzej, Jacqueline L. Brailey, and William R. Montfort. 2007. "Buried S-Nitrosocysteine Revealed in Crystal Structures of Human Thioredoxin." *Biochemistry* 46 (5): 1219–27. https://doi.org/10.1021/bi061878r.

Welte, Hannah, Tiankun Zhou, Xenia Mihajlenko, Olga Mayans, and Michael Kovermann. 2020. "What Does Fluorine Do to a Protein? Thermodynamic, and Highly-Resolved Structural Insights into Fluorine-Labelled Variants of the Cold Shock Protein." *Scientific Reports* 10 (1): 2640. https://doi.org/10.1038/s41598-020-59446-w.

Wimalasena, D. Shyamali, Blythe E. Janowiak, Scott Lovell, Masaru Miyagi, Jianjun Sun, Haiying Zhou, Jan Hajduch, et al. 2010. "Evidence That Histidine Protonation of Receptor-Bound Anthrax Protective Antigen Is a Trigger for Pore Formation." *Biochemistry* 49 (33): 6973–83. https://doi.org/10.1021/bi100647z.