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1 - Introduction

1.1 . Context

Traditionally, practitioners have adopted a one-size-fits-all approach to assess treatments to cure
large groups of patients with a similar disease and analogous symptoms under the assumption that
treatment effects were broadly similar in different individuals. A paradigm change occurred in 1953
with the discovery of the double helix structure of deoxyribonucleic acid (DNA) by James Watson
and Francis Crick. It marked a milestone in the genomic revolution in medicine. In 1977, Sanger et
al. (1977) first introduced a method enabling DNA sequencing. It made possible the Human Genome
Project, an international program whose goal was the complete mapping and understanding of all
the 20, 500 genes of human beings (Venter et al., 2001); (Lander et al., 2001). This work showed
that humans are 99.9% identical in their genetic makeup. The differences in the remaining 0.1%
hold clues about both the causes of diseases and why people can respond differently to treatments.
DNA microarrays (Schena et al., 1995) appeared in the 1990s, and constituted the first large-scale
technology giving access to the expression profile of genes. In the 2000s, a new technology based
on next-generation sequencing, RNA-Seq, emerged (Margulies et al., 2005). RNA-seq is now
frequently used in oncology to characterize the transcriptome of tumor cells, with the objective of a

more specific and personalized understanding of cancer.

RNAseq data provides over 20, 000 gene expressions (even more at the transcript scale). For medical
use, it is important to identify among these variables those of interest with regard to some specific
clinical questions. They are called biomarkers. According to the Biomarkers Definitions Working
Group (Atkinson et al., 2001), a biomarker is “a characteristic that is objectively measured and
evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic
responses to a therapeutic intervention.” Biomarkers are usually divided into two groups: prognostic
and predictive biomarkers. A prognostic biomarker is associated with the clinical outcome inde-
pendently of treatment and predicts the likely course of a disease in a defined clinical population.
It can discriminate between patients according to their risk level. In oncology, one example is the
estrogen receptor (ER) or progesterone receptor (PR) and human epidermal growth factor receptor
2 (Her2) for breast cancer. Several biomarkers can also be grouped into a prognostic gene expression
signature, for example, the MammaPrint microarray-based signature of 70 genes developed by the
Netherlands Cancer Institute (Veer et al., 2002). It is a prognostic marker for the occurrence of
distant metastases in women with early breast cancer: patients with a poor-prognosis MammaPrint
signature have a much higher risk of distant metastases within 5 years compared with patients with
a good prognosis signature. A predictive biomarker (also called treatment-effect modifier) forecasts
how individual patients will respond to specific treatments. Predictive biomarkers can predict the
difference in clinical outcome between two treatment arms, if any. This interaction with the treat-
ment effect allows the selection of subgroups of patients likely to benefit from treatment. The
relative effect of the treatment varies with the value of the biomarker. An example of a predic-
tive biomarker is the hormone-receptor status that predicts the response to endocrine therapies in
breast cancer. There also exist signatures combining several predictive biomarkers, such as signatures

of 14 biomarkers predictive of the effect of trastuzumab in breast cancer (Pogue-Geile et al., 2013).



Introduction

Precision medicine is built upon these predictive biomarkers. It is defined by the European So-
ciety for Medical Oncology (Yates et al., 2018) as a “healthcare approach with the primary aim of
identifying which interventions are likely to be of most benefit to which patients based upon the fea-
tures of the individual and their disease.” It focuses on creating a detailed picture of the patient and
finding a tailored treatment for this patient. To demonstrate the predictive effect of a biomarker in
the context of precision medicine, it is necessary to have data with a large number of patients (often
more than 500 patients) in a randomized clinical trial. Clinical trials have revolutionized medicine
by providing reliable evidence of the efficacy and safety of new treatments. They are conducted to
assess the efficacy of new treatment regimens and are the foundation of clinical research in oncology.
Following the definition of Kelly et al. (2010), clinical trials are scientific research that evaluates the
efficacy and safety of a new therapeutic approach in a defined group of patients. They can change
medical practice, improve patients’ quality of life, and improve overall survival or recurrence-free
survival, etc. Many cancer clinical trials involve following patients over a long period of time, from a
few months to several years. The primary endpoint in these studies may be the occurrence of death,
the development of an adverse reaction, the recurrence of the disease, the side effects of treatment,
or the development of a new disease. A surrogate endpoint may replace the clinical endpoint with
a faster evaluation of the effect of the experimental treatment. During the follow-up period, the
patient’s life data are collected and evaluated. The variable of interest in these data is most com-
monly of time-to-event nature, i.e., the time between the patient’s inclusion in the study and a
subsequent event. Recently, new approaches based on organoids have been developed in precision
medicine (Boileve et al., 2020). These self-organized three-dimensional tissue cultures are derived
from primary cells, and can replicate the complexity of an organ. It gives scientists the opportu-

nity to mimic patient-specific disease development and see how drugs interact with these mini-organs.

Survival analysis was specifically developed to analyze time-to-event data, usually using patient
clinical data as inputs. It consists in analyzing the time until an event occurs (Singh et al., 2011).
Common events studied are death, disease, relapse, and recovery. It incorporates censorship, in
which data about the event of interest is unknown because of the withdrawal of the patient from
the study. The survival function gives the probability that a patient survives longer than some speci-
fied time point. It can be depicted with a Kaplan-Meier (KM) curve. Several statistical methods are
available to analyze time-to-event data with respect to several factors simultaneously. The most fre-
quently used approach is the Cox Proportional-Hazards (CoxPH) model (Cox, 1972), a regression
method for survival data, which simultaneously evaluates the effect of several variables on survival.
It is a semi-parametric method, as the baseline hazard function does not need to be specified.
The model is based on two main assumptions: the hazard curves for the patients groups defined

by variable levels are proportional; the relationship between the log hazard and each variable is linear.

With the availability of RNA-seq data and the interest of finding genes or gene signatures as
interesting biomarkers, these molecular data can be used along clinical data in survival models.
High-dimensional data refers to a dataset in which the number of features is larger than the num-
ber of observations. As mentioned above, RNA-seq data provides over 20,000 gene expressions.
Meanwhile, the sample size in clinical studies is generally limited (typically a few hundred). In

the framework of high dimensional data, the hypotheses of the CoxPH model are restrictive, for
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instance, when nonlinear and complex interactions exist in the data. Hence, usual methods can no
longer be applied, and new approaches are necessary. In this context, statistical learning methods
have become a popular tool for medical researchers. These techniques can discover and identify
patterns and relationships between biomarkers for complex datasets and effectively predict future
outcomes. Here, we will focus on artificial neural networks that can model complex patterns. A
feedforward neural network (FNN), also known as a multi-layer perceptron, can be seen as a “series
of logistic regression models stacked on top of each other” (Murphy, 2012). This is a biologically
inspired classification algorithm. The first artificial neural network, called perceptron, was developed
by Rosenblatt (1958), and the first gradient-based FNN was proposed by Rumelhart et al. (1986).
It is one of the most popular algorithms with successful applications in many fields, from physics to
finance to health. The power of the FNN comes from its architecture, defined by the number of its
layers, the number of nodes per layer, the nonlinear activation functions, and adaptive weights. The
popularity of neural networks has kept growing since the end of the 1980s, and the data considered
is more and more complex, from images to time series. As they are flexible non-linear models, they
are particularly relevant when a high number of candidate variables and complex interactions are
to be evaluated. Neural networks have been introduced in survival analysis. The extension of the
CoxPH regression with neural networks was first proposed by Faraggi et al. (1995), who replaced
the linear predictor of the CoxPH model with a one hidden layer FNN. Nowadays, several variants
of FNNs in survival analysis exist, depending on the choice of the structure of the neural network
and the degree of complexity. Other statistical learning methods have been adapted to survival,
including Random Survival Forests (RSF) (Ishwaran et al., 2007).

Machine learning models, specifically neural networks, are often referred to as black boxes, models
that are hard to interpret directly. There is a need for interpretability when applying these models
in clinical settings, which has raised a huge literature in the last years (Molnar et al., 2020);

(Charachon et al., 2022). Another important issue when using a predictive model is to measure its
trustworthiness, that can be evaluated by quantifying the level of uncertainty. Indeed, these deep
models can only be applied to make a medical diagnosis at the patient level or to develop decision
tools in various healthcare settings with an associated uncertainty measure. ldeally, a survival model
should achieve good predictive performances and provide a well-calibrated measure of uncertainty
associated with survival predictions. If survival prediction models are to be deployed in clinical set-
tings, such uncertainty measures will make the model interpretable and trustworthy. Krzywinski et al.
(2013) recall the “importance of being uncertain” and of quantifying this uncertainty. The predictive
uncertainty stems from two sources that are aleatoric and epistemic uncertainties. Aleatoric uncer-
tainty comes from noisy data, for example, due to measurement imprecision. Epistemic uncertainty,
also called model uncertainty, is the uncertainty associated with the estimated model parameters,
the model structure, the specification of the model, or even the choice of the model. Many differ-

ent uncertainty quantification techniques exist, but they need to be adapted to deep learning models.

Personalized treatment recommendations are predominantly informed by results from randomized
controlled trials (RCT), using the average relative treatment effect to decide on how to treat pa-
tients. Determining the most beneficial treatment for an individual amounts to identifying the effect
of the treatment on the outcome variable (e.g. survival time). The potential outcomes framework
(Rubin, 1974) defines the individual treatment effect (ITE) as the difference between potential
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outcomes of distinct treatment alternatives. Classical statistical models like CoxPH can be used
to identify the ITE but need an a priori specification of treatment interaction terms. Statistical
or machine learning models have become increasingly popular to estimate treatment effects at the
individual level. To do so, clinical prediction models forecast patient’'s outcomes under different
treatment conditions. The difficulty is that standard models are not directly designed for comparing

outcomes under different treatment regimens.

1.2 . Outline

In this context, we explore different ways of applying FNNs to time-to-event data in high-

dimensional settings. The main objectives of this thesis are the followings:

1. Compare different FNNs adapted to time-to-event data and propose various ways of handling

censoring;

2. Develop measures of uncertainty associated with the predictions constructed with an ensemble
of FNNs;

3. Develop and evaluate treatment recommendation methods using FNNs.

The first part of this work consists in investigating the prediction ability of neural network models
with time-to-event data, using specific ways to handle censored observations such as specific loss
functions, or pseudo-observations, and studying their operating characteristics. In a continuous time
framework, two models are implemented: CoxCC (Kvamme et al., 2019) uses a special loss based
on a case-control approximation; CoxTime is an extension of CoxCC that includes the time variable.
Two models are defined in a discrete-time framework: Biganzoli et al. (1998) include censoring in
their neural network model using a piecewise exponential function, and use a cross-entropy loss
function; DeepHit (Lee et al., 2018) is a model that estimates the probability mass function and
combines a log-likelihood with a ranking loss. We also propose and implement FNNs that rely on
pseudo-observations, a specific way to handle incomplete data. Two new ways of defining pseudo-
observations are introduced and compared to one existing definition proposed in a discrete-time
framework (Zhao et al., 2019). We explore ways of reducing the dimensionality of the data using
neural network structures, namely autoencoders and variational autoencoders, to see if there is an
improvement in the performances of the FNNs. The FNN models are benchmarked with RSF and
a penalized CoxPH with the Least Absolute Shrinkage and Selection Operator penalty or LASSO
(Tibshirani, 1996). These two models are chosen as they are credible competitors to FNNs in a

high-dimensional setting.

In the second part, we build confidence intervals at the patient level to quantify the degree of
certainty in the model's survival predictions using an ensemble of FNNs. Here, we focus on spe-
cific aspects of epistemic uncertainty and build an ensemble of neural networks to associate an
uncertainty measure with expected survival predictions, adapting the quantification of uncertainty
associated with survival predictions using confidence intervals. We compare existing ensemble meth-
ods by introducing randomness and applying them to time-to-event data. With Bootstrap (Efron,
1979), a training subset is randomly drawn with replacement to obtain A/ FNNs. To form a Deep
Ensemble (Lakshminarayanan et al., 2016) of FNNs, the parameters of the M FNNs are randomly

4
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initialized during training. Gal et al. (2016) propose to apply M dropout masks randomly during
the test phase: this is Monte-Carlo Dropout (MCDrop) (Gal et al., 2016). The idea of the fixed
Bernoulli mask (FBMask) (Mancini et al., 2020) is to previously generate M dropout masks ap-
plied at the time of model training and testing. Each ensemble method is built on different FNN
survival predictors (either CoxCC, CoxTime, or DeepHit). With the ensemble methods, we associate
confidence intervals (Cl) with survival predictions. We measure the quality of these Cls using the
coverage rate (CR).

In the third part, we focus on the possibility of formulating individualized treatment recommen-
dations based on patient characteristics in the context of a RCT. We formulate a recommendation
treatment rule using FNNs and inspired by the work of Katzman et al. (2016). It is built on the
difference in the expected probability at a fixed time point of an event in treatment minus that in
control. In this part, the FNNs are benchmarked with LASSO and Interaction Forests (IF) (Hornung
et al., 2022), a specific type of RSF that models interaction effects using bivariate splits.

Two types of data are used: simulated data and real patient cohorts. Synthetic data are simu-
lated to explore the operating characteristics of the different models. They are simulated based
either on a CoxPH model or an Accelerated Failure Time (AFT) model. With the AFT model, some
simulations include a random function generator to simulate nonlinear data, including high-order
interactions. 2 high-dimensional patient cohorts are used for illustration in Chapters 4 and 5. The
METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) breast cancer data
include 1,960 patients, 6 clinicopathological variables, and the expression of 1,000 genes. The Lung
Cancer Explorer (LCE) consists of 4, 120 patients, 3 clinical variables, and 1,000 genes. For Chapter
5, we use data from a RCT including 1, 574 patients and promoted by the National Cancer Institute
/ National Institute of Health, which evaluates the effect of adjuvant trastuzumab in breast cancer.
The expression of 462 genes is available in addition to clinicopathological variables such as ER and

lymph node status, or tumor size.






2 - Survival Analysis

2.1 . Time-to-event data

Survival or time-to-event analysis corresponds to the time to occurrence of a particular event for
one or several groups of individuals. This event is associated with a change of status, e.g., the death
of an individual from a specific cause. Survival data analysis is used in the context of longitudinal
studies; in this work, it is applied to clinical trials in a high-dimensional context.

Multivariable survival analysis leads to the identification of variables that influence the survival
time. These are either prognostic variables, i.e., criteria that predict the patient’s future regardless
of the treatment applied, or predictive biomarkers, which predict the effectiveness of the proposed
treatment. The CoxPH model (Cox, 1972) is the reference model applied in survival analysis. It
relies on the partial likelihood for parameter estimation.

Let the random variable T € R represent the survival time, that is the time between the starting
point and the occurrence of a given event, e.g., the time between a patient’s treatment assignment
and death. Often, T is not observed for all individuals: time-to-event data is censored. For example,
when the event studied is death, the occurrence of this event is not observed for subjects still
alive at the end of the study. Survival data is said to be right-censored if the individual leaves the
study before the end point or if the event did not happen before the end of the follow-up. In this
case, the only information we have is that the event time is longer than the follow-up time. In the
case of right-censoring, we define (C;);=1,. , the independent and identically distributed censoring
times of n individuals. We can set {(Ti,Xi,Di)}i:l,_.m where T} = min(7;, C;) is the time until
death or censoring, X; = (X;1,...,X;,)" € R? denotes a p-dimensional vector of variables, and
D; = ]l{TZ = T;} is the censoring indicator. We suppose that the survival time 7} is independent of
the censoring time conditionally on the variables vector X; fori =1,...,n.

We want to study the survival function, that is, the probability of not experiencing the event
before time ¢:

S(t)=P(T >t)=1-F(t). (2.1)

It is based on F(t), the probability of experiencing the event between the initial time of the study
to =0 and t. F(t) can be written using the cumulative distribution of the even time:

F(t)=P(T <t) = /Ot Fu)du. (2.2)

It is an increasing function with £'(0) = 0 and tliin F(t) =1, and it is computed as the integral of
—+o0
the probability density function f(t):

f0) =t PUST<t+A1

2.
At—0Tt At ’ ( 3)

with the assumption that this limit exists for all ¢. It enables the definition of the risk function A

that characterizes the distribution of the survival time T'. It is written as:

Cf(t) . PU<T<t+AHT>T)
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h(t)At corresponds to the probability of an individual experiencing an event between t and t + At
if the subject is still at risk at time ¢. Then the cumulative hazard is written:

t
H(t) = / h(u)du. (2.5)
0
The survival function can be retrieved through the cumulative hazard by :

S(t) = exp(—H(t)). (2.6)

2.2 . Log-likelihood for censored data

In a survival model with right censoring, let's suppose that (C;);—1 ., are fixed. It is the case,
for instance, when the only subjects censored are those excluded alive at a fixed time point at the
end of the study. In this case, the individual contribution to the likelihood is either f(T}) if the
patient i experienced the event (D; = 1) or S(T}) if the patient’s survival time is right censored
(D; =0). Censoring is said to be non-informative.

We can define the likelihood of a sample of size n as a function of the parameters of both
the chosen model and the data of the sample studied. It represents the probability of observing
a particular realization of this sample for these parameters, and it is equal to the product of the

probabilities of each of the observations. It follows that the likelihood is written:

Let us now consider the case where (C;);—1.._, are random variables. In this case, the likelihood also
depends on the distribution of C;. If we suppose that (C;);=1.. ., and (7});=1.. . are independent
for all 4, the likelihood is written:

n

L= [T s(T) H ha(T)'PSc(T), (2.7)

i=1 =1

where he and S¢ are the risk function and the survival function of C; respectively.

2.3 . The Kaplan-Meier estimator, a non-parametric estimator for survival analysis

In survival analysis, non-parametric methods are smooth as they do not rely on specific assump-
tions concerning the data distribution. Yet they require independent and identically distributed (iid)
observations. A non-parametric and empirical estimate of the survival function, the KM estimator,

can be used to retrieve the survival curve representing S(¢). It does not rely on any assumption on
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the distribution of survival times.

The KM estimator (Kaplan et al., 1958), also known as the product-limit estimator, corresponds
to the non-parametric maximum likelihood estimator of the survival function S(.) at the specified
survival time ¢; based on a sample of n individuals. It is based on the idea that the probability of not
having experienced the event P(T" > t;) is similar to the probability of not yet having experienced
the event at ¢;_; times the probability of not experiencing the event at ¢; knowing that the event

did not happen until ¢;_;. It can be written as follow:

S(t;) = P(T > t;)
:P(T>t]‘T>tj_1)P(T>t2|T>t1)P(T>t1)
:]Dijfl...Pl,

where P; = P(T > t;|T > t;—1). ti,...,t; represent the distinct times at which failures are
observed. The number of individuals at risk at time ¢; can be written 7;, m; is the number of

individuals for whom the event occurred at time ¢;, and P, is estimated by:

p.— (rj —my)
= .

Ty

It follows that the KM estimator of the survival probability until time ¢ is:

§<t>=H@=H<—T—j)' 29

git;<t J git; <t

We have:

S(tj) = S(t;) (1 — m”“) . (2.9)

Tj+1
By definition, 5(0) = 1. S(t) is a decreasing step function, constant between two consecutive event

times, continuous on the right, with a step at each observed event time. It is not defined after the

last observed time if this time is censored.

2.4 . The Cox Proportional-Hazards model, a semi-parametric estimator

The CoxPH model (Cox, 1972) is the most commonly used regression method in survival
analysis. In a regression model, the objective is to estimate regression coefficients to assess the
strength of association between the predictors X and the outcome. Here, the CoxPH model enables
us to investigate simultaneously the link between one or more risk factors and the patient’s survival
time as it directly models the relationship between the p variables and the survival time T'. For
instance, we can focus on prognostic biomarkers associated with the risk of relapse in early breast
cancer patients or the effects of treatment.

For a given patient 4, represented by a triplet (X;, T}, D;), the hazard function h(t|X;) examines
how variables influence the rate of a particular event happening at a specific time ¢. It is written as:

h(t|X;) = ho(t)exp(BTX;) fori=1,...,n, (2.10)
where the baseline hazard function, (), can be an arbitrary non-negative function of time. 87 =

9
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(B1,- .., Bp) is the coefficient vector associated with variables. The CoxPH model is semi-parametric
since it is parameterized by a vector of real parameters, while hy(t) remains unspecified.

The CoxPH model relies on two assumptions. First, it supposes a linear relationship between the
log hazard and the variables X;, with the baseline hazard being an intercept term that varies with

time. Indeed, if we take the logarithm of the risk function, we obtain a linear function of X:

o (H5) - o,

Additionally, the ratio of the instantaneous risk for any two patients is independent of time ¢:
this corresponds to the proportional hazard assumption. For two patients ¢ and j that differ in their
variables denoted by X; and X, the ratio is given by :

h(t|X;) - ho(t)exp(BTX;) = exp [ﬁ (X; — Xj)] )

This hypothesis implies that the hazard curves for two patients should be proportional and cannot
cross.

The challenge is to estimate the vector 3. By estimating the coefficients (3, we can identify
specific prognostic biomarkers. The problem is that we cannot use the likelihood as hg(.) remains
unspecified.

Cox suggested to estimate 3 by maximizing £(/3). This function does not depend either on hy
or on the actual death times (only their order). It is possible to find a unique solution 5 which
maximizes the function £(/3) if and only if the number of parameters to be estimated p is less than
the number of events among the observations n. Otherwise, the model is not identifiable, i.e., it is
impossible to find a unique solution for 5.

The coefficient vector /3 is estimated by maximizing the partial likelihood, or equivalently, mini-

mizing the negative log-partial likelihood NLL(/3) for improving efficiency. It is written as:

NLL(B) = 3 D;[8"X; —log[ Dy eap(7X)]] (2.11)

JER;

The maximum partial likelihood estimator can be obtained with the numerical Newton-Raphson
method to iteratively find an estimator 3 which minimizes NL.£ ().

The survival function can be computed as follows:
S(U1X.) = eap(~Ho(t)eap(57X,)) = Solt) 7",

where Hy(t) is the cumulative baseline hazard function, and Sy(t) = exp(—Hy(t)) represents the
baseline survival function.

If survival times follow a particular distribution, we can implement a parametric method, as it is
easy to interpret, and as we only need to estimate a few parameters that completely characterize
the distribution, unlike with the CoxPH model.

10
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2.5 . The Accelerated Failure Time model, an alternative to CoxPH

The AFT model represents an alternative to the CoxPH model. It provides a direct interpretation
of the relationship between patient variables and failure times, as it assumes that the relationship
of the logarithm of survival times T" and the variables is linear. Since T is positive, log T is defined,
and the AFT model can be written in the following form:

logT = 7 X + oe. (2.12)

3 corresponds to the vector of regression coefficients, o(o > 0) denotes an unknown scale parameter,
and ¢ is an error term. If the error term € follows a specific distribution, the model logT" follows
the same known probability distribution. The exponential, Weibull, log-logistic, Gompertz, and log-
normal probability distributions are the most commonly used distributions. The AFT model can
verify the proportional hazards and multiplicative effects hypotheses with the exponential or Weibull
distributions. By choosing a log-logistic AFT model, the model does not verify the proportional
hazards hypothesis. If the Gompertz distribution is used, then the proportional hazards hypothesis
is verified, but the hypothesis of the multiplicative effect is not.

Let So(t) be the basis survival function for X = 0, corresponding to the tail of the distribution

of exp(€). The survival function in an AFT model is written as:
S(t1X;) = So(texp (87 X)) (2.13)
It then follows the expression of the risk function:
h(t]Xi) = exp(B" Xi)ho(t exp(87 Xy)). (2.14)

As shown with the equation 2.14, variables have a multiplicative effect on ¢ rather than on the risk
function, as is the case for the CoxPH model. If exp(B7X;) is greater than 1, variables have an
accelerating effect on the event's occurrence, i.e., they decrease the survival time of the individual 7.
If exp(57X;) is lower than 1, variables have a decelerating effect on the risk, increasing the survival
time of the individual 7.

The parameters of an AFT model can be estimated using the maximum likelihood when the
distribution of the basis risk function hg is known, using a parametric function for hq. If no parametric
hypothesis is made on kg, then the AFT model is a semi-parametric model. However, there is no
equivalent of the CoxPH partial likelihood for the AFT model, allowing the elimination of the

parameter hy. The estimation of the parameters 3 and hy is thus complex.

2.6 . Counting process approach

Other non-parametric estimators were also developed and are used to compute the cumulative

hazard, known as the Nelson-Aalen estimator or Breslow estimator.

2.6.1 . The Nelson-Aalen estimator

In order to predict how long an individual will survive a given disease, we need to estimate the full
risk function. For example, determining the individual survival function of a breast cancer patient

could help us identify when to start the screening for this patient.
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For t; <t <t,41, the instantaneous risk h is estimated as:

ht;) = "4 (2.15)
T
Then, as H(t) = [, h(u)du, we have:
H(t) = —
(t) E v (2.16)
{7t <t}

H (t) corresponds to the Nelson-Aalen estimator. First introduced by Aalen (1978), the Nelson-Aalen
generalizes the empirical cumulative intensity proposed by Nelson (1969) to the case of censored

survival times.

2.6.2 . The Breslow estimator

The Breslow estimator (Breslow, 1972) of the cumulative hazard is an extension of the
Nelson-Aalen estimator. It is obtained using the KM estimator and based on the relation: H(t) =
—log[S(t)]. It is written as:

ﬁ():—log[ } ~ 3 log (1—-) 2.17)

Jit; <t

An estimator of the basis cumulative risk function can be obtained as:

A m,
= E J 2.18
Hot®) ity >t > exp(ﬁTX) 219

1€ER;

with R; = {i|t; > t;} the risk set, i.e., the index set of subjects at risk at time ¢;. The KM estimator
describes survival according to a single risk factor but does not investigate the impact of multiple
factors, while the CoxPH model does. The CoxPH model is a semi-parametric method based on

multiple assumptions.

2.7 . Discrete time framework

We can extend the previous functions to a discrete time scale. Within this framework, the
continuous survival time is divided into L time intervals A; =]t;_1,%],l = 1, ..., L, with midpoint
ay. The probability mass function (PMF) for the individual i with baseline variables X is defined
as:

fa = P(T; € A|X;) = S(t1]X:) — S(4]X5). (2.19)

It follows that the survival function is written as:

Si(tlX;) = P(Ty > t|X:) = > fa (2.20)

k>l

With discrete times, the hazard in a specific interval corresponds to the probability of an individual

experiencing the event during that interval given that the individual survives up to the start of that

12
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interval. Thus, we can define the hazard rate as:

ha(X;) = P(T; € A|T; > t1-1, X;)
=Pt <T;, <t|T > t;1-1,X;)

ok
S(ti—1|X;)
S(ti—1]|X;) — S(t|X;)
= . 2.21
S(aIX) (2.21)
The PMF can be rewritten as:
fio = ha(X3)S(ti-1] X5), (2.22)
and the survival function can be expressed as:
Si(tX:) = [1 = ha(X;)]S(ti-a] Xi)
!
= [0 — ha (). (2.23)
k=1
The PMF and survival function associated with the censoring time C' are defined as:
fa = P(C; € Ai|X5), (2.24)

Assuming that 7" and C are independent, we can derive the likelihood function for right-censored
survival data in a discrete-time framework. Cox considered this an ad hoc modification of his
continuous-time model and, therefore, proposed an estimation procedure analogous to the partial
likelihood. He introduced a discrete-time hazard parametrization by considering the sigmoid of the
linear predictor, noted as ¢;(X;) = a; + 87 X;. It follows that:

1

= . 2.26
[T oxp(—6,(X.) (2:26)

ha(X;)

Brown (1975) later showed that we can estimate the parameters of h;;(X;) in the same manner as
a regular logistic regression. To construct the likelihood, the individual 7 contributes to the product
of the conditional survival probabilities for the time intervals in which he is observed but does not
experience the event. If the event is observed for individual 7 in the interval A;, =]t;,_1,t], the
individual additionally contributes to the product of conditional survival probabilities. By defining
the event label d; = I(T; € A;,) = I(t;-1 < T; < t;), which is given by (d;1,...dy,) = (0,...,0)

for censored individuals and (d;1,...dy,) = (0,..., 1) for individuals with an event, the likelihood is
given by:
l;
L= T[T ra(Xa® [t = ha(X)] ", (2.27)

i [=1

which we recognize as the Bernoulli likelihood. It can be referred to as a discrete logistic hazard and
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partial logistic regression. With this formulation, the negative log-likelihood can be rewritten as:

n l;

NLL = —% D) (daloglha(Xi)] + (1 = da) log[1 — ha(X,))). (2.28)

i=1 [=1

This is the negative log-likelihood for Bernoulli data or binary cross-entropy.

2.8 . Evaluation Criteria

The models were compared using two metrics: the Concordance index (C-statistic) for discrimi-
nation, and the Integrated Brier Score (IBS) that measures both the discrimination and calibration

of the model.

2.8.1 . The Brier Score and the Integrated Brier Score

The Brier Score (BS) is used to evaluate the accuracy of the predicted survival function at a
given time t. It is based on the root mean square error and focuses on the difference between the
observed survival status and the predicted probability of survival. It lies between 0 (best possible

value) and 1. The BS for uncensored data is written as :

BS(t) L > HT >t} - S(tX)

(2.29)

:% Zn: S(X) T, <t} + (1 — S(¢X:){T; > t}]

With censored data, only a subset of the event times is observed. Graf et al. (1999) introduced a
weighting of the BS based on the inverse probability of censoring (IPCW). It can be rewritten as:

T,
=1 ) ( ) (230)
L= Sx R t}]
G(T:)
The IBS is then written as:
o
IBS(t)1pew = / BS(s)ds (2.31)
to — 1y

t1

2.8.2 . The Concordance Index

The C-statistic measures the discrimination ability of a model, that is, its ability to distinguish
high-risk and low-risk patients. Specifically, it estimates the probability of agreement, i.e., the prob-
ability that two patients randomly selected are ordered similarly in terms of survival prediction and
in their observed survival data. We use here a concordance measure that accounts for the censored
data using the inverse probability of censoring weighting (Uno et al., 2011). The concordance
index for time t is then:
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D;G(T)2I{T; < T;, T, < t}I{S(t|X;) < S(t|X;)}
A i=1j=1

C(t) = —— — (2.32)
> 2 DiG(T) T < T, T; < t}
i=1j=1

The value of the C-statistic lies between 0.5 and 1, with 0.5 equivalent to a random prediction and

1 corresponding to a perfect ability to rank.
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3 - Survival Analysis for High-Dimensional Data

3.1 . Context

In recent years, machine learning models have been increasingly used in various domains, par-
ticularly in medical research. Healthcare applications of machine learning models are diverse, from
estimating the failure time distribution to the prognostic evaluation of different variables.

Machine learning models are often adapted to learn complex and nonlinear dependencies between
numerous input variables and an output to predict. However, the specificities of survival data
make the application of machine learning models challenging in survival analysis. Machine learning
algorithms are adequate when there are many instances (e.g. n patients) in a reasonable dimensional
feature space (e.g. p biomarkers). In the context of survival analysis for precision oncology, with
high throughput sequencing, large amounts of input features data are collected for each individual,
and the number of input variables often exceeds the number of individuals (p > n), which raises an
overfitting problem. Another challenge for machine learning models application concerns censoring.
Censoring differs from missing data: it carries partial information and should be integrated into the
prediction algorithm to obtain the most optimal result.

While neural networks are well-suited for complex datasets, they unfortunately cannot be directly
applied to survival analysis, as they were not originally designed to handle censored data. FNNs are
a specific type of neural networks developed by Rosenblatt (1958) that were not applied to survival
analysis until the work of Faraggi et al. (1995). Since then, multiple applications of neural network
models have been subsequently developed to handle censored data. Some models directly change
the output and overcome censoring using pseudo-observations, while other methods are based on
specific loss adapted to censored data, such as CoxCC, CoxTime (Kvamme et al., 2019), and
DeepHit (Lee et al., 2018).

In the following section, FNNs currently adapted to survival analysis are presented. We also
introduce 2 statistical learning methods, RSF and penalized CoxPH, adapted to survival analysis in

high dimensional settings and used as benchmark models.

3.2 . Feedforward neural networks

Let X = (Xj,...,X,) be the vector of input variables. A FNN operates a transformation of
the input variables:
Y = (X, W, b), (3.1)

where ¢ is the transformation, W and b are the weights and biases of the neural network to be

estimated, and Y is the explained variable.

3.2.1 . Architecture of a FNN

A FNN consists of layers: the input layer, one or several hidden layers, and the output layer.
Each layer is composed of several units, also called nodes or neurons. The input layer includes
all the P explanatory variables, such as the clinical characteristics or gene expression data. Each
hidden layer comprises a certain number of neurons we need to determine. The output layer Y is

continuous. Apart from the output nodes, every neuron in a layer is connected with all the units in
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the next layer: the network is fully connected, and there is no feedback between layers.

The FNN's architecture is defined by the number of its layers, the number of nodes per layer, and
the activation function. These components are called hyperparameters of the models. Figure 3.1
shows an example of a FNN with P = 3 input variables, K = 4 neurons per hidden layer, and
H =1 hidden layer.

Input Hidden
Layer Layer

Figure 3.1: Example of a FNN’s architecture

The output of a neural network with P input variables, 1 hidden layer with K neurons, is written:

K P
Vi = ¢(X;; W,b) = fo (b + Z Wi fi (bk + Z kaXip)> ; (3.2)
k=1

= p:l

where f; and f5 are the activation functions of the input layer and the hidden layer, respectively,
Wi, the weights from the input to the hidden layer, W), the weights from the hidden to the output
layer and b the biases or offsets. As we see in Equation 3.2, the neurons of the layers are combined
using a weighted sum.

The activation function f is a transformation applied to the combined neurons of the hidden
layer before being transmitted to the next layer. It needs to be differentiable and non-linear. A
classical choice for the activation function is the sigmoid function. It is defined by:

1 e’

- - ) 3.3
1+e=® er+1 (3-3)

()

The function's input is transformed into a value between 0.0 and 1.0. To avoid the addition of

biases, the centralized form of the sigmoid, the hyperbolic tangent or tanh, can also be applied:

(3.4)

_ exp(x) — exp(—x)
Jw) = exp(z) + exp(—x)’

It outputs values between —1.0 and 1.0.

We can face two problems by applying a sigmoid or hyperbolic tangent. These functions can
saturate: large values snap to 1.0, and small values snap to —1 or 0 for tanh and sigmoid, respectively.
Further, the functions are only really sensitive to changes around the mid-point of their input, such as
0.5 for sigmoid and 0.0 for tanh. With deep neural networks composed of numerous hidden layers,
these functions also raise the vanishing gradient problem: the amount of error back propagated
and used to update weights decreases dramatically with each additional layer through which it is
propagated.

The Rectified Linear Unit (ReLU) activation function is a piecewise linear function that overcomes
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the limits of tanh and sigmoid. It returns the value provided as input directly or the value 0.0 if the

input is 0.0 or less. It can be expressed as follows:
f(z) = max(0,x). (3.5)

In this case, no transformation is applied to the input neurons; that is, f is the identity function.

3.2.2 . Learning the parameters with the optimization algorithm

The learning process relies on the backpropagation technique (Rumelhart et al., 1986). It is used
to learn the weights and biases, also called the model's parameters (noted as #). During training,
input vectors are forward propagated through a randomly initialized network, the FNN produces
output Y. A specific loss function L(0) is computed as a function of the difference between these
outputs and the desired ones. Then, gradient descent is used to optimize the objective function
L(6). More precisely, the error is used to walk backwards through the network, using the gradients
of the objective function VyL(6#) with respect to the parameters, and thus adjust the weights and
biases in such a way that attempts to reduce the error. The gradient is adjusted by a certain amount
controlled by a learning rate 7, which can be fixed, adaptive, or determined by a schedule. After
each backpropagation, we iterate with the dataset and continue adjusting € until there is little to no
improvement in the error, reaching a local or global minimum. At iteration k, the ordinary gradient

descent can be written as follows:
OFtt = 0F — 0 Ve L(6F). (3.6)

Less expensive gradient descent methods, such as stochastic gradient descent (SGD) have been
implemented. It relies on the fact that L is an average of identical and independent examples.
For each iteration k, the gradient is computed on a single observation randomly picked within the
dataset, not on the whole dataset. Thus, updates can be made more frequently or even on each

example. For each individual 7 of the training set with covariates X; and survival time Y;, we have :
OFFt = 0F — Ve L(0%; X33 Y)). (3.7)

Ordinary gradient descent performs redundant computations for similar individuals, whereas SGD
performs one update at a time, requiring less memory and time. These frequent updates SGD
enables to jump to new and potentially better local minima. However, these frequent updates with

a high variance give more unstable convergence.

The limit with SGD is that the same learning rate is applied to all parameter updates. If our
data is sparse and our variables have very different frequencies, we might not want to update all of
them to the same extent but perform a larger update for rarely occurring variables. Another critical
challenge of minimizing highly non-convex error functions common for neural networks is avoiding

getting trapped in their numerous sub-optimal local minima.

Root Mean Square Propagation (RMSProp) (Tieleman et al., 2012) is an adaptive learning
rate method that is based on the running average E[(g*)?]. ¢* denotes the gradient at iteration
k: g8 = VyL(0%). Indeed, instead of storing all previous squared gradients, the sum of gradients is
recursively defined as a decaying average of all past squared gradients. The running average depends
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on the previous average and the current gradient as follows:
E[(g*)*] = 0.9E[(g"7")*] + 0.1(g")*. (3.8)
RMSProp divides the learning rate by an exponentially decaying average of squared gradients:

or+t = 0 — L k. 3.9
PIrREETS 52

Another more stable method is the Adaptative Moment Estimation (Adam) algorithm (Kingma
et al., 2014). It computes a step for each parameter of the neural network. More precisely, it
records the average of the gradients of previous epochs with m* and the square of the average of

the gradients of previous epochs with v*.

m"* = Bm" + (1= B1)g",
’Uk — 52vk71 4 (1 _ B2)(gk)2-
mF* and v¥ are the estimates of the first-order moments (the mean) and the second-order mo-

ments (the uncentred variance) of the gradients, respectively. As m* and v* are initialized to 0,

they are biased for this value. Their estimates are then corrected for this bias:

k
~ m
mk = :
1=/
k
oh=
1 =5,
We obtain the following update rule:
Et = gk — mk. (3.10)

_n
Vok + ¢
€ is a smoothing term that avoids division by zero. A limitation of the Adam algorithm is that
sometimes it fails to converge to an optimal solution due to the use of the exponential moving average
of the past squared gradients. To fix this convergence issue, AMSGrad employs the maximum of the

past squared gradients, which prevents optimization from slowing down too quickly. It also removes

the debiasing step. Thus, the update rule becomes:

mF = Bim* (1= By) gk,
Uk — Bzvk—l 4 (1 o B2)<gk)27
P = maz (081, 0"),

gt — gk — 1k 3.11)
ﬁ%—e

0

3.3 . Applying FNNs to survival prediction

With the increasing application of machine learning models in various domains, numerous meth-

ods have been developed to adapt neural networks to time-to-event predictions. Multiple FNNs
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have been introduced based on the CoxPH partial log-likelihood, the discrete-time framework, or
the jackknife method. All these models rely on using a specific loss function to handle time-to-event
data.

As early as 1995, FNNs were adapted to survival analysis in a continuous-time framework, with
the linear predictor of the CoxPH being replaced by a one-hidden layer FNN (Faraggi et al., 1995).
This model still relies on the proportionality assumption but can capture non-linearity in the data.
However, it does not outperform CoxPH. With Cox-nnet (Ching et al., 2018) and DeepSurv
(Katzman et al., 2016), the models are implemented in a deep learning framework and outperform
CoxPH in terms of discrimination capacities. All these models are trained by minimizing the negative
partial log-likelihood. Kvamme et al. (2019) suggested adding the time variable in the input variables
so that the model overcame the proportional hazards assumption, and a specific loss function was
introduced to handle both proportional and non-proportional hazards.

Neural networks have also been developed in discrete-time survival analysis, with the follow-up
time being divided into fixed intervals. Here, the risk is directly estimated as the neural network's
output, for each time interval. It is a more flexible framework as the model does not rely on the
proportionality assumption. Biganzoli et al. (1998) introduced a neural network with a single output,
where individuals are replicated for each time interval. They added the ridge penalty. Lee et al.
(2018) introduced another model, DeepHit, that directly estimates the probability mass function
and combines the log log-likelihood with a ranking loss.

A third solution consists in using pseudo-observations. Andersen et al. (2010) introduced pseudo-
observations as an approach to perform regression based on the jackknife method in a survival
context. With DNNSurv, Zhao et al. (2019) substituted the observed survival times by jackknife
pseudo-observations and then used them as a response variable in a FNN. Two new methods for
computing pseudo-observations are introduced here.

Two benchmark models are implemented: LASSO adds a Li-penalty to the log-likelihood of
CoxPH; RSF computes a random forest using the log-rank test as the splitting criterion. Both
methods are presented in Chapter 2.

3.3.1 . Continuous time framework

Kvamme et al. (2019) introduced a method called CoxCC that uses a special loss based on
a case-control approximation. They proposed to randomly sample a new set of controls at each

iteration instead of keeping control samples fixed. The loss is written as:

Sence =+ 3 Toa(3" explo(X,) — o(X)]), (3.12)

:D;=1 jejzi

with R; a subset of the risk set R; at time ¢ including individual 4. i represents the case, and the j's
are the controls sampled from the risk set. The authors can fit a neural network with their specific
loss (Equation 3.12) using a mini-batch gradient descent algorithm.

They also developed a second version of their model, CoxTime, that is not constrained by the
proportionality assumption. To do so, they added the time variable as an additional input to the

model. The loss function can then be rewritten as :

L ConTime = % > log(Y explo(ti, X)) — ¢(t:, X5)]). (3.13)

i:D;=1 jeRi
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3.3.2 . Discrete time framework

Commonly used survival models can also be extended using neural networks in a discrete-time
framework, which enables overcoming the proportional hazards assumption.

Biganzoli et al. (1998) presented the Partial Logistic Artificial Neural Network (PLANN) model.
With this model, the time is divided into L time intervals A; =]t;_1,¢,], I = 1,..., L, with midpoint
a;. The input of the model is composed of the variables and the time variable a;, while the output

corresponds to the discrete instantaneous hazard, written as:

hii

iLz(Xi,az)
P(E S Alm > tl_1|Xi), (3.14)

with T} the survival time for individual 7 at time a;. With the inclusion of the time variable as input
of the model, the p variables of each i are repeated for each time interval. More precisely, each
patient of the training set is repeated for the number of intervals being observed, whereas, on the
test set, each subject is repeated for all time intervals. As the index of the time interval is used
as an explanatory variable, smooth estimates of the hazard rate can be obtained, and interactions
between time and variables are considered. The FNN's architecture used by Biganzoli et al. (1998)
is composed of 3 layers and a logistic activation function. The output of the neural network with
K neurons in the hidden layer and P input variables is given by:

K P
hi = fL(Xi, t)=r (b + Z Wit (ak + Z kaXip)> ’
k=1 p=1

with W,ax, and Wy, b the weights and biases of the input layer and the hidden layer, respectively,
f is the logistic activation function. d;; is the event indicator: if the patient died in the interval A;,
then d; = 1; if the patient is censored, then d;; = 0. [; corresponds to the number of intervals for
which the individual 7 is observed. Thus we have [; < L and dyo, ..., d;q,_,) = 0. The cost function

corresponds to the binary cross-entropy :

n l;
LPLANN = — Z Z{dzl log hzl) + (1 — dll)[l — 10g hil]}, (315)

=1 [=1

where hy(x;) is estimated as output value of the FNN. Biganzoli et al. (1998) add a ridge penalisation
term to the loss function (3.15):

LpLaNN+Ridge = Lpiann + A ||[W][, (3.16)

with \ being tuned by CV.

The authors recently published an update of their model (Kantidakis et al., 2021), in which
they proposed treating the L non-overlapping intervals as L separate variables, resulting in 1+ L+p
input nodes instead of 1 + 1 + p nodes. With PLANN, the survival distribution is predicted using
the discrete hazard function.

An alternative model, DeepHit (Lee et al., 2018), directly estimates the discrete survival
function. The time is divided into L time intervals. y(z) = [y1(2), ...,y (x)]T is the output of the
neural network: given a patient i with variables X;, ys(X;) is the probability that the patient will
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experience the event at time s. Thus we have:

l;
Sit|X:) =1 y(X). (3.17)
=1

A loss function is optimized that combines the negative log-likelihood for right censored data with

a ranking loss. The first term of the loss function is then written :

N
1 N
pHit 1 = —— i i — i 2 '
Leeotic 1 - Z (Dilog(y,,) +(1— D;)log(S(TX;)) (3.18)
=1 patients ;vrith event Censorearpatients

ki is the index of the event time for individual 7. Lpeeprit 1 pushes the model to learn the underlying

survival distribution.

To the term in Equation 3.18 is added another loss function which includes a constraint on the
discrimination capacity of the model. It is an extension of the concordance index and acts as a
ranking loss:

S(Ti|X:) = S(T]X;)

g

Loeeptin2 = ¥ DI{T; < Tj} exp( ). (3.19)
2%

Lpeephit 2 (Equation 3.19) aims at improving the discrimination of the model and tends to force the

model to focus on time intervals with a high frequency of observed events, where discrimination is

more challenging. The two terms are combined using a convex combination:
LDeepHit = O-/LDeepHit 1+ (1 - Oé)LDeepHit 2 (320)

where « is a hyperparameter. The introduction of the term Lpeepnit 2 can be criticised, as adding
Lpeeptit 2 constrains the model and helps it improve its discrimination capacities and might arm
its calibration capacities. Hence, as the ultimate goal of the model is not only to solve a ranking
problem like stratifying a patient risk in order to inform clinical decisions, but rather to learn survival

distributions, it makes the introduction of the Lpeephit 2 term questionable.

When using continuous time survival data, these two methods could represent a drawback as the
discretization of the data implies a loss of information. Furthermore, choosing the granularity of the
discretization and even the discretization scheme involves a trade-off between the smoothness of the
resulting hazard function estimate and considerations of computational cost. The hazard function

output by the model may require smoothing and have interpretability issues.

3.3.3 . Pseudo-observations

In survival analysis, pseudo-observations provide a way to circumvent the complexity of censoring.
In the work of Andersen et al. (2010), pseudo-observations computation relies on the idea of leave-
one-out estimation. They approximate the missing values using the KM estimate and are computed
at a finite number of time points spread on the event time scale. Andersen et al. (2010) use the

pseudo-observations as the output of a generalized estimating equation model.

In survival analysis, the pseudo-observation for the individual i corresponds to this individual's
contribution to the KM estimate S(t). Pseudo-observations are computed for all individuals at a

given time, regardless of event time or censorship status. For each i, we have k pseudo-observations.
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Let us define the pseudo-observation for individual 7 at time ¢ :

~

Zi(t) = NS(t) — (N —1)S7i(t). (3.21)

Here, S~%(t) denotes the leave-one-out KM estimate S(t) obtained by discarding the data for
individual 7. We thus have an approximation of the empirical mean of the sample deprived of
individual 1.

In their neural network model, DNNSurv, Zhao et al. (2019) adapted the pseudo-observations
approach in a discrete-time framework. Every survival time, censored or not, is replaced by the

pseudo-observation computed as:
Zi(tia|Ry) = RS (| Re) — (R — 1St |Ry), (3.22)

where S(t;41|R;) is the KM estimator constructed using the remaining survival times for all patients
still at risk at time ¢;, and g_i(tl+1]flzl) the KM estimator for all patients at risk but the i*" subject.
The time variable is included in the input variables of the model. The loss function that is minimized

boils down to the mean-squared error.

3.4 . Benchmark methods

With the development of data collection and detection techniques, survival analysis is often
performed in a high-dimensional context, for instance, when using molecular data. The number
of variables in the data exceeds the number of instances, and it becomes challenging to build the
prediction model with all variables: conventional survival analysis methods might provide inaccurate

results. Different solutions have been developed to overcome this issue.

We present two methods that we used as a benchmark for neural network models. One method
includes a penalty function to identify the most relevant variables using sparse learning methods:
this is a penalized CoxPH with LASSO (Tibshirani, 1997). This penalized CoxPH model seems
more competitive than a simple CoxPH model in the context of complex and high-dimensional data.
Another idea is to apply RSF (Ishwaran et al., 2008) that is made of an ensemble of survival trees.
Many papers benchmarked their methods against RSF, as it is a flexible continuous-time method

that is not constrained by the proportionality assumption.

3.4.1 . The CoxPH model with the LASSO penalty

In order to develop the prediction models and to determine the most relevant variables among all
the variables, a penalization term can be added to the CoxPH partial-likelihood. This penalization
is based on the regression coefficients and generally depends on a single parameter, either positive
or null, denoted A. One of the main objectives of penalized regressions is to force the regression
coefficients to tend toward the null value. It allows the estimation of regression coefficients that are
less variable but slightly biased (a compromise between variance and bias). The most used one is
the LASSO penalty because it allows convex optimization and is interpretable in terms of variable

selection.

First introduced in the context of linear regression by Tibshirani (1996) and then adapted to sur-
vival analysis (Tibshirani, 1997), the LASSO penalty corresponds to the L; norm of the regression
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coefficients. The penalization term is denoted by:

pen(), )—Allﬁlll—A(ZIB])

The model's degree of parsimony or complexity depends on the penalization parameter \: it varies
from 0 (complete model including all biomarkers) to +o0o (null model with no biomarkers). Thus this
penalty can be used to select prognostic and/or predictive biomarkers. Estimating this parameter
is essential to identify the sub-groups of biomarkers retained in the model correctly. A is often
estimated using cross-validation.

The estimator of the parameter (3 is obtained by solving the following problem:

Bi. = arg min{—£(3 +AZ|@\} (3.23)

The optimization problem is convex in 3 and thus allows the use of convex optimization algorithms
to estimate (3. Therefore the optimization problem is equivalent to a minimization problem of the
CoxPH partial log-likelihood (Cox, 1972) by adding the constraint: >°7_ [3;| < s with s € R™.
The resulting estimator ,6 is sparse, which means that a certain number of coefficients B are null.
It has been shown that LASSO is sub-optimal, notably because it does not respect the oracle
property or because of its shortcomings in the presence of strong correlations, since it tends to select
only one biomarker among all the correlated biomarkers arbitrarily. It is also not consistent in terms
of the selected variables. Therefore, other penalties are derived from the latter, such as the Ridge
(Tibshirani, 1996), Elastic-Net (Zou et al., 2005), and Adaptive-LASSO (Fan et al., 2008).

3.4.2 . Random Survival Forests

A random survival forest model is a tree-based non-linear ensemble method first developed
by Breiman (2001) and adapted to right-censored survival data by Ishwaran et al. (2008). It is
constructed from an ensemble of decision trees.

The objective of decision trees is to create subgroups of individuals that are homogeneous in
terms of the predicted variable. The construction of a decision tree is based on the determination
of a sequence of nodes. Each interior node corresponds to a value taken by a variable, and each
tree branch ends with a leaf (or terminal node) representing the values of the predicted variable. At
each interior node, individuals are separated into subgroups according to the values of one of the
variables.

Random forests are composed of a set of decision trees. Two sources of randomness are intro-
duced to distinguish trees from one another: a random subset of the data is sampled before growing
the tree (this is bootstrapping); at each node, the tree is grown using a splitting criterion based on
subsets of randomly selected variables. The tree is built on the in-bag individuals, i.e., the fraction
of n observations obtained by bootstrapping, and predictions are made on each individual of the
remaining fraction or out-of-bag (OOB).

RSF (Ishwaran et al., 2008) is a specific type of random forest adapted to time-to-event data.
The model does not rely on the proportional hazards hypothesis, and it allows the capture of nonlinear
effects and high-order interactions in the data. As for classical random forests, M subsets of the
data are randomly sampled. For each bootstrapped sample set, a survival tree is grown by recursively

splitting the tree into nodes. At each tree node, a subset of the remaining variables is sampled. For
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each node, a proposed split for a given variable X, is of the form: X, < ¢ and X, > ¢, with ¢
the associated splitting criterion. The variable with the splitting criterion that maximizes survival
difference between individuals of the resulting nodes is chosen among all candidate variables. Here,
the applied criterion is the log-rank splitting rule.

The tree is fully grown when each terminal node is greater than or equal to a specific number of
unique deaths. For each terminal node of each tree, denoted as v, the cumulative hazard function
(CHF) is estimated using the non-parametric Nelson-Aalen estimator, H,(t). Let H(t|X;) be the
conditional CHF of the terminal node that individual 7 belongs to based on its predictors X;, and

estimated as:
H(t|X;) = H,(t) if X; €. (3.24)

All patients within v have the same CHF. In Equation 3.24, the estimate is obtained using a single
tree. Thus, the ensemble estimate is obtained by averaging these estimates over all trees. Let
H,,(t|X) denote the CHF for a tree grown from the m™ bootstrap sample. Let I;,, = 1 if i is an
OOB case for the resampled set m. The OOB ensemble CHF is obtained by averaging the CHF of
each tree:
M A
> L Hp (8 X5)
2 _ m=1
H.(t|X;) = i : (3.25)
Z [i,m
m=1

The estimator is obtained by averaging over only the bootstrap samples in which 7 is an OOB sample.
Finally, Ishwaran et al. (2008) compute the error rate based on the concordance statistic (Harrell
et al., 1982). ti,...,t5 denote all unique event times in the data. To rank two cases i and j,

where i has a worse predicted outcome than j if :

N N
> CH(tX:) > Y Ho(5]X)). (3.26)

k=1 k=1

This equation defines the C-statistic C' based on the OOB ensemble CHF. Finally, the prediction

error corresponds to 1 — C.
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4.1 . Context

In this chapter, we study neural network models adapted to high-dimensional time-to-event
data, using specific ways to handle censored observations. We compare survival models based on
neural networks with different loss functions, either in a continuous-time framework with CoxCC and
CoxTime, or in a discrete-time framework with DeepHit and PLANN. We also investigate different
ways of defining pseudo-observations and include neural networks based on pseudo-observations in
the comparison study. Indeed, as defined in Chapter 3, in survival analysis, pseudo-observations
provide a way to circumvent the complexity of censoring. We use RSF and LASSO penalization
as a benchmark. We investigate the effect of pre-training using autoencoders (AE) and variational
autoencoders (VAE) on the model’s prediction in the case of real patient cohorts.

Synthetic data are simulated, enabling us to study and compare the operating characteristics of
the models. We simulate data from a CoxPH model and an AFT model using the cumulative inverse
method (Bender et al., 2005). We also use an AFT model proposed by Friedman (2001), with
interactions and nonlinear effects of random subsets of variables. Generating survival time-to-event
data from different models enables us to compare the models on data from models with different
characteristics and underlying assumptions. The CoxPH model is a proportional hazards model,
which is not the case for the AFT model. Moreover, with the AFT model proposed by Friedman
(2001), we can compare the models on highly nonlinear and complex data. We further apply the
methods to 2 real patient cohorts: the METABRIC breast cancer data set, including 1,960 patients,
6 clinical variables and the expression of 869 genes, and a set of data on lung cancer, consisting of
4,120 patients, 3 clinical variables, and 1,000 genes.

4.2 . New ways of computing pseudo-observations

We explore here different ways of computing pseudo-observations. As in the DNNSurv model, we
can also consider pseudo-observations in a discrete-time framework, as we can see in Equation 3.22.
The time is divided into L intervals, and pseudo-conditional survival probabilities are computed for
each interval. We implement this method, called Pseudo-discrete (PDisc). The discrete-time
variable is added as input of the neural network with the other variables X. The model’s predictions
correspond to the conditional survival probability in each interval. The marginal survival probability
for the ["" time is obtained by multiplying these conditional survival probabilities up to the I* interval.

An obvious problem with these methods is that pseudo-observations can take values strictly
above one or below 0, which cannot be interpreted in a legitimate sense. With the objective to
interpret the pseudo-observations as the probability that Z;(¢) = I(7;(t) > 0) = 1, we enforced
that it belongs to the [0, 1] interval, with the same idea used by classical pseudo-observations to
take advantage of the information contained in the leave-one-out KM estimators. Let us denote
by Z(t) = (Zi(t), -+, Zn(t)) the new vector of pseudo-observations. It is the solution of the

constrained minimization problem:

Z(t) = arg min_||Au — b|?, (4.1)
ue[0;1]N

)
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with A an (N + 1) by N matrix, and b an (N+1)-dimensional vectors given by:

11 1 A
R AN
N-1 N-1 S—l(t)
PR T . 4.2)
IS TR B STN()
N-—1 N-—1

Similarly, as for the classical pseudo-observations, if there were no censoring, the solution to the
problem would be (Zy(t),---, Zn(t)). We call this new method Pseudo-Optim (POpt). Again,
we build a neural network including biological variables and the time variable as input. The output
is the marginal survival probability for a given time.

Based on the idea that the pseudo-observation is an estimation of Z;(t), we can adopt a Bayesian
point of view and take 7} (t) as the conditional probability P (Z;(t)|D), where D denotes the observed

(uncomplete) data, D = (Ti,DZ) M D;=1orif D; =0 and t < (; (the censoring time for
1<i<N

individual 7), then Z;(t) is observed and we simply have: Z;(t) = Z;(t). If D; = 0 and t > ;, then,
since individual survivals are supposed to be independent and follow the same distribution law:

P(Z(t)| D) = P(T; > t| T, > i, D) = P(T > +|T > G, D) _%. 4.3)

Finally, P (T > t|D) can be estimated by the KM estimate, and thus, if D; =0 and t > (;:

ity = S0 (4.4)

5(G)

We call this the Pseudo-KM (PKM) method.

4.3 . Combining FNNs with encoders

We can use transfer learning to help the FNN model distinguish between the information and
noise contained in the molecular data, thus reducing overfitting. Indeed, transfer learning is applied
in machine learning to reuse a model previously developed for a task in the context of a second and
similar task. Here, we first train an autoencoder (AE) or a variational autoencoder (VAE). Then a
combined model is built based on both the encoder part of the AE or the VAE and the FNN-based
survival model. It is initialized with the weights of the pre-trained AE or VAE model and fine-tuned

as previously.

4.3.1 . Autoencoders

An AE is a neural network that learns to output a reconstruction of the input data and produces
a non-linear embedding at the bottleneck. The AE is made of 2 submodels: the encoder and the
decoder.

The encoder is the first part of the model: it reduces the dimension of the input data by mapping
it into a latent representation space. During compression, the AE learns salient features present in
the input data. The aim is to encode a representation that captures characteristics that generalize
well to new data. The second part is the decoder: it maps the compressed representation back to

the original space, attempting to reconstruct the input data from the embedding.
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Let us define the input X € RP. Both the encoder and the decoder are composed of several
non-linear layers of the form: f(u) = o(Wwu + b), where o is the activation function. We assume
that the encoder and the decoder are symmetric, such that they have the same number of layers,
Ly = Lp = L. The encoder part is represented by F(.), parameterized by 6. The bottleneck
representation of X is then written :

z=F(X,0p). (4.5)

If D(.) is the decoder function parameterized by 0p, it follows that the reconstructed input can be
written as:
X = D(z,0p). (4.6)

We have: 05 = {(Wg,,bg,),l € [1,L]} and 8p = {(Wp,,bp,),l € [L —1,0]}. The parameters
(0p,0p) are learned together to output a reconstructed data sample that is ideally the same as the
original input X ~ X.

The loss function minimized during backpropagation to learn the AE parameters corresponds to
the mean squared error between the input data X and the reconstructed data X:

N
1
Lap(X:0p,0p) = 5 D |IF(Xs;0,60) — Xi5. (4.7)
i=1

4.3.2 . Variational Autoencoders

VAE is an extension of AE that is based on Bayesian inference. It not only reduces the dimension
of the input data X but also models its underlying probability distribution by learning a generalized
latent prior. As for the AE, the VAE is based on two submodels. The probabilistic encoder is an
inference model where, given a data point X, it produces a distribution over the latent values z.
Then, a probabilistic decoder produces a distribution over the possible corresponding values of X
given a specific value of z.

Let p(X) be the probability distribution of the data, p(z) the probability distribution of the
underlying latent variable, and p(X|z) the distribution of generating data given the latent variable.

Using the law of probability, we have the relation:

p(X) = / p(X|2)p(2)dz. 4.8)

We want to infer p(z) based on p(z|X). Variational inference allows us to approximate p(z|X)

using a distribution ¢ that is easier to evaluate, e.g., using a gaussian distribution:
q(2[X) = N(z; p, 01), (4.9)

where the mean 1 and standard deviation o are outputs of the encoder. Thus we have:

,u(X) = Wuf(WhX + bh) + b#, (410)
V(X)) =W, f(W,pX +by) + by, (4.11)
o(X)? = e e ~ N(0, 1), (4.12)

where 1, v, and 0% are the mean, log variance, and the variance of Gaussian distribution, respectively.

W and b are trainable parameters of the VAE model. Moreover, the latent variable is supposed to
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be Gaussian: p(z) = N(0,I). Thus, since the prior p(z) and its representation ¢(z|X) have both
Gaussian distributions, the discrepancy between them is directly computed using the Kullback-Leibler
(KL) divergence:

n

Dir ==Y _(1+v(Xp) — u(Xp)* = o). (4.13)
k=1

During the decoding phase, the latent variables are randomly sampled from the probability distri-
bution outputted by the encoder to reconstruct the input variable. The reconstructed vector X is

expressed as:

A

X =W, f(Wyz+b,) + b,. (4.14)

However, the latent randomly sampled variables are not differentiable, which makes it difficult to
calculate gradients in the context of backpropagation. Therefore, to optimize both the encoding and
decoding weights, a reparametrization trick is applied: the variable € that verifies z = (X)) +0o(X)e
is sampled from the standard Gaussian distribution. The error used as the objective function for the
VAE model is defined as follows:

By 45 = argmin (L(X, X)recom + DKL(X)) , (4.15)
0

where 0y 45 refers to the parameters of the VAE model and X, is the root mean squared error.

4.3.3 . Combined FNNs

AE and VAE have been typically used to reduce the dimensionality of the data by extracting the
data structure information. They can be applied in the context of transfer learning, which consists
in extracting features with a pre-trained model learned on a large database for a problem of smaller
dimensions. Transfer learning prevents overfitting and improves the performances of the FNNs.

Several architectures based on VAE and FNN that handle time-to-event data have been intro-
duced. For instance, the VAECox architecture (Kim et al., 2020) is a combination of the encoder
layers of a VAE model and a CoxPH model. First, a VAE is trained. Then, the weights are transferred
to the encoder layers of the VAECox model, and the remaining weights are randomly initialized. An-
other architecture, X-VAE (Simidjievski et al., 2019), can handle heterogeneous data sources, like
multi-omics and clinical data, using individual branches for each data source. The branches are
combined into one before the bottleneck layer.

Based on these complex architectures adapted to time-to-event data, we propose to combine
the encoder part of a pre-trained VAE model with each neural network architecture compared in this
work. Here, as shown on the left side (1) of Figure 4.1, an AE (resp. VAE) is trained using the
genomic data as input of the model. The latent space corresponds to the orange rectangle in the
middle. Then, the encoder part is transferred into a combined model with two inputs: the encoder
with the genomic data, and the clinical variables (right side (2) of Figure 4.1). This combined model
with two input branches is retrained. As the number of patients in our data is small compared to
the number of variables, pre-training of the weights and encoding can help extract salient features

in the molecular data.
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Figure 4.1: Construction and training of the AE and VAE models combined with a FNN. The
scheme on the left part (1) represents the pre-training of the full AE/VAE model. The scheme
on the right part (2) is the combined model with the pre-trained encoder part and the FNN
model.

4.4 . Training Procedure

4.4.1 . Training Procedure of the FNN

To evaluate the performances of the different FNNs, the dataset is typically split into three sets
(one training set, one validation set, and one test set). A CV procedure is also performed to obtain
the hyperparameters of the FNNs.

A hyperparameter takes a value used to control the learning process, which cannot be estimated
from data; the practitioner specifies it. Several hyperparameters are tuned to define the architecture
of the model: the number of hidden layers, the number of neurons per layer, the activation function,
and the optimization algorithm with different learning rates and batch sizes. To prevent overfitting
and thus improve the accuracy of a deep learning model when new data is presented to the FNN, 2
regularization techniques are applied. The L, regularization, also called weight decay, extends the
loss function by a regularization term defined as the euclidean norm of the weights (penzo = ||W][3);
the dropout consists of temporarily deactivating some neurons in the network during training. The
range of values that will be tested for each hyperparameter is summarized in Table 4.1.

Hyperparameter | Value
Activation function {elu, relu, tanh}
Batch size {8,16,32,64,128,256}
Dropout rate [0.01,0.5]
L, regularization [0.001,0.1]
Learning rate [0.001,0.01]
Number of hidden layers {1,2,3,4}
Number of neurons per layer [4, 128]
Optimization algorithm {Adam, AdamAMSGRAD, RMSProp, SGDWR}

Table 4.1: Hyperparameter values tested for each FNN model.

We perform the hyperparameter search in the context of a 5-fold cross-valudation (CV) applied
on the training set. First, the data is split into a training and a test set. Then we applied the 5-fold
CV to the training set. It consists in randomly splitting the training data into K = 5 folds. The
model is trained using K — 1 folds and validated on the remaining fold, outputting a score. The
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training is repeated until each K-fold is used as a validation set. The average of the recorded scores
is the performance metric of the model. Finally, the entire training set is used to train each network
with the previously selected set of hyperparameters. The results are outputted on the test set.

We use the Tree-Parzen algorithm (Bergstra et al., 2011) to select hyperparameters iteratively
in an informed manner (more details can be found in Appendix 8.2). We define a search space for
each hyperparameter with specific distribution and boundary values. A set of hyperparameters is
randomly sampled, and the model is scored on each of the five validation folds. These five validation
scores are averaged, and a new set of hyperparameters is sampled based on the value of the average
score. The sampling of hyperparameters sets is repeated 200 times.

For the real patient cohorts, we perform a double 5-fold CV on the entire dataset, as shown in
Figure 4.2, because we have relatively small datasets and want to mimic an external test set. First,
the real patient cohort is split into five folds: this is the outer loop. Then, we select one of the five
folds as a test set and perform a 5-fold CV on the remaining data for each hyperparameter set: this is
the inner loop. We choose the hyperparameters configuration with the minimum average validation
loss obtained on the five folds of the inner loop. Finally, we fit the model with these optimal
hyperparameters on the four folds of the outer loop and calculate predictions on the remaining test
fold of the outer loop. This procedure is repeated on all the folds of the outer loop.

Train. set

Outer
(1) Fold 5
Loop

jl Train. set
XN sets

Inner
o ! EEEE - C -

ﬂ parameters
9 Fold 5
Loop

Output on
test set

Figure 4.2: Double 5-fold CV.

4.4.2 . Training Procedure of the benchmark models

Two benchmark models are used, LASSO and RSF. The LASSO model is implemented in the
R package biospear. The lasso penalty is chosen by maximum cross-validate likelihood. The RSF
model is implemented in Python using the scikit survival package. This implementation is based on
the work of Ishwaran et al. (2008) and the corresponding R package randomSurvivalForest (Ishwaran
et al., 2007). 4 hyperparameters are tuned: the maximum depth of the tree, the minimum number
of samples required at a leaf node, the number of randomly selected variables to look for the best
split, and the number of trees grown in the forest. Table 4.2 reports the range of values tested
for each hyperparameter by 5-fold CV using the prediction error. The splitting criteria used to split

each node is the log-rank splitting rule.
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Hyperparameter | Value
Max depth of each tree {8,32,64,128}
Minimum number of samples at a leaf node | {8,10,20,50}
Number of variables per split {2,4,6,8,10}
Number of trees {10, 100, 250}

Table 4.2: Hyperparameter values tested for the RSF model.

4.5 . Simulation study to compare FNNs

The performance of the different neural network models is further evaluated and compared using
a simulation study. The advantage of simulated data is that we know its true characteristics. Various
types of data are simulated based on either a CoxPH or an AFT model, and on the distribution of
the survival times. First, a CoxPH model is used in association with a Weibull distribution in order to
simulate data respecting the proportional hazards assumption. Then, an AFT model is applied with
a log-normal distribution as it does not rely on the proportionality assumption. To overcome this
linear framework without interactions, we also simulate data using an AFT model with Friedman's

random function generator. It enables us to simulate nonlinear data with high-order interactions.

4.5.1 . Simulations with proportional hazards

Following Bender et al. (2005), we generate survival data respecting the proportional risk as-
sumption using the inverse cumulative distribution. Let T be the survival time from the CoxPH
model, with distribution function F', then U = F(Y) follows a uniform distribution U ~ Up .
Thus, it follows:

U = exp[—Hy(T)exp(8* X)). (4.16)

If U ~ Uy, then 1 — U ~ Upqj. Furthermore, if ho(t) > 0 for all ¢, then the cumulative baseline
hazard function Hj can be inverted and the survival time T of the CoxPH model can be expressed

1 [ —log(1—10)
T | | “m

Moreover, we suppose that survival times are distributed according to a Weibull distribution
W(a, \), where a > 0 and A > 0. Thus the baseline function is of the form hg(t) = aA"t*~! and

the cumulative baseline hazard function is written:

as

Ho(t) = At°. (4.18)
The inverse of this function is expressed as follows:

Hy'(u) = (%)w. (4.19)

Based on this idea, a variable U is generated from a uniform distribution: U ~ Ujg ;. The survival

times are simulated as follows:

1 [—log(1-U) 1/a
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From the relation between the conditional survival function and the conditional hazard rate function,

we have fori =1,...,n,:
t
S(t, X) =-exp {—/ ho(s,X)ds} = exp(—\"t" exp(BT X)). (4.21)
0

We call this method CoxPH-Weibull. To define @ and )\, we take values so as to obtain survival
times that are similar to real patient cohort survival time distribution. Based on the METABRIC

data, we want to obtain an expectancy equal to 13.2 and a variance of 25.92.

The mean and the variance of simulated survival times rise with the increase in the number of

variables ¢. A normalization term can be included in the Equation 4.20 to correct for this increase:

1/a
1 [ —log(1-U)
T= (eXp (\%WX)) . (4.22)

4.5.2 . Simulations with non-proportional hazards

Based on Leemis et al. (1990), we simulate data based on the AFT model that does not respect
the proportional hazard assumption. The survival time of the AFT model can be expressed as

follows:
Hy' [=log(1—U)]

exp(fTX)

We consider that survival times follow a log-normal distribution LN(\, a), with A €] — oo, 400 and

T =

a > 0. The baseline hazard is of the form:

1 _ (log t—\)>2
av/2mt exp ( 2a?

h()(t) = 1-® (1Ogé_)\) )

where ®(t) is the cumulative distribution function of the standard normal distribution. The cumu-

lative baseline hazard is written:

Hoft) = ~tog |1 - 0 (“EL=2)].

a

The survival times are simulated as follows:

1
T = (T X) explad 1 (0) + ) (4.23)

Finally, the survival function is written as follows:

log(texp(87X)) — A

a

StX)=1—1¢ (4.24)
We refer to this method as AFT-LN.

As for CoxPH-Weibull, the mean and the variance of survival times rise with the increase in the

number of variables q. Thus, we also add a normalization term in the Equation 4.5.2:

Hy " [~ log(1 - U)]

T =
xp( 57X
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4.5.3 . Simulations with non-linearity and high-order interactions

We also applied Friedman's random function generator to simulate data (Friedman, 2001). It
allowed us to generate random functions with high-order interactions between the survival data and
the explanatory variables and strong nonlinear effects. It is based on an AFT model, that assumes
that the relationship between the logarithm of survival time 7' and the variables is linear. The

random function generator is defined as:

log T = m(X) + W with W ~ ['(2,1). (4.25)

A vector of variables X = (X1, ..., Xa) is generated with X ~ N(0,7). m(X) is defined by

Friedman's random function generator:
20
m(X) =) ag(R). (4.26)
I=1

{a,;}1° are randomly generated from a uniform distribution (a; ~ Uj_14)). R, is a random
subset of the input vector X of size n;. The size of each subset, n;, is itself random, with:
ng = min(|2+7r],20) and r ~ £(1/2). The expected number of input variables for each ¢,(R;)
is 4, implying high-order interaction effects. Hence, at least a few of the 20 functions g;(R;) will
involve high-order interactions, and m(X) will highly probably be a function of all input variables.
With Friedman's function generator, the input variables are associated with the survival time at

different levels: .
gl(Rl) = eXP{—Q(Rl - MI)TVE(RI - Ml)}~ (4.27)

Each mean vector {;;}3° is randomly generated with 1; ~ N(0,1). The matrix of variance-
covariance V} is also randomly generated: V; = U;D;U}" with U; an orthonormal random matrix,
Dy, = diag{dys, ...,d;, } and /dj ~ U(u,v). u,v are chosen according to the distribution of the
input variables X: there are the eigenvalue limits with « = 0.1 and v = 2.0. Finally, we obtain the
survival times by applying the exponential: exp(log(7")). This is the AFT-Friedman method.

4.5.4 . Simulation scenarios

For the 2 first simulation types (CoxPH-Weibull, AFT-LN), a cohort of size n individuals (n €
{100, 1000}) and p variables (p € {10,100, 1,000}) is generated for the training set. Among the p
variables, only ¢ biomarkers are really prognostic and ¢ increases as the total number of candidate
biomarkers p increases. Thus, for p = 10, 100 and 1,000 candidate biomarkers, ¢ = 2(20%),
10(10%) and 20(5%) prognostic biomarkers are chosen. For each scenario, the relative risk reduction
for the increase of one unit in a prognostic biomarker ¢ is set to 50% corresponding to a hazard-ratio
equal to 0.5 (i.e. B; =log(0.5) = —0.3). For each n and p, the design matrix X = (X, ;)1<i<ni1<j<p
is simulated independently from a normal distribution (resp. from a uniform distribution) for the
CoxPH-Weibull simulations (resp. for the AFT-LN simulations) . For each scenario, 100 replications
are performed. All the test sets include n = 1,000 individuals. Censoring times are generated
independently from the survival times via an exponential distribution S(VE#(T)) where v > 0 is a
constant to be adjusted to the rate of censorship. We consider a large rate of censoring of 50% by
taking v = 1.2. For these two simulation settings, we know exactly the true underlying model that
only includes the active biomarkers. Thus, we compute the reference C-statistic and IBS for this

Oracle model, that is the unpenalized CoxPH model fitted to the truly related biomarkers.
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For the last simulation type (AFT-Friedman), a cohort of size n individuals (n € {100, 1000})
is generated for the training set. For each scenario, 100 replications are performed. All the test sets
include n = 1,000 individuals. We consider two censoring rates: a moderate censoring rate of 20%
by taking v = 4.5 and a large censoring rate of 50% by taking v = 1.2.

For each model, we perform a 5-fold CV on 200 different sets of parameters on the simulation
data sets. Then we compute the C-statistic and the IBS with a fixed horizon at 5 years for the
models trained on the finally chosen set of parameters.

4.5.5 . Results for CoxPH-Weibull data

The results reported here are the ones obtained using data simulated from a CoxPH model,
in which the basis risk is modeled by a Weibull law. In this simulation scenario, data satisfy the
proportional-hazards assumption. In Figure 4.3a, we can see the KM curve obtained based on one
simulation set. We compared the computational times of the models trained in Python during the
hyperparameter search performed with the Tree-Parzen algorithm. The hyperparameter search was
computed on a CPU with 2.1 GHz and 4 GB RAM for each model and simulation set. Figure
4.3b shows 4 groups of models in terms of running times that correspond to different character-
istics of the models. RSF was the slowest model in terms of computational time, followed by the
pseudo-observation-based models, and the discrete-time models (DeepHit and PLANN), CoxCC, and
CoxTime were the fastest. For instance, the median computing time for RSF is ten times longer than
for DeepHit. The difference between the discrete-time models and the pseudo-observation-based
models with the two fastest models can be explained by the structure of the models. Pseudo-
observation-based FNNs and PLANN are trained using a larger n. RSF is built on an ensemble of
decision trees, and not a single model, as is the case for the neural network models.
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Figure 4.3: On the left size, survival curve for one simulated set with the CoxPH-Weibull
method, ¢ = 2, p = 10 and n = 2,000. On the right side,computational time in seconds
of the models on the logarithmic scale for CoxPH-Weibull data. Each boxplot displays 100
points corresponding to each simulated set (with n = 2,000, p = 10, ¢ = 2). Each point rep-
resents the average over the 200 iterations of one 5-fold CV.

Table 4.3 reports the results for the different models in terms of C-statistic and IBS. The
models were compared under 2 different training sample sizes per data set. The models performed
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better when trained on a larger sample size (n = 1,000), which seems consistent, as machine
learning algorithms usually perform well if the sample size is large. The models also obtained better
performances when the number of prognostic variables ¢ was close to the total number of variables
p, that is, when the signal-to-noise ratio was high.

Overall, LASSO performed the best: the highest C-statistic was obtained with n = 1,000,
p = 10, ¢ = 2, while the lowest IBS was reached with n = 1,000, p = 100, ¢ = 10. The model's
performances were close to the Oracle model ones. These results are not surprising as the data is
simulated based on a CoxPH model: the penalized CoxPH model, or LASSO, is well-suited to this
context.

If we only consider the FNN-based models, CoxCC and CoxTime obtained the best performances.
Specifically, CoxCC performances are close to the reference method ones: for instance, with n =
1,000, p = 10, and ¢ = 2, the average C-statistic of CoxCC is 0.692, while it is 0.707 for the
reference method. DeepHit and PLANN reached lower performances compared to CoxCC and
CoxTime, with PLANN obtaining slightly better results than DeepHit. Pseudo-observation based
models got systematically lower results, which can be explained by the increase in the number of
input variables: the complexity of the networks increased, and their predictive ability decreased.
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Table 4.3: Average C-statistic and IBS at 5 years across the 100 simulation sets for the CoxPH-

Weibull data.
n 100 | 1,000
p 10 100 1,000 | 10 100 1,000
q 2 10 20 \ 2 10 20
o 0.707 0.710 0.706 0.707 0.710 0.706
Oracle (£0.024)  (40.026) (£0.027) (£0.024)  (40.026) (£0.027)
IBS | 0.050 0.051 0.050 0.050 0.051 0.050
(£0.006)  (£0.0052)  (£0.0048) | (£0.006)  (£0.0052)  (£0.0048)
C | 0699 0.607 0.516 | 0.705 0.699 0.655
LASSO (£0.025)  (£0.055)  (+0.037) | (£0.024) (+0.027)  (+0.03)
IBS | 0.051 0.053 0.053 0.053 0.051 0.052
(£0.006)  (£0.006)  (£0.005) | (£0.006) (£0.005) (+0.005)
C 0.606 0.531 0.504 0.662 0.603 0.513
RSF (£0.042)  (£0.034)  (£0.029) (£0.03)  (£0.029)  (£0.029)
IBS | 0.056 0.056 0.056 0.053 0.054 0.053
(£0.008)  (£0.006)  (+0.006) | (£0.005)  (£0.005)  (£0.005)
C 0.629 0.548 0.505 0.692 0.651 0.546
CoxCC (£0.047)  (£0.039)  (£0.028) | (£0.027)  (£0.032)  (£0.029)
IBS | 0.056 0.056 0.055 0.051 0.053 0.053
(£0.007)  (£0.006)  (+0.006) | (£0.006)  (£0.006)  (£0.005)
. o 0.625 0.542 0.508 0.686 0.648 0.551
CoxTime (£0.044)  (£0.034)  (£0.033) | (£0.032)  (£0.035)  (£0.029)
IBS | 0.056 0.114 0.056 0.051 0.053 0.053
(£0.007)  (£0.012)  (+0.006) | (£0.006)  (£0.006)  (£0.005)
. o 0.588 0.528 0.508 0.660 0.602 0.531
DeepHit (£0.058)  (£0.041)  (£0.027) | (£0.059)  (£0.054)  (£0.034)
IBS | 0.093 0.089 0.084 0.082 0.084 0.083
(£0.033)  (£0.014)  (£0.012) | (£0.011)  (£0.011)  (+0.01)
C 0.605 0.542 0.508 0.691 0.634 0.530
PLANN (+£0.054)  (+0.039)  (+0.032) | (+0.026)  (£0.035)  (+0.031)
IBS | 0.070 0.073 0.094 0.060 0.064 0.066
(£0.027)  (£0.03) (£0.079) | (£0.005)  (£0.005)  (&0.007)
. C 0.503 0.509 0.514 0.584 0.519 0.513
PDisc (£0.028)  (+0.037)  (+0.034) | (+0.033)  (£0.034)  (+£0.029)
IBS | 0.127 0.118 0.103 0.107 0.103 0.089
(£0.047)  (£0.04) (£0.024) | (£0.021)  (£0.023)  (&0.018)
C 0.632 0.506 0.506 0.633 0.508 0.514
PKM (£0.028)  (£0.027)  (£0.032) | (£0.029)  (£0.03)  (£0.029)
IBS | 0.129 0.217 0.284 0.231 0.249 0.283
(£0.053)  (£0.056)  (&0.067) (£0.03)  (£0.019)  (£0.042)
C 0.502 0.504 0.506 0.633 0.509 0.513
POpt (£0.03)  (£0.026)  (£0.031) | (£0.028)  (£0.03)  (+0.032)
IBS | 0.245 0.217 0.292 0.233 0.248 0.284
(£0.05)  (£0.051) (£0.07) (£0.026)  (£0.022)  (£0.043)

Notes. The value in brackets is the standard deviation across the 100 simu-
lation sets. The highest C-statistic values and lowest IBS values are in bold.
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4.5.6 . Results for AFT-LN data

For this second simulation setting, the data are simulated from an AFT model with a log-normal
basis risk. Figure 4.4a represents the survival curve of a simulation set. In Figure 4.4b, we can
observe 3 groups of models in terms of computation time. RSF is the slowest, and CoxCC the

fastest. Discrete-time models and pseudo-observation based models are inbetween.
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Figure 4.4: On the left side, survival curve for one simulated set with the AFT-LN method,
g =2 p=10and n = 2,000. On the right side, computational time in seconds of the
models on the logarithmic scale for CoxPH-Weibull data. Each boxplot displays 100 points
corresponding to each simulated set (with n = 2,000, p = 10, ¢ = 2). Each point represents
the average over the 200 iterations of one 5-fold CV.

The results obtained with AFT-LN data were close to the ones obtained with CoxPH-Weibull
data. It can be observed that all the models obtained better results when they were trained on more
data. For instance, for CoxCC, the C-statistic went from 0.876 with n = 100, p = 10, and ¢ = 2
synthetic patients per dataset to 0.912 with n = 1,000. LASSO's performances are close to the
Oracle model. The LASSO model was able to identify the relevant prognostic variables (Appendix
8.3.1). For the FNN-based methods, the best-performing models were CoxCC and CoxTime. They
obtained really close results. The pseudo-observation based models did not perform well.
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Table 4.4: Average C-statistic and IBS at 5 years across the 100 simulation sets for the AFT-LN
data.

n | 100 | 1,000
p ‘ 10 100 1,000 \ 10 100 1,000
q \ 2 10 20 \ 2 10 20
C 0.921 0.927 0.926 0.921 0.927 0.926
Oracle (£0.0104)  (£0.0089)  (£0.0116) | (£0.0104) (+0.0089) (+0.0116)
IBS | 0.0231 0.0215 0.0218 | 0.0231 0.0215 0.0218
(£0.0025)  (£0.0028)  (£0.0029) | (£0.0025) (£0.0028)  (£0.0029)
C | 0918 0.895 0658 | 0920 0.922 0.909
LASSO (£0.011)  (+£0.024) (+0.083) | (+£0.010) (+0.009) (+0.014)
IBS | 0.027 0.029 0.033 0.027 0.027  0.028
(£0.003)  (£0.012)  (4+0.004) | (£0.003)  (+0.003)  (+0.081)
Cc 0.853 0.628 0.513 0.904 0.814 0.59
RSF (£0.038)  (£0.056)  (£0.034) | (£0.015)  (£0.025)  (£0.035)
IBS | 0.004 0.034 0.035 0.025  0.032 0.034
(£0.03)  (£0.004)  (+0.005) | (£0.003)  (+0.004)  (40.005)
Cc 0.876 0.656 0.523 0.912 0.886 0.703
CoxCC (£0.025)  (£0.071)  (£0.043) | (£0.013)  (£0.02)  (&0.043)
IBS | 0.029 0.034 0.035 0.025 0.026 0.033
(£0.004)  (£0.005)  (£0.005) | (£0.003) (+0.004)  (+0.005)
. C 0.868 0.656 0.528 0.912 0.89 0.705
CoxTime (£0.034)  (£0.073)  (£0.037) | (£0.011)  (£0.019)  (£0.037)
IBS | 0.029 0.034 0.035 0.025 0.026  0.033
(£0.004)  (£0.005)  (£0.005) | (£0.003) (+0.003)  (+£0.005)
. C 0.827 0.618 0.533 0.89 0.828 0.611
DeepHit (£0.071)  (£0.074)  (£0.042) | (£0.052)  (£0.081)  (£0.068)
IBS | 0.077 0.073 0.072 0.07 0.074 0.072
(£0.024)  (£0.011)  (£0.017) | (£0.017)  (£0.02)  (£0.025)
C 0.847 0.640 0.539 0.909 0.858 0.628
PLANN (£0.054)  (£0.057) (£0.04) (£0.015)  (£0.025)  (+0.052)
IBS | 0.052 0.060 0.06 0.045 0.048 0.052
(£0.036)  (£0.047)  (£0.044) | (£0.003)  (£0.004)  (&0.006)
. C 0.506 0.508 0.516 0.507 0.549 0.554
PDisc (£0.034)  (£0.031)  (£0.038) | (+0.033)  (+0.052)  (£0.045)
IBS | 0.145 0.10 0.086 0.104 0.086 0.071
(£0.063  (40.042)  (£0.023) | (4+0.03)  (40.028)  (40.015)
Cc 0.507 0.519 0.518 0.507 0.544 0.531
PKM (£0.035)  (£0.039)  (£0.033) | (£0.035)  (£0.035)  (40.038)
IBS | 0.365 0.236 0.293 0.367 0.219 0.266
(£0.063)  (£0.065)  (£0.065) | (£0.042)  (£0.048)  (£0.022)
Cc 0.508 0.52 0.517 0.507 0.533 0.543
POpt (£0.036)  (£0.037)  (£0.035) | (£0.035)  (£0.037)  (£0.034)
IBS | 0.365 0.238 0.296 0.366 0.264 0.328
(£0.068)  (£0.06)  (+0.067) 0.041 (£0.022)  (£0.042)

Notes. The value in brackets is the standard deviation across the 100 simu-
lation sets. The highest C-statistic values and lowest IBS values are in bold.
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4.5.7 . Results for AFT-Friedman data

For the third simulation setting, we considered an AFT model, including a flexible random
functions generator. As shown in Figure 4.5a, survival times are shorter compared to the other
simulations. Here, we did not choose the parameters in order to mimic a cohort of real patients.
Instead, we kept the parameter values presented in the original paper (Friedman, 2001). Figure 4.5b
shows 4 groups of models in terms of running times that correspond to different characteristics of the
models. RSF was the slowest model in terms of computational time, followed by pseudo-observation-
based models, and the discrete-time models (DeepHit and PLANN), CoxCC, and CoxTime were the
fastest.
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Figure 4.5: On the left side, survival curve for one simulated set with the AFT-Friedman
method, » = 0.5 and n = 2,000. On the right side, the computational time in seconds of the
models on the logarithmic scale for CoxPH-Weibull data. Each boxplot displays 100 points
corresponding to each simulated set (with n = 2,000, » = 0.5). Each point represents the
average over the 200 iterations of one 5-fold CV.

In Table 4.5, the models are compared based on the C-statistic, and the IBS obtained at the
median survival time of the test set.

The predictive and discriminative performances for all models improved when the censoring rate
decreased. Overall, RSF obtained the best performances. Indeed, the best-performing model in
terms of numerically highest C-statistic was RSF for both 20% censoring and 50% censoring. It is
not surprising, as the simulation method implemented here was initially designed for RSF.

LASSO only outperformed the other methods, especially RSF, in the case of a small sample size
and high censoring.

Regarding the FNN-based methods only, CoxCC, CoxTime, DeepHit, and PLANN obtained high
C-statistics and low IBS for a larger sample size. The results were also improved when the censoring
rate was low. The results were very similar for CoxCC and CoxTime. Pseudo-observation based
methods performed the worst.
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Table 4.5: Average C-statistic and IBS for the median survival time across the 100 simulation
sets for the AFT-Friedman data.

n | 100 | 1,000
Censoring | 20% 50% | 20% 50%

C 0.705 0.634 | 0.645  0.670
LASSO (£0.067)  (£0.061) | (£0.123)  (£0.046)

IBS | 0.144 0.140 | 0.159 0.134
(£0.023)  (£0.019) | (£0.035)  (£0.016)

C | 0.709 0.609 | 0.822 0.720
RSF (£0.052)  (+0.050) | (+£0.034) (+0.038)

IBS | 0.146 0.150 0.112 0.126
(£0.020)  (40.019) | (£0.019) (£0.013)

C 0.657  0.580 0.816  0.688
CoxCC (£0.062)  (£0.049) | (£0.046)  (£0.043)

IBS | 0.162 0.266 | 0.106 0.13
(£0.025)  (£0.032) | (£0.019)  (+0.013)

. C 0.664 0.585 0.812 0.687
CoxTime (£0.062)  (£0.053) | (£0.039)  (40.044)

IBS | 0.160 0.159 0.107 0.13
(£0.026)  (£0.022) | (£0.019)  (£0.014)

. C 0.645 0.571 0.760 0.645
DeepHit (£0.074)  (40.053) | (£0.065)  (40.073)

IBS | 0.182  0.172 | 0.166  0.167

(£0.027)  (£0.02) | (£0.057)  (+£0.061)

C 0.647 0.581 0.778 0.677
PLANN (£0.062)  (+0.047) | (£0.053)  (£0.045)

IBS | 0.173 0.170 0.146 0.144
(£0.029)  (£0.031) | (£0.031)  (£0.014)

. C 0.501 0.498 0.504 0.504
PDisc (£0.04)  (40.038) | (+0.046)  (+.038)

IBS | 0.274 0.250 0.278 0.248
(£0.051)  (+0.053) | (£0.043)  (£0.039)

C 0.504 0.506 0.505 0.507
PKM (£0.05)  (£0.043) | (£0.051)  (+0.044)

IBS | 0.413 0.383 0.419 0.391
(£0.049)  (40.042) | (£0.042)  (£0.030)

C 0.506 0.506 0.505 0.506
POpt (£0.049)  (£0.043) | (£0.051)  (40.045)

IBS | 0.414 0.386 0.427 0.39
(£0.048)  (£0.039) | (£0.043)  (£0.03)

Notes. The value in brackets is the standard deviation across the 100
simulation sets. The highest C-statistic values and lowest IBS values
are in bold.
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4.6 . Application on cancer cohorts

4.6.1 . Data description
The example data set we used is the METABRIC cohort, which can be extracted from the

MetaGxBreast package (Gendoo et al., 2019). It consists of clinical variables and large-scale
gene expression data of breast cancer patients obtained at surgery. We used a nonspecific filter
independent from outcome based on standard deviation to select genes and increase the statistical
power of the results (Bourgon et al., 2010), and retained the 863 genes with the highest standard
deviation. If multiple probes corresponded to the same gene, we selected the probe with the highest
variance. Regarding the clinical variables, we used the age at diagnosis, the grade, the tumor size, the
number of invaded lymph nodes, the hormonal therapy indicator, and the chemotherapy indicator.
We removed individuals with missing values for the survival time. Since one or more variable values
were missing for 106 patients, we imputed the missing values using predictive mean matching for
numerical variables and a multinomial logit model for categorical variables (Buuren et al., 2011).
Then, we standardized the numerical variables using Z-score normalization and applied one-hot
encoding to categorical variables. The final data set represents 1,960 patients and 869 variables,

with a median survival time of 88 months and a censoring rate of 54.6%.
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(a) METABRIC (b) Lung Cancer Explorer

Figure 4.6: Kaplan Meier survival curved for the METABRIC data (Figure 4.6a) and the LCE
data (Figure 4.6b). The dotted lines correspond to the percentiles of the empirical overall
survival distribution (from the 10th to the 80th): these are the time points used to compute
pseudo-observations.

We applied our methods to a second data set: the LCE. It is an online tool created by UT
Southwestern Medical Center's Quantitative Biomedical Research Center, which is composed of
more than 6, 700 patients over 56 data sets, including the Cancer Genomics Atlas and various Gene
Expression Omnibus data sets. All the data sets provide gene expression and clinical data from lung
cancer patients. The expression data stems from 23 genome-wide platforms and is predominantly
composed of microarrays. It is reprocessed, normalized, and converted from probe to gene level.
In our work, we selected two clinical variables: cancer stage and the age of the patient. For the
transcriptomic data, only the genes with less than 5% of missing values were kept. Then, the

1,000 genes with the highest standard deviation among the patients were conserved. The missing
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values were replaced with the multiple imputation method using chained equations. More precisely,
we used Bayesian polynomous regression for the stage categories and predictive mean matching
for continuous variables. We standardized the numerical variables using Z-score normalization and

applied one-hot encoding to the categorical variables. The final dataset includes 4, 120 patients.

4.6.2 . Results for the METABRIC cohort

In this section, the following models were compared: LASSO and RSF as benchmark models,
CoxCC and CoxTime as continuous models, DeepHit and PLANN as discrete models, and PDisc,
PKM, and POpt as models based on pseudo-observations. FNN-based methods and benchmark
methods were applied to the METABRIC breast cancer cohort. All comparison measures were
computed on the test set at 5 years. This time was chosen as this is a usual time of interest for
clinical investigators for early breast cancer. Separate models are constructed with genomic and

clinical variables and only clinical variables for each dataset.
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Figure 4.7: Values of the pseudo-observations computed for two patients of the METABRIC
cohort. In Figure 4.7a, the survival time of the patient is censored at 8.5 years. In Figure 4.7b,
the patient died at time 7.7.

Regarding C-indices, we see in Table 4.6 that the best-performing model is RSF. CoxCC obtains
the numerically highest value for IBS. Overall, neural network models and RSF obtained relatively
close results.

Figure 4.8a shows the Brier Score corresponding to each method over time. BS increases over
time, regardless of the model considered. LASSO, PKM, POpt, and LASSO performed worse than
the other models when all variables were included, especially after 5 years. LASSO obtained better
performances when only the clinical variables were included.

All the models had better predictive performances and discriminative capacities at 5 years when
the input variables were restricted to the clinical variables only. The best-performing model is PKM
in terms of C-statistic and CoxTime in terms of IBS. Let us look at the weights associated with the
variables selected by the LASSO when all variables are included in the model. We observe that the
largest weights in absolute values are associated with the clinical variables. Hence, clinical variables
do seem to contain a significant portion of the predictive information for survival.

Then, AE and VAE models were applied to the molecular data to synthesize information contained
in transcriptomic data, and thus reduce the number of dimensions of the data while keeping the
major part of the data structure information. An AE/VAE was trained on the genomic data, and
the encoder part of the model was transferred into a combined model. As reported in Table 4.7,
all the combined models performed better with the VAE-based model. With VAE pre-training, the
best results were obtained with the CoxTime in terms of C-statistic and CoxCC for IBS. Overall,
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CoxTime obtained the highest value in terms of C-statistic and the lowest value of IBS for all the

configurations and for all the models considered.

Table 4.6: Average C-statistic and IBS at 5 years for METABRIC data.

| All | Clinical
Model | ¢ IBS | ¢ IBS

LASSO 0.558 0.142 0.680 0.116
(£0.03)  (£0.008) | (£0.032)  (£0.005)

RSF 0.691 0.121 0.714 0.116
(£0.036)  (£0.006) | (£0.023)  (£0.005)

CoxCC 0.666 0.120 0.676 0.118
(£0.038)  (£0.005) | (£0.046)  (£0.008)

CoxTime | 0.677 0.122 0.712 0.114
(£0.002)  (£0.007) | (£0.026) (+0.007)

DeepHit | 0.660 0.143 | 0.695  0.139

(£0.078)  (£0.021) | (£0.03)  (%0.007)

PLANN 0.681 0.117 | 0.714 0.115
(£0.042)  (£0.006) | (£0.03)  (£0.004)

PDisc 0.649 0.132 0.689 0.126
(£0.03)  (£0.009) | (£0.029)  (£0.007)

PKM 0.655 0.161 | 0.718 0.119
(£0.014)  (£0.018) | (£0.021)  (£0.012)

POpt 0.640 0.170 0.709 0.117
(£0.018)  (£0.013) | (£0.028)  (£0.005)

Notes. The value in brackets is the standard deviation across the
5 folds. The highest C-statistic values and lowest IBS values are in
bold.
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Table 4.7: Average C-statistic and IBS at 5 years for METABRIC data.

| AE | VAE
Model | € IBS | ¢ IBS

CoxCC 0.624 0.123 0.707 0.122
(£0.033)  (£0.007) | (+0.047)  (&0.006)

CoxTime | 0.617 0.124 | 0.731 0.117
(£0.029)  (£0.007) | (£0.030) (£0.004)

DeepHit | 0.650 0.122 0.708 0.124
(£0.043)  (£0.005) | (40.037)  (+0.003)

PLANN | 0.667 0.121 | 0.668 0.117
(£0.02)  (£0.006) | (+0.037)  (&0.005)

PDisc 0.643  0.254 | 0.685  0.250

(£0.015)  (£0.071) | (4£0.026)  (+0.11)

PKM 0.648  0.236 0.659 0.223
(£0.027)  (£0.024) | (£0.019)  (+0.078)

POpt 0.645  0.217 0.644 0.221
(£0.023)  (£0.056) | (+0.015)  (&0.070)

Notes. The value in brackets is the standard deviation across the
5 folds. The highest C-statistic values and lowest IBS values are in
bold.
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Figure 4.8: Brier Score over time for FNNs (solide lines) and benchmark models (dotted lines),
either trained on all variables of METABRIC data (Figure 4.8a), or restricted to clinical variables
(Figure 4.8b).
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4.6.3 . Results for the LCE cohort

FNN-based models and benchmark models were also applied to the LCE lung cancer cohort. All

comparison measures were computed on the test set at 2 years.
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Figure 4.9: Values of the pseudo-observations computed for two patients of the LCE cohort.
On Figure 4.9a, the survival time of the patient is censored after 98 months. On Figure 4.9b,
the patient died at time 95.

With the LCE cohort, all the models performed better when genomic data was included. As we
can see in Figure 4.10a, BS increases over time, regardless of the model considered. Considering the
case when all variables were included, the performances of RSF, CoxCC, CoxTime and DeepHit were
very close in terms of C-statistic, while pseudo-observation-based models obtained comparatively
lower performances. The highest C-statistic was obtained with LASSO, and CoxCC had the lowest
IBS. The VAE-based model improved the performances of all the models in terms of C-statistic.

Table 4.8: Average C-statistic and IBS at 2 years for LCE data.

| All | Clinical
Model | ¢ IBS | ¢ IBS

LASSO 0.731 0.135 0.566 0.168
(£0.025)  (£0.004) | (£0.038)  (£0.007)

RSF 0.722  0.122 | 0.651  0.135

(£0.019)  (£0.003) | (£0.023)  (+0.003)

CoxCC 0.721 0.119 | 0.654 0.133
(£0.021)  (£0.003) | (+0.023) (+0.005)

CoxTime | 0.711  0.122 | 0.652  0.134

(40.02) (£0.05) | (£0.022)  (+0.005)

DeepHit | 0.712 0.153 | 0.654 0.137
(£0.015)  (£0.013) | (+0.021)  (£0.004)

PLANN 0.683 0.132 0.655 0.137
(£0.006)  (£0.003) | (£0.018)  (£0.004)

PDisc 0.684 0.146 0.587 0.154
(£0.039)  (£0.008) | (£0.057)  (%0.016)

PKM 0.690 0.155 0.643 0.141
(£0.02)  (£0.013) | (£0.018)  (£0.006)

POpt 0.683 0.158 0.631 0.149
(+0.04) (+£0.01) | (£0.032)  (+0.015)

Notes. The value in brackets is the standard deviation across the
5 folds. The highest C-statistic values and lowest IBS values are in
bold.
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Table 4.9: Average C-statistic and IBS at 2 years for LCE data.

| AE | VAE
Model | C IBS | C IBS

CoxCC 0.721 0.138 | 0.772 0.139
(£0.065)  (£0.008) | =£0.056)  (+0.006)

CoxTime | 0.662 0.141 0.807 0.138
(£0.112)  (+0.003) | (+0.033)  (&0.008)

DeepHit | 0.673 0.147 0.712 0.142

(£0.076)  (£0.012) | (£0.143)  (%0.005)

PLANN 0.723 0.125 0.740  0.119
(£0.017)  (+0.006) | (£0.028)  (+0.006)

PDisc 0.685 0.230 0.738 0.230
(£0.111))  (£0.002) | (+0.148)  (40.0062)

PKM 0.764 0.224 0.767 0.235
(£0.046)  (£0.0083) | (£0.036)  (£0.0099)

POpt 0.659 0.229 0.719 0.268
(£0.041)  (£0.005) | (£0.114)  (&+0.071)

Notes. The value in brackets is the standard deviation across the 5
folds. The highest C-statistics and lowest IBS are in bold.
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Figure 4.10: Brier Score over time for FNNs (solid lines) and benchmark models (dotted lines),
either trained on all variables of LCE data (Figure 4.10a) or restricted to clinical variables
(Figure 4.10Db).
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4.7 . Conclusion and Discussion

In this chapter, we compared different models based on neural networks to perform survival anal-
ysis. These models are not constrained by the proportionality assumption of the CoxPH model and
are based on specific loss functions. In addition, we focused on the use of pseudo-observations to
deal with censored observations and explored different ways of computing them, either in a discrete
time, with a [0, 1] constraint, or from a Bayesian point of view. The constraint has the advantage to
see the pseudo-observation as an individual's survival probability at a given time point. Two bench-
mark models were also implemented. The models were compared on 3 different types of synthetic

data and 2 cancer cohorts.

As a benchmark, we simulated data that respected the proportionality assumption using a CoxPH
model with a Weibull risk function. As expected, FNN-based methods did not outperform the pe-
nalized CoxPH model in this context.

We also simulated data with an AFT model and a log-normal risk function. FNN-based methods
did not outperform the LASSO benchmark model, which was able to identify the relevant prognostic
variables.

As artificial neural networks can model complex relationships between the variables and event times,
we simulated data with interactions and non-linearity using a random function generator based on
an AFT model with different levels of censoring. Many of the proposed neural network models had
overall somewhat similar performances. With 20% censoring and n = 1,000, all the neural networks
performed better than the linear model LASSO and fitted to the complex interactions existing in
the simulated data. There was a drop in performance for all the models at higher censorship. RSF
obtained competitive results with the best performing FNNs, but always with a higher computational
cost.

Regarding the FNNs only, the FNNs defined in a continuous time framework performed the best,
with closed results between CoxCC and CoxTime. For the discrete time framework, PLANN obtained

competitive results. The pseudo-observation based FNNs were the ones that got the worst results.

The machine learning methods were also applied to 2 real patient cohorts: the METABRIC study
and the LCE. We obtained good performances in the example data of early breast cancer. Different
neural network models obtained comparable 2-year discrimination performances on the lung cancer
data, but with slightly lower values than RSF and LASSO. The real application results also showed
that the VAE-based method could improve the performance of predictions by synthesizing the in-
formation contained in the transcriptomic data. The model that obtained the highest C-index and

lowest IBS for both real patients cohorts was CoxTime.

In future research, we could explore the value of these neural network methods in the context
of higher-dimensional data and thus further raise the number of variables, but this may need larger
sample sizes. We could also challenge the results of our simulation study by simulating data differ-

ently, with other sources of complexity.
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5 - Uncertainty Measures using Ensemble of Neural Net-

works

Machine learning models are increasingly used in the medical field and in survival or time-to-
event analysis. Among the models applied by biostatisticians are FNNs (Faraggi et al., 1995);
(Biganzoli et al., 1998), a type of neural network that can learn non-linear and complex relationships
in patients’ data in order to output survival probabilities. However, only a few neural network models
for time-to-event data have addressed the assessment of prediction uncertainty, which is crucial in
healthcare applications where practitioners could benefit from this uncertainty information. For
example, an automated cancer detection system built on a FNN that is confronted with a patient’s
data that lies outside its data distribution might return unreasonable predictions and consequently
bias the expert. In this case, if an uncertainty measure was associated with unreasonable predictions,
the patients for whom the model is highly uncertain in its prediction could be treated as a particular

case explicitly or even passed to a human to make a decision.

Deep learning models are confronted with multiple levels of uncertainty. One source of un-
certainty comes from the noise in the data, which stems from technical issues involved with data
collection and measurement. Another source comes from adversarial examples or dataset shifts that
force deep learning models to extrapolate predictions far away from the observed data. These two
uncertainties are called aleatoric uncertainty and are caused by irreducible structural relationships
within the data. Another level of uncertainty exists in the model's parameters, hyperparameters, or
even the underlying structure of the chosen model. This type of model uncertainty is referred to
as epistemic uncertainty. Aleatoric and epistemic uncertainty can be combined to induce predictive
uncertainty, i.e., the model’s confidence in its prediction. Predictive uncertainty is often obtained

by generating multiple functions from the model and corrupting them with noise.

Uncertainty sources can be deconstructed according to a specific model. Let us define the
learning program as Y = ¢(X) given data {(X1,Y),...,(X,,Y,)} for some unknown function
¢(X). The output variable Y; is predicted using the function ¢(X;) with the set of variables Xj.
¢(X;) is estimated by ¢(X;;6), the output of a neural network estimated from the data. We can
write:

Y; = o(Xi;0) + u;. (5.1)

u; defines the approximation error with u; = ¢; + ¢(X;) — ¢(X;;6) due to replacing ¢(X;) by
®(X;; 0). € denotes the noise in the output variable that cannot be explained by the variables X and
satisfies the conditional independence assumption E[e;| X;]. We can rewrite the empirical model as
follows:

Y = ¢(Xi;0) + e;. (5.2)

Additionally, the error term can be decomposed as:
e = B(Xi10) = ¢(Xi;0) + $(Xi:0) = (X)) + ey (5.3)

O(X;:0) — ¢(X;;0) is the estimation error, ¢(X;;0) — ¢(X;) defines the bias effect and e; is the
aleatoric error. The conditional variance of the output variable given the set of variables X, denoted
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as o2 satisfies that:

ol = 03(X;) + o7, (5.4)

with U;(Xi) the epistemic uncertainty and o the variance due to the aleatoric error. The uncertainty

around the predictions is given by o2.

The estimators used are FNNs (Roblin et al., 2020), which model time-to-event outcomes based
on patient characteristics such as clinical, pathological, demographic, and molecular data. However,
these estimators only return point predictions and do not provide a direct measure of uncertainty.
Indeed, the weights of the FNN characterizing the predictions are usually fixed, implying that the
output is deterministic. On the contrary, bayesian neural networks allow the networks’ weights to be
defined by a given probability distribution and can capture the posterior distribution of the output.
In a frequentist framework, one way to overcome this issue is to use model ensembling, which aims
to construct a predictive model by combining multiple learners. Several researchers have proposed
different ways of obtaining ensembles of neural networks. One method consists in manipulating the
training samples using a bootstrap strategy (Efron, 1979). Randomness can also be injected into
the algorithm at different levels. With Deep Ensembles (Lakshminarayanan et al., 2016), multiple
neural networks are trained by randomly initializing the neural network's weights. MCDrop (Gal
et al., 2016) is a combination of models obtained by randomly applying dropout at test time, and
FBMask (Mancini et al., 2020) is an extension of MCDrop that uses a fixed mask of units being
dropped out. Different models’ predictions are then ensembled to associate point predictions with
uncertainty estimation, thus improving the accuracy of existing model predictions from individual
neural networks. More importantly, the ensembling allows us to derive interval forecasts from
approximate predictive distributions and thus assess the uncertainty about these ensembles of neural
network models’ expected survival predictions.

5.1 . Ensemble with neural networks

Ensemble methods amount to constructing several base models and combining them to produce
an optimal predictive model. By constructing an ensemble, the searching space of the hypothesis to
identify a local optimum in the space is more exhaustive and may provide a better approximation to
the true unknown function than any individual model. In our context, an ensemble of M predictors
is given by :

M
X)) =—> bn(X;:0"), fori=1,...n, (5.5)
m=1
where qu(Xi;ém) denotes a set of M different prediction models based on deep neural network
models; 6™ denotes the estimates of the FNN model parameters and hyperparameters.

Many methods for constructing an ensemble have been developed, mainly based on decision trees
like RSF. There are two classes of ensembles to induce diversity in the models. Some are based on
bootstrap aggregating (bagging), where each model is trained on a different subset of the original
training set. However, if the underlying base learner has multiple local optima, as is the case typically
with FNNs, the bootstrap can sometimes hurt performances since the base learner is not trained
using all data points. The second solution is based on randomization approaches. Indeed, if the
model is applied to the same data each time but with different parameters, the resulting predictions

are still different.
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5.1. Ensemble with neural networks

5.1.1 . Bootstrap

To build uncertainty measures based on confidence intervals, we first implement the naive boot-
strap (Boot) approach (Efron, 1979). It is a commonly used method despite its computational
requirements. M subsets of the training set are generated by random sampling with replacement
from the training set. Each observation of the training set has the same probability of being ex-
tracted. Bootstrapped training sets are drawn with the same size as the original training set, and
thus several training examples appear multiple times in the set. The neural network model is trained
for each of these M subsets, allowing us to estimate M survival probabilities at time ¢ for a given
patient 7 of the test set, noted as Si(boot)(t) = {Si(l)(t), . ,S’i(M) (t)}. Each bootstrap replicate
of the original training set contains on average 63.2% of the initial training set, which can be a
drawback as FNNs trained with less data are more biased.

Data

o Sampling with

replacement
M=100
iterations

o Model training on o Output of the results
the resampled set on the test set

Figure 5.1: Ensemble of FNNs constructed on Boostraping. In the first step (1), we split the
data in a training set and a test set. Then (2), the training set is resampled. The hyperpa-
rameter search is performed on the resampled set. The final model built using the selected
hyperparameters is trained on the resampled set (3) and the results are outputted on the
test set (4). The resampling (2) is repeated M times.

We also implement the bootstrap-t (Boot-t) method (Tibshirani, 1997), a nested version of
the bootstrap algorithm. First, we train the model on the entire training set, and then we compute
the survival probability at time ¢ S”Z(t) for a given patient ¢ of the test set. Next, the training
set is randomly sampled M times, and we obtain the survival probabilities of patient i using these
outer samples: Si(outer boot) () = {Si(l)(t), . ,gi(M) (t)}. For each m € {1,..., M}, the bootstrap
sample is then resampled K times (K = 50) and each inner sample set is used to fit the model.
The survival probabilities for patient i computed with the inner samples for outer sample m are
denoted by 3i(m,mner boot) (1) = {S”i(ml)(t),...,Si(mx)(t)}. Using the K inner sample replicates

A~

Si(m,inner boot) (1), We obtain the standard error of each Sz-(m) (t). Thus we can compute the t-static

stud __ Sz(m)(t)fsvl(t)
21 = B o) _ - . .
major drawback of this algorithm is that it is computationally more expensive than Boot.

, with SE the standard error, and build studentized confidence intervals. The

5.1.2 . DeepEnsemble

We compare Deep Ensembles (DeepEns) (Lakshminarayanan et al., 2016) to the Boot method.
Here, unlike with Boot, the entire training set is used for training each model. This can represent
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an advantage of this method, since FNNs achieve better performances when they are trained with
more data.

In this approach, the randomness is introduced from within the algorithm as the parameters of
the network are randomly set. Thus, an ensemble of M deterministic FNNs is trained by varying
the random seed of the previously tuned set of hyperparameters. Indeed, simply changing the
random seed is enough for FNNs to vary in their individual predicted probabilities. Another source
of randomness is added by randomly shuffling all the data points of the training set, applying a
permutation at each initialization of the model. For each iteration, the model is trained on a
random set of parameters, and output a probability on the test set. The model outputs a different
probability per patient of the test set for each different initialization. Let M denote the number of
FNNs in the ensemble and {6,,}_, denote the parameters of the ensemble. The method outputs

a combination of predictions over M models to obtain a predictive distribution.

Data

Model training on ‘
e the training set with
random initialization

M=100
iterations

o Output of the results
on the test set

Figure 5.2: Deep Ensemble of FNNs. In the first step (1), we split the data in a training set and
a test set. Then (2), the hyperparameter search is performed on the training set. The final
model built using the selected hyperparameters is trained on the training set with a random
seed (2) and the results are outputted on the test set (4).

The authors also confront the model with adversial examples to smooth the predictive distribu-
tions. These adversial examples are points that are close to the original training examples, but are
missclasiffied by the neural network. They are built using the fast gradient sign method (Goodfellow
et al., 2014). The adversial perturbation creates a new training example by adding a perturba-
tion along a direction which is likely to increase the loss. They are used to train the model on
out-of-distribution examples and to increase the robustness of the model to miss-specification.

5.1.3 . Monte-Carlo Dropout
We also use the MCDrop method (Gal et al., 2016). Typically, dropout is a technique used to

prevent overfitting, which occurs when FNN fits exactly the training dataset. FNN ends up learning
noise and generalizes badly to hold-out samples, leading to poor performances. With dropout,
units of the neural network are randomly excluded before each layer during training, with a chosen
probability p. It forces the hidden nodes of the FNN not to co-adapt with the neighboring nodes.
Let us define a FNN with L hidden layers. For a given layer [ € {1,..., L}, h; is the vector of
outputs from layer [ and h.; denotes the elements of the vector h; for a given node z =1, ..., 7. Let
7= [ru,...,74] € R%" be a vector of realisations from the Bernoulli distribution with probability

p. T4 is a random variable with a probability p of being 1 (and 1 — p of being 0). With dropout,
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5.1. Ensemble with neural networks

h.; is transformed into h.; by multiplying 7.; with the outputs of layer I, h;:
le = Tzl-hzl~ (5.6)

Then, h.; is used as input of the next layer, h.+1. Thus, a unit is dropped (i.e., its value is set
to zero) for a given input if its corresponding binary variable r,; takes value 0. With this method,
an extra hyperparameter, the probability of retaining a unit p, has to be tuned. With p = 1, no
dropout is applied, while a low p implies a high dropout level.

The application of dropout in a FNN with arbitrary depth and nonlinearities can be interpreted
as a Bayesian approximation of a Gaussian process. As a FNN does not directly measure model
uncertainty, this assimilation to a bayesian probabilistic model enables it to induce uncertainty
estimates. With this new theoretical framework, Gal et al. (2016) introduced MCDrop, a method to
estimate predictive uncertainty by simply applying dropout at test time. More precisely, M stochastic
forward passes through the network are performed during test time. Each forward pass is multiplied
by a random variable to generate a random sample of the approximated posterior distribution. In

practice, this predictive distribution can be approximated using Monte Carlo methods. By sampling

M
m=1

M sets of vectors of realisations from the Bernoulli distribution {rl(m) corresponding to M
forward passes through the network, we obtain a different neural network at each iteration. Thus

dropout may also be interpreted as an ensemble model combination.

Data
M=100
iterations

Output of the results
e on the test set with
random dropout

e Model training on
the training set.

Figure 5.3: FNNs with Monte-Carlo Dropout. In the first step (1), we split the data in a training
set and a test set. Then (2), the hyperparameter search is performed on the training set. The
final model built using the selected hyperparameters is trained on the training set (2). Then,
some units of the FNN are randomly dropped before the results are outputted on the test
set (3). This drop out is randomly applied M times during the test phase.

We implement the MCDrop by randomly activating dropout during training and test time. After
M iterations on the test set, we obtain an ensemble of M survival predictions at time ¢ for all test
set patients.

As noted by Levasseur et al. (2017), the construction of prediction intervals with correct empirical
coverage probabilities using the MCDrop is highly dependent on the adequate tuning of the dropout
rate p.

5.1.4 . Fixed Bernoulli Mask

An alternative to MCDrop is the FBMask (Mancini et al., 2020). Based on the extremely
randomized trees (Geurts et al., 2006), it extends the MCDrop approach outside the bayesian
framework. Mancini et al. (2020) define r; as a Bernoulli mask and introduce the fixed Bernoulli
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mask, noted as 7, a mask that is kept constant during training and testing. First the neural network
architecture is defined. M fixed Bernoulli masks are defined where M sets of vectors are sampled
from the Bernoulli distribution before training. Then, each FBMask is applied to the neural network
architecture for each neural network model during both the training and test phases, with random
initialization of the weights. We obtain M predictions ¢1(X;: 0M), ..., dur(X;: 03D) that we store
to build prediction intervals. With FBMask, we obtain an ensemble of M neural networks with
randomized weights and structures and no data resampling. The method does not rely on the

assumption of independent and identically distributed observations.

Data

Output of the results

on the test set with

e the same random
dropout mask as

the one applied on
the training set

Model training on
o the training set with
random dropout.
M=100
iterations

Figure 5.4: FNNs with FBMask. In the first step (1), we split the data in a training set and a test
set. Then (2), the hyperparameter search is performed on the training set. Then, some units
of the FNN are randomly dropped out: we call this new FNN architecture a fixed Bernoulli
Mask. The final model built using the selected hyperparameters with the fixed Bernoulli mask
is trained on the training set (2), and the results are outputted on the test set (3) keeping the
same architecture including the mask. The sampling of the mask is repeated M times.

5.2 . Uncertainty measure based on ensemble of predictions

5.2.1 . Percentile Confidence Intervals

It is not possible to evaluate the accuracy of predictions if we only output point estimates,
whereas it is if we associate intervals with these forecasts. The percentile method is used to obtain
confidence intervals at level 1 — 6 for gz(t) based on the distribution of S'i(a”) (t):

169 (50) = a5 (San®) 500 (Sian(0)] (5.7)

Here, 0 = 5% and the 2.5"" and 97.5"" percentiles are computed using the empirical distribution of
the M survival probabilities.
This interval represents a range of values that is likely to contain a future individual observation from
the values of the input predictors that are taken into account in the model. There are 95% chances
that the interval will include an individual's expected survival probability with the same specific levels
of input predictor data. The interval depends on the quality of the model in this particular data
region we are trying to study. It is always associated with a confidence level representing a degree
of uncertainty. The more uncertainty associated with the forecast, the wider the intervals are.

For the Boot-t method, the confidence intervals are studentized. It is supposed to improve

the coverage of percentile bootstrap confidence intervals, especially for smaller sample sizes. It is
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5.3. Simulation study

computed as:

101 (S‘,-(t)) - [S’i(t) — 8, (%), Si(t) — Sqs (ts“‘d)] (5.8)
5 is the standard error of S'Z(t) It is computed with the M Boot estimates: S‘i(aum boot) (t) =
{Siy(t), ..., Sicany (1) }. The limit of this method is that it can produce estimates outside the range

of plausible values.

5.2.2 . Coverage Rate

Evaluating the quality of predictive uncertainties is challenging as the ground truth uncertainty
estimates are usually not available.

In order to evaluate the quality of the confidence intervals, the empirical coverage rate is calcu-
lated:

CR = él (a5 (Sian®) < 5:8) < ar_g (Sicanr(®))) (5.9

The coverage rate is compared to the nominal value of 95%. For the Boot-t method, we compute
the coverage rate using the studentized confidence intervals. The purpose is to build confidence
intervals that have a coverage rate close to the chosen nominal value associated with a reasonable
expected length.

All learning algorithms are run several times (M = 100 times) to build an ensemble of neural
network models. Each method outputs M survival probabilities for individual 7 for a given time ¢.
We then have: S’(t)i(a”) = {S’i(l)(t), . ,Si(M) (t)}.

It is expected that the larger the sample size n, the closer the coverage probability of the

prediction intervals to the nominal level of 95%.

5.3 . Simulation study

5.3.1 . Data Generation

Survival times are simulated according to the CoxPH model, with a log-logistic basis risk dis-
tribution (Lee et al., 1997). It enables to model non-monotonic risk rates. Based on the inverse
cumulative distribution method (Bender et al., 2005), survival times are related to variables as
follows:

T =~ {fexp[~log(u) exp(3f(X))] ~ 1) (). (5.10)

First, we simulate the variable U according to a uniform distribution U(0, 1). Then, p + 1 variables

are drawn independently: X, ..., X, following a normal distribution and z; is generated according

to a Bernoulli law B(0.5). X is a sub-sample of 3 variables: X = (X, X5, X3). These 3 variables
L p p?

are linked to the survival time with f(X) = exp(X7VX)and V =005x | p 1 p|. It
P> p 1

introduces non-linearity and interactions. The remaining variables are noise variables and do not

contribute to the survival times. Here, 5 =10.5, p = 0.95, a = 1.25 and b = 0.9.

Censoring times are generated with an exponential distribution, chosen to obtain around 20% of

censoring among the data set. Survival times longer than 15 years are censored.

100 simulation data sets are generated, composed of 4,000 individuals each. Each data set is split
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into a train set (2,000 individuals) and a test set (2,000 individuals). The parameters are estimated
from the training data, and the survival prediction and confidence intervals are computed on the
test set.

5.3.2 . Oracle Model

To obtain theoretical survival probabilities for each individual 7 at a given time ¢, the truth-value

of the log-logistic basis risk function at time ¢ is estimated:
ho(t) = ab(t)™ (1 + (at)®)™! (5.11)

Using the baseline hazard (Equation 5.11), the baseline cumulative hazard is obtained with the
relation Hy(t) = fot ho(s)ds = log (1 + (at)”). Then the survival function can be retrieved through
Hy(t):

S(t|X) = exp [~ Ho(t) exp (8" f(Xi))] (5.12)

These probabilities are used to obtain an oracle C-statistic and the coverage rate of the estimated

confidence intervals.

5.3.3 . Results

In this section, the results of the simulation study are presented. The C-statistic was estimated
M times for each data set using a fixed survival time as the horizon (¢ = 0.5), and the mean of the
M values was computed. Then the mean of the 100 C-indices was obtained using all simulation data
sets and is reported in Table 5.1. No matter what ensemble method chosen, the mean C-indices
numerically closest to those from the oracle model were obtained either with CoxCC or CoxTime.
The standard deviation of the boostrap values was much larger for the DeepHit method as compared
to CoxCC and CoxTime.

Table 5.1: Mean of the M C-statistics and 95% Coverage Rates obtained on the 100 simulation
test sets using a fixed survival time as horizon (t = 0.5).

Boot Boot-t DeepEns MCDrop BMask

C | 0.743 0.743 0.743 0.743
Oracle (£0.007) (£0.007) (£0.007) (£0.007)
C | 0.712 0.723 0.718 0.723
CoxCC (40.01) (40.012) (40.015) (40.014)
CR | 0.964 0.975 0.889 0.894 0.880
(£0.033)  (£0.027) (£0.066) (£0.048) (£0.068)
. C | 0.710 0.722 0.720 0.722
CoxTime (£0.015) (£0.014) (£0.009) (£0.012)
CR | 0.970 0.970 0.895 0.898 0.896
(£0.042)  (£0.030) (£0.072) (£0.041) (£0.07)
. C | 0.659 0.707 0.720 0.711
DeepHit (£0.072) (£0.022) (£0.008)  (%£0.0016)
CR | 0.728  0.861 0.706 0.786 0.703
(£0.151)  (£0.114) (£0.081) (£0.073) (£0.076)

Notes. The value in brackets is the standard deviation across the 5 folds.
Highest C-statistics and lowest IBS are in bold.
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5.4. Application on cancer cohorts

Table 5.1 also shows the coverage rate of confidence intervals for survival probabilities at a
fixed time (¢ = 0.5) for all patients in the test set. More precisely, this is the mean value of the
coverage rates on all simulation test sets, and the value in brackets corresponds to the standard
deviation. The CoxCC model and the Boot method achieved the closest value to the nominal
value of 95%. On average, the Boot method yields 95% confidence intervals that contain the
true survival probability 96.4% of the time, slightly above the pre-defined nominal value of 95%.
The studentized correction increased the coverage rate, indicating that the method could be too
conservative. DeepEns, MCDrop, and BMask had similar results with a good level of coverage, but
on the anti-conservative side. A comparison of FNN models shows that DeepHit obtained lower
average coverage rates for all the methods considered, and also much more variability across the M
bootstrap resamples. Researchers (Kvamme et al., 2021) have indicated that DeepHit can reach

good discrimination capacities at the cost of poorly calibrated survival estimates.

5.4 . Application on cancer cohorts

5.4.1 . Results
On the METABRIC cohort, we compared the results obtained using either all the input vari-

ables or only the clinical variables. In terms of discrimination (Table 5.2), the ensemble methods
demonstrated higher mean C-indices for neural networks fitted to the clinical variables alone, as com-
pared to those fitted to clinical plus molecular data, highlighting that the clinical variables contained
already a large part of the predictive information for survival.

Table 5.2: Mean of the M C-statistics at 5 years on the METABRIC test set with all variables
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