
HAL Id: tel-04194461
https://theses.hal.science/tel-04194461v1

Submitted on 3 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Introducing fidelity into network emulation
Houssam Elbouanani

To cite this version:
Houssam Elbouanani. Introducing fidelity into network emulation. Networking and Internet Archi-
tecture [cs.NI]. Université Côte d’Azur, 2023. English. �NNT : 2023COAZ4019�. �tel-04194461�

https://theses.hal.science/tel-04194461v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

Introduire de la fidelité dans l’émulation

de réseaux

Houssam ELBOUANANI

Centre Inria d’Université Côte d’Azur

Présentée en vue de l’obtention
du grade de docteur en Informatique
d’Université Côte d’Azur

Dirigée par : Walid DABBOUS, Directeur
de Recherche, Centre Inria d’Université Côte
d’Azur, Sophia Antipolis
Co-dirigée par : Chadi BARAKAT, Directeur
de Recherche, Centre Inria d’Université Côte
d’Azur, Sophia Antipolis
Co-encadrée par : Thierry TURLETTI, Di-
recteur de Recherche, Centre Inria d’Univer-
sité Côte d’Azur, Sophia Antipolis
Soutenue le : 2 mars 2023

Devant le jury, composé de :
Guillaume URVOY-KELLER, Professeur des
Universités, I3S, Sophia Antipolis
André-Luc BEYLOT, Professeur des Uni-
versités, IRIT, Toulouse
Stefano SECCI, Professeur des Universités,
CNAM, Paris
Christian ESTEVE ROTHENBERG, Asso-
ciate Professor, Université d’État de Cam-
pinas, Brésil
Laurent MATHY, Professeur Ordinaire, Uni-
versité de Liège, Belgique

INTRODUIRE DE LA FIDELITÉ DANS L’ÉMULATION DE RÉSEAUX

Introducing Fidelity into Network Emulation

Houssam ELBOUANANI

▷◁

Jury :

Président du jury
Guillaume URVOY-KELLER, Professeur des Universités, I3S, Sophia Antipolis

Rapporteurs
André-Luc BEYLOT, Professeur des Universités, IRIT, Toulouse
Stefano SECCI, Professeur des Universités, CNAM, Paris

Examinateurs
Christian ESTEVE ROTHENBERG, Associate Professor, Université d’État de Campinas,
Brésil
Laurent MATHY, Professeur Ordinaire, Université de Liège, Belgique

Directeur de thèse
Walid DABBOUS, Directeur de Recherche, Centre Inria d’Université Côte d’Azur, Sophia
Antipolis

Co-directeur de thèse
Chadi BARAKAT, Directeur de Recherche, Centre Inria d’Université Côte d’Azur, Sophia
Antipolis

Co-encadrant de thèse
Thierry TURLETTI, Directeur de Recherche, Centre Inria d’Université Côte d’Azur, So-
phia Antipolis

Université Côte d’Azur

ABSTRACT

The design and development of new network protocols, architectures, and technologies re-

quires an evaluation phase where the researcher must provide empirical evidence for the

performance of their contributions, potentially in comparison to existing solutions. In this

context, network emulation has proven to be an attractive approach as it offers more flexi-

bility compared to traditional testing platforms, and more realism compared to simulation.

Network emulators provide contained, customisable, and scalable testing environments

both for researchers to evaluate their contributions and for the community to reproduce

their results. However, two limitations to network emulation have been identified and well

documented in the literature: its scalability limits and its accuracy issues.

This dissertation documents our attempts to address these concerns. Our findings are

distilled into Hifinet: a lightweight scalable and fidelity-aware distributed network emulator.

We particularly show how Hifinet outperforms its state-of-the-art counterparts in terms of

scalability and efficiency by working around the flaws of their design principles and the

technological limitations of the tools they rely on. Hifinet is also fidelity-enhanced, in that

it implements a fidelity monitoring framework we have theorised, which passively monitors

emulated packet delays to evaluate realism of network emulation and accuracy of results.

Another asset of Hifinet is its ability to infer underlying causes in case of erroneous emulation.

This is achieved by using delay tomography algorithms and heuristics.

Keywords

reproducible research; network emulation; mininet; network measurements; delay tomogra-

phy

ii

RÉSUMÉ

La conception et le développement de nouveaux protocoles, architectures et technologies

de réseau nécessitent une phase d’évaluation au cours de laquelle le/la chercheur·se doit

fournir des preuves empiriques de la performance de ses contributions, potentiellement en la

comparant avec des solutions existantes. Dans ce contexte, l’émulation de réseau s’est avérée

être une approche attrayante car elle offre plus de flexibilité par rapport aux plateformes de

test traditionnelles d’un côté, et plus de réalisme par rapport à la simulation d’un autre côté.

En effet, les émulateurs de réseau fournissent des environnements de test contenus, per-

sonnalisables et scalables, à la fois pour que les chercheur·se·s puissent évaluer leurs con-

tributions et pour que la communauté puisse reproduire leurs résultats. Cependant, deux

limites à l’émulation de réseau ont été identifiées et bien documentées dans la littérature :

son incapacité à passer à l’échelle et ses problèmes de précision.

Cette thèse documente nos tentatives pour répondre à ces préoccupations. Nos résultats

sont distillés dans Hifinet : un émulateur de réseau distribué léger, résistant aux facteurs

d’échelle et sensible à la fidélité. Nous montrons en particulier comment Hifinet surpasse

ses homologues en scalabilité et en efficacité en contournant les défauts de leurs principes

de conception et les limites technologiques des outils sur lesquels ils reposent. Hifinet est

également plus précis, car il met en œuvre un cadre de contrôle de la fidélité que nous avons

théorisé, qui mesure passivement les latences des paquets émulés afin d’évaluer le réalisme de

l’émulation du réseau et la précision des résultats. Un autre atout de Hifinet est sa capacité

à déduire les causes sous-jacentes en cas d’émulation erronée. Ceci est possible grâce à

l’utilisation d’algorithmes de tomographie de délais.

Mots-clés

recherche reproductible; émulation de réseaux; mininet; mesures réseaux; tomographie de

délai
i

Copyright © 2023 by Houssam ElBouanani

All Rights Reserved

To my parents who have always supported me in pursuing my passion,

To the memory of my beloved grandmother who was proud to see me embark on this long

journey but cannot share the happiness of its completion,

To everyone who has helped me carry on despite grief and illness,

I hope, at the least, that I have made you all proud.

I would be foolish to believe this work will expand the horizon of human knowledge, but it

will forever remain a personal monument to resilience and self-reliance.

ACKNOWLEDGMENTS

I would like to give my warmest thanks to all my supervisors. In all difficult and frustrating

moments you were understanding and considerate. This thesis would not have been possible

without your help, guidance, and priceless comments and suggestions.

I would also like to give special thanks to –now PhDs– fellow colleagues Mamoutou and

Othmane. I have learned a lot from our discussions and your friendship has made this

journey much more enjoyable.

Finally, I would like to thank my dear Paolito. No words can fully describe how much

your companionship has been valuable throughout this journey.

iv

La vérité ne fait pas tant de bien dans le monde que ses apparences y font de mal.

–François de La Rochefoucauld

TABLE OF CONTENTS

ABSTRACT . ii

RÉSUMÉ . i

ACKNOWLEDGMENTS . iv

LIST OF FIGURES . ix

1 INTRODUCTION . 1
1.1 Paradigms in Experimental Network Research 2

1.1.1 Testbeds . 3
1.1.2 Network Simulation . 7
1.1.3 Network Emulation . 10

1.2 Modern Problems Require Modern Solutions 11

I BACKGROUND AND STATE OF THE ART

2 NETWORK EMULATION . 14
2.1 Virtualisation . 14
2.2 A Deeper Look into Network Emulation . 16
2.3 Mininet . 20

2.3.1 Design Principles . 20
2.3.2 Implementation . 22
2.3.3 Limitations . 26

2.4 Distributed Network Emulation . 28
2.4.1 Design Principles . 28
2.4.2 Implementations . 30
2.4.3 Limitations . 33

2.5 Summary . 35

3 DELAY MEASUREMENT AND NETWORK TOMOGRAPHY 37
3.1 Delay Measurement . 37

3.1.1 Definitions and Modeling . 37
3.1.2 Practical Delay Measurement . 41

3.2 Network Tomography . 44
3.2.1 Topology Inference . 44
3.2.2 Delay Tomography . 46

3.3 Conclusion . 48

II CONTRIBUTIONS

vi

4 SCALABLE DISTRIBUTED NETWORK EMULATION 51
4.1 The Case Against Distrinet . 51

4.1.1 Design Flaws . 51
4.2 Bignet: a Scalable Distributed Network Emulator 53

4.2.1 Design and Implementation . 53
4.2.2 Performance Evaluation . 55

4.3 Conclusion . 57

5 FIDELITY MONITORING OF NETWORK EMULATION 59
5.1 Emulation Fidelity . 59

5.1.1 Definition . 60
5.1.2 Phenomenal Assessment of Emulation Fidelity 61

5.2 Delay-based Fidelity Monitoring . 66
5.3 Typical Sources of Delay Emulation Error 69

5.3.1 CPU overload . 69
5.3.2 Non-emulation of Transmission Delay 70
5.3.3 Physical Network Delay . 74

5.4 Conclusion . 75

6 IMPLEMENTING FIDELITY MONITORING OF NETWORK EMULATION . 76
6.1 Delay Measurement for Fidelity Monitoring 76

6.1.1 Packet identification . 76
6.1.2 Passive delay measurement and time synchronisation 78
6.1.3 Optimisations . 83

6.2 Hifinet . 87
6.2.1 Design principles . 87
6.2.2 Implementation . 89
6.2.3 Evaluation . 93

6.3 Conclusion . 98

7 TROUBLESHOOTING DISTRIBUTED NETWORK EMULATION 100
7.1 Problem Modeling . 100

7.1.1 Hypotheses . 101
7.1.2 Challenges . 104

7.2 Algorithms . 108
7.3 Evaluation . 113

7.3.1 Testbed . 114
7.3.2 Numerical simulations . 117
7.3.3 Sample runs . 118

7.4 Emulation Remapping . 122
7.5 Conclusion . 124

vii

8 CONCLUSION . 126
8.1 Summary . 126
8.2 Perspectives on Future Research . 128

A PASSIVE DEALY MEASUREMENT: OTHER USE-CASES 130
A.1 Testbed . 130
A.2 One-hop Link Bandwidth . 131
A.3 End-to-end Bottleneck Capacity . 133

viii

LIST OF FIGURES

1.1 Federated (and associated) testbeds under the Fed4Fire+ programme. Source:
https://www.fed4fire.eu/testbeds/ . 5

2.1 Bare-metal vs hosted vs container-based virtualisation. 15
2.2 Model of a network environment. 19
2.3 Modeling of network environments emulated using Mininet. Components in green

are real ; while red signifies that a component is only simulated. 21
2.4 Example of an underlay (red) network and an overlay (blue) network. The overlay

is one single Ethernet segment that connects the two switches and the underlay
spans multiple subnetworks. 30

2.5 Distrinet architecture with an example infrastructure (red) and an example em-
ulated network (blue). Each worker (including the master) runs a partition of
the emulated network. The master orchestrates the emulation and the emulated
nodes through the management virtual network (yellow). 33

4.1 Command execution in containers in Bignet (left) and Distrinet (right). In Bignet,
workers act as gateways to their hosted containers via the DOcker API (dashed
yellow lines), which significantly reduces the number of open SSH sessions (red
lines). 55

4.2 Maximum achievable throughput and minimum possible delay (y-axis) in a topol-
ogy of many cascading switches (x-axis) emulated using Bignet and Distrinet. . 56

4.3 Startup time of variable-length linear topologies emulated using Bignet and Dis-
trinet. 57

5.1 Noumenal fidelity evaluates the conformity of the emulated network to the real
network, while phenomenal fidelity evaluates its conformity to a phenomenal
model defined by aspects and metrics that are observable and measurable. . . . 62

5.2 Queuing, transmission, and reception of two successively sent packets Pi and Pi+1
in two cases: packet Pi+1 is not queued (left); and Pi+1 waits in the queue before
transmission (right). 64

5.3 Emulated testbed. The virtual hosts H1, H2 and the virtual switches S1, . . . , SN
run on two different physical machines. 71

5.4 Reported Ping RTT vs number of virtual switches N 71
5.5 The blue line represents the average measured RTT and its confidence interval (y-

axis) over all pairs of packets of same total size (x-axis) in the scenario emulated
using the current official version of Mininet; the green line plots the average
measured RTT and its confidence interval using the patched version of Mininet;
the orange line plots the expected RTT using the model given in equation (A.1).
The confidence intervals are invisible due to the small variance and the large
number of the measurements. 73

6.1 A link whose ends are (1) and (2) is used to transmit two packets Pi and Pj , the
former arrives at its destination while the second got lost. 78

ix

https://www.fed4fire.eu/testbeds/

6.2 Measured OWD between two ends in two machines before clock synchronization. 80
6.3 Measured OWD between two ends in two machines after clock synchronization. 81
6.4 Ping RTT (blue) vs passively measured RTD (orange). 83
6.5 Classical Berkley Packet Filter (left) vs Extended Berkley Packet Filter (right). 85
6.6 TC datapath interception by packet loggers. 90
6.7 Interception and logging of packets. 91
6.8 Architecture and operation of the monitoring agents. 91
6.9 The collector/analyser component. 92
6.10 Impact of monitoring on the emulation performance. The orange plot shows the

average achieved goodput and the blue plot shows the minimum RTT. 94
6.11 Emulated network (red) and underlying cluster network. Clients from Group I

are emulated in H1 and H2; from Group II in H1 and H3; and from Group III
in H1 and H4. 95

6.12 High-level (a) and low-level (b) indicators of emulation fidelity. 96
6.13 High-level (blue) and low-level (orange) indicators of emulation fidelity (y-axis)

vs. link load (x-axis). 99

7.1 Emulated and infrastructure topologies. 105
7.2 Examples of unidentifiable (a) and identifiable (b) graphs. The second graph is

constructed by removing R1 and merging its two links into one. 108
7.3 Underlay infrastructure network. 115
7.4 Overlay emulated network. 116
7.5 Simulation results on all 8192 overloading cases. The continuous lines show

the performance of linear-algebraic troubleshooting with Occam’s razor heuristic
(Heuristic 1); and the dotted lines by relying only on lower and upper bounds
(Heuristic 0). 119

7.6 Run 0. Perfect prediction: 100% precision and F1-score. 120
7.7 Run 1. Perfect prediction: 100% precision and F1-score. 121
7.8 Run 2. Perfect prediction: 100% precision and F1-score. 122
7.9 Run 3. Erroneous prediction: 0% precision and 66.6% F1-score. 123

A.1 Emulated testbed for bandwidth estimations. Each link is a full duplex wired
link of bandwidth B and propagation delay d. 130

A.2 Transmission speed estimation from passive measurement of RTD. Each data
point corresponds to the RTD measurement (y-axis) of a pair of packets of a
certain total size (x-axis); the orange lines plot the above formula using the
estimated transmission speed. Clockwise from top-left: Link (1), Link (2), Link
(3), and Link (4). 132

A.3 Estimated bandwidth from different pairs of packets. 134

x

CHAPTER 1

INTRODUCTION

Reproducibility is an essential criterion for scientific correctness. A scientific scholarship

must be reproducible both in principle, in the sense that the experimental outcomes should

not depend on uncontrollable circumstances, but also in practice, in the sense that anyone

should be able to repeat the experimental processes that led to the scholarship’s results and

conclusions, provided they can acquire the necessary tools and environments. However, the

modern –international, open, fast-paced1– academic production of scientific knowledge has

shown this criterion to be most often overlooked, ultimately leading to the replication crisis

that scientific research is currently facing.

Indeed, a 2016 Nature survey [14] of 1,576 researchers found that 70% of the surveyed have

tried and failed at least once to reproduce a peer’s research, and more than 50% to reproduce

their own. Of the surveyed, only less than 31% believe that failure to reproduce some

published results suggests that the results are wrong, and most would still trust irreproducible

published research. Nevertheless, only 20% of the surveyed report having been contacted in

the past by another researcher who could not reproduce their scholarship. These numbers

not only show the shocking magnitude of the issue, but also the dangerous indifference

of scientists and experts. This indifference varies by field: researchers in human sciences

(medicine, sociology, and economics) show more attention to reproducibility, while their

peers in formal sciences (physics, chemistry, and engineering) are generally overconfident in

irreproducible results.

Many factors contribute to the replication crisis, some are social-institutional (fraud

[83], pressure to publish [68], jockeying for competitive journals and conferences, race to

private and public funding [63], etc.) and some technical (difficulty to acquire data and/or
1According to the sociologist Hartmut Rosa [74], acceleration of technical and scientific advancements is

a key feature of modernity, with ongoing consequences on the quality and integrity of industry innovation
and academic research.

1

tools to reproduce experiments, difficulty to package one’s own experimental processes, etc.).

However, the fact of the matter remains that making research reproducible is not properly

incentivised, and failure to do so is not fairly punished. The amount of work and time

required from an author to make their scholarship reproducible or from a reader to reproduce

their results are not profitable, and therefore overlooking this aspect is a reasonable attitude.

1.1 Paradigms in Experimental Network Research

In the fields of computer science and information technology, most research amounts to build-

ing models and architectures and to writing algorithms. This design phase must generally

be followed by an evaluation phase, where the researchers are to prove the implementability

of their algorithm/model/architecture and compare its performance to existing solutions.

Authors are pressured to conduct such evaluation experimentally (or empirically), instead of

relying on mathematical models that formally prove asymptotic or lower bound metrics of

performance. However, there is no clear consensus as to what constitutes an experimental

or empirical evaluation. Ideally, in order to evaluate how algorithm or architecture A per-

forms when implemented in environment E (or a set of environments E), the researcher must

implement A in E (or in a good sample from E). For instance, to evaluate with maximum

precision how a new topology improves the performance of a data centre network, it must

be tested in a set of data centres with typical network traffic conditions. Unfortunately, this

is not always possible, as a researcher might wish to design algorithms and architectures

for environments they cannot test it on, and such highly achievable requirement ultimately

serves to gatekeep the production of knowledge from scientists with limited resources, and

highly limits the scopes of reproducibility in computer science research.

This is especially the case in distributed systems and networks research, where the target

environments E are generally fairly large and complex systems which are not available to all

researchers and/or stakeholders. Indeed, while it might not be an issue for a large company

2

or institution to experiment their innovations on production-similar networks, the general

public can only rely on their produced datasets to repeat the last steps of their experimental

processes: reinterpreting data and redrawing results and conclusions.

To mitigate these methodological obstacles, efforts have been made to facilitate both the

experimental and empirical evaluation of scientific innovations and their reproducibility in

the specific context of computer networks and systems research (and to a lesser extent other

fields of computer science). For a long part of network research history, this was achieved

by two experimental paradigms: testbeds and simulation.

1.1.1 Testbeds

Testbeds are platforms designed to run experiments. In the context of computer networking

and distributed systems, these take the form of hardware infrastructures used to test novel

ideas in different areas of the field. Though it is not necessary, testbeds are most often shared

by multiple researchers with different affiliations, and funded by country- or continent-wide

public programmes.

PlanetLab [20] is one of the most popular and longest-running testbeds. It was first

launched in 2002 for collecting network measurements and is composed of more than 1000

nodes (1353 at its peak). These nodes are deployed at more than 700 sites spanning over

48 countries2 from all continents, which makes it a realistic environment for testing research

aimed at wide-area technologies (P2P networks and protocols, inter-AS routing, security

models and attacks, etc.). In fact, research from hundreds of papers was validated using

the PlanetLab testbed [6], although the number of new published papers has since been

declining.

The particular limitation of PlanetLab as a testbed is its usage scope. It has been his-

torically aimed toward planet-wide architectures and protocols, and thus most of its services
2PlanetLab has been discontinued in the USA as of may 2020. Its North American user base has migrated

to MeasurementLab.

3

have become obsolete as research in their fields has declined or even stopped. It is also not

up-to-date with new technologies, particularly SDN, 5G, and IoT architectures, which are

not supported without simulation.

Similar projects have been developed and deployed in Europe. Fed4Fire+ 3,4 is a Eu-

ropean programme that has funded and federated a large number of testbeds all over the

European Union. These platforms span a wide range of technology domains: standard wired

networking, wireless technologies, 5G hardware, IoT technologies, SDN research, and Cloud

and Big Data architectures (Figure 1.1). Fed4Fire+ even offers a federated portal to all

these platforms, where users can access from a single user account the resources that match

their need. Fed4Fire+ also includes associated testbeds, which are experiment platforms from

collaborating partners (both private companies and academic institutions) that are partially

funded by Fed4Fire+ but which are not federated in its web portal. One special associated

testbed is Antwerp, Belgium’s Smart Highway [61] which is a unique facility designed for

vehicle-to-everything communication research.

However, testbeds suffer from some inherent limitations that impact their flexibility and

their potential to support reproducible experiments.

• Cost: as has been discussed, most testbeds are infrastructures maintained by large

institutions that span entire countries or continents, as a single university or laboratory

generally cannot fund its own platform. This issue of cost also makes the process of

building a testbed difficult;

• Timeline: building a testbed is a long process. It typically takes several years of design,

preparation (including institutional and legal delays), and implementation before a

platform is fully operational. This, in contrast with the recent technologies’ shorter
3Fed4Fire+ has been discontinued as of june 2022. A new project called SLICES-RI has been launched

under the ESFRI programme (2020 to 2024) to fund a European-wide research instrument for the digital
sciences.

4It must be disclosed that this PhD thesis was funded by Fed4Fire+ until june 2022 then by SLICES-SC.

4

Figure 1.1: Federated (and associated) testbeds under the Fed4Fire+ programme. Source:
https://www.fed4fire.eu/testbeds/

5

https://www.fed4fire.eu/testbeds/

life cycles and the fast-changing networking paradigms, can make the deployment of

experiment platforms for emerging technologies challenging;

• Sustainability: just as networking paradigms and technologies rapidly change, so too

must testbeds, which ultimately need to be terminated once their intended technologies

become obsolete, a process that also requires time and resources. Some testbeds can be

transformed or updated to integrate new technologies, but that is not always possible;

• Recognition: deployed testbeds need to be properly advertised to the community to

attract potentially interested researchers in order to justify their existence and prove

to be profitable. Also, for research produced in a testbed to be recognised by the com-

munity as experimentally valid, the testbed’s credentials must be proven, customarily

through reputation which is built by repeated use from researchers;

• Inter-operability: testbeds ideally need to be inter-operable, in that a scholarship pro-

duced in one should be reproducible in all others that provide similar environments. In

practice however, this is rarely the case, except for platforms federated under the same

project or institution. This also makes it harder for potential users to switch between

testbeds, as learning the specific API and architecture of each individual platform may

discourage reproducibility;

• Governance: the creation, management, and termination of testbeds are decided by

the central institutions that provide funding. This mode of governance goes against

the ideals of open and democratic science, because whoever can decide which practical

answers can be tested, retroactively decides which scientific questions deserve to be

asked5;
5The relationship between knowledge and power is a complex question in epistemology and sociology

of scientific research. The general observation is that knowledge has a non-negligible social dimension that
makes neither absolute nor politically neutral, but rather contingent on the power structures within societies.
In concrete terms, the pursuit of knowledge is always impacted by outside effects, such as institutional policies
and market forces, which are ever-changing never immune to agendas [38, 55].

6

• Openness: experiment platforms are not completely open for use to all interested re-

searchers. Some clearly state that they are restricted to users from certain affiliated

universities, other claim to be open but require a long registration and verification

process that can discriminate against users without known affiliations and overall dis-

courages reproducibility;

• Impact assessment: the return on investment of a testbed is often gauged by the number

of active users, trained students, and published papers. These indicators might not

always reflect the usefulness of a testbed but are used to determine its viability and

whether it deserves to keep running.

These limitations of testbeds, particularly with regards to their accessibility and usability,

have led to the development of other methods of experimentation.

1.1.2 Network Simulation

Network simulation is a class of experimentation techniques whereby a software and/or math-

ematical model of a given problem, environment, and solution is built to conduct empirical

evaluation. Virtually any environment, architecture, and technology can be simulated by a

more or less accurate model. This works by abstracting away all details deemed irrelevant

about the operation of a system and only focusing on the key features that can be modeled.

The model is then fed into a software which can run performance evaluation.

Depending on which components of the environment are modeled, and on how compact

the models are, we can distinguish between multiple levels of simulation. The most ba-

sic technique is mathematical modeling and simulation: the environment and solution are

modeled using abstract mathematical objects that distill its most important features and

transforms the performance evaluation problem into a mathematical one. The problem is

then solved analytically using mathematical tools when possible, or approximately using

numerical simulation techniques. Common modelings of computer networks use queuing
7

theory, graph theory, optimisation and linear algebra, etc. Such mathematical techniques

have been popular for a long part of network research history, mainly due to their simplicity

and to a lack of access to more empirical approaches (software simulators and testbeds).

Another technique is the use of network simulators [77]. These software tools work by

breaking down the simulated environment into distinct components whose interactions are

modeled as software code that replicates their behaviour. Many network simulators have

been developed since the 1980s to study the performance of network protocols, each with a

different architecture and a different goal. Some are universal and allow the simulation of

virtually any network (provided the user programs the necessary components), others focus

on particular target environments, such as 5G networks, IoT technologies, and VANET

architectures. Network simulators also differ in whether they are free (in all senses of the

word) or closed-source and/or under commercial licenses.

The most popular network simulator is ns-3 [43]. It started in 2006 for the purpose of en-

hancing the limited functionality of the previous versions of ns (ns-1 [62] and ns-2 [45]) which

had since then become obsolete. It is a discrete-event network simulator: the components

of the simulated network are represented as C++ classes (e.g., UdpEchoServerApplication,

WifiChannel) and the operation of the simulated network is broken down into a sequence of

events represented as C++ functions (e.g., StartApplication(), ScheduleTransmit()). A

simulated experiment then runs in a discrete time fashion: the passage of time is simulated

as a succession of discrete small units while every step is logged for measurement purposes.

Furthermore, modularity is a core design principle of ns-3. Each component (application,

protocol, or network hardware) functions independently of the simulation engine and many

libraries exist to provide users with collection of classes and functions useful for typical

technologies and scenarios (WiFi, SDN, 5G, etc.). These aspects make ns-3 a powerful and

near-universal simulator.

Other simulators are engineered to focus on specific use cases. For instance, NetSim

8

[32] and Cisco Packet Tracer [1] are focused on simulating Cisco hardware, particularly for

educational purposes; REAL [51] (REalistic And Large, on which ns-1 is based) is focused

on congestion control algorithms; and JiST-SWANS [3] (Java in Simulated Time/Scalable

Wireless Networks Simulator) is made for wireless networks (and particularly MANETs).

Network simulators also suffer from a set of ontological limitations:

• Realism: the main limitation of network simulation is realism. The results of a sim-

ulated experiments are to be trusted only insofar as the modeling and simulation are

accurate description of the environment, which requires an additional layer of inter-

pretation and analysis. If the objective of simulation is to examine the feasibility of

a researched solution in a desired environment, then perfect realism is not an issue;

if, however, the objective is to challenge the solution and precisely evaluate its perfor-

mance compared to existing solutions, then careful attention must be paid to numerical

results;

• Flexibility: to evaluate an application or an architecture in a network simulator, it

must first be programmed and integrated into its code. This adds an additional step

in the experimentation phase which, depending on the familiarity of the user with the

simulator’s framework, might add complexity and exhaust time resources, which may

sometimes be more time-consuming than using regular testbeds. In fact, it is much

easier to run a newly developed solution in an available testbed than it is to model it

and/or adapt it into the simulator;

• Scale: although a simulator transforms a real environment into a miniature version that

replicates some of its behaviour, in practice the running time of a simulation increases

proportionally to the duration of the experiment, to the scale of the simulated system,

and to the complexity of the model, and inverse-proportionally to the resources of

the machine used to run the simulation. Thus simulating a large-scale system while

capturing its complexity is most often difficult.
9

1.1.3 Network Emulation

Network emulators are a particularly interesting type of software-based network experimen-

tation. Their purpose is to let the user run complex network scenarios using actual service

and application code and highly personalizable topologies without the need for physical hard-

ware (links, switches, routers, firewalls, middleboxes, servers, etc.). Popular emulators (e.g.

Mininet [4], Dockemu [79]) use virtualisation, containerisation, and network softwarisation

technologies to achieve this with minimal need for hardware. For instance, Mininet uses

Linux-native tools and software-defined networking mechanisms: Linux network namespaces

to emulate isolated upper-layers nodes (clients, servers, firewalls, proxies, etc.); Linux bridges

(or Open vSwitch swtiches) to emulate SDN-enabled layer-2 and layer-3 nodes (switches and

routers); and Linux Virtual Ethernet and Traffic Control to emulate wired links. Its use of

such lightweight and natively supported technologies, alongside a simple Python API, make

it a great tool for easily repeatable and fairly large-scale network experimentation. Vari-

ants of Mininet have also been developed to add functionality or to increase effectiveness.

Mininet-WiFi [37] adds wireless capabilities by simulating WiFi, MANETs, and mobility;

while distributed forks of Mininet (e.g. Mininet CE [5], Maxinet [82], and Distrinet [26])

greatly increase the software’s scalability by allowing the user to run scenarios using aggre-

gated resources from a cluster of machines, a public cloud, or a grid infrastructure.

However, research has shown that network emulators do not always provide perfectly

accurate results [65]. In fact, as they are designed for running on everyday laptops, their

emulation of multiple events (e.g., running code in emulated hosts, or switching and routing

multiple packets in parallel) is very limited by the available computing and network resources.

This renders them practically unusable for emulating latency-sensitive scenarios or those that

require packet-level precision.

10

1.2 Modern Problems Require Modern Solutions

This thesis explores the world of scientific experimentation, particularly reproducible, scal-

able, and accurate network experimentation. The goal of any researcher working with such

questions is to develop an efficient formula for producing empirical knowledge about com-

puter networks that checks all the boxes: reproducibility, accuracy, scalability, accessibility,

flexibility, openness, and efficiency. The fundamental hypothesis we are looking to investi-

gate is whether network emulation as a paradigm could be the answer. Indeed, emulation

already satisfies most requirements by design, but struggles with limitations regarding scal-

ability and accuracy. The objective thus is to investigate how these two challenges can be

overcome using modern technologies:

• Scalability: how can emulators efficiently use the available resources to sustain fairly

big networks, modern architectures and technologies, and heavy traffic?

• Accuracy: how can emulators realistically mimic the behaviour of the network and

ultimately produce accurate and fidelitous results? and otherwise is it possible to

predict anomalous behaviour and trace its origins?

Both questions will be tackled using modern tools and revisiting well-theorised traditional

methodologies. In particular, this work presents a highly scalable and fidelity-focused dis-

tributed network emulator that uses recently developed system containerisation, network

virtualisation, and service orchestration technologies.

The remainder of this dissertation is organised into two parts.

• The first half provides the necessary background for tackling the above challenges,

with supplementary findings from the last two decades of research in network experi-

mentation and measurements. In particular, Chapter 2 focuses on network emulation,

especially virtual machine- and container-based emulators, by uncovering their core

design principles and by presenting how said principles are implemented in popular
11

emulators. The second chapter, Chapter 3, introduces the state of the art in delay

measurement and network tomography;

• The second half of the dissertation documents our contributions. We start by present-

ing our newly-developed lightweight distributed network emulator in Chapter 4, where

we show its design and implementation and compare its performance to its state-of-

the-art counterpart. The following two chapters present our framework for passive

measurement-based fidelity monitoring of network emulation: Chapter 5 showcases

the theory behind while Chapter 6 presents its implementation and its operation in

practical scenarios. The last chapter of this second part, Chapter 7, demonstrates a

preliminary attempt at using the measurements collected during emulation to trou-

bleshoot its potential failures.

The dissertation is concluded and summarised in Chapter 8 where we also discuss limitations

and suggest prospects for future research.

12

Part I

Background and State of the Art

13

CHAPTER 2

NETWORK EMULATION

Network emulation has been getting more and more attention from network researchers. Its

history is mostly marked by three major points: the development of system and network

virtualisation which permitted its birth; the publication and relatively widespread use of

Mininet which made it accessible to experts and intermediate researchers alike; and the

advance of distributed emulation which caused a paradigm shift from the traditional "network

in a laptop" model, in the hope of answering users’ concerns about scalability. This chapter

is structured along the lines of these historical developments and lays the state-of-the-art in

the matter. We will first give a brief background presentation on system virtualisation, the

explain the machinery behind network emulation and distributed network emulation.

2.1 Virtualisation

Virtualisation is a major advance in computer networks and systems [75]. It was initially

motivated by the inefficient use of resources and by the need to isolate different services

running within the same machine. Indeed, in the early years of the Internet, network and

web services had to be independent and isolated and thus would run on different physical

hosts, which was highly inefficient [27]. With virtualisation, it is possible to run completely

isolated environments, generally with their own operating systems and network stacks, in the

same physical machine whose resources they share. Thus in theory, it is possible by using

virtualisation to run operating systems with different kernels (e.g., a Linux and a Windows

system) on the same hardware environment.

This is achieved through a software, called the hypervisor, that runs in a layer above

the hardware. In this manner, each virtual machine (with its own operating system and

applications) behaves as if it was directly running –alone– on the underlying hardware, while

14

(a) Bare-metal virtualisation. Three virtual
machines (VM1, VM2, and VM3), each run-
ning its own operating system, share the
same physical hardware through a hypervi-
sor.

(b) Hosted virtualisation. The hypervisor
runs as a regular software on the host ma-
chine, and relies on its operating system to
manage the virtual machines’ accesses to the
hardware.

(c) Container-based virtualisation. The con-
tainers are logical separations of the appli-
cations running on the host machine. They
share the kernel of the host machine, but run
other parts of the operating system in an in-
dependent manner.

Figure 2.1: Bare-metal vs hosted vs container-based virtualisation.

all their requests to access its resources are intercepted and managed by the hypervisor to

handle transparent sharing of the hardware. We can further distinguish between different

types of virtualisation depending on how the hypervisor carries out this function and on

whether or not the process involves the virtual machines.

Bare-metal virtualisation Bare-metal is the basic and most common way to deploy

virtualisation, particularly in large-scale contexts such as data centres [60]. It refers to hy-

pervisors that are installed and that run directly on the hardware and handle all instructions

15

to use its resources. Figure 2.1a visually shows how bare-metal virtualisation is designed and

how it operates within a server with its interaction with other components.

Hosted virtualisation As opposed to bare-metal virtualisation, in hosted virtualisation

the hypervisor is a software that runs as an application on the main operating system of

the physical machine [81]. This technique of virtualisation is thus clearly less efficient than

bare-metal virtualisation, and is mostly used on personal computers for educational purposes

or to run software that requires specific operating systems. Figure 2.1b is a representation

of this paradigm.

Containerisation Containerisation (also referred to as container-based virtualisation) is

a more recent technique for running multiple isolated environments on the same physical

hardware [84]. Its main and most important feature compared to regular virtualisation

is that the virtual environments, called containers instead of virtual machines, share the

kernel of the hosting machine. These containers are logical divisions of the software space so

that applications and services can run independently, with their own file systems (and file

hierarchies), their own network stack (and a virtual hostname), their own users and groups,

and a limited and isolated access to hardware resources. Therefore, there is no additional

component to act as interface between the containers and the host system and hardware, and

instead isolation is performed logically by tools already available to the operating system

(any Unix-like or BSD) (see Figure 2.1c for a visual diagram).

2.2 A Deeper Look into Network Emulation

Outside of computer networking, emulation is clearly defined as the process by which a

hardware environment is substituted using software tools (called the emulators) to run on a

different hardware environment. For example, an HP printer could be emulated on a non-

HP printer so that it runs software written for HP printers. Historically, emulation has been
16

popular in video-gaming communities where many emulators were developed to run –on

a regular personal computer– video-games designed for consoles and arcade systems with

completely different operating systems and hardware architectures [23]. In such cases the

emulated systems run in real-time or near-real-time, which is precisely what makes system

emulation stand out from system simulation.

In computer networking research, however, the lines between emulation and simulation

are more blurry, and there is no consensus yet that clearly defines its frontiers. For instance,

it is common to find software tools that are labeled as both emulators and simulators (e.g.,

IMUNES [2]), not so much because they can perform both, but rather because of the inability

to classify themselves into a clear-cut category. This classification difficulty comes from the

inherent complexity of networks compared to single-unit hardware systems. The latter can

generally be seen as a stack of services running on an operating system software that manages

a set of physical resources, and thus defining emulation as replicating the hardware part, and

the hardware part only, using software comes at no cost; but a network of very diverse –and

very diversely connected– nodes cannot be reasoned about as easily.

To better understand the complexity of separating between network simulation and emu-

lation, and to help us attempt a divide, a network environment can be modeled by breaking

it down into multiple components in the manner of Figure 2.2. In this model, the envi-

ronment is composed of multiple nodes that communicate with each other through a set of

communication media and whose operation is impacted by features of the physical world

(namely time and space):

• Application: is the software component that runs in the nodes of the environment. In

general, an application is the highest layer in a node’s stack, generating data packets

processed by the network protocols, but it may also directly interact with the network

stack (e.g. a proxy or a firewall) or the operating system;

• Data packets: are the messages and the data traffic that user applications generate and
17

which are to be processed by the network stack and encapsulated into communication

units to be transferred through the communication media of the network environment;

• Network protocols: generally the TCP/IP suite of protocols designed for data commu-

nication in typical networks. They customarily process application messages and are

implemented in the operating system of the node. The nature of such protocols also

depends on the experimented scenario: whether it is a 5G environment, or an SDN

architecture, etc.;

• Operating system: manages the access of the user applications and network protocols

to the hardware resources of the nodes;

• Hardware: is the physical part of a node, which is the set of resources on which its

logic runs: computing units, memory, storage, network devices, sensors and detectors,

etc.;

• Communication media: are the elements of a network that transport the data in its

raw physical form (electromagnetic waves, electric signals, etc.). They typically fall

under two categories: wired (links) or wireless, each with its own characteristics and

transmission capabilities;

• Time and space: are two environment features that can impact the experiment in

certain settings (time passage and clock synchronisation, spatial mobility of nodes,

transmission range, etc.).

For example, NetEm [42] and radio channel emulators are network emulation tools that

allow the user to replicate the behaviour of certain special networks using a LAN testbed.

Looking at the proposed model, these tools use real end-systems (with real software, network

stack, operating system, and hardware) operating in real -time, but simulate the behaviour

of wide-area networks (by adding artificial latency and bandwidth limitation to wired links)

18

Figure 2.2: Model of a network environment.

and radio networks respectively. Thus the communication media component is simulated.

Radio channel emulators additionally simulate spatial features of radio networks, such as

node mobility and signal range, and thus simulates the space component as well.

On the other hand, a discrete-event simulator (such as ns-3) also replicates the nodes’

hardware, operating systems, network protocols, data packets, and even the applications that

they run. It also, and most importantly, simulates the passage of time.

The rise in popularity of system virtualisation and containerisation technologies, as well

as software-defined networking paradigms, inspired the development of network emulators

that rely on these technologies to create fairly large-scale networks with perfectly isolated

and controlled nodes on a single computer. DockEmu [79] uses Docker containers and Linux

bridges to run multiple end-systems and SDN-enabled switches and routers, who can run

their own real network protocols, operating systems, and applications that generate real data

packets, but whose hardware and underlying communication media are simulated using soft-

ware tools.

For a lack of a more precise definition of network emulation, we can infer a working one

from these examples and using our model. It will serve academic accuracy in this dissertation,

but we believe it can be a good definition outside of it as well. In practice, we will say that

a computer networking experiment is a network emulation if it was run in an environment

19

that satisfies three conditions (in at least one host):

• at least one component is simulated;

• the applications, generated data packets, networking protocols, and operating systems

of nodes are real ; and if

• the experiment runs in real-time, i.e. time is not simulated.

A network emulator is then a tool that can produce network emulations. The first condition

essentially requires a part of simulation, which should not be at the level of the applications,

the data traffic, or the system, but rather at the level of the hardware and communication

media, according to the second condition. The last condition is an essential requirement

that differentiates emulation from discrete-event simulation. Note that a network emulation

may be run with simulation of spatial features, as is the case with radio channel emulation

and Mininet-WiFi [37].

2.3 Mininet

Mininet [4] is the most popular network emulator. It was born at Stanford University from

the need to experiment with SDN [15] technologies in a reproducible manner and to learn

networking by practice. Its main selling point is its powerful but easy to use Python API.

2.3.1 Design Principles

Limited isolation Mininet is designed to emulate end-systems with a minimal constraint

of isolation. Indeed, only the applications, network stacks, and resources are isolated between

machines emulated with Mininet; while they share the rest of the operating system (file

system and kernel) with the hosting computer. Thus by not having to run a kernel for each

end-system, this principle increases the scalability of the emulator.

20

Figure 2.3: Modeling of network environments emulated using Mininet. Components in
green are real ; while red signifies that a component is only simulated.

Software-defined networks A second design principle of Mininet, which constitutes its

distinguishing feature compared to other emulators, is the native support for SDN tech-

nologies. By default, switches emulated using Mininet are deeply programmable and can

interact with an SDN controller to operate. This makes Mininet the natural choice for

running experiments for technologies in the emerging SDN ecosystem.

Traffic shaping To simulate the communication media of a network, Mininet uses traffic

shaping techniques to attribute special, user-defined characteristics to emulated wired links.

By artificially delaying and dropping packets, Mininet can simulate links with specific pa-

rameters: propagation delay, link capacity, transmission speed, queuing, packet loss, packet

corruption, packet duplication, etc.

APIs To perform network emulation, Mininet provides the user with two interfaces:

• A simple command-line interactive interface through which the user can emulate a

network and interact with it by running commands and programs on emulated nodes;

• A programming interface for more sophisticated use cases. The user can describe in full

details the elements of the network they wish to emulate (topology, link parameters,

21

etc.), as well as the scenario they intend to run on the network (synchronously or

asynchronously running applications and services on emulated hosts, generating traffic,

etc.). The scripts are then run by the Mininet engine without further interaction from

the user.

Educational use Mininet is also designed for educational use. Its lightweight architec-

ture allows it to run networking scenarios (ranging from simple client-server interactions, to

complex data centre SDN networking) on personal laptops, which makes it ideal for learn-

ing very diverse networking concepts, particularly regarding SDN and NFV technologies.

In fact, many online networking courses [35] rely on it for teaching computer networks to

newcomers, and the well-known Stanford’s advanced networking course [85] uses Mininet

to teach graduate students about reproducing famous papers from prestigious networking

conferences and journals.

2.3.2 Implementation

Mininet’s implementation is limited to Linux, and thus its implementation relies on the

operating system’s toolset. The current version is available as a package for most Linux

distributions and can also be complied from the source code. For inexperienced users who

are anxious to run software that may break their system or that may use libraries with

incompatibility issues, the developers also provide a virtual machine image with a ready-to-

use Mininet installation and which can be deployed using any (hosted virtualisation-based)

virtual machine manager. This is the safest way to start using Mininet as it would run on a

controlled and isolated environment.

Network namespaces and cgroups To implement its limited isolation constraint, Mininet

uses Linux’s network namespaces to emulate virtual nodes. These allow for the creation of

virtual domains running alongside the root namespace with their own network stacks: their

22

own (virtual) interfaces, IP addresses, hostnames, routing tables, firewall rules, etc. These

network namespaces’ interfaces are connected to each other using virtual Ethernet pairs

(veth pairs) which are essentially simulated wired links that connect two interfaces.

For resource isolation, Mininet uses Linux’s controlled groups (cgroups). This feature

allows the limiting and isolation of a group of processes’ resource consumption. In practice,

an emulated end-system is assigned a control group with limited share of CPU utilisation,

memory, disk I/O throughput, etc.

Open vSwitch and SDN controllers Open vSwitch [69] is an implementation of an

SDN-enabled multilayer virtual switch. In general, this virtual switch can run on a switching

hardware, but Mininet uses it as the default software to emulate networking nodes (regular

switches, hubs, routers, etc.). OVS supports all standard layer-2 protocols: Spanning Tree

Protocol (STP), VLANS, etc. and can also emulate other features of hardware switches,

such as monitoring and management protocols (Netflow, sFlow, port mirroring, etc.).

But the main feature of OVS is its native support for SDN. All its versions implement the

openflow protocol which lets OVS communicate and be programmed by an SDN controller,

such as its own OVSController, Nox, and Ryu. These are available by default with Mininet,

but any other controller can be used provided it goes through Mininet’s API.

Traffic control Linux’s traffic control (TC) subsystem [10] is a very powerful and versatile

set of tools for granular traffic shaping, QoS management, and flow prioritisation. In its

intended usage, it gives the user the possibility to separate traffic flows to accommodate

multiple QoS requirements and avoid volatile contention for resources. It does so with a

very sophisticated architecture whose main elements are queuing disciplines, classes, filters,

classifiers, and actions. The arrangement of such elements allows users to implement a

variety of traffic shaping, policing, and prioritising policies, which are very useful for system

and network administrators, but can also be used on a regular personal computer.

23

Currently integrated into Linux TC, NetEm (network emulation) [42] is another set of

tools for traffic management which is focused on network emulation: its main difference

compared to regular TC is that it is explicitly focused on simulating traffic phenomena and

not on optimising network resources usage. In particular, its addition to TC is artificially

delaying, dropping, and reordering packets.

Mininet uses TC and NetEm to transform a simple virtual Ethernet pair connecting two

virtual interfaces into a virtual link that behaves close to a real one:

• using TC queuing disciplines, particarly Hierarchical Token Bucket [24], Token Bucket

Filter [52], and Hierarchical Fair Service Curve [78], it is possible to attribute a certain

bandwidth to a virtual link;

• using TC classes, it is possible to add an artifical finite-size buffer to a virtual link;

• using network emulation, it is possible to add latency, lossiness, bit corruption, and

reordering to a virtual link.

Mininet also allows the user to use other TC and NetEm features to program a variety

of links with specific characteristics.

Python API Though a user can run an emulated network by combining all previously

described tools that are readily available on most Linux installations, Mininet offers multiple

abstractions to facilitate emulation. The user can describe the desired network topology

and experimental scenario using Python objects and abstractions, then Mininet translates

the description into commands and system calls to netns, veth, OVS, and TC. The main

components of such abstractions are the following:

• the topology (Topo class in topo.py): is an object that describes a high-level abstrac-

tion of the network, viewed as a graph whose vertices are the nodes and whose arcs are

the (unidirectional) links. Each vertex and each arc are labeled with a set of parameters

that are interpreted by lower-level components of Mininet;
24

• the nodes (Node class and its Host and Switch children classes in node.py): are objects

that represent the virtual nodes (end-systems and switches/routers) in an emulated

network. They possess attributes that represent characteristics of the virtual nodes

(hostname, CPU and memory limits, list of interfaces and their MAC and IP addresses,

etc.) and methods that implement their behaviour (running a command, adding an

interface, setting a routing table, connecting to an SDN controller, etc.);

• the links (Link class in link.py): in parallel to nodes, links are objects that represent

virtual links in the emulated network. They also possess attributes that represent

characteristics of the virtual links (propagation delay, queue lengths, bandwidth, loss

rate, etc.) and methods that implement certain actions on them (attaching to a virtual

node’s interface, deletion, etc.);

• the controller (Controller class in node.py): is an object that represents an SDN

controller for scenarios involving SDN. It contains all information about the controller

(brand, IP address, etc.) and methods to implement actions on it (to start listening,

etc.);

• the network (Network class in net.py): is the main object in Mininet. It represents the

entire emulated network, and contains in data structures references to all its compo-

nents (virtual nodes and links and, when relevant, SDN controller). It also implements

many routines for acting on the emulated network and for interacting with its virtual

components.

A Mininet script typically consists of creating a topology class that inherits from the

abstract Topo class, and which overwrites its build method, where the user clearly describes

the topology of the network they wish to emulate: adding a controller, and a set of hosts

and switches with the desired parameters that are connected in a specific way. The user

also writes a Python function describing the scenario (a certain host runs a service and a

25

number of hosts connect to it while their communication is monitored, for example). The

Mininet "engine" then launches the necessary virtual components and runs the set of events

described by the user.

The openness of Mininet, the simplicity of its use, and the freely available underlying

tools it works with make it a good solution to design reproducible experiments. In principle,

a researcher only needs their personal computer running an installation of Mininet to repeat

any result produced by the emulator, provided the original researchers share the Python

scripts. This has motivated the promotion of runnable papers [41]: scholarships published

alongside the Mininet scripts used to produce their results, that any interested reader can

reproduce in their own and without much struggle.

2.3.3 Limitations

There are two major obstacles constraining Mininet’s performance and reliability as a net-

work emulator, both are intrinsic limitations imposed by Mininet’s design and implemen-

tation, and both have been extensively documented in the literature. On the one hand, as

Mininet runs multiple virtual nodes in the same machine, the size of the network is heavily

limited by the amount of physical resources the machine has; and on the other hand, the use

of software tools (that also use computing resources to function) to simulate communication

media lowers the accuracy of any obtained results. In a sense, Mininet essentially suffers two

limitations: scalability and realism.

One study on the interplay between Mininet’s performance and resource consumption

empirically proved Mininet’s scalability issues [67]. The authors have shown that although

end-systems can be isolated using Mininet’s control groups interface, their kernel threads

and the OvS processes are impacted by the number of emulated hosts and their utilisation

of the underlying resources. In particular, they conclude that the user should isolate the

emulated hosts but should save at least two cores for the kernel and the emulated switches

26

to function properly. They have also studied the impact of scaling link characteristics on

CPU usage. They have shown that a higher packet loss decreases the amount of CPU load

because, though it adds a small amount of processing to randomly drop emulated packets,

it decreases the total number of packets to be processed and forwarded by the switching

elements. On the other hand, a higher emulated delay does increase the CPU load as it

needs more processing time without necessarily decreasing the number of processed packets.

Finally, without extensive and deep investigation, they have observed that the maximum

aggregated throughput of all emulated flows in a Mininet scenario is roughly equal to the

memory bandwidth measured by standard Linux tools (e.g., mbw). They have also shown

that this maximum aggregated throughput decreases with a high number of hosts, switching

elements, or links. The overall conclusion is that while Mininet scales well, it has its limits,

which may bias the experiment results of an unprepared user.

To this end, the original creators of Mininet [41] proposed a set of new functionalities

–some of which are implemented in the current version of the tool1– to mitigate to some

degree these issues of fidelity. For instance, they suggested carrying the emulation while

logging specific events, then checking that these events follow certain timing properties,

called network invariants. For example, the link capacity is a network invariant that packet

transmission events must satisfy: if a packet P of size |P | is transmitted at t1 through an

emulated link with a capacity (or transmission speed) b, and received by the other end at

t2, then it must satisfy the link capacity inequality:

|P |
t2 − t1

≤ b.

Another such invariant is switching speed. If a packet P is received by a switch from a

certain port at t1, it must be forwarded through another port at t2, with a constant delay

k that only depends on the forwarding speed of the virtual switch and not on the packets’
1Mininet v2.3.0: https://github.com/mininet/mininet/releases/tag/2.3.0

27

https://github.com/mininet/mininet/releases/tag/2.3.0

characteristics:

t2 − t1 = k.

However, no universal approach to fidelity monitoring that extensively reflects emulation

accuracy and that relies on scenario-agnostic network invariants has been proposed.

2.4 Distributed Network Emulation

Distributed emulation attempts to overcome Mininet’s limitations in terms of scalability (and

reliability to some degree) essentially by running network emulations on top of a cluster of

machines instead of a single personal computer. This allows more physical resources to be

combined in order to sustain a much larger emulated network. Distributed emulation draws

from the current broad paradigms in computer systems and networks: distribution, overlay

networking, virtualised resources, and resource optimisation. It is built on the basic assump-

tion that an emulated network can be cut into multiple slices (or subnetworks) that can run

on independent physical machines, and which then can be stuck back together using overlay

network technologies. In principle, this can go beyond the hardware limits of individual

machines to support emulated networks infinitely large, provided enough physical machines

are used. Again, the technologies and protocols to implement this are already supported by

most operating systems but the challenge of optimisation and efficiency still remains broadly

unsolved. This section will present the general principles of distributed network emulation

and how each distributed network emulator has solved (or at least mitigated) the efficiency

challenge.

2.4.1 Design Principles

Overlay virtual networks Overlay networking [21] is the core feature behind distributed

network emulation. It is a concept that has been extensively studied in telecommunications

28

and computer networking literature, and that has been implemented in a variety of ways

combined with very diverse technologies for different use cases. In the most general case, an

overlay network assumes the existence of an underlying structure called the underlay network.

The overlay is constructed by connecting nodes with logical links that span whole paths of

the underlay network, and which define a completely different structure. By corollary, if

the underlay network is connected (i.e., if any node can reach any other node), then it is

possible to construct overlay networks with any topology. Otherwise, the set of possible

topologies is limited by the connectivity of the underlying structure. To achieve this, many

implementations rely on packet encapsulation: the overlay-level frames exchanged between

two nodes connected by a logical link are encapsulated into protocol-specific packets that

are used to transport them through the underlay network. The nodes then interpret and

decapsulate them accordingly. In the example (Figure 2.4), the two switches communicate as

if they are part of the same Ethernet segment, and the frames they exchange are encapsulated

into IP packets that are routed by the underlay routers.

A special instance of overlay networking is in the contexts of virtualisation and cloud

computing. In such settings, the overlay network is the structure that connects the virtual

elements running on the physical machines which are connected by the underlay network.

This enables the setup of a connected virtual infrastructure that spans multiple machines in

the physical infrastructure.

Mapping The main challenge when distributing an emulation over multiple machines is

that of the mapping (or virtual network embedding (VNE)) problem [36]: considering resource

and connectivity limitations on the physical infrastructure, how should the emulated network

be divided? and how to distribute its parts on the physical machines? This is a well-

studied question in optimisation and graph theory, which can either be formulated as an

optimisation problem (minimising a cost function or maximising a utility function under

constraints of capacity) or as a satisfiability problem (finding one or more solutions that

29

Figure 2.4: Example of an underlay (red) network and an overlay (blue) network. The
overlay is one single Ethernet segment that connects the two switches and the underlay
spans multiple subnetworks.

satisfy all constraints). This problem is proven to be NP-complete, which suggests that there

is no known algorithm to solve it in a number of steps polynomial in the size of the virtual

network2. Thus, finding an exact solution can be impossible even for fairly small virtual

networks (less than a hundred nodes). However, multiple algorithms exist that compromise

exactness for solvability: instead of finding an exact embedding, they would instead settle

for a suboptimal solution, one that either satisfies most constraints or only approximately

minimises/maximises the cost/utility function [50, 19].

2.4.2 Implementations

Mininet Cluster Edition Mininet CE [5] is the official distributed version of Mininet.

Without changing the design nor redefining the core principles of Mininet, it simply adds

the possibility of distribution, so that a network might be emulated on multiple physical

machines. It is still in prototype phase and no complete implementation has been developed

yet. In principle, it is designed to use basic tunneling protocols to connect nodes residing
2This does not prove, in the strictest sense, that no such algorithm exists (unless P=NP). Instead it

suggests that the problem is as hard as the hardest problems in theoretical computer science.

30

on different physical hosts. As for virtual network embedding, it only offers infrastructure-

agnostic solution: that is, Mininet CE does not distribute the emulated network on the

physical resources by considering the available amount of resources. Instead, it only offers

dummy placement strategies: random and round-robin embedding algorithms.

Maxinet Maxinet [82] is the fruit of one of the earliest attempts to develop a distributed

network emulator. It is heavily inspired from Mininet, in its easy-to-use Python API, the

native support for SDN, and the use of standard Linux tools. Not unlike Mininet, it allows

the creation of an emulated network of end-systems, switches, and SDN controller(s). The

main difference is its capability to be run using a cluster of physical machines to overcome

the resources limitation of a single one.

Maxinet uses overlay networking to achieve customised connectivity of emulated nodes.

In particular, any link that connects two virtual nodes hosted on different physical machines

is emulated as a GRE [34] tunnel, which entails that all emulated packets are encapsulated

in physical-level IP packets with GRE protocol headers containing identification and other

optional information about the overlay logical link. This creates an overlay emulated network

that connects the emulated nodes with the user-defined topology.

To embed the overlay emulated network on the physical infrastructure, Maxinet offers

multiple placement strategies, none of which are exact solutions but rather simple heuristics

that do not take infrastructure resources into account. In practice, Maxinet relies on network

or graph partitioning : it divides the emulated network into a number of partitions with equal

loads (measured by the number of end-systems, switches, and configured link capacities) and

distributes them into the physical hosts. This implies that all infrastructure machines are

considered identical and no attention is given to whether or not the underlay network can

handle the aggregate traffic loads between the partitions.

31

Distrinet Distrinet [26] is one of the most powerful and comprehensive implementations of

distributed emulation . It combines the good aspects of both Mininet CE (compatibility with

Mininet’s code and API) and Maxinet (intelligent partitioning and placement of emulated

nodes and proper emulation of overlay links), while mitigating their flaws and limitations.

In particular, Distrinet uses the same Python API as Mininet. Thus any emulated

network designed as a Mininet script can be ported to Distrinet with no adaptation: the

user need only indicate the infrastructure layout in a separate file, as well as the number

and IP addresses of the physical machines involved in the distributed emulation. To achieve

this, Distrinet uses a distributed architecture with three components (Figure 2.5):

• worker nodes that run the emulated network’s components: LXC containers [46], vir-

tual switches and routers, and overlay links;

• a master node that manages the infrastructure and the emulated network through an

overlay management network; and

• a client to which the user connects to submit the Mininet script and/or interact with

the emulated network.

In Distrinet, the overlay virtual network is created using virtual Ethernet pairs for links

emulated between nodes hosted by the same machine, and VXLAN [57] tunnels to connect

interfaces of nodes hosted in different machines. Packets that cross the infrastructure network

are thus encapsulated in VXLAN on UDP. Distrinet also creates a management network for

the master to reach each emulated node individually, for running commands and for providing

a transparent CLI to the user.

Distrinet’s main strength is that it implements VNE algorithms specifically designed for

distributed network emulation in a private cluster of machines or a public cloud [25]. When

it is known, the user can feed the layout of the infrastructure (topology, link capacities, and

machines’ resources) as input to the algorithm which will dispatch the virtual elements ac-

32

Figure 2.5: Distrinet architecture with an example infrastructure (red) and an example em-
ulated network (blue). Each worker (including the master) runs a partition of the emulated
network. The master orchestrates the emulation and the emulated nodes through the man-
agement virtual network (yellow).

cordingly; otherwise, as in the case of public clouds, the algorithm will minimise the number

of elastic instances needed to run the emulated network, so as to minimise the total expen-

diture. The embedding algorithm relies on relaxations of the NP-complete VNE problem

and uses heuristics that perform well in the context of distributed network emulation, as has

been shown by its authors. It scales well and can achieve embedding of large-size emulated

networks.

2.4.3 Limitations

The presented distributed network emulators run into some limitations only by virtue of

their design. They also inherit some of the limitations of network emulation as a paradigm

33

(and container-based SDN-focused network emulation in particular). This section exhibits

some of these limitations, which will be given more in-depth discussions in the next chapters.

Scalability The main purpose of using a distributed network emulator is to overcome the

limitations of single-machine network emulation, namely the finite amount of resources for

which multiple emulated components need to compete. Distributed emulation mitigates this

issue by aggregating the computing resources of multiple physical machines. However, it

also adds a new element to the stack: the infrastructure network which, depending on its

capacity, can only handle a certain finite amount of emulated traffic. While the total traffic

that a single machine can transfer in locally emulated links can reach few tens of gigabits

per second, a physical network is generally limited to capacities an order (or few orders) of

magnitude smaller. This constraint on traffic in the overlay emulated network generally limits

the number of communicating nodes and amount of traffic that the distributed emulator can

run on the given infrastructure, and may particularly limit how an emulated network can be

embedded on the underlay infrastructure.

Fidelity Distributed network emulators answer fidelity issues to a certain degree, by elim-

inating all inaccuracies caused by overloading the finite computing resources of a single

machine. As the emulator dispatches the virtual nodes over multiple hosts according to

their capabilities, the possibility of failure as a result of strain is allegedly less likely.

However, no implemented distributed emulator has addressed the inherent lack of realism

in simulating the communication media. Not unlike Mininet, all distributed emulators use

traffic shaping tools and techniques to simulate the operation of real links, and as a result

the accuracy of any distributed emulation is contingent on the realism of such traffic shap-

ing techniques. In addition, the infrastructure network element also negatively impacts the

accuracy of emulations. As emulated packets cross the physical network, they experience all

its features and failures: queuing and delaying, packet loss, reordering, etc. Implementations

34

either encapsulate emulated packets in connection oriented (TCP) based tunneling proto-

cols which mitigate packet loss through retransmission but add abnormal delay, or stick to

connectionless (UDP or IP) tunneling which do not protect the overlay network from such

infrastructure-level failures. We will identify and address these issues in extensive details in

Chapters 5 and 6.

Reproducibility While a regular single-machine emulation, for example using Mininet,

can easily be reproduced by anyone with a laptop and access to the scripts, a distributed

emulation demands stricter requirements. Any interested researcher needs to have access to

a cluster of machines of their own, perhaps with the same number of hosts, and the same

infrastructure network capacity.

2.5 Summary

As a paradigm for network experimentation, emulation –and particularly virtualisation-based

network emulation– is marketed as being reproducible, accurate, and compatible with recent

technologies. It is the culmination of many advances in system and network virtualisation,

which it relies on to achieve its objectives of hardware simulation that is transparent to

upper layers.

Mininet is the most popular network emulator. It is built with few design principles

(minimal host isolation, traffic shaping, easy-to-use APIs, SDN compatibility, and educa-

tional use) which it implements using already developed technologies natively supported by

Linux (and other Unix-like operating systems). And while it does answer its own specifi-

cation of reproducibility and flexibility, it nonetheless suffers from limitations of scalability

and realism.

Distributed emulation enhances the scale capabilities of regular single-machine emulation

by dispatching the task to multiple physical hosts. It offers all features of network emulation

35

but also inherits (and escalates) its lack of accuracy. This thesis is dedicated to mitigating

distributed emulation’s limitations using network measurements tools. Before presenting

those contributions in Part II, the next chapter will discuss the necessary theoretical and

practical background.

36

CHAPTER 3

DELAY MEASUREMENT AND NETWORK TOMOGRAPHY

Since the advent of the Internet, the number of connected devices and the amount of net-

work traffic have massively increased both locally and globally [80]: local campus networks

have been sustaining larger and larger traffic volumes as corporations and government agen-

cies are more reliant on digital services; and the global Internet has become a complex

web that connects almost every living person’s many devices. This has made network and

Internet measurements a critical task for traffic engineering, network management, and re-

source optimisation, which has created interest among network researchers for measurements

and pushed the production of a large corpus of knowledge that assembles the expertise of

many independent disciplines: system engineering, protocol hacking, classical and modern

statistics, graph and optimisation theories, and many more.

In this chapter, we focus on two specific subproblems of network measurement whose

solutions have proved to be helpful for our emulation fidelity monitoring and troubleshooting

objectives: delay measurement and network tomography. The former is the practical problem

of measuring network delay (or latency) in a precise and low-overhead manner, while the

latter is a more theoretical question regarding what knowledge can be drawn about the

internal components of a network from data collected at its edges. We will formulate each

question around our specific context, and present the currently available solutions to address

it.

3.1 Delay Measurement

3.1.1 Definitions and Modeling

Unlike the throughput which is a flow-level measure, the network delay is a value that

characterizes either an individual packet or a pair of request-response packets. In general,
37

the packet delay is the amount of time needed for one or a pair of packets to travel from one

point to another in a path of one or multiple physical media and eventually one or multiple

intermediate nodes. From this general model, the network delay can be precisely defined

along three axes:

• one-way vs round-trip: whether the delay is defined for single packets (one-way delay),

or pairs of packets in opposite directions (round-trip delay);

• one-hop vs end-to-end: whether the delay is defined on a single transmission medium

separating two layer 1 and above machines (one-hop delay), or on a whole path sepa-

rating two layer 4 and above machines (end-to-end);

• application- vs system- vs hardware-level: whether the delay is considered at the point

in time when the application creates the message, when the message is made into

a network packet and then into a system data structure, or when the transmission

hardware sends the packet as a stream of bytes.

For example, the classical definition considers a one-hop, hardware-level model of the

one-way delay (OWD) [8]. In this definition, the OWD of a packet P between two machines

A and B (which can be user terminals, servers, routers, switches, etc.) separated by a

communication medium (wired or wireless) is the duration of (absolute) time between the

instant when A sent the first bit of P , and the instant when B received the last bit of P .

While this can be deemed a pure model of the network delay, as it does not involve any

system-level latency, it is very hard to accurately measure. In fact, it inevitably requires

using specialized network hardware to timestamp packets in order to measure their delays.

It is also possible to consider a more relaxed model of the one-way network delay, by defin-

ing it as the one-hop, system-level delay. This delay has the advantage of being measurable

using simple software tools without the need for any additional hardware, and thus it can

be easily measured in scenarios involving virtual and/or emulated machines and networking

38

equipment. This delay can be decomposed into three contributing terms:

• The system (or queuing) delay: which mainly consists of the amount of time that the

packet will spend in the system queues waiting to be transmitted;

• The transmission delay: the amount of time needed for the transmitting hardware

(NIC, router interface, switch port, etc.) to write the packet onto the physical medium.

This delay depends on the writing speed of the hardware, the transmission speed of the

medium (also known as its bandwidth or capacity), as well as the size of the packet;

and

• The propagation delay: the length of time needed for the signal to travel from A’s

transmission hardware to B’s receiving hardware. It is mainly characterized by the

propagation speed of the signal and the dimensions of the medium and does not depend

on the size of the packet.

In the case of wired media using FIFO queuing disciplines1, this decomposition can be

distilled into the following formula:

d(P) =
|Q(P)|

B
+
|P |
B

+
l

v
, (3.1)

where d(P) is the total one-way delay of a packet P of size |P | between two machines

separated by a link of length l, of signal propagation speed (or velocity factor) v, and

bandwidth B; and where |Q(P)| is the size of the queue (including remaining bits of the

head-of-line packet) at the instant when P arrived.

Note that in cases where A and/or B are virtual hosts, switches, or routers separated by a

physical network (e.g., A is a virtual machine hosted in a physical machine, and B, a virtual

switch hosted in a different physical machine), the delay needs to be measured between the
1This formula can be reshaped to model other queuing disciplines. For example, in a multiclass FIFO

queuing discipline, Q(P) can be redefined to be the subset of packets ahead of P which are from the same
class.

39

virtual NICs of A and/or B, not the physical NICs of their hosting physical machines. Thus

when virtualization is involved, the delay of a packet also accounts for the system delay

between the virtual node’s virtual NIC and the hosting machine’s physical NIC.

An easier value to measure is the round-trip delay (RTD). The RFC 2681 [9] defines it

for a pair of request-response packets P and Q as the duration of (absolute) time between

the instant when A sent the first bit of P , and the instant when A received the last bit

of Q. It is thus a round-trip, end-to-end, hardware-level model of the delay, and is in fact

equal to the sum of the individual one-way hardware-level delays of packets P and Q, and

the processing delay between the reception of the request packet by B and its sending of the

response packet. Certainly, the information on the individual OWDs is lost when measuring

the RTD.

This definition of the RTD can also be relaxed to make it measurement-friendly. It can

instead be defined from a system-level point of view, and extended from simple request-

response packets to almost any pair of packets. For a couple of packets P and Q such

that P was sent from A before Q was received by A2 (see below), the round-trip, one-hop,

system-level delay is simply defined the sum of their individual one-way, one-hop, system-

level delays, tBP − tAP and tAQ − tBQ, without accounting for the processing time tBQ − tBP by

B between the reception of P and the sending of Q. The time elapsed between tBP and

tBQ is not relevant in the general case since P and Q may not be correlated (unlike ICMP

echo request-response, TCP SYN-ACK, etc. where the response is to be sent as soon as the

request is received, and thus the in-between processing time is relevant as it informs about

the response time of the destination host).
2For this definition of the RTD, only chronological order is required when considering a pair of packets

P and Q: no causal dependency (e.g., Q being a response packet to P) is assumed.

40

A B

tAP
tBP

P

tBQ
tAQ

Q

3.1.2 Practical Delay Measurement

The use of ICMP echo probes is the de facto active method for measuring RTDs [70]. It

works by sending a probe echo request ICMP packet and waiting for the destination to answer

with an equal size echo response ICMP packet. The source timestamps the instant when

the request packet is sent and the instant when the response packet is received, and reports

the round-trip time (RTT) as the difference between the two. It accurately measures the

round-trip, end-to-end, application-level delay with no need for time synchronization, and

thus can be used in all cases without relying on external hardware. Other more powerful

tools34 can be used to send upper-layers probes (UDP, TCP, or application-level protocols).

But while actively measuring the round-trip delay does not entail any conceptual diffi-

culty, one-way delay measurement between independent machines is intricately tied to the

problem of clock synchronization [86]. Indeed, in a distributed network, each node has its

own clock and therefore its own perception of time. To measure the one-way delay in such

context, the source and the destination must exchange their timestamps of transmission and

reception in order to compute the appropriate amount of absolute time. We know from

theoretical physics that this is impossible to achieve with perfect precision5. For network
3hping: https://linux.die.net/man/8/hping3
4tcpping: http://www.vdberg.org/~{}richard/tcpping.html
5In his inaugural paper of special relativity [31], Albert Einstein made the observation that only the

round-trip speed of light (and thus speed of any electric or electromagnetic signal) can be measured accurately,
and postulated that in a symmetric trajectory, its value is the same in both directions. Many papers [7] have
later tried (and failed) to find empirical evidence for that assumption. It is essentially the P=NP question
of special relativity.

41

https://linux.die.net/man/8/hping3
http://www.vdberg.org/~{}richard/tcpping.html

delay measurement, this is particularly challenging because the time dissimilarity between

the clocks of different machines (called clock offset) also changes over time, i.e. even if perfect

clock synchronisation is achieved at some instant t, it will be lost at t+ δt despite the clocks

not moving relative to each other. This is due to differences between the clock frequencies

(called clock skew) which are sensitive to physical phenomena (such as hardware heating

[18]) that also change over time. This problem has been extensively studied in the scientific

literature [86], and numerous protocols based on different sets of assumptions have been

proposed to continuously resynchronize clocks of machines connected by LANs or WANs.

The Network Time Protocol (NTP) [64] is the most popular solution for clock synchro-

nization. It organizes machines into a tree-like hierarchy, where the root node is the primary

server which is generally connected to a highly reliable source of time (e.g., an atomic clock)

and which will propagate its time to other nodes of the hierarchy through protocol messages;

other nodes synchronize their clocks to the root server and eventually propagate the time to

nodes in lower levels of the hierarchy. The process reiterates as clocks naturally drift from

each other. At the convergence of the algorithm, each node will be synchronized to its server

with a precision on the order of the network jitter. Thus, in an Ethernet LAN, NTP can

theoretically guarantee precision down to 100 or even 10 microseconds, provided it is given

long enough time to converge.

As applications in distributed systems have become reliant on finer levels of time synchro-

nization, a more powerful protocol was proposed: the Precision Time Protocol (PTP) [30],

also known as IEEE 1588. Just like NTP, PTP organizes nodes into a hierarchy of masters

and slaves (where a node can be both a master and a slave) and uses protocol messages

to exchange time information between nodes of the hierarchy. But unlike NTP, which can

be implemented on any device with a Network Interface Card (NIC), PTP requires special

NICs with integrated time clocks. This allows high-resolution synchronization by relying on

the NIC clocks to timestamp protocol messages, thus avoiding all delays caused by software

42

and operating system-level processing.

In [54], the authors show that with proper configuration of NTP and PTP software in a

local Ethernet network, it is possible to achieve precision on the order of 10 microseconds with

NTP, and on the order of 100 nanoseconds with PTP, without incurring much overhead on

the network. In fact, they show that by synchronizing clocks every 8 seconds with NTP, the

total overhead of protocol messages is 23B/s per client and the one of computing resources

is negligible; and by using PTP, the total network overhead is 186B/s per client, and the

one of computing is also negligible.

The main drawback of active delay measurement methods is the use of probe packets:

the measurement tool injects control packets into the network in order to estimate its delay.

In addition to potentially disturbing the network, these tools only measure the delays of

the probe packets. In Chapter 6 we will propose algorithms and tools for passive delay

measurement of data packets.

43

3.2 Network Tomography

Network tomography [40] is a class of network measurement problems where the objective

is to infer internal performance and characteristics from end-to-end measurements. Such

characteristics can be either static (physical topology, link capacities and lengths, etc.) or

dynamic information about the network (routing, network delay, link loss and usage, etc.).

Depending on the assumptions made about the structure of the network, about the possible

use of network probes, and about the arrangement of vantage points, these characteristics

can be particularly difficult to (completely or partially) infer. This section will present the

different theories underlying network tomography, with a particular focus on the tomography

of delay.

3.2.1 Topology Inference

In computer networks, topology inference designates the problem of determining the struc-

ture and connectivity of a certain network, constituted by a set of end-hosts, internal nodes,

and connecting links. For example, an ISP (or more generally an AS) can wish to infer

the topology of the network of ASes of which it is part from the information received by

its BGP routers [11]. However, in the context of network tomography, the available infor-

mation is constrained to the point of view of the end-hosts: i.e., internal topology must be

inferred using only information collectible in all or a subset of the end-hosts. This additional

constraint makes the problem intractable, and many attempts have been made to propose

active-measurement algorithms to solve it, eventually with minimal overhead to the network

and in a reasonable amount of time.

Traceroute-based Traceroute [59, 12] is a network diagnostics tool that can determine the

path (defined by the intermediate routers) between a source and a destination. It operates by

sending increasing-TTL ICMP (or UDP/TCP) packets to the destination, which get dropped

44

at internal routers who respond with an ICMP Time Exceeded protocol message, effectively

confirming their presence (by their IP address) on the path to the destination. Later works

have critiqued the algorithm for its incorrectness in situations where the path between the

source and the destination is asymmetric, and in the presence of load balancers [13]. These

limitations have motivated the development of more sophisticated approaches, categorised

under the umbrella term of reverse traceroute, the most famous [49] uses IP spoofing to

kickstart the path discovery from the destination. From a network tomography perspective,

Traceroute and derivatives can infer part of the internal topology when used between two

end-hosts.

Large-scale projects have tried to map the Internet using Traceroute from and to multiple

sources and destinations. In the early days of the Internet, the Mercator project [39] has

been successful in carrying that out by augmenting Traceroute with a few heuristics in

the selection of the source and destinations (informed random address probing), and by

incorporating source routing to overcome Traceroute’s bias in only reporting the shortest

path. Skitter [17] is another project that uses Traceroute between multiple source and

destination pairs to determine the overall structure of the network.

The main limitation of Traceroute-based (and more generally ICMP-based) approaches is

that it assumes the cooperation of internal nodes, which must respond to end-hosts’ requests

and messages. As the Internet is growing in size and complexity, internal routers are less

inclined to process certain messages [73]. Many researchers have made this observation and

have worked on new approaches for topology inference. In [58], the authors build on the

previous paradigm but present a heuristic, called Max-Delta, which selects a minimal set of

pairs of end-hosts so as to avoid uncooperative, anonymous routers that do not respond to

Traceroute messages.

Delay-based A later paradigm for topology inference relies on delay measurements be-

tween end-hosts in a network. A very recent study [29] aimed at determining the connectiv-

45

ity of internal links by using higher-delay statistics of end-to-end delay measurements. The

authors describe Möbius inference algorithm (MIA), an algorithm that infers network struc-

ture, defined by a routing matrix (i.e., a correspondence between end-to-end paths and the

underlying links that make them), from cumulants6 calculated on the collected end-to-end

delay measurements.

3.2.2 Delay Tomography

Along with topology inference and bandwidth estimation, many studies have worked on the

problem of measuring the network delay on internal links of a network [22]. The delay has the

particular property of being an additive measure: the end-to-end delay between two vantage

points in a network is the sum of link-level delays over all links of the path [66]. This is

in contrast to other metrics, such as the bandwidth, which cannot always be inferred from

the measured end-to-end throughput. This property has motivated researchers to develop

methodologies and systems to measure internal link delays under certain conditions and

assumptions.

Active delay tomography In [71] and [76], the authors proposed an active measurement

technique based on sending and receiving packets to and from vantage points in a network

whose topology is known. The former study uses multicast probes sent from an end point

(the root of the network’s logical multicast tree) and received by other end points (the leaves

of the tree). Each probe will disseminate in the tree and encounter a delay Dk in any link

k it crosses, where such delays are assumed to be independent. When a packet arrives at

a destination, a measurement of its end-to-end delay is made. Finally, by merging these

measurements it is possible to reconstruct statistically good estimations of the link-level
6In probability theory, the cumulants (κn)n≥1 of a probability distribution are values, similar to its

moments, that fully describe it, in the sense that any two variables having equal cumulants are drawn from
the same probability distribution. The advantage of cumulants over regular moments is their linearity on
independent variables, i.e., the nth cumulant of a sum of two independent variables is equal to the sum of
their nth cumulants.

46

delay distributions Dk.

On the other hand, in [76] the authors used unicast instead of multicast probing. While

they concede that multicast measurements provide more correlated end-to-end measurements

that can produce better estimations of internal link-level delays, the main drawback of such

method is that multicast was in the way of becoming obsolete and more and more routers

simply drop multicast packets, lowering the implementability of any multicast-based solution.

A hybrid approach using multicast and unicast probes was proposed in [53] where unicast

packets were used to fill in information about link delays that are not reachable by multicast

packets.

Passive delay tomography More recent attempts at delay tomography leave out inject-

ing probes into the network and instead rely on purely passive measurements on data packets

from different vantage points, called monitors. The major challenge under such assumptions

is the identifiability problem, i.e. the algebraic difficulty of finding a unique solution (the

delay distributions of all internal links) from a set of end-to-end measurements (data packet

delays between monitors) when such set does not span the entire space of possible paths

[40]. In [56] the authors have focused on the optimal placement of such monitors, i.e. the

selection of a minimum set of vantage points in a network from which passive measurements

can completely and most accurately determine the internal links’ delays.

Delay tomography is also a typical interesting problem in data centres where multiple

virtual overlay networks controlled by different users share the same physical network re-

sources, that the users may wish to infer in order to audit their SLAs. In such setting, the

user can measure overlay-level delays that are mapped over a succession of physical-level link

delays which they wish to estimate. This problem has been formulated in [72] where the

authors have proposed a neural networks-based solution to work around the identifiability

problem. They propose to feed their neural networks with simulated data at the learning

phase, and prove in an emulated scenario that it can reach accuracy down to 10% error of

47

estimation.

Our work is built on similar assumptions: an emulated network which is overlaid on top

of a shared physical network whose links’ loads are to be inferred from delay estimations;

only passive delay measurements are allowed in order not to interfere with the emulation;

and the physical delays must be estimated under the identifiability constraint. However,

as our delay tomography solution is intended for network emulation scenarios, the network

traffics are typically too short to be learned by a learner or a statistical model. We will

instead propose heuristics to work around the identifiability problem.

3.3 Conclusion

The following chapters will present our approach to the monitoring of emulation fidelity based

on the measurement of packet delay, and to the troubleshooting of distributed emulation

failures using network tomography. In this chapter we have given a coarse background on

these problems and presented a few popular and relevant solutions. We will show how they

can be applied to our specific scenarios and present our own adaptations and improvements.

48

Part II

Contributions

49

Posters and Demos

• Houssam ElBouanani, Chadi Barakat, Walid Dabbous, and Thierry Turletti, Fidelity-

aware distributed network emulation, In proceedings of IEEE Conference on Standards

for Communications and Networking (CSCN 2022).

Conference Proceedings

• Houssam ElBouanani, Chadi Barakat, Walid Dabbous, and Thierry Turletti, Trou-

bleshooting distributed network emulation, 26th Conference on Innovation in Clouds,

Internet, and Networks (ICIN 2023).

• Houssam ElBouanani, Chadi Barakat, Walid Dabbous, and Thierry Turletti, Delay-

based fidelity monitoring of network emulation, Testbeds for Advanced Systems Imple-

mentation and Research (TASIR workshop), IEEE 15th International Conference on

Communication Systems and Networks (COMSNETS 2023).

• Houssam ElBouanani, Chadi Barakat, Walid Dabbous, Thierry Turletti, Passive delay

measurement for fidelity monitoring of distributed network emulation, In Proceedings

of IEEE 20th Mediterranean Communication and Computer Networking Conference

(MedComNet), Ibiza, Spain. Jun. 2021.

Journal Papers

• Houssam ElBouanani, Chadi Barakat, Walid Dabbous, and Thierry Turletti, Passive

delay measurement for fidelity monitoring of distributed network emulation, Elsevier

Computer Communications Journal (COMCOM), volume 195, pages 40-48. Nov. 2022.

50

CHAPTER 4

SCALABLE DISTRIBUTED NETWORK EMULATION

We have previously argued that while emulation overcomes some limitations of both tradi-

tional testbeds and simulation methods, it does not offer a perfect, fault-free service. In par-

ticular, we have identified two problems that limit the performance of modern virtualisation-

and containersation-based network emulators: scale and accuracy. In this chapter, we will

examine how the former is not yet fully overcome in practice by distributed emulation. We

will present the case of Distrinet, which is proved to be the most scalable Mininet-like emu-

lator, and build a new lightweight distributed network emulator from our proposed solutions

to Distrinet’s limitations.

4.1 The Case Against Distrinet

4.1.1 Design Flaws

Total Compatibility with Mininet One of the key features of Distrinet (Chapter 2) born

out of its design requirement to be perfectly compatible with Mininet, is its implementation

with Mininet’s API. The rationale behind such choice is to appeal to users who are already

familiar with the original emulator’s interface, and not to burden them with learning a new

API. While this has been a noble ambition, the fact of the matter remains that Mininet’s

API is only suitable for a laptop setting and was never meant to work perfectly in distributed

settings. In particular, Mininet provides its users with a shell-like interface through which

they can run commands in any emulated end-host or networking node they wish, in addition

to new Mininet-specific commands for network management. In single-machine settings,

this is straightforward as commands can be simply redirected to their destination’s network

namespace1. In distributed settings, however, the commands need to be sent to the desti-
1In Linux, to run a command cmd in a namespace ns, one simply has to run ip netns exec ns cmd

from the root namespace.

51

nation containers for execution. Distrinet achieves this by creating a management network

(Figure 2.5) that connects all running containers to the client through the master machine,

and by maintaining open SSH sessions with each container. This approach incurs significant

cost in terms of:

• Number of open SSH connections: for each running container one SSH session needs to

be maintained. This impacts scalability as Linux imposes a hard limit on the number

of simultaneously open SSH connections;

• Number of open files: for each running container, multiple Linux files need to be kept

open, both for the SSH session and for the shell-like interface. This also impacts

scalability as Linux imposes limits on the number of open files.

Heavyweight Containers A second design choice made by the creators of Distrinet is the

use of a natively-supported, open-source containerisation solution: LXC (Linux Containers).

This Linux-supported technology offers more isolation at the cost of more resource usage.

In particular, LXC provides system containers, which are different from regular application

containers in that the latter achieve the illusion of isolation by running applications (and

the libraries on which they rely) on virtual environments that use the host machine’s Linux

kernel. Application containers are additionally offered their own network stack, their own file

subtree (rooted somewhere in the host’s tree), and their own share of the machine’s resources.

On the other hand, system containers are closer to regular virtual machines, as each container

runs its own operating system, while sharing only a minimal part of the host’s kernel. This

makes the LXC containers quite heavyweight: they consume more, and need more time to

be deployed and stopped. On a related note, LXC is not the most popular containerisation

tool and is therefore less often improved and does not benefit from supporting technologies

(such as Kubernetes, Swarm, OpenShift for Docker).

52

Containerised Virtual Switches Another important feature of Distrinet is the isolation

of virtual switches inside their own containers. Unlike its ancestor and its competitors,

Distrinet was designed with the choice to run virtual switches in isolated environments

similar to the emulated end-hosts. This is unfortunately a double-edge sword: while it lets

emulated networking nodes be isolated and thus specific amounts of resources be allocated,

it incurs containerisation overhead and elongates the path to and from the switches’ ports.

4.2 Bignet: a Scalable Distributed Network Emulator

From the observed flaws of Distrinet and its predecessors we build Bignet: a new distributed

network emulator capable of overcoming the former’s limitations. The remainder of this

chapter will lay out its design principles and introduce the blueprints of a lightweight first

implementation. The section will end with a comparison against Distrinet and demonstration

of our solution’s performance.

4.2.1 Design and Implementation

Lightweight Containers Bignet’s main technological difference compared to Distrinet is

its use of lighter containers. Although far from being the micro-containers used by Mininet

to emulate end-hosts, the containers used by Bignet still consume less resources (computing,

memory, and storage) compared to other distributed emulators that rely on heavy containers

and/or virtual machines. This important technological shift increases scalability both by

optimising resource usage and by reducing the amount of time needed for starting and

stopping the containers. These Bignet containers can be prepared beforehand as images,

and can be tailored for the emulated scenario and for each individual host.

In particular, Bignet uses Docker [16] to create application containers that emulate end-

hosts. This lets users prepare the end-host’s configuration and their software into Docker

images which will be deployed for the corresponding emulated hosts. As for virtual switches

53

and other networking nodes, they are by default run directly on the physical machines to in-

crease performance and scalability by reducing overhead, with the option to be containerised

as in Distrinet if the user wishes for more isolation.

API Another distinctive characteristic of Bignet compared to other emulators is the devi-

ation from Mininet’s requirement for an interactive interface. Instead, Bignet focuses on a

scripted scenario API: the user writes in great details the flow of events in scripts that the

emulator will run non-interactively. By breaking off from this restrictive assumption, Bignet

can be implemented without the need for a shell environment and live connections to the

containers –which would need to stay open during the emulation regardless of whether or

not commands are sent for execution. We acknowledge that this limits any potential use of

our emulator for educational purposes, but it consequently focuses its abilities on large-scale

research-oriented emulation. Thus more attention is given to such application, by providing

additional routines for non-interactive actions on the containers (asynchronous commands,

file download from and upload to the containers, etc.)

In addition, connection to the containers is not achieved by a management network.

Instead, all sent commands and all received results and files go through the hosting machines

which act as gateways. Specifically, Bignet only maintains SSH sessions with the physical

machines, which are in charge of forwarding instructions to the containers via docker exec

commands (Figure 4.1). This is an important key point and is essentially what makes Bignet

much more scalable than Distrinet.

Mapping Bignet does not innovate in the emulated network mapping aspect of distributed

emulation. Instead, it implements basic algorithms (random and round-robin mapping) as

well as the optimised heuristics developed by Distrinet’s authors. It also offers an interface

for implementing new mapping algorithms, potentially ones custom-made for the desired

emulated scenario.

54

Figure 4.1: Command execution in containers in Bignet (left) and Distrinet (right). In
Bignet, workers act as gateways to their hosted containers via the DOcker API (dashed
yellow lines), which significantly reduces the number of open SSH sessions (red lines).

4.2.2 Performance Evaluation

In this section we present a series of performance evaluation tests to compare key performance

indicators between Bignet and Distrinet. In particular, we show how the minimalist design

and implementation of Bignet –particularly with regards to how virtual switches are not

containerised and how the datapaths are somehow optimised– allows it to sustain larger

emulated networks with more traffic and less delay.

Delay and Throughput To compare traffic emulation performance between Bignet and

Distrinet, we conduct the following experiment on a single host2: a server sends a heavy

TCP flow to a client through a variable-length network of cascading switches. All links

are emulated with neither limits on bandwidth nor simulated delay, essentially to show the

maximum speed and size of traffic that the emulated switches can forward. For each number

of intermediate switches, we monitor the average throughput as well as the minimum delay

over a 100-seconds long TCP flow.

Figure 4.2 shows the results. We can see how Bignet achieves (on average) more than

Distrinet in terms of maximum throughput, and less in terms of delay. We also observe
2All experiments were conducted in the UVB cluster of Grid5000’s Sophia site. More information about

its hardware can be found at https://www.grid5000.fr/w/Sophia:Hardware.

55

https://www.grid5000.fr/w/Sophia:Hardware

Figure 4.2: Maximum achievable throughput and minimum possible delay (y-axis) in a
topology of many cascading switches (x-axis) emulated using Bignet and Distrinet.

that the gains in performance increase and the supremacy of Bignet gets more statistically

significant as we add more switches, up to 1 Gbps more throughput and 15 microseconds less

delay for a network of 10 intermediate switches. These gains in performance are mainly due

to Bignet’s shorter emulated data paths as the virtual switches run directly on the physical

machines and do not need to be isolated inside their own containers.

Scalability The most important goal behind the development of this new lightweight dis-

tributed network emulator is to overcome the observed scale limits of Distrinet. To show

how this has indeed been achieved by our shift from Distrinet’s original design principles and

implementation technologies, we perform another experiment: we emulate a variable-length

linear topology3 on a cluster of 10 machines using the same round-robin mapping algorithm4.
3Mininet’s famous linear topology is a cascade of n switches where one end-host is connected to each

switch. A linear topology with parameter n therefore totals n switches, n end-hosts, and 2n− 1 links.
4The round-robin mapping algorithm distributes the emulated end-hosts and switches by cycling through

the set of available hosting machines. In other terms, in an infrastructure of N machines, switch i and end-
host i will be mapped to physical host i+ 1 mod N .

56

Figure 4.3: Startup time of variable-length linear topologies emulated using Bignet and
Distrinet.

In this experiment, the key performance indicator is the start-up time, defined as the time

required for all the nodes of the emulated network to start running, and which is considered

infinite if it exceeds one hour or if the emulator fails to set-up the emulation and halts.

Figure 4.3 shows the results. Indeed, Bignet proves to be faster in setting-up the emulated

networks for all sizes, and can set up networks of more than 2000 nodes (1000 end-hosts and

1000 switches), while Distrinet stops at less than 60 nodes (n = 30).

4.3 Conclusion

In this chapter we have presented Bignet: a lightweight distributed emulator inspired from

Mininet (and particularly its distributed version Distrinet). Bignet is the result of a shift from

Distrinet’s design constraints and technological choices, and which trades off abstract values

(compatibility with Mininet, use of Linux-native tools) for concrete increases in scalability

and performance. We have shown that Bignet performs better than the most comprehensive

57

Mininet-like distributed network emulator in terms of traffic speed and deployment scale.

Bignet is not aimed at replacing Distrinet but only serves as a proof-of-concept to demon-

strate how it could be improved to achieve its original goals: performance and scalability.

In the next chapters, we will discuss the problem of emulation accuracy and will propose

a framework for fidelity monitoring of network emulation. This will culminate in Hifinet

(High-fidelity networks), an enhanced version of Bignet that implements the designed fi-

delity framework.

58

CHAPTER 5

FIDELITY MONITORING OF NETWORK EMULATION

In this chapter, we will present a theoretical framework for assessing the fidelity of network

emulations, both single-machine and distributed. The end goal of such preliminary work

is only to mitigate the inherent limits of realism by informing the user whether emulation

failures during the experiment may have negatively impacted the results and, subsequently,

whether the results should be discarded. We will first provide a conceptual and operational

definition of emulation fidelity, then derive an axiomatic approach to fidelity monitoring

through passive delay measurement, and finally conclude with examples of potential obstacles

to emulation fidelity that our approach can detect.

5.1 Emulation Fidelity

Similar to network simulation, we have mentioned in the previous chapters that limited

realism is one of the main issues with emulation. The understanding is that both of these

paradigms only implement simplified models of the network environments they wish to repli-

cate, and thus may leave out features and details which are assumed to be irrelevant but

which can impact the experimented scenario and ultimately alter its results. In principle, the

researcher is responsible for the results that the network emulator produces, and the burden

of carefully and cautiously analysing the entire emulation process falls on them. However, as

research becomes more and more specialised and siloed, the researcher may not possess the

necessary technical knowledge about every component of the network and how it is emulated.

Thus in practice, interpretation of emulation results is not properly conducted as separating

emulation bias from experiment results is not easy. Hence the need for a framework to help

evaluate the output.

59

5.1.1 Definition

Intuitively, fidelity (or realism) in the context of simulation and emulation is a measure of

the quality of modeling and replication of networks and their components. However, it is a

challenge to sketch a rigorous definition that is both conceptual –giving an abstract frame to

reason about the concept of fidelity and its relationships to other concepts, and operational

–allowing practical use in measurement and monitoring.

In the introduction, we have stated that empirical evaluation of any algorithm, protocol,

architecture, or technology in the fields of computer networks and distributed systems re-

quires testing it in the environments where it is intended to be implemented. But as we have

argued, this is hardly ever possible, and researchers may instead need to resort to software

solutions that provide facsimiles of real environments. For instance, in the case of network

emulation, the evaluation of a certain solution A on a network N (whose results are denoted

as A(N)) can be substituted by the evaluation of A on an emulated network N ′. If we as-

sume that there is a comparison function d that compares the results A(N) and A(N ′) (e.g.,

statistical metrics that compare values against ground truths such as precision and recall),

then emulation fidelity can be viewed as a function ϕ that compares N and N ′ and which is

positively correlated with d, i.e.,

ϕ(N,N ′) ≥ ϕ(N,N ′′) =⇒ d
(
A(N), A(N ′)

)
≥ d

(
A(N), A(N ′′)

)
,

for any two emulated networks N ′ and N ′′ from a real network N , and for any solution A

implemented on N , N ′, and N ′′. Although such a definition of fidelity captures all intuition

about the concept, as it would measure the similarity between a real network and its software

replica, it is very difficult to implement in practice, and thus is not operational as we wish it

to be. We will characterise any such definition as being noumenal 1 , because it evaluates the
1Our use of noumena and phenomena is analogous to kantian metaphysics [48], where a noumenon

captures a thing-in-the-world in-itself, i.e. its essence independently of human perception, and where a

60

similarity between the objects (real and emulated networks) in themselves, independently of

any higher level behaviour (in particular as perceived by implementing solutions A).

Conversely, a weaker definition of fidelity could instead only consider certain aspects of

the real and emulated networks, which are perceived as phenomena by the user and which

can be modeled, measured, and compared to assess similarity. Essentially, this technique

projects the networks onto a plane of measurable phenomena that do not capture their full

essences but that contain enough information to evaluate their resemblance to some degree.

Thus any such definition of fidelity will be characterised as being phenomenal. As well

as being conceptual definitions, these definitions also possess the additional advantage of

being operational by design, as they can be measured and monitored exactly through the

set of phenomena around which they are defined. The next paragraphs will present various

phenomenal evaluations of fidelity.

5.1.2 Phenomenal Assessment of Emulation Fidelity

Phenomenal fidelity can be defined by choosing a subset of metrics from a large set of mea-

surable phenomena. Some are specific to the solution A and the experimented scenario: if

the experiment involves large flows, for instance, the user can monitor the network through-

put and make sure that it fully uses and does not exceed links’ bandwidths; if A uses TCP,

they can monitor the evolution of the congestion control parameters (receiving window and

congestion window); etc.

On the other hand, and knowing that network emulation is defined by the simulation of

the hardware and of the communication media, it is sufficient to only consider these com-

ponents for the evaluation of fidelity. We can thus choose network phenomena that directly

manifest their behaviour. These network phenomena are especially convenient because they

are universal, as they do not depend on the solution A and the experimented scenario, and

phenomenon is the projection of the thing-in-the-world onto the human mind and its a-priori features of
perception (e.g. abstraction, causality, space, and time).

61

Figure 5.1: Noumenal fidelity evaluates the conformity of the emulated network to the real
network, while phenomenal fidelity evaluates its conformity to a phenomenal model defined
by aspects and metrics that are observable and measurable.

62

do not particularly raise challenges in their implementation. They are the link bandwidth,

the packet loss, the packet ordering, and the packet delay.

To better define fidelity with regards to these phenomena, we first consider a phenomenal

model of a network, defined as a set of unidirectional links (the communication media). Each

link is defined by:

• Two ends (1) (transmission) and (2) (reception);

• A bandwidth B, a propagation delay π, and a loss rate λ;

• Three finite sets of packets P0, P1, and P2, containing the generated (from the upper

layers), transmitted, and received packets respectively, and such that P2 ⊆ P1 ⊆ P0,

additionally equipped with a size operator | · |, and such that:

|P0| − |P1|
|P0|

= λ; (5.1)

• Two clock functions t1 : P1 → R+ and t2 : P1 → R+ ∪ {∞}, giving the timestamps of

enqueuing of packets at the transmission and receiving at the reception, with t2(P) =

∞ for all packets P /∈ P2;

• A function δ : P1 → R+ associating to each packet P its delay δ(P), and which must

satisfy the recursive formula for any two successively transmitted packets Pi, Pi+1 ∈

P1:

δ(Pi+1) = π +
|Pi+1|
B

+max
[
0, δ(Pi)− π − (t1(Pi+1)− t1(Pi))

]
. (5.2)

The last equation is essentially a recursive formulation of the delay model presented in

A.1. It states that the delay of a packet Pi+1 is the sum of its propagation delay π along

the link and its transmission delay by the hardware if it is not to wait in the queue; and

otherwise is equal to the sum of its transmission delay, the total delay of the previous packet

63

Figure 5.2: Queuing, transmission, and reception of two successively sent packets Pi and
Pi+1 in two cases: packet Pi+1 is not queued (left); and Pi+1 waits in the queue before
transmission (right).

Pi minus the duration of time that the previous packet has spent in the queue before Pi+1’s

arrival (see Figure 5.2).

Link bandwidth Link bandwidth is one of the most basic link-level network phenomena

to monitor in order to assess the accuracy in emulating a wired communication medium, and

by extension the fidelity of network emulation. Without knowledge about the rate at which

packets are generated and prepared for transmission by the link, it is not possible to verify

that the link capacity is fully utilised at all times. However, it is possible and easy to check

that said capacity is not exceeded. In our phenomenal model of the network link, this can

be formulated as follows:

Definition 1. An emulated link is said to be bandwidth-accurate if, for any two

successive packets Pi, Pi+1 ∈ P1,

t2(Pi+1)− t2(Pi) ≥
|Pi+1|
B

,

which essentially ensures that no two packets are received faster than the bandwidth permits.
64

The examples in Figure 5.2 show the case of equality (right) and strict inequality (left).

Packet loss Packet loss is another basic link-level network phenomenon that can be moni-

tored for link accuracy assessment. One may simply count the ratio of lost packets (generated

but not received) and compare it to the loss rate of the emulated link. In our model, this

can be formulated as:

Definition 2. An emulated link is said to be loss-accurate if

|P0| − |P2|
|P0|

= λ.

Note that such formulation is ideal as in practice the ratio can, at best, only approach the

configured loss rate as the size of P1 approaches ∞. Another important caveat is that only

losses due to the unreliability of the communication medium should be accounted. In other

words, any loss due to congestion should be recognised separately.

Packet reordering Our phenomenal model of the link also allows packet reordering to be

a metric through which link emulation accuracy can be assessed:

Definition 3. An emulated link is said to be order-accurate if, for any two packets

Pi, Pj ∈ P1,

t1(Pi) < t1(Pj) =⇒ t2(Pi) < t2(Pj),

which ensures that packets are always received in the order in which they are transmitted.

Packet delay The last metric our phenomenal model can define is delay accuracy. Its

definition within our model is straightforward:

65

Definition 4. An emulated link is said to be delay-accurate if, for any packet P ∈ P1:

t2(P)− t1(P) = δ(P).

5.2 Delay-based Fidelity Monitoring

The previous definitions of link emulation accuracy can be seen as different phenomenal

aspects of emulation fidelity of communication media. The four metrics can be monitored

separately or jointly to provide evidence of good phenomenal fidelity, but they are in fact

loosely correlated. Indeed, we will prove in this section that the delay is the finest of the four

phenomena, in the sense that it captures information contained in the others, and develop

our fidelity monitoring framework around it.

Definition 5. A phenomenon X is said to be finer than a phenomenon Y if X-accuracy

necessarily ensures Y -accuracy.

Properties 1. 1. Delay is finer than bandwidth.

2. Delay is finer than order.

3. Delay is finer than loss.

Proof. 1. Suppose that an emulated link is delay-accurate. Let Pi and Pi+1 be two

successively transmitted packets. From 5.2, we have:

δ(Pi+1) ≥ π +
|Pi+1|
B

+ δ(Pi)− π − (t1(Pi+1)− t1(Pi)),

66

which simplifies to:

δ(Pi+1)− δ(Pi) + (t1(Pi+1)− t1(Pi)) ≥
|Pi+1|
B

.

Since the link is delay-accurate, we also have:

t2(Pi+1)− t2(Pi) = δ(Pi+1) + t1(Pi+1)− δ(Pi)− t1(Pi),

and therefore

t2(Pi+1)− t2(Pi) ≥
|Pi+1|
B

which concludes the proof.

2. To prove that delay is finer than order, it is sufficient to prove that the order is not

broken for pairs of successive packets. Suppose that a link is delay-accurate and let Pi

and Pi+1 be such a pair. From property (1), we know that the link is also bandwidth-

accurate, and thus

t2(Pi+1)− t2(Pi) ≥
|Pi+1|
B

> 0,

which concludes the proof.

3. Suppose that a link is delay-accurate. Loss-accuracy is equivalent to proving that all

losses occur between generation and transmission and that no additional packet is lost

between the transmission and reception, i.e. P1 = P2. Let P be a packet in P1. Since

the link is delay-accurate,

t2(P) = t1(P) + δ(P) <∞,

and thus t2(P) is well defined in R+ which, from our model, supposes that P ∈ P2

and concludes the proof.

67

These proofs show that all the considered network phenomena can be brought down to

delay, which triumphs as the finest metric for link emulation accuracy –and thus network

emulation fidelity– evaluation. Although this has only been formally proven within the frame

of our approximate theoretical model, it demonstrates a broader truth: that all link-level

network phenomena are ultimately features of time. Packet reordering can be understood

as an inconsistency in the timestamps recorded by the two ends of the link; packet loss as

infinite delay; and even bandwidth can expressed in terms of time. Knowing this, the delay

imposes itself as the supreme criterion for phenomenal evaluation of fidelity.

The corollary of all the above reasoning is that delay is a good network metric on which

we can build a definition of phenomenal fidelity. In principle, it is both conceptually and

operationally valid. But in practice, however, it is difficult, and arguably impossible, to

judge fidelity based on the ideal equation between timestamp difference and modeled delay.

Neither emulators nor systems of measurement can achieve such perfection. Thus we first

redefine delay-accuracy to allow some margins of inevitable error:

Definition 6. Let γ, ϵ ∈ (0, 1). An emulated link is said to be (γ, ϵ)-delay-accurate, or

probably approximately delay-accurate with parameters (γ, ϵ) if, for any packet

P ∈ P1 and with probability at least 1− γ,

|(t2(P)− t1(P))− δ(P)| ≤ ϵ.

In higher-level terms, the principle can be formulated as the following criterion:

Criterion 1. For an emulation to have good fidelity, the deviation of the measured

delays from the model delays of a sample set of packets throughout the duration of the

experiment should not be too large.

68

The criterion for fidelity raises important caveats regarding its implementation that we

will discuss individually in the next chapter. The following section, last in this chapter, will

be dedicated to citing examples of fidelity failure that manifest in the packet delays.

5.3 Typical Sources of Delay Emulation Error

In this section we show three typical causes of delay emulation error, either due to an inherent

design of the emulators, or to the hardware in which they are intended to run. The first

is the overload of computing resources that has been extensively studied about Mininet

in the literature; the second is Mininet and its variants overlooking by default the precise

emulation of the transmission delay; and the third is the additional delay caused by the

physical network infrastructure in the case of distributed emulation.

5.3.1 CPU overload

Many previous studies have focused on the impact a lack of computing resources and their

contention can have on Mininet’s fidelity and effectiveness [65]. It is indeed reasonable

to expect that multiplexing multiple, and often very numerous, virtual hosts and network

nodes on top of the same, often limited, computing resources can have a negative impact

on accuracy. Thus, any user who relies on emulation to run experiments and to measure

performance indicators (network throughput, delay, etc.) must be careful while emulating

computing- and traffic-intensive scenarios.

To demonstrate how much an overloaded CPU affects the emulated network delay, we

emulate the following simple network in a distributed emulator (Figure 5.3): two virtual

hosts H1, H2 are connected by a cascade of N > 1 virtual switches S1, ..., SN , where all

links are configured with a capacity of 1 Gbps and a propagation delay of 1 ms. The virtual

hosts are located in one physical machine, and the switches in a second. On this emulated

testbed we run two scenarios: in a first scenario the virtual hosts simply exchange small

69

size (90 bytes) ICMP echo request/reply packets at a rate of 10 packets per second; while

in the second scenario, H1 also sends a heavy Iperf2 TCP flow to H2. We also run each of

these scenarios in two different settings: in a first setting only the emulator threads and basic

background kernel functionalities are running (low CPU load); while in the second setting we

run CPU- and memory-intensive user processes to overload all cores of the machine hosting

the virtual switches. The objective of such a design is to see how the lack of computing

resources negatively impacts the emulation of networking components (switching nodes and

network links) even when the applications that generate the packets (Ping and Iperf) run

smoothly in a separate host. Our performance indicator of interest is the round-trip time

(RTT) reported by Ping, which corresponds to the round-trip application-level delay between

virtual hosts H1 and H2.

Figure 5.4 shows the results. Under low CPU load, the RTTs linearly increase with the

number of intermediate switches as each link adds 1 ms of propagation delay in each direction,

as well as a relatively low queuing delay in the presence of Iperf traffic. However, when the

virtual switches and the emulated links experience low amounts of available CPU resources

and memory bandwidth, the results are a very high increase in reported delay, especially

when parallel network traffic is emulated. These results are not unexpected, but such a

large impact of resource shortage, especially on delay emulation, has not been appropriately

documented in the literature.

5.3.2 Non-emulation of Transmission Delay

Another source of emulation inaccuracy of Mininet and its derivatives is how they overlook

the correct emulation of the transmission delay of packets. Indeed, while Mininet can use

TC-Netem to delay packets by a fixed (or random) value, it does not do so based on their

sizes, which is the distinguishing feature of the transmission delay. Instead, as it relies on the
2Iperf3: https://iperf.fr/

70

https://iperf.fr/

Figure 5.3: Emulated testbed. The virtual hosts H1, H2 and the virtual switches S1, . . . , SN
run on two different physical machines.

Figure 5.4: Reported Ping RTT vs number of virtual switches N .

71

Hierarchical Token Bucket (HTB) [24], Token Bucket Filter (TBF) [52], and Hierarchical Fair

Service Curve (HFSC) [78] scheduling and queuing models, the service time is incurred on

subsequent packets and not on the head-of-line packet itself. This error is harmless enough

for the emulation of high-speed networks (less than a millisecond for regular-sized Ethernet

packets in 100 Mbps and 1 Gbps links), but it can give biased results in low-bandwidth

scenarios where the application-level QoS depends on the variation of the delay between

packets. Thus the user must go beyond the available API to implement transmission delay

if they need it in their emulation.

To see this error in practice, we emulate the same simple network as above: two hosts

connected to two switches that are linked through one 10 Mbps link of 1 ms propagation delay.

We then simply send ICMP echo request/reply packets of different sizes (1000 packets per

size) at relatively large interarrival times (i.e., at a rate much lower than the link’s capacity

in order to avoid queuing) from one machine to the other, and log the measured packets’

delays. These delays are measured at the application-level. Figure 5.5 shows the results. We

can clearly visualize how the measured delay does not increase with the sizes of the packets:

in fact their Pearson correlation coefficient is less that 5%. This non-consideration of the

transmission delay can cause delay differences up to 2.2 ms for a pair of 1500 bytes packets

on one single link.

However, it is possible to make use of mechanisms already available in TC-Netem to

correctly emulate this missing delay. We propose a Mininet patch 3 to integrate this func-

tionality. Figure 5.5 shows how using this patch can correct the error (the green curve).

Note that the "expected delay" does not take into account system delays that are included

in the "measured delay", hence the constant gap between the orange and green curves.
3https://github.com/distrinet-hifi/mininet

72

https://github.com/distrinet-hifi/mininet

Figure 5.5: The blue line represents the average measured RTT and its confidence interval
(y-axis) over all pairs of packets of same total size (x-axis) in the scenario emulated using
the current official version of Mininet; the green line plots the average measured RTT and its
confidence interval using the patched version of Mininet; the orange line plots the expected
RTT using the model given in equation (A.1). The confidence intervals are invisible due to
the small variance and the large number of the measurements.

73

5.3.3 Physical Network Delay

In the case of distributed emulation, computing resources are not much of an issue, as users

can simply scale up their hosting infrastructure by adding more machines. However, in such

settings the infrastructure network adds delay to the links that are emulated over it. This

delay manifests itself in two ways which cause two different types of errors:

• The first type of error is due to the additional delay added to all the packets of a

virtual link emulated over the infrastructure network. For example, on a virtual link

connecting two switches emulated in two different machines separated by a physical

network, all the packets will be delayed according to the propagation delay and the

transmission speed of the virtual link, as well as according to those of the physical

network. While the former is the correct delay to be expected, the latter is undesirable

noise. The value of this error depends on the characteristics of the physical network,

and can reach a few milliseconds in regular cluster networks. This again might seem

negligible, but it can easily add up to tens or hundreds of milliseconds for large diameter

emulated networks which is enough to cause abnormal behaviour and thus lead to

biased results for scenarios involving delay-sensitive applications;

• The second type is due to the multiplexing of the virtual links by the infrastructure

network that it hosts: as packets from different links share the same medium and the

same queues to access that medium, they mutually add delay to each other. Consider

for example a scenario where two virtual links with equal bandwidth of 500 Mbps share

the same physical link of 1 Gbps capacity. Normally, packets from the same virtual link

are first queued in the virtual interface which has a speed of 500 Mbps, and therefore

should never be queued at the faster physical interface. However, because there is

another virtual link emulated over the same physical link, queuing will inevitably

happen, which will add considerable delay to packets and bias the emulation. The

network embedding algorithms make sure not to emulate over physical links multiple
74

virtual links with total bandwidth exceeding the underlying physical capacity, but

mutual added delay can reach high values even when this constraint is satisfied.

5.4 Conclusion

In this chapter we have presented and theorised the notion of emulation fidelity, which

intuitively measures the similarity between real and emulated networks. We have argued

that this notion can be defined either by considering the inherent characteristics and features

of the networks in themselves, giving us the concept of noumenal fidelity ; or by considering

their higher-level operation and behaviour which can be observed and measured by a human

user, defining the concept of phenomenal fidelity. We have argued that the latter provides

both a conceptual and operational definition of fidelity, which we have attempted to define

by contemplating a set of communication media-level network phenomena: link bandwidth,

packet loss, packet order, and packet delay. Using a symbolic formalism, we have laid down

the relationships between these phenomena and concluded that the packet delay is the finest

metric for emulation fidelity. As a result, we have built a theoretical framework for delay-

based fidelity monitoring, whose implementation will be discussed extensively in the next

chapter.

We have also presented three typical sources of emulation infidelity, which manifest as

errors in the emulation of packet delays. These failures can be categorised into two classes:

failures due to hardware infrastructure (contention and underlay communication media), and

failures due to design flaws (improper emulation of network delay).

75

CHAPTER 6

IMPLEMENTING FIDELITY MONITORING OF NETWORK

EMULATION

The last chapter served as a preliminary and theoretical presentation of our framework

for emulation fidelity and its monitoring by looking at emulated packets’ delays. We have

broadly defined what fidelity is and argued that packet delay is its best measure among a set

of other phenomenal metrics. This has resulted in Criterion 1 which postulates a necessary

condition for emulation correctness.

6.1 Delay Measurement for Fidelity Monitoring

To implement passive delay measurement in distributed emulated networks which can gener-

ate and transport high speed, low latency traffic, is a complicated task due to requirements

for low overhead and high precision. Indeed, to monitor the fidelity of emulation, com-

paring passively measured packet delays to their model values must be accomplished with

surgical precision and without interfering with the emulation itself. This raises three im-

portant challenges: packet identification, clock synchronisation between hosting machines,

and packet sampling. In this section we tackle these prolegomena before moving on to the

implementation of our framework.

6.1.1 Packet identification

Identifying packets is necessary for passive delay measurement. In order to measure any

type of delay, timestamps at both ends of the link have to be matched to compute the

delay. Ideally, the packets can be identified by their order, i.e. the first packet sent from

a source A to a destination B corresponds to the first packet received at the destination

B from the source A. But as packets can be lost or arrive unordered, especially when the

76

link is mapped on top of a complex underlay infrastructure, more sophisticated mechanisms

have to be implemented. Another straightforward solution is to tag all packets, either by

a unique packet ID, or even directly by adding the packet timestamp to its header at the

source. However, this requires unnecessary modifications to the operating system’s network

module, and can incur non-negligible network overhead at scale.

In our context of distributed network emulation, all packets are encapsulated in UDP

datagrams as soon as they leave the emulated host (Distrinet and Bignet use VXLAN while

Mininet Cluster Edition and Maxinet use GRE). We can therefore safely make the assump-

tion that all packets are IP packets, and for each flow of packets sent from a certain source

to a certain destination, use the native ID field of IP as identification tag. Unfortunately,

this still has two major obstacles: the ID field in IP headers is shared between all fragments

of a long packet and is encoded on 16 bits only which can lead to collisions. The first limi-

tation can be managed by considering the pair (ID, Fragment Offset) as identification tag;

the second limitation is trickier since packets with the same ID from the same source can

arrive unordered. However this generally does not happen very often, but to make such

assumption, we must ensure that packets take less time to get to their destination than it

takes for their source to circle through the range of possible packet IDs (encoded in 16 bits).

Formally, the assumption holds when ∆ < 216τ , where ∆ is an upper bound on the network

delay, and τ is the average interarrival time of packets (equal to the average packet size over

the bandwidth). It is generally the case because longer links (i.e. larger delay) correlate with

lower bandwidth (i.e. larger interarrival time). For example, the delay in a 1 Gbps link can

be as high as 300 ms without violating the assumption.

Figure 6.1 shows how the assumption works in practice. In this example, (1) has sent

two packets Pi and Pj with the same ID x and recorded their timestamps ti and tj . Pj

got lost and the other end (2) only received packet Pi at time ti + δ. As such, (1)’s records

database is {(x, ti), (x, tj)} while (2)’s only contains {(x, ti+ δ)}. In the worst case scenario,

77

Figure 6.1: A link whose ends are (1) and (2) is used to transmit two packets Pi and Pj , the
former arrives at its destination while the second got lost.

(1) has been sending packets of average size s at full speed B (resulting in an average inter-

packet time τ = s
B) and has thus circled through the space of IDs in an interval 216τ , i.e.

tj = ti + 216τ . The objective is to decide which packet in (1)’s database has been lost, and

to do that we need to analyse the timestamps using the assumption:

ti + δ ≤ ti +∆ < ti + 216τ = tj .

Hence ti < ti + δ < tj , and therefore (2) can correctly conclude that (x, ti + δ) corresponds

to (x, ti) while (x, tj) has been lost.

6.1.2 Passive delay measurement and time synchronisation

Passive OWD measurement In this section we study the extent to which it is possible

to passively measure the one-hop one-way delay (OWD), i.e., the delay of data packets ex-

changed between two ends of a link which may be hosted on two different underlay machines.
78

The approach is described in 1, where we simply log packets and their timestamps at both

ends, then use our previous assumption to match the two databases.

Algorithm 1 Passive OWD measurement algorithm.
Require: packet dumps from (1) and (2): dump_1 and dump_2

initialise arrays OWD_12 and OWD_21
for (packet_ID, timestamp_1) in dump_1[outgoing] do

lookup matching (packet_ID, timestamp_2) in dump_2[incoming] with the closest
timestamp_2
owd ← timestamp_2 − timestamp_1
add (packet_ID, owd) to OWD_12

end for
for (packet_ID, timestamp_2) in dump_2[outgoing] do

lookup matching (packet_ID, timestamp_1) in dump_1[incoming] with the closest
timestamp_1
owd ← timestamp_1 − timestamp_2
add (packet_ID, owd) to OWD_21

end for
return OWD_12, OWD_21

However, as we have previously argued, great attention should be given to time syn-

chronisation. Indeed, it is practically impossible to accurately measure the OWD in a link

hosted in two machines with different clocks. Consider for example the plots in Figure 6.2.

We show the OWDs of generated ICMP packets measured by our method with no clock

synchronization for a large number of ICMP packets sent with a 1 ms interval (large enough

to avoid queuing, thus in theory all packets should have equal delay). We can clearly see how

the two machines’ clocks drift over time, how this drift affects the measurement of the OWD,

and how it is difficult to predict it as it also changes over time. In general, the clock skew

depends on uncontrollable physical phenomena (e.g., hardware heating [18]) which cause

clock offset between the machines that changes in a non-linear fashion. Note also how in this

example the clocks largely drift over a relatively short period of time (17 milliseconds in a

100 seconds-long run), making the noise caused by the clock offset hide all the information

from the actual network delay.

Nevertheless, running NTP with configuration parameters described in [54] on the testbed
79

Figure 6.2: Measured OWD between two ends in two machines before clock synchronization.

almost perfectly solves the problem. At the convergence of the NTP process for clock syn-

chronisation and frequency stabilisation, the clock offset and skew are almost neutralized

and our method starts reporting good results. We can see this in Figure 6.3, where we report

on the results of our method after NTP has stabilised: at convergence of NTP, the standard

deviation of the measured OWD is less than 10µs.

Passive RTD measurement The OWD measurement method gives accurate results only

if the end hosts’ clocks are highly synchronised. While this is not impossible in practice

thanks to NTP, it requires that the machines be in a local network with reasonably low delay

and jitter values to be able to reach high-resolution time synchronization. Furthermore, the

NTP algorithm can take long time to converge. In our example, the convergence of NTP

was observed two hours after NTP had started. This makes OWD measurement difficult

and inflexible. In this section we propose a new method to passively measure the RTD that

80

Figure 6.3: Measured OWD between two ends in two machines after clock synchronization.

does not require such strong assumptions.

The methods for passively measuring the round-trip and one-way delays follow a similar

approach: we capture packets at both ends of the link and match packet IDs (eventually using

our delay-bandwidth assumption to mitigate ID collisions) to compute round-trip delays

(RTDs) from the recorded timestamps. In the case of the RTD, for each packet P sent from

(1) at time t1(P) (in (1)’s clock) and received on (2) at time t2(P) (in (2)’s clock), and Q

sent by (2) at time t2(Q) (in (2)’s clock) and received on (1) at time t1(Q) (in (1)’s clock),

such that t1(Q) > t1(P), the collector will report the RTD of packets P and Q as:

R̂TD(P,Q) = (t1(Q)− t1(P))− (t2(Q)− t2(P)).

Similar to the previous passive OWD measurement method, this does not always give

perfectly accurate estimations of the RTD. In fact, while it does eliminate any inaccuracy

81

Algorithm 2 Passive RTD measurement algorithm.
Require: packet dumps from (1) and (2): dump_1 and dump_2

initialise array RTD
compute arrays OWD_12 and OWD_21 using algorithm 1
for (packetP_ID, owdP) in OWD_12 do

lookup first (packetQ_ID, owdQ) in OWD_21
if timestamps of packetP and packetQ are close enough then

rtdPQ ← owdP + owdQ
add (packetP_ID, packetQ_ID, rtdPQ) to RTD

end if
end for
return RTD

due to constant clock drift between the two machines, (i.e., the clock drift at time t = 0)

it is still vulnerable to its variation. In fact, the longer the time interval between the two

packets P and Q, the more the clocks might have drifted during that interval, and the larger

the error that will be induced. Thus, in practice, the collector should only stick to pairs of

packets sent and received within a small enough time interval T so that the error caused by

clock drifts on the estimation of RTD is no larger than a tolerance value ϵ. This ensures that

whenever P and Q are such that t1(Q)− t1(P) ≤ T , we have:

|R̂TD(P,Q)−RTD(P,Q)| ≤ ϵ.

To evaluate this passive RTD measurement method, we conduct the same experiments

as earlier, where we passively measure the delays of generated packets. However, to provide

a baseline to compare our method against, we use the Ping tool to generate ICMP echo

packets and measure their round-trip, application-level delay. Figure 6.4 shows how the

RTDs measured by our method, in the absence of time synchronization by NTP, compare

to the RTT reported by Ping.

82

Figure 6.4: Ping RTT (blue) vs passively measured RTD (orange).

6.1.3 Optimisations

In its preliminary form, our approach to delay measurement, using regular packet sniffers and

the above two algorithms, cannot be implemented for emulation scenarios. The algorithms

have too high asymptotic time and space measures of complexity and the standard packet

interception and logging tools can incur a large overhead which may instead reduce the link

emulation accuracy and network emulation fidelity. In this section we will discuss ways to

optimise these aspects to pave the way for a good design and implementation of our fidelity

monitoring framework.

Algorithmic complexity In a bidirectional link (1)-(2) where N packets were sent from

(1) to (2) and M from (2) to (1) during a run, the running time complexity of algorithm 1

is O(N2 +M2), as the timestamp of reception of each packet has to be looked up by going

through all records at reception. This is a naive implementation but it can be optimised by

83

choosing appropriate data structures and adding a pre-processing step. In particular, packet

records can be organised in (ID, list of timestamps)-maps where we correspond to each ID

the list of timestamps of all packets that it identifies. These lists can be first sorted in the

pre-processing phase of the algorithm, which can make the lookup much faster using binary

search. With this update, the worst-case1 of both pre-processing time and running time

complexity of the algorithm drop down to O(N logN +M logM).

In the fine-grained analysis of network traffic, space complexity is a much bigger issue

than time complexity. In high-speed large networks, the number of packets can be orders of

magnitude high, and storing information about each individual packet may be impossible.

This is particularly the case in emulated networks experimenting SDN and/or data centre

scenarios where traffic is high by design. Therefore logging timestamps of all packets in all

links is not a reasonable approach. One solution is to analyse traffic on-the-go, and measure

packet delays online as the emulated network is running, but this can incur computing

overhead which might lower emulation quality. A second solution is to implement packet

sampling: instead of intercepting and timestamping every packet, the packet logging tool

may only select a small subset based on a certain sampling strategy, either selecting packets

of interest (those having large size and/or large expected queuing delay which tend to be

the most problematic) or doing blind random sampling. However, as each packet needs to

be logged twice (in both ends of the link), a random sampling strategy with a rate s must

adapt to such constraint, otherwise (if random sampling processes are independent in the

two ends) we may end up with s · (N +M) records in the database but only s2 · (N +M)

usable. A random sampling therefore needs to be hash-based [87] and thus deterministic on

the packet ID. In conclusion, by reducing the number of packets from N+M with a sampling

rate s, we reduce the number of entries to s · (N +M) and subsequently the running-time

complexity to O(s · (N logN +M logM)).

1The worst-case scenario is when all packets share the same ID.

84

Figure 6.5: Classical Berkley Packet Filter (left) vs Extended Berkley Packet Filter (right).

Packet interception A second room for optimisation is in the packet interception tools.

libpcap is the standard library for packet interception and analysis in Linux. It is used by

the most popular sniffers (Wireshark, tcpdump) and is based on the Berkley Packet Filter

(BPF) kernel tracing framework, which provides a virtual machine2 comprised of (see Figure

6.5):

• A classical BPF code written in cBPF bytecode language, which does not implement

goto instructions;

• Two 32-bit registers for standard arithmetic operations;

• A finite 16-units long, 32-bits wide scratchpad memory space.

As such, the classical BPF virtual machine can be understood as a minimalist runtime

environment that can run very simple instructions in kernel space with very limited features

to protect the kernel and avoid crashing the system.

A more sophisticated packet interception and processing framework is the extended
2Virtual machine must be understood here similarly to the Java Virtual Machine, i.e. a virtual code

running environment with its own instruction set, bytecode language, registers, etc., and not in its modern
sense, i.e. an isolated similacrum of a computer running its own applications, services, and operating system.

85

Berkley Packet Filter (eBPF). It inherits classical BPF’s design and goals but offers much

more advanced features (see Figure 6.5). In particular, it provides:

• A larger instruction set, and the possibility for bounded loops;

• Wider (64 bits) and more (10) registers;

• A 512-units long, 8-bit wide stack;

• An unlimited memory space through key-value maps;

• A set of helper functions, which are pre-compiled routines that can achieve some stan-

dard operations similar to actual kernel routines from the Linux source code and the

kernel API. For instance, bpf_trace_printk functions similarly to printk which logs

messages in persistent storage; bpf_ktime_getns functions similarly to ktime_getns

which provides high-accuracy timestamping; and other packet processing-specific rou-

tines like bpf_get_hash_recal which recomputes and returns the hash of a packet.

In practice, eBPF works by writing restricted3 C code functions and plugging them into

hooks, which are a set of Linux API and kernel code functions that are eBPF-compatible.

The code is then executed every time the hook function is called.

Another important perk of eBPF is its native support by the Linux Traffic Control (TC)

subsystem, which we have shown is used by the most popular network emulators to simulate

some link characteristics. In practice, most routines in the kernel code for TC can be used as

hooks, and TC can also offer an additional entry point for eBPF code through classifiers and

filters: while defining queues and queuing disciplines, the user can instruct the execution of

pre-compiled eBPF code whenever a packet satisfies some conditions going into or coming

out of a queue.
3C11 language with some restrictions to guarantee security. In principle, the code should be cleared as

halting (no infinite loops and recursions) and segmentation fault-free at compile-time.

86

6.2 Hifinet

Now that we have addressed the major issues underlying any attempt to passively and ef-

ficiently measure the network delay, we can present how our fidelity monitoring framework

works in practice. We will first introduce its design and argue for the choice of certain prin-

ciples, then move on to describe its actual implementation within the previously described

Bignet network emulator, without any loss of generality as to its implementation within

other distributed network emulation software. The last part will evaluate experimentally

how all choices and assumptions work in a concrete scenario.

6.2.1 Design principles

Recall the delay-based phenomenal fidelity criterion described in the previous chapter:

Criterion 2. For an emulation to have good fidelity, the deviation of the measured

delays from the model delays of a sample set of packets throughout the duration of the

experiment should not be too large.

Model delay An important caveat about the fidelity criterion is the model delay that is

used for baseline against which we compare the measured delays. One way to estimate this

theoretical/expected delay is to use the standard delay model previously established:

δ(P) =
l

v
+
|P |
B

+
|Q(P)|

B
,

where the first term is the propagation delay (independent of the packet) configured by the

user, where the second term is the transmission delay which depends on the size of the

packet and the configured bandwidth (or transmission speed), and where the last term is

the queueing delay which depends on the size of the queue when the packet enters and the

configured bandwidth. All of these parameters can be known to the fidelity monitoring tool,
87

and logged alongside the timestamps of arrival, departure, and reception of the packet. This

equation perfectly models the behaviour of wired links given certain known variables, but

needs to be carefully adapted to radio channels and other wireless media.

Passive delay measurement Because no assumption about time synchronization is rea-

sonable, we will stick to measuring the RTD of pairs of packets P1, P2 which is to be compared

against the sum of their own delays δ(P1) + δ(P2) expected from a correct emulation. The

major downside of such a choice is that information about the individual OWDs is lost in

the RTD. As such, an assessment made from a certain measurement is made on both the

packets of the pair.

Statistical metrics Another important caveat is that the deviation between measured and

model packet delays can be evaluated using different statistical metrics. A straightforward

approach is to consider the mean absolute error (MAE) as a measure of deviation between

measured values (R̂TD(P1, P2)) and expected values (RTD(P1, P2) = δ(P1) + δ(P2)). The

emulation can then be considered incorrect if the MAE (over all considered pairs of packets)

exceeds a certain threshold established beforehand and which expresses how much fidelity

is expected from the emulation. If the user is not able to decide on such a threshold, then

they can instead consider the mean percentage absolute error (MPAE) by measuring the

deviation relative to the model values. The user can then work with a universal threshold

value (such as 1% or 5% for strict fidelity standards, or up to 50% for looser ones).

However, these two metrics share the common drawback of being measures of averages

and do not consider values individually, which leads to higher errors being compensated by

lower ones. Thus, in the presented version of our framework, we consider quantiles: the

emulation will be presumed correct if a certain number of measured values (e.g., 95% of

all measures) do not deviate from the estimations by more than the threshold error value.

88

Here again it is possible to reason in terms of relative error4, but while this is certainly an

upgrade compared to averages, it still treats all packets with equal importance and makes an

assessment based on the overall measure of quantile. This is efficient and more precise but

not yet ideal as major errors happening in a short period of time and on a limited number

of packets can have propagating macro-level effects on the emulation while being considered

negligible by the system at the scale of the entire set of packets. In this case the user can

consider looking at the sliding time window quantiles, i.e., by assessing the experiment to be

accurate if, given a number K (resp. time window T), the condition holds for all sequences

of K successive pairs of sampled packets (resp. for all pairs of sampled packets in any time

window T).

6.2.2 Implementation

Our solution for the measurement and estimation of delay is built up from three main

components.

Packet loggers This component is a collection of eBPF functions that are plugged into

a number of specific kernel routines and which therefore run in kernel space. Its goal is

to capture and log information about sampled packets in persistent storage (Figures 6.6

and 6.7). After a message is made into a packet and then into a Linux data structure, it

is enqueued by the TC subsystem –provided the queue is not full– and waits for a period

of time before being dequeued and sent to the virtual NIC for transmission, or randomly

dropped with a certain probability to simulate loss if it is enabled. And if the packet is to

be successfully transmitted, the packet logger logs in raw files information about its enqueue

event (event timestamp, packet size, and the length of the queue at the packet’s arrival) and

dequeue event (event timestamp) if it is sampled for monitoring.
4The quantile percentage absolute error (QPAE) is thus a network-level transposition of the probably

approximately delay-accurate concept we have previously defined for single emulated links: the quantile
being the probability parameter γ and the threshold being the approximation parameter ϵ.

89

Figure 6.6: TC datapath interception by packet loggers.

Specifically, using eBPF we embed low-level instructions into the TC datapath, at both

ends of each virtual link, which run whenever a packet is received by the TC subsystem.

This ensures that our passive packet monitoring methodology incurs no significant computing

overhead on the kernel (particularly networking) and on application processes.

Local monitoring agents These agents are user space programs that run on the hosts

and whose goal is to parse the logs from the packet loggers and compile them into tables that

can later be used for analysis (Figure 6.8). This is executed after the emulated experiment

has finished running, and therefore does not interfere with the emulation.

A collector/analyser This component is the brain of the system. Its job is to collect and

analyse packet information compiled by the monitoring agents (Figure 6.9). It is logically

unique and achieves its goal in two steps:

• First, the data is collected from the monitoring agents as tables, which are then cross-

examined to match information about packets distributed over multiple tables. For

instance, a table from one monitoring agent (and therefore from one machine of the

90

Figure 6.7: Interception and logging of packets.

Figure 6.8: Architecture and operation of the monitoring agents.

91

Figure 6.9: The collector/analyser component.

cluster in the case of distributed emulation) can contain the sending timestamp of a

packet, and another table from a different monitoring agent can contain the reception

timestamp of the same packet. The output of this step is a unique large table where

each entry corresponds to a packet and is identified by its ID, and which contains all

information about it;

• Finally, packets from the table are paired together according to a pairing rule and

their joined RTD is measured (from the logged timestamps) and estimated (from other

information such as packet sizes, queue lengths, etc.). These two values are then com-

pared for all considered pairs of packets and an overall judgement about the emulation

can be made.

92

6.2.3 Evaluation

Overhead In the previous subsection, we have demonstrated the implementation of our

methodology, which is designed in a distributed and hierarchical fashion: a central and

logically unique component analyses the monitoring data sent from multiple local agents,

which in turn gather their data from lightweight packet loggers. In practice, the central

collector/analyser and the local monitoring agents perform their tasks –of analysis and data

collection– offline, i.e., after the emulation has completed, and therefore do not disturb its

execution. However, as packet loggers intercept the transmission of emulated packets on

which they perform certain processing instructions, these can cause overhead by reducing

the switching capacity of the emulated network (defined as the amount of packets that can

be transmitted per unit of time) and/or inflict additional delay in the emulated links. We

have argued that a sampling strategy can trade off a narrow decrease in statistical accuracy

of the results to mitigate these overheads, which we show experimentally in this subsection.

To do this, let us consider the following emulated network: a switch connects two emu-

lated nodes H1 and H2 with links of unlimited capacity (i.e., no traffic control to limit the

bandwidth is used) and a small 1 ms propagation delay. In a first run, we send a heavy

long Iperf TCP flow from H1 to H2 and record the average achieved goodput over a window

of 100 seconds. In a second run, we send 10 000 Ping echoes initiated by H1 and record

the minimum RTT. These experiments are emulated on a single physical host and use our

fidelity monitoring tool with random packet sampling, and repeated for different sampling

rates: 100%, 10%, 1%, and 0.1%. The former metrics (average Iperf goodput and minimum

Ping RTT) are compared between the different sampling rate, and against a setting where

the monitoring tool is turned off (corresponding in the following figure to a sampling rate of

0%).

The results of this evaluation are shown in Figure 6.10. As expected, the throughput

performance of the emulation decreases when the tool is used (from 16.30 Gbps down to

93

Figure 6.10: Impact of monitoring on the emulation performance. The orange plot shows
the average achieved goodput and the blue plot shows the minimum RTT.

14.60 Gbps for a sampling rate of 100%), while the delay per packet slightly increases (few

microseconds of overhead). These changes depend on the packet sampling rate configured

for the packet loggers, and seem to follow the performance-sampling law found in [33].

Overall, the observed relatively small drops in performance prove that our fidelity monitoring

implementation does not paralyse the emulation even at large sampling rates. In all following

experiments, we will configure a sampling rate of 10% which does not impact networking

capacities by more than 1%.

Example So far we have presented the design of our delay-based monitoring system and

explored the possible sources behind delay emulation errors. The underlying principle is that

incorrect emulation of delay leads to higher-level errors that can bias the overall results of

the emulation. In this section we show through an example how this assumption performs

in practice. More specifically, we present a simple network emulation scenario and correlate

the delay monitoring metrics with application-level metrics.

Testbed In this scenario, 40 clients are synchronously downloading a 100 MB file from

a random server (out of 5) located on the same Ethernet segment. The client hosts are

separated into three groups: clients from Group I are connected to the switch by 10 Mbps-

94

Figure 6.11: Emulated network (red) and underlying cluster network. Clients from Group I
are emulated in H1 and H2; from Group II in H1 and H3; and from Group III in H1 and
H4.

bandwidth and 1 ms-delay links; clients from Group II by 50 Mbps-bandwidth and 1 ms-delay

links; and clients from Group III by 100 Mbps-bandwidth and 1 ms-delay links. The servers

are connected by links with no traffic control. The experiment is run using the latest version

of Distrinet to date (v1.2) on four nodes of the R2Lab cluster5, which are connected in a

star topology to one single switch (Figure 6.11). Furthermore, our embedding algorithm is

configured in a way that all emulated file servers and the virtual switch are hosted in the

same machine (host H1); the emulated clients from Group I are hosted in H1 (4 clients) and

H2 (10 clients), from Group II in H1 (3 clients) and H3 (10 clients), and from Group III in

H1 (3 clients) and H4 (10 clients) (see Figure 6.11).

The idea is to compare the flow completion times (FCTs) and the measured delay errors

between and within the groups. If this scenario were emulated with perfect fidelity (i.e.,

behaving exactly as it would in real networks), (a) there should be no difference in the FCTs

within each group as all clients from the same group are equivalent in the emulated topology,
5Reproducible Research Lab: https://r2lab.inria.fr/index.md.

95

https://r2lab.inria.fr/index.md

(a) Flow Completion Times for the clients of each group. From left to right: Group I, Group II,
and Group III. The left-side box plot shows the FCTs of clients hosted in host H1 (blue), and the
right-side box plot for clients in hosts H2 (red), H3 (green), and H4 (magenta).

(b) CDFs of the percentage absolute errors (PAE). The blue plots correspond to the CDFs of locally
emulated links in host H1; the red, green, and magenta to the CDFs of links overlay emulated
between hosts H2 and H1, hosts H3 and H1, and hosts H4 and H1 respectively.

Figure 6.12: High-level (a) and low-level (b) indicators of emulation fidelity.

regardless whether or not they are hosted locally with the server, and (b) clients in Group I

(10 Mbps bandwidth links) should experience the largest FCTs, followed by clients in Group

II (50 Mbps bandwidth links) and finally the clients in Group III (100 Mbps bandwidth

links) should experience the lowest FCTs.

Results Figures 6.12 shows the results. The first thing to note is how the clients in

Groups II and III experience different FCTs depending on whether they are hosted in H1

or H3 and H4 (Figure 6.12a). In particular, these get an average of 17.81 seconds vs 21.24

seconds for Group II, and 9.08 seconds vs 20.92 seconds for Group III. This is also evident

96

from the CDFs of percentage absolute error: overlay links for clients in hosts H3 and H4

experience higher relative delay emulation error (Figure 6.12b).

Discussion This example essentially demonstrates how higher-level incorrect behaviour,

which occurs silently and which can lead to false analyses, is in fact correlated with objectively

incorrect lower-level behaviour easily perceivable from a delay perspective. In this example,

the differences in delay emulation errors between local and overlay links are mainly due to

the additional delay (cf. Section 5.3) that emulated packets experience as they cross the

infrastructure network. To troubleshoot the causes behind this perceived inaccuracy, it is

important to see that the bandwidths of all overlay links sum to a total of 1.6 Gbps, while

all these emulated links have to cross the physical link connecting the cluster switch to host

H1, whose capacity is limited to 1 Gbps. The congestion control algorithm used by clients to

download the file distributes the available bandwidth in a way that the throughput of greedy

clients (Group II and III hosted in H1) is lowered: clients from Group I get a throughput

of around 10 Mbps (equal to their bandwidth), clients from Group II get a throughput

of around 45 Mbps (5 Mbps less than their bandwidth), and clients from Group III get a

throughput of around 45 Mbps (55 Mbps less than their bandwidth). This results in clients

from Groups II and III hosted in H3 and H4 getting longer FCTs than their counterparts

hosted in H1. And while clients from Groups II and III hosted in H3 and H4 get the same

throughput (and thus experience the same FCTs), the links connecting them to the Ethernet

switch show different PAEs: the median for links emulated between H3 and H1 is around

119%; while the median for links between H4 and H1 is around 238%. This is due to the

former links having a higher bandwidth –and thus their packets a lower RTD on average–

while both experiencing approximately the same added delay, which leads to different errors

in relative values.

Emulating this scenario in such an infrastructure might seem artificial, and while it does

demonstrate the failures of distributed network emulators in certain settings and how those

97

failures can be captured by our fidelity monitoring methodology, such settings might appear

unrealistic at first glance: to avoid these problems the user need only analyse the capacities

of the infrastructure and distribute the emulated nodes accordingly. However, this is not

always possible as they may be using a shared infrastructure –cloud or grid— over which

they have a very limited amount of control and/or knowledge. In such cases, the maximum

bandwidth of each physical link may be disclosed, but the fraction available to the user at

all times generally is not.

Nevertheless, the delay emulation error strongly correlates with higher-level inaccuracies

independently of the infrastructure usage. In this scenario, the load6 ρ on the physical link

connecting host H1 to the switch S can reach 160% (N = 40):

ρ =
(10 + 50 + 100) · N4

1000
= 160%.

By varying the number of emulated clients N , we can vary this maximum load, and observe

different degrees of high-level and low-level emulation infidelity for values below or above

100%. Figure 6.13 shows how these two indicators correlate for different loads (their Pearson

correlation coefficient is approximately equal to 0.91). The deviation is a chosen application-

level metric that measures the relative difference in FCTs between clients from group III

hosted in the same machine (H1) as the server, and clients from group III hosted in H4.

6.3 Conclusion

Fidelity monitoring is essential in emulation-based experimentation to ensure certain guar-

antees on accuracy. A good measure of fidelity is how the finest, most elementary network

phenomenon is emulated: the packet delay. We have presented in this paper an approach to

fidelity monitoring of network emulation by passively measuring delays of packets in emulated
6The load or the usage of a link is defined here as the volume of traffic it transports relative to its

bandwidth.

98

Figure 6.13: High-level (blue) and low-level (orange) indicators of emulation fidelity (y-axis)
vs. link load (x-axis).

links and comparing them to values estimated based on a simple network delay model. We

have used the extended Berkeley Packet Filter’s (eBPF) native packet monitoring capabilities

to implement our methodology in an accurate and efficient manner. This implementation,

together with a good sampling strategy, can highly limit the impact of monitoring on the

emulation itself. We have demonstrated how our methodology can help predict emulation

anomalies that are otherwise indistinguishable to the user from normal network behaviour.

The passively collected delay measurements can help troubleshoot the emulation failures

and accurately diagnose their causes. The use of network delay tomography can help trans-

late the measurements collected at the emulation-level into information about the underlying

infrastructure. The next chapter will attempt to explore this approach, with the ultimate

objective of helping the user re-conduct their experiment under better conditions and with

better guarantees on fidelity.

99

CHAPTER 7

TROUBLESHOOTING DISTRIBUTED NETWORK

EMULATION

The previous chapters have presented the design and implementation of our emulation fi-

delity monitoring framework. Its main objective is to detect and inform when emulation

fidelity is compromised by relying on a network-level fine-grained metric: the packet delay.

This is achieved by passively collecting emulation-level delay measurements. The immediate

next question is to wonder whether these measurements can be used to infer the potential

underlying root causes of emulation failure, ultimately in order to redo the emulated ex-

periment under better conditions. This chapter will attempt an exploration of the different

aspects of this question.

7.1 Problem Modeling

The first and most important step in troubleshooting the lack of emulation fidelity is inferring

physical infrastructure load to determine with controlled degree of confidence the location

of bottlenecks potentially responsible for emulation failures. This is to be achieved using

passive network measurements collected at the virtual level1. The generalised delay is a

particularly useful metric for such task. We know from queuing theory that an increased

load in a link results in increased queuing time of the packets and thus in an increase in their

network delay. This additional underlay delay, measurable through our fidelity monitoring

framework, depends on the depth of the physical queues: large queues induce high delays

when full; and small queues cause packets to be dropped much earlier which is experienced
1Distinguishing between the emulated and infrastructure networks is of critical importance in this chap-

ter. We will refer to the emulated network, which is constituted from the emulated nodes and links and which
has a user-defined structure and characteristics, as the overlay network; conversely, the network defined by
the physical machines over which the overlay network is emulated, and the switches, links, and routers that
connect them, will be referred to as the underlay network.

100

as infinite delay in the emulated network. In both cases, our delay measurement strategy

captures such incidents and performs statistical analysis to indicate failure. In this section, we

describe the problem in more details by presenting our working hypotheses, its mathematical

modeling, and by discussing raised challenges.

7.1.1 Hypotheses

Consider for example the simple scenario in Figure 7.1: a virtual overlay network (consisting

of a virtual client and a virtual server connected to a virtual switch) is emulated over an

underlay physical network of three hosts H1, H2, and H3 connected by a switch S. The

virtual server sends a flow of packets to the virtual client. Using traffic control tools, the

virtual links v1 and v2 are configured by the user to shape the traffic according to the

scenario they wish to emulate: e.g., limiting link bandwidth, adding propagation delay, and

introducing packet loss. Given these traffic shaping parameters, each packet P that is not

dropped by the virtual link should experience a certain normal delay d(P) depending on

its size, its position in the virtual links’ queues, and other intrinsic characteristics of the

emulated link. As this packet moves over the virtual network, the links L1, L2, and L3

of the underlay network that are crossed by the packet will also add a certain error delay

ϵ(P) depending on the packet itself and on the current load of the infrastructure. When this

undesirable delay exceeds some tolerance value, its negative impact on the emulation may

become non-negligible. Unfortunately, the user does not have full control over the physical

infrastructure to monitor the underlay delay in all network nodes and links and thus cannot

predict such an event nor determine its exact cause.

In the example, as the packet P crosses the virtual link v1 it will experience a total

measurable delay

d̂(P) = d(P) + d1(P) + d2(P),

101

where d(P) is the normal emulation delay2, and di(P) is the undesirable error delay intro-

duced by physical link Li to the packet P . Likewise, a packet Q crossing the virtual link v2

will experience a delay

d̂(Q) = d(Q) + d2(Q) + d3(Q).

It follows that information about the delays experienced by the packet on each underlying

infrastructure link is embedded in the measured delay of packets in the virtual network.

However, it is impossible to extract that information by analysing each packet individually.

Instead, delay tomography theory suggests resorting to a statistical approach that analyses

infrastructure link delays di on finite time intervals, and that examines a large number of

packets from different emulated links (i.e., that pass over different underlay paths). Given

some prior information on the mapping of the virtual network to the infrastructure, statistics

on the underlay link delays can then be inferred. In our scenario for example, if we define

xi(T) as the average delay on link Li during a certain time interval T ∈ T , and ϵj(T) as the

mean delay error of all sampled packets during T , we have:

 x1(T) + x2(T) = ϵ1(T)

x2(T) + x3(T) = ϵ2(T)

In the general case, to each underlay link i corresponds a sequence of variables (xi(T))T∈T ,

and to each overlay link3 corresponds a sequence of mean delay errors (ϵj(T))T∈T . According

to how virtual links map to the infrastructure network, infrastructure and virtual links can
2An emulated network can be congested due to a surge in emulated traffic. The delay of its packets d(P)

remains normal as long as the physical infrastructure does not interfere with the emulation.
3Without loss of generality, virtual links that cross the same path of infrastructure links can be aggregated

into a single virtual link. The measurements from these virtual links are combined into one homogeneous
set.

102

then be related by linear equations of the form:

∑
i

ai,j(T) · xi(T) = ϵj(T), (7.1)

where ai,j(T) is a binary value equal to 1 if virtual link j crosses physical link i and 0

otherwise4.

The above set of linear equations can be further rewritten into a more compact form:

A(T) ·X(T) = b(T), (7.2)

where A(T) is defined as the mapping matrix5 whose coefficients are (ai,j(T)), X(T) is a

vector of variables (xi(T)), and b(T) is a vector of collected delay errors (ϵj(T)).

Our problem then translates into solving the set of equations in (7.2) under the following

three main hypotheses:

• The underlying topology and the mapping of the emulated network are known, but

the total load on the different links of the infrastructure is unknown and cannot be

directly measured;

• Through sampled passive delay measurement of emulated packets, we are given broad

information about the added error delays, as well as the timestamps of packets in order

to assign them to time intervals T ; and

• Over time intervals of finite length, packets from different virtual links crossing the

same infrastructure link experience more or less the same delay distribution.

The first hypothesis essentially implies that the user knows how the nodes of the infras-

tructure are connected, but does not know their available capacities and characteristics and
4Clearly, the existence of an equation during interval T is conditioned by having packets flowing over

the corresponding virtual link.
5The mapping matrix is also called routing matrix in delay tomography literature.

103

cannot access them for direct monitoring. This hypothesis is the default scheme in shared

infrastructure such as grids and clouds, where static information (topology and hardware

characteristics) can be provided but the user cannot directly access networking nodes and/or

measure dynamic information6 (load, delay, and packet loss) as it is impacted by other users

of the infrastructure.

The second hypothesis defines our source of data: the user has complete control of the

emulation scenario and can implement a monitoring tool to passively measure the delays of

emulated packets. One such monitoring tool is the fidelity monitoring framework we have

previously presented, which provides exhaustive information about emulated packets and

their delays. Such tools essentially intercept a subset of the emulated packets (based on

a preconfigured sampling rate) and use information available to the emulator (e.g., queue

lengths and virtual link speed) to infer normal delays.

The last hypothesis is to ensure that different emulated packets experience the same

infrastructure network conditions when they pass by the same infrastructure link even if they

are from different virtual links. In practice, this holds in all distributed network emulators

forked from Mininet, independently of the emulated scenario, as they use typical tunneling

protocols (GRE and VXLAN) to create virtual Ethernet links on top of an infrastructure

network. Thus, neither differentiated treatment of virtual links nor QoS mechanisms are

used.

7.1.2 Challenges

Time synchronization Being an explicit measure of time, network delay measurement

inevitably requires some degree of time synchronization. We have previously discussed these

limitations in passive delay measurement, and have demonstrated that in a geographically

localised network, it is possible to achieve as few as 100 nanoseconds of clock drift using only
6Certain cloud providers can offer a measurement service but it is generally limited to high-level appli-

cation metrics and it is far from being the norm in public cloud settings.

104

Figure 7.1: Emulated and infrastructure topologies.

time synchronization protocols (see Chapter 6). In cases where this cannot be achieved, we

have suggested measuring the joint round-trip delay d(P,Q) of pairs of packets (P,Q) instead

of their individual one-way delays d(P) and d(Q). Whether we consider individual one-way

delays or joint round-trip delays, our above model does not change: if ϵj are measures of

mean round-trip delays on virtual links, then xi will also be measures of round-trip delays.

Time decomposition In addition to the complexity of measuring one-way and round-

trip delays, time introduces a new challenge for delay tomography: to assign overlay delay

measurements to time bins also requires precise and synchronised timestamping by the ma-

chines that send and receive the packets. This problem, however, is unavoidable and can

only be mitigated by considering coarse enough time intervals. This helps reduce the impact

of timestamping imprecision but can challenge the assumption that the underlay link delay

distributions are stationary.

Mapping identifiability The set of equations (7.2) have unique solutions xi(T) only if

there are enough overlay links that cross the diverse set of underlay infrastructure links, i.e.,

when the mapping matrices have more linearly independent rows than columns. In such

105

cases, a solution can directly be obtained by discarding extra rows (those which are linear

combinations of other rows), and inverting the mapping matrix A:

X(T) = A−1(T) · b(T).

However, the inevitable lack of precision of any tool used to passively measure the delay,

as well as the aforementioned time asynchronisation problem, can potentially add noise

to the measurements. This noise can be large enough that the equations have negative

solutions, which would correspond to negative values of infrastructure delay. Nonetheless,

an invertible matrix can help control such errors: if instead of precise measurements b(T) the

user provides approximations b̂(T), then they can only hope to get an approximate solution

X̂(T) but which can be as close to the real solution as necessary, provided the measurements

are precise enough. Indeed, it follows from the continuity of the matrix A−1(T) that:

∀ ε > 0, ∃ δ > 0, ∥b̂− b∥ < δ ⇒ ∥X̂−X∥ < ε .

In the general case however, we cannot assume to have an easily invertible mapping

matrix. In the previous example (Figure 7.1), the system of equations in (7.1) transforms into

2 equations (corresponding to 2 virtual links) and 3 variables (corresponding to 3 physical

links), which unfortunately does not have a unique solution. This problem is the main

challenge in delay tomography, and is referred to as the identifiability problem.

In this context and following our notation, the mapping is said to be identifiable for

a certain time interval T if the overlay measurements can determine a unique solution of

underlay link delays. In other words, it is identifiable if the rank of the matrix A(T) is equal

to the number of variables.

If an infrastructure underlay network is represented as an undirected graph G = (V,E)

whose vertices v ∈ V are the nodes (switches, routers, and hosting machines) and e ∈ E ⊆

106

[V]2 are the underlay links, then it is said to be identifiable (intrinsically and independent

of the overlay emulated network and its mapping) if there exists a mapping which is identi-

fiable on G. In general delay tomography theory, intrinsic identifiability ensures that delay

measurements between end-hosts (vertices of degree 1, corresponding to hosting machines

in distributed emulation contexts) can fully determine the delays on the individual links of

the underlay infrastructure. The representation of the network structure as mathematical

objects simplifies reasoning about the concept and figuring out sufficient and necessary con-

ditions. The language and toolset of graph theory is particularly valuable here, and provides

us with useful properties such as:

Property 1. A connected, acyclic, undirected graph T = (V,E) is identifiable if and

only if there is no node of degree 2,

which ensures that on a tree underlay topology, corresponding to an infrastructure network

without load-balancing and with clearly defined routing, it is possible to embed the overlay

virtual network in a way that the passive delay measurements allow the inference of each

individual underlay link delay, as long as there are no internal nodes of degree 2 (see Figures

7.2a and 7.2b, where R1 is one such node of degree 2). But while such structures are only a

minority in the set of all possible undirected trees, in practice they are much more common,

as a node of degree 2 would correspond to a switch or a router that simply forwards traffic

between two interfaces and acts as a repeater.

In conclusion, while the problem of delay tomography for emulation troubleshooting can

be easily modelled, some inherent limitations challenge its resolution. The following section

thus aims at working around these constraints where we offer heuristics to solve the problem

suboptimally with the minimum possible error in all cases.

107

(a) Unidentifiable network. (b) Identifiable network.

Figure 7.2: Examples of unidentifiable (a) and identifiable (b) graphs. The second graph is
constructed by removing R1 and merging its two links into one.

7.2 Algorithms

Considering all discussed challenges, a resolution methodology necessarily requires control-

ling measurement imprecision and circumventing the identifiability problem. To deal with

the former, we add a vector ε(T) of artificial variables εj(T) that represent estimation and

approximation errors for measurements on virtual links j. The system then has the form

A(T) ·X(T) = b(T) + ε(T) . (7.3)

While this mitigates measurement errors, it adds more unknown variables to an already

underdimensioned problem. In practice, the presented measurement tool designed for fidelity

monitoring is implemented with high precision as an important specification to thoroughly

reduce these errors. This observation can help us control those measurement errors εj(T)

by assigning them the smallest possible values that allow a solvable set of equations.

That being said, our resolution methodology will operate in two steps. First, starting

from an underdimensioned linear system and noisy measurements, we look for the smallest

error vector ε(T) to be accounted for to obtain a solvable system. The output of this step

is a set of values for the εj(T) vector that allow the system to be solved. In concrete terms,

108

we first solve the convex optimization problem:

minimizeX,ε ∥ε(T)∥2

subject to A(T) ·X(T) = b(T) + ε(T) (7.4)

X(T) ≥ 0 .

Solving this convex optimization problem yields one solution with values for variables

ε∗j (T) as well as the variables of interest xi(T) (i.e., underlay link delays). However in this

first step we are only interested in the solvability of the system and not in its entire resolution.

In the case of Figure 7.1 for example, we would be dealing with a linear system of equations

of dimension two and three unknowns, after measurements are corrected with ε∗(T) values.

The objective of the second step of our algorithm is to reduce the set of possible solutions,

and to select one of them based on a certain heuristic. One way to achieve this is, again taking

inspiration from convex optimization, to choose the solution that minimizes an objective

function f :

minimizeX f(X(T))

subject to A(T) ·X(T) = b(T) + ε∗(T) (7.5)

X(T) ≥ 0 .

Next, we present three heuristics that follow this model with incremental complexity and

comment on each of their significations.

Heuristic 0: Lower and upper bounds of delay This first heuristic aims at finding

very loose lower and upper bounds of underlay link delays. The goal of its formulation is

generally not to solve the problem but only to offer insight and a baseline against which

the next heuristics can be compared. Concretely, the heuristic answers the question: what

109

are the minimum and maximum possible values of each individual underlay link delay given

the mapping matrix and the overlay-level measurements? by solving the formulated abstract

problem 7.5 for the pair of functions

f1i (x1, ..., xn) = xi and f2i (x1, ..., xn) = −xi,

for each underlay link i.

The lower and upper bounds are particularly interesting in our context of finding over-

loaded links for troubleshooting purposes. Indeed, by defining a delay threshold θ above

which an underlay link is considered overloaded, the heuristic can classify with absolute

certainty the links into three categories: normal-load, overload, and uncertain, following the

simple algorithm:

Algorithm 3 Troubleshooting algorithm: lower and upper bounds
solve convex programme 7.4 and get values for ε∗

for i = 1, ..., n do
solve linear programme 7.5 with f(x1, ..., xn) = xi and get xmi
solve linear programme 7.5 with f(x1, ..., xn) = −xi and get xMi
if xmi > θ then

consider link i as overloaded
else if xMi < θ then

consider link i as normal-load
else

consider link i as uncertain
end if

end for

Heuristic 1: Occam’s razor The event where a large number of links in a network are

overloaded is not very common. Instead, failures due to congestion are more likely to be

caused by a small number of causes. This heuristic draws from this observation and selects,

among all solutions to the linear system, those that describe a situation where the least

number of overloaded underlay links are the cause of delay emulation errors in the overlay

110

network.

To achieve this, we first need to define a threshold delay value θ, above which an infras-

tructure link should be considered overloaded. The choice of such a threshold clearly depends

on the situation at hand, but in general this should be in the order of few milliseconds7. We

then define our function f as the number of xi values that exceed the threshold θ, i.e.,

f(x1, ..., xn) =
∑
i

1(xi > θ) .

This formulation does not involve a convex function, but it can be rewritten into an equivalent

form by adding new binary variables zi, where zi = 1 if and only if xi > θ. We can write:

f(x1, ..., xn) =
∑
i

zi .

We then add new constraints that link variables zi and xi together: θ − xi ≤ M · (1 − zi)

and xi − θ ≤M · zi, where M is a very large constant. The problem is then formulated as:

minimizeX,Z

∑
i

zi(T)

subject to A(T) ·X(T) = b(T) + ε∗(T)

X(T) ≥ 0

θ − xi(T) ≤M(1− zi(T)), ∀i

xi(T)− θ ≤Mzi(T), ∀i .

While this effectively implements the described strategy, its main drawback is its com-

putational difficulty. No algorithm to solve such a linear program in polynomial time exists,
7We know from queuing theory that in practice, an overloaded link with a finite size will result in high

loss rate, which translates to infinite delay. Thus the actual value of such threshold should not be of large
concern.

111

and thus the system can be computationally intractable for relatively large networks. An

easier and more straightforward variant eliminates the zi variables and minimizes instead

the total physical delay:

f(x1, ..., xn) =
∑
i

xi.

This behaves similarly to the previous objective function but is continuous and does not

involve integer variables:

minimizeX
∑
i

xi(T)

subject to A(T) ·X(T) = b(T) + ε∗(T) (7.6)

X(T) ≥ 0 .

Heuristic 2: Dynamic adaptive Occam’s razor The above heuristic reduces the set

of solutions by choosing those with a certain special property, i.e., those that minimize the

set of infrastructure links causing the emulation delay anomaly. However, in some cases,

this may not be enough to select a good solution. In such cases more information is needed

to discriminate between the xi variables and select a good candidate for a solution. Such

information can be accounted for in the form of coefficients αi ∈ R for each link i, leading

to an objective function of the form:

f(x1, ..., xn) =
∑
i

αixi,

such that for any two links i and j, we have αi > αj if and only if link j is more likely

to cause delay emulation error than link i. If direct information about the infrastructure

links can be obtained (static characteristics such as type, length, or bandwidth, or dynamic

information about the traffic such as load and queue backlog), the values of the αi coefficients

can be chosen to reflect this information. In the case this information is not available (lack

112

of control on the infrastructure by the emulator), one can draw data from the history of the

links: if a physical link has consistently been the cause of delay emulation error in previous

time intervals S ∈ T (as concluded by the heuristic itself), then its coefficient αi(T) at the

current time interval T can be lowered to reflect this fact. An example implementation of

this observation is by assigning the values αi(T) as (log-)probabilities of overload of links i,

estimated from previous time intervals:

αi(T) = − log

[∑
S∈T ,S<T 1{xi(S) > θ}
|{S ∈ T , S < T}|

]
.

The following algorithm summarises our methodology for estimating the delay of infras-

tructure links with either version of the Occam’s razor heuristic.

Algorithm 4 Troubleshooting algorithm: Occam’s razor
αi ← 1
for TinT do

solve convex programme 7.4 and get values for ε∗

solve linear programme 7.5 with f(x1, ..., xn) =
∑

i αixi
update coefficients αi

end for

7.3 Evaluation

We will explore in this section how the designed algorithms perform in practice. Though we

use delay tomography, the end-goal is not to estimate delay values, which are only a tool to

indirectly determine whether underlay links are overloaded. Thus, throughout this section

we will not use the precision of delay estimation as the metric for our evaluation; instead,

we will judge the algorithms based on how accurately they predict link overload, in terms of

true and false positives and true and false negatives. The evaluation will start with a series

of numerical simulations on a real testbed to explore its full potential before presenting how

the implementation performs on a sample subset of cases.

113

7.3.1 Testbed

Underlay network (physical infrastructure) We run the simulations and the emulated

experiment on a testbed which consists of a subset (10) of the machines in the Rennes site

of the Grid5000 shared infrastructure. Figure 7.3 shows its topology. Each of the end-nodes

is used to host a part of our emulated network using a distributed network emulator. Other

end-nodes are used for generating external traffic to overload the links of the infrastructure.

Furthermore, we only use the eth0 interface of the machines, and we consider links gw–c6509

and bigdata-sw–c6509 as one single link. The reason behind this is that switch c6509 acts

here as a repeater between interfaces of equal bandwidth, and it is therefore impossible to

single out one of the two links for overloading. This also makes delay tomography easier

by enforcing intrinsic identifiability on the network, even though we use unindentifiable

overlay-to-underlay mappings. The testbed thus involves 13 links (10 access and 3 inter-

switch links), which amounts to 8̃000 configurations of overloading (any of the 13 link can

be either overloaded or not). We will run simulations to cover all these cases, and run the

following emulated experiment on a selected sample.

Overlay network (emulated scenario) On the physical testbed we run an emulated

experiment about a country-wide telco network where multiples ISPs provide connectivity

to clients and servers located in multiple regions (10) of a modelled metropolitan France.

Figure 7.4 shows the telco network. In this scenario, each site hosts the same number of

clients and servers, which are randomly matched at the country-level: a random server is

assigned to each client in the network (1-to-1 matching), which may not belong to the same

AS. The clients then synchronously download a file from the assigned servers, thus generating

network traffic on all overlay links and all directions.

Overlay-to-underlay mapping The overlay network is emulated on the underlay infras-

tructure optimally and equally: all capacity constraints are satisfied and each physical host

114

Figure 7.3: Underlay infrastructure network.

115

Figure 7.4: Overlay emulated network.

116

AS Host
Lille H1
Nancy H2
Rennes H3
Nantes H4
Paris H5
Lyon H6
Grenoble H7
Toulouse H8
Marseille H9
Nice H10

of the infrastructure runs the same number of virtual nodes. This is achieved by assigning

an entire site from the overlay emulated network to each own unique physical host from the

underlay infrastructure. The following table summarises the mapping.

7.3.2 Numerical simulations

We first conduct simple numerical simulations to evaluate our troubleshooting algorithms

on these specific overlay and underlay network structures. The objective of this series of

simulations is to estimate the efficacy of our troubleshooting algorithms on all possible cases,

which for a lack of time and resources cannot all be run using emulation.

The simulation flow is as follows:

• first a binary vector v of size 13 is generated, where each element vi indicates whether

underlay link i is overloaded (vi = 1) or not (vi = 0);

• from the binary vector we generate random underlay link delays X, where xi > 1ms if

and only if link i is overloaded;

• using the mapping matrix from the testbed we compute the overlay link delays b;

• then we estimate the underlay link delays X̂ from the overlay link delays b;

117

• finally, the overloaded links v̂ are determined from the delay estimations, and compared

to the ground truth v.

This is repeated for all possible vectors v ∈ {0, 1}13. The estimations are evaluated using

two metrics:

• precision: a very conservative metric which is either 1 if the estimation perfectly mirrors

the truth (v = v̂), and 0 otherwise;

• F1-score: a looser metric that measures the similarity between ground truth and esti-

mation by taking values in the interval [0, 1], and which is defined as:

F1 =
2TP

2TP + FP + FN
,

where TP , FP , and FN are the numbers of true positives (overloaded links correctly

labeled as such), of false positives (non-overloaded links labeled as overloaded), and of

false negatives (overloaded links labeled as non-overloaded) respectively. It is equal to

1 if and only if the estimation is perfect (v = v̂).

Figure 7.5 shows the results. We see that our algorithm performs relatively well with

regards to the F1-score for all cases but its precision drops down the larger the number of

overloaded links is. This is not surprising given that the main assumption motivating the

heuristic is that events where many links are overloaded are unlikely to happen in practice.

On the other hand, the basic heuristic that relies on upper and lower bounds often cannot

fully troubleshoot congestion failures.

7.3.3 Sample runs

Since we cannot conduct all 8192 possible combinations of overloaded links, we present here

only a select –representative– sample of runs and comment on the potential reasons why the

troubleshooting algorithm does or does not make good predictions.
118

Figure 7.5: Simulation results on all 8192 overloading cases. The continuous lines show the
performance of linear-algebraic troubleshooting with Occam’s razor heuristic (Heuristic 1);
and the dotted lines by relying only on lower and upper bounds (Heuristic 0).

As the underlay network is a geographically localised high-speed cluster of hardware, one

should not expect network delays exceeding few tens or hundred microseconds. As such, we

will consider any estimated underlay delays higher than one millisecond to be alarming, and

henceforth conclude failure. The threshold delay θ is therefore fixed at 1 ms.

The runs were conducted using HifiNet on a cluster of machines running a 18.04 Ubuntu

distribution with 4.15.0 Linux kernel. Full description of the hardware can be found at

https://www.grid5000.fr/w/Rennes:Hardware.

Run 0: clean infrastructure In this first run, apart from few control and management

packets, no heavy traffic external to the emulation is running on the underlay infrastructure

network. The user has exclusive access and exploitation of the cluster. Therefore, this run

serves as a control experiment and will be considered as baseline truth for further runs.

Using the emulation measurements, the fidelity monitoring tool does not observe irregular

119

https://www.grid5000.fr/w/Rennes:Hardware

(a) Ground truth. (b) Algorithm output.

Figure 7.6: Run 0. Perfect prediction: 100% precision and F1-score.

delays and the emulation is recognised as non-faulty. The (very low) delays in the underlay

links can then be approximated and the algorithm can correctly identify (Figure 7.6) that

the infrastructure is not saturated and therefore that no link is overloaded. The results, an

average flow completion time of 7.80 seconds, are thus to be trusted.

Run 1: inter-cluster bottleneck In this second run, an artificial external traffic is

generated by unused machines to overload host 5’s access link as well as the inter-switch link

(gw–(c6509–)bigdata-sw). This is experienced at the emulation-level as unwanted delay

in all core links connected to the Paris site (hosted in H5), as well as an additional delay

between Paris and Lyon. This delay is high enough to signal a break in emulation fidelity,

and the troubleshooting algorithm correctly attributes its source to the overloaded links

(Figure 7.7). From the perspective of the user, this has translated to inaccurate results: an

average flow completion time of 10.20 seconds, mostly between clients and servers hosted in

120

(a) Ground truth. (b) Algorithm output.

Figure 7.7: Run 1. Perfect prediction: 100% precision and F1-score.

different sides of the country (North-to-South and South-to-North traffic).

Run 2: uncorrelated bottlenecks In this run, we artificially overload certain random

links in the infrastructure network with multiple uncorrelated traffic flows and using external

machines (see Figure 7.8). As the number of overloaded links is relatively low, the proposed

heuristics can still correctly troubleshoot the failures with perfect precision.

Run 3: heavy rain in the South In this run, we generate external traffic from and to

hosts 6 through 10, and over the interswitch link. This creates congestion on the involved

underlay links which incurs high delays on the emulated packets. The fidelity monitoring tool

captures this delay increases and raises the alarm for emulation failure. Subsequently, the

troubleshooting algorithm analyses the overlay delays to estimate underlay delays, using the

presented linear algebraic methods and relying on the assumption that a minimal number of

links is responsible for emulation failure. In particular, it decides (wrongly) that congestion

121

(a) Ground truth. (b) Algorithm output.

Figure 7.8: Run 2. Perfect prediction: 100% precision and F1-score.

in links H7–gw, H9–gw, and gw–(c6509–)bigdata-sw is behind the measured high delays

because these constitute a sufficient explanation. However, other links are also overloaded

and their congestion contributes to the measured delays.

7.4 Emulation Remapping

The final step in emulation fidelity monitoring is using the troubleshooting predictions to

help the user remake the experiment with a better mapping and potentially less errors. This

can be done through a compromise by reevaluating the capacities of the infrastructure’s

components: by feeding the mapping algorithm artificially inflated information about the

amount of compute resources and deflated information about the bandwidths of the underlay

links. The idea behind is to circumvent overloaded infrastructure links and instead localise

as many links as possible inside the physical hosts. For this we propose an algorithm based

on the following principles:

122

(a) Ground truth. (b) Algorithm output.

Figure 7.9: Run 3. Erroneous prediction: 0% precision and 66.6% F1-score.

• If an underlay infrastructure link l ∈ L is overloaded, it signifies that the total load λ(l)

of all the emulated links overlaid on top of it exceeds its available bandwidth which is

unknown. The user has thus overestimated its capacity γ(l) and it should be decreased

accordingly;

• By increasing the compute capacities γ(n) of the physical host n ∈ N , the mapping

algorithm will be incited to redistribute the emulated nodes so as to decrease the total

load on the infrastructure network;

• Priority should be given to links for which higher delays d(l) have been estimated,

which generally correlate with more stress.

Following the described principles, the algorithm operates as follows:

• First, the set of underlay links are sorted by decreasing delay estimated by the trou-

bleshooting algorithm. This will help give priority to links for which higher loads have
123

Algorithm 5 Distributed emulation remapping
sort L by decreasing average delay
for l ∈ L do

if d(l) > θ then
γ(l)← λ(l)

2
while m← embed(γ) is not None and N is not empty do
n← pop(N)
γ(n)← 2 · γ(n)

end while
end if

end for
return m

been observed;

• Then, for each underlay link whose average delay exceeds the overload threshold, its

capacity (estimated available bandwidth) is set to be half the aggregate bandwidth of

all links who were emulated over it (its load λ(l)). Indeed, if overload was observed,

it necessarily means that the link could not handle the maximum emulated traffic

throughput and therefore that its available bandwidth was less than the aggregate

emulated bandwidths;

• Anytime an underlay link’s bandwidth is decreased, the algorithm tries to find a new

mapping by artificially inflating the compute resources of nodes n. The algorithm

allows the inflation of each physical host by a factor of 2 at most; and

• Finally, if a better remapping m with updated capacity information γ is found then it

is returned, otherwise the user is notified with a None value.

7.5 Conclusion

Network emulation requires delicate fidelity monitoring to assess the accuracy of obtained

results and avoid incorrect conclusions. But once the failure is acknowledged, an impor-

tant next step is to troubleshoot the potential root causes and identify which parts of the
124

infrastructure could not handle the emulation load. In this chapter, we have presented a

methodology inspired by past studies on network tomography, that uses passive measure-

ments collected in an overlay emulated network to infer the delay of the underlay infrastruc-

ture network. This methodology models the two networks and the mapping of the former

over the latter as a linear optimization problem, whose solution tries to capture the infor-

mation on the delay values in each component of the underlay network. While we have

shown that this modeling can yield good results with fair precision, some of its aspects can

be further developed: the choice of the objective function and how to dynamically update

its coefficients, for instance, can be improved to better quantify the likelihood of each com-

ponent being faulty. Additionally, we have sketched a remapping algorithm that uses the

troubleshooting data to offer a better overlay-to-underlay mapping. This algorithm reesti-

mates the capacities of each component of the underlay infrastructure (link bandwidths and

compute resources) to avoid problematic underlay links and instead localise the emulated

links on single physical hosts.

125

CHAPTER 8

CONCLUSION

8.1 Summary

This thesis has tackled the complex problem of scientific experimentation in the context of

distributed systems and computer networks, specifically by addressing network emulation as

one of its paradigms. The initial hypothesis was that emulation is the best approach, espe-

cially using lightweight container-based network emulators such as Mininet, as it performs

well in terms of reproducibility, efficiency, accessibility, flexibility, and openness. Indeed,

such software makes the setup and operation of complex networks and intricate scenarios

easy to accomplish and easy to share. The only issues were those of scalability and realism:

as all the components of the emulated network share the same pool of resources running

a large scenario is a delicate task; and as the emulator relies on software tools –based on

fallible models– to simulate some pieces of the network the user cannot expect perfect fidelity

of behaviour. The general objective of the thesis was to address these limitations individ-

ually and together, ultimately in order to produce blueprints of a fidelity-aware large-scale

distributed network emulator.

We can safely say that the first objective has been met, or rather we have proven it

easy to meet it. We have built a proof-of-concept lightweight distributed network emulator

using widely popular tools: Docker containers, OvS switches, and TC traffic shaping. We

have worked our way around all the flaws of state-of-the-art emulators we could identify, by

carefully changing design approaches and obsolete technologies. The takeaway of our effort is

that scalability issues in distributed network emulation are not ontological, and it is possible

–both theoretically and in practice– to make an emulator that can sustain any network

however its size and complexity, provided enough resources are available. The challenge,

however, is in designing software that achieves this with minimal amounts of resources. In

126

this route we have put the first bricks by identifying ways that any such emulator can be

optimised.

The second objective has been undeniably more challenging. Fidelity –more than once

used interchangeably with realism and accuracy– has been a difficult concept to define and

manipulate and more difficult to write in the language of mathematics. We have attempted

to approach it phenomenally by considering the packet delay –as the network equivalent for

timing– as a measure that contains evidence about an emulation’s fidelity. We have for-

malised the idea into a theoretical framework and followed it up with an example implemen-

tation as a way to address all the sub-problems that it raises in practice: time synchronisation

and accurate delay measurement, packet identification and tracing, and non-intrusive packet

monitoring. Having implemented it, we were also able to show how it performs in practice

through an example scenario where our measure of fidelity was correlated to objectively

inaccurate network behaviour.

In the last contribution we have gone one step further and explored whether collected

information about fidelity in the network delay could be used to shed light on the root causes

behind emulation infidelity. We have speculated that, indeed, the passively measured overlay

delays contain information about the underlay network and can help troubleshoot potential

failures. We have drawn from the classical network tomography theory and added particu-

larities of our problem to build heuristics for solving it. The result is an algorithm which uses

the passively measured emulated delays to infer the delays caused by the underlay network,

and eventually associate high underlay delays to congestion failures. This troubleshooting

algorithm has been complemented with a remapping strategy to avoid the identified causes

of emulation failure.

127

8.2 Perspectives on Future Research

Though many of our tools and methodologies were powered by the wider literature on net-

work measurement and modeling, the presented work attempts to deal with a novel concept

(fidelity) in a very niche area (network emulation). We hope this will inspire further research

into the topic, which we believe can tremendously help network researchers produce better

quality scholarships. In particular, we believe the following two axes to be interesting initial

questions for such endeavour (the last is another interesting but unrelated side question).

Formal Modeling of Emulated Networks: One Step Closer to Noumenal Fidelity

We have argued in Chapter 5 that noumenal fidelity, while much more difficult to use as

a measure of emulation accuracy, is a more powerful concept compared to (delay-based)

phenomenal fidelity. We have briefly explored the possibility to use tools and theories from

formal software and hardware specification and verification: propositional calculus, automata

theory, and program semantics. These tools are traditionally used to prove the correctness

of designed algorithms and developed systems, and there is no doubt that they can provide

finer modeling of network operation against which emulations could be evaluated. Such

models would be somewhat close to our concept of noumenal fidelity, and could inform with

more certainty whether emulation results are more accurate. The only drawback would be

scalability, where all the challenge in researching this subject lies.

Delay Tomography with less Assumptions We have built our delay tomography al-

gorithms on the assumption that some knowledge of the underlay network is established:

namely, its topology. This is not unrealistic in the contexts of interest to us (infrastructure

owned by the user or shared with other users in a grid-like fashion), but can be unworkable

in other contexts such as public clouds. The problem of delay tomography can become much

harder but its answers paradoxically more valuable as it can help better run the emulated

experiment or even renegociate service-level agreements.
128

eBPF-based Efficient Network Monitoring Our implementation of passive delay mea-

surement used eBPF as a framework to do it in a non-intrusive and efficient manner. This

use in fact only brushes the surface of what eBPF can truly achieve in the scope of network

monitoring. We believe this tool does not get the attention it deserves as it can replace high-

overhead monitoring software (sFlow, NetFlow, etc.) and most often could replace hardware

monitoring devices. It is also particularly useful for efficiently monitoring overlay virtual

networks where the use of dedicated devices is not possible.

129

APPENDIX A

PASSIVE DEALY MEASUREMENT: OTHER USE-CASES

In addition to measuring network delays for latency-centered performance evaluation, our

passive delay measurement methodology can be used to indirectly measure and/or estimate

other network variables. In this section we focus on the bandwidth (or capacity), and provide

two examples of how our measurement methodology can be used to infer links bandwidths.

A.1 Testbed

For the following experiments, we emulate a simple network consisting of two hosts connected

by three cascading switches (Figure A.1). This scenario is emulated using Distrinet in a single

node of the R2Lab cluster, which is equipped with a CPU Intel Core i7-2600 processor and

8 gigabytes of RAM, and runs a Ubuntu 18.04 Linux distribution (kernel v4.15.0) with basic

functionalities and no particular application running in the background. Each host then

generates a flow of random-sized packets to the other. No other traffic runs between the two

emulated hosts.

Figure A.1: Emulated testbed for bandwidth estimations. Each link is a full duplex wired
link of bandwidth B and propagation delay d.

130

A.2 One-hop Link Bandwidth

As stated earlier, the round-trip, one-hop, system-level delay on a wired link is equal to the

sum of its propagation delay along the link, its transmission delay by the hardware and the

medium, and its waiting time in the queue, according to the formula:

d(P) =
l

v
+

SQ(P)

B
+

SP
B

, (A.1)

When enough variables are known, this formula can be used for the estimation of the band-

width B. In fact, according to the method famously described by the authors in [47, 28], by

generating probe packets of varying sizes and then measuring their delays, it is possible to

infer the bandwidths of each link along the path. However, thanks to our passive measure-

ment methodology, it is possible to achieve this without injecting packets into the network

but rather only from the passively measured delays of data packets.

Consider a wired network link connecting two (physical or virtual) interfaces A and B.

For each packet P going from A to B, and each packet Q going from B to A, their round-trip

delay is equal to:

RTD(P,Q) = 2 · l
v
+

SQ(P)

B1
+

SQ(Q)

B2
+

SP
B1

+
SQ
B2

,

where B1 and B2 are the bandwidths in both directions of the link. Thus for packets that

are not queued, the round-trip delay is a simple linear function of their sizes.

In the above described testbed, we use the measurements collected at each end of the

links to estimate their bandwidths based on the previous formula. We use a simple linear

regression model to fit all RTD measurements against packet sizes (Figure A.2). With

just few hundred pairs of passively collected packets, we obtain good enough estimations of

bandwidths: 439.434 Mbps for Link (1); 9.907 Mbps for Link (2); 129.793 Mbps for Link

131

Figure A.2: Transmission speed estimation from passive measurement of RTD. Each data
point corresponds to the RTD measurement (y-axis) of a pair of packets of a certain total
size (x-axis); the orange lines plot the above formula using the estimated transmission speed.
Clockwise from top-left: Link (1), Link (2), Link (3), and Link (4).

(3); and 111.329 Mbps for Link (4)1. The small inaccuracy of these estimations is due to the

imperfection of the emulator (which adds small processing delay to emulated packets) and

the measurement tools. These imperfections can be seen in Figure A.2 where they manifest

as small stationary noise added to all packets, which causes a constant drift to the measured

delay (captured as an intercept by the linear regression algorithm) and as deviations around

the regression line. The estimation accuracy can be made arbitrarily better, provided enough

measurements are collected. In general, higher bandwidths cause lower transmission delays,

which require more measurements to be distinguished from added noise and captured by the

linear regression algorithm.
1Datasets and a Python notebook to reproduce these results can be found at https://github.com/dis

trinet-hifi/delaymon/.

132

https://github.com/distrinet-hifi/delaymon/
https://github.com/distrinet-hifi/delaymon/

A.3 End-to-end Bottleneck Capacity

Another known method to estimate network bandwidth is packet pair [44]. It consists in

sending pairs of packets back-to-back while timestamping them both at the source and at

the destination, which are generally end-user machines and/or servers, and measuring their

spacing difference. Intuitively, two packets sent back-to-back will get spaced along the path

each time they cross a link of lower bandwidth. As such, the difference in their timestamps at

the destination will be a function of their sizes and of the transmission speed of the slowest

link, i.e. the bottleneck capacity of the path. This method has been extensively studied

in the scientific literature. In this appendix, however, we only implement it in a passive

measurement framework using only the tools we have proposed.

Consider two packets P and Q sent from one host A at instants tAP and tAQ respectively,

and received by a host B at instants tBP and tBQ respectively, through a path with n links

of bandwidths B1, B2, ..., Bn. If all the links of the path are fast enough, the packets will

not be further spaced by transmission delay, i.e. tBQ − tBP ≈ tAQ − tAP . However, each slow

link i will try to impose its transmission delay on the packet spacing, and we would have

tBQ− tBP ≥
SQ
Bi

where SQ is the size of packet Q. In fact, the authors in [44] argue that if the

packets are sent with small enough interpacket time, then their spacing at the destination

will be equal to the transmission delay of the second packet on the slowest link, according

to the formula:

tBQ − tBP = max(tAQ − tAP ,
SQ
Bl

),

where l is the bottleneck link of the path.

In the same scenario as above, we leverage the timestamps collected at the end hosts to

apply this method. For each pair of packets sent and received successively, we compute their

spacing tAQ − tAP at the source and tBQ − tBP at the destination, and use it to estimate the

bottleneck bandwidth according to the previous formula. Then from the estimations gotten

133

from each pair of packet we select the one with the maximum likelihood. Figure A.3 shows

the results, from which we obtain an estimated bottleneck bandwidth between 9.997 and

10.013 Mbps.

Figure A.3: Estimated bandwidth from different pairs of packets.

134

REFERENCES

[1] Cisco packet tracer: network simulation tool.

[2] Imunes: Ip networks emulator/simulator, 2004.

[3] Jist/swans, 2004.

[4] Mininet: an instant virtual network on your laptop (or other pc), 2012.

[5] Mininet cluster edition, 2016.

[6] Planetlab bibliography, 2019.

[7] Md F Ahmed, Brendan M Quine, Stoyan Sargoytchev, and AD Stauffer. A review of

one-way and two-way experiments to test the isotropy of the speed of light. Indian

Journal of Physics, 86(9):835–848, 2012.

[8] G Almes, S Kalidindi, and M Zekauskas. Rfc2679: A one-way delay metric for ippm,

1999.

[9] G Almes, S Kalidindi, and M Zekauskas. Rfc2681: A round-trip delay metric for ippm,

1999.

[10] Werner Almesberger et al. Linux network traffic control—implementation overview,

1999.

[11] David G Andersen, Nick Feamster, Steve Bauer, and Hari Balakrishnan. Topology

inference from bgp routing dynamics. In Proceedings of the 2nd ACM SIGCOMM

Workshop on Internet measurment, pages 243–248, 2002.

[12] Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo, Fabien Viger, Timur Friedman,

Matthieu Latapy, Clémence Magnien, and Renata Teixeira. Avoiding traceroute anoma-

135

lies with paris traceroute. In Proceedings of the 6th ACM SIGCOMM conference on

Internet measurement, pages 153–158, 2006.

[13] Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo, Fabien Viger, Timur Friedman,

Matthieu Latapy, Clémence Magnien, and Renata Teixeira. Avoiding traceroute anoma-

lies with paris traceroute. In Proceedings of the 6th ACM SIGCOMM conference on

Internet measurement, pages 153–158, 2006.

[14] Monya Baker. Reproducibility crisis. Nature, 533(26):353–66, 2016.

[15] Kamal Benzekki, Abdeslam El Fergougui, and Abdelbaki Elbelrhiti Elalaoui. Software-

defined networking (sdn): a survey. Security and communication networks, 9(18):5803–

5833, 2016.

[16] Carl Boettiger. An introduction to docker for reproducible research. ACM SIGOPS

Operating Systems Review, 49(1):71–79, 2015.

[17] Andre Broido et al. Internet topology: Connectivity of ip graphs. In Scalability and

traffic control in IP networks, volume 4526, pages 172–187. SPIE, 2001.

[18] D Brunelli, D Balsamo, G Paci, and L Benini. Temperature compensated time synchro-

nisation in wireless sensor networks. Electronics letters, 48(16):1026–1028, 2012.

[19] Mosharaf Chowdhury, Muntasir Raihan Rahman, and Raouf Boutaba. Vineyard:

Virtual network embedding algorithms with coordinated node and link mapping.

IEEE/ACM Transactions on networking, 20(1):206–219, 2011.

[20] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike Wawr-

zoniak, and Mic Bowman. Planetlab: an overlay testbed for broad-coverage services.

ACM SIGCOMM Computer Communication Review, 33(3):3–12, 2003.

136

[21] Dave Clark, Bill Lehr, Steve Bauer, Peyman Faratin, Rahul Sami, and John Wroclawski.

Overlay networks and the future of the internet. Communications and Strategies, 63:109,

2006.

[22] Mark J Coates and Robert D Nowak. Network tomography for internal delay estimation.

In 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing.

Proceedings (Cat. No. 01CH37221), volume 6, pages 3409–3412. IEEE, 2001.

[23] James Conley, Ed Andros, Priti Chinai, and Elise Lipkowitz. Use of a game over:

Emulation and the video game industry, a white paper. Nw. J. Tech. & Intell. Prop.,

2:261, 2003.

[24] Martin Devara. Htb: Hierarchical token bucket, 2003.

[25] Giuseppe Di Lena, Andrea Tomassilli, Frédéric Giroire, Damien Saucez, Thierry

Turletti, and Chidung Lac. A right placement makes a happy emulator: a placement

module for distributed sdn/nfv emulation. In ICC 2021-IEEE International Conference

on Communications, pages 1–6. IEEE, 2021.

[26] Giuseppe Di Lena, Andrea Tomassilli, Damien Saucez, Frédéric Giroire, Thierry

Turletti, and Chidung Lac. Distrinet: A mininet implementation for the cloud. ACM

SIGCOMM Computer Communication Review, 51(1):2–9, 2021.

[27] Tharam Dillon, Chen Wu, and Elizabeth Chang. Cloud computing: issues and chal-

lenges. In 2010 24th IEEE international conference on advanced information networking

and applications, pages 27–33. Ieee, 2010.

[28] Allen B Downey. Using pathchar to estimate internet link characteristics. ACM SIG-

COMM Computer Communication Review, 29(4):241–250, 1999.

137

[29] Nick G Duffield, Joseph Horowitz, F Lo Presti, and D Towsley. Network delay tomog-

raphy from end-to-end unicast measurements. In Thyrrhenian Internatinal Workshop

on Digital Communications, pages 576–595. Springer, 2001.

[30] John C Eidson, Mike Fischer, and Joe White. Ieee-1588™ standard for a precision clock

synchronization protocol for networked measurement and control systems. In Proceed-

ings of the 34th Annual Precise Time and Time Interval Systems and Applications

Meeting, pages 243–254, 2002.

[31] Albert Einstein et al. On the electrodynamics of moving bodies. Annalen der physik,

17(10):891–921, 1905.

[32] Martin Eklöf, Jenny Ulriksson, and Farshad Moradi. Netsim–a network based environ-

ment for modelling and simulation. 01 2004.

[33] Houssam ElBouanani, Chadi Barakat, Guillaume Urvoy-Keller, and Dino Lopez-

Pacheco. Collaborative traffic measurement in virtualized data center networks. In

2019 IEEE 8th International Conference on Cloud Networking (CloudNet), pages 1–3.

IEEE, 2019.

[34] Dino Farinacci, Tony Li, Stan Hanks, David Meyer, and Paul Traina. Generic routing

encapsulation (gre). Technical report, 2000.

[35] Nick Feamster. Coursera: Software defined networking.

[36] Andreas Fischer, Juan Felipe Botero, Michael Till Beck, Hermann De Meer, and Xavier

Hesselbach. Virtual network embedding: A survey. IEEE Communications Surveys &

Tutorials, 15(4):1888–1906, 2013.

[37] Ramon R Fontes, Samira Afzal, Samuel HB Brito, Mateus AS Santos, and Christian Es-

teve Rothenberg. Mininet-wifi: Emulating software-defined wireless networks. In 2015

138

11th International Conference on Network and Service Management (CNSM), pages

384–389. IEEE, 2015.

[38] Michel Foucault. Archaeology of knowledge. routledge, 2013.

[39] Ramesh Govindan and Hongsuda Tangmunarunkit. Heuristics for internet map discov-

ery. In Proceedings IEEE INFOCOM 2000. Conference on Computer Communications.

Nineteenth Annual Joint Conference of the IEEE Computer and Communications So-

cieties (Cat. No. 00CH37064), volume 3, pages 1371–1380. IEEE, 2000.

[40] Ting He, Liang Ma, Ananthram Swami, and Don Towsley. Network Tomography: Iden-

tifiability, Measurement Design, and Network State Inference. Cambridge University

Press, 2021.

[41] Brandon Heller. Reproducible network research with high-fidelity emulation. Stanford

University, 2013.

[42] Stephen Hemminger et al. Network emulation with netem. In Linux conf au, volume 5,

page 2005. Citeseer, 2005.

[43] Thomas R Henderson, Mathieu Lacage, George F Riley, Craig Dowell, and Joseph

Kopena. Network simulations with the ns-3 simulator. SIGCOMM demonstration,

14(14):527, 2008.

[44] Ningning Hu and Peter Steenkiste. Estimating available bandwidth using packet pair

probing. Technical report, CARNEGIE-MELLON UNIV PITTSBURGH PA SCHOOL

OF COMPUTER SCIENCE, 2002.

[45] Teerawat Issariyakul and Ekram Hossain. Introduction to network simulator 2 (ns2).

In Introduction to network simulator NS2, pages 1–18. Springer, 2009.

[46] Konstantin Ivanov. Containerization with LXC. Packt Publishing Ltd, 2017.

139

[47] Van Jacobson. Pathchar: A tool to infer characteristics of internet paths, 1997.

[48] Immanuel Kant. Critique of Pure Reason. The Cambridge Edition of the Works of

Immanuel Kant. Cambridge University Press, New York, NY, 1998. Translated by Paul

Guyer and Allen W. Wood.

[49] Ethan Katz-Bassett, Harsha V Madhyastha, Vijay Kumar Adhikari, Colin Scott, Justine

Sherry, Peter Van Wesep, Thomas E Anderson, and Arvind Krishnamurthy. Reverse

traceroute. In NSDI, volume 10, pages 219–234, 2010.

[50] Brian W Kernighan and Shen Lin. An efficient heuristic procedure for partitioning

graphs. The Bell system technical journal, 49(2):291–307, 1970.

[51] Srinivasan Keshav. REAL: A network simulator. University of California Berkeley,

Calif, USA, 1988.

[52] Alexey N. Kuznetsov. tc-tbf linux man page.

[53] Earl Lawrence, George Michailidis, and Vijayan N Nair. Network delay tomography

using flexicast experiments. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 68(5):785–813, 2006.

[54] Antonio Libri, Andrea Bartolini, Michele Magno, and Luca Benini. Evaluation of syn-

chronization protocols for fine-grain hpc sensor data time-stamping and collection. In

2016 International Conference on High Performance Computing & Simulation (HPCS),

pages 818–825. IEEE, 2016.

[55] Jean-Francois Lyotard. The postmodern condition. Manchester: Manchester, 1994.

[56] Liang Ma, Ting He, Kin K Leung, Ananthram Swami, and Don Towsley. Monitor

placement for maximal identifiability in network tomography. In IEEE INFOCOM

2014-IEEE Conference on Computer Communications, pages 1447–1455. IEEE, 2014.

140

[57] Mallik Mahalingam, Dinesh Dutt, Kenneth Duda, Puneet Agarwal, Lawrence Kreeger,

T Sridhar, Mike Bursell, and Chris Wright. Virtual extensible local area network (vxlan):

A framework for overlaying virtualized layer 2 networks over layer 3 networks. Technical

report, 2014.

[58] Amir Malekzadeh and Mike H MacGregor. Network topology inference from end-to-end

unicast measurements. In 2013 27th International Conference on Advanced Information

Networking and Applications Workshops, pages 1101–1106. IEEE, 2013.

[59] G Malkin. Rfc1393: Traceroute using an ip option, 1993.

[60] Nivedita Manohar. A survey of virtualization techniques in cloud computing. In Pro-

ceedings of international conference on vlsi, communication, advanced devices, signals

& systems and networking (vcasan-2013), pages 461–470. Springer, 2013.

[61] Johann Marquez-Barja, Bart Lannoo, Dries Naudts, Bart Braem, Carlos Donato, Vasilis

Maglogiannis, Siegfried Mercelis, Rafael Berkvens, Peter Hellinckx, Maarten Weyn,

et al. Smart highway: Its-g5 and c2vx based testbed for vehicular communications in

real environments enhanced by edge/cloud technologies. In EuCNC2019, the European

Conference on Networks and Communications. IEEE, 2019.

[62] Steven McCanne, Sally Floyd, and Kevin Fall. ns version 1-lbnl network simulator.

[63] Donald N McCloskey. The rhetoric of economics. Journal of economic literature,

21(2):481–517, 1983.

[64] David L Mills. Network time protocol (ntp). Technical report, 1985.

[65] David Muelas, Javier Ramos, and Jorge E Lopez de Vergara. Assessing the limits of

mininet-based environments for network experimentation. IEEE Network, 32(6):168–

176, 2018.

141

[66] Jian Ni and Sekhar Tatikonda. Network tomography based on additive metrics. IEEE

Transactions on Information Theory, 57(12):7798–7809, 2011.

[67] Javier Ortiz, Jorge Londoño, and Francisco Novillo. Evaluation of performance and

scalability of mininet in scenarios with large data centers. In 2016 IEEE Ecuador

Technical Chapters Meeting (ETCM), pages 1–6. IEEE, 2016.

[68] Gideon Parchomovsky. Publish or perish. Michigan Law Review, 98(4):926–952, 2000.

[69] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Raja-

halme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, et al. The design and

implementation of open {vSwitch}. In 12th USENIX symposium on networked systems

design and implementation (NSDI 15), pages 117–130, 2015.

[70] Jon Postel. Internet control message protocol darpa internet program protocol specifi-

cation. RFC 792, 1981.

[71] F Lo Presti, Nick G Duffield, Joseph Horowitz, and Don Towsley. Multicast-based infer-

ence of network-internal delay distributions. IEEE/ACM Transactions On Networking,

10(6):761–775, 2002.

[72] Mohamed Rahali, Jean-Michel Sanner, and Gerardo Rubino. Tom: a self-trained tomog-

raphy solution for overlay networks monitoring. In 2020 IEEE 17th Annual Consumer

Communications & Networking Conference (CCNC), pages 1–6. IEEE, 2020.

[73] Riccardo Ravaioli, Guillaume Urvoy-Keller, and Chadi Barakat. Characterizing icmp

rate limitation on routers. In 2015 IEEE International Conference on Communications

(ICC), pages 6043–6049. IEEE, 2015.

[74] Hartmut Rosa. Social acceleration: A new theory of modernity. Columbia University

Press, 2013.

142

[75] Robert Rose. Survey of system virtualization techniques. 2004.

[76] Meng-Fu Shih and Alfred O Hero. Unicast-based inference of network link delay distribu-

tions with finite mixture models. IEEE Transactions on Signal Processing, 51(8):2219–

2228, 2003.

[77] Saba Siraj, A Gupta, and Rinku Badgujar. Network simulation tools survey. Inter-

national Journal of Advanced Research in Computer and Communication Engineering,

1(4):199–206, 2012.

[78] Ion Stoica, Hui Zhang, and TS Eugene Ng. A hierarchical fair service curve algorithm

for link-sharing, real-time and priority services. ACM SIGCOMM Computer Commu-

nication Review, 27(4):249–262, 1997.

[79] Marco Antonio To, Marcos Cano, and Preng Biba. Dockemu–a network emulation tool.

In 2015 IEEE 29th international conference on advanced information networking and

applications workshops, pages 593–598. IEEE, 2015.

[80] Martino Trevisan, Danilo Giordano, Idilio Drago, Marco Mellia, and Maurizio Munafo.

Five years at the edge: Watching internet from the isp network. In Proceedings of the

14th International Conference on Emerging Networking EXperiments and Technologies,

pages 1–12, 2018.

[81] Jon Watson. Virtualbox: bits and bytes masquerading as machines. Linux Journal,

2008(166):1, 2008.

[82] Philip Wette, Martin Dräxler, Arne Schwabe, Felix Wallaschek, Mohammad Hassan

Zahraee, and Holger Karl. Maxinet: Distributed emulation of software-defined networks.

In 2014 IFIP Networking Conference, pages 1–9. IEEE, 2014.

[83] Caroline White. Suspected research fraud: difficulties of getting at the truth. Bmj,

331(7511):281–288, 2005.
143

[84] Miguel G Xavier, Marcelo V Neves, Fabio D Rossi, Tiago C Ferreto, Timoteo Lange, and

Cesar AF De Rose. Performance evaluation of container-based virtualization for high

performance computing environments. In 2013 21st Euromicro International Conference

on Parallel, Distributed, and Network-Based Processing, pages 233–240. IEEE, 2013.

[85] Lisa Yan and Nick McKeown. Learning networking by reproducing research results.

ACM SIGCOMM Computer Communication Review, 47(2):19–26, 2017.

[86] Li Zhang, Zhen Liu, and C Honghui Xia. Clock synchronization algorithms for network

measurements. In Proceedings. Twenty-First Annual Joint Conference of the IEEE

Computer and Communications Societies, volume 1, pages 160–169. IEEE, 2002.

[87] Tanja Zseby, Maurizio Molina, Nick Duffield, Saverio Niccolini, and Fredric Raspall.

Sampling and filtering techniques for ip packet selection. Technical report, 2009.

144

	Abstract
	Résumé
	Acknowledgments
	List of Figures
	1 Introduction
	1.1 Paradigms in Experimental Network Research
	1.1.1 Testbeds
	1.1.2 Network Simulation
	1.1.3 Network Emulation

	1.2 Modern Problems Require Modern Solutions

	I Background and State of the Art
	2 Network Emulation
	2.1 Virtualisation
	2.2 A Deeper Look into Network Emulation
	2.3 Mininet
	2.3.1 Design Principles
	2.3.2 Implementation
	2.3.3 Limitations

	2.4 Distributed Network Emulation
	2.4.1 Design Principles
	2.4.2 Implementations
	2.4.3 Limitations

	2.5 Summary

	3 Delay Measurement and Network Tomography
	3.1 Delay Measurement
	3.1.1 Definitions and Modeling
	3.1.2 Practical Delay Measurement

	3.2 Network Tomography
	3.2.1 Topology Inference
	3.2.2 Delay Tomography

	3.3 Conclusion

	II Contributions
	4 Scalable Distributed Network Emulation
	4.1 The Case Against Distrinet
	4.1.1 Design Flaws

	4.2 Bignet: a Scalable Distributed Network Emulator
	4.2.1 Design and Implementation
	4.2.2 Performance Evaluation

	4.3 Conclusion

	5 Fidelity Monitoring of Network Emulation
	5.1 Emulation Fidelity
	5.1.1 Definition
	5.1.2 Phenomenal Assessment of Emulation Fidelity

	5.2 Delay-based Fidelity Monitoring
	5.3 Typical Sources of Delay Emulation Error
	5.3.1 CPU overload
	5.3.2 Non-emulation of Transmission Delay
	5.3.3 Physical Network Delay

	5.4 Conclusion

	6 Implementing Fidelity Monitoring of Network Emulation
	6.1 Delay Measurement for Fidelity Monitoring
	6.1.1 Packet identification
	6.1.2 Passive delay measurement and time synchronisation
	6.1.3 Optimisations

	6.2 Hifinet
	6.2.1 Design principles
	6.2.2 Implementation
	6.2.3 Evaluation

	6.3 Conclusion

	7 Troubleshooting Distributed Network Emulation
	7.1 Problem Modeling
	7.1.1 Hypotheses
	7.1.2 Challenges

	7.2 Algorithms
	7.3 Evaluation
	7.3.1 Testbed
	7.3.2 Numerical simulations
	7.3.3 Sample runs

	7.4 Emulation Remapping
	7.5 Conclusion

	8 Conclusion
	8.1 Summary
	8.2 Perspectives on Future Research

	A Passive Dealy Measurement: Other Use-cases
	A.1 Testbed
	A.2 One-hop Link Bandwidth
	A.3 End-to-end Bottleneck Capacity

