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Abstract

Quotation

Start by doing what is necessary, then do

what is pµsible and you will achieve the

impµsible without real¨ing it. — Saint

François d’Assise

Commence par faire le nécessaire, puis fais ce

qu’il est pµsible de faire, tu réaliseras

l’impµsible sans t’en apercevoir. — Saint

François d’Assise

Nowadays, Internet of things (IoT) applications are witnessing a tremendous evolu-
tion due to the increasing growth of IoT devices. In fact, they are used in all areas of life,
from weather and environment monitoring to health care assistance passing by logistics
and tracking applications. To be able to transmit the measured data to the cloud, IoT
devices need to send them through a reliable wireless technology. However, the hetero-
geneity of wireless technologies and the diversification of IoT applications make IoT more
complex to study and comprehend. Indeed, applications like smart building and smart
environment are one of hundreds use cases that need to be deployed with these technolo-
gies. For this reason, the optimization of transmission parameters for wireless telecom-
munications typically depends on the type of the application and the size of the trans-
mitted data. Each IoT application has different Quality of Service (QoS) requirements and
each wireless technology offers different QoS metrics.

Among different wireless technologies, Low Power and Wide Area Networks (LPWAN)
emerged as a promising wireless solution for IoT because they offer a low-power con-
sumption while transmitting the data in a wide area (15 Km). Long Range (LoRa), Sigfox
and Narrow Band-Internet of Things (NB-IoT) are the most known technologies with such
advantages. Unlike Sigfox and NB-IoT, LoRa is more open for academic research since
the specification that governs it is publicly available. In addition, Long Range Wireless
Access Network (LoRaWAN) can be deployed as a private network and integrated easily
and cheaply with many network platforms (e.g., The Things Network (TTN)). For all these
advantages, we focus in this thesis on the optimization of LoRaWAN transmission settings
by adapting them to applications’ requirements.

Since LoRa transceivers use a Chirp Spread Spectrum (CSS) modulation scheme, they
should be configured according to a set of transmission parameters: Spreading Factor
(SF), Transmission Power (P t x), Coding Rate (CR) and Bandwidth (BW). These param-
eters must be tuned, controlled and adapted to application’s requirements to optimize
the network performance especially in a dense network. The default control mechanism
of LoRaWAN server called Adaptive Data Rate (ADR), has been proposed in the litera-
ture to adapt transmission parameters dynamically based on the recent received packets.
However, ADR control system does not adjust parameters considering the evolution of
applications’ requirements. Knowing the heterogeneity of services and applications that
need to be loaded in IoT devices, the task to adapt at each time the wireless network to
the applications running on each end-device becomes a challenging dilemma.

To address this problem, our first contribution is to take advantage of the pattern
recognition algorithms by using a clustering process to map LoRa transmission settings
to different clusters with different QoS levels. We propose to cluster a set of LoRa trans-
mission settings based on the measured QoS metrics such as the Bit Error Rate (BER), the

i



Time on Air (ToA) and the Received Signal Strength Indicator (RSSI). For this purpose, we
have developed a LoRa transmission adaptation mechanism. We use a fuzzy clustering
process rather than a hard clustering to get the membership of each transmission setting
to different clusters. The advantage of using this algorithm is the ability to know at which
level each transmissions setting is suitable to different IoT applications.

Recent works in literature tried to use machine learning algorithms but they start their
learning process without any knowledge about wireless transmission qualities. So, they
have to learn from scratch at each time the environment change. To be ahead of the
game, we tried to find a way to characterize all transmission settings qualities and build
a knowledge that we feed to machine learning algorithms to be one step ahead of other
machine learning based solutions. To this end, we formulate the problem of transmission
settings selections as a Markov Decision Process (MDP) problem where actions are trans-
mission settings and states are the recognized quality levels by Fuzzy C-Means (FCM).
Once we formulate the problem this way, we need to know with which probability the
link state could jump from one state to another after the selection of each transmission
setting. Thanks to pattern recognition tools, we estimate the link quality level at which
each transmission setting leads, by clustering the quality of all possible transmission set-
tings to three main clusters with different levels of qualities.

Once we generate this knowledge in offline mode using FCM, we used Q-learning al-
gorithm to converge to the optimal transmission settings in online mode. This means that
devices start by sending packets randomly using different transmission settings to explore
the quality of transmission settings. The gateways, in their turn, catch the transmitted
packets and forward them to the network server. Then, based on the offline learning pro-
cess, the network server should be able to exploit the transmission settings with the high-
est quality to increase the data rate iteratively until the policy converges to a steady state.
Through intensive simulations and using different numbers of devices and gateways and
different packet sizes and rates, we validated the effectiveness of our solution in more than
256 scenarios (4 packet sizes * 4 packet rates * 4 numbers of devices * 4 numbers of base
stations). After which, we validate the effectiveness of our solution by studying in depth
two scenarios with 100 and 1000 devices. We measure in each scenario other metrics like
the ToA and the Transmission Energy (E t x) in addition to the Packet Delivery Ratio (PDR)
and the Data Rate (DR).

To offer a customized QoS to IoT devices, we propose, in our third contribution, to im-
prove the customization of LoRaWAN transmission settings by fully integrating the clus-
tering output in the learning process. In fact, even if it offers a better performance than
the state of the art, Q-learning algorithm does not take advantage of the whole knowledge
provided by the clustering output since it updates its actions based only on the observed
next state without taking into account all possible next states. For this reason, we propose
to completely initialize the state transition matrix of MDP with the knowledge provided
by FCM. The advantage compared to the Q-learning based solution is the ability to pro-
vide to the learning agent an overall view of all possible state transitions after each itera-
tion. Unlike Q-learning and value iteration algorithm, policy iteration algorithm is known
for its highest convergence speed as it requires less iterations to converge. To highlight
the performance of our approach, we compared the data rate of the traffics generated
by three main applications separately rather than the whole traffic like we did previously.
Simulation results show that combining exploration with FCM and exploitation with MDP
speeds up the learning process while allowing the adaptation of the DR, the ToA and the
E t x of these applications. Furthermore, results show that the quality of the generated
traffic is improved compared to the existing strategies.
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Résumé

Quotation

Religion is considered by ordinary people as

true, by wise people as false and by leaders as

use�l — Sénèque

La religion est considérée par les gens

ordinaires comme vraie, par les sages comme

fausse et par les dirigeants comme utile —

Sénèque

De nos jours, les applications d’Internet des objets connaissent une évolution con-
sidérable grâce à la croissance d‘utilisation des objets connectés. Ces objets sont utilisés
dans tous les domaines de la vie, qu’il s’agisse de la météo, la surveillance du changement
climatique, l’aide aux soins de santé ou bien la logistique et le suivi des commandes des
marchandises, etc. Ces objets ont besoin d’un réseau sans fil pour envoyer et recevoir les
données qu’ils collectent.

L’hétérogénéité des technologies sans fils et la diversification des applications ont
rendu l’Internet des objets plus complexe à étudier et à comprendre. Des applications
telles que la construction intelligente ou la signalisation sont des exemples parmi des cen-
taines d’autres qui doivent être déployés avec ces technologies. La sélection des paramètres
de transmissions appropriés pour les réseaux sans fils dépend fortement de la nature des
données échangées. En fait, chaque application a des exigences différentes en matière de
qualité de service (QoS) et chaque technologie offre différentes métriques de qualité de
service.

Les réseaux étendus à faible puissance (LPWAN) sont apparus comme des technolo-
gies sans fils prometteuses pour l’Internet des objets, ils offrent une faible consomma-
tion d’énergie lors de la transmission des données à longue distance. LoRa, Sigfox et NB-
IoT sont les technologies les plus connues qui répondent à ces exigences. SigFox prévoit
une couverture mondiale dans 45 pays et régions à travers un seul opérateur. NB-IoT est
développé par des opérateurs de télécommunications comme une alternative aux tech-
nologies LPWAN. Puisque la technologie NB-IoT utilise un spectre sous licence, elle per-
met une meilleure fiabilité du trafic par rapport aux autres technologies. Contrairement
à Sigfox et NB-IoT, LoRa est plus accessible au monde académique car la spécification de
LoRa est publique. En outre, le réseau d’accès sans fil longue portée (LoRaWAN) pourrait
être déployé en tant que réseau privé et s’intègre facilement à de nombreuses plateformes
de réseau (par exemple, The Things Network (TTN)). Pour toutes ces raisons, nous con-
centrons notre travail sur cette technologie.

Les émetteurs-récepteurs LoRa envoient des données selon la configuration d’un en-
semble de valeurs de paramètres: le facteur d‘étalement du spectre (SF), la puissance de
transmission (P t x), le taux de codage (CR) et la largeur de bande (BW). Ces paramètres
doivent être ajustés, contrôlés et adaptés aux exigences des applications. Le mécanisme
de contrôle par défaut du serveur LoRaWAN appelé Adaptive Data Rate (ADR), a été pro-
posé pour adapter les paramètres de transmission de manière dynamique en fonction
de la qualité de réception des paquets récentes. Cependant, ce mécanisme n’ajuste pas
les paramètres en fonction de l’évolution des exigences de qualité de service des applica-
tions.
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Vu l’hétérogénéité des services et la diversification des applications qui doivent être
supportées par l’Internet des objets, la tâche d’adaptation à chaque instant de ces paramètres
aux applications qui s’exécutent dans chaque objet est devenue un défi d’ampleur pour
les opérateurs et les fournisseurs de services. Pour résoudre ce problème, notre première
approche consiste à utiliser un mécanisme de segmentation pour regrouper les transmis-
sions LoRa par niveau de qualité de service offerte. Nous proposons de segmenter un
ensemble de paramètres de transmission LoRa en 3 ensembles de niveaux de qualité de
service différents. Les paramètres basés sur les mesures de la qualité de service telles que
le taux d’erreur des bits (BER), le temps de diffusion (ToA) et l’indicateur de la force du
signal reçu (RSSI) sont utilisés pour cela. Nous utilisons un processus de segmentation
flou pour obtenir le degré d’appartenance de chaque configuration de transmission aux
types d’applications.

Ensuite, en se basant sur le processus d’apprentissage hors ligne, le serveur de réseau
devrait être en mesure d’exploiter les paramètres de transmission avec la meilleure qualité
pour augmenter le débit de manière itérative jusqu’à ce que la politique converge vers
un état stable. Grâce à des simulations intensives et en utilisant différents nombres de
capteurs et de passerelles avec différentes tailles et fréquence d’envoi des paquets, nous
avons validé l’efficacité de notre solution dans plus de 256 scénarios (4 tailles de paquets
* 4 taux de paquets * 4 nombres de capteurs * 4 nombres de stations de base). Après quoi,
nous validons l’efficacité de notre solution en étudiant en profondeur deux scénarios avec
100 et 1000 capteurs. Nous mesurons dans chaque scénario d’autres métriques comme le
temps de propagation et la consommation d’énergie en plus du PDR et le débit.

Pour offrir une qualité de service personnalisée aux capteurs IoT, nous proposons,
dans notre troisième contribution, d’améliorer la personnalisation des paramètres de
transmission LoRaWAN en intégrant pleinement le résultat du clustering dans le proces-
sus d’apprentissage. En effet, même s’il offre une meilleure performance que les travaux
de l’état de l’art, l’algorithme Q-learning ne tire pas profit de l’ensemble des connais-
sances fournies par le clustering puisqu’il met à jour ça politique en se basant unique-
ment sur l’état suivant observé sans prendre en compte tous les états suivants possibles.
Pour cette raison, nous proposons d’initialiser complètement la matrice de transition
d’état de MDP avec la connaissance fournie par FCM. L’avantage par rapport à la solu-
tion basée sur le Q-learning est la possibilité de fournir à l’agent d’apprentissage une vue
globale de toutes les transitions d’état possibles après chaque itération. Comme nous ex-
plorons la qualité des paramètres de transmission à l’avance avant même de commencer
le processus d’apprentissage en mode hors ligne, l’algorithme d’itération de politique ex-
ploitera directement les paramètres de transmission de haute qualité. Contrairement à
Q-learning et à l’algorithme d’itération de valeur, l’algorithme d’itération de politique est
connu pour sa plus grande vitesse de convergence car il nécessite moins d’itérations pour
converger. Pour mettre en évidence la performance de notre approche, nous avons com-
paré le débit des trafics générés par trois applications principales séparément plutôt que
l’ensemble du trafic comme nous l’avons fait précédemment. Les résultats de la simu-
lation montrent que la combinaison de l’exploration avec FCM et de l’exploitation avec
MDP accélère le processus d’apprentissage tout en permettant l’adaptation du débit, du
temps de propagation et de la consommation d’énergie de ces applications. De plus, Les
résultats montrent que la qualité du trafic généré est améliorée par rapport aux stratégies
existantes.
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Résumé étendu

Quotation

My religion is when I do good, I feel good and

when I do bad, I feel bad — Abraham Lincoln

Ma religion c’est quand je fais du bien, je me

sens bien et quand je fais du mal, je me sens

mal — Abraham Lincoln

L’adoption croissante des technologies sans fil a intensifié le besoin de mieux com-
prendre le fonctionnement de l’Internet des objets (IoT). Lorsqu’une technologie IoT est
utilisée pour surveiller les risques liés aux infrastructures critiques, la fiabilité et l’effi-
cacité deviennent des priorités pour tout opérateur de réseau. La technologie à longue
portée (LoRa), est souvent la solution industrielle la plus courante pour connecter des
capteurs sans fil dans une zone étendue. Pour pouvoir connecter des appareils alimentés
par batterie à l’internet, les clients sont généralement confrontés à trois choix principaux
: réseaux à courte portée, réseaux cellulaire et réseaux à longue portée. Les technologies à
courte portée comprennent des technologies telles que Bluetooth, NFC/RFID ou Zigbee.
Par contre, elles ne sont absolument pas adaptées aux scénarios qui nécessitent des com-
munications à longue distance de plus de 100 mètres. Cependant, les technologies cellu-
laires [3G, 4G, 5G, etc.] souffrent d’une consommation d’énergie et ne sont pas le meilleur
choix pour les appareils à faible puissance. Les besoins de nombreuses applications in-
dustrielles IoT ont accentués le développement d’une nouvelle vague de technologies de
communication sans fil connues sous le nom de communications sans fil à longue portée
(LPWAN). Parmi ces technologies, on peut citer: Narrow Band-Internet of Things (NB-
IoT), Sigfox et LoRa. Ils sont idéaux pour les environnements industriels et gagnent en
popularité en raison de leurs caractéristiques de communication à longue portée, à faible
puissance et à faible coût.

Pour utiliser les nouvelles applications IoT, les clients doivent superviser des opéra-
tions qui requièrent une large couverture de communication et une excellente connex-
ion. Pour ce faire, quatre facteurs importants doivent être pris en compte, à savoir: le
débit de données, la portée, la consommation d’énergie et la disponibilité de la connex-
ion. La technologie LoRa offre le bon équilibre entre tous ces éléments. Elle garantit une
longue distance de transmission avec une portée allant jusqu’à 15 km ou 9 miles avec une
autonomie jusqu’à 10 ans. Elle peut être plus rentable que les solutions traditionnelles
en réduisant la consommation d’énergie. Elle s’adapte bien à l’ajout de nuds au réseau
au fur et à mesure de l’évolution du projet. En outre, elle s’est avérée robuste avec forte
résilience contre l’interférence. La sécurité et la confidentialité sont également assurées
par un cryptage AES 128 à plusieurs niveaux pour toutes les données envoyées entre les
capteurs et le réseau.

Comme nous avons motivé le choix de la technologie LoRa, nous entrons maintenant
dans les détails techniques sur le fonctionnement cette technologie. LoRa est proposé
comme une nouvelle technologie de couche physique qui module le signal dans les ban-
des industriels, scientifiques et médicaux (ISM) inférieures à 1 GHz. Elle permet aux util-
isateurs individuels de créer et de déployer des réseaux privés sans restrictions, à l’excep-
tion de la puissance de transmission maximale autorisée qui devrait être inférieure à 14
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dbm. Il s’agit d’un avantage majeur par rapport à Sigfox et NB-IoT, qui sont contrôlés par
les opérateurs de réseaux publics.

Pour offrir la meilleure qualité de service (QoS) aux applications IoT, les réseaux sans
fil doivent personnaliser leurs paramètres de transmission en tenant en compte la durée
de vie de la batterie. Parmi plusieurs technologies sans fil, la technologie LoRa est une
solution LPWAN prometteuse dont la consommation d’énergie dépend de l’optimisa-
tion d’un ensemble de paramètres de transmission. Dans cette thèse, nous introduisons
une nouvelle optimisation du débit de données en utilisant des algorithmes d’appren-
tissage par renforcement (RL) pour optimiser le débit de données et améliorer la durée
de vie du réseau sans intervention humaine. Notre contribution exploite la caractéri-
sation des paramètres de transmission LoRa à l’aide des méthodes de reconnaissance
automatisées ou clusternig. Ensuite, sur la base des résultats du clustering, nous mod-
élisons le problème de la sélection des configurations des capteurs LoRa en problème
d’exploration et d’exploitation. Pour le résoudre, nous utilisant un processus de déci-
sion de Markov (MDP) pour converger vers les configurations optimales à l’aide des algo-
rithmes Q-learning et iterartion de politiques. Pour mettre en évidence la performance de
notre solution en termes d’économie d’énergie, nous avons comparé l’énergie de trans-
mission et le débit des données de notre solution avec d’autres solutions, notamment :
les pondérations exponentielles pour d’exploration et d’exploitation (EXP3), EXPLoRaTS
et Adaptive Data Rate (ADR).

Les systèmes LPWAN étant conçus pour consommer moins d’énergie, le débit et l’én-
ergie doivent être optimisés en tenant en compte la qualité des données transmises. Pour
minimiser l’énergie et maximiser le débit de données, les paramètres de transmission, tels
que le facteur d’étalement (SF), la puissance de transmission et la bande passante (BW),
doivent être optimisés pour converger vers la combinaison de paramètres qui répondent
aux besoins des applications. Dans ce contexte, cette thèse vise à améliorer l’optimisation
de la consommation d’énergie et du débit de données tout en gardant le débit aussi élevé
que possible. Pour atteindre cet objectif, nous proposons d’abord d’acquérir des connais-
sances sur la qualité de chaque paramètre de transmission par le biais d’une phase de
prétraitement. Ensuite, nous utilisons des algorithmes d’apprentissage par renforcement
(RL) pour améliorer la durée de vie globale du réseau. Pour ne pas limiter notre travail à
la maximisation du débit global du réseau, nous proposons une différenciation du trafic
en divisant les paramètres du réseau en trois sous-ensembles avec des niveaux de QoS
différents en utilisant un modèle d’apprentissage. Ensuite, en se basant sur les modèles
reconnus, les algorithmes devront etre capable de distinguer entre les qualités offertes par
les paramètres de transmission. Bien que cette solution reste une approche "best effort",
elle réussit à adapter la qualité du trafic aux exigences de chaque application.

A partir du contexte présenté ci-dessus, nous cherchons à bénéficier de l’advantage
des algorithmes d’apprentissage automatique et en particulier de l’apprentissage non
supervisé, du processus de décision de Markov et des algorithmes MAB pour rendre le
réseau suffisamment intelligent pour adapter ses paramètres en fonction des exigences
des applications IoT. Par conséquent, nous visons à relever les défis émergents pour ap-
porter des réponses efficaces à ces questions : comment améliorer la performance du
réseau en tenant en compte plusieurs métriques QoS ? et comment adapter ces métriques
à l’hétérogénéité et à la diversification des applications IoT ? Pour cette raison, nous com-
mençons notre étude en examinant de plus près l’état de l’art sur l’optimisation des paramètres
de transmission qui déterminent les performances de communication. Notre travail est
le seul qui considère tous les paramètres de transmission en commençant par le plus
connu qui est le SF, à la puissance de transmission en passant par la bande passante
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(BW) et la fréquence de coddagge (CR). En effet, les solutions proposées dans la littéra-
ture souffrent de problèmes liés au temps de convergence et à la reconfiguration en temps
réel. Plusieurs techniques ont été proposées dans la littérature pour surmonter ces prob-
lèmes. Néanmoins, les contributions actuelles nécessitent encore des investigations plus
avancées notamment dans le domaine de l’optimisation multicritères et la personnal-
isation des paramètres du réseau. En outre, certaines d’entre eux négligent plusieurs
scénarios pratiques et limitent leurs expériences à quelques cas sans varier le nombre
de cellules, le nombre de terminaux, la taille des paquets transmis et leur fréquence de
transmission qui ont un impact important sur le résultat du processus d’apprentissage.
Pour cette raison, nous proposons au cours de cette thèse d’utiliser des algorithmes d’ap-
prentissage légers avec un prétraitement à partir du processus de clustering. Plus pré-
cisément, nous proposons dans cette thèse d’améliorer le débit de données de la liaison
montante en regroupant les paramètres de transmission afin de savoir à quel niveau de
qualité se trouve la transmission. Ensuite, nous introduisons cette connaissance, sous la
forme de degrés d’appartenance, dans les algorithmes d’apprentissage comme une ma-
trice de transition d’état. Ainsi, les paramètres de transmission conduiront à différents
états en fonction de leur degré d’appartenance à différents clusters. Cela signifie que
lorsque nous prenons un paramètre d’un cluster particulier, le clutering est capable de
reconnaître à quel niveau de qualité de lien nous pouvons nous attendre si nous choisis-
sons une telle action.

En résumé, la solution que nous proposons suit les étapes suivantes :

1) Acquérir suffisamment de données pour évaluer la qualité de chaque paramètre de
transmission.

2) Appliquer le processus de clustering sur les mesures de QoS pour extraire des mod-
èles liés à la qualité de chaque paramètre de transmission en mode hors ligne.

3) Utiliser ces modèles dans Q-learning et MDP pour savoir à quel état chaque paramètre
de transmission pourrait mener et comment mettre à jour ses fonctions pour con-
verger analytiquement vers les paramètres optimaux.

Le processus commence par la transmission de paquets aléatoires pour permettre
au serveur du réseau de rassembler suffisamment de connaissances sur la qualité des
transmissions (BW, CR, SF, P) pour chaque dispositif. Ensuite, nous regroupons ces don-
nées pour savoir à quel niveau de qualité chaque paramètre de transmission appartient
le plus. Une fois cette connaissance acquise, nous appliquons l’itération de politique du
processus de décision de Markov en utilisant les degrés d’appartenance des paramètres.
Le serveur de réseau arrête ensuite le processus d’apprentissage et attend le changement
de topologie pour prendre en compte le nouvel emplacement des dispositifs qui ont été
déplacés.

De nombreux travaux dans la littérature ont tenté de résoudre le problème de l’opti-
misation du débit de données, mais la plupart d’entre eux utilisent des méthodes heuris-
tiques et valident leur solution à l’aide d’un ou deux scénarios avec un nombre limité de
capteurs, de stations de base, de terminaux et avec de débits et tailles de paquets fixes. En
outre, ils ne prennent en compte que quelques paramètres de transmission, principale-
ment le facteur d’étalement (SF).

Nous validons notre méthode dans tous les scénarios quel que soit le nombre d’ap-
pareils, de stations de base et quel que soit la taille et le débit des paquets. Des travaux
récents dans la littérature ont essayé d’utiliser des algorithmes d’apprentissage automa-
tique, mais ils commencent leur processus d’apprentissage sans aucune connaissance
des qualités de transmission sans fil. Ils doivent donc apprendre à partir de zéro à chaque
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fois que l’environnement change. Pour avoir une longueur d’avance, nous avons essayé
de trouver un moyen de caractériser toutes les qualités des paramètres de transmission
et de construire une connaissance pour nous permette d’avoir une vue d’ensemble sur
la qualité des transmissions. À cette fin, nous formulons le problème de la sélection des
paramètres de transmission comme un problème de processus de décision de Markov
où les actions sont des paramètres de transmission et les états sont les niveaux de qual-
ité reconnus par le clustering. Une fois que nous avons formulé le problème de cette
façon, nous devons savoir avec quelle probabilité l’état du lien peut passer d’un état à
un autre après la sélection d’un paramètre de transmission. Cette connaissance est obli-
gatoire pour résoudre notre problème. Grâce aux outils de reconnaissance de paternes,
nous proposons d’utiliser l’algorithme de clustering Fuzzy C-Means (FCM) en regroupant
la qualité de tous les paramètres de transmission possibles en trois catégories principales
avec différents niveaux de qualité. Cela signifie que lorsque nous prenons une configu-
ration d’un cluster donné, FCM est capable de reconnaître à quel niveau de qualité nous
pouvons nous attendre si nous choisissons une telle configuration. Cette reconnaissance
est tout ce que nous recherchions pour résoudre notre problème de décision de Markov.
Elle nous permet de savoir à quel état chaque action pourrait mener en sachant à quel
cluster appartient chaque configuration.

Une fois que nous avons généré cette connaissance en mode hors ligne à l’aide du
FCM, nous appliquons l’algorithme Q-learning et l’itération de la politique pour con-
verger vers les paramètres de transmission optimaux en mode en ligne. Cela signifie que
les dispositifs commencent par envoyer des paquets de façon aléatoire en utilisant dif-
férents configurations de transmission. Les passerelles, à leur tour, captent les paquets
transmis et les transmettent au serveur du réseau. Ensuite, le serveur de réseau reçoit ces
paquets et les classe en fonction des paramètres de qualité mesurés par les passerelles.
Une fois cette étape effectuée en mode hors ligne, les capteurs IoT peuvent maintenant
commencer le processus d’apprentissage et le serveur réseau devrait être en mesure de
suggérer des paramètres de transmission pour augmenter le débit de données. Nous
avons comparé plus de 6 algorithmes pour mettre en évidence leurs mesures de perfor-
mance. Il existe d’autres algorithmes que nous n’avons pas eu le temps de mettre en u-
vre, mais il n’existe aucun algorithme dans la littérature qui a atteint un taux de données
supérieur à celui que nous avons obtenu. Nous sommes les seuls à avoir considéré :

1) Un tel nombre de scénarios avec différents nombres de capteurs, de stations de
bases et différents taux d’envoi de paquets.

2) Un tel nombre d’algorithmes : MDP, Q-learning, EXP3, EXPLoRaTS et ADR.

3) Un tel nombre de paramètres de transmission : SF, CR, BW et puissance de trans-
mission .

4) Un tel nombre de métriques : PDR, DR, ToA et energie.

En général, l’utilisation de LoRa est plus appropriée pour les systèmes de surveillance
tels que les exploitations minières qui couvrent généralement de grandes surfaces ou
les systèmes de surveillance de l’environnement. Dans les projets de construction et de
creusement de tunnels, où les points de surveillance sont souvent répartis sur plusieurs
kilomètres, les exploitants ont besoin de données pour répondre aux besoins de leurs
clients. LoRa sera un atout partout où un programme de surveillance fiable en temps réel
est nécessaire pour garantir l’intégrité des infrastructures et des bienscomme les ponts,
les barrages, les bâtiments ou d’autres infrastructures. En outre, LoRa offre la possibilité
de déployer des réseaux privés, permettant à l’utilisateur d’avoir le contrôle et d’être in-
dépendant des grands opérateurs de réseau. Nous nous concentrons, dans la première
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partie de cette thèse, sur le processus de collecte des données en évaluant la qualité de
chaque paramètre de transmission utilisant la modulation LoRa.

Nous proposons donc comme première contribution de regrouper toutes les combi-
naisons de paramètres de transmission en 3 groupes basés sur plusieurs métriques de
QoS. Cette étape est fondamentale pour les contributions suivantes puisqu’elle permet
d’acquérir des connaissances sur le niveau de qualité de chaque configuration de trans-
mission. Cette phase offre la possibilité au serveur réseau d’obtenir une vue d’ensemble
des paramètres de transmission disponibles et de les adapter aux applications. En plus, il
pourrait être exécuté séparément en mode hors ligne sans qu’il ne soit nécessaire d’inter-
agir avec les appareils finaux ou de collaborer avec d’autres serveurs réseaux. Cependant,
les données collectées par d’autres serveurs doivent gérer la même topologie de réseau
pour être traitées efficacement en tenant en compte des mêmes distances entre les cap-
teurs et les stations de base. Sinon, il doit être exécuté en mode en ligne si les capteurs
sont mobiles.

Pour cette raison, nous proposons dans notre deuxième contribution de mettre à jour
les paramètres du réseau avec Q-learning en utilisant la connaissance acquise lors du
clustering. Ce processus s’appuie sur le degré d’appartenance de chaque paramètre aux
3 clusters pour choisir la meilleure configuration qui maximise le débit du réseau. Ainsi,
pour reconnaitre à quel état chaque action conduit, nous nous servons des degrés d’ap-
partenance des configutations au clusters. Les configurations sont mises à jours jusqu’à
la convergence vers l’ensemble des paramètres de transmission qui surpassent l’état de
l’art en ce qui concerne la qualité du trafic de la liaison montante.

Dans la troisième partie de cette thèse, nous étendons notre étude afin d’approfondir
l’utilisation de la phase de clustering en analysant la qualité des trafics générés par 3 ap-
plications IoT plutôt que de se concentrer sur la qualité globale de l’ensemble du trafic
comme dans la deuxième partie. Nous supposons dans cette partie que les capteurs IoT
exécutent 3 applications distinctes avec 3 niveaux d’exigences de QoS différents. Nous
proposons donc de répondre aux exigences de chaque application en utilisant le model
MDP. En plus de mesurer la qualité du trafic global, nous mesurons la qualité de chaque
trafic généré par les trois applications. Cela nous permet de voir si les dispositifs qui exé-
cutent une application nécessitant une haute qualité de trafic sont affectés au cluster avec
une haute qualité de service. A l’exception de l’introduction et de la conclusion, cette
thèse est divisée en quatre chapitres que nous décrivons comme suit.

Chapitre 2 : Etat de l’art, élucide le contexte de notre thèse et les solutions existantes.
Il est composé de 2 parties. Dans la première partie, nous étudionss les principales con-
tributions de la littérature concernant l’évaluation de la qualité et des performances de
LoRa et LoRaWAN. Nous avons divisé cette étude en quatre sous-sections principales afin
de distinguer entre les contributions de la couche application, réseau, contrôle d’accès,
physique et aussi de l’évaluation des performances. Dans la deuxième partie, nous ex-
aminons uniquement les contributions qui appliquent des techniques d’apprentissage
automatique dans différents domaines afin de comprendre comment elles sont utilisées
et pour quelles raisons. Enfin, nous concluons ce chapitre avec une discussion sur les
différents travaux et nous motivons nos contributions.

Chapitre 3 : Le clustering des paramètres réseaus représente notre première contri-
bution dans cette thèse. Dans ce chapitre, nous proposons de regrouper un ensemble
de paramètres de transmission LoRa en fonction de la mesure de la qualité de service
telles que le taux d’erreur des bits (BER), le temps de propagation du signal (ToA) et l’in-
dicateur de force du signal reçu (RSSI). Nous considérons les vecteurs de l’ensemble des
paramètres comme un nuage de points dans un espace vectoriel tandis que les mesures
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sont des coordonnées de points. Nous supposons qu’un nuage de points caractérise une
configuration appropriée d’une classe d’application particulière. Les “clusterheads” sont
les coordonnées représentatives d’un cluster donné. Notre méthode vise à mettre en
correspondance un ensemble de paramètres de transmission LoRa qui offrent la même
QoS au même cluster. Nous générons un ensemble de paramètres de transmission de
manière aléatoire en appliquons l’algorithme de clustering FCM sur les mesures de QoS
qui en résultent. Les résultats montrent que l’algorithme de clustering FCM attribue les
valeurs d’appartenance qui correspondent le mieux aux exigences de l’application. Ce ré-
sultat pourrait être utilisé par les serveurs réseaux LoRaWAN pour cartographier chaque
transmission LoRa en fonction de la qualité quelle offre. Cela permettra de correspon-
dre chaque paramètre de transmission LoRa à l’application exécutée sur les terminaux
finaux. Ce travail a été publié dans la conférence ISNCC.

Chapitre 4 : Nous proposons dans ce chapitre un algorithme d’apprentissage par ren-
forcement avec Q-learning. Nous incluons des paramètres supplémentaires tels que le
BW, le CR en tenant en compte plusieurs mesures de QoS comme PDR, ToA, le débit et
l’énergie. Pour identifer l’état de chaque transmission, nous nous servons de l’algorithme
FCM pour connaître le niveau de qualité des transmissions LoRa. Ensuite, nous utilisons
ces connaissances pour identifier le prochain état après chaque mise à jour de la politique
d’optimisation. Cela permettra de selectioner les paramètres de transmission qui pourrait
conduire à bien converger vers l’ensemble de paramètres de transmission qui maximise
mieux le débit de données de la liaison montante. Pour mettre en évidence la perfor-
mance de ce processus, nous le comparons avec, EXP3. ADR et EXPLoRaTS. Comme la
solution doit s’adapter à de nombreux cas d’utilisation, de nombreux scénarios ont été
étudiés en augmentant le nombre de capteurs, de passerelles et en faisant varier la taille
des paquets et leur fréquence d’envoi. Les résultats des simulations montrent que l’algo-
rithme Q-learning avec le pré-traitement de clustering (FCM) améliore mieux plusieurs
mesures de QoS, notamment la débit, la PDR, la ToA ainsi que l’énergie dans tous les scé-
narios. Ainsi, le PDR et le débit ont été améliorés de 25% et le ToA et l’énergie ont été
réduits de 40%. Une partie de ce travail a été publiée dans computer communication
journal.

Chapitre 5 : La reconfiguration contextuelle des paramètres du réseau pour répondre
aux exigences des applications, représente notre derniere contribution dans cette thèse.
Nous introduisons une nouvelle solution de service différencié utilisant le processus MDP
pour améliorer l’adaptabilité des paramètres de transmission LoRa à ces applications.
Notre contribution exploite la caractérisation des paramètres en utilisant l’algorithme
FCM pour identifier la qualité de chacun d’entre eux. Ensuite, en se basant sur ces ré-
sultats de clustering, nous initialisons la matrice de transition d’état de MDP pour révéler
la probabilité qu’un paramètre de transmission rend l’état du lien plus fiable pour chaque
application. Pour mettre en évidence la performance de notre approche, nous avons
comparé la qualité des trafics générés par trois applications principales. Les résultats des
simulations montrent que l’algorithme d’itération de politique est capable d’adapter le
processus d’apprentissage et d’ajuster la qualité de chaque trafic aux exigences de chaque
application. De plus, les résultats montrent que la qualité de tous les trafics générés est
meilleure que celle de l’état de l’art. Une partie de ce travail a été publiée dans le journal
Computer Communication et l’autre partie a été soumise à la conférence IWCMC.
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1 | Introduction

Quotation

A single certainty is enough for the one who

seeks — Albert Camus

Une seule certitude suffit à celui qui cherche —

Albert Camus

Contents
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1 Context and motivation

The growing adoption of wireless technologies has intensified the need to better un-
derstand how Internet of things (IoT) systems work, what options are available in the mar-
ket and what differentiates them in terms of performance. When an IoT technology is
used to monitor risks in critical infrastructure, ensuring the reliability and the efficiency
becomes a priority for every network operator. Long Range (LoRa) technology, in partic-
ular, is often the most common industrial solution for connecting wireless sensors and
transmitting data in a wide area. To wirelessly connect battery-powered devices to the In-
ternet, customers should mostly deal with three main choices: Short-range, Cellular and
Long range. Short-range technologies include technologies such as Bluetooth, NFC/RFID
or Zigbee. But they are definitely not adapted to scenarios that require long-distance com-
munications above 100 m. Cellular technologies [3G, 4G, 5G, etc.] can provide higher cov-
erage, but they also suffer from energy consumption and they are not the best choice for
low-power devices. The needs of many industrial IoT applications have spurred the de-
velopment of a new wave of wireless communication technologies known as Long range
wireless communications called Low Power and Wide Area Networks (LPWAN). Exam-
ples of LPWAN implementations are Narrow Band-Internet of Things (NB-IoT), Sigfox and
LoRa, to name only few of them. They are ideal for industrial environments and are gain-
ing popularity due to their long-range, low-power and low-cost communication charac-
teristics.

To use the new emerging IoT applications, wireless customers need to oversee opera-
tions that require wide communications coverage and excellent connection availability
at the same time. To ensure this, four important factors must be taken into account;
namely the data rate, the range, the energy consumption and finally deployment facili-
ties. LoRa technology offers the right balance between all these elements. It guarantees a
long transmission distance with a proven range of up to 15 km or 9 miles. The battery of
LoRa devices can be extended up to 10 years. It can be more cost efficient than traditional
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solutions by reducing power consumption. It scales well when adding new devices to the
network as the project evolves. In addition, it has proven to be robust and has strong
resilience against interference. Security and privacy are also achieved through AES 128
encryption at multiple levels for all data sent between the sensors and the application
server.

As we motivate the choice of LoRa technology, we enter now into technical details on
how LoRa works. LoRa is proposed as a new physical layer technology that modulates the
signal in the Industrial, Scientific and Medical (ISM) bands below 1 GHz. It allows indi-
vidual users to create and deploy private networks without restrictions except the allowed
maximum transmission power that should be under 14dbm. This is a major advantage
compared to Sigfox and NB-IoT, which are controlled by public network operators. To
ensure the interoperability of all Long Range Wireless Access Network (LoRaWAN) prod-
ucts and technologies, LoRaWAN alliance community works on delivering certifications
to manufacturers all around the world. It is becoming the largest and fastest growing al-
liance in the technology sector. It is constantly working on improving data accuracy and
rate. When talking about how different components and devices communicate wirelessly
within an IoT network, defining and selecting the right topology strategy help to mitigate
the waste of network resources. Topologies differ greatly in terms of power consumption,
cost and complexity. So, choosing the right one is mandatory to avoid problems in the
future.

To offer the best Quality of Service (QoS) to IoT applications, wireless networks need
to customize their transmission settings by taking into account the battery life of end de-
vices. Among several wireless technologies, LoRa technology is a promising LPWAN so-
lution whose energy consumption depends on the optimization of a set of transmission
parameters. In this thesis, we introduce a new data rate optimization using Reinforce-
ment Learning (RL) algorithms to improve the network life duration without human in-
tervention. Our contribution exploits the characterization of LoRa transmission settings
using Fuzzy C-Means (FCM) algorithm. Then, based on the clustering output, in chaper
3, to know at which state each action could lead, we use, in chapter 4, the Q-learning al-
gorithm to maximize the overall data rate of the network based on the observed new state
after each transmission. However, in chapter 5, we use the policy iteration algorithm that
requires to know all possible state transitions without observing the new state after each
transmission. To highlight the performance of our approach in terms of data rate and
energy saving, we compared both Transmission Energy (E t x) and Data Rate (DR) of our
solution with other state-of-the-art baselines, including: Exponential weights for Explo-
ration and Exploitation (EXP3), EXPLoRaTS and Adaptive Data Rate (ADR).

Since LPWAN networks are designed to consume less energy, both DR and E t x should
be optimized taking into account the quality of the uplink traffic. To minimize the energy
consumption and to maximize the data rate, transmission parameters, such as Spreading
Factor (SF), Bandwidth (BW), Coding Rate (CR) and Transmission Power (P t x), should
be tuned to converge to the combination of parameters that consumes less power. In
this context, this thesis aims at pushing the data rate optimization one step further while
keeping the energy consumption as low as possible. To achieve this goal, we propose to
acquire knowledge about the quality of each transmission setting through a clustering
preprocessing phase. Then, we use Reinforcement Learning (RL) algorithms to improve
the overall network life duration.

To not limit our work on maximizing the overall data rate of the network, we propose,



2. Problem statement 3/117

in this thesis, a traffic differentiation by splitting network settings to three subsets of set-
tings with different QoS levels using a pattern recognition algorithm: FCM. Then, based
on the recognized patterns, the policy iteration algorithm should able to distinguish be-
tween the quality of each transmission setting before even starting the learning process.
Although this solution remains a “best effort” approach, it succeeds in adapting the traffic
quality to the requirements of each application.

2 Problem statement

From the context presented in the previous section, we aim to benefit from the ad-
vantage of machine learning algorithms and particularly unsupervised learning, Markov
Decision Process and Multi-Armed Bandit algorithms to make the network enough smart
to adapt their settings according to the requirements of Internet of things (IoT) applica-
tions. Therefore, we aim to address emerging challenges related to traffic separation and
slicing with regard to the overall performance of the network to bring effective answers to
these questions: how to enhance the network performance regarding multi criteria met-
rics like Data Rate (DR), Packet Delivery Ratio (PDR), Time on Air (ToA) and Transmission
Energy (E t x) ? and how to adapt these metrics to the heterogeneity and diversification
of IoT applications ?. For this reason, in this thesis, we start our study by taking a closer
look at the state of the art works on optimizing transmission parameters. Our work is the
only one that considers all transmission parameters starting from the known Spreading
Factor (SF) to Transmission Power (P t x) passing by Bandwidth (BW), Coding Rate (CR)
and frequency channel. Indeed, the proposed solutions in the literature suffer from prob-
lems related to time of convergence and real time reconfiguration. Several techniques
were proposed in the literature to overcome these problems. Nevertheless, current con-
tributions still require further investigations especially in the multi criteria optimization
and customization of network settings. In addition, some of them neglect several prac-
tical scenarios and limit their experiments to few cases without varying the number of
cells, the number of devices, the size of the transmitted packets and their transmission
frequency, which highly impact the outcome of the learning process and slow it. For this
reason, we propose in this thesis to use lightweight learning algorithms with a prepro-
cessing phase to acquire knowledge from the clustering process to speedup the learning
process and customize transmission settings to the need of each device.

Specifically, we propose in this thesis to enhance the uplink data rate by clustering
transmission settings to know at which quality each setting could lead. Then, we feed this
knowledge, in the form of membership degrees, to MDP as a state transmission matrix.
Thus, transmission settings will lead to different states based on their membership de-
grees to different clusters. This means that when we pick up one setting from a cluster,
Fuzzy C-Means (FCM) is able to recognize at which link quality we can expect to jump if
we select such an action. In summary, our proposed solution follows the following steps:

1) Acquire enough data to assess the quality of each transmission setting.

2) Apply the clustering process on the measured Quality of Service (QoS) metrics to
recognize patterns that disclose the quality of each transmission setting in offline
mode.

3) Use this patterns in Q-learning and policy iteration algorithms to know at which
state each transmission setting could lead by updating their policy to converge iter-
atively to the optimal settings in online mode.
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The process starts by transmitting random packets to allow the network server to
gather enough knowledge about the quality of different transmission settings (BW, CR,
SF, P t x ) for each device. Then, it clusters these data to know at which quality level each
transmission setting belongs more. Once this knowledge is acquired, it applies the policy
iteration using the membership degrees of settings to clusters as probabilities to jump to
the next states using the same setting. After convergence, the network server stops the
learning process and waits for a topology change to consider the new location of devices
that have moved.

Many works in literature tried to solve the problem of data rate optimization but most
of them use heuristic methods and validate their solution using one or two scenarios with
a limited number of devices, base stations and fixed packet rates and sizes. In addition,
they consider only few transmission parameters and mainly the spreading factor. In our
work we consider all transmission parameters: SF, CR, BW and transmission power. We
validate our method in all scenarios whatever the number of devices, base stations and
whatever the size and rate of packets. Recent works in literature tried to use machine
learning algorithms but they start their learning process without any knowledge about
wireless transmissions quality so they have to learn from scratch at each time the envi-
ronment changes. To be ahead of the game, we tried to find a way to characterize all
transmission settings qualities and build a knowledge that we feed to machine learning
algorithms to be one step ahead of other machine learning based solutions. To this end,
we formulate the problem of transmission settings selections as a Markov Decision Pro-
cess problem where actions are transmission settings and states are the recognized qual-
ity levels by FCM.

Once we formulate the problem this way, we need to know with which probability the
link state could jump from one state to another after the selection of a transmission set-
ting. This knowledge is mandatory to solve our problem. Thanks to pattern recognition
tools, we propose to use Fuzzy C-Means (FCM) clustering algorithm to acquire this knowl-
edge by clustering the quality of all possible transmission settings to three main clusters
with different quality levels. This means that when we pick up one setting from a cluster,
FCM is able to recognize at which link quality level we can expect to jump if we select such
an action. This recognition is all what we were looking for to solve our Markov decision
problem. It allows us to know at which state each action could lead by knowing at which
cluster each setting belongs.

Once we generate this knowledge in offline mode using FCM, we applied Q-learning
and the policy iteration algorithms to converge to the optimal transmission settings in
online mode. This means that devices start by sending packets randomly using different
transmission settings. The gateways, in their turn, catch the transmitted packets and for-
ward them to the network server. Then, the network server receives these packets and
clusters them based on the quality metrics measured by gateways. Once this step is done
in offline mode, devices can now start the learning process by randomly selecting one
transmission setting and the network server should be able to suggest other transmission
settings to increase the data rate iteratively until their policy converges to a steady state.

We implemented most known algorithms, EXP3, EXPLoRaTS and ADR, that tried to
increase Long Range Wireless Access Network (LoRaWAN) data rate. We compared more
than 5 algorithms + random algorithm to highlight their performance metrics. There are
other algorithms that we did not have time to implement, but there is no algorithm in
literature that achieved a data rate higher than the data rate that we obtained with the
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same packet delivery ratio. Compared to the state of the art, we are the only ones that
considered:

1) such number of scenarios with different numbers of End Devices (EDs), Base Sta-
tions (BSs) and different Packet Sizes (PSs) and Packet Rates (PRs).

2) such number of algorithms: MDP, Q-learning, EXP3, EXPLoRaTS and ADR.

3) such number of transmission parameters: SF, CR, BW and Transmission Power
(P t x).

4) such number of metrics: PDR, DR, ToA and E t x

In general, the use of Long Range (LoRa) is more appropriate for monitoring systems
such as open-pit mining operations that typically cover large areas or large construction
projects. For example, in construction and tunneling projects, where monitoring points
are often spread over several kilometers, operators need data to be transmitted over long
distances using devices that require very little power and are not dependent on signal
coverage. For this reason, LoRa will be an asset wherever a reliable real-time monitoring
program is needed to ensure the integrity of any structure, such as bridges, dams, build-
ings or other infrastructure.

3 Methodology and contributions

We focus, in the first part of this thesis, on the data collection process by evaluating
the quality of each transmission setting using Long Range (LoRa) modulation. We hence
propose as a first contribution to cluster all the combination of transmission settings to
3 clusters based on several Quality of Service (QoS) metrics. This step if fundamental for
the following contributions since it allows us to acquire knowledge about the quality level
of each transmission setting. This phase offers an advantage for the network server to
get a global overview of the available transmission settings and to map them to different
quality levels. In addition, it could be run separately in offline mode without the need
of interaction with end devices or with collaboration with other network servers. How-
ever, the data collected by other servers should manage the same network topology to be
efficiently treated regarding the same distances between devices and base stations. Oth-
erwise, it should be run in online mode if devices are mobile.

For this reason, we propose in our second contribution to update the network settings
continuously using Q-learning. This process relies on the observation of the new state at
which each action leads by looking at which cluster it belongs. For example, if the per-
formed action "a" belongs to the cluster with a high QoS "s", then the uplink state should
be high also. Thus, Q-learning will increase the Q(s,a) value if the packet is well received
and action "a" will be promoted for next transmissions. This process is computed contin-
uously until the convergence to the set of transmission settings that outperform the state
of the art regarding the quality of the uplink traffic.

In the third part of this thesis, we extend our study to investigate in depth the use of the
clustering output by analyzing the quality of the traffics generated by 3 Internet of things
(IoT) applications rather than focusing on the overall quality of the whole traffic like in
the second contribution. Indeed, we assume in this contribution that IoT devices run 3
distinguished IoT applications with 3 different QoS requirements levels. Thus, we propose
to cope with the requirement of each application requirements using the policy iteration
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algorithm. The advantage of this algorithm compared to Q-learning is its ability to update
its policy by knowing in advance all possible state transitions before even starting the
learning process. This allows devices that run an application that requires a high quality
to target the transmission settings that belong to the cluster with a high QoS level.

4 Organization of the thesis

Except, the introduction and conclusion, this thesis is released with four major parts
which are presented in four chapters:

Chapter 2: State of the art, elucidates the context of our thesis and the related existing
solutions. It is composed of 2 parts. In the first part, we elucidate the major contribu-
tions in literature regarding Long Range (LoRa) and Long Range Wireless Access Network
(LoRaWAN) quality and performance evaluation. We split this survey to four main sub-
sections to distinguish between contributions in application, network, Medium Access
Control (MAC) or physical layer. In the second part, we review only contributions that ap-
ply machine learning techniques in different domains to understand how they are used
and for which purpose. Finally, we conclude this chapter with a discussion about the dif-
ferent works and motivate our contributions.

Chapter
1 Introduction

Chapter
2 Related work

Chapter
3

FCM clustering of
network settings

Chapter
4

Online reconfigura-
tion of network settings

Chapter
5

Contextual reconfigura-
tion of network settings

Chapter
6 Conclusion

Figure 1.1. Organization of the thesis.

Chapter 3: The Fuzzy C-Means (FCM) clustering of network settings represents our
first contribution in this thesis. In this chapter, we propose to cluster a set of LoRa trans-
mission settings based on the measured Quality of Service (QoS) metrics such as Bit Error
Rate (BER), Time on Air (ToA) and Received Signal Strength Indicator (RSSI). We consider
the set of settings’ vectors as a cloud of points in a vector space while measured met-
rics are points’ coordinates. We assume that items in the same cluster characterize the
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suitable configurations for a particular Internet of things (IoT) application. Clusterheads
are the representative settings of a given cluster. Our method aims to map a set of LoRa
transmission settings that offers the same QoS to the same cluster. We generate a set of
transmission settings randomly and apply the FCM clustering algorithm on the resulting
QoS metrics. Results show that the FCM clustering algorithm assign the membership val-
ues that best fit application requirements. This result could be used by LoRaWAN network
servers to map each LoRa transmission setting to the application running on end devices.
This work has been published in ISNCC conference.

Chapter 4: We apply, in this chapter, the Q-learning algorithm to update the policy
that drives to the selection of the optimal settings considering several QoS metrics like
Packet Delivery Ratio (PDR), ToA, Data Rate (DR) and Transmission Energy (E t x). How-
ever, to be able to run this algorithm, we need to observe the new uplink state where each
setting leads. To alleviate this problem, we take advantage of our clustering process in
the previous chapter to know at which state each action could lead by knowing at which
cluster each setting belongs. As the solution should cope with different scenarios, we vary
the number of End Device (ED), Base Station (BS), Packet Size (PS), Packet Rate (PR) and
we compare our solution with EXP3, ADR and EXPLoRaTS algorithms. Simulation results
show that Q-learning improves better several QoS metrics including the DR, PDR, ToA
and E t x . Furthermore, results show that the quality of the generated traffic is improved
compared to the existing strategies and both ToA and E t x were reduced by 20%. Part of
this work has been published in computer communication journal.

Chapter 5: We propose, in this chapter, to adapt LoRa transmission settings to the
requirements of IoT applications. To select the transmission settings that match the re-
quired quality, IoT devices need to target the set of transmission settings that offer the
same quality as required by applications. Thanks to the clustering outputs in chapter
3, the network server can recognize the transmission settings that match the quality re-
quired by an application through the membership degrees of these settings to clusters.
We introduce a new differentiated service solution using Markov Decision Process (MDP)
to improve the adaptability of LoRa transmission settings to these applications. Unlike
Q-learning, the policy iteration algorithm that we propose in this chapter is able to target
the recognized quality levels through the state transition matrix. This allows devices to
select the transmission settings that fit the quality level of the application that they run
by selecting the transmission settings that belong to the same cluster. Thus, we initialize
the state transition matrix of the policy iteration algorithm to infer the probability that
one transmission setting will make the uplink state match the required state by IoT appli-
cations. To highlight the performance of our approach, we compared the quality of the
traffics generated by three main applications. Simulation results show that the policy iter-
ation algorithm is able to target the required uplink quality by selecting the transmission
settings that belong to the same cluster. In addition, it speeds up the learning process
and adapts the DR, the ToA and the E t x to these applications. Thus, the PDR and the DR
were improved by 25%, the ToA was reduced by 40% and E t x was reduced by 20%. Part of
this work has been published in computer communication journal and the other part has
been submitted in IWCMC conference.
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Abstract

Since the appearance of Long Range (LoRa) in 2015, many works have been published in
the literature to study the performance of LoRa transmissions and to enhance the uplink
quality. However, all contributions in the literature assume that Low Power and Wide Area
Networks (LPWAN) devices have the same requirements and try to maximize the data
rate using different approaches. This chapter elucidates the main findings in this area.
A summary of our literature review is presented in tables at the end on each section to
offer an overview of all the papers reviewed in this thesis. Thanks to the reviewed works
in this thesis, this chapter highlights the advantage and the drawbacks of each work to
understand better the problems that LPWAN networks are facing. As LPWAN devices are
very sensitive to energy consumption, many works keep the default ALOHA protocol and
propose new adaptive data rate schemes. In fact, ALOHA protocol is the only protocol
that consumes less energy since the access to the channel is made randomly without any
additional computational process. The randomness of the wireless environment drives us
to look for a powerful computational process that alleviates this problem by leveraging the
power of machine learning algorithms to maximize network throughput. For this reason,
we relate also in this chapter the main findings in machine learning area to understand
how they optimize their problems using machine learning algorithms.

9
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1 Introduction

Nowdays, nor WiFi, Bluetooth and ZigBee can cope with the billions of devices that are
expected to integrate the Internet of things (IoT) in the forthcoming years. To deal with
such a problem, Low Power and Wide Area Networks (LPWAN) emerged in this context as
a life buoy to handle the requirements of new IoT applications. Recent related works have
sought to assess the performance of Long Range Wireless Access Network (LoRaWAN) in
different environments: university campus [45], indoor applications [27], industry [200],
dense cities downtown [220], and rural areas [29]. Other studies focused on finding new
mechanisms to enhance the performance of Long Range (LoRa). In this context, we clas-
sify the literature as follows: (i) works analyzing the current capabilities and limitations of
LoRaWAN [53, 34, 215, 204], (ii) works studying its performance with manual/static set-
tings [20, 33, 44]. (iii) works proposing novel approaches and heuristics to optimize the
network performance [140, 118, 197, 59]. In this chapter, we elucidate different contribu-
tions in both wireless networks and machine learning fields to extract relevant informa-
tion that drive our research and our contributions.

2 Low Power Wide Area Network (LPWAN)

Knowing the diversification of Internet of things (IoT) applications (see Fig. 2.8a),
many works in literature work on analyzing, evaluating and enhancing the performance
of Low Power and Wide Area Networks (LPWAN) communications in a wide area. In ad-
dition, we relate in this section different solutions that alleviate the limitation of using
LPWAN for IoT applications. We divide this section to five main subsections to highlight
contributions made in application, Medium Access Control (MAC), network and physical
layer.

2.1 Application layer

In the nineteenth century, there was one kind of applications that uses the wireless
network, namely military applications to communicate soldiers and troops during the
first and the second world wars. After the end of the second war, there was an exponential
increase of wireless applications and technologies to dial with our daily life challenges,
starting from telephony services to surgery over the network. Since 2015, Long Range
(LoRa) technology emerged as one of the technologies that covers the need of agricultural
and farming industries and other industries that request wide area coverage like buildings
and health emergencies. In this context, many works in the literature tried to use Long
Range Wireless Access Network (LoRaWAN) network in various domains. We elucidate
here some of these studies to disclose the high potential of LoRa to communicate devices
in a wide area with a lower energy consumption.

Many works in literature aim to assess the feasibility of their deployment with differ-
ent use cases (see Fig. 2.1b) and in different environments. We can cite, smart metering
[83], indoor applications [27], university campus [45], dense cities downtown [220], [232],
industry [200], and rural areas [29]. All these studies have been carried out using real de-
ployments. It is worth to note that none of them used a high number of network devices.
So, it is difficult to validate their models in dense networks.

The scientific contributions on LPWAN and particularly LoRaWAN are slowly expand-
ing but most of them are still related to the link-level evaluation. Many experiments on
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LoRaWAN have been made to study its performance [201, 230, 46, 37, 19]. Among these
works, we cite different use cases such as: city centers deployments, tactical troop track-
ing and sailing monitoring systems. Nevertheless, experimental results in real life net-
works are not reproducible and the MAC layer optimization is difficult due to Industrial,
Scientific and Medical (ISM) band limitations. In addition, many of them are deployed in
rural and suburban areas [201]. However, it could also be deployed in urban areas as well
[230]. For example, Sanchez-Iborra et al. [38] found that coverage evaluations in urban,
suburban and rural environments could be extended until 6 km in urban and suburban
areas and over 18 km in rural areas [201]. They determine LoRa ranging performance in
free space conditions. The payload length experiments conducted in this work show dif-
ferent inconsistencies of Packet Delivery Ratio (PDR) for 80 and 100 bytes but less for 50
bytes.
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Figure 2.1. LPWAN challenges.

2.1.1 Monitoring applications

To avoid complex and costly relay nodes in short-range technologies, visual surveil-
lance applications with low-cost image sensors are more and more investigated in liter-
ature using long-range technologies. For example, Pham [36] propose an activity time
sharing mechanism where a pool of image sensors are deployed by a single organization.
This means that the activity time of all deployed devices are managed with a shared man-
ner, allowing a device to transmit beyond the 1% duty-cycle limit which is the time inter-
val during which devices could use the channel. The challenge of such an approach is to
respect the radio regulations defined for sub-GHz transmissions while managing a larger
amount of data produced by image sensors. This solution is implemented on a low-cost
image sensor platform and preliminary tests show that it is fully functional. However, au-
thors should push their experiments one step further to evaluate the behavior of their tool
in more complex scenarios.

Most recent researches on LoRa and LoRaWAN have focused on analyzing features
such as the throughput, network capacity, delay and range [120] [1][219][28]. For exam-
ple, Augustin et al. [1] analyzed LoRa and LoRaWAN under various sets of configurations
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and different conditions by field tests and simulations. Their study led to a number of
open research challenges (see Fig. 2.1a), particularly in channel management, such as
Time Division Multiple Access (TDMA) over LoRaWAN and Random Access (ALOHA) in
unlicensed bands. To setup their experiment made in Paris, a Cisco 910 as a gateway was
installed outside at a height of 5 meters. LoRa end-devices were placed in 5 different dis-
tances from the gateway: 600 m, 1400 m, 2300 m, 2800 m and 3400 m. The Spreading
Factor (SF) values were varied between 7 and 12. Field tests results show that LoRa can
offer a coverage up to 3 km in a suburban area even in a dense urban dwelling area. Ex-
perimental results show that the PDR is about 90% when SF 9 to 12 are used at 2 km from
the gateway. At 3.4 km and with SF 12, the PDR seems to be less than 40%. Simulations
were also made in order to evaluate LoRa throughput behavior with a larger number of
devices. Simulation results showed that LoRaWAN behaves closely to ALOHA in a dense
network: with the maximum channel capacity of 18%, the collision ratio increase to 60%
for a link load of 0.48. This work gave new interesting quantified results. However, the
Adaptive Data Rate (ADR) and retransmission were not investigated in this work.

Since energy consumption is the major constraint that pushed the wireless commu-
nity to work on LPWAN, Orfei et al. [30] developed an energy harvester with vibrations
caused by vehicles in a bridge. They estimated the time required by the energy harvester
to load the supercapacitor to 3.3 V within only 3.5 hours. The microcontroller board re-
quires about 100 µA at 3.3 V when the microcontroller is in deep-sleep mode and about
10 mA at 3.3 V when operating. If the radio frequency transceiver sends 8 bytes of data
with 14 dBm at 868.1 MHz in LoRa mode and with SF 12, the measured required energy
was around 43 mA at 3.3 V for about 870 ms: (43 ∗ 3.3 ∗ 0.87) 123 mJ. Indeed, the en-
ergy consumption could be lower with lower SF, lower Transmission Power (P t x) or with
Frequency-shift keying (FSK) modulation.

LPWAN are known for their high coverage and low energy consumption, but they suf-
fer a lot from a low Data Rate (DR). To overcome this limitation, Eriksson et al. [10] in-
vestigated the throughput for LoRaWAN by analyzing Co-SF and Inter-SF interferences.
The throughput has been shown to vary depending on the amount of the data sent. The
packet loss rate was at its lowest level when the channel utilization was around 54%. Inter-
SF interference was considered non-significant since the broadcasts on the same channel
with different SF could both coexist without a significant packets loss rate.

2.1.2 Wide area applications

Since the appearance of LoRa in the market, research community made a lot of efforts
to evaluate the performance of this technology in many domains, including underground,
freshwater and agricultural activities. In fact, monitoring the level of phreatic aquifers is
very important to protect and to preserve agricultural foods. In this context, Sartori et al.
[40] present a smart, ultra-low power, cheap and energy neutral system which is able to
monitor periodically and remotely the level of phreatic aquifers. A single terrestrial Micro-
bial Fuel Cell (MFC) is used as a power supply to the whole network. To mitigate the waste
of energy, the authors proposed a transient computing paradigm which consists of ultra
low power hardware that exploits smart strategies to store and save energy. Thanks to the
LoRa radio chip, sensors are able to transmit their data kilometers away keeping the com-
plexity of the network topology very low compared to mesh networks with complicated
network protocols to route the packets. However, the authors didn’t make experiments to
validate their design of an adaptive policy for the radio transmission.
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Regarding the type and position of antennas, network performances can severely be
damaged especially in dense networks. To study the impact of antennas positions and
types on the LoRaWAN performance, Iova et al. [16] showed that having several radiation
planes like buildings and vegetation, interference with other technologies and high tem-
perature, significantly deteriorate the communication. However, environmental factors
(e.g., temperature and wind) were not measured and quantified to prove their impact on
LoRa communication.

To address the problem of limited coverage and high power consumption of the first
generation of LoRa technology in rural areas, Two use cases were considered by Li et al.
[19] during their experiments. The first case where sink nodes and gateway were all on
the water. The second case when a gateway was fixed on the land and sink nodes were on
the water. Their results show that the smaller SF or greater Bandwidth (BW) increases the
range at the expense of an increase of Time on Air (ToA) and a decrease of DR. In both
cases, a good performance in mobility with 20 km/h average speed was observed with a
low packet loss rate under 5% and a long range over 2 km in flat zones. Meanwhile, a high
packet loss rate over 20% in zones with obstacles such as high buildings and trees were
observed. Authors should focus on designing a new adaptive network to get the optimal
performance to deal with such conditions.

To enable collaborative and communal wide area networking for telemetry, Dongare
et al. [8] proposed OpenChirp; an LPWAN architecture built on top of LoRa and LoRaWAN.
This platform will allow researchers around the world to unlock a plethora of creative
ideas that are currently either cost or power limited by existing wireless technology. This
platform holds a proof-of-concept system deployed at Carnegie Mellon University to as-
sess the feasibility and the scalability of LoRaWAN. Their experimental results show that a
few well positioned gateways are able to cover an entire college campus and that low-cost
nodes can be deployed to run on batteries for many years. However, many challenges re-
lated to LPWAN such as the uplink throughput and network performance measurement
were not considered in this work.

Thanks to the work made by Petäjäjärvi et al. [34]. Their results show that when end-
devices are required to send only one packet per day, one-cell LoRaWAN can serve up to
millions of devices. However, when end-devices are required to send at least one packet
per day, only few hundreds of devices may be hosted in one-cell. Beside scalability anal-
ysis, Petäjäjärvi et al. [34] also evaluated the performance of the LoRa communication
under mobility and environment constraints. Their results show that with SF 12, 14 dBm
of transmission power and relative speed above 40 km/h, the quality of the link drops
down significantly. Whereas, with a lower mobility, they observe a reliable communica-
tion within a distance of 2 to 10 km on the ground and 15 to 30 km on the water. Authors
also showed the maximum throughput for different duty cycles per node and per channel.

In the same context, Wang et al. [45] proposed a LoRa transmission performance eval-
uation for environmental monitoring using a real-life long-term PM2.5 air quality sensors.
They measured the quality of the signal by varying transmission power, payload length,
antenna angles, distances, indoor/outdoor environments, time of day, weather condi-
tions, etc. Their results show that LoRa transmissions are severely interfered by nearby
4G base stations and suffer from a regular high packet loss rate pattern that is similar to
human daily activities. In addition, they found that all LoRa packet losses occurred with
less than three consecutive packet losses. This means that carrying the latest three sensed
values in a LoRa packet is an effective way for more reliable data transfer.
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Rather than increasing the number of gateways to enhance spatial diversity, Hoeller et
al. [15] propose to use multiple receive antennas to enhance the signal quality. Their work
examines whether multiple receive antennas in a single gateway create a signal diversity
to enhance signal quality. Such a work could be easily extended to the case of multiple
gateways with multiple antennas. However, further experiments should be made to really
believe on the efficiency of their work in dense networks.

To reach the application server, end-devices need to send the data collected from their
sensors to the network server through a gateway. However, when the gateway is not con-
nected to internet, the data transmitted can’t reach the IoT application server. To over-
come this issue, a first study by Barro et al. [3] was conducted on stand-alone LoRaWAN
base stations to operate even when Internet is not available. The solution proposed is
based on the fact that gateways have the ability to communicate with each other [4]. So,
at least one gateway should be connected to the internet to send the re-transmitted data
to the cloud server.

To solve the same problem, several studies [3][4][5] aim to study the feasibility of the
smart city in developing countries, especially in Africa. Assuming that Internet is not ac-
cessible or is intermittent in rural areas, Barro et al. [4] try to forward the collected data to
the network server with a round-trip time less than 100 ms passing by multiple wireless
communications. This is why it should be wise and judicious to propose an architectural
model offering several options of communications which will remain flexible to future
evolutions.

2.1.3 Urban applications

Industrial solutions for LPWAN were also proposed in the literature to overcome the
limitation of LoRaWAN network in urban areas. For example, Nolan et al. [28] forecasted
the LoRaWAN network to capture up to 55% in share of market (SOM) with ten years bat-
tery powered devices. The authors compared the Ultra narrow band (UNB) solutions pro-
posed by SigFox and the Chirp Spread Spectrum (CSS) technology proposed by Semtech.
Both modulation schemes operate in the ISM bands (EU 868 MHz / US 915 MHz). The
authors then proceeded to explore a coverage estimation where they found that three
gateways installed 470 m above sea level on three rock mountains can serve a core cover-
age area of 1380 km2. They also conducted a successful real-world range evaluation with
SigFox’s technology to achieve 25 km of range with 14 dBm since the Signal to Noise Ratio
(SNR) consistently exceeds 20 dB over this test link distance.

Like Petajajarvi et al. [230], Wixted et al. [46] test the coverage range and the Packet
Error Rate (PER) by means of empirical measurements with multiple gateways in the Cen-
tral Business District in Glasgow, Scotland. As LoRaWAN gateways can be reached by all
nearby end devices, end devices are able to transmit collected data to all these gateways
without any handover. When the network server receives multiple message requests from
the same device, it drops any copies of this message and replies to the gateway that re-
ceived the request with the highest Received Signal Strength Indicator (RSSI). To setup
their experiment, a LoRa gateway was installed on the roof of the university building with
7 floors. End devices were configured with SF 12 and moved around the city. At each
transmission, the RSSI was measured on the gateway. The experiments in this work was
not fully built, but results show that it is possible to successfully receive packets at 2.2 km
from a node. However, this work didn’t study the impact of different LoRa parameters on
network performance.
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Another work in outdoor environment was made by Erbati et al. [9] in Duisburg, Ger-
many. A LoRaWAN gateway was installed above a building with eight-stories located in
the city of Duisburg. End devices were located in a non-Line Of Sight (LOS) from the gate-
way where there exist various obstacles such as trees, buildings and cars. The distance
varied from 300, 600, 1400 and 1850 m, and 500 frames were sent from each distance. Ex-
periments were made with 21 bytes of payload, SF 10, BW 125 kHz and Coding Rate (CR)
of 4/5. Results show that the RSSI log scaling value decreases with increasing the distance.
When the distance becomes greater than 1850 m, there was 69% of PDR. To manage the
co-existence of LoRaWAN and 4G/5G cellular mobile networks, Navarro-Ortiz et al. [26]
proposed a major modification in LoRa gateway to support both infrastructures.

To study the impact of enabling acknowledgements (ACKs), works on urban areas like
Sanchez-Iborra et al. [38] showed a PDR of 100% with DR0 to DR5 for distances below
3 km. The 100% PDR was also achieved even below 5km and 6km when DR0 was used.
Other DR resulted in a lower PDR between 30% and 50%. This work showed good results.
However, the amount of packets used to calculate the PDR was not specified in the pa-
per. In addition, as the PDR is calculated based on acknowledgements, Wixted et al. [46]
found that in 2.5% of cases, the data was sent but the device did not receive an Acknowl-
edgement (ACK) which could lead to unfair results.

2.1.4 Tracking applications

Thanks to the high coverage offered by LoRaWAN, many papers explored the usability
of LoRa technology for tracking systems. For example, San-Um et al. [37] deployed their
network called Universal and Ubiquitous (U-LoRa) in tactical troop tracking systems. The
proposed long-range communication system has been implemented based on a com-
mercially available GPS, Raspberry-Pi, and other sensors for physical tracking. Thus, they
use end-devices that can be integrated with more than ten types of sensors such as GPS,
temperature, humidity, and water sensors. All the received data has been visualized in
real-time via monitor station.

2.1.5 Health care applications

Even if LoRa technology was not designed for safety applications, a LoRa based smart
wireless paging sensor network for elder care was proposed by Yang et al. [47]. They pre-
sented a packet transmission model for a smart wireless paging sensor network (WPSN)
based on LoRaWAN. The model is used to study the performance of star topology com-
munication on elderly care via Markov discrete-time M/M/1 queuing system. Moreover,
an optimal cluster allocation policy is proposed to improve the Quality of Service (QoS)
parameters such as the PDR, the ToA and the Transmission Energy (E t x). However, au-
thors should consider real life constraints regarding the capture effect and noise that are
missing in this work.

Since the appearance of LoRa in 2015, many works related to various fields tried to
adapt LoRaWAN to their own use cases. For example, health monitoring motes [33], video
surveillance systems [36], monitoring civil infrastructures such as bridges [30] and smart
metering application by allocating wireless resources to address the scalability issues [44],
etc. In this context, Petäjäjärvi et al. [33] analyzed the deployment of LoRa in indoor envi-
ronments for health care monitoring. Their results show that the PDR was very high even
with one base-station to cover an average university campus.
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2.1.6 Indoor applications

Deploying LoRaWAN in indoor environment was made by Neumann et al. [27] to eval-
uate the feasibility of such a scenario. The distances between end-devices and the gate-
way were less than 60 m. Their results show that the RSSI log scale decreases quickly while
increasing the distance, such behavior is the same even in outdoor environment. How-
ever, when the distance becomes very small, packet errors occur frequently due to a bad
Cyclic Redundancy Check (CRC).

Haxhibeqiri et al. [13] focused on studying the coverage of LoRa in an indoor envi-
ronment with a single gateway and a single network server. The communication path
between end devices and the gateway was blocked by the metallic flower trolleys. Their
findings highlight the robustness of LoRa in bad industrial environments. In indoor envi-
ronment, the SNR values were higher than 0 dB with some negative values at some mea-
suring locations and the average RSSI values were above -100 dBm at all measuring loca-
tions. In outdoor measuring locations, communication using SF 7 was not possible and
only SF 12 was relevant. The average SNR values were negative with a peak of -16.4 dB
and 6% of packets received with wrong CRC. To assess the network scalability, simula-
tions were made using 75% of the nodes sending a 20 byte packet every hour and 25% of
them sending a 20 byte packet every 5 minutes. Their results show that only 10% packet
loss was observed when 6000 end nodes were used. However, authors should take into
account the reception of packets by two or more gateways simultaneously to enhance the
total network performance.

2.1.7 Outdoor applications

Vangelista et al. [43] present LoRa as one of the most promising technologies among
LPWAN. They mention that LoRa presents numerous advantages over Sigfox, Weightless
and On-Ramp Wireless. The robust CSS modulation against noise and interference, the
low energy consumption and the low cost of end-devices make LoRaWAN the best choice
for IoT deployment. However, since LoRa is quite a recent technology compared to other
wide area networks, it is not mature enough to be used in applications with high QoS
constraints.

To make LoRa configuration dynamic, Petric et al. [35] proposed to optimize LoRa
parameters regarding the relative elevation and distance between end-devices and the
gateways. They deployed a LoRaWAN using an Arduino module with LoRa transceiver
in the city of Rennes. They focused on analyzing the QoS of the network under different
conditions. However, it is difficult to measure the scaling properties of LoRaWAN through
their study due to the limited number of end devices considered. In addition, their opti-
mization method does not minimize collisions.

LoRa end-devices can send up to 255 bytes per frame with a limited duty cycle. As
the impact of the LoRaWAN frame size on ToA and transmission power is very signifi-
cant, Jang et al. [17] were interested in compressing data to reduce the size of the frame
sent. This leads to a lower transmission time and a lower energy consumption. To do
that, a swapped Huffman tree coding has been used to transmit meaningful data with a
compression ratio of 52.3%. Beside the compression performance, authors conduct their
experiment without worrying about LoRaWAN constraints relating to the channel occu-
pancy time (duty cycle).

To measure the impact of environment factors on channel performance, Marco Cat-
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tani et al. [23] studied the relationship between temperature, PDR and RSSI. They eval-
uated the impact of the LoRa physical layer settings on the DR and energy efficiency for
three types of channels (indoor, outdoor and underground). Their results show that high
temperatures at the node decrease significantly the PDR and the RSSI. The default ADR
of LoRaWAN alliance starts with a default parameter setting. After the reception of some
messages, the receiver can notify the transmitter node to step up or down its SF or P t x .
ADR uses 8 DR settings and 6 P t x settings selected to balance between PDR and energy
consumption. To increase the PDR, authors prefer to decrease the P t x rather than tuning
LoRa parameters to reduce the DR.

To compare different testbeds proposed in the literature, Marais et al. [21] made a re-
view of existing implementations of LoRa devices in indoor, outdoor use cases in different
cities in the world. Testbeds were compared based on the number of gateways and nodes
that they use. The transmission parameters and the reliability of their results were also
involved in the comparison. However, many other testbeds were proposed in literature
and are not covered in this work.

As shown by Mikhaylov et al. [25] and Croce et al. [209], the perfect orthogonality of
LoRa modulation is not a valid assumption. For example, Mikhaylov et al. [25] made an
empirical study of interference between two LoRaWAN networks. Particularly, the au-
thors analyze the interference between conventional LoRa modulation and 2-GFSK mod-
ulation (used also in IEEE 802.15.4g). The experiments made by Mikhaylov et al. [25] use
randomized packet lengths. To simulate transmissions, inter-arrival times for both the
sender and the receiver were proposed in this work. Thus, the proportion of time during
which the channel is interfered varies depending on the choice of LoRa transmission pa-
rameters. Results show that when LoRa modulation is used and the interfering signal is
encoded at different SF with less than 6 dB stronger than the target signal, there are good
chances (>80%) to decode the original signal.

Magrin et al. [20] implemented a model using the ns-3 simulator to study the perfor-
mance of LoRa in a typical urban environment. They support a high number of nodes
and maintain reasonable network quality if several gateways are carefully placed. A path
loss model was developed where devices inside the buildings may be affected by building
penetration losses. Simulations with thousands of devices following a Pareto distribution
have been proposed to validate their model. The model features MAC commands, differ-
ent overlapping networks and multi-gateways support. Their results show that LoRaWAN
with the ADR scheme may scale well only if there are numerous gateways suitably de-
ployed across the system. This means that a packet success rate of 95% for 15000 devices
can be achieved only if there are 75 gateways. The authors show an assignment of SF
to each End Device (ED) based on the Gateway (GW) sensitivity by analyzing the radio
frequency power signal at the GW. As a result, it lowers the probability of collisions and
minimizes the ToA. Then, the GW is chosen based on the received power and SFs are allo-
cated for the transmission. The GW is configured with 8 received paths with 3 channels in
total. These receiving paths are assigned to each channel for uplink transmissions. How-
ever, in this work, confirmed mode with downlink transmissions has not been considered.
In addition, besides the interesting features supported by the simulator, this module has
some drawbacks. First, it can only send LoRa messages, so it is impossible to simulate
the impact of interference with other transmissions. Next, similar chirp rates do not have
an impact on each other. Due to the CSS modulation technique, a transmission with SF
9 with BW 125 kHz has a similar chirp rate compared to a transmission with SF 11 and
BW 250 kH. Another drawback is that all the gateways in this model are virtually directly
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connected to the network server, so the packets cannot be routed over IP.

Year Ref Parameters Metrics Methods Comments
2015 Pham [36] Packet Size (PS) ToA New protocol, new packet format No comparison with SOTA
2016 Sartori et al. [40] Immersion depth, BW Voltage, Energy Microbial Fuel Cell (MFC) No comparison with SOTA
2016 Augustin et al. [1] SF, PS RSSI, Throughput LoRa testbed Experimental analysis of the LoRa modulation
2016 Nolan et al. [28] Distance SNR Experimental study No comparison with SOTA
2016 Wixted et al. [46] nada nada Experimental study No comparison with SOTA
2016 Neumann et al. [27] PS, Distance, Floors Time to wait, RSSI, SNR, PDR, E t x Experimental study Performance evaluation of LoRaWAN in an indoor environment
2016 Petric et al. [35] Location RSSI, SNR, PDR Experimental study Their goal is to define criteria to switch from one spreading factor to another
2016 Jang et al. [17] Code size, Frequency Compression ratio Huffman tree A new solution to compress and encrypt the data transmitted
2016 Ho et al. [14] Nada Temperature, air quality, Traffic Experimental testbed Arduino sensors connected to a mobile phone via BLE
2016 Orfei et al. [30] Vehicle speed Energy Testbed Electronical energy harvester of vibration in a bridge
2017 San-Um et al. [37] Distance RSSI, SNR Testbed Experimental study with Arduino and Raspberry Pi
2017 Marco Cattani et al. [23] Temperature SNR, RSSI, PDR, Energy Experimental study Temperature has an impact on PDR
2017 Varsier et al. [44] SF PDR Experimental study Deep indoor use case in an area of 17km2 and 19 gateways
2017 Petäjäjärvi et al. [33] SF PER, RSSI Experimental study LoRa deployment in university of Oulu
2017 Eriksson et al. [10] SF, PS Throughput, RSSI, SNR Simulation evaluation Master thesis on LoRaWAN
2017 Oliveira et al. [29] Distance, SNR, RSSI Experimental study Received, corrupted, valid packets
2017 Marais et al. [21] nada nada Reviews of testbeds More comprehensive evaluations using larger testbeds are required
2017 Iova et al. [16] Distance, angles PDR, RSSI, SNR Experimental study Comparison between smart city and mountainous environments
2017 Haxhibeqiri et al. [13] # devices PDR, SNR, RSSI Experimental study LoRa is resilient against noise
2017 Mikhaylov et al. [25] PS, signal interference PDR Gnuradio testbed Orthogonality between SF is verified with CE 6dbm
2017 Li et al. [19] SF, BW, Location ToA, PDR Experimental study 20% of loss due to high buildings and trees.
2017 Dongare et al. [8] Location, PR, SF RSSI Experimental study No comparison with SOTA
2017 Magrin et al. [20] DC, # Devices, # Gateways Throughput Experimental study The highlighted energy is spread on the duration of the packet
2017 Petäjäjärvi et al. [34] Linear, angular Velocity, PDR Experimental study A LoRa end device was mounted on a car’s roofrack when measuring PDR
2017 Wang et al. [45] PS, weather condition PDR Air monitoring use case LoRa packet losses occurred with three or less consecutive packet losses
2018 Yang et al. [47] PR, Energy, Delay, PDR Clustering, Queuing system Experimental results are made without comparison with SOTA
2018 Hoeller et al. [15] Distance, replications PDR Simulation evaluation Multiple receive antennas in one gateway are able to enhance signal quality
2018 Erbati et al. [9] Distance, Floors, RSSI, SNR indoor, outdoor study A coverage of 1850m is reached with PDR more than 69%
2018 Truong et al. [42] Time Water level Flood detection testbed A new framework based on Cuda for data processing
2018 Boano et al. [6] CR, BW, Temperature PDR, RSSI Rela world study An increase in temperature make LoRa link useless
2018 Navarro-Ortiz et al. [26] nada nada Gnuradio radio LoRaWAN-EPC Integration of LoRaWAN and 4G/5G for the IoT
2018 Feltrin et al. [12] PR, Distance, # gateways PDR, Throughput, RSSI Simulation tests LoRaWAN based on the applications requirements
2018 Sanchez-Iborra et al. [38] Location, Distance, SF PDR, RSSI Experimental study LoRaWAN limitations due to the Doppler effect with high transmission DR
2018 Barro et al. [5] nada nada Reviews of LoRaWAN articles List of applications that require LPWAN
2019 Mekki et al. [24] nada nada Comparison between LPWAN 5G would lead to a global LPWAN solution for IoT applications
2019 Barro [2] Distance RSSI Proof if concept Environment monitoring by measuring Humidity and temperature
2019 Barro et al. [4] CPU model CPU usage Proof of concept in Africa No significant results to mention
2019 Paredes-Parra et al. [31] PS, SF, Time to wait, RSSI, SNR Experimental study An Alternative IoT Solution Based on LoRa for PV Power Plants
2019 Pereira et al. [32] nada nada Embedded design Up to 4.2 km (urban) and 1.2 km (building site) of range
2019 Chen et al. [7] SF, BW ToA, PDR MPLR protocol Channel reservation + compressed images (480x320 pixels)
2019 Marais et al. [22] # retransmissions, Distance PDR, SNR, RSSI Experimental study Enabling retransmissions show an improvement in the PDR
2019 Kim et al. [18] # channel, PR, # ED, PS RSSI, PDR Experimental study (Korea) No comparison with SOTA
2019 Farhad et al. [11] SF, # devices PDR SF assignment based on RSSI DC limits the scalability in terms of retransmissions and acknowledgements.
2019 Barro et al. [3] Nada CPU usage Intranet with LoRa At least one gateway should be connected to the internet
2020 Sciullo et al. [41] # ED, Distance PDR, ToA Lora over smartphones Enable smartphones to be connected to the internet through LoRa
2020 Santos Filho et al. [39] # devices PDR, delay Simulation evaluation Handling Telemetry and Alarm Messages in Industrial Applications

Table 2.1. Reviewed papers on the application layer.

2.2 Channel access layer

We detail in this section the LoRaWAN MAC layer that manages the access to the chan-
nel and the network signaling overhead. LoRaWAN was designed to transmit over very
long distances within a star topology. IoT devices transmit their data directly to gateways
that are powered and connected to a backbone infrastructure. Gateways have a powerful
radio ability to receive and decode multiple concurrent transmissions at the same time.
For this reason, three classes of devices have been defined:

à Class A: Devices transmit to the gateway when needed. After the transmission, end-
devices open a receiver window to obtain queued messages from the gateway.

à Class B: Devices behave like Class A with additional receive windows at scheduled
receive slots. Gateway beacons are used for time synchronization of end-devices.

à Class C: Devices have maximal receive slots. They open a continuous listening win-
dow which makes them unsuitable for battery powered ones.

We detail in the next subsection how each class works, what differentiate them and what
are the advantages and drawbacks to use each of them.

2.2.1 LoRaWAN classes

A) Devices of class A In Class-A, a device is always in sleep mode, unless it has
something to transmit. Only after an uplink transmission, LoRa server is able to schedule
a downlink transmission. Received packets by multiple gateways can be received by the
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same network server, but the server will keep only the packet with the highest RSSI. After
which, the encrypted application playload is forwarded to the application server. In the
downlink side, if required, LoRa server will transmit the first downlink payload to devices
through the gateway that received the uplink packet with the highest RSSI. We use in our
work devices of class-A since they consume less energy compared to other classes. In
addition, they are the only ones that are available in the market today.

Figure 2.2. Devices of class A.

B) Devices of class B Devices of class B synchronize their internal clock using
beacons transmitted by gateways, When the gateway sends a beacon lock request, the
device negotiates a listening window duration. The network server is then able to sched-
ule downlink transmissions on each listening window. When the device has acquired a
beacon lock, it will schedule the payload for the next free ping-slot in the queue.

When a downlink transmission is requested by the network server while the beacon
lock has not yet been acquired, the server should first notify the device to schedule the
downlink transmission on the next free listening window once the device has acquired the
beacon lock. The timeout of a confirmed class B downlink can be configured according to
the device profile. This should be set to a value less than the interval between two opening
windows.

Figure 2.3. Devices of class B.

C) Devices of class C Devices of class C use the same concept as class A. How-
ever, the duration of windows is much longer than class A. As soon as the timeout of the
confirmed uplink packet is not reached, LoRa devices will stay listening the channel wait-
ing for an acknowledgement. The timeout of a confirmed Class-C downlink can be config-
ured regarding the device profile. In the context of LPWAN, energy consumption should
be minimized. That’s why few devices of class C have been purchased in the market.

Figure 2.4. Devices of class C.
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Like any device that use a wireless network to send its data, LoRaWAN devices need
a channel access protocol to send and receive data. Many MAC protocols have been
proposed in the literature for WiFi and cellular network and LoRaWAN network can be
adapted to use the same protocols. However, due to the listening time required by each
protocol to operate, many of them can’t be used in the context of LPWAN where devices
are not allowed to waste their energy for such tasks to increase the life time duration of
the network. For this reason, LoRaWAN alliance proposed to use a simple ALOHA proto-
col to mitigate signaling overheads caused by MAC protocols to synchronize transmitters
and receivers. To investigate this problem, many works proposed several channel access
schemes to bring LoRa quality of service to upper level and fit higher IoT applications
constraints.

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

0

10

20

30

C
on

ne
ct

ed
de

vi
ce

s
(b

ill
io

ns
)

Fixed-phones

Mobile phones

Short-range-IoT

Wide-area-IoT

(a). Number of LPWAN devices.

BLE 6LowPAN

Zigbee WiFi

LoRa SigFox

NB-IoT LTE-M

2G

3G

4G

5G

Range

D
at

a
R

at
e

(b). Data rate and range of wireless networks.

Figure 2.5. Comparison between LPWAN devices and other wireless network devices.

2.2.2 Signaling based approaches

In order to face the problem of activity time limitation in video surveillance applica-
tions, an activity time-sharing mechanism was proposed by Pham [76] to share the chan-
nel occupancy time by end devices. End devices should send their local remaining activ-
ity time each cycle (every hour) to the gateway to manage their channel occupancy. Thus,
the gateway computes the global activity time of each end device to build a global view
of the total remaining activity time. This view is sent back to end devices at the appropri-
ate moments. So, a node that exhausts its DC and needs additional time, can borrow the
remaining time from the global time. However, only the first applicants can benefit from
the shared extra time. Moreover, such an approach requires additional down link pack-
ets which increase collisions probability and require additional energy consumption to
receive the updated information of the global activity time. Thus, this mechanism would
correspond only to class B or C end devices.

In order to measure the spatial and temporal properties of LoRaWAN channels, Marcelis
et al. [73] used both static and mobile transmitters with different transmission frequency.
They found that very low packet reception rates were observed at the limits of transmis-
sion range of 7.5 km. To overcome this issue, a coding scheme based on convolutional
and fountain codes was proposed for data recovery. Based on their experiments, for 10
byte packets, 21% of the data can be recovered with 42% lower energy consumption than
a naive repetition coding protocol.
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2.2.3 Reliability optimization

To improve the reliability, capture effect and scalability of LoRaWAN, Reynders et al.
[82] proposed RS-LoRa MAC protocol, a protocol that aims to divide end-devices to group
the nodes with different P t x level and SFs to balance Co-SF collisions. Based on the RSSI
measured by the gateway, each-device selects the SF, the P t x and the channel that makes
the RSSI higher than a threshold.

Interference in LoRa could be mitigated by tuning three parameters: the frequency
channel, the SF and the P t x . Co-SF interference assumes a perfect orthogonality be-
tween LoRa chips. So, interferences are caused only by using the same SF. In the other
side, inter-SF interference assumes the non-orthogonality of LoRa chirps. So, interference
could happen also by using two different SF. In addition, LoRa transceivers are designed
to be able to receive and decode two frames with the same SF but with two different P t x .
Few works in the literature considered the capture effect of LoRa transmissions. For ex-
ample, Abeele et al. [52] designed an error model to tackle both interference and capture
effect using LoRa ns-3 module. To analyze the scalability of thousands of nodes per gate-
way, the authors analyzed the interference between various concurrent communications.
Their model considers three different methods to select an efficient SF: random, fixed and
dynamic assignment based on PER which finds the lowest SF that causes a PER under a
threshold. Authors found that the third method performs better than the two other ones.
When 5000 nodes were used, only 9% of PER was observed with the PER based method
while 20% was observed with the random one.

To assess the impact of confirmed and unconfirmed messages, authors show that
down-link traffics significantly reduce the PDR of the up-link traffic [79]. As LoRa gate-
ways should also respect the duty cycle to save energy and limit downlink traffic, the so-
lution adopted was to increase the gateway density in an area: 70%, 89% and 96% PDR
were achieved when 1, 2, and 4 gateways are deployed in an area with 10K nodes that
send data every 10 mn. However, this solution only improves the PDR for a low number
of devices. Another study of the same authors was to compare the traffic generated by
LoRaWAN and pure Aloha in a single-cell network. In this experiment, they increased the
data period from 10 minutes to 15 hours, they also varied the number of gateways from
1 to 4. Their findings show that with 125-kHz channel bandwidth, payload of 8 bytes and
with a single channel [219], LoRaWAN can send six times more traffic than pure Aloha
when the same number of ED per gateway was used.

2.2.4 Scalability optimization

To improve LoRa scalability, To et al. [87] tested Carrier Sense Multiple Access with
Collision Avoidance (CSMA) technique with LoRa modulation. To avoid collisions, when
a node has a packet to send, it performs a Clear Channel Assessment (CCA) to ask other
nodes to clear the channel. If the channel is still occupied, it backs off for a random in-
terval of time. Another variant of CSMA which is CSMA-10 was also proposed to wait
a lapse of time 10ms before backing off, the waiting time is called Clear Channel Gap
(CCG). Their results show that the proposed method can mitigate collisions probability.
Proceeding this way, this solution allows the deployment of 5500 nodes with a 90% PDR
when ALOHA allows less than 500 nodes to achieve the same PDR. In order to optimize
the number of gateways in an area, Chen et al. [57] proposed an appropriate strategy on
signal intensity and sensitivity regarding gateways position.
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Scalability issues of LoRaWAN are mainly due to ALOHA MAC protocol. The opti-
mal throughput that could be achieved using pure ALOHA requires the half occupancy of
the channel, this drastically decreases the scalability of all wireless networks that use this
protocol. In addition, as LoRa end devices require a low energy consumption, down-link
traffic is limited by the listening window. For example, Adelantado et al. [53] referred to
the duty-cycle constraint of European Telecommunications Standards Institute (ETSI) as
a major drawback of using LoRa end-devices. In European Union (UE) (868 MHz), only
transmission time of 36 secs in an hour is allowed.

To study the scalability of LoRa, Jetmir Haxhibeqiri et al. [219] made a simulation
based on “poisson” process with 3 channels and a 1% duty cycle and measured the PDR
for a given packet length and number of nodes. Results show that even with small packets
size of 10 bytes, the PDR decreases exponentially due to the increasing number of col-
lisions caused by increasing the number of nodes. 0% of PDR is observed when more
than 1500 nodes are deployed, especially when using end-devices with constant trans-
mission parameters. However, due to LoRa’s robust modulation technique, connecting
1000 nodes per gateway results in only 32% more packet losses compared to 90% with
other Pure ALOHA based networks [219].

In the same conyext, a new machine learning based scheme has been proposed by
Azizi et al. [54] to incease the PDR. The authors proposed a Reinforcement Learning (RL)
based resource allocation algorithm enabling LoRa devices to configure their transmis-
sion settings in a distributed manner. They proposed a MIX-MAB algorithm which com-
bines two Multi-Armed Bandit (MAB) schemes: Successive Elimination (SE) and EXP3.
To highlight the advantage of such combination by comparing it with EXP3 algorithm in
five different scenarios. Their simulation results show that they reduce the convergence
time to the half of what EXP4 do while achieving a higher PDR. However, such a compari-
son has been made using 5 scenarios with the same number of devices, gateways and the
same packet size. In addition, authors compared only the PDR missing the most impor-
tant metric which is the data rate. Furthermore, computational overhead caused by their
distributed training will not only reduce life time duration of the network but also increase
the channel occupancy of the ISM band which is not suitable especially in Europe.

2.2.5 Settings optimization

The default ADR scheme of LoRaWAN suffers from a weak data rate. To help LoRaWAN
achieve a high overall data rate, two different heuristic SF allocations algorithms (EXPLoRa-
SF and EXPLoRa-AT) are presented in [59] as an alternative to the ADR scheme. The pro-
posed algorithms adapt the configuration of the SF to the number of connected devices,
the distance and the received sensitivity, allowing a better equalization of the ToA among
the SF channels. Specifically, authors attempt to use a high data rate to offload the traffic
of less congested larger SF. EXPLoRa-SF aims to efficiently distribute the SF among end-
devices. It selects the SF based on the total number of connected nodes. Particularly, it
equally allocates SFs to n nodes based only on the RSSI, where the first n/6 nodes with
the highest RSSI get SF 7 and then the next n/6 nodes get SF 8, etc.

EXPLoRa-AT is more dynamic than EXPLoRa-SF, it equalizes the ToA of packets trans-
mitted with different spreading factors. To extend the coverage of LoRaWAN, two possible
solutions could be made: either by increasing the number of gateways in a single-hope
network or by using a multi-hop network. Multi-hop network, however, is not taken un-
der account by LoRa Alliance. This didn’t prevent academic researchers to propose novel
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methods to make end-devices able to route frames that are not addressed to them. As an
example, [137] proposed a practical strategy that transforms a topology from a star to a
mesh when the coverage range exceeds 3.2 km.

Assessing the performance of LoRaWAN and finding the best trade-offs by means of
analytical tools is not an easy task. For this reason, many academic works tried to build
tools to make this task less complex for researchers. For example, Marini et al. [74] present
a new MATLAB-based simulator tool covering the physical and the upper layers of the
LoRa/LoRaWAN protocol stack. The proposed simulator support multiple gateways with
receiving window prioritization. They investigated the impact of different coding rates on
interference probability. However, the benefits of increasing the coding rates comes at the
price of an increased energy consumption. They showed that as the number of end de-
vices increases, the network operates in heavy interference conditions and increasing the
CR in such conditions is counterproductive. They assessed also the impact of downlink
transmissions on the average energy consumption of devices. They showed that increas-
ing the number of gateways affects not only the packet delivery rates but also the average
energy consumption. However, authors didn’t talk about LoRa limitation and they limited
they work on building a simulation tool without any enhancement of the technology. Fur-
thermore, authors should consider state of the art contributions and compare their work
with existing tools.

A Hybrid Adaptive Data Rate (HADR) control has been proposed recently by Farhad
et al. [64] to increase the uplink traffic in cases where there are both fixed and moving
devices. Their approach helps to increase the packet success rate compared to Adaptive
Data Rate (ADR) and Blind Adaptive Data Rate (BADR). They propose to select the best
MAC protocol. For example, with environment monitoring applications, devices need
to synchronize their transmission by using TDMA based access control scheme to avoid
collisions. However, with event monitoring application, devices will want to notify imme-
diately with a random-access method. Thus, TDMA is not well suited. In addition, such
an approach has never been applied for LoRaWAN network but it is not new for wireless
community. The same solution has already been investigated in many other wireless net-
works like WiFi and cellular network. In addition, signaling overhead caused by such an
approach to synchronize the selection of the suited protocol could drastically collapse the
network especially in a dense network.

In the sam context, a game theory solution was proposed by Qin et al. [80] to decide
which channel and SF to use. The authors propose to find the optimal transmit power that
maximizes the DR for each channel/SF group. As LoRaWAN end-devices support 3 differ-
ent classes, Cheong et al. [58] evaluate the power consumption of LoRaWAN classes.Re-
sults obtained allow to quantify the lifetime of each end-device’s class. Such work could
be improved by evaluating the impact of different LoRaWAN parameters such as CR, and
P t x on end-devices lifetime.

Similar to [58], Kim et al. [68] evaluate and reduce energy consumption of end-devices.
However, only downlink communications with fixed LoRaWAN settings (DR and acknowl-
edged transmission) are considered. Their results show that when end-devices are pow-
ered by only two AA batteries, 1 to 13 years battery lifetime could be achieved with 0.44
and 0.05 mJ energy consumption, respectively. However, such finding are obtained us-
ing a sleep current of 2 µA, which is significantly lower than the corresponding value in
Semtech specification (i.e., 30.9 µA). Song et al. [84] consider the macro reception diver-
sity of long-range ALOHA networks where several base stations receive the same packet
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sent by a node.

2.2.6 Simulation & modelisation

LoRaWAN in Europe support bidirectional traffic on the same channel. However,
as many works show the limitation of the scalability of this technology, downlink traf-
fics should be minimized to avoid offloading the channel. As the opposite, [79] show
how downlink traffic could be tolerated even in a dense network. In order to evaluate
how LoRaWAN downlink impacts uplink goodput and coverage probability, they devel-
oped LoRaWANSim by extending the LoRaSim simulator and adding support for down-
link transmissions. LoRaWANSim include many MAC layer features. Among these fea-
tures, we cite the possibility to send downlink traffic, acknowledgements, retransmis-
sions, confirmed messages, and special control messages. Authors find that the number
of downlink messages (Ack or data) is limited by the duty cycle at the gateway. This prob-
lem becomes more severe when the number of end device increases, but can be partially
mitigated by using multi-cell networks.

As the ADR scheme decreases the DR when end-devices didn’t receive an ACK of each
packet transmitted, Pop et al. [79] prove that it is not an efficient way to adapt DR. In
fact, if an ACK was not received does not necessarily mean that the link quality has de-
creased. The collision model proposed in this work is quite different to the one proposed
in ns-3 module. In particular, when LoRaWANSim reuses the empirical model from Lo-
RaSim, the collision model of ns-3 module is derived from the complex baseband Bit Error
Rate (BER) simulations [87]. Moreover, the SpectrumPhy model in ns-3 enables model-
ing inter-technology interference, which facilitate studies on the interference between
LoRaWAN and other technologies. Beside these differences, both collision models sup-
port modeling interference and the capture effect. Finally, the LoRaWANSim simulator
does not appear to be open source actually since it is still under revision. With capture
effect, LoRa gateways are able to receive an interfered transmission even when there is
one or more interferers, as long as the SNR is sufficiently high for the signal to be received
error-free. To conclude, this work gives a new insight on LoRaWAN performance evalua-
tion but does not propose any way to improve this performance.

Another module for the ns-3 simulator has been proposed by Reynders et al. [81] to
study performance of LoRa transmissions. A single and multi gateway scenarios with un-
confirmed and confirmed messages were conducted in this work. The module is highly
configurable. New protocols can easily be plugged within its flexible backbone architec-
ture. Distributed gateways are supported and connected over an IP network to the net-
work server that controls the whole network. Base classes are implemented of new appli-
cations on the network server and with new MAC commands. Many contributions in the
literature was investigated to design this module, such as the effect of interference [233],
the effect of different spreading factors [140], the reliability and scalability [82], the effect
of downlink messages [79], multiple gateways [52] [239] and, performance evaluation [25]
[66][53] [233], etc. For example, Goursaud et al. [66] aim to evaluate the performances of
a random Frequency Division Multiple Access (FDMA) in the pure Aloha case. However,
the capture effect with little overlap between packets is not considered.

Data delivery policy between end-devices and the gateway in the star topology net-
work is very important to avoid packets collision. Thus, Sørensen et al. [85] have investi-
gated the performance of LoRaWAN uplink transmissions including the throughput, de-
lay and collision rate. A queuing theory was proposed to manage the use of the different
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sub-bands. Results highlight the importance of a clever splitting of the channel to differ-
ent sub-bands to improve the network performance.

While cellular and Wi-Fi based approaches require fast feedback and high data rates to
increase the data rate and mange the power control [253], these solutions are not suitable
for constrained systems like LoRaWAN. Thus, to make LoRaWAN end-devices interop-
erable with other IoT devices, new approaches with LoRaWAN constraints consecration
should be invented. In fact, rather than adopting existing solutions like 6LoWPAN over
LoRaWAN [198], Abdelfadeel et al. [51] developed a new header compression technique
to be more suitable for the constraints of LoRaWAN like SF allocation. The main goal of
the authors was to ensure an interoperability between LoRaWAN and the native IoT stack
with IPv6, UDP/CoAP at the device level.

Year Ref Parameters Metrics Methods Comments
2016 LoRa-Alliance [71] All physical parameters All physical metrics LoRa specification LoRa modulation scheme
2016 Pham [76] PS ToA Experimental study Implementation of slotted Aloha
2016 Goursaud et al. [66] PR, # ED, BW BER UNB assessment Slotted aloha vs Unslotted aloha
2017 Sørensen et al. [85] PR ToA, service ratio Queuing theory Comparison between sub-bands with class-c
2017 Delobel et al. [60] SF, # ED ToA Simulation of class B Delay of confirmed downlink frames in Class B of LoRaWAN
2017 Cheong et al. [58] PR, E t x Experimental study Comparison of E t x between LoRa classes
2017 Kim et al. [68] PS E t x Dynamic downlink (cooperative) Low energy consumption compared to LoRa standard protocol
2017 Marcelis et al. [73] Mobility, degree, window size PDR DaRe: Data Recovery framework 21% of data can be recovered with 42% lower energy consumption
2017 Pop et al. [79] # devices, # ACKs PDR, Throughput, Energy Confirmed vs non-confirmed data The network do not scale well if many end devices request ACKs
2017 Song et al. [84] Traffoc load PDR Pure vs slotted ALOHA The take into account Rayleigh fading, shadowing and capture effect
2017 Rizzi et al. [83] SF Time interval Distributed measurement framework Forwarding packets for distributed management
2017 Cuomo et al. [59] Traffic load, PR, Distance Throughput, PDR EXPLoRa-SF, EXPLoRa-AT Comparison with ADR
2017 Abdelfadeel et al. [51] SF ToA, compression ratio Layered Static Context Header Compression LSCHC outperforms IPHC/NHC
2017 Qin et al. [80] # devices, Distance PDR Power allocation Algorithm comparison with ALOHA
2017 Abeele et al. [52] # devices PDR Simulation with NS3 Comparison between confirmed and non-confirmed data
2017 Adelantado et al. [53] PR, # devices, PS Throughput, PDR, ToA Simulation evaluation Withh 500 devices the throughput is at its highest level
2018 Reynders et al. [81] # devices, # gateways PDR NS3 module Performance evaluation of the module in terms of speed
2018 Farooq et al. [65] # devices Energy, PDR CSMA for LoRa CSMA outperforms ALOHA, DBT, RFH
2018 Chen et al. [57] CR, PS, Distance Energy, Path loss, PDR Experimental study Expected results with no comparison with SOTA
2018 Capuzzo et al. [56] PR, # devices PDR, % of ACKs Simulation evaluation Impact of confirmed data on the network performance
2018 Kouvelas et al. [69] # devices PDR P-CSMA with NS3 Comparison made between P values
2018 Benkahla et al. [55] PS ToA, Dynamic duty cycle 4 scenarios based on 4 QoS requirements
2018 Reynders et al. [82] Traffic load, Distance Throughput, PDR RS-LoRa: Heuristic algorithm Rs-LoRa outperforms ADR only
2018 Piyare et al. [77] PR, # devices, ToA, PDR On-Demand TDMA No comparison made with SOTA
2018 Lavric et al. [70] PS, SF, # devices, classes, DC PDR, ToA, Simulation evaluation LoRa scalability depends on the DC
2018 To et al. [87] # devices, PDR, Energy CSMA-10 with 10 ms before a transmission CSMA-10 outperforms ALOHA and CSMA
2018 Hu et al. [67] Traffic load Throughput Collision Avoidance CA-ALOHA High performance compared to ALOHA & CSMA
2019 Zhou et al. [88] # devices, Distance, SF PDR, Data Rate and Channel Control High performance compared to ADR only
2019 Magrin et al. [72] PR, # devices PDR, Throughput ACK variation strategy Confirmed data degrades the performance of the network due to ACKs
2019 Djoudi et al. [61] nada nada Discussion Emergency Evacuation Systems with LoRa
2019 Sui et al. [86] # resources blocks, Energy efficiency Sliding window-based algorithm Similar energy efficiency as the exhaustive method with a lower complexity
2019 Djoudi et al. [62] SF, BW, CR nada Genetic algorithm Network selection settings with genetic algorithm
2019 Zitouni et al. [89] With and without MQTT Delay Model of Traffic Lights with UPPAAL Differentiated QoS levels
2019 Martinez et al. [75] # jammers Throughput, PDR NS3 simulation Impact of jamming attack on LoRa modulation
2019 Polonelli et al. [78] Traffic load, SF Throughput Simulation evaluation Comparison between slotted and pure ALOHA
2020 Djoudi et al. [63] SF, BW, CR ToA, SNR, BER Fuzzy c-means 3 clusters transmission settings based on their quality
2021 Marini et al. [74] CE, distance, # ED PDR, DR, E t x LoRaWANSim tool No comparison with NS3 and omnet
2022 Farhad et al. [64] Mobility, # devices, E t x , PDR Simulation study Comparison between ADR, BADR and HADR
2022 Azizi et al. [54] SF PDR, E t x MAB, EXP3 Comparison with ADR, LoRa-MAB

Table 2.2. Reviewed papers on the channel access layer.

2.3 Network layer

When designing a wireless network solution for the IoT, two main topologies can be
used: star and mesh. A star topology organizes devices around the central controller, also
known as a gateway. On the other hand, a mesh topology connects each device to another
with a point-to-point link.

We can find a lot of advantages and disadvantages of each topology when applied to
IoT wireless network scenarios. Depending on the IoT use case applied, the drawbacks
can seem less harmful in some cases. Mesh topology is able to handle large amounts
of traffic and multiple devices can transmit data simultaneously. In addition, failure of
one device does not cause an interruption of the network or data transmission. How-
ever, mesh topology is very expensive to install especially for long distance scenarios;
the number of hope required increases rapidly. In addition, network configuration and
management are complicated due to the high number of connections. Moreover, mesh
network requires a high power consumption since nodes must be awake and listening for
all messages that need to be relayed. Vulnerability and security issues are also frequently
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occurred in this topology since a breach in one of the nodes puts the entire network at
risk.

Star topology, in the other side, has a lower costs and installation effort due to less
complexity in configuring the network. In fact, the base station is installed at a central
point in general and nodes are added as needed during the life of the network. Therefore,
new nodes are able to be connected directly to the gateway without affecting the rest of
the network. Power consumption is highly reduced in this topology and malfunction of
a single node does not affect the rest of the network. However, a failure in a single base
station causes the entire network shut down.

Even if LoRaWAN devices are connected with a star topology in most of the cases,
many works in literature propose to use other topologies to allow devices to communicate
between each other without the need of gateways. In fact, LoRaWAN alliance proposes to
use a star topology to decrease forwarding load and listening tasks that consume a lot of
energy. However, devices of other classes can be used to experiment new light routing
protocols to cover wider areas. We elucidate here some of these works that propose to
adapt transmission settings to mesh topology and find the short path to the destination.

To enable end devices to rejoin the network easily even when the sink device disap-
pears from the original tree structure, Liew et al. [132] proposed a multi-channel multi-
path data collection protocol based on Basketball Net Topology (BNT) by using peer links
to communicate with other nodes. This maintains not only a tree-based topology but
also the connection between peer nodes located at the same height in the tree. However,
connections of peers extend the hop counts to the sink node, which inversely increases
the airtime of the entire network. The use of LoRa enables the coverage range to be ex-
tended when a lower data rate with a larger SF is chosen. As compared to multi-channel
assignment algorithms, authors need to consider an approach that would decrease the
hop count of each sub-tree using a different SF while ensuring that the airtime between
different sub-trees remains balanced.

In order to build interoperability between LoRa end-devices and other IoT devices,
the work in [198] proposed an integration of IPv6 into LoRaWAN. This work is inspired by
the 6LoWPAN and tried to build a framework to make LoRaWAN end devices recognize
Ipv6 addresses. Nevertheless, this work didn’t present a detailed performance evaluation
to demonstrate its effectiveness in real world.

The only way to make LoRaWAN scalable is to use dynamic selection of transmission
parameters with multiple sinks. This is what Bor et al. [204] tried to do in their work, they
studied LoRa transceiver capabilities and the limit supported by LoRa system by building
LoRaBlink protocol for link-level parameter adaptation. To do that, they focused on min-
imizing transmission power and airtime. To estimate the influence of concurrent trans-
missions and link behavior, experiments were made in which end-devices sent packets
with the same SF but not the same transmission power. Particularly, evaluate commu-
nication range in dependence of SF and BW. LoRaBlink was developed to enable direct
connection of nodes without using LoRaWAN, and designed to support reliable and en-
ergy efficient low-latency bi-directional multi-hop communication.

LoRaBlink is both a new MAC protocol and routing cross-layer scheme built to extend
the radio coverage of the gateway. It is self-organized network based on beacons and time-
slotted channel access method, each beacon contains distance in hops from the sink.
Experimental evaluation show that LoRaBlink may cover a network of 1.5 ha, with 80%
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of reliability and 2 years battery lifetime. They evaluate also the capture effect of LoRa
transmissions by varying transmission time and power. Results show the effectiveness of
separation of channels by using different SF.

In fact when two devices use the same SF to communicate, a third node that use dif-
ferent SF didn’t interfere with them. In addition, authors find that simultaneous trans-
missions can be received with high probability if there is a separation of at least 3 sym-
bol periods between them. To make their experiment, they implement a LoRa simulator
called LoRaSim. More over, the paper analyzes the possibility of building a carrier activity
detection mechanism. Similarly, they study the collision avoidance scenarios as well as
the maximum number of transmitters in a LoRa network.

In the same context. To keep the capture effect above 0.9, Bor et al. [204] found that
only 120 users are supported per 3.8 ha using standard LoRa settings and one-cell net-
work. This appears very few compared to the number of nodes that need to be deployed
in big cities. This number could be slightly decreased because the simulator used in this
work supports only uplink transmissions, downlink traffic can load the channel and con-
sequently decreases the number of nodes that could use the same channel. ADR scheme
is a CAPEX-efficient way to optimize the capacity of LoRaWAN, thus, vendors on the mar-
ket like Dutch landline and mobile telecommunications company (KPN) keep their al-
gorithms as a part of their intellectual property. Beside this trend, academic researchers
focus on analyzing the performance of new proposals like Bor et al. [204]. Authors demon-
strate that six LoRa nodes can form a network covering 1,5 hectares. They conclude that
the lifetime of the network can be extended to 2 years with 2 AA batteries when delivering
data each 5 s with reliability of 80%. The experiment was conducted using Carrier Activity
Detection (CAD) which is faster than RSSI to detect channel activity and can differentiate
between noise and the original signal.

Similar to [204], Bankov et al. [189] study LoRaWAN performance in a scenario with a
high number of devices. LoRaWAN in Europe support up to 10 channels with duty cycle
restrictions and the same channels are used for uplink and downlink. LoRaWAN in North
America have 64 channels with duty cycle restrictions also but with no channel dwell time
limitations [100]. To join the network server, LoRa end-devices commonly use 3 common
125 kHz channels for the 868 MHz band (868.10, 868.30 and 868.50 MHz) [27]. Additional
channels could be provided by the network server once a node has joined the network,

In urban area, the range of LoRaWAN could not be sufficient to cover all connected
end-devices. Thus, Ke et al. [192] proposed a mesh LoRa network as a good solution to
solve the coverage problem in urban areas with extensively shadowing buildings. How-
ever, they didn’t discuss the SF allocation in a multi-hop LoRaWAN. Similarly, the adop-
tion of parallel transmission by using multi-hop network was not investigated deeply. In
order to find the short time path in multi-hop network, [197] development of multi-hop
communication protocol for choosing the path with the shortest cumulative ToA.

Liao et al. [194] analyze the impact of the simultaneous LoRa transmissions on the
communication performance. Particularly, they propose the integration of a Concurrent
Transmission (CT) into the technology. CT is basically used to design of the multi-hop
networks based on the IEEE-802.15.4 standard, it is an extremely efficient flooding type
of protocol. Instead of attempting to avoid packet collisions, CT enables more nodes to
send packets with the same content and at the same time. With such synchronized pack-
ets collisions, CT enables rapid back-to-back relaying of packets which considerably im-
prove the network performance. Based on this strategy, authors propose to integrate it in
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a multi-hop LoRaWAN. However, this work didn’t precise the maximum number of nodes
that can communicate on a channel.

Year Ref Parameters Metrics Methods Comments
2016 Qiu et al. [196] PR, Time PDR, ToA, Energy ERGID strategy ERGID vs SPEED VS EA-SPEED
2016 Weber et al. [198] nada nada IPv6 over LoRaWAN 6LoRaWAN implementation stack overview
2016 Bor et al. [190] SF, BW PDR NetBlocks XRange SX1272 LoRa RF module LoRaBlink: Protocol with beacons
2016 Bankov et al. [189] nada nada Experiments Muti channel support in EU and US
2017 Ke et al. [192] nada nada Experimental study Mesh network in urban area
2017 Sartori et al. [197] SF link cost RPL for LoRa No comparison made
2017 Liao et al. [194] # devices/group RSSI, ToA, # hope, PDR Multi-Hop LoRa Networks Competing transmissions without comparison with SOTA
2018 Huang et al. [191] Distance PDR, RSSI Ad hoc On-Demand Distance Vector The PDR is up to 99%, after a 13.6 km long-distance
2018 Lundell et al. [195] # hops ToA Routing Protocol for LoRA Mesh network Routing protocol based on AODV and HWMP
2018 Lee et al. [193] Floor, SF, BW SNR, SNR, PDR LoRa Wireless Mesh Network Hops optimization without comparison with SOTA
2019 Zhu et al. [199] SF, # devices # hops, ToA TSCA: Tree-Based SF Clustering Algorithm Comparison between BFS, DFS, DBFS

Table 2.3. Reviewed papers on the network layer.

2.4 Physical layer

LoRa is a modulation scheme that uses CSS to spread the signal with a higher period
to make it more robust against noise and achieve a higher range. According to the dis-
tance between LoRa devices and the gateways, the spreading factor of the signal should
be adjusted to receive the transmitted packet. Many works in literature analyzed LoRa
modulation and proposed to model the modulation scheme, reduce energy consumption
and manage scalability issues. We relate in this section their findings and we highlight the
advantages and drawbacks of each contribution.

2.4.1 Scalability issue

Scalability and Interference issues of LoRaWAN network are analyzed in several pa-
pers [204][215][25]. For example, Voigt et al. [239] show that multiple base stations (multi-
cell) improve the network performance under interference. Particularly, they consider the
inter-network interference when several independent LoRa networks get deployed in the
same area. They propose to use directional antenna and to use multiple base stations
as a solution to deal with noise and interference. Results of their simulation show that
the use of multiple gateways outperforms the use of directional antennas. However, the
performances drastically decrease when the link load increases.

LoRaSim is a LoRa simulator built with python [204] [239]. It is open source and gives
great insights on the LoRa performance. However, this simulator does not consider ac-
knowledgements. Thus, it cannot be used to study the network performance based on
the presence or absence of feedbacks from the gateway. In another side, Omnet++ im-
plements a LoRa module [142]. It implements the default ADR scheme where nodes can
update their spreading factor and power at runtime.

The Semtech LoRa modem calculator [235] helps to analyze the behavior of LoRa
transmission features (ToA, RSSI) but it is not useful for network planning. As a com-
mercial tool, we found “Siradel”, it provides a simulation engine called Siradel-Internet of
Things (S-IoT) that relies on Volcano, a 3D-ray tracing propagation model and a collection
of 2D and 3D geo-data. This tool supports sink deployment decisions based on propaga-
tion models. It considers an environment with much details than LoRaSim. However, it
does not provide actual traffic, collisions and details such as capture effect. To overcome
this limitation, Bor et al. [204] provided models that could be used to improve S-IoT. They
address the interference problem and study packet collisions when applying a time offset
between each transmission.
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LoRaWAN, which is a single-hop network, implements an ALOHA or a slotted ALOHA
mechanism on the MAC layer. It uses the ADR mechanism to allow end-devices to in-
crease or decrease their data rate. However, the default ADR, which is based on the num-
ber of received acknowledgement (ACK) messages from gateways, does not perform well
when the number of end devices increase. To overcome this problem many works [53,
140, 82, 142] propose different approaches to better adapt the data rate to different needs.
For example, Mahmood et al. [227] analyze the impact of interference on a LoRa network.
They show that interference could be caused either by simultaneous transmissions using
the same co-SF (perfect orthogonality) or different inter-SFs (imperfect orthogonality). As
SF interferences require a Signal-to-Interference Ratio (SIR) protection to take advantage
of capture effect, they derived the SIR distributions to capture the coverage performance
and the uplink outage regarding the distance from the gateway. They propose a stochas-
tic geometry to model the interference field. The SIR distributions are derived based on
the aggregate co-SF and inter-SF interference power. Their results showed that in a LoRa
frequency channel, only few devices can successfully transmit, especially with higher SFs.
Consequently, devices waste energy in the retransmissions of collided packets.

The SF represents the ratio between the chirp rate and the data symbol rate and affects
directly the data rate and the signal propagation and consequently the range. In order to
simplify their experiment, many works [204] [204] assume that SFs are orthogonal while
considering only inter-SF interference that comes only from collisions using different SFs
on the same channel. Whereas, other works [25] [215] focused on evaluating LoRa scal-
ability while considering co-SF interference that comes from collisions using the same
SF on the same channel. Moreover, co-SF directly impact communication reliability, re-
duces the PDR [209] and limits the scalability of LoRaWAN. Therefore, we hope that co-SF
configuration should be considered in upcoming studies related to ADR strategies. As an
example, Bor et al. [120] focused on finding the optimal transmitter parameter settings
using their own link probing regime to satisfy performance requirements.

Similarly, Jetmir Haxhibeqiri et al. [219] studied the scalability for LoRaWAN deploy-
ments, they analyze the number of nodes connected to the same gateway. They developed
a LoRa simulator to compare the performance in different deployment scenarios like traf-
fic intensity and the number of nodes. Simulations are performed for a duty cycle of 1%.
So, they are limited to 1000 nodes as there is 10 channels. Results show that in such sce-
nario, packet losses increase to 32% taking into account the capture effect which should
be considered as low compared to 90% in pure ALOHA for the same load. This shows that
the capture effect plays an important role in the LoRa transmission behavior.

In the same context, Blenn et al. [203] analyzed experimental results based on the
battery life time and scalability measurements from The Things Network (TTN). They
analyze also the influence of the payload on the quality of the received signal. The experi-
ments have been made over 8 months. The results show that the LoRa channel occupancy
rate is not evenly distributed, this leads to a decrease in performance. This is mainly due
to the fact that the majority of LoRa end-devices use the default settings given by the man-
ufacturer. Consequently, certain channels are overloaded. To solve this problem, they use
certain user-defined communication channels according to the Radio Frequency (RF) en-
vironment congestion. However, their solutions are limited to the deployment scenario.

From a theoretical perspective, works in [215] [25] [189] analyzed the capacity of LoRaWAN
in terms of scalability and node-throughput. Among these works, a stochastic geometry
framework for modeling the performance of a single channel for LoRa transmission have
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been proposed by Georgiou et al. [215]. The authors investigate LoRa scalability and the
effects of interference in a single LoRa cell. To evaluate LoRa transmission propagation
assuming a single bandwidth frequency for all the nodes, they used a stochastic geometry
by formulating two link-outage conditions; one based on SNR and the other one based
on co-SF interference. As LoRa modulation uses CSS modulation scheme, communica-
tion range could be extended to reach 15km in a rural area. Another advantage of using
CSS modulation scheme is the resiliency against noise and interference. Thus, the au-
thors assume that collisions occur only when signals simultaneously collide in frequency,
transmission power, time, and spreading factor (perfect orthogonality). Nevertheless, this
could be highly criticized as perfect orthogonality is not really respected in a real world.
In order to host a great number of end-devices, experiments made in this work show that
LoRa networks are sensitive to network density. The coverage probability drops drastically
when the number of end-devices increase even with lower duty cycles. This phenomena
is due to the interfering signals using the same spreading factor and weak channel access
mechanisms like ALOHA. As a result, authors highlighted the interest of studying spatially
heterogeneous deployments. Finally, authors of this work determine the conditions for a
better capture effect in the presence of two signals with different SF.

2.4.2 Interference and coexistence

In order to analyze the impact of burst events when generating a significant amount of
messages in a short period on LoRa gateways, Gupta et al. [216] found that LoRaWAN does
not handle well in such scenario. Especially when there is a spatial or temporal correla-
tion in the transmission behavior. Their simulation was performed with a single gateway
located in a densely populated area. End-devices are distributed uniformly on each floor
in a building within a coverage range of 2.5 km. Two types of collisions have been high-
lighted. The first is made by sending two packets with the same SF (co-SF interference).
The second is made by sending two packets with different SFs (inter-SF interference) [81].
However, authors fail to provide a solution to the second type. As the main goal of this re-
search was to reduce the PER while increasing the throughput, the proposed algorithm
sorts the end-devices based on distance and PS to form distinct groups with separate
channels. End-devices in each group communicate on the same channel and with the
same SF. Once end-devices regrouped by channel, the sum of the received power and Co-
channel Interference Rejection (CIR) are computed. If the CIR is lower than the highest
received power, than, the lowest SF is assigned to each group, else, it passes the feasibility
check. Results show that the PER decreases up to 42% using this algorithm.

To analyze the effect of the perfect-orthogonality of SFs, Croce et al. [208] found that
uplink packet transmissions with different SFs may also suffer from packet losses. They
validated their findings by experiments and proposed SIR thresholds for all possible SFs.
They conclude that LoRa networks cannot be deployed as a superposition of independent
networks because of imperfect SF orthogonality.

Nowadays, there is relatively small amount of devices deployed with LPWAN tech-
nologies. This should change drastically in a close future because LoRa and Sigfox promise
a big development and more than thousands of connected devices [224]. Consequently,
the problem of LPWAN technology coexistence becomes more and more important. For
example, Krupka et al. [224] illustrate the LPWAN technology coexistence in IoT environ-
ment. They discuss the activity duration of LPWAN technologies on a channel during the
day in order to measure the maximum capacity of the channel. They found that occur-
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rence on the channel during a day using Sigfox technology is more than twice higher than
LoRa. This is mainly caused by different policy choices such as longer range and longer
battery life at the expense of resiliency against transmission errors and transmission de-
lay. In order to find the optimal duty cycle, a distribution function of the probability of
collision between 2 or more devices shows that it is close to 1 for more than 1000 simulta-
neously active devices.

To compare the performance of the CSS modulation used by LoRa and UNB modula-
tion used by Sigfox, Reynders et al. [233] proposed a heuristic equation that gives the BER
for a CSS modulation as a function of SF and SNR. The performances in terms of PDR
and throughput of LoRaWAN and Sigfox are simulated. However, numerous network pa-
rameters are not explained enough to be able to reproduce the experiment. They showed
that UNB is slightly better than LoRa in terms of capture effect: UNB network enables a
strong reception of packets thanks to the capture effect. However, CSS has a higher re-
siliency against noise and interference. When trying to maximize the throughput, only 5
to 10 devices achieved the highest throughput but results in a packet loss of 63%. To sim-
plify the analysis and consequently the network complexity, authors assume that the SFs
adopted by LoRa are perfectly orthogonal. However, this is not the case in the real world.
In order to implement LoRa modulation in Software Defined Radio (SDR), Knight et al.
[222] presented details on the patented LoRa PHY and introduced gr-lora, an open source
SDR-based implementation of LoRa PHY.
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Figure 2.6. The shape of LoRa signal with different spreading factors.

2.4.3 Energy consumption

As the main chalenge of LPWAN networks is to transmit the signal in a wide area with
a low power comsumption. Magno et al. [226] developed a new energy-efficient modu-
lation technique named WULoRa for LoRa devices. They compared their proposal with
LoRa and Gaussian Frequency-Shift Keying (GFSK) modulation techniques. They found
that communication efficiency could be increased by managing wake up radio. However,
details about their implementation is missing in their paper.

As the energy consumption constraint is the main issue that face end-devices to ci-
pher at each transmission the data collected by sensors, Kim et al. [221] propose a se-
cure device-to-device link establishment scheme to evaluate the security performance by
comparing the energy consumption of each end device. In fact, to enhance the security
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of wireless transmissions, end-devices should consume more energy to cipher the data.
This work gives new insights to overcome this problem by compressing the data. In the
same context, Costa et al. [207] propose a fuzzy-based approach to dynamically configure
the way visual sensors will operate concerning sensing, coding and transmission patterns
by exploiting different types of reference parameters. This approach is considered as a
use case for multi-systems smart city applications based on visual monitoring.

The ability of LoRaWAN to track a person at street level is far less than might be ex-
pected. To achieve better performance, Radcliffe et al. [232] made a testbed for Central
Business District (CBD) to overcome this issue. They produced an envelope of +-10.2 dBm
around the model which contained 95% of all data points. The loss-free communication
was limited to approximately 200 meters from the base station and there was a total loss
of transmission after approximately 600 meters. Similarly, Stan et al. [237] studied the
output signal generated by commercial transceivers to understand how information is
encoded and embedded in the chirp wave forms.

2.4.4 Simulation & modelisation

Since the apearance of LoRa in 2015, many works in literature tried to model LoRa
transmissions to build simulations tools close to the reality. For example, Capuzzo et al.
[206] take various configurations parameters to analyze the impact of each parameter on
the quality of the signal. These parameters include the number of ACKs sent by the gate-
way and the SF used for the downlink transmissions. However, multiple retransmissions
have not been considered in this work.

For the same purpose, Irio et al. [218] investigates the interference caused by multi-
ple coexisting LoRa devices to a single gateway. They suppose that LoRa devices are dis-
tributed according to a homogeneous Poisson Point Process (PPP) considering path loss,
fast fading, and shadowing effects. They characterize the distribution of the behavior of
interference power, and compute numerical approximations using the Fast Fourier Trans-
form (FFT) algorithm. They consider different channel access probabilities and density of
LoRa devices. Results show that the numerical Cumulative Distribution Function (CDF)
of the interference fit the CDF obtained with the empirical data.

Ochoa et al. [229] develop LoRa simulation on WSNet simulator with C/C++. Authors
build both the physical and MAC layers including spectrum used, capture effect and in-
terference. They investigate LoRa network behavior in homogeneous and heterogeneous
scenarios with hundreds of nodes. They consider throughput, PDR, energy efficiency and
SF allocation in various scenarios. They confirmed the fact that when decreasing GW
coverage, nodes with lower SF‘s shows better performance. They also compare heteroge-
neous and homogenous configuration of the network, their findings show that heteroge-
neous networks perform better in terms of PDR, energy consumption and throughput.

To model packet collisions in LoRaWAN, many contributions were made under the
assumption that collisions follow a Poisson distributed process. Ferre [214] showed that
such assumption is no longer accurate when SFs are perfectly orthogonal. To overcome
this issue, they propose closed-form expressions for collision and packet loss probabili-
ties.

In [238] a mathematic model of both LoRa modulation & demodulation processes
based on signal processing theory are presented. The paper illustrates the main differ-
ence between the performance levels of the LoRa and the FSK modulation regarding the
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value of the BER. Their results show that when an Additive White Gaussian Noise (AWGN)
channel is used, the LoRa modulation ensures a higher performance level.

Bankov et al. [202] consider LoRaWAN networks with class A end-devices operating
with acknowledgements. Authors use Okumura-Hata model without fading for propaga-
tion losses to develop a generic mathematical model to evaluate network capacity and
transmission reliability. To measure the effectiveness of capture effect, they evaluate the
difference between power of the signal from different devices with different SF distribu-
tions. Network load threshold was analyzed in this work by estimating the corresponding
end-devices throughput. Once this threshold value is reached, the PER increases quickly
towards 1.

LoRa offers a massive coverage for end devices. However, this advantage is severely
reduced by duty cycles. The increased number of connected end devices significantly
elevates packet loss due to collisions. To alleviate this problem, Hoeller et al. [217] ex-
ploit time diversity to increase the probability of successful packet delivery in LoRa up-
link. They built a model of coverage probabilities of LoRa channels and analyze the use
of message replication to create signal diversity. They conclude that there is an optimum
number of message replication that avoids high collision probability. They validate the
proposed model using numerical simulations.

To be able to send the transmitted signal in wide area, two different modulation schemes
are used by LPWAN networks. First, there is UNB used by mostly all LPWAN networks in-
cluding LTEm, NB-IoT, etc (see Fig. 2.7b) which relies on using a very small bandwidth to
limit the impact of noise on the signal. Second, there is CSS modulation scheme used by
LoRaWAN (see Fig. 2.7a) which spread the signal to make it more robust against noise. In
this context, Mo et al. [228] investigated the optimal number of message replications in
UNB/Sigfox networks. To maximize LoRa network performance, they model and validate
the behavior of the network using message replication to discover time diversity using a
single gateway and spatial diversity using multiple receive antennas. The work in [15] on
message replication differs from [228] However, this work considers UNB networks where
each transmission uses a random central frequency, this assumption changes the colli-
sion model.
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Year Ref Parameters Metrics Methods Comments
2014 Aref et al. [201] Distance, RSSI Experimental study No comparison with SOTA
2015 Petajajarvi et al. [230] Distance RSSI Experiments Path loss estimation
2015 Kriara et al. [223] Mobility, Link type, MCS Goodput, SR SampleLite, SampleLite+ SampleLite vs RAMAS vs MistrelHT
2015 Semtech [236] nada nada Semtech Semtech release
2016 Reynders et al. [234] With and without AWGN, CSS vs BPSK SNR, BER Chirp Spread Spectrum (CSS) analysis Perfect vs not perfect orthogonality
2016 Knight et al. [222] nada nada Gnuradio simulation Chirp representation with GnuRadio
2016 Bor et al. [204] # devices, PDR, Energy, Mathematical model Comparison by varying transmission settings
2016 Voigt et al. [239] Distance, # devices PDR Simulation study Directional antennas vs basic ones
2016 Mo et al. [228] # replications, # devices Outage probability Mathematical model Validation with varying parameters of the model
2016 Stan et al. [237] nada nada Review ISM band US vs EU
2016 Reynders et al. [233] Eb/N0, # devices, Distance BER, PDR, Throughput Simulation evaluation Interference between UNB & CSS
2017 Ferre [214] # devices, PS, PR PDR Mathematical model Validation by varying parameters of the model
2017 Vangelista [238] SNR BER Chirp Spread Spectrum (CSS) No comparison with SOTA
2017 Croce et al. [209] # chips, SINR, # devices, PR, SF, # GW BER, PDR Gnuradio tests No comparison with SOTA
2017 Angrisani et al. [200] SF, BW, CR, SNR, PDR Experimental study 3D plots of the QoS metrics
2017 Jetmir Haxhibeqiri et al. [219] PR, PS, PDR, Throughput Algo: check pkt received with wrong CRC Comparison between their algorithm and basic one
2017 Blenn et al. [203] PR, PS, SF, CF RSSI, PDR, ToA, SNR Simulation evaluation No comparison with SOTA
2017 Georgiou et al. [215] Distance, # devices PDR Mathematical model Comparison with different parameters of the model
2017 Bankov et al. [202] PR, CR PER Mathematical model No comparison with SOTA
2017 Gupta et al. [216] # devices, PDR Mathematical model No comparison with SOTA
2017 Krupka et al. [224] CF Collisions Spectrum study (overlap) Sigfox, LoRa, IQRF
2017 Jorke et al. [220] Distance Path loss, Simulation evaluation 3GPP, ITU, Winner+, Okuuru hata, Oulou
2017 Radcliffe et al. [232] Distance RSSI Literature review Testbeds comparison
2017 Waspmote [240] nada nada Waspmote Waspmote release
2017 Magno et al. [226] Distance, DC Energy, ToA WULoRa WULoRa vs GFSK vs LoRa
2018 Kim et al. [221] Distance, SF DR, Energy Secure D2D messages payload comparison not secured traffic
2018 Callebaut et al. [205] PS, P t x , Energy, ADR CNF ADR CNF, ADR NO CNF, NO ADR NO CNF
2018 Hoeller et al. [217] Distance, Msg replications PDR Mathematical model Impact of replications on PDR
2018 Daldoul et al. [210] Distance, CF Throughput Rate Ordering Scheme Minstrel-HT vs Minstrel-HTwRO
2018 Croce et al. [208] SIR BER Simulation evaluation Imperfect Orthogonality study
2018 Zorbas et al. [241] BW PDR Mathematical model No comparison with SOTA
2018 Ochoa et al. [229] # devices, PR, Throughput, PDR, Energy, Heterogeneous SF allocation Homogenous, Heterogeneous, Multi-Homogenous
2018 Dix-Matthews et al. [211] Path loss, SF, BW, P t x PDR, Energy, RSSI, Path loss Simulation evaluation No comparison with SOTA
2018 Capuzzo et al. [206] PR, ACKS, DC PDR, Mathematical model Simulator vs their model
2018 Djidi et al. [212] # devices, Energy, ToA LoRa-WuR cluster LoRa-WuR vs class A
2018 Lim et al. [225] # devices PDR Packet collision model model, EIB, EAB, Random
2019 Irio et al. [218] PR Aggregated interference Mathematical transmission model Comparison with different PR
2019 Mahmood et al. [227] # devices, Distance PDR Equal interval Based (EIB) EIB, EAB, PLB
2020 Pham et al. [231] CE, SF, # devices SNR, BER, Throughput, PDR Mac protocol based on CAD SIC vs CE vs ALOHA
2021 Elmaghbub et al. [213] Indoor vs outdoor Power spectrum Experimental study LoRa enhancement with deep learning neural network

Table 2.4. Reviewed papers on the physical layer.

2.5 Discussion

In summary, contributions made for LoRa technology and LPWAN in general are very
attractive and worth to be applied in real word. As shown in Fig. 2.8a, many applications
emerged recently to cover the needs of customers to build, travel, monitor and track. For
this reason many LPWAN technologies (see Fig. 2.8b) emerged to cover the need of these
customers in terms of communication such as LoRaWAN, Sigfox, LTEm, etc. A lot of find-
ings have been related and commented in the previous sections regarding the robust-
ness and the added value of each contribution. Many papers in literature tried to resume
part of these contributions by comparing the advantage and drawbacks of each contribu-
tion. We elucidate, at the end of this section, the literature reviews contributions made
for LPWAN networks.

Many studies in the literature analyzed the performance of LPWAN [102] consider-
ing technologies like (SigFox, Weightless, and Random Phase Multiple Access (RPMA))
in addition to LoRa to highlight their performances. For example, Goursaud et al. [102]
studied the performance of the CSS modulation. They calculated the CIR of all SF pairs
using simulations and real LoRa link measurements [209]. As LoRa modulation can en-
able concurrent transmissions, they analyzed pseudo-orthogonality and measured inter-
ference probabilities between different SFs and evaluated co-channel rejection between
all of SFs. They found also that the strongest transmission suppresses weaker transmis-
sions if the power difference is higher than the CIR of weaker SFs. When SFs are the same,
all simultaneous transmissions are lost, except the case when one of the transmissions is
received with a higher power than the CIR of the SF. Separating the weakest signal and
the strongest signal is called capture effect [204].

Based on the previous literature review of LoRa and LoRaWAN contributions, we con-
clude that heuristic solutions proposed in literature are limited to increase the data rate
and to enhance the quality of the link between end-devices and the gateway. For this
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reason, we aim in the next section to explore machine learning contributions to leverage
them in LoRa and LoRaWAN adaptive data rate scheme.
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Figure 2.8. Supply and demand in wireless network.

Year Ref Parameters Metrics Methods Comments
2015 Goursaud et al. [102] Frequency dmain Rejection coeficient UNB vs CSS LoRa vs Sigfox vs Weightless vs Ingenu
2015 Al-Fuqaha et al. [91] nada nada Literature review MQTT vs XMPP vs DDS vs COAP
2016 Al-Kashoash et al. [104] nada nada Literature review 6LoWPAN vs LoRaWAN and Sigfox
2016 Boulogeorgos et al. [95] nada nada Literature review LoRA, UNB, NB-IoT, LTE-M, EC-GSM
2017 Sinha et al. [110] nada nada Literature review LoRaWAN vs NB-IoT
2017 Song et al. [112] nada nada Literature review LoRa vs NB-IoT vs GPRS
2017 Pablo [109] Frequency, Distance RSSI, SNR Experimental study Master thesis
2017 Charlmers [97] Distance RSSI, Simulation evaluation Master thesis
2017 Khutsoane et al. [105] nada nada LoRa simulator comparison Testbeds comparison
2017 Farrell [100] nada nada Literature veview IEEE, ETSI, 3GPP, IETF, Weightless, LoRa, DASH7
2017 Magrin [108] Traffic load, # devices Throughput, PDR NS3 module Master thesis
2018 Finnegan et al. [101] nada nada Literature review LPWAN comparison
2018 Haxhibeqiri et al. [103] nada nada Comprehensive review LoRaWAN tesbeds comparison
2018 Eva Jurado [99] nada nada Experimental/ Theoretical study Master thesis
2018 Alonso [92] CR, SF, BW RSSI, PDR, E t x LoRa testbed Heuristic algorithm to enhance LoRa QoS
2019 Ertø"urk et al. [98] # devices, PS ToA, PDR Literature review Sigfox vs NB-IoT vs LoRa vs WiFi vs ZigBee vs Bluetooth
2019 Bembe et al. [94] nada nada Literature review LPWAN comparison
2019 Aden Hassan et al. [90] Distance RSSI Experimental study Master thesis
2019 Ayoub et al. [93] nada nada LPWAN comparison DASH7 vs NB-IoT vs LPWANs
2020 Kufakunesu et al. [106] nada nada Literature review Comparison based on mathematical model

Table 2.5. Surveys on LPWAN.

3 Machine learning based contributions

The virtualization of the network has opened the field for machine learning algo-
rithms to be applied easily in virtual platforms. Many works in literature proposed var-
ious solutions to enhance the performance of the network dynamically. For this reason,
we focus in this section on elucidating the main contributions in machine learning field
to understand how they applied their Machine learning (ML) algorithms and why they are
powerful to solve many optimization problems. We subdivide this section to 4 main sub-
sections to distinguish between works that apply Artificial neural network (ANN), Multi-
Armed Bandit (MAB), Markov Decision Process (MDP), and heuristic algorithms.

3.1 Artificial Neural Network (ANN)

Neural networks have been applied in various domains to analytically converge to
optimal outputs that best fit activation functions. They are often represented as a circuit
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of biological neurons, or, in a modern sense, with artificial neurons or nodes.

The connections between biological neurons are modeled in artificial neural networks
as weights between nodes. A positive weight means an excitatory connection while neg-
ative values reflect inhibitory connections. In linear combination, inputs are balanced by
a weight and summed. Meanwhile, activation functions normalize outputs to reflect the
real excitement needed in each layer (see Fig. 2.9). For example, an acceptable range of
output is usually between 0 and 1, or it could be between -1 and 1.

Doing this way, many works in literature applied this process and adapted it to their
problem.

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.9. Artificial neural network (ANN) layers.

Assigning suitable channels in wireless networks to Internet of things (IoT) devices
is mandatory to guarantee a high speed transmission with high reliability. However, the
conventional fixed channel assignment algorithms show their weakness to cope with the
growing number of devices due to the highly dynamic traffic loads generated. To deal with
this problem, Software Defined Networking based IoT (SDN-IoT) is proposed in literature
to improve the transmission quality programmatically and mitigate hardware exchange.
This virtualization transaction opened the field for deep learning techniques to be applied
in wireless network taking advantage of high computational Software Defined Network
(SDN) platforms. In this context, Tang et al. [49] proposed a deep neural network based
traffic load prediction method to predict network congestion and the future traffic load. A
deep learning based channel assignment algorithm (DPPOCA) was proposed to dynami-
cally assign channels to each link in SDN-IoT. This algorithm was extended by combining
the deep learning based channel assignment and traffic prediction to propose a novel
intelligent channel assignment algorithm called TP-DLPOCA. This combination allows
to avoid traffic congestion and quickly assign suitable channels rather than making only
predictions. The results show that the optained throughput and packet losses outperform
the conventional channel assignment algorithms proposed in literature. However, their
experimental settings were not provided which make it difficult to reproduce the work
and compare it with other solutions.
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A cooperative federated learning system was proposed by [48] to analyze the transmis-
sion and data pricing strategies of a self-organized mobile device. The system is presented
as a Stackelberg game model that relies on transferring the model updates between the
model owner (central cloud or edge server) and mobile devices. Such interactions may be
energy inefficient or even unavailable in mobile environments. To alleviate this problem,
Feng et al. [48] built a relay network to construct a cooperative communication platform
to support model update transfer. Hence, the mobile devices generate model updates
based on their training data and forward them to the model owner through the cooper-
ative relay network. In return, the model owner trains the model and sends it back to
mobile devices through the same network (federated learning system). To validate their
proposal, they provide a series of analytical and numerical results on the equilibrium of
the Stackelberg game.

The new design of 5G networks from 3GPP requires the optimization of the Communication-
Computing-Caching (3C) multidimensional resource allocations according to different
applications requirements in terms of latency, throughput, and connectivity. In this con-
text, a network slicing architecture based Mobile Edge Computing (MEC) and SDN plat-
forms are proposed by Wang et al. [50] to support flexible 3C resource allocation to sup-
port 5G use cases; namely enhanced Mobile Broadband (eMBB), Ultra Reliable Low La-
tency Communications (URLLC) and massive Machine Type Communications (mMTC).
To provide resource allocation decision for the network slicing architecture, authors pro-
posed to use ANN with the aid of data pre-processing techniques to speedup resource
allocation decisions. Experimental results from a testbed show that an accurate classifi-
cation performance can be achieved using their process. However, authors should focus
on investigating various pre-process methods for sampling data to improve their training
time and accuracy.

Year Ref Parameters Metrics Methods Comments
2018 Tang et al. [49] # switches, # devices Throughput, Accuracy, Packet Delivery Ratio (PDR) TP-DLPOCA based on ANN CoCAG-SBR vs CoCAG-BR vs DLPOCA vs TP-DLPOCA
2019 Feng et al. [48] # devices Profit Federated learning No comparison with SOTA
2019 Wang et al. [50] SR, service type, Packet Size (PS) Training time, CPU usage, PDR 3D resource allocation ANN eMBB vs URLLC vs mMTC

Table 2.6. Reviewed papers on artificial neural network.

3.2 Multi Armed Bandit (MAB)

The MAB framework can be applied to any problem where there is an abundance of
choices where the reward of trying a one choice is known. The exploitation and explo-
ration dilemma relies on a trade-off between making new or old choices to increase the
cumulative reward. Humans, in their daily life, are continuously confronted to such a
problem and usually raise tremendous questions like, where and what to eat: should I try
a new restaurant or go to that Chinese place on the corner ? In this section, several use
cases of MAB algorithms are presented to motivate the use of such techniques to make
decisions in wireless network.

A variant of the Adversarial Multi-Armed Bandi (AMAB) problem was considered by
Allesiardo et al. [167] to achieve a regret of O(N T log (T )) with N period, where the time
horizon is divided into unknown time intervals where rewards are calculated from stochas-
tic distributions. During each time interval, the optimal arm is updated (see Fig. 2.10).
Authors proposed an algorithm taking advantage of the constant exploration of EXP3 to
detect when the optimal arm changes. Their analysis shows that when a run is divided
into N periods, the proposed algorithms achieve a regret in O(N T log (T )).
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Historically, MAB algorithms were introduced as simple models for clinical trials, where
arms correspond to some treatments with unknown efficiency [245]. Recently, MAB mod-
els have been proved useful for different use cases, like adaptive data rate, where arms can
model the vacancy of radio channels, or parameters of a dynamically configurable data
transmission. For example, Kerkouche et al. [179] suggest to optimize the performance of
uplink Long Range Wireless Access Network (LoRaWAN) communications by using MAB
algorithms to select both the spreading factor and the transmission power. Simulation
results show that transmission parameters can be tuned to find a compromise between
energy consumption and packet loss.

Arm0 Arm1 Arm2

. . .

Armn

Q(a0) Q(a1) Q(a2) . . . Q(an)

. . .

Figure 2.10. Multi bandit arms.

Year Ref Parameters Metrics Methods Comments
2008 Braouezec [173] Items Features Non-stochastic bandits Proof of all bandits theorems
2010 Li et al. [180] Users profile News article Contextual bandits with LinUCB Personalized news article recommendation
2012 Bubeck [174] nada nada MAB algorithms review Stochastic, Adversarial and Contextual Bandits
2014 Bouneffouf et al. [172] Items Regret/Reward Contextual Thompson Sampling Comparison with UCB, EXP4, US, QBC and Random
2015 Allesiardo et al. [167] Time Reward, Regret Adversarial EXP3 with Drift Detection The adversarial nature of EXP3 makes it robust to non-stationarity
2016 Zhou [188] Items Features A Survey on Contextual MAB Stochastic & Adversarial Contextual Bandits
2016 Toldov et al. [186] Channel congestion PDR Thompson Sampling Maximize the probability to receive pkt for each channel
2016 Darak et al. [176] Channel index PDR Bayes-UCB Maximize the probability to receive pkt in each channel
2017 Toldov [185] Channel index PDR UCB & TS Proof of Thompson sampling
2017 Gajane [178] Items Features Applications of the MAB problem Clinical trials, Internet advertising, Online recommendation
2017 Devanand et al. [177] Posterior Parameters Features Thompson Sampling Comparison with UCB
2017 Tekin et al. [183] Items Features Multi objective contextual bandits Comparison with UCB
2017 Meyer [181] Items Features Non contextual recommendation systems Comparison between E-greedy, UCB, Thompson and EXP3
2018 Bonnefoi et al. [169] SF, channel index PDR UCB & TS Comparison between UCB & TS with different parameters
2018 Bonnefoi et al. [170] Channel index PDR Thampson sampling non-stationary settings Comparison between Random, E-gready, USB and Thompson sampling
2018 Tekin et al. [184] Items Features Multi-objective Contextual Bandit No comparison made
2018 Kerkouche et al. [179] SF, P t x E t x , PDR, RSSI Thompspn sampling Comparison between ADR, UCB, SWUCB, Thompson, EXP3 and EXP3P
2018 Azari et al. [168] SF, P t x PDR, E t x Updated EXP3 and UCB Comparison with EqLoad and RandSel
2019 Bouneffouf et al. [171] Items Features Use cases of contextual bandits Healthcare, Finance, Dynamic Pricing, Influence Maximization and Telecommunication
2019 Wanigasekara et al. [187] Advertisement Trip preferences Multi-Objective contextual Bandits Online Parameter Updates and ranking with LinUCB, PUCB1 and E-greedy
2019 Ta et al. [182] SF, P t x PDR, E t x EXP3 No comparison with SOTA
2020 Zamble et al. [117] Network resources Network performances Contextual MAB Algorithms to build predictifs models vs policy selection
2020 Chia [175] Items Features Non-linear Contextual Bandits The Cannon Problem example

Table 2.7. Reviewed papers on multi armed bandit algorithms.

3.3 Markovian Decision Process (MDP)

Markov Decision Process (MDP) is a stochastic control process that provides a math-
ematical framework for modeling decision making process. MDP are useful to study opti-
mization problems in dynamic programming. They are used in many disciplines, includ-
ing economics, robotics and manufacturing. The name of MDP comes from the Russian
mathematician Andrey Markov. At each time step, the process is in some state s, and the
controller select an action a that is available in state s to move the process to a new state
s′ that could better or worse according to the observed reward R(s, a).

The probability that the process moves to the new state s′ is given by the state transi-
tion function P (s, a, s′). That’s why the current state s and action a, are conditionally de-
pendent of all previous states and actions. In other words, the state transitions of an MDP
satisfy the Markov property. The difference between Markov Decision Process (MDP) and
Markov chains is that MDP supports multiple actions and rewards. If there is only one
action for each state and all rewards are the same, then MDP can be reduced to a Markov
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chain. Since the appearance of MDP in 1950, many works in literature applied it to solve
their optimization problem, here we relate some of them. In the same context, Ling Li et
al. [156] proposed a three-layer QoS scheduling model for service-oriented IoT. At appli-
cation layer, authors explore optimal QoS-aware services requirements. The model pro-
posed aims at dealing with scheduling of heterogeneous networks environment at the
network layer. At sensing layer, it optimizes resource allocation scheduling for different
services.

To reduce handoff cost while maintaining user Quality of Service (QoS) requirements
in Radio Access Network (RAN) slicing. Sun et al. [160] propose a multi-agent Reinforce-
ment Learning (RL) based smart handoff policy with data sharing, named LESS, LESS is
designed to have two components. First, the LESS-DL which relies on a distributed Q-
learning algorithm with small action space to make handoff decisions. It is used to choose
both the target Gateway (GW) and Network Server (NS) when a handoff occurs and then
updates the Q-values of each user according to LESS-DS. Second, the LESS-DS which is
a data sharing mechanism using limited data to improve the accuracy of handoff deci-
sions made by LESS-DL. Simulation results show that LESS can significantly decrease the
handoff cost by about 50% compared with traditional handoff policies without learning.
In [161], the energy related to the activation of a LoRaWAN node by using the On-The-Air
Activation (OTAA) mode is modeled.

The average per-node throughput of LoRa-based networks has been mathematically
formulated by Sandoval et al. [158]. To enable end nodes to update their transmission
parameters, a centrally-computed global configuration is proposed using tools from the
machine learning filed. Precisely, the updating process has been formulated as an RL
problem whose solution prescribes optimal disseminating policies. The training times of
the algorithm have been reduced by using a teacher-student approach that explores new
configuration first. The use of these policies together with the optimal network configu-
ration has been analyzed and compared to the state of the art. Results show an increase
of up to 147% in the accumulated per-node throughput using RL-based approach. How-
ever, other performance metrics were not considered in this work like delay and energy
consumption. Moreover, only one scenario was analyzed using only one gateway and
200 nodes which raises question whether this solution could work with higher number of
nodes and cells. Authors should also compare their solution to other RL mechanisms to
highlight the main finding of this work regarding other RL solutions.

The wide area coverage of Long Range (LoRa) technology makes the probability of col-
lisions higher since the area of potential interferences is extended to 30km2. This means
that, interference between all nodes in this area can occur if they use the same transmis-
sion parameters at the same time. The packet collision among LoRaWAN nodes signifi-
cantly deteriorates network performance functions. Furthermore, retransmitting packets
will severely drain their limited battery power. For this reason, mutual interference man-
agement among LoRaWAN nodes is important especially for CSMA/CA access control.
For example, Aihara et al. [145] proposed to use Q-learning to learn the wireless envi-
ronment around LoRaWAN nodes. The knowledge owned during the learning process is
utilized for resource allocation in order to improve the PDR performance. To do so, the
weighted sum of the number of successfully received packets is treated as a Q-reward and
the gateway allocates resources to maximize these rewards. The numerical results show
that the proposed scheme can improve the average PDR by about 20% compared to the
random resource allocation scheme. However, authors should extend their experiments
to compare their solution with other machine learning algorithms to highlight the out-
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comes of their proposal.

Due to the benefits of energy harvesting technologies, wireless devices are able to sup-
port wireless multimedia services by harvesting energy from the environment. However,
due to the unknown dynamics of the Channel State Information (CSI) and the harvested
energy, the task to design an efficient routing protocol with an optimal routing and power
allocation policies becomes very challenging. In this context, another Q-learning based
algorithm was proposed by Zhang et al. [166] for optimizing power and routing policies
while satisfying delay constraints over multihop relay networks. The authors established
and analyzed the wireless communication model as well as the energy harvesting model.
They have formulated an end-to-end effective energy capacity optimization to compare
DTMDP and Q-learning based multihop routing algorithms. Their simulation results
show that their proposed Q-learning based energy harvesting scheme outperforms other
existing schemes in multihop relay networks.

Knowing the diversification of IoT users and applications, the major challenge in de-
signing the 5G network was to support different types of users and applications with dif-
ferent QoS requirements under a single physical network infrastructure. Research com-
munity converged to the idea that network slicing is the only way to alleviate this prob-
lem. Therefore, RAN slicing has been presented as a promising solution to address these
challenges. In this context, Albonda et al. [147] focused on providing two generic services
of 5G; namely eMBB and Vehicle to infrastructure (V2X). They proposed a RAN slicing
scheme in offline reinforcement learning based on Q-learning algorithm that allocates
radio resources to different slices. They consider the utility requirements of each slice in
order to maximize the efficiency of the resource utilization. To validate their work, they
compared their algorithm with a reference scheme that makes an allocation of resources
in proportion to the traffic rate, latency and congestion probability of each slice.

In the same context, Ilahi et al. [150] proposed and evaluated a deep reinforcement
learning (DRL)-based PHY layer transmission parameter assignment algorithm for LoRaWAN.
Their algorithm mitigates collisions and outperforms the state of the art learning-based
technique achieving up to 500% improvement of PDR in some cases. However, this work
should be extended to prove the efficiency of DRL-based assignment in different scenar-
ios. In addition, as the authors manage to assign transmission parameters, they should
consider other transmission parameters as the Bandwidth (BW), Coding Rate (CR), P t x

and frequency channel.

To jointly allocate SF and P t x in the uplink LoRa network, Yu et al. [165] proposed a
multi-agent Q-learning algorithm. Based on the interactions between the agent and the
wireless environment, the agent updates dynamically its policy to enhance reliability and
energy efficiency. They compared their algorithm with a static allocation mechanism.
The simulation results show the advantages of using Q-learning algorithm with respect
to Signal to Interference & Noise Ratio (SINR), Data Rate (DR) and E t x . However, this
work missed a plenty of transmission parameters like CR, BW and channel frequency that
should be taken under account to take advantage of machine learning algorithms. In
addition, only one scenario was studied with a fixed number of devices, gateways and
fixed size of packets and rates of transmissions.
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Year Ref Parameters Metrics Methods Comments
1992 [163] nada Reward Q-learning Proof of convergence of the algorithm
1994 Berenji [149] nada Reward convergence Fuzzy Q-learning Proof of the algorithm
1994 Witlox [164] nada Reward Hidden MDP Known vs unknown model, States completely or partially known
2008 Lin [155] nada Reward Fuzzy Q-learning Proof of the algorithm
2013 Roijers et al. [157] Weights Rewards Multi objective-MDP Multiple policies
2014 Ling Li et al. [156] # devices PDR, BER MDP With and without QoS scheduler
2015 Jamshidi et al. [151] Not mentioned PDR Fuzzy Q-learning Model-based vs. model free RL
2016 Toussaint et al. [161] # channels, # ED, % active ED ToA, E t x Markov chain No comparison with SOTA
2017 Karmakar et al. [153] # GW, Throughput, SNR, SmartLA: Markov algorithm Comparison of SmartLA with SimpleLite and Mistrel
2018 Aijaz [146] P t x , SNR, Q-learning for slicing Comparison with heuristic, Round-robin and BCQI algorithms
2018 Sandoval et al. [159] Not mentioned PDR, BER, SNR MDP based algorithm Comparison with THIEO and AT algorithms
2019 AlQahtani et al. [148] Transmission time PDR, response/waiting times, cost $ Queuing theory Impact of vBBU cores on average number of requests
2019 Wang et al. [162] Resource availability SLA validation, Reward Deep Reinforcement Learning Comparison with Greedy, Best effort and random
2019 Sun et al. [160] Resource availability # handoff, outage probability Multi-agent RL Comparison of LESS with NS-Prior and Max SINR
2019 Kochovski et al. [154] Not mentioned Not mentioned Probabilistic model Three QoS level
2019 Sandoval et al. [158] Packet priority, PS, SF, PR PDR, DR RL with evolution strategy algorithm No comparison with SOTA
2019 Aihara et al. [145] SF, P t x PDR, Path loss Q-value calculation with ANN No comparison with SOTA
2019 Zhang et al. [166] Neighborhood Distance SINR, CSI Q-Learning Based Routing Algorithm No comparison with SOTA
2019 Albonda et al. [147] P t x DR, Utilization Q-learning algorithm Comparison of Q-learning with proportional scheme
2020 Ilahi et al. [150] SF, P t x PDR, ToA, E t x LoRaDRL: Deep RL based ADR Comparison with MAB
2020 Yu et al. [165] SF, P t x SINR, DR Multi-agent Q-learning algorithm No comparison with SOTA

Table 2.8. Reviewed papers on markov decision process.

3.4 Heuristic optmizations

Heuristic algorithms are mainly designed to solve a problem in a faster and more ef-
ficient way than traditional methods at the expense of accuracy, optimality, precision, or
completeness for speed. Heuristic algorithms can be used to solve NP-complete prob-
lems. In such a case, there is no known efficient way to find a solution quickly and accu-
rately even if solutions can be verified once obtained. Heuristic algorithms are most often
applied when approximate solutions are sufficient and exact solutions are not necessary.
However, the computational load requested by such algorithms makes their efficiencies
limited to few problems.

Many works in the literature addressed their optimization problem using heuristic al-
gorithms. For example, Feng et al. [125] developed a link adaptation scheme that applies
frame aggregation to enhance the uplink data rate of IEEE communications. However,
such mechanism do not consider all PHY/Medium Access Control (MAC) enhancements
of new Wireless Local Area Networks (WLANs) in their trad-offs. Thus, it is not feasible for
IEEE 802.11n/ac in practical scenarios. Another example is SampleLite which was pro-
posed by [223], SampleLite is a pure RSSI threshold-based algorithm. So, it cannot cope
up with applications with delay constraints. In another hand, the default rate adaptation
methodology that is applied in IEEE 802.11n wireless driver ath9k [254] is Minstrel HT
[210]. However, it suffers from exhaustive sampling and is only applicable in IEEE 802.11.

As Multi-antenna systems can provide greater throughput and range coverage than
traditional single antenna systems, Nguyen et al. [136] present an evaluation and imple-
mentation of a new rate adaptation scheme for multi-antenna systems (RAMAS). Their
approach is applicable to off-the-shelf wireless cards. They found that RAMAS is espe-
cially efficient in multi-user and interference laden environments. This approach elimi-
nates the complexity of the rate adaptation approaches proposed for IEEE 802.11n in the
recent past. Similarly, Deek et al. [124] proposed a rate adaptation scheme based on chan-
nel bonding. However, similar to previous frameworks, the mechanism cannot support
the new features of PHY/MAC IEEE 802.11n. Dynamic link adaptation of IEEE 802.11 can
be classified into link adaptation in static and mobile environment. In static environment,
MiRA [138] selects spatial streams and rates based on the receiver’s feedback (MIMO).
However, in poor channel condition, MiRA performs excessive rate selection and incurs
overhead of assigning credit to select data rate.

In [144], authors propose a new method to adapt transmission range to the degree
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of importance of sensing data transmitted. Such approach could be extended to adapt
the DR to the importance level of the data transmitted. Kim et al. [130] proposed a new
ADR algorithm for LoRaWAN end-devices to adapt their transmission parameters. This
algorithm requires an active feedback channel, which means that an acknowledgement
is required for every transmitted packet. This mechanism would decrease the downlink
PDR as the same channel is used for both uplink and downlink traffic. In addition, the
throughput of uplink traffic will be decreased [79].

To investigate the energy consumption of sending a packet of 50 bytes with different
LoRa configurations in both star and mesh topologies, Ochoa et al. [137] showed that in a
star topology, we can achieve the optimal scaling-up/down strategy of LoRa radio param-
eters to maximize the data rate and range while minimizing energy consumption. The
best strategy is to adapt the P t x and then to increment SF to obtain the optimal energy
consumption. Up to a range of 3 km, the optimal energy consumption is for BW 500 kHz.
Beyond 3 km, the BW must be tuned according to the DR and range constraints. In mesh
topology, network characteristics (e.g., the network density, the number of hops, the cell
coverage) were exploited to optimize the energy consumption. In multi-hop dense net-
works, the proposed strategy consists of setting the SF to 6 and then, progressively in-
creasing the P t x . However, as many works on LoRa, exploiting the orthogonality of vari-
ous SF and the spatial reuse of channels was not made in this work.

To determine the quality of uplink traffics using RSSI and Link Quality Indicator (LQI),
an Enhanced Link Quality Estimation Technique (ELQET) has been designed by Jayasri et
al. [128] with an intuitive combination of the Kalman filter and fuzzy logic. They propose
a link quality based adaptive data streaming as a solution for effective deployment of low
power Zigbee. The quality score returned by fuzzy logic (based on three efficient link
metrics Packet Reception Rate (PRR), SNR, LQI), is smoothened further with Exponential
Weighted Moving Average (EWMA) for better stability. This approach enhances the quality
of transmission while reducing energy consumption and data loss.

Recent research on LoRa/LoRaWAN has mainly focused on LoRa performance evalu-
ation in terms of coverage, capacity, scalability and lifetime. For example, Bor et al. [120]
proposed an optimization problem that minimizes energy spent on data transmission
while meeting required communication performance and link quality. They identified
6720 various parameter combinations for SF, bandwidth, coding rate and transmission
power. The algorithm proposed for adaptive LoRa transmission parameters is based on
trial and error method for selecting the optimal settings. It performs a binary search of
the parameter space while maintaining at least the same link reliability for each step, the
mechanism tests each setting for its packet reception rate until a good setting is found
from an energy consumption perspective. It aims to find a trade-off between the cost
of finding good parameters and the packet delivery rate achieved. The algorithm con-
verge to an optimal setting step by step after multiple transmissions for the fixed distance
between the node and the gateways. However, such methods become unsuitable when
mobility should be taken in consideration. Moreover, from the gateway perspective, ACK
packets are not distinguishable from any other DL packet, so, they are subject to the same
rules and constraints. Thus, it is not convenient when traffic dynamically changes. In
addition, only energy perspective is used to select the optimal setting.

Instead of considering the maximum SNR value from recent uplink packets like ADR
do, Slabicki et al. [142] propose to take the average SNR of these packets. They proposed
an improvement of ADR mechanism built at the network server to increase the PDR. This
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proposal is advantageous only to alleviate the impact of variable channel conditions. The
proposed improvement of ADR mechanism achieves at least 30% better packet deliver ra-
tio compared to the default ADR. Similarly, Abdelfadeel et al. [118] presented Fair Adap-
tive Data Rate Algorithm (FADR) which computes a data-rate and transmission power in
order to reduce collision among end-devices and achieve better data-rate.

In order to maximize the network’s throughput, a contention aware ADR approach
was proposed by Kim et al. [131] to track the number of nodes per SF. As the DR is in-
versely proportional to SF, their approach aims to increase the number of devices using
low SFs . Other results show that at speeds higher than 40 km/h, the communication per-
formance decreases due to the Doppler effect [34], [38]. Enhanced research regarding the
ADR scheme was extended since 2017 to manage: scalability [130], throughput [59], PDR
[140], and contention [131]. As an example, congestion of a channel is estimated through
evaluation of network throughput and RSSI [130]. Similarly, Abdelfadeel et al. [118] pro-
pose FADR that uses RSSI values when determining SF and P t x .

Year Ref Parameters Metrics Methods Comments
1984 Bezdek et al. [119] Any items or features Membership degrees FCM Clustering items based on their coordinates
2002 Ng et al. [135] Items Features Tabu search based techniques Categorical data clustering
2006 Lin et al. [133] P t x RSSI, PDR, LQI Adaptive Transmission Power Control Adaptation of P t x to weather conditions
2009 Gan et al. [126] Political advice Political advice FCM Predict first and second choices of citizens
2011 Nguyen et al. [136] CR, Modulation, BW Throughput Heuristic algorithm High throughput compared to ARF, MRA, RAMAS
2012 Chen et al. [121] Velocity Throughput Rate Adaptation in Mobile Environments High DR compared to ARF, RRAA
2013 Khan [129] BW, P t x PDR, RSSI, DR ADR survey Comparison between ARF, MRR, AMRR, CLRA, ONOE
2013 Deek et al. [124] Location, Throughput, PDR Heuristic algorithm Comparison of ARAMIS with RAMAS, Mistrel, Ath9k
2013 Pefkianakis et al. [138] Location, Throughput Window-based Rate Adaptation Comparison of WRA with SampleRate, RRAA, MiRA
2015 Masonta et al. [134] BW, P t x , channel Channel saturation Heuristic algorithm Adaptive Spectrum Decision Framework
2015 Wannachai et al. [144] Type of data Minimize ToA & E t x A-TRED mechanism Critical data get lower ToA
2017 Kim et al. [130] Not mentioned DR, ToA, Heuristic algorithm No performance assessment
2017 Ochoa et al. [137] SF, P t x ,BW minimize E t x Heuristic Mesh topology is better in dense network
2017 Jayasri et al. [128] RSSI, PRR, LQI, BER Kalman filter + Fuzzy system Evaluate link: Good or poor quality
2017 Bor et al. [120] SF,BW,CR,P t x PRR Probing Algorithm 285 probes allow to find a good setting
2017 Reynders et al. [140] P t x , SF, # devices, Distance PDR Heuristic algorithm Comparison with distance based scheme
2017 Hauser et al. [127] SF,P t x PRR,SNR ADR algorithm Trade-off between DR and E t x

2018 Liew et al. [132] PR ToA, PDR Scheduling algorithm Comparison FAEM with SMM, LSM, CSMA /CA
2018 Slabicki et al. [142] # devices PRR,E t x ADR+ algorithm ADR+ is more scalable than ADR
2018 Preeth et al. [139] Routing table Inter and intra cluster cost Clustering devices Low E t x , high PDR, low BER
2018 Kim et al. [131] SF Throughput Gradient Projection The throughput is higher compared to ADR
2018 Abdelfadeel et al. [118] SF, # ED, Distance ToA, E t x , PDR, RSSI FADR: Heuristic algorithm No comparison with SOTA
2018 Song et al. [143] Routing table LQI Clustering devices Low E t x to achieve the sink
2018 Cuomo et al. [122] SF, Distance, PS DR, PDR, ToA EXPLoRa-(AT,TS,KM) Comparison with ADR only
2019 Dawaliby et al. [123] BW SNR, PDR Dynamic MLE algorithm Allocations fit slice requirements
2006 Ruspini et al. [141] Items Features Clustering algorithms Hard, Fuzzy and Probabilistic c-means clustering

Table 2.9. Reviewed papers on heuristic algorithms.

3.5 Discussion

The main advantage of ML algorithms is their high adaptability to different scenarios
without the need to study each scenario apart from others. We elucidated in this section
most known algorithms to explain how ANN, MAB, MDP and heuristic algorithms works
and what makes them useful to solve different kind of problems.

The states are not known The states are known
The model is known Heuristics/ game theory Markov Decision Process
The model is not known Multi-armed bandits Reinforcement Learning

Table 2.10. Reasoning under uncertainty [188].

As shown in Table 2.10, depending on our prior knowledge about the environment
and the impact of actions on it, we can select the appropriate algorithm that fit well the
problem under study. For example, when we don’t have any knowledge about the environ-
ment and how it behaves when we apply each action, then RL algorithms including ANN
and Q-learning are more suitable to solve the problem. However, when we have a prior
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knowledge about the environment and we can predict with which probability each action
is able to change the state of the environment, then MDP is the best algorithm to consider
in this case. Alternative algorithms that can be used in this case are contextual MAB algo-
rithms since the prior knowledge required in this case is considered by these algorithms
as a context. When the environment does not change its state during the learning process,
then simple MAB algorithms should be considered.

In this thesis, we try to solve the problem of transmission parameters optimization by
building a prior knowledge to disclose at which extent each transmission setting could
lead to different uplink states. This knowledge is obtained using a pattern recognition al-
gorithm to split the set of transmission sittings to n clusters with n uplink qualities. Then,
we feed this knowledge to both Q-learning and MDP algorithm to learn which transmis-
sion setting is the best for each uplink state.

Year Ref Parameters Metrics Methods Comments
2009 Talbi [115] nada nada Meta-heuristic survey Population, multi-objective and hybrid heuristics
2010 Szepesvári [114] nada nada MDP survey How to use decision problems with MDP
2018 Sutton et al. [113] nada nada Introduction for MDP MAB, MDP, dynamic programming and Monte Carlo Methods
2018 Boutaba et al. [96] Traffic control parameters Traffic control metrics Machine learning survey Clustering. Classification. Regression and Rule extraction methods
2018 Xie et al. [116] Traffic control parameters Traffic control metrics ML-based SDN Supervised, unsupervised and reinforcement algorithms
2018 Sutton et al. [113] nada nada Introduction to reinforcement learning Tabular vs approximate solution methods
2019 Slivkins [111] nada nada Introduction for MAB Stochastic, Adversarial and Contextual MAB
2020 Lattimore et al. [107] nada nada All MAB algorithms Stochastic, Adversarial and Contextual MAB
2020 Zamble et al. [117] Data flow Rewards Contextual MAB Neural bandit algorithm

Table 2.11. Surveys on machine learning algorithms.

4 Conclusion

Through the intensive literature review of many papers proposed recently to enhance
the quality of Low Power and Wide Area Networks (LPWAN) networks, we aim in this
thesis to propose new solutions using lightweight machine learning algorithms to opti-
mize network settings. In fact, when it comes to wireless communications, it’s very hard
to model transmissions behavior due to the high number of factors and use cases that
should be considered. Especially when it comes to deal with random wireless transmis-
sions using pure Aloha channel access protocol. In this thesis, we propose novel ideas
that have never been proposed in LPWAN networks and even in other wireless networks
in general. Particularly, we characterize all possible transmission settings and build a
prior knowledge that will feed machine learning algorithms with enough knowledge to
converge quickly to the optimal set of transmission settings.

Our work differs from the previous works in many points. First, the pattern recogni-
tion mechanisms have never been used to recognize the good, the bad and the medium
transmission settings. Second, our comparison includes many works to highlight the ef-
fectiveness of our work over many other works proposed in the literature. Third, all trans-
mission settings have been included in the optimization process to find the optimal ones.
Fourth, Unlike related works, many scenarios have been included in our experiments to
evaluate our solution in many use cases. Fifth, we do not limit our work to analyze the data
rate but we include other metrics like Time on Air (ToA) and Transmission Energy (E t x) .
Last and not least, our work is a lightweight machine learning solution which means that
it does not require much resources to be run.

To outperform state of the art solutions to maximize the data rate of Long Range
(LoRa) network, we propose in chapter 3 to recognize the impact of each transmission
setting on the uplink quality using pattern recognition tools. This means that we try to
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know from all transmission settings what are those who make the uplink state good, bad
or medium. Since both Q-learning and the policy iteration algorithms assume that the
transmission settings change the uplink state (see Table 2.12), they need to know from
all transmission settings (actions) what are those who change the uplink state from one
state to another. Thanks to our contribution in chapter 3, the knowledge required by Q-
learning and the policy iteration algorithm to jump from one state to another through an
action is provided by Fuzzy C-Means (FCM) algorithm. In fact, knowing the membership
degrees of action "a" to clusters "c1, ...,cn" will help Q-learning and the policy iteration
algorithms to know at which state "s1, ..., sn" action "a" will lead. The difference between
Q-learing and the policy iteration algorithms used in chapter 4 and 5, relies on the re-
quired knowledge about the environment. Unlike Q-learning that has to observe the new
state after each transmission, the policy iteration algorithm requires the impact of each
action on the uplink quality before even starting the learning process. For this reason, we
propose in chapter 4 to use the Q-learning algorithm and in chapter 5 the policy iteration
algorithm and we compare both algorithms with the algorithms proposed in literature.
Due to the diversification of Internet of things (IoT) applications, IoT devices need to tar-
get the uplink states that best fit the Quality of Service (QoS) requirements of the applica-
tions that they run and not to just maximizing their data rate. Since the policy iteration
algorithm has all the required knowledge to identify the transmission settings that make
the uplink quality match the required quality by IoT applications, we make each IoT de-
vice in chapter 5 target the uplink state that best fit the requirement of the application
that it runs. This allows these devices to target different uplink states and generate three
uplink traffics with different qualities within the same physical network.

The states are not known The states are known
The model is known genetic, EXPLoRaTS Policy iteration

Related work Chapter 5
The model is not known EXP3 Q-learning

Related work Chapter 4

Table 2.12. The difference between our work and state of the art works.
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Abstract

Long Range Wireless Access Network (LoRaWAN) emerged as one of the promising Low
Power and Wide Area Networks (LPWAN) for IoT applications. It allows end-devices to
reach the gateway and then the core network within a star topology in a wide area. Long
Range (LoRa) transceivers send data packets according to a set of parameters: Spreading
Factor (SF), Packet Size (PS), Bandwidth (BW) and Coding Rate (CR). These parameters
must be tunned and adapted to applications requirements. The default Adaptive Data
Rate (ADR) control scheme of LoRaWAN has been proposed to adapt modulation param-
eters dynamically based on the recent received packets. However, it does not adjust pa-
rameters according to the requirements of Internet of things (IoT) applications. In this
chapter, we propose to cluster all LoRa transmission settings to "n" subsets (clusters) of
settings that share the same uplink quality. To recognize the quality of these settings, we
measure their Bit Error Rate (BER), Time on Air (ToA) and Received Signal Strength Indica-
tor (RSSI). Based on these metrics, the clustering process will search for the transmission
settings that share the same level of quality to put them in the same cluster. We consider
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the set of settings’ vectors as a cloud of points in a vector space and the measured met-
rics as points’ coordinates. We assume in this work that cluster items characterize LoRa
transmission configurations. To map the set of LoRa transmission settings that offers the
same Quality of Service (QoS) to the same cluster, we generate a set of transmission set-
tings randomly and apply the Fuzzy C-Means (FCM) clustering algorithm on their result-
ing QoS metrics. Results show that the FCM clustering algorithm assigns each setting to
the cluster that describes better its quality. This result could be used by LoRaWAN net-
work servers to map each LoRa transmission setting to the application running on end
devices.

1 Introduction

Knowing the diversification of services and applications that need to be loaded in the
Internet of things (IoT), and knowing the heterogeneity of wireless network configura-
tions, the task to adapt the wireless network to the applications running on each end-
device became challenging. IoT applications need more and more wireless technologies
that can offer low-cost and low-complexity to end devices to be able to communicate in
wide areas. IoT end devices are generally powered by battery to allow mobility. For this
reason, the power consumption should be carefully studied in order to extend the battery
lifetime. The communication range needs to achieve several kilometers, as end-devices
are scattered in a large area like in building and agricultural fields. Many Low Power
and Wide Area Networks (LPWAN) technologies are already available like SigFox, Narrow
Band-Internet of Things (NB-IoT) or Long Range Wireless Access Network (LoRaWAN).
SigFox plans to offer a global coverage in 45 countries and regions by a single operator net-
work [24]. NB-IoT is built by telecommunication companies as an alternative to sub-GHz
LPWAN technologies. As NB-IoT uses licensed spectrum, it offers better traffic reliability
compared to other sub-GHz technologies.

Unlike NB-IoT, LoRaWAN can be deployed as a private network and integrated easily
with many network platforms (e.g., The Things Network (TTN)). In addition, LoRaWAN
specification is open to academic as well as industrial communities to enhance the qual-
ity of the network. Thanks to all of these advantages, many recent research works tried
to improve Long Range (LoRa) network performances [103] [98]. Since the first appear-
ance of LoRaWAN in the market in 2015, many research papers [98] have been submitted
in different journals and presented in conferences all over the world. For this reason, we
use in our work LoRaWAN network and propose a new framework to make the Adap-
tive Data Rate (ADR) control system [127] more flexible while considering applications’
requirements.

To identify the quality of each transmission setting, we start by generating the Qual-
ity of Service (QoS) metrics of each LoRa transmission setting by randomly transmitting
packets with different settings. From all the measured metrics, we recognize the transmis-
sion setting that offer the same quality by applying the Fuzzy C-Means (FCM) clustering
algorithm [119] on these metrics. To know the extent at which each transmission setting
will lead to the recognized quality levels, FCM generate the membership degrees of each
setting to the recognized clusters. In the end, we compute the performance index of the
clustering process to get the accuracy of membership values.

To find the set of LoRa transmission settings that best fit each application require-
ment, we propose to use a fuzzy clustering process rather than a hard clustering to get
the membership of each transmission setting to applications. The advantage of using this
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algorithm is the ability to know at which level a LoRaWAN transmissions setting is suit-
able for different type of IoT applications. Hard clustering algorithms like K-means can
only generate labels to know at which cluster an object belongs. The advantage of using
the fuzzy clustering algorithm is to build a model that discloses whether a transmission
setting is good, bad or medium through their membership degrees to the clusters of good,
bad and medium settings. Knowing these values is mandatory for the network server to
rank LoRa transmission settings and to assign the best setting with a higher membership
value to end-devices.

The selection of transmission parameters to enhance the quality of uplink traffics
is one the most challenging research areas. For this reason, several research works in
Wireless Sensor Networks (WSN) have investigated different transmission power control
schemes to increase the datarate and reduce the energy consumption [255]. Thus, WSN
should be able to provide transmission power control to adapt the energy consumption
and the datarate to applications requirements. Existing solutions to adjust the transmis-
sion power depend on the wireless environment. The link quality is either determined by
computing the Bit Error Rate (BER) over time and/or by estimation it using Received Sig-
nal Strength Indicator (RSSI), Signal to Noise Ratio (SNR) or Link Quality Indicator (LQI).
Depending on the link quality at time t , transmission power and rate is adjusted for t+1.
We follow in our work the same idea regarding this approach. However, LoRa transceivers
provide additional parameters like the Spreading Factor (SF) to adapt the wireless trans-
missions to energy cost. Previous works on WiFi and cellular networks have investigated
either i) the transmit power control (e.g. [247]), ii) the transmit rate control (e.g. [252]), or
iii) the combination of the two as a transmit power and rate control [248].

Most of the transmission power control schemes try to increase the capacity, and not
only decreasing the energy consumption. However, the transmission rate control is of-
ten concerned by maximizing the throughput. Compared to LoRa, WiFi packet rates are
significantly higher, and the ADR control algorithms run at a much higher rate than in
LoRa. For example, the most commonly used transmit rate control algorithm Minstrel
[246] evaluates its links every 100 ms. To be able to recognize the transmission settings
that fit application requirements, we propose in this chapter to use a the fuzzy cluster-
ing process to identify the transmission settings that lead to good, bad or medium uplink
qualities. The closest study to our approach is presented in [126]. However, the fuzzy
clustering process was applied to get the expected membership values of citizens to polit-
ical parties. By analogy, in our work, political parties are LoRa network applications, and
transmission settings are the citizens.

This chapter is organized as follows. Section 2 introduce all transmission settings and
the QoS metrics. Section 3 enunciate the problem statement. In Section 4, we describe
how FCM algorithm assigns the membership values to LoRa transmission settings. Our
simulation settings and our findings are presented in Section 5. Section 6 concludes this
chapter.

2 Transmission settings vs radio performance

Long Range (LoRa) is a proprietary modulation scheme derived from Chirp Spread
Spectrum (CSS) modulation whose main objective is to improve the Received Signal Strength
Indicator (RSSI) at the expense of the Data Rate (DR). It uses orthogonal Spreading Fac-
tors (SFs) and allows to find a trade-off between DR and coverage. LoRa is a physical layer
implementation and does not depend on higher layer implementations. This allows LoRa
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technology to coexist with different network architectures.

Transmission settings SF, CR, BW, P t x ,
QoS metrics SNR, RSSI, BER, ToA
Factors Spectral Noise
Application settings Packet Size (PS)

Table 3.1. Settings vs metrics vs factors.

In information theory, the Shannon-Hartley theorem defines the maximum DR at
which information can be transmitted in a wireless channel with a specific BW in the
presence of noise. From this well-known theorem, it can be concluded that if the BW is
decreased, the capacity of the channel decreases as well. To deal with such a problem,
LoRa modulation re-shapes (spread) the signal to hold in lower BW (so lower datarate)
but in a longer period (so higher ToA).

Applications
PR min PDR PS

[pkt/day] [%] [Byte]
Wearables 10 90 10-20
Smoke Detectors 2 90 10-20
Smart Grid 10 80 10-20
Waste Management 24 60 10-20
Animal Tracking 100 70 50-100
Environmental 5 90 50-100
Asset Tracking 100 90 50-100
Water/Gas Metering 8 85 100-200
Medical Assisted 8 90 100-200

Table 3.2. Applications requirements [63, 83, 12].

To adapt LoRa modulation settings dynamically, Long Range Wireless Access Network
(LoRaWAN) server like The Things Network (TTN) adjusts the modulation parameters of
end-devices based on the 20 recent received packets [250]. Finding a set of settings that
best fit applications requirements is very challenging due to the number of parameters
that should be taken into account to offer a good Quality of Service (QoS). For example,
a higher BW gives a higher data rate and a lower ToA, but a lower RSSI due to the addi-
tional noise. For example, SF7 increases the DR and decreases the ToA but suffers from
a short range compared to other SFs. Actual LoRaWAN network servers available in the
market try to adapt the required settings based on different QoS metrics: RSSI, BER and
ToA. We describe in detail these metrics in the following subsections. Table 3.1 shows the
difference between transmission settings, QoS metrics and factors.

Since the need of high QoS strongly depends on the requirements of applications run-
ning on end devices, LoRaWAN network servers need to rank LoRa modulation settings
based on their measured quality metrics. For example, if the application running on end-
devices should send a packet that requests a high QoS, the network server should select
the required settings from a pool or a cluster of settings with a high RSSI, a low ToA and
a low BER. In our work, we assume that we need to run three types of applications with
different QoS requirements.

To illustrate the requirements of different Internet of things (IoT) applications, Table
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3.2 built from [12], [251] and [83] shows different quantitative values according to the need
of each application. For example, the PR, the minimum PDR and the Packet Size (PS).

2.1 LoRa transmission settings

To be able to send their frame in a wide area, LoRa devices should be configured by
using different transmission settings: P t x , Carrier Frequency (CF), SF, BW and CR. The
selection of the optimal set of parameters to achieve the best connection performance
with the highest data rate remains a big problem for network engineers especially when
it comes to thousands of devices. The combination of these parameters results in around
6720 possible settings [120], allowing the user to fully adjust LoRa to IoT application re-
quirements. According to the transceiver used by devices, the quality of the signal can
slightly be different due to the properties of each transceiver. A brief description of these
properties are given in Table 3.3.

Module SX1261/62/68 SX1272/73 SX1276/77/78/79
Modem LoRa & FSK LoRa LoRa
Link budget 170dB 157dB 168dB
Power amplifier /61: +15dBm +14 dBm +14dBm

62/68:+22dBm
Rx current 4.6 mA 10 mA 10 mA
Bit rate 62.5kbps-LoRa 300 kbps 300 kbps

300kbps-FSK
Sensitivity -148 dBm -137 dBm -148 dBm
Blocking immunity 88 dB 89 dB Excellent
Frequency 150-960 MHz 860-1000 MHz 137-1020 MHz
RSSI 127 dB 127 dB

Table 3.3. LoRa transceivers properties [236].

2.1.1 Bandwidth (BW)

It is the range of frequencies in the transmission band. Higher BW offers a better DR
and ToA, but a lower RSSI due to the integration of additional noise. In contrast, lower BW
offers a higher sensitivity, but a lower data rate. The data is sent with a chip rate equal to
the bandwidth. This means that a bandwidth of 125 kHz corresponds to a chip rate of 125
kcps. LoRa transceivers have three practical bandwidth settings: 500 kHz, 250 kHz and
125 kHz.

2.1.2 Carrier Frequency (CF)

The Carrier Frequency (CF) is the center frequency used for the transmission band.
For the SX1272, it is in the range of 860 MHz to 1020 MHz. The alternative radio chip
Semtech SX1276 allows adjustment from 137 MHz to 1020 MHz (see Table 3.3).

2.1.3 Coding Rate (CR)

It is the Forward Error Correction (FEC) used by LoRa against interference and can be
configured with: 4/5, 4/6, 4/7 or 4/8. A higher CR offers more protection against noise,
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but increases the ToA. Transmitters with different CR can communicate since the CR of
packets header is always 4/8 encoded.

2.1.4 Spreading Factor (SF)

It is the ratio between Symbol Rate (SR) and Chip Rate (HR): SF = log2( HR/ SR) that
can range from 7 to 12. A major SF not only enhances the SNR, the range and receiver
sensitivity, but also the ToA. Each increase in the SF divides the transmission rate by two
and doubles the transmission time and energy consumption. The number of chips per
symbol is calculated as 2SF . For example, with SF12, 4096 chips/symbol are used. SFs
can be selected from 6 to 12. Radio communications with different SF are orthogonal to
each other so network separation using different SF is possible.

2.1.5 Transmission Power (P t x)

It can range from -2 dBm to 20 dBm, but due to implementation limits, it can be ad-
justed only from 2 dBm to 14 dBm in industrial products. To reduce radio pollution, a
duty cycle less than 1% is required by LoRaWAN alliance.

Table 3.4 resumes the relationship between transmission settings and QoS metrics.
For example, when we increase the spreading factor, we get a higher resiliency to noise,
so a higher SNR and RSSI. However, we consume more energy since the packet size will
increase. When we increase the CR, we get a lower BER with CR 4/8 since we just double
the size of packets to be able to recover bit errors. When we increase the BW, we get a
higher data rate but a lower resiliency to noise, so a lower RSSI as the spectral noise will
also be increased.

Setting Values Rewards Costs
BW 7.8 à 500kH z DR RSSI, Range
SF 6 à 12 SNR, RSSI, Range DR, PS.max , E t x

CR 4/5 à 4/8 BER PS.max , E t x , ToA
P t x −1 à 14dBm SNR, RSSI, BER E t x

PS 10 à 230B PS E t x , ToA

Table 3.4. LoRa parameters selection.

Fig. 3.1a and Fig. 3.1b show the impact of distance on LoRaWAN transmission metrics.
For example, with SF7, we get the lowest datarate of 262 bps and the lowest SNR -137 dbm.
In addition, Fig. 3.1b shows that the maximum packet size that can be transmitted using
SF12 is 51 bytes.

2.2 Radio performance

To enable IoT devices to transmit their data to the cloud in good conditions through
wireless networks, applications requirements such as DR, PDR and ToA should be im-
proved to allow network controllers to deal with the diversification of IoT applications.
We report here the main radio performance metrics considered in our work.
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(a). LoRaWAN transmission quality.

(b). LoRaWAN transmission quality with payload size.

Figure 3.1. LoRaWAN transmission metrics.

2.2.1 Received Signal Strength Indicator (RSSI)

The power level measures the power of a signal as a function of its ratio to another
standardized value. The abbreviation dB is often combined with other abbreviations to
represent the values that are compared. Here are two examples:

à dBm The dB value is compared to 1 mW.

à dBw The dB value is compared to 1 W.

P[db] = 10 * log(signal) (3.1)

Where log: is the logarithm function base 10 and the signal is the power of the mea-
sured signal.

For example, if you want to calculate the power in dB of 50 mW:

P[db] = 10 * log(50) = 10 * 1.7 = 17 dBm (3.2)

The receiver sensitivity (in dBm or mW) is defined as the minimum signal power level
with an acceptable BER that is necessary for the receiver to accurately decode a given
signal. This is usually expressed with negative values depending on the data rate. For
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example, a base station may require an RSSI of at least -91 dBm at 1 MB and even higher
power -79 dBm to decode 54 MB. This metric measures the received signal sensitivity of
LoRa gateways [18], it is the relative received output power (dB).

RSSI[dBm] =−174+10log10 BW +N F +SN R (3.3)

Where BW, NF and SNR are Bandwidth, Noise Factor and Signal to Noise Ratio, respec-
tively

2.2.2 Signal to Noise Ratio (SNR)

The noise is any signal that interferes with the transmitted signal. Noise can be the
result to other signal processing functions as cordless phones, microwave devices, etc.
The noise level is the amount of interference in the wireless environment. Typical envi-
ronment noise range between -90dBm and -98dBm with little ambient noise. This value
may be even higher if there is a lot of RF transmissions on the same spectrum. The SNR
is defined as the ratio of the transmitted power over the ambient energy present (noise
floor). To calculate the SNR value, we compute the difference between signal power and
the noise power. A positive value of the SNR ratio is always better. For example, let’s say
that the signal power is -55dBm and the noise power is -95dBm. The difference of signal
(-55dBm) + noise (-95dBm) = 40db. This means that the SNR is equal to 40 db. Note that
in the above equation we are not merely adding two numbers, but we compute the differ-
ence between the signal and noise power. The lower the number, the lower the difference
between transmitted and noise power, which in turn means lower quality of signal. The
higher the difference between signal and noise means that the transmitted signal power
is much higher than the ambient noise floor, thereby making it easier for the receiver to
decode the signal. Table 3.5 represents the SNR margin required to mitigate interference
between SFs with a capture effect equal to 6dbm. According to the log-distance path loss
model, the SNR can be calculated according to Equation 3.4:

SNR[dBm] = P t x −Lpld0 − 10 α. log(d/d0) + 174 − 10 log10 BW − NF (3.4)

Where, Lpld0: ensembled average value,α: path loss exponent and d0: reference
distance

The signal attenuation (or signal loss) occurs when the signal passes through air from
the transmitter to the receiver. The loss of signal strength is more significant when the
signal passes through physical obstacles. A transmission power of 20 mW is equivalent to
13 dBm. Therefore, if the transmitted power at the entry point of a plasterboard wall is
equal to 13 dBm, the signal strength will be decreased to 10 dBm when exiting that wall.

2.2.3 Data Rate (DR)

The relationship between the desired Data Rate (DR), the Symbol Rate (SR), the Cod-
ing Rate (CR), and the Chip Rate (HR) (or bandwidth) for LoRa, is presented in Equation
3.5 :

SR = BW

2SF

BR =SR · SF

DR =BR · CR

(3.5)
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SF7 SFB SF9 SF10 SF11 SF12

SF7 - 6 16 18 19 19 20
SF8 24 - 6 20 22 22 22
SF9 27 27 - 6 23 25 25
SF10 30 30 30 - 6 26 28
SF11 33 33 33 33 - 6 29
SF12 36 36 36 36 36 - 6

Table 3.5. Energy matrix [108].

2.2.4 Bit Error Rate (BER)

This metric considers the reliability of communication. It describes the extent at which
the transmitted data is fair at the receiver side.

2.2.5 Time on Air (ToA)

It measures the transmission delay taken by one packet to reach the Gateway [10]. The
ToA is computed using the Equation 3.6 given by [236]:

ToA[s] = 2SF

BW
((N P +4.25)+ (SW +max(J ,0))) (3.6)

with:

J =
⌈

8PS −4SF +28+16C RC −20I H

4(SF −2DE)

]
(C R +4)

where:

à Number of Preamble Symbols (NP) = 8 if LoRa

à Synchronization Word (SW) = 8 if LoRa, 3 if GFSK

à Cyclic Redundancy Check (CRC) = 1 if uplink

à Indicator of Header (IH) = 0 if header, 1 else

à DE = 1 if ADR active, 0 else

In our simulation, we set NP and SW equal to 8. As the ADR control system takes the
recent received packets (uplink packets), we put CRC to 1 and IH to 0.

2.2.6 Transmission Energy (E t x)

It measures the amount of energy consumed to transmit one packet using the follow-
ing equation:

E t x
[ j ] = To A[s] ∗P t x

[w] ∗3.0[v] (3.7)

For example when a device sends a packet with 14dbm and with a ToA equal to 0.076s,
the energy consumed to send such a packet will be 0.076s x 25 mW x 3v = 5.7 mj.

3 Problem statement

We aim in this section to discuss the problem of transmission selection in depth to
allow devices to send their data with the highest quality of service. As the number of In-
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ternet of things (IoT) devices continues to grow permanently, wireless resources still the
same. For this reason, novel ideas need to be explored to allow the same network to trans-
port heterogeneous data transmitted by devices. To deal with this problem, we thought
to experimentally divide network resources (wireless transmission settings) based on the
Quality of Service (QoS) that they offer. Network engineers are continuously confronted
to the large number of possible transmission settings that should be tuned and adapted
to the data that is going to be sent and also to environment conditions. The Problems
related to wireless transmission settings selection are not only due to their size but also
to their diversity and complexity. This complexity is formally represented by potentially
many factors that few of them are known but most of them still unknown. Dealing with
the large number and variety of transmission settings requires the ability to organize them
into useful classes or clusters. Recent studies in networking strongly suggest that future
network function should deal with the complexity of this problem by isolating network
resources based on the requirement of IoT devices. Rather than isolating network re-
sources like in the cellular network, we aim in this chapter to distinguish between the
quality of each transmission setting using pattern recognition algorithms. Grouping all
possible settings into categories that share some key features (qualities) is mandatory in
our thesis to overcome state of the art solutions in the next chapters. In fact, all state of
the art contributions are based on the same vision, which is "sharing network resources
equally between devices". The problem with such a vision is that IoT devices have to
target the same uplink state (which is supposed to be the best one) which drives to an
average data rate that will not satisfy all devices. To alleviate this problem, we aim in this
chapter to recognize the good, the bad and the medium transmission settings to be able
to make IoT devices target only the cluster of transmission settings that fit the require-
ments of their applications and not all the settings like in state of the art. Given the wide
diversity and complexity of transmission settings to be clustered, we try in this chapter to
recognize their qualities as a collection of clusters sharing common traits. The main idea
behind this process is the notion of distinguishability. This means, for a particular deci-
sion making purpose, transmission settings in one cluster need to be differentiated from
other settings in other clusters based on the Received Signal Strength Indicator (RSSI), the
Signal to Noise Ratio (SNR), the Time on Air (ToA), and the Bit Error Rate (BER) that they
offer.

We aim here to discuss the problem of clustering transmission settings to create knowl-
edge about the quality level of each transmission setting. It is important to note that we
will not create of classifiers by means of supervised methods. In fact, we assume that the
quality of transmission settings are not known in advance and are not described neither
by a set of axioms nor by labels. We discuss, instead, methods of unsupervised classifi-
cation based on concepts and ideas from fuzzy-set theory and pattern recognition skills.
This assumption is somewhat misleading and motivated solely by the lack of mechanisms
that are able to create these axioms and labels accurately. The clustering process is man-
aged by the notions of similarity or, trait sharing, to discover the clusters that may shed
light on hidden patterns in the dataset. In our context, the patterns disclose the quality
level of transmission settings. Quite often, we aim to discover clusters having the QoS
metrics that are similar to others within the cluster but dissimilar to those outside it. This
objective, seeks to map transmission settings with the same quality to the same cluster.
Which means that, settings in the same cluster will not change considerably the uplink
state as they have the same RSSI, SNR, ToA, and BER. This view, seeking to separate traf-
fics generated by transmission settings in each cluster, will be necessary in the following
chapters to converge to the optimal set of transmission settings.
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Figure 3.2. Difference between Fuzzy and hard clustering.
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Figure 3.3. Fuzzy C-Means (FCM) clustering of LoRa transmission settings.

Beyond partitioning large datasets into subsets with common traits, what matters in
our thesis is the relationship between one item in a cluster and other clusters. From this
viewpoint, the clustering process that we need is not merely a collection of clusters of
samples but, a structure that, as a whole, yields important insights about the membership
degrees of transmission settings to all clusters to disclose at which extent they belong to
each cluster. These structures, include important relations between items and clusters.
They often allow items to belong to multiple clusters while not requiring every item to
belong to one and only one cluster as shown in Fig. 3.2.

We highlight in Fig. 3.3 the main steps of the clustering process to generate the clus-
ters of transmission settings with the same quality. We consider in this chapter only the
quality of the signal without taking into account packets collisions that could occur be-
tween simultaneous transmissions. This part will be studied in the next chapters using
the outcomes of the clustering process.

4 Fuzzy C-Means (FCM) clustering of LoRa transmission set-
tings

We use the FCM clustering algorithm [119] in our work to measure the level at which
a given setting matches applications requirements. FCM is an unsupervised clustering
algorithm commonly used for features analysis. From these feature spaces, the algorithm
classifies the data points into clusters. In our case, the points are networks’ settings, the
features are Quality of Service (QoS) metrics and the clusters are the recognized quality
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Figure 3.4. The main clustering functions.

levels. Unlike hard clustering algorithm like k-means, Fuzzy C-Means algorithm is able to
label the features to more than two clusters and generate values that disclose the extent
at which each feature belongs to each cluster. Particularly, in non-fuzzy clustering (or
hard clustering) process, the items are divided into different clusters where each item
can only belong to exactly one cluster. In fuzzy clustering, these items can potentially
belong to multiple clusters at the same time. For example, a transmission setting "x" with
a high Signal to Noise Ratio (SNR) and a high Time on Air (ToA) can belong to the cluster
with a high quality constraints since it offers a high SNR. However, it can also belong
to another cluster with lower quality constraints since it offers a high ToA so a low data
rate. In our context, transmission settings are considered good or bad to a certain degree
regarding their membership degrees to different clusters. Hence, instead of making the
transmission setting "x" belong to the first cluster [cluster1 = 1] and not the second one
[cluster2 = 0], it can belong to both of them [cluster1 = 0.6] and [cluster2 = 0.4] at the same
time with a degree of membership. These values are normalized between 0 and 1. Such
knowledge is mandatory in our study to build a prior knowledge about the consequence
of selecting any transmission setting on the quality of the network.

In our context, we build the prior knowledge about the quality of transmission settings
by dividing the set of transmission settings to a set of clusters. We map each setting to
the cluster that offers the same uplink quality based on the measured QoS metrics. Each
transmission setting is projected to a point in a three-dimensional space based on their
QoS coordinates. The clustering process is achieved by minimizing the cost function that
depends on the distance between settings coordinates and the cluster-heads. At the end
of the clustering process, each transmission setting is assigned to the clusters based on
their membership-degrees to each cluster. Proceeding this way, when a transmission set-
ting is used by an End Device (ED), the probability that the quality of the transmission link
will fit the required quality is known in advance through the membership-degrees matrix.
We relate in this section the main functions used to generate the membership-degrees
matrix and the cluster-heads matrix using FCM.

Fig. 3.4 and Algorithm 3.1 summarize the application of FCM clustering.

The FCM clustering aims to update the values of the membership matrix M and clus-
ter heads positions H . The algorithm converges after a number of iterations when the
threshold error ε is reached. The membership values mi j of each setting to each cluster is
fuzzy between [0-1].
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Algorithm 3.1 Fuzzy C-Means (FCM) clustering algorithm
1: Input: X = [x11, ..., xnp ]
2: Output: (M,H)
3: t = 0
4: while Fm(Mt ,Ht ) > ε do
5: t = t +1
6: Update Ht from Equation 3.10
7: Update Mt from Equation 3.9

8: (M,H) = (Mt ,Ht )

Let n be the number of all LoRa transmission settings (items). Let p be the number of
QoS metrics (features) (Bit Error Rate (BER), ToA and Received Signal Strength Indicator
(RSSI)). X = [x1, .., xi , .., xn], with xi = [xi 1, .., xi k , .., xi p ] is a set of p measured QoS metrics
of n settings with xi k ∈R,1 ≤ k ≤ p,1 ≤ i ≤ n. The FCM algorithm takes as input X and gen-
erates two sets: M and H. M = [m1, ..,mi , ..,mn], with mi = [mi 1, ..,mi j , ..,mi c ] is a set of
membership values of n settings to c clusters with mi j ∈ R,1 ≤ j ≤ c. H = [h1, ..,h j , ..,hc ],
with h j = [h j 1, ..,h j k , ..,h j p ] is a set of cluster heads of p metrics and c clusters with h j k ∈
R.

4.1 Objective function

The objective of the FCM algorithm is to find a set of membership values M and a set
of cluster heads H that minimize the objective function F [119].

min
(M,H)

{
F f (M,H) =

c∑
j=1

n∑
i=1

m f
i j ·

∥∥xi −h j
∥∥2

}
(3.8)

à Constraint:
∑c

j=1 mij = 1,∀i

à Degree of fuzzification: f > 1

At the beginning of the process, the clusterheads (blue point in Fig. 3.5) are generated
randomly. At each iteration, the distance between these points and items (transmission
settings) coordinates is updated to decrease the distance between them. After a number
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iterations, the clusterheads will be located at the gravity center of each cluster to reduce
the mean distance between them and settings coordinates. Once the distance remains
stable which mean that the clusterheads are stable, the algorithm converge and the clus-
tering process is stopped. The final distance between clusterheads and settings coordi-
nates (RSSI, ToA, SNR, .etc) highlights the membership of each setting to the clusters.

4.2 Membership matrix

[M] =


cluster 1 . . . cluster c

setting 1 m11 . . . m1c
...

...
. . .

...
setting n mn1 . . . mnc


To get the membership values of each setting to different clusters, we use the Equation

3.9 to update at each iteration the membership values [119].

mi j =
 c∑

j ′=1

( ∥∥xi −h j
∥∥∥∥xi −h j ′
∥∥
) 2

f −1

−1

,∀ j , i (3.9)

4.3 Cluster heads

A cluster-head is a vector of the measured metrics that are close to all the measured
metrics of the same cluster and are calculated using Equation 3.10. At the beginning of the
clustering process, cluster-heads coordinates are initialized randomly and are updated at
each step to be closer to the items that belong to the same cluster. When the algorithm
converges, the cluster-heads coordinates remain stable, stopping this way the learning
process. Once the FCM clustering algorithm converges, the transmission settings can be
ranked based on their membership-degrees to the clusters. Thus, the network controller
is able to assign the best transmission setting among all the settings available in each
cluster [119].

hjk =
∑n

i=1 m f
i j ·xi k∑n

i=1 m f
i j

 ,∀ j (3.10)

4.4 Performance index

In order to measure the performance of the clustering process, we use the Equation
3.11 to compare the euclidean distance between the theorical gravity center of each clus-
ter and the clusterheads.. If the euclidean distance between cluster heads h j and the
measured metrics xi is the same as the euclidean distance between cluster heads h j and
the average measured distance x, this means that the clusterhads are in the gravity centers
of clusters. [119]

min
(c)

{
P (c) =

c∑
j=1

n∑
i=1

m f
i j

(∥∥h j −xi
∥∥2 −∥∥h j −x

∥∥2
)}

(3.11)
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where:

x = 1

n

n∑
i=1

xi (3.12)

5 Simulation settings and results

Setting Values
CR[#] {1,2,3,4}
BW[kHz] {125,250,500}
SF[#] {7,8,9,10,11,12}
PS[B] [30, 200]
SNR[dbm] {-40,-30,-20,-10,0}

Table 3.6. Long Range transmission parameters

Our simulation setup has been carried out in two separated steps. In the first step, we
assess the quality of all the combination of transmission settings with regard to different
parameters values: BW, CR, PS and SNR (see Table 3.6). Since it’s difficult to compute the
SNR that depends on the Transmission Power (P t x) and the distance, we use it as input to
compute the Received Signal Strength Indicator (RSSI) and also as output of the first step
since it is also a metric that assesses the quality of the signal. In fact, in real environment,
the gateways are able to compute the SNR, the RSSI, the Bit Error Rate (BER) and the
Time on Air (ToA) that we feed to the Fuzzy C-Means (FCM) algorithm to recognize the
transmission settings with good, bad and medium qualities. In our simulation, we use the
same Quality of Service (QoS) metrics as output of the first step to match real environment
cases.

In the second step, we use the measured QoS metrics in the first step to recognize the
transmission settings with good, bad and medium QoS metrics. The clustering process
is based on the difference (distance) between the SNR, the RSSI, the BER and the ToA of
each setting. Based on this difference, FCM should be able to cluster the transmission
settings with the same metrics to the same cluster. The clustering process has been im-
plemented as presented in the previous section with a fuzzification degree equal to 1.2
and a threshold error ε = 0.02.

Our simulation results illustrate the relationship between LoRa transceiver’s parame-
ters and the QoS metrics as well as applications requirements. The FCM clustering char-
acterizes the impact of the parameters’ selection on different QoS metrics. The results
obtained after the FCM clustering are the membership values mi j of points i (settings)
to cluster j . Three clusterheads are generated to represent a set of settings in the same
cluster. Table 3.7 shows a sample of points featured by BER, RSSI and ToA metrics. The
fuzzy membership values are obtained based on three clusters C0, C1 and C2.

The FCM algorithm updates the membership values until the objective function re-
turns a negligible error value i.e.. Afterwhich, the clusterheads positions remain in the
same position after two successive iterations. We set the error threshold ε empirically to
0.02. As shown in Table 3.7, we found that settings with a high RSSI, low BER or low ToA
are maped the same cluster: C2.

We found also that settings with a high SF and a low SNR have a high membership val-
ues to C2, this proves that LoRa transceiver is more resilient against noise when SF is high
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Figure 3.7. Relationship between SF, ToA and BER.

(∼12). In another side, when the RSSI is low or the BER and ToA are high, the settings are
maped to cluster C0 that requires a low QoS. Based on these findings, Long Range Wire-
less Access Network (LoRaWAN) network servers can easily rank settings that belong to
the same cluster and then assign the best one to end-devices. Note that borderline points
with equal membership values for two clusters fits at the same time the requirements of
two clusters.,

Table 3.7 shows also that most of the settings have a high membership degrees for one
cluster and low membership degrees to other clusters. For example, the setting BW125,
SF11, PS30, SNR-20, has a membership value of 0.91 for cluster 2 and 0.045 for the others.
This means that it is the best choice of applications of cluster 2 when end-devices are far
from the gateway.

Table 3.8 represents the final clusterheads features, i.e. QoS metrics, obtained after
the convergence of the FCM algorithm. The clusterhead of (C2) has the lowest BER and
ToA and the highest RSSI which match well applications with high QoS requirements.
Whereas, the clusterhead of (C0) has the lowest RSSI and the highest BER and ToA which
characterize a set of applications with low QoS requirements.
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Ptx CR BW SF PS SNR BER RSSI ToA C0 C1 C2

∼11 2 125 11 30 -20 0.08 -137 0.39 0.045 0.045 0.91
∼14 3 125 11 70 -10 0.01 -117 0.46 0.015 0.492 0.492
∼14 2 250 10 40 -10 0.2 -127 0.33 0.104 0.791 0.104
∼11 2 250 12 90 -20 0.05 -134 0.46 0.030 0.004 0.965
∼8 1 500 7 50 -20 0.5 -131 0.09 0.965 0.030 0.003
∼11 3 500 12 110 -20 0.1 -131 0.26 0.153 0.734 0.113

Table 3.7. Membership degrees of LoRa transmission settings.

Cluster BER RSSI ToA
2 0.05 -123 0.25
1 0.10 -122 0.50
0 0.43 -150 0.17

Table 3.8. Cluster heads features

Table 3.9 shows the clustering performance of the FCM algorithm. We measured the
execution time, the homogeneity and the mutual info score of the fuzzy clustering process
and affinity propagation clustering algorithm. The high value of homogeneity indicates
that the clustering results match with the expected number of clusters. The same for mu-
tual info score which indicates that the labeling process converge to the same final labels
as the affinity propagation clustering algorithm.

Fig. 3.6a illustrates a cloud of featured points grouped in three colored clusters. Each
point is a vector of three QoS metrics RSSI, ToA, BER which are calculated based on a set
of settings: SF, BW, PS, SNR.

As the main goal of our study was to map all the combination of parameters to the
three types of applications based on their QoS requirements, Fig. 3.6a shows clearly the
correlation between the memberships values assigned to transmission setting and the
required BER, ToA and RSSI of applications. Results show also that settings with a high
membership degree to cluster 2 have an RSSI between -135 dBm and -110 dBm, and a
BER lower than 0.2% (see Fig. 3.7a). Cluster 1 could be used for applications with a high
sensitivity to BER and lower sensitivity to RSSI. In another hand, cluster 0 has the worst
RSSI compared to the two other clusters and also the worst BER.

The same Figure plots the relationship between the BER and the ToA of different set-
tings. The same settings of cluster 2 which are presented in Fig. 3.6a have the lowest ToA.
This makes them suitable for applications with low latency requirements. Settings of clus-
ter 0 seem to have the same QoS as settings of cluster 1 but Fig. 3.6a shows that they have
a higher ToA, such settings should not be used by delay sensitive applications.

Fig. 3.7b shows the impact of the SF on our clustering process. The best candidate
settings that match applications with a high QoS requirements are the green points and
they are scattered for all SF levels [7-12]. However, when we increase the SF, settings are
more mapped to cluster 1 and 2, this is mainly due to the short transmission delay (ToA).
Settings with a high BER are mapped to cluster 0 when the SF is close to 7, the reason is
that SF 7 is more vulnerable to noise (SNR).
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Performance metrics Value
Time (s) 0.0102
Homogeneity score 0.984
Mutual info score 0.9729

Table 3.9. Clustering performance.

6 Conclusion

The main challenge addressed in this work was to see whether pattern recognition
tools like FCM are able to recognize from all possible wireless transmissions that there are
"n" different Quality of Service (QoS) levels. We resolved one of the main research issue
to recognize the network settings that have the same QoS as required by Internet of things
(IoT) applications. Our contribution highlights the effectiveness of applying the Fuzzy C-
Means (FCM) clustering algorithm to select the transmission setting that best fit a given
application requirement. Simulation results have shown that the FCM clustering algo-
rithm is efficient and is able to cluster all possible settings to the expected three clusters.
Furthermore, settings have been ranked based on their membership values to clusters.
The proposed process has been developed to present and design a solution that consider
Long Range (LoRa) parameters (Spreading Factor (SF), Bandwidth (BW) and Packet Size
(PS)), environment conditions (Signal to Noise Ratio (SNR)) and QoS metrics (Time on Air
(ToA), Bit Error Rate (BER) and Received Signal Strength Indicator (RSSI)) that are required
by applications. We plan in the next chapter to use the knowledge acquired by FCM as an
exploration step to be able to exploit directly the best transmission settings since we know
now at which link quality each setting will lead.
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Abstract

Long Range (LoRa) is a proprietary modulation technique that uses Chirp Spread Spec-
trum (CSS) modulation for low power and wide area communications. Despite the advan-
tages of LoRa technology, the solutions proposed in the literature to select transmission
parameters that maximize the uplink data rate, remain limited to maximize the uplink
traffic. In this chapter, we look upon additional parameters such as the Bandwidth (BW)
and the Coding Rate (CR) and we apply the Q-learning algorithm to update the policy that
drives to the selection of the optimal settings. However, to be able to run this algorithm,
we need to know at which uplink state each setting could lead. To alleviate this problem,
we take advantage of our clustering process in the previous chapter to know at which state
each action could lead by knowing at which cluster each setting belongs. As the solution
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should cope with different scenarios, we vary the number of End Device (ED), Base Sta-
tion (BS), Packet Size (PS), Packet Rate (PR) and we compare our solution with EXP3, ADR
and EXPLoRaTS algorithms. Simulation results show that Q-learning with Fuzzy C-Means
(FCM) clustering preprocessing improves better several Quality of Service (QoS) metrics
including the Data Rate (DR), Packet Delivery Ratio (PDR), Time on Air (ToA) and Trans-
mission Energy (E t x). Thus, the PDR and the DR were improved by 25%, the ToA was
reduced by 40% and E t x was reduced by 20%.

1 Introduction

Unlicensed bands are more and more used by all kinds of wireless technologies (Wi-
Fi, LTE-U, ZigBee, Z-Wave, Bluetooth, LoRaWAN, Sigfox, Ingenu, Weightless, etc.). This
heavy use of unlicensed bands will certainly cause performance decay due to contention
problems. Efficient Medium Access Control (MAC) protocols allow devices to avoid such
behavior by exchanging extra control messages (signaling overhead). However, due to the
high energy consumption required to run such protocols in Internet of things (IoT) de-
vices, new approaches should be investigated using simple ALOHA-based mechanisms
[78] with a lower signaling overhead. In this article, we analyze the performances of adapt-
ing Long Range (LoRa) transmission settings to enhance the quality of the uplink traffic
using the Q-learning algorithm.

We aim in this work to maximize the uplink datarate of LoRa devices and compare it
with the solutions proposed in the literature such as Long Range Wireless Access Network
(LoRaWAN) alliance that proposed Adaptive Data Rate (ADR) algorithm [71]. Their mech-
anism adjusts periodically the Transmission Power (P t x) and the Spreading Factor (SF)
according to the Received Signal Strength Indicator (RSSI). However, this algorithm [71]
suffers from scalability issues and fails to maximize uplink data transmissions in a dense
network. In fact, to be able to maximize well the Data Rate, the uplink state between each
end-device and the Gateway should be measured and characterized in advance to speed
up the convergence and achieve better DR. For this reason, we use characterization pro-
cess that was proposed by Ruspini et al. [141] to know at which state each action will lead
by knowing at which cluster each action belongs.

To deal with the randomness of the wireless environment, the research community
has a consensus that future networks must be flexibly designed to deal with this chal-
lenge. Therefore, we use in this work an online reconfiguration of transmission settings
to make the network smart enough to converge by itself to a set of parameters that best
fit environment conditions. For this reason, Reinforcement Learning (RL) algorithms are
good candidates to reinforce the selection of the suitable transmission settings after each
transmission.

In this chapter, we investigate the problem of LoRa transceivers’ reconfiguration to
enhance the quality of the uplink traffic. We use the Q-learning algorithm to update the
policy that drives to select the transmission settings that maximize better the datarate.
To know at which state each setting leads, we use the membership of this setting to the
cluster with the highest membership degrees. This means that, if a setting belongs to the
cluster of good settings, then, the state of the upliink will be good.

Our main contributions are as follows:

à We propose to use the Q-learning algorithm to maximize the DR of LoRa devices.
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à We use the Fuzzy C-Means (FCM) membership degrees to know at which state each
transmission setting will lead.

à Through intensive simulations, we assess and compare the DR, Packet Delivery Ra-
tio (PDR), Time on Air (ToA) and Transmission Energy (E t x) of Q-learning with Ex-
ponential weights for Exploration and Exploitation (EXP3), ADR, EXPLoRaTS algo-
rithms.

To overcome the limitation of the default ADR scheme (see Algorithm 4.1) of LoRaWAN
alliance [71] that suffers from a weak DR, many works in literature proposed to use either
heuristic or machine learning algorithms. For example, two different SF allocations al-
gorithms (EXPLoRaSF and EXPLoRaTS) have been presented in [59] as an alternative to
ADR. The proposed algorithms select an SF based on the number of connected devices,
the distance and the RSSI, allowing a better equalization of the ToA among the SF chan-
nels. Specifically, authors attempt to use a high DR to offload the traffic of the less con-
gested highest SF. EXPLoRaSF aims to efficiently distribute the SF among end-devices. It
selects the SF with regard to the total number of connected nodes. Particularly, it equally
allocates the SFs to n nodes based only on the RSSI, where the first n/6 nodes with the
highest RSSI get SF 7 and then the next n/6 nodes get SF 8, etc. EXPLoRaTS is more dy-
namic than EXPLoRaSF since it equalizes the ToA of the packets that were transmitted
with different SF.

In the same context, a decentralized management of LoRaWAN has been proposed
by Ta et al. [182]. The authors propose to use EXP3 algorithm to maximize the network
throughput. They increase the PDR while decreasing energy consumption of each node.
However, such an approach requires additional energy consumption for computation and
training in end-devices since they are very limited to run such tasks.

All previous works proposed in the literature to maximize theDR proved their weak-
ness since they didn’t measure the impact of each transmission setting on the uplink state.
They focus only on limited number of parameters and discuss the simulation results with-
out explicit assessment of the quality of the transmission parameters. In this work, we
propose to maximize the utility of the network and to enhance the quality of the uplink
traffic. The outputs of FCM clustering are given as input to Q-learning to know at which
state each action could lead. In our work, states are the network up-link states and ac-
tions are the transmission settings. To validate our work, we evaluate the performances
of our solution and we compare it to EXPLoRaTS, EXP3, ADR and the random selection of
settings.

The key contributions of this chapter are further reported as follows. First, Section 2
enunciate the problem statement. We introduce EXP3 algorithm in Section 3. In Section
4 and Section 5, we explain how Q-learning with FCM are applied to select the suitable set
of transmission settings. Simulation settings and our findings are presented in Section 6.
Finally, Section 7 concludes this chapter.

2 Problem statement

We formulate the online selection of the suitable set of configurations as an explo-
ration/exploitation dilemma. We propose to maximize the utility of the network to en-
hance the quality of the uplink traffic. As the main goal of Long Range (LoRa) end-devices
is to send their collected data to the cloud with the highest data rate, network utilization
(or utility) function is expressed as the Data Rate of the up-link traffic after each transmis-

/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2017~explora_-_extending_the_performance_of_lora_by_suitable_spreading_factor~cuomo.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2019~lora-mab_-_a_flexible_simulator_for_decentralized_learning_resource_allocation~ta.pdf
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Algorithm 4.1 Adaptive Data Rate
1: H[j] ← 0 ∀ j ∈ [0,19]
2: SNRmar g i n ← 10 dB
3: SNRthr eshold ∈ [-7.5,-10 ,-12.5,-15,-17.5,-20] dBm
4: SF ∈ [ 7, 8, 9, 10, 11, 12]
5: P t x ∈ [ 2, 5, 8, 11, 14, 17] dBm
6: procedure RECEIVE-PACKET(mSNR)
7: H[i] = mSNR
8: i++
9: if i=20 then

10: ADJUST-ADR()
11: i ← 0
12: procedure ADJUST-ADR

13: margin ← max(H) - SN Rthr eshold [SF-7] - SNRmar g i n

14: Nstep ← round(margin/3)
15: while Nstep != 0 do
16: if Nstep > 0 (SNR is good, DR is low) then
17: decrease SF by steps until SF=7
18: decrease P t x by steps until P t x=2 dBm
19: Nstep −−
20: else
21: increase P t x by steps until P t x=17 dBm
22: increase SF by steps until SF=12
23: Nstep ++

sion at time t given by Equation 4.1.

U (a) =
{

DR(a) if packet received
0 else.

(4.1)

While fulfilling the utility requirements, this strategy will maximize the utilization of
the scarce radio resources. However, finding the transmission settings that maximize the
utility function is an NP-hard problem [152] for a practical size of network. Thus, to have
a lower complexity, we use Reinforcement Learning (RL) algorithms to converge analyti-
cally to the optimal transmission settings that maximize the network data rate. Proceed-
ing this way, the Network Server (NS) will be able to learn which transmission setting fits
well environment conditions and devices location and updates its configuration accord-
ingly.

With RL algorithms, an agent tries to obtain as much reward as possible by carrying
out the most rewarding action among N actions. For example, in Multi-Armed Bandit
(MAB) algorithms [249], the rewards of actions are randomly generated according to an
unknown distribution. Therefore, they try to minimize the regret values (due to explo-
ration of new actions) to find the most rewarding arms.

We focus in this work on applying the Q-learning algorithm to measure the quality
of actions via Q-values. With Q-learning, an agent updates the quality of actions (Q-
values) and learns the best policy by exploiting the previous actions and exploring new
ones. However, it does not require an initial knowledge about the environment before

/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2017~linkcon_-_adaptive_link_configuration_over_sdn_controlled_wireless_access~karmakar.pdf


3. Multi-Armed Bandit (MAB) 69/117

SF

BW

P tx

CR
CF LoRa

ToA

PDR

DR

Etx
RSSI

Cluster 1

Cluster 2

Cluster 3

Q-learning

Settings Metrics
state 1

state 2

state 3

belongs to

belongs to

belongs to

Figure 4.1. LoRaWAN reconfiguration scheme.

starting the learning process. It just requires at which state each action will lead after ob-
serving the new state st+1. Thanks to the clustering outputs in chapter 3, the new state
at which action a will lead is known through the quality of the cluster at which action a
belongs.

3 Multi-Armed Bandit (MAB)

Notations for Multi-Armed Bandit algorithms
Qt (a) expected mean of rewards following policy π
Nt (a) number of times action a has been selected before time t
πt (a) selection probability of action a at time t

Table 4.1. Multi-Armed Bandit algorithm notations

MAB algorithms try to maximize the reward of each action based on the previous ob-
servations of their rewards. Each action (arm) has an expected or mean reward. Let us call
this estimation the action-value of this action. We denote the selected action on time step
t as at , and the corresponding reward as rt . The cumulative observed rewards is denoted
Gt (a) and computed using the equation bellow:

Gt (a)
.=

t∑
i=1

Rt (a) (4.2)

The action-value of an arbitrary action a is the expected reward from action a if it will
be selected, we denoted it as Qt (a).

Qt(a)
.= E

[
Gt (a)

]
Q?

t = max
a

Qt(a)
(4.3)

Where, E[.] is the conditional expectation on the probability Pt (a) of choosing arm a
at time t , Pt (a) = P (a|a1, ..., at−1). If the value of each action is known, then it would be
trivial to solve the k-armed bandit problem: we would always select the action with the
highest value. However, as we know only the observed action values Gt and not estimated
action values Qt of each action, the goal of the MAB algorithms is to estimate these values
using different approaches: Exponential weights for Exploration and Exploitation (EXP3),
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UCB and Thompson, etc. We denote the estimated value of action a at time step t as
Qt (a). We would like Qt (a) to be as close as possible to the observed average reward of
each arm a.

We define in this section the MAB problem as follows. There is a fixed number of
actions (or arms) n that should be performed. A player has to choose one arm at each
discrete time t ≥ 1, t ∈ N , denoted as a ∈ A. Selecting arm a at time t yields a reward,
Rt (a) ∈ R, and the goal of the player is to maximize the sum of these rewards Gt (a). The
sequence of rewards drawn is assumed to be independent and identically distributed with
a mean µa .

Several types of reward distributions could be considered, such as Gaussian, Exponen-
tial, Poisson or Bernoulli distributions. For example, with Bernoulli distribution, Rt (a) ∼
B(µa) where Rt (a) is a random variable that represents the reward of action a and µa =
P (Rt (a) = 1), the problem parameters µ1, ..,µk , ...,µn are unknown to the player. Hence, to
maximize the cumulated rewards, the player has to learn the distribution that generates
these rewards (random variables) to progressively focus on the arm with the highest aver-
age reward. Note that, in our context, arms represent different transmission settings and
players are the end-devices.

3.1 Epsilon Greedy Approach

A naive approach to estimate well the reward of each arm would be to use an empirical
mean estimator of the rewards for each arm and select the arm with the highest estimated
mean at each time. This greedy approach (see Equation 4.4) is known to fail since the
algorithm will be frozen on the early action with the highest reward. Consequently, the
learning process depends only on the first selections. If the first transmission setting fails,
the device will never use it again, and if it succeeds, the device will always use it even if
other actions could be better.

Qt+1(a) = (1−α) ·Qt (a)+α ·
[
Qt (a)+ Rt+1(a)−Qt (a)

Nt (a)

]
(4.4)

at = argmax
a

Qt (a) (4.5)

To overcome this drawback, several algorithms have been proposed in the literature
to estimate the mean reward of each arm based on the previously observed reward. We
present in the next section one of them called EXP3 which was recently used to enhance
Long Range Wireless Access Network (LoRaWAN) Packet Delivery Ratio (PDR) in [182].

3.2 Exponential weights for Exploration and Exploitation (EXP3)

EXP3 is one of the known algorithms to solve exploration/exploitation problems. It
maximizes the rewards using an unbiased estimation of the cumulative reward at time t
to update the selection probability of each action [167] [173]. The algorithm has to control
the exploration and exploration by the parameter γ ∈ [0, 1]. A large value means a uniform
choice, while a small value means maximizing the instantaneous (estimated) reward.
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/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2015~exp3_with_drift_detection_for_the_switching_bandit_problem~allesiardo.pdf
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Qt+1(a) = (1−γ) · wt+1(a)∑
a′∈A wt+1(a′)

+γ · 1

|A|
wt+1(a) = wt (a) ·exp

(
γ ·Rt+1(a)

|A| ·Qt (a)

) (4.6)

Where:

à γ ∈ [0,1] controls the exploration and the probability to choose an action “a” at
round “t”.

The algorithm’s regret is updated continuously during the learning process. The pa-
rameter γ is called the learning rate. When the learning rate is large, the algorithm exploits
more the arm with the highest estimated reward. For small learning rates, the algorithm
is more uniform and the algorithm explores more frequently without caring a lot about
actual rewards. There are many ways to tune the learning rate, some algorithms make it
evolve with regard to the number of times action a has been selected. This allows to exlore
actions that have never been selected and exploit more the actions that have already been
selected.

The learning process is performed using mathematical distributions taking as param-
eters the estimated reward of each arm. One of the great strengths of MAB algorithms,
is the randomness introduced by mixing the exploration and exploitation distributions.
Indeed, if an algorithm is deterministic and known to the adversary, it will be simple to re-
build a reward sequence requiring maximum regret. The randomization of MAB choices
allows it to protect itself against this type of scenario. However, this will make the algo-
rithm very weak if the arms have similar cumulative rewards but are distributed in differ-
ent time periods. To deal with this problem, a new method has been proposed based on
an implicit exploration [107] using only the Gibbs distribution. This implicit exploration
is obtained by replacing the estimation of the cumulative reward by the estimation of the
cumulative loss. As the constant exploration has disappeared, the term γ is now used to
bias the algorithm and prevent the rewards from being divided by too small probabilities.
The more an arm is played, the more its cumulative loss increases, causing an increase in
the probability of exploring the other arms.

4 Q-learning algorithm based on FCM clustering

To illustrate the learning process, Fig. 4.2 shows Long Range Wireless Access Network
(LoRaWAN) architecture and the interactions between End Devices (EDs), the Network
Server (NS) through one or many Gateway (GW). The link from ED to the GWs are the
uplink packets with a given transmission setting a. In the downlink side, the NS sends a
new suggestion of settings a′ to enhance the uplink Data Rate (DR). Thus, we consider
the membership degrees of an action to different clusters as the probabilities to jump to
the next steps. Whereas, as Q-learning requires from the environment the new state to
jump during the learning process and doesn’t require the entire transition probabilities
from the beginning, only the new state with the highest membership degree is given as
input to jump to the next step.

The interactions between the NS and the wireless environment can be formally de-
fined as a finite Markov Decision Process (MDP). We note: S:a set of states that match the
recognized patterns (Quality levels) by the clustering process. A:a set of actions that match
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72/117 Chapter 4. Online self reconfiguration

ED

ED

ED

ED

ED

GW

GW
NS

QoS(a1)?
QoS(a2)?

a1
a′1

a′2

a′1

a′2

a1
a2

a2

Figure 4.2. LoRaWAN architecture.

Environment

Agent

ActionReward States

Figure 4.3. Reinforcement learning process.

the transmission settings that we want to optimize, and finally, R:a set of rewards,where
Rt (s, a) gives the NS a reinforcement feedback for the state-action pair (s, a).

Table 4.2 summarizes the general notations used in Q-learning algorithms. The fol-
lowing subsections report how we calculate the cumulative reward and how we get action
values (Q-values) and the state at which each action will lead.

à S={s0, ..., sc } is a finite set of states which in our study is a set of uplink state levels.

à A={a0, ..., an } is a finite set of actions which in our study is a set of possible trans-
mission settings.

à Rt (s,a) is the reward observed when we apply action a on state s. In our case the
reward of each action is the gain of DR after each transmission that we compute
using the utility function.

à γ ∈ [0,1] is called a discount factor, it represents the extent at which old rewards
should be considered.
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Notations for Q-learning and Markov Decision Process
A set of actions
a an action
R set of all possible rewards, a finite subset of R
Rt the reward at time t
t discrete time step or play number
S set of all states
A(s) set of all actions available in state s
s, s′ states
π policy (decision-making rule)
π(s) action taken in state s with policy π
π(a|s) probability of taking action a in state s with policy π

Table 4.2. Notations for Q-learning

4.1 Action-value function of Q-learning

Q-learning is an iterative online learning algorithm that uses the Bellman equation
(Equation 4.7) to update its policy. It uses the bellman equation to update its action
value function Q-value denoted Q(s,π(s)). It is particularly attractive when state tran-
sition probabilities are not known at t0 when the learning process starts. Nevertheless,
according to the Bellman’s optimality criterion (Equation 4.8) [163], there is at least one
optimal strategy. Hence, after several iterations, the action value function Q(s, a) is guar-
anteed to converge to Q?(s,a) [163]. To deal with the complexity of exploring the quality
of new actions and exploiting the best explored ones, it combines these two tasks with
probability α for the first task (exploration) and α1 for the second task (exploitation).

The Q-learning algorithm requires the new state of environment after performing
each action in addition to the reward. The action-value function (Q-value) denoted by
Q(s,π(s)) of Q-learning algorithm is the expected long-term discounted reward of state s
when strategy π is applied. Proceeding this way, over sufficiently large duration, Q(s, a)
is guaranteed to converge to Q?(s,a) [163]. The ultimate objective of the network server
would be to find the optimal strategy (policy) π that maximizes the expected reward con-
sidering uplink states. In other words, the objective of the learning process is to find the
optimal strategy π that maximizes the action-value function in each state s: After several
experimental studies, the controller exploits previously saved Q-values with probabilityα
which we set to 0.9 and explores new actions with probability 1-α.

Qt+1(s, a) ← (1−α) ·Qt (s, a)+α
(
Rt+1(s, a)+γ ·max

a′ Qt (st+1, a′)
)

(4.7)

π∗(s) = arg max
a∈A(s)

Q(s, a) ∀s,π (4.8)

At each transmission, a device with an uplink state s, will try to increase its data rate
by selecting action a. To update its policy, it observes the reward R and jumps to the
observed new state st+1. It proceeds step by step and tries to build the best trajectory
knowing only the next state at which the current action will lead. The controller learns the
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optimal Q-value based on the DR of the link at each discrete time-step. At each step, the
controller in state s selects action a, earns a reward R and jumps to state st+1. As actions
are selected each time-step, the Q-values are updated using Bellman equation (Equation
4.7).

Algorithm 4.2 Q-learning algorithm based on FCM
1: Input: Q(s, a) ← 0, ai ni t , si ni t

2: Output: Q(s, a)
3: a ← ai ni t , s ← si ni t

4: while True do
5: at+1 ← argmaxa′ Q(a′) (Equation 4.8)
6: st+1 ← argmax M[at+1] (From FCM)
7: Rt+1[s, a] ← Ut+1(a)) (Equation 4.1)
8: Qt+1[s, a] ← (Equation 4.7)

Without knowing at which state each action will lead, Q-learning will not be able to
learn which setting can maximize the uplink data rate. For this reason, it requires an ad-
ditional knowledge about the environment for state transitions. Thus, the probability to
switch from one state to another through an action should be observed after performing
each action. To take advantage of the power of pattern recognition tools, the new state at
which an action leads is recognized through the cluster at with it belongs. Proceeding this
way, we consider each resulting cluster as the aggregation of transmission settings that
lead to the same uplink state.
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For example, Fig. 4.4a shows the state transition probabilities between 3 uplink states.
We propose to cluster the transmission settings based on the quality of the link that they
offer. Thus, when a transmission setting is performed, the probability that this setting will
lead to the three states QoS1,2,3 is known through their membership degrees to the clusters
QoS1,2,3. To find the path (set of actions) that leads to the highest Quality of Service (QoS),
we propose in this work to take advantage of ower knowledge of the cluster at which each
setting belongs to identify the state at which each action leads.

The transmission settings in the same cluster refer to the aggregation of settings with
the same uplink state. This means that all transmission settings in cluster QoS 2 , for ex-
ample, will lead to an uplink state equal to QoS 2. This helps the Q-learning algorithm
to know at which state action a1 will probably lead. When a combination of transmis-
sion parameters is selected, the link state between EDs and the GW refers to the cluster
where each transmission setting was mapped. The advantage of fuzzy clustering com-
pared to hard clustering is the ability to generate membership degrees of each setting to
each cluster. Hence, states transitions could be built using these membership degrees
which disclose the probability with which an action could lead to each state. Section bel-
low describes in details how we compute these transition probabilities.

[M] =


state 1 . . . state c

action 1 m11 . . . m1c

action 2 m21 . . . m2c
...

...
. . .

...
action n mn1 . . . mnc



5 Clustering of network settings

To build a prior knowledge about the quality of each Long Range (LoRa) transmis-
sion setting, Djoudi et al. [63] proposed a characterization mechanism by clustering a set
of LoRa transmission settings based on the measured Quality of Service (QoS) metrics.
Based on their findings, we consider the set of settings’ vectors as a cloud of points in a
vector space while measured metrics are points’ features.Our goal is to map a set of LoRa
transmission settings that offer the same QoS to the same cluster. Thus, we propose to
use Fuzzy C-Means (FCM) which is an unsupervised clustering algorithm [119] for fea-
ture analysis. The clustering is achieved by minimizing a cost function that depends on
the distance between the points and the cluster-heads. In our case, the points are net-
works’ settings, the features are the QoS metrics and clusters are the uplink quality levels.

5.1 Objective function

The objective of the FCM algorithm is to find a set of membership values M and a set
of cluster-heads H that minimize the objective function F [119] :

min
(M,H)

{
F f (M,H) =

c∑
j=1

n∑
i=1

m f
i j ·d 2

i j

}
(4.9)
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Such that:

Constraint:
c∑

j=1
mi j = 1,∀i (4.10)

Distance: d 2
i j =

∥∥xi −h j
∥∥2 (4.11)

Fuzzification degree: f > 1 (4.12)

Let p be the number of QoS metrics (features).Let n be the number of all LoRa trans-
mission settings (points). X = [x1, .., xi , .., xn], with xi = [xi 1, .., xi k , .., xi p ] is a set of p mea-
sured QoS metrics of n settings with xi k ∈R,1 ≤ k ≤ p,1 ≤ i ≤ n.

The FCM algorithm takes as input a set of metrics X and generates two sets: H and
M . H = [h1, ..,h j , ..,hc ], with h j = [h j 1, ..,h j k , ..,h j p ] is a set of cluster heads of p metrics
and c clusters with h j k ∈R. M = [m1, ..,mi , ..,mn], with mi = [mi 1, ..,mi j , ..,mi c ] is a set of
membership values of n settings to c clusters with mi j ∈R,1 ≤ j ≤ c.

5.2 Membership degrees M

We use this membership matrix in Q-learning as state transition probabilities P . We
consider the membership level of each transmission setting to each cluster as the proba-
bility to change the uplink state.

[M] =


cluster 1 . . . cluster c

setting 1 m11 . . . m1c
...

...
. . .

...
setting n mn1 . . . mnc


The relationship between the membership-degrees of each setting is inversely propor-

tional to the distance between this setting and the cluster-heads.We use the Equation 4.13
to get the membership values of each setting to different clusters [119] .

mi j =
[

c∑
j ′=1

(
di j

di j ′

) 2
f −1

]−1

,∀ j , i (4.13)

5.3 Cluster-heads H

A cluster-head is a vector of the measured metrics that are close to all the measured
metrics of the same cluster and are calculated using Equation 4.14 [119] .

h j =
∑n

i=1 m f
i j ·xi∑n

i=1 m f
i j

 ,∀ j (4.14)

As reported in [63], the FCM clustering algorithm is able to cluster all possible settings
for the three expected clusters. Furthermore, after the convergence of the FCM algorithm,
the settings have been ranked based on their membership degrees. This allows the net-
work server to assign the best settings to end-devices that require an uplink with high
quality.

6 Simulation settings and results

To evaluate the performance of Q-learning to learn from scratch the impact of trans-
mission settings on the uplink quality to maximize the data rate, we use a modified ver-
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sion of LoRaSim simulator [204]. For each transmission, Q-learning updates its policy
regarding the observed reward and state. We recognize the state at which an action leads
by knowing at which cluster it belongs. After many packets exchange, Q-learning should
be able to select the transmission settings with a high reward and a high state quality.
To update its policy, Q-learning updates the transmission settings that include the Band-
width (BW), the Coding Rate (CR), the Transmission Power (P t x) and the Spreading Factor
(SF). These parameters are tuned automatically to fit the scenario under study. All these
parameters and others are described in Table 4.3. The path loss exponent is kept at 2.7 to
reflect the spectral noise in sub-urban environment. As we propose an iterative approach
to update the transmission settings, we use two channels to exchange the data in the up-
link channel and acknowledgements in the downlink channel. In addition, more than 28
scenarios have been tested to study the behavior of the network by measuring different
Quality of Service (QoS) metrics such as the Data Rate (DR), the Packet Delivery Ratio
(PDR), the Time on Air (ToA) and theTransmission Energy (E t x). For this reason, we vary
the number of End Devices (EDs) from 100 to 10000, Packet Sizes (PSs) from 10 B to 100
B, Packet Rates (PRs) from one packet per min to one packet per 10 min and the number
of Base Stations (BSs) from 1 to 10.

Two scenarios have been deployed to evaluate our work, The first scenario has been
deployed with one Gateway (GW) and 100 EDs and the second one with four GWs and
1000 EDs. In first scenario, EDs send packets of 70 B every 4 min to one BS. However, in
the second scenario, we deal with the scalability of Long Range Wireless Access Network
(LoRaWAN) by increasing the number of EDs to 1000 that send packets of 70 B every 4 min
to 4 BSs. Both scenarios respect the duty cycle of 1% recommended by LoRaWAN alliance
[71]. Other scenarios were also studied and showed the same performances.

Parameters Values
Environment settings

Path loss exponent (α) 2.7 (sub-urban)
Number of uplink channels 1
Number of downlink channels 1
Number of pkt sent by ED 100
Capture Effect 6.0 dB

Scenarios settings
Number of gateways [1, ... , 10]
Number of end-devices [100, ... ,10K]
Packet Size [10,40,70,100] B

Packet Rate 1 pkt per [1,2,...,10] mn

Transmission settings
Bandwidth [125, 250, 500] kHz

Transmission Power [2,5,8,11,14] dBm

Coding Rate [1,2,3,4]
Spreading Factor [7,8,9,10,11,12]
Carrier Frequency 868.1 MHz

Table 4.3. Simulation settings.

We measure in this section the efficiency of using Fuzzy C-Means (FCM) to disclose at
which uplink state transmission settings could lead by comparing the performance of Q-
learning with other algorithms like: Exponential weights for Exploration and Exploitation
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Figure 4.5. PDR, P t x and DR vs number of EDs.

(EXP3), EXPLoRaTS and Adaptive Data Rate (ADR) that don’t use the pattern recognition
outputs of FCM. Random algorithm has been included based on the uniform random
selection of transmission parameters. This section is divided to three subsections. In the
first subsection, we measure the DR and PDR in many scenarios with different numbers
of EDs and BSs and different PSs and PRs. We measure the data rate offered by each
algorithm in each scenario to know in which scenarios algorithms give a better data rate.
In the second subsection, we select one scenario with one BS and 100 EDs that send one
packet of 70 B each 4min. We extend our measured metrics by adding the measured ToA
and E t x in addition to PDR and DR to study the time convergence of algorithms. In the
third subsection, we select another scenario with 4 BSs and 1000 EDs that send one packet
of 70 B each 4min and we study the same metrics as scenario one.

6.1 Measurements of PDR and DR in different scenarios

The main advantage of machine learning algorithms is their ability to learn how the
environment behaves in each scenario. They are able to fit the scenario under study and
converge analytically to the optimal set of actions with few assumptions about the en-
vironment. To exploit this advantage, we give in this section an overview of the DR and
the PDR of all algorithms in all possible scenarios. Particularly, we highlight through Fig-
ures 4.5, 4.8, 4.6 and 4.7 the fact that pattern recognition process helped significantly Q-
learning to outperform other solutions.

The impact of the number of devices on the performance of the network is presented
in Fig. 4.5 to highlight the scalability of Markov process. Fig. 4.5b and Fig. 4.5c show the
behavior of DR and PDR when we increase the number of EDs, respectively.

The average data rate of all transmitted packets including the dropped ones is pre-
sented in Fig. 4.5b. As the number of EDs increases, the DR reaches its highest value
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when the number of end-devices is less than 1000 for all algorithms except EXP3 since it
is the only Reinforcement Learning (RL) algorithm than does not take advantage of FCM
clustering outputs. Thus, it requires more traffic to update its policy. The DR of Q-learning
is the highest one between 8 kbps and 6 kbps when the number of EDs is lower than 3000.
It decreases gradually when we increase the number of EDs due to physical limitations to
access the channel. EXP3, in its turn, fails to maximize the DR when the PDR still higher
than 50% (see Fig. 4.5c). Thus, it can not be used in real deployment since most Inter-
net of things (IoT) applications require at least a PDR higher than 70%. In Fig. 4.5c, we
observe a decline of the PDR by increasing the number of EDs. However, RL algorithms:
Q-learning and EXP3, always offer a better PDR than other algorithms whatever the num-
ber of EDs. As the access to the channel is uniform for all EDs, the advantage of using RL
algorithms to increase the uplink traffic is their ability to select transmission settings with
low probability of collisions. Among RL algorithms, Q-learning algorithm shows the same
PDR but offers a better DR in Fig. 4.5b. This result is mainly due to the prior knowledge
acquired using FCM during the learning process. This provides Q-learning an overall view
of all possible state transactions that could happen during the training process.

Fig. 4.5d shows the impact of the number of devices on Transmission Energy (E t x) for
each algorithm. We observe a decline of the average energy consumption per packet per
device by increasing the number of EDs up to 1K devices (4K for EXP3). Whereas, a slight
decrease of E t x is observed by increasing the number of devices up to 10K. Indeed, in a
dense network (i.e., topologies with more than 1000 EDs), the average distance between
EDs and the gateways will be lower than in a sparse network since there will be more de-
vices close to the four gateways. Consequently, the average energy consumed per packet
to reach the gateway is higher in sparse topology than in a dense network since EDs will
be more scattered and away from the gateways. Whatever the number of end devices, we
see that Q-learning algorithm offers a lower energy consumption than other algorithms.
It requires more traffic by increasing the number of devices to update its Q-values, but
shows a high performance in terms of energy consumption with more than 1K since it
uses the prior knowledge of FCM. Other algorithms have a higher energy consumption
like EXP3 that has the highest energy consumption up to 3K devices when the data rate is
higher than 7kbps.

As packet sizes depend on the application running on end-devices, it can be high in
the case of multimedia data transmission or small to transmit warning alerts. In this con-
text, we study in Fig. 4.6b and Fig. 4.6c the impact of PS on DR and PDR, respectively.

In a scenario with 4 base stations and 1000 EDs, the DR in Fig. 4.6b remains stable
whatever the PS between 10 B and 100 B. However, if we look at the difference of DR be-
tween algorithms, we see that Q-learning offers a higher DR compared to other RL al-
gorithms while keeping the PDR relatively the same. Since there is 4 cells, end-devices
are able to use a lower SF to send their packets to the closest BS without interfering with
other transmissions in other cells. This decreases considerably the probability of collision.
Thus, the PDR in Fig. 4.6c is always higher than 80% whatever the packet size between 10
B and 100 B for RL algorithms. Depending on IoT applications, IoT devices need to send
their packets with different sizes that can be high in the case of multimedia data transmis-
sion or small to transmit warning alerts. In this context, we study in Fig. 4.6c the impact
of PS on PDR. The PDR of EXPLoRaTS and ADR is lower even with small packets since
using small PS allows to mitigate collisions by reducing the channel occupancy duration
(ToA). As EXPLoRaTS is the only non-iterative algorithm, which means that transmission
settings are not updated over time, the PDR decreases drastically when the PS becomes



80/117 Chapter 4. Online self reconfiguration

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10  20  30  40  50  60  70  80  90  100

To
A

[s
]

PS[B]

4 BS, 1000 ED, Period=4 mn

(a). ToA vs Packet Size.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 10  20  30  40  50  60  70  80  90  100

D
R

[k
bp

s]

PS[B]

4 BS, 1000 ED, Period=4 mn

(b). DR vs Packet Size.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10  20  30  40  50  60  70  80  90  100

PD
R

[%
]

PS[B]

Q-learning+FCM
EXP3

EXPLoRaTS
ADR

Random

4 BS, 1000 ED, Period=4 mn

(c). PDR vs Packet Size.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10  20  30  40  50  60  70  80  90  100
Etx

[m
J]

PS[B]

Q-learning+FCM
EXP3

EXPLoRaTS
ADR

Random

4 BS, 1000 ED, Period=4 mn

(d). P t x vs Packet Size.

Figure 4.6. Impact of Packet Size on PDR, P t x and DR.

higher than 70B. In addition, even if LoRaWAN alliance specifications recommend to use
short packets, the PDR and the DR of ADR algorithm still lower compared to RL algo-
rithms. Such a result is explained by the fact that ADR tries to maximize the DR of each
device caring only about the Received Signal Strength Indicator (RSSI) of recent received
packets. Hence, if two devices should use the same SF to increase their DR, none of them
could reach the gateway since a collision would happen each time they send a packet at
the same time.

As the energy consumption depends mostly on the size of the transmitted packets.
we evaluate in Fig. 4.6d the impact of increasing the packet size from 10 B to 100 B on
energy consumption with each algorithm. By increasing the packet size, the energy con-
sumed increases for all algorithms. However, Q-learning allows to send the same size of
packets with a lower energy by avoiding transmissions settings that waste energy without
enhancing the uplink traffic. Since there is 4 BSs, end-devices are able to use lower SFs to
send their packets to the closest BS without interfering with other transmissions in other
cells. This decreases considerably the probability of collision and the energy consump-
tion since lower SFs consume less energy. Thus, the E t x of Q-learning algorithm is always
lower than the E t x of other algorithms whatever the packet size between 10B and 100B.

Depending on the frequency of packets transmission or Packet Rate (PR), many trans-
mission settings with a duty cycle higher than 1% are not allowed. For example, if PS is
equal to 70 B and SF is equal to 12, the ToA of the transmitted packet is around 2.3s. After
which, a node needs to remain silent for around 228s (2.3∗99 a little less than 4min), due
to the duty-cycle of 1%. Thus, all scenarios with period less than 4min are not allowed
by LoRaWAN Alliance. In this context, Fig. 4.7b and Fig. 4.7c highlight the impact of the
Packet Rate on DR and PDR using one channel for uplink and one channel for downlink.
After the analysis of Fig. 4.5c and Fig. 4.6c, we fixed the PS and the number of EDs to
70 Bytes and 1000, respectively. Then, we decrease the transmission frequency from one
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Figure 4.7. Impact of Packet Rate on PDR, P t x and DR.

packet per min to one packet per 10 min.

As we decrease the PR, we observe an enhancement of the PDR whatever the algo-
rithm in Fig. 4.7c. However, the PDR of RL algorithms is higher than the PDR of all other
algorithms. The DR in Fig. 4.7b remains relatively stable for all algorithms except for Q-
learning that enhances the DR up to 7kbps. It offers a higher DR whatever the PR between
1 min and 10 min while keeping the same PDR as other RL algorithms. Q-learning is able
to take advantage of the output of the clustering process and use it to update its Q-values
initialized to zero. EXP3 appears to be sensitive to the frequency of transmission since
there is a slight decrease of its DR (6kbps) by decreasing the PR up to one packet per 10
min.

The impact of the number of cells on DR and PDR is highlighted in Fig. 4.8b and Fig.
4.8c, respectively. As Industrial, Scientific and Medical (ISM) band is very tight especially
in Europe, it is mandatory to analyze the impact of the number of BSs on the performance
of our algorithms since we use one channel for uplink whether the network is private or
public. For this reason, Fig. 4.8c shows an increase of the PDR when we increase the num-
ber of BSs. In fact, by deploying new BSs, we will reduce the distance between end-devices
and BSs. In this case, devices are able to use transmission settings with a lower SF and a
higher BW to send their data to the closest BS, reducing this way the interference between
cells and enhancing the overall data rate. However, we can conclude from Fig. 4.8 that it
is not useful to increase the number of BSs above 6 since the PDR and the DR remains the
same above this number. With this result, we can reduce the cost of the network setup
by purchasing only the necessary number of BSs. RL algorithms have the ability to select
and update the transmission settings according to each scenario, they offer a higher PDR
whatever the number of BSs. Indeed, Q-learning is the best algorithm to consider with
all topologies especially when there is less than 4 cells (see Fig. 4.8c) since it has a prior
knowledge about the quality of each transmission setting through the clustering process.
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Figure 4.8. Impact of number of Base Stations on PDR, P t x and DR.

ADR and EXPLoRaTS have a lower PDR than random algorithm with less than 4 BSs since
these algorithms are known for their weak scaling capability (1000 EDs) especially with
few BSs.

6.2 QoS metrics assessment in the first scenario

The process of finding the optimal reconfiguration policy requires a number of itera-
tions i.e. packets exchange. As presented previously, Q-learning algorithm, update their
Q-values Q(s, a) and converge to the optimal one Q?(s, a) after a number of state tran-
sitions. Whereas, Multi-Armed Bandit (MAB) algorithms update their action values Q(a)
based on the number of selected arms. In this section we assess the performance of our
solution during the learning process to see how the data rate converge. In the first sce-
nario, we study the performance of all algorithms with 100 devices that send packets of
70 B each 4 min to one base station. In addition, we measure other metrics to observe the
impact of maximizing the data rate on ToA, E t x and PDR.

Fig. 4.9 shows the comparison of the average DR of the global traffic using Q-learning,
EXP3 ADR, EXPLoRaTS and Random algorithms. The DR of Q-learning outperforms sig-
nificantly the measured DR obtained with all other algorithms. When the transmitted
packets get a DR of 7 kbps using Q-learning, heuristic algorithms like ADR and EXPLo-
RaTS offer a DR lower than 5.5 kbps. Q-learning algorithm offers a powerful DR since
it uses the knowledge of the clustering process to jump from one state to another based
of the membership degrees of each transmission setting to clusters. Random algorithm
oscillates without any purpose of convergence since it does not apply any strategy that
drives to an optimal data rate. Through this figure, we validate the major advantage of
applying Q-learning with FCM to outperform state of the art proposals.

In Fig. 4.10, we highlight the advantage of using FCM clustering in Q-learning to max-
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Figure 4.10. CDF of PDR.

imize uplink traffic through the assessement of PDR. As we use in this scenario only 100
devices, heuristic algorithms are able to deal with the low complexity of this scenario and
offer a PDR higher than 90%. In fact, as only 100 devices try to access to the channel using
ALOHA protocol, the probability of collisions is not significant. Meanwhile, Q-learning
has a slight advantage since it has to build its knowledge and update its Q-values that are
initialized to zeros at the beginning of the process. ADR offers a high PDR but less than
Q-learning and EXP3 since it adjusts the transmission settings regarding the measured
RSSI. With one base station and only 100 devices, ADR is able to avoid collisions by selec-
tion the transmission setting with the highest RSSI among the 10 previous packets. This
simple approach appears to be sufficient in this scenario to get a high PDR. However, the
data rate in Fig. 4.9 is not high since ADR does not take into account other transmission
parameters such as the BW that has a big impact on the data rate.

As there is a negative correlation between the data rate and the time on air, maximiz-
ing the data rate will lead to minimize the time of propagation since transmission settings
with a low SF offer a high data rate and a short time on air. In fact, our solution will try
to find a set of transmission settings with the lowest SF as long as the packets are well re-
ceived by gateways. Consequently, selecting the lowest SFs will not only increase the data
rate but also mitigate collisions by decreasing the occupancy time of the channel during
the transmission. For this reason, Q-learning in Fig. 4.11 is able to decrease the time of
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Figure 4.12. Variation of Transmission Energy.

propagation of the signal to 0.2s when all other algorithms offer a ToA higher than 0.4s.

The big advantage of Low Power and Wide Area Networks (LPWAN) networks com-
pared to other wireless technologies is their ability to transmit the signal in a wide area
with a low energy consumption. These two properties make LPWAN networks widely
used in agricultural industry and fire fighting services to protect wide forests. Long Range
(LoRa) devices should optimize their transmission settings to take advantage of these
properties to not only increase the uplink traffic but also increasing the life time dura-
tion of the network. In this context, our solution mitigates wast of energy by selecting the
transmission settings with the lowest SF that can transmit the packets without collision
with other transmissions. Hence, Q-learning will avoid transmissions that waste energy
by either increasing the P t x directly of by increasing the SF unhelpfully. For this reason,
the energy consumed by Q-learning in Fig. 4.12 during the learning process is lower than
the energy consumed by other algorithms. This behavior is mainly due to the knowledge
acquired during the clustering process to expect in advance at which state each transmis-
sion setting could lead.

Through the measurement of different metrics in the first scenario, we validate our
assumption to use FCM membership degrees to disclose at which state each transmission
setting can lead.
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Figure 4.14. CDF of PDR.

6.3 QoS metrics assessment in the second scenario

In the second scenario, we increase the number of devices from 100 to 1K devices. As
the PDR is at its highest value when the number of BSs is around 4 (see Fig. 4.8c), we select
in this scenario 4 BSs that receive packets of 70 bytes each 4 min from each device. Then,
we plot the same metrics as scenario one and we compare the same algorithms presented
before.

Fig. 4.13 shows the measured average PDR of all algorithms over time. Since ADR
algorithm does not have any knowledge and visibility about the amount of data trans-
mitted and observes only the recent measured RSSI, it gives a lower average DR up to 5
kbps (slightly better than Random) compared to RL algorithms and EXPLoRaTS. On the
other hand, when using Q-learning algorithm, the DR is improved significantly to achieve
8 kbps. This result is made by the frequent updates of transmission settings taking into
account the state of the link to balance the load of the uplink traffic. MAB algorithms
have also the ability to explore enough actions to be able to exploit the better ones and
perform better DR. EXPLoRaTS has a better DR compared to ADR but shows its weakness
compared to RL algorithms.

When we look at the PDR variation in Fig. 4.14, we see clearly that RL algorithms of-
fer a better successful received packet rate compared to EXPLoRaTS, ADR and random
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Figure 4.16. Variation of Transmission Energy.

algorithms. This highlights the enhancement of PDR by 20%; from 70% to 85%, using RL
algorithms. Q-learning offers a better PDR compared to EXP3 if we look at their Cumu-
lative Distribution Function (CDF) in Fig. 4.14. Simulations have been carried out for a
period of 7 hours but Fig. 4.13 shows that almost all algorithms reach their highest DR
after only four hours. The main reason for this is the high density of the traffic that makes
the controller receive enough requests from 1000 devices through 4 BSs to update its pol-
icy.

Many IoT applications nowadays become more and more sensitive to the delay of
transmissions when it comes to alert or synchronized systems. Thus, we focus in this
part on the measurement of the ToA during the training process. Fig. 4.15 shows a de-
crease of the ToA from 0.5s to 0.25s when RL algorithms are applied. This means that RL
algorithms are able to reduce the transmission delay by 50% compared to random, ADR
and EXPLoRaTS algorithms. However, Q-learning remains the only RL algorithm with the
best trade-off between all QoS metrics including DR, PDR, ToA and E t x in Fig. 4.16. More
than 70% of the transmitted packets reach the gateway in only 0.3s using Q-learning and
FCM. In addition, Fig. 4.15 shows that after only two hours, almost all transmitted packets
have a ToA less than 0.25s in average.

In the context of LPWAN, saving devices energy consumption is mandatory to extend
the network life time. For this reason, Fig. 4.16 shows the average energy consumption
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per packet with each algorithm. As the relationship between SF and E t x is inversely pro-
portional, maximizing the DR leads to the selection of lower SFs that consume less energy,
Thus, Q-learning that we use with FCM is able to reduce the waste of energy better than
EXP3 and all other algorithms. They have a better energy efficiency with around 4.5mJ
per packet when other algorithms consume more than 6mJ in average.

Through the measurement of different metrics in the second scenario, we validate our
assumption to use FCM membership degrees to disclose at which state each transmission
setting can lead even in a dense network.

7 Conclusion

Long Range Wireless Access Network (LoRaWAN) is among the leading wireless Inter-
net of things (IoT) networks due to its large coverage and low energy consumption. We
addressed in this chapter the problem of maximizing the data rate of the network. we
addressed the reconfiguration problem of Long Range (LoRa) transceivers’ parameters.
We proposed a new approach for dynamic reconfiguration using Fuzzy C-Means (FCM)
clustering and Q-learning algorithms. Our main achieved goals are: (i) the characteriza-
tion of transmission parameters based on different Quality of Service (QoS) metrics, (ii)
the maximization of the network Data Rate by tuning the parameters via trial/reward pro-
cess, (iii) and the performance evaluation and comparison with solutions proposed in the
literature. Our simulation results show that Q-learning with FCM clustering allow to im-
prove the DR, Packet Delivery Ratio (PDR), Time on Air (ToA) and Transmission Energy
(E t x) of the network in many scenarios with different numbers of End Devices (EDs) and
Base Stations (BSs). The PDR and the DR were improved by 25%, the ToA was reduced
by 40% and E t x was reduced by 20%. However, since Q-learning algorithm does not take
advantage of the whole knowledge provided by the clustering process, it is not able to
separate the traffic based on the clustering exploration phase. This drawback is caused by
the fact that Q-learning requests only the next state at which each setting will lead without
caring about all possible next states. For this reason, we plan in the next chapter to use
the policy iteration algorithm of Markov Decision Process (MDP) that requests all possi-
ble state transitions before even starting the learning process. This advantage will allow
LoRa devices to target the transmission settings that belong to the cluster that matches
the requirements of the application that they run.
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Quotation

Human identity is no longer defined by who

we are but rather by what we own — Jimmy
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Abstract

To offer the best Quality of Service (QoS) to Internet of things (IoT) services, wireless
networks need to customize their transmission settings to applications’ requirements.
Among several wireless technologies, Long Range (LoRa) technology is a promising Low
Power and Wide Area Networks (LPWAN) solution whose QoS depends on the optimiza-
tion of a set of transmission parameters. In this chapter, we propose to adapt these trans-
mission settings to the requirements of IoT applications. To select the transmission set-
tings that match the required quality, IoT devices need to target the set of transmission
settings that offer the same quality as required by applications. Thanks to the cluster-
ing outputs in chapter 3, the network server can recognize the transmission settings that
match the quality required by application through the membership degrees of these set-
tings to clusters. Unlike Q-learning, the policy iteration algorithm that we propose in this
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chapter is able to target the recognized quality levels through the state transition matrix.
This allows devices to select the transmission settings that fit the quality level of the appli-
cation that they run by selecting the transmission settings that belong to the same cluster.
Thus, we initialize the state transition matrix of the policy iteration algorithm to infer the
probability that one transmission setting will make the uplink state match the required
state by IoT applications. To highlight the performance of our approach, we compared
the quality of the traffics generated by three main applications. Simulation results show
that the policy iteration algorithm is able to target the required uplink quality by selecting
the transmission settings that belong to the same cluster. In addition, it speeds up the
learning process and adapts the Data Rate (DR), the Time on Air (ToA) and the Transmis-
sion Energy (E t x) to these applications. Furthermore, results show that the quality of the
generated traffic is improved compared to the existing strategies.

1 Introduction

Nowadays, neither WiFi, Bluetooth, nor ZigBee can cope with the billions of IoT de-
vices expected to be used in the forthcoming years. LPWAN has emerged as a lifebuoy to
meet the new challenges of Internet of things (IoT) applications that require a low power
consumption with high coverage.

On another hand, the emerging 5G mobile communications will support a range of
use cases spanning different vertical industries including IoT applications. Emerging
wireless networks like Long Range Wireless Access Network (LoRaWAN) will be inline with
this and will need to be designed with flexibility to meet the requirements of different ver-
ticals. However, radio resource allocation mechanisms proposed in the literature for 5G
networks can hardly be applied for LoRaWAN since Long Range (LoRa) modulation use
unlicensed Industrial, Scientific and Medical (ISM) band to send and receive frames. In-
deed, any IoT and radio device in the range of 14 km is able to use this band and disturb
the estimation of the available resources. Moreover, LoRaWAN end devices use ALOHA
Pure protocol to access the channel since there is no channel access control to synchro-
nize transmissions. For these reasons, all heuristic algorithms proposed in the literature
fail to enhance network performance since their assumptions do not fit the randomness
of the wireless environment.

To overcome this problem, we propose, in this chapter, traffic differentiation using
machine learning algorithms with a clustering preprocessing phase to acquire knowledge
about the quality of each transmission setting before starting the learning process. Al-
though this solution remains a “best effort” approach, it succeeds in adapting traffic qual-
ity to the requirements of all applications.

We assume that both scenarios include devices running three type of applications: i)
application with the highest Quality of Service (QoS) requirements (App 2) ii) application
with the lowest QoS requirements (App 0), and iii) application with QoS requirements
level between the two previous ones (App 1, see Table 5.1).

Our main contributions are as follows:

à We propose to use the policy-iteration algorithm to maximize the Data Rate (DR) of
each sub-traffic generated by each application.

à We use the Fuzzy C-Means (FCM) membership degrees in the policy iteration to
characterize the probability of transitions between different link states.
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Applications PR[pkt/day] PDR[%] PS[byte]

Applications 0
Smoke Detectors 2 90 10-20
Environmental 5 90 50-100
Medical Assisted 8 90 100-200

Applications 1
Wearables 10 90 10-20
Water/Gas Metering 8 85 100-200
Smart Grid 10 80 10-20

Applications 2
Smart Bicycle 192 80 50-100
Animal Tracking 100 70 50-100
Asset Tracking 100 90 50-100

Table 5.1. Applications requirements [63].

à We compare the quality of all generated traffics with the state of the art, and we
assess the quality of each traffic based their required QoS metrics.

The notion of differentiated services (DIFFSERV) was proposed in literature for the
coexistence of different services and applications within the same network by providing
a customized network setting to each service. Knowing the diversification of IoT applica-
tions nowadays, differentiated services presented in Fig. 5.1 are highly recommended to
cope with the heterogeneity of data transmitted by IoT devices within the same network.
For this reason, we highlight different IoT applications based on their QoS requirement
such as PR, DR and PDR. We highlight, in the following, LoRa transmission’s parameters
that will be tuned to fit these requirements.

Recent related works have investigated the performance of LoRaWAN in different en-
vironments: university campus [45], indoor applications [27], industry [200], dense down-
town [220], and rural areas [142]. Other studies focused on finding new mechanisms to
enhance the performance of LoRa devices’ settings [59] [130] [144].

The closest paper to our work was proposed by Dawaliby et al. [123]. The authors dis-
cuss the application of LoRaWAN slicing. They evaluated the performance of LoRaWAN
with the goal of maximizing utilities of each slice using maximum likelihood estimation
method. A resource allocation strategy is proposed to meet the QoS requirements of each
slice. The effectiveness of this approach is measured by the percentage of satisfied devices
with regard to their delay requirements. However, such an approach can hardly be imple-
mented in the real world since resource allocations can easily be unsettled in ISM band
by other long range transmissions. In addition, energy constraints of each node have not
been considered.

All previous contributions are useful to enhance LoRaWAN performance under vari-
ous constraints. However, no effort has been made to adapt the parameters’ settings to
deal with the diversification of IoT applications and the randomness of wireless transmis-
sions. In this work, we address this problem using machine learning algorithm to avoid
adding extra signalling overhead and resource allocations with respect to LoRaWAN al-
liance constraints [71].

This chapter is organized as follows. Section 2 enunciate the problem statement. In
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Figure 5.1. Differentiated services for uplink LoRaWAN traffic.

Section 3 and Section 4, we propose our learning process by using the membership matrix
of Fuzzy C-Means (FCM) as a state transition matrix in the policy-iteration algorithm. Our
simulation settings and our main findings are highlighted in Section 5. Finally, Section 6
concludes this chapter.

2 Problem statement

To make the same physical Long Range (LoRa) network hold different services within
the same network, LoRa network servers should cope with the heterogeneity of the trans-
mitted data by offering a customized link quality to each device. Unlik state of the art
solutions, we should allow devices to target the uplink quality that they need rather than
sharing uplink resources equally between all devices. In fact, the diversification of Inter-
net of things (IoT) applications now day, makes the problem of network reconfiguration
harder since we should customize the reconfiguration process based on the need of each
application. For example in Fig. 5.1, LoRa devices can run three different applications
and select the transmission settings based on their needs. This will lead to the creation
of three sub-traffcs with different qualities in the same network. As new network oper-
ators are required to hold differentiated services without the need of additional network
servers, the research space of the transmission parameters that best fit applications re-
quirements should be characterized.

For example, LoRa deployment for tracking services requires more data rate than tem-
perature monitoring since temperature values change less frequently than tracked ob-
jects. In this context, we strongly believe that the characterization of the research space
should allow devices to distinguish between god, bad and medium settings. This will al-
low end devices to target the transmission settings with the same quality as required by
applications.

We formulate the online selection of the suitable set of configurations as an explo-
ration/exploitation problem. We propose to maximize the utility of the network to en-
hance the quality of uplink traffic. As the main goal of LoRa end-devices is to send their
collected data to the cloud, network utilization (or utility) function is expressed as the
Data Rate of the up-link traffic after each transmission at time t given by Equation 5.1.

U (a) =
{

DR(a) if packet received
0 else.

(5.1)

We consider in this work the utility of the network to maximize the uplink traffic. We
express the network utilization (or utility) function as the DR of the well received packets
(see Equation 5.1). In fact, as our main concern is to maximize the DR and to keep it as
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Figure 5.2. LoRaWAN reconfiguration scheme.

high as possible, maximizing the DR will bring end devices to decrease their Spreading
Factor (SF) as long as their transmitted packets are well received by gateways. Otherwise,
transmission settings with higher SF will be promoted. Finding the set of transmission
settings that maximizes the utility function is an NP-hard problem [152] for practical net-
works’ size.

Thus, to have a self-organizing and an adaptable solution, we propose to use the pol-
icy iteration algorithm rather Q-learning like in the previous chapter. Unlike Q-learning
that tries to learn the impact of each transmission setting on the uplink quality based on
the observed state st+1 after each transmission, the policy iteration algorithm requires this
knowledge (as a model) before even starting the learning process. Since we have charac-
terized the impact of the transmission settings on the uplink quality previously in offline
mode, we try in this chapter to use this knowledge as a model that discloses the proba-
bility to make the uplink quality good, bad or medium. Proceeding this way, the policy
iteration algorithm will be able exploit faster the required transmission settings since we
have already explored the quality of each setting using Fuzzy C-Means (FCM). In this
work, we formulate our exploration/exploitation problem as a Markov Decision Process
(MDP) to analytically converge to the set of transmission settings that optimize the uplink
traffic. Indeed, in machine learning algorithms and particularly Reinforcement Learning
(RL) algorithms, an agent tries to obtain as much reward as possible by carrying out the
most rewarding action among all possible actions. The most rewarding action will then
get a high probability to be selected next time. Based on the same concept, the policy-
iteration algorithm measures and updates the quality of actions and build the best policy
based on the observed rewards during the learning process. Meanwhile, unlike other al-
gorithms, it requires all possible states transitions to know with which probability each
action could lead to each state. This knowledge is known as a state transition matrix.

Fig. 5.2 shows how we use FCM membership degrees outputs in the policy-iteration
algorithm to simulate state transition probabilities. As the policy-iteration algorithm re-
quires the entire matrix before even starting the learning process, it has one step further
compared to Q-learning that starts without any knowledge about the environment. We
explain in the next section how we deal with this problem and how we generate state
transition probabilities using FCM clustering.

An overall view of our three-step learning process is described in Fig. 5.3. First, we
start by acquiring enough data to assess the quality of each transmission setting by send-
ing randomly several packets with different transmission settings. Next, we apply the clus-
tering process on the measured Quality of Service (QoS) metrics to extract patterns that
disclose the quality of each transmission setting in offline mode. And then, we use this

/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2017~linkcon_-_adaptive_link_configuration_over_sdn_controlled_wireless_access~karmakar.pdf
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Figure 5.3. Overview of functions.

patterns as a state transition matrix in the policy iteration algorithm to find the right path
(set of actions) that lead to the selection of transmission settings that lead to the required
link quality. Section 4 gives more details about the state transition matrix and how the
policy iteration algorithm updates its functions to converge analytically to the optimal
settings in online mode.

3 Network settings customization with the policy-iteration
algorithm

We formulate the problem of network optimization as a Markov Decision Process
(MDP) to converge to the set of transmission settings that optimize the uplink traffic for
each application. In an Reinforcement Learning (RL) problem, an agent tries to obtain as
much reward as possible by carrying out the most rewarding action among N possible ac-
tions. Therefore, the main goal of RL algorithms is to maximize the reward function after
performing each action. The most rewarding action will then get a higher probability to
be selected in next steps.

Notations for Markov process
A set of actions
a an action
R set of all possible rewards, a finite subset of R
Rt the reward at time t
t discrete time step or play number
S set of all states
A(s) set of all actions available in state s
s, s′ states
π policy (decision-making rule)
π(s) action taken in state s under deterministic policy π
π(a|s) probability of taking action a in state s with policy π

Table 5.2. Markov Decision Process notations

Based on the same concept, the policy-iteration algorithm measures and updates the
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Figure 5.4. The policy-iteration process.

quality of actions and build the best policy based on the reward of each action. However,
as the opposite of other RL algorithms, the policy-iteration algorithm needs a prior knowl-
edge about the environment that is trying to learn. This knowledge allows the algorithm
to know whether an action will change the state of the system or not. Thus, a state transi-
tion matrix should be known to be able to use the policy-iteration algorithm. In our study,
we propose to initialize the transition matrix with the membership matrix of the Fuzzy C-
Means (FCM) algorithm to get a prior knowledge about the quality of each transmission
setting. For example, when a device runs App 2, the policy-iteration algorithm finds out
the path (or sequence of actions) that leads to a steady state with Quality of Service (QoS)
level 2. Proceeding this way, each device will find the path that makes its uplink quality fit
the required quality of the application that it runs.

To model the learning process, we assume that interactions between the network con-
troller and the wireless network are formally defined as a finite the policy-iteration algo-
rithm. We denote: S: a state space. A: an action space. P: a state transition function:
S×A×S → [0−1], where P (s, a, s′) gives the probability to jump from state s to s′ by taking
action a. R: reward function: S × A ×S, where R(s, a) gives a reinforcement feedback for
the state-action pair (s, a).

à S={s0, ..., sc } is a finite set of states which in our study is a set of uplink states where
each transmission setting could lead (QoS level of the transmission).

à A={a0, ..., an } is a finite set of actions which in our study is a set of possible trans-
mission settings.

à P=(st+1 = s′|st = s, at = a) is the transition probability from state s at step t to state
s′ at the next step due to an action a;

à R(s, a) is the reward observed when we apply action a on state s. In our case the
reward of each action is the gain of Data Rate (DR) after each transmission that we
compute using the utility function.

à γ ∈ [0,1] is called a discount factor, it represents the extent at which old rewards
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should be considered.

We relate in the following subsections the main functions used by Markov chain: cu-
mulative discount reward function, the state and action value functions and the state
transition function. Table 5.2 summarizes notations used in the policy iteration algo-
rithm.

3.1 Cumulative discounted reward

The cumulative long-term discounted reward of state s at time t is the discounted
sum of rewards that could be earned in this state and is given by Gt (s). Each action yields
a reward for the current state and represents the earned rewards on the trajectory, de-
noted Rt (s, a). The cumulative rewards earned when taking action a at state s is given by
Gt+1(s, a).

Gt (s)
.= ∑

a′∈A(s)

Gt (s, a′)

Gt+1(s, a)
.= ∑

s′∈St+1

Rt+1(s, a)+γ ·Gt (s′)
(5.2)

We define the reward function as the difference between utility functions.

Rt+1(s, a) =Ut+1(a) (5.3)

Where γ is the discount factor (0 < γ< 1), which determines the impact of old rewards
on the learning process. If γ= 0, the agent will be “myopic” and will be focused on maxi-
mizing immediate rewards only, while forgetting all previous observations of rewards. In
our case and after several experimental studies, we set γ to 0.9 as its the value that offers
the highest learning rate considering 90% of the previous rewards observations.

The reward function Rt+1 measures the data rate gained at each iteration. After per-
forming an action a′, the reward function measures how much data rate each device won
compared to the previous action a. the policy-iteration algorithm aims to learn the policy
(i .e. the sequence of actions) that earns more rewards, i.e. more DR, until there will be no
possible data rate to win.

3.2 State-value function

The state-value function of an arbitrary policyπ is expressed in the following equation.

Vt (s)
.= E [Gt (s) | st = s]

= E

[ ∑
a′∈A(s)

Gt (s, a′) | st = s

]

= E

[ ∑
a′∈A(s)

Qt (s, a′) | st = s

]
= ∑

a′∈A(s)

π(a′ | s) ·Qt (s, a′)

(5.4)
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Where π(a|s) is the probability to select action a at state s. Q(s, a) denotes the es-
timated cumulative reward earned when action a is selected at state s. The state value
function of state s is the estimated reward that could be earned by taking an action in
this state. As E(x) = P (x) ·x, the state value function denotes also the sum of rewards that
could be earned by taking action a ∈ A(s) weighted by its probability to occur.

The main objective of the learning process is to find the optimal policy π? in Equation
5.5, which is a mapping from S to A that maximizes the expected long-term discounted
reward for each state.

π∗(s) = argmax
π

V (s) (5.5)

3.3 Action-value function

the policy-iteration algorithm has the ability to provide the network with necessary
cognitive capabilities to build a transmission setting strategy according to environment
conditions. The action value function [113] of action a represents the estimation of cu-
mulative rewards that will be observed by taking this action. These rewards are expressed
as the estimation of the sum of the rewards of the current action a and the estimated re-
wards in the next state st+1 (value function of state st+1). To get this estimation, this sum
is weighted by the probability to jump from state s to s′ ∈ St+1 using action a.

Qt+1(s, a)
.= E [Gt+1(s, a) | st = s, at+1 = a]

= E

[ ∑
s′∈St+1

r +γ ·Gt (s′) | st = s, at+1 = a

]

= E

[ ∑
s′∈St+1

r +γ ·Vt (s′) | st = s, at+1 = a

]
= ∑

s′∈St+1

P
(
s′ | s, a

) · [r +γ ·Vt
(
s′

)]
with r = Rt+1(s, a)

(5.6)

According to the Bellman’s optimality criterion [163], there is at least one optimal
strategy. Hence, the action-value function for the optimal strategy is given by Equation
5.7:

Q?
t+1(s, a) = ∑

s′∈St+1

P
(
s′ | s, a

) · [Rt+1(s, a)+γ ·V ?
t

(
s′

)]
V ?

t (s) = max
a′ Q?

t (s, a′)
(5.7)

The best action at state s is then expressed as the best action that is generated by the
optimal strategy and is given by Equation 5.8:

π∗(s) = arg max
a∈A(s)

Q(s, a) ∀s,π (5.8)
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In this work, we use the policy iteration algorithm to solve analytically our explo-
ration/exploitation problem. This algorithm is better than the value iteration algorithm
because it converges faster and better towards the stable policy π∗ with less iterations
[113]. The key advantage of the policy iteration algorithm is its exploitation of all tran-
sition probabilities after performing each action that improves the current policy πt (s),
This means that all transition probabilities are considered at each iteration to predict bet-
ter the next steps and build a more rewarding trajectory

∏
.

3.4 State transition function

In our context, the major advantage of using Markov decision process is the initial
knowledge of the environment that is required for state transitions. These transitions con-
tain the probability to switch from one state to another through an action. To get these
transition probabilities between states, the transition matrix P in the policy-iteration al-
gorithm is replaced with the matrix M of the FCM clustering process that will be described
deeply in the next section.

[P] =


state 1 . . . state c

a1 m11 . . . m1c
...

...
. . .

...
an mn1 . . . mnc



When a combination of transmission parameters is selected, the link state between
End Device (ED)s and the Base Station (BS) corresponds to the cluster where each trans-
mission setting was mapped. The advantage of fuzzy clustering compared to hard cluster-
ing is the ability to generate membership degrees of each setting to each cluster. Hence,
the transition matrix could be built using these membership degrees which correspond to
the probability that an action could lead to each state. Section bellow describe in details
how we compute the transition matrix P .

Algorithm 5.1 The policy-iteration algorithm
1: Sates S = {1, . . . , sc }
2: Actions A = {1, . . . , an}, A : S ⇒ A . Set of transmission settings
3: Reward function R : S × A →R . The gain of data rate observed
4: Transition function P : S × A → S .Membership degrees of FCM
5: procedure POLICYIMPROVEMENT(S, A, R, P ) . Policy Improvement
6: for each s ∈ S do . For each state
7: Qt+1(s, a) ←∑

s′∈St+1 P
(
s′ | s, a

) · [Rt+1(s, a)+γ ·Vt
(
s′

)]
8: πt+1(s) ← argmaxa Qt+1(s, a) . Equation 5.8
9: if πt (s) ==πt+1(s) then

10: return V ∗ ≈V and π∗ ≈π

11: else
12: ∆←∞ . Policy Evaluation
13: while ∆> ε do .While V is not stabe
14: for each s ∈ S do . For each state/cluster
15: Vt+1(s) ←∑

a′∈A(s)π(a′ | s) ·Qt+1(s, a′) . Equation 5.4
16: ∆← max(∆, |Vt (s)−Vt+1(s)|)

/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/~~~/2014~reinforcement_learning_an_introduction~sutton.pdf
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4 Initialization of state transitions with FCM

As we aim to map a set of Long Range (LoRa) transmission settings that offer the same
Quality of Service (QoS) to the same application, we need to build a prior knowledge about
the quality of each LoRa transmission setting. Djoudi et al. [63] proposed a solution to
cluster a set of LoRa transmission settings based on their measured QoS metrics such as
Bit Error Rate (BER), Time on Air (ToA) and Received Signal Strength Indicator (RSSI). We
use FCM which is an unsupervised clustering algorithm [119] commonly used for feature
analysis. Each transmission setting is projected to a point in a three-dimensional space
based on their QoS coordinates. The clustering is achieved by minimizing a cost function
that depends on the distance between each point and the cluster-heads.After the clus-
tering process, each transmission setting is assigned to the three clusters based on their
membership-degrees to each cluster. Doing this way, when a transmission setting is used
by an End Device (ED), the probability that the quality of the transmission link will fit the
required quality of an application (cluster) is known through the membership-degrees
matrix. We relate in this section the main functions used to generate the membership-
degrees matrix and the cluster-heads matrix using FCM.

4.1 Objective function

Unlike hard clustering algorithm like k-means, Fuzzy C-Means algorithm is able to la-
bel features to more than two clusters and generate values that reveal the extent to which
each feature belongs to each cluster. Such knowledge is mandatory in our study to build
a prior knowledge about the consequence of selecting any transmission setting on the
quality of the network.

Let p be the number of QoS metrics (features). Let n denotes the number of all LoRa
transmission settings (points). X = [x1, .., xi , .., xn], with xi = [xi 1, .., xi k , .., xi p ] is a set of p
measured QoS metrics of n settings with xi k ∈R,1 ≤ k ≤ p,1 ≤ i ≤ n.

The FCM algorithm takes as input a set of metrics X and generates two sets: H and
M. H = [h1, ..,h j , ..,hc ], with h j = [h j 1, ..,h j k , ..,h j p ] is a set of cluster-heads with p metrics
and c applications where h j k ∈R. M = [m1, ..,mi , ..,mn], with mi = [mi 1, ..,mi j , ..,mi c ] is a
set of membership values of n settings to c clusters with mi j ∈R,1 ≤ j ≤ c.

The objective of the FCM algorithm is to find a set of membership values M and a set
of cluster-heads H that minimize the objective function F in Equation 5.9 [119].

min
(M,H)

{
F f (M,H) =

c∑
j=1

n∑
i=1

m f
i j ·d 2

i j

}
(5.9)

Such that:

Constraint:
c∑

j=1
mi j = 1,∀i (5.10)

Distance: d 2
i j =

∥∥xi −h j
∥∥2 (5.11)

Fuzzification degree: f > 1 (5.12)

4.2 Membership-degrees

We use the Equation 5.13 to update at each iteration the membership values, to get
the membership values of each setting for different kind of applications [119].
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(a). Scenario 1: Topology with 100 ED & 1 BS.
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Figure 5.5. LoRaWAN topologies.

mi j =
[

c∑
j ′=1

(
di j

di j ′

) 2
f −1

]−1

,∀ j , i (5.13)

The relationship between the membership-degrees of each setting is inversely pro-
portional to the distance between this setting and the cluster-heads.

[M] =


app 1 . . . app c

setting 1 m11 . . . m1c
...

...
. . .

...
setting n mn1 . . . mnc



4.3 Cluster-heads

A cluster-head is a vector of the measured metrics that are close to all the measured
metrics of the same cluster and are calculated using Equation 5.14.

h j =
∑n

i=1 m f
i j ·xi∑n

i=1 m f
i j

 ,∀ j (5.14)

The cluster-heads positions are initialized randomly at the beginning of the clustering
process and are updated at each step (epoch) to be closer to the large amount of points.
When the algorithm converge, the cluster-heads positions remain stable, stopping this
way the learning process. Once the FCM clustering algorithm converge, the transmission
settings can be ranked based on their membership-degrees to the clusters. Thus, the net-
work controller is able to assign the best transmission setting among the settings available
in each cluster.

5 Simulation settings and results

To evaluate the ability of the policy iteration algorithm to target the transmission set-
tings that belong to the cluster of settings that match the requirements of Internet of
things (IoT) applications, we use a modified version of LoRaSim simulator [204]. To up-
date its policy, the policy iteration algorithm has to assess the quality of wireless transmis-
sions by trying many transmission settings that include: the Bandwidth (BW), the Coding
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Rate (CR), the Transmission Power (P t x) and the Spreading Factor (SF). These parameters
are tuned automatically to fit the scenario under study and also the application running
on devices. All these parameters and others are described in Table 5.3. The path loss expo-
nent is kept at 2.7 to reflect the spectral noise in sub-urban environment. As we propose
an iterative approach to update transmission settings, we use two channels to exchange
data in the uplink channel and acknowledgements in the downlink channel.

Parameters Values
Environment settings

Path loss exponent (α) 2.7 (sub-urban)
Number of uplink channels 1
Number of downlink channels 1
Number of pkt sent by device 100
Capture Effect 6.0 dB

Scenarios settings
Number of applications 3
Number of gateways [1, ... , 10]
Number of end-devices [100, ...,10K]
Packet Size [10,40,70,100] B

Packet Rate 1 pkt per [1,2,...,10] mn

Transmission settings
Bandwidth [125, 250, 500] kHz

Transmission Power [2,5,8,11,14] dBm

Coding Rate [1,2,3,4]
Spreading Factor [7,8,9,10,11,12]
Carrier Frequency 868.1 MHz

Table 5.3. Simulation settings.

Unlike the previous chapter, we aim in this chapter to not only maximize the data rate
of the network but also to assess our assumption to make each device target the transmis-
sion setting that best fit its requirements. We assume that devices are running three type
of applications: i) application with the highest Quality of Service (QoS) requirements (App
2), ii) application with the lowest QoS requirements (App 0), iii) application with QoS re-
quirements level between the two previous ones (App 1). Fig. 5.5 shows the deployment
of two scenarios with different number of EDs and Gateways (GWs). The first scenario
has been deployed with one GW and 100 EDs and the second one with four GWs and 1000
EDs. In first scenario, EDs send packets of 70 B every 4 min to one BS (Fig. 5.5a). However,
in the second scenario, we deal with the scalability of LoRaWAN by increasing the number
of EDs to 1000 that send packets of 70 B every 4 min to 4 BSs (Fig. 5.5b). Both scenarios
respect the duty cycle of 1% recommended by LoRaWAN alliance [71]. Other scenarios
were also studied and showed the same performances.

To highlight the performance of the policy-iteration algorithm, we report in this sec-
tion the Data Rate (DR) measured in our experiments. Two results are studied through
our simulations. First, the overall DR improvement over the state of the art, and second,
the DR differentiation efficiency. During the learning process, the policy-iteration algo-
rithm is able to target the three link states required by devices and offers 3 different levels
of data rate consequently. Before studying the behavior of the data rate and the Packet
Delivery Ratio (PDR) during the learning process, we compare the average data rate mea-
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Figure 5.6. Data rate vs number of devices.

sured with the policy-iteration algorithm and the algorithms proposed in the literature
(EXP3, Adaptive Data Rate (ADR) [71] and EXPLoRaTS [59]). However, these algorithms
have been proposed to enhance only the network DR without dealing with applications
requirements. We assess the performance of the policy-iteration algorithm and Fuzzy
C-Means (FCM) in many scenarios with different numbers of devices, base stations and
different packet sizes and rates as well. Then, we select two scenarios with 100 and 1000
devices and we compare the DR and the energy consumption during the learning process.
In all scenarios, the policy-iteration algorithm is able to enhance the DR better than the
state of the art. In addition, the policy-iteration algorithm is able to adapt the link quality
required by each application and offer three different levels of data rates.

When we look at the data rate of each sub-traffic in Fig. 5.6a, we realize that the traffics
generated by applications have different levels of data rate. The sub-traffic generated by
application #2 has the highest data rate whatever the number of devices from 100 to 10k
devices. Since devices that run application #2 target the cluster with the highest quality
metrics, they will automatically select transmission settings that have the highest mem-
bership degrees to this cluster to jump and remain in the highest link state quality. In
the other side devices with the lowest data rate constraints that run application #0, will
target the cluster with the lowest quality metrics. As a consequence, they will select the
transmission settings that have the highest membership degrees to that cluster.

The average data rate of all transmitted packets including the dropped ones is pre-
sented in Fig. 5.6b. We observe that the DR decreases when increasing the number of
devices for all algorithms due to the collisions that occur more frequently by adding de-
vices. However, Reinforcement Learning (RL) algorithms (the policy iteration, Q-learning
and EXP3) always offer a better DR than the other algorithms thanks to their ability to
learn from the previous transmissions by acquiring knowledge to select transmission set-
tings with less probability of collisions. As the number of EDs increases, the data rate
decreases gradually due to the physical limitations to access the channel. The DR reaches
its highest value when the number of end-devices is less than 1000 for all algorithms ex-
cept EXP3 since it is the only RL algorithm that does not take advantage of FCM clustering
outputs. Our algorithm shows a higher DR than other algorithms since it takes advantage
of the initial knowledge from FCM before starting the learning process. When the DR of
the policy-iteration is between 8 and 10 kbps, the data rate of other algorithms does not
exceed 7.9 kbps in scenarios with less than 4K devices. As Q-learning requires only to
know at which state each action leads, without requiring the entire transition matrix, it
requires more traffic to update its policy. It has to build this knowledge during the learn-

/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2017~explora_-_extending_the_performance_of_lora_by_suitable_spreading_factor~cuomo.pdf
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Figure 5.7. Data rate vs packet size.
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Figure 5.8. Data rate vs packet rate.

ing process from scratch and this slightly decreases its performance to enhance the data
rate.

The same behavior has been observed when we set packet sizes from 10 to 100 in
Fig. 5.7a. Subtraffics generated by our three applications have three different data rate
in average whatever the size of the transmitted packets. The main advantage of machine
learning algorithms in general is their adaptability to different scenarios. However, by
modeling state transitions with FCM, the policy iteration algorithm acquires an initial
knowledge of the environment that makes it more adaptable and more knowledgeable
before even starting the learning process. Preferences made during the learning process
to target the desired state make the data rate of the subtraffic generated by application #2
higher than other subtraffics.

Fig. 5.7b shows the impact of PS on DR with all algorithms. Increasing the packet
size from 10 to 100 B has a slight impact on the average uplink data rate since collisions
occur more frequently with long packets especially when we exceed the 70 B. However, we
observe that our algorithm has a higher data rate (10 kbps) compared to other algorithms
when increasing the packet size from 10 B to 100 B. Q-learning stills in the second position
with 7.5 to 8 kbps and EXP3 in the third position with 6 kbps. The data rate of EXPLoRaTS
and ADR algorithms is lower even with small packets. Random transmissions has the
lowest data rate since there is no strategy that leads to data rate enhancement. Since
there is 4 cells, end-devices are able to use lower SF to send their packets to the closest BS
without interfering with other transmissions in other cells. This decreases considerably
the probability of collision if we compare it with one cell topology (see Fig. 5.9b).
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Figure 5.9. Data rate vs number of base stations.

The impact of the packet rate on the data rate of the applications emphasize the power
of using machine learning algorithms to fit different scenarios. To this purpose, we plot in
Fig. 5.8a the average levels of data rate of the three traffics. When decreasing the packet
rate from 1 packet per minute to 1 packet per 10 min, we observe the same rank of data
rates levels whatever the packet rate. It worth to be mentioned that scenarios with a
higher packet rate than 4mn are strongly prohibited by LoRaWAN alliance since such sce-
narios do not respect a duty cycle of 1%, especially when it comes to send packets with
the highest spreading factors that occupy the channel for a long time denying others to
send at the same time to mitigate collisions. Fig. 5.8b shows the impact of Packet Rate
(PR) on DR with all algorithms. Due to Duty cycle (DC) restrictions, devices are not al-
lowed to use the channel more than 1% of the time. This means that if the PS is equal
to 70 B and the SF equal to 12, the Time on Air (ToA) of the transmitted packet is around
2.3s. If we apply a DC of 1%, a node needs to remain silent for around 228s (2.3∗ 99 a
little less than 4min), For this reason, Long Range (LoRa) devices are not authorized to
send their collected date within less than 4 min especially if they are far from the gateway
and should use SF 12 to reach it. In our experiments, the data rate shows a slight increase
of data rate by decreasing the packet rate since decreasing the packet transmission fre-
quency decreases the probability of collision. The policy iteration algorithm shows the
highest data rate compared to Q-learning and other algorithms. As we aim to maximize
the uplink traffic by maximizing the uplink data rate Policy iteration and Q-learning are
able to fit each scenario under study and offer the highest uplink traffic than EXP3 and
other algorithms. ADR has the lowest data rate such as the random algorithm since it tries
to maximize the DR caring only about the Received Signal Strength Indicator (RSSI) of the
recent received packets. Hence, if two devices try to use the same SF and the same P t x

to increase their DR, none of them could reach the gateway since a collision would occur
each time they send a packet at the same time.

By increasing the number of base stations in Fig. 5.9a, we see that the average DR of
each traffic generated by each application remains in the same order. This allows a better
resources sharing according to IoT devices needs, whether they are high, medium or low.
This also highlight the differentiated services offered to LoRaWAN devices by making the
same network hold different traffics with different levels of data rate. Whatever the num-
ber of cells, devices running application #2, remain at the first position with the highest
data rate. Application #1 follows in the second position and application #0 at the third
position. Such findings are highly required in IoT markets to separate traffics and offer to
applications a customized data rate based on the type of date that they collect.
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Figure 5.10. Convergence of the learning process of device no 35.

Fig. 5.9b shows the impact of the number of BSs on the DR for each algorithm. We
observe that the data rate is always higher with the policy iteration thanks to the prior
knowledge acquired from FCM to generate membership degrees values. EXP3 offers a
better data rate than EXPLoRaTS, ADR and random algorithms but lower than Q-learning
and the policy iteration algorithms. ADR and random algorithms have the lowest data
rate whatever the number of cells since ADR is known for its scalability issue when the
number of devices is higher than 500 devices.

We showed it the previous figures the overall data rate measured during our intensive
simulation to assess the performance of our work in many scenarios. We focus in the
following sections on the time of convergence and we describe in depth the behavior of
both data rate and energy consumption during the learning process.

5.1 First scenario

To highlight the advantage of the clustering preprocessing step in the learning pro-
cess, we measure in this section the data rate and the energy consumption with 100 de-
vices. We compare the overall data rate offered by the policy-iteration algorithm and other
algorithms and also the data rate of the subtaffics generated by applications.

Fig. 5.11 shows the comparison between the average DRs of the global traffic using
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Figure 5.11. DR of all algorithms in the first scenario.
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Figure 5.12. Data rate convergence over time in the first scenario.

the policy iteration, EXP3 ADR, EXPLoRaTS and Random algorithms. The DR of the policy
iteration algorithm outperforms significantly the measured DR obtained with all other al-
gorithms. When the last transmitted packets get a DR higher than 10 kbps using the policy
iteration algorithm, heuristic algorithms like ADR and EXPLoRaTS offer a DR lower than
5.5 kbps. Q-learning algorithm offers the second powerful DR since it uses the knowledge
of the clustering process to jump from one state to another based of the membership de-
grees of each transmission setting to clusters. Random algorithm oscillates without any
purpose of convergence since it does not apply any strategy that drives to an optimal data
rate. Through this figure, we validate the major advantage of applying the policy iteration
algorithm with FCM to outperform state of the art proposals.

Due to the diversification of IoT applications, we attempt to find a solution to offer to
these applications different levels of data rate rather than a common one. This allows de-
vices with high data rate constraints to use better resources than devices with a low data
rate request, avoiding this way waste of resources and energy. In this context, Fig. 5.12
shows the average data rate of the three traffics generated by three applications. End-
devices that run App 2 which requires the highest data rate, get their packets transmitted
with the highest data rate during all the learning process. Since devices that run App 2
target the best link state with the gateway. The transition state matrix provided by FCM
helps the algorithm to select the transmission settings that lead to this state quickly. Ap-
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Figure 5.13. Energy convergence over time in the first scenario.

plications with low data rate constraints get a lower data rate but still higher than 8 kbps.
Through this figure, we validate the advantage of having three target states and knowing
in advance with which probability each transmission setting leads to each state.

Energy consumption is an another constraint for many applications and worth to be
studied since we work in the context of Low Power and Wide Area Networks (LPWAN). Fig.
5.13 shows the average energy consumption per packet of the three applications. EDs with
high energy consumption constraints that run App 2, get the lowest energy consumption
compared to other traffic with a consumption of 2 mJ per packet. Fig. 5.13 shows also a
decrease in energy consumption over time for all devices. As we maximize the DR, highest
SFs that cause a low DR and a high energy consumption are avoided during the learning
process as long as they do not enhance the reward.

Through the all previous measured metrics in the first scenario, the data rate of each
sub-traffic fits well the required level of data rate by applications. Hence, on-demand
customization of the data rate is made possible and can be managed with our solution.

5.2 Second scenario

To highlight the advantage of both FCM and the policy-iteration algorithm in a dense
network, we measure in this section the same metrics as scenario one but with 1000 de-
vices. This scenario aims to assess the high adaptaptability of the learning process and the
convergence time in different scenarios. In fact, when there is a high demand of transmis-
sion settings by a lot of devices, all transmission settings that belong to the same cluster
and offer the same QoS will be selected. Thanks to the clustering reprocessing step, de-
vices running the same application will target transmission settings with high member-
ship degrees to the same cluster.

Like Fig. 5.11 in the first scenario, the DR in the seecond scenario is shown in Fig.
5.14. The obtained DR was compared with the DR of other algorithms including ADR,
EXPLoRaTS and random. Similar to the first scenario, the DR of the policy iteration algo-
rithm outperforms the DR of all other algorithms thanks to the prior knowledge provided
by FCM to model the quality level of each transmission setting. In fact, as the number of
EDs is higher than in the first scenario, the probability of collisions increase but the pol-
icy iteration algorithm is able to reduce it since each device target one of the three states
provided by the clustering process. As we assume that there is three target states, we pro-



108/117 Chapter 5. Contextual reconfiguration

 0

 2

 4

 6

 8

 10

 12

 14

 0  1  2  3  4  5  6  7

D
R

[k
bp

s]

Time[h]

4 BS, 1000 ED, Period=4 mn, PS=70 B

Figure 5.14. DR of all algorithms in the second scenario.
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Figure 5.15. Data rate convergence over time in the second scenario.

hibit devices running different applications to converge to the same transmission setting
reducing this way interferences that could occur. The data rate with 1000 EDs remains
higher than 9 kbps using our solution during the learning process. This highlight the per-
formance of the policy iteration algorithm and FCM to maximize the DR even in a dense
network. EXP3 and EXPLoRaTS get a lower DR (less than 7 kbps) when ADR and random
algorithms get the worst DR between 4.5 and 5 kbps.

When we look at the difference between the average data rate of the subtraffics gener-
ated by the three applications in the second scenario (see Fig. 5.15), we observe the same
behavior even if we increased the number of devices from 100 to 1K. The traffic generated
by App 2 which requires the highest data rate has the highest data rate during all the learn-
ing process. In addition, we observe also that the traffics achieve their highest data rate
after only 4 hours. Through this figure, the advantage of clustering transmission settings
before even starting the learning process appears clearly and validate our assumption to
use of membership degrees as state transition probabilities.

The main advantage of LPWAN is their range but also their low energy consumption
that comes with. To highlight this advantage, Fig. 5.16 shows the average energy con-
sumption per packet and per device running three different applications. As increasing
the DR fosters the selection of lower SFs that consume less energy, the traffic generated
by App 2 has slightly the lowest energy consumption compared to other traffics. Further-
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Figure 5.16. Data rate convergence over time in the second scenario.

more, it converges faster than other traffics to the lowest energy consumption since the
path to the best uplink state is shortened by following the highest transitions probabilities
to that state.

Through the measured metrics in the second scenario, the data rate of all traffics re-
mains better than the state of the art and fits well the required data rate of the three ap-
plications even in a dense network. This highlight the high adaptability of our solution to
cope with different scenarios while offering the required data rate to applications.

6 Conclusion

We addressed in this chapter the problem of adapting Long Range (LoRa) transmis-
sion settings to the requirements of Internet of things (IoT) applications. We introduced
a new solution to make these applications use the same physical channel and the same
network server but with different Quality of Service (QoS) levels. We proposed a traffic
differentiation solution with LoRa technology by making each device target the transmis-
sion settings that belong to the cluster that matches the requirements of the application
that it runs. Thanks to the Fuzzy C-Means (FCM) algorithm, the prior knowledge about
the quality of each transmission setting was built and fed to the policy-iteration algorithm
to converge faster and better to the set of transmission settings that best fit IoT applica-
tions’ needs. Our results show that the policy iteration algorithm of the policy-iteration
algorithm improves the efficiency of LoRa transmissions in terms of energy consumption,
Packet Delivery Ratio (PDR) and Time on Air (ToA) regarding their Data Rate (DR).
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Quotation

�e important thing is not what they have

made to us, but what we make with what they

have made to us. — Jean-Paul Sartre

L’important n’est pas ce qu’on a fait de nous,

mais ce que nous faisons nous-même de ce

qu’on a fait de nous. — Jean-Paul Sartre
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1 Conclusion

During the few past years, Low Power and Wide Area Networks (LPWAN) networks
have gained the interest of research communities and Internet of things (IoT) manufac-
turers. In fact, many industries, nowadays, require more and more devices with wireless
communication technologies to increase their productivity. This has led to the increase
of the size of data flowing through such networks that are characterized by their hetero-
geneity and the diversification of IoT applications that use them. Transmitting the data
to the cloud with a high reliability and performance still present a very challenging issue
due to the low data rate of LPWAN networks and their random access to the channel. In
addition, to offer reliable and accurate services to LPWAN network users, the collected
data should be transmitted according to application requirements and the quality of the
link should meet their service level agreements. For this reason, we propose in this thesis
to exploit the power of machine learning techniques to overcome the encountered chal-
lenges and dynamically adjust network settings without human intervention. Hence, we
deal in this thesis with three main aspects: i) patterns recognition of wireless transmission
settings, ii) online Reinforcement Learning (RL) and iii) contextual wireless transmission
based on these patterns. In the first contribution, we propose to cluster the transmission
settings using unsupervised learning algorithms to split all the combinations of param-
eters to three main clusters to see whether they are able to recognize the quality level of
each setting. Whereas, in the second contribution, we exploit the outcomes of the clus-
tering process to enhance the uplink traffic quality and to maximize the data rate of IoT
devices. Finally, the third contribution exploits in depth the recognized patterns to not
only enhance the overall data rate of IoT devices but also to offer a customized data rate
regarding the need of each IoT application.

To achieve these goals, we firstly devote our interest to study all available tools to rec-
ognize different patterns in different datasets in the literature. This drives us to review
many unsupervised learning algorithms and particularly the fuzzy clustering algorithm
that is able to split a set of items to many subsets with the same properties. Afterward,
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we propose to apply the fuzzy clustering solution in our work to recognize the quality
levels (patterns) of Long Range (LoRa) transmission settings (items). The advantage of
such solution is its ability to map all transmission settings to three quality levels based
on their membership degrees to each cluster. This means that we can recognize from the
clustering outputs at which quality level LoRa transmission settings could lead based on
their memberships to different clusters. The purpose behind this process is to acquire an
initial knowledge that will speed up the learning process by exploiting directly the best
transmission settings without exploring more settings. Based on our findings, Fuzzy C-
Means (FCM) is able to recognize the quality level of each transmission setting and map
each of them to the right cluster. This means that it is able to generate three clusters with
three distinguished quality levels based on the Signal to Noise Ratio (SNR), Time on Air
(ToA), Bit Error Rate (BER) and the Data Rate (DR) of LoRa transmission settings.

In the second contribution, we propose a new online reconfiguration scheme based
on Q-learning which maximize the overall data rate of the network without caring about
the requirements of IoT applications. This contribution relies on the output of FCM to
know at which state each action (transmission setting) could lead by knowing at which
cluster each setting belongs more. The learning process is based on the interaction be-
tween end-devices and the gateways to evaluate the uplink traffic by measuring the Qual-
ity of Service (QoS) metrics of transmissions. Then, based on the measured reward and
the cluster at which transmission settings belong, we update the policy that drive to select
better settings.

In the third contribution, we propose to adapt LoRa transmission settings to different
IoT applications’ requirements. We propose a new solution to make these applications
use the same physical channel and the same network server but with different QoS levels.
To achieve this goal, We introduce a new traffic separation solution by maximizing the DR
of each sub-traffic. Thanks to the knowledge provided by FCM, a prior knowledge about
the quality of each transmission setting was built and fed to the policy-iteration algorithm
to converge faster and better to the set of transmission settings that best fit IoT applica-
tions needs. The advantage of the policy-iteration algorithm compared to Q-learning is
its ability to update its policy based on the state transition matrix that discloses the prob-
ability P (s1|a), ...,P (sn |a) with which action a will makes wireless transmissions jump to
s1, ..., sn . Since FCM is able to generate the membership degrees M(c1, a), ..., M(cn , a) of
each transmission setting a to clusters c1, ...,cn , we propose to initialize the state transi-
tion matrix P(s | a) of the policy-iteration algorithm by the membership degrees matrix
M(c,a) of FCM. Results show that the policy-iteration algorithm and FCM improve the
efficiency of LoRa transmissions in terms of energy consumption, Packet Delivery Ratio
(PDR) and ToA with regard to the DR of each sub-traffic.

Through these three contributions, we believe that we achieved our main goals by pro-
viding new solutions while considering Long Range Wireless Access Network (LoRaWAN)
alliance specifications. Our work is open to possible extensions to explore other research
issues and face new emerging challenges. Hence, possible enhancements will be the pur-
pose of our future work that we describe in the next section.

2 Perspectives

To highlight our new research perspectives and possible direct applications of our
contributions during this thesis, we propose in this section several new ideas that we be-
lieve that they can further extend our work in some manners. First, regarding our patterns



recognition in chapter 3. We aim to find a new solution to split the set of transmission set-
tings to get 3 subsets of network settings with delay, reliability and energy sensitivity like
eMBB, URLLC and mMTC in 5G network. For this reason, we seek, as a first attempt, to
manually divide our dataset using fuzzy logic algorithms to generate 3 subsets of trans-
mission settings: delay, reliability and energy sensitive subsets.

Further enhancements are also planned to use several contextual Multi-Armed Bandit
(MAB) algorithms to see whether they are able to consider the new clustering scheme
and adapt their training accordingly. This can be done by using several contextual MAB
algorithms already proposed by machine learning community to satisfy Internet of things
(IoT) users based on their applications requirements.
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A | Appendix: LoRa frame and LoRaWAN
specification

Quotation

If you see two people fighting, o�erve well

and you will always find a third one that is

rubbing his hands — Unknown

Si vous voy� deux personnes qui se

bagarrent, regard� bien, vous verr� toujours

une troisième qui se frote les mains — Inconnu

Characteristics CF[H z] 6LoWPAN LoRaWAN SigFox NB-IoT INGENU TELENSA

Modulation
2.4G O-QPSK - - QSPSK↓ 2-FSK
915M BPSK LoRa BPSK↑,GFSK↓ QSPSK n-tone↑ RPMA↑, CDMA↓ 2-FSK
868M BPSK LoRa/GFSK BPSK↑,GFSK↓ π/4-QPSK 1-tone 2-FSK

Channels
2.4G 16 - - - 40 7
915M 10 64+8↑, 8↓ 7 7 7 7
868M 1 10 360+40 7 7 7

CF[MHz]
2.4G 7 - - - 7 ISM
915M 902-929 902-928 902 7 7 915M
868M 868-868.6 863-870 and 780 868.18-868.22 7 7 868M/430M

BW[Hz]

2.4G 5M - - 200k 1M 7
915M 2M 125k-500k 7 7 7 7
868M 600M 125k-250k 0.1k-1.2k 7 7 7

DR[kbps]

2.4G 250M - - - 78k↑, 19,5k↓ 7
915M 40M 980-22k 7 234.7↓, 204.8↑ 7 7
868M 20M LoRa:37.5k 0.1k↑,0.6k↓ 7 7 62.5↑, 500↓

Rangekm 868M 0.01-0.1 5-15 10-50 1 15-? 1-?
Handover 868M 7 Multi BS Multi BS 7 7 7
msg/day 868M 7 Unlimited 140↑,4↓ Unlimited 7 7
PS[B] 868M 7 51 - 243 12↑,8↓ 1.6k 10k 7
Spreading 868M DSSS CSS UNB 7 DSSS UNB
Proprietary 868M 7 7 3 7 7 7
Topology 868M 7 Star, Stars Star 7 Star, Tree Star
ADR 868M 7 3 7 7 3 7
Security 868M 7 AES 128b 7 7 AES 256B 7
Battery[years] 868M 1-2 <10 <10 <10
Cost 868M Free 35e 25e 1020e
Standar 868M IETF LoRa Alliance 3GPP
Mobility 868M High High,Simple High,Simple High,complex Low Low
Latency 868M Low Low Low High (1.6-10s) High Medium
Etx

[dBm] 868M +14/+20 20 -> 23

Real-Time 868M Class C 7 7 3 7
Scalability 868M 1M↑, 100k↓ 55 k

Table A.1. LPWAN Characteristics [93] [104] [32] [100].
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ă

00
00

to
11

11

15
)

F
C

n
t:

2
ty

p
e

o
ff

ra
m

e
co

u
n

te
rs

à
F

C
n

tU
p

:c
o

u
n

te
r

fo
r

u
p

lin
k

d
at

a
fr

am
e,

M
A

X
-F

C
N

T
-G

A
P

à
F

C
n

tD
ow

n
:c

o
u

n
te

r
fo

r
d

ow
n

lin
k

d
at

a
fr

am
e,

M
A

X
-F

C
N

Y
-G

A
P

16
)

F
O

p
ts

:i
s

u
se

d
to

p
ig

gy
b

ac
k

M
A

C
co

m
m

an
d

s
o

n
a

d
at

a
m

es
sa

ge

17
)

F
P

o
rt

:a
m

u
lt

ip
le

xi
n

g
p

o
rt

fi
el

d

à
0

th
e

p
ay

lo
ad

co
n

ta
in

s
o

n
ly

M
A

C
co

m
m

an
d

s

à
1

to
22

3
A

p
p

lic
at

io
n

Sp
ec

ifi
c

à
22

4
&

22
5

R
F

U

18
)

F
R

M
P

ay
lo

ad
:(

Fr
am

e
Pa

yl
o

ad
)

E
n

cr
yp

te
d

(A
E

S,
12

8
ke

y
le

n
gt

h
)

D
at

a

19
)

M
IC

:i
s

a
cr

yp
to

gr
ap

h
ic

m
es

sa
ge

in
te

gr
it

y
co

d
e

à
co

m
p

u
te

d
ov

er
th

e
fi

el
d

s
M

H
D

R
,F

H
D

R
,F

Po
rt

an
d

th
e

en
cr

yp
te

d
F

R
M

Pa
yl

o
ad

.

20
)

C
R

C
:(

o
n

ly
in

u
p

li
n

k)
,

à
C

C
IT

T
x

16
+x

12
+x

5
+1

à
IB

M
x

16
+x

15
+x

5
+1

116



Bibliography

Quotation

A quote in a speech, article or book is like a

gun in the hands of a soldier. It speaks with

authority. — Brendan Francis Brown

Une citation dans un discours, un article ou

un livre est comme une arme dans les mains

d’un soldat. Elle fait autorité — Brendan

Francis Brown

Application layer

[1] Aloßs Augustin et al. A Study of LoRa: Long Range Low Power Networks for the Internet of
Things. In: Sensors. Evaluation of Lora 16.9 (Sept. 9, 2016), p. 1466.

[2] Pape Abdoulaye Barro. A LoRaWAN Coverage testBed and a Multi-Optional Communica-
tion Architecture for Smart City Feasibility in Developing Countries. In: (2019), p. 12.

[3] Pape Abdoulaye Barro, Marco Zennaro, and Ermanno Pietrosemoli. TLTN extendash The
Local Things Network: On the Design of a LoRaWAN Gateway with Autonomous Servers
for Disconnected Communities. In: 2019 Wireless Days (WD). 2019 Wireless Days (WD).
Manchester, United Kingdom: IEEE, Apr. 2019, pp. 1–4.

[4] Pape Barro et al. A Smart Cities LoRaWAN Network Based on Autonomous Base Stations
(BS) for Some Countries with Limited Internet Access. In: Future Internet 11.4 (Apr. 8,
2019), p. 93.

[5] Pape Barro et al. Towards Smart and Sustainable Future Cities Based on Internet of Things
for Developing Countries: What Approach for Africa? In: EAI Endorsed Transactions on In-
ternet of Things 4.13 (Sept. 2018), p. 155481.

[6] Carlo Alberto Boano, Marco Cattani, and Kay Römer. Impact of Temperature Variations on
the Reliability of LoRa - An Experimental Evaluation: in: Proceedings of the 7th Interna-
tional Conference on Sensor Networks. 7th International Conference on Sensor Networks.
Funchal, Madeira, Portugal: SCITEPRESS - Science and Technology Publications, 2018,
pp. 39–50.

[7] Tonghao Chen, Derek Eager, and Dwight Makaroff. Efficient Image Transmission Using
LoRa Technology In Agricultural Monitoring IoT Systems. In: 2019 International Confer-
ence on Internet of Things (iThings) and IEEE Green Computing and Communications (Green-
Com) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData). 2019 International Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Com-
puting (CPSCom) and IEEE Smart Data (SmartData). Atlanta, GA, USA: IEEE, July 2019,
pp. 937–944.

[8] Adwait Dongare et al. OpenChirp: A Low-Power Wide-Area Networking Architecture. In:
2017 IEEE International Conference on Pervasive Computing and Communications Work-
shops (PerCom Workshops). 2017 IEEE International Conference on Pervasive Comput-
ing and Communications: Workshops (PerCom Workshops). Kona, HI: IEEE, Mar. 2017,
pp. 569–574.

117

/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2016~a_study_of_lora_-_long_range_low_power_networks_for_the_internet_of_things~augustin.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2016~a_study_of_lora_-_long_range_low_power_networks_for_the_internet_of_things~augustin.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2019~a_lorawan_coverage_testbed_and_a_multi-optional_communication_architecture_for~barro.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2019~a_lorawan_coverage_testbed_and_a_multi-optional_communication_architecture_for~barro.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2019~tltn_the_local_things_network_-_on_the_design_of_a_lorawan_gateway_with~barro.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2019~tltn_the_local_things_network_-_on_the_design_of_a_lorawan_gateway_with~barro.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2019~tltn_the_local_things_network_-_on_the_design_of_a_lorawan_gateway_with~barro.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2019~a_smart_cities_lorawan_network_based_on_autonomous_base_stations_(bs)_for_some~barro.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2019~a_smart_cities_lorawan_network_based_on_autonomous_base_stations_(bs)_for_some~barro.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2018~towards_smart_and_sustainable_future_cities_based_on_internet_of_things_for~barro.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2018~towards_smart_and_sustainable_future_cities_based_on_internet_of_things_for~barro.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2018~impact_of_temperature_variations_on_the_reliability_of_lora_-_an_experimental~boano.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2018~impact_of_temperature_variations_on_the_reliability_of_lora_-_an_experimental~boano.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2019~efficient_image_transmission_using_lora_technology_in_agricultural_monitoring~chen.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2019~efficient_image_transmission_using_lora_technology_in_agricultural_monitoring~chen.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~openchirp_-_a_low-power_wide-area_networking_architecture~dongare.pdf


[9] Mohammad Mohammadi Erbati, Gregor Schiele, and Gerd Batke. Analysis of LoRaWAN
Technology in an Outdoor and an Indoor Scenario in Duisburg-Germany. In: 2018 3rd In-
ternational Conference on Computer and Communication Systems (ICCCS). 2018 3rd Inter-
national Conference on Computer and Communication Systems (ICCCS). Nagoya: IEEE,
Apr. 2018, pp. 273–277.

[10] Joakim Eriksson and Jonas Skog Andersen. Investigating the Practical Performance of the
LoRaWAN Technology. In: (2017), p. 61.

[11] Arshad Farhad, Dae-Ho Kim, and Jae-Young Pyun. Scalability of LoRaWAN in an Urban En-
vironment: A Simulation Study. In: 2019 Eleventh International Conference on Ubiquitous
and Future Networks (ICUFN). 2019 Eleventh International Conference on Ubiquitous and
Future Networks (ICUFN). Zagreb, Croatia: IEEE, July 2019, pp. 677–681.

[12] Luca Feltrin et al. LoRaWAN: Evaluation of Link- and System-Level Performance. In: IEEE
Internet of Things Journal 5.3 (June 2018), pp. 2249–2258.

[13] Jetmir Haxhibeqiri et al. LoRa Indoor Coverage and Performance in an Industrial Environ-
ment: Case Study. In: 2017 22nd IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA). 2017 22nd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). Limassol: IEEE, Sept. 2017, pp. 1–8.

[14] Yik Him Ho, Chi Ho Pun, and Wing Chun Kung. Vehicle Enabled Big Data Platform. In:
(2016), p. 12.

[15] Arliones Hoeller et al. Analysis and Performance Optimization of LoRa Networks With
Time and Antenna Diversity. In: IEEE Access 6 (2018), pp. 32820–32829.

[16] Oana Iova et al. LoRa from the City to the Mountains: Exploration of Hardware and Envi-
ronmental Factors. In: Feb. 20, 2017.

[17] Yun Seong Jang et al. Swapped Huffman tree coding application for low-power wide-area
network (LPWAN). In: 2016 International Conference on Smart Green Technology in Elec-
trical and Information Systems (ICSGTEIS). 2016 International Conference on Smart Green
Technology in Electrical and Information Systems (ICSGTEIS). swapped Huffman tree (SHT).
Denpasar, Indonesia: IEEE, Oct. 2016, pp. 53–58.

[18] Dong-Hoon Kim, Eun-Kyu Lee, and Jibum Kim. Experiencing LoRa Network Establishment
on a Smart Energy Campus Testbed. In: Sustainability. Mlijijij 11.7 (Mar. 30, 2019), p. 1917.

[19] Lingling Li, Jiuchun Ren, and Qian Zhu. On the Application of LoRa LPWAN Technology in
Sailing Monitoring System. In: 2017 13th Annual Conference on Wireless On-Demand Net-
work Systems and Services (WONS). 2017 13th Annual Conference on Wireless On-Demand
Network Systems and Services (WONS). Jackson, WY, USA: IEEE, Feb. 2017, pp. 77–80.

[20] Davide Magrin, Marco Centenaro, and Lorenzo Vangelista. Performance Evaluation of LoRa
Networks in a Smart City Scenario. In: 2017 IEEE International Conference on Communi-
cations (ICC). ICC 2017 - 2017 IEEE International Conference on Communications. Paris,
France: IEEE, May 2017, pp. 1–7.

[21] Jaco M. Marais, Reza Malekian, and Adnan M. Abu-Mahfouz. LoRa and LoRaWAN Testbeds:
A Review. In: 2017 IEEE AFRICON. 2017 IEEE AFRICON. Cape Town: IEEE, Sept. 2017,
pp. 1496–1501.

[22] Jaco Morne Marais, Reza Malekian, and Adnan M. Abu-Mahfouz. Evaluating the LoRaWAN
Protocol Using a Permanent Outdoor Testbed. In: IEEE Sensors Journal 19.12 (June 15,
2019), pp. 4726–4733.

[23] Marco Cattani, Carlo Boano, and Kay Römer. An Experimental Evaluation of the Reliability
of LoRa Long-Range Low-Power Wireless Communication. In: Journal of Sensor and Actu-
ator Networks 6.2 (June 15, 2017), p. 7.

118

/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2018~analysis_of_lorawan_technology_in_an_outdoor_and_an_indoor_scenario_in~erbati.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2018~analysis_of_lorawan_technology_in_an_outdoor_and_an_indoor_scenario_in~erbati.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~investigating_the_practical_performance_of_the_lorawan_technology~eriksson.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~investigating_the_practical_performance_of_the_lorawan_technology~eriksson.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2019~scalability_of_lorawan_in_an_urban_environment_-_a_simulation_study~farhad.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2019~scalability_of_lorawan_in_an_urban_environment_-_a_simulation_study~farhad.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2018~lorawan_-_evaluation_of_link-_and_system-level_performance~feltrin.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~lora_indoor_coverage_and_performance_in_an_industrial_environment_-_case_study~haxhibeqiri.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~lora_indoor_coverage_and_performance_in_an_industrial_environment_-_case_study~haxhibeqiri.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2016~vehicle_enabled_big_data_platform~ho.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2018~analysis_and_performance_optimization_of_lora_networks_with_time_and_antenna~hoeller.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2018~analysis_and_performance_optimization_of_lora_networks_with_time_and_antenna~hoeller.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~lora_from_the_city_to_the_mountains_-_exploration_of_hardware_and_environmental~iova.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~lora_from_the_city_to_the_mountains_-_exploration_of_hardware_and_environmental~iova.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2016~swapped_huffman_tree_coding_application_for_low-power_wide-area_network_(lpwan)~jang.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2016~swapped_huffman_tree_coding_application_for_low-power_wide-area_network_(lpwan)~jang.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2019~experiencing_lora_network_establishment_on_a_smart_energy_campus_testbed~kim.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2019~experiencing_lora_network_establishment_on_a_smart_energy_campus_testbed~kim.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~on_the_application_of_lora_lpwan_technology_in_sailing_monitoring_system~li.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~on_the_application_of_lora_lpwan_technology_in_sailing_monitoring_system~li.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~performance_evaluation_of_lora_networks_in_a_smart_city_scenario~magrin.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~performance_evaluation_of_lora_networks_in_a_smart_city_scenario~magrin.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~lora_and_lorawan_testbeds_-_a_review~marais.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~lora_and_lorawan_testbeds_-_a_review~marais.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2019~evaluating_the_lorawan_protocol_using_a_permanent_outdoor_testbed~marais.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2019~evaluating_the_lorawan_protocol_using_a_permanent_outdoor_testbed~marais.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~an_experimental_evaluation_of_the_reliability_of_lora_long-range_low-power~marco_cattani.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~an_experimental_evaluation_of_the_reliability_of_lora_long-range_low-power~marco_cattani.pdf


[24] Kais Mekki et al. A Comparative Study of LPWAN Technologies for Large-Scale IoT Deploy-
ment. In: ICT Express 5.1 (Mar. 2019), pp. 1–7.

[25] Konstantin Mikhaylov, Juha Petajajarvi, and Janne Janhunen. On LoRaWAN Scalability:
Empirical Evaluation of Susceptibility to Inter-Network Interference. In: 2017 European
Conference on Networks and Communications (EuCNC). 2017 European Conference on
Networks and Communications (EuCNC). Oulu, Finland: IEEE, June 2017, pp. 1–6.

[26] Jorge Navarro-Ortiz et al. Integration of LoRaWAN and 4G/5G for the Industrial Internet of
Things. In: IEEE Communications Magazine 56.2 (Feb. 2018), pp. 60–67.

[27] Pierre Neumann, Julien Montavont, and Thomas Noel. Indoor Deployment of Low-Power
Wide Area Networks (LPWAN): A LoRaWAN Case Study. In: 2016 IEEE 12th International
Conference on Wireless and Mobile Computing, Networking and Communications (WiMob).
2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob). New York, NY: IEEE, Oct. 2016, pp. 1–8.

[28] Keith E. Nolan, Wael Guibene, and Mark Y. Kelly. An Evaluation of Low Power Wide Area
Network Technologies for the Internet of Things. In: 2016 International Wireless Commu-
nications and Mobile Computing Conference (IWCMC). 2016 International Wireless Com-
munications and Mobile Computing Conference (IWCMC). Paphos, Cyprus: IEEE, Sept.
2016, pp. 439–444.

[29] Ruben Oliveira, Lucas Guardalben, and Susana Sargento. Long Range Communications in
Urban and Rural Environments. In: 2017 IEEE Symposium on Computers and Communi-
cations (ISCC). 2017 IEEE Symposium on Computers and Communications (ISCC). Herak-
lion, Greece: IEEE, July 2017, pp. 810–817.

[30] Francesco Orfei, Chiara Benedetta Mezzetti, and Francesco Cottone. Vibrations Powered
LoRa Sensor: An Electromechanical Energy Harvester Working on a Real Bridge. In: 2016
IEEE SENSORS. 2016 IEEE SENSORS. Oct. 2016, pp. 1–3.

[31] Jose Paredes-Parra et al. An Alternative Internet-of-Things Solution Based on LoRa for PV
Power Plants: Data Monitoring and Management. In: Energies 12 (Mar. 2019), p. 881.

[32] Felisberto Pereira et al. Using Compact LoRa Devices for In-Building Communications. In:
(2019).

[33] Juha Petäjäjärvi et al. Evaluation of LoRa LPWAN Technology for Indoor Remote Health
and Wellbeing Monitoring. In: International Journal of Wireless Information Networks 24.2
(June 2017), pp. 153–165.

[34] Juha Petäjäjärvi et al. Performance of a Low-Power Wide-Area Network Based on LoRa
Technology: Doppler Robustness, Scalability, and Coverage. In: International Journal of
Distributed Sensor Networks 13.3 (Mar. 2017), p. 155014771769941.

[35] Tara Petric et al. Measurements, Performance and Analysis of LoRa FABIAN, a Real-World
Implementation of LPWAN. In: 2016 IEEE 27th Annual International Symposium on Per-
sonal, Indoor, and Mobile Radio Communications (PIMRC). 2016 IEEE 27th Annual Inter-
national Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).
Valencia, Spain: IEEE, Sept. 2016, pp. 1–7.

[36] Congduc Pham. Deploying a Pool of Long-Range Wireless Image Sensor with Shared Activ-
ity Time. In: 2015 IEEE 11th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob). 2015 IEEE 11th International Conference on
Wireless and Mobile Computing, Networking and Communications (WiMob). Oct. 2015,
pp. 667–674.

[37] Wimol San-Um et al. A long-range low-power wireless sensor network based on U-LoRa
technology for tactical troops tracking systems. In: 2017 Third Asian Conference on Defence
Technology (ACDT). IEEE, Jan. 2017.

119

/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2019~a_comparative_study_of_lpwan_technologies_for_large-scale_iot_deployment~mekki.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2019~a_comparative_study_of_lpwan_technologies_for_large-scale_iot_deployment~mekki.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~on_lorawan_scalability_-_empirical_evaluation_of_susceptibility_to_inter-network~mikhaylov.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~on_lorawan_scalability_-_empirical_evaluation_of_susceptibility_to_inter-network~mikhaylov.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2018~integration_of_lorawan_and_4g5g_for_the_industrial_internet_of_things~navarro_ortiz.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2018~integration_of_lorawan_and_4g5g_for_the_industrial_internet_of_things~navarro_ortiz.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2016~indoor_deployment_of_low-power_wide_area_networks_(lpwan)_-_a_lorawan_case_study~neumann.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2016~indoor_deployment_of_low-power_wide_area_networks_(lpwan)_-_a_lorawan_case_study~neumann.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2016~an_evaluation_of_low_power_wide_area_network_technologies_for_the_internet_of~nolan.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2016~an_evaluation_of_low_power_wide_area_network_technologies_for_the_internet_of~nolan.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~long_range_communications_in_urban_and_rural_environments~oliveira.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~long_range_communications_in_urban_and_rural_environments~oliveira.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2016~vibrations_powered_lora_sensor_-_an_electromechanical_energy_harvester_working~orfei.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2016~vibrations_powered_lora_sensor_-_an_electromechanical_energy_harvester_working~orfei.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2019~an_alternative_internet-of-things_solution_based_on_lora_for_pv_power_plants~parra.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2019~an_alternative_internet-of-things_solution_based_on_lora_for_pv_power_plants~parra.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2019~design_of_compact_lora_devices_for_smart_building_applications~lopes.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~evaluation_of_lora_lpwan_technology_for_indoor_remote_health_and_wellbeing~petajajarvi.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~evaluation_of_lora_lpwan_technology_for_indoor_remote_health_and_wellbeing~petajajarvi.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~performance_of_a_low-power_wide-area_network_based_on_lora_technology_-_doppler~petajajarvi.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~performance_of_a_low-power_wide-area_network_based_on_lora_technology_-_doppler~petajajarvi.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2016~measurements,_performance_and_analysis_of_lora_fabian,_a_real-world~petric.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2016~measurements,_performance_and_analysis_of_lora_fabian,_a_real-world~petric.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2015~deploying_a_pool_of_long-range_wireless_image_sensor_with_shared_activity_time~pham.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2015~deploying_a_pool_of_long-range_wireless_image_sensor_with_shared_activity_time~pham.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~a_long-range_low-power_wireless_sensor_network_based_on_u-lora_technology_for~san_urnl.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~a_long-range_low-power_wireless_sensor_network_based_on_u-lora_technology_for~san_urnl.pdf


[38] Ramon Sanchez-Iborra et al. Performance Evaluation of LoRa Considering Scenario Con-
ditions. In: 18.3 (Mar. 2018), p. 772.

[39] Francisco Helder C. dos Santos Filho et al. Performance of LoRaWAN for Handling Teleme-
try and Alarm Messages in Industrial Applications. In: Sensors 20.11 (11 Jan. 2020), p. 3061.

[40] Davide Sartori and Davide Brunelli. A Smart Sensor for Precision Agriculture Powered by
Microbial Fuel Cells. In: 2016 IEEE Sensors Applications Symposium (SAS). 2016 IEEE Sen-
sors Applications Symposium (SAS). Catania, Italy: IEEE, Apr. 2016, pp. 1–6.

[41] Luca Sciullo, Angelo Trotta, and Marco Di Felice. Design and Performance Evaluation of
a LoRa-Based Mobile Emergency Management System (LOCATE). In: Ad Hoc Networks 96
(Jan. 2020), p. 101993.

[42] Tuyen Truong, Bernard Pottier, and Hiep Huynh. Cellular Simulation for Distributed Sens-
ing over Complex Terrains. In: Sensors 18.7 (July 17, 2018), p. 2323.

[43] Lorenzo Vangelista, Andrea Zanella, and Michele Zorzi. Long-Range IoT Technologies: The
Dawn of LoRa exttrademark. In: Future Access Enablers for Ubiquitous and Intelligent In-
frastructures. Ed. by Vladimir Atanasovski and Alberto Leon-Garcia. Vol. 159. Survey. Cham:
Springer International Publishing, 2015, pp. 51–58.

[44] Nadège Varsier and Jean Schwoerer. Capacity Limits of LoRaWAN Technology for Smart
Metering Applications. In: 2017 IEEE International Conference on Communications (ICC)
(2017).

[45] Shie-Yuan Wang et al. Performance of LoRa-Based IoT Applications on Campus. In: 2017
IEEE 86th Vehicular Technology Conference (VTC-Fall). 2017 IEEE 86th Vehicular Technol-
ogy Conference (VTC-Fall). Toronto, ON: IEEE, Sept. 2017, pp. 1–6.

[46] Andrew J Wixted et al. Evaluation of LoRa and LoRaWAN for Wireless Sensor Networks. In:
2016 IEEE SENSORS. 2016 IEEE SENSORS. Orlando, FL, USA: IEEE, Oct. 2016, pp. 1–3.

[47] Guangxiang Yang and Hua Liang. A Smart Wireless Paging Sensor Network for Elderly Care
Application Using LoRaWAN. In: IEEE Sensors Journal 18.22 (Nov. 15, 2018), pp. 9441–9448.

Artificial Neural Network (ANN)

[48] Shaohan Feng et al. Joint Service Pricing and Cooperative Relay Communication for Feder-
ated Learning. In: 2019 International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (SmartData). 2019 International Conference
on Internet of Things (iThings) and IEEE Green Computing and Communications (Green-
Com) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData). Atlanta, GA, USA: IEEE, July 2019, pp. 815–820.

[49] Fengxiao Tang et al. An Intelligent Traffic Load Prediction-Based Adaptive Channel Assign-
ment Algorithm in SDN-IoT: A Deep Learning Approach. In: IEEE Internet of Things Journal
5.6 (Dec. 2018), pp. 5141–5154.

[50] Ge Wang et al. LRA-3C: Learning Based Resource Allocation for Communication-Computing-
Caching Systems. In: 2019 International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (SmartData). 2019 International Con-
ference on Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart
Data (SmartData). Atlanta, GA, USA: IEEE, July 2019, pp. 828–833.

120

/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2018~performance_evaluation_of_lora_considering_scenario_conditions~sanchez-iborra.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2018~performance_evaluation_of_lora_considering_scenario_conditions~sanchez-iborra.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2020~performance_of_lorawan_for_handling_telemetry_and_alarm_messages_in_industrial_applications~santos_filho.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2020~performance_of_lorawan_for_handling_telemetry_and_alarm_messages_in_industrial_applications~santos_filho.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2016~a_smart_sensor_for_precision_agriculture_powered_by_microbial_fuel_cells~sartori.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2016~a_smart_sensor_for_precision_agriculture_powered_by_microbial_fuel_cells~sartori.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2020~design_and_performance_evaluation_of_a_lora-based_mobile_emergency_management~sciullo.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2020~design_and_performance_evaluation_of_a_lora-based_mobile_emergency_management~sciullo.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2018~cellular_simulation_for_distributed_sensing_over_complex_terrains~truong.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2018~cellular_simulation_for_distributed_sensing_over_complex_terrains~truong.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2015~long-range_iot_technologies_-_the_dawn_of_lora~vangelista.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2015~long-range_iot_technologies_-_the_dawn_of_lora~vangelista.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~capacity_limits_of_lorawan_technology_for_smart_metering_applications~varsier.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~capacity_limits_of_lorawan_technology_for_smart_metering_applications~varsier.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2017~performance_of_lora-based_iot_applications_on_campus~wang.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2016~evaluation_of_lora_and_lorawan_for_wireless_sensor_networks~wixted.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2018~a_smart_wireless_paging_sensor_network_for_elderly_care_application_using~yang.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/app/2018~a_smart_wireless_paging_sensor_network_for_elderly_care_application_using~yang.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/ann/2019~joint_service_pricing_and_cooperative_relay_communication_for_federated_learning~feng.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/ann/2019~joint_service_pricing_and_cooperative_relay_communication_for_federated_learning~feng.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/ann/2018~an_intelligent_traffic_load_prediction-based_adaptive_channel_assignment~tang.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/ann/2018~an_intelligent_traffic_load_prediction-based_adaptive_channel_assignment~tang.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/ann/2019~lra-3c_-_learning_based_resource_allocation_for_communication-computing-caching~wang.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/ann/2019~lra-3c_-_learning_based_resource_allocation_for_communication-computing-caching~wang.pdf


Channel access layer

[51] Khaled Q. Abdelfadeel, Victor Cionca, and Dirk Pesch. LSCHC: Layered Static Context Header
Compression for LPWANs. Aug. 17, 2017. URL: http://arxiv.org/abs/1708.05209 (vis-
ited on 03/03/2020).

[52] Floris Van den Abeele et al. Scalability Analysis of Large-Scale LoRaWAN Networks in Ns-3.
In: May 16, 2017.

[53] Ferran Adelantado et al. Understanding the Limits of LoRaWAN. In: Feb. 13, 2017.

[54] Farzad Azizi et al. MIX-MAB: Reinforcement Learning-based Resource Allocation Algo-
rithm for LoRaWAN. June 7, 2022.

[55] Norhane Benkahla et al. Enhanced Dynamic Duty Cycle in LoRaWAN Network. In: Ad-Hoc,
Mobile, and Wireless Networks. Ed. by Nicolas Montavont and Georgios Z. Papadopoulos.
Vol. 11104. Cham: Springer International Publishing, 2018, pp. 147–162.

[56] Martina Capuzzo, Davide Magrin, and Andrea Zanella. Confirmed Traffic in LoRaWAN:
Pitfalls and Countermeasures. In: 2018 17th Annual Mediterranean Ad Hoc Networking
Workshop (Med-Hoc-Net). 2018 17th Annual Mediterranean Ad Hoc Networking Workshop
(Med-Hoc-Net). Capri: IEEE, June 2018, pp. 1–7.

[57] Jiaming James Chen et al. A Viable LoRa Framework for Smart Cities. In: (2018), p. 16.

[58] Phui San Cheong et al. Comparison of LoRaWAN Classes and Their Power Consumption.
In: 2017 IEEE Symposium on Communications and Vehicular Technology (SCVT). 2017 IEEE
Symposium on Communications and Vehicular Technology (SCVT). Leuven: IEEE, Nov.
2017, pp. 1–6.

[59] Francesca Cuomo et al. EXPLoRa: Extending the Performance of LoRa by Suitable Spread-
ing Factor Allocations. In: 2017 IEEE 13th International Conference on Wireless and Mo-
bile Computing, Networking and Communications (WiMob). 2017 IEEE 13th International
Conference on Wireless and Mobile Computing, Networking and Communications (WiMob).
Rome: IEEE, Oct. 2017, pp. 1–8.

[60] Francois Delobel, Nancy El Rachkidy, and Alexandre Guitton. Analysis of the Delay of Con-
firmed Downlink Frames in Class B of LoRaWAN. In: 2017 IEEE 85th Vehicular Technology
Conference (VTC Spring). 2017 IEEE 85th Vehicular Technology Conference (VTC Spring).
Sydney, NSW: IEEE, June 2017, pp. 1–6.

[61] Aghiles Djoudi et al. Do IoT LoRa Networks Support Emergency Evacuation Systems ? In:
2019 International Conference on Information and Communication Technologies for Disas-
ter Management (ICT-DM). 2019 International Conference on Information and Communi-
cation Technologies for Disaster Management (ICT-DM). Dec. 2019, pp. 1–2.

[62] Aghiles Djoudi et al. Genetic Algorithm For LoRa Transmission Parameter Selection. In:
The Fourteenth International Conference on Systems and Networks Communications (2019),
p. 2.

[63] Aghiles Djoudi et al. Reconfiguration of LoRa Networks Parameters Using Fuzzy C-Means
Clustering. In: 2020 International Symposium on Networks, Computers and Communica-
tions (ISNCC). 2020 International Symposium on Networks, Computers and Communica-
tions (ISNCC). Oct. 2020, pp. 1–6.

[64] Arshad Farhad and Jae-Young Pyun. HADR: A Hybrid Adaptive Data Rate in LoRaWAN for
Internet of Things. In: ICT Express 8.2 (June 2022), pp. 283–289.

[65] Muhammad Omer Farooq and Dirk Pesch. A Search into a Suitable Channel Access Con-
trol Protocol for LoRa-Based Networks. In: 2018 IEEE 43rd Conference on Local Computer
Networks (LCN). 2018 IEEE 43rd Conference on Local Computer Networks (LCN). Chicago,
IL, USA: IEEE, Oct. 2018, pp. 283–286.

121

http://arxiv.org/abs/1708.05209
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2017~scalability_analysis_of_large-scale_lorawan_networks_in_ns-3~abeele.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2017~understanding_the_limits_of_lorawan~adelantado.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2022~mix-mab_-_reinforcement_learning-based_resource_allocation_algorithm_for_lorawan~tellache.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2022~mix-mab_-_reinforcement_learning-based_resource_allocation_algorithm_for_lorawan~tellache.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2018~enhanced_dynamic_duty_cycle_in_lorawan_network~benkahla.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2018~confirmed_traffic_in_lorawan_-_pitfalls_and_countermeasures~capuzzo.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2018~confirmed_traffic_in_lorawan_-_pitfalls_and_countermeasures~capuzzo.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2018~a_viable_lora_framework_for_smart_cities~chen.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2017~comparison_of_lorawan_classes_and_their_power_consumption~cheong.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2017~explora_-_extending_the_performance_of_lora_by_suitable_spreading_factor~cuomo.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2017~explora_-_extending_the_performance_of_lora_by_suitable_spreading_factor~cuomo.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2017~analysis_of_the_delay_of_confirmed_downlink_frames_in_class_b_of_lorawan~delobel.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2017~analysis_of_the_delay_of_confirmed_downlink_frames_in_class_b_of_lorawan~delobel.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2019~do_iot_lora_networks_support_emergency_evacuation_systems_~djoudi.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2019~genetic_algorithm_for_lora_transmission_parameter_selection~djoudi.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2020~reconfiguration_of_lora_networks_parameters_using_fuzzy_c-means_clustering~djoudi.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2020~reconfiguration_of_lora_networks_parameters_using_fuzzy_c-means_clustering~djoudi.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2022~hadr_-_a_hybrid_adaptive_data_rate_in_lorawan_for_internet_of_things~farhad.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2022~hadr_-_a_hybrid_adaptive_data_rate_in_lorawan_for_internet_of_things~farhad.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2018~a_search_into_a_suitable_channel_access_control_protocol_for_lora-based_networks~farooq.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2018~a_search_into_a_suitable_channel_access_control_protocol_for_lora-based_networks~farooq.pdf


[66] Claire Goursaud and Yuqi Mo. Random unslotted time-frequency ALOHA: Theory and ap-
plication to IoT UNB networks. In: 2016 23rd International Conference on Telecommunica-
tions (ICT). 2016 23rd International Conference on Telecommunications (ICT). Aloha for
UNB. Thessaloniki, Greece: IEEE, May 2016, pp. 1–5.

[67] Haiyan Hu and Hui Yan. Study on ALOHA Anti-Collision Algorithm Based on LoRa for In-
ternet of Things. In: 2018 3rd International Conference on Smart City and Systems Engineer-
ing (ICSCSE). 2018 3rd International Conference on Smart City and Systems Engineering
(ICSCSE). Xiamen, China: IEEE, Dec. 2018, pp. 652–654.

[68] Byoungwook Kim and Kwang-il Hwang. Cooperative Downlink Listening for Low-Power
Long-Range Wide-Area Network. In: Sustainability 9.4 (Apr. 17, 2017), p. 627.

[69] Nikos Kouvelas, Vijay Rao, and R. R. Venkatesha Prasad. Employing P-CSMA on a LoRa
Network Simulator. May 30, 2018. URL: http://arxiv.org/abs/1805.12263 (visited on
11/20/2019).

[70] Alexandru Lavric and Valentin Popa. Performance Evaluation of LoRaWAN Communica-
tion Scalability in Large-Scale Wireless Sensor Networks. In: Wireless Communications and
Mobile Computing 2018 (June 28, 2018), pp. 1–9.

[71] LoRa-Alliance. LorawanT M 1.1 specification, April 2018. URL: https://lora-alliance.
org/lorawan-for-developers (visited on 01/22/2021).

[72] Davide Magrin, Martina Capuzzo, and Andrea Zanella. A Thorough Study of LoRaWAN Per-
formance Under Different Parameter Settings. June 12, 2019. URL: http://arxiv.org/
abs/1906.05083 (visited on 11/20/2019).

[73] P. J. Marcelis, V. Rao, and R. V. Prasad. DaRe: Data Recovery through Application Layer
Coding for LoRaWAN. In: Proceedings of the Second International Conference on Internet-
of-Things Design and Implementation - IoTDI ’17. The Second International Conference.
Pittsburgh, PA, USA: ACM Press, 2017, pp. 97–108.

[74] Riccardo Marini et al. LoRaWANSim: A Flexible Simulator for LoRaWAN Networks. In: Sen-
sors 21.3 (3 Jan. 2021), p. 695.

[75] Ivan Martinez, Philippe Tanguy, and Fabienne Nouvel. On the Performance Evaluation
of LoRaWAN under Jamming. In: 2019 12th IFIP Wireless and Mobile Networking Confer-
ence (WMNC). 2019 12th IFIP Wireless and Mobile Networking Conference (WMNC). Paris,
France: IEEE, Sept. 2019, pp. 141–145.

[76] Congduc Pham. QoS for Long-Range Wireless Sensors Under Duty-Cycle Regulations with
Shared Activity Time Usage. In: ACM Transactions on Sensor Networks 12.4 (Sept. 22, 2016),
pp. 1–31.

[77] Rajeev Piyare et al. On-Demand TDMA for Energy Efficient Data Collection with LoRa and
Wake-up Receiver. In: 2018 14th International Conference on Wireless and Mobile Comput-
ing, Networking and Communications (WiMob). 2018 14th International Conference on
Wireless and Mobile Computing, Networking and Communications (WiMob). Limassol:
IEEE, Oct. 2018, pp. 1–4.

[78] Tommaso Polonelli et al. Slotted ALOHA on LoRaWAN-Design, Analysis, and Deployment.
In: Sensors 19.4 (Feb. 18, 2019), p. 838.

[79] Alexandru-Ioan Pop et al. Does Bidirectional Traffic Do More Harm Than Good in Lo-
RaWAN Based LPWA Networks? Dec. 14, 2017. URL: http://arxiv.org/abs/1704.
04174 (visited on 11/20/2019).

[80] Zhijin Qin and Julie A. McCann. Resource Efficiency in Low-Power Wide-Area Networks
for IoT Applications. In: GLOBECOM 2017 - 2017 IEEE Global Communications Conference.
2017 IEEE Global Communications Conference (GLOBECOM 2017). Singapore: IEEE, Dec.
2017, pp. 1–7.

122

/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2016~random_unslotted_time-frequency_aloha_-_theory_and_application_to_iot_unb~goursaud.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2016~random_unslotted_time-frequency_aloha_-_theory_and_application_to_iot_unb~goursaud.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2018~study_on_aloha_anti-collision_algorithm_based_on_lora_for_internet_of_things~hu.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2018~study_on_aloha_anti-collision_algorithm_based_on_lora_for_internet_of_things~hu.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2017~cooperative_downlink_listening_for_low-power_long-range_wide-area_network~kim.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2017~cooperative_downlink_listening_for_low-power_long-range_wide-area_network~kim.pdf
http://arxiv.org/abs/1805.12263
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2018~performance_evaluation_of_lorawan_communication_scalability_in_large-scale~lavric.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2018~performance_evaluation_of_lorawan_communication_scalability_in_large-scale~lavric.pdf
https://lora-alliance.org/lorawan-for-developers
https://lora-alliance.org/lorawan-for-developers
http://arxiv.org/abs/1906.05083
http://arxiv.org/abs/1906.05083
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2017~dare_-_data_recovery_through_application_layer_coding_for_lorawan~marcelis.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2017~dare_-_data_recovery_through_application_layer_coding_for_lorawan~marcelis.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2021~lorawansim_-_a_flexible_simulator_for_lorawan_networks~marini.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2019~on_the_performance_evaluation_of_lorawan_under_jamming~martinez.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2019~on_the_performance_evaluation_of_lorawan_under_jamming~martinez.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2016~qos_for_long-range_wireless_sensors_under_duty-cycle_regulations_with_shared~pham.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2016~qos_for_long-range_wireless_sensors_under_duty-cycle_regulations_with_shared~pham.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2018~on-demand_tdma_for_energy_efficient_data_collection_with_lora_and_wake-up~piyare.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2018~on-demand_tdma_for_energy_efficient_data_collection_with_lora_and_wake-up~piyare.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2019~slotted_aloha_on_lorawan-design,_analysis,_and_deployment~polonelli.pdf
http://arxiv.org/abs/1704.04174
http://arxiv.org/abs/1704.04174
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2017~resource_efficiency_in_low-power_wide-area_networks_for_iot_applications~qin.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2017~resource_efficiency_in_low-power_wide-area_networks_for_iot_applications~qin.pdf


[81] Brecht Reynders, Qing Wang, and Sofie Pollin. A LoRaWAN Module for Ns-3: Implemen-
tation and Evaluation. In: Proceedings of the 10th Workshop on Ns-3 - WNS3 ’18. The 10th
Workshop. Surathkal, India: ACM Press, 2018, pp. 61–68.

[82] Brecht Reynders et al. Improving Reliability and Scalability of LoRaWANs Through Lightweight
Scheduling. In: IEEE Internet of Things Journal 5.3 (June 2018), pp. 1830–1842.

[83] Mattia Rizzi et al. Evaluation of the IoT LoRaWAN Solution for Distributed Measurement
Applications. In: IEEE Transactions on Instrumentation and Measurement 66.12 (Dec. 2017),
pp. 3340–3349.

[84] Qipeng Song, Xavier Lagrange, and Loutfi Nuaymi. Evaluation of Macro Diversity Gain in
Long Range ALOHA Networks. In: IEEE Communications Letters 21.11 (Nov. 2017), pp. 2472–
2475.

[85] R. B. Sørensen et al. Analysis of Latency and MAC-Layer Performance for Class A LoRaWAN.
In: IEEE Wireless Communications Letters 6.5 (Oct. 2017), pp. 566–569.

[86] Wenshu Sui et al. Energy-Efficient Resource Allocation with Flexible Frame Structure for
Heterogeneous Services. In: 2019 International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical
and Social Computing (CPSCom) and IEEE Smart Data (SmartData). 2019 International
Conference on Internet of Things (iThings) and IEEE Green Computing and Communi-
cations (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData). Atlanta, GA, USA: IEEE, July 2019, pp. 749–755.

[87] Thanh-Hai To and Andrzej Duda. Simulation of LoRa in NS-3: Improving LoRa Perfor-
mance with CSMA. In: 2018 IEEE International Conference on Communications (ICC). 2018
IEEE International Conference on Communications (ICC 2018). Kansas City, MO: IEEE,
May 2018, pp. 1–7.

[88] Qihao Zhou et al. A Novel Rate and Channel Control Scheme Based on Data Extraction Rate
for LoRa Networks. Feb. 12, 2019. URL: http://arxiv.org/abs/1902.04383 (visited on
11/20/2019).

[89] Rafik Zitouni et al. IoT-Based Urban Traffic-Light Control: Modelling, Prototyping and Eval-
uation of MQTT Protocol. In: 2019 International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical
and Social Computing (CPSCom) and IEEE Smart Data (SmartData). l. July 2019, pp. 182–
189.

Discussion

[90] Abdullahi Aden Hassan and Rasmus Karlsson Källqvist. Evaluating LoRa Physical as a Ra-
dio Link Technology for Use in a Remote-Controlled Electric Switch System for a Network
Bridge Radio-Node. 2019.

[91] Ala I. Al-Fuqaha et al. Internet of Things: A Survey on Enabling Technologies, Protocols,
and Applications. In: IEEE Commun. Surv. Tutorials 17.4 (2015), pp. 2347–2376.

[92] Khokhi Alonso. LoRaWAN In an Environment Transmission Rate According to the Network
Server, and The Initial Transmit Power Allocation Scheme. 2018.

[93] Wael Ayoub et al. Internet of Mobile Things: Overview of LoRaWAN, DASH7, and NB-IoT
in LPWANs Standards and Supported Mobility. In: 21.2 (2019), pp. 1561–1581.

[94] Mncedisi Bembe et al. A Survey on Low-Power Wide Area Networks for IoT Applications.
In: Telecommunication Systems 71.2 (June 2019), pp. 249–274.

123

/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2018~a_lorawan_module_for_ns-3_-_implementation_and_evaluation~reynders.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2018~a_lorawan_module_for_ns-3_-_implementation_and_evaluation~reynders.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2018~improving_reliability_and_scalability_of_lorawans_through_lightweight_scheduling~reynders.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2018~improving_reliability_and_scalability_of_lorawans_through_lightweight_scheduling~reynders.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2017~evaluation_of_the_iot_lorawan_solution_for_distributed_measurement_applications~rizzi.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2017~evaluation_of_the_iot_lorawan_solution_for_distributed_measurement_applications~rizzi.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2017~evaluation_of_macro_diversity_gain_in_long_range_aloha_networks~song.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2017~evaluation_of_macro_diversity_gain_in_long_range_aloha_networks~song.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2017~analysis_of_latency_and_mac-layer_performance_for_class_a_lorawan~sorensen.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2019~energy-efficient_resource_allocation_with_flexible_frame_structure_for~sui.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2019~energy-efficient_resource_allocation_with_flexible_frame_structure_for~sui.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2018~simulation_of_lora_in_ns-3_-_improving_lora_performance_with_csma~to.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2018~simulation_of_lora_in_ns-3_-_improving_lora_performance_with_csma~to.pdf
http://arxiv.org/abs/1902.04383
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2019~iot-based_urban_traffic-light_control_-_modelling,_prototyping_and_evaluation_of~zitouni.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/mac/2019~iot-based_urban_traffic-light_control_-_modelling,_prototyping_and_evaluation_of~zitouni.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2019~evaluating_lora_physical_as_a_radio_link_technology_for_use_in_a~aden_hassan.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2019~evaluating_lora_physical_as_a_radio_link_technology_for_use_in_a~aden_hassan.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2019~evaluating_lora_physical_as_a_radio_link_technology_for_use_in_a~aden_hassan.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2015~internet_of_things_-_a_survey_on_enabling_technologies,_protocols,_and~al-fuqaha.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2015~internet_of_things_-_a_survey_on_enabling_technologies,_protocols,_and~al-fuqaha.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2018~lorawan_in_an_environment_transmission_rate_according_to_the_network_server,~.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2018~lorawan_in_an_environment_transmission_rate_according_to_the_network_server,~.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2019~internet_of_mobile_things_-_overview_of_lorawan_dash7_and_nb-iot_in_lpwans_standards_and_supported_mobility~ayoub,.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2019~internet_of_mobile_things_-_overview_of_lorawan_dash7_and_nb-iot_in_lpwans_standards_and_supported_mobility~ayoub,.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2019~a_survey_on_low-power_wide_area_networks_for_iot_applications~bembe.pdf


[95] Alexandros-Apostolos A. Boulogeorgos, Panagiotis D. Diamantoulakis, and George K. Kara-
giannidis. Low Power Wide Area Networks (LPWANs) for Internet of Things (IoT) Applica-
tions: Research Challenges and Future Trends. In: CoRR abs/1611.07449 (2016).

[96] Raouf Boutaba et al. A Comprehensive Survey on Machine Learning for Networking: Evo-
lution, Applications and Research Opportunities. In: Journal of Internet Services and Appli-
cations 9.1 (Dec. 2018), p. 16.

[97] Charlmers. Exploring LoRa and LoRaWAN. 2017.

[98] Mehmet Ali Ertø"urk et al. A Survey on LoRaWAN Architecture, Protocol and Technologies.
In: Future Internet 11.10 (Oct. 17, 2019), p. 216.

[99] Cortés Eva Jurado. Expanding a LoRaWAN Network for Cost Efficiency Improvement. 2018.

[100] Low-Power Wide Area Network (LPWAN) Overview. Tech. rep. May 2018.

[101] Joseph Finnegan and Stephen Brown. A Comparative Survey of LPWA Networking. Feb. 12,
2018. URL: http://arxiv.org/abs/1802.04222 (visited on 11/27/2019).

[102] C. Goursaud and J. M. Gorce. Dedicated networks for IoT: PHY / MAC state of the art and
challenges. In: EAI Endorsed Transactions on Internet of Things. Survey 1.1 (Oct. 26, 2015),
p. 150597.

[103] Jetmir Haxhibeqiri et al. A Survey of LoRaWAN for IoT: From Technology to Application. In:
Sensors 18.11 (Nov. 16, 2018), p. 3995.

[104] H. A. A. Al-Kashoash and Andrew H. Kemp. Comparison of 6LoWPAN and LPWAN for the
Internet of Things. In: 13.4 (Oct. 2016), pp. 268–274.

[105] Oratile Khutsoane, Bassey Isong, and Adnan M. Abu-Mahfouz. IoT Devices and Applica-
tions Based on LoRa/LoRaWAN. In: IECON 2017 - 43rd Annual Conference of the IEEE In-
dustrial Electronics Society. IECON 2017 - 43rd Annual Conference of the IEEE Industrial
Electronics Society. Beijing: IEEE, Oct. 2017, pp. 6107–6112.

[106] Rachel Kufakunesu, Gerhard P. Hancke, and Adnan M. Abu-Mahfouz. A Survey on Adaptive
Data Rate Optimization in LoRaWAN: Recent Solutions and Major Challenges. In: Sensors
20.18 (Sept. 2020), p. 5044.

[107] Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. 1st ed. Cambridge University Press,
July 31, 2020.

[108] Davide Magrin. Network Level Performances of a LoRa System. In: Master thesis (2017).

[109] Esteban Pablo. Evaluación Del Rango de Transmisión de LoRa Para Redes de Sensores In-
alámbricas Con LoRaWAN En Ambientes Forestales. 2017.

[110] Rashmi Sharan Sinha, Yiqiao Wei, and Seung-Hoon Hwang. A Survey on LPWA Technology:
LoRa and NB-IoT. In: ICT Express 3.1 (Mar. 2017), pp. 14–21.

[111] Aleksandrs Slivkins. Introduction to Multi-Armed Bandits. Sept. 29, 2019. URL: http://
arxiv.org/abs/1904.07272 (visited on 02/03/2021).

[112] Yonghua Song et al. An Internet of Energy Things Based on Wireless LPWAN. In: Engineer-
ing 3.4 (Aug. 2017), pp. 460–466.

[113] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Second
edition. Adaptive Computation and Machine Learning Series. Cambridge, Massachusetts:
The MIT Press, 2018. 526 pp.

[114] Csaba Szepesvári. Algorithms for Reinforcement Learning. In: Synthesis Lectures on Artifi-
cial Intelligence and Machine Learning 4.1 (Jan. 2010), pp. 1–103.

[115] El-Ghazali Talbi. Metaheuristics: From Design to Implementation. Hoboken, N.J: John Wi-
ley & Sons, 2009. 593 pp.

124

/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2016~low_power_wide_area_networks_(lpwans)_for_internet_of_things_(iot)_applications~boulogeorgos.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2016~low_power_wide_area_networks_(lpwans)_for_internet_of_things_(iot)_applications~boulogeorgos.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/~~~/2018~a_comprehensive_survey_on_machine_learning_for_networking_-_evolution,~boutaba.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/~~~/2018~a_comprehensive_survey_on_machine_learning_for_networking_-_evolution,~boutaba.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2017~exploring_lora_and_lorawan~.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2019~a_survey_on_lorawan_architecture,_protocol_and_technologies~erturk.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2018~expanding_a_lorawan_network_for_cost_efficiency_improvement~.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2017~low_power_wide_area_networks_-_an_overview~raza.pdf
http://arxiv.org/abs/1802.04222
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2015~dedicated_networks_for_iot_-_phy_-_mac_state_of_the_art_and_challenges~goursaud.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2015~dedicated_networks_for_iot_-_phy_-_mac_state_of_the_art_and_challenges~goursaud.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2018~a_survey_of_lorawan_for_iot_-_from_technology_to_application~haxhibeqiri.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2016~comparison_of_6lowpan_and_lpwan_for_the_internet_of_things~al-kashoash.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2016~comparison_of_6lowpan_and_lpwan_for_the_internet_of_things~al-kashoash.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2017~iot_devices_and_applications_based_on_lora-lorawan~khutsoane.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2017~iot_devices_and_applications_based_on_lora-lorawan~khutsoane.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2020~a_survey_on_adaptive_data_rate_optimization_in_lorawan_-_recent_solutions_and_major_challenges~kufakunesu.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2020~a_survey_on_adaptive_data_rate_optimization_in_lorawan_-_recent_solutions_and_major_challenges~kufakunesu.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/~~~/2020~bandit_algorithms~lattimore.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2017~network_level_performances_of_a_lora_system~magrin.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2017~evaluacion_del_rango_de_transmision_de_lora_para_redes_de_sensores_inalambricas~.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2017~evaluacion_del_rango_de_transmision_de_lora_para_redes_de_sensores_inalambricas~.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2017~a_survey_on_lpwa_technology_-_lora_and_nb-iot~sinha.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2017~a_survey_on_lpwa_technology_-_lora_and_nb-iot~sinha.pdf
http://arxiv.org/abs/1904.07272
http://arxiv.org/abs/1904.07272
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/~~~/2017~an_internet_of_energy_things_based_on_wireless_lpwan~song.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/~~~/2014~reinforcement_learning_an_introduction~sutton.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/~~~/2010~algorithms_for_reinforcement_learning~szepesvari.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/~~~/2009~metaheuristics_-_from_design_to_implementation~talbi.pdf


[116] Junfeng Xie et al. A Survey of Machine Learning Techniques Applied to Software Defined
Networking (SDN): Research Issues and Challenges. In: IEEE Communications Surveys &
Tutorials PP (Aug. 23, 2018), pp. 1–1.

[117] Raoul Zamble, Narcisse Dakouri Dogba, and Auguste Ndrin Hugues. IMPLEMENTING AND
TESTING OF A MOBILE JAMMER AT ESATIC. In: International Journal of Advanced Re-
search 8.8 (Aug. 2020), pp. 141–150.

Heuristic optmizations

[118] Khaled Q. Abdelfadeel, Victor Cionca, and Dirk Pesch. Fair Adaptive Data Rate Allocation
and Power Control in LoRaWAN. Feb. 28, 2018. URL: http://arxiv.org/abs/1802.
10338 (visited on 11/20/2019).

[119] James C. Bezdek, Robert Ehrlich, and William Full. FCM: The fuzzy c-means clustering
algorithm. In: Computers & Geosciences. FCM 10.2-3 (Jan. 1984), pp. 191–203.

[120] Martin Bor and Utz Roedig. LoRa Transmission Parameter Selection. In: 2017 13th Interna-
tional Conference on Distributed Computing in Sensor Systems (DCOSS). 2017 13th Inter-
national Conference on Distributed Computing in Sensor Systems (DCOSS). Ottawa, ON:
IEEE, June 2017, pp. 27–34.

[121] Xi Chen, Prateek Gangwal, and Daji Qiao. RAM: Rate Adaptation in Mobile Environments.
In: IEEE Transactions on Mobile Computing. RAM, 11.3 (Mar. 2012), pp. 464–477.

[122] Francesca Cuomo et al. Towards traffic-oriented spreading factor allocations in LoRaWAN
systems. In: 2018 17th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-
Net). 2018, pp. 1–8.

[123] Samir Dawaliby, Abbas Bradai, and Yannis Pousset. Adaptive Dynamic Network Slicing in
LoRa Networks. In: Future Generation Computer Systems 98 (Sept. 2019), pp. 697–707.

[124] Lara Deek et al. Joint rate and channel width adaptation for 802.11 MIMO wireless net-
works. In: 2013 IEEE International Conference on Sensing, Communications and Network-
ing (SECON). 2013 10th Annual IEEE Communications Society Conference on Sensing and
Communication in Wireless Networks (SECON). ARAMIS. New Orleans, LA, USA: IEEE,
June 2013, pp. 167–175.

[125] Kai-Ten Feng, Po-Tai Lin, and Wen-Jiunn Liu. Frame-Aggregated Link Adaptation Protocol
for Next Generation Wireless Local Area Networks. In: EURASIP Journal on Wireless Com-
munications and Networking. FALA 2010.1 (Dec. 2010), p. 164651.

[126] G. Gan, J. Wu, and Z. Yang. A genetic fuzzy k-Modes algorithm for clustering categorical
data. In: Expert Systems with Applications. genetic fuzzy k-Modes algorithm 36.2 (Mar.
2009), pp. 1615–1620.

[127] Vojtech Hauser and Tomas Hegr. Proposal of Adaptive Data Rate Algorithm for LoRaWAN-
Based Infrastructure. In: 2017 IEEE 5th International Conference on Future Internet of Things
and Cloud (FiCloud). 2017 IEEE 5th International Conference on Future Internet of Things
and Cloud (FiCloud). Prague: IEEE, Aug. 2017, pp. 85–90.

[128] T. Jayasri and M. Hemalatha. Link Quality Estimation for Adaptive Data Streaming in WSN.
In: Wireless Personal Communications 94.3 (June 2017), pp. 1543–1562.

[129] Shahbaz Khan. A Survey of Rate-Adaptation Schemes for IEEE 802.11 Compliant WLANs.
In: KSII Transactions on Internet and Information Systems. Survey 7.3 (Mar. 31, 2013), pp. 425–
445.

[130] Dae-Young Kim et al. Adaptive Data Rate Control in Low Power Wide Area Networks for
Long Range IoT Services. In: Journal of Computational Science 22 (Sept. 2017), pp. 171–
178.

125

/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/~~~/2018~a_survey_of_machine_learning_techniques_applied_to_software_defined_networking~xie.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/~~~/2018~a_survey_of_machine_learning_techniques_applied_to_software_defined_networking~xie.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/~~~/2020~bandits_manchots_sur_flux_de_donn�es_non-stationnaires~raoul.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/~~~/2020~bandits_manchots_sur_flux_de_donn�es_non-stationnaires~raoul.pdf
http://arxiv.org/abs/1802.10338
http://arxiv.org/abs/1802.10338
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/1984~fcm_-_the_fuzzy_c-means_clustering_algorithm~bezdek.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/1984~fcm_-_the_fuzzy_c-means_clustering_algorithm~bezdek.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2017~lora_transmission_parameter_selection~bor.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2012~ram_-_rate_adaptation_in_mobile_environments~chen.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2018~towards_traffic-oriented_spreading_factor_allocations_in_lorawan_systems~cuomo.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2018~towards_traffic-oriented_spreading_factor_allocations_in_lorawan_systems~cuomo.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2019~adaptive_dynamic_network_slicing_in_lora_networks~dawaliby.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2019~adaptive_dynamic_network_slicing_in_lora_networks~dawaliby.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2013~joint_rate_and_channel_width_adaptation_for_802.11_mimo_wireless_networks~deek.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2013~joint_rate_and_channel_width_adaptation_for_802.11_mimo_wireless_networks~deek.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2010~frame-aggregated_link_adaptation_protocol_for_next_generation_wireless_local~feng.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2010~frame-aggregated_link_adaptation_protocol_for_next_generation_wireless_local~feng.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2009~a_genetic_fuzzy_k-modes_algorithm_for_clustering_categorical_data~gan.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2009~a_genetic_fuzzy_k-modes_algorithm_for_clustering_categorical_data~gan.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2017~proposal_of_adaptive_data_rate_algorithm_for_lorawan-based_infrastructure~hauser.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2017~proposal_of_adaptive_data_rate_algorithm_for_lorawan-based_infrastructure~hauser.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2017~link_quality_estimation_for_adaptive_data_streaming_in_wsn~jayasri.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2013~a_survey_of_rate-adaptation_schemes_for_ieee_802.11_compliant_wlans~.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2017~adaptive_data_rate_control_in_low_power_wide_area_networks_for_long_range_iot~kim.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2017~adaptive_data_rate_control_in_low_power_wide_area_networks_for_long_range_iot~kim.pdf


[131] Sungryul Kim and Younghwan Yoo. Contention-Aware Adaptive Data Rate for Throughput
Optimization in LoRaWAN. In: Sensors 18.6 (May 25, 2018), p. 1716.

[132] Soung-Yue Liew et al. A Fast, Adaptive, and Energy-Efficient Data Collection Protocol in
Multi-Channel-Multi-Path Wireless Sensor Networks. In: IEEE Computational Intelligence
Magazine 13.1 (Feb. 2018), pp. 30–40.

[133] Shan Lin et al. ATPC: adaptive transmission power control for wireless sensor networks.
In: Proceedings of the 4th international conference on Embedded networked sensor systems
- SenSys ’06. the 4th international conference. ATPC. Boulder, Colorado, USA: ACM Press,
2006, p. 223.

[134] Moshe T. Masonta et al. Adaptive spectrum decision framework for heterogeneous dy-
namic spectrum access networks. In: AFRICON 2015. IEEE AFRICON 2015. ASDF. Addis
Ababa, Ethiopia: IEEE, Sept. 2015, pp. 1–5.

[135] Michael K. Ng and Joyce C. Wong. Clustering Categorical Data Sets Using Tabu Search
Techniques. In: Pattern Recognition 35.12 (Dec. 2002), pp. 2783–2790.

[136] Duy Nguyen and J. J. Garcia-Luna-Aceves. A practical approach to rate adaptation for multi-
antenna systems. In: 2011 19th IEEE International Conference on Network Protocols. 2011
19th IEEE International Conference on Network Protocols (ICNP). RAMAS. Vancouver, AB,
Canada: IEEE, Oct. 2011, pp. 331–340.

[137] Moises Nunez Ochoa et al. Evaluating LoRa Energy Efficiency for Adaptive Networks: From
Star to Mesh Topologies. In: 2017 IEEE 13th International Conference on Wireless and Mo-
bile Computing, Networking and Communications (WiMob). 2017 IEEE 13th International
Conference on Wireless and Mobile Computing, Networking and Communications (WiMob).
Rome: IEEE, Oct. 2017, pp. 1–8.

[138] Ioannis Pefkianakis et al. Window-based Rate Adaptation in 802.11n Wireless Networks.
In: Mobile Networks and Applications. WRA 18.1 (Feb. 2013), pp. 156–169.

[139] S. K. Sathya Lakshmi Preeth et al. An Adaptive Fuzzy Rule Based Energy Efficient Cluster-
ing and Immune-Inspired Routing Protocol for WSN-Assisted IoT System. In: Journal of
Ambient Intelligence and Humanized Computing (Dec. 17, 2018).

[140] Brecht Reynders, Wannes Meert, and Sofie Pollin. Power and spreading factor control in
low power wide area networks. In: IEEE, May 2017.

[141] Enrique H. Ruspini, James C. Bezdek, and James M. Keller. Fuzzy Clustering: A Historical
Perspective. In: IEEE Computational Intelligence Magazine 14.1 (Feb. 2019), pp. 45–55.

[142] Mariusz Slabicki, Gopika Premsankar, and Mario Di Francesco. Adaptive Configuration of
Lora Networks for Dense IoT Deployments. In: NOMS 2018 - 2018 IEEE/IFIP Network Op-
erations and Management Symposium. NOMS 2018 - 2018 IEEE/IFIP Network Operations
and Management Symposium. Taipei, Taiwan: IEEE, Apr. 2018, pp. 1–9.

[143] Guozhi Song et al. Improved Energy Efficient Adaptive Clustering Routing Algorithm for
WSN. In: Wireless Sensor Networks. Ed. by Jianzhong Li et al. Vol. 812. Communications in
Computer and Information Science. Singapore: Springer Singapore, 2018, pp. 74–85.

[144] Autanan Wannachai and Paskorn Champrasert. Adaptive Transmission Range Based on
Event Detection for WSNs. In: 2015 IEEE Tenth International Conference on Intelligent Sen-
sors, Sensor Networks and Information Processing (ISSNIP). 2015 IEEE Tenth International
Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP).
A-TRED. Singapore: IEEE, Apr. 2015, pp. 1–6.

126

/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2018~contention-aware_adaptive_data_rate_for_throughput_optimization_in_lorawan~kim.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2018~contention-aware_adaptive_data_rate_for_throughput_optimization_in_lorawan~kim.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2018~a_fast,_adaptive,_and_energy-efficient_data_collection_protocol_in~liew.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2018~a_fast,_adaptive,_and_energy-efficient_data_collection_protocol_in~liew.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2006~atpc_-_adaptive_transmission_power_control_for_wireless_sensor_networks~lin.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2015~adaptive_spectrum_decision_framework_for_heterogeneous_dynamic_spectrum_access~masonta.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2015~adaptive_spectrum_decision_framework_for_heterogeneous_dynamic_spectrum_access~masonta.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2002~clustering_categorical_data_sets_using_tabu_search_techniques~ng.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2002~clustering_categorical_data_sets_using_tabu_search_techniques~ng.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2011~a_practical_approach_to_rate_adaptation_for_multi-antenna_systems~nguyen.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2011~a_practical_approach_to_rate_adaptation_for_multi-antenna_systems~nguyen.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2017~evaluating_lora_energy_efficiency_for_adaptive_networks_-_from_star_to_mesh~ochoa.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2017~evaluating_lora_energy_efficiency_for_adaptive_networks_-_from_star_to_mesh~ochoa.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2013~window-based_rate_adaptation_in_802.11n_wireless_networks~pefkianakis.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2018~an_adaptive_fuzzy_rule_based_energy_efficient_clustering_and_immune-inspired~preeth.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2018~an_adaptive_fuzzy_rule_based_energy_efficient_clustering_and_immune-inspired~preeth.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2017~power_and_spreading_factor_control_in_low_power_wide_area_networks~2017.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2017~power_and_spreading_factor_control_in_low_power_wide_area_networks~2017.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2006~fuzzy_clustering_-_a_historical_perspective~t_rk_en.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2006~fuzzy_clustering_-_a_historical_perspective~t_rk_en.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2018~adaptive_configuration_of_lora_networks_for_dense_iot_deployments~slabicki.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2018~adaptive_configuration_of_lora_networks_for_dense_iot_deployments~slabicki.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2018~improved_energy_efficient_adaptive_clustering_routing_algorithm_for_wsn~song.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2018~improved_energy_efficient_adaptive_clustering_routing_algorithm_for_wsn~song.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2015~adaptive_transmission_range_based_on_event_detection_for_wsns~wannachai.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/obj/2015~adaptive_transmission_range_based_on_event_detection_for_wsns~wannachai.pdf


Markovian Decision Process (MDP)

[145] Naoki Aihara et al. Q-Learning Aided Resource Allocation and Environment Recognition
in LoRaWAN With CSMA/CA. In: IEEE Access 7 (2019), pp. 152126–152137.

[146] Adnan Aijaz. Hap-SliceR: A Radio Resource Slicing Framework for 5G Networks With Hap-
tic Communications. In: IEEE Systems Journal 12.3 (Sept. 2018), pp. 2285–2296.

[147] Haider Daami R. Albonda and J. Pérez-Romero. Reinforcement Learning-Based Radio Ac-
cess Network Slicing for a 5G System with Support for Cellular V2X. In: Cognitive Radio-
Oriented Wireless Networks. Ed. by Adrian Kliks et al. Vol. 291. Cham: Springer International
Publishing, 2019, pp. 262–276.

[148] Salman A. AlQahtani and Waseem A. Alhomiqani. A Multi-Stage Analysis of Network Slicing
Architecture for 5G Mobile Networks. In: Telecommunication Systems (Aug. 29, 2019).

[149] H.R. Berenji. Fuzzy Q-Learning: A New Approach for Fuzzy Dynamic Programming. In:
Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference. 1994 IEEE 3rd Inter-
national Fuzzy Systems Conference. Orlando, FL, USA: IEEE, 1994, pp. 486–491.

[150] Inaam Ilahi et al. LoRaDRL: Deep Reinforcement Learning Based Adaptive PHY Layer Trans-
mission Parameters Selection for LoRaWAN. In: (Nov. 2020).

[151] Pooyan Jamshidi et al. Self-Learning Cloud Controllers: Fuzzy Q-Learning for Knowledge
Evolution. July 2, 2015. URL: http://arxiv.org/abs/1507.00567 (visited on 06/28/2020).

[152] Raja Karmakar, Samiran Chattopadhyay, and Sandip Chakraborty. Linkcon: Adaptive Link
Configuration over SDN Controlled Wireless Access Networks. In: Proceedings of the ACM
Workshop on Distributed Information Processing in Wireless Networks - DIPWN’17. The
ACM Workshop. Chennai, India: ACM Press, 2017, pp. 1–6.

[153] Raja Karmakar, Samiran Chattopadhyay, and Sandip Chakraborty. SmartLA: Reinforcement
Learning-Based Link Adaptation for High Throughput Wireless Access Networks. In: Com-
puter Communications 110 (Sept. 2017), pp. 1–25.

[154] Petar Kochovski, Pavel D. Drobintsev, and Vlado Stankovski. Formal Quality of Service As-
surances, Ranking and Verification of Cloud Deployment Options with a Probabilistic Model
Checking Method. In: Information and Software Technology 109 (May 2019), pp. 14–25.

[155] Cheng-Jian Lin. Reinforcement Evolutionary Learning for Neuro-Fuzzy Controller Design.
In: Reinforcement Learning. I-Tech Education and Publishing, Jan. 2008.

[156] Ling Li, Shancang Li, and Shanshan Zhao. QoS-Aware Scheduling of Services-Oriented In-
ternet of Things. In: IEEE Transactions on Industrial Informatics. Optimization 10.2 (May
2014), pp. 1497–1505.

[157] D. M. Roijers et al. A Survey of Multi-Objective Sequential Decision-Making. In: Journal of
Artificial Intelligence Research 48 (Oct. 18, 2013), pp. 67–113.

[158] Ruben M. Sandoval, Antonio-Javier Garcia-Sanchez, and Joan Garcia-Haro. Optimizing
and Updating LoRa Communication Parameters: A Machine Learning Approach. In: IEEE
Transactions on Network and Service Management 16.3 (Sept. 2019), pp. 884–895.

[159] Ruben M. Sandoval et al. Optimal Policy Derivation for Transmission Duty-Cycle Con-
strained LPWAN. In: IEEE Internet of Things Journal 5.4 (Aug. 2018), pp. 3114–3125.

[160] Yao Sun et al. Distributed Learning Based Handoff Mechanism for Radio Access Network
Slicing with Data Sharing. In: ICC 2019 - 2019 IEEE International Conference on Communi-
cations (ICC). ICC 2019 - 2019 IEEE International Conference on Communications (ICC).
Shanghai, China: IEEE, May 2019, pp. 1–6.

127

/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2019~q-learning_aided_resource_allocation_and_environment_recognition_in_lorawan~aihara.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2019~q-learning_aided_resource_allocation_and_environment_recognition_in_lorawan~aihara.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2018~hap-slicer_-_a_radio_resource_slicing_framework_for_5g_networks_with_haptic~aijaz.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2018~hap-slicer_-_a_radio_resource_slicing_framework_for_5g_networks_with_haptic~aijaz.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2019~reinforcement_learning-based_radio_access_network_slicing_for_a_5g_system_with~albonda.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2019~reinforcement_learning-based_radio_access_network_slicing_for_a_5g_system_with~albonda.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2019~a_multi-stage_analysis_of_network_slicing_architecture_for_5g_mobile_networks~alqahtani.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2019~a_multi-stage_analysis_of_network_slicing_architecture_for_5g_mobile_networks~alqahtani.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/1994~fuzzy_q-learning_-_a_new_approach_for_fuzzy_dynamic_programming~berenji.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2020~loradrl_-_deep_reinforcement_learning_based_adaptive_phy_layer_transmission_parameters_selection_for_lorawan~ilahi.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2020~loradrl_-_deep_reinforcement_learning_based_adaptive_phy_layer_transmission_parameters_selection_for_lorawan~ilahi.pdf
http://arxiv.org/abs/1507.00567
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2017~linkcon_-_adaptive_link_configuration_over_sdn_controlled_wireless_access~karmakar.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2017~linkcon_-_adaptive_link_configuration_over_sdn_controlled_wireless_access~karmakar.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2017~smartla_-_reinforcement_learning-based_link_adaptation_for_high_throughput~karmakar.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2017~smartla_-_reinforcement_learning-based_link_adaptation_for_high_throughput~karmakar.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2019~formal_quality_of_service_assurances,_ranking_and_verification_of_cloud~kochovski.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2019~formal_quality_of_service_assurances,_ranking_and_verification_of_cloud~kochovski.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2019~formal_quality_of_service_assurances,_ranking_and_verification_of_cloud~kochovski.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2008~reinforcement_distribution_in_fuzzy_q-learning~lin.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2014~qos-aware_scheduling_of_services-oriented_internet_of_things~ling_li.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2014~qos-aware_scheduling_of_services-oriented_internet_of_things~ling_li.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2013~a_survey_of_multi-objective_sequential_decision-making~roijers.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2019~optimizing_and_updating_lora_communication_parameters_-_a_machine_learning_approach~sandoval.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2019~optimizing_and_updating_lora_communication_parameters_-_a_machine_learning_approach~sandoval.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2018~optimal_policy_derivation_for_transmission_duty-cycle_constrained_lpwan~sandoval.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2018~optimal_policy_derivation_for_transmission_duty-cycle_constrained_lpwan~sandoval.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2019~distributed_learning_based_handoff_mechanism_for_radio_access_network_slicing~sun.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2019~distributed_learning_based_handoff_mechanism_for_radio_access_network_slicing~sun.pdf


[161] Joel Toussaint, Nancy El Rachkidy, and Alexandre Guitton. Performance Analysis of the On-
the-Air Activation in LoRaWAN. In: 2016 IEEE 7th Annual Information Technology, Elec-
tronics and Mobile Communication Conference (IEMCON). 2016 IEEE 7th Annual Informa-
tion Technology, Electronics and Mobile Communication Conference (IEMCON). Vancou-
ver, BC, Canada: IEEE, Oct. 2016, pp. 1–7.

[162] Haozhe Wang et al. Data-Driven Dynamic Resource Scheduling for Network Slicing: A Deep
Reinforcement Learning Approach. In: Information Sciences 498 (Sept. 2019), pp. 106–116.

[163] Christopher J.C.H. Watkins and Peter Dayan. Technical Note: Q-Learning. In: Machine Learn-
ing 8.3 (1992), pp. 279–292.

[164] H.W.M. Witlox. The HEGADAS model for ground-level heavy-gas dispersion II. Time-dependent
model. In: Atmospheric Environment 28.18 (Oct. 1994), pp. 2933–2946.

[165] Yi Yu et al. Multi-Agent Q-Learning Algorithm for Dynamic Power and Rate Allocation in
LoRa Networks. In: (Aug. 2020).

[166] Xi Zhang, Jingqing Wang, and Qixuan Zhu. Q-Learning Based Energy Harvesting for Het-
erogeneous Statistical QoS Provisioning over Multihop Big-Data Relay Networks. In: 2019
International Conference on Internet of Things (iThings) and IEEE Green Computing and
Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData). 2019 International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). Atlanta, GA,
USA: IEEE, July 2019, pp. 807–814.

Multi Armed Bandit (MAB)

[167] Robin Allesiardo and Raphael Feraud. EXP3 with drift detection for the switching bandit
problem. In: 2015 IEEE International Conference on Data Science and Advanced Analyt-
ics (DSAA). 2015 IEEE International Conference on Data Science and Advanced Analytics
(DSAA). EXP3,UCB. Campus des Cordeliers, Paris, France: IEEE, Oct. 2015, pp. 1–7.

[168] Amin Azari and Cicek Cavdar. Self-Organized Low-Power IoT Networks: A Distributed Learn-
ing Approach. In: 2018 IEEE Global Communications Conference (GLOBECOM). IEEE, Dec.
2018.

[169] Rémi Bonnefoi, Christophe Moy, and Jacques Palicot. Improvement of the LPWAN AMI
Backhaul’s Latency Thanks to Reinforcement Learning Algorithms. In: EURASIP Journal
on Wireless Communications and Networking 2018.1 (Dec. 2018), p. 34.

[170] Rémi Bonnefoi et al. Multi-Armed Bandit Learning in IoT Networks: Learning Helps Even
in Non-Stationary Settings. In: Cognitive Radio Oriented Wireless Networks. Ed. by Paulo
Marques et al. Vol. 228. Lecture Notes of the Institute for Computer Sciences, Social Infor-
matics and Telecommunications Engineering. Cham: Springer International Publishing,
2018, pp. 173–185.

[171] Djallel Bouneffouf and Irina Rish. A Survey on Practical Applications of Multi-Armed and
Contextual Bandits. Apr. 2, 2019. URL: http://arxiv.org/abs/1904.10040 (visited on
05/07/2020).

[172] Djallel Bouneffouf et al. Contextual Bandit for Active Learning: Active Thompson Sam-
pling. In: Neural Information Processing. Springer International Publishing, 2014, pp. 405–
412.

[173] Yann Braouezec. Stochastic Adaptive Dynamics of a Simple Market as a Non-Stationary
Multi-Armed Bandit Problem. In: SSRN Electronic Journal (2008).

128

/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2016~performance_analysis_of_the_on-the-air_activation_in_lorawan~toussaint.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2016~performance_analysis_of_the_on-the-air_activation_in_lorawan~toussaint.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2019~data-driven_dynamic_resource_scheduling_for_network_slicing_-_a_deep~wang.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2019~data-driven_dynamic_resource_scheduling_for_network_slicing_-_a_deep~wang.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/1992~technical_note_q-learning~watkins.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/1994~model_of_environment~witlox.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/1994~model_of_environment~witlox.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2020~multi-agent_q-learning_algorithm_for_dynamic_power_and_rate_allocation_in_lora_networks~yu.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2020~multi-agent_q-learning_algorithm_for_dynamic_power_and_rate_allocation_in_lora_networks~yu.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2019~q-learning_based_energy_harvesting_for_heterogeneous_statistical_qos~zhang.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mdp/2019~q-learning_based_energy_harvesting_for_heterogeneous_statistical_qos~zhang.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2015~exp3_with_drift_detection_for_the_switching_bandit_problem~allesiardo.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2015~exp3_with_drift_detection_for_the_switching_bandit_problem~allesiardo.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2018~self-organized_low-power_iot_networks_-_a_distributed_learning_approach~azari.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2018~self-organized_low-power_iot_networks_-_a_distributed_learning_approach~azari.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2018~improvement_of_the_lpwan_ami_backhauls_latency_thanks_to_reinforcement~bonnefoi.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2018~improvement_of_the_lpwan_ami_backhauls_latency_thanks_to_reinforcement~bonnefoi.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2018~multi-armed_bandit_learning_in_iot_networks_-_learning_helps_even_in~bonnefoi.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2018~multi-armed_bandit_learning_in_iot_networks_-_learning_helps_even_in~bonnefoi.pdf
http://arxiv.org/abs/1904.10040
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2014~contextual_bandit_for_active_learning_-_active_thompson_sampling~bouneffouf.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2014~contextual_bandit_for_active_learning_-_active_thompson_sampling~bouneffouf.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2008~the_non-stochastic_multi-armed_bandit_problem(cid0)~braouezec.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2008~the_non-stochastic_multi-armed_bandit_problem(cid0)~braouezec.pdf


[174] Sébastien Bubeck. Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit
Problems. now Publishers Inc, 2012.

[175] John Chia. Contextual and Linear Bandits. In: (July 2020), pp. 191–192.

[176] Sumit J. Darak, Christophe Moy, and Jacques Palicot. Proof-of-Concept System for Oppor-
tunistic Spectrum Access in Multi-user Decentralized Networks. In: EAI Endorsed Transac-
tions on Cognitive Communications 2.7 (Sept. 2016), p. 151647.

[177] R. Devanand and P. Kumar. Empirical study of Thompson sampling: Tuning the posterior
parameters. In: Author(s), 2017.

[178] Pratik Gajane. Les menages agricoles avec un migrant de retour sont plus susceptibles de
posseder une entreprise non agricole dans certains pays. In: (June 2017).

[179] Raouf Kerkouche et al. Node-Based Optimization of LoRa Transmissions with Multi-Armed
Bandit Algorithms. In: 2018 25th International Conference on Telecommunications (ICT).
2018 25th International Conference on Telecommunications (ICT). St. Malo: IEEE, June
2018, pp. 521–526.

[180] Lihong Li et al. A contextual-bandit approach to personalized news article recommenda-
tion. In: Proceedings of the 19th international conference on World wide web - WWW ex-
tquotesingle10. ACM Press, 2010.

[181] P. Meyer. Algorithmes et incontinence urinaire des séniors : évaluations, traitements, recom-
mandations et niveaux de preuve. Revue de la littérature. In: Progrès en Urologie 27.3 (Mar.
2017), pp. 111–145.

[182] Duc-Tuyen Ta et al. LoRa-MAB: A Flexible Simulator for Decentralized Learning Resource
Allocation in IoT Networks. In: 2019 12th IFIP Wireless and Mobile Networking Confer-
ence (WMNC). 2019 12th IFIP Wireless and Mobile Networking Conference (WMNC). Sept.
2019, pp. 55–62.

[183] Cem Tekin and Eralp Turgay. Multi-Objective contextual bandits with a dominant objec-
tive. In: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing
(MLSP). IEEE, Sept. 2017.

[184] Cem Tekin and Eralp Turgay. Multi-objective Contextual Multi-armed Bandit With a Domi-
nant Objective. In: IEEE Transactions on Signal Processing 66.14 (July 2018), pp. 3799–3813.

[185] Viktor Toldov. Adaptive MAC Layer for Interference Limited WSN. In: (2017), p. 148.

[186] Viktor Toldov et al. A Thompson sampling approach to channel exploration-exploitation
problem in multihop cognitive radio networks. In: 2016 IEEE 27th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). IEEE, Sept.
2016.

[187] Nirandika Wanigasekara et al. Learning Multi-Objective Rewards and User Utility Func-
tion in Contextual Bandits for Personalized Ranking. In: Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence. International Joint Conferences on
Artificial Intelligence Organization, Aug. 2019.

[188] Li Zhou. A Survey on Contextual Multi-Armed Bandits. Feb. 1, 2016. URL: http://arxiv.
org/abs/1508.03326 (visited on 04/28/2020).

Network layer

[189] Dmitry Bankov, Evgeny Khorov, and Andrey Lyakhov. On the Limits of LoRaWAN Channel
Access. In: (2016), p. 5.

[190] Martin Bor, John Vidler, and Utz Roedig. LoRa for the Internet of Things. In: EWSN (Feb.
2016), pp. 361–366.

129

/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2012~regret_analysis_of_stochastic_and_nonstochastic_multi-armed_bandit_problems_contents~bubeck.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2012~regret_analysis_of_stochastic_and_nonstochastic_multi-armed_bandit_problems_contents~bubeck.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2020~non-linear_contextual_bandits~chia.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2016~proof-of-concept_system_for_opportunistic_spectrum_access_in_multi-user_decentralized_networks~j_darak.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2016~proof-of-concept_system_for_opportunistic_spectrum_access_in_multi-user_decentralized_networks~j_darak.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2017~empirical_study_of_thompson_sampling_-_tuning_the_posterior_parameters~devanand.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2017~empirical_study_of_thompson_sampling_-_tuning_the_posterior_parameters~devanand.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2017~bandits_multi-bras_avec_retour_dinformation_non-conventionnelle~.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2017~bandits_multi-bras_avec_retour_dinformation_non-conventionnelle~.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2018~node-based_optimization_of_lora_transmissions_with_multi-armed_bandit_algorithms~kerkouche.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2018~node-based_optimization_of_lora_transmissions_with_multi-armed_bandit_algorithms~kerkouche.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2010~a_contextual-bandit_approach_to_personalized_news_article_recommendation~li.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2010~a_contextual-bandit_approach_to_personalized_news_article_recommendation~li.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2017~systemes_de_recommandations_-_algorithmes_de_bandits_et_evaluation_experimentale~meyer.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2017~systemes_de_recommandations_-_algorithmes_de_bandits_et_evaluation_experimentale~meyer.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2019~lora-mab_-_a_flexible_simulator_for_decentralized_learning_resource_allocation~ta.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2019~lora-mab_-_a_flexible_simulator_for_decentralized_learning_resource_allocation~ta.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2017~multi-objective_contextual_bandits_with_a_dominant_objective~tekin.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2017~multi-objective_contextual_bandits_with_a_dominant_objective~tekin.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2018~multi-objective_contextual_bandit_problem_with_similarity_information~tekin.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2018~multi-objective_contextual_bandit_problem_with_similarity_information~tekin.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2017~adaptive_mac_layer_for_interference_limited_wsn~toldov.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2016~a_thompson_sampling_approach_to_channel_exploration-exploitation_problem_in_multihop_cognitive_radio_networks~toldov.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2016~a_thompson_sampling_approach_to_channel_exploration-exploitation_problem_in_multihop_cognitive_radio_networks~toldov.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2019~learning_multi-objective_rewards_and_user_utility_function_in_contextual_bandits_for_personalized_ranking~wanigasekara.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/etc/mab/2019~learning_multi-objective_rewards_and_user_utility_function_in_contextual_bandits_for_personalized_ranking~wanigasekara.pdf
http://arxiv.org/abs/1508.03326
http://arxiv.org/abs/1508.03326
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/net/2016~on_the_limits_of_lorawan_channel_access~bankov.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/net/2016~on_the_limits_of_lorawan_channel_access~bankov.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/net/2016~lora_for_the_internet_of_things~bor.pdf


[191] Hsiang-Yu Huang et al. A LoRa-Based Optimal Path Routing Algorithm for Smart Grid. In:
2018 12th International Conference on Sensing Technology (ICST). 2018 12th International
Conference on Sensing Technology (ICST). Limerick: IEEE, Dec. 2018, pp. 71–76.

[192] Kai-Hsiang Ke et al. A LoRa Wireless Mesh Networking Module for Campus-Scale Moni-
toring: Demo Abstract. In: Proceedings of the 16th ACM/IEEE International Conference on
Information Processing in Sensor Networks - IPSN ’17. The 16th ACM/IEEE International
Conference. Pittsburgh, Pennsylvania: ACM Press, 2017, pp. 259–260.

[193] Huang-Chen Lee and Kai-Hsiang Ke. Monitoring of Large-Area IoT Sensors Using a LoRa
Wireless Mesh Network System: Design and Evaluation. In: IEEE Transactions on Instru-
mentation and Measurement 67.9 (Sept. 2018), pp. 2177–2187.

[194] Chun-Hao Liao et al. Multi-Hop LoRa Networks Enabled by Concurrent Transmission. In:
IEEE Access 5 (2017), pp. 21430–21446.

[195] Daniel Lundell et al. A Routing Protocol for LoRA Mesh Networks. In: 2018 IEEE 19th In-
ternational Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoW-
MoM). 2018 IEEE 19th International Symposium on "A World of Wireless, Mobile and Mul-
timedia Networks" (WoWMoM). Chania, Greece: IEEE, June 2018, pp. 14–19.

[196] Tie Qiu et al. ERGID: An Efficient Routing Protocol for Emergency Response Internet of
Things. In: Journal of Network and Computer Applications 72 (Sept. 2016), pp. 104–112.

[197] Benjamin Sartori et al. Enabling RPL Multihop Communications Based on LoRa. In: 2017
IEEE 13th International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob). 2017 IEEE 13th International Conference on Wireless and Mo-
bile Computing, Networking and Communications (WiMob). Rome: IEEE, Oct. 2017, pp. 1–
8.

[198] Patrick Weber et al. IPv6 over LoRaWAN exttrademark. In: 2016 3rd International Sympo-
sium on Wireless Systems within the Conferences on Intelligent Data Acquisition and Ad-
vanced Computing Systems (IDAACS-SWS). 2016 3rd International Symposium on Wireless
Systems within the Conferences on Intelligent Data Acquisition and Advanced Computing
Systems (IDAACS-SWS). Offenburg, Germany: IEEE, Sept. 2016, pp. 75–79.

[199] Guibing Zhu et al. Improving the Capacity of a Mesh LoRa Network by Spreading-Factor-
Based Network Clustering. In: IEEE Access 7 (2019), pp. 21584–21596.

Physical layer

[200] L. Angrisani et al. LoRa Protocol Performance Assessment in Critical Noise Conditions. In:
2017 IEEE 3rd International Forum on Research and Technologies for Society and Industry
(RTSI). 2017 IEEE 3rd International Forum on Research and Technologies for Society and
Industry - Innovation to Shape the Future for Society and Industry (RTSI). Modena, Italy:
IEEE, Sept. 2017, pp. 1–5.

[201] Mohamed Aref and Axel Sikora. Free space range measurements with Semtech Lora tech-
nology. In: 2014 2nd International Symposium on Wireless Systems within the Conferences
on Intelligent Data Acquisition and Advanced Computing Systems. 2014 2nd International
Symposium on Wireless Systems within the Conferences on Intelligent Data Acquisition
and Advanced Computing Systems: Technology and Applications (IDAACS-SWS). Mea-
surement. Odessa, Ukraine: IEEE, Sept. 2014, pp. 19–23.

[202] Dmitry Bankov, Evgeny Khorov, and Andrey Lyakhov. Mathematical Model of LoRaWAN
Channel Access with Capture Effect. In: 2017 IEEE 28th Annual International Symposium
on Personal, Indoor, and Mobile Radio Communications (PIMRC). 2017 IEEE 28th Annual
International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).
Montreal, QC: IEEE, Oct. 2017, pp. 1–5.

130

/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/net/2018~a_lora-based_optimal_path_routing_algorithm_for_smart_grid~huang.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/net/2017~a_lora_wireless_mesh_networking_module_for_campus-scale_monitoring_-_demo~ke.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/net/2017~a_lora_wireless_mesh_networking_module_for_campus-scale_monitoring_-_demo~ke.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/net/2018~monitoring_of_large-area_iot_sensors_using_a_lora_wireless_mesh_network_system_-~lee.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/net/2018~monitoring_of_large-area_iot_sensors_using_a_lora_wireless_mesh_network_system_-~lee.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/net/2017~multi-hop_lora_networks_enabled_by_concurrent_transmission~liao.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/net/2018~a_routing_protocol_for_lora_mesh_networks~lundell.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/net/2016~ergid_-_an_efficient_routing_protocol_for_emergency_response_internet_of_things~qiu.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/net/2016~ergid_-_an_efficient_routing_protocol_for_emergency_response_internet_of_things~qiu.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/net/2017~enabling_rpl_multihop_communications_based_on_lora~sartori.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/net/2016~ipv6_over_lorawan~weber.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/net/2019~improving_the_capacity_of_a_mesh_lora_network_by_spreading-factor-based_network~zhu.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/net/2019~improving_the_capacity_of_a_mesh_lora_network_by_spreading-factor-based_network~zhu.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2017~lora_protocol_performance_assessment_in_critical_noise_conditions~angrisani.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2014~free_space_range_measurements_with_semtech_lora_technology~aref.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2014~free_space_range_measurements_with_semtech_lora_technology~aref.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2017~mathematical_model_of_lorawan_channel_access_with_capture_effect~bankov.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2017~mathematical_model_of_lorawan_channel_access_with_capture_effect~bankov.pdf


[203] Norbert Blenn and Fernando Kuipers. LoRaWAN in the Wild: Measurements from The
Things Network. June 9, 2017. URL: http://arxiv.org/abs/1706.03086 (visited on
11/20/2019).

[204] Martin C. Bor et al. Do LoRa Low-Power Wide-Area Networks Scale? In: Proceedings of the
19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems - MSWiM ’16. the 19th ACM International Conference. Evaluation. Malta,
Malta: ACM Press, 2016, pp. 59–67.

[205] Gilles Callebaut, Geoffrey Ottoy, and Liesbet Van der Perre. Cross-Layer Framework and
Optimization for Efficient Use of the Energy Budget of IoT Nodes. June 22, 2018. URL: http:
//arxiv.org/abs/1806.08624 (visited on 11/20/2019).

[206] Martina Capuzzo, Davide Magrin, and Andrea Zanella. Mathematical Modeling of LoRa
WAN Performance with Bi-Directional Traffic. In: 2018 IEEE Global Communications Con-
ference (GLOBECOM). GLOBECOM 2018 - 2018 IEEE Global Communications Conference.
Abu Dhabi, United Arab Emirates: IEEE, Dec. 2018, pp. 206–212.

[207] Daniel Costa et al. A Fuzzy-Based Approach for Sensing, Coding and Transmission Config-
uration of Visual Sensors in Smart City Applications. In: Sensors 17.1 (Jan. 5, 2017), p. 93.

[208] Daniele Croce et al. Impact of LoRa Imperfect Orthogonality: Analysis of Link-Level Per-
formance. In: IEEE Communications Letters 22.4 (Apr. 2018), pp. 796–799.

[209] Daniele Croce et al. Impact of Spreading Factor Imperfect Orthogonality in LoRa Commu-
nications. In: Digital Communication. Towards a Smart and Secure Future Internet. Ed. by
Alessandro Piva, Ilenia Tinnirello, and Simone Morosi. Vol. 766. Cham: Springer Interna-
tional Publishing, 2017, pp. 165–179.

[210] Yousri Daldoul, Djamal-Eddine Meddour, and Adlen Ksentini. IEEE 802.11n/Ac Data Rates
under Power Constraints. In: 2018 IEEE International Conference on Communications (ICC)
(2018).

[211] Benjamin Dix-Matthews, Rachel Cardell-Oliver, and Christof Hübner. LoRa Parameter Choice
for Minimal Energy Usage. In: Nov. 2018, pp. 37–42.

[212] Nour El Hoda Djidi et al. Opportunistic Cluster Heads for Heterogeneous Networks Com-
bining LoRa and Wake-up Radio. In: (2018), p. 6.

[213] Abdurrahman Elmaghbub and Bechir Hamdaoui. LoRa Device Fingerprinting in the Wild:
Disclosing RF Data-Driven Fingerprint Sensitivity to Deployment Variability. In: IEEE Ac-
cess 9 (2021), pp. 142893–142909.

[214] Guillaume Ferre. Collision and Packet Loss Analysis in a LoRaWAN Network. In: 2017 25th
European Signal Processing Conference (EUSIPCO). 2017 25th European Signal Processing
Conference (EUSIPCO). Kos, Greece: IEEE, Aug. 2017, pp. 2586–2590.

[215] Orestis Georgiou and Usman Raza. Low Power Wide Area Network Analysis: Can LoRa
Scale? In: IEEE Wireless Communications Letters 6.2 (Apr. 2017), pp. 162–165.

[216] Vinay Gupta et al. Modelling of IoT Traffic and Its Impact on LoRaWAN. In: GLOBECOM
2017 - 2017 IEEE Global Communications Conference. 2017 IEEE Global Communications
Conference (GLOBECOM 2017). Singapore: IEEE, Dec. 2017, pp. 1–6.

[217] Arliones Hoeller et al. Exploiting Time Diversity of LoRa Networks Through Optimum Mes-
sage Replication. In: 2018 15th International Symposium on Wireless Communication Sys-
tems (ISWCS). 2018 15th International Symposium on Wireless Communication Systems
(ISWCS). Lisbon: IEEE, Aug. 2018, pp. 1–5.

[218] Luis Irio and Rodolfo Oliveira. Modeling the Interference Caused to a LoRaWAN Gateway
Due to Uplink Transmissions. In: 2019 Eleventh International Conference on Ubiquitous
and Future Networks (ICUFN). 2019 Eleventh International Conference on Ubiquitous and
Future Networks (ICUFN). Zagreb, Croatia: IEEE, July 2019, pp. 336–340.

131

http://arxiv.org/abs/1706.03086
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2016~do_lora_low-power_wide-area_networks_scale~bor.pdf
http://arxiv.org/abs/1806.08624
http://arxiv.org/abs/1806.08624
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2018~mathematical_modeling_of_lora_wan_performance_with_bi-directional_traffic~capuzzo.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2018~mathematical_modeling_of_lora_wan_performance_with_bi-directional_traffic~capuzzo.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2017~a_fuzzy-based_approach_for_sensing,_coding_and_transmission_configuration_of~costa.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2017~a_fuzzy-based_approach_for_sensing,_coding_and_transmission_configuration_of~costa.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2018~impact_of_lora_imperfect_orthogonality_-_analysis_of_link-level_performance~croce.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2018~impact_of_lora_imperfect_orthogonality_-_analysis_of_link-level_performance~croce.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2017~impact_of_spreading_factor_imperfect_orthogonality_in_lora_communications~croce.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2017~impact_of_spreading_factor_imperfect_orthogonality_in_lora_communications~croce.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2018~ieee_802.11n-ac_data_rates_under_power_constraints~daldoul.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2018~ieee_802.11n-ac_data_rates_under_power_constraints~daldoul.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2018~lora_parameter_choice_for_minimal_energy_usage~dix-matthews.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2018~lora_parameter_choice_for_minimal_energy_usage~dix-matthews.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2018~opportunistic_cluster_heads_for_heterogeneous_networks_combining_lora_and~djidi.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2018~opportunistic_cluster_heads_for_heterogeneous_networks_combining_lora_and~djidi.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2021~exposing_the_sensitivity_of_device_fingerprinting_to_changes_in_the_network_deployment_environment~elmaghbub.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2021~exposing_the_sensitivity_of_device_fingerprinting_to_changes_in_the_network_deployment_environment~elmaghbub.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2017~collision_and_packet_loss_analysis_in_a_lorawan_network~ferre.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2017~low_power_wide_area_network_analysis_-_can_lora_scale~georgiou.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2017~low_power_wide_area_network_analysis_-_can_lora_scale~georgiou.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2017~modelling_of_iot_traffic_and_its_impact_on_lorawan~gupta.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2018~exploiting_time_diversity_of_lora_networks_through_optimum_message_replication~hoeller.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2018~exploiting_time_diversity_of_lora_networks_through_optimum_message_replication~hoeller.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2019~modeling_the_interference_caused_to_a_lorawan_gateway_due_to_uplink~irio.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2019~modeling_the_interference_caused_to_a_lorawan_gateway_due_to_uplink~irio.pdf


[219] Jetmir Haxhibeqiri et al. LoRa Scalability: A Simulation Model Based on Interference Mea-
surements. In: Sensors 17.6 (May 23, 2017), p. 1193.

[220] Pascal Jorke et al. Urban Channel Models for Smart City IoT-Networks Based on Empirical
Measurements of LoRa-Links at 433 and 868 MHz. In: 2017 IEEE 28th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). 2017 IEEE
28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communi-
cations (PIMRC). Montreal, QC: IEEE, Oct. 2017, pp. 1–6.

[221] Jaehyu Kim and JooSeok Song. A Secure Device-to-Device Link Establishment Scheme for
LoRaWAN. In: IEEE Sensors Journal 18.5 (Mar. 1, 2018), pp. 2153–2160.

[222] Matthew Knight and Balint Seeber. Decoding LoRa: Realizing a Modern LPWAN with SDR.
In: Proceedings of the GNU Radio Conference 1.1 (1 Sept. 6, 2016).

[223] Lito Kriara and Mahesh K. Marina. SampleLite: A Hybrid Approach to 802.11n Link Adap-
tation. In: ACM SIGCOMM Computer Communication Review 45.2 (Apr. 22, 2015), pp. 4–
13.

[224] Lukas Krupka, Lukas Vojtech, and Marek Neruda. The Issue of LPWAN Technology Coexis-
tence in IoT Environment. In: (2017), p. 8.

[225] Jin-Taek Lim and Youngnam Han. Spreading Factor Allocation for Massive Connectivity in
LoRa Systems. In: IEEE Communications Letters. BER, ToA, PER 22.4 (Apr. 2018), pp. 800–
803.

[226] Michele Magno et al. WULoRa: An Energy Efficient IoT End-Node for Energy Harvesting
and Heterogeneous Communication. In: Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2017. 2017 Design, Automation & Test in Europe Conference & Exhi-
bition (DATE). Lausanne, Switzerland: IEEE, Mar. 2017, pp. 1528–1533.

[227] Aamir Mahmood et al. Scalability Analysis of a LoRa Network Under Imperfect Orthogo-
nality. In: IEEE Transactions on Industrial Informatics 15.3 (Mar. 2019), pp. 1425–1436.

[228] Yuqi Mo et al. Optimization of the Predefined Number of Replications in a Ultra Narrow
Band Based IoT Network. In: 2016 Wireless Days (WD). 2016 Wireless Days (WD). Toulouse,
France: IEEE, Mar. 2016, pp. 1–6.

[229] Moises Nunez Ochoa et al. Large Scale LoRa Networks: From Homogeneous to Heteroge-
neous Deployments. In: 2018 14th International Conference on Wireless and Mobile Com-
puting, Networking and Communications (WiMob). 2018 14th International Conference
on Wireless and Mobile Computing, Networking and Communications (WiMob). Limas-
sol: IEEE, Oct. 2018, pp. 192–199.

[230] Juha Petajajarvi et al. On the coverage of LPWANs: range evaluation and channel attenua-
tion model for LoRa technology. In: 2015 14th International Conference on ITS Telecommu-
nications (ITST). 2015 14th International Conference on ITS Telecommunications (ITST).
Evaluation. Copenhagen, Denmark: IEEE, Dec. 2015, pp. 55–59.

[231] Congduc Pham et al. Radio channel access challenges in LoRa low-power wide-area net-
works. In: LPWAN Technologies for IoT and M2M Applications. Elsevier, 2020, pp. 65–102.

[232] P. J. Radcliffe et al. Usability of LoRaWAN Technology in a Central Business District. In:
2017 IEEE 85th Vehicular Technology Conference (VTC Spring). 2017 IEEE 85th Vehicular
Technology Conference (VTC Spring). Sydney, NSW: IEEE, June 2017, pp. 1–5.

[233] Brecht Reynders, Wannes Meert, and Sofie Pollin. Range and Coexistence Analysis of Long
Range Unlicensed Communication. In: 2016 23rd International Conference on Telecommu-
nications (ICT). 2016 23rd International Conference on Telecommunications (ICT). Thes-
saloniki, Greece: IEEE, May 2016, pp. 1–6.

132

/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2017~lora_scalability_-_a_simulation_model_based_on_interference_measurements~jetmir_haxhibeqiri.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2017~lora_scalability_-_a_simulation_model_based_on_interference_measurements~jetmir_haxhibeqiri.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2017~urban_channel_models_for_smart_city_iot-networks_based_on_empirical~jorke.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2017~urban_channel_models_for_smart_city_iot-networks_based_on_empirical~jorke.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2018~a_secure_device-to-device_link_establishment_scheme_for_lorawan~kim.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2018~a_secure_device-to-device_link_establishment_scheme_for_lorawan~kim.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2016~decoding_lora_-_realizing_a_modern_lpwan_with_sdr~knight.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2015~samplelite_-_a_hybrid_approach_to_802.11n_link_adaptation~kriara.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2015~samplelite_-_a_hybrid_approach_to_802.11n_link_adaptation~kriara.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2017~the_issue_of_lpwan_technology_coexistence_in_iot_environment~krupka.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2017~the_issue_of_lpwan_technology_coexistence_in_iot_environment~krupka.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2018~spreading_factor_allocation_for_massive_connectivity_in_lora_systems~lim.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2018~spreading_factor_allocation_for_massive_connectivity_in_lora_systems~lim.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2017~wulora_-_an_energy_efficient_iot_end-node_for_energy_harvesting_and~magno.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2017~wulora_-_an_energy_efficient_iot_end-node_for_energy_harvesting_and~magno.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2019~scalability_analysis_of_a_lora_network_under_imperfect_orthogonality~mahmood.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2019~scalability_analysis_of_a_lora_network_under_imperfect_orthogonality~mahmood.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2016~optimization_of_the_predefined_number_of_replications_in_a_ultra_narrow_band~mo.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2016~optimization_of_the_predefined_number_of_replications_in_a_ultra_narrow_band~mo.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2018~large_scale_lora_networks_-_from_homogeneous_to_heterogeneous_deployments~ochoa.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2018~large_scale_lora_networks_-_from_homogeneous_to_heterogeneous_deployments~ochoa.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2015~on_the_coverage_of_lpwans_-_range_evaluation_and_channel_attenuation_model_for~petajajarvi.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2015~on_the_coverage_of_lpwans_-_range_evaluation_and_channel_attenuation_model_for~petajajarvi.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2020~radio_channel_access_challenges_in_lora_low-power_wide-area_networks~pham.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2020~radio_channel_access_challenges_in_lora_low-power_wide-area_networks~pham.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2017~usability_of_lorawan_technology_in_a_central_business_district~radcliffe.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2016~range_and_coexistence_analysis_of_long_range_unlicensed_communication~reynders.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2016~range_and_coexistence_analysis_of_long_range_unlicensed_communication~reynders.pdf


[234] Brecht Reynders and Sofie Pollin. Chirp Spread Spectrum as a Modulation Technique for
Long Range Communication. In: 2016 Symposium on Communications and Vehicular Tech-
nologies (SCVT). 2016 Symposium on Communications and Vehicular Technologies (SCVT).
Mons, Belgium: IEEE, Nov. 2016, pp. 1–5.

[235] Semtech. Semtech LoRa Technology Overview: Designers Guide. URL: https : / / www .
openhacks.com/uploadsproductos/loradesignguide_std.pdf (visited on 01/30/2023).

[236] Semtech. Semtech LoRa Technology Overview: Designers Guide. URL: https : / / www .
openhacks.com/uploadsproductos/loradesignguide_std.pdf (visited on 01/30/2023).

[237] Valentin Alexandru Stan, Radu Serban Timnea, and Razvan Andrei Gheorghiu. Overview
of High Reliable Radio Data Infrastructures for Public Automation Applications: LoRa Net-
works. In: 2016 8th International Conference on Electronics, Computers and Artificial Intel-
ligence (ECAI). 2016 8th International Conference on Electronics, Computers and Artificial
Intelligence (ECAI). Ploiesti, Romania: IEEE, June 2016, pp. 1–4.

[238] Lorenzo Vangelista. Frequency Shift Chirp Modulation: The LoRa Modulation. In: IEEE Sig-
nal Processing Letters 24.12 (Dec. 2017), pp. 1818–1821.

[239] Thiemo Voigt et al. Mitigating Inter-Network Interference in LoRa Networks. Nov. 2, 2016.
URL: http://arxiv.org/abs/1611.00688 (visited on 11/25/2019).

[240] Waspmote. Waspmote LoRa 868MHz 915MHz SX1272. 2017.

[241] Dimitrios Zorbas et al. Improving LoRa Network Capacity Using Multiple Spreading Factor
Configurations. In: 2018 25th International Conference on Telecommunications (ICT). 2018
25th International Conference on Telecommunications (ICT). St. Malo: IEEE, June 2018,
pp. 516–520.

Others

[242] Aghiles Djoudi and Guy Pujolle. Social Privacy Score Through Vulnerability Contagion Pro-
cess. In: 2019 Fifth Conference on Mobile and Secure Services (MobiSecServ). 2019 Fifth Con-
ference on Mobile and Secure Services (MobiSecServ). l. Mar. 2019, pp. 1–6.

[243] Aghiles Djoudi et al. Differentiated services for LoRaWAN with Markov Decision Process
and Fuzzy C-Means Clustering. In: 2023 IEEE Wireless Communications and Mobile Com-
puting (IWCMC).

[244] Aghiles Djoudi et al. LoRa network reconfiguration with Markov Decision Process and
Fuzzy C-Means clustering. In: Computer Communications 196 (2022), pp. 129–140.

[245] Yonatan Gur, Assaf Zeevi, and Omar Besbes. Stochastic Multi-Armed-Bandit Problem with
Non-Stationary Rewards. In: (2014), p. 9.

[246] MADWIFI. URL: https://sourceforge.net/p/madwifi/svn/HEAD/tree/madwifi/
trunk/ath_rate/minstrel/minstrel.txt (visited on 01/31/2020).

[247] Alaa Muqattash and Marwan Krunz. A single-channel solution for transmission power
control in wireless ad hoc networks. In: Proceedings of the 5th ACM international sympo-
sium on Mobile ad hoc networking and computing - MobiHoc ’04. the 5th ACM interna-
tional symposium. POWMAC. Roppongi Hills, Tokyo, Japan: ACM Press, 2004, p. 210.

[248] K Ramachandran et al. Symphony: Synchronous Two-Phase Rate and Power Control in
802.11 WLANs. In: IEEE/ACM Transactions on Networking. Symphony,RRAA+ 18.4 (Aug.
2010), pp. 1289–1302.

[249] Herbert Robbins. Some aspects of the sequential design of experiments. In: Bulletin of the
American Mathematical Society 58.5 (Sept. 1952), pp. 527–536.

133

/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2016~chirp_spread_spectrum_as_a_modulation_technique_for_long_range_communication~reynders.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2016~chirp_spread_spectrum_as_a_modulation_technique_for_long_range_communication~reynders.pdf
https://www.openhacks.com/uploadsproductos/loradesignguide_std.pdf
https://www.openhacks.com/uploadsproductos/loradesignguide_std.pdf
https://www.openhacks.com/uploadsproductos/loradesignguide_std.pdf
https://www.openhacks.com/uploadsproductos/loradesignguide_std.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2016~overview_of_high_reliable_radio_data_infrastructures_for_public_automation~stan.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2016~overview_of_high_reliable_radio_data_infrastructures_for_public_automation~stan.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2016~overview_of_high_reliable_radio_data_infrastructures_for_public_automation~stan.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2017~frequency_shift_chirp_modulation_-_the_lora_modulation~vangelista.pdf
http://arxiv.org/abs/1611.00688
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2017~waspmote_lora_868mhz_915mhz_sx1272~.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2018~improving_lora_network_capacity_using_multiple_spreading_factor_configurations~zorbas.pdf
/home/aghiles/Aghiles/asm/doc/edu/network/adm/bibliography/env/phy/2018~improving_lora_network_capacity_using_multiple_spreading_factor_configurations~zorbas.pdf
/home/aghiles/Aghiles/02/bib/00/aghiles/articles/2019~social_privacy_score_through_vulnerability_contagion_process~djoudi.pdf
/home/aghiles/Aghiles/02/bib/00/aghiles/articles/2019~social_privacy_score_through_vulnerability_contagion_process~djoudi.pdf
https://sourceforge.net/p/madwifi/svn/HEAD/tree/madwifi/trunk/ath_rate/minstrel/minstrel.txt
https://sourceforge.net/p/madwifi/svn/HEAD/tree/madwifi/trunk/ath_rate/minstrel/minstrel.txt


[250] The Things Network. URL: https://thethingsnetwork.org/ (visited on 04/29/2020).

[251] V. Prasanna Venkatesan, C. Punitha Devi, and M. Sivaranjani. Design of a Smart Gateway
Solution Based on the Exploration of Specific Challenges in IoT. In: 2017 International Con-
ference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). 2017 International
Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). Palladam,
Tamilnadu, India: IEEE, Feb. 2017, pp. 22–31.

[252] Starsky H. Y. Wong et al. Robust rate adaptation for 802.11 wireless networks. In: Proceed-
ings of the 12th annual international conference on Mobile computing and networking -
MobiCom ’06. the 12th annual international conference. RRAA,ARF,AARF. Los Angeles, CA,
USA: ACM Press, 2006, p. 146.

[253] R.D. Yates. A framework for uplink power control in cellular radio systems. In: IEEE Journal
on Selected Areas in Communications 13.7 (1995), pp. 1341–1347.

[254] Wei Yin, Peizhao Hu, and Jadwiga Indulska. Rate control in the mac80211 framework: Overview,
evaluation and improvements. In: Computer Networks 81 (Apr. 2015), pp. 289–307.

[255] B. Zurita Ares et al. On power control for wireless sensor networks: System model, mid-
dleware component and experimental evaluation. In: 2007 European Control Conference
(ECC). European Control Conference 2007 (ECC). MIAD, Marcov. Kos: IEEE, July 2007, pp. 4293–
4300.

134

https://thethingsnetwork.org/
2017_design_of_a_smart_gateway_solution_based_on_the_exploration_of_specific.pdf:/home/aghiles/Aghiles/02/02/xx/LoRaNet applications/2017_design_of_a_smart_gateway_solution_based_on_the_exploration_of_specific2.pdf:application/pdf
2017_design_of_a_smart_gateway_solution_based_on_the_exploration_of_specific.pdf:/home/aghiles/Aghiles/02/02/xx/LoRaNet applications/2017_design_of_a_smart_gateway_solution_based_on_the_exploration_of_specific2.pdf:application/pdf

	Abstract
	Acknowledgements
	Dedication
	Publications
	Introduction
	Context and motivation
	Problem statement
	Methodology and contributions
	Organization of the thesis

	Literature review
	Introduction
	Low Power Wide Area Network (LPWAN)
	Application layer
	Monitoring applications
	Wide area applications
	Urban applications
	Tracking applications
	Health care applications
	Indoor applications
	Outdoor applications

	Channel access layer
	LoRaWAN classes
	Devices of class A
	Devices of class B
	Devices of class C

	Signaling based approaches
	Reliability optimization
	Scalability optimization
	Settings optimization
	Simulation & modelisation

	Network layer
	Physical layer
	Scalability issue
	Interference and coexistence
	Energy consumption
	Simulation & modelisation

	Discussion

	Machine learning based contributions
	Artificial Neural Network (ANN)
	Multi Armed Bandit (MAB)
	Markovian Decision Process (MDP)
	Heuristic optmizations
	Discussion

	Conclusion

	Pattern Recognition of LoRa Network Settings using Fuzzy C-Means Clustering
	Introduction
	Transmission settings vs radio performance
	LoRa transmission settings
	Bandwidth (BW)
	Carrier Frequency (CF)
	Coding Rate (CR)
	Spreading Factor (SF)
	Transmission Power (Ptx)

	Radio performance
	Received Signal Strength Indicator (RSSI)
	Signal to Noise Ratio (SNR)
	Data Rate (DR)
	Bit Error Rate (BER)
	Time on Air (ToA)
	Transmission Energy (Etx)


	Problem statement
	Fuzzy C-Means (FCM) clustering of LoRa transmission settings
	Objective function
	Membership matrix
	Cluster heads
	Performance index

	Simulation settings and results
	Conclusion

	Online Self Reconfiguration of LoRa Network with Q-learning and Fuzzy C-Means Clustering
	Introduction
	Problem statement
	Multi-Armed Bandit (MAB)
	Epsilon Greedy Approach
	Exponential weights for Exploration and Exploitation (EXP3)

	Q-learning algorithm based on FCM clustering
	Action-value function of Q-learning

	Clustering of network settings
	Objective function
	Membership degrees M
	Cluster-heads H

	Simulation settings and results
	Measurements of PDR and DR in different scenarios
	QoS metrics assessment in the first scenario
	QoS metrics assessment in the second scenario

	Conclusion

	Differentiated services for LoRaWAN with Markov Decision Process and Fuzzy C-Means Clustering
	Introduction
	Problem statement
	Network settings customization with the policy-iteration algorithm 
	Cumulative discounted reward
	State-value function
	Action-value function
	State transition function

	Initialization of state transitions with FCM
	Objective function
	Membership-degrees
	Cluster-heads

	Simulation settings and results
	First scenario
	Second scenario

	Conclusion

	Conclusion
	Conclusion
	Perspectives

	Appendix: LoRa frame and LoRaWAN specification
	Bibliography

