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Title : Open Effective Field Theories for primordial cosmology : Dissipation, decoherence and late-time
resummation of cosmological inhomogeneities
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Abstract : This thesis develops the implementa-
tion of Open Effective Field Theories in primordial
cosmology. Offering a unique window onto unk-
nown physics, primordial cosmology faces uncer-
tainties regarding extensions to the minimal frame-
work of single-field slow-roll inflation. Open Effec-
tive Field Theories aim at incorporating the effects
of hidden sectors onto this minimal framework. By
capturing non-unitary effects such as dissipation
and decoherence, they shed new lights on the phy-
sics at play in the early universe.

In an introductary part, we provide a pedago-
gical introduction to the implementation of Open
Effective Field Theories in cosmology. Particular
highlights are made on the approximation schemes
and their regime of validity. We present how to ac-
cess the observables of the system and its quantum

information properties and discuss the late-time
resummation performed by Open Effective Field
theories.

In a second part, the results obtained during
the Ph.D. are gathered. First, we derive the quan-
tum states of a linear two-field system. It allows us
to discuss the dynamical generation of entangle-
ment and provides a theoretical framework for the
study of decoherence during inflation. Then, Open
Effective Field Theories are benchmarked with an
exactly solvable model. In particular, we evaluate
their ability to implement non-perturbative resum-
mation in cosmology. Finally, we apply these tech-
niques to study the decoherence induced in the
early universe by entropic perturbations onto the
curvature perturbations observed in the cosmic mi-
crowave background.

Titre : Systèmes quantiques ouverts pour la cosmologie primordiale : Dissipation, décohérence et effets
séculiers des inhomogénéités cosmologiques
Mots clés : Cosmologie primordiale, inflation, théorie effective des champs, systèmes quantiques ou-
verts, théorie de l’information quantique

Résumé : Cette thèse vise à l’implémentation de la
théorie des systèmes quantiques ouverts en cosmo-
logie primordiale. Si cette dernière peut nous offrir
un accès sans pareil à la physique des hautes éner-
gies, elle est également confrontée à l’heure ac-
tuelle à un ensemble d’incertitudes concernant les
possibles extensions au modèle minimal d’inflation
à un champs. La théorie des systèmes quantiques
ouverts vise à incorporer de manière effective et
systématique ces incertitudes dans la description
d’un régime connu. Son implémentation nous aide-
rait à comprendre le rôle des phénomènes dissipa-
tifs et de la décohérence dans l’univers primordial.

Dans une première partie, une introduction pé-
dagogique à l’implémentation de la théorie des sys-
tèmes quantiques ouverts en cosmologie est pro-
posée. Une attention particulière est portée sur la
caractérisation des approximations. Le calcul des

observables du système est expliqué et mis en re-
lation avec des notions de théorie de l’informa-
tion quantique. Une discussion des capacités de
re-sommation de ces méthodes est fournie.

La seconde partie du manuscrit est dédiée aux
résultats obtenus durant le doctorat. Les états
quantiques des systèmes linéaires à deux champs
sont caractérisés. Ce travail fournit une base théo-
rique à la compréhension de la décohérence durant
l’inflation. Dans le cadre d’un modèle intégrable,
la confrontation de résultats exacts à ceux pro-
venant d’une théorie effective nous permet d’éva-
luer sa capacité à implémenter une re-sommation
non-perturbative en espace-temps courbe. Les mé-
thodes acquises sont enfin utilisées pour détermi-
ner si la présence de perturbations entropiques dé-
cohère les fluctuations adiabatiques observées dans
le fond diffus cosmologique.
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l’opérateur brûlé par les acides de
la recherche était à la fois sujet et
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ascétique de l’Œuvre au Blanc,
puis le triomphe conjugué de
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Introduction

One of the most fascinating predictions of the standard model of cosmology is to
trace back the origin of all the structures we today observe in the universe - from
galaxies, clusters, voids and filaments up to the tiny temperature anisotropies of
the Cosmic Microwave Background (CMB) - to quantum fluctuations of the gravi-
tational and matter fields in the early universe. Indeed, inflation is an early phase
of accelerated expansion that took place at very high energy. During this era, quan-
tum fluctuations of the gravitational and matter fields generate small deviations
from perfect homogeneity and isotropy which ultimately grow under gravitational
instability into today’s Large-Scale Structures (LSS) we observe in the sky.

This feature makes primordial cosmology a privileged playground to test the
interface between general relativity and quantum field theory at very high energy.
Since the energy scales involved in inflationary processes are many orders of mag-
nitude above the one accessible in collider experiments, inflation offers a promising
window onto beyond-standard-model physics. The intricate nature of the interac-
tions between matter and gravitation during inflation also leads to experimentally
testable predictions for a linear version of quantum gravity. Quantum aspects of
inflationary model hence provide theoretical data useful in the quest for unified
frameworks between quantum mechanics and gravitation.

The downside of the fact that inflation takes place at energy scales where parti-
cle physics remains mostly unknown is that the physical nature of the fields driving
inflation, their number and their relations are still unclear. The tremendous improve-
ment of cosmological data in the last decades through the exquisite measurements
of the CMB and the very large volumes sampled by galaxy surveys corroborate a
minimal scenario known as single-field slow-roll inflation. Despite this success and
the impressive precision of modern data, they do not yet reach enough constrain-
ing power to single out a more precise scenario and a wide class of models remain
compatible with these observations.

Effective Field Theories (EFTs) aim at providing a systematic way to consider
extensions to a known regime, incorporating the knowledge of unknown physics in
a parametrically controlled manner. New data enable to constrain the parameters
of the EFTs, offering a guideline for constructing fundamental descriptions. Their
implementation in primordial cosmology leads to a unified description of the class
of models describing single-field slow-roll inflation. Beyond this framework, other
extensions such as multifield scenarios, may require the development of new tools
due to the lack of symmetries and the absence of energy conservation. In order to
grasp the implications of hidden sectors at a quantum level, the formalism needs
to incorporate non-unitary effects such as dissipation and decoherence. To achieve
this goal, Open EFT uses techniques developed in quantum optics, in the context
of Open Quantum System (OQS) theory, to parametrise poorly specified environ-
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ments. It is the main purpose of this thesis to develop the implementation of Open
EFTs in primordial cosmology. At the crossroads of cosmology, high-energy physics,
quantum optics and quantum information theory, it aims at providing access to a
so far unknown regime of the inflationary dynamics. In particular, this thesis aims
at understanding how, by capturing non-unitary effects such as dissipation and de-
coherence, Open EFTs shed new lights on the physics at play in the early universe.

This manuscript is a thesis by publication which presents the works realised
at the Institut d’Astrophysique Spatiale (IAS), the Astroparticule & Cosmologie
laboratory (APC) and the Laboratoire de Physique de l’Ecole Normale Supérieure
(LPENS) between September 2020 and September 2023 under the direction of Julien
Grain and Vincent Vennin. Part I first contains a brief presentation of EFTs and
introduces the main aspects of inflation. Then, the rest of Part I aims at motivating
the use of Open EFTs in primordial cosmology and at providing the reader the
conceptual and technical tools to develop these methods by his or her own. Intended
to be a guided tour, this presentation serves as a basis for the understanding of the
results presented in Part II. This second part collects the research articles published
during the thesis.
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Part I

Effective Field Theories and
Cosmology
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Outline

In this first part, we provide a pedagogical introduction to the implementation of
Open EFTs in cosmology. Far from being exhaustive, this introduction aims at
presenting the motivations for the development of Open EFTs techniques and a
roadmap for those who would like to develop these methods. Chapter 1 introduces
the concept of EFT and motivates its extension to non-equilibrium and open dy-
namics. Primordial cosmology is introduced in Chapter 2 which emphasises the role
of the early universe as a window onto new physics. Finally, Chapter 3 proposes a
guided tour of Open EFT techniques in primordial cosmology, illustrating computa-
tions through concrete examples. Readers familiar with either EFTs or primordial
cosmology may skip Chapters 1 or 2 and directly jump into the introduction of Open
EFT techniques in Chapter 3.
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Chapter 1

Effective Field Theories

In this Chapter, we briefly
introduce Effective Field Theories
and motivate their use in the rest
of the manuscript. Only a brief and
partial overview of the vast
literature on the topic is reviewed,
based on the following articles,
books and lecture notes [1–12].

Physical objects do not behave the same depending on the scales probed. For
instance, dark matter is ubiquitously known as being fundamentally described by a
collisionless fluid due to its weakly interacting nature. Yet, when coarse-grained on
large cosmological scales, its behaviour is rather captured by a dissipative medium
with the viscosity of chocolate syrup [3, 5]. This idea may seem counterintuitive,
yet, it is vastly similar to the journey from H2O molecules to the ocean water. Just
as dark matter, phases of matter - liquid, solid, gazeous - share an ensemble of
properties vastly independent of their fundamental components, suggesting a high
degree of universality.

Effective Field Theories (EFTs) are an emphasis on these universal properties.
They highlight the features shared by a class of models regardless of their micro-
physical details. These features are captured through a unified description organised
in terms of symmetries and scale hierarchies. In this sense, EFTs look for a minimal
and systematic descriptions. They allow us to understand when the microphysical
details become relevant. Turned it around, they may indicate optimal strategies
to probe the fundamental structure of a theory in the presence of hierarchies of
scales. Hence, they have become central tools in a number of fields of research from
biophysics to cosmology.

The EFT program is often considered from two complementary perspectives:

1. The bottom-up approach aims at understanding how unknown physics mani-
fests itself at a given scale. Making use of the symmetries and scale hierar-
chies, it constructs a controllable theory in which the desired precision can be
reached by including higher and higher corrections. In this sense, unknown
physics is controlled by a finite number of parameters known as Wilsonian
coefficients one has to fit to the data. These coefficients capture the imprint
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of the unknown physics onto the low-energy EFT. For instance, the above-
mentioned dark matter viscosity appearing in the context of the EFT of the
Large-Scale Structures (EFTofLSS) has been measured in cosmological data
and simulations to be of order 20 pascal-seconds [3,5]. It encodes the compli-
cated dynamics occurring at galactic scales that the theory does not resolve.
If a better precision is required, one can push further the EFT expansion, in
which case a higher number of Wilsonian coefficients is needed to be fitted to
the data.

2. The top-down approach aims at understanding how a given theory manifests
itself in a given regime of scales at low energy. For instance, even if the
Standard Model of particle physics provides a more fundamental description in
which the weak force is mediated through the W and Z bosons, at sufficiently
low-energy, Fermi’s theory of weak interactions works equally well, up to small
corrections, and has a much simpler description in which gauge bosons have
been integrated out. The obtained EFT captures the physics of the theory
at low energy and helps us to derive observational predictions in this regime.
EFTs can also capture emergent phenomena, such as collective behaviour only
appearing in the low-energy description of the theory. This is for instance how,
starting from a time-reversal symmetry in a microscopic theory, an arrow of
time can emerge in the thermodynamic limit where the theory fulfills a positive
entropy production [13].

The EFT program aims at tackling these two points. In the case where the funda-
mental theory is known, deriving a low energy EFT allow us to highlight the relevant
physics at the scale experiments are built, which facilitates the detection protocols.
When the fundamental description is unknown, EFTs allow us to apprehend how
new physics will appear when we will probe new regimes of scales. In this sense,
EFTs are “dialectics”: they aim at establishing a set of rules to construct a dialogue
between a known and an unknown regime.

EFTs have become central objects in the search for new physics. For instance,
the Standard Model EFT (SMEFT) considers the SM of particle physics as a low-
energy limit of a more fundamental theory. By encoding the effects of unknown
physics onto the observables accessible in colliders, particle physicists explore the
possible signals we might expect and help us designing new experiments. SM cor-
rections have to fulfill many consistency constraints such as the fact that Lorentz
invariance requires fermions to always come in pairs. Using similar arguments, one
can construct the various building blocks of the theory from which particle physicists
derive interesting phenomenological consequences [14]. Similarly, various hints sug-
gest that General Relativity (GR) might correspond to the low-energy limit of some
more fundamental theory [1,6]. The EFT of gravity [1, 15] considers the metric gµν
describing the geometry of space-time and apply the general covariance principle,
that is the invariance of the theory under local change of coordinates, to construct
the most general embedding of GR. Out of second-order derivatives of the metric
gµν , one can construct a geometrical object known as the Riemann curvature tensor
Rµνρσ[g] from which a generic action [1] (see also [16])

S = −
∫

d4x
√−g

[
Λ +

M2
Pl

2
R + c1R

2 + c2RµνR
µν + · · ·

]
(1.1)
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Figure 1.1: The hydrodynamical description aims at modelling the long wavelength
regime where λ ≫ ℓmfp the mean free path, over which the probability of collision is
almost certain. Because of the high probability of collisions in this regime, the mi-
croscopic description of a gas of interacting particles becomes practically unsolvable
which calls for effective approaches.

is obtained out of its contractions Rµν = Rρ
µρν and R = Rµ

µ, the so-called Ricci ten-
sor and scalar. In the above action, MPl is the Planck mass and Λ the cosmological
constant. The point here is to illustrate that, just as the SM of particles physics, GR
can be embedded into an EFT framework as it corresponds to the first two terms
in the above expansion. The higher-order terms controlled by the Wilsonian coef-
ficients c1 and c2 contain four derivatives of the metric and control the extensions
to GR. Finally, the dots contain an infinite tower of contributions known as the
derivative expansion which captures higher and higher number of derivatives acting
on the metric. Even if the above construction might need extra work (e.g. dealing
with ghosts), EFTs provide a systematic way to account for extensions around a
given framework.

1.1 Hydrodynamics of a perfect fluid

Let us now illustrate the EFT construction in a concrete example by considering
what is probably the oldest EFT ever made: hydrodynamics. More precisely, we look
for the hydrodynamical description of an ensemble of weakly coupled particles in the
thermodynamic (large number of particles) limit, based on A. Nicolis lectures [7].
We aim at describing the long-wavelength behaviour of the theory, for λ ≫ ℓmfp,
where ℓmfp is the mean free path, that is the distance over which we expect one
collision event, see Fig. 1.1. Along a distance λ ≫ ℓmfp, the probability of collisions
is then high and the description of the theory as a microscopic gas of interacting
particles becomes intractable. Moreover, collective behaviours such as sound waves
and vortices emerge of the long-wavelength description.

Making use of the symmetries obeyed by fluids, a Wilsonian EFT description
is able to capture the dynamics of the hydrodynamic modes [4]. It describes a
perfect fluid, that is a fluid with no viscosity, traditionally described in terms of the
mass density ρ(x, t) and the velocity v(x, t). For non-relativistic systems in which
|v(x, t)| ≪ c, the system is described by the continuity and Euler equation

ρ̇+∇. (ρv) = 0 (1.2)

ρv̇ + ρ (v.∇) .v = −∇p (1.3)

where we assume no external forces acting on the fluid, together with an equation
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of state which specifies the nature of the fluid and closes the system

p(x, t) = peq [ρ(x, t)] . (1.4)

There is an approximation hidden above: the perfect fluid assumption implies the
existence of an instantaneously reached local thermal equilibrium, which allows us
to express the pressure p(x, t) under this form.

Note that cosmologists are very familiar with the relativistic version of the above
setting. Adopting the mostly-positive signature, ρ(x) now represents the total en-
ergy density in the local rest frame and uµ(x) = γ(v)(1,v) is the four-velocity, with
γ(v) ≡ (1−v2)−1/2 the Lorentz factor in natural units where c = 1. The stress-energy
tensor of the perfect fluid writes

T µν
p.f. = [ρ(x) + p(x)]uµ(x)uν(x) + p(x)gµν (1.5)

where gµν the space-time metric. Upon specifying an equation of state p = peq(ρ),
one can derive an equivalent set of equations using the conservation of the stress
energy tensor ∇µT

µν = 0. Hence, the arguments presented in this section can be
easily generalized to relativistic settings.

1.1.1 Symmetries and derivative expansion

In order to construct an EFT for the hydrodynamical modes, we need to identify the
relevant degrees of freedom of the problem and the symmetries. It appears that ρ and
v (or equivalently ρ and uµ) are not the most convenient degrees of freedom as they
are built-out quantities (the first two moments the Bogolyubov hierarchy) which
cannot be straightforwardly embedded in a Lagrangian description. We rather look
for positional degrees of freedom which help us keep track of infinitesimal volume
elements. The idea given in [7] consists in dropping coloured confetti in the fluid
then following their trajectories in order to access the deformation of the medium.
It follows that the medium is completely characterised by specifying the dynamics
of three scalar fields (ϕ1, ϕ2, ϕ3) which define the comoving coordinate frame. This
is the Eulerian approach of fluid mechanics where one specifies the comoving coor-
dinates of a fluid element ϕI(xi, t) for I = 1, 2, 3 labelling the comoving space and
i = 1, 2, 3 labelling the physical space. An equivalent description, the Lagrangian
description, consists in reverting this relation and considers xi(ϕI , t) instead. Yet, it
turns out that the Eulerian approach is particular fruitful in understanding the role
played by symmetries. A convenient choice of comoving coordinates consists in con-
sidering that at rest/at equilibrium, the scalar fields are aligned with an orthogonal
set of axes which matches the coordinate system under consideration, see Fig. 1.2.
Formally, we write

〈
ϕI(x)

〉
eq

= xI (1.6)

for I = 1, 2, 3.
It clearly appears that the dynamics of the ϕI(x) fully constrains the evolution

of the fluid. Hence, we look for a least action principle based on

Sfluid = S
[
ϕI
]
. (1.7)
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Figure 1.2: Left: A convenient choice of comoving coordinates consists in the ones
which matches the coordinate system at equilibrium. Right: When the fluid ex-
periences a deformation, it can be described in terms of the displacement of the
comoving coordinates. Hence, the dynamics of the three scalar fields ϕI(x) fully
characterise the evolution of the fluid.

In order to constrain this action, we now need to consider the symmetries of the
system we want to describe. From the viewpoint of an observer immersed deep into
the sea (far from the boundary surface of the fluid), the medium looks the same
in all directions. Hence, we want Eq. (1.6) to describe a spatially homogeneous
and isotropic state. Under spatial translation and rotation, the coordinate system
transforms as

xi → xi + ai (1.8)

xi → Ri
j.x

j (1.9)

where ai ∈ R and R ∈ SO(3). For Eq. (1.6) to hold, we need to impose an internal
set of symmetries

ϕI(x) → ϕI(x) + aI (1.10)

ϕI(x) → RI
J .ϕ

J(x). (1.11)

Indeed, if xi translates or rotates but ϕI(x) does not, the symmetry would be broken.
Hence, by imposing the existence of internal symmetries, the linear combination of
x and ϕ remains unbroken. It makes that the system is now very constrained: by
combining Poincaré invariance and the shift symmetry from translation invariance,
a minimal building block of the theory is made of

BIJ = ∂µϕ
I∂µϕJ . (1.12)

If we further enforce the invariance by rotation, the operators which may appear in
Sfluid are constrained to be1

detB, TrB, TrB2. (1.13)

1It appears that one can at most construct 3 invariant quantities in 3 + 1 dimensions [4].
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At this point, there is no difference between the fluid we construct and some
isotropic solid such as jelly [17]. The peculiarity of fluids consists in their ability to
deform adiabatically, at no price in terms of energy, unlike solids which experience
transverse stresses. How can we enforce this property in our EFT construction? Let
us consider the deformed comoving coordinates

ϕ′I(x) = ξI(x) (1.14)

where the induced deformation is volume preserving | det ∂ξ/∂x | = 1. The ability of
the fluid to deform adiabatically imposes that ϕI(x) and ξI(x) have the same energy.
This suggests a much stronger symmetry through the diffeomorphism invariance [4]

ϕI → ξI (ϕ) ,
∂ξI

∂ϕJ
= 1 (1.15)

from which we observe that

detB → detB

(
∂ξI

∂ϕJ

)2

= detB (1.16)

remains invariant while the traces in Eq. (1.13) do not. This feature encodes the fun-
damental difference between fluids and isotropic solid and we are now in a position
to write an action

Sfluid =

∫
d4xF (detB) + higher ∂’s (1.17)

where F is a generic function we will relate to the properties of the fluid. Note that
in this description, we worked at lowest order in derivatives. This expansion is the
consequence of the initial scale hierarchy λ ≫ ℓmfp. Indeed, it appears that in the
long-wavelength regime

∂2 ∼ O
(
ℓ2mfp

λ2

)
≪ 1. (1.18)

We can then truncate the expansion and the theory becomes predictive, that is it
requires a finite number of parameters to fit the data and describe the outcome of
an experiment.

1.1.2 Matching

Let us map this construction in the standard ρ and uµ language. To do so, we
need to compute the stress-energy tensor of the theory Tµν . We follow the standard
procedure which consists in coupling the theory to a metric g such that

d4x → √−gd4x (1.19)

BIJ → gµν∂µϕ
I∂νϕ

J , (1.20)

√−g being the square root of the determinant of the metric g ≡ det gµν . The
stress-energy tensor is computed by functional derivative with respect to the metric

Tµν ≡ − 2√−g

δSfluid

δgµν
. (1.21)
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It leads to

Tµν = −2F ′BB−1
IJ ∂µϕ

I∂νϕ
J + Fgµν (1.22)

where we use the notation B ≡ detBIJ . In order to compare with Eq. (1.5), we
need to define the four-velocity in terms of the comoving scalars ϕI . Along the flow,
uµ follows the trajectory. It implies that uµ is the vector field along which the ϕI ’s
do not change, that is

uµ∂µϕ
I = 0. (1.23)

A simple way to construct the four-velocity consists in first defining the current

Jµ ≡ ϵµνρσ∂νϕ
1∂ρϕ

2∂σϕ
3 (1.24)

=
1

3!
ϵµνρσϵIJK∂νϕ

I∂ρϕ
J∂σϕ

K (1.25)

where ϵ is the Levi-Civita tensor, such that the current fulfills by definition the
property Jµ∂µϕ

I = 0 thanks to the complete antisymmetry of ϵ. Then, it suffices to
notice that J2 = −B to construct the normalized velocity field

uµ ≡ Jµ

√
B
. (1.26)

A sanity check consists in controlling the equilibrium limit in which Eq. (1.6) holds.
In that case, we find that the fluid is at rest, that is uµ = (1,0).

Finally, by noticing that

B−1
IJ ∂µϕ

I∂νϕ
Juµ = 0, (1.27)

we deduce that B−1
IJ ∂µϕ

I∂νϕ
J corresponds to the projector on the hypersurface or-

thogonal to uµ, that is

B−1
IJ ∂µϕ

I∂νϕ
J = gµν + uµuν . (1.28)

It follows that the stress-energy tensor obtained in Eq. (1.22) can be written in the
same form as the perfect fluid case (1.5). We conclude that the density and the
pressure are defined as

ρ = −F (B) (1.29)

p = F (B)− 2F ′B. (1.30)

The equation of state (1.4) can then be rewritten as an ordinary differential equation
for the free function F (B), that is

F − 2F ′B = peq(−F ). (1.31)

In summary, specifying an equation of state amounts to choose a function F (B). It
provides a matching condition between the microphysics defined by a field theory
for the scalars ϕI and the macrophysics specified by the hydrodynamical description
of (ρ, p). Measuring these parameters in an experiment fixes the EFT coefficients of
the function F (B).
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Useful limits:

1. Conformal fluid: A fluid in a CFT possesses a stress-energy tensor obey-
ing the conformal symmetry, that is T µ

µ = 0. Injecting Eq. (1.22) into
this equation, we obtain

F ′

F
=

2

3

1

B
⇒ F (B) = F0B

2/3 (1.32)

with F0 a constant. One can then use Eq. (1.41) introduced below to
compute the speed of sound and recover with no surprises c2s = 1/3.

2. Cosmological fluids: In cosmology, we often encounter generic fluids
obeying the equation of state peq(ρ) = wρ where w is a constant. In-
jecting Eqs. (1.29) and (1.30) into this expression, we obtain

F − 2F ′B = −wF ⇒ F (B) = F0B
1+w
2 . (1.33)

Hence, for a matter dominated era in which w ≃ 0, F ∝ B1/2, for a
radiation dominated era in which w = 1/3, F ∝ B2/3 and finally, for a
vacuum dominated universe where w = −1+ϵ with ϵ a small parameter,
F ∝ lnB at leading (non-trivial) order in ϵ.

3. Non-relativistic limit: The non-relativistic limit is obtained when |v| ≪
1, p ≪ ρ and c2s ≪ 1. After consistently expanding the action (1.17) in
this limit, we obtain at lowest order

SNR =

∫
d3ϕdt

[
−ρ0m +

1

2
ρ0mv

2 − U

(
det

∂xi

∂ϕI

∣∣∣∣
t

)]
(1.34)

where d3ϕ is the comoving volume, ρ0m the rest mass. The second term
corresponds to the kinetic energy and the third term is the comoving
internal energy density, which captures the compression properties of
the fluid. More details can be found in [7].

1.1.3 Perturbations

The speed of sound is commonly defined as

c2s =
dp

dρ

∣∣∣∣
eq

(1.35)

and corresponds to a small perturbation around the equilibrium distribution. Can
we see how this quantity appears in our field theory for the scalars ϕI? We consider
a small perturbation

ϕI(x) = xI + πI(x) (1.36)

around the equilibrium distribution. It follows that

BIJ = δIJ + ∂IπJ + ∂JπI + ∂µπ
I∂µπJ (1.37)
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from which we expand the determinant

B = det
(
δIJ + ∂IπJ + ∂JπI + ∂µπ

I∂µπJ
)
= 1 + 2∇.π + · · · (1.38)

Finally, injecting this expression into the expanded action

Sfluid =

∫
d4x

[
F (1) + F ′(1)δB +

1

2
F ′′(1)δB2 + · · ·

]
(1.39)

with δB ≡ B − 1, we obtain up to second order in π the perturbed action

Sfluid =
1

2

∫
d4x [−2F ′(1)]

[
π̇2 − c2π (∇.π)2

]
+ · · · (1.40)

where the dots contain total derivatives and terms of order O[(∂π)3]. The speed of
sound appearing in this expression is

c2π ≡ 2F ′′(1) + F ′(1)

F ′(1)
=

dp/dB

dρ/dB

∣∣∣∣
B=1

=
dp

dρ

∣∣∣∣
eq

= c2s (1.41)

as expected. Finally, one can also notice that −2F ′(1) = (ρ+ p)|eq in terms of the
hydrodynamical quantities.

The equations of motion are given by

π̈ − c2π∇ (∇.π) = 0. (1.42)

In Fourier space, we can decompose the field along the linear direction πL parallel to
k and the transverse direction πT orthogonal to k. The linear component describes
the emergence of sound waves obeying

π̈L − c2πk
2πL = 0. (1.43)

The transverse component is less easy to interpret as

π̈T = 0, (1.44)

yet it has a very similar physical interpretation. A solution is given by

πT = c+ dt (1.45)

with c and d constant vectors orthogonal to the wavenumber k. It turns out that
πT are the linear version of vortices in constant rotation [7].

Physical consequences can be derived from the above equations. First, we observe
that the sound wave are massless and have a dispersion relation ω2

L = c2πk
2: it

represents the energetic price it costs to excite a wave of frequency ω. On their
side, vortices have a null frequency ωT = 0 from which we conclude that it costs no
energy to excite a vortex. It can be an annoying feature if one wants to design a
perturbative expansion as these excitations enter easily the turbulent regime [4].

What did we learn? With this example, we observed that the identification
of the relevant degrees of freedom and the use of the symmetries fulfilled by the
system allow us to describe a universal behaviour shared by a variety of fluids,
invariably of the diversity of their microphysical details. Higher-order corrections
capture the finer details of the impact of the microphysics on the large scales. The
EFT formalism is a convenient way to highlight the common properties shared by
a class of models and to parametrize theoretical uncertainties.
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Figure 1.3: Left: The Wilsonian EFT approach of hydrodynamics presented in
Sec. 1.1 based on [4] works remarkably well to describe the occurence of ocean waves
in the deepwater regime [7]. Right: Yet, it is unable to describe turbulences appear-
ing in dissipation cascades, which require the understanding of the non-equilibrium
regime as developed in [8]. This manuscript aims at developing non-equilibrium
and Open EFT techniques in cosmology and assess their role in the early universe.
Images from [18].

1.2 Imperfect fluids and viscosity

In the previous section, we considered a perfect fluid. The instantaneously reached
local thermal equilibrium, that is the immediate relaxation of the medium, allowed
us to write an equation of state of the form Eq. (1.4), closing our dynamical system
made of the continuity equation (1.2) and Euler equation (1.3). Yet, it is notoriously
known that instantaneous equilibration is a crude approximation of the real world,
in which fluids are imperfect and viscous. In general, at sufficiently long wavelength,
the perfect-fluid assumption is well justified: viscosity is not an intrinsic property
of the fluid but rather a kinematical property encoding the complicated reaction of
the small scales onto the large wavelength regime. It implies that viscosity always
vanishes at some scale [8]. Yet, it becomes a crucial ingredient for the description of
turbulence, dissipation cascades and boundary layers [18], as illustrated in Fig. 1.3.
A new term must be added to Euler equation, leading us to Navier-Stokes equation

ρv̇ + ρ (v.∇) .v = −∇p+ η∆v (1.46)

where we again assume no external forces. The new parameter η in front of the
Laplacian is the viscosity of the fluid. This apparently insignificant change represents
in fact a tremendous challenge for theorists, as the Wilsonian EFT construction
presented above is insufficient to describe this effect [8].

Dissipation has been investigated in a variety of contexts and the simplest intu-
itive way to describe it is through a stochastic Langevin equation

mϕ̈(t) + γϕ̇(t) + V ′[ϕ(t)] = ξ(t) (1.47)

describing the Brownian motion [19–21] of a massive particle immersed into a
medium, where ϕ the position of the Brownian particle of mass m, V ′ = ∂V/∂ϕ
the derivative of the potential energy, γ a damping coefficient and ξ a random noise
acting on the particle. For the moment, let us consider ξ(t) is given by a Gaussian
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white noise obeying

⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t′)⟩ = Aδ(t− t′), (1.48)

where the brackets represent the noise average

⟨O(ξ)⟩ =
∫

DξP [ξ]O(ξ), P [ξ] ≡ exp

[
− 1

2A

∫
dtξ2(t)

]
. (1.49)

The damping γ and noise ξ coefficients characterise the imprint of the surrounding
medium onto the dynamics of the Brownian particle.

Let us illustrate what renders the description of dissipative dynamics hard to
embed within the standard framework of Wilsonian EFT, based on [9]. When
Eqs. (1.47) and (1.48) do not have explicit time dependence, the system enjoys
a time-translation symmetry, that is Eq. (1.47) is covariant under ϕ(t) → ϕ′(t) =
ϕ(t+ϵ) and ξ(t) → ξ′(t) = ξ(t+ϵ). The authors of [9] asked what is the corresponding
conserved charged associated with this time-translational symmetry. They notice
that obviously, it is not the energy of the Brownian particle which is not conserved
due to the existence of noise and dissipation, as seen in [9]

d

dt

[
1

2
mϕ̇2 + V (ϕ)

]
= −γϕ̇2 + ξϕ̇ ̸= 0. (1.50)

It is also instructive to notice that the associated Hamiltonian does not generate
time-translations, as, introducing

H =
P 2

2m
+ V (ϕ) (1.51)

where the momentum is P = mϕ̇, the equations of motion for the canonical variables
can be rewritten as

ϕ̇ =
∂H

∂P
, Ṗ = −∂H

∂ϕ
− γP + ξ, (1.52)

so that Ṗ ̸= {P,H}PB, where the brackets are the usual Poisson brackets which
control the dynamical evolution of closed systems. Hence, dissipative dynamics do
not follow the usual evolution rules of closed systems where the Hamiltonian is the
generator of time-translations. It implies that the construction of an effective action
as we did in Eq. (1.40) is not enough to describe the out-of-equilibrium dynamics in
the presence of dissipation. The charge associated with the time-translational sym-
metry mentioned above is a more complicated object known as the Fokker-Planck
operator [9] (or the Liouvillian for quantized systems) which effectively captures en-
ergy and information exchanges between the particle and the medium and generates
the dissipative dynamics.

The understanding of open systems which can exchange energy and entropy with
their environment is the main object of this manuscript. The ability to incorporate
open and dissipative dynamics within an EFT framework is only recent, still making
the object of active research under the name of Non-Equilibrium (see [8] for a review)
or Open EFTs (see [22] for a review). One of the goals of this manuscript is to better
understand the impact of these dynamics onto cosmological models. To do so, we
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need to extend the existing tools in order to accommodate for the peculiarity of
the cosmological dynamics. This is why in this thesis, we have first derived exact
results in Chapter 4 to efficiently benchmark Open EFT methods in Chapter 5 and
finally apply these techniques to a model of phenomenological interest in Chapter 6.
Before presenting these results, we first need to introduce the physics at play in the
early universe (Chapter 2) and the implementation of Open EFTs in cosmological
settings (Chapter 3).

Conclusions:

Effective Field Theories aim at organising a dialogue between a known
regime of scales and unknown physics. They encode new physics into a handful
of EFT coefficients controlling higher-order operators organised in terms of the
symmetries and the scale hierarchies of the problem. Observational constraints
on these coefficients provide guidelines in constructing fundamental theories
capturing the correct physics at the scale considered. In particular, it allows
us to identify universal behaviours which do not depend on the microphysical
details of the theory. We illustrated this principle by deriving aWilsonian EFT
describing the hydrodynamics of perfect fluids. The theory works remarkably
well to describe the occurence of ocean waves in the deepwater regime and the
emergence of vortices. Yet, it is unable to capture dissipative effects such as
energy cascades and turbulence, that are crucial for a wide range of physical
phenomena. In this case, the formalism has to be extended to capture energy
and entropy exchanges between the system and its surroundings, which lead
to the concept of Non-Equilibrium and Open EFTs. The goal of this thesis is
to implement these techniques in cosmology and understand the role of open
dynamics onto the physics of the early universe.
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Chapter 2

The early-universe promise

In this Chapter, we discuss the
physics at play in the early
universe and its connection with
new physics. Far from providing a
self-contained introduction to
primordial cosmology for which we
refer to [6, 23–25], we rather
highlight the motivations that
sustain the construction of the
manuscript.

The EFT perspective is reassuring: we gradually learn new physics as we probe
new regimes. It can also be depressing: the only way to evade far from the known
landscape seems out-of-reach. Where should we look for? Inflation, known as the
main paradigm describing the early universe, might be an interesting candidate as
it:

1. Takes place at high energy, which raises the hope of observing the effect of
higher-order operators in the Wilsonian EFT perspective;

2. Transfers small-scale fluctuations into large-scale inhomogeneities, generating
an interplay between the UV and the IR;

3. Is unconstrained enough so that it may contain hidden sectors playing the role
of cosmological environments.

Hence, from the EFT perspective, inflation looks like an interesting place to look
for extensions to the standard models of particle physics and cosmology. In this
Section, we present an overview of “the early-universe promise”. Let us first review
the observational motivations for what is today known as the standard model of
cosmology. We then discuss the physical picture it provides of the early universe.
We finally develop possible places where to look for new physics during inflation.
The discussion serves as a starting point in the perspective of constructing EFTs to
handle these extensions.
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2.1 A Standard Model for cosmology

Cosmology has entered a golden era where numerous experiments probe different
facets of our universe and corroborate a minimal construction based on a reduced
number of ingredients. Let us briefly review the conceptual steps we have to climb
in order to establish the standard model of cosmology.

2.1.1 From cosmological observations to models

In order to grasp to physical implications of having a standard model of cosmology,
it might be important to have in mind the few pillars it relies on. To do so, it is
instructive to follow the journey from observations to physical modelling. Indeed,
cosmology is a discipline which is part of astrophysics and relies on the scrutiny of
the sky. It aims at connecting observations to statements about the fundamental
nature of the constituents that compose our universe and their interactions. This
long journey relies on turning raw data into quantities that are predictable within
a theoretical framework, which is the object of the current discussion. We will first
see that some efforts are needed to classify observations through the construction of
catalogues. Then, the information is synthesized trough the construction of statistical
estimators. These objects are finally the ones we are able to compare with quantities
extracted out of theoretical constructions.

Turning raw data into model constraints: Contrarily to experimental sciences
such as quantum optics or particle physics where we have control on both the source
and the detector, cosmology is an observational science where we solely design the
detection apparatus. Ground and space-based telescopes have been constructed to
cover the wide range of signals we can receive from the cosmos. They vary in the
nature of the field they detect (e.g. IceCube detects neutrinos, LIGO gravitational
waves and Planck photons), the wavelength at which they operate (e.g. Fermi de-
tects γ-rays, JWST in the near-visible/mid-infrared and SKA in the radio domain),
the way they collect the signal (SDSS is a spectroscopic survey while DESI is a
photometric survey) and finally their sky coverage and depth of field. From sig-
nal collection to the measurement of a physical parameter, a long journey is often
ignored.

Raw data must be processed (mask application, denoising and signal subtrac-
tion, as illustrated in Fig. 2.1) to construct catalogues of objects (e.g. supernovea
(SNe) catalogues, see [26]) which serve as the starting point for cosmological data
analysis. The tremendous and astonishing amount of work from telescope design to
cosmological observations is partially illustrated in Fig. 2.2 which highlights the last
step of the process of constructing catalogues, from a galaxy spectrum to the Sloan
Digital Sky Survey (SDSS) celestial map.

Once data is collected and sorted into catalogues, we are half-way through the
journey towards constraining the physical world. Now we have access to sky maps,
we can use them to construct statistics of objects. For instance, we can characterise
how the temperature anisotropies of the CMB (signal in Subplot d) of Fig. 2.1)
and the galaxy density of the Large-Scale Structure (LSS) (right panel of Fig. 2.2)
vary across the sky. One can think of these signals as a draw from a statistical
distribution we would like to access. To make the discussion precise, let us illustrate
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Figure 2.1: a) Thermal dust signal; b) Carbon monoxyde signal; c) Integrated
Sachs-Wolfe (ISW) signal with a mask on the galactic plane (grey band); d) Cosmic
Microwave Background (CMB) signal from Planck Legacy Archive. In order to ob-
tain the CMB signal in d), one must first operate component separation, foreground
removal and mask application. A pedagogical introduction to the CMB signal ex-
traction can be found [27].

Figure 2.2: Left: From one of the more than four million spectra collected by
the SDSS [28] to Right: the SDSS map of the local universe [29] where each dot
is a galaxy. The construction of reliable catalogues is of prime importance for
cosmologists. It relies on a long journey from raw data to cosmological observations
and constitutes the starting point of statistical data analysis.
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the construction of a statistical estimator used for the LSS data analysis: the galaxy
clustering power spectrum.

Galaxy power spectrum: For the illustrative purpose of the discussion,
let us consider a galaxy survey covering a cubic volume of comoving length
L, on which we construct a cubic grid with N3

grid grid points, following the
approach of [23], Chapter 14. The galaxy overdensity on each of these pixels
is defined as

δg(xi) ≡
mg,i − m̄g,i

m̄g,i

(2.1)

where xi controls the position of the grid cell i, mg,i is the number of galaxies
contained in the cell and m̄g,i the average number of galaxies over all cells. The
signal is synthesised through the discrete Fourier transform of the overdensity
field

δg(k) = L3/2

N3
grid∑

i

δg(xi)e
−ik.xi where k ∈ (nx, ny, nz)kF (2.2)

having kF ≡ (2π)/L the wavenumber of the fundamental mode and (nx, ny, nz)
a set of integers between [−Ngrid/2;Ngrid/2]. The Fourier modes are finally
binned into equally spaced bins of wavenumber k ≡ |k|. In practice, the bin
α contains all modes k such that kα − ∆k/2 ≤ |k| ≤ kα + ∆k/2 where ∆k
is the width of the bin. The number of modes in a bin mk,α is an important
quantity as it plays a major role in the statistical error of the estimator. It
corresponds to the number of fundamental cells of volume k3

F we can order in
a thin shell around kα of volume 4πk2

α∆k. Explicitly,

mk,α ≡ 1

2

4πk2
α∆k

k3
F

=
1

4π2
V k2

α∆k (2.3)

where the 1/2 prefactor in the first equality comes from the reality of the
density field, imposing δg(−k) = δ∗g(k) which fixes one half of the Fourier
mode by knowing the value of the other half. Note that we have used the
value of kF ≡ (2π)/L in the second equality to render explicit the role of
the survey volume V ≡ L3 in the number of modes accessible. The galaxy
clustering power spectrum is finally constructed by averaging over all the
elements of a bin

P̂g(kα) =
1

mk,α

|k−kα|<∆k/2∑

k

|δg(k)|2 − PN (2.4)

where PN is a noise term related to the grid sampling, usually assumed to be
Poissonian, going as the inverse of the mean number of galaxy per cell. The
power spectrum counts the variance of each bin of wavenumber kα. It is an
indicator of how the signal varies across scales. The error on the measurement
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is captured by the covariance

Covαβ =
1

mk,α

|k−kα|<∆k/2∑

k

1

mk,β

|k′−kβ |<∆k/2∑

k′

(2.5)

[〈
|δg(k)|2 |δg(k′)|2

〉
−
〈
|δg(k)|2

〉 〈
|δg(k′)|2

〉]

where the four-point function
〈
|δg(k)|2 |δg(k′)|2

〉
must be computed perform-

ing all possible contractions, see [23] for details. In the simplest case of Gaus-
sian signal with no overlapping bins, it reduces to

Covαβ =
2

mk,α

[
P̂g(kα) + PN

]2
δαβ (2.6)

from which it appears that the error on P̂g(kα) goes as ∝ m
−1/2
k,α ∝ V −1/2.

Hence, an intrinsic limit known as the cosmic variance exists due to the lim-
itation of the finite number of modes accessible in a survey volume V . As
the size of cosmological surveys increases, so does their statistical precision.
All sorts of effects that were previously hidden under large error bars now
generate discrepancies if not carefully accounted for.

Of course, realistic surveys integrate more ingredients such as survey geome-
tries represented by window functions. Still, the above example highlights the main
procedure of constructing statistical estimators using sky maps. An analogous con-
struction can be made for the CMB on the celestial sphere using harmonic functions
and the multipole decomposition for the temperature anisotropies. At the end of the
journey, information on how is allocated the signal across scales is extracted from the
data, as shown in Fig. 2.3 for the matter density and the temperature anisotropies
power spectra. At first sight, one can see that this information is far from being
featureless. From the dramatic oscillations observed in the CMB spectrum known as
the Baryonic Acoustic Oscillations (BAO) to the peak in the matter density power
spectrum around k ∼ 10−2 − 10−1 h.Mpc−1,1 the imprints of underlying physical
processes are manifest. We are now in a position to unravel this signal.

It is now the time where contacts between theory and observations are made.
Indeed, if a theory is predictable, the quantities extracted out of the statistical esti-
mators constructed above can be predicted within a given model for a set of param-
eters. We now have to understand if the theoretical expectations correctly describe
the observed signal. In cosmology, this is usually made through a Bayesian inference
framework [31–33] which allows us to put constraints on the parameter space of a

1The scale unit h.Mpc−1 is often used in cosmology, in particular for the LSS studies. h is the
dimensionless Hubble constant

H0 = 100 h km.s−1.Mpc−1 (2.7)

such that h = 0.674 ± 0.005 from the latest Planck measurements [30]. A megaparsec (Mpc)
corresponds to a million of parsecs (pc), where 1 pc ∼ 3 × 1016 m. To have a few orders of
magniture in mind, the closest star is located 1 pc away from us, the size of the Milky Way is
about 30 kpc, cosmological structures such as the above mentioned BAO are ∼ 150 h.Mpc−1 and
the visible universe is made of a few Gpc.
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Figure 2.3: Left: The matter density power spectrum and Right: The temperature
anisotropies power spectrum from Planck Image Gallery. The spectra clearly exhibit
features which call for the existence of underlying physical processes explaining their
occurrence. The black and red plain lines are the theoretical predictions from the
Λ-CDM best fit parameters. It highlights the validity of the concordance model over
a large range of scales and datasets.

theory or to compare the goodness of fit from one theory to the other [23, 34]. Let
us briefly highlight the procedure, following the discussion of [35]. A quantity of
central interest is the likelihood L(D|Mi, θij) which is the probability of getting the
data D, given a model Mi and a set of parameter θij. In the specific example of the
galaxy-clustering two-point functions, assuming a Gaussian likelihood,

lnL(D|Mi, θij) = −1

2

∑

αβ

[
P̂g(kα)− P̂th.(kα|Mi, θij)

]

Cov−1
αβ

[
P̂g(kβ)− P̂th.(kβ|Mi, θij)

]
(2.8)

where P̂g(kα) is the statistical estimator from the data constructed above and

P̂th.(kβ|Mi, θij) is the theoretical power spectrum computed at scale kα within the
model Mi for the set of parameters θij. Once the likelihood is known, Bayes the-
orem tells us that the posterior probability p(θij|D,Mi) of a set of parameters θij
for each model Mi is expressed as

p(θij|D,Mi) =
L(D|Mi, θij)π(θij|Mi)

E(D|Mi)
(2.9)

where π(θij|Mi) is the prior distribution, accounting for preestablished knowledge
of the parameter space of the model Mi and E(D|Mi) is the Bayesian evidence, a
normalization constant defined as

E(D|Mi) =

∫
dθijL(D|Mi, θij)π(θij|Mi). (2.10)

By sampling the parameter space through the mean of e.g. a Monte-Carlo Markov
Chain (MCMC), we compute the value of the posterior for each θij using Eq. (2.9)
and infer the parameters of a given model Mi, as in Fig. 2.4. This procedure
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Figure 2.4: Posterior distributions for the cosmological parameters of the Λ-CDM
and massive neutrinos model obtained from the analysis of the BOSS DR12 CMASS
+ LOWZ NGC dataset with a Big Bang Nucleosynthesis prior on Ωb from [37]. It
constitutes the first extraction of the full set of Λ-CDM parameters from the LSS
with no CMB prior.

illustrates the way cosmological parameters are inferred from the data in modern
cosmology.

On the top of constraining the parameter space of a given modelMi, one can also
use the Bayesian evidence defined in Eq. (2.10) to calculate the posterior probability
of a model itself, p(Mi|D) ∝ E(D|Mi)π(Mi). Even if the normalisation constant is
unknown, it provides a useful way to compare two modelsMi andMj by considering

p(Mi|D)

p(Mj|D)
=

E(D|Mi)π(Mi)

E(D|Mj)π(Mj)
= Bij

π(Mi)

π(Mj)
(2.11)

where the Bayes factor Bij ≡ E(D|Mi)/E(D|Mj). One often assumes uninforma-
tive priors based on a principle of indifference such that π(Mi) = π(Mj) and makes
use of “Jeffreys scale” [34,36] to provide an empirical prescription for translating Bij

values into strengths of belief. When ln(Bij) > 5, Mj is said to be “strongly disfa-
vored” with respect to Mi, “moderately disfavored” if 2.5 < ln(Bij) < 5, “weakly
disfavored” if 1 < ln(Bij) < 2.5, and the situation is said to be “inconclusive” if
ln(Bij) < 1. This approach allows cosmologists to identify models achieving the
best compromise between quality of the fit and lack of fine tuning.

This long journey from raw data to model constraints highlights the several
layers of analysis required to perform a cosmological measurement, summarized
in Fig. 2.5. Having these elements in mind, we can think of the way new physics
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Figure 2.5: Summary of the long journey from raw data to parameter and model
constraints using two-point functions and a Gaussian likelihood, adapted from [23],
Chapter 14. Orange boxes represent cosmological signal, the blue box the instru-
mental input and the green box, on which we will focus for the rest of the manuscript,
the theoretical data. The right hand side in turquoise rely on the conjunction of
observations, instrumental and theoretical constraints.

could materialize itself. Given the large consistency of the concordance model we are
about to describe, there are good chances that discrepancies will appear progressively
through tensions between datasets of different nature, such as the notoriously known
H0 tension [38] or the S8 tension [39]. These tensions arise when we measure the
cosmological parameters of a model using observations of different natures made at
different scales. It motivates us to further develop systematic approaches to model
the incidence of new physics in a known regime in order to gain theoretical control
over these occurrences. This will be the object of Sec. 2.3 in the context of primordial
cosmology, but first, we need to provide a description of the known regime.

2.1.2 The Λ-CDM model

We now turn our attention to the description of what is known as the concordance
model, that is the physical model gathering the most confidence within the Bayesian
inference framework analysis over the widest range of data accessible. We will refer
to this model as the standard model of cosmology2 or the Λ-CDM model.

First pillar: This standard model provides a description of the cosmic history
and universe content based on a few pillars, the first of which is General Relativity.
In order to make the manuscript self-contained, let us briefly recap the basics of
the theory which makes the space-time a dynamical object. The metric is a rank-2
tensor defining the spacetime interval between two infinitesimally separated space-
time events in an arbitrary coordinate system

ds2 = gµνdx
µdxν . (2.12)

ds2 is called the line element and gµν provides a description of the underlying geom-
etry described by a manifold. From the metric, one can construct objects aiming at

2Note that contrarily to the standard model of particle physics which is a description at the
level of the most “fundamental” objects today observed that are quantum fields, the standard
model of cosmology is from the start an effective/fluid-like description.
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describing space-time in a coordinate independent manner. The Christoffel symbols
are defined as

Γµ
αβ ≡ gµν

2
[∂βgαν + ∂αgβν − ∂νgαβ] (2.13)

where gµν is the inverse metric, that is gµνgνλ = δµλ and ∂α ≡ ∂/∂xα. From these
objects, we construct the Ricci tensor

Rµν ≡ ∂αΓ
α
µν − ∂νΓ

α
µα + Γα

βαΓ
β
µν − Γα

βνΓ
β
µα (2.14)

and the Ricci scalar R ≡ Rµ
µ. They characterise the geometry of a gravitating

system. Matter and geometry are intertwined through the action

S = Sm + SEH (2.15)

where the action for the matter sector Sm simply writes

Sm = −1

2

∫
d4x

√−gLm (2.16)

for a non-gravitating Lagrangian-density Lm and d4x
√−g defines the covariant vol-

ume, g in
√−g being the determinant of the metric gµν . SEH is the Einstein-Hilbert

action

SEH = −MPl

2

∫
d4x

√−g (R + 2Λ) (2.17)

with Λ is a constant known as the cosmological constant.

Units and conventions:

The reduced Planck mass connects with the fundamental constants as

MPl =
1√
8π

√
ℏc
GN

≃ 2.1018 GeV (2.18)

where ℏ = 1.054 × 10−34 J.s is the reduced Planck constant, c = 3.108 m.s−1

the speed of light and GN = 6.67× 10−11 m3.kg−1.s−2 the Newton’s constant.
From now on, we work in natural units in which ℏ = c = GN = 1. Every
quantity is expressed in terms of the reduced Planck mass. The metric has
a mostly positive signature (−,+,+,+), indices are raised and lowered using
the metric gµν and its inverse gµν and summation over repeated indices apply.

From Eq. (2.15), variations with respect to the metric tensor leads to the equa-
tions of motion known as the Einstein Field Equations (EFE)

Rµν −
R

2
gµν + Λgµν =

1

M2
Pl

Tµν (2.19)

which relate the curvature of space-time to the matter content. The stress-energy
tensor is constructed out of the matter sector by functional derivative with respect
to the metric

Tµν ≡ − 2√−g

δSm

δgµν
. (2.20)
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Finally, defining the Einstein tensor as Gµν ≡ Rµν − gµνR/2, Bianchi identities fix

∇µT
µν = 0, ∇µG

µν = 0 (2.21)

which solely follows from general covariance, where the ∇µ notation indicates co-
variant derivatives.

Second pillar: On large scales, for comoving observers, the universe is homo-
geneous and isotropic. It implies a drastic simplification of the EFE due to the
introduction of 6 Killing vectors associated with the spacetime symmetries: 3 for
the spatial translations and 3 for the spatial rotations. This set of symmetries is
known as the cosmological principle. Under this assumption, the line element writes

ds2 = −dt2 + a2(t)γijdx
idxj (2.22)

which defines the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric, the spa-
tial part being

γijdx
idxj =

dr2

1− κr2
+ r2

(
dθ2 + sin2 dφ2

)
. (2.23)

a(t) is the scale factor which informs us on how the size of the universe is chang-
ing with time. Formally, we define a foliation along the time axis with spacelike
sections. From a more formal perspective, the scale factor a(t) explains how to con-
nect neighbouring spacelike hypersurfaces. The curvature of the spacelike sections
is given by κ = 0,±1 (flat, sphere-like and saddle-like respectively). Therefore, this
metric contains two parameters a(t) and κ we constrain from physical observations.

In this framework, the matter content of the universe is given by a collection of
perfect fluids. Indeed, in this minimal approach, no viscosity is allowed at the level
of the background evolution (understood as the large-scale regime) as it would break
the spacetime symmetries.3 Therefore, the associated stress-energy tensor is

Tµν = (ρ+ p)uµuν + pgµν (2.24)

with ρ is the energy density of the fluid, p its isotropic pressure and uµ its four-
velocity.

One can use these inputs to derive a cosmological history. From the FLRW
metric of Eq. (2.22), we can construct the Ricci tensor using Eq. (2.14). Injecting
these ingredients into the EFE, we obtain the Friedmann equations

H2 =
ρ

3M2
Pl

− κ

a2
+

Λ

3
(2.25)

ä

a
= − 1

6M2
Pl

(ρ+ 3p) +
Λ

3
(2.26)

where we defined the Hubble parameter H ≡ ȧ/a. Friedmann equations specify the
evolution of the scale factor a(t) as a function of the matter content, the cosmological
constant and the spatial curvature.

3One can in fact relax this assumption by accounting for bulk viscosity while still respecting
the symmetries of FLRW spacetimes. It amounts to employ the energy-momentum tensor of an
imperfect fluid where the bulk viscosity would mimic an isotropic pressure term (see e.g. [40],
Chapter 3).

32



Figure 2.6: A summary of the almost 14 billion year history of the Universe from the
ESA Gallery. Their description is here reproduced: “The processes depicted range
from inflation, the brief era of accelerated expansion that the Universe underwent
when it was a tiny fraction of a second old, to the release of the CMB, the oldest
light in our Universe, imprinted on the sky when the cosmos was just 380 000 years
old; and from the ‘Dark Ages’ to the birth of the first stars and galaxies, which
reionised the Universe when it was a few hundred million years old, all the way
to the present time. Tiny quantum fluctuations generated during the inflationary
epoch are the seeds of future structure: the stars and galaxies of today. After the
end of inflation, dark matter particles started to clump around these cosmic seeds,
slowly building a cosmic web of structures. Later, after the release of the CMB,
normal matter started to fall into these structures, eventually giving rise to stars
and galaxies.”

Validity of the cosmological pillars: General relativity, together with quantum
mechanics and the standard model of particle physics, are among the most tested
physical theories [41–44]. Moreover, GR can be seen as a non-renormalizable field
theory well described as the low-energy limit of a more general EFT construction [1].
For both of these reasons, it provides a conservative and trustworthy framework. The
cosmological principle relies on the fact that isotropy is observed in the LSS and the
CMB. Homogeneity is based on the Copernician principle, that is the fact we do
not occupy a privileged place in the cosmos. Giving up on this last point would be
equivalent to accept a possible fine tuning related to our position, which questions
modern physics at large. For these reasons, cosmological pillars lie on solid grounds.

The standard model of cosmology: The effectiveness of this minimal model
is probably the most striking feature that emerged from the last few decades of
research in cosmology. Though many of its ingredients remain mysterious in terms
of their underlying fundamental physics, the standard model of cosmology provides
a astonishing fit to an ensemble of observations ranging from the present day to
about a few minutes after the Big Bang.

The Λ-CDM model is made of the conjunction of GR and a universe content
which implies a certain cosmic history, the one represented in Fig. 2.6. This frame-
work combines an initial phase of accelerated expansion known as inflation and a
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subsequent era of decelerated expansion known as the Hot Big Bang. Let us briefly
describe this timeline. Inflation is a high-energy phase which took place in the early
universe during which the scale factor a(t) underwent a nearly exponential growth.
In less than a second, the universe get dilated by a factor of order e50, transferring
quantum fluctuations to cosmological distances. This era is described within a quan-
tum field theoretic framework where the main component is thought to be a scalar
field known as the inflaton. This phase ended up through a process of reheating
during which the inflaton decayed into dark matter and particles of the standard
model. By this process, inflation seeded the inhomogeneities that will later grow on
under the effect of gravity. It will be the main focus of this manuscript.

Then, Hot Big Bang phase took over. It is first composed of a radiation era,
where the formation of heavy elements occurred through the process of Big Bang
Nucleosynthesis (BBN) within the first three minutes of our universe. The hot pri-
mordial plasma cooled down while the universe expanded, until we enter the matter
dominated era. During this phase, recombination occurred, that is the physical pro-
cess leading to the emission of the CMB photons, 380 000 years after the Big Bang.
The temperature has dropped enough so that the protons and electrons were finally
able to combine, after which photons could free stream towards us. The late evolu-
tion of the universe is characterised by the process of gravitational clustering which
lasted for billions of year during which galaxies, clusters and voids were formed,
generating the LSS we today observe. Recently, the universe started to accelerate
again under the action of the cosmological constant Λ, entering in its last and cur-
rent phase of vacuum dominated era. When we today observe the sky, this cosmic
history provides the most consistent scenario matching the observations made so
far.

The Λ-CDM model is a six-parameter model made of the baryon density Ωb, the
cold-dark-matter density Ωc, the amplitude of the primordial power spectrum As and
its tilt ns and finally the optical depth τ and the angular acoustic scale 100θ∗ [30].
From these primary parameters, derived quantities often play a crucial role such
as the expansion rate H0, the photon density Ωγ, the neutrino density Ων or the
cosmological constant density ΩΛ. The model provides predictions we can compare
to data in order to extract values for these parameters. From the measurement of
supernovae or the temperature anisotropies of the CMB, we can infer the expansion
rate [23]

H0 = 100 h km.s−1.Mpc−1 (2.27)

such that h = 0.674±0.005 from the latest Planck measurements [30]. It implies an
age for the universe of about 13 Gya, a size for the observable universe of about 4
Gpc and an energy scale for the cosmological expansion of 10−33 eV today. To infer
the rest of the parameters, the most precise approach relies on the understanding
of the cosmological inhomogeneities we observe on the top of a vastly homogeneous
and isotropic background. In this picture, all the structures we today observe in the
universe such as galaxies, clusters, voids and filaments all originate from quantum
fluctuations of the primordial vacuum produced during inflation whose statistics
is (almost) fully characterised by two parameters, the amplitude of the primordial
power spectrum As and its tilt ns.

The initial inhomogeneities later evolve under the laws of GR and the universe
content specified through the other Λ-CDM parameters. This mechanism seeds the
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temperature anisotropies of the CMB and galaxy clustering in the LSS which we
precisely measure today in the sky. Within the Bayesian inference framework devel-
oped above, we can test the theoretical predictions for the statistics of observables
and infer the parameters of the model. It follows that the energy budget of the
universe is currently shared between the cosmological constant Λ which gather 69%
of the total, the cold dark matter (CDM) component which today represents about
25% of the budget and the baryons representing a remaining 5% of the budget.
In its current form, the universe hosts solely about 10−5% of radiation (photons
and neutrinos). As a summary, the Λ-CDM model provides a description of a spa-
tially flat universe that is dominated today by cold dark matter and a cosmological
constant, with initial perturbations generated during inflation in the very early uni-
verse. Capturing the imprints of phenomena that took place at very high energy,
these initial perturbations are the main motivation of this manuscript and we now
aim at describing their generation.

Assumptions underlying the Λ-CDM model: As a summary, let us
here reproduce the eight major assumptions listed by the Planck Collaboration
in [27] on which the standard model of cosmology relies.a Most of them have
been tested to very high level of accuracy using cosmological observations.

1. Physics is the same throughout the observable universe.

2. GR is an adequate description of gravity.

3. On large scales, the universe is statistically the same everywhere.

4. The universe was once much hotter and denser and has been expanding
since early times.

5. There are five basics cosmological constituents:

(a) Dark energy that behaves just like the energy density of the vac-
uum.

(b) Dark matter that is pressureless, stable, and interacts only gravi-
tationally with normal matter.

(c) Regular atomic matter that behaves just like it does on Earth.

(d) The photons we observe as the CMB.

(e) Neutrinos that are almost massless and stream like non-interacting,
relativistic particles at the time of recombination.

6. The curvature of space is very small.

7. The universe has a trivial topology, like R3. In particular, it is not
periodic or multiply connected.

8. Variations in the density were laid down everywhere at early times, and
are (almost) Gaussian, adiabatic and nearly scale invariant as predicted
by inflation.
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This last point will be extensively discussed in the rest of the manuscript.

aNote that 1. is a consequence of 2. and 3. Similarly, 4. is a consequence of 2. and 5.
Here, we solely reproduce the points listed in [27].

2.2 The physics of the early universe

In the standard model of cosmology, the early universe provides the initial condi-
tions that seed the evolution of the subsequent eras of the universe. It directly
connects current observations to early universe processes taking place at very high
energy. From today’s sky, what can be learnt about the physics seeding these initial
conditions? In order to tackle this question, we will first illustrate in Sec. 2.2.1 the
modelling of the early universe commonly used within the concordance model. It
provides a consistent scenario explaining the statistics of the fluctuations observed
in the CMB and the LSS. In Sec. 2.2.2, we then turn our attention to the regime of
validity over which this scenario has been tested. Finally, in Sec. 2.2.3, we highlight
a few limits and difficulties faced by the current modelling of the early universe. The
aim of this Section is to provide an overview of our current understanding of the
early universe which serves as a starting point for the construction later developed
in Sec. 2.3.

2.2.1 The early-universe modelling

Within the concordance model, the early universe is driven by a single scalar field
ϕ, the inflaton, evolving in a flat potential. We will refer to this class of models
as single-field slow-roll inflation. This phase is designed to permit an early era of
accelerating expansion (ä > 0) in order to set up the initial conditions for the sub-
sequent Hot Big Bang. From Eq. (2.26), it turns out that having ä > 0 is equivalent
to consider an energy budget dominated by a perfect fluid with an equation of state
w ≡ p/ρ < −1/3, neglecting the cosmological constant term which is assumed to
be subdominant in the early universe. Let us first review how single-field slow-roll
inflation can achieve this task.

The Lagrangian density for the scalar field is given by

Lm =
1

2
gµν∂µϕ∂νϕ− V (ϕ) (2.28)

from which, using Eq. (2.20), we deduce the stress-energy tensor

T (ϕ)
µν = ∂µϕ∂νϕ− gµν

[
gαβ∂αϕ∂βϕ+ V (ϕ)

]
(2.29)

At the background level, for a homogeneous field configuration ϕ(x, t) = ϕ(t), one
can assimilate the scalar field to a perfect fluid of energy density and pressure

ρ =
1

2
ϕ̇2 + V (ϕ) (2.30)

p =
1

2
ϕ̇2 − V (ϕ) (2.31)

When the potential energy dominates over the kinetic term, w ≃ −1 < −1/3 and
the universe undergoes a phase of accelerating expansion. This regime in which

36



ϕ̇2 ≪ V (ϕ) is known as the slow-roll regime. It is characterised by a series of
moments known as the Hubble flow parameters defined as

ε0 =
Hini

H
and εn+1 =

d

dN
ln εn (2.32)

where Hini is some initial value for the Hubble parameter and N = ln a is the number
of efolds. Explicitly, the first two parameters are

ε1 = − Ḣ

H2
=

3ϕ̇2

2

ϕ̇2

2
+ V (ϕ)

and ε2 =
ε̇1
Hε1

= 2

(
ε1 +

ϕ̈

Hϕ̇

)
(2.33)

where we used Friedmann equations reading

H2 =
ϕ̇2

2
+ V (ϕ)

3M2
Pl

and Ḣ = − ϕ̇2

2M2
Pl

(2.34)

to relate the Hubble parameter and its derivatives with the kinetic and potential
energy of the field. One can easily check that ϕ̇2 ≪ V (ϕ) imposes ε1 ≪ 1, that
is Ḣ ≪ H2. Said it differently, the Hubble parameter is enforced to be almost a
constant, corresponding to a nearly exponential expansion of the scale factor a(t).
This is the reason why inflation is often called a quasi de-Sitter expansion, as it only
departs from the forever exponentially expanding universe (de Sitter spacetime) by
a set of slow-roll parameters. Hence, the slow-roll expansion amounts to assume an
almost frozen dynamics, for which |εn| ≪ 1, ∀n ≥ 1. In particular, it implies that
the scalar field equation of motion given by the Klein-Gordon equation

ϕ̈+ 3Hϕ̇+ V ′ = 0 (2.35)

where V ′ ≡ dV/dϕ simplifies to its attractor solution (independent of the initial
conditions)

ϕ̇ = − V ′

3H
(2.36)

as |ε2| ≪ 1 amounts to neglect the acceleration of the field over the other terms
of the Klein-Gordon equation. If we finally relate these slow-roll parameters to the
shape of the potential using Eq. (2.36), we find

ε1 ≃
MPl

2

(
V ′

V

)2

and ε2 ≃ 2MPl

[
1

2

(
V ′

V

)2

− V ′′

V

]
. (2.37)

To summarize, having a quasi de Sitter expansion with nearly constant H requires
ε1 ≪ 1 which implies a flat potential. Reaching the attractor (one-dimensional
phase space) trajectory of the form of Eq. (2.36) requires |ε2| ≪ 1 which requests a
small mass for the inflaton V ′′ ≪ H2. Despite being notoriously known as a difficult
task to achieve due to radiative corrections generating an inflaton mass heavier than
the Hubble parameter H, the smallness of ε2 is a well-tested observational feature.4

4In particular, it directly connects to the nearly scale invariance of the power spectrum which
is tested with exquisite precision in the CMB.
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What is the current observational status of inflation? There are mainly three
qualitative features that have been tested. The first one is the spatial flatness of the
universe. The first Friedmann equation given in Eq. (2.25) can be rewritten as

1− Ω =
−κ

(aH)2
(2.38)

with Ω ≡ ρ/3M2
PlH

2. Consequently, the deviation of the normalized density param-
eter Ω from unity is a measure of the curvature of the universe. Today, we observe
|1− Ω(a0)| ≤ 0.02 while the inflationary prediction is |1− Ω(a0)| ≤ 10−5. This is a
first great success for inflation.

The peaks observed in the CMB power spectra, see the right panel of Fig. 2.3,
constitute the second non-trivial qualitative feature explained by inflation. Oscil-
lations form an highly non-trivial signal as it suggests that all Fourier modes have
the same phase. In general, Fourier modes can excite both sine and cosines, so that
in the case of random initial phases, their addition quickly ends up mixed into an
incoherent superposition as illustrated in Fig. 2.7. Some physical mechanism must
explain the phase coherence. Inflation provides such a mechanism, based on two
arguments. The first one relates to the journey of a comoving scale during inflation
while the second one to the peculiarity of the dynamics of the so-called curvature
perturbation whose statistics later seed the temperature anisotropies of the CMB.
Let us start with the journey of a comoving mode k−1 which relates to the physical
distance d by d(t) = a(t)k−1. During inflation, a(t) grows almost exponentially
while H is nearly frozen. It implies that the comoving Hubble radius (also referred
as the comoving horizon), (aH)−1, is decreasing. This quantity describes the size of
a causal patch, as two points separated by a distance greater than (see e.g. [24])

τ =

∫ af

ai

da(aH)−1 (2.39)

could not have communicated through a causal mechanism. If we now consider
a given mode k−1 that is typically observed in the CMB and compare it with the
evolution of the comoving Hubble radius as done in Fig. 2.8, we can easily understand
that two regimes emerge depending on the scale hierarchy between the comoving
mode k−1 and the comoving horizon (aH)−1. When k ≫ aH, as it is the case in the
asymptotic past, the mode is said to be sub-Hubble. It lies well below the universe’s
radius of curvature, which often justifies an identification to the physics occurring
in Minkowski spacetime. On the contrary, when k ≪ aH, as it is the case in for
a duration of around 50 efolds for modes observed in the CMB, the mode is said
super-Hubble. Then, the dynamics of the expanding background plays a crucial role
which affects the observables such as the curvature perturbation ζ. This quantity
behaves in a dramatically different manner in the sub and super-Hubble regimes.
In particular, it detains the very remarkable property of being conserved on super-
Hubble scales, not only during inflation but also during the subsequent eras [23],
at least for single-field models of inflation. The constraint that ζ̇ = 0 provides a
specific initial condition which aligns the phase for the modes of interest. Said it
differently, the phase distribution is far from being arbitrary during inflation, which
allows us to observe coherent oscillations (contrarily to some alternatives such as
cosmic strings and topological defects).5

5A technical detail for cosmologists: note that the BAO oscillations in the TT spectrum of
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Figure 2.7: Top: Time evolution of modes with different initial amplitudes but the
same phase, for which oscillations are observed. Bottom: Time evolution of modes
with different initial amplitude and phases. The spectrum has no oscillations and
seem featureless. Figure from [45].

Figure 2.8: The journey of a comoving scale. A mode of interest is initially
blueshifted in the deep past and so initiate its journey well below the comoving
horizon (aH)−1. As time proceeds, the scale factors grows exponentially in terms
of the cosmic time, the Hubble sphere of radius (aH)−1 shrinks such that at some
point, the mode of interest crosses the horizon k∗ = a∗H. During inflation, there is
a continuous inflow of sub-Hubble modes on the large-scale super-Hubble dynamics
which is well described within the context of stochastic inflation.
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The third qualitative feature predicted by inflation is the production of primor-
dial inhomogeneities sampled from a nearly scale-invariant, Gaussian and adiabatic
process. Indeed, the tiny temperature anisotropies observed in the CMB directly
connect to the production of primordial inhomogeneities in the early universe. These
inhomogeneities correspond to the fluctuations of the curvature perturbation which
seed the initial conditions for structure formation. The Gaussianity of the process
implies that all the statistics is captured by the first two moments of the distri-
bution. As the mean can always be reabsorbed by a field redefinition, we focus
on the variance which is the already encountered power spectrum in Fourier space.
The primordial power spectrum predicted from inflation is almost k-independent.
Perfect scale invariance of the primordial power spectrum is now excluded by more
than 7σ, which is consistent with the fact that inflation generates a quasi de-Sitter
phase of expansion which must end at some point. The necessity for carrying a
physical clock accounting for the time remaining before the end of inflation breaks
the time translation symmetry which ruins the scale invariance of a perfectly de
Sitter universe. The Gaussianity assumption relates to the fact that, so far, all
measurements are consistent with a purely Gaussian statistics of the fluctuations.
Almost perfect Gaussianity is an expected feature of single-field slow-roll inflation,
even if slow-roll suppressed non-Gaussian signal is expected, see e.g. [47,48]. It fol-
lows from the smallness of GR non-linearities [49] and the requirement that, for the
inflaton potential to remain flat enough, the inflaton must be weakly self-interacting.
Finally, the adiabaticity corresponds to the fact that fluctuations generated by the
curvature perturbations during inflation equally affect different components during
the Hot Big Bang. All perturbations of the cosmological fluids (photons, neutrinos,
baryons and CDM) originate from the same curvature perturbation statistics, that
is [24, 50]

(
δρ(x)

ρ̄+ p̄

)

a

=

(
δρ(x)

ρ̄+ p̄

)

b

(2.40)

where ρ̄ and p̄ are the spatially averaged energy density and pressure, δρ(x) ≡
ρ(x)− ρ̄ the local overdensity and a, b corresponds to baryons, dark matter, photons
and neutrinos. Hence, all the various components of our universe are distributed in
the same way at the onset of the Hot Big Bang, as predicted by single-field slow-roll
inflation and observed in the CMB and the LSS [51].6

At the level of the quantitative features, inflation provides the initial conditions
for each mode through a power spectrum of the form

∆2
s(k) = As(k∗)

(
k

k∗

)ns(k∗)−1

(2.41)

where k∗ = 0.05 Mpc−1 is an arbitrary reference scale at which the signal is mea-
sured, known as the pivot scale. The latest measurements from Planck [51] indicates

the CMB are observed at scales ℓ > 200, after horizon reentry where some other causal mech-
anism might explain the appearance of coherent oscillations. However, considering polariza-
tion anisotropies of the CMB, the TE spectrum exhibits the first coherent oscillations around
100 < ℓ < 200, at scales above the horizon at the time recombination occurred. It clearly calls for
a causal mechanism on super-horizon scale occuring prior to the emission of the CMB. See [27,45,46]
for details.

6Note that multifield inflation adiabatic initial conditions can also arise in specific models, see
e.g. [52] for a discussion.
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Figure 2.9: Illustration of how the correlations originating from the primordial power
spectrum gets transferred to the temperature anisotropies of the CMB and the
galaxy clustering data of the LSS. From the bottom to the top: primordial fluctu-
ations of quantum mechanical origin generates a nearly scale invariant power spec-
trum (reconstructed from CMB observation in [27]). After inflation, the evolution
of the cosmological inhomogeneities during the radiation and matter dominated era
forms the temperature anisotropies of the CMB introduced in Fig. 2.3. Billion of
years later, galaxies, clusters, voids and filaments of the LSS formed on the seeds of
these primordial fluctuations.

an amplitude of 109As(k∗) = 2.105±0.030 and a tilt of ns(k∗) = 0.965±0.004. This
primordial seed for cosmic inhomogeneities directly relates to the physics of inflation
and connects to the subsequent era of the universe later measured in the CMB and
the LSS as illustrated in Fig. 2.9.

2.2.2 Unexplored regimes

From the EFT perspective, standard models exhibit their full glory solely within a
certain regime. New physics hide in the dark corners7 that have not been explored
yet. For this reason, it matters to map the frontier separating the explored from the
unexplored in order to construct an EFT able to describe their interplay.

7One may argue that dark matter and dark energy are hidden in plain sight and might be
considered as new physics, in the sense that no fully satisfactory fundamental description is known
so far. Yet, we may also consider them from their current status (a pressureless cosmological fluid
and a cosmological constant) as indispensable ingredient of an extremely successful story that holds
their name, the Λ-CDM paradigm. This form encapsulates their nature at scales we today probe.
Any more fundamental description would have to mimic this behaviour at these scales in order to
provide a satisfactory description. Then, distinguishing possible completions from their effective
representation would necessarily require to probe new regimes where they will start departing from
each other.
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Current status and future surveys: So far, cosmological observations from the
CMB and the LSS are all consistent on large scales with a Gaussian, nearly scale-
invariant, adiabatic scalar power spectrum from quantum mechanical origin. Let
us briefly highlight the regime of validity of this statement by providing existing
bounds on the parameters controlling this assertion.

In order to solve the Hot Big Bang problems that are the so-called horizon,
flatness and monopole problems [53–65], inflation must last a number of efolds [24]

Ninf ≡
ln aend
ln astart

≥ 50− 60. (2.42)

Consequently, predictions from single-field slow-roll inflation span ranges of physical
scales from a few meters for modes escaping the horizon just before inflation ends
up to thousands of megaparsec (Mpc), the actual size of the observable universe,
for modes that spent about 50 efolds above the horizon. Indeed, we have not tested
inflation over this range. The latest CMB results [51] account for a primordial power
spectrum confirming a pure power law in the range of comoving scales between
0.005 Mpc−1 ≲ k ≲ 0.2 Mpc−1. On the LSS side, tremendous efforts have been
made in the last years [37,66–70] to push the galaxy clustering analysis down to the
mildly non-linear regime kNL ≃ 0.1 − 0.5 h.Mpc−1. Hence, over the ∼ 26 orders of
magnitude predicted by inflation, only ∼ 4 of them have been tested so far using
CMB and LSS data. A wide window remains open for the existence of features at
smaller scales [71, 72], even if this regime has been more and more constrained in
the recent years either using gravitational waves data [51, 73] or Primordial Black
Holes (PBHs) constraints [74].

The Gaussian nature of primordial inhomogeneities is a well-tested observation
from the temperature anisotropies and polarization of the CMB [75] and more re-
cently using the galaxy clustering data from spectroscopic surveys [76–80]. Devi-
ations from Gaussianity are observationally constrained by the signal from higher-
point statistics, starting with the three-point function known as the bispectrum.8 In
Fourier space, the bispectrum of the curvature perturbation ζ is parametrised as

〈
ζ̂k1 ζ̂k2 ζ̂k3

〉
= (2π)3δ (k1 + k2 + k3)Bζ (k1,k2,k3) (2.43)

Because of the spatial homogeneity, δ (k1 + k2 + k3) imposes to consider closed tri-
angle configurations. One usually distinguish the equilateral k1 = k2 = k3, the local
or squeezed k1 ≃ k2 ≪ k3 and folded k1 = 2k2 = 2k3 configurations. The amplitude
of the signal from Planck in these three configurations is given by [75]

f equil
NL = −26± 47; f local

NL = −0.9± 5.1; f ortho
NL = −38± 24 (68%CL) (2.44)

No significant non-zero detection from primordial origin has been made so far. Yet,
non-Gaussianities remain one of the most promising probe to explore standard model
extensions.

8Recent interests from the first detection of connected four-point correlation function in the
SDSS BOSS dataset [81–83] and its relation with parity violation [84, 85] may lead to bypass the
bispectrum signal in LSS data analysis and focus on even higher-order statistics for some models
of interest.
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Among the most robust inflationary predictions, the existence of a primordial
tensor spectrum ∆t related to the scalar spectrum ∆s by the scalar-tensor ratio

r ≡ ∆t

∆s

= 16ε1 (2.45)

is a universal result of the linear perturbation theory of cosmological inhomogeneities.
The slow-roll regime imposing ε1 ≪ 1, the signal is extremely low in vanilla inflation.
Current constraints obtained by measuring polarization signal in the CMB bound
r < 0.028 [73]. A stochastic gravitational wave background (SGWB) from primor-
dial origin can also be generated (see e.g. [86] for a review) from a scalar-induced
mechanism during or after inflation using GR non-linear couplings. Hence, the ex-
istence of a gravitational waves from primordial origin appears as an unavoidable
prediction of inflationary cosmology. Yet, no direct detection has been recorded so
far.

Within the scalar sector, multifield extensions beyond single-field slow-roll in-
flation should manifest themselves through the existence of isocurvature modes
[87]. The isocurvature modes are scalar fluctuations of a different nature than the
curvature perturbations which leave a distinguishable imprint on the temperature
anisotropies of the CMB. The latest Planck data [51] are consistent with null de-
tection, i.e. a pure adiabatic model, with a Bayes factor of lnBij < −10.9 assert-
ing strong confidence in the null detection, following the discussion made around
Eq. (2.11).

So far, inflationary predictions have been tested through the consistency of the
background dynamics they generate and the imprint they leave on the top of this
background. Cosmological inhomogeneities have been successfully described in the
small fluctuation regime by perturbation theory and provide a consistent scenario
with the current status of cosmological observations. Yet, the quantum nature of the
fluctuation do not preclude for the existence of large fluctuations [88–90] which may
capture crucial information about the underlying microphysical inflationary model.
By probing tails of the probability distribution associated with the local value of the
curvature perturbation ζ, the large fluctuation regime could significantly impact the
abundance of collapsed objects such as PBHs and dark matter halos. Unambiguous
connection between the observation of collapsed objects and their primordial origin
has not been successful so far (despite attempts, see for e.g. [91]) which makes of
the large fluctuation regime another untested domain of the inflationary paradigm.

Lastly, the nature of the fluctuations - quantum or classical - is still an unsolved
problem. Indeed, if their quantum nature is fully consistent with the observational
window, a classical stochastic theory could also generate a power spectrum compat-
ible with observations by the mean of thermally produced inhomogeneities such as
string gas cosmology [92] or warm inflation [93].

As a conclusion, the inflationary framework has been tested in a limited range
of scales (0.005 Mpc−1 ≲ k ≲ 0.2 Mpc−1), for a limited type of species (adiabatic
scalar only), in the Gaussian (null detection of higher-point statistics in the CMB)
and small fluctuation regime, indistinguishable from classical counterparts (no direct
evidence for the quantum nature of primordial inhomogeneities). While future CMB
surveys such as SPTpol [94], CMB-S4 [95] or LiteBIRD [96] will target B-modes
of polarization and spectral distortions and strongly improve CMB constraints on
primordial cosmology, DESI [97], SKA [98], EUCLID [99] and Vera Rubin [100] may
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render feasible to constrain from the LSS primordial non-Gaussianities and [76–80]
and parity odd theories [82] in an unprecedented manner. Lastly, pulsar-timing
arrays observed by NANOGrav [101] and gravitational waves detectors such as the
LIGO/Virgo/KAGRA collaboration [102], the Einstein Telescope [103] or LISA [104]
rise promises on the possible detection of gravitational waves from primordial origin
and improvement on the search for PBHs.

The existence of current tensions animating the community such as the H0 ten-
sion [38] or the S8 tension [39] might hint that cosmology has entered a precision
era which may call for an updated paradigmatic description. Given the effective
(fluid-like) nature of the concordance model, it should not come as a surprise that
it might need extensions. Still, the fact that it provides a good fit of the current
regime should be taken as a guideline for constructing extensions.

Inaccessible information: It is important to bear in mind the existence of inac-
cessible information that cannot be retrieved, independently of the technology level
of astronomy in the future. Just as information hidden behind the horizon of a
black-hole, the existence of inaccessible information motivates the development of
frameworks able to deal with theoretical uncertainties that invariably plague any
effort of theoretical construction.

A first example is given by the cosmic variance. It is associated with the inherent
uncertainty on large-scale measurements due to the invariably low sampling of these
regions [23]. Obviously, if we want to ask how the matter density varies between
two regions of 1 Gpc3, as we can at best only observe a few of them within the
observable universe, the statistical uncertainty of the sampling will be large. On
the contrary, the same question asked for boxes 1 Mpc3 will have a much smaller
statistical error as the much more data points can be collected. While large volume
surveys such as MegaMapper [79] might improve the large-scale sampling, some
unbeatable threshold will be reached some day due to the finiteness of the observable
universe. Let us further highlight that our causal patch might be affected by soft
modes of wavelength longer than the observable universe. These background effects
might vary the statistics of the fluctuations in sub-volumes, rendering harder to
reconstruct fundamental physics from local cosmological observations [105].

A second intrinsic observational limitation comes from the peculiarity of the
inflationary dynamics. When comes the question of testing the quantum origin of
primordial inhomogeneities, the most direct road to follow is the one of exhibiting
correlations in the CMB or the LSS that could not been reproduced by a classical
counterpart obeying local realism, in the spirit of a Bell test. Several works have
developed the possibility of performing CMB Bell tests [106–112] yet most of them
face a fundamental obstacle related to the unobservability of some of the inflationary
correlators. Indeed, the usual way to perform a Bell test is by measuring a set
of observables (spin directions for discrete variables, quadratures for continuous
variables) and combining these measurements in a way that they violate a bound
fulfilled by a classical theory. Within the inflationary framework, it would require
to access not only the curvature perturbation two-point function ⟨ζ̂(x, η)ζ̂(y, η)⟩
but also the correlators ⟨{ζ̂(x, η), ζ̂ ′(y, η)}⟩ and ⟨ζ̂ ′(x, η)ζ̂ ′(y, η)⟩ where η is the
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conformal time defined infinitesimally as dt = adη such that

η =

∫ t

t0

dt′
1

a(t′)
=

∫ a(t)

0

da
1

a2H
≃ − 1

a(t)H
(2.46)

at leading order in slow-roll where H is almost a constant, primes denote deriva-
tives with respect to it and the anticommutator is defined as {A,B} ≡ AB + BA.

Unfortunately, ζ̂ ′(x, η) is famously known as the decaying mode and correlators
containing one insertion of this field variable are observationally inaccessible in any
realistic experiment for vanilla models of inflation (counterexamples can be found,
for instance in the context of ultra slow-roll phases [113] or exotic models such as
the one discussed in [107]). The reason is the following.9

Decaying mode: The linear action for the curvature perturbations ζ
writes [24]

S
(2)
ζ =

∫
dηd3xa2ε1M

2
Pl

[
ζ ′2 − (∂iζ)

2] . (2.48)

We first introduce the time-variable z(η) ≡ a(η)
√
2ε1MPl and the Mukhanov-

Sasaki variables v(η,x) ≡ z(η)ζ(η,x). One can Fourier transform the field
variables

vk(η) ≡
∫

R3

d3x

(2π)3/2
v(η,x)e−ik.x (2.49)

in order to take advantage of the spatial homogeneity. The equation of motion
for vk takes the familiar form of a parametric oscillator

v′′k +

(
k2 − z′′

z

)
vk = 0. (2.50)

The conjugate momentum is obtained from the action and read pk = v′k− z′
z
vk.

Following the canonical quantisation prescription, field variables are promoted
to quantum operators obeying the equal-time commutation relations

[v̂k(η), p̂q(η)] = iδ(k + q). (2.51)

Making use of the linear evolution, one can relate the field operators at time
η to âk and â†−k, the creation and annihilation operators of the Bunch-Davies

9The argument is often summarized through the so-called classicalisation mechanism which re-
lated to the fact the curvature perturbation commutator vanishes as a general feature in expanding
backgrounds as [114]

[
ζ̂(x, η), ζ̂ ′(y, η)

]
∝ 1√−g

δ(x− y) =
1

a4
δ(x− y) → 0. (2.47)

It is therefore suppressed by the volume of the universe, hiding the quantum nature of the canonical
commutation relations. Note that the terminology is misleading as this mechanism can occur at the
same time inflation proceeds and places cosmological inhomogeneities in a highly quantum state
known as a two-mode squeezed state which saturates all quantumness criteria along the k/ − k
bipartition [114–122]. Hence, rather than a fundamental erasure of the commutation relations, it
highlights the experimental difficulty of observing them.
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vacuum |�0⟩ in the asymptotic past through the mode-function decomposition

v̂k(η) = vk(η)âk + v∗k(η)â
†
−k (2.52)

p̂k(η) = pk(η)âk + p∗k(η)â
†
−k. (2.53)

The mode-functions obey the classical equation of motion specified in
Eq. (2.50). At leading order in the slow-roll expansion, it reduces to
v′′k + (k2 − 2/η2) vk = 0 which has for solution

vk(η) =

(
1− i

kη

)
e−ikη

√
2k

and p̂k(η) = −i
k

2
e−ikη. (2.54)

Injecting the mode function expansion to compute the primordial power spec-
tra

⟨�0| v̂2k(η) |�0⟩ = |vk(η)|2 =
1

2k

(
1 +

1

k2η2

)
(2.55)

⟨�0| p̂2k(η) |�0⟩ = |pk(η)|2 =
k

2
(2.56)

1

2
⟨�0| {v̂k(η), p̂k(η)} |�0⟩ = ℜe [vk(η)p∗k(η)] =

1

2
(2.57)

it appears that, once we move back to the original set of variables ζ and ζ ′,
the only quantity which is not exponentially suppressed at late time where
−kη ∼ e−Ninf → 0, Ninf being the duration of inflation in efolds, is

〈
ζ̂2(η)

〉
=

1

2ε1M2
Pl

H2

2k3

(
1 + k2η2

)
≃ 1

2ε1M2
Pl

H2

2k3
, (2.58)

the other two spectra being suppressed by powers of −kη.
This relation propagates to the CMB, in which the temperature

anisotropies relate to the curvature perturbations by the Sachs-Wolfe ef-
fect [23]

δT

T
(e) =

∫
d3k

(2π)3

{
Fk [ζk(ηend); ζ

′
k(ηend)]

+ik.eGk [ζk(ηend); ζ
′
k(ηend)]

}
eik.e(ηlss−η0)+ik.x0 (2.59)

where e is the unit vector in the pointing direction, ηlss and η0 are the confor-
mal times at the last scattering surface and at present day respectively and
x0 is the Earth location. The functions Fk and Gk are the form factors which
describe the evolution of the perturbations in the post-inflationary universe.
They are proportional to ζk(ηend) and ζ ′k(ηend) evaluated at the end of infla-
tion. The relation depending linearly on the field variables at first order, we
can separate the two contributions

δT

T
(e) = Ak.ζk(ηend) +Bk.ζ

′
k(ηend) → Ak.ζk(ηend) (2.60)

as ζ ′k(ηend) ∝ a−3(ηend) ≃ 10−67 for 50 efolds of inflation. This argument is
taken from [110].
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Hence, the contributions associated to ζ ′k decay away, taking with them the
hope of experimentally measuring information associated with the decaying mode.
Therefore, in practice, information from the full set of quadratures is hidden to us,
probably forever. By solely observing the curvature perturbation power spectrum
⟨ζ̂(x, η)ζ̂(y, η)⟩ in the temperature anisotropies of the CMB, we cannot distinguish
their quantum origin from a classical counterpart mimicking their behaviour [120].10

The decaying mode example, together with the cosmic variance intrinsic limitations,
are here to remind us it is important to keep in mind we only have a partial access
to information, motivating us to develop theoretical frameworks able to incorporate
uncertainties within their construction.

2.2.3 Limits and difficulties

The current constraints on the inflationary models are well summarized by the
posterior distribution in the (ns, r) plane shown in Fig. 2.10, where we remind that
ns is the tilt of the primordial power spectrum and r the tensor-to-scalar ratio, both
of which can be determined theoretically and observationally. The figure illustrates
the fact that perfect scale-invariance (ns = 1) is statistically disfavored by more
that 7σ and that primordial gravitational waves have not been observed, such that
r < 0.056 at 2σ. These two observations can be used to infer some information
about the underlying physics within the inflationary framework, but unfortunately
not enough to single-out a unique model for the early universe. Let us briefly unravel
the outcomes of this Figure. The Lyth bound relates the tensor-to-scalar ratio r to
field excursion ∆Φ, that is the range of values spanned by the scalar field rolling
along its potential during inflation [24]

∆Φ

MPl

≃ O(1)
( r

0.01

)1/2
. (2.62)

Large-field models with trans-Planckian excursions Φ∗ > MPl tend to be disfavored
compared to small-field models for which Φ∗ < MPl or plateau models which have a
very flat potential and hence predict a smaller value for the tensor-to-scalar ratio r.
Beyond this general trend, current constraints on inflation are really far from singling
out a microphysical model and a wide range of options are still open (see [123]
for an almost exhaustive investigation of the variety existing in the inflationary
model building literature). Fig. 2.10 is not even considering examples which evade
the framework of single-field slow-roll inflation with canonical kinetic terms. Well-
motivated models can be found beyond this framework and perfectly fit the data,
such as transient slow-roll violations (known as features), multifield inflation and
non-canonical kinetic terms. Hence, current data remains elusive on the number of
active species in the early universe (single or multi field), their nature (spin, mass)
and their action (canonical or non-canonical kinetic terms).

10Indeed, when we evaluate expectation values,

〈
ζ̂(x, t) · · ·

〉
=

∫
dζ [ζ(x, t) · · · ] |Ψ [ζ]|2 , (2.61)

Ψ [ζ] being the wavefunction of the universe, this correlator is completely equivalent to classical

statistics with |Ψ [ζ]|2 → P [ζ] defining a classical probability distribution function (PDF), at least
at the Gaussian level.
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Apart from ns and r, the last well constrained parameter is the amplitude of
the primordial power spectrum As = 2.10 × 10−9. Within the single-field slow-roll
inflationary framework, it provides a direct measurement of H2

∗/ε1∗ at the pivot
scale. The lack of detection of the tensor power spectrum indicates that

∆t < r × As = 0.056× 2.10× 10−9 (2.63)

from which we infer an upper bound on the energy scale of inflation, knowing that
∆t ∝ (H∗/MPl). We obtain the constrain H∗ < 7.6× 10−5 MPl. We also know that
inflation occured before the Big Bang Nucleosynthesis, from which one can infer a
lower bound on the energy scale of inflation, leading to the constraint

10−24 GeV ≪ H < 1013 GeV, (2.64)

which is arguably one of the most uncertain scale in physics currently.
Lastly, it is not even sure that inflation provides a signature of new physics,

contrarily to dark matter and dark energy, as there exist proposals in which inflation
is embedded within the standard model of particle physics, the Higgs field playing the
role of the inflaton due to a minimalistic coupling with the Ricci scalar generated by
radiative corrections, following renormalization prescriptions [124–127]. The value
of this coupling is fixed by matching with the amplitude of the primordial power
spectrum which leaves no free parameter at tree level. The point of this discussion
is not to advocate for this class of models which face their own uncertainties, but
rather to highlight that unambiguous claim of new physics from inflation is not even
an easy task.

In fact, apart from the presence of a scalar degree of freedom evolving in a
flat potential for a sufficiently long period of time and the apparent consistency
of observations with perturbative/semiclassical version of quantum gravity, some
may argue we have not learn much from inflation so far. Moreover, inflation faces
conceptual challenges which may threaten its embedding in a more fundamental
construction. There is an intrinsic difficulty of quantum field theory for maintaining
flat potentials over a long period of time. This problem is historically known as the
η-problem of inflation, from the name of the second slow-roll parameter η ∝ V ′′/H2

(proportional to a linear combination of ε1 and ε2 given Eq. (2.37)). In the absence
of symmetries protecting the inflaton potential, its second derivative is sensible to
dimension-six Planck-suppressed operators of the form

O4

M2
Pl

ϕ2. (2.65)

In the case where O4 acquires a non-zero vacuum expectation value comparable
to the inflationary energy density ⟨O4⟩ ∼ V , this term corrects the inflaton mass
by ∆m ∼ H or equivalently ∆η ∼ 1, which instantly destabilizes inflation. This
phenomenon is generic: for an EFT with cutoff Λ, the mass of the scalar field runs
to the cutoff scale unless it is protected by some symmetries [24]. Since we look
for a theory valid at the energy scale of inflation, the cutoff must be higher than
the Hubble parameter, Λ > H, which implies that having a small inflaton mass
(mϕ ≪ H) is radiatively unstable, making that in general, η get corrected by

∆η =
∆m2

ϕ

2H2
≥ 1. (2.66)
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Figure 2.10: Planck 2018 results on single field slow-roll inflationary models from
the Planck Image Gallery. It displays the posterior distribution of the primordial
tilt ns on the horizontal axis and of the tensor-to-scalar ratio r on the vertical axis.
The grey, red and blue contours are the 1σ and 2σ allowed region of parameter space
from CMB and LSS (when BAO are included) datasets. If some models are excluded
from the data, current observations are far from singling out a single inflationary
models.

Hence, radiative corrections prevent prolonged phases of inflation. For this reason,
the understanding of the Planck-suppressed operators of the form given in Eq. (2.65)
is required to address the smallness of η, that is the ability of inflation to sustain
60 efolds of expansion. One may worry about the level of fine-tuning such a slow-
roll dynamics would imply. In the context of string theory, the modern expression
of this naturalness issue is developed within the Swampland program, aiming at
constraining low-energy EFTs that do not admit a UV completion in M-theory
[128,129]. The de Sitter conjecture relies on the difficulty of finding de Sitter vacua
in string compactifications and has been refined to the requirements

|V ′|
V

> O(1) or
V ′′

V
< O(1). (2.67)

It obviously provides tensions with the simplest inflationary model where the slow-
roll expansions imposes ε1, ε2 ≪ 1, see [130].

The above difficulties, often related to the naturalness of top-down construc-
tions, can be overcome within the inflationary framework, for instance by con-
sidering symmetry-protected inflaton (e.g. shift symmetry such as in axion mon-
odromy [131]) or multifield settings (see [132] for multifield inflation and the Swamp-
land). Yet, adding to these intrinsic difficulties the failure of singling out a specific
microphysical model, one might be tempted to question inflation in its position of
paradigmatic theory for the early universe, in particular considering the existence
of viable candidates for alternatives [92, 133, 134]. It motivates us for a deeper in-
vestigation of the phenomenology beyond single-field slow-roll inflation in the quest
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for viable scenarios, the improvement of tools and techniques used within the semi-
classical perspective of QFT in curved-spacetimes (far from being settled topic, see
e.g. [135–137]) and the continuation of the long-standing efforts made in connecting
quantum gravity candidates to observations. The next Section aims at inserting the
approach developed in the manuscript within this research program.

2.3 Inflation and new physics

We saw that single-field slow-roll inflation provides a minimal framework consistent
with the current observations. We also reviewed the existence of unexplored regimes
which might hide signatures of new physics and motivations to go beyond this min-
imal framework. Let us now develop how possible extensions can be included on
the top of the minimal single-field framework. To do so, we first need a unified
framework to capture the phenomenology of single-field slow-roll inflation, which
is the object of Sec. 2.3.1. We then discuss in Sec. 2.3.2 possible ways to extend
this formalism. This discussion will serve as a basis for the Open EFT construction
promoted in the rest of the manuscript.

2.3.1 A minimal setup

Among the strengths of inflation, the fact that it provides a very minimal physical
setup to explain the current cosmological observations is probably one of its most
remarkable features. Cosmological surveys highlight the high level of consistency of
CMB and LSS data with single-field slow-roll inflation despite being unable to single
out a microphysical model, as seen above. This is precisely a feature theorists must
address: why so many different microphysical models end up with the same macro-
physical properties? We have to identify a physical mechanism that does not depend
on the details of the theory and provides consistent results with the observations. It
happens that EFTs have been successful in incorporating this knowledge. As EFTs
have the capacity of synthetizing the relevant physics, making it transparent, let us
review the features shared by all single-field slow-roll inflationary models. The aim
of this discussion is to think of inflation in the most essential way, following [6].11

The wide variety of models falling into the class of single-clock inflation can in-
deed be described at the level of the perturbations they generate in the language of
an EFT. What we know about inflation at the most basic level is that it is a period
of accelerated expansion. This period must reach an end to connect with the Hot
Big Bang model, making it to depart from a perfectly de Sitter universe. It invari-
ably implies that time-translations are spontaneously broken.12 In this framework,
inflation is thought as the theory of the Goldstone boson associated with this spon-
taneous symmetry breaking. The vacuum expectation value of this boson provides a
physical clock measuring time, enforcing an end for inflation after a given duration.

By diffeomorphism invariance of GR (invariance of physical laws under coordi-
nate redefinition), we can find a frame in which this physical clock is set to zero.
It can be done by choosing spatial slices where the fluctuations of the clock vanish.
For instance, let us consider a homogeneous and isotropic scalar field ϕ(x, t) = ϕ(t).

11Complementary perspectives can be found in [16,138].
12Note that boosts are also broken. For the clarity of the argument, let us solely consider

time-translations here.
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We perform the time diffeomorphism t → t+ δt(x, t) such that at linear order, one
can pick up a gauge in which

0 = δϕ(x, t)− ϕ̇(t)δt(x, t). (2.68)

This is the so-called unitary gauge. The dynamical scalar mode is then included
in the description of the metric, which must contain one scalar and two tensor dy-
namical degrees of freedom after enforcing the symmetries and constraint equations.
The EFT principles aim at constructing the most generic action compatible with
the symmetries for the available degrees of freedom. We solely have at our disposal
the metric fluctuations as we have chosen a gauge in which the scalar field fluctua-
tions are suppressed. Spatial homogeneity being preserved, we still have the freedom
to arbitrarily change the spatial coordinates within the various spatial slices. The
residual gauge symmetries are the time-dependent spatial diffeomorphisms

xi → xi + ξi(x, t) (2.69)

We now need to understand what are the operators compatible with the remaining
symmetries. Besides the usual term in Einstein-Hilbert action (2.17) which is in-
variant under all diffeomorphisms, there are now new terms which are allowed, the
ones that are solely invariant under spatial diffeomorphisms. The simplest one is
the g00 of the metric which transforms as a scalar under spatial diffeomorphism

g̃00 =
∂t̃

∂xµ

∂t̃

∂xν
gµν = δ0µδ

0
νg

µν = g00 (2.70)

as the transformation keeps the time unchanged (as it acts within a given time
slice, where t̃ = t). Polynomials of g00 are the only terms without derivatives, which
implies they will play a leading role in the description of allowed operators. Given the
existence of a preferred slicing of spacetime, we can also write operators associated
with the geometric objects describing the slicing. The extrinsic curvature Kµν of
spatial hypersurfaces at constant time is a tensor under spatial diffeomorphisms
which can be used in the action. If nµ is the vector normal to a spatial hypersurface,

Kµν = h σ
ν ∇σnν (2.71)

where ∇σ is the covariant derivative and hµν is the induced metric on the spatial
hypersurfaces

hµν = gµν + nµnν . (2.72)

Embracing the Wilsonian EFT perspective, we can now construct the effective ac-
tion, that is the most generic local and unitary action obeying the symmetries of
the problem, keeping in mind that generic functions of time can multiply any term
in the action. The most generic action takes the form

S =

∫
d4x

√−gF (Rµνρσ, g
00, Kµν ,∇µ, t) (2.73)

where F is a generic functions and Rµνρσ is the Riemann tensor. At lowest order in
the fluctuations (see [2] for details)

S =

∫
d4x

√−g
[1
2
M2

PlR− Λ(t)− c(t)g00 +
1

2
M4

2 (t)(δg
00)2 +

1

3!
M4

3 (t)(δg
00)3

−M̄3
1 (t)

2
(δg00)δKµ

µ −
M̄2

2 (t)

2

(
δKµ

µ

)2 − M̄2
3 (t)

2
δKµ

νδK
ν
µ + · · ·

]
(2.74)
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where the dots stand for higher-order terms in the fluctuations and derivatives. We
have introduced the notations δg00 = g00 − ḡ00 the fluctuation of the 00-component
on the metric with respect to the FLRW background (in which ḡ00 = −1) and
δKµν = Kµν − a2Hhµν with hµν defined in Eq. (2.72), which corresponds to the
variation of the extrinsic curvature of spatial hypersurfaces with respect to the un-
perturbed FLRW metric. Only the first three terms contain linear perturbations,
from which we deduce that c(t) and Λ(t) are in fact fixed by the requirement of
having a specified FLRW background expansion with a given H(t). Hence, the EFT
of Inflation (EFTI) [2] is a theory for the inflationary fluctuations, which assumes
the background dynamics as an experimental data, fixing parameters by consistency
with the observed universe. The unperturbed history fixes c(t) and Λ(t) while the
different physical models are encoded into different higher-order terms. Computing
the matter stress energy tensor using Eq. (2.20) and injecting the result in Friedmann
equations (2.25) and (2.26), we obtain

H2 =
1

3M2
Pl

[c(t) + Λ(t)] (2.75)

ä

a
= Ḣ +H2 = − 1

3M2
Pl

[2c(t)− Λ(t)] (2.76)

which we can invert to express c(t) and Λ(t) in terms of H and Ḣ, our experimental
data. Injecting the result into Eq. (2.74), we obtain

S =

∫
d4x

√−g
[1
2
M2

PlR−M2
Pl(3H

2 + Ḣ) +M2
PlḢg00

+
1

2
M4

2 (t)(δg
00)2 +

1

3!
M4

3 (t)(δg
00)3

−M̄2
2 (t)

2

(
δKµ

µ

)2 − M̄2
3 (t)

2
δKµ

νδK
ν
µ

−M̄3
1 (t)

2
(δg00)δKµ

µ + · · ·
]
. (2.77)

A common assumption follows from the observation that we are interested in solu-
tions where H and Ḣ do not vary significantly over one efold. Therefore, it is quite
natural to assume the same holds for all the parameters controlling the EFT expan-
sion. The obtained action describes the most generic dynamics for the fluctuations
not only for the scalar mode but also for the two tensor degrees of freedom. If one
wants to connect with a specific model of inflation, it suffices to express it in the
unitary gauge where fluctuations of the clock vanish, so that

∫
d4x

√−g

[
−1

2
(∂ϕ)2 − V (ϕ)

]
→
∫

d4x
√−g

[
−

˙̄ϕ2

2
g00 − V (ϕ̄)

]
(2.78)

As Friedmann equations give ˙̄ϕ2 = −2M2
PlḢ and V (ϕ̄) = M2

Pl(3H
2 + Ḣ), it clearly

appears that it takes the form of Eq. (2.77) where all but the three first terms are
set to zero. It illustrates the fact that these three terms describe the background
dynamics and all the other terms encode the possible effects of high-energy physics
on this simple slow-roll model of inflation. Beyond the background level, a matching
procedure allows us to connect the Wilsonian coefficients to the parameters of the
microphysical model when the latter is known.
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While it provides a generic description, the Lagrangian of Eq. (2.77) in the
unitary gauge keeps the physics hidden. We showed that it captures the standard
single-field slow-roll inflation, but the role played by the scalar degree of freedom,
the one of interest for cosmological observations, is maintained cryptic. We will
now make it transparent and separate it from the two graviton helicities. This
procedure is known as the Stückelberg trick. The role played by Goldstone boson
is made explicit when performing the broken gauge transformation associated with
the sponteneous symmetry breaking pattern. Indeed, during the construction of the
low-energy EFT, we have worked in the unitary gauge where the metric carries all
the three dynamical degree of freedom. We rather would like the gauge field to
propagates only two degrees of freedom, just at it does in the free theory. To do so,
we will introduce a Stückelberg field which serves to restore the gauge symmetry. As
the symmetry ensures the gauge field to propagate only two degrees of freedom, the
Stückelberg field absorb the remaining degree of freedom. In this way, restoring the
symmetry allows us to make the dynamics of the Goldstone boson explicit.

Stückelberg trick: Let us illustrate it for the U(1) symmetry breaking
pattern. We consider the Abelian-Higgs mechanism for electromagnetism,
following [12]. This mechanism illustrates how a vector field acquires a mass
dynamically. Let us start with a vector field Aµ with associated Maxwell
tensor Fµν = ∂µAν − ∂νAµ. The initial action

L = −1

4
FµνF

µν (2.79)

enjoys a U(1) gauge symmetry, being invariant under Aµ → Aµ + ∂µξ for an
arbitrary scalar ξ. There is initially two dynamical degrees of freedom, the
two transverse modes. In general, a Proca action of the form

LProca = −1

4
FµνF

µν − 1

2
m2AµA

µ (2.80)

breaks the U(1) gauge symmetry because of the mass term so that the longi-
tudinal mode is now dynamical. A massive vector field thus propagates three
degrees of freedom, two transverse modes and one longitudinal mode. This
action naturally appears when we couple electromagnetism with a complex
scalar field ϕ having a quartic potential

LAH = −1

4
FµνF

µν − 1

2
(Dµϕ) (Dµϕ)∗ − λ

(
ϕϕ∗ − v2

)2
. (2.81)

The covariant derivative, Dµ = ∂µ − iqAµ ensures the existence of the U(1)
symmetry under which the fields transform as

Aµ → Aµ + ∂µξ (2.82)

ϕ → ϕeiqξ (2.83)

Then, there is three dynamical degrees of freedom in the system. Splitting the
complex scalar into norm and phase ϕ = φeiχ, we observe that the covariant
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derivative generates a mass term for the vector field when the scalar field
acquires a non-vanishing vacuum expectation value

LAH = −1

4
FµνF

µν − 1

2
φ2 (qAµ − ∂µχ)

2 − 1

2
(∂µφ)

2 − λ
(
φ2 − v2

)2
. (2.84)

By setting λ ≫ 1, the Higgs field φ is made arbitrarily massive in such a way
that its dynamics may be neglected, the field being frozen at φ = v. The
resulting theory is that of a massive vector field

LAH = −1

4
FµνF

µν − 1

2
v2 (qAµ − ∂µχ)

2 . (2.85)

As we saw above, the vector field may propagate three dynamical degrees of
freedom in the presence of a mass term breaking the U(1) gauge symmetry.
Yet, in the current setting, we can restore the U(1) gauge symmetry under
the prescription that the fields transform as

Aµ → Aµ + ∂µξ (2.86)

χ → χ+ qξ (2.87)

Hence, the gauge symmetry is restored at the price of introducing a
Stückelberg field χ which transforms in a way that makes the mass term
invariant. We now see that the Goldstone boson non-linearly realizes the
symmetry (in the sense that zero is not mapped to zero). The symmetry
ensures the vector field Aµ propagates solely two degrees of freedom while χ
propagates the third degree of freedom. Restoring the symmetry has been
a way to disentangle the dynamics of the Goldstone boson from the rest of
the dynamical degrees of freedom. Its peculiarity is captured in the way it
realizes the symmetry known as a non-linear shift symmetry. Defining the
mass m = vq and the canonical normalization χc ≡ m/q.χ, the advantage of
having reintroduced the Goldstone mode is manisfest at energies E ≫ m. In
this limit, the mixing between the Goldstone and the transverse components
of the gauge field becomes irrelevant and the two sectors decouple. Indeed,
the mixing terms are of the form

m2

q
Aµ∂

µχ = mAµ∂
µχc (2.88)

which are irrelevant with respect to the canonical kinetic term (∂χc)
2 for

E ≫ m. In this high-energy window, the physics of the Goldstone χ is
weakly coupled and it can be studied neglecting the mixing with the transverse
components.

Similarly, in the inflationary case, despite the EFT action Eq. (2.77) might
break covariance, the gauge symmetry can always be formally restored using the
Stückelberg trick, after which the symmetry is non-linearly realized for the Gold-
stone modes and general covariance restored. The procedure to reintroduce the
Goldstone is similar to the gauge theory case. To illustrate the procedure, let us

54



perform a time translation diffeomorphism

t → t̃ = t+ ξ0(x), xi → x̃i = xi (2.89)

on the action
∫

d4x
√−g

[
A(t) +B(t)g00(x)

]
. (2.90)

A(t) and B(t) transforms as scalars under this transformation, that is A(t) → Ã(t̃) =
A(t) and B(t) → B̃(t̃) = B(t) while

g00(x) → g̃00(x̃) =
∂t̃

∂xµ

∂t̃

∂xν
gµν(x). (2.91)

The action after the transformation takes the form

∫
d4x̃
√
−g̃

[
A(t̃− ξ0) +B(t̃− ξ0)

∂(t̃− ξ0)

∂x̃µ

∂(t̃− ξ0)

∂x̃ν
g̃µν(x̃).

]
(2.92)

where we used the fact that t = t̃ − ξ0 and inverted Eq. (2.91) in order to express
g00(x) in terms of g̃µν(x̃). Whenever ξ0 appears in the action, for a reason that will
be apparent in a second, we make the substitution ξ0 → −π̃(x̃) in order to introduce
the Stückelberg field. Dropping the tildes for clarity, we obtain the action

∫
d4x

√−g {A[t+ π(x)] +B[t+ π(x)]∂µ[t+ π(x)]∂ν [t+ π(x)]gµν(x)} . (2.93)

One can check that Eq. (2.93) is indeed invariant under diffeomorphisms at all order
upon assigning to π the transformation rule

π(x) → π̃(x̃) = π(x)− ξ0, (2.94)

that is π transforms as a scalar field plus an additional shift under time diffeomor-
phisms.

Applying this procedure to Eq. (2.77), all the time-dependent coefficients must
be evaluated at t+ π, leading to

S =

∫
d4x

√−g
{1
2
M2

PlR−M2
Pl[3H

2(t+ π) + Ḣ(t+ π)]

+M2
PlḢ(t+ π) [∂µ(t+ π)∂ν(t+ π)gµν ]

+
1

2
M4

2 (t+ π) [1 + ∂µ(t+ π)∂ν(t+ π)gµν ]2

+
1

3!
M4

3 (t+ π) [1 + ∂µ(t+ π)∂ν(t+ π)gµν ]3 + · · ·
}

(2.95)

where we have neglected for simplicity the terms proportional to M̄n involving the
extrinsic curvature. At this point, the obtained action is complicated and there is no
apparent advantage of reintroducing the Goldstone π compared to the unitary gauge
Lagrangian of Eq. (2.77). Yet, a simplification occurs in the decoupling limit, just as
for the gauge theory case. By comparing the mixing terms to the canonical kinetic
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terms, we can estimate the energy scale at which the decoupling occurs (see [2] for
details). In the regime E ≫ ε1H, the action drastically simplifies to

Sπ =

∫
d4x

√−g

{
1

2
M2

PlR−M2
PlḢ

[
π̇2 − (∂iπ)

2

a2

]

+2M4
2

[
π̇2 + π̇3 − π̇

(∂iπ)
2

a2

]
− 4

3
M4

3 π̇
3 + · · ·

}
(2.96)

Here, we are assuming that the time dependence of the coefficients is slow com-
pared to the Hubble time such that the additional π terms coming from the Taylor
expansion of the coefficients are slow-roll suppressed. The non-linear realization of
the time-diffeomorphisms forces π to appear into non-linear blocks which generates
intricate observational signatures. For instance, modifying M4

2 generates an effec-
tive speed of sound which affects the power spectrum but also increases the signal
of the bispectrum by changing the interactions π̇3 and π̇(∂iπ)

2. Finally, one may
be skeptical about the usefulness of the decoupling limit only valid at high energy
given our goal of computing late-time (IR) observables. Yet, the conservation of ζ
on super-horizon scales makes that one can compute observables right after horizon
crossing where E ∼ H ≫ ε1H, well within the regime of validity of the decoupling
limit, then use the conservation of ζ to propagate the result at late time. Note that
if it is not justified to work within the decoupling limit, one can keep interactions
with the graviton helicity by working with Eq. (2.77) for instance.

The above action is simple and unifies all single-field inflationary models under-
going a slow-roll phase. It describes the theory for fluctuations which are what we
actually confront to observations of the CMB and the LSS. In this language, infla-
tion is the theory of a Goldstone boson associated to the time-translation symmetry
breaking. It makes the underlying physics transparent: the existence of scalar fluc-
tuations relates to the order parameter of a spontaneous symmetry-breaking pattern
as a simple unifying principle. In particular, it explains why so many microphysical
models share the same macrophysical properties. The fact that it applies to all
possible single-clock inflationary models allows us to prove theorems valid for this
class of theories on the possible signals to expect. In this sense, it is an appropriate
formalism to confront single-field slow-roll inflation with its extensions.

2.3.2 Extensions

Now that we have a unified framework capturing the phenomenology of single-field
slow-roll inflation, we are in position to discuss possible extensions around this
framework.

High-energy extensions: We have seen in Eq. (2.64) that inflation could occur
as high as H ∼ 1013 GeV. This energy scale is far above the highest energies we can
probe on Earth, of the order of the TeV. For this reason, inflation is likely to access
regimes where particle physics remains vastly elusive. From a model building per-
spective, high-energy extensions often amount to consider an enlarged particle sector
which we might be able to connect to the fundamental structure of the theory such
as in the Minimal Supersymmetric Standard Model (MSSM) [139, 140] or in Grand
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Unified Theory (GUT) scenarios [141]. These Beyond Standard Model (BSM) ex-
tensions offer opportunities to connect particle physics and cosmology, constraining
parameter spaces with both collider experiments and cosmological surveys.

Ultimately, we would like to connect inflation to an even higher energy pre-
inflationary phase naturally described by a theory of Quantum Gravity (QG). The
hope is that of an updated description which would resolve the Big Bang singularity
and naturally provide a mechanism to generate inflation, constrained by observa-
tions. The possibility of embedding inflation in the context of string theory has
been widely studied in the past, see [142] for a review. Popular scenarios encompass
inflation from relativistic branes (e.g. DBI inflation, though effectively captured
through the framework of Sec. 2.3.1), inflation with axions (e.g. axion monodromy)
or inflation with Kähler moduli.

Multifield inflation: At a phenomenological level, both BSM and QG approaches
coincide in practice with the study of multifield inflation, which provides a natural
extension to single-field slow-roll inflation [25]. Let us briefly motivate the existence
of multiple scalars in high-energy frameworks. Already at d = 10 dimensions, the
low-energy limit of supersymmetric string-theory known as supergravity contains
several scalars such as the dilaton. The closed string sector might also contain
several axions enjoying a discrete shift symmetry θ → θ + (2π)f where f is the
decay constant. Going from ten dimensions to the four-dimensional spacetime we
observe in cosmology is made through the compactification of six extra dimensions
that are turned into internal dimensions. The obtained EFT of the four-dimensional
manifold highly depends on the compactification process, which often generates large
number of moduli with an infinite tower of masses [143]. Besides approaches based
on string theory, it is natural to assume the existence of a wider set of dynamical
degrees of freedom at high energy: this is precisely what the EFT dictionary taught
us in Chapter 1. Hence, extra fields provide a natural environment for the inflaton.

Multifield constructions often start with the fairly generic partial UV completion

S =

∫
d4x

√−g

[
M2

Pl

2
R− 1

2
gµνGIJ∂µϕ

I∂νϕ
J − V (ϕ)

]
(2.97)

which consists in gravity coupled to a set of scalar fields ϕI in a curved field space
whose geometry is described by the field space metric GIJ . At the level of the
background, homogeneous scalar leads to the Friedmann equation

3M2
PlH

2 =
1

2
Φ̇2 + V (ϕ) and Ḣ = − Φ̇2

2M2
Pl

(2.98)

where Φ̇2 = GIJ ϕ̇
I ϕ̇J . The background equations of motion for the fields are

Dtϕ̇
I + 3Hϕ̇I +GIJV,J = 0 (2.99)

where Dtϕ̇
I = ϕ̈I + ΓI

JK ϕ̇
J ϕ̇K defines the field-space covariant time derivative, ΓI

JK

being the field space connections defined in an analogous manner as Eq. (2.13) and
V,J = ∂V/∂ϕJ . The two first slow-roll parameters simply generalises the single-field
case given in Eq. (2.33) by

ε1 =
Φ̇2

2M2
PlH

2
and ε2 = 2

(
ε1 +

Φ̈

HΦ̇

)
. (2.100)
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When the scalar potential is flat enough, one can define a generalised slow-roll
approximation for which the slow-roll equations of motion reduce to

ϕ̇I = −GIJV,J

3H
. (2.101)

Yet, in general, one cannot assume the individual accelerations Dtϕ̇
I to be negli-

gible, which can be large but compensate each other. It happens when the field
space trajectory is bent. In that case, one must either resort to a numerical reso-
lution or adopt a geometrical approach in which the scalar degrees of freedom are
usually decomposed into a basis where one direction has a flat potential, corre-
sponding to the inflationary valley of single-field slow-roll inflation, and the other
ones are curved, corresponding to heavy directions known as entropic or isocurvature
modes [144–153]. This approach is the so-called adiabatic-entropic decomposition of
multifield inflation and relies on the introduction of veilbeins, one of which points
towards the background trajectory given by the adiabatic direction and the other
ones corresponding to the Nfield − 1 orthogonal directions. Usually, one fixes the
first entropic direction as being the instantaneous rate of turn of the adiabatic di-
rection and all the other directions are defined from a wedge product of the first
two directions. At the level of the perturbations, this decomposition naturally leads
to a linear mixing between the adiabatic and first entropic direction. Formally, one
defines a space-time foliation, adopts the ADM formalism of general relativity and
perturbs the fields and the metric, as explicitly done in [153]. The gauge is fixed
and the constraints solved in this gauge. Injecting the result for the constraints into
the action, one finally obtains the perturbed Lagrangian, which at quadratic order
in the comoving gauge where the dynamical degrees of freedom are the curvature
perturbation ζ and the Nfield − 1 entropic directions Fα writes

L(2) = a3
{
ε1M

2
Pl

[
ζ̇2 − (∂iζ)

2

a2

]
+ 2

√
2ε1MPlη⊥δα1Fαζ̇

+
1

2

[
(Ḟα)2 − (∂iFα)2

a2
−mαβFαFβ + 2ΩαβḞαFβ

]}
. (2.102)

The parameter η⊥ is the rate of turn of the adiabatic direction eIζ defined as Dte
I
ζ =

η⊥eIζ . The matrices mαβ and Ωαβ have involved expressions whose details can be
found in [153] which do not matter for the purpose of this manuscript. We obtain
a phenomenology driven by a linear mixing of the form Fαζ̇ between the adiabatic
direction and the entropic sector. This generic feature plays an important role in
the quantum recoherence process [154] later discussed in this manuscript. Note that
this phenomenology equally emerges from the bottom-up construction of multifield
inflation, which do not assume the UV-completion (2.97) as a starting point.

Bottom-up construction of multifield inflation: Based on [155], we
construct a general phenomenology of inflation in the presence of hidden sec-
tors (note that this construction is not the first, see [25] for details on multifield
phenomenology). Let us consider two scalars, one of which, Φ, enjoys an ap-
proximate shift-symmetry, while the other Σ, represents the hidden sector.
Let us discuss the EFT of the Φ − Σ couplings. We consider a Lagrangian
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density of the form

LΦ = −1

2
(∂Φ)2 − V (Φ) (2.103)

with a flat-enough potential sustaining a phase of slow-roll. The approximate
shift-symmetry Φ → Φ + const. constrains self-interactions in the potential
to be small and the related non-Gaussianities to be unobservable, neglecting
higher-derivative operators of the form (∂Φ)4. We consider a Lagrangian
density for the hidden sector of the form

LΣ = −1

2
(∂Σ)2 − V (Σ), (2.104)

yet, in the case of the hidden sector, interactions are much less constrained
and in particular, self-interactions in V (Σ) can be large. The mixing between
the two sectors is expressed in terms of the most general operators allowed in
the EFT

Lmix [Φ,Σ] =
∑

n

cn
On [Φ,Σ]

Λδn−4
(2.105)

where the operators On are made out of powers of the fields Φ and Σ and their
derivatives. The mass dimensions of the operators are given by δn and the
Wilson coefficients cn are dimensionless. The approximate shift symmetry of
Φ → Φ + const. drastically restrict the list of accessible operators, excluding
all operators involving Φ as opposed to the ones made of ∂µΦ. In Table 2.1, we
explictly construct the list of available operators from at most first derivative,
up to dimension 5, enforcing the approximate shift symmetry.

Dimension Operators

0 V0

1 Σ
2 Σ2

3 Σ3

4 Σ4, (∂Φ)2, (∂Σ)2, ∂µΦ∂
µΣ

5 Σ5, Σ (∂Φ)2, Σ (∂Σ)2, Σ (∂µΦ∂
µΣ)

Table 2.1: List of all operators constructed from at most first derivatives, up
to dimension 5, enforcing the shift symmetry Φ → Φ + const. The notation
(∂Φ)2 stands for ∂µΦ∂

µΦ

At this order, only three operators, ∂µΦ∂
µΣ, Σ (∂µΦ∂

µΣ) and Σ (∂Φ)2

contribute to the mixing, two of which can be reabsorbed either by field
redefinition or by redundancy. Indeed, we diagonalize the kinetic term
∂µΦ∂

µΣ by performing a rotation in field space Φ → cos(θ)Φ − sin(θ)Σ and
Σ → sin(θ)Φ + cos(θ)Σ. It suffices to impose the shift symmetry after the
diagonalizing procedure, motivated by the fact primordial fluctuations are ob-
served to be nearly scale-invariant. The dimension 5 coupling Σ (∂µΦ∂

µΣ) is
removed by integrating by parts (see [155] for details on the boundary term)

Σ (∂µΦ∂
µΣ) → −2ΦΣ2 (2.106)
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which is redundant. Indeed, using Φ’s equation of motion 2Φ = ∂ΦV , we can
rewrite it in terms of ΦmΣn which is included in the standard EFT treatment
and have to be small due to the approximate shift-symmetry. Hence, the
mixing between the inflaton and the hidden sector is mediated through

Lmix = −1

2

Σ (∂Φ)2

Λ
. (2.107)

Cosmological inhomogeneities seeding the observables of the CMB and the
LSS originate from small fluctuations around the background vacuum expec-
tation values

Φ(t,x) = Φ0(t) + φ(t,x) and Σ(t,x) = Σ0(t) + σ(t,x). (2.108)

In the spatially flat gauge where the spatial part of the metric is unperturbed
gij = a2δij, the primordial curvature perturbations are given by

ζ(t,x) ≡ −H

Φ̇0

φ(t,x). (2.109)

At leading order in the slow-roll expansion, the inflaton fluctuations are mass-
less and the mixing between matter and the metric fluctuations (helicities)
vanishes [155]. It follows that the complete Lagrangian for the φ− σ dynam-
ics is

Leff [φ, σ] = −1

2
(∂φ)2 − 1

2
(∂σ)2 − 1

2
m2σ2 + ρφ̇σ − 1

2

(∂φ)2 σ

Λ
− µσ3 + · · ·

(2.110)

where we stopped at the first non-linear operator σ3 in the hidden sector. The
linear mixing ρφ̇σ with coupling constant ρ ≡ Φ̇/Λ plays a crucial role in the
dynamics of the mixing between the inflaton and the hidden sector.

Already at linear order, the existence of a massive degree of freedom dur-
ing inflation generates an interesting phenomenology. Note that Planck results
strongly constrained isocurvature perturbations (see e.g. [87]) which sets upper
bounds on ρ. Environmental self-interactions µσ3 affect the system by cou-
pling with the linear mixing ρφ̇σ which generates primordial non-Gaussianities
for the curvature perturbations. It leads to the famous cosmological collider
signature [156] on the squeezed limit of the bispectrum which directly relates
to the mass of the environmental field, providing a potential smoking-gun for
multifield inflation.

The phenomelogy of multifield inflation has been motivated by the search for
signatures of new physics in the early universe signal [105, 147, 151, 152, 155]. This
research program aims at characterising the precise number of fields together with
their spin, masses and interactions. It includes the understanding of the inflationary
dynamics in the presence of multiple scalars as described above but also the effect of
spinning particles during inflation and the inclusion of higher orders in derivatives
in the context of modified gravity. Unravelling the particle content of the early
universe is often referred to as the cosmological collider program [156].
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The understanding of hidden sectors has been well developed within the past few
years and most of their possible observational signatures discussed. Just as we did
in Sec. 2.3.1, it would be valuable to encompass the variety of possible extensions
within a minimal set of physical principles. Unfortunately, we face the difficulty
that extensions to single-field slow-roll inflation are a priori much less symmetric
than the single-field construction. Given the lack of observational guidance, there is
no reason to expect the existence of non-linearly realised symmetry which usually
provides the best control over the theory. Hence arises the question of knowing
how we can develop systematic extensions around single-field slow-roll inflation in a
model-independent manner.

Short and soft modes: From a hydrodynamical perspective, new physics can
also be understood as the accounting for the role of the small-scale physics on the
large-scale dynamics probed in the CMB and the LSS. This interplay between scales
separates into two distinct mechanisms, one of which is specific to the inflationary
dynamics, corresponding to the inflow of UV mode into the IR continuum, and
the other common among all gravitational settings, due to the fact that GR is
a fundamentally non-linear theory. It provides two distinct manners for the small
scales to generate imprints on the large-scale dynamics, that is two distinct manners
for inflation to mix scales and generate interplay between regimes.

During inflation, Fig. 2.8 illustrates the existence of a natural scale separation
between modes within the horizon (sub-Hubble) that do not feel the background
curvature and the super-Hubble modes which we today observe. We can then define
a fundamental bipartition by schematically separating

ζ(x, t) =

∫

k>aH

d3k

(2π)3
eikxζ(k, t) +

∫

k<aH

d3k

(2π)3
eikxζ(k, t). (2.111)

The first term corresponds to the UV scales we want to integrate out in order to
solely describes the hydrodynamical/coarse-grained dynamics of the IR scales of the
second term. The subtlety follows from the fact that as time proceed, there is a
continuous inflow of sub-Hubble modes that cross the horizon and become super-
Hubble, as described in Fig. 2.8. Classically, this phenomenon is well described
within the framework of stochastic inflation [157–172] which aims at providing a
description of the long-wavelength part of the quantum fields coarse grained over a
physical scale larger than the Hubble radius. In this framework, the small wavelength
fluctuations impact the long-wavelength dynamics as a classical noise arising when
they cross the coarse-graining horizon so that the IR theory is described in terms of a
classical stochastic framework (Langevin equation for the field values, Fokker-Planck
equation for the dynamics of their probability distribution and Martin-Siggia-Rose
path integral for their field theoretic path integral representation).13

Beyond the peculiar inflationary dynamics, GR remains a highly non-linear the-
ory such that all scales couple together and the careful accounting for the effect

13The embedding of stochastic inflation within a quantum framework has been the object
of recent studies [173–175] which provide a concrete application for the Open EFT program
[173, 176, 177]. It seems fair to admit that so far, no complete understanding (in the sense of
a rigurous derivation of stochastic inflation from within the Open EFT framework) is known. The
recent developments of hybrid quantum-classical dynamics [178–180] might provide the missing cor-
nerstone to encompass stochastic inflation and Open EFTs within the same language, combined
with the Non-Equilibrium EFT approaches of [8, 9].
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of non-linearities may be crucial for precision cosmology. Mode coupling induced
by GR can also turn into a precision test to confront it against alternative theo-
ries. The null detection of primordial non-Gaussianities in the squeezed limit (a
super-Hubble scale coupled to two sub-Hubble modes) of the bispectrum [75] is
in agreement with the so-called consistency relations emerging from the study of
the cubic self-interactions of GR, as done in the seminal paper [49]. The idea is
that the soft limit of an IR mode generates a very long wavelength modulation of
the background, which, combined with the symmetry prescriptions of the theory,
induces stringent constraints on the squeezed limit of the bispectrum of any single-
clock model [49, 181–183]. New physics could materialise itself through violation
of these consistency conditions, and so their intense investigation in the CMB (see
e.g. [184]) and the LSS (see e.g. [185]), which necessitates a careful treatment of the
post-inflationary contamination of the signal (see e.g. [186,187]).

Conclusions:

The early-universe promise is the one of a new window towards unknown
physics. After reviewing the Bayesian inference framework at the heart of
model discrimination in cosmology, we presented the Λ-CDM model which to-
day gathers the most confidence. Turning our attention to the early-universe
content of the concordance model, we saw the crucial role played by single-field
slow-roll inflation. After discussing the regime probed by current experiments
which sustains it, we highlighted a few difficulties to embed it in a wider UV
picture. We then presented a framework that serves as a basis for the rest
of the manuscript. We introduced an EFT construction synthesizing a vari-
ety of microphysical models into a few universal properties which provides a
minimal framework compatible with the current observations. From a funda-
mental perspective, this construction often has to be supplemented by new
ingredients called extensions which represent the inclusion of new physics.
They may correspond to high-energy extensions which are often phenomeno-
logically modelled in the context of multifield inflation by hidden sectors. In
the rest of this manuscript, we aim at implementing Open EFT techniques to
model the impact of hidden sectors onto the dynamics of single-field slow-roll
inflation.
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Chapter 3

Open EFTs for primordial
cosmology

In this Chapter, we propose an
overview of Open EFTs and a
guide to their implementation in
cosmology. Further details can be
found in reviews [10,22] or
textbooks partially covering this
topic [13,188].

In the previous Chapter, we identified a minimal framework, the one of single-
field slow-roll inflation, on which we would like to incorporate extensions of new
physics. To tackle this problem, we develop the Open EFT formalism, defined
as the application of Open Quantum System (OQS) theory to QFT settings.1 OQS
theory was first developed in the context of quantum optics and it might be unclear
why it has the ability to tackle problems in cosmology. We first review this aspect in
Sec. 3.1. We then discuss in Sec. 3.2 the general method sustaining the application
of these tools in cosmology. Finally, in Sec. 3.3, we provide a detailed roadmap to
their implementation and discuss open problems in Sec. 3.4.

3.1 Motivation

Clearly, Open EFTs are not the only techniques existing to incorporate the effects
of hidden sectors onto a given physical description, as seen from the variety of EFT
descriptions we already encountered. Among the various existing procedures, what
renders Open EFTs interesting for cosmology?

3.1.1 The quantum-to-classical transition

One of the most fascinating aspects of inflation relies in its ability to trace back
the origin of all the structures we today observe in the universe to quantum fluc-

1The application of Open EFTs in cosmology is sometimes referred to as Cosmological OQS or
as Cosmological Open EFTs.
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tuations of the primordial vacuum. In order to understand the full implications of
this statement, we need to develop a formalism able to keep track of the quantum
information properties of the system. In general, this is a hard task, in particular in
the presence of unknowns related to the elusiveness of the physics at high energy. In
quantum optics, a device is often embedded in a wider environment that is not very
well specified, for instance the laboratory room. If one wants to make precise mea-
surements, one needs to model the way a poorly specified environment may affect
the observables. OQS have been precisely designed for this purpose. If we manage
to implement OQS techniques in cosmology, we might be able to model the im-
pact of an almost unknown cosmological extension onto the dynamics of single-field
slow-roll inflation in a systematic manner.

Among the motivations for the use of Open EFTs in cosmology, their ability to
keep track of the quantum information properties of the system is certainly one of
the most remarkable. In order to understand the interest of the community for this
aspect, we need to review a decade-old debate known as the so-called quantum-to-
classical transition of cosmological inhomogeneities. Reviewing this topic is far from
being an easy task, given the fuzzy nature of the debate which encompasses several
questions such as:

1. Can we model inflation from within a classical stochastic theory? [117–119]

2. Can we prove the quantum nature of cosmic inhomogeneities? [106,107,110]

3. Can we explain the appearance of classical geometry from within a quantum
realm? [189,190]

where we here solely provide for a few references in order to illustrate the various
positions.

We organise this section in the following manner. We first argue that 1. and 2.,
far from being incompatible, are in fact the two faces of a same coin: the peculiarity
of the inflationary dynamics, through the process of quantum squeezing, generates
a dynamics which can be seen by some aspects as highly ‘classical’ and by others
as highly ‘quantum’. Indeed, the very high level of quantum squeezing induces the
suppression of the decaying mode we observed in Eq. (2.60). It renders possible to
mimick inflation with a classical stochastic theory [120] in the sense that a classical
construction can be obtained such that it reproduces the observed primordial power
spectrum. At the same time, the cosmological inhomogeneities are placed in a
quantum state known as a two-mode squeezed state [114, 116, 121] which exhibits
very large amounts of quantum correlations along a certain bipartition we will soon
specify. This is the reason why cosmological inhomogeneities can be seen as highly
classical and highly quantum at the same time.

We then turn our attention to 2. and highlight that, once the question of proving
the quantum nature of cosmological inhomogeneities is posed, a plethora of tech-
nical and conceptual obstructions arise [110]. Some of these obstructions might be
answered by the Open EFT program which motivates its implementation in cosmol-
ogy. In particular, the mechanism of quantum decoherence [191–193], well-modelled
within the OQS framework, provides a fundamental obstruction to the exhibition of
quantum correlations in the sky and this manuscript aims at providing a toolbox to
explore the phenomenology of this physical process during inflation.
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Finally, in relation with 3., we argue that depending on the perspective we
adopt, the knowledge of decoherence may or may not be sufficient to explain why
cosmological perturbations appear classical to us. From the semiclassical point of
view, if cosmological perturbations initially exhibit genuine quantum correlations
which might be revealed through a Bell test, decoherence “classicalizes” the system,
in the sense it obstructs our ability to exhibit the genuine quantum correlations. Yet,
from a quantum gravity perspective, quantum decoherence by itself is not sufficient
to explain the emergence of a classical geometry from within a quantum realm as
one still has to go through the measurement problem as raised by Sudarsky in [189].
Hence, one has to work harder and find ways to circumvent this problem such as,
e.g., Quantum Darwinism [194,195].

Quantum-squeezing: Let us consider the quadratic evolution of single-field slow-
roll inflation described in Eq. (2.48). We already saw that it generates a power
spectrum for the curvature perturbations of the form

Pζ(k) ≃
1

2ε1M2
Pl

H2

2k3
, (3.1)

and that correlators containing ζ̇ insertions are exponentially suppressed by e−∆N∗(k)

at the end of inflation, ∆N∗(k) being the number of efolds spent by a mode above
the horizon. In order to gain insight on the structure of the quantum correlations
generated during inflation, it is instructive to characterise the quantum state in
which cosmological inhomogeneities are placed.

Two-mode squeezed states: Starting from the quadractic action for the
curvature perturbations given in Eq. (2.48), let us first introduce the rescaled
Mukhanov-Sasaki variable v(η,x) ≡ z(η)ζ(η,x) where z(η) ≡ a(η)

√
2ε1MPl

is a time-dependent variable of the background. At linear order, the action
for the perturbations writes

S(2)
v =

1

2

∫
dηd3x

[
(v′)2 − (∂iv)

2 +
z′′

z
v2
]
, (3.2)

which is the action for a free scalar field with a time dependent mass m2
eff =

−z′′/z. One can add a total derivative term to obtain the equivalent action

S(2)
v =

1

2

∫
dηd3x

[
(v′)2 − (∂iv)

2 − 2
z′

z
vv′ +

(
z′

z

)2

v2

]
. (3.3)

The Hamiltonian of the system writes

H =
1

2

∫
d3x

[
p2 + (∂iv)

2 + 2
z′

z
vp

]
, (3.4)

where p is the impulsion associated to the v-variable. Following the canon-
ical quantization procedure, fields are promoted to quantum operators and

65



decomposed in their Fourier representation

v̂ =

∫
d3k

(2π)3/2
v̂ke

ik.x, (3.5)

p̂ =

∫
d3k

(2π)3/2
p̂ke

ik.x. (3.6)

For each mode, we obtain the two-mode Hamiltonian operator

Ĥk = p̂−kp̂k + k2v̂−kv̂k +
z′

z
(p̂−kv̂k + v̂−kp̂k) . (3.7)

Introducing creation and annihilation operators in the usual way

v̂k =
1√
2k

(
âk + â†−k

)
, (3.8)

p̂k = −i

√
k

2

(
âk − â†−k

)
, (3.9)

the two-mode Hamiltonian operator can be written in a simple form

Ĥk = Fk

(
â†kâk + â†−kâ−k + 1

)
+ iRk

(
e−2iΘk âkâ−k − h.c.

)
(3.10)

where [116]

Fk =
k

2
, (3.11)

Rk =

[(
k

2

)2

+

(
z′

z

)2
]1/2

, (3.12)

Θk = −π

2
+

1

2
arctan

(
k

2

z

z′

)
. (3.13)

This Hamiltonian has a harmonic part associated with the frequency Fk and
a parametric amplification part associated with Rk. The parametric amplifi-
cation is caused by the curvature of the background which generates a time-
dependent mass m2

eff = −z′′/z to the field. The evolution operator produced
by this Hamiltonian can be factorized into [196]

Û(η, η0) = R̂(φk)Ẑ(rk)R̂(θk) (3.14)

where R̂ is the phase-shift

R̂ (φk) = exp
(
iφk

[
â†kâk + â†−kâ−k + 1

])
, (3.15)

and Ẑ the squeezer

Ẑ (rk) = exp
[
rk

(
â†kâ

†
−k − h.c.

)]
. (3.16)
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Eq. (3.14) is expressed in terms of the so-called squeezing parameters
(φk, rk, θk) which depend on the details of the dynamics and can be found
in [116].

Let us now apply this dynamics to evolve the quantum state of the system.
Starting from a Bunch-Davies vacuum annihilated by the two annihilation
operators âk and â−k such that it contains no excitation

|�0(η0)⟩ =
∏

k∈R3+

|0k, 0−k⟩ , (3.17)

one can apply the evolution operator (3.14) to obtain the evolved vacuum at
any time η. It amounts to operate on each mode k the quantum circuit

|0k, 0−k⟩ R̂(φk) Ẑ(rk) R̂(θk) |2MSSk⟩

where the quantum gates are specified above. We notice that the vacuum
state becomes populated by an infinite tower of particles under the action of
Ẑ(rk), that is

∏

k∈R3+

|2MSSk⟩ =
∏

k∈R3+

[
eiφk

cosh rk

∞∑

n=0

(−1)ne2inθk tanhn rk |nk, n−k⟩
]
, (3.18)

where

|nk, n−k⟩ =
1

n!

(
â†k

)n 1

n!

(
â†−k

)n
|0k, 0−k⟩ . (3.19)

This class of quantum states are known as two-mode squeezed states. Ẑ(rk) is
responsible for the amplification of the vacuum fluctuations, â†kâ

†
−k creating

pairs of quanta. This amplification explains the statistics of the inhomo-
geneities in the matter distribution at the end of inflation which ultimately
seeds the CMB temperature anisotropies and the LSS of the universe. In-
deed, once the state is known, it is a matter of writing to obtain the two point
correlation function

⟨2MSSk| v̂kv̂−k |2MSSk⟩ =
1

2k
[cosh(2rk) + sinh(2rk) cos(2θk)] (3.20)

→ 1

2k
[1 + cos(2θk)] e

2rk (3.21)

when rk → ∞. Comparing it with Eq. (2.55) which asymptotically scales as
a2/(2k), we conclude that rk grows as the number of efolds Ninf and that θk
gets aligned with π/4 [116].

Hence, the inflationary dynamics generates a very peculiar quantum state at the
end of inflation, that is a two-mode squeezed state with a squeezing parameter of
order rk ∼ 50 − 60 for the modes appearing in the CMB. This level of squeezing
is extremely high compared to the squeezed states constructed in quantum optics
for which rk ∼ O(1− 10) is already challenging to reach [197,198]. While squeezed
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states are known as prototypical example of ‘nonclassical’ states in quantum optics
(see [198] for a review), their appearance in cosmology has been first interpreted
as generating the ‘classicalization’ of cosmological inhomogeneities [117–119]. In
order to make this argument clear, let us follow [199] and first adopt an alternative
representation of the quantum state. Indeed, the quantum state can be represented
in the Fock space as in Eq. (3.18) but also has a phase-space representation in terms
of the so-called Wigner function (see [200] for a pedagogical introduction to the
topic). In this case, the quantum state is a function of the phase-space variables
(vk, pk). Explicitly, the Wigner function is defined as the Wigner-Weyl transform
of the density matrix, that is, for the two-mode squeezed state |2MSSk⟩

Wk [vk, pk] =

∫
dxe−ipkx ⟨vk +

x

2
|2MSSk⟩ ⟨2MSSk|vk −

x

2
⟩ , (3.22)

where |vk⟩ is an eigenstate of the position operator v̂k. The Wigner function of
Gaussian states is nothing but a Gaussian distribution [201]

Wk [vk, pk] =
1

(2π)2
√
detCov

exp

[
−1

2

(
vk pk

)
Cov−1

(
vk
pk

)]
, (3.23)

where the covariance matrix is constructed out of the power spectra, that is

Cov =

(
⟨2MSSk| v̂kv̂−k |2MSSk⟩ 1

2
⟨2MSSk| {v̂k, p̂−k} |2MSSk⟩

1
2
⟨2MSSk| {v̂k, p̂−k} |2MSSk⟩ ⟨2MSSk| p̂kp̂−k |2MSSk⟩

)
. (3.24)

One can inject the expression of the two-mode squeezed state in order to express
the power spectra in terms of the squeezing parameters as we did in Eq. (3.20).
In the large-squeezing limit, one finally obtains a highly elongated ellipse with the
large axis oriented along the line defined by the classical solutions for the momenta
pk = pcl(v̂k). In this limit, the width becomes negligible as shown in Figure 3.1.
This mechanism has been proposed as a way to visualize the system as an effec-
tive classical stochastic behaviour [199]. The position variables v̂k can take any
value corresponding to quasi-probability distribution provided by the Wigner func-
tion Wk [vk, pk]. On the contrary, for a given realization of the perturbation vk, the
corresponding momentum is (almost) fixed and equal to the classical one. Conse-
quently, the system behaves as it follows an infinite number of classical trajectories
with a definite probability on each of them, which defines a classical stochastic sys-
tem. Yet, this interpretation has to be tempered by the fact that conjointly, the
state remains pure and highly coherent, hence, this form of ‘classicalization’ is solely
a question of how is organised the saturation of the minimal uncertainty

∆v̂k.∆p̂k =
1

2
. (3.25)

In the case of a squeezed state, ∆v̂k ∼ er while ∆p̂k ∼ e−r, rendering challenging to
keep track of the correlators associated to the momentum p̂k. In this sense, what
has been understood as a form of ‘classicalization’ by the authors of [199] is just the
recasting of the existence of a decaying mode in inflation, expressed in the language of
quantum squeezing. In fact, beyond [199], even in the absence of quantum squeezing,
the fact that Gaussian states have a positive Wigner function makes that once
marginalised over all variables but the position, it can always be seen it as a classical
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Figure 3.1: Sampling of the Gaussian Wigner function Wk [vk, pk] for the initial
vacuum |0k, 0−k⟩ in red and the two-mode squeezed state |2MSSk⟩ in blue. The
minimal uncertainty ∆v̂k.∆p̂k = 1/2 is elongated into an ellipse that makes the
system effectively looking like a classical stochastic theory in the high squeezing
limit according to [199]. Yet, this interpretation has to be tempered by the fact that
highly squeezed states also exhibit large non-classical features [198]. In particular,
in the inflationary context, a large amount of non-classical correlations is generated
along the k/− k bipartition.

PDF. Hence, the ‘stochastisation’ of the theory is far from being specific to quantum
squeezing but apply to any linearly evolving Gaussian state [121]. We would like
to now argue that the quantum states in which the cosmological inhomogeneities
are placed, that are the so-called two-mode squeezed states, in fact exhibit a very
large amount of entanglement along a certain bipartition. Hence, we conclude that
cosmological inhomogeneites can be seen by some aspects be seen as highly ‘classical’
and by others as highly ‘quantum’.

CMB Bell tests and their obstructions: In Eq. (3.18), it appears that a crucial
ingredient in the appearance of highly squeezed states is the pair creation process
â†kâ

†
−k. This mechanism generates very large amount of entanglement between the

k and −k sectors which can be traced through the mean of the quantum discord
[120, 202]. Quantum discord is an entanglement tracer which aims at quantifying
the amount of information present in a quantum system that cannot be reproduced
by a classical counterpart. Let us illustrate the existence of quantum correlations in
cosmic inhomogeneities following [120]. Quantum discord is constructed out of two
different ways of calculating the mutual information between the k and −k sectors
which coincide for classical correlations but not necessarily for quantum ones. The
first measure is given by

I(k,−k) = S [ρ̂(k)] + S [ρ̂(−k)]− S [ρ̂(k,−k)] (3.26)

where S is the von-Neumann entropy defined by S = −Tr(ρ̂ log2 ρ̂) with ρ̂ being the
density matrix of the system under consideration. ρ̂(k,−k) is constructed out of
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|2MSSk⟩ through

ρ̂(k,−k) ≡ |2MSSk⟩ ⟨2MSSk| (3.27)

and the reduced density matrix of the subsystems k and −k are obtained by tracing
over the other sector, that is ρ̂(−k) ≡ Trk[ρ̂(k,−k)] and ρ̂(k) = Tr−k[ρ̂(k,−k)]. The
second measure is obtained by assuming that a projective measurement is operated
in the subsystem −k while we observe the k sector. It projects the state into

ρ̂(k, Π̂j) = Tr−k

[
ρ̂(k,−k)Π̂j

]
(3.28)

up to a normalization factor (see [120] for details) where Π̂j is the normalised pro-
jector operator.2 If one performs all possible measurements through a complete set
of measurements {Π̂j}, an alternative definition of the mutual information is given
by [120]

J (k,−k) = S [ρ̂(k)]−
∑

j

ρ̂(k, Π̂j). (3.29)

Classically, thanks to Bayes theorem, the two measures coincide, that is J (k,−k) =
I(k,−k). Quantum mechanically however, the two measure can depart. Indeed,
quantum entanglement tells us that if Alice performs a measurement on the state

|Ψ⟩ = 1√
2
(|↑⟩A ⊗ |↓⟩B − |↓⟩A ⊗ |↑⟩B) , (3.30)

where |↑⟩ and |↓⟩ are eigenstates of a spin operator Ŝz, it projects the state in
one of the two possible outcomes, which instantaneously affects the result observed
by Bob. This property, known as the non-locality of quantum entanglement (see,
e.g. [203, 204]), opens the door for quantum steering which aims at monitoring a
subsystem by performing projective measurements on another entangled subsys-
tem [205], a useful property for the development of quantum technologies and quan-
tum communications. Hence, a characterisation of the amount of non-classical cor-
relations in a system is given by the quantum discord

δ(k,−k) ≡ min
{Π̂j}

[I(k,−k)− J (k,−k)] (3.31)

where we minimize over all possible sets of measurements in order to avoid the
dependence on the projectors. For a two-mode squeezed state |2MSSk⟩, it has been
shown in [120] that the discord grows as

δ(k,−k) = cosh2 rk log2
(
cosh2 rk

)
− sinh2 rk log2

(
sinh2 rk

)
(3.32)

≃ 1

ln 2
(2rk + 1)− 2 +O

(
e−2rk

)
, (3.33)

where in the second line we took the large rk limit. Remembering that rk scales as the
number of efolds during inflation, we observe that δ(k,−k) grows and reaches high

2For instance, the Pauli matrices are normalised projector operators corresponding to the mea-
surement of a qubit in different directions.

70



values (above a hundred) by the end of inflation, which illustrates the generation of
entanglement by the pair creation process during inflation.

This observation, which accounts for the existence of a large amount of quantum
correlations generated during inflation, has been at the heart of a research program
aiming at understanding if it may be possible to exhibit the non-classical nature of
the cosmological inhomogeneities observed in the CMB and the LSS. The most direct
proposal follows from the construction of Bell observables in the sky [106–108,110].
Bell tests aim at defining bounds that classical theories (obeying local realism)
cannot violate. In quantum theories, these bounds can be bypassed thanks to the
richer correlation structure allowed by quantum entanglement, leading to the famous
Bell inequality violation [203]. Let us briefly review the Clauser, Horne, Shimony
and Holt (CHSH) setup [206]. We consider a bipartite system H = HA ⊗ HB

prepared in the entangled Einstein–Podolsky–Rosen (EPR) state (3.30). We define
a Bell operator

B̂CHSH = ŜA ⊗ ŜB + ŜA ⊗ ŜB′ + ŜA′ ⊗ ŜB − ŜA′ ⊗ ŜB′ (3.34)

where A, A′, B and B′ correspond to the measurement of four different spin di-
rections. Averaging over many experimental outcomes, one obtains the expecta-
tion value ⟨B̂CHSH⟩ = E(θA, θB) + E(θA, θB′) + E(θA′ , θB) − E(θA′ , θB′) where it
can be shown that E(θA, θB) = − cos(θA − θB), the measurement angles being de-
fined with respect to the z-axis (see e.g. [120]). If one chooses θA − θB = π/4,

θA − θB′ = θA′ − θB = −π/4 and θA′ − θB′ = −3π/4, then ⟨B̂CHSH⟩ = −2
√
2. Since

|⟨B̂CHSH⟩| > 2, Bell inequality is violated and the statistics of this quantum system
cannot be accounted for in a theory obeying local realism. This system has been
widely tested experimentally, from the initial experiments (see e.g. [204]) to the clo-
sure of many loopholes [207], for instance by using the polarization of photons coming
from distant quasars in order to select the spin measurement directions, pushing the
“freedom-of-choice” loophole of having an influenced spin angle selection to more
than 7.8 Gya [208,209].

If one wants to design a similar experiment for the primordial inhomogeneties, a
first difficulty consists in going beyond the discrete (dichotomic) variable paradigm.
For continuous variable systems such as the one constructed out of the Mukhanov-
Sasaki variables v̂k, one can construct pseudo-spin operators such as Banaszek-
Wodkiewicz operators which obey the same algebra as the usual spin operators [210].
Explicitly, following [110], we construct

Ŝx(k) =
∞∑

n=0

(|2nk + 1⟩ ⟨2nk|+ |2nk⟩ ⟨2nk + 1|) (3.35)

Ŝy(k) = i
∞∑

n=0

(|2nk⟩ ⟨2nk + 1| − |2nk + 1⟩ ⟨2nk|) (3.36)

Ŝz(k) =
∞∑

n=0

(|2nk + 1⟩ ⟨2nk + 1| − |2nk⟩ ⟨2nk|) (3.37)

where the |nk⟩ are the eigenstates of the particle number operator N̂k = â†kâk, and
similarly for the −k sector. These operators obey the usual SU(2) algebra such

that Ŝx, Ŝy and Ŝz satisfy all the properties of a spin operators system. We can use
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Figure 3.2: Bell inequality violation as a function of the squeezing parameters.
Left: Mean value ⟨B̂CHSH⟩ of the Bell operator for the Banaszek-Wodkiewicz opera-
tors (solid lines) and an alternative definition of the pseudo-spin operators (dashed
lines, see [110] for details), when the system is placed in the two-mode squeezed
state (3.18), as a function of the squeezing parameter rk, for different values of the
squeezing angle φk. The horizontal black line represents the Cirel’son bound 2

√
2.

Right: Maximum Bell operator expectation value ⟨B̂CHSH⟩ for an alternative defini-
tion of the pseudo-spin operators, see [110] for details, as a function of the squeezing
parameters rk and φk. The dashed white line stands for φk + π/2 = 0.34e−rk which
delimits the Bell inequality violation domain in the large-squeezing limit. Figure
taken from [110].

these variables to construct a pseudo Bell operator for the two sectors (k,−k). It
has been shown in [110], for a two-mode squeezed state |2MSSk⟩ with parameters
compatible with the super-Hubble dynamics of a mode during inflation, for which
rk ∼ Ninf , ⟨B̂CHSH⟩ → 2

√
2 which maximally violates Bell inequality (in practice, the

precise result also depends on the value of the squeezing angle, see Fig. 3.2 and [110]
for details). This example can be used as a proof of principle that there exists a
large amount of correlations that cannot be reproduced by a classical theory in the
cosmological inhomogeneities generated during inflation, confirming the quantum
discord result [122].

Can we experimentally harvest this quantum entanglement? From the time this
question is paused, a plethora of obstructions arise, both at the technical and con-
ceptual level. Among various obstructions to Bell CMB experiments [110], one can
first ask if pseudo-spin operators are really measurable. It turns out that in order
to be able to reconstruct pseudo-spin operators, we would need not only to access
the correlators of ζ, but also the ones of ζ̇, which we have identified as being the
decaying mode around Eq. (2.60). It poses strong constraints on the observational
accessibility of these pseudo-spin variables. The problem might be circumvent by
either considering peculiar dynamics in which the decaying mode is not so small
in a given observational range (see Maldacena’s proposal [107], or models with an
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ultra-slow-roll phase), or extending the study to a wider class of inequalities such as
the Leggett-Garg or temporal Bell inequalities [111, 211]. A second concern might
be expressed regarding the bipartition along which the entanglement is exhibited.
Indeed, violating Bell inequality in Fourier space would imply the incompatibility
with local realism in Fourier space. Non-locality being ubiquitous in this dual space,
the statement is weaker than its formulation in real space. Hence, efforts have been
made in order to understand the entanglement structure in real space [112,212,213]
and it appears that entanglement is much less ubiquitous in real space than in
Fourier space [214], though the peculiar dynamics of the pair-creation process dur-
ing inflation still generates larger entanglement than its flat space counterpart. A
last obstruction we would like to highlight is fact that in general, quantum corre-
lations are fragile, as suggests our daily experience of the classical world in which
macroscopic quantum effects are rare. Hence, one of the greatest challenges is to
understand if this entanglement may have survived up to the present days.

In general, when a quantum system is embedded in a wider environment, their
interactions generate a leakage of information which has the tendency to wash away
the desired quantum features after a very short timescale. If the system initially
exhibits quantum correlations one may want to reveal through a Bell test, this
information quickly ends up being delocalised into the environment, rendering im-
possible to account for the presence of quantum correlations in the system at late
time. This phenomenon, known as quantum decoherence [191–193], is a fierce chal-
lenge for the development of quantum technologies and quantum communication.
It explains why, in our daily life, it is so hard to maintain coherence of quantum
signals for more than a few seconds. In the context of cosmology, it is generally
argued [165, 177, 199, 215–229] that, due to the process of quantum decoherence,
quantum signatures are likely to be erased by the presence of environmental degrees
of freedom from the early time they were generated to the record of their imprints in
the CMB or the LSS. This is why studying decoherence channels [179,230–240] has
become of primary importance to assess the severity of this potential obstruction. It
also motivates for model-independent approaches as even if we manage to evaluate
all the possible decay channels imaginable within the standard models of particle
physics and cosmology, the presence of hidden/unknown physics may still ruin any
hope of observing quantum correlations in the sky.

As a summary, despite being created through a quantum-mechanical process,
cosmological structures have not yet revealed any sign of genuine quantum correla-
tions. Among the obstructions to the direct detection of quantum signatures in cos-
mology, environmental-induced decoherence is arguably one of the most inevitable.
If we want to assess decoherence in cosmology, we need to evaluate the quantum
information properties of inflationary models, which motivates the introduction of
Open EFT techniques.

The measurement problem: This discussion motivates the use of Open EFTs
to establish a toolbox able to provide answers to some of the questions related
to the so-called “quantum-to-classical” transition of cosmological inhomogeneities.
Indeed, Open EFTs may help us to model decoherence channels and to understand
if there is any hope for a direct experimental evidence of quantum correlations in the
statistics of the curvature perturbations observed in the CMB and the LSS. Still,
Open EFT techniques shall not provide a complete answer to the “quantum-to-
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classical” transition. We would like to highlight that, per se, quantum decoherence
is not able to explain the emergence of a classical geometry from a quantum gravity
scenario (nor the selection of a unique classical inhomogeneity from the fluctuations
of a quantum field). Indeed, while decoherence provides a mechanism to understand
the appearance of a statistical mixture of classical outcomes, e.g., the decoherence
of a cat state

|cat+⟩ =
1√
2
(|↑⟩+ |↓⟩) (3.38)

into the mixture

1

2
(|↑⟩ ⟨↑|+ |↓⟩ ⟨↓|) , (3.39)

it does not explain why we finally observe |↑⟩ or |↓⟩ and not a linear combination of
the two, that is why the final step of a measurement consists in projecting either on
the |↑⟩ or in the |↓⟩ outcome. Known as the measurement problem, it constitutes one
of the most fundamental questions about the nature of quantum mechanics, aiming
at understanding why the quantum evolution is dictated by the Schrödinger equation
up to the point where a measurement is performed and the Von-Neumann postulate
projects the wavefunction on an eigenvector of the observable. The measurement
problem can be particularly embarrassing when seriously considered in the context
of primordial cosmology, as done by Sudarsky in [189]. Hence, decoherence may
explain why we are unable to exhibit genuine quantum correlations in the sky but
it cannot explain why a classical geometry has been selected out of a quantum
wavefunction.

3.1.2 Decoherence, dissipation and late-time resummation

Beyond the opportunity to access the quantum information properties of inflationary
models, another motivation for the use of Open EFT techniques comes from the lack
of energy conservation in cosmology. Indeed, in cosmology, the FLRW background
is less symmetric than in Minkowski or de Sitter. Energy is not conserved which
plays a crucial role in the generation of fluctuations out of the primordial vacuum.
It sometimes renders the implementation of Wilsonian EFTs cumbersome as the
cornerstone of these approaches is the existence of segregated energy sectors in
which the evolution is unitary [1,22]. On their side, OQS techniques are particularly
suited to describe energy exchanges between the system and its environment which
commonly occur in quantum optics and condensed matter, for instance when one
couples a quantum device to a thermal bath. OQS techniques are also useful when
the lack of symmetries prevents their use as guiding principle for the construction of
extensions. Even if simplifications occur when environments fulfil symmetries [241],
OQS frameworks can still be derived in their absence and other type of constraints
can be placed to restrict the dynamics.

OQS theory not only describes the renormalisation of the energy levels of the sys-
tem by the environment but also the processes of dissipation and decoherence, that is
the energy exchanges and the generation of entanglement. Thanks to this property,
Open EFT techniques have been used to describe the decoherence of cosmological
perturbations in the early universe (see [154, 173, 174, 177, 223, 230, 238, 242–244]
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for a non-exhaustive list of references). They are also common to discuss quan-
tum gravity effects such as gravitationally-induced decoherence (see for instance
[179,233,234,245,246]). In order to capture these effects, we need to give up on the
unitarity of the evolution. In this sense, Open EFTs aim at supplementing Wilsonian
EFTs by adding non-unitary contributions describing dissipation and decoherence.

It is crucial to identify in which settings Open EFT techniques may be useful.
When do we care about non-unitary effects? Despite being ubiquitous in hydrody-
namics, condensed matter and quantum optics, the QFT literature rarely discuss
dissipation [1]. The reason is that in general, scale hierarchies and symmetries makes
that well-segregated UV and IR energy sectors emerge. In the in-out perspective
of scattering experiments, the quantum state in the asymptotic future is known. It
enforces energy conservation for the system, such that no net energy loss or gain
is observed (though the IR and the UV can transiently exchange energy at finite
time when an in-in perspective is adopted, see e.g. [247]). Non-unitary effects in
the IR sector are discarded, energy is conserved and the quantum state of the sys-
tem obey Poincaré group symmetries [241]. On the contrary, when the system and
environment are not organised in terms of energy sectors but rather divided by the
presence of a horizon [22], a physical separation [11] or the different nature of their
constituents [188], or anytime the asymptotic state at future boundary is unknown,
out-of-equilibrium QFT techniques [13] are necessary. The energy of the system is in
general not anymore conserved and one has to take into account dissipative effects,
as in hydrodynamics, condensed matter, quantum optics, but also in black hole
mergers [11] and cosmology [22]. Hence, the introduction of Open EFT techniques
may allow us to capture the non-unitary dynamics associated to the mechanisms
of dissipation and decoherence and to characterise in which regime they can be
discarded.

Finally, Open EFTs have long-standing history in the context of non-perturbative
QFT techniques for their ability to resum late-time effects or ‘tails ’. Let us provide
an example with the Liouvillian gap.

The Liouvillian gap: Let us provide an example of the non-perturbative
insights OQS techniques provide following the approach of spectral theory for
Liouvillians developed in [248]. The quantum state of an OQS is described by
a density matrix ρ̂ whose dynamics is governed by a Liouvillian super-operator
LS such that

dρ̂

dt
= LS [ρ̂] . (3.40)

For time-independent Liouvillian and finite dimensional Hilbert space HS ,
there is at least one steady-state ρ̂eq [248] such that

LS [ρ̂eq] = 0, (3.41)

that is an eigenmatrix associated with the zero eigenvalue of the Liouvillian
super-operator. In order to fully determine the dynamics of the system, the
knowledge of the steady-state density matrix ρ̂eq is not enough. Indeed, one
has to know all the spectrum of the Liouvillian super-operator LS

LS [ρ̂i] = λiρ̂i. (3.42)
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One can decompose the reduced density matrix in the basis formed by the
eigenmatrices such that

ρ̂(t) = ρ̂eq +
∑

i ̸=0

ci(t)e
λitρ̂i. (3.43)

It can be proved that ℜe [λi] ≤ 0 for all i [248]. Since the real part of the
eigenvalues is responsible for the relaxation to the steady state,

ρ̂eq = lim
t→∞

eLS tρ̂(t0). (3.44)

For convenience, let us organise the eigenvalues in such a way that 0 <
|ℜe [λ1] | < · · · < |ℜe [λn] |. An important quantity is the so-called Liou-
villian gap λ ≡ |ℜe [λ1] | which constitutes the asymptotic decay rate. Indeed,
it corresponds to the smallest (in amplitude) non-zero eigenvalue and hence
determines the slowest relaxation dynamics in the long-time limit. One can
extract meaningful information about thermalization and decoherence by es-
timating the Liouvillian gap (at least in flat space, as new complications arise
in cosmology, as we will see below). Hence, one of the strengths of the OQS
formalism resides in computing quantities such as the Liouvillian gap λ pertur-
batively and then using this information to infer non-perturbative statements
on the late-time dynamics of the system such as the decay rates, distribution
tails, metastability or driven-dissipative phase transitions [248].

The idea behind the non-perturbative resummation implemented in Open EFT
settings relies on deriving perturbatively an object such as the generator of the
dynamical map then solving the dynamics non-perturbatively, as it is, without per-
forming any further expansion. In a sense, the generator for the dynamical map
is taken as a bona fide object such that its integration over time implements a
resummation which allows us to accurately describe the late-time distribution [22].

Summary: Open EFT techniques were initially developed in the context of quan-
tum optics and possess desirable features in the context of primordial cosmology.
First, they allow us to synthesize the effects of complex environments into a handful
of parameters. Second, they render accessible the quantum information properties
of the system. Third, they are well suited to describe dissipation, decoherence and
thermalization in out-of-equilibrium settings where the energy of the system is not
conserved. They may also allow us to implement some form of late-time resumma-
tion and accurately described late-time dynamics. If we manage to implement OQS
techniques in cosmology, we would access a so-far unexplored regime associated to
the understanding of the quantum information properties of inflationary models.

3.2 Methods

This Section aims at providing a first introduction to the Open EFT techniques
used in cosmology. This overview explains the basic principles of Open EFT such as
the definition of a bipartition or the tracing out procedure. It highlights the various
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tools at our disposal such the master equations, the influence functional and their
corresponding stochastic unravelling and characterises their relationships.

3.2.1 The system/environment bipartition

The OQS approach relies on a bipartition between a system and an environment.
The system is made of the degrees of freedom we can experimentally access. In the
early-universe context, we could have in mind the curvature perturbations whose
imprints are today observed in the CMB and the LSS. One could also consider a
system made of the large scales (0.005 Mpc−1 ≲ k ≲ 0.2 Mpc−1), the one currently
probed by cosmological surveys. The environment is in general experimentally inac-
cessible and poorly specified. It characterises the unobservable degrees of freedom
that may have played a role in the description of the system but that we do not
physically access. For instance, the cosmological collider program motivates the
study of heavy field and higher-spin particles which may constitute a cosmological
environment. Alternatively, the reservoir of sub-Hubble modes which cross the hori-
zon later than the scales today probed in the CMB could also constitute a natural
environment.

Obviously, the bipartition definition is crucial: if one changes it, it redefines
the observables we can access, the work and heat flows between the system and
its environment, the entanglement and the quantum information properties we can
test. For this reason, looking for physically motivated bipartitions is decisive. In
this manuscript, we mainly discuss the so-called adiabatic and entropic bipartition
and the sub/super Hubble bipartition introduced in Sec. 2.3.2 which constitute
two observationally motivated bipartitions, as suggested above. Yet, no choice is
innocent and one should keep in mind the implications of a bipartition choice, see
[214, 249] for an in-depth discussion of this topic. In particular, one has to keep in
mind that once the bipartition is defined, it poses a constraint on the accessible space
of canonical transformations which do not affect the system properties. Indeed,
as long as the canonical transformation does not affect the bipartition, the field
redefinition would not affect the results.3 Yet, no possible redefinition can change
the inter-sector dynamics without affecting the OQS properties.

In order to illustrate the OQS procedure, let us introduce a follow-up problem
we will use all along the next Sections. We consider a two-field system Φ = ζ,F
where the two scalar fields now separate observable ζ and unobservable F degrees
of freedom

S [Φ] = Sζ [ζ] + SF [F ] + Sint [ζ;F ] . (3.45)

In cosmology, it would for instance represent the interactions between the curvature
perturbations observed in the CMB and the LSS with an entropic sector, so far
unobserved. Now that the bipartition is defined, we aim at describing the effective
effect of F onto the dynamics of ζ.

3Especially if the results are expressed in terms of symplectic eigenvalues which are invariant
quantities under field redefinition, see [250] for a discussion in the context of Gaussian states.
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3.2.2 Tracing out of the environment

A general approach to deal with unknowns in physics consists in summing over,
integrating out or coarse-graining our ignorance. Indeed, when initial conditions are
unknown, one often sums over all possible initial states in order to obtain reliable
predictions for the late-time outcomes. Alternatively, in the Bayesian inference
framework presented in Sec. 2.1.1, posterior distributions are often provided after
the marginalisation of parameters whose detailed description does not matter for the
purpose of a study. A similar approach in the OQS context aims at capturing the
effect of the environment onto the system while giving up the detailed description
of the dynamics of the environment.

This procedure can be carried out from different perspective, depending on the
representation of the quantum state of the system chosen. Let us consider that the
ensemble composed of the system and its environment consists in a closed quantum
system described by a pure state |Ψ⟩. The density matrix ρ̂ ≡ |Ψ⟩ ⟨Ψ| offers a
representation of the quantum state on the Hilbert space H = HS ⊗ HE . In this
case, the action of summing over our ignorance of the details of the environment
takes the form of a partial trace, which allows us to define a crucial object for the
rest of this manuscript, the reduced density matrix of the system

ρ̂red ≡ TrE ρ̂. (3.46)

This operation can be carried out over any basis {|α⟩} of the Hilbert space of the
environment HE

ρ̂red =
∑

α

⟨α| ρ̂ |α⟩ , (3.47)

the trace being invariant under basis redefinition. Two such bases are for instance
the Fock basis (see e.g. [251]) and the position basis (see e.g. [228]), yet, in practice,
the tracing-out procedure often serves as an intermediate to reveal the physical
quantities encoding the effect of the environment onto the system. Hence, in general,
one does not have to perform this step explicitly.

The quantum state also has a phase-space representation, for instance in terms
of the so-called Wigner function, which provides an alternative description, as we
have already seen for the single field case in Eq. (3.22). In the two-field case, the
quantum state is a function of the phase-space variables (ζ, pζ) and (F , pF) where
pζ and pF are the conjugate momenta of ζ and F . Again, the Wigner function is
defined as the Wigner-Weyl transform of the density matrix, that is

W [ζ, pζ ;F , pF ] =

∫
dadbe−ipζa−ipF b

(
⟨ζ + a

2
| ⊗ ⟨F +

b

2
|
)
ρ̂

(
|ζ − a

2
⟩ ⊗ |F − b

2
⟩
)
, (3.48)

|ζ⟩ and |F⟩ being eigenstates of the position operator of the system and the envi-
ronment respectively. The tracing-out procedure then corresponds to the marginal-
ization of the phase-space of the environment, that is the reduced Wigner function
simply writes

Wred [ζ, pζ ] =

∫
dFdpFW [ζ, pζ ;F , pF ] . (3.49)
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Figure 3.3: The Holy trinity of Open Classical and Quantum Systems. The ef-
fect of the surrounding environment is encoded through a set of stochastic vari-
ables called noises. It generates an effective dynamics which renormalizes the free
evolution, dissipates energy into the environment and gets entangled through the
process of decoherence. These effects are captured at the classical level by the
Langevin equation, the Fokker-Planck equation or the Martin-Siggia-Rose path in-
tegral. These techniques have quantum analogues where they are replaced by the
stochastic Schrödinger equation, the master equation and the influence functional
respectively.

In [251], we demonstrated that Eq. (3.49) is indeed the Wigner-Weyl transform of
ρ̂red, which illustrates how the tracing-out procedure can be carried out either in
the phase space or in the Hilbert space, depending on what is most convenient for
a given problem.

3.2.3 The Holy trinity of Open Quantum Systems

The objects we look for to describe the system once the environment has been
integrated out are either ρ̂red or Wred. Now, how do we access these quantities? The
OQS theory provides a toolbox of effective methods to describe their dynamical
evolution. The origin of this toolbox is far from being recent, originating from the
XIXth century with the study of particles of pollen immersed into water by Lord
Brown [19]. The investigation and theoretical modelling of Brownian motion lead
to the discovery of atoms by Jean Perrin in 1905 [21] following the pionerring work
of Albert Einstein [20]. In Fig. 3.3, we illustrate the different ways to model this
long-standing problem.

The effect of the surrounding environment is encoded through a set of stochastic
variables known as noises, which promote the deterministic equations of motion
to stochastic differential equations such as the Langevin equation. Averaging over
many realisations, we derive a dynamical equation for the probability distribution of
being at a given position at a given time, known as a Fokker-Planck equation. This
probability distribution also has a path integral formulation first derived by Wiener
in 1923 and today mainly studied through the language of the Martin-Siggia-Rose
(MSR) path integral [252]. These techniques rely on the same physics and represent
different aspects of a same problem. For instance, the Langevin equation focuses
on the equations of motion and is well-suited for numerical simulations. The MSR
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path integral allows us to describe relativistic settings in a manifestly covariant
formalism while the Fokker-Planck equation has been widely studied for its ability
to implement resummations, in particular in the context of stochastic inflation [113].
One can relate these techniques one to the other, see e.g. [9] and we now aim at
performing the same task at the quantum level. Indeed, as shown in the Right
panel of Fig. 3.3, there exists an exact same language in the quantum framework
where the Fokker-Planck equation is supplemented by master equations, the MSR
path integral by the influence functional and the Langevin equation by a stochastic
unravelling [188].

Master equations: As an analogue of the Fokker-Planck equation, master equa-
tions provide a generator for the dynamical map characterising the evolution of the
density matrix of the system generated by

dρ̂red
dt

= LS [ρ̂red] (3.50)

where LS is the so-called Liouvillian which not only describes unitary evolution
through self-adjoint Hamiltonian but also captures non-unitary effects such as dis-
sipation and decoherence.

It is important to have in mind that there is no such thing as one single master
equation: there rather exists a whole bestiary [188] depending on the level of ap-
proximation we work at. For instance, there exist exact master equations such as
the Nakajima-Zwanzig (NZ) equation which are just a recasting of the full dynam-
ics focusing on the degrees of freedom of the system. As hard to solve as the full
dynamics, their main interests rely on the rewriting of the initial problem in a form
that is well suited to perform systematic expansions. Then, approximation schemes
allow us to simplify the effective dynamics. There are mainly two approximation
schemes which depend on the way the system couples to its environment and the
nature of the environment itself.

In general, the system and the environment are weakly coupled, as otherwise
the mixing would be strong and we would have no reason to distinguish on the one
hand the dynamics of the system and on the other the one of the environment.4

The approximation scheme aiming at carrying out a systematic expansion in powers
of the coupling constant between the system and the environment is known as the
Born approximation. Let us consider the following Hamiltonian

Ĥ = ĤS + ĤE + gĤint (3.51)

where ĤS and ĤE respectively denote the Hamiltonians for the system made of ζ
and the environment made of F in the absence of interactions, and gĤint is the
interaction term, controlled by the coupling constant g. The setup considered is
represented in Fig. 3.4.

Let us derive the simplest master equation we can consider by expanding the
dynamics in powers of the coupling constant g. We work in the interaction picture
which is particularly convenient to perform this type of expansion, where quantum

4In the context of cosmology, the consistency of observations with single-field (null detection of
multifield environments) Gaussian (stringent constraints on non-Gaussianities which prevent large
sub/super Hubble mixing) systems sustains this idea.
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Figure 3.4: Schematic setup of the OQS considered. The system, made of the degree
of freedom ζ, evolves freely according to ĤS and is embedded in the environment
made of F controlled by ĤE . Their interaction is specified by gĤint. From the
point of view of the system, this interaction renormalizes its energy level, generates
energy losses and gains described by dissipation and information exchanges captured
by decoherence. Figure adapted from [253].

states evolve with the interaction Hamiltonian gĤint and operators evolve with the
free Hamiltonian, i.e. the Hamiltonian in the absence of interactions Ĥ0 ≡ ĤS + ĤE .
Operators in the interaction picture are denoted with an overall tilde, in order to
make the distinction with the Schrödinger and Heisenberg pictures where they carry
an overall hat. The link between the Schrödinger and the interaction picture is given
by

ρ̃(t) = Û †
0(t)ρ̂(t)Û0(t) and H̃int(t) = Û †

0(t)Ĥint(t)Û0(t) , (3.52)

where we have introduced the free evolution operator

Û0(t) = T exp

[
−i

∫ t

t0

Ĥ0(t
′)dt′

]
(3.53)

with T indicating time ordering (time arguments increase from right to left).

The three pictures of quantum mechanics: Let us make a brief memo
on the various pictures appearing in quantum mechanics. First, we define on
the top of the free evolution operator (3.53), the full evolution operator

Û(t) = T exp

[
−i

∫ t

t0

Ĥ(t′)dt′
]
. (3.54)

and the interaction evolution Ûint(t) ≡ Û †
0(t)Û(t). The three picture are de-

fined as follow:

• Schrödinger picture: In this picture, the state |Ψ(t)⟩ and density matrix

ρ̂(t) ≡ |Ψ(t)⟩ ⟨Ψ(t)| (assuming purity) evolve while the observables Ô
are constant, that is

|Ψ(t)⟩ = Û(t) |Ψ(t0)⟩ and ρ̂(t) = Û(t)ρ̂(t0)Û †(t). (3.55)

This picture is the standard one taught in quantum mechanics textbooks
in which the state evolves according to the Schrödinger equation or
equivalently the density matrix according to the Liouville–von-Neumann
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equation, that is

d |Ψ(t)⟩
dt

= −iĤ(t) |Ψ(t)⟩ and
dρ̂(t)

dt
= −i

[
Ĥ(t), ρ̂(t)

]
. (3.56)

• Heisenberg picture: In this picture, the state |Ψ⟩ and density matrix ρ̂

are constant while the observables Ô(t) evolve, that is

Ô(t) = Û †(t)Ô(t0)Û(t). (3.57)

This representation is particularly useful when one wants to con-
sider temporal correlations such as out-of-time-ordered correlators
⟨[Ô(t), Ô(t′)]⟩. In this picture, operators evolve according to the Heisen-
berg equation

dÔ(t)

dt
= i
[
Ĥ(t), Ô(t)

]
. (3.58)

• Interaction picture: This picture represent a mixed evolution in which
the state and the density matrix evolve with the interaction Hamiltonian,
that is with Ûint while the observables follow the free evolution dictated
by Û0. Explicitly, the state evolves according to

|Ψ̃(t)⟩ = Ûint(t) |Ψ(t0)⟩ and ρ̃(t) = Ûint(t)ρ̂(t0)Û †
int(t) (3.59)

while the observables follow

Õ(t) = Û †
0(t)ÔÛ0(t). (3.60)

This representation is particularly convenient to implement perturbative
expansions as it allows us to factorize the free dynamics and we will use
it extensively in the following.

All three pictures provide an equivalent description of the dynamics.
The above relations imply that we connect the interaction picture to
the Schrödinger picture by |Ψ̃(t)⟩ = Û †

0(t) |Ψ(t)⟩ or equivalently ρ̃(t) =

Û †
0(t)ρ̂(t)Û0(t) and to the Heisenberg picture by Õ(t) = Ûint(t)Ô(t)Û †

int(t). Fi-

nally, all three picture coincide at initial time where |Ψ(t0)⟩ = |Ψ⟩ = |Ψ̃(t0)⟩,
ρ̂(t0) = ρ̂ = ρ̃(t0) and Ô = Ô(t0) = Õ(t0). Hence, if one wants to change from
one picture to the other, one can evolve the quantities of interest backward in
time up to t0 where the conversion is straightforward.

As mentioned above, in the interaction picture the total density matrix evolves
with the interaction Hamiltonian,

dρ̃

dt
= −ig

[
H̃int(t), ρ̃(t)

]
. (3.61)
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One can formally integrate this equation from initial time t0 to final time t, writing

ρ̃(t) = ρ̃(t0)− ig

∫ t

t0

dt′
[
H̃int(t

′), ρ̃(t′)
]
. (3.62)

If ones trace over the environment in order to obtainO(g) corrections to the quantum
state of the system, it immediately appears that a result only exists if the expectation
value of the environmental operator appearing in H̃int is non-vanishing [188, 244].
In general, these contributions can be reabsorbed by a field redefinition so that for
the clarity of the argument, we first assume TrE [H̃int(t)ρ̃(t)] = 0 and rather focus on
probing the effect of the environment when an exchange diagram such as

g g

occurs, where the straight dashed line represents propagation through the system
and the wiggly line propagation through the environment, which is O(g2) at lowest
order. One can easily relax this assumption if needed.

Injecting Eq. (3.62) in Eq. (3.61) and tracing over the environmental degrees of
freedom, we obtain a first equation for the reduced density matrix ρ̃red

dρ̃red
dt

= −g2
∫ t

t0

dt′TrE
[
H̃int(t),

[
H̃int(t

′), ρ̃(t′)
]]

. (3.63)

Under this form, this equation is exact and does not yet provide a closed dynamical
equation for ρ̃red. We now have to rely on some approximation scheme in order to
close the integro-differential system. For the illustrative purpose of this Section, let
us consider a perturbative expansion in powers of the coupling constant g. From
Eq. (3.61), it appears that the density matrix is constant in the interaction picture at

lowest order in g, such that for an initial factorized state ρ̂(t0) ≡ ρ̂
(0)
S ⊗ ρ̂

(0)
E (denoted

with a hat given that at initial time, all three pictures coincide)

ρ̃(t′) = ρ̂
(0)
S ⊗ ρ̂

(0)
E +O(g). (3.64)

We conclude that the second-order perturbative master equation is

dρ̃red
dt

= −g2
∫ t

t0

dt′TrE
[
H̃int(t),

[
H̃int(t

′), ρ̂(0)S ⊗ ρ̂
(0)
E

]]
+O(g3). (3.65)

Once integrated, this equation provides the first correction to the quantum state of
the system due to the interactions with its surrounding environment. The regime of
validity of this master equation is defined by the dominance of the right-hand side
of Eq. (3.65) over the next-to-the-leading order correction

ig3
∫ t

t0

dt′
∫ t′

t0

dt′′TrE
[
H̃int(t),

[
H̃int(t

′),
[
H̃int(t

′′), ρ̂(0)S ⊗ ρ̂
(0)
E

]]]
. (3.66)

Let us perform one last step in order to rewrite Eq. (3.65) in a form that renders
the physics more explicit and easily compares with the influence functional derived
below. To do so, let us decompose the interaction Hamiltonian in terms of a local
tensor product of operators acting on the system and on the environment,

Ĥint(t) =

∫
d3xĴS(t,x)⊗ ĴE(t,x) , (3.67)
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where one can easily extend to the bi-linear combination
∑

ij AijĴS,i⊗ĴE,j if needed.
Plugging this decomposition into Eq. (3.65) and using 4−vector x = (t,x) and
y = (t′,y) to lighten the notations, the second-order perturbative master equation
reads5

dρ̃red
dt

=− g2
∫ t

t0

dt′
∫

d3x

∫
d3y

{[
J̃S(x)J̃S(y)ρ̂

(0)
S − J̃S(y)ρ̂

(0)
S J̃S(x)

]
K>(x, y)

−
[
J̃S(x)ρ̂

(0)
S J̃S(y)− ρ̂

(0)
S J̃S(y)J̃S(x)

]
[K>(x, y)]

∗
}
, (3.69)

where

K>(x, y) ≡ TrE
[
ĴE(x)ĴE(y)ρ̂

(0)
E

]
=
〈
ĴE(x)ĴE(y)

〉
0
, (3.70)

the ‘0’ index meaning expectation values are evaluated with respect to the initial
state of the environment. K>(x, y), known as the memory kernel, is expressed in the
Heisenberg picture and encodes the effect of the environment onto the system. It
takes the form of a unequal time two-point correlation function of the environment
current, and thus depends on the environment properties.

Typical environments contain a large number of degrees of freedom, hence be-
have as reservoirs in which the correlation functions quickly decay with |t−t′|. More
precisely, if the relaxation time of the environment is small compared to the typical
scales over which the system evolves, one may coarse-grain the evolution of the sys-
tem on timescales larger than the environment relaxation time. The memory kernel
is then sharply peaked, such that the integral over t′ only receives contributions
close to its upper bound t. In this limit, the past history (t′ < t) is not involved
in the dynamics anymore, which therefore becomes Markovian. Together with the
Born approximation, the Markov approximation constitutes a second approximation
scheme commonly used to simplify master equations.

Integrating Eq. (3.69) over time would allow us to capture the leading order
corrections of the environment onto the quantum state of the system. Apart from
organising the perturbative expansion in a sometimes favourable manner, the advan-
tage of Eq. (3.69) is not manifest. Yet, this form provides a useful comparison with
the results obtained using the influence functional and the stochastic Schrödinger
equation. Moreover, this simplest form is at the basis of a vast effort made in con-
structing ever more powerful master equations able to go beyond this lowest order
perturbative expansion [188]. Indeed, as stated at the beginning of this Section,
there exist many other master equations than the one derived in Eq. (3.69). For
instance, one could consider to work at a higher order in powers of the coupling
constant g. Alternatively, one could make use of the properties of the environment

5Equivalently, for future convenience, let us rewrite

dρ̃red
dt

=− g2
∫ t

t0

dt′
∫

d3x

∫
d3y

{
ℜe
[
K>(x, y)

] [
J̃S(x),

[
J̃S(y), ρ̂

(0)
S

]]

+ iℑm
[
K>(x, y)

] [
J̃S(x),

{
J̃S(y), ρ̂

(0)
S

}]}
, (3.68)

where {A,B} ≡ AB +BA denotes the anticommutator.
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Figure 3.5: The master equation bestiary. On the left lies exact master equations
such as the NZ equation, which are just a recasting of the full dynamics focusing
on the degrees of freedom of the system. In general, the system and its environ-
ment are weakly coupled, which allows one for a systematic expansion in powers
of the coupling constant g such as the one carried by the Time-ConvolutionLess
(TCL) technique, further developed in Sec. 3.3.1. From left to right are organised
schemes in terms of the power of the coupling constant considered. Finally, when
the environment is not able to keep track of the past interactions with the system,
for instance in the case of a thermal bath with efficient scrambling properties, one
can afford for a Markovian approximation, further developed in Sec. 3.3.2. In this
case, the dynamics of the system evolves according to a semi-group property and
the associated master equation takes the form of a Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) master equation, also known as Lindblad equation, depicted in
the right hand side of the graph.

to simplify the memory kernel and derive a Markovian limit. It will be the object
of Secs. 3.3.1 and 3.3.2 to develop and characterise these approximation schemes.
Fig. 3.5 provides a summary of the most commonly encountered master equations
and their relations one to the others. Details on the mentioned master equations
can be found in [188] and a summary is provided in the beginning of [251].

Influence functional: While master equations describe the dynamics of the sys-
tem in the language of super-operators (operations which map positive operators to
positive operators) such as the Liouvillian superoperator LS of Eq. (3.50), relativis-
tic quantum systems are often treated by the mean of a path integral formalism.
Here, we aim at connecting the previously derived master equation to the so-called
(Feynman-Vernon) influence functional [254], which is the quantum analogue of the
MSR path integral. Yet, first, it is instructive to review the way observables are
computed in out-of-equilibrium QFT through the Schwinger-Keldysh formalism.

Schwinger-Keldysh formalism: Also known under the name of Closed-
Time-Path (CTP) formalism or in-in formalism, this framework provides the
underlying technique used to compute cosmological correlators in primordial
cosmology. It aims at describing quantum systems that are out-of-equilibrium,
that is to say quantum systems initially prepared in a configuration that do
not evolve towards a known state at late-time. This situation contrasts with
the one familiar to particle physicists in which the late-time configuration is
known to be the adiabatic vacuum of the theory, and so the name of in-out
computations. This discussion is based on [22] and more details can be found
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in [13, 255].
To illustrate the formalism, let us consider the computation of an equal-

time two-point function of the system variable in the absence of environment
(closed system), in the Schrödinger picture

〈
ζ̂(t,x)ζ̂(t,x′)

〉
≡ Tr

[
ζ̂(x)ζ̂(x′)ρ̂(t)

]
(3.71)

=

∫
dζζ(x)ζ(x′) ⟨ζ| ρ̂(t) |ζ⟩ (3.72)

where in the second line, we expanded the expression in the field basis following
[22], where |ζ⟩ is an eigenstate of ζ̂(x) with eigenvalue ζ(x). In general, we
solely know the initial state ρ̂0 in which the quantum system is prepared.
Then, the dynamics leading to ρ̂(t) is rarely exactly solvable and we often
have to rely on approximation schemes to access this quantity. A way to
separate what is known from what is not is the following. We can evolve the
quantum state using the evolution operator Û(t, t0) so that

ρ̂(t) = Û(t, t0)ρ̂0Û †(t, t0), (3.73)

transforming Eq. (3.71) into

〈
ζ̂(t,x)ζ̂(t,x′)

〉
=

∫
dζdζ1dζ2 [ζ(x)ζ(x

′)]
[
⟨ζ| Û(t, t0) |ζ1⟩

]
[⟨ζ1| ρ̂0 |ζ2⟩]

[
⟨ζ2| Û †(t, t0) |ζ⟩

]
(3.74)

where we used two representations of the identity. When an action is specified,
⟨ζ| Û(t, t0) |ζ1⟩ has a path integral representation [22]

⟨ζ| Û(t, t0) |ζ1⟩ =
∫ ζ

ζ1

D [ζ] eiSζ [ζ] (3.75)

where Sζ [ζ] is the single-field action.a One obtains the Schwinger-
Keldysh/CPT/in-in formulation of the correlator

〈
ζ̂(t,x)ζ̂(t,x′)

〉
=

∫
dζdζ1dζ2 [ζ(x)ζ(x

′)]

∫ ζ

ζ1

D [ζ+]

∫ ζ

ζ2

D [ζ−] e
iSζ [ζ+]−iSζ [ζ−] ⟨ζ1| ρ̂0 |ζ2⟩ (3.76)

A cartoon representation of the path integral is represented in the top panel
of Fig. 3.6

aNotations on the boundary conditions are lighten for the sake of clarity, meaning
ζ(t0,x) = ζ1(x) and ζ(t,x) = ζ(x), see [256] for details.

Let us now include a hidden sector, for which we separate observable and unob-
servable degrees of freedom in the action

S [Φ] = Sζ [ζ] + SF [F ] + Sint [ζ;F ] . (3.77)
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Figure 3.6: Cartoon representation of the Schwinger-Keldysh (closed dynamics)
path integral. In the Schwinger-Keldysh/CPT/in-in formalism, solely the initial
state is known. This is the reason why the dymanics is backward evolved once the
final time is reached, leading to the doubling of the path integral. The + branch
progates upward and the − branch propagates backward.

Assuming an initial factorisable initial state (such as the Bunch-Davies vacuum)

ρ̂0 = ρ̂
(0)
S ⊗ ρ̂

(0)
E , we obtain through similar manipulations as the one presented above

for the Schwinger-Keldysh formalism (see [22,256] if needed)

〈
ζ̂(t,x)ζ̂(t,x′)

〉
=

∫
dζdζ1dζ2 [ζ(x)ζ(x

′)]

∫ ζ

ζ1

D [ζ+]

∫ ζ

ζ2

D [ζ−] e
iSζ [ζ+]−iSζ [ζ−]+iSIF[ζ+;ζ−] ⟨ζ1| ρ̂(0)S |ζ2⟩ (3.78)

where the contributions from the unobservable degrees of freedom are captured
within the so-called Feynman-Vernon influence functional SIF [ζ+; ζ−]

eiSIF[ζ+;ζ−] =

∫
dFdF1dF2

∫ F

F1

D [F+]

∫ F

F2

D [F−]

eiSF [F+]+iSint[ζ+;F+]−iSF [F−]−iSint[ζ−;F−] ⟨F1| ρ̂(0)E |F2⟩ . (3.79)

The influence functional generates three types of contributions which supplement the
previously described closed dynamics, as illustrated in Fig. 3.7. Firstly, the influence
functional generates contributions which do not mix the two branches of the path
integral. These contributions correspond to the generation of an effective action from
the interactions of the system with its environment. This effect is unitary and known
as the Lamb shift, that is the renormalization of the energy levels of the system due
to the system-environment coupling. On the top of this unitary effect, some other
contributions mix the two branches of the path integral and cannot be recast under
the form of an effectively closed quantum system. These terms represent the non-
unitary contributions due to physical processes of dissipation and decoherence, that
is the energy and information exchange between the system and its surrounding
environment. Hence, just as the master equation, the influence functional provides
a way to visualize how the unobservable environment affect the dynamics of the
system.

In full generality, this object is as hard to compute as it is to solve the full
theory. Yet, it is written in a form suitable to perform perturbative expansions.
Following [256], let us organise the expansion in powers of Sint, that is in powers
of the coupling constant between the system and the environment and recover the
master equation result derived previously. The interaction between the system and
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Figure 3.7: Cartoon representation of the Feynman-Vernon (open dynamics) path
integral. In the Feynman-Vernon/influence functional formalism, the previous pic-
ture is supplement by new contributions coming from the impact of the environment
onto the dynamics of the system. Some contributions change the expression of the
action that propagates along the branches of the path integral. This corresponds
to the renormalization of the energy level of the system due to the interactions
with its environment, captured by the Lamb shift in the master equation language.
Some other contributions mix the two branches of the path integral and cannot be
captured by a unitary action. They correspond the processes of dissipation and
decoherence.

its environment can always be written as a linear combinations of interactions of
the form

Sint [ζ;F ] = g

∫
d4xJS [ζ(x)]JE [F(x)] (3.80)

where JS [ζ(x)] and JS [F(x)] are current densities constituted out of field vari-
ables and their derivatives. At second order in g, expanding the LHS and RHS
of Eq. (3.79), it becomes [256]

iSIF [ζ+; ζ−] = −g2

2

∫
d4x

∫
d4y
[
J+
S (x)G++(x, y)J

+
S (y) + J−

S (x)G−−(x, y)J
−
S (y)

−J+
S (x)G+−(x, y)J

−
S (y)− J−

S (x)G−+(x, y)J
+
S (y)

]
(3.81)

where we used the notation J±
S (x) ≡ JS [ζ±(x)] and defined the Wightman function

G−+(x, y) and the Feynman propagator G++(x, y) as

G−+(x, y) ≡ ⟨ĴE(x)ĴE(y)⟩0 = G∗
+−(x, y) (3.82)

G++(x, y) ≡ ⟨T [ĴE(x)ĴE(y)]⟩0 = G∗
−−(x, y). (3.83)

In fact, only one quantity is needed as time ordering relates

G++(x, y) = G−+(x, y)Θ(t− t′) +G+−(x, y)Θ(t′ − t) (3.84)

where Θ is the Heaviside distribution. We immediately identify G−+(x, y) and the
memory kernel K>(x, y) previously introduced. Just as for the master equation, the
environment is encoded through unequal time two-point functions. Finally, note
that in Eq. (3.81), we assumed ⟨ĴE(x)⟩0 = 0 as one can often redefine ĴE(x) →
ĴE(x) − ⟨ĴE(x)⟩0 if it is not the case.6 This assumption can be easily relaxed if
needed.

6This is equivalent to the previously made assumption TrE [H̃int(t)ρ̃(t)] = 0.
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Let us now explicitly connect the second-order influence functional to the second
order master equation, following the approach developed in [188, 256, 257]. Let us
first notice that Eq. (3.78) provides an expression for the reduced density matrix in
the field basis

ρζζ′(t) ≡ ⟨ζ| ρ̂red(t) |ζ ′⟩ =
∫

dζ1dζ2

∫ ζ

ζ1

D [ζ+]

∫ ζ′

ζ2

D [ζ−] e
iSζ [ζ+]−iSζ [ζ−]+iSIF[ζ+;ζ−] ⟨ζ1| ρ̂(0)S |ζ2⟩ (3.85)

such that expectation value simply expressed as

〈
ζ̂(t,x)ζ̂(t,x′)

〉
=

∫
dζζ(x)ζ(x′)ρζζ(t). (3.86)

From Eq. (3.85), it appears that SIF [ζ+; ζ−] supplements the free dynamics and
vanishes in the absence of coupling between the system and the environment, such
that one would easily relate it to the dynamics of the interaction picture. Then, let
us consider the dynamical generator of the influence functional

d

dt

{
eiSIF[ζ+;ζ−]

}
= −g2

∫ t

t0

dt′
∫

d3x

∫
d3y
{ [

J+
S (x)J

+
S (y)− J+

S (y)J
−
S (x)

]
K>(x, y)

−
[
J+
S (x)J

−
S (y)− J−

S (x)J
−
S (y)

]
[K>(x, y)]

∗
}{

eiSIF[ζ+;ζ−]
}

(3.87)

where we relabelled x and y when t′ > t and used the fact that G−+(x, y) = K>(x, y).
This form is very much reminiscent of Eq. (3.69), pointing towards the idea that the
dynamical generator of the influence functional is nothing but the generator of the
dynamical map of the quantum state in the interaction picture. In fact, a dictionary
can be established relating the sources appearing in the path integral formulation
and the operators acting of the Hilbert space of the master equation. The rules are
the following:

• The quantum operator associated with a ‘+’ source acts on the left of ρ̃red;

• The quantum operator associated with a ‘−’ source acts on the right of ρ̃red.

Moreover, because of the time-ordering, first act operators that are the innermost
in the nested time structure. A rigorous derivation can be found in [188], Chapter
12. This dictionary establishes a correspondence between the second order influence
functional derived in Eq. (3.81) and the associated second-order master equation
(3.69). The proof is generalisable at any order [257], demonstrating the equivalence
between master equation and influence functional formulations which end up being
two faces of a same coin, just as the Fokker-Planck equation and the MSR path
integral.

Langevin equation: Let us finally highlights how to obtain a stochastic equation
of motion for the field operators. First, the so-called “classical”/“quantum” (cl-q)
basis (see [255] for an in-depth discussion) is defined as

Jcl(x) ≡ J+
S (x) + J−

S (x)

2
, (3.88)

Jq(x) ≡ J+
S (x)− J−

S (x) . (3.89)
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From Eq. (3.84), we use the relation between the Feynman and Wightman propa-
gators

G++(x, y) = ℜe[K>(x, y)] + iΘ(t− t′)ℑm[K>(x, y)] (3.90)

to rewrite the influence functional (3.81) in the cl-q basis as7

iSIF [Jcl; Jq] = −g2

2

∫
d4x

∫
d4y Jq(x)Re [K>(x, y)] Jq(y)

−2ig2
∫

d4x

∫ t

d4y Jq(x)Im [K>(x, y)] Jcl(y) (3.91)

where the upper boundary in the second line indicates that the Θ (t− t′) distribution
applies. It follows that

eiSIF[Jcl;Jq] ⊃ e−
g2

2

∫
d4x

∫
d4y Jq(x)Re[K>(x,y)]Jq(y) (3.92)

=

∫
Dξe−

1
2

∫
d4x

∫
d4yξ(x)σ−1(x,y)ξ(y)e2i

∫
d4xξ(x)Jq(x) (3.93)

where in the second line we used a Bose-Stratanovich transform [255], introducing
the auxiliary field ξ. The variance σ(x, y) provides the statistic of the Gaussian
noise ξ, that is

⟨ξ(x)ξ(y)⟩ ≡ σ(x, y) =
g2

4
Re [K>(x, y)] . (3.94)

For this reason, the real part of the memory kernel Re [K>(x, y)] is often called the
noise kernel [13] as it fixes the statistics of the stochastic variable encoding the effect
of the environment onto the system. We finally obtain non-unitary contributions by
functional differentiation

δSIF [Jcl; Jq]

δJq

∣∣∣∣
Jq=0

= 0 (3.95)

which has to be added to the deterministic evolution specified by the action Sζ [ζ] ≡∫
d4xLζ , leading to the Langevin equation

−∂Lζ

∂ζ
+

d

dt

∂Lζ

∂ζ̇
+ g2

∫
d4yIm [K>(x, y)] JS(y) = ξ(x) (3.96)

where we remind that the source current JS [ζ] has been specified in Eq. (3.80). The
non-local term in the LHS is responsible for the dissipation and so Im [K>(x, y)] is
known as the dissipation kernel. Note that the noise and dissipation kernels are
always related by the fact that they correspond to the real and imaginary part of

7Under this form, the influence functional is related to the master equation derived in Eq. (3.68)
through the following dictionary

• The quantum operator associated with a ‘cl’ source acts as 1
2× anticommutator;

• The quantum operator associated with a ‘q’ source acts as a commutator.

Again, time-ordering implies that the innermost operators act first. This dictionary relates the
cl-q sources to quantum operators acting on the Hilbert space.
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the same object which is the memory kernel. There exist situations where the real
and imaginary parts are constrained such as for thermal states where the Kubo-
Martin-Schwinger (KMS) detailed-balance condition imposes some structure on the
thermal correlators

〈
ĴE(t,x)ĴE(t

′,y)
〉
β
=
〈
ĴE(t

′,y)ĴE(t+ iβ,x)
〉
β

(3.97)

also known as the fluctuation-dissipation theorem.
Let us finally mention that the formulation of Eq. (3.96) can be reexpressed

in the Hilbert space in terms of a stochastic Schrödinger equation [188], that is
a stochastic dynamical equation for the quantum state of the system. The study
of non-Hermitian Hamiltonians might be convenient for formal purposes such as
demonstrating the Complete-Positive and Trace-Preserving (CPTP) nature of a dy-
namical map [258–260] or for numerical implementations. Stochastic formulations of
the dynamics can also be related to the previously derived master equation through
the procedure of stochastic unravelling, see Part III of [188]. It closes the trian-
gle presented in Fig. 3.3, illustrating the relation between OQS tools as quantum
analogues of the Langevin equation, the Fokker-Planck equation and the MSR path
integral.

3.3 Implementation

In this section, we review step by step the construction of Open EFTs, from the
derivation of master equations to the assessment of quantum decoherence. The
approximation schemes are characterised by rendering explicit the error they induce.
Finally, we discuss how to access observables and quantum information properties
in Open EFT settings.

3.3.1 A focus on master equations

In the previous Section, we have seen how to derive perturbative master equations,
allowing us to access the quantum state of the system in the Hilbert space. The
interest of master equations is twofold. First, they organise the computation in
terms of objects that directly relate to the quantum information properties of the
system, a feature emphasized in Sec. 3.3.4. Second, in some cases, they have the
ability to resum late-time secular effects [173,174,243,244,261–264], hence to go be-
yond standard perturbation theory and implement non-perturbative resummations
in cosmology. It will be the object of Sec. 3.4.1, based on the findings of [244]. For
these reasons, master equations are promising tools in the context of the implemen-
tation of Open EFTs in cosmology and we now aim at providing some more details
about their derivation and structure.

Let us first derive an exact master-equation known as the Nakajima-Zwanzig
(NZ) equation, which serves as a starting point for the implementation of approxima-
tion schemes. We then discuss two different implementations of the Born approxima-
tion that are the perturbative Nakajima-Zwanzig (NZn) and Time-ConvolutionLess
(TCLn) techniques. We carefully account for their differences and highlight the
merit of time-local formulations. We also characterise the higher-order dynamical
generators and specify the error they generate when neglected. Both schemes lead
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to non-Markovian master equations which agree at the perturbative level for the ob-
servables of the system but depart when considering the resummed terms they may
include. Finally, we exhibit the structure of the master equation and the physical
role played by each term. In the case of environments forming a Markovian bath,
we will connect these formulations to the familiar Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) master equation, also known as Lindblad equation. This discussion
is based on [244] and provides an augmented discussion of these concepts.

The exact Nakajima-Zwanzig equation: As mentioned above in Eq. (3.61), in
the interaction picture the total density matrix evolves with the interaction Hamil-
tonian, that is

dρ̃

dt
= −ig

[
H̃int(t), ρ̃(t)

]
≡ gL(t)ρ̃(t) , (3.98)

which defines the Liouville–Von-Neumann super-operator L. Let us now introduce
the projection super-operator P , defined as

P ρ̃ = TrE (ρ̃)⊗ ρ̂
(0)
E , (3.99)

where ρ̂
(0)
E is a fixed reference state in the environment. In practice, it is taken

as the state of the environment in the absence of interactions with the system,
which is indeed constant in the interaction picture. One can check that P is a
projector, i.e. P2 = P , and that P ρ̃ contains the relevant information to reconstruct
the reduced state of the system ρ̃red. Upon applying the super-projector P and its
complementary projector Q = Id− P to Eq. (3.98), one obtains

∂

∂t
P ρ̃(t) = gPL(t)ρ̃(t), (3.100)

∂

∂t
Qρ̃(t) = gQL(t)ρ̃(t). (3.101)

Here we have used that since the reference state ρ̂
(0)
E is independent of time, P and

Q commute with ∂/∂t. Inserting the identity Id = P + Q between the Liouville
operator and the density matrix, one obtains

∂

∂t
P ρ̃(t) = gPL(t)P ρ̃(t) + gPL(t)Qρ̃(t), (3.102)

∂

∂t
Qρ̃(t) = gQL(t)P ρ̃(t) + gQL(t)Qρ̃(t). (3.103)

A formal solution of Eq. (3.103) is given by

Qρ̃(t) = GQ(t, t0)Qρ̃(t0) + g

∫ t

t0

dt′GQ(t, t
′)QL(t′)P ρ̃(t′), (3.104)

where t0 is some initial time and GQ(t, t′) is the propagator defined as

GQ(t, t
′) ≡ T exp

[
g

∫ t

t′
dt′′QL(t′′)

]
. (3.105)
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Plugging Eq. (3.104) into Eq. (3.102), one then obtains a closed equation for the
time evolution of the projected density matrix P ρ̃, namely

∂

∂t
P ρ̃(t) = gPL(t)GQ(t, t0)Qρ̃(t0) + gPL(t)P ρ̃(t)

+g2
∫ t

t0

dt′PL(t)GQ(t, t
′)QL(t′)P ρ̃(t′). (3.106)

This is the Nakajima-Zwanzig equation. Although formal, it provides an exact
master equation for the reduced state of the system. It can be further simplified by
assuming that the initial state does not contain correlations between the system and
the environment, i.e. ρ̃(t0) = TrE(ρ̃(0)) ⊗ TrS(ρ̃(0)) = ρ̂

(0)
S ⊗ ρ̂

(0)
E , hence Qρ̃(t0) = 0.

Moreover, without loss of generality one can assume that the expectation value of
the interaction Hamiltonian vanishes in the reference state, i.e. ⟨Ĥint⟩0 = 0 (if this is

not satisfied, one simply redefines ĤS by adding g⟨Ĥint⟩0 to it, as discussed above).
This leads to PL(t)P = 0, so the Nakajima-Zwanzig equation reduces to

∂

∂t
P ρ̃(t) = g2

∫ t

t0

dt′K(t, t′)P ρ̃(t′), (3.107)

where we have introduced the memory kernel K(t, t′) defined as

K(t, t′) = PL(t)GQ(t, t
′)QL(t′)P . (3.108)

In this form, the master equation is as difficult to solve as the Liouville equa-
tion (3.98) of the full setup. However, it allows efficient approximation schemes
to be designed, as we shall now see. The first approximation relies on the assump-
tion of weak coupling between the system and the environment and is discussed
below, the second approximation concerns properties of the environment itself and
is developed in Sec. 3.3.2.

Perturbative Nakajima-Zwanzig equations (NZn): An effective description
of the system alone is in general possible only when it weakly couples to its environ-
ment. This naturally provides a small parameter, namely the interaction strength,
in which to perform an expansion. This is the so-called Born approximation. Several
implementation of this approximation scheme have been proposed, see [188], Chap-
ter 9. For factorised initial-conditions, the simplest approach consists in expanding
the memory kernel K(t, t′) defined in Eq. (3.108) in powers of the coupling constant
g. The second-order expansion of the Nakajima-Zwanzig equation, denoted NZ2,
writes

∂

∂t
P ρ̃(t) = g2

∫ t

t0

dt′PL(t)L(t′)P ρ̃(t′), (3.109)

which we reexpress in terms of the interaction Hamiltonian for clarity

dρ̃red
dt

= −g2
∫ t

t0

dt′TrE
[
H̃int(t),

[
H̃int(t

′), ρ̃red(t
′)⊗ ρ̂

(0)
E

]]
. (3.110)

The regime of validity is defined by the dominance of the right-hand side of Eq. (3.110)
over the next-to-the-leading order correction

ig3
∫ t

t0

dt′
∫ t′

t0

dt′′TrE
[
H̃int(t),

[
H̃int(t

′),
[
H̃int(t

′′), ρ̃red(t
′′)⊗ ρ̂

(0)
E

]]]
. (3.111)
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In practice, NZ2 has some technical disadvantages [188]. The perturbative expansion
simplifies the computation of the memory kernel which boils down to the estimation
of a free Wightman function but the generator of the dynamical map remains an
integro-differential system whose numerical treatment may be quite involved.

Time-ConvolutionLess master equations (TCLn): The Time-ConvolutionLess
(hereafter TCL) method, developed in [265] based on the previous cumulant expan-
sion of Van Kampen [266,267], allow us to remove the convolution by noticing that
the non-local in time contributions are also organised in powers of the coupling con-
stant g, which must be neglected if we consistently derive the master equation at a
given order. For instance, the second-order TCL master equation, hereafter called
TCL2, reads

dρ̃red
dt

= −g2
∫ t

t0

dt′TrE
[
H̃int(t),

[
H̃int(t

′), ρ̃red(t)⊗ ρ̂
(0)
E

]]
. (3.112)

Both Eq. (3.110) and Eq. (3.112) are second-order and it is expected they approxi-
mate the exact dynamics at the same accuracy [188]. In practice, TCL2 is preferred
as it involves a time-local generator instead of a convolutional kernel, which reduces
the complexity of the differential equation. One can evaluate the leading order
difference between Eq. (3.110) and Eq. (3.112) by Taylor expanding the ρ̃red(t

′)
contribution, following the approach developed in [228,236,237,239,262,268]

ρ̃red(t
′) ≃ ρ̃red(t) + (t′ − t)

dρ̃red
dt

+O
[
(t′ − t)

2
]
. (3.113)

By injecting this expansion in Eq. (3.110), we recover Eq. (3.112) up to a O(g4)
correction reading

g4
∫ t

t0

dt′ (t− t′) TrE
[
H̃int(t),

[
H̃int(t

′),

∫ t

t0

dt′′TrE
[
H̃int(t),

[
H̃int(t

′′), ρ̃red(t)⊗ ρ̂
(0)
E

]] ]]
. (3.114)

where we replaced dρ̃red/dt by its lowest order expression given in Eq. (3.112) in a it-
erative way. As long as the right hand side of Eq. (3.112) dominates over Eq. (3.114),
the deconvolution approximation holds. Note that when the perturbative expansion
is well under control, Eq. (3.111) becomes dominant before Eq. (3.114) takes over,
so that the localness in time remains well justified within the regime of validity of
the Born approximation.

Let us stress that despite being written in a time-local form, the TCL2 master
equation (3.112) remains a non-Markovian master equation. Following the definition
of Breuer and Petruccione [188], a dynamical map ρ̃(t) → ρ̃(t′) = Vt→t′ ρ̃(t) is said
to be Markovian if it forms a semi-group, i.e.

Vt→t′ = Vt′′→t′Vt→t′′ . (3.115)

For the semi-group structure (3.115) to occur, the imprint of the environment onto
the system must be the same at anytime. This feature is likely to happen solely if the
environment is large enough so that it does not feel the backreaction of the system
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and reaches some form of stationarity, in which case we call it a bath. Markovianity
provides a much stronger statement on the dynamics of the system than time locality.
In particular, it implies some form of irreversibility as no information backflow can
occur in Markovian frameworks (see [188], Section 3.2.5). The system has a positive
entropy production rate and obeys the H-theorem. On the contrary, non-Markovian
OQS can experience memory effects and information backflow, as we showed in
the context of cosmology in [154]. Non-Markovian dynamics allow us to evade the
restrictive framework of Markovian bath for the environment, which turns out to be
crucial in the context of cosmology where the presence of a dynamical background
often ruins any hope of semi-group evolution [244, 269, 270]. It makes the TCL
formalism particularly suited to tackle finite size environments, an interesting feature
in the context of cosmology where symmetries of the background induce reduction of
the effective number of dynamical degrees of freedom [154]. Note that a Markovian
master equation is necessarily local in time, but the reverse is not necessarily true.
Hence, as stressed above, there exists a fundamental difference between local-in-
time and Markovian master equations. This point has been a continuous object of
confusion in the community, mainly due to the various definitions ‘Markovian’ can
handle depending on the context. For this reason, we aim at clarifying this aspect
which is further developed in Sec. 3.3.2.

The TCL cumulant expansion: The TCL expansion addresses one of
the difficulties inherent to the Nakajima-Zwanzig equation (3.107), namely
the fact that it is non-local in time, i.e. the time derivative of P ρ̃(t) depends
on its past history P ρ̃(t′) for t′ < t. By solely expanding the dynamics of
the system in powers of the coupling constant g, the TCL expansion renders
the equation local in time while preserving the non-Markovian nature of the
dynamical map. One thus obtains an equation of the form

∂

∂t
P ρ̃(t) =

∞∑

n=2

gnKn(t)P ρ̃(t) , (3.116)

where the Kn operators are called the TCLn operators and can be computed
iteratively. This can be done by expanding Eq. (3.105) in g, and by us-
ing Eq. (3.116) to express P ρ̃(t′) in terms of P ρ̃(t) in the right-hand side of
Eq. (3.107), at the required order. Let us illustrate this so-called cumulant ex-
pansion in the language of Van Kampen. Following [266,267], one can recast
the exact dynamics presented in Eq. (3.107) in an infinite tower of super-
operators organised in powers of the coupling constant. We introduce the
notation

⟨X ⟩ ≡ PXP (3.117)

for any super-operator X . The formal solution of the Liouville-von Neumann
equation (3.98) for the relevant part of the density matrix can be written as

P ρ̃(t) =

〈
T exp

[
g

∫ t

t0

dt′L(t′)
]〉

P ρ̃(t0). (3.118)
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Differentiating this equation with respect to time, we obtain

∂

∂t
P ρ̃(t) =

[
g ⟨L(t)⟩+ g2

∫ t

t0

dt′ ⟨L(t)L(t′)⟩

+g3
∫ t

t0

dt′
∫ t′

t0

dt′′ ⟨L(t)L(t′)L(t′′)⟩+ · · ·
]
P ρ̃(t0). (3.119)

In order to write this equation in a time-local form, we can backward evolve
Eq. (3.118) to express P ρ̃(t0) in terms of P ρ̃(t). This property, known as the
reversibility of the dynamical map, is ensured by the smallness of the coupling
constant. Note that it might break down at late time [188]. Upon expanding
this expression in powers of g, we obtain a cumulant expansion of the form of
Eq. (3.116) where the so-called TCLn generators Kn(t) are defined by

Kn(t) ≡
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−2

t0

dtn−1 ⟨L(t)L(t1)L(t2) · · · L(tn−1)⟩oc (3.120)

with the quantities

⟨L(t)L(t1)L(t2) · · · L(tn−1)⟩oc ≡
∑

(−1)qPL(t) · · · L(ti)PL(tj) · · ·
L(tk)PL(tl) · · · L(tm)P · · · P (3.121)

known under the name of ordered cumulants and defined according to the
following rules [188]. Let us consider a sequence of the form PL · · · LP with
n factors of L in between two P . The next step consists in inserting q factors
of P between the L such that at least two L stand in between two successive
projector operators. There is an overall (−1)q factor and the time arguments
are organised such that the first one is always t and all possible permutation
of the time arguments t1, t2, · · · , tn−1 must be included. The only restriction
is that the time arguments in between two successice P must be ordered
chronologically. The ordered cumulant is obtained by a summation over all
possible insertions of P and over all allowed partitions of the time arguments.
For concreteness, the first cumulants are

K2(t) =

∫ t

t0

dt′PL(t)L(t′)P , (3.122)

K3(t) =

∫ t

t0

dt′
∫ t

t′
dt′′PL(t)L(t′′)L(t′)P (3.123)

K4(t) =

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3 (3.124)

[
PL(t)L(t1)L(t2)L(t3)P − PL(t)L(t1)PL(t2)L(t3)P

−PL(t)L(t2)PL(t1)L(t3)P − PL(t)L(t3)PL(t1)L(t2)P
]
.

This expansion can be carried on to the required level of accuracy, which allows
one to work out Eq. (3.116) when truncated at the corresponding order TCLn.
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Note that, even if the TCL2 order may be sufficient for practical purposes,
the derivation of the fourth-order generator is useful to control the validity of
the cumulant expansion, by evaluating the error estimate g2||K4||/||K2|| and
checking that it is indeed small.

Link with perturbative methods: In Sec. 3.2.3, we have derived a perturbative
master equation now supplemented by the NZ2 and TCL2 schemes. For the sake of
clarity, let us reproduce these three equations

dρ̃red
dt

= −g2
∫ t

t0

dt′TrE
[
H̃int(t),

[
H̃int(t

′), ρ̂(0)S ⊗ ρ̂
(0)
E

]]
(pert.) (3.125)

dρ̃red
dt

= −g2
∫ t

t0

dt′TrE
[
H̃int(t),

[
H̃int(t

′), ρ̃red(t
′)⊗ ρ̂

(0)
E

]]
(NZ2) (3.126)

dρ̃red
dt

= −g2
∫ t

t0

dt′TrE
[
H̃int(t),

[
H̃int(t

′), ρ̃red(t)⊗ ρ̂
(0)
E

]]
(TCL2) (3.127)

Later on in this manuscript, we will investigate in Sec. 3.4.1 the extent to which
NZ and TCL master equations go beyond perturbative effects and enable some
non-perturbative resummation. At this stage however, it is important to stress
that, when solved perturbatively, they all reduce to the same standard perturbative
results. This is because, when deriving the NZ2 and TCL2 equations, no contribution
of order lower than g2 has been dropped.

More explicitly, the Liouville–Von-Neumann equation (3.98) can be formally
solved as done in Eq. (3.50). By recursively evaluating ρ̃ in the right-hand side with
Eq. (3.50) itself, one obtains

ρ̃(t) =
∞∑

n=0

(−ig)n
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtn (3.128)

[
H̃int(t1),

[
H̃int(t2), · · ·

[
H̃int(tn), ρ̂

(0)
S ⊗ ρ̂

(0)
E

]
· · ·
]]

,

which displays all contributions to the quantum state order-by-order in g. In turn,
this allows one to compute corrections to the observables at all orders, as in the
Schwinger-Keldysh/CTP/in-in formalism.8 Let us see how this compares with a

8Indeed, in the Schwinger-Keldysh/CTP/in-in formalism, the expectation value of an operator

Ô at time t reads

⟨Ô⟩(t) = ⟨Ψ| T
[
e
ig

∫ t
t0

dt′H̃int(t
′)
]
Õ(t)T

[
e
−ig

∫ t
t0

dt′′H̃int(t
′′)
]
|Ψ⟩ . (3.129)

By Taylor expanding the exponential functions, one obtains

⟨Ô⟩(t) =
∞∑

n=0

(ig)n
∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtn (3.130)

⟨Ψ|
[
H̃int(tn),

[
H̃int(tn−1), · · ·

[
H̃int(t1), Õ(t)

]
· · ·
]]

|Ψ⟩ .

Using that ⟨Ô⟩(t) = TrS+E [Õ(t)ρ̃(t)], together with

TrS+E [Õ(t)[H̃int(ti), ρ̂
(0)
S ⊗ ρ̂

(0)
E ]] = −⟨Ψ|[H̃int(ti), Õ(t)]|Ψ⟩, (3.131)

this is indeed consistent with Eq. (3.128).
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perturbative solution of NZn and TCLn. At second order, since the right-hand sides
of Eqs. (3.126) and (3.127) are proportional to g2, one has

ρ̃red(t
′) = ρ̃red(t) +O

(
g2
)

(3.132)

= ρ̃red(t0) +O
(
g2
)

(3.133)

= ρ̂
(0)
S ⊗ ρ̂

(0)
E +O

(
g2
)

(3.134)

and all three schemes leads to

ρ̃(tf ) = ρ̂
(0)
S ⊗ ρ̂

(0)
E − g2

∫ tf

t0

dt

∫ t

t0

dt′TrE
[
H̃int(t),

[
H̃int(t

′), ρ̂(0)S ⊗ ρ̂
(0)
E

]]
, (3.135)

which reduces to Eq. (3.128) when traced over the environmental degrees of freedom
and truncated at order g2. This shows that solving NZ2 or TCL2 at order g2 is
equivalent to standard perturbative techniques at the same order. Likewise, one can
show that solving NZn or TCLn perturbatively at order gn is equivalent to standard
perturbation theory. Therefore, beyond this perturbative limit, when solved as bona
fide generators of the dynamical map (i.e. when taken per se and solved without
further perturbative expansion), they contain all terms of order gn, and some terms
of order gm>n. It provides a first example of how master equations are able to go
beyond the perturbative regime by implementing some form of resummation in time.

Interpretating the master equation: We now turn our attention to the TCL2

master equation (3.127) which has a simpler interpretation than its NZ2 counter-
part. We remind that it is formulated in the interaction picture, where the in-
teraction Hamiltonian reads Ĥint(t) =

∫
d3xĴS(t,x) ⊗ ĴE(t,x). The TCL2 master

equation (3.112) thus takes a form similar to the one derived in Eq. (3.69), that is

dρ̃red
dt

=− g2
∫ t

t0

dt′
∫

d3x

∫
d3y

{[
J̃S(x)J̃S(y)ρ̃red(t)− J̃S(y)ρ̃red(t)J̃S(x)

]
K>(x, y)

−
[
J̃S(x)ρ̃red(t)J̃S(y)− ρ̃red(t)J̃S(y)J̃S(x)

]
[K>(x, y)]

∗
}
, (3.136)

where the only difference with Eq. (3.69) is that now, ρ̂
(0)
S is replaced by ρ̃red(t).

We want to highlight the structure hidden behind this equation. For the sake of
clarity, we consider localised currents ĴS(x) = ĴS(t)δ(x − x0) and further simplify
the discussion by focusing on bilinear interactions.9 In this case, the most generic
quadratic interaction Hamiltonian can be written as

Ĥint(t) = ẑT
ζ (t)V (t)ẑF(t) (3.137)

where V (t) is an arbitrary 2× 2 matrix containing the linear couplings between the
two fields and ẑα = (α̂, p̂α)

T for α = ζ,F gathers the configuration and momentum
operators of the system and the environment. In order to write Eq. (3.112) in the
Schrödinger picture where the physics is manifest, we need to recast it in terms

9A general discussion for non-linear interactions is doable at the price of introducing new terms
whose interpretation is less straightforward, obscuring the clear connection existing at the level of
Gaussian master equations between Markovian and non-Markovian master equations.
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of local-in-time operators for the system. We use the fact that in the interaction
picture, operators evolve with the free Hamiltonian Ĥ0(t) so that

z̃ζ(t
′) =T̄ exp

[
i

∫ t′

t

Ĥ0(t
′′)dt′′

]
z̃ζ(t)T exp

[
−i

∫ t′

t

Ĥ0(t
′′)dt′′

]
. (3.138)

This quantity can be hard to access, yet, the linearity of the dynamics greatly
simplifies the computation as

z̃ζ(t
′) =G(S)(t′, t)z̃ζ(t) (3.139)

where G(S)(t′, t) is the Green’s matrix of the unperturbed system (see e.g. [121,251]
for a discussion of the underlying symplectic structure generating this dynamics).
Expressing Eq. (3.136) in terms of equal-time operators using Eq. (3.139), one finds

dρ̃red
dt

=−
∫ t

t0

dt′
{
[z̃ζ,i(t)z̃ζ,j(t)ρ̃red(t)− z̃ζ,j(t)ρ̃red(t)z̃ζ,i(t)]D>

ij(t, t
′)

− [z̃ζ,i(t)ρ̃red(t)z̃ζ,j(t)− ρ̃red(t)z̃ζ,j(t)z̃ζ,i(t)]D>∗
ij (t, t

′)
}
, (3.140)

where implicit summation over repeated indices apply. The kernel D>(t, t′) is de-
fined by

D>(t, t′) ≡ V (t)K>(t, t′)V T(t′)G(S)(t′, t) (3.141)

where K>(t, t′) ≡ Tr[ẑT
F(t)z̃F(t′)ρ̂

(0)
E ] is the generalized 2× 2 memory kernel, that is

the Wightman function of the free environment. Eq. (3.140) is expressed in terms
of equal time operators, which renders the final transfer in the Schrödinger picture
straightforward. We finally decompose the memory kernel in real and imaginary
parts D>(t, t′) ≡ DRe(t, t′) + iDIm(t, t′) and perform some simple manipulations in
order to obtain

dρ̂red
dt

= −i
[
ĤS(t) + ĤLS(t), ρ̂red(t)

]

+γij(t)

(
ẑζ,iρ̂red(t)ẑζ,j −

1

2
{ẑζ,jẑζ,i, ρ̂red(t)}

)
. (3.142)

This form encompasses all Gaussian master equations where the system linearly
couples to its environment. Let us now interpret the various terms appearing in
this decomposition. The Lamb-shift Hamiltonian is a quadratic form ĤLS(t) =
1
2
ẑT
ζ ∆(t)ẑζ where

∆ij(t) = 2

∫ t

t0

dt′DIm
(ij)(t, t

′) (3.143)

and we used the symmetric and antisymmetric decomposition of 2× 2 matrices

Aij = A(ij) + A−ωij where ω =

(
0 1
−1 0

)
(3.144)

and A(ji) = A(ij). The dissipator matrix is the time-dependent 2× 2 matrix

γij(t) ≡ Dij(t)− i∆−(t)ωij (3.145)

99



where the noise and dissipation kernels are respectively defined as

Dij(t) = 2

∫ t

t0

dt′DRe
(ij)(t, t

′) (3.146)

∆−(t) = 2

∫ t

t0

dt′DIm
− (t, t′). (3.147)

The first term in the right-hand side of Eq. (3.142) provides a unitary contribution,
which renormalises the energy levels of the system due to the interactions with the
environment [188, 253, 271]. This contribution, when expressed in terms of local
operators, can be captured by a Wilsonian EFT and has a proper diagrammatic
representation. The second and the third terms in Eq. (3.142) are of a different
nature, since they capture the non-unitary evolution of the system and thus cannot
be described by an effective Lagrangian. This is due to dissipation and decoher-
ence, which are related respectively to the imaginary part ∆−(t) and the real part
Dij(t) of the dissipator matrix γij(t) in Eq. (3.142). The fact that the real and the
imaginary part of the memory kernel lead to distinct physical effects has already
been encountered in Sec. 3.2.3 when we discussed the influence-functional approach
and the Langevin equation it generates. Importantly, when the environment obeys
fluctuation-dissipation relations, the two quantities are related [255].

Phase-space representation of Gaussian master equations: In phase
space, the TCL2 master equation (3.142) takes the form of a Fokker-Planck
equation for the reduced Wigner function Wred. Indeed, an alternative rep-
resentation of the quantum state is given in the phase-space by the Wigner
function (see [200] for a brief introduction). It provides a quantum analogue
of a phase-space quasi probability distribution encoding the statistics of the
quantum system. For Gaussian states, the Wigner function takes the simple
form of a multivariate Gaussian [272], which makes it particularly convenient
to work with. The Wigner function is defined as the inverse Wigner-Weyl
transform of the density matrix given in Eq. (3.22). For a generic quantum

operator Ô, the inverse Wigner-Weyl transform has a similar definition

WÔ(ζ, pζ) ≡ 2

∫ ∞

−∞
dye−2ipζy ⟨ζ + y| Ô |ζ − y⟩ (3.148)

and is a function of the phase-space variables ζ and pζ . The above formula
is written in the configuration representation, it can also be written in the
momentum representation,

WÔ(ζ, pζ) ≡ 2

∫ ∞

−∞
dke2ikζ ⟨pζ + k| Ô |pζ − k⟩ . (3.149)

In this way, commutators of quantum operators are mapped to the Poisson
brackets of their phase-space representations. Indeed, using the above formu-
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las, one finds

W[ζ̂,Ô] = i
∂

∂pζ
WO and W[p̂ζ ,Ô] = −i

∂

∂ζ
WO , (3.150)

W{ζ̂,Ô} = 2ζWO and W{p̂ζ ,Ô} = 2pζWO . (3.151)

This leads to

iωijW[ẑζ,j ,Ô] =
∂WO

∂zζ,i

, (3.152)

1

2
W{ẑζ,i,Ô} = zζ,iWO . (3.153)

These relations can be used to compute the inverse Weyl transform of the
TCL2 master equation (3.142). Using that ω is antisymmetric, one finds

dWred

dt
=
{
H̃S + H̃LS,Wred

}
(3.154)

−∆−
∑

i

∂

∂zζ,i

(zζ,iWred)−
1

2

∑

i,j

[ωDω]ij
∂2Wred

∂zζ,i∂zζ,j

,

where Wred = Wρ̂red is the reduced Wigner function, i.e. the inverse Wigner-
Weyl transform of the reduced density matrix ρ̂red. The curly brackets now
represent Poisson’s brackets, not to be confused with the anticommutators for
quantum operators. The first term in Eq. (3.154) corresponds to the free evo-

lution dressed by the Lamb-shift Hamiltonian H̃LS. This part of the equation
only captures the unitary evolution. The second term proportional to ∆− is
dissipative: it is a drift (or friction) term that accounts for the energy transfer
from the system into the environment [177]. Finally, the last term propor-
tional to ωDω corresponds to diffusion and leads to decoherence. These last
two terms can be combined into a single second-order differential operator
involving the dissipator matrix γij defined in Eq. (3.145), and they induce
the non-unitary evolution. Finally, one can show that Eq. (3.154) admits
Gaussian solutions, hence the reduced state of the system is still Gaussian.

3.3.2 On Markovianity

Among the concepts encountered in the OQS literature, Markovianity is certainly the
one that has been the most passionately discussed during my Ph.D. While ubiquitous
in quantum optics and condensed matter [188], its generalisation in curved spacetime
is far from being obvious [154,268,270]. It is also fair to recognize that Markovianity
might refer to different concepts as:

• A Markovian master equation is a master equation that fulfils the semi-group
property;

• A Markovian approximation is an expansion that neglects variations of the
environment in the derivation of a master equation;
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• A Markovian environment is a bath that dissipates information fast compared
to the dynamical evolution of the system.

Rather than providing a definitive answer on the status of Markovianity in Open
EFTs, this Section delivers a partial vision which is likely to evolve and aims at
illustrating how this concept has been used in the situations we encountered so far.
We first present the bottom-up construction of Markovian master equations induced
by Lindblad theorem. We then reconcile this result with the non-Markovian master
equation we obtained in Eq. (3.142) by illustrating how the Markovian limit can
be reached. We finally present a systematic approach to non-Markovian corrections
and discuss tracers of non-Markovianity.

Lindblad theorem: The semi-group evolution (3.115) imposes strong constraints
on the available physical dynamical maps, as first notice by Lindblad in his seminal
paper [273].

A bottom-up construction of Markovian ME: Let us illustrate from
[188, 253] the construction of the most general form for the generator of a
quantum dynamical semi-group. For simplicity, let us consider a finite di-
mensional Hilbert space for the system HS of dimension N . The space of
super-operators is then of dimension N2, spanned by a complete basis of or-
thonormal operators Fi for i = 1, 2, · · ·N2. The mapping of operators acting
on the Hilbert space to super-operators acting on the doubled Hilbert space
(the Fock-Liouville space) is known as the Choi isomorphism [274] which of-
ten appears in ThermoField Dynamics (TFD) [275,276]. The orthonormality
prescription is defined through the Hilbert-Schmidt product

(Fi, Fj) ≡ TrS
{
F †
i Fj

}
= δij. (3.155)

One can always choose one of the basis operators to be the identity, namely
FI = I/

√
N such that the other basis operators are traceless.

Let us construct a dynamical map V(t) out of these operators, such that

ρ̂
(0)
S 7→ ρ̂red(t) = V(t)ρ̂(0)S ≡ TrE

{
Û(t)

[
ρ̂
(0)
S ⊗ ρ̂

(0)
E

]
Û †(t)

}
(3.156)

which follows from tracing out the environmental degrees of freedom in
Eq. (3.55), that is

ρ̂
(0)
S ⊗ ρ̂

(0)
E Û(t)

[
ρ̂
(0)
S ⊗ ρ̂

(0)
E

]
Û †(t)

ρ̂
(0)
S ρ̂red(t) = V(t)ρ̂(0)S .

TrE

unit. evol.

TrE

dyn. map

V(t) defines a map from the space S(HS) of reduced density matrices into
itself

V(t) : S(HS) → S(HS). (3.157)
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Such a dynamical map can be characterised entirely in terms of operators
pertaining to the open system’s Hilbert space HS . Indeed, let us use the
spectral decomposition for the density matrix of the environment

ρ̂
(0)
E =

∑

α

λα |φα⟩ ⟨φα| (3.158)

where the |φα⟩ form an orthonormal basis of the Hilbert space of the environ-
ment HE . It immediately follows from Eq. (3.156) that

V(t)ρ̂(0)S =
∑

αβ

Wαβ(t)ρ̂
(0)
S W †

αβ(t) (3.159)

where the Wαβ are operators acting on HS defined as

Wαβ(t) =
√

λβ ⟨φα| Û(t) |φβ⟩ (3.160)

This is the necessary statement made by Choi’s Theorem which further
demonstrates its sufficiency [253].

Theorem 1: Choi’s Theorem.
A linear map of the form Eq. (3.157) is completely positive iff it can be ex-
pressed as

V(t)ρ̂(0)S =
∑

αβ

Wαβ(t)ρ̂
(0)
S W †

αβ(t) (3.161)

with Wαβ ∈ S(HS).

A dynamical map of this form is the one of a generalized quantum measure-
ment [188]. If we further require the dynamical map to be trace preserving,

TrS
[
V(t)ρ̂(0)S

]
= TrS ρ̂

(0)
S = 1, the cyclicity of the trace imposes

∑

αβ

W †
αβ(t)Wαβ(t) = I. (3.162)

Hence, CPTP dynamical maps obey Choi-Kraus’ Theorem (again, see [253]
for the demonstration of the sufficiency).

Theorem 2: Choi-Kraus’ Theorem.
A linear map of the form Eq. (3.157) is CPTP iff it can be expressed as

V(t)ρ̂(0)S =
∑

αβ

Wαβ(t)ρ̂
(0)
S W †

αβ(t) (3.163)

with Wαβ ∈ S(HS) fulfilling
∑

αβ

W †
αβ(t)Wαβ(t) = I. (3.164)
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.
This theorem first imposes some structure on the available shapes for a phys-
ical dynamical map. When the microphysical theory is known, Wαβ are de-
termined by Eq. (3.160). We now seek to constrain these objects when the
microphysics is unknown.

We now consider how the semi-group evolution combined with Choi-Kraus’
Theorem imposes structure on V(t). First, we decompose the Wαβ in the Fi

basis, that is

Wαβ(t) =
N2∑

i=1

(Fi,Wαβ(t))Fi (3.165)

where we used the scalar product defined in Eq. (3.155). It follows that the
dynamical map writes

V(t)ρ̂(0)S =
N2∑

i,j=1

cij(t)Fiρ̂
(0)
S F †

j (3.166)

with

cij(t) ≡
∑

αβ

(Fi,Wαβ(t)) (Fj,Wαβ(t))
∗ . (3.167)

The scalar product structure ensures that the matrix cij is Hermitian and
positive [188]. The crucial point is that the semi-group property

V(t1)V(t2) = V(t1 + t2) (3.168)

implies the existence of a dynamical generator LS such that

V(t) = exp (LS t) (3.169)

and the reduced density matrix obeys a first-order differential equation of the
form

dρ̂red
dt

= LS ρ̂red(t). (3.170)

We can then construct the dynamical generator LS by differentiating the
dynamical map obtained in Eq. (3.166), that is

LS ρ̂
(0)
S = lim

ε→0

1

ε

[
V(ε)ρ̂(0)S − ρ̂

(0)
S

]
(3.171)

=
aN2N2

N
ρ̂
(0)
S +

1√
N

N2−1∑

i=1

[
aiN2Fiρ̂

(0)
S + a∗iN2 ρ̂

(0)
S F †

i

]
+

N2−1∑

i,j=1

aijFiρ̂
(0)
S F †

j

where we defined

aN2N2 = lim
ε→0

cN2N2(ε)−N

ε
(3.172)

aiN2 = lim
ε→0

ciN2(ε)

ε
(3.173)

aij = lim
ε→0

cij(ε)

ε
(3.174)
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for i, j = 1, · · · , N2 − 1. Upon defining the operators

F =
1√
N

N2−1∑

i=1

aiN2Fi (3.175)

and

G =
I
2N

aN2N2 +
1

2

(
F † + F

)
, (3.176)

we rewrite

LS ρ̂
(0)
S = −i

[
H, ρ̂

(0)
S

]
+
{
G, ρ̂

(0)
S

}
+

N2−1∑

i,j=1

aijFiρ̂
(0)
S F †

j (3.177)

where

H =
1

2i

(
F † − F

)
(3.178)

is a Hermitian operator. Since the semi-group is trace preserving, we must
have TrS [LS ρ̂

(0)
S ] = 0, which imposes

G = −1

2

N2−1∑

i,j=1

aijF
†
j Fi (3.179)

where we again used the cyclicity of the trace. We conclude from the semi-
group property that the dynamical generator acts on the reduced density ma-
trix at time t in the same way it acts on ρ̂

(0)
S , such that the RHS of Eq. (3.170)

writes

LS ρ̂red(t) = −i [H, ρ̂red(t)] +
N2−1∑

i,j=1

aij

(
Fiρ̂red(t)F

†
j − 1

2

{
F †
j Fi, ρ̂red(t)

})
.

(3.180)

The matrix formed by the coefficients aij is Hermitian and positive, a property
inherited from the structure of cij. It can then be diagonalized with the help
of an appropriate unitary transformation u,

uau† = diag
(
γ
(M)
1 , γ

(M)
2 , · · · , γ(M)

N2−1

)
(3.181)

where the eigenvalues γ
(M)
i are non-negative. Introducing a new set of opera-

tors Lk through

Fi =
N2−1∑

k=1

ukiLk, (3.182)
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we obtain the diagonal form of the generator

LS ρ̂red(t) = −i [H, ρ̂red(t)] +
N2−1∑

k=1

γ
(M)
k

(
Lkρ̂red(t)L

†
k −

1

2

{
L†
kLk, ρ̂red(t)

})
.

(3.183)

This equation, known as the Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) or Lindblad equation, is the most general form for the generator
of a quantum dynamical semi-group. We can easily recognise the first term
as the unitary evolution generated by the free and Lamb-shift Hamiltonians.
The Lk operators are the so-called jump or Lindblad operators. When the Lk

are chosen dimensionless, the γ
(M)
k have dimension of the inverse of a time.

When a connection with a microphysical derivation is possible, we observe
that these rates relate to correlation functions of the environment that are
specified by the memory kernel and play the role of relaxation rates for the
different decay modes of the open system [188].

To put it in a nutshell, Lindblad theorem implies that [273]

Lindblad theorem [273]:

Semi-group evolution ⇒ Semi-positive definiteness of the dissipator.

It follows that a Markovian master equation can always be written in the form

dρ̂red
dt

= −i
[
ĤS(t) + ĤLS(t), ρ̂red(t)

]

+
∑

ij

aij(t)

(
F̂iρ̂red(t)F̂

†
j − 1

2

{
F̂ †

j F̂i, ρ̂red(t)
})

. (3.184)

for some operators F̂i acting on HS where the dissipator aij is now a positive semi-
definite matrix. This entails the fact that it can be diagonalised by a unitary trans-
formation (due to the hermiticity implied by the positive semi-definiteness), and in
this basis Eq. (3.184) becomes

dρ̂red
dt

= −i
[
ĤS(t) + ĤLS(t), ρ̂red(t)

]

+
∑

k

γ
(M)
k

(
L̂kρ̂red(t)L̂

†
k −

1

2

{
L̂†

kL̂k, ρ̂red(t)
})

(3.185)

where L̂k are the so-called jump operators and γ
(M)
k are the positive eigenvalues of

the dissipator matrix (be careful not to confuse them with the eigenvalues λi of
the Liouvillian L which capture physical information about the decay rates [248]).
This equation is called a GKSL or Lindblad equation and is the most generic form
of a Markovian dynamical equation that preserves trace, Hermiticity and positivity
of the density matrix [273]. Lindblad equation plays a key role when studying
environmental effects in OQS. However, it physically relies on strong hypotheses
which may or may not be always satisfied.
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Markovian limit: How do we reconcile this bottom-up constructions of dynamical
maps obeying a semi-group evolution to the microphysical construction that lead
us to the TCL2 master equation obtained in Eq. (3.142)? We remind that we only
made use of the Born approximation to derive Eq. (3.142), that is the smallness
of the coupling between the system and the environment. We already mentioned
that despite being written in a time-local form, the TCL2 master equation does
not provide a generator for a Markovian dynamical map, that is a generator for a
dynamical map obeying the semi-group property (3.115). We now aim at illustrating
when this limit arises before discussing in details systematic inclusion of the non-
Markovian corrections.

Typical environments encountered in quantum optics and condensed matter con-
tain a large number of degrees of freedom, hence they behave as reservoirs in which
correlation functions quickly decay with |t − t′| [188]. More precisely, if the relax-
ation time of the environment τE is small compared to the typical time over which
the system evolves τS , one may coarse-grain the evolution of the system on scales
larger than the environment relaxation time τS ≫ τE . From the coarsed-grained
perspective, the memory kernel K>(t, t′) is then sharply peaked and falls off to zero
in timescales much shorter than the time it needs for the Green’s matrix of the
system G(S)(t′, t) to significantly evolve. In this limit, one can always approximate
G(S)(t′, t) → G(S)(t, t) = I when convolved with the memory kernel K>(t, t′), the
equal-time limit of the Green’s matrix of the system being constrained to be the
identity by Eq. (3.139). This manipulation has drastic consequences which are of-
ten summarized by saying that the past history (t′ < t) of the system is not anymore
involved in the dynamics, which therefore becomes Markovian.

Let us show how it arises in the simplest case where the system and its environ-
ment couple through

Ĥint = ζ̂ ⊗ F̂ that is V (t) =

(
1 0
0 0

)
. (3.186)

In this case, the Lamb-shift Hamiltonian in Eq. (3.142) takes the form

ĤLS(t) =
1

2

[
∆11(t)ζ̂

2 +∆12(t){ζ̂ , p̂ζ}
]

(3.187)

and the dissipator matrix defined in Eq. (3.145) writes

γij(t) =

(
D11(t) D12(t)− i∆12(t)

D12(t) + i∆12(t) 0

)
. (3.188)

The four real master equation coefficients are defined through two complex quantities

D11(t) + i∆11(t) = 2g2
∫ t

t0

dt′K>(t, t′)G(S)
11 (t′, t) (3.189)

D12(t) + i∆12(t) = g2
∫ t

t0

dt′K>(t, t′)G(S)
12 (t′, t), (3.190)

where here again, we recognize the fact that the dissipation coefficientsD are related
to the real part of the memory kernel via

K>(t, t′) ≡ TrE
[
F̂(t)F̂(t′)ρ̂(0)E

]
=
〈
F̂(t)F̂(t′)

〉
0
, (3.191)
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while the fluctuation coefficients ∆ are related to the imaginary part. We remind
that the quantities G

(S)
11 (t′, t) and G

(S)
12 (t′, t) are respectively the first and second en-

tries of the Green’s matrix of the system which are real quantities.10 The eigenvalues
of the dissipator are

γ±(t) =
D11(t)

2

[
1±

√
1 +

4 [D2
12(t) +∆2

12(t)]

D2
11(t)

]
(3.194)

where it clearly appears that γ−(t) ≤ 0. It implies that under its current form,
the TCL2 master equation (3.142) violates Lindblad theorem, as expected from its
ability to describe non-Markovian dynamics. Indeed, let us stress the fact that
non-Markovian dissipators contain negative eigenvalues which do not necessarily
compromise the physicality of the dynamical map (see [260, 277, 278] for a discus-
sion of CPTP non-Markovian master equations). If the dynamical map generated
by Eq. (3.142) were Markovian, then according to Lindblad theorem [273] a neg-
ative eigenvalue would imply a CPTP violation. However, Eq. (3.142) belongs to
the class of so-called “Gaussian master equations”, which were shown to be CPTP
in [258–260]. The contrapositive of Lindblad’s theorem imposes the TCL2 master
equation to be non-Markovian. In this sense, negative eigenvalues are ubiquitous in
non-Markovian OQS. They encode the reversibility of the dynamics through mem-
ory effects [279] and vanish in the Markovian limit where the dynamics become
irreversible, as we show below. In this sense, they are tracers of information back-
flow and do not jeopardise the dynamics of the system if non-Markovian effects are
carefully accounted for [277]. They only become an issue when they subsist despite
the Markovian limit being taken, as they capture an inconsistency in the way the
coarse-graining procedure has been performed and so the CPTP violation expected
from Lindblad theorem [273].

When the Green’s matrix elements G
(S)
11 (t′, t) and G

(S)
12 (t′, t) vary slowly com-

pared to K>(t, t′), we can pull them out of the integrals defined in Eqs. (3.189) and
(3.190). In this limit

D
(0)
11 (t) + i∆

(0)
11 (t) =

[
2g2
∫ t

t0

dt′K>(t, t′)

]
G

(S)
11 (t, t) (3.195)

= 2g2
∫ t

t0

dt′K>(t, t′) (3.196)

D
(0)
12 (t) + i∆

(0)
12 (t) =

[
g2
∫ t

t0

dt′K>(t, t′)

]
G

(S)
12 (t, t) (3.197)

= 0, (3.198)

where we used the coincident limit of the system Green’s matrix. We obtain the
Markovian master equation (see Eq. (3.30) of [244] for the rewriting of the master

10For concreteness, when the mode functions of the system are known, we have [244]

G
(S)
11 (t′, t) = −2ℑm

[
pζ(t)v

∗
ζ (t

′)
]

(3.192)

G
(S)
12 (t′, t) = 2ℑm

[
vζ(t)v

∗
ζ (t

′)
]

(3.193)
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equation in this form)

dρ̂red
dt

= −i

[
ĤS(t) +

∆
(0)
11 (t)

2
ζ̂2, ρ̂red(t)

]
− D

(0)
11 (t)

2

[
ζ̂ ,
[
ζ̂ , ρ̂red(t)

]]
, (3.199)

only the positive value of the dissipator remains γ
(0)
+ (t) = D

(0)
11 (t) while the negative

eigenvalue vanishes in this limit γ
(0)
− (t) = 0. Under this form, Eq. (3.199) do not

exhibit anymore signs of apparent non-Markovianity such as negative eigenvalue and
might be a good candidate for a time-dependent Lindblad equation obeying a semi-
group evolution. Note that sometimes, other layers of approximation such as the
rotating-wave approximation must be performed in order to reach the Markovian
limit [188]. Since the evolution of the system is coarse-grained over time scales
larger than those describing the dynamics of the environment, this approximation
consists in removing the quickly oscillating terms appearing in the master equation,
for consistency. The implementation of this approach is however challenging in
cosmology, where the dynamical background prevents the existence of a natural
frequency basis [268].

Non-Markovian corrections: In general, non-Markovian corrections are sup-
pressed when the memory kernel is sharply peaked, which depends on the scram-
bling properties of the environment. If the environment dissipates information in a
timescale τE much smaller than the typical system evolution τS , then it is not able
to keep track of the past interactions with the system and the non-Markovian effects
are suppressed in powers of τE/τS [188]. In this case, the environment looks the same
every-time the system interacts with it, which explains why the semi-group prop-
erty (3.115) holds. Our goal is now to make transparent the systematic inclusion
of non-Markovian corrections. In particular, it will allow us to assess the regime of
validity of the Markovian approximation derived in Eq. (3.199).

Starting from Eq. (3.189) and (3.190), we Taylor expand the coefficients

D11(t) + i∆11(t) = 2g2
∫ t

t0

dt′K>(t, t′)
∞∑

s=0

(t′ − t)s

s!
∂
(s)
t′ G

(S)
11 (t′, t)

∣∣∣
t′→t

(3.200)

D12(t) + i∆12(t) = g2
∫ t

t0

dt′K>(t, t′)
∞∑

s=0

(t′ − t)s

s!
∂
(s)
t′ G

(S)
11 (t′, t)

∣∣∣
t′→t

. (3.201)

If we consider that the system mode functions are known and obey a classical equa-
tion of motion of the form

d2vζ
dt2

+ ω2(t)vζ = 0 (3.202)

and pζ = ∂tvζ for a time dependent frequency ω2(t),11 then the Green’s matrix
entries are specified by Eqs. (3.192) and (3.193) and it follows that

∂
(2s)
t′ G

(S)
11 (t′, t)

∣∣∣
t′→t

= −i(−1)sω2s(t) (3.203)

∂
(2s+1)
t′ G

(S)
12 (t′, t)

∣∣∣
t′→t

= −i(−1)sω2s+1(t) (3.204)

11Following [121], one can always recast the single-field dynamics under this form called the
invariant representation.
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and ∂
(2s+1)
t′ GS

11,k(t
′, t)
∣∣∣
t′→t

= ∂
(2s)
t′ GS

12,k(t
′, t)
∣∣∣
t′→t

= 0 for all s. The non Markovian

coefficients are organised in powers of (t′ − t)s and reads

D
(2s)
11 (t) + i∆

(2s)
11 (t) ≡ (−1)s2g2

∫ t

t0

dt′K>(t, t′)
(t′ − t)2s

(2s)!
ω2s(t) (3.205)

D
(2s+1)
12 (t) + i∆

(2s+1)
12 (t) ≡ (−1)s

g2

ω(t)

∫ t

t0

dt′K>(t, t′)
(t′ − t)2s+1

(2s+ 1)!
ω2s+1(t). (3.206)

By injecting the expressions obtained in Eqs. (3.205) and (3.206) computed at a
given order in (t′ − t) into Eqs. (3.187) and (3.188), we obtain a systematic non-
Markovian expansions of the master equation coefficients.

This expansion has been proposed in [228] as a way to control the regime of
validity of the Markovian limit (3.199). Indeed, at lowest order s = 0, we recover
Eq. (3.199) as already shown. The first order non-Markovian correction obtained
for s = 1 reads

dρ̂
(1)
red

dt
=

dρ̂
(0)
red

dt
− i

[
1

2
∆

(1)
12 (t){ζ̂ , p̂ζ}, ρ̂red(t)

]
(3.207)

−1

2

(
D

(1)
12 (t)

[
ζ̂ , [p̂ζ , ρ̂red(t)]

]
+D

(1)
12 (t)

[
p̂ζ ,
[
ζ̂ , ρ̂red(t)

]])

− i

2

(
∆

(1)
12 (t)

[
ζ̂ , {p̂ζ , ρ̂red(t)}

]
−∆

(1)
12 (t)

[
p̂ζ ,
{
ζ̂ , ρ̂red(t)

}])

where we labelled the master equations in terms of the order of (t − t′)s consid-

ered, dρ̂
(0)
red/dt corresponding to the Markovian limit (3.199). In [228], the authors

proposed to control the validity of the Markovian limit by schematically checking
that

∣∣∣∣∣
dρ̂

(n)
red

dt

∣∣∣∣∣≪
∣∣∣∣∣
dρ̂

(n−1)
red

dt

∣∣∣∣∣ . (3.208)

for all integers n. In practice, at lowest order, it amounts to control that

D
(1)
12 (t) + i∆

(1)
12 (t) ≪ D

(0)
11 (t) + i∆

(0)
11 (t) (3.209)

in the regime of interest. Let us also mention that it is probably worth checking the
validity of the Markovian hierarchy at second order by explicitly controlling that

D
(2)
11 (t) + i∆

(2)
11 (t) ≪ D

(0)
11 (t) + i∆

(0)
11 (t) (3.210)

as in the context of time-dependent frequencies, it is easy to find settings in which
D

(1)
12 (t)+ i∆

(1)
12 (t) ≪ D

(0)
11 (t)+ i∆

(0)
11 (t) but D

(2)
11 (t)+ i∆

(2)
11 (t) ∼ D

(0)
11 (t)+ i∆

(0)
11 (t).

12

Once the Markovian hierarchy is established, one can in principle reach a desired
precision by including higher and higher order non-Markovian corrections to the
Markovian limit of Eq. (3.199). Note that in practice, this program has not yet

12Indeed, in the context of cosmology, t is replaced by the conformal time η ∝ a−1 during
inflation. It follows that

D
(1)
12 (η) + i∆

(1)
12 (η) = −g2

∫ η

η0

dη′K>(η, η′) (η′ − η) (3.211)
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been established in cosmology and it is still an open question to understand how to
properly reach the Markovian limit and how to make sense of the non-Markovian
corrections [154,228,244,268].

Finally, let us inject the non-Markovian expansion in the expression of dissipator
eigenvalue given in Eq. (3.194) and compare the Markovian (3.199) and first non-
Markovian correction (3.207) to the full TCL2 result (3.142). In the Markovian

limit, we already obtained γ
(0)
− (t) = 0 and γ

(0)
+ (t) = D

(0)
11 (t), hence the dissipator

turns out to be positive semi-definite. If we assume that the Markovian hierarchy
(3.209) holds, it follows that

γ
(1)
− (t) ≃ −

[
D

(1)
12 (t)

]2
+
[
∆

(1)
12 (t)

]2

D
(0)
11 (t)

< 0 (3.214)

γ
(1)
+ (t) ≃ D

(0)
11 (t) +

[
D

(1)
12 (t)

]2
+
[
∆

(1)
12 (t)

]2

D
(0)
11 (t)

> 0. (3.215)

Hence, the inclusion of non-Markovian corrections gradually makes emerge a nega-
tive eigenvalue capturing the essence of the non-Markovian dynamics. The inclusion
of the full tower of non-Markovian corrections should finally add up to generate
Eq. (3.194).

3.3.3 Connecting with observables

Once a master equation is established, we can use this dynamical equation for the
quantum state of the system to derive dynamical equations for the observables of
interest, also known as transport equations [280–284]. In practice, in order to access
this quantity, we start from the expression of the correlator in the Schrödinger
picture13

〈
Ô(t)

〉
= TrS

[
Ôρ̂red(t)

]
(3.217)

which we differentiate with respect to time to obtain

d

dt

〈
Ô(t)

〉
= TrS

{
ÔLS [ρ̂red(t)]

}
. (3.218)

is a priori a−1 suppressed with respect to

D
(0)
11 (η) + i∆

(0)
11 (η) = 2g2

∫ η

η0

dη′K>(η, η′) (3.212)

while

D
(2)
11 (η) + i∆

(2)
11 (η) = g2ω2(η)

∫ η

η0

dη′K>(η, η′) (η′ − η)
2

(3.213)

is not from the fact that ω2(η) ∝ a2 in general.
13Formally, this procedure is known as the determination of the adjoint master equation charac-

terised by the adjoint generator L†
S , such as if the quantum state evolves according to Eq. (3.50),

then the expectation value of a given operator Ô(t) evolves in the Heisenberg picture as

d

dt

〈
Ô(t)

〉
=
〈
L†
S

[
Ô(t)

]〉
. (3.216)
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Injecting the derived master equation, e.g. Eq. (3.142), we obtain

d

dt

〈
Ô(t)

〉
=

i

2
[H0(t) +∆(t)]ij

〈[
ẑζ,iẑζ,j, Ô

]〉

+γij

[
1

2

〈[
ẑζ,j, Ô

]
ẑζ,i

〉
+

1

2

〈
ẑζ,j

[
Ô, ẑζ,i

]〉]
, (3.219)

that is a set of first order coupled differential equations for the observables of the
system, where the parameters ∆ and γij were defined in Eqs. (3.143) and (3.145).
Applying this procedure to the covariance matrix

Σ(t) =
1

2
TrS

[{
ẑζ , ẑ

T
ζ

}
ρ̂red(t)

]
, (3.220)

the TCL2 non-Markovian Gaussian master equation (3.142) leads to closed transport
equations

dΣ

dt
= ω (H0 +∆)Σ−Σ (H0 +∆)ω − ωDω + 2∆−Σ , (3.221)

where D and ∆− were introduced in Eqs. (3.146) and (3.147) respectively and we
made use of the canonical commutation relations [ẑζ,l, ẑζ,a] = iωla leading to

[
ẑζ,l,

1

2
{ẑζ,a, ẑζ,b}

]
= iωlaẑζ,b + (a ↔ b) . (3.222)

The first two terms in Eq. (3.221) correspond to the unitary evolution, which as
stressed above receives an additional contribution from the Lamb-shift Hamilto-
nian. The last two terms respectively correspond to the diffusion (a source term
proportional to D) and the dissipation (a damping term proportional to ∆−).

Solving the transport equations directly allows us to access the observable quan-
tities such as the curvature perturbation power spectrum (2.58), which would cor-

respond in this example to the first entry of the covariance matrix Σ11 = ⟨ζ̂2⟩.
Let us stress that, as already discussed, the perturbative limit of Eq. (3.221) is
nothing but the result one would obtain from applying the second order Schwinger-
Keldysh/CTP/in-in formalism on the full theory, as we explicitly demonstrated
in [244]. This limit is simply obtained by noticing that ∆, D and ∆− are already
of order O(g2), such that anytime Σ multiplies these quantities, one must take the
zeroth order (unperturbed) expression of the covariance matrix of the system.

Beyond the Gaussian case, non-linearities prevent the set of coupled differential
equations to close. This problem is not specific to the OQS procedure and relates
to the non-integrability of general non-linear systems in the absence of symmetries.
Schematically, the dynamical equation of a n-point function requires the knowledge
of the n+ 1-point functions,

d

dt

〈
ζ̂n
〉
= F

(
⟨ζ̂n⟩

)
+G

(
⟨ζ̂n+1⟩

)
, (3.223)

where F and G are functions which depend on the details of the dynamics, hence
we need the knowledge of the correlators at all order to fully specify the distribution
of the state. In order for the system of ordinary differential equations to close, one
must adopt an approximation scheme to truncate the series and express G

(
⟨ζ̂n+1⟩

)

in terms of lower order statistics. It has been shown in [281–283] that the Wick
contractions of higher point functions is strictly equivalent to the perturbative result
obtained using the Schwinger-Keldysh/CTP/in-in formalism.
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3.3.4 Assessing quantum decoherence

Not only OQS techniques allow us to access the observables of the system but also
to characterise its quantum information properties such as the purity of the state,
the amount of entanglement with its environment or the appearance of a pointer
basis [191,192].

Entanglement measures: We first need to construct tracers of decoherence. The
physical reason behind the loss of coherence of a quantum system is the delocalisation
of correlations initially contained within the system into its surrounding environment
[193]. A way to assess this leakage consists in measuring the evolution of the amount
of information shared between the system and its environment. One can for instance
compute the entropy of entanglement Sent , that is the von-Neumann entropy of the
system once the environment have been traced over. It is defined as

Sent ≡ −TrS (ρ̂red ln ρ̂red) (3.224)

and is often challenging to evaluate because of the logarithm.
The purity γ provides a simpler measure of the level of mixedness of a quantum

state, being defined as

γ = TrS
(
ρ̂2red
)

(3.225)

An associated entropy measure is defined by linear entropy as SL ≡ 1 − γ which
varies from 0 (pure) to 1 (maximally mixed). In the case of a Gaussian state where
the system is made of a single dynamical degree of freedom (for instance the curva-
ture perturbation ζ), specifying the purity is enough to fully characterise the other
quantumness measures [122,250].14 In particular, the entanglement entropy is given
by

Sent =
1− γ

2γ
ln

(
1 + γ

1− γ

)
− ln

(
2γ

1 + γ

)
. (3.226)

In this case, the entropy of entanglement is a monotonically increasing function of
the linear entropy so that Sent and SL yields the same characterization of mixedness.

If the system remains Gaussian but now contains several dynamical degrees of
freedom, the previous relation does not hold and there is no one-to-one relation
between the linear and von Neumann entropy [250]. The von Neumann entropy
then provides a finer characterisation of the mixedness in the case of multi-mode
Gaussian states, is concave and additive and relates to the mutual information, a
measure of the total amount of correlations contained in a state we used in Eq. (3.26).
One can connect linear and von Neumann entropies throught the use of the Tsallis
entropy

Sq ≡
1

q − 1
Tr (ρ̂red − ρ̂qred) (3.227)

as limq→1 Sq = Sent and S2 = SL. Being constructed out of the symplectic eigenvalues
of the system, these entropy measures are basis independent and invariant under

14The reason is that in this case, there is only one symplectic eigenvalue proportional to the
purity γ. All the other quantumness measures are constructed out of this quantity which is the
only invariant under field reparametrisation one can construct out of the observables.
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reparametrisation of the system. Note that despite being desirable features in many
situations, it also makes this formalism sometimes insufficient to describe processes
such as the einselection of a pointer basis [191,192]. Future works may be dedicated
to the investigation of alternative entanglement tracers providing good trade-off
between computability and precision, such as the overlap [285] or the quantum
Fisher information [286,287].

Gaussian states: Once a master equation is specified, it generates a dynamical
evolution for the quantities introduced above. In general, even combined with the
transport equations for the observables, it does not provide a close system of equa-
tions and one needs to rely on further assumptions in order to reach some results.
Yet, in the Gaussian case, it turns out that there exists a simple relation between the
purity γ and the observables of the system that are fully specify by the covariance
matrix Σ defined in Eq. (3.220), that is [244,250,251]

γ(t) =
1

4 detΣ
. (3.228)

Moreover, when the system consists in a single dynamical degree of freedom, this
quantity fully characterise the other entanglement measures as explained above.
Hence, the problem of accessing the quantum information properties of the sys-
tem reduces to the one of solving the transport equations. One can then assess
decoherence by keeping track of the transition of the purity from 1 to 0.

To render Eq. (3.228) transparent, it can be instructive to show how the two-
point functions of the system appear in the construction of the quantum state.
In [228], it has been shown that the matrix element of a Gaussian state in the
position basis,

⟨ζ1| ρ̂red(t) |ζ2⟩ =
√

ℜe (a)− b

π
exp

(
−a

2
ζ21 −

a∗

2
ζ22 + bζ1ζ2

)
, (3.229)

is related to the power spectra through

ℜe (a) = 1

Σ11

(
detΣ+

1

4

)
, ℑm [a] = −Σ12

Σ11

(3.230)

b =
1

Σ11

(
detΣ− 1

4

)
. (3.231)

If the state is pure state such that ρ̂red(t) = |Ψ(η)⟩ ⟨Ψ(η)|, the purity of the state
imposes detΣ = 1/4, that is b = 0, ℜe (a) = 1/(2Σ11) and ℑm [a] = −Σ12/Σ11. We
deduce from Eq. (3.229) that the wavefunction reads

Ψ [ζ] =

√
1

2πΣ11

exp

[
−1

2

(
1

2Σ11

− i
Σ12

Σ11

)
ζ2
]
. (3.232)

From this formula, we notice that the real part is related to Σ11 while the imaginary
part allows us to access the two other spectra, making use of the purity relation
detΣ = 1/4. Now, when γk ≪ 1, detΣ ≫ 1/4, the state becomes maximally mixed
such that b ≃ ℜe (a). Injecting this relation into Eq. (3.229) leads to

⟨ζ1| ρ̂red(t) |ζ2⟩ ∝ exp

[
−ℜe (a)

2
(ζ1 − ζ2)

2

]
(3.233)
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which illustrates the diagonalisation of the density matrix under the action of quan-
tum decoherence.

Let us finally investigate the dynamics induced on γ by the master equations
found above. Starting from the TCL2 non-Markovian master equation Eq. (3.142),
we obtained the transport equations Eq. (3.221), from which one can deduce that

d detΣ

dt
= Tr (ΣD)− 4∆− detΣ. (3.234)

Solving Eqs. (3.221) and (3.234) allows us to fully access the observables and the
quantum information properties of the Gaussian system. One can further manipu-
late this expression in order to reach the Markovian limit using Eq. (3.199), leading
to

d detΣ(0)

dt
= D

(0)
11 Σ11 (3.235)

or a given order in the non-Markovian corrections such as Eq. (3.207).

Perturbative purity: Beyond the Gaussian case, non-linearities render difficult
to evaluate the purity if not in the perturbative regime. In this limit, the usefulness
of the master equation reduces to its ability to organise the computation in a clear
manner. Let us consider the purity γ ≡ TrS (ρ̂2red) in the perturbative framework
where the reduced density matrix contains a tower of contributions

ρ̂red =
∞∑

i=0

ρ̂
(i)
red (3.236)

where ρ̂
(0)
red ≡ ρ̂

(0)
S , the initial state of the system in the Heisenberg picture. The mas-

ter equation provides a way to access the ith order correction to the reduced density
matrix of the system, as discussed along Eq. (3.128). We now aim at expressing
the purity γ in terms of observables that are the (unequal-time) correlators of the
system and the environment.

From Eq. (3.236), we obtain

γ = 1 + 2
∞∑

i=1

TrS
[
ρ̂
(i)
redρ̂

(0)
S

]
+

∞∑

i,j=1

TrS
[
ρ̂
(i)
redρ̂

(j)
red

]
. (3.237)

If we focus on the first non-trivial term, we observe that it amounts to evaluate the
free expectation value of the ith order correction to the reduced density matrix of
the system. For instance, at second order in the coupling constant g, we found in
Eq. (3.135) that

ρ̂
(2)
red(tf ) = −g2

∫ tf

t0

dt

∫ t

t0

dt′TrE
[
Ĥint(t),

[
Ĥint(t

′), ρ̂(0)S ⊗ ρ̂
(0)
E

]]
(3.238)
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such that for the interaction Hamiltonian Ĥint(t) =
∫
d3xĴS(t,x)⊗ ĴE(t,x)

ρ̂
(2)
red(tf ) = −g2

∫ tf

t0

dt

∫ t

t0

dt′
∫

d3x

∫
d3y (3.239)

{[
ĴS(x)ĴS(y)ρ̂

(0)
S − ĴS(y)ρ̂

(0)
S ĴS(x)

]
K>(x, y)

−
[
ĴS(x)ρ̂

(0)
S ĴS(y)− ρ̂

(0)
S ĴS(y)ĴS(x)

]
[K>(x, y)]

∗
}
. (3.240)

We now use this perturbative expansion to compute the second order correction to
the purity

γ(tf ) ⊃ 1 + 2TrS
[
ρ̂
(2)
red(tf )ρ̂

(0)
S

]
(3.241)

where we again assumed that TrE [H̃int(t)ρ̃(t)] = 0, such that there is no first order

correction, ρ̂
(1)
red(tf ) = 0. Injecting the above expressions into this equation, we obtain

γ(tf ) = 1− 4g2
∫ tf

t0

dt

∫ t

t0

dt′
∫

d3x

∫
d3yℜe [K>

S (x, y)K>
E (x, y)] (3.242)

where we defined K>
E (x, y) ≡ K>(x, y) the memory kernel of the environment and

K>
S (x, y) ≡ TrS

[
ĴS(x)ĴS(y)ρ̂

(0)
S

]
− TrS

[
ĴS(x)ρ̂

(0)
S

]
TrS

[
ĴS(y)ρ̂

(0)
S

]
(3.243)

the Wightman function of the system. Under this form, the symmetry of the purity
under the exchange of the system and environment definition S ↔ E is manifest,
which is deeply reinsuring. Indeed, the purity being directly related to the linear
entropy which characterises the amount of information shared between the system
and the environment, it has to be a symmetric quantity. It also appears that the
purity can be expressed in terms of two unequal time correlators, one which encodes
the information for the system and one for the environment.

Hence, in the perturbative limit, it might be possible to access the purity in a
simple manner and it is an ongoing effort to apply this approach in the context of
cosmology. It may also provide a way to extract timescales associated with purity
variations as, in that case, if one considers small time variations, one can Taylor
expand the expression of the perturbative purity such as

γ(t0 +∆t) ≃ γ(t0) + ∆t
dγ(tf )

dtf

∣∣∣∣
tf→t0

+
∆t2

2

d2γ(tf )

dt2f

∣∣∣∣∣
tf→t0

+ · · · (3.244)

Then γ(t0) = 1 and

dγ(tf )

dtf
= −4g2

∫ tf

t0

dt′
∫

d3x

∫
d3yℜe [K>

S (tf ,x; t
′,y)K>

E (tf ,x; t
′,y)] (3.245)

d2γ(tf )

dt2f
= −4g2

∫
d3x

∫
d3yK>

S (tf ,x; tf ,y)K>
E (tf ,x; tf ,y) (3.246)
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from which we deduce that the first order derivative in the expansion (3.244) van-
ishes, the time integral having no support when tf → t0, and we removed the real
part in the expression for second order derivative as equal time correlators are by
construction real. Hence,

γ(t0 +∆t) ≃ 1− Γ2∆t2 (3.247)

with the rate

Γ2 = 2g2
∫

d3x

∫
d3yK>

S (t0,x; t0,y)K>
E (t0,x; t0,y) (3.248)

It boils down to a product of equal-time correlators for the system and its environ-
ment. Note that for ĴS = ζ̂ and ĴS = F̂ , once transferred in Fourier space, these
quantities are nothing but the usual power spectra often computed in cosmology
such that, in the case of a homogeneous and isotropic background, the decay rate
for a given mode is given by the product of the free power spectra of the system and
its environment

Γ2
k(t0) = 2g2PS

k (t0)PE
k (t0). (3.249)

This setting might not correspond to any realistic situation in the context of cos-
mology, yet it illustrates how the investigation of the perturbative purity may allow
us to connect observables to quantum information properties.

Finally, the computation of the perturbative purity paves the road towards the
understanding of higher-order interactions and non-linear interactions in the system
and the environment. In Eq. (3.237), i + j counts the order of Ĥint insertions such
that if one wants to compute the purity at order O(gn), it must includes all the i, j
fulfilling i + j = n. Then, one can also treat the non-linearities in the system and
the environment perturbatively, by considering

ĤS = Ĥ
(0)
S +

∑

α

λ
(α)
S Ĥ

(α)
S (3.250)

ĤE = Ĥ
(0)
E +

∑

β

λ
(β)
E Ĥ

(β)
E (3.251)

where α and β sum over all the non-linear interactions of the system and the envi-
ronment. We obtain a triple expansion in g, λ

(α)
S and λ

(β)
E where the fundamental

quantities are unequal time correlators evaluated with respect to the initial states
ρ̂
(0)
S and ρ̂

(0)
E . Future work may aim at constructing a diagrammatic approach based

on this expansion (see [288] for a recent study along this line).

Decoherence functional: Beyond the purity and its associated entropy mea-
sures, there exist other manner to assess decoherence such as the so-called decoher-
ence functional [13, 188]. Following [188] analysis, let us consider the Markovian
master equation obtained in Eq. (3.199) and solely consider the non-unitary contri-
bution

dρ̂red
dt

⊃ −D
(0)
11 (t)

2

[
ζ̂ ,
[
ζ̂ , ρ̂red(t)

]]
. (3.252)
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If we further assume that the coefficient D
(0)
11 is time independent, the role of this

contribution clearly appears in the position basis where it generates a damping of
the off-diagonal elements of the density matrix

⟨ζ1| ρ̂red(t) |ζ2⟩ ∝ exp

[
−D

(0)
11

2
(ζ1 − ζ2)

2 t

]
⟨ζ1| ρ̂(0)S |ζ2⟩ . (3.253)

The decoherence functional is defined as

Γ(t) ≡ −D
(0)
11

2
∆2

ζt (3.254)

where ∆ζ the typical size of a fluctuation in the system. If we take it to be the free
power spectrum such that ∆2

ζ = Σ11, a decoherence timescale can be extracted out
of

τD ≡ 2

D
(0)
11 Σ11

. (3.255)

It straightforwardly relates to the evolution of the purity we found in Eq. (3.235).
This approach is developed in [188] and some elements in the context of cosmology
can be found in [223].

3.4 Developments

We close this Chapter with the presentation of two active research directions, the first
one concerning the development of non-perturbative resummation techniques using
the master equation formalism and the second one being related to the construction
of bottom-up Open EFTs based on the influence functional. These advanced topics
are less settled than the above results and constitute promising research avenues.

3.4.1 Towards non-perturbative resummations

One of the most fascinating aspects of master equations is certainly their ability
to go beyond the perturbative regime by implementing some form of resummation
in time. Indeed, we have seen around Eq. (3.135) that when solved as bona fide
generators of the dynamical map (i.e. when taken per se and solved without further
perturbative expansion), the NZn or TCLn master equations contain all terms of
order gn, and some terms of order gm>n. We now want to highlight where the
resummation appears in practice and what sort of effects can be resummed. For the
sake of clarity, let us focus on the TCL cumulant expansion.

Non-diagrammatic resummations: Let us first stress that the TCL resumma-
tion does not correspond to the resummation of a class of diagrams. In this sense,
it is more comparable to the Dynamical Renormalisation Group (DRG) resum-
mation [289–291] where diagrams are partially resummed.15 Let us illustrate this

15A complete comparison between the master equation and DRG results is still lacking, see [244]
Appendix E for a first comparison.
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feature in the case of a linear coupling between the system and its environment. In
this case, in the full theory, there is only one one-particle irreducible (1PI) diragram

while in the Open EFT generated by the master equation cumulant expansion, there
is an infinite tower of 1PI

TCL2︷ ︸︸ ︷
+

TCL4︷ ︸︸ ︷
+

TCL6︷ ︸︸ ︷
+ · · ·

one for each of the TCL cumulants. Moreover, the Open EFT also contains non-
unitary contributions originating from diffusion and dissipation which do not have
any diagrammatic representation. Hence, the question of knowing which diagram
has been resumed is ill-posed. This feature is shared with Wilsonian EFT and the
DRG.

Gaussian transport equations: For Gaussian systems, the resummation can
be easily implemented by deriving the effective transport equations of the form
Eq. (3.221) and solving then non-perturbatively. In order to illustrate this procedure,
let us derive the formal solution of Eq. (3.221). Let us first absorb the damping term
2∆−Σ by introducing

σ ≡ eΓ(t,t0)Σ with Γ(t, t0) ≡ −2

∫ t

t0

dt′∆−(t
′) , (3.256)

which is solution of a damping-free transport equation, namely

dσ

dt
= ω (H0 +∆)σ − σ (H0 +∆)ω − eΓ(t,t0)ωDω . (3.257)

This equation can be seen as a homogeneous part, describing the Lamb-shift cor-
rected unitary evolution, and a source term, describing diffusion. The homogeneous
part is generated by the Hamiltonian Ĥ0 + Ĥ(LS), and, by denoting gLS(t, t0) the
associated Green’s matrix, the solution of Eq. (3.257) expressed in terms of the
original covariance reads [244]

Σ(t) =e−Γ(t,t0)gLS(t, t0)Σ(t0)g
T
LS(t, t0)

−
∫ t

t0

dt′e−Γ(t,t′)gLS(t, t
′) [ωD(t′)ω] gT

LS(t, t
′). (3.258)

The resummation is manisfest in the expression of the damping term, as ∆− has
been derived at order O(g2) such that exp[−Γ(t, t0)] contains contributions of order
O(gn) with n > 2. gLS(t, t

′) also plays an important role in the resummation as
the effective unitary dynamics is solved in a way that can generate important non-
perturbative effects. For instance, we observed in Eq. (3.199) that the Markovian
limit of a linear coupling between the system and its environment generates an
effective mass for the system of the form ∆

(0)
11 ζ̂

2/2. The effective mode functions are
obtained by solving

d2vζ
dt2

+
[
ω2(t) +∆

(0)
11 (t)

]
vζ = 0. (3.259)
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For an illustrative purpose, let us assume that ω2 and ∆
(0)
11 are time indepen-

dent, such that we obtain solutions of the form exp[±i(ω2 + ∆
(0)
11 )

1/2t]. ∆
(0)
11 be-

ing of order O(g2), a perturbative treatment would truncate these contributions as

exp(±iωt)[1± i(∆
(0)
11 /2ω)t] which grows secularly. The resummation of these terms

requires contributions of orders O(gn) with n > 2 and dresses the frequency of
the system which consistently accounts for the interaction with the environment.
Hence, the master equation resummation can be understood as the procedure which
first identifies the terms relating to the Lamb shift and dissipation in the effective
dynamics generated by the master equation (that are the ones that depend on the
imaginary part of the memory kernel), then to capture the effects of these terms at
all order in perturbation theory.

Let us close this discussion with words of caution: while in [244], the non-
perturbative resummation performed by the TCL2 master equation dramatically
improves the results on the observables and the purity compared to standard per-
turbation theory, in [154], the resummation does not and rather generates a tiny
violation of positivity at late time, which signals a small breakdown of the effective
theory. The reason behind these different behaviours might be due to the pres-
ence of secular corrections correctly resummed by the master equation in the first
example while their absence in the second case aggregates unphysical corrections.
Yet, a deeper investigation of master equation resummations in Markovian and non-
Markovian cosmological settings seems necessary to provide a definitive answer on
this open question.

Spurious terms: The investigation of non-perturbative resummation in the con-
text of non-Markovian master equation lead us to unexpected complications. In
Ref. [244], it has been shown that some terms dubbed “spurious” appear in the
master-equation coefficients, that cancel out in the perturbative limit but ruin the
resummation otherwise. More precisely, the second-order master-equation coeffi-
cients are expressed as integrals between t0 and t, see Eqs. (3.143)-(3.146) and
(3.147) , i.e.

∆− = 2

∫ t

t0

dt′DIm
− (t, t′) = F∆− (t, t)− F∆− (t, t0) , (3.260)

where F∆−(t, ·) is the primitive of 2DIm
− (t, t′), which itself might depend on t, and

with similar notations for the other coefficients ∆ and D. The second term in
Eq. (3.260), the one that depends on the initial time t0, is the “spurious” one. Note
that in the Markovian limit, the damping of the memory kernel would prevent this
term to contribute. In the exact solution, there is no such initial-time dependent
term in the dynamical equations, and indeed one can show that it cancels out at
all orders in perturbation theory [244]. At leading order in the coupling constant
g, we have demonstrated in Eq. (3.135) that the master equation reduces to stan-
dard perturbation theory, hence again one can show that the spurious contribution
vanishes [244]. At higher order however, the master equation stops being equivalent
to standard perturbation theory, since it only performs resummation of the leading-
order interaction. The non-diagrammatic nature of the resummation explains why
the spurious term alters the result, as illustrated in Fig. 3.8. In some sense, the
resummation breaks order-by-order relations that hold in standard perturbation
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Figure 3.8: The appearance of spurious terms in non-Markovian settings might
jeopardize the non-perturbative resummation if not carefully taken into account
while remaining harmless in the perturbative limit. One can control that at any
order in perturbation theory, these η0 dependent terms cancel each other (here, t0
is replaced by η0). Hence, they do not affect the perturbative results [244]. Still,
they play a crucial role as if kept, they introduce a large error compared to the
exact results during the resummation [244]. Indeed, partial resummations such
as the one implemented by the master equation formalism break order-by-order
relations. TCLn contains all terms at order gn and some terms of order gm>n. Yet,
the cancellation requires all the η0-dependent terms at a given order. In order to
perform a meaningful resummation, one needs to impose the broken relation by
hand before resumming. Spurious terms can be identified without ambiguity by the
prescription of recovering the perturbative result at order gn.

theory. However, since we know that it should vanish at all orders, one can simply
remove it by hand, and thus restore the ability of the master equation to perform
efficient resummation [244]. This is equivalent to the procedure of reintroducing
by hand a symmetry that has been broken by a partial resummation scheme. One
may be worried that, from Eq. (3.260), the spurious terms are only defined up to an
additive constant. However, since they are known to vanish at all (and in particular
at leading) orders, they can be determined without ambiguity by comparison with
the perturbative theory. We concluded in [244] that master equations were able to
perform late-time resummation, even though the system is far from the Markovian
limit, provided spurious contributions are suppressed.

Beyond Gaussianity: The ability of master equations to perform late-time re-
summations beyond the Gaussian case is still an open question. A guideline might
be given by what has been learnt in the context of stochastic inflation where the
comparison between stochastic resummation and field-theoretic computations has
been pushed to exquisite levels [90,167,292–296]. Given the great level of similarity
existing between Fokker-Planck equations and master equations, it could provide
promising directions to investigate. In particular, we have seen in Eq. (3.154) that
the phase-space representation of the master equation can formally be expressed in
terms of a Fokker-Planck equation for the Wigner function of the system. By look-
ing at the equilibrium distribution towards which the generator of the dynamical
map drives the system, stochastic inflation provides a non-perturbative expression
for the probability distribution function for the system (a property often used in the
context of stochastic inflation, see e.g. A. Starobinsky’s seminal article [157]). Ap-
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plying this procedure to Eq. (3.154) under the assumption of stationary coefficients,
we obtain an equation for the equilibrium reduced Wigner function of the system
Weq,

{
H̃S + H̃LS,Weq

}
= ∆−

∑

i

∂

∂zζ,i

(zζ,iWeq) +
1

2

∑

i,j

[ωDω]ij
∂2Weq

∂zζ,i∂zζ,j

.

This form of equilibrium distribution has been investigated in the context of hot
accelerated qubits [236, 237, 262, 268] (see [22] for a review) but not in the context
of cosmological continuous-variable systems which are often time-dependent even
at late-time. Note that equilibrium distributions are insufficient to describe the
processes of decoherence and thermalization which require some knowledge of the
transient dynamics [22]. One of the most compelling characterisations of the gen-
erators of dynamical maps is given by the study of the Liouvillian spectrum [248]
which provides non-perturbative information on the decay rates towards equilibrium.
Unfortunately, little is known about the structure of the Liouvillian for continuous-
variable systems or for non-Markovian dynamics [248]. Hence, this research still
must be developed before being applied to the Open EFT context for the imple-
mentation of non-perturbative resummations in non-Gaussian settings. Given the
similarity of the formalism with the one used in stochastic inflation, improvements
might come from the importation of techniques used to find the Fokker-Planck spec-
trum even if similar difficulties are faced in this context.

3.4.2 Bottom-up constructions of Open EFTs

Let us close this Chapter with a brief discussion of an open research question around
the bottom-up construction of Open EFTs. In Chapter 1, we presented the bottom-
up EFT construction of perfect fluids and the difficulty of including viscosity and
dissipation in this framework. The inclusion of these effects would require an under-
standing of the role of symmetries in non-equilibrium frameworks, a topic that has
been partially investigated in [9]. In this article, the authors discussed the role of
time-translational symmetry breaking in the influence functional describing the non-
unitary evolution of a pseudo-Goldstone boson. In particular, it fixes constraints
on the noise and dissipation operators appearing in the influence functional. Far
from being a definitive answer to the bottom-up constructions of non-unitary dy-
namics, it rather provides a first concrete attempt we could use to further develop
model-agnostic understanding of dissipation and decoherence. We here summarize
the main arguments while referring to [9] for technical details.

Their main result is the following. There are two branches in the path integral
appearing in the Schwinger-Keldysh formalism. Hence, there are initially two time-
translational symmetries. The former is explicitly broken by dissipative effects while
the latter in not. The conserved charges/generators associated with the symmetries
are the original Hamiltonian and the Liouvillian (Fokker-Planck operator), respec-
tively. In order to be slightly more explicit, let us consider the influence functional
approach obtained in Sec. 3.2.3, for e.g. Eq. (3.85) that we reproduce here for clarity.

ρζζ′(t) =

∫
dζ1dζ2

∫ ζ

ζ1

D [ζ+]

∫ ζ′

ζ2

D [ζ−] e
iSζ [ζ+]−iSζ [ζ−]+iSIF[ζ+;ζ−] ⟨ζ1| ρ̂(0)S |ζ2⟩ .

(3.261)
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Figure 3.9: The ϵcl and ϵq transformations on the closed time path. The ϵcl trans-
formation translates the “ + ” and “ − ” variables in the same direction while ϵq
transformation does it in the opposite directions. While the ϵcl transformation is
preserved for open systems without explicit t-dependence (detailed balance), the ϵq
one is explicitly broken due to dissipative effects. Hence, the theory is not anymore
invariant under time-reversal symmetry. Note that the formalism can also accomo-
date non-stationary open systems where on the top of the ϵq transformation, the ϵcl
transformation also becomes spontaneously broken [9].

If the microscopic action Sζ [ζ±] is invariant under the doubled time-translations
labelled by ϵ±,

ζ+(t) → ζ ′+(t) = ζ+(t+ ϵ+), ζ−(t) → ζ ′−(t) = ζ−(t+ ϵ−), (3.262)

the effective action SIF [ζ+; ζ−] is not for general ϵ+ ̸= ϵ− due to the non-unitary
effects arising from integrating out the environmental degrees of freedom. More
precisely, the effective action remains invariant under the translation (see left panel
of Fig. 3.9)

ϵ+ = ϵ− = ϵcl (3.263)

while it is explicitly broken for the translation (see right panel of Fig. 3.9)

ϵ+ = −ϵ− =
ϵq
2
. (3.264)

In this way, the two time-translational symmetries of the microscopic action are
broken into a diagonal one ϵ+ = ϵ− corresponding to the detailed balance in the
presence of fluctuation and dissipation.

We now plan to understand the impact of the symmetry breaking at the level of
the non-unitary effective action obtained from the influence functional

Seff [ζ+; ζ−] = Sζ [ζ+]− Sζ [ζ−] + SIF [ζ+; ζ−] . (3.265)

Following [9], we work in the cl-q basis, that is defined as

ζcl ≡ ζ+ + ζ−
2

, (3.266)

ζq ≡ ζ+ − ζ− . (3.267)

It can be easily shown that in this basis, the normalisation of the reduced density
matrix and its self-adjointness translate into [255,297]

Seff [ζcl; ζq = 0] = 0 (3.268)

Seff [ζcl; ζq] = −Seff [ζcl;−ζq]
∗ . (3.269)
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Moreover, this second relation highlights that the effective action in general contains
an imaginary part. This is a basic feature of open systems for which, after integrating
out the environment, the effective dynamics contains fluctuation and dissipation in
general. As the effective action Seff weights the path integral, we may have divergent
behaviour if ℑm [Seff ] < 0. To avoid this situation, the authors of [9] impose the
positivity of the imaginary part of the effective action

ℑm {Seff [ζcl; ζq]} ≥ 0. (3.270)

These observations, together with the symmetry content of Fig. 3.9, will serve to
construct the most generic open dynamics in the semi-classical limit [9].

Effective Lagrangian for closed dynamics: It is useful to have in mind
the bottom-up construction of closed dynamics in the case of a scalar field
breaking time-translation symmetry

⟨ϕ(t,x)⟩ = ϕ̄(t) with ˙̄ϕ ̸= 0. (3.271)

The Nambu-Goldstone mode defined from [9]

ϕ(t,x) = ϕ̄[t+ π(t,x)] (3.272)

and transform under translations (t → t+ ϵ0,x → x+ ϵ) as

π(t,x) → π′(t,x) = π(t+ ϵ0,x+ ϵ) + ϵ0. (3.273)

In addition, under Lorentz transformations, π(t,x) transforms as

π(t,x) → π′(t,x) = π
(
Λ0

µx
µ,Λi

µx
µ
)
+ Λ0

µx
µ − t (3.274)

where we introduced Λµ
ν ∈ SO(1, 3). From the fundamental definition (3.272),

it appears that the effective action is constructed from t + π(t,x) and its
derivatives [2]. Indeed, one can easily show that these building blocks are
invariant under the transformations (3.273)-(3.274) upon an appropriate co-
ordinate transformation. It is convenient to introduce the quantity

Pµ = ∂µ(t+ π) = δ0µ + ∂µπ (3.275)

which is used as a basic building block in the construction of the effective
Lagrangian. In particular, the Lorentz invariant combination

PµP
µ = −1− 2π̇ + (∂µπ)

2 (3.276)

is ubiquitous.
As for the hydrodynamical EFTs presented in Chapter 1, the authors of [9]

considered a derivative expansion in which higher derivative terms with two
or more derivatives acting on π(x) are dropped. This is a standard procedure
to work out the long-wavelength IR regime [4, 8]. It follows that at leading
order in the derivative expansion the general action is given by [9]

Seff = −1

2

∫
d4x

[
α0(t+ π) + α1(t+ π)PµP

µ +
∑

n≥2

αn(t+ π) (PµP
µ + 1)n

]

(3.277)
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where the αn’s are arbitrary functions of t + π. Imposing the shift symme-
try/slow roll expansion would further constrain these coefficients to be time-
independent, αn(t+π) = αn for all n. At this point, the action contains terms
linear in π

Seff = −1

2

∫
d4x

{
α0(t)− α1(t) + [α̇0(t)− α̇1(t)]π − 2α1(t)π̇ +O(π2)

}
.

(3.278)

This tadpole contribution is absorbed by the background evolution, enforc-
ing α̇0(t) = −α̇1(t) [9]. Upon dropping total derivatives and choosing the
integration constant of α̇0(t) = −α̇1(t) such that α0(t) = α1(t), we obtain

Seff = −1

2

∫
d4x

{
α1(∂µπ)

2 +
∑

n≥2

αn

[
−2π̇ + (∂µπ)

2
]n
}

(3.279)

where we further enforced the shift-symmetry of π, rendering the Wilsonian
coefficients time-independent. The α1 coefficient characterises the symmetry
breaking scale α1 ∼ E4

SSB and note that −2π̇+(∂µπ)
2 is the combination that

is invariant under boosts and not (∂µπ)
2 itself. Only keeping the linear part of

the effective action, we find that the π field enjoys a massless linear dispersion
relation

ω2 = c2sk
2 with c2s ≡

α1

α1 − 4α2

. (3.280)

One immediately notices how this effective speed of sound is related to the
cubic operator π̇(∂µπ)

2 by the mean of α2.

Let us now construct the EFT for the Nambu-Goldstone modes in open systems.
We work in the double-path integral Schwinger-Keldysh formalism and construct the
effective action Seff [πcl; πq] in the cl-q basis. In this basis, the ϵcl-transformations
are (left panel of Fig. 3.9) [9]

πcl(t,x) → π′
cl(t,x) = πcl(t+ ϵ0cl,x+ ϵcl) + ϵ0cl (3.281)

πq(t,x) → π′
q(t,x) = πq(t+ ϵ0cl,x+ ϵcl), (3.282)

whereas the Λcl-transformations follow

πcl(t,x) → π′
cl(t,x) = πcl

(
Λ0

cl µx
µ,Λi

cl µx
µ
)
+ Λ0

cl µx
µ − t (3.283)

πq(t,x) → π′
q(t,x) = πq

(
Λ0

cl µx
µ,Λi

cl µx
µ
)
. (3.284)

The important point is that the πq field linearly transforms under the ϵcl and Λcl-
symmetries, just as ordinary matter.

It follows that the effective non-unitary Lagrangian can be constructed out of
πq, t+ πcl and their derivatives, just as we did for the closed case. A useful way to
organise the expansion, on the top of the derivative expansion, is to notice that

πcl = O(ℏ0), πq = O(ℏ) (3.285)
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and so their name. It is a known fact of the Schwinger-Keldysh formalism, see
e.g. [255], which allows us to organise the expansion in powers of ℏ,

Leff =
∞∑

n=1

Ln with Ln = O(πn
q ) = O(ℏn) (3.286)

where we used the unitarity condition (3.268) to notice that the Lagrangian starts
from the first order term in πq. The conjugate condition (3.269) also imposes strong
constraints on even and odd orders of the expansion. In particular, it will appear
shortly that L1 contains the dissipation term and L2 the noise term of Brownian
motion. Hence, the second order truncation O(ℏ2) matches the semi-classical limit
obtained through the MSR formalism [9].

Dissipation: Let us illustrate the procedure by first considering the leading order
of L1

LLO
1 = γ0(t+ πcl)πq + γ1(t+ πcl) (PµP

µ + 1) πq − α1(t+ πcl)P
µ∂µπq (3.287)

where we introduced Pµ = ∂µ(t+πcl) = δ0µ+∂µπcl. The EFT coefficients γ0, γ1 and
α1 are functions of t+ πcl which have to be real because of the conjugate condition
(3.269). Just as above, we remove the linear contributions by fixing the background
dynamics. Indeed, the Lagrangian contains terms linear in π that are

LLO
1 = γ0(t)πq + α1(t)π̇q +O(π2), (3.288)

so we impose the background equation of motion to require γ0(t) = α̇1(t). The
Lagrangian thus reduces to

LLO
1 = γ1

[
−2π̇cl + (∂µπcl)

2] πq − α1∂
µπcl∂µπq. (3.289)

in the slow-roll regime where we assumed time-independence for the EFT coeffi-
cients.16 The α1 term is the usual kinetic term written in the cl-q basis. On the
other hand, the γ1 term leads to a dissipative/damping term in the πcl equation of
motion. Interestingly, the dissipation term π̇clπq is accompanied by a cubic interac-
tion (∂µπcl)

2 πq, as first noted in [298], such that the combination is invariant under
Lorentz boosts.

We now have to include higher-derivative of πcl which leads to

L1 = LLO
1 +

∞∑

n=2

γn
[
−2π̇cl + (∂µπcl)

2]n πq

−
∞∑

n=2

αn

[
−2π̇cl + (∂µπcl)

2]n−1
(−π̇q + ∂µπcl∂µπq) , (3.290)

which does not contain any term linear in π, so that the background equation of
motion is unchanged. Note that only α1, α2 and γ1 provide quadratic terms in π,
relevant for the dispersion relation of the Goldstone mode.

16This assumption can be relaxed, see [9] for details.
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Diffusion: Finally, the last ingredient generating quadratic terms is L2 (as Ln for
n > 2 at least contains πn>2

q ). Just as above, working with operators containing at
most one derivative, in the slow-roll limit, we obtain

L2 ⊃ i
[
β1π

2
q + β2 (∂µπq)

2 + β3 (−π̇q + ∂µπcl∂µπq) πq + β4 (−π̇q + ∂µπcl∂µπq)
2
]
.

(3.291)

The i in front directly follows from the conjugate condition (3.269). While the term
proportional to β1 is the standard noise term, we observe the presence of higher-
order corrections such as (∂µπq)

2 and π̇2
q in the β2 and β4 terms which make the

noise scale-dependent. Finally, as above, general operators in L2 can be obtained
by multiplying arbitrary powers of (P µPµ + 1) = −2π̇cl + (∂µπcl)

2 with one of the
four operators constructed above.

There exists a positivity condition on the β’s coefficients due to Eq. (3.270) which
imposes ℑm [Seff ] > 0. Making use of the derivative expansion which tells us that
ω2, k2 ≪ |β1/β2,4| (the quadratic term in β3 can be written as a total derivative and
removed), we conclude that β1 dominates in L2, such that the positivity constraints
imposes [9]

β1 > 0. (3.292)

This positivity constraint on the noise kernel directly translates into consequences for
the non-Gaussian signal if we multiply this operator by higher powers of (P µPµ+1) =
−2π̇cl + (∂µπcl)

2.

Unitary limit: Because of the symmetry structure of the theory, retrieving the
unitary limit is a rather straightforward task. First, being purely imaginary, it is
clear that L2 describes the statistical noise, a property specific to open systems.
Then, in order to identify which part of L1 relates to the unitary evolution, one can
use the fact that in the absence of dissipation, the dynamics must be symmetric
under ϵcl but also ϵq. Because of the fact that along the two ± branches of the path
integral [9]

π±(t,x) → π′
±(t,x) = π±(t+ ϵ0±,x+ ϵ±) + ϵ0± (3.293)

and that the ϵq symmetry is given by ϵ0+ = −ϵ0− = ϵq/2 (see right panel of Fig. 3.9),
we have

πcl(t,x) → π′
cl(t,x) = πcl(t,x) +O(ℏ2) (3.294)

πq(t,x) → π′
q(t,x) = πq(t,x) + π̇q(t,x)ϵq + ϵq +O(ℏ3), (3.295)

where we used the fact that ϵq = O(ℏ). If we then consider the transformation of
L1 under ϵq, we first notice the following transformation property

δϵq (P
µ∂µπq) = ϵqP

µ∂µ (π̇q + 1) =
1

2
ϵq∂t (P

µPµ + 1) , (3.296)

such that the ϵq transformation of L1 is

δϵqL1 = ϵq

[ ∞∑

n=1

γn(P
µPµ + 1)n (π̇q + 1)−

∞∑

n=1

αn

2n
∂t (P

µPµ + 1)n
]
. (3.297)
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Because the second term is a total derivative, the authors of [9] concluded that
the αn operators are invariant under the ϵq time transformation. Therefore, the αn

operators may exist in closed systems while the γn operators are specific to open
dynamics and capture dissipation. We conclude that the unitary part of the action
is

Lunit
1 = −α1∂

µπcl∂µπq −
∞∑

n=2

αn

[
−2π̇cl + (∂µπcl)

2]n−1
(−π̇q + ∂µπcl∂µπq) (3.298)

which must be compared with the previously derived result (3.279). The amplitude
of the EFT coefficients is then estimated from αn ∼ E4

SSB.

Energy scales and observables: One can also associate an energy scale to the
dissipative effects which allows us to estimate when they play a leading role by
noticing that in Eq. (3.289) π̇clπq dominates over the unitary kinetic term when

Ediss ∼ γ1/α1 ≫ ω. (3.299)

One can then generalise to estimate γn ∼ EdissE
4
SSB. Restricting ourselves to the

quadratic Lagrangian, we can already extract useful information out of the disper-
sion relations.

Dispersion relations: Supposing there is a hierarchy Ediss ≪ ESSB (oth-
erwise dissipation occurs in regime of scales beyond the regime of validity of
the EFT) and that the derivative expansion ω2, k2 ≪ |β1/β2,4| operates in L2

so that we drop higher-order corrections to the noise term, there exists three
different dynamical regimes:

1. When Ediss ≪ ω ≪ ESSB, non-unitary effects are subdominant and the
quadratic Lagrangian reduces to

Leff ≃ (α1 − 2α2)
(
π̇clπ̇q − c2s∂iπcl∂iπcl

)
(3.300)

where we introduced

c2s ≡
α1

α1 − 2α2

(3.301)

which denotes the propagation speed of the Goldstone modes. The dis-
persion relation is the usual massless dispersion relation

ω2 = c2sk
2. (3.302)

2. When ω ≪ Ediss ≪ ESSB, we reach the low energy limit of the theory
where dissipation dominates over the kinetic term. In this limit

Leff ≃ −α1∂iπcl∂iπcl − 2γ1π̇clπq + iβ1π
2
q (3.303)

and the on-shell condition is satisfied when [255]

det

(
0 −1

2
α1k

2 − iγ1ω
−1

2
α1k

2 + iγ1ω iβ1

)
= 0. (3.304)
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We obtain the dispersion relation

ω2 = − α2
1

4γ2
1

k4 (3.305)

and the noise term β1 does not affect the dispersion relation.

3. When ω ∼ Ediss ≪ ESSB, the intermediate regime requires both kinetic
and dissipative contributions, such that

Leff ≃ (α1 − 2α2)

(
π̇clπ̇q − c2s∂iπcl∂iπcl − γπ̇clπq + i

A

2
π2
q

)
(3.306)

where we defined

γ ≡ 2γ1
α1 − α2

, A ≡ 2β1

α1 − α2

. (3.307)

Solving the on-shell condition

det

(
0 ω2 − c2sk

2 − iγω
ω2 − c2sk

2 + iγω iA

)
= 0 (3.308)

we find

ω2 = c2sk
2 − γ2

2
±
√

γ4

4
− γ2c2sk

2. (3.309)

In the low-energy/large-dissipation regime csk ≪ γ ∼ Ediss, there is a
gapless and a gapped diffusive mode

ω2 ≃ −c4sk
4

γ2
, ω2 ≃ −γ2 + 2c2sk

2. (3.310)

On the other hand, for the short length scales satisfying csk ≫ γ ∼ Ediss,
there are two propagating modes with small dissipation

ω2 ≃ c2sk
2 ± iγcsk. (3.311)

The next step would consist in accessing the observables, starting with the equal-
time correlators

⟨πcl(t,k)πcl(t, q)⟩, ⟨πcl(t,k1)πcl(t,k2)πcl(t,k3)⟩, · · · (3.312)

directly relevant for cosmology. This task is harder than for closed system. Intro-
ducing the auxiliary field ξ through

i
A

2
π2
q =

i

2A
ξ2 + ξπq, (3.313)

in Eq. (3.306), we derive the equation of motion for πcl from δSeff/δπq = 0, leading
to the Langevin equation

π̈cl + 2γπ̇cl + c2sk
2πcl = ξ (3.314)
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with the noise obeying

⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t′)⟩ = Aδ(t− t′). (3.315)

In order to obtain the mode functions, one needs to solve the homogeneous part of
the equation to obtain a Green’s function which is then convolved with the noise
kernel. The observables can be computed following the method developed in [298]
and recently applied in [299]. Note that in [298], the authors only considered the
large-dissipation regime, having in mind applications to warm inflation [300]. Warm
inflation [300] is a class of inflationary models where cosmological inhomogeneities
are thermally produced, contrarily to the cold inflation paradigm where the am-
plification of vacuum fluctuations seed cosmological inhomogeneities. It provides a
direct field of application for the formalism developed in this Section.

What did we learn? As a conclusion, this approach highlights the intricate
structure connecting unitary and non-unitary evolution, relating dissipative effects
to observables. Physical bounds impose constraints on the accessible EFT parame-
ters, such as β1 > 0. The non-linearly realised nature of the symmetries provides an
interesting phenomenology to explore, relating linear dissipation and non-Gaussian
features. Finally, the formalism does not impose the dynamical KMS symmetry, al-
lowing us to access the complete out-of-equilibrium regime. In this way, it evades the
main criticism against warm inflation [301] as it does not necessary require a ther-
mal bath. Hence, the approach could potentially explore the intermediate regime
between cold and warm inflation and in this way extend the results of [298] to a
more sustainable regime.

Conclusions:

Open Effective Field Theories aim at capturing the effects of an unobserv-
able environment onto the physics of a system we probe. In the context of
cosmology, they provide a way to incorporate the impact of hidden sectors
onto the curvature perturbations we observe in the CMB. They offer tools to
better understand the quantum aspects of the early universe such as the so-
called quantum-to-classical transitions of cosmological inhomogeneities. Open
EFTs capture non-unitary effects such as dissipation and decoherence which
make them particularly relevant to treat systems in which energy is not con-
served. Their ability to perform late-time resummation of secular effects is
also a desirable feature in the context of cosmology where perturbativity of-
ten breaks down at late-time. We presented the implementation of Open
EFTs, from the definition of the bipartition to the development of resumma-
tion techniques. The relationship between the influence functional, the master
equation and its stochastic unravelling has been established. A focus on mas-
ter equations allowed us to highlight the ubiquity of non-Markovian dynamics
in the presence of a non-stationary background. We also discussed the dif-
ferent facets of Markovianity and proposed some directions to develop this
concept in cosmology. We finally explained how to compute the observables
and assess quantum decoherence. Quantifying decoherence by evaluating the
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purity is a way to estimate the amount of information that cannot be re-
trieved from a unitary EFT. Hence, it provides a way to evaluate the need
for non-unitary extensions. We concluded the Chapter with the presentation
of two active research directions, the first one concerning the development of
non-perturbative resummation techniques and the second one investigating
the bottom-up construction of Open EFTs.
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Part II

Results and Publications
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Outline

This second part collects the research articles published during the thesis. More
precisely, in Chapter 4, we use group theoretic constructions to characterise the
quantum state in which are placed cosmological inhomogeneities of two-field sys-
tems. In particular, we aim at characterising quantum decoherence when one of the
fields is unobservable. In Chapter 5, we use an exactly solvable toy model in order
to benchmark the master equation program in cosmology. We review the approxi-
mation schemes and regimes of validity and assess the ability of the master equation
to implement a non-perturbative resummation. Finally, in Chapter 6, we apply
these tools on a model of phenomonological interest in the context of primordial
cosmology and account for a phenomenon of quantum recoherence. We emphasize
how cosmological OQS can depart from their lab-based counterpart.
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Chapter 4

Four-mode squeezed states

Preface

In this article, we derive the quantum state of a generic linear two-field system known
as the four-mode squeezed states. These states constitute a multifield generalisation
of the squeezing mechanism presented in Sec. 3.1.1. In particular, they allow us
to discuss the dynamical generation of entanglement between two scalar degrees of
freedom. In the inflationary context, it provides a theoretical framework for the
study of de(re)coherence generated by entropic perturbations linearly coupled to
the adiabatic sector, as we later did in [154].

The understanding of the four-mode squeezed states follows from the investiga-
tion of the group theoretic structure underlying the linear dynamics. Based on [121],
we carried out a systematic study of the symplectic group Sp(4,R) which describes
two-field linear canonical transformations. The understanding of its Lie algebra al-
lowed us to write down a simple decomposition of the evolution operator in terms
of elementary gates, the building blocks of the dynamical evolution, from which we
can derive the four-mode squeezed states.

In the Fock space, these states can be understood as the tensor product of two
two-mode squeezed states on the top of which quanta can be exchanged. In the phase
space, they have a simpler representation, as they belong to the class of Gaussian
states. In this representation, the non-perturbative connection between the purity
and the determinant of the system covariance matrix given in Eq. (3.228) is the more
apparent. Hence, working in the phase space is particular convenient for Gaussian
states.

In the next pages, before exposing the article, we briefly highlight the physics
at play in the study of the four-mode squeezed states which can be sometimes ob-
scured by the mathematical formalism. We construct the discussion in light of the
knowledge gained after the publication of [251], in our later articles presented in the
next Chapters.

The article [251] can be found online at:

• https://link.springer.com/article/10.1140/epjc (published version);

• https://arxiv.org/abs/2104.14942 (arXiv version).
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The physics behind four-mode squeezed states

This brief discussion aims at highlighting the benefit of the formulation presented
in [251] which relies in providing a microphysical understanding of the mechanism
of quantum decoherence. Thought as a supplemental material, notations are loosely
introduced, all details being found in the article. We first review the structure of the
state before we discuss its learnings about quantum decoherence. Lastly, we provide
a brief description of the phenomenology depending on the mass of scalar fields.

Understanding four-mode squeezed states

Let us discuss the circuit derived in Appendix B which represents the dynamical
evolution from the Bunch-Davies vacuum in the asymptotic past to the four-mode
squeezed states in the asymptotic future. We reproduce it in Fig. 4.1 and discuss
its various elements.

Figure 4.1: Four-mode squeezed states can be understood as two copies of the
two-mode squeezed states, one for the system and one for the environment, on the
top of which quanta can be exchanged. Orange boxes represent pair creation, green
box represents transfers of quanta and blue boxes represent phase shifts.

The circuit is made of three elementary operations

R̂i,⃗k(θk) ≡ exp
[
−iθk

(
â†
i,⃗k
âi,⃗k + â†

i,−k⃗
âi,−k⃗ + 1

)]
, (4.1)

Ẑi,⃗k(rk) ≡ exp
[
rk

(
â†
i,⃗k
â†
i,−k⃗

− âi,⃗kâi,−k⃗

)]
, (4.2)

R̂i→j,⃗k(pk) ≡ exp
[
ipk

(
â†
j,⃗k
âi,⃗k + â†j−⃗k

âi,−k⃗

)]
. (4.3)

Among these operations, only Eq. (4.2) is able to modify the number of excitations.
Hence, it plays a crucial role in populating the vacuum. Then, the parameters rk1
and rk2 appearing in Fig. 4.1 are the one controlling the occupation number in both
the system and the environment. We also observe that only Eq. (4.3) is able to
transfer quanta from the system to the environment (and reversely). Therefore, the
parameters pk− and pk+ are the one controlling the mixing between the two sectors.

Learnings about quantum decoherence

In this Manuscript, we often assess decoherence through the mean of the purity.
Being related to the linear entropy by SL ≡ 1 − γ, it reminds us that decoherence
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can be understood as an increase of the amount of information shared between the
system and its environment that cannot be retrieved by performing measurements
on the system only [193]. In order to observe such an increase, one first needs to
populate the state, otherwise, there is no information to share in the vacuum. Hence,
considering Fig. 4.1, it appears that a preliminary requirement for decoherence to
take place consists in having rk1 and rk2 able to stir pairs of quanta out of the vacuum.
Then, decoherence proceeds if correlations initially contained within the system are
delocalised to the environment. The mixing occurs through transfers of quanta,
which is controlled by pk− and pk+.

In [251], we carry an systematic small-coupling expansion which can be under-
stood as an expansion in the number of quanta exchanged between the system and
its environment. It appears that the expansion is controlled by a parameter |τk| such
that pk± ∝ O (|τk|). Working at order O (|τk|n) implies we consider the exchange of
n quanta between the two sectors. Using the perturbative expansion of the system’s
spectra and the purity, we identified in Eq. 6.21 a regime of parameters in which
decoherence is effective without substantially affecting the system’s observables

e−(r
k
1+rk2) ≪ |τk| ≪ 1. (4.4)

Therefore, in the large squeezing regime, it implies that one can remain within
the observational window of single-field slow roll inflation without having anymore
any chance to observe genuine quantum signatures due to quantum decoherence.
The larger are the squeezing parameters rk1 and rk2 , the larger is the window. This
observation seems consistent with the above requirement of populating the state
before sharing information.

Phenomenology for massive scalars

Based on the above observations, we would like to understand the behaviour of
the squeezing parameters in practical situations such as the one described in [154]
presented in Chapter 6. In particular, we would like to understand if the dynamics
fall into the regime of Eq. (4.4). Answering this question in full generality appears
to be extremely challenging, as it requires to invert the ten algebraic non-linear
equations given in Eqs 5.23 to 5.32 in order to express the squeezing parameters
in terms of the entries of the covariance matrix. Even in the perturbative limit,
at second order in |τk|, it remains a difficult task, beyond the scope of this brief
discussion, which might be the object of future works.

Yet, some intuition about the phenomenology can be obtained by considering the
decoupling limit of the theory. Working in the perturbative regime, the evolution
of the system is mainly controlled by the free dynamics of massive scalar fields in
a de Sitter background. Moreover, in the Open EFT approach, the properties of
the environment are encoded through the memory kernel, which is the Wightman
function of the environment computed in the free theory. Hence, it is insightful to
consider the dynamics of the squeezing parameters of a free massive scalar in a de
Sitter background. In this case, the state is given by

∣∣2MSSk⃗

〉
=

e−2iθk

cosh rk

∞∑

n=0

(−1)ne−2inφk tanhn rk
∣∣nk⃗, n−k⃗

〉
(4.5)
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Figure 4.2: Squeezing parameters as a function of the number of efolds before and
after Hubble crossing. Left: rk grows in the super-Hubble regime faster for lighter
environments Right: φk converges toward zero in the super-Hubble regime, with
opposite sign for light (m < 3H/2) and heavy (m ≥ 3H/2) environments. Dotted
lines are late-time expansions in k ≪ aH and m ≫ H given in Eq. (4.10). The
small mismatch between plain and dotted lines on rk (left figure) for m = 2H (green
curve) is due to the fact that the assumption m ≫ H used to reach simple analytical
expressions is not fully satisfied in this case.

where θk is a global phase we can discard for the discussion. The squeezing param-
eters rk and φk are related to the two-point functions through (see e.g. [121])

cosh (2rk) = kCov11,k + k−1Cov22,k (4.6)

tan (2φk) =
2Cov12,k

kCov11,k − k−1Cov22,k

(4.7)

where we use the same notations as in [251]. Therefore, once the power spectra are
known (for instance using the mode functions for a massive field in de Sitter), one
can deduce the squeezing parameters.

In [154], we observe that depending on the mass of the environment, curvature
perturbations either experience quantum decoherence (for light environments m <
3H/2) or recoherence (for heavy environments m ≥ 3H/2), see Fig. 3 of [154].
This behaviour can be traced back to the mode function dynamics of massive scalar
fields in de Sitter. In Figs. 4.2 and 4.3, we complement this analysis by presenting
the massive environment dynamics in terms of its squeezing parameters. It can be
seen that, indeed, light and heavy environments have a different behaviour in terms
of these parameters: heavy fields experience less squeezing (Left panel of Fig. 4.2)
which is directed in an opposite direction (Right panel of Fig. 4.2) compared to light
environments. Late-time analytical behaviour can be readily obtained by expecting
the power spectra in Eqs. (4.6) and (4.7) in powers of k ≪ aH and m ≫ H (note
that for the lightest case, we here considered a massless environment instead of
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m = H which is used in Fig. 3 of [154]). The leading order is controlled by1

rk ≃





ln aH
k

1
2
ln aH

k
+ ln

(
ln aH

k

)
1
2
ln am

k

and φk ≃





− k
aH

for m = 0H
2
3

k
aH

for m = 3H/2
3
2
H2

m2
k
aH

for m = 2H

(4.10)

Lastly, squeezed states being Gaussian states, their Wigner function can be rep-
resented in the phase space in terms of ellipses which are the σ contours of the
multivariate Gaussian [302]. In Fig. 4.3, it can be seen that light and heavy fields
tend to be anti-correlated due to their opposite sign in φk.
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Figure 4.3: Phase-space representation of the state (1σ contour) two efolds before
Hubble crossing (Left) and one efold after Hubble crossing (Right). Squeezed states
being Gaussian, they can be represented as ellipses in the phase space [302]. Light
(m < 3H/2) and heavy (m ≥ 3H/2) environments tend to be anti-correlated due to
their opposite sign in φk. Courtesy of A. Micheli for friendly sharing plotting code
used in [226].

This limited study hopefully highlights some of the differences between light
and heavy environments expressed in terms of their squeezing parameters. Further
investigations would be necessary in order to fully account for the observations
of [154] in the language of [251]. In particular, it would be interesting to understand
when the regime presented in Eq. (4.4) is entered in terms of the microphysical
parameters of the problem. We leave it for future work.

1For m = 3H/2, the exact expressions are

rk =
1

2
ln

[∣∣6
(
γE + ln z

2

)
+ 4− 3iπ

∣∣2

8πz
+O (z)

]
(4.8)

φk =
2z
[
3π2 + 8

(
γE + ln z

2

)
+ 12

(
γE + ln z

2

)2]

∣∣6
(
γE + ln z

2

)
+ 4− 3iπ

∣∣2 +O
(
z2
)

(4.9)

where z ≡ k/aH. Simplified expressions are given in Eq. (4.10) to improve the comparison.
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Abstract. We construct the four-mode squeezed states and study their physical properties.
These states describe two linearly-coupled quantum scalar fields, which makes them physi-
cally relevant in various contexts such as cosmology. They are shown to generalise the usual
two-mode squeezed states of single-field systems, with additional transfers of quanta between
the fields. To build them in the Fock space, we use the symplectic structure of the phase
space. For this reason, we first present a pedagogical analysis of the symplectic group Sp(4,R)
and its Lie algebra, from which we construct the four-mode squeezed states and discuss their
structure. We also study the reduced single-field system obtained by tracing out one of the
two fields. This procedure being easier in the phase space, it motivates the use of the Wigner
function which we introduce as an alternative description of the state. It allows us to discuss
environmental effects in the case of linear interactions. In particular, we find that there is
always a range of interaction coupling for which decoherence occurs without substantially
affecting the power spectra (hence the observables) of the system.
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1 Introduction

Two-mode squeezed states [1–3] have been widely studied in the past for the important
role they play in quantum optics (see e.g. Refs. [4, 5] for reviews), but also in the cosmological
context where they describe primordial density perturbations, amplified by gravitational
instability from the vacuum quantum fluctuations [6–12]. In general, they characterise the
quantum state of linear single-field systems, where each pair of Fourier modes is placed in a
two-mode squeezed state [13].

When more degrees of freedom are present however, two-mode squeezed state are in-
sufficient and the squeezing formalism needs to be generalised to higher numbers of modes.
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This is why, in this work, we construct the four-mode squeezed states, which describe two
linearly-coupled quantum scalar fields. The motivation behind this analysis is twofold. First,
there are a number of situations where two-field systems are directly relevant, for instance
during the inflationary phase our primordial universe underwent. Even if current cosmologi-
cal data is consistent with single-field setups [14], from a theoretical point of view, inflation
takes place in a regime that is far beyond the reach of accelerators, and most physical setups
that have been proposed to embed inflation contain extra scalar fields, for instance in the
string-theoretic context [15–19]. Those additional degrees of freedom are usually associated to
entropic perturbations. Four-mode squeezed states would then naturally appear in two-field
inflation models, and provide insight about multi-field cosmology in general. Second, this
setup provides a way to investigate environmental effects in the case of linear interactions,
by tracing over one of the two fields. More precisely, when the system of observational rele-
vance couples to unobserved degrees of freedom (referred to as the “environment”), quantum
entanglement builds up between the system and the environment. This affects observational
predictions and also leads to the quantum decoherence of the observable sector [20–22]. This
phenomenon is usually investigated by the means of effective methods that only provide
results that are perturbative in the interaction strength and that rely on additional assump-
tions, see e.g. Ref. [23]. By considering that one of the two fields represents the observed
system and the other field stands for the environment, the formalism we develop will allow
us to go beyond those methods and present exact results.

Let us stress that the explicit construction of the squeezed quantum states, especially
in the Fock’s space, is not only of formal interest. As we will explain, it provides important
insight into the physical mechanisms at play in the dynamics of those states and in the
emergence of peculiar properties such as quantum entanglement. Furthermore, it is required
in a number of concrete computations (see for instance Refs. [24–28]).

Although we are inspired by problems formulated in the context of cosmology, it is
worth mentioning that the formalism we develop here is generic and broad in applicability.
It does not require prior knowledge of the concepts and tools relevant in cosmology (which
will only be mentioned in our concluding remarks for illustrative purpose), to which we plan
to apply our results in separate publications.

Let us now describe how this article is organised, and highlight its main results. In Sec. 2,
we introduce the physical setup describing two free scalar fields, both at the classical and
quantum levels, and we highlight the symplectic structure that underlies its phase space. This
leads us to introducing the symplectic group in four dimensions, Sp(4,R), which we formally
describe in Sec. 3. This section reviews material that may also be found in other references on
the same topic (apart from the fully factorised form of group elements, Eq. (3.22), which, up
to our knowledge, is a new result), see e.g. Refs. [29–33]. As a consequence, it may be skipped
by those readers already familiar with the use of symplectic groups in quantum mechanics.
Otherwise, it provides a self-contained presentation of the techniques employed in the rest
of the paper. The Hamiltonians leading to the four-mode squeezed states are then built in
Sec. 4, where we also construct the evolution operator using theses results. In particular,
we comment on the physical interpretation of the generators of the Lie algebra, when acting
in the Hamiltonian. As an example, we also briefly apply our formalism to describe two
massless fields in a cosmological background. Finally, we use the previous results to write
a tractable expression for the evolution operator from which four-mode squeezed states can
be obtained. Sec. 5 is devoted to the explicit construction of the four-mode squeezed states
in the Fock basis, see Eqs. (5.6) and (5.7), which constitute one of the main results of this
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paper. An expansion around the limit where the two fields are uncoupled further allows us
to discuss the physical interpretation of these formulas, to interpret the four-mode squeezed
states in terms of particle transfer and to link their structure to the relevant microphysical
parameters. We also derive the Wigner function of the system, which provides an alternative
description of the state in the phase space. Although equivalent to the Fock-space description,
its simple Gaussian form, built out of the power spectra of the configuration fields, makes
some calculations simpler. Finally, in Sec. 6, we investigate environmental effects by tracing
out one of the two fields and studying how the reduced quantum state of the first field is
affected. This is done both at the level of the density matrix and of the Wigner function.
Two independent calculations of the purity are thus performed, and then expanded in the
small-coupling limit where they are shown to lead to the same result. Sec. 7 presents our
conclusions, and the paper ends by four appendices to which various technical aspects of the
calculations presented in the main text are deferred.

2 Quantum phase space of two free fields

2.1 Two scalar fields in a homogeneous and isotropic background

Let us consider two real-valued scalar fields φ1(t, ~x) and φ2(t, ~x), with conjugate mo-
menta π1(t, ~x) and π2(t, ~x). These phase-space coordinates can be arranged into the four-
dimensional vector z(~x) = (φ1(~x), φ2(~x), π1(~x), π2(~x))T where “T” stands for the transpose
and explicit time dependence is dropped for notational convenience. In this work, for sim-
plicity, we focus on the case of free fields, for which the Hamiltonian H is a local quadratic
form,

H =
1

2

∫
d3~xzT(~x)H(t)z(~x) . (2.1)

In the cosmological context, one may view φ1 and φ2 as two test fields (i.e. they do not
backreact on the background geometry), or as the perturbations of some cosmological fields
where cosmological perturbation theory is carried out at leading order. In Eq. (2.1), H(t)
is a four-by-four real symmetric matrix, which we assume does not depend on the spatial
coordinate ~x, so the background on which the fields evolve is homogeneous. Note that H(t)
may however involve the gradient operator ∂/∂~x (though to positive powers only, to be
compatible with the locality assumption).

Phase space is equipped with the Poisson bracket

{F,G} =

∫
d3~x

[
δF

δφ1(~x)

δG

δπ1(~x)
− δF

δπ1(~x)

δG

δφ1(~x)
+

δF

δφ2(~x)

δG

δπ2(~x)
− δF

δπ2(~x)

δG

δφ2(~x)

]
, (2.2)

which can be written in matricial form for the phase-space coordinates as

{z(~x), zT (~y)} = Ωδ3(~x− ~y) . (2.3)

In this expression, δ is the Dirac distribution, the matrix Ω is given by

Ω =

(
0 I2

−I2 0

)
, (2.4)
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where In is the n× n identity matrix, and the notation in Eq. (2.3) has to be understood as
{zµ(~x), zν(~y)} = Ωµνδ

3(~x − ~y) with µ, ν = 1 · · · 4. The time evolution of any function F of
the phase-space field variables is given by

Ḟ (z) = {F (z), H} , (2.5)

where a dot means differentiating with respect to the time variable.

Fourier space

Since the background is homogeneous, it is useful to work in Fourier space and to
introduce

z~k =




φ
1,~k

φ
2,~k

π
1,~k

π
2,~k


 =

∫
d3~x

(2π)3/2
z(~x)e−i

~k.~x. (2.6)

The condition for the fields to be real-valued, z(~x) = z∗(~x), translates into z∗~k = z−~k. This

means that half of the Fourier modes are enough to parametrise the entire (now complex)
phase space. In practice, any integral over k ∈ R3 can be split into an integral over R3+ ≡
R2×R+ and R3− ≡ R2×R−, where the latter can be related to the former by a simple change
of integration variable ~k → −~k and using the relation z∗~k = z−~k. For the Hamiltonian (2.1),
this leads to

H =

∫

R3+

d3~kz†~kHk(t)z~k , (2.7)

which avoids double counting the degrees of freedom of the theory. In Eq. (2.7), Hk(t)
corresponds to H(t) where the spatial gradient ∂/∂~x is replaced with i~k. If we further
assume the background to be isotropic, Hk(t) only depends on the norm k = |~k| of ~k, hence
the notation.

Plugging Eq. (2.6) into Eq. (2.2), one can compute

{z~k, z
†
~q} = Ωδ3(~k − ~q) , (2.8)

which is of the same form as Eq. (2.3). This shows that the Poisson brackets are preserved
when going to Fourier space (in the language that will be introduced in Sec. 2.2, the Fourier
transform is a “symplectic transformation”), so phase space can be equivalently parametrised
with the Fourier coordinates, and the Poisson bracket (2.2) can also be written as

{F,G} =

∫

R3

d3~k

(
δF

δφ
1,~k

δG

δπ∗
1,~k

− δF

δπ
1,~k

δG

δφ∗
1,~k

+
δF

δφ
2,~k

δG

δπ∗
2,~k

− δF

δπ
2,~k

δG

δφ∗
2,~k

)
. (2.9)

Finally, applying the equation of motion (2.5) to the Fourier phase-space coordinates yields

ż~k = (ΩHk) z~k , (2.10)

where the explicit time dependence of Hk has been dropped for notational convenience.
This equation shows that, for free fields in a homogeneous and isotropic background, Fourier
modes decouple and evolve independently. This implies that each Fourier sector can be
studied separately, which greatly simplifies the analysis. From now on, we therefore focus on
a single Fourier sector, i.e. ~k in R3+ is fixed hereafter.
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Quantisation

So far, linear Hamiltonian systems have been described at the classical level. We now
follow the canonical quantisation prescriptions and promote the phase-space coordinates to
quantum operators acting on a Hilbert space, ẑ~k := (φ̂

1,~k
, φ̂

2,~k
, π̂

1,~k
, π̂

2,~k
)T (where, from now

on, hats denote quantum operators). These operators satisfy the canonical commutation
relations

[
ẑ~k, ẑ

†
~q

]
= iΩδ3(~k − ~q) , (2.11)

which is the quantum analogue of Eq. (2.8) and where, hereafter, we work with ~ = 1. The

Hamiltonian operator reads Ĥ =
∫
R3+ d3~kẑ†~kHkẑ~k, and the dynamics of any function of the

quantum phase-space variables is given by the Heisenberg equation Ḟ (ẑ~k) = −i[F (ẑ~k), Ĥ].

In particular, for the field variables themselves, this gives rise to ˙̂z~k = (ΩHk)ẑ~k, which
directly transposes Eq. (2.10).

Creation and annihilation operators are defined in the usual way, i.e.

â
j,~k

=
1√
2

(√
kφ̂

j,~k
+

i√
k
π̂
j,~k

)
for j = 1, 2 , (2.12)

where the prefactors
√
k and 1/

√
k are introduced for dimensional reasons. This can be

written in matricial form as

â~k =




â
1,~k

â
2,~k

â†
1,−~k
â†

2,−~k




= UDkẑ~k , (2.13)

where “†” stands for the conjugate transpose, and the matrices U and Dk are defined as

U =
1√
2

(
I2 iI2

I2 −iI2

)
and Dk =

(√
kI2 0

0 I2/
√
k

)
. (2.14)

One can check that U is a unitary matrix, i.e. UU † = U †U = I4. In principle, Dk may be
replaced with MkDk, where Mk is any (dimensionless) symplectic matrix (formally defined
below in Sec. 2.2). It only leads to a different definition of the vacuum state (i.e. the state
that is annihilated by the annihilation operators) [13]. Let us note that the ordering in â~k
is different than in ẑ~k, since in â~k the first two entries concern the ~k sector and the last two

entries the −~k sector.1

The dynamics of the creation and annihilation operators is generated by the quadratic
Hamiltonian Ĥ =

∫
R3+ d3~kâ†~kHkâ~k, where Hk reads [13]

Hk = U
[
(D−1

k )THkD
−1
k + (D−1

k )TΩḊ
−1
k

]
U † . (2.15)

1This is because the classical version of Eq. (2.13) gives z−~k = D−1
k U†a−~k and z∗~k = D−1

k UTa∗~k. The

reality condition z∗~k = z−~k thus entails a−~k = UUTa∗~k, where UUT =

(
0 I2

I2 0

)
, explaining the structure of

the â~k vector.
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The canonical commutation relations are given by

[
â~k, â

†
~q

]
= iJ δ3(~k − ~q) where J = UΩU † = −i

(
I2 0
0 −I2

)
, (2.16)

and any function of the creation and annihilation operators evolves according to Ḟ (â~k) =[
F (â~k), Ĥ

]
. In particular, for the creation and annihilation operators themselves, one obtains

˙̂a~k = (JHk) â~k. (2.17)

2.2 Symplectic structure of the phase space

In Sec. 2.1, we saw that the Fourier transform preserves the Poisson brackets of the
phase-space variables. Another example of a transformation that preserves the Poisson brack-
ets is provided by the Hamiltonian evolution itself. Indeed, the equation of motion (2.10)
can be solved as

z~k(t) = Gk(t, tin)z~k(tin), (2.18)

where Gk is a (4×4)-real matrix called the Green’s matrix and that satisfies Ġk = ΩHkGk+
I4δ(t− tin), with initial condition Gk(tin, tin) = I4. Note that, as Hk, Gk only depends on
the wavenumber k. One can also check that Gk satisfies

GT
kΩGk = Ω. (2.19)

This is indeed obviously the case at initial time, and by plugging the equation of motion for
Gk in the time derivative of the left-hand-side of Eq. (2.19), one obtains a vanishing result
after using that Hk is symmetric and that ΩTΩ = −Ω2 = I4.

In general, real matrices satisfying Eq. (2.19) are called symplectic, and they form the
symplectic group Sp(4,R). They describe all possible reparametrisations of phase space
through linear canonical transformations, i.e. transformations that preserve the Poisson
brackets. Indeed, consider two phase-space coordinates z~k and z̃~k, related through a lin-
ear transformation

z̃~k = Mkz~k. (2.20)

One can check that the Poisson brackets are preserved, i.e. {z̃~k, z̃
†
~k
} = {z~k, z

†
~q} = Ω, if

and only if Mk ∈ Sp(4,R) [i.e. Mk satisfies Eq. (2.19)]. This ensures that the Poisson
bracket between two arbitrary phase-space functions is the same when calculated with the
z~k-variables or with the z̃~k-variables. One can check that the equations of motion for the new
set of canonical variables z̃~k are then given by Hamilton equations with the new Hamiltonian
kernel

H̃k = (M−1
k )THkM

−1
k + (M−1

k )TΩṀ
−1
k , (2.21)

and the dynamics is solved by z̃~k(t) = G̃k(t, tin)z̃~k(tin) where G̃k(t, tin) =

Mk(t)Gk(t, tin)M−1
k (tin). Symplectic transformations thus constitute a fundamental symme-

try of the Hamiltonian phase space, and this is why the symplectic group for linear scalar-field
systems is the main topic of the present work.
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Let us note that in this framework, the dynamical evolution is nothing but a particular
symplectic transformation since, as stressed above, the Green’s matrix is symplectic. One
can also check that for the transformation that goes from z~k(t) to z~k(tin), generated by the

matrix G−1
k (t, tin), the new Hamiltonian vanishes, as can be shown by plugging the equation

of motion for Gk into Eq. (2.21). This is consistent with the fact that the z~k(tin) variables are
indeed time independent, and in that case the dynamics is entirely contained in the canonical
transformation that relates them with the primary variables z~k(t).

Finally, when one works with the creation and annihilation operators introduced in
Sec. 2.1, a similar description applies. The equation of motion given in Eq. (2.17) can be
solved in terms of the Green’s matrix,

â~k(t) = Gk(t, tin)â~k(tin) , (2.22)

where Gk(t, tin) = UDkGk(t, tin)D−1
k U

† such that G†kJGk = J and det(Gk) = 1. Similarly,
one can check that any generic canonical transformation ẑ~k → Mkẑ~k gives rise to â~k →
Mkâ~k, where Mk = UDkMkD

−1
k U

† satisfies M†
kJMk = J and det(Mk) = 1.

3 Sp(4,R) toolkit

In the previous section, we have seen how symplectic transformations naturally arise
in the phase-space description of linear Hamiltonian systems, both as a fundamental
reparametrisation symmetry and as a way to generate the dynamics. This is why in this
section, we further study the mathematical structure of the symplectic group in four dimen-
sions, which is relevant to discuss the physics of two scalar fields. Readers already familiar
with the use of symplectic groups in quantum mechanics can easily skip this section, which
mostly consists in a review of the mathematical tools employed in the rest of the paper. It
may otherwise serve as a pedagogical introduction to the techniques employed in the subse-
quent calculations, and set out our main notations.

3.1 Generators and Lie algebra

As explained around Eq. (2.19), the group of symplectic (4 × 4)-matrices, denoted
Sp(4,R), is defined as

Sp(4,R) = {M ∈M4(R) : MTΩM = Ω} , (3.1)

whereMn(R) is the set of (n×n)-real matrices. Since ΩTΩ = −Ω2 = I4, one can show that,
if M ∈ Sp(4,R), then MT ∈ Sp(4,R) (this is because Eq. (3.1) leads to MT = −ΩM−1Ω,
which implies that MΩMT = Ω). One can also readily check that Sp(4,R) is indeed a
group, and it follows from Eq. (3.1) that all symplectic matrices have unit determinant [34].

Sp(4,R) is a Lie group, that is a continuous group whose multiplication and inversion
operations are differentiable, so one can investigate global properties of the group by looking
at its local or linearised version, given in terms of its so-called Lie algebra. The Lie algebra
is a vector space under the bracket operation [X,Y ] = XY −Y X that completely captures
the local structure of the group. When analysing Lie groups, finding a basis of this vector
space, i.e. a set of so-called “generators”, and deriving their commutators, is of paramount
importance. The number of generators specifies both the dimension of the Lie group and its
associated Lie algebra. In what follows, the Lie algebra of Sp(4,R) is denoted sp(4,R).
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The exponential map allows us to connect the Lie algebra to its corresponding Lie group.
For any X ∈ sp(4,R), M = exp(X) is an element of Sp(4,R) (see Ref. [33] for a recent
complete characterisation of the exponential map of Sp(4,R)). Note that the exponential
map is not surjective, meaning that there exist elements of Sp(4,R) that cannot be written
as exp(X). By plugging M = exp(X) into Eq. (3.1), and upon writing the obtained formula
as an expansion in X, one finds that the Lie algebra is defined according to

sp(4,R) = {X ∈M4(R) : ΩX +XTΩ = 0}. (3.2)

This allows one to write a generic element of the Lie algebra as

X =

(
A B

C −AT

)
(3.3)

where A, B and C are three (2× 2) real matrices, B and C being symmetric. This implies
that sp(4,R) is a ten-dimensional vector space, sinceA contains four degrees of freedom while
B and C being symmetric, they contain three degrees of freedom each. Denoting by Ki,
i = 1 · · · 10, a basis of 10 generators, a generic element of the Lie algebra can be decomposed
as

X =
10∑

i=1

αiKi, αi ∈ R. (3.4)

Our next step is to exhibit such a basis.
To that end, we first introduce the Kronecker product. For two (2× 2)-matrices

A =

(
a11 a12

a21 a22

)
and B =

(
b11 b12

b21 b22

)
, (3.5)

the Kronecker product A⊗B is a (4× 4)-matrix defined as

A⊗B =

(
a11B a12B
a21B a22B

)
=




a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22


 . (3.6)

The reason why this construction is useful is because, within the two-field system at hand,
each field is individually described by an sp(2,R) algebra. It is therefore natural for expect
that sp(4,R) contains products of elements of sp(2,R) with themselves. The generators of
sp(2,R) can be simply written in terms of the Pauli matrices [13],

sp(2,R) = Span{σx, iσy,σz} , (3.7)

with

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (3.8)

so sp(2,R) is of dimension 3. This implies that over the 10 generators of sp(4,R), 6 provide
two copies of sp(2,R) and describe the two sectors separately, and 4 are related to the
coupling between the two sectors. For σa,σb ∈ {I2,σx, iσy,σz}, there are 16 combinations
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σa ⊗ σb for a, b ∈ {0, · · · , 3}, namely I4 and the 15 Dirac matrices [29]. Among them,
only 10 are of the form (3.3),2 which are listed in Table 1, where they are organised in
three subsets. The so-called squeezing generators are diagonal. Through the exponential
map, they give rise to group elements of the form exp(d1K1) = diag(ed1 , e−d1 , e−d1 , ed1) and
exp(d2K2) = diag(ed2 , ed2 , e−d2 , e−d2) with d1 and d2 two real parameters. Therefore, they
elongate one phase-space direction while contracting the other, hence their name. The two
other kinds of generators are called rotations and boosts. When squared, rotations give −I4

and boosts give I4. Therefore, once exponentiated, rotations generate group elements of the
form exp(θiKi) = cos θiI4 + sin θiKi for i ∈ {3, 4, 5, 6} with θi ∈ R, while boosts generate
exp(αiKi) = coshαiI4 + sinhαiKi for i ∈ {7, 8, 9, 10} with αi ∈ R, hence their name.

Squeezing Rotation Boost

K1 = σz ⊗ σz =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1




K3 = iσy ⊗ I2 =




0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0




K7 = σx ⊗ I2 =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




K2 = σz ⊗ I2 =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1




K4 = iσy ⊗ σz =




0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0




K8 = σx ⊗ σz =




0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0




K5 = I2 ⊗ iσy =




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0




K9 = σz ⊗ σx =




0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0




K6 = iσy ⊗ σx =




0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0




K10 = σx ⊗ σx =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




Table 1. Generators of sp(4,R) in the fundamental representation.

Now that we have explicitly obtained the generators of the Lie algebra, let us iden-
tify their respective role. The two sp(2,R) algebras are given by {(K1 + K2)/2, (K3 +
K4)/2, (K7 +K8)/2} and {(K1−K2)/2, (K3−K4)/2, (K7−K8)/2}, each of them being
composed of a squeezing, a rotation and a boost. They act on each sector separately and
would be enough to describe two non-interacting degrees of freedom. Formally, they generate
the Sp(2,R)×Sp(2,R) subgroup of Sp(4,R). The 4 remaining generators are associated with
the coupling between the two sectors. They correspond to the rotations K5 and K6 and the
boosts K9 and K10, which entangle the two sectors, as will be made clear in Sec. 3.4. One
can indeed check that these 4 generators (and only them) have non-vanishing off-diagonal
elements within the (2× 2) blocks, which, from the ordering of the phase-space variables in

2Formally, the 15 Dirac matrices form the o(3, 3) algebra. sp(4,R) is isomorphic to o(3, 2), which is a
subalgebra of o(3, 3) [29].
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Eq. (2.6), implies that they mix the two fields. This is why, hereafter, they will be referred
to as the coupling generators.

To complete our description of the Lie algebra, let us finally provide the commutators
between its generators. They can be obtained from the multiplication rule of the Kronecker
product for square matrices,3

(A⊗B) (C ⊗D) = (AC)⊗ (BD) , (3.9)

together with the formula

σiσj = δijI2 + iεijkσk for {i, j, k} ∈ {x, y, z} , (3.10)

where δab is the Kronecker symbol and εabc is the Levi-Civita symbol. For instance, one has
[K6,K4] = [iσy ⊗ σx, iσy ⊗ σz] = (iσy)

2 ⊗ σxσz − (iσy)
2 ⊗ σzσx = −I2 ⊗ (−iσy) + I2 ⊗

(iσy) = 2K5. All other commutators are presented in Appendix A, where we also derive the
various subalgebras. We do not reproduce these formulas here for display convenience, and
will simply refer to Appendix A when needed.

3.2 Bloch-Messiah decomposition

The explicit derivation of the 10 generators of the Lie algebra allows one to decompose
any element of the group (within the exponential map) onto these generators, upon expo-
nentiating Eq. (3.4). This parametrisation of the exponential map is performed in Ref. [33]
(see also Refs. [31, 32]). When all 10 parameters are non vanishing, it however leads to
expressions that may be cumbersome to manipulate, and which, as mentioned above, do not
reach all the elements of the group. This is why, in this section, we turn our attention to an
alternative decomposition, the so-called Bloch-Messiah decomposition (also sometimes called
Euler decomposition) [35], which allows one to write any symplectic matrix as

M(θ,d,ϕ) = R(θ)Z(d)R(ϕ) . (3.11)

Here, R(θ),R(ϕ) ∈ Sp(4,R) ∩ SO(4) are constructed from the four rotation generators and
Z(d) from the two squeezing generators, i.e.

R(θ) = exp(θ3K3 + θ4K4 + θ5K5 + θ6K6) (3.12)

and a similar expression for R(ϕ) with ϕ = (ϕ1, ϕ2, ϕ3, ϕ4), and

Z(d) = exp(d1K1 + d2K2). (3.13)

The 8 parameters contained in θ and ϕ are called the rotation parameters, while d contains
the so-called squeezing parameters. Note that the parameters associated with the coupling
generators are θ5, ϕ5, θ6 and ϕ6, which thus control the mixing between the two sectors.

One may note that only 6 out of the 10 generators of sp(4,R) are involved in the
Bloch-Messiah decomposition. It therefore provides a factorised expression of the group
elements that is slightly more convenient to manipulate. Moreover, the three blocks of the

3Other properties of the Kronecker product that will be used in the following are that it is bilinear and
associative, and that for square matrices, (A⊗B)−1 = A−1 ⊗B−1, (A⊗B)∗ = A∗ ⊗B∗ and (A⊗B)T =
AT ⊗BT .
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decomposition can be further factorised down. Indeed, in Appendix A, it is shown that K1

and K2 commute, so

Z(d) = exp(d1K1) · exp(d2K2). (3.14)

Regarding the rotation operators, still in Appendix A, it is shown that K3 commutes with
the other three rotation generators, namely K4,K5 and K6 [see Eq. (A.2)], so K3 generates
a separate U(1) Lie group; whileK4, K5 andK6 generate a SU(2) Lie group [see Eq. (A.20)].
As a consequence, the four rotation generators form4

Sp(4,R) ∩ SO(4) ∼= U(2) ∼= SU(2)×U(1) , (3.15)

where “ ∼= ” indicates group isomorphisms. This leads to factorising

R(θ) = exp(θ3K3) · exp(θ4K4 + θ5K5 + θ6K6) , (3.16)

and a similar expression for R(ϕ). Finally, one can use the Baker-Campbell-Haussdorf
formula [36–39] to further factorise the remaining SU(2) part. This can be done by first
introducing the complexified Lie algebra

Sz =
1

2i
K4, S+ =

1

2i
(K5 − iK6) , S− =

1

2i
(K5 + iK6) , (3.17)

where the notation is purposely reminiscent of spin physics. One can check that S†z = Sz
and S†+ = S−, and from the SU(2) commutation relations derived in Eq. (A.20), one has

[Sz,S+] = S+, [Sz,S−] = −S−, [S+,S−] = 2Sz . (3.18)

Expanding θ4K4+θ5K5+θ6K6 onto Sz, S+ and S−, the Baker-Campbell-Haussdorf formula
thus leads to [39]

exp(θ4K4 + θ5K5 + θ6K6) = exp(p+S+) exp(pzSz) exp(p−S−) , (3.19)

where

pz = −2 ln

(
cos θ − iθ4

θ
sin θ

)
, p− =

−τ∗ sin θ

θ cos θ − iθ4 sin θ
, p+ =

τ sin θ

θ cos θ − iθ4 sin θ
,

(3.20)

and where we have introduced

τ = −θ6 + iθ5 and θ =
√
θ2

4 + θ2
5 + θ2

6 . (3.21)

4The role played by the 4 rotation generators can be further understood as follows. As explained in Sec. 3.1,
(K3 +K4)/2 and (K3−K4)/2 generate separate rotations in the first and second sectors respectively. Thus
K3 induces the same rotation in both sectors and θ3 can be thought of as a “coherent phase” (which is why
K3 decouples from the other generators), while K4 generates opposite rotations in the two sectors and θ4
can be thought of as a “phase shift”. For the two coupling generators, K5 operates the same rotation in the
position plane and in the momentum plane, so it can be understood as a field redefinition; while K6 operates
a rotation that mixes positions and momenta of the two sectors.
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A similar expression can be found for R(ϕ), where qz, q−, q+ denote the parameters analogue
to pz, p−, p+. Combining the above results, any element of Sp(4,R) can be decomposed
according to

M =

R(θ)︷ ︸︸ ︷
[exp(p+S+) · exp(pzSz) · exp(p−S−) · exp(θ3K3)] ·

Z(d)︷ ︸︸ ︷
[exp(d1K1) · exp(d2K2)]

·
R(ϕ)︷ ︸︸ ︷

[exp(q+S+) · exp(qzSz) · exp(q−S−) · exp(ϕ3K3)] .

(3.22)

This fully factorised form will be of particular convenience when it comes to characterising
the quantum states of the system in Sec. 5.

3.3 Helicity basis

In Sec. 2.1, the creation and annihilation operators have been introduced as an equiv-
alent parametrisation of phase space, called the helicity basis. In the quantum mechanical
context, it leads to the convenient occupation-number representation, which is why we now
translate the above considerations into that basis.

We recall that when applying a canonical transformation, the helicity variables trans-
form via matrices of the form Mk = UMkU

† forMk ∈ Sp(4,R), which satisfy M†
kJMk =

J and det(Mk) = 1, see the discussion below Eq. (2.22). In particular, this is the case for
the Green matrix Gk(t, tin). Those two conditions define the SU(2, 2) group, but given that
SU(2, 2) is a fifteen dimensional Lie group, Sp(4,R) cannot be isomorphic to the whole group
and instead constitutes a ten dimensional subgroup, which we denote Sp(4,R). More pre-
cisely, decomposing a generic matrix Mk ∈M4(R) into blocks according to

Mk =

(
A B
C D

)
(3.23)

with A,B,C,D ∈M2(R), the condition Mk = UMk(t)U
† can be written as

Mk =

(A B
B∗ A∗

)
, (3.24)

where A = (1/2)[(A+D) + i(C −B)] and B = (1/2)[(A−D) + i(C +B)]. As explained

below Eq. (3.1), if Mk ∈ Sp(4,R) then MT
k ∈ Sp(4,R), which implies that M†

k is also

symplectic, hence MkJM†
k = J . This leads to the two conditions

AA† −BB† = I2 and ABT −BAT = 0 . (3.25)

Upon expanding the matrices A and B in terms of the so-called Bogolyubov coefficients,

A =

(
α11 α12

α21 α22

)
and B =

(
β11 β12

β21 β22

)
, (3.26)

Eq. (3.25) leads to the four conditions

|α11|2 + |α12|2 − |β11|2 − |β12|2 = 1 , (3.27)

|α21|2 + |α22|2 − |β21|2 − |β22|2 = 1 , (3.28)

α11α
∗
21 + α12α

∗
22 − β11β

∗
21 − β12β

∗
22 = 0 , (3.29)
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α11β21 + α12β22 − α21β11 − α22β12 = 0 . (3.30)

This fixes 2 real and 2 complex combinations out of the 8 complex Bogolyubov coefficients,
that is 6 out of the 16 real parameters, and one recovers the 10 degrees of freedom of Sp(4,R).

One may note that the Green matrix Gk(t, tin) being an element of Sp(4,R), it can also
be written in terms of Bogolyubov coefficients according to Eqs. (3.24) and (3.26). In that
case, the relations (3.27)-(3.30) translate the fact that the Poisson brackets (or their quantum
analogue, the commutation relations) are preserved by the dynamical evolution. Moreover,
when applying â~k(t) = Gk(t, tin)â~k(tin), one notices that A and A∗ transform annihilation
into annihilation operators, and creation into creation operators, respectively. Therefore,
they maintain the overall excitation number while reshuffling the excitations between the
different sectors. On the contrary, B and B∗ convert annihilation into creation operators and
conversely, so they create or annihilate new excitations. We finally note that α11, α22, β11

and β22 act on each sector separately while α12, α21, β12 and β21 mix the two sectors. As
a consistency check, one can verify that when these mixing Bogolyubov coefficients van-
ish, Eqs. (3.27)-(3.30) reduce to the Sp(2,R)-constraint on the Bogolyubov coefficients [13],
namely |α11|2 − |β11|2 = |α22|2 − |β22|2 = 1.

Let us now study the infinitesimal properties of Sp(4,R), as we did for Sp(4,R) in
Sec. 3.1. We observe that the ten generators of Sp(4,R) can be found by simple correspon-
dence with the ten generators of Sp(4,R), upon introducing exp(αiLi) ≡ U exp(αiKi)U

† =
exp(αiUKiU

†), where i = 1 · · · 10 and where we have used the fact that U is unitary.
Writing Ki = σai ⊗ σbi and U = u⊗ I2 with

u =
1√
2

(
1 i
1 −i

)
, (3.31)

the generators of Sp(4,R) can be calculated by means of Eq. (3.9) and one has Li =
UKiU

† = (u⊗ I2) (σai ⊗ σbi) (u† ⊗ I2) = uσaiu
† ⊗ σbi . Given that uσxu

† = −σy,
uσyu

† = −σz and uσzu
† = σx, one concludes that the generators of Sp(4,R) are merely a

reshuffling of those of Sp(4,R), where the detailed correspondence is given in Table 2. In par-
ticular, one observes that rotations in the helicity basis are block diagonal (which generalises
the Sp(2,R) result where rotations in the helicity basis are (2 × 2) diagonal matrices [13]).
Note that the commutation relations between the Li operators directly follow from those
between the Ki operators given in Appendix A.

Squeezing Rotation Boost

L1 = K8 L3 = −iK2 L7 = iK3

L2 = K7 L4 = −iK1 L8 = iK4

L5 = K5 L9 = K10

L6 = −iK9 L10 = iK6

Table 2. Generators of the helicity basis Sp(4,R) in the fundamental representation, Li = UKiU
†,

where the Ki generators are given in Table 1.

The Bloch-Messiah decomposition (3.11) can also be performed in the helicity basis,

M(θ,d,ϕ) = R(θ)Z(d)R(ϕ) , (3.32)
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where Z = UZU † and R = URU † are the squeezing matrix and the rotation matrix in
the helicity basis. This expression allows us to connect the Bogolyubov coefficients with the
squeezing and rotation parameters. Using the above results, an explicit calculation yields

α11 =e−i(θ3+ϕ3)

(
cos θ − iθ4

θ
sin θ

)(
cosϕ− iϕ4

ϕ
sinϕ

)
cosh r1

− e−i(θ3+ϕ3)

[
(θ5 − iθ6)

sin θ

θ

] [
(ϕ5 + iϕ6)

sinϕ

ϕ

]
cosh r2 , (3.33)

α12 =e−i(θ3+ϕ3)

(
cos θ − iθ4

θ
sin θ

)[
(ϕ5 − iϕ6)

sinϕ

ϕ

]
cosh r1

+ e−i(θ3+ϕ3)

[
(θ5 − iθ6)

sin θ

θ

](
cosϕ+ i

ϕ4

ϕ
sinϕ

)
cosh r2 , (3.34)

α21 =− e−i(θ3+ϕ3)

[
(θ5 + iθ6)

sin θ

θ

](
cosϕ− iϕ4

ϕ
sinϕ

)
cosh r1

− e−i(θ3+ϕ3)

(
cos θ + i

θ4

θ
sin θ

)[
(ϕ5 + iϕ6)

sinϕ

ϕ

]
cosh r2 , (3.35)

α22 =− e−i(θ3+ϕ3)

[
(θ5 + iθ6)

sin θ

θ

] [
(ϕ5 − iϕ6)

sinϕ

ϕ

]
cosh r1

+ e−i(θ3+ϕ3)

(
cos θ + i

θ4

θ
sin θ

)(
cosϕ+ i

ϕ4

ϕ
sinϕ

)
cosh r2 , (3.36)

and

β11 =e−i(θ3−ϕ3)

(
cos θ − iθ4

θ
sin θ

)(
cosϕ+ i

ϕ4

ϕ
sinϕ

)
sinh r1

− e−i(θ3−ϕ3)

[
(θ5 − iθ6)

sin θ

θ

] [
(ϕ5 − iϕ6)

sinϕ

ϕ

]
sinh r2 , (3.37)

β12 =e−i(θ3−ϕ3)

(
cos θ − iθ4

θ
sin θ

)[
(ϕ5 + iϕ6)

sinϕ

ϕ

]
sinh r1

+ e−i(θ3−ϕ3)

[
(θ5 − iθ6)

sin θ

θ

](
cosϕ− iϕ4

ϕ
sinϕ

)
sinh r2 , (3.38)

β21 =− e−i(θ3−ϕ3)

[
(θ5 + iθ6)

sin θ

θ

](
cosϕ+ i

ϕ4

ϕ
sinϕ

)
sinh r1

− e−i(θ3−ϕ3)

(
cos θ + i

θ4

θ
sin θ

)[
(ϕ5 − iϕ6)

sinϕ

ϕ

]
sinh r2 , (3.39)

β22 =− e−i(θ3−ϕ3)

[
(θ5 + iθ6)

sin θ

θ

] [
(ϕ5 + iϕ6)

sinϕ

ϕ

]
sinh r1

+ e−i(θ3−ϕ3)

(
cos θ + i

θ4

θ
sin θ

)(
cosϕ− iϕ4

ϕ
sinϕ

)
sinh r2 , (3.40)

where θ =
√
θ2

4 + θ2
5 + θ2

6 and ϕ =
√
ϕ2

4 + ϕ2
5 + ϕ2

6 have already been defined in Eq. (3.21),
and where we have introduced

r1 = d1 + d2 and r2 = d2 − d1 . (3.41)

One can check that if the rotation parameters associated with the coupling generators vanish,
i.e. if θ5 = θ6 = ϕ5 = ϕ6 = 0, then the mixing Bogolyubov coefficients vanish too, i.e. α12 =
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α21 = β12 = β21 = 0, and the link between the Bogolyubov coefficients and the squeezing
and rotation parameters reduces to the one obtained in Sp(2,R) [13].

Finally, a fully factorised form for the elements of Sp(4,R) can be obtained from trans-
posing Eq. (3.22), which gives rise to

M =

R(θ)︷ ︸︸ ︷
[exp(p+L+) · exp(pzLz) · exp(p−L−) · exp(θ3L3)] ·

Z(d)︷ ︸︸ ︷
[exp(d1L1) · exp(d2L2)]

·
R(ϕ)︷ ︸︸ ︷

[exp(q+L+) · exp(qzLz) · exp(q−L−) · exp(ϕ3L3)] ,

(3.42)

where Lz = USzU
† = L4/(2i), L+ = US+U

† = (L5 − iL6) /(2i) and L− = US−U † =
(L5 + iL6) /(2i).

3.4 Quantum representation

Since the Green’s matrix is an element of the symplectic group, in order to describe the
dynamics in the occupation-number representation, one first needs to derive the quantum
representation of the elements of Sp(4,R). This can be done by following the procedure
outlined in Refs. [40–42] and presented in details in Appendix B of Ref. [13]. It consists in
first linearising the elements of the Sp(4,R) Lie group,

Mk ' I4 +
10∑

a=1

εakLa, (3.43)

where εak are (small) real parameters. This generates a canonical transformation on the
helicity variables, given by

â′~k ' â~k +
10∑

a=1

εakLaâ~k . (3.44)

Our goal is to find a set of operators L̂
~k
a such that this can be written as a unitary transfor-

mation â′~k = M̂†â~kM̂, with

M̂ ' Î +

∫

R3

d3~q
10∑

a=1

εa~q L̂
~q
a . (3.45)

Note that L̂~qa has to be anti-hermitian for M̂ to be unitary. By expanding this transformation

in εa~q , one obtains â′~k ' â~k+
[
â~k,
∫
R3 d3q

∑10
a=1 ε

a
q L̂

~q
a

]
(where the commutator is performed on

each entry of â~k). Since this formula should match Eq. (3.44), and given the commutation

relations (2.16), this suggests to look for L̂~qa operators that are quadratic in the creation and
annihilation operators,

L̂~qa = â†~qQaâ~q, (3.46)

where Qa is anti-hermitian since L̂~qa is. Making use of Eq. (2.16), this leads to[
â~k,
∫
R3 d3q

∑10
a=1 ε

a
q L̂

~q
a

]
= iJ ∑10

a=1 ε
a
kQaâ~k. By identification with Eq. (3.44), this gives

La = iJQa, which can be inverted as

Qa = iJLa . (3.47)
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Squeezing L̂
~k
1 =

(
â†

1,~k
â†

1,−~k − â1,~k
â

1,−~k

)
−
(
â†

2,~k
â†

2,−~k − â2,~k
â

2,−~k

)

L̂
~k
2 =

(
â†

1,~k
â†

1,−~k − â1,~k
â

1,−~k

)
+
(
â†

2,~k
â†

2,−~k − â2,~k
â

2,−~k

)

Rotation L̂
~k
3 = −i

(
â†

1,~k
â

1,~k
+ â†

1,−~kâ1,−~k + 1
)
− i
(
â†

2,~k
â

2,~k
+ â†

2,−~kâ2,−~k + 1
)

L̂
~k
4 = −i

(
â†

1,~k
â

1,~k
+ â†

1,−~kâ1,−~k + 1
)

+ i
(
â†

2,~k
â

2,~k
+ â†

2,−~kâ2,−~k + 1
)

L̂
~k
5 =

(
â†

1,~k
â

2,~k
+ â†

1,−~kâ2,−~k

)
−
(
â†

2,~k
â

1,~k
+ â†

2,−~kâ1,−~k

)

L̂
~k
6 = −i

(
â†

1,~k
â

2,~k
+ â†

1,−~kâ2,−~k

)
− i
(
â†

2,~k
â

1,~k
+ â†

2,−~kâ1,−~k

)

Boost L̂
~k
7 = i

(
â†

1,~k
â†

1,−~k + â
1,~k
â

1,−~k

)
+ i
(
â†

2,~k
â†

2,−~k + â
2,~k
â

2,−~k

)

L̂
~k
8 = i

(
â†

1,~k
â†

1,−~k + â
1,~k
â

1,−~k

)
− i
(
â†

2,~k
â†

2,−~k + â
2,~k
â

2,−~k

)

L̂
~k
9 =

(
â†

1,~k
â†

2,−~k + â†
2,~k
â†

1,−~k

)
−
(
â

1,~k
â

2,−~k + â
2,~k
â

1,−~k

)

L̂
~k
10 = i

(
â†

1,~k
â†

2,−~k + â†
2,~k
â†

1,−~k

)
+ i
(
â

1,~k
â

2,−~k + â
2,~k
â

1,−~k

)

Table 3. Quantum representation of the generators of Sp(4,R).

This yields the generators L̂~qa of the quantum representation listed in Table 3.
Another set of generators that is obtained from straightforward linear combinations of

the L̂
~k
a operators is given by

â†
i,~k
â†
i,−~k , â

i,~k
â
i,−~k , â†

i,~k
â
i,~k

+ â†
i,−~kâi,−~k + 1 with i = 1, 2 , (3.48)

which correspond to the two sp(2,R) subalgebra identified below Eq. (3.8), and

â†
i,~k
â†
j,−~k + â†

j,~k
â†
i,−~k , â

i,~k
â
j,−~k + â

j,~k
â
i,−~k , â†

i,~k
â
j,~k

+ â†
i,−~kâj,−~k with i, j = 1, 2 ,

(3.49)

which correspond to the coupling generators. The operators in Eqs. (3.48) generate two-
mode creation, two-mode annihilation and a number counting operation respectively, acting
on each sector separately. The first and second mixing generators in Eq. (3.49) originate

from the two mixing boosts (L̂
~k
9 and L̂

~k
10). They correspond to the creation and annihilation

of entangled pairs of particles with opposite momenta in the two sectors. The third mixing

generator in Eq. (3.49) originates from the two mixing rotations (L̂
~k
5 and L̂

~k
6). It does not

lead to net particle creation, but rather transfer excitations from one sector to the other.
One can check that all these operations preserve momentum conservation.

4 Quantum dynamics

In Sec. 2, we explained how the symplectic group Sp(4,R) naturally appears in the
description of physical systems made of two free fields. Having then studied its mathematical
structure in Sec. 3, we now want to apply these tools to describe the dynamics of two-field
systems. To this end, we explore the structure of the system’s Hamiltonian in Sec. 4.1,
before applying our findings to an explicit example. Then, we provide in Sec. 4.2 a tractable
expression of the evolution operator.
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4.1 Hamiltonian structure

In this section, we express the Hamiltonian in the occupation-number representation,
to see which interactions are allowed in the theory on generic grounds. The only constraint
we have on the Hamiltonian is that it stems from a real symmetric kernel, i.e. Hk is a
real symmetric matrix. From Eq. (2.15), Hk can thus be written as Hk = UNkU

†, where

Nk = (D−1
k )THkD

−1
k +(D−1

k )TΩḊ
−1
k is a real symmetric matrix (the first term is obviously

symmetric, while for the second term, this can be shown by differentiating with respect to
time the symplectic relation (2.19) satisfied by D−1

k , and by using that ΩT = −Ω), which
we parametrise as

Nk =

(
A C

CT B

)
, (4.1)

with A,B,C ∈M2(R) and AT = A, BT = B. This leads to

Hk =

(
a b
b∗ a∗

)
(4.2)

with a = (A +B) + i(CT − C) and b = (A −B) + i(CT + C). Inverting those formulas,
one obtains that a + a∗ = 2(A + B) and a − a∗ = 2i(CT − C), so the real part of a should
be symmetric while its imaginary part should be antisymmetric; and b + b∗ = 2(A−B) and
b− b∗ = 2i(CT + C), so both the real and imaginary parts of b should be symmetric. This
imposes that a and b are of the form

a =

(
F1,k F1↔2,ke

iϕk

F1↔2,ke
−iϕk F2,k

)
, b =

(
R1,ke

iΘ1,k R1↔2,ke
iξk

R1↔2,ke
iξk R2,ke

iΘ2,k

)
, (4.3)

where F1,k, F1↔2,k, F2,k, ϕk, R1,k, R1↔2,k, R2,k, Θ1,k, Θ2,k and ξk are ten real parameters, that
in general depend on time, and which indeed saturate the ten degrees of freedom contained
in Nk. In fact, since the Green matrix is generated from the (integrated) Hamiltonian, those
ten parameters fully determine the squeezing and rotation parameters, or equivalently the
Bogolyubov coefficients, that characterise the dynamics.

The Hamiltonian Ĥ =
∫
R3+ d3~kâ†~kHkâ~k thus contain three terms,

Ĥ =

∫

R3+

d3~k
(
Ĥ

1,~k
+ Ĥ

2,~k
+ Ĥ

1↔2,~k

)
, (4.4)

with

Ĥ
i,~k

=Fi,k

(
â†
i,~k
â
i,~k

+ â†
i,−~kâi,−~k + 1

)
+Ri,k

(
eiΘi,k â†

i,~k
â†
i,−~k + h.c.

)
for i = 1, 2 , (4.5)

Ĥ
1↔2,~k

=F1↔2,ke
iϕk
(
â†

1,~k
â

2,~k
+ â†

1,−~kâ2,−~k

)
+R1↔2,ke

iξk
(
â†

1,~k
â†

2,−~k + â†
2,~k
â†

1,−~k

)
+ h.c. .

(4.6)

The Hamiltonian can thus be decomposed onto the quantum generators listed in Table 3
(this is because JHk is an element of the Lie algebra), hence we can benefit from their
physical interpretation discussed in Sec. 3.4. The components Ĥ1 and Ĥ2 drive each sector
separately and are made of two terms: a harmonic part controlled by Fi,k that does not
induce particle creation, and a parametric part controlled by Ri,k that changes the particle
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content. Physically, this parametric amplification is related to the presence of an external field
(the electric field for the Schwinger effect [43], the gravitational field for the Hawking effect,
space-time curvature for the physics of cosmological perturbations, etc.). The component
Ĥ1↔2 is an interaction term between the two sectors, and also contains two contributions: a
“transferring” part, controlled by F1↔2,k(t) and built from the two mixing rotation operators,
that transfers particles from one sector to the other; and an “entangling” part, controlled by
R1↔2,k and built from the two mixing boost operators, that creates or annihilates joint pairs
of particles in the two sectors.

Let us note that even when the entangling part is absent, i.e. when R1↔2,k = 0, en-
tanglement between the two sectors can still indirectly arise from first creating particles in
the two sectors separately with the parametric terms, and then transferring those particles
between sectors by means of the transferring term.

Example of two massless fields in a cosmological background

Let us illustrate the formalism introduced above with a simple example. We consider
two massless scalar fields φ and χ on a Friedmann-Lemâıtre-Robertson-Walker spatially flat
geometry,

ds2 = a2(η)
(
−dη2 + δijdxidxj

)
, (4.7)

where a is the scale factor and η is the conformal time. The Ricci scalar R of this metric is
given by R = 6a′′/a3, where a prime denotes derivation with respect to conformal time. The
action is given by

S = −
∫

d4x
√
−det g

(
1

2
gµν∂µφ∂νφ+

R

2
ζφ2 +

1

2
gµν∂µχ∂νχ+

R

2
ζχ2 + λ2φχ

)
, (4.8)

where ζ is the conformal coupling constant and λ is a coupling parameter that has dimension
of a mass. Expanding the scalar fields into Fourier modes as in Eq. (2.6) and making use of
the reality prescription φ∗~k = φ−~k and χ∗~k = χ−~k, with the the metric (4.7) the action reads

S ≡
∫

dηL =−
∫

dη

∫

R3+

d3~k
[
a2φ′−~kφ

′
~k

+
(
k2a2 +Rζa4

)
φ−~kφ~k

+a2χ′−~kχ
′
~k

+
(
k2a2 +Rζa4

)
χ−~kχ~k + λ2a4

(
φ−~kχ~k + χ−~kφ~k

)]
,

(4.9)

which also defines the Lagrangian density L. The conjugate momenta can be identified as
pφ~k

= a2φ′−~k and pχ~k
= a2χ′−~k, and upon performing a Legendre transform, one obtains a

Hamiltonian of the form (2.7), with

Hk =




k2a2 +Rζa4 λ2a4 0 0
λ2a4 k2a2 +Rζa4 0 0

0 0 1/a2 0
0 0 0 1/a2


 and z~k =




φ~k
χ~k
pφ~k
pχ~k


 . (4.10)

The momentum sector of the Hamiltonian (i.e. the bottom-right block) can be simplified by
performing a canonical transformation of the form (2.20), z̃~k = Mkz~k, with

Mk =




a 0 0 0
0 a 0 0
a′ 0 1/a 0
0 a′ 0 1/a


 . (4.11)
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One can check thatMk satisfies the symplectic relation (2.19), and that the new Hamiltonian
kernel, given by Eq. (2.21), reads

H̃k =




k2 +Rζa2 − a′′/a λ2a2 0 0
λ2a2 k2 +Rζa2 − a′′/a 0 0

0 0 1 0
0 0 0 1


 . (4.12)

The z̃~k variables are usually referred to as the Mukhanov-Sasaki variables, and in the helicity
basis, Eq. (2.15) gives rise to a Hamiltonian kernel of the form (4.2), with

kRi,k =
a2

2
Rζ − a′′

2a
, kFi,k = k2 + kRi,k , F1↔2,k = R1↔2,k =

λ2a2

2k
, (4.13)

and where all the phases vanish, i.e. ϕk = Θ1,k = Θ2,k = ξk = 0. This allows one to relate
the four Hamiltonian contributions identified in Sec. 4.1, namely the harmonic, parametric,
transferring and entangling terms, to the microphysical parameters of the problem. In par-
ticular, one can see that the parametric term is generated by the external “field” a(t) (since
when the scale factor is a constant, Ri,k = 0), and that the transferring and entangling terms
are controlled by the coupling parameter λ, in agreement with the discussion in Sec. 4.1.

Since R = 6a′′/a3, the parametric term is given by kRi,k = (3ζ − 1/2)a′′/a. Therefore,
if one sets ζ = 1/6, the parametric term vanishes, and the harmonic term simply becomes
Fi,k = k, as in flat space time. This is because, in that case, the fields are conformally coupled
to the metric, which removes the effect of space-time expansion that otherwise generates
parametric amplification. This implies that, in the absence of direct coupling (i.e. if λ = 0),
there is no particle creation, and the above system is made of uncoupled harmonic oscillators.
However, in the presence of direct coupling, both the transferring and the entangling terms
become non vanishing, which guarantees that entangled pairs of particles are created and
exchanged between the two fields. This is because the interaction term breaks conformal
invariance, as noticed in Ref. [44].

4.2 Evolution operator

We now investigate the integrated dynamics. As explained in Sec. 3.3, the Green’s
matrix in the helicity basis, Gk(t, tin), belongs to Sp(4,R). Its quantum analogue, the so-
called evolution operator Û~k(t, tin), thus lies in the quantum representation of Sp(4,R), which
was studied in Sec. 3.4. In this section, we make use of the formal results derived above to
derive a tractable expression for the evolution operator.

Since the Green matrix is separable in Fourier space for free fields, the evolution operator
is also factorisable as

Û(t, tin) =
∏

~k∈R3+

Û~k(t, tin) , (4.14)

where Û~k(t, tin) ∈ Sp(4,R). Making use of the Bloch-Messiah decomposition presented in
Secs. 3.2 and 3.3, one can write

Û~k(t, tin) = R̂~k(θk) · Ẑ~k(dk) · R̂~k(ϕk) , (4.15)

see Eq. (3.32), where the squeezing and rotation parameters depend only on the norm of the
wavevector, since this is also the case for the Green’s matrix. Further factorisation can be
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obtained by the procedure outlined in Sec. 3.3 and leading to Eq. (3.42), and replacing the
generators in Eq. (3.42) by their expression in the quantum representation given in Table 3,
one finds that the evolution operator involves three types of operation only, namely

R̂
i,~k

(θk) ≡ exp
[
−iθk

(
â†
i,~k
â
i,~k

+ â†
i,−~kâi,−~k + 1

)]
, (4.16)

Ẑ
i,~k

(rk) ≡ exp
[
rk

(
â†
i,~k
â†
i,−~k − âi,~kâi,−~k

)]
, (4.17)

R̂
i→j,~k(pk) ≡ exp

[
ipk

(
â†
j,~k
â
i,~k

+ â†j ~−k
â
i,−~k

)]
. (4.18)

The operators R̂
i,~k

(θk) are constructed from the rotation generators and induce global phase

shifts in sector i, without changing the particle content. The squeezing operators Ẑ
i,~k

(rk)

create pairs of entangled particles in each sector separately, and R̂
i→j,~k(pk) transfers particles

from one sector to the other without changing their overall number. In order to express the
operators R̂~k(θk), R̂~k(ϕk) and Ẑ~k(dk) that appear in Eq. (4.15) in terms of R̂

i,~k
, R̂

i→j,~k and

Ẑ
i,~k

, we adopt a diagrammatic representation analogous to quantum circuits:

R̂~k(ϕk) :

R̂1(ϕk3)

R̂2→1(−qk−)

R̂1(−iqkz/2)

R̂1→2(qk+)

R̂2(ϕk3) R̂2(iqkz/2)

Ẑ~k(dk) :

Ẑ1(rk1)

Ẑ2(rk2)

R̂~k(θk) :

R̂1(θk3)

R̂2→1(−pk−)

R̂1(−ipkz/2)

R̂1→2(pk+)

R̂2(θk3) R̂2(ipkz/2)

In those graphical representations, the top line stands for operations performed on the first
sector, the bottom line on the second sector, and entangling operations are displayed with
joint boxes. To run a “circuit”, one successively applies the operations from the left to right
(along the direction shown with the arrows). The parameters entering the circuits were
introduced in Sec. 3.2. The squeezing parameters rk1 = dk1 + dk2 and rk2 = dk2 − dk1 control
the two-mode creation in each sector, while the mixing parameters pkz , p

k
−, p

k
+ and qkz , q

k
−, q

k
+

control the entanglement between the two sectors. This shows that dynamical evolution can
be seen as successive applications of phase rotations within each sector, creations of particles
with opposite momenta in each subspace, and particle transfers between the two sectors.
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5 Quantum state

We are now in a position to write down the quantum state of the system in the
occupation-number basis. To that hand, we first need to equip our Hilbert space with a
Fock-space structure. In practice, we impose that the creation and annihilation operators
are ladder operators for the Hamiltonian at initial time tin, i.e.

[
Ĥ, â†

i,±~k

]
= ci,kâ

†
i,±~k and

[
Ĥ, â

i,±~k

]
= −ci,kâi,±~k (5.1)

at tin, for i = 1, 2 and where ci,k are real parameters. Among the various terms (4.5) and (4.6)

that the Hamiltonian may contain, only number counting operators, N̂
i,±~k ≡ â†

i,±~kâi,±~k,

give commutators of the form (5.1). This imposes that only the harmonic terms, i.e. those
controlled by Fi,k, can be present at initial time, leading to ci,k = Fi,k(tin); while one must
have Ri,k(tin) = R1↔2,k(tin) = F1↔2,k(tin) = 0. This is for instance the case in the example
discussed in Sec. 4.1 if the expansion is initially accelerating, since one can check that, then,
in the asymptotic past (i.e. in the limit a → 0), only Fi,k ' k survives in Eq. (4.13). More
generally, this is true in inflating backgrounds where Fourier modes get blue-shifted below
the Hubble scale at early time, and hereafter we will assume that this condition is indeed
satisfied.

We then build the Fock basis of the initial Hilbert space,

E(tin) =
∏

~k∈R3+

E(1)
~k

(tin)⊗ E(1)

−~k (tin)⊗ E(2)
~k

(tin)⊗ E(2)

−~k (tin), (5.2)

which is a quadripartite system. The four-mode vacuum state is the one annihilated by all
four annihilation operators, denoted by

|�0(tin)〉 =
∏

~k∈R3+

|0(1)
~k
, 0

(1)

−~k, 0
(2)
~k
, 0

(2)

−~k〉 (tin) , (5.3)

and the rest of the Fock space can be built by successive applications of creation operators,
which leads to the Fock states

|m(1)
~k
, n

(1)

−~k, s
(2)
~k
, t

(2)

−~k〉 (tin) =

(
â†

1,~k

)m

m!

(
â†

1,−~k

)n

n!

(
â†

2,~k

)s

s!

(
â†

2,−~k

)t

t!
|0(1)
~k
, 0

(1)

−~k, 0
(2)
~k
, 0

(2)

−~k〉 (tin).

(5.4)

From now on, we drop the argument tin to make the notation lighter.

5.1 Four-mode squeezed state

The evolved vacuum is obtained by application of the evolution operator on the initial
vacuum5

|�0(t)〉 = Û(t, tin) |�0(tin)〉 . (5.5)

5Note that, in place of the initial vacuum, one may consider an initial state of the form |Ψ(tin)〉 =∏
~k Â~k(tin) |�0(tin)〉, where Â~k(tin) ∈ Sp(4,R). Such states are often referred to as “alpha vacua” [45] (where

further restrictions on Â~k(tin) sometimes apply). Since the product of two elements of Sp(4,R) still lies in
Sp(4,R), the evolved alpha vacua are still of the form (5.5), so our discussion encompasses this possibility.
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In this section, we present its explicit expression in the Fock space, where we derive the most
generic form of a four-mode squeezed state.

In Appendix B, we apply the operators appearing in the circuits sketched in Sec. 4.2
onto the vacuum state (5.3) one after the other, and derive the following expression for the
evolved vacuum state |�0(t)〉 =

∏
~k∈R3+ |�0~k(t)〉,

|�0~k(t)〉 =
∞∑

n,m=0

m∑

s,t=−n
ck(n,m, s, t) |(n+ s)

(1)
~k
, (n+ t)

(1)

−~k, (m− s)
(2)
~k
, (m− t)(2)

−~k〉 , (5.6)

with

ck(n,m, s, t) =
e−2i[θk3 (n+m+1)+ϕk3 ]

cosh rk1 cosh rk2
(−1)n+mep

k
z (m−n) tanhn(rk1) tanhm(rk2)(ipk+)−s−t

m!

n!

√
(m− s)!(m− t)!
(n+ s)!(n+ t)!

m∑

i=max(0,s)

(
pk−p

k
+e
−pkz
)i

(n+ i)!

i!(i− s)!(m− i)!
m∑

j=max(0,t)

(
pk−p

k
+e
−pkz
)j

(n+ j)!

j!(j − t)!(m− j)!

(5.7)

(and where the summation index t should not be confused with the time parameter). This
generic expression of four-mode squeezed states expanded in the Fock basis is one of the main
results of this paper. It features an infinite tower of entangled states, characterised by non-
trivial numbers of excitations. More precisely, there are 6 indices being summed over, which
can be interpreted as follows. The indices i and j are internal and can be resumed within each
Fock state separately, their physical interpretation will be made clearer below.6 The indices
n and m are related to the creation of entangled pairs of excitations with opposite wavevector
inside each sector separately, and arise from the squeezing operation (4.17). The indices s
and t are related to the transfer of excitations between the two sectors, with wavevector ~k
and −~k respectively. They arise from the transferring operation (4.18) and entangle the two
sectors. They are negative when excitations go from the first sector to the second sector,
positive otherwise, and their bounds guarantee that the number of excitations remains non
negative. One should also note that ck(m,n, s, t) is invariant when swapping n,m and s, t,
i.e. ~k and −~k, which is a consequence of statistical isotropy. The form of the expansion (5.6)
is therefore a direct consequence of the symmetries of the problem, although the precise
expression of ck(m,n, s, t) given in Eq. (5.7) required a non-trivial calculation.

Let us stress that only seven out of the ten Sp(4,R) squeezing and rotation parameters
enter Eq. (5.7). This is because, as explained in Appendix B, the rotation R̂~k(ϕk) only adds
a global phase to the initial vacuum state, since it is invariant under rotations (in practice,
this global phase is irrelevant, which reduces the number of effective parameters down to

6The internal indices i and j can be resumed in terms of the hypergeometric function 2F1, leading to

ck(n,m, s, t) =
e−2i[ϕk

3+θ
k
3 (n+m+1)]

cosh rk1 cosh rk2
(−1)n+mep

k
z (m−n) tanhn

(
rk1

)
tanhm

(
rk2

)(
pk−p

k
+e
−pkz
)max (0,s)+max (0,t)

(ipk+)−s−t
m!

n!

√
(m− s)!(m− t)!
(n+ s)!(n+ t)!

1

|s|!|t|!
[n+ max (0, s)]![n+ max (0, t)]!

[m−max (0, s)]![m−max (0, t)]!

2F1

[
−m+ max (0, s), 1 + n+ max (0, s), 1− s+ 2 max (0, s),−pk−pk+e−p

k
z

]

2F1

[
−m+ max (0, t), 1 + n+ max (0, t), 1− t+ 2 max (0, t),−pk−pk+e−p

k
z

]
.

(5.8)
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six). As a consequence, qk−, qk+ and qkz are ineffective (had we started from a different initial
state, those parameters would have entered the final result, see footnote 5). In practice, once
the Hamiltonian of the system is specified, the dynamics can be integrated, which yields the
seven relevant squeezing and rotation parameters, rk1 , rk2 , ϕk3, θk3 , pk−, pk+ and pkz , and thus
fully determines the quantum state of the system at any time.

As a consistency check, one may verify that in the decoupled limit, the product of two
two-mode squeezed states is recovered. Setting the two mixing parameters θk5 and θk6 to zero,
Eq. (3.21) leads to θk = |θk4 | and τk = 0, so Eq. (3.20) gives pk− = pk+ = 0 and pkz = 2iθk4 .
In Eq. (5.7), the overall factor (pk−)i+j is therefore non vanishing only when i + j = 0,
i.e. i = j = 0 since i and j are non negative. Then, the overall factor (pk+)i+j−s−t is non
vanishing only when s+ t = 0, but since s ≤ i = 0 and t ≤ j = 0, this implies that s = t = 0,
so only one term remains. This gives rise to

|�0~k(t)〉 = e−2i(θk3+ϕk3)
∞∑

n=0

c1,k(n)︷ ︸︸ ︷
(−1)ne−2in(θk3+θk4 )

cosh rk1
tanhn(rk1)

∣∣∣n(1)
~k
, n

(1)

−~k

〉

×
∞∑

m=0

(−1)me−2im(θk3−θk4 )

cosh rk2
tanhm(rk2)

︸ ︷︷ ︸
c2,k(m)

∣∣∣m(2)
~k
,m

(2)

−~k

〉
, (5.9)

which defines the two-mode squeezed states coefficients ci,k(n). Up to a global irrelevant
phase, this is indeed the product of two, uncoupled and disentangled, two-mode squeezed
states [13].

Expansion around the uncoupled limit

In order to gain some physical insight into the structure of the four-mode squeezed
states, and having in mind possible comparisons with perturbative techniques that expand
in the amplitude of the interaction Hamiltonian (i.e. in the terms in the Hamiltonian that
mix the two sectors), let us now expand the evolved vacuum state (5.7) around the uncou-
pled limit (5.9). From Eq. (3.21), one can see that the coupling parameters, i.e. θk5 , ϕk5,
θk6 and ϕk6, only appear through the combination τk = −(θk6 − iθk5) = |τk|ei arg(τk), since

θk =
√

(θk4)2 + |τk|2, and given that ϕk5 and ϕk6 are irrelevant, as explained above. As a con-

sequence, an expansion around the uncoupled limit is an expansion in |τk|. Upon expanding
Eq. (5.7) up to quadratic order in |τk|, one obtains

|�0~k(t)〉 =

∞∑

n,m=0

c1,k(n)c2,k(m)

{∣∣∣n(1)
~k
, n

(1)

−~k,m
(2)
~k
,m

(2)

−~k

〉

+ |τk|
[
Fk(n,m+ 1) |11→2〉 − F∗k (n+ 1,m) |12→1〉

]

+
|τk|2

2

[
Fk(n,m+ 2)Fk(n− 1,m+ 1) |21→2〉+ F∗k (n+ 2,m)F∗k (n+ 1,m− 1) |22→1〉

+ 2F2
k (n,m+ 1) |1-11→2〉+ 2(F∗k )2(n+ 1,m) |1-12→1〉

− 2Fk(n,m)F∗k (n+ 1,m+ 1) |21↔2〉+ 2Gk(n,m)
∣∣∣n(1)
~k
, n

(1)

−~k,m
(2)
~k
,m

(2)

−~k

〉]}
,

(5.10)
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where the Fock states that appear in this expansion are labeled by the number of particles
being transferred from one sector to the other (while respecting statistical isotropy), and are
given by

|11→2〉 '
∣∣∣(n− 1)

(1)
~k
, n

(1)

−~k, (m+ 1)
(2)
~k
,m

(2)

−~k

〉
+
∣∣∣n(1)
~k
, (n− 1)

(1)

−~k,m
(2)
~k
, (m+ 1)

(2)

−~k

〉

|12→1〉 =
∣∣∣(n+ 1)

(1)
~k
, n

(1)

−~k, (m− 1)
(2)
~k
,m

(2)

−~k

〉
+
∣∣∣n(1)
~k
, (n+ 1)

(1)

−~k,m
(2)
~k
, (m− 1)

(2)

−~k

〉

|21→2〉 =
∣∣∣(n− 2)

(1)
~k
, n

(1)

−~k, (m+ 2)
(2)
~k
,m

(2)

−~k

〉
+
∣∣∣n(1)
~k
, (n− 2)

(1)

−~k,m
(2)
~k
, (m+ 2)

(2)

−~k

〉

|22→1〉 =
∣∣∣(n+ 2)

(1)
~k
, n

(1)

−~k, (m− 2)
(2)
~k
,m

(2)

−~k

〉
+
∣∣∣n(1)
~k
, (n+ 2)

(1)

−~k,m
(2)
~k
, (m− 2)

(2)

−~k

〉

|21↔2〉 =
∣∣∣(n+ 1)

(1)
~k
, (n− 1)

(1)

−~k, (m− 1)
(2)
~k
, (m+ 1)

(2)

−~k

〉

+
∣∣∣(n− 1)

(1)
~k
, (n+ 1)

(1)

−~k, (m+ 1)
(2)
~k
, (m− 1)

(2)

−~k

〉

|1-11→2〉 =
∣∣∣(n− 1)

(1)
~k
, (n− 1)

(1)

−~k, (m+ 1)
(2)
~k
, (m+ 1)

(2)

−~k

〉

|1-12→1〉 =
∣∣∣(n+ 1)

(1)
~k
, (n+ 1)

(1)

−~k, (m− 1)
(2)
~k
, (m− 1)

(2)

−~k

〉
(5.11)

with the weighting functions

Fk(n,m) = i
sin θk4
θk4

ei[θ
k
4+arg(τk)]√nm , (5.12)

Gk(n,m) = −2Fk(n+ 1,m)F∗k (n+ 1,m)− i(n−m)
θk4 − eiθ

k
4 sin θk4

(θk4)2
. (5.13)

These expressions can be interpreted as follows. At linear order in τ , the only effect of the
interaction is to add contributions from states where one particle has been exchanged between
the two sectors [those are displayed in the second line of Eq. (5.10)]. The amplitude of these
additional states is controlled by Fk, which thus measures the rate at which particles transfer.
It involves the phase θk4 through a function of order one, and the product of the numbers
of particles in the two sectors, which mostly determines its amplitude. At quadratic order
in τ , the new states that appear in the expansion are obtained by exchanging two particles:
either two particles with the same wavevector transfer from one sector to the other [third
line of Eq. (5.10)], or two particles with opposite wavevector transfer from one sector to the
other [fourth line of Eq. (5.10)], or two particles with opposite wavevector and from opposite
sectors change sector [first term in the fifth line of Eq. (5.10)], or, finally, one particle changes
sector and then moves back to its original sector [last term in the fifth line of Eq. (5.10)]. The
amplitude of those states are now controlled by squared powers of Fk, the only exception
being the last state, controlled by Gk, which also involves the second term in Eq. (5.13).
This can be interpreted as follows. When a particle transiently visits the opposite sector and
is then reinstated, its journey to the other side modifies its state if the two sectors evolve
differently. This is the case if n 6= m, which is why the second term in Eq. (5.13) is controlled
by n−m.

One concludes that an expansion in the amplitude of the interaction, around the un-
coupled limit, is essentially an expansion in the number of particles being exchanged: at
order |τk|p, p particles are transferred, which allows one to predict the form of the new
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states that appear in the expansion (e.g. |p1→2〉 =
∣∣∣(n− p)(1)

~k
, n

(1)

−~k, (m+ p)
(2)
~k
,m

(2)

−~k

〉
+∣∣∣n(1)

~k
, (n− p)(1)

−~k,m
(2)
~k
, (m+ p)

(2)

−~k

〉
, etc.). In particular, one can see that the diagonal elements,

i.e. the amplitudes associated to the states of the form
∣∣∣n(1)
~k
, n

(1)

−~k,m
(2)
~k
,m

(2)

−~k

〉
, where, within

each sector, there are the same number of excitations in each wavevector, receive contributions
from even powers of |τk| only. More generally, one can show that ck(n,m, s, t) = O(|τ ||s|+|t|),
and that ck(n,m, s, t) only receives contributions of order |τ ||s|+|t|+2q, where q is a positive
integer number counting the number of particles being sent away and then sent back to their
original sector. This is described by the sums over i and j in Eq. (5.7), where i counts
the number of quanta travelling from sector 1 to sector 2 and travelling back, and j counts
the number of quanta travelling along the opposite journey. This completes the physical
interpretation of all six summation indices appearing in Eq. (5.7).

5.2 Phase-space representation

Although the quantum state derived in the Fock basis in Sec. 5.1 is enough to fully
characterise the system, and in spite of the clear physical interpretation it yields, the seem-
ingly complicated structure of Eq. (5.7) may call for alternative, simpler representations of
the state. In this section, we provide such an alternative description by means of the Wigner
function [40, 41, 46].

Gaussian state

As we will see, the reason why the Wigner function is a convenient tool is that, the dy-
namics being linear, the evolved vacuum state is a Gaussian state, which is fully characterised
by its two-point function

Σ~k,~q
(t) = 〈�0| ẑ~k(t)ẑ

†
~q(t) |�0〉 , (5.14)

which here is expressed in the Heisenberg picture. Using the statistical isotropy and homo-
geneity we have already invoked, different Fourier modes are uncoupled and one has

Σ~k,~q
(t) = Σk(t)δ

3(~k − ~q) . (5.15)

Our first goal is to relate Σk to the Bogolyubov coefficients introduced in Sec. 3.3, since those
describe the dynamical evolution of the system. In the helicity basis (2.13), Eq. (5.14) gives
rise to

Σk(t) = D−1
k U

† 〈�0~k| â~k(t)â
†
~k
(t) |�0~k〉UD

−1
k , (5.16)

where the ladder operators evolve according to Eq. (2.22),7 i.e. by means of the Green matrix
Gk(t, tin). Since the Green matrix is an element of Sp(4,R), it can be written down in terms

7In the quantum representation constructed in Sec. 3.4, the evolution of the ladder operators is rather
given by â~k(t) = Û†~k(t, tin)â~k(tin)Û~k(t, tin), but one can show that this is strictly equivalent to Eq. (2.22).

Indeed, upon writing the evolution operator Û~k in the fully factorised form derived in Sec. 4.2, computing the
commutators between the ten elementary operations and the â~k(tin) operators, and relating the Bogolyubov
coefficients to the squeezing and rotation parameters using Eqs. (3.33)-(3.40), one can check that the same
result (5.19)-(5.21) is obtained.
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of Bogolyubov coefficients as in Eqs. (3.24) and (3.26). Moreover, the ordering of the ladder
operators in Eq. (2.13) is such that

〈�0| â~k(tin)â†~k(tin) |�0〉 =

(
1 0
0 0

)
⊗ I2 , (5.17)

so one obtains

Σk(t) =

(
Cov

(φφ)
k Cov

(φπ)
k

Cov
(φπ)T
k Cov

(ππ)
k

)

︸ ︷︷ ︸
Covk(t)

+
i

2
Ω, (5.18)

where the second term, iΩ/2, stems from the quantum commutator (2.11), and which defines
the covariance matrix Covk(t). It is a real, symmetric, positive and semi-definite 4×4 matrix,

where Cov
(φφ)
k , Cov

(ππ)
k and Cov

(φπ)
k are 2 × 2 matrices containing the position-position

spectra, momentum-momentum spectra and position-momentum spectra, reading

Cov
(φφ)
k =

1

k

(
1
2

(
|α11 + β∗11|2 + |α12 + β∗12|2

)
Re [β11 (β∗21 + α21) + β12 (β∗22 + α22)]

Re [β11 (β∗21 + α21) + β12 (β∗22 + α22)] 1
2

(
|α21 + β∗21|2 + |α22 + β∗12|2

)
)

(5.19)

Cov
(ππ)
k = k

(
1
2

(
|α11 − β∗11|2 + |α12 − β∗12|2

)
Re [β11 (β∗21 − α21) + β12 (β∗22 − α22)]

Re [β11 (β∗21 − α21) + β12 (β∗22 − α22)] 1
2

(
|α21 − β∗21|2 + |α22 − β∗12|2

)
)

(5.20)

Cov
(φπ)
k =

(
Im (α11β11 + α12β12) −Im [β11 (β∗21 − α21) + β12 (β∗22 − α22)]

Im [β11 (β∗21 + α21) + β12 (β∗22 + α22)] Im (α21β21 + α22β22)

)
.

(5.21)

An expression of Covk(t) in terms of the squeezing and rotation parameters can also be
obtained from the Bloch-Messiah decomposition of Gk(t, tin) given in Eq. (3.32), where one
notes that the squeezing and rotation parameters entering that decomposition are the same
as those appearing in the evolution operator Û~k(t, tin) given in Eq. (4.15), see footnote 7. In
order to write the result in a compact form, we introduce the complex parameter

τ̃k ≡ e−
pz
2 = cos(θk) + iθk4sinc(θk), (5.22)

in terms of which the position-position power spectra read

Cov
(φφ)
11,k =

1

2k

{
|τ̃k|2

[
cosh(2rk1) + cos(2θk3 + 2argτ̃k) sinh(2rk1)

]

+ sinc2(θk) |τk|2
[

cosh(2rk2)− cos(2θk3 + 2argτk) sinh(2rk2)

]}
, (5.23)

Cov
(φφ)
22,k =

1

2k

{
|τ̃k|2

[
cosh(2rk2) + cos(2θk3 − 2argτ̃k) sinh(2rk2)

]

+ sinc2(θk) |τk|2
[

cosh(2rk1)− cos(2θk3 − 2argτk) sinh(2rk1)

]}
, (5.24)
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Cov
(φφ)
12,k =

1

2k
sinc(θk) |τ̃k| |τk|

{
sin(argτk + argτ̃k)

[
cosh(2rk2)− cosh(2rk1)

]

+ sin(2θk3 − argτk + argτ̃k) sinh(2rk1) + sin(2θk3 + argτk − argτ̃k) sinh(2rk2)

}
.

(5.25)

The momentum-momentum power spectra are given by

Cov
(ππ)
11,k =

k

2

{
|τ̃k|2

[
cosh(2rk1)− cos(2θk3 + 2argτ̃k) sinh(2rk1)

]

+ sinc2(θk) |τk|2
[

cosh(2rk2) + cos(2θk3 + 2argτk) sinh(2rk2)

]}
, (5.26)

Cov
(ππ)
22,k =

k

2

{
|τ̃k|2

[
cosh(2rk2)− cos(2θk3 − 2argτ̃k) sinh(2rk2)

]

+ sinc2(θk) |τk|2
[

cosh(2rk1) + cos(2θk3 − 2argτk) sinh(2rk1)

]}
, (5.27)

Cov
(ππ)
12,k =

k

2
sinc(θk) |τ̃k| |τk|

{
sin(argτk + argτ̃k)

[
cosh(2rk2)− cosh(2rk1)

]

− sin(2θk3 − argτk + argτ̃k) sinh(2rk1)− sin(2θk3 + argτk − argτ̃k) sinh(2rk2)

}
,

(5.28)

and the position-momentum power spectra by

Cov
(φπ)
11,k =

1

2

[
− |τ̃k|2 sin(2θk3 + 2argτ̃k) sinh(2rk1)

+ sinc2(θk) |τk|2 sin(2θk3 + 2argτk) sinh(2rk2)

]
, (5.29)

Cov
(φπ)
22,k =

1

2

[
− |τ̃k|2 sin(2θk3 − 2argτ̃k) sinh(2rk2)

+ sinc2(θk) |τk|2 sin(2θk3 − 2argτk) sinh(2rk1)

]
, (5.30)

Cov
(φπ)
12,k =

1

2
sinc(θk) |τ̃k| |τk|

{
cos(argτk + argτ̃k)

[
cosh(2rk1)− cosh(2rk2)

]

+ cos(2θk3 − argτk + argτ̃k) sinh(2rk1) + cos(2θk3 + argτk − argτ̃k) sinh(2rk2)

}
,

(5.31)

Cov
(φπ)
21,k =

1

2
sinc(θk) |τ̃k| |τk|

{
cos(argτk + argτ̃k)

[
cosh(2rk2)− cosh(2rk1)

]
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+ cos(2θk3 − argτk + argτ̃k) sinh(2rk1) + cos(2θk3 + argτk − argτ̃k) sinh(2rk2)

}
,

(5.32)

where the remaining spectra are obtained from the symmetry of Covk(t). We stress that,
contrary to what was done around Eq. (5.10), there is no expansion in τk in these expres-
sions. In practice, solving the dynamics of the system yields the Bogolyubov coefficients, or
equivalently the squeezing and rotation parameters, from which the covariance matrix can
be obtained from the above expressions. Finally, let us note that in the absence of interac-
tion, τ̃k = eiθ

k
4 and τk = 0, and Eqs. (5.23), (5.26) and (5.29) reduce to the power spectra

describing a two-mode squeezed state (see e.g. Eqs. (6.18), (6.19) and (6.20) of Ref. [13]).
This allows us to highlight the great similarity in the structure of the power spectra obtained
from the two-mode and the four-mode squeezed states. For instance, in the expression of the

diagonal elements of Cov
(φφ)
k , Cov

(ππ)
k and Cov

(φπ)
k , the first line is given by |τ̃k|2 multiplied

the power spectrum of a two-mode squeezed state in the sector of interest (position-position,
momentum-momentum and position-momentum respectively). Since |τ̃k|2 ≤ 1, this parame-
ter can be interpreted as describing a loss of power in a given sector induced by its couplings
to the other sector. On the contrary, the second line in these expressions is given by |τk|2
multiplied by the power spectrum of a two-mode squeezed state in the other sector, and thus
corresponds to an increase of power in a given sector coming from the opposite sector.

Wigner function

Let us now introduce the Wigner function. By inverting Eq. (2.12), one can see that
the field position and momentum operators, φ̂

i,~k
and π̂

i,~k
, involve creation and annihilation

operators with opposite wavevectors. For convenience, it is useful to treat the two sectors ~k
and −~k separately, and to introduce the new position and momentum variables [12]

q̂
i,~k

=
1√
2k

(
â
i,~k

+ â†
i,~k

)
, (5.33)

p̂
i,~k

= −i
√
k

2

(
â
i,~k
− â†

i,~k

)
, (5.34)

with i = 1, 2, which do not mix opposite Fourier modes. When going from φ̂
i,~k

and π̂
i,~k

to q̂
i,~k

and p̂
i,~k

, one simply decomposes the four complex field variables, z~k = (φ
1,~k
, φ

2,~k
, π

1,~k
, π

2,~k
)T

into eight real field variables, q~k ≡ (q
1,~k
, q

1,−~k, q2,~k
, q

2,−~k, p1,~k
, p

1,−~k, p2,~k
, p

2,−~k)
T, according

to

φ
i,~k

=
1

2

[(
q
i,~k

+ q
i,−~k

)
+
i

k

(
p
i,~k
− p

i,−~k

)]
, (5.35)

π
i,~k

=
1

2i

[
k
(
q
i,~k
− q

i,−~k

)
+ i
(
p
i,~k

+ p
i,−~k

)]
. (5.36)

This transformation can be readily inverted, and is canonical.8 The helicity basis can be
described by the eight-dimensional version of Eq. (2.13), i.e. â~k ≡ (â

1,~k
, â

1,−~k, â2,~k
, â

2,−~k,

8This can be seen by introducing φ̂R
i,~k

= (φ̂i,~k + φ̂†
i,~k

)/
√

2, φ̂I
i,~k

= (φ̂i,~k − φ̂
†
i,~k

)/(
√

2i) and similarly for π̂R
i,~k

and π̂I
i,~k

, and by showing that the 8 × 8 matrix that relates those variables to q~k satisfies the symplectic

relation (2.19) in 8 dimensions.
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â†
1,~k

, â†
1,−~k, â

†
2,~k

, â†
2,−~k)

T, which is related to the vector q̂~k via

â~k = [(UDk)⊗ I2] q̂~k , (5.37)

and whose commutators are given by
[
â~k, â

†
~q

]
= i(J ⊗ I2)δ3(~k − ~q). (5.38)

The real variables q~k can be used to introduce the Wigner-Weyl transform [47–49],

which allows one to connect quantum operators Ô~k to classical functions in the phase space

Õ~k(q~k), according to

Õ~k(q~k) =
1

(2π)4

∫

R4

dx1dx2dy1dy2e
−ip

1,~k
x1−ip2,~kx2−ip1,−~ky1−ip2,−~ky2

〈
q

1,~k
+
x1

2
, q

2,~k
+
x2

2
, q

1,−~k +
y1

2
, q

2,−~k +
y2

2

∣∣∣ Ô~k
∣∣∣q1,~k

− x1

2
, q

2,~k
− x2

2
, q

1,−~k −
y1

2
, q

2,−~k −
y2

2

〉
.

(5.39)

In general, the quantum state of a system can be equivalently described in terms of
its density matrix ρ̂(t) = |�0(t)〉 〈�0(t)| =

∏
~k∈R3+ ρ̂~k(t), or in terms of its Wigner function

W (t) =
∏
~k∈R3+ W~k

(q~k, t), which is the Wigner-Weyl transform of the density matrix [50, 51].
The inverse Wigner-Weyl transform, which allows one to go from the Wigner function to

the density matrix, is given in Appendix D, see Eq. (D.1). The Wigner functions W~k
(q~k, t)

can be interpreted as quasi distribution functions in the sense that expectation values of
quantum operators can be expressed as

〈�0~k(t)| Ô~k |�0~k(t)〉 = Tr
[
ρ̂~k(t)Ô~k

]
= (2π)4

∫
dq~k Õ~k(q~k)W~k

(q~k, t), (5.40)

where the (2π)4 prefactor can be absorbed in the normalisation of the Wigner function if
needed. For Gaussian states, as shown e.g. in Appendix G of Ref. [12], the Wigner functions
are Gaussian functions (hence the statement that the state is “Gaussian”) and read

W~k
(q~k, t) =

1

(2π)4
√

det Cov8×8,k

e
− 1

2
qT
~k
Cov−1

8×8,kq~k , (5.41)

where Cov8×8,k is the 8× 8 covariance matrix in the field basis q~k, defined through

〈�0| q̂~k(t)q̂
†
~k
(t) |�0〉 = Cov8×8,k(t) +

i

2
Ω⊗ I2 . (5.42)

It can be computed in a similar way as what was done around Eq. (5.16), and Eq. (5.37)
gives rise to

Cov8×8,k(t) = Covk(t)⊗ I2 , (5.43)

where the inverse is simply given by Cov−1
8×8,k = Cov−1

k ⊗ I2, see footnote 3.
The advantage of working with the Wigner functions W~k

(q~k, t) rather than the quan-
tum state or the density matrix in the Fock basis, lies in the simplicity of the Gaussian
function (5.41). It describes entirely the quantum state of the system from the knowledge of
its two-point correlation functions, and can therefore greatly simplify some calculations, as
will be made explicit in the next section. The drawback of this approach is that the entangled
structure, otherwise easily interpretable from Eq. (5.7), is now hidden in the details of the
power spectra of the system.
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6 Decoherence

Having determined in Sec. 5 the quantum state of a linear two-field system, both in the
Fock basis where one obtains direct products of four-mode squeezed states and at the level
of the Wigner function, we now consider the case where one of the two fields is unobservable
and can be traced over. This corresponds to situations where measurements can only be
performed on the first field, dubbed the “system”, while the second field, dubbed the “envi-
ronment”, cannot be directly accessed. When the two fields become entangled, this leads to
the concept of quantum decoherence [22], and we choose to illustrate the usefulness of the
various tools introduced above by studying this notion for the systems at hand.

6.1 Reduced density matrix

Let Ô = Ô1 ⊗ Î2 be a quantum operator describing an observable of the first field only,
where Î2 denotes the identity acting in the second-field sector (i.e. the environment). Its
expectation value is given by Tr(ρ̂Ô) = Tr1Tr2[ρ̂(Ô1 ⊗ Î2)] = Tr1[Tr2(ρ̂)Ô1], see Eq. (5.40),
where Tri denotes the trace over the degrees of freedom contained in the field i. The expec-
tation value of Ô can therefore be obtained from the reduced density matrices

ρ̂~k,red
= Tr2(ρ̂~k) =

∞∑

n,m=0

[
I

(1)
2 ⊗ 〈n

(2)
~k
,m

(2)

−~k|
]
ρ̂~k

[
I

(1)
2 ⊗ |n

(2)
~k
,m

(2)

−~k〉
]

(6.1)

by tracing over in the first-field sector (i.e. the system). In Eq. (6.1), for explicitness, the
trace over the environmental degrees of freedom has been expanded in the Fock basis. The
reduced density matrix thus contains all accessible information about the system.

If the two fields are entangled, the reduced density matrix follows non-unitary evolution,
and describes a mixed (as opposed to pure) state. This can be described by the so-called
purity

γ~k = Tr(ρ̂2
~k,red

) . (6.2)

For a pure state, ρ2 = ρ and γ = 1, while mixed states have 1/d ≤ γ ≤ 1 in general, where
d is the dimension of the Fock space of the system (which is infinite in the present case) and
the limit γ → 1/d corresponds to a maximally decohered state. Therefore, purity provides
a measure of the information loss into the environment, hence of decoherence. Note that it
is simply related to the linear entropy S~k,lin = 1 − γ~k, which itself provides a lower bound

to the entanglement entropy S~k,ent
= −Tr(ρ ln ρ), and which, as the entanglement entropy,

characterises one’s ignorance about the state of a system.
For the system at hand, one can check that if the two fields are uncoupled, then the

reduced density matrix is pure. Indeed, if the quantum state is given by Eq. (5.9), the
reduced density matrix reads

ρ̂~k,red
=Tr2




∞∑

n,m,n̄,m̄=0

c1,k(n)c∗1,k(n̄)c2,k(m)c∗2,k(m̄)
∣∣∣n(1)
~k
, n

(1)

−~km
(2)
~k
,m

(2)

−~k

〉〈
n̄

(1)
~k
, n̄

(1)

−~km̄
(2)
~k
, m̄

(2)

−~k

∣∣∣




=
∞∑

m=0

|c2,k(m)|2
∞∑

n,n̄=0

c1,k(n)c∗1,k(n̄)
∣∣∣n(1)
~k
, n

(1)

−~k

〉〈
n̄

(1)
~k
, n̄

(1)

−~k

∣∣∣ , (6.3)
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where we have performed the trace in the Fock basis as in Eq. (6.1). From the expression of
the ci,k(n) coefficients given in Eq. (5.9), one can easily check that

∑
n |ci,k(n)|2 = 1, hence

the reduced density matrix is the one of a (pure) two-mode squeezed state, and using again
the identity

∑
n |ci,k(n)|2 = 1, it has purity γ~k = 1.

In general, for the evolved vacuum state given in Eq. (5.6), the density matrix ρ̂~k(t) =
|�0~k(t)〉 〈�0~k(t)| is written down explicitly in Appendix C, where it is shown that the tracing-out
procedure of Eq. (6.1) gives rise to

ρ̂~k,red
=
∞∑

n=0

∞∑

n′=−∞

∞∑

s,t=−min (n,n′)

Ξk(n, n
′, s, t) |(n+ s)

(1)
~k
, (n+ t)

(1)

−~k〉 〈(n
′ + s)

(1)
~k
, (n′ + t)

(1)

−~k|

(6.4)

with

Ξk(n, n
′, s, t) =

∞∑

m=max (0,s,t)

n′∑

m′=−m
ck(n,m, s, t)c

∗
k(n
′ −m′,m+m′, s+m′, t+m′) . (6.5)

This expression differs from the uncoupled case (6.3) due to the presence of the s and t indices,
related to the transfer of excitations from one sector to the other. One can check that the
invariance of the ck coefficients under exchanging s and t, which was noted below Eq. (5.7) as
a manifestation of the statistical isotropy of the state, guarantees that the Ξk coefficients are
also invariant under swapping s and t, hence the reduced state is also statistically isotropic.

Let us also recall that if one performs a perturbative expansion in the interaction Hamil-
tonian, that is, as argued in Sec. 5.1, an expansion in τk, then the corrections to ck(n,m, s, t)
are of order O(|τk||s|+|t|+2q), where q is a non-negative integer number that stands for the
number of particles that change sectors and then change back. As a consequence, the cor-
rections to Ξk(n, n

′, s, t) are of order O[|τk|2(|s|+|t|+Q)], where Q = m′ + q + q′, where q and
q′ are associated with the two ck coefficients appearing in Eq. (6.5). This implies that, while
we saw that the diagonal elements of the full quantum state received even corrections in |τk|
only, see the discussion at the very end of Sec. 5.1, we have now showed that all the entries
of the reduced density matrix receive even corrections in |τk| only. As a consequence, the
leading correction to observables performed on the system is always quadratic in the coupling
constants, in agreement with the results of Ref. [23].

From Eq. (6.4), the purity (6.2) can also be obtained, and in Appendix C it is shown
that

γ~k(t) =

∞∑

n=0

∞∑

n′,u=−∞

∞∑

s,t=−min(n,n′)

Ξk(n, n
′, s, t)Ξk(n

′ − u, n− u, s+ u, t+ u). (6.6)

Let us stress that the above formulas are not perturbative and allow one to compute the
reduced density matrix and its purity up to arbitrary order in the interaction terms.

Small-coupling limit

In order to gain more insight, one can however derive the leading-order result in the
interaction parameter |τk|. After a lengthy though straightforward calculation, the reduced
density matrix derived from the perturbed evolved vacuum state (5.10) is given by

ρ̂~k,red
(t) =

∞∑

n,n′=0

c1,k(n)c∗1,k(n
′)
∣∣∣n(1)
~k
, n

(1)

−~k

〉〈
n
′(1)
~k
, n
′(1)

−~k

∣∣∣+ |τk|2
∞∑

n,n′,m=0

c1,k(n)c∗1,k(n
′)
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{
|c2,k(m)|2Fk(n,m+ 1)F∗k (n′,m+ 1)

×
[∣∣∣(n− 1)

(1)
~k
, n

(1)

−~k

〉〈
(n′ − 1)

(1)
~k
, n
′(1)

−~k

∣∣∣+
∣∣∣n(1)
~k
, (n− 1)

(1)

−~k

〉〈
n
′(1)
~k
, (n′ − 1)

(1)

−~k

∣∣∣
]

+|c2,k(m)|2F∗k (n+ 1,m)Fk(n′ + 1,m)

×
[∣∣∣(n+ 1)

(1)
~k
, n

(1)

−~k

〉〈
(n′ + 1)

(1)
~k
, n
′(1)

−~k

∣∣∣+
∣∣∣n(1)
~k
, (n+ 1)

(1)

−~k

〉〈
n
′(1)
~k
, (n′ + 1)

(1)

−~k

∣∣∣
]

−c2,k(m)c∗2,k(m+ 1)Fk(n,m+ 1)Fk(n′ + 1,m+ 1)

×
[∣∣∣(n− 1)

(1)
~k
, n

(1)

−~k

〉〈
n
′(1)
~k
, (n′ + 1)

(1)

−~k

∣∣∣+
∣∣∣n(1)
~k
, (n− 1)

(1)

−~k

〉〈
(n′ + 1)

(1)
~k
, n
′(1)

−~k

∣∣∣
]

−c2,k(m)c∗2,k(m− 1)F∗k (n+ 1,m)F∗k (n′,m)

×
[∣∣∣(n+ 1)

(1)
~k
, n

(1)

−~k

〉〈
n
′(1)
~k
, (n′ − 1)

(1)

−~k

∣∣∣+
∣∣∣n(1)
~k
, (n+ 1)

(1)

−~k

〉〈
(n′ − 1)

(1)
~k
, n
′(1)

−~k

∣∣∣
]

+c2,k(m)c∗2,k(m− 1)
[
F∗k (n′,m)

]2 ∣∣∣n(1)
~k
, n

(1)

−~k

〉〈
(n′ − 1)

(1)
~k
, (n′ − 1)

(1)

−~k

∣∣∣

+c2,k(m)c∗2,k(m+ 1) [Fk(n,m+ 1)]2
∣∣∣(n− 1)

(1)
~k
, (n− 1)

(1)

−~k

〉〈
n
′(1)
~k
, n
′(1)

−~k

∣∣∣

+c2,k(m)c∗2,k(m+ 1)
[
Fk(n′ + 1,m+ 1)

]2 ∣∣∣n(1)
~k
, n

(1)

−~k

〉〈
(n′ + 1)

(1)
~k
, (n′ + 1)

(1)

−~k

∣∣∣

+c2,k(m)c∗2,k(m− 1) [F∗k (n+ 1,m)]2
∣∣∣(n+ 1)

(1)
~k
, (n+ 1)

(1)

−~k

〉〈
n
′(1)
~k
, n
′(1)

−~k

∣∣∣

+|c2,k(m)|2
[
G∗k(n′,m) + Gk(n,m)

] ∣∣∣n(1)
~k
, n

(1)

−~k

〉〈
n
′(1)
~k
, n
′(1)

−~k

∣∣∣
}
. (6.7)

One can see that the leading correction in |τk| is indeed of quadratic order [despite the
full state (5.10) having linear contributions], in agreement with the above discussion. This
expression allows one to evaluate the purity (6.2) and one obtains

γ~k(t) =1 + 4 |τk|2
∞∑

n,m=0

<e
{
|c1,k(n)|2|c2,k(m)|2Gk(n,m)

+ 2c1,k(n+ 1)c∗1,k(n)c2,k(m)c∗2,k(m+ 1) [Fk(n+ 1,m+ 1)]2
}
, (6.8)

where the relation
∑

n |ci,k(n)|2 = 1 has been used. Making use of Eqs. (5.12) and (5.13), the
sums appearing in the expression can be carried out explicitly, and in terms of the squeezing
and rotation parameters, one obtains

γ~k =1− 4 |τk|2 sinc2
(
θk4

) [
sinh2

(
rk1 − rk2

)
+ cos2

(
θk4 − arg τk

)
sinh

(
2rk1

)
sinh

(
2rk2

)]
.

(6.9)

One can check that, as |τk| increases away from 0, γ~k decreases away from 1, since the term
inside the squared braces in Eq. (6.9) is always positive. One can also see that larger squeezing
amplitudes rk1 and rk2 lead to more efficient decoherence, as usually encountered [11]. It is
finally worth pointing out that in the specific configuration where rk1 = rk2 and θk4 = arg τk±π,
the leading-order correction to the purity vanishes.

6.2 Reduced Wigner function

As argued in Sec. 5.2, a complementary (and sometimes simpler from a computational
standpoint) tool to analyse the four-mode squeezed state is provided by the Wigner function.
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Let us first establish how the Wigner function of the reduced system can be obtained from
the one of the full two-field setup.

We consider again an operator of the form Ô~k = Ô
1,~k
⊗ Î2. From Eq. (5.39), its Wigner-

Weyl transform is simply given by Õ~k = Õ
1,~k
/(2π)2, where Õ

1,~k
is the Wigner-Weyl transform

of Ô
1,~k

within the first-field sector,

Õ
1,~k

(q
1,~k

) =

∫

R2

dx1dy1

(2π)2
e
−ip

1,~k
x1−ip1,−~ky1

〈
q

1,~k
+
x1

2
, q

1,−~k +
y1

2

∣∣∣ Ô1,~k

∣∣∣q1,~k
− x1

2
, q

1,−~k −
y1

2

〉
,

(6.10)

with q
1,~k
≡ (q

1,~k
, q

1,−~k, p1,~k
, p

1,−~k)
T. Plugging this result into Eq. (5.40), the expectation

value of Ô~k is given by

〈�0~k(t)| Ô~k |�0~k(t)〉 = (2π)2

∫
dq

1,~k
Õ

1,~k
(q

1,~k
)W~k,red

(q
1,~k
, t), (6.11)

where we have defined the reduced Wigner function

W~k,red
(q

1,~k
, t) =

∫

R4

d4q
2,~k

W~k
(q

1,~k
,q

2,~k
, t). (6.12)

Comparing Eq. (6.11) with Eq. (5.40), one can see that W~k,red
can be used to compute

quantum expectation values of observables in the first-field space. Therefore, it corresponds
to the Wigner function in the reduced phase space (where the different powers of 2π come
from the different dimensions of the phase spaces). In other words, W~k,red

is the Wigner-Weyl

transform of ρ̂~k,red
(t), which is shown explicitly in Appendix D. This is why partial trace in

the Hilbert space is equivalent to partial integration in the phase space.
If the Wigner function is Gaussian, this partial integration can be easily done, and

marginalisation over a phase-space variable simply corresponds to removing the associated
lines and columns in the covariance matrix. From Eq. (5.41), this implies that

W~k,red
(q

1,~k
, t) =

1

(2π)2
√

det Cov~k,red

e
− 1

2
qT
1,~k

Cov−1
~k,red

q
1,~k , (6.13)

where Cov~k,red
is obtained from Eq. (5.43) by removing the lines and columns related to the

second sector (i.e. the third, the fourth, the seventh and the eighth lines and columns).
The purity of the reduced system can then be computed from the reduced Wigner

function, by using the property of the Wigner-Weyl transform [46]

Tr
(
ÂB̂
)

= (2π)2

∫

R4

d4q
1,~k
ÃB̃ , (6.14)

where Â and B̂ are two quantum operators acting on the first-field system and Ã and B̃ are
their Wigner-Weyl transforms. With Â = B̂ = ρ̂~k,red

, Eq. (6.14) gives rise to the following

expression for the purity (6.2),

γ~k(t) = (2π)2

∫

R4

d4q
1,~k
W 2
~k,red

(q
1,~k
, t). (6.15)
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Plugging Eq. (6.13) into that formula, one obtains

γ~k(t) =
(

16 det Cov~k,red

)−1/2
=

1

4

[
Cov

(φφ)
11,kCov

(ππ)
11,k −

(
Cov

(φπ)
11,k

)2
]−1

. (6.16)

As a consequence, for a Gaussian state, the purity of the system can be directly evaluated
from the knowledge of the power spectra in the observable sector [52]. More precisely, the
power spectra appear through a specific combination, i.e. the determinant of the (reduced)
covariance matrix, which makes the purity invariant under canonical transformations [13].
Let us indeed recall that in a two-dimensional (i.e. single-field) system, there is a single
symplectic invariant [52, 53], the so-called symplectic eigenvalue σ~k(t), which is such that
the eigenvalues of Cov~k,red

Ω are given by ±iσ~k(t). This leads to σ~k = 1/(2
√
γ~k), and the

condition γ~k < 1 is equivalent to σ~k > 1/2. In passing, let us note that, for Gaussian states,
the entanglement entropy introduced below Eq. (6.2) is related to the symplectic eigenvalue
by [54] S~k,ent

= (σ~k + 1/2) log2(σ~k + 1/2) − (σ~k − 1/2) log2(σ~k − 1/2). This allows one to
relate the linear and entanglement entropies, and check the above statement that the former
provides a lower bound to the latter.

If the two fields are uncoupled, the reduced system is in a pure state and one has [13]

Cov
(φφ)
11,kCov

(ππ)
11,k −

(
Cov

(φπ)
11,k

)2
= 1/4. This implies that γ~k(t) = 1, σ~k(t) = 1/2 and S~k,lin(t) =

S~k,ent
(t) = 0. Otherwise, γ~k < 1 signals the presence of decoherence. An obvious, yet crucial

consequence of Eq. (6.16) is that decoherence, i.e. the reduction of γ~k away from unity,
cannot be achieved without modifying the power spectra. In other words, for any system
that undergoes decoherence, the observational predictions are necessarily altered, and an
important question that will be addressed below is whether or not decoherence can proceed
while keeping this alteration negligible [23, 55].

Let us finally stress that unlike the approach presented in Sec. 6.1, which relies on a
detailed analysis of the mathematical structure of Sp(4,R) and leads to a formula, Eq. (6.6),
that involves nine infinite sums; the Wigner function formalism only makes use of Gaus-
sian integrals. It can therefore be straightforwardly generalised to higher-dimension systems
(i.e. containing more fields), while the approach of Sec. 6.1 would require further analyses
of the groups Sp(2n,R). By plugging Eqs. (5.23), (5.26) and (5.29) into Eq. (6.16), one can
finally obtain a fully non-perturbative expression for the purity in terms of the squeezing
parameters

γ~k(t) =

{
|τ̃k|4 + sinc4(θk) |τk|4 + 2sinc2(θk) |τk|2 |τ̃k|2×

[
cosh(2rk1) cosh(2rk2) + cos (2argτ̃k − 2argτk) sinh(2rk1) sinh(2rk2)

]}−1

, (6.17)

where we recall that τ̃k is defined in Eq. (5.22), and τk and θk in Eq. (3.21).

Small-coupling limit

Similarly to what was done at the end of Sec. 6.1, let us now further expand the purity
in the limit where the system and the environment fields are weakly coupled. The power
spectra in the observable sector are given by Eqs. (5.23), (5.26) and (5.29). Expanding these
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expressions up to second order in the interaction parameter |τk| [recalling that (θk6 − iθk5) =

|τk|eiargτk and θk =
√

(θk4)2 + |τk|2 ], one obtains

Cov
(φφ)
11,k =

1

2k

([
cosh(2rk1) + cos(2θk3 + 2θk4) sinh(2rk1)

]
+ |τk|2

{
− sin2 θk4

θk4
cosh(2rk1)

+
1

2(θk4)2

[
cos(2θk3)− cos(2θk3 + 2θk4)− 2θk4 sin(2θk3 + 2θk4)

]
sinh(2rk1)

+
sin2 θk4
(θk4)2

[
cosh(2rk2)− cos(2θk3 + 2argτk) sinh(2rk2)

]})
(6.18)

Cov
(ππ)
11,k =

k

2

([
cosh(2rk1)− cos(2θk3 + 2θk4) sinh(2rk1)

]
+ |τk|2

{
− sin2 θk4

θk4
cosh(2rk1)

− 1

2(θk4)2

[
cos(2θk3)− cos(2θk3 + 2θk4)− 2θk4 sin(2θk3 + 2θk4)

]
sinh(2rk1)

+
sin2 θk4
(θk4)2

[
cosh(2rk2) + cos(2θk3 + 2argτk) sinh(2rk2)

]})
(6.19)

Cov
(φπ)
11,k =

1

2

(
− sin(2θk3 + 2θk4) sinh(2rk1) + |τk|2

{
sin2 θk4
(θk4)2

sin(2θk3 + 2argτk) sinh(2rk2)

+
1

2(θk4)2

[
− sin(2θk3) + sin(2θk3 + 2θk4)− 2θk4 cos(2θk3 + 2θk4)

]
sinh(2rk1)

})
. (6.20)

In the limit where the two fields are uncoupled, τk = 0, one recovers the result obtained
for two-mode squeezed states in Ref. [13]. One can also check that in agreement with the
discussion of Sec. 6.1, the leading correction to the power spectra is of quadratic order in
|τk|. Let us stress that those corrections involve parameters that describe the environment
sector, such as rk2 , hence observations carried out on the system alone can a priori lead to
indirect information about the microphysical evolution of the traced over field(s). One should
also note that, through the dynamical evolution, the presence of the interaction modifies all
Bogolyubov coefficients, hence all squeezing and rotation parameters. This is why formally,
in the above expressions, the leading terms (i.e. the ones before |τk|2) need also be expanded.

By plugging Eqs. (6.18), (6.19) and (6.20) into Eq. (6.16), one can finally derive an
expression for the purity expanded at quadratic order in |τk|2, and by doing so one exactly
recovers Eq. (6.9). This is an important consistency check as the two methods employed to
derive this result are completely independent (and, as already argued, the approach based
on the Wigner function is computationally less heavy).

This calculation also makes explicit that as one increases the interaction strength, one
decreases the purity and hence makes decoherence more efficient, but one also induces larger
corrections to the observable power spectra. This allows one to answer the question asked
above, namely whether or not decoherence can proceed without affecting too much the power
spectra. As noticed below Eq. (6.9), decoherence becomes more efficient as quantum squeez-
ing increases, and in the large-squeezing limit, the correction to γ~k = 1 is controlled by
|τk|2e2r. However, from Eqs. (6.18), (6.19) and (6.20), one can see that the relative correc-
tion to the power spectra is rather controlled by |τk|2 in that limit. As a consequence, if the
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interaction strength is such that

e−r � |τk| � 1 , (6.21)

decoherence takes place while keeping corrections to observable predictions tiny.

7 Conclusion

In this work, we have performed a detailed study of the quantum dynamics of two scalar
fields, quadratically coupled, and embedded in a homogeneous and isotropic background.
Their dynamics is generated by a quadratic Hamiltonian with time-dependent coefficients.
Evolution of such systems (either classical or quantum) is obtained by applying elements of
the symplectic group Sp(4,R) to the initial configuration, so we have first investigated the
mathematical structure of this group by presenting various descriptions of it. In particular,
using the Bloch-Messiah decomposition that we further developed using the commutation
relations of the Lie algebra, we have derived fully factorised expressions for the group elements
of Sp(4,R). The ten parameters entering these expressions are dubbed the squeezing and
rotation parameters, as per the three parameters entering the decomposition of Sp(2,R).
Alternatively, this group is described by Bogolyubov coefficients, which we explicitly related
to the squeezing and rotation parameters.

We then provided the quantum representation of the Lie algebra of Sp(4,R), from which
the quantum Hamiltonian can be easily expressed and interpreted. Couplings between the two
fields manifest themselves through exchanges of quanta from one sector to the other (hence
preserving the total number of quanta), and through direct productions of pairs in which each
quantum belongs to a different sector. The latter provides a direct way to entangle the two
sectors and those particles add up to the direct pair production occurring within each sector
separately. The former also leads to entanglement but in an indirect way by transferring
quanta which have been previously created in a given sector. Using this group-theoretic
approach, we then showed that the evolution operator can be interpreted as the successive
application of three blocks of quantum operations on the initial state. This sequence of
operations schematically consists in first exchanging quanta between the two sectors, then
creating pairs within each sector separately, and finally mixing again these newly-created
quanta between the two sectors.

Applying the evolution operator to the vacuum state allowed us to derive the most
general expression for the four-mode squeezed states, see Eqs. (5.6) and (5.7), which, to our
knowledge, has not been presented in the literature so far. It can be viewed as the copy of
two two-mode squeezed states, one for each sector, which then exchange quanta according
to their couplings. Its mathematical structure exhibits a power expansion in the coupling
between the two fields, in which the power at each order gives the number of transfers between
the two sectors. As an example, we provided explicit formulas for an expansion truncated
at second order, i.e. including up to two exchanges of particles between the two fields. We
finally described the four-mode squeezed states in terms of their Wigner functions, which
were shown to be Gaussian. Their covariance is built from all the cross-spectra and we
expressed them using either the Bogolyubov coefficients or the ten squeezing and rotation
parameters.

In cases where one of the two sectors is unobserved (say the second sector, which we
referred to as the “environment”), entanglement between the two fields leads to quantum de-
coherence in the first sector (dubbed the “system”), as well as modifications of its observable
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predictions. We studied this mechanism by first computing the reduced density matrix start-
ing from the four-mode squeezed state. We showed that the environment induces corrections
to observables that are necessarily of even power in the coupling strength. This is because,
in order to preserve statistical isotropy, any particle transfer between the two sectors must
be compensated by the inverse transfer of a particle with the same wavenumber, or by the
transfer of a particle with opposite wavenumber, so the number of transfers is even. The
purity of the system, γ~k, was also calculated from the reduced density matrix. We then
investigated decoherence using the Wigner function and found that it substantially simplifies
calculations. Indeed, we showed that tracing out the environment is readily obtained in the
phase-space representation by marginalising the Wigner function over the phase-space of the
environment. Since the Wigner function of a four-mode squeezed state is Gaussian, this
operation is trivial. This allowed us to obtain a non-perturbative expression of the purity in
terms of the power spectra of the system. We have finally expanded the result at second-order
in the coupling parameters in both approaches (where we have checked that the same result
is obtained).

The fact that the purity can be expressed in terms of the power spectra of the system
entails that decoherence, i.e. the decrease of the purity, cannot proceed without affecting the
observable power spectra. However, we have shown that in the large squeezing limit, there
exists a regime, given by Eq. (6.21), where the interaction strength is large enough to make
the system decohere but small enough to keep the observables mostly unchanged, shedding
some light on the results of Refs. [23, 55]. This also confirmed that squeezed states are more
easily subject to decoherence [11].

Though limited to quadratic coupling, let us stress that our approach to decoherence
does not rely on any approximation scheme, since the full quantum state of the joint system-
plus-environment setup is first derived exactly, before tracing out the environment. It thus
provides an ideal case study to frame the range of applicability of approximate approaches
to decoherence, such as the Lindblad formalism (at least in the simple situation of quadratic
couplings). One may indeed compare the exact results obtained in this work with the ones
derived from those effective methods, and this is the topic of a future work.

As mentioned in Sec. 1, our results are directly relevant for cosmology, in order to
describe scalar fields in flat and non-flat Friedmann-Lemâıtre-Robertson-Walker geometries,
quantum fields in curved spaces possibly with derivative couplings, and in the context of
primordial cosmology, adiabatic and isocurvature perturbations in multiple-field inflation
scenarios. But more generally, our results are relevant for any time-dependent, quadratic
Hamiltonian that couples two degrees of freedom, regardless of the origin of these degrees
of freedom. They thus offer a wide range of applications. In particular, the phase-space
approach can be readily extended to cases where the environment is made of more than one
scalar field. Suppose indeed that N scalar fields, initially in their vacuum state, compose the
environment. The Wigner function of the system-plus-environment setup is described by an
(N+1)-dimensional Gaussian. Tracing out (i.e., in phase space, marginalising) over N scalar
fields is thus as trivial as tracing out over one single field. This may be used to understand
how isocurvature modes can lead to the decoherence of the adiabatic sector, and should be
compared with effective-field theory approaches for such systems [56].

Finally, since squeezed states feature quantum entanglement, they are an interesting
playground to discuss possible setups for Bell and Leggett-Garg inequality violations in con-
tinuous systems, see Refs. [25, 27, 57, 58]. These analyses have been carried out for two-mode
squeezed states, where only one type of entanglement can be harvested, namely the one be-
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tween modes ~k and −~k of the same field. Since the two subsystems ~k and −~k are not locally
distinct in real space, this necessarily restricts the analysis to those Bell inequalities where
locality is not part of the assumptions being tested (such as, for instance, the Leggett-Garg or
the temporal-Bell inequalities). The situation is however different for multiple-field systems,
where one may chose to measure a field φ1 at position ~x1 and another field φ2 at position ~x2.
This is because, on top of the entanglement between modes ~k and −~k of the same field, one
now has entanglement between quanta in different fields. This thus opens up the possibility
to test for a wider class of Bell inequalities. Let us also mention that the present work would
additionally allow one to assess how decoherence affects the ability to test Bell inequalities
with squeezed states.

A Commutation relations in the Lie algebra sp(4,R)

Following the procedure exemplified at the end of Sec. 3.1, which relies on combining
the multiplication rule of the Kronecker product, Eq. (3.9), with the commutation relations
between the Pauli matrices, Eq. (3.10), the commutators between the generators of sp(4,R),
as listed in Table 1, are given by

Sq./Sq. : [K1,K2] = 0; (A.1)

Rot./Rot. : [K3,K5] = 0, [K3,K6] = 0, [K3,K4] = 0, (A.2)

[K5,K6] = 2K4, [K6,K4] = 2K5, [K4,K5] = 2K6; (A.3)

Boost/Boost : [K7,K8] = 0, [K7,K10] = 0, [K9,K8] = 0, (A.4)

[K9,K7] = 2K6, [K8,K10] = 2K5, [K9,K10] = 2K3; (A.5)

Sq./Rot. : [K1,K6] = 0, [K2,K5] = 0, (A.6)

[K1,K3] = 2K8, [K1,K4] = 2K7, [K1,K5] = 2K9, (A.7)

[K2,K3] = 2K7, [K2,K4] = 2K8, [K2,K6] = 2K10; (A.8)

Sq./Boost : [K1,K10] = 0, [K2,K9] = 0, (A.9)

[K1,K7] = 2K4, [K1,K8] = 2K3, [K1,K9] = 2K5, (A.10)

[K2,K7] = 2K3, [K2,K8] = 2K4, [K2,K10] = 2K6; (A.11)

Rot./Boost : [K4,K9] = 0, [K4,K10] = 0, (A.12)

[K5,K7] = 0, [K6,K8] = 0, (A.13)

[K3,K7] = 2K2, [K3,K8] = 2K1, (A.14)

[K4,K7] = 2K1, [K4,K8] = 2K2, (A.15)

[K5,K9] = 2K1, [K6,K10] = 2K2, (A.16)

[K3,K10] = 2K9, [K9,K3] = 2K10, (A.17)

[K5,K10] = 2K8, [K8,K5] = 2K10, (A.18)

[K6,K7] = 2K9, [K9,K6] = 2K7. (A.19)
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One can identify various subalgebras, which is particularly useful when it comes to factorising
down elements of the group. Since all subalgebras are three dimensional, we can use Bianchi
classification to sort them. In the following equation, each line corresponds to a subalgebra,
i.e. a set of closed generators by the adjoint operation:

Type IX : [K5,K6] = 2K4, [K6,K4] = 2K5, [K4,K5] = 2K6; (A.20)

Type VIII : [K1,K3] = 2K8, [K3,K8] = 2K1, [K8,K1] = −2K3 ; (A.21)

[K1,K4] = 2K7, [K4,K7] = 2K1, [K7,K1] = −2K4 ; (A.22)

[K1,K5] = 2K9, [K5,K9] = 2K1, [K9,K1] = −2K5 ; (A.23)

[K2,K3] = 2K7, [K3,K7] = 2K2, [K7,K2] = −2K3 ; (A.24)

[K2,K4] = 2K8, [K4,K8] = 2K2, [K8,K2] = −2K4 ; (A.25)

[K2,K6] = 2K10, [K6,K10] = 2K2, [K10,K2] = −2K6 ; (A.26)

[K9,K6] = 2K7, [K6,K7] = 2K9, [K7,K9] = −2K6 ; (A.27)

[K8,K5] = 2K10, [K5,K10] = 2K8, [K10,K8] = −2K5 ; (A.28)

[K9,K3] = 2K10, [K3,K10] = 2K9, [K10,K9] = −2K3 . (A.29)

The type IX Bianchi algebra is related to a su(2) subalgebra that contains three rotation
generators while the type VIII Bianchi algebra is isomorphic to sl(2,R) subalgebras. The
first six type-VIII subalgebras contain a rotation, a squeezing and a boost generator, so they
can be related to sp(2,R) ∼= sl(2,R), the last three type-VIII subalgebras are made of a
rotation and two boost generators, making their interpretation less obvious.

B Evolved vacuum state

This appendix presents the computation that leads to the expression of the evolved vac-
uum state in the occupation-number representation given in Eqs. (5.6) and (5.7). Starting
from the initial vacuum state (5.3), we follow the different operations displayed in the quan-

tum circuits of Sec. 4.2. Let us first consider R̂~k(ϕk), which for convenience we reproduce
here:

R̂~k(ϕk) :

R̂1(ϕk3)

R̂2→1(−qk−)

R̂1(−iqkz/2)

R̂1→2(qk+)

R̂2(ϕk3) R̂2(iqkz/2)

Since the operators contained in R̂~k(ϕk) do not create particles, the components R̂2→1

and R̂1→2 leave the initial vacuum state unchanged. Moreover, the operator R̂1(−iqkz/2)

generates an overall factor e−q
k
z /2, which is exactly compensated by the operator R̂2(iqkz/2)

that generates an overall factor eq
k
z /2. As a consequence, only the overall phase shift controlled

by ϕk3 remains, and the evolved vacuum state can be obtained as
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∣∣∣0(1)
~k
, 0

(1)

−~k

〉
R̂1(ϕk3) Ẑ1(rk1 ) R̂1(θk3 )

R̂2→1(−pk−)

R̂1(− i
2
pkz)

R̂1→2(pk+)
∣∣�0~k(t)

〉
∣∣∣0(2)
~k
, 0

(2)

−~k

〉
R̂2(ϕk3) Ẑ2(rk2 ) R̂2(θk3 ) R̂2( i

2
pkz)

where we recall that R̂i, Ẑi and R̂i→j with i, j = 1, 2 are defined in Eqs. (4.16), (4.17) and
(4.18). Let us see how these operators act one after the other.

The operators R̂1(ϕk3) and R̂2(ϕk3) simply add a global phase factor e−2iϕk3 , so the initial
vacuum state is first transformed according to

e−2iϕk3 |0(1)
~k
, 0

(1)

−~k, 0
(2)
~k
, 0

(2)

−~k〉 . (B.1)

To derive the action of the squeezing operators Ẑi, we recall that the two squeezing
generators commute, and that they act on each sector separately. As a consequence, we can
use the result for two-mode squeezed states in Sp(2,R), as derived e.g. in Ref. [13], and write

Ẑ1(rk1)
[
|0(1)
~k
, 0

(1)

−~k〉 ⊗ χ
(2)
~k

]
=

1

cosh rk1

∞∑

n=0

(−1)n tanhn rk1 |n(1)
~k
, n

(1)

−~k〉 ⊗ χ
(2)
~k
, (B.2)

Ẑ2(rk2)
[
χ

(1)
~k
⊗ |0(2)

~k
, 0

(2)

−~k〉
]

= χ
(1)
~k
⊗ 1

cosh rk2

∞∑

m=0

(−1)m tanhm rk2 |m(2)
~k
, m

(2)

−~k〉 , (B.3)

where χ
(i)
~k

is any vector belonging to E(i)
~k
⊗ E(i)

−~k for i = 1, 2 and the squeezing parameters rk1

and rk2 control the two-mode creation in each sector. At this stage the state is thus given by

e−2iϕk3

cosh rk1 cosh rk2

∞∑

n,m=0

(−1)n+m tanhn rk1 tanhm rk2 |n(1)
~k
, n

(1)

−~k,m
(2)
~k
,m

(2)

−~k〉 . (B.4)

Then comes the contribution from R̂i(θk3), which simply involves number counting op-
erators, see Eq. (4.16), so the state becomes

e−2i(ϕk3+θk3 )

cosh rk1 cosh rk2

∞∑

n,m=0

(−1)n+me−2iθk3 (n+m) tanhn rk1 tanhm rk2 |n(1)
~k
, n

(1)

−~k,m
(2)
~k
,m

(2)

−~k〉 . (B.5)

The action of R̂2→1 is more involved since it transfers excitations from one sector to
the other. We first note that, in R̂2→1 and R̂1→2, the domains ~k and −~k can be factorised

out since
[
â†

1,~k
â

2,~k
, â†

1,−~kâ2,−~k

]
=
[
â†

2,~k
â

1,~k
, â†

2,−~kâ1,−~k

]
= 0. This implies that

R̂2→1(−pk−) = exp
[
−ipk−

(
â†

1,~k
â

2,~k

)]
exp

[
−ipk−

(
â†

1,−~kâ2,−~k

)]
(B.6)

=

[ ∞∑

i=0

(−ipk−)i

i!

(
â†

1,~k
â

2,~k

)i
]

∞∑

j=0

(−ipk−)j

j!

(
â†

1,−~kâ2,−~k

)j

 , (B.7)

where the exponentials have been Taylor expanded, and a similar expression for R̂1→2(pk+)
can be written down for future use, namely

R̂1→2(pk+) =

[ ∞∑

k=0

(ipk+)k

k!

(
â†

2,~k
â

1,~k

)k
][ ∞∑

`=0

(ipk+)`

`!

(
â†

2,−~kâ1,−~k

)`
]
. (B.8)
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The action of â†
i,±~kâj±~k is to transfer an excitation from sector j to sector i, so upon applying

Eq. (B.7) onto Eq. (B.5), with the schematic normalisation â |n〉 =
√
n |n− 1〉 and â† |n〉 =√

n+ 1 |n+ 1〉, the state becomes

e−2i(ϕk3+θk3 )

cosh rk1 cosh rk2

∞∑

n,m=0

(−1)n+me−2iθk3 (n+m) tanhn rk1 tanhm rk2

m∑

i=0

(−ipk−)i

i!

m∑

j=0

(−ipk−)j

j!
√

m!

(m− i)!

√
m!

(m− j)!

√
(n+ i)!

n!

√
(n+ j)!

n!
|(n+ i)

(1)
~k
, (n+ j)

(1)

−~k, (m− i)
(2)
~k
, (m− j)(2)

−~k〉 .

(B.9)

The next step is to apply R̂1(− i
2p
k
z) and R̂2( i2p

k
z), which add imaginary phases (i.e. expo-

nential modulation) to each term that depend on their number of particles, and the state (B.9)
becomes

e−2i(ϕk3+θk3 )

cosh rk1 cosh rk2

∞∑

n,m=0

(−1)n+me−2iθk3 (n+m) tanhn rk1 tanhm rk2

m∑

i=0

(−ipk−)i

i!

m∑

j=0

(−ipk−)j

j!
√

m!

(m− i)!

√
m!

(m− j)!

√
(n+ i)!

n!

√
(n+ j)!

n!
e−

pkz
2

(2n+i+j)e
pkz
2

(2m−i−j)

|(n+ i)
(1)
~k
, (n+ j)

(1)

−~k, (m− i)
(2)
~k
, (m− j)(2)

−~k〉 .
(B.10)

Finally, the application of R̂1→2(pk+) can be done using Eq. (B.8), and one obtains

e−2i(ϕk3+θk3 )

cosh rk1 cosh rk2

∞∑

n,m=0

(−1)n+me−2iθk3 (n+m) tanhn rk1 tanhm rk2

m∑

i=0

(−ipk−)i

i!

m∑

j=0

(−ipk−)j

j!
√

m!

(m− i)!

√
m!

(m− j)!

√
(n+ i)!

n!

√
(n+ j)!

n!
e−

pkz
2

(2n+i+j)e
pkz
2

(2m−i−j)

n+i∑

k=0

(ipk+)k

k!

n+j∑

`=0

(ipk+)`

`!

√
(n+ i)!

(n+ i− k)!

√
(n+ j)!

(n+ j − `)!

√
(m− i+ k)!

(m− i)!

√
(m− j + `)!

(m− j)!

|(n+ i− k)
(1)
~k
, (n+ j − `)(1)

−~k, (m− i+ k)
(2)
~k
, (m− j + `)

(2)

−~k〉 .
(B.11)

This expression can be slightly simplified by replacing the sum over k and ` with a sum
over s ≡ i− k and t = j − `, and one obtains

|�0~k(t)〉 =
e−2i(ϕk3+θk3 )

cosh rk1 cosh rk2

∞∑

n,m=0

(−1)n+me−2iθk3 (n+m)ep
k
z (m−n) tanhn rk1 tanhm rk2

m∑

i,j=0

(−ipk−e−p
k
z )i+j

i!j!

(n+ i)!(n+ j)!m!

(m− i)!(m− j)!n!

i∑

s=−n

j∑

t=−n

(ipk+)i+j−s−t

(i− s)!(j − t)!

√
(m− s)!(m− t)!
(n+ s)!(n+ t)!

|(n+ s)
(1)
~k
, (n+ t)

(1)

−~k, (m− s)
(2)
~k
, (m− t)(2)

−~k〉 .
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(B.12)

In order to first sum over the indices appearing in the number of particle eigenstates, one can
flip the ordering of the sums over i, j and s, t, using that

∑m
i=0

∑i
s=−n =

∑m
s=−n

∑m
i=max(s,0)

and
∑m

j=0

∑j
t=−n =

∑m
t=−n

∑m
j=max(t,0), leading to

|�0~k(t)〉 =
e−2i(ϕk3+θk3 )

cosh rk1 cosh rk2

∞∑

n,m=0

(−1)n+me−2iθk3 (n+m)ep
k
z (m−n) tanhn rk1 tanhm rk2

m!

n!

m∑

s,t=−n

√
(m− s)!(m− t)!
(n+ s)!(n+ t)!

(ipk+)−s−t
m∑

i=max(s,0)

m∑

j=max(t,0)

(pk−p
k
+e
−pkz )i+j

i!j!(i− s)!(j − t)!

(n+ i)!(n+ j)!

(m− i)!(m− j)! |(n+ s)
(1)
~k
, (n+ t)

(1)

−~k, (m− s)
(2)
~k
, (m− t)(2)

−~k〉 .

(B.13)

This is the result presented in Eqs. (5.6) and (5.7) in the main text.

C Reduced density matrix

In this appendix, we explicitly trace out the environmental degrees of freedom in Fock
space as discussed in Sec. 6.1, leading to the expression for the reduced density matrix and
the purity given in Eqs. (6.4) and (6.6). For the evolved vacuum state given in Eq. (5.6), the
density matrix ρ̂~k(t) = |�0~k(t)〉 〈�0~k(t)| reads

ρ̂~k =
∞∑

n,m=0

m∑

s,t=−n

∞∑

n′,m′=0

m′∑

s′,t′=−n′
ck(n,m, s, t)c

∗
k(n
′,m′, s′, t′)

|(n+ s)
(1)
~k
, (n+ t)

(1)

−~k, (m− s)
(2)
~k
, (m− t)(2)

−~k〉 〈(n
′ + s′)(1)

~k
, (n′ + t′)(1)

−~k, (m
′ − s′)(2)

~k
, (m′ − t′)(2)

−~k| .
(C.1)

Following Eq. (6.1), one can trace out the environmental degrees of freedom in the Fock
basis. When doing so, the only non-vanishing terms are such that m − s = m′ − s′ and
m − t = m′ − t′. This allows one to fix s′ and t′, and since the conditions −n′ ≤ s′, t′ ≤ m′

imposed by the sum boundaries in Eq. (C.1) imply that m−m′−n′ ≤ s, t ≤ m, the reduced
density matrix reads

ρ̂~k,red
(t) =

∞∑

n,m,n′,m′=0

m∑

s,t=max(−n,m−m′−n′)
ck(n,m, s, t)c

∗
k(n
′,m′, s+m′ −m, t+m′ −m)

|(n+ s)
(1)
~k
, (n+ t)

(1)

−~k〉 〈(n
′ + s+m′ −m)

(1)
~k
, (n′ + t+m′ −m)

(1)

−~k| .
(C.2)

Let us now replace n′ and m′ by the new indices N = n′ + m′ −m and M = m′ −m. This
gives rise to

ρ̂~k,red
(t) =

∞∑

n,m=0

∞∑

M=−m

∞∑

N=M

m∑

s,t=max(−n,−N)

ck(n,m, s, t)c
∗
k(N −M,m+M, s+M, t+M)

|(n+ s)
(1)
~k
, (n+ t)

(1)

−~k〉 〈(N + s)
(1)
~k
, (N + t)

(1)

−~k| .
(C.3)
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One can note that the indices m and M do not appear explicitly in the elements of the Fock
basis, which is the reason why we have performed the above change of indices. In order
to rewrite the sums over m and M as internal sums, similarly to what was done between
Eqs. (B.12) and (B.13), one can re-order the various indices and write

ρ̂~k,red
(t) =

∞∑

n=0

∞∑

N=−∞

∞∑

s,t=−min(n,N)

|(n+ s)
(1)
~k
, (n+ t)

(1)

−~k〉 〈(N + s)
(1)
~k
, (N + t)

(1)

−~k|

∞∑

m=max(0,s,t)

N∑

M=−m
ck(n,m, s, t)c

∗
k(N −M,m+M, s+M, t+M)

︸ ︷︷ ︸
Ξk(n,N,s,t)

,
(C.4)

which defines the coefficients Ξk, and which matches Eqs. (6.4) and (6.5) given in the main
text (where the indices have been renamed for notational convenience).

From this expression, the purity of the system can also be computed. Squaring Eq. (C.4),
one obtains

ρ̂2
~k,red

=

∞∑

n,n′=0

∞∑

N,N ′=−∞

∞∑

s,t=−min(n,N)

Ξk(n,N, s, t)Ξk(n
′, N ′, s+N − n′, t+N − n′)

|(n+ s)
(1)
~k
, (n+ t)

(1)

−~k〉 〈(N
′ +N − n′ + s)

(1)
~k
, (N ′ +N − n′ + t)

(1)

−~k| ,
(C.5)

from which the purity (6.2) can be expressed as

γ~k(t) =

∞∑

n=0

∞∑

N,N ′=−∞

∞∑

s,t=−min(n,N)

Ξk(n,N, s, t)Ξk(N +N ′ − n,N ′, s+ n−N ′, t+ n−N ′).

(C.6)

This expression can be slightly simplified by replacing the sum over N ′ by a sum over u ≡
n−N ′, and one obtains

γ~k(t) =

∞∑

n=0

∞∑

N,u=−∞

∞∑

s,t=−min(n,N)

Ξk(n,N, s, t)Ξk(N − u, n− u, s+ u, t+ u). (C.7)

This matches Eq. (6.6) given in the main text, where the indices have been slightly renamed
for notational convenience.

D Equivalence between tracing out in Hilbert space and marginalisation
in the phase space

In Sec. 6.2, we have shown that a partial trace of the density matrix in Hilbert space is
associated to a partial integration over the corresponding degrees of freedom of the Wigner
function in phase space. This proof was however indirect, and relied on the equivalence
between different ways of computing the expectation value of quantum operators. In this
appendix, for completeness, we provide a direct proof that the reduced Wigner function is
nothing but the Wigner-Weyl transform of the reduced density matrix.
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For Hermitian operators, the Wigner-Weyl transform introduced in Eq. (5.39) can be
inverted, and the classical phase-space function Õ~k(q~k) gives rise to the quantum operator

Ô~k through

Ô~k =
1

(2π)4

∫

R8

d8ζ~k D̂(ζ~k)

∫

R8

d8q~k exp
(
iζ~k · q~k

)
Õ~k(q~k) . (D.1)

It is obtained by integrating the four-mode displacement operator D̂(ζ~k) against the Fourier

transform of Õ~k(q~k), where ζ~k is the conjugate vector to q~k, expanded as

ζ~k ≡
(
ζ

1,~k
, ζ

1,−~k, ζ2,~k
, ζ

2,−~k, κ1,~k
, κ

1,−~k, κ2,~k
, κ

2,−~k

)T
, (D.2)

and the displacement operator D̂(ζ~k) is defined as

D̂(ζ~k) = D̂
1,~k

(ζ~k)D̂1,−~k(ζ~k)D̂2,~k
(ζ~k)D̂2,−~k(ζ~k) , (D.3)

where D̂
i,±~k(ζ~k) are the one-mode displacement operators

D̂
i,±~k(ζ~k) = exp

(
γ
i,±~kâ

†
i,±~k − γ

∗
i,±~kâi,±~k

)
(D.4)

for i = 1, 2 and

γ
i,±~k = − 1√

2

(
κ
i,±~k + iζ

i,±~k

)
. (D.5)

The reason why D̂(ζ~k) can be factorised in the form (D.3) is because the creation and
annihilation operators commute across the four modes.

Since the Wigner function W~k
(q~k, t) is the Wigner-Weyl transform of the density matrix

ρ̂~k(t), one can use Eq. (D.1) to extract the density matrix from the Wigner function,

ρ̂~k(t) =
1

(2π)4

∫

R8

d8ζ~k D̂(ζ~k)

∫

R8

d8q~k exp
(
iζ~k · q~k

)
W~k

(q~k, t) . (D.6)

Similarly, the reduced density matrix must be connected to the reduced Wigner function
(that we here aim at determining) through a relation of the form

ρ̂~k,red
(t) =

1

(2π)2

∫

R4

d4ζ
1,~k

D̂1(ζ
1,~k

)

∫

R4

d4q
1,~k

exp
(
iq

1,~k
.ζ

1,~k

)
W~k,red

(q
1,~k
, t), (D.7)

where D̂1(ζ
1,~k

) = D̂
1,~k

(ζ
1,~k

)D̂
1,−~k(ζ1,~k

) is the first-sector displacement operator. Let us

recall that ρ̂~k,red
is defined in Eq. (6.1) as the partial trace of the density matrix ρ̂~k over

the environmental degrees of freedom. By plugging Eq. (D.6) into Eq. (6.1), and expanding
D̂(ζ~k) as in Eq. (D.3), one finds

ρ̂~k,red
(t) =

1

(2π)2

∫

R4

d4ζ
1,~k

D̂1(ζ
1,~k

)

∫

R4

d4q
1,~k

exp
(
iq

1,~k
.ζ

1,~k

)

[
1

(2π)2

∫

R4

d4ζ
2,~k

∞∑

u,v=0

〈u(2)
~k
, v

(2)

−~k(t)| D̂2(ζ
2,~k

) |u(2)
~k
, v

(2)

−~k(t)〉
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∫

R4

d4q
2,~k

exp
(
iq

2,~k
.ζ

2,~k

)
W~k

(q
1,~k
,q

2,~k
, t)

]
. (D.8)

By comparing this expression with Eq. (D.7), one can read off

W~k,red
(q

1,~k
, t) =

1

(2π)2

∫

R4

d4q
2,~k

W~k
(q

1,~k
,q

2,~k
, t)N (q

2,~k
) , (D.9)

where

N (q
2,~k

) =

∫

R4

d4ζ
2,~k

exp
(
iq

2,~k
.ζ

2,~k

) ∞∑

u,v=0

〈u(2)
~k
, v

(2)

−~k(t)| D̂2(ζ
2,~k

) |u(2)
~k
, v

(2)

−~k(t)〉 . (D.10)

To evaluate N (q
2,~k

), we first use the factorisation (D.3) and compute

∞∑

u,v=0

〈u(2)
~k
, v

(2)

−~k(t)| D̂2(ζ
2,~k

) |u(2)
~k
, v

(2)

−~k(t)〉 =

[ ∞∑

u=0

〈u(2)
~k
| D̂

2,~k
(ζ

2,~k
) |u(2)

~k
〉
]
·
[ ∞∑

v=0

〈v(2)

−~k| D̂2,−~k(ζ2,~k
) |v(2)

−~k〉
]
. (D.11)

Using the Baker–Campbell–Hausdorff formula, and recalling that [â
i,±~k, â

†
i,±~k] = 1, the one-

mode displacement operator (D.4) can be written as

D̂
i,±~k(ζi,~k) = e

− 1
2

∣∣∣γi,±~k
∣∣∣
2

· exp
(
γ
i,±~kâ

†
i,±~k

)
· exp

(
−γ∗

i,±~kâi,±~k

)
, (D.12)

where γ
i,±~k is given in Eq. (D.5). This means that, when evaluating 〈u(i)

±~k| D̂i,±~k(ζi,±~k) |u
(i)

±~k〉,
one first has to compute

exp
(
−γ∗

i,±~kâi,±~k

)
|u(i)

±~k〉 =
u∑

n=0

1

n!

(
−γ∗

i,±~k

)n√
u(u− 1) · · · (u− n+ 1)

∣∣∣(u− n)
(i)

±~k

〉
(D.13)

where we have simply Taylor expanded the exponential function, and then

exp
(
γ
i,±~kâ

†
i,±~k

)
|(u− n)

(i)

±~k〉 =

∞∑

m=0

1

n!

(
γ
i,±~k

)m√
(u− n+ 1)(u− n+ 2) · · · (u− n+m)

∣∣∣(u− n+m)
(i)

±~k

〉
. (D.14)

This leads to

〈u(i)

±~k| D̂i,±~k(ζi,±~k) |u
(i)

±~k〉 = e
− 1

2

∣∣∣γi,±~k
∣∣∣
2 u∑

n=0

1

n!

(
−
∣∣∣γi,±~k

∣∣∣
2
)n u(u− 1) · · · (u− n+ 1)

n!
. (D.15)

The remaining sum over n can be performed by means of the Laguerre polynomials Lu(z),
see Eq. (18.5.12) of Ref. [59],

〈u(i)

±~k| D̂i,±~k(ζi,±~k) |u
(i)

±~k〉 = e
− 1

2

∣∣∣γi,±~k
∣∣∣
2

Lu

(∣∣∣γi,±~k
∣∣∣
2
)
. (D.16)

– 45 –



Plugging this formula into Eq. (D.11), one obtains

∞∑

u,v=0

〈u(2)
~k
, v

(2)

−~k(t)| D̂2(ζ
2,~k

) |u(2)
~k
, v

(2)

−~k(t)〉 =

e
− 1

2

(∣∣∣γ2,~k
∣∣∣
2
+
∣∣∣γ2,−~k

∣∣∣
2
)
∞∑

u=0

Lu

(∣∣∣γ2,~k

∣∣∣
2
) ∞∑

v=0

Lv

(∣∣∣γ2,−~k

∣∣∣
2
)
. (D.17)

According to Eq. (D.10), we now need to evaluate the Fourier transform of the above
expression with respect to ζ

2,~k
, in order to compute N (q

2,~k
). To this end, we introduce the

generating function of the Laguerre polynomials [see Eq. (18.12.13) of Ref. [59]],

Gz(t) =
∞∑

n=0

tnLn(z) =
1

1− t exp

(
− zt

1− t

)
. (D.18)

Evaluating this formula with t = 1− ε in the limit ε→ 0, one obtains

∞∑

u=0

Lu

(∣∣∣γ2,±~k

∣∣∣
2
)

= lim
ε±~k→0

[
G∣∣∣γ2,±~k

∣∣∣
2(1− ε±~k)

]
, (D.19)

where we introduce ε±~k for each sector, ~k and −~k. This allows one to write N (q
2,~k

) as the
product of two limits of the Fourier transform of a Gaussian, i.e.

N (q
2,~k

) =
∏

s=+/−
lim
ε
s~k
→0

[
1

ε
s~k

∫

R2

d2ζ
2,s~k

exp
(
iq

2,s~k
.ζ

2,s~k

)
exp

(
−2− ε

s~k

4ε
s~k

ζ2
2,s~k

)]
, (D.20)

where we have used the fact that |γ
2,±~k|2 = (ζ2

2,±~k + κ2
2,±~k)/2 = ζ2

2,±~k/2. The Fourier

transform of a Gaussian is also a Gaussian and we have

N (q
2,~k

) =
∏

s=+/−
lim
ε
s~k
→0

[(
4π

2− ε
s~k

)
exp

(
− ε

s~k

2− ε
s~k

q2
2,s~k

)]
= (2π)2. (D.21)

We conclude that N (q
2,~k

) simply corresponds to a global phase-space volume, with no de-
pendence on the phase-space location.

The reduced Wigner function is finally given by Eq. (D.9), which leads to

W~k,red
(q

1,~k
, t) =

∫

R4

d4q
2,~k

W~k
(q

1,~k
,q

2,~k
, t), (D.22)

i.e. it is simply obtained by marginalising the full Wigner function over the environmental
degrees of freedom in phase-space. This matches Eq. (6.12) given in the main text. Let us
stress that the above result is fully generic and does not assume any specific shape for the
Wigner function. It can be easily generalised to an arbitrary number of degrees of freedom
both in the system and in the environment sectors, since the Wigner-Weyl transform is
generated by a kernel that can be written in a fully factorisable form. Non-factorisability
due to entanglement is entirely contained in the Wigner function. Therefore, the reduced
Wigner function is always obtained from the full Wigner function by simply integrating over
the phase-space variables describing the environmental sector. In a sense, marginalisation in
phase space is the Wigner-Weyl representation of the partial trace.
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[24] E. Oudot, P. Sekatski, F. Fröwis, N. Gisin and N. Sangouard, Two-mode squeezed states as
Schrödinger cat-like states, Journal of the Optical Society of America B Optical Physics 32
(2015) 2190 [1410.8421].

[25] J. Martin and V. Vennin, Leggett-Garg Inequalities for Squeezed States, Phys. Rev. A 94 (2016)
052135 [1611.01785].

[26] S. Choudhury and S. Panda, Quantum entanglement in de Sitter space from stringy axion: An
analysis using α vacua, Nucl. Phys. B 943 (2019) 114606 [1712.08299].

[27] K. Ando and V. Vennin, Bipartite temporal Bell inequalities for two-mode squeezed states,
Phys. Rev. A 102 (2020) 052213 [2007.00458].

[28] S. Kanno, J. Soda and J. Tokuda, Indirect detection of gravitons through quantum
entanglement, 2103.17053.

[29] Y.S. Kim and M.E. Noz, Dirac Matrices and Feynman’s Rest of the Universe, Symmetry 4
(2012) 626 [1210.6251].

[30] K. Hasebe, Sp(4;R) Squeezing for Bloch Four-Hyperboloid via The Non-Compact Hopf Map, J.
Phys. A 53 (2020) 055303 [1904.12259].

[31] A. Garcia-Chung, Symplectic group in polymer quantum mechanics, Phys. Rev. D 101 (2020)
106004 [2003.00388].

[32] A. Garcia-Chung, Squeeze operator: a classical view, 2003.04257.
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Chapter 5

Benchmarking the cosmological
master equations

Preface

In this article, we use an exactly solvable model to confront Open EFT techniques
against exact results. The goal is to assess the regime of validity of the master
equation program, in particular regarding its ability to implement non-perturbative
resummation. By comparing the precision reached by the master equation in com-
puting standard observables such as the power spectra and quantum information
properties such as the purity, we evaluate how the resummation improves the re-
sults compared to standard perturbation theory.

We first review the diversity of approximation schemes leading to the derivation
of master equations along the line of Sec. 3.3.1 and highlight the generality of non-
Markovian dynamics in time-dependent backgrounds. We also illustrate how non-
Markovian master equations relate to standard perturbation theory.

Focusing on the comparison between exact and effective open dynamics, we
derive the exact transport equations and compare them with the one obtained from
the master equation. It allows us to account for a set of terms dubbed as spurious,
harmless in the perturbative limit where they cancel against each other but whose
presence ruin the resummation, as described in Sec. 3.4.1. Without benchmarking
the cosmological master equations against an exactly solvable model, we would have
missed this crucial ingredient necessary to implement non-perturbative resummation
in non-Markovian settings.

Once the spurious terms are removed by hand, the resummation performs re-
markably well. It strongly improves the results at the level of the standard observ-
ables and the quantum information properties compared to standard perturbation
theory. In particular, in the presence of secular corrections, the relative error scales
as ln2 a in standard perturbation theory and as ln a in the resummed version of the
master equation. It illustrates the late-time resummation performed by the master
equation.

The article [244] can be found online at:

• https://link.springer.com/article/10.1140/epjc (published version);

• https://arxiv.org/abs/2209.01929 (arXiv version).
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cLaboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sor-
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be out of equilibrium and the background is dynamical. In this work, we apply the master-
equation program to a model that is exactly solvable, and which consists of two linearly coupled
scalar fields evolving on a cosmological background. The light field plays the role of the system
and the heavy field is the environment. By comparing the exact solution to the output of the
master equation, we can critically assess its performance. We find that the master equation
exhibits a set of “spurious” terms that explicitly depend on the initial conditions, and which
arise as a consequence of working on a dynamical background. Although they cancel out in
the perturbative limit of the theory (i.e. at leading orders in the interaction strength), they
spoil resummation. However, when those terms are removed, the master equation performs
impressively well to reproduce the power spectra and the amount of the decoherence of the
light field, even in the strongly decohered regime. We conclude that master equations are able
to perform late-time resummation, even though the system is far from the Markovian limit,
provided spurious contributions are suppressed.
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1 Introduction

According to the standard model of cosmology, all structures in our universe emerge from the
gravitational amplification of vacuum quantum fluctuations at early times. This idea is sup-
ported by the data, e.g. the measurements of the cosmic microwave background anisotropies [1],
which reveal that primordial fluctuations are almost scale invariant, quasi Gaussian and adia-
batic. Those observations are consistent with a phase of primordial inflation, driven by a single
scalar field along a smooth potential.
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However, most physical setups that have been proposed to embed inflation contain a large
number of additional degrees of freedom [2]. Even if they provide negligible contributions to
the dynamics of the universe expansion, they may affect the emergence of cosmic structures
in various ways. For instance, they could lead to entropic fluctuations, or to deviations from
Gaussian statistics, that future cosmological surveys might be able to detect [3, 4]. They
may also contribute to processes occurring after inflation (such as the production of curvature
perturbations [5], dark matter [6], or dark energy [7, 8]) but that crucially depend on the
way those extra fields are excited during inflation. At the more fundamental level, additional
degrees of freedom may also alter the quantum state in which primordial density fluctuations
are placed, in particular through the mechanism of decoherence [9–18]. Decoherence [19–21] is
usually associated with the erasure of genuine quantum signatures so this may affect our ability
to prove or disprove that cosmic structures are of quantum-mechanical origin [22, 23].

For those reasons, it has become of increasing importance to design reliable tools to model
the presence of additional degrees of freedom in the early universe [24–40]. One such approach
is the so-called master equation program (see for instance Refs. [41, 42]), where an effective
equation of motion is obtained for the reduced density matrix of a “system” of interest, once the
degrees of freedom contained in the “environment” have been traced out. One of its appealing
advantages is its ability to resum late-time secular effects [43–49], hence to go beyond standard
perturbation theory and implement non-perturbative resummations in cosmology.

However, master equations were primarily developed in the context of quantum optics,
so they rely on assumptions (e.g. that the environment comprises a large reservoir in thermal
equilibrium) that are not necessarily satisfied in cosmology. There, since the background is
dynamical, the Hamiltonian is time-dependent [50] and the environment is generally out-of-
equilibrium [51]. This is why, in this work, we want to understand under which conditions the
master-equation program can be employed in cosmology, and what physical insight one shall
expect to get out of it.

We address this issue by considering a toy model that is exactly solvable, such that the
output of master equations can be compared to the exact result and examined in a critical way.
This allows us to benchmark master equations. In practice, we consider two linearly coupled
scalar field evolving on a homogeneous and isotropic universe. The model has been solved
exactly in Refs. [52, 53], where it has been shown that each Fourier sector is placed in a four-
mode squeezed state, which is a Gaussian state. By tracing over the heaviest field, one obtains
the reduced state of the lightest field, which follows a non-unitary evolution, and which can be
compared with the predictions of different approaches, such as master equations or standard
perturbative techniques. In this model, the environment does not reach thermal equilibrium,
and as we will show the Markovian limit [54] is not attained either. This is why it is a priori
challenging for conventional master-equation approaches to properly describe its dynamics.

The rest of this article is organised as follows. In Sec. 2, we introduce the master-equation
formalism, and clarify the levels at which the different approximations enter the calculation. In
Sec. 3, we introduce the cosmological model mentioned above, and show how it can be solved
exactly. We then apply the master-equation program to this setting, and find that it exhibits
a set of terms that we dub “spurious”. These terms do not exist in the perturbative limit of
the theory, and they prevent resummation due to their dependence on the initial conditions.
In Sec. 4 we then analyse the ability of the master equation to reproduce the power spectra of
the model, as well as to predict the amount of quantum decoherence, when spurious terms are
removed “by hand”. We find that master equations are impressively efficient in that case, even in
the strongly decohered regime, and that they perform much better than standard perturbative
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methods (such as e.g. the in-in formalism). This also leads us to draw a few conclusions as
to whether a heavy scalar field can efficiently decohere cosmological fluctuations. In Sec. 5, we
summarise our main findings and further discuss the status of the spurious terms. The paper
ends by a few technical appendices, to which we defer the derivation of some of the results given
in the main text.

2 The master-equation bestiary

The master-equation program proposes to describe the quantum state of a system when it
weakly couples to an environment. In practice, one considers a Hamiltonian of the form

Ĥ = ĤS + ĤE + gĤint , (2.1)

where ĤS and ĤE respectively denote the Hamiltonians for the system and the environment
in the absence of interactions, and gĤint is the interaction term, controlled by the coupling
constant g. The system alone is described by the reduced density matrix, which is obtained
from the full density matrix by tracing over the environmental degrees of freedom,

ρ̂red = TrE(ρ̂) . (2.2)

An evolution equation for ρ̂red can be derived with different levels of approximation, correspond-
ing to as many different master equations. In this section, we review the most common master
equations, see Ref. [41] for further details (readers already familiar with the master-equation
basic tools may want to skip this section and jump to Sec. 3).

2.1 An exact master equation: the Nakajima-Zwanzig equation

Our first step is to derive an exact, formal master equation, before applying an approximation
scheme. Hereafter we work in the interaction picture, where quantum states evolve with the
interaction Hamiltonian gĤint and operators evolve with the free Hamiltonian, i.e. the Hamil-
tonian in the absence of interactions Ĥ0 ≡ ĤS + ĤE. Operators in the interaction picture
are denoted with an overall tilde, in order to make the distinction with the Schrödinger and
Heisenberg pictures where they carry an overall hat. The link between the Schrödinger and the
interaction picture is given by

ρ̃(η) = Û†0(η)ρ̂(η)Û0(η) and H̃int(η) = Û†0(η)Ĥint(η)Û0(η) , (2.3)

where η denotes time and where we have introduced the free evolution operator

Û0(η) = T exp

[
−i
∫ η

η0

Ĥ0(η′)dη′
]

= T exp

[
−i
∫ η

η0

ĤS(η′)dη′
]
⊗ T exp

[
−i
∫ η

η0

ĤE(η′)dη′
]
,

(2.4)
with T indicating time ordering (time arguments increase from right to left). In this work we
employ natural units where ~ = c = 1. As mentioned above, in the interaction picture the total
density matrix evolves with the interaction Hamiltonian,

dρ̃

dη
= −ig

[
H̃int(η), ρ̃(η)

]
≡ gL(η)ρ̃(η) , (2.5)

which defines the Liouville–Von-Neumann super-operator1 L.

1In this work, following Ref. [41], “super-operator” denotes an operation which maps positive operators to
positive operators.
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Let us now introduce the projection super-operator P, defined as

P ρ̃ = TrE (ρ̃)⊗ ρ̃E , (2.6)

where ρ̃E is a fixed reference state in the environment. In practice, it is taken as the state of
the environment in the absence of interactions with the system, which is indeed constant in the
interaction picture. One can check that P is a projector, i.e. P2 = P, and that P ρ̃ contains the
relevant information to reconstruct the reduced state (2.2) of the system. Upon applying the
super-projector P and its complementary projector Q = Id− P to Eq. (2.5), one obtains

∂

∂η
P ρ̃(η) = gPL(η)ρ̃(η), (2.7)

∂

∂η
Qρ̃(η) = gQL(η)ρ̃(η). (2.8)

Here we have used that since the reference state ρ̃E is independent of time, P and Q commute
with ∂/∂η. Inserting the identity Id = P + Q between the Liouville operator and the density
matrix, one obtains

∂

∂η
P ρ̃(η) = gPL(η)P ρ̃(η) + gPL(η)Qρ̃(η), (2.9)

∂

∂η
Qρ̃(η) = gQL(η)P ρ̃(η) + gQL(η)Qρ̃(η). (2.10)

A formal solution of Eq. (2.10) is given by

Qρ̃(η) = GQ(η, η0)Qρ̃(η0) + g

∫ η

η0

dη′GQ(η, η′)QL(η′)P ρ̃(η′), (2.11)

where η0 is some initial time and GQ(η, η′) is the propagator defined as

GQ(η, η′) ≡ T exp

[
g

∫ η

η′
dη′′QL(η′′)

]
. (2.12)

Plugging Eq. (2.11) into Eq. (2.9), one then obtains a closed equation for the time evolution of
the projected density matrix P ρ̃, namely

∂

∂η
P ρ̃(η) = gPL(η)GQ(η, η0)Qρ̃(η0) + gPL(η)P ρ̃(η) + g2

∫ η

η0

dη′PL(η)GQ(η, η′)QL(η′)P ρ̃(η′).

(2.13)

This is the Nakajima-Zwanzig equation. Although formal, it provides an exact master equa-
tion for the reduced state of the system. It can be further simplified by assuming that
the initial state does not contain correlations between the system and the environment,
i.e. ρ̃(η0) = TrE(ρ̃) ⊗ TrS(ρ̃) = TrE(ρ̃) ⊗ ρ̃E, hence Qρ̃(η0) = 0. Moreover, without loss of
generality one can assume that the expectation value of the interaction Hamiltonian vanishes
in the reference state, i.e. TrE(H̃intρ̃E) = 0 [if this is not satisfied, one simply redefines H̃S

by adding gTrE(H̃intρ̃E) ⊗ IdE to it]. This leads to PL(η)P = 0,2 so the Nakajima-Zwanzig

2This can be shown by computing

PLP ρ̃ = −iP
[
H̃int,P ρ̃

]
= −iP

[
H̃int,TrE(ρ̃)⊗ ρ̃E

]
= −i

[
TrE

(
H̃intρ̃E

)
,TrE (ρ̃)

]
⊗ ρ̃E = 0 . (2.14)
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equation reduces to

∂

∂η
P ρ̃(η) = g2

∫ η

η0

dη′K(η, η′)P ρ̃(η′), (2.15)

where we have introduced the memory kernel K(η, η′) defined as

K(η, η′) = PL(η)GQ(η, η′)QL(η′)P. (2.16)

In this form, the master equation is as difficult to solve as the Liouville equation (2.5) of the
full setup. However, it allows efficient approximation schemes to be designed, as we shall now
see. The first approximation relies on the assumption of weak coupling between the system and
the environment and is discussed in Sec. 2.2, the second approximation concerns properties of
the environment itself and is developed in Sec. 2.3.

2.2 Born approximation: the time-convolutionless cumulant expansion

An effective description of the system alone is in general possible only when it weakly couples to
its environment. This naturally provides a small parameter, namely the interaction strength, in
which to perform an expansion. This is the so-called Born approximation, which also addresses
one of the difficulties inherent to the Nakajima-Zwanzig equation (2.15), namely the fact that
it is non-local in time, i.e. the time derivative of P ρ̃(η) depends on its past history P ρ̃(η′) for
η′ < η. The Time-ConvolutionLess projection operator method (TCL in the following) consists
in expanding the dynamics of the system in powers of the coupling constant g, rendering the
equation local in time (while preserving its non-Markovian nature3). One thus obtains an
equation of the form

∂

∂η
P ρ̃(η) =

∞∑

n=2

gnKn(η)P ρ̃(η) , (2.17)

where the Kn operators are called the TCLn operators and can be computed iteratively. This can
be done by expanding Eq. (2.12) in g, and by using Eq. (2.17) to express P ρ̃(η′) in terms of P ρ̃(η)
in the right-hand side of Eq. (2.15), at the required order. For instance, at leading order in g,
GQ(η, η′) = Id, see Eq. (2.12), so Eq. (2.16) leads to K(η, η′) = PL(η)QL(η′)P = PL(η)L(η′)P,
where we have used that Q = 1−P and that PLP = 0, see footnote 2. At that order, Eq. (2.15)
also indicates that P ρ̃ is constant hence

K2(η) =

∫ η

η0

dη′PL(η)L(η′)P , (2.18)

and truncating Eq. (2.17) at order n = 2 leads to the TCL2 master equation

dρ̃red

dη
= −g2

∫ η

η0

dη′TrE

[
H̃int(η),

[
H̃int(η

′), ρ̃red(η)⊗ ρ̃E

]]
. (2.19)

This expansion can be carried on. At order n = 3, one needs to expand the
memory kernel K(η, η′) at order g and keep P ρ̃(η′) ' P ρ̃(η) in the right-hand side of

3In this work, following Ref. [41], the dynamical map ρ̃(η) → ρ̃(η′) = Mη→η′ ρ̃(η) is said to be Markovian
if its generators form a semi-group, i.e. Mη→η′ = Mη′′→η′Mη→η′′ . Note that a Markovian master equation is
necessarily local in time, but the reverse is not necessarily true.
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Eq. (2.15), given that P ρ̃(η′) − P ρ̃(η) = O
(
g2
)

as shown above. One obtains K3(η) =∫ η
η0

dη′
∫ η
η′ dη

′′PL(η)QL(η′′)QL(η′)P, so

K3(η) =

∫ η

η0

dη′
∫ η

η′
dη′′PL(η)L(η′′)L(η′)P (2.20)

where we have used again that Q = 1− P and that PLP = 0. Note that, if the odd moments
of the interaction Hamiltonian vanish in the environment (as will be the case for the model
studied in the rest of this work), i.e. TrE[Hint(η1) · · ·Hint(η2p+1)ρ̃E] = 0, a similar calculation
as the one performed in footnote 2 for p = 1 then shows that PL(η1) · · · L(ηp+1)P = 0. This
implies that K3 vanishes, as well as all odd TCLn generators.

In that case, the leading correction comes from TCL4, which receives two contributions.
The first one comes from the term of order g2 in the memory kernel K(η, η′) while keeping
P ρ̃(η′) ' P ρ̃(η) in the right-hand side of Eq. (2.15). The second contribution comes from
keeping the memory kernel at leading order but expand P ρ̃(η′) at order g2. The latter can
be formally obtained from the TCL2 equation, the solution of which reads P ρ̃(η′) = P ρ̃(η0) +

g2
∫ η′
η0
K2(η′′)P ρ̃(η′′)dη′′. Together with Eq. (2.18), this leads to

K4(η) =

∫ η

η0

dη1

∫ η1

η0

dη2

∫ η2

η0

dη3

[
PL(η)L(η1)L(η2)L(η3)P − PL(η)L(η1)PL(η2)L(η3)P

−PL(η)L(η2)PL(η1)L(η3)P − PL(η)L(η3)PL(η1)L(η2)P
]
. (2.21)

This expansion can be carried on to the required level of accuracy, which allows one to work out
Eq. (2.17) when truncated at the corresponding order TCLn. Note that, even if the TCL2 order
may be sufficient for practical purposes, the derivation of the fourth-order generator is useful to
control the validity of the cumulant expansion, by evaluating the error estimate g2||K4||/||K2||
and checking that it is indeed small.

2.3 Markovian approximation: the Lindblad equation

The TCL2 master equation (2.19) is in general not Markovian in the sense given in footnote 3,
since it involves a convolution over the past history through the integral over η′. However, a
further approximation can be performed that renders the dynamics Markovian. This leads to
the so-called Gorini–Kossakowski–Sudarshan–Lindblad equation, in short Lindblad equation in
what follows. It can be obtained by first decomposing the interaction Hamiltonian as

Ĥint(η) =
∑

i

Ô
(S)
i (η)⊗ Ô(E)

i (η) , (2.22)

where Ô
(S)
i and Ô

(E)
i form a basis of operators acting on the system and the environment

respectively. Plugging this decomposition into Eq. (2.19), the TCL2 master equation reads

dρ̃red

dη
=−

∑

i,j

g2

∫ η

η0

dη′
{
<e
[
K>
ij(η, η

′)
] [
Õ

(S)
i (η),

[
Õ

(S)†
j (η′), ρ̃red(η)

]]

+ i=m
[
K>
ij(η, η

′)
] [
Õ

(S)
i (η),

{
Õ

(S)†
j (η′), ρ̃red(η)

}]}
, (2.23)
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where {A,B} ≡ AB + BA denotes the anticommutator and the memory kernel K>
ij(η, η

′) is
defined as

K>
ij(η, η

′) = TrE

[
Ô

(E)
i (η)Ô

(E)†
j (η′)ρ̂E

]
. (2.24)

This expression is given in the Heisenberg picture. It involves the two-point correlation functions

of the Ô
(E)
i operators in the environment, and thus depends on the environment properties.

Typical environments contain a large number of degrees of freedom, hence they behave as
reservoirs in which these correlation functions quickly decay with |η − η′|. More precisely, if
the relaxation time of the environment is small compared to the typical time scales over which
the system evolves, one may coarse-grain the evolution of the system on scales larger than the
environment relaxation time. The memory kernel is then sharply peaked, such that the integral
over η′ only receives contributions close to its upper bound η. In this limit, the past history
(η′ < η) is not involved in the dynamics anymore, which therefore becomes Markovian.

Formally, if K>
ij(η, η

′) ∝ δ(η − η′), in the Schrödinger picture Eq. (2.23) takes the form

dρ̂red

dη
= −i

[
ĤS(η), ρ̂red(η)

]
+
∑

i,j

Dij

[
Ô

(S)
i ρ̂red(η)Ô

†(S)
j − 1

2

{
Ô
†(S)
j Ô

(S)
i , ρ̂red(η)

}]
, (2.25)

where the dissipator matrix Dij is a positive semi-definite matrix. This entails that it can
be diagonalised by a unitary transformation (due to the hermiticity implied by the positive
semi-definiteness), and in this basis Eq. (2.25) becomes4

dρ̂red

dη
= −i

[
ĤS(η), ρ̂red(η)

]
+
∑

k

γk

[
L̂kρ̂red(η)L̂†k −

1

2

{
L̂†kL̂k, ρ̂red(η)

}]
(2.26)

where L̂k are the so-called jump operators and γk are the positive eigenvalues of the dissipator
matrix. This is called a Lindblad equation and is the most generic form of a Markovian dynam-
ical equation that preserves trace, Hermiticity and positivity of the density matrix [54]. This
is why Lindblad equations play a key role when studying environmental effects. However, they
rely on strong hypotheses regarding the decay rate of the memory kernel in the environment,
which may or may not be always satisfied. Indeed, in the cosmological context, fields evolve
on a dynamical background, which implies that the environment does not necessarily reach a
stationary state in which fluctuations swiftly decay. One of the goals of this article is to check
the reliability of the master-equation approach for cosmological systems.

2.4 Link with perturbative methods

Later on in this work, we will investigate the extent to which TCL master equations go beyond
perturbative effects and enable some non-perturbative resummation. At this stage however, it
is important to stress that, when solved perturbatively, they reduce to standard perturbative
results. This is because, when deriving the TCLn equation, no contribution of order lower than
gn has been dropped.

4Another approximation known as the rotating-wave approximation is sometimes performed to obtain the
Lindblad equation. Since the evolution of the system is coarse-grained over time scales larger than those describing
the dynamics of the environment, this approximation consists in removing the quickly oscillating terms appearing
in the master equation, for consistency. The implementation of this approach is however challenging in cosmology,
where the dynamical background prevents the existence of a natural frequency basis [55].
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More explicitly, the Liouville–Von-Neumann equation (2.5) can be formally solved as

ρ̃(η) = |�0〉〈�0| − ig
∫ η

−∞
dη′
[
H̃int(η

′), ρ̃(η′)
]
, (2.27)

where |�0〉 denotes the initial state of the combined system-environment setup. By recursively
evaluating ρ̃ in the right-hand side with Eq. (2.27) itself, one obtains

ρ̃(η) =

∞∑

n=0

(−ig)n
∫ η

−∞
dη1

∫ η1

−∞
dη2 · · ·

∫ ηn−1

−∞
dηn

[
H̃int(η1),

[
H̃int(η2), · · ·

[
H̃int(ηn), |�0〉〈�0|

]
· · ·
]]
,

(2.28)

which displays all contributions to the quantum state order-by-order in g. In turn, this allows
one to compute corrections to the observables at all orders, as in the in-in formalism.5

Let us see how this compares with a perturbative solution of TCLn. For TCL2, since the
right-hand side of Eq. (2.19) is proportional to g2, one has ρ̃red(η)⊗ρ̃E = ρ̃red(η0)⊗ρ̃E+O

(
g2
)

=
|�0〉〈�0|+O

(
g2
)
, and Eq. (2.19) leads to

ρ̃red(η) = |�0〉〈�0| − g2

∫ η

η0

dη′TrE

[
H̃int(η),

[
H̃int(η

′), |�0〉〈�0|
]]

+O
(
g4
)
. (2.31)

Assuming that TrE(H̃intρ̃E) = 0 as done above Eq. (2.15), this reduces to Eq. (2.28) when traced
over the environmental degrees of freedom and truncated at order g2. This shows that solving
TCL2 at order g2 is equivalent to Standard Perturbation Theory (SPT hereafter) at that same
order. Likewise, one can show that solving TCLn perturbatively at order gn is equivalent to
SPTn. Therefore, TCLn contains all terms of order gn, and some terms of order gm>n.6

This is why TCL is at least as good as SPT, and one of our goals is to determine how much
better it is when employed in a cosmological context. In other words, when master equations are
used as bona fide dynamical maps (i.e. when they are taken per se and solved without further
perturbative expansion), we want to investigate their ability to resum late-time secular effects
in situations of cosmological interest [44, 46, 59].

3 Curved-space Caldeira-Leggett model

Let us now apply the master-equation program to two massive test fields ϕ and χ in a Friedmann-
Lemâıtre-Robertson-Walker geometry, described by the metric

ds2 = a2(η)
(
−dη2 + d~x2

)
, (3.1)

5This can also be shown in the in-in formalism, where the expectation value of an operator Ô at time η reads

〈Ô〉(η) =
〈
�0
∣∣ T
[
eig

∫ η
−∞ dη′H̃int(η

′)
]
Õ(η)T

[
e−ig

∫ η
−∞ dη′′H̃int(η

′′)
] ∣∣�0
〉
, (2.29)

where T denotes anti time-ordering. By Taylor expanding the exponential functions, one obtains

〈Ô〉(η) =
∞∑

n=0

(ig)n
∫ η

−∞
dη1

∫ η1

−∞
dη2 · · ·

∫ ηn−1

−∞
dηn

〈
�0
∣∣
[
H̃int(ηn),

[
H̃int(ηn−1), · · ·

[
H̃int(η1), Õ(η)

]
· · ·
]] ∣∣�0

〉
.

(2.30)

Using that 〈Ô〉(η) = Tr[Õ(η)ρ̃(η)], together with Tr[Õ(η)[H̃int(ηi), |�0〉〈�0|]] = −〈�0|[H̃int(ηi), Õ(η)]|�0〉, this is indeed
consistent with Eq. (2.28).

6Let us stress that since the TCL expansion is organised differently from the one of SPT, it does not admit a
straightforward diagrammatic representation. In this sense it is more comparable to the Dynamical Renormali-
sation Group (DRG) resummation [56–58] where diagrams are partially resummed.
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where a is the scale factor and η is conformal time. For convenience we restrict the analysis to
a de-Sitter background for which a(η) ≡ −1/(Hη), where H is the constant Hubble parameter
and η varies between −∞ and 0. We consider the case where the fields are minimally coupled
to gravity and where their self-interaction is quadratic, so the action is of the form

S = −
∫

d4x
√
− det g

[(
1

2
gµν∂µϕ∂νϕ+

1

2
m2ϕ2

)
+

(
1

2
gµν∂µχ∂νχ+

1

2
M2χ2

)
+ λ2ϕχ

]
. (3.2)

In this expression, m and M are the masses of the two fields and we assume that they satisfy
m < 3H/2 < M . So ϕ and χ can be respectively considered as light and heavy, in the
cosmological sense. Having in mind possible applications to cosmological perturbations, where
the adiabatic degree of freedom is light, in what follows they will respectively play the role of
the system and of the environment. The parameter λ, which also has dimension of a mass,
controls their interaction. If those fields were to describe cosmological perturbations, higher-
order interaction terms would be parametrically suppressed, and this setting would correspond
to the leading order in cosmological perturbation theory. This model, refereed to as the curved-
space Caldeira-Leggett model [53, 60–62], is therefore of physical interest, and as we shall now
see it has the advantage to be exactly solvable.

The quantum state of the fields ϕ and χ was studied in details in Refs. [52, 63], where it
was shown that each Fourier sector is placed in a four-mode squeezed state. On super-Hubble
scales, the dynamical background leads to the creation of pairs of particles with opposite wave-
momenta in each field, and the interaction then entangles these particles, leading to correlations
between the two fields. Four-mode squeezed states are Gaussian states, and since the action (3.2)
is quadratic Gaussianity is indeed preserved throughout the evolution. Such states are fully
described by their covariance matrix (i.e. their quantum two-point expectation values). This is
why our goal is now to compute the covariance matrix of the system.

3.1 Exact description

The action (3.2) being quadratric, different Fourier modes decouple on a homogeneous back-
ground, which makes it useful to introduce

vϕ(η,k) ≡ a(η)

∫

R3

d3x

(2π)3/2
ϕ(x)e−ik.x and vχ(η,k) ≡ a(η)

∫

R3

d3x

(2π)3/2
χ(x)e−ik.x. (3.3)

An additional prefactor a is introduced in these expressions for later convenience. The conjugate
momenta can be obtained from Eq. (3.2) and read

pϕ = v′ϕ −
a′

a
vϕ and pχ = v′χ −

a′

a
vχ , (3.4)

where hereafter a prime denotes derivation with respect to the conformal time η. A Legendre
transform gives the Hamiltonian

H =

∫

R3+

d3kz†H(η)z , (3.5)

where the phase-space variables have been arranged into the vector z ≡ (vϕ, pϕ, vχ, pχ)T, and
where H is a four-by-four matrix given by

H(η) =

(
H(ϕ) V

V H(χ)

)
, (3.6)
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with

H(ϕ)(η) =

(
k2 +m2a2 a′

a
a′
a 1

)
, H(χ)(η) =

(
k2 +M2a2 a′

a
a′
a 1

)
, V (η) ≡

(
λ2a2 0

0 0

)
. (3.7)

Note that, since ϕ and χ are real fields, one has z∗(η,k) = z(η,−k). This explains why, in
order to avoid double counting, the integral in Eq. (3.5) is performed over R3+ ≡ R2 × R+.

Following the canonical quantisation prescription, field variables are promoted to quantum
operators. In order to work with hermitian operators, we split the fields into real and imaginary
components, that is

ẑ =
1√
2

(
ẑR + iẑI

)
, (3.8)

such that ẑs is Hermitian for s = R, I. These variables are canonical since [v̂si (k), p̂s′j (q)] =

iδ3(k − q)δi,jδs,s′ where i, j = ϕ, χ. In this basis, the Hamiltonian takes the same form as in
Eq. (3.5), i.e.

Ĥ =
1

2

∑

s=R,I

∫

R3+

d3k (ẑs)TH(η)ẑs . (3.9)

Being separable, there is no mode coupling nor interactions between the R and I sectors and the
state is factorisable in this decomposition. Hence, from now on, we focus on a given wavenumber
k and a given s-sector, and to make notations lighter we leave the k and s dependence implicit.

A further factorisation can be performed under the field-space rotation

ẑ =




cos θ 0 − sin θ 0
0 cos θ 0 − sin θ

sin θ 0 cos θ 0
0 sin θ 0 cos θ




︸ ︷︷ ︸
P

ẑ`−h , where θ =
1

2
arctan

(
2λ2

m2 −M2

)
,

(3.10)

where ` and h stand for “light” and “heavy” respectively. In this basis the two fields decouple,
and their masses are given by

m2
` =

1

2


m2 +M2 −

(
M2 −m2

)
√

1 +

(
2λ2

M2 −m2

)2

 , (3.11)

m2
h =

1

2


m2 +M2 +

(
M2 −m2

)
√

1 +

(
2λ2

M2 −m2

)2

 . (3.12)

These expressions imply that m2
` < m2 < M2 < m2

h so after the field-space rotation it remains
true that m2

` < 9H2/4 < m2
h, hence the notation.

In this basis, the problem reduces to the dynamics of two uncoupled free fields evolving in a
de-Sitter background. In the Heisenberg picture, this can be cast in terms of the mode-function
decomposition

v̂i(η) = vi(η)âi + v∗i (η)â†i (3.13)
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for i = ,̀ h and where âi and â†i are the creation and annihilation operators of the uncoupled
fields. Heisenberg’s equation yield the classical equation of motion for the mode functions, i.e.

v′′` +

(
k2 − ν2

` − 1
4

η2

)
v` = 0 and v′′h +

(
k2 − ν2

h − 1
4

η2

)
vh = 0 . (3.14)

In these expressions, ν` = 3
2

√
1−

(
2m`
3H

)2
and νh = 3

2

√
1−

(
2mh
3H

)2 ≡ iµh. By normalising

the mode functions to the Bunch-Davies vacuum [64] in the asymptotic, sub-Hubble past, one
obtains7

v`(η) =
1

2

√
πz

k
ei
π
2 (ν`+ 1

2)H(1)
ν`

(z) and vh(η) =
1

2

√
πz

k
e−

π
2
µh+iπ

4H
(1)
iµh

(z) . (3.15)

In these expressions, z ≡ −kη and H
(1)
ν is the Hankel function of the first kind and of order ν.

The mode functions of the momenta operators can be obtained by using Eq. (3.4), which still
applies in the `− h basis, and one finds

p`(η) = −1

2

√
kπ

z
ei
π
2 (ν`+ 1

2)
[(
ν` +

3

2

)
H(1)
ν`

(z)− zH(1)
ν`+1(z)

]
, (3.16)

ph(η) = −1

2

√
kπ

z
e−

π
2
µh+iπ

4

[(
iµh +

3

2

)
H

(1)
iµh

(z)− zH(1)
iµh+1(z)

]
. (3.17)

As mentioned above, the state being Gaussian, it is fully characterised by the covariance matrix

Σ(η) =
1

2
Tr
[{
ẑ(η), ẑT(η)

}
ρ̂0

]
, (3.18)

where ρ̂0 is the Schrödinger state at initial time, ρ̂0 = ρ̂(η0). In the uncoupled basis, this leads
to a block-diagonal covariance matrix of the form

Σ`−h(η) =

(
Σ`(η) 0

0 Σh(η)

)
where Σi(η) =

(
|vi(η)|2 <e [vi(η)p∗i (η)]

<e [vi(η)p∗i (η)] |pi(η)|2
)

(3.19)

for i = ,̀ h. In the ϕ − χ basis, the covariance matrix can be readily obtained by performing
the rotation

Σ(η) = P ·Σ`−h(η) · PT ≡
(

Σϕϕ(η) Σϕχ(η)
Σϕχ(η) Σχχ(η)

)
, (3.20)

with

Σϕϕ(η) = cos2(θ)Σ`(η) + sin2(θ)Σh(η), (3.21)

Σϕχ(η) = cos(θ) sin(θ) [Σ`(η)−Σh(η)] , (3.22)

Σχχ(η) = cos2(θ)Σh(η) + sin2(θ)Σ`(η). (3.23)

Finally, the reduced state of the system ϕ is obtained by tracing out the χ field, see
Eq. (2.2). It is still a Gaussian state, with covariance matrix given by Σϕϕ [52]. We have

7Note that, since all mass parameters (including λ) are negligible compared to k/a in the asymptotic past,
the Bunch-Davies vacuum can be set both in the ϕ − χ and in the `− h basis [65]. The vacuum state being
invariant under rotations (see Ref. [52]), those two prescriptions are identical.
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thus found an exact solution to the problem at hand (namely compute the reduced state of the
system), to which we will now compare effective methods in order to test their robustness.

As explained in Sec. 1, one of the main physical effects driven by the interaction with an
environment is decoherence, namely the transition from a pure quantum state into a statistical
mixture. The loss of quantum coherence can be measured with the so-called purity parameter
γ(η) ≡ Tr

(
ρ̂2

red

)
which measures the amount of quantum entanglement between the system and

the environment. Pure states correspond to γ = 1, and mixed states have γ < 1 (with γ = 0
corresponding to a maximally mixed state). The amount by which χ decoheres ϕ is given by

γ(η) =
1

4
det [Σϕϕ(η)]−1 , (3.24)

the expression being valid for any Gaussian state [52]. In the absence of interactions between
the system and the environment, det Σϕϕ = 1/4 so γ = 1. Otherwise, the system is said to have
decohered when γ � 1.

3.2 Effective description: the TCL2 master equation

We now turn our attention to the TCL2 master equation (2.23). We remind that it is formulated
in the interaction picture, where the interaction Hamiltonian reads H̃int(η) = a2(η)ṽϕ(η)ṽχ(η).
The TCL2 master equation (2.19) thus takes the form

dρ̃red

dη
= −λ4a2(η)

∫ η

η0

dη′a2(η′)
{
<e
[
K>(η, η′)

] [
ṽϕ(η),

[
ṽϕ(η′), ρ̃red(η)

]]

+i=m
[
K>(η, η′)

] [
ṽϕ(η),

{
ṽϕ(η′), ρ̃red(η)

}]}
, (3.25)

where the memory kernel is given by

K>(η, η′) ≡ TrE

[
v̂χ(η)v̂χ(η′)ρ̂E

]
(3.26)

and we recall that ρ̂E corresponds to the state of the environment in the absence of interac-
tions with the system [a derivation of Eq. (3.25) following microphysical considerations is also
presented in Appendix A]. Since v̂χ(η)v̂χ(η′) is not hermitian for η 6= η′, the kernel K>(η, η′) is
complex and can be evaluated as follows. In the interaction picture, operators evolve with the
free Hamiltonian, so one can use the results obtained in Sec. 3.1 in the uncoupled basis. More
precisely, a similar mode-function decomposition as in Eq. (3.13) can be introduced,

ṽi(η) = vi(η)âi + v∗i (η)â†i (3.27)

where i = ϕ, χ, and an analogous expression for p̃i(η). The mode functions are still given by
Eqs. (3.15)-(3.17), where m` and mh are simply replaced with m and M . This leads to

K>(η, η′) = vχ(η)v∗χ(η′). (3.28)

Interpretating the master equation

While the above form (3.25) of the cosmological master equation is compact, it makes the
connection with quantum Brownian motion [62, 66–69] less apparent. A form that is easier to
interpret can be obtained by expressing all operators at the same time. This can be achieved by
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inverting the mode-function expansion to yield âϕ and â†ϕ in terms of ṽϕ(η) and p̃ϕ(η). Inserting
those expressions in Eq. (3.27) evaluated at time η′ leads to

ṽϕ(η′) = −2=m
[
pϕ(η)v∗ϕ(η′)

]
ṽϕ(η) + 2=m

[
vϕ(η)v∗ϕ(η′)

]
p̃ϕ(η) . (3.29)

Here we have used that =m
[
vϕ(η)p∗ϕ(η)

]
= −1/2, which comes from the canonical commutation

relation [ṽϕ(η), p̃ϕ(η)] = 1. Plugging Eq. (3.29) into Eq. (3.25), one finds

dρ̃red

dη
=− i

[
H̃(LS)(η)︷ ︸︸ ︷

1

2
z̃i(η)∆ij(η)z̃j(η), ρ̃red(η)

]
− 1

2

∑

i,j

Dij(η) [z̃i(η), [z̃j(η), ρ̃red(η)]]

− i

2
∆12(η)

∑

i,j

ωij [z̃i(η), {z̃j(η), ρ̃red(η)}] ,

(3.30)

which defines the “Lamb-shift” Hamiltonian H̃(LS) (see below), where ω =

(
0 1
−1 0

)
, and

where we have used the canonical commutation relation again. In this expression, z̃(η) ≡
(ṽϕ(η), p̃ϕ(η))T and the two-by-two matrices D and ∆ are given by

D11(η) = −4λ4a2(η)

∫ η

η0

dη′a2(η′)=m
[
pϕ(η)v∗ϕ(η′)

]
<e
[
vχ(η)v∗χ(η′)

]
, (3.31)

D12(η) = D21(η) = 2λ4a2(η)

∫ η

η0

dη′a2(η′)=m
[
vϕ(η)v∗ϕ(η′)

]
<e
[
vχ(η)v∗χ(η′)

]
, (3.32)

D22(η) = 0, (3.33)

and

∆11(η) = −4λ4a2(η)

∫ η

η0

dη′a2(η′)=m
[
pϕ(η)v∗ϕ(η′)

]
=m

[
vχ(η)v∗χ(η′)

]
, (3.34)

∆12(η) = ∆21(η) = 2λ4a2(η)

∫ η

η0

dη′a2(η′)=m
[
vϕ(η)v∗ϕ(η′)

]
=m

[
vχ(η)v∗χ(η′)

]
, (3.35)

∆22(η) = 0 . (3.36)

The corresponding equation in the Schrödinger picture can be obtained using the fact that
operators are mapped between the two pictures with the free Hamiltonian of the system, see
Eq. (2.3), and one finds8

dρ̂red

dη
= −i

[
Ĥ(ϕ)(η) + Ĥ(LS)(η), ρ̂red(η)

]
+
∑

i,j

Dij(η)

[
ẑiρ̂red(η)ẑj −

1

2
{ẑj ẑi, ρ̂red(η)}

]
.

(3.38)

8Here we use that since D is symmetric, ω is anti-symmetric given the canonical commutation relations
between phase-space variables [ẑi, ẑj ] = wij , one has

Dij [ẑi, [ẑj , ρ̂red]] = Dij (−2ẑiρ̂redẑj + {ẑj ẑi, ρ̂red}) ,
ωij [ẑi, {ẑj , ρ̂red}] = ωij (2ẑiρ̂redẑj − {ẑj ẑi, ρ̂red}) .

(3.37)
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In this expression, the dissipator matrix is defined as

D(η) ≡D(η)− i∆12(η)ω =

(
D11(η) D12(η)− i∆12(η)

D12(η) + i∆12(η) 0

)
. (3.39)

One can see that Eq. (3.38) has the same form as the Lindblad equation (2.25), with the crucial
difference that the dissipator matrix D(η) is not positive semi-definite in the present case.9 It is
also worth stressing that Eq. (3.30) has the same form as the master equation obtained by Hu,
Paz and Zhang in their seminal paper [67] and that describes quantum Brownian motion. The
first term in the right-hand side of Eq. (3.30) provides a unitary contribution, which renormalises
the energy levels of the system due to the interaction with the environment [41, 79, 80]. This
is why it is often referred to as the Lamb–shift Hamiltonian. In our case, it reads

Ĥ(ϕ)(η) + Ĥ(LS)(η) =
1

2

[
p̂ϕp̂ϕ +

(
k2 +m2a2 + ∆11

)
v̂ϕv̂ϕ +

(
a′

a
+ ∆12

)
{v̂ϕ, p̂ϕ}

]
. (3.40)

One can thus see that ∆11 renormalises the mass of the field ϕ, while ∆12 renormalises the
comoving Hubble parameter. Note that, in the context of effective-field theoretic calculations,
these contributions are usually re-absorbed in an effective speed of sound c2

S
[27, 81, 82]. The

second and the third terms in Eq. (3.30) are of a different nature, since they capture the non-
unitary evolution of the system and thus cannot be described by an effectively local Lagrangian.
This is due to dissipation and decoherence, which respectively correspond to the imaginary and
the real part of the dissipator matrix in Eq. (3.38).10

Finally, in phase space, the TCL2 master equation takes the form of a Fokker-Planck
equation for the reduced Wigner function Wred. The latter is defined by the Wigner-Weyl
transform of the reduced density matrix [96], and provides a quantum analogue of a phase-
space quasi probability distribution. In Appendix B, we derive general results on the phase-
space representation of the TCL2 master equation. In particular, we find that performing the
Wigner-Weyl transform of Eq. (3.30) leads to

dWred

dη
=
{
H̃(ϕ) + H̃(LS),Wred

}
+ ∆12

∑

i

∂

∂zi
(ziWred)− 1

2

∑

i,j

[ωDω]ij
∂2Wred

∂zi∂zj
, (3.41)

where brackets correspond to Poisson brackets (not to be confused with the anti-commutator).
Only the term involving H̃(ϕ) + H̃(LS) is unitary, as mentioned above. The second term, pro-
portional to ∆12, is dissipative: it is a drift (or friction) term that accounts for the energy
transfer from the system into the environment [22]. Finally, the term proportional to ωDω
corresponds to diffusion and leads to decoherence. One can show that this equation admits
Gaussian solutions, hence the reduced state of the system is still Gaussian in TCL.

9If the dynamical map generated by Eq. (3.38) were Markovian in the sense introduced in footnote 3, i.e. if it
described a semi-group evolution, then according to Lindblad theorem [54] the fact that its dissipator is not semi-
definite positive would imply that it is not Completely Positive and Trace Preserving (CPTP). However, Eq. (3.38)
belongs to the class of so-called “Gaussian master equations”, which were shown to be CPTP in Refs. [70, 71]
(and thus map a quantum state to another proper quantum state). The contrapositive of Lindblad’s theorem
thus imposes that our master equation is non-Markovian [32, 41, 72–78].

10The fact that the real and the imaginary part of the memory kernel lead to distinct physical effects is also
encountered in the influence-functional approach [45, 66, 83–92], of which the master equation is the dynamical
generator [93, 94]. Indeed, in the influence functional description, =m

[
K>(η, η′)

]
is related to the retarded and

advanced Green’s function of the environment and can be interpreted as a dissipation kernel, while <e
[
K>(η, η′)

]

is related to the Keldysh-Green’s function [42, 95] and can be interpreted as a noise kernel [51].
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3.3 Transport equations

As mentioned above, the state being Gaussian, it is fully characterised by its covariance matrix.
Since the initial covariance matrix is the same in all approaches (TCL2, exact, SPT) a first
strategy to benchmark the cosmological master equation consists in comparing the equation of
motion for the covariance of the system, usually refereed to as the transport equations.

TCL2 transport equation

In the TCL approach, the transport equations can be obtained by differentiating Eq. (3.18)
with respect to time in the Schrödinger picture, and using Eq. (3.38) to evaluate dρ̂red/dη. This
gives

dΣTCL

dη
= ω

(
H(ϕ) + ∆

)
ΣTCL −ΣTCL

(
H(ϕ) + ∆

)
ω − ωDω − 2∆12ΣTCL , (3.42)

where D and ∆ were introduced in Eqs. (3.31)-(3.36). The first two terms correspond to the
unitary evolution, which as stressed above receives an additional contribution from the Lamb-
shift Hamiltonian. The last two terms respectively correspond to the diffusion (a source term
proportional to D) and the dissipation (a damping term proportional to ∆12).

Exact transport equation

In the exact approach presented in Sec. 3.1, the transport equations for the full system-plus-
environment setup can be obtained by differentiating Eq. (3.18) with respect to time in the
Heisenberg picture, and using the Heisenberg equations to evaluate dẑ/dη. The Hamilto-
nian (3.9) being quadratic, one finds

dΣ

dη
= ΩHΣ−ΣHΩ, (3.43)

where H was defined in Eq. (3.6) and Ω is a four-by-four block-diagonal matrix where each
2× 2 block on the diagonal is ω.

Using blockwise multiplication we can split the above into a set of coupled differential
equations for the covariance of the system (Σϕϕ), of the environment (Σχχ), and for their
cross-covariance (Σϕχ). Using Eqs. (3.7), it reads

dΣϕϕ

dη
= ωH(ϕ)Σϕϕ −ΣϕϕH

(ϕ)ω + ωV ΣT
ϕχ −ΣϕχV ω, (3.44)

dΣχχ

dη
= ωH(χ)Σχχ −ΣχχH

(χ)ω + ωV TΣϕχ −ΣT
ϕχV ω, (3.45)

dΣϕχ

dη
= ωH(ϕ)Σϕχ −ΣϕχH

(χ)ω + ωV Σχχ −ΣϕϕV ω. (3.46)

Note that these transport equations can also be obtained in the phase-space representation
(i.e. using Wigner functions), as explained in Appendix B. In the present case, a first integral
of the above system can be easily constructed, since we know that, in spite of having three
covariance matrices (Σϕϕ, Σχχ and Σϕχ), only two combinations are independent (namely Σ`

and Σh). More precisely, from Eq. (3.21) one can show that Σϕχ = ΣT
ϕχ = tan(2θ)(Σϕϕ −

Σχχ)/2. Focusing on the dynamics of the reduced system, Eq. (3.44) can thus be written as

dΣϕϕ

dη
= ω

(
H(ϕ) + ∆ex

)
Σϕϕ −Σϕϕ

(
H(ϕ) + ∆ex

)
ω − ωDexω , (3.47)
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where

∆ex ≡ −
λ2

M2 −m2
V and Dex ≡ −

λ2

M2 −m2
(ωΣχχV − V Σχχω) . (3.48)

The reason why we write the exact transport equation in this form is to allow for an easy
comparison with its TCL2 counterpart (3.42). This suggests to interpret ∆ex as a Lamb-shift
contribution in the exact approach, and Dex as a diffusion matrix. From Eq. (3.48), the only
non-vanishing entries of those matrices are given by

∆ex,11 =− λ4a2

M2 −m2
, (3.49)

Dex,11 =− 2
λ4a2

M2 −m2
Σχχ,12 , Dex,12 =

λ4a2

M2 −m2
Σχχ,11 . (3.50)

Note that, in the asymptotic past, when a → 0, the above coefficients vanish, which confirms
that the two fields become effectively uncoupled and that Bunch-Davies initial conditions can
be safely set, see footnote 7.

SPT transport equation

In the perturbative approach introduced in Sec. 2.4, at leading order, the transport equation is
simply given by the exact transport equation, Eq. (3.47), where the right-hand side is truncated
at order λ4:

dΣSPT

dη
= ωH(ϕ)ΣSPT −ΣSPTH

(ϕ)ω + ω∆exΣfree
ϕϕ −Σfree

ϕϕ ∆exω − ωDSPTω . (3.51)

Here, Σfree
ϕϕ corresponds to Σϕϕ evaluated in the free theory and is given by the second part of

Eq. (3.19) with the mode functions vϕ and pϕ. Similarly, DSPT is given by Eq. (3.50) where Σχχ

is replaced with Σfree
χχ , which is given by the second part of Eq. (3.19) with the mode functions

vχ and pχ. Note that ∆ex does not need to be expanded since it is already of order λ4, see
Eq. (3.49).

Even though the covariance matrix in SPT can be obtained by integrating the above
transport equation, in the present situation an exact solution to the full theory is known, so it
can also be obtained by expanding Eq. (3.21) in λ. Here, not only θ2 = λ4/(m2−M2)2 +O

(
λ8
)

needs to be expanded, see Eq. (3.10), but also m2
` = m2 − λ4/(M2 −m2) + O

(
λ8
)

and m2
h =

M2 + λ4/(M2 −m2) + O
(
λ8
)

in Σh and Σ`, see Eqs. (3.11)-(3.12). On the numerical results
presented below, we have checked that these two approaches coincide.

3.4 Spurious terms

The TCL2 coefficients are expressed as integrals between η0 and η, see Eqs. (3.31)-(3.36), where
η0 → −∞ if Bunch-Davies initial conditions are chosen. Formally, they can be written as

D11 = FD11 (η, η)− FD11 (η, η0) , (3.52)

where FD11(η, ·) is the primitive of the integrand appearing in Eq. (3.31), which itself depends
on η, and with similar notations for the other TCL2 coefficients. The F functions are derived
explicitly in Appendix C, where it is shown that the integrals (3.31)-(3.36) can be performed
analytically and involve products of four Hankel functions. The second term in Eq. (3.52), the
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one of the form F (η, η0), features several properties that we now describe and that will lead us
to dub it “spurious”.

First, the spurious terms involve the initial time η0, which implies that they carry explicit
dependence on the initial conditions. If the environment memory kernel (3.26) is sufficiently
peaked around η′ = η, that is if the integrands in Eqs. (3.31)-(3.36) are much smaller around
η′ = η0 than around η′ = η, then this contribution should be suppressed compared to the non-
spurious one. This is similar to the Lindbladian limit discussed in Sec. 2.3. Whether or not this
is the case can be verified explicitly in the super-Hubble regime (i.e. at late time, −kη � 1)
where the F functions take simple forms. The expansion in the limit −kη � 1 is performed
in Appendix C.3, where it is shown that the spurious terms dominate for all coefficients. More
precisely, FD11(η, η) ∝ (−kη)−2 while FD11(η, η0) ∝ (−kη)−7/2, FD12(η, η) ∝ (−kη)−1 while
FD11(η, η0) ∝ (−kη)−5/2, F∆11(η, η) ∝ (−kη)−2 while F∆11(η, η0) ∝ (−kη)−7/2, and F∆12(η, η)
vanishes while F∆12(η, η0) ∝ (−kη)−5/2. Let us stress that the late-time domination of the
spurious terms is strongly related to having a dynamical background. This is the first indi-
cation we encounter that applying the master-equation program to cosmology may not be as
straightforward as in other situations.

Second, in Appendix C.1, we notice that, using various identities satisfied by the Hankel
functions, the expressions for the non-spurious contributions can be vastly simplified. More
precisely, after a lengthy though straightforward calculation we find that

FD11(η, η) =DSPT,11(η) , FD12(η, η) = DSPT,12(η) ,

F∆11(η, η) =∆ex,11(η) , F∆12(η, η) = 0 .
(3.53)

Let us now recall the result obtained in Sec. 2.4, namely the fact that the perturbative version
of TCL is strictly equivalent to SPT. This implies that ΣTCL = ΣSPT + O

(
λ8
)
, where ΣSPT

only contains terms of order λ0 (namely Σfree
ϕϕ ) and λ4. As a consequence, the right-hand sides

of Eqs. (3.42) and (3.51) coincide at order λ4. The terms of order λ0 are trivially identical, and
for the terms of order λ4 one obtains (recalling that both D and ∆ are of order λ4)

ω∆Σfree
ϕϕ −Σfree

ϕϕ ∆ω − ωDω − 2∆12ΣSPT = ω∆exΣfree
ϕϕ −Σfree

ϕϕ ∆exω − ωDSPTω . (3.54)

Each term in the left-hand side can be decomposed into a non-spurious part and a spurious
part, see Eq. (3.52). An important remark is that, thanks to Eq. (3.53), the non-spurious part
exactly coincides with the right-hand side, hence the spurious contributions cancel out. We
have therefore proven that the spurious terms are absent from the perturbative limit of TCL
and only arise at higher order. This is obviously consistent with the fact that, at leading order,
TCL coincides with the exact theory, which is not plagued by any spurious contribution.

Third, we have checked that if one includes the spurious terms when solving the TCL
transport equation (3.42), then the result quickly blows up. This is due to the late-time diver-
gences of the spurious contributions mentioned above. On the contrary, as we will see below, if
one removes them, then the result is remarkably well-behaved.

To summarise, spurious terms cancel out at leading order in the interaction strength, and
at higher order, the fact that they carry an explicit dependence on the initial time, combined
with their late-time divergent behaviour, indicates that they cannot be resummed. This leads
us to conclude that, for the simple model we have considered here, resummation cannot be
efficiently performed with the standard master-equation program.

However, this may be due to the over-simplicity of that particular model, which contains
a single degree of freedom in the environment. As we further argue in Sec. 5, if “larger”
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environment are considered, initial-time dependent terms may be parametrically suppressed.
In order to gain insight on such situations, in what follows we analyse the consequences of
removing the spurious terms “by hand”.

If spurious contributions are removed, Eq. (3.53) indicates that D = DSPT and that
∆ = ∆ex. The ∆ matrix is perfectly captured by TCL since ∆ex only contains contributions
proportional to λ4, see Eq. (3.48). In particular, there is no damping term, i.e. ∆12 = 0 (note
however that this is due to the specifics of the interaction we consider, which is such that
V12 = 0). The diffusive part, i.e. the one driven by D, is however only partly contained in
TCL, where D = DSPT, whereas Dex contains terms of higher-order in λ. We therefore expect
spurious-free TCL to lie somewhere between SPT and the exact theory, which we now further
investigate.

4 Non-perturbative resummation

In Sec. 2.4, we have shown that the TCL master equation reduces to standard perturbation
theory when solved at leading order in the interaction strength. In Appendix D this equivalence
is shown explicitly for the toy model introduced in Sec. 3. However, the TCL master equation
can also be treated as a bona fide dynamical map for the quantum state of the system, and
solved as it is. In that case, its ability to resum secular effects has been investigated in various
contexts [22, 43, 44, 46, 59], and we now want to study how late-time resummation proceeds in
the (spurious-free) cosmological Caldeira-Leggett model.

4.1 Power spectra

As mentioned above, both in the exact and TCL descriptions, the state of the system remains
Gaussian, hence it is fully characterised by its covariance matrix, i.e. by its power spectra.
This is why we first compare these setups at the level of their power spectra. If the cos-
mological Caldeira-Leggett model were to describe cosmological perturbations, note that the
configuration-configuration power spectrum would be directly related to cosmological observ-
ables, such as the CMB temperature anisotropies.

The power spectra in the exact theory are given by Eq. (3.21), and as explained above, by
expanding these formulas at first order in λ4 one obtains their SPT counterpart. In the TCL
setup, the power spectra can be obtained by solving the transport equation (3.42). In the model
under consideration, there is no damping term, ∆12 = 0, but in general it can be absorbed by
introducing

σTCL ≡ eΓ(η,η0)ΣTCL with Γ(η, η0) ≡ 2

∫ η

η0

dη′∆12(η′) , (4.1)

which is solution of a damping-free transport equation, namely

dσTCL

dη
= ω

(
H(ϕ) + ∆

)
σTCL − σTCL

(
H(ϕ) + ∆

)
ω − eΓ(η,η0)ωDω . (4.2)

This equation can be seen as a homogeneous part, describing unitary evolution, and a source
term, describing diffusion. The homogeneous part is generated by the Hamiltonian H(ϕ)+H(LS),
and by denoting gLS(η, η0) the associated Green’s matrix, the solution of Eq. (4.2) reads

σTCL(η) = gLS(η, η0)σTCL(η0)gT
LS(η, η0)−

∫ η

η0

dη′eΓ(η′,η0)gLS(η, η′)
[
ωD(η′)ω

]
gT

LS(η, η′).

(4.3)
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Figure 1. Growth rate of the configuration-configuration power spectrum as a function of time, labeled
with the scale factor (a∗ = k/H corresponds to the time of Hubble exit, i.e. when η∗ = −1/k). The
result is displayed in the free (grey), exact (black), TCL2 (blue) and SPT (orange) theories. The blue
dotted line corresponds to the super-Hubble expansion for TCL, see Eq. (4.6), which leads to the growth
rate d ln ΣTCL,11/d ln a = 2νLS − 1. The parameters are set to λ = H, m = H/10 and M =

√
10H.

Note that gLS is obtained from the Lamb-shift corrected mode functions

gLS(η, η′) = 2

(
=m [vLS(η)p∗LS(η′)] −=m [vLS(η)v∗LS(η′)]
=m [pLS(η)p∗LS(η′)] −=m [pLS(η)v∗LS(η′)]

)
, (4.4)

where vLS is the solution of v′′LS + ω2
LSvLS = 0 where ω2

LS = k2 + m2a2 + ∆11 −∆′12 + ∆2
12 −

2∆12a
′/a, see Eq. (3.40), with Bunch-Davies initial conditions, and pLS = v′LS− (a′/a)vLS as in

Eq. (3.4).11 This leads to

ΣTCL(η) =e−Γ(η,η0)gLS(η, η0)ΣTCL(η0)gT
LS(η, η0)

−
∫ η

η0

dη′e−Γ(η,η′)gLS(η, η′)
[
ωD(η′)ω

]
gT

LS(η, η′). (4.5)

In practice, this integral is computed numerically from a large negative value of η0 (sufficiently
large that we check the result does not depend on η0).

Growth rate

First we compare in Fig. 1 the growth rate of the configuration-configuration power spectrum,
d ln Σ11/d ln a. The result is given in the free theory (i.e. setting λ = 0, grey line), in the exact

11In the present case, since ∆12 = 0 and ∆11 = ∆ex,11, where ∆ex,11 is given in Eq. (3.49), one has ω2
LS =

k2 + [m2 − λ4/(M2 −m2)]a2. This implies that vLS and pLS can be expressed in terms of Hankel functions as

in Eqs. (3.15) and (3.16), with ν replaced by νLS = 3
2

√
1−

(
2mLS
3H

)2
where m2

LS = m2 − λ4/(M2 −m2). This
is consistent with effective-field theoretic approaches where the masses of light scalar fields are renormalised by
heavy fields with contributions O(λ4/M2) [97].
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theory (black line), in TCL (blue line) and in SPT (orange line). The difference between these
different setups becomes more pronounced at late time, on which the inset zooms in. One can
see that TCL provides an excellent approximation, better than SPT, which itself is closer to
the exact result than the free theory.

The behaviour of the TCL covariance matrix can be further understood by investigating
the super-Hubble (i.e. late time, −kη � 1) limit of the transport equation (3.42). In this regime,
an expansion of the coefficients can be found in Appendix C.3. By inserting power-law ansatz
for the entries of the covariance matrix, one finds that the diffusion term becomes negligible at
large scales, and that

ΣTCL,11 ∝ a2νLS−1 , ΣTCL,12 ∝ a2νLS , ΣTCL,22 ∝ a2νLS+1 , (4.6)

where νLS was introduced in footnote 11. The corresponding growth rate, 2νLS−1, is displayed
in Fig. 1 with the dotted blue line, and one can check that it asymptotes the TCL result at late
time indeed.

In the exact theory, the term involving Σ` dominates over the one involving Σh in
Eq. (3.21), so the growth rate is given by 2ν` − 1, where ν` is given below Eq. (3.14). It
is worth stressing that by expanding ν` at leading order in λ4, one recovers νLS [namely
m2
` = m2

LS + O
(
λ8
)
]. As a consequence, TCL correctly reproduces the growth rate at first

order in λ4.
Although this may seem as a perturbative result, let us stress that the resummed non-

perturbative feature lies in Eq. (4.6). Indeed, in SPT, expanding Σϕϕ at leading order in λ4

leads to

ΣSPT,11 ∝ a2νϕ−1

[
1 +

λ4

H2νϕ (M2 −m2)
ln a

]
(4.7)

at late time, where νϕ = 3
2

√
1−

(
2m
3H

)2
. This matches Eq. (4.6) at leading order in λ4, but

Eq. (4.6) contains all higher-order terms in λ4 that allow the logs to be resumed. In particular,
Eq. (4.7) implies that at late time, the growth rate in SPT approaches the one of the free theory,
2νϕ − 1, while as stated above the growth rate of TCL incorporates the first correction in λ4.

Relative deviation to the exact result

The performance reached by TCL or SPT is given by the relative deviation of their covariance
matrices to the exact result. This is displayed in Fig. 2 for m2 = 10−4H2 and λ2 = H2, which
purposely corresponds to a large coupling. One can check that TCL is always more accurate
than SPT, and that the difference in accuracy becomes more pronounced at larger M . This
can be understood as follows. In the super-Hubble regime, TCL behaves according to Eq. (4.6),
which is super-imposed in Fig. 2 and indeed provides a good fit. It leads to

|ΣTCL,11 −Σϕϕ,11|
Σϕϕ,11

' a2(νLS−ν`) − 1 =
λ8 ln(a)

νϕH2 (M2 −m2)3 +O
(
λ12
)
. (4.8)

The last result is expanded at leading order in λ (hence in ln a), which provides a good approx-
imation as long as the relative error is much smaller than one, as in Fig. 2. In SPT, Eq. (4.7)
gives rise to

|ΣSPT,11 −Σϕϕ,11|
Σϕϕ,11

' λ8 ln2(a)

2 (M2 −m2)2H4ν2
ϕ

+O
(
λ12
)

(4.9)

at late time. There are two main differences between Eqs. (4.8) and (4.9). First, when the
environment is heavy, M � H, the relative error in TCL decays as λ8/M6 while it is suppressed
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Figure 2. Relative error in the configuration-configuration power spectrum in TCL2 (|ΣTCL,11 −
Σϕϕ,11|/Σϕϕ,11, blue lines) and SPT (|ΣSPT,11 −Σϕϕ,11|/Σϕϕ,11, orange lines). The result is displayed
as a function of time, labeled with the scale factor, and for M2 = 10H2 (solid lines) and M2 = 100H2

(dashed lines). The dotted lines correspond to the super-Hubble formula (4.6), which indeed provide a
good fit at late time. The parameters are taken as m2 = 10−4H2 and λ2 = H2. The grey-shaded area
is where the error is larger than 100%.

by λ8/M4 in SPT. This explains why, when going from M2 = 10H2 to M2 = 100H2 in Fig. 2,
the relative error decreases by a factor 103 in TCL and by a factor 102 in SPT. This indicates
that, although both results become more accurate as the environment is heavier, the gain in
accuracy is much stronger for TCL. Second, the relative error in SPT increases as ln2(a) at late
time, while it only increases as ln(a) in TCL. This is why in Fig. 2, the difference in accuracy
between these two approaches becomes even larger as time proceeds.

Finally, in Fig. 3 we display the relative error for all power spectra (i.e. all entries of the
covariance matrix), as a function of the interaction strength λ. When λ is small, the relative
error scales as λ8 for both SPT and TCL, in agreement with the fact that both methods match
the exact result at order λ4 [see Sec. 2.4, see also Eqs. (4.8) and (4.9)]. One can also see that
both in TCL and in SPT, the reconstruction of the configuration-configuration power spectrum
is better than for the configuration-momentum power spectrum, which is itself better than the
momentum-momentum power spectrum. In TCL, all power spectra are accurately computed up
to large values of λ. For instance, even when λ/H = 1, the relative error is smaller than 10−4 for
all power spectra. In SPT however, the momentum-momentum power spectrum is already out of
control for such values of λ. Indeed, the correlators involving the momentum are given with less
precision in SPT, and the perturbative expansion breaks down for the momentum-momentum
power spectrum much sooner than for the configuration-configuration power spectrum. This
will be of prime importance below, since those correlators play an essential role in the process
of decoherence.

– 21 –



10−1 100 101

λ2/H2

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

∣ ∣∆
Σ Σ

∣ ∣

TCL

SPT

Σ11

Σ12

Σ22

Figure 3. Relative error in all entries of the covariance matrix of the system. The blue lines correspond to
the TCL2 result |ΣTCL,ij −Σϕϕ,ij |/|Σϕϕ,ij |, while the orange lines correspond to standard perturbation

theory (SPT) |Σ(2)
ϕϕ,ij − Σϕϕ,ij |/|Σϕϕ,ij |. Different line styles correspond to different entries of the

covariance matrix, and the parameters of the model are chosen as m2 = 10−4H2, M2 = 102H2 and
a/a∗ = e5. The grey-shaded area is where the error is larger than 100%. The peaky features correspond
to where the exact power spectrum Σϕϕ,12 vanishes and Σϕϕ,22 goes through a local minimum.

4.2 Decoherence

We turn our attention to decoherence that we measure using the purity whose expression for
Gaussian states is given by Eq. (3.24). The result is displayed in Fig. 4. As time proceeds, the
system entangles with its environment, decoherence occurs (i.e. γ decreases away from 1), and
the system becomes maximally mixed soon after Hubble-crossing for the parameters used in the
figure.

The lower panel displays the error relative to the exact result. One can see that, when
time proceeds, the SPT result quickly diverges. So perturbation theory is only able to describe
quasi pure states, for which 1 − γ � 1, and breaks down when decoherence proceeds. The
reason for the weak performance of SPT is that the purity parameter is driven by the so-called
cosmological decaying mode, which is encoded in the power spectra involving the momentum.
Around Fig. 3 we saw that those are precisely the correlators that SPT predicts with the least
accuracy. On the contrary, TCL2 remarkably describes the full decoherence process, and is able
to approximate the full quantum state even in the strongly decohered regime. The relative error
freezes to a tiny value at large scales (here of the order 10−6), which is a manifestation of the
resummation occurring in TCL.

The simplest way to access the late-time behaviour of the purity is to derive an equation
of motion for det(ΣTCL) from the transport equation (3.42), namely

d det(ΣTCL)

dη
= D11ΣTCL,11 + 2D12ΣTCL,12 − 4∆12 det(ΣTCL). (4.10)
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approaches as a function of time. The dotted line corresponds to the super-Hubble expansion of the TCL
result, see Eq. (4.11). The lower panel shows the error of TCL2 and SPT relative to the exact result.
The parameters are set to m2 = 10−4H2 and M2 = 102H2 with λ2 = 10−1H2. The perturbative result
rapidly diverges, while TCL2 accurately predicts the amount of decoherence even in the fully decohered
regime.

All unitary contributions (i.e. those involving H(ϕ) and ∆11) have cancelled out (indeed, only
non-unitary contributions can change the purity). This implies that diffusion, controlled by D,
is crucial in the process of decoherence (since ∆12 = 0 in the present case). It contrasts with
Sec. 4.1 where we had found that D gives negligible corrections to the power spectra on large
scales – those negligible corrections are precisely the ones driving decoherence. The results of
Appendix C.3 together with Eq. (4.6) indicate that the two first terms of Eq. (4.10) are of the
same order a2νLS−1 at late time. In this limit Eq. (4.10) can be integrated, and one obtains

det(ΣTCL) ' 1

4
+

22νLS−3

π
Γ2 (νLS)

(
λ

H

)4(H
M

)3( a

a∗

)2νLS

, (4.11)

where the prefactors in Eq. (4.6) have been set by neglecting diffusion (alternatively, they can
be set by asymptotic matching at Hubble crossing and this gives a very similar result) and we
have neglected contributions exponentially suppressed by M/H to reach a concise expression
(they be easily kept but do not bring any particular insight). The purity γTCL = 1/(4 det ΣTCL)
obtained from this expression is displayed in Fig. 4 with the dotted line. One can check that it
provides an excellent approximation to the full TCL result, hence to the exact result too.

The above formula (4.11) also allows us to study under which conditions decoherence occurs
for the model at hand. It is non perturbative in λ since one should recall that νLS depends on λ,
see footnote 11, although the rate of decoherence is mostly proportional to (λ/H)4. Similarly,
although νLS depends on M , decoherence occurs at a rate mostly proportional to (H/M)3, so
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it is slower for heavier environments. Finally, it is very efficient on super-Hubble scales, since
it scales as a2νLS ∼ a3, so roughly as the spatial volume, as often encountered [14, 17]. For
instance, for scales of astrophysical interest today that are such that a/a∗ ∼ e50 at the end
of inflation, for M/H = 100 and m/H = 10−2, one finds that decoherence proceeds during
inflation as soon as λ/H > 10−15, a very small value indeed.

5 Conclusion

Let us now summarise our main results and open up a few prospects. In this work, we have
investigated how the master-equation program can be implemented in cosmology. To this end,
we have used a toy model where two scalar fields are linearly coupled and evolve on a de-Sitter
background. It has the advantage of being exactly solvable, an “integrable system”, in which
the performance of effective methods can be assessed and compared with more traditional,
perturbative techniques.

We have derived the second-order Time-ConvolutionLess (TCL) equation in this setup,
which is a master equation for the reduced density matrix of the system (here the lighter field),
and which features the memory kernel of the environment (here the heavier field). It possesses
three contributions: a unitary “Lamb-shift” term (renormalisation of the bare Hamiltonian),
a dissipation term (energy exchange with the environment) and a diffusive term (driving the
quantum decoherence process). They can all be expressed in terms of integrals ranging from
the initial time to the time at which the master equation is written.

Usually, the memory kernel is sufficiently peaked around the coincident configuration that
these integrals are dominated by their upper bound, hence they carry negligible dependence on
the initial time. This is the case if the relaxation time of the environment around its stationary
configuration is small compared to the time scale over which the evolution of the system is
tracked. This is the so-called Markovian, or Lindbladian limit. In the present case however, due
to the presence of a dynamical background, there is no such thing as a stationary configuration
for the environment, which strongly departs from being a thermal bath. In practice we find
that these integrals carry a non-negligible dependence on the initial time, through a set of terms
that we have dubbed “spurious”.

We have then shown that these spurious terms cancel out when the TCL equation is solved
perturbatively in the coupling constant, i.e. they are absent from the perturbative version of
the theory. This is consistent with the fact that the perturbative solution to the TCL equation
is strictly equivalent to standard perturbation theory (such as the in-in formalism for instance).
When solving the TCL equation non-perturbatively however, they lead to unphysical diverging
behaviours, which clearly signals their problematic nature.

However, if one removes them “by hand” (which does not necessarily makes the dynamics
Markovian, see footnote 9), one finds that the TCL equation provides an excellent approximation
to the full theory: it successfully reproduces all power spectra up to large values of the interaction
strength, and it tracks the amount of decoherence very accurately, including at late time when
the system is in a strongly mixed state. This is due to an explicit resummation of logarithmic
terms (i.e. of powers of ln a, where a is the scale factor of the universe), and in Appendix E
we show that this resummation is more efficient than the late-time resummation technique
proposed in Ref. [44]. The incorporation of these late-time secular effects makes TCL vastly
superior to perturbative methods. Although we have found that it does not require particularly
heavy environment, the advantage of TCL compared to perturbative methods is even more
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pronounced when the mass M of the environmental field is larger than the Hubble scale H,
since the relative error of the former scales as (H/M)6 while it scales as (H/M)4 for the latter.

To summarise, we have found that the master-equation program can be successfully applied in
cosmological backgrounds, provided spurious terms are suppressed.

The presence of the spurious terms may be related to the simplicity of our toy model,
where only one field is contained in the environment, which can therefore not be considered as a
proper reservoir. If multiple fields were present indeed, all with different masses, thus oscillating
at different frequencies, the memory kernel would be suppressed away from the coincident limit
through the accumulation of random phases [41, 73] (technically, the memory kernel would
involve some Fourier transform of the mass distribution of the environmental fields, which may
be peaked if that distribution is sufficiently broad). This mechanism was studied e.g. in the
context of black-hole physics in Ref. [98]. Another possibility would be to consider non-linear
interactions between the two fields, which would imply that one Fourier mode in the system
couples to all Fourier modes in the environment, hence making the number of environmental
degrees of freedom to which the system couples infinite. One could also consider situations
in which non-linearities only arise within the environmental sector,12 as in quasi-single field
models [28, 99]. The same mechanism of random phase addition would presumably occur in
those cases, which would also lead to a suppression of the spurious terms. Whether or not
that suppression is enough should be the subject of further investigations. Another, maybe
more adventurous question, is whether or not one can design an improved master equation,
where the removal of spurious contributions is automatically taken care of. Indeed, our results
show that master equations free from spurious terms are extremely powerful at deriving reliable
predictions for cosmology, and perform much better than perturbative methods. We plan to
address these issues in future works.
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A Microphysical derivation of the TCL2 master equation

In this appendix, we present an alternative derivation of the TCL2 master equation (3.25) in
the curved-space Caldeira-Leggett model, which does not rely on the cumulant expansion of
the Nakajima-Zwanzig equation. We start from the Liouville–Von-Neumann equation in the
interaction picture (2.5), namely

dρ̃

dη
= −iλ2

[
H̃int(η), ρ̃(η)

]
. (A.1)

As noted in Eq. (2.27), it can be solved formally as

ρ̃(η) = ρ̃(η0)− iλ2

∫ η

η0

dη′
[
H̃int(η

′), ρ̃(η′)
]
. (A.2)

12Let us note that the presence of non-linearities, even if confined to the environmental sector, would leave an
imprint on the non-Gaussian statistics of the system [28, 30].
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Inserting this expression into Eq. (A.1), one obtains

dρ̃

dη
= −iλ2

[
H̃int(η), ρ̃(η0)

]
− λ4

∫ η

η0

dη′
[
H̃int(η),

[
H̃int(η

′), ρ̃(η′)
]]

+O(λ6) . (A.3)

This procedure could be iterated to obtain higher-order nested commutators, controlled by
higher powers of the interaction strength. If the coupling constant λ is small (Born approxima-
tion), one may stop at order O(λ4) where the first non-unitary effects appear.

Our next task is to turn Eq. (A.3) into an ordinary differential equation that is local in time
for the reduced density matrix ρ̃red(η). By tracing Eq. (A.3) over the environmental degrees of
freedom, one finds

dρ̃red

dη
' −iλ2TrE

[
H̃int(η), ρ̃(η0)

]
− λ4

∫ η

η0

dη′TrE

[
H̃int(η),

[
H̃int(η

′), ρ̃(η′)
]]
. (A.4)

In the interaction picture, the deviation of ρ̃ from its initial configuration is necessarily controlled
by some positive power p of the interaction strength,

ρ̃(η) = ρ̃red(η0)⊗ ρ̃E(η0) + λpρ̃correl(η) (A.5)

where TrE(ρ̃correl) = TrS(ρ̃correl) = 0. Consequently,

dρ̃red

dη
=− iλ2TrE

[
H̃int(η), ρ̃red(η0)⊗ ρ̃E(η0)

]

− iλp+2TrE

[
H̃int(η), ρ̃correl(η0)

]

− λ4

∫ η

η0

dη′TrE

[
H̃int(η),

[
H̃int(η

′), ρ̃red(η′)⊗ ρ̃E(η′)
]]

− λp+4

∫ η

η0

dη′TrE

[
H̃int(η),

[
H̃int(η

′), ρ̃correl(η
′)
]]
.

(A.6)

Which term dominates depends on the value of p, which can be determined as follows. Let us
first recall that H̃int(η) was given above Eq. (3.25) and reads

H̃int(η) = a2(η)ṽϕ(η)ṽχ(η) , (A.7)

which leads to

TrE

[
H̃int(η), ρ̃red(η0)⊗ ρ̃E(η0)

]
= a2(η) [ṽϕ(η), ρ̃red(η0)] TrE [ṽχ(η)ρ̃E(η0)] . (A.8)

Note that

TrE [ṽχ(η)ρ̃E(η0)] =
〈
ṽχ(η − η0)

〉
(A.9)

which is the mean value of the environment field operator. Such a mean value can always
be absorbed in a redefinition of the field, such that the first term in the right-hand side of
Eq. (A.6) vanishes. From Eq. (A.5), dρ̃red/dη necessarily contains a term of order O (λp), so
the only possibility is that p = 4. As a consequence, the terms of order O

(
λp+2

)
and O

(
λp+4

)

can be neglected, and one finds

dρ̃red

dη
= −λ4

∫ η

η0

dη′TrE

[
H̃int(η),

[
H̃int(η

′), ρ̃red(η′)⊗ ρ̃E(η′)
]]
. (A.10)
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At leading order in λ, one can safely replace ρ̃red(η′) by ρ̃red(η) and ρ̃E(η′) by ρ̂E in Eq. (A.10).
This leads to a manifestly time-local equation, namely

dρ̃red

dη
= −λ4

∫ η

η0

dη′TrE

[
H̃int(η),

[
H̃int(η

′), ρ̃red(η)⊗ ρ̂E

]]
(A.11)

which is consistent with Eq. (2.19). ReplacingHint by Eq. (A.7) and expanding the commutators
yields the result

dρ̃red

dη
=− λ4a2(η)

∫ η

η0

dη′a2(η′)

{
[
ṽϕ(η)ṽϕ(η′)ρ̃red(η)− ṽϕ(η′)ρ̃red(η)ṽϕ(η)

]
K>(η, η′)

−
[
ṽϕ(η)ρ̃red(η)ṽϕ(η′)− ρ̃red(η)ṽϕ(η′)ṽϕ(η)

]
K<(η, η′)

}
, (A.12)

where the memory kernels are defined as in Eq. (3.26), namely

K>(η, η′) ≡ TrE

[
v̂χ(η)v̂χ(η′)ρ̂E

]
, (A.13)

K<(η, η′) ≡ TrE

[
v̂χ(η′)v̂χ(η)ρ̂E

]
. (A.14)

As in Eq. (3.28), they can be expressed in terms of the mode functions

K>(η, η′) = vχ(η)v∗χ(η′) (A.15)

K<(η, η′) = v∗χ(η)vχ(η′) = K>∗(η, η′), (A.16)

and the master equation reads

dρ̃red

dη
=− λ4a2(η)

∫ η

η0

dη′a2(η′)

{ [
ṽϕ(η)ṽϕ(η′)ρ̃red(η)− ṽϕ(η′)ρ̃red(η)ṽϕ(η)

]
K>(η, η′)

−
[
ṽϕ(η)ρ̃red(η)ṽϕ(η′)− ρ̃red(η)ṽϕ(η′)ṽϕ(η)

]
K>∗(η, η′)

}
. (A.17)

Expanding K> into its real and imaginary part, one recovers Eq. (3.25).

B Phase-space representation of the TCL2 master equation

An alternative representation of the quantum state is given in the phase-space by the Wigner
function (see Ref. [96] for a brief introduction). For Gaussian states, the Wigner function takes
the simple form of a multivariate Gaussian [100], which makes it particularly convenient to work
with.

The Wigner function is defined as the inverse Weyl transform of the density matrix. For
a generic quantum operator Ô, the inverse Wigner-Weyl transform reads

W
Ô

(vϕ, pϕ) = 2

∫ ∞

−∞
dye−2ipϕy 〈vϕ + y| Ô |vϕ − y〉 (B.1)
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and is a function of the phase-space variables vϕ and pϕ. The above formula is written in the
configuration representation, it can also be written in the momentum representation,

W
Ô

(vϕ, pϕ) = 2

∫ ∞

−∞
dke2ikvϕ 〈pϕ + k| Ô |pϕ − k〉 . (B.2)

In this way, commutators of quantum operators are mapped to the Poisson brackets of their
phase-space representations. Indeed, using the above formulas, one finds

W[v̂ϕ,Ô] = i
∂

∂pϕ
WO and W[p̂ϕ,Ô] = −i ∂

∂vϕ
WO , (B.3)

W{v̂ϕ,Ô} = 2vϕWO and W{p̂ϕ,Ô} = 2pϕWO . (B.4)

This leads to

iωijW[ẑj ,Ô] =
∂WO

∂zi
, (B.5)

1

2
W{ẑi,Ô} = ziWO , (B.6)

where we have introduced the phase-space vector z = (vϕ, pϕ)T.

These relations can be used to compute the inverse Weyl transform of the TCL2 master
equation (3.30). Using that ω is antisymmetric, one finds

dWred

dη
=
{
H̃0 + H̃(LS),Wred

}
+ ∆12

∑

i

∂

∂zi
(ziWred)− 1

2

∑

i,j

[ωDω]ij
∂2Wred

∂zi∂zj
, (B.7)

where Wred = Wρ̂red is the reduced Wigner function, i.e. the inverse Wigner-Weyl transform of
the reduced density matrix ρ̂red. The curly brackets now represent Poisson’s brackets, not to
be confused with the anticommutators for quantum operators. This coincides with Eq. (3.41).

The first term in Eq. (B.7) corresponds to the free evolution dressed by the Lamb-shift
Hamiltonian. This part of the equation only captures unitary/time-reversible evolution. The
second term is a damping term reading as a total derivative and the last term is a diffusion
term. These last two terms can be combined into a single second-order differential operator
involving the dissipator matrix defined in Eq. (3.39), and they induce a non-unitary evolution.

Let us finally mention that the TCL2 transport equation can be simply obtained from
Eq. (B.7) using the Gaussianity of the state. Indeed, the state being Gaussian, the reduced
Wigner function is given by

Wred =

√
1

4π2 det ΣTCL
exp


−1

2

∑

i,j

zi (ΣTCL)−1
ij zj


 , (B.8)

where ΣTCL is the covariance of the reduced system. Upon inserting Eq. (B.8) into Eq. (B.7),
one obtains

dΣTCL

dη
= ω

(
H(ϕ) + ∆

)
ΣTCL −ΣTCL

(
H(ϕ) + ∆

)
ω − ωDω − 2∆12ΣTCL , (B.9)

which indeed coincides with Eq. (3.42).
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C Coefficients of the transport equation for TCL2

In this appendix, we work out the coefficients of the transport equation for TCL2, defined in
Eqs. (3.31), (3.32), (3.34) and (3.35). They involve the scale factor, which in a de-Sitter universe
is given by a = k/(Hz), as well as the mode functions

vϕ(η) =
1

2

√
πz

k
ei
π
2 (νϕ+ 1

2)H(1)
νϕ (z) , (C.1)

pϕ(η) =− 1

2

√
kπ

z
ei
π
2 (νϕ+ 1

2)
[(
νϕ +

3

2

)
H(1)
νϕ (z)− zH(1)

νϕ+1(z)

]
, (C.2)

vχ(η) =
1

2

√
πz

k
e−

π
2
µχ+iπ

4H
(1)
iµχ

(z) , (C.3)

pχ(η) =− 1

2

√
kπ

z
e−

π
2
µχ+iπ

4

[(
iµχ +

3

2

)
H

(1)
iµχ

(z)− zH(1)
iµχ+1(z)

]
. (C.4)

Here, we recall that z = −kη, H
(1)
ν is the Hankel function of the first kind and of order ν and

νϕ =
3

2

√
1−

(
2m

3H

)2

and µχ =
3

2

√(
2M

3H

)2

− 1 . (C.5)

C.1 Exact results

In order to perform the integrals involved in Eqs. (3.31)-(3.35), we will make use of the formula

∫
Cν1(Az)Dν2(Az)

dz

z
=
Cν1(Az)Dν2(Az)

ν1 + ν2
+

Az

ν1
2 − ν2

2

[Cν1(Az)Dν2+1(Az)− Cν1+1(Az)Dν2(Az)] ,

(C.6)
see Eq. (10.22.6) of Ref. [101], where Cν1 and Dν2 are any of the Bessel functions, and A is a
fixed arbitrary parameter. Anticipating the computation, let us finally define

Fν,µ(z) ≡
H

(2)
ν (z)H

(1)
iµ (z)

ν + iµ
+

z

ν2 + µ2

[
H(2)
ν (z)H

(1)
iµ+1(z)−H(2)

ν+1(z)H
(1)
iµ (z)

]
, (C.7)

Gν,µ(z) ≡
H

(2)
ν (z)H

(2)
−iµ(z)

ν − iµ +
z

ν2 + µ2

[
H(2)
ν (z)H

(2)
−iµ+1(z)−H(2)

ν+1(z)H
(2)
−iµ(z)

]
, (C.8)

in terms of which it will be convenient to express our results.

D11 coefficient

We start with D11 defined in Eq. (3.31), namely

D11(η) = −4λ4a2(η)

∫ η

η0

dη′a2(η′)=m
[
pϕ(η)v∗ϕ(η′)

]
<e
[
vχ(η)v∗χ(η′)

]
. (C.9)

Expanding the real and the imaginary parts, and replacing a = k/(Hz), it is given by

D11(z) = i
k3

z2

λ4

H4

∫ z0

z

dz′

(z′)2

[
pϕ(z)v∗ϕ(z′)− p∗ϕ(z)vϕ(z′)

] [
vχ(z)v∗χ(z′) + v∗χ(z)vχ(z′)

]
. (C.10)
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We thus have four terms,

D11(z) =i
k3

z2

λ4

H4
pϕ(z)vχ(z)

∫ z0

z

dz′

(z′)2
v∗ϕ(z′)v∗χ(z′)

+ i
k3

z2

λ4

H4
pϕ(z)v∗χ(z)

∫ z0

z

dz′

(z′)2
v∗ϕ(z′)vχ(z′)

− ik
3

z2

λ4

H4
p∗ϕ(z)vχ(z)

∫ z0

z

dz′

(z′)2
vϕ(z′)v∗χ(z′)

− ik
3

z2

λ4

H4
p∗ϕ(z)v∗χ(z)

∫ z0

z

dz′

(z′)2
vϕ(z′)vχ(z′) ,

(C.11)

which can be re-organised as

D11(z) =2
k3

z2

λ4

H4
=m

[
pϕ(z)vχ(z)

∫ z

z0

dz′

(z′)2
v∗ϕ(z′)v∗χ(z′) + pϕ(z)v∗χ(z)

∫ z

z0

dz′

(z′)2
v∗ϕ(z′)vχ(z′)

]
.

(C.12)
Therefore, we have two integrals to compute. Making use of Eq. (C.6), they are given by

∫ z

z0

dz′

(z′)2
v∗ϕ(z′)v∗χ(z′) =− i π

4k
e−

π
2
µχ−iπ2 νϕ

[
Gνϕ,µχ(z)−Gνϕ,µχ(z0)

]
,

∫ z

z0

dz′

(z′)2
v∗ϕ(z′)vχ(z′) =

π

4k
e−

π
2
µχ−iπ2 νϕ

[
Fνϕ,µχ(z)− Fνϕ,µχ(z0)

]
.

(C.13)

We conclude that D11 can be written as

D11(z) = FD11 (z, z)− FD11 (z, z0) , (C.14)

where

FD11 (z1, z2) =
π

2

k2

z2

λ4

H4
e−

π
2
µχ=m

[
− ipϕ(z1)vχ(z1)Gνϕ,µχ(z2)e−i

π
2
νϕ

+ pϕ(z1)v∗χ(z1)Fνϕ,µχ(z2)e−i
π
2
νϕ

]
. (C.15)

It is worth noting that in the case where z1 = z2, this function can be further simplified by
making repeated use of the Wronskian identity (see Eq. (10.5.5) of Ref. [101]), namely

H
(1)
ν+1(z)H(2)

ν (z)−H(1)
ν (z)H

(2)
ν+1(z) = − 4i

πz
. (C.16)

Recalling that [H
(1)
ν (z)]∗ = H

(2)
ν∗ (z) and [H

(2)
ν (z)]∗ = H

(1)
ν∗ (z), after a tedious but straightforward

calculation it leads to

FD11 (z, z) = − 2

ν2
ϕ + µ2

χ

(
k

z

)(
λ

H

)4

<e
[
vχ(z)p∗χ(z)

]
. (C.17)

Given that Eq. (C.5) leads to ν2
ϕ +µ2

χ = (M2−m2)/H2, and since Σfree
χχ,12(z) = <e [vχ(z)p∗χ(z)],

this can be rewritten as

FD11 (z, z) = −2
λ4a2

M2 −m2
Σfree
χχ,12(z) , (C.18)

where we have also used that a = −k/(Hz) in a de-Sitter universe. This corresponds to D11 in
the exact theory when evaluated at leading order in the interaction strength, see Eq. (3.50). In
other words, we have shown that

FD11 (z, z) = DSPT,11(z) . (C.19)
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D12 coefficient

The other coefficients can be computed similarly. For D12 defined in Eqs. (3.32), one has

D12(η) =2λ4a2(η)

∫ η

η0

dη′a2(η′)=m
[
vϕ(η)v∗ϕ(η′)

]
<e
[
vχ(η)v∗χ(η′)

]

=
i

2

k3

z2

λ4

H4

∫ z

z0

dz′

(z′)2

[
vϕ(z)v∗ϕ(z′)− v∗ϕ(z)vϕ(z′)

] [
vχ(z)v∗χ(z′) + v∗χ(z)vχ(z′)

]
.

(C.20)

This leads to
D12(z) = FD12 (z, z)− FD12 (z, z0) , (C.21)

where

FD12 (z1, z2) = −π
4

k2

z2

λ4

H4
e−

π
2
µχ=m

[
− ivϕ(z1)vχ(z1)Gνϕ,µχ(z2)e−i

π
2
νϕ

+vϕ(z1)v∗χ(z1)Fνϕ,µχ(z2)e−i
π
2
νϕ

]
. (C.22)

As for FD11 , this expression can be simplified in the coincident configuration z1 = z2 by repeat-
edly using the Wronskian identity (C.16), and one finds

FD12 (z, z) =

(
k

z

)2( λ
H

)4 |vχ(z)|2
µ2
χ + ν2

ϕ

. (C.23)

Using again that ν2
ϕ + µ2

χ = (M2 −m2)/H2, this can be written as

FD12 (z, z) =
λ4a2

M2 −m2
Σfree
χχ,11(z) = DSPT,12(z) , (C.24)

where we recognise the leading-order contribution in Dex,12, see Eq. (3.50).

∆11 coefficient

For ∆11 defined in Eqs. (3.34), one has

∆11(η) =− 4λ4a2(η)

∫ η

η0

dη′a2(η′)=m
[
pϕ(η)v∗ϕ(η′)

]
=m

[
vχ(η)v∗χ(η′)

]

=− k3

z2

λ4

H4

∫ z

z0

dz′

(z′)2

[
pϕ(z)v∗ϕ(z′)− p∗ϕ(z)vϕ(z′)

] [
vχ(z)v∗χ(z′)− v∗χ(z)vχ(z′)

]
.

(C.25)

This leads to
∆11(z) = F∆11 (z, z)− F∆11 (z, z0) , (C.26)

where

F∆11 (z1, z2) = −π
2

k2

z2

λ4

H4
e−

π
2
µχ<e

[
− ipϕ(z1)vχ(z1)Gνϕ,µχ(z2)e−i

π
2
νϕ

−pϕ(z1)v∗χ(z1)Fνϕ,µχ(z2)e−i
π
2
νϕ

]
. (C.27)
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This expression can be simplified when z1 = z2 using the Wronskian identity (C.16), if one
further uses two additional properties of the Hankel functions. The first one is the recurrence
relation (see Eq. (10.6.1) of Ref. [101])

H
(2)
ν−1(z) +H

(2)
ν+1(z) =

2ν

z
H(2)
ν , (C.28)

and the second one is the inversion formula

H
(1)
−ν (z) = eiπνH(1)

ν (z) , H
(2)
−ν (z) = e−iπνH(2)

ν (z) . (C.29)

After a tedious but straightforward calculation, this leads to

F∆11 (z, z) = −
(
k

z

)2( λ
H

)4 1

ν2
ϕ + µ2

χ

= ∆ex,11 , (C.30)

where we have recognised ∆ex,11, see Eq. (3.49), using again that ν2
ϕ + µ2

χ = (M2 −m2)/H2.
Note that, here, the agreement between F∆11(z, z) and ∆ex,11 is valid at all orders, given that
∆ex,11 only contains terms of order λ4.

∆12 coefficient

Finally, for ∆12 defined in Eqs. (3.35), one has

∆12(η) =2λ4a2(η)

∫ η

η0

dη′a2(η′)=m
[
vϕ(η)v∗ϕ(η′)

]
=m

[
vχ(η)v∗χ(η′)

]

=
1

2

k3

z2

λ4

H4

∫ z

z0

dz′

(z′)2

[
vϕ(z)v∗ϕ(z′)− v∗ϕ(z)vϕ(z′)

] [
vχ(z)v∗χ(z′)− v∗χ(z)vχ(z′)

]
,

(C.31)

and this leads to
∆12(z) = F∆12 (z, z)− F∆12 (z, z0) , (C.32)

where

F∆12 (z1, z2) =
π

4

k2

z2

λ4

H4
e−

π
2
µχ<e

[
− ivϕ(z1)vχ(z1)Gνϕ,µχ(z2)e−i

π
2
νϕ

−vϕ(z1)v∗χ(z1)Fνϕ,µχ(z2)e−i
π
2
νϕ

]
. (C.33)

This expression can be simplified when z1 = z2 using the Wronskian identity (C.16), and we
find that it vanishes,

F∆12 (z, z) = 0 . (C.34)

In particular, it implies that F∆12(z, z) = ∆ex,12(z) and that, as for F∆11(z, z), this is valid at
all orders in λ4 given that both quantities identically vanish.

C.2 Sub-Hubble limit

In order to gain analytic insight, let us expand the coefficients derived above in the sub-Hubble
(z � 1) and super-Hubble (z � 1) limits. In the sub-Hubble limit, one can use the asymptotic
expansion

H(1)
ν (z) =

√
2

πz
e−iz−i

π
2
ν−iπ

4

∞∑

k=0

ak(ν)

(
i

z

)k
, (C.35)
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H(2)
ν (z) =

√
2

πz
eiz+i

π
2
ν+iπ

4

∞∑

k=0

ak(ν)

(−i
z

)k
, (C.36)

see Eq. (10.17.5) of Ref. [101], with

ak(ν) =

(
1
2 − ν

)
k

(
1
2 + ν

)
k

(−2)kk!
(C.37)

where the parenthesis with lower index indicate the Pochhammer’s symbol, i.e. (x)k = Γ(x +
k)/Γ(x). Inserting these formulas into Eqs. (C.7) and (C.8), one obtains

Fν,µ(z) =− e
π
2

(µ+iν)

π

(
4i

ν2 + µ2
+

2

z
− iν

2 + µ2

2z2

)
+O(z−3) , (C.38)

Gν,µ(z) =− e
π
2

(µ+iν)

π

e−2iz

z2
+O(z−3) . (C.39)

Note that Fν,µ(z) is non vanishing in the sub-Hubble regime. Let us now expand Eqs. (C.15),
(C.22), (C.27) and (C.33) in the limit z1, z2 � 1. At leading order, one obtains

FD11 (z1, z2) ' k2λ4

2H4z3
1

(
2

ν2
ϕ + µ2

χ

− 1 +
z1

z2

)
, (C.40)

FD12 (z1, z2) ' kλ4

2H4
(
ν2
ϕ + µ2

χ

)
z2

1

, (C.41)

F∆11 (z1, z2) '− k2λ4

H4
(
ν2
ϕ + µ2

χ

)
z2

1

, (C.42)

F∆12 (z1, z2) 'kλ
4(z1 − z2)

4H4z3
1z2

. (C.43)

C.3 Super-Hubble limit

To organise the super-Hubble expansion, we introduce the quantities

αν(z) ≡ 1 + i cotπν

Γ(1 + ν)

(z
2

)ν− 3
2
, βν(z) ≡ −i

sinπν

1

Γ(1− ν)

(z
2

) 3
2
−ν
, (C.44)

γµ(z) ≡ 1 + cothπµ

Γ(1 + iµ)

(z
2

)iµ
, δµ(z) ≡ −1

sinhπµ

1

Γ(1− iµ)

(z
2

)−iµ
, (C.45)

together with the function

fx(z) ≡
∞∑

k=0

(−1)k
(
z
2

)2k

k! (x+ 1)k
(C.46)

=1−
(
z
2

)2

x+ 1
+

(
z
2

)4

2(x+ 1)(x+ 2)
+O(z6) (C.47)

such that

H(1)
ν (z) = αν(z)fν(z)

(z
2

) 3
2

+ βν(z)f−ν(z)
(z

2

)− 3
2
, (C.48)

H
(1)
iµ (z) = γµ(z)fiµ(z) + δµ(z)f−iµ(z) , (C.49)
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and

H
(1)
ν+1(z) =

αν(z)

ν + 1
fν+1(z)

(z
2

) 5
2

+ νβν(z)f−ν−1(z)
(z

2

)− 5
2
, (C.50)

H
(1)
iµ+1(z) =

γµ(z)

iµ+ 1
fiµ+1(z)

z

2
+ iµδµ(z)f−iµ−1(z)

(z
2

)−1
, (C.51)

see Eqs. (10.2.2), (10.4.7) and (10.4.8) of Ref. [101]. This allows one to expand Eqs. (C.7) and
(C.8), and one finds

Fν,µ(z) =− 2
√

2z−3/2β∗ν

[
(ν + iµ)γµ + (ν − iµ)δµ

ν2 + µ2

]
+
z1/2

√
2
β∗ν

[
(1− iµ)γµ + (1 + iµ)δµ

(1 + µ2) (ν − 1)

]

+
z3/2

2
√

2
α∗ν

[
(ν − iµ)γµ + (ν + iµ)δµ

ν2 + µ2

]
+O(z5/2) . (C.52)

and

Gν,µ(z) =− 2
√

2z−3/2β∗ν

[
(ν − iµ)γ∗µ + (ν + iµ)δ∗µ

ν2 + µ2

]
+
z1/2

√
2
β∗ν

[
(1 + iµ)γ∗µ + (1− iµ)δ∗µ

(1 + µ2) (ν − 1)

]

+
z3/2

2
√

2
α∗ν

[
(ν + iµ)γ∗µ + (ν − iµ)δ∗µ

ν2 + µ2

]
+O(z5/2) . (C.53)

Hereafter, to lighten the notation, we have dropped the explicit z-dependence of αν , βν , γµ and
δµ. This is because, since νϕ is close to 3/2 in practice, see Eq. (C.5), this does not affect the
power counting in z, see Eqs. (C.44)-(C.45).

It is worth noting that the terms of orders z−3/2 and z1/2 cancel out in F ∗ν,µ(z) +Gν,µ(z)
since βν is pure imaginary, see Eq. (C.45). One indeed has

F ∗ν,µ(z) +Gν,µ(z) =
1

ν2 + µ2

z3/2

√
2
<e (αν)

[
(ν + iµ)γ∗µ + (ν − iµ)δ∗µ

]
+O(z5/2). (C.54)

Let us now expand the coefficients of the transport equation in the super-Hubble limit, i.e. when
z � 1 (but keeping z0 arbitrary).

D11 coefficient

For D11, one finds

D11 =z−7/2S
(−7/2)
D11

(z, z0) +
π

2

e−πµχ

ν2
ϕ + µ2

χ

λ4

H4

[
3

2

∣∣γµχ + δµχ
∣∣2 + 2µχ=m

(
γ∗µχδµχ

)] k2

z2

+ z−3/2S
(−3/2)
D11

(z, z0) ,

(C.55)

where

S
(−7/2)
D11

(z, z0) = −π
2k2

2
√

2

(
νϕ −

3

2

)
λ4

H4
=m

{
βνϕ

[
F ∗νϕ,µχ (z0) +Gνϕ,µχ (z0)

] (
γµχ + δµχ

)}
e−πµχ

(C.56)

and

S
(−3/2)
D11

(z, z0) = − π2

16
√

2

1

(1 + µ2
χ)(νϕ − 1)

λ4

H4
k2=m

[
βνϕ

[
F ∗νϕ,µχ (z0) +Gνϕ,µχ (z0)

]
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(
γµχ(µχ + i) {µχ(−7 + 2νϕ) + i [10 + νϕ(−7 + 2νϕ)]} (C.57)

+δµχ(µχ − i) {µχ(−7 + 2νϕ)− i [10 + νϕ(−7 + 2νϕ)]}
)]

e−πµχ

+
π2

16
√

2

(
3

2
+ νϕ

)
λ4

H4

k2

z1/2
=m

{[
−α∗νϕF ∗νϕ,µχ (z0) + ανϕGνϕ,µχ (z0)

]

(
γµχ + δµχ

)}
e−πµχ +O(z1/2)

are spurious contributions, i.e. they arise from the term FD11(z, z0) in Eq. (C.14).

D12 coefficient

One finds

D12 =z−5/2S
(−5/2)
D12

(z, z0) +
π

4

∣∣γµχ + δµχ
∣∣2

ν2
ϕ + µ2

χ

λ4

H4
e−πµχ

k

z
+ z−1/2S

(−1/2)
D12

(z, z0) , (C.58)

where

S
(−5/2)
D12

(z, z0) =
π2

4
√

2

λ4

H4
k=m

{
βνϕ

[
F ∗νϕ,µχ (z0) +Gνϕ,µχ (z0)

] (
γµχ + δµχ

)}
e−πµχ (C.59)

and

S
(−1/2)
D12

(z, z0) =
π2k

16
√

2

e−πµχ

(1 + µ2
χ)(νϕ − 1)

λ4

H4
=m

{
βνϕ

[
F ∗νϕ,µχ (z0) +Gνϕ,µχ (z0)

]

[
(1 + µ2

χ)
(
γµχ + δµχ

)
+ (1− iµχ)(1− νϕ)γµχ + (1 + iµχ)(1− νϕ)δµχ

]
}

(C.60)
are again spurious contributions.

∆11 coefficient

For ∆11, we have

∆11 =z−7/2S
(−7/2)
∆11

(z, z0)− π

2

µχe
−πµχ

ν2
ϕ + µ2

χ

λ4

H4

(∣∣γµχ
∣∣2 −

∣∣δµχ
∣∣2
) k2

z2
+ z−3/2S

(−3/2)
∆11

(z, z0) ,

(C.61)
where

S
(−7/2)
∆11

(z, z0) =
π2k2

2
√

2

(
νϕ −

3

2

)
λ4

H4
<e
{
βνϕ

[
F ∗νϕ,µχ (z0) +Gνϕ,µχ (z0)

] (
γµχ + δµχ

)}
e−πµχ

(C.62)
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and

S
(−3/2)
∆11

(z, z0) =
π2k2

16
√

2

1

(1 + µ2
χ)(νϕ − 1)

λ4

H4
<e

[
βνϕ

[
F ∗νϕ,µχ (z0) +Gνϕ,µχ (z0)

]

(
γµχ(µχ + i) {µχ(−7 + 2νϕ) + i [10 + νϕ(−7 + 2νϕ)]}

+δµχ(µχ − i) {µχ(−7 + 2νϕ)− i [10 + νϕ(−7 + 2νϕ)]}
)]

e−πµχ

− π2

16
√

2

(
3

2
+ νϕ

)
λ4

H4

k2

z1/2
<e

{[
−α∗νϕF ∗νϕ,µχ (z0) + ανϕGνϕ,µχ (z0)

]

(
γµχ + δµχ

)}
e−πµχ

(C.63)

are spurious contributions. It is also worth noting that, in Eq. (C.61), one can simplify

∣∣γµχ
∣∣2 −

∣∣δµχ
∣∣2 = 2

eπµ

πµ
. (C.64)

∆12 coefficient

Finally, for ∆12, one obtains

∆12(z) =z−5/2S
(−5/2)
∆12

(z, z0) + z−1/2S
(−1/2)
∆12

(z, z0) (C.65)

which only contains spurious terms as shown in Eq. (C.34), given by

S
(−5/2)
∆12

(z, z0) = − π
2k

4
√

2

λ4

H4
<e
{
βνϕ

[
F ∗νϕ,µχ (z0) +Gνϕ,µχ (z0)

] (
γµχ + δµχ

)}
e−πµχ (C.66)

and

S
(−1/2)
∆12

(z, z0) = − π2k

16
√

2

e−πµχ

(1 + µ2
χ)(νϕ − 1)

λ4

H4
<e
{
βνϕ

[
F ∗νϕ,µχ (z0) +Gνϕ,µχ (z0)

]

[
(1 + µ2

χ)
(
γµχ + δµχ

)
+ (1− iµχ)(1− νϕ)γµχ + (1 + iµχ)(1− νϕ)δµχ

] }
.

(C.67)

D Comparison between TCL and perturbation theory in the curved-space
Caldeira-Leggett model

In this appendix, we compare Standard Perturbation Theory (SPT) to the perturbative solu-
tions of the TCL master equation, in the context of the curved-space Caldeira-Leggett model
introduced in Sec. 3. This will allow us to exhibit a concrete manifestation of the generic
statement proven in Sec. 2.4, that TCLn solved perturbatively at order n coincides with SPTn.

D.1 Perturbation theory

The two-field system detailed in Sec. 3.1 being linear, the field operators admit a decomposition
of the form

v̂ϕ(η) = vϕϕ(η)âϕ + v∗ϕϕ(η)â†ϕ + vϕχ(η)âχ + v∗ϕχ(η)â†χ , (D.1)
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v̂χ(η) = vχϕ(η)âϕ + v∗χϕ(η)â†ϕ + vχχ(η)âχ + v∗χχ(η)â†χ , (D.2)

where (âϕ; â†ϕ) and (âχ; â†χ) are the creation and annihilation operators of the ϕ and χ quanta
respectively. This generalises the decomposition (3.13) to the case where fields interact and
exchange quanta. A similar decomposition can be introduced for the momenta operators p̂ϕ
and p̂χ, where the Hamiltonian (3.6)-(3.7) gives the mode functions

pij(η) = v′ij(η)− a′

a
vij(η) (D.3)

for i, j ∈ {ϕ, χ}. Using Heisenberg’s equations, one finds that the mode functions evolve ac-
cording to

v′′ij + ω2
i (η)vij = −λ2a2(η)vīj , (D.4)

where we have introduced ω2
ϕ(η) ≡ k2 +m2a2(η)− a′′/a and ω2

χ(η) ≡ k2 +M2a2(η)− a′′/a, and
where ī = χ when i = ϕ and ī = ϕ when i = χ. This constitutes a set of coupled differential
equations, where the coupling is mediated by λ2. It can thus be solved perturbatively in λ.

• Zeroth order: The right-hand side of Eq. (D.4) vanishes, hence the uncoupled dynamics

is recovered, namely v
(0)
ii (η) = vi(η) and v

(0)

īi
(η) = 0, where vϕ and vχ are the free-field

mode functions [i.e. they are given by Eq. (3.15) if one replaces ν` by νϕ and µh by µχ].

One also has p
(0)
ii (η) = pi(η) and p

(0)

īi
(η) = 0.

• First order: At first order, the right-hand side of Eq. (D.4) needs to be replaced with the

zeroth-order solution. This does not change the diagonal mode functions v
(1)
ii (η) = v

(0)
ii (η)

and p
(1)
ii (η) = p

(0)
ii (η), while the cross mode functions now obey v

(1)′′
īi

+ ω2
i v

(1)

īi
= λ2a2vī.

Using the Green’s functions of the homogeneous (hence uncoupled) system of differential
equation, gi(η, η

′) = 2=m [vi(η)v∗i (η
′)], this gives rise to

v
(1)

īi
(η) = −2λ2

∫ η

η0

dη1a
2(η1)=m [vi(η)v∗i (η1)] vī(η1). (D.5)

Using Eq. (D.3), this leads to

p
(1)

īi
(η) = −2λ2

∫ η

η0

dη1a
2(η1)=m [pi(η)v∗i (η1)] vī(η1). (D.6)

• Second order: At second order, Eq. (D.4) is sourced by the first-order solution, so the

diagonal mode functions obey v
(2)′′
ii + ω2

i v
(2)
ii = −λ2a2v

(1)

īi
. Using again the homogeneous

Green functions, together with Eq. (D.5), this gives rise to

v
(2)
ii (η) =vi(η) + 4λ4

∫ η

η0

dη1a
2(η1)

∫ η1

η0

dη2a
2(η2)=m [vi(η)v∗i (η1)]=m

[
vī(η1)v∗ī (η2)

]
vi(η2).

(D.7)

Using Eq. (D.3), this leads to

p
(2)
ii (η) =pi(η) + 4λ4

∫ η

η0

dη1a
2(η1)

∫ η1

η0

dη2a
2(η2)=m [pi(η)v∗i (η1)]=m

[
vī(η1)v∗ī (η2)

]
vi(η2).

(D.8)
One may also compute the cross mode functions, and carry on the expansion, but that
would lead to subdominant corrections to the power spectra.
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The covariance matrix can be computed using Eq. (3.18), and one finds

Σϕϕ(η) =

( |vϕϕ(η)|2 + |vϕχ(η)|2 <e
[
vϕϕ(η)p∗ϕϕ(η)

]
+ <e

[
vϕχ(η)p∗ϕχ(η)

]

<e
[
vϕϕ(η)p∗ϕϕ(η)

]
+ <e

[
vϕχ(η)p∗ϕχ(η)

]
|pϕϕ(η)|2 + |pϕχ(η)|2

)
,

(D.9)

Σχχ(η) =

( |vχχ(η)|2 + |vχϕ(η)|2 <e
[
vχχ(η)p∗χχ(η)

]
+ <e

[
vχϕ(η)p∗χϕ(η)

]

<e
[
vχχ(η)p∗χχ(η)

]
+ <e

[
vχϕ(η)p∗χϕ(η)

]
|pχχ(η)|2 + |pχϕ(η)|2

)
,

(D.10)

Σϕχ(η) =

(<e
[
vϕϕ(η)v∗χϕ(η)

]
+ <e

[
vχχ(η)v∗ϕχ(η)

]
<e
[
vϕϕ(η)p∗χϕ(η)

]
+ <e

[
pχχ(η)v∗ϕχ(η)

]

<e
[
pϕϕ(η)v∗χϕ(η)

]
+ <e

[
vχχ(η)p∗ϕχ(η)

]
<e
[
pϕϕ(η)p∗χϕ(η)

]
+ <e

[
pχχ(η)p∗ϕχ(η)

]
)
.

(D.11)

By inserting the mode functions obtained above into these expressions, one obtains the first per-
turbative corrections to the power spectra. For the configuration-configuration power spectrum
of the ϕ field, one finds

Σ
(2)
ϕϕ,11(η) =

∣∣∣v(0)
ϕϕ(η)

∣∣∣
2

+
∣∣∣v(1)
ϕχ(η)

∣∣∣
2

+ 2<e
[
v(2−0)
ϕϕ (η)v(0)∗

ϕϕ (η)
]
, (D.12)

where we have introduced the short-hand notation v
(2−0)
ϕϕ (η) = v

(2)
ϕϕ(η) − v(0)

ϕϕ(η), which selects

the terms of order λ2 in v
(2)
ϕϕ(η). This gives rise to

Σ
(2)
ϕϕ,11(η) = |vϕ(η)|2 + 4λ4

∣∣∣∣
∫ η

η0

dη1a
2(η1)=m

[
vϕ(η)v∗ϕ(η1)

]
vχ(η1)

∣∣∣∣
2

+8λ4<e

{
vϕ(η)

∫ η

η0

dη1a
2(η1)

∫ η1

η0

dη2a
2(η2)=m

[
vϕ(η)v∗ϕ(η1)

]
=m

[
vχ(η1)v∗χ(η2)

]
v∗ϕ(η2)

}
.

(D.13)
For the configuration-momentum power spectrum, one obtains

Σ
(2)
ϕϕ,12(η) =<e

[
v(0)
ϕϕ(η)p(0)∗

ϕϕ (η)
]

+ <e
[
v(1)
ϕχ(η)p(1)∗

ϕχ (η)
]

+ <e
[
v(0)
ϕϕ(η)p(2−0)∗

ϕϕ (η) + v(2−0)
ϕϕ (η)p(0)∗

ϕϕ (η)
]
,

(D.14)
namely

Σ
(2)
ϕϕ,12(η) =<e

[
vϕ(η)p∗ϕ(η)

]

+4λ4

∫ η

η0

dη′a2(η′)=m
[
vϕ(η)v∗ϕ(η′)

]
vχ(η′)

∫ η

η0

dη′′a2(η′′)=m
[
pϕ(η)v∗ϕ(η′′)

]
vχ(η′′)

+4λ4<e

{
vϕ(η)

∫ η

η0

dη1a
2(η1)

∫ η1

η0

dη2a
2(η2)=m

[
pϕ(η)v∗ϕ(η1)

]
=m

[
vχ(η1)v∗χ(η2)

]
v∗ϕ(η2)

}

+4λ4<e

{
pϕ(η)

∫ η

η0

dη1a
2(η1)

∫ η1

η0

dη2a
2(η2)=m

[
vϕ(η)v∗ϕ(η1)

]
=m

[
vχ(η1)v∗χ(η2)

]
v∗ϕ(η2)

}
.

(D.15)
Finally, for the momentum-momentum power spectrum, one has

Σ
(2)
ϕϕ,22(η) =

∣∣∣p(0)
ϕϕ(η)

∣∣∣
2

+
∣∣∣p(1)
ϕχ(η)

∣∣∣
2

+ 2<e
[
p(2−0)
ϕϕ (η)p(0)∗

ϕϕ (η)
]
, (D.16)
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which leads to

Σ
(2)
ϕϕ,22(η) = |pϕ(η)|2 + 4λ4

∣∣∣∣
∫ η

η0

dη1a
2(η1)=m

[
pϕ(η)v∗ϕ(η1)

]
vχ(η1)

∣∣∣∣
2

+8λ4<e

{
pϕ(η)

∫ η

η0

dη1a
2(η1)

∫ η1

η0

dη2a
2(η2)=m

[
pϕ(η)v∗ϕ(η1)

]
=m

[
vχ(η1)v∗χ(η2)

]
v∗ϕ(η2)

}
.

(D.17)

D.2 Perturbative solution of TCL

Let us start with the TCL2 master equation written in the form

dρ̃red

dη
=− λ4a2(η)

∫ η

η0

dη′a2(η′)

{ [
ṽϕ(η)ṽϕ(η′)ρ̃red(η)− ṽϕ(η′)ρ̃red(η)ṽϕ(η)

]
K>(η, η′)

−
[
ṽϕ(η)ρ̃red(η)ṽϕ(η′)− ρ̃red(η)ṽϕ(η′)ṽϕ(η)

]
K>∗(η, η′)

}
. (D.18)

This equation was obtained in Eq. (A.17) from microphysical considerations and is just a con-
venient rewriting of Eq. (3.25). We want to solve it at order λ4, i.e. drop all contributions of
higher order. Since the right-hand side is already proportional to λ4, this implies that it can
be evaluated in the free theory, where ρ̃red(η) ' ρ̃red(η0). One can thus integrate Eq. (D.18),
which leads to

ρ̃
(2)
red(η) =ρ̃red(η0)− λ4

∫ η

η0

dη′a2(η′)
∫ η′

η0

dη′′a2(η′′)

{ [
ṽϕ(η′)ṽϕ(η′′)ρ̃red(η0)− ṽϕ(η′′)ρ̃red(η0)ṽϕ(η′)

]
vχ(η′)v∗χ(η′′)

−
[
ṽϕ(η′)ρ̃red(η0)ṽϕ(η′′)− ρ̃red(η0)ṽϕ(η′′)ṽϕ(η′)

]
v∗χ(η′)vχ(η′′)

}
, (D.19)

where we have used that the memory kernels are related to the free mode functions via
Eq. (A.15).

Let us now compute the entries of the covariance matrix using this expression for ρ̃
(2)
red.

The configuration-configuration power spectrum reads

Σ
(2)
TCL,11(η) = Tr

[
ṽϕ(η)ṽϕ(η)ρ̃

(2)
red(η)

]
, (D.20)

that is

Σ
(2)
TCL,11(η) =Tr [ṽϕ(η)ṽϕ(η)ρ̃red(η0)]

− λ4

∫ η

η0

dη′a2(η′)vχ(η′)
∫ η′

η0

dη′′a2(η′′)v∗χ(η′′)

{
Tr
[
ṽϕ(η)ṽϕ(η)ṽϕ(η′)ṽϕ(η′′)ρ̃red(η0)

]
− Tr

[
ṽϕ(η)ṽϕ(η)ṽϕ(η′′)ρ̃red(η0)ṽϕ(η′)

]}

+ λ4

∫ η

η0

dη′a2(η′)v∗χ(η′)
∫ η′

η0

dη′′a2(η′′)vχ(η′′)

{
Tr
[
ṽϕ(η)ṽϕ(η)ṽϕ(η′)ρ̃red(η0)ṽϕ(η′′)

]
− Tr

[
ṽϕ(η)ṽϕ(η)ρ̃red(η0)ṽϕ(η′′)ṽϕ(η′)

]}
.

(D.21)
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Since the initial state is the Bunch-Davies vacuum, ρ̃red(η0) = |�0〉 〈�0|, using the mode-function
decomposition (3.27) one obtains

Σ
(2)
TCL,11(η) = |vϕ(η)|2

− 4λ4<e

[
v2
ϕ(η)

∫ η

η0

dη′a2(η′)v∗ϕ(η′)vχ(η′)
∫ η′

η0

dη′′a2(η′′)v∗ϕ(η′′)v∗χ(η′′)

− |vϕ(η)|2
∫ η

η0

dη′a2(η′)vϕ(η′)vχ(η′)
∫ η′

η0

dη′′a2(η′′)v∗ϕ(η′′)v∗χ(η′′)

]
.

(D.22)

This expression matches Eq. (D.13), as can be shown by expanding the real and imaginary parts
and relabeling the integration domain. Following the same method, one finds

Σ
(2)
TCL,12(η) =<e

[
vϕ(η)p∗ϕ(η)

]

− 4λ4<e

{
vϕ(η)pϕ(η)

∫ η

η0

dη′a2(η′)v∗ϕ(η′)vχ(η′)
∫ η′

η0

dη′′a2(η′′)v∗ϕ(η′′)v∗χ
(
η′′
)

−<e
[
vϕ(η)p∗ϕ(η)

] ∫ η

η0

dη′a2(η′)vϕ(η′)vχ(η′)
∫ η′

η0

dη′′a2(η′′)v∗ϕ(η′′)v∗χ(η′′)

}
,

(D.23)
which can be shown to match Eq. (D.15), and

Σ
(2)
TCL,22(η) = |pϕ(η)|2

− 4λ4<e

[
p2
ϕ(η)

∫ η

η0

dη′a2(η′)v∗ϕ(η′)vχ(η′)
∫ η′

η0

dη′′a2(η′′)v∗ϕ(η′′)v∗χ(η′′)

− |pϕ(η)|2
∫ η

η0

dη′a2(η′)vϕ(η′)vχ(η′)
∫ η′

η0

dη′′a2(η′′)v∗ϕ(η′′)v∗χ(η′′)

]
,

(D.24)

which can be shown to match Eq. (D.17).

E Comparison with other late-time resummation techniques

In this section, we compare TCL with the late-time resummation technique proposed in Ref. [44]
and also studied in Ref. [59]. The idea is to keep track of the growing mode only, in order to
simplify the analysis in the late-time limit. As we will make clear, the method also implicitly
performs an additional layer of approximation compared to TCL, which makes it less efficient.

The starting point is to rewrite the free mode function

vϕ(z) =
1

2

√
πz

k
ei
π
2 (νϕ+ 1

2)H(1)
νϕ (z), (E.1)

where we recall that z = −kη, as (see Eq. (10.4.3) of Ref. [101])

vϕ(z) = ei
π
2 (νϕ+ 1

2) v−(z) + iv+(z)√
2

(E.2)

where

v+(z) =

√
πz

2k
Yνϕ(z) and v−(z) =

√
πz

2k
Jνϕ(z) (E.3)
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are real functions. Here, Jν and Yν are the Bessel functions of the first and second kind
respectively, and of order ν. The reason why this decomposition is convenient is that v−
corresponds to the cosmological “decaying mode” [i.e. v−(η) decreases on super-Hubble scales],
while v+ stands for the growing mode. Let us recall that the heavy-field mode function cannot
be divided into a growing mode and a decaying mode, since both modes oscillate with similar
amplitude on super-Hubble scales.

In the interaction picture, where operators evolve as in the free theory, the mode-function
expansion (3.27) of the field operators can then be written as

ṽϕ(η) = vϕ(η)âϕ + v∗ϕ(η)â†ϕ (E.4)

= v−(η)P̂ϕ + v+(η)Q̂ϕ , (E.5)

where

P̂ϕ =
1√
2

[
ei
π
2 (νϕ+ 1

2)âϕ + e−i
π
2 (νϕ+ 1

2)â†ϕ
]
, (E.6)

Q̂ϕ =
i√
2

[
ei
π
2 (νϕ+ 1

2)âϕ − e−i
π
2 (νϕ+ 1

2)â†ϕ
]
. (E.7)

One can check that they constitute a set of canonical variables since
[
Q̂ϕ, P̂ϕ

]
= i.

The idea proposed in Refs. [44, 59] is to insert the decomposition (E.5) into the TCL2

master equation (3.25) in order to identify the leading late-time contribution. One finds

dρ̃IR
red

dη
= −λ4a2(η)

{
v−(η)X∗−(η)vχ(η)

[
P̂ 2
ϕρ̃red(η)− P̂ϕρ̃red(η)P̂ϕ

]

+ v−(η)X−(η)v∗χ(η)
[
ρ̃red(η)P̂ 2

ϕ − P̂ϕρ̃red(η)P̂ϕ

]

+ v+(η)X∗−(η)vχ(η)
[
Q̂ϕP̂ϕρ̃red(η)− P̂ϕρ̃red(η)Q̂ϕ

]

+ v+(η)X−(η)v∗χ(η)
[
ρ̃red(η)P̂ϕQ̂ϕ − Q̂ϕρ̃red(η)P̂ϕ

]

+ v−(η)X∗+(η)vχ(η)
[
P̂ϕQ̂ϕρ̃red(η)− Q̂ϕρ̃red(η)P̂ϕ

]

+ v−(η)X+(η)v∗χ(η)
[
ρ̃red(η)Q̂ϕP̂ϕ − P̂ϕρ̃red(η)Q̂ϕ

]

+ v+(η)X∗+(η)vχ(η)
[
Q̂2
ϕρ̃red(η)− Q̂ϕρ̃red(η)Q̂ϕ

]

+ v+(η)X+(η)v∗χ(η)
[
ρ̃red(η)Q̂2

ϕ − Q̂ϕρ̃red(η)Q̂ϕ

]}
,

(E.8)

where

X+(η) ≡
∫ η

η0

dη′a2(η′)v+(η′)vχ(η′), (E.9)

X−(η) ≡
∫ η

η0

dη′a2(η′)v−(η′)vχ(η′). (E.10)

The authors of Refs. [44, 59] argue that dropping the decaying-mode contributions constitutes
a valid approximation in the infrared (IR) limit, and for this reason hereafter we label the
quantities computed in this scheme with the superscript “IR”.
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In the interaction picture, the configuration-configuration power spectrum reads

〈ṽϕ(η)ṽϕ(η)〉 =v−(η)v−(η)
〈
P̂ 2
ϕ

〉
+ v−(η)v+(η)

〈
Q̂ϕP̂ϕ + P̂ϕQ̂ϕ

〉
+ v+(η)v+(η)

〈
Q̂2
ϕ

〉

'v+(η)v+(η)
〈
Q̂2
ϕ

〉
,

(E.11)

where in the second line we have neglected the decaying mode contribution. The next step is to

compute
〈
Q̂2
ϕ

〉
(η) = Tr

[
Q̂2
ϕρ̃red(η)

]
with the IR master equation (E.8). Upon differentiating

this expression with respect to time, one obtains

d
〈
Q̂2
ϕ

〉

dη
= Γ(η)

〈
Q̂2
ϕ

〉
(E.12)

where

Γ(η) = 4λ4a2(η)v−(η)=m
[
vχ(η)X∗+(η)

]
, (E.13)

which gives rise to

〈
Q̂2
ϕ

〉
(η) = e

∫ η
η∗ dη′Γ(η′)

〈
Q̂2
ϕ

〉
(η∗). (E.14)

Since we are interested in the late-time behaviour of the power spectra, we can assume −kη � 1
and let η∗ denote the Hubble crossing time, η∗ ≡ −1/k, if the above integral is dominated by
its upper bound (hence does not depend much on the choice of the lower bound). If the effect
of the interaction with the environment is small in sub-Hubble scales, as argued in Ref. [44] one
can evaluate 〈Q̂2

ϕ〉(η∗) in the free theory, which simply yields

〈
Q̂2
ϕ

〉
(η∗) ' 1 . (E.15)

In the super-Hubble limit, using the results derived in Appendix C.3, one can also approximate

X∗+(z) ' π

H2

(−1)3/4

ν2
ϕ + µ2

χ

z−νϕ

sin(πνϕ)Γ(1− νϕ)

[
νϕ

(
γ∗µχ + δ∗µχ

)
− iµχ

(
γ∗µχ − δµ∗χ

)]
e−πµχ , (E.16)

where γµ and δµ were defined in Eq. (C.45). This leads to

Γ(z) =
π

2νϕ

1

ν2
ϕ + µ2

χ

λ4

H4

k

z
µχ

(∣∣γµχ
∣∣2 −

∣∣δµχ
∣∣2
)
e−πµχ , (E.17)

where |γµχ |2 − |δµχ |2 = 2eπµχ/(πµχ). One thus has

∫ η

η∗
dη′Γ(η′) ' − 1

νϕ

1

ν2
ϕ + µ2

χ

λ4

H4
ln(−kη), (E.18)

which one can check does not depend on the detailed choice of η∗ as announced above. Com-
bining the above results, one obtains

ΣIR,11(η) = e
− 1
νϕ

1

ν2ϕ+µ2χ

λ4

H4 ln(−kη)
|vϕ(η)|2. (E.19)
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The configuration-momentum and momentum-momentum power spectra can be computed
along similar lines. Starting from

p̃ϕ(η) = p+(η)Q̂ϕ + p−(η)P̂ϕ (E.20)

and using the fact that p+ = v′+ − (a′/a)v+ and p− = v′− − (a′/a)v− are still growing and
decaying respectively, one has

〈ṽϕ(η)p̃ϕ(η)〉 ' v+(η)p+(η)
〈
Q̂2
ϕ

〉
, (E.21)

〈p̃ϕ(η)p̃ϕ(η)〉 ' p+(η)p+(η)
〈
Q̂2
ϕ

〉
. (E.22)

This implies that the same correction is obtained for all power spectra, i.e.

ΣIR,11(η) = e
− 1
νϕ

1

ν2ϕ+µ2χ

λ4

H4 ln(−kη)
|vϕ(η)|2, (E.23)

ΣIR,12(η) = e
− 1
νϕ

1

ν2ϕ+µ2χ

λ4

H4 ln(−kη)
<e
[
vϕ(η)p∗ϕ(η)

]
, (E.24)

ΣIR,22(η) = e
− 1
νϕ

1

ν2ϕ+µ2χ

λ4

H4 ln(−kη)
|pϕ(η)|2. (E.25)
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Figure 5. Relative error in the three power spectra for TCL2 (blue curves) and the IR resummation
method presented in Appendix E (green curves). The parameters are taken as m2 = 10−4H2, M2 =
103H2 and λ2 = 10−3H2.

These expressions feature manifest resummations over powers of ln(a), which we now
compare with the resummation performed by the TCL2 master equation. The relative difference
between the three power spectra and their exact counterpart is displayed in Fig. 5, both for
TCL2 (blue curves)13 and IR (green curves).

13Let us note that at late time, the relative error in TCL asymptotes a constant in Fig. 5, hence it is not
described by Eq. (4.8). The reason is that Eq. (4.8) captures the error in the growth rate, while for the parameters
displayed in Fig. 5 the error in the overall amplitude provides the dominant contribution.
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Let us first note that the growth rate of the power spectra is correctly captured in the IR
approach, even at strong coupling where the perturbative result usually breaks down. This can
be further understood by noting that Eqs. (E.23)-(E.25) take the same form as Eq. (4.6) with

νIR =
1

2νϕ

1

ν2
ϕ + µ2

χ

(
λ

H

)4

+ νϕ , (E.26)

while according to footnote 11, in TCL2 one has

νLS =
3

2

√
1−

(
2mLS

3H

)2

where m2
LS = m2 − λ4

M2 −m2
(E.27)

and we recall that in the exact theory

ν` =
3

2

√
1−

(
2m`

3H

)2

where m2
` =

1

2


m2 +M2 −

(
M2 −m2

)
√

1 +

(
2λ2

M2 −m2

)2

 .

(E.28)
Since Eqs. (E.26), (E.27) and (E.28) coincide when expanded at first order in λ4, one concludes
that, at the level of the growth rate, the Lamb-shift renormalisation of the mass is correctly
accounted for in the IR approach [44] as for TCL, at least at leading order in the coupling
constant. This is similar to the dynamical renormalisation group (DRG) treatment of late-time
secular divergences in de Sitter performed in Refs. [56–58], as pointed out in Refs. [44, 46, 59].

The IR approach however fails to reproduce the overall amplitude of the power spectra
beyond the perturbative level, which explains why it does not perform as well as TCL. Let us
also note that another disadvantage of the IR method is that it does not allow one to track
decoherence, which as explained in Sec. 4.2 is not driven by the growing modes.
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[78] D. Chruściński, Dynamical maps beyond Markovian regime, 2209.14902.

[79] C.A. Brasil, F.F. Fanchini and R.d.J. Napolitano, A simple derivation of the lindblad equation,
Revista Brasileira de Ensino de F́ısica 35 (2013) 01–09.

[80] D. Manzano, A short introduction to the lindblad master equation, AIP Advances 10 (2020)
025106.

[81] D. Baumann and D. Green, Equilateral Non-Gaussianity and New Physics on the Horizon,
JCAP 09 (2011) 014 [1102.5343].

[82] S. Garcia-Saenz and S. Renaux-Petel, Flattened non-Gaussianities from the effective field theory
of inflation with imaginary speed of sound, JCAP 11 (2018) 005 [1805.12563].

[83] F.C. Lombardo, Influence functional approach to decoherence during inflation, Braz. J. Phys. 35
(2005) 391 [gr-qc/0412069].

[84] M.G. Jackson and K. Schalm, Model Independent Signatures of New Physics in the Inflationary
Power Spectrum, Phys. Rev. Lett. 108 (2012) 111301 [1007.0185].

[85] M.G. Jackson, Integrating out Heavy Fields in Inflation, 1203.3895.

[86] D. Boyanovsky, Information loss in effective field theory: entanglement and thermal entropies,
Phys. Rev. D 97 (2018) 065008 [1801.06840].

[87] D. Boyanovsky, Imprint of entanglement entropy in the power spectrum of inflationary
fluctuations, Phys. Rev. D 98 (2018) 023515 [1804.07967].
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Chapter 6

Quantum recoherence in the early
universe

Preface

In this Letter, we answer the question of knowing if entropic perturbations lead to
quantum decoherence of the curvature perturbations. Depending on the mass of
the entropic perturbations, one can either observe quantum decoherence for light
environments m < 3H/2 or quantum recoherence for heavy environments m > 3H/2.

The model we consider is generic in the sense it encompasses all multifield models
of inflation, written in adiabatic and entropic basis, focusing on the linear coupling
between the curvature perturbations and the first entropic sector as discussed along
Eq. (2.102). When F is heavy, the field is stabilised at the bottom of its potential
and becomes proportional to ζ̇ on super-Hubble scales. It this case, the coupling
proportional to ζ̇F becomes inefficient, the heavy field decouples from the dynamics
of the adiabatic sector and quantum recoherence occurs. On the contrary, when
the field is light, it acquires a growing mode such that the coupling keeps generating
entangled pairs of quanta between the adiabatic and entropic sectors on super-Hubble
scale, driving an effective phase of decoherence.

On the top of solving this model numerically using the exact transport equations,
we also derive an Open EFT for the adiabatic sector. The unitary part reduces to the
standard WEFT on super-Hubble scales where the effects of the heavy field is captured
by an effective speed of sound for the adiabatic sector. In this case, there is no secular
correction to resum and, despite working remarkably well at the perturbative level,
the master equation resummation introduces small errors which lead to a positivity
violation at late-time.

Finally, we stress that both recoherence and decoherence are equally surprising
compared to the flat-space expectation that the only way to reach a form of irre-
versibility is to increase the size of the environment up to a thermodynamical limit
where the Poincaré recurrence time is infinite. In cosmology, the lack of volume con-
servation allow us to evade Poincaré theorem. Due to the presence of a dynamical
background, cosmological OQS rather compare to driven OQS than standard OQS.

The article [154] can be found online at:

• https://iopscience.iop.org/article/10.1209/0295-5075/acdd94 (published version);

• https://arxiv.org/abs/2212.09486 (arXiv version).

240

https://iopscience.iop.org/article/10.1209/0295-5075/acdd94
https://arxiv.org/abs/2212.09486


Quantum recoherence in the early universe

Thomas Colas,1, 2 Julien Grain,1 and Vincent Vennin3, 2
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Despite being created through a fundamentally quantum-mechanical process, cosmological struc-
tures have not yet revealed any sign of genuine quantum correlations. Among the obstructions
to the direct detection of quantum signatures in cosmology, environmental-induced decoherence is
arguably one of the most inevitable. Yet, we discover a mechanism of quantum recoherence for the
adiabatic perturbations when they couple to an entropic sector. After a transient phase of decoher-
ence, a turning point is reached, recoherence proceeds and adiabatic perturbations exhibit a large
amount of self-coherence at late-time. This result is also understood by means of a non-Markovian
master equation, which reduces to Wilsonian effective-field theory in the unitary limit. This allows
us to critically assess the validity of open-quantum-system methods in cosmology and to highlight
that re(de)coherence from linear interactions has no flat-space analogue.

Our current understanding of cosmology traces back
the origin of structures to quantum fluctuations in
the primordial vacuum. Not only inflation, the lead-
ing scenario [1–13], but also most alternatives [14–17]
rely on this mechanism. However, whether or not one
can prove (or disprove) the quantum origin of cos-
mological inhomogeneities remains an open issue [18–
29]. Independently of the observational challenge it
may constitute, it is generally argued [30–46] that
any genuine quantum signature is likely to be erased
by the quantum decoherence [47–49] induced by en-
vironmental degrees of freedom. This is why study-
ing decoherence channels [50–61] has become of pri-
mary importance to assess the severity of this poten-
tial obstruction. Recent progresses in the cosmological
open-quantum-system program provide this line of in-
vestigation with a robust toolbox, which nonetheless
needs to be adapted and benchmarked since cosmol-
ogy tends to break some of the assumptions it oth-
erwise rests on [62–64]. In this Letter, we investi-
gate the decoherence process in arguably one of the
most generic extensions to single-field slow-roll infla-
tion [65–72]. Contrary to common wisdom, we dis-
cover that, after a transient phase of decoherence, re-
coherence takes place and the final state exhibits large
levels of self-coherence. Notably, this result has no
flat-space analogue.

Heavy fields are ubiquitous when inflation is embed-
ded in high-energy constructions, both from a model-
building perspective [70–81] and from an effective-
field-theory (EFT) approach [65–69, 82]. From a
bottom-up viewpoint, the dynamics of the fluctua-
tions in the adiabatic direction ζ and the entropic
direction F is given at linear order by [68]

L =a2ϵM2
Plζ

′2 − a2ϵM2
Pl (∂iζ)

2
+

1

2
a2F ′2

− 1

2
a2 (∂iF)

2 − 1

2
m2a4F2 − ρa3

√
2ϵMPlζ

′F .

(1)

The Lagrangian density L is expressed in conformal

time η, primes denote derivative with respect to η and
(∂iζ)

2 ≡ δij∂iζ∂jζ. Finally, a is the scale factor, ϵ the
first slow-roll parameter and MPl the Planck mass.
The massless degree of freedom ζ is the curvature
perturbation and is directly observed in the cosmic
microwave background (CMB) [83, 84] and the large-
scale structure of the universe [85–88]. The coupling
ρ corresponds to the rate of turn in field space and
mixes the adiabatic and entropic directions. It is con-
stant at leading order in slow roll [77–80], and when
a specific model is considered, it can be related to its
microphysical parameters [65–67]. From an EFT per-
spective, ζ ′F is the only operator compatible with the
shift symmetry of the Goldstone mode and with spa-
tial homogeneity of the background [68], hence Eq. (1)
captures the leading effect in the derivative expansion
of generic multiple-field models [71].

This setting has mostly been studied from a phe-
nomenological perspective, i.e. focusing on calcula-
tions of the observable power spectrum using the in-in
formalism [77–80] or by means of single-field Wilso-
nian EFTs [65–69]. The latter approaches incorpo-
rate unitary effects only, hence they cannot describe
decoherence [89]. In this Letter, we make this possible
by treating Eq. (1) within the open-quantum-system
framework and by extracting quantum-information-
theoretic properties of the curvature perturbations.
This leads us to the phenomenon of quantum recoher-
ence. We solve the problem both exactly and using
an effective approach, allowing us to better assess the
performance of such methods in a cosmological con-
text.

Quantum recoherence. From an open-quantum-
system perspective, our goal is to describe the dy-
namics of the adiabatic sector (the system) once
the heavy entropic direction (the environment) has
been integrated out. Eq. (1) being quadratic, differ-
ent Fourier modes decouple on a homogeneous back-
ground, which allows us to focus on a given mode
k. In the asymptotic past, this mode is placed in
the Bunch-Davies vacuum state [90], described by
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FIG. 1. State purity γ as a function of the number of efolds ln(a/a∗) since Hubble exit of the scale k = a∗H, for a
few values of the coupling parameter ρ (left panel) and of the entropic mass m (right panel). After a transient phase
of decoherence, the purity reaches a minimum and increases again. This recoherence phenomenon yields high levels
of self-coherence at late-time. In practice, Eqs. (S10) and (S11) of the SM are integrated with Bunch-Davies initial
conditions from ln(a/a∗) = −15 to ln(a/a∗) = 15 and for constant H.

the Gaussian density matrix ρ̂0, and the linearity
of the dynamics preserves the Gaussianity of the
state [91–93]. Hence, the state of the system is
entirely characterised by the covariance Σij(η) ≡
1
2Tr {[ẑζ,i(η)ẑζ,j(η) + ẑζ,j(η)ẑζ,i(η)]ρ̂0} where ẑζ ≡
(v̂ζ , p̂ζ)

T contains the configuration and momentum
operators of the Mukhanov-Sasaki variable vζ ≡
−a

√
2ϵMPlζ. In the Supplemental Material (SM),

from Eq. (1) we derive an exact equation of mo-
tion for Σij(η), known as a transport equation [94–
96]. When integrated numerically, the power spectra
one obtains are well reproduced by standard EFT re-
sults [66, 79, 80] in the regime m ≫ H, as is shown
in the SM. In particular, we recover that the main
effect from the heavy field is a simple rescaling, pro-
portional to ρ2/m2, of the amplitude of the scale-
invariant power spectrum of ζ. This rescaling is how-
ever degenerate with other single-field effects such as
a reduced speed of sound [77, 97, 98], so it cannot be
used to reveal the existence of an environment.

The state being Gaussian, the covariance Σ(η) not
only contains all observables of the adiabatic sector
but also fully specifies its quantum state, i.e. the re-
duced density matrix ρ̂red ≡ TrF (ρ̂) where the en-
tropic degrees of freedom are traced over. This al-
lows us to study quantum properties of ρ̂red, in par-
ticular the transition from a pure quantum state into
a statistical mixture due to the interaction with an
environment [47–49]. This transition is assessed by
the so-called purity parameter [99, 100] γ ≡ Tr

(
ρ̂2red

)
,

which equals one if the state is pure and is smaller
than one otherwise. The system is said to have de-
cohered when γ ≪ 1, with γ = 0 corresponding to
a maximally mixed state. The link between the nu-
merical value of γ and the erasure of explicit quan-
tum signatures (such as Bell inequality violations) has
been investigated in Ref. [101] for the class of states
considered in this work. Note that γ remains in-
variant under reparametrisation of the canonical vari-

ables [102], and for a Gaussian state one simply has

γ(η) = 1
4 det [Σ(η)]

−1
[103, 104].

In Fig. 1, we display the purity parameter γ as a
function of the number of efolds ln(a/a∗) since Hub-
ble exit of the scale k = a∗H under consideration,
where at leading order in slow rollH is constant. After
a transient phase of decoherence, a turning point oc-
curs and recoherence (i.e. growing γ) takes place, with
large levels of self-coherence at late time. For heavy
masses m ≫ H, the turning point occurs in the sub-
Hubble regime, when the scale k crosses the Comp-
ton wavelength of the entropic field 1/m, as shown in
Fig. 2. The departure from a pure state increases with
ρ and decreases with m, in agreement with the EFT
intuition that heavier environments leave a smaller im-
print on light degrees of freedom. At late time, one can
expand the transport equations in the super-Hubble
limit and in the SM we find that, at leading order in
ρ2,

γ = γ∞ − ρ2

m2

k

am
. (2)

This confirms that the purity does increase at late
time for all super-Hubble scales, at a rate controlled
by the ratio between the Compton wavelength and
the mode wavelength. Thus it quickly reaches the
asymptotic value γ∞ < 1, since for the scales probed
in the CMB, k/(am) is typically of order e−50H/m.

The occurrence of recoherence might seem surpris-
ing in the light of previous works on decoherence in
this model [37, 105] and in other cosmological scenar-
ios [37, 50, 53–61, 64]. One may indeed expect that,
once information about the system has “leaked” into
the environment, it cannot “come back”. Yet we ar-
gue that there is no contradiction with the existing
literature. This is due to the small effective size of
the environment here: the system couples to a single
Fourier mode of the environment. This implies that,
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FIG. 2. Turning point for the purity: value of the scale
factor at at which the purity starts increasing, as a func-
tion of m and for a few values of ρ. When m ≫ H,
at ≃ 2.3k/m, which corresponds to the Compton wave-
length of the entropic field.

contrary to the open quantum systems usually consid-
ered, the environment does not behave as a thermal
bath [89].

To gain further insight into the finite-environment
effects to be expected in this model, one may consider
its analogue in Minkowski spacetime. When the back-
ground is static, linear interactions can only induce
mixing between the light and heavy sectors so that
the purity exhibits oscillations at frequencies given
by the characteristic timescales of the system and the
environment, as checked explicitly in the SM. If the
coupling is quenched off, oscillations stop and the pu-
rity freezes at the time of the quench. In de-Sitter
spacetime, this is precisely what happens, since the
non-trivial background dynamics makes the coupling
effectively time dependent.

This can be seen in Fig. 3 where small entropic
masses are used to better highlight the following
stages in the evolution of purity. When k ≫ am,
the mode functions of both fields oscillate at the
same frequency k/a, in their vacuum state. Then
am ≫ k ≫ aH and the two frequencies differ: the sys-
tem oscillates at frequency k/a while the environment
oscillates at frequencym, hence the purity oscillates as
in flat space. Finally, when k ≪ aH, two behaviours
can be observed, depending on m/H. If m > 3

2H,
entropic perturbations are heavy hence they oscillate
and quickly decay [66]. Since ζ ′ also decays as 1/a2

on super-Hubble scales [106] (this is the so-called “de-
caying mode”), the coupling between adiabatic and
entropic perturbations is effectively turned off. This
is why the value of the purity freezes (see the cases
m = 1.5H and m = 2H in Fig. 3). When the environ-
ment is lighter, F acquires a growing mode that keeps
the interaction term ζ ′F active in spite of the decay
of ζ ′. This leads to decoherence (see the case m = H
in Fig. 3), driven by the dynamics of the expansion.
This is similar to the setup studied in Ref. [37], where
an additional ζF interaction term is considered that
is not suppressed by the decaying mode ζ ′ on large
scales, and to the cosmological two-field model inves-
tigated in Ref. [64]. In all these cases, the system is

−5.0 −2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0

ln(a/a∗)

0.0

0.2

0.4

0.6

0.8

1.0

γ

ρ = 0.5H

ρ = H

m = H

m = 1.5H

m = 2H

FIG. 3. Same as in Fig. 1 for lighter environments. At
late time, one either observes recoherence (m > 3H/2),
purity freezing (m ≃ 3H/2, with an asymptotic value that
strongly depends on ρ) or decoherence (m < 3H/2).

driven into a mixed state by the dynamical generation
of entangled pairs of quanta between ζ and F , which
explains why decoherence takes place in spite of the
environment being effectively made of one single de-
gree of freedom.

In the present setting, the entropic direction is typ-
ically expected to be heavy, but it is interesting to
see that, formally, by varying m, one interpolates be-
tween these three possible outcomes: recoherence, pu-
rity freezing and decoherence. Note that the inter-
mediate mass m ≃ 3

2H is also of phenomenological
interest in the context of quasi-single field inflation
[68, 77–80], and that the fate of the purity in that
case is particularly sensitive to ρ, see Fig. 3.

A master-equation treatment. The model (1) be-
ing linear, it can be solved exactly but this is in general
not possible. This is why open quantum systems are
usually approached with effective methods known as
master equations. We now apply such methods to the
present setup, in order to check their validity, and to
shed additional light on the imprint left by F on ζ.

Master equations are commonly employed in cos-
mology to model the effect of additional degrees of
freedom, treated as an environment, onto a given sys-
tem [40, 46, 53, 58, 61–64, 107–118]. One of their
appealing advantages is their ability to re-sum late-
time secular effects [64, 113, 114, 119–123], hence to
go beyond standard perturbation theory and imple-
ment non-perturbative resummations in cosmology.
Note that the recoherence phenomenon being a man-
ifestly non-Markovian feature, it cannot be modelled
by an irreversible dynamical-map such as the Lind-
blad equation [124]. It requires the use of more so-
phisticated non-Markovian master equations such as
the time-convolutionless (TCL) master equation dis-
cussed in Refs. [64, 89, 125–127],

dρ̂red
dη

= −i
[
ĤS

0 (η) + Ĥ(LS)(η), ρ̂red(η)
]

(3)

+Dij(η)

[
ẑζ,iρ̂red(η)ẑζ,j −

1

2
{ẑζ,j ẑζ,i, ρ̂red(η)}

]
.
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FIG. 4. Same as in Fig. 1, where the solution of the master
equation (3) is also shown (green line), together with its
perturbative limit (orange line). The agreement is excel-
lent, and becomes even better when decreasing ρ or when
increasing m. At late time, the full master equation does
not perform better than the perturbative theory, and even
leads to slight violations of the positivity of the dynamical
map (see the inset where γ > 1).

Here, ĤS
0 is the free Hamiltonian of the system, and

the effect of the environment is encoded into the
“Lamb-shift” Hamiltonian Ĥ(LS) and the dissipator
matrix D. These objects are constructed out of the
two-point functions of the environment and formally
rely on convolutions from initial time to final time of
the free mode functions of the system and the environ-
ment. Their detailed expression is obtained following
the procedure of Ref. [64] in the SM, where the mas-
ter equation (3) is derived explicitly. The Lamb-shift
term captures the renormalisation of the free Hamil-
tonian due to the interactions with the environment.
At late-time where k ≪ aH, it yields an effective
speed of sound c2

S
= 1− ρ2/m2 +O[k/(aH), H4/m4],

which rescales the kinetic term by p̂2ζ → c2
S
p̂2ζ . This ef-

fect is also found in Wilsonian EFT treatments of the
model [65–67, 78, 80]. Although non-perturbative, it
only leads to a slight rescaling of the power spectra
as mentioned above. This correction is however uni-
tary, hence it cannot account for de(re)coherence [89],
which is instead driven by the second line of Eq. (3).

From Eq. (3), one can derive effective transport
equations for Σ(η) [64], given in the SM. This leads
to the purity shown in Fig. 4, where “resum” stands
for the full solution of Eq. (3), in which partial re-
summation is supposed to take place; and “pert” cor-
responds to the solution at leading order in ρ2 [since
D = O(ρ2) this amounts to evaluating ρ̂red in the free
theory in the second line of Eq. (3)]. In Ref. [64],
this was shown to coincide with the result of the in-in
formalism [128–131]. In practice, in the SM it also
allows us to unambiguously identify and remove the
so-called “spurious terms”, which cancel out at lead-
ing order but otherwise spoil the resummation [64]. In
Fig. 4 one can see that the master equation provides
an excellent fit to the full result, both in its pertur-
bative limit and when solved entirely. In particular,
it accurately captures the turning point of the purity.

This is remarkable, since the highly non-Markovian
nature of the recoherence phenomenon may have cast
some doubts on the existence of an effective single-
field description that would be under control.

One also notices that the non-perturbative resum-
mation performed by the master equation does not
significantly improve the perturbative treatment. The
reason is that, as stressed above, the coupling be-
tween the adiabatic and entropic sector is effectively
switched off at late time. There is therefore no secu-
lar effects to be resummed, and the perturbative and
non-perturbative results only differ by overall constant
factors in the power spectra, as checked explicitly in
the SM. Therefore, the only non-perturbative effect is
unitary. It consists in the rescaling of c

S
mentioned

above, which only advances horizon crossing. This
contrasts with the situation studied in Ref. [64], where
an effective mass is generated for the light degree of
freedom. This dresses the anomalous dimension of
the light field, generating a secular growth at the per-
turbative level which is then resummed by the mas-
ter equation (or other methods such as the dynamical
renormalisation group [132–134]).

Finally, let us note that the master equation leads to
a tiny violation of positivity at late time, see the inset
in Fig. 4 where the purity slightly overshoots one, im-
plying that det[Σ(η)] < 1/4 (hence violating Heisen-
berg inequality [89]). This signals a small breakdown
of the effective theory, and determining under which
conditions this class of non-Markovian Gaussian dy-
namical maps remains completely positive and trace
preserving (CPTP) would deserve further investiga-
tions [63, 135–138].

Conclusions. In this Letter, we have shown that
heavy entropic degrees of freedom do not lead to quan-
tum decoherence of adiabatic fluctuations in the early
universe, at least through their dominant interaction
term. More precisely, we found that after a tran-
sient phase of decoherence, the adiabatic fluctuations
recohere once the mode under consideration crosses
out the Compton wavelength of the entropic field.
This is because, at late time, the interaction is effec-
tively quenched off as a result of spacetime expansion.
This makes the state purity freeze to a value close to
unity. Therefore, heavy entropic fields leave a small
imprint not only on cosmological observables, but also
on quantum-information properties of the quantum
state.

We also found that an effective master equation de-
rived from open-quantum-system methods performs
remarkably well when compared to the full theory.
Wilsonian EFTs have also been used to describe the
model, but they do not capture non-unitary effects,
hence they cannot describe decoherence. The mas-
ter equation treatment has allowed us to check that
non-unitary effects are negligible in the observables of
the system (hence Wilsonian EFTs can safely be used
in that respect), although they are crucial as far as
decoherence is concerned. Let us stress that, since re-
coherence is inherently a non-Markovian process, the
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master equation needs to be kept non-Markovian too,
i.e. beyond the Lindblad limit. We noted that, due
to the effective decoupling between adiabatic and en-
tropic modes at late time, there is no secular growth
that the master equation would otherwise resum. This
even leads to a slight violation of positivity by the ef-
fective dynamical map, which questions its ability to
account for non-perturbative effects in the absence of
secular divergences (when secular terms are present,
non-perturbative resummation was found to be suc-
cessful in Ref. [64]).

These results do not preclude other decoherence
channels (such as higher-order coupling between adi-
abatic and entropic fluctuations, single-field gravi-
tational decoherence [46], etc.) to effectively de-
cohere cosmological perturbations, but it suggests
that decoherence in the early universe may not be
as ubiquitous as common wisdom suggests. This is
crucial to determine whether or not genuine quan-
tum signals can be detected in cosmological struc-
tures [18, 22, 25, 43, 44, 101, 139, 140]. Natu-
ral prospects of our work include the investigation
of models with sharp turns [66, 96], the impact of
multiple entropic directions [71] on the emergence
of Markovianity [138], as well as non-linear interac-
tions [72, 141, 142]. In this latter case, mode coupling
is expected to enlarge the size of the effective environ-

ment, but also to induce non-Gaussianities [42], which
are tightly constrained [143–146]. One may also study
how our results vary when changing the initial quan-
tum state [147–151].

Let us end by stressing that, when the system is
coupled to a single mode as in the present setting
(and as in the two-field model of Ref. [64]), deco-
herence or recoherence are possible only because we
work in a dynamical background. In flat spacetime in-
deed, as explained above finite-size environments and
time-independent Hamiltonians can only lead to oscil-
lations in the purity. This is a consequence of Poincaré
recurrence-time theorem [152], which relies on volume
conservation. In cosmology however, the large-scale
dynamics either amplifies or extinguishes the effec-
tive coupling, which yields decoherence or recoher-
ence respectively. Those phenomena have therefore
no flat-space analogue. Since most open-quantum-
system methods are developed in the context of labo-
ratory experiments, hence in flat spacetimes, their use
in cosmology requires a critical analysis of their appli-
cability, to which this work hopefully contributes.
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SUPPLEMENTAL MATERIAL

“Quantum recoherence in the early universe”

Thomas Colas, Julien Grain, and Vincent Vennin

This supplemental material contains some technical details of the calculations presented in the main text. In
Sec. I, we derive the transport equations whose solutions are given in the main text. In Sec. II, we show that
purity exhibits oscillation when our setting is considered in flat spacetime. In Sec. III, we derive and solve the
master equation associated to our problem, closely following Ref. [64].

I. EXACT SOLUTION

A. Hamiltonian formulation

Starting from the Lagrangian density

L = a2ϵM2
Plζ

′2 − a2ϵM2
Pl (∂iζ)

2
+

1

2
a2F ′2 − 1

2
a2 (∂iF)

2 − 1

2
m2a4F2 − ρa3

√
2ϵMPlζ

′F , (S1)

we first introduce the rescaled Mukhanov-Sasaki like variables vζ(η,x) ≡ −a(η)
√
2ϵMPlζ(η,x) and vF (η,x) ≡

a(η)F(η,x). One can then Fourier transform the fields

vα(η,k) ≡
∫

R3

d3x

(2π)3/2
vα(η,x)e

−ik.x, (S2)

for α = ζ,F . The conjugate momenta are obtained from Eq. (1) and read

pζ = v′ζ −
a′

a
vζ + ρavF and pF = v′F − a′

a
vF . (S3)

A Legendre transform gives the Hamiltonian

H =

∫

R3+

d3kz†H(η)z , (S4)

where the phase-space variables have been arranged into the vector z ≡ (vζ , pζ , vF , pF )T and H is a four-by-four
matrix given by

H(η) =

(
H(S) V
V T H(E)

)
, (S5)

with

H(S)(η) =

(
k2 a′

a
a′

a 1

)
, H(E)(η) =

(
k2 +

(
m2 + ρ2

)
a2 a′

a
a′

a 1

)
, V (η) ≡

(
0 0

−ρa 0

)
. (S6)

Note that, since ζ and F are real fields, one has the constrain z∗(η,k) = z(η,−k). This explains why, in order
to avoid double counting, the integral in Eq. (S4) is performed over R3+ ≡ R2 × R+. Remarkably, the linear
mixing ρ enters the definition of the entropic mass m2+ ρ2 when the problem is described in terms of canonical
variables. From now on, we thus redefine m2 → m2 + ρ2.

Following the canonical quantisation prescription, field variables are promoted to quantum operators. In
order to work with hermitian operators, we split the fields into real and imaginary components, that is

ẑ =
1√
2

(
ẑR + iẑI

)
, (S7)

such that ẑs is Hermitian for s = R, I. These variables are canonical since [v̂sα(k), p̂
s′
α′(q)] = iδ3(k− q)δα,α′δs,s′.

In this basis, the Hamiltonian takes the same form as in Eq. (S4), i.e.

Ĥ(η) =
1

2

∑

s=R,I

∫

R3+

d3k (ẑs)
T
H(η)ẑs . (S8)
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Being separable, there is no mode coupling nor interactions between the R and I sectors and the state is
factorisable in this decomposition. Hence, from now on, we focus on a given wavenumber k and a given
s-sector, and to make notations lighter we leave the k and s dependence implicit.

B. Transport equations

The transport equations for the full system-plus-environment setup can be obtained by differentiating

Σ
(S+E)
ij (η) ≡ 1

2
Tr {[ẑi(η)ẑj(η) + ẑj(η)ẑi(η)]ρ̂0} (S9)

with respect to time in the Heisenberg picture, and using the Heisenberg equations to evaluate dẑ/dη. The
density matrix ρ̂0 specifies the initial Bunch-Davies vacuum in which the adiabatic and entropic directions both
start. The Hamiltonian (S8) being quadratic, one finds

dΣ(S+E)

dη
= ΩHΣ(S+E) −Σ(S+E)HΩ, (S10)

where H was defined in Eq. (S5) and Ω is a four-by-four block-diagonal matrix where each 2× 2 block on the

diagonal is the symplectic matrix ω =

(
0 1
−1 0

)
. Once Eq. (S10) is known, one can derive an exact equation

for detΣ

d detΣ

dη
= Σ

(S+E)
11

dΣ
(S+E)
22

dη
+Σ

(S+E)
22

dΣ
(S+E)
11

dη
− 2Σ

(S+E)
12

dΣ
(S+E)
12

dη
(S11)

where Σ is the system’s covariance. Eqs. (S10) and (S11) provide a set of eleven coupled ordinary differential
equations that we numerically integrate from log(−kηini) = 15 to log(−kηfin) = −15. Note that Eq. (S11) is
redundant with Eqs. (S10), but since it arises from cancellations between quantities that diverge at late time, to
compute the purity it is numerically more efficient to treat it as independent. Initial conditions are computed in

the Bunch-Davies vacuum where Σ
(S+E)
11 = Σ

(S+E)
33 = 1/(2k), Σ

(S+E)
22 = Σ

(S+E)
44 = k/2 and all other correlations

initially vanish. The entries of Σ are shown in Fig. S1 where we observe that, at late-time, the effect of the
heavy environment is to simply rescale the amplitude of the power spectra by approximately ρ2/(2m2), in
agreement with the results derived in the past literature with effective methods, see e.g. Refs. [79, 80] for the
in-in treatment and Refs. [65, 66] for the Wilsonian EFT approach.

C. Mode functions

In the interaction picture, operators evolve according to the free Hamiltonian Ĥ0(η) = ĤS
0 (η)⊗ ĤE

0 (η) where

ĤS
0 (η) =

1

2

(
p̂ζ p̂ζ + k2v̂ζ v̂ζ +

a′

a
{v̂ζ , p̂ζ}

)
(S12)

ĤE
0 (η) =

1

2

[
p̂F p̂F +

(
k2 +m2a2

)
v̂F v̂F +

a′

a
{v̂F , p̂F}

]
(S13)

with {A,B} = AB + BA the anticommutator, while states and density matrices evolve according to the
interaction Hamiltonian

Ĥint(η) = −ρa(η)p̂ζ v̂F (S14)

where we used the fact that the ζ and F sectors commute. In this picture, the field operators admit a simple
mode-function decomposition

ṽα(η) = vα(η)âα + v∗α(η)â
†
α (S15)

where âα and â†α are the creation and annihilation operators of the uncoupled fields. From now on, tildas denote
operators in the interaction picture. Heisenberg’s equations yield the classical equations of motion for the mode
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FIG. S1. Relative correction to the free configuration-configuration power spectrum |Σ11 −Σ
(0)
11 |/Σ(0)

11 , as a function of
time labeled by the number of e-folds ln(a/a∗) since Hubble crossing, for m = 10H and ρ = 0.5H. The blue curve is
obtained from integrating the exact transport equations (S10) between ln(a/a∗) = −15 to ln(a/a∗) = 15. The green
curve corresponds to the master transport equation (S64), and the orange curve to its perturbative limit (S66). The
grey curve stands for the late-time result from Wilsonian EFT [65, 66], which reduces to the in-in formalism [79, 80] in
the perturbative limit. The slight deviation from the orange curve is due to the additional expansion in H/m usually
performed in WEFT. Similar behaviours are observed for the other two power spectra, namely Σ12 and Σ22.

functions, i.e.

v′′ζ +

(
k2 − 2

η2

)
vζ = 0 and v′′F +

(
k2 − ν2F − 1

4

η2

)
vF = 0 . (S16)

In these expressions, νF = 3
2

√
1− 4

9
m2

H2 ≡ iµF if m2 > 9
4H

2, which we will assume to be the case in the

following, except explicitly stated otherwise. By normalising the mode functions to the Bunch-Davies vacuum
in the asymptotic, sub-Hubble past, one obtains

vζ(η) = −1

2

√
πz

k
H

(1)
3/2(z) =

(
1 +

i

z

)
eiz√
2k

, (S17)

vF (η) =
1

2

√
πz

k
e−

π
2 µF+iπ

4 H
(1)
iµF (z) . (S18)

In these expressions, z ≡ −kη and H
(1)
ν is the Hankel function of the first kind and of order ν. The mode

functions of the momentum operators read

pζ(η) =
1

2

√
kπzH

(1)
1/2(z) = −i

√
k

2
eiz, (S19)

pF (η) = −1

2

√
kπ

z
e−

π
2 µF+iπ

4

[(
iµF +

3

2

)
H

(1)
iµF (z)− zH

(1)
iµF+1(z)

]
, (S20)

where one can check that the mode functions are normalised in a way that the field operators obey their
canonical commutation relations.
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FIG. S2. Purity in flat spacetime, as a function of time, for a few values of the ratio between the Compton wavelength
and the physical wavelength k/m. Oscillations take place at frequencies 2ωS , 2ωE , ωS + ωE and ωS − ωE ; where ωS ≡ k
and ωE ≡

√
k2 +m2. In the sub-Compton regime, k/m > 1, the slowest frequency is ωE − ωS , which decreases with

k/m (this is why oscillations are more rapid for smaller values of k/m in the figure). One can see that the amplitude
of the oscillations also decreases as k/m becomes smaller, in agreement with the fact that heavier environments yield
weaker perturbations of the system. Different initial states specified by

∣∣�0
〉
S ⊗

∣∣�0
〉
E (solid curves) and |2MSS⟩S ⊗

∣∣�0
〉
E

(dash-dotted curve) show that initial conditions also affect the system-environment entanglement but do not alter the
recurrence phenomenon (i.e. the fact that purity goes back to one, periodically), which is unavoidable.

II. PURITY OSCILLATIONS IN MINKOWSKI SPACETIME

The flat-space analogue of the model studied in this work is obtained by taking the limit where a = 1 and
a′ = 0 in Eq. (S6). This leads to Fig. S2 where we consider two sets of initial conditions. The first set consists
in a vacuum state

∣∣�0
〉
S ⊗

∣∣�0
〉
E . For the initial covariance matrix, it gives the same prescription as above,

Σ
(S+E)
11 = Σ

(S+E)
33 = 1/(2k), Σ

(S+E)
22 = Σ

(S+E)
44 = k/2 where all other correlations initially vanish. The second

set consists in a Gaussian state |2MSS⟩S ⊗
∣∣�0
〉
E with |2MSS⟩S being a two-mode squeezed state chosen so that

the initial occupation number of the system is

〈
N̂
〉
S
≡ S⟨2MSS|â†ζ âζ |2MSS⟩S = 10. (S21)

It amounts to picking a set of squeezing parameters [93] (r, φ) such that cosh r = 2
〈
N̂
〉
S
+1 and φ is arbitrary,

e.g. taken to zero, which fixes the initial correlations at

Σ
(S+E)
11 =

1

2k
(cosh 2r + sinh 2r cos 2φ) (S22)

Σ
(S+E)
22 =

k

2
(cosh 2r − sinh 2r cos 2φ) (S23)

Σ
(S+E)
12 =

1

2
sinh 2r sin 2φ (S24)

while keeping Σ
(S+E)
33 = 1/(2k), Σ

(S+E)
44 = k/2 and all other correlations vanish. The evolution of the purity

for both types of initial conditions in shown in Fig. S2, where we observe a recurrence phenomenon [152] at a
frequency depending on the ratio between the Compton wavelength and the physical wavelength, k/m. Having
a larger occupation number at initial time increases and fastens the system-environment entanglement but
recurrence invariably occurs.
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III. MASTER EQUATION

In this section we review the approach developed in Ref. [64] and perform its direct application to the model
considered in this work.

A. Second-order master equation for a generic linear two-field systems

Let us consider two scalar fields ζ (the “system”) and F (the “environment”), linearly coupled in a homo-
geneous and isotropic background. The coupling is assumed to be weak, which allows us to work within the
Born-approximation regime. When expanding the dynamics of the system in powers of the coupling, at sec-
ond order one obtains the time-convolutionless2 (TCL2) master equation for the reduced density matrix of the
system ρ̃red, which in the interaction picture reads

dρ̃red
dη

= −
∫ η

η0

dη′TrE
[
H̃int(η),

[
H̃int(η

′), ρ̃red(η)⊗ ρ̃E
]]

. (S25)

Here, the quadratic interaction Hamiltonian can be expressed as

H̃int(η) = z̃T
ζ (η)V (η)z̃F (η). (S26)

V (η) is an arbitrary 2 × 2 matrix containing the linear couplings between the two fields and z̃α = (ṽα, p̃α)
T
,

α = ζ,F gathers the configuration and momentum operators of the system and the environment. In order
to write Eq. (S25) in the Schrödinger picture, we need to recast it in terms of local-in-time operators for the

system. We use the fact that in the interaction picture, operators evolve with the free Hamiltonian Ĥ0(η) so
that

z̃ζ(η
′) =T̄ exp

[
i

∫ η′

η

Ĥ0(η
′′)dη′′

]
z̃ζ(η)T exp

[
−i

∫ η′

η

Ĥ0(η
′′)dη′′

]
(S27)

=G(S)(η′, η)z̃ζ(η) (S28)

where G(S)(η′, η) ≡ Tr
{[

ẑT
ζ (η

′), z̃ζ(η)
]
ρ̂S
}

is the Green’s matrix of the free system, with ρ̂S the initial state

of the system. Developing Eq. (S25) and expressing it in terms of equal-time operators using Eq. (S28), one
finds

dρ̃red
dη

=−
∫ η

η0

dη′
{
[z̃ζ,i(η)z̃ζ,j(η)ρ̃red(η)− z̃ζ,j(η)ρ̃red(η)z̃ζ,i(η)]D>

ij(η, η
′)

− [z̃ζ,i(η)ρ̃red(η)z̃ζ,j(η)− ρ̃red(η)z̃ζ,j(η)z̃ζ,i(η)]D>∗
ij (η, η′)

}
, (S29)

where implicit summation over repeated indices apply. The memory kernel D>(η, η′) is defined by

D>(η, η′) ≡ V (η)K>(η, η′)V T(η′)G(S)(η′, η) (S30)

where K>(η, η′) ≡ Tr
[
ẑT
F (η)z̃F (η

′)ρ̂E
]
is the Wightman function of the free environment with ρ̃E the initial

state of the environment. One can finally decompose the memory kernel in real and imaginary parts D>(η, η′) ≡
DRe(η, η′) + iDIm(η, η′). After some straightforward manipulations, one obtains the TCL2 master equation in
the Schrödinger picture

dρ̂red
dη

= −i
[
Ĥ(S)(η) + Ĥ(LS)(η), ρ̂red(η)

]
+ [Dij(η)− i∆−(η)ωij ]

[
ẑζ,iρ̂red(η)ẑζ,j −

1

2
{ẑζ,j ẑζ,i, ρ̂red(η)}

]
.

(S31)

The Lamb-shift Hamiltonian is a quadratic form Ĥ(LS)(η) = 1
2 ẑ

T
ζ ∆(η)ẑζ where

∆ij(η) = 2

∫ η

η0

dη′DIm
(ij)(η, η

′). (S32)
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The noise and dissipation kernels are respectively defined as

Dij(η) = 2

∫ η

η0

dη′DRe
(ij)(η, η

′) (S33)

∆−(η) = 2

∫ η

η0

dη′DIm
− (η, η′) (S34)

where we used the symmetric and antisymmetric decomposition of 2× 2 matrices Aij = A(ij) + A−ωij where
A(ji) = A(ij). For the specific model discussed in this article, the definition of V (η) is given in Eq. (S6).

B. Cosmological master equation

Using the mode-function decomposition of the fields obtained in Sec. I C, we derive the Wightman function
of the environment

K>(η, η′) =

(
vF (η)v∗F (η

′) pF (η)v∗F (η
′)

vF (η)p∗F (η
′) pF (η)p∗F (η

′)

)
, (S35)

and the Green’s matrix of the system

G(S)(η′, η) = 2



−ℑm

[
pζ(η)v

∗
ζ (η

′)
]

ℑm
[
vζ(η)v

∗
ζ (η

′)
]

−ℑm
[
pζ(η)p

∗
ζ(η

′)
]

ℑm
[
vζ(η)p

∗
ζ(η

′)
]


 , (S36)

where we used the Bunch-Davies initial vacuum prescription. Inserting Eqs. (S35) and (S36) into the expression
of the memory kernel given in Eq. (S30), we obtain the master equation presented in the main text which we
rewrite here for convenience

dρ̂red
dη

= −i
[
ĤS

0 (η) + Ĥ(LS)(η), ρ̂red(η)
]
+Dij(η)

[
ẑζ,iρ̂red(η)ẑζ,j −

1

2
{ẑζ,j ẑζ,i, ρ̂red(η)}

]
, (S37)

where Ĥ(LS)(η) = 1
2 ẑ

T
ζ ∆(η)ẑζ and D ≡ D(η) + i∆12(η)ω. The entries of the ∆ and D matrices are given by

the so-called master-equation coefficients defined as

∆11(η) = 0 (S38)

∆12(η) = ∆21(η) = −2ρ2a(η)

∫ η

η0

dη′a(η′)ℑm
[
pζ(η)p

∗
ζ(η

′)
]
ℑm [vF (η)v

∗
F (η

′)] (S39)

∆22(η) = 4ρ2a(η)

∫ η

η0

dη′a(η′)ℑm
[
vζ(η)p

∗
ζ(η

′)
]
ℑm [vF (η)v

∗
F (η

′)] , (S40)

and

D11(η) = 0 (S41)

D12(η) = D21(η) = −2ρ2a(η)

∫ η

η0

dη′a(η′)ℑm
[
pζ(η)p

∗
ζ(η

′)
]
ℜe [vF (η)v

∗
F (η

′)] (S42)

D22(η) = 4ρ2a(η)

∫ η

η0

dη′a(η′)ℑm
[
vζ(η)p

∗
ζ(η

′)
]
ℜe [vF (η)v

∗
F (η

′)] . (S43)

C. Master-equation coefficients

A simple manipulation of Eqs. (S39), (S40), (S42) and (S43) leads to

∆12(η) = − ρ2

H2

k

z
ℜe
[
pζ(z)vF (z)

∫ z

z0

dz′

z′
p∗ζ(z

′)v∗F (z
′)− pζ(z)v

∗
F (z)

∫ z

z0

dz′

z′
p∗ζ(z

′)vF (z
′)

]
(S44)

∆22(z) = 2
ρ2

H2

k

z
ℜe
[
vζ(z)vF (z)

∫ z

z0

dz′

z′
p∗ζ(z

′)v∗F (z
′)− vζ(z)v

∗
F (z)

∫ z

z0

dz′

z′
p∗ζ(z

′)vF (z
′)

]
, (S45)
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and

D12(η) =
ρ2

H2

k

z
ℑm

[
pζ(z)vF (z)

∫ z

z0

dz′

z′
p∗ζ(z

′)v∗F (z
′) + pζ(z)v

∗
F (z)

∫ z

z0

dz′

z′
p∗ζ(z

′)vF (z
′)

]
(S46)

D22(η) = −2
ρ2

H2

k

z
ℑm

[
vζ(z)vF (z)

∫ z

z0

dz′

z′
p∗ζ(z

′)v∗F (z
′) + vζ(z)v

∗
F (z)

∫ z

z0

dz′

z′
p∗ζ(z

′)vF (z
′)

]
, (S47)

where we defined the variable z ≡ −kη. To obtain analytical expressions for the master-equation coefficients,
we have to compute two integrals. The first one is

I1(z, z0) =

∫ z

z0

dz′

z′
p∗ζ(z

′)v∗F (z
′). (S48)

Inserting the mode function expressions given in Eqs. (S17), (S18), (S19) and (S20), we obtain

I1(z, z0) =
i

2

√
π

2
e−

π
2 µF e−iπ

4

∫ z

z0

dz′√
z′
e−iz′

H
(2)
−iµF (z

′) ≡ FI1(z)− FI1(z0) (S49)

with

FI1(z) = i

√
π

2
e−

π
2 µF e−iπ

4
√
z
[
γ∗
µF (z)gµF (z) + δ∗µF (z)g−µF (z)

]
(S50)

where we have introduced for later convenience the notations

γµF (z) ≡
1 + cothπµF
Γ(1 + iµF )

(z
2

)iµF
, δµF (z) ≡

−1

sinhπµF

1

Γ(1− iµF )

(z
2

)−iµF
(S51)

and

gµF (z) =
1

1− 2iµF
2F2

1
2−iµF , 12−iµF
3
2−iµF ,1−2iµF

(−2iz), (S52)

2F2 being the (2, 2) generalized hypergeometric function. Note that g∗µF (z) = g−µF (−z). The second integral is

I2(z, z0) =

∫ z

z0

dz′

z′
p∗ζ(z

′)vF (z
′) (S53)

and following the same procedure, one finds

I2(z, z0) =
i

2

√
−π

2
e−

π
2 µF ei

π
4

∫ z

z0

dz′√
z′
e−iz′

H
(1)
iµF (z

′) ≡ FI2(z)− FI2(z0) (S54)

with

FI2(z) = i

√
π

2
e−

π
2 µF ei

π
4
√
z [δµF (z)gµF (z) + γµF (z)g−µF (z)] . (S55)

Inserting Eqs. (S49) and (S54) into the expression of the master equation coefficients (S44), (S45), (S46) and
(S47) and using the functions FI1(z) and FI2(z), we obtain analytic expressions for the TCL2 coefficients.

1. Spurious terms

In Ref. [64], it has been shown that some terms dubbed “spurious” appear in the master-equation coefficients,
that cancel out in the perturbative limit but ruin the resummation otherwise. More precisely, the master-
equation coefficients are expressed as integrals between η0 and η, see Eqs. (S44)-(S47), i.e.

∆12 = F∆12
(η, η)− F∆12

(η, η0) , (S56)

where F∆12
(η, ·) is the primitive of the integrand appearing in Eq. (S44), which itself depends on η, and with

similar notations for the other coefficients. The second term in Eq. (S56), the one that depends on the initial
time η0, is the “spurious” one. In the exact solution of Sec. I, there is no such initial-time dependent term in the
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dynamical equations, and indeed one can show that it cancels out at all orders in perturbation theory [64]. At
leading order in the interaction strength, the master equation reduces to standard perturbation theory, hence
again one can show that the spurious contribution vanishes [64]. At higher order however, the master equation
stops being exact, since it only performs resummation of the leading-order interaction. This is why the spurious
term alters the result. However, since we know that it should vanish at all orders, one can simply remove it by
hand, and thus restore the ability of the master equation to perform efficient resummation [64]. One may be
worried that, from Eq. (S56), the spurious terms are only defined up to an additive constant. However, since
they are known to vanish at all (and in particular at leading) orders, they can be determined without ambiguity
by comparison with the perturbative theory. In the following we thus remove spurious terms, which amounts
to discarding all FI1(z0) and FI2(z0) terms in the above expressions.

2. Super-Hubble limit

We now exhibit the late-time super-Hubble limit of the master equation coefficients where we perform a
systematic expansion in powers of z ≪ 1. Expanding the mode functions and various elements appearing in
Eqs. (S44), (S45), (S46) and (S47) in the super-Hubble regime, we obtain

∆12(z) =
ρ2

H2

16k2

9 + 40µ2
F + 16µ4

F

z

k
+O(z3) (S57)

∆22(z) = − ρ2

H2

1
9
4 + µ2

F
+O(z2), (S58)

and

D12(z) = − ρ2

H2

1

µF

(−6 + 8µ2
F )k

2

9 + 40µ2
F + 16µ4

F

z

k
+O(z3) (S59)

D22(z) = −3

2

ρ2

H2

1

µF

1
9
4 + µ2

F
+O(z2). (S60)

Note that, in the heavy case where µF ≃ m/H ≫ 1, Eqs. (S57) and (S58) lead to ∆12 ≪ a′/a and ∆22 →
−ρ2/m2, from which we deduce that the Lamb-shift Hamiltonian renormalises the free dynamics as

ĤS
0 (η) + Ĥ(LS)(η) ≃ 1

2

[(
1− ρ2

m2

)
p̂ζ p̂ζ + k2v̂ζ v̂ζ +

a′

a
{v̂ζ , p̂ζ}

]
. (S61)

One can thus see that ∆22 renormalises the kinetical term, generating an effective speed of sound

c2
S
= 1− ρ2

m2
+O

(
k

aH
,
H4

m4

)
(S62)

as stated in the main text.

D. Effective transport equations

1. Transport equations derivation

The covariance matrix of the system expressed in the Schrödinger picture reads

Σij(η) ≡
1

2
Tr [{ẑζ,i, ẑζ,j} ρ̂red(η)] . (S63)

By differentiating Eq. (S63) with respect to time and inserting Eq. (3) in the right-hand side, we obtain the
effective transport equations for the covariance matrix,

dΣ

dη
= ω

(
H(S) +∆

)
Σ−Σ

(
H(S) +∆

)
ω − ωDω + 2∆12Σ. (S64)
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As mentioned above, a numerically efficient way to access the late-time behaviour of the purity is to derive an
equation of motion for detΣ from the transport equation of the covariance, leading to

d detΣ

dη
= Tr (ΣD) + 4∆12 detΣ. (S65)

2. Perturbative treatment

In the main text, the numerical solution of Eqs. (S64)-(S65) (labeled “resum” in Fig. 4 of the main text) is
compared with a perturbative solution (labeled “pert”), where the solution is derived at leading order in ρ2.
Since ∆ and D are of order ρ2, this amounts to replacing Σ by its free-theory counterpart Σ(0) when multiplied
by ∆ or D in the right-hand side of Eqs. (S64)-(S65),

dΣ(2)

dη
= ωH(S)Σ(2) −Σ(2)H(S)ω + ω∆Σ(0) −Σ(0)∆ω − ωDω + 2∆12Σ

(0). (S66)

and

d det(Σ(2))

dη
= Tr

(
Σ(0)D

)
+∆12, (S67)

where the superscript indicates the order at which a given observable is computed and we used the fact that
det(Σ(0)) = 1/4. In this limit, the environmental effects just play the role of source terms. In Fig. S1, the
non-perturbative solution of Eq. (S64) and its perturbative limit (S66) are compared to the exact result. As
explained in the main text, since the interaction is effectively switched off at late time, there is no substantial
resummation in the current setting (contrary to the situation investigated in Ref. [64]). This is why the non-
perturbative solution shows no sign of improvement at late time.

3. Super-Hubble expansion

Inserting the super-Hubble expansion of the master equation coefficients obtained in Sec. III C 2 into the
transport equations (S64), and working order-by-order in z, one finds

Σ11(z) =AΣ11
−2 z−2 + f1

(
AΣ11

−2

)
+ f2

(
AΣ12

0

)
z , (S68)

Σ12(z) =− kAΣ11
−2 z−1 +AΣ12

0 + f3

(
AΣ12

0

)
z2 , (S69)

Σ22(z) =k2AΣ11
−2 − 2kAΣ12

0 z +AΣ22
2 z2 + 2kf3

(
AΣ12

0

)
z3 . (S70)

Here, AΣ11
−2 , AΣ12

0 and AΣ22
2 are three constants that cannot be determined by a mere super-Hubble expansion,

since they result from the full integrated dynamics (they can however be set by numerical matching to the full

solution). In the free theory, they are given by A
Σ

(0)
11

−2 = 1/(2k), A
Σ

(0)
12

0 = 0 and A
Σ

(0)
22

2 = 0 but otherwise receive

O
(
ρ2
)
corrections. We have also defined

f1

(
AΣ11

−2

)
≡
(
1− ρ2

H2

1
1
4 + µ2

F

)
AΣ11

−2 (S71)

f2

(
AΣ12

0

)
≡ − 2

3k

(
1− ρ2

H2

1
9
4 + µ2

F

)
AΣ12

0 +
1

2k

ρ2

H2

1

µF

1
9
4 + µ2

F
(S72)

f3

(
AΣ12

0

)
≡ 2

3

[
1− ρ2

H2

(
1

9 + 4µ2
F

+
3

1 + 4µ2
F

)]
AΣ12

0 +
ρ2

H2

4

9 + 40µ2
F + 16µ4

F
. (S73)

This shows that the presence of the environment does not change the dominant scaling in z, but simply modifies
the coefficients of the expansion by O

(
ρ2
)
-suppressed corrections. This is again evidence that no secular growth

needs to be resummed, and the main effect is perturbative.

One can also use these results to extract the super-Hubble behaviour of the purity parameter. Using
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Eqs. (S68)-(S70), and expanding in ρ2, one finds

detΣ =
1

4
+

AΣ22
2

2k
+ k

(
AΣ11

−2 − 1

2k

)
− ρ2

1 + 4µ2

︸ ︷︷ ︸
detΣ∞

+
1 + 8µF + 4µ2

F
9µF + 40µ3

F + 16µ5
F

ρ2

H2
z +O

(
ρ4, z2

)
.

(S74)

The asymptotic value detΣ∞ cannot be determined without numerical matching, since it depends on the two
ρ2-suppressed constants AΣ22

2 and AΣ11
−2 − 1/(2k). The rate at which purity grows is however fully determined

by the above relation, and recalling that γ = 1/(4 detΣ), one finds

γ = γ∞ − 1 + 8µF + 4µ2
F

9
4µF + 10µ3

F + 4µ5
F

ρ2

H2
z

≃ γ∞ − ρ2

H2

1

µ3
F
z ≃ γ∞ − ρ2

m2

H

m
z

(S75)

where in the second line we have taken the limit m ≫ H. This coincides with Eq. (2) in the main text.



Conclusions
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Summary: The first apples

In this manuscript, we have presented our contribution to the development of Open
EFTs in cosmology. A lot of work remains to be done, yet a few observations can
be gathered as guidelines for future investigations.

Driven Cosmological Open Quantum Systems

The most remarkable difference between flat and curved-space OQS is the presence
of a dynamical background in the latter. It renders all the parameters in the action
time dependent. In particular, the coupling between the system and its surround-
ing environment now becomes dynamical. As we saw in Chapter 5 with the study
of quantum decoherence and in Chapter 6 with the study of recoherence, the role
of the expanding background is crucial for understanding the quantum informa-
tion properties of the system. Indeed, neither decoherence nor recoherence could
occur for time-independent Hamiltonians and finite number of dynamical degrees
of freedom [188]. While Poincaré recurrence theorem [303] prevents the emergence
of irreversibility unless a thermodynamic limit is reached, cosmology evades this
principle by breaking volume conservation.

As a consequence, the flat space intuition must be considered with caution if
the driven nature of the OQS is not carefully accounted for. It urges the need to
reconstruct an understanding of quantum information for cosmology and black hole
physics. Accounting for the presence of a dynamical background may be modelled
through techniques originating from the study of driven OQS such as Floquet theory
[304, 305]. It may also help us to construct better analogues for the physics of the
early universe [306–308].

Non-Markovian cosmological environments

The presence of a dynamical background also plays a crucial role in preventing
the system and its environment to reach some form of stationarity. The squeezing
mechanism studied in Chapter 4 invariably affects all massless and light degrees of
freedom in the early universe. The thermal properties of squeezed states have been
studied in [309] where the authors demonstrated that a squeezed field cannot reach
equilibration. It constitutes a first difficulty to treat environments experiencing
squeezing as late-time stationarity is never reached in cosmology.

It renders non-Markovian dynamics ubiquitous in the context of dynamical back-
grounds. The coefficient of the master equations considered in Chapter 5 are in gen-
eral time dependent and the semi-group property is not fulfilled. It renders crucial
to develop understanding of this class of dynamics, as raised by the authors of [269],
as it leads to non-trivial phenomena such as quantum recoherence we accounted
for in Chapter 6. Quantum recoherence cannot be captured by an irreversible dy-
namical map such as the one generated from a Linbladian, hence the importance
of Time-ConvolutionLess (TCL) and other non-Markovian techniques to effectively
capture this effect.
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On the need of non-unitary extensions

Before pursuing further this research program, we have to assess the benefits it may
provide. Among them, accessing the non-unitary dynamics seems an interesting
feature in the context of cosmology. Indeed, the lack of energy conservation renders
the implementation of Wilsonian EFTs less obvious in cosmology than in the context
of scattering amplitudes, if not impossible in the absence of symmetry [22]. We may
also need to incorporate non-unitary effects such as dissipation if we want to correctly
account for the low-energy EFT in the presence of generic environments.

Throughout this manuscript, we illustrated in simple examples how Open EFTs
may encompass the Wilsonian EFT results at late-time, for instance through the
effective mass observed in Chapter 5 or through the effective speed of sound in
Chapter 6. We also illustrated how the renormalization of the unitary evolution
due to the interactions with the surrounding environment (the Lamb-shift) relates
with the non-unitary evolution that cannot be captured in the standard Wilsonian
EFT language (dissipation and decoherence). The lack of energy conservation being
one of the most stringent differences between cosmology and particle physics, the
understanding of the non-unitary nature of the cosmological dynamics it implies
may allow us to bypass the difficulties of importing tools from one field to the other
(for e.g. positivity bounds [310]) or to understand the impossibility for doing so.

A partial understanding of the phenomenology

Even if a complete phenomenology of decoherence during inflation is still lacking,
the content of this manuscript already provides some broad picture for the case of
linear interactions. Comparing the results obtained in Chapter 5 and Chapter 6, it
seems that whenever we are in presence of “growing modes” (in terms of the rescaled
Mukhanov-Sasaki like variables) in the coupling, we observe complete decoherence
by the end of inflation for the modes of interest in the CMB.

Let us illustrate this statement based on the framework proposed in Chapter 6.
When entropic perturbations are heavy, they oscillate at super-Hubble scales and
do not acquire a growing mode. Hence, if they couple to ζ̇ which is not growing
either at late time, we do not observe decoherence but rather quantum recoherence
(Fig. 1 of [154]). If we instead couple the heavy entropic perturbations to ζ, the
presence of a growing mode prevents the coupling to decay away and we rather
observe complete decoherence (Fig. 4 of [244]). Now, if instead we consider a light
environment for which m < 3H/2, the entropic perturbations acquire a growing
mode. When coupled to ζ̇, the presence of the growing mode is sufficient to drive
decoherence instead of recoherence (blue curve of Fig. 3 in [154]). Finally, if we
couple this light environment with ζ instead of ζ̇, obviously we observe decoherence
due to the presence of growing modes.

Beyond linear interactions, the intuition that the decoherence rate is driven by
the presence of growing modes at super-Hubble scales can be found not only in
recent articles [228,229,311] but also in old results [221,232] reinterpreted in terms
of the enlarged phenomenology today accessible. The presence of light degrees of
freedom experiencing quantum squeezing due to the pair creation process induced
by the dynamical background seems crucial in this regard.
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Towards non-perturbative resummation in cosmology

Among the promises of Open EFTs, implementing non-perturbative resummations
in cosmology is certainly one of the most remarkable. In order to avoid playing with
smoke and mirrors, we need to specify what to expect from these resummations.
Studied in the context of secular divergences, they capture the cumulative effect of
perturbative corrections. In this sense, they still rely on a sense of perturbativity
which holds at the level of the master equation derivation. If they improve the
late-time behaviour of the system observables as seen in Chapter 5, they should not
allow us to access the strong coupling regime.

The implementation of the Open EFT resummation for Gaussian systems can be
made at the level of the transport equations which form a closed system. In the case
of non-Markovian dynamics, extra care must apply due to the the appearance of a
set of terms dubbed as spurious which cancel against each other in the perturbative
limit yet ruin the resummation, as first noticed in Chapter 5. As developed in
Chapter 6, we can identify these terms by comparing the Open EFT results with
the ones obtained from standard techniques at the perturbative level where they
should match.

Clearly, the understanding of non-perturbative resummations in cosmology is
far from reaching an end. Resumming non-linear interactions in the master equa-
tion framework remains an open question. Beyond Open EFTs, we still need to
understand the relations with the other techniques existing on the market such
as the Dynamical Renormalization Group [289–291], diagrammatic resummations
[292,295,296,312] and stochastic inflation [90,174,293,313].

Future directions

Decoherence from non-linearities during inflation

The complete agreement of the current cosmological data with adiabatic and Gaus-
sian primordial perturbations observed in the CMB [75] and the LSS [76–78] put
constraints on the level of non-linear interactions one can expect. Despite their
smallness, single-field slow-roll self-interactions may already be enough to generate
complete decoherence of the curvature perturbations for the scales of interest in
standard scenarios [228]. Yet, non-Gaussian signatures being slow-roll suppressed
in this class of model [49], a direct evidence of this decoherence channel in the
higher-order statistics remains inaccessible.

At the same time, it is a known fact that hidden sectors may enhance the non-
Gaussian signal from primordial cosmology [105, 147, 155, 156, 314–316]. By doing
so, they open new decoherence channels directly related to observational signatures
such as the non-Gaussian parameter fNL. Examplified in the case of quasi-single
field models and the cosmological collider signal, the environment imprints its sig-
nature by generating distinctive shapes of primordial non-Gaussianities such as the
well-known mass dependence of the squeezed limit of the curvature perturbation
bispectrum [147, 317, 318]. Future work aims at connecting this smoking gun for
multifield inflation to the quantum information aspects of the inflationary model,
such as the decoherence of the curvature perturbations.

This study opens the door for an enlarged exploration of the non-linear phe-
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nomenology of quantum information properties of inflationary models. Understand-
ing the higher-spin exchanges through Yukawa types of interactions for fermions
[319], Chern-Simons for gauge vectors [320] and GR non-linearities for gravitons [49]
would allow us to assess what are the most efficient decoherence channels and their
observational signatures. In the future, the exploration of the phenomenology may
also include the role played by the symmetries, the initial state or the impact of soft
modes on the quantum information properties of the adiabatic sector.

Understanding Markovianity in cosmology

Despite the lack of stationarity and the ubiquity of non-Markovian environments in
cosmology, the peculiar super-Hubble dynamics often takes over at late time in the
presence of light degrees of freedom, leading to an effective phase of decoherence. In
this case, the positive eigenvalue of the dissipator grows in time while the negative
eigenvalue decreases or saturates. It suggests that a meaningful Markovian limit,
after appropriate coarse-graining in time, could emerge. Still, a systematic method
to reach this limit and a complete understanding of the physical prerequisite it
requires are missing.

In OQS theory, Markovian environments are large and stationary so they form
a bath [188]. They possess efficient scrambling properties and dissipate information
about the initial conditions in timescales shorter than the system can resolve. In
this sense, they naturally relate to some form of thermodynamic limit. In cosmol-
ogy, where the dynamical background plays a crucial role, how would Markovianity
emerge when a large N limit is gradually taken, N being the number of environmen-
tal degrees of freedom? In particular, are the statistical distributions (the spectral
densities) of Markovian environments similar to their flat space analogues? Studies
along this line have been conducted in the context of black holes [239] and future
works aim at clarifying this point in primordial cosmology to enable the design of
Markovian cosmological environments.

Finally, the bottom-up construction of Markovian dynamical map [273] is one of
the cornerstones of OQS theory. Yet, the implications it poses on the construction
of generic dynamical map in the context of cosmology has not been developed so
far to our knowledge. It might help us in constraining the landscape of non-unitary
dynamics accessible in cosmology. We conclude that the emergence of Markovianity
is a subtle and promising topic which deserves further investigation in the context
of QFT in curved-spacetimes.

Bottom-up constructions of Open EFTs

Throughout this manuscript, despite our desire to constrain model-independent
extensions to single-field slow-roll inflation, we only cherry-picked models of phe-
nomenological interest from which we derived single-field Open EFT in order to
study non-unitary effects such as quantum decoherence during inflation. Given the
wealth of possible cosmological environments and range of possible interactions with
the adiabatic sector, model-agnostic approaches would be valuable.

In order to develop a bottom-up construction of cosmological Open EFTs, a first
step would be to precisely connect the unitary part of the dynamics with the one ob-
tained from Wilsonian EFT approaches. The systematic construction of Wilsonian
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EFT unitary dynamics [1,6] may provide guidelines on the way we should approach
non-unitary sector. Quantifying deviations from unitarity by accounting for whether
or not it is a resolvable effect from the IR standpoint also matters for constructions
that rely on the unitarity of the IR description. Finally, recent developments around
the cosmological bootstrap [247, 314–316, 321–323] greatly clarify how fundamental
physical requirements are encoded on the cosmological correlators of the theory. The
extension of these works to constrain non-unitary extensions may be a promising
avenue.

Lastly, non-equilibrium EFTs [8, 9, 324, 325] provide an unified framework for
hydrodynamical systems in which non-unitary dissipative effects are systematically
captured from a bottom-up perspective. Based on the Schwinger-Keldysh formalism,
Open and non-equilibrium EFTs share the same language and it might be possible
to adapt these techniques to the context of cosmology.

Conclusion

The early universe promise is the one of exploring so far unknown territories. To
achieve this task, there is a need to understand how fundamental descriptions ma-
terialise themselves in a given regime. Open EFTs provide a set of tools to help
us understanding the evolution of observable degrees of freedom in the absence of
energy conservation. It gives rise to interesting out-of-equilibrium phenomena such
as dissipation and decoherence. Throughout this manuscript, we developed the im-
plementation of Open EFT techniques in primordial cosmology. We hope this work
improves the understanding of these tools in curved space-time and provides a pre-
liminary exploration of the rich phenomenology offered by inflation. Surely there is
still much to be learned at the interface of quantum optics, condensed matter and
high-energy physics.
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Compte-rendu en français
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Ce compte-rendu contient une
description succincte en langue
française des principaux résultats
obtenus durant cette thèse.

Inflation et nouvelle physique

Partie intégrante du modèle standard de la cosmologie, la phase inflationnaire prédit
la génération d’inhomogénéités cosmologiques par amplification de fluctuations quan-
tiques dans l’univers primordial. A l’origine des grandes structures de l’univers
(galaxies, filaments, vides, etc.), ces fluctuations sont ainsi contraintes par les ob-
servations cosmologiques. Si l’étude du Fond Diffus Cosmologique [27] a confirmé
à un très grand degré de précision l’existence de fluctuations invariantes d’échelles,
quasi-Gaussienne et adiatiques consistantes avec le scénario d’inflation à un champ,
l’absence de détection d’ondes gravitationnelles primordiales laisse une incertitude
sur l’échelle d’énergie ρ1/4 à laquelle l’inflation se produit [73]

1 MeV ≪ ρ1/4 < 1016 GeV. (6.1)

Pouvant se produire à des énergies bien supérieures à celles des accélérateurs de par-
ticules (de l’ordre de 103 GeV), la phase inflationnaire peut offrir un accès privilégié à
la physique des hautes énergies, au-delà du Modèle Standard de la physique des par-
ticules. Il s’agit également d’un terrain de jeu idéal pour tester la nature quantique
ou classique des perturbations de la métrique, explorant ainsi la limite semi-classique
des théories de gravitation quantique. Ainsi, de nouvelles campagnes cosmologiques
telles que EUCLID [99], Vera Rubin [100], LiteBIRD [96] ou encore LISA [104]
visent, entre autres objectifs scientifiques, la caractérisation de la phase inflation-
naire. Si la collecte de nouvelles données est essentielle à l’exploration de la physique
au-delà des modèles standards, cette dernière doit également s’accompagner par le
développement d’outils capables d’organiser l’extraction d’information des données
cosmologiques.

Théorie effectives des champs

Une théorie physique s’exprime souvent de manière différente suivant l’échelle à
laquelle elle est considérée. En hydrodynamique, la description microscopique du
système nécessite la modélisation d’un large nombre de molécules en intéractions.
Cependant, l’étude des vagues océaniques ne requiert que la compréhension de la dy-
namique d’un fluide parfait [18]. L’approche effective cherche à organiser ce dialogue
entre échelles. Il s’agit de comprendre comme une théorie fondamentale exprimée
aux petites échelles (l’UV) s’exprime aux grandes échelles (l’IR) où sont collectées
les données expérimentales.

• De l’UV vers l’IR: l’approche effective cherche à identifier les degrés de lib-
erté pertinents dans l’IR ainsi que l’existence de symétries et de hiérarchies
d’échelles permettant une simplification de la physique aux grandes échelles.
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• De l’IR vers l’UV : l’approche effective cherche à caractériser l’information sur
la théorie fondamentale récupérable par l’étude des données expérimentales de
l’IR.

En particulier, en présence d’incertitudes sur la théorie UV sous-jacente, l’approche
effective construit une étude systématique de caractérisation de cette incertitude.

Parmi le large panel de questions auxquelles on se doit de répondre pour con-
struire une théorie effective aux grandes échelles, ce manuscrit s’est particulièrement
intéressé à celle de l’unitarité. Il s’agit de comprendre si l’information contenu dans
le secteur IR est stable dans le temps ou s’il peut se produire un effet de perte par
dilution dans des degrés de liberté inaccessible aux grandes échelles. Pour repren-
dre l’exemple de l’hydrodynamique, il est possible de dériver une théorie locale et
unitaire décrivant un fluide parfait, notamment adapté à la modélisation de vagues
océaniques dans le régime d’eau profonde [4]. Cependant, l’hydrodynamique fournit
nombre d’exemples tels que le phénomène de couche limite ou la turbulence où les
imperfections d’un fluide, notamment sa viscosité, joue un rôle majeur [18]. Pour
décrire de tels effets, il est nécessaire d’aller au-delà de la dynamique unitaire [8].
Qu’en est-il de la cosmologie ? Est-il pertinent d’inclure de tels effets dans notre de-
scription de l’univers primordial ? S’il est difficile de répondre de manière univoque
à ces questions, il est pour autant certain que la dynamique inflationnaire, de par
l’expansion des distances physiques qu’elle engendre, tend à prévenir l’émergence de
secteurs UV et IR clairement ségrégués. Ainsi, ce manuscrit vise à l’inclusion d’effets
diffusifs et non-unitaires dans notre description effective de l’univers primordial.

Systèmes Quantiques Ouverts cosmologiques

Notre approche se fonde sur la théorie des Systèmes Quantiques Ouverts (SQO)
[188] appliquée à la Théorie Quantique des Champs en espace-temps courbe [326].
En premier lieu, il s’agit de distinguer le système, constitué des degrés de liberté
expérimentalement accessible, de l’environnement qui l’entoure, cette collection de
degrés de liberté expérimentalement inaccessibles. L’impact de l’environnement sur
le système est ensuite modélisé de manière effective à l’aide de la théorie des SQO.
Trois effets physiques sont capturés de cette manière :

• Le décalage de Lamb : une renormalization des niveaux d’énergie du système
dû à la présence de son environnement;

• La dissipation : un échange d’énergie et d’entropie entre l’environnement et le
système qui tend à briser l’invariance par translation temporelle de l’IR;

• La diffusion : un effet de bruit généré par l’environnement qui a tendance à
élargir la fonction d’onde du système.

Il s’agit d’implémenter cette méthode en cosmologie primordiale. Le système con-
siste alors dans les degrés de liberté observables dans le Fond Diffus Cosmologique
[51] et les grandes structures de l’univers [37]. Dans le contexte inflationnaire, il
s’agit souvent d’un unique champs scalaire, ce composant adiabatique connu sous
le nom de perturbation de courbure, aux échelles sondées par le Fond Diffus Cos-
mologique, d’une dizaine à quelques milliers de mégaparsecs (Mpc). L’environnement
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est alors constitué des degrés de liberté ayant pu être présents dans l’univers pri-
mordial qui n’ont pas encore été détectés de manière significative. Il peut s’agir par
exemple d’une nouvelle physique à haute énergie, d’extensions multichamps ou sim-
plement des petites échelles couplées au système par les non-linéarités de la relativité
générale.

L’intérêt d’une modélisation en SQO est triple. En premier lieu, il y a un intérêt
technique car l’approche en SQO permet l’implémentation d’une re-sommation non-
perturbative, ouvrant la voix à un dépassement des résultats perturbatifs en cos-
mologie [173, 174, 261]. Il y a ensuite une motivation conceptuelle car en présence
d’un environnement, un système quantique a tendance à perdre après un temps
très court ses propriétés quantiques suite au mécanisme de décohérence. Permet-
tant de modéliser ce phénomène, les SQO offrent une opportunité de comprendre
pourquoi, malgré son origine quantique, notre univers semble par tant d’aspects
classique [106,117,189]. Enfin, il y a un intérêt phénoménologique car les effets non-
unitaires laissent une empreinte sur les observables cosmologiques [298, 299, 327].
En l’absence d’études systématiques de ces effets, il y a un risque d’interpréter de
manière erronée le signal cosmologique.

Pour ces raisons, l’approche en SQO offre une possibilité d’interpréter par le biais
d’outils nouveaux la physique en jeu dans l’univers primordial.

Etats comprimés à quatre modes

La dynamique inflationnaire est le plus souvent modélisée par la présence d’un
unique champ scalaire, l’inflaton, évoluant dans un potentiel plat. Cette modélisation
connue sous le nom d’inflation à roulement lent à un champ, prédit non seulement
l’émergence d’une phase inflationnaire mais également l’émergence d’inhomogénéités
cosmologiques dûes aux fluctuations quantiques de l’inflaton. L’extraction de ces in-
homogénéités du vide primordial procède d’un phénomène de création de paires de
quanta en présence d’une trame d’espace-temps dynamique [114, 116, 328]. L’état
quantique décrivant ces perturbations cosmologiques à l’ordre linéaire est connu
comme étant un état comprimé à deux modes [121]. L’étude de cet état a révélé
que, suite à la production de paires de quanta, les corrélations engendrées ne peuvent
être entièrement capturées par une théorie classique [120]. La nature quantique des
corrélations peut même être exhibée par une violation des inégalités de Bell [106,110].
Ainsi, ces observations soulèvent l’espoir d’une possible démonstration expérimentale
de l’origine quantique des inhomogénéités cosmologiques.

Cet espoir doit être tempéré de par les nombreuses obstructions techniques et
conceptuelles limitant la réalisation pratique d’une telle expérience. Parmi ces ob-
structions, ce manuscrit se penche sur la question de la décohérence [191–193].
En présence d’un environnement, un système a tendance à perdre ses propriétés
quantiques après une durée d’interaction d’autant plus courte que le système est
grand. Ce mécanisme explique (partiellement) l’émergence d’un monde classique
aux échelles macroscopiques. En présence de décohérence, l’observation directe des
signatures quantiques de l’inflation est grandement menacée. Ainsi, nous avons
cherché à inclure l’impact de la décohérence sur la dynamique des perturbations
cosmologiques.

Dans le premier article de cette thèse [251], nous nous sommes penchés sur
l’extension du formalisme des états comprimés afin d’inclure, au-delà du mécanisme
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de création de paires de quanta du système, le phénomène de décohérence quantique
par couplage à un environnement. Dans cette étude, nous avons considéré deux
champs scalaires linéairement couplés. Le premier degré de liberté représente le
système et le second l’environnement. La dynamique peut être comprise comme la
création de deux états comprimés à deux modes, un pour le système et un pour
l’environnement, autour desquels des quanta peuvent être échangés entre les deux
secteurs. L’état final est un état comprimé à quatre modes. Son étude révèle qu’il
existe un régime de paramètres où la décohérence est effective sans pour autant que
les observables du systèmes ne soient affectées de manière significative. Ainsi, il
est possible de rester dans la fenêtre observationnelle de l’inflation à roulement lent
à un champ tout en perdant la possibilité d’observer les propriétés quantiques de
l’inflation de par la décohérence.

Cette étude offre une compréhension aux échelles microphysiques du mécanisme
de décohérence durant l’inflation. Pour autant, son implémentation dans des modèles
concrets se révèle difficile en raison de la nécessité de modéliser la dynamique couplée
d’un grand nombre de paramètres. Pour cette raison, dans la suite de cette thèse,
nous avons cherché à modéliser de manière effective le phénomène de décohérence.

Etude comparée des SQO cosmologiques

Par l’étude de la dynamique non-unitaire, les SQO permettent une modélisation
effective du phénomène de décohérence. Pour se faire, il est nécessaire de supposer
un certain nombre d’hypothèses sur la nature de l’environnement et sa manière de
se coupler au système. Dans le deuxième article de cette thèse [244], nous avons
remarqué que certaines des hypothèses régulièrement utilisées en optique quantique
ne s’appliquent pas en cosmologie. En effet, la plupart des expériences en labora-
toire impliquent des environnements proches de bains thermiques (par exemple, la
pièce dans laquelle une table optique est installée). Ces environnements sont con-
stitués d’un grand nombre de degrés de liberté en interaction, dissipent l’information
rapidement et obéissent à une statistique thermique. En cosmologie, ces hypothèses
doivent être réévaluées car la présence d’un fond dynamique génère une perte de sta-
tionnarité. L’environnement varie en fonction du temps, ce qui implique de travailler
hors-équilibre. En examinant les différents régimes d’approximations exploitables
dans la simplification des équations mâıtresses [188], nous avons observé que le
théorème de Lindblad [273] n’est pas nécessairement valide en cosmologie. Il est
donc parfois nécessaire de s’appuyer sur des équations mâıtresses non-Markovienne
pour l’étude de l’évolution des propriétés quantiques de l’inflation.

L’étude de la dynamique non-Markovienne des SQO étant un sujet actif de
recherche contemporaine [279], il est nécessaire d’évaluer l’implémentation de ces
techniques pour la description de la physique de l’univers primordial. Notre ar-
ticle [244] propose une étude comparative visant la caractérisation des SQO cos-
mologiques. L’idée directrice est de travailler avec un modèle suffisamment simple
pour que ce dernier soit exactement soluble, afin de comparer les résultats exacts à
ceux effectifs obtenus par l’usage des équations mâıtresses. En se restreignant à des
interactions linéaires, la dynamique du système reste alors Gaussienne, simplifiant
grandement le traitement analytique du problème.

En premier lieu, cette étude a confirmé que la restriction des équations mâıtresses
à l’approximation de Born, c’est-à-dire l’expansion systématique des générateurs
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dynamiques en puissance de la constante de couplage système-environnement, per-
met de retrouver intégralement les résultats de l’approche perturbative utilisée en
cosmologie. Dans cette limite, les équations mâıtresses sont utiles pour organiser
l’expansion, identifier les termes unitaires et non-unitaires ou encore accéder à cer-
taines propriétés quantiques mais ne présentent pas d’avantage calculatoire. Ce
résultat peut cependant être dépassé par l’implémentation d’une re-sommation non-
perturbative. Cette re-sommation a d’abord été considérée dans le cadre de l’étude
des divergences séculières de l’inflation, cet effet cumulatif de petites corrections
s’amplifiant dans le temps [173,174,261]. Notre modèle intégrable fournit un terrain
de jeu idéal pour clairement établir la portée de la re-sommation. Nous avons montré
que son implémentation repose sur la résolution non-perturbative des équations de
transport effectives obtenues par l’équation mâıtresse. Nous avons également iden-
tifié un ensemble de termes fallacieux s’annulant entre eux dans la limite perturba-
tive mais générant une erreur incontrôlée lorsqu’ils sont inclus dans la re-sommation.
L’origine de ces termes se trouve dans la nature non-Markovienne de la carte dy-
namique ainsi que dans caractère non-diagrammatique de la re-sommation. En effet,
si ces termes s’annulent entre eux ordre par ordre en théorie des perturbations, la
re-sommation partielle tend à briser cette relation. Il est possible d’identifier sans
équivoque ces termes en utilisant la limite perturbative de l’équation mâıtresse, cette
dernière se devant d’être équivalente à la théorie des perturbations usuelle. Une fois
identifiés et retirés, l’équation mâıtresse devient alors capable d’implémenter une
re-sommation non-perturbative physique.

Nous avons enfin caractérisé l’ampleur de la re-sommation par comparaison aux
résultats perturbatifs. Au niveau des observables du système, on observe un écart
à la théorie exacte réduit du fait de la re-sommation. La convergence en fonction
des paramètres du problème est grandement améliorée et l’erreur moins divergente
sur le temps long. Ainsi, le régime de contrôle analytique est étendu grâce à la
re-sommation. Au niveau des propriétés quantiques, le calcul perturbatif devient
rapidement inexact à mesure que l’on sort du régime de faible décohérence alors
même que la re-sommation permet d’évaluer avec précision la pureté du système au
temps long où la perte de cohérence est manifeste. Ainsi, cette étude nous a permis
de caractériser l’implémentation des SQO en cosmologie, en particulier leur capacité
à aller au-delà du régime perturbatif.

Recohérence quantique dans l’univers primordial

Ayant acquis une meilleure compréhension de l’implémentation des SQO en cos-
mologie, nous nous sommes penchés dans la dernière publication de ce manuscrit
à l’utilisation de ces outils dans l’étude de l’évolution des inhomogénéités cos-
mologiques. Dans [154], nous avons considéré un système constitué des perturba-
tions de courbure, ce degré de liberté adiabatique dont les fluctuations quantiques
génèrent les anisotropies de température du Fond Diffus Cosmologiques [50]. Ce
degré de liberté est modélisé par la Théorie Effective des Champs de l’Inflation [2],
une approche englobant la phénoménologie de l’inflation à roulement lent à un
champ. Nous avons ensuite considéré pour environnement un second champ scalaire
pouvant provenir d’une extension de la théorie à haute énergie ou d’une construc-
tion multichamps [155]. Ce degré de liberté entropique est moins contraint que le
degré adiabatique et peut notamment avoir une masse. Le couplage entre les deux
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secteurs est déterminé par les symétries du problème, sous la forme d’une expansion
systématique [314]. Si un modèle précis est considéré, il est possible de relier les
paramètres microphysiques du modèle aux constantes de couplage de cette approche
effective.

La limite linéaire de cette construction est un problème bien connu de l’inflation
multichamps : le mélange linéaire des degrés entropiques et adiabatiques [144–153].
Notre étude [154] vise à comprendre si la présence de degrés entropiques génère à
l’ordre linéaire la décohérence des perturbations adiabatiques. Nous avons montré
que la réponse à cette question dépend de la masse du secteur entropique. Alors
qu’un secteur entropique léger (m < 3H/2, où m est la masse entropique et H le
paramètre de Hubble) génère la décohérence du système, un secteur entropique lourd
m ≥ 3H/2 entrâıne un phénomène de recohérence où la pureté du système atteint
une valeur asymptotique stable et proche de sa valeur initiale au temps long. Ce
phénomène s’explique par la dynamique des champs scalaires dans l’espace de de Sit-
ter. Alors que les champs légers subissent l’extraction de paires dûe à la présence du
fond dynamique, les champs lourds ne sont pas amplifiés. Par conséquent, alors que
le mélange adiabatique-entropique est efficace dans le cas d’un environnement léger,
la présence d’un champ lourd rend l’interaction système-environnement inefficace au
temps long.

Cette observation illustre comment le mécanisme de décohérence quantique pour-
rait ne pas être si commun que les études préliminaires le suggèrent. Afin de com-
prendre la dynamique des propriétés quantiques inflationnaires, il est nécessaire
de modéliser avec soin l’impact du fond dynamique sur les champs quantiques de
l’inflation, par exemple par l’usage des techniques des SQO non-Markoviens.

Conclusion et perspectives

Ces études ouvrent la voie à une exploration étendue de la phénoménologie des
propriétés quantiques de l’inflation. Il s’agit désormais d’étendre ces résultats au
régime non-linéaire. Par ailleurs, l’évaluation de l’impact des effets non-unitaires
sur les observables cosmologiques reste un sujet ouvert.

Au-delà de ces chantiers engagés, la compréhension de l’émergence de la Marko-
vianité dans les SQO cosmologiques reste partielle. A l’avenir, une étude élargie
de ce concept pourrait simplifier l’implémentation des SQO en cosmologie. La
définition de critères de décohérence pourrait également permettre d’établir des
résultats généraux, par exemple l’absence de décohérence dans le vide en espace-
temps plat. Enfin, la compréhension des états quantiques non-Gaussien pourrait-
être améliorée par l’utilisation d’outils de l’optique quantique et de la Théorie de
l’Information Quantique [205].

L’ensemble de ces travaux ouvre la voie vers une inclusion systématique des
effets non-unitaires dans la dynamique inflationnaire, caractérisant ainsi une des
principales différences entre la Théorie Quantique des Champs en espace-temps plat
et courbe. Derrière une compréhension élargie de la physique de l’univers primordial
se cache alors peut-être l’espoir de s’élever vers l’UV par la cosmologie.
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system, 2301.01451.

[242] J.J. Halliwell and T. Yu, Alternative derivation of the Hu-Paz-Zhang master
equation of quantum Brownian motion, Phys. Rev. D 53 (1996) 2012.

[243] D. Boyanovsky, Effective field theory during inflation: Reduced density
matrix and its quantum master equation, Phys. Rev. D92 (2015) 023527.

[244] T. Colas, J. Grain and V. Vennin, Benchmarking the cosmological master
equations, Eur. Phys. J. C 82 (2022) 1085.
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