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Advances in Risk-Aware Offline Reinforcement Learning:

A Study of Data Augmentation, Explainability, and Policy Selection

Giorgio Angelotti

Abstract

In the field of Offline Reinforcement Learning, the goal is to learn a decision policy offline

based on a previously collected batch of experiences and without additional interaction in a data-

efficient and risk-sensitive manner. This dissertation presents several techniques for achieving this

goal, with a focus on model-based methods: paradigms that first infer a behavioral model for

the sequential decision-making problem and subsequently solve it by taking into account model

uncertainty. The presented contributions include a method for augmenting a dataset of samples

through detecting symmetries in the system dynamics, an algorithm for performing offline risk-

sensitive policy selection called Exploitation vs Caution (EvC) resorting to the Bayesian Markov

Decision Process framework, and a paradigm for explainability in multi-agent cooperative systems

using Myerson analysis. Additionally, perspectives are discussed for applying the EvC approach

to obtaining an adaptive interaction control policy in a human-robot scenario. Indeed, taking

proper precautions, we adapted the EvC algorithm for risk-sensitive policy selection to be applied

to the ISAE Firefighter Robot Game, which involves the optimization of adaptive policies to control

the interaction between a firefighter robot and a human operator in a proof-of-concept scenario.

Overall, the contributions of this thesis demonstrate the potential for the presented techniques

to significantly improve the performance of Offline Reinforcement Learning algorithms and to be

applied in a variety of real-world settings, including Human-Robot Interaction.
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Introduction

The integration of robots and artificial intelligence into society has the potential to enhance the ef-

ficiency and effectiveness of various tasks while alleviating the burden of manual labor on humans.

However, the path toward full automation is complex and requires the development of robust and

reliable technologies that can operate safely and ethically in a variety of environments.

The diffusion of technological advancements requires them to comply with the regulations of

the State where they are implemented. The European Commission (2020) released a White Paper

on the subject, listing the guidelines that an Artificial Intelligence (AI) producer or service provider

should follow with the aim of aligning not only with the laws of the single states of the European

Union but also to be ready for what will be, in the future, a common international regulation.

The main concerns raised by the European Commission regarded risk assessment, safety, and liab-

ility of the deployment of AI-based technologies. Any citizen of the European Union should feel

as safe in the presence of an automated agent as in the presence of a fellow human. Moreover,

AI-based systems and hence the automated agents should abide by some quantifiable guarantees

about their performances and the collateral damage in case of accidents, which should be minimal.

Another issue from a legal perspective is the tracing back of responsibilities: in complex situations,

the opaque nature of recent AI-based techniques, which can often be seen as a black box, hampers

the distinction between incidents caused due to a malfunctioning system from the ones due to a

deficit in the design of such a system. The European Commission, among many, advises abiding by

the following guiding principles:

(1) Development of robust, risk-sensitive, and accurate technologies;

(2) Strive to provide clear explanations about the outputs of the used AI-based technologies,

specifically detailing the reasons behind an automated agent’s actions;

(3) Enforcement of human oversight, that can be enacted by (a) granting the right to the human

to validate and deny the decision of the automated agent, (b) allowing the human operator

to take full control of the system and to shut down the machine, (c) imposing in the design

phase some operational constraints to the full autonomy of the automated agent in specific

situations.

Automated systems with human oversight

The state of automation implemented in everyday life is often supervised by a human operator: e.g.

autopilots for aircraft, autonomous vehicles, and robots in assembly lines. This complies with the

principles (3.a,b) of the previous list. Full autonomy is permitted only when the chance of accidents

is minimal. But how can an automated agent determine which action to take? This problem is

called decision-making. An agent can enact simple decisions, e.g. an immediate preference; or

“complex” decisions, e.g. based on some sort of preventive reasoning with the aim of reaching a

1



Introduction

long-term goal. The process that yields the rules to deploy the said complex decisions is called

planning. Let us explore this concept in greater detail.

Planning The book by Ghallab, Nau and Traverso (2004) defines planning as the process of choos-

ing and organizing actions while anticipating their effects to change the state of a system. This ne-

cessitates the definition of what is known as a planning model. The selection of a planning model

for an automated agent is influenced by various factors such as the nature of the environment, the

types of actions, and the observability of the state of the system. Usually, the more realistic the

assumptions of a planning model, the more complex the resulting planning problem will be. In

this thesis, we will specifically focus on two classes of planning models: Markov Decision Process

(MDP) and Partially Observable Markov Decision Process (POMDP).

Stochastic decision processes MDPs and POMDPs are built on the theory of Stochastic Pro-

cesses. In this sense, the possible time evolution of a system is obtained through a transition

function, i.e. a distribution that dictates the probability for the system to transit from one state to

another given a deployed action. While MDPs solvers respect Bellman’s Optimality Principle and

should find a deterministic optimal behavioral policy, a POMDP is undecidable in infinite horizon

settings (Madani, Hanks and Condon, 1999). Nevertheless, approximate solutions (sub-optimal

policies) can be found using modern solvers like PBVI, SARSOP and POMCP (Pineau, Geoff Gor-

don, Thrun et al., 2003; Kurniawati, Hsu and W. S. Lee, 2008; Silver and Veness, 2010). We will

dive deep into the technicalities of (PO)MDP solving in Chapter 1.

Reinforcement Learning Unfortunately, an effective representation of the world in terms of a

stochastic process is not always available. Over the years, the Artificial Intelligence community has

developed various approaches to enable planning in the absence of complete information. The said

methods nowadays all fall clumsily under the big umbrella of Reinforcement Learning (RL) (Sutton

and Andrew G. Barto, 2018), although in many cases the learning is not properly happening by

reinforcement. In traditional online reinforcement learning, the agent learns by interacting with the

environment online and adjusting its actions based on the immediate feedback it receives. How-

ever, this approach has several limitations and challenges, including the need for large amounts of

data and the potential for the agent to get stuck in local maxima or to make suboptimal decisions

that could lead to catastrophic consequences. RL methods methods experienced a significant per-

formance boost when Mnih, Kavukcuoglu et al. (2015) combined Q-Learning (Watkins and Dayan,

1992) with a Deep Neural Network (DNN). This fusion allowed an automated agent to control a

system with continuous state variables, achieving human-level performance. Since that break-

through, excitement within the community has grown, leading to the publication of hundreds of

papers featuring increasingly sophisticated algorithms, such as those by Schulman, Wolski et al.

(2017), Silver, Hubert et al. (2018) and Marc G. Bellemare, Dabney and Rowland (2023). We will

outline RL and Deep RL in Section 1.4.

Although Deep Reinforcement Learning algorithms have achieved tremendous success in achiev-

ing super-human performance in various board games and video games, their application in op-

timizing real-world tasks remains limited to sectors where potential collateral damage is minimal

or, regrettably, deemed negligible, e.g. controlling the trajectory of stratospheric balloons over the

Pacific Ocean (Marc G. Bellemare, Candido et al., 2020), optimizing a video codec for streaming

websites (Mandhane et al., 2022).

Automated agents can optimally or sub-optimally execute the tasks they were programmed to

handle. However, a mission can quickly become unmanageable in the event of unforeseen occur-
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rences or situations that the machine was not hardcoded (or a-priori modeled) to cope with. What

automated agents are lacking is the generalization capability that is necessary for automated agents

to reach human-level intelligence (Geffner, 2018). Furthermore, it should be noted that modern

Deep RL techniques addressing problems with multidimensional states often benefit from struc-

tured representations, such as spatial distances of pixels in images. In contrast, real-life robotic

problems involve observations characterized by multidimensional and multimodal measurements

from various sensors. Efforts have been made to develop general agents capable of performing tasks

like playing video games and text generation simultaneously (Reed et al., 2022). While the results

are encouraging, they are not yet dependable or prepared for real-life deployment. Consequently,

human oversight remains a recommended safeguard.

Offline Reinforcement Learning

Offline Reinforcement Learning is a variant of traditional RL that allows agents to learn from

previously collected data, rather than requiring online interaction with the environment (Levine

et al., 2020). This approach has several advantages, including the possibility to learn from rare

or potentially dangerous situations that may be difficult to simulate or undesirable to reach in the

real world. Nevertheless, Offline Reinforcement Learning is affected by a plethora of nontrivial

limitations. For instance, obtaining a high-performing control policy necessitates a diverse and

extensive initial dataset, as further exploration is not permitted. This condition is often unmet

in real-world applications involving human interaction since collecting a large dataset can be not

only costly but also hazardous and time-consuming. Moreover, a policy derived from an offline

reinforcement learning method can be not only suboptimal but also risky if the initial dataset of

trajectories does not adequately represent the system’s dynamics. Bearing this in mind, it is coveted

to take precautions: the idea is to develop methods that optimize risk-sensitive objectives, ensuring

safe and reliable results. In this thesis, we discuss and propose advances in Offline Reinforcement

Learning starting from a small batch of experiences. Then, our methods are confronted with a

Human-Robot Interaction (HRI) use case. The aim is to develop interaction control policies that

enhance the performance of human-robot teams.

Human-robot systems

In recent years, the field of human-robot systems has seen a growing interest in adaptive human-

robot interaction. The primary motivation behind this shift is the increasing acknowledgment that

traditional, pre-programmed interaction strategies are insufficient to meet the diverse and dynamic

needs of human users in real-world settings.

A key driver of this shift is the increasing availability of sophisticated sensors and actuators,

enabling robots to perceive and respond to their environment in real time. This has led to the

development of new control architectures, such as behavior-based and hybrid systems, which allow

robots to transition between various interaction strategies based on the current context (Schulz,

Kratzer and Toussaint, 2018).

Another significant factor is the expanding body of research on human cognition and behavior,

providing insights into the elements that influence human-robot interaction and guiding the design

of robots to better align with human expectations and preferences (Nomura et al., 2008). An

example of this is the use of shared autonomy (Schilling et al., 2019), which is defined as “a

concept that describes how all the agents can remain autonomous, following overall their intentions

and goals, but at the same time deal with the coordination of activities and resolution of possible
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conflicts”.

In addition, there has been a growing interest in employing ML and AI methods to enable robots

to learn and adapt to their human users over time. This includes techniques such as RL (Akkaladevi

et al., 2018), inverse RL (M. S. Lee, Admoni and Simmons, 2021), probabilistic models (Jain and

Argall, 2019) and stochastic sequential decision processes (Javdani, Srinivasa and Bagnell, 2015),

which allow robots to learn from human feedback and optimize their behavior based on user

preferences.

One type of shared autonomy is that of Mixed-initiative Human-Robot Interaction. Mixed-

initiative control systems for human-robot interaction (Hearst et al., 1999) can be designed to

adhere to the principle of limiting automation in specific situations, allowing the transfer of control

to a human operator. Although humans can serve as fail-safe agents, they are not immune to

making errors. To address this concern, mixed-initiative human-robot systems can be developed,

in which both the human operator and the automated agent are treated as equals and can be

assigned full control of a mission or subtasks. In this context, the human and machine form a

multi-agent system, with their different characteristics being leveraged to achieve a shared goal.

The roles of each operator can be opportunistically assigned based on the situation, rather than

being predetermined (Caroline P. C. Chanel et al., 2020).

Collaboration with humans is crucial because they possess strong generalization and impro-

visation skills and can rapidly adapt to unfamiliar situations by drawing analogies with past exper-

iences. Nonetheless, the solutions they find might not be optimal, and the human’s current mental

and physical state can significantly impact their decision-making capacity (Dehais et al., 2020).

To design an optimal control system for mixed-initiative human-robot interaction, it is essen-

tial to have a model of the human-robot system which itself includes a model of human behavior.

Nevertheless, a general mathematical model that can accurately predict human behavior does

not currently exist, as humans are biologically diverse and can exhibit varying behavior in differ-

ent contexts based on factors such as attitude, background, education, age, gender, and current

physical and mental condition. One approach to modeling human behavior involves inferring

the probabilities of specific actions in a given context using a data-driven approach, such as fit-

ting a stochastic process to discrete-time data (Pentland and A. Liu, 1999). For these reasons,

POMDPs have been utilized as a framework to model human-robot systems with adaptive interac-

tion (Nikolaidis, Ramakrishnan et al., 2015; Nikolaidis, Zhu et al., 2017). However, these models

may not be fully generalizable to all humans.

When designing mixed-initiative systems, it is important to consider both human and machine

capabilities and ensure that the roles of each agent are optimally distributed based on the situ-

ation. For instance, tasks requiring improvisation or generalization might be better suited for

human operators, while tasks necessitating precise and repeatable actions may be more appropri-

ate for automation.

Challenges

The theme dealt with in this thesis is far from trivial since the performance of an Offline Rein-

forcement Learning algorithm is significantly affected by the “quality” of the starting data set. This

concept is rather vague, as the optimal amount of data required for obtaining a reliable control

policy depends not only on the specific task but also on the objective of the optimization problem.

For example, should we optimize the expected cumulative reward, for its worst-case scenario, or
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some other distributional measure? Moreover, when transferring some of the proposed methods

to the context of HRI and human behavior, we grappled with the difficulties of modeling a highly

complex system. Eventually, to deliver a final robust and interpretable mixed-initiative interaction

controller that is also deployable in a real-world scenario, we had to face several challenges and

make design decisions of differing natures.

Here we summarize the main hardships encountered and the research questions that emerged

in this thesis work.

Offline Reinforcement Learning

1. Offline statistical inference (offline learning):

(a) do we have enough data to learn a “good” model?

(b) is it possible to leverage some inherent structure in the dynamics to enable more data-

efficient learning?

2. Robust and risk-aware planning under uncertainty:

(a) how to quantify and take into account model uncertainty, i.e. the fact that the learned

model could not be representative of the real-world dynamics or sufficiently general?

(b) how to assess the risk of deploying a “bad” policy?

(c) how to obtain a robust policy?

(d) how to select the less risky or the most performing policy between many obtained with

different approaches?

Real-world use case involving the application to Human-Robot Interaction

1. Representation:

(a) is the POMDP the most suitable mathematical framework to model a Mixed-Initiative

Control System for Human-Robot Interaction?

(b) what are the hidden states? Are they finite? Countable? Can they be linked to the

human’s mental state or are they just a mathematical artifice?

(c) can the POMDP representation (number of hidden states) be automatically learned from

data, or assumptions must be made and an expert should set their number (or shape)

depending on the context and his/her intuition?

(d) can we learn and solve the most general representation of a POMDP, or dimensionality

reduction should be executed to complete the planning task?

2. Offline statistical inference (offline learning):

(a) is it possible to infer the transition and observation probabilities of any POMDP from

data, or is this limited to a specific subset of POMDPs (e.g. finite states, countable

POMDPs)?

(b) what are the algorithms or approaches to learn a POMDP? Are they stable and reliable?

(c) since any human being is unique, can the model we are learning be general or is it only

specific to the individual whose records were included in the data set?
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Explainability of Multi-Agent Systems

1. Explaining why the model took a specific action, hence lightening black-box opacity of AI

systems;

2. Assessing the individual contribution to the team performance in cooperative Multi-Agent

System (MAS).

Each of the listed topics and subtopics presents a research challenge deserving attention from

several communities, as most of these themes lie at the frontier of science and are tremendously

multidisciplinary, intersecting fields such as mathematics, computer science, statistics, engineering,

physiology, and neuroscience.

Contributions

The principal finding of this thesis work is the development of machine learning tools to enhance

real-world deployable Offline Reinforcement Learning methods, with particular attention to HRI

use cases, or more in general, to human-automated agents interaction use cases.

In addition to developing Offline Reinforcement Learning methods, we aim to transfer this

knowledge to a real-world application case by obtaining an adaptive controller for a mixed-initiative

human-robot system. While adhering to a hand-designed model, we conceive an ad-hoc schema to

map the live multidimensional observations of the state of the system to those of a small discrete

(PO)MDP. Subsequently, we propose a detailed Bayesian method to incorporate model uncertainty,

allowing us to learn the transition function from the data. Ultimately, we solve the model in a risk-

sensitive fashion, obtaining a robust policy in line with point (1) of the European Commission’s

previously mentioned guidelines.

In detail, the contributions of this thesis are:

• Regarding Offline Reinforcement Learning in general:

1. To address the research questions “do we have enough data to learn a good model?” and

“is it possible to leverage some inherent structure in the dynamics to enable more data-

efficient learning?”, an approach is proposed to detect and exploit symmetries in the

dynamics of a Markov Decision Process. This method relies on expert knowledge and

statistical estimates to augment the batch used to offline learn a Markov Decision Pro-

cess with symmetrical samples. As a result, the derived policy demonstrates improved

performance, and the learning process becomes more data-efficient.

2. To address the research questions “how to quantify and to take into account model

uncertainty?”, “how to assess the risk of deploying a bad policy?” “how to obtain a

robust policy?”, “how to select the less risky or the most performing policy between

many obtained with different approaches?”, a method is proposed to evaluate and select

policies (and hyperparameters) offline for an offline learned Markov Decision Process.

Risk-sensitive and robust policies obtained offline (using a fixed data set) are the ones

that better reduce the chance of aftermaths at the time of real-world execution.

• As mentioned in the Introduction, we believe that for both performance and legal concerns

(European Commission, 2020), autonomous agents are more likely to be widely adopted

within the framework of Mixed-Initiative HRI. Consequently, we transfer our contribution on
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offline policy selection to a real-world Human-Robot Interaction control problem use case,

represented as a POMDP. In particular, we tackled the problem of the Firefighter Robot

(Drougard et al., 2017). During this work, we encountered the challenges listed in para-

graph Real-world use case involving the application to Human-Robot Interaction. In

this particular context, we had to account for the unpredictable actions of a human agent as

a contributing factor to the stochastic nature of the environment;

• To address the research issues about Explainability of Multi-Agent Systems, a paradigm

is proposed for evaluating both agents’ policies and individual attributes in a cooperative

Multi-Agent System, assessing their contributions to a common goal.

Overview of the manuscript

The corpus of the dissertation is divided into two parts.

Part I focuses on the state-of-the-art. Due to the highly interdisciplinary nature of the sub-

jects addressed, the state-of-the-art will be discussed across multiple chapters for better narrative

flow. In Chapter 1 we introduce the mathematical framework of MDPs and POMDPs, also show-

ing how to solve a sequential decision-making problem expressed in this form. At the end of the

chapter, we dedicate three sections to learning a model from experience, to Reinforcement Learn-

ing, and to explainability for (multi-)agent systems. Chapter 2 is dedicated to offline learning

for planning and obtaining robust behavioral policies in the presence of model uncertainty. This

chapter explores state-of-the-art Offline Reinforcement Learning methods, including model-based,

model-free, and sequence model versions. It addresses the challenges of tuning the algorithms’

hyperparameters for offline MDP solving, offline policy evaluation, and selection. Additionally, the

chapter discusses strategies for modeling model uncertainty and achieving risk-sensitive solutions.

Some of the presented methods can also be applied to POMDPs once the challenges of learning or

designing a representation for a hidden state are resolved. Human-Robot Interaction and Mixed-

Initiative Systems are introduced in Chapter 3. This chapter also presents the HRI use case and

summarizes the work completed thus far.

Part II focuses on the contributions proposed by this work. In Chapter 4 we outline a method

to detect alleged symmetries in an MDP in a total offline setting. A Bayesian method to encompass

model uncertainty when an MDP is learned from data is proposed in Chapter 5, subsequently, the

said formalism is leveraged to select a risk-sensitive policy between a set of candidate strategies.

In Chapter 6 some of the tools established in the previous chapters are readapted to first obtain

an interpretable model for the human-robot mixed interaction and then to get a robust behavioral

adaptive control system to drive the said interaction. In Chapter 7 we advocate a method to

compute not only the contribution of policies in multi-agent systems but also the contribution of

agents’ features to the final score. Finally, the Conclusion provides a summary of the entire work,

discussing its limitations and future perspectives.
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Chapter 1

Sequential decision-making under

uncertainty

“The time to repair the roof is when the sun is shining" once said John F. Kennedy. The former

president of the United States was referring to the necessity of taking decisions beforehand in the

expectation that something will occur. The act of preparing an intelligent way of behaving to reach

a goal is called planning. In layman’s terms, planning is an approach for addressing sequential

decision-making under uncertainty problems. But finding the right sequence of actions to fulfill a

requirement is easier said than done. To obtain a quantitative answer, planning must be performed

quantitatively and hence it must be grounded in a logical-mathematical formalism.

Optimal control theory is a form of mathematical optimization that solves the problem of find-

ing the control (a function or a variable) for a dynamical system, optimizing an objective functional

over a period of time. Boltyanskij, Gamkrelidze and Pontryagin (1956), Bellman (1957), Kalman

(1963) and Smallwood and Sondik (1973) identified a set of necessary and sufficient conditions

for the existence of a solution, i.e. an optimal control, and proposed a dynamic programming

method to find the solution for sequential decision-making in problems with stochastic dynamics

in discrete time. The advantages of this family of approaches include the mathematical proof of the

existence of a solution and the plasticity of a model to be learned from data, once a representation

has been assumed. The disadvantage, however, lies in the non-trivial burden of expressing the

time evolution of the environment as a dynamical system or as a discrete-time stochastic process.

Once a system is defined, the solution is specific to that configuration and may not generalize to

even conceptually similar environments: small changes in the system’s definition could render the

discovered solution ineffective.

A general framework that allows to represent sequential decision-making under uncertainty

problems with stochastic dynamics in discrete time is a Markov Decision Process (MDP). Markov

Decision Processes, together with Partially Observable Markov Decision Processes, are at the found-

ations of this thesis. Indeed, this work focuses on learning the “right” model expressed in terms of

a (PO)MDP starting from a batch of experiences previously collected by an agent.

Previously collected trajectories or experiences of past events form a potentially multidimen-

sional time series: a collection of sequences of values that vary over time. Any multidimensional

time series can be considered the realization of a discrete-time stochastic process.

Definition 1 (Discrete-time stochastic process). A discrete-time stochastic process S is a collection of

random variables with value in S: S = {St ∈ S : t ∈ N} and in this case N serve as a discrete-time
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index. Generally, the probability of a realization of a specific sample is conditional to the realizations

of the random variables relative to previous time indices: ∀t ∈ N, ∀(s0, . . . , st+1) ∈ S
t+2,

Pr (St+1 = st+1|S0 = s0, S1 = s1, . . . , St = st) . (1.1)

Definition 2 (Markov Chain). A discrete-time Markov Chain (MC) is a discrete-time stochastic process

S with the Markov property, meaning that the probability of the next realization depends only on the

present realization and not on the previous ones: ∀t ∈ N, ∀(s0, . . . , st+1) ∈ S
t+2,

Pr (St+1 = st+1|S0 = s0, S1 = s1, . . . , St = st) = Pr (St+1 = st+1|St = st) . (1.2)

Definition 3 (Stationary MC). If Pr (St+1 = x|St = y) = Pr (St = x|St−1 = y) ∀t ∈ N
∗, ∀(x, y) ∈

S2, namely if the transition probability is time independent, the MC is said stationary.

Given their suitability for learning dynamics from this type of data, this dissertation focuses on

optimal control frameworks that manage the control of a discrete-time stochastic process adhering

to the Markov property: Markov Decision Processes and their partially observable counterparts,

Partially Observable Markov Decision Processes.

1.1 An introduction to MDPs

If the stochastic dynamics of the system can sequentially change according to the actions performed

by an agent at every time step, a stochastic process becomes a stochastic decision process. The

stochastic evolution of a sequential decision-making process under uncertainty can be formalized

using the mathematical framework of MDPs (Puterman, 2005).

Definition 4 (Markov Decision Process). An MDP is formally defined as a tuple M = 〈S,A, T,R, γ〉

where γ ∈ [0, 1) is called the discount factor; S is the domain of a discrete time stochastic process; A

is a set of possible actions that an agent can perform at every time step t ∈ N; T : S × A× S → [0, 1]

whose values are equal to Pr (St+1 = st+1|At = at, St = st) and represent the probability of transiting

from the state st ∈ S to st+1 ∈ S after taking action at ∈ A; R : S × A → R is called the reward

function and rt = R (st, at) is the reward that the agent gains after performing action at ∈ A in state

st ∈ S. A realization of an MDP can be recorded as a trajectory h = {(st, at, st+1, rt) , t ≥ 0} which is

a succession of single time step state transitions, actions, and rewards.

An MDP can be seen as an MC whose evolution is affected by the decisions of an agent at every

time step (Figure 1.1).

Policies In a general manner, a policy is a function that prescribes actions to execute according

to the current state of information. A policy can map states to actions, but it can also be history-

dependent or randomized.

Definition 5. A stochastic stationary policy π : S×A → [0, 1] is a function that assigns the probability

to take action a when in state s.

Definition 6. A deterministic stationary policy πdet : S → A is a function that to every state s ∈ S

assigns an action a ∈ A to be taken.

Definition 7 (Value Function). Let

V π
M (s)

def
= EAt∼π

St∼T

[
∞∑

t=0

γtR
(
St, At

)

∣
∣
∣
∣
∣
S0 = s

]

. (1.3)
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s0 s1 s2s0 s1 s2

r0 r1 r2

a0 a1 a2

. . .

Figure 1.1: The first three time steps of an episode generated by an MDP. We see that st and at
have an impact on rt through a green arrow (rt = R(st, at)) and also an impact on st+1 through a
black arrow (St+1 ∼ Pr(·|St = st, At = at) = T (st, at, ·)).

V π
M is called the value function and assigns to every state s ∈ S the expected value over every possible

trajectory h that starts at s0 = s of the cumulative reward geometrically weighted by the discount

factor γ where the system dynamics has been dictated by the MC defined by the MDP transition function

T and the policy π.

In layman’s terms, V π
M provides the average expected return when following policy π from state

s. It represents the cumulative reward we can anticipate by deploying the policy in the given state.

It is worth noting that γ is the discount factor, which scales how much we value immediate

rewards over distant ones.

We observe that the sum in (1.3) runs up to ∞. If γ = 1 this sum can diverge, but γ < 1

guarantees convergence. However, it is important to emphasize that a planning problem does not

always take place in an infinite horizon. Indeed, the sum could also go up to any finite horizon

time H ∈ N.

Definition 8 (Q-value function). Let Qπ
M : S ×A → R be a function that maps every couple of states

and actions of an MDP to the average one-step reward that the agent gains by taking action a in state

s and then following from that moment on deploying policy π:

Qπ
M (s, a) = R(s, a) + γ

∑

s′

T (s, a, s′)V π
M (s′). (1.4)

In general, the goal of the practitioner is to find the optimal solution to the MDP M : a policy

π∗ which maximizes V π
M for the initial state s0, or even better, ∀s. It follows from Eq. (1.4)

that for a stochastic policy V π
M (s) =

∑

a π(a|s)Q
π
M (s, a) while for a deterministic policy V π

M (s) =

Qπ
M (s, π(s)). The optimal value function can be obtained from the optimal Q value function:

V ∗
M (s) = maxa Q

∗
M (s, a). In the next section we explore various methods to solve a discrete MDP.

1.1.1 Solving a discrete MDP

The optimality principle from Bellman (1957) states that if every policy’s quality can be measured

by its policy’s expected linear additive utility, there exists a policy that is optimal at every time step.

Moreover, following Def. 7, one can prove that a deterministic stationary policy is a solution to a

discounted infinite horizon MDP (Mausam and Kolobov, 2012).

Several algorithms solve an MDP and they are all based on Bellman’s Equation (Bellman, 1957).
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Starting from Eq. (1.3) one can rewrite the Value function as follows (Puterman, 2005):

V π
M (s) =

∑

a

π(a|s)

(

R(s, a) + γ
∑

s′

T (s, a, s′)EAt∼π
St∼T

[
∞∑

t=0

γtR (St, At)

∣
∣
∣
∣
∣
S0 = s′

])

, (1.5)

V π
M (s) =

∑

a

π(a|s)

(

R(s, a) + γ
∑

s′

T (s, a, s′)V π
M (s′)

)

. (1.6)

Or, in the case of a deterministic policy:

V π
M (s) = R(s, π(s)) + γ

∑

s′

T (s, π(s), s′)V π
M (s′). (1.7)

Bellman’s Equation Eq. (1.7) can be written in linear form with a linear operator Bπ
M which maps

V π
M to R(s, π(s)) + γ

∑

s′ T (s, π(s), s
′)V π

M (s′):

V π
M = Bπ

MV π
M . (1.8)

If a matrix-based representation of the model is feasible, i.e. S and A are finite and not too big,

then the value function V π
M can be directly computed:

V π
M = (I− γTπ)

−1
Rπ, (1.9)

with I being the identity operator, the −1 after the parenthesis intended to be an inversion operator,

Tπ
ss′ = T

(
s, π(s), s′

)
and Rπ

s = R
(
s, π(s)

)
. It is worth noting that the matrix (I− γTπ) is always

invertible for any γ < 1 (ibid.).

With this in mind, the optimal deterministic policy can be found as

π∗ ∈ argmaxπ
[

µT
0 (I− γTπ)

−1
Rπ
]

where µ0 is the distribution of possible initial states s0.

However, such a straightforward computation is not always accomplishable since the operator

inversion could require too much effort (or computational time) for too big S or A. Neverthe-

less, in situations where operator inversion is computationally infeasible within a reasonable time

frame, yet a discrete representation is still manageable, the problem can be approached differently.

Given that BπM serves as a contraction in the function space f : S → R, one can start with any

function f and apply BMπ iteratively. Eventually, f will converge to V π
M . Computing iteratively

the value of a specific policy is called Policy Evaluation.

The two most famous algorithms to obtain the optimal value function and the optimal policy by

iteration are, respectively, Value Iteration and Policy Iteration. These methods leverage Dynamic

Programming: starting with an initial arbitrary value assigned to the function to estimate, some

mathematical operations are performed accordingly to improve the estimate. The new estimate is

used as input for the next iteration to further improve the accuracy until convergence (within a

given threshold δ).

In Value Iteration (Algorithm 1) V ∗
M,i which is initialized with some arbitrary value at iteration

i = 0. Then V ∗
M,i+1(s) = maxa

[
R(s, a) + γ

∑

s′ T (s, a, s
′)V ∗

M,i(s
′)
]
. The algorithm stops when

14



1.1 An introduction to MDPs

|V ∗
M,i+1 − V ∗

M,i| < δ 1−γ
γ

, yielding the δ-optimal policy (ibid.)

π∗
i+1(s) ∈ argmaxπ

[

R(s, a) + γ
∑

s′

T (s, a, s′)V ∗
M,i+1(s

′)

]

.

Algorithm 1: Pseudocode for Value Iteration
Input: MDP M , threshold δ ∈ R

+

Output: δ-optimal deterministic policy π∗
i

1 Initialization: V ∗
M,0(s) arbitrarily initialized ∀s ∈ S

2 i← 0

3 V ∗
M,i+1(s)← maxa

[
R(s, a) + γ

∑

s′ T (s, a, s
′)V ∗

M,i(s
′)
]

4 while |V ∗
M,i+1 − V ∗

M,i| ≥ δ 1−γ
γ

do

5 i← i+ 1
6 for s ∈ S do

7 V ∗
M,i+1(s)← maxa

[
R(s, a) + γ

∑

s′ T (s, a, s
′)V ∗

M,i(s
′)
]

8 for s ∈ S do

9 π∗(s)← argmaxa
[
R(s, a) + γ

∑

s′ T (s, a, s
′)V ∗

M,i(s
′)
]

10 return π∗

In Policy Iteration (Algorithm 2) a deterministic policy π∗
i and V ∗

M,i are arbitrarily initiated at it-

eration i = 0. Subsequently, Policy Evaluation and Policy Improvement are performed in sequence

until it is no longer possible to improve the value function with a different strategy. Policy Evalu-

ation is effectuated by iterating V ∗
M,i+1(s) = R(s, π∗

i (s))+γ
∑

s′ T (s, π
∗
i (s), s

′)V ∗
M,i(s

′) until conver-

gence. Policy Improvement just assigns to π∗
i+1(s) = argmaxa

[
R(s, a) + γ

∑

s′ T (s, a, s
′)V ∗

M,i(s
′)
]
.

The algorithm stops when ∀s ∈ S, π∗
i+1(s) = π∗

i (s). Hence, it yields the δ-optimal policy π∗
i+1.

Algorithm 2: Pseudocode for Policy Iteration
Input: MDP M , threshold δ ∈ R

+

Output: δ-optimal deterministic policy π∗
i

1 Initialization: V ∗
M,0(s) arbitrarily initialized ∀s ∈ S

2 π∗
0(s), π

∗
1(s) arbitrarily initialized ∀s ∈ S with π∗

0 6= π∗
1

3 i← 0
4 while π∗

i+1 6= π∗
i do

5 i← i+ 1
6 begin . Policy Evaluation

7

8 repeat
9 ∆← 0

10 for s ∈ S do
11 V ∗

M,i(s)← R(s, π∗
i (s)) + γ

∑

s′ T (s, π
∗
i (s), s

′)V ∗
M,i−1(s

′)

12 ∆← max(∆, |V ∗
M,i−1(s)− V ∗

M,i(s)|)

13 until
14 ∆ < δ

15 begin . Policy Improvement

16

17 for s ∈ S do

18 π∗
i+1(s)← argmaxa

[
R(s, a) + γ

∑

s′ T (s, a, s
′)V ∗

M,i(s
′)
]

19 return π∗
i+1

15



1.1 An introduction to MDPs

Both approaches suffer from the curse of dimensionality, as their scalability can be as poor as the

cube of the size of the state space. Indeed, when a discrete representation of the value function or

the policy is not realizable, e.g. when the states or the actions are numerous or have the cardinality

of the continuum, other methods should be devised.

Monte Carlo tree search One way to tackle problems with finite big state and action spaces

is resorting to a heuristic that guides the exploration in the search space. Possible outcomes of

actions in the environment are computed and can be depicted as a tree that grows exponentially

in search of a good sequence of moves. The work in (Keller and Helmert, 2013) classified several

trial-based heuristic tree search schemes for finite horizon MDPs. Monte Carlo tree search (MCTS)

is one of those (Swiechowski et al., 2022). Specifically, MCTS performs the search in the tree using

random sampling. Due to the exponential growth of the search tree, an additional heuristic can

be set in place to select the next child nodes. The Upper Confidence Bound 1 applied to trees

(UCT) algorithm (Kocsis and Szepesvári, 2006) implements the Upper Confidence Bound method

from the bandit literature to regulate the problem of exploration vs exploitation, telling when it is

statistically profitable to expand the search tree in a direction rather than exploring new branches.

Notice that this method is not guaranteed to provide the optimal policy. Sometimes the algorithm

will blindly prune good leads only because the ripple effects of the strategy will be felt too many

time steps forward into a future it did not explore.

Approximate Dynamic Programming When the state space has the cardinality of the continuum

and a state can be representable by a finite set of features that can also take real values, a tabular

or graph representation of the value function would be infeasible. Solving the problem with the

previous methods after discretization of the space would only lead to approximate solutions (Whitt,

1978). But how fine should the discretization be? This depends on the dynamical system that dic-

tates the evolution of the environment. The more sensitive the system is to control, the higher the

resolution required. Munos and Moore (2002) developed an information theory-based approach

to find an optimal discretization paradigm; however, it is inapplicable to states with a large number

of features. Indeed, any discretization approach suffers from the curse of dimensionality.

A viable path to address this problem is to approximate the value function and/or the policy

with linear function approximators (Bertsekas and J. N. Tsitsiklis, 1995; Munos, 2003). Linear

function approximators express the value function and the policy in terms of a collection of para-

meters {w} called weights that, when applied to a feature-represented state, would give an approx-

imation to the output of the original function.

For example, let S = R
n and hence s = (φ1, . . . , φn) where every φi ∈ R and φ stands for a

feature, e.g. φ1 could be the longitudinal position of a ball, φ2 its longitudinal velocity and so on.

Then, the following approximation can be made:

V ∗
M (s) ≈ 〈w∗|s〉 =

n∑

i=1

w∗
i φi. (1.10)

Finding the optimal approximate value functions amounts to computing the n optimal weights

(w∗
i )

n
i=1. Since n � ∞, a control with this method can be obtained for non-finite state MDPs

at the expense of quality. Unfortunately, using linear approximators, the obtained control and

the estimate of the value function will likely be so imprecise that a real implementation of these

algorithms for the control of real-world problems can be useful only in very specific instances.

As we will see in Section 1.4.1, the full power of function approximation is leveraged by Deep
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1.2 An introduction to POMDPs

Reinforcement Learning that exploits Deep Neural Network (DNN) which are universal function

approximators (Cybenko, 1989; Hornik, Stinchcombe and H. White, 1989; Hornik, 1991).

In real-world situations, an agent may not always be able to perfectly observe the current

state of the MDP. Sometimes it can only perform partial measurements, e.g. when the agent is a

robot with imperfect sensors. There is a need to cope with these kinds of situations that are not

representable using an MDP. The extension of the framework to deal with partial observability is

discussed in the next section.

1.2 An introduction to POMDPs

Definition 9 (Hidden Markov Model). Let S be a discrete-time MC with values in S and O be a

discrete-time stochastic process with values in Ω. The pair (S,O) is a Hidden Markov Model (HMM) if

S is not directly observable and

Pr
(

Ot = ot

∣
∣
∣{Ss = ss}

t
s=0, {Os = os}

t−1
s=1

)

= Pr (Ot = ot|St = st) . (1.11)

A POMDP is a sequential decision-making process to control an HMM (Figure 1.2).

Definition 10 (Partially Observable Markov Decision Process). A POMDP is defined as a 8 − tuple

M = 〈S,A, T, R,Ω,O, b0, γ〉 where S, A, T , R and γ would define an MDP whose states s ∈ S are

not fully observable by the agent. Indeed, the latter at each discrete time step receives an observation

Ot ∈ Ω, that is the space of possible observations; O : A × S × Ω → [0, 1] is an observation function

that represents the probability of observing Ot = ot when the state of the system is St = st and

the agent had taken the action At−1 = at−1; b0 is the initial belief and denotes the prior the agent

possesses about the initial state. Formally, P(S) is the space of probability functions defined over S

and bt ∈ P(S).

s0 s1 s2

o1 o2

r0 r1 r2

a0 a1 a2

. . .

Figure 1.2: The first three time steps of an episode generated by a POMDP. We see that st and at
have an impact on rt through a green arrow (rt = R(st, at)) and also an impact on st+1 through
a black arrow (St+1 ∼ Pr(·|St = st, At = at) = T (st, at, ·)). Moreover, aside from t = 0, at
and st+1 also have an impact on the observation ot through a blue arrow that corresponds to
Ot ∼ Pr(.|St = st, At = at) = O(at−1, st, .).

Since the state is not fully observable the agent may leverage the whole history of observations

and actions performed to develop, in a Bayesian sense, a belief distribution over possible states at

every time step. The belief can be expressed in terms of the original transition and observation
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1.2 An introduction to POMDPs

functions. When the agent performs the action at and receives an observation ot, the belief bt gets

updated according to the following rule:

bt+1 (st+1) = Z−1
t+1O (at, st+1, ot+1)

∑

st∈S

T (st, at, st+1) bt (st) (1.12)

where Zt+1 is a factor that ensures normalization. It is worth noting that the belief is a complete

information state, in the sense that all information needed to decide is contained in b.

1.2.1 Solving a discrete POMDP

The belief state properties, particularly the belief update rule in Eq. (1.12), define a Markov Pro-

cess (Drougard, 2015). This allows us to transform the POMDP into a belief MDP and obtain a

solution using the same procedures as in the MDP case. In other words, the solution to a POMDP

involves finding the policy that maximizes the value function by exploiting available information

and updating its belief accordingly. The solution can take the form of a deterministic functional

over the space of possible beliefs: π : P(S)→ A.

Notice that even with finite states, finite observations, and finite actions POMDP, the belief

space P(S) is not finite, therefore finding the optimal policy is not a trivial task. Research indicate

that finding an optimal policy for a finite-horizon POMDP is PSPACE-complete (Papadimitriou and

J. N. Tsitsiklis, 1987), and for an infinite horizon, it is undecidable (Madani, Hanks and Condon,

1999).

The value function(al) of a finite horizon POMDP can be represented by a Piece-Wise Linear

and Convex (PWLC) function as:

V π
M [b] = max

α∈Γ
〈α|b〉 = max

α∈Γ

∑

s∈S

α(s)b(s) (1.13)

with Γ being the space of α-vectors. Not only Eq. (1.8) can be easily rewritten for a POMDP, but

most importantly the work in Smallwood and Sondik (1973) showed that any successive applica-

tion of the optimal Bellman operator on the value function keeps it PWLC. The exploitation of this

property lays the foundation of many POMDP solvers.

Value Iteration for POMDPs can be untimely due to the cardinality of the belief space which

needs to be finely discretized. Notwithstanding, solving a finite horizon POMDP is PSPACE-hard

(Papadimitriou and J. N. Tsitsiklis, 1987), and solving an infinite horizon POMDP is undecidable

(Madani, Hanks and Condon, 1999).

Cassandra (1998) devised strategies to prune the search of α-vectors, but these algorithmic

improvements are only effective on small problems. Pineau, Geoff Gordon, Thrun et al. (2003)

developed Point-Based Value Iteration to find an approximate solution: they perform Value Itera-

tion only on a fixed small subset of representative beliefs, i.e. the said reachable belief points by

playing the POMDP dynamics. Another approximate point-based method is Heuristic Search Value

Iteration (HSVI). It solves a POMDP by approximating both a lower and an upper bound of the

optimal value function by leveraging the fact that the error of the approximation of V ∗ is smaller

for later beliefs due to the discount factor γ. The improvement of both bounds is the heuristic that

drives the search for successive belief points. Kurniawati, Hsu and W. S. Lee (2008) developed the

algorithm SARSOP that leverages tighter bounds than HSVI and then drives the search into the

areas with the most promising (reachable) belief points. Recent POMDP algorithms like POMCP

(Silver and Veness, 2010) and DESPOT (Somani et al., 2013) take inspiration from MCTS to yield
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1.3 Learning a model from experience

approximate solutions to bigger problems.

1.3 Learning a model from experience

So far we outlined MDPs and POMDPs whose model is known. This can be the case in contexts

whose rules are very logical and defined by humans: e.g. board and video games. What if we have

access to a trajectory h but we have no information about the dynamics that drove the stochastic

process that generated h?

The “easiest” case is a scenario in which the formal representation of a finite-state MDP is

known, but not the model dynamics, i.e. the transition function T . The problem of inferring the

dynamics from data is called model learning. If the data set is fixed, later on, we will talk of

offline model learning and this will be the topic of the next chapter. If further interaction with the

environment is allowed during the learning phase we call it online model learning.

Being more formal, let D = {(si, ai, ri, si+1) : 0 ≤ i ≤ N} be a collection of transitions

(si, ai, ri, si+1), we learn a model from D by fitting the most likely transition function. This

amounts to assigning to the probability of every transition its frequency in D.

Definition 11 (Trivial model).

T̂ (s, a, s′) =

∑N
i=0 δsi,sδai,aδsi+1,s′

∑N
j=0 δsj ,sδaj ,a

. (1.14)

From now on and throughout the dissertation we will refer to T̂ as the trivial model.

Learning a POMDP is a completely different task from learning an MDP due to the partial

observability of the hidden states. Indeed, the observed data set will be composed as follows:

D = {(oi, ai, ri, oi+1) : 0 ≤ i ≤ N}. While in the case of an MDP the transitions between states

St are Markovian, and hence it is possible to just estimate the frequencies of realizations of single

time step transitions to approximate the transition function, POMDPs are beasts of a different kind.

What the agent observes in a POMDP is the realization of Ot which could be a non-Markovian

stochastic process. Therefore, learning a single-step transition function between observations ot,

as we did for the states s in Eq. (1.14), is not feasible.

First, a strategy to decouple the time series of actions taken during the process must be defined.

Let us consider the probability of observing Ot = ot and At = at:

Pr
(

Ot = ot, At = at

∣
∣
∣{Ss = ss}

t
s=0, {Os = os}

t−1
s=1, {As = as}

t−1
s=0

)

= Pr
(
At = at|{Os = os}

t
s=1, {As = as}

t−1
s=0

)
Pr (Ot = ot|St = st, At−1 = at−1) , (1.15)

notably, the action depends on the whole history of observable features. If, for instance, the action

has been chosen by a uniform random policy, then Pr
(
At = at|{Os = os}

t
s=1, {As = as}

t−1
s=0

)
= c,

∀t, with c being a constant. After substitution in Eq. (1.15) we have

Pr
(

Ot = ot, At = at

∣
∣
∣{Ss = ss}

t
s=0, {Os = os}

t−1
s=1, {As = as}

t−1
s=0

)

= c · Pr (Ot = ot|St = st, At−1 = at−1) . (1.16)

The right-hand side of the last equation is proportional to the emission probability of an HMM.

Hence, with a proper renormalization, we can just prune a POMDP of its decision-making perk
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Figure 1.3: In Reinforcement Learning at every time step t an agent iteratively interacts with the
environment that transits from a state st to a new state st+1. The agent earns a reward rt and is
informed about the transition.

and consider the underlying HMM. Therefore, the problem becomes that of inferring both the

transition function between hidden states and the observation emission probability of an HMM.

This problem is very complex since it has to deal with the inference of a transition probability

between unseen quantities and the relative probability for one of these states to “emit” a given

observation. However, if both the emission probability and the transition function have a known

prior distribution, then one could use an Expectation-maximization (EM) method to tackle this

issue. An algorithm that performs EM is the one created by Baum and Welch (Bilmes et al., 1998).

A strong limitation of this approach is its sensibility to the initial condition. Indeed, different initial

conditions could lead to different local maxima of the likelihood.

Secondly, once the transition and observation functions have been inferred, one should find

a way to reintroduce the possibility of taking decisions and then define a rule for “splitting” the

obtained functions across actions. We are going to define one in Chapter 6.

1.4 Reinforcement Learning

In the previous section, we dealt with the task of learning a model from a fixed batch of experi-

ences. What can be done if further interaction with the environment is available with the aim of

gathering more information? The said problem falls into the domain of Reinforcement Learning

(RL) (Figure 1.3). The field of RL bloomed with the introduction of Temporal Difference (TD) al-

gorithms (Sutton, 1988) like the famous Q-learning (Watkins and Dayan, 1992) and REINFORCE

(Williams, 1992).

Temporal Difference A TD method exploits the time-delayed return signals to iteratively up-

date statistical estimates of a given quantity. To understand how it works let us define a way to

sequentially update an estimate of the average of samples.

Let X be a random variable with values in R and let estimate the average value Ak of k samples

x ∼ X {x1, . . . , xk}:

Ak =

∑k
i=1 xk

k
. (1.17)

Then, consider that another sample xk+1 is available. Ak gets updated to Ak+1 as follows:

Ak+1 =
kAk + xk+1

k + 1
= Ak +

(k − k − 1)Ak + xk+1

k + 1
= Ak + αk(xk+1 −Ak

︸ ︷︷ ︸

TD error

) (1.18)

where αk = 1
k+1 is called the learning rate and (xk+1 − Ak) the Temporal Difference error. Notice
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1.4 Reinforcement Learning

that the TD error is a difference between the value sampled at “time” k + 1 and the already com-

puted average at “time” k. The said property lends the name to the approach. Please also notice

that (αk)k≥1 is a decreasing sequence since the more values have been taken into account to com-

pute the current average, the less the latter needs to be corrected with the information provided

by a new sample.

Q-learning Q-learning is a RL algorithm that resorts to Temporal Difference (TD) estimation to

compute Q∗ in a completely data-driven fashion without needing any information about the model

M . The algorithms at its core have a way to iteratively update the estimate of Q∗ using new data.

Given a trajectory h = {(st, at, st+1, rt), t ≥ 0},

Q∗
i+1(st, at) = Q∗

i (st, at) + αi

(
TD target

︷ ︸︸ ︷

rt + γmax
a

Q∗
i (st+1, a)−Q

∗
i (st, at)

︸ ︷︷ ︸

TD error

)
(1.19)

where the dependence on M has been omitted, i is the iteration number, and {αi ∈ (0, 1)} is

the sequence of learning rates. Q-learning is called an off-policy learner because it updates Q

assuming that for state st+1 the best action is given by the greedy policy (Sutton and Andrew G.

Barto, 2018), i.e. the one that maximizes Q over A, even if the greedy policy is not the one that

the agent is currently following. An on-policy method would be one for which the agent updates

the policy that it is following. Notice that, while in Eq. (1.18) the samples used to update the

estimate all come from the same distribution, in Q-learning it is the current partial estimate itself

that is bootstrapped and maximized over actions to compute the new sample, which is called the

TD target. Notwithstanding, Q-learning is guaranteed to converge to a positively biased optimal Q

value function Q∗ if, for an infinite sequence of data, the following conditions are respected (J. N.

Tsitsiklis, 1994):
∞∑

t=0

αt =∞ and
∞∑

t=0

α2
t <∞. (1.20)

Bootstrapping is guilty of generating the positive bias in Q-learning (Smith and Winkler, 2006).

Exploitation vs exploration Once the estimate of the Q-value has been updated, the agent in-

teracts again with the environment to collect more data. If it follows a greedy policy, i.e. the best

according to its current estimate, he would probably never sufficiently explore the world and thus

would never have access to the necessary information to let the algorithm converge to the optimal

Q-value. With this scope in mind, Q-learning adopts exploration strategies. At every time step,

after the update of the Q-value has been made, there is a rule that establishes if the agent must

follow the greedy policy or pick a random action just to explore the environment. Usually, the rate

of exploration should decrease in time to make the algorithm converge. Indeed, we can imagine

that at the beginning of the iterations, the agent needs to consistently explore to get acquainted

with the environment, but later on, its exploration should be more moderated and more fine-tuned

across some region that is already proving good returns. Nevertheless, depending on the environ-

ment, sometimes exploring can lead to irreversible outcomes. Therefore, other more conservative

algorithms have been developed like State-Action-Reward-State-Action (SARSA) (Sutton and An-

drew G. Barto, 2018). SARSA is an on-policy learner: the update of the Q-value is made using

the actual data and not the greedy policy. This allows the algorithm to be more robust but could

make it converge only to near-optimal policies. Finding the right balance between collecting new
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information and maximizing the returns is called the exploration vs exploitation dilemma.

Temporal Difference and Monte Carlo methods Q-learning and SARSA both leverage the boot-

strap of the estimate one time step ahead to update the Q function. As already stated, this method

is biased even though it has a reduced variance (Smith and Winkler, 2006).

Other paradigms use a full trajectory to update the estimate of the Q function like a Monte

Carlo estimation method, which is not biased but suffers from a great variance. The variance

spawns from combining all the randomness that comes from both a stochastic environment and a

possibly stochastic policy throughout a full episode.

To exploit the information contained in a whole trajectory while limiting the growth of the

variance, Sutton (1988) conceived TD(λ), an algorithm that updates the estimate of the Q-value

by performing a weighted average (with decaying weights) of TD errors with multiple step returns.

Continuous MDPs Likewise MDP solvers, Q-learning requires a discrete representation of the

MDP in the sense that it needs to store a value for each state and action pair. When this is not feas-

ible, Q-learning can be adopted with function approximators that can be trained through gradient

descent. Indeed, intuitively Eq. (1.19) could be also interpreted as a derivative along the path

towards convergence. To that end, one can write

δQ∗
i (st, at)

δi
≈

Q∗
i+1(st, at)−Q∗

i (st, at)

αi

= rt + γmax
a

Q∗
i (st+1, a)−Q∗

i (st, at). (1.21)

In this sense, moving forward along this path amounts to adding to the current estimate of

Q∗
i (st, at) a term proportional to the “gradient” (the TD error): αi

δQ∗
i (st, at)

δi
. This may remind us

of the gradient descent update rule if we replace i by θ, with θ being the parameters of the function

approximator. It is important to note that the TD error for a sample can be computed exactly.

The deadly triad Sutton and Andrew G. Barto (2018) refer to function approximation, bootstrap-

ping, and off-policy learning as the deadly triad. Unfortunately, when the RL approach dwells on

these three methods, the estimated values can diverge and learning might not occur. The conver-

gence conditions of Q-learning with linear function approximation have been widely investigated

in the work in Melo and M. I. Ribeiro (2007).

Policy gradients and actor-critic methods A different perspective is optimizing just a paramet-

rized policy without recurring to value function estimation. This is the way paved by REINFORCE

(Williams, 1992). In REINFORCE transitions are sampled by acting with a parametrized policy

πθ(at|st). At every time step the parameters θ are updated by θi+1 ← θi + αi
δJ(θi)

δθ
, where J(θi)

is a parametrized expected utility J(θi) = Eπθi
[
∑

t R(St, At)]. When the data set D contains N

trajectories, the gradient of J can be estimated as follows:

δJ(θi)

δθ
≈

1

N

N∑

j=1

(
H∑

t=1

δ log πθi(a
j
t |s

j
t )

δθ

(
H∑

t′=t

R(sjt′ , a
j
t′)

))

, (1.22)

which amounts to the average over trajectories of the sum along a trajectory of the gradient of the

logarithm of the policy with respect to the parameters multiplied by
∑H

t′=t R(sjt′ , a
j
t′) which are

the returns-to-go from time t forward. Kakade (2001) proposed an approach to compute policy

gradients with gradient descent. The said technique directly optimizes a policy for the maximum

discounted reward in an on-policy way.
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Another class of RL algorithms that exploit both TD and linear function approximation is Actor-

Critic (Konda and J. Tsitsiklis, 1999). In this context, a critic estimates the value function using a

linear approximator while the actor is updated in an approximate gradient direction based on the

current critic’s estimate. Later on, Deterministic Policy Gradient (DPG) (Silver, Lever et al., 2014)

extended the approach to tackle continuous action spaces. Long story short, actor-critic approaches

merge value-based methods (like Q-learning) and policy-gradient-based methods. Approximately,

the return-to-go term in Eq. (1.22) is replaced by the estimate of a value function obtained with a

value-based technique, e.g. policy evaluation or Q-learning.

Distributional RL A big step forward has been taken with the advent of Distributional RL (Mor-

imura et al., 2010; Marc G. Bellemare, Dabney and Rowland, 2023). In this developing field,

instead of computing the value function, which assigns to a state the scalar value corresponding to

the average discounted return, the algorithms compute return-distribution functions, which map

every state to the distribution of future discounted returns. More formally, Eq. (1.6) becomes

Gπ
M (s)

Dist.
= Rπ + γGπ

M (S′) (1.23)

where Dist.
= means equality in distribution, Gπ

M (s) is a random variable, Rπ is also a random

variable, S′ is the next state random variable according to policy π and MDP M and finally Gπ
M (S′)

is a random variable. Indeed, the work in Marc G. Bellemare, Dabney and Munos (2017) showed

that the distributional Bellman operator is a contraction for a maximal form of the Wasserstein

metric. Inferring the full distribution of returns instead of just the expected value makes the

optimization task more suitable to be adopted in risk-sensitive problems where avoiding low return

trajectories is extremely important since one could optimize for maximizing some low quantile of

the said distribution (Morimura et al., 2010). To compute a distribution, several precautions must

be taken. First, one should choose a suitable representation for the distribution to learn: for a

uniformly spaced discretization, we refer to it as a categorical representation, while for a finite

number of uniformly-weighted particles with parameterized locations, we refer to it as a quantile

representation.

1.4.1 Deep Reinforcement Learning

When Mnih, Kavukcuoglu et al. (2015) put together the marvelous expressive power of Deep

Neural Network (DNN) with Q-learning the gates of a new era opened wide. Indeed, a sequence

of linear operators followed by sigmoids can approximate any function if the sequence is long

enough (Cybenko, 1989). Later on, this result has been extended to cover different network

architectures (Hornik, Stinchcombe and H. White, 1989; Hornik, 1991). In layman’s terms, Mnih,

Kavukcuoglu et al. (2015) showed that for MDPs with continuous states and finite actions also

non-linear function approximators could be used to estimate the Q value of Eq. (1.19) and created

a DNN architecture called Deep Q-Network (DQN) (Figure 1.4). As shown intuitively in Eq. (1.21),

DQN updates the Q value by Stochastic Gradient Descent using a batch made of the last observed

transitions. At every iteration, the Mean Squared Error (MSE) between the TD target and the

current Q value is minimized. Since it sits on top of the deadly triad, DQN’s convergence is a very

delicate matter. The training is susceptible to the tuning of hyperparameters such as the learning

rate or the ones that regulate the exploration strategy. However, when convergence occurs DQN

showed human-level control capabilities.

In a short time, several improvements have been built over DQN. The research community
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1.4 Reinforcement Learning

has created families of environments to benchmark new approaches. For example, OpenAI Gym

(Brockman et al., 2016) includes various classes of environments, such as simple discrete state

and action MDPs, classic control problems with continuous states and discrete actions, as well as

very complex and multidimensional scenarios based on the physics simulation engine Multi-Joint

dynamics with Contact (MuJoCo) (Todorov, Erez and Tassa, 2012), which feature continuous state

and action spaces. The Arcade Learning Environment (ALE) is a collection of emulated vintage

console games (M. G. Bellemare et al., 2013), where the state space is usually provided as pixels

describing the image that a human player would see on the screen.

To accelerate convergence the Prioritized Experience Replay method proposed heuristics to

build the batch provided to the architecture at each iteration (Schaul et al., 2016; Lahire, Geist

and Rachelson, 2022): instead of serving the last observed transitions, samples are picked based

on the impact they had during the training. The idea is that a sample that results in a big step

in weight space provides more information and needs to be prioritized. To the end of reducing

the positive estimation bias due to the TD method and bootstrap, Hasselt, Guez and Silver (2016)

resorted to updating two different DQN with different periods. This strategy not only reduces the

bias but also leads faster to convergence. DNN-based version of fundamental RL methods different

from Q-learning started to spread.

Among the ones based on the actor-critic literature, we name Asynchronous Advantage Actor

Critic (A3C) from Mnih, Badia et al. (2016), Deep Deterministic Policy Gradient (DDPG) from T. P.

Lillicrap et al. (2016) which extends DPG. To reduce the function approximation error Fujimoto,

Hoof and Meger (2018) proposed Twin Delayed Deep Deterministic policy gradient (TD3). Con-

currently, actor-critic approaches with a stochastic actor have been developed obtaining at the time

state-of-the-art results (Haarnoja et al., 2018).

Natural policy gradients were united with DNN in the job of Schulman, Levine et al. (2015)

that presented Trust Region Policy Optimization (TRPO) and its extension Proximal Policy Optim-
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Figure 1.4: A representation of a fully-connected Deep Q-Network with three hidden layers. The
architecture receives as input the feature representation of a state s = (φ1, . . . , φn). Linear op-
erators with adjustable weights plus non-linear activation functions are applied to s in sequence,
resulting in the hidden layers x(i). Finally the network outputs (Qaj

), 1 ≤ j ≤ k = |A|, one for
every action. The whole output corresponds to the estimate of Q(s, a).
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ization (PPO) (Schulman, Wolski et al., 2017). In particular, PPO is considered one of the most

stable algorithms for hyperparameter selection even today (2023).

Deep Reinforcement Learning models seduced the general public with AlphaGo (and AlphaGo

Zero) (Silver, Huang et al., 2016; Silver, Schrittwieser et al., 2017). This architecture, leveraging

value-networks, policy-networks, MCTS (and self-play in the case of AlphaGo Zero) managed to

beat the champion of Go of the time. The result was remarkable because Go is a board game that

was considered for decades out of the reach of RL algorithms. Later on, AlphaGo Zero has been

improved in AlphaZero to master also other board games like chess and shogi (Silver, Hubert et al.,

2018), showing an extraordinary ability to adapt to various game rules. However, all of these mod-

els require a rule specification to perform the Monte Carlo tree search of profitable next moves.

At present MuZero is the current upgrade of the AlphaGo family and allows to plan in a learned

environment, without needing a-priori specifications of the rules (Schrittwieser et al., 2020).

The application of Distributional RL with DNN took place in the same work by Marc G. Belle-

mare, Dabney and Munos (2017). The authors proposed C51, a neural network architecture that

estimates the probability masses of 51 atoms of the Q-value distribution. The number of atoms is

arbitrary and can be decided beforehand when the range of the Q value function is discretized. C51

became at the time the state-of-the-art baseline over the Atari 2600 games of the Arcade Learning

Environment (ALE) (M. G. Bellemare et al., 2013). Even though the purpose of the algorithm

is that of maximizing the expected future discounted return (like classic Deep RL paradigms),

keeping track of the whole distribution should convey more precise estimates in an approximate

context. The following year C51 was outclassed by DQN with Quantile Regression (QR) that,

instead of estimating the probability masses of an equally distributed number of atoms in the

range of the Q value distribution, aimed to compute an equally spaced number of quantiles (Dab-

ney, Rowland et al., 2018). The work in Dabney, Rowland et al. (ibid.) introduced the Quantile

Temporal-Difference (QTD) for the estimation of quantiles of the return distribution. This work

was extended by the Implicit Quantile Network (IQN) (Dabney, Ostrovski et al., 2018) that instead

of estimating a fixed number of quantiles it implicitly parametrizes the full quantile function by

randomly sampling several quantiles. A further extension was done by the work in D. Yang et al.

(2019) that aims to fully parametrize the quantile function. Recently, the work in Rowland et al.

(2023) analyzed the convergence of QTD.

The previously mentioned baselines belong to the large family of Model-free RL, which is

distinct from Model-based RL. Model-free paradigms, in line with the original RL motivations,

aim to directly estimate value functions or policies without providing any information about the

environments and their dynamics. On the other hand, a significant branch of the literature focuses

on model-based approaches, which aim to learn a so-called world-model that acts as a single (or

multiple) step simulator of the dynamics.

Given the data, a model-based approach infers the next state when the current state of the

system is s and action a is taken. Planning then occurs in this fictional environment. Historically,

model-based approaches are designed to periodically deploy the planned policy to further extend

the dataset (Sutton, 1990), thereby improving the quality of the world model. In the next chapter,

we will discuss model-based approaches related to offline learning, as we believe that such methods

are well-suited for an offline learning scheme.

25



1.5 Explainability of computed policies

1.5 Explainability of computed policies

When a policy is derived from a DNN, the agent may exhibit counter-intuitive behavior. To bridge

the gap between algorithmic implementations and reliability, it is crucial to explain the rationale

behind the neural network’s weight configuration, i.e., why a specific action is chosen over another

in a given state. More generally, and beyond neural network weights, this need for explainability

extends to all machine learning models.

In the context of explaining the behavior of automated agents, the reasoning behind their ac-

tions becomes increasingly entangled and complex as the number of interacting agents grows.

Therefore, developing methods to generate explanations for Multi-Agent System (MAS) is of ut-

most importance.

What progress has been made in this area? Explainable Artificial Intelligence (XAI) has gained

considerable attention among researchers due to the expanding use of algorithms and black-box

methods in real-world applications, which affect public trust, policy-makers, and lawmakers. In-

deed, explainability stands out as one of the pillar requirements of trustworthy AI demanded by the

EU Whitepaper on Responsible AI (European Commission, 2020). Although current XAI methods

address the explainability of regression and classification models, there has been limited research

on the explainability of behavioral policies in both single and multi-agent systems, and more con-

cretely in the realm of RL. The most widely-used baselines, as proposed in the works by S. M.

Lundberg and S.-I. Lee (2017) and S. M. Lundberg, Erion et al. (2020), extend the Shapley ana-

lysis (Aumann and Shapley, 2015). Originally, Shapley analysis was designed to determine the

proportional importance of players in a coalitional game with the goal of distributing a common

share more fairly to each participant.

1.5.1 Coalitional games

In this section, we will define transferable utility coalitional games and introduce both Shapley and

Myerson values. Shapley values underpin several XAI paradigms. As Myerson values play a central

role in the work presented in Chapter 7, they warrant a comprehensive introduction.

Definition 12. [Transferable utility coalitional game (Peters, 2008)] Let C be a finite set of players

(|C| ∈ N+) and let characteristic function v : P (C) → R with P (C) being the power set of C, i.e. a

coalition of features. v is called the characteristic function and maps subsets of players, also called

coalitions, to real numbers.

Let v be endowed of the following property:

v(∅) = 0. (1.24)

A transferable utility coalitional game G is defined as the tuple G = (C, v).

The characteristic function v describes the worth (utility) of a coalition of players in the game

when they cooperate. The worth of an empty coalition is zero (see Eq. (1.24)). The word player

is used just to provide intuition and coherence with Shapley’s game theory background (Molnar,

2020). A member of the set of players C could represent anything, and indeed later on in the

thesis, it will be composed of individual agent’s attributes and policies.

Definition 13 (Shapley value (Aumann and Shapley, 2015)). Shapley analysis allows to compute

the Shapley value of a player i ∈ C in a transferable utility coalitional game G = (C, v), and it is
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1.5 Explainability of computed policies

defined as:

φi(v) =
∑

K⊆C\{i}

|K|! (|C| − |K| − 1)!

|C|!
(v (K ∪ {i})− v (K)) . (1.25)

The Shapley value assigns to every player a real number corresponding to its importance in

the game. It is defined as the weighted average of the difference in the worth of every possible

coalition with and without the player. The Shapley value redistributes the worth of players abiding

by the following properties:

1. Efficiency: The contribution of each player in the transferable utility coalitional game adds

up to the characteristic value v computed on the coalition including all players

∑

i∈C

φi(v) = v(C); (1.26)

2. Symmetry: If adding element i or element j to any coalition that initially does not include

these elements results in the same evaluation of the characteristic function, then elements i

and j have the same contribution. Formally,

if v(K ∪ {i}) = v(K ∪ {j}) ∀K ⊆ C \ {i, j}

=⇒ φi(v) = φj(v); (1.27)

3. Linearity: The contribution of a player to two transferable utility coalitional games played by

the same team but with different characteristic functions v and w, can be linearly combined.

That is:

let G1 = (C, v) and G2 = (C, w) (1.28)

=⇒ φi(av + bw) = aφi(v) + bφi(w), ∀ i ∈ C, ∀(a, b) ∈ R
2;

Note that linearity is defined over the space of characteristic functions. It is distinct from the

Decomposition property of graph-constrained transferable utility coalitional games (to be

defined in Equation 1.30), as the latter allows for the linear decomposition of v computation

over a coalition into the linear combination of the same v evaluated over the connected

components of the graph.

4. Null player: if adding a player i to every coalition that did not have it does not affect the

computation of the characteristic function, then the contribution of element i is zero.

If v(K ∪ {i}) = v(K) ∀K ⊆ C \ {i}

=⇒ φi(v) = 0 and player i is said to be null. (1.29)

In summary, φi(v) is the Shapley value of element i ∈ C in the transferable utility coalitional

game defined by (C, v). v is the characteristic function that maps coalitions of elements of the set

C to real numbers, representing the payoff or return of the game within the context of Shapley

analysis. Shapley created this method to quantify the contributions of (human) team members

working towards a goal, represented by a measurable economic benefit. Intuitively, v can be

thought of as the amount of payoff a subset of “players” (regardless of size) earns or loses when

they cooperate (see Figure 1.5 for an example). In Chapter 7, Equation 1.24 will play a crucial role

in explaining the importance of agents’ policies and attributes, such as features that characterize an
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Bob AliceJoe

A-Team

100 $

-20 $ 10 $ 110 $

Total Gain

Figure 1.5: Example: a group of computer engineers called the A-Team is paid $ 100 for a project.
The members of the group are Alice, a very diligent and happy worker, Bob, who is always sleepy
and unproductive, and Joe, an incognito saboteur working for a competing company. A Shapley
analysis would find, for instance, a contribution of $ 110 for Alice, $ 10 for Bob, and − $ 20 for
Joe. Joe’s deeds are detrimental to the project and in an ideal world, he should refund the others.

agent, including its speed, strength, and more.

The algorithm to calculate Shapley values of players can be found in Algorithm 3, where Line 5

corresponds to Equation 1.25. Definition 12 refers to C as being a finite set of elements, it does

Algorithm 3: Exact Shapley Values Computation
Input: v characteristic function of the coalitional game (C, v)
Output: Shapley value φi(v), ∀i ∈ C

1 Initialization: φi(v) = 0 ∀i ∈ C
2 for i ∈ C do
3 Generate the power set P (C\{i})
4 for K ∈ P (C\{i}) do

5 φi(v)← φi(v) +
|K|!(|C|−|K|−1)!

|C|!

(
v (K ∪ {i})− v (K)

)

6 return φ

not specify of what kind. It is crucial that all mathematical properties listed in Definition 12, from

Equations 1.24 to 1.29, hold.

For instance, maintaining mathematical consistency requires adherence to Eq. (1.24). When

applying this approach to real-world scenarios or RL environments, one cannot consider a simula-

tion in which a player (policy or feature) is entirely removed. How does one handle the desire for

a void coalition or a coalition without specific features or policies? Establishing rules is essential

for: 1) facilitating the removal of policies/features, and 2) ensuring that when all elements of C

are to be “removed,” then v(∅) = 0. This explanation aligns with the empirical findings of Heuil-

let, Couthouis and Díaz-Rodríguez (2022). In their simulations, they observed that replacing the

agents’ policies with the No-Op policy (do nothing) resulted in the most reliable outcomes. How-

ever, it is important to note that this rule is not universally applicable, as its effectiveness depends

on the behavior of the characteristic function v. To calculate the Shapley values, the coalitional

game should have a transferable utility (Peters, 2008), meaning that players cooperate to gain a

common outcome, and subsequently redistribute the spoils in a worth-based proportional fashion.

Definition 14 (Transferable utility coalitional game over a graph). Let G = (C, v) be a transferable

utility coalitional game and let G be a graph that has the set of players C as a set of nodes. We can
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define the transferable utility coalitional game G over the graph G by limiting the interaction amongst

players through the establishment of edges in the graph. The said transferable utility coalitional game

will be denoted as GG .

Let µ be a function that maps the set of nodes K of a subgraph of G to the subsets of nodes correspond-

ing to the connected subgraphs covering K, i.e. to its minimum connected node cover (the cover of the

nodes of G that induces the minimum number of connected subgraphs).

The characteristic function v is hence endowed of the following property in addition to Shapley

values’ properties 1-4 that is due to the limited interaction between participants dictated by the graph

structure:

5. Coalition decomposition: the characteristic function evaluated on a coalition K is equal to

the sum of the characteristic function evaluated over the elements of the minimum node cover of

the subgraph G whose nodes are in K:

v(K) =
∑

σ∈µ(K)

v(σ) (1.30)

with µ such that ∀K ∈ P(C),
⊔

σ∈µ(K)

σ = K,

∀σ 6= σ′ ∈ µ(K)2, σ ∩ σ′ = ∅,

∀(k, l) ∈ σ, there is a path linking k and l in G.

1

2

3 4

5

6

σ1 σ2

Figure 1.6: Example of a graph Γ over a set of nodes C = {1, 2, 3, 4, 5, 6}. When removing the
node 4 the graph can be covered by the sets of connected nodes: σ1 = {1, 2, 3} and σ2 = {5, 6}.
Coalition decomposition (Equation 1.30) allows to compute v (σ1 ∪ σ2) = v(σ1) + v(σ2).

where σ is a dummy variable that spans the elements of the minimum node cover of G. Note

that the elements of a node cover are sets of nodes.

For example, in Figure 1.6, we have v (K = (σ1 ∪ σ2)) = v(σ1) + v(σ2). This decomposition

might not be possible if the game were not graph-constrained, as there could be edges connecting

coalition σ1 and coalition σ2 even when visualizing a graph structure.

Definition 15 (Myerson value (R. B. Myerson, 1977, 1980)). The Myerson value of a player i ∈ C

in a transferable utility coalitional game over a graph GG is indeed defined as the Shapley value

(Equation 1.25) of the graph-constrained game.

Myerson provided a first axiomatization of the problem of allocating importance to the mem-

bers in a graph-constrained transferable utility coalitional game in terms of equity, efficiency, and

fairness (R. B. Myerson, 1977). Later, the work in R. B. Myerson (1980) demonstrated that the

only allocation rule for importance in graph-constrained transferable utility coalitional games that

abides by all the necessary properties is equivalent to the computation of the Shapley values.
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Algorithm 4: Exact Myerson Values Computation
Input: G graph over the set of players C of the coalitional game (C, v), v characteristic

function of the coalitional game (C, v)
Output: Myerson value φi(v), ∀i ∈ C

1 Initialization: φi(v) = 0 ∀i ∈ C, Coalitions: P(C)→ R initially undefined (∀σ ∈ P(C),
2 Coalitions(σ) = und.)
3 for i ∈ C do
4 Generate the power set P (C\{i})
5 Decompose each K ∈ P (C\{i}) to µ(K), the sets of connected nodes minimally

covering the subgraph with vertices K
6 Decompose each K ∪ {i} to µ(K ∪ {i}), the sets of connected nodes minimally covering

the subgraph with vertices K ∪ {i}
7 for K ∈ P (C\{i}) ordered by increasing |K| do
8 if Coalitions(K) = und. then
9 for σ ∈ µ(K) ∧ Coalitions(σ) = und. do

10 Coalitions(σ)← v(σ)

11 Coalitions(K)←
∑

σ∈µ(K) Coalitions(σ)

12 if Coalitions(K ∪ {i}) = und. then
13 for σ ∈ µ(K ∪ {i}) ∧ Coalitions(σ) = und. do
14 Coalitions(σ)← v(σ)

15 Coalitions(K ∪ {i})←
∑

σ∈µ(K∪{i}) Coalitions(σ)

16 φi(v)← φi(v) +
|K|!(|C|−|K|−1)!

|C|!

(
Coalitions (K ∪ {i})− Coalitions (K)

)

17 return φ

Computationally, the key idea is that the property in Equation 1.30 can be exploited to execute

fewer computations as many subsets K ∈ P(C) can share the same connected components µ(K).

It is worth noting that the time complexity of computing the theoretical optimal exact Shapley

values is O(2|C|) while the time complexity of computing Myerson values is O(2X), with X ≤ |C|

being a constant proportional to the minimum number of connected nodes covering the graph G

needed to form any coalition.

Algorithm 4 demonstrates how Dynamic Programming can exploit the graph structure to per-

form fewer computations: once each coalition K with and without a feature i is decomposed into

the minimum number of sets of connected nodes covering G (Lines 4-5), a dictionary containing

the already computed value for every small coalition can be expanded by calculating the values

starting from coalitions with increasing size (Lines 6-15). When possible, Coalition Decomposition

(Equation 1.30) is exploited (Line 10 and Line 14).

Not every transferable utility coalitional game benefits from a prior domain knowledge struc-

ture, such as a graph, that restricts the interaction among players. Nevertheless, when domain

knowledge structure is available, Myerson values can help take advantage of the graph structure

to compute each contribution beyond the participation of each player, thereby explaining the rel-

evance of both individual attributes and policies of agents in a multi-agent environment in terms

of a hierarchy of interacting features.

SHapley Additive exPlanations (SHAP) With the concepts of Shapley analysis in mind, S. M.

Lundberg and S.-I. Lee (2017) and S. M. Lundberg, Erion et al. (2020) developed SHAP to provide

explanations of machine learning models for regression and classification. In this context, the

players of the coalitional game were the input features used to perform the classification or re-

gression task. SHAP proposes a method to allocate importance values that is not only global but
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also local, through the inference of a kernel to compute importances for features with a changing

value, therefore connecting Shapley analysis and previous local explanations techniques for XAI

like Local Interpretable Model-Agnostic Explanations (LIME) (M. T. Ribeiro, S. Singh and Gues-

trin, 2016) and DeepLIFT (Shrikumar, Greenside and Kundaje, 2017). An example of SHAP can

be found in Figure 1.7.
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Figure 1.7: The example is taken from SHAP’s documentation that uses the standard adult census
income dataset from the UCI machine learning data repository (S. Lundberg, 2018). A k-nearest
neighbors classifier is trained using sci-kit learn and then SHAP explains the predictions. With a
summary plot, it is shown that marital status is the most important feature on average, but other
features (such as capital gain) can have more impact on a particular individual (sample).

1.5.2 Explanations for Reinforcement Learning

State-of-the-art taxonomies of Explainable Reinforcement Learning (XRL) methods (Arrieta et al.,

2020; Heuillet, Couthouis and Díaz-Rodríguez, 2021) categorize current approaches into two

classes: transparent methods, which are interpretable by design, and post-hoc explainability tech-

niques.

Transparent techniques A model is considered transparent if it can be directly explained due

to its inherent interpretability. This means that not only is the output of the method explainable,

but also the computation flow itself, which earns it the name transparent. Transparent techniques

are composed of a sequence of straightforward, human-understandable functions, such as decision

trees.

Post-hoc techniques Post-hoc techniques encompass a set of methods that provide a (usually

non-trivial) posterior interpretation of the output. Several XRL baselines employ post-hoc tech-

niques (Heuillet, Couthouis and Díaz-Rodríguez, 2021). In the context of post-hoc techniques, re-

cent work by Heuillet, Couthouis and Díaz-Rodríguez (2022), inspired by SHapley Additive exPlan-

ations (SHAP) (S. M. Lundberg and S.-I. Lee, 2017), developed an approach to obtain estimates

of agent importance in cooperative multi-agent RL environments using a Monte Carlo estimation

of classical Shapley values (Aumann and Shapley, 2015). In their work (Heuillet, Couthouis and
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Díaz-Rodríguez, 2022), a direct computation of importances for a player in a coalitional cooperat-

ive game is translated to the context of a Multi-Agent Cooperative System using a simulator.

Although the work in Heuillet, Couthouis and Díaz-Rodríguez (2022) produces reasonable pre-

dictions of individual agents’ policy importance, it does not extensively discuss why one policy is

more important than another or what individual attributes are required from each player to make

the said policy effective.

Concurrently, (Metulini and Gnecco, 2022) measured the importances of players in a basketball

game using generalized Shapley analysis offline, starting from a set of demonstrations. They did

not use a simulator but relied on sequences of action statistics recorded during matches. However,

their approach required an ad-hoc and expert-given definition of the characteristic function, which

needed to be defined accordingly.

In this context, there is potential for more sophisticated and computationally efficient ap-

proaches to explain both the importance of agents’ policies and their individual attributes.

1.6 Conclusions

In this chapter, we have explored the problem of sequential decision-making under uncertainty,

which we formulated as a Markovian stochastic process. We discussed the control of such a pro-

cess using a Markov Decision Process (MDP) and reviewed the literature on methods for solving an

MDP that rely on the Bellman Optimality Condition. These methods range from classical Value Iter-

ation algorithms to more modern approaches that leverage Reinforcement Learning and Temporal

Difference algorithms, as well as expressive function approximators like Deep Neural Networks.

We also addressed the problem of sequential decision-making under uncertainty and partial

observability, where the agent lacks complete information about the current state of the system.

We introduced the formalization of this problem using a Partially Observable Markov Decision

Process (POMDP) and reviewed some approaches for solving a POMDP.

Since both (PO)MDP solvers (with and without function approximation) can produce policies

that may be deemed counter-intuitive, we discussed the state-of-the-art in explainability and in-

terpretability for Reinforcement Learning and Machine Learning models. In 2023, explainability

in decision-making using Machine Learning-based techniques is an active research area. However,

current paradigms face limitations, such as scalability issues and the need for simulators, which

require further attention. In the realm of Offline Reinforcement Learning, an explainable and

interpretable policy could provide additional validation for technical practitioners and reassure

non-expert audiences.
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Key Takeaways

• Sequential decision-making under uncertainty is a challenging problem that can

been tackled solving an MDP or a POMDP.

• Reinforcement Learning and Temporal Difference algorithms can solve an unknown

MDP by trial and error.

• Utilizing function approximators like DNNs, RL can handle MDPs with continuous

state and action spaces, albeit achieving convergence can be more challenging.

• Shapley-based analysis can aid in explaining Machine Learning (and RL models),

shedding light on counter-intuitive policies and black-box techniques.

In the upcoming chapter we are going to shed light on sequential decision-making in unknown

environments using a fully offline data-driven approach. In this context, the goal is to learn the

“optimal” policy from a fixed data set of pre-collected experiences. To address the challenge of

planning in an unknown environment without the possibility of further exploration, we will review

the literature on novel algorithms that take into account the risk of the learned models not being

representative of the actual process that generated the dataset, and the resulting policy being

ineffective at the time of deployment.
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Chapter 2

Offline learning for planning

When addressing a sequential decision-making under uncertainty problem in the real world the

practitioner has to cope with the fact that the involved probabilities of transitions in most cases are

not known exactly.

In this chapter, we assess the infamous issue of learning an “optimal” behavioral policy in a

completely offline data-driven fashion. In order to know how to act, one has to possess some

knowledge about the consequences of her/his action on the system or at least on the realization

of the wished goal. Predicting the time evolution of a system has been a task that physicists have

undertaken for centuries. By observing a collection of demonstrations of a phenomenon, they

attempt to identify the function that best captures the underlying dynamics. In this context, we

will tackle the problem of learning a model to further plan in a (PO)MDP. The general idea of

offline learning for planning refers to the inference and the development of methods that, starting

from a fixed data set, assist the planning phase. Between these methods, one could consider for

example the tasks of learning an abstraction, a model, or directly obtaining a policy.

As we have seen in Eq. (1.14), learning a discrete MDP from data seems quite straightforward.

We have to assign to the probability of a transition its frequency of occurrence in the data set D.

When the size of the data set |D| is big enough, the trivial model should tend to the true one

T̂
|D|→∞
→ T , i.e. the one that was used to generate the data.

How do we know if we have enough data? In practice, this assessment is too hard to be done

since the said quantity strongly depends on both the complexity of the environmental dynamics

and the data-collecting policy.

But even so, once a model has been learned, which hyperparameters, such as the discount

factor, should a practitioner use to obtain a relevant policy?

This chapter provides a review of the literature on Offline Reinforcement Learning, covering

methods and approaches for obtaining risk-aware policies, as well as techniques for performing

offline evaluation and selection of the most robust policy.

2.1 The importance of the planning horizon

When one applies Value Iteration or Policy Iteration to solve an MDP, she/he always has to define

the Value function. In Definition 7 we notice the presence of a power series involving a factor γ,

called the discount factor. The factor γ weights future rewards assigning to them geometric de-

creasing importance. This allows the value function to be well defined, i.e. to ensure convergence
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properties, even for an infinite horizon MDP:

V π
M (s) = Eπ

[
∞∑

t=0

γtR(St, At)

]

≤

∞∑

t=0

γtRmax =
1

1− γ
Rmax. (2.1)

Mathematically, discounting is sufficient for convergence in the infinite planning horizon case and

has its roots in the Discounted Utility Model theorized by Samuelson (1937). How should a practi-

tioner choose the discount factor? Ideally, one would want γ as close as possible to 1 to maximize

the return along a full trajectory. Sometimes, γ is also to discount finite horizon MDP because

a planner would prefer more greedy policies in order to mitigate uncertain outcomes. But why

should one keep track of model uncertainty also if a model is not learned from data? To under-

stand it, we should not see γ as a term artificially put into the value function for convergence, and

neither as an arbitrary decision of discounting future rewards.

From a stochastic process perspective, imagine an MC that has the same states as the one linked to

the original MDP, plus another absorbing end state Snew = S ∪ {end}. Then let us define the new

transition probability function:

Prnew
(
St+1 = st+1

∣
∣St = st

)
=







γPr
(
St+1 = st+1

∣
∣St = st

)
if st+1 6= end,

1− γ if st+1 = end,

1 if st = end ∧ st+1 = end.

(2.2)

In the new process, the dynamics between states of the old MC flows exactly as before. The end

state is a way to insert model uncertainty into the Markov Chain. At every time step, with a fixed

probability 1 − γ, the process can end, or end up in some non-predictable phase, that for the

practitioner is as good as finished (Lattimore and Hutter, 2014).

The probability of a trajectory (s1, . . . , sτ ) ∈ S
τ starting from s0 is:

Prnew
(
Sτ = sτ , . . . , S1 = s1

∣
∣S0 = s0

)
=

τ−1∏

t=0

Prnew
(
St+1 = st+1

∣
∣St = st

)

= γτ

τ−1∏

t=0

Pr
(
St+1 = st+1

∣
∣St = st

)

= γτPr
(
Sτ = sτ , . . . , S1 = s1

∣
∣S0 = s0

)
. (2.3)

The factor γτ that appears in the last expression is the same that we see in the definition of the

value function and it would naturally arise in this new setup if we put the constraint that at every

time step during the system evolution, we never want to end up in the ending state. Therefore, the

planner can forget about the existence of the ending state and model this eventuality by inserting

a factor γ in the value function.

Are there other ways of considering model uncertainty based on discount strategies? The

answer to this question is many (ibid.). For example, human beings and animals when taking

decisions abide by an hyperbolic discount strategy rather than exponential (Green and J. Myerson,

2004):

V π
hyp.(s) = Eπ

[
∞∑

t=0

1

1 + kt
R(St, At)

∣
∣S0 = s

]

(2.4)

with k being a constant. Hyperbolic discounting γ(t) = 1
1+kt

is considered an inconsistent discount-

ing strategy due to the resulting policies, which can generate temporary preferences for smaller,

immediate rewards over larger, delayed ones. This preference structure can lead to future re-
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gret for the agent as their decisions may not align with their long-term interests. This effect is

due to the hyperbolic function that distorts the values of rewards obtained at different times rt2

and rt1 considering the distance between the time of obtainment of the reward and the current

time step, but without keeping a fixed ratio (Laibson, 1997). For example, the ratio between the

values assigned to rewards (in the same state and action) obtained at time t2 and time t1 are
1 + kt2

1 + kt1
6=

1 + k(t2 − t1)

1 + k
, where at the right-hand side we are considering that t1 is the initial time

step. This is not the case for exponential discounting γ(t) = γt, where the ratio between rewards

gained at different time steps is always function of to their difference in time γt2−t1 independ-

ently of the starting instant (see Figure 2.1). Sozou (1998) showed that in a stochastic process
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(a) Ratio of discounts at different time intervals for
exponential discounting.
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(b) Comparison between hyperbolic and exponential
discounting strategies.

Figure 2.1: Discounting strategies. (a) Exponential discounting strategy for γ(1) = 0.9. It is
worth noting that exponential discounting reduces the discount factor proportionally by the same

coefficient when a period ∆t elapses, independently of the initial time, e.g.
γ(t+ 13)

γ(t)
=

γ(14)

γ(1)
=

γ(33)

γ(20)
≈ 0.25. (b) Exponential discounting strategy for γexp(1) = 0.9 and hyperbolic discounting

γhyp(t) =
1

1 + 1
9 t

. At t = 1 also γhyp(1) = 0.9.

framework considering a Bayesian prior over the possible rate of “hazard” 1− γ automatically res-

ults in different discounting strategies. This proves that discountings that are different from the

exponential one are not truly inconsistent, but justified when risk is taken into account. A delta

function prior (hazard rate exactly known) yields the exponential discount strategy that we have

encountered so far. However, a prior that includes uncertainty over the hazard, for example, an

exponential prior, yields the hyperbolic discount strategy. Nevertheless, the computation of a value

function that is characterized by hyperbolic discounting is incompatible with the Bellman equa-

tion, hence all the algorithms that exploit the Bellman operator can not be straightforwardly used

to solve an MDP with hyperbolic discount. Fedus et al. (2019) reformulated the problem by writing

the hyperbolic Q-function as an integral over “classic” Q values computed with different discount

factors γ. In their work, the authors also approximate the integral with a finite sum of multiple Q

values showing promising results. The algorithm was tested in an environment compatible with a

real ending absorbing state, and hence not representative of model uncertainty.

Ultimately, from what has been stated so far, interpreting the hazard rate as the chance of end-

ing the usual dynamics of the Markov Decision Process should be extremely useful in accounting

for model uncertainty and reducing the planning horizon in an offline learning context.

To that end, N. Jiang, Kulesza et al. (2015) empirically showed that when an MDP is learned

from a finite batch there exists an optimal discount factor γ∗ ≤ γev. that, when used to obtain the
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Figure 2.2: Figure taken from N. Jiang, Kulesza et al. (2015). A trivial MDP is learned from
batches of different sizes (specified on top of each subfigure). The training loss is the average
negative value of the policy π∗

M̂,γ
, which is obtained solving the trivial MDP M̂ with discount

factor γ, on the trivial MDP M̂ : − 1
|S|

∑

s∈S V
π∗

M̂,γ

M̂,γeval

(s). The test loss is the average negative value

of the same policy on the actual MDP M : − 1
|S|

∑

s∈S V
π∗

M̂,γ

M,γeval
(s). The minimum of the loss for the

actual MDP is obtained for a specific discount factor γ∗ < γeval. γ∗ approaches γeval when the
batch size grows, meaning that the more the model is accurate, the more long-term planning can
be convenient.

optimal policy for the trivial model, performs better than the policy obtained with the discount

factor used to evaluate the policy γev, i.e. two policies are obtained for the trivial model T̂ using

both γ∗ and γev and the performance of the policies is then evaluated in the true environment T

using γev (see Figure 2.2). Notwithstanding, this evaluation is done a posteriori and no strategy is

proposed to select γ∗.

2.2 Risk assessment

Planning in a learned environment is a delicate matter. Indeed, if the model learned does not

perfectly depict the reality the whole chain of sequential decisions might “crumble”, as an agent

might choose an action based on anticipated future scenarios that do not materialize. We have

seen that the planning horizon can naturally arise in the problem of seeking an optimal policy if

the agent also considers the risk of ending up in a terminal state or out of the model forecasts.

Pondering the said eventuality is crucial because deploying in the real world a strategy that is not

risk-sensitive might lead to dramatic aftermaths.

Determining the optimal policy for an MDP with an uncertain or imprecise transition function
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is a challenge that practitioners have been addressing since the seventies (Satia and Lave, 1973).

Numerous attempts have been made to develop a robust solution for a learned MDP. Historically,

the initial approaches considered the probability of transitioning in discrete states and actions

MDPs to be bounded within a polytope in the space of probability vectors. For example, the

polytope T = T : |T (s, a, s′)− T̂ (s, a, s′)| < δ,∀(s, a, s′) ∈ S ×A× S, where δ > 0 is a threshold

that limits the distance of any model in T from the trivial one. The works in Satia and Lave (1973),

C. C. White and Eldeib (1994), Givan, Leach and Dean (2000), Iyengar (2005) and Nilim and

El Ghaoui (2005) proposed algorithms that compute an optimal robust policy in the sense that,

at every time step, a malevolent nature picks from T the transition function that minimizes the

average discounted return that the agent seeks to maximize, i.e. min-max optimization problem.

However, polytope-based approaches are difficult to be used in real-life since the threshold δ is a

hyperparameter that needs to be ambiguously tuned.

Interestingly, maximizing with respect to the worst case is a protocol that has been explored also

for (online) robust planning in non-stationary MDPs in which the model uncertainty is exasperated

by time-changing dynamics (Lecarpentier and Rachelson, 2019).

The works in Shapiro and Kleywegt (2002) also suggested optimizing such a min-max problem,

but instead of constraining the model dynamics to live in a polytope, it conceived the model uncer-

tainty in a Bayesian fashion, thinking that the learned model T̂ might be distributed according to a

prior that included the information on the uncertainty. Nonetheless, the prior in this approach was

provided by an oracle, making it difficult for this method to find practical applications in real-world

scenarios.

The idea of framing the uncertainty about the model in a probabilistic way inspired approaches

that envisaged solving alternative (distributionally based) risk-utility functions. Delage and Man-

nor (2010) formalized the chance-constrained MDP framework, which is a classic MDP except

for both the reward function R and the transition function T that can be distributed according to

some prior, resorting to the Bayesian formalism. The robust optimization problem is addressed

by maximizing the percentile criterion. In this context, the planner seeks to find the policy that

maximizes a percentile (or a quantile) of the distribution of value functions, which are now ran-

dom variables distributed according to the Bayesian priors of R and T . The said priors can be also

inferred from a data set of transitions. The conjugate prior for T , in the case of finite states and

actions MDP, takes a Dirichlet form (Raiffa, Schlaifer et al., 1961).

Priors In particular, consider |S| random variables Yi with i ∈ {1, . . . , |S|} describing the the

probability of (S = s∗, A = a∗) → (S′ = si), given a batch of demonstrations D. The random

variables Yi, according to a Dirichlet (uniform and uninformative) prior, can be expressed as:

τ̃ s
∗,a∗ (

y1, . . . , y|S|

∣
∣n1, . . . , n|S|

)
= Γ (ν)

|S|
∏

i=1

yni

i

Γ (ni + 1)
(2.5)

where, Γ is the Euler gamma function, ni counts how many times the transition (s∗, a∗) → si

appears in D and ν =
∑|S|

k=1 (nk + 1) (ibid.). The most likely configuration for this distribution is

ŷi =
ni

∑|S|
k=1 nk

while the expected value is Eτ̃ [Yi] =
ni + 1

ν
.

Defining a prior for the reward function in a natural way is a challenging task because the

reward function can theoretically be any real-valued function. Without additional knowledge, se-

lecting one prior over another could introduce inappropriate bias in the problem’s formalization.
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Risk measures The percentile criterion is what in the field of mathematical finance has already

been known as the Value at Risk (VaR), which is a risk measure. Indeed, risk measures are widely

studied in mathematical finance due to the necessity to rationally quantifying the risk of invest-

ments (Artzner et al., 1999). Two popular risk measures are the Value at Risk (VaR) and the

Conditional Value at Risk (CVaR). It is hence important not to reinvent the wheel, and instead

establish formal and quantitative ways to define risk. Only after this has been accomplished can

the optimization problem be reformulated, taking this new, crucial feature into account in order to

obtain robust policies.

In alignment with the method of Delage and Mannor (2010), we first establish risk metrics

before moving on to the development of risk-aware utility functions.

Let M be a random variable governed by a probability measure Pr on its domain M, and

u : M→ R be a measurable function such that E
[
u(M)

]
< +∞. Following the works in Rockafellar

and Uryasev (2002), we define the cumulative distribution function of u(M) as:

Ψ(a) = Pr
(
u(M) ≤ a

)
. (2.6)

While in finance or insurance industry, losses that should be minimized (by looking for the optimal

decision) are considered, in the MDP framework, the function u is a utility function that should

be maximized (by seeking the optimal strategy). Let us consider a (low) risk level q ∈ (0, 1), that

corresponds to the (high) confidence level in (ibid.).

Definition 16 (Value at Risk). The Value at Risk (VaR) of the utility function u, at the risk level q is

aq = inf
{
a ∈ R|Ψ(a) > q

}
. (2.7)

The work in Föllmer and Schied (2016) offers a similar definition for random variables. The

definition of the Conditional Value at Risk is slightly different from the one in the work in Rockafel-

lar and Uryasev (2002), because again, in the MDP context, the lowest gains (to be maximized)

are considered, and not the highest losses (to be minimized) like in finance.

Definition 17 (Conditional Value at Risk). The Conditional Value at Risk (CVaR) of the utility func-

tion u at risk level q (Föllmer and Schied, 2016) is

φq = sup
z∈R

(z − q−1
E [z − u(M)]+). (2.8)

With the intent of solving for a risk-sensitive metric efficiently, the works in Petrik, Ghavamza-

deh and Chow (2016), Petrik and Russel (2019) and Behzadian et al. (2021) developed methods

to cut the support of the Bayesian prior into what is called an ambiguity set, i.e. a smaller set of

possible transition distributions. Such works propose dynamic programming algorithms to solve

the said optimization problem obtaining excellent results. Later on, Soft-Robust algorithms were

presented (Lobo, Ghavamzadeh and Petrik, 2021). Soft-Robust optimization consists in solving for

a weighted average of the classic MDP target (the average discounted return of the trivial model)

and a risk-sensitive utility function like the VaR or the CVaR with respect to model uncertainty.

This approach is currently the state-of-the-art method and also relies on ambiguity sets.

We point out that reducing the support of the Bayesian prior to an ambiguity set could discard

very unlikely regions of the distribution space, resulting in over-conservative policies, in the sense

that the obtained policies will be too similar to the batch collector one.
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2.3 Offline Reinforcement Learning

Surprisingly, a completely separate branch of research stemmed from the Reinforcement Learning

community with the aim of obtaining an optimal policy for an agent in an offline setting using a

fixed batch of demonstrations. Even though the purpose is very similar to what we discussed in the

last section, it seems that many RL researchers might be unaware of the investigations conducted

on offline solving of finite state and action MDPs, as evidenced by the references in their works.

This field goes by the name of Offline RL, even though some years ago people were also calling

it Batch RL (Levine et al., 2020). Historically, it stemmed from the adaptation of RL paradigms

to contexts where further interaction with the environment is not possible. One of the funda-

mental pillars of RL came up short: improving the estimates of the return by better exploring the

state-action space. As a consequence, at least the query about balancing the trade-off between ex-

ploration and exploitation is no more. However, since exploration was beneficial to the obtainment

of a good policy, certain precautions have to be taken to compute robust policies.

Offline RL methods can be grouped into three families: Model-based algorithms, Model-free

approaches, and Sequence models.

The main difference between model-free and model-based approaches is depicted in Figure 2.3.

Fixed
Data set Agent

Model Learning Planning

Direct Estimate of
Value Function Policy

Figure 2.3: Model-based methods learn a world model from data and then plan using it, model-
free paradigms fit directly the optimal value functions or policies.

Being successful in an offline learning problem is highly dependent on both the domain and the

dataset. In recognition of this, Fu et al. (2020) provided the community with Datasets for Deep

Data-Driven Reinforcement Learning (D4RL): a collection of environments, supported by batches

of data collected using different policies, which serve as a foundation for benchmarking various

offline RL paradigms.

2.3.1 Model-based offline RL

Model-based RL is that Machine Learning paradigm that first learns a world model from a data set

of demonstrations, i.e. a one-step simulator that receives as input the current state and the chosen

action and gives as output the next state and the reward, and then uses the world model as a

surrogate of the real environment for further interaction.

First attempts of Model-based RL were deployed in an online context for finite states and ac-

tions MDPs in which the world model was learned at the same time as a value function and/or

a policy (Atkeson and Santamaria, 1997; Sutton and Andrew G. Barto, 2018). One of the first
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paradigms belonging to this family was Dyna-Q, which alternated Q-learning in the real envir-

onment and Q-learning in a world model that was periodically updated with the newly collected

information (Sutton, 1990). Concurrently, to reproduce non-linear dynamics for the control of

complex systems, approaches based on parametric function approximators like neural-networks

(Draeger, Engell and Ranke, 1995) and Bayesian non-parametric models like Gaussian Processes

were proposed (Girard et al., 2002; Kocijan et al., 2004). Encouraging results led researchers to be-

lieve that combining planning in an approximate world model with more traditional RL algorithms

could lead to optimal policies with less interaction in the true environment (Abbeel, Quigley and

Ng, 2006). A significant step forward in the development of data-efficient model-based approaches

for controlling complex systems was made by Probabilistic Inference for Learning COntrol (PILCO)

(Deisenroth and Carl E. Rasmussen, 2011). PILCO inferred a Gaussian Process and optimized a

policy for it by analytically computing gradients. This method was inspired by Model Predictive

Control (MPC), also known as moving horizon control (C. E. García, Prett and Morari, 1989; Ca-

macho and Alba, 2013). MPC predicts the dynamics of the controlled system over a finite time

horizon while computing an optimal control that minimizes a cost functional and respects dynam-

ical constraints. A new version of PILCO that used the expressive power of DNN was created,

obtaining better results than the previous version (Gal, McAllister and Carl Edward Rasmussen,

2016). While the results of PILCO were impressive at the time, it still suffered from the inherent

drawbacks of Gaussian Process inference, such as the smoothness assumption of Gaussian ker-

nels. Indeed, Gaussian Processes are suitable for incorporating model uncertainty, but they are not

well-suited for inferring high-dimensional dynamics.

In parallel, inspired by Dyna-Q and guided by the breakthroughs of DQN, researchers began

developing DNN architectures capable of periodically learning and planning with deterministic

“imaginated” rollouts (S. Gu et al., 2016; Nagabandi et al., 2018).

Kamthe and Deisenroth (2018) merged the idea of obtaining a probabilistic world model via

a Gaussian Process and the MPC solver, allowing them to obtain data-efficient controllers in un-

known environments that also could respect dynamical constraints.

To overcome the shortcomings of Gaussian Processes, and hence having a system capable of

handling both low and high data regimes, the work in Chua et al. (2018) proposed an approach

where first a Probabilistic Ensemble of DNN is fitted to the data and then MPC is launched to

obtain the optimal control over stochastic rollouts. The authors showed how this architecture

could capture both epistemic uncertainty, i.e. uncertainty about the dynamics due to a lack of

sufficient data, and aleatoric uncertainty, i.e. the one that stems from inherent stochasticity of a

system like observation noise. The diversification of aleatoric and epistemic uncertainty has been

proven beneficial to the development of risk-sensitive criteria like a safeguard against model bias

and aversion to noise (Depeweg et al., 2018).

The Deep Planning Network (PlaNet) architecture managed the task of inferring a world model

for environments whose states were represented by images and planning in the latent state space

Hafner, Timothy Lillicrap, Fischer et al. (2019). The architecture is split into four main parts: a

transition model, an observation model, and a reward model, and a policy model. Uncertainty

arising from partial observability in images was addressed through the use of a so-called recurrent

state-space model for designing the latent dynamical model. Training on the latent dynamics was

conducted via image reconstruction. Building upon the PlaNet approach, Hafner, Timothy Lillicrap,

Ba et al. (2019) developed Dreamer, which extended the original method by planning directly in

the latent model without reconstructing images.

Subsequently and for the first time, a model-based architecture called Simulated Policy Learn-

ing (SimPLe) managed to achieve “decent” performances in games of the Atari Learning Environ-
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ment. It leveraged a discrete latent embedding before the reconstruction of the image. Readapting

Dreamer with the same idea (a discrete representation instead of a Gaussian latent variable) led

to DreamerV2, the first model-based architecture that reached human-level performances on Atari

(Hafner, T. Lillicrap et al., 2020).

Concurrently, as the last follow-up of the AlphaGo architectures, MuZero learns the immediate

reward function, the value function, and the best policy and uses them to plan both by estimation

and Monte Carlo Tree Search (Schrittwieser et al., 2020). The combination of the learned com-

ponents is used during both the learning and the planning process and allows the architecture to

achieve state-of-the-art performances across several board games.

Finally going offline As already stated, the spirit of the cited Model-based RL approaches is to

learn a model from demonstration, use it to plan, and then deploy this policy in the real environ-

ment to collect more data, hence improving the quality of the world model. Continuously reiterat-

ing the approach eventually leads to an optimal policy for the automated agent. If the procedure is

stopped at the first iteration, the learning is completely offline. At some stage, the community star-

ted to realize that to fulfill completely offline learning some precautions should be taken in order

to limit the possible risks of learning an unrepresentative model and hence deploying a dangerous

policy. With this in mind, almost in parallel to the previously introduced approaches, Model-based

Offline Policy Optimization (MOPO) (T. Yu et al., 2020) and Model-Based Offline Reinforcement

Learning (MOReL) (Kidambi et al., 2020) were presented.

MOPO optimizes for uncertainty-penalized MDPs: a new MDP M̃ , which has dynamics identical

to a trivially learned model M̂ , but the reward function is adjusted by a term proportional (through

a factor λ > 0) to an estimate of a transition-dependent epistemic uncertainty ũ(s, a):

R̃(s, a) = R̂(s, a)− λũ(s, a). (2.9)

In such a way, the optimal policies of M̃ would avoid uncertain regions of the state action space, i.e.

those for which ũ is significative. However, obtaining a good estimate ũ is easier said than done.

In the practical implementation of the method, the authors suggest training multiple Gaussian

regressors using DNN to predict the model dynamics, and then selecting the variance of the highest

regressor for that state-action pair as an estimate of the model uncertainty. Furthermore, tuning λ

is far from trivial.

The second approach, MOReL, adds to a trivial model a greatly penalized absorbing state.

Simultaneously, an estimator of the uncertainty about a transition is obtained from the data. If,

when using the world model, the agent incurs in a state action pair (s, a) for which ũ(s, a) > λ, then

MOReL would let the state transit to the absorbing one. In this case, λ > 0 is a threshold for the

acceptable epistemic uncertainty per state-action pair. Therefore, when optimizing for the policy,

the agent will avoid all uncertain state-action pairs. The idea of transiting to penalized absorbing

states for uncertain state-action pairs seems similar to the reasons that drive the introduction of a

discount factor γ in the MDP framework, outlined in Section 2.1. However, λ is the same for all

state-action pairs.

Likewise, even in this case estimating the model uncertainty is a very complicated task, as

acknowledging that an estimate of a transition is incorrect might subtly imply that the actual truth

is known. But the truth is not available. Consequently, it is challenging to formulate a precise

estimator without creating a cyclical and self-perpetuating problem, akin to the metaphor of a

snake biting its own tail.
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2.3.2 Model-free offline RL

Model-free offline RL is the class of architectures that directly compute an optimal policy or estim-

ate the values function using a set of demonstrations.

Model-free offline RL paradigms are specifically designed to fit value functions and policies

using the same Replay Buffer that an online agent would use. However, they take special precau-

tions to obtain robust policies, without engaging in further exploration, as demonstrated by Lange,

Gabel and Riedmiller (2012).

Policy Constraining One of the first Deep Offline RL methods was proposed by the work in

Jaques et al. (2017). The authors, in their attempt to create an automated generator for sequences,

proposed to train first an action sequence generator based on a RNN and then a second generator

using a DQN approach. They used the pdf for a sequence of actions inferred with the Recurrent

Neural Network (RNN) to compute a Kullback-Leibler divergence between the said pdf and a

stochastic policy obtained via the RL architecture. More in detail, the training phase of the Deep

RL network was modified for the loss function to penalize stochastic policies that yield sequences

of actions which are too different from the one contained in the data set.

The former idea inspired almost every other offline model-free paradigm in the years to follow.

Fujimoto, Conti et al. (2019) and Fujimoto, Meger and Precup (2019) formalized the concept in

Batch Constrained Deep Q-Learning (BCQ), obtaining control policies in the offline context both

for discrete and continuous action environments of OpenAI Gym. Kumar, Fu et al. (2019) enhanced

BCQ by providing a more comprehensive explanation for the necessity of constraining the learned

policy to not deviate too much from the one(s) that generated the dataset. In fact, since offline Q-

learning solely focuses on fitting the Q-value, attempting to estimate the function for state-action

pairs not present in the dataset would not only be pointless but also detrimental. The error in

fitting the Q-value function for these pairs would accumulate due to the Q-value bootstrapping

in Q-learning, leading to artificial overestimation of the Q-value for out-of-distribution state-action

pairs (see Figure 2.4). For this reason, the method Bootstrapping Error Accumulation Reduction

Figure 2.4: Taken from the presentation of Kumar, Fu et al. (2019) at NeurIPS 2019. Q-function
training does not query the Q-function value at unobserved states but could query it at unseen
actions. While the estimate of the Q-function for a fixed state s and variable action a using three
samples in the batch, represented as red dots, could be quite close to the Bayes optimal (dashed
curve β) for actions not too distant from the samples (left). The estimate of Q can incur into
artifacts for actions far from the samples, and those values could be used in bootstrapping (right).

(BEAR) that constrains the optimal policy to select actions that lie in the support of the distribution

of state-action transitions in the batch was proposed.

Eventually, with Conservative Q-Learning (CQL) (Kumar, Zhou et al., 2020), the problem was

44
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attacked from a similar yet different angle. Instead of constraining the optimal policy to lie in the

same support of the transition batch distribution, it is the very same Q function that should abide

by a regularization. The authors proposed a method for Offline Policy Evaluation (that will be the

topic in a later section) and Offline Policy Improvement.

Offline Policy Improvement aims to obtain a lower bound in the true environment for the Q-

value of the to-be-deployed policy. This is done by minimizing the expectation of the Q-value

under the distribution of states explored in batch D and actions taken according to the policy.

Additionally, it maximizes the expectation under the distribution of state-action pairs inferred from

the batch. This is done by balancing the trade-off between batch regularization and Q-learning

using a hyperparameter α̃.

Q̂k+1 ← argminQ






α̃




Es∼D,a∼π[Q]− Es∼D,a∼π̂D

[Q]
︸ ︷︷ ︸

batch regularization




+

1

2
E(s,a,s′)∼D[(Q− B̂

πQ̂k)
2]

︸ ︷︷ ︸

Q-learning MSE TD loss






. (2.10)

Subsequently, to acquire the optimal policy considering this regularization term, the estimate of the

Q-value must be improved by performing a maximization over π and another yet-to-be-defined reg-

ularization term R(π). This term could be, for example, the Kullback-Leibler divergence between

π and a prior policy:

Q̂k+1 ← argminQ max
π






α̃




Es∼D,a∼π[Q]− Es∼D,a∼π̂D

[Q]−R(π)
︸ ︷︷ ︸

batch regularization




+

1

2
ED[(Q− B̂

πQ̂k)
2]

︸ ︷︷ ︸

Q-learning MSE TD loss






.

(2.11)

Optimizing for this R dependent min-max problem yields policies that are more robust than the

one computed with the previous baselines when applied on the domains and batches from D4RL.

Despite the improvement in the performance of offline methods, they still suffer from the need

to tune a set of hyperparameters, much like online methods. Hyperparameter tuning is even more

challenging in the offline regime, as the environment cannot provide any feedback regarding their

validity.

The recent work in Fujimoto and S. S. Gu (2021) considered a minimalist approach for batch

regularization, which, for continuous action space problems, involved simply adding MSE regular-

izing term between the action provided by the optimal policy to be obtained and the one selected

for the sample in the dataset. According to the author, this could lead to algorithms that have

the same performances as state-of-the-art ones while reducing the set of hyperparameters to tune

and regularization terms to be applied, e.g. why use the Kullback-Leibler divergence and not other

distances?

Ensemble method Instead of focusing on constraining the learning phase like the methods pre-

viously mentioned, the work in Agarwal, Schuurmans and Norouzi (2020) proposed a different

solution: the Random Ensemble Mixture (REM) approach. In the latter, the authors train a fam-

ily of Q-function approximators defined by randomly mixing probabilities on a simplex and then

taking the average value as the final output. This way of regularizing the Q-value, based solely

on randomly mixing the values of multiple Q approximators, may seem trivial but proved more

performant than vanilla DQN and distributional methods in the offline context. However, it has

been shown to be inferior to CQL (Kumar, Zhou et al., 2020) or more recent architectures.
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2.3.3 Offline RL as a sequence model

The incredible successes of the Natural Language Processing community using Transformer-based

architectures for analyzing and creating text generator models (Devlin et al., 2019; Brown et al.,

2020) inspired Deep RL researchers.

A trajectory of a sequential decision process is nothing less than a sequence of states, actions,

next states, and rewards. By applying a suitable discretization to tokenize continuous variables

used to represent states, actions, and rewards, a trajectory can be mapped into a string whose

alphabet is the set of categorical tokens used. Based on this insight and on the remarkable ability

of transformers to learn distributions and correlations between tokens in sequences, a sequential

decision-making problem can be mapped into generating a specific “text-like” sequence model,

wishing for the sequence of actions that maximizes the sequence of rewards (L. Chen et al., 2021;

Janner, Q. Li and Levine, 2021; Reed et al., 2022) (see Figure 2.5). Since Natural Language Pro-

cessing approaches exploit a fixed data set of sequences, these methods are particularly suitable

for offline learning for planning. Even at the level of an initial adaptation of transformers for

offline sequential decision-making, the current architectures already claim to have reached the

performance of state-of-the-art model-free and model-based approaches. The implementation of

Figure 2.5: Taken from the work in Janner, Q. Li and Levine (2021): The Trajectory Transformer
trains on sequences of (discretized) states, actions, and rewards. Planning with the Trajectory Trans-
former mirrors the sampling procedure used to generate sequences from a language model.

sequence models for high-dimensional state and action spaces deserves further investigation since

the tokenization approach could potentially suffer from the curse of dimensionality.

2.3.4 Resume

In the end, we believe that the most promising research path would be those that attempt to take

into account risk and model uncertainty in a distributional way. In our view, further research should

be promoted on risk-sensitive policy constraining in the model-free paradigm and on Bayesian

representations of model uncertainty in the model-based framework.

2.4 Abstractions for data efficiency

As previously noted, solving an MDP can be a tedious computational task. On top of that, as men-

tioned, learning an MDP from data may not be straightforward. Notwithstanding, sometimes the

state-action space of the sequential decision-making problem is endowed with a particular struc-

ture that allows putting sets of states and actions into peculiar classes of equivalence. Once these
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classes of equivalence have been established, one could consider a simpler (smaller) MDP whose

state-action pairs are just representatives of the said classes. The simpler MDP is called an abstrac-

tion (see Figure 2.6). Planning in the abstraction would be easier than planning in the original

s0

s1

s2

s3

s′0 s′1

M

M′

0.5/00.5/0

0.5/1

0.1/1

0.4/0

0.2/1

0.8/0

1/1

0.5/1

0.5/0

1/1

Figure 2.6: Representation of an MDP M (left) and its abstraction M′ (right). Both MDPs have
different number of states but the same number of actions. The states s0 and s1 ofM are mapped
to s′0 inM′ (blue) while s2 and s3 are mapped to s′1 (red). Transitions between states are shown
with black arrow and probability of transition with respect to the two actions are displayed aside
the arrows. The probability of transition with the first action is displayed in blue and the probability
of transition with the second action is shown in red. The same reward is assigned to states and
actions of the same combination of colors. Planning inM′ provides the same optimal policy than
planning inM after lifting.

model. Moreover, up to an appropriate transformation, by construction, every policy obtained in

the abstraction can be deployed into the original decision process without loss in performance.

The interest in abstraction schemes rose with the hope of reducing a complex, continuous states

MDP into a discrete more tractable one (Whitt, 1978; Bertsekas and J. N. Tsitsiklis, 1995; Munos

and Moore, 2002; Munos, 2003).

Several schemes of abstraction have been proposed during the years (L. Li, Walsh and M.

Littman, 2006), among many we mention:

1. abstractions preserving the complete model, e.g. homomorphisms (Dean and Givan, 1997),

symmetries (B. Ravindran and A. G. Barto, 2001) and bisimulation (Givan, Dean and Greig,

2003);

2. abstractions that approximate the original model up to a given error, e.g. approximate ho-

momorphisms (Balaraman Ravindran and Andrew G. Barto, 2004) and bisimulation metrics

(Ferns, Panangaden and Precup, 2004).

As far as it concerns the first class, the works in Dean and Givan (1997) and Givan, Dean and

Greig (2003) introduced the notions of MDP homomorphism (structure-preserving maps between

the original MDP and one characterized by a factored representation) and stochastic bisimulation

to automatically partition the state space of an MDP and to find aggregated and factored represent-

ations. For those of the second class, B. Ravindran and A. G. Barto (2001) extended the previous

works on state abstractions to include the concept of symmetry. Subsequently, the work in Balara-

man Ravindran and Andrew G. Barto (2004) considered approximate homomorphisms. It is worth

reporting the definition of homomorphism in an MDP.
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Definition 18 (MDP Homomorphism). An MDP homomorphism h (Balaraman Ravindran and An-

drew G. Barto, 2004) from an MDP M = 〈S,A, T,R, γ〉 to an MDP M ′ = 〈S ′,A′, T ′, R′, γ〉 is a

surjection from S ×A to S ′ ×A′ , defined by a tuple of surjections (f, g), with h(s, a) =
(
f(s), g(a)

)
,

where f : S → S ′ and g : A → A′ such that ∀(s, s′) ∈ S2, a ∈ A:

T ′
(
f(s), g(a), f(s′)

)
=

∑

s′′∈[s′]f

T (s, a, s′′), (2.12)

R′
(
f(s), g(a)

)
= R(s, a). (2.13)

where [s′]f = f−1
({

f(s′)
})

, i.e. [s′]f is the set of states for which the application of f results in the

state f(s′) ∈ S ′.

Later on, Narayanamurthy and Balaraman Ravindran (2008) showed that the fully automatic

discovery of symmetries in a discrete MDP is as hard as verifying whether two graphs are iso-

morphic. Concurrently, Taylor, Precup and Panagaden (2009) relaxed the notion of bisimulation to

allow for the attainment of performance bounds for approximate MDP homomorphisms. Approx-

imate homomorphisms are of particular interest in continuous state MDPs where a hard mapping

to an aggregated representation could be impractical. In this context, Ferns, Panangaden and Pre-

cup (2004) developed a bisimulation pseudometric to extend the concept of bisimulation relation.

The automatic discovery of representations using the bisimulation pseudometric has been invest-

igated in recent years using DNNs and obtaining theoretical guarantees for such a methodology

(Ruan et al., 2015; Abel et al., 2020; Castro, 2020). From a different perspective, Mandel et al.

(2016) developed an algorithm that aims to cluster MDPs states in a Bayesian sense to solve the

MDP in a more data efficient way, even when an underlying homomorphic or symmetric structure

is not present. Recently, van der Pol, Kipf et al. (2020) used a contrastive loss function that en-

forces action equivariance on a to-be-learned representation of an MDP. Their approach resulted

in the automatic learning of a structured latent space which can be used to plan in a more data-

efficient fashion. Finally, van der Pol, Worrall et al. (2020) introduced MDP Invariant Networks, a

specific class of DNN architectures that guarantees by construction that the optimal MDP control

policy obtained through other Deep RL approaches will be invariant under some set of symmetric

transformations and hence providing more sample efficiency to the baseline when the symmetry is

present.

In the context of offline learning, knowledge of these structures prior to training could be

exploited by practitioners to improve and augment the batch. Information extrapolated from some

transitions could be valid for all state-action pairs in the same class of equivalence, including those

unexplored in the batch. Therefore, a method to detect a homomorphism or symmetry, even if not

fully automatic, could be a useful tool.

2.5 Offline Policy Evaluation and Selection

Is there a way to predict how performant a policy obtained offline will be when deployed in the real

environment? This question is very subtle, since if such a prediction was possible, why not exploit

it to improve the policy? Putting things clear, every algorithm has its own, implicit or explicit,

method to evaluate a policy. For instance, the CQL update rule for Q described in Equation 2.10

serves exactly the purpose of evaluating offline the Q function of a given policy π. In this context,

this section is dedicated to Offline Policy Evaluation methods that were not originally conceived in a
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policy calculation pipeline, or that successively have been used exclusively for Off-policy Evaluation

(OPE).

Having one or more “neutral” policy evaluation schemes is necessary to guide and motivate the

selection between policies obtained via different approaches. We classified the said approaches

into two groups: Importance Sampling-based methods and regression-based methods.

Regression-based methods Maybe one of the first regression-based methods was Fitted Value

Iteration (FVI) (Munos and Szepesvári, 2008), even though having been originally developed to

work with a world model (a generative model). The algorithm can iteratively estimate the value

function starting from a batch with theoretical bounds on its rate of convergence. It works as

follows: first, a set F of possible value functions is defined; in practical applications, it is a class

of parameterized functions like a Deep Neural Network. A value-function V0 ∈ F is randomly

chosen. Next, the following steps are iteratively performed at every iteration k ≥ 0: 1) a Monte

Carlo estimate of the Bellman operator applied on Vk using the samples in the batch is performed to

obtain a temporary V̂ ; 2) the p-norm based empirical loss between V̂ and a function f is minimized

for f ∈ F , the argmin will be Vk+1. The authors acknowledged that this approach could suffer

from the curse of dimensionality and advocated for the necessity of more adaptive methods.

For this purpose, Le, Voloshin and Yue (2019) proposed a method for (offline) OPE with Prob-

ably Approximately Correct (PAC) -style bounds: Fitted Q Evaluation (FQE). The approach is sim-

ilar to FVI: F in this case is the set of functions parameterized by weights and representable by a

DNN architecture. Furthermore, instead of obtaining an estimate of the Bellman operator applied

on V as in FVI’s step (1), it is the Q-learning TD target the one to be computed for each sample.

The work in Paine et al. (2020) showed that FQE is a robust method for offline policy (and/or

hyperparameter) selection even in high dimensional environments. However, how to tune the

hyperparameters of FQE itself (learning rate, neural network layers, etc.) is still an open question.

To provide a reply to this question, the work in Zhang and N. Jiang (2021) proposed a nearly

hyperparameter-free method for OPE. Nevertheless, and in our view, the said approach is highly

computationally costly and insensible to a lack of data coverage, which can result in an over-

optimistic evaluation in a small data regime.

Recently, C.-H. H. Yang et al. (2021) proposed a pessimistic method based on both regres-

sion and statistical inference to select the policy with the highest worst-case scenario performance

between a set of candidates. While promising, a worst-case scenario optimization might result in

too conservative choices.

Importance Sampling-based methods Importance Sampling estimators (Rubinstein, 1981) deal

with the special problem of estimating functions of e.g. according to a distribution using data

drawn from another distribution. In the case of OPE, one would like to estimate, for instance, the

value function for a policy π when the data in the batch were collected using another policy πD.

For clarity, let us consider the problem of estimating the expected value of the random variable X

over the distribution f using samples drawn from the distribution f ′. One could write:

Ef [X] =

∫

x

xf(x)dx =

∫

x

x
f(x)

f ′(x)
f ′(x)dx = Ef ′

[

X
f(X)

f ′(X)

]

, (2.14)

that would correspond to the following Importance Sampling estimators.

Classic importance sampling:

Ef [X] ≈
1

n

n∑

i=1

xi

f(xi)

f ′(xi)
, (2.15)
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and weighted importance sampling:

Ef [X] ≈
1

∑n
i=1

f(xi)
f ′(xi)

n∑

i=1

xi

f(xi)

f ′(xi)
=

n∑

i=1

xiwi. (2.16)

The terms proportional to f(xi)
f ′(xi)

are called the importance sampling weights.

Importance Sampling estimators have been used to estimate off-policy the value function of

an MDP in Precup (2000) and Precup, Sutton and Dasgupta (2001) without and with function

approximation. In these cases, the importance sampling weight is the ratio between the stochastic

policy to evaluate over the stochastic policy used to collect the data: wt =
π(at|st)
πD(at|st)

. Since the value

functions are defined as the expected cumulative reward over a trajectory, the importance sampling

weight assigned to a whole collected trajectory of H time steps will be
∏H

t=1 wt. Importance

sampling methods suffer from a high variance that grows with the horizon H.

The work in Dudik, Langford and L. Li (2011) introduced a doubly robust estimator for bandits

relying on importance sampling weights both for rewards and policy-induced transitions. N. Jiang

and L. Li (2016) extended the said work to MDPs, obtaining more robust estimators than the

state-of-the-art. Thomas and Brunskill (2016) merged doubly robust estimators for MDPs and a

model-based approach to obtain a more data-efficient off-policy estimator.

With the scope of bounding the variance for infinite-horizon trajectories, Q. Liu et al. (2018)

developed an importance sampling OPE resorting to a direct estimation of the stationary state

density ratio between the target and behavior policies.

Recently, the work in Chandak et al. (2021) proposed Universal Off-Policy Evaluation (UnO),

an importance sampling-based method to estimate offline the performance of a policy adhering

to risk-sensitive measures like the Value at Risk and the Conditional Value at Risk of the cumu-

lative discounted reward along a trajectory. UnO is a non-parametric and model-free estimator

that allows for the estimation of risk-sensitive metrics based on quantiles by estimating the full

cumulative distribution of returns of a fixed policy π starting from a pre-collected batch of experi-

ences. It is the said estimation of the full cumulative distribution that enables the computation of

metrics like the VaR and t2(he CVaR. However, UnO and other Importance Sampling-based tech-

niques are only capable of accurately estimating the distribution of returns for stochastic policies,

while many state-of-the-art policies are deterministic. Although the set of deterministic policies

is a particular subset of stochastic policies, the computation of the importance sampling ratio for

deterministic policies collapses onto a Kronecker delta, leading to inaccurate offline evaluations.

Therefore, there is a need for the development of a technique that can evaluate and select offline

robust deterministic policies.

Eventually, further investigation is coveted since the current baselines suffer from one or sev-

eral of the following limitations: high variance, dependence on additional hyperparameters, and

difficulty in correctly representing the uncertainty.

2.6 What about offline POMDP learning?

When partial observability enters the scene, learning a model from demonstrations becomes an

utterly complicated task. Nevertheless, offline POMDP learning is of great importance for robotics’

planning (Kurniawati, 2022; Lauri, Hsu and Pajarinen, 2023) since 1) usually robotic agents have

access only to error-affected measurements of physical quantities, and 2) a representative model of

the system dynamics might be impossible to be written by hand, especially when there are humans

in the loop.
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The greatest issue in offline POMDP learning is intrinsic and radicated at the root of any possible

learning procedure: which representation is the correct one? Remember that in a POMDP the

agent has only access to “observations”, while the system evolves in time by transitioning across

changing, partially observables or “hidden” states. To put any learning algorithm in place, one

must first deal with choosing how to represent the hidden state space: is it finite or endowed by

the cardinality of the continuum? If it is finite, how many states are there? If a practitioner or

an automatic algorithm should opt for a continuum space state, would the POMDP be solvable or

more approximations would be needed?

The second main issue is model uncertainty. For instance, in the case of a discrete MDP it is

almost straightforward to include uncertainty about the estimate of a model within a Dirichlet

distribution initialized with the frequency of transitions in the data set (see Eq. (2.5)). However,

such opportune modeling is not available when dealing with POMDPs. Moreover, one should

encompass not only the uncertainty about the transition function but also the observation function.

Offline POMDP learning is a problem way harder than offline MDP learning.

In the context of such challenges, it is worth considering the role of Predictive State Rep-

resentations (PSRs) (Michael Littman and Sutton, 2001). PSRs offer a different perspective to

traditional POMDP models by representing the state of a system as a vector of predictions for

future observations, instead of as hidden states. This predictive approach can provide a more in-

tuitive, data-driven understanding of the system’s dynamics, and could potentially address some

of the representation and uncertainty issues associated with POMDPs. However, while PSRs offer

a promising avenue, they come with their own challenges, including the practical limitations of

learning algorithms, issues with model initialization and parameter optimization, and the com-

plexities of applying these methods to non-convex systems (Downey, Hefny and Geoffrey Gordon,

2017).

Before the advent of Deep RL, offline POMDP learning has been investigated by the research

community. Nonetheless, to the best of our knowledge, no one managed to develop a general

approach. The proposed methods need extra expert knowledge, an oracle, or huge approximations

when they are up to be applied to real-world scenarios (Fern et al., 2007; Atrash and Pineau, 2010;

Taha, Miró and Dissanayake, 2011; Gopalan and Tellex, 2015). Therefore, the current baselines

reduce to use-case-specific paradigms that are not applicable in any context, and more often than

not, do not even fit in a fully offline learning scheme.

We will now outline how existing methods deal with the problem of the representation choice

and with the one of encompassing model uncertainty.

2.6.1 The problem of the representation choice

Choosing the right representation for a POMDP is crucial since it puts at stake the success of

the whole approach. A good representation should: (1) make the system abide by the Markov

property; (2) be coherent with the (also learned) observation function; (3) be such that the POMDP

can be solved or a (sub-)optimal policy can be approximately computed; (4) be representative

enough for the learned model to provide a good behavioral policy after resolution.

The majority of existing methods that learn a POMDP offline to address planning for robotics

define the representation with expert guidance. In the works from Fern et al. (2007), Atrash and

Pineau (2010), Taha, Miró and Dissanayake (2011) and Gopalan and Tellex (2015) the POMDP

representation is given by an oracle and only transition and observation functions are learned.

Broz, Nourbakhsh and Simmons (2011) assumed that the states are described by discrete variables

and the observations can be just a subset of the latter.
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In the context where the histories composing the data set have been generated by an unknown

POMDP, the work in François-Lavet et al. (2019) showed that choosing a discrete state space with

a lower dimensionality than the original POMDP can help reducing overfitting and hence obtaining

a more performant policy. The same work also advocates that reducing the discount factor during

planning can further benefit the performance of the policy at the time of deployment.

Zheng, Wu and Lin (2018) and Zheng and Lin (2019) use Bayesian non-parametric learning

to automatically define the state representation. To do so, the authors resort to a Beta-Process

Auto-regressive HMM as a predictive model for the collected data, i.e. a non-trivial process with

Gaussian co-variate emission and possible infinite states. Notwithstanding, the number of states

detected is greatly affected by the hyperparameters used by the approach and they are unlikely to

be interpretable.

2.6.2 Model uncertainty

Since learning a POMDP model from data is already arduous, and model uncertainty is a hardship

that very few approaches have tried to include and address.

The works in Atrash and Pineau (2010) and Doshi-Velez, Pineau and N. Roy (2012) admitted

that a learned trivial model might not be representative enough. For this purpose, they established

a Bayesian framework from which models are extracted by a Bayesian prior. However, model

uncertainty is then reduced in an online setting by allowing the agent to interact with an oracle.

In an offline context, the work in Zheng and Lin (2019) tackled model uncertainty by extend-

ing the POMDP framework to a so-called Vector Autoregressive POMDP. The Vector Autoregressive

POMDP considers temporal correlations between observations: the observation at time t does not

depend only on the current state s and previous action a but on the whole history of previous ob-

servations. Such a non-Markovian dependence in the observation makes it difficult even to call the

process a POMDP derivate. The PBVI was also successively extended to deal with Value functions

that depend both on the belief and the full history of observations along a trajectory (Zheng and

Lin, 2020). Notwithstanding, this approach is not easily interpretable and the extension of the

POMDP makes it extremely computationally costly.

Lastly, further research is needed in this field, as current approaches do not provide a universal

method that can be applied across a wide range of situations and domains.

2.7 Conclusions

In this chapter, we conducted a comprehensive analysis and review of the literature on the problem

of sequential decision-making under uncertainty in an unknown environment, using only pre-

collected experiences without further exploration. We note that the success of this approach is

heavily dependent on the quality and diversity of the dataset used. Using biased or insufficiently

detailed demonstrations can result in policies that fail to perform well in the real environment.

Function approximators, for instance, may misevaluate the outcome of actions taken in states

not already observed in the dataset. To address this challenge, we examined various methods,

including planning with different discounting strategies, leveraging abstractions, and optimizing

for risk-sensitive objectives based on the full distribution of returns along a trajectory. However,

optimizing for the latter is computationally demanding. With this in mind, we also introduced

policy evaluation and selection paradigms to identify the most robust policy from a set of candidate

ones that may differ due to a different choice of initialization hyperparameters. Furthermore, we

shed light on offline learning in POMDPs, where the presence of supposed hidden states poses a
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significant challenge that remains an open question - the choice of representation. In summary, the

field of offline reinforcement learning, whether model-based or model-free, continues to demand

significant attention from the research community as there is no method yet that can be considered

truly satisfactory.

Key Takeaways

• The size and variety of the data set have a great impact on offline learning.

• The outcome of out-of-distribution actions can be misevaluated.

• Planning with a shorter horizon can be beneficial.

• Abstractions can make both learning and planning more data-efficient.

• Risk-sensitive objectives that take into account model uncertainty are coveted.

Part of the content of this chapter gave rise to the following publication:

Giorgio Angelotti, Nicolas Drougard and Caroline Ponzoni Carvalho Chanel (2020).

‘Offline Learning for Planning: A Summary’. In: Proceedings of the 1st Workshop on

Bridging the Gap Between AI Planning and Reinforcement Learning at the 30th

International Conference on Automated Planning and Scheduling, pp. 153–161

+See the proceedings +See the arXiv preprint

In the following chapter, we will introduce a field that is poised to become the most significant

application case for offline reinforcement learning in the future: sequential decision-making for

systems that involve interaction between humans and robots.
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Chapter 3

The Firefighter Robot Game use

case: towards Mixed-Initiative

Human-Robot Interaction

In the first part of this Chapter, we introduce shared autonomy Human-Robot Interaction systems

and more specifically the Mixed-Initiative Interaction (MII) paradigm. In the second part, we

outline the specific shared autonomy use case scenario, the Firefighter Robot Game (Drougard

et al., 2017; Charles et al., 2018), that will serve as a proof of concept environment to test the

developed approaches.

3.1 Human-Robot Interaction

HRI is a branch of research devoted to comprehending, designing, and evaluating technologies for

use by or with humans (Goodrich, Schultz et al., 2008). Teleoperation can be seen as a kind of

HRI, in which human and robot are not co-located (Sheridan, 2016). More specifically, robots are

said to be teleoperated when they perform manipulation or mobility tasks in a remote physical

environment. This can be: (i) in correspondence with continuous control movements by the re-

mote human; or (ii) when the robot is programmed to execute pieces of the overall task under the

supervision of the human operator.

By definition, HRI implies the establishment of a communication channel between humans and

robots (Bartneck et al., 2020). The robot is not only accountable for its actions to reach a goal or

complete a task but also for its way of properly behaving in a social context populated by humans.

To do so, the designer of a HRI should implement in the robot a kind of capability of interpreting

and reacting to a not-so-easily forecastable human behavior. A communication channel can be

verbal and non-verbal. Non-verbal communication channels are of great importance, particularly

in teleoperation scenarios. The most effective non-verbal communication channels that allow a

robot to gather information about the human condition and intention in teleoperation cases can

be categorized into two broad classes: behavioral and physiological (R. N. Roy et al., 2020).

Behavioral markers provide an intuitive way to capture intention and mission performance.

Among behavioral markers, one could infer important information from tracking the gaze (Pey-

sakhovich et al., 2018) or from keystrokes, response time, clicks, and frequency of interaction of a

human operator on an interface (Caroline P. C. Chanel et al., 2020).
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Physiological markers convey information hidden at a “lower”, biological, layer. Numerous

works resort to real-time measurements of the electroencephalogram to estimate human satisfac-

tion (Esfahani and Sundararajan, 2011), attention (C.-M. Chen, J.-Y. Wang and C.-M. Yu, 2017),

errors (Ricardo, Sobolewski and R. Millán, 2014), and emotions (Dzedzickis, Kaklauskas and Buc-

inskas, 2020). Recent studies suggest that considering the heart rate and the heart rate variability

of a human can provide useful hints regarding her/his cognitive load (Caroline P. C. Chanel et al.,

2020; R. N. Roy et al., 2020; G. Singh, Caroline P. C. Chanel and R. N. Roy, 2021).

3.1.1 Autonomy and initiative

HRI does not exclusively involve information sharing, but also task sharing. The degree of in-

dependence of a robot when it comes to deciding not only when and how to communicate, but

also when making decisions, is dictated by its autonomy. The autonomy of a robot is defined as

its ability to make decisions independently of human operators (Mostafa, Ahmad and Mustapha,

2019). Adaptive autonomy refers to autonomous robots that exhibit some degree of flexibility in

their behavior assuming that the division of tasks between the human agent and the robotic agent

is not fixed, but rather variable. For instance, adaptive autonomy appears in teleoperation cases

when both direct remote control and supervisory control are possible.

Interestingly, MII features dynamic autonomy and can be seen as a kind of adaptive autonomy

interaction case (S. Jiang and Arkin, 2015).

In a Mixed-initiative HRI, the roles of the human operator and the robots are not predetermined

and the status of autonomy features no particular hierarchy. The tasks can be flexibly allocated by

the interaction strategy, allowing each agent to switch among them (ibid.). The interaction strategy

can enact the allocation and reallocation of tasks among agents at any moment during a mission

(Carneiro et al., 2016) to improve the quality of the interaction in terms of both cooperation and

independence (S. Jiang and Arkin, 2015) (see Figure 3.1). How can we construct an optimal

control system that governs interactions in teleoperation scenarios, particularly in accounting for

the remote human operator who initiates and subsequently triggers the robot’s autonomous beha-

vior? Furthermore, when are such autonomous behaviors relevant? To achieve effective control,

a model of the interaction is essential, which ideally should be capable of predicting human beha-

vior.1 Regrettably, no general mathematical model capable of predicting human behavior currently

exists.

Humans, as biological agents, exhibit significant individual differences. In the same situation,

each person may behave differently based on factors such as their attitude, background, education,

age, gender, and current physical and mental condition. Consequently, a human’s actions and

reactions can vary greatly depending on the context.

Behavioral modeling One way of modeling human behavior is trying to infer a probability of

executing a specific action in a given context in a data-driven fashion, i.e. employing a data set. If

the dataset is sufficiently large and diverse, and the model benefits from the appropriate degree of

expressivity, then hopefully the inferred probability values may accurately represent the likelihood

that a metahuman agent, which represents a generalized human agent from the category present

in the data set, will act in a particular manner.

In the past, human behavior has been modeled fitting a stochastic process in discrete time

(Pentland and A. Liu, 1999). Such a process produces a time series of values representing either

the temporal evolution of the system (e.g. the mental state of a human, if it can be represented

1This is not the case for Model-free Reinforcement Learning approaches that provide black-box solutions.
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Mixed-Initiative
Interaction Control

Automatic AgentHuman Operator

Environment

GUI

Figure 3.1: Example of a controller for a Mixed-Initiative Interaction System (up). The human
operator (left) and the automatic agent (right) feed the controller information about physiological
and behavioral markers (up left) or general mission markers (upright). Both operators and the
controller interact with a Graphical User Interface (GUI) (middle). The controller allocates the
appropriate degree of autonomy to the two agents along with possible alarms to warn the human
operator about the state of the mission (middle left and right). Both agents respectively interact
within the environment (down).

in some way) or the time evolution of a measurable characteristic generated by a non-directly

observable changing state (e.g. the time recording of the electrocardiogram or the sequence of

actions taken by a human at the teleoperation station). Anyway, inferring human behavior, in

general, necessitates a model with a high and unknown expressivity, and thus requires a huge data

set encompassing every conceivable situation.

Attempts to learn the stochastic model of human behaviors to optimize planning have been carried

out only for specific tasks, e.g. assistance during folder navigation in a computer environment (Fern

et al., 2007), user-tailored autonomous wheelchairs (Atrash and Pineau, 2010; Taha, Miró and

Dissanayake, 2011), calibrating a driving simulator (Broz, Nourbakhsh and Simmons, 2011), and

the determination of workload of pilots driving Unmanned Aerial Vehicles (Donath and Schulte,

2015).

Physiological computing Measurements of physiological markers to assess the human’s men-

tal states in a general HRI protocol have been investigated (R. N. Roy et al., 2020). In recent

studies, Souza, Caroline Ponzoni Carvalho Chanel and Dehais (2015), Drougard et al. (2017) and

Caroline P. C. Chanel et al. (2020) showed that including the measurements of both behavioral

and physiological features could improve the prediction of team’s performance of human-robot

MII models by better detecting an alleged mental state of the human (or some other quantity

functional to the optimization task). The selected features were a) the Heart Rate (HR) and its

variability recorded using an electrocardiogram; b) fixations in Areas of Interest (AOI) measured

with an eye-tracker; and c) records of the interaction of the user with any interface through a

manual controller like a mouse, a keyboard or a joystick.

The study by G. Singh, R. N. Roy and Caroline P. C. Chanel (2022) presented an approach
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for designing and solving a POMDP to obtain an adaptive interaction controller for Manned-

Unmanned Aerial Vehicles Teaming. The POMDP states were determined by the designer, while the

transition function was inferred from a pre-collected dataset of experiences, leveraging variable

independence assumptions and expert knowledge. Notably, the resulting interaction controller

primarily aimed to enhance the performance of the human operator rather than that of the entire

team.

We posit that implementing an adaptive interaction strategy can be especially advantageous in

teleoperation scenarios, where one or more human operators must collaborate with one or more

mobile robots. In this context, human and artificial agents form a team with a shared objective,

and human-related measurements can be accessible to the system responsible for interaction con-

trol. That is, the system takes the initiative to initiate autonomous behaviors in the robot(s) when

deemed relevant. However, when a human operator is in charge and she/he is interacting with

multiple autonomous robots deployed in an environment, she/he may face challenges in inter-

acting with such a complex system. For instance, the capacity of human agents to take over the

autonomous system can be strongly affected by several aspects such as poor user interface design,

multi-tasking during complex autonomous system operations, high operational pressure, extended

time on task, or even emotional commitment. These factors can undermine the human operator’s

performance and judgment during interaction (Cummings et al., 2013; Régis et al., 2014).

Interestingly, recent literature has demonstrated cases where artificial (software) agents as-

sist human operators as they manage complex systems in a man-machine teaming context. Ex-

amples include intelligent ground stations for (multi-)robot deployment (Kaufmann et al., 2021)

and power or nuclear power plant control (Marot et al., 2020). The primary goal is to aid the

human operator in executing appropriate actions, i.e. making the correct decision at the right

moment.

The pertinent question then becomes: when, why, and how should the system take the initiat-

ive?

Obtaining an adaptive strategy to drive the MII in such cases is complex. Since the (mental) state of

the human operator is not directly observable, one could think to design, learn and solve a POMDP

(as suggested by Souza, Caroline Ponzoni Carvalho Chanel and Dehais (2015)). Unfortunately,

several non-trivial hardships hinder progress in this area. For example, interacting with a system

that has a human in the decisional loop can be tedious, costly, and hazardous. Online training is

strongly discouraged, whereas offline learning, although preferred, could lead to suboptimal per-

formance policies due to the frugality of available data. Additionally, observations can be derived

from various sensors that measure fundamentally different quantities, such as the robot’s speed or

the human operator’s heartbeat rate. On top of this, information fusion must be conducted on data

that lack a formal, coherent structure, as they may represent a combination of discrete, continuous,

and boolean variables.

These daunting issues make an adaptive interaction application an intriguing use case for ex-

amining the theoretical contributions of this thesis. In the following section, we present the Fire-

fighter Robot Game (Drougard et al., 2017; Charles et al., 2018), a playable scenario where a

human operator needs to collaborate with a mobile robot to extinguish fires within a confined

area. This scenario has been specifically designed to induce deleterious human operator states, as

the individual is confronted with multiple tasks under uncertainty and time pressure.
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3.2 The Firefighter Robot Game

The Firefighter Robot Game, presented in Drougard et al. (2017) and Charles et al. (2018), was

chosen as a use-case because it was willingly designed to be challenging. The game puts the human

operator under pressure. Literature showed that in such cases it is relevant to adapt the system

(take the initiative) to help the human in order to improve mission performance. Indeed, while

dealing with learning an adaptive policy in this setting one must cope with all the hardships of

obtaining an optimal strategy for a sequential decision-making process under uncertainty and with

a human in the loop:

1. Unknown representation for hidden (mental) states;

2. Unstructured data observations;

3. Information fusion coming from different sensors;

4. Possibly low-data coming from previous experiments in the laboratory in which four missions

with eighteen different participants were recorded (Caroline P. C. Chanel et al., 2020);

5. Offline regime, since the learning phase is performed using exclusively a fixed pre-collected

data set;

6. High variability in the trajectories formed by the distinct biometric characteristics of human

operators;

7. Stochastic unknown environment;

8. Necessity of a robust, risk-aware strategy since the adaptive policy should satisfy a minimum

criterium of performance when applied to assist human operators that were never observed

in the original batch.

3.2.1 The mission

In a forest with nine trees that can catch fire at any moment, a firefighter human-robot team has

the duty of extinguishing as many fires as possible within a 10-minute time frame. The robot

is powered by a battery that supplies the necessary electrical energy for movement and has a

water tank for extinguishing fires. Additionally, the robot is equipped with a thermometer to

check whether its internal temperature does not rise too drastically, a condition necessary for the

well-functioning of the machine. The logistics team has established an energy supply zone within

the forest where the robot must go to recharge its battery, as well as a water pool to refill the

robot’s water tank. Unfortunately, the mission is not straightforward. Due to the extreme working

conditions, and probably inadequate maintenance, leaks can occur in the water tank. These leaks

must be repaired by the human operator, who is the sole agent capable of carrying out this task.

Moreover, in order to fill the water tank from the pool, a special nozzle must be carefully balanced

in an unstable equilibrium on top of the tank’s opening.

The autonomy The robot has two distinct modes of functioning: automatic mode and manual

mode.

1. In automatic mode, the robot prioritizes battery recharging and water tank refilling. Con-

sequently, it will autonomously navigate to the energy supplier or water pool when its re-

sources fall below a specified threshold. However, the robot is unable to refill the tank
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without the assistance of a human operator, who must operate the nozzle and place it on top

of the tank’s opening. If the battery and tank levels are above two designated thresholds, the

robot calculates the shortest path to the nearest burning tree, drives there, and extinguishes

the fire.

2. In manual mode, the robot is entirely remotely operated by the human, meaning that navig-

ation, battery and water recharging, temperature monitoring, and water dispensing must be

controlled and initiated by the human operator.

The interface The Graphical User Interface (GUI) is divided into four main sections (see Figure

3.2). In the upper left, there is general information about the mission, including the current score

and time remaining in seconds. The upper right section displays a first-person perspective from

the robot’s primary camera. The lower left section is dedicated to the tasks of water tank refilling

and leak repair. In the lower right section, a map of the forest is shown, with trees that may be on

fire, as well as a reminder of the robot’s status: its operating mode (manual or automatic), battery

level, water tank level, and temperature.

Figure 3.2: Courtesy of Caroline P. C. Chanel et al. (2020). Screenshot of the Graphical User
Interface (GUI) during a mission. Top left: the remaining time and score (number of extinguished
fires thus far). Top right: robot camera feedback. Bottom left: water stock management task.
Bottom right: overall robot status.

Data acquisition Experiments with humans playing the serious game have been carried out in

laboratory facilities at Institut Supérieur de l’Aéronautique et de l’Espace (Toulouse, France). The

said experiments were run with the aim of collecting data for further studies. Indeed, the collec-

ted data will serve as the starting batch for the contribution of this thesis presented in Chapter

6. During the experiments, the functioning of the teleoperated robot firefighter switched between

manual and automatic mode uniformly at random every ten seconds. Moreover, alarms concern-

ing important features of the mission were displayed, or not displayed, uniformly at random. A

uniformly random control policy is especially appropriate for data collection because it provides

the least amount of information, thus ensuring unbiased exploration. Two sets of data collection
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campaigns were performed, the first one included the registration of behavioral and physiological

markers of eighteen human volunteers along four missions (Caroline P. C. Chanel et al., 2020) (see

three samples of processed data in Table 3.1). The last is limited to the collection of actions of the

Table 3.1: Example of post-processed collected data. Each row corresponds to data recorded in a
10-second interval during a mission. In the columns, sub is the subject id; id the mission id; mode
and alarm determine the mode of the robot and whether the interface is providing alarms; HRn
and HRV are the heart rate and heart rate variabilities normalized with respect to the subject’s
rest baselines, the procedure is reported in (Caroline P. C. Chanel et al., 2020); nav and space
count the number of times the navigation and space keys have been pressed; tank and dtank
(or tank_local_score) are features relative to the tank refill task; fires counts the number of fires
extinguished; nAOIi counts the number of fixations in the i-th Area of Interest, while dAOIj the
cumulative duration of fixations in the j-th AOI; score is the total number of fires extinguished
during the mission; time displays how much time passed from the start of the mission.

sub id mode alarm HRn HRV nav tank space fires nAOI1 nAOI2 nAOI3 nAOI4 nAOI5 dAOI1 dAOI2 dAOI3 dAOI4 dAOI5 dtank score time
# # # # # # # # (sec) (sec) (sec) (sec) (sec) # (sec)

19 1 M OFF 6.2 -0.07 14 0 0 0 0 0 4 17 13 0.0 0.0 3.1 4.3 2.6 0.0 27 10
19 1 M OFF 7.9 -0.09 18 2 0 0 0 5 5 14 8 0.6 1.9 1.2 5.2 1.3 -2.2 27 20
19 1 A ON 6.9 -0.07 9 5 2 2 0 17 3 6 2 0.1 5.6 0.6 3.1 0.6 -8.5 27 30

human operator on the interface of an online playable version of the game via a crowdsourcing

platform (Charles et al., 2018).2 Due to the ease of playing the online version of the game (no

need to access the laboratory) hundreds of missions were recorded.

3.2.2 Discriminative features for performance prediction

In previous research, discriminative features were identified to help predict the performance of the

human operator, as demonstrated by Caroline P. C. Chanel et al. (2020). The objective was to de-

termine whether short time windows, specifically 10-second intervals of behavioral and physiolo-

gical data, could predict the engagement level of the human operator during a mission.

To achieve this, the collected dataset, comprising all 10-second time windows, was categorized

into high-performing and low-performing mission groups, facilitating data labeling. The results

indicated that behavioral and physiological markers were beneficial for classifying measurements,

depending on the robot’s automation level (see Figure 3.4). These findings suggest that incor-

porating physiological and behavioral data of human operators into an interaction control system

could lead to improved prediction of their engagement level during a mission, thereby optimizing

interactions and enhancing the performance of human-robot teams. The next paragraph outlines

the specific physiological and behavioral features employed.

Behavioral and physiological markers During the mission, the Heart Rate (HR) and Heart Rate

Variability (HRV) of the human operator are extracted from the Electrocardiogram (ECG) used to

collect the cardiac activity at a sampling rate of 500 Hz with the Faros Emotion 360 system. To facil-

itate comparisons between participants’ physiological markers, a normalization process was carried

out. This process involved adjusting the live measurements by subtracting each participant’s HR

and HRV values recorded at rest one minute prior to each mission. By normalizing the data in this

manner, the resulting physiological information was believed to become more consistent across

participants, enabling more accurate analysis and interpretation. Gaze movements and fixations

events are tracked using the SMI Red 250 Hz ET system with a threshold of 80 ms to identify in-

stream events. The interface is divided into five AOIs (see Figure 3.4). Key pressed, response time,

mouse clicks, and general frequency of interaction with the interface are also recorded.

2The game is accessible at https://robot-isae.isae.fr/welcome [Online: accessed 13-04-2023].
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Figure 3.3: Courtesy of Caroline P. C. Chanel et al. (2020). Average balanced accuracy for clas-
sification of 10 seconds averaged measurements during a Firefighter Robot Game mission with
different human operators. Input features were conditioned on the automation level of the ro-
bot, which constitutes an additional common input feature for all tests. The following classifiers
were tested. kNN: k-Nearest Neighbors; LDA: Linear Discriminant Analyses; QDA: Quadratic Dis-
criminant Analyses; SVM: Support Vector Machine; GP: Gaussian Process; DT: Decision Trees; RF:
Random Forest; NN: Neural Network; ADA: AdaBoost; and NB: Naive Bayes. For every classifier
best results were achieved when all the features were used.

3.3 Conclusions

An adaptive strategy for the quasi3 MII control system in the Robot Firefighter Game should select

the most appropriate action at every 10-second, i.e. the discrete decision time step, to maximize the

overall performance (the number of extinguished fires). Assuming this time interval, the control

system for adaptive autonomy should exploit available observations to decide which action to

execute between the following:

1. Set the robot in automatic mode and turn the alarm notifications on;

2. Set the robot in automatic mode and turn the alarm notifications off;

3The automated controller can take the initiative from the human operator but not vice versa, therefore the initiative is
not fully mixed.

Figure 3.4: Courtesy of Caroline P. C. Chanel et al. (2020). (a) Screenshot of the graphical user
interface showing the areas of interest (AOIs) defined for the study; (b) ECG data acquisition
during the experiment.
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3. Set the robot in manual mode and turn the alarm notifications on;

4. Set the robot in manual mode and turn the alarm notifications off.

Preliminary studies showed that learning an MDP from demonstrations collected using a random

control strategy, could, at least in principle and only in simulation, produce an adaptive optimized

policy that benefits from both the mission data and the behavioral markers of the human operator

(Charles et al., 2018).

The Firefighter Robot Game exhibits several general properties of a typical human-robot in-

teraction scenario, such as intersubject variability, latent intention, stochastic dynamics, and risky

consequences of actions. Considering all aspects, this environment serves as an ideal proof-of-

concept use-case for testing Offline Reinforcement Learning and planning methods augmented

with physiological computing.

Key Takeaways

• Mixed-initiative interaction refers to a type of Human-Robot interaction where both

the human and the automated agent can initiate actions.

• The mixed-initiative interaction setting can be applied to teleoperated scenarios

such as the Robot Firefighter Game.

• POMDPs provide a framework to develop adaptive control strategies for mixed-

initiative interaction scenarios.

• Recent experiments have shown that incorporating physiological and behavioral

markers of the human operator can enhance the quality of adaptive policies in

mixed-initiative interaction scenarios.

In what follows, the contributions of this thesis are presented in Part II. These contributions

are organized across four chapters, as outlined below:

• Chapter 4 outlines a method to detect alleged symmetries in an MDP in a total offline setting.

• Chapter 5 proposes a Bayesian method to encompass model uncertainty when a discrete

MDP is learned from data, and subsequently exploits this formalism to select a risk-sensitive

policy from a set of candidate strategies.

• Chapter 6 adapts some of the tools established in the previous chapters to first obtain an in-

terpretable model for human-robot Mixed-Initiative Interaction and then to develop a robust

behavioral adaptive control system to drive the interaction.

• Chapter 7 advocates a method to compute not only the contribution of policies in multi-agent

systems but also the contribution of agents’ features to the final score.

Finally, Part II concludes with a chapter that summarizes the entire work and discusses the

limitations and perspectives of the research.
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Chapter 4

Data augmentation for offline MDP

learning

In this chapter, we address one of the numerous issues concerning offline learning for planning, as

presented in Chapter 2. Specifically, we focus on the topic of detecting abstractions for more data-

efficient learning (refer to Section 2.4). We propose that it is feasible to harness prior information

on inherent symmetries in the dynamics of an MDP for their evaluation and subsequent utilization.

First, let us provide a definition of symmetry in an MDP.

Definition 19 (MDP Symmetry). Given an MDP M, let k be a surjection on S × A × S such that

k(s, a, s′) =
(
kσ(s, a, s

′), kα(s, a, s
′), kσ′(s, a, s′)

)
∈ S × A× S. Let (T ◦ k)(s, a, s′

)
= T (k(s, a, s′)).

k is a symmetry if ∀(s, s′) ∈ S2, a ∈ A both T and R are invariant with respect to the image of k (an

illustrative example will be provided shortly below):

(T ◦ k)(s, a, s′
)
= T (s, a, s′), (4.1)

R
(
kσ(s, a, s

′), kα(s, a, s
′)
)
= R(s, a). (4.2)

If kσ = kσ′ then an MDP symmetry is also an MDP homomorphism. On one hand, the studies

by van der Pol, Kipf et al. (2020) and van der Pol, Worrall et al. (2020) demonstrated that con-

straining the learning process of the obtainable Q-value function using a valid symmetry results

in convergence of the estimate with fewer samples. However, in this approach, valid symmetries

were provided by an oracle. On the other hand, it has been established that the fully automatic

discovery of homomorphisms in a finite MDP constitutes a graph isomorphism complete problem

(Narayanamurthy and Balaraman Ravindran, 2008).

In this context, the research questions that we answer are the following:

1. Is it possible to develop a method for expert-guided detection of alleged symmetries in the context

of offline learning?

2. Is Data Augmentation exploiting a detected symmetry beneficial to the learning of an MDP policy

in the offline context?

Contribution The contribution of this chapter is the proposal of a method based on Density

Estimation statistical techniques to validate the presence of an expert-given, alleged symmetry in an

MDP to exploit it to obtain a better solution in the offline setting.

To clarify the motivations, we present an intuitive example below.
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One of the most emblematic examples is checking whether or not a dynamical system is sym-

metric with respect to a specific transformation of the system of reference. Consequently, we aim to

exploit this symmetry for more efficient learning. For instance, consider the well-known CartPole

domain of the OpenAI’s Gym Learning Suite (Brockman et al., 2016). In CartPole, the purpose

of the automated agent is to prevent a rotating pole situated on a sliding cart from falling due to

gravity. The state of the system is expressed as a tuple s = (x, v, α, ω) where x is the position of

the cart with respect to a horizontal track upon which it can slide, v is its longitudinal velocity, α is

the angle between the rotating pole and the axis pointing along the direction of the gravitational

acceleration, and ω the angular velocity of the pole. The agent can push the cart left (←) or right

(→) at every time step (in the negative or positive direction of the track) providing to the system a

fixed momentum |p|. A pictorial representation of a state-action pair (st, at) can be found in Figure

4.1.

Let us suppose there exists a function h : S × A → S ×A that maps a state-action pair (st, at)

to
(
kσ(st), kα(at)

)
, where kσ : S → S and kα : A → A, such that the dynamics of the pair (s, a) is

the same as the one of h(s, a). Note that in this example, the system dynamics is symmetric with

respect to a flip around the vertical axis. In other words, its dynamics is invariant by multiplication

by minus one, assuming that if a =← then kα(a) = −a =→ and vice versa. Indeed, if the state-

action pair (st, at) leads to the state st+1, this property will imply that h(st, at) = (−st,−at) leads

to kσ(st+1) = −st+1.

x
x = 0

ah
kα(a)

Figure 4.1: The cart in the right is a representation of a CartPole’s state st with xt > 0 and action
at =←. The dashed cart in the left is the image of (st, at) under the transformation h which
inverses state kσ(s) = −s and action kα(a) = −a.

When learning the dynamics from a finite batch of experiences (or trajectories), resulting in

a set of transitions D =
{
(si, ai, s

′
i)
}n

i=1
with n ∈ N being the size of the batch, we might, for

instance, fit a function to predict the next state in a transition ŝ(s, a) = s′ to minimize a loss, e.g.

the Mean Squared Error (MSE). However, imagine that in the batch D there were many transitions

regarding the part of the state-action space with x > 0 and very few with x < 0. Unfortunately,

we may learn a good model to forecast what will happen when the cart is at the right of the origin

and a very poor model at its left side. We can then suppose that also a control policy will perform

well when x > 0 and poorly when x < 0. Nevertheless, if it were possible to be confident of the

existence of the symmetry kσ(s, a, s
′) = −s and kα(s, a, s

′) = −a (where the opposite of the action

a is the transformation stated above), we might extend the batch of experiences without additional

interaction with the system, and then improve the accuracy of the model also to the regions where

x < 0.

With this motivation in mind, in the next section, we present density estimation methods that

assist in learning the likelihood of any transition given the starting data set.
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4.1 Density estimation methods and Normalizing Flows

4.1 Density estimation methods and Normalizing Flows

To verify the presence of a symmetry, a preliminary estimate of the transition model is needed.

More specifically, we first perform a Probability Mass Function (pmf) estimation or a pdf estim-

ation of the transitions in the batch D depending on the typology of the MDP we are tackling

(respectively discrete or continuous). In the discrete case, this amounts to learning a set of dis-

crete distributions. In the continuous case, we can use approaches of the literature to approximate

the transition function, such as Normalizing Flows (Dinh, Krueger and Bengio, 2015; Kobyzev,

Prince and Brubaker, 2020). A Normalizing Flow is a DNN architecture that allows us to approx-

imate a pdf while being able to compute an analytically estimated density value for new samples.

In this way, once a pmf/pdf has been estimated from the batch of transitions D, we can compute

the probability of an alleged symmetric transition that is supposed to be sampled from the same

distribution. When the probability (or the density in the continuous case) is greater than a given

threshold for a high fraction of samples, we decide to trust in the presence of this alleged sym-

metry and augment the batch by including the symmetric transitions. In the end, the dynamics of

the model is learned over the augmented data set. When the approach detects a symmetry that

is present in the true environment, the accuracy of the learned model increases; otherwise, the

procedure could also result in detrimental effects.

Probability Mass Function estimation for discrete MDPs. Let D = {(si, ai, s
′
i)}

n
i=1 be a batch of

recorded transitions. Performing mass estimation overD amounts to compute the probabilities that

define the unknown discrete transition distribution T by estimating the frequencies of transition in

D. In other words, we compute Eq. (1.14).

Probability Density Function estimation for continuous MDPs. Performing density estima-

tion over D amounts to finding an analytical expression for the probability density of a transition

(s, a, s′) given D: L(s, a, s′|D). Normalizing flows (Dinh, Krueger and Bengio, 2015; Kobyzev,

Prince and Brubaker, 2020) allow defining a parametric flow of continuous transformations that

reshapes a known pdf (e.g. a multivariate Gaussian) to one that best fits the data. Since the trans-

formations are known, the Jacobians are computable at every step and the probability value can

always be assessed (Dinh, Krueger and Bengio, 2015).

4.2 Proposed paradigm and flowchart

We propose a paradigm to check whether the dynamics of a to-be-learned (i) discrete MDP (see

Algorithm 5) or (ii) a continuous MDP (see Algorithm 6) are endowed with the invariance with

respect to some transformation. A pseudo representation of the flow chart of the algorithms is

shown in Figure 4.2.

Estimate
transitions

Transform
data with k

Compute sym.
conf. value νk

Augment
or not D

νk > ν?

Figure 4.2: Pseudo flow chart of Algorithms 5 and 6.

Paradigm summary The paradigm can be summarized as follows:

1. An expert presumes that a to-be-learned model is endowed with the invariance of T with

respect to a transformation k;
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2. She/He computes the probability function estimation based on the batch D:

(a) (discrete case) She/He computes T̂ , an estimate of T , using the transitions in a batch D

by applying Eq. (1.14);

(b) (continuous case) She/He performs Density Estimation overD using Normalizing Flows;

3. She/He applies k to all transitions (s, a, s′) ∈ D and then checks whether the symmetry

confidence value νk

(a) (discrete case) using Eq. (4.9) is smaller than the confidence threshold ν;

(b) (continuous case) of probability values L evaluated on k(D) exceeds a threshold θ that

corresponds to the q−order quantile of the distribution of probability values evaluated

on the original batch. The quantile order q is given as an input to the procedure by an

expert (see Algorithm 6);

4. If the last condition is fulfilled, then D is augmented with k(D).

Notice that

0 < dk(s, a, s
′) ≤ 1 ∀(s, a, s′) ∈ S ×A× S. (4.3)

It is worth noting that since νk ∈ [0, 1], it can be interpreted as the probability that k is a

symmetry. Therefore, one could consider ν as a classification threshold and set it, for example, to

0.5 (binary classification). Moreover, keep in mind that once a transformation k is detected as a

symmetry, the data set is potentially augmented with transitions that are not present in the original

batch, injecting hence unseen and completely novel information into the data set.

Explanation of the procedure

LetM be a deterministic MDP, let D be a batch of pre-collected transitions, and let k be an alleged

symmetric transformation ofM’s dynamics.

Algorithm 5: Symmetry detection and data augmenting in a discrete MDP
Input: Batch of transitions D, k alleged symmetry
Output: Possibly augmented batch D ∪Dk

1 T̂ ← Most Likely Categorical pmf from D

2 νk = 1−
1

|D|

∑

(s,a,s′)∈D

dk(s, a, s
′) (where dk is defined in Equation 4.8)

3 if νk > 0.5 then
4 Dk = k(D) (alleged symmetric samples)
5 return D ∪Dk (the augmented batch)

6 else
7 return D (the original batch)
8 end

In order to check whether k can be considered or not as a symmetry of the dynamics, in the

discrete case, we will first estimate the most likely set of transition distributions T̂ given the batch

of transitions (Line 1, Algorithm 5) while in the continuous case, we will estimate the density of

transition in the batch obtaining the probability density value L(s, a, s′|D) (Line 1, Algorithm 6).

In the continuous case, we will then compute the density value of every transition (s, a, s′) ∈ D,

resulting in a set of real values from L denoted by Λ (Line 2, Algorithm 6). We will select the

q-order quantile of Λ to be a threshold θ ∈ R (Line 3, Algorithm 6) that will determine whether
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4.3 Expert-guided symmetry discovery

we can trust the symmetry to be present, and hence to augment or not the starting batch. Next,

we will map any (s, a, s′) ∈ D to its alleged symmetric image
(
kσ(s, a, s

′), kα(s, a, s
′), kσ′(s, a, s′)

)

(Line 4, Algorithm 6). The map of D under the transformation k will be denoted as Dk. Let then,

∀(s, a, s′) ∈ Dk, L(s, a, s′|D) be the probability density of the symmetric image of a transition in

the batch. We will assume that the system dynamics is invariant under the transformation k if

νk, the percentage of transitions whose density is greater than θ, is bigger than the percentage

threshold ν (Lines 5-10, Algorithm 6). In the discrete case, a complex estimate of a distance

between probability distributions is needed to assess if the sampled transitions would be likely

to have been generated also after the application of an alleged symmetric transformation (see

Subsection 4.3.1 for more details and Line 2 in Algorithm 5). If data augmenting is performed, the

boosted batch D ∪Dk will be returned as output.

This proposed paradigm offers a systematic way to check for the invariance of dynamics with

respect to a given transformation, potentially allowing for improved learning and more efficient

exploration of the state and action spaces. By identifying symmetries and augmenting the data-

set with novel information, this method can contribute to more effective reinforcement learning

algorithms and ultimately better decision-making processes in complex environments.

Algorithm 6: Symmetry detection and data augmenting in a continuous MDP with detec-
tion threshold ν = 0.5

Input: Batch of transitions D, q ∈ [0, 1) order of the quantile, k alleged symmetry
Output: Possibly augmented batch D ∪Dk

1 L ← Density Estimate (D) (e.g. with Normalizing Flows)
2 Λ← Distribution L(D) (L evaluated over D)
3 θ = q-order quantile of Λ
4 Dk = k(D) (alleged symmetric samples)

5 νk =
1

|Dk|

∑

(s,a,s′)∈Dk

1{L(s,a,s′|D)>θ}

6 if νk > 0.5 then
7 return D ∪Dk (the augmented batch)
8 else
9 return D (the original batch)

10 end

4.3 Expert-guided symmetry discovery

4.3.1 Discrete MDPs

For the method to work in both deterministic and stochastic environments, we need to measure the

distance between distributions. Estimating a distance in distribution is considered in the version of

the approach that addresses continuous environments, as learning a distribution over transitions

represented by their features is independent of the nature of the dynamics. However, when dealing

with categorical states, the notion of distance between features cannot be exploited.

We propose to compute the percentage νk relying on a distance between discrete probability

distributions. Since the transformation k is a surjection on transition tuples, we do not know a-

priori the correct mapping kσ′(s, a, s′) ∀s′ ∈ S. In other words, we can compute kσ′ , the symmetric

image of s′, only when we receive the entire tuple (s, a, s′) as input, as an inverse mapping might

not exist.
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4.3 Expert-guided symmetry discovery

Therefore, we will resort to computing a pessimistic approximation of the Total Variational Dis-

tance (proportional to the L1-norm). Specifically, given (s, a, s′), we aim to calculate the Chebyshev

distance (the L∞-norm) between T (s, a, ·) and T
(
kσ(s, a, s

′), kα(s, a, s
′), ·
)
. Recall that given two

vectors of dimension d, x and y both ∈ R
d, ||x− y||∞ ≤ ||x− y||1.

Let us then define the following four functions:

m(s, a, s′) = min
s∈S\{s′}:T̂ 6=0

T̂ (s, a, s) (4.4)

M(s, a, s′) = max
s∈S\{s′}

T̂ (s, a, s), (4.5)

mk(s, a, s
′) = min

s∈S s.t.
s 6=kσ′ (s,a,s′)

and T̂◦k 6=0

T̂
(
kσ(s, a, s

′), kα(s, a, s
′), s

)
, (4.6)

Mk(s, a, s
′) = max

s∈S s.t.
s 6=kσ′ (s,a,s′)

T̂
(
kσ(s, a, s

′), kα(s, a, s
′), s

)
(4.7)

where m (M) and mk (Mk) are the minimum (maximum) of the probability mass function (pmf)

T̂ when evaluated respectively on an initial state and action (s, a) and
(
kσ(s, a, s

′), kα(s, a, s
′)
)

for

which T̂ 6= 0. To make Equations 4.4 to 4.7 work even on deterministic or sparse T̂ , instead of

excluding zero values we add a small pseudo-count 0 < ε ≤ 10−6 to all possible transitions before

normalization when learning T̂ (line 1 of Algorithm 5).

To approximate the Chebyshev distance between T̂ (s, a, ·) and T̂ (kσ(s, a, s
′), kα(s, a, s

′), ·), we

define a pessimistic approximation dk as follows:

dk(s, a, s
′) = max

{ ∣
∣M(s, a, s′)−mk(s, a, s

′)
∣
∣

︸ ︷︷ ︸

(I)

,

∣
∣Mk(s, a, s

′)−m(s, a, s′)
∣
∣

︸ ︷︷ ︸

(II)

, (4.8)

∣
∣T̂ (s, a, s′)− (T̂ ◦ k)(s, a, s′)

∣
∣

︸ ︷︷ ︸

(III)

}

.

For the moment, consider T̂ (s, a, ·) and T̂
(
kσ(s, a, s

′), kα(s, a, s
′), ·
)

just as two sets of numbers.

Remove the value corresponding to s′ from the first set and the one corresponding to kσ′(s, a, s′)

from the second set. Taking the max between (I) and (II) just equates to selecting the maximum

possible difference between any two values of these modified sets. Equation 4.8 tells us to select

the worst possible case since we do not know which permutations of states we should compare

when computing the Chebyshev distance.

We remove s′ from T̂ (s, a, ·) and kσ′(s, a, s′) from T̂
(
kσ(s, a, s

′), kα(s, a, s
′), ·
)

because we hypo-

thesize that k maps (s, a, s′) to
(
kσ(s, a, s

′), kα(s, a, s
′), kσ′(s, a, s′)

)
, and thus, we can compare

those values directly (III).

In detail, the symmetry confidence value νk used in Line 2 of Algorithm 5 is defined as:

νk(D) = 1−
1

|D|

∑

(s,a,s′)∈D

dk(s, a, s
′). (4.9)

Extreme case scenario Is Equation 4.8 too pessimistic? Consider that for a given state action

couple (s, a), we have a transition distributed over 3 states s ∈ S = {One,Two,Three} with prob-

abilities T (s, a,One) = 0.01, T (s, a, Two) = 0.01 and T (s, a, Three) = 0.98. Now, assume the
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4.3 Expert-guided symmetry discovery

estimate of the transition function is perfect. Does the distance in Equation 4.8 converge to 0? Not

always, but what matters for the detection of symmetries is the average of the distances over the

entire batch (Eq. 4.9). Suppose that these probabilities were inferred from a batch with the trans-

ition (s, a,One) once, (s, a,Two) once and (s, a,Three) ninety-eight times. Consider (s, a,Three).

M(s, a,Three) = Mk(s, a,Three) = m(s, a,Three) = mk(s, a,Three) = 0.01. Following Eq. (4.8),

dk(s, a,Three) = 0. However, dk(s, a,One) = dk(s, a,Two) = 0.97, which is a too pessimistic estim-

ate. Nonetheless, let us calculate νk (Eq.4.9). For this state-action pair (s, a), the average over the

batch is: (dk(s, a,One) + dk(s, a,Two) + 98dk(s, a,Three))/100 = 0.0194. If the estimation is the

same for other pairs (s, a), then νk = 1 − 0.0194 = 0.9806. This is a value close to 1, suggesting k

is a symmetry.

4.3.2 Continuous MDPs

Figure 4.3 provides an intuition about Algorithm 6. The intuition behind the approach in the

Figure 4.3: Intuition for the continuous case. The xy plane is the space of transitions S × A × S,
the z axis is L, the value of the probability density of a given transition. The red points represent
D, the blue crosses Dk for a given transformation k. We display as a red contour plot the pdf
L learned in Line 1 of Algorithm 6. The orange hyperplane has height θ which is the threshold
computed in Line 3 of Algorithm 6. The blue vertical bars have as height the value of L evaluated
for that specific transition. The algorithm counts the fraction νk of samples (blue crosses) that have
a vertical bar higher than the hyperplane.

continuous case is that if in the original batch D the density of transitions that are “not so different”

from some of the symmetric images Dk of D, then L(Dk|D) will not be “too small”. How small

is small when we are considering real-valued, continuous pdf? In order to insert a comparable

scale, we take the threshold θ to be a q-quantile of the set of the estimated density values of the

transitions in the original batch D, i.e.
{
L(s, a, s′ | D) | (s, a, s′) ∈ D

}
. It goes without saying that

since the purpose of Algorithm 6 is to perform data augmentation, it is necessary to select a small

q-order quantile; otherwise, the execution of the procedure would serve no practical purpose. It

would be pointless to augment the batch with transitions that are already very likely in the original

one (see Figure 4.4). In this case, we would not insert any new information.
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D

Dk1

Dk2

S ×A× S

Figure 4.4: Representation of the support in S2 × A of the of D, Dk1
and Dk2

. k1 and k2 are
two different alleged transformations. The shape and position of the sets are determined by the
log-likelihood of the density estimate L and the quantile threshold θ. It is worth noting that
Dk1
∩ D 6= ∅ and Dk2

∩ D = ∅. If the user-chosen percentage threshold ν is taken into account,
then k1 may be detected as a symmetry while k2 is not. If k1 is indeed detected as a symmetry, then
augmenting the data in D with Dk1

involves training the model on the combined dataset D ∪Dk1
.

It is important to note that the data in Dk1
\D are not present in the original batch D.

4.4 Experiments

We test the algorithm in one discrete grid environment, with and without periodic boundary con-

ditions, and in a stochastic version of two famous environments of OpenAI’s Gym Learning Suite:

CartPole and Acrobot.

4.4.1 Environments

In the next subsections, we describe the environments and the proposed transformations k. It

is worth noting that sometimes we use a contracted notation to indicate kα. Let a1, a2, a3, a4

represent some actions ∈ A, for semplicity we denote g(a1, a2, . . . ) = (a3, a4, . . . ) to indicate

kα(s, a1, s
′) = a3, kα(s, a2, s

′) = a4, . . . , etc.

Discrete environments

Stochastic Toroidal Grid In this environment, the agent can move along fixed directions over

a torus by acting with any a ∈ A = { ↑, ↓,←,→}. However, when intending to head towards

Figure 4.5: Representation of the Grid Environment. The red dot is the position of a state s on the
torus. The displacement obtained by acting with action a =↑ is shown as a red arrow.

a chosen direction, the agent could slip and end up somewhere else (with a fixed probability),

i.e. in the opposite direction, to its left, or to its right. We conducted the experiments in four

different variants of this environment characterized by different transition probabilities (see Table
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4.1). In the first variant, when performing an action, the agent has a 60% chance of moving to

the intended direction, a 20% chance to move to the opposite one, and a 10% chance along an

orthogonal direction. In the second variant, when acting, the agent has a 75% chance of moving

to the intended direction, a 15% chance to move to the opposite one, and a 5% chance along an

orthogonal direction. In the third variant, the probabilities are, respectively, 90%, 5%, and 2, 5%.

In the fourth variant, the agent does not slip and always can move to the wanted direction with a

100% probability. For every variant, we collect z = 10 sets of M = 100 batches, with respectively

Table 4.1: Stochastic Toroidal Grid: transition probabilities for the four variants.

Variant Intended direction Opposite direction Orthogonal direction
1 60% 20% 10%
2 75% 15% 5%
3 90% 5% 2.5%
4 100% 0% 0%

N = 1000 × iz steps in each batch (iz going from 1 to z). The positions on the torus are the

states s = (i, j), and the set S is represented as a grid of fixed side l = 10 and periodic boundary

conditions (see Figure 4.5). Since there are no obstacles, this environment is endowed with many

symmetric transformations and therefore can serve as a useful proof-of-concept.

We tested Algorithm 5 with six different alleged transformations k in a Grid with size l2 = 100 over

N = 50 different simulations.

1. Time reversal symmetry with action inversion (TRSAI). Assuming that ↓ is the reverse of ↑

and← is the reverse of→, we proposed the following transformation: k =
(
kσ(s, a, s

′) = s′,

g(↑, ↓,←,→) = (↓, ↑,→,←), kσ′(s, a, s′) = s
)
.

2. Same dynamics with action inversion (SDAI). k =
(
kσ(s, a, s

′) = s, g (↑, ↓,←,→ ) =

(↓, ↑,→,← ), kσ′(s, a, s′) = s′
)
.

3. Opposite dynamics and action inversion (ODAI): k =
(
kσ(s, a, s

′) = s, g (↑, ↓,←,→ ) =

(↓, ↑,→,← ), kσ′(s, a, s′) = s′ ∓ (2, 0) ∨ (0, 2)
)
. In other words, we revert the action but also

the final state is changed to reproduce the correct destination.

4. Opposite dynamics but wrong action (ODWA). The alleged transformation is like the one

of Point 3, but the action is switched on the wrong axis, e.g. g(↑) =→).

5. Translation invariance (TI). k =
(
kσ(s, a, s

′) = s′, g (↑, ↓,←,→ ) = (↑, ↓,←,→ ) , kσ′(s, a, s′) =

s′ ± (1, 0) ∨ (0, 1)
)
.

6. Translation invariance with opposite dynamics (TIOD). In this case, the action is the same

as Point 5, but the agent returns to the previous state.

The said transformations are resumed in Table 4.2.

Deterministic Grid with boundaries This environment is a classic deterministic Grid with side

l = 10 and l2 = 100 the number of cells. As in the previous case, the agent can move along fixed

directions by acting with any a ∈ A = { ↑, ↓,←,→}. The outcome of the actions is deterministic,

i.e. every action has a 100% probability of success. It is worth noting that this grid has boundaries,

and therefore when the agent will try to cross any boundaries, it will instead stay in the same spot.

The valid symmetries proposed for the Stochastic Grid environment are, in this scenario, only

approximately valid, since they are broken for states next to the boundaries, but valid anywhere
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Table 4.2: Stochastic Toroidal Grid: proposed transformations and label.

k Label
kσ(s, a, s

′) = s′

kα
(

s, a = (↑, ↓,←,→), s′
)

= (↓, ↑,→,←) TRSAI
kσ′(s, a, s′) = s

kσ(s, a, s
′) = s

kα
(

s, a = (↑, ↓,←,→), s′
)

= (↓, ↑,→,←) SDAI
kσ′(s, a, s′) = s′

kσ(s, a, s
′) = s

kα
(

s, a = (↑, ↓,←,→), s′
)

= (↓, ↑,→,←) ODAI
kσ′(s, a = (↑, ↓,←,→), s′) =

(
s′ − (0, 2), s′ + (0, 2), s′ + (2, 0), s′ − (2, 0)

)

kσ(s, a, s
′) = s

kα(s, a = (↑, ↓,←,→), s′) = (→,←, ↑, ↓) ODWA
kσ′(s, a = (↑, ↓,←,→), s′) =

(
s′ − (0, 2), s′ + (0, 2), s′ + (2, 0), s′ − (2, 0)

)

kσ(s, a, s
′) = s′

kα(s, a, s
′) = a TI

kσ′

(

s, a = (↑, ↓,←,→), s′
)

=
(
s′ + (0, 1), s′ − (0, 1), s′ − (1, 0), s′ + (1, 0)

)

kσ(s, a, s
′) = s′

kα(s, a, s
′) = a TIOD

kσ′(s, a, s′) = s

else. After collecting data in the same fashion as for the Stochastic Toroidal Grid environment, we

tested Algorithm 5 with the very same six different alleged transformations k over N = 50 different

simulations.

Continuous environments

Stochastic CartPole As previously stated, the dynamics of CartPole is invariant with respect to

the transformation k = (kσ(s, a, s
′) = −s, kα(s, a, s

′) = −a, kσ′(s, a, s′) = −s)∀(s, a, s′) ∈ S×A×S.

In order to use Algorithm 6, we first map the actions to real numbers: ←= −1.5 and→= 1.5. We

then normalize every state feature in the range [−1.5, 1.5]. The dynamics of Stochastic CartPole

is similar to that of CartPole (Brockman et al., 2016), however, the force that the agent uses

to push the cart is sampled from a normal distribution with mean f (the force defined in the

deterministic version) and standard deviation σ̃ = 2. We tested Algorithm 6 with four different

alleged transformations k over N = 5 different simulations, a batch of size |D| = 103 collected

with a random policy, and a quantile order to compute the thresholds q = 0.1.

1. State and action reflection with respect to an axis in x = 0 (SAR). Assuming that ← is

the reverse of→ we proposed the following transformation: k =
(
kσ(s, a, s

′) = −s, g(←,→

) = (→,←), kσ′(s, a, s′) = −s′
)
.

2. Initial State Reflection (ISR). We then tried the same transformation as before but without

reflecting the next state s′: k =
(
kσ(s, a, s

′) = −s, g(←,→) = (→,←), kσ′(s, a, s′) = s′
)
.

3. Action Inversion (AI). What about reversing only the actions? k =
(
kσ(s, a, s

′) = s, g = (←

,→) = (→,← ), kσ′(s, a, s′) = s′
)
.

4. Single Feature Inversion (SFI). We also tried to reverse only one single feature of the start-

ing state: k =
(
kσ(s = (x, v, α, ω), a, s′) = (−x, v, α, ω), g (←,→ ) = (←,→ ), kσ′(s, a, s′) =

s′
)
.
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5. Translation Invariance (TI). We translated the position of the initial state x and that of the

final state x′ by an arbitrary value (0.3): k =
(
kσ(s = (x, v, α, ω), a, s′) = (x + 0.3, v, α, ω),

g(←,→) = (←,→ ), kσ′(s, a, s′ = (x′, v′, α′, ω′)) = (x′ + 0.3, v′, α′, ω′)
)
.

The proposed transformations are resumed in Table 4.3.

Table 4.3: Stochastic CartPole. Proposed transformations and labels.

k Label
kσ(s, a, s

′) = −s

kα
(

s, a = (←,→), s′
)

= (→,←) SAR
kσ′(s, a, s′) = −s′

kσ(s, a, s
′) = −s

kα(s, a, s
′) = a ISR

kσ′(s, a, s′) = s′

kσ(s, a, s
′) = s

kα
(

s, a = (←,→), s′
)

= (→,←) AI
kσ′(s, a, s′) = s′

kσ
(

s = (x, ...), a, s′
)

= (−x, ...)

kα(s, a, s
′) = a SFI

kσ′(s, a, s′) = s′

kσ
(

s = (x, ...), a, s′
)

= (x+ 0.3, ...)

kα(s, a, s
′) = a TI

kσ′

(

s, a, s′ = (x′, ...)
)

= (x′ + 0.3, ...)

Stochastic Acrobot The Acrobot environment consists of two poles linked with a rotating joint

at one end. One of the poles is pinned to a wall with a second rotating joint (see Figure 4.6).

The system is affected by gravity and hence the poles are hanging down. An agent can apply

α1 > 0

α2 < 0

Figure 4.6: Representation of a state of the Acrobot environment.

a negative torque to the lower pole (a = −1), a positive one (a = 1), or do nothing (a = 0).

The goal is to push the lower pole as high as possible. The state consists of the sine and co-

sine of the two rotational joint angles (α1, α2) and the joint angular velocities (ω1, ω2) : s =

(sinα1, cosα1, sinα2, cosα2, ω1, ω2). The dynamics is invariant under the transformation k =

(kσ(s = (α1, α2, ω1, ω2), a, s
′) = (−α1,−α2,−ω1,−ω2) and kα(s, a, s

′) = −a,

kσ′(s, a, s′ = (α′
1, α

′
2, ω

′
1, ω

′
2)) = (−α′

1,−α
′
2,−ω

′
1,−ω

′
2))∀(s, a, s

′) ∈ S ×A× S.

To apply Algorithm 6 we first normalize the state features and the action in the interval [−3, 3].

Stochastic Acrobot is the very same Acrobot of (ibid.) but at every time step a noise ε is sampled

from a uniform distribution on the interval [−0.5, 0.5] and added to the torque. We tested Algorithm

6 with four different alleged transformations k over N = 5 different simulations, a batch of size

|D| = 103 collected with a random policy, and a quantile order to compute the thresholds q = 0.1.

The label of the transformations hereafter explained are resumed in Table 4.4.

1. Angles and Angular Velocities Inversion (AAVI).

k =
(
kσ(s = (sinα1, sinα2, cosα1, cosα2, ω1, ω2), a, s

′) = (− sinα1,− sinα2, cosα1, cosα2,−ω1,−ω2),

77



4.4 Experiments

Table 4.4: Acrobot. Proposed transformations and labels.

k Label
kσ

(

s = (s1, s2, ω1, ω2, . . . ), a, s
′
)

= (−s1,−s2,−ω1,−ω2, . . . )
kα(s, a = (−1, 0, 1), s′

)

= (1, 0,−1) AAVI
kσ′

(

s, a, s′ = (s′1, s
′

2, ω
′

1, ω
′

2, . . . )
)

= (−s′1,−s
′
2,−ω

′
1,−ω

′
2, . . . )

kσ
(

s = (c1, c2, ω1, ω2, . . . ), a, s
′
)

= (−c1,−c2,−ω1,−ω2, . . . )
kα

(

s, a = (−1, 0, 1), s′
)

= (1, 0,−1) CAVI
kσ′

(

s, a, s′ = (c′1, c
′

2, ω
′

1, ω
′

2, . . . )
)

= (−c′1,−c
′
2,−ω

′
1,−ω

′
2, . . . )

kσ(s, a, s
′) = s

kα
(

s, a = (−1, 0, 1), s′
)

= (1, 0,−1) AI
kσ′(s, a, s′) = s′

kσ(s, a, s
′) = −s

kα
(

s, a, s′) = a SSI
kσ′(s, a, s′) = s′

kα(s, a, s
′) = −a, kσ′(s, a, s′ = (sinα′

1, sinα
′
2, cosα

′
1, cosα

′
2, ω

′
1, ω

′
2))

= (−sinα′
1,− sinα′

2, cosα
′
1, cosα

′
2,−ω

′
1,−ω

′
2)
)
.

2. Cosines and Angular Velocities Inversion (CAVI).

k =
(
kσ(s = (sinα1, sinα2, cosα1, cosα2, ω1, ω2), a, s

′) = (sinα1, sinα2,− cosα1,− cosα2,−ω1,−ω2),

kα(s, a, s
′) = −a, kσ′(s, a, s′ = (sinα′

1, sinα
′
2, cosα

′
1, cosα

′
2, ω

′
1, ω

′
2))

= (sinα′
1, sinα

′
2,−cosα

′
1,− cosα′

2,−ω
′
1,−ω

′
2)
)
.

3. Action Inversion (AI). k =
(
kσ(s, a, s

′) = s, kα(s, a, s
′) = −a, kσ′(s, a, s′) = s′

)
.

4. Starting State Inversion (SSI). k =
(
kσ(s, a, s

′) = −s, kα(s, a, s
′) = a, kσ′(s, a, s′) = s′

)
.

4.4.2 Setup

We first collect a batch of transitions D by acting in the environment with a uniform random policy.

We suppose the presence of a symmetry k and we try to detect it using Algorithm 5 or Algorithm 6.

We report νk, the average value plus or minus the standard deviation of the quantity νk, computed

over an ensemble of N different iterations of the procedure (using N distinct batches D). We set

the confidence threshold ν = 0.5 since νk is normalized between 0 and 1, and can be interpreted

as the binary probability of detecting or not a symmetry. However, distinct thresholds ν may yield

varying results.

We show the real gain in performance when the policies computed for the model learned using

the (augmented) data set eventually deployed in the real environment. The performance metrics

are defined in the next paragraphs.

Evaluation of the performance (discrete case) In the end, let ρ be the distribution of initial

states s0 ∈ S and let the performance uπ of a policy π be uπ = Es∼ρ[V
π(s)]. We consider as

performance difference the quantity ∆U = uπ̂k − uπ̂. In discrete environments, the policies are

obtained with Policy Iteration and evaluated with Policy Evaluation.

Evaluation of the performance (continuous case) In continuous environments, Offline Learn-

ing is not trivial. With the aim of showing that batch augmentation through symmetry detection
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is beneficial, we resort to two Model-Free Deep RL architectures: DQN (Mnih, Kavukcuoglu et al.,

2015) and CQL (Kumar, Zhou et al., 2020) of the d3rlpy learning suite (Takuma Seno, 2021) to

obtain a policy starting from the batches. The first method originally established the validity of

Deep RL and is used in online RL, while the second was specifically developed to address offline

RL problems. Convergence of Deep RL training is heavily dependent on hyperparameter tuning,

which in turn relies on both the environment and the batch (Paine et al., 2020). Therefore, we

apply DQN and CQL using the default parameters provided by d3rlpy, adhering more closely to an

offline learning setting. This implies that the learning may not always converge to a good policy.

We find this philosophy more honest than showing the results obtained with the best seed or the

finest-tuned hyperparameters. Each architecture is trained for a number of steps equal to fifty

times the number of transitions present in the batch.

4.4.3 Results

Discrete environments

Stochastic Toroidal Grid Detection phase (νk). The proposed algorithm perfectly manages to

identify the real symmetries of the environment (see Figure 4.7): νk > 0.5, ∀k ∈ {TRSAI,ODAI,TI}.

Moreover, there are no false positives: νk < 0.5, ∀k ∈ {SDAI,ODWA,TIOD}. We observe that in

the first variant, νk for a true symmetry saturates around 0.7 as the batch size increases, while νk

is slightly less than 0.5 for incorrect symmetries (see Figure 4.7a). Increasing the probability of

moving in the right direction raises the saturation level of νk for correct symmetries: 0.75 for the

second variant (see Figure 4.7b), 0.8 for the third variant (see Figure 4.7c), and 1 in the case of a

deterministic environment (see Figure 4.7d). Similarly, νk for an incorrect symmetric transforma-

tion decreases when the probability of moving in the right direction increases. In the deterministic

variant, νk = 0 for all k that are not symmetries.

Evaluation of performance gain (∆U). The difference in the performance of the deployed

policies, ∆U , aligns well with the expected behavior. When k is a symmetry, ∆U > 0 and ap-

proaches 0 as N increases. Conversely, when k is not a symmetric transformation of the dynamics,

∆U < 0 and continues to decrease with N (see Figure 4.8a). In the low samples regime, the

performance gain is the highest for the environment with the less deterministic transformations,

as more samples would be needed to estimate the correct transition function. In this case, data

augmentation using valid symmetric samples has the most significant impact on the performance

of the learned policy.

Deterministic Grid with boundaries Detection phase (νk). Figure 4.9a demonstrates that the

symmetries which are only approximately valid, such as TRSAI, ODAI, and TI, are detected with

a lower νk compared to their “deterministic toroidal counterpart” (see Figure 4.7d). This result is

not surprising, considering the manner in which νk is computed.

Evaluation of performance gain (∆U). Although the algorithm identifies TRSAI, ODAI, and TI

as valid symmetries, Figure 4.9b shows that using data augmentation with symmetric transitions

to enhance planning performance in this environment is, on average, detrimental. We hypothesize

that while data augmentation reduces the distributional shift for state-action pairs far from the

grid borders, it actually increases the error for state-action pairs at the border. This effect leads

to an overall decrease in performance if the computed policy relies on the negatively affected

state-action pairs.
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(a) First variant: movement in the intended dir-
ection with 60% probability.

(b) Second variant: movement in the intended
direction with 75% probability.

(c) Third variant: movement in the intended dir-
ection with 90% probability.

(d) Fourth variant: deterministic environment.

Figure 4.7: Stochastic Toroidal Grid Environment. νk for every variant and for every transform-
ations k computed over sets of 100 different batches of size N . Points are mean values and bars
standard deviations.
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(a) First variant: movement in the intended dir-
ection with 60% probability.

(b) Second variant: movement in the intended
direction with 75% probability.

(c) Third variant: movement in the intended dir-
ection with 90% probability.

(d) Fourth variant: deterministic environment.

Figure 4.8: Stochastic Toroidal Grid Environment. Performance difference ∆U . The threshold at
∆U = 0 is displayed as a dashed line. ∆U > 0 means that data augmenting leads to better policies.

(a) Deterministic Grid with boundaries. Probab-
ility of symmetry νk. The threshold at ν = 0.5 is
displayed as a dashed line. νk > 0.5 means that
the transformation is detected as a symmetry.

(b) Performance difference ∆U . The threshold at
∆U = 0 is displayed as a dashed line. ∆U >

0 means that data augmenting leads to better
policies.

Figure 4.9: Deterministic Grid with boundaries. Detection phase and evaluation of performance
gain.
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Continuous environments

Stochastic CartPole Detection phase (νk) In Stochastic CartPole, the algorithm fails to detect the

symmetry k = TI. This could be because the translation invariance symmetry in this case is fixed

for a specific value (see TI in Table 4.3 where the translation is set at 0.3). If the translation is too

small, the neural network struggles to discern the transformation from the noise. The algorithm

correctly classifies k = SAR as a symmetry and the remaining transformations as non-symmetries

(see Figure 4.10a).

Evaluation of performance gain (∆U). Results are displayed in Table 4.5. Offline RL is highly

unstable and sensitive to the choice of hyperparameters. Furthermore, the training is conducted

for a fixed number of epochs. We observe that on average, across different batch sizes, ∆U > 0

for DQN and SAR, and SFI transformations. While SAR is a valid symmetry, SFI is not. A more

conservative algorithm like CQL more readily exploits SAR. The performance difference for TI, both

for DQN and CQL, is so close to zero that we believe augmenting the data set with this symmetry

might not provide a significant advantage over using only the information contained in the original

batch.

(a) Stochastic CartPole. Probability of symmetry
νk. The threshold at ν = 0.5 is displayed as a
dashed line. νk > 0.5 means that the transform-
ation is detected as a symmetry.

(b) Stochastic Acrobot. Probability of symmetry
νk. The threshold at ν = 0.5 is displayed as a
dashed line. νk > 0 means that the transforma-
tion is detected as a symmetry.

Figure 4.10: νk, for the transformations k computed over sets of different batches of size N in
Stochastic CartPole (up) and Stochastic Acrobot (down). Points are mean values and are a bit
shifted horizontally for the sake of display. Standard deviation is displayed as a vertical error bar.

Stochastic Acrobot Detection phase (νk). In this environment, the only real symmetry of the

dynamics, AAVI, gets successfully detected by the algorithm with q = 0.1. Non-symmetries yield a

νk < 0.5 (Figure 4.10b).

Evaluation of performance gain (∆U). Results are displayed in Table 4.6 and indicate that the

training in Stochastic Acrobot is more challenging than in Stochastic CartPole. Even with a large

data set, the algorithms sometimes fail to learn a good policy. In particular, while CQL manages to

learn appropriate behavior in the environment by exploiting the AAVI symmetry (average ∆U =

52.9), DQN still struggles with every k, both correct and incorrect. However, CQL also benefits

from augmenting the data set with wrong symmetries, albeit to a lesser extent. We suspect that

this effect is due to the instability in Offline RL training.
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Table 4.5: ∆U for every alleged symmetry in Stochastic CartPole with two baselines and different
batch sizes N .

N (number of transitions in the original batch)

k Baseline 5000 10000 15000 20000 25000 30000 Average ∆U

SAR
DQN -7.3 25.4 41.8 7.2 9.0 3.4 13.3
CQL 37.4 -2.5 -4.1 20.1 17.9 -9.0 10.0

ISR
DQN -1.3 -48.5 -29.9 -78.7 -107.8 -29.1 -49.2
CQL 6.4 1.6 -2.2 -22.3 -10.3 -25.9 -8.8

AI
DQN 26.9 -48.5 -43.7 -74.6 -41.3 -84.6 -44.3
CQL -13.1 -7.6 -29.8 -6.5 -22.3 -15.3 -15.8

SFI
DQN -33.4 17.9 21.4 45.4 -6.9 -0.1 7.4
CQL -5.5 -2.1 7.4 -3.9 -3.6 -18.5 -4.4

TI
DQN 36.9 -28.1 34.5 15.7 6.1 -9.1 -0.2
CQL 7.6 -1.3 -2.1 11.8 -16.5 5.2 0.8

Table 4.6: ∆U for every alleged symmetry in Stochastic Acrobot with two baselines and different
batch sizes N .

N

k Baseline 10000 20000 30000 40000 Average ∆U

AAVI
DQN 24.7 -17.5 -63.4 -10.6 -16.7
CQL -2.8 10.5 -9.5 213.3 52.9

CAVI
DQN 8.9 -9.3 -24.6 -48.0 -12.2
CQL -8.8 0.5 4.4 1.1 -0.7

AI
DQN -377.3 -399.3 -386.8 -388.5 -388.0
CQL -25.6 235.3 -88.2 -49.9 17.9

SSI
DQN 265.7 -408.2 -334.9 -396.3 -218.4
CQL 35.8 4.0 11.9 -22.8 7.2

4.5 Conclusions

Data efficiency in the offline learning of MDPs is highly coveted. Exploiting the intuition of an

expert about the nature of the model can help to learn dynamics that better represent reality.

In this chapter, we built a semi-automated tool that can aid an expert in providing a statistical

data-driven validation of her/his intuition about some properties of the environment. Correct

deployment of the tool could improve the performance of the optimal policy obtained by solving

the learned MDP. Indeed, our results suggest that the proposed algorithm can effectively detect a

symmetry of the dynamics of an MDP with high accuracy and that exploiting this knowledge can

not only reduce the distributional shift but also provide performance gain in an envisaged optimal

control of the system. However, when applied to Offline RL environments with DNN, all the

prescriptions (and issues) about hyperparameter fine-tuning well known to Offline RL practitioners

persist.

Besides its pros, the proposed paradigm is still constrained by several limitations. We note
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that the quality of the approach in continuous MDPs is greatly affected by the architecture of

the Normalizing Flow used for Density Estimation and, more generally, by the state-action space

preprocessing. In detail, sometimes an environment is endowed by symmetries that an expert

can not straightforwardly perceive in the default representation of the state-action space and a

transformation would be required (imagine the very same CartPole, but with also the linear speed

and position of the car expressed in polar coordinates).

Future perspectives could include: (i) expanding this approach by trying out more recent Nor-

malizing Flow architectures like FFJORD (Grathwohl et al., 2019); (ii) considering combinations

of multiple symmetries.

Key Takeaways

• Offline estimation of the dynamics of a MDP can be challenging but is made easier

if the model’s dynamics is invariant with respect to certain state and action trans-

formations called symmetries

• A pipeline using density estimation methods, such as Normalizing Flows, is presen-

ted to effectively detect expert-proposed symmetries and exploit them to augment

the original data set

• This data augmentation technique can be used to improve the performance of off-

line reinforcement learning architectures and can tackle both deterministic and

non-deterministic MDPs.

The content of this chapter gave rise to the following publications:

Giorgio Angelotti, Nicolas Drougard and Caroline Ponzoni Carvalho Chanel (2022).

‘Expert-guided Symmetry Detection in Markov Decision Processes’. In: Proceedings of

the 14th International Conference on Agents and Artificial Intelligence - Volume 2:

ICAART,. INSTICC. SciTePress, pp. 88–98

+See the proceedings +See the arXiv preprint

Giorgio Angelotti, Nicolas Drougard and Caroline Ponzoni Carvalho Chanel (2023b).

‘Data Augmentation Through Expert-Guided Symmetry Detection to Improve

Performance in Offline Reinforcement Learning’. In: Proceedings of the 15th

International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,.

INSTICC. SciTePress, pp. 115–124

+See the proceedings +See the arXiv preprint

In the next chapter, we will contribute to addressing another well-known issue among offline

reinforcement learning practitioners: offline risk-sensitive policy selection.
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Chapter 5

Bayesian Policy Selection

In the field of offline model learning for planning and Reinforcement Learning, limited data avail-

ability can hinder the accuracy of the value function estimate for the corresponding MDP. This

can lead to suboptimal or even risky policies when deployed in the real world, where the con-

sequences of incorrect decisions can be catastrophic. As a result, researchers have explored various

approaches to reduce model error and develop risk-aware solutions that take into account model

uncertainty. In this chapter, we introduce Exploitation vs Caution (EvC), a paradigm that elegantly

incorporates model uncertainty using the Bayesian formalism, and selects the policy that maxim-

izes a risk-aware objective over the Bayesian posterior among a fixed set of candidate policies. We

validate EvC against state-of-the-art approaches in a variety of simple environments, demonstrat-

ing its ability to select robust policies that outperform the current baselines. EvC is thus a valuable

tool for practitioners aiming to apply offline planning and Reinforcement Learning in real-world

scenarios.

Research question The focus of this chapter is policy selection (or also hyperparameter selec-

tion) within a set of strategies obtained offline from a fixed data set of demonstration. The relative

state-of-the-art has been discussed in Chapter 2, and more specifically, the part about evaluation

and selection of risk-sensitive policies for offline MDPs has been outlined in Section 2.5.

Recall that recently, Chandak et al. (2021) proposed UnO, a method for evaluating policies

offline using risk-sensitive metrics. However, this approach is not expected to work effectively for

deterministic policies, as it relies on Importance Sampling.

The research question that we answer is the following:

Is it possible to develop to offline evaluate and select deterministic policies for MDPs in a risk-sensitive

way?

We show that developing such a technique is feasible, at least for small finite states and actions

MDPs. Before presenting the results, let use provide some necessary definitions.

5.1 Recalling definitions

Let us call the definition of performance in an MDP.

Definition 20. The performance of a policy π in an MDP M with value function V π
M is defined as:

uπ(M) = Es∼µ0

[
V π
M (s)

]
. (5.1)

Then, let us better formalize the Bayesian MDP (BMDP) briefly introduced in Section 2.2.
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Definition 21 (BMDP). A BMDP is an 8-tuple β
def
= 〈S,A, T ,R, τ̂ , ρ, γ,B〉 where S is the set of

states; A the set of actions; T is a parametric family of transition functions T of any MDP compatible

with S and A: T =
{
T : S × A × S → [0, 1] s.t.

∑

s′∈S T (s, a, s′) = 1
}

; R is a parametric family

of reward functions R of any MDP compatible with S and A: R =
{
R : S × A → [rmin, rmax]

}
;

τ̂ is a non-informative prior distribution uniform over T :
∫

T∈T
dτ̂ = 1 with τ̂ ≥ 0; ρ is a non-

informative prior distribution uniform over R:
∫

r∈R
dρ = 1 with ρ ≥ 0; γ ∈ [0, 1) is the discount

factor, and B = {(st, at, rt, st+1)} is a batch of transitions generated by acting in a fixed, unknown

MDP compatible with S and Aand initial state distribution µ0.

Definition 22. A solution to a BMDP β is a policy π which maximizes the following utility function:

Uπ
β

def
= EM∼τ̂p [u

π(M)] (5.2)

where, Uπ
M

def
= Es∼µ0

[V π
M (s)] is the expected value of an BMDP, averaged on the initial state, with

transition function sampled from a Bayesian prior or posterior τ̂p, e.g. defined by Eq. (2.5).

The optimal performance with respect to Eq. (5.2) will be the one that, on average, works the

best on the BMDP β when the model is distributed according to the Bayesian posterior:

U∗
β = max

π
Uπ
β . (5.3)

Definition 23. Let β be a BMDP and let V π
M (s) be the value function at state s while following a policy

π in the MDP M with transitions distributed according to the posterior τ̂p. Let also Pr (uπ(M)|B) be

the pdf over the possible values assumed by uπ(M) = Es∼µ0
[V π

M (s)] given the batch B. Then a

risk-aware utility function is defined as:

Uπ
β,σ

def
= σM∼τ̂p [u

π(M)] (5.4)

where, σ is a risk measure, e.g. the VaR (Definition 16) or the CVaR (Definition 17).

We refer to a BMDP whose performance is computed with respect to a risk-aware utility function

as a Risk-aware BMDP.

5.2 Solving offline a Risk-aware BMDP

The expectation over the distribution of models makes the resolution of a BMDP an intractable

computational task. Moreover, a Risk-aware BMDP also presents an additional difficulty: the risk

measure requires an estimate of the quantiles of the unknown value distribution given a policy.

Analytical maximization of the performance defined in Eq. (5.4)) is often either impossible or too

computationally demanding. To tackle the maximization problem, a valuable choice is to resort to

a Monte Carlo estimate of the performance. We will then look for a sub-optimal policy, rather than

an optimal one, by constraining the search to a set of candidate policies Π. However, what number

Lπ ∈ N of models would be necessary to be sampled in order to have an accurate estimate of the

performance of a policy within a chosen confidence interval? Ideally, Lπ should be as small as

possible because Policy Evaluation has to be performed Lπ times to obtain the Bayesian posterior

distribution of values assumed by the Value Functions.

Fortunately, this problem has been addressed by the work of Briggs and Ying (2018). It pro-

poses a procedure that allows iteratively sample values from a distribution whose quantile is re-

quired until the estimate of the said quantile will fall within a confidence interval with a required
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probabilistic significance.

In the present chapter, we exploit the idea of estimating a quantile through sampling to propose

the Monte Carlo Confident Policy Selection (MC2PS) algorithm. MC2PS is presented in Algorithm

7. MC2PS identifies a robust policy for a Risk-aware Bayesian MDP among a set of candidate

policies.

Algorithm 7: Monte Carlo Confident Policy Selection (MC2PS)
Input: set of policies Π, significance level α ∈ [0, 1], sampling batch size k ∈ N, relative

error tolerance εrel ∈ [0, 1], posterior distribution τ̂p, risk level q ∈ (0, 1), risk
measure σ, initial state distribution µ0, evaluation discount factor γ

Output: Best policy π∗

1 for π ∈ Π do
2 Uπ

β,σ ← RISKEVALUATION (π, σ, τ̂p, µ0, εrel, α, q, k, γ)

3 end
4 return π∗ = argmax

π∈Π
Uπ
β,σ

5 procedure RiskEvaluation
Input: policy π, risk measure σ = {V aR,CV aR}, posterior distribution τ̂p, initial state

distribution µ0, relative error threshold εrel ∈ [0, 1], significance level α ∈ [0, 1], risk
level q ∈ (0, 1), sampling batch size k ∈ N, evaluation discount factor γ.

6 Initialize uπ = ∅

7 (the loop estimates the quantile needed in Eq. (5.4))
8 repeat
9 for j ∈ { 1, . . . , k } in parallel do

10 SampleMj ∼ τ̂p
11 V π

Mj
(s)← Policy Evaluation on modelMj

12 uπ(Mj)← Es∼µ0
[V π

Mj
(s)] Eq. (5.1)

13 uπ ← append uπ(Mj)

14 end
15 Lπ ← |u

π|
16 Sort uπ in increasing order
17 Find (g, h) ∈ N

2 such that |h− g| is minimal and:

18 Pr(uπ
g ≤ aq < uπ

h) =
(
∑h−1

i=g

(
Lπ

i

)
qi (1− q)

Lπ−i
)

> 1− α

19 until uπ
h − uπ

g < εrel ·
(
uπ
Lπ
− uπ

1

)

20 if σ = VaR then
21 âq ← uπ

g

22 return âq
23 end
24 if σ = CVaR then

25 φ̂q ←
1
g

∑g
i=1 u

π
i

26 return φ̂q

27 end
28 end procedure

In detail, for a given set of policies Π and for every policy π ∈ Π, the algorithm incrementally

samples k transition models from τ̂p and performs Policy Evaluation in parallel for each one of

them until the stopping criterion is reached (see the RISKEVALUATION procedure in Alg. 7). The

stopping criterion guarantees that the estimate of the q-quantile is statistically well approximated

with a significance level α within a dynamically sampled confidence interval whose width is smaller

than εrel (lines 17-19) given the total Lπ models sampled.

Indeed, being uπ
i := uπ(Mi) the list of ordered performance values obtained from the sampled Lπ

models with i ∈ {1, . . . , Lπ}, the probability that the elements with indices h and g of this list are

bounding aq, will be given by the probability of the union of all the (incompatible) events that lead
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to uπ
g ≤ aq ≤ uπ

h (see Figure 5.1). In detail, let aq be the theoretical Value at Risk of uπ(M) at

risk level q. Let us denote sampled utility values in increasing order by uπ(M1) ≤ . . . ≤ uπ(MLπ
),

and suppose that the utility distribution has no probability atom at aq: ∀1 ≤ i ≤ Lπ, Ψ(aq) :=

Pr
(
uπ(Mi) ≤ aq

)
= q. Let us introduce the random variables

Bi = 1{
uπ(Mi)≤aq

} =







1, if uπ(Mi) ≤ aq,

0, otherwise.
(5.5)

The random variables Bi are drawn by a Bernoulli distribution with parameter q. The random

variable B =
∑Lπ

i=1 Bi is the number of sampled utilities that are lower than aq, drawn by a

binomial distribution with parameters Lπ and q. The event
{
uπ(Mg) ≤ aq < uπ(Mh)

}
is ∪h−1

i=g {B =

i}, i.e. the event “there are exactly g, g+1, . . . , or h− 1 sampled utility values that are lower than

aq”. Using the binomial distribution formula, the probability of this event is

Pr
(

uπ(Mg) ≤ aq < uπ(Mh)
)

=

h−1∑

i=g

Pr(B = i) =

h−1∑

i=g

(
Lπ

i

)

qi(1− q)Lπ−i. (5.6)

Hence, by imposing constraint
∑h−1

i=g

(
Lπ

i

)
qi(1− q)Lπ−i > 1−α when selecting indices r and s, we

ensure that

Pr
(

uπ(Mg) ≤ aq < uπ(Mh)
)

> 1− α, (5.7)

i.e. we get probabilistic bounds computed from the sampled utility values. Note that, if there is

a probability atom at aq, i.e. Pr
(
uπ(Mi) = aq

)
> 0, the previous reasoning cannot be applied

directly in the case where q < Ψ(aq) := Pr
(
uπ(Mi) ≤ aq

)
. However, we can write

q− := Pr
(
uπ(Mi) < aq

)
≤ q < q+ := Pr

(
uπ(Mi) ≤ aq

)
, (5.8)

and one can show that selected indices g and h are non decreasing with q. Thus, using the risk

level q, selected indices are higher than those that would be selected using q−, and lower than

those that would be selected using q+, both corresponding to utility values bounding the location

of the probability atom, i.e. the Value at Risk aq, with probability 1− α. Eventually, the algorithm

leverages the estimate of both the Value at Risk and of the policy value achieved on sampled models

to obtain an estimate of the utility function Uπ
β,σ for a specific risk measure σ and risk level q. For

instance, return the estimate of aq if σ = V aR or φq if σ = CV aR (lines 23-28). Finally, once the

utility function has been estimated for every policy, it outputs the one that maximizes it (line 4).

Let Λ be the total number of models sampled to estimate the quantile of the performance

distribution among policies: Λ =
∑

π∈Π Lπ.

MC2PS performs Policy Evaluation Λ times. The size of the space of all applicable policies of

a finite state and action space MDP is |Π| = |A||S|. Looking over the whole policy space can be

practically intractable even for not-so-big MDPs. Nevertheless, restricting the research to a subset

of policies could be a viable solution also for big MDPs, also considering that the Policy Evaluations

are carried out in parallel.

5.2.1 Exploitation vs Caution (EvC)

The work in N. Jiang, Kulesza et al. (2015) showed that the policy obtained by solving an MDP

M̂ = (S,A, T̂ , R, γ∗), trivially learned from a batch of experiences gathered from another MDP

M = (S,A, T,R, γev), with γ∗ a discount factor such as γ∗ ≤ γev, is more effective in M than
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Figure 5.1: Example of how the estimate in Algorithm 7 works: imagine you have an ordered list
with L values ui, i ∈ {1, . . . , L} represented in the figure as rows. The probability of the event in
Eq. (5.7) is

(
L
g

)
qg(1 − q)L−g and corresponds to the probability of the random variable B defined

in Eq. (5.5) to assume all integer values between g and h − 1. The said probability is the sum of
the probability of the events B = i with g ≤ i < h. In the figure, every addend is represented as
a row. In blue are encircled the values of ui smaller than aq and in green the ones bigger. The
algorithm looks for the indices (g, h) = argmin(g,h)|g − h| such that Pr(ug ≤ aq < uh) > 1 − α

and uh − ug < ε where ε is an error term dictating the maximum acceptable size of the confidence
interval.

the policy obtained by solving M̂ using γev. The rationale behind this observation is that T̂ is an

approximation of T , and may not be trusted for long-term planning horizons. Choosing the optimal

γ∗ balances the exploitation of information contained in the batch and the need for caution, given

that the model estimate is imperfect.

Motivated by the findings in N. Jiang, Kulesza et al. (ibid.) and the intuition that the model M

that generated the data will differ from M̂ but is expected to be “close” to it, we hypothesize that

policies obtained by solving an MDP M̃ = (S,A, T̃ , R, γ), where T̃ is close to T̂ and γ ≤ γev, can

serve as viable solutions for the Risk-aware Bayesian MDP.

In the following, we present the Exploitation vs Caution (EvC) algorithm, depicted in Algorithm

8. EvC aims to identify a promising risk-aware policy by concentrating the search on a set of

candidate policies Π, computed using several baseline algorithms A. This set is further enriched

by solving different MDPs M̃ with γ ≤ γev values. It is important to note that the goal is to find

a policy that performs well in the model M , considering that the agent does not have access to

the probability values defining the model, but only to the pre-collected batch. Model uncertainty

is addressed within a Bayesian MDP framework. As previously mentioned, our objective is not to

find the optimal solution to the Bayesian MDP, but rather to select the most robust or risk-aware

policy from the candidate set.

In detail, EvC first generates candidate policies that constitute the set Π by calling the GEN-

ERATEPOLICIES procedure (line 1). For this purpose, the problem is solved using a portfolio of

state-of-the-art algorithms, starting from the batch (line 6). Additionally, the trivial MDP4 M̂ and

l supplementary MDPs are sampled from the Bayesian posterior τ̂p obtained from the batch (line

4). These MDPs are then solved using different values of {γ ∈ G|γ ≤ γev} (lines 7-9), where γev is

the discount factor of the Risk-aware Bayesian MDP. It is important to note that the resulting set Π

contains unique solutions (line 9 and line 12). Finally, MC2PS is executed with the obtained set of

candidate policies Π, returning the best risk-aware solution π∗ ∈ Π (line 2).

4The trivial MDP M̂ is a straightforward MDP estimate using the batch B. For instance, in the case of a discrete MDP,
this is equivalent to the model that maximizes the likelihood of B, i.e., the one whose transition probabilities are obtained
from the frequencies of transitions in the batch.
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Algorithm 8: EvC
Input: risk level q ∈ [0, 1], significance level α ∈ [0, 1], sampling batch size k ∈ N, relative

error tolerance εrel ∈ [0, 1], posterior distribution τ̂p, risk measure σ, initial state
distribution µ0, set of discount factors G, number of models to solve l ∈ N, B batch
of transitions, evaluation discount factor γev

Output: best policy π∗.
1 Π← GENERATEPOLICIES (τ̂p, G, l)
2 return π∗ = MC2PS (q, α, k, εrel, τ̂p,Π, σ, µ0, γev)
3 procedure GeneratePolicies

Input: posterior distribution τ̂p, set of discount factors G, number of models l ∈ N to be
solved, B batch of transitions.

Output: policy set Π.
4 Initialize M = {l transition models ∼ τ̂p} ∪ {T̂}
5 Initialize Π = ∅ (an empty set)
6 Initialize A = {SPIBB,BOPAH,BCR,NORBU} (examples of baseline algorithms)
7 for (γ ∈ G,T ∈M) do
8 π(T,γ) = solution to the MDP with T and γ

9 Append π(T,γ) to Π if π(T,γ) 6∈ Π

10 for algorithm ∈ A do
11 πalgorithm = solution to the Offline MDP with B and algorithm
12 Append πalgorithm to Π if πalgorithm 6∈ Π

13 return Π
14 end procedure

For instance, if we test with 9 different discount factors, such as G = {0.1, 0.2, . . . , γev = 0.9},

and 5 different MDPs M̃ (including M̂), with l = 5, then we solve |Π| ≤ 9l = 45 MDPs to enrich

the set of candidate policies using this approach.

5.2.2 Theoretical guarantees

Since EvC searches for the policy π ∈ Π that maximizes the criterion of Eq. (5.4), the Algorithm 8,

rather than yielding a sub-optimal solution to the Risk-aware BMDP, can be seen as a policy selec-

tion approach. Assuming that the Bayesian posterior τ̂p efficiently encodes the model uncertainty,

EvC outputs a policy whose performance in the real environment is guaranteed in probability to

be greater than some value that changes with respect to the chosen risk-aware measure. More

simply, we can provide theoretical guarantees on the estimate of the quantile needed to compute

the risk-aware utility function that will be eventually maximized over the set of candidate policies.

Theorem 1. Let π ∈ Π be a candidate policy and uπ(Mg) be an estimate of the Value at Risk of

uπ(M) at risk level q calculated through EvC. Let uπ(M) be the performance of π with M distributed

according to the Bayesian posterior τ̂p. The performance of π in this MDP M is greater than the

estimate of aq with probability:

Pr
(
uπ(M) ≥ uπ(Mg)

)
≥ (1− q)(1− α). (5.9)

Proof. Note that
{
uπ(M) ≥ aq

}
∩
{
aq ≥ uπ(Mg)

}
⊆
{
uπ(M) ≥ uπ(Mg)

}
, where aq denotes the

Value at Risk of uπ(M) at risk level q. The two events of the intersection respectively depend on

two independent random variables – a future performance uπ(M), that could be obtained by acting

according to the policy π, and a Value at Risk estimate uπ(Mg), whose randomness is the result of

the sampling procedure in the Algorithm 7. The previous inclusion allows writing Pr
(
uπ(M) ≥
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uπ(Mg)
)
≥ Pr

(
uπ(M) ≥ aq

)
·Pr

(
aq ≥ uπ(Mr)

)
≥ (1−q) ·Pr

(
aq ≥ uπ(Mg)

)
≥ (1−q)(1−α). The

last inequality is ensured by the quantile estimation (lines 19-22 in Algorithm 7), and the previous

one by the definition of aq. Therefore, we get the Equation 5.9.

When the risk-aware measure used in EvC is VaR the lower bound on uπ(M) (uπ(Mg)) in the

Proof of Theorem 1 is maximized over the policies. If the risk-aware measure is CVaR the empir-

ical expected value over the q-fraction of low-performant policies is maximized. Since uπ(M1) ≤

uπ(M2) ≤ . . . ≤ uπ(Mg), then 1
g

∑g
i=1 u

π(Mi) ≤ uπ(Mg), therefore the same lower bound in

probability is also valid for the CVaR utility function:

Pr

(

uπ(M) ≥
1

g

g
∑

i=1

uπ(Mi)

)

≥ Pr
(
uπ(M) ≥ uπ(Mg)

)
≥ (1− q)(1− α). (5.10)

Theorem 2. Let π ∈ Π be a candidate policy, Ni ∈ M be one of the n new sampled models from

the posterior τ̂p such that ∀i, uπ(Ni) ≤ uπ(Mg), with uπ(Mg) calculated through EvC, and U =
1
n

∑n
i=1 u

π(Ni) be the new estimate of φq. This new estimate of the Conditional Value at Risk of uπ at

risk level q respects the following inequality:

Pr
(
|U − φq| ≥ t

)
≤ 2 exp

(

−
2nt2

(
uπ(Mg)− ξ

)2

)

+ α, (5.11)

with ξ = infm∈M uπ(m), or any other lower bound of uπ as, for instance, rmin

1−γ
. Note that ξ ≥ 0 if the

reward values are known to be non-negative.

Proof. By using the law of total probability, and upper bounding some probability values by 1,

Pr
(

|U − φq| ≥ t
)

= Pr
(

|U − φq| ≥ t
∣
∣∀i, uπ(Ni) ≤ aq

)

Pr(∀i, uπ(Ni) ≤ aq)

+ Pr
(

|U − φq| ≥ t
∣
∣∃i s.t. uπ(Ni) > aq

)

Pr
(
∃i s.t. uπ(Ni) > aq

)

≤ Pr
(

|U − φq| ≥ t
∣
∣∀i, uπ(Ni) ≤ aq

)

+ Pr
(
∃i s.t. uπ(Ni) > aq

)
.

The probability value on the right is lower than Pr
(
uπ(Mg) > aq

)
≤ Pr

(

aq /∈
[
uπ(Mg), u

π(Mh)
))

≤

α using the inequality Pr(uπ(Mg) ≤ aq) > 1 − α from lines 19-22 of Algorithm 7. What follows

only depends on the definition of φq as the expected value up to aq, and Hoeffding’s inequality.

It should be noted that in Theorem 2, the models (Ni)
n
i=1 are independent random variables

when conditioned on ∀i, uπ(Ni) ≤ aq. This is due to the fact that aq represents the theoretical

Value at Risk at risk level q, and as such, it is not a random variable.

5.3 Experiments

To evaluate the proposed approach, we selected three small MDPs, which are easy-to-study stochastic

environments with diverse characteristics: two planning environments without absorbing states,

Ring (5 states, 3 actions) and Chain (5 states, 2 actions). The former involves stabilizing the agent

in a specific non-absorbing goal with stochastic drift, while the latter presents cycles. Addition-

ally, we considered the Random Frozen Lake (RFL) environment, a re-adaptation of the Frozen

Lake from the OpenAI Gym suite (Brockman et al., 2016), which is an 8 × 8 grid world with fatal

absorbing states.
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5.3.1 Description of the environments

Ring This environment consists of five states: 0, . . . , 4, forming a single loop. There are three

possible actions: a, b, and c. The agent starts in state 0. Action a moves the agent to state s − 1

with probability 1.0 (e.g., from state 4 to 3) if s = 0, 1, 3, and with probability 0.5 if it is elsewhere.

With action b, the agent remains in the same state with probability 0.8 and moves to the left or

right with probability 0.1 if in state s = 0, 1, 3. If in state 2 or 4, the agent moves with probability 1.

Action c moves the agent to the right with probability 0.9 and remains stationary with probability

0.1 if in state s = 0, 1, 3. In other states, the same effects occur but with probability 0.5. The

agent earns an immediate reward r = 0.5 when moving from 2 → 3 or 4 → 3, and r = 1 for any

transition 3→ 3. In all other cases, r = 0. A graphical representation is shown in Figure 5.2a.

Chain This environment, proposed by Strens (2000), was adapted for this study. It consists of

five states with an open chain topology and two actions a and b. The agent starts in the leftmost

state. With action a, the agent moves to the right and receives an immediate reward r = 0 with

probability 0.8. Once in the rightmost state, performing action a allows the agent to stay and

receive a reward r = 10 with probability 0.8. The agent slips back to the origin and earns a reward

r = 2 with probability 0.2. Action b moves the agent to the origin state with probability 0.8,

receiving a reward r = 2, or lets it go right with probability 0.2, earning r = 0. The optimal policy

involves applying action b in the first state and action a in the others. A representation is shown in

Figure 5.2b.

Random Frozen Lake (RFL) The Frozen Lake Environment of the Open AI Gym suite (Brockman

et al., 2016) was edited for this study. The agent moves in a grid world (8 × 8). It starts in the

utmost left corner and it must reach a distant absorbing goal state that yields a reward r = 1. In

the grid, there are some holes. If it falls into a hole it is blocked there and it can not move anymore,

obtaining from that moment an immediate reward r = 0. Unfortunately, the field is covered with

ice and hence it is slippery. When the agent wants to move towards a nearby state it can slip with

fixed probability p and ends up in an unintended place. The grid is generated randomly assuring

that there always exists a hole-free path connecting the start and the goal. Moreover, to each

couple of actions and non-terminal state (a, s) is assigned a different immediate reward r sampled

at random between (0, 0.8) at the moment of the generation of the MDP problem. The MDP

itself does not have a stochastic reward, but the map and the rewards are randomly generated. A

graphical representation (for a 3× 3 grid) is shown in Figure 5.2c.

5.3.2 Setup

Given (n,m) ∈ N
2, m trajectories, with n steps each, are generated following a uniform random

policy in each environment. We opted for a random data collecting procedure because we imagine

using EvC in a scenario where both the developers and the autonomous agent are completely

agnostic about the model dynamics and have no prior knowledge.

The true environment is assumed to be known for the a posteriori evaluation. The most likely

transition model is inferred from the batch. The trivial MDP was then solved with the Policy

Iteration algorithm and its relative performance in the true environment is obtained by Policy

Evaluation. EvC data was computed with a0.25 and φ0.25 (the first quartile). For each of these risk-

aware measures, the following parameters (see Algorithm 8) were used: the set of discount factors

G = {0.2, 0.4, 0.6, 0.8, 0.9}, the significance level α = 0.01, the relative tolerance error εrel = 0.01,

and the number l of different models sampled from the prior is given in Table 5.1.
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Figure 5.2: Environments illustration.

In the experiments, for a given batch size N = nm ∈ N, 50 different batches were generated

containing fixed size trajectories. The trajectory sizes used are also given in Table 5.1.

The chosen state-of-the-art algorithms that provide the baselines for the set of candidate policies

are the following:

1. Deterministic policies: output by the following baselines5, please notice that the quantile used

for the robust and soft robust objectives in the algorithms is the same provided as general

input for the estimate of EvC: BCR (Petrik and Russel, 2019), NORBU - Soft Robust CVaR

(Lobo, Ghavamzadeh and Petrik, 2021) (soft robust hyperparameter λ = 0.5);

2. Stochastic policies: output by the following algorithms 6: SPIBB (Laroche, Trichelair and Des

Combes, 2019) receiving as input the batch collector policy, and, BOPAH (B. Lee et al., 2020)

receiving as input the batch collector policy.

In our implementation of these baselines we only used intuitively tunable parameters (e.g. the

discount factor).

We did not use MOPO (T. Yu et al., 2020) and MOReL (Kidambi et al., 2020) since: (1) they

have usually been tested on continuous state MDPs driven by a deterministic dynamics, while here

we are tackling non-deterministic environments; (2) they highly rely on hyperparameter domain-

dependent fine tuning which we did not do to fulfill the offline learning obligation.

In the evaluation phase, the discount factor is defined as γev = 0.9. The other simulation

parameters are provided in Table 5.1. Eventually, we also compared EvC with UnO by performing

the risk-sensitive off-policy evaluation with UnO over the same set of candidate policies provided to

EvC and then selected the one that maximized the risk-sensitive objective. Although it is true that

UnO, like other Importance Sampling-based off-policy evaluation methods, may not accurately

evaluate deterministic policies, we still compare our approach to it because, to our knowledge,

there are no other risk-sensitive off-policy evaluation approaches available.

5.3.3 Metrics

We report metrics about the performance differences ∆U = uπ
β,σ − uπtrivial

β,σ of the policies π ob-

tained with a specific algorithm (Eq. (5.1) using the utility function defined in Eq. (5.4)) and the

5The code was taken from the authors’ GitHub repository: https://github.com/marekpetrik/craam2/tree/master/

examples/evaluation/algorithms and readapted.
6The code was taken from the GitHub repository: https://github.com/KAIST-AILab/BOPAH and readapted.
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Table 5.1: Parameters and hyperparameters used during the simulations: n is the number of steps
in each trajectory contained in a batch; l is the number of different models sampled from the prior
in EvC (Algorithm 8); {N∧} is the set of different thresholds used in SPIBB; fold and DOF are the
fold and degree of freedom hyper-parameters used in BOPAH; λ is the soft robust hyper-parameter
of NORBU. Bold values are displayed in the plots.

Environment n l {N∧} fold DOF λ

Ring 8 3 {1, 2, 3, 5, 7, 10, 20} 2 20 0.5

Chain 8 3 {1, 2, 3, 5, 7, 10, 20} 2 20 0.5

RFL (8× 8) 15 10 {1, 2, 3, 5, 7, 10, 20} 2 20 0.5

performance obtained by solving the trivial model in the same setting and using the same batch of

trajectories. This last value is normalized by the performance of the optimal policy. In particular,

we consider: (1) the maximal ∆U obtained, (2) the mean value over all the different simulations,

(3) the median over all simulations, and (4) the minimal ∆U . The selected metrics provide insight

into the validity of the approaches. We consider only the extrema of the distributions of the results

(min, max), their median, and mean values since trying to estimate the whole distributions, and

hence their quantiles could result in wrong conclusions if we are not sampling enough batches. For

instance, to correctly estimate a quantile of order q = 0.25 with a α = 0.01 significance usually tens

of thousands of samples are required. However, we are performing only hundreds of simulations

with a fixed batch size N , which are enough for the selected metrics but insufficient for the study

of the whole distributions.

Please notice that the distribution whose statistics are displayed in the tables is not the one used

to maximize Eq. (5.4) since it is a distribution over different starting batches collected with the

same random policy and not the distribution that encodes the model uncertainty using the same

starting dataset. Indeed, from a bayesian point of view the results are distributed along:

Pr (uπ(M),B|πrandom) = Pr (uπ(M)|τ̂p)Pr (τ̂p|B)Pr (B|πrandom) , (5.12)

that represents the probability of collecting a batch B by collecting transitions using a random

policy πrandom and hence observing the performance uπ(M) by deploying a policy π. Note that

there is a deterministic mapping among the posterior τ̂p and the batch, therefore Pr (τ̂p|B) is a

delta function.

5.3.4 Results and discussion

For Ring and Chain, the results averaged over 100 different batches for each batch size N ∈

{8, 16, 24, 32, 40, 48, 56} are displayed in Table 5.2. While for RFL the results averaged over 50

different batches for every batch size N ∈ {15, 30, 45, 60, 75, 90, 105} are reported in Table 5.3.

Even if the datasets are composed of relatively short trajectories (Ring and Chain n = 8 time

steps each, Random Frozen Lake n = 15 time steps each), in most cases UnO did not manage

to accurately evaluate the deterministic policies. Please note that UnO computes the Importance

Sampling ratio for a trajectory h, a policy π, and a behavioral policy πβ as

ρπh =

nh∏

i=1

π (si, ai)

πβ (si, ai)
(5.13)

where nh is the number of time steps of the trajectory h. However, this formulation assumes

that both π and πβ are stochastic. In our formulation πβ (s, a) = |A|−1 ∀(s, a) ∈ S × A, but π

is stochastic only when it is the output of SPIBB or BOPAH. When π is deterministic, the former
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equation can be rewritten as

ρπh =

nh∏

i=1

δπ(si),ai

πβ (si, ai)
= |A|nh

nh∏

i=1

δπ(si),ai
. (5.14)

This means that ρπh = |A|nh if and only if the all sequence of actions and states is consistent

with the deterministic policy π, otherwise ρπh = 0. The probability that the ratio will be zero

grows as a power of |A| and exponentially in nh. In particular, the probability that a sequence

will be generated by the deterministic policy is in Ring |A|−nh = 3−8 ≈ 1.5 × 10−4, in Chain

2−8 ≈ 3.9 × 10−3 and in RFL 4−15 ≈ 9.3 × 10−10. Therefore, UnO almost always chooses a policy

between SPIBB and BOPAH, as the Importance Sampling ratio will be zero for other policies. If

both the outputs of SPIBB and BOPAH result in a zero Importance Sampling ratio, then the first

policy in the candidate set (the trivial policy) is chosen. This phenomenon occurs most of the time.

As a result, UnO alternates between the Trivial Policy, one of SPIBB or BOPAH, and occasionally

selects another approach.

Ring Using q = 0.25 the best method according to the Max, Mean and the Median is NORBU

with the CVaR Soft Robust objective (see Table 5.2). However, the most robust baseline in terms of

worst-case performance is BOPAH. The distributions of results are asymmetric around ∆U . In the

cases of BCR and NORBU, the Mean and the Median are approximately zero. In the cases of SPIBB

and BOPAH, the Median and the Mean are less than zero. Regarding the off-policy evaluation and

selection methods, EvC with the VaR is the most performing one with respect to all the considered

metrics.

Chain In this environment, every baseline except for SPIBB worked the same with SPIBB being

the worst in terms of Min (see Table 5.2). Regarding the off-policy evaluation and selection,

all algorithms performed well since there is not a substantial difference between the approaches

(except for SPIBB).

Random Frozen Lake (RFL) We tested the approaches in 4 different RFLs. The best approach in

terms of overall metrics in 3 out of 4 environments is again NORBU with the Soft Robust CVaR (see

Table 5.3). SPIBB is the best in Environment 4. The best selection method is EvC with VaR/CVaR,

which provided identical performances.

Table 5.2: Statistics of the normalized performance difference ∆U between the reported al-
gorithm (risk level used q = 0.25) and the trivial policy averaged over batch size N ∈
{8, 16, 24, 32, 40, 48, 56} with 100 different batches for size in Ring and Chain. On the right ∆U

with the algorithm selected by EvC and UnO with a0.25 and φ0.25. Notice that both EvC and UnO
can pick also a policy obtained with a model solved with a different discount factor.

Baseline Selection Method
Environment Metrics SPIBB BOPAH BCR NORBU EvCa0.25

EvCφ0.25
UnOa0.25

UnOφ0.25

Max 0.61 0.48 0.74 0.84 0.82 0.71 0.82 0.72
Ring Mean -0.29 -0.28 -0.01 0.03 0.01 -0.04 -0.26 -0.27

Median -0.31 -0.34 0.0 0.0 0.0 0.0 -0.27 -0.33
Min -0.78 -0.68 -0.82 -0.71 -0.82 -0.82 -0.96 -0.96
Max 0.55 0.54 0.55 0.55 0.55 0.55 0.54 0.54

Chain Mean 0.0 0.01 0.01 0.02 0.01 0.01 0.01 0.01
Median -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01
Min -0.38 -0.16 -0.15 -0.15 -0.16 -0.16 -0.16 -0.16

95



5.3 Experiments

Table 5.3: Statistics of the normalized performance difference ∆U between the reported al-
gorithm (risk level used q = 0.25) and the trivial policy averaged over batch size N ∈
{15, 30, 45, 60, 75, 90, 105, 120, 135} with 50 different batches for size in different Random Frozen
Lake environments.

Baseline Selection Method
Environment Metrics SPIBB BOPAH BCR NORBU EvCa0.25

EvCφ0.25
UnOa0.25

UnOφ0.25

Max 0.32 0.31 0.31 0.32 0.3 0.32 0.37 0.32
RFL Mean 0.05 -0.04 -0.04 0.05 0.05 0.05 -0.02 -0.05

Env. 1 Median 0.04 -0.07 -0.04 0.04 0.04 0.04 -0.01 -0.08
Min -0.25 -0.22 -0.39 -0.33 -0.33 -0.33 -0.31 -0.22

Max 0.33 0.22 0.3 0.34 0.34 0.34 0.28 0.18
RFL Mean 0.02 -0.07 -0.05 0.06 0.06 0.06 0.0 -0.07

Env. 2 Median 0.01 -0.08 -0.06 0.06 0.06 0.06 -0.01 -0.08
Min -0.21 -0.22 -0.29 -0.12 -0.12 -0.12 -0.28 -0.26
Max 0.3 0.23 0.43 0.36 0.36 0.36 0.35 0.18

RFL Mean 0.01 -0.08 0.0 0.04 0.04 0.04 -0.03 -0.08
Env. 3 Median -0.0 -0.09 0.01 0.02 0.02 0.02 -0.03 -0.09

Min -0.16 -0.3 -0.36 -0.27 -0.27 -0.27 -0.29 -0.26

Max 0.32 0.22 0.36 0.31 0.31 0.31 0.27 0.22
RFL Mean 0.02 -0.06 0.01 0.05 0.05 0.05 -0.05 -0.06

Env. 4 Median 0.02 -0.06 0.01 0.05 0.05 0.05 -0.05 -0.06
Min -0.32 -0.3 -0.4 -0.29 -0.29 -0.29 -0.39 -0.3

In the following, we comment on the results obtained with EvC. Note this algorithm selects the

policy that optimizes the (Conditional) Value at Risk over the first quartile (q = 0.25) starting from

the set of candidate policies discussed in the previous section.
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Figure 5.3: Policy selection rate by EvC a0.25 and EvC φ0.25 in Ring for different batch sizes.
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Figure 5.4: Policy selection rate by EvC a0.25 and EvC φ0.25 in Chain for different batch sizes.

In terms of risk awareness, after a global study over different batch sizes, EvC does not select

the policy that produces the best values concerning the considered metrics. Nevertheless, the

policy selected by EvC is among the more robust ones. These results are shown in Figures 5.3,
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Figure 5.5: Policy selection rate by EvC a0.25 and EvC φ0.25 in RFL (aggregate of Env. 1, 2, 3 and
4) for different batch sizes.

5.4, and 5.5. In particular, our approach tends to opt for a policy from the ones obtained by

solving several models with different discount factors γ when the batch is small. The number of

times such a policy is selected decreases to the benefit of 1) the trivial policy when the batch size

N increases (Ring and Chain) or 2) NORBU (in the RFL environment). This is reasonable since

model uncertainty decreases with N and the trivial model will be closer and closer to the true

one. We suppose that for not-so-small environments (RFL), the trivial policy cannot be trusted for

small batch sizes, while NORBU manages to cut the posterior space into ambiguity sets that are

efficiently optimized over. The policies computed through SPIBB and BOPAH are never selected.

Remember that those are stochastic policies that were obtained by improving the batch collector

policy, which was uniformly random over the actions. Stochastic policies seem not to provide good

risk-aware estimates with respect to risk-aware BMDP criteria defined in Eq. (5.4) and also require

sampling more models in order for the method to estimate a quantile with the needed accuracy.

Another interesting effect reported in Ring is that for N = 8, the trivial policy is picked a

considerable number of times. Both in Ring and in Chain, EvC selects more often the output of

BCR rather than that of NORBU, even though NORBU is slightly the most performing according to

Table 5.2. In RFL, only the policies computed through solving different models sampled from the

posterior with different γ’s and NORBU are selected. The first kind of policies are preferred when

the batch is very small (N = 15), however, the ratio inverts already for N = 45 with NORBU, which

gets more and more chosen as N grows. Both the Trivial policy and the one returned by BCR are

always discarded, stressing the superiority of NORBU in this environment typology. Surprisingly,

EvC never selects neither SPIBB nor BOPAH, not even in RFL despite its good performance. This

is likely due to the difficulty in estimating the quantiles of the performance of a non-deterministic

policy, such as the output of SPIBB. The algorithm would require several sampled models higher

than the bail-out hyperparameter.

5.4 Conclusions

This chapter presented Exploitation vs Caution (EvC), a method to first evaluate and then select

the best risk-aware policies within a set of candidate policies in the context of offline solutions to

Risk-aware Bayesian MDPs. The Risk-aware BMDP defines an elegant mathematical framework

that balances the exploitation-caution trade-off in offline model-based sequential decision-making

under uncertainty.

The set of candidate policies exploited by EvC contains the strategies obtained by solving not

only the trivially learned MDP but also other MDPs with transition dynamics sampled from the

Bayesian posterior (e.g. the one shown in Eq. (2.5)) using different discount factors and the
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solutions of current offline MDP and RL solvers (SPIBB, BOPAH, BCR, NORBU). The estimate

of risk in the presented algorithm provides a probabilistic guarantee for the actual performance

of the resulting policy described in Theorem 1 (and possibly Theorem 2). The selected solution

maximizes the risk-aware utility function of Eq. (5.4).

Since EvC is based on the parallel resolution of a great number of models sampled from the

Bayesian posterior, we doubt that it could efficiently scale to select policies for MDPs with a large

number of states and actions. However, the presented approach should be considered a valuable

tool to be exploited for real-world problem-solving through MDP modeling. In such a case, time is

an affordable resource since the safety of possible humans in the loop would be the priority.

In the future, we aim to improve EvC’s method of generating the set of candidate policies.

An interesting direction consists of incrementally enriching the set of candidate policies following

some heuristics, e.g. policy improvement by genetic algorithms. An extension to compute robust

policies for data-driven POMDPs could be envisaged if a consistent representation of the model

uncertainty can be formalized.

Key Takeaways

• Bayesian MDP is a framework for incorporating model uncertainty in offline model

learning and Offline RL

• The EvC paradigm is a robust baseline for offline policy selection that elegantly

incorporates model uncertainty through the Bayesian formalism and selects the

policy that maximizes a risk-aware objective over the Bayesian posterior of a set of

candidate policies.

• EvC has been shown to be effective in selecting robust policies in a variety of MDPs

and can be a useful tool for practitioners looking to apply offline planning and

reinforcement learning in the real world.

The content of this chapter gave rise to the following work:

Giorgio Angelotti, Nicolas Drougard and Caroline Ponzoni Carvalho Chanel (2023a).

‘An Offline Risk-aware Policy Selection Method for Bayesian Markov Decision

Processes’. arXiv:2105.13431

+See the arXiv preprint

In the upcoming chapter, we will focus on a specific application case of offline reinforcement

learning that highlights the various limitations and challenges of the field. The chosen environment

involves the interaction between a human operator and an automated system during a mixed-

initiative teleoperated mission.
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Chapter 6

Firefighter Robot Game Study Case:

Robust POMDP model learning and

solving

In this chapter, we address the problem of obtaining an adaptive interaction policy for the system

described in Chapter 3, the Firefighter Robot game. This chapter can be seen as an extension

of previous studies (Charles et al., 2018; G. Singh, Caroline P. C. Chanel and R. N. Roy, 2021),

which modeled an interaction controller as a sequential decision-making process under uncertainty,

taking into account both physiological and behavioral data of the human operator.

Charles et al. (2018) utilized a factored MDP to reduce the complexity of the environment,

while G. Singh, Caroline P. C. Chanel and R. N. Roy (2021) employed a POMDP representation,

assuming the human operator’s mental state to be unobservable. Although Charles et al. (2018)

did not test their model with real-world simulations, G. Singh, Caroline P. C. Chanel and R. N. Roy

(2021) focused on optimizing the human operator’s performance without considering the overall

mission outcome.

We argue that the optimization criterion maximized by G. Singh, Caroline P. C. Chanel and R. N.

Roy (ibid.) was oversimplistic, as enhancing the performance of only a subset of team members

does not necessarily imply improved team performance. For example, a football coach aiming to

optimize the defense’s performance according to specific criteria might only focus on preventing

goals, neglecting the importance of scoring goals and winning the match. Thus, in this chapter,

our goal is to optimize the entire team’s performance.

With this objective, we first attempt to infer a POMDP model from pre-collected demonstra-

tions. In the study by G. Singh, Caroline P. C. Chanel and R. N. Roy (ibid.), a “trivial” POMDP was

used without considering model uncertainty, and crucially, it assumed that an expert provided the

optimal hyperparameters (e.g. the discount factor γ). However, we note that such an approach

can be heavily influenced by the initial data set and model uncertainty. Consequently, inspired by

the literature on risk-sensitive offline learning and hyperparameter selection discussed in Chapter

2, as well as our contribution to risk-sensitive offline policy selection for discrete Bayesian MDPs

in Chapter 5, we aim to extend the EvC method to address the issue of risk-sensitive offline policy

selection for the POMDP related to the Firefighter Robot Game that we will learn from demonstra-

tions.

More explicitly, we seek answers to the following research questions: Can we represent the

dynamics of the Firefighter Robot Game as a POMDP? Can we learn it from demonstrations? Which
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hyperparameters should the practitioner use to deploy a robust, risk-sensitive policy?

Our robustness criterion aims to avoid low-score missions with any human operator. Con-

sequently, the selected policy should be robust against both inter-subject variability and stochastic

environmental deviations, such as multiple trees catching fire simultaneously.

Lastly, we will compare the safe policy selected by different approaches: Offline POMDP model-

ing with Risk-sensitive offline Bayesian policy selection, Offline MDP modeling with Risk-sensitive

offline Bayesian policy selection, the batch collector policy, and a common-sense robust policy.

6.1 Sketch: EvC for POMDPs

Before discussing the specific application to the Firefighter Robot Game, it is essential to introduce

the problem of offline risk-sensitive policy selection for a discrete POMDP learned offline from

a batch of experiences. In Chapter 5, we proposed EvC to select the policy that maximizes a

distributional risk-sensitive criterion (Equation 5.4) relying on a Bayesian representation of the

model uncertainty (Eq. (2.5)). While for a discrete MDP, the model’s Bayesian posterior obtained

from data is directly represented as a Dirichlet distribution (see Equation 2.5), such practice is

not directly applicable to POMDPs. However, to derive and deploy a risk-sensitive policy selection

approach following the same idea as EvC, we must first find a way to encompass model uncertainty

in the POMDP.

To address our specific proof-of-concept environment, we propose a method to include model

uncertainty while representing the observation function of the POMDP. Thus, instead of sampling

various transition functions from a transition Bayesian posterior (as in Algorithm 7), we will sample

distinct observation functions from an observation Bayesian posterior and then learn a different

transition function using Expectation-maximization (EM), keeping the sampled observation func-

tion fixed.

Furthermore, instead of maximizing the risk-sensitive utility function defined as the perform-

ance of a policy distributed according to model uncertainty (see Equation 5.4), we will maximize

a risk-sensitive utility function describing the full cumulative return over a trajectory obtained us-

ing a policy and distributed according to model uncertainty. In simpler terms, we do not select

the policy that maximizes the expected value over possible trajectories generated using a specific

model but rather a policy that performs better in the worst n% cases, e.g. n = 50. Formally, we

aim to find

π∗ = argmaxΠVaR0.50[Gπ], (6.1)

Gπ =
∑

t

Rπ
t , (6.2)

where Rπ
t is the random variable representing the immediate return after each time step gained

along a history while following the policy π, Π is the set of policies among which π∗ is selected,

and VaR0.50 is an empirical estimate of the Value at Risk at risk level q = 0.50 (â0.50 or the median).

Refer to Definition 16 for the definition of VaR.

We believe that such modeling is more suitable for obtaining a robust policy since, according to

model uncertainty, we want to reduce the chances of obtaining a low reward history and not the

chance of obtaining a low reward history averaged over the model stochastic dynamics.

In the next section, we outline the proposed pipeline to first represent the problem as a POMDP,

and also, as an MDP. Eventually, we solve the obtained decision processes with risk-sensitive

baselines. Finally, we select the most robust policy using EvC. For the POMDP case, we develop

an extension of EvC. It is worth remembering that the starting batch is composed of pre-collected
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experiences in the form of features of both the game and the human operator processed over 10-

second time windows. Therefore, a time step of the stochastic processes is what happens in a time

interval of ten seconds during the mission. The features considered were described in Chapter 3

(see 3.2.2).

6.2 Model learning and solving

Partially following the spirit of the work in Caroline P. C. Chanel et al. (2020), we use a classifier

to reduce the dimensionality of the measurements. However, instead of predicting the perform-

ance through behavioral and physiological markers related to a correct level of engagement of

the human operator, which is a strong claim, we aim to detect whether a particular collection of

measurements relative to a 10-second time interval7 is likely to be part of a high-performant or a

low-performant mission.

It is worth recalling that to make physiological markers such as HR and HRV comparable across

participants, a normalization processing was performed. This involved subtracting the per-subject

HR and HRV measured at rest one minute before each mission from the relative live (in mission)

measurements. This normalization was an attempt to ensure that the inter-participant physiolo-

gical data were standardized, allowing for more meaningful comparisons and analysis in the con-

text of our human-robot system dynamics modeling.

In the following subsection, we describe how the human-robot system dynamics is modeled as

a POMDP and as an MDP, taking into account model uncertainty, how these models are solved,

and how a risk-sensitive policy is selected.

6.2.1 POMDP learning and solving

Our target is to learn a POMDP using a set of trajectories that were collected using a fixed, known

policy (see Chap. 3). In particular, the policy used to collect the batch is uniformly random

over the actions. In the specific case of the Firefighter Robot game, the set of actions A that the

interaction controller can apply is A = {manual,off; manual,on; auto,off; auto,on} where manual

or auto refers to the autonomy level of the robot and off or on refers to whether alarms concerning

the mission are displayed on the Graphical User Interface (GUI) to the human operator. Concretely,

at each time step, the controller decides the autonomy level of the system and its policy regarding

notifications. It is important to note that when the robot’s autonomy level is set to automatic

(e.g. after the controller deploys action a = auto, off), the human operator is relieved from active

control, but she/he must still concentrate on tasks such as refilling the water tank and repairing

leaks. Consequently, in the subsequent sections of this chapter, when we mention a fully automatic

policy, i.e. a policy that consistently sets the autonomy level to automatic (with alarms), the human

operator continues to play a crucial role in the mission’s success.

To learn a POMDP that represents the human-robot team mission, we first propose considering the

system as an HMM. Then, we transform this HMM into a POMDP by allowing the policy to change.

Nevertheless, when there is not a strong prior knowledge neither of S, nor of the transition and

observation probability functions, the shape of S is the biggest obstacle that hinders the learning

of an HMM starting from a set of trajectories. Indeed, in the context of the Firefighter Robot Game,

the observations are described by a high-dimensional feature vector with entries that can assume

continuous, discrete, or boolean values.

7The 10-second time interval was specifically chosen to accommodate the processing needs of physiological features,
such as Heart Rate (HR) and Heart Rate Variability (HRV).
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With this in mind, rather than learning the true underlying HMM, we propose a method to

fit a batch of histories onto an HMM characterized by low-dimensional and discrete states and

observations. Subsequently, we transform this HMM into a POMDP that is easily solvable by state-

of-the-art solvers.

To achieve this, it is necessary for |S| ∈ N. If |S| is too small, there is a risk of neglecting import-

ant information. Nevertheless, following the literature in the offline context, it seems preferable

to use a more coarse-grained representation to avoid overfitting the batch (François-Lavet et al.,

2019).

HMM representation

Batch partitioning and
labeling

Training
classifiers

Define observation
function and

Bayesian prior

Learn HMM
dynamics

Solve POMDP and
select robust policy

Define POMDP
reward

Obtain POMDP
dynamics

Figure 6.1: Steps of the method applied to represent, learn and solve a POMDP for the interaction
controller of the Firefighter Robot Game.

The methodology applied follows eight steps (see Figure 6.1):

Step 1 (HMM representation):

To control the interaction mode (automatic or manual, and notifications on or off) in order to

improve the performance of the team, we consider a latent state space such as

S = {mnp,off ,mnp,on,mp,off ,mnp,on, anp,off , anp,on, ap,off , ap,on, g}.

mnp,off indicates that the robot’s operation mode is manual, the measurement is part of a per-

formant mission and the alarms are off; where mnp,on, indicates that the robot’s operation mode

is manual, the measurement is part of a non-performant mission and the alarms are on; mp,off

for manual mode, performant, alarms off; mp,on for manual mode, performant, alarms on; anp,off
automatic mode, non-performant, alarms off; anp,off automatic mode, non-performant, alarms

on; ap,off automatic mode, performant, alarms off; ap,on automatic mode, performant, alarms on;

g is an artificial absorbing state indicating the game is over or a premature end of a mission.

Furthermore, we consider an observation space such as

Ω = {mnp,off ,mnp,on,mp,off ,mp,on, anp,off , anp,on, ap,off , ap,on, g},

where each element of the set corresponds to the observation of a specific state. For example, the

observation mnp,off could imply that the agent “observed” the state mnp,off , but its observation

may be imperfect, meaning it cannot be certain that this is the actual state of the system. It is

worth reminding that, in this context, the agent is the controller of the human-robot interacting

system (see Figure 3.1).
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Figure 6.2: Example of the procedure to map a high dimensional array of measurements regard-
ing the human operator, the robot, the mission, and the interaction to one of the nine possible
HMM/POMDP observations ∈ Ω through a classifier. In this case, the classifier maps the high di-
mensional array of measurements (i.e. the features Y processed each 10-second time window) to
the observation mnp,on.

Step 2 (batch partitioning and labeling):

How to map the high-dimensional measurements obtained from the robot’s sensors and from the

devices used to measure the human’s operator behavioral and physiological features to elements

of Ω? Following the approach suggested by R. N. Roy et al. (2020), we propose performing this

dimensionality reduction using multiple classifiers trained in a supervised manner (see Figure 6.2).

Supervised training requires ground truth labels, which we lack. This is because we do not

know which 10-second time window (i.e. a decision step) high-dimensional observation corres-

ponds to which state s ∈ S. Thus, we will first define a problem-specific method for assigning

labels.

In the batch, 72 mission data, consisting of several feature vectors (i.e., multiple feature vectors

Yt with t ∈ 0, · · · ,N, where N is the final mission time step), are labeled by the mission’s global

score (mission performance measured as the total number of extinguished fires). However, to infer

the system state (including the mental engagement of a human operator) concerning performance,

we need to evaluate a local measure of efficiency. The global score represents the cumulative sum

of extinguished fires throughout an entire mission. Nevertheless, there may be time steps (10-

second intervals) when a human operator performs well, even though no trees are on fire. How

can we estimate whether a time step is associated with a latent state of performance or not?

We propose dividing the batch of missions into three parts. Initially, we assign a global score to

each time step within a mission, equal to the entire trajectory’s score. The first and last quartiles of

missions according to the global score are selected as the subset D. This assumption is reasonable

because if a policy’s quality is defined as the expected linear additive utility, low-scoring missions

are likely characterized by low-scoring rewards at each time step throughout the whole history,

and vice versa for high-scoring missions. Refer to Table 6.1 for descriptive statistics and Figure 6.3

for a graphical representation of the process.

We then select the best 20% of the first quartile and the worst 20% of the best quartile as the

test set. This is because the better the performance of the whole mission, the more an overall

low-score history is contaminated by high-performant single observations. Likewise, the worse the
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Table 6.1: Descriptive Statistics of 72 mission scores in D. During the 72 missions, the interaction
controller deployed a uniform random policy. We report also the statistics of the global score of
3591 time steps composing the 72 missions. Notice that since low-score missions have fewer time
steps, the quartiles are shifted toward higher values.

Score
mean std min 25% Median 75% max

Type

Mission 22.1 10.0 1.0 12.8 26.5 29.3 36.0
Time Step 24.9 8.0 1.0 21.0 28.0 30.0 36.0
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Non-performant
time step

Performant
time step
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Figure 6.3: Example of how the batch is split. Missions in the batch are sorted according to the
final score: the total number of fires extinguished. We suppose that during missions with a low
score, the team has constant non-performant behavior and, vice versa, during missions with a very
high score the team has constant performant behavior. Hence, the time steps of the missions in
the First Quartile (with respect to the final score) are labeled as non-performant (red in the figure)
and the ones in the top 25% (the Fourth Quartile) as performant (green). The time steps in the
missions in the second and third quartiles form the set DB that will be used to learn the transition
dynamics since we suppose that there might be a frequent change in performance status during an
average score mission.

performance of a high-score history, the more it could be contaminated by single observations of

low-performant time steps.

In addition to this, we slightly rearrange the missions in the data sets to have in the test and

the training sets missions related to different participants. The latter is very important for a gener-

alization of the approach to a completely new participant since we want to extract a behavior that

is as general as possible. Then, we labeled the observations present in the first quartile as non-

performant according to the observed operation mode of the robot mnp,off or mnp,on or anp,off

or anp,on. Conversely, the observations that compose the last quartile are labeled as performant:

mp,off or mp,on or ap,off or ap,on.

Step 3 (training a classifier for dimensionality reduction and to describe model uncertainty):

Using the data set partitioned and labeled as mentioned above, we then train four different classi-

fiers:

1. one that gives an observation of the mission performance, translating the features related
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to the time step for which the robot is in manual mode and alarms (i.e. notifications) are

activated;

2. one that gives an observation of the mission performance, translating the features related to

the time step for which the robot is in manual mode and alarms are not activated;

3. one that gives an observation of the mission performance, translating the features related to

the time step for which the robot is in automatic mode and alarms are activated;

4. one that gives an observation of the mission performance, translating the features related to

the time step for which the robot is in automatic mode and alarms are not being provided.

More specifically, we train four Extra Tree Classifiers (Geurts, Ernst and Wehenkel, 2006). We

choose Extra Tree Classifiers over Random Forests because they produce low variance outputs at

the expense of bias. This choice fits like a glove to our problem, as we want to use a classifier

that generalizes between different participants (who might yield measures that are differently

distributed). For this purpose, we need a classifier that is less robust to outliers. However, the

right trade-off between variance and bias is non-trivial. The classifiers are trained using a 10-fold

Group (participant-wise) Shuffle Split cross-validation approach to select the best hyperparameters

with respect to the balanced accuracy metric, initially with a Random Search and then with a Grid

Search method. The validation set contains 20% of the data from the entire training set, and both

sets include only missions carried out by different groups of participants. In doing so, we obtain

the hyperparameters of the Extra Tree Classifiers that, on average, minimize the generalization

error on the validation set.

Step 4 (observation function and Bayesian prior for model uncertainty):

The diagonal elements of the confusion matrix associated with each classifier enumerate the num-

ber of samples that were correctly classified by the respective algorithm. Conversely, the off-

diagonal elements of the confusion matrix represent the number of samples that were classified

as pertaining to a particular class (as determined by the column index), while their actual label

belongs to a different class (as determined by the row index). We propose using the confusion

matrices of the classifiers as Bayesian Dirichlet priors for the HMM observation function, in the

same spirit as Eq. (2.5). In fact, normalizing a confusion matrix by row results in another matrix

whose elements Oij = Pr (Ot = oj |St = si). These matrices will be referred to as the trivial ob-

servation functions. In Table 6.2, we present the trivial observation functions for each autonomy

level and alarm notification state. It is important to note that for the artificial absorbing state g,

we impose Pr
(
Ot = g|St = g

)
= 1 by construction.

Interpretability. We employ SHAP (S. M. Lundberg and S.-I. Lee, 2017) to calculate the Shapley

Values of the observation features on the test set for each classifier. Specifically, the global Shapley

values indicate how the model generally utilizes a feature to generate its output. Our results, as

displayed in Figure 6.4, reveal that the physiological data of the human operator play a crucial

role in the final prediction of the latent state. This suggests that monitoring the normalized HR,

HRV, as well as the duration and number of fixations in different AOIs, is essential for inferring the

performance level during a mission. Interestingly, these findings align with the work by Caroline

P. C. Chanel et al. (2020), which claimed improved classification accuracy when physiological

features are combined with behavioral ones.
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Table 6.2: Confusion matrices computed on the test set for the different classifiers.

(a) Manual, Alarms ON. Sensitivity: 0.60,
Specificity: 0.72, Balanced Accuracy: 0.66.

Obs. Non-perf. Obs. Perf.

Non-perf. 113 (0.72) 43 (0.28)
Perf. 71 (0.40) 105 (0.60)

(b) Manual, Alarms OFF. Sensitivity: 0.71,
Specificity: 0.67, Balanced Accuracy: 0.69.

Obs. Non-perf. Obs. Perf.

Non-perf. 105 (0.67) 51 (0.33)
Perf. 51 (0.29) 125 (0.71)

(c) Auto, Alarms ON. Sensitivity: 0.75, Spe-
cificity: 0.59, Balanced Accuracy: 0.67.

Obs. Non-perf. Obs. Perf.

Non-perf. 99 (0.59) 70 (0.41)
Perf. 46 (0.25) 140 (0.75)

(d) Auto, Alarms OFF. Sensitivity: 0.64,
Specificity: 0.70, Balanced Accuracy: 0.67.

Obs. Non-perf. Obs. Perf.

Non-perf. 91 (0.70) 39 (0.30)
Perf. 55 (0.36) 97 (0.64)

Step 5 (learning the HMM transition function accounting for model uncertainty):

Having used the worst and best quartiles concerning the global score of a mission to learn a Dirich-

let distribution of observation functions, we use all the missions characterized by a global score

that is in the middle between the two extremes to define DB and to learn the latent dynamics of

the HMM. Indeed, for this choice of DB the assumption that the global score can be used as a

representative of the local performance is rather speculative and not reliable. However, this data-

set appears perfectly suited for learning the transition probabilities between latent states because

we expect that changes in human engagement conditions are likely to occur along average score

trajectories.

We start by using the learned classifier to accordingly retrieve the time series of HMM’s obser-

vation O using the time series of features Y ∈ DB. Since the probability of observing a transition

in a POMDP is

Pr
(
Ot+1 = o, St+1 = s′|St = s

)
=

∑

a∈A

π(a|s)Pr
(
Ot+1 = o, St+1 = s′|St = s,At = a

)

=
∑

a∈A

π(a|s)O(a, s′, o)T (s, a, s′) = O(s′, o)
∑

a∈A

π(a|s)T (s, a, s′), (6.3)

because the observation functionO does not depend on the action here, we can learn the transition

probability function of the HMM. The latter can be expressed as

Pr (St+1 = s′|St = s) =
∑

a∈A

π (a|s)T (s, a, s′) (6.4)

using the EM algorithm and imposing the normalization with respect to the known π with the

Bayes’ rule at each iteration. The transition function of the HMM, before the EM algorithm is

launched, is initialized with the frequencies of transitions between the observations in the same

data set. This is due to the empirical findings that, when possible, if EM starts from transition

matrices that reflect the changes in the observed data set, then it will most likely converge to a

meaningful result.

Inspired by EvC, we sample NM observation functions from the Dirichlet prior and keep them

fixed during the execution of EM. We also introduce a small pseudo count of 0.5 to every transition

to avoid overfitting the data set. In this way, we obtain a set of distinct HMM models characterized
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Figure 6.4: Shapley values for the features of each classifier (autonomy mode/notification status)
obtained via SHAP’s Tree Explainer. The features include HRV (Normalized Heart Rate Variability),
HRnorm (Normalized Heart Rate), durAOIi (duration of fixations in AOI i), nbAOIi (number of
fixations in AOI i), nav (number of times a navigation key has been pressed), space (number of
times the space bar has been pressed), trees (number of extinguished fires), tank (level of the water
tank), and tank_local_score (changes in the level of the water tank).

by pairs of a sampled observation function and a learned transition function.

Step 6 (obtaining the POMDP transition function from the HMM one):

For each HMM and its corresponding learned transition function, we can develop an action-wise

transition function T for a POMDP by trying to find a T that solves Eq. (6.4). We are going

to do it by incorporating prior knowledge of the chosen representation. This approach is guided

more by intuition than mathematical rigor because, ideally, the problem of obtaining the single

addends of T (s, a, s′) in the sum in Eq. (6.4) does not have a unique solution. Obtaining T (s, a, s′)

is impossible without other constraints. Given that the data collector policy π(a|s) is uniformly
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random, we have:

π(a|s) =
1

|A|
, (6.5)

for all (a, s) ∈ A× S, which allows us to express:

Pr(St+1 = s′|St = s) =
1

|A|

∑

a∈A

T (s, a, s′). (6.6)

The given expression is now more manageable, as the π(a|s) terms are constant. However, de-

termining the unknown T (s′|a, s) remains impossible, as there could be an infinite number of valid

combinations.

At this stage, we rely on our intuition and prior knowledge to establish a rule for T . We propose

to set T as follows:

T (s, a, s′) = |A|Pr(St+1 = s′|St = s)
δas,s′

∑

a′ δa
′

s,s′
, (6.7)

where δas,s′ = 1 if the transition (s, a) → s′ can occur, and 0 otherwise. For example, the

transition T (mnp,off , (auto; on),mnp,off ) cannot occur as the next state can only be anp,on, ap,on,

or g. Moreover, since g is an absorbing state artificially created and transitions from it are never

seen in the data, we set:

T (g, a, g) = 1 (6.8)

and

T (g, a, s′ 6= g) = 0. (6.9)

In Tables 6.3-6.6 we show the transition probabilities for the POMDP learned from the “trivial”

observation functions.

Table 6.3: Transition probabilities for action: put mode manual and activate alarms. Rows are
current states and columns are next states.

mnp,off mnp,on mp,off mp,on anp,off anp,on ap,off ap,on g

mnp,off 0 0.917 0 0.067 0 0 0 0 0.017
mnp,on 0 0.917 0 0.065 0 0 0 0 0.019
mp,off 0 0.027 0 0.956 0 0 0 0 0.017
mp,on 0 0.032 0 0.956 0 0 0 0 0.012
anp,off 0 0.945 0 0.051 0 0 0 0 0.005
anp,on 0 0.931 0 0.063 0 0 0 0 0.006
ap,off 0 0.018 0 0.973 0 0 0 0 0.009
ap,on 0 0.016 0 0.965 0 0 0 0 0.020
g 0 0 0 0 0 0 0 0 1

Step 7 (definition of the immediate reward of the POMDP):

Since the global score of a mission is the sum of the number of extinguished fires along a trajectory,

a rational choice for the expected reward function is the average number of fires extinguished by

the human-robot team while being in the latent state s.

Our procedure assumes that the latent state is perfectly known only for the transitions in D.

To begin with, we recover a histogram (distribution) for the number of fires extinguished in each

state using this dataset (see Figure 6.5). These distributions define a stochastic reward function. In

addition, we also establish a deterministic reward function that assigns a per-state reward based

on the expected value of the associated distribution. This deterministic reward function will be
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Table 6.4: Transition probabilities for action: put manual mode and deactivate alarms. Rows are
current states and columns are next states.

mnp,off mnp,on mp,off mp,on anp,off anp,on ap,off ap,on g

mnp,off 0.914 0 0.069 0 0 0 0 0 0.017
mnp,on 0.914 0 0.067 0 0 0 0 0 0.018
mp,off 0.020 0 0.963 0 0 0 0 0 0.017
mp,on 0.024 0 0.964 0 0 0 0 0 0.012
anp,off 0.940 0 0.055 0 0 0 0 0 0.005
anp,on 0.923 0 0.071 0 0 0 0 0 0.006
ap,off 0.015 0 0.976 0 0 0 0 0 0.009
ap,on 0.013 0 0.967 0 0 0 0 0 0.020
g 0 0 0 0 0 0 0 0 1

Table 6.5: Transition probabilities for action: put automatic mode and activate alarms. Rows are
current states and columns are next states.

mnp,off mnp,on mp,off mp,on anp,off anp,on ap,off ap,on g

mnp,off 0 0 0 0 0.941 0 0.042 0 0.017
mnp,on 0 0 0 0 0.940 0 0.042 0 0.018
mp,off 0 0 0 0 0.020 0 0.963 0 0.017
mp,on 0 0 0 0 0.025 0 0.963 0 0.012
anp,off 0 0 0 0 0.921 0 0.074 0 0.005
anp,on 0 0 0 0 0.916 0 0.079 0 0.006
ap,off 0 0 0 0 0.023 0 0.968 0 0.009
ap,on 0 0 0 0 0.019 0 0.961 0 0.020
g 0 0 0 0 0 0 0 0 1

Table 6.6: Transition probabilities for action: put automatic mode and deactivate alarms. Rows
are current states and columns are next states.

mnp,off mnp,on mp,off mp,on anp,off anp,on ap,off ap,on g

mnp,off 0 0 0 0 0.944 0 0.039 0 0.017
mnp,on 0 0 0 0 0.943 0 0.038 0 0.018
mp,off 0 0 0 0 0.021 0 0.963 0 0.017
mp,on 0 0 0 0 0.025 0 0.962 0 0.012
anp,off 0 0 0 0 0.932 0 0.064 0 0.005
anp,on 0 0 0 0 0.929 0 0.066 0 0.006
ap,off 0 0 0 0 0.031 0 0.961 0 0.009
ap,on 0 0 0 0 0.026 0 0.954 0 0.020
g 0 0 0 0 0 0 0 0 1

utilized during the policy evaluation and selection stages of the methodology (Step 8, detailed

later). Table 6.7 summarizes the reward function. This precaution is performed since, in order

to use a state-of-the-art POMDP solver (i.e. SARSOP), we must employ a non-stochastic reward

function.

Step 8 (solving the POMDPs and maximizing a risk-sensitive criterion):

Ultimately, the trivial POMDP (the one learned starting from the trivial observation function) is

solved using SARSOP for several discount factors γ, yielding various optimal policies. It is worth

noting that, as discussed in Chapters 2 and 5, solving a sequential decision-making problem with a

shorter planning horizon could lead to more performant policies if the model was learned offline.

Algorithm 9 outlines the proposed solving procedure. Lines 2 to 5 implement the sampling pro-

cess described in Step 5, in which NM = 104 observation functions are sampled from the POMDP
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Figure 6.5: Stochastic Reward Function. Histogram representing the Probability Mass Function
(pmf) of the number of extinguished fires in a 10 seconds window (1 time step of the discrete-time
decision process) for a given state (autonomy level, performance, and alarm setting). The max-
imum probability in the case of mp,on corresponds to 1 extinguished tree per time step (0.57). For
the other states the maximum probability corresponds to 0 extinguished trees. During performant
time steps the human-robot team tends to extinguish a higher number of fires.

Table 6.7: POMDP deterministic rewards for each hidden state, independently of the action.

State mnp,off mnp,on mp,off mp,on anp,off anp,on ap,off ap,on g

Reward 0.257 0.289 0.603 0.741 0.257 0.333 0.432 0.493 0.0

posterior distributions and used to learn the transition functions through EM. Subsequently, Lines

6 to 9 of Algorithm 9 solve the trivial POMDP for different values of γ. Finally, each computed

policy is evaluated across NM different learned POMDPs, and, as in EvC, the one that maximizes

a risk-sensitive criterion is selected. We decided to maximize the VaR0.5 metric (the median). Al-

though this choice may not seem very risk-sensitive, there is an experimental rationale behind it:

we will later validate our results using non-parametric statistical tests that examine discrepancies

in the median of the distributions. Most importantly, as explained at the beginning of the chapter,

the criterion used to select the POMDP adaptive policy differs from the one used in Chapter 5.

Instead of maximizing the VaR0.5 with respect to the distribution of expected cumulative rewards

across different models, we maximize the VaR0.50 (see Equations 6.1 and 6.2) with respect to the

distribution of cumulative rewards over NE = 104 trajectories for each of the NM = 104 different

models. In other words, we do not perform the mean over trajectories. We believe that this pro-

tocol adheres even more closely to the risk-sensitive optimization goal. This policy evaluation and

selection procedure is illustrated in Lines 10 to 17 of Algorithm 9.

Robust POMDP policy In Table 6.8, we present various robustness and performance metrics cal-

culated from the empirical distribution of returns for each tested policy (refer to Equation 6.2 and

Lines 11-15 of Algorithm 9). To provide a comprehensive analysis, we not only simulated trajector-

ies for policies derived from SARSOP and different discount factors (Lines 7-9 of Algorithm 9), but

also included results from a random strategy, a fully automated strategy with and without alarms,
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Algorithm 9: Pseudocode Algorithm for POMDP solving and Risk-sensitive Policy Selec-
tion

Input: Trivial POMDP, Γ set of discount factors, DB, NM number of models to
sample/learn, NE number of histories per model

Output: π∗

1 Initialization: M ← ∅ (empty list)

2 for i from 1 to NM do
3 Sample observation functions from the POMDP posterior distributions
4 Learn POMDP transitions using EM(observation functions, DB)
5 Append new POMDP model to M

6 Π← ∅ (empty list)
7 forall γ in Γ do
8 π ← Solve(Trivial POMDP, γ)
9 Append π to Π

10 forall π in Π do
11 Gπ ← ∅ (empty list)
12 forall pomdp in M do
13 for i from 1 to NE do
14 R← Cumulative reward of a generated trajectory
15 Append R to Gπ

16 π∗ ← argmaxπ∈Π VaR0.5[Gπ]
17 return π∗

and a fully manual policy with and without alarms.

There are a few points worth noting. Firstly, the minimum value of each distribution is ap-

proximately 0.3. This outcome results from a transition to the game-over state after the initial

ten seconds, during which the autonomy level is set to manual with alarms activated. Although

this event is clearly unrealistic, it stems from an assumption in our modeling. We introduced a

game-over state to account for the possibility that various states and performance levels could

prematurely terminate the simulation with different probabilities. However, in reality, it is highly

improbable that this would occur after only ten seconds.

The maximum value for both the fully manual strategy with alarms and the SARSOP adapt-

ive policies is 44.5. This figure corresponds to a scenario in which the autonomy level remains

fixed at fully manual with alarms activated, and the team consistently performs well. According

to the empirical VaR at a risk level of 0.25, the most robust policy is the fully automated strategy

without alarms. This policy also exhibits the least variability, as indicated by its standard deviation.

On the other hand, the fully manual policy with alarms results in a distribution with the highest

third quartile, suggesting that this strategy might be the most effective when working with high-

performing human operators.

Ultimately, the procedure selected the policy obtained by solving the trivial POMDP with a dis-

count factor (γ) of 0.98, as it maximizes the VaR0.50 (see Equation 6.1 and Line 16 of Algorithm

9). Coincidentally, this chosen policy also has the highest mean value.

Note that the state is characterized by directly observable features (e.g. autonomy level of

the robot and notification status of the GUI) and a non directly observable features (Is the 10-
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Figure 6.6: Selected robust POMDP policy (γ = 0.98). Which action is taken and when? Let βt be
the belief of performance for an observed state (Manual/Auto - Alarms/No Alarms) and time step
t. Different values of βt lead to transitions to different autonomy and alarm modes. It is worth
noting that Auto - Alarms is an “absorbing” modality for non performant missions, while Manual
- Alarms is an “absorbing” modality for performant missions. Moreover, since no arrows lead to
Manual - No Alarms and the initial modality Manual - Alarms, the former modality is never reached
during a mission that follows the robust POMDP policy.

second time interval typical of a performant or a non-performant mission?). Let βt be a belief

state marginalized over performance states for a given autonomy level and alarm modality. For

example, if the modality of the robot at time t is x and the status of the notifications of the alarms

is z, then

βt =
∑

s∈Sperf.

bt(s) = bt(xp,z). (6.10)

with Sperf. = {mp,on,mp,off , ap,on, ap,off}. The belief state is computed (i.e. updated) using

the trivial POMDP. Please remember that the modality of the robot is fully observable, but not

the status of performance. The next action is chosen according to the value of βt (see Figure

6.6). When βt is estimated to be around 50%, hence when the controller is doubtful whether

that period of 10 seconds is typical of a performant or a non-performant mission, the autonomy

level might be switched to automatic and the notifications might not be provided in the GUI.

Since alarms are believed to provide useful information to the human operator, but more to a

distracted player than to a focused one, removing the alarms could be interpreted as an action to

“gather information” to assess the degree of engagement of the human operator and hence to better

predict the performance degree of the next state. When the estimated performance probability is
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Table 6.8: Comparison of different policies ran in simulation. Different robust and performance
metrics are computed on the empirical distribution of returns. The best values in each column are
in bold.

Policy Mean Std. Dev. Min 25% Median 75% Max
Random 19.6 10.7 0.3 9.9 21.7 29.0 38.3
Manual/Alarms 23.2 13.9 0.3 10.2 24.6 35.4 44.5
Manual/No Alarms 19.1 11.7 0.3 8.0 19.9 30.0 36.3
Auto/Alarms 17.8 9.5 0.3 9.0 20.1 26.5 29.8
Auto/No Alarms 17.9 7.3 0.3 14.1 20.3 23.3 26.2
SARSOP γ = 0.70 23.3 13.8 0.3 10.4 25.0 35.4 44.5
SARSOP γ = 0.80 23.4 13.8 0.3 10.5 25.1 35.4 44.5
SARSOP γ = 0.90 23.6 13.6 0.3 11.1 25.5 35.4 44.5
SARSOP γ = 0.97 23.7 13.3 0.3 11.8 26.0 35.2 44.5
SARSOP γ = 0.98 23.8 13.1 0.3 12.0 26.1 34.5 44.5
SARSOP γ = 0.99 23.3 12.0 0.3 13.6 25.1 33.0 44.5
SARSOP γ = 0.999 21.4 10.8 0.3 13.6 22.8 29.9 44.5

lower than 35%, the robot is pessimistically set to automatic mode, and alarms are provided to the

human operator. This approach ensures that as much information as possible is provided, and the

robot is driven automatically to minimize casualties.

In the next section, we present an alternative modeling that relaxes the assumption of partial

observability. Eventually, we will evaluate the policies yielded by both approaches in laboratory

experiments.

6.2.2 MDP learning and solving

We are going to compare the results given by modeling the system as a POMDP against an MDP

representation. To do so, we keep the split of the data set described in the previous section and

also the classifiers used for dimensionality reduction. However, in this case, we will assume that

the output of the classification is the state of the system and not just an observation. Therefore,

we model the system as an MDP with nine states

S = {mnp,off ,mnp,on,mp,off ,mnp,on, anp,off , anp,on, ap,off , ap,on, g}

and four actions. The time series Y of measurements in DB will be accordingly classified. The

transitions between states will be counted and integrated into a Dirichlet posterior Eq. (2.5). The

same reward function as the POMDP model will be used. However, the MDP will be solved using

the deterministic policy risk-sensitive algorithms adopted in Chapter 5: BCR and NORBU (Petrik

and Russel, 2019; Lobo, Ghavamzadeh and Petrik, 2021). Likewise, the trivial MDP will be also

solved with several discount factors γ (e.g. 0.1, 0.2, 0.3, 0.4, . . . , 0.9, and 0.99).

Robust MDP policy In this study, we employ the EvC method to select the most robust policy

based on the VaR at risk level 0.5 (the median). It is important to note that we utilize the ori-

ginal EvC implementation, which calculates risk-sensitive metrics using the distribution of per-

formance (refer to Equation 5.4), rather than returns. As for the EvC hyperparameters, we choose

a γev = 0.99.

Interestingly, the selected policy, NORBU with λ = 0.5, opts to consistently set the autonomy

level to manual mode and enable alarms. To provide a comprehensive analysis, we also simulate
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the distribution of returns for this policy using the trivial MDP. The initial state is randomly selec-

ted from mnp,on,mp,on with equal probability. The simulation results are presented in Table 6.9.

It should be noted that simulating in the trivial MDP yields a distribution that is more con-

centrated on lower values. This is because the probability of reaching a game-over state (with

an average transition probability of 0.063 per time step from s 6= g) is higher in the trivial MDP

compared to the trivial POMDP (with a probability of 0.013) and a majority of sampled POMDPs.

Table 6.9: Descriptive statistics of the simulated distribution of returns in the trivial MDP environ-
ment using the MDP robust adaptive policy.

Policy Mean Std. Dev. Min 25% Median 75% Max
MDP 16.0 12.3 0.3 5.3 12.9 25.7 44.5

6.3 Experiments

In order to evaluate the robust policies obtained, experiments were conducted in laboratory set-

tings following a specific protocol. The robust POMDP policy was compared against the robust

MDP policy, a random policy, and a fully automatic (with alarms on) policy. The goals of these

experiments were:

• to assess the generalization capability of the classifier on both low and high-performing mis-

sions;

• to evaluate the accuracy of the POMDP model by studying the correlation between the mar-

ginalized belief of performance β and the score of a mission;

• to demonstrate that the policies obtained via the POMDP and the MDP are more performant

and robust than the data collector policy;

• to show that a model with hidden states better describes the problem of controlling the

interaction in the Firefighter Robot Game by illustrating that the policy obtained with the

POMDP is more performant and robust than that obtained via an MDP;

• to evaluate if an adaptive policy is as robust as the fully automatic policy;

• to assess whether an adaptive policy decreases the mental workload of the human operator;

• to examine whether the interaction is perceived as more fluent when the adaptive (POMDP)

policy is deployed.

6.3.1 Materials and methods

Participants

A total of 26 participants (mean age 28.6, sd. 5.7; 7 females), all students from ISAE-SUPAERO,

were recruited through electronic mail announcements and oral advertising. All participants sub-

scribed to social security and civil responsibility insurance and provided their informed consent.

The experiment was approved by the local ethical committee of the University of Toulouse8. Figure

6.7 shows a participant taking part in the experiment.

8CER-2018-070.
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Figure 6.7: A participant tanking part in the experiment at ISAE-SUPAERO lab facilities.

Experimental protocol

The experimental procedure, illustrated in Figure 6.8, was enacted for each participant as follows:

1. (5 minutes) - Participants read the experiment goals information and provided approval and

consent for data recording and analysis.

2. (5 minutes) - The Firefighter Robot Game was explained to the participants, and any ques-

tions they had were answered.

3. (4 minutes) - Participants wore devices to measure physiological markers (ECG). The Eye

Tracker was calibrated by the practitioner, and the participant stared at a black cross on the

screen for 1 minute to measure their physiological baseline markers.

4. (10 minutes) - Participants trained on a test mission. The robot was in automatic mode

for the first 5 minutes and then in manual mode for the next 5 minutes. The interaction

controller provided notifications and alarms during the entire mission.

5. (few seconds) - Participants were asked to complete the Karolinska Sleepiness Scale (KSS)

questionnaire (Åkerstedt and Gillberg, 1990). The KSS is a survey that is generally used to

measure subjective fatigue.

6. The following loop was repeated 4 times with 4 different interaction control policies (and

pseudo-randomized between participants) to be tested: the policy obtained by robustly solv-

ing the POMDP, the one given by a robust resolution of the MDP, a random policy (i.e. the

same used to collect data in the previous experiment, see the work in Caroline P. C. Chanel

et al. (2020)), and lastly, the policy which is trivially believed to be the most robust, fully

automatic mode with alarms.

(a) (1 min) - The human operator stared at a black cross on the screen for 1 minute to

measure their physiological baseline markers.

(b) (10 min) - The user performed a mission for which the policy of the controller was

randomly sampled (without repetition) from the 4 possible options. This approach

ensured that different users likely experienced distinct policies in different orders.

(c) (3 min) - After each mission, users completed the NASA Task Load Index (NASA-TLX)

questionnaire (Hart and Staveland, 1988) to provide their subjective feedback concern-

ing the effort made to carry out the mission.
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(d) (2 min) - Users completed the Fluency questionnaire, inspired by the work in Hoff-

man (2019), in order to provide their subjective feedback concerning the fluency of the

(adaptive) policy being used to control the interaction.

(e) (2 min) - A break was offered to the participants.

10. (few seconds) - Participants were invited to answer the KSS questionnaire again.

The experiment concluded with a data records check and removal of the ECG equipment from

the participant. The entire experiment lasted approximately 1 hour and 30 minutes, including

training, device setup, surveys, and the mission runs.
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Figure 6.8: Timeline of the experimental procedure (from left to right). The participants exper-
ience different stages: signatures, explanations, training, sensors’ set up, and calibration. Then,
the following steps are repeated four times with a different interaction control policy during the
mission: recording physiological baselines at rest, mission runs, NASA TLX questionnaire, fluency
questionnaire, 2-minute break.

Data collection and processing

Several variables were collected and processed during the study, including features related to the

robotic system, mission parameters, and participant interactions with the ground station (i.e. key-

board inputs and mouse clicks). In addition, eye-tracking and Electrocardiogram (ECG) data were

also obtained. All these variables were streamed, processed, and recorded using the Lab Streaming

Layer (LSL)9, a widely recognized middleware within the neuroergonomics community. Developed

by the Swartz Center for Computational Neuroscience (UCSD), LSL facilitates the unified collection

of experimental data, ensuring time-synchronization and online access while mitigating network-

ing issues. LSL also offers a software tool called LabRecorder, which enables researchers to select

and record all relevant data for subsequent post-processing.

The LSL device used in this study was accompanied by data stream software developed by Mega

Electronics for LSL10. Both raw ECG data (500 Hz) and Inter-Beat Intervals (IBIs) also known as

RR peak intervals were recorded using the Faros ECG device. The IBIs were utilized to calculate

Heart Rate (HR) and Heart Rate Variability (HRV) in real-time using Python scripts.

Additionally, Python scripts were developed based on the SMI SDK and LSL to create streams

containing gaze and fixation event data measured by the SMI Eye Tracker (ET). These scripts also

processed ET-related data online, including the total number of fixations within areas of interest

(AOIs) and their total duration every 10 seconds (refer to Figure 3.4 in Chapter 3).

9See https://github.com/sccn/labstreaminglayer [Online: accessed 13-04-2023].
10Software available at https://github.com/bwrc/faros-streamer-2 [Online: accessed 13-04-2023].
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Finally, Python scripts were employed to process other human and system-related data online,

such as the total number of keystrokes, mouse clicks, external tank levels, and more.

The data streams and processing pipelines enabled the online availability of all features used

for classification (i.e. to define the Y vector). Specifically, at the end of each 10-second time

window, the collected features were processed to create the feature vector Y . This vector was then

input into the classifier, which provided the observation used for belief state updates and policy

readings. It is important to note that the classifier outputs, actions, and belief states were also

recorded using LSL and LabRecorder.

Overall mission performance was assessed by the total number of extinguished fires. A human

operator was required to manage several tasks simultaneously, including refilling the external tank,

providing manual control when necessary, and monitoring the robot’s parameters (water reserve,

battery, temperature, and automation level). The global mission score was intrinsically dependent

on the successful management of all these tasks.

Subjective feedback from participants was collected using the Karolinska Sleepiness Scale (KSS)

(Åkerstedt and Gillberg, 1990), the NASA Task Load Index (NASA-TLX) (Hart and Staveland,

1988), and a Fluency questionnaire inspired by the work in (Hoffman, 2019).

The KSS is a survey commonly used to measure participants’ subjective fatigue. A 9-point

KSS was employed in the experiment, with higher scores indicating significant drowsiness. The

NASA-TLX is a survey designed to assess subjective task workload, calculating an overall workload

score based on a weighted average of six dimensions: mental demand, physical demand, temporal

demand, performance, effort, and frustration. In the experiment, we used the HTML version11,

which automatically computes the score. It is crucial to note that a high NASA-TLX score correlates

with a high subjective workload.

The Fluency questionnaire12 serves as subjective feedback regarding the fluency of the (adapt-

ive) policies used to control the interaction. Even in instances where efficiency does not improve, it

is possible to enhance the sense of fluency in the task. This questionnaire evaluates several dimen-

sions, including direct measures and downstream outcomes, such as the trust human teammates

have in the system, the sense of improvement and system’s commitment, working alliance (feelings

of comfort, respect, and belief in the system’s skills), and positive teammate traits. It also includes

a self-report of commitment and sense of importance as human’s individual measures. The use

of some reversed scales helps reduce response bias and ensures the accurate measurement of the

user’s opinion.

In the following section, we present the metrics and results related to the various goals of this

experiment.

6.3.2 Results

Evaluation of the classifiers

To assess the effectiveness of the classifiers, we calculate their balanced accuracy using all time

steps from missions with global scores either below 20 or above 30. These thresholds were chosen

based on the criteria utilized to partition the dataset for training the classifier. Time steps in

missions with global scores less than 20 were labeled as non-performant, while those with scores

greater than 30 were labeled as performant.

11Available at https://www.keithv.com/software/nasatlx/ [Online: accessed 13-04-2023].
12Available at https://gitlab.isae-supaero.fr/a.moreira-pinto/heroic-questionnaire/-/blob/master/

fluency.html [Online: accessed 13-04-2023].
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The classification results are summarized in Table 6.10. The balanced accuracy of the classifier

in manual mode with alarms is 0.60, in manual mode without alarms it is 0.53, in automatic mode

with alarms it is 0.52, and in automatic mode without alarms it is 0.50. These confusion matrices

differ significantly from those used to learn the interaction model (as shown in Table 6.2) and

derive the adaptive policies. Notably, in the automatic mode, the classification efficiency appears

to be comparable to flipping a fair coin.

Table 6.10: Confusion matrices computed on the experimental results for the different classifiers.
In parentheses the row normalized values.

(a) Manual, Alarms ON. Sensitivity: 0.38,
Specificity: 0.81, Balanced Accuracy: 0.60.

Obs. Non-perf. Obs. Perf.

Non-perf. 1484 (0.81) 346 (0.19)
Perf. 349 (0.62) 217 (0.38)

(b) Manual, Alarms OFF. Sensitivity: 0.37,
Specificity: 0.69, Balanced Accuracy: 0.53.

Obs. Non-perf. Obs. Perf.

Non-perf. 108 (0.69) 49 (0.31)
Perf. 43 (0.63) 25 (0.37)

(c) Auto, Alarms ON. Sensitivity: 0.54, Spe-
cificity: 0.50, Balanced Accuracy: 0.52.

Obs. Non-perf. Obs. Perf.

Non-perf. 383 (0.50) 376 (0.50)
Perf. 146 (0.46) 168 (0.54)

(d) Auto, Alarms OFF. Sensitivity: 1.00,
Specificity: 0.01, Balanced Accuracy: 0.50.

Obs. Non-perf. Obs. Perf.

Non-perf. 1 (0.01) 167 (0.99)
Perf. 0 (0.00) 70 (1.00)

To determine if there is a significant difference between the classification outcomes and the

previous results (Table 6.2), we conducted a two-proportion Welch’s t-test for each of the eight

states (refer to Table 6.11). As the p-value is less than or equal to 0.05 for all states except for

mnp,off , which is never encountered during a mission using adaptive policies, we can reject the

null hypothesis that the classification outcomes have equivalent proportions. As a result, at the

very least, the “trivial” observation functions cannot be considered an accurate representation of

the process we aimed to model with a POMDP. However, anticipating these findings is precisely

why we developed the risk-sensitive pipeline discussed in the preceding section.

Table 6.11: Results of the two-proportion Welch’s t-test for the eight states. Bold values indicate a
p-value less than 0.05.

State t-test (t) Degrees of Freedom p-value

mnp,on −2.34 662.90 0.02

mp,on 5.05 804.41 < 0.001

mnp,off −0.28 268.13 0.78
mp,off 5.06 122.87 < 0.001

anp,on 1.93 478.27 0.05

ap,on 5.14 585.54 < 0.001

anp,off 17.08 485.54 < 0.001

ap,off −9.28 167.00 < 0.001

Evaluation of the trivial POMDP model

To assess the POMDP trivial model, we calculate the belief for each mission, including those run

with a policy other than the one obtained with EvC (using SARSOP). If the model is accurate, we
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anticipate a high average belief of performance,

β =
1

T

T∑

t=1

βt (6.11)

in missions with high global scores, and vice versa. Thus, we compute the correlation between

β and the global score for each mission. The Spearman’s rank correlation reveals a significant

positive correlation between β and the global mission score (ρ(β) = 0.325, N(β) = 153, p(β)-value

< 0.001). In Figure 6.9, we illustrate the relationship between β and the mission score, along with

a fitted (monotonic) fifth-order polynomial.
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Figure 6.9: Scatter plot displaying the relationship between the average belief of performance dur-
ing a mission (x-axis) and the mission global score (y-axis). A fifth-order (monotonic) polynomial
is fitted to show the positive correlation (Spearman’s ρ = 0.325 ) between β and the score. The
shaded area represents plus or minus one standard deviation of the residuals of the fit (st.d. = 8).

We consider a positive correlation to be a promising indication since it highlights the trivial

POMDP’s alignment with the actual events despite the subpar classification results. As a result, we

believe that transitioning to a POMDP is not unfounded, including the representation choice for

modeling the POMDP, the criteria used to partition data for training the classifiers, and the method

by which the classifiers were combined to construct and train an HMM using the Expectation-

maximization algorithm. It is important to note that while the classification provides discrete labels

with values of 0 or 1, the marginalized belief βt ∈ [0, 1] naturally accommodates the problem of

determining when to switch modalities based on a specific threshold.

Since the Spearman’s correlation coefficient exclusively tests for the presence of monotonic cor-

relations without assessing the dependence between variablesmeaning it cannot detect non-linear,

non-monotonic dependencewe examine the dependence between β and the score by computing

the Randomized Dependence Coefficient (RDC) (Lopez-Paz, Hennig and Schölkopf, 2013). Util-

izing the recommended hyperparameters from the reference, we obtain an RDC of 0.348. As the

RDC is almost identical in magnitude to Spearman’s coefficient, it is probable that there is no

non-monotonic dependence between the variables.
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Comparison of the policies

Performance Figure 6.10 displays the distribution of scores achieved with different policies

across all participants and missions. The descriptive statistics for the results can be found in Table

6.12. We started by comparing the distribution of results obtained with the Random policy with

the data in the starting batch D that was collected using a random policy (first line of Table 6.1).

The Mann-Whitney U test was conducted to compare the two independent groups of scores. The

test revealed a significant difference between the groups (U = 686.0, p-value < 0.05), leading us

to reject the null hypothesis of no significant difference between the groups at the 5% significance

level. Consequently, we cannot be “certain” that the sample we collected is a valid representation

of the unknown underlying distribution. This finding underscores the challenge of our task, as we

had to work with a limited dataset D.

Among all the interaction policies, the Random policy performed the worst in terms of risk and

performance metrics. The POMDP adaptive interaction policy resulted in the highest minimum

mission score. The automatic control policy (with alarms) was the most performant with respect

to the mean, the median, and also the most robust one taking into account the VaR0.25. These

results contradict our simulations, although in Table 6.8 it is reported that the automatic policy

(without alarms) was the strategy with the highest first quartile. The second most performant and

robust strategy was the POMDP (SARSOP, γ = 0.98) policy. The automatic and the POMDP policies

also display the least variability. The MDP adaptive policy (full manual mode with alarms) was the

one that scored the best with respect to the third quartile and the maximum value. The latter is

qualitatively in agreement with the simulations for POMDP policy selection (see Table 6.8).
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Figure 6.10: Boxplot with the distributions of scores by interaction control policy. Missions ran
deploying the full automatic strategy have the highest first quartile, median, mean, and also the
lowest variance.

A Friedman’s test was conducted to analyze the data, revealing a significant difference among

the policies (χ2(3) = 13.07, p < 0.01). Post-hoc analyses using the Wilcoxon signed-rank test with

a Hommel correction indicated that the Random policy (Median = 20) yielded significantly lower

scores compared to the Automatic policy (Median = 27, p < 0.01), the MDP policy (Median =
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Table 6.12: Descriptive Statistics of Scores by interaction control policy. Best value per metric is
displayed in bold.

Score
mean std min 25% Median 75% max

Policy

Random 17.9 9.6 4.0 8.3 20.0 26.8 32.0
Auto 25.6 5.0 9.0 25.3 27.0 28.0 32.0
MDP 22.7 7.6 6.0 18.0 22.5 28.8 39.0
POMDP 23.4 5.7 14.0 18.5 24.0 27.5 37.0

22.5, p < 0.05), and the POMDP policy (Median = 24, p < 0.05). No other statistically significant

differences were observed, only trends between the Automatic and MDP policies (p = 0.093).

The results demonstrate that the adaptive controllers, both with and without accounting for

partial observability, exhibit better performance and robustness than the data-collector policy (the

random policy). Furthermore, the risk-aware policy derived from a hidden-states-based represent-

ation proves to be more robust than the one obtained through a fully observable representation.

However, both adaptive policies were found to be less safe compared to the fully automatic one.

The MDP policy, which is equivalent to consistently selecting the manual robot control level

(with alarms on), resulted in a score distribution with the largest high-score tail. This outcome

confirms that, in this use case, skilled players can achieve higher scores manually than with the

fully automatic policy. The POMDP adaptive policy ranked second in terms of the maximum score,

suggesting that the idea of selecting the robot autonomy level based on an estimate of the team’s

performance has merit. This is supported by instances where the POMDP controller granted control

of the robot to the human operator (i.e. putting it in manual mode) for extended periods of time.

However, the effectiveness of the proposed method remains a first attempt and requires further

refinement. Ideally, if the method could perfectly differentiate between high-performing and low-

performing teams, we would expect a policy that is both more robust and more performant at every

quantile of the global score distribution. Regrettably, achieving such a method would necessitate

more accurate classifiers, more representative models, and beliefs βt more strongly correlated with

the score than those employed in these experiments and that were obtained offline using a fixed

dataset containing a limited amount of demonstrations.

A crucial aspect of this study involves applying normalization to standardize the measurements

of the Heart Rate and Heart Rate Variability, as outlined by Caroline P. C. Chanel et al. (2020).

To achieve this, the protocol we employed recorded resting physiological baselines for participants

before each mission, which were then used to normalize the HR and HRV values. However, we

observed notable discrepancies in the recorded resting baselines for individual subjects across dif-

ferent missions. For example, a subject had a resting heart rate of approximately 70 bpm before

a mission utilizing a Random policy. However, their resting heart rate recorded before a mission

employing the POMDP adaptive policy could be as high as 100 bpm. The discrepancies were even

more pronounced for HRV measurements at rest, which are inherently more challenging to meas-

ure. In this case, the disparity between the maximum and minimum measurements of HRV at

rest per subject could be as much as eightfold. As previously discussed, physiological markers are

among the most important features used by classifiers to identify high-performance time steps.

Consequently, it is imperative to append the data processing and the quality of the experimental

protocol to the list of critical aspects that can significantly impact the results of these experiments.

Additionally, it is important to recognize that the chosen adaptive policies, for both POMDP

and MDP, were derived using methods that assumed an infinite horizon representation. While the
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policy selection pipeline, based on the information from the initial dataset, would have favored

these policies over the automatic policy with alarms, it is worth considering whether employing a

finite horizon (60 time steps) could have resulted in different policies and outcomes.

Subjective feedbacks The average score on the KSS test before the experimental procedure was

3.1 (Median = 3.0, SD = 1.5), while the average score after the experiments was 3.3 (Median

= 3.0, SD = 1.6). Recalling KSS survey is generally used to measure the subjective fatigue from

participants, where a higher after KSS score can be associated with significant drowsiness. A

Wilcoxon signed-rank test using the zsplit method was conducted to analyze the KSS questionnaire

scores before and after the experimental procedure. The test indicated a sizable difference between

the two sets of scores (z = 143.5, p = 0.41), but this difference was not statistically significant at

the 0.05 level.

The NASA-TLX results for each scale and overall are depicted in Figure 6.11, with the fully-

autonomous policy (i.e. Auto) being the least demanding across all scales. A Friedman’s test

was performed to analyze the overall rating, revealing a significant difference among the policies

(χ2(3) = 36.98, p < 0.001). Post-hoc analysis using the Wilcoxon signed-rank test with Hom-

mel correction showed a significant difference between the ratings obtained when the controller

followed the fully-autonomous policy (Median = 40.0) and the other policies with p < 0.001 (Ran-

dom, Median = 61.2; MDP, Median = 71.0; POMDP, Median = 65.3). These findings indicate that

the fully-autonomous policy reduces the overall workload for the human operator; and, the impact

on the subjective workload of adaptive policies remains inconclusive.

The results of the Fluency survey for each dimension and overall can be found in Figure 6.12.

The fully-autonomous policy is perceived as providing the most fluent interaction, while the MDP

adaptive control policy is considered the least fluent. A Friedman’s test was conducted to analyze

the overall rating, revealing a significant difference among the policies (χ2(3) = 32.72, p < 0.001).

Post-hoc analysis using the Wilcoxon signed-rank test with Hommel correction showed a significant

difference between the ratings obtained for every pair of policies (p < 0.01), except for the pair

made of the Random (Median = 4.0) and the POMDP (Median = 4.5) policies (p = 0.62). The

median of the overall adjusted rating for the fully-autonomous policy was 5.2, while for the MDP
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Figure 6.11: Boxplot with the distributions of NASA-TLX by interaction control policy and scale.
The automatic policy is the least demanding across all scales.
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Figure 6.12: Boxplot with the distributions of the Fluency test by interaction control policy and
dimension. The automatic policy is perceived as the one that leads to the most fluent interaction,
while the MDP adaptive control policy is perceived as the least fluent.

policy, it was 2.0. In summary, while the fully-autonomous policy emerges as the most fluent and

the MDP adaptive (manual) policy as the least, the findings on the random policy and adaptive

POMDP policy warrant further investigation to better understand the potential of the latter in

enhancing human-robot interaction experiences.

Physiological measurements Concerning eye-tracking measurements, the aggregate average

spatial densities of the human operator’s fixation durations on the GUI during missions with dif-

ferent interaction controllers were extracted from recorded data. These densities are displayed as

heatmaps in Figure 6.13. It is worth noting that during the fully-autonomous mission, the human

operator is primarily focused on the tank refill task, paying little attention to the robot naviga-

tion task, which is automatically managed (see Figure 6.13b). In contrast, when using the MDP

policy, which maintains manual mode while providing alarms, the human operator’s attention also

extends to the navigation task (see Figure 6.13c).

Concerning ECG measurements i.e. HR and HRV, the distributions of the normalized average

HR during each mission and the normalized HRV are shown in Figures 6.14 and 6.15, respectively.

Recalling, these metrics are known to be impacted by workload: an increase in mental workload

has been linked to an increase in HR and a decrease in HRV. The Friedman’s test conducted to

analyze the average normalized HR was significant (χ2(3) = 10.95, p = 0.01). A Wilcoxon signed-

rank post hoc test with Hommel correction revealed a significant difference between the average

normalized HR during missions following the fully-autonomous interaction policy (Median = 0.1)

and the MDP policy (Median = 3.6) with p < 0.05. This result is in accordance with the subjective

feedback from participants (i.e. NASA-TLX results) concerning the perceived workload. Other

differences were not significant. The median of the average normalized heart rate during missions

with the random policy was 2.4 and with the POMDP policy 2.1. The Friedman’s test conducted to

analyze the normalized HRV was not significant ( χ2(3) = 3.6, p = 0.31) either.
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Figure 6.13: Heatmaps of the aggregate average density of fixation durations of the human op-
erator on the Graphical User Interface (GUI) during missions with different interaction control
policies.
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Figure 6.14: Boxplot with the distributions of the average normalized heart rate by interaction
control policy.
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Figure 6.15: Boxplot with the distributions of the normalized heart rate variability by interaction
control policy.

6.4 Conclusions

In this chapter, we have demonstrated the feasibility of tailoring a sequential decision-making

problem under model uncertainty to guide the interaction of a mixed-initiative human-robot sys-

tem using a (Partially Observable) Markov Decision Process. To this end, we developed adaptive

policies for the interaction between a human operator and the navigation controller in the Fire-

fighter Robot game, which also incorporated the human operator’s physiological data.

We began by constructing a dataset of demonstrations that had been previously collected us-

ing a random interaction policy with multiple human participants. We then proposed a pipeline

to represent the problem as both fully observable and partially observable Markov Decision Pro-

cesses. Subsequently, we solved the MDP using various state-of-the-art risk-sensitive policy learning

baselines and selected the most robust policy among them using our EvC approach, as discussed in

Chapter 5. We also adapted EvC for POMDPs (despite a lack of theoretical guarantees on the con-

vergence of the estimates) and selected the most robust policy among several candidates obtained

with different discount factors.

We conducted experiments with human volunteers in lab facilities, demonstrating that our

adaptive policies had a scientific basis and resulted in safer and more efficient policies compared to

a random policy. The controllers estimated the team’s performance state in real time and switched

modalities accordingly. The POMDP-based adaptive policy outperformed the MDP-based policy in

capturing real-time environmental dynamics. However, the adaptive policies were riskier and less

effective than a fully-autonomous policy, which minimized human control and assigned greater

autonomy to the machine. The interaction control policy with limited human involvement was

the only one that demonstrated a reduction in perceived workload for the human operator and

facilitated a more fluent interaction.

Our results are promising, despite the limitations of our pipelines and the frugality of the initial

data set. The performance estimates obtained with the Trivial POMDP model were significantly

correlated with the mission’s final score, indicating that the model effectively captured the under-

lying dynamics. We addressed the well-known limitations of offline learning and the significant

challenge of intersubject variability in human physiological markers and behaviors, although their

impacts on the proposed method are still strong.
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Potential avenues for future research involve: (i) minimizing intersubject variability in the ini-

tial dataset by selecting participants with comparable physiological baselines and training; (ii)

devising more suitable methods to standardize physiological markers across different subjects;

(iii) utilizing policies optimized through a finite horizon representation; (iv) forgoing direct in-

terpretability in favor of a model-free approach to address potential problems stemming from

inadequate hard-coded modeling or excessive dimensionality reduction; and (v) acknowledging

the necessity for a larger dataset to facilitate data-driven inference of complex dynamics involving

human behavior and physiological markers.

We envision that future mixed-initiative interaction control policies could strike a balance

between a safe, adaptive, but not necessarily precise policy that performs well with a diverse range

of human operators, and a precise, high-performing adaptive policy that is fine-tuned for a specific

human operator or a narrow class of operators characterized by similar physiological baselines and

training backgrounds. The first policy could be obtained offline and serve as a starting point to

obtain the second one, whose fine-tuning could be performed online.

Key Takeaways

• Offline Reinforcement Learning shows promise for developing adaptive control

policies for the interaction of mixed-initiative human-robot systems.

• Model-based approaches benefit from partially observable representations, but ex-

tracting them from data is challenging.

• Physiological computing in controlling human-robot interaction is significantly in-

fluenced by inter-subject variability.

• The experiments conducted in the Firefighter Robot Game demonstrate that ad-

aptive policies exhibit superior robustness and performance when compared to the

policy used for batch collection.

• In the Firefighter Robot Game, the experiments did not provide evidence that ad-

aptive policies mitigate the cognitive workload of the human operator.

Does satisfying a robustness criterion suffice to earn the trust of a general audience and enable

deployment of the resulting policy in real-world scenarios, potentially involving automated agents

or controllers interacting with humans? Regrettably, the European Union Act for AI also stipulates

that the approach must be explainable. In the subsequent chapter, we will introduce a method

to elucidate the significance of the policy and the individual attributes of an automated agent by

employing an environment simulator. This simulator may be oracle-based, as demonstrated in the

next chapter, or learned from demonstrations. As the proposed method naturally extends to multi-

agent contexts, such as human-robot interaction scenarios, it will be presented directly within the

framework of Multi-Agent System (MAS).
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Chapter 7

Towards the assessment of policy

and attribute importances in

Multi-Agent Systems

In this chapter, we introduce a method to quantitatively assess the global importance of an agent

within a team while performing a cooperative task. We employ Shapley and Myerson analyses,

previously discussed in Section 1.5, to investigate the contributions of both agent policies and

individual attributes. Individual attributes refer to a set of characteristics that describe an agent’s

behavior in the environment, independent of the policy they employ. For instance, in a basketball

game scenario, not only is the strategy adopted by a player crucial, but factors such as their speed,

shooting accuracy, and other individual attributes also play a significant role.

We argue that the development of such a method is imperative for the real-world deployment

and application of AI-based technologies, particularly when the Machine Learning model is trained

solely on offline data. Compliance with robustness criteria used for maximizing or selecting a risk-

aware policy may not be sufficient to grant legal authorization for deploying Offline Reinforcement

Learning policies in contexts where humans can interact with one or more automated systems.

Simultaneously, this explainability approach could serve as an invaluable tool for strategists,

decision-makers, and sports coaches. However, it is essential to acknowledge the challenge of de-

termining an agent’s importance in a cooperative task, where isolating an individual’s performance

from the rest of the team is difficult. Moreover, the relationship between an agent’s role and their

personal attributes is not always evident. It is crucial to consider that an agent possesses a policy

(a set of rules, a function, or a black box dictating their actions) and individual features to tackle

these challenges.

We propose a Hierarchical Knowledge Graph of agents’ policies and features in a Multi-Agent

System, enabling us to leverage dynamic programming and significantly reduce the computational

complexity of Shapley analysis. Our approach is tested in a proof-of-concept environment using

both hardcoded policies and policies obtained through Deep Reinforcement Learning, demonstrat-

ing valuable insights into an agent’s importance within a team and the necessary attributes for

effectively deploying their policy.

We posit that by constraining the coalitional gamecomprising agents’ policies and attributeson

a graph representative of the environment and enforcing an appropriate replacement rule, i.e. a

rule to remove players from a coalition, for both attributes and policies (see Equation 1.24), the

computational complexity of Shapley analysis can be reduced. This reduction can be achieved by
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leveraging Myerson analysis and Dynamic Programming.

Consider a scenario where five basketball players (A, B, C, D, E) engage with one another

during a match. We examine a collection of policies and individual attributes (as properties)

associated with each agent. In this cooperative game coalition, both attributes and policies are

regarded as players whose interaction is constrained by a graph (see Figure 7.1). When evaluating

the Myerson characteristic function for a coalition that excludes D’s policyreplacing it with a No-op

policy for consistencythe computation involves applying the characteristic function to the original

team minus agent D (and any attributes that were not removed). Therefore, the connectivity of the

graph would allow to completely remove an agent during the computation for better scalability.

Figure 7.1: Feature and policy coalition formation example: Five basketball players (A, B, C, D,
E) interact with each other during a match. We consider a set of policies and individual attributes
(as properties) connected to each one of the agents. Both attributes and policies are considered
players in the cooperative game coalition. When querying the characteristic function for a coalition
without considering D’s policy, since it would be replaced by the No-op policy for consistency,
computing the characteristic function amounts to applying it to the same original team, without
agent D (and without the whole set of attributes that were not removed).

Research question We extend the research conducted on explainability in multi-agent systems

and cooperative multi-agent RL discussed in Section 1.5. More specifically, since SHapley Additive

exPlanations (SHAP) (S. M. Lundberg and S.-I. Lee, 2017) is not straightforwardly applicable to a

RL Machine Learning, we follow the recipe proposed by Heuillet, Couthouis and Díaz-Rodríguez

(2022) and compute the However, the study by Heuillet, Couthouis and Díaz-Rodríguez (ibid.)

focused on agents’ policies themselves, neglecting the influence of individual attributes on the

implementation of a specific policy and the achievement of the objective. With this consideration

in mind, our objective is to address the following research question:

Is it possible to explain both the importance of individual policies and the individual attributes of

agents in a Multi-Agent System (MAS)?

Contribution We propose a methodology to explain a MAS by assessing the importance of factors

that contribute to the attainment of a shared objective. The flowchart of this methodology is

illustrated in Figure 7.2. The contributions of this chapter can be summarized in the following

steps:

1. The proposal of aligning both agents’ policies and individual attributes on equal footing

with the aim to assess their importance with respect to the goal of the MAS using Shapley

(see Definition 13) and Myerson analyses (see Definition 15) and a simulator (establishing

suitable replacement rules). This corresponds to the first two steps in Figures 7.2a and 7.2b;
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7.1 Hierarchical Knowledge Graph (HKG) for Multi-Agent Systems

List policies and
individual features

of each agent

Define replace-
ment rules

Run Shapley analysis
(Algorithm 10)

(a) Flowchart of the methodology with a simulator and Shapley analysis.

List policies and
individual features

of each agent
Define replacement rules Build

HKG

Run Myerson
analysis

(Algorithm 11)

(b) Flowchart of the methodology with a simulator and Myerson analysis.

Figure 7.2: Flowcharts of the proposed methodologies.

2. The introduction of an expert-guided protocol to build a knowledge graph depicting the

connectivity in the interactions between agents’ policies and individual attributes in a Multi-

Agent System. This graph will be defined as a Hierarchical Knowledge Graph (the third step

in Figure 7.2b);

3. The empirical validation of (1) in a use-case Multi-Agent System using a simulator, showing

that the computed Shapley (or Myerson) values are consistent with the system dynamics and

that relevant features can be detected using this approach (the last step in Figures 7.2a and

7.2b);

4. Exploiting (2) for the empirical validation of (1), showing that the protocol to build a Hier-

archical Knowledge Graph captures the connectivity of interactions in the system since the

consequent Myerson analysis is statistically equivalent to the Shapley one, and on top of

that less computationally expensive by an amount that depends on the case-specific graph

structure;

5. Empirically showing that the operationalized technique can provide explanations regarding

the accountability and roles of policies and attributes of agents trained with black box models

such as Deep Reinforcement Learning architectures.

We now introduce the concept of a Hierarchical Knowledge Graph, which will be utilized for

Myerson analysis, as well as a protocol for defining it within a specific multi-agent environment.

7.1 Hierarchical Knowledge Graph (HKG) for Multi-Agent Sys-

tems

A graph structure can be employed to represent the interactions between agents in a MAS. This

practice is not uncommon in the context of Agent-Based Modeling, where the goal is to formally

describe agent interactions (e.g. Kurve, Kotobi and Kesidis (2013), Rai, Minghao Wang and Hu

(2015), Moya et al. (2017) and Robles et al. (2021)). However, our objective is to characterize not

only the interactions between agents but also those between their individual features. Intuitively,

individual features can be categorized into dynamic (changing over time) and static (remaining

constant during a game run). Static attributes can be further classified into active, passive, and

necessary attributes.

Necessary attributes are typically the most crucial in the hierarchy and are required for a policy

to be deployed. For example, if there is a value for Max Health Points in a game, it becomes evident
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7.1 Hierarchical Knowledge Graph (HKG) for Multi-Agent Systems

that an agent requires this feature to have a value > 0 to act in the environment, as a dead agent

cannot act. Thus, the Maximum Health Points are a necessary attribute since setting them to zero

would render the player non-existent.

Static active attributes are expressed by the agent solely through direct actions in the system.

For instance, in football, a player’s shooting accuracy is demonstrated only when the player shoots.

Static passive attributes can be expressed through interactions with the environment or other agent

policies. For example, in football, resistance to pushes is exhibited only when another agent pushes

the player.

In this manner, basic prior knowledge of the game rules is sufficient to create an HKG that

includes agent-wise partitioned features and policies.

An HKG for a MAS is built as follows, having:

1. Fully connected interaction between static active attributes of the same agent;

2. Every static active attribute of the agent is connected to the agent policy, which is always a

node in the HKG;

3. Agent’s static necessary attributes are connected to the agent policy;

4. All static necessary attributes of the game (of all agents) are fully connected between them;

5. Passive attributes of an agent are fully connected between them;

6. Passive attributes of each agent are connected to the necessary attributes of the agent.

It is worth noting that the HKG is hierarchical uniquely in the sense that there is a “layer-like”

grouping per agent attributes and policies (see Figure 7.3). Nevertheless, since both attributes

of different agents and attributes of the same agent within the same group (e.g. Static Active

Attributes) interact with each other, an HKG, despite its hierarchical structure, is a graph and not

a tree. In Figure 7.3 an HKG for a Two Agents System is displayed. The former can be seen

Agent 1 Static Necessary Attributes

Agent 1 Policy

Agent 1 Static Active Attributes

Agent 1 Static Passive Attributes

Agent 2 Static Necessary Attributes

Agent 2 Policy

Agent 2 Static Active Attributes

Agent 2 Static Passive Attributes

Figure 7.3: Example of Hierarchical Knowledge Graph for a Two Agent System. Same levels in
the hierarchy are represented by the same color. Group of attributes with the same characteristics
(same agent, active/passive) are fully connected between themselves). Edges do not connect boxes
of the same level but only between parents and children. The top parent box is needed to represent
interactions between static necessary attributes of different agents.

as a general template for feature-policy interaction in a MAS. However, even though it is easily
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7.2 Requirements to compute Shapley and Myerson values for Multi-Agent Systems using a
simulator

understandable, its validity is not general. One can imagine a system in which combinations of

features interact with each other in the most complex and non-linear ways. If features and policies

are weakly interacting, then the Myerson analysis protocol might provide a good approximation

of the true interaction model. Otherwise, other means of including the prior information must be

found to leverage the isolation of subgroups of features and policies that Myerson analysis with

the HKG leverages to speed up the analysis.

Since the computational cost due to the number of operations needed to compute Myerson

values scales with the number of connected components in the graph, the more interaction between

features, the more edges in the graph. This means that the game is less constrained, hence there

are more connected components, and thus the computational benefits of this approach (related to

the ability to isolate connected components of features or sub-HKG) are restrained.

7.2 Requirements to compute Shapley and Myerson values for

Multi-Agent Systems using a simulator

In this section, we outline the requirements to compute the Shapley and Myerson values in a MAS

using a simulator for rollouts.

Replacement rule: In order to compute both Shapley and Myerson values using a simulator it

Algorithm 10: Exact Shapley Values Roll-out Computation with simulator f
Input: f simulator of the characteristic function v of the coalitional game (C, v), N number

of simulations, ζ replacement rule
Output: n = 1 to N , i = 1 to |C| values φn

i (v) Shapley values
1 Initialization: φn

i (v) = 0 with n = 1 to N

2 for i ∈ C do
3 Generate the power set P (C\{i})
4 for K ∈ P (C\{i}) do
5 for n = 1 to N do

6 φn
i (v)← φn

i (v) +
|K|!(|C|−|K|−1)!

|C|! (f (ζ(K ∪ {i}))− f (ζ(K)))

7 return φ

is mandatory to define a replacement rule for features and policies. Indeed, a simulator f of the

MAS will likely require that all the agents are well-defined: they possess the full list of attributes.

This means that f : {σ s.t. |σ| = |C|} → R. The simulator can only evaluate coalitions with the

same number of players as the full number of features and policies to be analyzed.

How to deal with this hindrance? What is important is that the transferable utility coalitional

game respects the properties of Definition 12 and hence that Equation 1.24 is valid.

We should then find a set of valid features/policies for the MAS Ξ = {ξ1, . . . , ξ|C|} with |Ξ| = |C|

such that f(Ξ) = 0. It is worth noting that ξi is not necessarily an element of C, what is important

is that f is well-defined when the feature/policy i has value ξi.

In this way, we can imagine that Ξ is equivalent to the void coalition ∅ with respect to the

characteristic function v: Ξ v
↔ ∅.

We put into a 1-to-1 relationship any σ ∈ P(C) such that |σ| < |C| and the coalition:

ζ(σ) = σ ∪ {ξi |i ∈ C ∧ i 6∈ σ}. (7.1)

Notice that |ζ(σ)| = |C| and f(ζ(σ)) is well-defined. We assume that σ v
↔ ζ(σ).

131



7.3 Experimental evaluation

Algorithms 3 and 4 can be adapted to take care of the simulator f and the replacement rule ζ.

In particular Algorithm 10 (and 11) performs Shapley (and Myerson) analysis using a simulator f

for a number of roll-outs (simulations) N given as input. Notice that the purpose of the simulator

is providing the value of the characteristic function ν, otherwise not computable. Additionally, as

stated before, the simulator can only work if all agents are well-defined (with a valid policy and a

full list of attributes). In order to evaluate the characteristic function at coalitions without a subset

of policies and/or attributes, line 6 is called in Algorithm 10, and lines 10, 14, and 16 are called in

Algorithm 11. These lines perform the composition of functions f ◦ ζ: first, ζ replaces accordingly

the removed features/policies in order to deal, successively, with a simulation f applied on a well-

defined environment. Several simulation roll-outs N will be performed to explore the distribution

of the results generated by the stochasticity of the environment.

Note that the results of this analysis provide intuition about the contribution of policies and

attributes. However, even if an attribute is deemed more important than another, it is likely, but

not granted, that the very same MAS where that single attribute is assuming a greater Shapley/My-

erson value will be more performing. This is why we argue that this approach should not be used

online during the learning phase of RL agents but only a posteriori, since credit assignment will

only be fully given at the end of the task/game.

Algorithm 11: Exact Myerson Values Roll-out computation with simulator f
Input: G graph over the set of players C of the coalitional game (C, v), f simulator of the

characteristic function v of the coalitional game (C, v), N number of simulations, ζ
replacement rule

Output: n = 1 to N , i = 1 to |C| values φn
i (v) Myerson values

1 Initialization: φn
i (v) = 0 with n = 1 to N , Coalitions = {∅}

2 for i ∈ C do
3 Generate the power set P (C\{i})
4 Decompose each K ∈ P (C\{i}) to µ(K), the sets of connected nodes minimally

covering the subgraph with vertices K
5 Decompose each K ∪ {i} to µ(K ∪ {i}), the sets of connected nodes minimally covering

the subgraph with vertices K ∪ {i}
6 for K ∈ P (C\{i}) ordered by increasing |K| do
7 for n = 1 to N do
8 if ζ(K) 6∈ Coalitions then
9 for σ ∈ µ(K) ∧ ζ(σ) 6∈ Coalitions do

10 Coalitions(ζ(σ))← f(ζ(σ))

11 Coalitions(ζ(K))←
∑

σ∈µ(K) Coalitions(ζ(σ))

12 if ζ(K ∪ {i}) 6∈ Coalitions then
13 for σ ∈ µ(K ∪ {i}) ∧ ζ(σ) 6∈ Coalitions do
14 Coalitions(ζ(σ))← f(ζ(σ))

15 Coalitions(ζ(K ∪ {i}))←
∑

σ∈µ(K∪{i}) Coalitions(ζ(σ))

16 φn
i (v)← φn

i (v) +
|K|!(|C|−|K|−1)!

|C|! (Coalitions (ζ(K ∪ {i}))− Coalitions (ζ(K)))

17 return φ

7.3 Experimental evaluation

In Section 1.5.1, we defined a transferable utility coalitional game involving players. Here, we use

the term “player” to denote actual team members in our game who cooperate to achieve a common
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7.3 Experimental evaluation

goal. We will define the transferable utility coalitional game over a set of players C, which consists

of features (individual attributes and policies).

We propose leveraging prior knowledge about the transferable utility coalitional game under

consideration to construct a connected graph where each node represents an agent’s individual

attribute or policy. This approach expands upon Heuillet, Couthouis and Díaz-Rodríguez (2022) in

two ways: 1) in that study, only agents’ policies were analyzed and directly incorporated into the

paradigm, and 2) we introduce the HKG as domain knowledge to be exploited.

We evaluate our approach in a game setting called Arena13, which is inspired by World of

Warcraft 3 vs 3 arena matches (Wikipedia contributors, 2023). To compute Shapley and Myerson

values, we conduct rollout simulations using a game simulator. Due to the stochastic nature of

the environment and occasionally the policies, multiple simulations are required. We validate the

statistical significance of our results using the Mann-Whitney U test, a non-parametric statistical

test specifically designed to compare the equality, in probability, of two populations.

7.3.1 Arena Game: RL environment description

Two teams, team A and team B, both of them made of a Warrior, a Mage, and a Priest fight each

other. The common goal of a team is to defeat every enemy opponent in the least possible amount

of moves. Given the different possible actions available to each agent, selfish strategies may easily

lead to defeat. The teams perform their sequence of actions taking turns one at a time. At the

beginning of each match, one team is chosen to start first with a random uniform probability. The

agents in each team act abiding by the following order: 1) Warrior, 2) Mage, 3) Priest.

Victory condition: The Arena game ends when all agents in a team are dead or when T = 1000

rounds have passed. Let Ω be the set of all possible simulations. When team A wins, a simulation

ω ∈ Ω the game returns a result of r(ω) = +1, when team B prevails the returned result amounts

to r(ω) = −1, if T (ω) = 1000 rounds have passed and there is still not a winner then r(ω) = 0.

The final score of a simulation is:

Score(ω) = 100

(
r(ω)

T (ω)
+ 1

)

(7.2)

where T (ω) is the total number of rounds needed to terminate the game. Notice that Score ∈

[0, 200]. If team A wins in one round, Score = 200, if it loses in one round, then Score = 0.

Furthermore, Score → 100 with T → 1000. Intuitively, we will have 200 ≥ Score > 100 for

simulations where team A won and 0 ≤ Score < 100 where it lost.

Description of agents’ roles and attributes: Every agent executes a policy. We assume that

the full list of individual attributes is known. We build an HKG for such a MAS with the individual

attributes and policies following the protocol described in Section 7.1. The attributes of each agent

are divided into Static Necessary Attributes, Static Active Attributes, and Dynamical Attributes:

1. Max Health Points [Static Necessary Attribute]: the maximum health points that an agent

can possess;

2. Attack Power [Static Active Attribute]: the maximum damage that an agent can deal within

one time step;

3. Healing Power [Static Active Attribute]: the maximum amount of health points that an agent

can lend by healing himself or another one in one time step;

13The source code is openly accessible in the GitHub repository: https://github.com/giorgioangel/myersoncoop.
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4. Control Chance [Static Active Attribute]: modulates the chance the Mage has to stop other

agents from acting from one round (will be defined better later in Equation 7.4);

5. Current Health Points [Dynamical Attribute]: the health points of an agent at each time step.

The default value of these individual attributes is reported in Table 7.1. We do not consider

Static Passive Attributes. Subsequently to the work in this chapter, we tried to add to the game

a Defense attribute for each agent. Results were promising but the increase of features in the

transferable utility coalitional game from 15 to 18, while still manageable for the Myerson method

with HKG, made the problem already computationally too demanding for the Shapley approach in

terms of our available computational resources.

Table 7.1: Default individual attributes (static and variable during the game) of each agent in the
Arena cooperative multi-agent environment.

Static Necessary Attribute Value [Range]

MaxHealthPoints 100 [0-100]

Static Active Attributes Value [Range]

AttackPower 10 [0-20]
HealingPower 5 [0-100]
ControlChance 0.5 [0-0.5]

Dynamical Attribute Value [Range]

CurrentHealthPoints 100 [0-MaxHealthPoints]

Warrior

The Warrior can only attack an enemy agent. He damages the enemy by an amount equal to his

(the Warrior’s) AttackPower:

tarHPt+1 = max (0, tarHPt − AttackPower) (7.3)

where tarHP represents the CurrentHealthPoints of the targeted enemy and t a time step. Any agent

dies when his CurrentHealthPoints = 0.

Mage

A Mage can only control (put to sleep) an enemy agent. His chance P of controlling the enemy is

equal to

P = ControlChance

(

1 +
AttackPower

20

)

. (7.4)

When an enemy agent is put to sleep he cannot perform any action during the next turn.

Priest

A Priest can only heal a teammate. He heals the teammate by paying an amount equal to his

HealingPower:

tarHPt+1 = min (tarHPt + HealingPower, tarMaxHP) (7.5)
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where tarMaxHP are the MaxHealthPoints of the targeted agent and HealingPower is the one of the

Priest.

7.3.2 Policies

Three different handcrafted policy types are enabled for all agents both in the hardcoded policy

setting and, later on, in the setting with a policy learned with RL:

1. Random: with this policy, the target of the Warrior and the Mage are uniformly chosen

between the alive enemies. The target of the Priest is uniformly chosen between the alive

teammates.

2. Smart: the Warrior and Mage target the living enemies with the following priority list: 1)

Priest, 2) Mage, 3) Warrior. The Priest always heals the living teammate with the least

CurrentHealthPoints.

3. Do nothing (No-Op): While following this strategy, the agent does not perform any action.

4. Deep Reinforcement Learning (RL): Intending to show that the proposed approach can provide

reasonable explanations of black-box Reinforcement Learning models based on Deep Neural

Networks, we trained a Stable-Baselines3’s A2C model (Raffin et al., 2021) where every

agent can select the target of his action at every time step. Therefore, the Warrior will decide

who to hit between the enemies, the Mage which enemy to control, and the Priest who to

heal among his friends. Immediately then each agent will choose which action to perform on

it. We trained the model in three phases, every time until convergence. In Phase 1 the enemy

team was hardcoded to deploy a No-op policy, in Phase 2 the enemy team was hardcoded to

act following the Random policy, and in Phase 3 the enemy team was hard-coded to follow

a Smart policy. In this way, we could provide the A2C agent an adversary with increasing

difficulty along the three phases. Moreover, the reward signal used to train the agent was

not the sparse final score of Equation 7.2 but the difference between the total current health

points of the teams. The said tricks let the training converge faster.

With little surprise, the policy learned by the A2C model managed to overpower every hand-

crafted policy with a 100% victory rate.

We noticed that the A2C acts in the following way: the A2C trained agent learns to control all

three agents in its team. The A2C Warrior and the A2C Mage both learn to attack and control

the enemy’s Warrior. Whenever this last one dies, the A2C Mage controls the enemy’s Priest

while the A2C Warrior attacks indiscriminately one between the remaining living enemies.

During the whole match, the A2C Priest heals whoever of his team is taking damage.

7.3.3 Assumptions and goal of the evaluation

Hypothesis: we want to show that it is possible to explain both the importance of individual

policies and the individual static attributes of agents in a MAS. With this in mind, we first build a

transferable utility coalitional game whose players are both the policies and the individual features

(separately taken), then we constrain the game onto an HKG: a graph structure for the MAS that is

built following the protocol provided in Section 7.1. In order to test whether the approach is valid,

we will compute both the Shapley Values (without the knowledge graph) and the Myerson values

(exploiting the knowledge graph). In both cases, the characteristic function will be given by the

Score which is the output of a game simulator f (see Equation 7.2). Since the simulator requires

135



7.3 Experimental evaluation

every agent to be well defined (with a valid policy and a full set of attributes), we have to apply

the replacement rule ζ to coalitions before running it (see Equation 7.1). Hence, after applying ζ,

every coalition will be legitimate in the sense that applying f (the simulator) to them will produce

a result (a real number). However, in Shapley analysis, we will first use the replacement rule and

then run the simulation (line 6 of Algorithm 10), while in Myerson analysis we will first check for

the graph connectivity in order to exploit Property 5 in Definition 15 (lines 4 and 5 in Algorithm

11 decompose the coalition subgraph in connected parts and then the simulation is run only for

the decomposed coalitions). We aim to show that:

1. by defining different yet correct replacement rules for policies and attributes the two can

stand on the same footing with respect to these analyses;

2. the N = 72 results of Shapley and Myerson analysis come from the same distribution, and

therefore that the HKG provides a good approximation to a latent structure of a MAS;

3. both the Shapley and the Myerson values are consistent with the rules of the game and the

predicted contribution seems reasonable;

4. the number of computations needed to carry out Myerson analysis is lower than the Shapley

one. Indeed computing exact Shapley values is O(2|C|) while computing Myerson values is

O(2X) with C being defined in Definition 12 as the number of players and X ≤ |C| being

a constant proportional to the minimum number of connected nodes covering the graph G

needed to form any coalition. In our particular case, |C| = 15, 215 = 32768 while X ≈ 9.966

and 29.666 ≈ 1000.

All players share the same individual stats, as reported in Table 7.1.

Let us extend the formalization of the game Score defined in Equation 7.2. Let P (C) be the

power set of C, the set of static attributes (Table 7.1) and policies of team A. We define Ωσ with σ ∈

P (C) as the set of possible simulations for a specific coalition σ. When an individual attribute is not

present in σ, then it is set to zero before starting the simulation (e.g. a coalition without Warrior’s

AttackPower means that in simulation the Warrior will start the simulation with AttackPower = 0).

When a policy is not present, it is set to Do nothing (No-Op).

Notice that, if the policy and the features of team B’s Warrior allow him to deal damage, then

the score of every possible simulation ω∅ ∈ Ω∅ where Ω∅ is the set of simulations’ outcomes

attainable with an empty coalition is Score(ω∅) = 0. Let us define an average score function over

a set of N simulations Σ : N+,×P (C)→ [0, 200],

Σ(n, σ) =
1

n

n∑

i=1

Score(ωσ,i). (7.6)

where ωσ,i is the outcome of the i-th simulation run with coalition σ.

Our goal is to compute the importance of the individual static attributes and policies of each

member in team A. We will run N = 72 simulations with team A and team B playing all the possible

combinations of policies in the set: {Random, Smart, No-Op, RL}.

We will compute these values with two different approaches: 1) naively calculating the Shapley

values, 2) computing the Myerson values on a properly crafted HKG (Figure 7.4).

Replacement rule In the case of the Arena game,

ξpolicy = No-Op ∀policy ∈ {Smart, Random, No-Op, RL},
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ξj = 0 ∀j ∈ C ∧ j 6∈ {Smart, Random, No-Op, RL},

or in other words when j is an attribute and not a policy.

Shapley values In order to compute the Shapley values, we use as characteristic function v the

Score (Equation 7.2). We use a simulator of the game f and perform N = 72 different simulations.

The values are computed using Algorithm 10 and the replacement rule described above.

Myerson values In order to compute the Myerson values, we first have to define a graph G that

encompasses the relationship between the features. Using our prior knowledge about the game: if

an agent has MaxHealthPoints = 0, he is already dead and then he is unable to act. If a policy is No-

Op (do nothing) then all the other individual attributes besides MaxHealthPoints do not matter, and

thus, by following the protocol provided in Section 7.1, we build G as the HKG shown in Figure 7.4.

It is important to remember that the characteristic function v of a coalition σ of features or policies

Warrior Max Health Points

Warrior Policy

Warrior Attack Power

Warrior Healing Power

Warrior Control Chance

Mage Max Health Points

Mage Policy

Mage Attack Power

Mage Healing Power

Mage Control Chance

Priest Max Health Points

Priest Policy

Priest Attack Power

Priest Healing Power

Priest Control Chance

Figure 7.4: Hierarchical Knowledge Graph for the Arena game. Notice how the subgraph of Static
Active Attributes is fully connected. In this game there are no Static Passive Attributes.

defined over the graph is the sum of the characteristic functions of the connected components of σ

(Algorithm 4).

Hence, if for example a coalition σ is the whole C without the Warrior’s MaxHealthPoints, we

will have two connected components: a coalition σ1 with all the attributes and policies of the

Mage and the Priest, and σ2, a coalition with just the policy and attributes of the Warrior. When

performing a rollout for σ2 all MaxHealthPoints are put to zero, hence all agents are dead, and
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Score is trivially zero. More generally, this is due to the structure of the HKG which allows one

to completely ignore an agent, its policy, and its attributes when the high-level node in the graph

hierarchy is not part of the considered coalition.

It is worth remembering that to compute the Shapley or the Myerson values we have to consider

coalitions without some participants. This is not feasible when using a simulator. Therefore we

had to define a rule ζ to replace attributes and policies with something else that for us is equivalent

to a coalition without that given element. This rule was replacing an attribute value with zero and

the policy with the No-Op.

If the feature MaxHealthPoints is available while the policy is replaced by No-Op, and any other

subset of attributes are present, the agent will not act. In such a scenario, the coalition can be

considered as one where the agent only is characterized by the MaxHealthPoints feature.

This greatly reduces the number of computations to be performed in order to obtain the Myer-

son values that were computed using Algorithm 11.

7.4 Results

The game’s mean score Σ over N = 72 simulations is displayed in the results Table 7.2. In the

first part of Table 7.2, we report the Shapley and the Myerson values obtained for all the features

and policies when team A is playing a Random policy along with their computational times, in the

second part of Table 7.2 team A is acting following the Smart policy, in the third part of Table 7.2

the No-Op policy and the last part of Table 7.2 the RL agent. The number of non-trivial evaluations

of the characteristic function needed to assess the Shapley values in this example is 32768 while

computing it for the Myerson values happens only 1000 times. It is worth noting that these values

are specific to this scenario and environment, and the degree of reduction could change for a

different environment that would be differently described by a different HKG.

The average total score Σ of every policy matching reflects the efficacy of the policy of team A

against the one deployed by team B. When both teams are applying the same policy, the average

score Σ ≈ 100 means that, on average, the matches are ending in a draw. As expected, the

weakest policy is No-Op (Σ < 100 for every policy matching), followed in increasing order of

performance by Random, Smart, and RL (Σ > 100 in every case). Only for 1 value out of 240

(240 = 5 values times 3 agents times 16 policy combinations) the results obtained with the direct

roll-out computation of the Myerson values are statistically different from the ones yielded by a

direct estimate of the Shapley values according to the Mann-Whitney U test (Priest’s Control Chance

in Random vs RL match). This highlights that the designed HKG almost perfectly depicts the game’s

latent structure, allowing the Myerson approach to computing the very same contributions yielded

by the Shapley analysis but in less time. Indeed, exploiting the knowledge of the graph structure

made the approach using Myerson values from 19 up to 66 times faster.

Furtherly, we notice that some values are very close to zero (absolute value ≤ 0.02). We

suspect these features actually do not contribute to the goal and therefore they are negligible. The

stochasticity of the environment (and policies) and the limited number of simulations (N = 72)

may yield results that are different from zero. Thus, we compare then the population of N = 72

simulations resulting Shapley and Myerson values, respectively, with a tuple of zeros using the

Mann-Whitney U test to assess whether there is a statistically significant difference between those

features from zero. We notice that in general the only relevant features (with p < 0.001) are:

1. Warrior Max Health Points;

2. Mage Max Health Points;

138



7.4 Results

Table 7.2: Rollout computation of Shapley and Myerson values to explain the contribution of each static attribute and policy. Team A is playing the Smart, the Random and the No-Op
policy. The time elapsed to compute the whole set of values for N = 72 simulations is reported below the label of each column. The displayed results are averaged over N = 72 different
simulations. Statistical significance of a Mann-Whitney U test to check if the distribution of results is the same in probability as the one of a null contribution is reported after the mean value (when
stars are present the distributions are different): ∗ for p < 0.05, ∗∗ for p < 0.01, ∗∗∗ for p < 0.001. Statistical significance of a Mann-Whitney U test between the distribution of
Shapley values and the one of Myerson values is displayed in bold when the distributions are different with p < 0.05.

Random vs Random Random vs Smart Random vs No-Op Random vs RL
Feature Shapley Myerson Shapley Myerson Shapley Myerson Shapley Myerson

Total Score Σ 99.97 99.87 97.18 97.17 103.33 103.33 98.26 98.34
Comp. Time (s) 16796.07 392.50 34033.64 531.05 22642.04 760.45 40962.12 994.56

Agent: Warrior
MaxHealthPoints 32.30∗∗∗ 32.32∗∗∗ 28.25∗∗∗ 28.25∗∗∗ 34.44∗∗∗ 34.44∗∗∗ 36.79∗∗∗ 36.81∗∗∗

Policy 0.20∗∗∗ 0.19∗∗∗ 0.09∗∗∗ 0.09∗∗∗ 1.11∗∗∗ 1.11∗∗∗ -0.21∗∗∗ -0.21∗∗∗

AttackPower 0.18∗∗∗ 0.16∗∗∗ 0.09∗∗∗ 0.09∗∗∗ 1.11∗∗∗ 1.11∗∗∗ -0.22∗∗∗ -0.20∗∗∗

HealingPower -0.02 -0.01 0.00 0.00 0.00 0.00 0.00 -0.01
ControlChance 0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00

Agent: Mage
MaxHealthPoints 32.55∗∗∗ 32.56∗∗∗ 32.81∗∗∗ 32.80∗∗∗ 33.33∗∗∗ 33.33∗∗∗ 30.49∗∗∗ 30.52∗∗∗

Policy 0.37∗∗∗ 0.36∗∗∗ 0.09∗∗∗ 0.09∗∗∗ 0.00 0.00 0.30∗∗∗ 0.30∗∗∗

AttackPower 0.19∗∗∗ 0.17∗∗∗ 0.03∗∗∗ 0.03∗∗∗ 0.00 0.00 0.09∗∗∗ 0.09∗∗∗

HealingPower 0.00 -0.03 0.00 0.00 0.00 0.00 0.00 0.00
ControlChance 0.37∗∗∗ 0.35∗∗∗ 0.09∗∗∗ 0.09∗∗∗ 0.00 0.00 0.29∗∗∗ 0.28∗∗∗

Agent: Priest
MaxHealthPoints 32.76∗∗∗ 32.78∗∗∗ 35.70∗∗∗ 35.69∗∗∗ 33.33∗∗∗ 33.33∗∗∗ 30.20∗∗∗ 30.24∗∗∗

Policy 0.54∗∗∗ 0.56∗∗∗ 0.02∗∗∗ 0.03∗∗∗ 0.00 0.00 0.26∗∗∗ 0.28∗∗∗

AttackPower -0.01 -0.04 0.00 -0.01 0.00 0.00 0.00∗ 0.01
HealingPower 0.55∗∗∗ 0.53∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.00 0.00 0.25∗∗∗ 0.24∗∗∗

ControlChance 0.00 -0.01 0.00 0.00 0.00 0.00 0.01 -0.02

Smart vs Random Smart vs Smart Smart vs No-Op Smart vs RL
Feature Shapley Myerson Shapley Myerson Shapley Myerson Shapley Myerson

Total Score Σ 102.83 102.76 99.87 99.91 103.33 103.33 97.61 97.64
Comp. Time (s) 16284.31 385.34 34129.29 534.81 24156.22 868.38 39698.93 719.89

Agent: Warrior
MaxHealthPoints 32.89∗∗∗ 32.90∗∗∗ 28.53∗∗∗ 28.53∗∗∗ 34.44∗∗∗ 34.44∗∗∗ 37.05∗∗∗ 37.05∗∗∗

Policy 0.73∗∗∗ 0.72∗∗∗ 0.49∗∗∗ 0.43∗∗∗ 1.11∗∗∗ 1.11∗∗∗ -0.18∗∗∗ -0.17∗∗∗

AttackPower 0.73∗∗∗ 0.73∗∗∗ 0.46∗∗∗ 0.41∗∗∗ 1.11∗∗∗ 1.11∗∗∗ -0.18∗∗∗ -0.17∗∗∗

HealingPower 0.00 0.00 -0.01 0.04∗ 0.00 0.00 0.00 0.00
ControlChance -0.01 0.00 0.04∗∗ -0.02 0.00 0.00 0.00∗ 0.00

Agent: Mage
MaxHealthPoints 32.90∗∗∗ 32.91∗∗∗ 32.90∗∗∗ 32.88∗∗∗ 33.33∗∗∗ 33.33∗∗∗ 29.99∗∗∗ 30.01∗∗∗

Policy 0.13∗∗∗ 0.12∗∗∗ 0.34∗∗∗ 0.30∗∗∗ 0.00 0.00 0.00 0.00
AttackPower 0.04∗∗∗ 0.03∗∗∗ 0.19∗∗∗ 0.27∗∗∗ 0.00 0.00 0.00 0.00
HealingPower -0.01 0.00 0.01 -0.01 0.00 0.00 0.00 0.00
ControlChance 0.13∗∗∗ 0.13∗∗∗ 0.29∗∗∗ 0.33∗∗∗ 0.00 0.00 0.00 0.00∗

Agent: Priest
MaxHealthPoints 33.36∗∗∗ 33.37∗∗∗ 36.05∗∗∗ 36.03∗∗∗ 33.33∗∗∗ 33.33∗∗∗ 30.30∗∗∗ 30.30∗∗∗

Policy 0.95∗∗∗ 0.93∗∗∗ 0.28∗∗∗ 0.31∗∗∗ 0.00 0.00 0.31∗∗∗ 0.31∗∗∗

AttackPower 0.00 0.00 -0.04 0.06 0.00 0.00 0.00 0.00
HealingPower 0.98∗∗∗ 0.91∗∗∗ 0.33∗∗∗ 0.31∗∗∗ 0.00 0.00 0.31∗∗∗ 0.31∗∗∗

ControlChance 0.00 0.00 -0.01 0.02 0.00 0.00 0.00 0.00

No-Op vs Random No-Op vs Smart No-Op vs No-Op No-Op vs RL
Feature Shapley Myerson Shapley Myerson Shapley Myerson Shapley Myerson

Total Score Σ 96.67 96.67 96.67 96.67 100.00 100.00 96.67 96.67
Comp. Time (s) 16350.52 364.33 33549.48 511.73 18503.63 435.27 44591.67 784.45

Agent: Warrior
MaxHealthPoints 32.22∗∗∗ 32.22∗∗∗ 28.06∗∗∗ 28.06∗∗∗ 33.33∗∗∗ 33.33∗∗∗ 37.22∗∗∗ 37.22∗∗∗

Policy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AttackPower 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
HealingPower 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ControlChance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Agent: Mage
MaxHealthPoints 32.22∗∗∗ 32.22∗∗∗ 33.06∗∗∗ 33.06∗∗∗ 33.33∗∗∗ 33.33∗∗∗ 29.72∗∗∗ 29.72∗∗∗

Policy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AttackPower 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
HealingPower 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ControlChance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Agent: Priest
MaxHealthPoints 32.22∗∗∗ 32.22∗∗∗ 35.56∗∗∗ 35.56∗∗∗ 33.33∗∗∗ 33.33∗∗∗ 29.72∗∗∗ 29.72∗∗∗

Policy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AttackPower 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
HealingPower 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ControlChance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

RL vs Random RL vs Smart RL vs No-Op RL vs RL
Feature Shapley Myerson Shapley Myerson Shapley Myerson Shapley Myerson

Total Score Σ 101.72 101.69 102.38 102.38 103.33 103.33 99.99 100.04
Comp. Time (s) 24629.82 1289.69 60915.64 1501.35 47774.24 1571.85 56939.91 1162.84

Agent: Warrior
MaxHealthPoints 32.82∗∗∗ 32.81∗∗∗ 29.18∗∗∗ 29.18∗∗∗ 34.17∗∗∗ 34.17∗∗∗ 36.62∗∗∗ 36.63∗∗∗

Policy 0.75∗∗∗ 0.75∗∗∗ 0.72∗∗∗ 0.71∗∗∗ 0.83∗∗∗ 0.83∗∗∗ 0.07∗∗∗ 0.08∗∗∗

AttackPower 0.73∗∗∗ 0.75∗∗∗ 0.71∗∗∗ 0.72∗∗∗ 0.83∗∗∗ 0.83∗∗∗ 0.07∗∗∗ 0.07∗∗∗

HealingPower 0.00 -0.02∗∗ 0.00 0.00 0.00 0.00 0.00 0.00
ControlChance -0.01 0.00 0.00 0.00 0.00 0.00 0.01∗ 0.00

Agent: Mage
MaxHealthPoints 33.02∗∗∗ 33.01∗∗∗ 34.18∗∗∗ 34.18∗∗∗ 34.17∗∗∗ 34.17∗∗∗ 30.64∗∗∗ 30.65∗∗∗

Policy 0.53∗∗∗ 0.52∗∗∗ 0.45∗∗∗ 0.45∗∗∗ 0.00 0.00 0.90∗∗∗ 0.91∗∗∗

AttackPower 0.16∗∗∗ 0.15∗∗∗ 0.09∗∗∗ 0.10∗∗∗ 0.00 0.00 0.30∗∗∗ 0.29∗∗∗

HealingPower 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 0.00
ControlChance 0.53∗∗∗ 0.53∗∗∗ 0.45∗∗∗ 0.45∗∗∗ 0.00 0.00 0.90∗∗∗ 0.90∗∗∗

Agent: Priest
MaxHealthPoints 32.60∗∗∗ 32.61∗∗∗ 36.55∗∗∗ 36.55∗∗∗ 33.33∗∗∗ 33.33∗∗∗ 30.24∗∗∗ 30.24∗∗∗

Policy 0.29∗∗∗ 0.29∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.00 0.00 0.11∗∗∗ 0.12∗∗∗

AttackPower 0.00 0.01∗ 0.00 0.00 0.00 0.00 0.00 0.00
HealingPower 0.31∗∗∗ 0.28∗∗∗ 0.02∗∗∗ 0.02∗∗∗ 0.00 0.00 0.11∗∗∗ 0.12∗∗∗

ControlChance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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3. Priest Max Health Points.

Then depending on the deployed policy, when no agent is following the No-Op also the following

features are contributing:

1. Warrior Policy;

2. Warrior Attack Power;

3. Mage Policy;

4. Mage Attack Power;

5. Mage Control Chance;

6. Priest Policy;

7. Priest Healing Power.

This post-hoc result is consistent with the game dynamics defined in Equations 7.3-7.5.

Removing the non-relevant features according to the Mann-Whitney U test, we display in Figure

7.5 the Knowledge Graph with only the relevant attributes and policies.

Warrior Max Health Points

Warrior Policy

Warrior Attack Power

Mage Max Health Points

Mage Policy

Mage Attack Power

Mage Control Chance

Priest Max Health Points

Priest Policy

Priest Healing Power

Figure 7.5: A-posteriori Hierarchical Knowledge Graph (HKG) for the relevant features of the
Arena game. The non relevant features according to both the Shapley and the Myerson analysis
were neglected since the Mann-Whitney U test between their associated Shapley and Myerson
values and an atom of value equal to zero (a collection of samples all equal to zero) resulted in a
p-value > 0.001 and therefore, the null hypothesis (H0: the Shapley and Myerson value samples
come from the same distribution of the atom) could not be discarded.

7.4.1 Per agent analysis

Warrior

Between the set of other individual attributes of the Warrior the Attack Power is the only feature

substantially different from zero, in compliance with Equation 7.3, that dictates that the effects of

Warrior’s policy only depend on its Attack Power. The Warrior can have an impact on the game

through his actions if and only if his Attack Power > 0.
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Mage

As far as it concerns the other features of the Mage, the most relevant one is the Control Chance

followed by the Attack Power. The fact that only the Control Chance and the Attack Power are

relevant is in accordance with Equation 7.4. However, the actual importance order (the fact that

the Control Chance contributes more to the goal than the Attack Power) is something that is hard to

establish even knowing the game dynamics (Equation 7.4). Nevertheless, the results of the analysis

make sense: with a Control Chance→ 0, P → 0 (P is defined in 7.4) and the action of the Mage is

non-effective, whether with Attack Power→ 0, P → Control Chance. Therefore the Mage can have

an impact on the game through his actions if and only if his Control Chance > 0.

Priest

Finally, the only other relevant individual attribute of the Priest is the Healing Power as it is also

indicated by Equation 7.5. Therefore the Priest can have an impact on the game through his

actions if and only if his Healing Power > 0. Please notice that the paradigm is agnostic of the game

dynamics and impressively obtained the correct results only by analyzing roll-out simulations.

7.4.2 Global qualitative analysis

The most important features are the Max Health Points of each agent. This suggests that, with

respect to the adopted metric (score Σ, Equation 7.6) what matters the most in the Arena game

is staying alive. Aside from this triviality, the second most contributing aspect of each agent is the

policy since, obviously, an idle agent is not extensively contributing to the common goal.

Regarding the explanation of the different policies, we notice that the global importance of each

policy and attribute depends on the team strategy and on the strategy adopted by the enemy team.

The said hierarchy is established by the magnitude of the Shapley/Myerson values. In particular

when team B is deploying the No-Op policy the most important agent of team A is the Warrior

when it is following the Random, the Smart or the RL policy. These results are intuitive since the

Mage stops enemy agents from acting, but if they are already non-acting the final outcome will be

independent from its doing. The Priest heals teammates, but if the enemy Warrior is not dealing

damage then it won’t contribute to the victory. When also team A is deploying the No-Op strategy,

and this result is independent of the enemy policy, then all the three agents are equally important

(of course, in the team no-one is doing anything at all).

7.5 Explainability of a multi-agent RL model

Interpreting the part of Table 7.2 related to the RL policy, aside from Max Health Points that, as we

have seen before, are always important, we noticed the following:

1. Agent trained with A2C (RL) team A vs Hardcoded Random Policy team B: the most important

policy and feature are the Warrior Policy and the Warrior Attack Power followed by the Mage

Policy and the Mage Control Chance. The Priest Policy and the Priest Healing Power come last,

just before the Mage Attack Power;

2. Agent trained with A2C (RL) team A vs Hardcoded Smart team B: the most important policy

and feature are the Warrior Policy and the Warrior Attack Power followed by the Mage Policy,

the Mage Control Chance and the Mage Attack Power. Against this kind of team, the Priest is
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not important since he will die more or less at the same time step than the enemy Warrior

after having been constantly controlled by the enemy Mage;

3. Agent trained with A2C (RL) team A vs Hardcoded No-op policy team B: obviously only the

Warrior Policy and the Warrior Attack Power are important since the enemy team is not acting

and the time the Warrior spends to kill every single enemy is the only thing that matters;

4. Agent trained with A2C (RL) team A vs Agent trained with A2C (RL) team B: in this game the

only important player is the Mage with his Policy, Control Chance and Attack Power. Indeed,

we can imagine that since every Mage will control the enemy Warrior when he is alive, almost

every match will end in a draw. Indeed, the total average score Σ ≈ 100 (Table 7.2).

7.6 Conclusions

In this chapter, we proposed to exploit roll-out simulations and prior information about a transfer-

able utility coalitional game to assess the importance of both individual attributes and policies of

each agent using Myerson values. The first objective was to verify the feasibility of placing policies

and attributes on equal footing. The second objective was to introduce an effective protocol for

incorporating game knowledge for Multi-Agent System using Hierarchical Knowledge Graphs. As

we demonstrated, the latter approach is particularly suitable for MAS since neglecting high-level

features of an agent when considering a coalition can directly exclude the entire agent from the

computation, thereby exploiting the compartmental nature of multi-agent systems. The third ob-

jective was to investigate whether Myerson enables computing attribution for both policies and

features in a more time and compute cost-efficient manner, in the spirit of green explainable AI.

The final objective was to demonstrate that this approach can reasonably provide explanations

even when the policy is learned and deployed by a black-box Reinforcement Learning algorithm

with Deep Neural Networks.

We tested the approach on a simple yet significant scenario that presented a plethora of non-

trivial characteristics, such as nonlinear dynamics, cooperation, and diversified interaction. The

experimental results showed that the presented approach not only assigns a value to the import-

ance of each feature and policy but also correctly identifies the relevant features according to the

agent role, game dynamics, and employed policy.

In particular, we observed that, despite small differences between the mean Shapley and My-

erson values over N = 72 different simulations, the Myerson values computed using the HKG as

prior knowledge could come from the same distribution as the Shapley values. This suggests that

the proposed approach to building the HKG correctly isolated the game structure.

Our approach with Myerson values leverages trading off building a graph of the features and

policy hierarchies to accelerate the computation of feature attribution in the post-training inference

time, as a post-hoc explainable AI technique.

This approach opens up the possibility of explaining the importance of both cooperative policies

and individual statistics of agents in any transferable utility coalitional game, from Cooperative

AI and Multi-Agent Reinforcement Learning environments to the Offline RL evaluation of teams

starting from a batch of pre-collected data, and the more generic field of eXplainable AI.

While leveraging the graph structure and Dynamic Programming reduces the computational

complexity of importance assessment, the scalability of the approach is still significantly impacted

by the number of agents and their individual attributes participating in the coalitional games. A

potential future perspective to address the exponential scalability of the coalition number in games
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with a high number of policies and attributes is to implement sampling approaches for computing

Myerson values (Tarkowski et al., 2019), which can provide approximate solutions.

Key Takeaways

• Shapley and Myerson analyses can be used to study the contribution of both agent

policies and attributes in a cooperative task.

• The computational complexity of Shapley analysis scales exponentially with the

number of participants, so a Hierarchical Knowledge Graph is proposed to con-

strain the relationships between participants and allow for faster assessment of

importances through Myerson analysis.

• The proposed approach is tested in a proof-of-case environment using both hard-

coded policies and those obtained through Deep RL.

• The approach provides insight into the importance of an agent in a team as well as

the attributes necessary for optimal policy deployment.

The content of this chapter gave rise to the following publication:

Giorgio Angelotti and Natalia Díaz-Rodríguez (2023). ‘Towards a more efficient

computation of individual attribute and policy contribution for post-hoc explanation of

cooperative multi-agent systems using Myerson values’. In: Knowledge-Based Systems

260, p. 110189

+See the publication +See the arXiv preprint

This chapter concludes the contributions of the present thesis. In the subsequent chapter, we

will synthesize the findings related to the ensemble of addressed issues and postulate potential

avenues for future research in Offline Reinforcement Learning.
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Conclusions and perspectives

This doctoral dissertation has focused on learning and solving Markov Decision Processes (MDPs)

and Partially Observable Markov Decision Processes (POMDPs) from demonstrations, with a par-

ticular emphasis on model uncertainty and risk awareness. We have highlighted the challenges

that arise when the learning phase must rely on a fixed dataset, without the possibility of further

interaction with the environment. In these scenarios, there is a high risk of overfitting the batch,

resulting in policies that either do not generalize well or that the learned model does not accur-

ately represent the dynamics of the environment. The latter can be particularly concerning when

the learned policies are intended to be deployed in the real world, where safety and reliability are

paramount. Moreover, as autonomous systems become more ubiquitous and begin to interact with

humans on a daily basis, it is essential that their behavior is both robust and interpretable. These

criteria present not only technical challenges but also legal ones, as new regulations such as the

European Union AI Act (European Commission, 2020) will require compliance with robustness and

explainability. With these challenges in mind, this doctoral thesis has considered both the technical

aspects of learning robust policies from demonstrations and the broader implications of possible

applications, such as Human-Robot Interaction, and explainability in Multi-Agent Systems.

In the First Part of this dissertation, we provided a comprehensive and critical description of

the state-of-the-art. Notably, part of Chapter 2 gave rise to a paper presented at an international

conference workshop (Angelotti, Drougard and Caroline Ponzoni Carvalho Chanel, 2020). In Part

Two, we presented our contributions across several important subfields of offline learning for risk-

sensitive planning, relying on the (PO)MDP mathematical framework. More specifically, those

contributions encompass the following subtopics:

1. Data augmentation for more data-efficient learning (state-of-the-art discussed in Chapter 2,

Section 2.4 - contribution in Chapter 4): We proposed a method to exploit expert knowledge

to detect symmetries in an MDP. We showed that such an approach can be used to augment

a batch of pre-collected trajectories, improving policy performance in offline learning. Des-

pite its benefits, the technique has several limitations, including being affected by the density

estimation technique and the state-action space preprocessing when dealing with continuous

MDPs. Our work led to two presentations at an international conference as well as two pub-

lications in the conference proceedings (Angelotti, Drougard and Caroline Ponzoni Carvalho

Chanel, 2022, 2023b);

2. Risk-sensitive offline hyperparameters and policy selection (state-of-the-art discussed in Chapter

2, Sections 2.2 and 2.5 - contribution in Chapter 5): We have demonstrated that the Bayesian

formalism can be applied to the purpose of offline risk-sensitive policy selection, assuming a

prior representing model uncertainty is obtainable from the demonstrations. The approach

relies on a Monte Carlo estimation of the quantiles of the distribution of policy performance

over model uncertainty. The method’s scalability to larger MDPs may be limited due to the
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parallel resolution of numerous models. The work led to a journal submission under review

(Angelotti, Drougard and Caroline Ponzoni Carvalho Chanel, 2023a);

3. Development of methodologies to address adaptive interaction control policies in Human-

Robot Interaction context, applicated to the Firefighter Robot game use-case (state-of-the-art

in Chapter 3, contribution in Chapter 6): We successfully demonstrated how a sequential

decision-making problem under model uncertainty can be tailored to guide human-robot

interaction using MDPs and POMDPs, leveraging physiological computing. The obtained

adaptive policies resulted in safer and more efficient missions compared to the one obtained

by employing the data collector policy. The approach is affected by the quality and the

frugality of the initial data set, and inter (human) subject variability. The work led to a

journal article currently in preparation;

4. Explainability of Artificial Intelligence driven Multi-Agent Systems (state-of-the-art in Chapter

1.5 - contribution in Chapter 7): We proposed an approach to assess the importance of in-

dividual attributes and policies of each agent using Myerson values, Hierarchical Knowledge

Graphs, and prior information about a transferable utility coalitional game. Our approach

was tested on a proof-of-concept environment and showed that it correctly identified relevant

features, as well as assigned to them reasonable importance values. Limitations include the

scalability of the approach in terms of agents and attributes participating in the coalitional

games. The results of this work were published as a full paper in an international journal

(Angelotti and Díaz-Rodríguez, 2023).

Perspectives

Rather than focusing on the perspectives of the single-developed techniques, this section will dis-

cuss research perspectives within the field of Offline Reinforcement Learning.

Data augmentation with detected symmetries could be a useful tool to apply to small data

sets and complex environments if the practitioner has an intuition about some possible symmetry

and wants to validate it. While it is true that proposing a symmetric transformation for complex

environments might be challenging, it is worth remembering that several possible industrial applic-

ations on top of the agenda of researchers include autonomous vehicles based on computer vision.

In these environments, and with the proper precautions, it is reasonable to suppose the existence

of left-right inversion symmetry. The extension of the approach proposed in Chapter 4 to states

represented as images seems straightforward, but it is yet to be ascertained. Unfortunately, we

could not apply symmetry detection to the case of the Firefighter Robot Game since we could not

think of any valid symmetry for the coarse-grained representation we had opted to tackle the prob-

lem. However, we imagine that data augmentation with symmetric transitions could be exploited

in the future in the context of HRI, especially to detect approximate symmetries, e.g. permutation

between humans with a similar social role or features.

Following our achievements presented in Chapters 5 and 6, we firmly believe that risk-sensitive

planning coupled to Reinforcement Learning (RL) is a promising way of implementing such se-

quential decision-making techniques in real-world contexts. Future perspectives include develop-

ments of less computationally costly algorithms not only for offline risk-aware policy selection but

also for direct estimation of risk-sensitive policies, e.g. relying also on the Distributional RL frame-

work. More specifically, only by estimating the distribution of returns given a policy, it is possible to
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evaluate and compute policies that are aware of the risk. With this in mind, a promising research

path could focus on Quantile Temporal-Difference algorithms (Rowland et al., 2023) for obtaining

optimal control policies with respect to risk-sensitive metrics. Second, a non-overlapping, research

branch could involve finding computationally viable discounting strategies that deal with planning

under model uncertainty better than exponential discounting is also desirable. Note the proposed

paths benefit more model-free rather than model-based approaches. Indeed, we suspect that in

the future the most performant architectures will be model-free rather than model-based since

a model-free approach is less demanding in terms of design approximations that are more often

than not needed to develop a model-based approach, e.g. the choice of the representation and the

definition of the reward function.

Throughout the manuscript, with the only exception for Chapter 6, we assumed that the reward

function was known a priori and hence not learned from data. The motivation behind this idea

lies in the fact that the reward depicts the desired behavior and the goal of the sequential decision-

making problem. If the practitioner does not know which task she/he is about to solve, why is

she/he solving it in the very first place? Notwithstanding, one could imagine that the scope of

the practitioner is to find a risk-sensitive policy for a task that the agent that collected the batch

wanted to solve, without possessing the information beforehand about which task was it. Learning

the reward function from suboptimal demonstrations falls in the field of Inverse Reinforcement

Learning (Adams, Cody and Beling, 2022). Truly agnostic and offline learning for model-based

planning paradigms should infer the reward function alongside the dynamics in a complete data-

driven fashion. In this context, model uncertainty would encompass both the uncertainty over

the dynamics and the uncertainty about the reward. An important future perspective is therefore

merging in a coherent way Risk-sensitive Model-Based Offline Reinforcement Learning and Inverse

Reinforcement Learning. When the representation of the model is not known beforehand, a coarse-

grained representation might transform a (PO)MDP that originally had a deterministic reward

function to one with a stochastic reward function. This is exactly what happened while we were

learning a model for the Firefighter Robot game use case. Eventually, we opted to use as the

reward function the estimated expected value of the reward signal for each state. Nevertheless,

when one does not focus anymore on finding the policy that maximizes the expected cumulative

reward along a history, but rather on maximizing some risk-sensitive metrics defined on the whole

distribution of returns, our choice might not be the right one. Therefore, another future perspective

would involve the research on algorithms that solve for risk-sensitive policies of (PO)MDP models

characterized by stochastic reward functions.

In our honest opinion, generalizable model-based approaches based on Deep Neural Networks

could be a viable choice only if the right representation of the model is known a priori, and hence

in learning scenarios that are not fully data-driven, or if the model is learned for a non straight-

forwardly interpretable sub representation of the sequential decision making problem. Concur-

rently, we believe that more focus is needed on performant and hyperparameter-stable Deep Neural

Network-based architectures. Indeed, as we have seen in Section 4.4.3 and 4.5, such methods are

enormously affected by the choice of hyperparameters. We presume that, in the future, the quest

for performance and robustness will be at the expense of explainability. The AI-based methods will

strive for the highest performance with respect to the optimized objectives and the technique will

be explained a-posteriori.

Drawing upon our experience with the Firefighter Robot game, we recognize that generaliz-

ing across diverse human beings presents a formidable technical challenge. Despite preprocessing

physiological data in a timely manner, such as normalizing Heart Rate in the Firefighter Robot
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game, universal thresholds14 in physiological or behavioral time series remain elusive. Our dataset

revealed significant inter-subject variability in both physiological and behavioral time series. In

our honest opinion, a promising venue could involve developing systems that abide by different

policies: one that is less performant but that tries to be robust when the system is used and inter-

acts with unknown users, and another that is obtained by fine-tuning the interaction with a single

specific user or with a subclass of users that share similar features and training.

With this perspective, the pursuit of robust, performant, explainable, and interpretable offline

reinforcement learning methods that comply with emerging regulations will become more compet-

itive than ever. Explainability for planning and deep RL black-box baselines is a burgeoning field.

We anticipate the extension of kernel-based approximations, like SHAP, to sequential decision-

making problems. It is our belief that explainability baselines will largely rely on a posteriori

analyses rather than methods intrinsic to the reinforcement learning pipeline.

Future work should further investigate explainable RL techniques with Myerson values in more

complex environments, featuring a larger set of agents, a more extensive feature set, and more

sophisticated policy learning models, such as those involving competition (Dhakal, Chiong, Chica

et al., 2022) or graph games (D. L. Li and Shan, 2020). An intriguing future case study could

involve post-hoc football statistical analysis using the Google Research Football environment for

simulations (Kurach et al., 2020).

In the realm of Human-Robot Interaction, explanatory tools will be in high demand for obvious

reasons. Given that methods like those discussed in this dissertation necessitate a simulator for

each agent in the multi-agent interacting system, a potential research direction includes developing

AI-based technologies to infer human intentions and behaviors. These methods would then be

employed by a simulator. To advance in this area, during the last three and a half years of research

at ISAE and ANITI, we supervised a research project by a (former) Master student on developing

a behavior simulator for a metahuman operating the Firefighter Robot Game using Generative

Adversarial Neural Networks (Penedo, 2022). Although the results were promising, the model has

not yet achieved sufficient reliability and accuracy for inclusion in the experimental portion of this

manuscript, and further work is needed. While providing promising results, the model did not yet

reach a degree of reliability and accuracy to be used in the experimental part of this manuscript

and supplementary work is coveted.

14Applicable to all possible human beings.
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Foundations and Trendső in Human–Computer Interaction 1.3, pp. 203–275.

151



JOURNALS

Munos, Rémi and Csaba Szepesvári (2008). ‘Finite-Time Bounds for Fitted Value Iteration’. In:

Journal of Machine Learning Research 9.5.

Nomura, Tatsuya et al. (2008). ‘Prediction of Human Behavior in Human–Robot Interaction Using

Psychological Scales for Anxiety and Negative Attitudes Toward Robots’. In: IEEE Transactions

on Robotics 24.2, pp. 442–451.

Delage, Erick and Shie Mannor (2010). ‘Percentile Optimization for Markov Decision Processes

with Parameter Uncertainty’. In: Operations Research 58.1, pp. 203–213.

Esfahani, Ehsan Tarkesh and Vedantham Sundararajan (2011). ‘Using Brain-Computer Interfaces to

Detect Human Satisfaction in Human-Robot Interaction’. In: International Journal of Humanoid

Robotics 8.01, pp. 87–101.

Doshi-Velez, Finale, Joelle Pineau and Nicholas Roy (2012). ‘Reinforcement learning with limited

reinforcement: Using Bayes risk for active learning in POMDPs’. In: Artificial Intelligence 187,

pp. 115–132.

Mausam and Andrey Kolobov (2012). ‘Planning with Markov Decision Processes: An AI Perspect-

ive’. In: Synthesis Lectures on Artificial Intelligence and Machine Learning 6.1, pp. 1–210.

Bellemare, M. G. et al. (2013). ‘The Arcade Learning Environment: An Evaluation Platform for

General Agents’. In: Journal of Artificial Intelligence Research 47, pp. 253–279.

Cummings, M. L. et al. (2013). ‘Boredom and Distraction in Multiple Unmanned Vehicle Supervis-

ory Control’. In: Interacting with Computers 25.1, pp. 34–47.

Kurve, Aditya, Khashayar Kotobi and George Kesidis (2013). ‘An agent-based framework for per-

formance modeling of an optimistic parallel discrete event simulator’. In: Complex Adaptive

Systems Modeling 1.1, pp. 1–24.

Lattimore, Tor and Marcus Hutter (2014). ‘General time consistent discounting’. In: Theoretical

Computer Science 519, pp. 140–154.

Régis, Nicolas et al. (2014). ‘Formal Detection of Attentional Tunneling in Human Operator–

Automation Interactions’. In: IEEE Transactions on Human-Machine Systems 44.3, pp. 326–336.

Ricardo, Ricardo Chavarriaga, Aleksander Sobolewski and José del R. Millán (2014). ‘Errare mach-

inale est: the use of error-related potentials in brain-machine interfaces’. In: Frontiers in Neur-

oscience 8, p. 208.

Donath, Diana and Axel Schulte (2015). ‘Behavior Based Task and High Workload Determination

of Pilots Guiding Multiple UAVs’. In: Procedia Manufacturing 3, pp. 990–997.

Mnih, Volodymyr, Koray Kavukcuoglu et al. (2015). ‘Human-level control through deep reinforce-

ment learning’. In: Nature 518.7540, pp. 529–533.

Carneiro, João et al. (2016). ‘Intelligent negotiation model for ubiquitous group decision scen-

arios’. In: Frontiers of Information Technology & Electronic Engineering 17.4, pp. 296–308.

Sheridan, Thomas B. (2016). ‘Human–Robot Interaction. Status and Challenges’. In: Human Factors

58.4, pp. 525–532.

Silver, David, Aja Huang et al. (2016). ‘Mastering the game of Go with deep neural networks and

tree search’. In: Nature 529.7587, pp. 484–489.

152



JOURNALS

Chen, Chih-Ming, Jung-Ying Wang and Chih-Ming Yu (2017). ‘Assessing the attention levels of stu-

dents by using a novel attention aware system based on brainwave signals’. In: British Journal

of Educational Technology 48.2, pp. 348–369.

Moya, Ignacio et al. (2017). ‘An agent-based model for understanding the influence of the 11-M

terrorist attacks on the 2004 Spanish elections’. In: Knowledge-Based Systems 123, pp. 200–216.

Silver, David, Julian Schrittwieser et al. (2017). ‘Mastering the game of Go without human know-

ledge’. In: Nature 550.7676, pp. 354–359.

Akkaladevi, Sharath Chandra et al. (2018). ‘Toward an Interactive Reinforcement Based Learning

Framework for Human Robot Collaborative Assembly Processes’. In: Frontiers in Robotics and

AI 5, p. 126.

Briggs, K. and F. M. Ying (2018). ‘How to estimate quantiles easily and reliably’. In: Mathematics

Today 2018.February, pp. 26–29.

Peysakhovich, Vsevolod et al. (2018). ‘The Neuroergonomics of Aircraft Cockpits: The Four Stages

of Eye-Tracking Integration to Enhance Flight Safety’. In: Safety 4.1, p. 8.

Schulz, Ruth, Philipp Kratzer and Marc Toussaint (2018). ‘Preferred Interaction Styles for Human-

Robot Collaboration Vary Over Tasks With Different Action Types’. In: Frontiers in Neurorobotics

12, p. 36.

Silver, David, Thomas Hubert et al. (2018). ‘A general reinforcement learning algorithm that mas-

ters chess, shogi, and Go through self-play’. In: Science 362.6419, pp. 1140–1144.

François-Lavet, Vincent et al. (2019). ‘On Overfitting and Asymptotic Bias in Batch Reinforcement

Learning with Partial Observability’. In: Journal of Artificial Intelligence Research 65, pp. 1–30.

Hoffman, Guy (2019). ‘Evaluating Fluency in HumanRobot Collaboration’. In: IEEE Transactions on

Human-Machine Systems 49.3, pp. 209–218.

Jain, Siddarth and Brenna Argall (2019). ‘Probabilistic Human Intent Recognition for Shared

Autonomy in Assistive Robotics’. In: ACM Transactions on Human-Robot Interaction (THRI) 9.1,

pp. 1–23.

Mostafa, S., M. S. Ahmad and A. Mustapha (2019). ‘Adjustable autonomy: a systematic literature

review’. In: Artificial Intelligence Review 51.2, pp. 149–186.

Schilling, Malte et al. (2019). ‘Shared AutonomyLearning of Joint Action and Human-Robot Col-

laboration’. In: Frontiers in Neurorobotics 13, p. 16.

Zheng, Wei and Hai Lin (2019). ‘Vector autoregressive POMDP model learning and planning for

human–robot collaboration’. In: IEEE Control Systems Letters 3.3, pp. 775–780.

Arrieta, Alejandro Barredo et al. (2020). ‘Explainable Artificial Intelligence (XAI): Concepts, tax-

onomies, opportunities and challenges toward responsible AI’. In: Information Fusion 58, pp. 82–

115.

Bellemare, Marc G., Salvatore Candido et al. (2020). ‘Autonomous navigation of stratospheric

balloons using reinforcement learning’. In: Nature 588.7836, pp. 77–82.

Chanel, Caroline P. C. et al. (2020). ‘Towards Mixed-Initiative HumanRobot Interaction: Assess-

ment of Discriminative Physiological and Behavioral Features for Performance Prediction’. In:

Sensors 20.1, p. 296.

153



JOURNALS

Dehais, Frédéric et al. (2020). ‘A Neuroergonomics Approach to Mental Workload, Engagement

and Human Performance’. In: Frontiers in Neuroscience 14, p. 268.

Dzedzickis, Andrius, Artras Kaklauskas and Vytautas Bucinskas (2020). ‘Human Emotion Recogni-

tion: Review of Sensors and Methods’. In: Sensors 20.3, p. 592.

Kobyzev, Ivan, Simon Prince and Marcus Brubaker (2020). ‘Normalizing Flows: An Introduction

and Review of Current Methods’. In: IEEE Transactions on Pattern Analysis and Machine Intelli-

gence.

Li, Daniel Li and Erfang Shan (2020). ‘The Myerson value for directed graph games’. In: Operations

Research Letters 48.2, pp. 142–146.

Lundberg, Scott M., Gabriel Erion et al. (2020). ‘From local explanations to global understanding

with explainable AI for trees’. In: Nature Machine Intelligence 2.1, pp. 56–67.

Marot, Antoine et al. (2020). ‘Learning to run a power network challenge for training topology

controllers’. In: Electric Power Systems Research 189, p. 106635.

Roy, Raphaëlle N. et al. (2020). ‘How Can Physiological Computing Benefit Human-Robot Interac-

tion?’ In: Robotics 9.4, p. 100.

Schrittwieser, Julian et al. (2020). ‘Mastering Atari, Go, chess and shogi by planning with a learned

model’. In: Nature 588.7839, pp. 604–609.

Zheng, Wei and Hai Lin (2020). ‘Point-Based Value Iteration for VAR-POMDPs’. In: IEEE Control

Systems Letters 6, pp. 7–12.

Heuillet, Alexandre, Fabien Couthouis and Natalia Díaz-Rodríguez (2021). ‘Explainability in Deep

Reinforcement Learning’. In: Knowledge-Based Systems 214, p. 106685.

Lee, Michael S., Henny Admoni and Reid Simmons (2021). ‘Machine Teaching for Human Inverse

Reinforcement Learning’. In: Frontiers in Robotics and AI 8, p. 188.

Raffin, Antonin et al. (2021). ‘Stable-Baselines3: Reliable Reinforcement Learning Implementa-

tions’. In: Journal of Machine Learning Research 22.268, pp. 1–8.

Robles, Juan Francisco et al. (2021). ‘Multimodal Evolutionary Algorithms for Easing the Complex-

ity of Agent-Based Model Calibration’. In: Journal of Artificial Societies and Social Simulation

24.3.

Singh, Gaganpreet, Caroline P. C. Chanel and Raphaëlle N. Roy (2021). ‘Mental Workload Es-

timation Based on Physiological Features for Pilot-UAV Teaming Applications’. In: Frontiers in

Human Neuroscience 15.

Adams, Stephen C., Tyler Cody and P. Beling (2022). ‘A survey of Inverse Reinforcement Learning’.

In: Artificial Intelligence Review 55.6, pp. 4307–4346.

Dhakal, Sandeep, Raymond Chiong, Manuel Chica et al. (2022). ‘Evolution of cooperation and

trust in an N-player social dilemma game with tags for migration decisions’. In: Royal Society

Open Science.

Heuillet, Alexandre, Fabien Couthouis and Natalia Díaz-Rodríguez (2022). ‘Collective eXplainable

AI: Explaining Cooperative Strategies and Agent Contribution in Multiagent Reinforcement

Learning With Shapley Values’. In: IEEE Computational Intelligence Magazine 17.1, pp. 59–71.

Kurniawati, Hanna (2022). ‘Partially Observable Markov Decision Processes and Robotics’. In: An-

nual Review of Control, Robotics, and Autonomous Systems 5.1, pp. 253–277.

154



CONFERENCE PROCEEDINGS

Metulini, Rodolfo and Giorgio Gnecco (2022). ‘Measuring players importance in basketball using

the generalized Shapley value’. In: Annals of Operations Research, pp. 1–25.

Swiechowski, Maciej et al. (2022). ‘Monte Carlo Tree Search: A Review of Recent Modifications

and Applications’. In: Artificial Intelligence Review, pp. 1–66.

Angelotti, Giorgio and Natalia Díaz-Rodríguez (2023). ‘Towards a more efficient computation of

individual attribute and policy contribution for post-hoc explanation of cooperative multi-agent

systems using Myerson values’. In: Knowledge-Based Systems 260, p. 110189.

Lauri, Mikko, David Hsu and Joni Pajarinen (2023). ‘Partially Observable Markov Decision Pro-

cesses in Robotics: A Survey’. In: IEEE Transactions on Robotics 39.1, pp. 21–40.

Conference proceedings

Sutton, Richard S. (1990). ‘Integrated Architectures for Learning, Planning, and Reacting Based on

Approximating Dynamic Programming’. In: Proceedings of the Seventh International Conference

on Machine Learning. Elsevier, pp. 216–224.

Bertsekas, Dimitri P. and John N. Tsitsiklis (1995). ‘Neuro-dynamic programming: an overview’.

In: Proceedings of 1995 34th IEEE conference on decision and control. Vol. 1. IEEE, pp. 560–564.

Atkeson, Christopher G. and Juan Carlos Santamaria (1997). ‘A comparison of direct and model-

based reinforcement learning’. In: International Conference on Robotics and Automation. Vol. 4.

IEEE, pp. 3557–3564.

Dean, Thomas and Robert Givan (1997). ‘Model Minimization in Markov Decision Processes’. In:

AAAI/IAAI, pp. 106–111.

Cassandra, Anthony R. (1998). ‘A survey of POMDP applications’. In: Working notes of AAAI 1998

Fall Symposium on Planning with Partially Observable Markov Decision Processes. Vol. 1724.

Sozou, P. D. (1998). ‘On hyperbolic discounting and uncertain hazard rates’. In: Proceedings of

the Royal Society of London. Series B: Biological Sciences. Vol. 265. 1409. The Royal Society,

pp. 2015–2020.

Konda, Vijay and John Tsitsiklis (1999). ‘Actor-Critic Algorithms’. In: Advances in Neural Informa-

tion Processing Systems. Vol. 12.

Madani, Omid, Steve Hanks and Anne Condon (1999). ‘On the Undecidability of Probabilistic

Planning and Infinite-Horizon Partially Observable Markov Decision Problems’. In: AAAI/IAAI,

pp. 541–548.

Strens, Malcolm (2000). ‘A Bayesian framework for Reinforcement Learning’. In: Proceedings of the

17th International Conference on International Conference on Machine Learning, pp. 943–950.

Kakade, Sham M. (2001). ‘A Natural Policy Gradient’. In: Advances in Neural Information Processing

Systems. Vol. 14.

Littman, Michael and Richard S. Sutton (2001). ‘Predictive Representations of State’. In: Advances

in Neural Information Processing Systems. Vol. 14.

Precup, Doina, Richard S. Sutton and Sanjoy Dasgupta (2001). ‘Off-Policy Temporal Difference

Learning with Function Approximation’. In: Proceedings of the 18th International Conference on

International Conference on Machine Learning, pp. 417–424.

155



CONFERENCE PROCEEDINGS

Girard, Agathe et al. (2002). ‘Multiple-step ahead prediction for non linear dynamic systems–a

gaussian process treatment with propagation of the uncertainty’. In: Advances in Neural Inform-

ation Processing Systems. Vol. 15, pp. 529–536.

Munos, Rémi (2003). ‘Error Bounds for Approximate Policy Iteration’. In: Proceedings of the 20th

International Conference on International Conference on Machine Learning. Vol. 3, pp. 560–567.

Pineau, Joelle, Geoff Gordon, Sebastian Thrun et al. (2003). ‘Point-based value iteration: An any-

time algorithm for POMDPs’. In: The 18th International Joint Conference on Artificial Intelligence.

Vol. 3, pp. 1025–1032.

Ferns, Norm, Prakash Panangaden and Doina Precup (2004). ‘Metrics for Finite Markov Decision

Processes’. In: Conference on Uncertainty in Artificial Intelligence. Vol. 4, pp. 162–169.

Kocijan, Ju et al. (2004). ‘Gaussian process model based predictive control’. In: Proceedings of the

2004 American control conference. Vol. 3. IEEE, pp. 2214–2219.

Ravindran, Balaraman and Andrew G. Barto (2004). ‘Approximate Homomorphisms: A Frame-

work for Non-exact Minimization in Markov Decision Processes’. In: International Conference

on Knowledge Based Computer Systems.

Abbeel, Pieter, Morgan Quigley and Andrew Y. Ng (2006). ‘Using inaccurate models in Reinforce-

ment Learning’. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 1–

8.

Kocsis, Levente and Csaba Szepesvári (2006). ‘Bandit based Monte-Carlo Planning’. In: European

Conference on Machine Learning. Springer, pp. 282–293.

Li, Lihong, Thomas J. Walsh and M. Littman (2006). ‘Towards a Unified Theory of State Abstraction

for MDPs’. In: Proceedings of the Ninth International Symposium on Artificial Intelligence and

Mathematics, pp. 531–539.

Fern, Alan et al. (2007). ‘A Decision-Theoretic Model of Assistance.’ In: Proceedings of the 20th

International Joint Conference on Artificial IntelligenceAI, pp. 1879–1884.

Melo, Francisco S. and M. Isabel Ribeiro (2007). ‘Convergence of Q-learning with linear func-

tion approximation’. In: International Conference on Computational Learning Theory. Springer,

pp. 308–322.

Kurniawati, Hanna, David Hsu and Wee Sun Lee (2008). ‘SARSOP: Efficient Point-Based POMDP

Planning by Approximating Optimally Reachable Belief Spaces’. In: Robotics: Science and Sys-

tems. Vol. 2008.

Narayanamurthy, Shravan Matthur and Balaraman Ravindran (2008). ‘On the Hardness of Finding

Symmetries in Markov Decision Processes’. In: Proceedings of the 25th International Conference

on International Conference on Machine Learning, pp. 688–695.

Taylor, Jonathan, Doina Precup and Prakash Panagaden (2009). ‘Bounding Performance Loss in

Approximate MDP Homomorphisms’. In: Advances in Neural Information Processing Systems.

Vol. 21.

Atrash, Amin and Joelle Pineau (2010). ‘A Bayesian method for learning POMDP observation para-

meters for robot interaction management systems’. In: The POMDP practitioners workshop.

Morimura, Tetsuro et al. (2010). ‘Parametric Return Density Estimation for Reinforcement Learn-

ing’. In: Conference on Uncertainty in Artificial Intelligence.

156



CONFERENCE PROCEEDINGS

Silver, David and Joel Veness (2010). ‘Monte-Carlo planning in Large POMDPs’. In: Advances in

Neural Information Processing Systems. Vol. 23.

Broz, Frank, Illah Nourbakhsh and Reid Simmons (2011). ‘Designing POMDP models of socially

situated tasks’. In: RO-MAN. IEEE, pp. 39–46.

Deisenroth, Marc and Carl E. Rasmussen (2011). ‘PILCO: A model-based and data-efficient ap-

proach to policy search’. In: Proceedings of the 28th International Conference on International

Conference on Machine Learning. Citeseer, pp. 465–472.

Dudik, Miroslav, John Langford and Lihong Li (2011). ‘Doubly Robust Policy Evaluation and Learn-

ing’. In: Proceedings of the 28th International Conference on International Conference on Machine

Learning, pp. 1097–1104.

Taha, Tarek, Jaime Valls Miró and Gamini Dissanayake (2011). ‘A POMDP framework for modelling

human interaction with assistive robots’. In: 2011 IEEE International Conference on Robotics and

Automation. IEEE, pp. 544–549.

Todorov, Emanuel, Tom Erez and Yuval Tassa (2012). ‘MuJoCo: A physics engine for model-based

control’. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,

pp. 5026–5033.

Keller, Thomas and Malte Helmert (2013). ‘Trial-Based Heuristic Tree Search for Finite Horizon

MDPs’. In: Proceedings of the International Conference on Automated Planning and Scheduling.

Vol. 23, pp. 135–143.

Lopez-Paz, David, Philipp Hennig and B. Schölkopf (2013). ‘The Randomized Dependence Coeffi-

cient’. In: Advances in Neural Information Processing Systems. Vol. 26.

Somani, Adhiraj et al. (2013). ‘DESPOT: Online POMDP planning with regularization’. In: Advances

in Neural Information Processing Systems. Vol. 26.

Silver, David, Guy Lever et al. (2014). ‘Deterministic Policy Gradient Algorithms’. In: Proceedings

of the 31st International Conference on International Conference on Machine Learning. PMLR,

pp. 387–395.

Dinh, Laurent, David Krueger and Yoshua Bengio (2015). ‘NICE: Non-linear Independent Compon-

ents Estimation’. In: Proceedings of the 3rd International Conference on Learning Representations.

Gopalan, Nakul and Stefanie Tellex (2015). ‘Modeling and Solving Human-Robot Collaborative

Tasks Using POMDPs’. In: RSS Workshop on Model Learning for Human-Robot Communication.

Vol. 32. 4, pp. 590–628.

Javdani, Shervin, Siddhartha Srinivasa and Andrew Bagnell (2015). ‘Shared Autonomy via Hind-

sight Optimization’. In: Robotics: Science and Systems. NIH Public Access.

Jiang, Nan, Alex Kulesza et al. (2015). ‘The Dependence of Effective Planning Horizon on Model

Accuracy’. In: Proceedings of the 2015 International Conference on Autonomous Agents and Mul-

tiagent Systems, pp. 1181–1189.

Jiang, Shu and Ronald C. Arkin (2015). ‘Mixed-Initiative Human-Robot Interaction: Definition,

Taxonomy, and Survey’. In: 2015 IEEE International Conference on Systems, Man, and Cybernet-

ics. IEEE, pp. 954–961.

157



CONFERENCE PROCEEDINGS

Nikolaidis, Stefanos, Ramya Ramakrishnan et al. (2015). ‘Efficient Model Learning from Joint-

Action Demonstrations for Human-Robot Collaborative Tasks’. In: 2015 10th ACM/IEEE Inter-

national Conference on Human-Robot Interaction (HRI). IEEE, pp. 189–196.

Rai, Sanish, Minghao Wang and Xiaolin Hu (2015). ‘A graph-based agent-oriented model for build-

ing occupancy simulation.’ In: SpringSim (ADS), pp. 76–83.

Ruan, Sherry Shanshan et al. (2015). ‘Representation Discovery for MDPs Using Bisimulation Met-

rics’. In: Twenty-Ninth AAAI Conference on Artificial Intelligence.

Schulman, John, Sergey Levine et al. (2015). ‘Trust Region Policy Optimization’. In: Proceedings

of the 32nd International Conference on International Conference on Machine Learning. PMLR,

pp. 1889–1897.

Souza, Paulo Eduardo Ubaldino de, Caroline Ponzoni Carvalho Chanel and Frédéric Dehais (2015).

‘MOMDP-based target search mission taking into account the human operator’s cognitive state’.

In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI). IEEE,

pp. 729–736.

Gal, Yarin, Rowan McAllister and Carl Edward Rasmussen (2016). ‘Improving PILCO with Bayesian

neural network dynamics models’. In: Data-Efficient Machine Learning workshop, ICML. Vol. 4.

34, p. 25.

Gu, Shixiang et al. (2016). ‘Continuous Deep Q-Learning with Model-based Acceleration’. In: Pro-

ceedings of the 33rd International Conference on International Conference on Machine Learning.

PMLR, pp. 2829–2838.

Hasselt, Hado Van, Arthur Guez and David Silver (2016). ‘Deep Reinforcement Learning with

Double Q-Learning’. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 30. 1.

Jiang, Nan and Lihong Li (2016). ‘Doubly Robust Off-policy Value Evaluation for Reinforcement

Learning’. In: Proceedings of the 33rd International Conference on International Conference on

Machine Learning. PMLR, pp. 652–661.

Lillicrap, Timothy P. et al. (2016). ‘Continuous control with deep reinforcement learning’. In: Pro-

ceedings of the 4th International Conference on Learning Representations.

Mandel, Travis et al. (2016). ‘Efficient Bayesian Clustering for Reinforcement Learning’. In: Pro-

ceedings of the 25th International Joint Conference on Artificial Intelligence, pp. 1830–1838.

Mnih, Volodymyr, Adria Puigdomenech Badia et al. (2016). ‘Asynchronous Methods for Deep Rein-

forcement Learning’. In: Proceedings of the 33th International Conference on International Con-

ference on Machine Learning. PMLR, pp. 1928–1937.

Petrik, Marek, Mohammad Ghavamzadeh and Yinlam Chow (2016). ‘Safe Policy Improvement

by Minimizing Robust Baseline Regret’. In: Advances in Neural Information Processing Systems.

Vol. 29, pp. 2298–2306.

Ribeiro, Marco Tulio, Sameer Singh and Carlos Guestrin (2016). ‘"Why Should I Trust You?": Ex-

plaining the Predictions of Any Classifier’. In: Proceedings of the 22nd ACM SIGKDD international

conference on knowledge discovery and data mining, pp. 1135–1144.

Schaul, Tom et al. (2016). ‘Prioritized Experience Replay’. In: ICLR (Poster).

158



CONFERENCE PROCEEDINGS

Thomas, Philip and Emma Brunskill (2016). ‘Data-Efficient Off-Policy Policy Evaluation for Rein-

forcement Learning’. In: Proceedings of the 33rd International Conference on International Con-

ference on Machine Learning. PMLR, pp. 2139–2148.

Bellemare, Marc G., Will Dabney and Rémi Munos (2017). ‘A Distributional Perspective on Rein-

forcement Learning’. In: Proceedings of the 34th International Conference on International Con-

ference on Machine Learning. PMLR, pp. 449–458.

Drougard, Nicolas et al. (2017). ‘Mixed-initiative mission planning considering human operator

state estimation based on physiological sensors’. In: IROS-2017 Workshop on Human-Robot In-

teraction in Collaborative Manufacturing Environments (HRI-CME).

Jaques, Natasha et al. (2017). ‘Sequence Tutor: Conservative Fine-Tuning of Sequence Generation

Models with KL-control’. In: Proceedings of the 34th International Conference on International

Conference on Machine Learning. PMLR, pp. 1645–1654.

Lundberg, Scott M. and Su-In Lee (2017). ‘A Unified Approach to Interpreting Model Predictions’.

In: Advances in Neural Information Processing Systems. Vol. 30.

Nikolaidis, Stefanos, Yu Xiang Zhu et al. (2017). ‘Human-Robot Mutual Adaptation in Shared

Autonomy’. In: 2017 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI).

IEEE, pp. 294–302.

Shrikumar, Avanti, Peyton Greenside and Anshul Kundaje (2017). ‘Learning Important Features

Through Propagating Activation Differences’. In: Proceedings of the 34th International Confer-

ence on International Conference on Machine Learning. PMLR, pp. 3145–3153.

Charles, Jack-Antoine et al. (2018). ‘Human-Agent Interaction Model Learning based on Crowd-

sourcing’. In: Proceedings of the 6th International Conference on Human-Agent Interaction, pp. 20–

28.

Chua, Kurtland et al. (2018). ‘Deep Reinforcement Learning in a Handful of Trials using Probabil-

istic Dynamics Models’. In: Advances in Neural Information Processing Systems. Vol. 31.

Dabney, Will, Georg Ostrovski et al. (2018). ‘Implicit Quantile Networks for Distributional Rein-

forcement Learning’. In: Proceedings of the 35th International Conference on International Con-

ference on Machine Learning. PMLR, pp. 1096–1105.

Dabney, Will, Mark Rowland et al. (2018). ‘Distributional Reinforcement Learning With Quantile

Regression’. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. 1.

Depeweg, Stefan et al. (2018). ‘Decomposition of Uncertainty in Bayesian Deep Learning for Effi-

cient and Risk-sensitive Learning’. In: Proceedings of the 35th International Conference on Inter-

national Conference on Machine Learning. PMLR, pp. 1184–1193.

Fujimoto, Scott, Herke Hoof and David Meger (2018). ‘Addressing Function Approximation Error

in Actor-Critic Methods’. In: Proceedings of the 35th International Conference on International

Conference on Machine Learning. PMLR, pp. 1587–1596.

Geffner, Hector (2018). ‘Model-free, Model-based, and General Intelligence’. In: Proceedings of the

27th International Joint Conference on Artificial Intelligence, pp. 10–17.

Haarnoja, Tuomas et al. (2018). ‘Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforce-

ment Learning with a Stochastic Actor’. In: Proceedings of the 35th International Conference on

International Conference on Machine Learning. PMLR, pp. 1861–1870.

159



CONFERENCE PROCEEDINGS

Kamthe, Sanket and Marc Deisenroth (2018). ‘Data-Efficient Reinforcement Learning with Probab-

ilistic Model Predictive Control’. In: International Conference on Artificial Intelligence and Stat-

istics. PMLR, pp. 1701–1710.

Liu, Qiang et al. (2018). ‘Breaking the Curse of Horizon: Infinite-Horizon Off-Policy Estimation’.

In: Advances in Neural Information Processing Systems. Vol. 31, pp. 5356–5366.

Nagabandi, Anusha et al. (2018). ‘Neural Network Dynamics for Model-Based Deep Reinforcement

Learning with Model-Free Fine-Tuning’. In: 2018 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, pp. 7559–7566.

Zheng, Wei, Bo Wu and Hai Lin (2018). ‘POMDP Model Learning for Human Robot Collaboration’.

In: 2018 IEEE Conference on Decision and Control (CDC). IEEE, pp. 1156–1161.

Devlin, Jacob et al. (2019). ‘BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding’. In: Proceedings of the 2019 Conference of the North American Chapter of the As-

sociation for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Min-

neapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186.

Fujimoto, Scott, David Meger and Doina Precup (2019). ‘Off-policy Deep Reinforcement Learn-

ing without exploration’. In: Proceedings of the 36th International Conference on International

Conference on Machine Learning. PMLR, pp. 2052–2062.

Grathwohl, Will et al. (2019). ‘FFJORD: Free-Form Continuous Dynamics for Scalable Reversible

Generative Models’. In: Proceedings of the 7th International Conference on Learning Representa-

tions.

Hafner, Danijar, Timothy Lillicrap, Jimmy Ba et al. (2019). ‘Dream to Control: Learning Behaviors

by Latent Imagination’. In: International Conference on Learning Representations.

Hafner, Danijar, Timothy Lillicrap, Ian Fischer et al. (2019). ‘Learning Latent Dynamics for Planning

from Pixels’. In: Proceedings of the 36th International Conference on International Conference on

Machine Learning. PMLR, pp. 2555–2565.

Kumar, Aviral, Justin Fu et al. (2019). ‘Stabilizing Off-Policy Q-Learning via Bootstrapping Error

Reduction’. In: Advances in Neural Information Processing Systems. Vol. 33, pp. 11784–11794.

Laroche, Romain, Paul Trichelair and Remi Tachet Des Combes (2019). ‘Safe Policy Improvement

with Baseline Bootstrapping’. In: Proceedings of the 36th International Conference on Interna-

tional Conference on Machine Learning. PMLR, pp. 3652–3661.

Le, Hoang, Cameron Voloshin and Yisong Yue (2019). ‘Batch Policy Learning under Constraints’. In:

Proceedings of the 36th International Conference on International Conference on Machine Learn-

ing. PMLR, pp. 3703–3712.

Lecarpentier, Erwan and Emmanuel Rachelson (2019). ‘Non-stationary Markov Decision Processes,

a Worst-Case Approach using Model-Based Reinforcement Learning’. In: Advances in Neural

Information Processing Systems. Vol. 32.

Petrik, Marek and Reazul Hasan Russel (2019). ‘Beyond Confidence Regions: Tight Bayesian Am-

biguity Sets for Robust MDPs’. In: Advances in Neural Information Processing Systems. Vol. 32.

Yang, Derek et al. (2019). ‘Fully Parameterized Quantile Function for Distributional Reinforcement

Learning’. In: Advances in Neural Information Processing Systems. Vol. 32.

160



CONFERENCE PROCEEDINGS

Abel, David et al. (2020). ‘Value Preserving State-Action Abstractions’. In: International Conference

on Artificial Intelligence and Statistics. PMLR, pp. 1639–1650.

Agarwal, Rishabh, Dale Schuurmans and Mohammad Norouzi (2020). ‘An Optimistic Perspect-

ive on Offline Reinforcement Learning’. In: Proceedings of the 37th International Conference on

International Conference on Machine Learning. PMLR, pp. 104–114.

Angelotti, Giorgio, Nicolas Drougard and Caroline Ponzoni Carvalho Chanel (2020). ‘Offline Learn-

ing for Planning: A Summary’. In: Proceedings of the 1st Workshop on Bridging the Gap Between

AI Planning and Reinforcement Learning at the 30th International Conference on Automated Plan-

ning and Scheduling, pp. 153–161.

Brown, Tom et al. (2020). ‘Language Models are Few-Shot Learners’. In: Advances in Neural In-

formation Processing Systems. Vol. 33, pp. 1877–1901.

Castro, Pablo Samuel (2020). ‘Scalable Methods for Computing State Similarity in Deterministic

Markov Decision Processes’. In: Proceedings of the AAAI Conference on Artificial Intelligence.

Vol. 34. 06, pp. 10069–10076.

Hafner, Danijar, T. Lillicrap et al. (2020). ‘Mastering Atari with Discrete World Models’. In: Inter-

national Conference on Learning Representations.

Kidambi, Rahul et al. (2020). ‘MOReL: Model-Based Offline Reinforcement Learning’. In: Advances

in Neural Information Processing Systems. Vol. 33, pp. 21810–21823.

Kumar, Aviral, Aurick Zhou et al. (2020). ‘Conservative Q-Learning for Offline Reinforcement

Learning’. In: Advances in Neural Information Processing Systems. Vol. 34, pp. 20132–20145.

Kurach, Karol et al. (2020). ‘Google Research Football: A Novel Reinforcement Learning Environ-

ment’. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. 04, pp. 4501–

4510.

Lee, Byungjun et al. (2020). ‘Batch Reinforcement Learning with Hyperparameter Gradients’. In:

Proceedings of the 37th International Conference on International Conference on Machine Learn-

ing. PMLR, pp. 5725–5735.

van der Pol, Elise, Thomas Kipf et al. (2020). ‘Plannable Approximations to MDP Homomorphisms:

Equivariance under Actions’. In: Proceedings of the 19th International Conference on Autonomous

Agents and MultiAgent Systems, pp. 1431–1439.

van der Pol, Elise, Daniel Worrall et al. (2020). ‘MDP Homomorphic Networks: Group Symmetries

in Reinforcement Learning’. In: Advances in Neural Information Processing Systems. Vol. 33,

pp. 4199–4210.

Yu, Tianhe et al. (2020). ‘MOPO: Model-based Offline Policy Optimization’. In: Advances in Neural

Information Processing Systems. Vol. 33, pp. 14129–14142.

Behzadian, Bahram et al. (Apr. 2021). ‘Optimizing Percentile Criterion using Robust MDPs’. In:

Proceedings of the 24th International Conference on Artificial Intelligence and Statistics. Vol. 130.

Proceedings of Machine Learning Research. PMLR, pp. 1009–1017.

Chandak, Yash et al. (2021). ‘Universal Off-Policy Evaluation’. In: Advances in Neural Information

Processing Systems. Vol. 35.

Chen, Lili et al. (2021). ‘Decision Transformer: Reinforcement Learning via Sequence Modeling’.

In: Advances in Neural Information Processing Systems. Vol. 34, pp. 15084–15097.

161



PREPRINTS

Fujimoto, Scott and Shixiang Shane Gu (2021). ‘A Minimalist Approach to Offline Reinforcement

Learning’. In: Advances in Neural Information Processing Systems. Vol. 34, pp. 20132–20145.

Janner, Michael, Qiyang Li and Sergey Levine (2021). ‘Offline Reinforcement Learning as One Big

Sequence Modeling Problem’. In: Advances in Neural Information Processing Systems. Vol. 34,

pp. 1273–1286.

Kaufmann, Marcel et al. (2021). ‘Copilot MIKE: An Autonomous Assistant for Multi-Robot Opera-

tions in Cave Exploration’. In: 2021 IEEE Aerospace Conference (50100). IEEE, pp. 1–9.

Takuma Seno, Michita Imai (Dec. 2021). ‘d3rlpy: An Offline Deep Reinforcement Library’. In: Neur-

IPS 2021 Offline Reinforcement Learning Workshop.

Zhang, Siyuan and Nan Jiang (2021). ‘Towards Hyperparameter-free Policy Selection for Offline

Reinforcement Learning’. In: Advances in Neural Information Processing Systems. Vol. 34.

Angelotti, Giorgio, Nicolas Drougard and Caroline Ponzoni Carvalho Chanel (2022). ‘Expert-guided

Symmetry Detection in Markov Decision Processes’. In: Proceedings of the 14th International

Conference on Agents and Artificial Intelligence - Volume 2: ICAART, INSTICC. SciTePress, pp. 88–

98.

Lahire, Thibault, Matthieu Geist and Emmanuel Rachelson (2022). ‘Large Batch Experience Re-

play’. In: Proceedings of the 39th International Conference on Machine Learning. PMLR, pp. 11790–

11813.

Singh, Gaganpreet, Raphaëlle N. Roy and Caroline P. C. Chanel (2022). ‘POMDP-Based Adaptive

Interaction Through Physiological Computing’. In: HHAI2022: Augmenting Human Intellect. IOS

Press, pp. 32–45.

Angelotti, Giorgio, Nicolas Drougard and Caroline Ponzoni Carvalho Chanel (2023b). ‘Data Aug-

mentation Through Expert-Guided Symmetry Detection to Improve Performance in Offline Re-

inforcement Learning’. In: Proceedings of the 15th International Conference on Agents and Artifi-

cial Intelligence - Volume 2: ICAART, INSTICC. SciTePress, pp. 115–124.

Preprints

Brockman, Greg et al. (2016). ‘OpenAI Gym’. arXiv:1606.01540.

Schulman, John, Filip Wolski et al. (2017). ‘Proximal Policy Optimization Algorithms’. arXiv:1707.06347.

Fedus, W. et al. (2019). ‘Hyperbolic Discounting and Learning over Multiple Horizons’. arXiv:1902.06865.

Fujimoto, Scott, Edoardo Conti et al. (2019). ‘Benchmarking Batch Deep Reinforcement Learning

Algorithms’. arXiv:1910.01708.

Tarkowski, M. et al. (2019). ‘Monte Carlo Techniques for Approximating the Myerson Value - The-

oretical and Empirical Analysis’. arXiv:2001.00065.

Fu, Justin et al. (2020). ‘D4RL: Datasets for Deep Data-Driven Reinforcement Learning’. arXiv:2004.07219.

Levine, Sergey et al. (2020). ‘Offline Reinforcement Learning: Tutorial, Review, and Perspectives

on Open Problems’. arXiv:2005.01643.

Paine, Tom Le et al. (2020). ‘Hyperparameter Selection for Offline Reinforcement Learning’. arXiv:2007.09055.

Lobo, Elita A., Mohammad Ghavamzadeh and Marek Petrik (2021). ‘Soft-Robust Algorithms for

Batch Reinforcement Learning’. arXiv:2011.14495.

162



OTHER SOURCES

Yang, Chao-Han Huck et al. (2021). ‘Pessimistic Model Selection for Offline Deep Reinforcement

Learning’. arXiv:2111.14346.

Mandhane, Amol et al. (2022). ‘MuZero with Self-competition for Rate Control in VP9 Video Com-

pression’. arXiv:2202.06626.

Reed, Scott et al. (2022). ‘A Generalist Agent’. arXiv:2205.06175.

Angelotti, Giorgio, Nicolas Drougard and Caroline Ponzoni Carvalho Chanel (2023a). ‘An Offline

Risk-aware Policy Selection Method for Bayesian Markov Decision Processes’. arXiv:2105.13431.

Rowland, Mark et al. (2023). ‘An Analysis of Quantile Temporal-Difference Learning’. arXiv:2301.04462.

Other sources

Ravindran, B. and A. G. Barto (2001). Symmetries and Model Minimization in Markov Decision

Processes. Tech. rep. USA.

Downey, Carlton, Ahmed Hefny and Geoffrey Gordon (2017). Practical Learning of Predictive State

Representations. Tech. rep.

Lundberg, Scott (2018). Census income classification with scikit-learn. https://shap.readthedocs.

io/en/latest/tabular_examples.html. [Online; accessed 12-April-2023].

European Commission (2020). White Paper on Artificial Intelligence - A European approach to excel-

lence and trust. https://ec.europa.eu/info/sites/default/files/commission-white-

paper-artificial-intelligence-feb2020_en.pdf. [Online; accessed 12-April-2023].

Penedo, Guilherme (Mar. 2022). Using conditional GANs to develop a realistic human-robot interac-

tion simulator. Tech. rep. [Online; accessed 12-April-2023]. ISAE Supaero.

Wikipedia contributors (2023). World of Warcraft — Wikipedia, The Free Encyclopedia. https :

/ / en . wikipedia . org / w / index . php ? title = World _ of _ Warcraft & oldid = 1142763722.

[Online; accessed 12-April-2023].

163

https://shap.readthedocs.io/en/latest/tabular_examples.html
https://shap.readthedocs.io/en/latest/tabular_examples.html
https://ec.europa.eu/info/sites/default/files/commission-white-paper-artificial-intelligence-feb2020_en.pdf
https://ec.europa.eu/info/sites/default/files/commission-white-paper-artificial-intelligence-feb2020_en.pdf
https://en.wikipedia.org/w/index.php?title=World_of_Warcraft&oldid=1142763722
https://en.wikipedia.org/w/index.php?title=World_of_Warcraft&oldid=1142763722

	Acknowledgements
	List of works
	Acronyms
	Abstract
	Introduction
	Automated systems with human oversight
	Offline Reinforcement Learning
	Human-robot systems

	Challenges
	Contributions
	Overview of the manuscript

	I State-of-the-art
	Sequential decision-making under uncertainty
	An introduction to MDPs
	Solving a discrete mdp

	An introduction to POMDPs
	Solving a discrete POMDP

	Learning a model from experience
	Reinforcement Learning
	Deep Reinforcement Learning

	Explainability of computed policies
	Coalitional games
	Explanations for Reinforcement Learning

	Conclusions

	Offline learning for planning
	The importance of the planning horizon
	Risk assessment
	Offline Reinforcement Learning
	Model-based offline RL
	Model-free offline RL
	Offline RL as a sequence model
	Resume

	Abstractions for data efficiency
	Offline Policy Evaluation and Selection
	What about offline POMDP learning?
	The problem of the representation choice
	Model uncertainty

	Conclusions

	The Firefighter Robot Game use case: towards Mixed-Initiative Human-Robot Interaction
	Human-Robot Interaction
	Autonomy and initiative

	The Firefighter Robot Game
	The mission
	Discriminative features for performance prediction

	Conclusions


	II Contributions
	Data augmentation for offline mdp learning
	Density estimation methods and Normalizing Flows
	Proposed paradigm and flowchart
	Expert-guided symmetry discovery
	Discrete mdps
	Continuous mdps

	Experiments
	Environments
	Setup
	Results

	Conclusions

	Bayesian Policy Selection
	Recalling definitions
	Solving offline a Risk-aware BMDP
	evc
	Theoretical guarantees

	Experiments
	Description of the environments
	Setup
	Metrics
	Results and discussion

	Conclusions

	Firefighter Robot Game Study Case: Robust POMDP model learning and solving
	Sketch: evc for pomdps
	Model learning and solving
	POMDP learning and solving
	MDP learning and solving

	Experiments
	Materials and methods
	Results

	Conclusions

	Towards the assessment of policy and attribute importances in Multi-Agent Systems
	Hierarchical Knowledge Graph (HKG) for Multi-Agent Systems
	Requirements to compute Shapley and Myerson values for Multi-Agent Systems using a simulator
	Experimental evaluation
	Arena Game: RL environment description
	Policies
	Assumptions and goal of the evaluation

	Results
	Per agent analysis
	Global qualitative analysis

	Explainability of a multi-agent RL model
	Conclusions

	Conclusions and perspectives
	References
	Books
	Doctoral dissertations
	Journals
	Conference proceedings
	Preprints
	Other sources





