Keywords: Communications décentralisées et modèle BIP Système distribué, Initialisation, Nommage, Optimal, Bip, Élection de leader, Complexité énergétique, Diffusion d'information, Clusterisation, Complexité en temps, Randomisé, Réseaux radio, Synchronisé Decentralized communication and beep model Distributed Computing, Initialization, Naming, Optimal, Beep, Leader Election, Energy Complexity, Broadcasting, Clustering, Time Complexity, Randomized, Radio Networks, Synchronized

Cette thèse n'aurait jamais pu être finalisée sans l'aide et le support de la famille, des collègues et des amis.

Je veux tout d'abord exprimer ma reconnaissance envers la personne sans qui cette aventure n'aurait jamais commencée, mon directeur de thèse, Vlady RAVELOMANANA. Nous avons commencé à travailler ensemble durant mon année de Master 2, et depuis, il n'a cessé de me guider, m'enseigner, me corriger et me motiver, que ce soit sur le plan professionnel ou sur le plan du savoir être. Il m'a aidé à améliorer ma rigueur dans tout ce que j'entreprends.

Après cela, je tiens à remercier Maria POTOP-BUTUCARU et Akka ZEMMARI d'avoir bien voulu accepter d'être mes rapporteurs de thèse. Merci infiniment pour votre implication et vos remarques qui m'ont permis d'améliorer mon manuscrit. Je remercie également Lélia BLIN, Janna BURMAN et Laurent VIENNOT d'avoir accepté de faire partie de mon jury malgré leurs nombreuses responsabilités.

Une mention particulière à Maria POTOP-BUTUCARU et Laurent VI-ENNOT pour avoir fait partie de mon comité de suivi et pour m'avoir permis de mener mon aventure à son terme malgré mon retard.

Ensuite, je voudrais remercier les collègues de l'IRIF et du DUT MMI de l'Université de Paris Est Créteil, qui m'ont accueilli et m'ont aidé pour mon intégration, que ce soient les doctorants du bureau 4057 ou les professeurs et chargés de TD avec qui j'ai pu découvrir le monde de l'enseignement.

Enfin, je tiens à témoigner ma reconnaissance envers la famille et les amis pour leur soutien et leur attention, en particulier envers mon épouse, Naomi qui m'a rejoint, soutenu et supporté dans cette aventure, envers mes parents, mon frère et ma soeur qui ont toujours été là pour moi et envers mon oncle, ma tante et mes cousins qui m'ont accueilli chez eux.

À Dieu seul la gloire.

Résumé de la thèse

Ce résumé est accessible en anglais au Chapitre 1.2. Chaque chapitre de cette thèse améliore les solutions existantes pour un problème distribué (comme les problèmes de dénomination, de comptage et d'élection de leader). Tout d'abord, dans le chapitre 4, nous présentons un algorithme de dénomination pour les réseaux du modèle bip à simple saut avec une complexité temporelle optimale de O(n log n), conçu par [START_REF] Bogdan S Chlebus | Naming a channel with beeps[END_REF]. Nous montrons ensuite comment améliorer la consommation énergétique de cet algorithme. Le chapitre 4 traite donc de la complexité énergétique des algorithmes résolvant les problèmes de dénomination et de comptage sur les réseaux du modèle bip à simple saut. Ces algorithmes nomment un réseau bip à simple après un temps d'exécution optimal de O(n log n), avec une complexité énergétique de O(log n).

Par la suite, étant donné que de nombreuses études ont déjà atteint la borne inférieure en complexité en temps de Ω(log n) pour les algorithmes d'élection de leader pour les réseaux radio à simple saut, nous considérons la complexité énergétique du problème d'élection de leader pour les réseaux radio à simple saut dans le chapitre 5. Ce chapitre présente un nouvel algorithme d'élection de leader avec une complexité en temps de O(log 2 n) et une complexité énergétique ayant une valeur inférieure ou égale à trois (constante).

Enfin, le chapitre 6 considère un modèle plus réaliste, les réseaux radio à multisaut. Plus précisément, il traite de la complexité en temps du problème d'élection de leader pour les réseaux radio multi-saut sans détection de collision. Dans un réseau de n noeuds avec un diamètre D, notre algorithme a une complexité en temps de O(D log log n + log O (1) n), une complexité quasi optimale à un facteur de O(log log n)-près.

Nous fournissons plus de détails sur les résultats existants et les travaux connexes de ces chapitres dans la section 3.1.

La suite de ce résumé présente une description rapide des techniques utilisées dans chaque chapitre, ainsi que les résultats. Notez que pendant l'exécution de nos algorithmes optimisés en consommation énergétique, tous les noeuds sont initialement endormis (i.e., leur module de communication est éteinte) et chaque noeud peut se réveiller (i.e., allumer sa radio) à tout moment.

Complexité énergétique d'algorithmes de nommage, de renommage et de comptage pour les réseaux radio et bip à simple saut (Chapitre 4)

Dans le chapitre 4, nous nous concentrons sur l'optimisation du temps d'exécution et de la consommation d'énergie des algorithmes afin de résoudre deux problèmes fondamentaux du domaine des systèmes distribués pour le modèle bip à simple saut, à savoir les problèmes de nommage et de comptage.

Les principales motivations

Une transmission par bip nécessite beaucoup moins d'énergie qu'une transmission par message. Dans le chapitre 4, nous considérons le modèle bip sans détection de collision ou le modèle Beep Listen (des définitions plus détaillées sont fournies dans le chapitre 2.2.4). Les principales difficultés de conception d'algorithmes sur le modèle bip proviennent du fait qu'une station émettrice ne sait pas si elle émet seule et qu'une station d'écoute ne peut pas distinguer un émetteur unique de plusieurs émetteurs simultanés. Par conséquent, la conception d'algorithmes pour le modèle bip est plus difficile. La plupart des stations des réseaux radio et des réseaux du modèle bip sont alimentées par des piles qui ont une autonomie limitée. Par conséquent, la conception d'algorithmes qui minimisent la consommation d'énergie suscite un grand intérêt.

Problèmes abordés

Dans le chapitre 4, nous avons conçu des algorithmes pour résoudre les problèmes de nommage, de renommage et de comptage, qui (comme défini dans la section 2.3) assignent une étiquette unique ∈ {1, • • • , n} à chaque noeud et comptent le nombre de noeuds, respectivement.

De tels problèmes ont été récemment étudiés pour le modèle bip à simple saut par Chlebus, De Marco et Talo [START_REF] Bogdan S Chlebus | Naming a channel with beeps[END_REF]. Ils ont fourni un algorithme de nommage aléatoire avec un temps d'exécution de O(n log n) et ont prouvé une borne inférieure de Ω(n log n) pour la complexité temporelle des algorithmes de nommage pour les réseaux bip. Cependant, leur solution ne prend pas en compte la consommation d'énergie par station. Par conséquent, dans le chapitre 4, nous présentons des algorithmes qui améliorent la consommation d'énergie par noeud.

Algorithmes de nommage existants pour les réseaux bip à simple saut

Nous fournissons une liste détaillée et non exhaustive des travaux connexes dans la section 3.1. Dans cette section, nous ne mentionnons que le dernier travail de [START_REF] Bogdan S Chlebus | Naming a channel with beeps[END_REF]. L'algorithme présenté dans [START_REF] Bogdan S Chlebus | Naming a channel with beeps[END_REF] est basé sur un paradigme de boules et de bacs et nomme un réseau de n stations en un temps O(n log n). Nous fournissons plus de détails sur ce résultat dans la Section 4.1.2.

Notre algorithme de nommage et de renommage pour les réseaux bip à simple saut.

Notre algorithme utilise une nouvelle idée pour renommer ou nommer toutes les stations lorsqu'elles ne connaissent pas n.

Nous définissons d'abord un algorithme déterministe renommant M stations (M n), dont chacune a initialement un identifiant unique ID ∈ {1, . . . N } (où N est une borne supérieure de n). Ce premier algorithme a une complexité en temps de O(M log n) avec une complexité énergétique de O(M + log n). L'idée principale est de faire en sorte que chaque station encode son ID dans un mot binaire et envoie le résultat bit par bit de manière inversée durant O(lg N) étapes. Au cours de ces étapes, une station sait qu'une autre station a un ID supérieur (resp. inférieur) si elle a transmis un bit 0 (resp. 1) et reçoit un bit 1 (resp. 0). Les noeuds détectant la présence d'un ID plus élevé sur le réseau sont éliminés et le seul noeud qui reste actif est celui possédant l'ID le plus élevé. Ce noeud reçoit alors la prochaine étiquette disponible. Ces O(lg N) = O(log n) étapes de transmission sont appelées une saison, et en exécutant M saisons consécutives, le réseau est nommé en O(M log n) étapes. En remarquant qu'une station n'a pas besoin d'être éveillée pendant les O(M log n) étapes pour savoir si l'un de ses voisins a un ID plus élevé, nous réussissons à réduire la consommation d'énergie. Pour ce faire, nous définissons les étapes durant lesquelles une station doit obligatoirement se réveiller et dans le Chapitre 4, nous démontrons qu'une station ne doit être réveillée que durant un maximum de O(M + log n) étapes pour que l'algorithme fonctionne.

Après avoir conçu cet algorithme, nous l'avons adapté pour obtenir un nouvel algorithme randomisé de nommage, économique en énergie. Il utilise la génération aléatoire d'un ID local unique par chaque noeud comme suit :

En considérant que toutes les stations ne disposent d'aucune information sur n, nous faisons en sorte que chaque station calcule d'abord N = θ(n) en exécutant l'algorithme d'approximation conçu par [START_REF] Brandes | Approximating the size of a radio network in beeping model[END_REF] (voir la section 3.2.4 pour plus de détails sur cet algorithme). Notons que cet algorithme a un temps d'exécution de O(log n) (i.e., il a une complexité énergétique de O(log n)). Ensuite, chaque station génère un identifiant unique désigné par ID en choisissant uniformément au hasard une valeur prise entre {1, 2, . . . , (2N) 2 }. Puis, nous distribuons uniformément toutes les stations dans O(N/ log N) groupes et faisons en sorte que chaque groupe (composé de Θ(log n) stations) exécute notre algorithme de renommage déterministe un par un pendant O(log 2 n) étapes chacun. La dernière station étiquetée de chaque groupe transmet ensuite son étiquette, bit par bit, à toutes les stations du prochain groupe. En procédant ainsi, nous limitons le nombre maximal de réveils par station à O(log n). Nous faisons enfin en sorte que chaque noeud se réveille lorsque tous les groupes ont terminé leurs exécutions et que le dernier noeud étiqueté envoie son étiquette bit par bit pour avoir un algorithme randomisé de comptage.

Élection de leader avec une complexité énergétique constante (Chapitre 5)

La gestion de la consommation d'énergie des algorithmes est essentielle pour les réseaux sans fil, dans lesquels la plupart des noeuds fonctionnent sur batterie. Par conséquent, ce chapitre traite de l'optimisation de la complexité énergétique des algorithmes résolvant le problème d'élection de leader, qui est un problème fondamental du domaine des systèmes distribués. Étant donné n noeuds distribués, il consiste à faire en sorte que tous les noeuds se mettent d'accord sur l'élection d'un unique noeud comme leader. Notez que dans cette thèse, nous considérons la version implicite du problème de l'élection de leader (référez-vous à la section 2.3.5 pour plus de détails).

Quand aucun noeud n'a d'information sur n, il existe divers algorithmes qui résolvent le problème d'élection de leader pour les réseaux radio à simple saut ayant une complexité énergétique optimale. C'est pourquoi, dans le chapitre 5, nous considérons un modèle plus réaliste où les noeuds ne connaissent pas n, mais connaissent une approximation linéaire de log n, i.e., chaque noeud connaît une valeur u et une constante h telle que log n < log u < h log n (nous fournissons plus de détails sur les informations sur le réseau dans la section 2.5). Notons qu'une telle hypothèse est plus faible que la connaissance de Θ(n) [START_REF] Jurdziński | Weak communication in single-hop radio networks: adjusting algorithms to industrial standards[END_REF]. Pour optimiser la consommation énergétique de nos algorithmes, nous faisons en sorte que chaque noeud ne transmette qu'une fois et n'écoute le réseau que deux fois au maximum.

Élection de leader et complexité énergétique

En tant que problème fondamental des systèmes distribués, le problème de l'élection de leader a été étudié en profondeur depuis les années 1970 [START_REF] Tsybakov | Free synchronous packet access in a broadcast channel with feedback[END_REF][START_REF] Capetanakis | Tree algorithms for packet broadcast channels[END_REF]. Une borne inférieure en temps d'exécution de Ω(log n) a été prouvée dans [START_REF] Greenberg | A lower bound on the time needed in the worst case to resolve conflicts deterministically in multiple access channels[END_REF] pour les réseaux radio avec détection de collision (RNCD).

Notez que le modèle RNCD a un modèle de communication plus fort que le modèle bip (ou modèle Beep Listen) en ce qui concerne la capacité de détection de collisions et la taille du message (se référer à la section 2.2.6). De nombreux travaux de recherche ont déjà atteint cette borne inférieure, et de nombreux autres résultats ont abordé la complexité énergétique (nous fournissons plus de détails sur les résultats existants dans la Section 5.1.1). En particulier, les auteurs de l'article [START_REF] Chang | Exponential Separations in the Energy Complexity of Leader Election[END_REF] ont prouvé une borne inférieure de Ω(log * n) pour la complexité énergétique de l'élection de leader lorsque la valeur de n est inconnue des noeuds. Notez que dans leur algorithme, la complexité énergétique de O(log log * n) correspond au temps passé pour approximer la taille n du réseau.

Dans les sections suivantes, nous présentons d'abord notre nouvel algorithme d'élection de leader qui fonctionne pour les réseaux radio à simple saut sans détection de collision ou RNnoCD (un réseau radio où chaque station peut communiquer directement avec toutes les autres stations et ne peut détecter de collision) et qui a une consommation d'énergie constante par noeud. La conception d'un tel algorithme est basée sur la génération locale par chaque noeud d'une variable aléatoire distribuée comme décrit dans le Lemme 4 (Section 3.3.2). Par la suite, nous montrons comment élire un leader avec une complexité énergétique constante dans des réseaux bip à simple saut en faisant en sorte que chaque noeud génère une variable aléatoire, distribuée comme décrit dans le Lemme 2 (Section 3.3.1).

Un nouvel algorithme d'élection de leader avec une complexité en temps constante et une probabilité de succès constante pour les réseaux radio à simple saut RNnoCD

Selon la définition de RNnoCD dans la Section 2.2.5.1, un noeud ne peut détecter s'il transmet seul. Pour contourner une telle limitation, nous avons conçu un système de témoins qui permet à un noeud de savoir s'il transmet seul pour devenir le leader.

Derrière nos algorithmes, l'idée principale est que lorsque la valeur Θ(log n) est connue, alors des distributions de probabilité particulières sur l'ensemble des nombres naturels garantissent que le maximum de l'ensemble n'est pas trop grand et apparaît exactement une fois, avec une probabilité suffisamment grande. La conception de nos algorithmes s'appuie sur cette observation clé et est basée sur les noeuds générant localement des nombres entiers aléatoires (avec les distributions appropriées) avant de communiquer sur le réseau d'une manière déterministe afin de rechercher de manière distribuée le noeud unique qui détient le maximum. Afin d'économiser de l'énergie, nous nous assurons que chaque noeud transmet au plus une fois et écoute deux fois sur le réseau.

En particulier, dans la section 5.2, nous abordons le problème de l'élection de leader pour les réseaux radio à simple saut en utilisant les principes suivants. Chaque noeud génère localement une variable aléatoire géométrique de paramètre 1/2, désignée par Geom(1/2). En effet, en considérant X 1 ,X n comme n variables aléatoires indépendantes distribuées suivant Geom(1/2), on montre que les valeurs (lg n) -1 et lg n sont chacunes détenues par deux noeuds distincts, disons s i et s j , avec une probabilité de Ω(1). C'est-à-dire qu'à part les noeuds s i et s j , les autres noeuds ont généré des valeurs différentes de (lg n) -1 et lg n. En utilisant cette propriété, nous faisons en sorte que tous les noeuds communiquent sur le réseau de manière à découvrir si un unique noeud a généré la valeur (lg n) -1 et si un unique second noeud ayant généré la valeur (lg n) en a été témoin. Si cet événement s'est produit (avec une probabilité constante), le noeud candidat qui a généré (lg n) -1 deviendra le leader. Sinon, il sera nécessaire de réessayer le processus suffisamment de fois pour atteindre une bonne probabilité de réussite de l'élection.

Un nouvel algorithme d'élection de leader se terminant avec une forte probabilité pour les réseaux RNnoCD.

Pour les modèles RN considérés, notre approche est basée sur un processus de témoignage avec un mécanisme d'inondation pour prévenir et bloquer toute nouvelle tentative d'élection : nous faisons en sorte que tous les noeuds qui sont au courant de l'élection diffusent chacun à leur tour. Pour ce faire, nous les distribuons uniformément de manière aléatoire dans le temps d'exécution restant de l'algorithme.

Un nouvel algorithme d'élection de leader se terminant avec une forte probabilité pour les réseaux bip.

Pour les réseaux bip de la section 5.3, le modèle rend impossible de savoir si une valeur entière est détenue par un seul noeud. Ceci est dû à la nature du modèle de communication. Ce que nous pouvons faire, c'est de demander aux noeuds de générer des nombres entiers aléatoires de manière que le maximum de ces nombres soit unique et borné (avec une forte probabilité). Dans notre travail, cette approche nécessite que les noeuds connaissent Θ(log n), d'où notre besoin de Le maximum des Y i est unique et se situe autour de log 2 M . De telles propriétés s'appliquent avec une probabilité d'au moins 1-O(1/logM). Pour satisfaire l'exigence de la forte probabilité, nous avons besoin d'un nombre exponentiel de tirages aléatoires (M = e e Θ(log n)). Ainsi, nous faisons en sorte que chaque noeud s i génère localement un nombre exponentiel de variables aléatoires distribuées suivant Y , disons Y i,1 , Y i,2 , • • • , et ne garde que leur maximum, i.e., Y i = max j Y i,j . Cette idée permet de concevoir un algorithme de Monte-Carlo d'élection de leader ayant une complexité en temps polynomial qui nécessite très peu d'énergie.

Diffusion et élection de leader dans les réseaux radio multisaut sans détection de collision ou RNnoCD(Chapitre 6)

Le modèle de réseau radio multi-saut est un modèle plus réaliste dans le domaine des systèmes distribués. Le problème de la diffusion et celui de l'élection de leader sont deux problèmes fondamentaux du domaine (deux briques de base utilisées comme sous-programmes pour concevoir des algorithmes plus compliqués). De plus, en raison de l'absence de capacité de détection des collisions, la conception d'algorithmes pour les réseaux RNnoCD est plus difficile que celle d'algorithmes pour les réseaux RNCD. Par conséquent, dans le Chapitre 6, nous considérons la résolution des problèmes d'élection de leader et de diffusion pour les réseaux RNnoCD multi-saut.

Motivations

Étant l'un des problèmes fondamentaux en informatique distribué, de nombreux algorithmes d'élection de leader ont déjà atteint une complexité en temps optimale pour les modèles de réseau radio à simple saut (O(log n) pour les réseaux RNCD et O(log 2 n) pour les réseaux RNnoCD). De même, un algorithme optimal d'élection de leader pour les réseaux RNCD multi-saut et pour les réseaux bip a été récemment conçu. Pour un réseau de n noeuds ayant un diamètre D, cet algorithme a une complexité temporelle de O(D + log n). Par conséquent, dans le chapitre 6, nous abordons l'un des problèmes ouverts restants du domaine, à savoir l'optimisation de la complexité en temps des algorithmes d'élection de leader pour les réseaux RNnoCD multi-saut.

Notre idée principale, pour réaliser cette optimisation est de concevoir un algorithme d'élection de leader ayant une complexité temporelle optimale de O(log n) pour les réseaux RNCD à simple saut. Nous adaptons ensuite cet algorithme pour élire un leader dans un réseau RNnoCD multi-saut. Étant donné n noeuds et un diamètre D du réseau, notre algorithme d'élection de leader se termine en un temps O(D log log n + log O (1) n). Pour réaliser cette adaptation, nous utilisons le paradigme "diviser pour régner" en concevant un nouvel algorithme de k-clustering qui crée des Clusters du réseau en un temps O(D) (section 2.3.7). Nous concevons ensuite un nouvel algorithme de diffusion avec une complexité temporelle de O(D log log n + log O (1) n) et l'utilisons comme brique de base pour notre nouvel algorithme d'élection de leader.

Un nouvel algorithme optimal d'élection de leader pour un RNCD à simple saut

Notre premier algorithme est basé sur la génération par chaque noeud d'une variable aléatoire distribuée suivant Geom(1/2). Grâce au lemme 4 présenté dans la section 3.3.2, au moins un noeud possède une valeur unique égale à lg n avec une probabilité constante. Chaque noeud détermine alors s'il possède cette unique valeur pour devenir le Leader. Nous répétons ces calculs O(log n) fois pour obtenir un algorithme d'élection de leader qui se termine avec une forte probabilité dans un réseau RNCD à simple saut. Nous illustrons l'exécution de cet algorithme dans la figure 1.8 de la section 1.2.3.2 .

Un nouvel algorithme d'élection de leader pour les réseaux RN-noCDmulti-saut

Dans la section 6.3, comme présenté dans [START_REF] Bar-Yehuda | Efficient emulation of single-hop radio network with collision detection on multi-hop radio network with no collision detection[END_REF], nous simulons l'exécution de l'algorithme d'élection de leader décrit précédemment pour les réseaux RNCD à simple saut afin de le faire fonctionner sur les réseaux RNnoCD à sauts multiples. Pour ce faire, nous créons d'abord un nouvel algorithme de k-clustering ayant une complexité temporelle de O(k log 4 n). Ensuite, nous concevons un nouvel algorithme de diffusion ayant une complexité temporelle de O(D log log n + log O (1) n) et un algorithme de diffusion de k messages se terminant en un temps O(D log log n+k log 3 n). Enfin, nous utilisons ces algorithmes comme sous-protocoles dans la conception de notre nouvel algorithme d'élection de leader.

Rappelons qu'un k-cluster est un ensemble de noeuds contenant un noeud avec un label ClusterHead et avec tous les autres noeuds au plus à k-distance de ce ClusterHead(se référer à la section 2.3.7 pour des définitions plus détaillées). Un réseau k-clusterisé est un réseau dans lequel chaque noeud appartient à un k-cluster. Selon ces définitions, nous remarquons qu'un algorithme de Maximal Independant Set (Mis, défini dans la section 2.3.6) calcule un 1-cluster sur un réseau si nous faisons en sorte que chaque noeud Mis(c'est-à-dire, chaque noeud appartenant à l'ensemble Mis) devienne un ClusterHead. En utilisant cette observation, notre algorithme de k-clustering est basé sur l'adaptation de l'algorithme Mis conçu par [START_REF] Jeavons | Feedback from nature: simple randomised distributed algorithms for maximal independent set selection and greedy colouring[END_REF]

Nouveaux algorithmes de diffusion d'un unique message et de diffusion de k messages.

Pour concevoir notre nouvel algorithme de diffusion, nous adaptons l'algorithme de diffusion présenté par [START_REF] Bar-Yehuda | On the timecomplexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization[END_REF], qui diffuse le message m d'un seul noeud source à tous les noeuds d'un réseau ayant un diamètre D en temps O((D + log n) log ∆), où ∆ est une borne supérieure du nombre de noeuds voisins de chaque noeud.

Notre idée principale pour améliorer la complexité temporelle de l'algorithme conçu par [START_REF] Bar-Yehuda | On the timecomplexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization[END_REF] est de fixer ∆ log O (1) n. Par conséquent, la diffusion d'un message d'une source unique à tous les noeuds du réseau prendra un temps O((D + log n) log log n). Pour ce faire, nous calculons d'abord une stratification (une organisation des noeuds par couches et par distance par rapport au noeud source) du réseau (se référer à la Section 3.2.6 pour plus de détails sur ce calcul et les définitions de L(h) et l(h)). Par la suite, pour limiter la valeur de ∆, 1 nous utilisons une idée de candidature bien connue qui fait que les noeuds de chaque couche deviennent Candidate 2 ou Eliminated avec une probabilité de p ca = (10 log n)/n. Remarque 1. Si o(n) noeuds tentent de devenir Candidate avec une probabilité p ca = (10 log n)/n, il pourrait n'y avoir aucun noeud Candidate avec forte probabilité. Ainsi, la diffusion pourrait être interrompue.

Pour éviter ce problème, chaque noeud s j doit savoir avec combien de noeuds de L(l(s j)) il essaie de devenir Candidate. En faisant calculer une approximation linéaire β + (s j) de cette valeur par chaque noeud (voir la définition 6.1.3 dans la section 6.3.2), chaque noeud s j devient Candidate avec une probabilité min{1, (10 log n)/β + (s j)}. Par conséquent, au moins un noeud Candidate et au plus O(log n) Candidate tentent de transmettre un message à chaque étape de la diffusion.

Avec un tel résultat, pour h = 1, • • • , D, chaque noeud s j ∈ L(h) qui a reçu le message m devient Candidate avec la probabilité (10 log n)/β + (s j). Seuls les noeuds Candidate tentent alors de diffuser m à la couche suivante L(h + 1). En parallèle, à la réception de m, chaque noeud de L(h+1) envoie un message de retour m f = 1. À la réception de ce message de retour, les noeuds Candidate de L(h) cessent d'envoyer m, ce qui donne ∆ log O (1) n (Lemme 22 de la section 6.3.2). L'application d'une telle valeur de ∆ à l'algorithme de diffusion de [START_REF] Bar-Yehuda | On the timecomplexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization[END_REF] conduit au résultat escompté.

Après cela, nous adaptons l'algorithme de diffusion décrit précédemment pour concevoir un algorithme diffusant k messages à partir d'un noeud source en un temps O(D log log n + k log 3 n). Pour ce faire, nous faisons en sorte que le noeud source diffuse les messages un par un. Chaque transmission prend un temps (4 log 2 n) en utilisant le protocole Decay. En parallèle, chaque noeud à une distance maximum de log n du noeud source s s diffuse chaque message reçu avec Decay, et chaque noeud à une distance minimum de log n + 1 de s s diffuse chaque message reçu en exécutant l'algorithme de diffusion décrit auparavant.

Un nouvel algorithme d'élection de leader pour les réseaux RN-noCD multi-saut.

X 0 i , • • • , X 4 log n-1 i distribuées suivant Geom(1/2).
Puis, s i crée ensuite un mot binaire de (4 log n) bits en fixant le j ième bit à 1 si X j i = lg n et 0 sinon.

Distributed communication problems

This thesis considers distributed networks in which n devices or nodes (namely, computers, mobile devices, ...) perform a common task by communicating with each other. The nodes can execute local computations and use a message-passing communication system without the presence of an initial central controller.

The recent proliferation of mobile and wireless technology has created a huge demand for efficient communication protocols. In particular, most mobile and wireless devices are battery-powered. Thus designing energy-efficient algorithms has gained importance in the area of communications. In this thesis, we design randomized1 algorithms to resolve five fundamental distributed communication problems, namely

• The leader election problem, which makes all nodes agree on one node to be the central controller of the network;

• The counting problem, which makes each node locally know the exact value of the number n of participating nodes;

• The naming problem, which assigns a unique label ∈ {1, 2, • • • , n} to each node;

• The broadcasting problem, which makes all nodes of the network know m, given a source node with an initial message m to transmit;

• The k-clustering problem, which partitions all nodes into subsets of nodes called k-clusters.

We evaluate the performance of the algorithms presented in this thesis with the two following complexity measures:

1. Time complexity: the total number of elapsed time slots until the execution of the algorithm ends;

2. Energy complexity: the maximum number of time slots over all devices during which a device has its radio communication switch on (to transmit a message or listen to the network).

OVERVIEW AND ORGANIZATION OF THE THESIS

Refer to Section 2.3.7 for more details about these definitions.

The difficulty to design algorithms for distributed networks lies on the type of network (single-hop or multi-hop) and on the size of messages that the devices can transmit (beeps of 1-bit size or O(log n) sized messages). 2 It also depends on the ability of the nodes to detect collisions on the network (the presence of multiple messages transmitted simultaneously). Refer to Section 2.2.4 for more details.

All algorithms presented in this thesis are randomized Monte Carlo algorithms (Section 2.4.1) and succeed with a high probability or w.h.p. for short (more details are provided in Section 2.4.1.2).

For the single-hop network models, in which all devices can directly communicate with each other, the existing leader election, counting, and naming algorithms have already reached optimal time complexities [START_REF] Capetanakis | Tree algorithms for packet broadcast channels[END_REF][START_REF] Nakano | A survey on leader election protocols for radio networks[END_REF][START_REF] Bogdan S Chlebus | Naming a channel with beeps[END_REF]. Therefore, in this thesis, we focus on improving the energy complexity of these algorithms by keeping the same optimal time complexities. More precisely, we first design a counting algorithm and a naming algorithm for single-hop beeping networks with an optimal O(n log n) time complexity and an energy complexity of O(log n). Second, we create leader election algorithms for single-hop radio networks with collision detection and multi-hop radio networks without collision detection (defined in Section 2.2.5). These algorithms have optimal time complexities of O(log n) and O(log 2 n) respectively and a constant energy complexity (of at most three). These are the first designed leader election algorithms with a constant energy complexity for singlehop radio networks.

Moreover, for the multi-hop network models, in which the devices can be at multiple hop distances from each other, we consider a remaining open problem, namely the leader election problem for radio networks without collision detection. Considering a network of n devices with a diameter D, our algorithm has a time complexity of O(D log log n + log O (1) n). The best known leader election algorithms for radio networks without collision detection [START_REF] Ghaffari | Near optimal leader election in multi-hop radio networks[END_REF][START_REF] Czumaj | Communicating with beeps[END_REF] have time complexities of O((D log(n/D) min(log(n/D), log log n)) and O(((D log n/) log D)), respectively. In comparison, our algorithm has a better time complexity for the values of D that respect log 4 n < D < n O (1) .

To achieve these results, we present a new distributed randomized algorithm paradigm based on the nodes generating local random variables before communicating in a deterministic manner on the network. Note that the commonly known distributed randomized algorithm design makes each node choose to transmit on the network at each time slot depending on a random choice [START_REF] Ghaffari | Leader election using loneliness detection[END_REF][START_REF] Kardas | Energy-efficient leader election protocols for single-hop radio networks[END_REF][START_REF] Chang | Exponential Separations in the Energy Complexity of Leader Election[END_REF].

Overview and organization of the thesis

Each chapter of this thesis improves existing solutions or presents a new solution for one distributed computing problem (namely, the naming, the counting, and the leader election problems) and corresponds to either a published paper or a paper under submission. First, in Chapter 4, we explain the naming algorithm for single-hop beeping networks with an optimal O(n log n) time complexity designed by [START_REF] Bogdan S Chlebus | Naming a channel with beeps[END_REF]. We then consider how to improve the energy consumption of such an algorithm. Chapter 4 therefore addresses the energy complexity of algorithms resolving the naming and counting problems on single-hop beeping networks. These algorithms name a single-hop beeping network in optimal O(n log n) time slots with an O(log n) energy complexity.

Subsequently, as many studies already achieved the Ω(log n) lower bound for the time complexity of leader election algorithms on single-hop radio networks, we consider the energy complexity of the leader election problem on single-hop radio networks in Chapter 5. This chapter presents a new leader election algorithm with an O(log 2 n) time complexity and an energy complexity of at most three (which is a constant).

Finally, Chapter 6 considers the more realistic multi-hop radio network model. More precisely, it addresses the time complexity of the leader election problem on the multi-hop radio network model without collision detection. In a network of n nodes with a diameter D, our algorithm has an O(D log log n + log O(1) n) time complexity, which is almost optimal up to the O(log log n) factor.

We provide more details about the existing results and related works of these chapters in Section 3.1.

The following sections present a high-level description of the techniques used in each chapter, as well as the results. Note that during the execution of our energyefficient algorithms, all nodes are initially asleep (i.e., their radio is switched off) and each node can wake up (i.e., switch on its radio) at any time slot.

Energy complexity of renaming, naming and counting algorithm on single-hop beeping and radio networks (Chapter 4)

In Chapter 4, we focus on optimizing the running time and the energy consumption of algorithms to resolve two fundamental problems of the distributed computing area for the single-hop beeping model, namely the renaming, naming and the counting problems.

The main motivations of the work

A beeping transmission requires significantly less energy than a message transmission. In Chapter 4, we consider the beeping model without collision detection or the Beep Listen model (more detailed definitions are provided in Chapter 2.2.4).

The main difficulties of designing algorithms on the beeping model come from the fact that a transmitting station does not know if it transmits alone and a listening station cannot distinguish a unique transmitter from multiple transmitters. Thus, designing algorithms for the beeping model is more challenging. Moreover, most stations of radio networks and beeping networks are battery-powered and have limited battery life. Therefore, designing algorithms that minimize energy consumption is of great interest.

OVERVIEW AND ORGANIZATION OF THE THESIS

Addressed problems

In Chapter 4, we designed algorithms to resolve the renaming, naming and counting problems, which (as defined in Section 2.3) assign a unique label ∈ {1, • • • , n} to each node and count the number of nodes, respectively. Such problems were recently studied for the single-hop beeping model by Chlebus, De Marco, and Talo [START_REF] Bogdan S Chlebus | Naming a channel with beeps[END_REF].

Once each station knew n, they provided a randomized naming algorithm with an O(n log n) running time and proved an Ω(n log n) lower bound for the time complexity of naming algorithms on beeping networks. However, their solution does not consider the energy consumption per station. Therefore, in Chapter 4, we present algorithms that improve the energy consumption per node. First, we present how the existing solution works; then, we demonstrate how to design deterministic energy-efficient renaming and counting algorithms for single-hop beeping networks; finally, we present our new randomized energy-efficient algorithms based on each node generating a unique local identifier.

Renaming and naming algorithms with optimal time and energy complexities

Existing naming algorithms on single-hop beeping networks. We provide a detailed non-exhaustive list of related works in Section 3.1. In this section, we only mention the last work of [START_REF] Bogdan S Chlebus | Naming a channel with beeps[END_REF]. The algorithm presented in [START_REF] Bogdan S Chlebus | Naming a channel with beeps[END_REF] is based on a balls-and-bins paradigm and names a network of n stations in O(n log n) time slots. We provide more details about this result in Section 4.1.2.

Our deterministic energy-efficient renaming algorithm for singlehop beeping networks. Our algorithm design uses a new idea to name all stations even when the stations do not know n. We first define a deterministic algorithm renaming M stations (M n), each of which initially has a unique identifier ID ∈ {1, . . . N } (where N is an upper bound of n). This first algorithm has a time complexity of O(M log n) with an energy consumption of O(M + log n) per station. The main idea is to make each station encode its ID into a binary codeword and send the result bit by bit in a reverse order during O(lg N) steps. 3 During these steps, a station knows that another station has a higher (resp. lower) ID if it transmitted a bit 0 (resp. 1) and receives a bit 1 (resp. 0). The nodes detecting the presence of a higher ID on the network are eliminated and the only node that remains active has the highest ID. This last node then gets the next available label. These O(lg N) = O(log n) transmitting steps are referred to as a season, and by executing M consecutive seasons, the network gets named in O(M log n) steps. For energy conservation purposes, we add the following improvements to this algorithm.

We remark that a station does not have to be awake during all O(M log n) steps to know if one of its neighbors has a higher ID; rather, it only has to wake up during two kinds of steps.

The following Figure 1.1 presents an example showing how these steps are defined. We represent the execution of the algorithm with a binary tree, as represented in [START_REF] Fuchs | Dependence between external path-length and size in random tries[END_REF]. In Figure 1.1, the leaves of the binary tree represent each station and one path on such a tree represents the binary code-word of the ID of each station; that is, one left edge corresponds to bit 1 and one right edge corresponds to bit 0. In this example, there are four stations with IDs equal to 0(000), 4(100), 5(101), and 6(110), respectively, from the right to the left.

The execution of our naming algorithm can be simulated with such a tree representation for the red (or black) node with ID = 4 as follows: Theorem. In single-hop beeping networks of size n, given M participating stations,

OVERVIEW AND ORGANIZATION OF THE THESIS

we suppose that no station knows n, but a polynomial upper bound N of n is given in advance to all stations. Each station has a unique ID ∈ {1, 2, . . . N }. There is an energy-efficient deterministic renaming algorithm that assigns w.h.p. a unique label to all participants in O(M log n) rounds. No station is awake for more than O(M + log n) time slots.

After designing such an algorithm, we adapted it to have a new randomized energy-efficient naming algorithm that works when the nodes do not know n and are initially indistinguishable. It uses the random generation of a local unique ID by each node.

Our randomized energy-efficient naming and counting algorithms on single-hop beeping networks. If all stations do not have any information about n, we make each station first compute N = θ(n) by executing the approximation algorithm designed by [START_REF] Brandes | Approximating the size of a radio network in beeping model[END_REF] (see Section 3.2.4 for more details about this algorithm). Note that such an algorithm has an O(log n) running time (i.e., it has an O(log n) energy complexity). After that, each station generates a unique identifier denoted as ID by uniformly picking at random one value from {1, 2, . . . , (2N) 2 }. Then, we uniformly distribute all stations into O(N/ log N) groups and make each group (of Θ(log n) stations) execute our deterministic naming algorithm one group after the other. The first group executes the naming algorithm during O(log 2 n) steps through the previous theorem. Then, the last labeled station of such a group transmits its label bit by bit to all stations of the second group. These stations (in the second group) execute our deterministic naming algorithm by replacing the first assigned label in the group with the received one. All groups then perform the same computations one group after the other. By doing so, we limit the maximal number of waking time per station to be O(log n). We finally make each node wake up when all groups finish their executions and the last labeled node sends its label bit by bit. We thus obtain the following result.

Theorem. In single-hop beeping networks of size n, let n be unknown by all stations, which are initially indistinguishable, there is an energy-efficient randomized naming (resp. counting) algorithm that assigns a unique label to all stations (resp. assigns the exact value of n to each station) w.h.p. in O(n log n) rounds. No station is awake for more than O(log n) rounds.

Leader election with a constant energy complexity (Chapter 5)

As mentioned in Section 1.2.1, managing the energy consumption of algorithms is critical for wireless networks, in which most nodes are battery-powered. Therefore, this chapter deals with optimizing the energy complexity of algorithms resolving the leader election problem, which is a fundamental problem of distributed computing.

Given n distributed nodes, such a problem consists of making all nodes agree on one node to be the leader. Note that in this thesis, we consider the implicit version of the leader election problem (Refer to Section 2.3.5 for more details). When the nodes do not have any assumption about n, there already exist algorithms that resolve the leader election problem on single-hop radio networks with optimal energy complexities. Therefore, in Chapter 5, we consider a more realistic model where the nodes do not know n but know a linear approximation of log n, i.e., each node knows a value u and a constant h such that log n < log u < h log n (we provide more details about this network knowledge in Section 2.5). We note that such an assumption is weaker than knowing Θ(n) [START_REF] Jurdziński | Weak communication in single-hop radio networks: adjusting algorithms to industrial standards[END_REF]. To optimize the energy consumption of our algorithms, we restrict each node to transmit only once and to listen to the network during at most two rounds.

Leader election and energy complexity

As a fundamental routine of distributed algorithms, the leader election problem has been thoroughly studied since the 1970 s [START_REF] Tsybakov | Free synchronous packet access in a broadcast channel with feedback[END_REF][START_REF] Capetanakis | Tree algorithms for packet broadcast channels[END_REF]. A lower bound of Ω(log n) running time was proven in [START_REF] Greenberg | A lower bound on the time needed in the worst case to resolve conflicts deterministically in multiple access channels[END_REF] for randomized leader election problems on radio networks with collision detection (RNCD) that respect the high probability requirement when all nodes know n. Note that the RNCD model has a stronger communication model than the beeping model (or Beep Listen model) as far as collision detection ability and message size are concerned (refer to Section 2.2.6). Many research studies already have reached this lower bound, and many other results have addressed energy complexity (we provide more details about the existing results in Section 5.1.1). In particular, the authors of [START_REF] Chang | Exponential Separations in the Energy Complexity of Leader Election[END_REF] proved a Ω(log log * n) lower bound for the energy complexity of leader election when n is unknown by the nodes. Note that in their algorithm, the O(log log * n) energy complexity corresponded to the time spent to approximate the size n of the network.

In the following sections, we first present our new leader election algorithm that works on single-hop radio networks with no collision detection or RNnoCD (a radio network where the devices are at communication range from each other and cannot detect collision) and has a constant energy consumption per node. The design of such an algorithm is based on each node locally generating a random variable distributed as described in Lemma 4 (Section 3.3.2). Subsequently, we demonstrate how to elect a leader with a constant energy complexity on single-hop beeping networks by making each node generate a random variable, distributed as described in Lemma 2 (Section 3.3.1).

Radio networks with no collision detection or RNnoCD

According to the definition of RNnoCD in Section 2.2.5.1, a node cannot detect whether it transmits alone. To circumvent such a limitation, we designed a witnessing system that allows a node to know whether it transmits alone to become the leader.

Behind our algorithms, the main idea is that when Θ(log n) is known then particular probability distributions over the set of natural numbers guarantee that the maximum of the set is not too large and appears exactly once, with sufficiently large probability. The design of our algorithms use this key observation and is based on the nodes locally generating random natural numbers (with the appropriate distributions) before communicating on the network in a deterministic manner in order to search distributively for the single node that holds the maximum of all the generated random variables. In doing so and in order to save energy, we make sure that each node transmits at most once and listens to the network during at most two rounds.

A new leader election algorithm with a constant time complexity and a constant probability of success on single-hop RNnoCD. In 1.2. OVERVIEW AND ORGANIZATION OF THE THESIS Section 5.2, we address the leader election problem for single-hop radio networks using the following principles. Each node locally generates a geometric random variable of parameter 1/2, denoted as Geom(1/2). Indeed, let X 1 , ...X n be n independent random variables distributed as Geom(1/2), we show that (lg n) -1 and lg n are each held by two distinct nodes, say s i and s j , with a probability of Ω(1). That is apart s i and s j , the other nodes generated different values of (lg n) -1 and lg n. Using this property, we ensure that all nodes communicate on the network in such a way as to discover that an election has occurred because a unique candidate with value (lg n) -1 has been confirmed by its witness (who must also be a unique witness) holding the value lg n. If this event occurred (its probability is a constant), the candidate node that generated (lg n) -1 will become the leader. Otherwise, it will be necessary to retry the process enough times to have a good probability of success of the election.

A new leader election algorithm succeeding w.h.p. on single-hop RNnoCD. For the considered RN models, our approach is simply based on this witnessing process with a flooding mechanism to prevent and block further election attempts: we make all the nodes that are aware of the election broadcast each in turn by uniformly randomly distributing them over the remaining time. Step (10log n) 2 illustrates the main ideas behind the leader election algorithms for single-hop radio networks. The algorithm is subdivided into (10 log n) steps. Each step consists of a constant number of time slots. We will assign Θ(n/ log n) nodes per time slot. In each step, a candidacy will take place at time t when a single node (the candidate) will generate a value equal to lg n. To confirm the uniqueness of a candidacy, we ask that a witness, also unique, testifies to the uniqueness of the candidate by sending a signal at time t + 1. If there is a unique candidate confirmed by a unique witness, the candidate becomes the leader. The Θ(n/ log n) losers made aware of the election then spread out (uniformly randomly) over the rest of the time in order to block all future attempts. This candidacy, witnessing and flooding (blocking) mechanism is implemented in Section 5.2.

The following example illustrates the computations executed by a group. In this example, we have 16 nodes in group G 1 (we suppose that n/ log n = 8). At t 0 , each node s i generates a random variable X i distributed as Geom(1/2). According CHAPTER 1. INTRODUCTION to Lemma 4, each node then locally creates an interval I of consecutive integers that contains lg(n/ log n) -1 and lg(n/ log n) (I = [3,[START_REF] Bar-Yehuda | On the timecomplexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization[END_REF] in our example). Each node s i with X i ∈ I then becomes Candidate(s i sets Status(s i) = Candidate) and the other nodes become Eliminated. Subsequently, each Candidate node s ca browses through the interval I (more details about this browsing procedure are provided in Section 5.2). At the first time slot t 0 = 0, each Candidate node s ca with X ca = 3 transmits a one-bit message and each Candidate node s ca with X ca = 4 listens to the network. Then, at t 1 = t 0 + 1, each Candidate node s ca that has X ca = 4 and that received a message at t 0 transmits a one-bit message, while each Candidate node s ca with X ca = 3 listens to the network. If s ca receives a message t 1 , it becomes the Leader. At t 2 = t 1 + 1, each Candidate node s ca with X ca = 4 that transmitted no message at t 1 transmits a one-bit message, while each Candidate node s ca with X ca = 5 listens to the network.

OVERVIEW AND ORGANIZATION OF THE THESIS

All Candidate nodes perform the same computations as done at t 0 and t 1 for all values in I, leading to the resulting To avoid this problem, we add the following witnessing procedure to our algorithm. We distribute all Eliminated nodes to witness an election at each time slot during the execution of our algorithm (the witnesses wake up to listen to the network at the witnessed time slot).

According to this adaptation, the nodes witnessing at t 0 and t 1 listen to the network at t 0 and t 1 . If these nodes receive one message at both t 0 and t 1 , they know that a leader has been elected. Thus, they are distributed to flood each remaining time slot of the algorithm, including the executions of the other groups G 2 , G 3 , . . . G (2 log u) . Theorem. In single-hop RNnoCD and RNCD (resp. RNsenderCD and RN-strongCD) of size n, there is a randomized Monte Carlo leader election algorithm that succeeds to elect a unique leader in O(log n) time slots with a probability of at least 1 -O n -1 . During its execution, each node transmits a one-bit message no more than once and listens to the network for a maximum of two (resp. one) time slots.

Beeping networks

For the beeping networks in Section 5.3, the model makes it impossible to know if an integer value is held by a single node. This is due to the nature of the communication model. What we can do, however, is to have the nodes generate random numbers in such a way that the maximum of these numbers is unique and bounded (w.h.p.). In our work, this approach requires nodes to know Θ(log n). For this task, we need another random variable. In fact, let Y be the discrete random variable defined as

P[Y = 0] = 1 -1/e and P[Y = k] = e - √ k -e - √ k+1 for all k > 0 . 6 Let Y 1 , • • • , Y M be M independent random
variables distributed as Y then the maximum of the Y i is unique and is located around log 2 M . Such properties apply with a probability of at least 1 -O(1/ log M). To satisfy the w.h.p. requirement with respect to the number of nodes n, we then need an exponential number of random draws (M = e e Θ(log n)). Thus, we ask each node s i to locally generate an exponential number of random variables distributed as Y , say Y i,1 , Y i,2 , • • • , and to work only with their maximum, viz., Y i = max j Y i,j (discarding the others for future exchanges). These ideas make it possible to design a Monte Carlo leader election algorithm with a polynomial time complexity that requires very little energy.

Theorem. Fix ε ∈ (0, 1). In single-hop BN networks of size n, if an upper bound u on n and a constant h are given in advance to all the nodes with u satisfying n < u < n h and h > 1, then there is an algorithm electing a leader in O(n ε) time slots with a probability of at least 1

-O n -ε h(ε+1)
with each node transmitting and listening to the network during a maximum of one time slot.

Broadcasting and electing a leader on multi-hop radio networks without collision detection or RNnoCD(Chapter 6)

The multi-hop radio network model is a more realistic model of the distributed computing area. Furthermore, the broadcasting problem and the leader election problem are two fundamental problems of the area (two basic bricks used as subroutines to design more complicated algorithms). Moreover, due to the lack of 1.2. OVERVIEW AND ORGANIZATION OF THE THESIS collision detection ability, designing algorithms for RNnoCD is more challenging than designing algorithms for RNCD. Consequently, in this work, we consider resolving the leader election and broadcasting problems on multi-hop RNnoCD.

Motivations of the work

As one of the most fundamental problems of distributed computing, many leader election algorithms have already achieved optimal time complexity for single-hop radio network models (O(log n) for RNCD and O(log 2 n) for RNnoCD). Similarly, an optimal algorithm electing a leader on multi-hop RNCD and on beeping networks has recently been designed. For a network of n nodes with a diameter D, this algorithm has an O(D + log n) time complexity. Therefore, in Chapter 6, we address one of the remaining open problems of the area, namely optimizing the time complexity of leader election algorithms for multi-hop RNnoCD.

Our main idea to perform this optimization is to design a leader election algorithm to have an optimal O(log n) time complexity for single-hop RNCD. We then adapt this algorithm to elect a leader on a multi-hop RNnoCD. Given n nodes and a diameter D, our adapted leader election algorithm terminates in O(D log log n+log O (1) n) time slots. To perform this adaptation, we use the divideand-conquer paradigm by designing a new k-clustering algorithm that clusters the network in O(D) time slots (provided in Section 2.3.7). We then design a new broadcasting algorithm with an O(D log log n + log O (1) n) time complexity and use it as a subroutine of our new leader election algorithm.

A new optimal leader election algorithm for single-hop RNCD

Our first algorithm design is based on making each node generate one random variable distributed as Geom(1/2). Through the Lemma 4 presented in Section 3.3.2, at least one node has a unique value equal to lg n with a constant probability. Each node then finds whether it holds such a unique value to become the Leader. We illustrate the execution of such an algorithm in Figure 1.8. In this example, supposing lg n = 2, during Phase 1, each node s i generates four (or

(2 lg n)) random variables X 0 i , X 1 i , X 2 i , X 3 i distributed as Geom(1/2). During CHAPTER 1. INTRODUCTION
Phase 2, for j = 0, • • • 3, each node creates a binary code-word of 4 bits by setting the j th value to 1 if X j i = 2 and 0 otherwise. Then during Phase 3, all nodes perform an exclusive OR (or Xor) computation of all generated code-words. The Node 4 holds the initial bit value 1 with the largest index that remains on the result (of the Xor computation) and thus becomes the Leader.

We repeat these computations O(log n) times to have a leader election algorithm that succeeds with a high probability on single-hop RNCD.

A new leader election algorithm for multi-hop RNnoCD

In Section 6.3, as presented in [START_REF] Bar-Yehuda | Efficient emulation of single-hop radio network with collision detection on multi-hop radio network with no collision detection[END_REF], we emulate the previously described leader election algorithm for single-hop RNCD to make it work on multi-hop RNnoCD.

To do so, we first create a new k-clustering algorithm with an O(k log 4 n) time complexity. Next, we design a new broadcasting algorithm with an O(D log log n + log O(1) n) time complexity and a k-message broadcasting algorithm terminating in O(D log log n+k log 3 n) time slots. Finally, we use these algorithms as sub-protocols to design our new leader election algorithm.

A new k-clustering algorithm.

Recall that a k-cluster is a set of nodes containing one node with a ClusterHead label and with all other nodes at most at k-hop distance from this ClusterHead(refer to Section 2.3.7 for more detailed definitions). A k-clustered network is a network in which each node belongs to a k-cluster. According to these definitions, we remark that a maximal independent set (Mis) algorithm (defined in Section 2.3.6) computes a 1-clustered network if we make each Mis node (i.e., each node in the Mis set) become a ClusterHead. Using this observation, our k-clustering algorithm design is based on adapting the Mis algorithm designed by [START_REF] Jeavons | Feedback from nature: simple randomised distributed algorithms for maximal independent set selection and greedy colouring[END_REF] for the beeping model to work on the RN-noCD model.

• All nodes first execute an adaptation of Mis [START_REF] Jeavons | Feedback from nature: simple randomised distributed algorithms for maximal independent set selection and greedy colouring[END_REF] for RNnoCD. This adaptation makes each transmitting node send the message to transmit during (4 log During the execution of the previously described new k-clustering algorithm, all nodes run the Clustering(λ) algorithms, one execution after another, for λ = 1, 3, 6, • • • , k/2, k. These executions lead us to the following result.

Theorem. In an undirected multi-hop RNnoCD of size n, an algorithm outputs w.h.p. a correct k-clustering of the network in O(k log 4 n) times slots.

New broadcasting and k-message broadcasting algorithms.

To design our new broadcasting algorithm, we adapt the broadcasting algorithm presented by [START_REF] Bar-Yehuda | On the timecomplexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization[END_REF], which broadcasts a message m from a single source node to all nodes of a network of diameter D in O((D + log n) log ∆) time slots, where ∆ is an upper bound of the number of nodes neighboring each node. The algorithm of [START_REF] Bar-Yehuda | On the timecomplexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization[END_REF] works as follows: Each node s i first sets a value ψ = (2 log ∆). As soon as it has the message m to broadcast, s i executes the following computations (2 log n) times:

• Let T 0 be the first time slot of each of the (2 log n) computations and for all ρ 1, letT ρ = T 0 + ρ. s i first waits until (T ρ mod ψ) = 0.

• Then during the following ψ time slots, s i picks p uniformly at random from {0, 1} and transmits m as long as p = 1.

Our main idea to improve the time complexity of the algorithm designed by [START_REF] Bar-Yehuda | On the timecomplexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization[END_REF] sets ∆ log O (1) n. As a result, broadcasting a message from a single source to all network nodes will take O((D + log n) log log n) time slots. To do so, we first compute a layering of the network (refer to Section 3.2.6 for more details about this layering computation and the definitions of L(h) and l(h)). Thereafter, to limit the value of ∆, 7 we use a well-known candidacy idea that makes the nodes of each layer become Candidate8 or Eliminated with a probability of p ca = (10 log n)/n.

Remark 1. If o(n) nodes attempt to become

Candidate with a probability p ca = (10 log n)/n, there could be w.h.p. no Candidate node. Thus, the broadcast could be interrupted.

To avoid this problem, each node s i must know with how many nodes of L(l(s i)) it tries to become Candidate. By making all nodes compute a linear approximation β + (s i) of such a value (see definition 6.1.3 in Section 6.3.2), each node s i becomes Candidate with a probability min{1, (10 log n)/β + (s i)}. Consequently, at least one Candidate node and at most O(log n) Candidate nodes attempt to transmit a message at each time slot.

With such a result, for h = 1, • • • , D, each node s i ∈ L(h) that received the message m becomes Candidate with the probability (10 log n)/β + (s i). Only the Candidate nodes then attempt to broadcast m to the next layer L(h + 1). In parallel, upon receiving m, each node in L(h + 1) sends a feedback message m f = 1. When receiving this feedback message, the Candidate nodes in L(h) stop sending m, yielding ∆ log O (1) n (Lemma 22 of Section 6.3.2). Applying such a value of ∆ to the broadcasting algorithm of [START_REF] Bar-Yehuda | On the timecomplexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization[END_REF] leads to the following result.

Theorem. In multi-hop RNnoCD, let each node s i know n, D, its distance from the broadcasting source and a linear approximation of the number of its neighbors. There is a broadcasting algorithm terminating w.h.p in O((D +log n) log log n) time slots.

We adapt the previously described broadcasting algorithm to design an algorithm broadcasting k messages from a single-source node in O(D log log n+k log 3 n) time slots. To do so, we make the source node spread the messages one by one. Each transmission takes (4 log 2 n) time slots using the Decay protocol. In parallel, each node at most at log n hop distance from the source node s s spreads each received message with Decay, and each node at hop-distance of at least log n+1 from s s broadcasts each received message by executing the aforementioned broadcasting algorithm.

A new leader election algorithm for multi-hop RNnoCD. In Section 6.3.3, we emulate our leader election algorithm for single-hop RNCD on multihop RNnoCD. This emulation is subdivided into four main steps:

• During the first step, all nodes compute a d-clustering of the network by setting d = D/ log 4 n. The time complexity of this step is O(D) and it makes each node of the network get a label in {ClusterHead, Internal}.

• The second step consists of the following three computations: -Each node s i computes its distance l(s i) from the ClusterHead of its cluster by executing the Layering procedure described in Section 3.2.6 (refer to Section 6.3.5 for more details). During such an execution, each Cluster-Head node behaves like the source node and all Internal nodes act like the other nodes mentioned in Section 3.2.6.

-Next, each node s i (∈ L(l(s i))) computes an approximation of the number β -(s i) (resp. β + (s i)) of its neighbors in the previous layer L(l(s i) -1) (resp. in the next layer L(l(s i) + 1)). As described in Section 1.2.3.3, these values are used in our multi-message broadcasting algorithm.

-Then, as in our leader election algorithm for single-hop RNCD, each node

s i generates (4 log n) random variables X 0 i , • • • , X 4 log n-1 i distributed as Geom(1/2
). s i then creates a binary code-word of (4 log n) bits by setting the j th bit to 1 if X j i = lg n and 0 otherwise.

OVERVIEW AND ORGANIZATION OF THE THESIS

• During the third step, each node becomes Candidate with a probability of (10 log n)/n and the Candidate nodes send their binary code-word bit by bit to the ClusterHead. The ClusterHead then saves the binary Xor computation of all the received code-word as the identifier (ClusterID) of its cluster.

• The fourth step is the main loop of the algorithm. Its purpose is to perform the Xor computation of the ClusterIDs of all clusters in the network.

As in the leader election algorithm designed by [START_REF] Ghaffari | Near optimal leader election in multi-hop radio networks[END_REF],

Step 4 is subdivided into rounds called debates. During one debate, each ClusterHead s ch exchanges its ClusterID(s ch) with its cluster-neighbors by using the following three protocols: UpLink, InterCommunication, and DownLink.

The ClusterHead s ch then sets its ClusterID(s ch) = Xor(ClusterID(s ch), { all received ClusterIDs }).

Annotated list of publications

This section presents an annotated list of the works presented in this thesis. Chapter 2

Models, Definitions, and Network Assumptions

In this chapter, we define the models studied in the thesis. We define the main objects used in the thesis in the following sections, but the definitions specific to a chapter are delayed until the beginning of the chapter in question. We first define the main network models of interest in the thesis, followed by the main addressed problems. Subsequently, we present how to measure the complexities of the algorithms used to resolve them. Finally, we define the main notations used in the thesis followed by the assumptions about the considered networks and the studied models.

Distributed network models

Distributed networks are composed of a set of distributed devices that can exchange messages on the network by switching their radio on (waking up). This thesis studies two kinds of such networks, namely the single-hop and the multi-hop networks.

As commonly assumed in the distributed computing area, each network is modeled by a graph in the remainder of the thesis.

Graph [30]

A graph G = (V, E) is a mathematical structure consisting of two sets V and E.

The elements of V are called vertices or nodes, and the elements of E are called edges. Each edge has a set of one or two vertices associated with it, which are called its endpoints. Each edge represents a link between vertices.

There are many different types of graphs, but in the distributed computing area as well as in the network modeling area, we only consider a few of them, such as:

• Directed graph : A graph in which each edge is directed, i.e., is an edge, one of whose endpoints is designated as the tail, and whose other endpoint is designated as the head.

• Undirected graph : A graph in which each edge is undirected.

CHAPTER 2. MODELS, DEFINITIONS, AND NETWORK ASSUMPTIONS

• Simple graph : A graph in which two vertices can be connected by at most one edge, i.e., there are no parallel edges, and there is no edge having a unique node as endpoints, i.e., there are no self-loops.

• Connected graph : A graph in which there is at least one path (a set of consecutive edges) connecting each pair of nodes.

• Complete graph : A graph in which there is at least one edge connecting each pair of nodes.

Graph representation of networks

Throughout this thesis, the networks are modeled by a graph denoted as G = (V, E), where V is the set of devices (or nodes) and an edge e ∈ E is a couple of nodes in the communication range of each other. Some specific distributed communication models can be modeled with directed graphs, but in this thesis, we only consider those modeled by undirected, connected, and simple graphs.

Single-hop networks

A single-hop network is a network in which all devices are within the communication range of one another. We model this network by an undirected complete, connected, and simple graph G = (V, E).

Multi-hop networks

A multi-hop network is modeled by an undirected, connected, and simple graph.

In such a network, there can be nodes that are not in the communication range of each other and a message to transmit to another node may have to transmit through a path of intermediary nodes to reach its destination.

Due to these intermediary transmissions, designing distributed algorithms for multi-hop networks is more challenging than designing algorithms for single-hop networks. For example, an algorithm resolving the distributed leader election problem on a single-hop radio network of size n 2.2.5 has a time complexity 2.4.1.3 of at least O(log n) [START_REF] Greenberg | A lower bound on the time needed in the worst case to resolve conflicts deterministically in multiple access channels[END_REF]. In comparison, a leader election algorithm for multi-hop radio networks with size n and diameter D has a time complexity of O(D +log n) [START_REF] Dufoulon | Beeping a deterministic time-optimal leader election[END_REF].

To go from one network to the other, a commonly used principle is to design first an algorithm to resolve the problem on single-hop networks and then emulate it to work on multi-hop networks [START_REF] Bar-Yehuda | Efficient emulation of single-hop radio network with collision detection on multi-hop radio network with no collision detection[END_REF]. As one example of such an emulation, we can cite the principle that makes each device broadcast a message on a multi-hop network instead of transmitting it once on the single-hop network.

Distributed communication models

First, the communication models in distributed computing can be categorized depending on the synchronization capability of the nodes.

Synchrony and asynchrony

On the one hand, the notion of device synchrony refers to the speed of execution of the devices [START_REF] Dolev | On the minimal synchronism needed for distributed consensus[END_REF][START_REF] Amoussou-Guenou | Gouvernance des biens communs dans les blockchains[END_REF]. The devices are synchronous if they all take the same amount of time to execute an instruction. In a synchronous communication model, communications occur in synchronous discrete time slots. Each device is assumed to have a local clock and each such clock is synchronized to a fictional global clock.

At any time slot, a device decides whether to transmit a message or to remain silent and listen to the network. During each communication phase (transmission or listening phase), each device has to wake up (switch its radio on). Each time slot is composed of three phases :

1. The send phase : The devices that wish to transmit a message send it during this phase. Depending on the size of messages and on the synchronization model used, each device can have a common send phase duration.

2. The delivery phase : During this phase, all the listening devices can receive the messages transmitted by their neighboring devices on the network. All devices are assumed to have unbounded memory size and unbounded computational power. As for the send phase, in a synchronized model, each node can have a common finite and positive duration for the delivery.

The compute phase :

In compute phases, a device uses all messages it delivered to update its internal state and to prepare the messages for the next time slot.

Note that a node that decided to transmit at a time slot only executes the send phase and the compute phase. In contrast, a node that decided to listen to the network at a time slot only executes the delivery phase and the compute phase at this time slot.

On the other hand, in an asynchronous communication model, the local clock of each node is synchronized with no global clock. That is, each node has its own duration for each phase, thus, each node has its duration for each time slot. As a consequence, it is more difficult to design distributed algorithms for this later model. A common way to design such algorithms is to make all nodes execute a preliminary algorithm that simulates the presence of synchrony on the network before executing a synchronous algorithm. This additional execution implies larger complexities of the designed algorithms.

Second, the choice of communication model in a distributed algorithm conception depends on the following physical capabilities of the nodes:

• the size of the messages that a device can transmit or receive (radio 2.2.5 or beeping network model 2.2.6, LOCAL or CONGEST 2.2.3);

• the number of transmitting and listening ports of the devices (single or multiaccess channel 2.2.2);

• the capability of the devices to transmit and receive multiple messages simultaneously. In a multi-access channel model, the nodes can transmit or receive multiple messages simultaneously. In contrast, in a single-access channel model as the LOCAL and the CONGEST models, the nodes can only transmit or receive one message at a time.

CHAPTER 2. MODELS, DEFINITIONS, AND NETWORK ASSUMPTIONS

The single-access channel and the multi-access channel models

A multi-access channel (MAC [START_REF] Guo | Low power distributed MAC for ad hoc sensor radio networks[END_REF]) network is a network in which each device has numerous channels of communication and can communicate by using these multiple channels simultaneously. At each time slot, a device can simultaneously send different messages to its neighbors by transmitting one message per channel and it can simultaneously receive messages from its other listening channels. Each device can either transmit or listen to a given channel at each time slot. In contrast, in a single-access channel network, each device has a unique communication channel and can either transmit or listen to this channel at each time slot.

Let us consider an algorithm working on multi-access channel networks. We can make it work on single-access channel networks, having the same message size restriction as follows: make each node transmit all the messages transmitted in parallel, to one of its neighbors on the multi-access channel model, in a sequential way. With this adaptation, distributed algorithms designed for single-access channel networks have larger time complexity than those designed for multi-access channel networks.

The LOCAL and CONGEST models

In the LOCAL model [START_REF] Fraigniaud | Local distributed decision[END_REF][START_REF] Deurer | Deterministic distributed dominating set approximation in the CONGEST model[END_REF], devices are woken up simultaneously, and computation proceeds in synchronous rounds during which every device exchanges messages of unlimited size with its neighbors, and performs arbitrary computations on its data.

The CONGEST model [START_REF] Deurer | Deterministic distributed dominating set approximation in the CONGEST model[END_REF] is defined like the LOCAL model with the restriction that messages are of size O(log n).

In the same way as the single-access channel and the multi-access channel models, one can go from algorithms working on the LOCAL model to the CONGEST model by simulating messages of size O(n) for example with n/ log n sequential messages of size O(log n). This implies a O(n/ log n) multiplicative factor on the time complexity of the algorithm. Finally, models, the single-access channel models can be categorized according to the capability of the nodes to detect the presence of multiple messages transmitted simultaneously on the channel, which is referred to as their collision detection capability.

Collision detection

As already mentioned, the difficulty of designing a distributed algorithm can also depend on the collision detection capabilities of the network nodes.

• First, the harsher model is the network model with no collision detection, in which no node can distinguish from no message and multiple messages (defined as a collision) transmitted simultaneously on its channel.

• Second, there exist networks with receiver collision detection, for which only the listening nodes can detect a collision.

• Third, in the networks with transmitter collision detection, only the transmitting nodes can detect collisions.

DISTRIBUTED COMMUNICATION MODELS

• Finally, in the networks with strong collision detection, both the transmitting and listening nodes can detect collisions.

To go from one model to another, we can simulate collision detection at each time slot in a model with no collision detection. Such a simulation can add a O(log n) multiplicative factor to the time complexity of the designed algorithm [START_REF] Ghaffari | Leader election using loneliness detection[END_REF]. According to the lately defined categories, we consider two communication models of the distributed computing area in this thesis, namely:

-the single-hop and multi-hop synchronous CONGEST radio network models, -the single-hop synchronous CONGEST beeping models.

As a reminder, on the one hand, in the CONGEST model, the nodes are restricted to transmitting only one message at a time. Due to this restriction, designing algorithms for the CONGEST model is more challenging than designing algorithms for the LOCAL model. On the other hand, all devices of the network models considered in this thesis have access to a global clock, which allows them to perform synchronized tasks.

Synchronous CONGEST radio networks

Radio networks without collision detection (RNnoCD [6]).

In such a model, communications occur in synchronous discrete time slots. At any time slot, a node (device) decides whether to transmit a message of O(log n)bits size or to remain silent and listen to the network. Each node has only one transmitting and one listening port (single-access channel) and cannot listen to the network while transmitting. If a node listens at a given time slot and exactly one of its neighbors transmits, it instantly receives the message (at the time slot). In all other cases, the listening node receives nothing, meaning that if at least two neighbors transmit, a collision occurs and the nodes do not detect it.

Radio networks with collision detection (RNCD).

As Chlamtac and Kutten stated in [START_REF] Chlamtac | On broadcasting in radio networksproblem analysis and protocol design[END_REF], communications occur during synchronous discrete time slots in the RNCD model. A node independently decides whether to transmit an O(log n)-bit message or to listen to the network at any time slot. The unique communication channel of each node can have three statuses: Single if exactly one neighbor transmits, Null if no neighbor transmits, and Collision if at least two neighbors transmit simultaneously. Only the messages sent during Single transmissions are received.

As mentioned in Section 2.2.4, there are three types of collision detection capabilities. In this thesis, we consider all three types (refer to Section 2.2.4 for the definitions):

-radio networks with receiver collision detection (which correspond to the latter-described RNCD model);

-radio networks with transmitter collision detection (or RNsenderCD for short);

-and radio networks with strong collision detection (or RNstrongCD).

CHAPTER 2. MODELS, DEFINITIONS, AND NETWORK ASSUMPTIONS

Note that the collision detection capability brings more information to the nodes during the execution of distributed algorithms. We already mentioned that algorithms designed for RNCD can be adapted to work on RNnoCD with a O(log n) multiplicative factor on its time complexity (refer to Section 2.2.4 for more details). In the other way, algorithms designed for RNnoCD work for RNCD without any adaptation.

Single-hop beeping networks

PROBLEMS ADDRESSED IN THIS THESIS

for BL can work on RNCD networks without any adaptation and can work on RNnoCD networks with a O(log n) multiplicative factor on its time complexity.

On the other way, it is more difficult to adapt an algorithm designed for RNCD networks to work on the BL networks due to the message size difference. To do so, during each time slot of the execution of the algorithm, one can mimic a O(log n) message transmission with O(log n) consecutive beeps, which leads to a O(log n) multiplicative factor on the time complexity of the algorithm. As a consequence, by Section 2.2.5.2, one can adapt algorithms designed for RNnoCD to work on the BL with a O(log 2 n) multiplicative factor on its time complexity.

Note that in the previous sections, we gave the simplest and the most intuitive examples for adapting algorithms designed for a specific model to work on another. In the literature, more elaborated principles are given to do such a task.

Problems addressed in this thesis

In this section, we define the main problems that we aim to resolve in this thesis.

The renaming problem

Given n nodes with a unique identifier taken from

{1, • • • , n c }, c 1, this problem consists of assigning a unique label denoted (s i) ∈ {1, 2, • • • , n} to each node s i .

The naming problem

This problem consists of assigning a unique label denoted (s i) ∈ {1, 2, • • • , n} to each node s i of the n nodes of a distributed network. A naming algorithm respects the following properties:

• Termination : The algorithm terminates, all nodes detect it and know their labels.

• Uniqueness : Each label (s i) is unique, i.e. no two nodes have the same label.

• Consistency : Each label (s i) ∈ {1, 2, • • • , n}.

The counting problem

The counting problem consists of making each node of a distributed network know the exact size n (number of nodes) of the network. A counting algorithm respects the following properties:

• Termination : The algorithm terminates, all nodes detect it and knows n.

• Uniqueness : All nodes have the same values of n.

The broadcasting problem

Given a multi-hop network represented by an undirected connected graph G, and an informed source node s s (i.e., s s has a message m to broadcast which is initially unknown by all the other nodes), the broadcasting problem consists of making all nodes of the network receive m. In order to make the process possible, it is always assumed that the nodes of G are connected with the source; that is, there is an undirected path from the source to any other node of G.

Spontaneous transmissions

When designing a broadcasting algorithm, it is commonly assumed that each node starts to transmit some messages only when it receives the message m to broadcast. However, a recent study [START_REF] Czumaj | Exploiting spontaneous transmissions for broadcasting and leader election in radio networks[END_REF] demonstrated that allowing the nodes to transmit messages and perform computations in advance (i.e., before the receipt of the message to broadcast) can lead to an improvement in the time complexity of the designed algorithm. This capability of the nodes to transmit messages and perform computations in advance is called the spontaneous transmission capability. Note that spontaneous transmissions can also be used to design leader election algorithms on multi-hop networks.

The leader election problem

The leader election problem consists of making each node in a distributed network agree on one node to be the leader without using a central controller. Each node s i has an initial status denoted as Status(s i) = Null and a leader election algorithm makes each node have a Status(s i) ∈ {Leader, Eliminated}.

A leader election algorithm must respect the following two properties:

• The safety property : During the execution of a leader election algorithm, there is never more than one leader.

• The termination property: Every execution terminates, and the termination there is exactly one leader.

Depending on the ability of the nodes to detect the presence of a unique leader or the termination of the algorithm, there are auxiliary definitions, such as:

• Eventual leader election : The algorithm terminates but no node can detect its termination.

• Terminating leader election : The algorithm terminates and all nodes detect when there remains a single leader.

• Explicit leader election : The nodes have a unique identifier, the algorithm terminates with all nodes detecting it and all nodes know the identifier of the leader at the termination.

• Implicit leader election : The nodes have a unique identifier, the algorithm terminates, and all nodes detect the termination but no node knows the identifier of the leader.

Note that in this thesis, we consider the implicit version of the leader election problem definition.

The maximal independent set problem

A Mis is a maximal1 set of nodes of a network that respects the following property: no two nodes in the set are neighbors. More precisely, in a given graph G = (V, E), a subset I of V is said to be an independent set if for any u, v in I, u and v are not neighbors in G. I is maximal (Mis) if any node in V I has a neighbor in I.

A Mis algorithm makes all nodes enter the Mis set or enter the Eliminated set. Note that in this thesis, we use a Mis algorithm as a subroutine to design a Kclustering which is a multi-hop variant of Mis. We give the implementation of Mis in Section 3.2.5.

The clustering problem

Clustering

Clusters are non-overlapping subsets of a network. The clustering problem consists of assigning each node of a distributed network to a cluster. In such a cluster, there is exactly one node with the label ClusterHead, which corresponds to the leader (or the central controller) of the cluster. The other remaining nodes are called Internal nodes.

After a clustering algorithm execution, the following properties are satisfied [START_REF] Basagni | Distributed clustering for ad hoc networks[END_REF]:

• Dominance : Every Internal node has at least a ClusterHead node as neighbor.

• Independence : No two ClusterHead nodes can be neighbors.

Note that the Mis problem is a special clustering problem in which the nodes in the Mis set correspond to the ClusterHead nodes.

K-clustering

A k-cluster is a particular cluster in which each Internal node is at a hop-distance of at most k from the ClusterHead. A k-clustering algorithm subdivides the network into k-clusters. A Mis algorithm creates a 1-clustering of a network.

Following the properties of a clustering algorithm, a k-clustering algorithm must respect these properties:

• Dominance : Every Internal node is at most at k -1 hop distance from at least a ClusterHead node.

• Independence : Every ClusterHead nodes are at least at k hop distance from each other.

Throughout the remainder of this thesis, we refer to a node s i with Label(s i) = ClusterHead as a ClusterHead node, and we do the same for all labels. A k-cluster is referred to as a cluster.

CHAPTER 2. MODELS, DEFINITIONS, AND NETWORK ASSUMPTIONS

Algorithms and complexity measures

In this section, we first present the type of algorithms of interest in the thesis; then, we consider how to measure their complexities. Finally, we present the type of studied complexities.

Algorithms

Deterministic algorithms

In this thesis, we design deterministic algorithms whose behavior can be predicted completely from their inputs. That is, for the same inputs, after one execution of such algorithms, each node always outputs the same values. Moreover, during the execution of such algorithms, each node always passes through the same sequence of states and computations.

Randomized algorithms

To improve the complexities of the algorithms, we also design randomized algorithms that make each node do random (or pseudo-random) choices for the execution of some computations.

In this thesis, we consider two categories of randomized algorithms, namely the Monte Carlo and the Las Vegas randomized algorithms.

Monte Carlo. These randomized algorithms always terminate within the same deterministic running time, but their output can be incorrect with a certain probability depending on the input.

Las Vegas. This category of randomized algorithms always provides correct results, but their running time (or time complexity) varies according to the input. Such a running time can be calculated and the result can be correct with a certain probability. We refer to this as the probability of success of a randomized algorithm.

As mentioned earlier, randomized algorithms are often more efficient than deterministic algorithms in view of time complexity. Note that certain distributed problems cannot be resolved by deterministic algorithms, namely the Symmetry-Breaking problems (leader election, naming, Mis) for networks with indistinguishable devices.

Probability of success of a randomized algorithm.

A distributed randomized algorithm can succeed (output a correct result or terminate within a correct estimated running time) with a certain probability. The success of the execution of these algorithms can then be considered a probabilistic event denoted as ε.

• On the one hand, an event ε occurs with a constant probability when the probability P[ε] of ε to occur is a positive constant ∈]0, 1].

• On the other hand, an event ε occurs with a high probability (w.h.p. for short), when the probability of ε to occur is greater than a particular value depending on the input and converging to the value 1.

ALGORITHMS AND COMPLEXITY MEASURES

For example, if the input has size n (this can be the number of nodes, the size of some data to be processed, or something else), P[ε] > 1 -n -c for some positive constant c.

Algorithms complexities

Algorithm complexity is a unit for measuring the performance of an algorithm. This thesis considers two algorithm complexity measures, namely the time complexity and the energy complexity.

Time complexity

Time complexity is defined as the maximal number of elapsed time slots until the execution of an algorithm outputs a result or ends. As described in Section 2.2.1, each such time slot is composed of the send phase, the delivery phase and the computation phase. The time complexity can then be described as the sum of all the duration of the elapsed phases until the execution of an algorithm outputs a result or ends.

Energy complexity

As the computation phase (Section 2.2.1) costs much less energy the other phase of a time slot [START_REF] Chang | Exponential Separations in the Energy Complexity of Leader Election[END_REF][START_REF] Kardas | Energy-efficient leader election protocols for single-hop radio networks[END_REF], several definitions of the energy complexity of a distributed algorithm exist depending on the energy cost of the send phase and the delivery phase in the considered model. Some study ([START_REF] Sivalingam | Low power link and access protocols for wireless multimedia networks[END_REF]) considers the energy complexity as the power consumption of the devices when communicating on the network. Each device studied by [START_REF] Sivalingam | Low power link and access protocols for wireless multimedia networks[END_REF] consumes 1.8 W, 0.6 W, and 0.05 W when transmitting, receiving a message, and having its radio (or its communication port) switched off, respectively. Some other studies only took into account the transmitting computation (the send phase) as the listening computation (the delivery phase) has lesser energy consumption.

Power consumption can also depend on the collision detection capability of the devices [START_REF] Chang | Exponential Separations in the Energy Complexity of Leader Election[END_REF][START_REF] Kardas | Energy-efficient leader election protocols for single-hop radio networks[END_REF] and the size of the exchanged messages [START_REF] Afek | Beeping a maximal independent set[END_REF]. In particular, on the one hand, for the same settings and models, distributed algorithms designed for RNCD networks have larger energy complexities than those designed for RN-noCD. In the same way, algorithms designed for the LOCAL model can have larger energy complexities than those designed for the CONGEST model. On the other hand, despite the difficulty of designing time-efficient algorithms for the BL model, compared to the radio networks models, algorithms designed for the BL model have lesser energy complexities than those designed for radio networks. This thesis defines the energy complexity of a distributed algorithm as the maximum over all devices of the number of time slots during which a device is awake (the device has its communication radio switched on) to transmit or listen to the network [START_REF] Bogdan S Chlebus | Naming a channel with beeps[END_REF][START_REF] Chang | The energy complexity of broadcast[END_REF][START_REF] Chang | Exponential Separations in the Energy Complexity of Leader Election[END_REF].

The complexities of distributed algorithms can be measured either in average cases or in the worst case. For the measure in the average case, we consider the CHAPTER 2. MODELS, DEFINITIONS, AND NETWORK ASSUMPTIONS average complexity for all possible inputs, whereas in the worst-case measure, we only consider the worst (the largest) complexity for all possible inputs. In this thesis, all complexities measures are conducted in the worst case.

Order of complexity

Considering an algorithm with an input n, its complexity is commonly measured with asymptotic order notations.

(n) = O(f (n)) if ∃n o > 0, ∃c > 0 such that ∀n > n o , T (n) < cf (n).
Definition 2.4.2 (Ω()). Let T (n) be the complexity of the considered algorithm and f (n) be a function on n. T

(n) = Ω(f (n)) if ∃n o > 0, ∃c > 0 such that ∀n > n o , T (n) cf (n).
(n) = Θ(f (n)) if ∃n o > 0, ∃c > 0, d > 0 such that ∀n > n o , cf (n) T (n) df (n).

Definition 2.4.4 (o()). Let T (n) be the complexity of the considered algorithm and f (n) be a function on

n. T = o(f (n)) if ∃n o > 0, ∀c > 0 such that ∀n > n o , |T (n)| c|f (n)|.

Notations and initial assumptions about the networks

Throughout this thesis, we use the following global notations. Specific notations for a chapter are declared in the chapter in question.

• n represents the size of the considered network (the number of nodes).

• log n represents the neperian logarithm of n and lg n represents the logarithm of n in the positional notation with the base 2.

• log * n is the iterative logarithm of n.

• O(n), o(n), Ω(n), Θ(n) are asymptotic orders of n (refer to Section 2.4.1.6).

• u represents a polynomial upper bound on n.

• D represents the eccentricity or the diameter of the network.

The nodes in the distributed computing area are commonly assumed not to have any information about the size of the network [START_REF] Chang | Exponential Separations in the Energy Complexity of Leader Election[END_REF][START_REF] Jurdziński | Efficient algorithms for leader election in radio networks[END_REF][START_REF] Ghaffari | Leader election using loneliness detection[END_REF][START_REF] Murali | Randomized leader election[END_REF] .

Using randomness to compute a linear approximation Θ(n) on n is a commonly performed computation before the resolution of more harsh distributed problems. It has an O(log * n) energy complexity. To improve the energy consumption of many designed distributed algorithms, some relevant research studies have assumed that each node knows a linear approximation of n. However, to design deterministic algorithms, each node s i must have an initial unique identifier denoted ID(s i).

NOTATIONS AND INITIAL ASSUMPTIONS ABOUT THE NETWORKS

In this thesis, we only require the knowledge of a polynomial upper bound u on n (i.e., the knowledge of u such that log u = Θ(log n)), which is weaker than knowing Θ(n). On the other hand, for multi-hop networks, the knowledge of n and D is required to design several algorithms [START_REF] Bar-Yehuda | On the timecomplexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization[END_REF][START_REF] Jacquet | A novel energy-efficient broadcast leader election[END_REF][START_REF] Chang | The energy complexity of broadcast[END_REF]. Note that the knowledge of n by the nodes simplifies the resolution of the leader election problem for single-hop networks. Even if this simplification is applied to multi-hop networks, the distance between nodes retains some hardness to the problem.

In the following chapters, to break the symmetry of the considered network, we make each node generate a unique identifier. Each node computes a binary representation of such an identifier to transmit it bit by bit on the network.

• For i = 1, 2, • • • , n, s i represents the i th node of the network.

• ID(s i) is the unique identifier of a node s i , locally stored in i .

• ClusterID(s i) is the binary representation of ID(s i).

During the execution of our algorithm, each node s i moves from a status denoted as Status(s i) to another until reaching the final desired status.

• Status(s i) = Candidate when s i is candidate to participate in some computations.

• Status(s i) = Marked if s i is marked to perform some computations.

• Status(s i) = Eliminated if s i no longer participates into the computation.

• The Leader status is the final status of a leader election algorithm.

The algorithms designed in this thesis are based on each node generating a random variable before communicating on the network in a deterministic manner.

• If a node s i generates a random variable following a distribution denoted as A, the random variable is denoted as A i .

• For a given set S, Card(S) represents the number of elements contained by S.

In the chapters considering the single-hop radio and beeping networks, for the energy consumption optimization purpose, we assume that all nodes of the network are initially asleep; that is, we assume that each node initially has its communication radio switched off. Each node can wake up (switch on its radio) at any time slot.

Chapter 3

Toolboxes and related works

In this chapter, we first present a non-exhaustive list of related works and existing results used to position our work in the area of distributed computing. Subsequently, we present several algorithmic and mathematical toolboxes used to design the algorithms presented in the thesis.

Existing results and related works

Naming and counting problems (Chapter 4)

As a fundamental distributed computing problem [START_REF] Nakano | Optimal initializing algorithms for a reconfigurable mesh[END_REF], the distributed naming problem has been resolved by many studies. Let us first consider the simplest network model, namely the single-hop network, in which the underlying graph of the network is complete.

In [START_REF] Hayashi | Randomized initialization protocols for packet radio networks[END_REF], Hayashi, Nakano, and Olariu presented a randomized naming protocol with an O(n) running time for the RNCD model, in which the nodes can transmit messages of size O(log n). Note that in the RNCD model, the nodes can only transmit or listen to the network during each time slot, and the listening nodes receive only single transmissions. If more than one nodes transmit simultaneously, a collision is detected by all of the listening nodes. Briefly, their protocol partitions the nodes into nonempty subsets P 1 , P 2 . Then P 2 is partitioned into nonempty subsets P 2 , P 3 and so on until each subset contains a unique node. The authors of [START_REF] Hayashi | Randomized initialization protocols for packet radio networks[END_REF] proved that this algorithm names the network in O(n) time slots.

Later, Bordim, Cui, Hayashi, Nakano, and Olariu [START_REF] Luiz Bordim | Energy-efficient initialization protocols for ad-hoc radio networks[END_REF] presented a naming algorithm for the RNCD model, terminating w.h.p. in O(n) time slots, with an O(log n) energy complexity. This algorithm improves the energy consumption of the initializing protocol presented in [START_REF] Hayashi | Randomized initialization protocols for packet radio networks[END_REF]. It firstly distributes all nodes into (n/ log n) sets. Then, each set of nodes executes the naming protocol presented in [START_REF] Luiz Bordim | Energy-efficient initialization protocols for ad-hoc radio networks[END_REF] one set after another. As with the Chernoff bounds, there are Θ(log n) nodes per set and the energy consumption of the adapted algorithm becomes O(log n).

In [START_REF] Nakano | Energy-efficient initialization protocols for single-hop radio networks with no collision detection[END_REF], for RNnoCD, Nakano and Olariu designed a naming protocol that terminated in O(n) time slots w.h.p. with an O(log log n) energy complexity. They first 3.1. EXISTING RESULTS AND RELATED WORKS designed a protocol that assigned a temporary identifier taken from {1, 2, • • • , m} (where m is an integer value lesser than n) to a subset of nodes in m time slots, with each node being awake during exactly one time slot. To do so, each node picks an integer uniformly at random in the range of 1 to m and then goes to sleep. Subsequently, for i = 1, 2, • • • , m, the node that picked i transmits and each unique transmitter saves i as its temporary identifier. Next, the authors repeatedly perform the previously described protocol with an appropriate choice of m to guarantee that all the n stations receive a temporary identifier. On the RN-noCD model, all nodes can transmit messages of size O(log n) during each time slot. Moreover, as for the RNCD model, only the messages transmitted alone are received, but no device can detect collision.

As the naming and counting problems are closely related to the network size approximation problem, Jurdziński, Kutyłowski, and Zatopiański presented an energy-efficient algorithm to address this problem with an o(log log n) energy complexity [START_REF] Jurdziński | Energyefficient size approximation of radio networks with no collision detection[END_REF]. This paper presented a basic algorithm for approximating the number of nodes in the network. For k = 1, 2, • • • , the algorithm makes each station transmit with a probability of 2 -k until no station beeps and save the last value of k as the approximation of n. It has an O(log n) time complexity. The authors improved its energy complexity to reach o(log log n).

Results for the beeping model were recently published when Chlebus, De Marco and Talo [START_REF] Bogdan S Chlebus | Naming a channel with beeps[END_REF] presented a naming algorithm terminating w.h.p. in O(n log n) time slots for the BL model. As those results are closely related to our results presented in Chapter 4, we provide more details on how the algorithm from [START_REF] Bogdan S Chlebus | Naming a channel with beeps[END_REF] works in Section 4.1.2. Moreover, they provided a Ω(n log n) lower bound on the time complexity of such an algorithm.

In addition, Casteigts, Métivier, Robson, and Zemmari [START_REF] Casteigts | Counting in one-hop beeping networks[END_REF] presented a counting algorithm for the BcdL1 model terminating w.h.p. in O(n) time slots. Their algorithm is based on rounds composed of three slots. In slot 1, the remaining uncounted nodes beep with a probability of 1/k (k is initially set as 2). The single beeping nodes at slot 1 beep at slot 2 to inform all nodes that they beeped alone and will be counted. Slot 3 consists of a termination test slot, during which all remaining uncounted nodes must beep. During each round (of three slots), if no node beeped at slot 1, all nodes decrease k and if a collision occurs at slot 1, all nodes increase k. This technique leads to a linear running time in n. The authors of [START_REF] Casteigts | Counting in one-hop beeping networks[END_REF] noticed that adapting their algorithm to work on the BL model would result in a logarithmic slowdown in terms of time complexity.

Leader election for single-hop networks (Chapter 5)

In the 1970s, considering the single-hop RNCD model, Tsybakov [START_REF] Tsybakov | Free synchronous packet access in a broadcast channel with feedback[END_REF] and Capetanakis [START_REF] Capetanakis | Tree algorithms for packet broadcast channels[END_REF] designed deterministic leader election algorithms terminating in O(log n) time slots. Such algorithms are optimal since Greenberg and Winograd [START_REF] Greenberg | A lower bound on the time needed in the worst case to resolve conflicts deterministically in multiple access channels[END_REF] established a lower bound of Ω(log n) for their time complexity when all nodes know n. On the randomized side, Willard [START_REF] Willard | Log-logarithmic selection resolution protocols in a multiple access channel[END_REF] designed leader election protocols that work in expected CHAPTER

TOOLBOXES AND RELATED WORKS

O(log log n) and O(log n) time slots with a high probability when n is unknown. Given an error rate of ε ∈ (0, 1) without the knowledge of n, Nakano and Olariu [START_REF] Nakano | Uniform leader election protocols for radio networks[END_REF] provided a randomized algorithm terminating in O(log log n)+O(log 1/ε) time slots with a probability exceeding 1-ε. They also provided a lower bound of Ω(log n) for the time complexity of uniform leader election protocols. These studies have used a binary exponential backoff to make a unique node transmit alone and become the leader in O(log n) time slots. Setting k = 1, all nodes first attempt to transmit with a probability of 2 -k . At each time slot, all nodes increase k if a collision occurs and decrease k if no node transmits until a unique node transmits and becomes the leader. This is the typical approach to the leader election problem, which makes all stations compete until one transmits alone.

Ghaffari, Lynch, and Sastry [START_REF] Ghaffari | Leader election using loneliness detection[END_REF] extended this lower bound to all protocols: given an upper bound u on n, they presented a lower bound of Ω(min{log (u/n), log (1/ε)}) for the time complexity of leader election algorithms succeeding with a probability greater than 1 -ε.

Among other relevant studies, Kardas, Klonowski, and Pająk [START_REF] Kardas | Energy-efficient leader election protocols for single-hop radio networks[END_REF] designed a leader election algorithm for the RNstrongCD model where n is unknown, succeeding in O(log ε n) = O(log n) ε expected time slots with an O(log log log n) energy complexity. The previously described approach to the leader election problem makes each station be awake during the whole execution of the algorithm. To improve the number of waking time slots (defined as the energy complexity), the new protocol consists of iterations during which nodes attempt to reduce the number of participants. At each time slot, each remaining participating (active) node attempts to transmit with a probability of 1/2. If a node succeeds to transmit alone, then it becomes the leader. Otherwise, if a collision occurs, then the node verifies whether other participants remain (active nodes) to become inactive. The authors proved that this new approach makes each node be awake during at most O(log log log n) time slots when executing the algorithm.

When the nodes know Θ(n), Jurdziński, Kutyłowskiowski, and Zatopiański [START_REF] Jurdziński | Weak communication in single-hop radio networks: adjusting algorithms to industrial standards[END_REF] designed an algorithm with an O(log * n)2 energy complexity and an O(log n) time complexity for the RNCD model. Bender, Kopelowitz, Pettie, and Young [START_REF] Michael | Contention resolution with log-logstar channel accesses[END_REF] then established an O(log(log * n)) upper bound for the energy complexity of leader election and approximate counting algorithms working on RNCD when n is unknown.

In [START_REF] Chang | Exponential Separations in the Energy Complexity of Leader Election[END_REF], Chang, Kopelowitz, Pettie, Wang, and Zhan presented a leader election protocol for RNCD (resp. RNnoCD) with n o (1) time complexity and O(log log * n) energy complexity (resp. O(log * n)) when n is unknown by the nodes. Among several significant results, they proved a Ω(log log * n) (resp. Ω(log * n)) lower bound for the energy complexity of leader election algorithms working on RNCD (resp. RNnoCD) for such a setting.

As Chapter 5 focuses on optimizing the energy complexity of leader election algorithms for single-hop radio and beeping networks, we provide more details about the related presented results in [START_REF] Michael | Contention resolution with log-logstar channel accesses[END_REF] (for single beeping networks) and in [START_REF] Chang | Exponential Separations in the Energy Complexity of Leader Election[END_REF] (for single-hop radio networks) in Section 5.1.1.

ALGORITHMIC TOOLBOX

Leader election for multi-hop networks (Chapter 6)

The leader election results in multi-hop radio networks progress with another fundamental problem, namely the broadcasting problem, which, given a source node with an initial message m, makes all nodes of the network know m.

Bar-Yehuda, Goldreich, and Itai [START_REF] Bar-Yehuda | Efficient emulation of single-hop radio network with collision detection on multi-hop radio network with no collision detection[END_REF] initiated the study of these two problems by designing the Decay protocol (mode details are provided about Decay in Section 3.2.3) and used it as a subroutine of a broadcasting algorithm with an almost optimal O(D log n + log 2 n) time complexity. It works through no node being allowed to perform spontaneous transmissions (defined in Section 2.3.4.1). Then, by designing a faster Decay protocol [START_REF] Czumaj | Broadcasting algorithms in radio networks with unknown topology[END_REF][START_REF] Dariusz | Broadcasting in undirected ad hoc radio networks[END_REF], an optimal [START_REF] Kushilevitz | An Ω(D\log((n/D))) lower bound for broadcast in radio networks[END_REF]3] broadcasting protocol with an O(D log (n/D) + log 2 n) time complexity was designed for the same model by Czumaj and Rytter [START_REF] Czumaj | Broadcasting algorithms in radio networks with unknown topology[END_REF] and Kowalski and Pelc [START_REF] Dariusz | Broadcasting in undirected ad hoc radio networks[END_REF]. They also designed a deterministic leader election on multi-hop RNCD with an optimal O(n) time complexity.

Later, for RNnoCD, Chlebus, Kowalski, and Pelc [START_REF] Bogdan S Chlebus | Electing a leader in multi-hop radio networks[END_REF]

Algorithmic toolbox

This section presents descriptions and implementations of the existing algorithms used as sub-protocols to design the new algorithms presented in the thesis.

Unique identifier generation

As commonly assumed in the design of randomized distributed algorithms for multihop network models [START_REF] Ghaffari | Near optimal leader election in multi-hop radio networks[END_REF][START_REF] Czumaj | Leader election in multi-hop radio networks[END_REF], each node knows n = |V | and the eccentricity D of the network but is initially anonymous and indistinguishable (refer to Section 2.5 for more details). On the single-hop network side, the nodes do not have any information about the size of the network and are initially anonymous and indistinguishable. In this thesis, we also assume that the devices can generate discrete random variables (e.g., see Devroye [START_REF] Luc | Non-Uniform Random Variate Generation[END_REF]). With such assumptions, to break the symmetry of the network, each node must generate a unique identifier. To do so, the following executions are performed:

• If the nodes have no knowledge about n (in the single-hop network model), they first compute a linear approximation of n by executing the algorithm presented in Section 3.2.4. Let u be the resulting value.

• After computing u, each node picks one ID uniformly at random from {1, 2, • • • , u 2 }.

• Otherwise, if the nodes know n (for the multi-hop network model), each node picks one ID uniformly at random from {1, 2,

• • • , n 2 }.
It is straightforward to prove that each generated value is unique with a high probability (or w.h.p. as defined in Section 2.4.1.2).

The candidacy algorithm

To reduce the time or energy complexity of our algorithms, we use a well-known idea that reduces the number of participating nodes for some computations. It consists of making each node become Candidate (obtaining the Candidate status) with a certain probability or depending on certain properties. Then, only the Candidate nodes (the nodes having Status(s i) = Candidate) can execute the desired computations.

The Decay protocol

The Decay protocol, a popular primitive to broadcast information through a multi-hop RNnoCD network, was designed by Bar-Yehuda, Goldreich, and Itai in 1987 [START_REF] Bar-Yehuda | On the timecomplexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization[END_REF]. It uses an exponential backoff strategy to neighbors of informed nodes (nodes that have the message to broadcast) in a network with some informed nodes.

• For z = 0, • • • , O(log 2 n), every informed node independently transmits the information to broadcast with a probability of 2 -z .

The authors of [START_REF] Bar-Yehuda | On the timecomplexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization[END_REF] proved that after one call of such a protocol, each node neighboring an informed node gets informed with a high probability.

The approximate neighbor-counting protocol

Given a distributed network represented by an undirected graph G, this protocol was designed by [START_REF] Brandes | Approximating the size of a radio network in beeping model[END_REF] to make each node know an approximation of the number of its neighbors on G. Their algorithm is subdivided into two phases. The first phase computes a polynomial upper bound u on n and is based on the leader election algorithm of Nakano and Olariu [START_REF] Nakano | Uniform leader election protocols for radio networks[END_REF]. Then the second phase improves such an approximation with an adaptation of a sub-procedure used in [START_REF] Nakano | Uniform leader election protocols for radio networks[END_REF]. Their algorithm has w.h.p. O(log n) time complexity.

ALGORITHMIC TOOLBOX

The maximal independent set (Mis) algorithm

To design our k-clustering algorithm in Section 6.3, we adapt the Mis algorithm designed in [START_REF] Jeavons | Feedback from nature: simple randomised distributed algorithms for maximal independent set selection and greedy colouring[END_REF] for beeping networks to work on RNnoCD networks and use it as a subroutine of our new designed algorithm. The Mis algorithm from [START_REF] Jeavons | Feedback from nature: simple randomised distributed algorithms for maximal independent set selection and greedy colouring[END_REF] works as follows (with some minor adaptations for the needs of this thesis): Algorithm 1. Mis() executed by each node s i Input : Each node s i knows n. Output: Each node s i has a label Label(s i) ∈ {Mis, Eliminated}

1 s i inits Label(s i) ← Null, c ← (2 log 2 n), count ← 0,

The Layering procedure

This procedure makes each node s i compute its hop-distance (its layer) from a specific node (a source node, a leader or a ClusterHead node).

Definition 3.2.1 (L(h), l(s i)). The layer of s i denoted l(s i) is the distance between s i and the ClusterHead of its cluster. For all

h = 0, • • • , d, L(h) denotes the set of nodes in layer h; that is, each node s i ∈ L(h) has l(s i) = h.
First, each node s i inits its layer l(s i) ← Null. Each source node s s then enters the layer L(0) (it sets l(s s) ← 0) and executes Decay(l(s s)). Each node s i with l(s i) = Null having received l(s s) enters L(1) by setting l(s i) ← l(s s) + 1. Second, each node s i ∈ L(1) run Decay(l(s i)) and each node s i that are not yet in any layer (has l(s i) = Null) and that received l(s i) enter L(2) (sets l(s i) ← l(s i) + 1). Subsequently, all nodes perform the same computations to enter the layer L(h) for all h = 2, • • • , D -1. Moreover, after each Decay transmission, each node listens to the network during (2 log 2 n) time slots (corresponding to the running time of Decay). If a node s i that has already transmitted receives no other message from a higher layer, then it becomes a Border node by setting Status(s i) ← Border. Proof. By [START_REF] Bar-Yehuda | On the timecomplexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization[END_REF][START_REF] Bar-Yehuda | Efficient emulation of single-hop radio network with collision detection on multi-hop radio network with no collision detection[END_REF], each call of Decay(l(s i)) takes O(log 2 n) time slots and makes each node at one more hop-distance from the source node s s get a layer. Thus, all nodes are layered after D executions of Decay(l(s i)).

Mathematical toolbox

In this section, we present the mathematical toolbox used to design the algorithms presented in the thesis or used to prove the properties of the algorithms. We provide a simple narrative to explain how we decided to use these mathematical instruments.

An exponential distribution that fits our needs

The randomized algorithms presented in this thesis are based on each node generating random variables before performing distributed communications in order to resolve a problem. At the beginning of the Ph.D., our first goal was to improve the time complexity of distributed leader election algorithms. To achieve this goal, we attempted to find a random variable distribution (r.v. for short), denoted Y hereinafter, that respects the following property: If each node generates one random variable distributed as Y , the maximum of all generated values is held by a unique node (in the remainder of this thesis, we refer to a value that respects this property as a unique value). To find such a distribution, we remarked that for any values a and b respecting b > a > 0 and for any value K > 0, we have

. Observe that if Y 1 , Y 2 , • • • , Y K are K independent random variables distributed as Y , the probability that the maximum of Y 1 , Y 2 , • • • , Y K is unique is given by ∞ k=1 K 1 p k × P [0 Y k -1] K-1 = ∞ k=1 K p k k-1 i=0 p i K-1 . (3.3.2)
To achieve our goal, we attempted to find a probability distribution Y such that, for all values of k,

p k e - √ k 2 √ k and k-1 i=0 p i e -e -√ k , (3.3.3)

MATHEMATICAL TOOLBOX

This yields

∞ k=1 K p k k-1 i=0 p i K-1 k K e - √ k 2 √ k e -Ke -√ k . (3.3.4)
In the last summation, k varies in some precise interval. Then, according to the observation (3.3.1), we apply standard algebra (namely the Euler-MacLaurin summation formula) to prove that the maximum of

Y 1 , Y 2 , • • • , Y K is unique with a probability of at least O 1 -1 K c
for some constant c > 0. In order to respect these constraints, we found the following r.v. distribution: (

The following observation is crucial for our purpose:

µ = P (log n -log log log n) (1+ε) m (log n + log log n) (1+ε)
We have

µ 1 -O 1 log n . (c) Let L = [(log n-log log log n) (1+ε) , (log n+log log n) (1+ε)] = [(log n-log log log n) 1/β , (log n+ log log n) 1/β
] and let Λ = Card({ω such that Y ω ∈ L}). We have

P[Λ 3 log log n] O 1 log n .
Proof. Proof of (a). For the sake of simplicity, let us prove part (a) first with ε = 1. That is

p 0 = 1 -1/e and p k = e - √ k -e - √ k+1 , k > 0 .
The asymptotic expansion of p k with respect to k is

p k = e -

CHAPTER 3. TOOLBOXES AND RELATED WORKS

Since the Y i s are independent, the probability ∆ that the maximum of the Y i s is unique satisfies

∆ = n ∞ k=1 p k k-1 i=0 p i n-1   n ∞ k=ω(n) 1 2 √ k e - √ k 1 -e - √ k n   × 1 -O 1 ω(n) , (3.3.7) as we have k-1 i=0 p i n-1 1 -e √ k n
and the summation is truncated from ω(n) to +∞ (where ω(n) > 1). Observe that log(1 -x) -x -x 2 if x ∈ (0, 1/2), so that for k sufficiently large we have

1 -e - √ k n = exp n log 1 -e - √ k exp -ne - √ k -ne -2 √ k . For k such that ne -2 √ k = o(1), the following holds exp -ne - √ k -ne -2 √ k = exp -ne - √ k 1 -O ne -2 √ k . Thus, if k (log n -log log n) 2 then we obtain 1 -e - √ k n = exp -ne - √ k × 1 -O log 2 n n .
From (3.3.7) by choosing ω(n) = (log n -log log n) 2 , we then have

∆ ∞ k=(log n-log log n) 2 n 2 √ k e - √ k exp -ne - √ k 1 -O 1 log n . (3.3.8)
It is important to note that we have the following integration

∞ (log n-log log n) 2 n 2 √ x e - √ x-ne - √ x dx = e -ne -√ k ∞ (log n-log log n) 2 = 1 -O 1 n .
(3.3.9) Approximating the summation in (3.3.8) by the integral above (using Euler-Maclaurin formula with an error term of O(1/n) between the summation and the integral), we have the proof of part (a) of the lemma for the particular case ε = 1 (or β = 1/2).

For the general case (0 < β < 1), the asymptotic of p k is given by

p k = β exp -k β k εβ 1 -O 1 k εβ . (3.3.10)
Instead of (3.3.7), we get (as -β) . Similarly to the specific case above (β = 1/2), if k ω(n) then ne -2k β = o(1), so we have

εβ = 1 -β) ∆   n ∞ k=ω(n) β k 1-β e -k β 1 -e -k β n   × 1 -O 1 ω(n) 1-β . (3.3.11) 3.3. MATHEMATICAL TOOLBOX Let ω(n) = (log n -log log n) 1/(1
1 -e -k β n e -ne -k β 1 -O ne -2k β and ∆   n ∞ k=ω(n) β k 1-β e -k β e -ne -x β   × 1 -O 1 ω(n) 1-β -O ne -2ω(n) β . Observe that d dx e -ne -x β = βnx β-1 e -ne -x β .
Thus,

∞ ω(n) nx β-1 e -ne -x β dx = e -ne -x β ∞ ω(n) = 1 -O 1 n .
Then, we can approximate the summation by an integral to obtain

∆ ∞ ω(n) nx β-1 e -ne -x β dx 1 -O 1 log n = 1 -O 1 log n . (3.3.12)

Proof of (b).

As the Y i s are independent, all the values Y 1 , Y 2 , • • • , Y n are less than (log n + log log n) 1/β with a probability of

µ 1 = P Y 1 < (log n + log log n) 1/β n =   (log n+log log n) 1/β -1 k=0 p k   n .
By the definition of p k ,

µ 1 = (1 -exp (-log n -log log n)) n = 1 - 1 n log n n == 1 -O 1 log n .
Next, at least one value of the Y i s is greater than (log n -log log log n) 1/β with a probability of

µ 2 = 1-P Y 1 < (log n -log log log n) 1/β n = 1-   (log n-log log log n) 1/β -1 k=0 p k   n .
Thus,

µ 2 = 1-(1 -exp (-log n + log log log n)) n = 1-1 - log log n n n = 1-O 1 log n .

Proof of (c).

Let

ψ = P[(log n-log log log n) 1/β Y < (log n+log log n) 1/β]. According to the definition of p k , ψ = log log n n - 1 n log n . Let Λ = Card({ω such that (log n-log log log n) 1/β Y ω < (log n+log log n) 1/β }).
We Despite having a better time complexity, this algorithm succeeded with a probability of 1 -O 1 log n , which is not considered as a high probability in the area of distributed computing (refer to Section 2.4.1.2 for more details about the high probability requirement). As a consequence, we decided to use the other properties of the r.v. Y in order to optimize the energy consumption of leader election algorithms on single-hop beeping networks. A leader election algorithm with a maximum of two waking time slots per node is presented in Chapter 5.

Our algorithms design presented in Chapter 5 makes the nodes detect when no node transmits (both the beeping network and radio network have this capability). However, the nodes in radio networks are more powerful than those in beeping networks as far as the message length and the collision detection capability are considered. In the RNCD model, each node can detect when a node transmits alone in the network and it can distinguish between a collision and no transmission. Consequently, we wanted to design leader election algorithms with the same energy complexities (at most 2) and having better time complexities for these models.

We thus decided to use the following property of the r.v. distribution Y to design a more efficient algorithm for RNCD in Section 6.2:

Lemma 3. Fixing α ∈ (0, 1), let Y 1 , Y 2 , • • • , Y N be N independent copies of a r.v.
Y distributed as described by (3.3.6). Let ν be the probability respecting

ν = P[∃!i ∈ {1, • • • , N } s.t. Y i = log α N and ∀j = i, Y j = log α N]. We have ν > 1 e 1 - 1 e 1 - 1 N .
Proof. Through the independence of Y i , we have

ν = N 1 P[Y = log α N] (1 -P[Y = log α N]) N -1 .
According to the definition of P[Y = k], we obtain

ν > N exp (-log N) -exp (-log α N + 1) 1/α × 1 -exp (-log N) -exp (-log α N + 1)
1/α N .

MATHEMATICAL TOOLBOX

Then, by setting ψ(N) = exp (-log N) -exp -(log α N + 1) 1/α , we have

ν > N ψ(N) (1 -ψ(N)) N .
As (log α N + 1) 1/α > log N + 1, we finally obtain

ν > N 1 N - 1 eN 1 - 1 N N > 1 - 1 e 1 e 1 - 1 N .
Based on this new property, the leader election algorithm designed in Section 6.2 works as follows. Each node generates one random variable distributed as Y and all nodes must find which node holds the unique random value equal to log α n. We prove that this algorithm has an O(log n) time complexity with at most two waking times per node.

To design more efficient algorithms for the RNnoCD model, in which no node can distinguish a collision from no transmission, we replace the r.v. Y by the following geometric distribution.

The geometric distribution with parameter 1/2 (Geom(1/2))

We use the geometric distribution with parameter (1/2) to design our leader election algorithms for single-hop radio networks (Section 6.2) and multi-hop radio networks (Section 6.3.3). Our goal is to cause the following events to occur during the execution of the algorithm: (i) Let t 0 = 0 be the initial time slot of the execution of the algorithm. For g = 1, 2, • • • , there is a time slot t g = t 0 + g when exactly one node s i transmits alone while a group G of nodes listens to the network.

(ii) Then, exactly one second node s i ∈ G transmits alone at t g + 1 (while s i listens to the network) to notify s i that it was elected. Thus, s i is the unique witness of the probable election of s i at t 0 .

The following result is important to fulfill this goal. Lemma 4. Let X 1 , X 2 , • • • , X n be n independent random variables following the geometric distribution with parameter 1/2 or G(1/2). Let κ be the probability that

∃!(i, j) ∈ [1, n] 2 , i = j such that X i = (lg n) -1 and X j = lg n. Then, κ > 1 10 1 -O 1 n .
Proof. Let X be a geometric r.v. with parameter 1/2 and let q k be the probability that X = k. We have

q k = P[X = k] = 2 -k-1
. By the independence of the X i s, we have

κ = n 1 n -1 1 q lg n q (lg n)-1 1 -q lg n -q (lg n)-1 n-2 Thus, κ > n 2 -n 1 2n 2 1 - 3 2n n = e -3/2 2 1 -O 1 n .
As e -3/2 2 > 0.11 > 1 10 , we obtain the claimed result. To take advantage of the capability of the nodes to detect a unique transmission, our main idea for radio networks is to make each node generate a random copy of Geom(1/2) and find the two nodes holding the values equal to (lg n) -1 and lg n as described in the aforementioned events (i) and (ii).

Lemma 5. Let X 1 , X 2 , • • • , X n be n independent a random variables distributed as Geom(1/2) (p k = P[X = k] = 2 -k-1
). Let N be the random variable representing the number of values i ∈ {1, 2, • • • , n} such that X i = lg n . We have

P[N = 1] 1 4 .
Proof: By the independence of the probabilities, we have

P[N = 1] = n 1 P[X = lg n] (1 -P[X = lg n]) n-1 .
Through the definition of p k ,

P[N = 1] > 2 -(lg n)-1 n 1 -2 -(lg n)-1 n > 1 2 1 - 1 2n n .
As for all x ∈ (0, 1), (1 -x) n > 1 -nx, we obtain

P[N = 1] > 1 4 .
.

Chapter 4

Energy-Efficient Renaming and Naming in Single-Hop Beeping Networks

A single-hop beeping network is a distributed communication model in which all stations can communicate by transmitting only one-bit messages, called beeps. This chapter focuses on resolving two fundamental problems of the distributed computing area: the renaming, the naming and the counting problems. We are particularly interested in optimizing the energy complexity and the running time of algorithms that resolve these two problems. Our contribution is to design randomized algorithms with an optimal running time of O(n log n) and an energy complexity of O(log n) for both the naming and counting problems on single-hop beeping networks with n stations.

Introduction

Introduced by Cornejo and Kuhn in 2010 [START_REF] Cornejo | Deploying wireless networks with beeps[END_REF], the beeping model makes minor demands on the networks devices, which need only be capable of performing carriersensing, to differentiate between silence and the presence of a jamming signal (considered as a one-bit message or a beep) on the network. We assume such devices to have unbounded local power computations [START_REF] Chang | Exponential Separations in the Energy Complexity of Leader Election[END_REF]. The authors of [START_REF] Cornejo | Deploying wireless networks with beeps[END_REF] noted that carrier-sensing can typically be performed much more reliably and requires significantly less energy and resources than devices of the message-sending model.

The minimization of such energy consumption per node arises, as most nodes are battery-powered. Since sending or receiving messages costs more energy than performing internal computations (as explained in Section 2.4.1.3), the energy consumption of a distributed algorithm is measured by the maximum over the total number of waking time slots of all nodes [START_REF] Chang | Exponential Separations in the Energy Complexity of Leader Election[END_REF][START_REF] Nakano | Energy-efficient initialization protocols for single-hop radio networks with no collision detection[END_REF][START_REF] Lavault | Quasi-optimal energy-efficient leader election algorithms in radio networks[END_REF][START_REF] Jurdziński | Energyefficient size approximation of radio networks with no collision detection[END_REF][START_REF] Kardas | Energy-efficient leader election protocols for single-hop radio networks[END_REF][START_REF] Jurdziński | Energyefficient size approximation of radio networks with no collision detection[END_REF][START_REF] Ravelomanana | Time-Optimal and Energy-Efficient Size Approximation of Radio Networks[END_REF] (a node is awake when it beeps or listens to the network). It is more realistic to consider the nodes with no prior information regarding the network size and no identifier (all nodes are initially indistinguishable as stated in Section 2.5). Researchers designed various protocols, such as leader election [START_REF] Chang | Exponential Separations in the Energy Complexity of Leader Election[END_REF][START_REF] Kutten | Sublinear bounds for randomized leader election[END_REF][START_REF] Jurdziński | Efficient algorithms for leader election in radio networks[END_REF][START_REF] Ghaffari | Near optimal leader election in multi-hop radio networks[END_REF][START_REF] Ghaffari | Leader election using loneliness detection[END_REF][START_REF] Lavault | Quasi-optimal energy-efficient leader election algorithms in radio networks[END_REF][START_REF] Murali | Randomized leader election[END_REF][START_REF] Nakano | Uniform leader election protocols for radio networks[END_REF][START_REF] Kardas | Energy-efficient leader election protocols for single-hop radio networks[END_REF], maximal independent set [START_REF] Afek | Beeping a maximal independent set[END_REF][START_REF] Scott | Feedback from nature: an optimal distributed algorithm for maximal independent set selection[END_REF], and naming protocols [START_REF] Nakano | Optimal initializing algorithms for a reconfigurable mesh[END_REF][START_REF] Hayashi | Randomized initialization protocols for packet radio networks[END_REF][START_REF] Nakano | Energy-efficient initialization protocols for single-hop radio networks with no collision detection[END_REF][START_REF] Luiz Bordim | Energy-efficient initialization protocols for ad-hoc radio networks[END_REF][START_REF] Bogdan S Chlebus | Naming a channel with beeps[END_REF], to break such a SINGLE-HOP BEEPING NETWORKS symmetry. This chapter considers the naming problem for single-hop beeping networks of unknown size n (defined in Section 2.1), assigning a unique label denoted (s i) ∈ {1, 2, • • • , n} to each node s i . We design an energy-efficient randomized naming algorithm succeeding in O(n log n) time slots with a high probability (or w.h.p. as is described in Section 2.4.1.

2) for such a model, with an O(log n) energy complexity. First, in Section 4.2, we present a deterministic algorithm, naming some M nodes (with M n) in O(M log n) time slots with no node being awake for more than O(M + log n) time slots. Then, in Section 4.3, we design a distributed naming algorithm with an O(n log n) time complexity and an O(log n) energy complexity for n nodes when n is unknown. This latter algorithm is then adapted to solve the counting problem, assigning the exact number of nodes to all nodes. Section 4.4 conjectures a lower bound of Ω(log n) on the energy complexity of naming algorithms for beeping networks. Finally, Section 4.5 presents some maple simulation results that illustrate our works.

Considered models and complexities measure

We consider the beeping network model described in Section 2.2.6. Recall that the nodes can only transmit a one-bit message on such a model and cannot distinguish a single transmission from multiple transmissions on the network. In this chapter, we design a naming and a counting algorithm with O(log n) energy complexities (defined in Section 2.4.1.3) and we conjecture this result to be optimal.

We work on both collision detection models of the beeping networks (BcdLcd, BLcd, BcdLcd, and BL described in Section 2.2.6).

Remark 1.

Due to the negligible cost of message receptions, some papers consider only transmissions to measure the energy complexity of a distributed algorithm [START_REF] Sivalingam | Low power link and access protocols for wireless multimedia networks[END_REF]. In contrast, in this chapter, we consider both the transmission and the message reception.

specific related works and new results

Results for the naming and the counting problems for the beeping model appeared recently when Chlebus, De Marco and Talo [START_REF] Bogdan S Chlebus | Naming a channel with beeps[END_REF] presented a naming algorithm terminating in O(n log n) time slots w.h.p. for the BL model. When all nodes initially know the exact value of n, this algorithm makes all nodes choose rounds to beep from a segment of O(n log n) integers. These integers are interpreted as bins and by selecting a bin, a ball is placed in the bin. The algorithm then considers the consecutive bins one after the other. It verifies if the current bin is empty (no station chose it) by making each station with a ball in such a bin beep. If a bin is not empty, the algorithm verifies if a unique station has its ball in by executing a collision detection protocol during O(log n) rounds. If the bin contains a unique ball, the unique station assigns then itself to the next available label. Otherwise, the stations with balls in the bin place their balls in a new set of bins (a new segment of O(log n) integers). The algorithm terminates when each station has a label (when considering the last set of bins, one bin after the other, no station beeped) and the maximum of all labels is n. The following Table 4.1 compares our results to the existing results for single-hop networks. In Table 4.1, as n is unknown, N represents a polynomial upper bound 1)), which is computed by the nodes by executing the approximate counting algorithm described in [START_REF] Brandes | Approximating the size of a radio network in beeping model[END_REF] (detailed in Section 3.2.4). The more realistic model, in which the underlying graph of the network is an arbitrary connected graph (called the multi-hop network model), gained importance as a research subject [START_REF] Perkins | Ad hoc networking[END_REF]. Czumaj and Davies [START_REF] Czumaj | Communicating with beeps[END_REF] designed a deterministic depthfirst search algorithm that initialized such a network in O(n log n) time slots. The authors of [START_REF] Ravelomanana | Randomized initialization of a wireless multihop network[END_REF] analyze the naming protocol on such a multi-hop case, but it is restricted to a set of nodes randomly located in a square area.

CHAPTER 4. ENERGY-EFFICIENT RENAMING AND NAMING IN SINGLE-HOP BEEPING NETWORKS

A first energy-inefficient renaming algorithm

For the sake of simplicity, in the remainder of this section, we suppose that each node s i knows a common polynomial upper bound N on n such that N = n O (1) . s i also has a unique identifier denoted

ID(s i) ∈ {1, 2, • • • , N }.
Our new approach employs a known method, which makes the nodes represent the IDs by their binary encoding and transmit the obtained bits one bit after the other in a reverse order on the network (as done in [START_REF] Jacquet | A novel energy-efficient broadcast leader election[END_REF]).

Each of the M nodes (M n) first computes the binary encoding, denoted as ClusterID(s i), of its ID(s i) and sends the result bit by bit during (2 lg N)+2 = O(log n) time slots to check whether it has the largest ID of all nodes. The node with the largest ID will take the next available label. During each time slot, a node s i detecting that another node s i has a higher ID(s i) than ID(s i) is eliminated (i.e., it is no longer a candidate to take the next label). Thus, after (2 lg N) + 2 time slots, the unique remaining candidate node holding the largest ID gets labeled.

Definition 4.2.1 (Season). A season consists of (2 lg N) + 2 time slots during which exactly one node of the network gets a label.

In what follows, we consider our renaming algorithm as successive seasons denoted TestRv(2j) accepts an even time slot index '2j' as a parameter and outputs a status ∈ {Eliminated, Candidate, Eliminator} at the end of t 2j+1 . By executing TestRv(2j), a node s i can take one status according to the following rules:

S 1 , S 2 , • • • , S k , • • • , S M (
• Recall that ClusterID(s i) = ClusterID(s i)[0]ClusterID(s i)[1] • • • ClusterID(s i)[lg N].
If s i has ClusterID(s i)[j] = 0 and detects that at least another node s i has ClusterID(s i)[j] = 1, it becomes Eliminated (it sets Status(s i) ← Eliminated)at the end of (t 2j , t 2j+1).

• This latter node s i becomes an Eliminator.

, • • • , t 2j , • • • , t 2 lg N of any season S k , k = 1, 2, • • • , M ,
each node s i executes TestRv(2j). After each execution, s i knows whether at least one node s i has ClusterID(s i)[j] = 1. In such a case, each node s i with ClusterID(s i)[j] = 0 gets eliminated (it receives the Eliminated status) until the beginning of the next season S k+1 . At the end of season S k , the last Candidate node takes the label k. These computations are looped for k = 1, 2, • • • , M until no node remains unlabeled. This new method produces a naming algorithm terminating in O(M log n) time slots.

Energy optimization principle

The previously presented algorithm is not energy-efficient as all nodes wake up (to beep or listen to the network) during the whole O(M log n) execution time slots of the algorithm. To improve the energy consumption, we remark that each node s i must be awake during only two specific sets of time slots to determine whether any other node has a higher ID. In what follows, j = 0, 1,

• • • , lg N , k = 1, 2, • • • , M . Definition 4.2.2 (time to listen or ttl(s i) for short). ttl(s i) is an even time slot t 2j for j = 0, 1, • • • , lg N , of any season S k , for k = 1, 2, • • • , M,
such that the node s i has been eliminated during the couple of time slots (t 2j , t 2j + 1). That is, the node s i has ClusterID(s i)[j] = 0, and a remaining unlabeled node s i has ClusterID(s i)[j] = 1, so s i saves t 2j as its ttl(s i).

ttl(s

i) = min i ({t 2j } ∀j) such that ClusterID(s i)[j] = 0 and ∃ an unlabeled node s i (s i = s i) such that ClusterID(s i)[j] = 1. For j = 0, 1, • • • , lg N , k = 1, 2, • • • , M , a

TTN(s

i) = {t 2j } ∀j such that ClusterID(s i)[j] = 1
and ∃ an unlabeled node

s i (s i = s i) such that ClusterID(s i)[j] = 0.
Let S f be the season during which the node s i gets labeled. For j = 0, 1, In what follows, we use these two new definitions to design our energy-efficient naming algorithm.

• • • , lg N , k = 1, 2, • • • , M ,

A new energy-efficient renaming algorithm

Initial states of the nodes: Before executing the following defined algorithm, each node is asleep. Each node s i initializes its local variables ttl(s i), Status(s i) to Null and TTN(s i) to the empty set {}.

Each node can wake up at any couple of time slots (t 2j , t 2j+1), j = 0, 1, • • • , lg N , of any season S k , k = 1, 2, • • • , M, by calling the TestRv(2j) protocol. A node returns to the sleeping state after each call of TestRv(2j). Each node s i with the Eliminated status sleeps (its radio is switched off and cannot execute TestRv(2j)) until the beginning of the next season when it resets its status.

High-level description of the algorithm: First, at the initial time slot t 0 of season S 1 , each node s i sets Status(s i) ←TestRv(0). The Eliminated nodes at t 0 record 0 as their ttl(s). Meanwhile, each node s i with the Eliminator status adds 0 into its TTN(s i) and sets its Status(s i) to Candidate. Afterwards, for each time slot t 2j , j = 0, . . . , lg N of each season S k , k = 1, . . . , M , each node s i executes TestRv(2j) only if one of the following properties is satisfied: For better comprehension, in what follows, we illustrate one example of the execution of the Algorithm 3 using a binary tree, as done in [START_REF] Fuchs | Dependence between external path-length and size in random tries[END_REF]. By doing so, we count the number of waking time slots of a given node (red or black node in the following figures).

• Status(s i) = Null (s i starts a new

Representing the execution of Algorithm 3 with a binary tree

Legends for the following figures:

Shapes : The hexagons above each tree node represent ttl(s i), the squares represent TTN(s i), and the circles represent the other waking time slots.

Numbers : The number inside these shapes defines the season during which the node s i wakes up at a time slot. Meanwhile, the numbers outside the shapes represent the sleeping time slots (when the node does not execute TestRv(2j)).

Finally, the numbers inside the tree nodes represent each even time slot of the algorithm.

Tree : One path of the tree represents the ClusterID(s i) of a node s i , and one edge represents one bit of this ClusterID(s i): Left edges correspond to bit 1, and right edges correspond to bit 0. For example, the considered red or black node s i has ClusterID(s i) = 1010. Each such node depicts each even time slot t 2j of each season, while the leaves represent the stations executing the algorithm. During S 2 , s i wakes up at t 0 ∈ TTN(s i), sleeps, and wakes up at t 2 ∈ ttl(s i). Then, it gets eliminated at t 2 and sleeps until S 3 begins. The node 2 gets labeled at the end of S 2 .

Seasons S 3 and S 4 work exactly as season S 2 and make the nodes 3 and 4 get their labels.

Then, during S 5 , s i wakes up at t 0 ∈ TTN(s i), sleeps, and wakes up at t 2 ∈ ttl(s i). Since no more unlabeled nodes can eliminate s at t 2 , it wakes up at each time slot until t 6 , when it gets eliminated. It adds t 4 into its TTN(s i), sets its ttl(s) to t 6 , and sleeps until the beginning of S 6 . The node 5 gets labeled at the end of S 5 .

During S 6 , s i wakes up at t 0 ∈ TTN(s i), sleeps, and wakes up at t 4 ∈ TTN(s i). It then sleeps and wakes up at t 6 ∈ ttl(s i). Since no more unlabeled node can eliminate it, s i wakes up at t 8 and gets labeled. In what follows, let W (s i) be the total number of waking time slots of any node s i during the execution of Algorithm 3; W TTN (s i), W ttl (s i), and W o (s i) correspond respectively to the TTN(s i) total waking time slots, the ttl(s i), and the other total waking time slots. Moreover, let s w , s y , s z respectively be the nodes with the worst number of ttl, TTN, and other waking time slots. Thus, we have

s i) ∈ {1, 2, • • • , N }. Output: A unique label (s i) ∈ {1, 2, • • • , M }. 1 s i encodes its ID(s i) into a binary code-word ClusterID(s i) ← {0, 1} lg N +1 . 2 s i sets (s i) ← 0, ttl(s i) ← Null, TTN(s i) ← {}, k ← 1, Status(s i) ← Null. 3 while (s i) = 0 do 4 for j ← 0 to lg N do 5 if (Status(s i) = Null and (ttl(s i) = t 2j or t 2j ∈ TTN(s i) or k = 1)
W (s i) = W TTN (s i) + W ttl (s i) + W o (s i) W ttl (s w) + W TTN (s y) + W o (s z) . (4.2.1)
It is straightforward to observe that s w is the last node to get labeled on the network (for example, the red or black node in the following Figure 4.2). Second, according to the definition of ttl(s w), the node s w wakes up (M j (s w) + 1) times at any time slot t 2j ∈ ttl(s w), for j = 1, 2, • • • , log 2 N , until no other node s i has ClusterID(s i)[j] = 1 (s w wakes up during (M j (s w) + 1) seasons, once for the first check and M j (s w) times until no other node s i has ClusterID(s i)[j] = 1). Thus,

A NEW APPROACH: RENAMING M NODES IN A DETERMINISTIC MANNER

W ttl (s w) O(log N) j M j (s w) + 1 O(M + log N). (4

Our energy-efficient randomized algorithms 4.3.1 The naming algorithm

This section employs Algorithm 3 as a subroutine to design a randomized naming algorithm with an O(log n) energy complexity. .

In what follows, we distribute the nodes into Θ n log n groups to obtain Θ(log n) nodes in each group with a high probability. The primary idea behind this is to make each of the Θ n Recall that we assume the total number of nodes to be unknown and the nodes to be initially indistinguishable in this section. In addition, all nodes must know a linear approximation u on n. In particular, Brandes, Kardas, Klonowski, Pająk and Wattenhofer [START_REF] Brandes | Approximating the size of a radio network in beeping model[END_REF] designed a randomized linear size approximation algorithm that terminated w.h.p. in O(log n) time slots. This network size approximation problem has been well studied in the distributed computing area and is detailed in Section 3.2.4. Therefore,

OUR ENERGY-EFFICIENT RANDOMIZED ALGORITHMS

1. Our first idea is to make all nodes compute u in O(log n) time slots using the algorithm designed by [START_REF] Brandes | Approximating the size of a radio network in beeping model[END_REF]. This algorithm can be parameterized to compute u ∈ [1 2 n, 2n] (i.e., 2u ∈ [n, 4n] will be locally known by each node). Each node then sets N = (2u)2 N = O n 2 and chooses uniformly at random to enter one of the 2u log 2u = Θ n

log n groups G 1 , G 2 , • • • , G 2u log 2u
. Lemma 6. As a classical result (see [START_REF] Raab | Balls into bins, a simple and tight analysis[END_REF]), if n nodes randomly and uniformly choose to enter into Θ n log n groups, there are Θ(log n) nodes in each group with a probability of at least 1 -O n -1 . As a consequence, there is no empty group w.h.p.

Each node s i then randomly selects a unique ID(s

i) from {1, 2, • • • , N }.
3. Afterward, all groups sequentially run the DeterministicNaming(N) protocol, one group after the other:

• First, the nodes in the group G 1 execute DeterministicNaming(N) to name themselves, while all the other nodes sleep during 4 log 2 N 1 = Θ(log 2 n) time slots. At the end of these first Θ(log 2 n) time slots, each node

s i of group G 1 has a unique label (s i) ∈ {1, 2, • • • , |G 1 |}.
• During some extra log 2 N + 1 time slots, the last labeled node in G 1 sends its label bit by bit to all nodes of the next group G 2 . In parallel, each node s i of G 2 wakes up, listens to the network, and saves the received value into a variable denoted prev (s i).

• Second, by running the DeterministicNaming(N) protocol, each node

s i of G 2 gets a label (s i) ∈ {1, 2, • • • , |G 2 |}. Each node must update (s i) ← (s i) + prev (s i) to make its label (s i) belong to {|G 1 | + 1, |G 1 | + 2, . . . , |G 1 | + |G 2 |}.
• We finally make each subsequent couple of groups

{{G 2 , G 3 }, {G 3 , G 4 }, • • • , {G Θ(2u log u)-1 , G Θ(2u log
u) }} sequentially execute these previously described computations, one couple after the other.

To make any node s i know whether it has the last label of its group, we modify the DeterministicNaming(N) protocol by making a node s i which got labeled during a season S k wake up during the entire season S k+1 to listen to the network. By doing so, if s i hears a beep during this season, it knows that some other node will take the next label. Each node consequently wakes up during one entire season, but these waking time slots are additive to the energy complexity; thus, these extra O(log n) waking time slots do not affect our O(log n) energy complexity.

Theorem 4.3.3. In single-hop beeping networks of size n, if n is unknown by all nodes and the nodes are initially indistinguishable, a randomized naming algorithm assigns a unique label to each node w.h.p in O(n log n) time slots. No node is awake for more than O(log n) time slots during its execution.

Proof. On the one hand, the RandomizedNaming(u) algorithm uses the De-terministicNaming(N) protocol as a subroutine. Let us denote the time complexity of the DeterministicNaming(N) algorithm as T D . By [START_REF] Brandes | Approximating the size of a radio network in beeping model[END_REF], u = Θ(n), On the other hand, each node s i may be awake:

• during one execution of the DeterministicNaming(N) protocol,

• during O(log n) extra time slots to check whether it has the last label.

• during O(log n) time slots, when it sends its label to the next group.

Therefore, by applying M = O(log n) to Theorem 4.2.4, the energy complexity of DeterministicNaming(N) is O(log n).

Algorithm 4. RandomizedNaming(u) at any node s i

Input : A linear approximation u on n computed in O(log n) time slots by executing the presented algorithm by [START_REF] Brandes | Approximating the size of a radio network in beeping model[END_REF].

Output: The node s i has a unique label (s i) ∈ {1, 2, • • • , n}. 1 s i sets N ← (2u) 2 and randomly chooses one ID(s i) from {1, 2, • • • , N }. 2 s i randomly chooses to enter one group G(s i) from G 1 , G 2 , • • • , G 2u log 2u
and sets prev (s i) ← 0.

3 for k from 1 → 2u log 2u -1 do 4 if G(s i) = G k+1 then 5
s sleeps during Θ(log 2 N) time slots corresponding to the time complexity of the modified DeterministicNaming(N) protocol executed by one group.

6

After these Θ(log 2 N) time slots, s i wakes up, listens to the network during O(log N) time slots to get the last assigned label and saves this value into its prev (s i).

7 end 8 if G(s i) = G k then 9 s i sets (s i) ←DeterministicNaming(N). 10 s i updates (s i) ← (s i) + prev (s i).
11 if s i is the last labeled node then 12 s i sends its label (s i) bit by bit and sleeps.

Adapting our naming algorithm to design a randomized counting algorithm

Using Algorithm 4, we can design a counting algorithm with an O(n log n) time complexity and O(log n) energy complexity for single-hop BL networks. To do so, we add the following computations after running Algorithm 4:

1. As Algorithm 4 terminates after, at most, 2u log 2u × 4 log 2 N 8n log N time slots, all nodes wake up after 8n log N time slots (counted from the first time slot of season S 1) to listen to the network. Proof. First, if at the end of the execution of DeterministicNaming(N) by the last group, all nodes wake up to listen to the network, and the last labeled node sends its label bit by bit. This transmitted value corresponds w.h.p. to the exact number of the network nodes.

On the other hand, as the adaptation consists of having each node wake up during extra O(log n) time slots, by Theorem 4.2.4, the time complexity of our counting algorithm is O(n log n), and its energy complexity remains O(log n).

Lower bound on the energy complexity of naming algorithms for single-hop beeping network

In [START_REF] Chang | Exponential Separations in the Energy Complexity of Leader Election[END_REF], Chang et al. studied the energy complexity of leader election algorithms, approximate counting algorithms, and census algorithms in several models of wireless radio networks with messages of unbounded size. The authors of [START_REF] Bogdan S Chlebus | Naming a channel with beeps[END_REF] presented Ω(n log n) lower bound for the running time of any randomized naming algorithm.

In this section, we conjecture a lower bound on the energy complexity of any randomized naming algorithm for radio and beeping networks.

Conjecture 1. The energy complexity of any randomized algorithm that solves the naming problem with a constant probability is Ω(log n).

The intuition of proof for Conjecture 1 lies from the proof of the lower bound on time complexity from [START_REF] Bogdan S Chlebus | Naming a channel with beeps[END_REF]. We tried to use Yao's minimax principle [START_REF] Andrew | Probabilistic Computations: Toward a Unified Measure of Complexity (Extended Abstract)[END_REF] but all our attempts in this direction failed as nodes can, namely, use non-uniform probabilities.

Maple simulation

This section presents a sequential maple simulation of Algorithm 3. This maple simulation works as follows: Each line corresponds to the ClusterID of a node.

• We then sort the matrix M by lines.

• Afterward, we simulate the nodes, executing Algorithm 3 in parallel, by browsing n times through M, one column after another. Browsing once through the columns of M allows us to label one node and count its waking time slots number.

• We finally retain the maximal value of the whole node's waking time slots number as the algorithm's empirical energy complexity.

Introduction

The distributed leader election problem has been extensively studied over the years [START_REF] Ghaffari | Near optimal leader election in multi-hop radio networks[END_REF][START_REF] Ghaffari | Leader election using loneliness detection[END_REF][START_REF] Kardas | Energy-efficient leader election protocols for single-hop radio networks[END_REF][START_REF] Robert | Ethernet: Distributed packet switching for local computer networks[END_REF][START_REF] Nakano | Randomized leader election protocols in radio networks with no collision detection[END_REF][START_REF] Willard | Log-logarithmic selection resolution protocols in a multiple access channel[END_REF] as one of the most classical and fundamental problems in the field of distributed computing with numerous applications related to resource allocation, job scheduling, reliable replication, load balancing or synchronization. Computing a leader is a form of symmetry breaking, where exactly one distinguished node or process (denoted as leader) is chosen to make crucial decisions.

There are two variants of the distributed election problem ([START_REF] Attiya | Distributed Computing: Fundamentals, Simulations and Advanced Topics[END_REF][START_REF] Lynch | Distributed Algorithms[END_REF][START_REF] Lann | Distributed systems -towards a formal approach[END_REF]). For the explicit variant, at the end of the election process all the nodes must know the identity of the leader. In the implicit variant [START_REF] Kutten | On the complexity of universal leader election[END_REF][START_REF] Lann | Distributed systems -towards a formal approach[END_REF], non-leader nodes do not necessarily need to know the identity of the leader. If any solution for the explicit variant of leader election solves the implicit variant, we note that by broadcasting the identity of the leader to all the nodes any solution for the implicit leader election solves the explicit variant so that the implicit variant is sufficient for many practical applications. In this paper, we mainly focus on the implicit variant of leader election on anonymous networks under various models of communication. Under the restriction that each node of the network can only send a single one-bit message, we study randomized algorithms that provide guarantees for the election of a unique leader with a high probability. We argue that our guarantees are still sufficient for many applications with high energy consumption constraints especially since deterministic algorithms are impossible in anonymous networks.

We consider single-hop networks, where the network is modeled by a complete graph as their study can serve as building blocks from which more elaborate algorithms for multi-hop networks are designed [START_REF] Bar-Yehuda | Multiple communication in multihop radio networks[END_REF][START_REF] Ghaffari | Near optimal leader election in multi-hop radio networks[END_REF].

On such a model, we first work on the Radio Networks (RN) communication model, introduced by Chlamtac and Kutten in the 1980s [START_REF] Chlamtac | On broadcasting in radio networksproblem analysis and protocol design[END_REF]. We consider both the collision detection capabilities of such model defined in Section 2.2.4. Remind that in single-hop RN, communications occur in synchronous time slots, meaning that each device has access to a global clock. A node independently decides whether to transmit, listen to the network, or remain idle or asleep at any time slot.

We also work on the single-hop beeping (BL) model, introduced in 2010 by Cornejo and Kuhn [START_REF] Cornejo | Deploying wireless networks with beeps[END_REF] and defined in Section 2.2.6. It makes minor demands on devices, which only need to perform carrier-sensing to differentiate between silence and the presence of a jamming signal on the network. As in the RN model, communications occur synchronously in the BN model, but the transmitting nodes cannot detect collisions and the listening nodes cannot distinguish between single or multiple beeps emitted by their neighbors.

In our work, processors are anonymous and no IDs will be exchanged. At the end of our algorithms, the leader (resp. all other processors) will know that it has been elected (resp. eliminated). Our algorithms solve the implicit version of the leader election problem as non-leader nodes need not to be aware of the identity of the leader. This work is thus different from the existing results in the literature, in particular for (deterministic) explicit leader election algorithms where all the processors know the ID of the newly elected leader at the end of the protocol.

The study of the energy complexity of leader election algorithms gained importance with the design of low-power wireless sensor devices [START_REF] Guo | Low power distributed MAC for ad hoc sensor radio networks[END_REF][START_REF] Sivalingam | Low power link and access protocols for wireless multimedia networks[END_REF][START_REF] Augusto | Survey on wireless sensor network devices[END_REF]. In the latter

INTRODUCTION

articles, the energy consumption of a device is measured as being directly proportional to the powers used. Transmissions use more power than message reception, which in turn uses more power than internal computations [START_REF] Barnes | ENS: An energy harvesting wireless sensor network platform[END_REF][START_REF] Kardas | Energy-efficient leader election protocols for single-hop radio networks[END_REF][START_REF] Sivalingam | Low power link and access protocols for wireless multimedia networks[END_REF][START_REF] Augusto | Survey on wireless sensor network devices[END_REF].

Energy consumption also depends on the collision detection ability of the devices [START_REF] Chang | Exponential Separations in the Energy Complexity of Leader Election[END_REF][START_REF] Kardas | Energy-efficient leader election protocols for single-hop radio networks[END_REF] and the size of the messages [START_REF] Afek | Beeping a maximal independent set[END_REF]. A device will consume energy each time it wakes up during a given round either to listen to the channel or to drop a message. For each device executing the algorithm, we will count the number of time slots during which it will wake up and the energy complexity of the algorithm is defined as the maximum over all these numbers of time slots until the algorithm has finished its designated task. In addition, time complexity is the number of rounds spent until the execution of an algorithm ends.

specific related works

As already mentioned in Section 3.1.2, Kardas, Klonowski, and Pająk [START_REF] Kardas | Energy-efficient leader election protocols for single-hop radio networks[END_REF] designed a leader election algorithm for the RNstrongCD model where n is unknown, with an O(log ε n) expected time complexity and an O(log log log n) energy complexity. Jurdziński, Kutyłowskiowski, and Zatopiański [START_REF] Jurdziński | Weak communication in single-hop radio networks: adjusting algorithms to industrial standards[END_REF] also designed a leader election algorithm terminating in O(log n) time slots with an O(log * n) energy complexity for the RNCD model. In [START_REF] Chang | Exponential Separations in the Energy Complexity of Leader Election[END_REF], Chang, Kopelowitz, Pettie, Wang, and Zhan presented a leader election protocol for RNCD (resp. RNnoCD) with n o (1) time complexity and an O(log log * n) energy complexity (resp. O(log * n)) when n is unknown by the nodes. Let us consider what differentiates these algorithms from the presented algorithm in this chapter.

Our algorithm design is based on the nodes locally generating random values before communicating on the network in a deterministic manner. Each node transmits at most once and listens to the network during two time slots at most. First, when the nodes know n, the presented algorithm in Section 5.2.1 is asymptotically optimal in view of both time [START_REF] Nakano | Uniform leader election protocols for radio networks[END_REF] and energy complexities [START_REF] Kardas | Energy-efficient leader election protocols for single-hop radio networks[END_REF].

Second, as the IDs of the nodes commonly fit into O(log n) bits, in Section 5.2.2, u is an upper bound on n such that log u = Θ(log n); that is, u ∈ [n, n c].

Preliminaries

Before describing and stating our results, this paragraph presents some terms, assumptions and concepts that we make use of throughout this work.

As a common definition [START_REF] Kutten | On the complexity of universal leader election[END_REF][START_REF] Ghaffari | Near optimal leader election in multi-hop radio networks[END_REF], we say that an event E n occurs with a high probability (hereinafter w.h.p.) if

P [E n] 1 -n -c for some constant c > 0.
We assume that devices can generate discrete random variables (or r.v.). We refer to Devroye [START_REF] Luc | Non-Uniform Random Variate Generation[END_REF] for efficient simulations of various r.v. We also assume that devices are initially anonymous and can perform any internal (not involving messages) computations. That is, internal computations are considered negligible in terms of energy and time complexity. This is a common assumption in distributed computing [START_REF] Chang | Exponential Separations in the Energy Complexity of Leader Election[END_REF][START_REF] Nakano | Randomized leader election protocols in radio networks with no collision detection[END_REF]. The nodes cannot communicate on the network when in a sleeping state. However, they can choose to wake up or sleep in any time slot.

All our algorithms end up in a bounded (deterministic) execution time by electing a unique leader w.h.p. During the execution of these Monte Carlo 1 al-SINGLE-HOP WIRELESS NETWORKS gorithms [START_REF] Raghavan | Randomized algorithms[END_REF], each device wakes up at most 3 times (sometimes even 2 times depending on the considered model as shown in the table below). With the exception of the BN model, for which it seems impossible to detect the uniqueness of a node with a given property, all our algorithms can be transformed into Las Vegas2 algorithms since we can verify the uniqueness of the leader by means of a witnessing mechanism that emulates the loneliness detection [START_REF] Ghaffari | Leader election using loneliness detection[END_REF]. Although we have not attempted to transform them into Las Vegas algorithms, for the RN models this can be done by simply restarting the algorithms until a unique leader is elected (as the uniqueness of such a leader can be detected directly or via a witnessing process) while maintaining similar complexities in time and energy.

In this chapter, we restrict each node to exchanging only single-bit messages, transmitting at most once, and listening to the network during two time slots at most. These restrictions contrast with the presented works in [START_REF] Michael | Contention resolution with log-logstar channel accesses[END_REF][START_REF] Ghaffari | Near optimal leader election in multi-hop radio networks[END_REF][START_REF] Nakano | Uniform leader election protocols for radio networks[END_REF], in which the messages have O(log n) or even larger size [START_REF] Chang | Exponential Separations in the Energy Complexity of Leader Election[END_REF][START_REF] Fraigniaud | Towards a complexity theory for local distributed computing[END_REF]. We found some similarities between our considered model and a distributed real-time communication model (time-triggered protocols or TTP), in which a unique sending slot is assigned to each node [START_REF] Liu | Real-time systems[END_REF][START_REF] Oh | A demand-based slot assignment algorithm for energy-aware reliable data transmission in wireless sensor networks[END_REF]. The TTP model has been widely used for designing energyefficient algorithms for wireless sensor networks [1,[START_REF] He | An Optimization Algorithm Based on the Monte Carlo Node Localization of Mobile Sensor Network[END_REF].

Throughout this paper, n is the number of nodes in the network. Let n be not known beforehand, we assume that all the participating nodes know an upper bound u of n and a constant h > 1 such that

n < u < n h .
That is, the nodes know u such that log u = Θ(log n). We note that such an assumption is not common in the literature.

Given a set S, Uar(S) is a function that returns one value picked uniformly at random from S. ε is a constant and 0 < ε < 1.

For any arbitrary value λ, lg λ denotes the logarithm of λ in the positional notation with the base 2 and log λ is its neperian logarithm. For the sake of simplicity3 , we suppose that log λ, lg λ, and e λ are integer values for any value of λ.

Comparing our results with existing results

The following table summarizes previous works and our new results.

with a small probability.

INTRODUCTION Table 5.1: Comparison of our results and existing results.

Existing results

Assumptions

Model Time Energy Probability complexity complexity of success

n known RNCD [45] O(log n) O(log log log n) 1 -O(1/n) n unknown RNCD [42] O(log n) O(log * n) 1 -O (1/n) Θ(n) known RNCD, O(n o(1)) O(log * n) 1 -O (1/n) n unknown RNnoCD [17] RNstrongCD, O(n o(1)) O(log log * n) 1 -O (1/n) RNsenderCD Our results Section 5.2.1 Theorem 5.2.3 n known RNCD, O(log n) 3 1 -O (1/n) RNnoCD RNstrongCD, O(log n) 2 1 -O (1/n) RNsenderCD Section 5.3 0 < ε < 1 Theorem 5.3.3, O(n ε/(1+ε) log n) 2 1 -O 1 n 1 ε+1 BN Section 5.2.2 Theorem 5.2.4 u and RNnoCD O(log 2 n) 3 1 -O (1/n) Theorem 5.2.5 n unknown, RNCD, O(log 1+ε n) 3 1 -O n -1/2 h > 1 RNsenderCD, O(log 2 n) 2 1 -O (1/n) known s.t. RNstrongCD n < u < n h (log u = Θ(log n)) Section 5.3 0 < ε < 1 Theorem 5.3.2 O(n ε) 2 1 -O 1 n ε h(ε+1)
BN SINGLE-HOP WIRELESS NETWORKS

Radio Networks

The scenario where n is known

In this paragraph, we focus on designing new leader election algorithms working on the RNnoCDand RNCD models when each node knows n. We first recall that in the RNnoCD model, only the listening nodes can differentiate between two cases: (i) a single transmission or (ii) 0 or more than 2 transmitters. We take advantage of this ability to simulate loneliness detection [START_REF] Ghaffari | Leader election using loneliness detection[END_REF] in such a model. Later on, each node s i has a status denoted as Status(s i), which can take one of the following values.

• Null is the initial status.

• A node that can no longer be elected has the Eliminated status.

• A temporary Marked status will be assigned to nodes that have received messages in two consecutive time slots.

• The Candidate status is assigned to nodes that are candidates for the election.

• Finally, the Leader status is given to the unique elected node.

Any node s i with Status(s i) = Null is designated as a Null node, and we do the same for all statuses. Each node is initially idle. Our algorithm is designed so that at the end of its execution, each node s i is aware of its final Status(s i) ∈ {Leader, Eliminated} knowing that this node will be allowed to send a one-bit message once.

For our algorithm to work, we need two facts, occurring in two consecutive time slots: a round t for the candidacy of a leader, say s 1 , followed by a round t + 1 during which another node, say s 2 , confirms the possible election of s 1 . After having issued a message, the node s 1 must listen to the channel for the acknowledgment of s 2 in case it has been elected.

Thus, we need a discrete probability X such that if X 1 , • • • , X n are independent random variables with the same distribution as X, then with a significant probability, there are two unique consecutive values among these X i s.

In fact, the geometric distribution with parameter 1/2 is one of the distributions that have such a property. Note that other distributions can guarantee the same property with a probability of Ω(1) if n is known but our choice of G(1/2) will serve us also to the scenario, where the exact value of n is not known.

The following proposition tells us that among n independent G(1/2), with a probability of at least 1/10, among the n draws: exactly one draw is equal to

(lg n) -1 (resp. lg n). Lemma 7. Let X 1 , X 2 , • • • , X n be n independent random variables following the geometric distribution with parameter 1/2 or G(1/2). Let κ be the probability that ∃!(i, j) ∈ [1, n] 2 , i = j such that X i = (lg n) -1 and X j = lg n. Then, κ > 1 10 1 -O 1 n .
Proof. This Lemma is proved in Section 3.3.2 as Lemma 4.

RADIO NETWORKS

In what follows, let I be an interval of consecutive integers of size

| I |. That is I = [I 0 , I 1 , • • • , I | I |-1] and ∀ι ∈ [0, | I |-1], I ι = I 0 +ι.
For any set S, we also denote by Card(S) its cardinality. Note that | I | = Card(I) and I 0 depends on n and is commonly calculated by all nodes depending on the need (e.g. I 0 = (lg n) -1).

After the random variables generation phase (line 3 in Algorithm 6), all nodes browse through the interval I = [(lg n)-1, lg n] (line 6 in Algorithm 6) to determine whether unique nodes hold the values (lg n)-1 and lg n. Using Lemma 7, a sequence of X 1 , X 2 , • • • , X n with unique node s i (resp. s j) holding X i = (lg n) -1 (resp. X j = lg n) occurs with a constant probability. This result leads us to the election of s i with a constant probability in O(1) time slots.

To reach the high probability requirement, we execute this process (10 log n) times while maintaining the nodes to wake up only 3 times. To do so, our new algorithm is subdivided into (10 log n) + 1 steps. The first step (Step 0, line 1 in Algorithm 6) consists in uniformly distributing all nodes into (10 log n) groups

G 1 , G 2 , • • • , G (10 log n) .
After the formation of the (10 log n) groups, nodes of each group subsequently execute a part (called step hereafter) of the leader election algorithm, one group after the other during (10 log n) steps.

During each step, the nodes in the corresponding group check each value in I, one value after the other, to determine whether two nodes of the group hold unique consecutive values in I. Checking one value takes two time slots (one to try to become a leader followed by another round for the uniqueness confirmation):

Step 1 is executed during time slots 0 to 2| I | -1, Step 2 during time slots 2| I | to 4| I | -1 and so on.

As the probability of finding a unique node holding (lg n) -1 with its unique witness holding lg n is a constant (Lemma 7), to reach the high probability requirement, we will repeat the election attempt (10 log n) times. In order for the nodes to save energy, they will only participate in one attempt during the time allowed to their group. This justifies the uniform distribution of the nodes into (10 log n) groups (G 1 , G 2 , • • • , G (10 log n)). Thereafter, we make each group of nodes execute the browsing protocol with a new value of I = [lg (n/20 log n) -1, lg (3n/20 log n)], one group after the other: The nodes in a given group check if the value I 0 = lg (n/20 log n) -1 is held by a unique node at the first time slot of the corresponding step, they check for I 1 = lg (n/20 log n) at the second time slot of the step and so on.

Browsing through a given interval I (cf. Algorithm 5). The browsing protocol is executed by each node s i (initially idle) and takes two parameters (an interval and an integer).

• The same interval I = {I 0 , I 1 , • • • , I | I |-1 } of integers locally computed by each participating node s i at some step of the algorithm (before the use of the browsing procedure).

• A local r.v. X i generated by s i . It is important to note that s i wakes up only once at a time slot which depends on X i (line 3 of Algorithm 5).

At each time slot t 0 = 0, t 1 = 1, • • • , t τ = τ , where τ is an arbitrary integer, each node s i checks whether the corresponding value I τ = I 0 +τ of the interval I is equal to X i . At t τ , as each node has a local interval I, it does not have to wake up (to

RADIO NETWORKS

• candidacy: each device becomes Candidate or Eliminated depending on whether its r.v. belongs to the interval I = [3,[START_REF] Attiya | Distributed Computing: Fundamentals, Simulations and Advanced Topics[END_REF] or not. The grid in Figure 5.1 contains the Candidate devices (the green nodes) and the Eliminated devices (the blue nodes).

• witness/flood choice: each Eliminated node chooses the time slot of the browsing phase it will witness for an election. The nodes also choose which time slot of the browsing phase it will flood. This phase is represented by the blue balls being distributed into the bins (Figure 5.1).

• browsing through the interval I = [3,[START_REF] Attiya | Distributed Computing: Fundamentals, Simulations and Advanced Topics[END_REF] to elect a leader. It is represented by the balls in the grid and the bins. The green Candidate nodes browse through the interval I while the blue Eliminated nodes in the balls witness an election at each time slot (represented by green arrows). The Eliminated nodes that detected an election then flood the remaining time slots of the algorithm (represented by the red arrows).

• Finally, the first unique node becomes the Leader and its witnesses flood all the remaining time slots of the browsing algorithm to prevent and block future attempts. For the sake of clarity, we only describe the execution of Step 1, but this will be generalized for any Step ζ in the description of Algorithm 6. We also describe Phase 3 before Phase 2 for better comprehension. In the following descriptions, each phase has an initial time slot t 0 , which corresponds to the first time slot of the execution of the phase.

Step Z i where Z i = 1 if X i ∈ I and Z i = 0 otherwise, we obtain for any δ ∈ (0, 1)

P (1 -δ) (70 log n) 3 Card({i s.t. X i ∈ I}) (1 + δ) (70 log n) 3 1 -O 1 n .
Step

τ = 0, 1, • • • , 2| I | -1.
It is possible that the nodes randomly generate several pairs of unique values or even several consecutive unique values (more than 2) that follow each other involving the election of multiple leaders.

To bypass such a problem, we add Phase 2 before Phase 3.

Step 1, Phase 2: choosing a time slot to witness and a time slot to flood during Phase 3 (line 5 in Algorithm 6). After Phase 1, the Eliminated nodes in G 1 (Θ(n/ log n) in number according to lemmas 8 and 9) are uniformly distributed over the execution time interval of Phase 3 to witness the probable election of a leader at each time slot of Phase 3. Let T be the time complexity4 of Phase 3. At time slot t 0 of Phase 2, each Eliminated node in G 1 chooses uniformly at random one time slot t σ from {t 0 , t 2 , • • • , t T -2 }. These Eliminated nodes listen to the network at t σ and t σ +1 during the execution of Phase 3. They receive messages at both t σ and t σ +1 in the case that a leader is elected. Therefore, to avoid another election, each node chooses a time t η = Uar({t σ + 2, . . . , t (4| I | log n)-1 }) to flood during Phase 3. By flooding all the remaining time slots, no other Candidate node can transmit alone. Lemma 10. Each time slot of our leader election algorithm is witnessed and flooded by at least one Eliminated node with a probability greater than 1 -O n -1 .

Proof (sketch).

There are Θ(n/ log n) Eliminated nodes after Phase 1 (Lemma 8 and Lemma 9) that are uniformly distributed to witness and flood the (10 log n) × 2| I | time slots (line 5 in Algorithm 6 as well as lines 6 and 8 in Algorithm 5). By applying the Chernoff bounds, it yields that each time slot is witnessed and flooded by Θ(n/ log 2 n) nodes with a probability greater than 1-e -Θ(n/ log 2 n) 1-O(n -1). Lemma 11. During the execution of Algorithm 6, each node wakes up at most once to transmit one bit and listens to the network during a maximum of two time slots. Step ζ, Phase 3: Each node runs the Browse(I, X i) procedure to become Leader or Eliminated. 7 end Remark 2. In the RNsenderCD and RNstrongCD models, each node can know when it transmits alone. Thus, no node has to notify the leader that it was elected. In this way, we can ensure that Candidate nodes never listen to the network and that Eliminated nodes only witness a single time slot during the Phase 3.

RADIO NETWORKS

The Nodes Do Not Know n

When the nodes do not know n but know an upper bound u on n such that log u = Θ(log n), (i.e., n < u < n h for some h > 1 known by the nodes), we modify slightly • Finally, during Phase 3, all nodes run the Browse(J, X i) protocol.

We have the following result. Proof. The proof is identical to that of Theorem 5.2.3 except that here the interval J used is of size O(log n).

A Faster Algorithm for RNCD and RNstrongCD

In the RNCD and RNstrongCD models, because the listening nodes can detect collisions, we only need to make the property (i) given in Section 5.2.1 occur with a constant probability. Therefore, for any arbitrary constant g = 1, 2, • • • , we only need a unique node s i to transmit alone in any time slot t g = t 0 + g while a group G of nodes listens to the network. The listening nodes that receive a message at t g send a feedback message at t g + 1, during which s i listens in turn, detects a collision and knows that it has transmitted alone. The node s i is then elected.

To do so, we need a r.v. distribution Z such that if each node s i generates one random copy Z i of Z, there is a unique value (a value held by a unique node) with a constant probability. For α ∈ (0, 1), the following Lemma proves that the r.v. Z distributed as

P[Z = k] = exp -k 1/α -exp -(k -1) 1/α
verifies such a property. (5.2.5) Moreover, the unique value is equal to log α n.

BEEPING NETWORKS

is provided in advance to all the nodes, a randomized Monte-Carlo leader election algorithm succeeds in O(log 1+α n) time slots with a probability greater than 1 -

O n -1 2
. Each node transmits at most once and listens to the network during a maximum of two (resp. one) time slots.

Proof. First, browsing through the interval J once elects a leader with a constant probability. Consequently, a unique leader is elected w.h.p. after (2 log u) executions of this protocol. Therefore, the time complexity of our algorithm comes from (2|J | log u) = O(log 1+α n). Second, each Candidate node s i transmits if the value in J corresponding to Z i is under checking. After that, it listens once to the network. An Eliminated node listens once at t w and transmits once to the network at t f if it witnessed the time slot corresponding to the election.

Beeping Networks

In this section, we consider the BN model, in which neither a beeping node N nor the nodes that are listening can detect whether N has beeped alone. To overcome this uniqueness detection problem, the goal is to make a node know that it beeped alone (w.h.p.) without any network feedback. Our main idea for doing so is based on the uniqueness of the holder of the maximum of n independent random variables If we make each node generate an independent random variable distributed as Y , as the holder of the maximum is unique and its value is known (with a probability close to 1). The idea behind our approach is to develop a distributed algorithm in the BN model, capable of distinguishing the single node that generated the maximum. This last node then becomes the Leader. The following observation is crucial for our purpose.

Y 1 , Y 2 , • • • , Y n following a new distribution Y .
Y ω = m} = 1] 1 -O 1 log n . (b) Let µ = P (log n -log log log n) (1+ε) m (log n + log log n) (1+ε)
We have The following Lemma asserts that w.h.p. each time slot of the algorithm is covered by some nodes. Lemma 14. Each time slot of the execution of Algorithm 7 is witnessed and flooded by at least one node with a probability greater than 1 -O n -1 .

µ 1 -O 1 log n . (c) Let L = [(log n-log log log n) (1+ε) , (log n+log log n) (1+ε)] = [(log n-log log log n)
Y i = max j=1, 2, ••• , V {Y i,j }. Then, s i sets L 0 = (log V -log log log V) 1/β and L Last = (log(uV) + log log V) 1/β . 3 if Y i ∈ L = [L 0 , L Last]

Proof (sketch).

By part (c) of Lemma 13, there remain Θ(n) Eliminated nodes after Phase 1 with a probability of at least 1 -O(n -1).These Eliminated nodes are distributed uniformly at random to witness each time slot of an interval of size | L | (line 8 in

Chapter 6

Distributed Leader Election on Multi-Hop Radio Networks Without Collision Detection

The leader election problem is a fundamental issue of the distributed computing area. Finding a leader election algorithm with an optimal time complexity for multi-hop radio networks without collision detection (RNnoCD) remains an open problem of the area. Note that such an algorithm has already been found for single-hop radio networks with collision detection (RNCD) and single-hop RN-noCD. This chapter introduces a new leader election algorithm with an optimal O(log n) time complexity for single-hop RNCD. We then emulate this algorithm to improve the time complexity for the leader election problem on multi-hop RN-noCD. In a network of n nodes with a diameter D, our new algorithm has an O D log log n + log O (1) n time complexity. Given the lower bound of Ω(D+log 2 n) by [3] for the time complexity of randomized leader election algorithms on multihop RNnoCD, our new algorithm elects with a high probability a unique leader with an almost optimal time complexity up to an O(log log n) factor.

Introduction

We consider the time complexity of distributed leader election algorithms for singlehop RNCD and multi-hop RNnoCD. These problems have been extensively studied over the last 50 years [START_REF] Ghaffari | Near optimal leader election in multi-hop radio networks[END_REF][START_REF] Nakano | A survey on leader election protocols for radio networks[END_REF][START_REF] Kutten | Sublinear bounds for randomized leader election[END_REF][START_REF] Kutten | On the complexity of universal leader election[END_REF][START_REF] Willard | Log-logarithmic selection resolution protocols in a multiple access channel[END_REF][START_REF] Czumaj | Leader election in multi-hop radio networks[END_REF][START_REF] Dufoulon | Beeping a deterministic time-optimal leader election[END_REF]. In this chapter, we proceed as performed in [START_REF] Bar-Yehuda | Efficient emulation of single-hop radio network with collision detection on multi-hop radio network with no collision detection[END_REF] by designing an optimal algorithm for single-hop the RNCD first, and then emulating it on multi-hop RNnoCD to improve time complexity.

For the single-hop RNCD model, many distributed leader election algorithms already achieved a Θ(log n) time complexity [START_REF] Nakano | Uniform leader election protocols for radio networks[END_REF][START_REF] Ghaffari | Leader election using loneliness detection[END_REF]; therefore, in this chapter, our algorithm has an O(log n) time complexity. We then adapt this algorithm to work on multi-hop RNnoCD. Let T bc be the time complexity of broadcasting CHAPTER 6. DISTRIBUTED LEADER ELECTION ON MULTI-HOP RADIO NETWORKS WITHOUT COLLISION DETECTION algorithms on multi-hop RNnoCD that use spontaneous transmissions1 : T bc = Ω(D +log 2 n) [START_REF] Czumaj | Exploiting spontaneous transmissions for broadcasting and leader election in radio networks[END_REF]. As during the execution of a leader election algorithm, any node is allowed to transmit a message whenever it wishes, the lower bound T bc applies to this problem.

specific related works

When the nodes know the exact number n of participating devices and the diameter D of the network, the previous known faster leader election algorithm for multi-hop RNnoCD used a broadcasting primitive without spontaneous transmission as a subroutine (refer to Section 2.3.4.1) and has an O(D log(n/D) + log 3 n) min{log log n, log (n/D)}) time complexity [START_REF] Ghaffari | Near optimal leader election in multi-hop radio networks[END_REF]. Later, a new leader election algorithm was designed using a broadcasting algorithm with spontaneous transmissions [START_REF] Czumaj | Exploiting spontaneous transmissions for broadcasting and leader election in radio networks[END_REF] To achieve such a result, our new approach consists of two main steps:

Our results

• We first design an optimal leader election algorithm for single-hop RNCD.

• Then, we emulate the algorithm on multi-hop RNnoCD. To do so, one could use the popular proposed primitive to broadcast information through multihop RNnoCD (known as the Decay protocol) designed by Bar-Yehuda, Goldreich, and Itai in 1987 [START_REF] Bar-Yehuda | On the timecomplexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization[END_REF] (More details about the Decay protocol are provided Section 3.2.3).

One could mimic the leader election algorithm for RNCD with Decay, but this would lead to a noncompetitive algorithm terminating in O(D log2 n) time slots. To apply the divide-and-conquer paradigm, we propose subdividing the network into clusters, and more precisely into k-clusters (defined in Section 2.3.7). We thus design a k-clustering primitive that achieves its designated task w.h.p. in O(k log 4 n) time slots. As far as we know, this is the first k-clustering algorithm for synchronous multi-hop RNnoCD to work on any unknown undirected network. For our purpose, the order of magnitude of each cluster diameter is set to d = (D/ log 4 n). We then design a new broadcasting algorithm for multi-hop CHAPTER 6. DISTRIBUTED LEADER ELECTION ON MULTI-HOP RADIO NETWORKS WITHOUT COLLISION DETECTION to our future needs. First, each node of the network generates (4 log n) random bits. 2 To distinguish the unique leader, our idea works as follows:

• In a distributed manner, collect all values of j (j ∈ [0, (4 log n) -1]) such that there is a unique node whose j th bit is the only one set to 1 over all nodes.

• Design the node that holds the maximum j as the leader.

The following result is essential for our purpose.

Lemma 15. Let X 1 , • • • , X n be n independent random variables distributed as Geom(1/2) (p k = P[X = k] = 2 -k-1
). Let N be the random variable representing the number of values i ∈ {1, 2, • • • , n} such that X i = lg n . We have

P[N = 1] 1 4 .
Proof. This Lemma was proven in Section 3.3.2 as Lemma 5.

Using this result, for i = 1, • • • , n, each node s i generates one copy X i of Geom(1/2). According to Lemma 15, a unique node holds X i = lg n with a constant probability. By making this unique node transmit a message and become the leader, we obtain a leader election algorithm that succeeds in a constant number of time slots with a constant probability. Moreover, through making the nodes execute these computations until a unique node transmits alone, we obtain a leader election algorithm that succeeds w.h.p. in O(log n) time slots. We illustrated the execution of such an algorithm in Figure 1.8 (Section 1.2.3.2) .

Our new algorithm works as follows:

For i = 1, • • • , n, each node s i generates (4 log n) random variables distributed as Geom(1/2) denoted as

X 0 i , • • • , X (4 log n)-1 i
. According to Lemma 15, our main idea makes all nodes find which node holds the maximal index j ∈ {0, • • • , (4 log n)-1} that respects the existence of a unique index i verifying X j i = lg n . Our algorithm is organized into even/odd time slots: Let t 0 = 0 be the initial time slot of the execution of the algorithm. For j = 0, • • • , (4 log n) -1, at each even time slot t 2j = t 0 + 2j, each node s i transmits a one-bit message if X j i = lg n . A node that transmitted alone becomes the Leader. To detect a unique transmission, the nodes perform the following steps:

• For j = 0, • • • , (4 log n) -1, each node s i with X j i = lg n sends a one-bit message at t 2j and all the other nodes listen to the network.

• If the listening nodes receive a message at t 2j , they are Eliminated and send a one-bit feedback message at t 2j+1 .

• Finally, if the transmitting node at t 2j detects a collision at t 2j+1 , it becomes the Leader. Theorem 6.2.1. In single-hop RNCD of size n, there is an algorithm that elects a unique leader in O(log n) time slots with a probability of at least 1 -O(1/n).

MULTI-HOP RNNOCD NETWORK

Proof. The previously described algorithm terminates in (8 log n) time slots, and according to Lemma 15, at least one node succeeds into transmitting alone after these (8 log n) time slots with a probability of at least 1 -O 1 n . That is a unique leader is w.h.p. elected after (8 log n) time slots.

Multi-hop RNnoCD network 6.3.1 A new k-clustering algorithm

The main aim of this section is to emulate the Mis algorithm (described in Section 3.2.5) for beeping networks presented by [START_REF] Jeavons | Feedback from nature: simple randomised distributed algorithms for maximal independent set selection and greedy colouring[END_REF] to work on RNnoCD and adapt it to compute a k-clustering of the network.

Recall that a k-cluster is a subset of nodes that contains exactly one Cluster-Head node, with all the other (Internal) nodes at most at k-hop distance from the ClusterHead (Section 2.3.7). Our k-clustering algorithm is subdivided into lg (k/3) + 2 phases (more details about the number of phases will be provided in the Property 1 presented in the next paragraphs). The first phase consists of a simple Mis [START_REF] Jeavons | Feedback from nature: simple randomised distributed algorithms for maximal independent set selection and greedy colouring[END_REF] adaptation for RNnoCD. It computes a 1-clustering of the network if each node in the Mis set becomes a ClusterHead node and all other nodes become Internal nodes. This is referred to as the Clustering(1) protocol (lines 1 and 2 of Algorithm 8). Definition 6.3.1 (G q). Let G 0 be the initial underlying graph of the network. For q = 1, • • • , lg (k/3) + 2 , G q is the resulting graph of all remaining Cluster-Head nodes after the execution of Phase q. The following result is crucial for our purpose: Lemma 16 ([41]). Given a constant c > 0, the algorithm presented by [START_REF] Jeavons | Feedback from nature: simple randomised distributed algorithms for maximal independent set selection and greedy colouring[END_REF] produces a Mis of a beeping network in O((c + 1) log n) time slots with a probability of 1 -O(n -c).

For q = 2, • • • , lg (k/3) + 2 , we refer to each Phase q (line 2 of Algorithm 6) as the Clustering 3 × 2 q-2 protocol (we provide more details in the Property 1 presented in the next paragraphs). Each Phase q consists of emulating the Mis protocol of [START_REF] Jeavons | Feedback from nature: simple randomised distributed algorithms for maximal independent set selection and greedy colouring[END_REF] on RNnoCD. In order to define such emulation, we create the two following protocols:

Send(m, λ) :

Any informed3 node transmits m with Decay(m) and waits during (λ -1) × (4 log 2 n) time slots. Lemma 17. The Send(m, λ) protocol makes each listening ClusterHead node s ch know that at least one of its ClusterHead neighbors (at most λ hop distance from s ch on G 0) transmitted after O(λ log 2 n) time slots, with a probability of at least 1 -O(λ/n 2).

Proof. By [START_REF] Bar-Yehuda | On the timecomplexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization[END_REF][START_REF] Bar-Yehuda | Efficient emulation of single-hop radio network with collision detection on multi-hop radio network with no collision detection[END_REF], the Decay protocol makes a message m reach one more layer of the network every (4 log 2 n) time slots with a probability of 1 -O 1 n 2 . Thus, through the independence of the probabilities, the Send(m, λ) protocol succeeds into spreading m at λ hop distance from the transmitter after O(λ log 2 n) time slots with a probability of 1 -O 1

n 2 λ > 1 -O λ n 2 .
6. (ii) Each ClusterHead node is at two or three hop-distance from at least another ClusterHead node.

Proof. The resulting network represents a 1-clustered network G 1 . We illustrate these results with an example in the following Through generalization, for all q > 1, Phase q computes a 3 × 2 q-2 -clustering of the network. Consequently, a k-clustering of the network is computed at Phase (lg (k/3)+ 2). Lemma 19. For all q > 1, the Clustering λ = 3 × 2 q-2 protocol terminates in O 2 q log 4 n time slots with a probability of at least 1 -1 n . Proof. First, as in each round of Clustering 3 × 2 q-2 , each node executes Send m, 3 × 2 q-2 (lines 4, 9 and 16 of Algorithm 9) or Listen 3 × 2 q-2 (lines 9, 10 and 18, 19 of Algorithm 9) , then each Phase q terminates in O 2 q log 4 n time slots.

Second, by applying c = (2 log 2 n) to Lemma 16, independently of the number of nodes, Clustering(1) succeeds into creating a 1-clustering of the network in O(log 2 n) time lots with a probability of at least 1 -O(1/n 2). Third, the Clustering 3 × 2 q-2 primitive achieves its designated task if each execution of the Send m, 3 × 2 q-2 primitive succeeds into transmitting m and if the Clustering 3 × 2 q-2 protocol outputs a Mis computation of the remaining ClusterHead nodes. Thus, by using the previous result with Lemma 17, by the independence of the probabilities, the probability of success of each Phase q is

1 -O 1 n 2 × 1 -O 3 × 2 q-2 n 2 q .
As q < O(log k) and k < D n, this value is greater than 1 -1 n .

This leads us to the following result. Proof. In the following proof, let T q be the time complexity of the algorithm executed during Phase q (line 2 of Algorithm 8). According to Lemma 19, the time complexity of the k-Clustering() algorithm is as follows:

lg (k/3)+2 q=1 T q = O(log 4 n) + lg (k/3)+2 q=2 O(2 q log 4 n) = O(k log 4 n).
According to Lemma 19, each Phase q succeeds with a probability of at least 1 -O(1/n). Thus, through the independence of the probabilities, the k-Clustering()

MULTI-HOP RNNOCD NETWORK

algorithm outputs a correct k-clustering of the network with a probability of 1 -O 1 n log(k/3) .

As k < n, such a value is greater than 1 -O(n -v) for some constant v ∈ ((9/10), 1).

A new multi-message broadcasting primitive

In this section, we adapt the broadcasting algorithm from [START_REF] Bar-Yehuda | On the timecomplexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization[END_REF] to design a new multimessage broadcasting algorithm. Before the execution of our new broadcasting algorithm, the nodes must perform the following pre-computation protocols.

Pre-computations

The NeighborCounting protocol. This protocol computes δ -(s i) (resp.

δ + (s i)) and is organized with a layer scheduling. This layer scheduling makes the nodes in any layer perform the same computations in parallel only with the nodes in the layers at three-hop distance from them. It ensures us to avoid conflicting messages between layers.

For b = 1, • • • , D/3 (resp. b = 0, 1, • • • , D/3 -3)
, each node in each layer L(3b) approximates the number of its neighbors in L(3b -1) (resp. L(3b + 1)) by executing the algorithm designed in [START_REF] Brandes | Approximating the size of a radio network in beeping model[END_REF] in a parallel manner. We provide more details about the approximate-neighbor counting algorithm from [START_REF] Brandes | Approximating the size of a radio network in beeping model[END_REF] in Section 3.2.4. Subsequently, each node in each layer L(3b -1) (resp. L(3b + 1)) approximates the number of its neighboring nodes in L(3b -2) (resp. L(3b + 2)). Finally, each node in layers L(3b -2) (resp. L(3b + 2)) performs the same computations for L(3b -3) (resp. L(3b + 3)).

Lemma 20.

According to [START_REF] Brandes | Approximating the size of a radio network in beeping model[END_REF], each computation takes O(log 2 n) time slots and the NeighborCounting protocol makes each node s i ∈ L(l(s i)) know δ -(s i) and δ + (s i) in O(log 2 n) time slots.

Computing β -(s i) and β + (s i). The protocol that computes β + (s i) (resp. β -(s i)) is designed with the same layer scheduling as presented in the aforementioned NeighborCounting protocol. It is subdivided into three phases. For

f = 0, 1, 2, for b = 0, 1, • • • , (D/3) -3, each Phase f makes each node s i in each layer L(3b + f) compute β + (s i) (resp. β -(s i)). Phase f is organized into (2 log n) steps, during which each node s i ∈ L(3b + f + 1) (resp. L(3b + f -1)) transmits δ -(s i) (resp. δ + (s i)) bit by bit. For α = 1, • • • , (2 log n), during the Step α of Phase f , each node s i in L(3b + f + 1) (resp. L(3b + f -1)) sends the α th bit of its δ -(s i) (resp. δ + (s i)), say δ -(s i)[α] (resp. δ + (s i)[α]) 4 with Decay(δ -(s i)[α]) (resp. Decay(δ -(s i)[α])).
In parallel, during the whole Phase f , each node s i in each layer L(3b + f) listens to the network to save the binary OR computation of all received values as β + (s i) (resp. β -(s i)). To do so, for α = 1, 2, • • • , (2 log n), during Step α of Phase f , each node s i in each layer L(3b + f) sets the α th bit of its β + (s i) (resp. β -(s i)) to 1 if it received at least one message, and 0 otherwise. Lemma 21. For any node s i , there is an algorithm computing β + (s i) and β -(s i) in O(log 3 n) time slots.

Proof. By performing O(log n) executions of Decay protocol per phase during three phases, the previously described algorithm has an O(log 3 n) time complexity.

During each phase, for all nodes s i ∈ N -(s i) (resp. s i ∈ N + (s i)), s i saves the binary OR computation of all transmitted δ + (s i) (resp. δ -(s i)) as its β -(s i) (resp. β + (s i)). According to the properties of the binary encoding, this value is lesser than 2 max

∀s i ∈N -(si) (δ + (s i)) (resp. 2 max ∀s i ∈N + (si) (δ -(s i))). Consequently, β -(s i) (resp. β + (s i))
respects the definition 6.1.3.

A new broadcasting algorithm

This section adapts the broadcasting algorithm designed by [START_REF] Bar-Yehuda | On the timecomplexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization[END_REF], which broadcasts a message from a single source node to all nodes of a network (of diameter D) in O((D+log n) log ∆) time slots. Such an adaptation consists of setting ∆ log O (1) n.

Let t 0 = 0 be the initial time slot of the execution of the algorithm and m be the message to broadcast. For any constant integer τ > 0, t τ = t 0 + τ . The source node s s first transmits a couple of messages (m, l(s s)) at t 0 .5 Subsequently, each Internal node s i spreads each received message. We organize these spreading transmissions with an even/odd schedule. During the even time slots, the Internal nodes transmit m by executing the Transmit(τ, β, m, dir) protocols defined hereafter. During the odd time slots, the nodes that received m send a feedback message m f to stop the transmissions by executing the Feedback(τ, β, m f , dir) protocol described in the next paragraphs. In addition, we add a layer scheduling to the spreading process to avoid conflicting messages during the transmissions. It makes each node s i send its l(s i) with each message m and all nodes consider only the messages from lower layers during the even (spreading) time slots and only from higher layers during the odd (feedback) time slots. We give more details about this layer scheduling in the following descriptions of Transmit(τ, β, m, dir) and Feedback(τ, β, m f , dir).

Note that each node s i locally knows β -(s i) and β + (s i) at this stage.

Transmit(τ, β, m, dir) : This protocol is executed by each node s i (in a given layer L(l(s i))) to transmit a message m to the next layer (L(l(s i) + 1)) at the time slots t 2τ and t 2τ + 1.

• It makes each node with a message m to transmit become Candidate with a probability of min{1, (10 log n)/β} (line 8 of Algorithm 10).

• Then, only the Candidate nodes try to transmit m at t 2τ and listen to the network at t 2τ + 1 (line 10 --13 of Algorithm 10).

• The listening nodes that received a feedback message at t 2τ + 1 stop trying to transmit m (line 14, 15 of Algorithm 10).

Note that during the execution of Transmit(τ, β, m, dir), dir corresponds to the direction of the message spreading process. On the one hand, it takes the value "up" if a source node broadcasts a message to all nodes of the network. On the 6.3. MULTI-HOP RNNOCD NETWORK other hand, it takes the value "down" for the opposite direction (a downcast). By using this parameter, we ensure the nodes to consider only the messages from lower layers when broadcasting a message (lines 1 and 7 of Algorithm 10) and only from higher layers when down-casting a message (lines 2, 3 and 7 of Algorithm 10).

Feedback(τ, β, m f , dir) : It is executed at the time slot t 2τ + 1 by each node s i that received a message at t 2τ and makes s i transmit a one-bit feedback message m f with a probability of 1/β. It also uses the parameter dir to make the nodes consider only the messages from lower (reps. higher) layers depending on the value of dir (lines 1 --3 and 7 of Algorithm 11).

For example, if our algorithm broadcasts a message from the Border nodes back to a unique source node, then each node s i executes Transmit(τ, m, β -(s i), down) (resp. Feedback(τ, m, β + (s i), down)).

Remark 5. The two previously described protocols use the same layer scheduling as presented in the NeighborCounting protocol to avoid conflicting messages during the transmissions (lines 5 and 6 of Algorithm 10 and lines 5 and 6 of Algorithm 11). RADIO NETWORKS WITHOUT COLLISION DETECTION Similarly, at each odd time slot t 2τ + 1, each Inactive node s i that received (m, L(s i)) at the previous time slot t 2τ -2 executes Feedback(τ, β -(s i), l(s i), up) (line 10 of Algorithm 12). Therefore, for f = 0, 1, 2, if 2τ (mod 3) = f , then, each Internal node s i ∈ L(3b + f + 1) that received a message (m, l(s i)) at t 2τ -2 verifies whether l(s i) < l(s i) to save m. Then, s i sends a feedback message m f = l(s i) with a probability of 1/β -(s i) (lines 5 --8 of Algorithm 11). Algorithm 12. Broadcast(m, D, n, l(s i), β -(s i), β + (s i), dir) executed by any node s i .

Input : s i knows n, D, l(s i), β -(s i), β + (s i) and dir ∈ {up, down}. Output: s i receives the message m. 1 if s i is the unique source node then 2 At t 0 = 0, s i transmits m and quits the algorithm. 3 else 4 s i sets ψ i ← (2 log(2 log n) 3) and φ ← 0. Consequently, by the independence of the probabilities, m reaches s i w.h.p. after (4 log 2 n) attempts. Thus, as during each attempt, there are at most O(log n) Candidate nodes, when m reaches s i , there are at most O(log 3 n) Candidate nodes in N -(s i). Then, until each node s i ∈ N -(s i) receives a feedback message from L(h + 1) (the nodes in the same layer as s i) and stops sending m (line 14 of Algorithm 10), (4 log 2 n) more time slots are spent and a maximum of O(log 3 n) more candidate nodes in N -(s i) attempt to transmit m. This result leads to the following theorem: Theorem 6.3.3. In multi-hop RNnoCD, let each node s i know n, D, its distance from the broadcasting source and a linear approximation of the number of its neighbors. There is a broadcasting algorithm terminating w.h.p in O((D+log n) log log n) time slots.

Proof. The broadcasting algorithm designed by [START_REF] Bar-Yehuda | On the timecomplexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization[END_REF] succeeds w.h.p. in O((D + log n) log ∆) time slots. In our adaptation, using Lemma 22, we replace ∆ with (2 log n) 3 . Consequently, our adapted Algorithm 12 terminates w.h.p. in O((D + log n) log log n) time slots.

Multi-message broadcasting algorithm

Leader election for multi-hop RNnoCD

This section adapts our leader election algorithm for single-hop RNCD to work on multi-hop RNnoCD.

Recall that we want to distinguish a unique node from n nodes, and for i = 1, • • • , n, each node s i has a unique identifier ID(s i) randomly picked from {1, • • • , n 2 }. Our main idea makes each node s i generate (4 log n) random variable distributed as Geom(1/2) and create a binary code-word W i = w 0 i • • • w (4 log n)-1 i as described in Section 6.2. All nodes then perform the binary Xor computation of all generated code-words. The unique node s i holding max 0<j (4 log n)-1 i w j i = 1 finally becomes the leader. This algorithm is organized into four main steps.

The Layering procedure:

In this section, we adapt the layering procedure presented in Section 3.2.6 (designed for our broadcasting algorithm on a network of diameter D) to work on a k-cluster (with a diameter d = D/ log 4 n). To do so, the algorithm works exactly as described in Section 3.2.6. Our adaptation consists of making the ClusterHead nodes work as a source node and all the Internal nodes work like all other nodes.

The NeighborCounting protocol:

As for the Layering procedure, we adapt the NeighborCounting protocol presented in Section 6. Before moving to the next step, s i generates (4 log n) random variables distributed as Geom(1/2) denoted as

X 0 i , • • • , X (4 log n)-1 i
and computes a binary code-word

W i = w 0 i • • • w (4 log n)-1 i
such that w j i = 1 if X j i = lg n and w j i = 0 otherwise.

Step 3: ClusterIDAssignment

• First, each node s i becomes Candidate with a probability of (10 log n)/n.

By means of a Chernoff bound, there are roughly Θ(log n) Candidate nodes in the network.

• Subsequently, each Candidate node s ca sends its code-word W ca bit by bit to the ClusterHead s ch of its cluster by executing the Decay protocol.

-For j = 0, • • • , (4 log n) -1, for ca = 1, • • • , O(log n), each Candidate node s ca spreads each bit w j ca of its code-word W ca one bit after the other with Decay(w j ca). -Each Internal node s i spreads all received bits with Decay.

• In parallel, the ClusterHead listens to the network and computes the Xor of each received bit one bit after the other.

To perform the Xor computation of w j ca , we make the ClusterHead know if more than one Candidate node holds w j ca = 1. To do so, the ClusterIDAssignment protocol is subdivided into four phases:

Phase 1: Each Candidate node s ca spreads W ca one bit after the other to the ClusterHead, using the Decay protocol during O(d log 3 n) time slots. The ClusterHead then saves each received bit in a list denoted as ł ch . We organize this spreading phase with a layer scheduling.

• First, each Candidate node s ca in layer L(d) with w 0 ca = 1 executes Decay(ID(s ca)). In parallel, the other Candidate nodes of L(d) having w 0 ca = 0 waits during (4 log 2 n) time slots and all other nodes listen to the network. Afterward, each Candidate node s ca ∈ L(d -1) with w 0 ca = 1 and each node (Candidate or Internal) that received ID(s ca) executes Decay(ID(s ca)) and Decay(ID(s ca)), respectively. In parallel, the other Candidate nodes of L(d -1) (with w 0 ca = 0 and that received no message) wait for (4 log 2 n) time slots. -Each Candidate node s ca ∈ L(d -h) with w 0 ca = 1 and each node that received ID(s ca) executes Decay(ID(s ca)) and Decay(ID(s ca)), respectively.

-In parallel, the other Candidate nodes of L(d -h) (with w 0 ca = 0 or that received no message) wait during (4 log 2 n) time slots.

-During these first (4(d -1) log 2 n) time slots, the ClusterHead nodes listen to the network. If it receives any message, it saves the first received ID(s ca) as ł ch [0]. 9 Otherwise, s ch sets ł ch [0] = 0.10

• Second, for j = 1, • • • , (4 log n) -1, all nodes execute the same computations to spread each next bit w j ca of the code-word of each Candidate node. In parallel, the ClusterHead nodes listen to the network. The Candidate nodes that received a message save each first received ID(s ca) as ł ch [j] and those receiving no message set ł ch [j] = 0.

After these first O(d log 3 n) time slots, each ClusterHead node of the clusters that has at least one Candidate node has a list ł ch such that for each j = 0, 1, • • • , (4 log n) -1, ł ch [j] = ID(s ca) if at least one Candidate node has w j ca = 1. Phase 2: Using the multi-message broadcasting algorithm described in Section 6.3.2.3, each ClusterHead node s ch broadcasts each value in its list ł ch (of (4 log n) values) during O((d + log 3 n) log log n) time slots. Then, for j = 0, 1, • • • , (4 log n)-1, all nodes know whose ID(s ca) reached the ClusterHead nodes for each bit w j ca . Phase 3: For j = 0, 1, • • • , (4 log n)-1, only each Candidate node s ca whose ID(s ca) did not reach the ClusterHead during Phase 1 (ID(s ca) = ł ch [j]) and that have w j ca = 1 spreads its ID(s ca) again to the ClusterHead (as described in Phase 1). Consequently, the ClusterHead nodes know which bits 1 are held by more than one Candidate nodes and accordingly compute a binary Xor of the code-words of all Candidate nodes in their cluster.

Phase 4: Finally, each ClusterHead s ch saves the Xor result as its ClusterID(s ch) and broadcasts it to all nodes of its cluster using Algorithm 12. Each node s i saves the received value as its ClusterID(s i).

Lemma 24. By executing the ClusterIDAssignment procedure, each node s i of any cluster knows w.h.p. its ClusterID(s i) after T 3 = O(D/ log n+log 4 n log log n) rounds. Such a ClusterID(s i) is the Xor computation of the code-words of all Candidate nodes in its cluster.

Chapter 7 Conclusion

This thesis has focused on optimizing the time complexity and the energy complexity of algorithms resolving fundamental distributed communication problems, namely the renaming, the naming, the counting, the broadcasting and the leader election problems. The main idea behind our algorithms design is to make each node of the distributed network generate a local random variable before communicating on the network in a deterministic manner depending on the generated value. This chapter presents an overview of our results and discusses perspectives that follow directly on from the results presented in the thesis. Opened questions and perspectives. First, in Chapter 4, we conjectured that the lower bound on energy complexity for any randomized algorithm solving the naming problem on beeping networks, with a significant probability of success, is O(log n). This opens a new question in this field that involves proving this conjecture.

Second, our energy consumption improvement lies in using properties of a binary encoding to make the nodes wake up only at particular time slots. More precisely, we used the fact that allows us to determine whether a decimal value is 7.2. LEADER ELECTION FOR SINGLE-HOP RADIO NETWORKS (CHAPTER 5) greater than another one by comparing some bits of their binary encoding. Therefore, it could be interesting to conduct some research on the following questions:

• Which other distributed computing problem could this idea be applied to?

• Which other property of the binary encoding could be used to improve some existing studies in the area?

• Instead of the binary encoding, which other encoding could be studied?

Third, since our protocols have optimal time and energy complexities for singlehop beeping networks, it would be interesting to adapt them for multi-hop beeping network models, which are much more realistic than single-hop models.

Leader election for single-hop radio networks (Chapter 5)

In Chapter 5, we designed leader election algorithms for single-hop radio networks and beeping networks. We considered their energy and time complexities. In our algorithms, each device is allowed to transmit a one-bit message once and listen to the network for at most two time slots. The design of our algorithm is based on the fact that each node in the network can generate discrete random variables with a specific probability distribution: the uniqueness of the node holding the maximum of the random variables (for the BN model) or the uniqueness of a pair of nodes having generated two consecutive values (for the RN model). These uniqueness properties then allow the nodes to search for the specific values using the least amount of time possible. specific values using as little energy as possible. thanks to a witnessing and flooding mechanism.

Opened questions and perspectives. Our first goal in Chapter 5 was to find a random variable distribution that respects the uniqueness of the maximum with a high probability, and that has a poly-logarithmic maximum in n. We did not found such a distribution, which led us to the question of proving the existence of such a distribution. The random variable distribution used in this thesis respects the uniqueness of the maximum with log-high probability (with a probability greater than 1 -O(1/ log n)). Thus, we decided to use other properties than the uniqueness of the maximum to design our algorithms. One of these properties was the uniqueness of the values log n -1 and log n when generating n random variables. This opens the following questions:

• Is there a more suitable property of random variable distributions that could be used to improve the time complexity of our algorithms?

• In which other distributed communication problem could we apply our idea?

• Is there a family of random variable distribution that suits better our problems?

On the other hand, optimal energy complexity for leader election algorithms was already achieved in [START_REF] Chang | Exponential Separations in the Energy Complexity of Leader Election[END_REF] for radio network models when the nodes have no CHAPTER 7. CONCLUSION information about the size of the network; however, designing a polynomial-time leader election for the BN model matching such lower bounds has not been achieved yet. Thus, future studies could focus on this area and on adapting our algorithm design to work on the more realistic multi-hop network models. 1) n time slots. Note that all of these algorithms succeed with a high probability.

Opened questions and perspectives. On the one hand, we designed a new k-clustering protocol that clusters the network in O(k log 4 n) time complexity. Then, we presented a new broadcasting algorithm for the RNnoCD that terminates in O((D + log n) log log n) time slots. These protocols could be used to improve the time complexity of algorithms to resolve other problems in distributed multi-hop networks.

On the other hand, the results presented in this thesis led us to a better time complexity for the leader election problem on multi-hop RNnoCD, depending on the value of D. However, finding an optimal algorithm for this problem remains an open problem. It also could be interesting to address the problem of energy consumption in this model.

The algorithms proposed in this thesis achieved some improvement on the time and energy complexity for resolving fundamental distributed computing problems. This opens the following interesting question:

Would it be possible to adapt the solutions proposed in this thesis to improve the time or energy complexity of algorithms for the new generation of distributed systems, namely the blockchain?

 connaître une borne supérieure u de n telle que log(u) = Θ(log n). Pour cette tâche, nous avons besoin d'une autre variable aléatoire. Soit la variable aléatoire discrète Y définit comme suit P[Y = 0] = 1 -1/e ; et ; P[Y = k] = e - √ k -e - √ k+1 pour tout k > 0 . Soit Y 1 , • • • , Y M , M variables aléatoires indépendantes distribuées suivant Y .

 (k = d = D/ log 4 n). 1.10 UpLink: the ClusterHead broadcasts its ClusterID(s ch) to the Border nodes. 1.11 InterCommunication: All Border nodes exchange their Clus-terIDs and retain the Xor of all received ClusterIDs. 1.12 DownLink: The Border nodes send back the new ClusterIDs and the ClusterHead keeps the Xor of the received ClusterIDs. 1.13 . 2.1 Graph representation of a single-hop beeping network. 4.1 Tree representation of a naming algorithm executed by one node. . . 4.2 The worst-case for ttl. 4.3 The energy complexity of Algorithm 3 for a set of log 2 N nodes where N = n 2 and n varies from 100 to 10 10 5.1 Leader election for eight devices and I = [3, 5]. 6.1 An example representing the distance between two ClusterHead nodes after the execution of Clustering(1).

Figure 1 . 1 :

 11 Figure 1.1: Representation of the execution of our energy-efficient naming algorithm with a binary tree.

Figure 1 . 2 :

 12 Figure 1.2: Schematic view of leader election in the RN model.

Figure 1 .

 1 Figure1.2 illustrates the main ideas behind the leader election algorithms for single-hop radio networks. The algorithm is subdivided into (10 log n) steps. Each step consists of a constant number of time slots. We will assign Θ(n/ log n) nodes per time slot. In each step, a candidacy will take place at time t when a single node (the candidate) will generate a value equal to lg n. To confirm the uniqueness of a candidacy, we ask that a witness, also unique, testifies to the uniqueness of the candidate by sending a signal at time t + 1. If there is a unique candidate confirmed by a unique witness, the candidate becomes the leader. The Θ(n/ log n) losers made aware of the election then spread out (uniformly randomly) over the rest of the time in order to block all future attempts. This candidacy, witnessing and flooding (blocking) mechanism is implemented in Section 5.2.The following example illustrates the computations executed by a group. In this example, we have 16 nodes in group G 1 (we suppose that n/ log n = 8). At t 0 , each node s i generates a random variable X i distributed as Geom(1/2). According

Figure 1 . 3 :

 13 Figure 1.3: Random variable generation and candidacy on a network of 16 nodes.

Figure 1 . 4 :

 14 Figure 1.4: The first transmission to elect a leader on a network of 16 nodes.

Figure 1 . 5 :

 15 Figure 1.5: The second transmission to elect a leader on a network of 16 nodes.

Figure 1 . 6 :

 16 Figure 1.6: Multiple elected leaders.

Figure 1 . 7 :

 17 Figure 1.7: Witnessing and flooding in a leader election algorithm. Thus, no other node can be elected and a unique leader is elected with a high probability. As | I | = O(log n) and the algorithm browses O(log n) times through I to succeed with a high probability, we achieve the following result with some

Figure 1 . 8 :

 18 Figure 1.8: Optimal leader election on single-hop RNCD with four nodes.

Figure 1 .

 1 [START_REF] Brandes | Approximating the size of a radio network in beeping model[END_REF] illustrates the execution of one debate.

Figure 1 . 9 :

 19 Figure 1.9: The k-clustered network. The red or black nodes are Clus-terHeads (k = d = D/ log 4 n).

Figure 1 . 10 :

 110 Figure 1.10: UpLink: the Clus-terHead broadcasts its Clus-terID(s ch) to the Border nodes.

Figure 1 .

 1 Figure 1.11: InterCommunication: All Border nodes exchange their ClusterIDs and retain the Xor of all received ClusterIDs.

Figure 1 . 12 :

 112 Figure 1.12: DownLink: The Border nodes send back the new ClusterIDs and the Cluster-Head keeps the Xor of the received ClusterIDs.

Figure 1 . 13 CHAPTER 1 .

 1131 Figure 1.13

 In single-hop beeping networks, the nodes communicate with each other during discrete time slots through a unique shared beeping channel. As presented in Figure 2.1, single-hop beeping networks can be used for modeling an ad-hoc network, in which all nodes are within the communication range of each other. The nodes can send signals (one-bit messages or beeps) and perform carrier sensing to detect transmission.

Figure 2 . 1 :

 21 Figure 2.1: Graph representation of a single-hop beeping network.

Definition 2 . 4 . 1

 241 (O()). Let T (n) be the complexity of the considered algorithm and f (n) be a function on n. T

Definition 2 .

 2 4.3 (Θ()).Let T (n) be the complexity of the considered algorithm and f (n) be a function on n. T

 designed a deterministic leader election algorithm with an expected O(n) time complexity and an O(n log n) time complexity w.h.p. Then, in 2013, an algorithm with a near-optimal time complexity of O((D log(n/D)+ log 3 n) min{log log n, log (n/D)}) was designed on RNnoCD by Ghaffari and Haeupler [34]. This algorithm has the best known time complexity for all values of D such that D < log 4 n (refer to Section 6.1.2). Three years later, Haeupler and Wajc presented an improvement on the time complexity of broadcasting algorithms using spontaneous transmissions with an O (D log n log log n)/(log D) + log O(1) n running time. This was the first broadcasting algorithm to use spontaneous transmission. Czumaj and Davies also took advantage of spontaneous transmission to compute a broadcasting and a leader election algorithm with O((D log n)/(log D) + log O(1) n) time complexity. Another result was provided by Dufoulon, Burman, and Beauquier [29], who presented a leader election algorithm for RNCD with an optimal O(D + log n) time complexity. Subsequently, Czumaj and Davies [25] designed an algorithm that elects w.h.p. a leader in O((D log (n/D) + log 2 n) √ log n) and in O(D log (n/D) + log 2 n) in expectation for directed RNnoCD.

Lemma 1 .

 1 In a multi-hop RNnoCD network of diameter D, our Layering algorithm terminates w.h.p. in O(D log 2 n) time slots.

1) 1 4 log 2 K 2 √

 1122 Through choosing some suitable values for a and b as functions of K (e.g. a = and b = 4 log 2 K), we found that x e -Ke -√x dx 1 -O(K -c) for some constant c > 0.Let Y be a positive discrete r.v. and p k = P[Y = k] be the probability of the r.v. Y to take the value k for all k 0

Definition 3 . 3 . 1 (

 331 Definition of the distribution of the r.v. Y). Throughout the remainder of this thesis, let p k = P[Y = k] for all integers k 0. p k respects p 0 = e -1 and pk = exp -√ k -exp -√ k + 1 for all k > 0 . (3.3.5)This is a specific form, but throughout the thesis, we work with the following generalized form of the r.v. distribution defined by (3.3.5). Definition 3.3.2 (Definition of the distribution of the r.v. Y). Let p k = P[Y = k] for all integers k 0. For any values of α ∈ (0, 1), fix β = 1/(1 + α), p 0 = e -1 and p k = exp -k βexp -(k + 1) β for all k > 0 .

Lemma 2 .

 2 Let Y 1 , Y 2 , • • • , Y n be n independent random variables distributed as described by (5.3.1) and let m = max 1 i n {Y i }. Then, (a) P [Card{ω such that Y ω = m} = 1] 1 -

4. 1 .

 1 INTRODUCTION on n (N = n O(

Figure 4 . 1 :

 41 Figure 4.1: Tree representation of a naming algorithm executed by one node.

CHAPTER 4 .

 4 ENERGY-EFFICIENT RENAMING AND NAMING IN SINGLE-HOP BEEPING NETWORKSAlgorithm 3. DeterministicNaming(N) at any node s i Input : An upper bound N on n and a unique ID(

Figure 4 . 2 :

 42 Figure 4.2: The worst-case for ttl.

Definition 4 . 3 . 1 (Definition 4 . 3 . 2 (

 431432 Period). We define a period as the time complexity of one execution of Algorithm 3 by O(log n) nodes. It consists of O(log 2 n) time slots. Group). A group G f is a set of nodes that will execute Algorithm 3 during any Periodk, f = 1, 2, • • • , Θ n log n

 log n groups run the DeterministicNaming(N) protocol, one group after the other during Θ n log n periods, instead of making all nodes execute it once. As each group counts at most O(log n) nodes, we have O(log n) waking time slots per node by applying M = O(log n) to Theorem 4.2.4 for each period.

CHAPTER 4 .

 4 ENERGY-EFFICIENT RENAMING AND NAMING IN SINGLE-HOP BEEPING NETWORKS and with Θ 2u log 2u executions of DeterministicNaming(N), our Randomized-Naming(u) algorithm has Θ 2u log 2u × T D = Θ n log n × T D time complexity. By Lemma 6, the number of nodes participating in each execution of Determin-isticNaming(N) is w.h.p. at most O(log n). Thus, by applying M = O(log n) to Theorem 4.2.4, we obtain T D = O(log 2 n), implying an O(n log n) time complexity of Algorithm 4.

4 . 4 .

 44 LOWER BOUND ON THE ENERGY COMPLEXITY OF NAMING ALGORITHMS FOR SINGLE-HOP BEEPING NETWORK

CHAPTER 4 .

 4 ENERGY-EFFICIENT RENAMING AND NAMING IN SINGLE-HOP BEEPING NETWORKS• We first represent n nodes by a matrix M with n lines and O(log n) columns.

Figure 4 .

 4 Figure 4.3 compares the empirical energy complexity of naming algorithms (the green or grey graph) with our theoretical result (the red or black graph) for a varying number of nodes. Note that the theoretical energy complexity has the value 4.1 × log N .

Figure 4 . 3 :

 43 Figure 4.3: The energy complexity of Algorithm 3 for a set of log 2 N nodes where N = n 2 and n varies from 100 to 10 10 .

Figure 5 . 1 :

 51 Figure 5.1: Leader election for eight devices and I = [3, 5].

Proof.

 For each ζ = 1, 2, • • • , (10 log n), the Candidate nodes in any group G ζ only wake up during Step ζ to run the Browse(I, X i) protocol (line 6 in Algorithm 6). Let us consider the case of a Candidate node, say s 1 . For τ = 1, 2, • • • , | I |, s 1 may only transmit at a time slot t 2τ when it finds the value I τ = X 1 of interval I. In this case, I τ is said to be under checking at the time slot t 2τ . In what follows, ρ and ξ are two integer values taken from {0, 1, • • • , | I | -1}. The node s 1 wakes up and listens to the network twice when the values I ρ and I ξ of I such that I ρ = X 1 -1 and I ξ = X 1 + 1 (lines 3 and 4 in Algorithm 5) are under checking. On the other hand, an Eliminated node, say s 2 , wakes up and listens to the network exactly twice during Phase

Theorem 5 . 2 . 3 .

 523 In single-hop RNnoCD and RNCD (resp. RNsenderCD and RNstrongCD) of known size n, LeaderElection(n) is a randomized Monte Carlo leader election algorithm that succeeds to elect a unique leader in O(log n) time slots with a probability of at least 1 -O n -1 . During its execution, each node transmits a one-bit message no more than once and listens to the network for a maximum of two (resp. one) time slots.Proof. According to Lemma 7, our algorithm can elect a unique leader with a strictly positive constant probability by running the Browse(I, X i) protocol once in each step. As we have O(log n) steps, the success probability is then1 -O(n -1). Each step uses 2|I| rounds. As | I of Algorithm 6 is O(log n). Next, Lemma 10 ensures that after an election each time slot is blocked by at least one Eliminated node thus avoiding any further attempt. By Lemma 11, during the whole execution of Lead-erElection(n), each node wakes up during a maximum of three time slots.

Theorem 5 . 2 . 4 .

 524 In single-hop RNnoCD and RNCD (resp. RNsenderCD and RNstrongCD) of unknown size n, when an upper bound u on n and a constant h > 1 are known beforehand by all the nodes with n < u < n h , the execution of LeaderElection(u) succeeds to elect a leader in O(log 2 n) time slots with a probability greater than 1 -O n -1 . Each node wakes up at most 3 (resp. 2) times: 1 time to transmit and 2 (resp. 1) times to listen to the network.

Definition 5 . 3 . 1 (

 531 Definition of the distribution of the r.v. Y). Given ε, fix β = 1/(1 + ε). Let Y be the random variable defined as p k = P[Y = k], k 0 with p 0 = 1 -e -1 and p k = exp -k βexp -(k + 1) β for all k > 0 . (5.3.1)

Lemma 13 .

 13 Let Y 1 , Y 2 , • • • , Y n be n independent random variables distributed as described by (5.3.1) and let m = max 1 i n {Y i }. Then, (a) P [Card{ω such that

 with a time complexity of O (D log n)/(log D) + log O(1) n . It has a linear time complexity in D when D is a polynomial in n (D = O(n O(1))) and works for values of D that respect (log O(1) n D n). By contrast, our algorithm associates a new broadcasting protocol with a new k-clustering protocol and has an O D log log n + log O(1) n time complexity. It works for networks with a diameter D that respects (log 4 n D n) and has a better time complexity for the values of D that respect (log 4 n D < n x , x ∈ (0, 1)).

Theorem 6 . 1 . 1 .

 611 There is a randomized algorithm solving w.h.p. the leader election problem on multi-hop RNnoCD in O D log log n + log O(1) n time slots for networks of size n and diameter D that respects log 4 n D.

Figure 6 .Property 1 .

 61 1 by using the properties of the Mis set. By extending the Lemma 18, after the execution of Phase 2 (line 2 of Algorithm 8), each Internal node is at a hop-distance of no more than three from at least one ClusterHead node. Thus, Phase 2 computes a 3 × 2 0 = 3clustering of the network. Similarly, Phase 3 computes a 3 × 2 1 = 6-clustering.

Figure 6 . 1 :

 61 Figure 6.1: An example representing the distance between two Cluster-Head nodes after the execution of Clustering(1).

Theorem 6 . 3 . 2 .

 632 In an undirected multi-hop RNnoCD of size n, there is an algorithm outputting w.h.p. a correct k-clustering of the network in O(k log 4 n) times slots.

We adapt Algorithm 12 to broadcast k 1 messages m 1 , m 2 ,Theorem 6 . 3 . 4 .

 12634 • • • , m k from a unique source node s s . In multi-hop RNnoCD, let each node know n, D, its distance from the broadcasting source and a linear approximation of the number of its neighbors. There is an algorithm broadcasting w.h.p k messages in O(D log log n + k log 3 n) time slots. Proof. Using the property of Decay, a new message m k (k = 1, 2, • • • , k) reaches w.h.p. the layer L(log n) every (4 log 2 n) + (8 log 3 n) time slots (Adaptation 1. and 2.). In parallel, using the property of Broadcast(m k , D, n, l(s i), β -(s i), β + (s i), dir) (Theorem 6.3.3), each message m k reaches O(log 2 n) more layers every O(log 3 n) time slots. That is, by applying D = O(log 2 n) to Theorem 6.3.3, a message reaches all nodes at O(log 2 n) hop-distance from a transmitting node after O(log 2 n log log n) < O(log 3 n) time slots. Thus, by making the broadcast of each subsequent message m k start only every (8 log 3 n) time slots (Adaptation 1.), each broadcast is independent, meaning that each message reaches all nodes and cannot be interrupted by the broadcast of another message m k such that m k = m k . Then, according to Theorem 6.3.3, the first message m 1 reaches all nodes in O((D + log n) log log n) time slots. According to the aforementioned independence of the broadcasts, the second message m 2 reaches all nodes in O((D + log n) log log n + log 3 n) time slots. Similarly, each message m k reaches all nodes in O((D + log n) log log n + k log 3 n) time slots. Thus, all k messages reach all nodes of the network after O((D + log n) log log n + k log 3 n) = O(D log log n + k log 3 n) time slots.

 3.2.1 by replacing the diameter D of the network with the diameter d = D/ log 4 n of the k-clusters.

6. 3 .

 3 MULTI-HOP RNNOCD NETWORK • Then, by generalization, for h = 2, 3, • • • , d -1, each Candidate node and each Internal node of L(d -h) performs the same computations:

 Proof. First, by the properties of Decay, spreading all code-words to the Clus-terHead takes O(d log 3 n) time slots with a probability of 1 -O(1/n). Second, by transmitting (4 log n) values, according to Theorem 6.3.4, broadcasting ł ch takes O((d + log 4 n) log log n) time slots. Thus, according to the definition of (d = D/ log 4 n), the ClusterIDAssignment protocol has w.h.p. a time complexity of w.h.p. T 3 = O(D/ log n + log 4 n log log n).

7. 1 4)

 14 The renaming, naming and counting problems on single-hop beeping networks (ChapterChapter 4 focused on resolving the naming problem for single-hop beeping networks of size n. We first presented a deterministic renaming algorithm for when the nodes know N , a polynomial upper bound on n, and have a uniqueID ∈ {1, 2, • • • , N }.This algorithm has an O(n log N) time complexity and an O(n) energy complexity. Second, for when the nodes have no information about n and are initially indistinguishable, we designed a randomized naming algorithm terminating w.h.p. in optimal O(n log n) time slots, with an O(log n) energy complexity. This algorithm has been adapted to solve the counting problem, returning the exact number of the nodes in the network in O(n log n) time slots with an O(log n) energy complexity.

7. 3 6)

 36 Leader election for multi-hop radio networks (ChapterChapter 6 presented some improvements on the time complexity of the leader election algorithms on multi-hop RNnoCD. We considered a model in which all network nodes know the exact number n of participants and the diameter D of the network. To improve the time complexity of the leader election algorithm on multihop RNnoCD, we first designed a k-clustering protocol with an O(k log 4 n) time complexity. Subsequently, we presented a new broadcasting algorithm for RN-noCD that terminates in O((D + log n) log log n) time slots. We then adapted such a broadcasting algorithm to design a multi-message broadcasting algorithm that broadcasts some k messages in O(D log log n + k log 3 n) time slots. Finally, by using these two new algorithms, our leader election algorithm exhibited an almost optimal time complexity up to an O(log log n) factor and an O(log O(1) n) additive factor. More precisely, it elected w.h.p. a leader on an undirected multi-hop RN-noCD network in O D log log n + logO(

 pour le modèle bip, et fonctionne sur le modèle RNnoCD . Chaque noeud ClusterHead qui est entré dans l'ensemble Mis reste Clus-terHead et tous les autres noeuds deviennent des Internal . Ces étapes représentent le protocole Clustering(k) et calculent un réseau k-clusterisé à partir d'un réseau (k/2)-clusterisé en un temps (8k log 4 n).

	Pendant l'exécution du nouvel algorithme de k-clustering décrit précédemment,
	tous les noeuds exécutent les algorithmes Clustering(λ), une exécution après
	l'autre, pour λ = 1, 3, 6, • • • , k/2, k.

• Tous les noeuds exécutent d'abord une adaptation de Mis

[START_REF] Jeavons | Feedback from nature: simple randomised distributed algorithms for maximal independent set selection and greedy colouring[END_REF]

pour les réseaux RNnoCD. Cette adaptation fait que chaque noeud émetteur envoie le message à transmettre durant un temps (4 log 2 n) avec le protocole Decay . En parallèle, chaque noeud écoutant scrute le réseau durant un temps (4 log 2 n). À la fin de cette exécution, chaque noeud de l'ensemble Mis devient un noeud ClusterHead et tous les autres noeuds deviennent des noeuds Internal. Comme l'algorithme Mis de [41] a une complexité temporelle de (2 log 2 n) (voir la section 3.2.5 pour plus de détails), cette première série d'étapes représente le protocole Clustering(1) qui calcule un réseau 1-clusterisé en temps (8 log 4 n). • Par la suite, les noeuds ClusterHead nouvellement créés exécutent une autre adaptation de l'algorithme Mis [41] tandis que les noeuds Internal diffusent chaque message transmis dans le réseau. Pendant cette exécution, un noeud ClusterHead émetteur envoie chaque message pendant un temps (8 log 2 n) en effectuant deux exécutions consécutives du protocole Decay. En parallèle, tous les noeuds Internal qui reçoivent un message diffusent le message reçu avec Decay et tous les noeuds ClusterHead nonémetteurs écoutent le réseau pendant un temps (8 log 2 n). Chaque noeud ClusterHead qui a réussi à entrer dans l'ensemble Mis reste alors Clus-terHead et tous les autres noeuds deviennent Internal. Ces étapes du deuxième ensemble représentent le protocole Clustering(3) et calculent un réseau 3-clusterisé pendant un temps (16 log 4 n). • Ensuite, nous généralisons ces calculs pour calculer un réseau k-clusterisé à partir d'un réseau (k/2)-clusterisé. Pour ce faire, les noeuds Cluster-Head restants du réseau (k/2)-clusterisé exécutent une adaptation de l'algorithme Mis [41] : Rappelons que dans un réseau (k/2)-clusterisé, chaque noeud ClusterHead est à une distance d'au plus k sauts de tout autre Clus-terHead. Un noeud ClusterHead émetteur envoie le message à transmettre pendant un temps (4k log 2 n) en effectuant k exécutions consécutives du protocole Decay. En parallèle, tous les noeuds Internal qui ont reçu un message diffusent le message reçu avec Decay et tous les noeuds Clus-terHead non-émetteurs écoutent sur le réseau pendant un temps 4k log 2 n.

 Dans la section 6.3.3, nous simulons l'exécution de notre algorithme d'élection de leader pour les réseaux RNCD à simple saut sur les réseaux RNnoCD à sauts multiples. Cette émulation est subdivisée en quatre étapes principales :

• Au cours de la première étape, tous les noeuds calculent un d-clustering du réseau en fixant d = D/ log 4 n. La complexité temporelle de cette étape est de O(D) et elle permet à chaque noeud du réseau d'obtenir une étiquette prise dans {ClusterHead, Internal}. • La deuxième étape consiste en trois calculs : -Chaque noeud s i calcule sa distance l(s i) du ClusterHead de son cluster en exécutant la procédure Layering décrite dans la Section 3.2.6 (référezvous à la Section 6.3.5 pour plus de détails). Pendant cette exécution, chaque noeud ClusterHead se comporte comme le noeud source et tous les noeuds Internal se comportent comme les autres noeuds mentionnés dans la Section 3.2.6. -Ensuite, chaque noeud s i (∈ L(l(s i))) calcule une approximation du nombre β -(s i) (resp. β + (s i)) de ses voisins dans la précédente couche L(l(s i) -1) (resp. dans la couche suivante L(l(s i) + 1)). Comme mentionné dans la section 1.2.3.3, ces valeurs sont utilisées dans notre algorithme de diffusion de multiples messages. -Ensuite, comme dans notre algorithme d'élection de leader pour les réseaux RNCD à simple saut, chaque noeud s i génère (4 log n) variables aléatoires

 Annotated list of publications . Multi-hop networks . 2.2 Distributed communication models 2.2.1 Synchrony and asynchrony Representation of the execution of our energy-efficient naming algorithm with a binary tree. 1.2 Schematic view of leader election in the RN model. 1.3 Random variable generation and candidacy on a network of 16 nodes. 1.4 The first transmission to elect a leader on a network of 16 nodes. . . 1.5 The second transmission to elect a leader on a network of 16 nodes. 1.6 Multiple elected leaders. 1.7 Witnessing and flooding in a leader election algorithm. 1.8 Optimal leader election on single-hop RNCD with four nodes. 1.9 The k-clustered network. The red or black nodes are ClusterHeads

	List of Figures
	1.1

• Au cours de la troisième étape, chaque noeud devient Candidate avec une probabilité de (10 log n)/n et les noeuds Candidate envoient leur mot binaire bit par bit au ClusterHead. Le ClusterHead enregistre alors le résultat d'un OU binaire exclusif (Xor) sur tous les mots reçus en tant qu'identifiant (ClusterID) de son cluster. • La quatrième étape est la boucle principale de l'algorithme. Son but est d'effectuer le calcul d'un OU binaire exclusif sur les ClusterID de tous les clusters du réseau. Comme dans l'algorithme d'élection de leader conçu par [34], l'étape 4 est subdivisée en étapes appelées débats. Pendant un débat, chaque ClusterHead s ch échange son ClusterID(s ch) avec ses voisins en utilisant les trois protocoles suivants : UpLink, InterCommunication, et DownLink. Le ClusterHead s ch définit ensuite son 1 Introduction 1.1 Distributed communication problems 1.2 Overview and organization of the thesis 1.2.1 Energy complexity of renaming, naming and counting algorithm on single-hop beeping and radio networks (Chapter 4) 1.2.1.1 The main motivations of the work 1.2.1.2 Addressed problems 1.2.1.3 Renaming and naming algorithms with optimal time and energy complexities 1.2.2 Leader election with a constant energy complexity (Chapter 5) 1.2.2.1 Leader election and energy complexity 1.2.2.2 Radio networks with no collision detection or RN-noCD . 1.2.2.3 Beeping networks 1.2.3 Broadcasting and electing a leader on multi-hop radio networks without collision detection or RNnoCD(Chapter 6) . . 1.2.3.1 Motivations of the work 1.2.3.2 A new optimal leader election algorithm for singlehop RNCD . 1.2.3.3 A new leader election algorithm for multi-hop RN-noCD . 1.3 2 Models, Definitions, and Network Assumptions 2.1 Distributed network models . 2.1.1 Graph [30] . 2.1.2 Graph representation of networks 2.1.3 Single-hop networks . 2.1.4 2.2.2 The single-access channel and the multi-access channel models 2.2.3 The LOCAL and CONGEST models 2.2.4 Collision detection . networks (Chapter 4) . 101 7.2 Leader election for single-hop radio networks (Chapter 5) 102 7.3 Leader election for multi-hop radio networks (Chapter 6) 103

 ClusterHead node is at a hop distance of at most k from any other ClusterHead node. A transmitting ClusterHead node sends the message to transmit during (4k log 2 n) time slots by performing k consecutive executions of the Decay protocol. In parallel, all Internal nodes that received a message spread the received message with Decay and all non-transmitting ClusterHead nodes listen to the network during 4k log 2 n time slots. Each ClusterHead node that

2 n) time slots with the Decay protocol. In parallel, each listening node listens to the network during (4 log 2 n) time slots. At the end of these computations, each node in the Mis set becomes a ClusterHead node and all other nodes become Internal nodes. As the Mis algorithm of

[START_REF] Jeavons | Feedback from nature: simple randomised distributed algorithms for maximal independent set selection and greedy colouring[END_REF]

has a (2 log 2 n) time complexity (see Section 3.2.5 for more details), these first set of steps represent the Clustering(1) protocol that computes a 1-clustered network in (8 log 4 n) time slots. • Thereafter, the newly created ClusterHead nodes execute another adaptation of the Mis [41] algorithm while the Internal nodes spread all messages transmitted in the network. During this execution, a transmitting ClusterHead node sends each message during (8 log 2 n) time slots by performing two consecutive executions of the Decay protocol. In parallel, all Internal nodes that receive a message spread the received message with Decay and all non-transmitting ClusterHead nodes listen to the network during (8 log 2 n) time slots. Each ClusterHead node that succeeded to enter into the Mis set then remains ClusterHead and all other nodes be-1.2. OVERVIEW AND ORGANIZATION OF THE THESIS come Internal nodes. These second set steps represent the Clustering(3) protocol and compute a 3-clustered network during (16 log 4 n) time slots. • Then, we generalize these computations to compute a k-clustered network from a (k/2)-clustered one. To do so, the remaining ClusterHead nodes of the (k/2)-clustered network execute an adaptation of the Mis [41] algorithm: Recall that in a (k/2)-clustered network, each entered the Mis set remains ClusterHead and all other nodes become Internal nodes. These steps represent the Clustering(k) protocol and compute a k-clustered network from a (k/2)-clustered one in (8k log 4 n) time slots.

 Try ← False and picks p uniformly at random from (0,1 2).

2 while Label(s i) = Null or count < ((c + 1) log n) do 3 With a probability p, s i sets Try ← True and listens to the network if Try = False. s i beeps otherwise. 4 if s i hears a beep then 5 s i picks f uniformly at random from [1, 2] and sets p ← p/f . 6 else 7 s i sets p ← min(f × p, 1) 8 end 9 if Try = True then 10 s i beeps, sets Label(s i) ← Mis and quits the algorithm. 11 else 12 s i listens to the network 13 if s i hears a beep then 14 s i sets Label(s i) ← Eliminated. 15 end 16 end 17 s i increments count. 18 end Algorithm 1: Mis() executed by each node s i

 To do so, we made each node generate one random variable distributed as Y and find which node holds the unique maximum by means of a distributed dichotomy algorithm.

	P[Λ 3 log log n] e -log log n O	1 log n	.
	The r.v. distribution Y defined by (3.3.6) allowed us to design an algorithm electing
	a leader on single-hop beeping networks with an O(log log n) time complexity that
	succeeds with a probability of at least 1 -O	1 log n .	

have E[Λ] = log log n -1/ log n . By means of Chernoff bounds, it yields

Table 4 .

 4 1: Comparison between some existing results and our results for the naming and the counting problems on single-hop beeping networks.

	Problem	Time	Energy	Probability of
	and model	complexity	complexity	success
	Existing results		
	Randomized naming			
	on single-hop RNnoCD [58]	O(n)	O(log log n)	1 -O 1 n
	n known			
	Randomized naming			
	on single-hop beeping networks [20] O(n log n) Not applicable	1 -O 1 n
	(BL), n known			
	Randomized counting			
	on single-hop beeping networks [15]	O(n)	Not applicable	1 -O 1 n
	(BcdL)			
	Our results		
	Unconditional deterministic			
	renaming on single-hop BL	O(n log N)	O(n)	Not applicable
	The nodes have ID ∈ {1, • • • , N },			
	n unknown, Theorem 4.2.7			
	N = n O(1)			
	Randomized naming			
	on single-hop BL	O(n log n)	O(log n)	1 -O (n -c)
	Indistinguishable nodes,			c > 0
	n unknown, Theorem 4.3.3			
	Randomized			
	counting on single-hop BL	O(n log n)	O(log n)	1 -O (n -c)
	Indistinguishable nodes,			
	n unknown, Theorem 4.3.4			c > 0

 note that the nodes do not necessarily know M). During the season S k , each node s i sends its ClusterID(s

i) bit by bit during (2 lg N)+2 time slots t 0 , t 1 , • • • , t 2 lg N +1 . To do so, for j = 0, 1, • • • , lg N +1 , during each couple of time slots (t 2j = t 0 + 2j, t 2j+1 = t 2j + 1), each node executes the following defined TestRv(2j) protocol.

end 8 else 9 s

 • If s i neither is eliminated nor has eliminated some other node during t 2j , t 2j+1 , it becomes Candidate. The node s i has a unique code-word denoted ClusterID(s i) and receives the time slots number 2j as a parameter. Output: Status(s i) ∈ {Candidate, Eliminated, Eliminator} beeps at t 2j and listens to the network at t 2j+1 = t 2j + 1 sets Status(s i) ← Eliminated. i listens to the network at t 2j and beeps at t 2j+1 10 if s i hears a beep at t 2j then

	CHAPTER 4. ENERGY-EFFICIENT RENAMING AND NAMING IN
	SINGLE-HOP BEEPING NETWORKS
	1 if ClusterID(s i)[j] = 0 then
	3	if s i hears a beep at t 2j+1 then
	5	else
	6	s i sets Status(s i) ← Candidate.
	Let us now define this TestRv(2j) protocol.
	Algorithm 2. TestRv(2j) at any node s i .

Input : 2 s i 4 s i 7 11 s i sets Status(s i) ← Eliminator. 12 else 13 s i sets Status(s i) ← Candidate.

14

end 15 end

 At each even time slot t 0 , t 2 , t 4

 node s i must wake up and execute TestRv(2j) at t 2j = ttl(s i) during the seasons S k+1 , S k+2 , • • • , S l where S l is the season during which s i is no longer eliminated. (Time To Notify or TTN(s i)). TTN(s i) is a set of even time slots t 2j , for j = 0, 1, • • • , lg N , such that the node s i has eliminated some other nodes during the couple of time slots (t 2j , t 2j +1). More precisely, if, during any season S k , k = 1, 2, • • • , M, the nodes s i and s i , respectively, have ClusterID(s i)[j] = 1 and ClusterID(s i)[j] = 1, and a remaining unlabeled node s i has ClusterID(s i)[j] = 0, then s i and s i respectively save t 2j in TTN(s i) and TTN(s i), and s i saves t 2 j in ttl(s i).

	4.2. A NEW APPROACH: RENAMING M NODES IN A
	DETERMINISTIC MANNER
	Definition 4.2.3

 during the seasons S k+1 , S k+2 , • • • , S f , the node s i must execute TestRv(2j) at each time slot t 2j , saved until the season S k in its TTN(s i), to notify the other nodes that they are still eliminated during these seasons.

Remark 2. For j = 0, 1, • • • , lg N , when a node s i adds t 2j into its TTN(s i), it no longer has an active neighbor s i that holds ClusterID(s i)[v] = 1, for all v > i. Thus, s i sets its ttl(s i) to Null.

 season), and t 2j ∈ {TTN(s i) {ttl(s i)}},• or Status(s i) = Candidate (i.e., at the time slot t 2j-2 , the node s i executed TestRv(2j -2), which returned Candidate or Eliminator). such execution of TestRv(2j) works as described for the time slot t 0 : If TestRv(2j) returns Eliminated, the node s i records t 2j as its ttl(s Finally, if SINGLE-HOP BEEPING NETWORKS TestRv(2j) returns Candidate, the node s i sets it as its Status(s i). At the end of each season, the remaining unique Candidate node takes the next available label, and before proceeding to the next season, each node s i resets its Status(s i).

	Each

i) and sets its Status(s i) to Eliminated. Otherwise, if TestRv(2j) returns Eliminator, s i adds t 2j into its TTN(s i) and sets its Status(s i) to Candidate.

end 18 end 19 end 20 if

) or (Status(s) = Candidate) then 6 s i sets Status(s i) ← TestRv(2j) and sleeps. 7 end 8 switch Status(s i) do 9 case Candidate do 10 s i removes t 2j from its TTN(s i) and resets ttl(s i). 11 end 12 case Eliminated do 13 s i sets t 2j as its ttl(s i). 14 end 15 case Eliminator do 16 s i adds t 2j into its TTN(s i), resets its ttl(s i) and sets Status(s i) ← Candidate. 17 Status(s i) = Candidate then 21 s i sets (s i) ← k. 22 end 23 s i sets k ← k + 1. 24 end Theorem 4.2.4. In single-hop beeping networks of size n, a deterministic algorithm renames M nodes in O(M log n) time slots, with no node being awake for more than O(M + log n) time slots. Proof. Algorithm 3 terminates in M × 2 lg N + 2 = O(M log n) time slots in a deterministic manner.

 ClusterID(s y)[j] = 1, it wakes up at t 2j ∈ TTN(s y) during L j (s y) seasons. As L j (s y) nodes are labelled after each L j (s y) seasons, we have us consider a node s z . s z wakes up at only one season at any time slot t j / ∈ {TTN(s z) {ttl(s z)}}. Hence, we haveW o (s z)

	CHAPTER 4. ENERGY-EFFICIENT RENAMING AND NAMING IN
	SINGLE-HOP BEEPING NETWORKS	
	log N	
	O(1) O(log N) O(log n) .	(4.2.6)
	j=1	
	Finally, by applying (4.2.3), (4.2.5), and (4.2.6) to (4.2.1), we achieve the desired
	result.	
	A maple simulation illustrates these results in Section 4.5.	
	L j (s y) < M,	(4.2.4)
	j	
	As a consequence,	
	W TTN (s y) O(M).	(4.2.5)

.2.3)

Let us now consider an arbitrary node y. By definition, TTN(y) is a set of even time slots during which y must wake up until getting labeled to notify all nodes with a lesser ID that they are eliminated. Definition 4.2.6 (L j). For j = 1, 2, • • • , log 2 N , for any arbitrary unlabelled node s y , let L j (s y) be the number of unlabeled nodes with higher IDs than ID(s y) and with ClusterID[j] = 1 when s y has ClusterID(s y)[j] = 1.

For ttl, let us consider L(s

y) = {L 0 (s y), L 1 (s y), • • • , L O(log N) (s y)}. If

s y has Let Theorem 4.2.7. In single-hop beeping networks of size n, we suppose that no node knows n, but a polynomial upper bound N on n is given in advance to all nodes and the nodes have a unique ID ∈ {1, 2, • • • , N }. A deterministic renaming algorithm assigns a unique label to each node in O(n log n) time slots, with no node being awake for more than O(n) time slots. Proof. By applying M = n to Theorem 4.2.4, we achieve the desired result.

 2. The last labeled node (in the last group) sends its label bit by bit to all listening nodes.

This adaptation yields the following result: Theorem 4.3.4. In single-hop beeping networks of size n, let n be unknown by all nodes and the nodes are initially indistinguishable, there exists a randomized counting algorithm that allows all nodes to know the exact value of n, in O(n log n) time slots w.h.p, with no node being awake for more than O(log n) time slots.

1, Phase 1: candidacy (line 4 in Algorithm 6).

 At t 0 , each node s i ∈ G 1 locally generates one independent random variable X i distributed as G(1/2). All nodes in G 1 with X i ∈ I = [lg (n/(20 log n)) -1, lg (3n/(20 log n))] then take Candidate status and the other nodes of G 1 become Eliminated.

	SINGLE-HOP WIRELESS NETWORKS			
	By applying the Chernoff bounds (5.2.1) and (5.2.2) on Z = Card({i such that X i ∈ n I}) = i=1
	Lemma 9. There are Θ(log n) Candidate nodes in each group with a probability
	greater than 1 -O n -1 .				
	Proof. With I = [lg (n/20 log n) -1, lg (3n/20 log n)], and q k = 2 -k-1 , we have
	P[X i ∈ I] =	lg(3n/20 log n) k=lg(n/(20 log n))-1	q k =	(70 log n) 3n	.

1, Phase 3: browsing through interval I (line 6 in Algorithm 6 as well as Algorithm 5).

 This phase uses even/odd time slot scheduling. The even time slots {t 0 , t 2 , • • • , t 2τ } (τ is an arbitrary constant) are dedicated to transmissions and the odd time slots {t 1 , t 3 , • • • , t 2τ +1 } are used for feedback. At t 0 , each Candidate node s i ∈ G 1 checks whether X i = I 0 to transmit a one-bit message (I 0 = lg (n/(20 log n))-1) while each Candidate node s j ∈ G 1 with X j = I 1 listens to the network. Then, at t 1 , the nodes with X i = I 0 listen in turn: if the listening nodes at t 0 receive a message, they send a single-bit feedback message at t 1 . If a node transmitted at t 0 and receives feedback at t 1 , it becomes the Leader and the other nodes become Eliminated. Each Candidate node s i ∈ G 1 executes these computations at each time slot t τ for

8

 3, especially at t σ and t σ + 1 (picked by s 2 during Phase 2). The node may also transmit once at the time slot t η (picked by s 2 during Phase 2) if it received a message at both t σ and t σ + 1 (i.e., a node got elected). Algorithm 5. Browse(I, X i): executed during Step ζ for ζ = 1, 2, • • • , (10 log n). The interval I, the r.v. X i and the group G ζ chosen in Step 0 of Algorithm 6, t σ and t η picked in Step 2 of Algorithm 6 Output: Each node s i has Status(s i) ∈ {Leader, Eliminated}. Each node sets t = t 2(ζ-1)| I |+2τ . Each Candidate node s i ∈ G ζ with X i = I τ sends a one-bit message at time slot t and listens to the network at t + 1. Each Candidate node s j ∈ G ζ with X j = I τ +1 listens to the network at t. Each Eliminated node s e ∈ G ζ having t σ = t listens to the network at t and t + 1.

	Input :

1 for τ from 0 to | I | -1 do 2 3 4 5 foreach s j /s i such that s j receives a message at t and s i receives a message at t + 1 do 6 s j transmits a one-bit message at t + 1 and s i sets Status(s i) ← Leader. 7 end 9 if s e receives a message at both t and t + 1 then 10 s e sets Status(s e) ← Marked.

11 end 12 Each

 Marked node that has t η = t transmits at t and sets Status(s e) ← Eliminated. Each node s i has a Status(s i) ∈ {Leader, Eliminated}. Each node enters a groupUar({G 1 , G 2 , • • • , G ζ , • • • , G (10 log n) }) where for ζ = 1, 2, • • • , (10 log n), G ζ isthe group of nodes that will participate in Step ζ. 2 Step 1 to Step (10 log n): for ζ from 1 to (10 log n) do Each node s i ∈ G ζ locally generates a random variable X i distributed as G(1/2). Each node s i ∈ G ζ having X i ∈ I = [lg (n/(20 log n)) -1, lg (3n/(20 log n))] sets Status(s i) ← Candidate and the other nodes set Status(s i) ← Eliminated. Each Eliminated node in G ζ sets t σ ← U AR({t (ζ-1)2| I | , t (ζ-1)2| I |+2 , . . . , t 2ζ| I |-2 }) and t η ← U AR({t σ + 2, . . . , t (4 log n| I |)-1 }).

	CHAPTER 5. TRANSMITTING ONCE TO ELECT A LEADER ON
	SINGLE-HOP WIRELESS NETWORKS
	Algorithm 6. LeaderElection(n).
	Input : The exact value of n.
	Output: 3 Step ζ, Phase 1: 6
	13 end

1

Step 0:

4 5

Step ζ, Phase 2:

 • • • , (10 log u), let G ζ be the group of nodes participating in Step ζ. By applying n = u to Lemma 8, we obtain w.h.p. Note that each node generates the same variable X i as described in Section 5.2.1. • During Phase 2 (line 5 in Algorithm 6), the nodes eliminated after Phase 1 set t σ = Uar({t (ζ-1)2| J | , t (ζ-1)2| J |+2 , • • • , t 2ζ| J |-2 }) and t η = Uar({t σ + 2, • • • , t (20 log u| J |)-1 }).

	5.2. RADIO NETWORKS
	Algorithm 6 as follows.
	• During Step 0 (line 1 in Algorithm 6), each node chooses uniformly at random
	to participate in one of the remaining (10 log u) steps (similar to Algorithm 6).
	For ζ = 1, 2, Card(G ζ) ∈ [n/(20 log u), 3n/(20 log u)]
	• Recall that u 1/h > n. During Phase 1 of each Step ζ (line 2 in Algo-
	rithm 6), to have an interval containing the interval I = [lg (n/(20 log u)) -
	1, lg (3n/(20 log u))], each node sets a new interval J = [lg u 1/h /(20 log u) -
	1, lg (3u/(20 log u))].

 1/β , (log n+ log log n) 1/β] and let Λ = Card({ω such that Y ω ∈ L}). We have All Eliminated nodes set t σ = Uar({t 0 , • • • , t | L |-1 }) in order to listen to the network at t σ during Phase 3. Then, if a node beeps at a time slot during Phase 3, all nodes that hear a beep must beep at the next time slot to notify the next Candidate nodes (which become Eliminated) that a Leader has already been elected (line 19 of Algorithm 7). Each node s i has a Status(s i) ∈ {Leader, Eliminated}. For each node s i : 2 s i locally sets V = exp u εβ/h , generates V random variables Y i,1 , , Y i,2 , • • • , Y i,V following the distribution described by (5.3.1) and saves

	• Phase 2 (line 8 in Algorithm 7): After the execution of Phase 3, all remaining Candidate nodes become Elim-
	inated.		
	Algorithm 7. LeaderElection(u, ε, β, h).		
	Input : An upper bound u on n, a constant ε, β = 1/(1 + ε) and a constant
	h > 1.		
	Output:		
	P[Λ 3 log log n] O	1 log n	.

1 Phase 1:

τ then 13 s e beeps at t τ + 1. 14 end 15 Each

 Each Eliminated node s e sets t σ = Uar({t 0 , . . . , t | L |-1 }). Each Candidate node s i having Y i = L Last beeps at t 0 and sets Status(s i) ← Leader. 10 for τ from 0 to | L | -2 do 11 Each Eliminated node s e with t σ = t τ listens to the network at t τ . Candidate node s i having Y i = L Last -(τ + 1) listens to the network at t τ . beeps at t τ + 1 and sets Status(s i) ← Eliminated.

	20	end
	21 end

then 4 s i sets Status(s i) ← Candidate. 5 else 6 s i sets Status(s i) ← Eliminated. 7 end 8 Phase 2: 9 Phase 3: 12 if s e hears Beep at t 16 if s i hears no Beep at t τ then 17 s i beeps at t τ + 1 and sets Status(s i) ← Leader. 18 else 19 s i

21 end 22 end 23

 3. MULTI-HOP RNNOCD NETWORK Algorithm 9. Clustering(λ) executed by each node s i . Each node knows n and λ and has the label Label(s i) ∈ {ClusterHead, Internal, Null} Output: Each node s i has the label Label(s i) ∈ {ClusterHead, Internal}

Input :

1 if Label(s i) = Internal then 2 s i listens to the network. 3 if s i receives a message m then 4 s i executes Send(m, λ). 5 end 6 else 7 s i inits Label(s i) ← Null, c ← (2 log 2 n), count ← 0, Try ← False and picks p uniformly at random from (0, 1 2). 8 while Label(s i) = Null or count < ((c + 1) log n) do 9 With a probability of p, s i sets Try ← True to run Send(1, λ). s i executes Listen(λ) if Try = False. 10 if s i receives a message during the execution of Listen(λ) then 11 s i picks f uniformly at random from [1, 2], sets Try ← False and p ← p f . 12 else 13 s i sets p ← min((f × p), 1) 14 end 15 if Try = True then 16 s i executes Send(1, λ), sets Label(s i) ← ClusterHead and quits the algorithm. 17 else 18 s i executes Listen(λ).-: 19 if s i receives any message during Listen(λ) then 20 s i sets Label(s i) ← Internal. s i sets count ← count + 1.

24 end 25 end Lemma 18.

 After the execution of Clustering(1) (line 2 of Algorithm 8): (i) Each Internal node is at one hop-distance from at least one Cluster-Head node.

5

 Upon receiving m at t ri ,

6 while φ < (2 log n) and Status(s i) / ∈ {Candidate, Eliminated} do 7 s i waits during 2ψ i time slots. 8 for τ i = 0, 1, • • • , ψ do 9 s i sets τ ← r i /2 + φψ i + φτ i and executes Transmit(τ, β + (s i), m, dir) at t 2τ . 10 After that, s i executes Transmit(τ, β + (s i), m, dir) and Feedback(τ, β -(s i), l(s i), dir) in a parallel manner at t 2τ +1 . 11 end 12 s i sets φ ← φ + 1

13 end 14 end Lemma 22.

 During each even time slot of the execution of Algorithm 12, at most (2 log n)3 nodes attempt to transmit m simultaneously.Proof. For h = 0, 1, • • • , d, let us consider a node s i ∈ L(h + 1) and a node s i ∈ (N -(s i)) in the layer L(h). When s i first receives m at t ri , it becomes Candidate with a probability of min{1, (10 log n)/β + (s i)} (lines 5 --10 of Algorithm 12 and line 8 of Algorithm 10). By using the Chernoff bounds, an average of β + (s i) nodes try to become Candidate at the same time and a maximum of O(log n) Candidate nodes in N -(s i) (as s i ∈ N -(s i)) simultaneously attempt to transmit m at t r i +2ψ i +2 (line 10 --13 of Algorithm 12). As each node remains a transmitter with a probability of 1/2 (line 11 of Algorithm 10), an average of half of the nodes remain transmitters (line 10 -13 of Algorithm 10) at each time slot. Thus, a unique node of N -(s i) transmits m after (2 log n) time slots with a constant probability.

The devices use randomness to perform each action during the execution of a randomized algorithm.

log n represents the neperian logarithm value of n.

lg N represents the value of the logarithm of N in base 2.

It corresponds to 4 × 3 = M log N .

RNsenderCD and RNstrongCD stand for radio network with transmitter collision detection and radio network with strong collision detection (both transmitting and listening devices can detect collision).

[START_REF] Bar-Yehuda | Efficient emulation of single-hop radio network with collision detection on multi-hop radio network with no collision detection[END_REF] The e -k 1 2 will be generalized to e -k 1 1+ε in Section 5.3, equation (5.3.1).

∆ can also be considered as the maximal number of neighbors of any node si in the layer L(l(si) -1) that simultaneously aims to transmit a message m to si.

Only the Candidate nodes try to spread m.

On the one hand, note that in practice, the collision detection in the beeping model is used to detect a unique transmission.On the other hand, we can restrict the nodes in a RNCD to work as in the BL by making them transmit only single-bit messages. Thus, algorithms designed

Adding one more node to the set breaks its property.

The transmitters can detect collisions on the BcdL model or Beep with Collision Detection Listen[START_REF] Afek | Beeping a maximal independent set[END_REF][START_REF] Scott | Feedback from nature: an optimal distributed algorithm for maximal independent set selection[END_REF].

log * n represents the iterated logarithm of n.

√ k 2 √ k 1 -O 1 √ k .

By the Chernoff Bounds, each group counts at most

log N nodes.

The maple codes are available in https://www.irif.fr/~nixiton/initLoop.mw or https://www.irif.fr/~nixiton/initLoop.pdf

A Monte Carlo algorithm is a randomized algorithm whose output may be incorrect

A Las Vegas algorithm is a randomized algorithm that always gives correct results.

Otherwise, we make the notations rather cumbersome by using x (resp. x) for the ceiling (resp. floor) function.

Equation (5.2.4) shows that T = 2| I | < 8 where | I | is the length of the loop of Algorithm

with two time slots inside the loop.

The algorithm may elect a leader with a constant probability at each step by Lemma 12, so a leader is elected w.h.p. after (2 log u) steps.

Spontaneous Transmissions allow a node to transmit messages before the receipt of the message to broadcast.

Recall that in this thesis, log n represents the Neperian logarithm of n and lg n is its logarithm in the positional notation with the base 2.

A node that received m.

δ + (s i) = δ + (s i)[0]δ + (s i)[1] • • • δ + (s i)[(2 log n) -1]

Recall that l(si) represents the hop-distance between si and ss

up corresponds to the broadcast from a source node ss to the Border nodes and down represents the opposite direction.

During this φ th iteration, we consider the (τi) th couple of time slots that follow the first 2ψi waiting time slots counted from tr i .

The first parameter τ of the Transmit protocol is the index of the couple of time slots during which si executes the protocol. Its value is then half the considered number of time slots.

ł ch is a set of IDs stocked by the ClusterHead.

Note that ł ch = ł ch [0]ł ch [1] • • • ł ch [(4 log n)].

By definition, two ClusterHead nodes are at K-hop distance from each other on G d if a path containing K ClusterHeads exists between them. After the execution of the d-Clustering algorithm, all ClusterHead nodes may be at (2d/3)-hop distance from each other on G0 in the worst-case. As a result, two ClusterHeads can be at a hop distance of at most (3D/2d) on G d .

Remerciements

Chapter 5 Transmitting Once to Elect a Leader on Single-hop Wireless Networks

Distributed wireless network devices are mostly battery-powered. Transmitting a message on distributed wireless networks uses more energy than receiving one, which in turn uses more energy than internal computations. Therefore, in this chapter, we study the problem of randomized leader election in synchronous distributed single-hop networks with a special focus on the energy complexity. We provide algorithmic solutions to the implicit version of leader election problem where nonleader nodes need not be aware of the identity of the leader. Because the size of a message impacts the energy consumption, we highlight that the solutions we propose consume very little energy: each device is allowed to send a single one-bit message only once and listen to the network during two time slots at most. We first consider four well-studied variants of the radio network (RN) model depending on the transmission and reception abilities of the participating devices (refer to Sections 2.2.5 and 2.2.4):

• RNstrongCD: both transmitters and listeners can detect collision,

• RNsenderCD: only transmitters can detect collision,

• RNCD: only listeners can detect collision,

• RNnoCD: no device can detect collision.

Next, we study the beeping network model. The time and energy complexities of all our algorithms are deterministic and they succeed in electing a unique leader with a high probability even under the restriction that each node can only send once a single one-bit signal. When the nodes know their number n, our algorithm elects a leader in O(log n) rounds. As motivated in Section 2.5, when n is not known beforehand but an upper bound u on n with log u = Θ(log n) is known by all participating nodes, we design a randomized algorithm with O(log 2 n) time complexity for the RN models. For beeping networks, our algorithm has O(n ε) time complexity The parameter ε can be tuned to increase the probability of success of the algorithms. SINGLE-HOP WIRELESS NETWORKS transmit or listen to the network) for this (internal) checking computation. Only the nodes having X i = I τ wake up at t τ in order to transmit or to listen (depending on the considered model to check in a distributed manner the uniqueness of one of the X i s) to the common channel. That is, browsing an interval I consists in searching for a unique element in I by making the participating nodes work in a distributed way. Definition 5.2.1 (Witnessing a time slot). At each time slot t 0 = 0, t 1 = 1, • • • , t τ = τ , where τ is an arbitrary integer, a node s i witnesses t τ if it wakes up to listen to the network at t τ . Definition 5.2.2 (Flooding a time slot). At each time slot t 0 = 0,

where τ is an arbitrary integer, a node s i floods t τ if it wakes up to transmit at t τ so that no node can transmit alone at t τ .

The following Lemma shows that w.h.p. there are Θ(n/ log n) nodes in each of the groups (Lemma 8).

Proof. Let us first recall the Chernoff bounds [START_REF] Chernoff | A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the Sum of Observations[END_REF]. Let Z = n i=1 Z i where Z i = 1 with a probability of z i and Z i = 0 with a probability of 1 -z i . For any δ ∈ (0, 1), we have

and

The proof of the lemma applies the Chernoff bounds on

(5.2.

3) The proof is completed by choosing δ = 1/2.

In the remainder of this paper, we fix δ = 1/2 in order to have

Each subsequent step is subdivided into three phases: the candidacy phase (line 4 in Algorithm 6), the witness and flood choice phase (line 5 in Algorithm 6 as well as lines 6 and 8 in Algorithm 5) and the browsing phases (line 6 in Algorithm 6). Figure 5.1 illustrates the execution of one step of our algorithm with eight devices and I = [3,[START_REF] Attiya | Distributed Computing: Fundamentals, Simulations and Advanced Topics[END_REF]. Each of the eight devices first generates a r.v. distributed as G(1/2). Each device then has a value in {1, 2, 3, 4, 5}, as represented in the second graph (with blue and green nodes) of Figure 5.1. SINGLE-HOP WIRELESS NETWORKS Lemma 12. Fix α ∈ (0, 1), let Z 1 , Z 2 , • • • , Z N be N independent copies of a r.v. Z distributed as described by (5.2.5). Let ν be the probability

We have

Proof. Lemma 12 is proved in Section 3.

Step 0: Step's choice. Each node chooses Uar to participate in one of the remaining (2 log u) 5 steps.

For better clarity, we only describe the execution of Step 1 and all the other steps follow Step 1.

Step 1: As for Algorithm 6, it is subdivided into three phases:

1. Phase 1: candidacy. Each node s i ∈ G 1 locally generates one independent copy Z i of a r.v. Z distributed as (5.2.5). To have an interval containing [log α (2n/5 log u) , log α (3n/5 log u)] (by applying N = Card(S 1) to Lemma 12), each node sets J = log α 2u We observe that the terms in O(1/ log n) do not yield algorithms that succeed w.h.p. However, we can ask each node to first generate an exponential number of local random variables and then to use, for each node s i , only the maximum of its variables. The independence of the random draws then allows us to obtain w.h.p. results. The next paragraphs show us how to implement these ideas.

Leader Election Algorithm for Unknown n in the BN model

Let us consider the assumption that each node knows an upper bound u on n and a constant h (h > 1) such that n < u < n h .

To reach the high probability requirement, we modify the three phases presented in Algorithm 6 (Section 5.2.1) for the BN model. For the same reasons of clarity, Phase 3 will be presented before Phase 2.

• Phase 1 (line 1 in Algorithm 7) Fix ε. Let β = 1/(1 + ε) and V = exp u εβ/h . If each node generates V random variables and uses only their maximum, as log(nV) = O(n Ω(1)), our definition of V will allow us to reach the high probability requirement for all the three statements of Lemma 13. Thus, each node

following the distribution described by (5.3.1) and saves their maximum by setting

The maximum of the Y i s being perfectly determined (via part (b) of Lemma 13), the nodes then compute L 0 = (log V -log log log V)

and L Last = (log(uV) + log log V) 1/β . Each node s i with a value Y i belonging to the interval L then takes the status of Candidate. All other nodes are Eliminated.

• Phase 3 (line 9 in Algorithm 7): Each Candidate node traverses the interval L by checking the values one after the other with the protocol Browse(I, X i) but in the reverse order (from L Last to L 0) to discover the node that holds the maximum (line 15 of the Algorithm 7). The single node having generated this maximum then becomes the Leader (lines 16 and 17 in the Algorithm 7).

-If a Candidate node s i has Y i = L Last , it becomes the Leader and beeps at t 0 (line 9 of Algorithm 7).

-Then at each time slot

) and in this case, listens to the network (line 15 of Algorithm 7).

-If it hears nothing at t τ , then it beeps at t τ +1 and becomes the Leader (lines 16 and 17 in Algorithm 7).

Some values of the interval L may not be chosen, i.e., there may be time slots in Phase 3 during which no nodes are soliciting the network. The algorithm may then unintentionally elect more than one leader. In order to circumvent this problem, we introduce a new method (slightly different from the one used with the RN model) that blocks any future attempts after a successful election. SINGLE-HOP WIRELESS NETWORKS Algorithm 7). As | L | = O(n ε), the result is obtained by applying the Chernoff bounds to an average of O n 1-ε nodes per time slot. Theorem 5.3.2. Fix ε ∈ (0, 1). In single-hop BN networks of size n, if an upper bound u on n and a constant h are given in advance to all the nodes with u satisfying n < u < n h and h > 1, then Algorithm 7 elects a leader in O(n ε) time slots with a probability of at least

with each node transmitting and listening to the network during a maximum of one time slot.

Proof. As for the proof of Theorem 5.2.3, the time complexity of Algorithm 7 comes from the time spent browsing through the interval L, which is

The probability of success depends on two factors: the probability of the maximum of all generated random values in Phase 1 being unique and the probability of each time slot of Phase 3 being witnessed by at least one node.

On the one hand, by Lemma 14, at least one node witnesses each time slot of Algorithm 7with a probability larger than 1 -O(n -1).

On the other hand, the exact number of generated random variables is nV (V values per node). By Lemma 13 part (a) there is unique maximum with a probability of larger than

Leader Election Algorithm for Known n in the BN model

When the nodes initially know n, Algorithm 7 can be adapted as follows.

1. During Phase 1, V becomes exp n β /n (with β = 1/(1 + ε)). Then, each node s i locally generates V random variables

following the distribution Y described by (5.3.1) and saves

Each node then computes L

3. Subsequently, the candidacy, witnessing, and browsing procedures work exactly as in Algorithm 7.

We then obtain the following result.

Theorem 5.3.3. Let ε be a constant such that 0 < ε < 1. In single-hop beeping networks of known size n, there is a randomized Monte Carlo leader election algorithm that elects a leader in O(n ε/(ε+1) log n) time slots with a probability of success of at least 1 -O n -1/(ε+1) , and during its execution the nodes transmit and listen to the network at most once.

Proof (Sketch). First, the time complexity of this adaptation of Algorithm 7 is

Next, using Lemma 13, the probability of success of Algorithm 7 is greater than

LEADER ELECTION FOR SINGLE-HOP RNCD

RNnoCD with an O(D log log n + log O(1) n) time complexity. We finally use these two new algorithms as subroutines to design our new leader election algorithm.

Our algorithm intuitively has a better time complexity for D log 4 n and D < n x , ∀x > 0. To illustrate this, we compare the time complexities of the existing algorithms ([START_REF] Ghaffari | Near optimal leader election in multi-hop radio networks[END_REF]: O(D log(n/D) + log 3 n) min{log log n, log (n/D)}) and [START_REF] Czumaj | Exploiting spontaneous transmissions for broadcasting and leader election in radio networks[END_REF] : O (D log n)/(log D) + log O(1) n) with our results by taking some examples of the possible values taken by D. Table 6.1: Comparison of our results with existing results on the time complexity of leader election algorithms for multi-hop RNnoCD.

All of the definitions related to this chapter (for the complexity measures, networks and communication models) were provided in Chapter 2. In the next section, we only provide the specific definitions used in this chapter.

specific definitions and models

Definition 6.1.2 (δ -(s i) and δ + (s i)). Recall that l(s i) is the distance between s i and the ClusterHead of its cluster (refer to Section 3.2.6 for more details). δ -(s i) (resp. δ + (s i)) is a linear approximation of the number of neighbors of s i in L(l(s i) -1) (resp. L(l(s i) + 1)). Definition 6.1.3 (N -(s i), N + (s i), β -(s i) and β + (s i)). Let s i be a node that aims to transmit a message m to the layer L(l(s i) + 1) (resp. L(l(s i) -1)). Let N + (s i) (resp. N -(s i)) be the set of neighbors of s i in L(l(s i) + 1) (resp. L(l(s i) -1)). β + (s i) (resp. β -(s i)) represents a linear approximation of the number of nodes in the same layer L(l(s i)) as s i , which simultaneously aim to transmit m to the nodes of

Our adapted broadcasting algorithm works on multi-hop radio networks when the nodes know the diameter D of the network and each node s i knows l(s i), δ -(s i) and δ + (s i). To reach this knowledge, the nodes initially perform the pre-computation phases described in Section 3.2.6. With these defined sub-protocols, our adapted broadcasting algorithm from [START_REF] Bar-Yehuda | On the timecomplexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization[END_REF] works as follows:

Leader election for single-hop RNCD

For the remainder of this chapter, b = 0, 1, • • • , O(d/3) -3 and let t ri = t 0 + r i (r i is a constant) be the first time slot when a node s i receives m. Upon receiving m, s i sets ψ i = (2 log(2 log n) 3) (by Lemma 22, we set ∆ = (2 log n) 3); s i then perform (2 log n) executions of the following computations, that is for φ = 0, 1, • • • , (2 log n):

1. s i first waits during 2ψ i time slots (line 7 of Algorithm 12).

2. For τ i = 0, 1, • • • , ψ i , at each couple of time slots (t ri+2φψi+2φτi , t ri+2φψi+2φτi+1), 7 s i executes Transmit(r i /2 + φψ i + φτ i , β -(s i), m, up) 8 (line 9 of Algorithm 12).

Let us denote τ = r i /2 + φψ i + φτ i . Depending on the value of τ (mod 3), the following executions occur:

• If τ (mod 3) = 0, each Internal node s i in layers L(3b) that received (m, l(s i)) at t 2τ -2 verifies whether l(s i) < l(s i) to become Candidate with a probability of min{1, (10 log n)/β + (s i)} (lines 1 --9 of Algorithm 12). Each Candidate node s ca then picks p uniformly at random from {0, 1} at t 2τ (line 11 of Algorithm 10). If p = 1, s ca transmits (m, l(s ca)) at t 2τ and listens to the network at t 2τ +1 (lines 12 and 13 of Algorithm 10). Upon picking p = 0 at t 2τ or receiving a message at t 2τ +1 , s ca stops attempting to transmit m (stops picking p at lines 14,15 and 18 of Algorithm 10).

• If τ (mod 3) = 1 (resp. τ (mod 3) = 2), each Internal node s i in layers L(3b + 1) (resp. L(3b + 2)) that received (m, l(s i)) at t 2τ -2 executes the same computations at t 2τ and t 2τ +1 with l(s i).

Algorithm 13. MultiHopLeaderElection().

Input

of Geom(1/2) and computes a binary code-word In the following sections, for y = 1, 2, 3, 4, let T y be the total time complexity of all the algorithms executed during Step y.

Step 1

This step executes a d-clustering algorithm with d = (D/ log 4 n) as described in Section 6.3.1. After these executions, all nodes are either ClusterHead or Internal nodes.

Lemma 23. Step 1 terminates w.h.p. in T

Proof. We apply d = (D/ log 4 n) to the Theorem 6.3.2.

Step 2 6.3.7 Step 4: debate

The debate step is the main step of our leader election algorithm. First, recall that G d is the graph of all remaining ClusterHead nodes in the d-clustered networks.

As in the leader election algorithm designed by [START_REF] Ghaffari | Near optimal leader election in multi-hop radio networks[END_REF],

Step 4 is subdivided into rounds called debates. Step 4 is subdivided into (3D/2d) debates. 11 During each debate, each ClusterHead s ch exchanges its ClusterID(s ch) with its Cluster-Head neighbors on G d to set ClusterID(s ch) = Xor (ClusterID(s ch), { all received ClusterIDs}). As presented in [START_REF] Ghaffari | Near optimal leader election in multi-hop radio networks[END_REF], a debate is composed of three procedures: the UpLink, In-terCommunication, and DownLink procedures. We illustrated one execution of such a debate in Figure 1.13 (Section 1.2.3.3).

UpLink: Each ClusterHead node s ch broadcasts its ClusterID(s ch) with the Broadcast(ClusterID(s ch), D, n, l(s ch), β -(s ch), β + (s ch), up) algorithm. In parallel, each Internal node s i that received a ClusterID(s ch) sets ClusterID(s i) = ClusterID(s ch) and executes

Lemma 25. The UpLink procedure makes w.h.p. each Border node s B know the Xor computation of all code-words in its cluster in O((d + log n) log log n) time slots.

Proof. After the execution of Step 3, by Lemma 24, all ClusterHead nodes know the Xor computation of the ClusterIDs of all Candidate nodes in its cluster. Then, by Theorem 6.3.3, broadcasting all this value to all nodes of the cluster takes w.h.p. O((d + log n) log log n) time slots.

InterCommunication: Each Border node s B sends its ClusterID(s B) bit by bit. This procedure is organized into (4 log n) rounds of two sub-rounds Sr 1 and Sr 2 each. For j = 0, 1,

-Sr 1 : Each Border node s B with w j B = 1 executes Decay(ID(s B)). -Sr 2 : Then, all transmitting Border nodes at the first sub-round (with w j B = 1) that received another ID set w j B = 0 and transmit a feedback message m f = 1 with Decay(m f). In parallel, each Border node s B with w j B = 1 that received a feedback at Sr 2 sets w j B = 0.

Lemma 26. The InterCommunication protocol performs ((4 log n) × 2) executions of Decay to make w.h.p. each Border node know the Xor computation of its code-word and the code-word of its cluster neighbors in O(log 3 n) time slots.

Proof. On the one hand, for each bit of the ClusterIDs of the Border nodes (which corresponds to each of the (4 log n) rounds of the InterCommunication protocol), the sub-round Sr 1 ensure all Border nodes with bit 0 to know if they have at least one neighbor with bit 1 in O(log 2 n) time slots. During these O(log 2 n)

MULTI-HOP RNNOCD NETWORK

time slots, some Border nodes with bit 1 also receive a message (have at least one neighbor with bit 1). These latter nodes then transmit a feedback message at Sr 2 to notify the nodes which succeeded to transmit at Sr 1 that they have neighbors with bit 1. At this stage, all Border nodes know a Xor computation of its bit and the bits of all its neighbors. Thus, making the Border nodes perform these computations for all (4 log n) bits leads to the desired result.

DownLink:

This protocol makes all Border nodes spread their (new) Clus-terIDs bit by bit to the ClusterHead s ch , which sets ClusterID(s ch) = Xor(ClusterID(s ch), { all received ClusterIDs}). For j = 0, • • • , (4 log n) -1, for each bit w j B of the ClusterIDs of the Border nodes, the main difficulty is ensuring the ClusterHead s ch to detect when more than one Border nodes spread w j B = 1, in order to set its w j ch to 0. To do so, our DownLink protocol works as Step 3 and is organized into three phases. Algorithm 14. DownLink(). The Phases 1 and 3 consist of the same computations and Phase 2 executes a multi-message broadcasting algorithm. Thus, we only provide the technical description of Phase 1 here. It uses the same principle as the multi-message broadcasting algorithm described in Section 6.3.2.3 and down-casts each bit of the ClusterIDs of the Border nodes to the ClusterHead node.

Input

Phase 1:

• Each Border node s B verifies whether w 0 B = 1 12 to transmits a ClusterID = ClusterID(s B), with the index j of the bit (j = 0) and its layer l(s B) with Decay(ClusterID(s B), 0, l(s b)). Otherwise, s B executes Decay(0, 0, l(s b)) (the ClusterID parameter takes values from {0, ClusterID(s B)}, i.e., it takes the value 0 when w j B = 0). Then, s B waits during (8 log 3 n) time slots.

12 Recall that ClusterID(sB) = w 0 B w • Then, we generalize these computations. For j = 2, 3, • • • , (4 log n) -1: Each Border node s B verifies whether w j B = 1 to execute Decay(ClusterID(s B), j, l(s b)). Otherwise, s B executes Decay(0, j, l(s B)). Afterward, s B waits during (8 log 3 n) time slots.

• In parallel, each Internal node s i that receives a ClusterID ∈ {0, ClusterID(s B)} with l(s B) verifies whether l(s i) > (l(s B)-log n) to execute Decay(ClusterID(s B), j, l(s b)).

• In parallel, each Internal node s i that receives ClusterID ∈ {0, ClusterID(s B)} and l(s The probability of success of the MultiHopLeaderElection() algorithm depends on the success of each step. According to Lemma 29, after running Step 4, each node knows w.h.p. whether it holds the last unique lg n value of all generated values or not. The node holding such a value then gets elected. Thus, according to Lemma 6.3.2, it terminates in O D log log n + log O (1) n time slots with a probability of at least 1 -O (n -v) for some constant v ∈ ((9/10), 1).