
HAL Id: tel-04196903
https://theses.hal.science/tel-04196903

Submitted on 22 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Teukolsky equation on subextremal Kerr spacetimes
Pascal Millet

To cite this version:
Pascal Millet. The Teukolsky equation on subextremal Kerr spacetimes. Analysis of PDEs [math.AP].
Université Grenoble Alpes [2020-..], 2023. English. �NNT : 2023GRALM014�. �tel-04196903�

https://theses.hal.science/tel-04196903
https://hal.archives-ouvertes.fr


THÈSE 
Pour obtenir le grade de 

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Mathématiques
Unité de recherche : Institut Fourier

L'équation  de  Teukolsky  sur  les  espaces-temps  de  Kerr  sous-
extrémaux

The Teukolsky equation on subextremal Kerr spacetimes

Présentée par :

Pascal MILLET
Direction de thèse :

DIETRICH HÄFNER
Professeur des Universités, UNIVERSITE GRENOBLE ALPES

Directeur de thèse

 

 

Rapporteurs :
PETER HINTZ
Associate professor, ECOLE POLYTECHNIQUE FEDERALE DE ZURICH
CECILE HUNEAU
Chargée de recherche HDR, ECOLE POLYTECHNIQUE

Thèse soutenue publiquement le 7 juin 2023, devant le jury composé de :

DIETRICH HÄFNER
Professeur des Universités, UNIVERSITE GRENOBLE ALPES

Directeur de thèse

CECILE HUNEAU
Chargée de recherche HDR, ECOLE POLYTECHNIQUE

Rapporteure

OLIVIER GRAF
Maître de conférences, UNIVERSITE GRENOBLE ALPES

Examinateur

ALAIN JOYE
Professeur des Universités, UNIVERSITE GRENOBLE ALPES

Examinateur

JEAN-PHILIPPE NICOLAS
Professeur des Universités, UNIVERSITE DE BREST-BRETAGNE 
OCCIDENTALE

Examinateur

JEREMIE SZEFTEL
Directeur de recherche, CNRS DELEGATION PARIS CENTRE

Président

MICHAŁ WROCHNA
Professeur des Universités, CY CERGY PARIS UNIVERSITE

Examinateur





Résumé

Dans cette thèse, nous étudions l’équation de Teukolsky sur les espaces-temps de Kerr sous-
extrémaux. Ces derniers sont des solutions explicites de l’équation d’Einstein dans le vide qui
décrivent des trous noirs éternels en rotation dans un univers par ailleurs vide. L’équation
de Teukolsky est issue de l’étude d’équations d’onde tensorielles sur ces espaces-temps telles
que les équations de Maxwell et les équations de la gravité linéarisée. Il s’agit d’une équation
aux dérivées partielles hyperbolique scalaire linéaire qui gouverne certaines composantes par-
ticulières du champ. Dans le cas de la gravité linéarisée, l’analyse de cette équation joue un
role central dans l’étude de la stabilité linéaire et non linéaire des trous noirs de Kerr. Nous
donnons dans un premier temps une description détaillée des notions géométriques néces-
saires pour comprendre d’où vient l’équation de Teukolsky. Nous introduisons les fibrés des
spineurs, les formalismes de Newman-Penrose et GHP (Geroch–Held–Penrose), les fonctions
à poids spinoriels et l’opérateur de Teukolsky et nous montrons comment certaines équations
d’ondes tensorielles se découplent pour certaines composantes spéciales (appelées scalaires de
Teukolsky). Nous étudions ensuite le comportement en temps long des solutions de l’équation
de Teukolsky avec des données initiales régulières et localisées. Quand ces dernières sont à
support compact, nous prouvons que la solution admet un terme principal en temps long et
nous le calculons explicitement. Si les données initiales ont seulement une décroissance poly-
nomiale inverse, nous obtenons une borne polynomiale inverse par rapport au temps pour la
solution. Une force de ces résultats est qu’ils ne sont pas limités au cas des trous noirs de Kerr
à rotation lente mais sont valables dans l’intervalle sous-extrémal tout entier des paramètres
du trou noir (|a| < M). Cette analyse est fondée sur des avancées récentes en analyse spec-
trale et microlocale dans le contexte de la relativité générale et requiert une description précise
de la résolvante à basse énergie. Dans l’appendice de la thèse, nous fournissons des notes à
propos de la théorie hyperbolique standard pour les opérateurs différentiels. En particulier
nous présentons des résultats d’existence, d’unicité et d’approximation pour les solutions
d’équations différentielles hyperboliques d’ordre deux sur des fibrés vectoriels. Nous four-
nissons également une introduction à l’utilisation des méthodes microlocales pour l’obtention
d’estimées Fredholm au travers d’une application à un exemple unidimensionnel simple avec
un minimum d’outils techniques.
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Abstract

In this thesis, we study the Teukolsky equation on subextremal Kerr spacetimes. The latter are
explicit solutions of the vacuum Einstein equations which describe eternal rotating black holes
in an otherwise empty universe. The Teukolsky equation arise from the study of tensorial wave
equations on these spacetimes such as the Maxwell equations and the equations of linearized
gravity. It is a scalar linear hyperbolic partial differential equation which governs the behavior
of some geometrically meaningful components of the field. In the case of linearized gravity, the
analysis of this equation plays a central role in the study of the linear and non linear stability of
Kerr black holes. We first provide a detailed description of the geometric notions necessary to
understand where the Teukolsky equation comes from. We introduce the spinor bundles, the
Newman-Penrose and GHP (Geroch–Held–Penrose) formalisms, the spin weighted functions
and the Teukolsky operator and we show how the tensorial wave equations decouple for some
special components (called the Teukolsky scalars). We then study the large time behavior
of the solutions of the Teukolsky equation with regular and localized initial data. When the
latter are compactly supported, we prove that the solution admits a large time leading order
term and we compute it explicitly. If initial data only have an inverse polynomial decay, we
obtain an inverse polynomial bound in time for the solution. A strength of these results is that
they are not limited to slowly rotating Kerr black holes but are valid in the whole subextremal
range of black holes parameters. This analysis is based on recent advances in microlocal and
spectral analysis in the context of general relativity and requires a precise description of the
resolvent operator at low energy. In the appendix of the thesis, we provide some notes about
the standard theory for hyperbolic differential operators. In particular we present results of
existence, uniqueness and approximation for solutions of hyperbolic differential equations of
order two on vector bundles. We also provide an introduction to the use of microlocal methods
to get Fredholm estimates through its application to a simple one dimensional example with
minimal technical tools.
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Chapter 1

Introduction en français

1.1 Les trous noirs de Kerr et l’équation de Teukolsky

Le sujet principal de cette thèse est l’analyse de l’équation de Teukolsky sur des espaces-temps
de Kerr sous-extrémaux. Les espaces-temps de trous noirs sont des solutions explicites de
l’équation d’Einstein dans le vide Ric(g) = 0 où g est une métrique Lorentzienne et Ric(g) est
le tenseur de Ricci. Historiquement, la première solution explicite non triviale fut découverte
par Schwarzschild (voir [93]). Elle a une symétrie sphérique et décrit un trou noir immobile
dans un univers asymptotiquement plat. Une famille plus générale de solutions, qui inclut
les trous noir en rotation a été introduite par Kerr dans [59]. Ces solutions sont les objets
centraux de cette thèse. Chaque solution est indexée par deux paramètres: M , la masse du
trou noir et a, son moment angulaire par unité de masse. Les trous noirs physiques sont
modélisés par une solution de Kerr sous-extrémale (|a| < M). La métrique de Kerr, définie
sur la variétéM := Rt × (r+,+∞)r × S2 avec r+ = M +

√
M2 − a2, a l’expression suivante

en coordonnées de Boyer-Lindquist (t, r, θ, φ):

gM,a =
∆r − a2 sin2 θ

ρ2
dt2 +

4Mar sin2 θ

ρ2
dt dφ− ρ2

∆r
dr2

− ρ2 dθ2 − sin2 θ

ρ2
((a2 + r2)2 − a2∆r sin2 θ) dφ2

∆r :=a2 + r2 − 2Mr

ρ2 :=r2 + a2 cos2 θ

Nous soulignons quelques unes de ses caractéristiques géométriques principales qui ont
une importance particulière pour l’étude des ondes se propageant sur l’espace-temps de Kerr:

• Symétrie axiale (le champ de vecteurs ∂φ est de Killing).

• Invariance par translations temporelles (le champ de vecteurs ∂t est de Killing).

• La trivialité à l’infini: gM,a = dt2 − dr2 − r2( dθ2 + sin2 θ dφ2) +O(r−1).

• L’existence de géodésiques isotropes confinées dans une région spatiale compacte à
l’extérieur du trou noir (trajectoires captées).

Notons également que ∆r s’annule quand r = r+. Cependant, la singularité de la métrique
en r = r+ est due à un mauvais choix de coordonnées et peut être effacée en introduisant les
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nouvelles coordonnées Kerr∗:

(t∗, r, θ, φ∗) = (t+ T (r), r, θ, φ+A(r))

où

T (r) :=

∫ r

3M

a2 + r2

∆r
dr

et

A(r) :=

∫ r

3M

a

∆r
dr.

Dans ces coordonnées, la métrique g s’écrit:

g =
∆r − a2 sin2 θ

ρ2
dt2∗ − 2 dt∗ dr +

4Mar sin2 θ

ρ2
dt∗ dφ∗ + 2a sin2 θ dr dφ∗ − ρ2 dθ2

− sin2 θ

ρ2
((a2 + r2)2 − a2∆r sin2 θ) dφ2

∗.

Au vu de cette expression, il apparait que la métrique peut être étendue analytiquement à
une variété plus grande. Il sera suffisant pour nous de considérer une extension deM définie
parMε := Rt∗× (r+− ε,+∞)×S2

θ,φ∗
pour un petit ε > 0. Nous munissonsMε de l’extension

analytique de g. L’horizon futur du trou noir est par définition H := Rt∗ × {r+} × S2
θ,φ∗

. Il
sépare la région extérieure (correspondant à r > r+) de la région intérieure r < r+.

Les solutions de Kerr ont joué un role majeur dans le développement de la théorie de la
relativité générale car elles sont utilisées pour modéliser le champ gravitationnel à l’extérieur
d’une étoile ou d’un trou noir en rotation. Par conséquent, il est crucial de comprendre
comment les champs physiques classiques (incluant les champs scalaires, les champs de Dirac,
les champs de Maxwell et les ondes gravitationnelles) se comportent en présence de ce champ
gravitationnel. Le cadre le plus simple est de considérer qu’ils sont suffisamment faibles pour
que leur influence gravitationnelle puisse être négligée. Dans ce cadre, la géométrie sous-
jacente est données par une solution de Kerr exacte. Les champs physiques sont alors décrits
par des équations aux dérivées partielles hyperboliques sur la variété Lorentzienne de Kerr.
Ce champ de recherche a été très actif durant ces dernières décennies. Il est connu depuis le
travail de Teukolsky [101] que plusieurs des champs physiques principaux (scalaire, Maxwell
et ondes gravitationnelles) sur les espaces-temps de Kerr peuvent être étudiés en utilisant
l’équation de Teukolsky. Cette équation scalaire dépend d’un paramètre s ∈ 1

2Z et capture le
comportement de certaines composantes géométriquement pertinentes des différents champs
(dépendant de la valeur de s: s = 0 correspond à une onde scalaire, s = ±1 à Maxwell et
s = ±2 aux équations d’Einstein linéarisées).

Cette réduction est particulièrement utile dans le cas des équations d’Einstein linéarisées
autour d’une solution de Kerr, c’est pourquoi l’équation de Teukolsky est devenue un outil
central dans l’étude de la stabilité linéaire et non linéaire des trous noirs. Cette famille de
problèmes a des implications théoriques profondes car la stabilité par rapport à des petites
perturbations est une propriété cruciale pour que la solution soit considérée comme physique-
ment pertinente. En pratique, les questions de stabilités non linéaires pour les équations
d’Einstein se sont révélées extrêmement ardues. Les premiers travaux sur ce sujet sont [32]
pour la solution de de Sitter et [19] (voir aussi [66]) pour la solution de Minkowski. Plus
récemment, des résultats de stabilité ont été obtenus pour des solutions de trous noirs: dans
[50], [47] pour Kerr-de Sitter et Kerr-Newman-de Sitter, dans [60] et [23] pour Schwarzschild
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(trou noir sans rotation) et dans [63, 64, 36, 62, 94] pour la solution de Kerr à rotation
lente. Tous ces résultats reposent sur une description précise de la propagation des pertur-
bations sur l’espace-temps sous-jacent au niveau linéaire. Les résultats de stabilité linéaire
incluent [22, 55, 5, 57] pour Schwarzschild, [4, 42] pour Kerr à rotation lente et [35] pour
les espaces-temps de Reissner-Nordström sous extrémaux. Voir aussi le récent [45] qui utilise
une approche microlocale pour prouver la stabilité linéaire des trous noirs de Kerr-Newman
à rotation lente et faible charge.

1.2 Contenu de la thèse

Résumé de la partie II

L’opérateur de Teukolsky tel que défini dans [101] a l’expression suivante en coordonnées de
Boyer-Lindquist:

Ts :=

(
(a2 + r2)2

∆r
− a2 sin2 θ

)
∂2
t +

4Mar

∆r
∂t∂φ +

(
a2

∆r
− 1

sin2 θ

)
∂2
φ −∆−sr ∂r∆

s+1
r ∂r

− 1

sin θ
∂θ sin θ∂θ − 2s

(
a(r −M)

∆r
+ i

cos θ

sin2 θ

)
∂φ − 2s

(
M(a2 − r2)

∆r
− r − ia cos θ

)
∂t

+ s2cotan2θ − s.
(1.1)

Avant de nous plonger dans l’analyse de cet opérateur, il semble utile d’aborder les ques-
tions suivantes:

• Comment l’opérateur de Teukolsky émerge-t-il de l’étude d’équations tensorielles?

• Dans quel sens est-il régulier (en effet l’expression (2.1) semble avoir des singularités)?

• Que sont les formalismes de Newman-Penrose et GHP (for Geroch–Held–Penrose)
couramment utilisés dans la littérature sur l’équation de Teukolsky?

Ces questions trouvent une réponse dans la partie II, qui consiste en l’article de synthèse
[79]. Le principal role de cette partie est de clarifier le contexte géométrique de l’équation de
Teukolsky en rassemblant des informations éparpillées dans la littérature (voir l’introduction
de la partie pour les références précises) et de fournir une base autonome pour l’analyse.

Nous introduisons la définition des fibrés de spineurs qui apparaissent naturellement dans
l’étude de l’équation de Teukolsky (et qui sont indispensables lorsque le paramètre s n’est pas
un entier). Nous définissons également les tétrades isotropes principales de Newman-Penrose
qui sont formées d’un ensemenble de quatre champs de vecteurs isotropes (l, n,m,m) avec l
et n réels et m complexe qui satisfont des conditions de normalisation et tels que l et n sont
principaux (voir définition 1.2.1 ci-dessous).

Cette notion a un sens plus généralement pourM un espace-temps Ricci-plat de type D
(voir la définition 1.2.2 ci-dessous). Le tenseur de Ricci étant égal à zéro pour les solution de
l’équation d’Einstein dans le vide, le tenseur de Weyl est égal au tenseur de courbure défini
de la façon suivante: Pour X,Y, Z, T des champs de vecteurs lisses surM,

W (X,Y, Z, T ) := g(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, T )

où ∇ désigne la connexion de Levi-Civita.
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Définition 1.2.1. Un vecteur istrope l ∈ TxM est appelé principal si pour tous a, b ∈ TxM
tels que g(l, a) = g(l, b) = 0, on a W (l, a, l, b) = 0 où W est le tenseur de Weyl. Nous
disons que le vecteur l est principal de multiplicité au moins 2 si pour tous a, b ∈ TxM
tels que g(l, a) = 0, W (l, a, l, b) = 0. Cette caractérisation des vecteurs principaux peut-être
trouvé dans [86], proposition 5.5.5. Des définitions alternatives équivalentes et des propriétés
additionnelles des directions principales nulles sont également fournies dans [86].

Définition 1.2.2. Nous définissons un espace-temps de type de Petrov D comme un espace-
temps M tel que pour tout x0 ∈ M, il existe des champs de vecteurs isotropes indépendants
(donc ne s’annulant pas) l et n dans un voisinage U de x0 tels que:

• Pour tout x ∈ U , l’ensemble des vecteurs isotropes de TxM est exactement Rl(x)∪Rn(x)

• Pour tout x ∈ U , l(x) et n(x) sont des vecteurs principaux isotrope de multiplicité (au
moins) 2. (In fact, l and n are of multiplicity exactly 2, see [86], chapter 5).

La propriété des directions isotrope principales sur les espaces-temps de type de Petrov D
Ricci-plat que nous utiliserons est la suivante:

Proposition 1.2.3. Si nous définissons n et l comme dans la définition précédente, ils sont
pregeodesiques et sans cisaillement (shear-free). Le cisaillement d’un vecteur prégéodésique l
en x0 par rapport à une famille orthonormale X,Y de l(x0)⊥ est défini par

1

2
(g(∇Y l, Y )− g(∇X l,X)) +

i

2
(g(∇Y l,X) + g(∇X l, Y ))

(voir la définition 5.7.1 dans [86]).

Cette tétrade, adaptée aux propriétés algébriques particulières du tenseur de Weyl d’un
espace temps de type de Petrov D, est utilisée comme base pour écrire les composantes des
tenseurs dans le formalisme de Newman-Penrose et peut être associée (modulo une ambiguité
de signe) à base de spineurs normalisée. La tétrade la plus couramment utilisée sur un espace-
temps de Kerr est la tétrade de Kinnersley définit de la façon suivante:

l =
r2 + a2

∆r
∂t + ∂r +

a

∆r
∂φ

n =
r2 + a2

2ρ2
∂t −

∆r

2ρ2
∂r +

a

2ρ2
∂φ

m =
ia sin θ√

2p
∂t +

1√
2p
∂θ +

i√
2p sin θ

∂φ

où l’on a introduit la fonction:

p = r + ia cos θ

Cependant, comme nous le verrons, il n’existe pas de tétrade isotrope principale de Newman-
Penrose régulière globale sur l’extérieur de l’espace-temps de Kerr et cela explique les sin-
gularités dans l’expression (2.1). Par exemple, on peut voir que le vecteur m de la tétrade
de Kinnersley n’est pas lisse sur l’axe de rotation du trou noir. Les quantités qui dépendent
du choix tétrade de Newman-Penrose principale isotrope sont donc mieux représentées par
des fonctions sur le fibré principal des tétrades de Newman-Penrose plutôt que par des fonc-
tions de l’espace temps. Si elle satisfont en plus une condition de compatibilité par rapport
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à l’action, elles peuvent être interprétées comme les sections d’un fibré en droites complexes
associé. Cette observation conduit à la définition des fonctions à poids spinoriels et des com-
posantes à poids spinoriels des tenseurs et des spineurs. Nous caractérisons complètement
le fibré des tétrades principales isotropes de Newman-Penrose sur les espaces-temps de Kerr
sous-extrémaux en calculant un système complet de trivializations locales. Il se trouve que ce
fibré est intimement lié au fibré de Hopf sur la sphère.

Nous prenons ensuite un peu de temps pour des rappels à propos des connections sur les
fibrés principaux et nous expliquons comment la connection de Levi-Civita sur le fibré tangent
donne naturellement lieu à des connections sur les différents fibrés mentionnés précédemment.
La connection obtenue sur le fibré des fonctions à poids spinoriel est appelé la connection
GHP et est utilisée pour définir les opérateurs GHP. Enfin, nous donnons une définition plus
intrinsèqe de l’operateur de Teukolsky dans le formalisme GHP. L’intérêt de cet opérateur
réside dans son lien avec les équations d’onde tensorielles. Soit F une deux-forme différentielle
solution des équations de Maxwell sans source:

dF =0

divF =0.

Nous définissons les scalaires de Teukolsky par

α[1] :=F (l,m)

α[−1] :=M−
2
3 (r − ia cos θ)2F (m,n).

Pour une solution ġ des équations d’Einstein linéarisées autour de Kerr, nous définissons le
tenseur de Weyl linéarisé associé dgW (ġ). Les scalaires de Teukolsky sont alors définis par:

α[2] :=DgW (ġ)(l,m, l,m)

α[−2] :=M−
4
3 (r − ia cos θ)4DgW (ġ)(m,n,m, n)

Nous montrons comment les équations de Maxwell sans source et les équations d’Einstein
linéarisées se decouplent pour les scalaires de Teukolsky et font apparaitre l’opérateur de
Teukolsky.

Résumé de la partie III

La partie III contient la principale contribution originale de cette thèse. Il est constitué de
l’article [80], qui est une description de la décroissance en temps long (avec calcul du terme
principal) pour les solutions de l’équation de Teukolsky avec des données initiales régulières
et localisées. Ce résultat est valable dans tout l’intervalle sous extremal |a| < M et pour tous
les paramètres s ∈ 1

2Z.

Cette partie contient deux résultats principaux avec des hypothèses différentes sur la
décroissance des données initiales: support compact ou décroissance polynomiale inverse mod-
érée. Dans les deux cas, nous supposons une grande régularité Sobolev initiale et nous ne
cherchons pas à optimiser cette hypothèse. Nous donnons ci-dessous des énoncés simplifiés
de ces deux résultats (voir les théorèmes 8.1.1, 8.1.2, 15.0.4 et 15.0.3 pour des énoncés plus
précis):

Théorème 1.2.4. Si les données initiales ont une régularité de Sobolev suffisante et sont
à support compact, les solutions du problème de Cauchy correspondant pour l’équation de
Teukolsky de paramètre s ∈ Z admettent un profil (terme principal) en temps long. Ce terme
principal peut être calculé explicitement.
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Théorème 1.2.5. Si les données initiales ont une décroissance polynomiale inverse modérée,
les solutions du problème de Cauchy correspondant pour l’équation de Teukolsky de paramètre
s ∈ Z décroissent comme l’inverse d’un polynôme en temps. Nous obtenons une estimée
valable jusqu’à l’infini isotrope.

Le temps mentionné dans les thèorèmes précédent est mesuré par une coordonnée t dif-
férente de la coordonnées de Boyer-Lindquist (voir le chapitre 9 de la partie III pour la
définition précise de t).

Le théorème 2.2.1 atteint le taux de décroissance optimal prévu par la loi de Price (voir
[89, 90, 91, 52, 37]).

Le cas s = 0 correspond à l’équation des ondes scalaires qui a été étudiée en profondeur y
compris pour la famille sous-extrémal complète |a| < M . Des résultats très précis sont connus
incluant le calcul du terme principal de la solution en temps long (voir [48]). Nous renvoyons
le lecteur à l’introduction de la partie III pour une revue de littérature plus détaillée à propos
des résultats optimaux obtenus pour ce problème.

Nous nous intéressons maintenant aux résultats existants dans le cas s 6= 0 pour les trous
noirs de Kerr. Pour des moments angulaires petits, la décroissance intégrable de l’énergie a
été prouvée pour s = ±1 par Ma [69] et pour s = ±2 par Ma [70] et indépendemment par
Dafermos-Holzegel-Rodnianski [21]. Ma-Zhang [71] ont encore affiné ce résultat en obtenant la
décroissance optimale (avec le calcul du terme principal) pour les spins s = ±1,±2 à l’extérieur
d’un trou noir de Kerr à rotation lente |a| �M (et conditionnellement pour |a| < M). Dans
le théorème 2.2.1, nous levons cette hypothèse de rotation lente en utilisant une méthode
de preuve différente. Cette étape pour inclure l’intervalle sous-extrémal entier |a| < M est
importante d’un point de vue physique car on s’attend à ce que les trous noirs physiques
initiallement statiques ou à rotation lente voient leur moment angulaire augmenter jusqu’à
une valeur proche deM au fur et à mesure qu’ils avalent la matière et les radiations du disque
d’accrétion (voir [102] pour une modélisation de ce phénomène). De plus, comme mentionné
précédemment, la plupart des résultats de stabilité actuels concernent le cas de la rotation
lente et des estimées valables dans l’intervalle sous-extrémal complet seront nécessaires pour
étendre leur portée. Notons que parallèlement à ce travail, un résultat de flux d’énergie borné
et de décroissance intégrable de l’énergie locale valable pour tout l’intervalle |a| < M et pour
s ∈ {0,±1,±2} a été obtenu par Shlapentokh-Rothman-Teixeira da Costa dans [96, 95] par
d’autres méthodes.

La preuve des énoncés 1.2.4 et 1.2.5 s’appuie sur de récents développements en analyse
spectrale et microlocale dans le contexte de la relativité générale et s’inscrit dans la continuité
de [42] et [48](voir l’introduction de la partie III pour une revue de la littérature concernant
ces méthodes). Un avantage majeur de cette méthode est sa robustesse car elle sépare claire-
ment la partie de l’analyse dépendant seulement de la structure du flot hamiltonien (cadre
Fredholm) et la partie dépendant de l’expression précise de l’opérateur (analyse des modes)
ou d’un opérateur modèle (l’opérateur normal effectif). Par ailleurs, elle ne repose pas sur un
argument perturbatif du cas sans rotation (Schwarzschild) ce qui explique que nous ne sommes
pas limités au cas du moment angulaire petit. Nous présentons maintenant la structure de la
preuve.

Les théorèmes 1.2.4 and 1.2.5 sont formulés en terme de problème de Cauchy mais le
problème inhomogène

Tsv = f
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(où v, f ont un support borné dans le passé) est plus pratique du point de vue de l’analyse
spectrale. Pour obtenir un tel problème inhomogène, une idée naturelle est de poser v = χ(t)u
pour χ ∈ C∞(Rt, [0, 1]) égale à 1 dans un voisinage de +∞ et à 0 dans un voisinage de −∞.
Avec cette définition, u et v partagent le même comportement asymptotique proche de t = +∞
et f a un support compact par rapport à t. Dans le cas de données initiales à support compact,
il est possible de choisir χ tel que f a aussi un support compact en espace. Sans l’hypothèse
de support compact, nous utilisons une estimée d’énergie pour calculer le comportement de f
proche de l’infini isotrope.

Ensuite, nous prenons la transformée de Fourier-Laplace par rapport à t et obtenons
l’équation suivante pour =(σ) assez grand:

T̂s(σ)v̂ = f̂ .

En admettant que T̂s est inversible entre des espaces bien choisis, nous obtenons pour v:

v(t) =
1

2π

∫
=(σ)=C

e−itσR(σ)f̂(σ) dσ

où R(σ) = T̂s(σ)−1. Une estimée formelle du membre de droite en utilisant des intégrations
par partie, et en supposant que ∂kσR(σ)f̂(σ) est intégrable fournit:

|v(t)| ≤ eCtt−k
∥∥∥∂kσR(σ)f̂(σ)

∥∥∥
L1(Rσ)

Ce calcul formel conduit à l’intuition que les meilleures estimées sont obtenues quand C
est petit et qu’une estimée de décroissance polynomiale inverse correspond à C = 0. Les
observations précédentes suggèrent les points clés suivants à aborder:

1. Prouver que T̂s(σ) est inversible dans le demi-plan complexe supérieur entre des espaces
bien choisis.

2. Prouver que R(σ) admet une borne polynomiale quand |σ| → +∞ et =(σ) reste dans
un ensemble compact (notons que puisque nous imposons une forte régularité sur les
données initiales, f̂(σ) a une forte décroissance polynomiale inverse par rapport à σ).

3. Prouver que R(σ) est holomorphe dans le demi-plan complexe supérieur strict et con-
tinue jusqu’à l’axe réel.

4. Analyser précisément la régularité de R(σ) sur l’axe réel. Notons que, comme montré
dans [48] pour l’équation des ondes, le terme principal peut être obtenu en calculant
la singularité la plus forte de R(σ)f(σ) sur l’axe réel (dans notre cas, elle est située en
σ = 0).

Le point 1 peut être subdivisé en trois étapes: Prouver que T̂s(σ) est Fredholm, prouver
que l’indice est zéro et prouver que le noyau est trivial. La propriété Fredholm est obtenue en
collant des estimées Fredholm sur différentes régions de l’espace des phases: Près des points
radiaux sur l’horizon, (en utilisant [103]), dans une petite région à l’intérieur du trou noir (en
utilisant une estimée hyperbolique comme fait dans [111]) et près des points radiaux à l’infini
spatial en utilisant [105, 106]. Notons que pour appliquer le résultat de [106] nous avons
besoin de vérifier l’absence de noyau pour l’opérateur normal effectif T̂s(σ) (voir la définition
13.2.5) ce qui requiert la théorie des équation hypergéométriques confluentes. Le processus de
collage repose sur des estimées elliptiques et sur des estimées de propagation des singularités.
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Par conséquent, nous avons besoin d’une analyse globale du flot Hamiltonien de l’opérateur
qui peut être réalisée à partir du symbole principal. L’absence de noyau suit d’un résultat
de stabilité modale pour l’équation de Teukolsky sur un espace-temps de Kerr sous-extrémal
obtenue par Whiting dans [108] et étendu par la suite par Andersson-Ma-Paganini-Whiting
in [8] (voir aussi [7] pour σ = 0). La propriété d’indice zéro suivra de la continuité de l’indice
et de l’inversibilité de T̂s(σ) pour |<(σ)| � 1.

Nous prouvons cette inversibilité ainsi que la borne polynomiale du point 2 en introduisant
le paramètre semiclassique h = 1

|σ| , l’opérateur T̂s,h(z) := h2T̂s(h
−1z) et en prouvant une

borne de la forme

‖u‖ . h−2
∥∥∥T̂s,h(z)u

∥∥∥
(voir Proposition 13.4.10 pour l’énoncé précis). Comme précédemment, nous collons les es-
timées semiclassiques obtenues sur différentes régions de l’espace des phases. Cette fois,
l’analyse est gouvernée par le flot hamiltonien semiclassique dont la structure globale doit
être calculée. Le flot semiclassique a une structure globale plus complexe que le flot classique
et en particulier, il contient un ensemble de trajectoires captées. Une estimée globale peut
être obtenue en collant une estimée près des points radiaux à l’horizon (en utilisant [103]), une
estimée dans une petite région à l’intérieur du trou noir (en utilisant une version semiclassique
de l’estimée hyperbolique), une estimée près des points radiaux à l’infini spatial (en utilisant
[105]) et une estimée près de l’ensemble capté normalement hyperbolique (fondée sur [109] et
[28]).

Le point 3 suit de l’identité de la résolvante

R(σ)−R(σ′) = R(σ)
(
T̂s(σ

′)− T̂s(σ)
)
R(σ′)

une fois que les propriétés R(σ) (déduites de l’estimée Fredholm globale) ont été établies.

Concernant le point 4, nous obtenons une forte régularité de R(σ) sur l’axe réel en dehors
de σ = 0 en utilisant l’identité de la résolvante de façon répétée. Le nombre d’itérations
est seulement limité par la régularité des données initiales (qui est supposée forte dans ce
travail). Cela contraste avec la situation en zéro où le nombre d’itérations est limité par la
décroissance spatiale de f̂(σ). Pour le théorème 1.2.5, la régularité que nous obtenons de cette
façon et les bornes sur la résolvante proche de zéro et à l’infini suffisent à conclure en prenant
la transformée de Fourier inverse. Sous les hypothèses du théorème 1.2.4, nous pouvons aller
plus loin (jusqu’à 2 |s| + 2 iterations) en utilisant que f̂(σ) a plus de décroissance spatiale.
Nous obtenons l’expression de la singularité principale en zéro sous la forme σ2|s|+2R(σ)w avec
w explicite et indépendant de σ. Notons que cette étape requiert une connaissance précise
du noyau et du conoyau de T̂s(0) (dans des espaces plus faibles que ceux pour lesquels on a
l’inversibilité) que nous calculons en utilisant la théorie des equations hypergéométriques. En
adaptant une idée de [48] qui consiste à peu de chose près à effectuer la dernière itération avec
T̂s(0) remplacé par l’opérateur normal effectif Neff(T̂s(σ)) (voir définition 13.2.5), qui gouverne
la transition entre T̂s(σ) et T̂s(0) proche de l’infini spatial, nous obtenons une expression
explicite de σ2|s|+2R(σ)w modulo des termes, qui sont négligeables en temps long.

Une fois que tous les points 1-4 sont traités, nous pouvons effectuer un argument de
déformation du contour d’intégration pour obtenir:

v(t) =
1

2π

∫
R
e−iσtR(σ)f̂(σ) dσ.

Nous utilisons ensuite des propriétés standards de la transformée de Fourier (ainsi que des
calculs de transformées de Fourier explicites) pour conclure.
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Résumé de la partie IV

La partie IV contient des outils analytiques généraux utiles pour l’étude de l’équation de
Teukolsky. Les deux premiers chapitres de cette partie sont dédiés à une présentation au-
tonome de résultats d’existence, d’unicité et d’approximation pour les opérateurs différentiels
hyperboliques d’ordre deux sur une variété. Le contenu de cette partie est utilisé librement
dans la partie III (en particulier dans l’analyse du problème de Cauchy). Bien que les résultats
obtenus soient principalement fondées sur [54] et [92], nous proposons un traitement différent
de ce sujet. Le dernier chapitre est une introduction à l’utilisation de techniques microlocales
pour obtenire la propriété Fredholm pour des opérateurs différentiels. Notre but n’est pas de
présenter une introduction complète à cette méthode, car il y a déjà d’excellentes références
pour cela (voir en particulier [104]). A la place, nous choisissons de présenter la méthode au
travers de son application à un exemple 1D très simple analysé en détail et avec un minimum
d’outils techniques. Cette analyse met en jeu des concepts importants tels que les estimées
elliptiques, les estimées de points radiaux, la propagation des singularités (dans le contexte
semi-classique). Les principes qui sous-tendent cette partie, qui est destinée aux lecteurs sans
expérience dans le domaine de l’analyse microlocale, sont les suivants:

• Le caractère autonome (contrairement à la partie III);

• La simplicité des outils. Les définitions sont spécialisées au cas 1D et nous limitons
au minimum l’analyse pseudodifférentielle (les multiplicateurs de Fourier sont suffisant
dans ce context simple);

• La simplicité de l’exemple étudié.

Bien que l’exemple étudié dans cette partie puisse être traité autrement avec des outils pure-
ment élémentaires, nous pensons qu’il est néammoins intéressant de voir un exemple débar-
rassé de toute la technicité habituellement nécessaire.
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Chapter 2

Introduction

2.1 Kerr black holes and the Teukolsky equation

The main topic of this thesis is the analysis of the Teukolsky equation on subextremal Kerr
spacetimes. Black hole spacetimes are explicit solutions of the Einstein vacuum equation
Ric(g) = 0 where g is a Lorentzian metric and Ric(g) is the Ricci tensor. Historically, the
first explicit non trivial solution was discovered by Schwarzschild (see [93]). It has spherical
symmetry and describes a static black hole in an asymptotically flat spacetime. A more
general family of solutions which includes rotating black holes was introduced by Kerr in
[59]. It is the focus of this thesis. Each solution is indexed by two parameters: M , the mass
of the black hole and a, the angular momentum. Physical rotating black holes are model
by subextremal Kerr solution (|a| < M). The Kerr metric has the following expression in
Boyer-Lindquist coordinates:

gM,a =
∆r − a2 sin2 θ

ρ2
dt2 +

4Mar sin2 θ

ρ2
dt dφ− ρ2

∆r
dr2

− ρ2 dθ2 − sin2 θ

ρ2
((a2 + r2)2 − a2∆r sin2 θ) dφ2

∆r :=a2 + r2 − 2Mr

ρ2 :=r2 + a2 cos2 θ

We highlight some of its main geometric features which are paramount for studying waves
propagating on the Kerr spacetime:

• Axial symmetry (the vector field ∂φ is Killing).

• Invariance by time translations (the vector field ∂t is Killing).

• Asymptotic flatness: gM,a = dt2 − dr2 − r2( dθ2 + sin2 θ dφ2) +O(r−1).

• Existence of null geodesics remaining in a spatially compact subset of the exterior region
for all time (trapping).

The Kerr solution played a major role in the development of general relativity theory as
they are used to model the gravitational field outside of a rotating star or black hole. There-
fore, it is important to understand how the classical physical fields (including scalar fields,
Dirac fields, Maxwell fields and gravitational waves) behave in presence of this gravitational
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field. The simplest setting is to consider that they are sufficiently weak for their gravitational
influence to be negligible. In this setting, the background geometry can be set to an exact
Kerr solution. The physical fields are therefore described by hyperbolic partial differential
equations on the Kerr Lorentzian manifold. This area of research has been very active over
the last decades. It has been known since Teukolsky’s work [101] that several of the main
physical fields (scalar, Maxwell and gravitational waves) on Kerr spacetimes can be studied
using the Teukolsky equation. This scalar equation depends on a parameter s ∈ 1

2Z and
captures the behavior of certain geometrically meaningful components of the different fields
(depending on the value of s: s = 0 corresponds to scalar wave, s = ±1 to Maxwell and
s = ±2 to the equations of linearized gravity).

This reduction is particularly convenient in the case of the equations of linearized gravity
around the Kerr solution and this is why the Teukolsky equation has become an important
tool in the study of linear and non linear stability of Kerr black holes. This family of prob-
lems has deep theoretical implications since stability under small perturbations is a crucial
property for the solution to be considered as physically relevant. In practice, the nonlinear
stability questions for the Einstein equations have proven extremely challenging. First works
on this subject are [32] for the de Sitter solution and [19] (see also more recently [66]) for the
Minkowski solution. More recent stability results have been obtained for black hole solutions:
in [50], [47] for Kerr-de Sitter and Kerr-Newman-de Sitter, in [60] and [23] for Schwarzschild
(non rotating black holes) and in [63, 64, 36, 62, 94] for the slowly rotating Kerr solution.
All these results are based on a precise description of the propagation of perturbations on
the underlying spacetime at the linear level. Linear stability results include [22, 55, 5, 57] for
Schwarzschild, [4, 42] for slowly rotating Kerr and [35] for subextremal Reissner-Nordström
spacetimes. See also the recent [45] which makes use of microlocal methods to prove the linear
stability of weakly charged and slowly rotating Kerr-Newman black holes.

2.2 Content of the thesis

Presentation of part II

The Teukolsky operator as defined in [101] has the following expression in Boyer-Lindquist
coordinates:(

(a2 + r2)2

∆r
− a2 sin2 θ

)
∂2
t +

4Mar

∆r
∂t∂φ +

(
a2

∆r
− 1

sin2 θ

)
∂2
φ −∆−sr ∂r∆

s+1
r ∂r

− 1

sin θ
∂θ sin θ∂θ − 2s

(
a(r −M)

∆r
+ i

cos θ

sin2 θ

)
∂φ − 2s

(
M(a2 − r2)

∆r
− r − ia cos θ

)
∂t

+ s2cotan2θ − s.

(2.1)

Before diving into the analysis of this operator, it seems useful to address the three fol-
lowing questions:

• How does the Teukolsky operator arise from tensorial equations?

• In which sense is it smooth (since expression (2.1) seems to have singularities)?

• What are the Newman-Penrose and GHP (for Geroch–Held–Penrose) formalisms com-
monly used in the literature on the Teukolsky equation?
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These questions find an answer in part II, which consists in the review article [79]. The main
role of this part is to clarify the geometric context of the Teukolsky equation by gathering
material scattered in the literature (see the introduction of the part for precise references)
and provides an essentially self-contained basis for the analysis.

We introduce the definition of spinor bundles which appear naturally in the study of the
Teukolsky equation (and are essential when the parameter s is not an integer). We also define
principal Newman-Penrose null tetrads which are a set of four null vector fields (l, n,m,m)
with l and n reals andm complex which satisfy normalization conditions and such that l and n
are principal (see definition 4.3.1). This tetrad is used as a basis to write components of tensors
in the Newman-Penrose formalism and can be associated to the choice (with a sign ambiguity)
of a normalized spin frame. However, as we will see, there is no globally smooth principal
Newman-Penrose null tetrad on the Kerr exterior and this fact explains the singularities
in the expression (2.1). Quantities depending on the choice of the tetrad are thus better
represented as functions of the principal bundle of principal Newman-Penrose null tetrads
rather than functions of the spacetime. If they satisfy in addition some compatibility condition
with respect to the principal action, they can be interpreted as sections of an associated
complex line bundle. This observation leads to the definition of spin-weighted functions and
spin-weighted components of spinors and tensors. We completely characterize the bundle of
principal Newman-Penrose tetrad on the Kerr spacetimes by computing a complete system of
local trivializations. It appears that this bundle is related to the Hopf bundle on the sphere.
We take some time to provide some remainders about connections on principal bundles and
we explain how the Levi-Civita connection on the tangent bundle naturally gives rise to
connections on the different bundles previously mentioned. The connection obtained on the
bundle of spin weighted functions is called the GHP connection and is used to define the GHP
operators. Finally, we give a more intrinsic definition of the Teukolsky operator in the GHP
formalism and we show how the source-free Maxwell equations and the equations of linearized
gravity decouple on the Teukolsky scalars.

Presentation of part III

Part III contains the main original contribution of the thesis. It is made of the article [80],
which is a result of decay in the large time regime (with the computation of the leading order
term) for solutions of the Teukolsky equation with regular and localized initial data. This
result is valid for the whole subextremal range of black hole parameters |a| < M and for all
s ∈ 1

2Z.

We prove two main results with different assumptions on the decay of the initial data:
compact support or moderate inverse polynomial decay. In both cases, we assume a high
enough initial Sobolev regularity and we do not try to optimize this assumption. We give
here a very rough version of both statements (see theorems 8.1.1, 8.1.2, 15.0.4 and 15.0.3 for
more precise statements):

Theorem 2.2.1. If the initial data have enough Sobolev regularity and are compactly sup-
ported, the solution of the corresponding Cauchy problem for the Teukolsky equation of pa-
rameter s ∈ Z admits a leading order term for large time. This leading order term can be
computed explicitly up to null infinity.

Theorem 2.2.2. If the initial data have a moderate inverse polynomial rate of decay, the
solution of the corresponding Cauchy problem for the Teukolsky equation of parameter s ∈ Z
decays at an inverse polynomial rate in time. We obtain an estimate valid up to null infinity.
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Theorem 2.2.1 meets the optimal decay rate provided by Price’s law (see [89, 90, 91, 52,
37]).

The case s = 0 corresponds to the scalar wave equation which has been studied in depth
including for the whole subextremal family of Kerr black holes |a| < M . Very precise results
are known including the first term development of the solution in the large time regime (see
[48]). We refer the reader to the introduction of part III for a more detailed review of literature
about optimal results obtained for this problem.

We now turn to previous results in the case s 6= 0 on Kerr black holes. For a small
angular momentum, integrated energy decay was proved for the Teukolsky equation for spin
s = ±1 by Ma [69] and for spin s = ±2 by Ma [70] and independently by Dafermos-Holzegel-
Rodnianski [21]. Ma-Zhang [71] further sharpened the result obtaining the optimal decay
(with computation of the leading term) for spin s = ±1,±2 on the exterior region of a slowly
rotating Kerr black hole |a| � M (and conditionally in the case |a| < M). In Theorem
2.2.1, we remove the assumption of slow rotation by using a different method of proof. This
improvement to the whole subextremal range |a| < M is important from a physical point of
view since physical black holes which are initially static or slowly rotating are expected to
increase their angular momentum close to |a| = M as they swallow matter and radiations from
the accretion disk (see [102] for a model of this phenomenon). Moreover, as mentioned earlier,
most of the current stability results concern the slowly rotating case and estimates valid for
the whole subextremal range will be needed to extend their scope. Note that in parallel to our
work, a bounded energy flux and integrated local energy decay result in the full subextremal
range |a| < M and for s ∈ {0,±1,±2} has been obtained by Shlapentokh-Rothman-Teixeira
da Costa in [96, 95] by other methods.

The proof of statements 2.2.1 and 2.2.2 relies on recent developments in spectral and
microlocal analysis in the context of general relativity and is in line with [42] and [48] (see
the introduction of part III for a literature review of these methods). A major advantage of
this approach is its robustness since it clearly separates the part of the analysis depending
only on the structure of the Hamiltonian flow (Fredholm framework) and the part depending
on the precise expression of the operator (mode analysis) or of some model operator (the
effective normal operator). Moreover, it does not rely on a perturbative argument from the
non rotating (Schwarzschild) case which is the reason why we are not limited to small angular
momentum.

We now briefly outline the proof (see the introduction of part III for a more detailed
summary). In a first step we transform the Cauchy problem to a forcing problem Tsv = f
(inhomogeneous equation defined on the whole spacetime) while keeping track of the behavior
of the forcing term near null infinity. This is done by energy methods. We can then take
the time Fourier transform of the equation and study the time Fourier transformed Teukolsky
operator T̂s(σ) which is the main focus of the part. We then compute precisely the classical
and semiclassical Hamiltonian flow of the operator and perform several microlocal estimates
(based on [103], [105], [106] and [28]) in different regimes:

• σ in a compact subset of {z ∈ C : =(z) ≥ 0}.

• σ in a neighborhood of zero.

• ‖<(σ)‖ → +∞ and =(σ) bounded.
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After gluing all these estimates together, we are left with Fredholm estimates which prove that
the operator is Fredholm between suitable b-Sobolev spaces. We can then use a mode stability
result ([108], [7] and [7]) to obtain the existence of the resolvent on {σ ∈ C : =(σ) ≥ 0}. The
resolvent is moreover holomorphic on {σ ∈ C : =(σ) > 0} and continuous up to the real axis.
We can then perform a contour deformation argument in the inverse Fourier formula (a priori
well defined for C � 1):

v =

∫
R+iC

T̂s(σ)−1f̂ dσ

to bring C to zero. Note that the high frequency analysis provides a bound for the resolvent
in the strip {0 ≤ =(σ) ≤ C} which is used to justify the contour deformation argument. The
inverse Fourier representation writen on the real axis reveals the relation between the regu-
larity of the resolvent and the time decay of the solution. We analyse precisely the regularity
properties of R(σ) = T̂s(σ)−1. The most delicate part is the regularity at zero. In case of
compactly supported initial data, we manage to compute explicitly the higher singularity at
zero and by inverse Fourier transformation, it becomes the principal term in the development
of the solution for large time. If the initial data only have a moderate inverse polynomial
decay, we are able to prove that the resolvent at zero has some amount of regularity which
translates into an inverse polynomial bound for the solution.

Presentation of part IV

Part IV contains general analytic tools useful for the study of the Teukolsky operator. The
first and second chapters of the part are dedicated to an essentially self contained presentation
of existence, uniqueness and approximation theory for hyperbolic partial differential operators
of order two on a manifold. The content of this part is freely used in Part III (in particular for
the analysis of the Cauchy problem). Although the results we obtain are mainly based on [54]
and [92], we propose a different treatment of the topic. The last chapter is an introduction to
the use of the microlocal methods to obtain the Fredholm property of differential operators.
Our goal is not to provide a complete introduction to the method, as there are already excellent
references doing that in the literature (see in particular [104]). Instead, we chose to present the
method through its application to a very simple one dimensional example treated in full details
and with minimal technical tools. This analysis contains important concepts such as elliptic
estimate, radial points estimate, propagation of singularities (in the semiclassical setting).
The underlying principles of this part, which is intended for readers with no background in
microlocal analysis, are the following:

• self contained nature (in contrast to part III);

• simplicity of the tools. The definitions are specialized to the 1D case and we limit the
amount of pseudodifferential analysis required (Fourier multipliers are sufficient in this
simple setting);

• concreteness and simplicity of the example.

Although the one dimensional example presented in this part can be treated with elementary
methods, we believe that it is interesting for pedagogical purposes to see an example stripped
of all technicality.
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Part II

Geometric context of the Teukolsky
equation
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Chapter 3

Introduction

In recent years, there has been a large amount of research on the Teukolsky equation on black
hole type spacetimes. For boundedness and decay of solutions on a Kerr black hole with small
angular momentum, we can mention in particular [21] by Dafermos, Holzegel and Rodnianski
and [71] by Ma and Zhang. In the case of the full subextremal range, [96] by Shlapenthok-
Rothman and Texeira da Costa is the first paper of a series dedicated to the boundedness and
decay for the Teukolsky equation. These works are motivated by the fundamental question
of the stability of the Kerr spacetime as a solution of the Einstein equations. Indeed, results
about the Teukolsky equation have led to multiple breakthroughs concerning linear (see [22]
by Dafermos Holzegel and Rodnianski and [4] by Andersson, Bäckdahl, Blue and Ma) and
non linear stability of black holes (see [61] by Klainerman and Szeftel and [23] by Dafermos,
Rodnianski, Holzegel and Taylor).

However, for an analyst entering the subject, it can be difficult to collect all the informa-
tion necessary to understand the geometric background of the equation. In this paper, we
shall revisit the geometric background of the equation and the GHP formalism from scratch,
focusing on the Kerr case.

The Teukolsky equation (introduced in [101]) is a differential equation on spin weighted
functions. The geometrical framework necessary to understand these objects includes spin
geometry, the Newman-Penrose formalism (see [83] and [84]) and the closely related GHP
formalism (introduced in [34]). Presentations of these formalisms are given in [18] (Newman-
Penrose formalism and spin geometry), [88] (Newman-Penrose formalism and spin geometry)
[6](spin geometry), [3, Section 2.4] (spin geometry and GHP formalism), [1, Section 2.1]
(GHP formalism), [2](GHP formalism), [43] (geometrical definition of spin weighted functions
close to the one presented here and GHP formalism) and [20](interpretation of spin weighted
functions as complex line bundles).

Based on the above references, this paper synthesizes in an essentially self-contained man-
ner the minimal geometric background necessary to understand how spin weighted functions
appear in the study of the Teukolsky equation and provides detailed computations in the
case of the Kerr spacetime. In particular, we explain the link between an abstract definition
of spin weighted functions (relying on the Newman-Penrose formalism) and a more concrete
definition involving the Hopf bundle. The latter is used in [21], [96] and [100] in the context of
the analysis of the Teukolsky equation on a Kerr background, but also in [38] and [30] in the
context of spin weighted functions on the two dimensional sphere. For the sake of simplicity,
we do not consider the interaction of the GHP formalism with the conformal structure of the
spacetime (studied by Araneda in [12]).

First, we introduce the general definitions of spin weighted functions on a general Petrov
D type spacetime. Second, we compute the topology of the bundles in the case of a Kerr
spacetime. Lastly, we introduce the various connections and define the GHP operators. We
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choose a geometrical approach using principal connections.
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3.1 Conventions and notations

In this paper, we use the sign convention (+,−,−,−) for Lorentzian metric. For example,

the Minkowski metric on R4 will be given by the matrix η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

.

If we have a Cartesian product A×B we denote by prA the projection to A.
Let k ∈ Z and n ∈ N. We denote by [k]n the image of k under the projection Z→ Z/nZ.

More generally, we will denote by [x] the image of x under the projection map when we have
a quotient space.

If E is a smooth vector bundle (real or complex) over a manifoldM, we denote by E′ the
dual vector bundle (for every x ∈ M, (E′)x is the space of linear forms on Ex). We denote
by Γ(E) the set of smooth sections of E.

If ∇ is a linear connection acting on a complex vector bundle, we sometimes want to
compute ∇X where X is a section of the complexified tangent space. In this case, we simply
extend the connection by C-linearity, in other words, we define ∇X := ∇<(X) + i∇=(X).
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Chapter 4

Definition of the bundles

Let M be a spacetime (4 dimensional space and time oriented Lorentzian manifold). The
reader may refer to [87, Chapter 3] for the definition of a Lorentzian manifold. A time
orientation is the choice of a global continuous timelike vector field and a space orientation is
a continuous choice of a connected component of the set of triples (b2, b3, b4) of independent
spacelike vectors at each point.

Definition 4.0.1. For x ∈ M, an oriented basis of TxM is a basis (b1, ..., b4) with b1 future
oriented and timelike and (b2, b3, b4) spacelike and space oriented.

The principal motivation to introduce spin weighted functions is the following: In the case
where the spacetime is of Petrov type D (see Definition 4.3.2 below), we would like to find
a global Newman Penrose null tetrad containing two vectors in the principal null directions
(see definition 4.3.1). This tetrad can be associated (up to a sign ambiguity) with a spin
frame which is adapted to the geometry. Indeed, it ensures the vanishing of some associated
spin coefficients and therefore simplifies the component expression of the Dirac operator. We
can even hope to reduce tensor equations to scalar decoupled equations for some components.
However, it is in general not possible to find such a tetrad (and such spin frame) globally for
topological reasons (see for example the computations on Kerr in section 5 below). However,
it is possible to choose a global tetrad "up to some complex factor" (and similarly for the
spin frame). Rigorously, this "almost tetrad" is defined as the smooth bundle of all four
vectors satisfying the Newman Penrose conditions (or the bundle of all normalized spin frame
associated to it). The analog of components in this "almost tetrad" can then be defined for
co-tensors (and co-spinors in the almost spin-frame). Such components can be interpreted as
sections of some complex line bundle B(s, w). Sections of B(s, w) are called spin weighted
functions.

4.1 Spin structure and frame of oriented orthonormal frames

We know by [33] that M admits a spin structure. In other words, if we denote by O the
SO+(1, 3) principal bundle of oriented orthonormal frames on M (and πO is the associated
projection), there exists an SL(2,C) principal bundle πS : S → M and a double covering
p : S→ O such that the following diagram commutes

S O

M

p

πS πO
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and such that for all g ∈ SL(2,C) and x ∈ S, p(x · g) = p(x) · p̃(g) where p̃ : SL(2,C) →
SO+(1, 3) is given by the Weyl representation

p̃ :


SL(2,C)→ SO+(1, 3)

M 7→

(
x ∈ R4 7→ i−1

2 M 1√
2

(
x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
M∗

)

where

i2 :


C4 →M2(C)

z 7→ 1√
2

(
z0 + z3 z1 + iz2

z1 − iz2 z0 − z3

)
.

We also identify C2 ⊗ C
2 andM2(C) via the linear isomorphisms

i1 :

{
C2 ⊗ C

2 →M2(C)

a⊗ b 7→ ab
T
.

For later use, we denote by i0 := i−1
2 ◦ i1 the identification between C2 ⊗ C2 and C4. Note

that for a ∈ C2, i0(a ⊗ a) is a real four dimensional vector whose components x0, x1, x2, x3

satisfy x2
0 − x2

1 − x2
2 − x2

3 = 0. Using the identification i0, we have for every g ∈ SL(2,C):

ρ(g)⊗ ρ(g) = µ ◦ p̃(g) (4.1)

where ρ is the canonical representation of SL(2,C) on C2 and µ is the canonical representation
of SO+(1, 3) on C4 (the identification i0 is implicit in the equality).

4.2 Spinor bundles

Vector bundle associated to a principal bundle

Given a principal bundle π : E → B and a representation ρ of the structure group G on some
(real or complex) vector space V , we can form the associated vector bundle F := E × V/ ∼
where (e, v) ∼ (e′, v′) if there exists g ∈ G such that e · g = e′ and ρ(g−1)(v) = v′. The
vector space structure is given on each fiber by λ[(e, v)] = [(e, λv)] and [(e, v)] + [(e, v′)] =
[(e, v + v′)]; it does not depend on the choice of (e, v) in the equivalence class [(e, v)]. If
φ : π−1U → U × G is a local trivialization (in the sense of principal bundles) of E , then
φF : x ∈ F 7→ ((π(x), z) such that [(φ−1(π(x), 1), z)] = x) is a local trivialization of F . In
these notes, φF will be called the trivialization associated to φ. If we apply the previous
construction to the bundle of oriented orthonormal frames with the canonical representation
of SO+(1, 3) on C4, we obtain the complexified tangent bundle onM.

Remark 4.2.1. If A and B are complex vector bundles associated to E for the representations
ρA and ρB, then A ⊗ B is naturally isomorphic to the bundle associated to E for the action
ρ : g 7→ ρA(g) ⊗ ρB(g) and A is naturally isomorphic to the bundle associated to E for the
action ρA.

Vector bundle associated with the spin structure

Applying the previous construction to the spin structure and the canonical representation of
SL(2,C), we get a complex vector bundle of rank 2 overM called the spinor bundle S. If we
choose a local trivialization Φ of the spin structure, we obtain an associated local trivialization
ΦS of S.
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Proposition 4.2.2. Given a local trivialization Φ : π−1
S (U)→ U×SL(2,C) of S, there exists

a unique local trivialization (on the same open set) Ψ : π−1
O (U) → U × SO+(1, 3) of O such

that Ψ ◦ p ◦ Φ−1 = Id× p̃. We say that Φ and Ψ are compatible.

Proof. A necessary condition on Ψ is Ψ ◦ p = (Id × p̃) ◦ Φ. Therefore, the uniqueness is a
direct consequence of the surjectivity of p : π−1

S (U) → π−1
O (U). To construct Ψ, we have to

show that if p(x) = p(y), then (Id × p̃) ◦ Φ(x) = (Id × p̃) ◦ Φ(y). Assume x, y ∈ S are such
that p(x) = p(y). In particular πS(x) = πS(y). By definition of a principal SL(2,C) bundle,
there exists g ∈ SL(2,C) such that y = x · g. By definition of p, p(x) = p(x · g) = p(x) · p̃(g)
and p̃(g) = 1 (the action of SO+(1, 3) on each fiber of O is free). Moreover, because Φ is a
trivialization, Φ(x · g) = (πS(y), prSL(2,C)(Φ(y))g). Now,

(Id× p̃) ◦ Φ(x · g) = (πS(x), p̃(prSL(2,C)(Φ(x)))p̃(g)) = (Id× p̃) ◦ Φ(x).

So Ψ is well defined. Moreover, using that (Id × p̃) ◦ Φ is surjective and (Id × p̃) ◦ Φ(x) =
(Id×p̃)◦Φ(y) if and only if p(x) = p(y) (the only if part comes from the fact that (Id×p̃)◦Φ(x)
and p have exactly two preimages), Ψ is bijective. Since p is a smooth covering map and Ψ◦p
is a local diffeomorphism, we obtain that Ψ is a local diffeomorphism so it is a diffeomorphism.
We also have that for g ∈ SO+(1, 3), Ψ(x ·g) = (πO(x), prSO+(1,3)(Ψ(x))g). As a consequence
Ψ is a local trivialization of O.

Remark 4.2.3. A local trivialization of a principal bundle can be defined by a local smooth
section of the bundle (we ask that this section is the constant map equal to the neutral element
of the group when written in the local trivialization). Two local sections s1 of S and s2 of O
define compatible local trivializations if and only if s2 = p ◦ s1. This fact could have been used
to prove the proposition as well.

Remark 4.2.4. It is not true in general that for any local trivialization Ψ of O, there exists
a compatible local trivialization of S. However it is true locally (there exist exactly 2 such
compatible local trivializations corresponding to the two local lifts of the section x 7→ Ψ−1(x, 1)
through p).

Remark 4.2.5. If Φ ◦ Φ′−1(x, g) = (x, gf(x)) is a change of local trivialization of E (with
f : U → G a smooth map), then ΦF ◦ Φ′−1

F (x, v) = (x, ρ(f(x))(v)).

Two compatible trivializations enable to reduce locally the picture of spinors and vectors
on M to the picture of spinors and vectors on Minkowski space. In particular, we have an
analog onM of the previously defined identification between C2 ⊗ C2 and C4:

Proposition 4.2.6. There exists a unique isomorphism j of complex vector bundles between
S ⊗ S and TCM such that, given any pair of compatible local trivializations (Φ,Ψ) on U ,
ΨTCM ◦ j ◦ Φ−1

S⊗S is exactly (IdU , i0) where i0 is the identification between C2 ⊗ C
2 and C4.

Proof. The uniqueness is obvious since compatible local trivializations cover M. For the
existence, we define j locally on each open set U associated to a compatible local trivialization
and we have to check that all the definitions agree when they overlap. Let (Φ,Ψ) and (Φ′,Ψ′)
be two pairs of compatible local trivializations on the same open set U . Let g1 : U →
SL(2,C) smooth be such that Φ ◦ Φ′−1(x, g) = (x, gg1(x))) and g2 : U → SO+(1, 3) smooth
be such that Ψ ◦ Ψ′−1(x, g) = (x, gg2(x)). Using the compatibility (therefore p = Ψ−1 ◦
Id × p̃ ◦ Φ = Ψ′−1 ◦ Id × p̃ ◦ Φ′), we get for all x ∈ U and all g ∈ SL(2,C) (x, p̃(g)) =
(x, p̃(gg1(x))g2(x)−1) and we deduce p̃ ◦ g1 = g2. Then ΨTCM ◦ Ψ′−1

TCM ◦ (Id × i0) ◦ Φ′S⊗S ◦
Φ−1
S⊗S(x, v) =

(
x, µ(p̃(g1(x)))(i0(ρ(g1(x)−1)⊗ ρ(g1(x)−1)(v)))

)
(where ρ and µ are the same

as in (4.1) and we used remark 4.2.5 to compute the changes of associated trivialization).
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But (4.1) states exactly that µ(p̃(g1(x))) ◦ i0 ◦ (ρ(g1(x)−1) ⊗ ρ(g1(x)−1)) = i0. Therefore
ΨTCM◦Ψ

′−1
TCM◦(Id×i0)◦Φ′S⊗S ◦Φ

−1
S⊗S(x, v) = (Id×i0)(x, v) and the proposition is proved.

Remark 4.2.7. A more conceptual proof can be given using a commutative diagram. If
π : E → B is a principal bundle, if V is a vector space endowed with a representation ρ
of the structure group and if F is the corresponding associated vector bundle, we denote by
aρ : E × V → F the map sending an element on its equivalence class. Also note that if E is
trivial, we have a canonical identification between F and B × V . Given a pair of compatible
local trivializations (Φ,Ψ), we have the following commutative diagram:

U × C2 ⊗ C
2

U × C4

U × SL(2,C)× C2 ⊗ C
2

U × SO+(1, 3)× C4

S|U × C2 ⊗ C
2

O|U × C4

(S ⊗ S)|U TCU

Id×i0

aρ⊗ρ

Id×p̃×i0

aµ

p×i0

aρ⊗ρ

Φ×Id

aµ

Ψ×IdΦS⊗S ΨTCM

Looking at the diagram, it is clear that the map j does not depend on the choice of the pair of
compatible local trivializations since aρ⊗ρ is surjective and j ◦ aρ⊗ρ = aµ ◦ (p× i0).

Remark 4.2.8. In the following, we identify S ⊗ S and TCM using the map j implicitly.
Note that if m = j(a⊗b) ∈ TCM, then m = j(b⊗a). This comes from the analogous property
on the map i0.

Symplectic form on spinors

Proposition 4.2.9. There exists a unique symplectic form ε (section of S ′∧S ′) such that for
all local trivializations Φ of S, we have εx(Φ−1

S (x, v),Φ−1
S (x,w)) = det(v, w).

Proof. The uniqueness is obvious. To prove the existence, we define ε locally and check that
all the definitions agree. Let Φ and Φ′ be two local trivializations of S on some open set U .
We denote by g : U → SL(2,C) the smooth map such that Φ ◦Φ′−1(x, h) = (x, hg(x)). Then
det(ρ(g(x)−1)(v), ρ(g(x)−1)(w)) = det(g(x)−1(v, w)) = det(g(x)−1) det(v, w) = det(v, w).
The proposition is proved.

Proposition 4.2.10. We have the following equality for all x ∈ M, for all a, c ∈ Sx and
b, d ∈ Sx:

g(a⊗ b, c⊗ d) = ε(a, c)ε(b, d)

Proof. We fix a pair of compatible trivializations (Φ,Ψ). The equality to prove in the associ-
ated trivializations is

∀a, c ∈ C2,∀b, d ∈ C
2
, η(i0(a⊗ b), i0(c⊗ d)) = det(a, c)det(b, d)

where η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 is the Minkowski metric on C4. We check that this equality

is true using the explicit definition of i0.
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4.3 Bundle of normalized spin frames along the principal null
directions

From now on, we assume that M is a Petrov-type D (see the definition below) Ricci-flat
spacetime. Since the Ricci tensor is zero, the Weyl tensor is equal to the curvature ten-
sor and we choose the following convention: For X,Y, Z, T smooth vector fields on M,
W (X,Y, Z, T ) := g(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, T ) where ∇ denotes the Levi-Civita con-
nection. Note that this convention is the same as in [88] but it is the opposite sign convention
in [18].

Definition 4.3.1. A null vector l ∈ TxM is called principal if for all a, b ∈ TxM such that
g(l, a) = g(l, b) = 0, we have W (l, a, l, b) = 0 where W is the Weyl tensor. We say that
the vector l is principal of multiplicity at least 2 if for all a, b ∈ TxM such that g(l, a) = 0,
W (l, a, l, b) = 0. This characterization of principal vectors can be found in [86], proposition
5.5.5. Alternative equivalent definitions and additional properties of principal null directions
are also provided in [86].

Definition 4.3.2. We define a Petrov type D spacetime as a spacetime M such that for all
x0 ∈ M, there exist linearly independent (therefore non-vanishing) null vector fields l and n
in a neighborhood U of x0 such that:

• For all x ∈ U , the set of principal vector fields at TxM is exactly Rl(x) ∪ Rn(x)

• For all x ∈ U , l(x) and n(x) are principal null vectors of multiplicity (at least) 2. (In
fact, l and n are of multiplicity exactly 2, see [86], chapter 5).

The property of principal null directions on Petrov-type D Ricci-flat spacetime that we
need here is the following:

Proposition 4.3.3. If we define n and l as in the previous definition, they are pregeodesic and
shear-free. The shear of a pregeodesic vector field l at x0 with respect to X,Y orthonormal
family of l(x0)⊥ is defined as 1

2 (g(∇Y l, Y )− g(∇X l,X)) + i
2 (g(∇Y l,X) + g(∇X l, Y )) (see

definition 5.7.1 in [86]).

Proof. See proposition 5.9.2 in [86].

We define the following subset of S ×M S:

A := ∪x∈M {(o, ι) ∈ Sx × Sx : j(o⊗ o) and j(ι⊗ ι) are independent, future oriented
along null principal directions and ε(o, ι) = 1}

The bundle A is naturally endowed with a canonical C∗ right action:

(o, ι) · z = (zo, z−1ι)

We also have a Z/4Z right action given by the map (image of the generator of Z/4Z): (o, ι) 7→
(iι, io)

By combining the two actions (performing the action of C∗ first) , we get a right action
of C∗ of Z/4Z (with f : [1]4 7→ (z 7→ z−1)) on A. However, this action is not free and
we can quotient by the stabilizer of any point in A which is the normal subgroup H :=
〈(−1, [2]4)〉 to get a free action of the group GA := (C∗ofZ/4Z)/H. Topologically, C∗ofZ/4Z
is simply C∗ × Z/4Z which is homeomorphic to four disjoint copies of C∗. The quotient
by H identifies C∗ × {[0]4} with C∗ × {[2]4} and C∗ × {[1]4} with C∗ × {[3]4} so GA is
homeomorphic to two disjoint copies of C∗ (more precisely the two connected components are
C∗0 := {[(z, [0]4)], z ∈ C∗} and C∗1 := {[(z, [1]4)], z ∈ C∗}, C∗0 being the connected component
of the neutral element). Note that C∗0 is a normal subgroup of GA isomorphic to C∗.
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Proposition 4.3.4. The set A is a smooth submanifold of S ×M S. Moreover, A is a GA
principal bundle (with projection map πA = πS×MS|A).

Proof. Let x ∈ M. There exists an open neighborhood U of x such that there exists an
oriented orthonormal tetrad (e0, e1, e2, e3) so that e0 +e3 and e0−e3 are future oriented along
the null principal directions. This tetrad gives a local trivialization Ψ of O. Then, even taking
a smaller neighborhood, we can assume that there exists a local trivialization Φ of S on U
such that Φ and Ψ are compatible (see remark 4.2.4). The set Ã := ΦS×MS(π−1

A (U)) is given
by U ×A where A ⊂ C2 × C2 is defined as the set of (o, ι) ∈ C2 × C2 such that:{

i0(o⊗ o) = (λ, 0, 0, λ)

i0(ι⊗ ι) = (µ, 0, 0,−µ)

or{
i0(ι⊗ ι) = (λ, 0, 0, λ)

i0(o⊗ o) = (µ, 0, 0,−µ)

det(o, ι) = 1

where λ and µ are real positive numbers. We find the following parametrization for A:

α :



GA → A

[(z, [0]4)] 7→

((
z

0

)
,

(
0

z−1

))

[(z, [1]4)] 7→

((
0

iz−1

)
,

(
iz

0

))

where for k ∈ {0, 1, 2, 3}, [(z, [k]4)] is the class (z, [k]4)H in GA. This map is a proper injective
immersion in C2 × C2 and its image is A. The fact that the image is included in A can be
checked directly with the definitions. The other inclusion is proved by solving the system

defining A. For example, if o =

(
o0

o1

)
and λ ∈ (0,+∞), the condition i0(o⊗ o) = (λ, 0, 0, λ)

rewrites (by definition of i0):(√
2

2

(
|o0|2 + |o1|2

)
,
√

2<(o0o1),
√

2=(o0o1),

√
2

2

(
|o0|2 − |o1|2

))
= (λ, 0, 0, λ)

This equality holds if and only if o1 = 0 and |o0|2 = 2λ. The other cases are very similar.
This proves that A is a submanifold of C2 × C2 and we deduce that A is a submanifold

of S ×M S. Moreover, we check (using the definition of the action) that the maps Φ−1
S×MS ◦

(IdU × α) (defined around each point x ∈ M) endow A with a structure of GA principal
bundle overM.

4.4 Bundle of oriented Newman-Penrose null tetrads along
principal null directions

Definition 4.4.1. Let (n, l,m) ∈ TC,xM3 be such that (n, l,m,m) is a null basis of
TC,xM with l and n real and future oriented. We say that (n, l,m) is oriented if
(n+l√

2
,<(m),−=(m), l−n√

2
) is oriented.
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We define the following subset of TCM3:

N := ∪x∈M
{

(l, n,m) ∈ (TC,xM\ {0})3 /g(l, l) = g(n, n) = g(m,m) = 0, l = l, n = n,

l and n are independent principal and future oriented, g(l,m) = g(n,m) = 0,

g(m,m) = −1, g(l, n) = 1, (l, n,m) is oriented in the sense of definition 4.4.1
}

In particular, for (l, n,m) ∈ Nx, (l, n,m,m) is a basis of TC,xM. The set N is endowed with
a canonical C∗ right action:

(l, n,m) · z =

(
|z|l, |z|−1n,

z

|z|
m

)
We also have a Z/2Z right action defined by the involution:

(l, n,m) 7→ (n, l,m)

Combining these two actions (performing the action of C∗ first), we get a right action of
C∗ og Z/2Z on N where g([1]2)(z) = z−1.

Proposition 4.4.2. N is a smooth submanifold of TCM3 and is a C∗ og Z/2Z principal
bundle (for the action previously defined) with projection map πN := (πTCM3)|N .

Proof. Let x ∈ M, there exists an open neighborhood U of x such that there exists an
oriented orthonormal tetrad (e0, e1, e2, e3) so that e0 +e3 and e0−e3 are future oriented along
the null principal directions. We denote by Ψ the corresponding trivialization of O. Then
ΨTCM3(N ) = U ×N where N is the subset of (C4)3 of (l, n,m) such that:

l =
√

2
2


λ

0

0

λ



n =
√

2
2


λ−1

0

0

−λ−1



m =
√

2
2


0

eiθ

−ieiθ

0



or



n =
√

2
2


λ

0

0

λ



l =
√

2
2


λ−1

0

0

−λ−1



m =
√

2
2


0

eiθ

ieiθ

0


where λ is a positive real and θ is any real.

We have the following injective proper immersion (in (C4)3)

β :



C∗ og Z/2Z→ N

(z, [0]2) 7→

 1√
2


|z|
0

0

|z|

 , 1√
2


|z|−1

0

0

−|z|−1

 , 1√
2


0
z
|z|
−i z|z|

0




(z, [1]2) 7→

 1√
2


|z|−1

0

0

−|z|−1

 , 1√
2


|z|
0

0

|z|

 , 1√
2


0
z
|z|
i z|z|
0
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This map has image N so N is a submanifold of (C4)3 and therefore, N is a submanifold of
TCM3. Moreover, the maps β (around each x ∈ M) define the structure of a C∗ og Z/2Z
principal bundle on N .

We have a natural map:

d :

{
A → N
(o, ι) 7→ (o⊗ o, ι⊗ ι, o⊗ ι)

Remark 4.4.3. The fact that the map is well defined follows from proposition 4.2.10 and
the following remark about orientation: If (o, ι) ∈ Ax, then if we fix a pair of compatible
local trivializations (Φ,Ψ) around x, M := (prC2(ΦS(o)), prC2(ΦS(ι))) ∈ SL(2,C). Then by a
change of compatible local trivializations (associated to the smooth maps x ∈ U 7→ M−1 and

x ∈ U 7→ p̃(M−1)), we can assume that M =

(
1 0
0 1

)
. It follows that prC4ΨTCM(o ⊗ o) =

√
2

2


1
0
0
1

, prC4ΨTCM(ι ⊗ ι) =
√

2
2


1
0
0
−1

 and prC4ΨTCM(o ⊗ ι) =
√

2
2


0
1
−i
0

. Since Ψ is a

trivialization of O (oriented orthonormal bases), Ψ−1
TCM sends the canonical basis of R4 to an

oriented orthonormal basis of TM. Therefore (o ⊗ o, ι ⊗ ι, o ⊗ ι) is oriented in the sense of
definition 4.4.1.

Properties of d

Proposition 4.4.4. The map d is a double covering map from A to N and for [(z, [u]4)] ∈ GA
we have

d(a · [(z, [u]4)]) = d(a) · (z2, [u]2)

Remark 4.4.5. The map

{
C∗ of Z/4Z→ C∗ og Z/2Z

(z, [u]4) 7→ (z2, [u]2)
is well defined and is a group mor-

phism (the key point is that f([u]4) = g([u]2)). The normal subgroup H is included in the

kernel so we have a group morphism

{
GA → C∗ og Z/2Z

[(z, [u]4)] 7→ (z2, [u]2)
. The map is surjective and

its kernel is the discrete normal subgroup {[(1, [0]4)], [(−1, [0]4)]}. Therefore, it is a Lie group
double covering map.

Proof. Let x ∈ M, we define U , Φ and Ψ as in the proof of proposition 4.3.4. Then we have
ΦTCM3 ◦ d ◦

(
Ψ−1
S×S

)
|U×A

= IdU × d̂ where

d̂ :



A→ N

((
z

0

)
,

(
0

z−1

))
7→

 1√
2


|z|2

0

0

|z|2

 , 1√
2


|z|−2

0

0

−|z|−2

 , 1√
2


0
z2

|z|2

−i z2

|z|2

0




((
0

iz−1

)
,

(
iz

0

))
7→

 1√
2


|z|−2

0

0

−|z|−2

 , 1√
2


|z|2

0

0

|z|2

 , 1√
2


0
z2

|z|2

i z
2

|z|2

0
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(A and N are as defined in the proofs of propositions 4.3.4 and 4.4.2. The submanifold A is
parametrized by GA using the maps α and B is parametrized by C∗ og Z/2Z using the map
β). With this expression, we deduce the expression of the map β−1 ◦ d̂ ◦ α:

β−1 ◦ d̂ ◦ α :

{
GA → C∗ og Z/2Z

[(z, [u]4)] 7→ (z2, [u]2)

To conclude the proof, note that IdU ×
(
β−1 ◦ d̂ ◦ α

)
is the expression of the map d in local

trivializations for the structure of principal bundles (the same trivializations used to define
the structure in the proof of propositions 4.3.4 and 4.4.2).

4.5 Vector bundles associated with A and N and spin
weighted functions

In this section, we have to make an assumption on the topology of A. We assume that A has
exactly two connected components. This assumption is true for a large variety of spacetimes
of interest thanks to the following proposition:

Proposition 4.5.1. If M is simply connected, then A and N have exactly two connected
components.

Proof. We sketch the proof for A, then see remark 4.5.2 to deduce the result for N . We know
that each fiber of A has two connected components diffeomorphic to C∗. Then we deduce
(since M is connected) that A has one or two connected components. By contradiction,
assume that A has only one connected component. Take x ∈ M, we call C∗0 and C∗1 the two
connected components of Ax. By the hypothesis, there exists a continuous path γ : [0, 1]→ A
such that γ(0) = 10 and γ(1) = 11. Then πA ◦ γ is a loop onM. ButM is simply connected.
Therefore there exists a homotopy f : [0, 1] × [0, 1] → M between πA ◦ γ and the constant
loop t ∈ [0, 1] 7→ x such that ft(0) = x and ft(1) = x for all t ∈ [0, 1]. But A is a fiber bundle
overM so it has the homotopy lifting property and we can find a lift f̃ of f such that f̃0 = γ.
But the concatenation of t ∈ [0, 1] 7→ f̃t(0), t ∈ [0, 1] 7→ f̃1(t) and t ∈ [0, 1] 7→ f̃1−t(1) is a
continuous path with values in Ax joining 10 and 11 which is a contradiction.

Remark 4.5.2. If A has two connected components A0 and A1, then d(A0) and d(A1) are
disjoint. Indeed, if d(x) = d(y) either x = y or, by proposition 4.4.4 (and the end of remark
4.4.5), we have y = x · [(−1, [0]4)] and the continuous path t 7→ x · [(eitπ, [0]4)] joins x and
y. Therefore N also has two connected components given by d(A0) and d(A1) (Indeed, these
two sets are connected, and there exists no continuous path from one to the other otherwise
we could lift this path to a path between A0 and A1).

Proposition 4.5.3. We assume that M is connected. N has two connected components if
and only if there exist two global smooth null future oriented vector fields l and n such that at
each point x ∈M, l(x) and n(x) are independent and principal.

Proof. We assume that N has two connected components. We choose one that we call N0.
Then if (l, n,m), (l′, n′,m′) ∈ N0 with πN (l, n,m) = πN (l′, n′,m′), there exists z ∈ C∗ such
that (l, n,m) = (l′, n′,m′) · (z, [0]2) = (|z|l′, |z|−1n′, z|z|m

′). In particular l and l′ are positively
collinear as well as n and n′. Then any convex combination of l and l′ is principal null, the
same for n and n′ and the two are independent. This remark enables us to construct global
vector fields n and l from local sections of N0 using a partition of unity. If we assume the
existence of the global vector fields l and n, then we have the two connected components:
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N0 := {(u, v,m) : u and l are collinear and v and n are collinear } and
N1 := {(u, v,m) : u and n are collinear and v and l are collinear }.

From now we assume that A has two connected components. We choose one component
that we call A0 and we define N0 := d(A0) (which is one of the two connected components
of N according to remark 4.5.2). The other connected component is called A1 (and N1).
This choice defines an additional notion of orientation which corresponds to an ordering of
the principal null directions (A0 is the subset of oriented elements of A).

The right action of the subgroup C∗0 := {[(z, [0]4)], z ∈ C∗} of GA gives A0 the structure
of a C∗-principal bundle. Similarly, {(z, [0]2), z ∈ C∗} gives N0 the structure of a C∗-principal
bundle. The action of [(1, [1]4)] induces a diffeomorphism between A0 and A1 (similarly, the
action of (1, [1]2) induces a diffeomorphism between N0 and N1).

Remark 4.5.4. Since C∗ is commutative, the right action is also a left action (and we use
both notations in the following).

Let w, s ∈ 1
2Z, we have the following representation of C∗:

ρs,w :

{
C∗ → GL(C)

z 7→ (a 7→ z−w−sz−w+sa)

We define the bundle B(s, w) as the complex line bundle associated to A0 (with the right
action) and the representation ρs,w. We have a natural identification between sections of
B(s, w) and the set of complex valued functions f defined on A0 such that for all z ∈ C∗

f(a · z) = zw+szw−sf(a). (4.2)

The identification is given by: f 7→ (x 7→ [(a, f(a))] where a is any element of (A0)x). We
call a spin weighted function with weights (s, w) any section of B(s, w) or equivalently (with
the identification) any function on A0 satisfying (4.2). We denote by W(s,w) the set of spin
weighted functions.

Remark 4.5.5. We have the following canonical identification B(s+ s′, w +w′) = B(s, w)⊗
B(s′, w′).

Remark 4.5.6. The number s is called the spin weight and the number w is called the boost
weight in [88, Section 4.12].

We call o (resp. ι) the first (resp. second) projection from A0 to S and we define l := o⊗o,
n := ι⊗ ι andm = o⊗ ι. Note that thanks to the map j the maps l,m and n can be seen as
TCM valued maps. Note that due to the relation o(u · z) = zo(u) (resp. ι(u · z) = z−1ι(u))
for u ∈ A0, we can identify o (resp. ι) with a smooth section of the bundle B

(
1
2 ,

1
2

)
⊗S (resp.

B
(
−1

2 ,−
1
2

)
⊗ S).

The following proposition is the main reason of why we are interested in spin weighted
functions.

Proposition 4.5.7 (Spin weighted components of cospinors). We denote by Sa,b :=

⊗aS ′ ⊗b S ′. There is a bijection F between the set of sections of Sa,b and the set∏
I⊂J1,aK,J⊂J1,bKW(|I|−|J |+ b−a

2
,|I|+|J |−a+b

2
) given by F : u 7→

∏
I⊂J1,aK,J⊂J1,bK uI,J where for

y ∈ A, uI,J(y) = u(g1(y), . . . , ga(y), h1(y), . . . , hb(y)) with gi = o if i ∈ I, gi = ι if i /∈ I,
hi = o if i ∈ J and hi = ι if i /∈ J . We call the collection F (u) the collection of spin weighted
components of u.
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Proof. The fact that the components are actually spin weighted functions with the claimed
weight is a consequence of the C-linearity of cospinors and the fact that o(y · z) = zo(y) and
ι(y · z) = z−1ι(y). The fact that F is bijective follows from the construction of the inverse
map. Indeed, if we fix x ∈ M and y ∈ (A0)x, the spin weighted components evaluated at y
give exactly the image of a basis of ⊗aSx ⊗b Sx which correspond to the data of an element
in (Sa,b)x. The fact that this element does not depend on the choice of y follows from the
property (4.2).

Remark 4.5.8. If u has some regularity as a section, its spin weighted components have the
same regularity (as sections of the appropriate line bundle B(s, w)) and vice versa. It is the
major advantage of spin weighted components of a smooth tensor: they are defined globally as
smooth objects while being particularly adapted to the geometry.

Remark 4.5.9. Thanks to the identification between S ⊗ S and TCM, we have also spin
weighted components for tensor fields.

Remark 4.5.10. Proposition 4.5.7 can also be understood if we consider o and ι as spin
weighted spinors (elements of Γ(B(s, w)⊗ S)). Indeed, if u ∈ Sa,b, spin weighted components
are complete contractions of u ⊗ g1 ⊗ ... ⊗ ga ⊗ h1 ⊗ ... ⊗ hb and are therefore sections of
the tensor product of factors of the form B

(
±1

2 ,±
1
2

)
and B

(
±1

2 ,∓
1
2

)
(and by remark 4.5.5

sections of some B(s, w)).

Remark 4.5.11. If (o, ι) is a local section of A0, it provides a local trivialization of A0 and
therefore a local trivialization of B(s, w). The expression of a spin weighted component in this
trivialization is obtained by replacing o by o, ι by ι, l by l,m by m and n by n in the expression
of the component. Therefore the bold font notation is handy to take local trivializations.
However, o and ι do not depend on the choice of a particular local trivialization.

Remark 4.5.12. This decomposition is often used after a first decomposition of the cospinor
or cotensor into symmetric spinors (see [88] section 3.3 for more details about this type of
decomposition). For example, because the electromagnetic tensor F is antisymmetric and real,
it can be decomposed as:

F = φ⊗ ε+ ε⊗ φ (4.3)

(see (3.4.20) in [88] for details) where φ is a section of (S ′)�2 (where � is the symmetric
product). Then, the spin weighted components of φ can be computed using equation (4.3):

φ(o,o) = F(l,m)

φ(o, ι) =
1

2
(F(m,m) + F(l,n))

φ(ι, ι) = F(m,n)

If we fix a local section (o, ι) of A0 and write the components in the associated local trivial-
ization, we find the usual spin components of the electromagnetic tensor.

Similarly, we have the following decomposition for the Weyl tensor W (see [88, (4.6.41)]):

W = Ψ⊗ ε⊗ ε+ ε⊗ ε⊗Ψ (4.4)
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where Ψ is a section of (S ′)�4. We can compute the spin weighted components of Ψ from
components of W :

Ψ0 :=Ψ(o,o,o,o) = W (l,m, l,m)

Ψ1 :=Ψ(o,o,o, ι) = W (l,m, l,n)

Ψ2 :=Ψ(o,o, ι, ι) = W (l,m,m,n)

Ψ3 :=Ψ(o, ι, ι, ι) = W (l,n,m,n)

Ψ4 :=Ψ(ι, ι, ι, ι) = W (m,n,m,n)

Since l and n (seen as maps from A0 to TCM) are valued in the set of principal null vectors
and the spacetime is of type D, all the components vanish except Ψ2. Note that we adopted the
sign convention of [88, (4.11.9)]. In [18, Chapter 1, (294)] and in [101, (1.3)], the authors
add a minus sign but since the Weyl tensor also has a different sign convention, the definition
is in fact the same.

Remark 4.5.13. We can also define spin weighted components for sections of Sa,b ⊗B(s, w)
(using remark 4.5.5).

4.6 Reduction of A0 and N0

To simplify the computations it is useful to find a smaller principal bundle with a repre-
sentation such that the associated vector bundle is isomorphic to B(s, w). We can consider
A0,r := A0/R∗+ (we quotient by the action of R∗+ ⊂ C∗). Similarly we define N0,r := N0/R∗+.
We verify that the map d induces a double cover between A0,r and N0,r (we still call this
induced map d). Moreover A0,r and N0,r both have the structure of a U(1)-principal bundle
overM.

Remark 4.6.1. According to proposition 4.5.3, we have a global choice of independent princi-
pal real smooth null vector fields l and n. It enables us to make a global choice of representative
for A0,r and N0,r (note that the ordering (l, n) gives a choice of connected component). We
have the following identifications for the reduced bundles

A0,r '{(o, ι) ∈ S × S : o⊗ o = l, ι⊗ ι = n}
N0,r '{m ∈ TCM : g(m,m) = g(l,m) = g(n,m) = 0,

g(m,m) = −1, g(l, n) = 1 and (n, l,m) is oriented} .

Pay attention to the fact that the identification of A0,r depends on the particular choice of l
and n but the identification of N0,r only depends on the ordering of l and n.

Remark 4.6.2. In both cases, the choice of l and n enables to associate each local smooth
section of A0,r (resp. N0,r) to a local smooth section of A0 (resp. N0). Therefore, when a
choice of l and n has been made, we can work with A0,r and N0,r instead of A0 and N0.
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Chapter 5

Concrete computations in the
subextremal Kerr exterior

We define the Kerr metric with mass parameter M and angular momentum per unit of mass
a. We assume that 0 < a < M (subextremal Kerr). The Kerr metric is given by:

g =

(
1− 2Mr

ρ2

)
dt2 +

(
4Mar

sin2 θ

ρ2

)
dt dφ− ρ2

∆r
dr2 − ρ2 dθ2

− sin2 θ

(
r2 + a2 + 2Ma2r

sin2 θ

ρ2

)
dφ2

with

∆r := r2 − 2Mr + a2

ρ2 := r2 + a2 cos2 θ

We define r0 := M+
√
M2 − a2 and we consider first the Kerr exteriorM := Rt×(r0,+∞)×S2.

We also define the Kerr∗ coordinates: (t∗, r, θ, φ∗) = (t + T (r), r, θ, φ + A(r)) with T (r) :=∫ r
r1

a2+r2

∆r
dr and A(r) =

∫ r
r1

a
∆r

dr for some arbitrary (but fixed) r1 ∈ (r0,+∞). Kerr space
time is an important example of a Petrov type D spacetime (Ricci-flat). In this section we
make the previous definitions explicit in this concrete case.

5.1 Complete system of trivializations

We now compute the concrete topology of the bundles in the Kerr case. We will show on the
way that there is no global continuous oriented Newman Penrose tetrad (global continuous
section of N0) nor a global continuous normalized spin frame along the null directions (global
section of A0). Let M > 0 and a < M . We endow M := Rt × (r0,+∞) × S2 with the
Kerr metric. It is a Petrov type D simply connected spacetime. We saw that in this case,
A and N have two connected components (proposition 4.5.1). Then, looking at the proof of
proposition 4.5.3, we see that a choice of a connected component is induced by a choice of
global linearly independent smooth vector fields (l, n) which are future oriented principal null
directions. Here we take (Kinnersley’s tetrad):

l =
r2 + a2

∆r
∂t + ∂r +

a

∆r
∂φ (5.1)

n =
r2 + a2

2ρ2
∂t −

∆r

2ρ2
∂r +

a

2ρ2
∂φ (5.2)
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We use the identification in remark 4.6.1 to describe A0,r and N0,r. We define p = r+ ia cos θ.
Then we can see that

m =
ia sin θ√

2p
∂t +

1√
2p
∂θ +

i√
2p sin θ

∂φ (5.3)

is a local section of N0,r overM\ Rt × (r0,+∞)× {N,S} where N and S are the north and
south poles of S2. Note that the vector field m cannot be extended to a smooth vector field
onM. However it provides a local trivialization of N0,r:

Ψm :

{
U(1)× Rt × (r0,+∞)×

(
S2 \ {N,S}

)
→ N0,r

(eiρ, x) 7→ eiρm(x)

Remark 5.1.1. Note that given a local trivialization Ψ : U(1) × U → N0,r on N0,r, we can
define a corresponding local trivialization on N0 by taking

Ψ̃ :

{
C∗ × U → N0

(z, x) 7→ (|z|l(x), |z|−1n(x),Ψ( z
|z| , x))

Our next goal is to write a complete system of local trivializations on N0,r. We introduce
the stereographic coordinates relative to the north pole

(xN , yN ) =

(
cotan

(
θ

2

)
cosφ, cotan

(
θ

2

)
sinφ

)
which are local smooth coordinates on S2 \ {N}. We define the following map:

ΨN :


U(1)× Rt × (r0,+∞)×

(
S2 \ {N}

)
→ TCM

(eiρ, t, r, xN , yN ) 7→ eiρ

√
2

(
r+ia

(x2
N

+y2
N

)−1

1+x2
N

+y2
N

) (2ia(xN−iyN )
1+x2

N+y2
N
∂t

+
(x2
N+y2

N+1)
2 (−∂xN + i∂yN )

)
.

Note that ΨN commutes with the projection TCM →M. We remark that on U(1) × Rt ×
(r0,+∞)× S2 \ {N,S} (where U(1) is identified with U(1)× {Id}) we have:

Ψm =
xN + iyN√
x2
N + y2

N

ΨN = eiφΨN

where φ is the usual spherical coordinate on S2. Using that N0,r is closed in TCM and
ΨN is continuous, we deduce that ΨN has values in N0,r. Moreover, since ΨN is a smooth
proper injective immersion as a function with values in TCM, it remains such as a function
with values in the submanifold N0,r. Since U(1)× Rt × (r0,+∞)×

(
S2 \ {N}

)
has the same

dimension as N0,r, we deduce that ΨN defines local coordinates on N0,r. Moreover, we check
easily that it trivializes the action of U(1).

We also introduce the stereographic coordinates relative to the south pole

(xS , yS) =

(
tan

(
θ

2

)
cosφ, tan

(
θ

2

)
sinφ

)
which are local smooth coordinates on S2 \ {S}. We also define the map ΨS :

ΨS :


U(1)× Rt × (r0,+∞)×

(
S2 \ {S}

)
→ TM

(eiρ, t, r, xS , yS) 7→ eiρ

√
2

(
r+ia

1−(x2
S

+y2
S

)

1+x2
S

+y2
S

) (2ia(xS+iyS)
1+x2

S+y2
S
∂t

+
(x2
S+y2

S+1)
2 (∂xS + i∂yS )

)
.
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On U(1)× Rt × (r0,+∞)×
(
S2 \ {N,S}

)
, we have:

Ψm =
xS − iyS√
x2
S + y2

S

ΨS = e−iφΨS .

As previously for ΨN , we deduce that ΨS defines local coordinates on N0,r and trivializes the
action of U(1).

Note that (for ω ∈ S2 \ {N,S} with local stereographic coordinates relative to the north
pole (xN , yN ) and relative to the south pole (xS , yS)),

ΨN (eiρ, t, r, xN , yN ) =
xS − iyS
xS + iyS

ΨS(eiρ, t, r, xS , yS) =
xN − iyN
xN + iyN

ΨS(eiρ, t, r, xS , yS)

and we deduce

Ψ−1
S ΨN (eiρ, t, r, xN , yN ) =

(
xN − iyN
xN + iyN

eiρ, t, r, xN , yN

)
.

The complete system of local trivializations (ΨN ,ΨS) enables us to show easily the fol-
lowing proposition:

Proposition 5.1.2. There is no global continuous section of N0,r (in other words, N0,r is
not the trivial bundle U(1)× Rt × (r0,+∞)× S2)

Proof. We argue by contradiction. Let us assume the existence of a global continuous section
f . Then we construct f1 := prU(1)Ψ

−1
N ◦ f|{0}×{r0+1}×S2\{N}

which is continuous (prU(1) being
the projection onto U(1)). Using the stereographic coordinates relative to the north pole
on {0} × {r0 + 1} × S2 \ {N}, we can see f1 as a function from R2 to U(1). Using the
same construction with respect to the south pole (f2 = prU(1)Ψ

−1
S ◦f|{0}×{r0+1}×S2\{S}

) and the
identification using stereographic coordinates relative to the south pole, we obtain a continuous
function f2 from R2 to U(1). The two constructions overlap and going through the various
identifications, we get the relation f1(x, y) = (x+iy)2

x2+y2 f2( x
x2+y2 ,

y
x2+y2 ) on R2 \ 0. We define

g : (0,+∞) × U(1) → U(1) by g(r, ω) := f1(rω). Since f1 and f2 are continuous at (0, 0), g
can be continuously extended by g(0, ω) = f1(0) and g(+∞, ω) = ω2f2(0). This extension is
a homotopy between two loops with different indices hence we have a contradiction and there
is no global continuous section.

Remark 5.1.3. A global continuous section on N0 composed with the projection of N0 onto
N0,r provides a global continuous section on N0,r. Therefore there is no global continuous
section of N0 either. Similarly (using the map d) there is no global continuous section of A0

and A0,r.

From the complete system of local trivializations on N0, we can deduce a complete system
of local trivializations on A0. Indeed, the previous discussion shows that we have the sections
sN = (l, n, e−iφm) (smooth on Rt × (r0,+∞) × S2 \ {N}) and sS = (l, n, eiφm) (smooth on
Rt × (r0,+∞) × S2 \ {S}) of N0. Since Rt × (r0,+∞) × S2 \ {N} is simply connected and
d is a double covering map, we have exactly two lifts of sN as a local smooth section of A0

on Rt × (r0,+∞) × S2 \ {N}. We fix a choice (oN , ιN ) of such a section. Then we define
(o, ι)S = (eiφoN , e

−iφιN ) which is smooth on Rt×(r0,+∞)×S2\{S,N} and we want to prove
that (o, ι)S extends smoothly to Rt × (r0,+∞)× S2 \ {S}. To show that, we first check that
d ◦ (o, ι)S = sS on Rt× (r0,+∞)×S2 \ {S,N}. Let x ∈ Rt× (r0,+∞)×S2 \ {N,S}; we know
that there exists a unique smooth lift s̃S of sS with value (o, ι)S(x) at x. The set such that
s̃S = (o, ι)S is open (we check that in an open set of trivialization containing a point x0 such
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that s̃S(x0) = (o, ι)S(x0)), closed (as a subset of Rt × (r0,+∞) × S2 \ {S,N}) by continuity
of s̃S and (o, ι)S and non empty. Therefore (o, ι)S = s̃S . Finally, these two sections provide
a complete system of trivializations of A0:

A−1
N :

{
C∗ × Rt × (r0,+∞)× S2 \ {N} → A0

(z, x) 7→ (zoN (x), z−1ιN (x))

A−1
S :

{
C∗ × Rt × (r0,+∞)× S2 \ {S} → A0

(z, x) 7→ (zoS(x), z−1ιS(x))

with change of trivializations given by the map ANA−1
S (z, x) = (eiφz, x). Note that there is no

lift of the local section (l, n,m) smooth on Rt×(r0,+∞)×S2\{N,S}. Indeed, the local section
of A0 (om, ιm) := (ei

φ
2 oN , e

−iφ
2 ιN ) = (e−i

φ
2 oS , e

iφ
2 ιN ) defined on Rt× (r0,+∞)×S2 \ {φ = 0}

is such a lift but it does not extend continuously to Rt × (r0,+∞)× S2 \ {N,S}. We denote
by Am the local trivialization of A0 associated to (om, ιm). It is traditionally used to write
the Teukolsky operator.

Remark 5.1.4 (Bundles on an extended Kerr spacetime). We can also compute local triv-
ializations of A0 and N0 on a larger Kerr space time. More precisely, using Kerr star co-
ordinates (t∗, r, ω∗), we can extend the Kerr metric to a larger spacetime which is given by
Mext := Rt∗ × (r0− ε,+∞)r ×S2

ω∗. There are very few modifications with respect to the com-
putations on the exterior. The main thing to note is that we cannot make the same choice of l
and n as previously since they do not extend smoothly across the future horizon H = {r = r0}.
Thus we renormalize them:

l̃ = ∆rl

ñ = ∆−1
r n

and extend them as independent future oriented principal null vector fields. However the vector
field m extends smoothly to Rt∗× (r0− ε,+∞)r×

(
S2
ω∗ \ {N,S}

)
. Indeed we have in Kerr star

coordinates:
m =

ia sin θ√
2p

∂t∗ +
1√
2p
∂θ +

i√
2p sin θ

∂φ∗

where p = r + ia cos θ = r + ia cos θ as previously. This expression defines an extension of m
onMext such that for all x ∈ Mext, (l̃(x), ñ(x),m(x)) ∈ N0. As previously, we can compute
explicitly a complete system of local trivializations of the bundles N0,r, A0,r, N0 and A0.

5.2 Link with the Hopf fibration

In this section, we see S3 as the unit quaternions group; that is to say

S3 :=
{
a+ bi+ cj + dk, (a, b, c, d) ∈ R4 : a2 + b2 + c2 + d2 = 1

}
⊂ H.

For h ∈ S3, the subset of imaginary quaternions I =
{
bi+ cj + dk : (b, c, d) ∈ R3

}
is stable

by the map ch : h′ 7→ hh′h∗ (h∗ is the conjugate of h in the sense of quarternions and since
h ∈ S3, h∗ = h−1). The map ch is even an orthogonal map for the usual norm on I since
(hh′h∗)(hh′h∗)∗ = hh′h′∗h∗ = ‖h′‖2. Therefore, Ψ : h 7→ ch defines a Lie group morphism
from S3 to O(3) (note that I is identified with R3 by sending (i, j, k) to the canonical basis).
Since S3 is connected and c1 = Id, we have that Ψ(S3) ⊂ SO(3). Finally, we compute the
kernel of Ψ. Let h be such that ch = Id. Then for all h′ ∈ I, we have:

hh′h∗ = h′

hh′ = h′h (since h∗h = 1)
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Therefore, h commutes with every element of I. But I + Z(H) = H (where Z(H) = R is
the center of H). Therefore, h ∈ Z(H). Finally, since h ∈ S3, we find h = 1 or h = −1.
Therefore, Ψ is a Lie group morphism between two connected Lie groups with finite kernel of
size two. Therefore it is a double covering map. We can identify SO(3) with OS2 , the bundle
of oriented orthonormal frames on S2 (we identify a matrix in SO(3) with columns C1, C2

and C3 with the basis (C2, C3) ∈ TC1S2). We denote by πS2 : SO(3) → S2 the projection
when SO(3) is seen as the bundle of oriented orthonormal frames on S2 (therefore πS2(M) is
the first column of the matrix with the identification that we have chosen).

The Hopf fibration can be defined as H = πS2 ◦ Ψ : S3 → S2 (which is a smooth sub-
mersion). We identify S2 with the subset of of imaginary quaternions with unit norm. Let
u ∈ S2 ⊂ I, by definition H−1(u) =

{
h ∈ S3 : hih∗ = u

}
. We see that we have a right smooth

fiber preserving action of U(1) := S3 ∩ (R + iR) on S3 (given by right multiplication). More-
over, this action is simply transitive on each fiber since if h1, h2 ∈ H−1(u), then g := h−1

1 h2 is
the only element of H such that h1g = h2 and it belongs to U(1) (indeed it commutes with i
and has norm 1). Therefore, the Hopf fibration is a U(1)-principal bundle. There is a unique
action of U(1) on OS2 such that for all x ∈ S3 and g′ ∈ U(1), Ψ(x · g′) = Ψ(x) · g′2 and it is
defined by ch · g = chg′ = c−hg′ for any g′ such that g′2 = g. Writing this more explicitly, we
see that for a matrix M ∈ SO(3) with columns C1, C2, C3 , M = Ψ(h) for some h ∈ S3 with
Mat
(i,j,k)

hih∗ = C1, Mat
(i,j,k)

hjh∗ = C2 and Mat
(i,j,k)

hkh∗ = C3. Then if g = cos(ρ) + i sin(ρ) ∈ U(1)

and g′ = cos
(ρ

2

)
+ i sin

(ρ
2

)
, M · g has columns

Mat
(i,j,k)

hg′i(hg′)∗ = C1

Mat
(i,j,k)

hg′j(hg′)∗ = Mat
(i,j,k)

(
(cos2

(ρ
2

)
− sin2

(ρ
2

)
)hjh∗ + 2 sin

(ρ
2

)
cos
(ρ

2

)
hkh∗

)
= cos(ρ)C2 + sin(ρ)C3

Mat
(i,j,k)

hg′k(hg′)∗ = − sin(ρ)C2 + cos(ρ)C3.

The map IdRt×(r0,+∞) ×H enables to put the structure of a U(1)-principal bundle on Rt ×
(r0,+∞)×S3 and similarly, we put the structure of a U(1)-principal bundle on Rt×(r0,+∞)×
OS2 .

Proposition 5.2.1. We define the map:

f :

{
Rt × (r0,+∞)×OS2 → TCM
(t, r, (ω,X, Y ) ∈ OS2) 7→ − ia〈X+iY,e3〉R3√

2p
∂t + 1√

2p
X + i√

2p
Y ∈ T(t,r,ω)M

where elements of S2 (resp. OS2) are represented by unit vectors (resp. triples of unit vectors
where the first one represents the base point in S2) in R3 (and e1, e2, e3 is the canonical basis
of R3) and p = r + i cos(θ). The notation 〈.〉R3 denotes the canonical scalar product on R3

extended to a C-bilinear form on C3 (therefore it is not hermitian).
We have f : Rt × (r0,+∞)×OS2 → N0,r and it is an isomorphism of principal bundles.

Proof. Let (t, r, ω) ∈ M and (ω,X, Y ) ∈ OS2 . To prove that f has values in N0,r, we have
to prove that m := − ia〈X+iY,e3〉R3√

2p
∂t + 1√

2p
X + i√

2p
Y is null, orthogonal to any principal null

vector and g(m,m) = −1.
We can write the Kerr metric on the form:

g =

(
1− 2Mr

ρ2

)
dt2 +

4Mar

ρ2
dt(sin2 θ dφ)− ρ2

∆r
dr2 − ρ2gS2

− a2

(
1 +

2Mr

ρ2

)
(sin2 θ dφ)2
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Moreover, if we see elements ω ∈ S2 as units vectors

ωxωy
ωz

 on R3, we have:

sin2 θ dφ = −ωy dx+ ωx dy

We can therefore compute:

2p2g(m,m) =− a2
(
〈X + iY, e3〉2 + 〈X + iY,−ωye1 + ωxe2〉2

−2Mr

ρ2
(〈X + iY, e3〉 − i 〈X + iY,−ωye1 + ωxe2〉)2

)
But note that −ωye1 +ωxe2 = e3×ω, ω×X = Y and Y ×ω = X (since ω,X, Y is an oriented
orthonormal basis of R3). Then, by definition of the cross product on R3,

〈X, e3 × ω〉 = det(X, e3, ω)

= det(e3, ω,X)

= 〈ω ×X, e3〉
= 〈Y, e3〉

〈Y, e3 × ω〉 =− 〈X, e3〉

Therefore, 〈X + iY, e3 × ω〉 = 〈Y − iX, e3〉 = −i 〈X + iY, e3〉. We deduce that 2p2g(m,m) =
0.

We compute also

g(
√

2pm,∆rl) =

(
1− 2Mr

ρ2

)
(−ia 〈X + iY, e3〉) (r2 + a2) +

2Ma2r

ρ2
sin2 θ(−ia 〈X + iY, e3〉)

+
2Mar(r2 + a2)

ρ2
〈X + iY, e3 × ω〉 − aρ2 〈X + iY, e3 × ω〉

− a3

(
1 +

2Mr

ρ2

)
〈X + iY, e3 × ω〉 sin2 θ

= 0 (using 〈X + iY, e3 × ω〉 = −i 〈X + iY, e3〉)

Very similar computations show:

g(
√

2pm,∆−1
r n) = 0

g(m,m) = 1

The previous computations show that f has values in N0,r. Moreover f is smooth and so is
its inverse:

f−1 : m ∈ (N0,r)(t,r,ω) 7→ (t, r,
√

2p(<(prTωS2,∂tm),=(prTωS2,∂tm)))

where prS2,∂t is the linear projection onto TωS2 parallel to ∂t. Therefore, it is a diffeomor-
phism. The compatibility with projections maps is immediate. It remains to prove that f is
compatible with the actions of U(1). Let eiρ ∈ U(1).

(ω,X, Y ) · eiρ = (ω, cos(ρ)X + sin(ρ)Y,− sin(ρ)Y + cos(ρ)X)

= (ω,<(eiρ(X + iY )),=(eiρ(X + iY )))
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Therefore, if (ω,X, Y ) ∈ OS2 :

f(t, r, (ω,X, Y ) · eiρ) = −
ia
〈
eiρ(X + iY ), e3

〉
R3√

2p
∂t + eiρ(X + iY )

= eiρf(t, r, (X,Y ))

= f(t, r, (X,Y )) · eiρ

The double cover map d̃ := f ◦ Ψ satisfies d̃(x · g) = d̃(x) · g2 for all g ∈ U(1) and
x ∈ Rt × (r0,+∞)× S3 and the following diagram is commutative

Rt × (r0,+∞)× S3 N0,r

M

Id×H

d̃

πN0,r

We see that d̃ : Rt × (r0,+∞)× S3 → N0,r is very similar to d : A0,r → N0,r. Indeed, the
two are isomorphic as we see in the following proposition:

Proposition 5.2.2. Given u ∈ Rt × (r0,+∞) × S3 and v ∈ A0,r such that d̃(u) = d(v), we
have a unique isomorphism of principal bundles G : Rt × (r0,+∞)× S3 → A0,r such that the
following diagram is commutative:

Rt × (r0,+∞)× S3 A0,r

N0,r

d̃

G

d

and such that G(u) = v.

Proof. Since Rt×(r0,+∞)×S3 is simply connected and d is a covering map, d̃ admits a unique
lift through d to a smooth map G : Rt × (r0,+∞)× S3 → A0,r such that G(u) = v. A priori
G is only a smooth map. It remains to show that G is in fact an isomorphism of principal
bundles. First note that for all y ∈ Rt × (r0,+∞) × S3, we have (Id ×H)(y) = πA0,r(G(y))
(using the commutative diagrams).

Let V be a small open subset of M and y : V → Rt × (r0,+∞) × S3 be a local section
of Rt × (r0,+∞) × S3. Then G ◦ y is a local section of A0,r and d̃ ◦ y is a local section
of N0,r. Let Ψ1 be the local trivialization of Rt × (r0,+∞) × S3 such that Ψ1(x, eiρ) =
eiρ · y(x), Ψ2 the local trivialization of A0,r such that Ψ2(x, eiρ) = eiρ · G(y(x)) and Φ the
local trivialization of N0,r such that Φ(x, eiρ) = eiρ · d̃(y(x)). Then for x ∈ V and a ∈ U(1),
Ψ−1

2 ◦G ◦Ψ1(x, a) = (x, γ(x, a)) where γ is the unique continuous U(1)-valued function such
that γ(x, a) ·G(y(x)) = G(a · y(x)). In particular γ(x, 1) = 1. Moreover, Φ−1 ◦ d̃ ◦Ψ1(x, a) =
Φ−1 ◦ d ◦Ψ2(x, a) = (x, a2). For x ∈ V and a ∈ U(1):

Φ−1 ◦ d ◦G ◦Ψ1(x, a) = Φ−1 ◦ d ◦Ψ2 ◦Ψ−1
2 ◦G ◦Ψ1(x, a)

= (x, γ(x, a)2)

And we also have

Φ−1 ◦ d ◦G ◦Ψ1(x, a) = Φ−1 ◦ d̃ ◦Ψ1(x, a)

= (x, a2)
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We deduce γ(x, a)2 = a2.
Then the following diagram is commutative:

U(1)

V × U(1) U(1)

a7→a2
γ

(x,a)7→a2

Because a 7→ a2 is a covering map, we have the uniqueness of such a continuous lift with
γ(x, 1) = 1. We deduce γ = prU(1). This proves that G is an isomorphism of principal
bundles.

Remark 5.2.3. The previous proposition shows that there are exactly two choices G1 and G2

for the isomorphism and we have for all a ∈ Rt × (r0,+∞) × S3, G1(a) = G2(a · (−1)). We
choose one of the two and call it G.

Thanks to the previous proposition, we have now a concrete description of A0,r and we
can use it to define spin weighted functions as in [21, Section 2.2]. The concrete description
avoids the reference to spin frames.

5.3 Stationarity

In this section, we introduce the notion of a trivial (vector or principal) bundle with respect
to a factor in a product decomposition and we apply this notion to the bundle B(s, s) in the
Kerr case. We consider a manifold M with a product decomposition Ψ : M → X × Y (Ψ
being a fixed diffeomorphism).

Definition 5.3.1. We say that a (vector or principal) bundle pE : E → M is trivial with
respect to X in the decomposition given by Ψ if there exists an isomorphism f of (vector or
principal) bundles over Ψ between E and the bundle X × F (by definition it is the product of
the trivial bundle Id : X → X and some bundle pF : F → Y). In particular, we have the
following commutative diagram:

E X × F

M X ×Y

pE

f

IdX×pF
Ψ

We will say that f is a semi-trivialization of the bundle.

Remark 5.3.2. It is equivalent to say that E is (isomorphic to) the pullback of a bundle F
on Y by the second projection (indeed, this pullback bundle is exactly the bundle X × F ).

Remark 5.3.3. In the following we fix the identification between M and Ψ. Therefore we
will assumeM = X × Y.

Remark 5.3.4. If f : E → X × F and f ′ : E → X × F ′ are two semi-trivializations, we
have f ◦ f ′−1(x, z) = (x, γ(z)) where γ : F ′ → F is an isomorphism of vector (or principal)
bundles.

Proposition 5.3.5. Let E be a finite rank vector bundle overM = X ×Y (M is paracompact
since it is a smooth manifold). If X is contractible, then E is trivial with respect to X .
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Proof. Let f : [0, 1] × X × Y → X × Y be a smooth map such that f0 = IdX×Y and
f1(x, y) = (x0, y) for all (x, y) ∈ X × Y (x0 is some element of X ). We define E = f∗E.
Then, for example by proposition 1.7 in [44] (rather its direct equivalent in the smooth case,
obtained by minor modifications in the proof), E|{0}×X×Y is isomorphic to E|{1}×X×Y .

Proposition 5.3.6. Let E be a vector bundle over X×Y. If C = (Uα,Ψα) is a complete system
of local trivializations for E such that all the transition maps gα,α′ ∈ C∞(Uα ∩ Uα′ ;Gln(R))
are independent of the first factor (ie factorize as gα,α′ = g̃α,α′ ◦ π2 where π2 is the second
projection on X ×Y), then there exists a semi-trivialization fC : E → X ×FC where FC is the
vector bundle on Y given by the transition maps g̃α,α′ .

Remark 5.3.7. We will say that the system C is stationary with respect to X . As mentioned
in the proof of the proposition, a stationary system of trivializations comes naturally with a
semi-trivialization of E.

Proof. We first define the vector bundle FC by
∐
α π2(Uα)×Rn/(g̃α,α′) (the family g̃α,α′ satisfies

the cocycle condition). We denote by iα the natural maps from Uα × Rn to FC (composition
of the injection in the disjoint union and the projection in the quotient). These maps are
continuous injective and by definition of the quotient, on Uα∩U ′α, i−1

α iα′(y, v) = (y, gα,α′(y)v).
Then we define the map fC by fC(z) = (Ψα(z)1, iα(Ψα(z)2,Ψα(z)3)) if z ∈ Uα (the index 1,2
and 3 refers to the components in the product decomposition). This does not depend on the
choice of α such that z ∈ Uα and (IdX × i−1

α ) ◦ fC ◦Ψ−1
α is the identity of Uα×Rn. Therefore,

fC is an isomorphism of vector bundles.

Proposition 5.3.8. Conversely, if we have a semi-trivialization f : E → X × F and a
complete system of local trivializations (Uα,Ψα) on F , we can define a complete system of
local trivializations on E with transition maps independent of the first factor.

Proof. We just take the system (X × Uα, (IdX ×Ψα) ◦ f).

We now apply these notions to the study of B(s, w). First note that the complete system
of trivializations (AN , AS) of A0 has a transition map depending only on φ. As a consequence,
the associated sytem of trivializations of B(s, w) also has a transition map depending only on
φ (see remark 4.2.5). Therefore, we are in the context of proposition 5.3.6 and B(s, w) is trivial
with respect to the factor Rt×(r0,+∞) (we could also have used proposition 5.3.5 but proposi-
tion 5.3.6 provides a concrete vector bundle BS2(s, w) on S2 and a concrete semi-trivialization
f : A0 → Rt × (r0,+∞)× BS2(s, w) associated with the stationary system of local trivializa-
tions). The map f enables us to identify Γ(B(s, w)) with C∞(Rt × (r0,+∞),Γ(BS2(s, w))).
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Chapter 6

Connections on the bundles and the
GHP formalism

There are different methods to define the spin connection and the GHP connection, for exam-
ple we could write them down explicitly in an expression involving coefficients depending only
on the Levi-Civita connection and the metric (see remark 6.2.5 and proposition 6.2.10) and
check that it defines a linear connection. For computational purposes, these definitions are
enough but they are not insightful. The spin connection is the unique connection ∇ such that
j∗∇LC = ∇⊗∇ (where ∇LC is the Levi-Civita connection) and ∇ε = 0 and these properties
can be used as an alternative definition as well. However, here we choose another definition.
We start with the Levi-Civita connection and move it naturally through the different bundles
involved. The advantage of this method is that each step is very natural, moreover it gives
a good understanding of where the GHP connection comes from. Its main drawback is that
it is a little longer than the direct definitions and involves some elementary knowledge about
principal connections.

Therefore, we give a brief reminder about principal connections in order to have a self
contained presentation. A more detailed introduction to this topic can be found in [65,
Chapter 2].

6.1 Principal connection

Definition 6.1.1. Let πE : E →M be a principal bundle with structure group G (multiplica-
tive, with neutral element denoted by 1). Let g be the Lie algebra of G. A principal connection
ω is a g-valued one-form on E such that:

• For all g ∈ G, AdgR∗gω = ω where Adg : g→ g is the adjoint representation (Adg(ξ) :=
d
dt |t=0

g exp(tξ)g−1) and Rg : E → E is the right action of g on E.

• For all ξ ∈ g and all e ∈ E, ωe( d1ieξ) = ξ where we have used the map

ie :

{
G→ E

g 7→ e · g

Remark 6.1.2. Differentiating the relation πE ◦ ia(g) = πE(a), we have the inclusion
d1ia(g) ⊂ ker( daπE). Moreover, dim(ker( daπE)) = dim(π−1

E ({a}) = dim(G) = dim(g) =
dim d1ia(g). Therefore d1ia(g) = ker( daπE).

Lemma 6.1.3. For all e ∈ E, ker(ωe)⊕ ker( deπE) = TeE. In particular deπE |ker(ωe) is an
isomorphism between ker(ωe) and TπE(e)M.
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Proof. The image of the injective map d1ie is exactly ker( deπE) (see remark 6.1.2).
So the second point in the definition of ω implies that ker(ωe) ∩ ker( deπE) = {0}
and dim(Ran(ωe)) = dim(g) = dim(ker( deπE)). Moreover, dim(ker(ωe)) = dim(E) −
dim(Ran(ωe)) so we deduce that dim(ker(ωe)) +dim(ker( deπE)) = dim(E) and we have the
lemma.

From now on, for a ∈ E, we denote by Ha := ker(ωa). The following property gives a way
to construct a linear connection (on an associated vector bundle) from a principal connection.

Proposition 6.1.4. Let ρ : G → GL(V ) be a representation of G and let F be the vector
bundle associated to this representation. Then, a smooth section s of F is naturally identified
with a smooth function f : E → V such that f(x · g) = ρ(g−1)(f(x)) and we can define (for
X ∈ TxM) (∇Xs)(x) := [a, daf(( daπE |Ha )−1(X))] where a is any element of π−1

E ({x}).
With this definition, ∇ is a linear connection on F .

Proof. The definition does not depend on the choice of a. If we choose a′ = a · g, we have to
prove that [a, daf(( daπE |Ha )−1(X))] = [a′, da′f(( da′πE |Ha′

)−1(X))]. We have

[a′, da′f(( da′πE |Ha′
)−1(X))] = [a, ρ(g) da′f(( da′πE |Ha′

)−1(X))]

so it remains to prove that

ρ(g) da′f(( da′πE |Ha′
)−1(X)) = daf(( daπE |Ha )−1(X))

. We have the following facts

• da·gπE daRg = daπE (by differentiating πE ◦Rg = πE)

• da·gπE |Ha·g ( daRg)|Ha = daπE |Ha using the previous point and the fact that Rg(Ha) =
Ha·g.

• da·gπE
−1
|Ha·g

= daRg daπE
−1
|Ha

(using the previous point)

• da·gf daRg = ρ(g−1) daf (by differentiating f(a · g) = ρ(g−1)f(a))

We use that to conclude ρ(g) da′f(( da′πE |Ha′
)−1(X)) = daf(( daπE |Ha )−1(X)). Now we

have to prove that ∇ is a linear connection. We obviously have ∇λX+Y = λ∇X +∇Y . Let
h be a smooth function onM. The section hs is associated with the function f̃ = (h ◦ πE)f
and daf̃ = f(a) dπE(a)h daπE + h(πE(a)) daf . Therefore, we have

daf̃(( daπE |Ha )−1(X)) = dπE(a)h(X)f + h(πE(a)) daf(( daπE |Ha )−1(X)).

We deduce that ∇ defines a linear connection on F .

A useful lemma to compute the such defined connection is the following:

Lemma 6.1.5. We use the notation of proposition 6.1.4. Let e be a local smooth section
of E around some x0 ∈ M such that ω ◦ dx0e = 0. Let X ∈ Tx0M and let s be a local
smooth section of F on some open neighborhood U of x0 such that s(x) = [(e(x), v(x))] with
v : U → V smooth. Then, ∇Xs = [(e(x0), dx0v(X))]

Proof. The equivariant function associated to s is f : π−1
E (U) → V such that for all x ∈ U ,

f(e(x)) = v(x). Let X ∈ Tx0M. We use the definition of the connection ∇ to write

∇Xs = [(e(x0), de(x0)f
(

de(x0)πE |He(x0)

)−1
(X))]
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Moreover, we have dx0e(X) ∈ ker(ωe(x0)) = He(x0) and de(x0)πE dx0e(X) = dx0(πE ◦

e)(X) = X. We deduce that
(

de(x0)πE |He(x0)

)−1
(X) = dx0e(X). As a consequence

∇Xs = [(e(x0), de(x0)f dx0e(X))]

= [(e(x0), dx0(f ◦ e)(X))]

= [(e(x0), dx0v(X))]

Remark 6.1.6. In the case where E is the frame bundle of F , the condition ω ◦ dx0e = 0
amounts to saying that the derivative of the local frame vanishes at x0. Then the previous
lemma tells us that in this local frame, we can compute covariant derivatives of a section of
F by taking usual derivatives of the coordinates.

Remark 6.1.7. Let E be a general principal bundle over M and ω a principal connection
on E. Then for all e0 ∈ E, ker(ωe) is transverse to the fiber (and of dimension dim(M)) by
lemma 6.1.3. As a consequence, there exists a local section of E around x0 := πE(e0) such
that e(x0) = e0 and ωe0 ◦ dx0e0 = 0. Moreover, since dim( dx0e0(Tx0M)) = dim(M) =
dim(ker(ωe0)), we have dx0e0(Tx0M) = ker(ωe0).

We can use lemma 6.1.5 to compute the connection in the general case.

Corollary 6.1.8. We use the notations of proposition 6.1.4. Let e be a local smooth section
of E around x0 ∈ M. Let X ∈ Tx0M and s be a section of F on some open neighborhood
U of x0 such that s(x) = [(e(x), v(x))] with v : U → V smooth. Then we have ∇Xs =
[e(x0), dx0v(X) + d1ρωe(x0)( dx0e(X))v(x0)].

Proof. We define e′ smooth section of E on a neighborhood U of x0 such that e′(x0) = e(x0)
and dx0e

′(Tx0M) = ker(ωe(x0)) (e′ exists by remark 6.1.7). We define g : U → G the unique
smooth map such that e′ = e · g (in particular g(x0) = 1). By the chain rule, we have:

dx0e
′(x) = d1ie(x0)( dx0g(X)) + dx0e(X)

But by definition of e′(x0), ωe(x0)( dx0e
′(x)) = 0. On the other hand:

ωe(x0)( dx0e
′(x)) = dx0g(X) + ωe(x0)( dx0e(X))

therefore dx0g(X) = −ωe(x0)( dx0e(X)). We can now compute:

s(x) = [(e(x), v(x))] = [(e(x) · g(x), ρ(g(x)−1)v(x))]

∇Xs(x0) = [(e(x0) · g(x0), dx0(ρ(g−1)v)(X)] (by proposition 6.1.4)
= [(e(x0), dx0(v)(X)− d1ρ dx0g(X)v(x0))] (chain rule)
= [(e(x0), dx0(v)(X) + d1ρωe(x0)( dx0e(X))v(x0))]

The construction of proposition 6.1.4 behaves well with respect to the tensor product of
vector bundles as we see in the following proposition:
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Proposition 6.1.9. Let E be a G principal bundle with a principal connection ω, ρ1 be a
representation of G on V1 and ρ2 a representation of G on V2. Let F1 be the vector bundle
associated to E with the representation ρ1 and F2 the vector bundle associated to E with
the representation ρ2. We denote by ∇1 (resp. ∇2) the linear connection on F1 (resp. F2)
obtained from ω thanks to proposition 6.1.4. The bundle F1 ⊗ F2 is naturally associated to
E with the representation g 7→ ρ1(g) ⊗ ρ2(g). We denote by ∇̃ the connection on F1 ⊗ F2

obtained from ω by proposition 6.1.4. Then we have

∇1 ⊗∇2 = ∇̃

Proof. Let x0 ∈M, let s be a local section of E on an open neighborhood U of x0 such that
ω ◦ dx0s = 0 (it is always possible to find such a section by remark 6.1.7). Let f1 (resp. f2)
be a smooth section of F1 (resp. F2) on U . We write f1 = [(s, g1)] and f2 = [(s, g2)] with
gi : U → Vi smooth. Then we have f1 ⊗ f2(x) = [(s(x), g1(x)⊗ g2(x))]. Let X ∈ Tx0M. We
use lemma 6.1.5 to compute

∇̃X (f1 ⊗ f2) (x0) = [(s(x0), dx0(g1 ⊗ g2)(X))]

= [(s(x0), dx0g1(X)⊗ g2(x0) + g1(x0)⊗ dx0g2(X))]

= [(s(x0), dx0g1(X))]⊗ [(s(x0), g2(x0))]

+ [(s(x0), g1(x0))]⊗ [(s(x0), dx0g2(X))]

= (∇1)Xf1(x0)⊗ f2(x0) + f1(x0)⊗ (∇2)Xf2(x0) (by lemma 6.1.5)

The equality is true for pure product sections and we use linearity to conclude.

Finally, we give a kind of reverse construction of the previous one when E is the principal
bundle of frames of a vector bundle F of rank n (real or complex, we consider the complex
case here).

Proposition 6.1.10. We assume that we have a linear connection ∇ on F (complex vector
bundle of rank n over a manifold M of positive dimension). We denote by E the GL(n,C)-
principal bundle of frames. There exists a unique Mn(C)-valued one-form ω on E such that
for all local frames (e1, ..., en) around x and all X ∈ TxM,

ωe1(x),...,en(x)( dx(e1, ..., en)(X)) = Mat
e1(x),...,en(x)

(∇Xe1(x), ...,∇Xen(x)) ∈Mn(C)

where Mat
f1,...,fn

(a1, ..., an) is the unique matrix M such that for all i ∈ J1, nK, ai =
∑n

k=1Mk,ifk.

Moreover, ω is a principal connection on E.

Proof. For x ∈M, we denote by Γx(E) the set of local smooth section of E defined on some
neighborhood of x. To prove the uniqueness, it is enough to remark that for a frame (f1, ..., fn)
at x, the set

{ dx(e1, ..., en)(X) : (e1, ..., en) ∈ Γx(E) with (e1, ..., en)(x) = (f1, ..., fn), X ∈ TxM}

generates T(f1,...,fn)E. Indeed, by a simple construction in a local trivialization around x, we
can show that

{ dx(e1, ..., en)(X) : (e1, ..., en) ∈ Γx(E) with (e1, ..., en)(x) = (f1, ..., fn), X ∈ TxM}

is exactly T(f1,...,fn)E \ker( d(f1,...,fn)πE) (so we have the desired conclusion as soon asM has
positive dimension). The existence follows from the observation that both sides of the equal-
ity are linear and if dx(e1, ..., en)(X) = dx(e′1, ..., e

′
n)(Y ), then (∇Xe1(x), ...,∇Xen(x)) =

(∇Y e′1(x), ...,∇Y e′n(x)). Now we have to check that ω defines a principal connection on the
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bundle of frames. In particular, for (f1, ..., fn) ∈ E and g ∈ GL(n,R), Adg(R∗gω)f1,...,fn =
ωf1,...,fn . By the remark in the proof of uniqueness, it is enough to check it on the vectors
on the form dx(e1, ..., en)(X) where (e1, ..., en)(x) = (f1, ..., fn). We define (e′1, ..., e

′
n) :=

(e1, ..., en) ·g for g ∈ GL(n,C) and by definition of the right action of GL(n,C) on E, we have
e′i =

∑n
k=1 gk,iek. Then we have d(f1,...,fn)Rg dx(e1, ..., en)(X) = dx(e′1, ..., e

′
n)(X). We use

that to compute:

R∗gω( dx(e1, ..., en)(X)) = ω(f1,...,fn)·g( dx(e′1, ..., e
′
n)(X))

= Mat
(f1,...,fn)·g

(
∇Xe′1, ...,∇Xe′n

)
= Mat

(f1,...,fn)·g

(
n∑
k=1

(gk,1∇Xek, ..., gk,n∇Xek)

)
= g−1 Mat

(f1,...,fn)
(∇Xe1, ...,∇Xen)g

= (Adg)
−1ω( dx(e1, ..., en)(X))

The second property to check is that for (f1, ..., fn) ∈ E and g : (−1, 1) → GL(n,C)
smooth with g(0) = Id, we have ω( d

dt |t=0
(f1, ..., fn) · g(t)) = d

dt |t=0
g(t). To see that,

we take (x1, ..., xn) smooth coordinates around x with (x1, ..., xn)(x) = 0 and (e1, ..., en)
a local frame around x such that (e1, ..., en)(x) = (f1, ..., fn). We define the local frame
(e′1, ..., e

′
n) := (e1, ..., en) · g(x1). We compute (using the chain rule)

dx(e′1, ..., e
′
n)(∂x1) =

d

dt |t=0
((f1, ..., fn) · g(t)) + dx(e1, ..., en)(∂x1)

Moreover, we have

e′i =

n∑
k=1

gk,i(x1)ek

Therefore ∇∂x1
e′i(x) =

∑n
k=1

(
d
dt |t=0

gk,i

)
fk+∇∂x1

ek(x) and using the definition, we see that

ω(f1,...,fn)( dx(e′1, ..., e
′
n)(∂x1)) = ω(f1,...,fn)( dx(e1, ..., en)(∂x1))+ d

dt |t=0
g(t). Finally,we deduce:

ω(f1,...,fn)

(
d

dt |t=0
((f1, ..., fn) · g(t))

)
=

d

dt |t=0
g(t).

Proposition 6.1.11. Let F be a complex vector bundle of rank n over a manifold M of
positive dimension and let E be the GL(n,C)-principal bundle of frames. In this setting, the
constructions of proposition 6.1.4 and 6.1.10 are inverse of one another.

Proof. Let Y be a local smooth section of F around x0 ∈ M and X ∈ Tx0M. We denote
by ω the principal connection on E obtained from ∇ by going through the construction of
proposition 6.1.10 and ∇ the linear connection obtained from ω by proposition 6.1.4. We
prove that ∇XY = ∇XY . To do so we choose a local basis (e1, ..., en) around x0 such
that (∇Xe1, ...∇Xen) = 0 (it is always possible to construct such a basis by working in a
local trivialization around x). We denote by f the function defined from a neighborhood of
π−1
E ({x0}) to Cn by f(a) = Mat

a
Y (πE(a)). We define a0 := (e1, ..., en)(x0).

By definition of ω, we have ωa0 dx0(e1, ..., en)(X) = 0. If we write Y =
[((e1, ..., en), (Y1, ..., Yn))] where Yi are the coordinates of Y in the local basis (e1, ..., en),
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we can use lemma 6.1.5 to deduce that ∇XY (x0) = [(a0, ( dx0Y1(X), ..., dx0Yn(X)))] =∑n
k=1X(Yk)(x0)ek(x0).
On the other hand

∇XY =
n∑
k=1

X(Yk)(x0)ek + Yk∇Xek(x0)

=
n∑
k=1

X(Yk)(x0)ek by definition of (e1, ..., ek)

= ∇XY

We conclude that ∇ = ∇.
We also have to prove that if ω is a principal connection on E and if ∇, linear connection

on F is obtained by proposition 6.1.4, then the principal connection ω̃ on E obtained from
∇ by proposition 6.1.10 is equal to ω. Since we already know that for x0 ∈ M, a ∈ E
and h ∈ g, ω d1ia(h) = ω̃ d1ia(h) = h (by definition of a principal connection) and since
TaE = ker(ωa) ⊕ d1ia(g) (see lemma 6.1.3 and remark 6.1.2), it is enough to prove that
ω̃ = 0 on ker(ωa). By remark 6.1.7, there exists a smooth local section (e1, ..., en) on an
open neighborhood U around x0 such that (e1, ..., en)(x0) = a and dx0(e1, ..., en)(Tx0M) =
ker(ωa). We are reduced to proving that ω̃a ◦ dx0(e1, ...en) = 0. By definition of ω̃, this is
the same as proving that for all i ∈ J1, nK, ∇ei = 0. By definition of ∇ and lemma 6.1.5 (use
the fact that dx0(e1, ..., en)(Tx0M) = ker(ωa)), it is the same as proving that if fi : U → Rn

is such that ei = [(e1, ..., en), fi] then dx0fi = 0. This last fact is obvious since fi are the
coordinates of ei in the local basis (e1, ..., en).

Proposition 6.1.12 (pull back of a principal connection). Let A be a GA principal bundle
overM and B a GB principal bundle over the same manifoldM. We assume that GA is an
embedded Lie subgroup of GB and that we have an embedding f : A→ B (with πB ◦ f = πA)
such that for all g ∈ GA and a ∈ A, f(a · g) = f(a) · g. For every principal connection ω on B
such that for all a ∈ A, ker(ωf(a)) ⊂ Tf(a)f(A), the one form f∗ω is a principal connection
on A.

Proof. We first have to check that f∗ω has values in gA. To prove that, we remark that
for all a ∈ A, Ran( daf) = kerωf(a) ⊕ d1if(a)gA. Indeed, the right-hand side is included
into the left-hand side and both sides have the same dimension (dim(Ran( daf)) = dimA =
dim(M) + dim(GA)). Moreover, ω(kerωf(a) ⊕ d1if(a)gB) = gA so f∗ω has value in gA. The
two properties of principal connection for f∗ω follow directly for the corresponding one for
ω.

Remark 6.1.13. The condition ker(ωf(a)) ⊂ Tf(a)f(A) takes a particularly simple form when
B is the frame bundle of a vector bundle F and ω comes from a linear connection ∇ on F (by
proposition 6.1.10). Indeed, we have the following equivalence: ker(ωf(a)) ⊂ Tf(a)f(A) if and
only if for all a ∈ A, there exists (e1, ..., en) a local section of f(A) around x0 := πB(f(a))
such that (e1, ..., en)(x0) = a and for all X ∈ Tx0A, (∇Xe1, ...,∇Xen) = 0. The idea of the
proof is the following: Let a ∈ A and x0 := πB(f(a)). Assume ker(ωf(a)) ⊂ Tf(a)f(A), then
we can find a submanifold C of f(A) of dimension dimM containing f(a) with tangent space
ker(ωf(a)) at f(a). We know that ker(ωf(a))∩ker( df(a)πB) = {0}, as a consequence C defines
a section of f(A) in a small neighborhood of f(a) this section is the one we are looking for.
Conversely if we have a section (e1, ..., en) with the required properties, dx(e1, ..., en)(Tx0M) ⊂
ker(ωf(a)) and has the same dimension, so ker(ωf(a)) = dx(e1, ..., en)(Tx0M) ⊂ Tf(a)f(A).

A typical situation where the pull back appears is the following:
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Proposition 6.1.14. Let A be a G principal bundle and ρ : G→ GL(Cn) a representation of
G on Cn (we can also replace Cn by Rn) which is an embedding of Lie-groups. Let F be the
vector bundle associated to A with the representation ρ. Let ω be a principal connection on
A and ∇ the connection on F constructed by proposition 6.1.4. Let E be the principal bundle
of frames on F and ωE be the principal connection on E given by proposition 6.1.10. Define
the embedding:

f :

{
A→ E

a 7→ ([a, e1], [a, e2], ..., [a, en])

where (e1, ..., en) is the canonical basis of Cn. Then f∗ωE = d1ρ ◦ ω.

Proof. First, we can check that for all a ∈ A and g ∈ G, f(a · g) = ([a, e1], ..., [a, en]) · ρ(g). In
particular for a ∈ A, d1(f◦ia) = daf d1ia = d1if(a) d1ρ. By the definition of a principal con-
nection, we know that d1ρωa d1ia(h) = d1ρ(h) and also (ωE)f(a) d1if(a)( d1ρ(h)) = d1ρ(h).
We deduce that d1ρωa d1ia(h) = (ωE)f(a) d1if(a)( d1ρ(h)) = (ωE)f(a) daf d1ia(h). Since
TπA(a)A = d1ia(g)⊕ker(ωa), we are now reduced to checking that (ωE)f(a) daf(ker(ωa)) = 0.
We take s a local section of A in an open neighborhood U of x0 such that s(x0) = a
and dx0s(Tx0M) = ker(ωa). Then by lemma 6.1.5, ∇[s, ei] = 0. We deduce that for
X ∈ Tx0M, (∇X [s, e1], ...,∇X [s, en]) = 0. Finally, using the definition of ωE we de-
duce that (ωE)f(a)( dx0f ◦ s(X)) = Mat

f(a)
(∇X [s, e1], ...,∇X [s, en]) = 0. Therefore (ωE)f(a) ◦

dx0f(ker(ωA)) = 0

In some cases of interest, the condition in remark 6.1.13 is not satisfied. In these cases,
the pull back is not a connection because the image is not contained in the Lie subalgebra
gA. The goal of the following proposition is to correct this by composing (to the left) by a
projection onto gA. The main downside with this construction is that we have several choices
for the projection leading to different connections. However, in cases we are interested in here,
there is a particularly natural choice (see the remark after the proof).

Proposition 6.1.15 (Pull Back of a connection in more complicated cases). Let A be a GA
principal bundle overM and B a GB principal bundle over the same manifoldM. We assume
that GA is an embedded Lie subgroup of GB and that we have an embedding f : A→ B such
that for all g ∈ GA and a ∈ A, f(a · g) = f(a) · g. For simplicity, we identify implicitly the
Lie algebra of A and the Lie algebra of f(A). Assume that we have a subspace V of gB such
that:

• V ⊕ gA = gB

• ∀g ∈ GA, Adg(V ) = V

We denote by q : gB → gA the projection onto gA with kernel V . For every principal connection
ω on B, we can define the gA-valued one form ω̃ := q ◦ f∗ω. Then ω̃ is a principal connection
on A.

Proof. For all g ∈ GA, we have Adg(gA) ⊂ gA and Adg(V ) ⊂ V so Adg commutes with q. Let
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g ∈ GA and a ∈ A,

AdgR
∗
gω̃a = Adgω̃a·g ◦ daRg

= Adg ◦ q(f∗ω)a·g ◦ daRg

= q ◦Adgωf(a·g) ◦ da·gf ◦ daRg

= q ◦Adgωf(a)·g ◦ df(a)Rg ◦ daf(a)

= q ◦Adg(R∗gω)f(a) ◦ daf(a)

= q ◦ (f∗(AdgR
∗
gω))a

= q ◦ (f∗ω)a

= ω̃a.

The second property of principal connections is immediate since q is the identity on gA.

Remark 6.1.16. In some cases, there is a natural choice for V . We recall that the Killing
form of gB is by definition the symmetric bilinear form K(x, y) = tr(adxady) (where adx, ady
are considered as endomorphisms of gB). Note that the Killing form is invariant under every
automorphism of Lie algebra of gB. When K is non degenerate, we say that gB is semisimple.
If moreover, K|gA×gA

is also non degenerate, we can consider the very natural choice V := g⊥A
where g⊥A is the orthogonal with respect to K (note that the two non degeneracy conditions
imply that V ⊕ gA = gB). The fact that Adg(V ) = V for all g ∈ GA is then given by the
invariance of the Killing form by the Lie algebra automorphism (preserving gA since g ∈ GA)
Adg.

We conclude this section by the following proposition that we do not prove (the proof
follows quite easily from the definitions)

Proposition 6.1.17. Let A be a GA principal bundle over M and B be a GB principal
bundle over the same manifold M. We assume that we have a covering Lie group morphism
f̃ : GA → GB and a smooth covering map f : A → B such that πB ◦ f = πA and for all
g ∈ GA and a ∈ A, f(a · g) = f(a) · f̃(g). Then, if ω is a principal connection on B, f∗ω is
a principal connection on A.

6.2 Spin connection, GHP connection and GHP operators

For deeper geometric insight on the definitions of connections and operators, see [43].

Spin connection

We denote by ∇ the Levi-Civita connection on M. Using proposition 6.1.10, we can define
a principal connection ω on the space of complex tangent frames E. We now want to apply
proposition 6.1.12 (and remark 6.1.13) to the various principal bundles previously defined.
We have an embedding of principal bundles f : O → E. We use the following proposition
and proposition 6.1.12 (and remark 6.1.13) to show that f∗ω is a principal connection on O.
We still call it ω.

Proposition 6.2.1. Let y0 ∈ M. For all (f0, ..., f3) ∈ Oy0 , there exists a local smooth
section (e0, ..., e3) (around y0) of O such that (e0, ..., e3)(y0) = (f0, ..., f3) and for all X ∈
Ty0M, (∇Xe0, ...,∇Xe3) = 0.
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Proof. We define (x0, ..., x3) local normal coordinates on a neighborhood of y0 such that
(∂x0 , ..., ∂x3)(y0) = (f0, ..., f3). Then we denote by gi,j the metric coefficients in these co-
ordinates. Because coordinates are normal we have for all X ∈ Ty0M, for all i ∈ J0, 3K,
∇X∂xi = 0, gi,j(y0) = δi,j and g has vanishing first derivatives at y0. We define (e0, ..., e3) as
the Gram-Schmidt orthonormalization of (∂x0 , ..., ∂x3). As a consequence there is a smooth
family of upper triangular invertible matrices S(y) that we can express explicitly with respect
to the coefficients gi,j such that S(y0) = Id and (e1, ..., en)(y) = (∂x0 , ..., ∂x3)(y)S(y). Then
we have, for X ∈ Ty0M, (∇Xe1, ...,∇Xen) = (∇X∂x0 , ...,∇X∂x3) + (∂x0 , ..., ∂x3)(y)X(S)(y0)
where X(S)(y0) is the derivation coefficient by coefficient. Because all the derivatives of the
metric coefficients gi,j vanish at y0, we have X(S)(y0) = 0 and (∇Xe1, ...,∇Xen) = 0.

We can then use proposition 6.1.17 to define a connection ω on S by pulling back the
principal connection on O. We can also define a linear connection ∇ on the spinor bundle
S and on S by using proposition 6.1.4. Concretely, note that for a real vector field X and a
section a of S, we have the equality ∇Xa = ∇Xa (it follows from the definitions). Therefore,
by C-linearity, if X is a complex vector field, ∇Xa = ∇Xa. We used the same notation ∇
and ω for connections on different bundles (and we use the context to remove ambiguity). To
show that all these definitions are consistent, it is useful to prove the following proposition:

Proposition 6.2.2. We have j∗∇ = ∇ ⊗ ∇ where the left hand side is the Levi-Civita
connection on TCM and the right hand side is the connection on S ⊗ S.

Proof. First note that ∇ ⊗ ∇ is the same connection as the one obtained by proposition
6.1.4 applied to the bundle S ⊗ S seen as associated to S (see proposition 6.1.9). Let x0 ∈
M. Using proposition 6.2.1, we define a local smooth section (e0, e1, e2, e3) of O around
x0 such that (∇e0(x0), ...,∇e3(x0)) = 0. In particular, by definition of the connection on
O, ω ◦ dx0(e0, ..., e3) = 0. Let s be a local smooth section of S around x0 such that
p ◦ s = (e0, ..., e3). By definition of the connection on S, we have ω ◦ dx0s = 0. Moreover,
the trivialization induced by s on S and the one induced by (e0, ..., e3) on O are compatible.
Then j written in these local trivializations is just the map idU × i0 where i0 : C2 ⊗C

2 → C4

is an isomorphism (defined earlier). We take Z1 a local smooth section of S ⊗ S on a small
neighborhood U of x0, then Z2 = j(Z1) is a local smooth section of TCM around x0. We have
Z1 = [(s, Z̃1)] with Z̃1 : U → C2⊗C

2 and Z2 = [((e0, ..., e3), Z̃2)] with Z̃2 := i0 ◦ Z̃1. Let X ∈
Tx0M. By the first remark in this proof and the definition of the connection on an associated
bundle (proposition 6.1.4), we have that (∇ ⊗ ∇)XZ1 = [(s, dx0Z̃1(X))] (it uses the fact
that ω ◦ dx0s = 0 and lemma 6.1.5). We similarly have ∇XZ2 = [((e0, ..., e3), dx0Z̃2(X))] =
[((e0, ..., e3), i0 dx0Z̃1(X))] (it uses the fact that ω ◦ dx0(e0, ..., e3) = 0, lemma 6.1.5 and the
linearity of i0). Then we conclude that ∇Xj ◦Z1 = j(∇⊗∇)XZ1. Since it is true for all local
smooth sections Z1, all X ∈ Tx0M and all x0 ∈M, we have proved the proposition.

Remark 6.2.3. In this remark, we use the identification j implicitly. Note that ∇ is not the
only connection with the property ∇⊗∇ = ∇LC (at least locally). Indeed, let U be an open set
on which we have a smooth spin frame (o, ι) with ε(o, ι) = 1. Then we can define a connection
∇′ on S|U such that for all real vector fields X on U :

∇′Xo = (a(X) + iµ(X))o+ b(X)ι

∇′Xι = c(X)o+ (−a(X) + iµ(X))ι
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where a, b and c are complex valued linear forms on U and µ is a real valued linear form on
U . Moreover, we define a,b and c as follows:

b(X) = −g((∇LC)X(o⊗ o), o⊗ ι)
c(X) = −g((∇LC)X(ι⊗ ι), ι⊗ o)

a(X) =
1

2
(g((∇LC)X(o⊗ o), ι⊗ ι)− g((∇LC)X(o⊗ ι), ι⊗ o))

(6.1)

Conditions (6.1) are necessary to have ∇⊗∇ = ∇LC and we now prove that they are sufficient
(in the definition of ∇′ we can chose freely any real linear form µ hence the lack of uniqueness).
Note that o⊗ o, ι⊗ ι, o⊗ ι, ι⊗ o is a normalized null tetrad on U . Therefore we have (using
properties of the Levi-Civita connection):

(∇LC)Xo⊗ o = 2<(a(X))o⊗ o+ b(X)ι⊗ o+ b(X)o⊗ ι
(∇LC)Xι⊗ ι = −2<(a(X))ι⊗ ι+ c(X)o⊗ ι+ c(X)ιo

(∇LC)Xo⊗ ι = c(X)o⊗ o+ b(X)ι⊗ ι+ 2i=(a(X))o⊗ ι
(∇LC)Xι⊗ o = c(X)o⊗ o+ b(X)ι⊗ ι− 2i=(a(X))ι⊗ o

To check that ∇′ ⊗∇′ = ∇LC , it is enough to prove that check the equality on this tetrad. It
follows from the definition of ∇′.

The previous remark shows that ∇ is not completely determined by proposition 6.2.2.
However, we also have the following proposition:

Proposition 6.2.4. We have ∇ε = 0

Proof. By definition, ∇ε = 0 if for all x0 ∈ M, X ∈ Tx0M and a,b spinor fields defined on a
neighborhood U of x0, we have:

X(ε(a, b))(x0) = ε(∇Xa, b)(x0) + ε(a,∇Xb)(x0).

We denote by ωS the principal connection onS previously defined (and used to define the spin
connection ∇). Let s be a smooth local section of S such that (ωS)s(x0) dx0s = 0 (which exists
by remark 6.1.7). Let ã : U → C2 and b̃ : U → C2 smooth be such that a(x) = [(s(x), ã(x))]
and b(x) = [(s(x), b̃(x))]. By lemma 6.1.5, we have

∇Xa(x0) = [(s(x0), dx0 ã(X))]

∇Xb(x0) = [(s(x0), dx0 b̃(X))]

Moreover, by definition of ε (see proposition 4.2.9), we have ε(a, b)(x) = det(ã(x), b̃(x)).
Therefore by bilinearity of the determinant:

X(ε(a, b))(x0) = det( dx0 ã(X), b̃(x0)) + det(ã(x0), dx0 b̃(X))

= ε(∇Xa, b)(x0) + ε(a,∇Xb)(x0).

Remark 6.2.5. It is very useful to note that the connection ∇ on S is completely determined
by proposition 6.2.2 and proposition 6.2.4 (in particular, we could have used these properties
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as a definition of the connection ∇ on S). Indeed, if we fix a local basis (o, ι) of S such that
ε(o, ι) = 1 and X a vector field onM, we can write:

∇Xo = a(X)o+ b(X)ι

∇Xι = c(X)o+ d(X)ι

Using proposition 6.2.4 and ε(o, ι) = 1, we have a(X) = −d(X). By proposition 6.2.2, we
also have:

b(X) = −g(∇X(o⊗ o), o⊗ ι)
c(X) = −g(∇X(ι⊗ ι), ι⊗ o)

a(X) =
1

2
(g(∇X(o⊗ o), ι⊗ ι)− g(∇X(o⊗ ι), ι⊗ o))

The coefficients of the one forms a, −b and c on the null basis (l, n,m,m) := (o⊗ o, ι⊗ ι, o⊗
ι, ι⊗o) are called spin coefficients. For example, following the notation in [18] chapter 1 (286)
for the spin coefficients:

κ = −b(l) τ = −b(n) σ = −b(m) ρ = −b(m)
π = c(l) ν = c(n) µ = c(m) λ = c(m)
ε = a(l) γ = a(n) β = a(m) α = a(m)

Remark 6.2.6. If we require that (o, ι) is a local section of A0 (and as usual (l, n,m) :=
d(o, ι)), we have that l and n are pregeodesic and therefore, by remark 6.2.5, we have:

b(l) = −g(∇ll,m) = 0

c(n) = −g(∇nn,m) = 0

Moreover, since l and n are shear-free and <(m),−=(m) is an orthonormal family of l⊥ and
n⊥, we have

0 =
1

2

(
g(∇=(m)l,=(m))− g(∇<(m)l,<(m))

)
− i

2

(
g(∇<(m)l,=(m)) + g(∇=(m)l,<(m))

)
=− 1

2
g(∇ml,m)

and similarly

0 =− 1

2
g(∇mn,m)

=− 1

2
g(∇mn,m) (complex conjugate)

Therefore we have:

b(m) =0

c(m) =0

In the spin-coefficient formalism, this corresponds to the vanishing of κ, λ, σ and ν.

Remark 6.2.7. We can also compute concretely the connection ω on S using proposition
6.1.14: Indeed, we have a natural embedding of S in the set of frames (o, ι) of S given by the
map f of proposition 6.1.14 (note that the representation of SL(2,C) into GL(C2) is just the
natural embedding so d1ρ is just the inclusion of sl(2,C) into M2(C)). The map f identifies
S with the set of frames (o, ι) such that ε(o, ι) = 1. Therefore, proposition 6.1.14 implies that
for a local smooth section s of S identified with the local frame (o, ι) and X ∈ Tx0M,

ω( dx0s(X)) = Mat
(o,ι)(x0)

(∇Xo,∇Xι) =

(
a(X) c(X)
b(X) −a(X)

)
∈ sl(2,C).
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GHP connection

We refer the reader to subsection 4.3 for the definition of A and to subsection 4.4 for the
definition of N . In subsection 4.5, we defined A0 and N0 under the assumption that A has
two connected components. We now define the connection on A0 and N0 using proposition
6.1.15.

Remark 6.2.8. Since N0 can be embedded into the bundle of tangent frames (see (6.2) below),
we could expect to use proposition 6.1.12 to define a connection of N0 on the model of what
was done in subsection 6.2 to define the connection on O. However, this simple approach fails
due to the fact that we do not have the analog of proposition 6.2.1 for N0 and therefore the
condition of remark 6.1.13 is not satisfied in general. For example, we show that the condition
does not hold in Kerr. By contradiction, assume that the condition of remark 6.1.13 holds.
In particular, we deduce that near any point x ∈ M, we can find a local section (l, n,m) of
N0 defined on a neighborhood U of x such that ∇l(x) = ∇n(x) = ∇m(x) = 0 (where ∇ is the
Levi-Civita connection). Then, we can write any local smooth section (l′, n′,m′) of (N0)|U as
(|z| l, |z|−1 n, z|z|m) for some smooth function z : U → C \ {0}. In particular, we have:

∇n′ l′ =
n′(|z|)
|z|

l′ + |z| ∇n′ l

Therefore ∇n′ l′(x) ∈ Rl′(x) and the spin coefficient −g(∇n′ l′,m′)(x) = τ(x) = 0 for every
x ∈M and every smooth section (l′, n′,m′) of N0. But this is a contradiction since τ = −ia sin θ

ρ2
√

2

according to (175) in [18, Chapter 6, Section 56].

The covering map p̃ : SL(2,C) → SO+(1, 3) gives a Lie algebra isomorphism dIdp̃ :
sl(2,C)→ so(1, 3).

We also have an embedding of principal bundles

f :

{
N0 → O

(l, n,m) 7→
(
l+n√

2
,
√

2<(m),−
√

2=(m), l−n√
2

) (6.2)

associated1 to the embedding of Lie groups

f̃ :



C∗ → SO+(1, 3)

|z|eiθ 7→


1
2(|z|+ |z|−1) 0 0 1

2(|z| − |z|−1)

0 cos θ − sin θ 0

0 sin θ cos θ 0
1
2(|z| − |z|−1) 0 0 1

2(|z|+ |z|−1)


We have chosen f to be the unique map such that f ◦d = p◦f where f is the natural embedding

ofA0 intoS given by (o, ι) =

[
f(o, ι),

((
1
0

)
,

(
0
1

))]
. Note that f((o, ι)·z) = f(o, ι)·

(
z 0
0 z−1

)
,

therefore, f is associated with the following embedding of Lie groups:

f̃ :


C∗ → SL(2,C)

z →

(
z 0

0 z−1

)
.

1Meaning that for all x ∈ N0 and g ∈ C∗ we have f(x · g) = f(x) · f̃(g)
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The fact that f ◦ d = p ◦ f can be checked using a pair of compatible trivializations (and the
associated trivializations for S and TM⊗ C) in which it follows from the equality (true for
every C1, C2 ∈ C2):

p̃ (C1, C2) =

(
i0

(
C1 ⊗ C1 + C2 ⊗ C2√

2

)
, i0

(
C1 ⊗ C2 + C2 ⊗ C1√

2

)
,

−i0
(
C1 ⊗ C2 − C2 ⊗ C1√

2i

)
, i0

(
C1 ⊗ C1 − C2 ⊗ C2√

2

))
.

Note that f is unique since d is surjective.
We define H := f̃(C∗) which is a commutative embedded Lie subgroup of SO+(1, 3) and

h its Lie algebra (it is an abelian Lie subalgebra of so(1, 3)). In order to apply remark 6.1.16
(and proposition 6.1.15), we want to prove that the Killing form of so(1, 3) is non degenerate
and that its restriction to h is also non degenerate.

It is easier to check this using the isomorphism of real Lie algebras dIdp̃ since we have

( dIdp̃)
−1(h) =

{(
z 0
0 −z

)
, z ∈ C

}
(this follows from the equality f̃(z2) = p̃

(
z 0
0 z−1

)
).

Note that we consider sl(2,C) as a real Lie algebra here, we will denote it by sl(2,C)R to
emphasize this fact. The Killing form of sl(2,C)R is B(M,N) = 8<(tr(MN)). Indeed, if AC

is the matrix of adM ◦ adN in the C-basis E1 =

(
1 0
0 −1

)
, E2 =

(
0 1
0 0

)
, E3 =

(
0 0
1 0

)
, the

matrix of adM ◦ adN in the R basis (E1, E2, E3, iE1, iE2, iE3) is AR :=

(
<(AC) −=(AC)
=(AC) <(AC)

)
.

Therefore tr(AR) = 2<(tr(AC)). We use this fact to deduce the expression of the Killing
form of sl(2,C)R from the classical expression of the Killing form of sl(2,C)C (complex Lie
algebra). Let M ∈ sl(2,C)R, we assume that for all N ∈ sl(2,C)R, B(M,N) = 0. In
particular, B(M,M

T
) = 0 and B(M,−iMT

) = 0. Therefore tr(MM
T

) = 0 and M = 0. We

conclude that B is non degenerate. Now let M =

(
z 0
0 −z

)
(with z ∈ C) be such that for

all N of the form
(
z′ 0
0 −z′

)
(with z′ ∈ C), B(M,N) = 0. Again, we have B

(
M,M

T
)

= 0

and B
(
M,−iMT

)
= 0 and therefore M = 0. We conclude that the restriction of B to

( dIdp̃)
−1(h) is non degenerate. A direct computation shows that the orthogonal complement

of ( dIdp̃)
−1(h) is

{(
0 a
b 0

)
, a, b ∈ C

}
. Then by remark 6.1.16 we can use proposition 6.1.15

to define a principal connection ω on N0. Finally we can use proposition 6.1.17 to define a
principal connection ω on A0, using the covering map d. Note that an equivalent definition is
given by applying proposition 6.1.15 for the natural embedding f : A0 → S and the orthogonal

projection (with respect to the Killing form) on
{(

z 0
0 −z

)
, z ∈ C

}
(the equivalence between

the two definitions follows from the equality f ◦ d = p ◦ f).

Remark 6.2.9. Using the second definition of the connection on A0 and remark 6.2.7, we
have that for (o, ι) a smooth section of A0 around x0 ∈M and X ∈ Tx0M,

ω(o(x0),ι(x0))( dx0(o, ι)(X)) = π⊥h

(
a(X) c(X)
b(X) −a(X)

)
=

(
a(X) 0

0 −a(X)

)
where a,b and c are the same as in remark 6.2.5 and can be computed using only (l, n,m,m) :=
d(o, ι) and the Levi-Civita connection. We have denoted the Killing-orthogonal projection onto
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( dIdp̃)
−1(h) by π⊥h . Also note that in this equality, the Lie algebra of C∗ has been identified

with the Lie algebra of f̃(C∗) (see proposition 6.1.15). Without the identification, we simply
get ω(o(x0),ι(x0))( dx0(o, ι)(X)) = a(X).

We can use this principal connection to define a connection Θ on B(s, w) by proposition
6.1.4. Now we give a way to compute concretely Θu for u a local smooth section of B(s, w).

Proposition 6.2.10. Let (o, ι) be a local smooth section of A0. Let u be a local smooth section
of B(s, w) on an open set U of M and let u1 : U → C be such that u = [(o, ι), u1]. Then for
x0 ∈ U and X ∈ C⊗R Tx0M

ΘXu = [(o, ι)(x0),−
(

(w + s)a(X) + (w − s)a(X)
)
u1(x0) +X(u1)]

where a(X) = ε(∇Xo, ι) = ε(∇Xι, o) as previously.

Proof. By C-linearity of both sides, it is enough to prove the result for real vectors. Let
x0 ∈ U and X ∈ Tx0M (real vector space). By corollary 6.1.8 and remark 6.2.9, we have:

ΘXu = [(o(x0), ι(x0)), X(u1) + d1(ρw,s)ω( dx0(o, ι)(X))u1(x0)]

= [(o(x0), ι(x0)), X(u1) + d1(ρw,s)(a(X))u1(x0)]

= [(o(x0), ι(x0)), X(u1)− ((s+ w)a(X) + (w − s)a(X))u1(x0)]

Remark 6.2.11. It is reassuring to check that if u is a smooth section of B(s, w) and v is a
smooth section of B(s′, w′) and if we fix (o, ι) a local smooth section of A0 near x0 and write
u = [(o, ι), u1], v = [(o, ι), v1], u⊗ v = [(o, ι), u1v1], and ΘX(u⊗ v) = [(o, ι), w1] we have:

w1 =
(
−(w + w′ + s+ s′)a(X)− (w + w′ − (s+ s)′)a(X)

)
u1(x0)v1(x0) +X(u1v1)

=
((
−(w + s)a(X)− (w − s)a(X)

)
u1(x0) +X(u1)

)
v1(x0)

+
((
−(w′ + s′)a(X)− (w′ − s′)a(X)

)
v1(x0) +X(v1)

)
u1(x0)

and therefore ΘX(u ⊗ v) = (ΘXu) ⊗ v + u ⊗ (ΘXv). There is a compatibility between the
connection acting on different spin weighted bundles and the isomorphism B(s, w)⊗B(s′, w′) =
B(s+ s′, w + w′).

GHP operators

If u is a smooth section of B(s, w), then Θu is a smooth section of T ∗CM⊗B(s, w). We can
define the operators which map Θu to its spin weighted components (defined in remark 4.5.13).
Equivalently these operators can be seen as contraction of the spin weighted 2-cospinor Θu
with the spin weighted spinors o,ι, o and ι. These operators are called GHP operators. In
this subsection, we denote by o the first projection of A0 and ι the second projection. We
also use the notation l = o⊗ o, n = ι⊗ ι and m = o⊗ ι. We define the operators

þ :

{
Γ(B(s, w))→ Γ(B(s, w + 1))

u 7→ Θlu
þ′ :

{
Γ(B(s, w))→ Γ(B(s, w − 1))

u 7→ Θnu

ð :

{
Γ(B(s, w))→ Γ(B(s+ 1, w))

u 7→ Θmu
ð′ :

{
Γ(B(s, w))→ Γ(B(s− 1, w))

u 7→ Θmu
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Remark 6.2.12. We can use proposition 6.2.10 to compute þ, þ′, ð and ð′ in a local triv-
ialization given by a smooth local section (o, ι) of A0. Indeed, if u ∈ B(s, w) is written as
u = [(o, ι), u1] we have:

(þu)1 =
(
−(w + s)a(l)− (w − s)a(l)

)
u1 + l(u1)

(þ’u)1 =
(
−(w + s)a(n)− (w − s)a(n)

)
u1 + n(u1)

(ðu)1 =
(
−(w + s)a(m)− (w − s)a(m)

)
u1 +m(u1)

(ð’u)1 =
(
−(w + s)a(m)− (w − s)a(m)

)
u1 +m(u1).

Using spin coefficients as defined in remark 6.2.5, we have:

(þu)1 = (−(w + s)ε− (w − s)ε)u1 + l(u1)

(þ’u)1 = (−(w + s)γ − (w − s)γ)u1 + n(u1)

(ðu)1 = (−(w + s)β − (w − s)α)u1 +m(u1)

(ð’u)1 =
(
−(w + s)α− (w − s)β

)
u1 +m(u1).

Proposition 6.2.13. There exists a unique element b(m) of B(0, 1) such that for every
local smooth section o, ι of A0 defined on an open set U , b(m)|U = [(o, ι), b(m)] (where
b(m) := −ε(∇ι⊗oo, o)).

Proof. The only thing to prove is that the definition does not depend of the choice of the local
section (o, ι). Let (o, ι) be a local smooth section of A0 on an open set U . Let z : U → C∗

be a smooth map and (o′, ι′) = (o, ι) · z = (zo, z−1ι) (every local smooth section on U can be
written in this form). We then have:

ε(∇ι′⊗o′o′, o′) =ε(∇zz−1ι⊗o(zo), zo)

=ε(zz−1m(z)o, zo) + ε(z∇ι⊗oo, zo)
=zzε(∇ι⊗oo, o)
=ρ(0,1)(z

−1)ε(∇ι⊗oo, o)

Since [(o, ι),−ρ(0,1)(z
−1)ε(∇ι⊗oo, o)] = [(o′, ι′) · z−1,−ε(∇ι⊗oo, o)] by definition of B(0, 1), we

finally have:
[(o′, ι′),−ε(∇ι′⊗o′o′, o′)] = [(o, ι),−ε(∇ι⊗oo, o)]

Remark 6.2.14. Thanks to remark 4.5.5, we can see b(m) as a multiplication operator from
B(s, w) to B(s, w + 1).

Remark 6.2.15. We similarly define the spin weighted functions b(n) ∈ B(1, 0), c(m) ∈
B(0,−1) and c(l) ∈ B(−1, 0).
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Chapter 7

Definition of the Teukolsky operator

Definition 7.0.1 (Contraction operator). Let φ ∈ (S ′)⊗n0 (n0 ∈ N). We define the operator
Ci,j (with i < j) such that in any basis (s0, s1) of S with ε(s0, s1) = 1:

(Ci,jφ)(sk1 , ..., ŝki , ..., ŝkj , ..., sin0
) =φ(sk1 , ..., ski−1

, s1, ski+1
, ..., skj−1

, s0, skj+1
, ..., skn0

)

− φ(sk1 , ..., ski−1
, s0, ski+1

, ..., skj−1
, s1, skj+1

, ..., skn0
)

where k1, ...kn ∈ {0, 1} and ŝkl means that skl is skipped in the enumeration. This definition
does not depend on the chosen basis as long as it is normalized.

Definition 7.0.2. Let φ ∈ Γ((S ′)�n0). We define the operator D (Dirac operator) as Dφ =

C1,3∇φ ∈ Γ(S ′ ⊗ (S ′)⊗n0−1). Because the spinor is symmetric, we can replace 3 in the
definition by any index in {3, ..., n0 + 2}.

Remark 7.0.3. Note that Dφ is symmetric with respect to the last n0 − 1 variables but the
first one has a particular status.

Proposition 7.0.4. We have the following relations at the level of spin weighted components:

(Dφ)(o,o, ...,o) = (ð’ + c(l))φ(o, ...,o)− (þ + n0b(m))φ(ι,o, ...,o) (7.1)
(Dφ)(ι,o, ...,o) = (þ’ + c(m))φ(o, ...,o)− (ð + n0b(n))φ(ι,o, ...,o) (7.2)

where c(l), c(m), b(m) and b(n) are seen as multiplications operators on spin-weighted
functions (see remark 6.2.14 and 6.2.15)

Proof. Since both sides of the equalities are spin weighted functions of the same weight ((n0
2 −

1, n0
2 ) for the first and (n0

2 ,
n0
2 − 1) for the second), it is enough to check the equality in a

local trivialization near each point. We do it for the first equality (the second is similar). Let
x0 ∈M, let (o, ι) be a local section of A0. Thanks to the bold notation, it is easy to compute
the components in local trivializations associated to this local section:

(Dφ)(o, o, ..., o) =(∇ι⊗oφ)(o, ..., o)− (∇o⊗oφ)(ι, o, ..., o)

=m(φ(o, ..., o))− n0φ(∇mo, o, ..., o)− l(φ(ι, o, ..., o)) + φ(∇lι, o, ..., o)
+ (n0 − 1)φ(ι,∇lo, ..., o)

=(m− n0a(m) + c(l))(φ(o, ..., o))

− (l + n0b(m)− (n0 − 2)a(l))(φ(ι, o, ..., o))

+ (n0 − 1)b(l)φ(ι, ι, o, ..., o)

By remark 6.2.6, we have b(l) = 0. Moreover, since φ(o, ...,o) ∈ Γ
(
B
(
n0
2 ,

n0
2

))
, the expression

of ð’ on this bundle expressed in the local trivialization induced by (o, ι) is m − n0a(m) by
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remark 6.2.12. Similarly, the fact that φ(ι, o, ..., o) ∈ Γ
(
B
(
n0
2 − 1, n0

2 − 1
))

gives the local
expression l − (n0 − 2)a(l) for þ. By definition, c(l) and b(m) are the local expressions for
c(l) and b(m) in the local trivialization induced by (o, ι). Therefore, we have the desired
equality.

Proposition 7.0.5. We have the following relations at the level of spin weighted components:

Gn0
2
φ(o, ...,o) =(þ + n0b(m) + b(m))(Dφ)(ι,o, ...,o)

− (ð + c(l) + n0b(n))(Dφ)(o,o, ...,o)

where

Gs = (þ + 2sb(m) + b(m))(þ’ + c(m))− (ð + c(l) + 2sb(n))(ð’ + c(l))

is a smooth differential operator acting on the bundle B(s, s)

Proof. We apply (þ + n0b(m) + b(m)) on the left of (7.2) (in proposition 7.0.4) and (ð +
c(l) + n0b(n)) on the left of (7.1) and we take the difference. Then, we use the remarkable
relation

(þ + n0b(m) + b(m)) (ð + n0b(n))− (ð + c(l) + n0b(n)) (þ + n0b(m)) = 0 (7.3)

as an operator acting on the bundle B
(
n0
2 ,

n0
2

)
. Therefore, the component φ(ι,o, ...,o) dis-

appears and we have the result. The last thing to prove is the relation (7.3). It is enough
to prove it in a local trivialization provided by a smooth local section (o, ι) of A0 near each
point x0 ∈M. Therefore, we want to prove that:(

l − (n0 − 1)a(l) + a(l) + n0b(m) + b(m)
)

(m− (n0 − 2)a(m) + n0b(n))

−(m− (n0 − 1)a(m)− a(m) + c(l) + n0b(n)) (l − (n0 − 2)a(l) + n0b(m)) = 0

If we use remark 6.2.5 to replace the occurrences of a,b and c by spin coefficients, we rewrite
this as:

(l − (n0 − 1)ε+ ε− n0ρ− ρ) (m− (n0 − 2)β − n0τ)

−(m− (n0 − 1)β − α+ π − n0τ) (l − (n0 − 2)ε− n0ρ) = 0

We see that this relation is a particular case of a relation between spin coefficients of a null
tetrad with l and n in principal directions introduced by Teukolsky in [101] (equation (2.11)).
It is the case p = n0 − 2 and q = −n0.

Definition 7.0.6. We define the Teukolsky operator Ts := 2Gs − 4(s− 1)
(
s− 1

2

)
Ψ2 (where

Ψ2 was defined in remark 4.5.12). It is naturally a differential operator on B(s, s).

7.1 The Teukolsky scalars for the electromagnetic fields and
the linearized gravitational perturbations

In this section, we assume that we can find a smooth determination of Ψ
2s
3

2 for any s ∈ 1
2Z

on the spacetime. It possible on the Kerr spacetime which is our main focus. The source-free
Maxwell equations lead to the following equation on the electromagnetic spinor (definded by
(4.3)):

Dφ = 0.
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This equation correspond to [88, (5.1.57)] and we refer the reader to this reference for more
details about the derivation. We have seen in proposition 7.0.5 that the component φ(o,o) ∈
B(1, 1) satisfes the following equation:

G1φ(o,o) = T1φ(o,o) = 0. (7.4)

We can perform the transformation1 (o, ι) 7→ (iι, io) which corresponds to making the other
choice of connected component when defining A0. Since this choice was arbitrary, all the
relations derived so far still hold after the transformation. As an example, from (7.4), we
obtain2:

T ′1φ(ι, ι) = 0 (7.5)

where

T ′1 := 2(þ′ + 2c(m) + c(m))(þ + b(m))− 2(ð′ + b(n) + 2c(l))(ð + b(n))

is the operator obtained from T1 after the transformation (o, ι) 7→ (iι, io).

Definition 7.1.1. We define the Teukolsky scalars for the electromagnetic field by:

α[1] :=φ(o,o)

α[−1] :=Ψ
− 2

3
2 φ(ι, ι).

Note that α[1] ∈ B(1, 1) and α[−1] ∈ B(−1,−1).

The fact that T1α
[1] = 0 is exactly (7.4). Moreover, we have T−1α

[−1] = 0 as a consequence
of (7.5) and of the following more general proposition:

Proposition 7.1.2. Let s ∈ 1
2N. We have the following equality between operators acting on

sections of B(−s,−s):

Ψ
2s
3

2 T−sΨ
− 2s

3
2 = T ′s

where

T ′s =2(þ′ + 2sc(m) + c(m))(þ + b(m))− 2(ð′ + b(n) + 2sc(l))(ð + b(n))

− 4(s− 1)

(
s− 1

2

)
Ψ2

Proof. For a Ricci-flat spacetime, the Bianchi identity implies (see [88, (4.10.9)]):

DΨ = 0

where Ψ is the Weyl spinor already defined in (4.4). We deduce the following relations on Ψ2

(see [88, (4.12.37),(4.12.38)]):

þΨ2 =− 3b(m)Ψ2

þ′Ψ2 =− 3c(m)Ψ2

ðΨ2 =− 3b(n)Ψ2

ð′Ψ2 =− 3c(l)Ψ2.

(7.6)

1It corresponds to the prime notation introduced in [88, (4.5.17)].
2We could alternatively adapt the computation presented in the proof of proposition 7.0.5
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We also make use of the following relations3 where operators are understood as acting on
sections of B(−s,−s) (see [88, (4.12.33),(4.12.35)]):

þþ′ − þ′þ =
(
c(l)− b(n)

)
ð +

(
c(l)− b(n)

)
ð′

− 2s (b(n)c(l)−Ψ2)
(7.7)

ðð′ − ð′ð =
(
c(m)− c(m)

)
þ +

(
b(m)− b(m)

)
þ′

− 2s (b(m)c(m) + Ψ2)
(7.8)

þ(c(m))− ð(c(l)) =− c(m)b(m) + c(l)c(l) + Ψ2 (7.9)

þ′(b(m))− ð′(b(n)) =− b(m)c(m) + b(n)b(n) + Ψ2 (7.10)

From (7.6), we get:

Ψ
2s
3

2 T−sΨ
− 2s

3
2 =T−s + 4sc(m)þ + 4sb(m)þ′ − 4sc(l)ð− 4sb(n)ð′

+ 4s
(
þ(c(m))− ð(c(l)) + b(m)c(m)− c(l)c(l)

+c(m)b(m)− c(l)b(n)
)

Using (7.9), we can simplify the expression:

Ψ
2s
3

2 T−sΨ
− 2s

3
2 =T−s + 4sc(m)þ + 4sb(m)þ′ − 4sc(l)ð− 4sb(n)ð′

+ 4s (Ψ2 + c(m)b(m)− c(l)b(n))

Therefore, it remains to prove that:

T ′s − T−s =4sc(m)þ + 4sb(m)þ′ − 4sc(l)ð− 4sb(n)ð′

+ 4s (Ψ2 + c(m)b(m)− c(l)b(n))

Using the definitions and relations (7.9) and (7.10) we have:

T ′s =2þ′þ +
(

4sc(m) + 2c(m)
)
þ + 2b(m)þ′

− 2ð′ð−
(

2b(n) + 4sc(l)
)
ð− 2b(n)ð′

+ 4s (c(m)b(m)− c(l)b(n))− (4s2 − 6s+ 4)Ψ2

T−s =2þþ′ + 2c(m)þ +
(
−4sb(m) + 2b(m)

)
þ′

− 2ðð′ − 2c(l)ð−
(

2c(l)− 4sb(n)
)
ð′

− 4s (c(m)b(m)− c(l)b(n))− (4s2 + 6s+ 4)Ψ2

Therefore

T ′s − T−s =2
(
þ′þ− þþ′ + (c(l)− b(n))ð + (c(l)− b(n))ð′

)
+ 2

(
ðð′ − ð′ð + (c(m)− c(m))þ + (b(m)− b(m)þ′

)
+ 4sc(m)þ + 4sb(m)þ′ − 4sc(l)ð− 4sb(n)ð′

+ 8s (c(m)b(m)− c(l)b(n)) + 12sΨ2

We conclude the proof by using (7.7) and (7.8).
3The relations are obtained by writing the curvature components in the Newman-Penrose formalism.
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The case of linearized gravitational perturbations is more involved. We consider a smooth
family of metrics (gλ)λ∈(−1,1) on M which are Ricci-flat and such that g0 = g is the Petrov
type D metric we are interested in. Note that for λ 6= 0, we do not assume that gλ is of Petrov
type D.

Definition 7.1.3. We define the Teukolsky scalars for the linearized gravitational perturbation
ġ = d

dλ |λ=0
gλ by

α[2] := dgW [ġ](l,m, l,m)

α[−2] :=Ψ
− 4

3
2 dgW [ġ](m,n,m,n).

where W (g) is the Weyl tensor (considered as a function of g) and dgW [ġ] := d
dλ |λ=0

W (gλ)

is the linearized Weyl tensor. Note that α[2] ∈ B(2, 2) and α[−2] ∈ B(−2,−2).

Proposition 7.1.4. We have:

T2α
[2] = 0

T−2α
[−2] = 0

Proof. In view of proposition 7.1.2 and the fact that dgW [ġ](m,n,m, n) is obtained from
dgW [ġ](l,m, l,m) by performing the transformation (o, ι) 7→ (iι, io), it is enough to prove
the first identity. We essentially reformulate the proof given in [101]. For every λ ∈ (−1, 1),
we fix a spin structure for the Lorentzian manifold (M, gλ). As mentioned in the proof of
proposition 7.1.2, the Bianchi identity implies for all λ ∈ (−1, 1):

DλΨλ = 0 (7.11)

where Dλ is the operator D (see definition 7.0.2) defined using the spin structure of (M, gλ)
and Ψλ is the Weyl spinor of gλ. At this point we are tempted to take the derivative with
respect to λ at zero to get an equation involving linearized quantities. However, our definition
of spinor bundles depends on g and we did not define any differential structure with respect
to the metric. Therefore objects such as d

dλΨλ are not defined. Although it is possible to
develop a formalism for the calculus of variation with spinors (see for example [13]), we choose
here to avoid this difficulty by making use of the tetrad formalism whenever a differentiation
with respect to λ is needed.

Let x ∈ M. Let U be a small neighborhood of x. We choose smooth families of smooth
vector fields lλ, nλ ∈ Γ(TU) and mλ,mλ ∈ Γ(TCU) such that for all λ ∈ R,

gλ(lλ, nλ) = −g(mλ,mλ) = 1

and all the other products vanishes. We also require that (l0, n0,m0) is a local section of
N0. For each λ ∈ (−1, 1), we fix a normalized smooth spin frame (oλ, ιλ) on U such that
oλ⊗ oλ = l(λ), oλ⊗ ιλ = m(λ) and ιλ⊗ ιλ = n(λ). We can use (7.11) in this tetrad to deduce
that on U we have:

(mλ − 4a(m)λ + c(l)λ)(Ψ0)λ − (lλ + 4b(m)λ − 2a(l)λ)(Ψ1)λ + 3b(l)λ(Ψ2)λ = 0 (7.12)
(nλ − 4a(n)λ + c(m)λ)(Ψ0)λ − (mλ + 4b(n)λ − 2a(m)λ)(Ψ1)λ + 3b(m)λ(Ψ2)λ = 0. (7.13)

The method of proof is exactly the same as in proposition 7.0.4. The only difference is that
the coefficients b(l)λ, b(m)λ are generally not zero for λ 6= 0. We can now take the derivative
with respect to λ at λ = 0 in (7.12) and (7.13) (it is well defined since each object can be
expressed using only the tetrad lλ, nλ,mλ,mλ). We denote this derivative with a dot and we

77



sometimes omit the index λ when it is zero. Since (Ψ0)0 = (Ψ1)0 = (b(m))0 = (b(l))0 = 0, we
obtain:

(m− 4a(m) + c(l))Ψ̇0 − (l + 4b(m)− 2a(l))Ψ̇1 + 3 ˙b(l)Ψ2 = 0 (7.14)

(n− 4a(n) + c(m))Ψ̇0 − (m+ 4b(n)− 2a(m))Ψ̇1 + 3 ˙b(m)Ψ2 = 0. (7.15)

As in the proof of proposition 7.0.5, we apply (m − 3a(m) − a(m) + c(l) + 4b(n)) to (7.14)
and (l− 3a(l) + a(l) + 4b(m) + b(m)) to (7.15) and use (7.3) to cancel the term involving Ψ̇1.
We get:

G2Ψ̇0 − 3(m− 3a(m)− a(m) + c(l) + 4b(n)) ˙b(l)Ψ2 (7.16)

+3(l − 3a(l) + a(l) + 4b(m) + b(m)) ˙b(m)Ψ2 = 0 (7.17)

The last step is to remove the reference to ˙b(m) and ˙b(l) to have an equation only on Ψ̇0.
First, we use the relations (7.6) to get:

m( ˙b(l)Ψ2)− l( ˙b(m)Ψ2) = Ψ2

(
(m− 3b(n)) ˙b(l)− (l − 3b(m)) ˙b(m)

)
Then we consider the following relation obtained by computing the curvature components in
the tetrad formalism (it corresponds to equation (b) in [88, (4.12.32)]):

−
(
lλ − 3a(l)λ + a(l)λ + b(m)λ + b(m)λ

)
b(m)λ

+
(
mλ − 3a(m)λ − a(m)λ + c(l)λ + b(n)λ

)
b(l)λ = (Ψ0)λ.

Taking the derivative at λ = 0 and using the fact that b(m) = b(l) = 0 at λ = 0, we get:

−
(
l − 3a(l) + a(l) + b(m) + b(m)

)
˙b(m)

+
(
m− 3a(m)− a(m) + c(l) + b(n)

)
˙b(l) = Ψ̇0.

Replacing in (7.16) and multiplying by 2 we finally obtain:

(2G2 − 6Ψ2)Ψ̇0 = T2Ψ̇0 = 0

Note that since (Ψ0)λ = W (gλ)(lλ, nλ, lλ, nλ), we have:

Ψ̇0 = dgW [ġ](l, n, l, n) + 2W (g)(l̇, n, l, n) + 2W (g)(l, ṅ, l, n)

= dgW [ġ](l, n, l, n)

where we have used the fact that l and n are principal null vector fields to get the last line.
Therefore, we have proved that the Teukolsky equation holds locally near any x ∈M for α[2]

and therefore it holds globally.

7.2 Formula for the Teukolsky operator on Kerr in a
trivialization provided by the Kinnersley tetrad

We consider the local section (om, ιm) of A0 defined on U := Rt × (r0,+∞) × S2 \ {φ = 0}.
We recall that by definition d((om, ιm)) = (l, n,m) where l, n,m,m is the Kinnersley tetrad
defined by (5.1), (5.2) and (5.3). Note that (−om,−ιm) also has the property d((−om,−ιm)) =
(l, n,m) (it is the only other section of A0 defined on U with this property). However, the
expression of Ts in a local trivialization provided by a section (o, ι) only depends on d(o, ι)
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(this follows from the fact that it is the case for operators þ, þ’, ð and ð’ and for the spin
weighted functions b(m), b(n) and c(l)). Therefore, it is correct to speak about the formula
for the Teukolsky operator in a trivialization provided by the Kinnersley tetrad without further
precision. But to fix the ideas, we consider here the differential operator (Ts)m (Ts written in
the local trivialization provided by Am, it is therefore a differential operator on U). We use
the expression of þ, þ’, ð and ð computed in remark 6.2.12 and the definition of b(m), b(n)
and c(l) to find for s ∈ 1

2Z:

(Ts)m =2
(
l − (2s− 1)a(l) + a(l) + 2sb(m) + b(m)

)
(n− 2sa(n) + c(m))

− 2
(
m− (2s− 1)a(m)− a(m) + c(l) + 2sb(n)

)
(m− 2sa(m) + c(l))

− 4(s− 1)

(
s− 1

2

)
Ψ2

where a, b, c and Ψ2 have to be computed with respect to the tetrad (l, n,m,m) (see remark
6.2.5). The computation of these coefficients is done in [18, Chapter 6, Section 56, (175),
(180)] and we finally find:

(r2 + a2 cos2(θ))(Ts)m =

(
(r2 + a2)2

∆r
− a2 sin2 θ

)
∂2
t +

4Mar

∆r
∂t∂φ

+

(
a2

∆r
− 1

sin2 θ

)
∂2
φ −∆−sr ∂r

(
∆s+1
r ∂r

)
− 1

sin θ
∂θ (sin θ∂θ)− 2s

(
a(r −M)

∆r
+
i cos θ

sin2 θ

)
∂φ

− 2s

(
M(r2 − a2)

∆r
− r − ia cos θ

)
∂t

+
(
s2 cot2 θ − s

)
.
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Part III

Optimal decay for solutions on
subextremal Kerr spacetimes
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Chapter 8

Introduction

The study of wave propagation on black hole spacetimes has been the subject of intense
research in the last decades. An important motivation is to understand the stability properties
of explicit solutions of the Einstein equations. The first works on this subject are [32] for the
de Sitter solution and [19] (see also more recently [66]) for the Minkowski solution. More
recently, stability results have been obtained for black hole solutions: in [50, 47] for Kerr-de
Sitter and Kerr-Newman-de Sitter, in [60, 23] for Schwarzschild and in [63, 64, 36, 62, 94] for
the slowly rotating Kerr solution.

All these results are based on a precise description of the propagation of perturbations on
the underlying spacetime at the linear level. Linear stability results include [22, 55, 5, 57] for
Schwarzschild, [4, 42] for slowly rotating Kerr and [35] for subextremal Reissner-Nordström
spacetimes. See also the recent [45] which makes use of the microlocal method to prove the
linear stability of weakly charged and slowly rotating Kerr-Newman black holes. As shown in
some of these approaches, the Teukolsky equation introduced in [101] can be used to reduce
the tensorial equations of linearized gravity to a scalar wave type equation involving gauge
independent quantities. Moreover, the Teukolsky equation also encompass Maxwell equations
and the scalar wave equation which are often considered as simplified model for linearized
gravity. The equation depends on a spin parameter s ∈ 1

2Z whose value changes according to
the type of field being studied: s = 0 for scalar waves, s = ±1

2 for sourceless neutrino fields,
s = ±1 for Maxwell fields and s = ±2 for linearized gravitational perturbations.

There exists a large literature about the Teukolsky equation and the related linear wave
equations. The optimal decay rate for linear perturbations on a Schwarzschild spacetime was
first conjectured by Price [89, 90] and later clarified by Price-Burko [91]. The conjecture
was generalized to the Kerr case in [52, 37]. The most studied case has been the wave
equation s = 0 starting with pioneer works by Wald and Kay-Wald [107, 58] followed by
many authors. The question of optimal decay on subextremal Kerr black holes is now well
understood. Tataru [97] (see also [76] for a generalization) obtained the optimal local decay
for a family of stationary spacetimes including the subextremal Kerr family assuming a local
integrated energy estimate (this estimate holds for the full subextremal range of paramters
as proved by Dafermos–Rodnianski–Shlapentokh-Rothman [24]). Using a different approach
Donninger-Schlag-Soffer [25] obtained the optimal local decay on Schwarzschild black holes.
The global optimal decay (by global we mean uniform up to null infinity) was obtained in the
spherically symmetric case by Angelopoulos-Aretakis-Gajic [10, 9] where they also compute
the precise asymptotic profile. The global optimal decay and leading order term are obtained
by Hintz [48] for subextremal Kerr black holes using spectral methods. A similar expansion
including the case of initial data with non zero Newman-Penrose charges was later obtained by
Angelopoulos-Aretakis-Gajic [11] using a physical space approach. On a Reissner–Nordström
spacetime, we also mention the result of Luk-Oh [68] where the authors obtained a sharp
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decay for the wave equation and deduce the instability of the Cauchy horizon under scalar
perturbations, highlighting the link between sharp decay of waves and the strong cosmic
censorship.

For higher spin, Donninger-Schlag-Soffer [26] (later refined by Metcalfe-Tataru-Tohaneanu
[77] in the case s = ±1 under an integrated energy decay assumption) obtained an explicit but
sub optimal polynomial decay rate for Teukolsky solutions with spin±1,±2 on a Schwarzschild
background. On a slowly rotating Kerr black hole, integrated energy decay was proved for
the Teukolsky equation for spin s = ±1 by Ma [69] and for spin s = ±2 by Ma [70] and inde-
pendently by Dafermos-Holzegel-Rodnianski [21]. On the Schwarzschild background, Price’s
law was obtained by Ma-Zhang for spin s = ±1

2 ,±1,±2 in [72, 73]. Ma-Zhang [71] further
generalized their result to the Price’s law (with computation of the leading term) for spin
s = ±1,±2 on the exterior region of a slowly rotating Kerr black hole |a| � M (and con-
ditionally in the case |a| < M). More recently, a boundedness and decay result in the full
subextremal range has been obtained by Shlapentokh-Rothman-Teixeira da Costa [96, 95]. In
the current work, we prove the unconditional Price’s law for the whole subextremal range of
parameters (|a| < M) and for arbitrary spins s ∈ 1

2Z.
Our approach relies on microlocal and spectral methods (and in particular on works by

Vasy [103, 105, 106], Wunsch-Zworski [109] and Dyatlov [28]). We make use of Melrose’s b
and scattering pseudodifferential algebras [75, 74]. A crucial point in the proof of our result is
the analysis of the low energy limit of the resolvent which has been initiated in the Euclidean
context by the work of Jensen-Kato [56]. Although we adopt Vasy’s point of view [106] for
the low energy analysis, we mention [15, 14, 16, 39, 40, 41] for a different perspective on
this problem. We also highlight the recent works by Morgan and Morgan-Wunsch [81, 82]
which establish a connection between the rate of convergence of a stationary Lorentzian
metric towards the Minkowski metric, the regularity of the resolvent near zero energy and
the pointwise decay rate of solutions of the wave equation using techniques closely related to
the ones employed in the current work. For a different approach on this problem including
the non-stationary case, see also the work of Looi [67]. The spectral and microlocal methods
have recently led to the previously mentioned linear stability result for Einstein’s equations
on Kerr black holes by Häfner-Hintz-Vasy in [42] and to the sharp asymptotic description of
scalar waves by Hintz [48]. A key ingredient of our proof is the mode stability result, originally
obtained by Whiting in [108] and further improved by Andersson-Ma-Paganini-Whiting in [8]
and Andersson-Häfner-Whiting in [7] (see also [17] for a different proof and a partial result
for Kerr-de Sitter).

8.1 Main results

Let s ∈ 1
2Z. We fix a subextremal Kerr black hole spacetime with parameters |a| < M (see

section 9.1). Our main results concern the solution of the Cauchy problem with initial data on
a spacelike hypersurface Σ0 transversal to the future horizon and equal to the Boyer-Lindquist
initial hypersurface near Boyer-Lindquist radius r = +∞.

Tsu = 0

u|Σ0
= u0

nΣ0u|Σ0
= u1

(8.1)

where Ts is the Teukolsky operator (see Section 10.1) and nΣ0 is the unit normal vector
field to Σ0 (with respect to the rescaled Kerr metric g̃, see subsection 9.1). We prove two
different results depending on the assumptions on the initial data. In both cases, we do not
intend to provide optimal regularity assumptions on the initial data. We denote by ∆[s] the
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spin weighted Laplacian. To state the results, we introduce the function t whose level sets
are transversal to null infinity and to the future horizon (see Subsection 9.1 for the exact
definition).

Theorem 8.1.1. Let α ∈ (0, 1). Let k ∈ N. There exists N ∈ N such that the following holds.
For all initial data u0, u1 such that for all j ≤ N , for i ∈ {0, 1}, r−

1
2

+α(r∂r)
2jui ∈ L2(Σ0)

and r−
1
2

+α(∆[s])jui ∈ L2(Σ0), we have for all p ≤ k and t ≥ 1:

|(t∂t)pu(t, r)| ≤ Ckt−α+ rs+|s|+

(r + t)1+s+|s|

Theorem 8.1.2. Let k ∈ N. There exists N ∈ N and ε > 0 such that the following holds: For
all compactly supported initial data u0, u1 ∈ HN (Σ0), for all p ≤ k, all δ > 0 and all t ≥ 0 we
have: ∣∣(t∂t)p (u(t, r)− p(t, r−1, ω)

)∣∣ ≤ Cδ,kr−1+|s|+s+δt−3−|s|+s−ε(t+ r)−|s|−s

where p is an explicit function depending on s and on the initial data.

Remark 8.1.3. The δ > 0 in the previous theorem comes from the fact that we stated Theorem
15.0.4 in a Sobolev space with respect to r (and we lose a small power of r using the Sobolev
embedding). However we could get rid of it with some extra work starting from proposition
14.2.37.

Remark 8.1.4. For a more precise version of these theorems and the explicit definition of p,
see Corollary 15.0.3 and Corollary 15.0.5.

8.2 Method of proof

Theorems 8.1.1 and 8.1.2 are stated in terms of the Cauchy problem (8.1), but the forcing
problem

Tsv = f

(where v, f have bounded support in the past) is more convenient in the spectral analysis
perspective. To get a forcing problem from (8.1), a natural idea is to take v = χ(t)u for
χ ∈ C∞(Rt, [0, 1]) equal to 1 in a neighborhood of +∞ and to 0 in a neighborhood of −∞.
With this definition, u and v share the same asymptotic behavior near t = +∞ and f has
compact support in t. In the case of initial data with compact support, it is possible to choose
χ such that f also has a spatial compact support. Without the compact support hypothesis,
we use energy estimates similar to what is done in [51] to compute the behavior of f near null
infinity.

Then we take the Fourier-Laplace transform with respect to t and obtain the following
equation for =(σ) large enough: T̂s(σ)v̂ = f̂ . If we are able to prove that T̂s is invertible
between suitable spaces, we obtain the following expression for v:

v(t) =
1

2π

∫
=(σ)=C

e−itσR(σ)f̂(σ) dσ

where R(σ) = T̂s(σ)−1. A formal estimate of the right-hand side using integration by part,
assuming ∂kσR(σ)f̂(σ) is integrable provides:

|v(t)| ≤ eCtt−k
∥∥∥∂kσR(σ)f̂(σ)

∥∥∥
L1(Rσ)
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This formal computation leads to the intuition that better estimates are obtained when C
is small and inverse polynomial estimates correspond to C = 0. The previous observations
suggest the following key points to address:

1. Prove that T̂s(σ) is invertible on the upper half plane between suitable spaces.

2. Prove that R(σ) admits a polynomial bound when |σ| → +∞ and =(σ) remains in a
compact set (note that since we impose high regularity on the initial data, f̂(σ) has a
high polynomial decay with respect to σ).

3. Prove that R(σ) is holomorphic on the strictly upper half plane and continuous up to
the real axis.

4. Analyze precisely the regularity of R(σ) on the real axis. Note that as shown in [48] for
the wave equation, the leading order term can be obtained by computing the highest
order singularity of R(σ)f(σ) on the real axis (in our case, it is localized at σ = 0).

Point 1 can be subdivided into three steps: Proving that T̂s(σ) is Fredholm, proving that
its index is zero and proving that its kernel is trivial. The Fredholm property is obtained
by gluing Fredholm estimates on different regions of phase space: Near radial points on the
horizon, (using [103]), in a small region inside the black hole (using a hyperbolic estimate
as in [111]) and near radial points at spatial infinity using [105, 106] (see also [75]). Note
that in order to apply the results of [106] we have to check the triviality of the kernel of the
effective normal operator of T̂s(σ) (see definition 13.2.5) which involves theory of the confluent
hypergeometric equation. The gluing process relies on elliptic estimates and on propagation
of singularities. Therefore, we need a global analysis of the classical Hamiltonian flow of the
operator which can be computed from its principal symbol. Triviality of the kernel follows
from the mode stability result for the Teukolsky equation on a subextremal Kerr spacetime
originally obtained by Whiting in [108] and further improved by Andersson-Ma-Paganini-
Whiting in [8] (see also [7] for σ = 0). The index zero property will follow from the continuity
of the index and the invertibility of T̂s(σ) for large <(σ).

We prove this invertibility together with the polynomial bound of point 2 by introducing
the semiclassical parameter h = 1

|σ| , the operator T̂s,h(z) := h2T̂s(h
−1z) and proving a bound

of the form ‖u‖ ≤ h−2
∥∥∥T̂s,h(z)u

∥∥∥ (see Proposition 13.4.10 for the precise statement). As
before, we glue semiclassical estimates obtained on different regions of phase space. This
time, the analysis is driven by the semiclassical Hamiltonian flow whose global structure has
to be computed. The semiclassical flow has a more complicated structure than the classical
flow and in particular it contains a set of trapped trajectories. It appears that a global
estimates can be obtained by gluing an estimate near radial points on the horizon (using
[103]), an estimate in a small region inside the black hole (using a semiclassical version of the
hyperbolic estimate), an estimate near radial points at spatial infinity (using [105]) and an
estimate near the normally hyperbolic trapped set (based on [109] and [28]).

Point 3 follows from the resolvent identity R(σ) − R(σ′) = R(σ)
(
T̂s(σ

′)− T̂s(σ)
)
R(σ′)

once the mapping properties of R(σ) (resulting from the global Fredholm estimate) have been
clarified.

Concerning point 4, we obtain the high regularity of R(σ) on the real axis outside of σ = 0
by using repeatedly the identity of the resolvent. The number of iterations is only limited by
the regularity of the initial data (which is assumed to be high in this work). This contrast with
the situation at zero where the number of iterations is limited by the spatial decay of f̂(σ).
For Theorem 8.1.1, the regularity we get from this analysis and the resolvent’s bounds we
have obtained at zero and at infinity are sufficient to conclude after taking the inverse Fourier
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transform. Under the hypotheses of theorem 8.1.2, we are able to go further (up to 2 |s| + 2
iterations) using that f̂(σ) has more spatial decay. We obtain the expression of the highest
order singularity at zero as σ2|s|+2R(σ)w with w explicit independent of σ. Note that this step
requires a precise knowledge of the kernel and cokernel of T̂s(0) (in weaker spaces than the
ones on which we have invertibility) which we compute using the theory of hypergeometric
equations. Adapting an idea of [48] which roughly consists in performing a last iteration
with T̂s(0) replaced by the effective normal operator Neff(T̂s(σ)) (see Definition 13.2.5), which
governs the transition between T̂s(σ) and T̂s(0) near x = 0, we are then able to compute
explicitly σ2|s|+2R(σ)w modulo terms, which are irrelevant for the late time expansion.

After all the points 1-4 have been addressed, we are ready to perform the contour defor-
mation argument to write:

v(t) =
1

2π

∫
R
e−iσtR(σ)f̂(σ) dσ.

We then use standard properties of the Fourier transform (together with careful Fourier trans-
form computations) to conclude the proof.

8.3 Outline of the paper

• In Sections 9 and 10, we introduce the notations and classical properties of pseudodif-
ferential operators needed for the proof.

• In Section 11 we state the propositions needed to rephrase the Cauchy problem as a
forcing problem while keeping track of the spatial decay of the forcing term.

• In Section 12, we compute precisely the classical and semiclassical Hamiltonian flows of
the Teukolsky operator. As mentioned earlier, the structure of these flows are paramount
to obtain global Fredholm and semiclassical estimates.

• In Section 13 we first get the Fredholm and semiclassical estimates on the different
problematic regions of phase space. Subsection 13.1 handles the region near the horizon
(with both Fredholm and semiclassical estimates), Subsection 13.2 handles the region
near r = +∞ (with two Fredholm estimates: one uniform for σ in a compact not con-
taining zero and one uniform for σ in a small neighborhood of zero, and a semiclassical
estimate) and Subsection 13.3 handles the region near the trapped set in the semiclas-
sical regime. In the beginning of Subsection 13.4, we explain how a global Fredholm
estimate implies the Fredholm property. We then obtain global Fredholm estimates and
global semiclassical estimates. Subsection 13.5 is dedicated to the zero index property.
The heart of the proof is the continuity of the index, but some care is required since
spaces on which the operator is Fredholm depends on σ. The case of T̂s(0) is treated
separetly in Subsection 13.6 since we also need to compute its kernel and cokernel in
weaker spaces to later compute the higher order singularity at σ = 0.

• Section 14 contains the analysis of the resolvent which includes its mapping properties,
uniform bounds when σ → 0 and |σ| → +∞ and the precise computation of the highest
order singularity at σ = 0.

• In section 15, we use the previous results about the resolvent to perform the contour
deformation argument and we finish the proof of the main theorems.

• Appendix A presents a quite general version of the semiclassical hyperbolic estimate
that we use in the proof. In Appendix B, we obtain the absence of kernel for a class of
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operators including the effective normal operator associated to the Teukolsky equation.
Finally, Appendix C presents in detail the energy estimate used to translate the Cauchy
problem into a forcing problem.
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Chapter 9

Geometric framework

9.1 Kerr metric

The exterior of a rotating black hole of mass M and of angular momentum a with |a| < M
is described by the Kerr solution to the Einstein equation [59]. We are interested in the
exterior region, modeled by the smooth manifold M := Rt × (r+,+∞) × S2 where r+ :=
M +

√
M2 − a2. The manifoldM is endowed with the Kerr metric given in Boyer-Lindquist

coordinates (t, r, θ, φ) by:

g =
∆r − a2 sin2 θ

ρ2
dt2 +

4Mar sin2 θ

ρ2
dt dφ− ρ2

∆r
dr2

− ρ2 dθ2 − sin2 θ

ρ2
((a2 + r2)2 − a2∆r sin2 θ) dφ2

where

ρ2 :=r2 + a2 cos2 θ

∆r :=r2 − 2Mr + a2

Note that ∆r vanishes when r = r+ (the other root is r− := M −
√
M2 − a2). However,

the singularity is merely a coordinate singularity. We introduce Kerr∗ coordinates:

(t∗, r, θ, φ∗) = (t+ T (r), r, θ, φ+A(r))

where T (r) :=
∫ r

3M
a2+r2

∆r
dr and A(r) =

∫ r
3M

a
∆r

dr. In these coordinates, the metric g writes:

g =
∆r − a2 sin2 θ

ρ2
dt2∗ − 2 dt∗ dr +

4Mar sin2 θ

ρ2
dt∗ dφ∗ + 2a sin2 θ dr dφ∗ − ρ2 dθ2

− sin2 θ

ρ2
((a2 + r2)2 − a2∆r sin2 θ) dφ2

∗.

Therefore, it can be extended analytically to a larger manifold. Let ε > 0 such that r− < r+−ε.
We consider here an extension of M defined as Mε := Rt∗ × (r+ − ε,+∞) × S2

θ,φ∗
endowed

with the analytic extension of g. The future horizon is by definition H := Rt∗ × {r+} × S2
θ,φ∗

.
Let ψ1, ψ2 be smooth, non negative and monotonic functions with ψ1 = 1 on {r < 3M},

ψ1 = 0 on {r > 4M}, ψ2 = 0 on {r < 5M}, ψ2 = 1 on {6M < r}. In our analysis, we mainly
use the smooth function t := t∗ − L(r) where the smooth function L is defined by

L(r) :=

{
1 + T (r) +

∫ +∞
r ψ1(r)a

2+r2

∆r
dr +

∫ r
−∞ ψ2(r)a

2+r2

∆r
dr for r > r+

1 +
∫ +∞

3M ψ1(r)a
2+r2

∆r
dr for r ≤ r+

. (9.1)
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Note that t = t∗ + c1 on {r < 3M}, t = t − 1 on {4M < r < 5M} and t = t − T (r) + c2 on
{6M < r < +∞} where c1 and c2 are real constants which will play no role in the analysis.
As a consequence of the definition, level sets of t are smooth hypersurfaces transverse to the
future horizon and transverse to null infinity. We also define ϕ = φ∗ − A(r)(1 − ψ1(r)) (so
that ϕ is equal to φ∗ near the horizon and equal to φ far from the horizon).

We define Σt
0 := t−1({0}) and we have thatMε is diffeomorphic to Rt×Σt

0. We introduce
the coordinate x := 1

r and we defineMε the smooth manifold with boundary Rt× [0, 1
r+−ε)x×

S2
θ,ϕ and we call the boundary I + := Rt×{0}×S2

θ,ϕ future null infinity. Note that the metric
does not extend smoothly to the boundary but blows up like x−2. For this reason, we will
often consider the conformally rescaled metric g̃ := ρ−2g. We denote by G the metric induced
by g on the cotangent bundle and by G̃ the metric induced by g̃.

9.2 Spin weighted functions

Let s ∈ 1
2Z. Let UN := S2 \ {N} and US := S2 \ {S} where N is the north pole and S

the south pole. We define Bs, the complex line bundle over S2 with projection π, with local
trivializations (US , TS) and (UN , TN ) and transition function from TS to TN given by

fS,Ns :

{
UN ∩ US → GL1(C)

(θ, φ) 7→ e−2isφ

In other words, for every e ∈ Bs with π(e) = x ∈ UN ∩ US , if we use the notation (x, vN ) =
TN (e) and (x, vS) = TS(e), we have vN = fS,Ns (x)vS . For conventional reason, we also
introduce the (redundant) local trivialization on UN ∩US \{φ = 0}, Tm which is such that the
transition function from TS to Tm is fS,ms (θ, φ) = e−isφ (which has no continuous extension
to UN ∩ US if s is not an integer).

We introduce the complex line bundle B(s, s) := π∗3(Bs) overMε where π3 is the third pro-
jection (π3 :Mε → S2

θ,ϕ). We denote by T̃S (respectively T̃N and T̃m) the local trivialization
of B(s, s) on Rt× [0, 1

r+−ε)x×US (respectively on Rt× [0, 1
r+−ε)x×UN and Rt× [0, 1

r+−ε)x×Um)
induced by TS (respectively TN and Tm). The sections of B(s, s) are spin-weighted functions.
This definition may seem a bit artificial but it will be enough for the purpose of this paper.
For a more intrinsic and meaningful definition (but equivalent up to explicit isomorphism of
vector bundle) and some explanation of how this bundle naturally appears in the study of
tensorial equations, see [79].

If we have a vector bundle E over a manifold with boundary (or with corners) X (and E′

its dual), we denote by:

• ΩX the bundle of densities over X.

• Γ(X,E) (or Γ(E) for short) the space of smooth sections (smooth up to the boundary).

• Γk(X,E) (or Γk(E)) the space of sections of regularity Ck (up to the boundary).

• Γ(
◦
X,E) (or Γ◦(E) for short) the space of smooth sections on the boundle

◦
E := E| ◦

X

• Γ̇(X,E) (or Γ̇(E) for short) the space of smooth sections vanishing at infinite order at
the boundary.

• D′(
◦
X,E) (or D′◦(E) for short) the space of distributional sections of E| ◦

X

(the dual space

of Γ◦c(E
′ ⊗ ΩX) where the index c indicates that the sections have compact support in

the base manifold, in this case
◦
X)
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• Ḋ′(X,E) (or Ḋ′(E) for short) the space of supported distributional sections (the dual
space of Γc(E

′ ⊗ ΩX))

• D′(X,E) (or D′(E) for short) the space of extendible distributional sections (the dual
space of Γ̇c(E

′⊗ΩX) the space of smooth compactly supported sections on X vanishing
up to infinite order at ∂X). The space of extendible distributional sections can be
viewed as a quotient space of distributional sections on a larger manifold. It is naturally

included in the space of distributional sections on
◦
X. Note that we have a natural

restriction map Ḋ′(X)→ D′(X) whose kernel is the space of distributions supported at
the boundary.

For more details about supported and extendible distributions, see [54] (appendix B). If the
boundary has several connected components, we can prescribe the extendible/ supported
character of the distribution at each boundary component independently.

Note that since B(s, s) is a pullback of Bs, we have a natural identification between
elements of Γ◦(B(s, s)) and C∞(Rt × (r+ − ε,+∞),Γ(Bs)) and between D′(B(s, s)) and
D′(Rt × (r+ − ε,+∞),D′(Bs)).

If Y,X are smooth manifolds (with or without boundary) and E is a vector bundle over X,
we denote by Y ×E the pullback bundle π∗2(E) over Y ×X (where π2 is the second projection
on the product). With this notation, we have for example B(s, s) = Rt×[0, 1

r+−ε)x×Bs. When
the context is clear, we sometimes omit the pullback in the notation, for example Γ(Y ×X,E)
will be a shortcut for Γ(Y ×X,π∗2(E)).

Let Θ be the unique connection on Bs such that in trivialization Tm:

Θ∂θ =∂θ

Θ∂φ =∂φ + is cos θ

We also denote by Θ the pullback on B(s, s), concretely:

Θ∂x = ∂x

Θ∂t = ∂t

This redundant notation is sometimes convenient to use Einstein’s summation convention. To
alleviate notations, we also sometimes omit the ∂. For example, Θt stands for Θ∂t .

If we have a Frechet space F , we define the Fourier transform Ftu of a section u ∈
S ′ (R, F ′) by (for all φ ∈ S (Rt, F )):

Ftu(φ) = u(φ̂)

where φ̂(σ) :=
∫

Rt
eitσφ(t) dt.
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Chapter 10

Analytic framework

10.1 Teukolsky operator

The Teukolsky operator (originally introduced in [101]) is a smooth second order differential

operator on
◦
B(s, s). Its original expression was given in a local trivialization Tkinner defined

on a dense open subset ofM (this local trivialization is associated to the Kinnersley tetrad,
in a way explained in [79]). This local trivialization does not extend to a local trivialization
on a dense open subset ofMε, this is linked to the fact that the Kinnersley tetrad degenerate
at the horizon. However, the Teukolsky operator itself extends analytically toMε (it can also
be defined more intrinsically directly onMε, see [79] for details). The local trivialization Tm
that we have introduced earlier (based on a renormalized tetrad which is smooth across the
horizon) gives the following expression for Ts:

(Ts)m =− a2 sin2 θ∂2
t∗ − 2a∂t∗∂φ∗ −

1

sin2 θ
∂2
φ∗ −

1

sin θ
∂θ∗ (sin θ∂θ∗)−∆−sr ∂r∗

(
∆s+1
r ∂r∗

)
− 2(a2 + r2)∂t∗∂r∗ − 2a∂φ∗∂r∗ + 4s(r −M)∂r∗ −

2is cos θ

sin2 θ
∂φ∗

− 2 ((1− 2s)r − ias cos θ) ∂t∗ + (s2 cot2 θ + s) (10.1)

We can check (by changing trivialization with TS and TN ) that this expression defines a unique
second order smooth differential operator Ts on B(s, s)| ◦

Mε

. We can also write the operator in

coordinates (t, r, θ, ϕ):

(Ts)m =at,t∂
2
t + at,ϕ∂t∂ϕ + aϕ,ϕ∂

2
ϕ −

1

sin θ
∂θ sin θ∂θ −∆−sr ∂r∆

s+1
r ∂r + at,r∂t∂r

+ ar,ϕ∂r∂ϕ + 4s(r −M)∂r + aϕ∂ϕ + at∂t + s2 cot2 θ + s. (10.2)

where the coefficients at,t, at,ϕ, aϕ,ϕ, at,r, ar,ϕ, aϕ, at are smooth, independent of t and ϕ,
with:

r < 3M 4M < r < 5M 6M < r

at,t −a2 sin2 θ (r2+a2)2

∆r
− a2 sin2 θ −a2 sin2 θ

at,ϕ −2a 4Mar
∆r

4Mar
∆r

aϕ,ϕ − 1
sin2 θ

a2

∆r
− 1

sin2 θ
a2

∆r
− 1

sin2 θ

at,r −2(a2 + r2) 0 2(a2 + r2)

ar,ϕ −2a 0 0

aϕ −2is cos θ
sin2 θ

−2s
(
a(r−M)

∆r
+ i cos θ

sin2 θ

)
−2s

(
a(r−M)

∆r
+ i cos θ

sin2 θ

)
at −2 ((1− 2s)r − ias cos θ) −2s

(
M(r2−a2)

∆r
− r − ia cos θ

) 4sMa2−2sr(a2+r2)
∆r

+2(s+ 1)r + 2ias cos θ
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With the previous expression, we see that

Ts
(
S ′ (Rt,D′((r+ − ε,+∞)× Bs)

))
⊂ S ′ (Rt,D′((r+ − ε,+∞)× Bs)

)
.

We are interested in the following equation

Tsu = f (10.3)

We define the differential operator T̂s on Rσ × (r+ − ε,+∞)r × Bs as the operator such
that for all u ∈ S ′(Rt,D′(r+−ε,+∞)r×Bs):

T̂sFtu = Ft(Tsu).

If we call σ the conjugate variable of t, we get:(
T̂s(σ)

)
m

=− at,tσ2 − iat,ϕσ∂ϕ + aϕ,ϕ∂
2
ϕ −

1

sin θ
∂θ sin θ∂θ −∆−sr ∂r∆

s+1
r ∂r − iat,rσ∂r

+ ar,ϕ∂r∂ϕ + 4s(r −M)∂r + aϕ∂ϕ − iatσ + s2 cot2 θ + s.

Therefore, (T̂s(σ))σ is a family of smooth differential operators on (r+−ε,+∞)×Bs. Note that
if we call Ts(σ)′ the operator obtained with the Fourier transform with respect to t replaced
by the Fourier transform with respect to t, we have the relation: T̂s(σ) = eiσT (r)Ts(σ)′e−iσT (r)

on r > 6M .
Finally, we introduce the semiclassical rescaling: T̂s,h(z) := h2T̂s(h

−1z) where z = σ
|σ|

and the small semiclassical parameter is h = |σ|−1. It will be used to study the regime
<(σ)→ +∞ with =(σ) bounded.

10.2 Sobolev spaces

We define the spatial manifolds X := (r+ − ε,+∞)r × S2 and X := [0, 1
r+−ε)x × S2. We

define the volume form dvol := r2 sin θ dr dθ dϕ on X. The choice of this exact volume form
is not crucial for the radial point estimates since the subprincipal symbol at a radial point
does not depend on the volume form. However, we have less freedom for the computation of
the subprincipal symbol at the trapped set (see Remark 13.3.2). To define the L2 norm on
(r+ − ε,+∞) × Bs, we also need a hermitian metric m on Bs. We define it using the local
trivialization Tm. On this trivialization, for any x ∈ Um and z1, z2 ∈ C, mx(z1, z2) := z1z2.
The metric m on (Bs)|Um extends uniquely to a smooth hermitian metric on Bs. We often
write m(z) for m(z, z).

The metric m is parallel with respect to the previously defined connection Θ.

Lemma 10.2.1. We have Θm = 0.

Proof. By continuity, it is enough to prove the equality in the local trivialization Tm. Let
L1, L2 ∈ Γ(Bs), in the local trivialization, we have:

Θ∂θm(L1, L2) =∂θ(L1L2)− ∂θ(L1)L2 − L1(∂θL2)

=0

Θ∂φm(L1, L2) =∂φ(L1L2)− (∂φ + is cos θ)L1L2 − L1(∂φ + is cos θ)L2

=is cos θL1L2 − is cos θL1L2

= 0.
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We can now define the following scalar product on Γc((r+ − ε,+∞) × Bs). For u, v ∈
Γc((r+ − ε,+∞)r × Bs):

〈u, v〉 =

∫
X

mr(x)(u(x), v(x)) dvol(x).

We define L2
(r+−ε,+∞)r×Bs as the completion of Γc((r+−ε,+∞)r×Bs) for the associated norm.

We remark that we have the natural inclusion L2((r+ − ε,+∞)r × Bs) ⊂ D′(r+−ε,+∞)r×Bs .
We now define the b-tangent bundle and the associated notations.

Definition 10.2.2. Let N be a manifold with boundary of dimension n. We define bTN ,
the bundle of b-vectors on N as the bundle whose sections are smooth vector fields tangent to
the boundary. In local coordinates (yi)

n−1
i=0 near a point of the boundary, if y0 is a defining

function of the boundary, such vector fields write a0(y)y0∂y0 +
∑n−1

i=1 ai(y)∂yi with (ai)
n−1
i=0

a family of smooth functions (smooth up to the boundary). The dual bundle is denoted by
bT ∗N . These definitions extend to the case where N is a manifold with corners by defining
b-vector fields as smooth vector fields tangent to each boundary face. The bundle bTN is
then used to construct other b-objects such as b-metrics which are smooth metrics on bTN
or b-volume forms which are non vanishing sections of Λn

(
bT ∗N

)
. For k ∈ N, we denote

by Diffkb (E) the algebra of differential operators generated (as a C∞(N )-module) by the set
{Id} ∪

{
ΘX1 ...ΘXj , j ≤ k,Xi ∈ Γ(bTN )

}
.

We also need to define the scattering tangent bundle.

Definition 10.2.3. Let N be a manifold with boundary of dimension n. Let y0 be a boundary
defining function. We define scTN , the bundle of sc-vectors on N as the bundle whose sections
are of the form y0Z for Z ∈ Γ(bTN ). In local coordinates (yi)

n−1
i=0 near a point of the boundary,

such vector fields write a0(y)y2
0∂y0 +

∑n−1
i=1 ai(y)y0∂yi with (ai)

n−1
i=0 a family of smooth functions

(smooth up to the boundary). The dual bundle is denoted by scT ∗N . The bundle scTN is then
used to construct other sc-objects such as sc-metrics which are smooth metrics on scTN or
sc-volume forms which are non vanishing sections of Λn (scT ∗N ). For k ∈ N, we denote
by Diffksc(E) the algebra of differential operators generated (as a C∞(N )-module) by the set
{Id} ∪

{
ΘX1 ...ΘXj , j ≤ k,Xi ∈ Γ(scTN )

}
where Θ is any connection on E.

Definition 10.2.4. Let N be a compact manifold with boundary of dimension n with a bound-
ary defining function y0. Let E be a vector bundle over N with connection Θ and a metric
m. We fix a finite family of smooth vector fields (Zi)

N
i=1 which generate bTN as a C∞(N )

module and we fix a b-volume form. We define H0
b (E) = H0

b,h(E) as the space L2
b(E) where

the b index on L2 indicates that integration is performed using the b-volume form. For r̃ ∈ N,
r̃ ≥ 1, we define recursively the b-Sobolev space H r̃

b (E) and its semiclassical version H r̃
b,h(E)

by completion of Γ◦c(E) in the norms:

‖u‖H r̃+1
b

:= ‖u‖H r̃
b

+
N∑
i=1

‖ΘZiu‖H r̃
b (E)

‖u‖H r̃+1
b,h

:= ‖u‖H r̃
b,h

+
N∑
i=1

‖hΘZiu‖H r̃
b,h(E)

We then define H r̃
b (E) and H r̃

b,h(E) for r̃ ∈ R by interpolation and duality. For l ∈ R, we then
define H r̃,l

b := yl0H
r̃
b and H r̃,l

b,h := yl0H
r̃
b,h.

Similarly, we can define the spaces H r̃,l
sc and H r̃,l

sc,h for r̃, l ∈ R by replacing all the b indices
by sc indices in the previous definition.
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Note that the previous definition makes sense even if the manifold has no boundary (then
bTN = scTN = TN ). We use it to define the Sobolev space Hk(Bs).

When the boundary has several connected components, we can specify the behavior of
the sections near each component of the boundary independently. In particular, in the case
of sections of [0, 1

r+−ε ]× Bs, we define the following hybrid spaces:

Definition 10.2.5. We can view distributions in Ḋ′((0, 1
r+−ε ]x × Bs) as elements of

D′((0, 1
r+−ε+1)x×Bs) (therefore, it makes sense to ask whether or not some u ∈ Ḋ′((0, 1

r+−ε ]×
Bs) is in Hk,l

b ([0, 1
r+−ε + 1]x × Bs). We denote by Ḣk,l

b := Hk,l
b ∩ Ḋ

′((0, 1
r+−ε ]x × Bs) endowed

with the induced norm. We perform the same construction (with indices b replaced by sc) to
get Ḣ r̃,l

sc . We also get the semiclassical version of these spaces by adding an index h next to
the index b (or sc) in the definition.

Definition 10.2.6. For distributions in u ∈ D′
((

0,+ 1
r+−ε

]
x
× Bs

)
, we denote by Ext(u) the

set of ũ ∈ D′((0,+∞)x×Bs) with support contained in some x−1((0, C)) such that ũ|
(0, 1

r+−ε
)

=

u. Therefore, it makes sense to define the (possibly infinite) norm:

‖u‖
H
k,l
b

:= inf
ũ∈Ext(u)

‖ũ‖
Hk,l
b ([0,C]x×Bs)

We perform the same construction (with indices b replaced by sc) to get H r̃,l
sc . We also get the

semiclassical version of these spaces by adding an index h next to the index b in the definition.

To be consistent with the convention used in [105] and [106] (where a scattering volume

form is used in the definition of b-Sobolev spaces), it is useful to introduce H r̃,l
(b) := H

r̃,l+ 3
2

b

and Ḣ r̃,l
(b) = Ḣ

r̃,l+ 3
2

b .

Note that the spaces Hk,l
(b) and Ḣ

−k,−l
(b) are dual to each other (using the volume form dvol

and the metric m for the identifications).
For k ∈ R, we define the Mellin transform of a function f ∈ Ċ∞([0,+∞), Hk(Bs)) which

is Schwartz at infinity by

Mf(λ) :=

∫ +∞

0
x−iλf(x)

dx

x

By Plancherel formula, M can be extended to an isomorphism from L2
b([0,+∞);Hk(Bs)) to

L2(Rλ, Hk(Bs)). Also note that iλMf(λ) = M(x∂xf)(λ) and therefore, for k ≥ 0, M extends
to an isomorphism between Hk

b ([0,+∞]x × Bs) (where the boundary defining function of
x = +∞ is x−1) and (1 + |λ|2)−

k
2L2(Rλ, L2(S2;Bs)) ∩ L2(Rλ, Hk(S2;Bs)).

10.3 Pseudodifferential algebras

In this section, we introduce the definitions and properties of the various Pseudodifferential
algebras involved. Since we do not provide proofs for standard properties of pseudodifferential
operators, we refer to [74, Chapter 4], [50, Appendix A], [54, Chapter XVIII], [104], [110] for
details and proofs.

Definitions

Let E be a vector bundle over a manifold N (of dimension n) and F be a vector
bundle over a manifold N ′ (of dimension n′). We use the notation E � F to denote
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the vector bundle over N × N ′ with fiber Ex ⊗ Fy over (x, y) ∈ N × N ′. We use
the notation Ωs(E) to denote the real line bundle over N whose fibers are Ωs(E)x =
{u : (ΛnEx) \ {0} → R,∀t ∈ R \ {0} , u(tα) = |t|su(α)}. Note that Ω1(TN ) = Ω(TN ) is the
usual density bundle over N .

We define the fiber radial compactification of E as the bundle obtained by adding a
boundary at fiber infinity. More precisely, for m a smooth positive definite metric on E, a
boundary defining function of fiber infinity is (x, ξ) 7→

√
mx(ξ, ξ)

−1
. This definition does not

depend on the choice of m as two different metrics gives locally equivalent boundary defining
functions. If N has a boundary, the definition is the same (but we require that m is a smooth
positive metric up to the boundary). If the boundary of N is not empty, the resulting bundle
is a manifold with corners. We denote by T ∗X the fiber radial compactification of T ∗X and
by S∗X fiber infinity.

Let G be an other vector bundle over N .

Definition 10.3.1. We define the space Sm(E,G) of G-valued symbols of order m on E as
the set of functions u ∈ C∞(E,G) such that the following estimates hold: For all open subset
U on which E is trivial, if (y, ξ) are local coordinates and K is a compact subset of U , for all
α, β ∈ Nn, there exists C > 0 such that (uniformly on K)

|∂αy ∂
β
ξ u(x, ξ)|G ≤ C 〈ξ〉m−|β| (10.4)

where |.|G is computed using a fixed (but arbitrary) metric on G. We similarly define the
space of semiclassical symbols of order m Smh (E,G) as the set of smooth h-indexed families
(uh)h∈[0,1) ∈ C∞([0, 1)h, S

m(E,G)) such that estimate (10.4) holds uniformly with respect to
h ∈ [0, 1).

In the case where N has a boundary with boundary defining function y0, we also define
the following space of symbols:

Definition 10.3.2. For l ∈ R, we denote by Sm,l(E,G) the space of G-valued symbols of
order (m, l) on E as the set of functions u ∈ C∞(E| ◦

N
, G) such that the following estimates

hold: For all open subset U of N on which E is trivial, if (y, ξ) are local coordinates (with y0

the boundary defining function if U intersects the boundary) and K is a compact subset of U ,
for all α, β ∈ Nn, there exists C > 0 such that (uniformly on K):

• If U ∩ ∂N 6= ∅:
|∂αy ∂

β
ξ u(x, ξ)|G ≤ C 〈ξ〉m−|β| yl−α0

0 (10.5)

• If U ∩ ∂N = ∅
|∂αy ∂

β
ξ u(x, ξ)|G ≤ C 〈ξ〉m−|β| . (10.6)

In the previous estimates, |.|G is computed using a fixed (but arbitrary) metric on G. We
similarly define the space of semiclassical symbols of order (m, l) Sm,lh (E,G) as the set of h-
indexed families (uh)h∈(0,1) such that for all h ∈ (0, 1), uh ∈ Sm,l(E,G) and estimates (10.5),
(10.6) hold uniformly with respect to h ∈ (0, 1).

We recall the Schwartz kernel theorem applied to our setting (see theorem 4.14 in [74] and
theorem 5.2.1 in [53]). In the statement of the theorem, L denotes the set of continuous linear
operators from Γc(X,Bs) to D′(X,Bs).

Theorem 10.3.3. There is a one to one correspondence between L and the set of distributions
D′ (X ×X,Bs � (B′s ⊗ Ω(TX))). The correspondence is given by:

S :

{
D′ (X ×X,Bs � (B′s ⊗ Ω(TX)))→ L

A 7→ (u ∈ Γc(X,Bs) 7→ (v 7→< A, v ⊗ u >))
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The distribution A is the Schwartz kernel of the operator S(A).

Definition 10.3.4. We denote by bTX the vector bundle of b-vector fields on X (we denote
by bT ∗X it dual). We denote by bT

∗
X the fiber radial compactification of bT ∗X and by bS∗X

fiber infinity. We define the set L := S
(
D′
(
X ×X,Bs �

(
B′s ⊗ Ω(bTX)

)))
. We have the

natural inclusion L ⊂ L.

We define X2
b as the blow-up of the manifold with corner X2 with respect to the corner

∂X × ∂X with the blow-down map β. Concretely if we use primes to denote coordinates on
the second factor and ω to denote coordinates on S2, X2

b is obtained by the introduction of
coordinates (ρ := x+x′, τ := x−x′

x+x′ , ω, ω
′) onX2\{x = x′ = 0} and the addition of the front face

which corresponds to {0}ρ×[−1, 1]τ×S2
ω×S2

ω′ in these new coordinates. The blow-down map is

then the identity map onX2\{x = x′ = 0} and the map (0, τ, ω, ω′) 7→ ((0, ω), (0, ω′)) ∈ (∂X)2

on the front face (see [74, Chapter 4] for details about this construction). We denote by ∆ the
diagonal in X2. We define ∆b := β−1

(
∆ \ ∂X × ∂X

)
and the front face f = β−1(∂X × ∂X).

Definition 10.3.5. If E is a vector bundle of order m over X2
b , we say that a distribution

A ∈ D′(X2
b , E) is conormal of order m to ∆b if it is smooth on X

2
b \ ∆b and if for every

y ∈ ∆b, there exist:

• Local coordinates (αi)5
i=0 and a local trivialization of E on a neighborhood U of y such

that ∆b ∩ U =
{
α0 = α1 = α2 = 0

}
. We use the notation α′ := (α0, α1, α2) and α′′ :=

(α3, α4, α5).

• A symbol a ∈ Sm(R3 × R3,Rm) such that A(α′, α′′) = (2π)−3
∫

R3 e
iξ·α′a(ξ, α′′) dξ on U

where the local trivialization is used implicitly to identify A with a Rm-valued function.

It can be checked (see for example [54, Theorem 18.2.9]) that the element a in the definition
is invariantly defined in Sm(N∗(∆b), E|∆b⊗Ω(N∗∆b)) modulo Sm−1(N∗(∆b), E|∆b⊗Ω(N∗∆b)).

Definition 10.3.6. Following [74], we define the (small) algebra of b-operators Ψb as the
subset of L of operators whose Schwartz kernels (lifted to X2

b) are conormal to ∆b, vanish up
to infinite order at ∂X2

b \ f and are properly supported in X2
b .

For a conormal kernel A of order m (we write A ∈ Ψm,0
b ), the principal symbol is therefore

given by an element of

Sm
(
N∗∆b,

(
Bs �

(
B′s ⊗ Ω(bTX)

))
|∆b

⊗ Ω(N∗∆b)

)
/Sm−1.

We can use the map

I :

{
N∗∆b → bT ∗X

α 7→ (v 7→ α(v, 0))

with inverse

I−1 :

{
bT ∗X → N∗∆b

β 7→ ((v, v′) 7→ β(v)− β(v′))

to identifyN∗∆b and bT ∗X. Moreover, we have canonical isomorphisms Ω(bTX)⊗Ω(bT ∗X) =
R ×X and Bs ⊗ B′s = C ×X. Using the identification I, the symbol of A can be seen as an
element of Sm(bT ∗X)/Sm−1 which is called the principal symbol of the operator.

Following [50, Appendix A3], we introduce the space Ψm,0
b,h of b semiclassical operators.

Note that in this case, the principal symbol is invariantly defined in Smh (bT ∗X)/hSm−1
h .
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Eventually, we define Ψm,l
b as the set x−lΨm,0

b (and similarly Ψm,l
b,h := x−lΨm,0

b,h ).
We now define the local model for scattering pseudodifferential operators. Let R3

y be the
radial compactification of R3

y. We consider the manifold N := Ry
3 and the trivial bundle

E = C × N . For p ∈ Sm,l(R3
ξ × R3

y,L(E,E)), we define the operator Op(p) by its action on
φ ∈ C∞c (R3,C):

Op(p)u(y) = (2π)−3

∫
eiξ·(y−y

′)p(y, ξ)u(y′) dy′ dξ

We call Ψm,l
sc (C×N ) the operators obtained by this procedure. We similarly define Oph(ph)

for a symbol in ph ∈ Sm,l(R3
ξ × R3

y) by:

Oph(ph)u(y) = (2πh)−3

∫
eih
−1ξ·(y−y′)ph(y, ξ)u(y′) dy′ dξ.

The corresponding operator space will be denoted by Ψm,l
sc,h(C×N ).

We can then use this local model to define the algebra of scattering pseudodifferential
operators on [0, 1

r+−ε) × Bs (see [104, Section 5.3.2] for more details about this construction
in a more general context):

Definition 10.3.7. We define Ψm,l
sc ([0, 1

r+−ε) × Bs) (scattering pseudodifferential operators)
as the set of continuous linear operators A : Γc(X,Bs)→ D′(X,Bs) such that:

• The Schwartz kernel of A is properly supported.

• For all χ1, χ2 smooth and compactly supported on some open sets of trivialization for
[0, 1

r+−ε)× Bs, χ1Aχ2 ∈ Ψm,l
sc (C×N ).

The definition of Ψm,l
sc,h([0, 1

r+−ε) × Bs) is obtained by replacing A by a family (Ah)h∈(0,1) of

continuous linear operators from C∞c (X,Bs) to D′(X,Bs) and Ψm,l
sc,h(C×N ) by Ψm,l

sc,h(C×N )
in the previous definition.

We denote by Ψm,l
b,c the set of operator with Schwartz kernel supported onM2

ε−η for some
0 < η < ε. Standard theory of b-pseudodifferential operators (see for example [74, Section 5.9])
provides the composition rule: Let A ∈ Ψm,l

b,c with principal symbol a and B ∈ Ψm′,l′

b,c with

principal symbol b, then AB ∈ Ψm+m′,l+l′

b,c and has principal symbol ab. The fact that we
restrict to operators with Schwartz kernel supported in M2

ε−η enables to reduce to the case
of b-pseudodifferential operators on a compact manifold with boundary. Sometimes, we also
want to take the composition of an operator A ∈ Ψm,l

b,c and a differential operator B ∈ xl′Diffm
′

b .
In this case we can use the locality of B to make sense of the compositions AB and BA as
elements of Ψm+m′,l+l′

b,c . Indeed, for any cutoff χ equal to 1 on (r+ − ε + η,+∞)r and with
compact support in (r+ − ε,+∞)r, AχBχ = AB and χBχA = BA by locality of B. These
compositions properties will be enough for our purpose. We have the same composition rules
for semiclassical b-operators, scattering operators and semiclassical scattering operators (see
for example [104]).

We say that an operator in Ψm,l
b is elliptic if its principal symbol p ∈ xlSm(bT ∗X)/Sm−1

has an inverse in other words if there exists q ∈ x−lS−m(bT ∗X)/S−m−1 such that pq = qp = [1]
where [1] is the class of 1 in S0(bT ∗X)/S−1. We can localize this definition near a point
(x, ξ) ∈ bS∗X: we say that P ∈ Ψm,l with principal symbol p ∈ xlSm(bT ∗X)/Sm−1 is elliptic
at (x, ξ) if there exists q ∈ x−lS−m(bT ∗X)/Sm−1 such that pq = qp = [g] with g = 1 on a
neighborhood of (x, ξ). The subset of bS∗X at which P is elliptic is denoted Ell(P ). The
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complementary subset (in bS∗X) is the characteristic set denoted by Char(P ). The wavefront
set of P denoted WF (P ) is defined negatively: (x, ξ) ∈ bS∗X is not in the wavefront set of
P if there exists A ∈ Ψ0,0

b,c with (x, ξ) ∈ Ell(A) such that AP ∈ Ψ−∞,lb,c . All these definitions
have an analog1 in the semiclassical and scattering cases (see [104] and [110]).

In this paper, we denote the principal symbol map by s. In the semiclassical setting, we
denote it by sh.

Mapping properties

Let m0, l0 ∈ R. Let A ∈ Ψm0,l0
b (or A ∈ Ψm0,l0

sc and m0 ≥ 0). Then A is bounded as an
operator between the following spaces:

A : Hm,l
b,c → Hm−m0,l−l0

b,c

A : Hm,l
b,loc → Hm−m0,l−l0

b,loc

Where Hm,l
b,c is the subspace of Hm,l

b whose elements have compact support inMε. The space
Hm,l
b,loc is the subset of distributional sections u such that for all χ ∈ C∞c (X), χu ∈ Hm,l

b,c . Note

that operators in Diffm0,l0
b , Diffm0,l0

sc , Ψm0,l0
b,c and Ψm0,l0

sc,c are bounded from H
m,l
b to Hm−m0,l−l0

b

and from Ḣm,l
b to Ḣm−m0,l−l0

b . The same mapping properties holds for semiclassical pseudod-
ifferential operators if the Sobolev spaces are replaced by their semiclassical version.

Elliptic estimates

We state the standard estimate which is a consequence of Proposition 18.1.23 in [54]:

Proposition 10.3.8. Let A,B ∈ Ψ0,0
b be pseudodifferential operators with compactly supported

Schwartz kernels in X2 (in particular it vanishes near the boundary of X2). Let P ∈ Ψm,l
b

be a differential operator with characteristic set Σ (subset of fiber infinity). We assume that
WF (A) ∩ Σ = ∅ and WF (A) ⊂ Ell(B). Then we have the following estimates: For every
integers N,M > 0 and every s ∈ R, there exists C > 0 such that:

‖Au‖
H
s+m,l
(b)

≤
(
‖BPu‖

H
s,l
(b)

+ ‖u‖
H
−N,−M
(b)

)
Remark 10.3.9. Since the support of the Schwartz kernels of A and B are compactly sup-
ported in X ×X, the index l and the extendible character at r = r+ − ε are irrelevant. For
the same reason, the following estimates is also true:

‖Au‖
Ḣs+m,l

(b)

≤ C
(
‖BPu‖

Ḣs,l
(b)

+ ‖u‖
Ḣ−N,−M

(b)

)
We also need the semiclassical version of the b-elliptic estimate:

Proposition 10.3.10. Let A,B ∈ Ψ0,0
b,h with Schwartz kernels supported inside a compact

subset of X2. Let P ∈ Ψm,l
b,h be a differential operator with characteristic set Σ. We assume

that WFh(A) ∩ Σ = ∅ and WFh(A) ⊂ Ell(B). Then we have the following estimate: For
every integers N,M > 0 and every r̃, q ∈ R, there exists C > 0 such that:

‖Au‖
H
r̃+m,q+l
(b),h

≤ C
(
‖BPu‖

H
r̃,q
(b),h

+ h ‖u‖
H
−N,q
(b),h

)
1Note that Ell(A),WF (A) ⊂ bT

∗
X in the semiclassical case and Ell(A),WF (A) ⊂ scS∗X ∪ (scT ∗X)|

∂X

in the scattering case
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Remark 10.3.11. By the support condition on the Schwartz kernel, the character at r = r+−ε
is irrelevant and we can replace H by Ḣ.

Remark 10.3.12. The same estimate holds for semiclassical scattering operators. In the
scattering case, we could even get an error term h ‖u‖

H
−N,−N
(b)

but this will not be needed.

Propagation of singularities

We state the result in the case of differential operators. We first need to introduce the notion
of Hamiltonian flow for a differential operator.

Definition 10.3.13. Let p ∈ C∞(T ∗X,C). The Hamiltonian vector field Hp associated to p
is the unique vector field on T ∗X such that, for every local coordinates y on an open subset
U of X:

Hp =
n∑
i=1

∂ξip∂yi − ∂yip∂ξi .

where (y, ξ) are the induced local coordinates on T ∗U .

Let P ∈ Diffk,lb . In particular P ∈ Ψk,l
b and we take xlp ∈ C∞(bT ∗X,C) where p is a

representative of its principal symbol and we assume that p has real values. Then, we can
check that the Hamiltonian vector field Hxlp rescaled by the factor µ−k+1 extends to a vector
field on bT

∗
X tangent to the boundary (where µ is a boundary defining function of fiber

infinity). In particular, it defines a flow on fiber infinity which we call the Hamiltonian flow.
It does not depend on the choice of the representative p.

In the case P ∈ Diffk,lsc , the rescaled Hamiltonian vector field extends to a smooth vector
field on scT

∗
X tangent to the boundary and it defines a flow on fiber infinity but also on the

face {x = 0}.
Finally, we define the semiclassical Hamiltonian flow for operator Ph ∈ Diffk,lb,h or Ph ∈

Diffk,lsc,h. We call ph the semiclassical principal symbol restricted to the face h = 0 (by a
slight abuse we will call this restriction the semiclassical principal symbol in the rest of this
paper). Then we have xlph ∈ C∞(b/scT

∗
X,C). We assume that ph is real valued. Then, the

Hamiltonian vector field Hph (after rescaling) extends to a vector field on b/scT
∗
X tangent to

the boundaries. We call the flow of this vector field the semiclassical flow of the operator Ph.
The following proposition is a standard propagation of singularities estimate. For a proof

in the scattering case (which can be adapted to treat the b case as well), see [104, Section 5.4].

Proposition 10.3.14. Let B0, B1, G ∈ Ψ0,0
b,c . Let P ∈ Diffm,kb with real principal symbol.

Assume that for every x ∈ WFb(B1), there exists t > 0 (resp. t < 0) such that e−tHpx ∈
Ell(B0) and (e−sHpx)s∈[0,t] (resp. (e−sHpx)s∈[t,0]) remains in the elliptic set of G. For every
N > 0, there exists a constant C > 0 such that we have the following estimate (which holds
for every u such that the right hand side is finite):

‖B1u‖H r̃,l
b
≤ C

(
‖GPu‖

H
r̃−m+1,l−k
b

+ ‖B0u‖H r̃,l
b

+ ‖u‖
H
r̃−N,l
b

)
.

Remark 10.3.15. By the assumption on the support of the Schwartz kernels of B0, B1 and G,
we see that the behavior at the end {r = r+ − ε} is irrelevant and we have the same estimate
with Ḣ instead of H.

We also have a semiclassical version of this estimate:
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Proposition 10.3.16. Let B0, B1, G ∈ Ψ0,0
b,h,c. Let P ∈ Diffm,kb,h with real principal symbol.

Assume that for every x ∈ WFb,h(B1), there exists t > 0 such that e−tHphx ∈ Ell(B0) and
(e−sHphx)s∈[0,t] remains in the elliptic set of G. For every N > 0, there exists a constant
C > 0 such that we have the following estimate:

‖B1u‖H r̃,l
b,h
≤ C

(
h−1 ‖GPu‖

H
r̃−m+1,l−k
b,h

+ ‖B0u‖H r̃,l
b,h

+ hN ‖u‖
H
r̃−N,l
b,h

)
.

Remark 10.3.17. See also [104, Section 5.4] for a version in the scattering setting. Moreover,
we stress the fact that there is also a second microlocal version of propagation of singularities
estimates and elliptic estimates (including in the semiclassical regime) for an algebra Ψr̃,m,l

b,sc

of operators refining the b-algebra. We refer to [105] for a detailed presentation of this algebra
and its properties. We will make very little use of this second microlocal algebra here but we
build on results of [105, 106] in which it plays a central role.
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Chapter 11

Cauchy problem

To state the Cauchy problem, we consider a time coordinates t0 = t∗ + h(r) ≤ whose level
sets are transverse to the future event horizon (with dt0 remaining timelike up to r+ − 2ε)
and which is equal to the usual Boyer-Lindquist coordinate when r is large. For convenience,
we also require that t0 ≥ t (see (C.1) for a possible concrete definition of t0).

We consider the Cauchy problem with initial data on Σ0 := t−1
0 ({0}). Note that the level

sets of t0 are naturally identified with X.

11.1 Cauchy Problem for smooth compactly supported initial
data

For r̃ ∈ R, H r̃
(X,Bs) denotes the set of restrictions to X of distributions in H r̃(Rx × S2,Bs)

(where the chosen volume form used to define the latter does not matter). These are natu-
ral spaces for the Cauchy problem with compactly supported initial data since the classical
hyperbolic theory leads us to expect that x−1u is the restriction of of a solution on a slightly
larger manifold (see the proof of proposition 11.1.1). The difference with respect to spaces
H
r̃,l
b (X) is the behavior at the boundary {x = 0}.

Proposition 11.1.1. Let r̃ ≥ 0. Let u0 ∈ H
r̃+1

(Σ0,Bs), u1 ∈ H
r̃
(Σ0,Bs) be compactly

supported. The Cauchy problem: 
Tsu = 0

u|Σ0
= u0

∇µt0∂µu|Σ0
= u1

has a unique solution (in the sense of distributions) u in H r̃+1
loc (Mε,Bs). Moreover, for all

k ≤ r̃ (where k ∈ N) we have

x−1u ∈ C0([0,+∞)t, H
r̃+ 1

2 (X,Bs)) ∩ Ck([0,+∞)t, H
r̃−k+ 1

2 (X,Bs))

with the exponential bound (Cr̃ > 0 is independent of T ):

sup
t∈[0,T ]

∥∥x−1u(t)
∥∥
H
r̃+ 1

2 (X,Bs)
≤ Cr̃eCr̃T

(
‖u0‖H r̃+1

(Σ0,Bs)
+ ‖u1‖H r̃

(Σ0,Bs)

)
.

In the statement of the Cauchy problem, ∇t0 denotes the gradient of t0 with respect to the
metric g̃ (but since the support of u1 is compact we could have chosen the gradient with respect
to the Kerr metric g).
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Proof. Recall that we defined g̃ := ρ−2g and G̃ the associated metric on the cotangent bundle.
Since the principal symbol of Ts is G̃ (see for example the expression in (10.1)), the metric
to consider for hyperbolic theory is g̃ (which induces the same causal structure as g). The
existence and uniqueness of u in H r̃+1

loc (Mε,Bs) follows from the classical hyperbolic theory on
the globally hyperbolic Lorentzian manifoldMε (see [54, Chapter XXIII] and [92, Section 12]
for an introduction to this theory). For A ⊂ Mε, we denote by J+(A) the causal future of
A (for more detail about this notion see [92, Section 10.2.4]). By finite speed of propagation,
the support of u is contained in J+(K) where K is a compact subset of Σ0 whose interior
contains the union of the supports of u0 and u1. As a consequence, we can find a strictly
spacelike hypersurface Σ′0 which is transverse to I +, which containsK and such that J+(K)∩
Σ′0 = K. The solution u is then solution to the Cauchy problem with initial data on Σ̃0.
Note that x−1Tsx is smooth up to x = 0, and we check that we can extend it analytically
on a slightly larger manifold M̃ε := Rt × [−η, 1

r+−ε−η )x × S2 for a small η > 0. For η
sufficiently small, g̃ extends analytically as a Lorentzian metric on M̃ε and Σ′0 extends as a
spacelike hypersurface Σ̃′0 such that Σ′0 is relatively compact in Σ̃′0. We denote byM[0,T ]

ε :=(
Mε ∪

{
x = 1

r+−ε

})
∩t−1([0, T ]). The Cauchy problem for the operator x−1Tx on the domain

of dependence of Σ̃′0 has a unique solution which extends x−1u and, by classical hyperbolic
theory, the solution x−1u belongs to H r̃+1

(M[0,T ]
ε ). Moreover, we can find un ∈ xC∞(M[0,T ]

ε )

such that lim
n→+∞

x−1un = x−1u in H
r̃+1

(M[0,T ]
ε ) and such that the initial data (un0 , u

n
1 ) of

un satisfies lim
n→+∞

(un0 , u
n
1 ) = (u0, u1) in H

r̃+1 × H
r̃. Therefore, we can assume that u is

smooth when performing energy estimates on M[0,T ]
ε . The standard energy estimate for

hyperbolic partial differential equations gives (for some constant C > 0 independent of T
because coefficients of Ts do not depend on t):∥∥x−1u

∥∥
H
r̃+1
(
M[0,T ]

ε

) ≤ CeCT (‖u0‖H r̃+1(Σ0) + ‖u1‖H r̃(Σ0)

)
We use the trace theorem (see for example Theorem B.2.7 in [54]) to get x−1u ∈
C0([0,+∞)t, H

r̃+ 1
2 (X,Bs)) and:

sup
t∈[0,T ]

∥∥x−1u(t)
∥∥
H
r̃+ 1

2 (X,Bs)
≤ Cr̃eCr̃T

(
‖u0‖H r̃+1

(Σ0,Bs)
+ ‖u1‖H r̃

(Σ0,Bs)

)
Eventually, still by the trace theorem, we obtain x−1u ∈ Ck([0,+∞)t, H

r̃−k+ 1
2 (X,Bs)).

The following proposition translates the Cauchy problem into a forcing problem and
records regularity and decay properties of the forcing term.

Proposition 11.1.2. Let k ∈ N and let r̃ > 1
2 + k. Let u be as in Proposition 11.1.1, then

there exists v ∈ xC1+k(Rt, H
r̃− 1

2
−k

(X,Bs)) and t0 < t1 such that:

• v(t) = 0 if t < t0

• v(t) = u(t) if t1 < t

• Tsv = f with f ∈ Ck(Rt, H
r̃− 3

2
−k,∞

b ), supp(f) ⊂ [t0, t1].

Proof. By finite speed of propagation, there exists a compact subset K ⊂ (r+ − ε,+∞)× S2

and a time interval [t0, t1] such that supp(u) ∩ t−1([t0, t1]) ⊂ [t0, t1] × K. We define χ ∈
C∞(R, [0, 1]) equal to 0 on (−∞, t0] and equal to 1 on [t1,+∞) and v = χu. The fact that

v ∈ C1+k(Rt, H
r̃− 1

2
−k

(X,Bs)) follows from the same property on u. Since Tsu = 0, we get
Tsv = [Ts, χ]u which has time support in [t0, t1] and spatial support in K.
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Remark 11.1.3. The function χ introduced in the proof of Proposition 11.1.2 is not the only
choice. In particular, it is not necessary to choose a function of t. The relevant properties for
χ ∈ C∞(Mε, [0, 1]) to get v := χu as in Proposition 11.1.2 are:

• χ = 1 on {t ≥ t1} for some t1 ∈ R.

• χ = 0 on {t ≤ t0} ∩ supp(u) for some t0 < t1.

• supp( dχ) ∩ supp(u) is compact inMε.

In particular, it is possible to choose a function of the form χ(t0) with χ ∈ C∞(R, [0, 1]) equal
to 1 on [η,+∞) and equal to 0 on (−∞, 0] for η > 0 small enough. This freedom will be useful
to highlight the dependence of the forcing term on the initial data (see Remark 15.0.6).

We are now able to take the Fourier-Laplace transform.

Corollary 11.1.4. We use the notation of proposition 11.1.1 and assume r̃ > k+ 1
2 for some

k ∈ N. We also fix l ∈ R (large decay rate). For all σ ∈ C such that =(σ) > Cr̃, we have the
following equality between the Fourier-Laplace transforms (with respect to t):

T̂s(σ)v̂(σ) = f̂(σ)

Moreover, we have that f̂ is holomorphic on C with values in H
r̃− 1

2
−k,l

b and there exists D > 0
such that for all j ∈ N there exists Dj > 0 such that:∥∥∥∂jσx f̂(σx + iσy)

∥∥∥
H
r̃−k− 1

2 ,l

b

≤ Dj 〈σx〉−k eD|σy | (11.1)

Proof. The fact that û(σ) is well defined for =(σ) > Cr̃ follows from the exponential estimate
in proposition 11.1.1 and the equality follows from the definition of T̂ . The estimate on f̂
follows from the Paley-Wiener-Schwartz theorem (see for example [53], Theorem 7.3.1) with
the observation that ∂kt (tjf) is a compactly supported distribution of order zero.

11.2 More general initial data

The goal of this section is to translate the Cauchy problem on Σ0 with data u0 ∈ H
r̃+1,1+α
b

and u1 ∈ H
r̃,1+α
b into a forcing problem and to specify the properties of the Fourier transform

of the forcing term.
Before stating the propositions, we need some geometric preparation. Following [51], we

add another boundary on Mε as follows: On U := {t < 0}, we can define ρ0 := −t−1 and
ρI := −xt and we add the boundary: I0 := {ρ0 = 0} to U . Note that the set {ρI = 0, ρ0 > 0}
corresponds to I +∩U and {ρ0 = 0} has been glued at the end t = −∞, therefore the manifold
has a corner at ρ0 = ρI = 0. The closure of the hypersurface Σ0 on this new manifold
intersects I0 transversally. Moreover, we consider Mε as included in M2ε. It enables us to
define extendible Sobolev estimates at r = r+ − ε. We call Mε := Mε ∪ I0 ∪ {r = r+ − ε}.
Note that in this section, we do not need the boundary I+ and its boundary defining function
ρ+ which are introduced in [51]. Indeed, it is enough for our purpose to prove a crude
exponential bound with respect to t which do not require a precise analysis near I+ (a more
precise estimate will then follow from the analysis of the resolvent).

Definition 11.2.1. For r̃ ∈ N, we define the b-Sobolev space E r̃ of distributions which are
(locally in Mε ∩ {t0 ≥ 0}): extendible (as a distribution of Sobolev order r̃) at r = r+ − ε
and at t0 = 0 and of b regularity r̃ near I0 ∪ I +. Concretely, u ∈ E r̃ means that for any
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Σ0

I0

I +

H

Figure 11.1: Representation of Mε ∩ {t0 ≥ 0}

family of smooth1 vector fields (Li)
N
i=1 on Mε ∩ {t0 ≥ 0} tangent to I + ∪ I0 with N ≤ r̃,

L1...LNu ∈ L2
b,loc(Mε,Bs).

We use the time coordinate t̃ on Mε ∩ {t0 ≥ 0}, which satisfies c ≤ G̃( d̃t, d̃t) ≤ C for
positive constants c and C and is smooth up to I +.

The main proposition of this Section is obtained by adapting energy estimates from [51,
Section 4.1]:

Proposition 11.2.2. Let r̃ ∈ N. Let aI < 0 and a0 > aI + 1. Let u0 ∈ H
r̃+1,a0

b and
u1 ∈ H

r̃,a0

b . We denote by ∇t0 the gradient of t0 with respect to the metric g̃. The unique
solution u to the Cauchy problem: 

Tsu = 0

u|Σ0
= u0

ρ0∇µt0∂µu|Σ0
= u1

belongs to ρa0
0 ρ

aI+1
I E r̃. Moreover if k ≤ r̃ for some k ∈ N, it also belongs to

Ck([−1
2 ,+∞)t, H

r̃−k,aI+1
b ) ∩ C0([−1

2 ,+∞)t, H
r̃,aI+1
b ) and there exists Cr̃ > 0 such that for

all T > 0:

sup
t∈[− 1

2
,T ]

‖u(t)‖
H
r̃,aI+1

b

≤ Cr̃eCr̃T
(
‖u0‖H r̃+1,a0

b

+ ‖u1‖H r̃,a0

)
Remark 11.2.3. In the proof, we obtain a more precise result (namely u ∈ ρa0

0 ρ
aI+1
I H1,r̃

I ,b

which is better in terms of regularity, see the proof for the definition of H1,r̃
I ,b). However, since

we do not aim to optimize the regularity assumptions here, we allow this loss in order to stay
with simpler spaces E r̃.

We then use an idea mentioned in [51, Section 5.1] to get:

Proposition 11.2.4. With the notations of Proposition 11.2.2, if we assume in addition that
a0 = 1 + α with α ∈ (0, 1) and r̃ > k + 2 for some k ∈ N \ {0}, then there exists constants
t0 < t1 and v ∈ Ck

(
Rt, H

r̃−2−k,1−
b

)
such that:

• v(t) = 0 if t < t0

• v(t) = u(t) if t > t1

• For all t ∈ R, v(t) = xv0(t) +H
r̃−2−k,1+α−
b where v0 ∈ Ck(Rt, H

r̃−2−k(Bs))
1up to the boundary of Mε

106



• Tsv = f with f ∈ Ck−1

(
Rt, H

r̃−3−k,− 3
2

+α−
(b)

)
, t(supp(f)) ⊂ [t0, t1]

Proposition 11.2.2 and Proposition 11.2.4 allow us to reduce the study of the asymptotic
behavior of the solution to the Cauchy problem to the study of the solution v of the forcing
problem Tsv = f provided by Proposition 11.2.4. Moreover, the properties of u, v and f
stated in the propositions allow us to consider the Fourier-Laplace transform with respect to
t:

Corollary 11.2.5. We use the notation of Propositions 11.2.2 and 11.2.4 and assume r̃ >
k + 3 for some k ∈ N. For all σ ∈ C such that =(σ) > Cr̃, we have the following equality
between the Fourier-Laplace transforms:

T̂s(σ)v̂(σ) = f̂(σ)

Moreover, we have that f̂ is holomorphic on C with values in H
r̃−3−k,− 3

2
+α−

(b) and there exists
D > 0 such that for all j ∈ N there exists Dj > 0 such that:∥∥∥∂jσx f̂(σx + iσy)

∥∥∥
H
r̃−3−k,− 3

2 +α−
(b)

≤ Dj 〈σx〉−(k−1) eD|σy | (11.2)

Since the detailed proofs of Proposition 11.2.2 and Proposition 11.2.4 are quite long and
not essential to understand the rest of the paper, they have been added in Appendix C.

107





Chapter 12

Analysis of the classical and
semiclassical Hamiltonian flow of T̂s(σ)

Before stating the Fredholm estimates, we analyse the structure of the classical and semiclas-
sical Hamiltonian flows of T̂s(σ). In particular, we identify the elliptic regions, the transport
regions (i.e. the subset of the characteristic set where the Hamilton vector field does not van-
ish) and the radial points. In the semiclassical regime, we will see that some trajectories under
the Hamiltonian flow remains in a compact region of X, a phenomenon known as trapping.
Our analysis of the flow relies on [103, 27]. Note that a similar analysis for the more general
Kerr-Newman spacetimes is presented in [45, Section 5].

12.1 Analysis of the classical flow

Proposition 12.1.1. Let η > 0. The operator T̂s(σ) is (classically) elliptic on every region

of the form {r > 2M + η} ∩
◦
K where K is a compact subset of X.

Proof. If we denote by T̂s(σ)′ the operator obtained by Fourier transform with respect to t∗
instead of t, we check that T̂s(σ) = e−iσL(r)T̂ ′s(σ)eiσL(r) where L is a smooth function on X.
In particular, the classical principal symbols of T̂s(σ) and T̂ ′s(σ) are the same. In coordinates
(r, θ, φ∗), writing cotangent vectors as ξ dr + ζ dφ∗ + η dθ, we have:

s(T̂s(σ)) =∆rξ
2 + 2aξζ +

ζ2

sin2 θ
+ η2 (12.1)

=
(
a2 cos2 θ + r(r − 2M)

)
ξ2 +

(
a sin θξ +

ζ

sin(θ)

)2

+ η2

where s is the classical principal symbol map. Strictly speaking, this computation is only
valid outside the rotation axis, however with a change of coordinates we can show that the
operator is elliptic also in a neighborhood of the rotation axis (see (12.4) below).

We now investigate the characteristic set and the Hamiltonian flow on it (in the region
{r ≤ 2M}). The Hamiltonian vector field is

H = (2∆rξ + 2aζ) ∂r +

(
2aξ +

2ζ

sin2 θ

)
∂φ∗ + 2η∂θ − 2(r −M)ξ2∂ξ +

2ζ2 cos θ

sin3 θ
∂η (12.2)

We now work in the fiber radial compactification T ∗X of T ∗X and we set ρ̃ := 1√
ξ2+ ζ2

sin2 θ
+η2

(note that ρ̃ extends smoothly to the rotation axis). We set ξ̃ := ρ̃ξ, ζ̃ := ρ̃ ζ
sin θ , η̃ := ρ̃η. We
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use functions (ρ̃, (ξ̃, ζ̃, η̃)) ∈ [0,+∞)× S2 to parametrize the fibers of T ∗Mε \ {0} away from
the rotation axis. The rescaled Hamiltonian vector field (in terms of (r, θ, φ∗, ρ̃, (ξ̃, η̃, ζ̃)) is

H̃ = ρ̃H =
(

2∆r ξ̃ + 2aζ̃ sin θ
)
∂r +

(
2aξ̃ +

2ζ̃

sin θ

)
∂φ∗ + 2η̃∂θ + 2(r −M)ξ̃3ρ̃∂ρ̃

− 2(r −M)ξ̃2Z1 + 2cotanθζ̃2Z2 − 2η̃ζ̃cotanθZ3 (12.3)

where Z1 := (1− ξ̃2)∂ξ̃ − η̃ξ̃∂η̃ − ζ̃ ξ̃∂ζ̃ , Z2 := (1− η̃2)∂η̃ − η̃ζ̃∂ζ̃ − η̃ξ̃∂ξ̃ and Z3 = (1− ζ̃2)∂ζ̃ −
ζ̃ ξ̃∂ξ̃ − ζ̃ η̃∂η̃ are smooth vector fields on S2. Note that H̃ is smooth also on the rotation axis
(see the computation in stereographic coordinates (12.5) below).

Remark 12.1.2. Pay attention to the fact that ∂θ in (12.3) is different from ∂θ in (12.2)
since ρ̃ and ζ̃ depend on θ.

Following [103] (section 6.3), we define the sets Λ+ := {∆r = 0, η = 0, ζ = 0, ξ > 0}, L+ =
Λ+ ∩ {ρ̃ = 0} and Λ− := {∆r = 0, η = 0, ζ = 0, ξ < 0}, L− = Λ− ∩ {ρ̃ = 0}. The vector field
H̃ extends smoothly to fiber infinity (ρ̃ = 0).

Definition 12.1.3. Points of the characteristic set where the rescaled Hamitonian vector field
vanishes are called radial points.

Proposition 12.1.4. Radial points are contained in L+ ∪ L−. Moreover, L+ ∪ L− is closed
for the flow of the rescaled Hamiltonian vector field.

Proof. To cover the rotation axis, we use stereographic coordinates (of north pole) on the
sphere so that: (xN , yN ) =

(
cotan θ2 cosφ∗, cotan

θ
2 sinφ∗

)
. We define similarly stereographic

coordinates of south pole (xS , yS). We know that the principal symbol is symmetric with
respect to the reflection by the equatorial plan. As a consequence, it is enough to do the
analysis in the stereographic coordinates of north pole. We write linear forms as ξ dr +
γ dxN + µ dyN . We obtain:

s(T̂s(σ)) = ∆rξ
2 + 2aξ(−yNγ + xNµ) +

(1 + x2
N + y2

N )2

4
(γ2 + µ2) (12.4)

We can compute the fiber infinity defining function ρ̃ (and see that it extends smoothly across
the rotation axis):

ρ̃ =
1√

ξ2 +
(1+x2

N+y2
N )2

4 (γ2 + µ2)

This expression prompts us to use the parametrization ρ̃, (ξ̃, γ̃, µ̃) ∈ S2 where ξ̃ = ρ̃ξ, γ̃ =

ρ̃
(1+x2

N+y2
N )γ

2 and µ̃ = ρ̃
(1+x2

N+y2
N )µ

2 . Note that we have the relations

ζ̃ = − yN√
x2
N + y2

N

γ̃ +
xN√

x2
N + y2

N

µ̃

η̃ = − xN√
x2
N + y2

N

γ̃ − yN√
x2
N + y2

N

µ̃

We can then rewrite the rescaled Hamiltonian vector field (and see that it extends smoothly
across the rotation axis):

H̃ =

(
2∆r ξ̃ + 4a

xN µ̃− yN γ̃
1 + x2

N + y2
N

)
∂r − 2aξ̃yN∂xN + 2aξ̃xN∂yN + (1 + x2

N + y2
N ) (γ̃∂xN + µ̃∂yN )

+ 2(r −M)ξ̃3ρ̃∂ρ̃ − 2(r −M)ξ̃2Z1 + 2xNZ3 + 2yNZ4 + 2aξ̃Z5 (12.5)
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where Z1 is the same as previously and can be expressed in terms of ξ̃, γ̃, µ̃: Z1 = (1− ξ̃2)∂ξ̃−
ξ̃γ̃∂γ̃ − ξ̃µ̃∂µ̃. The vector fields Z4 and Z5 are smooth vector fields1 on S2 and are given by:

Z3 = −µ̃2∂γ̃ + γ̃µ̃∂µ̃

Z4 = µ̃γ̃∂γ̃ − γ̃2∂µ̃

Z5 = −µ̃∂γ̃ + γ̃∂µ̃

With the expression of H̃, we see that the radial points (on the domain of the coordinates
(xN , yN , r)) are exactly solutions of the following system:

2∆r ξ̃ + 4a
xN µ̃− yN γ̃
1 + x2

N + y2
N

= 0 (12.6)

−2aξ̃yN + (1 + x2
N + y2

N )γ̃ = 0 (12.7)
2aξ̃xN + (1 + x2

N + y2
N )µ̃ = 0 (12.8)

2ξ̃2(M − r)(1− ξ̃2) = 0 (12.9)
2(r −M)ξ̃3γ̃ + 2µ̃γ̃yN − 2aµ̃ξ̃ − 2µ̃2xN = 0 (12.10)
2(r −M)µ̃ξ̃3 + 2aγ̃ξ̃ + 2γ̃µ̃xN − 2γ̃2yN = 0 (12.11)

Assume that we have a solution (r, xN , yN , ξ̃, γ̃, µ̃) of this system. Using (12.9), (and the fact
thatM −r < 0 onMε), we deduce ξ̃ ∈ {−1, 0, 1}. We exclude the case ξ̃ = 0 since (12.7) and
(12.8) give then γ̃ = µ̃ = 0 which is impossible since ξ̃2 + γ̃2 + µ̃2 = 1. We deduce that ξ̃ ∈
{−1, 1} and γ̃ = µ̃ = 0. Using (12.6), we deduce that ∆r = 0 and therefore r = r+. Finally,
equations (12.8) and (12.9) give xN = yN = 0. We deduce that the set of radial points is
exactly

{
xN = yN = ∆r = µ̃ = γ̃ = 0, ξ̃ = ±1

}
∪
{
xS = yS = ∆r = µ̃ = γ̃ = 0, ξ̃ = ±1

}
(the

second set is obtained by symmetry). Moreover, note that H̃ is tangent to L+ ∪L− (the only
non vanishing component is parallel to ∂φ) and therefore, L+ ∪L− is closed under the flow of
H̃.

Definition 12.1.5. Let A be included in the characterstic set, closed under the flow of the
rescaled Hamiltonian vector field and a submanifold of fiber infinity or, in the scattering set-
ting, of the boundary face {x = 0}. Here we assume that A does not intersect the other
boundary face, but we could extend the definition to the case where A is transversal to it. We
say that A is a sink (resp. a source) for the Hamiltonian flow if there exists ρ0 a non negative
quadratic defining function of A within the characteristic set2 such that:

• H̃ρ0 = −β1ρ0 − F2 + F3 (resp. H̃ρ0 = β1ρ0 + F2 + F3) with β1, F2, F3 are functions
defined on a neighborhood of A and β1 is positive on A, F3 vanishes cubically at A and
F2 ≥ 0.

• There exists µ, a defining function of the boundary face containing A (fiber infinity or
{x = 0}), such that H̃µ = −β0µ (resp. H̃µ = β0µ) where β0 is a function defined in a
neighborhood of A with β0 > 0 on A.

We check that Hρ̃ = 2(r −M)ξ̃3. So on Λ±, Hρ̃ = ±2(r −M) (with the notation of
[103], it means that β0 = 2(r+ −M)). Moreover, the non negative homogeneous of degree
zero function ρ0 := η̃2 + ζ̃2 is a quadratic defining function of Λ± inside the characteristic set
of T̂s(σ) and we have ρ̃Hρ0 = 4(r −M)ξ̃3

(
η̃2 + ζ̃2

)
= 4(r −M)ξ̃3ρ0. This shows that L+ is

a source for T̂s(σ) and L− is a sink in the sense of [103]. Note that there is a different sign
1Here we represent vector fields on S2 ⊂ R3

(ξ̃,µ̃,γ̃)
in the canonical basis (∂ξ̃, ∂µ̃, ∂γ̃)

2The restriction of ρ0 to the characteristic set vanishes quadratically at A and is non degenerate.
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convention in [103] (the principal symbols given page 483 has a minus sign with respect to
our choice).

Now we study more precisely the behavior of the bicharacteristic curves (integral
curves of H̃|{ρ̃=0} included in the characteristic set of s(T̂s(σ))). Let λ 7→ f(λ) =

(r(λ), θ(λ), φ(λ), ξ̃(λ), ζ̃(λ), η̃(λ)) be a bicharacteristic curve defined on the maximally ex-
tended open interval I. By definition, we have for all λ ∈ I

d

dλ
ξ̃ = 2ξ̃2(M − r)(1− ξ̃2) ≤ 0 (12.12)

∆r ξ̃
2 + 2aξ̃ζ̃ sin θ + ζ̃2 + η̃2 = 0 (12.13)

Note that if ∆r > a2, we have

∆r ξ̃
2 + 2aξ̃ζ̃ sin θ + ζ̃2 + η̃2 > a2ξ̃2 + 2aξ̃ζ̃ sin θ + ζ̃2

≥ a2ξ̃2 − 2|a||ξ̃||ζ̃|+ ζ̃2

≥ (|a||ξ̃| − |ζ̃|)2

≥ 0

This computation ensures that the bicharacteristic curve remains in {r ≤ 2M}.

Lemma 12.1.6. We have ξ̃H̃r < 0 on the characteristic set when ∆r < 0.

Proof. Since, H̃r = 2∆r ξ̃ + 2aζ̃ sin θ, on the characteristic set we have:

0 =∆r ξ̃
2 + 2aξ̃ζ̃ sin θ + ζ̃2 + η̃2

=ξ̃H̃r −∆r ξ̃
2 + ζ̃2 + η̃2

ξ̃H̃r =∆r ξ̃
2 − (ζ̃2 + η̃2) < 0

We deduce from (12.12) that ξ̃ is decreasing. Moreover, ξ̃ is bounded (since |ξ̃| ≤ 1). Then

• Case 1 > ξ̃(0) > 0: In this case, sup I = λ+ < +∞. Otherwise, lim
λ→+∞

ξ̃ = 0 (ξ has a

limit because it is decreasing at least linearly when ξ is in a fixed compact subset of (0, 1)
) but this contradicts the fact that for all λ ∈ I, ∆r ξ̃

2 + 2aξ̃ζ̃ sin θ + ζ̃2 + η̃2 = 0. As a
consequence, f leaves every compact set as λ→ λ+. Using that

{
r ≥ r+ − ε

2 , ρ̃ = 0
}
∩{

ρ̃2p = 0
}

is compact, this means that there exists λ0 ∈ I such that for all λ > λ0,
r(λ) < r+ − ε

2 . By lemma 12.1.6, r cannot reach r+ − ε in the past therefore inf I −∞
and then lim

λ→−∞
ξ̃ = 1 and lim

λ→−∞
ζ̃ = lim

λ→−∞
η̃ = 0. Using the fact that ∆r ξ̃

2+2aξ̃ζ̃ sin θ+

ζ̃2 + η̃2 = 0, we deduce that lim
λ→−∞

r(λ) = r+. As a consequence, f tends to L+ when

λ→ −∞.

• Case −1 < ξ̃(0) < 0: We show as in the first case that I is lower bounded by some
λ− ∈ R and there exists λ0 ∈ I such that for all λ < λ0, r(λ) < r+ − ε

2 . Moreover
sup(I) = +∞ and f tends to L− when λ→ +∞.

• Case |ξ̃(0)| = 1: In this case η̃ = ζ̃ = 0. Therefore, since we are on the characteristic
set, ∆r = 0. We conclude that the bicharacteristic is included in L+ or in L−.

• Case ξ̃(0) = 0: This case is impossible since it would mean ζ̃2 + η̃2 = 1 which contradicts
∆r ξ̃

2 + 2aξ̃ζ̃ sin θ + ζ̃2 + η̃2 = 0.
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Finally, possible behavior of bicharacteristic curves are summarized by the following propo-
sition:

Proposition 12.1.7. Let λ 7→ f(λ) = (r(λ), θ(λ), φ(λ), ξ̃(λ), ζ̃(λ), η̃(λ)) be a bicharacteris-
tic curve defined on the maximally extended open interval I containing 0. Then one of the
following cases holds:

1. I = (−∞, λ+) for some λ+ ∈ (0,+∞) and there exists a small non empty interval
J := (λ+ − η, λ+) such that (r ◦ f)|J is decreasing with values in (r+ − ε, r+ − ε

2) and f
tends to L+ when λ→ −∞. In this case ξ̃ is negative along the trajectory

2. I = (λ−,+∞) for some λ− ∈ (−∞, 0) and there exists a small non empty interval
J := (λ−, λ− + η) such that (r ◦ f)|J is increasing with values in (r+ − ε, r+ − ε

2) and f
tends to L− when λ→ +∞.

3. The curve is included in L+ (resp. in L−). In this case ξ̃ is positive (resp. negative)
along the trajectory.

Proposition 12.1.8. There exists an open neighborhood U+ of L+ such that if f is a maximal
bicharacteristic curve defined on the open interval I containing 0 and if f(0) ∈ U+ ∩ Σ (Σ is
the characteristic set of p), then (−∞, 0) ⊂ I and f tends to L+ as λ→ −∞.

Proof. We recall that by definition of ε, ∆r+− ε2 = a2 +
(
r+ − ε

2

)2 − 2M
(
r+ − ε

2

)
< 0. We

define 0 < α < 1 such that ∆r+− ε2 (1 − α2) + 2aα + α2 < 0. As a consequence, for all
1 ≥ ξ̃ ≥

√
1− α2 and all ζ̃, η̃ such that ζ̃2 + η̃2 ≤ α2 we have

∆r+− ε2 ξ̃
2 + 2aξ̃ζ̃ sin θ + ζ̃2 + η̃2 < 0 (12.14)

We define U+ :=
{
ρ0 < α2, ξ̃ >

√
1− α2, r > r+ − ε

2

}
. Let f and I be defined as in the

statement of the proposition. Using (12.12), we have that ξ̃ is decreasing on I. This shows
that for every λ ∈ I ∩ (−∞, 0], we have ξ̃ ≥

√
1− α2 and therefore ζ̃2 + η̃2 ≤ α2. Then

(12.14) ensures that for all λ ∈ I ∩ (−∞, 0], r(λ) > r+ − ε
2 . As a consequence, f remains in

the compact set
{
r ≥ r+ − ε

2

}
∩ Σ on I ∩ (−∞, 0] and therefore, (−∞, 0] ⊂ I. Then using

proposition 12.1.7, we get the claimed convergence.

Remark 12.1.9. If we take the union of the images of U+ by the backward bicharacteristic
flow, we get an open neighborhood of L+ which is stable under the backward bicharacteristic
flow with the same property as U+.

We can prove similarly:

Proposition 12.1.10. There exists an open neighborhood U− of L− such that if f is a max-
imal bicharacteristic curve defined on the open interval I containing 0 and if f(0) ∈ U− ∩ Σ
(Σ is the characteristic set of p), then (0,+∞) ⊂ I and f tends to L− as λ→ +∞.

12.2 Analysis of the semiclassical flow

We will use the semiclassical regime to study the behavior of the operator T̂s(σ) when
|σ| → +∞ and 0 ≤ =(σ) ≤ C for some fixed constant C > 0. Therefore, we introduce
the semiclassical parameter h = |σ|−1 and the rescaled operator T̂s,h(z) := h2T̂s(h

−1z) for
z = ±1+O(h). We denote by z0 the element of {−1, 1} such that z−z0 = O(h). The semiclas-
sical principal symbol is ph(ξ) = −G̃(ξ − z0 dt) (it does not depend on the imaginary part of
z). From this formula, we see that the semiclassical flow of h2T̂s(h

−1z) is closely related with
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the geodesic flow ofMε. Since the coordinate t is not very convenient for computations, we
study the effect of a change of time function (in the Fourier transform) of the form t2 = t+f(r)
for a smooth function f defined on an open interval I ⊂ (r+− ε,+∞). We define UI = I×S2

and p2,h(ξ) = −G̃(ξ − z0 dt2) on T ∗UI . In particular we have p2,h(ξ) = ph(ξ − z0f
′(r) dr).

Lemma 12.2.1. The map Ψ : ξ 7→ ξ − z0f
′(r) dr is a symplectomorphism of T ∗UI

Proof. The map Ψ is smooth with smooth inverse ω 7→ ω + z0f
′(r) dr. Let y ∈ UI and

x := (x0, x1, x2) be smooth local coordinates around y with x0 = r. The symplectic form
in local coordinates is therefore: ω =

∑2
i=0 dxi ∧ dξi (where ξx := (ξ0, ξ1, ξ2) are the

conjugated local coordinates) and Ψ(x, ξ0, ξ1, ξ2) = (x, ξ0 − z0f
′(r), ξ1, ξ2). Let ξ ∈ T ∗yUI ,

X =
∑3

i=0Xxi∂xi +
∑3

i=0Xξi∂ξi and Y =
∑3

i=0 Yxi∂xi +
∑3

i=0 Yξi∂ξi . We have:

dξΨ(X) = X −Xx0z0f
′′∂ξ0 ∈ TΨ(ξ)T

∗UI

ω( dξΨX, dξΨY ) = ω(X,Y )− ω(Xx0z0f
′′∂ξ0 , Y )− ω(X,Yx0z0f

′′∂ξ0)

= ω(X,Y ) + Yx0Xx0z0f
′′ − Yx0Xx0z0f

′′

= ω(X,Y )

Remark 12.2.2. Note that f extends to a diffeomorphism of T ∗UI (fiber radial compacti-
fication of T ∗UI) preserving fiber infinity. This is consistent with the fact that the classical
principal symbol is not affected by a change of time function in the Fourier transform.

Lemma 12.2.3. Let Ψ be a symplectomorphism between the symplectic manifolds (N1, ω1)
and (N2, ω2). Then for any f ∈ C∞(N2), we have HΨ∗f = Ψ∗Hf . Therefore, if γ is an
integral curve of Hf , Ψ−1 ◦ γ is an integral curve of HΨ∗f .

Proof. By definition, for x ∈ N1 and X ∈ TxN1, we have

dx(f ◦Ψ)(X) = ω1(HΨ∗f , X)

But we also have:

dxf ◦Ψ(X) = dΨ(x)f( dxΨ(X))

= ω2(Hf (Ψ(x)), dxΨ(X))

= ω2( dxΨ( dxΨ)−1(Hf (Ψ(x))), dxΨ(X))

= ω1(Ψ∗Hf , X)

By the non degeneracy of ω1, we have the equality.

Using the two previous lemmas, we see that we have an identification between the integral
curves of Hph and the integral curves of Hp2,h

in T ∗UI (and the projections on UI of two
identified integral curves coincide). We use this identification implicitly in the remaining part
of this section. In the following, we will make the three following choices in the concrete
computations:

• I = (r+ − ε, 3M) and fI such that t∗ = t + fI(r) (in particular, fI(r) is constant and
the induced symplectomorphism is trivial)

• I = (6M,+∞), we choose the time function ∗t := t − T (r) (in particular, fI(r) is
constant and therefore the induced symplectomorphism is trivial).
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• I = (rmin, rmax) (rmin and rmax are constants which will be introduced in Lemmas
12.2.10 and 12.2.18), we choose fI such that t = t + fI(r)

We also need a general elementary lemma about smooth vector fields.

Lemma 12.2.4. Let X be a smooth vector field on a manifoldM and r be a smooth function
on M. If M has a boundary, we assume that X is tangent to the boundary (in order for
the integral curves to be locally defined near any point of M). Let y ∈ M be a point such
that Xr(y) = 0 and X2r(y) > 0 (resp. X2r(y) < 0). Then there exists a neighborhood V
of y such that for every integral curve γ of X starting at V and maximally defined on an
interval J containing 0, there exists s > 0 in J with −s ∈ J such that r(γ(s)) > r(y) (resp.
r(γ(s)) < r(y)), ṙ(s) > 0 (resp. ṙ(s) < 0) and r(γ(−s)) > r(y) (resp. r(γ(−s)) < r(y)),
ṙ(−s) < 0 (resp. ṙ(−s) > 0).

Proof. We do the proof in the case X2r(y) > 0. There exists a constant η > 0 and an open
neighborhood U of y on which 0 < η < X2r < 2η. We fix K ⊂ U a compact neighborhood of
y. Since the existence time of integral curves in U is lower semi-continuous, there exists δ > 0
such that every integral curve starting in K exists and remains in U on the interval [−δ, δ] .
Then for an integral curve starting at K we have for every −δ ≤ s ≤ δ:

r(s) ≥ r(0) + sṙ(0) + ηs2

r(s)− r(y) ≥ (r(0)− r(y)) + s(ṙ(0) + ηs)

By shrinking K until |ṙ(x)| ≤ ηδ
2 and r(x)−r(y) > −ηδ2

4 for all x ∈ K, we have r(s)−r(y) > 0
at time δ and at time −δ. Moreover, for s ∈ [0, δ], we have

ṙ(0) + sη ≤ ṙ(s) ≤ ṙ(0) + 2sη

while for s ∈ [−δ, 0], we have

ṙ(0) + 2sη ≤ ṙ(s) ≤ ṙ(0) + sη

Therefore, using |ṙ(0)| ≤ ηδ
2 , we get

ṙ(−δ) ≤− 1

2
ηδ < 0

ṙ(δ) ≥1

2
ηδ > 0.

We now compute the principal symbol near the horizon (using t∗ coordinates on the radial
interval I = (r+− ε, 3M)): We use coordinates ξ = ξr dr+ζ dφ∗+η dθ for cotangent vectors.

ph(x, ξ) =∆rξ
2
r +

1

sin2 θ
ζ2 + η2 + 2aζξr − 2(aζ + (a2 + r2)ξr)z0 + a2 sin2 θz2

0

=

(
ζ

sin(θ)
− az0 sin θ

)2

+ η2 + ξr
(
−2(a2 + r2)z0 + 2aζ + ξr∆r

)
=− ρ2G(ξ − z0 dt∗)

Hph =2(−(a2 + r2)z0 + aζ + ξr∆r)∂r − (2(r −M)ξ2
r − 4rz0ξr)∂ξr

+

(
−2az0 +

2ζ

sin2 θ
+ 2aξr

)
∂φ + 2η∂θ − 2 cos θ

(
z2

0a
2 sin θ − ζ2

sin3 θ

)
∂η.
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Lemma 12.2.5. The quantities ζ, ph and K := η2 +
(

ζ
sin(θ) − z0a sin θ

)2
are invariant under

the flow. As a consequence ph −K = ξr(−2(a2 + r2)z0 + 2aζ + ξr∆r) is also invariant.

Proof. It can be shown by a direct computation using the Hamiltonian vector field but it
comes from the invariance of the energy E, the norm, the angular momentum L, and the
Carter constant K along geodesics.

Lemma 12.2.6. If y ∈ S∗UI (at fiber infinity) is an accumulation point of a bicharacteristic
curve γ (maximally defined on some interval J). Then ξ̃(y) = ±1 and η̃(y) = ζ̃(y) = 0.
In particular we also have H̃r(y) = 2ξ̃(y)∆r = ±2∆r (where H̃ := ρ̃Hph is the rescaled
Hamiltonian vector field).

Proof. We denote by sn an increasing sequence in J such that lim
n→+∞

sn = sup(J) and

lim
n→+∞

γ(sn) = y. By the conservation of η2+
(

ζ
sin θ − az0 sin θ

)2
, lim
n→+∞

η̃(sn) = lim
n→+∞

ζ̃(sn) =

0 and therefore lim
n→+∞

ξ̃(sn) = ±1. By continuity of η̃, ζ̃ and ξ̃ we obtain the first part of the
lemma. Then replacing in the explicit expression of the Hamiltonian flow at fiber infinity we
get H̃phr(y) = ξ̃(y)2∆r = ±2∆r

Lemma 12.2.7. If z0 ∈ {−1, 1}, then:
{
−(r2 + a2 cos2 θ)z0 −Mrξr = 0

}
∩ p−1({0}) = ∅.

In particular, the characteristic set has at least two connected components corresponding to
both signs of −(r2 + a2 cos2 θ)z0 −Mrξr (sign + correspond to the future light cone and -
corresponds to the past light cone). Each bicharacteristic curve remains in one of the two
connected components for all time.

Proof. We remark that the vector field T = ∂t∗−Mr
ρ2 ∂r satisfies g(T, T ) = 1. Therefore, if X is

a non zero null vector g(X,T ) 6= 0. Therefore, if X# is the associated linear form, X#(T ) 6= 0.
In particular, we remark that for ξ such that ph,z0(ξ) = 0, we have −ρ2G(ξ − z0 dt∗) = 0
therefore ξ − z0 dt∗ = X# for some non zero null vector X. Therefore

−(r2 + a2 cos2 θ)z0 −Mrξr = ρ2(ξ − z0 dt∗)(T ) = ρ2g(X,T ) 6= 0.

Lemma 12.2.8. If a2 cos2 θ + r2 − 2Mr > 0 (i.e outside the ergoregion), then for all ξ such
that ph,z0(ξ) = 0, z0 and (r2 +a2 cos2 θ)z0 +Mrξr have the same sign. Therefore for z0 = −1,
the component (r2 +a2 cos2 θ)z0 +Mrξr > 0 of the characteristic set lies inside the ergoregion.
For z0 = 1 the component (r2 + a2 cos2 θ)z0 + Mrξr < 0 of the characteristic set lies inside
the ergoregion. On T ∗UI , ξr and (r2 + a2 cos2 θ)z0 +Mrξr have the same sign.

Proof. Outside the ergoregion, T and ∂t are both timelike future oriented. Therefore, for
all null vector X, g(T,X) and g(∂t, X) have the same sign. For ph,z0(ξ) = 0, we have
ξ − z0 dt∗ = X# with X null and as a consequence (ξ − z0 dt∗)(∂t) = −z0 and ρ2(ξ −
z0 dt∗)(T ) = −(r2 + a2 cos2 θ)z0 − Mrξ have the same sign. Similarly, since ∂r is past
oriented on UI , we have ρ2(ξ − z0 dt∗)(T ) and (ξ − z0 dt∗)(∂r) = ξr have opposite signs.
However, since ∂r is null, ξr can vanish (contrary to −(r2 + a2 cos2 θ)z0 −Mrξr).

Therefore for a fixed z0, we can define Σ± := p−1
h {0} ∩{

±((r2 + a2 cos2 θ)z0 +Mrξr) > 0
}
. With this definition Σsgn(−z0) lies in the ergore-

gion.

Remark 12.2.9. Note that ρ̃(r2+a2 cos2 θ)z0+Mrξ̃r has the same sign as (r2+a2 cos2 θ)z0+
Mrξr on T ∗UI . Therefore, we can extend the definition of Σ± to include the component at fiber
infinity given by Σ± ∩ S∗UI =

{
ph = 0 = ρ̃,±ξ̃r > 0

}
. As a consequence, we have L± ⊂ Σ±.
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Lemma 12.2.10. Let z0 = ±1. There exists r+ < rmin < 3M such that: r+ ≤ r ≤ rmin,
ph = 0 and Hphr = 0 ⇒ H2

ph
r < 0.

For r = r+ we even have that Hphr does not vanish and has the sign of(
−(r2 + a2 cos2 θ)z0 −Mrξr

)
.

Proof. We have:

Hphr = 2(−(a2 + r2)z0 + aζ + ξr∆r).

First, we handle the particular case of r = r+ (equivalently ∆r = 0). Using the fact that

ph = 0, we get ξrHphr = −
(

ζ
sin θ − az0 sin θ

)2
−η2. If the right-hand side is equal to 0, we get

ζ = az0 sin2 θ and therefore Hphr = 2
(
−(a2 + r2)z0 + a2z0 sin2 θ

)
= −2z0ρ

2 6= 0, therefore we
must have ξr = 0 and Hphr has the same sign as −(r2 +a2 cos2 θ)z0−Mrξr. If the right-hand
side is negative, we have ξr 6= 0 and −(r2 +a2 cos2 θ)z0−Mrξr have opposite sign (by lemma
12.2.8), therefore, Hphr is non zero and has the sign of

(
−(r2 + a2 cos2 θ)z0 −Mrξr

)
.

Now we assume r > r+. If Hphr = 0, we have ξr
(
−2(a2 + r2)z0 + 2aζ + ξr∆r

)
= −∆rξ

2
r .

Using ph = 0 (for the first line) and Hphr = 0 for the second line, we get:

ξr = ±

√√√√η2 +
(

ζ
sin θ − az0 sin θ

)2

∆r

ξr = −(−(a2 + r2)z0 + aζ)

∆r

Let ε > 0: We have 2 possibilities:

1. |ξr| ≥ ε√
∆r

2. |ξr| ≥ r2−|a|ε
∆r

To prove this, assume that | ζ
sin θ − az0 sin θ| ≤ ε (otherwise, we are in the first case). Then,

we have

|aζ| ≤ a2 sin2 θ + |a sin θ|ε ≤ a2 sin2 θ + |a| ε
|−(a2 + r2)z0 + aζ| ≥ a2 + r2 − |aζ|

≥ a2 cos2 θ + r2 − |a| ε
≥ r2 − |a| ε.

Therefore, we are in the second case. We can use this with ε =
r2
+

2(|a|+1) and we find |ξr| ≥
r2
+

2(1+|a|)
√

∆r
as soon as ∆r ≤ 1.

Now we compute:

H2
ph
r = −4ξr(−2rz0 + ξr(r −M))∆r + 2(−rz0 − ξr(M − r))Hph(r)

Therefore, when Hphr = 0, we have H2
ph
r < 0 as soon as |ξr| > 2r

r−M and this holds when

r > r+ is close to r+ since 2r
r−M = o(

r2
+

2(1+|a|)
√

∆r
) when r → r+.

Lemma 12.2.11. On p−1
h ({0}) we have: ξrHphr ≤ 0 when ∆ ≤ 0. If ∆r < 0 and ξr 6= 0, we

have a strict inequality. If ξr = 0, Hphr has the same sign as −z0 (striclty) on T ∗UI .
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Proof. We have: Hphr = 2(−(a2 +r2)z0 +aζ+ξr∆r). Moreover, since ph = 0 and ∆r ≤ 0, we
must have ξr

(
−2(a2 + r2)z0 + 2aζ + ξr∆r

)
≤ 0 ≤ −∆rξ

2
r . Therefore ξrHphr ≤ 0 with strict

inequality when ξr 6= 0 and ∆r < 0. If ξr = 0, we have (on the characteristic set):(
ζ

sin θ
− az0 sin θ

)2

+ η2 = 0

and therefore

η =0

ζ =az0 sin2 θ

If we replace in the expression of Hphr, we get:

Hphr =2(−(a2 + r2)z0 + a2z0 sin2 θ)

=− 2ρ2z0

Lemma 12.2.12. Let γ be a bicharacteristic curve defined on an interval J . Let JI =
{s ∈ J : r(s) ∈ I}. On each connected component of JI , we have the alternative ξr(s) = 0 or
ξr never vanishes.

Proof. Assume that ξr(s0) = 0 for some s0 ∈ J . Then using that ph = 0, we have η2 +(
ζ

sin θ − az0 sin θ
)2

= 0. Therefore ζ = az0 sin2 θ. This property is true for all s ∈ J by
the conservation law. Therefore for all s ∈ J ξr(−2(a2 cos2 θ + r2)z0 + ∆rξr) = 0. Since
2(a2 cos2 θ+r2)

∆r
> δ > 0 for some constant δ independent of r and θ, the continuity of ξr implies

that ξr(s) = 0 for all s in the connected component of s0 in JI .

Lemma 12.2.13. Let γ be a bicharacteristic curve defined on an interval J . We assume that
there exists s0 ∈ J such that r(s0) ≤ rmin and ṙ(s0) < 0. Then we have two cases:

• The curve γ remains in {r+ ≤ r} for all s ∈ [s0, sup J) in which case sup J = +∞ and
γ tends to L+ or to L−.

• γ reaches {r < r+} for some s1 > s0 and in this case, sup J < +∞ and lim
s→sup J

r(γ(s)) =

r+ − ε.

Proof. Note that by lemma 12.2.10 and lemma 12.2.11, r ◦ γ cannot have a local minimum
on T ∗UI and therefore it must be strictly decreasing on [s0, sup J). In particular, γ remains
in {r < rmin} for s > s0 where rmin is defined in Lemma 12.2.10.

First assume that γ does not reach {r < r+}. The curve γ remains in a compact
set and therefore has an accumulation point y ∈ T ∗UI with r(y) = r∞ ≥ r+ and
r∞ = inf {r(γ(s)), s ≥ s0}. We denote by sn an increasing sequence in J such that

lim
n→+∞

sn = sup(J) and lim
n→+∞

γ(sn) = y. If y is at fiber infinity, then by lemma 12.2.6,

we have H̃phr(y) = ±2∆r and since r∞ ≤ r(s) for all s ∈ (s0, sup J), we conclude that
H̃phr(y) = 0 and therefore r∞ = r+ and y ∈ L+ ∪ L− (still by lemma 12.2.6). Moreover, y
cannot be in T ∗UI , otherwise we have either Hphr 6= 0 or H2

ph
r < 0 by lemma 12.2.10 and

both cases contradict r∞ = infs∈(s0,sup J) r(s) (see lemma 12.2.4 for the second case). There-
fore, the only possible accumulation points are L+ and L− and by lemma 12.2.7, γ cannot
have both accumulation points in L+ and in L−. Therefore, γ tends to L+ or to L− at sup J
(and since γ remains in a compact set sup J = +∞).
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Now we assume that there exists s1 > s0 such that r(s1) < r+. By Lemma 12.2.11, r ◦ γ
is then strictly decreasing on (s1, sup J). The curve γ cannot have any accumulation point
in {r ≥ r(s1)} at sup J . Indeed, at such an accumulation point y, H̃phr(y) must vanish to
be consistent with the fact that r is decreasing but this never happens when r < r+ (at
fiber-infinity it can be ruled out since we show as previously H̃ph(y) = ±2∆r and elsewhere,
it is a consequence of lemma 12.2.11).

We have an analog of lemma 12.2.13 (with a similar proof) describing the behavior of
some bicharacteritics in the past:

Lemma 12.2.14. Let γ be a bicharacteristic curve defined on an interval J . We assume that
there exists s0 ∈ J such that r(s0) ≤ rmin and ṙ(s0) > 0. Then we have two cases:

• The curve γ remains in {r+ ≤ r} for all s ∈ (inf J, s0] in which case inf J = −∞ and γ
tends to L+ or to L−.

• γ reach {r < r+} for some s1 < s0 and in this case inf J > −∞ and lim
s→inf J

r(γ(s)) =

r+ − ε.

Lemma 12.2.15. Let γ be a bicharacteristic curve with at least one point in {r ≤ rmin}. We
assume that for all s ∈ J such that γ(s) ∈ {r ≤ rmin}, we have ṙ(s) ≥ 0. Then one of the
following cases holds:

• Case 1: There exists s0 ∈ J such that r(s0) > r+. In this case, γ reaches {r > rmin} in
finite time s1 and remains in this set for all s1 < s < sup J .

• Case 2: For all s ∈ J , r(s) ≤ r+. In this case, sup J = +∞ and γ tends to L+ or to
L− when s→ +∞.

Proof. We use the notations of the lemma. Assume that there exits s0 ∈ J such that r(s0) >
r+. Then we prove that γ reaches {r > rmin} by contradiction. Indeed, if it is not the case,
there exists y ∈ T ∗UI with r(y) = sups∈(s0,sup J) r(γ(s)) > r+ and a sequence sn ∈ (s0, sup J)

with lim
n→+∞

sn = sup J and lim
n→+∞

γ(sn) = y. If y is at fiber infinity, by lemma 12.2.6 H̃r(y) =

±2∆r 6= 0 which contradicts r(y) = sups∈(s0,sup J) r(γ(s)). If y is not at fiber infinity, for
the same reason we must have Hphr(y) = 0 and lemma 12.2.10 implies that H2

ph
r(y) < 0.

But in this case, lemma 12.2.4 provides a point s ∈ J with γ(s) ∈ T ∗UI and ṙ(s) < 0 which
contradicts the hypothesis on γ. Therefore, such an accumulation point y cannot exist and
γ reaches {r > rmin} at some time s1 ∈ J . Moreover, for all s ∈ J with s > s1, r(s) > rmin
(otherwise we get a contradiction at s2 = inf {s ∈ J : s > s1, r(s) = rmin} where we must have
ṙ(s2) = 0 since by hypthesis ṙ(s2) ≥ 0 and using lemma 12.2.10).

Assume that for all s ∈ J , r(s) ≤ r+. In particular γ remains in a compact set and
sup J = +∞. Then, by compactness, there exists y ∈ T ∗UI with r(y) = sup {r(s), s ∈ J} ≤
r+ (this implies that H̃phr(y) = 0) such that y is an accumulation point for γ at sup J . By
lemmas 12.2.11 (for the case r(y) < r+) and 12.2.10 (for the case r(y) = r+), y cannot be
in T ∗UI therefore y is at fiber infinity. By lemma 12.2.6, the only possibility is y ∈ L±. As
usual we use lemma 12.2.7 to prove that γ cannot have accumulation points both in L+ and
in L−. We conclude that γ tends to L+ or to L−.

We also have an analog of lemma 12.2.15 for past behavior:

Lemma 12.2.16. Let γ be a bicharacteristic curve with at least one point in {r ≤ rmin}. We
assume that for all s ∈ J such that γ(s) ∈ {r ≤ rmin}, we have ṙ(s) ≤ 0. Then:
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• Case 1: There exists s0 ∈ J such that r(s0) > r+. In this case, γ reaches {r > rmin} in
finite time s1 and remains in this set for all inf J < s < s1.

• Case 2: For all s ∈ J , r(s) ≤ r+. In this case, inf J = −∞ and γ tends to L+ or to L−
when s→ −∞.

We now compute the principal symbol near infinity (using the time coordinate ∗t = t−T (r)
on the radial interval (6M,+∞)): We define ξ = ξr dr + ζ dφ+ η dθ.

ph(ξ) =− ρ2G(ξ − z0 d∗t)

=a2 sin2 θz2
0 −

(
a2

∆r
− 1

sin2 θ

)
ζ2 +

4Mar

∆r
ζz0 + η2 + ∆rξ

2
r + 2(a2 + r2)z0ξr

=η2 +

(
ζ

sin θ
+ az0 sin θ

)2

− a2

∆r
ζ2 − 2aζz0 + ∆rξ

2
r + 2(a2 + r2)z0ξr +

4Mar

∆r
ζz0

Hph(ξ) =
(
2ξr∆r + 2z0(a2 + r2)

)
∂r + 2

(
−a2z2

0 sin θ +
ζ2

sin3 θ

)
cos θ∂η

+ 2

(
−2Maz0ζ

∆r
+
aζ(M − r)(−4Mrz0 + aζ)

∆2
r

+ ξr(−2rz0 + ξr(M − r))
)
∂ξr

+ 2η∂θ + 2

(
2Marz0

∆r
− ζ

(
a2

∆r
− 1

sin2 θ

))
∂φ

Remark 12.2.17. The quantities ph, ζ and η2 +
(

ζ
sin θ + az0 sin θ

)2
are still conserved along

the bicharacteristic curves.

Lemma 12.2.18. There exists rmax > 6M such that in {r ≥ rmax} ∩ p−1
h ({0}), the following

implication holds: Hphr = 0⇒ H2
ph
r > 0

Proof. On the set {Hphr = 0}, we have:

ξr =− a2 + r2

∆r
z0

=− z0 +O(r−1).

On {Hphr = 0} ∩ p−1
h ({0}), we have:

η2 +

(
ζ

sin θ
− az0 sin θ

)2

+

(
−2az0 −

a2 − 4Marz0

∆r
ζ

)
ζ =∆rξ

2
r

=r2 +O(r)

Therefore, there exists a constant B > 0 and rc,1 > 6M such that |ζ| ≤ Br on this set for
r ≥ rc,1. Otherwise, there would be a sequence (rn, θn, ζn, ηn, (ξr)n) with |ζn| ≥ nrn and
lim
n→∞

rn = +∞ and the left-hand side would be larger than n2r2
n

2 for r large enough which
is impossible. Similarly we can find B′ > 0 and rc,2 > 6M such that |η| ≤ B′r on this set
for r ≥ rc,2. We can now compute, still on the set {Hphr = 0} ∩ p−1

h ({0}) (on this set the
expression simplifies):

H2
ph
r =− 8Marz0ζ + 4

aζ(M − r)
∆r

(−4Mrz0 + aζ) + 4ξr (−2rz0 + ξr(M − r)) ∆r

Using our previous estimates, we see that the dominant term is −4ξr∆rrz0 and H2
ph
r =

4r3 +O(r2) therefore, it is positive for r larger than some rc > 6M .
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Remark 12.2.19. Note that we are interested in the flow of the renormalized vector field
H̃ph := r−1Hph which extends to a continuous vector field on scT ∗(6M,+∞]× S2 (we do not
need to compactify the fiber since the characteristic set of ph does not intersect fiber infinity)
and using smooth (up to the boundary at infinity) coordinates x := 1

r , ξr, ηsc = η
r , ζsc = ζ

r we
find

H̃ph =2x
(
−ξr

(
x2∆r

)
− z0

(
a2x2 + 1

))
∂x

+ 2

(
−ηsc

(
ξr
(
x2∆r

)
+ z0

(
a2x2 + 1

))
+

(
−a2x2z2

0 sin (θ) +
ζ2
sc

sin3 θ

)
cos (θ)

)
∂ηsc

− 2ζsc
(
ξr
(
x2∆r

)
+ z0

(
a2x2 + 1

))
∂ζsc

+
2

(x2∆r)
2

(
−2Max2z0ζsc

(
x2∆r

)
+ ax2ζsc (Mx− 1) (−4Mz0 + aζsc)

+ξr (ξr (Mx− 1)− 2z0)
(
x2∆r

)2)
∂ξr

+ 2ηsc∂θ +
2
(
2Max2z0 sin2 (θ) + ζsc

(
2Mx− a2x2 cos2 (θ)− 1

))
(x2∆r) sin2 (θ)

∂φ

Therefore, the restriction of H̃ph to the boundary {x = 0} is

2ξr (−ξr − 2z0) ∂ξr +

(
−2ηscξr − 2ηscz0 +

2ζ2
sc cos (θ)

sin3 (θ)

)
∂ηsc + 2ζsc (−ξr − z0) ∂ζsc

+2ηsc∂θ −
2ζsc

sin2 (θ)
∂φ

As expected, it vanishes only for (ξr, ζsc, ηsc) ∈ {(0, 0, 0), (−2z0, 0, 0)}. We define Rin :=
{ξr = ζsc = ηsc = x = 0} and Rout := {ξr = −2z0, ζsc = ηsc = x = 0}.

Lemma 12.2.20. Let γ be a bicharacteristic curve of the renormalized Hamiltonian vector
field maximally defined on an interval J . If, there exists s0 ∈ J such that ṙ(s0) > 0 and
r(s0) ≥ rmax, then sup J = +∞ and γ(s) converges to Rin or to Rout when s→ +∞.

Proof. By the previous lemma, ṙ(s) > 0 for all s > s0 (and γ([s0, sup J)) ⊂
{rmax ≤ r ≤ +∞}). Therefore r(s) has a limit. First, we prove by contradiction that this
limit is +∞. Assume that lim

s→sup J
r(s) = r∞ < +∞. Then the curve remains in the compact

set {rmax ≤ r ≤ +∞}∩ p−1
h ({0}) and has therefore an accumulation point y with r(y) = r∞.

However, Hphr(y) = 0 (otherwise, γ should cross the hypersurface {r = r∞} and therefore by
lemma 12.2.18, we have H2

ph
r > 0 but this contradicts the fact r∞ = sups∈[s0,sup J) γ(s) by

lemma 12.2.4.
Therefore, r∞ = +∞. Then by conservation of η2 +

(
ζ

sin θ − az0 sin θ
)2

along the flow, we
have lim

s→+∞
ηsc(s) = 0 and lim

s→+∞
ζsc(s) = 0. Finally, using that ph = 0 along the flow, we get

that lim
s→+∞

ξr(s)(ξr(s) + 2z0) = 0 and using the continuity of ξr(s), either lim
s→+∞

ξr(s) = 0 or

lim
s→+∞

ξr(s) = −2z0.

The analog of lemma 12.2.20 for past behavior is

Lemma 12.2.21. Let γ be a bicharacteristic curve maximally defined on an interval J . If,
there exists s0 ∈ J such that ṙ(s0) < 0 and r(s0) ≥ rmax, then inf J = −∞ and γ(s) converges
to Rin or to Rout when s→ −∞.

To cover the behavior of all bicharacteristic curves in T ∗UI we need the following lemma
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Lemma 12.2.22. Let γ be a bicharacteristic curve maximally defined on an interval J . We
assume that for all s ∈ J such that r(s) ≥ rmax we have ṙ(s) ≤ 0. Then γ reaches {r < rmax}
for some s0 ∈ J and stays in this set for s0 ≤ s < sup J .

Proof. As in the proof of lemma 12.2.20, we can prove using lemma 12.2.18 and lemma 12.2.4
that γ cannot have an accumulation point at sup J in {r ≥ rmax} (in this case, accumulation
points at r = +∞ are impossible since r ◦ γ is decreasing). Therefore, γ reaches {r < rmax}
in finite time s0. Moreover, if r(s) ≥ rmax for some s > s0, then we could define s1 =
inf {s0 < s < sup J : r(s) = rmax}. Since ṙ(s1) ≤ 0 by hypothesis and cannot be negative me
must have ṙ(s1) = 0 and by lemma 12.2.18 and lemma 12.2.4 we get a contradiction.

Similarly we have

Lemma 12.2.23. Let γ be a bicharacteristic curve maximally defined on an interval J . We
assume that for all s ∈ J such that r(s) ≥ rmax we have ṙ(s) ≥ 0. Then γ reaches {r < rmax}
in finite time in the past and stays in this set.

We now compute the principal symbol near the trapped set (using the t time coordinate
on the radial interval I = (rmin, rmax)): We use coordinates ξ = ξr dr + ζ dφ + η dθ for
cotangent vectors and we introduce the function α = −(r2+a2)z0+aζ

∆r
.

ph(ξ) =− ρ2G(ξ − z0 dt)

=−
(

(a2 + r2)2

∆r
− a2 sin2 θ

)
z2

0 −
(
a2

∆r
− 1

sin2 θ

)
ζ2 +

(
2a(a2 + r2)

∆r
− 2a

)
ζz0

+ η2 + ∆rξ
2
r

=∆r(ξ
2
r − α2) + η2 +

(
−az0 sin θ +

ζ

sin θ

)2

Hph =2ξr∆r∂r +
(
α(−4rz0 − 2(r −M)α)− 2ξ2

r (r −M)
)
∂ξr + 2η∂θ

+ 2 cos θ

(
ζ2

sin3 θ
− a2z2

0 sin θ

)
∂η +

2

∆r

(
2Maz0 − a2ζ +

∆r

sin2 θ
ζ

)
∂φ

Remark 12.2.24. We still have the conserved quantities: ζ, ph and η2+
(
−az0 sin θ + ζ

sin θ

)2
.

Note that due to Lemmas 12.2.13, 12.2.14, 12.2.20 and 12.2.21, we see that bicharacteristic
curves leaving (rmin, rmax) exit any compact subset of (r+,+∞)× S2 either in the past or in
the future. Therefore, trapped geodesics remain in T ∗UI for all time. Proposition 3.2 of [27]
translates3 in our context to:

Proposition 12.2.25. Let Kz0 be the union of bicharacteristic curves of ph(z0) which are
contained in T ∗UI with I = (rmin, rmax). Then

Kz0 = {G(ξ − z0 dt) = ξr = ((r −M)α+ 2rz0)∆r = 0} .

Proposition 3.5 of [27] translates to

Proposition 12.2.26. Let Γ± be the union of bicharacteristic curves that are contained in
T ∗UI in the future (-) or in the past (+). We denote by K̂ the projection of Kz0 on S2×R2

ζ,η.
Then we have

Γ± =

(r, x̂, ξr, ξ̂) : (x̂, ξ̂) ∈ K̂, ξr = ±sgn(r − r′
x̂,ξ̂

)

√
Φx̂,ξ̂(r)

∆r


3For more details about the translation from properties of the rescaled geodesic flow and the semiclassical

flow see [27] section 2.3
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where

Φx̂,ξ̂ = −

(
η2 +

(
−az0 sin θ +

ζ

sin θ

)2
)

+ ∆rα
2

and r′
x̂,ξ̂

is the unique solution of Φx̂,ξ̂(r) = 0.

Finally, we need the following lemma which is implicit in [27].

Lemma 12.2.27. Let γ be a bicharacteristic curve included in Γ− (resp. Γ+). We define
x̂ := (θ, φ)(γ(0)) and ξ̂ := (ζ, η)(γ(0)). Then, γ is defined on an interval J with sup(J) = +∞
(resp. inf(J) = −∞) and

∀s ∈ J, (θ, φ, η, ζ)(γ(s)) ∈ K̂
ξr(γ(s)) −−−−→

s→±∞
0

r(γ(s)) −−−−→
s→±∞

r′
x̂,ξ̂

Therefore γ is included in any neighborhood of Kz0 for s large enough (resp. for −s large
enough).

Proof. The fact that for all s ∈ J , (θ, φ, η, ζ)(γ(s)) ∈ K̂ is a consequence of the fact that Γ±
are stable by the flow and of the explicit expression given in proposition 12.2.26. Moreover,

we see that Φx̂,ξ̂ only depends on x̂ and ξ̂ through η2 +
(
−az0 sin θ + ζ

sin θ

)2
and ζ which are

constant along the flow. Therefore, for all s ∈ J , ξr(γ(s)) = ±sgn(r − r′
x̂,ξ̂

)

√
Φx̂,ξ̂(r)

∆r
. Note

that

Φx̂,ξ̂(γ(s)) =∆rξ
2
r − ph

=∆rξr(γ(s))2

Therefore, it is enough to prove the convergence of r(γ(s)) to r′
x̂,ξ̂

, the convergence of ξr(γ(s))

will follow from the fact that Φx̂,ξ̂(r
′
x̂,ξ̂

) = 0. We do the case of γ ⊂ Γ−, the other case is
similar. To alleviate the notation, we define r(s) := r(γ(s)) and ξr(s) := ξr(γ(s)) and we
denote by a dot the derivative with respect to s. For all s ∈ J , we have

ṙ(s) =Hphr(γ(s))

=2∆rξr(s)

=− sgn(r − r′
x̂,ξ̂

)
√

∆rΦx̂,ξ̂(r(s)) (12.15)

In particular ṙ is negative when r > r′
x̂,ξ̂

and positive when r < r′
x̂,ξ̂

. Moreover, at r′
x̂,ξ̂

which
is its only vanishing point, Φx̂,ξ̂ vanishes at order 2 (see the discussion before proposition
3.5 in [27]) therefore, the right-hand side is locally Lipschitz with respect to r. We conclude
that we can solve (12.15) with initial condition r(0) on an interval J̃ with sup J̃ = +∞ and

lim
s→+∞

r(s) = r′
x̂,ξ̂

. But it means that γ(s) remains in a compact set when s → sup J (the

characterstic set of p intesected with
{
r′
x̂,ξ̂
− ε ≤ r ≤ r′

x̂,ξ̂
+ ε
}
is compact for ε small enough).

Therefore sup J = +∞ and by uniqueness of the solution of (12.15), lim
s→+∞

r(γ(s)) = r′
x̂,ξ̂

.
Finally, the last statement of the lemma follows from the fact that

F :=
{

(r′
x̂,ξ̂
, (θ, φ)(γ(s)), 0, (ζ, η)(γ(s))), s ∈ J

}
⊂ Kz0

and lim
s→+∞

d(γ(s), F ) = 0 for any distance d inducing the topology of T ∗UI .
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We can now completely describe the asymptotic behavior of bicharacteristic curves:

Proposition 12.2.28. We define the surface Bε = {r = r+ − ε} ⊂ scT
∗
(r+ − 2ε,+∞] × S2.

In this proposition, we say that a curve γ defined on some interval J is of type (A,B) where
A and B are two sets in {L−, L+, Bε,Rin,Rout} if γ tends to A at inf J and to B at sup J .
Moreover, if A = Bε (resp. B = Bε), inf J > −∞ (resp. sup J < +∞), in all the other case
the corresponding bound of J is infinite.

Let γ be a bicharacteristic curve for the renormalized Hamiltonian flow on scT
∗
(r+ −

ε,+∞]× S2 maximally defined on some interval J .
Let z0 = −1.

• If γ ⊂ Σ+, then either γ ⊂ L+ or γ is of type (L+, Bε).

• If γ ⊂ Σ−, then either γ ⊂ L− ∪Kz0 ∪Rin ∪Rout or γ is of type (Rin, L−), (Rin,Kz0),
(Rin,Rout) or (Bε, L−), (Bε,Kz0), (Bε,Rout), (Kz0 , L−), (Kz0 ,Rout)

Let z0 = 1.

• If γ ⊂ Σ+, then either γ ⊂ L+ ∪Kz0 ∪ Rin ∪ Rout or γ is of type (L+, Bε), (L+,Kz0),
(L+,Rin), (Rout,Kz0), (Rout, Bε), (Rout,Rin),(Kz0 , Bε), (Kz0 ,Rin).

• If γ ⊂ Σ−, then either γ ⊂ L− or γ is of type (Bε, L−).

Proof. This proposition is a combination of lemmas 12.2.13, 12.2.14, 12.2.15, 12.2.16, 12.2.27,
12.2.20, 12.2.21 and of the following observations about the Hamiltonian vector field (which
rule out some cases which are a priori compatible with the lemmas):

• If z0 = −1, L+ is a source, L− is a sink, Rin is a source, Rout is a sink.

• If z0 = 1, L+ is a source, L− is a sink, Rin is a sink, Rout is a source.

• Bicharacteristic curves in Σ− only cross the horizon {r = r+} towards the exterior of
the black hole (see lemma 12.2.10)

• Bicharacteristic curves in Σ+ only cross the horizon {r = r+} towards the interior of
the black hole (see lemma 12.2.10)

Bε

K1 Rin

Rout

L+

L− Bε

K−1 Rin

Rout

L+

L−

Figure 12.1: Structure of the semiclassical Hamiltonian flow (for z0 = 1 on the left and
z0 = −1 on the right)

Finally, we state the following lemma for later use. It is a consequence of lemma 2.4 in
[28] (the fact that normally hyperbolic trapping assumptions hold is proven in [27]).
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Lemma 12.2.29. For all ε > 0 small enough, there exists a neighborhood U of Kz0 and φ+,
φ− smooth functions on U such that:

• {φ+ = 0} = Γ+ ∩ U

• {φ− = 0} = Γ− ∩ U

• There exists δ > 0 such that, Uδ := {|φ+| < δ, |φ−| < δ, |p| < δ} is compactly contained
in U .

• {φ+, φ−} > 0 on U

• Hpφ± = ∓c±φ± with c± smooth positive bounded functions on U with c± > νmin − ε
where νmin > 0 is defined in Proposition 3.7 of [27] (but we will not use its exact value).
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Chapter 13

Fredholm property of T̂s(σ)

We have seen previously (see Corollary 11.1.4 and Corollary 11.2.5) that the Cauchy problem
can be reduced to a forcing problem. After a Fourier transformation, we get the problem:

T̂s(σ)v̂(σ) = f̂(σ)

where f̂ is precisely characterized. To recover properties of v̂, we want to write it as
v̂(σ) = T̂s(σ)−1f̂(σ). In this section, we prove that the operator T̂s(σ) is Fredholm be-
tween appropriate spaces. This together with a mode stability result (see [108], [8] and [7])
will provide the invertibility of T̂s(σ) between suitable spaces.

13.1 Estimate near the horizon

To define the adjoint operator, we use the volume form dvol and the metric m (defined
in Subsection 10.2). We now compute the subprincipal symbol, that is to say the principal
symbol of 1

2i

(
T̂s(σ)− T̂s(σ)∗

)
near the horizon:

psub = s

(
1

2i

(
T̂s(σ)− T̂s(σ)∗

))
=
(
−2a=(σ) + 2

a

r

)
ζ + 2

(
(r −M)s+

∆r

r
− (a2 + r2)=(σ)

)
ξr

Proposition 13.1.1. Let k > m ≥ 1
2−
(
−s+

(a2+r2
+)

r+−M =(σ)
)
If A,B,G ∈ Ψ0,0

b with compactly
supported Schwartz kernels are such that A and G are elliptic on L± and every forward (or
backward) classical bicharacteristic curve from WF (B) tends to L± with closure in the elliptic
set of G,

Au ∈ Hm,l
(b) ⇒ ‖Bu‖Hk,l

(b)

≤ C
(∥∥∥GT̂s(σ)u

∥∥∥
H
k−1,l
(b)

+ ‖u‖
H
−N,l
(b)

)
Proposition 13.1.2. Let k < 1

2 +
(
−s+

(a2+r2
+)

r+−M =(σ)
)
. Assume A ∈ Ψ0,0

b with compactly

supported Schwartz kernel is elliptic on a neighborhood of L±, B ∈ Ψ0,0
b and G ∈ Ψ0,0

b with
compactly supported Schwartz kernels and G is elliptic onWF (A)∪WF (B). Assume also that
every forward (or backward) bicharacteristic curve of T̂ (σ) from a point of WF (A) reaches
Ell(B) while remaining in Ell(G). Then

‖Au‖
Ḣk,l

(b)

≤ C

(∥∥∥GT̂s(σ)∗u
∥∥∥
Ḣk−1,l

(b)

+ ‖Bu‖
Ḣk,l

(b)

+ ‖u‖
Ḣ−N,l

(b)

)

Remark 13.1.3. These estimates are microlocalized away from ∂X. As a consequence, the
index l does not play any role here and could be replaced in the right hand sides by l −N for
any N ∈ N.
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Proof. These two propositions are a mild modification of propositions 2.3 and 2.4 in [103].
There are only two differences:

1. The proposition in [103] is not stated for operators on sections of a complex vector
bundles. However, in the case of a complex vector bundle of rank 1 (as it is the case
here), the principal symbols of operators are scalar and the same proof can be applied
(see remark 2.1 in [103]).

2. The subprincipal symbol psub of the operator T̂s(σ) has not exactly the form required
[103]. However, what is really needed in the proof is the positivity of k− 1

2−
psubρ̃
β0

in case
of proposition 2.3 and the negativity of k − 1

2 + psubρ̃
β0

in case of proposition 2.4 where
by definition Hρ|L± = ±β0ρ (as mentioned previously, we have taken into account the
different sign convention for the principal symbol in [103]). As a consequence, the proof
works if we adapt the hypothesis on k as we did.

We also get the corresponding semiclassical estimates given by propositions 2.10 and 2.11
of [103] which we state for the operator T̂s,h(z) = h2T̂s(h

−1z) where z = σ
|σ| , h = |σ|−1. The

estimates are uniform when σ lies in the region {0 ≤ =(σ) ≤ η, |<(σ)| ≥ η} with η > 0.

Proposition 13.1.4. Let k > m ≥ 1
2 −

(
−s+

(a2+r2
+)

r+−M =(h−1z)
)
. If A,B,G ∈ Ψ0,0

b,h with
compactly supported Schwartz kernels are such that A and G are elliptic on L± and every
forward (or backward) bicharacteristic curve from WFh(B) tends to L± with closure in the
elliptic set of G,

Au ∈ Hm,l
(b),h ⇒ ‖Bu‖Hk,l

(b),h

≤ C
(
h−1

∥∥∥GT̂s,h(z)u
∥∥∥
H
k−1,l
(b),h

+ h ‖u‖
H
−N,l
(b),h

)

Proposition 13.1.5. Let k < 1
2 +
(
−s+

(a2+r2
+)

r+−M =(h−1z)
)
. Assume A ∈ Ψ0,0

b,h with compactly

supported Schwartz kernel is elliptic on a neighborhood of L±, B ∈ Ψ0,0
b,h and G ∈ Ψ0,0

b,h with
compactly supported Schwartz kernels and G is elliptic on WFh(A) ∪WFh(B). Assume also
that every forward (or backward) bicharacteristic curve of T̂s,h(z) from a point of WFh(A)
reaches Ell(B) while remaining in Ell(G). Then

‖Au‖
Ḣk,l

(b),h

≤ C

(
h−1

∥∥∥GT̂s,h(z)∗u
∥∥∥
Ḣk−1,l

(b),h

+ ‖Bu‖
Ḣk,l

(b),h

+ h ‖u‖
Ḣ−N,l

(b),h

)

We now look at the operator T̂s(σ) on
{
r < r+ − ε

3

}
. To estimate the solution in this

region, we use classical hyperbolic estimates (following an idea presented in [111, Section
3.2]). We need the two following propositions:

Proposition 13.1.6. Let u ∈ Ḣm,l
(b) . We denote by H̃s the space of distributions on

(−∞, r+ − ε
3) which are supported in (r+ − ε, r+ − ε

3) and extendible at r+ − ε
3 endowed

with the corresponding norm. In particular we have v := u|r<r+− ε3
∈ H̃s. With a slight abuse

of notation, we write ‖u‖H̃s−1 for ‖v‖H̃s−1. For all s ∈ R, we have

‖u‖H̃s ≤ C
∥∥∥T̂s(σ)∗u

∥∥∥
H̃s−1

(with the convention that some terms may be infinite).

The next proposition is similar but with the extendible and supported ends inverted.
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Proposition 13.1.7. Let u ∈ Hm,l
(b) with supp(u) ⊂

{
r ≤ r+ − ε

3

}
. Then for all s ∈ R, we

have
‖u‖

H
s,l
(b)

≤ C
∥∥∥T̂s(σ)u

∥∥∥
H
s−1,l
(b)

(with the convention that some terms may be infinite).

These two propositions are consequences of the standard hyperbolic theory for second
order partial differential operators. Indeed, on

{
r+ − 2ε < r < r+ − ε

3

}
, the operator T̂s(σ)

has (classical) principal symbol:

s(T̂s(σ)) =− G̃(ξ)

where G̃ is a Lorentzian metric. Moreover −G̃( dr) = ∆r which is uniformly negative on{
r+ − 2ε < r < r+ − ε

3

}
. Therefore, T̂s(σ) is strictly hyperbolic with respect to the level

sets of r in this region. We also need a semiclassical version of the hyperbolic estimate (see
Proposition A.1.7). Since it is less standard than classical hyperbolic estimate, we provide a
detailed proof (in a more general setting) in the appendix, section A. This proof can easily
be adapted to obtain a proof of Propositions 13.1.6 and 13.1.7.

We can now combine the previous results to get a complete microlocal estimate near the
horizon (and more precisely in the full region {r ≤ 2M})

Proposition 13.1.8. Let N and N ′ be integers which will be taken large. Let k′ > 1
2 +

s − a2+r2
+

r+−M=(σ). Let u ∈ Hk′,∞
(b) such that supp(u) ⊂ {r ≤ 2M +D} (for some D > 0) and

v ∈ Ḣ−N,∞(b) such that supp(v) ⊂ {r ≤ 2M +D}. Let k be such that k > k′. We have

‖u‖
H
k,l
(b)

≤ C
(∥∥∥T̂s(σ)u

∥∥∥
H
k−1,−N′
(b)

+ ‖u‖
H
k′,−N′
(b)

)
‖v‖

Ḣ1−k,l
(b)

≤ C

(∥∥∥T̂s(σ)∗v
∥∥∥
Ḣ−k,−N

′
(b)

+ ‖v‖
Ḣ−N,−N

′
(b)

)

We first need a separation lemma (following from the analysis of the dynamical structure)

Lemma 13.1.9. There exists disjoint open subsets U+ and U− of T ∗Mε such that Σ ∩{
r ≥ r+ − ε

2

}
⊂ U+ ∪ U−, L+ ⊂ U+ and L− ⊂ U− and

• For every x ∈ U+ ∩ Σ, the bicharacteristic curve through x tends to L+ at −∞ and is
included in

{
r < r+ − ε

2

}
in the future.

• For every x ∈ U− ∩ Σ, the bicharacteristic curve through x tends to L− at +∞ and is
included in

{
r < r+ − ε

2

}
in the past.

Proof. In view of the dynamical analysis obtained in Proposition 12.1.7, we can take U1 ={
ξ̃ > 0, ρ < 1

}
and U2 =

{
ξ̃ < 0, ρ < 1

}
.

Proof of proposition 13.1.8. These estimates are proved by combining the previous estimates
in this section. We first prove the first one: Let Σ± := Σ∩

{
r ≥ r+ − ε

2

}
∩U± (where U± are

defined in lemma 13.1.9) are compact subsets of T ∗Mε. We cover them by a finite number of
open sets (Ui)

N
i=1 included in U±. Let Bi ∈ Ψ0,0

b with compactly supported Schwartz kernels
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such that WF (Bi) ⊂ Ui and WF (I −
∑N

i=1Bi)∩Σ ⊂
{
r < r+ − ε

2

}
. Let χ ∈ C∞(R) be such

that χ = 1 on r < r+ − ε
2 and χ = 0 on

{
r > r+ − ε

3

}
. We have:

‖u‖
H
k,l
(b)

≤
N∑
i=1

‖Biu‖Hk,l
(b)

+ C ‖χu‖
H
k,l
(b)

+

∥∥∥∥∥
(
I −

N∑
i=1

Bi

)
(1− χ)u

∥∥∥∥∥
H
k,l
(b)

We have ‖Biu‖Hk,l
(b)

≤ C
∥∥∥T̂s(σ)u

∥∥∥
H
k−1,−N′
(b)

+ ‖u‖
H
−N,−N′
(b)

using proposition 13.1.1 for each Bi

(here we use the regularity assumption on u). Moreover
∥∥∥(I −

∑N
i=1Bi)(1− χ)u

∥∥∥
H
k,l
(b)

≤∥∥∥T̂s(σ)u
∥∥∥
Hk−1,l

(b)

+ ‖u‖
H
−N,−N′
(b)

using proposition 10.3.8 (elliptic estimate) since WF ((I −∑N
i=1Bi)(1− χ)) ∩ Σ = ∅.
Eventually, we have to bound the term ‖χu‖

H
k,l
(b)

. Using proposition 13.1.7, we get

‖χu‖
H
k,l
(b)

≤
∥∥∥T̂s(σ)χu

∥∥∥
H
k−1,l
(b)

. Note that∥∥∥T̂s(σ)χu
∥∥∥
H
k−1,l
(b)

≤
∥∥∥T̂s(σ)u

∥∥∥
H
k−1,−N′
(b)

+
∥∥∥[T̂ , χ]u

∥∥∥
H
k−1,−N′
(b)

≤
∥∥∥T̂s(σ)u

∥∥∥
H
k−1,−N′
(b)

+ C ‖χ̃u‖
H
k,−N′
(b)

where χ̃ ∈ C∞c and suppχ̃ ⊂
{
r+ − ε

2 ≤ r ≤ r+ − ε
3

}
. Therefore

‖χ̃u‖
H
k,−N′
(b)

≤
N∑
i=1

‖Biχ̃u‖
H
k,−N′
(b)

+

∥∥∥∥∥
(
I −

N∑
i=1

Bi

)
χ̃u

∥∥∥∥∥
Hk,−N′

(b)

≤ C
∥∥∥T̂s(σ)u

∥∥∥
H
k−1,−N′
(b)

+ ‖u‖
H−N,−N

′
(b)

where the last line is obtained using proposition 13.1.1 for each Biχ̃ and proposition 10.3.8
for the last term.

We now prove the second estimate: We define Bi and χ in the same way but we arrange
that B0 and B1 are such that WF (I −B0) ∩ L+ = ∅ and WF (I −B1) ∩ L− = ∅. We have

‖u‖
Ḣ1−k,l

(b)

≤
N∑
i=1

‖Biu‖Ḣ1−k,l
(b)

+ C ‖χu‖
Ḣ1−k,−N′

(b)

+

∥∥∥∥∥
(
I −

N∑
i=1

Bi

)
(1− χ)u

∥∥∥∥∥
Ḣ1−k,−N′

(b)

Using proposition 13.1.2 for B0 and B1 and usual propagation of singularity for the other Bi,
we get

∑N
i=1 ‖Biu‖Ḣ1−k,l

(b)

≤
∥∥∥T̂s(σ)∗u

∥∥∥
Ḣ−k,−N

′
(b)

+ ‖χu‖
Ḣ1−k,−N′

(b)

. As previously, using proposi-

tion 10.3.8, we can write
∥∥∥(I −

∑N
i=1Bi)(1− χ)u

∥∥∥
Ḣ1−k,−N′

(b)

≤
∥∥∥T̂s(σ)∗u

∥∥∥
Ḣ−k,−N

′
(b)

+‖u‖
H−N,−N

′
(b)

.

Finally, we have

‖χu‖
Ḣ1−k,−N′

(b)

≤ C ‖u‖H̃1−k

≤ C
∥∥∥T̂s(σ)∗u

∥∥∥
Ḣ−k,−N

′
(b)

where the last inequality comes from Proposition 13.1.6.
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13.2 Estimate near x = 0

Now we prove an estimate near the end x = 0. As before, we also need a semiclassical
version. Contrarily to the previous estimates which remained valid up to σ = 0, it is not
automatic in this case and we need to prove a uniform version of the estimate down to σ = 0.
Unless otherwise indicated, computation in this section are localized on

{
0 ≤ x ≤ 1

6M

}
. To

be coherent with the notation in [105], we introduce the operator:

P (σ) = ei
σ
x
−2iMσ ln(x) 1

∆r
T̂s(σ)e−i

σ
x

+2iMσ ln(x).

Other choices are possible to fit in the framework of [105], the choice made here imposes that
the coefficient of (xDx)2 is equal to 1. Therefore, the operator after conjugation (defined in
[105, Section 3])

P̂ (σ) := e−i
σ
xP (σ)ei

σ
x = x−2iMσ 1

∆r
T̂s(σ)x2iMσ (13.1)

We will use this equality to translate estimates about P (σ) into estimates about T̂s(σ).
We have the following decomposition for P (σ):

P (σ) = P (0) + σQ− σ2

where P (0) ∈ Diff2
sc and Q ∈ xDiff1

sc and explicitly (using the trivialization Tm)

P (0) =(x2Dx)2 +
2i(r −M)(1− s)

∆r
x2Dx +

1

∆r sin θ
Dθ sin θDθ +

r2 + a2 cos2 θ − 2Mr

∆2
r sin2 θ

D2
φ

+
2s(∆r cos θ + ia(M − r) sin2 θ)

∆2
r sin2 θ

Dφ +
s2cotan2θ + s

∆r

Q =
4Mar

∆2
r

Dφ −
4M(2Mr − a2)

r∆r
x2Dx −

1

r2∆2
r

q0

q0 = (4Mσ + 2is)x−5 + x−4C∞
([

0,
1

6M

]
x

× S2

)
Proposition 13.2.1. Let χ1 be a smooth cutoff compactly supported in

{
x < 1

6M

}
with χ1 = 1

on
{
x < 1

12M

}
.

Assume that l+ 1
2 − 2M=(σ) < 0, r̃+ l+ 1

2 + 2s+ 2M=(σ) > 0 and =(σ) ≥ 0 and σ 6= 0.
Then if u ∈ H r̃′,l

(b) for some r̃′ such that r̃′ + l + 1
2 + 2M=(σ) > 0, we have:

‖χ1u‖H r̃,l
(b)

≤ C

(∥∥∥P̂ (σ)u
∥∥∥
H r̃,l+1

(b)

+ ‖u‖
H−N,l−1

(b)

)

Moreover, if v ∈ H r̃′′,l′′

(b) for some r̃′′ ∈ R (with no further condition on r̃′′) and l′′ + 1
2 +

2M=(σ) > 0, we have:

‖χ1v‖H−r̃,−(l+1)
(b)

≤ C

(∥∥∥P̂ (σ)∗v
∥∥∥
H−r̃,−l

(b)

+ ‖v‖
H−N,−l−2

(b)

)

The constants are uniform with respect to σ in a compact subset of {=(σ) ≥ 0} \ {0}
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Proof. First note that it is enough to prove that

‖χ1u‖H r̃,l
(b)

≤ C

(∥∥∥P̂ (σ)χ1u
∥∥∥
H r̃,l+1

(b)

+ ‖χ1u‖H−N,l−1
(b)

)
(13.2)

and similarly for the second inequality. Indeed, we have that [P̂ (σ), χ1] ∈ Diff1
b is supported

away from the boundary and on the elliptic set of P̂ (σ). Therefore, for χ̃1 a smooth compactly
supported cutoff equal to 1 on supp(χ1) we have:∥∥∥[P̂ (σ), χ1]u

∥∥∥
H r̃,l+1

(b)

≤ ‖χ̃1u‖H r̃+1,−∞
(b)

≤ C
∥∥∥P̂ (σ)u

∥∥∥
H r̃−1,−∞

(b)

≤ C
∥∥∥P̂ (σ)u

∥∥∥
H r̃,l+1

(b)

We can do the same for the second inequality. Therefore, we can consider P (σ) as an operator
acting on

[
0, 1

6M

)
x
× Bs.

The estimate (13.2), is exactly the kind of estimate obtained in the proof of theorem 1.1
in [105].

Note that the operator P (σ) is not exactly of the form described in section 2 of [105] since
it acts on a non trivial complex line bundle. However, as mentioned in remark 1.3 of [105],
the proof of the estimate is completely parallel in this case (and since in our case the bundle
is of dimension 1, it requires even less adaptation). The exact hypotheses that we use and
which are sufficient to run the proof are the following (we do not intend to be as general as
the adaptation of [105] to complex line bundles could be, in particular we do not consider
conormal operator’s coefficients and we restrict to a simpler form for P (0) which is enough to
treat our case): Let X = [0, 1

6M )x × ∂X be a smooth manifold with boundary of dimension
n with smooth boundary defining function x. Let ω∂X be a smooth volume form on the
boundary, we denote by dvol = x−n−1| dx|ω. Let p : E → ∂X be a complex line bundle over
∂X and m be a smooth metric on E. We denote by Ẽ = π∗2E (the semitrivial bundle over X
associated to E) and m̃ = π∗2m the associated metric. Let P (σ) = P (0) + σQ − σ2 be such
that

(H1)

P (0) = (x2Dx)2 + x2A+ (i(n− 1) + a0)x(x2Dx)

where A ∈ C∞([0,M)x,Diff2(E)) and a0 ∈ C∞(X). We also require that the principal
symbol of x−2P (0) is elliptic in the b sense. For simplicity, we imposed that the coef-
ficients a′, a0,j are zero with respect to the local coordinate expression (3.4) in [105],
which is true in our case.

(H2)

Q = b0x(x2Dx) + x2R+ b′x

where R ∈ C∞([0,M)x,Diff1(E)) and b0, b
′ ∈ C∞(X). Coefficients of Q can depend

smoothly on σ.
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(H3) The operators x2A and x2R admit the following decomposition:

x2A =
N∑
j=1

(A∗jAj +A∗jA
′
j +A†jAj) +A′′

x2R =

N∑
j=1

(A∗jRj +R†jAj) +R′′

where Aj ∈ xC∞([0,M)x,Diff1(E)) ⊂ xDiff1(Ẽ), A′j , A
†
j , Rj , R

†
j ∈ xC∞(X) and

A′′, R′′ ∈ x2C∞(X). This hypothesis is needed to enforce the conclusion of lemma
3.3 in [105] (which is automatically true when we have the precise local form given in
(3.4) and (3.5), we avoid giving local expression here since it would also depend on the
choice of a local trivialization of E in addition to the choice of coordinates on ∂X but
it could be done).

Under the previous hypotheses, we have:

P̂ (σ) := e−i
σ
xP (σ)ei

σ
x

= P (0) + σQ̂− 2σ

(
x2Dx + i

n− 1

2
x+ xα̃+(σ)

)

with Q̂ = Q−xb′ and α̃+(σ) = a0−b′+b0σ
2 . Therefore the normal operator is formally identical

to the one in [105] (the only difference is that we consider it as a differential operator on Ẽ).
The threshold value for r̃ is then −1

2 + =(α+(σ)) where α+(σ) = lim
x→0

α̃+(σ). Similarly, the

threshold value for r̃+ l is −1
2 +=(α−(σ)) where α−(σ) := lim

x→0
α̃−(σ) and α̃−(σ) := a0+b′+b0σ

2 .

Let (yi) be local coordinates on ∂X. Let τ be the variable associated with x in scT ∗X
and µi be the variable associated with yi. Hypotheses (H1) and (H3) imply that the principal
symbol of P (0) in the scattering decay sense is τ2 + q(y)(µ) where q(y) is a positive definite
quadratic form (positivity comes from (H3) and definiteness from the fact that x−2P (0) is
elliptic in the b sense). This is the correct form to run commutator estimates with the same
method as in [105] (and we have the conclusion of Lemma 3.3 in [105] thanks to hypothesis
(H3) to deal with the case of non real σ).

We just have to check that the hypotheses are satisfied our case.

(H1) The hypothesis is true with a0 = 2i(Mr(1+s)−a2−r2s)
∆r

= −2is+O(x),

A =
r2

∆r sin θ
Dθ sin θDθ +

r2
(
r2 + a2 cos2 θ − 2Mr

)
∆2
r sin2 θ

D2
φ

+
2sr2(∆r cos θ + ia(M − r) sin2 θ)

∆2
r sin2 θ

Dφ +
r2
(
s2cotan2θ + s

)
∆r

. (13.3)

(H2) The hypothesis is true with b′ = − 1
r∆2

r
q0 = −4Mσ−2is+O(x), b0 = −4M(2Mr−a2)

∆r
and

R = 4Mar3

∆2
r
Dφ (which is smooth as a differential operator on Ẽ).
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(H3) We define the following smooth operators on Bs by their coordinates in local trivializa-
tion Tm:

(Z̃1)m = − sinφ∂θ + cosφ

(
− is

sin θ
− cos θ

sin θ
∂φ

)
(Z̃2)m = − cosφ∂θ − sinφ

(
− is

sin θ
− cos θ

sin θ
∂φ

)
(Z̃3)m =

√
1− a2

∆r
∂φ.

We have

x2A =A∗1A1 +A∗2A2 +A∗3A3 +A†3A3 +A′′

x2R =R†3A3

with

Ai =
1√
∆r

Z̃i

A†3 =
2sa(M − r)

∆r

√
∆r

(
1− a2

∆r

)
A′′3 =

s(1− s)
∆r

R†3 =
−4iMar

∆r

√
∆r

(
1− a2

∆r

) .

If we translate the previous estimate into an estimate on 1
∆r
T̂s(σ) using (13.1), we get:

Proposition 13.2.2. Let χ1 be a smooth cutoff compactly supported in
{
x < 1

6M

}
with χ1 = 1

on
{
x < 1

12M

}
.

Assume that l + 1
2 < 0, r̃ + l + 1

2 + 2s + 4M=(σ) > 0 and =(σ) ≥ 0 and σ 6= 0. Then if
u ∈ H r̃′,l

(b) for some r̃′ such that r̃′ + l + 1
2 + 2s+ 4M=(σ) > 0, we have:

‖χ1u‖H r̃,l
(b)

≤ C

(∥∥∥T̂s(σ)u
∥∥∥
H r̃,l−1

(b)

+ ‖u‖
H−N,l−1

(b)

)

Moreover, if v ∈ H r̃′′,l′′

(b) for some r̃′′ ∈ R (with no further condition on r̃′′) and l′′ > −1
2 , we

have:

‖χ1v‖H−r̃,1−l
(b)

≤ C

(∥∥∥T̂s(σ)∗v
∥∥∥
H−r̃,−l

(b)

+ ‖v‖
H−N,−l

(b)

)
.

The constants are uniform with respect to σ in a compact subset of {=(σ) ≥ 0} \ {0}.
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We can also get the semiclassical version of this estimate (meaning uniform with respect
to σ in a strip {0 ≤ =(σ) ≤ η, |<(σ)| > A}). This is done in [105], in section 5. We give
the version for T̂s,h(z̃) = h2T̂s(h

−1z̃) with 0 ≤ =(z̃) ≤ ηh and |<(z̃)| ≥ Ah. Note that the
non trapping assumption mentioned in [105] plays no role for the microlocal version of the
estimate. Note that we use b Sobolev spaces in the statement instead of second microlocal
Sobolev spaces, thus we lose some precision with respect to [105].

Proposition 13.2.3. Let U be a neighborhood of Rin separated from fiber infinity. Let
B0, B1, G ∈ Ψ0,0

sc,h with WF (B0) ∪WF (B1) ∪WF (G) ⊂ U , WF (B0) ∪WF (B1) ⊂ Ell(G)
and every bicharacteristic curve from WF (B0) reaches Ell(B1) in finite time (with the time
having the same sign as <(z̃)) while remaining in Ell(G). If 0 ≤ =(z̃) ≤ ηh, |<(z̃)| ≥ Ah,
l + 1

2 < 0 and r̃ ∈ R. For all u ∈ H r̃′,l′

(b),h (with no conditions on r̃′ and l′) and all N ∈ N, we
have a constant C > 0 uniform with respect to h, z̃ and u such that:

‖B0u‖H r̃,l
(b),h

≤C

(
h−1

∥∥∥GT̂s,h(z̃)u
∥∥∥
H r̃,l−1

(b),h

+ ‖B1u‖H r̃,l
(b),h

+ hN ‖u‖
H−N,l

(b),h

)

Moreover, if u ∈ H r̃′,l′

(b),h with l′ > −1
2 :

‖B0u‖H−r̃,1−l
(b),h

≤C

(
h−1

∥∥∥GT̂s,h(z̃)∗u
∥∥∥
H−r̃,−l

(b),h

+ hN ‖u‖
H−N,1−l

(b),h

)

We have the corresponding estimate near Rout:

Proposition 13.2.4. Let U be a neighborhood of Rout separated from fiber infinity. Let
B0, B1, G ∈ Ψ0

sc,h with WF (B0) ∪WF (B1) ∪WF (G) ⊂ U , WF (B0) ∪WF (B1) ⊂ Ell(G)
and every bicharacteristic curve from WF (B0) reaches Ell(B1) in finite time (with the time
having the same sign as −<(z̃)) while remaining in Ell(G). If 0 ≤ Im(z̃) ≤ ηh, |<(z̃)| ≥ Ah,
r̃ + l + 1

2 + 2s > 0 and u ∈ H r̃′,l′

(b) with r̃′ + l′ + 1
2 + 2s > 0, then for all N ∈ N, there exists

C > 0 independent of u, h and z̃ such that:

‖B0u‖H r̃,l
(b),h

≤ C

(
h−1

∥∥∥GT̂h(z̃)u
∥∥∥
H r̃,l−1

(b),h

+ hN ‖u‖
H−N,l

(b),h

)

and if u ∈ H r̃′,l′

(b) with no condition on r̃′, l′, we have:

‖B0u‖H−r̃,1−l
(b),h

≤ C

(
h−1

∥∥∥GT̂ ∗h (z̃)u
∥∥∥
H−r̃,−l

(b),h

+ ‖B1u‖H−r̃,1−l
(b),h

+ hN ‖u‖
H−N,1−l

(b),h

)

We also need to state an estimate which is true uniformly up to σ = 0. We begin by
recalling the definition of the effective normal operator (which is compatible with Definition
2.4 in [106] although phrased in a slightly different setting).

Definition 13.2.5. The effective normal operator of P̂ (σ) denoted by Neff(P̂ (σ)) is P̂ (σ)
modulo x(x + σ)2Diff2

b([0,
1

r+−ε)x × Bs). Similarly, Neff(T̂s(σ)) is T̂s(σ) modulo x−1(x +

σ)2Diff2
b([0,

1
r+−ε)x × Bs).
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Proposition 13.2.6. Let χ1 be a smooth cutoff compactly supported in
{
x < 1

6M

}
with χ1 = 1

on
{
x < 1

12M

}
. Assume that α ∈

(
l + 1

2 + s− |s| , l + 3
2 + s+ |s|

)
, l+r̃ > −1

2−2s and l < −1
2 .

Then, there exists σ0 > 0 such that for all σ ∈ C with =(σ) ≥ 0 and |σ| ≤ σ0, we have:

‖(x+ |σ|)αχ1u‖H r̃,l
(b)

≤ C

(∥∥∥(x+ |σ|)αP̂ (σ)u
∥∥∥
H r̃−1,l+2

(b)

+ ‖u‖
H−N,l−1

(b)

)

Proof. As for Proposition 13.2.1, using that [P̂ (σ), χ1] ∈ Diff1
b is supported away from the

boundary and on the elliptic set of P̂ (σ), it is enough to prove

‖(x+ |σ|)αχ1u‖H r̃,l
(b)

≤ C

(∥∥∥(x+ |σ|)αP̂ (σ)χ1u
∥∥∥
H r̃−1,l+2

(b)

+ ‖χ1u‖H−N,l−1
(b)

)
. (13.4)

The estimate is therefore localized in a neighborhood of {x = 0} where the microlocal esti-
mates obtained in the proof of Theorem 2.5 in [106] applies. As for the previous proposition,
because we consider an operator acting on a complex line bundle, we are not exactly in the
setting of [106]. However, the proof is completely parallel under the following hypotheses1

(which are not the most general ones):

P (σ) = P (0) + σQ− (1−R)σ2

(H1) R ∈ xC∞(X) and =(R) ∈ x2C∞(X)

(H2)

P (0) = (x2Dx)2 + x2A+ (i(n− 1) + β)x(x2Dx) + x2a′

where A ∈ C∞([0,M)x,Diff2(E)) such that x2

2i (A−A
∗) ∈ x3C∞([0,M)x,Diff1(E)) and

a′, β ∈ C∞(X). We also require that the principal symbol of x−2P (0) is elliptic in
the b sense. For simplicity we imposed that the coefficients a0,j in the local coordinate
expression in the proof of proposition 2.1 in [106] are zero, which is true in our case.

(H3)

Q = b0x(x2Dx) + x2S + γx

where S ∈ C∞([0,M)x,Diff1(E)) is principally self-adjoint and b0, γ ∈ C∞(X) is such
that =(b0) ∈ xC∞(X). The coefficients of Q are supposed to be independent of σ

(H4) The operators x2A and x2S admit the following decomposition:

x2A =

N∑
j=1

(A∗jAj +A∗jA
′
j +A†jAj) +A′′

x2S =

N∑
j=1

(A∗jRj +R†jAj) +R′′

where Aj ∈ xC∞([0,M)x,Diff1(E)) ⊂ xDiff1(Ẽ), A′j , A
†
j , Rj , R

†
j ∈ xC∞(X) and

A′′, R′′ ∈ x2C∞(X).
1We use the same notations as in the proof of proposition 13.2.1
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With the previous hypotheses, we see that (2.2) and (2.3) in [106] are satisfied with
βI = =(β) and β′I = −<(β)n−2

2 + =(a′) and γI = =(γ). We have the following form for the
conjugated operators:

P̂ (σ) = P (0) + σQ̂+ σ2R̂− 2σ

(
x2Dx + i

n− 1

2
x+

β − γ
2

x

)
where

Q̂ = Q− xγ
R̂ = R− xb0

Under these hypotheses, the effective normal operator (see Definition 13.2.5) is

Neff(P̂ (σ)) =(x2Dx)2 + i(n− 1)x(x2Dx) + x2A(0) + β|∂xx
2

(
xDx + i

n− 2

2

)
+ x2(β′)|∂X − 2σ

(
x2Dx + i

n− 1

2
x+

β|∂X − γ|∂X
2

x

)
where β′ = a′− iβ n−2

2 (therefore =(β′) = β′I). Note that (x2Dx)2 + i(n−1)x(x2Dx) +x2A(0)
is similar to the term ∆g0 in [106].

We add two last hypotheses:

(H5) β|∂X ∈ iR and <(β′|∂X ) + λ0 >
(β|∂X )

2

4 −
(
n−2

2

)2 where λ0 is the smallest eigenvalue of
A(0). This hypothesis is present in theorem 2.5 in [106] (but with λ0 = 0).

(H6) For every λk eigenvalue of A(0):

1

2
+
iγ|∂X

2
+

√(
n− 2

2

)2

−
β2
|∂X
4

+ λk + β′|∂X /∈ −N

1

2
−
iγ|∂X

2
+

√(
n− 2

2

)2

−
β2
|∂X
4

+ λk + β′|∂X /∈ −N

This hypothesis is not mentioned in [106] but it seems necessary (it is at least sufficient)
to ensure that Proposition 5.4 in [106] applies to the effective normal operator with
no error term. Indeed, under this hypothesis, we can prove that the effective normal
operator has no kernel in the space of interest (see appendix B, note that by hypothesis
(H2), A(0) is an elliptic formally selfadjoint operator and by hypothesis (H5) there exists
some constant C > 0 such that A(0) + C is positive. Therefore, even replacing β′ by
β′ − C and taking L := A(0) + C, we can apply the result of appendix B).

We now check the hypothesis in our case: We write: P (σ) = P (0) + σQ− (1−R)σ2 with
P (0) already defined and

Q =
4Mar

∆2
r

Dφ −
4M

(
2Mr − a2

)
r∆r

x2Dx −
1

r2∆2
r

q1

q1 =2ir5s+ r4 (−6iMs− 2as cos (θ)) + r3
(
−8iM2s+ 4Mas cos (θ) + 2ia2s

)
+ r2

(
8iM3s+ 6iMa2s+ 2iMa2 − 2a3s cos (θ)

)
+ r

(
−4iM2a2s− 4iM2a2

)
+ 2iMa4

r2∆2
rR =− 16M3a2r + 4M2a4 − 4Mr5 + r4

(
4M2 + a2 sin2 (θ)

)
+ r3

(
−2Ma2 sin2 (θ)− 4Ma2

)
+ r2

(
16M4 + a4 sin2 (θ)

)
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(H1) The first hypothesis is obvious with the definition of R.

(H2) We have the correct form for P (0) if we define A as in (13.3) and β :=
2i(Mr(1+s)−a2−r2s)

∆r
= −2is+O(x) and a′ = 0. We check that

x2

2i
(A−A∗) =

2sa(M − r)
∆2
r

Dφ

(H3) We have the correct form for Q if we define b0 := −4M(2Mr−a2)
∆r

= O(x), S := 4Mar3

∆2
r
Dφ

(self adjoint) and γ := − 1
r∆2

r
q1 = −2is+O(x)

(H4) The decomposition of x2A has already been checked and the decomposition of x2S is
obtained by taking R†3 := − 4iMar

∆r

√(
1− a2

∆r

)
∆r

(and all the other terms equal to zero).

Therefore in our case, the effective normal operator is

Neff(P̂ (σ)) =(x2Dx)2 + 2ix(x2Dx)

+ x2

(
1

sin θ
Dθ sin θDθ +

1

sin2 θ
D2
φ +

2s cos θ

sin2 θ
Dφ + s2cotan2θ + s

)
− 2isx2

(
xDx +

i

2

)
− sx2 − 2σ

(
x2Dx + ix

)
To be coherent with the notation in [106], we study the conjugated and renormalized operator:

x
−5
2 N(P̂ (0))x

1
2 =(xDx)2 +A(0) +

1

4
− 2isxDx − s

After a Mellin transform with respect to x, we obtain:

τ2
b − 2isτb − s+A(0) +

1

4

To deduce the central weight interval (the analog of (2.12) in [106], we have to compute the
eigenvalues of A(0)− s (which is the spin-s-weighted Laplacian). The eigenvalues of A(0)− s
are (l+ s)(l− s) + l for l ∈ N such that l ≥ |s|. Therefore, the central interval for weights for
the scattering end (the equivalent of (2.12) in [106]) is

(
−3

2 − s− |s| ,−
1
2 − s+ |s|

)
.

Remark 13.2.7. For α = 0, l ∈ (−3
2 −s−|s| ,−

1
2), l+ r̃ > −1

2 −2s and =(σ) ≥ 0 the second
resolved microlocal spaces H r̃,m,l

sc,b,res used in [106] enables to state a more precise estimate:

‖χ1u‖H r̃,r̃+l,l
sc,b,res

≤ C
(∥∥∥(x+ |σ|)−1P̂ (σ)u

∥∥∥
H r̃−2,l+r̃+1,l+1
sc,b,res

+ ‖u‖
H−N,l−1

(b)

)
We can then use the bound (for ε ∈ [0, 1]): (x + |σ|)−1 ≤ |σ|ε−1(x + |σ|)−ε and the fact that
(x+ |σ|)εH r̃−2,l+r̃+1,l+1

sc,b,res ⊃ H r̃−2,l+r̃+1,l+1+ε
sc,b,res ⊃ H r̃−ε,l+1+ε

(b) to get:

‖χ1u‖H r̃,l
(b)

≤ C

(
|σ|ε−1

∥∥∥P̂ (σ)u
∥∥∥
H r̃−ε,l+1+ε

(b)

+ ‖u‖
H−N,l−1

(b)

)

138



13.3 High frequency estimate at the trapped set

We use notations introduced in section 12.2. We recall that the operator T̂s,h was defined at
the end of Section 10.1. We begin by some preliminary computations near the trapped set
(on the region UI with I = (rmin, rmax)).

Lemma 13.3.1. Let z ∈ C. On UI , we have:

1

2hi
(T̂s,h(z)− T̂ ∗s,h(z)) =

2(∆r + rs(r −M))

r
hDr +

2a(s(M − r) + 2Mrh−1=(z))

∆r
hDφ

+ 2h−1=(z)<(z)

(
a2 sin2(θ)− (a2 + r2)2

∆r

)
− 2s<(z)

M(a2 − r2) + r∆r

∆r
+
ih

r2
(2Mr(s+ 2)− a2 − 3r2(s+ 1))

+ 2=(z)as cos θ

(where as usual, the adjoint is computed with respect to the volume form r2 sin θ dt dr dφ dθ).
If z = z0 with z0 ∈ {−1, 1}, the semiclassical principal symbol of 1

2hi(T̂s,h(z) − T̂ ∗s,h(z)) is
0 on the trapped set Kz0. For 0 ≤ =(z) ≤ ηh and z = z0 + O(h), the principal symbol of

1
2hi(T̂s,h(z)− T̂ ∗s,h(z)) has the same sign as −<(z) on the trapped set.

Remark 13.3.2. Note that since the principal symbol of T̂s is G̃, the most natural choice for
the volume form is the one associated to the metric g̃ which is sin(θ) dr dθ dφ. However, since
Hph does not vanish on the trapped set, the choice of the volume form matters. The factor r2

is harmless here since it amounts to replace T̂ ∗s,h by r−2T̂s,hr
2 and the difference r−2[T̂s,h, r

2]

has principal symbol r−2Hphr
2 = 0 on the trapped set.

Proof. By a direct computation we find

psub :=
2(∆r + rs(r −M))

r
ξ − 2as(r −M)

∆r
ζ − 2z0s

M(a2 − r2) + r∆r

∆r

Then, using that ξ = 0 on Kz0 , we find:

psub = −2as(r −M)

∆r
ζ − 2z0s

M(a2 − r2) + r∆r

∆r

We introduce the function α := −(r2+a2)z0+aζ
∆r

. We have aζ = ∆rα+ (r2 + a2)z0 and, on Kz0 ,
we have (r −M)α∆r = −2r∆rz0. Therefore on Kz0 , we have:

psub = −2s(r −M)

∆r
(α∆r + (r2 + a2)z0)− 2sz0

M(a2 − r2) + r∆r

∆r

= 4srz0 −
2sz0(r −M)(r2 + a2)

∆r
− 2z0s

M(a2 − r2)

∆r
− 2sz0r

= 2srz0 −
2sz0

∆r
r∆r

= 0.

When 0 ≤ =(z) ≤ ηh for some η > 0 and z = z0 + O(h), the previous computation shows
that, on the trapped set, the only non vanishing contribution comes from the terms containing
h−1=(z) and therefore:

psub = h−1=(z)

(
2a2 sin2 θz0 − 2

(a2 + r2)2

∆r
z0 +

4Mar

∆r
ζ

)
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We note that this term does not depend on s and therefore, this part of the computation is
not specific to the Teukolsky case (see for example the proof of (5.81) in [45]). We recall the
argument below. Using that 2a(a2+r2)

∆r
− 2a = 4Mar

∆r
, we write:

A :=2

(
a2 sin2 θz0 −

(a2 + r2)2

∆r
z0

)
+

4Mar

∆r
ζ

=2(a2 + r2)α− 2(aζ − a2 sin2(θ)z0)

On Kz0 , we have α2∆r = η2 +
(

ζ
sin θ − a sin θz0

)2
and therefore:

(a2 + r2) |α| ≥ |a|
√

∆r sin(θ) |α|
≥
∣∣aζ − a2 sin2(θ)z0

∣∣
Therefore A has the same sign as 2(a2 + r2)α which is equal to −4r(a2+r2)

r−M z0 on Kz0 .

We need the following modified version of theorem 1 in [28]:

Theorem 13.3.3. Let Ph ∈ Ψm
h be a principally scalar and principally real operator on a

smooth (complex) vector bundle (with a fixed smooth hermitian inner product) over some
orientable smooth manifold X (with a fixed volume form). We denote by ph its semiclassical
principal symbol, by Σ the semiclassical characteristic set p−1

h {0} and by Hb the semiclassical
Hamiltonian vector field. We assume that there exists φ± smooth functions defined on a
bounded open set U of T ∗X such that for a fixed small ε > 0:

1. There exists δ > 0 such that, Uδ := {|φ+| < δ, |φ−| < δ, |p| < δ} is compactly contained
in U .

2. Hpφ± = ∓c±φ± with c± smooth bounded positive functions on U satisfying inf c± >
νmin − ε > 0.

3. {φ+, φ−} > 0

Let V b U be a neighborhood of K := {φ+ = φ− = 0}. We assume that 1
2ihsh(Ph − P ∗h ) <

νmin−ε
2 on K. There exist B0, B1, G ∈ Ψ0

h with:

• WFh(B0) ∪WFh(B1) ∪WFh(G) ⊂ U

• sh(B0) = 1 on V

• WFh(B1) ∩ {φ+ = 0} = ∅

such that:

‖B0u‖L2 ≤ C
(
h−1 ‖B1u‖L2 + h−2 ‖GPh(z)u‖L2

)
Remark 13.3.4. In our setting, we use Lemma 12.2.29 for the existence of φ±. When z0 = 1,
we use Theorem 13.3.3 with operator T̂s,h(z) and when z0 = −1, we use Theorem 13.3.3 with
operator −T̂s,h(z).

Remark 13.3.5. The principal differences with respect to [28], theorem 1 are the fact that Ph
is not of the form P̃h−λ with P̃h selfadjoint (but the hypothesis 1

2ihsh(Ph−P ∗h ) < νmin−ε
2 on K

replaces self adjointness in the proof) and the fact that we do not use an absorbing potential
(and therefore we keep the estimate microlocal). To see how the result in [28] can be adapted
in this context, see [49, Theorem 4.7].
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We can now apply Theorem 13.3.3 to the operators T̂s,h(z), −T̂s,h(z), T̂s,h(z)∗ and
−T̂s,h(z)∗ (see Lemma 12.2.29 and Lemma 13.3.1 to see that the requirements are met) to get
the semiclassical estimate near the trapped set:

Proposition 13.3.6. Let z = z0 + O(h) with z0 ∈ {−1, 1}. There exists U a bounded
neighborhood of the trapped set K and BK , B0 in Ψ0,0

b,h with BK elliptic on a neighborhood of
K, WF (B0) ∩ Σ ⊂ Σsgnz0 with either WF (B0) ∩ Γ+ = ∅ (when z0 = 1 in (13.5) or z0 = −1
in (13.6)) or WF (B0) ∩ Γ− = ∅ (when z0 = −1 in (13.5) or z0 = 1 in (13.6)) such that for
all u ∈ H r̃,l

(b) and all v ∈ Ḣ r̃,l
(b):

‖BKu‖H r̃,l
(b),h

≤ C
(
h−1 ‖B0u‖H r̃,l

(b),h

+ h−2
∥∥∥T̂s,h(z)u

∥∥∥
H
r̃,l−1
(b),h

+ h ‖u‖
H
r̃,l
(b),h

)
(13.5)

‖BKv‖Ḣ r̃,l
(b),h

≤ C

(
h−1 ‖B0v‖Ḣ r̃,l

(b),h

+ h−2
∥∥∥T̂s,h(z)∗v

∥∥∥
Ḣ r̃,l−1

(b),h

+ h ‖v‖
Ḣ r̃,l

(b),h

)
(13.6)

13.4 Global estimates

We recall the following elementary lemma (see also [103, Section 2.6]).

Lemma 13.4.1. Let X0 ⊂ X1 ⊂ X2 and Y0 ⊂ Y1 ⊂ Y2 be Banach spaces (with continuous
dense inclusions). Let P : X1 → Y2 be a bounded operator such that P|X0

is bounded from
X0 to Y1. We assume that both inclusions X1 ⊂ X2 and Y0 ⊂ Y1 are compact and that there
exists C > 0 such that for all u ∈ X1 and all v ∈ Y ∗1 :

‖u‖X1
≤ C

(
‖Pu‖Y1

+ ‖u‖X2

)
(13.7)

‖v‖Y ∗1 ≤ C
(
‖P ∗v‖X∗1 + ‖v‖Y ∗0

)
. (13.8)

Note that in the estimates, the right hand side may be infinite. Under these assumptions, P
is Fredholm as an operator between the Banach space X := {u ∈ X1 : Pu ∈ Y1} (endowed with
the norm ‖u‖2X = ‖u‖2X1

+ ‖Pu‖2Y1
) and Y1.

Proof. We begin by proving that X is a Banach space. Let (un) be a Cauchy sequence in X.
Then by completeness of X1, there exists u ∈ X1 such that lim

n→+∞
un = u for the topology

of X1. Moreover by completeness of Y1 there exists v ∈ Y1 such that lim
n→+∞

Pun = v for the
topology of Y1. On the other hand, by continuity of P , we have lim

n→+∞
Pun = Pu for the

topology of Y2. By uniqueness of the limit in Y2, we have Pu = v ∈ Y1 and lim
n→+∞

un = u in
X.

Now we prove the Fredholm property. For all u ∈ Ker(P ), we have ‖u‖X1
≤ C ‖u‖X2

by
estimate (C.16). By compactness of the inclusionX1 ⊂ X2, we deduce thatB(0, 1)X1∩Ker(P )
is relatively compact for the topology induced by X2. The topology induced by X2 is the same
as the topology induced by X1 since the two norms are equivalent on Ker(P ). Therefore,
Ker(P ) endowed with the norm X1 has a relatively compact unit ball. We deduce that
dim(Ker(P )) < +∞. The same argument using (C.17) and the compactness of the inclusion
Y ∗1 ⊂ Y ∗0 proves that Ker(P ∗) = Ran(P )⊥ is finite dimensional.

We now prove that P (X) is closed. We take y1, ..., yk a normed basis of Ker(P ) and we
denote by y∗1, ..., y∗k extensions (of norm 1) of the dual basis (obtained by the Hahn-Banach
theorem). Let (un) be a sequence in X and v ∈ Y1 such that lim

n→+∞
Pun = v in Y1. We have

to prove that v ∈ P (X). Without loss of generality, we can assume that y∗i (un) = 0 (replacing
un by un −

∑
i≤k y

∗
i (un)yi which does not change the value of v). By contradiction assume
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that un is unbounded in X1. Extracting a subsequence, we can assume ‖un‖X1
→ +∞.

Then lim
n→+∞

P

(
un

‖un‖X1

)
= 0 in Y1. By compactness, we can assume (after extracting a

subsequence) that un
‖un‖X1

converges to z ∈ X2 for the topology of X2. Using inequality

(C.16), we deduce that un
‖un‖X1

is Cauchy in X1. We deduce z ∈ Ker(P ) and we have the

convergence in X1. Then by continuity, for i = 1, ..., k, we have y∗i (z) = 0 and because

z ∈ Ker(P ) we deduce z = 0. But it is a contradiction since
∥∥∥∥ un
‖un‖X1

∥∥∥∥
X

= 1. So (un) is

bounded in X1. After extracting a subsequence, we can assume that lim
n→+∞

un = u in X2.

Then we use (C.16) and deduce that (un) is Cauchy in X1. Since we also have that (Pun) is
Cauchy in Y1, by completeness of X and uniqueness of the limit in X2, we have lim

n→+∞
un = u

in X. By uniqueness of the limit in Y1, we deduce that v = Pu ∈ P (X).

Definition 13.4.2. We define the following spaces X r̃,lσ :=
{
u ∈ H r̃,l

b : T̂s(σ)u ∈ H r̃,l−1
(b)

}
endowed with the norm ‖u‖X r̃,lσ := ‖u‖

H
r̃,l
(b)

+
∥∥∥T̂s(σ)u

∥∥∥
H
r̃,l−1
(b)

. We also define W r̃,l
σ :={

u ∈ H r̃,l
(b) : T̂s(σ)u ∈ H r̃,l

(b)

}
endowed with the norm ‖u‖W r̃,l

σ
:= ‖u‖

H
r̃,l
(b)

+
∥∥∥T̂s(σ)u

∥∥∥
H
r̃,l
(b)

.

The Fredholm estimates that we want to prove are stated in the following Theorem.

Theorem 13.4.3. Let K ⊂ {σ ∈ C : =(σ) ≥ 0} \ {0} be compact. If l < −1
2 , r̃+ l > −1

2 − 2s

and r̃ > 1
2 + s, then there exists C > 0 such that for all u ∈ H r̃,l

(b), all v ∈ H
−r̃,1−l
(b) and all

σ ∈ K, we have:

‖u‖
H
r̃,l
(b)

≤ C
(∥∥∥T̂s(σ)u

∥∥∥
H
r̃,l−1
(b)

+ ‖u‖
H
r̃−1,l−1
(b)

)
‖v‖

Ḣ−r̃,1−l
(b)

≤ C

(∥∥∥T̂s(σ)∗v
∥∥∥
Ḣ−r̃,−l

(b)

+ ‖v‖
H−r̃−1,−l

(b)

)

Proof. The key point is that the junctions between the estimates take place in an elliptic region
for T̂s(σ) and T̂s(σ)∗, therefore, we can use the elliptic estimate to bound the commutator
terms. We prove the first estimate as an example. Let u ∈ X r̃,lσ . Then we define three
smooth cut-off functions χ1, χ2 and χ3 such that χ1 +χ2 +χ3 = 1 and such that supp(χ1) ⊂
(r+−ε, 2M+D) (whereD is defined in Proposition 13.1.8), χ1 = 1 on (r+−ε, 2M), supp(χ3) ⊂
(6M,+∞) and χ3 = 1 in a neighborhood of +∞. We have:

‖u‖
H r̃,l

(b)

≤ ‖χ1u‖H r̃,l
(b)

+ ‖χ2u‖H r̃,l
(b)

+ ‖χ3u‖H r̃,l
(b)

.

We use proposition 13.1.8 to bound ‖χ1u‖H r̃,l
(b)

, proposition 10.3.8 (elliptic estimate) to bound

‖χ2u‖H r̃,l
(b)

and proposition 13.2.2 to bound ‖χ3u‖H r̃,l
(b)

. We get:

‖u‖
H r̃,l

(b)

≤ C

(∥∥∥T̂s(σ)χ1u
∥∥∥
H r̃,l−1

(b)

+
∥∥∥T̂s(σ)χ2u

∥∥∥
H r̃,l−1

(b)

+
∥∥∥T̂s(σ)χ3u

∥∥∥
H r̃,l−1

(b)

+ ‖u‖
H
r̃−1,l−1
(b)

)

≤ C

(∥∥∥T̂s(σ)u
∥∥∥
H r̃,l−1

(b)

+
3∑
i=1

∥∥∥[T̂s(σ), χi]u
∥∥∥
H r̃,l−1

(b)

+ ‖u‖
H
r̃−1,l−1
(b)

)
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The terms
∥∥∥[T̂s(σ), χi]u

∥∥∥
H r̃,l−1

(b)

can be estimated by an elliptic estimate (proposition 10.3.8).

We prove the bound for T̂s(σ)∗ exactly in the same way.

Remark 13.4.4. We see in the proof that we loose some regularity away from ∂X, we could
obtain more precise bounds by using second microlocal spaces (see [105]).

Corollary 13.4.5. Let σ ∈ C \ {0} with =(σ) ≥ 0. If l < −1
2 , r̃ + l > −1

2 − 2s − 4M=(σ)

and r̃ > 1
2 + s− a2+r2

+

r+−M=(σ), then T̂s(σ) is Fredholm as an operator from X r̃,lσ to H r̃,l−1
(b) .

Global estimates near zero energy

Proposition 13.4.6. Let l < −1
2 , r̃ + l > −1

2 − 2s, r̃ > 1
2 + s and

α ∈
(
l +

1

2
+ s− |s| , l +

3

2
+ s+ |s|

)
.

Then, there exists σ0 > 0 such that for |σ| ≤ σ0 and =(σ) ≥ 0

‖(x+ |σ|)αu‖
H
r̃,l
(b)

≤ C
(∥∥∥(x+ |σ|)αT̂s(σ)u

∥∥∥
H
r̃−1,l
(b)

+ ‖u‖
H
r̃−1,l−1
(b)

)
and the constant C is independent of σ. We also have the version coming from the second
microlocalized resolved space (see Remark 13.2.7) for l ∈ (−3

2 − s− |s| ,−
1
2), l+ r̃ > −1

2 − 2s,
r̃ > 1

2 + s, =(σ) ≥ 0 and ε ∈ (0, 1):

‖u‖
H
r̃,l
(b)

≤ C
(
|σ|ε−1

∥∥∥T̂s(σ)u
∥∥∥
H
r̃−ε,l−1+ε
(b)

+ ‖u‖
H−N,l−1

(b)

)
Proof. The proof is very similar to the proof of proposition 13.4.3 since the gluing is made on
elliptic regions.

Lemma 13.4.7. Let X and Y be Banach spaces. Let P : X → Y be a Fredholm operator. Let
B be a Banach space which is continuously and densely included in Y , then P is a Fredholm
operator from A = P−1(B) to B (A is endowed with the graph norm). Morever, ind(P ) ≤
ind(P|A).

Proof. First, ker(P ) = ker(P|A) is still finite dimensional. We have an inclusion from B/(B∩
P (X)) into Y/P (X). Therefore, dim(B/(B ∩ P (X))) ≤ dim(Y/P (X)) < +∞. Moreover,
B ∩ P (X) is closed into B since P (X) is closed in Y .

Corollary 13.4.8. Assume:

−3

2
− s− |s| < l < −1

2

r̃ + l > −1

2
− 2s

r̃ >
1

2
+ s

Then, for every σ ∈ C \ {0} such that =(σ) ≥ 0, we have that T̂s(σ) is a Fredholm operator
between W r̃,l

σ and H r̃,l
(b). Moreover, the index of T̂s(σ) as an operator between W r̃,l

σ and H r̃,l
(b)

is larger than the index as an operator between X r̃,lσ and H r̃−1,l
(b) .
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Proof. We use Lemma 13.4.7 with the space B := H
r̃,l
(b), Y := H

r̃−1,l
(b) , X := X r̃,lσ since we know

by Corollary 13.4.5 that T̂s(σ) is Fredholm from X to Y under the hypotheses of Corollary
13.4.8.

Remark 13.4.9. The advantage of the previous corollary is that, once we have proved the
invertibility, the last estimate in Proposition 13.4.6 translates into a uniform bound for the
inverse up to σ = 0. This is not the case if W r̃,l

σ is replaced by X r̃,lσ .

Global semiclassical estimates

Proposition 13.4.10. Let η > 0. Let l < −1
2 , r̃ + l > −1

2 − 2s and r̃ > 1
2 + s. There exits

A > 0 such that, for all σ ∈ C with 0 ≤ =(σ) ≤ η and |σ| ≥ A and for all u ∈ H r̃,l
(b),|σ|−1,

v ∈ Ḣ−r̃,1−l
(b),|σ|−1 we have:

‖u‖
H
r̃,l

(b),|σ|−1
≤ C

∥∥∥T̂s(σ)u
∥∥∥
H
r̃,l−1

(b),|σ|−1

‖v‖
Ḣ−r̃,1−l

(b),|σ|−1
≤ C

∥∥∥T̂s(σ)∗v
∥∥∥
Ḣ−r̃,−l

(b),|σ|−1

Remark 13.4.11. In particular, we have that T̂s(σ) is invertible in this range of σ between
X r̃,lσ and H r̃,l−1

(b) (it is injective with closed range by the first estimate and has dense range by
the third).

Proof. We introduce the semiclassical parameter h = |σ|−1, z = hσ and the operator T̂s,h(z) =

h2T̂s(h
−1z). Note that z = z0 +O(h) with z0 ∈ {±1}. We denote by ph,z the (semiclassical)

principal symbol of T̂s,h(z). To be concrete, we present the case z0 = 1 for the first estimate
(the other cases are similar).

The estimate is proved by using microlocal propagation of singularities and elliptic esti-
mates in semiclassical second microlocal spaces on the model of [105, Section 5]. The difference
in our case is that the non trapping hypothesis is not satisfied. We recall the structure of
the proof in [105] to see where this assumption comes into place and why we can replace
it by our analysis of the flow (Proposition 12.2.28) and the semiclassical estimates obtained
previously (Propositions 13.1.4, 13.1.5, 13.2.3, 13.2.4, 13.3.6) and the hyperbolic semiclassi-
cal estimate2 (Proposition A.1.7). By compactness of the semiclassical characteristic set on
scT ∗X ∩

{
x ≤ 1

r+− ε2

}
, it is enough to prove a microlocal estimate on a neighborhood of each

point of the semiclassical characteristic set (near any point outside of the characteristic set,
the estimate is obtained by ellipticity). Note that, with the hypotheses on r̃ and l, as proved
in [105] and restated in Proposition 13.2.4, we have a source estimate near Rout. Under
the non trapping assumption, this can be used to initialize all the propagation of singular-
ities estimates and the sink estimate at Rin. In our case, by proposition 12.2.28, for every
x ∈ Σph \Rin∪K1, there exists a neighborhood of Vx and t ∈ R such that etHphVx ⊂ V(Rin) or
V(K1) or V(L+) or V(L−) where V(A) is an arbitrary (but fixed) neighborhood of A. There-
fore, a microlocal estimate of u in the neighborhood of all these sets is enough to initialize
propagation of singularities, sink estimate at Rin (as proved in [105] and restated in Proposi-
tion 13.2.3) and semiclassical hyperbolic estimate on

{
x > 1

r+− ε2

}
(Proposition A.1.7). With

2Note that T̂s,h(z) satisfies the hypotheses of proposition A.1.7 on [r+ − ε
2
,+∞) and χu ∈ Hr̃h if r plays

the role of the time variable (and is affinely reparametrized so that r+ − ε
2
correspond to time 0 and r+ − ε

correspond to time T ).
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our assumptions on r̃ and l, we already have unconditional3 estimates on a neighborhood of
Rout (obtained in [105] and restated in Proposition 13.2.4), and on a neighborhood of L+ and
L− (see Proposition 13.1.4). The only remaining estimate to get is on the neighborhood of
K1. By proposition 13.3.6, we have an estimate which require control on WFh(B0) (where
B0 is as defined in Proposition 13.3.6 with WFh(B0) ∩ Γ+ = ∅). Since WFh(B0) ∩ Γ+ = ∅,
we can get the estimate on WFh(B0) by propagation of singularities only from the estimates
on Rin, L+ and L− which conclude the proof.

13.5 Index zero property

Note that the spaces X r̃,lσ and W r̃,l
σ depend on σ and this fact prevents us to use directly

the stability of the index for T̂s(σ). However, we can adapt the deformation argument in the
proof of Theorem 6.1 in [42]. We begin by the following lemma which is a generalization of
the stability of invertibility to the case of operators. The proof relies on an argument given
in [106] (in the proof of (5.8)).

Lemma 13.5.1. Let E,Ew, F, Fw be reflexive Banach spaces with continuous and compact
inclusion E ⊂ Ew and continuous inclusion F ⊂ Fw. and let (Pj)j∈N be a sequence of bounded
operators from Ew to Fw such that lim

j→+∞
Pj = P∞ in the operator norm topology. We also

assume that we have uniform half Fredholm estimates for all j ∈ N ∪ {∞}:

‖u‖E ≤ C
(
‖Pju‖F + ‖u‖Ew

)
in the strong sense that if the right-hand side is finite for some u ∈ Ew, then u ∈ E and the
inequality holds. Then, if ker(P∞) ∩ E = {0}, there exists N ∈ N and C ′ > 0 such that for
all n ≥ N (including n =∞) and for all u ∈ Ew,

‖u‖E ≤ C
′ ‖Pnu‖F (13.9)

in the strong sense that if the right-hand side is finite, then u ∈ E and the inequality holds.

Remark 13.5.2. In view of the half Fredholm estimate, ker(P∞)∩E = ker(P∞). Moreover,
if u ∈ Ew satisfies Pnu ∈ F for some n ∈ N ∪ {∞}, we get u ∈ E. Therefore, the strong
character of the second estimate is a consequence of the strong character of the first.

Proof. We argue by contradiction. If (13.9) is false, there exists a sequence (jn)n∈N in N∪{∞}
with lim

n→+∞
jn = +∞ and (un)n∈N with ‖un‖E = 1 such that lim

n→+∞
Pjnun = 0 in F . There

exists v ∈ E such that un ⇀ v and by compactness of the inclusion of E into Ew, we have
strong convergence in Ew. By the half Fredholm estimate, we have ‖v‖Ew ≥ C

−1 and therefore
v 6= 0. We now show that P∞v = 0. We estimate:

‖Pjnun − P∞v‖Fw ≤‖(Pjn − P∞)un‖Fw + ‖P∞(un − v)‖Fw
≤‖Pjn − P∞‖L(Ew,Fw) ‖un‖Ew + ‖P∞‖L(Ew,Fw) ‖un − v‖Ew

Finally, using that un converges to v in Ew (and in particular is bounded) and the convergence
of Pjn towards P∞ in the operator norm topology, we find: lim

n→+∞
Pjnun = P∞v in Fw since

the limit is 0 in F , we find P∞v = 0. Using the half Fredholm estimate, we find that v ∈ E
and this contradicts ker(P∞) ∩ E = {0}.

As a consequence of the previous lemma, we have the following proposition:
3In the sense which does not require an estimate in an other region of phase space.
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Proposition 13.5.3. Let E,Ew, Es, F, Fw, Fs be reflexive Banach spaces such that Es ⊂ E ⊂
Ew, Fs ⊂ F ⊂ Fw are continuous and dense and E ⊂ Ew and F ∗ ⊂ F ∗s are compact. Let
(Pj)j∈N be a sequence of bounded operators in L(Ew, Fw) with (Pj)|Es ∈ L(Es, Fs) such that

lim
j→+∞

Pj = P∞ in both operator norm topologies (therefore we have the same convergence

property for the adjoint operators). We also assume that we have uniform Fredholm estimates
for all j ∈ N ∪ {∞}:

‖u‖E ≤ C
(
‖Pju‖F + ‖u‖Ew

)
‖u‖F ∗ ≤ C

(∥∥P ∗j u∥∥E∗ + ‖u‖F ∗s
)

in the strong sense that if the right-hand side is finite, so is the left hand side and the inequality
holds. Then, there exists N ∈ N such that for all n ≥ N , Pn : {u ∈ E : Pnu ∈ F} → F and
P∞ : {u ∈ E : P∞u ∈ F} → F are Fredholm and have the same index.

Proof. The fact that Pn is Fredholm for any n ∈ N∪{∞} comes from lemma 13.4.1. Then we
can adapt the standard Grushin problem proof of stability of the index4 using lemma 13.5.1
on the operators and on their adjoint.

As a consequence, we have that

Proposition 13.5.4. Let σ ∈ C \ {0} with =(σ) ≥ 0, l < −1
2 , r̃+ l > −1

2 − 2s and r̃ > 1
2 + s.

The index of T̂s(σ) as a Fredholm operator from X r̃,lσ → H
r̃,l−1
(b) is zero.

Proof. As stated in Remark 13.4.11, we know that T̂s(σ) has an inverse for <(σ) large enough.
Moreover, the index is locally constant by proposition 13.5.3 (with E := H

r̃,l
(b) and F = H

r̃,l−1
(b) ,

Ew := H
r̃−1,l−1
(b) , Fs := H

r̃+1,l
(b) , Es = H

r̃+3,l+1
(b) and Fw := H

r̃−3,l−2
(b) ).

Remark 13.5.5. By Lemma 13.4.8, the index of T̂s(σ) as a Fredholm operator from W r̃,l
σ →

H
r̃,l−1
b is non negative for all σ ∈ {=(σ) ≥ 0, σ 6= 0}.

13.6 Fredholm property for T̂s(0)

Near infinity, we have

T̂s(0) =

(
a2

∆r
− 1

sin2 θ

)
∂2
φ −

1

sin θ
∂θ sin θ∂θ −∆−sr ∂r∆

s+1
r ∂r

+ 4s(r −M)∂r − 2s

(
a(r −M)

∆r
+ i

cos θ

sin2 θ

)
∂φ + s2cotan2θ + s

σb(T̂s(0)) =− a2

∆r
ζ2
b + |(ζb, ηb)|2S2 + ξ2

b

N(T̂s(0)) =−∆S2 + (xDx)2 + i(2s+ 1)xDx − 4isxDx + 2s
cos θ

sin2 θ
Dφ + s2cotan2θ + s

We rewrite it:

N(T̂s(0)) =(xDx)2 + (i− 2is)xDx + ∆[s] + s

where we have used the non negative spin weighted Laplacian (acting on Bs with spectrum
{(l + s)(l − s) + l, l ∈ |s|+ N}):

∆[s] := −∆S2 +
2s cos θ

sin2 θ
Dφ + s2cotan2θ.

4See for example [29, Theorem C.5]
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For j ∈ |s| + N, we denote by Yj the eigenspace of ∆[s] associated with the eigenvalue
(j−s)(j+s)+j. For any r̃ ∈ R, we denote by Πj the operator on H r̃(Bs) which is the identity
on Yj and which vanishes on all Yj′ for j′ 6= j (it is well defined since ⊕j′Yj′ is dense in H s̃(Bs)
and it has norm smaller than 1). We denote by Y r̃,lj the completion of C∞c ((0, 1

r+−ε ]) ⊗ Yj
in the norm H

r̃,l
b . Note that Id ⊗ Πj (initially defined on C∞c ((0, 1

r+−ε ]) ⊗ H
r̃(Bs)) extends

by continuity to a bounded operator from H
r̃,l
(b) to H

r̃,l
(b)((0,

1
r+−ε ], Yj) which is the identity on

Y r̃,lj and zero on Y r̃,lp for p 6= j. With a slight abuse of notation, we also denote this operator
by Πj . We define Y r̃,l≤j := ⊕p≤jY r̃,lp and Y r̃,l≥j := ⊕p≥jY r̃,lp (Hilbert sum). For j ∈ N, we also

introduce S r̃,l≥|s|+j as the completion of C∞c ((0, 1
r+−ε))⊗

(
Γ(Bs) ∩ ⊕|m|≥|s|+j

m−s∈Z
Ker(∂φ − im)

)
in

the norm of H r̃,l
(b).

Proposition 13.6.1. Let l ∈ (−3
2 − s− |s| ,−

1
2 − s + |s|) and r̃ > 1

2 + s. T̂s(0) is Fredholm

from
{
u ∈ H r̃,l

(b) : T̂s(0)u ∈ H r̃−1,l
(b)

}
to H r̃−1,l

(b) . By lemma 13.4.7, it is also Fredholm from W r̃,l
0

to H r̃,l
(b).

Proof. We fix 1
2 + s < r̃′ < r̃ and N a large integer such that −N < 1 − r̃. First note that

the estimates of Proposition 13.1.8 still apply since we have not assumed σ 6= 0 in the proof.
Moreover, using the principal symbol computation, we have that T̂s(0) ∈ Ψ2,0

b is elliptic in the
b sense on

{
x ≤ 1

2M

}
. Therefore, for all u ∈ H r̃′,l

(b) and v ∈ Ḣ−N,l(b) we get the global estimates:

‖u‖
H
r̃,l
(b)

≤ C
(∥∥∥T̂s(0)u

∥∥∥
H
r̃−1,l
(b)

+ ‖u‖
H
r̃′,l
(b)

)
‖v‖

Ḣ1−r̃,−l
(b)

≤ C
(∥∥∥T̂s(0)∗v

∥∥∥
H
−r̃,−l
(b)

+ ‖v‖
H
−N,−l
(b)

)
To deduce a full Fredholm estimate, we improve the decay of the error term by a normal
operator argument. To perform normal operator argument, we consider the slightly simpler
conjugated operator:

Ñ(T̂s(0)) :=x−
1
2N(T̂s(0))x

1
2 (13.10)

=(xDx)2 − 2isxDx + ∆[s] +
1

4
. (13.11)

The Mellin-transform of this operator is

M(τ) := τ2 − 2isτ + ∆[s] +
1

4
.

For =(τ) ∈ (−1
2+s−|s| , 1

2+s+|s|), we have <(τ2−2isτ+ 1
4) > − |s|. In particular, the operator

M(τ) is invertible on each Yj for j ∈ |s|+N with inverse
(
τ2 − 2isτ + (j − s)(j + s) + j + 1

4

)−1

which is bounded by C<(τ)−2 uniformly with respect to j when the imaginary part of τ is
fixed in the interval (−1

2 + s − |s| , 1
2 + s + |s|). Let w ∈ H−N

′,l′

(b) with support in {x ≤ 1},
l′ ∈ (−3

2 − s − |s| ,−1
2 − s + |s|) and N ′ ∈ N. Assume that N(T̂s(0))w ∈ H

r̃−1,l′′

(b) with
l′′ ∈ (−3

2 − s− |s| ,−
1
2 − s+ |s|), we have the following equality for =(τ) = −l′′ + 1:

Mx−
1
2w(τ) =

∑
j∈|s|+N

(
τ2 − 2isτ + (j + s)(j − s) + j +

1

4

)−1

ΠjM
(
Ñ(T̂s(0))x−

1
2w
)
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where the sum converges in 〈<(τ)〉−(r̃+1) L2(R<(τ) × S2) and is bounded by∥∥∥C 〈<(τ)〉r̃−1M
(
Ñ(T̂s(0))x−

1
2w(τ)

)∥∥∥
L2(R<(τ)×S2)

.

In particular, we get5 that w ∈ H r̃+1,l′′

(b) and:

‖w‖
H
r̃+1,l′′
(b)

≤ C
∥∥∥N(T̂s(0))w

∥∥∥
H
r̃−1,l′′
(b)

.

We get back to u as defined in the beginning of the proof. Let χ be a smooth cutoff with
support in {x ≤ 1} equal to 1 in a neighborhood of {x = 0}. Since N(T̂s(0))− T̂s(0) ∈ xDiff2

b

and T̂s(0)u ∈ H r̃−1,l, we deduce that N(T̂s(0))χu ∈ H r̃′−2,l. Therefore, we have:

‖u‖
H
r̃′,l
(b)

≤‖u‖
H
r̃′,l−1
(b)

+ ‖χu‖
H
r̃′,l
(b)

≤‖u‖
H
r̃′,l−1
(b)

+ C
∥∥∥N(T̂s(0))χu

∥∥∥
H
r̃′−2,l
(b)

≤C ′
(
‖u‖

H
r̃′,l−1
(b)

+
∥∥∥T̂s(0)χu

∥∥∥
H
r̃′−2,l
(b)

)
≤C ′′

(
‖u‖

H
r̃′,l−1
(b)

+
∥∥∥T̂s(0)χu

∥∥∥
H
r̃−1,l
(b)

)
.

Using this in estimate (13.10), we get

‖u‖
H
r̃,l
(b)

≤ C
(∥∥∥T̂s(0)u

∥∥∥
H
r̃−1,l
(b)

+ ‖u‖
H
r̃′,l−1
(b)

)
.

We can do a similar normal operator argument for the adjoint T̂s(0)∗ (but this time, we find
that the decay index has to belong to (1

2 + s− |s| , 3
2 + s+ |s|) ) and we get an estimate of the

form:

‖v‖
Ḣ1−r̃,−l

(b)

≤ C

(∥∥∥T̂ ∗(0)v
∥∥∥
Ḣ−r̃,−l

(b)

+ ‖v‖
Ḣ−r̃,−l−1

(b)

)
.

Finally, by Lemma 13.4.1, we get the proposition.

We now describe precisely the kernel of T̂s(0) and T̂s(0)∗. To do so, it is easier to write
T̂s(0) in (r, θ, φ∗) coordinates:

T̂s(0) = −∆r∂
2
r + 2((r −M)(s− 1)− a∂φ∗)∂r + ∆[s] + s

r2T̂s(0)∗r−2 = −∆r∂
2
r + 2((r −M)(−s− 1)− a∂φ∗)∂r + ∆[s] − s

Where the adjoint is taken with respect to the density r2 sin(θ) dr dφ∗ dθ. For l ∈ |s| + N
and −l ≤ m ≤ l (with m− s ∈ Z), we denote by fl,m the normalized spin weighted spherical
harmonics associated to the eigenvalue (l+s)(l−s)+ l and such that ∂φ∗fl,m = imfl,m. These
functions form a Hilbert basis of L2(Bs).

Following [85, Section 9], we introduce the hypergeometric function

F(a, b, c, z) :=

+∞∑
k=0

(a)k(b)k
Γ(c+ k)

zk

k!

where (a)k :=
∏k−1
j=0(a+ j).

5See Lemma 14.2.1 and 14.2.2 for more details about this step
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Proposition 13.6.2. Let T̂ ∗s (0) denotes the adjoint of T̂s(0) with respect to the volume form
r2 sin θ dr dφ∗ dθ. We have:

ker(T̂s(0)) ∩Hs+ 1
2
,q

(b) =
⊕

|s|≤l<− 3
2
−s−q

|m|≤l

Cul,m

ker(T̂s(0)∗) ∩ Ḣ(−s+ 1
2)−,−q

(b) =
⊕

|s|≤l< 1
2

+s+q

|m|≤l

Cu∗l,m

where

If m 6= 0 or s /∈ Z

ul,m F
(
−l − s, 1 + l − s, 1− s+ 2iam

r+−r− ,
r+−r
r+−r−

)
fl,m(θ, φ∗)

u∗l,m r−2 (r−r+)
−s− 2iam

r+−r−
+

(r+−r−)
−s− 2iam

r+−r−
F
(
−l − 2iam

r+−r− , 1 + l − 2iam
r+−r− , 1− s−

2iam
r+−r− ,

r+−r
r+−r−

)
fl,m(θ, φ∗)

If m = 0 and s ∈ −1− N

ul,m F
(
−l − s, 1 + l − s, 1− s, r+−r

r+−r−

)
fl,m(θ, φ∗)

u∗l,m r−21(r+,+∞)

(
r−r+
r+−r−

)−s (
r−r−
r+−r−

)−s
F
(
−l − s, 1 + l − s, 1− s, r+−r

r+−r−

)
fl,m(θ, φ∗)

If m = 0 and s ∈ N

ul,m

(
r−r+
r+−r−

)s (
r−r−
r+−r−

)s
F
(
−l + s, 1 + l + s, 1 + s, r+−r

r+−r−

)
fl,m(θ, φ∗)

u∗l,m r−2
(

(l+s)!
(l−s)!(r+ − r−)−s1(r+,+∞)F

(
−l + s, 1 + l + s, 1 + s, r+−r

r+−r−

)
+
∑s−1

j=0
(l+s−1−j)!

(l−s+1+j)!(s−1−j)!(r+ − r−)−s+1+jδ
(j)
r+

)
fl,m(θ, φ∗)

Proof. First, we decompose u ∈ H
s+ 1

2
,q

(b) on ⊕l≥|s|,−l≤m≤lH
s+ 1

2
,q

(b) ([r+ − ε,+∞)) ⊗ fl,m (we

denote by ul,m the element of Hs+ 1
2
,q

(b) ([r+− ε,+∞)) in this decomposition). If u ∈ ker(T̂s(0)),
we have

T̂ (0)l,m,sul,m :=(−∆r∂
2
r + 2((r −M)(s− 1)− aim)∂r + (l − s+ 1)(l + s))ul,m

=0.

This is a hypergeometric equation and we can put it in canonical form (see [85] chapter 5
section 8.1) by the change of variable: z = r−r−

r+−r− . With this new variable, we have:

T̂ (0)l,m,s = z(1− z)∂2
z +

(
1− s− 2iam

r+ − r−
− (2− 2s)z

)
∂z + (l − s+ 1)(l + s) (13.12)

Defining α := −l−s, β := l−s+1 and γ := 1−s− 2iam
r+−r− we get the canonical hypergeometric

equation:

T̂ (0)l,m,s = z(1− z)∂2
z + (γ − (1 + α+ β)z) ∂z − αβ.

Note that we can in the same way decompose v ∈ Ḣ r̃,−q−2 and if we assume that r−2v ∈
Ker(Ts(0)∗), we get that for all l ∈ |s|+ N and m ∈ Z + l with |m| ≤ l:

T̂ (0)l,m,−svl,m = 0
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Therefore, we are reduced to finding for all s ∈ 1
2Z and l,m as above the intersections

Ker(T̂ (0)l,m,s) ∩H
1
2

+s,q

(b) and Ker(T̂ (0)l,m,s) ∩ Ḣ r̃,−q−2
(b) . Therefore, we fix s ∈ 1

2Z, l ∈ |s| + N

and |m| ≤ l, um,l ∈ Ker(T̂ (0)l,m,s) ∩H
1
2

+s,q

(b) and vl,m ∈ Ker(T̂ (0)l,m,s) ∩ Ḣ r̃,−q−2
(b) .

We have three cases (because of possible integer coincidence):

• If s /∈ Z or m 6= 0. In this case 1 − γ /∈ Z and 1 + γ − α − β /∈ Z. We have two
independent solutions of the equation T̂ (0)l,m,su = 0:

u1 := F(α, β, α+ β + 1− γ, 1− z)

which is an analytic solution on C \ (−∞, 0] and equal to 1
Γ(α+β+1−γ) at z = 1 and

u2 := (z − 1)γ−α−βF(γ − β, γ − α, 1 + γ − α− β, 1− z)

(where we use the continuous branch of the logarithm defined on C \ (−∞, 0] which
coincides with the usual logarithm on (0,+∞)) which is an analytic solution on C \
(−∞, 1]. Note that u1 and u2 are linearly independent. By the study of the regular
singularity at infinity (by Frobenius method), we see that the indicial roots are α and
β (see for example [85, Chapter 5, Section 5]). Since β − α ∈ 1 + N, we have an integer
coincidence and we can find a connection formula analogous to (10.13) in [85]. It gives
the following form for u1 and u2 when z ∈ C \ (−∞, 1]:

u1(z) =
(β − α− 1)!

Γ(1− γ + β)Γ(β)
z−αH(z−1) + c1z

−β ln(z)G(z−1) (13.13)

u2(z) =
(β − α− 1)!

Γ(γ − α)Γ(1− α)
z−αH(z−1) + c2z

−β ln(z)G(z−1) (13.14)

where H is holomorphic on C \ [1,+∞) and H(0) = 1 and G is holomorphic
on C \ [1,+∞) and c1, c2 are constants. In particular since (β−α−1)!

Γ(1−γ+β)Γ(β) 6= 0 we

have u1(z) ∼ (β−α−1)!
Γ(1−γ+β)Γ(β)z

−α when z → +∞. We know that (ul,m)|(r+,+∞)
=

λ1u1

(
r−r−
r+−r−

)
+ λ2u2

(
r−r−
r+−r−

)
. In particular, ul,m − λ1u1

(
r−r−
r+−r−

)
is an extension of

λ2u2

(
r−r−
r+−r−

)
inHs+ 1

2
,loc

(b) ((r+−ε,+∞)). But this is impossible except if λ2 = 0. Indeed,

u2

(
r−r−
r+−r−

)
=
(
r−r+
r+−r−

)γ−α−β
Γ(1 + γ −α− β)−1 +

(
r−r+
r+−r−

)γ−α−β+1
F (r− r+) with F

extending smoothly on [r+−ε,+∞). In particular, since
(
r−r++i0
r+−r−

)γ−α−β+1
F (r−r+) ∈

H
( 3

2
+s)−,loc

(b) , u2 has an extension in H
1
2

+s,loc

(b) if and only if
(
r−r+
r+−r−

)γ−α−β
Γ(1 + γ−α−

β)−1 has a such an extension which is not the case. Therefore, (ul,m)|(r+,+∞)
= λ1u1

and a similar argument shows that (ul,m)|(r+−ε,r+)
= λ′1u1. We deduce that there exists

a0, ..., ak such that v1 := (λ1−λ′1)1(r+,+∞)u1 +
∑k

j=0 ajδ
(j)
r+ is a solution in Hs+ 1

2

(b) . Using
the equation, we have:

T̂ (0)m,l,sv1 =2(λ1 − λ′1)u1(r+) ((r+ −M)s− aim) δr+

+

k∑
j=0

(
2aj((r+ −M)(s+ j + 1)− aim)δ(j+1)

r+ − aj((j + 2)(j + 1)

+2(s− 1)(j + 1)− (l − s+ 1)(l + s))δ(j)
r+

)
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Therefore, the coefficient in front of δ(k+1)
r+ vanishes:

2ak((r+ −M)(s+ k + 1)− aim) = 0

Since we assumed thatm 6= 0 or s /∈ Z, we get ak = 0. By induction, we obtain a0 = ... =
ak = 0. Finally, the vanishing of the coefficient of δr+ gives λ1 = λ′1. We conclude that

ul,m ∈ Cu1

(
r−r−
r+−r−

)
. However, in view of (13.13), we have u1 ∈ H

1
2

+s,(− 3
2
−l−s)−

(b) (and

no better in term of decay). Therefore, ul,m can be non zero if and only if q < −3
2− l−s.

We now determine the form of vl,m. Since vl,m is a distribution supported on [r+ −
ε,+∞) and is the solution to a non degenerate differential equation on (r−, r+), it
has to be supported on [r+,+∞). We also have that (vl,m)|(r+,+∞)

= λ1u1 + λ2u2.

Since u2

(
r−r+
r+−r−

)
= (r − r+)γ−α−βF (z) where F is smooth near r − r+ and γ − α −

β /∈ Z, we have that ũ2 := (r − r+)γ−α−β+ F (z) (where xγ−α−β+ denote the unique
homogeneous distribution supported in [0,+∞) whose restriction to (0,+∞) is xγ−α−β)

is in ker(T̂ (0)l,m,s) ∩ Ḣ
( 1

2
+s)−,loc

(b) . Therefore, vl,m − λ2ũ2 = λ11[0,+∞)u1

(
r−r+
r+−r−

)
+∑k

j=0 ckδ
(j)
r+ ∈ ker(T̂ (0)l,m,s). But we have seen that in this case λ1 = a0 = ... = ak = 0.

Therefore,

vl,m = λ2ũ2

(
r − r+

r+ − r−

)
.

Using (13.13), we see that ũ2 ∈ Ḣ
( 1

2
+s)−,− 3

2
−s−l

(b) and therefore λ2 can be non zero if and
only if −q − 2 < −3

2 − s− l.

• In the case of m = 0 and s ∈ −N, we have γ −α− β = s ∈ −N. A basis of solutions for
(13.12) is given by:

u1(z) :=F(α, β, 1− s, 1− z)
u2(z) :=H̃(α, β, 1− s, 1− z)

:=(−1)s(∂c)|c=1−s

(z − 1)1−cF(α+ 1− c, β + 1− c, 2− c, 1− z)

−eiπ(1−c)
−s∏
j=1

(j − α)(j − β)F(α, β, c, 1− z)


u1 is holomorphic on C \ (−∞, 0] and u1(1) = 1

(−s)! . u2 is holomorphic on C \ (−∞, 1]
and near z = 1, we have:

u2 = ln(z − 1)F (z − 1) + (1− z)sG(z − 1) (13.15)

with F and G holomorphic near 0, F (0) = − (α+s)−s(β+s)−s
(−s)! (where (x)k :=

∏k−1
j=0(x+j))

and if −s− 1 ≥ 0, G(0) = (−1)−s(−s− 1)!. We also have that for z ∈ C \ (−∞, 1]:

u1(z) =
zl+s(2l)!

l!(l − s)!
G(z−1) + z−1−l+s ln(z)F (z−1) (13.16)

u2(z) =zl+sG2(z−1) + z−1−l+s ln(z)F (z−1) (13.17)
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with F,G and G2 holomorphic near zero with G(0) = 1 and Ψ denote the digamma
function (see [85, Chapter 2, Section 2]).

As before, we use the fact that u2

(
r−r−
r+−r−

)
has no extension in H

1
2

+s,loc

(b) ((r+ − ε,+∞))

to conclude that there exists λ ∈ C such that v1 := ul,m − λu1

(
r−r−
r+−r−

)
=

a−1

u1(r+)1(r+−ε,+∞)u1 +
∑k

j=0 ajδ
(j)
r+ . First note that since v1 = ul,m − λu1 ∈ H

1
2

+s,loc

(b) ,
only the aj with −1 ≤ j < −1 − s can be non zero therefore we can assume that
k < −1− s (in particular if s = 0, we get immediately v1 = 0). Moreover we have:

T̂ (0)m,l,sv1 =
k∑
j=0

(
2aj(r+ −M)(s+ j + 1)δ(j+1)

r+ (13.18)

−aj((j + 2)(j + 1) + 2(s− 1)(j + 1)− (l − s+ 1)(l + s))δ(j)
r+

)
(13.19)

+ 2a−1(r+ −M)sδr+ (13.20)

and since T̂ (0)l,m,sv1 = 0 we deduce that:

2ak(r+ −M)(s+ k + 1) = 0

and therefore, ak = 0. By induction, we get that v1 = 0 and ul,m ∈ Cu1

(
r−r−
r+−r−

)
.

Finally, using (13.16) we deduce that ul,m can be non zero if and only if q < −3
2 − l− s.

We now consider vl,m. As before, (vl,m)|(r+−ε,r+)
= 0 and (vl,m)|(r+,+∞)

= λ1u1 + λ2u2.
We define a−s−1 := 1 and for all −1 ≤ j ≤ −s− 2:

aj =
aj+1((j + 3)(j + 2) + 2(s− 1)(j + 2)− (l − s+ 1)(l + s))

2(r+ −M)(s+ j + 1)
.

Note that if s = 0, we have only one term a−1 = 1 in the sequence and if s < 0, using
that ((j + 3)(j + 2) + 2(s− 1)(j + 2)− (l− s+ 1)(l+ s)) = (j + 2 + l+ s)(j + 1− l+ s)
we see that aj never vanishes for −1 ≤ j ≤ −s− 2 and therefore a−1 6= 0. We can solve
explicitly the recurrence relation and we find:

aj =
(l − s− 1− j)!

(l + s+ 1 + j)!(−s− 1− j)!
(r+ − r−)s+1+j

We have (according to (13.18)) ũ1 := a−1

u1(r+)1(r+,+∞)u1 +
∑−s−1

j=0 ajδ
(j)
r+ is a solution in

Ḣ
( 1

2
+s)−,loc

(b) . As a consequence v1 := vl,m− λ1u1(r+)
a−1

ũ1 is of the form λ2ũ2 +
∑k

j=0 djδ
(j)
r+

where ũ2 is an extension of u2 vanishing on (−∞, r+). We introduce the distribution
ln(x)+ which is the L1

loc function equal to zero on (−∞, 0) and to ln(x) on (0,+∞).
Since u2(z) = ln(z−1)F (z−1)+(z−1)sG(z−1) with F and G holomorphic near zero,
we can choose ũ2 of the form ln

(
r−r+
r+−r−

)
+
F
(
r−r+
r+−r−

)
+

(r−r+)s+
(r+−r−)sG

(
r−r+
r+−r−

)
(where

(r − r+)s+ is defined for example in [53] equation (3.2.5)) if −s ≥ 1 and of the form
ln
(
r−r+
r+−r−

)
+
F
(
r−r+
r+−r−

)
+ 1(r+,+∞)G

(
r−r+
r+−r−

)
if s = 0. When s = 0 we can compute

T̂ (0)l,m,sũ2 = −(r+ − r−)2F (0)δr+ (using for example that in the sense of distributions
ũ2 = lim

ε→0
1(r++ε,+∞)u2) we show as before that every coefficient dj = 0, then λ2 = 0 and

finally v1 = 0. If s < 0, we consider (r− r+)−sũ2 which is of the form lim
ε→0

1(r++ε,+∞)u3
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where u3 is a solution of (r − r+)−sT̂ (0)l,m,s(r − r+)su3 = 0. We compute

(r − r+)−sT̂ (0)l,m,s(r − r+)s = −∆r∂
2
r + 2((r− −M)s+M − r)∂r + (l − s)(l + s) + l + s2

lim
ε→0

[(r − r+)−sT̂ (0)l,m,s(r − r+)s,1(r++ε,+∞)]u3 = −s(r+ − r−)1−sG(0)δr+

and therefore (r − r+)−sT̂ (0)l,m,sũ2 = −s(r+ − r−)1−sG(0)δr+ . On the other hand, we
know that T̂ (0)l,m,sũ2 is of the form

∑N
j=0 cjδ

(j)
r+ . We deduce that N = −s and c−s =

(−1)−s(r+−r−)1−s

(−s−1)! G(0). Finally, using that G(0) 6= 0 we show all the dj and λ2 have to
vanish and v1 = 0. Therefore, we conclude in both cases that vl,m ∈ Cũ1. Using (13.16),
we see that vl,m can be a non trivial multiple of ũ1 if and only if −q − 2 < −3

2 − l − s.

• In the case m = 0, s ∈ 1 + N: We have the two independent solutions:

u1 = (z − 1)szsF(−l + s, 1 + l + s, 1 + s, 1− z)
u2 = (z − 1)szsH̃(−l + s, 1 + l + s, 1 + s, 1− z)

Where H̃ is the function defined in the previous case. Note that near z = r+:

u2

(
r − r−
r+ − r−

)
= −(−l)s(1 + l)s

s!

(
r − r+

r+ − r−

)s
ln

(
r − r+

r+ − r−

)
+H

1
2

+s,loc

(b)

and therefore has no extension in H
1
2

+s,loc

(b) and there exists λ1, λ
′
1 ∈ C such that

(ul,m)|(r+−ε,r+)
= λ1u1 and (ul,m)|(r+,+∞)

= λ′1u1. We prove that λ1 = λ′1 and

ul,m ∈ Cu1

(
r−r−
r+−rt

)
using that ul,m is in particular continuous by Sobolev embedding

(so there is no Dirac masses at r+), and (λ1− λ′1)(z− 1)s1(r+,+∞) is in Hs+ 1
2
,loc) if and

only if λ1 = λ′1. Since by (13.16), u1

(
r−r−
r+−r−

)
∈ H∞,(−

3
2
−l−s)−

(b) , we deduce that ul,m
can be a non zero multiple of u1 if and only if q < −3

2 − l − s.
We now consider vl,m. As before, vl,m = 0 on (r+ − ε, r+) and vl,m = λ1u1 + λ2u2 on
(r+,+∞). Noting that ũ1 := 1(r+,+∞)u1 is a distribution solution of the equation, we
deduce that v1 := vl,m − λ1ũ1 is also a solution of the equation supported in [r+,+∞).
It is of the form λu2 +

∑N
j=0 cjδ

(j)
r+ where ũ2 := 1(r+,+∞)u2 (which is in L1

loc). Using
that ũ2 = lim

ε→0
1(r++ε,+∞)u2 and the expression of H̃(−l + s, 1 + l + s, 1 + s, 1− z) near

z = 1, we compute:

T̂ (0)l,m,sũ2 =(−1)ss!(r+ − r−)δr+

T̂ (0)l,m,s

λ2ũ2 +

N∑
j=0

cjδ
(j)
r+

 =λ2(−1)ss!(r+ − r−)δr+ +

N∑
j=0

2cj(r+ −M)(s+ j + 1)δ(j+1)
r+

−
N∑
j=0

cj(j + 2 + l + s)(j + 1− l + s)δ(j)
r+

and we prove by induction that cN = ... = c0 = 0 and λ2 = 0. As a consequence,
vl,m ∈ Cũ1 and it can be non zero if and only if −q − 2 < −3

2 − l − s.

153





Chapter 14

Existence, boundedness and regularity
of the resolvent

Proposition 14.0.1. If l < −1
2 , r̃+ l > −1

2 −2s−4M=(σ) and r̃ > 1
2 + s− a2+r2

+

r+−M=(σ), then

the operator T̂s(σ) is invertible from X r̃,lσ to H r̃,l−1 when =(σ) ≥ 0 and σ 6= 0. If

−3

2
− s− |s| < l < −1

2
,

r̃ + l > −1

2
− 2s,

r̃ >
1

2
+ s,

the operator T̂s(σ) is invertible from W r̃,l
σ to H r̃,l when =(σ) ≥ 0.

Proof. We have already proved that the operators are Fredholm with non negative index (see
Proposition 13.5.4 and Remark 13.5.5). Therefore, it remains to prove that their kernel is
trivial. This is a consequence of [108] for =(σ) > 0, of the generalization [8] for =(σ) = 0,
σ 6= 0. For the precise proof that the absence of mode for the radial equation imply the
triviality of the kernel in our case, see the proof of case (1) in Theorem 4.5 in [7](which is
based on the precise analysis of the spin-weighted spheroidal wave operator with complex
aspherical parameter performed in [31]). The case σ = 0 is a consequence of the explicit
computation of the kernel and cokernel of T̂s(0) given in Proposition 13.6.2, see also [7].

As a consequence of the previous proposition, we can define the resolvent operator R(σ) =
T̂s(σ)−1 for =(σ) ≥ 0. The following property summarizes its basic properties.

Proposition 14.0.2. Let c > 0. For every η ∈ [0, 1] R(σ) is a bounded operator from H
r̃,l
(b)

to H r̃,l+1−η
(b) for =(σ) ≥ 0, σ 6= 0, |σ| ≤ c and

−3

2
− s− |s| < l + 1− η < −1

2

r̃ + l + 1− η > −1

2
− 2s

r̃ >
1

2
+ s.

Moreover, in this case, we have the following bound (uniform in |σ| ≤ c for c small enough):

‖R(σ)‖L(H
r̃,l
(b),H

r̃,l+1−η
(b) )

≤ C|σ|η−1 (14.1)
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It is also a bounded operator from H
r̃,l
(b) to H r̃,l+1

(b) for σ 6= 0 and l + 1 < −1
2 , r̃ + l + 1 >

−1
2 − 2s− 4M=(σ) and r̃ > 1

2 + s− a2+r2
+

r+−M=(σ) and in this case we have the bound (uniform
for σ in a strip

{
0 ≤ =(σ) ≤ A, |σ| > 1

A

}
for A > 0):

‖R(σ)‖L(H
r̃,l

(b),|σ|−1 ,H
r̃,l+1

(b),|σ|−1 )
≤ C (14.2)

Proof. It is a consequence of proposition 14.0.1 and of the estimates of proposition 13.4.6
(where we can drop the error term since the kernel is trivial) and proposition 13.4.10.

Remark 14.0.3. Note that for σ, σ′ ∈ C \ {0} with =(σ),=(σ′) ≥ 0, we have X r̃+1,l
σ ⊂ X r̃,lσ′ .

This is due to the fact that T̂s(σ) − T̂s(σ′) ∈ x−1Diff1
b . The following identities are useful in

the computations:

(I1) If

l + 1 < −1

2

r̃ + l + 1 > −1

2
− 2s

r̃ >
1

2
+ s

then T̂s(σ)R(σ) = Id
H
r̃,l
(b)

.

(I2) If

l < −1

2

r̃ + l > −1

2
− 2s

r̃ >
1

2
+ s

then R(σ)T̂s(σ) = IdX r̃,lσ .

(I3) For any σ′ 6= 0 with =(σ′) ≥ 0, if

l + 1 < −1

2

r̃ + l > −1

2
− 2s

r̃ − 1 >
1

2
+ s

then we have R(σ)T̂s(σ)R(σ′) = R(σ′) on H
r̃,l
(b). Since R(σ′)H

r̃,l
(b) = X r̃,l+1

σ′ (using the
inequalities on (r̃, l)) and since X r̃,l+1

σ′ ⊂ X r̃−1,l+1
σ , the identity is a consequence of (I2).

Under the hypotheses:

l + 1 < −1

2

r̃ + l > −1

2
− 2s

r̃ − 1 >
1

2
+ s,
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identities (I1) and (I3) enable to deduce the identity of the resolvent on H r̃,l
(b):

R(σ)−R(σ′) = R(σ)
(
T̂s(σ

′)− T̂s(σ)
)
R(σ′).

Similarly, under the hypotheses:

−3

2
− s− |s| <l < −1

2

r̃ + l >− 1

2
− 2s

r̃ >
1

2
+ s

the following resolvent identity holds on H r̃,l
(b):

R(σ)−R(0) = R(σ)
(
T̂s(0)− T̂s(σ)

)
R(0).

14.1 Regularity of the resolvent

Proposition 14.1.1. Let l and r̃ be such that l+1 < −1
2 , r̃+l > −

1
2−2s and r̃−1 > 1

2 +s. The
family R(σ) is holomorphic in =(σ) > 0 as a family of operators in L(H

r̃+1,l
(b) , H

r̃,l+1
(b) ). More-

over, it is locally Lipschitz on D := {σ ∈ C,=(σ) ≥ 0, σ 6= 0} as a family in L(H
r̃,l
(b), H

r̃−1,l+1
(b) ).

Proof. For σ, σ′ ∈ D, we have the resolvent identity on H r̃,l
(b):

R(σ)−R(σ′) =R(σ)(T̂s(σ)− T̂s(σ′))R(σ′)

Note that lim
σ′→σ

T̂s(σ)−T̂s(σ′)
σ−σ′ = −2σat,t + iat,φ∂φ + iat,r∂r + iat ∈ x−1Diff1

b the limit being

in the norm topology of L(H
r̃,l+1
(b) , H

r̃−1,l
(b) ). Therefore T̂s(σ) is holomorphic and in particular

locally Lipschitz continuous in this space. Since R(σ′) is uniformly bounded in L(H
r̃,l
(b), H

r̃,l+1
(b) )

(locally with respect to σ′ ∈ D), we obtain the local Lipschitz continuity property for R(σ).
If we perform the same computation on H r̃+1,l

(b) , using the continuity we just proved, we have

that R(σ′) is continuous in L(H
r̃+1,l
(b) , H

r̃,l+1
(b) ). We then deduce the following limit in the norm

topology of L(H
r̃+1,l
(b) , H

r̃−1,l+1
(b) ):

lim
σ′→σ

R(σ)−R(σ′)

σ − σ′
=R(σ)∂σT̂s(σ)R(σ)

and as a consequence, R(σ) is holomorphic on the interior of D as a family in
L(H

r̃+1,l
(b) , H

r̃−1,l+1
(b) ). Finally, using the Cauchy integral formula (see [46], theorem 3.3.11

for a proof of the formula in the case of vector valued holomorphic functions) and the
continuity of R(σ) in L(H

r̃+1,l
(b) , H

r̃,l+1
(b) ), we deduce that the holomorphic property holds in

L(H
r̃+1,l
(b) , H

r̃,l+1
(b) ).

Remark 14.1.2. Note that if we assume in addition −3
2 − s − |s| < l + 1 and use (14.1)

(with η = 0), then we get ‖R(σ)‖L
(
H
r̃,l
(b),H

r̃−1,l+1
(b)

) ≤ C |σ|−1 near zero. Since for η ∈ [0, 1],

L
(
H
r̃,l
(b), H

r̃−1,l+1
(b)

)
is continuously included in L

(
H
r̃,l+η
(b) , H

r̃−1,l+1
(b)

)
, we also have the conti-

nuity in this space and thanks to (14.1) we see that the behavior near σ = 0 improves when
η increases (up to locally bounded for η = 1). We can get a local Hölder continuity statement
by weakening a bit more the operator norm (see the proof of Proposition 14.1.3).
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The following proposition provides a global (operator norm) continuity statement up to
the real axis including at σ = 0. It also provides a rough uniform bound when |σ| → +∞. It
will be used in the contour deformation argument.

Proposition 14.1.3. Let −3
2 − s − |s| < l < −1

2 , r̃ − 1 > 1
2 + s and r̃ + l − 1 > −1

2 − 2s.
The family R(σ) is continuous on {=(σ) ≥ 0} for the norm topology of L(H

r̃,l
(b), H

r̃−1,l−
(b) ). If

we assume in addition that r̃ − 1 ≥ 0, then for every C > 0, there exists D > 0 such that for
every σ with 0 ≤ =(σ) ≤ C:

‖R(σ)‖L(H
r̃,l
(b),H

r̃−1,l−
(b) )

≤ D 〈σ〉r̃

Proof. For the continuity at 0, we use the resolvent identity:

R(σ)−R(0) = R(σ)
(
T̂s(0)− T̂s(σ)

)
R(0)

and under the hypotheses on l and r̃, there exists C ′ > 0 such that:

• R(0) is well defined and bounded from H
r̃,l
(b) to H r̃,l

(b) by propositions 13.6.1 and 13.6.2.

•
∥∥∥T̂s(0)− T̂s(σ)

∥∥∥
L(H

r̃,l
(b),H

r̃−1,l−1
(b) )

≤ C ′|σ| since T̂s(0)− T̂s(σ) ∈ x−1σDiff1
b

• By (14.1), uniformly near zero we have ‖R(σ)‖L(H
r̃−1,l−1
(b) ,H

r̃−1,l−δ
(b) )

≤ C ′|σ|δ−1 for all

δ > 0 such that l − δ > −3
2 − s− |s| and r̃ + l − 1− δ > −1

2 − 2s.

We get:

‖R(σ)−R(0)‖L(H
r̃,l
(b),H

r̃−1,l−δ
(b) )

≤ C ′′|σ|δ

and therefore the continuity at zero.
The continuity at σ 6= 0 has already been proved in the stronger space L

(
H
r̃,l−1
(b) , H

r̃−1,l
(b)

)
(see Proposition 14.1.1).

To get the estimate

‖R(σ)‖L(H
r̃,l
(b),H

r̃−1,l−
(b) )

≤ D 〈σ〉r̃

we combine (14.2) and (14.1) (with η = 1) which provides uniform bounds in stronger norms
than L(H

r̃,l
(b), H

r̃−1,l−
(b) ) (note that we compare semiclassical norms with usual norms using

‖u‖
H
r̃,l
(b)

〈σ〉−r̃ ≤ ‖u‖
H
r̃,l

(b),|σ|−1
≤ ‖u‖

H
r̃,l
(b)

true for |σ| ≥ 1 and r̃ ≥ 0).

The following proposition establishes higher regularity of the resolvent on the real axis.

Proposition 14.1.4. Let m ∈ N. Let l and r be such that l+1 < −1
2 , r̃+l−2m > −1

2−2s and

r̃ − 2m− 1 > 1
2 + s. We have R ∈ Cm

(
Rσ \ {0} ,L

(
H
r̃,l
(b), H

r̃−1−2m,l+1
(b)

))
and |σ|−m∂mσ R(σ)

is uniformly bounded in L
(
H
r̃,l
(b),|σ|−1 , H

r̃−2m−1,l+1
(b),|σ|−1

)
for σ ∈ R \ (−α, α) (where α > 0 is

arbitrary).
Moreover, if we assume in addition that −3

2 − s − |s| < l + 1, there exists σ0 > 0 such

that for all η ∈ [0, 1], σm+1−η∂mσ R(σ) is uniformly bounded in L
(
H
r̃,l+η
(b) , H

r̃−1−2m,l+1
(b)

)
for

σ ∈ (−σ0, σ0) \ {0}.
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Proof. We first prove by induction that for all m ∈ N, R(σ), if l + 1 < −1
2 , r̃ + l − 2m >

−1
2 − 2s and r̃ − 2m − 1 > 1

2 + s then R(σ) ∈ Cm
(

Rσ \ {0} ,L
(
H
r̃,l
(b), H

r̃−1−2m,l+1
(b)

))
.

For m = 0, it follows from Proposition 14.1.1. Assume that the property is true
for some m ≥ 0 and assume l + 1 < −1

2 , r̃ + l − 2(m + 1) > −1
2 − 2s and

r̃ − 2(m + 1) − 1 > 1
2 + s. Then using the resolvent identity, we get that R(σ) ∈

C1
(

Rσ \ {0} ,L
(
H
r̃,l
(b), H

r̃−3,l+1
(b)

))
and ∂σR(σ) = R(σ)∂σT̂s(σ)R(σ). By the induction hy-

pothesis for all m′ ≤ m, R(σ) ∈ Cm′
(

Rσ \ {0} ,L
(
H
r̃−2(m−m′)−2,l
(b) , H

r̃−1−2(m+1),l+1
(b)

))
and

R(σ) ∈ Cm′
(

Rσ \ {0} ,L
(
H
r̃,l
(b), H

r̃−1−2m′,l+1
(b)

))
. We deduce that

∂σR(σ) ∈ Cm
(

Rσ \ {0} ,L
(
H
r̃,l
(b), H

r̃−1−2(m+1),l+1
(b)

))
and by Leibniz rule:

∂m+1
σ R(σ) =

∑
i1+i2+i3=m

ai1,i2,i3∂
i1
σ R(σ)∂i2+1

σ T̂s(σ)∂i3σ R(σ) (14.3)

where ai1,i2,i3 are absolute combinatorial constants. To prove that |σ|−m ∂mσ R(σ) is bounded
on R\(−α, α), we use an induction. The casem = 0 correspond to estimate (14.2) and we con-
clude by using the induction hypothesis in (14.3) (together with the fact that |σ|−1 ∂i2+1

σ T̂s(σ)
is bounded in x−1Diff1

b for σ ∈ R\ (−α, α). To prove that for all η ∈ [0, 1], |σ|−m+1−η ∂mσ R(σ)

is bounded on (−σ0, σ0) in the norm of L
(
H
r̃,l+η
(b) , H

r̃−1−2m,l+1
(b)

)
, we again use an induction

on m. The case m = 0 follows from estimate (14.1) and we conclude by using the induction
hypothesis with η ∈ [0, 1] for ∂i3σ R(σ) and with η = 0 for ∂i1σ R(σ) in (14.3) (noting that
∂i2+1
σ T̂ (σ) is uniformly bounded on (−σ0, σ0)).

Remark 14.1.5. Using the resolvent identity at σ = 0, we have:

R(σ)−R(0) = R(σ)
(
T̂s(0)− T̂s(σ)

)
R(0)

Let m ∈ N and l ∈ (−3
2 − s − |s| ,−

1
2 − s + |s|),lc ∈ (−3

2 − s − |s| ,−
1
2), lc ≤ l ≤ lc + 1,

lc+ r̃−2m−1 > −1
2−2s and r̃−2m−1 > 1

2 +s. Using the fact that σ−1
(
T̂s(0)− T̂s(σ)

)
R(0)

maps H r̃,l
(b) to H

r̃,l−1
(b) (with uniform bound with respect to σ ∈ (−σ0, σ0)) and the previous

proposition, we deduce that for σ ∈ (−σ0, σ0):

‖|σ|m ∂mσ (R(σ)−R(0))‖L(H
r̃,l
(b),H

r̃−2m−1,lc
(b) )

≤ C |σ|l−lc

where the constant C > 0 does not depend on σ.

14.2 More precise regularity near σ = 0

First we establish more precisely the mapping properties ofR(0) which will be used throughout
the section using a normal operator argument. Then we describe precisely the singular part
of R(σ)f near zero. We use the notations Yj , Y r̃,lj , Y r̃,l≥j , Y

r̃,l
≤j and Πj already introduced in

Section 13.6.

Lemma 14.2.1. Let l ≥ l0, r̃ ≥ r̃0. Let u ∈ H
r̃0,l0
(b) with u = 0 in a neighborhood of

{
x ≥ 1

r+

}
.

We assume that for all j ∈ |s| + N, uj := Πju ∈ Y r̃,lj and
∑+∞

p=0

∫
R(1 + |τ |2 + p2)r̃|û|s|+p(τ −
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i(l + 3
2))|2 dτ < +∞ (where ûj is the Mellin transform of uj). Then, u ∈ H

r,l
(b) and

‖u‖
H
r̃,l
(b)

≤ C
+∞∑
p=0

∫
R
(1 + |τ |2 + p2)r̃

∣∣∣∣û|s|+p(τ − i(l +
3

2

))∣∣∣∣2 dτ

for some constant C > 0 independent of u.

Proof. Let u be defined as in the statement of the proposition. First note that the al-
gebraic sum ⊕j∈|s|+NY

r̃,l
j is dense in H

r̃,l
(b) and therefore also in H

r̃0,l0
(b) . This density

property can be obtained using first the density of C∞c ((0, 1
r+

]) ⊗ H r̃(Bs) in H
r̃,l
(b) and

then using the density of the algebraic sum ⊕j∈|s|+NYj in Hs(Bs). This density and
the orthogonality of Y r̃0,l0j and Y r̃0,l0j when j 6= j′ for the norm inducing scalar product

〈v, w〉r̃0,l0 :=
〈
x−l0(1− (x∂x)2 + ∆[s])

r̃0
2 v, x−l0(1− (x∂x)2 + ∆[s])

r̃0
2 w
〉
L2

(b)

imply that the se-

quence (
∑N

p=0 Π|s|+p(u))N∈N converges towards u in H r̃0,l0
(b) . Since Y r̃,lj and Y r̃,lj′ are orthogonal

when j 6= j′ for the norm-inducing scalar product 〈v, w〉r̃,l, we get:∥∥∥∥∥∥
N∑
p=0

u|s|+p

∥∥∥∥∥∥
2

H
r̃,l
(b)

=
N∑
p=0

∥∥u|s|+p∥∥2

H
r̃,l
(b)

=
N∑
p=0

∥∥∥(1− (x∂x)2 + p(p+ 2 |s|) + p+ |s|)
r
2u|s|+p

∥∥∥2

H
0,l
(b)

≤C
N∑
p=0

∫
R
(1 + |τ |2 + p2)r̃|û|s|+p(τ − i(l +

3

2
))|2 dτ

where C > 0 is some constant independent of u. We deduce that
∑+∞

p=0 u|s|+p is absolutely

convergent in H
r̃,l
(b) and therefore, the limit (which is equal to u by uniqueness of the limit

in H r̃0,l0
(b) ) belongs to H r̃,l

(b). Moreover the computation shows that ‖u‖
H
r̃,l
(b)

≤ C
∑+∞

p=0

∫
R(1 +

|τ |2 + p2)r̃|û|s|+p(τ − i(l + 3
2))|2 dτ .

We also record the following useful lemma about the Mellin transform.

Lemma 14.2.2. Let u ∈ H r̃0,l0
(b) with supp(u) contained in {x ≤ D} for some D > 0. The

Mellin transform Mu is holomorphic on
{
=(τ) > −(l0 + 3

2)
}
and α 7→Mu(.+ iα) is continu-

ous from [−
(
l0 + 3

2

)
,+∞) to

〈
1 + τ2 + ∆[s]

〉− r̃0
2 L2(Rτ , L2(Bs)). Moreover, if for l > l0, Mu

admits a meromorphic extension to
{
=(τ) > −(l + 3

2)
}
with a finite number of poles a0, ...aN

included in some compact subset K of
{
=(τ) > −(l + 3

2)
}
and has a bound of the form:

∫ ∣∣∣∣∣(1 + τ2 + ∆[s]
) r̃0

2
1C\KMu(τ + iα)

∣∣∣∣∣
2

dτ ≤ C0 (14.4)

for some C0 > 0 independent of α ∈
(
−
(
l + 3

2

)
,−
(
l0 + 3

2

)]
(1C\K being the indicator function

of C \K). Then there exists a family of non negative integers (cj)
N
j=0 and a family of complex

numbers (bj,k)0≤j≤N0≤k≤cj such that, u ∈
∑N

j=0

∑cj
k=0 bj,k ln(x)kxiajχ0(x) +H

r̃0,l
(b) where χ0 is

any smooth cutoff equal to 1 near zero and compactly supported.
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Proof. By definition, for =(τ) > −
(
l0 + 3

2

)
, Mu(τ) =

∫
x−iτu(x) dx

x . Since for every ε > 0,
x−(l0+ 3

2
)+εu(x) ∈ L1

b([0,+∞)), we get that Mu is holomorphic on
{
=(τ) > −(l0 + 3

2)
}
. If

α, α′ ≤ l0, x−αu ∈ H r̃0,0
(b) and

∥∥∥(x−α − x−α′)u
∥∥∥
H
r̃0,0

(b)

≤ C
N ′∑
j=0

∥∥∥(xDx)j(xl0−α − xl0−α′)χ1

∥∥∥
L∞

∥∥∥x−l0u∥∥∥
H
r̃0,0

(b)

where χ1 = 1 on x(supp(u)) and χ1 is smooth and compactly supported and N ′ is a large
integer. Using that lim

α→α′

∥∥∥(xDx)j(xl0−α − xl0−α′)χ1

∥∥∥
L∞

= 0 for any j ∈ N, we deduce that

α 7→ xαu is continuous in Ḣ r̃0,0
(b) and therefore, by continuity of the Mellin transform from Ḣ r̃0,0

(b)

to
〈
1 + τ2 + ∆[s]

〉− r̃0
2 L2(Rτ , L2(Bs)) we conclude the first part of the proof. Now we assume

that Mu admits an extension as in the statement. Then by the residue theorem, we have for
all A > 0 and ε > 0 small enough such that K ⊂

{
z : −(l + 3

2) + ε ≤ =(z) ≤ −(l0 + 3
2)
}
and

for all x ∈ (0,+∞):∫ A

−A
xi(τ−i(l0+ 3

2
))Mu

(
τ − i

(
l0 +

3

2

))
dτ =−

N∑
j=0

2iπRes|τ=aj
xiτMu(τ)

+

∫ A

−A
xi(τ−i(l+

3
2

)+iε)Mu

(
τ − i

(
l +

3

2

)
+ iε

)
dτ

+ i

∫ −(l0+ 3
2

)

−(l+ 3
2

)+ε
xi(A+iy)Mu(A+ iy) dy

− i
∫ −(l0+ 3

2
)

−(l+ 3
2

)+ε
xi(−A+iy)Mu(−A+ iy) dy

We have the following limit in the sense of distributions:

lim
A→+∞

∫ A

−A
xi(τ−i(l0+ 3

2
))Mu

(
τ − i

(
l0 +

3

2

))
dτ = u(x)

Moreover, (using the bound (14.4)) we get that:∫ A

−A
xi(τ−i(l+

3
2

)+iε)Mu

(
τ − i

(
l +

3

2

)
+ iε

)
dτ

has a limit v ∈ xl+
3
2
−εH r̃0,0

b ((0,+∞)× Bs) in the sense of distributions when A → +∞. We
deduce that

fA := i

∫ −(l0+ 3
2

)

−(l+ 3
2

)+ε
xi(A+iy)Mu(A+ iy) dy − i

∫ −(l0+ 3
2

)

−(l+ 3
2

)+ε
xi(−A+iy)Mu(−A+ iy) dy

also has a limit in the sense of distributions. We prove that this limit is zero. Let φ ∈
Γc((0,+∞)×Bs). Using integration by part with the relation (±A+iy)−K(xDx)Kxi(±A+iy) =
xi(±A+iy), we obtain that there exists a constant C > 0 (independent of A) such that for a
large integer K:

|〈fA, φ〉| ≤ C
∥∥(xDx)Kφ

∥∥
L1
b((0,+∞),H−r̃0 (Bs))

(∫ −(l0+ 3
2

)

−(l+ 3
2

)+ε
A−K

∥∥∥(1 + ∆[s])
r̃0
2 Mu(A+ iy)

∥∥∥2

L2(Bs)

+A−K
∥∥∥(1 + ∆[s])r̃02Mu(A+ iy)

∥∥∥2

L2(Bs)
dy

)
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Using (14.4), we get for A0 and K large enough1:∫ +∞

A0

(∫ −(l0+ 3
2

)

−(l+ 3
2

)+ε
A−K

∥∥∥(1 + ∆[s])
r̃0
2 Mu(A+ iy)

∥∥∥2

L2(Bs)

+A−K
∥∥∥(1 + ∆[s])

r̃0
2 Mu(A+ iy)

∥∥∥2

L2(Bs)
dy

)
dA < +∞.

We deduce that there exists a sequence An with lim
n→+∞

An = +∞ such that

lim
n→+∞

(∫ −(l0+ 3
2

)

−(l+ 3
2

)+ε
A−Kn

∥∥∥(1 + ∆[s])
r̃0
2 Mu(An + iy)

∥∥∥2

L2(Bs)

+A−Kn

∥∥∥(1 + ∆[s])r̃02Mu(An + iy)
∥∥∥2

L2(Bs)
dy

)
= 0

Using this particular sequence, we deduce that lim
A→+∞

fA = 0 in the sense of distributions.

Therefore writing
∑cj

k=0 bj,k ln(x)kxiaj := −2iπRes|τ=aj
xiτMu(τ) we get:

u = v +

N∑
j=0

cj∑
k=0

bj,k ln(x)kxiaj

We use this equality with different values of ε and (14.4) provides for all 0 < ε < ε0:

‖v‖
xl+

3
2−εH

r̃0,0
b

≤ C1C0

where C1 is independent of ε and u. Let φ ∈ Γc((0,+∞)× Bs), we have:

|〈v, φ〉| ≤ ‖v‖
xl+

3
2−εH

r̃0,0
b

‖φ‖
x−l−

3
2 +εH

−r̃0,0
b

≤C1C0 ‖φ‖
x−l−

3
2 +εH

−r̃0,0
b

(14.5)

But for all N ∈ N, lim
ε→0

∥∥∥(xl+ 3
2
−ε − xl+

3
2

)
φ
∥∥∥
H
r̃0,0
b

= 0 (all b derivatives converge uniformly on

the support of φ). Taking the limit ε→ 0 in (14.5), we get v ∈ H r̃0,l+
3
2

b with a norm smaller
than C1C0. Using the support condition of u, we have:

u = χ0v +

N∑
j=0

cj∑
k=0

bj,k ln(x)kxiajχ0

where ‖χ0v‖H r̃0,l

(b)

≤ C2C0 with C2 independent of u.

Remark 14.2.3. The estimate (14.4) can be replaced by an other similar estimate. For
example, we can assume that Mu extends meromorphically to {=(τ) > D0} (where D0 ∈ R)
with a finite number of poles and that we have bounds of the form:

‖Mu(τ)‖2H r̃(Bs) ≤ C(1 + <(τ)2)−r̃eC|=(τ)|

for τ ∈ {=(τ) ≥ D} \ K where D > D0 and <(K) compact. We also assume that
there is no pole with imaginary part equal to D. In, this case we have that u ∈∑N

j=0

∑cj
k=0 bj,k ln(x)kxiajχ0 +H

r̃,−D− 3
2

(b) .
1More explicitly, if r̃0 ≥ 0, we can take any K ≥ 0 and if r̃0 < 0, we take K ≥ − r̃0

2

162



Lemma 14.2.4. Let j ∈ N, −3
2 − s − |s| < l < −1

2 + j − s + |s| and r̃ + 1 > 1
2 + s, then

T̂s(0)−1(Y r̃,l≥j+|s|) ⊂ Y
r̃+1,l
≥j+|s|.

Proof. Since T̂s(0) commutes with ∆[s], for ε > 0 small enough, T̂s(0)−1(Y r̃,l≥j+|s|) ⊂

Y r̃+1,− 3
2
−s−|s|+ε

≥j+|s| . Let u ∈ T̂s(0)−1(Y r̃,l≥j+|s|). We have T̂s(0)χ0u = f0 ∈ Y r̃,l≥j+|s| (where χ0 is a

cutoff depending only on x and localizing near zero) and N(T̂s(0))χ0u = f0 − xDiff2
bu =: f1.

Applying Πp+|s| for p ≥ j and the Mellin transform, we get that (τ2 + (i − 2is)τ + p(p +

2|s|) + |s| + p + s) ̂χ0up+|s| = f̂1
p+|s| where χ̂0up+|s|, is holomorphic on {=(τ) > s+ |s| − ε}.

Since f̂0
p+|s| is holomorphic on

{
=(τ) > −(l + 3

2)
}

we deduce that f̂1
p+|s| is holomorphic on{

=(τ) > max(−(l + 3
2),−1 + s+ |s| − ε)

}
. Since (τ2 +(i−2is)τ+p(p+2|s|)+ |s|+p+s) has

no zero on {−1− j + s− |s| < =(τ) < s+ |s|+ p} we deduce that χ̂0up+|s| extends holomor-
phically to

{
=(τ) > max(−(l + 3

2),−1 + s+ |s| − ε)
}
. An iteration of this argument proves

that χ̂0up+|s| and f̂1
p+|s| extend holomorphically to

{
=(τ) > −(l + 3

2)
}
. Moreover, for any

α ≥ s+ |s| − ε, there exists C > 0 independent of p such that∫
R

∣∣∣χ̂0up+|s|(τ + iα)
∣∣∣2 (|τ |2 + p2 + 1

)r̃+1
dτ ≤ C

∥∥xαχ0up+|s|
∥∥2

H
r̃+1,0
b

≤ C
∥∥χ0up+|s|

∥∥2

H
r̃+1,−s−|s|+ε
b

and for any β ≥ −(l + 3
2),∫

R
(1 + p2 + |τ |2)r̃

∣∣∣f̂0
p+|s|(τ + iβ)

∣∣∣2 dτ ≤C
∥∥∥xβf0

p+|s|

∥∥∥2

H
r̃,0
b

≤C
∥∥∥f0

p+|s|

∥∥∥2

H
r̃,l
(b)

Using that
∣∣τ2 + (i− 2is)τ + p(p+ 2|s|) + |s|+ p+ s

∣∣−1 ≤ C(<(τ)2 + p2 + 1)−1 where C is
uniform with respect to p ≥ j when −(l + 3

2) ≤ =(τ) ≤ s + |s| − ε, we deduce that for any
max(−(l + 3

2),−1 + s + |s| − ε) ≤ α ≤ s + |s| − ε, there exists C ′ independent of p ≥ j such
that:∫

R

∣∣∣χ̂0up+|s|(τ + iα)
∣∣∣2 (|τ |2 + p2 + 1

)r̃+1
dτ ≤ C ′

(∥∥χ0up+|s|
∥∥2

H
r̃+1,− 3

2−s−|s|+ε
(b)

+
∥∥∥xαf0

p+|s|

∥∥∥2

H
r̃,l
(b)

)
Once again we can iterate the argument and deduce that there exists C ′′ independent of p
such that for α = −(l + 3

2):∫
R

∣∣∣χ̂0up+|s|(τ + iα)
∣∣∣2 (|τ |2 + p2 + 1

)r̃+1
dτ ≤ C ′′

(∥∥χ0up+|s|
∥∥2

H
r̃+1,− 3

2−s−|s|+ε
(b)

+
∥∥∥f0

p+|s|

∥∥∥2

H
r̃,l
(b)

)

Using Lemma 14.2.2, we get that for each p ≥ j, χ0up ∈ H
r̃+1,l
(b) with

∥∥χ0up+|s|
∥∥2

H
r̃+1,l
(b)
≤ C ′′

(∥∥χ0up+|s|
∥∥2

H
r̃+1,− 3

2−s−|s|+ε
(b)

+
∥∥∥f0

p+|s|

∥∥∥2

H
r̃,l
(b)

)
.

Since the constant is uniform with respect to p ≥ j, we deduce:
+∞∑
p=j

∫
R

∣∣∣∣χ̂0up+|s|

(
τ − i

(
l +

3

2

))∣∣∣∣2 (|τ |2 + p2 + 1
)r̃+1

dτ ≤

C ′′

(
‖χ0u‖2

H
r̃+1,− 3

2−s−|s|+ε
(b)

+
∥∥f0

∥∥2

H
r̃,l
(b)

)
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We conclude by Lemma 14.2.1 that u ∈ Y r̃+1,l
≥j+|s|.

Lemma 14.2.5. Let k ∈ N, α ∈ C, ε > 0, χ a smooth cutoff localizing near zero and
c ∈ E \ {0} (where E is some Banach space) and u = χ(x)xα ln(x)kc. Then the Mellin
transform of u has a meromorphic extension to C with a pole of order k + 1 at −iα.

Proof. We have that (xDx + iα)k+1u ∈ C∞c ((0,+∞), E). Therefore, (τ + iα)k+1û has a
holomorphic extension to C which prove the lemma.

In the remaining part of the section, fl,m is used with variables (θ, ϕ). Note that we have

fl,m(θ, ϕ) = eim(ϕ−φ∗)fl,m(θ, φ∗)

where ϕ− φ∗ is a function of r. In the following lemma, we record some mapping properties
of T̂s(0)−1. We first give an expansion of T̂s(0)−1u for a general u ∈ H r̃,l

(b) (see the statement
for the precise conditions on l and r̃). Then, we give an expansion for u of the form xα ln(x)p

near x = 0. It will be useful since such terms naturally arise in the iteration in the proof of
Proposition 14.2.10.

Lemma 14.2.6. The indices |s|+ j denote an element of Y|s|+j. Let −1
2 − s+ |s|+ k < l <

−1
2 − s+ |s|+ k + 1 for k ∈ N, r̃ + 1 > 1

2 + s and u ∈ H r̃,l
(b), then we have:

T̂s(0)−1u = χ(x)x1−s+|s|(

k∑
j=0

k∑
i=j

xivi,|s|+j) +H
r̃+1,l
(b)

Moreover, we have for 0 ≤ j ≤ k:

vj,|s|+j =
1

1 + 2(|s|+ j)

∑
|m|≤|s|+j

〈
U∗|s|+j,m, u

〉
f|s|+j,m

and for 0 ≤ j ≤ k − 1:

vj+1,|s|+j =∑
|m|≤|s|+j

(
M(j2 + (2|s| − s+ 2)j + s(s− |s|) + 2|s| − s+ 1)− iams

)
(1 + 2(|s|+ j))(j + |s|+ 1)

〈
U∗|s|+j,m, u

〉
f|s|+j,m

Where U∗|s|+j,m is the unique multiple of u∗|s|+j,mr
2 sin(θ) dr dφ∗ dθ equivalent to

r|s|+j−sf|s|+j,m(θ, ϕ) sin(θ) dr dϕ dθ when r → +∞ (and the bracket involving U∗ is the
usual duality bracket2 between volume forms and functions). Let p ∈ N and χ be a smooth
cutoff localizing near zero. If α = 1 − s + |s| + j − k > −s − |s| − j for some k, j ∈ N, then
for all n ∈ N:

T̂s(0)−1χ(x)xα ln(x)pu|s|+j =χ(x)xα
p∑

j′=0

n∑
i=0

xi ln(x)j
′
vi,j′,|s|+j + χ(x)xα

n∑
i=k

xi ln(x)p+1wi,|s|+j

+H
∞,α+n− 1

2
−

(b)

Moreover, if k ≥ 1, we have v0,p,|s|+j =
u|s|+j

k(1+2|s|+2j−k) , if α = −s + |s| + j, j + |s| 6= 0 and
p = 0, we have

w1,|s|+j =
∑

|m|≤|s|+j

〈
f|s|+j,m, u|s|+j

〉
f|s|+j,m

2(j + |s|)(1 + 2j + 2|s|)
(
2M(j2 + (2|s| − s)j + s(s− |s|))

−2iams)

and if α = 1− s+ |s|+ j, we have w0,|s|+j = − u|s|+j
(p+1)(1+2|s|+2j) .

2For dv a volume form and f a function < v, f >:=
∫
f dv.
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Proof. Let −1
2 − s + |s| + k < l ≤ −1

2 − s + |s| + k + 1 for k ∈ N and u ∈ H r̃,l
(b). Let χ0 be

a smooth cutoff localizing near 0. We define v := T̂s(0)−1u ∈ H r̃+1,− 1
2
−s+|s|−

(b) . By definition,

T̂s(0)v = u.

N(T̂s(0))χ0v =u− xDiff2
bv =: f

Since N(T̂s(0)) and T̂s(0)−N(T̂s(0)) commutes with ∆[s], we can project the equality on each
eigenspace. We get for j ∈ N:

((xDx)2 + (i− 2is)xDx + j(j + 2|s|) + |s|+ j + s)χ0v|s|+j =f|s|+j

We compute the Mellin transform:

(τ2 + (i− 2is)τ + j(j + 2|s|) + |s|+ j + s)χ̂0v|s|+j =f̂|s|+j (14.6)

Note that

τ2 + (i− 2is)τ + j(j + 2|s|) + |s|+ j + s = (τ − i(−1− j + s− |s|))(τ − i(s+ |s|+ j)).

We define k as in the statement of the Proposition (i.e. the smallest integer such that −1−(k+
1) + s− |s| < −l − 3

2). We fix K a compact subset of C such that K ∩
{
=(τ) = −l − 3

2

}
= ∅

and K contains a neighborhood of P := {i(−1− j + s− |s|), 0 ≤ j ≤ k} and such that if
=(τ) ≥ −l − 3

2 and τ ∈ K, then τ − i ∈ K. Note that for all j ∈ N, (τ2 + (i− 2is)τ + j(j +
2|s|) + |s|+ j + s)−1 is meromorphic on

{
−1− (k + 1) + s− |s| < =(τ) < −1

2 + s− |s|
}
with

poles of order 1 included in P. Moreover we have a constant C > 0 independent of j such
that for every τ ∈

{
−l − 3

2 ≤ =(τ) ≤ −1
2 + s− |s|

}
\K:∣∣τ2 + (i− 2is)τ + j(j + 2|s|) + |s|+ j + s
∣∣−1 ≤ C(<(τ)2 + j2 + 1)−1. (14.7)

Using (14.6) (and an induction), we have that:

• χ̂0v|s|+j is holomorphic on D0 :=
{
=(τ) > max(−1− j + s− |s|,−l − 3

2)
}

• There exists C > 0 independent of j such that for all b > max(−1− j+ s− |s|,−l− 3
2),

∫
R

∣∣∣1K(τ)(1 + τ2 + j2)
r+1

2 χ̂0v|s|+j(τ + ib)
∣∣∣2 dτ ≤ C

(∥∥uj+|s|∥∥2

H
r̃,l
(b)

+
∥∥vj+|s|∥∥2

H
r̃+1,− 1

2−s+|s|−ε
(b)

)
.

We prove by induction on m ∈ N that

• χ̂0v|s|+j has a meromorphic extension (with at most simple poles at i(−1−j−N+s−|s|))
to Dm :=

{
=(τ) > max(−1− j −m+ s− |s|,−l − 3

2)
}
for m ∈ N.

• There exists C > 0 independent of j such that for all b > max(−1−j−m+s−|s|,−l− 3
2),∫

R

∣∣∣1C\K(τ)(1 + |τ |2 + j2)
r+1

2 χ̂0v|s|+j(τ + ib)
∣∣∣2 dτ ≤

C

(∥∥uj+|s|∥∥2

H
r̃,l
(b)

+
∥∥vj+|s|∥∥2

H
r̃+1,− 1

2−s+|s|−ε
(b)

)
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We assume the induction hypothesis for some m ∈ N. We have f|s|+j = χ1u|s|+j −
χ1xDiff2

bv|s|+j (where χ1 is a cutoff localizing near zero such that χ1 = 1 on the support
of χ0). We have χ1xDiff2

bv|s|+j = xDiff2
bχ0v|s|+j + w where w ∈ χ1xDiff2

b(1 − χ0)v|s|+j has
compact support with respect to x in (0,+∞) and is therefore in H r̃−1,∞

(b) and for any N ∈ R,
there exists CN > 0 independent of v such that

‖w‖
H
r̃−1,N
(b)

≤ CN
∥∥v|s|+j∥∥

H
r̃+1,− 1

2−s+|s|−ε
(b)

.

We deduce that f̂|s|+j has a meromorphic extension to{
=(τ) > max(−1− j −m− 1 + s− |s|,−l − 3

2)
}

with at most simple poles
at {i(−1− j − p+ s− |s|), 1 ≤ p ≤ m}. Moreover, we have for b >
max

(
−1− j − (m+ 1) + s− |s| ,−l − 3

2

)
:∫

R

∣∣∣1C\K(τ + ib)(1 + τ2 + j2)
r̃−1

2 f̂|s|+j(τ + ib)
∣∣∣2 dτ ≤C

(∫
R

∣∣∣(1 + τ2 + j2)
r̃
2 û
∣∣∣2 dτ

+

∫
R

1C\K(τ + ib)
∣∣∣(1 + τ2 + j2)

r̃+1
2 χ̂0v|s|+j(τ + i(b+ 1))

∣∣∣2 dτ

+

∫
R

∣∣∣(1 + τ2 + j2)
r̃−1

2 ŵ(τ + ib)
∣∣∣2 dτ

)
≤C

(∥∥u|s|+j∥∥2

H
r̃,l
(b)

+
∥∥v|s|+j∥∥2

H
r̃+1,− 1

2−s+|s|−ε
(b)

)
where we used the induction hypothesis to bound the term involving χ̂0v|s|+j(τ + i(b + 1)).
Using the identity (τ2 + (i− 2is)τ + j(j + 2|s|) + |s|+ j + s) = (τ − i(−1 + s− |s| − j))(τ −
i(s+ |s|+j)), we conclude that χ̂0v|s|+j has a meromorphic extension to Dm+1 with (at most)
simple poles at {i(−1− j − p+ s− |s|), 0 ≤ p ≤ m}. Using (14.7) we get∫

R

∣∣∣1C\K(1 + τ2 + j2)
r̃+1

2 χ̂0v|s|+j(τ + ib)
∣∣∣2 dτ ≤C

∫
R

∣∣∣1C\K(τ + ib)(1 + τ2 + j2)
r̃−1

2 f̂|s|+j(τ + ib)
∣∣∣2 dτ.

We can therefore apply Lemma 14.2.2 to get :

v|s|+j = x1−s+|s|+j
k−j∑
m=0

xmvm,|s|+j +H
r̃+1,l
(b)

Using this decomposition for j ≤ k and lemma 14.2.4 to prove that v−
∑k

p=0 v|s|+p ∈ H
r̃+1,l
(b) ,

we get the first claim of the lemma.
Let χ be a smooth cutoff localizing near zero. To determine exactly the form of vj,|s|+j ,

we fix 0 ≤ j ≤ k and compute for every ε > 0:〈
U∗|s|+j,m, u

〉
=
〈
U∗|s|+j,m, T̂s(0)T̂s(0)−1u

〉
=

〈
U∗|s|+j,m, T̂s(0)

χ(x
ε

)
x1−s+|s|(

k∑
j′=0

k∑
i=j′

xivi,|s|+j′) +H
r̃+1,l
(b)

〉

Note that U∗|s|+j,m ∈ Ḣ
(−s+ 1

2
)−,( 1

2
+s−|s|−j)−

(b) r2 dr dφ dθ. In particular, it belongs to the dual

space of H r̃−1,l
(b) under the hypothesis on r̃ and l. Therefore, for all g ∈ H r̃+1,l

(b) ,〈
U∗|s|+j,m, T̂s(0)g

〉
=
〈
T̂s(0)∗U∗|s|+j,m, g

〉
.
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Using the fact that T̂s(0)∗U∗|s|+j,m = 0 and the orthogonality property of f|s|+j,−m, we get:〈
U∗|s|+j,m, u

〉
=
〈
U∗|s|+j,m, T̂s(0)χ

(x
ε

)
x1−s+|s|+jvj,|s|+j

〉

We use the fact that χ
(
x
ε

)
x1−s+|s|+jvj,|s|+j tends to zero in H r̃,(− 1

2
−s+|s|+j)−

(b) when ε tends

to zero, the fact that N(T̂s(0))x1−s+|s|+jvj,|s|+j = 0 and the fact that

U∗|s|+j,m − x
−2+s−|s|−jf|s|+j,m sin(θ) dx dθ dφ ∈ H∞,(

3
2

+s−|s|−j)−
(b) x−4 sin(θ) dx dθ dφ

to obtain:〈
U∗|s|+j,m, u

〉
= lim
ε→0

∫ +∞

0
x−2+s−|s|−j [N(T̂s(0), χ

(x
ε

)
]x1−s+|s|+j dx

〈
f|s|+j,m, vj,|s|+j

〉

[N(T̂s(0)), χ
(x
ε

)
]x1−s+|s|+j =− 2(1− s+ |s|+ j)

x2−s+|s|+j

ε
χ′
(x
ε

)
− x2−s+|s|+j∂x

(x
ε
χ′
(x
ε

))
+ (1− 2s)

x2−s+|s|+j

ε
χ′
(x
ε

)
Using the relations ∫ +∞

0
χ′
(x
ε

) dx

ε
= 1∫ +∞

0
∂x

(
xχ′

(x
ε

)) dx

ε
= 0,

we conclude that: 〈
U∗|s|+j,m, u

〉
= (1 + 2 (|s|+ j))

〈
f|s|+j,m, vj,|s|+j

〉
Since

〈
f|s|+j,m, vj,|s|+j

〉
is the coefficient of f|s|+j,m in the decomposition of vj,|s|+j , we get the

claimed decomposition. In the case 0 ≤ j ≤ k − 1, we get (after projection on Y|s|+j):

T̂s(0)(vj,|s|+jx
1−s+|s|+j + vj+1,|s|+jx

2−s+|s|+j +H
r̃,min( 3

2
−s+|s|+j−,l)

) = u|s|+j

We deduce that the coefficients of x1−s+|s|+j and x2−s+|s|+j in the expansion of
T̂s(0)(vj,|s|+jx

1−s+|s|+j + vj+1,|s|+jx
2−s+|s|+j) have to vanish. The coefficient of x1−s+|s|+j

vanish since 1 − s + |s| + j is an indicial root of N(T̂s(0))|Y|s|+j
and the vanishing or the

coefficient of x2−s+|s|+j gives:

vj+1,|s|+j =∑
|m|≤|s|+j

(
2M(j2 + (2|s| − s+ 2)j + s(s− |s|) + 2|s| − s+ 1)− 2iams

)
2(1 + 2(|s|+ j))(j + |s|+ 1)

〈
U∗|s|+j,m, u

〉
f|s|+j,m

We can iteratively compute the other terms.
We now prove the second claim. Let α = 1 − s + |s| + j − k > −s − |s| for some k ∈ N.

Let v = T̂s(0)−1xα ln(x)pu|s|+j . A priori for all ε > 0, v ∈ H∞,α−
3
2
−ε

(b) . As previously, we have

(τ2 + (i − 2is)τ + j(j + 2|s|) + |s| + j + s)χ̂0v = f̂ with f = xα ln(x)pu|s|+j − xDiff2
bv. We

prove by induction on m ∈ N as previously (and using lemma 14.2.5) that we have:
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• χ̂0v has a meromorphic extension to {=(τ) > −α−m} with poles of order at most p+1
at −iα, ..., −i(α+ k − 1) and poles of order at most p+ 2 at

−i(α+ k) = −i(1− s+ |s|+ j), ...,−i(α+m− 1).

• f̂ has a meromorphic extension to {=(τ) > −α−m− 1} with poles of order at most
p+ 1 at −iα, ..., −i(α+ k) and poles of order at most p+ 2 at

−i(α+ k + 1) = −i(2− s+ |s|), ...,−i(α+m).

• For every N ∈ N, there exists C > 0 such that for all τ ∈ C with |<(τ)| ≥ 1:

|f̂ | ≤ C(1 + <(τ)2)−NeC|=τ |.

We can then use Remark 14.2.3. At a pole θ of order at most q of χ̂0v, the residue of
xiτ χ̂0v = xiθei ln(x)(τ−θ)χ̂0v is of the form xiθ

∑q−1
j′=0

(i ln(x))j
′

j′! Res|τ=θ
((τ − θ)j′χ̂0v). Therefore,

we get the claimed expansion for v. To compute the exact expression of the principal term,
we use the fact that

T̂s(0)

χ(x)xα
p∑

j′=0

n∑
i=0

xi ln(x)j
′
vi,j′,|s|+j

+χ(x)xα
n∑
i=k

xi ln(x)p+1wi,|s|+j +H
∞,α+n− 1

2
−

(b)

)
= χ(x)xα ln(x)pu|s|+j

together with the computation:

N(T̂s(0))xα ln(x)pv|s|+j =− (α+ |s|+ j + s)(α− |s| − j + s− 1)xα ln(x)pv|s|+j

+ p(1− 2s− 2α)xα ln(x)p−1v|s|+j − p(p− 1)xα ln(x)p−2v|s|+j

Remark that we could compute the other terms iteratively and in particular, in the case p = 0
and α = −s+ |s|, we get the claimed expression for w1,|s|+j .

Let C ∈ (0,+∞]. For k ∈ N we denote by W k,∞
b ((−C,C)σ, H

r̃,l
(b)) the set of functions f

from (−C,C) to H r̃,l
(b) which are k times differentiable with respect to σ ∈ R\{0} and such that

for all 0 ≤ j ≤ k, (σ∂σ)jf is bounded on I\{0} where I is any bounded interval of (−C,C). We
can similarly define W k,∞

b ((0, C)σ, H
r̃,l
(b)) (resp. W k,∞

b ((−C, 0)σ, H
r̃,l
(b))) for functions defined

on (0, C) (resp. on (−C, 0)). We obtain from the definition that f ∈ W k,∞
b (Rσ, H

r̃,l
(b)) if and

only if f|(0,C)
∈W k,∞

b ((−C, 0)σ, H
r̃,l
(b)) and f|(−C,0)

∈W k,∞
b ((0, C)σ, H

r̃,l
(b)).

In this part, we fix f ∈ C∞(Rσ, H
r̃,l
(b)) with compact support. Our goal is to study the

regularity of R(σ)f(σ) with respect to σ in a neighborhood of zero for different values of the
decay rate l (r̃ being considered as large).

Proposition 14.2.7. Let k ∈ N. Let f ∈ C∞c (Rσ, H
r̃,l
(b)) with l ∈ (−5

2 − s− |s|,
1
2 − s+ |s|) \{

−1
2 − s+ |s|

}
, r̃+lc−2k−1 > −1

2−2s and r̃−2k−1 > 1
2 +s. Let lc ∈ (−3

2−s−|s|,−
1
2) such

that lc ≤ l + 1. Then, we have that R(σ)f ∈ C∞(Rσ, H
r̃,lc
(b) ) + |σ|l−lcW k,∞

b (Rσ, H
r̃−2k−1,lc
(b) ).

Remark 14.2.8. If l = −1
2 − s+ |s|, using the result with l− ε for every ε > 0, we have that

R(σ)f ∈ C∞(Rσ, H
r̃,lc
(b) ) + |σ|(l−lc)−W k,∞

b (Rσ, H
r̃−2k−1,lc
(b) ).

168



Remark 14.2.9. Let C ∈ (0,+∞]. With the notations of the proposition, if f is constant
with respect to σ on (0, C), the proof provides a more precise result. We have on (0, C):

R(σ)f =

N∑
k=0

σkvk + |σ|l−lcW k,∞
b ((0, C)σ, H

r̃−2k−1,lc
(b) )

where N denotes the integer such that l − lc − 1 ≤ N < l − lc (note that the sum is empty
if l ≤ lc) and vk ∈ H

r̃,lc
(b) with v0 = R(0)f . The same equality holds if (0, C) is replaced by

(−C, 0).

Proof. We proceed in three steps.

• If l ≤ lc: In this case, we use directly proposition 14.1.4 to conclude.

• If l ∈ (−3
2 − s− |s|,−

1
2 − s+ |s|) and l > lc: In this case, we use the resolvent identity

to write:

R(σ)f = R(0)f −R(σ)(T̂s(σ)− T̂s(0))R(0)f

The term R(0)f is in C∞
(

Rσ, H
r̃+1,l
(b)

)
and f1 := (T̂s(σ) − T̂s(0))R(0)f ∈

σC∞
(

Rσ, H
r̃,l−1
(b)

)
. We can iterate this procedure until l − k ≤ lc.

• If l ∈ (−1
2−s+ |s|, 1

2−s+ |s|): In this case we also write R(σ)f = R(0)f+R(σ)(T̂s(σ)−
T̂s(0))R(0)f and we use Lemma 14.2.6 to see that R(0)f = cx1−s+|s|χ(x) + f1 where
c ∈ Y|s| depends smoothly on σ, χ is a cutoff near zero and f1 ∈ H

r̃+1,l
(b) depends smoothly

on σ. Therefore, we have:

R(σ)f = R(0)f +R(σ)v1

where v1 ∈ (T̂s(σ) − T̂s(0))C∞(Rσ, Y|s|)x
1−s+|s|χ(x) + σC∞

(
Rσ, H

r̃,l−1
(b)

)
. Note that

if −s + |s| = 0, we have v1 ∈ σC∞
(
Rσ, H

r̃,l−1
(b)

)
(since 1 is the indicial root of the

normal operator of T̂s(σ)− T̂s(0)) and we can conclude immediately using the previous
cases. If −s + |s| is a positive integer, we can define vk+1 = (T̂s(σ) − T̂s(0))R(0)vk

for 1 ≤ k ≤ −s + |s| and we have R(σ)v1 ∈ C∞(Rσ, H
r̃,lc
(b) ) + (−1)−s+|s|−1R(σ)v−s+|s|.

By induction of the normal operator argument, we get that for k ≤ −s + |s|, vk ∈
σkC∞(Rσ, Y|s|)x

1−k−s+|s|χ(x) + σkC∞(Rσ, H
r̃,l−k
(b) ). Performing one last iteration, we

have the indicial root cancellation which gives vk ∈ σ−s+|s|+1C∞(Rσ, H
r̃,l−1+s−|s|
(b) ) and

l− 1 + s− |s| ∈ (−3
2 − s− |s|,−

1
2 − s+ |s|), therefore we can conclude by the previous

cases.

We now describe the behavior of R(σ)f when f has a higher spatial decay.

Proposition 14.2.10. Let k ∈ N. Let f ∈ C∞(Rσ, H
r̃,l
(b)) with l > 1

2 − s + |s|, r̃ − 5
2 − s −

|s| − 2k > −1
2 − 2s, r̃ − 2k − 1 > 1

2 + s. For any ε ∈ (0, 1) such that l − ε ≥ 1
2 − s + |s|, we

have the following equality:

R(σ)f = C∞(Rσ, H
r̃,− 1

2
−s+|s|−

(b) ) + σ2|s|+2R(σ)v + |σ|2|s|+2+1−εW k,∞
b (Rσ, H

r̃−2k−1,− 3
2
−s−|s|+ε−

(b) )
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where v = x−s−|s|χ(x)cf +H
r̃,− 3

2
−s−|s|+ε

(b) for χ a smooth cutoff localizing near zero and cf an
element of Y|s|. More precisely, we have:

cf =
∑

|m|≤|s|,m−s∈Z

(−1)|s|−s+1(2i)1+2|s| cm
(2|s|)!

where

cm :=
4iMs+ c

(2)
m + 2i(1 + |s| − s)c(3)

m + c
(4)
m

(1 + 2|s|)2

〈
U∗|s|,m, f(0)

〉
f|s|,m

c(2)
m :=2asβ|s|,m

c(3)
m :=

−iams+M(s(s− |s|) + 2|s| − s+ 1)

(|s|+ 1)

c(4)
m :=

{
−2i(−2iams+ 2Ms(s− |s|)) if s < 0

0 if s ≥ 0

β|s|,m :=
〈
f|s|,m, cos(θ)f|s|,m

〉

Proof. First note that since f(σ) =
∑2|s|+2

i=0 σifi + σ2|s|+3C∞(Rσ, H
r̃,l
(b)) and

R(σ)σ2|s|+3C∞(Rσ, H
r̃,l
(b)) ⊂ |σ|2|s|+3W k,∞

b (Rσ, H
r̃−2k−1,− 1

2
−

(b) ) (see Proposition 14.1.4),
we are reduced to the case of f independent of σ. In this proof c|s| is an element of Y|s| and
c|s|+1 is an element of Y|s|+1 but each instance (even in the same line) can be different. For
this proof, we also record the expressions of T̂s(σ)− T̂s(0) and T̂s(0) near x = 0:

T̂s(σ)− T̂s(0) =a2 sin2 θσ2 +
4Mar

∆r
σDφ − 2(a2 + r2)σx2Dx

− iσ
(

4Msa2 − 2sr(a2 + r2)

∆r
+ 2(s+ 1)r + 2ias cos θ

)
=− 2σ(Dx + ix−1) + a2 sin2 θσ2 + iσ4Ms+ 2σas cos θ + σxDiff1

b

T̂s(0) =
a2

∆r
∂2
φ + ∆[s] −∆−sr ∂r∆

s+1
r ∂r + 4s(r −M)∂r − 2s

a(r −M)

∆r
∂φ + s

Note that T̂s(0) commutes with ∆[s] but it is not the case of T̂s(σ) − T̂s(0). We define
recursively u1 = (T̂s(σ) − T̂s(0))T̂s(0)−1f and uj+1 = (T̂s(σ) − T̂s(0))T̂s(0)−1uj for 1 ≤ j ≤
2|s| + 2. It is not clear yet that this sequence is well defined since T̂s(0)−1 is only defined
on H r̃,l

(b) for l > −3
2 − s − |s| but we will see in the proof that uj remains in this space when

j ≤ 2|s|+ 1. We prove recursively using lemma 14.2.6, the explicit form of T̂s(σ)− T̂s(0) and
the fact that cos θY|s| ⊂ Y|s| + Y|s|+1 (see for example (2.33) in [71]) that for j ≤ |s| − s:

uj =χ(x)
(
c|s|σ

jx1−s+|s|−j + σjx2−s+|s|−j(c|s|(j − 1) ln(x) + c|s| + c|s|+1)
)

+ σj+1P (σ)H
r̃, 1

2
−s+|s|−j−

(b) + σjQ(σ)H
r̃, 1

2
−s+|s|−j+ε

(b)

where P and Q are polynomials in σ and χ is any smooth cutoff localizing near x = 0. For
j = |s| − s+ 1:

uj =χ(x)

(
σjx2−s+|s|−j((j − 1)c|s| ln(x) + c|s| + c|s|+1) + σj+1P (σ)H

r̃, 1
2
−s+|s|−j−

(b)

)
+ σjQ(σ)H

r̃, 1
2
−s+|s|−j+ε

(b)
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For |s| − s+ 2 ≤ j ≤ 2|s|+ 2:

uj = χ(x)

(
σjx2−s+|s|−jc|s| + σj+1P (σ)H

r̃, 1
2
−s+|s|−j−

(b)

)
+ σjQ(σ)H

r̃, 1
2
−s+|s|−j+ε

(b)

And finally, for all 0 ≤ j ≤ 2|s|+ 1,

R(σ)f =

j∑
k=0

(−1)kR(0)uk + (−1)j+1R(σ)uj+1.

We then use proposition 14.1.4 to obtain

R(σ)σ3+2|s|P (σ)H
r̃,− 3

2
−s−|s|−

(b) ⊂ |σ|2|s|+2+1−εW k,∞
b (Rσ, H

r̃−2k−1,− 3
2
−s−|s|+ε−

(b) ).

To compute precisely the c|s| term in the expression of u2|s|+2, we see that we have two
cases:

• Case s ≥ 0: The sequence of terms c|s| in the expressions of uj (we denote by cj|s| the
term appearing in uj) can be computed from the recurrence relation (obtained using
Lemma 14.2.6):

c1
|s| =

∑
|m|≤|s|

2i(1− s+ |s|)c(3)
m + 4iMs+ 2asβ|s|,m

1 + 2 |s|

〈
U
∗
|s|,m, f(0)

〉
f|s|,m

c2
|s| =− 2i

c1
|s|

1 + 2 |s|

cj+1
|s| =2i(1− s+ |s| − j)

cj|s|

(j − 1)(2 + 2 |s| − j)
, for j ≥ 2

• Case s < 0: The logarithmic term in the expression of uj for 2 ≤ j ≤ |s| − s + 1 and
the terms c|s| in the expression of uj for j = 2|s| + 2 can be computed recursively (we
call cj|s| the coefficients appearing in these terms): First, the term c2

|s| is obtained by
computing the logarithmic term in u2.

α2 :=
∑
|m|≤|s|

2i(1− s+ |s|)c(3)
m + 4iMs+ 2asβ|s|,m

1 + 2 |s|

〈
U
∗
|s|,m, f(0)

〉
f|s|,m

c2
|s| =2i(−s+ |s|)

(
− α2

1 + 2 |s|

+
∑
|m|≤|s|

2i

(1 + 2 |s|)2
(2Ms(s− |s|)− 2iams)

〈
U
∗
|s|,m, f(0)

〉
f|s|,m



Then we have the following recursive relation (on the logarithmic terms) for 2 ≤ j ≤
−s+ |s|:

cj+1
|s| =2i(1− s+ |s| − j)

cj|s|

(j − 1)(2 + 2 |s| − j)

Then we have:

c
2+2|s|
|s| =

2ic
1+2|s|
|s|

(|s| − s)
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Now we want a more precise description of the term R(σ)v of Proposition 14.2.10. We
need to introduce the effective normal operator (see Definition 13.2.5). We have:

Neff(P̂ (σ)) =(x2Dx)2 + 2ix(x2Dx)

+ x2

(
1

sin θ
Dθ sin θDθ +

1

sin2 θ
D2
φ +

2s cos θ

sin2 θ
Dφ + s2cotan2θ + s

)
− 2isx2

(
xDx +

i

2

)
− sx2 − 2σ

(
x2Dx + ix

)
we deduce that

Neff(T̂s(σ)) =x−2Neff(P̂ (σ))

=(xDx)2 + ixDx + ∆[s] − 2is

(
xDx +

i

2

)
− 2

σ

x
(xDx + i)

For σ > 0, the change of variable X = x
|σ| gives:

N+
eff :=(XDX)2 + iXDX + ∆[s] − 2is

(
XDX +

i

2

)
− 2X−1 (XDX + i)

and for σ < 0, it gives:

N−eff :=(XDX)2 + iXDX + ∆[s] − 2is

(
XDX +

i

2

)
+ 2X−1 (XDX + i)

We use Definition B.0.1 (but here the variable X plays the role of x in the definition) to
introduce the spaces H r̃,l,ν

b . Using corollary B.2.3, we get that N±eff are invertible from{
u ∈ H r̃,l,ν

b : N±eff(T̂s(σ))u ∈ H r̃,l−1,ν
b

}
to H r̃,l−1,ν

b where l < −1
2 , r̃ + l > −1

2 − 2s and

ν ∈
(

1
2 + s− |s|, 3

2 + s+ |s|
)
.

Let B be a Banach space. For α ∈ R, we denote by A([0, 1)σ, σ
αB) the space of smooth

functions u from (0, 1) to B such that for all k ∈ N, supσ∈(0,1)

∥∥∥σ−α (σ∂σ)k u
∥∥∥
B
< +∞.

Lemma 14.2.11. Let χ, χ1 be smooth cutoffs with χ = χ1 = 1 in a neighborhood of 0 and
χ1 has compact support in [0, 1) while χ has compact support in [0, 1

r+−ε). Let u ∈ H∞,l,νb , if
l + ν ≤ 0, we have

χ(x)χ1(σ)u
(x
σ

)
∈ A([0, 1)σ, σ

ν− 3
2H
∞,l
(b) ).

If l + ν ≥ 0, we have for every µ ∈ (−l, ν):

χ(x)χ1(σ)u
(x
σ

)
∈ A([0, 1)σ, σ

µ− 3
2H
∞,−µ
(b) ).

Proof. Let µ1, µ2 be defined as µ1 = ν, µ2 = l if l + ν ≤ 0 and by µ1 = µ ∈ (−l, ν), µ2 = −µ
if l+ ν ≥ 0. The strategy is to bound a family of quantities (Bk,k′(u))k,k′∈N which dominates
the seminorms of A([0, 1)σ, σ

µ1H
∞,µ2

(b) ) we define:

Bk,k′(u) := sup
σ∈(0,1)

∫ (r+−ε)−1

0

∥∥∥σ−ν+ 3
2x−l (x+ σ)ν+l (x∂x)k

′
(σ∂σ)kχ(x)χ1(σ)u

(x
σ

)∥∥∥2

Hk′ (Bs)

dx

x4
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Using the inequality (x+ σ)l+ν & 1 if (l+ ν) ≤ 0 and (x+ σ)l+ν ≥ xl+µσν−µ if l+ ν ≥ 0 and
−l ≤ µ ≤ ν, we get that for all N,N ′ ∈ N, there exists CN,N ′ > 0 a constant independent of
u such that:

sup
σ∈(0,1)

∥∥∥σ−µ1+ 3
2 (σ∂σ)Nχ(x)χ1(σ)u

(x
σ

)∥∥∥
H
N′,µ2
(b)

≤ CN,N ′
∑

0≤k≤N
0≤k′≤N ′

Bk,k′(u)

Moreover, we have (writing X = x
σ ):

(x∂x)k(σ∂σ)k
′
(
χ(x)χ1(σ)u

(x
σ

))
=

k∑
j=0

k′∑
m=0

(
k
j

)(
k′

m

)
(x∂x)mχ(σ∂σ)jχ1(−1)k

′−m(X∂X)k+k′−m−ju (X)

There exists Ck,k′ > 0 such that for all j ≤ k and m ≤ k′:

sup
σ∈(0,1)

x∈
(

0, 1
r+−ε

)
∣∣∣∣(kj

)(
k′

m

)
(x∂x)mχ(σ∂σ)jχ1

∣∣∣∣ ≤ Ck,k′

Making the change of variable X = x
σ in the definition of Bk,k′(u), we deduce that there exists

C ′k,k′ > 0 such that :

Bk,k′(u) ≤
k∑
j=0

k′∑
m=0

∫ +∞

0
Ck,k′

∥∥∥∥∥
(

X

X + 1

)−l
(X + 1)ν(X∂X)k+k′−j−mu

∥∥∥∥∥
2

Hk′ (Bs)

dX

X4

≤C ′k,k′ ‖u‖
2

Hk+2k′,l,ν
b

We define

N±eff,|s| := (XDX)2 + iXDX + |s| − 2is

(
XDX +

i

2

)
∓ 2X−1 (XDX + i)

since for all |m| ≤ |s| and u ∈ H r̃,l,ν
b ([0,+∞]X), we have

N±effuf|s|,m = (N±eff,|s|u)f|s|,m we deduce that N±eff,|s| are invertible between{
u ∈ H r̃,l,ν

b ([0,+∞]X) : N±eff,|s|u ∈ H
r̃,l−1,ν([0,+∞]X)

}
and H r̃,l−1,ν

b ([0,+∞]X) where

l < −1
2 and r̃ + l > −1

2 − 2s and ν ∈
(

1
2 + s− |s|, 3

2 + s+ |s|
)
(we can also prove it directly

in the spirit of the proof of corollary B.2.3).
We define

ũ± := (±1)−s−|s|(N±eff,|s|)
−1X−s−|s|.

Since X−s−|s| ∈ H∞,(−s−|s|−
3
2

)−,(s+|s|+ 3
2

)−
b ([0,+∞]X), we get ũ± ∈ H∞,(−s−|s|−

1
2

)−,(s+|s|+ 3
2

)−
b .

Moreover, we have ũ− = (−1)−s−|s|ũ+.
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Remark 14.2.12. Using a normal operator argument on χũ+ and (1 − χ)ũ+ (where χ is a
smooth cutoff localizing near X = 0) on the model of what is done in the proof of Proposition
14.2.6, we deduce the following asymptotic expansions:

(1− χ)ũ+(X) =(1− χ)X−s−|s|
(

ln(X)

1 + 2 |s|
+ b

)
+H

∞,∞,(s+|s|+ 5
2

)−
b

χũ+(X) =χ

s+|s|∑
k=1

(−1)k+1ik(k − 1)!

2k (s+ |s| − k + 1)
Xk−s−|s| +X

(
(−i)s+|s|+1(s+ |s|)!

2s+|s|+1
ln(X) + b′

)
+H

∞,(− 3
2

)−,∞
b

Where b, b′ are complex constants (depending on s). Note that the sum in the second line is
empty when s ≤ 0.

Proposition 14.2.13. Let cf ∈ Y|s| be defined as in Proposition 14.2.10. Let u(0)(cf ) be

the unique element of Ker(T̂s(0)) ∩ H∞,−
3
2
−s−|s|−

(b) such that u(0)(cf ) − x−s−|s|cf is of order
x1−s−|s| at x = 0. Let v = x−s−|s|χ(x)cf with χ a smooth cutoff localizing near x = 0. Then
for σ in a small punctured real neighborhood of zero and for any ε ∈ (0, 1):

R(σ)v =σ−s−|s|χ(x)
(

1σ>0ũ
+
(x
σ

)
+ (−1)−s−|s|1σ<0ũ+

(
−x
σ

))
cf

+

(
ln|σ|

1 + 2|s|
−H(σ)2i=(b)

)(
χ(x)x−s−|s|cf − u(0)(cf )

)
+ C∞

(
(−1, 1)σ, H

∞,− 1
2
−s−|s|−ε

(b)

)
+ σε−W∞,∞b (H

∞,− 1
2
−s−|s|−ε−

(b) ).

In the previous expression, H is the Heaviside function and b is a complex constant which
appears in the development of ũ+ (we see that =(b) = π

2(2|s|+1) in the proof of Lemma 14.2.27).

Remark 14.2.14. In the proposition, cf could be replaced by any element of Y|s|.

Proof. Note that for every σ > 0, χ(x)ũ+
(
x
σ

)
∈ H∞,(−

1
2
−s−|s|)−

(b) . In particular, we have

R(σ)T̂s(σ)χ(x)ũ+
(x
σ

)
= χ(x)ũ+

(x
σ

)
.

For σ > 0, we deduce

R(σ)v = σ−s−|s|χ(x)ũ+cf +R(σ)(v − σ−s−|s|T̂s(σ)χũ+cf )

and

v − σ−s−|s|T̂s(σ)χũ+cf =v − σ−s−|s|N+
effχũ

+cf + σ−s−|s|(N+
eff − T̂s(σ))χũ+cf

=− σ−s−|s|[N(T̂s(0)), χ]χ̃ũ+cf + σ−s−|s|(N(T̂s(0))− T̂s(0))χũ+cf

+ σDiff1
b χ̃ũ

+cf

where χ̃ = 1 on suppχ. Note that by the mapping properties of N+
eff,

ũ+ ∈ H∞,(−
1
2
−s−|s|)−,(s+|s|+ 3

2
)−

b ([0,+∞]X).
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Let χ1 be a smooth cutoff localizing near σ = 0. By lemma 14.2.11, we have

σ−s−|s|χ1(σ)χ̃(x)ũ+cf ∈ A
(

[0, 1)σ, |σ|−1−H
∞,(− 1

2
−s−|s|)−

(b)

)
∩ A

(
[0, 1)σ, |σ|0−H

∞,(− 3
2
−s−|s|)−

(b)

)
.

In particular,

σ−s−|s|χ1(σ)σDiff1
b χ̃(x)ũ+cf ∈ A

(
[0, 1)σ, |σ|1−H

∞,(− 3
2
−s−|s|)−

(b)

)
and we can use Proposition 14.1.4 to conclude that

σ−s−|s|χ1(σ)R(σ)σDiff1
b χ̃(x)ũ+cf ∈ |σ|(1−η)−W∞,∞b

(
H
∞,− 3

2
−s−|s|+η−

(b)

)
for η ∈ (0, 1). It is therefore part of the error term.

Let χ2 be a smooth cutoff localizing near zero. For any ε ∈ (0, 1), by remark 14.2.12, we
have that

ũ+
(x
σ

)
cf = χ2

(
|σ|
x

)(x
σ

)−s−|s|( 1

1 + 2|s|
ln

(
x

|σ|

)
+ b

)
cf +H

∞,− 1
2
−s−|s|−,s+|s|+ 3

2
+ε

b

(14.8)

and therefore by Lemma 14.2.11 we have

σ−s−|s|χ1(σ)χ̃(x)ũ+cf =χ1(σ)χ̃(x)χ2

(
|σ|
x

)
x−s−|s|

(
1

1 + 2|s|
ln

(
x

|σ|

)
+ b

)
cf

+A
(

[0, 1)σ, σ
εH
∞,− 3

2
−s−|s|−ε

(b)

)
(14.9)

(and similarly with χ̃ replaced by χ). Since [N(T̂s(0)), χ] ∈ x∞Diff1
b and N(T̂s(0))− T̂s(0) ∈

xDiff2
b , we get

A :=− σ−s−|s|χ1(σ)[N(T̂s(0)), χ]χ̃ũ+cf + σ−s−|s|χ1(σ)(N(T̂s(0))− T̂s(0))χũ+cf

=− [N(T̂s(0)), χ]χ1(σ)χ̃(x)χ2

(
|σ|
x

)
x−s−|s|

(
1

1 + 2|s|
ln

(
x

|σ|

)
+ b

)
cf

+ (N(T̂s(0))− T̂s(0))χ1(σ)χ(x)χ2

(
|σ|
x

)
x−s−|s|

(
1

1 + 2|s|
ln

(
x

|σ|

)
+ b

)
cf

+A
(

[0, 1)σ, σ
ε−H

∞,− 1
2
−s−|s|−ε−

(b)

)

Using Proposition 14.1.4, we get R(σ)A
(

[0, 1)σ, σ
ε−H

∞,− 1
2
−s−|s|−ε−

(b)

)
⊂

σε−W∞,∞b (H
∞,− 1

2
−s−|s|−ε−

(b) ) and is therefore also an error term.
We write χ2

(
σ
x

)
= 1 + σ

xΨ
(
σ
x

)
with (z∂z)

NΨ(z) smooth and bounded for all N . We
deduce:

χ1(σ)χ(x)χ2

(
|σ|
x

)
x−s−|s|

(
1

1 + 2|s|
ln
(x
σ

)
+ b

)
cf =χ1(σ)χ(x)x−s−|s|

(
1

1 + 2|s|
ln
(x
σ

)
+ b

)
cf

+ σ1−A([0, 1)σ, H
∞,− 5

2
−s−|s|−

(b) )

We can use Proposition 14.1.4 to prove that

R(σ)(N(T̂s(0))− T̂s(0))σ1−A([0, 1)σ, H
∞,− 5

2
−s−|s|−

(b) ) ⊂ σε−W∞,∞b (H
∞,− 1

2
−s−|s|−ε−

(b) )
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and similarly

R(σ)[N(T̂s(0)), χ]σ1−A([0, 1)σ, H
∞,− 5

2
−s−|s|−

(b) ) ⊂ σε−W∞,∞b (H
∞,− 1

2
−s−|s|−ε−

(b) ).

We have on (0, 1)σ:

(N(T̂s(0))− T̂s(0))χ1(σ)χ(x)x−s−|s|
(

1

1 + 2|s|
ln(x) + b

)
cf ∈H

∞,− 1
2
−s−|s|−

(b)

+ C∞c ((0, 1]σ, H
∞,− 1

2
−s−|s|−

(b) )

and

[N(T̂s(0)), χ]χ1(σ)χ̃(x)x−s−|s|
(

1

1 + 2|s|
ln(x) + b

)
∈ H∞,−

1
2
−s−|s|−

(b) + C∞c ((0, 1]σ, H
∞,− 1

2
−s−|s|−

(b) )

and therefore, by remark 14.2.9, we have that their image by R(σ) is in

R(0)w+ + C∞c ((0, 1]σ, H
∞,− 1

2
−s−|s|−ε−

(b) ) + σεW∞,∞b ((0, 1)σ, H
∞,− 1

2
−s−|s|−ε−

(b) )

for all ε ∈ (0, 1) where

w+ :=− [N(T̂s(0)), χ]χ̃x−s−|s|
(

ln(x)

1 + 2|s|
+ b

)
cf

+
(
N(T̂s(0))− T̂s(0)

)
χ(x)x−s−|s|

(
ln(x)

1 + 2|s|
+ b

)
cf .

Note that w+ ∈ H∞,−
1
2
−s−|s|−

(b) .
So far, we are reduced to calculating the image by R(σ) of

−χ1(σ)
1

1 + 2|s|
ln(σ)

(
−[N(T̂s(0)), χ]χ̃(x)x−s−|s|cf + (N(T̂s(0))− T̂s(0))χ(x)x−s−|s|cf

)
= χ1(σ)

ln(σ)

1 + 2|s|
T̂s(0)χ(x)x−s−|s|cf

where we used χ(x)N(T̂s(0))x−s−|s|cf = 0 to get the right-hand side. Using that

T̂s(0)χ(x)x−s−|s|cf ∈ H
∞,− 1

2
−s−|s|−

(b) (x−s−|s|cf is in the kernel of the normal operator of

T̂s(0)), we can write:

χ1(σ)
ln(σ)

1 + 2|s|
R(σ)T̂s(0)χ(x)x−s−|s|cf =χ1(σ)

ln(σ)

1 + 2|s|
ṽ − χ1(σ) ln(σ)R(σ)

(
T̂s(σ)− T̂s(0)

)
ṽ

where ṽ := R(0)T̂s(0)χ(x)x−s−|s|cf . By definition, ṽ is the only element in H∞,−
1
2
−s−|s|−

(b) such

that T̂s(0)ṽ = T̂s(0)χ(x)x−s−|s|cf . We write u(0)(cf ) the element of Ker(T̂s(0))∩H∞,−
3
2
−s−|s|−

(b)

such that u(0)(cf ) − x−s−|s|cf is of order x1−s−|s| at x = 0. With this definition, we have
ṽ = χ(x)x−s−|s|cf − u(0)(cf ). By proposition 14.2.7, we get that R(σ)

(
T̂s(σ)− T̂s(0)

)
ṽ ∈

σεW∞,∞b (H
∞,− 1

2
−s−|s|−ε−

) and is therefore an error term. Finally, modulo error terms we get
(for σ > 0 small enough):

R(σ)v = σ−s−|s|χ(x)ũ+
(x
σ

)
cf +

ln(σ)

1 + 2|s|
(χ(x)x−s−|s|cf − u(0)(cf )) +R(0)w+
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We perform the same computation to determine the form of R(σ)v in a left neighborhood
of 0 (it amounts to replacing N+

eff by N−eff and ũ+ by ũ−). We find that modulo error terms
(for σ < 0 close to zero):

R(σ)v = (−σ)−s−|s|χ(x)ũ+
(
−x
σ

)
cf +

ln(−σ)

1 + 2|s|
(χ(x)x−s−|s|cf − u(0)(cf )) +R(0)w−

where

w− :=− [N(T̂s(0)), χ]χ̃x−s−|s|
(

ln(x)

1 + 2|s|
+ b

)
cf

+
(
N(T̂s(0))− T̂s(0)

)
χ(x)x−s−|s|

(
ln(x)

1 + 2|s|
+ b

)
cf .

We see that R(0)w+1σ>0 + R(0)w−1σ<0 has no smooth extension in a neighborhood of
σ = 0 in general. We have (to get the second line we use that N(T̂s(0))x−s−|s|cf = 0):

R(0)w+1σ>0 +R(0)w−1σ<0 =R(0)w− +H(σ)R(0)(w+ − w−)

=R(0)w− −H(σ)R(0)T̂s(0)2i=(b)χ(x)x−s−|s|cf

=R(0)w− −H(σ)2i=(b)
(
χ(x)x−s−|s|cf − u(0)(cf )

)
The term R(0)w− ∈ H r̃,− 1

2
−s−|s|−

(b) is independent of σ and can be absorbed in the error term

C∞
(

(−1, 1)σ, H
∞,− 1

2
−s−|s|−ε

(b)

)
.

Remark 14.2.15. Contrary to what it seems, the principal term (i.e. R(σ)v modulo

C∞
(

(−1, 1)σ, H
∞,− 1

2
−s−|s|−ε

(b)

)
+σε−W∞,∞b (H

∞,− 1
2
−s−|s|−ε−

(b) )) does not depend on the choice

of χ. Indeed, if χ1 and χ2 are two smooth cutoffs with compact support in
[
0, 1

r+

)
x
and equal

to 1 in a neighborhood of 0, we define the difference:

Dχ1,χ2 :=σ−s−|s|(χ1(x)− χ2(x))
(

1σ>0ũ
+
(x
σ

)
+ (−1)−s−|s|1σ<0ũ+

(
−x
σ

))
cf

+
ln|σ|

1 + 2|s|
(χ1(x)− χ2(x))x−s−|s|cf −H(σ)2i=(b) (χ1(x)− χ2(x))x−s−|s|cf

We have:

Dχ1,χ2 ∈ C∞
(

(−1, 1)σ, H
∞,− 1

2
−s−|s|−ε

(b)

)
+ σε−W∞,∞b (H

∞,− 1
2
−s−|s|−ε−

(b) )

This can be seen using (14.8) combined with Lemma 14.2.11 which provides that for σ in a
small interval (0, η) with η < 1:

(χ1(x)− χ2(x))ũ+
(x
σ

)
= (χ1(x)− χ2(x))

(
ln(x)− ln(|σ|)

1 + 2 |s|
+ b

)(
x

|σ|

)−s−|s|
cf

+ |σ|s+|s|+εA([0, 1)σ, H
∞,− 1

2
−s−|s|−

(b) )

and similarly for σ in an interval of the form (−η, 0).

Definition 14.2.16. The previous proposition leads us to define

ũ(σ, x) :=
(

1σ>0ũ
+
(x
σ

)
+ (−1)−s−|s|1σ<0ũ+

(
−x
σ

))
cf
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Combining Proposition 14.2.10, Proposition 14.2.13 and the proof of Lemma 14.2.27 below
(for the explicit value of the constant =(b)) we get

Corollary 14.2.17. Let k ∈ N. Let f ∈ C∞(Rσ, H
r̃,l
(b)) with l >

1
2−s+|s|, r̃− 5

2−s−|s|−2k >

−1
2 − 2s and r̃− 2k− 1 > 1

2 + s. For all ε ∈ (0, 1) such that l− (1− ε) ≥ 1
2 − s+ |s|, we have

the following equality for σ in a punctured neighborhood of zero:

R(σ)f =σ2−s+|s|χ(x)ũ (σ, x) + σ2+2|s| ln|σ|
1 + 2|s|

(χ(x)x−s−|s|cf − u(0)(cf ))

− σ2+2|s|H(σ)i
π

2 |s|+ 1

(
χ(x)x−s−|s|cf − u(0)(cf )

)
+ |σ|2|s|+2+ε−W k,∞

b (Rσ, H
r̃−2k−1,− 1

2
−s−|s|−ε−

b ) + C∞(Rσ, H
r̃,− 1

2
−s−|s|−ε

(b) )

for χ a smooth cutoff localizing near zero and cf the element of Y|s| defined in proposition
14.2.10.

We add boundaries toMε to describe the asymptotic behavior of the the solution for large
time.

Definition 14.2.18. We first add the boundary corresponding to the boundary defining func-
tion t−1 to Mε. We can then blow up the corner

{
t−1 = 0, x = 0

}
. By a slight abuse of

notation, we still callMε the manifold with corners resulting from this procedure. Concretely,
the manifoldMε ∩ {t > 1} now has three boundary faces (see Figure 14.1):

• K+ with boundary defining function (xt + 1)−1.

• The front face of the blow up I+ with boundary defining function xt+1
t .

• The face I + (or rather its closure in the blow up space) with boundary defining function
xt
xt+1 .

We also introduce a new function space to measure decay with respect to t and x.

Definition 14.2.19. Let k ∈ N. Zk,r̃α,β,γ is the space of bounded functions u from Rt to H
r̃,γ
(b)

which have k bounded derivatives and such that for all j ≤ k:

sup
t∈R

∥∥∥∥∥(xt + 1)α
(
xt + 1

t

)−β ( xt

xt + 1

)−γ
(t∂t)

ju

∥∥∥∥∥
H
r̃,− 3

2
(b)

< +∞

Remark 14.2.20. Note that by Sobolev embedding, ‖u‖C0 ≤ ‖u‖
H

3
2 +,− 3

2 +

(b)

(note that the −3
2

offset comes from the fact that we use sc-volume form instead of a b-volume form). Therefore,
if r̃ > 3

2 + m for some m ∈ N, then for u ∈ Zk,r̃α,β,γ, j ≤ k and p ≤ m we have the uniform
bound

|(t∂t)j(xDx)pu| ≤ Cx0−(xt + 1)−α
(
xt + 1

t

)β ( xt

xt + 1

)γ
Remark 14.2.21. The weights (xt + 1)−1, xt+1

t and xt
xt+1 measure decay at K+, I+ and I +

(see Figure 14.1).

We will need a slightly more precise version of Lemma 3.6 in [48].
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K+

I+

I+

Mε

Figure 14.1: Blow up of the corner x = 0, t−1 = 0

Lemma 14.2.22. Let X be a Banach space. Let β > −1 and k > β + 1, let Φ̂ ∈
L1
c((−1, 1)σ, X) ∩ |σ|βW k,∞

b ((−1, 1)σ \ {0} , X). For all j ∈ N such that j < k − (β + 1):

|(t∂t)jΦ(t)| ≤ Cj 〈t〉−1−β

where Φ is the inverse Fourier transform of Φ̂.
Moreover, if Φ̂ ∈ Cp(Rσ, X) ∩ L1(Rσ, X) is supported on R \ [−ε, ε] and for 0 ≤ q ≤ p,

(σ∂σ)qΦ̂ ∈ 〈σ〉−k+p L1(Rσ, X) (for some k ≥ 0) we have, for all j ≤ k:

|(∂t)jΦ(t)| ≤ Cj 〈t〉−p

Proof. The proof of the first claim is formally identical to the proof of Lemma 3.6 in [48].
The difference is that we only require the lowest conormal regularity permitted by the proof
(Φ̂ ∈ W k,∞

b ((−1, 1)σ \ {0} , X) instead of Φ̂ ∈ W∞,∞b ((−1, 1)σ \ {0} , X)). We now prove the
second claim. Since Φ̂ is integrable, Φ is bounded with respect to t. Therefore, it is enough
prove the estimate for |t| ≥ 1. We have:

Φ(t) =
1

2π

∫
R\[−ε,ε]

e−iσtΦ̂(σ) dσ

Dj
t Φ(t) =

1

2π

∫
R\[−ε,ε]

σje−iσtΦ̂(σ) dσ

=
1

2π

∫
R\[−ε,ε]

σjΦ̂(σ)t−p(−Dσ)pe−iσt dσ

=
1

2π
t−p
∫

R\[−ε,ε]
(−1)pe−iσt

∑
l+m=p

(
p
l

)
Dl
σσ

jDm
σ Φ̂(σ) dσ

Since Dl
σσ

jDm
σ Φ̂(σ) is integrable on R \ [−ε, ε] for all l,m such that l +m = p we get for all

|t| ≥ 1: ∥∥∥Dj
t Φ̂(t)

∥∥∥
X
≤ C |t|−p .

For p,m ∈ R, we define the space Ap,m(Rσ \ {0}) as the set of complex valued tempered
distributions f on R such that for all k ∈ N:

〈σ〉m
(
σ

〈σ〉

)−p
(σDσ)kf ∈ L∞(R)

179



We also define the space Sm(Rσ) (symbol of order m) as the set of complex valued smooth
functions f on R such that for all k ∈ N:

(Dσ)kf ≤ 〈σ〉m−k

We will need the following lemma:

Lemma 14.2.23. Let m ≤ 1 and p > −1. Let Φ̂ ∈ Ap,m(R \ {0}). Then we have: Φ ∈
Am−1,p+1(R \ {0}).

Proof. We fix χ a smooth cutoff with compact support equal to 1 near zero. By lemma 14.2.22,
we have that χΦ̂ has inverse Fourier transform in S−(p+1)(R). Using S−(p+1) + Am−1,∞ ⊂
Am−1,p+1 and (1 − χ)Φ̂ ∈ S−m, we are reduced to proving that the Fourier transform maps
S−m to Am−1,∞. This follows for example from Lemma 2.3 (and the estimate (2.7) just after)
in [99, Chapter 7] for the estimate near zero and from Proposition 8.2 in [98, Chapter 3] for
the estimate at infinity.

Lemma 14.2.24. We denote by F−1 the inverse Fourier transform. For l ∈ R, we have:
F−1C∞c (Rσ, H

r̃,l
(b)) ⊂ Z

∞,r̃
∞,∞,l+ 3

2

and, for k ≥ 3 + 2|s|+ ε,

F−1|χ(σ)σ|2|s|+2+εW k,∞
b ((−1, 1) \ {0} , H r̃,− 1

2
−s−|s|−ε

(b) ) ⊂ ZE(k−3−2|s|−ε),r̃
3+2|s|+ε,4−s+|s|,1−s−|s|−ε

(where E(x) denotes the integer part of x and χ is smooth compactly supported in (−1, 1)).
More generally for β > −1 and k > β + 1, we have:

F−1χ(σ)|σ|βW k,∞
b ((−1, 1) \ {0} , H r̃,l

(b)) ⊂ Z
E(k−(β+1)),r̃

β+1,β+l+ 5
2
,l+ 3

2

Proof. The first inclusion is a consequence of the fact that the Fourier transform maps
Schwartz functions to Schwartz functions. The other inclusions are obtained by application
of lemma 14.2.22.

Definition 14.2.25. We define:

u0
I+(v) :=

(
v

v + 1

)3+|s|−s
F−1
Y

(
Y 2+|s|−sũ(Y, 1)

)
(v)

Using the fact that F(g) = F(ǧ) (where ǧ(Y ) = g(−Y )), we equivalently get:

• If s ∈ Z:

u0
I+(v) := 2

(
v

v + 1

)3+|s|−s
<
(
F−1
Y

(
H(Y )Y 2+|s|−sũ+(Y −1)

)
(v)
)
cf

• If s /∈ Z:

u0
I+(v) := 2i

(
v

v + 1

)3+|s|−s
=
(
F−1
Y

(
H(Y )Y 2+|s|−sũ+(Y −1)

)
(v)
)
cf

The function u0
I+

is smooth on (0,+∞).
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Remark 14.2.26. We can compute the asymptotic expansion of u0
I+

at v = 0 and v = +∞.
Indeed for χ a smooth compactly supported cutoff localizing near 0, using remark 14.2.12, we
have:

H(Y )Y 2+|s|−sχ(Y )ũ+(Y −1) =H(Y )Y 2+2|s|
(
− ln(Y )

1 + 2 |s|
+ b

)
+A3+2|s|−,−2−2|s|−(R \ {0})

H(Y )Y 2+|s|−s(1− χ(Y ))ũ+(Y −1) =H(Y )

s+|s|∑
k=1

(−1)k+1ik(k − 1)!

s+ |s| − k + 1
Y 2|s|+2−k

+H(Y )Y 1+|s|−s

(
−(−i)s+|s|+1(s+ |s|)!

2s+|s|+1
ln(Y ) + b′

)
+A(1+|s|−s)−,−(|s|−s)−(R \ {0})

Using Lemma 14.2.23 (and the proof of Lemma 14.2.27 for the computation of =(b)), we get:

• if s ∈ Z:

u0
I+(v) =(1− χ(v))

(−1)1+|s|(2 + 2 |s|)!
1 + 2 |s|

v−3−2|s|cf

+ χ(v)(1 + |s| − s)!
(

(−1)1+|s| (s+ |s|)!
2s+|s|+2

+ (−1)1+
|s|−s

2
<(b′)

π

)
vcf

+A2−,(4+2|s|)−(R \ {0})cf .

• if s ∈ 1
2Z:

u0
I+(v) =− i(1− χ(v))

(−1)
1+2|s|

2 (2 + 2 |s|)!
1 + 2 |s|

v−3−2|s|cf

+ χ(v)i(1 + |s| − s)!

(
−(−1)

1+2|s|
2 (s+ |s|)!

2s+|s|+2
+ (−1)|s|−s

=(i2+|s|−sb′)

π

)
vcf

+A2−,(4+2|s|)−(R \ {0})cf .

We can now compute explicitly the value of =(b) and the function u0
I+ .

Lemma 14.2.27. For v ∈ (0,+∞), we have:

u0
I+(v) = (−i)2+2|s|(2 |s|)!v ((2 |s|+ 2)v + 2(|s| − s+ 1))

(v + 2)2+|s|+s(v + 1)3+|s|−s cf .

Proof. Starting from the definition of ũ+, we have for X > 0:

(X−2−|s|+sN+
eff,|s|X

2+|s|−s)X−2−|s|+sũ+(X) = X−2−2|s| (14.10)

We define the operator

Q =− Y 2∂2
Y + (−2iY + 2 |s|+ 2)Y ∂Y + 2i(|s| − s+ 1)Y − 2(|s|+ 1)

which is obtained from X−2−|s|+sN+
eff,|s|X

2+|s|−s by the change of variable Y = X−1. There-
fore (14.10) becomes (for all Y > 0):

QY 2+|s|−sũ+(Y −1) = Y 2+2|s| (14.11)
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Replacing Y by −Y in (14.11), and taking the complex conjugate we obtain (for all Y < 0):

(−1)−|s|−sQY 2+|s|−sũ+(−Y −1) = Y 2+2|s| (14.12)

Combining (14.11) and (14.12), we obtain for every Y ∈ R \ {0}:

Q
(
Y 2+|s|−sũ(Y, 1)

)
= Y 2+2|s| (14.13)

Using Remark 14.2.12, we see that Y 7→ QY 2+|s|−sũ(Y, 1) understood in the sense of distri-
butions is in L1

loc(R). Therefore it does not contain any Dirac term at Y = 0 and equality
(14.13) holds globally in the sense of distributions.

Applying the inverse Fourier transform, we get:

Q̂F−1
Y

(
Y 2+|s|−sũ(Y, 1)

)
= i2+2|s|δ

(2+2|s|)
0

where

Q̂ =− v(v + 2)∂2
v + 2(−v(|s|+ 3) + s− |s| − 3)∂v − 4 |s| − 6.

Restricting to (0,+∞) we deduce:

Q̂F−1
Y

(
Y 2+|s|−sũ(Y, 1)

)
= 0.

The previous equation is hypergeometric. The regular singular point at infinity has indicial
roots 2 and 3+2 |s|. Using the development of u0

I+
at infinity (see Remark 14.2.26), we deduce

that, on (0,+∞)v, F−1
Y

(
Y 2+|s|−sũ(Y, 1)

)
is equal to the unique (up to a constant complex

factor) solution of order v−3−2|s| at infinity. This solution can be expressed by the mean of
the general hypergeometric functions. We can also check directly that:

Q̂
(2 |s|+ 2)v + 2(|s| − s+ 1)

v2+|s|−s(v + 2)2+|s|+s = 0

and therefore there exists a complex constant β such that for all v ∈ (0,+∞):

F−1
Y

(
Y 2+|s|−sũ(Y, 1)

)
(v) = β

(2 |s|+ 2)v + 2(|s| − s+ 1)

v2+|s|−s(v + 2)2+|s|+s .

Moreover, using Remark 14.2.26 and Lemma 14.2.23, we have that F−1
Y

(
Y 2+|s|−sũ(Y, 1)

)
belongs to A−2−2|s|−,3+2|s|−. in particular it is smooth on (−∞, 0). Performing the change
of variable Z = v

2 + 1 (to reduce to a canonical hypergeometric equation), the smoothness at
Z = 0 implies that there exists α ∈ C such that for all v ∈ (−∞, 0):

F−1
Y

(
Y 2+|s|−sũ(Y, 1)

)
(v) = αF

(
2 |s|+ 3, 2, s+ |s|+ 3,

v

2
+ 1
)
.

Since we have:

(1− Z)2+|s|−sF(2 |s|+ 3, 2, s+ |s|+ 3, Z) =F (s+ |s|+ 1, s− |s| , s+ |s|+ 3, Z)

=

|s|−s∑
k=0

(s+ |s|+ 1)k(s− |s|)k
(s+ |s|+ 2 + k)!

Zk

k!

We deduce that in the regime Z → −∞:

F(2 |s|+ 3, 2, s+ |s|+ 3, Z) ∼ Z−2 (2 |s|)!
(|s|+ s)!(2 |s|+ 2)!
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The condition F−1
Y

(
Y 2+|s|−sũ(Y, 1)

)
∈ A−2−2|s|−,3+2|s|− implies α = 0. Moreover, using

Remark 14.2.26 and Lemma 14.2.23, we see that:

F−1
Y

(
Y 2+|s|−sũ(Y, 1)

)
(v) =F−1

Y

(
Y 2+2|s|

(
H(Y )

(
− ln(Y )

1 + 2 |s|
+ b

)
+H(−Y )

(
− ln(−Y )

1 + 2 |s|
+ b

)))
+A−3−2|s|−,4+2|s|−

=(1− χ(v))(i∂v)
2+2|s|2<F−1

Y

(
H(Y )

(
b− ln(Y )

1 + 2 |s|

))
+A−3−2|s|−,4+2|s|−

=(1− χ(v))(−i)2+2|s|(2 |s|+ 2)!

(
=(b)

π
+

sgn(v)

2(2 |s|+ 1)

)
v−3−2|s|

+A−3−2|s|−,4+2|s|− (14.14)

where χ is a smooth compactly supported cutoff equal to 1 in a neighborhood of zero. Using
that α = 0, and (near v = −∞)

F−1
Y

(
Y 2+|s|−sũ(Y, 1)

)
(v) = (−i)2+2|s|(2 |s|+ 2)!

(
=(b)

π
− 1

2(2 |s|+ 1)

)
v−3−2|s| +O(v−4−2|s|−),

we deduce =(b) = π
2(2|s|+1) . Finally, we use (14.14) at v = +∞ to identify the complex factor

β = (−i)2+2|s|(2 |s|)!.

Lemma 14.2.28. We have:

2χ(t−1)F−1
(
χ(x)χ(σ)σ2+|s|−sũ (σ, x)

)
(t) = χ(x)χ(t−1)

(
xt + 1

t

)3+|s|−s
u0
I+(xt) +R.

with R smooth with bounds (for all N,M,K ∈ N):∣∣∂Nt (x∂x)MR
∣∣ ≤ CN,M,K 〈t〉−K x1−s−|s|−

In particular, R ∈ Z∞,∞∞,∞,1−s−|s|−.

Proof. Let χ be a smooth compactly supported cutoff equal to 1 near zero.

χ(t−1)F−1
(
χ(x)χ(σ)σ2+|s|−sũ (σ, x)

)
=I + I ′ +R

I :=χ(t−1)χ(x)F−1
(
H(σ)σ2+|s|−sũ+

(x
σ

))
cf

I ′ :=χ(x)χ(t−1)F−1

(
(−1)−s−|s|H(−σ)σ2+|s|−sũ+

(x
σ

))
cf

R :=− χ(t−1)F−1
(
χ(x)(1− χ(σ))σ2+|s|−sũ (σ, x)

)

We see in particular that I ′ = I if s ∈ Z and I ′ = −I if s ∈ 1
2Z. More-

over, by a change of variable Y = σ
x in the Fourier transform, I is exactly

χ(t−1)χ(x)x3+|s|−sF−1
(
H(Y )Y 2+|s|−sũ+(Y )

)
(xt). Therefore, it remains to prove the claimed

bound on ∂Nt (x∂x)MR. It is enough to prove that for all N,M,K ∈ N with K large enough,
there exists CN,M,K > 0 such that for all t > 0 and x > 0:

χ(x)
∣∣∣F−1

(
H(σ)(1− χ(σ))σN+2+|s|−s(x∂x)M ṽ

(x
σ

))
(t)
∣∣∣ ≤ CN,M,Kt−Kx1−s−|s|−
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Using the fact that for 0 < X < C, we have |(X∂X)N ũ+| ≤ CNX1−s−|s|−, we deduce that∣∣∣χ(x)(1− χ(σ))∂Nσ (x∂x)M ũ+
(x
σ

)∣∣∣ ≤ CNσ−N−1+s+|s|+x1−s−|s|−

(note that for x ∈ supp(χ) and σ ∈ supp(1−χ), we have 0 < x
σ < C). Using these properties

for M ∈ N and K > N + 2 + |s| − s, we deduce:

A :=χ(x)F−1
(
H(σ)(1− χ(σ))σN+2+|s|−s(x∂x)M ũ+

(x
σ

))
(t)

=

(
1

it

)K
χ(x)F−1

(
H(σ)∂Kσ

(
(1− χ(σ))σN+2+|s|−s(x∂x)M ũ+

(x
σ

)))
(t)

=

(
1

it

)K 1

2π

∫ +∞

0
e−itσχ(x)∂Kσ

(
(1− χ(σ))σN+2+|s|−s(x∂x)M ũ+

(x
σ

))
dσ

and we can bound the modulus by t−Kx1−s−|s|−C
∫ +∞

inf(supp(1−χ)) σ
N+1+2|s|−K+ dσ.

Definition 14.2.29. The previous proposition leads us to define uI+ :=
(
xt+1
t

)3+|s|−s
u0
I+

(xt).

We also define uK+ := −χ(t−1)F−1
(
σ2+2|s| ln|σ|−iπH(σ)

2|s|+1 u(0)(cf )
)
. In this definition, we

have used the value of the constant =(b) computed in the proof of Lemma 14.2.27.

We recall the following Fourier transform calculation:

uK+ =− χ(t−1)(−i)2|s| (2 + 2|s|)!
2|s|+ 1

t−3−2|s|u(0)(cf )

Lemma 14.2.30. If we define R := −χ(t−1)F−1
(

(1− χ(σ))σ2+2|s| ln|σ|−iπH(σ)
2|s|+1 u(0)(cf )

)
We

have the following bounds (for all N,M,K ∈ N):∣∣∂Nt (x∂x)MR
∣∣ ≤ CN,M,K 〈t〉−K x−s−|s|

In particular, R ∈ Z∞,∞∞,∞,−s−|s|−.

Proof. Note that using the definition of u(0)(cf ), we have that for all M ∈ N there exists
CM > 0 such that: (x∂x)Mu(0)(cf ) ≤ CMx

−s−|s|. Moreover, we have that for any p > K,
g(σ) := (1 − χ(σ))σ2+2|s| ln|σ|−iπH(σ)

2|s|+1 ∈ Cp(Rσ,C) with support away from zero. For all
q ≤ p, there exists a constant Cp such that we have (σ∂σ)qg(σ) ≤ Cpσ

2+2|s|+ which is in
σ−N+pL1(Rσ,C) for p large enough (for example larger than 4 +N + 2 |s|). Therefore, we can
use Lemma 14.2.22 to conclude the proof.

Definition 14.2.31. Let χ be a smooth compactly supported cutoff equal to 1 on
[
−1

2 ,
1
2

]
and

equal to zero on R \
[
−3

4 ,
3
4

]
. For f ∈ C∞(Rσ, H

r̃,l
(b)) with l > −3

2 − s − |s|, r̃ + l > −1
2 − 2s

and r̃ > 1
2 + s, we define the low energy part of the solution ul := F−1χ(σ)R(σ)f and its high

energy part uh := F−1(1− χ(σ))R(σ)f .

Proposition 14.2.32. Let k ∈ N. Let f ∈ C∞(Rσ, H
r̃,l
(b)) with l+1 < −1

2 , r̃+l−2k > −1
2−2s

and r̃ − 2k − 1 > max(1
2 + s, 0). We assume in addition that there exists C > 0 independent

of σ such that for all j ≤ k
∥∥(∂σ)jf(σ)

∥∥
H
r̃,l
(b)

≤ C 〈σ〉−1−p− with p large enough so that

p− r̃ + k + 1 ≥ 0. We have that uh ∈ Zp−r̃+k+1,r̃−2k−1

k,k+l+ 5
2
,l+ 5

2

.
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Proof. By proposition 14.1.4, for all j ≤ k, ∂jσ(1−χ(σ))R(σ)f ∈ |σ|−p+jL1(Rσ, H
r̃−2k−1,l+1
(b),|σ|−1 ).

In particular, since ‖u‖
H
r̃−2k−1,l+1
(b)

≤ |σ|r̃−2k−1 ‖u‖
H
r̃−2k−1,l+1

b,|σ|−1
uniformly when |σ| ≥ 1, we

have for all j ≤ k, ∂jσ(1− χ(σ))R(σ)f ∈ |σ|−p+r̃−k−1L1(Rσ, H
r̃−2k−1,l+1
b ). We conclude using

lemma 14.2.22 that for all j ≤ p− r̃ + k + 1:∥∥∥tkx−l− 5
2∂jt uh

∥∥∥
H
r̃−2k−1,− 3

2
(b)

≤ Cj

Proposition 14.2.33. Let k ∈ N be such that k ≥ 4 + 2 |s|. Let l > 1
2 − s+ |s|, r̃ − 5

2 − s−
|s| − 2k > −1

2 − 2s and r̃ − 2k − 1 > 1
2 + s. Let f ∈ C∞(Rσ, H

r̃,l
(b)) the principal term of ul at

K+ is uK+ and the principal term of ul at I+ is uI+. More precisely, for any ε ∈ (0, 1) such
that l − (1− ε) ≥ 1

2 − s+ |s|, we have:

χ(t−1)(ul − uK+) ∈ ZE(k−3−2|s|−ε),r̃−2k−1
3+2|s|+ε−,3−s+|s|,−s−|s|−ε

χ(t−1)(ul − uI+) ∈ ZE(k−3−2|s|−ε),r̃−2k−1
(3+2|s|),3−s+|s|+ε,−s−|s|

Proof. Using Corollary 14.2.17 and Lemma 14.2.24, we see that

χ(t−1)ul =χ(t−1)F−1

(
χ(σ)σ2−s+|s|χ(x)ũ (σ) + χ(σ)σ2+2|s| ln |σ| − iπH(σ)

1 + 2|s|
(χ(x)x−s−|s|cf − u(0)(cf ))

)
+ Z

E(k−3−2|s|−ε),r̃−2k−1
3+2|s|+ε−,3−s+|s|+ε,−s−|s|

Therefore, using lemma 14.2.28 and lemma 14.2.30, it is enough to prove that:

χ(t−1)F−1

(
χ(σ)χ(x)

(
σ2−s+|s|ũ (σ) + σ2+2|s| ln |σ| − iπH(σ)

1 + 2|s|
x−s−|s|cf

))
∈ ZE(k−3−2|s|−ε),r̃−2k−1

3+2|s|+ε−,3−s+|s|,−s−|s|−ε

(14.15)

χ(t−1)F−1

(
σ2+2|s|

1 + 2|s|
(ln |σ| − iπH(σ)) (χ(x)x−s−|s|cf − u(0)(cf ))

)
∈ ZE(k−3−2|s|−ε),r̃−2k−1

(3+2|s|),3−s+|s|+ε,(1−s−|s|)−

(14.16)

We first prove the claim (14.15). Let χ̃ a smooth with compact support in (−1, 1) and equal
to 1 on supp(χ). We use Remark 14.2.12 and Lemma 14.2.11 (successively on (−∞, 0)σ and
on (0,+∞)σ) to obtain:

χ(σ)χ(x)
(
σ2−s+|s|ũ (σ)

+σ2+2|s| ln |σ| − iπH(σ)

1 + 2|s|
x−s−|s|cf

)
∈ χ̃(σ) |σ|2+2|s|+εW∞,∞b

(
(−1, 1)σ, H

∞,− 3
2
−s−|s|−ε

(b)

)
+χ(x)χ(σ)σ2+2|s|

(
ln(x)

1 + 2 |s|
+ b

)
cf

By Lemma 14.2.24, we get the claim (even with the stronger space
Z∞,∞3+2|s|+ε,3+|s|−s,−s−|s|−ε).

We now show (14.16). By definition of u(0)(cf ), χ(x)x−s−|s|cf−u(0)(cf ) ∈ H∞,(−
1
2
−s−|s|)−

(b)

and therefore (using the explicit Fourier transform of σ2+2|s| ln|σ|−iπH(σ)
1+2|s| ):

χ(t−1)F−1

(
σ2+2|s|

1 + 2|s|
(ln |σ| − iπH(σ)) (χ(x)x−s−|s|cf − u(0)(cf ))

)
∈ Z∞,∞(3+2|s|),(4−s+|s|)−,(1−s−|s|)−

185



We now compute the principal term at I+. We follow the argument in [48]. We use
coordinates v = xt and τ = t−1 which are smooth near I+ in the blow up space with v being
a defining function of I+. The normal operator of Ts at I+ is:

A =− 2v−1 (v∂v − τ∂τ ) (v∂v − 1)

We denote by N = [0, 1)v × [0, 1)τ × S2 (the S2 part being the boundary at x = 0). We
denote by H r̃,µ,ν

b

(
(Bs)|N

)
= vµτνH

r̃,0,0
b the usual b-Sobolev space (with b volume form) with

extendible conditions at v = 1 and τ = 1 and Ḣ r̃,µ,ν
b

(
(Bs)|N

)
the same space with supported

conditions at v = 1 and τ = 1.

Lemma 14.2.34. Let r̃ ∈ N. The restriction to N is a continuous map from Z r̃,r̃−∞,α,β to

H
r̃,β,α−
b

Proof. Let r̃ ∈ N. Let u ∈ Z r̃,r̃−∞,α,β . As a distribution, for all j, k ∈ N with j ≤ r̃ and k ≤ r̃,
we have (x∂x)j(t∂t)

ku ∈ Z0,0
−∞,α,β . In particular for j + k ≤ r̃, v := (−t∂t + x∂x)j(x∂x)ku ∈

Z0,0
−∞,α,β . In particular, for any η > 0 we have:

I :=

∫
t≥1

∫
x≤t−1

t2(α−β)−1−ηx−2β ‖v(t, x)‖2L2(S2) x
−1 dx dt

≤max(22(α−β)+N , 1)

∫
t≥1

t−1−η
∫
x≤t−1

(xt + 1)−N
(
xt + 1

t

)−2α( xt

xt + 1

)−2β

‖v(t, x)‖2L2(S2) x
−1 dx dt

≤max(22(α−β)+N , 1)

∫
t≥1

t−1−η ‖v‖
Z0,0
−N,α,β

dt

≤max(22(α−β)+N , 1)

η
‖v‖

Z0,0
−N,α,β

We perform the change of variable (τ, v) = (t−1, xt) in the first integral and we find:∫
τ≤1

∫
v≤1

τη−2αv−2β
∥∥∥(τ∂τ )j(v∂v)

ku(τ, v)
∥∥∥2

L2(S2)

dτ

τ

dv

v
≤max(22(α−β)+N , 1)

η
‖v‖

Z0,0
−N,α,β

Since it is true for all j, k such that j + k ≤ r̃, we deduce:

‖u‖
H
r̃,β,α− η2
b

(
(Bs)|N

) ≤ Cmax(22(α−β)+N , 1)

η
‖v‖

Z0,0
−N,α,β

Proposition 14.2.35. Let r̃ ∈ N. Let f ∈ H r̃,ν,β
b

(
(Bs)|N

)
vanishing in a neighborhood of

{v = 1}. The unique solution in H r̃,−∞,−∞
b

(
(Bs)|N

)
of the transport equation (v∂v−τ∂τ )u =

f vanishing near {v = 1} is given by:

u = −
∫ − ln(v)

0
f(e−s, vτes) ds.

Moreover, for any α, γ ∈ R with α < γ ≤ β and γ ≤ ν, there exists C > 0 such that:∥∥∥∥∥
∫ − ln(v)

0
f(e−s, vτes) ds

∥∥∥∥∥
H
r̃α,β
b

≤ C ‖f‖
H
r̃,γ,β
b
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Proof. We refer the reader to the proof of Proposition C.5.1.

Remark 14.2.36. Let µ < ν < β. As a consequence of proposition 14.2.35, if f ∈ H r̃,µ,β−
b

has an expansion with respect to τ : f(v, τ) = τβf0(v) + g(v, τ) with f ∈ vνC∞c ([0, 1), H r̃(Bs))
and g ∈ H r̃,µ,β+ε

b (for some ε > 0), then for all γ < µ we have:

u(v, τ) = −τβvβ
∫ 1

v
f0(s)s−β−1 ds+H

r̃,γ,β+ε
b .

Note that vβ
∫ 1
v f0(s)s−β−1 ds ∈ vνC∞c ([0, 1), H r̃(Bs)) and therefore, u admits a similar de-

velopment to f .

For r̃, l ∈ R, we introduce the space H r̃,l
b ([0, 1]τ ) which is the space of b-Sobolev sections

of [0, 1]τ × Bs with b-regularity r̃ and decay order l at the boundary {τ = 0} and extendible
across {τ = 1}.

Proposition 14.2.37. Let k ∈ N such that k ≥ 8 + 4 |s| + 2s. Let r̃ − 2k − 1 > max(1 −
s + |s| , 4 + 2 |s| + 2s) and l > 1

2 − s + |s|. Let f ∈ C1+p
c (Rt, H

r̃,l
(b)) with p ≥ max(1, r̃ − 4 −

2 |s|) and let u be the inverse Fourier transform of R(σ)f̂ . Then, denoting by γ the quantity
min(k − 4− 2 |s| , r̃ − 2k − 1, p− r̃ + k), we have:

u− vurad ∈ H
γ−4−2(s+|s|),(3−s+|s|)−,2−
b

where urad ∈ H
γ−4−2(s+|s|),(3−s+|s|)−
b ([0, 1]τ ) and has a leading order term at τ = 0 equal to

τ3+|s|−s(−i)2+2|s|(2 |s|)! |s|−s+1

21+|s|+s cf̂ .

Remark 14.2.38. The assumptions on k, p and r̃ have been chosen so that γ−4−2(s+|s|) ≥
0.

Proof. First note that f̂ ∈ C∞(Rσ, H
r̃,l
(b)) and for all j ∈ N:∥∥∥∂jσf̂(σ)
∥∥∥
H
r̃,l
(b)

≤ C 〈σ〉−1−p .

Combining Propositions 14.2.32 and 14.2.33, we have that χ(t−1)u − uI+ ∈
Z

min(k−4−2|s|,p−r̃+k),r̃−2k−1
(3+2|s|)−,3−s+|s|+ε,−s−|s| . By the explicit expression of uI+ (see Lemma 14.2.27) and lemma

14.2.34, we have:

u ∈ τ3+|s|+sg0(v) +H
γ,−s−|s|,3−s+|s|+ε−
b

g0(v) := (−i)2+2|s|(2 |s|)!v((2 |s|+ 2)v + 2(|s| − s+ 1))

(v + 2)2+|s|+s cf̂ .

Let χ be a smooth cutoff compactly supported in [0, 1)v. We have:

(v∂v − τ∂τ )(v∂v − 1)χ(v)u =− v

2

(
[Ts, χ(v)]u+ χ(v)f̂ + Diff2

bu
)

We have −v
2 [Ts, χ(v)]u ∈ τ3+|s|+sg1(v) + H

γ−1,∞,3+|s|+s+ε−
b , −v

2χ(v)f̂ ∈ H
r̃,3−s+|s|,∞
b ,

−v
2Diff2

bu ∈ τ3+|s|−sg2(v) + H
γ−2,1−s−|s|,3−s+|s|+ε−
b where g1 ∈ C∞c ((0, 1)v,Γ(Bs)) and g2 ∈

v2C∞c ([0, 1)v,Γ(Bs)) and all the terms vanishes near {v = 1}. Using proposition 14.2.35 and
Remark 14.2.36 we obtain:

(v∂v − 1)χ(v)u = τ3+|s|+sg3(v) +H
γ−2,1−s−|s|−,3−s+|s|+ε−
b
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where g3 ∈ v2C∞c ([0, 1)v,Γ(Bs)). By inverting v∂v−1 using the Mellin transform3 (or solving
the transport equation), we get:

χ(v)u ∈ τ3+|s|+sg4(v) +H
γ−2,1−s−|s|−,3−s+|s|+ε−
b

where g4(v) ∈ vC∞c ([0, 1)v,Γ(Bs)) (we even have the explicit expression g4(v) =
−v
∫ 1
v s
−2g3(s) ds). By uniqueness of the leading order term (as τ → 0), we deduce

g4(v) = χ(v)g0(v). We can iterate this procedure 1 + s+ |s| times and obtain:

χ(v)u ∈ τ3+|s|+sχ(v)g0(v) +H
γ−2−2(|s|+s),1−,3−s+|s|+ε−
b

We deduce:

(v∂v − τ∂τ )(v∂v − 1)χ(v)u ∈ τ3+|s|+sg5(v) +H
γ−2−2(|s|+s),2−,3−s+|s|+ε−
b

where g5 ∈ v2C∞c ([0, 1)v,Γ(Bs)) Applying one more time Proposition 14.2.35 and Remark
14.2.36, we get:

(v∂v − 1)χ(v)u ∈ τ3+|s|+sg6(v) +R

with g6 ∈ v2C∞c ([0, 1)v,Γ(Bs)) and R ∈ H
γ−4−2(|s|+s),2−,3−s+|s|+ε−
b (and vanishes near v = 1).

This time, R has enough decay with respect to v so that (iλ− 1)−1M(R)(λ) (hereM(R) is
the Mellin transformed of R with respect to v) is meromorphic on =(λ) > −2 with a pole of
order 1 at λ = −i. As in the proof of Proposition 11.2.4, we can use a contour deformation
argument to obtain that there exists w ∈ Hγ−4−2(|s|+s),(3−s+|s|+ε)−

b ([0, 1]v) such that:

χ(v)u = τ3+|s|−sχ(v)g0(v) + vw(τ) +H
γ−4−2(|s|+s),2−,3+|s|−s+ε−
b .

Since g0(v) = (−i)2+2|s|(2 |s|)! |s|−s+1

21+|s|+s cf̂ + τ3+|s|−sv2C∞([0, 1)v,Bs) we define

urad := (−i)2+2|s|(2 |s|)! |s| − s+ 1

21+|s|+s cf̂ + w

and conclude the proof.

Remark 14.2.39. Note that by an adaptation of Theorem B.2.7. in [54], we get that for

r̃ > 1
2 + j with j ∈ N, Ḣ r̃,µ,ν

b ⊂ Zj,r̃−j−
1
2∞,ν,µ (which is a kind of converse to Lemma 14.2.34). In

particular, in the setting of Proposition 14.2.37, since we have obtained in the proof:

χ(v)(u− uI+) ∈ Hγ−2−2(|s|+s),1−,3−s+|s|+ε−
b ,

we deduce that for j < γ − 2− 2(|s|+ s)− 1
2 , we have χ(t−1)(u− uI+) ∈ Zj,γ−2−2(|s|+s)− 1

2
−j

3+2|s|,3−s+|s|+ε−,1−
for χ a smooth cutoff compactly supported in [0, 1). This is an improvement with respect to
Proposition 14.2.33 since the order of decay at I + is now 1− instead of −s− |s|.

3See for example the proof of Proposition 11.2.4 for a similar argument
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Chapter 15

Contour deformation argument

We consider the forcing problem:

Tsu = f

with f ∈ C1+p
c (Rt, H

r̃,l
(b)). By the classical hyperbolic theory, there is a unique solution u of

this equation which vanishes in a neighborhood of t = −∞. Moreover by estimates similar
to those obtained in Appendix C, there exists C > 0 such that ‖u‖

H
r̃,−N
(b)

≤ CeCt (for some

N > 0). In particular, we can define the Fourier-Laplace transform of u, û(σ) :=
∫
e−iσtu(t) dt

on the domain {=(σ) > C}. The equation on û is:

T̂s(σ)û(σ) = f̂(σ)

with f̂ holomorphic from C to H r̃,l
(b)). Moreover by the Paley-Wiener-Schwartz theorem (see

[53, Theorem 7.3.1]), there exists D > 0 such that for all k ∈ N there exists Ck > 0 such that:∥∥∥∂kσx f̂(σx + iσy)
∥∥∥
H
r̃,l
(b)

≤ Ck 〈σx〉−(1+p) eD|σy | (15.1)

In particular, if −3
2 − s − |s| < l < −1

2 , r̃ − 2 > 1
2 + s and r̃ > 2 − s + |s|, we can define

R(σ)f̂(σ) and we have on =(σ) = C + 1:

û(σ) =R(σ)f̂(σ)

u(t) =
1

2π

∫
=(σ)=C+1

e−iσtR(σ)f̂(σ) dσ

Using the fact that R(σ)f̂(σ) is holomorphic from =(σ) > 0 to H
r̃−1,min(l+1,− 1

2
−)

(b) (see
proposition 14.1.1) and (14.2) in Proposition 14.0.2 and (15.1) to control the error terms (in

the normH
0,min(l+1,− 1

2
−)

(b) which is σ-uniformly smaller thanH
r̃−1,min(l+1,− 1

2
−)

(b),|σ|−1 since r̃−1 ≥ 0),
we find that for every ε > 0:∫

=(σ)=C+1
e−iσtR(σ)f̂(σ) dσ =

∫
=(σ)=ε

e−iσtR(σ)f̂(σ) dσ

Moreover using Proposition 14.1.3, for every σ ∈ R we have

lim
ε→0

∥∥∥R(σ + iε)f̂(σ + iε)−R(σ)f(σ)
∥∥∥
H
r̃−1,l−
(b)

= 0.

Since r̃ − 1 ≥ 0, it is also true in H
0,l−
(b) and we can combine Proposition 14.1.3, (14.2)

in Proposition 14.0.2 and (15.1) to get that there exists Cp > 0 independent of ε ∈ [0, 1]
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such that:
∥∥∥R(σ + iε)f̂(σ + iε)

∥∥∥
H

0,l−
(b)

≤ Cp 〈σ〉−(1+p). In particular if p > 0, using Lebesgue

convergence theorem (see [46] for this theorem in the case of Bochner integral, here functions
σ 7→ R(σ+ iε)f(σ+ iε) is continuous in H0,l−

(b) and therefore strongly measurable in the sense
of [46]), we get:

u(t) =
1

2π

∫
R
e−iσtR(σ)f̂(σ) dσ (15.2)

We can now state the two main theorems (and their corollaries concerning the Cauchy
problem) which are based on this formula and the precise analysis of R(σ). The first theorem
concerns the forcing problem with a forcing term having moderate decay at I +.

Theorem 15.0.1. Let l = −3
2 +α where α ∈ (0, 1). Let k ≥ α+ s+ |s|+ 1. We assume that

r̃−2k−1 > 1+2 |s|. Let f ∈ C1+p
c

(
Rt, H

r̃,l
(b)

)
with p > r̃−k−1. Let u be the unique solution

of the forcing problem T̂su = f which vanishes near t = −∞. There exists C > 0 such that
for all t ∈ R and for all j ≤ min(k − α− s− |s| − 1, p− r̃ + k + 1−):∥∥(t∂t)

ju(t)
∥∥
H
r̃−2k−1,− 3

2−s−|s|−
(b)

≤ C 〈t〉−1−α−s−|s|+

∥∥(t∂t)
ju(t)

∥∥
H
r̃−2k−1,− 1

2−
(b)

≤ C 〈t〉−α

Remark 15.0.2. Using the Sobolev embedding theorem, we have the uniform boundedness
version when r̃ − 2k − 1 > 3

2 :

‖u(t, x, ω)‖ ≤C min(〈t〉−1−α−s−|s|+ x−s−|s|−, 〈t〉−α+ x1−)

≤2C
〈t〉−α+ x1−

1 + (〈t〉x)1+s+|s|

Proof. We first use the Fourier representation formula (15.2). Then, it is a consequence of
Proposition 14.2.7 (with lc = −3

2 − s − |s| − for the first estimate and lc = −1
2− for the

second one) and Lemma 14.2.24 (to handle the low energy part) and of Proposition 14.2.32
(to handle the high energy part).

We now use Proposition 11.2.4 and Theorem 15.0.4 to deduce the following Corollary
concerning the Cauchy problem on the hypersurface Σ0 := t−1

0 ({0}) (see (C.1) for the precise
definition of t0). We use the notations of Subsection 11.2.

Corollary 15.0.3. Let α ∈ (0, 1). Let k ≥ α+s+|s|+1. We assume that r̃−2k−1 > 1+2 |s|.
Let p > r̃ − k − 1. Let u0 ∈ H

r̃+6+p,1+α
b and u1 ∈ H

r̃+5+p,1+α
b . Let u be the solution of the

Cauchy problem: 
Tsu = 0

u|Σ0
= u0

ρ0∇µt0∂µu|Σ0
= u1.

In the previous expression, ∇µt0 denotes the gradient of t0 taken with respect to the metric g̃.
There exists C > 0 such that for all t ∈ R and for all j < min(k−α−s−|s|−1, p− r̃+k+1):∥∥(t∂t)

ju(t)
∥∥
H
r̃−2k−1,− 3

2−s−|s|−
(b)

≤ C 〈t〉−1−α−s−|s|+

∥∥(t∂t)
ju(t)

∥∥
H
r̃−2k−1,− 1

2−
(b)

≤ C 〈t〉−α+
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We go back to the forcing problem and provide a more precise result when the forcing
term has higher decay:

Theorem 15.0.4. Let l > 1
2 − s+ |s|, k > 8 + 4 |s|+ 2s+ 1

2 , r̃−2k−1 > max(3
2 − s+ |s| , 9

2 +

2 |s|+ 2s) and p ≥ r̃ − 4− 2 |s|. Let f ∈ C1+p
c

(
Rt, H

r̃,l
(b)

)
. Let u be the unique solution to the

forcing problem Tsu = f which vanishes near t = −∞. Let χ be a smooth compactly supported
cutoff equal to 1 near 0. Then, with the notations introduced in Definition 14.2.29 there ε > 0
such that for all j ∈ N with 0 ≤ j < min(k−8−2 |s| , r̃−2k−5, p− r̃+k−4)−2 |s|−2s− 1

2 :

χ(t−1) (u− p(t, x, ω)) ∈ Zj,min(k−8−2|s|,r̃−2k−5,p−r̃+k−4)−2|s|−2s−j− 1
2

3+2|s|+ε,3+|s|−s+ε,1−

where

p(t, x, ω) := (−i)2+2|s|(2 |s|)!t−3−2|s| (xt)
1+|s|+s ((2 |s|+ 2)xt + 2(|s| − s+ 1))

(xt + 2)2+|s|+s u(0)(cf̂ )

Proof. We first use the Fourier representation formula (15.2). Then, it is a consequence of
Proposition 14.2.33 (note that p is asymptotic to uK+ near K+ and to uI+ near I+), of
Proposition 14.2.32 (to handle the high energy part) and of remark 14.2.39.

Finally, we use Corollary 11.1.4 and Theorem 15.0.4 to deduce the following Corollary
concerning the Cauchy problem on the hypersurface Σ0 := t−1

0 ({0}) (see (C.1) for the precise
definition of t0).

Corollary 15.0.5. Let k > 8 + 4 |s| + 2s + 1
2 , r̃ − 2k − 1 > max(3

2 − s + |s| , 9
2 + 2 |s| + 2s)

and p ≥ r̃−4−2 |s|. Let u0 ∈ H r̃+ 7
2

+p(Σ0,Bs), u1 ∈ H r̃+ 5
2

+p(Σ0,Bs) be compactly supported.
Let u be the solution of the Cauchy problem:

Tsu = 0

u|Σ0
= u0

∇µt0∂µu|Σ0
= u1.

Let χ be a smooth compactly supported cutoff equal to 1 near 0. There exists ε > 0 such that
for all j ∈ N such that 0 ≤ j < min(k − 8− 2 |s| , r̃ − 2k − 5, p− r̃ + k − 4)− 2 |s| − 2s− 1

2 :

χ(t−1) (u− p(t, x, ω)) ∈ Zj,min(k−8−2|s|,r̃−2k−5,p−r̃+k−4)−2|s|−2s−j− 1
2

3+2|s|+ε,3+|s|−s+ε,1−

where

p(t, x, ω) := (−i)2+2|s|(2 |s|)!t−3−2|s| (xt)
1+|s|+s ((2 |s|+ 2)xt + 2(|s| − s+ 1))

(xt + 2)2+|s|+s u(0)(cf̂ )

and the function f̂ used to compute the constant cf̂ is the Fourier transform with respect to t
of a function f as defined in Proposition 11.1.2.

Remark 15.0.6. Using the freedom on the choice of the function f , we can express cf̂ in
terms of the initial data. Indeed, by Remark 11.1.3, we can take a sequence of functions
χn ∈ C∞(R) converging to the Heaviside function in the sense of distributions and such that
vn = χn(t0)u are as in Proposition 11.1.2. We define:

fn := Tsvn = [Ts, χn(t0)]u.
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Since all the vn are equal near t = +∞, the constant cf̂n does not depend on n. Moreover,
lim

n→+∞
fn exists in the sense of distribution and is equal to f∞ := [Ts, H(t0)]u where H is the

Heaviside function. Note that the function f∞ only depends on the initial data of the Cauchy
problem. Using the definition of cf̂n, we see that cf̂∞ is well defined and lim

n→+∞
cf̂n = cf̂∞.

This provides a way to compute the constant cf̂ (and therefore p) only in terms of the initial
data.
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Appendix A

Hyperbolic estimate with small
parameter

We begin by a general definition.

Definition A.0.1. Let E be a (complex) vector bundle over the manifold M and Θ be a real
connection on E We define the gradient operator by:

gradg,Θ :

{
Γ(E)→ Γ(E ⊗ TM)

u 7→ gi,j(Θ∂ju)⊗ ∂i

where we used the Einstein summation convention and local coordinates on M (but it does not
depend on the choice).

If local coordinates are fixed on an open set U , we define the function J on U by J(x) =√
|det(gi,j(x))|. We define the divergence operator by linearity using

Γ(E ⊗ TM)→ Γ(E)
n∑
i=1

ui ⊗ ∂i 7→
n∑
i=1

J−1Θ∂iJu
i

The local definition is once again independent of the choice of local coordinates. We define
the operator �g,Θ = divg,Θgradg,Θ.

Remark A.0.2. Let ∇LC be the Levi-Civita connection on M. Since we have the connection
Θ⊗∇LC on E ⊗F where F is a tensor bundle (F = TM⊗k ⊗ T ∗M⊗r for some non negative
integers k and r), we can extend the definition of grad and div naturally to these bundles.

Let k be a smooth hermitian metric on E. We introduce the energy momentum tensor:

Definition A.0.3. Let u ∈ Γ2(E). We call energy momentum tensor of u the tensor defined
(in abstract index notation) by:

T δ,γ(u) = <(k(Θµu,Θνu))gµ,δgν,γ − 1

2
gδ,γgµ,νk(Θµu,Θνu) +

1

2
gδ,γk(u, u)

We remark that this tensor is symmetric and real.

Proposition A.0.4. We have the following expression for the divergence of T :

div(T )δ =gµ,δ<(k(Θµu,�g,Θu)) + <(gδ,µgγ,νk(RΘ
γ,µu,Θνu))

+ <((Θγk)(Θµu,Θνu))(gµ,δgν,γ − 1

2
gδ,γgµ,ν)

+
1

2
gδ,γ(Θγk)(u, u) + gδ,γ<(k(Θγu, u))
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where RΘ
µ,ν is the curvature tensor associated to the connection Θ.

Remark A.0.5. We note that in the scalar case (E is a trivial bundle of rank 1), and
with Θ the trivial connection and k the canonical Hermitian form on C we get div(T )δ =
gµ,δ<(∂µu�gu) + gδ,γ<(u∂γu) which is the usual result in hyperbolic estimates.

Proof. The proposition follows from a local computation. Let x ∈M, we compute div(T )δ(x)
in normal local coordinates centered at x (we use the fact that the coordinates are normal
many times in the computation):

div(T )δ(x) =∂γT
δ,γ

=gµ,δgν,γ<(∂γk(Θµu,Θνu))− 1

2
gδ,γgµ,ν<(∂γk(Θµu,Θνu))

+
1

2
gδ,γ(Θγk)(u, u) + gδ,γ<(k(Θγu, u))

Note that we used the fact that gµ,νk(Θµu,Θνu) is real to introduce a real part in the second
term. We have:

∂γk(Θµu,Θνu) = (Θγk)(Θµu,Θνu) + k(ΘγΘµu,Θνu) + k(Θµu,ΘγΘνu)

therefore, we get

div(T )δ(x) =gµ,δ<(k(Θµu, g
ν,γΘγΘνu)) + gµ,δgν,γ<(k(ΘγΘµu−ΘµΘγu,Θνu)

+ <((Θγk)(Θµu,Θνu))(gµ,δgν,γ − 1

2
gδ,γgµ,ν)

+
1

2
gδ,γ(Θγk)(u, u) + gδ,γ<(k(Θδu, u))

But since the coordinates are normal around x, we get at x:

�g,Θu(x) =gν,γΘγΘνu

RΘ
γ,µu(x) =ΘγΘµu−ΘµΘγu

and this conclude the proof.

LetM = Rt×X with X a smooth compact manifold with boundary of dimension n. Let g
be a smooth metric onM such that g( dt, dt) = 1. Let E be a smooth complex vector bundle
of rank m over X with connection ∇ and with a smooth hermitian inner product k. Note
that C∞(Rt,Γ(E)) is naturally identified with Γ(π∗2(E)) where π2 is the second projection on
the product Rt ×X. We denote by Θ, the unique connection on Γ(π∗2(E)) such that for all
u ∈ C∞(Rt,Γ(E)):

Θ∂tu = ∂tu

ΘV u = (t 7→ ∇V u(t)) for V ∈ TX

Definition A.0.6. Let Σt := {t}×X with volume form dvolt = ιgrad t dvolg where ι denotes
the interior product and dvolg is the volume form associated with g. We define the energy at
time t ∈ R of u ∈ C2(Rt,Γ2(E)) by

E(t)[u] =

∫
Σt

Tδ,γ(grad t)δ(grad t)γ dvolt

When there is no ambiguity, we use E(t) for E(t)[u].
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The following lemma compares E(t)[u] with the H1 norm of u(t) (computed using any
metric gt′ on X). For t′ ∈ [T1, T2], we denote by L2

t′(E) the L2 norm based on the metric gt′
induced by g on Σt′ (which is naturally identified with X).

Lemma A.0.7. Let u ∈ C2(Rt,Γ2(E)). There exists C > 0 such that for all (t′, t) ∈ [T1, T2]2∥∥∥gradgt′ ,∇u(t)
∥∥∥2

L2
t′ (E)

+ ‖∂tu(t)‖2L2
t′ (E) + ‖u(t)‖2L2

t′ (E) ≤ CE(t).

In the above expression gt′ is the metric induced on X at time T1 and the L2
t′ norm is taken

with respect to the inner product of the bundle (for u(t), this inner product is k and for
gradu(t), it is k ⊗ gt′) and with the volume form dvolt′ (induced by the metric gt′).

Proof. Let x0 ∈ X, and t0 ∈ [T1, T2]. We take an orthonormal basis for g at (t0, x0) with
the first vector equal to grad t((t0, x0)) and the other vectors (Xi)

n
i=1 in Tx0X. There exists

local coordinates (xµ)nµ=0 around (t0, x0) such that (xi)
n
i=1 are local coordinates on X on a

neighborhood U of x0 and such that ∂0(t0, x0) = grad t and ∂i(x0) = Xi. To alleviate the
notations, we write Θi for Θ∂i . We compute in these local coordinates:

Tδ,γ(grad t)δ(grad t)γ(x0) =
1

2
<(k(Θ0u(t0, x0),Θ0u(t0, x0))) +

n∑
i=0

1

2
<(k(Θiu(t0, x0),Θiu(t0, x0)))

+
1

2
k(u, u)

dvolt(x) = dx1... dxn

Note that at (t0, x0):

grad t =∂t − dxi(∂t)Xi

Therefore,

k(∂tu, ∂tu) = k(Θ0u,Θ0u) + 2 dxi(∂t)<(k(Θ0u,Θiu)) + dxi(∂t) dxj(∂t)k(Θiu,Θju)

≤ (1 + C0)k(Θ0u,Θ0u) + (C0 + C2
0n)

n∑
i=1

k(Θiu,Θiu)

where C0 := sup(t,y)∈[T1,T2]×S∗X−gT1

{
y(∂t)√
−g(y,y)

}
where SX−gT1

is the compact cosphere bun-

dle associated with the Riemannian metric −gT1 (and since ∂t is a smooth vector field and g is
smooth, the function (t, y) 7→ y(∂t)√

−gt(y,y)
is smooth therefore bounded on [T1, T2]× S∗X−gT1

).

On the other hand we have:∥∥∥gradgt′ ,∇u(t0)
∥∥∥2

g⊗k
(x0) =

∑
1≤i,j≤n

∣∣g(t′,x0)( dxi, dxj)
∣∣<(k(Θiu,Θju))

≤C1n

(
n∑
i=1

<(k(Θiu,Θiu))

)

Where the constant C1 := sup(t,t′,y)∈[T1,T2]2×S∗X−gT1

{
gt′ (y,y)
gt(y,y)

}
. Moreover:

dvolt′ ≤ C2 dvolt
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with C2 := sup(t,t′,y)∈[T1,T2]2×SOX−gT1

{
dvolt′ (y)
dvolt(y)

}
where SOX−gT1

is the bundle of oriented or-
thonormal bases associated with the Riemannian metric −gT1 which is compact. We conclude
that, ∥∥∥gradgt′ ,∇u(t)

∥∥∥2

L2
t′ (E)

+ ‖∂tu(t)‖2L2
t′ (E) + ‖u(t)‖L2

t′ (E) ≤ C3E(t)

for some constant C3 depending only on n,C0, C1 and C2.

Proposition A.0.8. For all u ∈ C2(Rt,Γ2(E)) and for all T1 < T2, there exists C > 0
independent of u such that for all s ∈ [T1, T2]:

|E(s)− E(T1)| ≤C

(∫ s

T1

E(t) dt+

∫ s

T1

‖�g,Θu(t)‖2L2
t (E) dt+

∣∣∣∣∣
∫

[T1,s]×∂X
i∗(ιTgrad t dvolg)

∣∣∣∣∣
)

where the orientation on [T1, s]× ∂X is given by an outgoing vector and i : [T1, T2]× ∂X →
[T1, T2]×X is the inclusion map.

Proof. We use Stokes’ theorem:∫
[T1,s]×X

divgT (grad t) dvol = E(s)− E(T1) +

∫
[T1,s]×∂X

i∗(ιTgrad t dvolg)

Decomposing dvol = dt√
g( dt, dt)

dvolt = dt dvolt, we have:∫
[T1,s]×X

divgT (grad t) dvol =

∫ s

T1

∫
X
div(T )0 + T (∇LCgrad t) dvolt dt

Using the the compactness of [T1, T2]×X, we get that∫
X

∣∣div(T )0 + T (∇LCgrad t)
∣∣ dvolt ≤C

(
‖�g,Θu‖2L2

t (E) +
∥∥gradgt,∇u(t)

∥∥2

L2
t (E)

+ ‖∂tu(t)‖2L2
t (E)

)
≤C ′(E(t) + ‖�g,Θu‖2L2

t (E))

where C,C ′ > 0 are uniform with respect to t ∈ [T1, T2].

Let Xh be a family of compact manifolds with boundary included in X (the parameter h is
in some arbitrary set but we will use it with h ∈ (0, 1]) and let Eh be the restriction of E toXh.
We also define the norm Eh as E but with integration on {t} ×Xh instead of Σt. Let uh be a
family of smooth sections of Eh. Let Lh : Γ(E)→ Γ(E) be a family of linear operator such that
there exists C > 0 such that for all t ∈ [T1, T2] and all h ∈ (0, 1], ‖Lhuh(t)‖2L2

t (Eh) ≤ CEh(t)

(note that we only require this bound to be uniform for this particular family uh).

Corollary A.0.9. If the term
∣∣∣∫[T1,T2]×∂Xh i

∗(ιTgrad t dvolg)
∣∣∣ vanishes for all h (for example

if Xh has no boundary or if uh,Θuh vanish on [T1, T2] × ∂Xh), we have for some C ′ > 0
independent of t and h such that:

Eh(t) ≤
(
Eh(T1) +

∫ T2

T1

‖(�g,Θ + Lh)uh(s)‖2L2
t (Eh) ds

)
eC
′(t−T1)

Proof. It follows from proposition A.0.8 applied on the manifold with boundary Xh and from
Grönwall’s inequality. Since they are all included in the compact manifold X and since g is
smooth on [T1, T2]×X, the constant are uniform with respect to h.

We will use this corollary to deduce the semiclassical energy estimate.
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A.1 Semiclassical hyperbolic estimate

Let M = Rt × X where X is a smooth compact oriented manifold of dimension n or Rn.
Let E be a smooth complex vector bundle of rank m over X with connection ∇ and with a
smooth hermitian inner product k. Let g be a smooth metric on M := Rt×X×Rτ translation
invariant with respect to τ and such that dt is timelike. We assume without loss of generality
that g( dt, dt) = 1. Note that C∞(Rt×Rτ ,Γ(E)) is naturally identified with Γ(π∗2(E)) where
π2 is the second projection on the product Rt ×X × Rτ . We define a connection Θ on π∗2(E)
by C∞(Rt ×X × Rτ )-linearity using the identities (for u ∈ C∞(Rt × Rτ ,Γ(E))):

Θ∂tu = ∂tu

Θ∂τu = ∂τu

ΘV u = ((t, τ) 7→ ∇V u(t, τ)) for V ∈ TX

We then consider an operator Ph acting on C∞(Rt,Γ(E)) as follows:

Phu = e−i
τ
hh2�g,Θe

i τ
hu+R1(t)h∂tu+R2(t)u

where R2(t) is a smooth family of operators in hΨ1
h(X;E) and R1(t) is a smooth family

of operators in hΨ0
h(X;E). The first term is a priori in C∞(Rt × Rτ ,Γ(E)) but is in fact

independent of τ and we identify it with an element of C∞(Rt,Γ(E)).
More explicitly, if we choose local coordinates (x1, ..., xn) in X, x0 = t, xn+1 = τ , we have:

Ph =h2
n∑

0≤µ,ν≤n
J−1ΘνJg

µ,νΘµ + h

n∑
µ=0

(
gµ,n+1Θµ + J−1ΘµJg

µ,n+1
)

+ gn+1,n+1 +R1(t)h∂t +R2(t)

where J :=
√
|det g|, R2(t) is a smooth family of operators in hΨ1

h(X;E) and R1(t)
is a smooth family of operators in hΨ0

h(X;E). Note that the principal part Ah =
h2
∑n

0≤µ,ν≤n J
−1∇νJgµ,ν∇µ + h

∑n
µ=0

(
gµ,n+1∇µ + J−1∇µJgµ,n+1

)
+ gn+1,n+1 is invariantly

defined (the expression does not depend on the chosen local coordinates and trivializations).

Lemma A.1.1. Let T ∈ (0,+∞). With the previous notations, for all s ∈ R, there exists a
constant Cs depending on g, k, s and on the symbol norms of R(t) on [0, T ] such that for all
φ ∈ C2([0, T ]; Γ(E)) with φ(0) = ∂tφ(0) = 0:

‖φ‖L2([0,T ],Hs
h) + ‖h∂tφ‖L2([0,T ],Hs−1

h ) ≤ Csh
−1 ‖Phφ‖L2([0,T ],Hs−1

h )

Remark A.1.2. If we assume that s = 1, it will be clear from the proof that the estimate
holds for φ ∈ C2([0, T ]; Γ2(E)).

Proof. First we reduce to the case s = 1. We denote by g0 the metric induced by g on
{t = τ = 0}. Let s > 0 and Qs be a semiclassical pseudodifferential operator on Γ(E) with
principal symbol (1+|ξ|2g0

)
s
4 Im (where Im is the identity operator in L(E,E)). LetGs := Q∗sQs

where the adjoint is taken with respect to the metric g0 and the fiber inner product k. The
principal symbol of Gs is (|ξ|2g0

+ 1)
s
2 Im and therefore, Gs is semiclassically elliptic of order s

and since X is compact, Gs is Fredholm between Hr
h(E) and Hr−s

h (E) for every r ∈ R. Since
Gs is also formally symmetric, its index is zero and since it is injective for h small enough,
G−1
s exists as a (uniformly with respect to h) bounded operator from Hr

h(E) to Hr+s
h (E) for

every r ∈ R. We show that G−1
s is a semiclassical pseudodifferential operator with principal
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symbol (|ξ|sg0
+ 1)−1Im. Indeed, there exists a parametrix Rs for Gs by ellipticity. Therefore,

we have for any N ∈ N and u ∈ Γ(E):∥∥(Rs −G−1
s )u

∥∥
HN
h
≤
∥∥G−1

s Gs(Rs −G−1
s )u

∥∥
HN
h

≤ Cr ‖(GsRs − I)u‖HN−s
h

≤ CrhN ‖u‖H−Nh

As a consequence, Rs−G−1
s which was a priori only a bounded operator from H−Nh to H−N+s

h

is in fact a (h uniformly) bounded operator from h−NH−Nh to HN for any N ∈ N. Therefore,
it is an element of h∞Ψ−∞h (E) and G−1

s ∈ Rs + h∞Ψ−∞h (E) is a pseudodifferential operator
in Ψ−sh (E) with principal symbol (|ξ|2g0

+ 1)−sIm.
If the estimate of the lemma is true for s = 1, we can then apply it to the operator

GsPhG
−1
s which is of the correct form and Gsu.

Let h ∈ (0, 1]. In order to get the inequality in the case s = 1, we apply corollary A.0.9
to the section ũh = e

iτ
h u on the manifold with boundary X × [0, 2πh]τ ⊂ X × [0, 2π] between

times T1 = 0 and T2 = T . We check that there exists C > 0 such that for all h ∈ (0, 1] and
all t ∈ [0, T ]: ∥∥h−1u(t)

∥∥2

H1
h(X)

+ ‖∂tu(t)‖2L2(X) ≤ CEh(t)[ũh]

Moreover, since ũ is 2πh periodic with respect to τ and since dvolg, g and k are ∂τ invariant,
we have ∫

[0,T ]×X×{2πh}τ
i∗(ιgradT dvolg) dt−

∫
[0,T ]×X×{0}τ

i∗(ιgradT dvolg) dt = 0.

We also check that with Lh := h−1R1(t)∂t + h−2R2(t), we have

‖Lhũh‖2L2 ≤C
(∥∥h−1u

∥∥2

H1
h(E)

+ ‖∂tu‖2L2(E)

)
≤C ′Eh(t)[ũh]

with the constant C ′ independent of u and h. Therefore, corollary A.0.9 gives:∥∥h−1u(t)
∥∥2

H1
h(E)

+ ‖∂tu(t)‖2L2(E) ≤ CEh(t)[ũh] ≤ CeCt ‖(�g,Θ + Lh)ũh(s)‖2L2([0,T ],L2(E))

Multiplying both sides by h2 and integrating on [0, T ]:

‖u(t)‖2L2([0,T ],H1
h(E)) + ‖h∂tu(t)‖2L2([0,T ],L2(E)) ≤ C

′
(
h−2 ‖Phu‖2L2([0,T ],L2(E))

)
where the constant C ′ depends on T but is independent of u and h.

We now want to get estimates in the norm H
s
h (therefore have the same order of derivation

in time and space). We need a quantitative and semiclassical version of lemma B.2.9 in [54]
applied to the operator Ph. This require finer spaces with two indices of regularity. We first
recall the definition of spaces H(m,s)(R

n) and H(m,s)(R
n
+) following [54, Section B.2]. We begin

by the definition of H(m,s)(R
n).

Definition A.1.3. For m, s ∈ R, we denote by H(m,s)(R
n) the set of tempered distribution u

such that:

〈ξ〉m
〈
ξ′
〉s
û ∈ L2(Rn)
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where ξ = (ξ′, ξn) ∈ Rn is the dual variable of x. When u ∈ H(m,s)(R
n), we define the

corresponding norm:

‖u‖H(m,s)(Rn) =
∥∥〈ξ〉m 〈ξ′〉s û∥∥

L2 .

We get the semiclassical version of this space Hh,(m,s)(R
n) by taking the semiclassical Fourier

transform

Fhu(ξ) := (2πh)−
n
2

∫
e−i

xξ
h u(x) dx

instead of the Fourier transform in the definition (the space is the same but the norm degen-
erates when h→ 0).

We define Rn+ := Rn−1 × (0,+∞) and we introduce the space H(m,s)(R
n
+):

Definition A.1.4. Elements of H(m,s)(R
n
+) are distributions on Rn+ which admits an extension

in H(m,s)(R
n). The norm is given by the infimum over all the possible extensions of the

H(m,s)(R
n) norm of the extension. Replacing H(m,s)(R

n) by Hh,(m,s)(R
n) in the definition, we

get the space Hh,(m,s)(R
n
+).

We generalize these spaces in the context of sections of a rank k vector bundle [T0, T1]t×E
where E is a rank k vector bundle over a smooth compact manifold (without boundaries).

Definition A.1.5. We consider a covering of X by a finite family of open sets (Ui)
N
i=1 such

that we have local coordinates on each Ui and the bundle E is trivial on Ui. We take a
partition of unity χi on X subordinated to (Ui). We take ψ1, ψ2 ∈ C∞(R, [0, 1]) such that
ψ1 + ψ2 = 1 and ψ1 = 0 on (−∞, 2T0+T1

3 ]t, ψ2 = 0 on (T0+2T1
3 ,+∞)t. Note that modulo a

translation and/or reflection in the t variable, for any distributional section u of E|(T0,T1)×X ,
we can identify χiΨju with a finite family (vpi,j)1≤i≤N

1≤j≤2
1≤p≤k

of distributions on Rn+1
+ (the n first

variables correspond to the local coordinates on X and the last variable correspond to t).
The space H(m,r)(E) (or H(m,r) for short) is the space of u such that all the vpi,j belongs to
H(m,r)(R

n+1
+ ). The norm is given by:

‖u‖2H(m,s)
=
∑
i,j,p

∥∥∥vpi,j∥∥∥2

H(m,s)(R
n
+)

Note that a different choice for the χi, the ψj and the local charts and trivializations induces
an equivalent norm. Replacing H(m,s)(R

n+1
+ ) by Hh,(m,s)(R

n+1
+ ) in the definition, we get the

space Hh,(m,s)(E).

We use the following quantitative and semiclassical version of lemma B.2.9 in [54] applied
to the operator Ph:

Lemma A.1.6. Let k ∈ N, m, r ∈ R. If u ∈ Hh,(m−k+1,r) and Phu ∈ Hh,(m,r−k), then
u ∈ Hh,(m+1,r−k) and there exists a constant C > 0 independent of u and h ∈ (0, 1] such that:

‖u‖Hh,(m+1,r−k)
≤C

(
‖u‖Hh,(m−k+1,r)

+ ‖Phu‖Hh,(m,r−k)

)
Proof. We prove this result by induction on k. For k = 0, there is nothing to prove. Assume
that the result is true for some k ∈ N. Then let u ∈ Hh,(m−k,r) such that Phu ∈ Hh,(m,r−k−1).
Using the expression of the operator Ph, we get:∥∥h2∂2

t u
∥∥
Hh,(m−k−1,r−1)

≤‖Phu‖Hh,(m−k−1,r−1)
+ C ‖h∂tu‖Hh,(m−k−1,r)

+ C ‖u‖Hh,(m−k−1,r+1)

≤ C
(
‖Phu‖Hh,(m,r−k−1)

+ ‖u‖Hh,(m−k,r)

)
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Then, we use the semiclassical version of lemma B.2.3 (on a compact manifold with boundary)
in [54] to get:

‖h∂tu‖Hh,(m−k,r−1)
≤C

(∥∥h2∂2
t u
∥∥
Hh,(m−k−1,r−1)

+ ‖h∂tu‖Hh,(m−k−1,r)

)
≤C

(
‖Phu‖Hh,(m,r−k−1)

+ ‖u‖Hh,(m−k,r)

)
and the same lemma applied to u gives:

‖u‖Hh,(m−k+1,r−1)
≤C

(
‖h∂tu‖Hh,(m−k,r−1)

+ ‖u‖Hh,(m−k,r)

)
≤C

(
‖Phu‖Hh,(m,r−k−1)

+ ‖u‖Hh,(m−k,r)

)
By the induction hypothesis, we conclude that:

‖u‖Hh,(m+1,r−k−1)
≤C

(
‖u‖Hh,(m−k+1,r−1)

+ ‖Phu‖Hh,(m,r−1−k)

)
≤C

(
‖Phu‖Hh,(m,r−k−1)

+ ‖u‖Hh,(m−k,r)

)

Using lemma A.1.6, we can state the following proposition. For s ∈ R, let Hsh be the
space of distributional sections of (−∞, T )×E which can be obtained from a restriction of a
distribution in Hs

h(R× E) and which have support in [0, T )×X.

Proposition A.1.7. Let s ∈ R. There exists C > 0 such that for all u ∈ ∪N∈NH−Nh :

‖u‖Hsh ≤ Ch
−1 ‖Phu‖Hs−1

h

In the strong sense that if Phu ∈ Hs−1
h , then u ∈ Hsh and the inequality holds.

Proof. We prove the lemma for some fixed h ∈ (0, 1] (but we check that the constant C does
not depend on h). First, note that the combination of lemma A.1.1 and lemma A.1.6 gives
the proposition for fixed s ∈ R if we assume in addition that u ∈ ΓN ((−∞, T ] × E) with
support in [0, T ]×X for some large integer N (depending on s). We will use this estimate on
Ph and P ∗h to get the general result. We note that the formal adjoint P ∗h is of the correct form
to apply the estimate (and we can put zero initial data at t = T instead of t = 0). The dual
space of Hsh is G−sh , the space of distributional sections of (0,+∞)×E∗ which can be obtained
from a restriction of a distribution in H−sh (R × E∗) and which have support in (0, T ] × X.
Therefore, for f ∈ Hs−1 and φ ∈ Γ([0,+∞)× E∗) with support in [0, T ]×X , we have:

|〈φ, f〉L2 | ≤ ‖φ‖G−s+1
h
‖f‖Hs−1

h

≤Ch−1 ‖P ∗hφ‖G−sh ‖f‖Hs−1
h

Therefore, by Hahn-Banach, there exists u ∈ Hsh such that Phu = f and ‖u‖Hs ≤
Ch−1 ‖Pu‖Hs−1

h
. By taking f ∈ Γ((−∞, T ] × E) with support in [0, T ] × X, the previous

construction with s large enough provides u in ΓN ((−∞, T ]× E) with support in [0, T ]×X
for an arbitrary large N such that Phu = f . This argument applied to P ∗h gives the density
of {

P ∗hφ, φ ∈ ΓN ([0,+∞)× E∗) with support in [0, T ]×X
}

in Gsh (for N large enough). Therefore, we have uniqueness of u ∈ H−Mh such that Phu =

f ∈ Hsh (for any M and s). Now we can prove the estimate for a general u ∈ H−Nh such that
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Phu ∈ Hsh. We can take a sequence fn of sections in Γ((−∞, T ]×E) with support in [0, T ]×X
such that lim

n→+∞
fn = Phu in h−1Hs−1

h . Then, the associated un are in Γ((−∞, T ] × E)

with support in [0, T ] ×X (we can construct un in ΓN for any N and we have uniqueness).
By the estimate, the sequence is Cauchy in Hsh and by uniqueness of u ∈ H−Nh such that
Phu = f , the limit is u. Therefore, u ∈ Hsh and the estimate holds. This also proves that
the set of sections u ∈ Γ((−∞, T ] × E) with support in [0, T ] × X is dense for the norm
‖u‖Hsh + h−1 ‖Phu‖Hs−1

h
.
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Appendix B

Invertibility of the effective normal
operator

LetN be a smooth compact Riemannian manifold (without boundary). ThenX := [0,+∞]x×
N is a smooth manifold with boundary and we denote by n its dimension. The boundary
is given by two faces each of them is diffeomorphic to N and associated with the smooth
boundary defining functions x and r := x−1. Let E be a smooth complex line bundle over N
endowed with a hermitian metric m and let Ẽ be the bundle given by [0,+∞]× E.

Definition B.0.1. Let r̃, l, ν ∈ R. We define the space H r̃,l,ν
b (Ẽ) (H r̃,l,ν

b for short) as the

space of sections of Ẽ which are in the usual b-space (with a b-volume form) H
r̃,l+n

2
b near the

end x = 0, in the space H r̃ in any compact region of the interior of X and in the space H
r̃,ν−n

2
b

near the conic end (x−1 = 0). More concretely for r̃ ∈ N, if χ1, χ2 ∈ C∞([0,+∞]; [0, 1]) are
such that χ1 + χ2 = 1, χ1 = 1 near x = 0, χ2 = 1 near x−1 = 0, we can define the square of
the norm of H r̃,0,0

b (Ẽ) by the following expression:∥∥∥x−n2 (x∂x)r̃χ1u
∥∥∥2

L2
b((0,+∞);L2(E))

+
∥∥∥x−n2 χ1u

∥∥∥2

L2
b((0,+∞);H r̃(E))

+
∥∥∥x−n2 (x∂x)r̃χ2u

∥∥∥2

L2
b((0,+∞);L2(E))

+
∥∥∥x−n2 χ2u

∥∥∥2

L2
b((0,+∞);H r̃(E))

The spaces for r̃ ∈ R are then defined by interpolation and duality. Eventually, we define

H r̃,l,ν
b :=

(
x
x+1

)l
(x+ 1)−νH r̃,0,0

b .

The n
2 shift corresponds to the fact that we want the index to be consistent with the

volume form x−n−1 dx dvolN instead of a b-volume form. Let β ∈ iR, γ, β′ ∈ C, ζ ∈ C \ {0}
with =(ζ) ≥ 0. We consider the following operator on Ẽ:

P̃ (ζ) =
(
x2Dx

)2
+ i(n− 1)x3Dx + x2L+ β

(
x3Dx + i

n− 2

2
x2

)
(B.1)

+ β′x2 − 2ζx

(
xDx + i

n− 1

2
+
β − γ

2

)
(B.2)

where <(β′) > β2

4 −
(
n−2

2

)2, L is a non negative elliptic formally selfadjoint (with respect to
the metric m and volume form dvolN ) second order differential operator on E (in particular
it is selfadjoint on L2(E) with domain H2(E)). We denote by (λk)k∈N the sequence of its
eigenvalues. In this section, we prove that P̃ (ζ) has an inverse when defined between suitable
functional spaces. We start by proving the Fredholm property and we then prove that the
kernel and cokernel are trivial.
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B.1 Fredholm property

Lemma B.1.1. Let =(ζ) ≥ 0, l < −1
2 + =(β−γ)

2 , r̃ + l > −1
2 + =(β+γ)

2 and

ν ∈

1− =(β)

2
−<

√
−β

2

4
+

(
n− 2

2

)2

+ β′, 1− =(β)

2
+ <

√
−β

2

4
+

(
n− 2

2

)2

+ β′

 .

The operator P̃ (ζ) is Fredholm from
{
u ∈ H r̃,l,ν

b : P̃ u ∈ H r̃,l+1,ν−2
b

}
to H r̃,l+1,ν−2

b .

Proof. First note that the operator P̃ (ζ) is b-elliptic near x = +∞ and outside any neighbor-
hood of the end x = 0. Therefore by the b-elliptic estimate, for any neighborhood U of x = 0,
if χ1 is any cutoff equal to 1 near x = 0 and such that supp(χ1) ⊂ U , we have a constant
C > 0 and δ > 0 such that for all u ∈ ∪N∈NH

−N,−N,−N
b , v ∈ ∪N∈NH

−N,−N,−N
b :

‖(1− χ1(x))u‖
H r̃,l,ν
b
≤ C

(∥∥∥P̃ (ζ)u
∥∥∥
H r̃−2,l+1,ν−2
b

+ ‖(1− χ1(x))u‖
H r̃−1,l−1,ν
b

)
‖(1− χ1(x))v‖

H−r̃,−l−1,−ν+2
b

≤ C
(∥∥∥P̃ ∗(ζ)u

∥∥∥
H−r̃−2,−l,−ν
b

+ ‖(1− χ1(x))v‖
H−r̃−1,−l−2,−ν+2
b

)
in the strong sense that if the right-hand side is finite, so is the left-hand side. The normal
operator of P̃ (ζ) at the end x = +∞ is r−2

(
(rDr)

2 − i(n− 2)rDr + L+ β′
)
where r := 1

x .
Using a Mellin transform argument (on the model of what is done in the proof of Proposition
13.6.1) and the fact that ν is not an indicial root (by hypothesis), we get that there exists
C > 0 and δ > 0 such that:

‖(1− χ1(x))u‖
H r̃−1,l−1,ν
b

≤ C
(∥∥∥P̃ (ζ)u

∥∥∥
H r̃−2,l+1,ν−2
b

+ ‖(1− χ1(x))u‖H r̃−1,l−1,ν−δ

)
.

A similar estimate also holds for the adjoint operator. Overall, we obtain:

‖(1− χ1(x))u‖
H r̃,l,ν
b
≤ C

(∥∥∥P̃ (ζ)u
∥∥∥
H r̃−2,l+1,ν−2
b

+ ‖(1− χ1(x))u‖
H r̃−1,l−1,ν−δ
b

)
(B.3)

‖(1− χ1(x))v‖
H−r̃,−l−1,−ν+2
b

≤ C
(∥∥∥P̃ ∗(ζ)u

∥∥∥
H−r̃−2,−l,−ν
b

+ ‖(1− χ1(x))v‖
H−r̃−1,−l−2,−ν+2−δ
b

)
.

(B.4)

Moreover, we also have constants C ′ > 0 and δ > 0 such that:

‖χ1(x)u‖
H r̃,l,ν
b
≤ C ′

(∥∥∥P̃ (ζ)u
∥∥∥
H r̃,l+1,ν−2
b

+ ‖u‖
H r̃−δ,l−δ,ν−δ
b

)
(B.5)

‖χ1(x)v‖
H−r̃,−l−1,−ν+2
b

≤ C ′
(∥∥∥P̃ ∗(ζ)v

∥∥∥
H−r̃,−l,−νb

+ ‖v‖
H−r̃−δ,−l−1−δ,−ν+2−δ
b

)
(B.6)

in the strong sense that if the right-hand side is finite, so is the left-hand side. Estimates
(B.5) and (B.6) follows from the fact that

P (ζ) : = ei
ζ
x P̃ (ζ)e−i

ζ
x

= (x2Dx)2 + (β + i(n− 1))x3Dx +

(
L+ iβ

n− 2

2
+ β′

)
x2 + γxζ − ζ2

satisfies the three conditions presented in the proof of Proposition 13.2.1 with a0 := β, A :=
L + iβ n−2

2 + β′, σ := ζ, Q = γx. Note that the third condition is a consequence of the
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following property of L: There exists (Lk)
N
k=0 in Diff1(E) and (L′k) and L′′ in C∞(N ) such

that

L =

N∑
k=0

L∗kLk + L′kLk + L′′

By using a finite partition of unity on the compact manifold N , we can assume that L has
compact support on an open set of trivialization U of E (L is not selfadjoint anymore after
localization but it is still principally self adjoint). We write the operator in a local trivialization
(in which m is the canonical hermitian product on C):

L =
∑

1≤i,j≤n
ai,jDyiDyj + V

with V ∈ Diff1(U) (compactly supported in U). We can assume that ai,j = aj,i in this
decomposition. Because L is principally self adjoint, ai,j are real valued. Let χ be smooth
non negative compactly supported in U and such that χ = 1 on the support of L and V . We
have:

L−
∑

1≤i,j≤n

(ai,j
2
Dyi + χDyj

)∗ (ai,j
2
Dyi + χDyj

)

−
n∑
i=1

√√√√ n∑
j=1

a2
i,j

4
+ nχ2∂yi

∗√√√√ n∑
j=1

a2
i,j

4
+ nχ2∂yi

 ∈ Diff1(U)

Note that we use the fact that
√∑n

j=1

a2
i,j

4 + nχ2 is smooth on U . Therefore, we can take

(
ai,j
2 Dyi + χDyj ) and

√∑n
j=1

a2
i,j

4 + nχ2∂yi for the operators Lk. The important fact is that
they generate the C∞(U)-module of smooth vector fields with support included in the support
of L.

Finally, using estimates (B.3), (B.4), (B.5) and (B.6) in lemma 13.4.1, we conclude the
proof.

Remark B.1.2. In the Fredholm estimate:

‖u‖
H r̃,l,ν
b
≤ C

(∥∥∥P̃ (ζ)u
∥∥∥
H r̃,l,ν
b

+ ‖u‖
H r̃−δ,l−δ,ν−δ
b

)
the constant δ can be chosen equal to

1

4
min

r + l +
1

2
− =(β + γ)

2
, ν − 1 +

=(β)

2
+ <

√
−β

2

4
+

(
n− 2

2

)2

+ β′

 .

In particular, under the hypotheses of Proposition B.1.1, for u ∈ Ker(P̃ (ζ)), we can iterate
the estimate to prove that u ∈ H∞,l,νb .

B.2 Trivial kernel and existence of the inverse

Proposition B.2.1. We assume that for all k ∈ N,

ã :=
1

2
+
iγ

2
+

√(
n− 2

2

)2

− β2

4
+ λk + β′
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is not a non positive integer and =(ζ) ≥ 0. If u ∈ H r̃,l,ν
b (Ẽ) is in the kernel of P̃ (ζ) with

l < −1
2 + =(β−γ)

2 , r̃ + l > −1
2 + =(β+γ)

2 and

ν ∈

1− =(β)

2
−<

√
−β

2

4
+

(
n− 2

2

)2

+ β′, 1− =(β)

2
+ <

√
−β

2

4
+

(
n− 2

2

)2

+ β′

 ,

then u = 0.

The following proposition will be used to prove that the kernel of the adjoint operator is
trivial. We state it as a general proposition for operators of the form (B.1).

Proposition B.2.2. We assume that for all k ∈ N, 1
2−

iγ
2 +

√(
n−2

2

)2 − β2

4 + λk + β′ is not a

negative integer and =(ζ) ≤ 0. If u ∈ H r̃,l,ν
b (Ẽ) is in the kernel of P̃ (ζ) with l > −1

2 + =(β−γ)
2

and ν ∈
(

1− =(β)
2 −<

√
−β2

4 +
(
n−2

2

)2
+ β′, 1− =(β)

2 + <
√
−β2

4 +
(
n−2

2

)2
+ β′

)
, then u =

0.

Proof. We prove both of these propositions in the same time since the proofs only differ at the
end. We first reduce the problem to a singular ordinary differential equation by diagonalizing
the operator L. Finally, we use standard theory of the confluent hypergeometric equation to
prove that u = 0.

First note that for u ∈ ∪N∈NH
−N,−N,−N
b such that P̃ (ζ)u = 0, the classical elliptic

regularity theory provides u ∈ Γ((0,+∞)x×E). We denote by (fi)i∈N an orthonormal family
of eigenfunctions of L and by (λi)i∈N the corresponding family of eigenvalues. We define the
following operators:

Πi :

{
Γ((0,+∞)x × E)→ C∞((0,+∞)x)

u 7→
(
x 7→

∫
N m(u(x, y), fi(y)) dvol(y)

)
(where dvol(y) is the volume form on N ). The spectral theorem for compact selfadjoint
operators (applied to (L+1)−1) provides that for all x ∈ (0,+∞) limn→+∞

∑n
i=0(Πiu)(x)fi =

u(x) for the topology of L2(E).
By orthogonality of the fi, this implies that u(x) = 0 if and only if ui(x) := Πiu(x) = 0 for

all i ∈ N. Moreover, using the fact that Πi commutes with P̃ (ζ) and the equality P̃ (ζ)u = 0,
we see that P̃i(ζ)ui = 0 for all i ∈ N where

P̃i(ζ) =
(
x2Dx

)2
+ i(n− 1)x3Dx + x2λi + β

(
x3Dx + i

n− 2

2
x2

)
+ β′x2

− 2ζx

(
xDx + i

n− 1

2
+
β − γ

2

)
.

For the rest of the proof, we fix k ∈ N and we prove that uk = 0. We use standard results
in analysis of singular ODE. First, we can change variable r = x−1 in the equation and we
get:

Qk(ζ) =D2
r − i(n− 1)r−1Dr + r−2λk + β

(
−r−1Dr + i

n− 2

2
r−2

)
+ β′r−2

− 2ζ

(
−Dr + i

n− 1

2
r−1 +

β − γ
2

r−1

)
vk(r) :=uk(r

−1)

P̃kuk =0⇔ Qk(ζ)vk = 0
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Therefore, the equation has meromorphic coefficients, has a regular singularity at r = 0 and
a rank one singularity at r =∞. The indicial equation at 0 is

−α2 + (2− n+ iβ)α+

(
λk + iβ

n− 2

2
+ β′

)
= 0

with two roots:

α± = 1− n

2
+
iβ

2
±

√(
n− 2

2

)2

− β2

4
+ λk + β′

(we choose the branch of the square root which extends the square root on R+ to C\(−∞, 0]).
We know by Frobenius theory that the space of solutions of the equation Qk(ζ)vk = 0 is

of dimension 2 and consists of analytic functions with a holomorphic extension (at least) to
C \ (−∞, 0] where 0 is a branch point. After fixing a continuous determination of ln(x) on
C \ (−∞, 0], one of the solutions can be written as:

+∞∑
n=0

anr
n+α+

where the radius of convergence of the series
∑+∞

n=0 anr
n is infinite. The precise expression of

an other independent solution as a series depends on whether or not α+ − α− ∈ N but it is
equivalent to bxα− for some b 6= 0 (since α+ 6= α−). The fact that u ∈ H r̃,l,ν

b with

ν ∈

1− =(β)

2
−<

√
−β

2

4
+

(
n− 2

2

)2

+ β′, 1− =(β)

2
+ <

√
−β

2

4
+

(
n− 2

2

)2

+ β′


implies that uk cannot be equivalent to x−1+n

2
+
=(β)

2
+

√
−β2

4
+(n−2

2 )
2
+β′+λk when x → +∞.

Therefore, we have vk = o(rα−) near r = 0. We deduce that vk = C
∑+∞

n=0 anr
n+α+ for some

C ∈ C. In particular, the function r−α+vk has a holomorphic extension to C.
Now we show that the differential equation can be written as a confluent hypergeometric

equation after the transformation Q̃k := r1−α+Qkr
α+ followed by the change of variable

z = −2iζr.

Q̃k = −r∂2
r + (1− n− 2α+ + iβ − 2iζr)∂r + ζ(−2iα+ − β + γ − i(n− 1))

= 2iζ

(
z∂2

z + (2α+ + (n− 1)− iβ − z)∂z +

(
−α+ +

iβ

2
− iγ

2
− n− 1

2

))
= 2iζ

(
z∂2

z + (c− z)∂z − ã
)

where

c = 2α+ + n− 1− iβ

= 1 + 2

√(
n− 2

2

)2

− β2

4
+ λk + β′

ã = α+ −
iβ

2
+
iγ

2
+
n− 1

2

=
1

2
+
iγ

2
+

√(
n− 2

2

)2

− β2

4
+ λk + β′
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Now we assume that ã is not a non positive integer. Therefore, since Qkvk = 0, we have
Q̃kṽk = 0 where ṽk(z) = (r−α+vk)

(
iz
2ζ

)
. Moreover, ṽk is holomorphic on C. Therefore, by

Frobenius theory, we have ṽk = CM(ã, c, z) (where M is the renormalized Kummer’s function,
defined for example by (9.04) in [85, Chapter 7]). Note that z 7→ M(ã, c, z) is a non zero
entire function except when ã, c ∈ −N and c ≤ ã in which case, it is identically zero. Using
(10.09) and (10.10) in [85, Chapter 7], we see that we have the following asymptotic expansion
(valid for any N ∈ N) of M(ã, c, z) when |z| → ∞:

M(ã, c, z) =
e−ãiπz−ã

Γ(c− ã)

N∑
k=0

(−1)k
(ã)k(1 + ã− c)k

k!zk

+
ezzã−c

Γ(ã)

N∑
k=0

(c− ã)k(1− ã)k
k!zk

+ o(z−N−<(ã) + e<(z)z−N+ã−c) when − π

2
− δ ≤ arg(z) ≤ π

2
− δ

M(ã, c, z) =
eãiπz−ã

Γ(c− ã)

N∑
k=0

(−1)k
(ã)k(1 + ã− c)k

k!zk

+
ezzã−c

Γ(ã)

N∑
k=0

(c− ã)k(1− ã)k
k!zk

+ o(z−N−<(ã) + e<(z)z−N+ã−c) when
π

2
− δ ≤ arg(z) <

3

2
π − δ

where z−ã and zã−c are fixed using ln(z) = ln|z| + iarg(z) (pay attention to the fact that in
the last asymptotics, arg is not the principal argument).

We now conclude the proof of proposition B.2.1. Using Remark B.1.2, we obtain that
ukfk ∈ H∞,l,νb . By the usual normal operator argument (involving the Mellin transform on
the model of what is done in the proof of Proposition 13.6.1), we obtain that uk has an
asymptotic expansion into powers of x near x = 0 (up to an arbitrarily high order). This
correspond to an asymptotic expansion for vk into powers of −2iζ

z as |z| → +∞ along some
half line with arg(z) ∈ [−π

2 ,
π
2 ] (here we use that =(ζ) ≥ 0). If ã is not a non positive integer,

this is not compatible with the expansion of M(ã, c, z) except if C = 0. Therefore, vk = 0 for
all k and u = 0.

We now conclude the proof of proposition B.2.2. If r ∈ (0,+∞) and ζ in in the lower
half complex plane, we have z = −2iζr is on some half line with argument in [π2 ,

3π
2 ]. Let

χ be some cutoff localizing near zero. Using the expansion of M(ã, c, z) and the fact that
χ(x)xα+uk = CM(ã, c,−2iζx−1) ∈ H r̃,l+α+,∞

b , we obtain:

• if arg(−2iζ) ∈ [π2 ,
3π
2 − δ), there exists N ∈ N such that:

A(x) := Cχ(x)
e−ãi(−π+arg(−2iζ)) |2ζ|−ã xã

Γ(c− ã)

N∑
k=0

(−1)kxk
(ã)k(1 + ã− c)k

k!(−2iζ)k

+Cχ(x)
e−

2iζ
x

+i(ã−c)arg(−2iζ) |2ζ|ã−c xc−ã

Γ(ã)

N∑
k=0

xk
(c− ã)k(1− ã)k

k!(−2iζ)k
∈ Hmin(r̃,0),l+α+,∞

b .
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• if arg(−2iζ) ∈ [−π
2 − δ,−

π
2 ], there exists N ∈ N such that:

A(x) :=
e−ãi(π+arg(−2iζ)) |2ζ|−ã xã

Γ(c− ã)

N∑
k=0

(−1)kxk
(ã)k(1 + ã− c)k

k!(−2iζ)k

+
e−

2iζ
x

+i(ã−c)arg(−2iζ) |2ζ|ã−c xc−ã

Γ(ã)

N∑
k=0

xk
(c− ã)k(1− ã)k

k!(−2iζ)k
∈ Hmin(r̃,0),l+α+,∞

b

Using that the Mellin tranform of B(x) := e−
2iζ
x χ(x) has a holomorphic extension to the whole

complex plane1 when =(ζ ≤ 0) and lemma 14.2.5, we conclude that the Mellin transformed
MA(τ) has a simple pole of order one at τ = −iã and residue of modulus |C||2ζ|

ã

|Γ(c−ã)| . Since on

the other hand A ∈ Hmin(r̃,0),l+α+,∞
b , MA has to be holomorphic on =(τ) > −l − n

2 − α+.

Since l > −1
2 + =(β−γ)

2 , we deduce |C||2ζ|
ã

|Γ(c−ã)| = 0 and (using that c − ã is not a non positive
integer) C = 0.

Corollary B.2.3. Let ζ ∈ C \ {0} and =(ζ) ≥ 0. We assume that for all k ∈ N,

1

2
+ i

γ

2
+

√(
n− 2

2

)2

− β2

4
+ λk + β′ /∈ −N

1

2
− iγ

2
+

√(
n− 2

2

)2

− β2

4
+ λk + β′ /∈ −N

Then P̃ (ζ) is invertible from
{
u ∈ Hr,l,ν

b : P̃ (ζ)u ∈ Hr,l+1,ν−2
b

}
to Hr,l+1,ν−2

b

where l < −1
2 + =(β−γ)

2 and r + l > −1
2 + =(β+γ)

2 and ν ∈(
1− =(β)

2 −<
√
−β2

4 +
(
n−2

2

)2
+ β′, 1− =(β)

2 + <
√
−β2

4 +
(
n−2

2

)2
+ β′

)
.

Proof. We already have Fredholm estimates for P̃ (ζ) (see the proof of lemma B.1.1). The
triviality of the kernel follows from proposition B.2.1. The adjoint operator P̃ (ζ)∗ has the
same form as P̃ but with ζ replaced by ζ, β replaced by β = −β, γ replaced by γ, β′

replaced by β′. The second non integer coincidence condition therefore corresponds to the
condition in proposition B.2.2. Moreover, P̃ (ζ)∗ goes from H−r,−l−1,2−ν

b to Hr,l,ν
b . Therefore

the hypotheses of proposition B.2.2 are satisfied since:

−l − 1 >− 1

2
− =(β − γ)

2
= −1

2
+
=(β − γ)

2

2− ν ∈

1− =(β)

2
−<

√
−β

2

4
+

(
n− 2

2

)2

+ β′, 1− =(β)

2
+ <

√
−β

2

4
+

(
n− 2

2

)2

+ β′



1This is a consequence of the relation xDxB(x) = −2ζx−1B(x) + C∞c ((0, 1))
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Appendix C

Proofs of Propositions 11.2.2, 11.2.4

The goal of this section is to provide detailed proofs of Propositions 11.2.2, 11.2.4 and Corol-
lary 11.2.5. The proof of proposition 11.2.2 is based on energy estimates on the model of what
is done in [51, Section 4.1]. The estimate on U3 (defined below) follows less closely [51] but
remains in the same spirit. The proof of Proposition 11.2.4 is then based on an idea presented
in [51, Section 5.1].

In this section, ∇ and div denotes the Levi-Civita connection and divergence operator
associated to the metric g̃.

For the proof it will be convenient to have a concrete defintion for t0. Moreover, we also
need a time coordinate t̃ whose level sets are transverse to I + and H and such that d̃t
remains uniformly timelike with respect to G̃ up to I + and up to r+ − 2ε. Therefore we
introduce:

t0 := t∗ + h(r) (C.1)
t̃ := t∗ + F (r)

(C.2)

where h(r) and F (r) are defined as follow. Let χ0 ∈ C∞(R, [0, 1]) be a smooth cutoff such
that χ0 = 1 on (−∞, 3M ] and χ0 = 0 near +∞. Let χ1 ∈ C∞(R, [0, 1]) such that χ1 = 0 on
(−∞, 5M) and χ1 = 1 near +∞. Moreover, we can assume1 that sup supp(χ0) < inf supp(χ1)
and χ0 ≤ ψ1, χ1 ≤ ψ2 (where ψ1, ψ2 were used to define L(r) in (9.1)). We define:

h(r) :=

{
−T (r)−

∫ +∞
r χ0(r)

(
a2+r2

∆r
− M2

a2+r2

)
dr if r > r+

−
∫ +∞

3M χ0(r)a
2+r2

∆r
dr +

∫ +∞
r χ0(r) M2

a2+r2 dr otherwise

F (r) =h(r) +

∫ r

−∞
χ1(r)

(
M2

∆r
− (a2 + r2)

∆r

)
dr

Note that h(r) and F (r) are smooth across the event horizon. Moreover, t̃ is smooth up to
I +.

By construction, we have:

t + 1 ≤ t̃ ≤ t0 ≤ t

An explicit computation provides:

G̃( dt0, dt0) =− a2 sin2 θ +
(a2 + r2)2

∆r
− χ0(r)2 (a2 + r2)2

∆r

(
1− M2∆r

(a2 + r2)2

)2

≥− a2 sin2 θ +M2

(
2− M2∆r

(a2 + r2)2

)
1This assumption is used to ensure t + 1 ≤ t0 and be able to figure out the relative position of some

particular level sets of t and Σ0 later in the proof.
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Σ0

I0

I +

H

U1

U2

U3

K

t̃ = 1
4

t̃ = 1
2

ρI = α
ρI = 2α

ρ0 = βα
2

t̃ = T

Figure C.1: Representations of the sets U1, U2, U3 and K

Since on r > r+ − 2ε (for ε sufficiently small), we have:

M2 ≤ r2 ≤ a2 + r2

∆r ≤ a2 + r2

we deduce G̃( dt0, dt0) ≥ −a2 sin2 θ + M2 and dt0 is timelike on M2ε. Similarly, since
d̃t = dt0 for r < inf(suppχ1) we have that d̃t is timelike when r < inf(suppχ1). For
r ≥ inf(suppχ1), we have:

G̃( d̃t, d̃t) =− a2 sin2 θ +
(a2 + r2)2

∆r
− χ1(r)2 (a2 + r2 −M2)2

∆r

≥− a2 sin2 θ +
(a2 + r2)M2

∆r

(
2− M2

a2 + r2

)
≥M2 − a2

This proves that d̃t is uniformly timelike with respect to G̃.
Let α > 0, β > 0 and T > 1

2 be constants to be chosen later. Note that since t +
1 ≤ t̃, we have

{
t̃ ≤ 1

2

}
⊂ U . Our goal to prove Proposition 11.2.2 is to get estimates on{

r ≥ r+ − ε, t0 ≥ 0, t̃ ≤ T
}
for all T > 1

2 . To achieve that, we glue four estimates together:

• An estimate on U1 := {t0 ≥ 0, ρI ≥ α, ρ0 ≤ βρI}

• An estimate on U2 :=
{
t̃ ≤ 1

2 , ρI ≤ 2α
}

• An estimate on U3 :=
{
r+ − ε ≤ r, 1

4 ≤ t̃ ≤ T
}

• An estimate on K :=
{
r+ − ε ≤ r, t̃ ≤ 1

2 , t0 ≥ 0, ρI ≥ α, ρ0 ≥ βα
2

}
Note that ρI is bounded2 on t0 ≥ 0, therefore, for every η > 0, by taking β small enough,
we have ρ0 ≤ η on U1. We denote by β 7→ η(β) a positive function with lim

β→0
η(β) = 0 and

such that ρ0 ≤ η(β) on U1. Moreover since ρ0 = 1
L(r)−t0+h(r) on U , if t0 ≥ 0, 1

L(r)+h(r) ≤ ρ0

2This follows from, −xt = h(r)+L(r)−t0
r
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and therefore for all C > 0, there exists η > 0 such that ρ0 ≤ η ⇒ r > C. Using this in the
inequality (valid for t0 ≥ 0):

ρI =
h(r) + L(r)− t0

r

≤h(r) + L(r)

r
≤1 + or→∞(1),

we deduce that for β small enough, ρI ≤ 3
2 on U1 (in the sequel we assume that β is small

enough to ensure this property). Note that K is compact included in M2ε (and can be
included into a relatively compact hyperbolic region R). Since t0 is a global time function on
M2ε ∩ {t0 > −1}, by classical hyperbolic theory, we get:

Lemma C.0.1. For all s ∈ R, there exists C > 0 such that for u as in proposition 11.2.2:

‖u‖
H
s+1

(K)
≤ C ‖u0‖Hs+1

(R∩Σ0)
+ C ‖u1‖Hs

(R∩Σ0)

C.1 Estimate on U1

On U1, we have the following expression for the operator Ts:

Ts = ρI(2− ρI)∂2
ρI
− 2ρ0∂ρ0∂ρI − /G+ ρ0Diff2

b + Diff1
b

The inverse metric can be written as:

G̃ = ρI(2− ρI)∂2
ρI
− 2ρ0∂ρ0∂ρI − /G+ ρ0Diff2

b (C.3)

and is therefore a b-metric on U1 (note that the only part of the boundary intersecting U1 is
I0).

Lemma C.1.1. If g is a b-metric (Lorentzian or Riemannian) on some manifold with
boundary M (and we call ρ the defining function of the boundary), and if X ∈
Γ
(
bT ∗M⊗k ⊗ bTM⊗k′

)
, then ∇X ∈ Γ(bT ∗M⊗(k+1) ⊗ bTM⊗k′) where ∇ is the Levi-Civita

connection associated to g.

Proof. Using the definition of the tensor product connection, we are reduced to the cases
(k, k′) = (0, 1) and (k, k′) = (1, 0). Moreover, note that for all Z ∈ ΓbTM, ω ∈ Γ(bT ∗M) and
X ∈ Γ(bTM), we have ∇Zω(X) = Z(ω(X))−ω(∇ZX) with Z(ω(X)) ∈ C∞(M). Therefore,
if for all X ∈ Γ(bTM), ∇X ∈ Γ(bT ∗M⊗ bTM), we obtain ∇ω ∈ Γ(bT ∗M⊗2). We are thus
reduced to proving the case (k, k′) = (0, 1). By Leibniz rule and since for Y ∈ Γ(bTM) and
f ∈ C∞(M) we have Y f ∈ C∞(M), it is enough to prove that if ρ is a local defining function
of the boundary and (yi)

n
i=1 are local coordinates on the boundary:

∇ρ∂ρ∂yi =a0(ρ, y)ρ∂ρ +

n∑
i=1

ai(ρ, y)∂yi (C.4)

∇ρ∂ρ(ρ∂ρ) =a0(ρ, y)ρ∂ρ +

n∑
i=1

ai(ρ, y)∂yi (C.5)

∇∂yi∂yi =a0(ρ, y)ρ∂ρ +
n∑
i=1

ai(ρ, y)∂yi (C.6)

∇∂yi (ρ∂ρ) =a0(ρ, y)ρ∂ρ +
n∑
i=1

ai(ρ, y)∂yi (C.7)
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where coefficients (aµ)nµ=0 are smooth up to the boundary (and can be different in each line).

To prove (C.4)-(C.7), we only need to prove that Γβα,γ = ρδ
β
0−δα0−δ

γ
0 a(ρ, y) with a smooth up

to the boundary. Since we have

Γβα,γ =
1

2
Gβ,θ (∂αgθ,γ + ∂γgθ,α − ∂θgα,γ)

we conclude the argument using the fact that g ∈ bT ∗M⊗2 and G ∈ bTM⊗2.

As we have no a priori information on the behavior of u near the boundary, we first prove
a c-uniform estimate on U c1 := U1 ∩ {t+ r ≤ c} for c > c0. We then take the limit c → +∞
and Fatou’s lemma to get the estimate on U1. Note that since U c1 is relatively compact
in Mε, by classical hyperbolic theory we can approximate u by smooth functions un such
that on U c1 , lim

n→+∞
un = u in H

s+1
(U c1) and lim

n→+∞
(un)|Σ0∩Uc1

= u0 (in H
s+1

(Σ0 ∩ U c1)) and

lim
n→+∞

(∂tun)|Σ0∩Uc1
= u1 (in Hs

(Σ0 ∩ U c1)). Therefore, we can assume for the estimates on U c1
that u is smooth. We define the energy-momentum tensor:

T δ,γ(u) = <(m(Θµu,Θνu))G̃µ,δG̃ν,γ − 1

2
G̃δ,γG̃µ,νm(Θµu,Θνu) +

1

2
G̃δ,γm(u, u).

This expression is an adaptation of the classical energy-momentum tensor for the scalar wave
equation with the introduction of the metric m (due to the fact that u is valued in Bs) and
of the last term which is necessary to control the L2 norm of u. To limit the amount of
notations, we sometimes use the name of coordinates as index on tensors or vectors. For
example T ρ0,ρ0 is used to denote the component T ( dρ0, dρ0). Moreover, we use the same
notation for a bilinear form and for the associated quadratic form. For example G̃( dρI)
stands for G̃( dρI , dρI). We define the vector fields:

V = ∇µρI
W = ρ−2a0

0 eAρIV

Note that G̃( dρI) ≥ α
4 on U1 if β is small enough since α ≤ ρI ≤ 3

2 (and ρ0 ≤ η(β)) on U1.
We compute:

div(Tµ,νWµ) = eAρIρ−2a0

(
div(T )ρI − Tµ,ν∇µVν −

2a0

ρ0
T ρ0,ρI +AT ρI ,ρI

)
For k, k′ ∈ N, we denote by Γ(bT ∗U⊗k1 ⊗ bTUk

′
1 ) smooth local sections of bT ∗U⊗k1 ⊗ bTUk

′
1

defined on U1 which have an extension as smooth sections of bT ∗M⊗kε ⊗ bTM⊗k
′

ε . By lemma
C.1.1, ∇ dρI ∈ Γ(bT ∗U⊗2

1 ) and therefore we have:

G̃µ,αG̃ν,β∇αVβ ∈ Γ(bTU⊗2
1 )

G̃µ,ν∇µVν ∈ C∞(U1)

Since U1 is relatively compact, we deduce the bound:

|Tµ,ν∇µVν | ≤ C
(
m(∂ρIu) + m(ρ0∂ρ0u) + /G

ωi,ωjm(Θωiu,Θωju) + m(u)
)

where (ω0, ω1) are unspecified local coordinates on the sphere (note that the expression
/G
ωi,ωjm(Θωiu,Θωju) does not depend of the choice of these local coordinates). Similarly

since dρ0

ρ0
⊗ dρI ∈ Γ(bT ∗U⊗2

1 ), we get:∣∣∣∣2a0

ρ0
T ρ0,ρI

∣∣∣∣ ≤ C (m(∂ρIu) + m(ρ0∂ρ0u) + /G
ωi,ωjm(Θωiu,Θωju) + m(u)

)
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Finally, using the explicit expression of G̃ (C.3), we get:

T ρI ,ρI =ρ2
I(2− ρI)2m(∂ρIu)− 2ρI(2− ρI)<m(∂ρIu, ρ0∂ρ0u) + m(ρ0∂ρ0u)

− 1

2
ρI(2− ρI)

(
ρI(2− ρI)m(∂ρIu)− 2<m(ρ0∂ρ0u, ∂ρIu)− /G

ωi,ωjm(Θωiu,Θωju)− m(u)
)

+R

=
1

2
ρ2
I(2− ρI)2m(∂ρIu)− ρI(2− ρI)<m(∂ρIu, ρ0∂ρ0u) + m(ρ0∂ρ0u)

+
1

2
ρI(2− ρI)/G

ωi,ωjm(Θωiu,Θωju) +
1

2
ρI(2− ρI)m(u)

|R| ≤Cρ0

(
m(∂ρIu) + m(ρ0∂ρ0u) + /G

ωi,ωjm(Θωiu,Θωju) + m(u)
)

Using that:

|ρI(2− ρI)<m(∂ρIu, ρ0∂ρ0u)| ≤ 3

4
m(ρ0∂ρ0u) +

ρ2
I(2− ρI)2

3
m(∂ρIu)

We get that for β small enough,

T ρI ,ρI ≥ C
(
m(∂ρIu) + m(ρ0∂ρ0u) + /G

ωi,ωjm(Θωiu,Θωju) + m(u)
)

on U1 for some constant C > 0 independent of u. Using lemma A.0.4 and the fact that the
curvature RΘ

µ,ν and Θm are bounded on U1, we get:

|div(T )ρI | ≤ C
(
m(∂ρIu) + m(ρ0∂ρ0u) + /G

ωi,ωjm(Θωiu,Θωju) + m(�g̃,Θu) + m(u)
)

We check that Ts −�g̃,Θ ∈ Diff1
b on U1 and therefore:

|div(T )ρI | ≤ C
(
m(∂ρIu) + m(ρ0∂ρ0u) + /G

ωi,ωjm(Θωiu,Θωju) + m(u) + m(Tsu)
)

Finally, we see that if we choose A large enough, we get on U1:

div(Tµ,νWµ) ≥ eAρIρ−2a0
(
AC

(
m(∂ρIu) + m(ρ0∂ρ0u) + /G

ωi,ωjm(Θωiu,Θωju) + m(u)
)
− Cm(Tsu)

)
where C > 0 is a constant independent of u. Finally, we can apply the Stokes theorem on U c1
which has boundaries included in:

• {t0 = 0}, an outward normal is − dt0 which is timelike past oriented.

• {ρI = α}, an outward normal is − dρI which is timelike future oriented.

• {ρ0 = βρI}, an outward normal is dρ0 − β dρI which is timelike future oriented if β is
small enough.

• {t+ r = c}, an outward normal is dt+ dr. We have G̃( dt+ dr) = 4Mr+O(1) when
r → +∞ and therefore the normal is timelike future oriented on the boundary of U c1
(provided r is large enough which is the case if β is small enough).

Since dρI (and thereforeW ) is timelike past oriented, we deduce that (uniformly with respect
to c in a neighborhood of +∞):∫

Uc1

eAρIρ−2a0AC
(
m(∂ρIu) + m(ρ0∂ρ0u) + /G

ωi,ωjm(Θωiu,Θωju) + m(u)
)

dvolg̃

−C
∫
Uc1

ρ−2a0
0 eAρIm(Tsu) dvolg̃ ≤

∫
Uc1

div(Tµ,νWµ) dvolg̃

≤
∫
∂Uc1∩{t0=0}

−ρ−2a0
0 eAρIT

 dρI ,
dt0√
G̃( dt0)

 dvolΣ0
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For r large enough, we have

dt0 =−
(

1 +
a2 + r2

∆rρI

)
dρ0

ρ2
0

− a2 + r2

∆r

dρI
ρ0ρ2

I

G( dt0)−
1
2 =ρ0ρI + ρ2

0C
∞(U1).

Therefore, dt0√
G̃( dt0)

is a uniformly timelike b-one form when restricted to U1∩{t0 = 0}. Since
dρI is also a uniformly timelike b-one form when restricted to U1 ∩ {t0 = 0} and since g̃ is a
b-metric, we have (letting c→ +∞):

A

∫
Uc1

eAρIρ−2a0
(
m(∂ρIu) + m(ρ0∂ρ0u) + /G

ωi,ωjm(Θωiu,Θωju) + m(u)
)

dvolg̃

≤ C
∫
Uc1

ρ−2a0
0 eAρIm(Tsu) dvolg̃ + Ce

3A
2

(
‖u0‖ρa0

0 H1
b (U1∩Σ0) + ‖u1‖ρa0

0 L2
b(U1∩Σ0)

)
(C.8)

with constants independent of A and u. Now we assume that Tsu = 0, in particular, in this
case for all k ≥ 1 (ρ0∇t0)ku has a trace on Σ0 ∩ U1 and we can express

((ρ0∇t0)ku)|Σ0∩U1
= Diffk−1

b (Σ0 ∩ U1)((ρ0∇t0)u)|Σ0∩U1
+ Diffkb (Σ0 ∩ U1)u|Σ0∩U1

.

and therefore, for any Z ∈ Diffkb ,

(Zu)|Σ0∩U1
= Diffk−1

b (Σ0 ∩ U1)((ρ0∇t0)u)|Σ0∩U1
+ Diffkb (Σ0 ∩ U1)u|Σ0∩U1

.

We want to get the estimate in Hk
b (U1) with k ≥ 1. We use the fact that for Z ∈ Diffkb

defined on U1, [Ts, Z] ∈ Diffk+1
b (U1) in what follows. Let (Zi)

N
i=1 be operators in Diffkb such

that
∑N

i=1 ‖Ziu‖L2
b(U1) is equivalent to ‖u‖Hk

b (U1). The estimate (C.8) applied to Zlu gives:

A

∫
Uc1

eAρIρ−2a0m(∂ρIZlu) + m(ρ0∂ρ0Zlu) + /G
ωi,ωjm(ΘωiZlu,ΘωjZlu) + m(Zlu) dvolg̃

≤ C
∫
Uc1

ρ−2a0
0 eAρI [Ts, Zl]u dvolg̃ + Ce

3A
2

(
‖u0‖ρa0

0 Hk+1
b (U1∩Σ0) + ‖u1‖ρa0

0 Hk
b (U1∩Σ0)

)
We sum the estimates from l = 1 to N and if we take A large enough so that the left-hand-side
absorbs the term C

∫
Uc1
ρ−2a0

0 eAρI [Ts, Zl]u dvolg̃ we get:

Lemma C.1.2. There exists a constant C > 0 such that for all u as in proposition 11.2.2:

‖u‖ρa0
0 Hk+1

b (U1) ≤ C
(
‖u0‖ρa0

0 Hk+1
b (U1∩Σ0) + ‖u1‖ρa0

0 Hk
b (U1∩Σ0)

)
in the strong sense that the left-hand side is finite whenever the right-hand side is finite and
the inequality holds.

C.2 Estimate on U2

We denote by I TU2 the bundle with smooth local sections ρ0∂ρ0 , ρI∂ρI , ρ
1
2
I
/∂ (where /∂ denotes

a smooth vector field on S2) and by I T ∗U2 the dual bundle. We can then define the Sobolev
space H1

I ,b with norm:

‖u‖2H1
I ,b

=

∫
U2

m(ρ0∂ρ0u) + m(ρI∂ρIu) + ρI /G
ωi,ωjm(Θωiu,Θωju)

dρ0

ρ0

dρI
ρI

dvolS2
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Let Z1, Z2, Z3 ∈ Γ(TS2) be vector fields spanning TS2 (as a C∞(S2)-module). For k ∈ N, we
define by induction the norms:

‖u‖
H1,0

I ,b
:= ‖u‖H1

I ,b

‖u‖2
H1,k+1

I ,b

:= ‖u‖2
H1,k

I ,b

+ ‖ρ0∂ρ0u‖
2
H1,k

I ,b

+ ‖ρI∂ρIu‖
2
H1,k

I ,b

+
3∑
i=1

‖ΘZiu‖
2
H1,k

I ,b

Let u ∈ H r̃+1
loc (M2ε) with ρ−a0

0 ρ−aII TsρIu ∈ H
r̃
b . At first, we assume that u = 0 on{

ρI ≥ 3
2α
}
. We do an energy estimate with the vector fieldW = ρ−2a0

0 ρ−2aI
I (−(1+cV )ρI∂ρI +

ρ0∂ρ0) where cV is a constant to be chosen later.

We define the space S0(Mε) as the set of functions f ∈ C∞(
◦
Mε) such that for every

Z ∈ Diffkb (Mε), Zf is bounded. Let ⊗ denotes the tensor product of C∞(Mε) modules. We
denote by S0DiffkI ,b := S0(Mε)⊗ DiffkI ,b the set of I -differential operators with coefficients
in S0. Similarly for a vector bundle E, we denote by S0Γ(E) = S0(Mε) ⊗C∞(Mε) Γ(E) the
set of sections with coefficients in S0. It is necessary to introduce these spaces since vector
fields such as ρI∂φ are not in Γ(IU2) since ρ

1
2
I is not smooth up to the boundary. However

ρI∂φ ∈ S0Γ(IU2) which is just as suitable for our purpose.
Note that on U2, we have:

G̃ =
1

ρI

(
2ρ2

I∂
2
ρI
− 2ρ0ρI∂ρI∂ρ0 − ρI /G+ ρIΓ(I TU⊗2

2 )
)

g̃ =ρI

(
−2 dρ2

0

ρ2
0

− 2
dρ0 dρI
ρ0ρI

− 1

ρI
/g + ρIΓ

(
I T ∗U⊗2

2

))
We consider:

Tµ,ν =m(Θµu,Θνu)− 1

2
g̃µ,νG̃

γ,δm(Θγu,Θδu) +
1

2ρI
g̃µ,νm(u)

div(Tµ,νW
µ) =div(T )µW

µ + Tµ,νπ
µ,ν

πµ,ν :=
1

2
(∇µW ν +∇νWµ)

=
1

2

(
G̃µ,α∂αW

ν + G̃α,ν∂αW
µ −Wα∂αG̃

µ,ν
)

A tedious computation provides:

Tµ,νπ
µ,ν =ρ−2a0

0 ρ−2aI−1
I ((2(aI − a0)cV + 2aI)m(ρI∂ρIu)− 4aI<m(ρ0∂ρ0u, ρI∂ρIu) + 2aIm(ρ0∂ρ0u)

+
2(aI − a0) + 2aIcV − cV − 1

2

(
ρI /G

ωi,ωjm(Θωiu,Θωju) + m(u)
))

+R

|R| ≤Cρ−2aI
I ρ−2a0

0

(
m(ρI∂ρIu) + m(ρ0∂ρ0u) + ρI /G

ωi,ωjm(Θωiu,Θωju) + m(u)
)

If we assume that cV > 0, aI < a0 and aI < 0, we get:

(2(aI − a0)cV + 2aI)m(ρI∂ρIu)

− 4aI<m(ρ0∂ρ0u, ρI∂ρIu) + 2aIm(ρ0∂ρ0u) ≤ −c1m(ρI∂ρIu)− c2m(ρ0∂ρ0u)

c1 := (a0 − aI)cV > 0

c2 := −2aI −
16a2

I

−8aI + 4(a0 − aI)cV
> 0
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We also check that (see Proposition A.0.4 for a similar computation) that there exists
C0 > 0 and C > 0 such that on U2 we have:

|div(T )µW
µ| ≤C0ρ

−2aI
I ρ−2a0

0

(
m(ρI∂ρIu) + m(ρ0∂ρ0u) + ρI /G

ωi,ωjm(Θωiu,Θωju)

+m(u)) + ρ−2aI−1
I ρ−2a0

0

(
Cm(ρI�Θ,g̃u) +

c1

2
m(ρI∂ρI ) +

c2

2
m(ρ0∂ρ0)

)
(C.9)

Moreover, ρ−1
I ρ−1

0 TsρIρ0 − �Θ,g̃ ∈ S0Diff1
I and therefore, if α is small enough we can

replace ρI�Θ,g by ρ−1
0 TsρIρ0 in (C.9) at the cost of increasing C0. As a consequence, if we

choose α small enough, we have the following inequality on U2 for some constants c3 > 0 and
C > 0:

div(Tµ,νπ
µ,ν) ≤− c3ρ

−2a0
0 ρ−2aI−1

I

(
m(ρI∂ρIu) + m(ρ0∂ρ0u) + ρI /G

ωi,ωjm(Θωiu,Θωju)

+m(u)) + Cρ−2aI−1
I ρ−2a0

0 m(ρ−1
0 ρ−1

I TsρIρ0u) (C.10)

where constant c3 does not depend on α (as long as it is smaller than some small threshold
α0 > 0).

For 0 < c < α and c′ large enough, we apply the Stokes formula on U c,c
′

2 := U2 ∩
{ρI ≥ c, t+ r ≤ c′} which is relatively compact inMε (and we will take c→ 0 and c′ →∞).
The boundaries of U c,c

′

2 are included in :

• {ρI = c} with exterior normal − dρI which is timelike and future oriented for c small
enough.

•
{
t̃ = 1

2

}
with exterior normal d̃t which is timelike and future oriented.

• {t+ r = c′} with exterior normal dt+ dr which is timelike and future oriented when r
is large (and on the boundary of U2 we have t̃ ≤ 1

2 and since for some constant C0 > 0,

t− r − C0 ≤ t̃ ≤ 1
2 , we deduce that on the boundary t+ r = c′, r ≥ c′−C0− 1

2
2 is as large

as we want if we chose c′ large enough).

• {ρI = 2α} with exterior normal dρI which is timelike and past oriented if we choose α
small enough.

Since u has support in
{
ρI ≤ 3

2α
}
, the boundary term corresponding to {ρI = 2α} van-

ishes. The other boundary terms are non negative (using that W is timelike future oriented
if we choose α small enough) and we deduce:

−
∫
Uc,c

′
2

div(Tµ,νW
µ) dvolg̃ ≤ 0

Combining the previous inequality with (C.10), we get:∫
Uc,c

′
2

ρ−2a0
0 ρ−2aI−1

I

(
m(ρI∂ρIu) + m(ρ0∂ρ0u) + ρI /G

ωi,ωjm(Θωiu,Θωju) + m(u)
)

dvolg̃

≤ 1

c3

∫
Uc,c

′
2

ρ−2aI+1
I ρ−2a0

0 m(ρ−1
I ρ−1

0 TsρIρ0u) dvolg̃ (C.11)

Since the constant c3 does not depend on c, c′, we can use Fatou’s lemma and prove that
(C.11) holds with U c,c

′

2 replaced by U2.
Now we introduce Z0 = ρI∂ρI , Z1 = ρ0∂ρ0 , and Z2, Z3, Z4 ∈ Diff1(B(s)) generating the

C∞(S2) module Diff1(Bs). We then have for 1 ≤ i ≤ 4, [Zi, ρ
−1
0 ρ−1

I Tsρ0ρI ] ∈ Diff2
b and

[Z0, ρ
−1
0 ρ−1

I Tsρ0ρI ] = −ρ−1
0 ρ−1

I Tsρ0ρI + Diff2
b . We use this property together with (C.11)
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(applied to Ziu) to prove by induction that for all k ∈ N, there exists αk > 0 such that for
α = αk in the definition of U2 and for all u with support in

{
ρI ≤ 3

2αk
}
:

‖u‖
ρ
aI
I ρ

a0
0 H1,k

I ,b(U2)
≤ 1

c3
‖Tsρ0ρIu‖ρaII ρ

a0+1
0 Hk

b (U2)

Note that a priori αk has to depend on k since at each step we have to take α small enough
so that the term arising from the commutator can be absorbed into the left-hand side.

Let k ∈ N. Let χ ∈ C∞(R, [0, 1]) be equal to 1 on (−∞, αk) and zero on (3
2αk,+∞). We

do not assume anymore that u has support in
{
ρI ≤ 3

2αk
}
, we use the previous argument on

χρ−1
I ρ−1

0 u where u is as defined in proposition 11.2.2 combined with estimate on U1 and K
to control3 the commutator term:∥∥χρ−1

I ρ−1
0 u

∥∥
ρ
aI
I ρ

a0
0 H1,k

I ,b(U2)
≤ 1

c3
‖Tsχu‖ρaII ρ

a0+1
0 Hk

b (U2)

‖Tsχu‖ρaII ρ
a0+1
0 Hk

b (U2)
= ‖[Ts, χ]u‖

ρ
aI
I ρ

a0+1
0 Hk

b (U2)

≤‖u‖
ρ
a0+1
0 ρ

aI
I Hk+1

b (U2)

≤ C
(
‖u‖Hk+1(K) + ‖u‖

ρ
a0+1
0 Hk+1

b (U1)

)
.

Moreover, we have:∥∥(1− χ)ρ−1
I ρ−1

0 u
∥∥
ρ
aI
I ρ

a0
0 H1,k

I ,b(U2)
≤ C

(
‖u‖

ρ
a0+1
0 Hk

b (U1)
+ ‖u‖Hk(K)

)
.

We conclude:

Lemma C.2.1. For all k ∈ N, all aI < 0, a0 > aI + 1, there exists constants Ck > 0 and
αk > 0 such that for u as in proposition 11.2.2 (with r̃ ≥ k):

‖u‖
ρ
aI+1

I ρ
a0
0 H1,k

I ,b(U2)
≤ Ck

(
‖u0‖ρa0

0 H
k+1
b (Σ0)

+ ‖u1‖ρa0
0 H

k
b (Σ0)

)
where we have taken α = αk in the definition of U2.

C.3 Estimate on U3

We define I TU3 andH1,k
I ,b which are the natural extension to the corresponding spaces defined

on U2 but since U3 is not included in U and does not intersect I0, we use vector fields x∂x,
∂t instead of ρI∂ρI and ρ0∂ρ0 . We also introduce the bundle βTU3 which is generated by the
sections x

1
2∂t̃, x∂x and x

1
2 /∂ (where /∂ denotes a smooth vector field on S2). We compute:

G̃ =x−1
(
−2∂t̃x∂x − x/G+ xΓ

(
I TU⊗2

3

))
G̃ =x−1

(
(2M2 − a2 sin2 θ)x∂2

t̃
− 2∂t̃x∂x − x/G+ xS0Γ

(
βTU⊗2

3

))
As before, we obtain the estimate on U3 as the limit for η → 0 of estimates on the relatively
compact sets U3,η := U3 ∩

{
x

1+t̃
≥ η

}
. We define the norm H1(U3) by

‖u‖2H1(U3) =

∫
U3

xm(∂t̃u) + x2m(∂xu) + x/G
i,jm(Θiu,Θju) + m(u)

dx

x
d̃t d2ω

3Note that the estimates of Lemma C.1.2 and Lemma C.0.1 do not impose any restriction on α, and we
can apply them with α = αk.
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the norm H1(U3,η) with the same expression but integration on U3,η. For (Ai)
3
i=1 a set of

vector fields spanning the C∞(S2) module of vector fields on S2, we define:

‖u‖2H1,k(U3) = ‖u‖2Hk
b (U3) +

3∑
i=1

∥∥∥x 1
2 ΘAiu

∥∥∥2

Hk
b (U3)

+
∥∥∥x 1

2∂t̃u
∥∥∥2

Hk
b (U3)

+ ‖x∂xu‖2Hk
b (U3)

Let u ∈ H r̃+1
loc (M2ε) with x−aITsxu ∈ H

r̃
b . At first, we assume that u = 0 on

{
t̃ ≤ 3

8

}
. As

before, for energy estimates on relatively compact sets, we can assume that u is smooth. We
prove that for A large enough:∥∥∥x−aIe−At̃

2 ∂t̃u
∥∥∥2

L2
b(U3,η)

+A
∥∥∥x−aIe−At̃

2 u
∥∥∥2

H1(U3)
≤C

∥∥∥e−At̃
2 x−aITsxu

∥∥∥2

L2
b(U3)

.

Then, we prove by induction on k that for u ∈ Hk+1
(loc)(M+) with x−aITsxu ∈ Hk

b (U3):

∥∥∥x−aIe−At̃
2 m(∂t̃u)

∥∥∥2

Hk
b (U3,η)

+A
∥∥∥x−aIe−At̃

2 u
∥∥∥2

H1,k(UT )
≤C

∥∥∥e−At̃
2 x−aITsxu

∥∥∥2

Hk
b (U3)

.

We define the energy momentum tensor as follows:

T δ,γ(u) = <(m(Θµu,Θνu))G̃µ,δG̃ν,γ − 1

2
G̃δ,γG̃µ,νm(Θµu,Θνu) +

1

2
G̃δ,γx−1m(u)

We define the vector fields:

V := (−∂t̃ + x∂x) ∈ Γ(I TU3)

W :=e−At̃x−2aIV

Then we define the energy one-form:

JWµ := Tν,µW
µ

The divergence is given by:

KW (u) = div(T )µW
µ + Tν,µ∇νWµ

Moreover, we have (see Proposition A.0.4 and lemma 10.2.1):

div(T )µW
µ :=e−At̃x−2aI

(
<(m(ΘV u,�g̃,Θu)) + V µ<(G̃γ,νm(RΘ

γ,µu,Θνu))

−x
−1

2
m(u, u) + <(x−1m(ΘV u, u))

)
Using that RΘ(∂x, .) = RΘ(∂t̃, .) = 0 (from the definition of Θ) and Cauchy-Schwarz estimates,
we get for all ε > 0, there exists Cε > 0 (independent of A and u) such that:

|div(T )µW
µ| ≤e−At̃x−2aI−1

(
εm(∂t̃u) + Cεx

2m(∂xu) + Cεx/G
i,jm(Θiu,Θju) + Cεm(u)

+ Cεm(x�g̃,Θu)
)

where C depends only on the metric. In the sequel, we use this estimate with ε = −aI > 0.
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In order to replace �g̃,Θ by x−1Tsx in the estimate (allowing the constant C to change),
we check that �g̃,Θ − x−1Tsx ∈ S0Diff1

I ,b. We compute (using trivialisation Tm):

J =
sin θ

1 + x2a2 cos2 θ
= sin(θ)(1 +O(x2))

�g̃,Θ − x−1Tsx =J−1ΘµJG̃
µ,νΘν − x−1Tsx

=G̃µ,ν∂µ∂ν + J−1∂µ(JG̃µ,ν)∂ν + is
cos θ

sin2 θ
∂φ − s2cotan2θ − x−1Tsx

=

(
s+ xC∞

([
0,

1

r+ − ε

]
x

× S2

))
+

(
2s(2M − ia cos θ) + xC∞

([
0,

1

r+ − ε

]
x

× S2

))
∂t̃(

2s+ xC∞
([

0,
1

r+ − ε

]
x

× S2

))
x∂x

+

(
2as+ xC∞

([
0,

1

r+ − ε

]
x

× S2

))
x∂φ −

2a2x2 sin (θ) cos (θ)

a2x2 cos2 (θ) + 1
∂θ

Moreover, we have:

Tν,µ∇νWµ =
1

2

(
G̃µ,α∇αW ν + G̃ν,α∇αWµ

)
<m(Θµu,Θνu)

− 1

4
g̃µ,ν

(
G̃µ,α∇αW ν + G̃ν,α∇αWµ

)(
G̃κ,δ<m(Θκu,Θδu)− x−1m(u)

)
Using the defintion of the Levi-Civita connection, we get:

πµ,ν :=
1

2

(
G̃µ,α∇αW ν + G̃α,ν∇αWµ

)
=

1

2

(
G̃µ,α∂αW

ν + G̃α,ν∂αW
µ −Wα∂αG̃

µ,ν
)

We get the following intermediary computation results:

G̃x,α∂αW
x =Ax−2aI+1e−At̃ +Ae−At̃O(x−2aI+2)

G̃t̃,α∂αW
x =− (−2aI + 1)x−2aIe−At̃ +Ae−At̃O(x−2aI+1)

G̃x,α∂αW
t̃ =−Ax−2aIe−At̃ +Ae−At̃O(x−2aI+1)

G̃t̃,α∂αW
t̃ =(−2aI + (2M2 − a2 sin2 θ)Ax)x−2aI−1e−At̃ + e−At̃O(x−2aI +Ax−2aI+1)

All the other terms of this form only contribute to the error part (i.e have a decay as a
component of a section of Ae−At̃x−2aII TU3 ⊗ I TU3). Note that Wα∂αG̃

µ,ν belongs to
e−At̃x−2aIS0Γ(I TU3 ⊗ I TU3) and is therefore an error term. We compute:

g̃µ,νπ
µ,ν =(A− 2aI + 1)x−2aIe−At̃ +Ae−At̃O(x−2aI+1)

We conclude:

Tν,µ∇νWµ =x−2aI−1e−At̃
((
−2aI +Ax

2M2 − a2 sin2 θ

2

)
m(∂t̃u) +Ax2m(∂xu)

+
1

2
(A− 2aI + 1)/G

ωi,ωjxm
(
Θωiu,Θωju

)
+

1

2
(A− 2aI + 1)m(u)

)
+R(̃t, x, ω)

∣∣R(̃t, x, ω)
∣∣ ≤Ax−2aIe−At̃

2M2 − a2 sin2 θ

4
m(∂t̃u) + Cx−2aIe−At̃m(∂t̃u)

+ Cx−2aIAe−At̃
(
xm(∂t̃u) + x2m(∂xu) + /G

ωi,ωjxm
(
Θωiu,Θωju

)
+ m(u)

)
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where C depends on aI and on the bounds of the metric coefficients (and their derivatives)
but (crucially) not on A (nor on T since G̃ is stationary). The first term is obtained when
using the Cauchy-Schwarz inequality to bound (uniformly with respect to A):

Ax−2aIe−At̃O(1) |m(x∂xu, ∂t̃u)| ≤ Ax−2aIe−At̃
2M2 − a2 sin2 θ

4
m(∂t̃u) + CAe−At̃x−2aIx2m(∂xu).

We can find ε > 0 and A0 > 0 (both independent of u) such that there exists a constant
C > 0 such that for all A > A0 the following inequality holds on {x ≤ ε}:

KW ≥
x−2aI−1e−At̃

2

((
−aI +Ax

2M2 − a2 sin2 θ

4

)
m(Θt̃u) +

A

2
x2m(Θxu)

+
1

4
(A− 2aI + 1)/G

ωi,ωjxm
(
Θωiu,Θωju

)
+

1

4
(A− 2aI + 1)m(u)− Cm(Tsxu)

)
(C.12)

and, even restricting ε, we can require that V is uniformly timelike on
{
ε
2 ≤ x ≤ ε

}
This is the part of the estimate near x = 0. We can modify V on {x > ε} so that it

is uniformly timelike (past oriented) on {x > ε}, smooth and stationary. From now on, V
denotes such a modified vector field. Note that on {x > ε}, we have:

|div(T )µW
µ| ≤Cx−2aIe−At̃

(
m(�g̃,Θu)) + m(∂t̃u) + m(∂xu) + /G

ωi,ωjm(Θωiu,Θωju) + m(u)
)

for some constant C (independent of A and u).

Tν,µ∇νWµ =Tν,µV
µ∇ν

(
x−2aIe−At̃

)
+ x−2aIe−At̃Tµ,ν∇νV µ

‖Tµ,ν∇νV µ‖ ≤C
(
m(∂t̃u) + m(∂xu) + /G

ωi,ωjm(Θωiu,Θωju) + m(u)
)

Since V and −2aI∇x
Ax −∇t̃ are uniformly timelike (for A large enough) on {x > ε}, we get as

usual in hyperbolic estimates:

Tν,µV
µ∇ν

(
x−2aIe−At̃

)
≥ CεAe−At

(
m(∂t̃u) + m(∂xu) + /G

ωi,ωjm(Θiu,Θju) + m(u)
)

Therefore, if we choose A large enough, we have the following inequality on {x > ε}:

KW ≥ Ce−At̃
(
(Am(∂t̃u) +Am(∂xu) +A/G

ωi,ωjm(Θωiu,Θωju) +Am(u)− m(Tsxu)
)

with C > 0 independent of u, t̃ and A. Combining this estimate with (C.12), we get that
there exists a constant C > 0 independent of A (as long as it is large enough) and u such that
for all (̃t, x, ω):

KW ≥ Cx−2aI−1e−At̃
(
(1 +Ax)m(∂t̃u) +Ax2m(∂xu) +Ax/G

ωi,ωjm(Θωiu,Θωju) +Am(u)− m(Tsxu)
)

We can then apply the Stokes formula on the domain U3,η for η so small that G̃( d x
1+t̃

) =

2x
(1+t̃)3 + O

(
x2

(1+t̃)2

)
> 0 on the boundary face

{
x

1+t̃
= η, 1

4 ≤ t̃ ≤ T
}
. Therefore, the out-

ward normal is causal future oriented on each boundary face of U3,η except at the face{
t̃ = 1

4 ,
x

1+t̃
≥ η

}
but u = 0 near this face. Therefore, we get (for some constant C > 0

independent of u and T ):∥∥∥x−aIe−At̃
2 ∂t̃u

∥∥∥2

L2
b(U3,η)

+A
∥∥∥x−aIe−At̃

2 u
∥∥∥
H1(U3,η)

≤ C
(∥∥∥e−At̃

2 x−aITsxu
∥∥∥
L2
b(U3)

)
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By the monotone convergence theorem we can take η → 0 and this concludes the first
part of the estimate.

We now prove the higher regularity statement for k > 0 by induction (on U3,η and then we
take the limit η → 0 as before). We assume that u ∈ Hk+1

loc (M2ε) with x−aITsxu ∈ Hk
loc(M2ε)

and that the high regularity estimate holds at order k−1. As before, we also assume that t̃ ≥ 3
8

on supp(u). We introduce the set of commutators C :=
{
Z0 := ∂t̃, Z1 := t̃∂t̃ − x∂x, Z2, Z3, Z4

}
where Z2, Z3, Z4 ∈ Diff1(Bs) are generators of the C∞(S2) module Diff1(Bs) modulo Diff0(Bs).
We consider vi = Ziu which satisfy the induction hypothesis. Therefore, we have:∥∥∥x−aIe−At̃

2 ∂t̃vi

∥∥∥2

Hk−1
b (U3,η)

+A
∥∥∥x−aIe−At̃

2 vi

∥∥∥2

H1,k−1(U3,η)
≤C

(∥∥∥e−At̃
2 x−aITsxvi

∥∥∥2

Hk−1
b (U3,η)

)
.

We also have the estimate of order k − 1 on u instead of vi:∥∥∥x−aIe−At̃
2 ∂t̃u

∥∥∥2

Hk−1
b (U3,η)

+A
∥∥∥x−aIe−At̃

2 u
∥∥∥2

H1,k−1(U3,η)
≤C

(∥∥∥e−At̃
2 x−aITsxu

∥∥∥2

Hk−1
b (U3,η)

)
.

Note that for all 0 ≤ i ≤ 4, [x−1Tsx, Zi] ∈ Diff2
b and therefore we get:∥∥∥x−aIe−At̃

2 ∂t̃vi

∥∥∥2

Hk−1
b (U3,η)

+A
∥∥∥x−aIe−At̃

2 vi

∥∥∥2

H1,k−1(U3,η)
≤C

(∥∥∥e−At̃
2 Zix

−aITsxu
∥∥∥2

Hk−1
b (U3,η)

+
∥∥∥e−At̃2 x−aI+1u

∥∥∥2

Hk+1
b (U3,η)

)
Considering the definition of H1,k

I ,b(U3), we deduce that
∥∥x−aI+1u

∥∥
Hk+1
b (U3,η)

≤
C ‖x−aIu‖

H1,k
I ,b(U3,η)

with C independent of η and u. Summing all the estimates (and the

one on u) and taking A large enough, we find:∥∥∥x−aIe−At̃
2 ∂t̃u

∥∥∥2

Hk
b (U3,η)

+A
∥∥∥x−aIe−At̃

2 u
∥∥∥2

H1,k(U3,η)
≤2C

(∥∥∥e−At̃
2 x−aITsxu

∥∥∥2

Hk
b (U3,η)

)
If we assume in addition that x−aITsxu ∈ Hk

b (U3), the right-hand side is independent of η
and we can take the limit η → 0.

Using the fact that 1
2 ≤ t̃ ≤ T on U3, we get:

‖u‖2
xaIH1,k

I ,b(U3)
≤ CeAT ‖Tsxu‖2xaIHk

b (U3)

where constants A and C do not depend on T (but could depend on k).
For u as defined in proposition 11.2.2, we apply the previous bound to χ(̃t)x−1u where χ

is a cutoff equal to 1 on
{
t̃ ≥ 1

2

}
and equal to zero on

{
t̃ ≤ 3

8

}
. We can use estimates on K

and U2 (Lemma C.2.1 and Lemma C.0.1) to control4 the term

‖[Ts, χ]u‖xaIHk
b (U3) ≤C

(
‖u‖

ρ
a0
0 ρa+1

I H1,k
I ,b(U2)

+ ‖u‖Hk+1(K)

)

Therefore we get:

Lemma C.3.1. For all k ∈ N, all aI < 0 and a0 > aI + 1, there exists a constant C > 0 such
that for all u as in proposition 11.2.2 with r̃ ≥ k and all T > 1

2 :

‖u‖2
xaI+1H1,k

I ,b(U3)
≤ CeCT

(
‖u0‖2

ρ
a0
0 H

k+1
b (Σ0)

+ ‖u1‖2
ρ
a0
0 H

k
b (Σ0)

)
4We use that Ts ∈ ρ−1

I S0Diff2
I ,b(U2) and that supp(χ′) is separated from I0.
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C.4 Proof of Proposition 11.2.2

Lemma C.4.1. Let r̃ ∈ N. There exists C > 0 such that for all v ∈ H1,r̃
I ,b and for all T > 0,

v ∈ C0([−1
2 , T ]t, H

r̃
b) and:

sup
t∈[− 1

2
,T ]

‖v(t)‖
H
r̃
b
≤ C ‖v‖

H1,r̃
I ,b({−1≤t≤T+1})

Proof. First, we define two open sets of the form (−1,+∞)t ×
(

0, 1
r+− 3ε

2

)
x
× Ui where Ui is

diffeomorphic to a disc for i ∈ {1, 2} which cover (−1,+∞)t×
(

0, 1
r+−ε

)
x
×S2. Using a subor-

dinated partition of unity, local trivializations associated to local coordinates (t, x, y1, y2)) and
after the change of variable x = e−y0 , it is enough to prove the statement: if v ∈ H r̃(Rt×R3

y)

and ∂tv ∈ H r̃(Rt × R3
y) (we call Y the space of such functions), then v ∈ C0(Rt, H

r̃(R3
y)) and:

sup
t∈R
‖v(t)‖H r̃(R3

y) ≤ C
(
‖v‖H r̃(Rt×R3

y) + ‖∂tv‖H r̃(Rt×R3
y)

)
for a constant C > 0 independent of v. We first assume that v is smooth and compactly
supported. We denote by v̂ the spatial Fourier transformed of v and by F(v) the total Fourier
transformed of v. We have:

‖v(0)‖2H r̃(R3
y) =

∫
〈ξ〉2r̃ |v̂(0, ξ)|2 dξ

v̂(0, ξ) =
1

2π

∫ ∫
e−itσv̂(t, ξ) dt dσ.

Thus,

|v̂(0, ξ)|2 ≤ 1

4π2

∫
(1 + σ2)−1 dσ

∫
(1 + σ2)

∣∣∣∣∫ e−itσv̂(t, ξ) dt

∣∣∣∣2 dσ

≤ 1

4π

(∫
|F(v)(σ, ξ)|2 dσ +

∫
|F(∂tv)(σ, ξ)|2 dσ

)
‖v(0)‖2H r̃(R3

y) ≤
1

4π

(
‖v‖2H r̃(Rt×R3

y) + ‖∂tv‖2H r̃(Rt×R3
y)

)
.

The previous computation proves that the trace on {t = 0} extends continuously to a linear
map from Y to H r̃(R3

y). We call this map γ0. We define γtv = γ0(τtv) where τθv is the
pullback of v by the diffeomorphism (t, y) 7→ (t + θ, y) (γt is the continuous extension of the
trace on {t} × R3

y). Note that since t 7→ τtv is continuous and bounded from R to Y, we get
that t 7→ γtv is continuous and bounded from R to H r̃(R3

y).

Proof of Proposition 11.2.2. In order to have weights defined on Mε, we introduce

ρ̃I := χ0(̃t)ρI + (1− χ0(̃t))x

ρ̃0 := χ1(ρ0)ρ0 + (1− χ1(ρ0))

where χ0(̃t) = 1 when t̃ ≤ −2, χ0(̃t) = 0 when t̃ ≥ −1, χ1(ρ0) = 1 when ρ0 ≤ 1 and χ(ρ0) = 0

on Mε \ {ρ0 ≤ 2}. We define U4 :=
{
t0 ≥ 0, t ≤ T, x ≤ 1

r+−ε

}
. Note that using:

t̃− t = F (r) + L(r)
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we see that t̃ − t is bounded by some constant C0 > 0. Therefore we have U4 ⊂ Ũ4 where
Ũ4 :=

{
t0 ≥ 0, t̃ ≤ T + C0, x ≤ 1

r+−ε

}
. Combining Lemmas C.1.2, C.2.1 and C.3.1, we get

that there exists C > 0 independent of T such that for all u as defined in proposition 11.2.2:

‖u‖2
ρ̃
aI+1

I ρ̃
a0
0 H1,k

I ,b(U4)
≤ CeCT

(
‖u0‖2

ρ
a0
0 H

k+1
b (Σ0)

+ ‖u1‖2
ρ
a0
0 H

k
b (Σ0)

)

By Lemma C.4.1, we deduce that for all T > 0, x−aI−1u ∈ C0
(

[0, T ]t, H
r̃
b

)
and there exists

C > 0 such that:

sup
t∈[− 1

2
,T ]

∥∥x−aI−1u(t)
∥∥
H
r̃
b
≤ CeCT

(
‖u0‖2

ρ
a0
0 H

k+1
b (Σ0)

+ ‖u1‖2
ρ
a0
0 H

k
b (Σ0)

)

If r̃ ≥ k for k ∈ N \ {0} , we can apply Lemma C.4.1 to ∂kt u which is (locally with respect to
t) in H1,r̃−k

I ,b . We deduce u ∈ Ck(Rt, H
r̃−k
b )

C.5 Proof of Proposition 11.2.4

For r̃ ∈ N, a0, aI ∈ R, we define the space Hr̃,0,0b as the space of sections of B(s, s) defined
on U with support in {ρI ≤ 1} and with index of b-regularity (with respect to the boundary
{ρI = 0}∪{ρ0 = 0}) equal to r̃. We then define Hr̃,aI ,a0

b := ρa0
0 ρ

aI
I H

r̃,0,0
b and Hr̃,aI ,a0

b the space
of restriction to {ρ0 ≤ 4} of elements of Hr̃,aI ,a0

b . We take ρ0 ≤ 4 in the definition (instead
for example of ρ0 ≤ 1) since at some point, we need to have a non empty intersection with
t ≥ −1

2 (which is the set where we have continuity of the solution in proposition 11.2.2).

Proposition C.5.1 (Elementary transport estimate). Let r̃ ∈ N and β > α. Let χ : RρI → R
be a smooth cutoff equal to 1 near 0 and vanishing for ρI ≥ 1. For all ν ∈ (α, β] and all
N ∈ N, there exists Cν,N > 0 such that for all u ∈ Hr̃,−N,βb :

‖χu‖Hr̃,α,βb
≤ Cν,N

(
‖u‖Hr̃,−N,βb

+ ‖(ρI∂ρI − ρ0∂ρ0)u‖Hr̃,ν,βb

)
in the strong sense that if the right-hand side is finite, χu ∈ Hr̃,α,βb and the inequality holds.

Proof. Let f ∈ D :=
{
φ|(0,1)ρI

×(0,4)ρ0×S2
, φ ∈ Γc((0, 1)ρI × (0,+∞)ρ0 × Bs)

}
. We consider the

following map:

S :

{
D → Hr̃,α,βb

f 7→ −
∫ − ln(ρI)

0 f(e−s, ρIρ0e
s) ds

Note that we formally have (ρI∂ρI − ρ0∂ρ0)S(f) = f . We have that u : (v, ρ0) 7→
−
∫ − ln(v)

0 f(e−s, vρ0e
s) ds is well defined as a smooth section of (0, 1)ρI × (0, 4)ρ0 × Bs van-

ishing near v = 1. We have to prove that it belongs to Hr̃,α,βb . By induction, we prove that
for k, j ∈ N with k + j ≤ r̃, there exists coefficients aµ,ν , bµ (independent of f) such that

(ρ0∂ρ0)k(ρI∂ρI )
ju =

∑
µ+ν≤r̃

aµ,ν(ρI∂ρI )
µ(ρ0∂ρ0)νf +

r̃∑
µ=0

bµ

∫ − ln(ρI)

0
((x2∂x2)µf)(e−s, ρIρ0e

s) ds
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(where we have called x2 the second variable of f). The H0,α,β
b -norm of the first sum in the

right hand side is bounded by C ‖f‖Hr̃,α,βb
. Moreover we have:

I :=

∫ 1

0

∫ 4

0
ρ−2α
I ρ−2β

0

∣∣∣∣∣
∫ − ln(ρI)

0
((x2∂x2)µf)(e−s, ρIρ0e

s) ds

∣∣∣∣∣
2

dρ0

ρ0

dρI
ρI

≤
∫ 1

0

∫ 4

0
ρ−2α
I ρ−2β

0 |ln(ρI)|
∫ − ln(ρI)

0

∣∣((x2∂x2)µf)(e−s, ρIρ0e
s)
∣∣2 ds

dρ0

ρ0

dρI
ρI

By the change of variable (w, z, ρI) = (e−s, ρIρ0e
s, ρI), we find:

I ≤
∫ 1

0

∫ 1

ρI

∫ 4
ρI
w

0
|ln(ρI)| ρ2(β−α)

I z−2βw−2β |((x2∂x2)µf)(w, z)|2 dz

z

dw

w

dρI
ρI

≤
∫

(0,1)
|ln(ρI)| ρ2η

I

∫
(w,z)∈(0,1)×(0,4)

z−2βw−2α−2η |((x2∂x2)µf)(w, z)|2 dz

z

dw

w

dρI
ρI

which holds for all η ∈ (0, β − α]. We deduce that for all ν ∈ (α, β] there exists Cν > 0 such
that:

I ≤ Cν ‖f‖Hr̃,ν,βb

Finally, we get ‖S(f)‖Hr̃,α,βb
≤ C ‖f‖Hr̃,ν,βb

. By density of D in Hr̃,ν,βb , we get that

S extends uniquely as a continuous linear map from Hr̃,ν,βb to Hr̃,α,βb . Moreover, since
(ρI∂ρI − ρ0∂ρ0)S(f) = f for f ∈ D, the relation stays true in the sense of distributions
for f ∈ Hr̃,α,βb . Let u ∈ ρ−NI ρβ0H

r̃
b,loc(U) such that (ρI∂ρI − ρ0∂ρ0)u ∈ ρνIρ

β
0H

r̃
b,loc(U). For

χ as in the statement, we have (ρI∂ρI − ρ0∂ρ0)χ(ρI)u = χ(ρI)(ρI∂ρI − ρ0∂ρ0)u + ρIχ
′(ρI)u

and using that (ρI∂ρI − ρ0∂ρ0) has no kernel in Hr̃,−∞,−∞b (since all the integral curves of
ρI∂ρI − ρ0∂ρ0 starting in {ρI ≤ 1, ρ0 ≤ 4} intersect transversally the boundary ρI = 1), we
deduce S(χ(ρI)(ρI∂ρI − ρ0∂ρ0)u+ ρIχ

′(ρI)u) = χ(ρI)u on {ρI ≤ 1, ρ0 ≤ 4}. In particular:

‖χ(ρI)u‖Hr̃,α,βb
≤C

(
‖χ(ρI)(ρI∂ρI − ρ0∂ρ0)u‖Hr̃,ν,βb

+
∥∥ρIχ′(ρI)u∥∥Hr̃,ν,βb

)
Looking at the supports, it implies:

‖χ(ρI)u‖Hr̃,α,βb
≤C

(
‖(ρI∂ρI − ρ0∂ρ0)u‖Hr̃,ν,βb

+ ‖u‖Hr̃,−∞,βb

)

Proof of Proposition 11.2.4. We first use Proposition 11.2.2 with a0−2 < aI < 0 (by hypoth-
esis, a0 = 1 + α < 2). We exploit the fact that Ts − 2

ρI
(ρI∂ρI − ρ0∂ρ0)(ρI∂ρI − 1) ∈ Diff2

b .
Since Tsu = 0, we get:

(ρI∂ρI − ρ0∂ρ0)(ρI∂ρI − 1)u ∈ ρaI+2
I ρa0

0 H
r̃−2
b (U)

We apply Lemma C.5.1 and get w := (ρI∂ρI − 1)χ(ρI)u ∈ H
r̃−2,a0−,a0

b where χ ∈
C∞([0,+∞), [0, 1]) is a smooth cutoff equal to 1 near zero and with support in [0, 1). We can
use the Mellin transform with respect to ρI which sends Hr̃−2,a0−,a0

b to a space of holomorphic
functions from {=(λ) > −a0+} to ρa0

0 H
r̃−2
b ([0, 4]ρ0×Bs) (where in this last space the sections

are extendible at ρ0 = 4 and have b-regularity r̃ − 2 at ρ0 = 0). Therefore:

(iλ− 1)M(χu)(λ) = g(λ)

226



where g is holomorphic on {=(λ) > −1− α+}.Therefore, M(χu)(λ) is meromorphic on the
same set with only one possible simple pole at λ = −i. Moreover, by Plancherel, we have the
following bound for ε > 0:

r̃−2∑
j=0

∫
R+i(ε−a0)

<(λ)2j ‖g(λ)‖2
ρ
a0
0 H

r̃−2−j
b ([0,4]ρ0×Bs)

dλ ≤

r̃−2∑
j=0

∫ 1

0

∥∥ρ−a0+ε
I (ρI∂ρI )

jw(ρI)
∥∥2

ρ
a0
0 H

r̃−2−j
b ([0,4]ρ0×Bs)

dρI
ρI

≤C ‖w‖Hr̃−2,a0−ε,a0
b

.

We can also get the following bound by the Cauchy Schwarz inequality (for λ ∈ R+ i(ε−a0)):

‖g(λ)‖2
ρ
a0
0 H

r̃−2
b ([0,4]ρ0×Bs)

≤
∫ 1

0
ρεI

∥∥∥ρ−a0+ ε
2

I w(ρI)
∥∥∥2

ρ
a0
0 H

r̃−2
b ([0,4]ρ0×Bs)

dρI
ρI

≤C
ε
‖w‖2

H
r̃−2,a0−

ε
2 ,a0

b

We deduce that we can use a contour deformation argument to get (the limits are understood
in the sense of distributions):

χu = lim
M→+∞

1

2π

∫
[−M,M ]+i(ε−aI)

ρiλI
g(λ)

iλ− 1
dλ

= lim
M→+∞

1

2π

∫
[−M,M ]+i(ε−1−α)

ρiλI
g(λ)

iλ− 1
dλ+ g(−i)ρI

Therefore, χu = χ(ρI)g(−i)ρI +Hr̃−2,1+α−ε,a0

b . We now investigate the dependency of g(−i)
with respect to ρ0. Using Lemma 11.2.2, for k ∈ N with k ≤ r̃−2 and the fact5 that ρ0 = −1

t ,
we deduce that ρ0 7→ w(ρ0) belongs to Ck([2, 4]ρ0 , H

r̃−2−k,1+α−
b ).

g(−i)(ρ0) =

∫ +∞

0
ρ−1
I w(ρ0, ρI)

dρI
ρI

we deduce g(−i) ∈ Ck
(
[2, 4]ρ0 , H

r̃−2−k(Bs)
)

and therefore χu − χ(ρI)g(−i)ρI ∈
Ck
(

[2, 4]ρ0 , H
r̃−2−k,1+α−
b

)
. We define χ1 ∈ C∞(Rt, [0, 1]) equal to 1 near +∞ and such that

supp(χ′1) ⊂ [t0, t1] ⊂ (−1
2 ,−

1
4). Then if we define v := χ1(t)u we get v ∈ Ck(Rt, H

r̃−2−k,1−
b ).

Moreover,

Tsv =[Ts, χ1]u

=
(
2at,tχ

′
1∂t + at,ϕχ

′
1∂ϕ + at,rχ

′
1∂r + atχ

′
1 + at,tχ

′′
1

)
u

Since 2at,tχ
′
1∂t + at,ϕχ

′
1∂ϕ + at,rχ

′
1∂r + atχ

′
1 + at,tχ

′′
1 = 2x−1χ′1 (−x∂x + 1) + Diff1

b , and
2x−1χ′1 (−x∂x + 1) g(−i)ρI = 0 we get Tsv ∈ Ck−1(Rt, H

r̃−3−k,α−
b ) which conclude the proof

of proposition 11.2.4.

5The level sets of t are the same than the one of ρ0 and on such a level set ρI is proportional to x.
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A(r), 89
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F (r), 211
G, 90
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Hm,l
b,c , 100
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b,loc, 100
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b , 203

H r̃,l
b , 95

H r̃
b (E), 95

Hp, 101
H(m,s)(R
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H r̃
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I0, 105
K (Carter constant), 116
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K+, 178
Kz0 , 122
L(r), 89
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L2
t (E), 195

L+, 110
L−, 110
M(τ), 147
Mf(λ), 96
Neff, 135
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Neff(P̂ (σ)), 172
N±eff, 172
Qk(ζ), 206
R(σ), 155
RΘ
µ,ν , 194

S∗X, 97
S0(Mε), 217

S0DiffkI , 217
Sm(E,G), 97
Smh (E,G), 97
T (r), 89
T δ,γ(u), 193
Ts, 93
U1, 212
U c1 , 214
U2, 212
U3, 212
UI , 114
WF , 100
W k,∞
b , 168

X, 94
X (variable), 172
Yj , 147
Zk,r̃α,β,γ , 178
∆[s], 146
∆r, 89
∆b, 98
Γ(E), 90
Γk(E), 90
Γ◦(E), 90
Γ±, 122
Λ+, 110
Λ−, 110
Ωs(E), 97
ΩX , 90
Πj , 147
Ψm,l
b , 99

Ψm,l
b,c , 99

Ψm,l
b,h , 99

Ψm,l
sc,h, 99

Ψm,l
sc , 99

Ψb, 98
Σt

0, 90
Σ0, 103
Σ±, 116
Θ, 91, 194

α, 122
β|s|,m, 170
dvolt, 194
dvol, 94
divg,Θ, 193
Ḣ r̃,µ,ν
b , 186

Ḣk,l
b , 96

Γ̇(E), 90
Ḋ′(E), 91
ηsc, 121
K̂, 122
T̂s, 94
T̂s,h(z), 94
m, 94
F(a, b, c, z), 148
M, 208
E(t)[u],E(t), 194
A([0, 1)σ, σ

αB), 172
Ap,m(Rσ \ {0}), 179
B(s, s), 90
Bs, 90
D′(E), 91
D′◦(E), 90
E r̃, 105
Ft, 91
G−sh , 200
Hsh, 200
Mε, 89
Rin, 121
Rout, 121
W r̃,l
σ , 142
X r̃,lσ , 142
Y r̃,l≥j , 147
Y r̃,lj , 147
p(t, x, ω), 191
H, 89
M, 197
cm,c

(2)
m ,c(3)

m ,c(4)
m , 170

s, 100
sh, 100

229



t, 89
I +, 90
H
k,l
b , 96

H
r̃,l
(b), 96

H
r̃
(X,Bs), 103

H
r̃,µ,ν
b , 186

H
r̃,l
b ([0, 1]τ ), 187

H(m,r), 199
H(m,s)(R

n
+),Hh,(m,s)(R

n
+),

199
T
∗
X, 97

X, 94
X

2
b , 98

Γ(bT ∗U⊗k1 ⊗ bTU⊗k
′

1 ), 214
Mε, 90
Mε, 178
φ∗, 89
ρ2, 89
ρ0, 105
ρI , 105
gradg,Θ, 193
Mε, 105

Diffkb , 95
Diffksc, 95
Ñ(T̂s(0)), 147
P̃ (ζ), 203
P̃i(ζ), 206
H̃(a, b, c, z), 151
ũ(σ, x), 177
ũ±, 173
G̃, 90
H̃s, 128
Q̃k, 207
η̃, 109
ρ̃, 109
ξ̃, 109
ζ̃, 109
g̃, 90
t̃, 106, 211
ul,uh, 184
ϕ, 90
ξr, 121
ζsc, 121
b, 174
cf , 170
g, 89

h, 113
h(r), 103, 211
ph, 113
φ, 89
r, 89
r−, 89
rmax, 120
rmin, 117
t, 89
t∗, 89
t0, 103, 211
θ, 89
u0
I+

(v), 180
u(0)(cf ), 174
uI+ , 184
uK+ , 184
x, 90
xN , yN , 110
xS , yS , 110
z0, 113
bTN , 95
bT
∗
X, 98

scTN , 95
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Appendix A

Second order hyperbolic operator on
Rn+1

We begin by two lemmas in Rn+1. Let g be a Lorentzian metric on Rn+1 with constant
coefficients outside a compact set and assume G( dt, dt) > 0. We consider a vectorial
operator P = Gµ,ν∂µ∂ν + R0(t)∂t + R1(t) with R0 a smooth bounded family in Ψ0(Rn; Cp)
and R1(t) a smooth bounded family in Ψ1(Rn; Cp). We denote by 〈., .〉 the canonical scalar
product on Cp. We say that a function f is bounded for the C∞-norm if it is smooth, bounded
on Rn+1 and for every multi-index α ∈ Nn+1, the derivative ∂αf is bounded on Rn+1. For
example, each coefficient of the metric g is bounded for the C∞-norm.

Lemma A.0.1 (Energy estimate on Rn+1). Let s ∈ R and T > 0. There exists Cs,T > 0 such
that for all u ∈ C2([0, T ],S(Rn)):

sup
0≤t≤T

‖u(t)‖Hs+1(Rn) + ‖∂tu(t)‖Hs(Rn) ≤Cs,T
(∫ T

0
‖Pu‖Hs(Rn) dt+ ‖u(0)‖Hs+1(Rn)

+ ‖∂tu(0)‖Hs(Rn)

)
Proof. Even multiplying P by 1

G( dt, dt) (which is bounded in the C∞ norm), we can assume
that G( dt, dt) = 1.

We introduce the energy tensor

T δ,γ(u) = <(〈∂µu, ∂νu〉)gµ,δgν,γ −
1

2
gδ,γgµ,ν 〈∂µu, ∂νu〉+

1

2
gδ,γ 〈u, u〉

Note that

(divT )δ = gµ,δ<(〈∂µu,�gu〉) + gδ,γ<(〈∂γu, u〉)

We define the energy one form (here given as a vector field but we have the identification
between 1-forms and vector field induced by g):

J :=− T (u)(e−At dt, .)

and its divergence:

K :=divJ

=− e−At(divT )0 − Tµ,ν∇µ(e−At dt)ν

=− e−At(divT )0 +AT 0,0e−At + e−AtTµ,νΓ0
µ,ν
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Were Γαµ,0 are Christoffel symbols (bounded in the C∞ norm). There exists a constant C > 0
independent of u and A such that

∣∣(divT )0
∣∣ ≤C

‖�gu‖2 +
n∑
µ=0

‖∂µu‖2 + ‖u‖2


∣∣Tµ,νΓαµ,0gα,ν
∣∣ ≤C

 n∑
µ=0

‖∂µu‖2

+ ‖u‖2
)

Since G is Lorentzian and G0,0 = 1, we have that H := (Gµ,0Gν,0− 1
2G

µ,ν) is positive definite
Indeed, if (eµ) is an orthonormal basis for G with e0 = ∂t, H(eµ, eν) = δ0

µδ
0
ν + 1

2δ
ν
µ− δ0

0 = 1
2δ
ν
µ.

Since G is constant outside a compact set, this definiteness is uniform with respect to x and
we have a constant c > 0 (independent of A and u) such that:

T 0,0 ≥ c

 n∑
µ=0

‖∂µu(t)‖2L2(Rn) + ‖u(t)‖2L2(Rn)


We deduce that for A large enough:

K ≥ e−At
Ac

2

 n∑
µ=0

‖∂µu(t)‖2L2(Rn) + ‖u(t)‖2
− C ‖�gu‖2L2(Rn)


Also note (for the boundary terms when we will use the Stockes formula) that:

J(− dt) = e−AtT 0,0 ≥ ce−At
 n∑
µ=0

‖∂µu(t)‖2L2(Rn) + ‖u(t)‖2L2(Rn)


The Stockes theorem on UT = {0 ≤ t ≤ T} (initially, we integrate with respect to the volume
form induced by the metric g but in the estimate we can come back to the canonical volume
form even changing the constants) gives:

ce−AT ‖u(T )‖2Hs+1(Rn) + ce−AT ‖u(T )‖Hs(Rn)

+

∫ T

0
e−AT

Ac

2

(
‖u‖2H1(Rn) + ‖∂tu‖2L2(Rn)

)
dt ≤ C

∫ T

0
e−At ‖�gu‖2L2(Rn) dt+ C ‖u(0)‖2H1(Rn)

+ C ‖∂tu(0)‖2L2(Rn)

We now apply this inequality to v := Esu where Es = (1+∆)
s
2 where ∆ is the usual laplacian

on Rn. Note that:

‖�gv‖2L2(Rn) ≤ 2 ‖[�g, Es]u‖2L2(Rn) + 2 ‖EsPu‖2L2(Rn) + 2 ‖Es(�g − P )u‖2L2(Rn)

Note that [�g, Es] ∈ Ψs(Rn)∂t + Ψs+1(Rn) and Es(�g − P ) ∈ Ψs(Rn)∂t + Ψs+1(Rn).
Since ‖Esu‖H1(Rn) = ‖u‖Hs+1(Rn) and ‖Es∂tu‖L2(Rn) = ‖∂tu‖Hs(Rn), we can absorb
‖[�g, Es]u‖L2(Rn) and ‖Es(�g − P )u‖L2(Rn) into the left-hand side if we take A large enough.
Therefore, we have:

ce−AT ‖u(T )‖2Hs+1(Rn) + ce−AT ‖u(T )‖2Hs(Rn)

+

∫ T

0
e−AT

Ac

2

(
‖u‖2Hs+1(Rn) + ‖∂tu‖2Hs(Rn)

)
dt ≤ C

∫ T

0
e−At ‖Pu‖2Hs(Rn) dt

+ C ‖u(0)‖2Hs+1(Rn) + C ‖∂tu(0)‖2Hs(Rn)
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In order to prove uniqueness, we will need a weaker version of the previous estimate (an
estimate valid for all u ∈ C2([0, T ], Hs(Rn)) for all s ∈ R). Even a non optimal bound is
enough for uniqueness.

Lemma A.0.2. If ψ ∈ S with ψ(0) = 1 and ψε(x) := ψ(εx). Then the multiplication by ψε
is bounded in Hs(Rn) independently of ε and (1− ψε)u −−→

ε→0
0 in Hs(Rn).

Proof. Let u ∈ Hs(Rn). The Fourier transform of ψεu is φε∗û where φε := ε−nψ̂ε−1 is bounded
in 〈ξ〉s L1(Rn) for all s ∈ R independently of 0 < ε < 1. As a consequence∥∥∥〈ξ〉 s2 φε ∗ û∥∥∥2

L2
≤
∫ (∫

〈ξ〉
s
2 |φε(ζ)û(ξ − ζ)| dζ

)2

dξ

≤
∫ (∫

〈ζ〉|
s
2
|
∣∣∣φε(ζ) 〈ξ − ζ〉

s
2 û(ξ − ζ)

∣∣∣ dζ

)2

dξ

≤
∥∥∥〈ζ〉 |s|2 φε∥∥∥

L1

∫ ∫
〈ξ − ζ〉s |û(ξ − ζ)|2

∣∣∣〈ζ〉 s2 φε(ζ)
∣∣∣ dζ dξ (By Hölder)

≤
∥∥∥〈ζ〉 |s|2 φε∥∥∥2

L1
‖u‖Hs

Moreover, we have (1−ψε)u −−→
ε→0

0 in Hs(Rn). In the Fourier side, this correspond to proving

that that lim
ε→0
〈ξ〉

s
2
∫

(û(ξ − ζ) − û(ξ))φε(ζ) dζ = 0 in L2. We begin by proving it in the case

û ∈ C0
c (Rn) which is dense in 〈ξ〉−

s
2 L2. In this case, we first show the pointwise convergence

to zero of 〈ξ〉
s
2
∫

(û(ξ − ζ) − û(ξ))φε(ζ) dζ. For η > 0, we choose 0 < C < 1 such that
〈ξ〉

s
2 |û(ξ − ζ)− û| ≤ η for ζ ∈ B(ξ, C). Therefore,∣∣∣∣〈ξ〉 s2 ∫ (û(ξ − ζ)− û(ξ))φε(ζ) dζ

∣∣∣∣ ≤η ∥∥∥ψ̂∥∥∥L1
+

∣∣∣∣∫
ζ>C
〈ξ − ζ〉

s
2 (û(ξ − ζ)− û(ξ)) 〈ζ〉

|s|
2 φε(ζ) dζ

∣∣∣∣
≤η
∥∥∥ψ̂∥∥∥

L1
+ 2

∥∥∥〈ζ〉 s2 û∥∥∥
L2

(∫
|ζ|>C

〈ζ〉|s| |φε(ζ)|2 dζ

) 1
2

Since for all N ∈ N we have φε(ζ) ≤ CN ε−n ε2N

(ε2+|ζ|2)N
We conclude that on ζ > C, there exists

some constant D > 0 independent of ε such that:

|φε(ζ)| ≤ Dε 〈ζ〉−
n+|s|+1

2

and as a consequence ∫
|ζ|>C

〈ζ〉|s| |φε(ζ)|2 dζ ≤ D′ε2

with D′ < 0. We can choose ε small enough so that∣∣∣∣〈ξ〉 s2 ∫ (û(ξ − ζ)− û(ξ))φε(ζ) dζ

∣∣∣∣ ≤ 2η
∥∥∥ψ̂∥∥∥

L1

Now we use Lebesgue theorem to prove the convergence in L2. We prove the domination
condition as follows: If ξ is such that d(ξ, supp(û)) ≥ 1:∣∣∣∣∫ (û(ξ − ζ)− û(ξ))φε(ζ) dζ

∣∣∣∣ ≤ ‖u‖∞ ∫
‖ζ‖≥d(ξ,supp(û))

|φε(ζ)| dζ
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For |ζ| ≥ d(ξ, supp(û)) ≥ 1 and N ∈ N,〈
ζ

ε

〉−N
≤εNd(ξ, supp(û))−N〈

ζ

ε

〉−N
≤(2ε)N 〈ζ〉−N

Since for all M ∈ N, |φε(ζ)| . ε−n
〈
ζ
ε

〉−M
, we conclude that there exists C independent of

ε < 1 such that: ∣∣∣∣∫ (û(ξ − ζ)− û(ξ))φε(ζ) dζ

∣∣∣∣ ≤ C ‖û‖∞ d(ξ, supp(û))−
n+1+s

2

for ξ such that d(ξ, supp(û)) ≤ 1, we have:∣∣∣∣∫ (û(ξ − ζ)− û(ξ))φε(ζ) dζ

∣∣∣∣ ≤ 2 ‖û‖∞
∥∥∥ψ̂∥∥∥1

L

In particular, combining these two bounds we get
∣∣∣〈ξ〉 s2 ∫ (û(ξ − ζ)− û(ξ))φε(ζ) dζ

∣∣∣ is uni-
formly bounded by a function in L2 independent of ε. We deduce that

lim
ε→0
〈ξ〉

s
2

∫
(û(ξ − ζ)− û(ξ))φε(ζ) dζ = 0

when û ∈ C0
c (Rn). To get the result for û ∈ 〈ξ〉−

s
2 L2, we take a sequence of functions

ûn ∈ C0
c converging to û in 〈ξ〉−

s
2 L2. In particular, for any η > 0, there exists n ∈ N such

that ‖u− un‖Hs ≤ η and

‖(1− ψε)u‖Hs ≤ ‖(1− ψε)(u− un)‖Hs + ‖(1− ψε)un‖

By the boundedeness (independently of ε) shown earlier the first terms is bounded by Cη and
for ε small enough, the second term is bounded by η. Therefore,

lim
ε→0
‖(1− ψε)u‖Hs = 0.

Lemma A.0.3. Let ψ ∈ S(Rn) with
∫
ψ dx = 1. Let s ∈ R. The map Ψε : u 7→ ε−nψε−1 ∗ u

is bounded from Hs to Hs uniformly with respect to ε. Moreover, lim
ε→0

Ψε(u) = u in Hs.

Proof. The fourier transform of ε−nψε−1 ∗ u is ψ̂εû. Therefore, the boundedness statement
follows from the estimate: ∥∥∥〈ξ〉 s2 ψ̂εû∥∥∥2

L
≤
∥∥∥ψ̂∥∥∥

∞
‖u‖Hs .

Moreover, since
∫
ψ = 1, we have ψ̂(0) = 1 and therefore, ψ̂εû converge pointwise to û. We

have the estimate:

〈ξ〉
s
2 ψ̂εû ≤

∥∥∥ψ̂∥∥∥
∞

(
û 〈ξ〉

s
2

)
with û 〈ξ〉

s
2 ∈ L2 independent of ε. Therefore, by Lebesgue theorem we get lim

ε→0
〈ξ〉

s
2 ψ̂εû =

〈ξ〉
s
2 û in L2, that is to say lim

ε→0
Ψε(u) = u in Hs.
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Lemma A.0.4 (weak energy estimate). There exists CT,s > 0 such that for all u ∈
C2([0, T ], Hs(Rn)):

sup
[0,T ]
‖u‖Hs−1(Rn) + ‖∂tu‖Hs−2(Rn) ≤CT,s

(∫ T

0
‖Pu‖Hs−2(Rn) + ‖u(0)‖Hs−1(Rn)

+ ‖∂tu(0)‖Hs−2(Rn)

)
Proof. Let u ∈ C2([0, T ], Hs(Rn)). Let ψ ∈ S(Rn) such that ψ(0) = 1 and

∫
Rn ψ(x) dx = 1.

We define ψε(x) = ψ(εx). We define

Jεu := ψε(ε
−nψε−1) ∗ u

Note that for fixed ε > 0, Jε is bounded from Hs(Rn) to S for any s ∈ R. Indeed, for
α, β ∈ Nn:

xα∂βxJεu(x) =
∑

γ+µ=β

(
β
γ

)
xαε|γ|(∂γxψ)(εx)(ε−n−|µ|(∂µxψ)ε−1 ∗ u(x))

We can estimate ∥∥ε−n(∂µxψ)ε−1 ∗ u
∥∥
L∞
≤
∥∥∥(εξ)µψ̂(εξ)û

∥∥∥1

L
(Rn)

≤
∥∥∥〈ξ〉−s (εξ)µψ̂(εξ)

∥∥∥
L2
‖u‖Hs(Rn)

In particular Jεu ∈ C2([0, T ],S). Moreover, we have:

‖Jεu− u‖Hs ≤ ‖(ψε − 1)u‖Hs +
∥∥ψε(u− ε−nψε−1 ∗ u)

∥∥s
H

using lemma A.0.2 and A.0.3, we get for all t ∈ [0, T ] lim
ε→0

Jεu(t) = u(t) in Hs. We also

have for all t ∈ [0, T ] in Hs: lim
ε→0

∂tJεu = ∂tu, lim
ε→0

∂2
t Jεu = ∂2

t u. We deduce that for all

t ∈ [0, T ], lim
ε→0

PJεu(t) = Pu(t) in Hs−2. Moreover, in view of the definition of P , we have

that for all v ∈ C2([0, T ], Hs), there exists a constant C > 0 such that for all t ∈ [0, T ],
‖Pv(t)‖Hs−2(Rn) ≤ C

(
‖v(t)‖Hs(Rn) + ‖∂tv(t)‖Hs(Rn) +

∥∥∂2
t v(t)

∥∥
Hs(Rn)

)
. In particular since

Jε is uniformly bounded with respect to ε ∈ (0, 1) there exists D > 0 such that for all
ε ∈ (0, 1),

sup
t∈[0,T ]

‖PJεu‖Hs−2(Rn) ≤ D sup
t∈[0,T ]

(
‖u‖Hs(Rn) + ‖∂tv(t)‖Hs(Rn) +

∥∥∂2
t v(t)

∥∥
Hs(Rn)

)
therefore, by Lebesgue’s theorem lim

ε→0
PJεu = Pu is L1([0, T ], Hs−2(Rn)). We apply lemma

A.0.1 to Jεu with s− 2 instead of s and passing to the limit, we get:

sup
[0,T ]
‖u‖Hs−1(Rn) + ‖∂tu‖Hs−2(Rn) ≤CT,s

(∫ T

0
‖Pu‖Hs−2(Rn) + ‖u(0)‖Hs−1(Rn)

+ ‖∂tu(0)‖Hs−2(Rn)

)

Lemma A.0.5. Let s ∈ R For all f ∈ L1([0, T ], Hs(Rn)) and all u0 ∈ Hs+1(Rn), u1 ∈
Hs(Rn), we have a unique distribution u ∈ C0([0, T ], Hs+1(Rn)) ∩ C1([0, T ], Hs(Rn)) such
that Pu = f and u(0) = u0, ∂tu(0) = u1. Moreover, this solution satisfies the estimate of
lemma A.0.1
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Proof. First we prove the uniqueness. Let s ∈ R and u ∈ C0([0, T ], Hs+1(Rn)) ∩
C1([0, T ], Hs(Rn)) such that Pu = 0, u(0) = 0 and ∂tu(0) = 0. Then, by theorem B.2.9
in [54] (or rather the version without the "loc"), we have for any N ∈ N, u ∈ H(N,s+1−N)

in particular, for N > 5
2 , u ∈ C2([0, T ], Hs+1−N ). Therefore, we can apply lemma A.0.4

and we get u = 0 (This argument even proves the uniqueness in any space Hm
([0, T ] × Rn)

with m ∈ R). We construct the solution using the Hahn-Banach theorem. We define for
φ ∈ C∞c ([0, T )× Rn; Cp):

Q(φ) := 〈f, φ〉L2([0,T )×Rn) − 〈u1, φ(0)〉+ 〈u0, ∂tφ(0)〉+ 2
〈
u0, (∂j(G

0,jφ(0))
〉
− 〈u0, R0(0)∗φ(0)〉

We have:

|〈f, φ〉| ≤ ‖f‖L1([0,T ],Hs(Rn)) sup
[0,T ]
‖φ‖H−s(Rn)

|〈u1, φ(0)〉| ≤ ‖u1‖Hs(Rn) ‖φ(0)‖H−s(Rn)

|〈u0, ∂tφ(0)〉| ≤ ‖u0‖Hs+1(Rn) ‖∂tφ(0)‖H−s−1(Rn)∣∣〈u0, 2(∂jG
0,jφ(0)) +R0(0)∗φ(0)

〉∣∣ . ‖u0‖Hs+1(Rn) ‖φ(0)‖H−s(Rn)

Therefore, we get:

|Q(φ)| .
(
‖f‖L1([0,T ],Hs(Rn) + ‖u1‖Hs(Rn) + ‖u0‖Hs+1(Rn)

)(
sup
[0,T ]
‖φ‖H−s(Rn) + ‖∂tφ(0)‖H−s−1(Rn)

)
Applying lemma A.0.1 to φ with the operator P ∗, Sobolev order −s − 1 and t replaced by
T − t, we get:

|Q(φ)| ≤ Cs,T
(
‖f‖L1([0,T ],Hs(Rn) + ‖u1‖Hs(Rn) + ‖u0|Hs+1(Rn)

)(∫ T

0
‖P ∗φ(t)‖H−s−1(Rn) dt

)
Therefore, by the Hahn-Banach theorem, there exists u ∈ L∞([0, T ], Hs+1(Rn)) such that for
all φ ∈ C∞c ([0, T )× Rn; Cp):

〈u, P ∗φ〉 = 〈f, φ〉L2([0,T )×Rn) − 〈u1, φ(0)〉+ 〈u0, ∂tφ(0)〉

+ 2
〈
u0, (∂j(G

0,jφ(0))
〉
− 〈u0, R0(0)∗φ(0)〉 (A.1)

and such that

sup
t∈[0,T ]

‖u(t)‖Hs+1(Rn) ≤ Cs,T
(
‖f‖L1([0,T ],Hs(Rn) + ‖u1‖Hs(Rn) + ‖u0‖Hs+1(Rn)

)
Using (A.1) with φ ∈ C∞c ((0, T ) × Rn), we get Pu = f . A priori, we do not know if
u ∈ C0([0, T ], Hs+1(Rn)) ∩ C1([0, T ], Hs(Rn)) (we only have u ∈ L∞([0, T ], Hs+1(Rn))) but
we can use this construction together with an approximation argument to get an element
in u ∈ C0([0, T ], Hs+1(Rn)) ∩ C1([0, T ], Hs(Rn)). We take a sequence (fn) of functions in
C∞([0, T ],S) such that lim

n→+∞
fn = f in L1([0, T ], Hs(Rn)) and (un0 ), (un1 ) sequences in S

with lim
n→+∞

un0 = u0 in Hs+1 and lim
n→+∞

un1 = u1 in Hs. By the previous argument for some

large N ∈ R we can construct un ∈ L∞([0, T ], HN+1(Rn)) satisfying (A.1) with f replaced
by fn, u0 by un0 and u1 by un1 . Since Pun = fn is smooth, we get (lemma B.2.9 in [54])
un ∈ H(3,N−3). By theorem B.2.7, un ∈ C2([0, T ], HN− 5

2 ). Therefore, if we take N ≥ s + 9
2 ,

we get un ∈ C2([0, T ], Hs+2(Rn)). Using (A.1) with general φ ∈ C∞c ((0, T )×Rn), we get that
un(0) = un0 and ∂tun(0) = un1 . For n, n′ ∈ N we can therefore apply estimate A.0.4 to get:

sup
t∈[0,T ]

∥∥∥un(t)− un
′
(t)
∥∥∥
Hs+1(Rn)

+
∥∥∥∂tun(t)− ∂tun

′
(t)
∥∥∥
Hs(Rn)

≤CT,s

(∫ T

0

‖fn − fn′‖Hs(Rn)

+
∥∥∥un0 − un′0 ∥∥∥

Hs+1(Rn)
+
∥∥∥un1 − un′1 ∥∥∥

Hs(Rn)

)
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We deduce that (un) is a Cauchy sequence in the complete space C0([0, T ], Hs+1(Rn)) ∩
C1([0, T ], Hs(Rn)). We call u the limit. We get u(0) = u0 and ∂tu(0) = u1. Moreover,
passing to the limit in (A.1) with φ ∈ C∞c ((0, T )× Rn), we obtain Pφ = f .
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Appendix B

Local existence, uniqueness and
approximation

Let (M, g) be a smooth Lorentzian manifold which admits a global time function t. We
denote byM+ := t−1((0,+∞)) andM0 := t−1({0}).

B.1 Causality preliminaries

Definition B.1.1. We say that a Lorentzian manifold satisfies the weak causality condition
if there is no closed causal curve. It satisfies the strong causality condition if for every point
p and every neighborhood U of p, there exists a neighborhood V of p such that every causal
curve segment with endpoints in V is included in U .

Definition B.1.2. For a point p in a Lorentzian manifold (M, g) and every open subset U
ofM, we denote by I+(p, U) (resp. I−(p, U)) the chronological future (resp. past) of p inside
U . For a subset A of M, we call D(A) its domain of dependence (the set of points p ∈ M
such that A intersects the causal past or the causal future of p).

Lemma B.1.3. The Lorentzian manifold (M, g) previously defined is time-oriented (by dt)
and satisfies the strong causality condition.

Proof. First note that the weak causality condition follows from the fact that t is strictly
monotonic along each causal curve. We now use a quantitative version of the previous argu-
ment to get the strong causality condition. We fix a Riemaniann metric g̃ onM. Let x ∈M
and U be a neighborhood of x. By continuity of the metric at x, on a relatively compact
neighborhood V of x, there exists ε > 0 such that for all y ∈ V and all v ∈ TyV causal
vector | dt(v)| ≥ ε |v|g̃. We take η > 0 small enough so that the geodesic ball Bg̃(x, η) ⊂ V .
In particular, we deduce that for any future oriented causal geodesic γ intersecting Bg̃(x, η2 )

at time t0 and being outside V at time t1 > t0, we have the length
∫ t1
t0

∣∣∣ ˙γ(s)
∣∣∣
g̃

ds > η
2 and

t(γ(t1)) − t(γ(t0)) > εη
2 . In particular, if we take V ′ = Bg̃(x,

η
2 ) ∩

{
|t− t(x)| < εη

4

}
, we get

that every causal curve with endpoints in V ′ remains in V (and therefore in U).

Lemma B.1.4. For all x ∈M, there exists a neighborhood U of x such that for all V convex1

open set contained in U , for all p, q ∈ V such that p is in the causal future of q, there is exactly
one causal geodesic segment between p and q and this segment is included in V . In particular
for all p ∈ V , I±(p, V ) = I±(p,M) ∩ V .

1In the sense of [87, Chapter 5, Definition 5.]
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Proof. First, we take W a convex neighborhood of x (see proposition 7 page 130 in [87]) and
U a neighborhood of x given by the strong causality condition. Therefore for all V ⊂ U we
have that every causal segment with endpoint in V remains in W . We assume in addition
that V is convex. Therefore, for p, q ∈ V , let γ be a causal geodesic segment between p and q.
Since V ⊂ U , we know that γ remains in W . By convexity of V , we know that there exists γ′

a geodesic segment between p and q remaining in V . By convexity of W , we have uniqueness
(up to reparametrization) of the geodesic segment between p and q in W and therefore γ = γ′

remains in V .

Lemma B.1.5. For every x ∈M and every neighborhood U of x, there exists S neighborhood
of x in the hypersurface {t = t(x)} such that D(S) is a relatively compact neighborhood of x
included in U .

Proof. First we fix local coordinates (xµ)nµ=0 around x such that xµ(x) = 0, x0 = t−t(x)√
Gx( dxt, dxt)

and Gµ,ν is the Minkowski metric at x (it exists since we can complete ω0 := dxt√
Gx( dxt, dxt)

into

an orthonormal basis (ωµ) of T ∗xM and find locally functions (xi)ni=1 such that dxx
i = ωi).

There exists W a small Euclidean coordinate ball B(x, η) such that for all y ∈ W for all
u ∈ TyM for y in a neighborhood W :

(1− ε)(u0)2 − (1 + ε)(ui)2 < gµ,νu
µuν < (1 + ε)(u0)2 − (1− ε)

n∑
i=1

(ui)2 (B.1)

We now prove that for S =
{
y ∈W : x0(y) = 0,

∑n
i=1(xi)2 < η2(1−ε)

2(1+ε)

}
, we have

C
η
√

1−ε
2(1+ε)

,
√

1−ε
1+ε

⊂ D(S) ⊂ C
η
√

1−ε
2(1+ε)

,
√

1+ε
1−ε

where Cβ,α is the set of points such that

|x0| < α(β −
√∑n

i=1 x
2
i ) (in particular note that C

η
√

1−ε
2(1+ε)

,
√

1+ε
1−ε
⊂ B(x, η)).

First inclusion: Let y ∈ C
η
√

1−ε
2(1+ε)

,
√

1−ε
1+ε

. There exists 0 < β < η
√

1−ε
2(1+ε) such that y ∈

C
β,
√

1−ε
1+ε

. Without loss of generality, we assume that x0(y) > 0. Let γ : [0, b) → M be a

past oriented C1 causal curve such that γ(0) = 0 and such that γ cannot be extended to an
interval of the form [0, b′) with b′ > b. Since γ is causal and past oriented, we have, for all
s ∈ [0, b) such that γ(s) ∈ B(x, η), we have:

(1− ε)
n∑
i=1

(γ̇i)2 <(1 + ε)(γ̇0)2 (B.2)

γ̇0 <0 (B.3)

We define

B+ :=

0 ≤ x0 =

√
1− ε
1 + ε

β −
√√√√ n∑

i=1

x2
i


the upper boundary of C

β,
√

1−ε
1+ε

. First, assume (by contradiction) that γ ∩B+ 6= ∅. Then we

can take

s0 = inf
{
s ∈ [0, b) : γ(s) ∈ B+

}
and since B+ is closed and γ is continuous, γ(s0) ∈ B+. Moreover, since γ(0)0 = y0 < β and
γ(s)0 is decreasing, we have that γ(s0)0 < β and in therefore

∑n
i=1(γ(s0)i)2 6= 0. Since for
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s ∈ [0, s0), 0 < γ(s)0 <
√

1−ε
1+ε(β −

√∑n
i=1(γ(s)i)2), differentiating at s0 we find that:

0 ≤ γ̇(s0)0 +

√
1− ε
1 + ε

∑n
i=1 γ̇(s0)iγ(s0)i√∑n

i=1(γ(s0)i)2
≤ γ̇(s0)0 +

√
1− ε
1 + ε

√√√√ n∑
i=1

(γ̇(s0)i)2

Using (B.3) and (B.2), we deduce

√
1− ε
1 + ε

√√√√ n∑
i=1

(γ̇(s0)i)2 <
∥∥γ̇(s0)0

∥∥ ≤√1− ε
1 + ε

√√√√ n∑
i=1

(γ̇(s0)i)2

which is a contradiction. We conclude that γ([0, b))∩B+ = ∅. Assume by contradiction that
γ remains in the compact set C

β,
√

1−ε
1+ε

∩
{
x0 ≥ 0

}
therefore, it has an accumulation point y1

in this set. Since γ0 is strictly decreasing, we must have for all s ∈ [0, b) γ0(s) ≥ x0(y1). We
deduce

∫ b
0

∣∣γ̇0(s)
∣∣ ds < +∞ and therefore by (B.2)

∫ b

0

√√√√ n∑
i=1

(γ̇i)2 ds < +∞.

We conclude that lim
s→b

γ(s) − γ(0) exists.and in particular, y1 is in fact the limit of γ. But

this contradits the inextendibility of γ. Therefore, γ must leave C
β,
√

1−ε
1+ε

∩ {x0 ≥ 0} and

(by continuity) intersects the boundary. Since the boundary is contained in S ∪ B+ and
γ([0, b)) ∩B+ = ∅, we must have γ([0, b)) ∩ S 6= ∅.

Second inclusion: It is enough to prove that there exists a neighborhood W of K :=
C
η
√

1−ε
2(1+ε)

,
√

1+ε
1−ε

such that for any point y ∈ W \K, there exists an inextendible causal curve

γ which never intersects S and with γ(0) = y. We take W := C
β,
√

1+ε
1−ε
⊂ B(x, η) with

β > η
√

1−ε
2(1+ε) . Without loss of generality, we assume that x0(y) ≥ 0. We consider the curve

γ(s) = y+
(
−s, s

√
1−ε
1+ε

ỹ
‖ỹ‖

)
where ỹ = (xi(y))ni=1 and ‖ỹ‖ is the Euclidean norm of ỹ (if ỹ = 0,

we take any Euclidean unit vector instead of ỹ
‖ỹ‖). We check that γ(s) is timelike past oriented

(using (B.1)) and remains in W \
◦
K for s ∈ [0, x0(y) + α] when α > 0 is small enough. In

particular, since S ⊂
◦
K, γ([0, x0(y)+α]) does not intersect S). Then, any inextendible causal

extension of γ do not intersect S since t(γ(s)) is strictly monotonic, the only intersection of
γ with {t = t(x)} is a point of γ([0, x0(y) + α]) which is not in S.

B.2 Existence and uniqueness theory

The two main propositions are the following (for the existence, we follow [54], 23.2 but without
the factorizaton method at the cost of restricting the order 2 case) but we allow P to be an
operator on a (complex)vector bundle E (with connection Θ) which do not really introduce
new difficulties. We take P of the form P = �g,Θ +R with R ∈ Diff1(E).

Proposition B.2.1. Let U bM (open with compact closure).

• Problem 1: For s ∈ R, if f ∈ Hs
(loc)(M) has support inM+, there exists u ∈ Hs+1

(loc)(M)

with support inM+ such that Pu = f on U .
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• Problem 2: For s ≥ 0, if v is a vector field such that vt = 1 and f ∈ H
s
(loc)(M+)

u0 ∈ Hs+1(M0) and u1 ∈ Hs(M0), there exits u ∈ Hs+1
(loc)(M+) such that Pu = f on

M+ and u = u0 onM0 ∩ U and vu = u1 onM0 ∩ U .

Remark B.2.2. In case of problem 2, note that u ∈ Hs+1
(M+) and Pu ∈ Hs. In particular,

by theoreme B.2.9 in [54], we get that u ∈ H loc
(2,s−1) and therefore (by theorem B.2.7) it has a

sense to consider to consider traces of u and ∂tu onM0.

Proof. First step: construction of a solution to Problem 1: Let f ∈ Hs
loc(M) with supp(f) ⊂

M+.
We take a finite cover (Wk)

N
k=1 of U by open sets as in lemma B.2.5 below. We then take

a finite cover (Vk)
N ′
k=1 of U by open sets as in lemma B.2.3 small enough so that for every

k ∈ J1, NK and every k′ ∈ J1, N ′K either Vk′ ∩Wk = ∅ or Vk′ ⊂Wk. We assume that the cover
is minimal in the sense that any strict subfamily does not cover U .

We then define a covering family of subsets E0, ..., EM of the finite set F = {Vk, k ∈ N}
and a family of times (tkmin)Mk=0 and (tkmax)Mk=0 recursively as follow:

• t0min = inf t(U) − γ where γ is small enough so that E0 =
{
Vk : t0min ∈ t(Vk)

}
is not

empty.

• If we have constructed E0, ..., En, t0min, ..., t
n
min and t0max, ..., t

n−1
max for n 6= 0, we define

A := ∪V ∈∪ni=0Ei
V and if F \∪ni=0Ei 6= ∅, then by minimality, U \A 6= ∅. We can therefore

define tnmax := min t
(
U \A

)
which exists by compactness. We take V ∈ F \ ∪ni=0Ei

such that tnmax ∈ t(V ). Because t is an open map, there exists γ > 0 such that tn+1
min :=

tnmax−γ ∈ t(V ). Note that by taking γ small enough, we can ensure that tn+1
min > inf t(U)

and, if n ≥ 1 tn+1
min > tn−1

max. We finally define En+1 :=
{
V ′ ∈ F : tn+1

min ∈ t(V ′)
}
. Note

that En+1 6= ∅ since V ∈ En+1. Note also that En+1 is generally not disjoint from
∪ni=0Ei.

This recursive construction ends in a finite number of steps since (F \∪ni=0Ei) is a strictly
decreasing sequence of finite sets. We denote byM the stopping index (therefore F = ∪Mi=0Ei)
and we define tMmax := supU + γ with γ small enough so that tMmax ∈ t(∪Vk). By construction
we have:

• For all k ∈ J1,M − 1K, tk−1
min < inf tkmin < tk−1

max < tk+1
min < tkmax < tk+1

max.

• [0, sup t(U)] ⊂ ∪Mk=0(tkmin, t
k
max)

• For all k ∈ J0,MK,
{
x ∈ U : t(x) ∈ (tkmin, t

k
max)

}
⊂ ∪V ∈EkV

Let (χk)
M+1
k=0 be a sequence of non increasing functions in C∞c (R, [0, 1]) equal to 1 near −∞

and to 0 near +∞ such that suppχ′0 ⊂ (t0min, inf t(U)), for k ∈ J1,MK, suppχ′k ⊂ (tkmin, t
k−1
max)

and suppχ′M+1 ⊂ (sup t(U), tMmax). We define recursively for k ∈ J0,MK the distributions
uk ∈ Hs+1

(loc)(M) and gk ∈ Hs+1
(loc)(t

−1((−∞, tkmax))) such that

t(supp(uk)), t(supp(gk)) ⊂((tkmin, t
k
max) ∩ [0,+∞))

and such that

Puk = χk+1(1− χk)f + [χk, P ]gk−1 + [P, χk+1]gk (B.4)

on U (with the convention that g−1 = 0). Let k ∈ J0,MK. We assume that gk−1 has
been constructed (recall that g−1 := 0). For every V ∈ Ek, we choose an open set (call
it W (V )) in the family (Wk) such that V ⊂ W (V ) and we define vVk ∈ H

s+1
(loc)(M) with
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t(supp(uk)) ⊂ (max(tkmin, 0),+∞) and PvVk = (1−χk)f + [χk, P ]gk−1 on W (V ) using lemma
B.2.3. We define vk ∈ H

s+1
(loc)(∪V ∈EkV ) by (vk)|V = (vVk )|V . Note that if V ∩ V ′ 6= ∅, we

have V ∪ V ′ ⊂ W (V ) ∩ W (V ′) and in particular PvVk = PvV
′

k on V and vVk = vV
′

k on V
since V was obtained by lemma B.2.5 (and tkmin ∈ t(V ) ∩ t(V ′) by construction of Ek). We
finally take uk := ψχk+1vk and2 gk := ψvk where ψ = 1 on U and has support in ∪Vi.
We have the claimed equality (B.4) on U (note that the commutator term [P,ψ] is harmless
since it has support outside of U). Therefore, a solution to Problem 1 is

∑M
k=0 uk since

P (
∑M

k=0 uk) = (χM+1 − χ0)f + [P, χM+1]gM = f on U .
Second step reduction of Problem 2 to Problem 1: We take a finite cover (Wk)

N
k=1 of U ∩

M0 by open subset of M given by lemma B.2.4 below. We take a finite cover (Vk)
N ′
k=1 of

U ∩M0 by open sets as in lemma B.2.6 below small enough so that for every k ∈ J1, NK and
every k′ ∈ J1, N ′K either Vk′ ∩Wk = ∅ or Vk′ ⊂ Wk. We assume that the cover is minimal
in the sense that any strict subfamily does not cover U ∩ M0. For every V , we choose
W (V ) in the family (Wk) such that V ⊂ W (V ) and we define wV ∈ Hs+1

(M+) such that
PwV = f on W (V ) and wV = u0 on W (V )∩M0, vwV = u1 on W (V )∩M0. We then define
w ∈ Hs+1

(M+ ∩ ∪N
′

k=1Vk) by its restriction on each Vk: w|Vk∩M+
= wV|Vk∩M+

. Note that this

is well defined sinc if V ∩ V ′ 6= ∅, then V ′ ⊂ W (V ) and we have therefore P (wV − wV ′) = 0
on V ′ ∩M+ with zero Cauchy data on V ′ ∩M0 and therefore wV − wV ′ = 0 on V ′ ∩M+

(and therefore on V ∩ V ′). Finally by compactness of U ∩M0, there exists γ > 0 such that
t > 2γ on (U \ ∪N ′k=1Vk) ∩M+. We define u = ψχ(t)w ∈ Hs+1

(M+) where ψ is a smooth
cutoff equal to 1 in a neighborhood of U and equal to zero in a neighborhood ofM\ (∪N ′k=1Vk)
and χ ∈ C∞(R) is a smooth cutoff equal to one on t < γ

2 and equal to zero on t > γ. Note
that u has the correct Cauchy data and Pu = [P,ψχ]u+ψχf ∈ Hs

(loc)(M+). We use the first
step to construct h ∈ Hs+1(M) with support in t ≥ γ

2 and such that Ph = (1−χ)f − [P, χ]f
on U (which has support on t ≥ γ

2 ). Then u+ h is a solution to problem 2.

Lemma B.2.3. Let s ∈ R. We prove that for every x0 ∈M, there exists a neighborhood U of
x0 such that for every f ∈ Hs

loc(M) with support in {t ≥ tmin} (for some tmin ∈ t(U)), there
exists u ∈ Hs+1

loc (M) with support in {t ≥ tmin} such that Pu = f on U .

Proof. First we take V a relatively compact neighborhood of x0 which is an open of chart for
the manifold and an open of trivialization for the bundle. We choose a chart so that t is the
first coordinate, and V is sent to a relatively compact open subset V of Rn+1. Without loss of
generality, we can assume that tmin = 0. As usual we define, V0 := V ∩ {t = 0}. For notation
simplicity, we use the same name for objects on Rn+1 and objects on M identified by this
local trivilalization and coordinates chart. We get an operator P = Gµ,ν∂µ∂ν + Diff1(V,Cp)
defined on V with G0,0 > 0. In order to use results of section A, we want to find a global
inverse Lorentzian metric G̃ on Rn+1 constant outside a compact which coincides with G on
an open neighborhood V ′ of 0. To construct such a metric, we only need to take V ′′ so small
that G|V ′′ remains in a convex neighborhood of G(x0) in the space of Lorentzian matrices
(seen as a subset of real values matrices) and then use a partition of unity to glue G with the
constant metric equal to G(x0).

We define χ ∈ C∞c (Rn+1; [0, 1]) with support in V ′ and equal to 1 in a neighborhood
U of zero and we will use proposition A.0.5 with operator P̃ := χP + (1 − χ)G̃µ,ν∂µ∂ν
(without loss of generality, we can assume G̃0,0 = 1) and T so large that t < T on V ′.
More precisely, if s ≥ 0, we define f̃ any extension of f|V in Hs(Rn+1) and with support in
t ≥ 0. We then perform a change of time t′ = t + 1 so that f̃ is supported in {t′ ≥ 1} and

2Note that gk is not globally defined onM but it is defined on t−1((−∞, tkmax))
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we apply lemma A.0.5 with zero initial condition which provides the solution ũ (the lemma
gives ũ ∈ C0([0, T ], Hs(Rn)) ∩ C1([0, T ], Hs+1(Rn)) but since Pu = f , proposition B.2.9 in
[54] gives u ∈ Hs+1

((0, T ) × Rn)). The estimate in lemma A.0.5 then shows that ũ = 0 on
{t′ < 1} and therefore we can extend it by zero on {t′ ≤ 0} . Then χũ is defined onM and
has the desired property. If s ≤ 0: We first perform the same change of coordinates as before
t′ = t+1. We show recursively that for f ∈ H(s,m)(Rt′) with supp(f) ⊂ [1,+∞)×Rn, s ≥ −N
with N ∈ N and m ∈ R, we can find ũ ∈ H(s+1,m) with support in [1,+∞) × Rn such that
P̃ ũ = f on (−∞, T + 1)× Rn). For N = 0 it is directly lemma A.0.5 as in the previous case.
We assume that the induction hypothesis is true for some N ∈ N. We take s ≥ −N − 1
and f ∈ H(s,m)(Rt′ × Rn) with supp(f) ⊂ [1, T + 1] × Rn. By remark after theorem B.2.4 in
[54], we can find f0 ∈ H(s+1,m−1) and f1 ∈ H(s+1,m) both supported on [1,+∞) × Rn such
that f = f0 + ∂tf1. By the induction hypothesis, we can find ũ1 ∈ H(s+2,m) with support
in [1,+∞) such that P̃ ũ1 = f1 on (−∞, T + 1). We have P∂tũ1 = ∂tf1 + [P̃ , ∂t]u1. Note
that since [P̃ , ∂t] is a differential operator of order two but with only derivatives with respect
to t of order one. Therefore [P̃ , ∂t]u1 ∈ H(s+1,m−1) with support in [1,+∞) × Rn. Still by
the induction hypothesis, we can find ũ0 with Pũ0 = f1 − [P̃ , ∂t]u1 on (−∞, T + 1) and with
ũ0 ∈ Hs+2,m−1 with support in [1,+∞). Then it suffices to take ũ := u0 + ∂tu1.

Lemma B.2.4. Let s ≥ 0. For every x0 ∈ M0, we can find a neighborhood U of x0 in M
such that for every f ∈ Hs

(loc)(M+) and every u0 ∈ Hs+1
(loc)(M0), u1 ∈ Hs

(loc)(M0), there exists

u ∈ Hs+1
(loc)(M+) with u|U0

= (u0)|U0
, vu|U0

= (u1)|U0
and Pu = f on U (where U0 := U∩M0).

Proof. The proof is very similar to the proof of lemma B.2.3. First we take V a relatively
compact neighborhood of x0 which is an open of chart for the manifold and an open of
trivialization for the vector bundle. We choose a chart so that V ∩ {t = 0} is mapped on
t = 0 in Rn+1, x0 is mapped to 0 and V is sent to a relatively compact open subset V
of Rn+1. As usual, V0 := V ∩ {t = 0}. For notation simplicity, we call by the same name
objects which are identified by this local trivilalization and coordinates chart. We get an
operator P = Gµ,ν∂µ∂ν + Diff1(V,Cp) defined on V with G0,0 > 0. We want to find a global
inverse Lorentzian metric G̃ on Rn+1 constant outside a compact which coincides with G
on an open neighborhood V ′ of 0. We construct such a metric as in the proof of lemma
B.2.3. If we have such a metric, we will define for χ ∈ C∞c (Rn+1; [0, 1]) with support in V ′

and equal to 1 in a neighborhood U of zero and we will use proposition A.0.5 with operator
P̃ := χP + (1 − χ)G̃µ,ν∂µ∂ν and with data equal to f̃ any extension of f|V in Hs(Rn+1),
ũ0 any extension of (u0)|V0

in Hs+1(Rn) and ũ1 any extension of (u1)|V0
in Hs(Rn). If we

call ũ the solution (the lemma gives ũ ∈ C0([0, T ],Rn) ∩ C1([0, T ],Rn) but since Pu = f ,
proposition B.2.9 in [54] gives u ∈ Hs+1

((0, T ),Rn)), then χũ is defined on M and has the
desired properties.

Lemma B.2.5. For every x0 ∈M, x0 has a fundamental system of open neighborhoods V(x0)
such that for V ∈ V(x0), if u ∈ D′(V ), Pu = 0 on V , and if there exists tmin ∈ t(V ) such
that t ≥ tmin on supp(u), then u = 0.

Proof. We fix U a small (relatively compact) neighborhood of trivialization and of local chart
containing x0. We choose a local chart (y0, y

′) in which (y0, y
′)(x0) = 0 and t(y0, y

′) =
t(x0) + y0 − |y′|2. We define

Vε =
{
x : |y′(x)|2 − ε2 < y0(x) < ε2, |y′(x)| <

√
2ε
}

The metric associated with the operator is of the form Gµ,ν on the local chart and by hypoth-
esis, since dt is uniformly timelike on V , and since dt(0) = dy0, we have G0,0(0) > 0. In
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particular, for ε small enough (depending on the sup norm of derivatives of G0,0 on V ), we
have G0,0 > 0 on Vε. In particular, P ∗ is strictly hyperbolic with respect to the level set of the
function y0. We can then apply lemma B.2.3 (with the operator P ∗ on the manifold Vε with
the time function −y0) to find an open neighborhood of x0 in which we can solve the forcing
problem. We can take ε′ so small so that Vε′ is included in this neighborhood. Therefore,
for all φ ∈ C∞c (Vε′) we can find f ∈ Ck(Vε′) (for k ∈ N as large as we want) vanishing in
y0 > ε2 − δ for δ > 0 such that y0 ≤ ε2 − δ on supp(φ). We take u ∈ D′(Vε′) with Pu = 0
on Vε′ such that there exists tmin ∈ t(Vε′) = (t(x0) − ε2, t(x0) + ε2) such that t ≥ tmin on
supp(u). Since either u or f vanishes in a neighborhood of the boundary of Vε′ , we can do
the following computation:

〈u, φ〉 = 〈u, P ∗f〉
= 〈Pu, f〉
=0

Since this is true for all φ ∈ C∞c (Vε′), u = 0. Any Vε′′ also works if 0 < ε′′ < ε′, therefore we
get a fundamental system of neighborhoods with the desired property.

Lemma B.2.6. For every x0 ∈ M0, x0 has a fundamental system of open neighborhoods
(in M) V(x0) such that for V ∈ V(x0), if u ∈ H−N (V +) for some N > 0, Pu = 0 on V ,
and u = 0, vu = 0 (v is a vector field such that vt = 1) on V 0, then u = 0. As usual
V + := V ∩M+ and V 0 := V ∩M0.

Proof. First note that by theorem B.2.9 in [54], for V open neighborhood of x0, for all u ∈
H
−N

(V ), Pu = 0 implies u ∈ H loc
(k,−N−k)(V ) for all k ∈ N and by theorem B.2.7, the traces of

u and vu on V ∩M0 are well defined and therefore, the statement makes sense. We construct
Vε exactly as in lemma B.2.5 and we define V +

ε := Vε ∩ M+ and V 0
ε = Vε ∩ M0. As in

this lemma B.2.5 if we choose ε > 0 small enough, for any φ ∈ C∞c (V +
ε ), we can construct

f ∈ Ck
(
V +
ε

)
(for k as large as we want) such that f = 0 in a neighborhood of y0 = ε2 and

P ∗f = φ. We need to prove that for every ψ ∈ H(2,−N−2)(V
+
ε ),

〈ψ, P ∗f〉V +
ε

= 〈Pψ, f〉V +
ε

+ 〈γ(ψ), A1γ(f) +A2γ(vf)〉V 0
ε

+ 〈γ(vψ), B1γ(f) +B2γ(vf)〉V 0
ε

where γ denotes the trace operator on V 0
ε , A1 ∈ Diff2(V 0

ε , E|V 0
ε

), A2, B1 ∈ Diff1(V 0
ε , E|V 0

ε
),

B2 ∈ Diff0(V 0
ε , E|V 0

ε
). This statement is true if ψ ∈ C∞c (V +

ε ) by integration by part (and using
that f = 0 near y0 = ε2 which gives in particular that γ(f) and γ(vf) are compactly supported
in V 0

ε ) and by theorem B.2.7 in [54], we can use the density of C∞c (V +
ε ) in H(2,−N−2)(V

+
ε ) to

get the general statement.
In particular, we can apply the equality to u and we get:

〈u, φ〉 = 0

for all φ ∈ C∞c (V +
ε ).

Lemma B.2.7. For all y0 ∈ M, there exists an open neighborhood U of y0 such that for
every y1 ∈ U :

• For every u ∈ D′(M) such that inf(t(supp(u))) ≥ t(y0) and Pu = 0 on I−(y1) we have
u = 0 on I−(x1).

• For every u ∈ D′({t > t(y1)}) such that u|I−(y1)∩{t>t(y0)}
∈ H−N (I−(y1) ∩ {t > t(y0)})

for some finite N , Pu = 0 on I−(y1) ∩ {t > t(y0)} and the traces of u and vu on
{t = t(y0)} ∩ I−(y1) vanish, we have u = 0 on I−(y1) ∩ {t > t(y0)}.
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Proof. The idea is to take V convex neighborhood of y0 given by lemma B.1.4 and U =
D(S) ⊂ V for some neighborhood S of y0 in {t = t(y0)} such that D(S) relatively compact
neighborhood of y0 and D(S) ⊂ V (exists by lemma B.1.5) We fix y1 ∈ U , and we take
normal geodesic coordinates (xµ)nµ=0 centered at y1 on V . We define the function t̃ = (x0)2−∑n

i=1(xi)2. For all v = vi∂i, we have dt̃(v) = 2x0v0 − 2
∑n

i=1 x
ivi. Since coordinates are

normal geodesic, Gauss’s lemma gives gµ,ν(x)xµvν = x0v0−
∑n

i=0 x
ivi for all x in the image of

the coordinate chart and v ∈ Rn. In particular, we deduce that ∇t̃ = xµ∂µ and g(∇t̃,∇t̃) = t̃.
We deduce that t̃ (defined on V ) is a time coordinates on t̃−1((c,+∞)) for every c > 0. We
define Qc :=

{
x0 < 0

}
∩{t > t(y0)}∩

{
t̃ > c

}
for all c > 0. It is clear with this definition that

Qc ⊂ I−(y1) ∩ {t > t(y0)}. Moreover, we have

I−(y1) ∩ {t > t(y0)} = ∪c>0Qc. (B.5)

First note that I−(y1) ∩ {t > t(y0)} ⊂ D+(S) ⊂ V . Let y2 ∈ I−(y1) ∩ {t > t(y0)}, we
have a past oriented timelike geodesic from y1 to y2. The geodesic is the radial one since
V was given by lemma B.1.4 and y1, y2 ∈ V . In normal geodesic coordinates, it means that
d := (x0(y1) − x0(y2))2 −

∑n
i=1(xi(y1) − xi(y2))2 > 0 and x0(y2) < 0. Therefore, if we take

c < d, we have y2 ∈ Qc.
Let φ ∈ C∞c (I−(y1)∩{t > t(y0)}). In particular, there exists c > 0 such that supp(φ) ⊂ Qc.

We have Qc compact and included in t̃−1((c′,+∞))∩
{
x0 < 0

}
for c′ < c. Indeed, since Qc ⊂

D(S) which is relatively compact in V , we already know that Qc ⊂ V is compact. Moreover,
Qc =

{
x0 < 0

}
∩{t ≥ t(y0)}∩

{
t̃ ≥ c

}
which is included in t̃−1((c,+∞))∩

{
x0 < 0

}
. Therefore,

we can use proposition B.2.1 (Problem 1 with time coordinate −t̃ and Sobolev embedding) to
find f ∈ Ck(t̃−1((c,+∞))∩

{
x0 < 0

}
) for some k ∈ N (which is fixed but can be chosen as large

as we want) and such that P ∗f = φ and supp(f) ⊂ t̃−1((c′,+∞))∩
{
x0 < 0

}
. In particular, if

u is a distribution of finite order on I−(y1) with support in {t ≥ t(y0)} and such that Pu = 0 in
I−(y1), we get that supp(f)∩ supp(u) ⊂ Qc is compact in t̃−1((c′,+∞))∩

{
x0 < 0

}
⊂ I−(y1)

and therefore we have, whenever k is large enough (we use the finite order of u here):

〈u, φ〉 = 〈u, P ∗f〉 = 〈Pu, f〉 = 0.

This holds for all φ with support compact in I−(y1) ∩ {t > t(y0)} with c > 0 and therefore
u = 0 on I−(y1) ∩ {t > t(y0)}. Together with the support assumption on u, we get that
supp(u) ∩ I−(y1) ⊂ {t = t(y0)}. Using theorem B.2.9 in [54] and the fact that Pu = 0 on
I−(y1), we get the continuity of u with respect to t (regarded as a family in a weak Sobolev
space) and deduce that u = 0 on I−(y1). Note that if u is the restriction of some ũ defined
onM, it has finite order since I−(y1) ∩ {t > t(y1)} ⊂ D(S) is relatively compact inM.

Now suppose that u is a distribution in H−N (I−(y1)∩{t > t(y0)}) for some finite N , such
that Pu = 0 and the traces of u and vu (which exist in H−N−1

(loc) ({t = t(y0)}∩ I−(y1)) by theo-
rem B.2.9 of [54]) on the boundary {t = t(y0)}∩I−(y1) vanishes. For φ with compact support
in t̃−1((c,+∞))∩

{
x0 < 0

}
∩{t > t(y0)}, we can still find f ∈ Ck(t̃−1((c,+∞))∩

{
x0 < 0

}
) for

some arbitrarily large k ∈ N and such that P ∗f = φ and supp(f) ⊂ t̃−1((c′,+∞))∩
{
x0 < 0

}
with c < c′. We have seen that Qc′ is relatively compact in t̃−1((c,+∞)) ∩

{
x0 < 0

}
and

therefore also in I−(y1). In particular, t̃−1((c′,+∞))∩{t = t(y0)} ⊂ Qc′ ∩{t = t(y0)} is rela-
tively compact in {t = t(y1)}∩ I−(y1). We deduce that the trace of f on {t = t(y0)}∩ I−(y1)
has compact support. We can then use an adaptation of the approximation argument in proof
of lemma B.2.6 (with k large enough) to get:

〈u, φ〉 = 0
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Proposition B.2.8. If U bM (open with compact closure) satisfies the condition that every
inextendible timelike curve for the induced metric on U intersect M0 ∩ U exactly once, then
we have uniqueness for the restriction of u to U in proposition B.2.1. Moreover, we have a
constant C independent of u (u0, u1 if we are in the case of Problem 2) and f (but a priori
depending on U and s) such that:

• For problem 1:

‖u‖
H
s+1

(U)
≤C ‖f‖Hs

(U)

• For problem 2:

‖u‖
H
s+1

(U∩M+)
≤C

(
‖f‖Hs

(U∩M+) + ‖u0‖Hs+1
(U∩M0)

+ ‖u1‖Hs
(U∩M0)

)
Proof. Let U be an open subset of M as defined in the proposition. Let u be a distribu-
tion on M such that Pu = 0 on U and t ≥ 0 on supp(u). Then we prove that the set
{s : u = 0 on U ∩ {t < s}} is unbounded. We argue by contradiction, assuming this set is
bounded (it is non empty since it contains 0). We then define s0 its supremum. By defi-
nition, we have t ≥ s0 on supp(u) ∩ U . We cover the compact set {t = s0} ∩ U by a finite
number of open sets (Vi)

N
i=1 as in lemma B.2.7. For every x ∈ Vi ∩ U ∩ {t ≥ s0}, we have

I−(x) ∩ {t ≥ 0} ⊂ U (by the hypothesis on U) and therefore the definition of s0 implies
that u = 0 on I−(x) ∩ {t < s0} and therefore by lemma B.2.7, u = 0 on I−(x). We deduce
that for all i ∈ J1, NK, u = 0 on U ∩ Vi ∩ {t ≥ s0}. Since W := U ∩ {t ≥ s0} \ ∪Ni=1Vi is
compact and t > s0 on W , there exists s′ > s0 such that inf

W
t ≥ s′. Therefore, we have

U ∩ {s0 ≤ t < s′} ⊂ ∪Ni=1Vi ∩ U and u = 0 on U ∩ {t < s′}. This contradicts the maximality
of s0 and therefore u = 0 on U .

Now, we assume that u ∈ H−N (M+) for some N ∈ N and Pu = 0 in U ∩ M+, and
the traces of u and vu on M0 ∩ U vansih. We cover the compact set {t = s0} ∩ U by a
finite number of open sets (Vi)

N
i=1 as in lemma B.2.7. As before we get that u vanishes on

I−(x) ∩M+ for every x ∈ U ∩ Vi. We deduce that there exists s′ > 0 such that u = 0 on
{0 < t < s′} ∩ U . Therefore we can extend u by zero so that the extension is in H−N (M)
and satisfies the hypotheses in the previous part of the proof. Therefore, u = 0 on U .

Now we use the open mapping theorem to prove the quantitative bounds. More precisely,
P defines a linear operator between the Banach spaces

Xs+1 :=
{
u ∈ Hs+1

(U) : Pu ∈ Hs
(U)
}

(endowed with the graph norm) and Hs
(U). This operator is continuous and surjective since

for f ∈ Hs
(U), we can take uf the restriction to U of any solution to problem 1 (but with time

function t − inf t(U) + 1) with data f̃ (f̃ being any extension of f in Hs(M) with support
in {t ≥ inf t(U)− 1}). Such a solution exists by proposition B.2.1 and we have Puf = f .
Moreover, if u ∈ Xs+1 is such that Pu = 0, then we can find an extension ũ to M with
support in {t ≥ inf t(U)− 1} and by the uniqueness statement already proven, we have ũ = 0
on U and therefore u = 0. By the open mapping theorem, the inverse map is continuous and
we have:

‖u‖
H
s+1

(U)
≤ C ‖Pu‖Hs

(U)
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Let s ≥ 0 and let γ be the trace operator on U ∩M0. Then (P, γ, γ(v.)) defines a linear
operator between the Banach spaces

Y s+1 :=
{
u ∈ Hs+1

(U ∩M+) : Pu ∈ Hs
(U), γ ∈ Hs+1

(M0 ∩ U), γ(vu) ∈ Hs
(M0 ∩ U)

}
with norm:

‖u‖2Y s+1 := ‖u‖2
H
s+1

(U∩M+)
+ ‖γ(u)‖2

H
s+1

(U∩M0)
+ ‖γ(vu)‖2

H
s
(U∩M0)

+ ‖Pu‖2
H
s
(U∩M+)

and the space Hs
(U ∩M+)⊕Hs+1

(U ∩M0)⊕Hs
(U ∩M0). This operator is surjective by

theorem B.2.1 and injective by the uniqueness proved before. Therefore, by the open mapping
theorem, the inverse is continuous and therefore we have:

‖u‖
H
s+1

(U)
≤ C

(
‖γ(u)‖

H
s+1

(U∩M0)
+ ‖γ(vu)‖Hs

(U∩M0) + ‖Pu‖Hs
(U∩M+)

)

The following propositions are consequences of proposition B.2.8 and B.2.1:

Proposition B.2.9. If M0 in a Cauchy hypersurface for M, then we have a unique global
solution for each problem.

Proof. We take an increasing sequence (U0
n) of relatively compact open subset of M0 such

that ∪n∈NU
0
n = M0. We call t̃ the global time function defined on M (and inducing a

diffeomorphism M := M0 × Rt̃, we define U [−n,n]
n := t̃−1([−n, n]) ∩ Un (where Un is the

causal closure of U0
n) we have ∪n∈NU

[−n,n]
n =M. For each n ∈ N we apply Proposition B.2.1

with U =
◦
U

[−n,n]

n to construct a solution un. We define u the only distribution such that
u|
U

[−n,n]
n

= (un)|
U

[−n,n]
n

(and by Proposition B.2.8, this is well defined).

Proposition B.2.10 (Local approximation theorem). We assume that M0 in a Cauchy
hypersurface forM. We have a version for each problem:

• Let u be a global solution to Problem 1 with f ∈ Hs
(loc) supported in M+ (it exists by

Proposition B.2.9). Then if we take (fn) a sequence of smooth functions converging to
f in Hs

(loc) (such a sequence can be constructed using a partition of unity) and if we call

un the solution of Problem 1 with data fn, we have that (un) converges to u in Hs+1
(U)

for every relatively compact open subset U ⊂M.

• Let u be a global solution to Problem 2 with f ∈ Hs
(loc)(M+) and initial data u0 ∈

Hs+1
(loc)(M0), u1 ∈ Hs

(loc)(M0) (it exists by Proposition B.2.9). Then if we take (fn) a
sequence of smooth functions converging to f in Hs

(loc), (un0 ) smooth functions on M0

converging to u0 in Hs+1
(loc)(M0) and (un1 ) smooth functions on M0 converging to u1 in

Hs
(loc)(M0) (such sequences can be constructed using partitions of unity) and if we call

un the solution of Problem 2 with data fn, un0 , u
n
1 , we have that un converge to u in

H
s+1

(U) for every relatively compact open subset U ⊂M+.

Proof. We define V an open relatively compact subset satisfying the condition of proposition
B.2.8 and containing U . It exits since M is globally hyperbolic. For example, we can take

V :=
◦
U

[−n,n]

n for n large enough (where U [−n,n]
n is defined as in the proof of proposition B.2.9).

Then we can use the estimate of Proposition B.2.8 on u− un and we get the convergence in
H
s+1

(V ), hence in Hs+1
(U).

250



Appendix C

Microlocal analysis: a one dimensional
introduction

In this section, the goal is to present the microlocal method through its application to a simple
which illustrates the different phenomena involved in the main analysis (elliptic estimates,
radial points, effect of the subprincipal symbol, propagation of singularity). Our goal is
not to provide a comprehensive introduction to pseudodifferential calculus, scattering and b
calculus and semiclassical analysis, we refer the reader to [104], [54, Chapter XVIII], [74] and
[110] for this.

Our goal is rather to study in details and in a self-contained manner an example on R for
which we can limit the technical tools and draw pictures.

C.1 Technical preliminaries

Definition C.1.1. Let m ∈ R. We define Sm(R) as the set of smooth functions f such that
for every k ∈ N there exists Ck > 0 such that for all x ∈ R:∣∣∣∂kxf(x)

∣∣∣ ≤ Ck 〈x〉m−k .
For α ∈ N, we define the seminorms:

‖f‖Smα :=

α∑
j=0

∥∥∥〈x〉j−m ∂jxf∥∥∥∞
Definition C.1.2. For g ∈ Sm(R), we define the Fourier multiplier g(Dx) by:

g(Dx)u := F−1g(ξ)F(u)

where F denotes the Fourier transform. It is well defined from S ′ to S ′ and the restriction to
S is continuous from S to S.

Definition C.1.3. For m, l ∈ R, we define the Sobolev spaces:

Hm,l =
{
u ∈ S ′ : 〈x〉l 〈Dx〉m u ∈ L2

}
endowed with the norm:

‖u‖Hm,l =
∥∥∥〈x〉l 〈Dx〉m u

∥∥∥
L2

Remark C.1.4. These Sobolev spaces correspond to scattering Sobolev spaces in the compact-
ification of R given by the boundary defining function ρ = 〈x〉−1.
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Remark C.1.5. Note that Hm,l are Banach spaces. We have 〈x〉l 〈Dx〉m : Hm,l → L2 is a
surjective isometry with inverse 〈Dx〉−l 〈x〉−m. In particular, since the latter sends a Schwartz
function to a Schwartz function and since S is dense in L2, we deduce that S is dense in Hm,l.
We check (using the definition) that the dual of Hm,l is identified with H−m,−l. Note that if
m, l ≥ 0, we have Hm,l ⊂ L2. Also note that if l′ ≥ l, we have Hm,l′ ≤ Hm,l.

Lemma C.1.6. Let m, l ∈ R. For any m′, l′ ∈ R such that m′ −m > 1 and l′ − l > 3, we
have the continuous inclusion:

Hm′,l′ ⊂ Hm,l.

Remark C.1.7. This lemma is not optimal. We later prove the much stronger property
Hm′,l′ ⊂ Hm,l for all m′, l′ such that m′ ≥ m, l′ ≥ l (see corollary C.1.11).

Proof. Since 〈Dx〉−m
′
〈x〉−l

′
: L2 → Hm′,l′ and 〈x〉l 〈Dx〉m : Hm,l → L2 are isometries, it is

enough to prove that A := 〈x〉l 〈Dx〉m−m
′
〈x〉−l

′
is bounded on L2. Let u ∈ S.

Au(x) = 〈x〉l 1

2π

∫∫
eiξ(x−y) 〈ξ〉m−m

′
〈y〉−l

′
u(y) dy dξ.

The previous integral is well defined1 since the Fourier transform of 〈y〉−l
′
u is a Schwartz

function of ξ . Using the relation 〈x− y〉−2k 〈Dξ〉2k eiξ(x−y) = eiξ(x−y) for k ∈ N, we can
perform an integration by part in the ξ-integral.

Au(x) = 〈x〉l 1

2π

∫∫
eiξ(x−y) 〈x− y〉−2k 〈Dξ〉2k

(
〈ξ〉m−m

′
)
〈y〉−l

′
u(y) dy dξ

If l > −1, we choose k ∈ N such that l+ 1
2 < 2k < l′ − 1

2 (it exists since l′ − 1
2 − (l+ 1

2) > 2).
With this choice we have

l − 2k < −1

2

−l′ + 2k < −1

2

Using the relation 〈x− y〉−2k ≤ 〈x〉−2k 〈y〉2k and the fact that 〈Dξ〉2k
(
〈ξ〉m−m

′
)
.

〈ξ〉m−m
′
, we deduce:

|Au(x)| . 〈x〉l−2k
∫∫
〈ξ〉m−m

′
〈y〉2k−l

′
|u(y)| dy dξ

Using that m−m′ < −1, we get:

|Au(x)| . 〈x〉l−2k
∫
〈y〉2k−l

′
|u(y)| dy

Using the Cauchy-Schwarz inequality and the fact that 2k − l′ < −1
2 :

|Au(x)|2 . 〈x〉2l−4k ‖u(y)‖2L2

Finally, using that 2l − 4k < −1, we get the bound ‖Au(x)‖L2 ≤ C ‖u‖L2 for a constant C
independent of u. We conclude by density of S in L2. If l ≤ −1, we choose −l′+ 1

2 < 2k < l− 1
2

instead and use the relation 〈x− y〉−2k ≤ 〈x〉2k 〈y〉−2k

1(provided we first integrate with respect to y and then with respect to ξ)
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Although we do not need the full machinery of pseudodifferential operators at this point,
we make use of the following lemma (which has a pseudodifferential flavor):

Lemma C.1.8. Let f ∈ Sl(R) and g ∈ Sm(R). For every M ∈ N, there exists N ∈ N such
that:

g(Dx)f(x) = f(x)g(Dx) +
N∑
j=1

∂jxf(x)(Dj
ξg)(Dx)

j!
+RN

where RN is a continuous operator on S ′ (which is continuous on S) and bounded from
H−2M,−2M to H2M,2M . Moreover, the constant N can be chosen depending only on M , m
and l. There exists C > 0 a universal constant depending only on M , l and m and there exists
α, β ∈ N (depending on M ,l and m) such that

‖RN‖L(H−2M,−2M ,H2M,2M ) ≤ C
∥∥∂N+1

x f
∥∥
Sl−N−1
α

∥∥∥∂N+1
ξ g

∥∥∥
Sm−N−1
β

Proof. Let u ∈ S.

g(Dx)(fu)(x) =
1

2π

∫∫
eiξ(x−y)g(ξ)f(y)u(y) dy dξ (C.1)

Note that the previous integral is well defined (but the order of integration is important) since∫∫
eiξ(x−y)f(y)u(y) dy is a Schwartz function of the variable ξ. Let N ∈ N (it will be chosen

large later). By Taylor’s formula we have:

f(y) = f(x) +
N∑
j=1

(y − x)j
f (j)(x)

j!
+ (y − x)N+1

∫ 1

0

(1− s)N

N !
f (N+1)(x+ s(y − x)) ds

Replacing in (C.1) and using integration by part in the integral with respect to ξ, we get:

g(Dx)(fu)(x) =
1

2π

∫∫
eiξ(x−y)f(x)g(ξ)u(y) dy dξ +

N∑
j=1

1

2π

∫∫
eiξ(x−y)

∂jxf(x)Dj
ξg(ξ)

j!
u(y) dy dξ

+
1

2π

∫∫
eiξ(x−y)RN (x, y, ξ)u(y) dy dξ

where

RN (x, y, ξ) := DN+1
ξ g(ξ)

∫ 1

0

(1− s)N

N !
f (N+1)(x+ s(y − x)) ds.

For u ∈ S, we define

RNu :=
1

2π

∫∫
eiξ(x−y)R(x, y, ξ)u(y) dy dξ.

We have the claimed equality on S. Using that the other terms of the equality are continuous
on S ′ and the density of S in S ′, we deduce that RN has a unique continuous extension
to S ′ and the equality holds on S ′. The continuity of S is a consequence of the equal-
ity since all the other terms are continuous from S to S. The last step is to prove that
〈x〉2M 〈Dx〉2M RN 〈Dx〉2M 〈x〉2M is bounded on L2 if N is chosen large enough. By density of
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S in L2 it is enough to prove the estimate for u ∈ S. Note that for k, k′, k′′ ∈ N:

Dk
xD

k′
y

(
eiξ(x−y) 〈x− y〉−2k′′ 〈Dξ〉2k

′′
R(x, y, ξ)

)
=∑

j1+j2+j3=k
j′1+j′2+j′3=k′

k!k′!

j1!j2!j3!j′1!j′2!j′3!
(−1)j

′
1ξj1+j′1eiξ(x−y)Dj2

x D
j′2
y 〈x− y〉−2k′′ Dj3

x D
j′3
y 〈Dξ〉2k

′′
RN (x, y, ξ)

Dj3
x D

j′3
y 〈Dξ〉2k

′′
RN (x, y, ξ) =

〈Dξ〉2k
′′
DN+1
ξ g(ξ)

∫ 1

0

(1− s)N

N !
sj
′
3(1− s)j3f (N+1+j3+j′3)(x+ s(y − x)) ds∣∣∣Dj2

x D
j′2
y 〈x− y〉−2k′′

∣∣∣ .k,k′,k′′ 〈x− y〉−2k′′

Moreover note that:∣∣∣f (N+1+j3+j′3)(x+ s(y − x))
∣∣∣ .∥∥∂N+1

x f
∥∥
Sl−N−1
k+k′

〈x+ s(y − x)〉l−N−1−j3−j′3

.
∥∥∂N+1

x f
∥∥
Sl−N−1
k+k′

〈x+ s(y − x)〉l−N−1

.
∥∥∂N+1

x f
∥∥
Sl−N−1
k+k′

〈x〉l−N−1 〈y − x〉|l−N−1|

Therefore, we have:∣∣∣〈Dx〉2M 〈Dy〉2M eiξ(x−y) 〈x− y〉−2k′′ 〈Dξ〉2k
′′
RN (x, y, ξ)

∣∣∣ .M,k′′∥∥∂N+1
x f

∥∥
Sl−N−1

4M

∥∥∥∂N+1
ξ g

∥∥∥
Sm−N−1

2k′′
〈ξ〉m−N−1+4M 〈x〉l−N−1 〈y − x〉|l−N−1|−2k′′ .

Using the relation

〈y − x〉k ≤ 〈y〉k 〈x〉|k|

we get for N ≥ l − 1:∣∣∣〈Dx〉2M 〈Dy〉2M eiξ(x−y) 〈x− y〉−2k′′ 〈Dξ〉2k
′′
R(x, y, ξ)

∣∣∣ .M,k′′∥∥∂N+1
x f

∥∥
Sl−N−1

4M

∥∥∥∂N+1
ξ g

∥∥∥
Sm−N−1

2k′′
〈ξ〉m−N−1+4M 〈x〉2l−2N−2+2k′′ 〈y〉N+1−l−2k′′ .

(C.2)

We choose N ∈ N such that N > max(m+ 4M + 1, l + 4M + 2). We choose k′′ ∈ N such
that N + 3

2 − l + 2M < 2k′′ < 2N + 3
2 − 2l − 2M (exists since the interval is strictly larger

than 2). With these choices, we have:

m−N − 1 + 4M < −1

2l − 2N − 2 + 2k′′ + 2M < −1

2

N + 1− l − 2k′′ + 2M < −1

2

Also note that the minimal choices for N and k′′ are functions of M , m and l and therefore
the families of integers α := 4M and β := 2k′′ depends only on M , m and l.
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By integration by part with respect to y we have

v(x) := 〈x〉2M 〈Dx〉2M RN 〈Dx〉2M 〈x〉2M u

=
〈x〉2M

2π

∫∫
〈Dx〉2M

(
eiξ(x−y)RN (x, y, ξ)

)
〈Dy〉2M 〈y〉2M u(y) dy dξ

=
〈x〉2M

2π

∫∫
〈Dx〉2M 〈Dy〉2M

(
eiξ(x−y)RN (x, y, ξ)

)
〈y〉2M u(y) dy dξ

Using the relation 〈x− y〉−2k′′ 〈Dξ〉2k
′′
eiξ(x−y) = eiξ(x−y) and integrating by part2 with respect

to ξ, we find:

v(x) = 〈x〉2M
∫∫
〈Dx〉2M 〈Dy〉2M

(
eiξ(x−y) 〈x− y〉−2k′′ 〈Dξ〉2k

′′
RN (x, y, ξ)

)
〈y〉2M u(y) dy dξ

We now compute the L2 norm of v. Note that by (C.2) and the fact thatm−N−1+4M < −1:

|v(x)| .M,m,l∥∥∂N+1
x f

∥∥
Sl−N−1
αM

∥∥∥∂N+1
ξ g

∥∥∥
Sm−N−1
βM

〈x〉2l−2N−2+k′′+2M
∫∫
〈ξ〉m−N−1+4M 〈y〉N+1−l−k′′+2M |u(y)| dy dξ

.M,l,m

∥∥∂N+1
x f

∥∥
Sl−N−1
αM

∥∥∥∂N+1
ξ g

∥∥∥
Sm−N−1
βM

〈x〉2l−2N−2+k′′+2M
∫
〈y〉N+1−l−k′′+2M |u(y)| dy

Using the Cauchy-Schwarz inequality and the fact that 2N + 2− 2l − 2k′′ + 4M < −1:

|v(x)|2 .M,l,m

∥∥∂N+1
x f

∥∥2

Sl−N−1
α

∥∥∥∂N+1
ξ g

∥∥∥2

Sm−N−1
β

〈x〉4l−4N−4+2k′′+4M ‖u‖2L2

Finally, using that 4l−4N−4+2k′′+4M < −1, we deduce that there exists C > 0 depending
only on M , l and m such that:

‖v‖L2 ≤ C
∥∥∂N+1

x f
∥∥
Sl−N−1
α

∥∥∥∂N+1
ξ g

∥∥∥
Sm−N−1
β

‖u‖L2 .

Proposition C.1.9. Let m, l, r, q ∈ R. Let f ∈ Sl(R) and g ∈ Sm(R). The operator g(Dx)
is bounded from Hr,q to Hr−m,q. The operator multiplication by f is bounded from Hr,q to
Hr,q−l. Moreover, there exists a constant C > 0 and an integer α, both depending only on
m,r and q such that:

‖g(Dx)‖L(Hr,q ,Hr−m,q) ≤ C ‖g‖Smα .

Similarly, there exists a constant C ′ > 0 and an integer β, both depending only on l,r and q
such that:

‖f‖L(Hr,q ,Hr,q−l) ≤ C ‖f‖Slβ .

2Since the double integral is not absolutely convergent some care is required. We use the fact that the ξ
dependence of RN (x, y, ξ) can be factored out and we perform the integration by part in the second integral.
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Proof. Note that the first claim reduces to proving that 〈x〉q 〈Dx〉m−r g(Dx) 〈Dx〉−m 〈x〉−q are
bounded on L2. We choose M ∈ N such that 2M > max(3, q + 3). With this choice we have
the continuous inclusions H2M,2M ⊂ H0,q and L2 ⊂ H−2M,−2M by lemma C.1.6. Therefore
〈x〉q is bounded from H2M,2M to L2. We use lemma C.1.8 with this M and we get N ∈ N
such that:

〈Dx〉r−m g(Dx) 〈Dx〉−m 〈x〉−q =

N∑
j=0

fj(x)gj(Dx) +RN

where fj ∈ S−q(R), gj ∈ S0(R) and RN is bounded from H−2M,−2M to H2M,2M . We deduce
that

〈x〉q 〈Dx〉m−r g(Dx) 〈Dx〉−m 〈x〉−q =
N∑
j=0

〈x〉q fj(x)gj(Dx) + 〈x〉q RN

Since 〈x〉q fj(x) and gj(ξ) are bounded for the uniform norm, the operators 〈x〉q fj(x)gj(Dx)
are bounded on L2 and by our choice of M , 〈x〉q RN is bounded on L2.

We now prove the second claim. We have to prove that 〈x〉q−l 〈Dx〉m f(x) 〈Dx〉−m 〈x〉−q
is bounded on L2. We use lemma C.1.8 with N a large integer to be chosen later and we get:

〈x〉q−l 〈Dx〉m f(x) 〈Dx〉−m 〈x〉−q =

N∑
j=1

fj(x)gj(Dx) 〈Dx〉−m 〈x〉−q +RN 〈Dx〉−m 〈x〉−q

where fj ∈ Sq and gj ∈ Sm(R). Since 〈Dx〉−m 〈x〉−q is bounded from L2 to Hm,q if we
take N large enough so that RN is bounded from H−2M,−2M to H2M,2M with −2M <
min(m − 1, q − 3,−3), we get that the last term is bounded on L2. We apply lemma C.1.8
again in each term of the sum:

fj(x)gj(Dx) 〈Dx〉−m 〈x〉−q =
N∑
k=1

fj,k(x)gj,k(Dx) + fjRNj

where fj,k, gj,k ∈ S0(R). Since fj is bounded from H0,q to L2, if we take Nj large enough,
we get that RNj is bounded from H−2M,−2M to H2M,2M with 2M > max(3, q + 3) and then
fjRNj is bounded on L2. Since all the terms fj,k(x)gj,k(Dx) are bounded on L2, we conclude.
To obtain the quantitative bounds, we go through the argument and we use the explicit form
of the fj , gj , fj,k, gj,k and the quantitative bound for the error term provided by lemma
C.1.8 (with remark that the choice of M in each application of lemma C.1.8 can be done as
a function of m, r, q or l, r, q).

Remark C.1.10. Using the proposition with 〈x〉−l 〈Dx〉−m and 〈Dx〉m 〈x〉l we obtain that
〈x〉−l 〈Dx〉−m is an isomorphism between L2 and Hm,l. Therefore the choice of the order of
the operators in the definition of Hm,l does not matter (up to equivalence of norm).

Corollary C.1.11. Let m, l,m′, l′ ∈ R be such that m ≤ m′ and l ≤ l′. We have the
continuous inclusion: Hm′,l′ ⊂ Hm,l.

Proof. Since 〈Dx〉−m
′
〈x〉−l

′
is an isometry from L2 to Hm′,l′ , the corollary is a consequence

of the boundedness of 〈x〉l 〈Dx〉m−m
′
〈x〉−l

′
on L2. But since 〈x〉−l

′
∈ S−l(R), 〈x〉l ∈ Sl(R)

and 〈ξ〉m−m
′
∈ S0(R) it is a consequence of proposition C.1.9.

We are now able to prove the following improvement of lemma C.1.8:
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Proposition C.1.12. Let f ∈ Sl(R) and g ∈ Sm(R). For every N ∈ N we have:

g(Dx)f(x) = f(x)g(Dx) +

N∑
j=1

∂jxf(x)(Dj
ξg)(Dx)

j!
+RN

where RN is a continuous operator on S ′ (which is continuous on S) and for every r, q ∈ R,
RN is bounded from Hr,q to Hr−m+N+1,q−l+N+1.

Proof. Let r, q ∈ R, we have to prove that g(Dx)f(x) − f(x)g(Dx) −
∑N

j=1

∂jxf(x)(Djξg)(Dx)

j!

is bounded from Hr,q to Hr−m+N+1,q−l+N+1. We choose M such that Hr,q ⊂ H−2M,−2M

and H2M,2M ⊂ Hr−m+N+1,q−l+N+1. By lemma C.1.8, there exists N ′ (and without loss of
generality, we can assume N ′ ≥ N) such that:

g(Dx)f(x)− f(x)g(Dx)−
N∑
j=1

∂jxf(x)(Dj
ξg)(Dx)

j!
=

N ′∑
j=N+1

∂jxf(x)(Dj
ξg)(Dx)

j!
+RN ′

with RN ′ bounded from Hr,q to Hr−m+N+1,q−l+N+1. Since for N + 1 ≤ j ≤ N ′ we have
∂jxf ∈ Sl−N−1 and Dj

ξg ∈ S
m−N−1, we conclude using proposition C.1.9.

The quantitative bound in proposition C.1.9 can be used to obtain the following families
of approximations:

Proposition C.1.13. We fix m > 0, l > 0, r, q ∈ R. Let χ ∈ C∞c (R) with χ = 1 in a
neighborhood of zero. The families of multiplication operators 〈εx〉−l and χ(εx) are uniformly
bounded (with respect to ε ∈ (0, 1)) in L(Hr,q, Hr,q) and for every δ > 0, they converge to
the identity in L(Hr,q, Hr,q−δ). Similarly, the families 〈εDx〉−m and χ(εDx) are bounded in
L(Hr,q, Hr,q) and for every δ > 0, they converge to the identity in L(Hr,q, Hr−δ,q).

Proof. In view of proposition C.1.9, it is the consequence of the observation that fε : x 7→
〈εx〉−l and gε : x 7→ χ(εx) are bounded for any seminorm S0

k , k ∈ N and for every k ∈ N and
δ > 0, lim

ε→0
‖fε − 1‖Sδk = lim

ε→0
‖gε − 1‖Sδk = 0.

Proposition C.1.14. Let m, l,m′, l′ ∈ R be such that m′ > m and l′ > l. The inclusion
Hm′,l′ ⊂ Hm,l is compact.

Proof. Using the isomorphism 〈x〉l
′
〈Dx〉m

′
, we can reduce to the case m′ = l′ = 0. By

proposition C.1.13, for m < 0 and l < 0, the identity operator in L(L2, Hm,l) is the limits
when ε → 0 of χ(εx)χ(εDx). Since the set of compact operators is closed for the operator
norm topology, it is enough to prove that Kε := χ(εx)χ(εDx) is compact (as an operator from
L2 to Hm,l) for ε > 0. Let (un) be a bounded sequence in L2. For all n ∈ N, Kεun has support
in X := ε−1suppχ which is compact. We now show that the family (Kεun) is equicontinuous
and bounded for the uniform norm. We have:

‖Kεun‖∞ ≤‖χ‖∞ ‖χ(εDx)un‖∞
≤‖χ‖∞ (2π)−1 ‖χ(εξ)ûn‖L1

≤ 1√
2επ
‖χ‖∞ ‖χ‖L2 ‖un‖L2
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Therefore, the sequence (Kεun)n∈N is bounded for the uniform norm. Let x, y ∈ R,

|Kεun(x)−Kεun(y)| ≤ 1√
2επ
|χ(εx)− χ(εy)| ‖χ‖L2 ‖un‖L2

+
‖χ‖∞

2π

∣∣∣∣∫ (eiξx − eiξy)χ(εξ)ûn(ξ) dξ

∣∣∣∣
≤
√

ε

2π
‖∂xχ‖∞ |x− y| ‖χ‖L2 ‖un‖L2

+ |x− y|
‖χ‖∞

2π

∫
|ξχ(εξ)ûn(ξ)| dξ

≤ |x− y|
(√

ε

2π
‖χ‖L2 ‖∂xχ‖∞ +

1√
2ε3π

‖χ‖∞ ‖ξχ(ξ)‖L2

)
‖un‖L2

The sequence is uniformly Lipschitz. We can use the Arzela-Ascoli theorem to extract a
subsequence converging uniformly to a continuous function u with support in ε−1suppχ. Since
the sequence is uniformly bounded, this uniform convergence implies the convergence in L2

by Lebesgue theorem. Since the topology of Hm,l is weaker, the sequence converges in Hm,l.
We deduce that the operator Kε is compact.

We introduce the following hybrid spaces (which have a different decay at −∞ and at
+∞).

Definition C.1.15. We fix two monotonic smooth non negative cutoffs χ+ and χ− such that
χ− = 1 on a neighborhood of −∞, χ+ = 1 on a neighborhood of +∞ and χ− + χ+ = 1.
For m, l, l′ ∈ R, we introduce the space Hm,l,l′ as the space of distributions u ∈ S ′ such that
χ−u ∈ Hm,l and χ+u ∈ Hm,l′. For u ∈ Hm,l,l′ , we define the norm:

‖u‖2
Hm,l,l′ = ‖χ−u‖2Hm,l + ‖χ+u‖2Hm,l′ .

With this norm, Hm,l,l′ is a Banach space. We also define Sl,l′(R) the set of functions f ∈
C∞(R) such that χ−f ∈ Sl(R) and χ+f ∈ Sl

′
(R).

Remark C.1.16. Note that for l < l0, l′ < l′0 and m < m0, the inclusion Hm0,l0,l′0 ⊂ Hm,l,l′

is compact. Indeed, if we have a bounded sequence (un) in Hm0,l0,l′0 then (χ−un) is bounded
in Hm0,l0 and (χ+un) is bounded in Hm0,l′0 and and by proposition C.1.14, we can extract
a subsequence such that χ−un converges in Hm,l and χ+un converges in Hm,l′ therefore the
subsequence converges in Hm,l,l′ .

We have the following natural extension of proposition C.1.9.

Proposition C.1.17. Let m, l, l′ ∈ R. Let m0 ∈ R. Let g ∈ Sm0(R). The family of operators
g(Dx) is bounded from Hm,l,l′ to Hm−m0,l,l′. Moreover, let f ∈ Sl0,l

′
0(R). The operator

multiplication by f is bounded from Hm,l,l′ to Hm,l−l0,l′−l′0 (in particular if f ∈ Sl0(R) the
operator multiplication by f is bounded from Hm,l,l′ to Hm,l−l0,l′−l0).

Proof. We have χ−(x)g(Dx) = g(Dx)χ−(x) + [χ−(x), g(Dx)] where g(Dx)χ−(x) is bounded
from Hm,l to Hm−m0,l and [χ−(x), g(Dx)] is bounded from Hm,l−N to Hm−m0,l+N for every
N ∈ N. A similar observation for χ+(x)g(Dx) leads to the following bound:

‖χ−g(Dx)u‖2Hm,l + ‖χ−g(Dx)u‖2
Hm,l′ . ‖χ−u‖2Hm−m0,l + ‖χ+u‖2Hm−m0,l + ‖u‖Hm−m0,min(l,l′)

. ‖u‖2
Hm−m0,l,l

′ .

The second claim is obtained by writing χ−f = χ̃−fχ− with χ̃− = 1 on supp(χ−) and χ̃− = 0
on a neighborhood of +∞ so that χ̃−f ∈ Sl0(R) (and similarly for χ+f).
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C.2 Analysis of Dx + V (x) + z

One of the simplest possible example to study is the operator P (z) := Dx + V (x) + z where
z ∈ R and V is a complex valued potential V ∈ S−1(R). Moreover, we assume that V has a
homogeneous leading order term at x = +∞ and x = −∞. In other words, if we fix a smooth
cutoff χ0 (rep. χ1) localizing near x = −∞ (resp. x = +∞), there exist complex constants
v−∞ and v+∞ in C such that V (x)−χ0(x)v−∞ |x|−1−χ1(x)v+∞ |x|−1 ∈ S−2 (S−1−δ for δ > 0
would be enough but we want to keep things simple here). Our first goal is to find spaces X
and Y such that P (z) is Fredholm from X to Y . This can be achieved by elementary methods
(see subsection C.3) but our goal is to illustrate the microlocal approach.

Analysis of the scattering classical flow

We consider the compactification R of R obtained by adding the points {−∞} and {+∞}. We
endow R with a structure of manifold with boundaries using the boundary defining functions
ρ+ = 1

x (near x = +∞) and ρ− = − 1
x (near x = −∞). The scattering cotangent bundle

scT ∗R is the bundle which coincides with the cotangent bundle on the interior of R but, locally
near each boundary face, smooth sections are of the form a(ρ±) dρ±

ρ2
±

for a a smooth function

(while smooth sections of T ∗R are of the form a(ρ±) dρ±). Note that dx uniquely extends
to a global non vanishing smooth section of scT ∗R. Therefore, it provides a basis of the fiber
at each point and we introduce the corresponding coordinate of the fiber ξsc. The fiber radial
compactification of scT ∗R denoted by scT

∗
R is obtained by adding the points ξsc = +∞ and

ξsc = −∞ to each fiber. The boundary defining function of fiber infinity is |ξsc|−1. The
manifold scT

∗
R is a manifold with corners (see figure C.1). The scattering principal symbol

of a differential operator is given by the leading order term3 at each boundary face of the
function p(x, ξ) obtained by replacing each derivative ∂x in the expression of the operator by
iξsc. We construct the Hamiltonian vector field Hp := ∂ξsc∂x − ∂xp∂ξsc which can be rescaled
by ρl−1

± |ξsc|−m+1 where l is the polynomial order of growth of p near the faces x = ±∞ and
m is the order of p at the faces ξsc = ±∞.

The scattering principal symbol of P at the boundary faces x = ±∞ is

psc(x, ξsc) = ξsc + z

and psc(x, ξsc) = ξsc at the boundary faces ξsc = ±∞. In particular, we see that the order
at the boundary is zero and the order at fiber infinity is one. The rescaled principal symbol
at fiber infinity is ±1 which is invertible and the principal symbol both at x = −∞ and at
x = +∞ is ξsc + z which is invertible when z ∈ C \ R. It has characteristic set {ξsc = −z}
when z ∈ R. These points are radial points4 since the rescaled Hamiltonian vector field is
Hp = ∓ρ±∂ρ± near x = −∞ and x = +∞.

Therefore, we will get a Fredholm estimate by combining an elliptic estimate and two
radial point estimates. We fix z ∈ R.

We begin by the following elliptic estimate:

Proposition C.2.1. Let χ1 be a smooth compactly supported cutoff such that χ1 = 1 in a
neighborhood of −z . For all m, l, l′ ∈ R and all N ∈ N, there exists C > 0 such that for all
u ∈ ∪j∈NH

−j,−j:

‖u‖Hm,l,l′ ≤ C
(
‖Pu‖Hm−1,l,l′ + ‖χ1(Dx)u‖Hm,l,l′ + ‖u‖Hm−N,l−N,l′−N

)
(C.3)

3If it exists.
4Points of the characteristic set where the rescaled Hamiltonian vector field vanishes.
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scT
∗
R

ξsc

ξsc = −z

x = −∞ x = +∞

Figure C.1: Representation of the fiber radial compactification of the scattering cotangent
bundle of R.

in the strong sense that if the right-hand side is finite, then u ∈ Hm,l,l′ and the inequality
holds. Moreover, if χ2 is any smooth compactly supported cutoff, for all N ∈ N, there exists
a constant C > 0 such that:

‖χ2(x)u‖Hm,l,l′ ≤ C
(
‖Pu‖Hm−1,l,l′ + ‖u‖Hm−N,l−N,l′−N

)
(C.4)

Proof. First, note that by induction, it is enough to prove the estimate for N = 1. We define
the function f : ξ 7→ (1 − χ1(ξ))(ξ + z)−1 which belongs to S−1(R). Therefore, using the
relation

f(Dx)P = 1− χ1(Dx) + f(Dx)V (x)

and proposition C.1.17, we get the first estimate. To prove the second one, we use the relation:

χ2(x) =f(Dx)Pχ2(x) + χ1(Dx)χ2(x) + f(Dx)V (x)χ2(x)

=f(Dx)χ2(x)P +
1

i
f(Dx)χ′2(x) + χ1(Dx)χ2(x) + f(Dx)V (x)χ2(x).

We consider a smooth compactlys supported cutoff χ̃2 equal to 1 on the support of χ2 (and
therefore we have χ̃2(x)χ′2(x) = χ′2(x) and χ2(x)χ̃2(x) = χ2(x)). We can then use proposition
C.1.17 to get:

‖χ2(x)u‖Hm,l,l′ ≤ C
(
‖Pu‖Hm−1,l,l′ + ‖χ̃2(x)u‖Hm−1,l−1,l′−1

)
We can then iterate the procedure to get a bound of ‖χ̃2(x)u‖Hm−1,l−1,l′−1 . After N iteration,
we obtain the claimed estimate.

Corollary C.2.2. Let χ1 be a smooth compactly supported cutoff such that χ1 = 1 in a
neighborhood of −z. Let χ3 and χ4 be smooth monotonic cutoffs such that χ3 = 1 in a
neighborhood of −∞, χ3 = 0 in a neighborhood of +∞, χ4 = 0 in a neighborhood of −∞ and
χ4 = 1 in a neighborhood of +∞. For all m, l, l′ ∈ R and all N ∈ N, there exists a constant
C > 0 such that for all u ∈ ∪j∈NH

−j,−j we have:

‖u‖Hm,l,l′ ≤ C
(
‖Pu‖Hm−1,l,l′ + ‖χ3(x)χ1(Dx)u‖Hm,l,l′ + ‖χ4(x)χ1(Dx)u‖Hm,l,l′ + ‖u‖Hm−N,l−N,l′−N

)
in the strong sense that if the right-hand side is finite, so is the left-hand side and the inequality
holds.
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Proof. Once again, by induction it is enough to prove the estimate for N = 1. We bound the
error term in estimate (C.3):

‖χ1(Dx)u‖Hm,l,l′ . ‖χ3(x)χ1(Dx)u‖Hm,l,l′ + ‖χ4(x)χ1(Dx)u‖Hm,l,l′

+ ‖(1− χ3 − χ4)χ1(Dx)u‖Hm,l,l′

By estimate (C.4), we have:

‖(1− χ3 − χ4)χ1(Dx)u‖Hm,l,l′ . ‖Pχ1(Dx)u‖Hm−1,l,l′ + ‖χ1(Dx)u‖Hm−N,l−N,l′−N

. ‖χ1(Dx)Pu‖Hm−1,l,l′ + ‖[V (x), χ(Dx)]u‖Hm−1,l,l′ + ‖u‖Hm−N,l−N,l′−N

Since χ1(Dx) is bounded on Hm−1,l,l′ and [V (x), χ(Dx)] is bounded from Hm−1,l−1,l′−1 to
Hm−1,l,l′ , we get:

‖u‖Hm,l,l′ . ‖Pu‖Hm−1,l,l′ + ‖χ3(x)χ1(Dx)u‖Hm,l,l′ + ‖χ4(x)χ1(Dx)u‖Hm,l,l′ + ‖u‖Hm−1,l−1,l′−1

We now prove the radial point estimates which are based on a commutator argument. we
begin by the estimate near the radial point at x = −∞.

Proposition C.2.3. Let χ1 be a smooth monotonic compactly supported cutoff equal to 1 in
a neighborhood of −∞ and equal to zero on a neighborhood of 0. Let χ2 be a smooth compactly
supported cutoff equal to 1 in a neighborhood of −z. Let χ̃1 with the same properties as χ1 and
equal to 1 on supp(χ1). Let N ∈ N. Let α1 > =(v−∞) and max(=(v−∞), α1 − 1

2) < α′1 < α1

and −=(v−∞) < α2. There exists a constant C > 0 such that for all u ∈ ∪j∈NH
−j,−j with

χ̃1(x)u ∈ Hm−1,− 1
2

+α′1 and all v ∈ ∪j∈NH
−j,−j with χ̃1(x)v ∈ Hm−1,−α2−1:

‖χ1(x)χ2(Dx)u‖
Hm,− 1

2 +α1
≤C

(
‖χ1(x)Pu‖

Hm−1, 12 +α1
+ ‖u‖

H−N,−
1
2 +α′1,−N

)
(C.5)

‖χ1(x)χ2(Dx)v‖
Hm,− 1

2−α2
≤C

(
‖χ1(x)Pv‖

Hm−1, 12−α2
+ ‖v‖H−N,−1−α2,−N

)
(C.6)

in the strong sense that if the right-hand side is finite, so is the left-hand side and the inequality
holds.

Remark C.2.4. The fact that the threshold (here =(v−∞)) is given by the subprincipal symbol
of the operator at the radial point is a general fact in radial point estimates.

Proof. In radial point estimates (see [104, Section 5.4.7]), the general principle is that we
obtain an estimate by using a commutator argument with a cutoff version of the weight (either
the fiber infinity defining function or the boundary defining function depending on where the
radial set is located). In our case, it suggests to introduce the following commutator operator:
A := χ2(Dx)χ1(x)2 |x|±2α χ2(Dx). Moreover, the commutator argument requires additional
decay and we introduce the family Aε := χ2(Dx)χ1(x)2 |x|2α 〈εx〉−η χ2(Dx). The amount of
extra decay η depends on whether we prove (C.5) (source point estimate) or (C.6) (sink point
estimate).

Source estimate: First note that since

χ1(x)χ2(Dx)− χ1(x)χ2(Dx)χ̃(x) = χ1(x)[χ̃1(x), χ2(Dx)]

is bounded from H−j,−j to Hj,j for all j ∈ N (lemma C.1.9) and since χ1(x)Pχ̃1(x) = χ1(x)P ,
it is enough to prove the estimate with u replaced by χ̃1(x)u. Therefore, without loss of
generality, we assume that u ∈ ∩j∈NH

m−1,− 1
2

+α′1,j and Pu ∈ ∩j∈NH
m−1, 1

2
+α1,j . We take A =

χ2(Dx)χ1(x)2 |x|2α1 χ2(Dx) and η = 2(α1 − α′1). Therefore the operator Aε is bounded from
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Hm−1,− 1
2

+α′1 to H−m+1,− 1
2
−α′1 and the following expressions make sense for u ∈ Hm−1,− 1

2
+α′1

such that Pu ∈ Hm−1, 1
2

+α1 :

〈Aεu, Pu〉 − 〈Pu,Aεu〉
〈(PAε −AεP + (P ∗ − P )Aε)u, u〉

However, the equality between the two expressions is not immediate since the term 〈PAεu, u〉
is not well defined a priori (proposition C.1.9 only gives PAεu ∈ H−m+1,− 1

2
−α′1 which has

not enough decay). Following [104, Section 5.4.7], we prove the equality by an additional
regularization argument. Namely for all µ ∈ (0, 1), we have the equality:〈
Aε 〈µx〉−1 u, Pu

〉
−
〈
P 〈µx〉−1 u,Aεu

〉
=
〈

(PAε −AεP + (P ∗ − P )Aε) 〈µx〉−1 u, u
〉

(C.7)

By proposition C.1.13, we have that 〈µx〉−1 is bounded uniformly with respect to µ ∈ (0, 1)
in

L(Hm−1,− 1
2

+α′1 , Hm−1,− 1
2

+α′1).

Therefore, by the Banach-Alaoglu theorem (and the Eberlein-Smulian theorem), we can ex-
tract a weakly convergent subsequence in Hm−1,− 1

2
+α′1 , lim

n→+∞
〈µnx〉−1 u = u∞. On the other

hand (still by proposition C.1.13), we have lim
µ→0
〈µx〉−1 u = u in Hm−1,− 1

2
+α′1−δ for δ > 0 and

by uniqueness of the limit in the sense of distributions, we get u∞ = u. The weak convergence
in Hm−1,− 1

2
+α′1 implies that:

lim
n→+∞

〈
Aε 〈µnx〉−1 u, Pu

〉
= 〈Aεu, Pu〉

lim
n→+∞

〈
(PAε −AεP + (P ∗ − P )Aε) 〈µnx〉−1 u, u

〉
= 〈(PAε −AεP )u, u〉

Finally,

P 〈µnx〉−1 u = 〈µnx〉−1 Pu+ iµ2
nx 〈µnx〉

−3 u.

By the quantitative bound in proposition C.1.9, we get lim
n→+∞

iµ2
nx 〈µnx〉

−3 u = 0 in

Hm−1, 1
2

+α′1 . As before, we can extract a subsequence of (µn) (that we still call (µn)) such that
〈µnx〉−1 Pu converges weakly towards Pu inHm−1, 1

2
+α1 and (and therefore also inHm−1, 1

2
+α′1

since α′1 < α1). We conclude:

lim
n→+∞

〈
P 〈µnx〉−1 u,Aεu

〉
= 〈Pu,Aεu〉

We have therefore proved that:

〈Aεu, Pu〉 − 〈Pu,Aεu〉 = 〈(PAε −AεP + (P ∗ − P )Aε)u, u〉 (C.8)

We compute the right-hand side:

PAε −AεP + (P ∗ − P )Aε
−i

=χ2(Dx)χ1(x) |x|2α1−1 〈εx〉2α
′
1−2α1

(
2χ′1(x) |x|

−2χ1(x)

(
α1 − (α1 − α′1)

(εx)2

1 + (εx)2
−=(v−∞)

))
χ2(Dx)

+ χ2(Dx)χ1(x)22=(V (x)− v−∞ |x|−1) |x|2α1 〈x〉2α
′
1−2α1 χ2(Dx)

+ i[V (x)− 2i=(V (x)), χ2(Dx)]χ1(x)2 |x|2α1 〈x〉2α
′
1−2α1 χ2(Dx)

+ iχ2(Dx)χ1(x)2 |x|2α1 〈x〉2α
′
1−2α1 [χ2(Dx), V (x)]

(C.9)
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Note that

χ1(x)

(
2χ′1(x) |x| − 2χ1(x)

(
α1 − (α1 − α′1)

(εx)2

1 + (εx)2
−=(v−∞)

))
≥ 2χ1(x)2(α′1 −=(v−∞))

Let

G :=− χ2(Dx)χ1(x)22=(V (x)− v−∞ |x|−1) |x|2α1 〈εx〉2α
′
1−2α1 χ2(Dx)

+ i[V (x)− 2i=(V (x)), χ2(Dx)]χ1(x)2 |x|2α1 〈εx〉2α
′
1−2α1 χ2(Dx)

+ iχ2(Dx)χ1(x)2 |x|2α1 〈εx〉2α
′
1−2α1 [χ2(Dx), V (x)]

By lemma C.1.17 and lemma C.1.12, 〈Dx〉N
(
χ− 〈x〉−α1+1 + χ+ 〈x〉N

)
G is bounded from

H−N,−1+α1,−N to L2 (uniformly with respect to ε ∈ (0, 1)). We deduce that there exists
C > 0 independent of ε ∈ (0, 1) such that:

−i 〈i(PAε −AεP + (P ∗ − P )Aε)u, u〉 ≥2(α′1 −=(v−∞))
∥∥∥|x|α1− 1

2 〈εx〉α
′
1−α1 χ1(x)χ2(Dx)u

∥∥∥2

L2

− C ‖u‖2H−N,−1+α1,−N

The previous equation is a lower bound for the right-hand side of (C.8). We get an upper
bound for the left-hand side by the Cauchy-Schwarz inequality:

|〈Pu,Aεu〉| ≤
1

2(α′1 −=(v−∞))

∥∥∥〈εx〉α′1−α1 |x|α1+ 1
2 χ1(x)χ2(Dx)Pu

∥∥∥2

L2

+
α′1 −=(v−∞)

2

∥∥∥|x|α1− 1
2 〈εx〉α

′
1−α1 χ1(x)χ2(Dx)u

∥∥∥2

L2

We deduce:∥∥∥|x|α1− 1
2 〈εx〉α

′
1−α1 χ1(x)χ2(Dx)u

∥∥∥2

L2
≤ 1

(α′1 −=(v−∞))2

∥∥∥|x|α1+ 1
2 χ1(x)χ2(Dx)Pu

∥∥∥2

L2

+
C

α′1 −=(v−∞)
‖u‖2H−N,−1+α1,−N

We deduce that the left-hand side is bounded uniformly with respect to ε ∈ (0, 1). By the
Banach-Alaoglu theorem (and the Eberlein-Smulian theorem), we extract a weakly convergent
sequence in L2. Since the sequence is norm convergent (proposition C.1.13) in H0,−δ for δ > 0
and using the uniqueness of the limit in the sense of distributions, we have that the weak limit
is in fact |x|α1− 1

2 χ1(x)χ2(Dx)u. Therefore |x|α1− 1
2 χ1(x)χ2(Dx)u ∈ L2 and by weak lower

semicontinuity of the norm we obtain:∥∥∥|x|α1− 1
2 χ1(x)χ2(Dx)u

∥∥∥2

L2
≤ 1

(α′1 −=(v−∞))2

∥∥∥|x|α1+ 1
2 χ1(x)χ2(Dx)Pu

∥∥∥2

L2

+
C

α′1 −=(v−∞)
‖u‖2H−N,−1+α1,−N

We write

|x|α1+ 1
2 χ1(x)χ2(Dx) = |x|α1+ 1

2 χ̃1(x)χ2(Dx)χ1(x) + |x|α1+ 1
2 χ̃1(x)[χ1(x), χ2(Dx)].
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We use that |x|α1+ 1
2 χ̃1(x)χ2(Dx) is bounded from Hm−1, 1

2
+α1 and

|x|α1+ 1
2 χ̃1(x)[χ1(x), χ2(Dx)] is bounded from H−j,−j to Hj,j for all j ∈ N by proposi-

tion C.1.9 to get:∥∥∥|x|α1+ 1
2 χ1(x)χ2(Dx)Pu

∥∥∥2

L2
. ‖χ1(x)Pu‖

Hm−1, 12 +α1
+ ‖u‖H−N,−1+α1,−N

Furthermore, using that on the support of χ1 we have

|x|α1− 1
2 & 〈x〉α1− 1

2

we get: ∥∥∥|x|α1− 1
2 χ1(x)χ2(Dx)u

∥∥∥2

L2
≥ ‖χ1(x)χ2(Dx)u‖2

H0,− 1
2 +α1

For the last step, we take χ̃2 a smooth compactly cutoff equal to 1 on the support of χ2.

χ1(x)χ2(Dx)u =χ1(x)χ̃2(Dx)χ2(Dx)u

=χ̃2(Dx)χ1(x)χ2(Dx)u+ [χ1(x), χ̃2(Dx)]χ2(Dx)u

By proposition C.1.9, [χ1(x), χ̃2(Dx)]χ2(Dx) is bounded from H−N,−1+α1,−N to Hm,− 1
2

+α1 ,
〈Dx〉m χ̃2(Dx) is bounded on H0,− 3

2
+α1 and

‖χ1(x)χ2(Dx)u‖
Hm,− 1

2 +α1
. ‖〈Dx〉m χ̃2(Dx)χ1(x)χ2(Dx)u‖

H0,− 1
2 +α1

+ ‖u‖H−N,−1+α1,−N

. ‖χ1(x)χ2(Dx)u‖
H0,− 1

2 +α1
+ ‖u‖H−N,−1+α1,−N

We deduce:

‖χ1(x)χ2(Dx)u‖
Hm,− 1

2 +α1
. ‖χ1(x)χ2(Dx)Pu‖

Hm−1, 12 +α1
+ ‖u‖H−N,−1+α1,−N .

Sink estimate: We now prove the second estimate. As before, it is enough to
prove the estimate for χ̃1(x)v, and therefore without loss of generality we can assume
v ∈ ∩j∈NH

m−1,−1+α2,j . We take the commutator

A := χ2(Dx)χ1(x)2 |x|−2α2 χ2(Dx)

and η = 2. As before we have:

〈Aεv, Pv〉 − 〈Pv,Aεv〉 = 〈(PAε −AεP + (P ∗ − P )Aε)v, v〉

This time it is immediate without the need of a second regularization since we have taken η
large enough (the fact that we can allow a larger power of 〈εx〉−1 is due to the corresponding
term in the commutator having the correct sign unlike in the source estimate). We compute
the commutator:

i(PAε −AεP + (P ∗ − P )Aε) =χ2(Dx)χ1(x) |x|−2α2−1 〈εx〉−2

(
2χ′1(x) |x|

+2χ1(x)

(
α2 +

(εx)2

1 + (xε)2
+ =(v−∞)

))
χ2(Dx)

+ χ2(Dx)χ1(x)22=(V (x)− |x|−1 v−∞) 〈εx〉−2 |x|−2α2 χ2(Dx)

+ i[V (x)− 2i=(V (x)), χ2(Dx)]χ1(x)2 〈εx〉−2 |x|−2α2 χ2(Dx)

+ iχ1(x)2 〈εx〉−2 |x|−2α2 [χ2(Dx), V (x)]
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This time, the terms 2χ′1(x) |x| and 2χ1(x)
(
α2 + (εx)2

1+(xε)2 + =(v−∞)
)
have opposite signs. As

in the source estimate, defining

G :=χ2(Dx)χ1(x)22=(V (x)− |x|−1 v−∞) 〈εx〉−2 |x|−2α2 χ2(Dx)

+ i[V (x)− 2i=(V (x)), χ2(Dx)]χ1(x)2 〈εx〉−2 |x|−2α2 χ2(Dx)

+ iχ1(x)2 〈εx〉−2 |x|−2α2 [χ2(Dx), V (x)]

we have 〈Dx〉N
(
χ− 〈x〉α2+1 + χ+ 〈x〉N

)
G is bounded from H−N,−1−α2,−N to L2 (uniformly

with respect to ε ∈ (0, 1)) by lemma C.1.17 and lemma C.1.12. We deduce that there exists
C > 0 such that:

〈i(PAε −AεP + (P ∗ − P )Aε)v, v〉 &
∥∥∥|x|− 1

2
−α2 〈εx〉−1 χ1(x)χ2(Dx)v

∥∥∥2

L2

−
∥∥∥∣∣χ′1(x)x

∣∣ 1
2 〈εx〉−1 χ1(x)χ2(Dx)v

∥∥∥2

L2
− C ‖u‖2H−N,−1−α2,−N

We bound 〈Pv,Aεv〉 exactly as in the first case and (using also the uniform boundedness of
〈εx〉−2) we get uniformly with respect to ε ∈ (0, 1):∥∥∥|x|− 1

2
−α2 〈εx〉−1 χ1(x)χ2(Dx)v

∥∥∥2

L2
. ‖χ1(x)Pv‖2

Hm−1, 12−α2
+
∥∥∥∣∣χ′1(x)x

∣∣ 1
2 χ1(x)χ2(Dx)v

∥∥∥2

L2

+ ‖v‖2H−N,−1−α2,−N

Using again a weak convergence argument, we deduce that |x|−
1
2
−α χ1(x)χ2(Dx)v ∈ L2 and∥∥∥|x|− 1

2
−α χ1(x)χ2(Dx)v

∥∥∥2

L2
. ‖Pv‖2

Hm−1, 12−α
+
∥∥∥∣∣χ′1(x)x

∣∣ 1
2 χ1(x)χ2(Dx)v

∥∥∥2

L2

+ ‖v‖2H−N,−1−α2,−N

Since
∥∥∥|χ′1(x)x|

1
2 χ1(x)χ2(Dx)v

∥∥∥2

L2
. ‖v‖2H−N,−1−α2,−N , we can finish the argument as in the

source estimate.

A completely parallel proof enables to get the estimate near the radial point at x = +∞.

Proposition C.2.5. Let χ1 be a smooth monotonic compactly supported cutoff equal to 1 in
a neighborhood of +∞ and equal to zero on a neighborhood of 0. Let χ2 be a smooth compactly
supported cutoff equal to 1 in a neighborhood of −z. Let χ̃1 be defined as χ1 and equal to 1
on supp(χ1). Let N ∈ N. Let β1 > −=(v+∞) and max(−=(v+∞), β1 − 1

2) < β′1 < β1 and
=(v+∞) < β2. There exists a constant C > 0 such that for all u ∈ ∪j∈NH

−j,−j such that
χ̃1(x)u ∈ Hm−1,− 1

2
+β′1 and all v ∈ ∪j∈NH

−j,−j such that χ̃1(x)v ∈ Hm−1,−β2−1:

‖χ1(x)χ2(Dx)u‖
Hm,− 1

2 +β1
≤C

(
‖χ1(x)Pu‖

Hm−1, 12 +β1
+ ‖u‖

H−N,−N,−
1
2 +β′1

)
(C.10)

‖χ1(x)χ2(Dx)v‖
Hm,− 1

2−β2
≤C

(
‖χ1(x)Pv‖

Hm−1, 12−β2
+ ‖v‖H−N,−N,−1−β2

)
(C.11)

in the strong sense that if the right-hand side is finite, so is the left-hand side and the inequality
holds.

We have several choices to obtain Fredholm estimates. Indeed, since the radial points
are isolated, we can choose freely to use a source or sink estimate at any given radial point.
Note that the situation would have been different if we had characteristic curves linking radial
points (see the semiclassical analysis below).

We can now state all the Fredholm estimates following from our analysis:
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Proposition C.2.6. Let m ∈ R, =(v−∞) < α1, −=(v−∞) < α2, max(=(v−∞), α1 − 1
2) <

α′1 < α1, −=(v+∞) < β1, =(v+∞) < β2, max(−=(v+∞), β1 − 1
2) < β′1 < β1. There exists

a constant C > 0 such that for all u ∈ ∪N∈NH
−N,−N , we have (in the strong sense that

whenever the right-hand side is finite, so is the left-hand side and the inequality holds):

‖u‖
Hm,− 1

2 +α1,−
1
2 +β1

≤ C
(
‖Pu‖

Hm−1, 12 +α1,
1
2 +β1

+ ‖u‖
Hm−1,− 1

2 +α′1,−
1
2 +β′1

)
(C.12)

‖u‖
Hm,− 1

2−α2,−
1
2−β2

≤ C
(
‖Pu‖

Hm−1, 12−α2,
1
2−β2

+ ‖u‖Hm−1,−1−α2,−1−β2

)
(C.13)

‖u‖
Hm,− 1

2 +α1,−
1
2−β2

≤ C
(
‖Pu‖

Hm−1, 12 +α1,
1
2−β2

+ ‖u‖
Hm−1,− 1

2 +α′1,−1−β2

)
(C.14)

‖u‖
Hm,− 1

2−α2,−
1
2 +β1

≤ C
(
‖Pu‖

Hm−1, 12−α2,
1
2 +β1

+ ‖u‖
Hm−1,−1−α2,−

1
2 +β′1

)
(C.15)

Proof. All the estimates are proved similarly: we use the elliptic estimate of corollary C.2.2
and then the radial point estimate (propositions C.2.3 and C.2.5) to bound the error terms
χ3(x)χ1(Dx)u and χ3(x)χ1(Dx)u using either the source or the sink estimate. For (C.12) we
use two sources estimates, for (C.13) we use two sink estimates, for (C.14) we use a source
estimate near −∞ and a sink estimate near +∞ and for (C.15) we use the source estimate
near +∞ and the sink estimate near −∞.

We give some details in the case of (C.14). Let u ∈ Hm−1,− 1
2

+α′1,−1−β2 such that Pu ∈
Hm−1, 1

2
+α1,

1
2
−β2 (otherwise the right-hand side is infinite). Let χ1 be a smooth compactly

supported cutoff such that χ1 = 1 in a neighborhood of −z. Let χ3 and χ4 be smooth
monotonic cutoffs such that χ3 = 1 in a neighborhood of −∞, χ3 = 0 on supp(χ+), χ4 = 0
on supp(χ−) and χ4 = 1 in a neighborhood of +∞.

Since χ−u ∈ Hm−1,− 1
2

+α′1 , and χ−Pu ∈ Hm−1, 1
2

+α1 we can use the source estimate (C.5)
(with N large enough) to get χ3u ∈ Hm,− 1

2
+α1 and:

‖χ3(x)χ1(Dx)u‖
Hm,− 1

2 +α1
. ‖χ3(x)Pu‖

Hm−1, 12 +α1
+ ‖u‖

Hm−1,− 1
2 +α′1,−1−α2

Similarly, we can use (C.11) to get:

‖χ4(x)χ1(Dx)u‖
Hm,− 1

2−β2
. ‖χ4(x)Pu‖

Hm−1, 12−β2
+ ‖u‖

Hm−1,− 1
2 +α′1,−1−α2

We use corollary C.2.2 (with N large enough):

‖u‖
Hm,− 1

2 +α1,−
1
2−β2

. ‖Pu‖
Hm−1,− 1

2 +α1,−
1
2−β2

+ ‖χ3(x)χ1(Dx)u‖
Hm,− 1

2 +α1,−
1
2−β2

+ ‖χ4(x)χ1(Dx)u‖
Hm,− 1

2 +α1,−
1
2−β2

+ ‖u‖
Hm−1,− 1

2 +α′1,−1−β2

Combining all these estimates, we get the claim.

Estimates of proposition C.2.6 are called Fredholm estimates because of the following
general result.

Lemma C.2.7. Let X0 ⊂ X1 ⊂ X2 and Y0 ⊂ Y1 ⊂ Y2 be Banach spaces (with continuous
dense inclusions). Let P : X1 → Y2 be a bounded operator such that P|X0

is bounded from
X0 to Y1. We assume that both inclusions X1 ⊂ X2 and Y0 ⊂ Y1 are compact and that there
exists C > 0 such that for all u ∈ X1 and all v ∈ Y ∗1 :

‖u‖X1
≤ C

(
‖Pu‖Y1

+ ‖u‖X2

)
(C.16)

‖v‖Y ∗1 ≤ C
(
‖P ∗v‖X∗1 + ‖v‖Y ∗0

)
. (C.17)

Note that in the previous estimate, the right hand side may be infinite. Under these as-
sumptions, P is Fredholm as an operator between the Banach space X := {u ∈ X1 : Pu ∈ Y1}
(endowed with the norm ‖u‖2X = ‖u‖2X1

+ ‖Pu‖2Y1
) and Y1.

266



Proof. We begin by proving that X is a Banach space. Let (un) be a Cauchy sequence in X.
Then by completeness of X1, there exists u ∈ X1 such that lim

n→+∞
un = u for the topology

of X1. Moreover by completeness of Y1 there exists v ∈ Y1 such that lim
n→+∞

Pun = v for the
topology of Y1. On the other hand, by continuity of P , we have lim

n→+∞
Pun = Pu for the

topology of Y2. By uniqueness of the limit in Y2, we have Pu = v ∈ Y1 and lim
n→+∞

un = u in
X.

Now we prove the Fredholm property. For all u ∈ Ker(P ), we have ‖u‖X1
≤ C ‖u‖X2

by
estimate (C.16). By compactness of the inclusionX1 ⊂ X2, we deduce thatB(0, 1)X1∩Ker(P )
is relatively compact for the topology induced by X2. The topology induced by X2 is the same
as the topology induced by X1 since the two norms are equivalent on Ker(P ). Therefore,
Ker(P ) endowed with the norm X1 has a relatively compact unit ball. We deduce that
dim(Ker(P )) < +∞. The same argument using (C.17) and the compactness of the inclusion
Y ∗1 ⊂ Y ∗0 proves that Ker(P ∗) = Ran(P )⊥ is finite dimensional.

We now prove that P (X) is closed. We take y1, ..., yk a normed basis of Ker(P ) and we
denote by y∗1, ..., y∗k extensions (of norm 1) of the dual basis (obtained by the Hahn-Banach
theorem). Let (un) be a sequence in X and v ∈ Y1 such that lim

n→+∞
Pun = v in Y1. We have

to prove that v ∈ P (X). Without loss of generality, we can assume that y∗i (un) = 0 (replacing
un by un −

∑
i≤k y

∗
i (un)yi which does not change the value of v). By contradiction assume

that un is unbounded in X1. Extracting a subsequence, we can assume ‖un‖X1
→ +∞.

Then lim
n→+∞

P

(
un

‖un‖X1

)
= 0 in Y1. By compactness, we can assume (after extracting a

subsequence) that un
‖un‖X1

converges to z ∈ X2 for the topology of X2. Using inequality

(C.16), we deduce that un
‖un‖X1

is Cauchy in X1. We deduce z ∈ Ker(P ) and we have the

convergence in X1. Then by continuity, for i = 1, ..., k, we have y∗i (z) = 0 and because

z ∈ Ker(P ) we deduce z = 0. But it is a contradiction since
∥∥∥∥ un
‖un‖X1

∥∥∥∥
X

= 1. So (un) is

bounded in X1. After extracting a subsequence, we can assume that lim
n→+∞

un = u in X2.

Then we use (C.16) and deduce that (un) is Cauchy in X1. Since we also have that (Pun) is
Cauchy in Y1, by completeness of X and uniqueness of the limit in X2, we have lim

n→+∞
un = u

in X. By uniqueness of the limit in Y1, we deduce that v = Pu ∈ P (X).

We deduce the following Fredholm statement:

Proposition C.2.8. Let Y be a Banach space of distributions. Let m, l, l′ ∈ R. We define
Xm,l,l

′
(Y ) :=

{
u ∈ Hm,l,l′ : Pu ∈ Y

}
(endowed with the graph norm). Let α1 > =(v−∞),α2 >

−=(v−∞), β1 > −=(v+∞) and β2 > =(v+∞). The following operators are Fredholm:

• P : Xm,−
1
2

+α1,− 1
2

+β1(Hm−1, 1
2

+α1,
1
2

+β1)→ Hm−1, 1
2

+α1,
1
2

+β1

• P : Xm,−
1
2
−α2,− 1

2
−β2(Hm−1, 1

2
−α2,

1
2
−β2)→ Hm−1, 1

2
−α2,

1
2
−β2

• P : Xm,−
1
2

+α1,− 1
2
−β2(Hm−1, 1

2
+α1,

1
2
−β2)→ Hm−1, 1

2
+α1,

1
2
−β2

• P : Xm,−
1
2
−α2,− 1

2
+β1(Hm−1, 1

2
−α2,

1
2

+β1)→ Hm−1, 1
2
−α2,

1
2

+β1

In the case of this particularly simple operator Dx + V (x) + z, proposition C.2.8 can also
be recovered by elementary methods as we partially show in the following section (in the case
m = 1 for simplicity).
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C.3 Fredholm property by an elementary method

It is instructive to perform a completely explicit analysis in this simple case. Let z ∈ R.
Let F (x) =

∫ x
0 V (s) ds. In particular, we have F (x) = v+∞ ln(x) + O(1) when x → +∞

and F (x) = −v−∞ ln |x| + O(1) when x → −∞. For the operator P = Dx + V (x) + z and
f ∈ L1

loc(R), standard ordinary differential equation theory enables to find all the solutions in
S ′ of (Dx + V (x) + z)u = f . They are of the form:

uC(x) = i

∫ x

0
ei(F (s)−F (x)+z(s−x))f(s) ds+ Ce−i(F (x)+zx)

for C ∈ C. Let α1 > =(v−∞) and β1 > −=(v+∞) We prove that

P : X1,− 1
2

+α1,− 1
2

+β1(H0, 1
2

+α1,
1
2

+β1)→ H0, 1
2

+α1,
1
2

+β1

is Fredholm of index −1 (the other cases are similar). By the development of F , there exists
C > 0 such that for x ≥ 1:

C−1x=(v+∞) ≤
∣∣∣e−i(F (x)+zx)

∣∣∣ ≤ Cx=(v+∞)∣∣∣Dxe
−i(F (x)+zx)

∣∣∣ ≤ Cx=(v+∞)

and similarly, for x ≤ 1:

C−1 |x|−=(v−∞) ≤
∣∣∣ei(F (x)+zx)

∣∣∣ ≤ C |x|−=(v−∞)∣∣∣Dxe
i(F (x)+zx)

∣∣∣ ≤ C |x|−=(v−∞)

We deduce that Ker(P ) ∩ H1,− 1
2

+α1,− 1
2

+β1 = {0} and Ker(P ∗) ∩ H0,− 1
2
−α1,− 1

2
−β1 =

Ce−i(F (x)+zx). Therefore, it remains to prove that if f ∈ H0, 1
2

+α1,
1
2

+β1 and∫ +∞

−∞
ei(F (s)+zs)f(s) ds = 0,

then for some value of the constant C, uC ∈ H1,− 1
2

+α1,− 1
2

+α2 . We take

C =

∫ 0

−∞
ei(F (s)+zs)f(s) ds.

We have

uC(x) =

∫ x

−∞
ei(F (s)−F (x)+z(s−x)f(s) ds =

∫ +∞

x
ei(F (s)−F (x)+z(s−x)f(s) ds

(where the second equality comes from the hypothesis on f).

|χ−(x)u(x)|2 . χ−(x)2 〈x〉−2=(v−∞)
∫ x

−∞
〈s〉−1−α1+=(v−∞) ds

∫ x

−∞
〈s〉1+α1+=(v−∞) |f(s)|2 ds

. 〈x〉−α1−=(v−∞)
∫ x

−∞
〈s〉1+α1+=(v−∞) |f(s)|2 ds

Similarly:

|χ+(x)u(x)|2 . χ+(x)2 〈x〉2=(v+∞)
∫ +∞

x
〈s〉−1−β1−=(v+∞) ds

∫ +∞

x
〈s〉1+β1−=(v+∞) |f(s)|2 ds

. 〈x〉−β1+=(v+∞)
∫ +∞

x
〈s〉1+β1−=(v+∞) |f(s)|2 ds
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We deduce (introducing M := sup supp(χ−)):∫
R
〈x〉−1+2α1 |χ−(x)u(x)|2 dx .

∫
R
χ−(x)2 〈x〉−1+α1−=(v−∞)

∫ x

−∞
〈s〉1+α1+=(v−∞) |f(s)|2 ds dx

.
∫ M

−∞

∫ M

s
χ−(x)2 〈x〉−1+α1−=(v−∞) dx 〈s〉1+α1+=(v−∞) |f(s)|2 ds

.
∫ M

−∞
〈s〉1+2α1 ‖f(s)‖2 ds

. ‖f‖2
H0, 12 +α1,

1
2 +β1

Similarly, ∫
R
〈x〉−1+2β1 |χ+(x)u(x)|2 dx . ‖f‖2

H0, 12 +α1,
1
2 +β1

A similar computation provides:∥∥∥〈x〉−1+2α1 Dxχ−u
∥∥∥2

L2
. ‖f‖2

H0, 12 +α1,
1
2 +β1

and ∥∥∥〈x〉−1+2β1 Dxχ+u
∥∥∥2

L2
. ‖f‖2

H0, 12 +α1,
1
2 +β1

.

This concludes the proof.

C.4 Semiclassical analysis

Often, we want to know when the operator is invertible and we want uniform bounds for the
inverse when z → +∞. In this section, we introduce the semiclassical tools which will be
used to answer this question. We introduce the semiclassical parameter h ∈ (0, 1).

As before, it will be enough for our simple example to use combinations of Fourier multi-
pliers and multiplication operators. Note that semiclassical Fourier multipliers will be of the
form g(hDx) for g ∈ Sm.

Definition C.4.1. We introduce the semiclassical family of Sobolev spaces. For m, l ∈ R, we
define Hm,l

h as Hm,l endowed with the norm:

‖u‖
Hm,l
h

:=
∥∥∥〈x〉l 〈hDx〉m u

∥∥∥
L2

Remark C.4.2. Note that for all h > 0, the norm of Hm,l
h is equivalent to the norm of

Hm,l. However, this definition become interesting when we study the limit h → 0. For
example, for a family (uh)h∈(0,1) of elements in Hm,l we are interested by quantities such as:
suph∈(0,1) ‖uh‖Hm,l

h
. If m ≥ 0, the explicit bound in proposition C.1.9 provides in particular

that suph∈(0,1) ‖uh‖Hm,l
h
≤ suph∈(0,1) ‖uh‖Hm,l but the converse does not hold (see the family

uh = χ(h−1x) with χ ∈ C∞c (R), l = 0, m = 1).

Proposition C.4.3. Let l,m ∈ R. If m ≥ 0, we have the following relations between norms
(uniformly with respect to h):

hm ‖.‖Hm,l .l,m ‖.‖Hm,l
h
.l,m ‖.‖Hm,l .

If m ≤ 0, we have (uniformly with respect to h):

h−m ‖.‖
Hm,l
h
.l,m ‖.‖Hm,l .l,m ‖.‖Hm,l

h
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Proof. In both cases it is a consequence of the fact that the families of operators:

〈x〉l 〈Dx〉−|m| 〈hDx〉|m| 〈x〉−l

and

〈x〉l h|m| 〈Dx〉|m| 〈hDx〉−|m| 〈x〉−l

are h-uniformly bounded on L2 which follows from the quantitative bound in proposition C.1.9
together with the fact that 〈ξ〉−|m| 〈hξ〉|m| and h|m| 〈ξ〉|m| 〈hξ〉−|m| have h-uniformly bounded
seminorms in S0(R).

By the explicit bound in proposition C.1.9 we have:

Proposition C.4.4. Let m0 ∈ R. Let g ∈ Sm0(R). For every m, l ∈ R, the family of operators
g(hDx) is h-uniformly bounded from Hm,l

h to Hm−m0,l
h .

Proof. We have to prove that 〈x〉l g(hDx) 〈hDx〉−m0 〈x〉−l is h-uniformly bounded on L2. It
is a consequence of the explicit bound in proposition C.1.9 (noting that 〈hξ〉−m0 g(hξ) has all
its S0(R)-seminorms h-uniformly bounded).

Remark C.4.5. For l′ ≥ l and m ∈ R it follows from the definition that: ‖.‖
Hm,l
h
≤ ‖.‖

Hm,l′
h

.

An application of proposition C.4.4 proves that 〈hDx〉m−m
′
is h-uniformly bounded on Hm′,l′

for m′ ≥ m and any l′ ∈ R. Therefore we deduce that for l′ ≥ l and m′ ≥ m, we have
h-uniformly:

‖.‖
Hm,l
h
.m−m′,l ‖.‖Hm′,l′

h

We also have a semiclassical version of proposition C.1.8:

Proposition C.4.6. Let g ∈ Sm(R) and f ∈ Sl(R). For all M ∈ N, there exists N ∈ N such
that

g(hDx)f(x) = f(x)g(hDx) +
N∑
j=1

hj
∂jxf(x)(Dj

ξg)(hDx)

j!
+ hN+1RN,h

where RN,h is a continuous operator on S ′ (which is continuous on S) and hRN,h is h-
uniformly bounded from H−2M,−2M

h to H2M,2M
h .

Proof. By the proof of proposition C.1.8, we have for N ∈ N:

g(hDx)f(x)− f(x)g(hDx)−
N∑
j=1

hj
∂jxf(x)(Dj

ξg)(hDx)

j!
= hN+1RN,h

where for u ∈ S:

RN,hu =
1

2π

∫∫
eiξ(x−y)RN,h(x, y, ξ)u(y) dy dξ

RN,h(x, y, ξ) :=(DN+1
ξ g)(hξ)

∫ 1

0

(1− s)N

N !
f (N+1)(x+ s(y − x)) ds

=RN (x, y, hξ)

270



where RN (x, y, ξ) was already analyzed in the proof of proposition C.1.8. A computation very
similar to the one performed there provides the following h-uniform bound (for k′′ ∈ N and
N ≥ l − 1):∣∣∣〈hDx〉2M 〈hDy〉2M eiξ(x−y) 〈x− y〉−2k′′ 〈Dξ〉2k

′′
RN (x, y, hξ)

∣∣∣ .M,k′′∥∥∂N+1
x f

∥∥
Sl−N−1

4M

∥∥∥∂N+1
ξ g

∥∥∥
Sm−N−1

2k′′
〈hξ〉m−N−1+4M 〈x〉2l−2N−2+2k′′ 〈y〉N+1−l−2k′′

(C.18)

We choose N and k′′ exactly as in the proof of proposition C.1.8. We define:

v(x) := 〈x〉2M 〈hDx〉2M RN 〈hDx〉2M 〈x〉2M u

= 〈x〉2M
∫∫
〈hDx〉2M 〈hDy〉2M

(
eiξ(x−y) 〈x− y〉−2k′′ 〈Dξ〉2k

′′
RN (x, y, hξ)

)
〈y〉2M u(y) dy dξ

where the second line is obtained by integration by part exactly as in the proof of proposition
C.1.8. Using the bound (C.18) (for simplicity, we do not keep track of the dependence with
respect to the seminorms of f and g since we do not use it) and the fact thatm−N−1+4M <
−1:

|v(x)| .
∫∫
〈hξ〉m−N−1+4M 〈x〉2l−2N−2+2k′′ 〈y〉N+1−l−2k′′ |u(y)| dξ dy

. h−1 〈x〉2l−2N−2+2k′′
∫
〈y〉N+1−l−2k′′ |u(y)| dy

The Cauchy-Schwarz inequality and the fact that 2l−2N−2+2k′′ < −1
2 , N+1−l−2k′′ < −1

2
provides (h-uniformly):

‖v‖2L2 . h−1 ‖u‖L2

We deduce that hRN,h is h-uniformly bounded from H−2M,−2M
h to H2M,2M

h . This concludes
the proof.

We can use the previous proposition to obtain the h-uniform boundedness of multiplication
operators:

Proposition C.4.7. Let l,m ∈ R. Let f ∈ Sl0(R). The operator multiplication by f is
h-uniformly bounded from Hm,l

h to Hm,l−l0
h .

Proof. We have to prove that the operator 〈x〉l−l0 〈hDx〉m f(x) 〈hDx〉−m 〈x〉−l is h-uniformly
bounded on L2. We use proposition C.4.6 with N and M large enough to write:

〈hDx〉m f(x) =
N∑
j=0

hjfj(x)gj(hDx) + hN+1RN

with fj ∈ Sl(R), gj ∈ S−m(R) and hRN is h-uniformly bounded from Hm,l
h to H0,−l+l0

h (note
that by remark C.4.5, it is the case as soon as −2M ≤ m, −2M ≤ l, 0 ≤ 2M , −l+ l0 ≤ 2M).
We deduce that 〈x〉l−l0 hN+1RN 〈hDx〉−m 〈x〉−l is h-uniformly bounded on L2. Since by the
quantitative bound in C.1.9 gj(hDx) 〈hDx〉m is h-uniformly bounded on H0,l and 〈x〉l−l0 fj is
bounded from H0,l to L2, this concludes the proof.

The following improvement of proposition C.4.6 is often convenient:
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Proposition C.4.8. Let g ∈ Sm(R) and f ∈ Sl(R). For N ∈ N, we have:

g(hDx)f(x) = f(x)g(hDx) +
N∑
j=1

hj
∂jxf(x)(Dj

ξg)(hDx)

j!
+ hN+1RN,h

where RN,h is a continuous operator on S ′ (which is continuous on S) and for all r, q ∈ R,
RN,h is h-uniformly bounded from Hr,q

h to Hr−m+N+1,r−l+N+1
h .

Proof. On the model of the proof of proposition C.1.12, we use proposition C.4.6 for N ′ large
enough and we use propositions C.4.4 and C.4.7 to bound the explicit terms with index larger
than N + 1 in the expansion.

Similarly to the previous section, we introduce the semiclassical hybrid spaces (with dif-
ferent decay index at x = −∞ and at x = +∞)

Definition C.4.9. Let m, l, l′ ∈ R. Let χ+ and χ− be smooth non negative cutoffs such
that χ+ = 1 in a neighborhood of +∞ and χ− = 1 in a neighborhood of −∞ and such that
χ− + χ+ = 1. The space Hm,l,l′

h is the vector space Hm,l,l′ endowed with the norm

‖u‖2
Hm,l,l′
h

= ‖χ−u‖2Hm,l
h

+ ‖χ+u‖2
Hm,l′
h

We have the following natural extension of propositions C.4.4 and C.4.7.

Proposition C.4.10. Let m, l, l′ ∈ R Let m0 ∈ R. Let g ∈ Sm0(R). The family of operators
g(hDx) is h-uniformly bounded from Hm,l,l′

h to Hm−m0,l,l′

h . Let f ∈ Sl0,l
′
0(R), the operator

multiplication by f is h-uniformly bounded from Hm,l,l′

h to Hm,l−l0,l′−l′0
h .

Proof. We have χ−(x)g(hDx) = g(hDx)χ−(x) + [χ−(x), g(hDx)] where g(hDx)χ−(x) is h-
uniformly bounded from Hm,l

h to Hm,l
h and [χ−(x), g(hDx)] is bounded from Hm,l−N

h to
Hm,l+N
h for every N ∈ N. A similar observation for χ+(x)g(hDx) leads to the following

bound:

‖χ−g(hDx)u‖2
Hm,l
h

+ ‖χ+g(hDx)u‖2
Hm,l′
h

. ‖χ−u‖2Hm,l
h

+ ‖χ+u‖2Hm,l
h

+ ‖u‖
H
m,min(l,l′)
h

. ‖u‖
Hm,l,l′
h

.

The proof for f follows from C.4.7.

C.5 Analysis of the operator Ph = hDx + hV (x) + 1

We consider the semiclassical family of operators Ph = hDx + hV (x) + 1. The semiclassical
principal symbol (obtained by replacing h∂x by iξsc and keeping only the principal order with
respect to h) is:

ph(x, ξ) = ξsc + 1

and the characteristic set (which is now a subset of scT ∗R in contrast to the classical case
where it was a subset of ∂

(
scT
∗
R
)
) is the closure of {ξsc = −1} in scT

∗
R. The semiclassical

Hamiltonian vector field is:

Hph = 2∂x
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scT
∗
R

ξsc

x = −∞ x = +∞

Figure C.2: Semiclassical Hamiltonian flow on the characteristic set of Ph.

Near x = −∞, using the boundary defining function ρ− = −x−1, we have Hph = ρ2
−∂ρ−

(and the rescaled Hamiltonian vector field near x = −∞ is ρ−1
− Hph = ρ−∂ρ− and the point

{ξsc = −1, ρ− = 0} is a radial point. Similarly, the point {ξsc = −1, ρ+ = 0} is a radial point.
This time both radial points are linked by a characteristic curve. Therefore, we have to use a
source radial point estimate at one end and a sink radial point estimate at the other end and
propagate control from the source to the sink by propagation of singularities. As before we
begin by the elliptic estimate to control the operator outside of the characteristic set:

Proposition C.5.1. Let χ be a smooth compactly supported cutoff which is equal to 1 in the
neighborhood of −1. Let m, l, l′ ∈ R. For all N ∈ N, there exists a constant C > (independent
of h) such that for all u ∈ ∪j∈NH

−j,−j:

‖u‖
Hm,l,l′
h

≤ C
(
‖Phu‖Hm−1,l,l′

h

+ ‖χ(hDx)u‖
Hm,l,l′
h

+ hN ‖u‖
Hm−N,l−N,l′−N
h

)
as usual with the convention that some terms may be infinite.

Proof. As in the classical case, by induction, it is enough to prove it for N = 1. We have the
relation:

(hDx − 1)−1(1− χ(hDx))Ph = 1− χ(hDx) + h(hDx − 1)−1(1− χ(hDx))V (x).

By proposition C.4.10 we obtain that (hDx − 1)−1(1 − χ(hDx)) is h-uniformly bounded
from Hm−1,l,l′

h to Hm,l,l′

h and (hDx − 1)−1(1 − χ(hDx))V (x) is h-uniformly bounded from
Hm−1,l−1,l′−1
h to Hm,l,l′

h .

We state the semiclassical version of the radial point estimates. We begin by the estimate
near the radial point at x = −∞:

Proposition C.5.2. Let χ1 be a smooth monotonic compactly supported cutoff equal to 1
in a neighborhood of −∞ and equal to zero on a neighborhood of 0. Let χ2 be a smooth
compactly supported cutoff equal to 1 in a neighborhood of −1. Let χ3 be a non negative
smooth compactly supported cutoff such that χ3 = 1 on supp(χ′1). Let χ̃1 be defined as χ1 and
equal to 1 on supp(χ1). Let N ∈ N. Let α1 > =(v−∞), max(=(v−∞), α1 − 1

2) < α′1 < α1

and α2 > −=(v−∞). We assume that the support of χ1 is sufficiently close to −∞ so that
α′1 > =(V (x) |x|) and α2 > −=(V (x) |x|) on supp(χ1). There exists a constant C > 0

(independent of h) such that for all u ∈ ∪j∈NH
−j,−j such that χ̃1(x)u ∈ Hm−1,− 1

2
+α′1

h and all
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v ∈ ∪j∈NH
−j,−j
h such that χ̃1(x)v ∈ Hm−1,−1−α2

h :

‖χ1(x)χ2(hDx)u‖
H
m,− 1

2 +α1
h

≤C
(
h−1 ‖χ1(x)Phu‖

H
m−1, 12 +α1
h

+ h
1
2 ‖u‖

H
−N,− 1

2 +α′1,−N
h

)
(C.19)

‖χ1(x)χ2(hDx)v‖
H
m,− 1

2−α2
h

≤C
(
h−1 ‖χ1(x)Phv‖

H
m−1, 12−α2
h

+ ‖χ3(x)χ2(hDx)v‖
H
m,− 1

2−α2
h

+h
1
2 ‖v‖

H
−N,−1−α2,−N
h

)
(C.20)

in the strong sense that if the right-hand side is finite, so is the left-hand side and the inequality
holds.

Proof. The proof is very similar to the proof of proposition C.2.3 and we therefore provide
less details.

Source estimate (C.19): As in the proof of proposition C.2.3, we can assume without
loss of generality that u ∈ ∩j∈NH

m−1,− 1
2

+α′1,j . We perform a commutator argument with

A =χ2(hDx)χ1(x)2 |x|2α1 χ2(hDx)

Aε =χ2(hDx)χ1(x)2 |x|2α1 〈εx〉2(α′1−α1) χ2(hDx).

Exactly as in the proof of proposition C.2.3, we obtain:

〈Aεu, Phu〉 − 〈Phu,Aεu〉 = 〈(PhAε −AεPh + (P ∗h − Ph)Aε)u, u〉 (C.21)

The commutator computation is also very similary but we have an extra factor h.

PhAε −AεPh + (P ∗h − Ph)Aε
−i

=hχ2(hDx)χ1(x) |x|2α1−1 〈εx〉2α
′
1−2α1

(
2χ′1(x) |x|

−2χ1(x)

(
α1 − (α1 − α′1)

(εx)2

1 + (εx)2
−=(V (x) |x|)

))
χ2(hDx)

+ ih[V (x)− 2i=(V (x)), χ2(hDx)]χ1(x)2 |x|2α1 〈εx〉2α
′
1−2α1 χ2(hDx)

+ ihχ2(hDx)χ1(x)2 |x|2α1 〈εx〉2α
′
1−2α1 [χ2(hDx), V (x)]

We denote by η := infx∈suppχ1 α
′
1−
=(V (x))
|x| > 0 We deduce that there exists C > 0 independent

of h and ε such that:

〈−i(PhAε −AεPh + (P ∗h − Ph)Aε)u, u〉 ≥2hη
∥∥∥|x|α1− 1

2 〈εx〉α
′
1−α1 χ1(x)χ2(hDx)u

∥∥∥2

L2

− Ch2 ‖u‖2
H
−N,−1+α1,−N
h

.

On the other hand we have:

|〈Phu,Aεu〉| ≤
1

2hη

∥∥∥〈εx〉α′1−α1 |x|α1+ 1
2 χ1(x)χ2(hDx)Pu

∥∥∥2

L2

+
hη

2

∥∥∥|x|α1− 1
2 〈εx〉α

′
1−α1 χ1(x)χ2(hDx)u

∥∥∥2

L2
.

We deduce (after a weak convergence argument identical to the one in proof of proposition
C.2.3):∥∥∥|x|α1− 1

2 χ1(x)χ2(hDx)u
∥∥∥2

L2
≤ 1

h2η2

∥∥∥|x|α1+ 1
2 χ1(x)χ2(hDx)Pu

∥∥∥2

L2
+
C

η
h ‖u‖2

H
−N,−1+α1,−N
h

.
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Exactly as in the proof of proposition C.2.3 but using propositions C.4.8 and C.4.10 instead
of propositions C.1.12 and C.1.9, we obtain (uniformly with respect to h):

‖χ1(x)χ2(hDx)u‖
H
m,− 1

2 +α1
h

.h−1 ‖χ1(x)Phu‖
H
m−1, 12 +α1
h

+ h
1
2 ‖u‖

H
−N,− 1

2 +α′1,−N
h

Sink estimate (C.20): As in the proof of proposition C.2.3, we can assume without loss
of generality that v ∈ Hm−1,−1−α2 . We make a commutator estimate with

Aε := χ2(hDx)χ1(x)2 |x|−2α2 〈εx〉−2 χ2(hDx).

We have:

〈Aεu, Phu〉 − 〈Phu,Aεu〉 = 〈(PhAε −AεPh + (P ∗h − Ph)Aε)u, u〉 . (C.22)

The commutator is:

i(PhAε −AεPh + (P ∗h − Ph)Aε) =hχ2(hDx)χ1(x) |x|−2α2−1 〈εx〉−2 (2χ′1(x) |x|

+2χ1(x)

(
α2 +

(εx)2

1 + (xε)2
+ =(V (x) |x|)

))
χ2(hDx)

+ hi[V (x)− 2i=(V (x)), χ2(hDx)]χ1(x)2 |x|−2α2 〈εx〉−2 χ2(hDx)

+ hχ2(hDx)χ1(x)2 |x|−2α2 〈εx〉−2 [χ2(hDx), V (x)]

As in the proof of proposition C.2.3, we have terms of opposite signs in the commutator. We
get (h, ε-uniformly):

〈i(PhAε −AεPh + (P ∗h − Ph)Aε)v, v〉 &h
∥∥∥|x|− 1

2−α2 〈εx〉−1 χ1(x)χ2(hDx)v
∥∥∥2
L2

− h
∥∥∥|χ′1(x)x|

1
2 〈εx〉−1 χ1(x)χ2(hDx)v

∥∥∥2
L2
− h2 ‖v‖2H−N,−1−α2,−N .

The difference with respect to proposition C.2.3 is that we cannot bound∥∥∥∣∣χ′1(x)x
∣∣ 1

2 〈εx〉−1 χ1(x)χ2(hDx)v
∥∥∥2

L2

using an elliptic estimate since Ph is not semiclassically elliptic on supp(χ′1) × {−1}ξsc . We
bound |〈Phu,Aεu〉| exactly as in the source case and we get h-uniformly (after a weak con-
vergence argument):∥∥∥|x|− 1

2
−α2 χ1(x)χ2(hDx)v

∥∥∥2

L2
. h−2 ‖Phv‖2

Hm−1, 12−α2
+ ‖χ3(x)χ2(hDx)v‖2L2 + h ‖v‖2H−N,−1−α2,−N

Using propositions C.4.8 and C.4.4, we get (uniformly with respect to h):

‖χ1(x)χ2(hDx)v‖
H
m,− 1

2−α2
h

≤C
(
h−1 ‖χ1(x)Phv‖

H
m−1, 12−α2
h

+ ‖χ3(x)χ2(hDx)v‖
H
m,− 1

2−α2
h

+h
1
2 ‖v‖

H
−N,−1−α2,−N
h

)

We have the analog proposition for the radial point near x = +∞:
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Proposition C.5.3. Let χ1 be a smooth monotonic compactly supported cutoff equal to 1 in
a neighborhood of +∞ and equal to zero on a neighborhood of 0. Let χ2 be a smooth compactly
supported cutoff equal to 1 in a neighborhood of −1. Let χ3 be a non negative smooth compactly
supported cutoff such that χ3 = 1 on supp(χ′1). Let χ̃1 be defined as χ1 and equal to 1 on
supp(χ1). Let N ∈ N. Let β1 > −=(v+∞), max(−=(v+∞), β1 − 1

2) < β′1 < β1 and β2 >
=(v+∞). We assume that χ1 is supported sufficiently close to +∞ so that β′1 > −=(V (x) |x|)
and β2 > =(V (x) |x|) on supp(χ1). There exists a constant C > 0 (independent of h) such

that for all u ∈ ∪j∈NH
−j,−j such that χ̃1(x)u ∈ Hm−1,− 1

2
+β′1

h and all v ∈ ∪j∈NH
−j,−j
h such

that χ̃1(x)v ∈ Hm−1,−1−β2

h :

‖χ1(x)χ2(hDx)u‖
H
m,− 1

2 +β1
h

≤C
(
h−1 ‖χ1(x)Phu‖

H
m−1, 12 +β1
h

+ h
1
2 ‖u‖

H
−N,−N,− 1

2 +β′1
h

)
(C.23)

‖χ1(x)χ2(hDx)v‖
H
m,− 1

2−β2
h

≤C
(
h−1 ‖χ1(x)Phv‖

H
m−1, 12−β2
h

+ ‖χ3(x)χ2(hDx)v‖
H
m,− 1

2−β2
h

+h
1
2 ‖v‖

H
−N,−N,−1−β2
h

)
(C.24)

in the strong sense that if the right-hand side is finite, so is the left-hand side and the inequality
holds.

The last estimate we need is a propagation estimate along the semiclassical Hamiltonian
flow.

Proposition C.5.4. Let χ2 be a smooth compactly supported cutoff equal to 1 in a neighbor-
hood of −1. Let χ1, χ3, χ4 be non negative smooth compactly supported cutoffs such that
χ1 = 1 on supp(χ3) ∪ supp(χ4) and for every x ∈ supp(χ4) there exists t ∈ (0,+∞)
such that e−tHp(x,−1) ∈ {(x,−1) : χ3(x) = 1} and for all s ∈ (0, t), esHp(x,−1) ⊂
{(x,−1) : χ1(x) = 1}. For all m, l ∈ R and N ∈ N, there exists C > 0 independent of h
such that for all u ∈ H−N,−N :

‖χ4(x)χ2(hDx)u‖
Hm,l
h
≤ C

(
h−1 ‖χ1(x)Phu‖Hm−1,l

h
+ ‖χ3(x)χ2(hDx)u‖

Hm,l
h

+ h
1
2 ‖u‖

H−N,−Nh

)
in the strong sense that if the right-hand side is finite, so is the left-hand side and the inequality
holds.

Remark C.5.5. We can easily adapt the proof to get the estimate if we assume that for
every x ∈ supp(χ4) there exists t ∈ (−∞, 0) (instead of (0,+∞)) such that e−tHp(x,−1) ∈
{(x,−1) : χ3(x) = 1} and for all s ∈ (t, 0), esHp(x,−1) ⊂ {(x,−1) : χ1(x) = 1}. In other
words, we can propagate the estimate forward and backward along the Hamiltonian flow of Ph.

Proof. The proof of this proposition is based on a commutator estimate with a function
exponentially decreasing along the Hamiltonian flow except on the support of χ3. By the
hypothesis (using that e−tHp(x,−1) = (x − 2t,−1)), we have inf {x ∈ R : χ3(x) = 1} <
inf supp(χ4). We define a smooth compactly supported function χ5 (see figure C.3) such
that supp(χ5) ⊂

{
χ1 ≥ 1

2

}
, χ5(x) = 1 on supp(χ4) and χ′5(x) = −b(x) + e(x) with b, e ≥ 0

and supp(e) ⊂
{
χ3 ≥ 1

2

}
(for example, we can arrange that b is supported in a arbitrarily

small neighborhood of inf {χ3 = 1}). ForM > 0 a large constant to be chosen later, we define
the commutator A = χ2(hDx)e−Mxχ5(x)2χ2(hDx). We have:

〈Phu,Au〉 − 〈Au, Phu〉 = 〈(APh − PhA+ (Ph − P ∗h )A)u, u〉 .
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x

χ3 χ4 χ5

Figure C.3: Representation of the relative positions of χ3, χ4 and χ5.

Moreover:

i(APh − PhA+ (Ph − P ∗h )A) =hχ2(hDx)e−Mxχ5(x) ((M − 2=(V (x))χ5(x)

+2b(x)− 2e(x))χ2(hDx)

+ h[V (x) + 2i=(V (x)), χ2(hDx)]e−Mxχ5(x)2χ2(hDx)

+ hχ2(hDx)e−Mxχ5(x)2[χ2(hDx), V (x)]

We deduce that for M > 1 + 2 supx∈supp(χ5) |V (x)|, we have uniformly with respect to h:

〈i(APh − PhA)u, u〉 &h
∥∥∥e−Mx

2 χ5(x)χ2(hDx)u
∥∥∥2

L2
− h ‖χ3(x)χ2(hDx)u‖2L2

− h2 ‖u‖2
H−N,−Nh

On the other hand we have for η > 0:

|〈Phu,Au〉| ≤
1

2hη

∥∥∥e−Mx
2 χ1(x)χ2(hDx)Phu

∥∥∥2

L2
+
ηh

2

∥∥∥e−Mx
2 χ5(x)χ2(hDx)u

∥∥∥2

L2

We deduce that for η small enough we have (h-uniformly),

‖χ4(x)χ2(hDx)u‖2L2 .
∥∥∥e−Mx

2 χ5(x)χ2(hDx)u
∥∥∥2

L2

.h−2
∥∥∥e−Mx

2 χ1(x)χ2(hDx)Phu
∥∥∥2

L2
+ ‖χ3(x)χ2(hDx)u‖2L2 + h ‖u‖2

H−N,−Nh

Finally using propositions C.4.8 and C.4.4, we get the existence of a constant C > 0 (inde-
pendent of h and u) such that:

‖χ4(x)χ2(hDx)u‖
Hm,l
h
≤ C

(
h−1 ‖χ1(x)Phu‖Hm−1,l

h
+ ‖χ3(x)χ2(hDx)u‖

Hm,l
h

+ h
1
2 ‖u‖

H−N,−Nh

)

Combining all the semiclassical estimates, we get:

Proposition C.5.6. Let m ∈ R. Let α1 > =(v−∞),α2 > −=(v−∞), max(−1
2 +α1,=(v−∞)) <

α′1 < α1, β1 > −=(v+∞), β2 > =(v+∞) and max(−1
2 +β1,−=(v+∞)) < β′1 < β1. There exists

h0 ∈ (0, 1) and C > 0 independent of h < h0 such that for all u ∈ Hm−1,− 1
2

+α′1,−1−β2

h such

that Phu ∈ H
m−1, 1

2
+α1,

1
2
−β2

h and all v ∈ Hm−1,−1−α2,− 1
2

+β′1
h such that Phv ∈ H

m−1, 1
2
−α2,

1
2

+β1

h .

‖u‖
H
m,− 1

2 +α1,−
1
2−β2

h

≤Ch−1 ‖Phu‖
H
m−1, 12 +α1,

1
2−β2

h

‖v‖
H
m,− 1

2−α2,−
1
2 +β1

h

≤Ch−1 ‖Phv‖
H
m−1, 12−α2,

1
2 +β1

h
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Proof. The first estimate is obtained by a source estimate near x = −∞ and a sink es-
timate near x = +∞. The second one is obtained similarly but with a source estimate
near x = +∞ and a sink estimate near x = −∞. We prove in details the first one. Let
u ∈ H

m−1,− 1
2

+α′1,−1−α2

h such that Phu ∈ H
m−1, 1

2
+α1,

1
2
−α2

h . Let χ0 be a smooth monotonic
compactly supported cutoff equal to 1 in a neighborhood of −∞ and supported on a small
neighborhood of −∞. Let χ1 be a smooth monotonic compactly supported cutoff equal to 1
in a neighborhood of +∞ and supported in a small neighborhood of +∞. Let χ2 be a smooth
compactly supported cutoff equal to 1 in a neighborhood of −1. Let χ3 be a non negative
smooth compactly supported cutoff such that χ3 = 1 on supp(χ′1). By propositions C.5.2 and
C.5.3, we obtain χ2(hDx)u ∈ Hm,− 1

2
+α1,− 1

2
−α2 and (uniformly with respect to h):

‖χ0(x)χ2(hDx)u‖
H
m,− 1

2 +α1
h

.h−1 ‖χ0(x)Phu‖
H
m−1, 12 +α1
h

+ h
1
2 ‖u‖

H
m−1,− 1

2 +α′1,−1−β2
h

‖χ1(x)χ2(hDx)u‖
H
m,− 1

2−β2
h

.h−1 ‖χ1(x)Phu‖
H
m−1, 12−β2
h

+ ‖χ3(x)χ2(hDx)u‖
H
m,− 1

2−α2
h

+ h
1
2 ‖u‖

H
m−1,− 1

2−α
′
1,−1−β2

h

Let χ5 be a smooth non negative compactly supported cutoff such that χ5 = 1 on supp(χ3)∪
supp(1− χ0 − χ1) and χ6 be a smooth compactly supported cutoff equal to 1 on some open
interval and such that suppχ6 ⊂ {χ0 = 1} and sup supp(χ6) < inf supp(χ5). Let χ̃5 be a
smooth compactly supported cutoff such that χ̃5 = 1 on [inf suppχ6, sup suppχ5]. Note that
for all x ∈ supp(χ5), there exists t ∈ (0,+∞) such that e−tHp(x,−1) ∈ {(x,−1) : χ6(x) = 1}
and for all s ∈ [0, t], e−sHp(x,−1) ∈ {(x,−1) : χ̃5(x) = 1}. We can therefore apply proposition
C.5.4 and we obtain (h-uniformly):

‖χ5(x)χ2(hDx)u‖
H
m,− 1

2 +α1
h

. ‖χ̃5(x)Phu‖
H
m−1, 12 +α1
h

+ ‖χ6(x)χ2(hDx)u‖
H
m,− 1

2 +α1
h

+ h
1
2 ‖u‖

H
m−1,− 1

2−α
′
1,−1−α2

h

. ‖Phu‖
H
m−1, 12 +α1,

1
2−β2

h

+ ‖χ0(x)χ2(hDx)u‖
H
m,− 1

2 +α1
h

+ h
1
2 ‖u‖

H
m−1,− 1

2−α
′
1,−1−α2

h

Since we have (see proposition C.4.7) h uniformly:

‖(1− χ0(x)− χ1(x))χ2(hDx)u‖
H
m,− 1

2 +α1
h

. ‖χ5(x)χ2(hDx)u‖
H
m,− 1

2 +α1
h

‖χ3(x)χ2(hDx)u‖
H
m,− 1

2−α2
h

. ‖χ5(x)χ2(hDx)u‖
H
m,− 1

2 +α1
h

we deduce:

‖χ2(hDx)u‖
H
m,− 1

2 +α1,−
1
2−β2

h

. h−1 ‖Phu‖
Hm−1, 12 +α1,

1
2−β2

+ h
1
2 ‖u‖

H
m−1,− 1

2 +α′1,−1−β2
h

Therefore, we can use the elliptic estimate of proposition C.5.1 to get u ∈ Hm,− 1
2

+α1,− 1
2
−α2

and uniformly with respect to h:

‖u‖
H
m,− 1

2 +α1,−
1
2−β2

h

. h−1 ‖Phu‖
Hm−1, 12 +α1,

1
2−β2

+ h
1
2 ‖u‖

H
m−1,− 1

2 +α′1,−1−β2
h
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For h small enough, we can absorb the term h ‖u‖
H
m−1,− 1

2 +α′1,−1−β2
h

in the left-hand side. We

conclude that for h small enough we have (h-uniformly):

‖u‖
H
m,− 1

2 +α1,−
1
2−β2

h

. h−1 ‖Phu‖
H
m−1, 12 +α1,

1
2−β2

h

.

The main outcome from proposition C.5.6 is that for all α1, α2, β1 and β2 as in the propo-
sition, the following operators are invertible5 if h is small enough:

• Ph : Xm,−
1
2

+α1,− 1
2
−β2(Hm−1, 1

2
+α1,

1
2
−β2)→ Hm−1, 1

2
+α1,

1
2
−β2

• Ph : Xm,−
1
2
−α2,− 1

2
+β1(Hm−1, 1

2
−α2,

1
2

+β1)→ Hm−1, 1
2
−α2,

1
2

+β1

Taking h = 1
z (for z > 1) we deduce that Dx +V (x) + z is invertible between these spaces

for z large enough. We can also deduce a (crude) bound for the norm of the inverse uniform
with respect to z > z0 using proposition C.4.3. For example, if m = 1, we get that there
exists z0 > 0 and a constant C > 0 such that for all z > z0 we have:∥∥(Dx + V (x) + z)−1

∥∥
L
(
H0, 12 +α1,

1
2−β2 ,H1,− 1

2 +α1,−
1
2−β2

) ≤ Cz∥∥(Dx + V (x) + z)−1
∥∥
L
(
H0, 12 +α1,

1
2−β2 ,H0,− 1

2 +α1,−
1
2−β2

) ≤ C

5Semiclassical estimates provide Ker(Ph) = Ker(P ∗h ) = {0} and the closed range property of Ph.
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