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Résumé

L’objectif de cette thèse est d’étudier un modèle de forêts couvrantes sur un graphe muni
d’un �bré vectoriel et d’une connexion unitaire. Pour les �brés de rang 1, les con�gurations,
combinatoires, sont des forêts couvrantes d’unicycles aléatoires tirées selon une loi détermi-
nantale. Pour les �brés de rang quelconque, la collection aléatoire d’arêtes est remplacée par
une collection aléatoire de sous-espaces des �bres. Pour une connexion périodique unitaire,
nous établissons une formule intégrale pour le noyau du processus, mettant en évidence deux
phases, caractérisées par le comportement asymptotique des corrélations à grande distance.

Nous étudions par ailleurs des mesures de probabilités sur les forêts couvrantes d’uni-
cycles sur des suites de graphes �nis croissants, dépendant d’une fonction de poids sur les
cycles. Nous montrons que sous certaines hypothèses sur la fonction de poids, la limite ne
dépend pas des conditions au bord et peut être échantillonnée par un algorithme de marches
aléatoires à boucles e�acées. Sous d’autres hypothèses, nous prouvons des résultats sur la
vitesse asymptotique de décroissance des corrélations avec la distance, et la taille des com-
posantes connexes, qui s’appliquent en particulier au cas déterminantal.

Nous formulons en�n une correspondance entre les �brés de rang 2 complexes et les �-
brés de rang 1 sur le corps des quaternions, et observons, pour une connexion quaternionique
unitaire et périodique, deux phases selon l’aspect commutatif ou non des quaternions, l’une
correspondant au modèle usuel de forêts couvrantes uniformes et l’autre correspondant à
un modèle pour lequel certains unicycles �nis sont observés une in�nité de fois.



Abstract

The aim of this thesis is to study a model of spanning forests on a graph endowed
with a vector-bundle and a unitary connection. For rank-1 vector-bundles, the combi-
natorial con�gurations are spanning forests of random unicycles sampled according
to a determinantal law. For vector-bundles of arbitrary rank, the random collection
of edges is replaced by a random collection of subspaces of the �bers. For a unitary
periodic connection, we establish an integral formula for the kernel of this process,
revealing two phases, characterized by the asymptotic behavior of the long-distance
correlations.

We also study probability measures on spanning forests of unicycles on increasing
�nite graph sequences, depending on a weight function on the cycles. We show that
under certain assumptions on the weight function, the limit does not depend on the
boundary conditions and can be sampled by a loop-erased random walk algorithm.
Under other assumptions, we prove results on the asymptotic rate of decay of correla-
tions with the distance, and the size of related components, which apply in particular
to the determinantal case.

Finally, we formulate a correspondence between complex rank-2 vector-bundles
and rank-1 vector-bundles on the quaternion �eld, and observe the existence of two
phases, for a periodic unitary quaternionic connection, depending on the commutativ-
ity or non-commutativity of the quaternions weights, one corresponding to the usual
model of uniform spanning forests and the other corresponding to a model for which
some �nite unicycles are observed in�nitely many times.
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Chapter1
Introduction

Modèles de physique statistique et forêts couvrantes
aléatoires

Modèles de physique statistique et transitions de phases

La physique statistique est un domaine des mathématiques et de la physique théorique qui
étudie le comportement à grande échelle de phénomènes aléatoires suivant des mesures
de probabilités construites de façon locale. Ce domaine permet de modéliser notamment
des réactions physiques au cours desquelles les interactions entre particules à échelle
microscopique engendrent des phénomènes observables à échelle macroscopique. Il existe
par exemple le modèle de dimères, ou pavage par des dominos, qui étudie la formation
aléatoire de couplages parfaits qui modélise la formation de composés formés par des
molécules diatomiques, les dimères.

Un autre modèle de physique statistique très étudié est le modèle de percolation de
Fortuin-Kasteleyn (FK). Ce modèle étudie des sous-graphes aléatoires où chaque con�gu-
ration possède une certaine probabilité dépendant des arêtes présentes ou absentes. Les
mesures construites pour ce modèle dépendent de deux paramètres p et q. Le premier
paramètre compris entre 0 et 1 favorise quand il est proche de 1 les arêtes ouvertes et
le second compris strictement entre 0 et l’in�ni favorise quand il est supérieur à 1 les
con�gurations avec un grand nombre de composantes connexes.

Quand le paramètre q vaut 2, le modèle est en fait équivalent aumodèle d’Ising, un modèle
de physique statistique étudiant les con�gurations de spins et favorisant les con�gurations
de faible énergie, dans lesquelles les spins tendent à s’aligner. Le modèle d’Ising dépend d’un
paramètre de température qui peut être relié au paramètre p intervenant dans le modèle de
percolation FK. Quand la température est faible, le modèle est « gelé » et favorise fortement
les con�gurations où tous les spins sont alignés tandis que lorsque la température est
élevée, le modèle est plus désordonné et les con�gurations sont plus équiprobables. Un tel
changement brutal de comportement à l’échelle macroscopique en fonction d’un paramètre
régissant les interactions à échelle microscopique est appelé transition de phase.

Les transitions de phase apparaissent fréquemment dans l’étude de modèles de physique
statistique et peuvent se caractériser de di�érentes manières. Dans le cas de modèles de
percolation, il s’agit souvent d’une brusque variation de la taille des composantes connexes
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1. Introduction

en fonction du paramètre, notamment avec l’émergence d’une ou plusieurs composantes
connexes in�nies. Dans des modèles tels que le modèle d’Ising ou le modèle de dimères, les
transitions de phase correspondent souvent à une variation brutale de la distance typique
des corrélations, c’est à dire une variation de la vitesse de décroissance des corrélations à
grande échelle, qui peut être notamment polynomiale ou exponentielle.

Les di�érentes phases observées peuvent également se caractériser par la prépondérance
ou non des conditions de bord dans la construction de mesures en volume in�ni. En e�et,
les mesures en volume in�ni sur les modèles de physique statistique sont généralement
construites en étudiant la convergence de mesures en volume �ni en formant une exhaustion
du graphe sur lequel le modèle est étudié. Di�érentes suites de mesures peuvent être
construites en étudiant di�érentes conditions de bord sur ces exhaustions, mais lorsque
les corrélations à grande distance sont su�samment faibles, les di�érentes suites peuvent
converger vers une unique mesure limite. Par exemple, lorsque la température dans le
modèle d’Ising sur un graphe planaire est élevée, les corrélations à grande échelle sont
faibles et les conditions de bord sont donc non prépondérantes. Il en résulte l’existence
d’une unique mesure de Gibbs. Au contraire, lorsque la température est faible, les conditions
au bord sont prépondérantes et entrainent l’émergence de di�érentes mesures en volume
in�ni.

Une quantité caractéristique d’un modèle de physique statistique en volume in�ni
est l’énergie libre. Il s’agit du taux de croissance exponentielle par unité de volume de la
fonction de partition du modèle en volume �ni, dé�nie comme la somme des poids des
con�gurations. Cette quantité donne de nombreuses propriétés sur un modèle et l’étude de
son comportement selon les paramètres du modèle permet de comprendre également les
transitions de phase du modèle.

Lorsque le paramètre q du modèle de percolation FK converge vers 0, la mesure sur les
con�gurations favorise l’existence d’une unique composante connexe. Le modèle obtenu à
la limite q → 0, avec la contrainte p

1−p = qa avec 0 < a < 1, est appelé modèle de l’arbre
couvrant.

L’arbre couvrant

Dé�nition et origines. On appelle arbre couvrant sur un graphe un sous-graphe connexe
contenant tous les sommets et ne possèdant aucun cycle. Les arbres couvrants sont des
objets bien connus de la théorie des graphes et sont très étudiés en informatique théorique
pour leurs applications aux réseaux informatiques.

Le dénombrement des arbres couvrants sur un graphe remonte à Kirchho� (1847),
qui a montré des relations surprenantes entre la combinatoire des arbres couvrants et les
réseaux électriques sur les graphes. Le théorème de Kirchho� exprime le nombre d’arbres
couvrants sur un graphe quelconque comme le mineur Mi,j du laplacien ∆ (dé�nition 2.1)
du graphe en position (i, j), avec i, j quelconques. On appelle déterminant réduit det 0
d’un opérateur le produit de ses valeurs propres non nulles. En sommant sur tous les
mineurs principauxMi,i de ∆ pour i ∈ [1, n], ce théorème implique que le nombre d’arbres
couvrants est

1
n

det 0∆ = 1
n

∏
i

λi

où {λi}i est l’ensemble des valeurs propres non nulles de ∆.
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La formule de Cayley (1889), énumérant le nombre d’arbres couvrants sur un graphe
complet comme nn−2 où n est le nombre de sommets, en est un cas particulier.

L’étude de l’arbre couvrant aléatoire, en tant que modèle probabiliste, remonte au moins
au travail de Temperley [Tem74], qui a montré que que les arbres couvrants étaient en
bijection avec les pavages par des dominos. Plusieurs algorithmes ont ensuite été proposés,
par Aldous et Broder ([Ald90], [Bro89]), puis par Propp et Wilson ([PW98]), pour tirer
uniformément un arbre couvrant à partir de marches aléatoires simples sur le graphe.
L’algorithme de Wilson [Wil96], qui permet de construire un arbre couvrant aléatoire sur
un graphe �ni à partir de marches aléatoires à boucles e�acées généralise le théorème de
Pemantle ([Pem91]), qui montre que l’unique chemin entre deux points dans un arbre
couvrant uniforme a la même loi que la marche aléatoire à boucles e�acées entre ces deux
points.

Processus déterminantaux. Une conséquence du théorème de Kirchho� est une in-
terprétation de la probabilité de présence d’une arête lorsque le graphe est vu comme
un réseau électrique. En supposant que chaque arête du graphe soit un conducteur de
conductance unitaire et que deux extrémités d’une certaine arête soit connectée à une pile,
la probabilité qu’une arête soit présente dans un arbre couvrant aléatoire uniforme est
égale à la proportion de courant qui traverse cette arête. En considérant un graphe �ni
dont les arêtes sont pondérées par des poids (c(e))e∈E appelées conductances, une mesure
de probabilité naturelle sur les arbres couvrants du graphe attribue à chaque arbre une
probabilité proportionnelle au produit des conductances des arêtes:

µc(F ) =
∏
e∈E c(e)
Z

où Z =
∑
F

∏
e∈E c(e) est la fonction de partition du modèle.

Le formalisme des réseaux électriques sur les graphes et l’interprétation des marches
aléatoires en termes de courants électriques, principalement développés par Burton et
Pemantle, leur ont permis de montrer en 1993 ([BP93]) que les arêtes d’un arbre couvrant
aléatoire, distribué selon une telle mesure, forment un processus déterminantal, c’est à dire
un processus aléatoire dont la mesure est déterminantale, au sens suivant.

Une mesure de probabilités µ sur un ensemble �ni Ω = {0, 1}n est déterminantale
s’il existe une matrice K de taille n × n appelée noyau qui véri�e la propriété suivante.
Si S ⊂ [1, ..., n] alors si x ∈ Ω est un point aléatoire selon µ alors

P(∀i ∈ S, xi = 1) = det(KS×S)

c’est-à-dire le déterminant de la matrice K où l’on a conservé uniquement les lignes et les
colonnes dont les indices sont dans S.

Pour un arbre couvrant distribué selon la mesure µc, le noyau du processus est la
matrice de transfert de courant (Y (ei, ej))1≤i,j≤|E| où Y (e, e′) = ie(e′) est le courant qui
passe par e′ lorsqu’on impose un courant unitaire entre les extrémités de l’arête e.

Cette propriété est l’une des propriétés fondamentales du modèle d’arbre couvrant
aléatoire puisqu’elle permet des calculs explicites pour ce modèle, notamment de la fonction
de partition, et constitue une des motivations principales pour son étude.
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1. Introduction

Volume in�ni et généralisations à d’autres modèles de forêts couvrantes

Volume in�ni. L’étude du modèle d’arbre couvrant, son extension en volume in�ni
et sa généralisation à d’autres modèles s’est amplement poursuivie à la �n du 20e siècle
et au début du 21e siècle. Dans [Ale95], [BLPS01], [LP16], les auteurs s’intéressent à la
construction de mesures pour des modèles de forêts couvrantes sur des graphes in�nis en
considérant des exhaustions du graphe par des graphes �nis et en étudiant la limite faible de
la suite de mesures construites. Ce procédé qui est également utilisé pour la construction de
mesures de Gibbs pour le modèle d’Ising fait intervenir un choix de conditions au bord dans
la construction des mesures sur les graphes �nis. Les auteurs présentent plusieurs choix
de conditions au bord (libres, fermées et périodiques) et leurs in�uences sur les mesures
obtenues comme mesures limites.

Forêts avec connexion. D’autres auteurs se sont ensuite intéréssés à la généralisation
de ce modèle à d’autres modèles de forêts aléatoires plus généraux, notamment avec un plus
grand nombre de composantes connexes, mais conservant les propriétés déterminantales et
algorithmiques de l’abre couvrant, propriétés qui font l’intérêt majeur du modèle d’arbres
couvrants parmi les autres modèles de physique statistique. Dans [For93], l’auteur établit
des liens entre les déterminants de laplaciens déformés par une connexion et des sommes
de poids sur des con�gurations d’objets combinatoires : les forêts couvrantes d’unicycles.
Ces résultats sont de plus généralisés à d’autres types de déformation dans [KL20a]. En
2011, Kenyon a introduit dans [Ken11] un nouveau type de laplacien sur un �bré vectoriel
et décrit son lien dans le cas d’un �bré de rang 1 avec les mesures déterminantales sur les
forêts couvrantes d’unicycles. Pour un �bré de rang 2, il donne une formule combinatoire
pour le déterminant de ce laplacien.

Graphes planaires, volume in�ni et diagramme de phases. Sur certains graphes
planaires, il existe une correspondance entre les arbres couvrants et le modèle de dimères
sur un graphe bipartite construit à partir du graphe d’origine. Cette correspondance,
appelée bijection de Temperley, a motivé l’introduction d’une famille de mesures sur les
forêts couvrantes enracinées sur des graphes in�nis périodiques, caractérisées par leur
pente. Cette pente correspond au changement de hauteur moyen qui caractérise les mesures
de Gibbs pour le modèle de dimères, via la bijection de Temperley. L’utilisation de cette
correspondance et les propriétés qui en découlent ont été étudiés dans [Sun16]. Ces mesures
de Gibbs déterminées par leur pente moyenne sont également étudiées dans [Ken19] où R.
Kenyon prouve qu’il s’agit de plus de mesures déterminantales et donne une expression
intégrale pour leur noyau.

Des mesures sur les forêts couvrantes d’arbres enracinés peuvent également être con-
struites en ajoutant des masses sur les sommets permettant de favoriser certains sommets
comme racines des arbres de la forêt. On considère pour cela un laplacien massique qui
peut être vu comme un laplacien sur un graphe modi�é auquel un sommet a été ajouté et
est relié à tous les autres sommets. Le modèle massique est étudié dans [Ken11] et dans
[BdTR17]. Les auteurs de [BdTR17] s’intéressent notamment à un choix de masses et de
conductances particulier qui rend le modèle Z-invariant. Cette propriété assure l’aspect
local dans l’étude du modèle, en particulier des formules locales pour la fonction de Green
ainsi qu’une décroissance exponentielle des corrélations. Ils obtiennent notamment une
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transition de phase vers le modèle d’arbres couvrants lorsqu’un paramètre elliptique du
modèle tend vers 0, caractérisée par le développement asymptotique de l’énergie libre.

La décroissance des corrélations ainsi que le comportement de l’énergie libre peuvent
également être étudiés dans le cas des mesures à pente. Dans [KSO03] et [KO06], les auteurs
s’appuient sur l’étude de la courbe spectrale du polynôme caractéristique du modèle de
dimères pour établir des résultats sur la décroissance des corrélations et le comportement de
l’énergie libre pour le modèle de dimères selon le changement de hauteur moyen des mesures.
Il s’appuie sur des outils de géométrie algébrique tels que les amibes dont les propriétés
sont détaillées dans [Vir02, Mik00, Yge12]. Cette technique peut être utilisée également
dans le modèle de forêts couvrantes pour l’étude de la décroissance des corrélations comme
on peut le voir dans [Ken19]. Les résultats peuvent également être transposés au modèle
de forêts couvrantes via la bijection de Temperley comme le présente [Sun16].

Gaz arboréal. Plus récemment, les auteurs de [BCHS21], [BCH21] et de [HH23] ont
étudié un modèle de forêts couvrantes non enracinées qui provient de la limite q → 0 du
modèle de percolation FK avec la contrainte p = βq, où le paramètre β ≥ 0 est �xé. Ils
étudient les limites en volume in�ni de ce modèle, appelé modèle du gaz arboréal, sur des
réseaux et prouvent qu’il existe une valeur seuil de β à partir de laquelle, sous les mesures
de Gibbs invariante par translations, il existe presque surement exactement un arbre in�ni.

Sujet de la thèse

Un modèle de forêts couvrantes quantiques

Le sujet de thèse, proposé par Adrien Kassel, est l’étude du modèle de forêts couvrantes
quantiques. Cet objet d’étude est représenté dans l’illustration suivante.

Figure 1.1 – Simulation d’une forêt couvrante quantique dans le cas de rangN = 3 ([KL20c])
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1. Introduction

Il s’agit d’un modèle de physique statistique intégrable avec symétrie de jauge, associé
au déterminant du laplacien sur un �bré vectoriel discret au dessus d’un graphe, introduit
par Adrien Kassel et Thierry Lévy dans [KL20c, KL23]. Il constitue ainsi une extension du
modèle introduit dans [Ken11], en considérant des �brés de rang quelconque.

Ce modèle est dé�ni sur un graphe muni d’un �bré vectoriel et d’une connexion, par
des opérateurs généralisant le laplacien et la fonction de Green usuelle, correspondant au
cas d’un �bré de rang 1 muni d’une connexion triviale. Ce modèle généralise ainsi le modèle
d’arbre couvrant usuel très étudié en particulier dans [BLPS01] et [LP16]. Le formalisme du
laplacien avec une connexion, introduit en physique dans l’étude des théories de jauge sur
réseaux, est détaillé dans [Ken11], qui donne une expression combinatoire du déterminant
du laplacien pour des �brés de rang 1 et 2. Les con�gurations combinatoires sont des forêts
couvrantes d’unicycles, qui sont aléatoires selon une loi déterminantale.

Dans [KL20c], le formalisme des processus déterminantaux linéaires est introduit et
fournit, pour le cas d’un graphe muni d’un �bré de rang arbitraire avec connexion unitaire
dans U(N), une généralisation des forêts de rang 1, appelée forêt couvrante quantique. La
dé�nition de ce modèle et ses propriétés sont détaillées dans l’article en préparation [KL23].
La collection aléatoire d’arêtes de l’arbre couvrant est remplacée, dans ce modèle, par une
collection aléatoire de sous-espaces des �bres, sur les arêtes du graphe. Ainsi, sur un �bré
de rang N , une forêt couvrante quantique est la donnée d’un sous-espace aléatoire Qe
de RN sur chaque arête e, dont la loi jointe est déterminantale. Les mesures de probabilités
sur les forêts couvrantes quantiques sont déterminées par des poids matriciels sur les arêtes
du graphe.

Une attention particulière est portée dans la thèse au cas des graphes périodiques
avec périodicité des paramètres. Dans ce cas, on peut exhiber les phases du modèle selon
l’emplacement des paramètres dans un espace qui est de dimension �nie.

Les forêts couvrantes d’unicycles

Une forêt quantique peut s’interpréter de manière combinatoire en utilisant la notion de
forêt couvrante d’unicycles, qui correspond au cas de rang 1. Il existe en e�et N forêts
couvrantes d’unicycles aléatoires dont le nombre d’occupation sur chaque arête e est la
dimension Qe ∈ {1, . . . , N}.

Le cas de rang 1 du modèle de forêts couvrantes quantiques correspond au modèle
déterminantal de forêts couvrantes d’unicycles, associé au laplacien tordu par une connex-
ion, introduit dans [Ken11]. Les dé�nitions plus précises de ce modèle sont introduites dans
le chapitre 2. La mesure déterminantale obtenue dans ce cas donne à chaque con�guration
de forêts couvrantes d’unicycles une probabilité proportionnelle au produit des poids de
ses cycles où les poids dépendent de la connexion considérée.

Les forêts couvrantes aléatoires d’unicycles constituent plus généralement un modèle
très riche à étudier, notamment car il est en correspondance avec des modèles de dimères,
dans le cas de graphes plongés dans certaines surfaces (anneau, tore). Comme pour le
modèle d’arbre couvrant qui peut être échantillonné par l’algorithme de Propp-Wilson à
partir de marches aléatoires à boucles e�acées, une question naturelle pour ce modèle est
d’obtenir aléatoirement une forêt couvrante d’unicycles par un algorithme. Cette question
a notamment été étudiée par Bouttier, Bowick, Guitter et Jeng ([BBGJ07]), qui proposent
un algorithme généralisant l’algorithme de Propp-Wilson dans le cas de surface de genre
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non trivial pour obtenir aléatoirement un réseau couvrant et qui utilisent cet algorithme
pour l’étude du modèle de dimères sur le réseau carré à partir de la bijection de Temperley.

Dans [KK17], les auteurs s’intéressent au cas de mesures sur les forêts couvrantes
d’unicycles sur un graphe quelconque, non nécessairement planaire, dépendant de poids
qui ne proviennent pas nécessairement d’une connexion. Ils montrent que dans le cas où les
poids sont compris entre 0 et 1, la mesure sur les forêts couvrantes d’unicyles d’un graphe
�ni peut être échantillonnée par un algorithme de marches aléatoires à boucles e�acées où
les boucles sont e�acées avec probabilité égale à leurs poids. Cet algorithme dépend d’un
ordre �xé sur les sommets mais la mesure ne dépend pas de l’ordre choisi. Un objectif de
cette thèse est d’étudier la généralisation de cet algorithme au cas de graphes in�nis et de
montrer que sous certaines hypothèses de minorations des poids, la suite de mesures sur
des graphes croissants converge faiblement vers une mesure en volume in�ni qui peut être
échantillonnée par un algorithme et qui ne dépend pas de l’ordre sur les sommets choisi
dans l’algorithme.

Les résultats principaux de la thèse

Les principaux résultats de cette thèse se trouvent dans les chapitres 4 à 7. Ils sont ordonnés
du cadre le plus général au cadre le plus particulier (rang 1). Une fois les conditions au bord
et la topologie de convergence d’une suite de mesures en volume �ni vers une mesure en
volume in�ni dé�nies dans le chapitre 3, la première étape consiste à calculer le noyau du
modèle de forêts couvrantes quantiques en rang N en volume in�ni avec périodicité des
paramètres (chapitre 4). Ce calcul permet de mettre en évidence deux phases dans l’espace
des paramètres, selon la décroissance des corrélations.

Nous nous intéressons ensuite aux forêts couvrantes d’unicycles en rang 1 et aux
mesures de probabilités sur ces forêts, pondérées par les poids des cycles. Le cas particulier
des poids inférieurs à 1, étudié dans le chapitre 5 constitue à la fois un outil dans l’étude
des forêts couvrantes d’unicycles déterminantales et un modèle probabiliste ayant son
propre intéret puisqu’il permet d’échantillonner des forêts couvrantes d’unicycles sur un
graphe in�ni à partir d’un algorithme de marches aléatoires à boucles e�acées. Nous
étudions ensuite dans les chapitres 6 et 7 le comportement asymptotique des con�gurations
distribuées selon les mesures déterminantales sur les forêts couvrantes d’unicycles associées
à une connexion unitaire en rang 1, complexe ou quaternionique, selon les paramètres.

Chacun des paragraphes suivants correspond à un des chapitres 4 à 7, et est structuré de
la façon suivante : nous donnons un aperçu de la problématique et des résultats existants,
puis nous présentons les résultats obtenus.

Etude du noyau du modèle pour une connexion périodique

L’étude de modèles de physique statistique en volume in�ni sur un graphe périodique,
construit comme la limite sur une exhaustion naturelle par des graphes toriques est très
courante en physique statistique et permet d’exprimer le noyau du modèle en volume
in�ni sous forme intégrale. En 1993, Burton et Pemantle ([BP93]) établissent une formule
pour le noyau du modèle de forêts couvrantes uniformes comme une intégrale double d’un
opérateur sur un graphe torique �ni.
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1. Introduction

Pour l’étude des phases du modèle de dimères planaire, antérieure à l’étude des phases
des modèles de forêts couvrantes, Kenyon, Okounkov, She�eld ([KSO03]) considèrent un
graphe doublement périodique et donnent une formule explicite pour la limite qui s’exprime
comme une double intégrale faisant intervenir le polynome caractéristique. La position des
paramètres par rapport à l’amibe du polynôme, déterminée par ses zéros, décrit alors les
phases du modèle : liquide, gazeuse, solide. Ils donnent ensuite des formules similaires pour
la famille à deux paramètres de mesures de Gibbs d’un modèle de dimères sur un graphe
in�ni doublement périodique.

Des formules similaires sont établies pour la famille à deux paramètres de mesures de
Gibbs du modèle de forêts couvrantes d’unicycles par [Ken19] et par [Sun16], appelées
forêts à pentes. De telles formules sont également établies par [BdTR17] pour des forêts
couvrantes d’arbres enracinées sur des graphes isoradiaux munis de masses.

Nous étudions dans le chapitre 4 des forêts couvrantes quantiques avec connexion
unitaire, déterministe et périodique, sur les arêtes d’un graphe in�ni Zd-périodique. Cette
connexion est alors determinée par des poids matriciels sur les arêtes du graphe et plus
précisément par un choix de matrices unitaires (M1, ...,Md) ∈ UN (C)d sur les demi-
arêtes du graphe. Nous établissons une expression intégrale pour le noyau de la mesure
déterminantale obtenue comme limite de mesures sur une exhaustion du graphe par des
graphes toriques.

Théorème 1. Le noyau de corrélation K de la mesure limite est un opérateur dont la ma-
trice (Ke,e′)e,e′ s’exprime sous forme intégrale

Ke,e′ =
∫
|z1|=1,...,|zd|=1

∏
j

z
yj−xj
j K[e],[e′](z)

dz1
2iπz1

...
dzd

2iπzd
=
∫
z∈Td

zy−xK[e],[e′](z)
dz

2iπz

où l’opérateurK(z) est un endomorphisme d’un espace de dimension �nie dN ,

K(z) = 1
P (z)d(z)tCom(∆(z))d

∗(1/z)

où ∆(z) = d∗(1/z)d(z), P (z) = det(∆(z)) où les opérateurs d(z), d∗(1/z) s’expriment
sous forme matricielle

d(z) =

Ip − z1M1
...

Ip − zdMd

 , d∗(1/z) =
(
Ip − z1

−1M−1
1 ... Ip − zd−1M−1

d

)
.

La preuve repose sur des décompositions périodiques des espaces de 1-formes et des
techniques similaires à la transformée de Fourier discrète.

Nous étudions ensuite le comportement asymptotique des corrélations déterminées
par ce noyau et mettons en évidence l’existence de deux phases, caractérisées par les
décroissances exponentielles ou polynomiales des corrélations, selon l’existence ou non de
zéros du polynôme caractéristique.

Nous montrons que cette dichotomie est équivalente à l’existence de vecteurs propres
communs aux matrices (M1, ...,Md) ∈ UN (C)d qui permettent de voir le modèle comme
une superposition de sous-modèles indépendants. Dans le cas d’un �bré de rang 2, nous
remarquons que ces deux phases sont caractérisées par l’aspect commutatif ou non des
matrices.
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Théorème 2. On a équivalence entre les assertions suivantes :

• Il existe z = (z1, ..., zn) ∈ Td tel que P (z) = 0.

• Il existe X ∈ C2 vecteur propre commun à toutes les matricesMj .

Dans le cas où z = (z1, ..., zn) ∈ Td est tel que P (z) = 0, les valeurs propres associées
respectivement aux matrices Mj et au vecteur propre commun X sont z̄j . Il y a alors au
plus p racines z = (z1, ..., zn) ∈ Td de P et dans le cas p = 2, on a alors exactement deux
racines z = (z1, ..., zn), z̄ = (z̄1, ..., z̄n) ∈ Td et lesMj sont codiagonalisables et s’écrivent(
zj 0
0 z̄j

)
dans la base (X⊥, X).

Mesures sur les forêts couvrantes échantillonnées par un algorithme de
Wilson

La problématique naturelle d’échantillonner (de manière exacte ou parfois approchée)
une mesure de probabilité par un algorithme e�cace est une question essentielle dans les
modèles probabilistes. Des algorithmes rapides pour obtenir un échantillon aléatoire exact
d’un arbre couvrant uniforme ont été proposés par Aldous et Broder ([Ald90], [Bro89])
puis par Propp et Wilson ([PW98]). Une adaptation de l’algorithme de Propp-Wilson
pour obtenir aléatoirement une forêt couvrante d’unicycles a ensuite été proposée par
[BBGJ07] dans le cas d’un graphe planaire sur un anneau, puis par [KK17] pour un graphe
plus général et des cycles pondérés. Une adaptation de l’algorithme de Propp-Wilson
est également présentée dans [BdTR17] pour obtenir aléatoirement une forêt couvrante
d’arbres enracinées sur un graphe muni de masses.

Dans le cas d’un graphe connexe �ni dont les cycles sont munis de poids, une mesure de
probabilité naturelle sur les forêts couvrantes d’unicycles sur ce graphe consiste à donner
à une con�guration une probabilité proportionnelle au produit des poids de ses cycles.
Dans le cas où les poids sur les cycles orientés sont compris entre 0 et 1, les con�gurations
aléatoires peuvent être échantillonnées par l’algorithme de marches aléatoires à boucles
e�acées introduit par [KK17] qui généralise l’algorithme de Wilson. Les auteurs montrent
notamment que la mesure ne dépend pas de l’ordre choisi sur les sommets dans l’algorithme.

Dans le chapitre 5, nous généralisons, sous certaines hypothèses, la construction de
cet algorithme aux graphes hypercubiques Zd, dont les arêtes correspondent aux couples
de points à distance 1, dont les cycles sont munis de poids (p(γ))γ compris entre 0 et 1.
Nous montrons également que la mesure µp, échantillonnée par cet algorithme de marches
aléatoires à boucles e�acées, est une mesure sur les forêts couvrantes d’unicycles du graphe
in�ni. Nous montrons en�n le résultat suivant.

Théorème 3. Soit G = Zd et p une fonction de poids sur les cycles à valeurs dans [α, 1]
avec α > 0. La suite de mesures (µp,n)n≥1 sur les forêts couvrantes d’unicycles, construites
sur une exhaustion du graphe Zd converge faiblement vers la mesure µp, quelles que soient les
conditions au bord considérées. La mesure µp ne dépend pas de l’énumération des sommets
choisie dans l’algorithme, et sous cette mesure, les composantes connexes du modèle sont
presque surement �nies.
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1. Introduction

Dans le chapitre 5, on prouve ce résultat pour des graphes plus généraux, supposés
connexes et moyennables, dont les cycles sont munis de poids (p(γ))γ compris entre 0 et 1,
et tels qu’une famille de cycles véri�e une hypothèse de minoration uniforme (5.18).

Mesures déterminantales sur les forêts couvrantes d’unicycles.

Les mesures de probabilité sur les forêts d’unicycles associées au laplacien tordu par une
connexion sur un �bré de rang 1 possèdent des propriétés intéressantes par leur caractère
déterminantal. Les expressions combinatoires pour le déterminant du laplacien montrent
que ces mesures associent également à une con�guration une probabilité proportionnelle
au produit de poids de cycles où les poids des cycles orientés dépendent de la connexion
le long des arêtes du cycle. Néanmoins, ces poids ne sont plus à valeurs dans [0, 1] et
ces mesures ne peuvent donc pas être échantillonnées par l’algorithme précédent. C’est
pourquoi, dans le chapitre 6, nous étudions les mesures sur les forêts couvrantes d’unicycles
sur un graphe �ni, associées à des poids quelconques sur les cycles.

Une question naturelle est de déterminer les changements induits dans le modèle
par une variation des poids des cycles. La dépendance de la mesure d’incidence et de la
fonction de partition vis-à-vis des poids est une question naturelle qui a été étudiée pour
d’autres modèles de physique statistique. Des inégalités de dominations stochastiques ont
notamment été établies pour les modèles de percolation.

En supposant par exemple que les fonctions de poids sur les cycles sont constantes
égales à α, β, une question naturelle est d’établir une inégalité de domination stochastique
deµα par rapport àµβ . Néanmoins, d’après le théorème de Strassen, si deux mesures sont en
situation de domination stochastique l’une par rapport à l’autre, alors il existe un couplage
des deux tel que la première variable aléatoire soit incluse dans la seconde. Sur un graphe
�ni, deux forêts couvrantes d’unicycles qui sont incluses l’une dans l’autre sont égales
puisqu’elles ont le même nombre d’arêtes (égal au nombre de sommets). Ceci impliquerait
que les deux mesures µα et µβ sont égales, ce qui est une contradiction. Nous montrons
cependant des inégalités de comparaisons sur des événements particuliers lorsque le poids
des cycles est modi�é uniformément. Nous prouvons notamment qu’augmenter uniformé-
ment le poids des cycles favorise un plus grand nombre de cycles donc de composantes
connexes.

Nous montrons par ailleurs que sur un graphe connexe �ni, en conditionnant la mesure
sur les forêts couvrantes d’unicycles par les cycles aléatoires de poids supérieurs à 1, nous
obtenons une mesure échantillonnée par un algorithme de type Wilson avec des conditions
au bord.

Nous appliquons ensuite ces résultats au cas des mesures déterminantales associées
à des poids provenant d’une connexion complexe unitaire sur le graphe. Nous étudions
notamment la limite du modèle en volume in�ni, qui existe par [KL23], et montrons que
sous certaines hypothèses, les composantes connexes contenant un cycle sont presque
surement �nies. Nous montrons en�n le résultat suivant.

Théorème 4. Si G est un graphe in�ni Zd-périodique muni d’une connexion périodique h et
qu’il existe une famille �nie Γ d’unicycles disjoints, telle que ∀γ ∈ Γ,

∏
e∈γ h(e) 6= 1 alors

presque sûrement, sous la mesure µh associée à la connexion h, la famille Γ apparaît une
in�nité de fois dans la con�guration aléatoire.
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Pour un cycle γ �xé, on appelle holonomie de γ la quantité
∏
e∈γ h(e).

Ce résultat implique en particulier que sous l’hypothèse d’existence d’une telle famille, il
existe une in�nité de composantes connexes �nies. Par ailleurs, sous l’hypothèse d’existence
d’une telle famille, les corrélations décroissent exponentiellement vite avec la distance.

Mesures déterminantales associées à une connexion quaternionique

Le laplacien tordu par une connexion peut également être dé�ni pour une connexion à
valeurs dans le corps des quaternions et le Q-determinant de cet opérateur, comme dé�ni par
[Moo22] et [Meh04], admet également une expression combinatoire où les con�gurations
sont des forêts couvrantes d’unicycles ([Ken11], [Kas15], [KL20a]). Cela dé�nit naturelle-
ment une mesure de probabilités Q-determinantales sur les forêts couvrantes d’unicycles.
Dans [KL20c], le changement du corps de base pour les processus déterminantaux linéaires
est étudié et montre une correspondance entre les forêts couvrantes quantiques associées
à un �bré de rang 2 à connexion dans U2(C) telle que l’holonomie de tout cycle fermé
est dans SU2(C), et les superpositions de forêts couvrantes d’unicycles associées à une
connexion à valeurs dans le corps des quaternions. Dans le chapitre 7, nous étendons cette
correspondance à des graphes in�nis.

Nous étudions par ailleurs le cas d’une connexion unitaire périodique à valeurs dans
le corps des quaternions sur un graphe in�ni Zd-périodique. Cette connexion est alors
determinée par un choix de quaternions unitaires (h1, ..., hd) ∈ U1(H)d sur les demi-
arêtes du graphe. Nous obtenons alors un modèle avec deux phases selon si les quater-
nions (h1, ..., hd) ∈ U1(H)d commutent deux à deux.

Théorème 5. Si les quaternions (h1, ..., hd) ∈ U1(H)d commutent deux à deux, on retrouve
le modèle usuel de forêts couvrantes uniformes étudié par [Pem91, BP93, BLPS01, LP16]. Si les
quaternions unitaires (h1, ..., hd) ∈ U1(H)d ne commutent pas deux à deux, on obtient un
modèle limite en volume in�ni qui ne dépend pas des conditions de bord considérées. Pour ce
modèle, tous les unicycles �nis d’holonomie non triviale sont observés une in�nité de fois.

La preuve de ce théorème repose sur des résultats des chapitres 4 et 6. La preuve du
dernier résultat est une adaptation du théorème 4 dans le cas d’une mesure Q-déterminantale.
On remarque pour ce faire que les mesures Q-déterminantales conservent la propriété
d’association négative des mesures déterminantales et qu’un Q-déterminant est nul si et
seulement si la matrice est singulière au sens où elle admet une combinaison (à coe�cients
quaternions a priori) de ses colonnes qui vaut zéro.

Ces deux phases se distinguent également par la décroissance exponentielle ou quadra-
tique des corrélations avec la distance.
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Chapter2
Spanning Forests on finite graphs.

In this chapter, we introduce the model which is studied in this thesis, that is to say the
quantum spanning forest, de�ned by [KL23]. Since a quantum spanning forest can be
interpreted as a superposition of quantum spanning forests of rank 1, which are easier to
understand, we will de�ne �rstly the model in rank 1 before the general model of quantum
spanning forests. In rank 1, quantum spanning forests, also called cycle-rooted spanning
forests because of their con�gurations, are in some sense a generalization of spanning
trees. Let us give some background about spanning trees and their generalizations before
studying cycle-rooted spanning forests and quantum spanning forests.

2.1 Spanning trees and rooted spanning forests

In this section, we recall the de�nitions and the formalism of graphs and operators on
graphs in order to de�ne probability measures on subgraphs of a �nite graph, in particular
spanning forests of a �nite graph. We give several examples of Boltzmann probability
measures on spanning forests of a �nite graph, that are probability measures which give
to a con�guration a probability proportional to its weight, from the easiest one (uniform
spanning tree) to the ones which depend on several parameters on the graph (conductances,
masses). We recall some properties of those probability measures, in particular their
determinantal aspect.

2.1.1 Graphs, Cycles, Roots

We say that G = (V,E) is a simple graph if V is a countable set and E is a subset of V ×V
such that for every e = (x, y) ∈ E, we have −e := (y, x) ∈ E. Let E+ be a subset of E
such that for every e = (x, y) ∈ E with x 6= y, either e ∈ E+ or−e ∈ E+, but not both. We
say that E+ is the set of positively oriented edges and we denote by E− = {−e : e ∈ E+}
the set of negatively oriented edges. Then, the set of edges is E = E+ ∪E− and this union
is a disjoint one.

If a graph G = (V,E) is endowed with weights (c(e))e∈E ∈ (R∗+)E such that for
every edge e ∈ E+, c(−e) = c(e) and m(x)x∈V ∈ RV+, those weights are referred to as
conductances and masses, respectively.

We say that F = (V (F ), E(F )) is a subgraph ofG if F is a simple graph and if we have
both inclusions V (F ) ⊂ V and E(F ) ⊂ E. In particular, the set of edges of F denoted

13



2. Spanning Forests on finite graphs.

by E(F ) is a subset of E ∩ (V (F )× V (F )). We say that F is a spanning subgraph of G
if V (F ) = V and we say that F is the induced subgraph of G with vertex set V (F ) if
E(F ) = E ∩ (V (F )× V (F )).

We say that γ = (e1, . . . , en) ∈ E(F )n is an oriented cycle of length n in F if

∀i ∈ [1, n− 1], e+
i = e−i+1, e

+
n = e−1 .

We denote by C→(F ) the set of oriented cycles in F .
If γ = (e1, . . . , en) ∈ C→(F ) is an oriented cycle of F , we denote by γ−1 the cycle

obtained by reversing the orientation that is to say γ−1 = (−en, . . . ,−e1). We say that
two oriented cycles γ, γ′ are equivalent (γ ∼ γ′) if γ′ = γ−1 and we de�ne the set of
non-oriented cycles by C(F ) = C→(F )/ ∼. If [γ] ∈ C(F ), we denote by γ and γ−1 both
oriented cycles in the equivalence class [γ], and therefore the set of oriented cycles of F
can be written as C→(F ) = C(F ) ∪ C(F )−1.

If F has some distinguished vertices, they are called roots of F . Let R(F ) be the set
of roots of F . If F = (V (F ), E(F )) is a tree, that is to say a connected subgraph without
any cycle, with a unique root, we say that F is a rooted tree. If r ∈ V is a vertex of a �nite
connected graph G, there is a bijection between spanning trees of G and spanning trees
of G rooted at r.

Let us recall in the following some properties about random spanning trees of a �nite
connected graph G.

2.1.2 Uniform spanning tree on a �nite graph

If G = (V,E) is a �nite connected graph endowed with conductances (c(e))e∈E ∈ (R∗+)E ,
a spanning tree of G is a spanning subgraph T = (V,E(T )) which is a tree that is to say
a connected graph without any cycle. There exists a natural probability measure on the
set T (G) of spanning trees of G which gives to every spanning tree a weight proportional
to the product of conductances of edges. It is de�ned as follows. For every T ∈ T (G),

µc(T ) =
∏
e∈E(T )∩E+ c(e)

Zc
(2.1)

where Zc =
∑
T∈T (G)

∏
e∈E(T )∩E+ c(e) is referred to as the partition function of the

spanning tree model.
We say that f is a 0-form on G if f is a map f : V → C and we say that θ is a 1-form

on G if θ is an anti-symmetric map θ : E → C that is to say θ(−e) = −θ(e) for every
edge e ∈ E. Let us denote by Ω0(G) and Ω1(G) the spaces of 0-forms and 1-forms on G.
Those spaces are endowed with inner products de�ned by{

〈f, f ′〉Ω0(G) =
∑
x∈V f(x)f ′(x)

〈θ, θ′〉Ω1(G) =
∑
e∈E+ θ(e)θ

′(e)

Let us denote by d : Ω0(G)→ Ω1(G) and d∗ : Ω1(G)→ Ω0(G) the operators de�ned
for every vertex v and edge e = (e−, e+) by{

df(e) = f(e+)− f(e−)
d∗θ(v) =

∑
v′,(v′,v)∈E θ((v′, v))

14



2.1. Spanning trees and rooted spanning forests

Those operators are adjoint for the inner products de�ned just above.

De�nition 2.1. The Laplacian operator ∆c : Ω0(G) → Ω0(G) associates to a 0-form f
the following 0-form:

∆cf(v) =
∑
v′∼v

c(vv′)(f(v)− f(v′)).

Let C be the operator C : Ω1(G) → Ω1(G) de�ned by C(θ)(e) = c(e)θ(e). Then, the
Laplacian operator can be written as :

∆c = d∗Cd.

Kirchho�’s matrix-tree theorem [Kir] says that the number of spanning trees of a graph
is given by any minor Mi,j of the Laplacian operator ∆ = d∗d, with all conductances equal
to 1, in position (i, j) for any i, j and it is also equal to

1
n

det 0∆ = 1
n

∏
i

λi,

where det 0∆ is the reduced determinant of the Laplacian operator, that is the product of
its non-zero eigenvalues {λi}i and n is the number of vertices ofG. When all conductances
are equal to 1, the Laplacian operator is an Hermitian matrix since it is the product of
adjoint operators.

More generally, when conductances are non trivial, the partition function Zc is the
reduced-determinant of the Laplacian operator ∆c = d∗Cd, which is also the product of
adjoint operators for another inner product, as de�ned in [LP16].

Indeed, the space Ω1(G) is also endowed with an inner product depending on c. If we
de�ne r by r(e) = 1

c(e) for every edge e, this inner product is de�ned for every θ, θ′ by

〈θ, θ′〉r =
∑
e∈E+

r(e)θ(e)θ′(e).

This inner product is natural in terms of electric networks because if we de�ne the
energy of a 1-form as the quantity E(θ) = ‖θ‖2r , then for a current i given as the divergence
of a electric potential v, we have E(θ) = 〈i, dv〉r , which is exactly the energy in the electric
sense.

For this inner product, the operators Cd and d∗ are adjoint, which means that for
every f ∈ Ω0(G) and θ ∈ Ω1(G), we have

〈θ, Cdf〉Ω1(G),r = 〈d∗θ, f〉Ω0(G).

It implies the following orthogonal decomposition:

Ω1(G) = im(Cd)⊕⊥r ker(d∗).

For e ∈ E, let χe := 1e − 1−e denote the unit �ow along e represented as a 1-
form. The space im(Cd), also known as the star space F is spanned by the so-called
stars

∑
e−=x c(e)χe, whereas the space ker(d∗), also known as the cycle space ♦ is spanned

by the cycles
∑
e∈γ χ

e where γ is an oriented cycle.
It follows from Kirchho�’s matrix-tree theorem the following result of [Pem91].

15



2. Spanning Forests on finite graphs.

Theorem 2.2. [Pem91] Let us denote by k = Cd((∆c)ker(d)⊥)−1d∗ the orthogonal projection
on im(Cd) for the inner product 〈, 〉r . Let us consider the orthonormal basis (θe)e∈E+ ofΩ1(G)
where θe is de�ned for every e ∈ E+ by θe =

√
c(e)χe. Let us denote byK the matrix of k

in this basis. Then, under the measure µc, edges of a random tree T form a determinantal
process whose kernel is the matrixK . For every set of edges e1, . . . , en,

µc(e1, . . . , en ∈ T ) = det(〈Kθe, θe′〉r)e,e′∈{e1,...,en}

The space Ω1(G) can also be endowed with another inner product depending on c
de�ned for every θ, θ′ by

〈θ, θ′〉c =
∑
e∈E+

c(e)θ(e)θ′(e).

Then, the operators d and d∗C are adjoint for this inner product and we have the
following orthogonal decomposition:

Ω1(G) = im(d)⊕⊥c ker(d∗C).

If we consider the operator k′ = d((∆c)ker(d)⊥)−1d∗C of orthogonal projection on im(d)
for the inner product 〈, 〉c, then since k and k′ are conjugate by the diagonal matrix C ,
they de�ne the same determinantal process and Theorem 2.2 also holds for k′ and the
orthonormal basis de�ned as

(
θe = 1√

c(e)
χe
)
e∈E

.

This convention is often adopted in the literature, for instance in [Ken11].
Moreover, this measure is sampled by the Propp-Wilson algorithm ([Wil96, PW98]).

This algorithm relies on the choice of a root r but the measure is independent of the
choice of vertex r and gives to every spanning tree a weight proportional to the product
of conductances of its edges. We will give more precise de�nitions of this algorithm in
section 2.2.4.

A �rst possible generalization of the model of random spanning tree on a �nite graph
is the model of rooted spanning forest on a �nite graph G = (V,E) endowed with
masses m(x)x∈V ∈ RV+. The model of rooted spanning forest associated to a massive
Laplacian is studied in [BdTR17] on graphs, so-called isoradial graphs, and a phase transi-
tion is obtained for speci�c weights. We give de�nitions of the massive Laplacian and the
model of rooted spanning forests.

2.1.3 Massive Laplacian and rooted spanning forests

Let G = (V,E) be a �nite graph endowed with masses m(x)x∈V ∈ RV+ and conduc-
tances (c(e))e∈E ∈ (R∗+)E .

The massive Laplacian operator on G is the operator ∆m : Ω0(G)→ Ω0(G) de�ned
for every f ∈ Ω0(G), for every v ∈ V , by

∆mf(v) =
∑

v′∈V,v′∼v
cvv′(f(v)− f(v′)) +m(v)f(v).
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2.2. Cycle-rooted spanning forests

A non-oriented rooted spanning forest of G is a non-oriented subgraph of G which
contains all vertices of the graph, all of whose connected components are rooted trees, that
are graphs which contain a unique distinguished vertex.

We denote by FR(G) the set of non-oriented rooted spanning forests on the graph G.
A natural Boltzmann probability measure on FR(G) is de�ned by:

∀F ∈ FR(G), µm,c(F ) = 1
ZR(G, c,m)

∏
x∈R(F )

m(x)
∏

e∈E(F )∩E+

c(e). (2.2)

where ZR(G, c,m) is the partition function of the model and satis�es:

ZR(G, c,m) =
∑

F∈FR(G)

∏
x∈R(F )

m(x)
∏

e∈E(F )∩E+

c(e) = det(∆m).

Just as the measure on spanning trees, this measure µm,c is determinantal. Those results
rely on a correspondence between this model and a model of spanning tree without masses,
adding a root r and new conductances depending on m, c. Let r be a new vertex called the
root of G and add for every vertex x an edge ex from x to r with conductances depending
on c,m. The kernel is the orthogonal projection on the image by d of 0-forms on this graph
which are zero on r.

2.2 Cycle-rooted spanning forests

Another possible generalization of random spanning tree on a �nite graph is the model
of cycle-rooted spanning forests on a �nite graph G = (V,E) endowed with a weight
function w on cycles. When this weight function w is provided by a unitary connection,
the measure is determinantal and its partition function is given by the determinant of an
operator called the vector-bundle Laplacian ([Ken11]).

2.2.1 Vector-Bundle Laplacian and CRSF

We say that a non-oriented subgraph F of G is a cycle-rooted spanning forest (CRSF) if it
contains all the vertices and if every connected component of F contains a unique cycle.
Each connected component of F is called a unicycle or a cycle-rooted tree. We will denote
by U(G) the set of CRSFs of G.

We say that an oriented subgraph F of G is a oriented cycle-rooted spanning forest
(OCRSF) if it contains all the vertices and if every connected component of F contains a
unique cycle, which is given an orientation. Every edge of an OCRSF is oriented towards
the cycle of its connected component. We will denote by U→(G) the set of OCRSFs of G.

We recall the de�nition of the vector-bundle Laplacian associated to a unitary connec-
tion, whose determinant can be expressed as a combinatorial sum over CRSF.

De�nition 2.3. ([Ken11]) Let U be the set of complex numbers of modulus 1. Let h : E →
U be a unitary connection of rank 1 on the graph G, in the sense that for every oriented
edge e, the equality h(−e) = h(e)∗ holds. For every oriented cycle γ = (e1, . . . , ep), the
holonomy of γ is

holh(γ) =
(∏

i

h(ei)
)
.

17



2. Spanning Forests on finite graphs.

Let ∆h : Ω0(G) → Ω0(G) be called the vector-bundle Laplacian associated to h and
de�ned for every 0-form f and vertex v by

∆hf(v) =
∑

e : e+=v∈E
c(e)(f(e+)− h(e)f(e−))

According to [Ken11], if for every e ∈ E, h(e) = hee+he−e, for some hee+ , he−e ∈ U,
the vector-bundle Laplacian can be factorized as ∆h = d∗hCdh where C is the matrix of
conductances, and the operators dh : Ω0(G) → Ω1(G) and d∗h : Ω1(G) → Ω0(G) are
de�ned by

dhf(e) = he+ef(e+)− he−ef(e−) (2.3)
d∗hθ(v) =

∑
v′,v′v∈E

h(v′,v)vθ(v′v) (2.4)

and are adjoint operators. The following orthogonal decompositions hold:

Ω1(G) = im(Cdh)⊕⊥r ker(d∗h) = im(dh)⊕⊥c ker(d∗hC).

From [For93], the following formula holds:

det(∆h) =
∑

F∈U(G)

∏
e∈E(F )∩E+

c(e)
∏

[γ]∈C(F )
(wh(γ) + wh(γ−1)),

where the function wh : C→(G)→ R+ is de�ned for every oriented cycle γ by

wh(γ) = 1− Re(holh(γ)).

This formula can also be written as

det(∆h) =
∑

−→
F ∈U→(G)

∏
e∈E(−→F )

c(e)
∏

γ∈C→(F )
wh(γ).

It de�nes a natural Boltzmann probability measure on U(G):

∀F ∈ U(G), µh(F ) =
∏

[γ]∈C(F )(wh(γ) + wh(γ−1))
∏
e∈E(F )∩E+ c(e)

Zh
, (2.5)

where Zh is called the partition function of the model

Zh =
∑

F∈U(G)

∏
e∈E(F )∩E+

c(e)
∏

[γ]∈C(F )
(wh(γ) + wh(γ−1)) = det(∆h),

and a natural Boltzmann probability measure on U→(G):

∀
−→
F ∈ U→(G), −→µ h(−→F ) =

∏
γ∈C→(−→F )wh(γ)

∏
e∈E(−→F ) c(e)

Zh
, (2.6)

where Zh is called the partition function of the model

Zh = det(∆h).

Those measures are equal after removal of the orientations of edges.
Like the measures on spanning trees and spanning rooted spanning forests, those

measure are determinantal.
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2.2. Cycle-rooted spanning forests

Theorem 2.4. [Ken11] µh is a determinantal measure associated to the orthogonal projection
on im(Cdh). For every edges e1, . . . , em ∈ E(G), if F is sampled under the measure µh,

µh({e1, . . . , em} ⊂ F) = det((K(ei, ej))1≤i,j≤m)

whereK is the matrix of the orthogonal projection on im(Cdh) for 〈., .〉r .

The following generalization of the model includes rooted spanning forests and cycle-
rooted spanning forests, but also the usual model of random spanning tree.

2.2.2 Wired vertex-and-cycle-rooted spanning forests

De�nition 2.5. Let W be a subset of vertices of G. We say that a subgraph F of G is :

• a wired or essential vertex-and-cycle-rooted spanning forest (EVCRSF) with respect
to W if it contains all the vertices and every connected component of F is either a
rooted tree disjoint from W , a cycle-rooted tree disjoint from W or an unrooted tree
which contains a unique vertex of W , called a boundary-rooted tree.

• a wired or essential cycle-rooted spanning forest (ECRSF) with respect to W if it
contains all the vertices and every connected component of F is either a cycle-rooted
tree disjoint fromW or an unrooted tree which contains a unique vertex ofW , called
a boundary-rooted tree.

• a wired or essential oriented vertex-and-cycle-rooted spanning forest (EOVCRSF) if it is
a wired vertex-and-cycle-rooted spanning forest with respect to W and every cycle
of F is given an orientation, that is to say if every connected component of F either
is an oriented rooted tree or contains a unique oriented cycle or a unique vertex
of W . Every edge of an EOVCRSF is oriented towards the root or the cycle or the
unique point in W of its connected component.

• a wired or essential oriented cycle-rooted spanning forest (EOCRSF) with respect to W
if every connected component of F either is a cycle-rooted tree disjoint from W
which is given an orientation or is an unrooted tree which contains a unique vertex
of W , called a boundary-rooted tree. Every edge of an EOCRSF is oriented towards
the cycle or the unique point in W of its connected component.

We denote by VW (G) and UW (G) the sets of EVCRSF of G and ECRSF with respect to W ,
and by V→W (G) and U→W (G) the sets of EOVCRSF and EOCRSF with respect to W

We will say that F is a vertex-and-cycle-rooted spanning forest (VCRSF) if it contains
all the vertices and if every connected component of F is either a rooted tree or contains
a unique cycle, that is an EVCRSF with respect to W = ∅. We denote by U(G) and V(G)
instead of U∅(G) and V∅(G) the sets of CRSF and VCRSF.

We also denote by U→(G) and V→(G) instead of U→∅(G) and V→∅(G) the sets of
OVCRSF and OCRSF, which correspond to the case W = ∅.
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2. Spanning Forests on finite graphs.

De�nition 2.6 (Wired measure). We de�ne a measure on VW (G) called the wired measure
on EVCRSF ofGwith boundaryW , which gives to a con�guration a probability proportional
to the product of weights of cycles, roots and edges.

µW(c,m,h)(F ) =
∏
e∈E(F ) c(e)

∏
x∈R(F )m(x)

∏
γ∈C(F )(wh(γ) + wh(γ−1))

ZW(c,m,w)
(2.7)

Whenm = 0, µW(c,h) has support in the set of essential cycle-rooted spanning forests UW (G).

Figure 2.1 – Simulation of an EVCRSF for c = 1, p = 0.75,m = 0.01 and W the boundary
of the square grid.

Let us emphasize that the measures de�ned in previous subsections correspond to the
case of W = ∅, and either h = id, which is equivalent to wh = 0, that is the measure
on rooted spanning forests (2.2) or m = 0, that is the measure on cycle-rooted spanning
forests (2.6).

When the weight functions wh,m are both equal to 0 and W 6= ∅, this measure has
support in Essential Rooted Spanning Forests (ERSF), all of whose connected component
are boundary-rooted trees. In particular, when W = {r} is a single vertex and the weight
functions wh,m are both equal to 0, this measure has support on spanning trees rooted
at r. If we �x whatever vertex r, it corresponds to the measure on spanning trees as de�ned
in Equation (2.1).

Notice that the model with non-trivial masses (m(x)) is equivalent to a model without
masses but with a small oriented self-loop lx = (x, x) over every vertex x ∈ V with a
unitary connection de�ned by h(lx) and a conductance c(lx) such that

c(lx)(1−Re(holh(lx))) = m(x)
2 .

Therefore, without lost of generality, we may assume that m = 0.

De�nition 2.7. We de�ne the Laplacian ∆h,W with Dirichlet boundary condition at W as
follows. For f : V \W → C and v ∈ V \W ,

∆h,W f(v) =
∑

v′∈V \W,v′∼v
cvv′(f(v)− hv′vf(v′)).
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2.2. Cycle-rooted spanning forests

This is the Laplacian ∆h restricted to the subspace of 0-forms which are zero on the
boundary W and projected back to this subspace ([Ken11, Section 8]).

Theorem 2.8. [Ken11, Theorem 7] The measure µW(c,w) is determinantal and

det ∆h,W =
∑

F∈UW (G)

∏
γ∈C(F )

(wh(γ) + wh(γ−1))
∏

e∈E(F )
c(e) = ZW(c,w)

The kernel of this measure is the orthogonal projection on the following subspace of
1-forms

FW = Cdh(ι(Ω0(G\W )))

where ι : Ω0(G\W )→ Ω0(G) is de�ned by ι(.)(W ) = 0 and ι(.)(V \W ) = id.
We may de�ne other Boltzmann probability measures on cycle-rooted spanning forests

associated to other weight functions w on cycles of G. When those weight functions are
not provided by a unitary connection h, those measures are not determinantal measures.

2.2.3 Probability measures on oriented vertex-and-cycle-rooted
spanning forests of a �nite graph

In this subsection, we de�ne probability measures on vertex-and-cycle-rooted spanning
forests for a weight function on cycles which does not necessarily come from a connection h.

Let G = (V,E) be a �nite connected graph endowed with weights (c(e))e∈E ∈ (R∗+)E
andm(x)x∈V ∈ RV+ . Letw : C→(G)→ R+ be a non-negative function de�ned on oriented
cycles of G which is symmetric under orientation reversal.

There is a natural probability measure on V→W (G) associated to (c,m,w), called the
wired measure on essential spanning forest of G with boundary W , whose con�gurations
have weight proportional to the product of weights of cycles, roots and edges. This measure
is denoted µ(c,m,w) and is de�ned for every EOVCRSF F ∈ V→W (G) by

µW(c,m,w)(F ) =
∏
e∈E(F ) c(e)

∏
x∈R(F )m(x)

∏
γ∈C→(F )w(γ)

Z(c,m,w)
, (2.8)

where Z(c,m,w) is called the partition function of the model

Z(c,m,w) =
∑

F∈V→W (G)

∏
e∈E(F )

c(e)
∏

x∈R(F )
m(x)

∏
γ∈C→(F )

w(γ).

Let us emphasize that for general weight functions w de�ned on oriented cycles, the
measure is not necessarily determinantal. Nevertheless, if there exists a unitary connec-
tion h such that for all oriented cycle γ,

w(γ) = 1− Re(holh(γ)),

then it corresponds to the determinantal measure µW(c,m,h) as de�ned in (2.7), after removal
of the orientations of edges.

In the remainder of this section, we will be interested in another kind of weight functions
which are weight functions which take values in [0, 1] and for which the corresponding
measure on V→W (G) is sampled by an algorithm.
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2. Spanning Forests on finite graphs.

2.2.4 Probability measures on CRSF sampled by a random walk
algorithm

Sampling a uniform spanning tree by an algorithm is a problem which has been studied
since the end of the 20th-century. Several algorithms have been given by Aldous and
Broder ([Ald90], [Bro89]), and then by Propp and Wilson ([Wil96, PW98]). Wilson’s algo-
rithm relies on loop-erased random walks as follows. Let x0, x1, . . . , xn be an ordering
of the vertex set V of G, and let T0 = {x0}. At each step i, let (X(xi)

k )k≥0 be a ran-
dom walk on the graph G with conductances (c(e)) starting from xi. Every time the
random walk makes a loop, it is erased. The random walk (X(xi)

k )k≥0 is stopped when it
reaches the set of already explored vertices denoted by V (Ti−1). At the end of the ith step,
let Ti = Ti−1 ∪L(X(xi)

k ) where L(X(xi)
k ) is obtained from (X(xi)

k )k≥0 after removal of the
loops. At the end, we obtain a tree Tn such that V (Tn) = V (G). The random tree Tn is
distributed according the measure µc which is de�ned in equation (2.1) and this measure
does not depend on the ordering of the vertex set.

Just as sampling a uniform spanning tree of a �nite graph, sampling a vertex-and-cycle-
rooted spanning forest of a �nite graph is a well studied problem and its answer relies on
algorithms using loop-erased random walks inspired from the Propp-Wilson algorithm for
the generation of a random spanning tree.

In [BBGJ07], authors introduce some methods to generate a random spanning web
using a “cycle-popping” inspired from the Propp-Wilson algorithm.

If the weight function on cycles is p : C→(G)→ [0, 1], then according to [KK17], the
measure µc,p, corresponding to W = ∅ and m = 0, can be sampled by an algorithm of
loop-erased random walk where we keep an oriented cycle γ, with probability p(γ).

More precisely, let x1, . . . , xn be an ordering of the vertex set V of G and let F0 = ∅.
At each step i, let (X(xi)

k )k≥0 be a random walk on the graph G with conductances (c(e))
starting from xi. Every time the random walk makes a loop, the oriented cycle γ is kept
with probability p(γ) or erased with probability 1− p(γ). The random walk (X(xi)

k )k≥0 is
stopped when it reaches the set of already explored vertices denoted by V (Fi−1) or when
a cycle is kept. At the end of the ith step, let Fi = Fi−1 ∪ L(X(xi)

k ) where L(X(xi)
k ) is

obtained from (X(xi)
k )n≥0 after removing all the loops except the last one if a loop is kept

at the end of the ith step. At the end, V (Fn) = V (G). Notice that the algorithm always
�nishes if and only if there exists at least a loop γ in G such that p(γ) > 0.

The measure µWc,p with a wired boundary condition W can also be sampled by an
algorithm. We follow the same algorithm but every time the random walk meets W , the
walk stops and a new random walk starts from the next vertex in the ordering. At the
beginning of the algorithm, we set F0 = W instead of F0 = ∅. The algorithm always
�nishes if and only if there exists at least a loop γ in G\W such that p(γ) > 0 or if W 6= ∅.

When p is constant equal to 0, the measure µW(c,m,0) is well de�ned and can also be
sampled by a Wilson type algorithm if and only ifW 6= ∅ orm 6= 0. Indeed, the model with
non-trivial masses (m(x)) is equivalent to a model without masses but with a new boundary
condition, adding a root r and new conductances on edges ex from x to r, depending onm, c.
Therefore, the measure µW(c,m,0) can be sampled by the algorithm described just above by
setting at the beginning F0 = W ∪ {r} which is non-empty.
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2.2. Cycle-rooted spanning forests

The measure µW(c,m,0) has support in the set of Essential Rooted Spanning Forests (ERSF)
with respect to W , all of whose connected components are rooted trees in G\W or contain
a unique vertex of W . When m = 0, the measure µW(c,0,0) has support in the set of Essential
Spanning Forests (ESF) with respect to W , all of whose connected components contain a
unique vertex of W .

Figure 2.2 – Simulation of an ERSF for p = 0,m = 0.01 and of an ESF for p = 0,m = 0.
The marked points inside are the roots of the con�guration.

In [BdTR17], authors use this algorithm to sample rooted spanning forests, all of whose
connected components are rooted trees.

Let us emphasize that when W = {r} is a single vertex and the weight functions m, p
are both equal to 0, then µ{r}(c,0,0) is the measure on spanning trees of G rooted at r, sampled
by the usual Wilson algorithm.

More generally, when the graph G is endowed with masses m(x)x∈V ∈ RV+, and a
weight function on cycles p : C→(G)→ [0, 1], the measure µW(c,m,p) can be sampled by the
algorithm described just above, by adding a new vertex r and conductances on edges ex
from x to r, depending on m, c and setting F0 = W ∪ {r}.

Another way to sample the probability measure µW(c,m,p) by the Wilson type algorithm,
is to add over each vertex x ∈ V , a small oriented self-loop lxwith weight p(lx) and
conductances (c(lx)) such that {

c(lx)p(lx) = m(x)
2

p(lx) ≤ 1.

Notice that for a unitary complex connection h, the weight function wh takes values
in [0, 2]. Nevertheless, if the connection h is near the identity in the sense that for every
cycle γ, Re(holh(γ)) ≥ 0, then the weight function wh takes values in [0, 1] and the
measure µ(c,0,wh) is determinantal and sampled by the algorithm described juste above.
When this is the case, if the graph is furthermore endowed with masses m(x)x∈V ∈ RV+,
then choosing h(lx), c(lx) such that{

h(lx)c(lx) = m(x)
2

1−Re(holh(lx)) ≤ 1,
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2. Spanning Forests on finite graphs.

implies that µ(c,m,wh) is still sampled by the algorithm described just above and is determi-
nantal.

In the remainder of this thesis, we will not always specify c,m which will be taken
constant equal to 1,0 but it is possible to consider other conductances and masses with
slight modi�cations.

We will denote by µw := µ(1,0,w) the measure which has support in the set of cycle-
rooted spanning forests, all of whose connected components contain a unique cycle. There
are two families of weight functions which give interesting properties for the measure µw:

• Weight functionswh which are provided by a connection hwhich give determinantal
measures and are de�ned by

∀γ ∈ C→(G), wh(γ) = 1−Re(holh(γ)).

• Weight functions p which take values in [0, 1] and which give measures sampled by
an algorithm described just above.

We will study properties of those measures in chapters 5 and 6 under some assumptions.

2.3 Quantum Spanning forests

The model of quantum spanning forests which is introduced in [KL20c] and studied
in [KL23] is an example of determinantal linear processes which are studied in [KL20c].
We �rstly recall the construction of those processes and their properties.

2.3.1 Determinantal linear processes

Determinantal linear processes are de�ned by a measure on the Grassmannian of a real,
complex or quaternionic inner product vector space which is characterized by a self-adjoint
contraction operator of the vector space. We recall the construction of those processes
which is explained in [KL20c] and the particular case of quantum spanning forests on �nite
graph with a well.

Let E be such an inner product vector space of dimension d and B = (e1, . . . , ed) be
an orthonormal basis of E and K the matrice in this basis of a self-adjoint contraction
operator k. We de�ne the random subspace Q of E as

Q = Vect(ei, i ∈ X),

where X is a �nite determinantal point process (DPP) associated to the set S = {1, . . . , d}
and K ∈Md(C).

The random subspace Q is adapted to the basis (e1, . . . , ed). One can extend this
de�nition to the case where E admits an orthogonal decomposition σ :

E = E1 ⊕ . . .⊕ Es, s ≤ d.

If k is a self-adjoint operator with spectra included in [0, 1], we get a random subspace Q
adapted to the decomposition σ after concatenating uniformly sampled bases of E1, . . . ,Es
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2.3. Quantum Spanning forests

and considering the random subspace Q which corresponds to this basis and to the opera-
tor k. In the case where k is an orthogonal projection on a subspace H of E, we get some
further properties to describe the random subspace Q.

Theorem 2.9. [KL20c] Almost surely, the orthogonal decomposition

E = Q
⊕

H⊥

holds and the expected value of the projection PQ‖H⊥ on the random subspace Q parallel to the
orthogonal of H is given by the operator k:

E(PQ‖H⊥) = k.

Moreover, the incidence measure of the process has a density given by det kRR with respect to
the Haar measure νE,σ on the set of subspaces of E adapted to the decomposition σ.

2.3.2 Quantum spanning forests on �nite graphs

In this section, we recall the construction of quantum spanning forests on �nite graphs,
endowed with a �ber bundle and a unitary connection, from [KL20c].

LetG = (V,E) be a �nite graph, with d = |E|, endowed withN -dimensional Euclidean
spaces (Fx)x∈V over vertices and (Fe)e∈E over edges, and a unitary connection h, that
is to say linear isometries he,x : Fx → Fe, hx,e : Fe → Fx when x ∼ e such that for
all (x, e) ∈ V × E, the relation hx,−e = h−1

e,x holds.

De�nition 2.10 (0-forms and 1-forms). We denote by Ω0(G) and Ω1(G) the spaces of
bundle-valued 0-forms and 1-forms over G.

Ω0(G) = {f : V → (Fx)x∈V | f(x) ∈ Fx ∀x ∈ V }.

Ω1(G) = {θ : E → (Fe)e∈E | θ(e) = −θ(−e) ∈ Fe ∀e ∈ E+}.

Those spaces are endowed with inner products de�ned as

〈θ, θ′〉Ω1(G) =
∑
e∈E+

〈θ(e), θ′(e)〉Fe

〈f, f ′〉Ω0(G) =
∑
x∈V
〈f(x), f ′(x)〉Fx .

De�nition 2.11 (Covariant derivative and its adjoint). We get a natural map

dh : Ω0(G)→ Ω1(G),

de�ned by
dhf(e) = he+ef(e+)− he−ef(e−).

Denoting by d?h its adjoint, we have for θ ∈ Ω1(G),

d?hθ(v) =
∑

v′,v′v∈E
h(v′v)vθ(v′v).

We de�ne the vector-bundle Laplacian ∆h : Ω0(G)→ Ω0(G) by ∆h = d?h ◦ dh.
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2. Spanning Forests on finite graphs.

Recall from [KL20c] that we have the following orthogonal decompositions σ1, σ2
respectively de�ned as

Ω1(G) = im(dh)
⊕⊥ ker(d?h), Ω1(G) =

⊕
e∈E+

Le,

where Le = {w ∈ Ω1(G), w(e′) = 0 ∀ e′ /∈ {e,−e}}.

De�nition 2.12. [KL20c] The quantum spanning forestQ onG is the determinantal linear
process associated to the orthogonal projection k on im(dh) and to the decomposition σ2.

More precisely, let k be the orthogonal projection on im(dh), parallel to ker(d?h).
LetB = (bi)i∈[1,N |E|] be a random orthonormal basis of Ω1(G) obtained after concatenating
uniformly sampled bases of (Le)e∈E . Let Q = V ect{bi, i ∈ X} be the quantum spanning
forest on G associated to the connection h, where X is a determinantal point process
associated to the matrix K of the operator k in basis B.

A quantum spanning forest (QSF) is a random subspace Q = ⊕e∈EQe where for
every e ∈ E, the random subspace Qe is a subspace of Le but can be seen as a subspace
of Fe since both spaces Fe and Le are isomorphic. Indeed, every 1-form w ∈ Le is entirely
determined by the vector w(e) ∈ Fe.

As for every DLP, the law µ of a Quantum spanning forest is characterized by its inci-
dence measure Zµ. This incidence measure is a measure on the Grassmanniann Gr(Ω1(G))
of Ω1(G), that is the set of linear subspaces of Ω1(G) which is linked to µ as follows:

∀R ∈ Gr(Ω1(G)), Zµ(R) = µ(R ⊂ Q),

where Q is a quantum spanning forest distributed according to µ.
From [KL20c] and [KL23], the incidence measure Zµ has a density ρ with respect to

the Haar measure νσ on the set of subspaces of Ω1(G) adapted to the decomposition:

Ω1(G) =
⊕
e∈E+

Le.

Furthermore, the following result gives an exact expression of the density.

Theorem 2.13. [KL23] On a �nite graph G = (V,E), if Q is a quantum spanning forest
associated to a connection h then its lawµ is determinantal of kernel k where k is the orthogonal
projection on im(dh), in the following sense:

• Almost surely Ω1 = Q
⊕

ker(d?h),

• E(PQ‖ker(d?
h

)) = k,

• ρ(R) = det(kRR).

2.3.3 Trace of a QSF

Let us recall the following de�nitions and propositions from [KL20c].
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2.3. Quantum Spanning forests

De�nition 2.14. [Holonomy of an oriented cycle] ([KL20c]) Given γ→x = (e1, . . . , ep) an
oriented cycle based at x ∈ V , we call holonomy of γ→x the isometry holh(γ→x ) : Fx → Fx
de�ned by holh(γ→x ) = hep ◦ . . . ◦ he1 , where he = hee+ ◦ he−e.

De�nition 2.15. [Trace of a quantum spanning forest] ([KL20c]) We call trace of a quantum
spanning forest the random variable

nQ = (dimQe)e∈E .

The trace is an essential tool because it can be seen as a number of occupation when
the Quantum Spanning forest is seen as a superposition of N cycle-rooted spanning forests
of rank 1.

From the gauge theory introduced by Weyl and also studied by Pauli (see also [KL20c]
for notations), the gauge group of the vector bundle F over G = (V,E) is the Cartesian
product of unitary groups

J (F ) = {j ∈
∏
x∈V

U(Fx)×
∏
e∈E

U(Fe) : je = j−e ∀e ∈ E}.

The elements of the gauge group, so-called gauge transformations act on the set of con-
nections as follows. Let h be a connection on F . Let j be a gauge transformation. The
connection j.h is de�ned by

(j.h)e,x = je ◦ he,x ◦ j−1
x .

Two connections are called gauge equivalent if they are obtained from each other by
applying a gauge transformation. Note that the QSF associated with a connection j.h
is obtained from the QSF associated with the connection h by applying a deterministic
transformation. From [KL20c, KL23], the trace of a quantum spanning forest is invariant in
distribution under the action of the full gauge group J (F ).

The following Lemma, due to [KL20c] is essential because it shows that the law of the
trace can be computed when random basis is �xed. We recall the proof of this lemma, since
it is a good illustration of computations which link DPP and determinants of their kernel.

Lemma 2.16. Let us consider two orthonormal bases of Ω1(G) adapted to the decomposition
in �bers Ω1(G) = ⊕Le, where Le = {w ∈ Ω1(G), w(e′) = 0 ∀ e′ /∈ {e,−e}}:{

B = (be11 , . . . , b
e1
N , . . . , b

ed
1 , . . . , b

ed
N )

D = (de11 , . . . , d
e1
N , . . . , d

ed
1 , . . . , d

ed
N ).

Then if K and K ′ = PKP−1 are the matrices of k in those bases, and if we consider both
spaces Q = V ect(bj , j ∈ X), Q′ = V ect(dj , j ∈ Y ) with X,Y DPP associated to K,K ′,
then

(dim(Qe))
L= (dim(Q′e))

where the equality is an equality in law.

Proof. Since (bei1 , . . . , b
ei
N ) and (dei1 , . . . , d

ei
N ) are bases of Lei for every i, the matrix P is

block-diagonal :

P =

Pe1 . . .
Ped


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2. Spanning Forests on finite graphs.

where Pei is the matrix between bases (dei1 , . . . , d
ei
N ) and (bei1 , . . . , b

ei
N ).

Let S = [1, dN ] be the set of indices of vectors of those bases and let us denote
by Si = {j | bj ∈ {bei1 , . . . , b

ei
N}} the set of indices of vectors of the bases of Lei .

Then, we have

E
[
d∏
i=1

z
dim(Qei )
i

]
= E

[
d∏
i=1

z
|X∩{j | bj∈{b

ei
1 ,...,b

ei
N }}|

i

]
= E

[
d∏
i=1

z
|X∩Si|
i

]
= E

[∏
x∈X

zx

]

where zx = zi for every x ∈ Si. Since P commutes with

Z :=



z1 − 1
. . .

z1 − 1


. . . zd − 1

. . .
zd − 1




,

we have

E
[
d∏
i=1

z
dim(Qei )
i

]
= det (Id + ZK) = det

(
Id + ZPKP−1

)
= det

(
Id + ZK ′

)
= E

[
d∏
i=1

z
|Y ∩Si|
i

]
= E

[
d∏
i=1

z
dim(Q′ei )
i

]
,

which concludes the proof.

Let us recall the following de�nition, from [KL20c] which deals with direct sums of
vector bundles with connections.

De�nition 2.17 (Reducible connections). ([KL20c]) We say that a connection h is re-
ducible if there exists an integer s ∈ {2, . . . , N}, sub-bundles F (1), . . . , F (s) of F and
connections h(1), . . . , h(s) on these sub-bundles, such that F = F (1) ⊕ . . .⊕ F (s) and the
connection can be written as h = h(1) ⊕ . . .⊕ h(s). If the connection is not reducible, it is
said to be irreducible.

The previous Lemma implies that for a reducible connection h, if we �x a basis adapted
to the �bers and to the decomposition h = h(1) ⊕ . . .⊕ h(s), we obtain a matrix which is
block-diagonal, and therefore, the law of the trace is the sum of traces of independent QSF
adapted to (F (i), h(i), σ(i)).

E
[∏
i

z
dimQei
i

]
= E

[∏
i

z
dimQ

h1
ei

i

]
. . .E

[∏
i

z
dimQhsei
i

]
,

where σ(i) : Ω1(Zd)(i) = ⊕F (i)
e .

The following Proposition, due to [KL23] shows a stronger result on the law of a QSF
for a reducible connection.
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Proposition 2.18. If τ is a re�ned splitting adapted to a reducible connection h, the QSF
adapted to τ is a direct sum of independent QSF adapted to (F (i), h(i), σ(i)). The law of nQ is
independent of the choice of τ .

Recall that ifX is DPP associated to a matrixK , |X| has the same law that
∑
λ∈Sp(K) Yλ,

where Yλ are independent Bernoulli of parameter λ for λ in the spectrum Sp(K). Indeed,

E
[
z|X|

]
= det (Id + (z − 1)K) =

∏
λ∈Sp(K)

(1 + (z − 1)λ) = E
[
z
∑

Yλ
]
.

Another consequence of Lemma 2.16 is that for a QSF Q adapted to the orthogonal projec-
tion k on im(dh), each marginal of the trace dim(Qe) has the same law than

∑
λ∈Sp(Ke,e) Yλ

and therefore
E(dim(Qe)) =

∑
λ∈Sp(Ke,e)

λ = Tr(Ke,e),

and
V ar(dim(Qe)) =

∑
λ∈Sp(Ke,e)

(λ− λ2) = Tr(Ke,e)− Tr(K2
e,e).

Those equalities give the link between the mean-value of the trace of a quantum
spanning forest and the trace of the kernel of this process.

2.3.4 Partition function of a QSF

The partition function is given by the determinant of the vector-bundle Laplacian operator,
restricted to the orthogonal of its kernel, referred to as the reduced determinant of the
Laplacian, as well as for the case of rank 1 cycle-rooted spanning forests model.

LetG be a �nite graph endowed with a unitary connection h and let νσ be the Haar mea-
sure on the set of subspaces of Ω1(G) adapted to the decomposition Ω1(G) =

⊕
e∈E(G)+ Le.

In the following statement, we denote by d instead of dh the covariant derivative associated
to the connection h in order to simplify the notations.

Theorem 2.19. [KL23] We have the following expression for the reduced-determinant of the
Laplacian ∆ = d∗d:

det 0(∆) = det((d∗)| ker(d)⊥dker(d)⊥) =
∫
Gr(E,σ)

det((d∗)| ker(d)⊥
Q dQker(d)⊥)dνσ(Q).

Let µ be the law of the QSF associated to the orthogonal projection on im(d). The quan-
tity det((d∗)| ker(d)⊥

Q dQker(d)⊥) satis�es

det((d∗)| ker(d)⊥
Q dQker(d)⊥)
det0(∆) = dµ

dνσ
(Q).

Thus the partition function of the model is exactly det 0(∆).

We give a proof of this result since it is a good illustration of computations which link
the partition function and the density of a DLP as de�ned in [KL20c].
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2. Spanning Forests on finite graphs.

Proof. Applying the Cauchy-Binet formula of [KL20c, Proposition 2.7] which is

det(ba) =
∫
Gr(E,σ)

det(bQaQ)dνσ(Q)

to the operators b = (d∗)| ker(d)⊥ and a = d| ker(d)⊥ gives

det(∆| ker(d)⊥
| ker(d)⊥) =

∫
Gr(E,σ)

det((d∗)| ker(d)⊥
Q dQ| ker(d)⊥)dνσ(Q).

The density of the determinantal measure of the DLP associated to the orthogonal projection
on im(d) is

dµ

dνσ
(Q) = det(kΠQ + (1− k)ΠQ⊥)

where k = d| ker(d)⊥G(d∗)| ker(d)⊥ , with G which is the inverse of the Laplacian on the
invariant subspace ker(d)⊥.

Let us consider the matrix of the operator k : Ω1 → Ω1 in a basis adapted to the
decomposition Ω1 = Q

⊕
Q⊥.

k =
(
A B
B∗ D

)
.

Then, using the Schur-complement formula, we obtain

det(kΠQ + (1− k)ΠQ⊥) = det
(
A −B
B∗ I −D

)

= (−1)dim(Q) det
((

0 0
0 Idim(Q⊥)

)
− k

)

= (−1)dim(Q) det
((

0 0
0 Idim(Q⊥)

)
− d| ker(d)⊥G(d∗)| ker(d)⊥

)

= (−1)dim(Q) 1
det(G−1) det


(

0 0
0 Idim(Q⊥)

)
d| ker(d)⊥

(d∗)| ker(d)⊥ G−1

 .
Since k is an orthogonal projection of rank p := rg(d), we know that dimQ = p

almost surely. Then dQ| ker(d)⊥ : ker(d)⊥ → Q and (d∗)| ker(d)⊥
Q : Q→ ker(d)⊥ are square

matrices. Then, the last determinant is equal to

(−1)dim(Q) det


dQ| ker(d)⊥ 0 0
dQ
⊥

| ker(d)⊥ Idim(Q⊥) 0

∆ (d∗)| ker(d)⊥
Q⊥

(d∗)| ker(d)⊥
Q


and therefore,

det(kΠQ + (1− k)ΠQ⊥) = 1
det0(∆) det(dQ| ker(d)⊥) det(Idim(Q⊥)) det((d∗)| ker(d)⊥

Q )

= 1
det0(∆) det((d∗)| ker(d)⊥

Q dQ| ker(d)⊥),

which concludes the proof.

30



2.3. Quantum Spanning forests

This expression of the partition function of the model as the reduced determinant of
the Laplacian operator shows that the model of QSF is a good generalization of the usual
model of cycle-rooted spanning forests. This theorem will allow us to obtain an integral
expression for the free energy of the model of QSF (Theorem 4.17) when the size of the
graph goes to in�nity.

The next chapter deals with topological considerations on the model of QSF, existence
of thermodynamic limits of the model when the size of the graph goes to in�nity and
dependence of the limit on boundary conditions.
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Chapter3
Thermodynamic limits.

In statistical physics, we try to construct measures on con�gurations in in�nite volume,
often called Gibbs measures, from limits of sequences of measures in �nite volume, often
called Boltzmann measures, which give to a �nite con�guration a probability proportional
to its weight for a well-de�ned weight function. When con�gurations are de�ned on a
underlying graph, for instance in the case of models of percolation or in the case of the Ising
model, we consider a sequence of measures on con�gurations of growing �nite subgraphs
which gives at the limit an in�nite volume Gibbs measure on the con�gurations of an
in�nite countable graph. To study the convergence of the sequence of measures on growing
subgraphs, we need to de�ne a topology for this convergence and to de�ne which boundary
conditions are applied on the boundaries of growing �nite subgraphs.

In this chapter, we will study those questions for the model of quantum spanning
forests and for the case of rank 1, so-called cycle-rooted spanning forests. We will begin
this chapter with the case of cycle-rooted spanning forests since the topology is easier to
understand in this case.

3.1 Rank 1 : Measures on CRSF in in�nite volume and
thermodynamic limits

In this section, let G = (V,E) be a countably in�nite connected graph. Let (Gn) be an
exhaustion of G by growing �nite subgraphs, that is to say an increasing sequence of
subgraphs of G for the inclusion such that G = ∪n∈NGn.

We de�ne, in this section, sequences of measures on CRSF of a growing exhaustion ofG
with boundary conditions. We will see that under some assumptions, those sequences of
measures converge to thermodynamic limits which are probability measures on subgraphs
of the in�nite graph G (called the in�nite volume case).

3.1.1 Thermodynamic limits and boundary conditions

We de�ne sequences of measures (µn)n≥1 on CRSF of growing subgraphs Gn of G with
boundary conditions. There are two examples of boundary conditions which are often
considered : free and wired boundary conditions.
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3. Thermodynamic limits.

De�nition 3.1 (Free boundary conditions). We de�ne a measure on oriented CRSF of the
graph Gn under which the con�gurations have a probability proportional to the product
of weights of oriented cycles. After removal of orientations, it gives a measure on non
oriented CRSF which is denoted by µFn and called the free measure on CRSF of Gn

De�nition 3.2 (Wired boundary conditions). We de�ne a measure on oriented ECRSF
of the graph Gn under which the con�gurations, which are either connected to ∂Gn or
oriented cycle-rooted trees, have a probability proportional to the product of weights of
oriented cycles. After removal of orientations, it gives a measure on non oriented ECRSF
of Gn which is denoted by µWn and called the wired measure on ECRSF of Gn. Notice that
it corresponds to the measure de�ned in De�nition 2.6 with boundary ∂Gn.

3.1.2 Topological facts and boundary conditions

Every con�guration of CRSF on G can be seen as an element of {0, 1}E . Let us recall some
topological facts about {0, 1}E (see for instance [FV17] for more details).

Since {0, 1} is compact, Ω = {0, 1}E is compact for the product topology and this
topology is compatible with the following metric

d(ω, ω′) =
∑
e∈E

2−‖e−‖21ωe 6=ω′e .

Therefore Ω is a compact metric space.
A function f : Ω → R is continuous for the product topology if and only if for

every ε > 0, there exists a �nite subset Λ ⊂ E, such that

sup
ω,ω′:ω|Λ=ω′|Λ

|f(ω)− f(ω′)| ≤ ε.

A function f : Ω → R is called local if there exists a �nite set Λ ⊂ E such that for
every ω ∈ Ω, the image f(ω) is entirely determined by ω|Λ. The set of local functions is
dense in the set of continuous functions (C(Ω), ||.||∞) which is a Banach-space.

We consider C the smallest σ-�eld for which the cylinders CΛ,ε = {ω ∈ Ω, ωΛ = ε}
are measurable.

We say that a sequence of measures (µn) converges to the measure µ on (Ω, C) if and
only if

lim
n→∞

Eµn(f) = Eµ(f),

for every local function f . Since the set of local functions is dense in the set of continuous
functions, this topology on the set of measures on (Ω, C) is the same as the one induced by
the notion of weak convergence.

If such a sequence of measures converges weakly towards an in�nite volume measure,
we have the following result on the limit measure.

Proposition 3.3. Assume that a sequence (µn)n≥1 of measures on CRSF on growing sub-
graphsGn ofG converges weakly towards a measure µ, and let F be distributed according to µ.
Then µ-almost surely, every �nite connected component of F contains exactly one non-oriented
cycle γ which has a non-trivial weight, in the sense that w(γ) + w(γ−1) 6= 0.
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3.2. Measures on QSF in in�nite volume and thermodynamic limits

Proof. Let x ∈ V and let T be a �nite connected subgraph of G which contains x and
which satis�es one of the following properties:

• T has strictly more than one cycle.

• T contains a non-oriented cycle [γ] such that w(γ) + w(γ−1) = 0, where γ and γ−1

are both orientations of [γ].

• T has no cycle.

Let cc(x) be the connected component of x in F. Notice that the event {cc(x) = T} is an
event with �nite support since its support is included in the set of edges which have at
least one extremity in T .

Let m be large enough such that T ⊂ Gm−1. Then, the event

{cc(x) = T} = {cc(x) ∩Gm = T}

has support in Gm. For every n ≥ m, µn is supported on CRSF on Gn, all of whose cycles
satisfy w(γ) + w(γ−1) > 0. Therefore, if Fn is distributed according to the measure µn,

µn(cc(x) ∩Gm = T ) = µn(cc(x)Fn = T ) = 0.

We have the convergence µn → µ on con�gurations with �nite support. Then,

µn(cc(x) ∩Gm = T )→ µ(cc(x) ∩Gm = T ).

Finally, we obtain µ(cc(x) = T ) = 0. Since G is countable, almost surely, every �nite
connected component of F has exactly one cycle and its cycle has non-trivial weight.

3.2 Measures on QSF in in�nite volume and
thermodynamic limits

In this section, we study sequences of probability measures on quantum spanning forests
of growing �nite graphs. To study the convergence of those measures, we give some
properties on the weak convergence topology on the space of con�gurations of quantum
spanning forests. We show that, as well as for the case of rank 1, the weak convergence
is equivalent to a notion of convergence for local functions. Then, considering kernels
associated with determinantal measures on quantum spanning forests, we show some
stochastic inequalities between di�erent boundary conditions. All results of this section
can be applied in particular for determinantal measures on cycle-rooted spanning forests
in the case of a rank 1 connection.

3.2.1 Topological facts for QSF in rank N

Every con�guration of QSF onG can be seen as an element of Ω = Gr(CN )E . HereGr(CN )
denotes the Grassmannian of linear subspaces of CN , that is the space which contains
every linear subspace of CN . It is a compact metric space equipped with a distance d.
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3. Thermodynamic limits.

Therefore Ω = Gr(CN )E is compact for the product topology and this topology is
compatible with the following metric

d(Q,Q′) =
∑
e∈E

2−‖e−‖2d(Qe, Q′e).

Therefore Ω is a compact metric space.
Notice that for every δ > 0, there exists a �nite set Λ large enough such that,

sup
Q,Q′:Q|Λ=Q′|Λ

d(Q,Q′) ≤ δ. (3.1)

Since Ω is a compact set, a function f : Ω→ R is continuous for the product topology
if and only if it is uniformly continuous. Then, a function f : Ω→ R is continuous if and
only if for every ε > 0, there exists a constant δ > 0 such that for every Q,Q′ ∈ Ω,

(d(Q,Q′) ≤ δ)⇒ (|f(Q)− f(Q′)| ≤ ε).

A function f : Ω→ R is called local if there exists a �nite set Λ ⊂ E such that f(Q)
is entirely determined by Q|Λ. The set of local functions is dense in the set of continuous
functions (C(Ω), ||.||∞) which is a Banach-space. Indeed, let f : Ω→ R be a continuous
function and Λn a sequence of growing �nite subsets of E such that E = ∪Λn. Then
de�ne fn : Q→ f(QΛn) where (QΛn)e = Qe1e∈Λn . If ε > 0, there exists δ > 0 of uniform
continuity for f and from equation (3.1), for n large enough, we have for every Q ∈ Ω,
the inequality d(QΛn , Q) ≤ δ which implies |fn(Q)− f(Q)| ≤ ε and then fn converges
uniformly towards f .

We consider C the smallest σ-�eld which makes the cylinders CΛ,ε = {Q ∈ Ω, QΛ = ε}
measurable. We say that a sequence of measures (µn) converges to the measure µ on (Ω, C)
if and only if

lim
n→∞

Eµn(f) = Eµ(f)

for every local function f . Since the set of local functions is dense in the set of continuous
functions, this topology on the set of measures on (Ω, C) is the same as the one induced by
the notion of weak convergence.

The weak-convergence of a sequence of measures µn on QSF of an exhaustion of G
by �nite graphs (Gn) is equivalent to the weak-convergence of the sequence of associ-
ated incidence measures. Let us recall from Subsection 2.3.2 that the incidence measure
associated with µn has a density ρn with respect to the Haar measure νn on the Grassman-
nian Gr(CN )E(Gn).

Assume that for every n, the measure µn is determinantal of kernel kn. Then if Λ ⊂ E
is a �nite set of edges and R = ⊕e∈ΛRe, then if for every e ∈ Λ, we �x a basis (bei )i∈dimRe ,
then the density of the incidence measure evaluated in R is given by

ρn(R) = det
(
(kn)RR

)
= det

(
(kn)(bei )

(bei )

)
.

Therefore, the weak-convergence of the sequence (µn) towards a determinantal mea-
sure µ of kernel k whose associated incidence measure has a density ρ with respect to
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3.2. Measures on QSF in in�nite volume and thermodynamic limits

the Haar measure ν on Gr(CN )E is equivalent to the convergence ρn(R) → ρ(R) for
every �nite set Λ ⊂ E and every subspace R = ⊕e∈ΛRe, which is equivalent to the fol-
lowing statement: for every �nite family of edges (e1, . . . , ek), for every family of linearly
independent vectors of the corresponding �bers ((beji )i)j∈[1,k],

det
(

(kn)(b
ej
i )

(b
ej
i )

)
→ det

(
k

(b
ej
i )

(b
ej
i )

)
.

Therefore, the weak-convergence of the sequence (µn) towards a determinantal mea-
sure µ of kernel k is equivalent to the convergence of the matrix of (kn)e1,...,eke1,...,ek towards
the matrix of ke1,...,eke1,...,ek in any family of orthonormal basis of (Fei)i for any �nite family of
edges (e1, . . . , ek).

Notice that if we change the basis of a �ber to another orthonormal basis, the matrix
which is obtained is the conjugate of the previous matrix by an orthogonal matrix and
therefore, the previous convergence does not depend on the choice of bases of �bers.

Therefore, the weak-convergence of a sequence of measures (µn) towards a determinan-
tal measure µ of kernel k is equivalent to the convergence of 〈knθpe , θle′〉 towards 〈kθpe , θle′〉
for every e 6= e′ ∈ E, where θpe ∈ Ω1(G) satis�es θpe(e′) = 0 and θpe(e) is the p-th vector
of the canonical orthonormal basis of CN .

3.2.2 Kernels of the determinantal measures in in�nite volume

Since in the case of quantum spanning forests, the convergence of sequences of deter-
minantal measures on quantum spanning forests of growing �nite graphs relies on the
convergence of their kernels, we de�ne measures in �nite volume with boundary conditions
from their kernels and study their convergence.

Recall from [KL23] that on an in�nite graph the splitting Ω1(G) = im(dh)⊕ ker(d∗h)
need not hold, and therefore, we cannot de�ne a natural quantum spanning forest in in�nite
volume from the projection on im(dh) parallel to ker(d∗h).

Let us borrow some more notations from [KL23].

De�nition 3.4. Let Ω0
`2(F ) = {f ∈ Ω0(F ) : ‖f‖Ω0 < ∞} be the Hilbert space of

integrable 0-forms and Ω1
`2(F ) = {w ∈ Ω1(F ) : ‖w‖Ω1 < ∞} be the Hilbert spaces of

integrable 1-forms. LetF`2 be the closure in Ω1
`2(F ) of the image by dh of the space of

elements of Ω0(F ) with �nite support and ♦`2 be the closure in Ω1
`2(F ) of the space of

elements of ker d∗h with �nite support.

From [KL23], we have the orthogonal decomposition

Ω1
`2(F ) =F`2 ⊕ dh(H)⊕ ♦`2 (3.2)

whereH = {f ∈ Ω0 : ∆hf = 0 and dhf ∈ Ω1
`2(F )} is the space of harmonic 0-forms.

Free and wired conditions on growing subgraphs Gn are de�ned as follows. Let us
consider for every n, the operators ιn and εn which are de�ned by:

ιn :Ω0(Gn)→ Ω0(Gn+1) εn : Ω1(Gn)→ Ω1(Gn+1)

f 7→
{
f(x) if x ∈ Gn
0 else

θ 7→
{
θ(e) if e ∈ Gn
0 else
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3. Thermodynamic limits.

For every n, let us de�ne

FW
n := dn(ιn−1(Ω0(Gn−1)))

the space of exact 1-forms for wired conditions and

♦n := εn−1 ker(d∗n−1)

the space of cycles with free conditions.

De�nition 3.5 (Free and wired QSF). For every n, we denote by (µFn ), (µWn ) determinantal
measures on QSF of Gn whose kernels are orthogonal projections on ♦⊥n andFW

n . Those
measures are called free and wired measures on QSF of Gn.

For a vector-bundle of rank 1, those measures coincide with free and wired measures
as de�ned in subsection 3.1.1. Indeed, the free and the wired measure on cycle-rooted
spanning forests as de�ned in subsection 3.1.1 are respectively the measure on cycle-rooted
spanning forests of Gn and the measure on essential cycle-rooted spanning forests with
respect to W = ∂Gn, as de�ned in De�nition 2.6. Those measures are determinantal and
their kernels are respectively the orthogonal projections on ♦⊥n andFW

n .
One can think of the wired boundary condition as gluing together every vertices of the

boundary. The free boundary conditions corresponds to the case where edges outgoing of
the graph Gn are removed and none of the vertices are glued together.

From [KL23], the sequence of measures (µFn ) (respectively (µWn )) on QSF on the
graphs (Gn) are determinantal measures whose kernels are orthogonal projections on
decreasing (respectively increasing) subspaces of Ω1

`2(F ). This sequence converges in law
towards a measure on spanning subgraphs of G denoted by µF (respectively µW ). The
measures µF and µW are determinantal and their kernels are the orthogonal projections on
the spacesF`2 = ∪nFW

n

`2 and ♦`2 = ∪n♦n
`2 . From Equation (3.2), the free and the wired

measures µW and µF are equal if and only if dh(H) = {0}. We will see later (Lemma 6.18)
that under Assumption 6.17 on the connection h, this equality is satis�ed but it doesn’t
seem to be a necessary condition.

Let us emphasize that those statements hold in particular for determinantal measures
on CRSF associated with a connection on a vector bundle of rank 1.

3.3 Periodic boundary conditions for periodic graphs

In this section, we consider a graph G embedded in Rd which is Zd-periodic, in the sense
that there exists a lattice in Rd such that the graph G is invariant under the action of the
lattice. We can consider for instance the graph G = Zd where the set of edges is the set of
couples of points at distance 1. We call fundamental domain the basis of the lattice under
which the graph is invariant.

We will consider an exhaustion (Gn) of growing �nite subgraphs of G which will be
seen as graphs on growing tori where the left-right boundaries and top-bottom boundaries
are glued together. We will prove in this section that those boundary conditions are stuck
between free and wired boundary conditions, which is consistent with the intuition.

38



3.3. Periodic boundary conditions for periodic graphs

In order to make clear de�nitions, we will give some examples for G = Zd for some
�xed d ≥ 2 but de�nitions hold in the case where the graph has a larger fundamental
domain.

3.3.1 Graphs on tori and periodic boundary measures

We de�ne graphs on tori and measures on QSF of �nite graphs seen as graphs on tori.

De�nition 3.6. Let (Gn)n≥1 be an increasing sequence of connected induced subgraphs
of G with respective vertex set Vn and let ∂Gn be the set of vertices which are connected
by an edge to the complement of Gn in G. Assume that the exhaustion is constructed such
that it is invariant by the action of the lattice, that is to say that the top-bottom boundaries
and left-right boundaries can be glued. Let G̃n = Gn/ ∼ be the graph constructed fromGn
where ∼ is the equivalence relation de�ned by gluing boundaries.

To illustrate this de�nition, assume that G = Zd and m ≥ 1 is �xed. Let (Gn)n≥1
be the increasing sequence of connected induced subgraphs of Zd with respective vertex
set Vn = [−nm, nm]d and let

∂Gn = {v ∈ Gn : ||v||∞ = nm}

In this case, we have G̃n = Gn/ ∼ where ∼ is the equivalence relation :{
v ∼ v′ ⇔ ∃j ∈ [1, d], v′ = v ± 2nmbj
e ∼ e′ ⇔ ∃j ∈ [1, d], e′ = e± 2nmbj

where (bj) is the canonical basis of Rd.
In the following, we will consider a sequence (µPn ) of measures on QSF on graphs Gn

seen as graphs on the torus.

De�nition 3.7 (Graph on the torus). We denote by ẽ the equivalence class of an edge e.
Let Ω1(G̃n) be the space of 1-forms on the graph G̃n and Ω0(G̃n) be the space of 0-forms
on the graph G̃n. Those spaces are equipped with the inner products

〈θ̃1, θ̃2〉Ω1(G̃n) =
∑
e∈G̃n

θ̃1(e)θ̃2(e)

〈f̃1, f̃2〉Ω0(G̃n) =
∑
x∈G̃n

f̃1(x)f̃2(x)

and the operators d̃n : Ω0(G̃n) → Ω1(G̃n) and d̃∗n : Ω1(G̃n) → Ω0(G̃n) as de�ned in
Subsection 2.3.2 are adjoints for those inner products.

De�nition 3.8 (QSF on G̃n.). LetFn
per := d̃n(Ω0(G̃n)) be the subspace of Ω1(G̃n) which

contains the periodic exact forms. For the inner product on Ω1(G̃n), the orthogonal
decomposition holds :

Ω1(G̃n) = d̃n(Ω0(G̃n))⊕ ker(d̃∗n).

Let K̃n be the orthogonal projection on Fn
per := d̃n(Ω0(G̃n)). We denote by µ̃Pn the

measure on QSF on G̃n which is determinantal with kernel K̃n.
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3. Thermodynamic limits.

De�nition 3.9. Let rn : {Sub-bundles of G̃n} → {Sub-bundles of Gn} de�ned by

rn(Q̃) = ⊕e∈GnQ̃ẽ

Let us de�ne the measure µPn on sub-bundles of Gn which is called the periodic boundary
measure as the pushforward measure µPn = rn∗µ̃

P
n .

In the case of a determinantal measure on CRSF associated with a vector-bundle of
rank 1, the corresponding map rn which is considered is the following map :

rn : {Subgraphs of G̃n} → {Subgraphs of Gn}
F̃ 7→ {e ∈ Gn|ẽ ∈ F̃}

Then, the measure µPn on subgraphs of Gn which is called the periodic boundary measure
is de�ned as the pushforward measure µPn = rn∗µ̃

P
n .

By de�nition of the pushforward measure, if e1, . . . , ek ∈ E(Gn),

µPn (e1, . . . , ek ∈ F) = µ̃Pn (ẽ1, . . . , ẽk ∈ r−1
n (F)) = det(((K̃n)ẽi,ẽj )1≤i,j≤k)

Notice that under the measure µPn , con�gurations which are obtained are not neces-
sarily cycle-rooted forests when they are seen as con�gurations on the graph Gn. Once
con�gurations are seen as con�gurations on the graph G̃n on the torus, they are CRSF and
have probabilities proportional to the product of weights of cycles.

In the following, we consider for every n the measure µPn on sub-bundles of Gn for
a vector bundle of rank N and we will try to compare this measure with free and wired
measures which have been introduced in Subsection 3.2.2.

Recall that measures (µWn ) and (µFn ) are determinantal and their kernels are orthogonal
projections onFW

n and ♦⊥n , whereFW
n and ♦⊥n are subspaces of Ω1(G). Therefore, we

will establish a correspondence between the space Ω1(G̃n) and a subspace of Ω1(G), such
that K̃n is the conjugate by an isometry of an orthogonal projection on a subspace of Ω1(G).

3.3.2 Correspondence with subspaces of Ω1(G).

Let Ω1
per(Gn) be the subspace of Ω1(G) whose functions have support inE(Gn) and satisfy

for every e1, e2 ∈ E(∂Gn), such that the equality ẽ1 = ẽ2 holds in G̃n, θ(e1) = θ(e2).
For every n, let us de�ne a map ϕn between Ω1(G̃n) and Ω1

per(Gn) as follows. For
every θ ∈ Ω1(G̃n), we de�ne for every edge e,

ϕn(θ)(e) =

θ(ẽ) if e ∈ Gn\∂Gn
θ(ẽ)√
n(e)

if e ∈ ∂Gn

where n(e) is de�ned by n(e) = |{e′ ∈ ∂Gn|ẽ′ = ẽ}|.

Lemma 3.10. ϕn is an isometry. Therefore, for every n, ϕn ◦ K̃n ◦ ϕ−1
n is the orthogonal

projection on ϕn(Fn
per) for the inner product on Ω1(G).
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3.3. Periodic boundary conditions for periodic graphs

Proof. Let θ̃1, θ̃2 ∈ Ω1(G̃n).

〈ϕn(θ̃1), ϕn(θ̃2)〉Ω1(Gn) =
∑

e∈E(Gn)
〈ϕn(θ̃1)(e), ϕn(θ̃2)(e)〉Fe

=
∑

e∈E(Gn\∂Gn)
〈θ̃1(ẽ)θ̃2(ẽ)〉Fe +

∑
e∈E(∂Gn)

1
n(e)〈θ̃1(ẽ), θ̃2(ẽ)〉Fe

=
∑

e∈E(Gn\∂Gn)
〈θ̃1(ẽ), θ̃2(ẽ)〉Fe +

∑
ẽ∈E(∂G̃n)

〈θ̃1(ẽ), θ̃2(ẽ)〉Fe

= 〈θ̃1, θ̃2〉Ω1(G̃n)

Since K̃n is the orthogonal projection onFn
per for the inner product on Ω1(G̃n), the

conjugate ϕn ◦ K̃n ◦ ϕ−1
n is the orthogonal projection on ϕn(Fn

per) for the inner product
on Ω1(G).

Indeed, if f ∈ Ω1(G), ϕn ◦ K̃n ◦ ϕ−1
n (f) ∈ ϕn(Fn

per) and if θ ∈ ϕn(Fn
per), θ = ϕn(θ̃)

with θ̃ ∈Fn
per, then,

〈f − ϕn ◦ K̃n ◦ ϕ−1
n (f), θ〉 = 〈ϕ−1

n (f)− K̃n ◦ ϕ−1
n (f), θ̃〉 = 0

since ϕ−1
n (f)− K̃n ◦ ϕ−1

n (f) ∈ (Fn
per)⊥ for the inner product on Ω1(G̃n), and then,

f − ϕn ◦ K̃n ◦ ϕ−1
n (f) ∈ (ϕn(Fn

per))⊥.

which concludes the proof.

In the same way, we can de�ne a map ψn for every n between Ω0(G̃n) and Ω0
per(Gn)

where Ω0
per(Gn) is the subspace of Ω0(G) whose functions have support in V (Gn) and

such that for every v1, v2 ∈ V (∂Gn), such that ṽ1 = ṽ2 ∈ G̃n, f(v1) = f(v2).
For every f ∈ Ω0(G̃n), we de�ne for every vertex v,

ψn(f)(v) =

f(ṽ) if v ∈ Gn\∂Gn
f(ṽ)√
n(v)

if v ∈ ∂Gn

where n(v) is de�ned by n(v) = |{v′ ∈ ∂Gn|ṽ′ = ṽ}|. This map is an isometry
from Ω0(G̃n) to Ω0

per(Gn).

3.3.3 Comparison with free and wired measures

In this part, we will establish some stochastic inequalities between the measure with
periodic boundary conditions and measures with free and wired conditions.

Lemma 3.11. As subspaces of Ω1(Gn), we have

FW
n := dn(ιn−1(Ω0(Gn−1))) ⊂ ϕn(Fper

n ).

Proof. Since ψn is a bijective isometry, we have

ιn−1Ω0(Gn−1) ⊂ Ω0
per(Gn) = ψn(Ω0(G̃n)).
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3. Thermodynamic limits.

Since ψ−1
n is the identity on ιn−1Ω0(Gn−1) and ϕn is the identity on Ω1

|∂Gn=0(G̃n) and
since ιn−1Ω0(Gn−1) ⊂ ψn(Ω0(G̃n)), we get the following equality on ιn−1Ω0(Gn−1),

ϕn ◦ d̃n ◦ ψ−1
n = dn.

As subspaces of Ω1(Gn), we have

FW
n := dn(ιn−1(Ω0(Gn−1))) ⊂ ϕn ◦ d̃n ◦ ψ−1

n (ιn−1(Ω0(Gn−1))) ⊂ ϕn(d̃n(Ω0(G̃n))),

which is precisely the inclusion we wanted to prove.

Denote by ♦per
n the orthogonal ofFn

per for the inner product on Ω1(G̃n). Since ϕn is
an isometry, the orthogonal of ϕn(Fn

per) for the inner product on Ω1(Gn) which is the
restriction of the inner product on Ω1(G) is ϕn(♦per

n ).
Since d̃n and d̃∗n are adjoints for the inner product on Ω1(G̃n), we have

♦per
n = ker d̃∗n = ker K̃n.

Lemma 3.12. As subspaces of Ω1(Gn), we have

♦n = εn−1(ker(d∗n−1)) ⊂ ϕn(♦pern ).

Proof. Let θ ∈ ♦n . First of all, notice that θ ∈ Ω1
per(Gn) since θ ∈ im(εn−1). Since θ ∈ ♦n,

we have θ = εn−1θ0 with θ0 ∈ ker(d∗n−1). Then, if x ∈ Gn−1, we have

d∗n(θ)(x) = d∗n−1(θ0)(x) = 0,

by de�nition of θ0. If x /∈ Gn−1,
d∗n(θ)(x) = 0

since εnθ(e) = 0 ∀e ∈ Gn\Gn−1.
Moreover, ϕ−1

n (θ) ∈ Ω1(G̃n) and for every e, such that e± ∈ ∂Gn,

ϕ−1
n (θ)(ẽ) = 0.

Then, we have
d̃∗n(ϕ−1

n (θ)) = d∗n(θ) = 0.

Therefore, θ ∈ ϕn(♦per
n ).

Those inclusion of sets imply the following stochastic inequalities on the measures in
�nite volume with boundary conditions.

Proposition 3.13. For every �nite subset Λ ∈ E(G), we have for n large enough, the
following inequalities which hold for every R = ⊕e∈ΛRe,

ρWn (R) ≤ ρPn (R) ≤ ρFn (R).

where ρWn , ρPn and ρFn are the respective densities of the incidence measures associated with
the measures µWn , µPn and µFn , as de�ned in Subsection 2.3.2.

42



3.3. Periodic boundary conditions for periodic graphs

Proof. Let Λ ∈ E(G) be a �nite set of edges. Let n be large enough such that Λ ⊂ Gn−1.
Let θ be a 1-form with compact support in Λ. Let us denote by θ̃n, the 1-form in Ω1(G̃n)

such that ϕ−1
n (θ) = θ̃n. For every e ∈ Gn−1,

ϕn ◦ K̃n ◦ ϕ−1
n (θ)(e) = K̃nθ̃n(ẽ).

In particular, if e1, . . . , ek ∈ Λ, and if l ∈ [1, N ], denoting by θlei = (1e+i − 1e−i )bl,
where (bl)l∈[1,N ] is the canonical basis of CN , we have :

det
((
K̃nθ̃

l
ei(ẽj)

)
i,j∈[1,k],l∈[1,N ]

)
= det

((
ϕn ◦ K̃n ◦ ϕ−1

n (θlei)(ej)
)
i,j∈[1,k],l∈[1,N ]

)
.

Since ϕn ◦ K̃n ◦ϕ−1
n is the orthogonal projection on ϕn(Fper

n ) parallel to ϕn(♦per
n ) for the

inner product on Ω1(G), Lemma 3.11 and Lemma 3.12 show that

det
((
KW
n θlei(ej)

)
i,j∈[1,k],l∈[1,N ]

)
≤ det

((
K̃nθ̃

l
ei(ẽj)

)
i,j∈[1,k],l∈[1,N ]

)
≤ det

((
KF
n θ

l
ei(ej)

)
i,j∈[1,k],l∈[1,N ]

)
.

From subsection 3.2.1, we deduce that for every R = ⊕e∈ΛRe,

ρWn (R) ≤ ρPn (R) ≤ ρFn (R),

which is the desired statement.

For the case of a connection on a rank 1 vector-bundle, this statement can be written in
an easier way: for every e1, . . . , ek ∈ E(G), then for n large enough,

µWn (e1, . . . , ek ∈ F ) ≤ µPn (e1, . . . , ek ∈ F ) ≤ µFn (e1, . . . , ek ∈ F ).

We immediately deduce the following result.

Corollary 3.14. If (µWn ) and (µFn ) converge weakly to the same limit µ, then (µPn ) also
converges weakly to this limit µ.

Recall that the sequences of measures (µWn ), (µFn ) on QSF on the sequence of growing
subgraphs (Gn) with wired or free boundary conditions converge towards thermodynamic
limits µF and µW , which are determinantal measures whose kernels are the orthogonal
projections on spaces ♦⊥`2 andF`2 .

We will see later (Lemma 6.18) that under an assumption on the connection (6.17), the
spaces ♦⊥`2 and F`2 are equal and the measures µW and µF are equal. A consequence
of Corollary 3.14 is that under this assumption, the sequences of measures (µPn ), (µWn )
and (µFn ) converge weakly to the same limit µ.
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Chapter4
Periodic thermodynamic limits.

In this chapter, we study a particular case of the model of the so-called quantum spanning
forests in in�nite volume, as de�ned in [KL20c] and section 2.3. We construct limit measures
on quantum spanning forests on a Zd-periodic graph by taking the limit of measures on
an exhaustion by �nite graphs on growing tori of the form Zd/(nZ)d, with n tending to
in�nity.

In [BP93], authors study the limit of measures on uniform spanning trees on an ex-
haustion of Zd by �nite graphs on growing tori of the form Zd/(nZ)d, with n tending to
in�nity and prove the following transfer current formula for the kernel:

Ke,e′ =
∫
|z|=1,|w|=1

K[e],[e′](z, w)zxe−xe′wye−ye′ dz2iπz
dw

2iπw . (4.1)

where K(z, w) is a matrix indexed by the edges of the fundamental domain G1, called the
transfer current operator and e = [e] + (xe, ye) where [e] denotes the image of e in the
fundamental domain G1.

We prove in this chapter some similar formulas for the kernel of a quantum spanning
forest associated to a unitary periodic connection on a vector-bundle of rank N .

When the fundamental domain of the graph is of size 1 and the connection is periodic,
the model depends on a deterministic choice of unitary matrices (M1, . . . ,Md) ∈ UN (C)d
on the half-edges of Zd, which de�nes a so-called unitary connection of rankN on the com-
plex trivial bundle of dimensionN over the graph Zd. We identify two phases in this model,
according to the decay of correlations with the distance. These two phases are characterized
by the existence or not of a common eigenvector to the matrices (M1, . . . ,Md) ∈ UN (C)d.
The existence of such a vector makes the connection reducible and the model becomes a
superposition of independent models of inferior rank.

4.1 Quantum spanning forests on growing tori

In this section, we consider a graph G embedded in Rd which is Zd-periodic endowed with
a connection h which is Zd-periodic, in the sense that there exists a lattice in Rd such that
the graph G and the connection h are invariant under the action of the lattice.

Let us consider an exhaustion of G by a sequence of �nite subgraphs (Gn) such that
for every n, the graph Gn contains nd copies of the fundamental domain G1. We denote
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4. Periodic thermodynamic limits.

by (G̃n) the subgraphs which are obtained by gluing opposite boundaries on a torus, and
by (K̃h,n) the kernels of the measures (µPn ) associated to the connection h and periodic
boundary conditions.

We will prove the following theorem for quantum spanning forest, which was proved
by [Ken11] for CRSF for a non necessarily unitary complex-valued connection of rank 1 on
planar graphs.

Theorem 4.1. When n→∞, we have for every e, e′ ∈ E,

(K̃h,n)e,e′ →
∫
|z1|=1,...,|zd|=1

K̃h[e],[e′](z1, . . . , zd)zx1−y1
1 . . . zxd−ydd

dz1
2iπz1

. . .
dzd

2iπzd

where K̃h[e],[e′](z1, . . . , zd) is the orthogonal projection on dh(z1,...,zd)(Ω0(G̃1)) for a new con-
nection h(z1, . . . , zd) which is obtained from the connection h by multiplying the connection
on edges between two copies of the fundamental domain in direction j by zj .

From section 3.3 and subsection 3.2.1, this theorem will imply that the sequence of
measures (µPn ) on QSF of G̃n, associated to the sequence of kernels (K̃h,n) converges
weakly, when n → ∞, towards a determinantal measure on QSF of G, whose kernel is
given by the integral expression of Theorem 4.1. Finally, from Corollary 3.14, in the case
where the free measure and the wired measure coincide in in�nite volume, the kernel of
the limit measure will be given by this integral expression.

4.1.1 Fourier decomposition of 1-forms

We introduce a periodic decomposition of the spaces Ω0(G̃n), Ω1(G̃n) in subsets which
are invariant under the action of the Laplacian and the orthogonal projection on im(dh,n).

We denote by [x] or [e] the unique vertex or edge translated from x or e which is in G1.
For every j, we also denote by tj the vector such that for every x, x+ tj is the translated
of x in direction j.

De�nition 4.2. For (z1, . . . , zd) ∈ Udn , let Ez1,...,zd ⊂ Ω0(G̃n) and Fz1,...,zd ⊂ Ω1(G̃n)
be the spaces of 0-forms and 1-forms on G̃n, respectively, which satisfy the following
periodicity condition, for every x ∈ Gn and every e ∈ E(Gn),{

f(x+ tj) = zjf(x) ∀ f ∈ Ez1,...,zd
θ(e+ tj) = zjθ(e) ∀ θ ∈ Fz1,...,zd

Lemma 4.3. We have the following decomposition

Ω0(G̃n) =
⊕

(z1,...,zd)∈Udn

Ez1,...,zd

Ω1(G̃n) =
⊕

(z1,...,zd)∈Udn

Fz1,...,zd

Moreover for d̃h,n and d̃?h,n which are de�ned as in section 2.2, we have the following inclusions:{
d̃h,n(Ez1,...,zd) ⊂ Fz1,...,zd .
d̃?h,n(Fz1,...,zd) ⊂ Ez1,...,zd .
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4.1. Quantum spanning forests on growing tori

Proof. Let (λz1,...,zd)z1,...,zd∈Un ∈ Cnd and (fz1,...,zd)z1,...,zd∈Un ∈ Ω0(G̃n)nd be such that
for every z1, . . . , zd ∈ Un, fz1,...,zd ∈ Ez1,...,zd and we have∑

z1,...,zd∈Un
λz1,...,zdfz1,...,zd = 0.

Let x ∈ G1. Then ∀ (α1, . . . αd) ∈ [0, n]d,∑
z1,...,zd∈Un

λz1,...,zdfz1,...,zd(x)zα1
1 . . . zαdd = 0.

Let (α1, . . . αd−1) ∈ [0, n]d−1 and αd ∈ [0, n],

∑
zd∈Un

 ∑
z1,...,zd−1∈Un

λz1,...,zdfz1,...,zd(x)zα1
1 . . . z

αd−1
d−1

 zαdd = 0.

De�ne χ = e2iπ/n. Then Un = {χl, l ∈ [0, n− 1]}. For all αd ∈ [0, n],

∑
l∈[0,n−1]

 ∑
z1,...,zd−1∈Un

λz1,...,χlfz1,...,χl(x)zα1
1 . . . z

αd−1
d−1

 (χαd)l = 0.

We get a polynomial of degree n − 1 which takes n roots thus which is equal to the
nul-polynomial. Thus, for all (α1, . . . αd−1) ∈ [0, n]d−1, and zd ∈ Un,∑

z1,...,zd−1∈Un
λz1,...,zdfz1,...,zd(x)zα1

1 . . . z
αd−1
d−1 = 0.

By recurrence, we get for all z1, . . . , zd ∈ Un,

λz1,...,zdfz1,...,zd(x) = 0.

Since it is true for every x ∈ G1, if (z1, . . . , zd) ∈ Udn is such that fz1,...,zd 6= 0, evaluating
in x ∈ G1 such that fz1,...,zd(x) 6= 0, we have

λz1,...,zd = 0.

The equality of spaces comes from the equality of dimension since the spaces of 0-forms
and of 1-forms on G̃n are of dimension Nnd|G1| and Nnd|E(G1)|.

Indeed, 1-forms of Fz1,...,zd are uniquely determined by images of edges of G1 and
0-forms of Ez1,...,zd are uniquely determined by images of vertices of G1, thus Fz1,...,zd is
of dimension N |E(G1)| and Ez1,...,zd is of dimension N |G1|.

Let f ∈ Ez1,...,zd .

d̃h,nf(e+ tj) = hee−f(e− + tj)− hee+f(e+ + tj) = (hee−f(e−)− hee+f(e+))zj
= d̃h,nf(e)zj .

The proof is the same for the other inclusion.

For z = (z1, . . . , zd), we denote by d̃h,n(z) : Ez−1
1 ,...,z−1

d
→ Fz−1

1 ,...,z−1
d

the compres-
sion of d̃h,n and by d̃?h,n(1/z) : Fz−1

1 ,...,z−1
d
→ Ez−1

1 ,...,z−1
d

the compression of d̃?h,n. The
operators d̃h,n(z) and d̃?h,n(1/z) are adjoint as compressions of d̃h,n, d̃∗h,n.

In the next subsection, we explain why those notations are well-chosen in the case of a
fundamental domain of size 1 (Lemma 4.4).
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4. Periodic thermodynamic limits.

Case of a fundamental domain of size 1. We consider in this section quantum span-
ning forests on G = Zd and the exhaustion by �nite graphs Gm = [−m,m]d on grow-
ing tori, gluing opposite boundaries. We �x m ∈ N and we de�ne n = 2m. Then,
the graph Gm seen on a torus by gluing opposite boundaries is isomorphic to the �nite
graph G̃n := G/(nZ)d.

In the following, we denote by (bj)1≤j≤d the canonical basis of Cd, which is de�ned by
the following formula bj = (0, . . . , 0, 1, 0, . . . , 0) ∈ Cd and (b′k)1≤k≤N the canonical basis
of CN , that is to say b′k = (0, . . . , 0, 1, 0, . . . , 0) ∈ CN .

Assume that the graph G̃n = G/(nZ)d is endowed with a �ber bundle of rank N and
a connection h which is periodic in the sense that there exists (M1, . . . ,Md) ∈ UN (C)d a
set of deterministic matrices such that if we consider

E+ = {xy|∃j ∈ [1, d], y − x = bj}

a set of oriented edges ofE, then, if e ∈ E+, j ∈ [1, d] such that e = (x, y) with y−x = bj ,
we have in the canonical basis of CN ,

hxe = Mj , hey = IN .

hex = M−1
j , hye = IN .

We denote by ej,+ the edges ofE+ whose end is 0Zd , that is to say the edges (−bj , 0). Since
the fundamental domain is of size 1, then the 0-forms are entirely determined by the image
of 0 and the 1-forms are entirely determined by the images of (ej,+). Notice that the family
of 1-forms (1ej,+ − 1−ej,+)b′k for j ∈ [1, d], k ∈ [1, N ] is a orthonormal basis of Ω1(G1).

Lemma 4.4. We still denote byd̃h,n(z) : Ez−1
1 ,...,z−1

d
→ Fz−1

1 ,...,z−1
d

d̃?h,n(1/z) : Fz−1
1 ,...,z−1

d
→ Ez−1

1 ,...,z−1
d

compressions of d̃h,n and d̃?h,n. Then, we can write in bases (10b
′
k)k and ((1ej,+−1−ej,+)b′k)j,k ,

d̃h,n(z) =

IN − z1M1
. . .

IN − zdMd


and

d̃∗h,n(1/z) =
(
IN − z1

−1M−1
1 . . . IN − zd−1M−1

d

)
.

Recall that d̃h,n(z) and d̃?h,n(1/z) are adjoint as compressions of adjoint operators.
Their expressions in bases show that their matrices are transposed conjugate of each other.

Proof. If e ∈ E+, and j ∈ [1, d] is such that e = xy with y − x = bj ,

d̃h,nf(e) = f(e+)−Mjf(e−).

In particular, if f ∈ E(z1,...,zd),

d̃h,nf(e) = (IN − z−1
j Mj)f(e+).
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4.1. Quantum spanning forests on growing tori

For all j ∈ [1, d], there are two edges ej,+ et ej,− whose �nal extremity is 0, one in E+, the
other in E−. Since −ej,− = ej,+ + bj , we have

d̃∗h,nθ(x) =
∑
j∈[1,d]

(hej,+,xθ(ej,+) + hej,−,xθ(ej,−)) =
∑
j∈[1,d]

(θ(ej,+)−M−1
j θ(−ej,−))

In particular, if θ ∈ Fz1,...,zd , d̃∗h,nθ(0) =
∑
j∈[1,d](IN − zjM−1

j )θ(ej,+).

Finally, if f ∈ Ez1,...,zd , f =
(
f(0)

)
,

d̃h,nf =

(d̃h,nf)(e1,+)
. . .

(d̃h,nf)(ed,+)

 =

f(0)− z−1
1 M1f(0)
. . .

f(0)− z−1
d Mdf(0)



On the same way, if θ ∈ Fz1,...,zd , θ =

θ(e1,+)
. . .

θ(ed,+)

,

d̃∗h,nθ(0) =
∑
j∈[1,d]

(IN − zjM−1
j )θ(ej,+),

which is exactly what we wanted to prove.

This Lemma justi�es the notations d̃h,n(z) and d̃∗h,n(1/z). Let us emphasize that those
operators have the same matrices as the operators d̃h′,1 and d̃∗h′,1 on Ω1(G̃1) where the
connection h has been replaced by a connection h′ de�ned by (z1M1, . . . , zdMd).

In the following subsection, we generalize this result to the case of a larger fundamental
domain.

On a larger fundamental domain. In the remainder of this section, assume that the
fundamental domain can be of size larger than 1. The following result hold for any periodic
connection hwhich is determined by its values between �bers over the fundamental domain.
Notice that h is not given anymore by unitary matrices (M1, . . . ,Md).

We notice that as well as in the case of a fundamental domain of size 1, 0-forms
of Ez−1

1 ,...,z−1
d

are determined by their values on G1 and (z−1
1 , . . . , z−1

d )-periodic 1-forms
of Fz−1

1 ,...,z−1
d

are determined by their values on edges of G̃1 and their values on G̃n are
given by multiplying the value on a vertex or an edge in the fundamental domain by z−1

j

for each translation of the graph in direction j.
Recall that we denote by [x] or [e] the unique vertex or edge translated from x or e

which is in G1. For every j, we also denote by tj the vector such that for every x, x+ tj is
the translated of x in direction j.

A slight modi�cation of the proof of Lemma 4.4 implies the following lemma.

Lemma 4.5. Identifying Ez−1
1 ,...,z−1

d
with Ω0(G̃1) and Fz−1

1 ,...,z−1
d

with Ω1(G̃1), the opera-
tors d̃h,n(z) and d̃∗h,n(1/z) have the same action as the operatorsd̃h(z1,...,zd) : Ω0(G̃1)→ Ω1(G̃1)

d̃∗h(z1,...,zd) : Ω1(G̃1)→ Ω0(G̃1)
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4. Periodic thermodynamic limits.

for a new connection h(z1, . . . , zd) on G̃1 which is obtained from the connection hmultiplying
the connection by zj on half-edges ([x], [e]) ∈ G̃1 for oriented edges e = (x, y) ∈ G1 such
that, {

[y] = y,

[x] = x+ tj .

In other words, we multiply the connection by zj on half-edges ([x], [e]) ∈ G̃1 for oriented
edges in G1 which “enter in the graph G1” in direction j.

e

y

y + tj

x+ tj

x /∈ G1

Figure 4.1 – G1 contains all solid edges and all full vertices. Once the boundaries are glued
on the torus, red vertices are glued to corresponding black vertices and the connection is
multiplied by zj on red edges.

This lemma means that if for every f ∈ Ez−1
1 ,...,z−1

d
, we denote by [f ] the corresponding

0-form in Ω0(G̃1) and for every θ ∈ Fz−1
1 ,...,z−1

d
, we denote by [θ] the corresponding 1-form

in Ω1(G̃1), then we have for every f ∈ Ez−1
1 ,...,z−1

d
, θ ∈ Fz−1

1 ,...,z−1
d

,

[d̃h,nf ] = d̃h(z1,...,zd)[f ],
[d̃∗h,nθ] = d̃∗h(z1,...,zd)[θ].

Proof. Let e be such an edge and f ∈ Ez−1
1 ,...,z−1

d
. Then,

d̃h,nf(e) = hy,ef(y)−hx,ef(x) = hy,ef([y])−hx,ef([x]−tj) = hy,ef([y])−zjhx,ef([x]).
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4.1. Quantum spanning forests on growing tori

Let x ∈ G1 such that x is on the boundary of G1. Assume that there exists an oriented
edge e = (x, y) /∈ G1, with y = [y] + tj . Then, e = [e] + tj . Then, if θ ∈ Fz−1

1 ,...,z−1
d

,

d̃∗h,nθ(x) =

 ∑
e′ 6=−e:e′+=x

he′,xθ(e′)

+ h−e,xθ(−e)

=

 ∑
e′ 6=−e:e′+=x

he′,xθ(e′)

+ z−1
j h−1

x,eθ([−e])

=

 ∑
e′ 6=−e:e′+=x

he′,xθ(e′)

+ (zjhx,e)−1θ([−e]).

If another edge e′ 6= −e is such that e′+ = x and e′ ∈ G̃1 \ G1, replacing e′ by [e′]
also multiplies the connection by zj depending on the direction of edge e′. It �nishes the
proof.

4.1.2 Diagonalisation of the Laplacian operator

The Laplacian operator plays a fundamental role in the model because its reduced determi-
nant gives the partition function of the model. We recall the de�nition of the Laplacian,
twisted by a connection h:

∆̃h,n : Ω0(G̃n)→ Ω0(G̃n)
f 7→ d̃?h,nd̃h,nf.

The following lemma shows that the Laplacian on Gn for a periodic connection can be
block diagonalized and therefore, its reduced determinant can be computed as a product of
determinants of Laplacians compressed on smaller spaces of periodic forms. As for the op-
erators d̃h,n and d̃∗h,n, the action of the Laplacian on those spaces is in correspondence with
the action of Laplacian operators on the fundamental domain on the torus G̃1 associated to
a modi�ed connection.

Lemma 4.6. Each space Ez−1
1 ,...,z−1

d
is invariant under the action of the Laplacian ∆̃h,n and

if f ∈ Ez−1
1 ,...,z−1

d
, we have

∆̃h,nf = ∆̃h,n(z)f,

where ∆̃h,n(z) = d̃?h,n(1/z)d̃h,n(z) is the compression of the Laplacian on the invariant
subspace Ez−1

1 ,...,z−1
d
. Moreover, we have the following decompositions:

{
ker(d̃h,n) =

⊕
ker(d̃h,n) ∩ Ez1,...,zd ,

ker(d̃h,n)⊥ =
⊕

ker(d̃h,n)⊥ ∩ Ez1,...,zd .

Then, the Laplacian compressed on the orthogonal of its kernel can be block-diagonalized and
its reduced determinant is given by

det 0(∆̃h,n) =
∏

ξn1 =1,...,ξn
d

=1
det 0(∆̃h,n(ξ1, . . . , ξd)).
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4. Periodic thermodynamic limits.

Proof. The �rst statement is an immediate consequence of Lemma 4.3.
Let f =

∑
z1,...,zd

fz1,...,zd with fz1,...,zd ∈ Ez1,...,zd be a 0-form of Ω0(G̃n) and assume
that f ∈ ker(d̃h,n). Then we have the equality 0 = d̃h,nf =

∑
z1,...,zd

d̃h,n(fz1,...,zd)
with d̃h,n(fz1,...,zd) ∈ Fz1,...,zd . Since the sum

Ω1(G̃n) =
⊕

Fz1,...,zd

is a direct one, we have for all (z1, . . . , zd), d̃h,n(fz1,...,zd) = 0. Thus for all (z1, . . . , zd),
we deduce that fz1,...,zd ∈ ker(d̃h,n) ∩ Ez1,...,zd . Therefore, we deduce the following
decomposition

ker(d̃h,n) =
⊕

ker(dh,n) ∩ Ez1,...,zd .

Since the graph G̃n is �nite, we have ker(d̃h,n)⊥ = im(d̃∗h,n). Therefore,

ker(d̃h,n)⊥ = im(d̃∗h,n) = d̃∗h,n(Ω1) = d̃∗h,n(
⊕

Fz1,...,zd).

For all (z1, . . . , zd), we know that d̃∗h,n(Fz1,...,zd) ⊂ im(d̃∗h,n)∩Ez1,...,zd . Since the sum

Ω0(G̃n) =
⊕

Ez1,...,zd

is a direct one, the sum of the spaces im(d̃∗h,n) ∩ Ez1,...,zd is also a direct sum and we have

ker(d̃h,n)⊥ = d̃∗h,n(
⊕

Fz1,...,zd)

⊂
⊕

im(d̃∗h,n) ∩ Ez1,...,zd
=
⊕

ker(d̃h,n)⊥ ∩ Ez1,...,zd

and the other inclusion holds since ∀(z1, . . . , zd), ker(d̃h,n)⊥ ∩ Ez1,...,zd ⊂ ker(d̃h,n)⊥.
Both decompositions prove that the Laplacian restricted to the orthogonal of its kernel can
be block-diagonalized.

From Lemma 4.5, identifyingEz−1
1 ,...,z−1

d
with Ω0(G̃1), the compression ∆̃h,n(z1, . . . , zd)

of the operator ∆̃h,n on Ez−1
1 ,...,z−1

d
has the same action as the Laplacian operator

∆̃h(z1,...,zd) : Ω0(G̃1)→ Ω0(G̃1),

in the sense that if for every f ∈ Ez−1
1 ,...,z−1

d
, we denote by [f ] the corresponding 0-form

in Ω0(G̃1), then we have for every f ∈ Ez−1
1 ,...,z−1

d
,

[∆̃h,nf ] = ∆̃h(z1,...,zd)[f ].

Let G̃h,n be the inverse of the Laplacian on the orthogonal complement to ker(d̃h,n),
also called the Green function of the model. From Lemma 4.6, each space Ez−1

1 ,...,z−1
d

is
invariant under the action of G̃h,n and the compression G̃h,n(z1, . . . , zd) of the operator G̃h,n
on Ez−1

1 ,...,z−1
d

, has the same action than the Green function :

G̃h(z1,...,zd) : Ω0(G̃1)→ Ω0(G̃1).

In the following, we compute the kernel of the quantum spanning forest on G̃n.
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4.1. Quantum spanning forests on growing tori

4.1.3 Kernel of the process and characteristic polynomial

The kernel of the quantum spanning forest on G̃n associated to the connection h is the
operator of orthogonal projection on im(d̃h,n). This operator may be written in the form:

K̃h,n : Ω1(G̃n)→ Ω1(G̃n)
θ 7→ d̃h,nG̃h,nd̃?h,nθ

Lemma 4.3 and Lemma 4.6 imply that each space Fz−1
1 ,...,z−1

d
is invariant under the action

of K̃h,n and if θ ∈ Fz−1
1 ,...,z−1

d
, then

K̃h,nθ = K̃h,n(z)θ

where for z = (z1, . . . , zd), K̃h,n(z) = d̃h,n(z)G̃h,n(z)d̃?h,n(1/z) is the compression of the
operator K̃h,n on Fξ−1

1 ,...,ξ−1
d

.

From Lemma 4.5, identifying Fξ−1
1 ,...,ξ−1

d
with Ω1(G̃1), the compression K̃h,n(z) has

the same action as the operator of orthogonal projection on d̃h(ξ1,...,ξd)(Ω1(G̃1)):

K̃h(ξ1,...,ξd) : Ω1(G̃1)→ Ω1(G̃1).

De�nition 4.7. We call characteristic polynomial of the model, associated to a connection h
and denote by Ph(z1, . . . , zd) the determinant of the Laplacian operator

∆̃h(z1,...,zd) : Ω0(G̃1)→ Ω0(G̃1)

associated to the connection h(z1, . . . , zd).

Notice that Ph(z1, . . . , zd) is indeed a Laurent polynomial in z1, . . . , zd because of the
multi-linearity of the determinant and the fact that the new connection h(z1, . . . , zd) is
obtained multiplying the connection on some edges by the variables (zj , z−1

j )j .
In the case of a fundamental domain of size 1 and a connection given by matri-

ces (M1, . . . ,Md) as de�ned in section 4.1.1, the expression of the characteristic polynomial
of this model is given by

Ph(z1, . . . , zd) = det
(

2dIN −
d∑
i=1

(ziMi + (ziMi)−1)
)
. (4.2)

Recall from Lemma 4.6 that the reduced determinant of the Laplacian associated to h
on the graph G̃n is given by

det 0(∆̃h,n) =
∏

zn1 =1,...,zn
d

=1
det 0∆̃h(z1,...,zd). (4.3)

When (z1, . . . , zd) is such that Ph(z1, . . . , zd) 6= 0, then by de�nition of the reduced
determinant,

det 0∆̃h(z1,...,zd) = Ph(z1, . . . , zd).
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4. Periodic thermodynamic limits.

Expression of the kernel of the process in a basis In this part, we de�ne an or-
thonormal basis of Ω1(G̃n) which can be easily decomposed according to the orthogonal
decomposition

Ω1 =
⊕
z∈Udn

Fz.

We will then explicit the action of K̃n on this basis.

De�nition 4.8. Let χ = e2iπ/n. Let e be an edge of G̃n. We can write e = [e]+(x1, . . . , xd)
where [e] ∈ G1. We de�ne the functions (θie)1≤i≤N as follows. If e′ = [e′] + (y1, . . . , yd),
de�ne

θie(e′) = 1
nd

∑
0≤l1,...,ld≤n−1

∏
k

(χlk)−xk(χlk)ykθi[e]([e
′])

where θi[e] is de�ned in Ω1(G1) by

θi[e]([e
′]) =


bi if e′ = [e]
−bi if [e′] = −[e]
0 else

where (bi)i = ((0, . . . 0, 1, 0, . . . , 0)t)i is the canonical basis of CN .

De�nition 4.9. For every (ξ1, . . . , ξd) ∈ Td, we denote by(
(K̃h)i,j[e],[e′](ξ1, . . . , ξd)

)
i,j∈[1,N ]2,[e],[e′]∈E(G1)

the matrix of the operator K̃h(ξ1,...,ξd) : Ω1(G̃1)→ Ω1(G̃1).

Recall that when (ξ1, . . . , ξd) ∈ Udn , the operator K̃h(ξ1,...,ξd) has the same action as
the compression of (K̃h,n) on the space of (ξ−1

1 , . . . , ξ−1
d )-periodic 1-forms, of dimen-

sion N |E(G1)|, which has been identi�ed to Ω1(G̃1).
For edges [e], [e′] of the fundamental domain in E+,

(K̃h)i,j[e],[e′](ξ1, . . . , ξd) = 〈(K̃h(ξ1,...,ξd))θi[e′], θ
j
[e]〉.

The following theorem gives the expression of the kernel in a basis of Ω1(G̃n) which
uses the notations de�ned above.

Theorem4.10. The family of functions (θie)1≤i≤N,e∈G̃n∩E+
is an orthonormal basis of Ω1(G̃n)

and the matrix of the operator K̃h,n : Ω1(G̃n)→ Ω1(G̃n) can be written in this basis

(K̃h,n)i,je,e′ = 〈(K̃h,n)θie′ , θje〉

= 1
nd

∑
ξ1
n=1,...,ξdn=1

d∏
k=1

(ξk)xk−yk(K̃h)i,j[e],[e′](ξ1, . . . , ξd).
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4.1. Quantum spanning forests on growing tori

Proof. • For e ∈ G̃n, 1 ≤ i ≤ N , the 1-form θie ∈ Ω1(G̃n) satis�es

θie(e′) =


bi if e′ = e,

−bi if e′ = −e,
0 else.

Indeed, if for some k, xk 6= yk, θie(e′) can be factorized by
∑
l∈[0,n−1](χl)yk−xk = 0.

Thus 〈θie, θ
j
e′〉 = 1i=j(1e=e′ − 1e=−e′) , which proves that the family is an orthonor-

mal basis.

• For 0 ≤ l1, . . . , ld ≤ n− 1, 1 ≤ i ≤ N and [e] ∈ G1 the 1-form in Ω1(G̃n)

ψie,l1,...,ld : [e′] + (y1, . . . , yd) ∈ G̃n 7→
d∏

k=1
(χlk)ykθi[e]([e

′])

is in Fχl1 ,...,χld and is identi�ed to θi[e] in Ω1(G̃1). Then,

(K̃h,n)(ψie,l1,...,ld)([e
′] + (y1, . . . , yd)) =

d∏
k=1

(χlk)yk(K̃h,n)(ψie,l1,...,ld)([e
′])

=
d∏

k=1
(χlk)yk

(
K̃h(χ−l1 ,...,χ−ld )

)
(θi[e])([e

′]).

Moreover, we have

θie(e′) = 1
nd

∑
0≤l1,...,ld≤n−1

d∏
k=1

(χlk)−xkψie,l1,...,ld(e
′),

and this decomposition is the unique decomposition of θie in Ω1(G̃n) =
⊕

z∈Udn Fz .

• If e = [e] + (x1, . . . , xd) ∈ G̃n, e′ = [e′] + (y1, . . . , yd) ∈ G̃n, we have

(K̃h,n)θie(e′) = 1
nd

∑
0≤l1,...,ld≤n−1

d∏
k=1

(χlk)−xk(K̃h,n)(ψie,l1,...,ld)(e
′)

= 1
nd

∑
0≤l1,...,ld≤n−1

d∏
k=1

(χ−lk)xk−yk
(
K̃h(χ−l1 ,...,χ−ld )

)
(θi[e])([e

′])

= 1
nd

∑
ξ1
n=1,...,ξdn=1

d∏
k=1

(ξk)xk−yk(K̃h(ξ1,...,ξd))θi[e]([e
′]).

Considering for 1 ≤ j ≤ N the coordinate maps e∗j associated to the canonical basis
of CN �nishes the proof.
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4. Periodic thermodynamic limits.

4.2 Study of the roots of the characteristic polynomial in
the unit torus

In this section, we will study the roots of the characteristic polynomial in the unit torus, in
order to establish the convergence of the sequence of kernels of the measures on quantum
spanning forests on growing tori of size n when n goes to in�nity. This result will imply
the convergence of the sequence of measures towards a determinantal measure whose
kernel is the limit of the sequence of kernels.

The following Lemma due to [KL23] will be useful to obtain an equivalent condition to
the existence of roots of the characteristic polynomial in the unit torus.

Lemma 4.11. [KL23] If a section f is a horizontal section for a connection h, which means
that f ∈ ker dh\{0}, then for any vertex x and any loop based in x, denoted by γ ∈ Lx,
we have f(x) ∈ ker(idFx − holh(γ)). Furthermore, this condition is a su�cient one, which
means that for every vertex x,

evx(ker dh) = ∩γ∈Lx(G) ker(idFx − holh(γ)).

4.2.1 Roots of the characteristic polynomial on the unit torus

Fundamental domain of size 1. Assume that the fundamental domain is of size 1 and
the connection is given by matrices (M1, . . . ,Md) as de�ned in section 4.1.1. We will prove
that in this case, the existence of roots of the characteristic polynomial is equivalent to the
existence of common eigenvectors to the matrices (M1, . . . ,Md).

Recall that the expression of the characteristic polynomial of this model is given by

Ph(z1, . . . , zd) = det
(

2dIN −
d∑
i=1

(ziMi + (ziMi)−1)
)
,

and that the Laplacian operator on Ω0(G̃1) associated to the connection h(z1, . . . , zd) is

∆̃1(z1, . . . , zd) = d?(z−1
1 , . . . , z−1

d )d(z1, . . . , zd) =
d∑
i=1

(Ip − z−1
i M−1

i )(Ip − ziMi).

Theorem 4.12. For a square lattice with a fundamental domain of size 1, the following
properties are equivalent:

• There exists z = (z1, . . . , zd) ∈ Td such that P (z) = 0.

• There exists X ∈ CN a common eigenvector to the matricesMj .

In the case where z = (z1, . . . , zd) ∈ Td is such that P (z) = 0, the eigenvalues associated to
the matricesMj and to the common eigenvector X are z̄j .

There are at most N distinct roots z = (z1, . . . , zd) ∈ Td of P .

In the caseN = 2, if we assume that the matrices are in SU2(C) and that the connection is
singular, then we get two roots z = (z1, . . . , zd), z̄ = (z̄1, . . . , z̄d) ∈ Td and the matricesMj

are co-diagonalizable and can be written as

(
zj 0
0 z̄j

)
in the basis (X⊥, X).
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4.2. Study of the roots of the characteristic polynomial in the unit torus

Proof. We give two proofs of the equivalence, the �rst one is based on the geometry of the
fundamental domain and the other one is based on explicit calculations of the characteristic
polynomial.

1. Let z = (z1, . . . , zn) ∈ Td such that P (z) = 0. Then ∆̃(z) is non injective. In
particular, there exists f ∈ ker(d̃(z))\{0} because d̃(z) et d̃∗(z) are adjoints. From
Lemma 4.11, a section in the kernel of d̃(z), so-called horizontal section, satis�es for
all x the following relation depending on the holonomy of whatever loop based in x:

evx(ker d̃(z)) = ∩γ∈Lx(G1) ker(idFx − holz,G1(γ)).

In particular, considering the loops γ based in (0, . . . , 0) on the fundamental domain,
seen as a graph G̃1 on the torus, of holonomy zjMj for j ∈ [1, d], we get

f(0) ∈ ker(idp − zjMj) ∀j ∈ [1, d].

All the matrices Mj have a common eigenvector X = f(0) associated respectively
to the eigenvalues z̄j of modulus 1.

MjX = z̄jX ∀j ∈ [1, . . . , d].

2. For the other proof, let us write explicitly the characteristic polynomial :

P (z1, . . . , zd) = det(2dIN −
∑
j

(zjMj + z̄jM
−1
j ))

= det(H) =
N∏
i=1

mi(z)

where H := (
∑
j 2IN − (zjMj + z̄jM

−1
j )) and (mi(z)) are the eigenvalues of H

which are in R+ since H is Hermitian and semide�nite. Indeed,

〈HX,X〉 = 〈
∑
j

2dIN − (zjMj + z̄jM
−1
j )X,X〉

=
∑
j

2d〈X,X〉 − zj〈MjX,X〉 − z̄j〈M−1
j X,X〉

=
∑
j

2d(〈X,X〉 −Re(zj〈MjX,X〉)),

where |Re(zj〈MjX,X〉)| ≤ |〈zjMjX,X〉| ≤ 〈X,X〉 since Mj is in UN (C). This
inequality is an equality if and only if X = 0 or X is a common eigenvector to the
matrices Mj associated to the eigenvalues z̄j . Thus, 〈HX,X〉 = 0 if and only if
we have X = 0 or the matrices Mj have a common eigenvector associated to the
eigenvalues z̄j . It proves that P vanishes on Td if and only if H is not de�nite if and
only if the matrices Mj have a common eigenvector.

To end the proof, let us recall that the matrices Mj are unitary. In particular,

M∗jX = zjX
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4. Periodic thermodynamic limits.

If Y ∈ X⊥\{0}, then, 〈MjY,X〉 = 〈Y,M∗jX〉 = 〈Y, zjX〉 = 0.

If N = 2, then dimX⊥ = 1, thus MjY ∈ X⊥ = V ect(Y ). Then Y is a common
eigenvector to the matrices Mj . Finally, if the matrices Mj have determinant 1, Y is
an eigenvector associated to the zj and the matrices M1, . . . ,Md can be written in the

basis (Y,X) of C2 as
(
zj 0
0 z̄j

)
.

Larger fundamental domain and other lattices. Let G be a Zd-periodic graph with
a fundamental domain G1, endowed with a periodic connection h de�ned by its values
on G1.

Let x ∈ G1. Let Cx(G̃1) be the set of closed cycles of G̃1 rooted at x.

Theorem 4.13. The following properties are equivalent:

• There exists X ∈ CN a common eigenvector to all holonomies holh(γ̃) for γ̃ ∈ Cx(G̃1)
associated with eigenvalue 1 for contractible cycles.

• There exists z = (z1, . . . , zn) ∈ Td such that P (z) = 0.

In the case where z = (z1, . . . , zn) ∈ Td is such that P (z) = 0, there exists a common
eigenvector X to the holonomies holh(γ̃j(x)) associated with the eigenvalues z̄1, . . . , z̄N . In
particular, there are at most N distinct roots z = (z1, . . . , zn) ∈ Td of P .

Proof. Assume that the characteristic polynomial P vanishes on Td and let z ∈ Td be a root
of the characteristic polynomial. Then, there exists a horizontal section f ∈ ker(d̃(z))\{0}
because d̃(z) et d̃∗(z) are adjoints. From Lemma 4.11, it implies the existence of X ∈ CN
such that

X ∈ ∩γ∈Lx(G) ker(idFx − holh(z1,...,zd),G̃1
(γ)).

This vectorX is a common eigenvector to all holonomies holh(γ̃) for γ̃ ∈ Cx(G̃1) associated
with eigenvalue 1 for contractible cycles and eigenvalue z̄i11 . . . z̄idd for a cycle of homotopy
class (i1, . . . , id). If there exists such an eigenvector X , the 0-form de�ned by f(x) = X
and for every y, if γ is a path from x to y, f(y) = holh(γ)X , is in ker(dh) ∩Ez1,...,zd , that
is ker(dh(z̄1, . . . , z̄d)), thus, the characteristic polynomial P vanishes at (z̄1, . . . , z̄d).

For some lattices such as the triangular lattice, this result gives explicit equivalent
conditions to the existence of roots of the characteristic polynomial in the unit torus in
terms of common eigenvectors of the matrices which de�ne the connection.

Corollary 4.14. For a triangular lattice with a fundamental domain of size 1, endowed with
a periodic connection de�ned by unitary matricesM1,M2,M3, the following properties are
equivalent:

• There exists z = (z, w) ∈ T2 such that P (z, w) = 0.

• There exists X ∈ CN a common eigenvector to the matricesM1,M2,M3, associated
respectively to eigenvalues z̄, w̄, z̄w̄, such that

M1M3X = M2X.
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M2 M2

M2 M2 M2

M2 M2

M1 M1 M1

M1M1M1

M3M3

M3

M3 M3

M3

Figure 4.2 – Triangular planar lattice endowed with a periodic connection h.

Proof. There exists (z, w) ∈ T2 such thatP (z, w) = 0 if and only if there exists a horizontal
section f ∈ ker(d̃(z))\{0} because d̃(z) et d̃∗(z) are adjoints. From Lemma 4.11, it is
equivalent to the existence of X ∈ CN such that

X ∈ ∩γ∈Lv(G) ker(idFv − holh(z,w),G̃1
(γ)).

From Lemma 4.5, for any z = (z, w) ∈ T2, the connection h(z, w) on the graph G̃1 on the
torus is as follows:

zM1

zwM2

wM3

Figure 4.3 – The fundamental domain on the torus G̃1 endowed with the connection h(z, w).

Therefore, for any z = (z, w) ∈ T2, we have P (z, w) = 0 if and only if there exists X
in ∩γ∈Lv(G) ker(IN − holh(z,w),G̃1

(γ)) that is X such that

zM1X = zwM2X = wM3X = X,

which concludes the proof.

Those results imply in particular that the characteristic polynomial has at most N
distinct roots in the unit torus. The �nite number of roots is a key tool to show the
convergence of the kernels sequence.

4.2.2 Thermodynamic limit of the model

In this subsection, we study the convergence of the kernel K̃h,n when n→∞.

Lemma 4.15. When n→∞, we have for every e, e′ ∈ E and every 1 ≤ i, j ≤ N,

(K̃h,n)i,je,e′ →
∫
|z1|=1,...,|zd|=1

(K̃h)i,j[e],[e′](z1, . . . , zd)zx1−y1
1 . . . zxd−ydd

dz1
2iπz1

. . .
dzd

2iπzd
.
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4. Periodic thermodynamic limits.

Proof. Let us write explicitly the n-roots of unity as ξl = exp(2ilπ
n ) for 1 ≤ l ≤ n. Then

(K̃h,n)i,je,e′ = 1
nd

∑
ξ1
n=1,...,ξdn=1

∏
k

(ξk)xk−yk(K̃h)i,j[e],[e′](ξ1, . . . , ξd)

= 1
nd

∑
1≤l1,...,ld≤n

∏
k

(e
2ilkπ
n )xk−yk(K̃h)i,j[e],[e′](e

2il1π
n , . . . , e

2ildπ
n )

The map (z1, . . . , zd) 7→ (K̃h)(z1, . . . , zd) remains bounded on the unit torus since it is
the matrix of an orthogonal projection and has at most a �nite number of discontinuity
points given by the roots in the unit torus of the characteristic polynomial. Therefore, the
Riemannian sum converges towards the following limit

(K̃h,n)i,je,e′ →
∫
|z1|=1,...,|zd|=1

∏
k

zxk−ykk (K̃h)i,j[e],[e′](z1, . . . , zd)
dz1

2iπz1

dzd
2iπzd

,

which is the desired limit.

Let us de�ne the operator K on Ω1(Zd) by

〈Kθe′ , θe〉 =
∫
|z1|=1,...,|zd|=1

(K̃h)[e],[e′](z1, . . . , zd)zx1−y1
1 . . . zxd−ydd

dz1
2iπz1

. . .
dzd

2iπzd
.

Lemma 4.15 and topological considerations of the subsection 3.2.1 imply the following
statement about the sequence of measures (µPn ) as de�ned in section 3.3. Notice that this
result is proved in [Ken11] for non-unitary complex periodic connections of rank 1.

Theorem 4.16. The sequence of measures (µPn ) converges weakly towards a determinantal
measure µP on the Grassmannian of the vector bundle of rank N over G which is associated
to the operatorK . This measure de�nes a quantum spanning forest on G whose kernel has
the following integral expression :

Ke,e′ =
∫
z∈Td

zx−y(K̃h)[e],[e′](z)
dz

2iπz . (4.4)

Recall that this theorem relies on the following property : If Λ ⊂ E is a �nite subset
and R = ⊕e∈ΛRe with Re a subspace of Fe for every e ∈ Λ, then for m large enough,

ρPm(R) = det((K̃m)(bei ))e∈Λ,(bei )i≤dimRe
)→ det((K)(bei ))e∈Λ,(bei )i≤dimRe

).

where for every e ∈ Λ, the family (bei )i≤dimRe is a basis of Re and ρPm is the density of the
incidence measure R 7→ µPm(R ⊂ Q), as de�ned in Subsection 2.3.2.

In particular, in the case where the free and the wired measures coincide in in�nite
volume, we deduce from Corollary 3.14 that the free and the wired measure coincide
with µP which means that those measures are determinantal of kernel K de�ned by the
integral expression (4.4).

Recall from Equation (3.2) that the free and the wired measures coincide in in�nite
volume if and only if dh(H) = {0} whereH = {f ∈ Ω0 : ∆hf = 0 and dhf ∈ Ω1

`2(F )} is
the space of harmonic 0-forms. We will see later (Lemma 6.18) that under Assumption 6.17
on the connection h, this equality is satis�ed but it does not seem to be a necessary condition
to get the equality between the free and the wired measure. Indeed, this assumption is not
satis�ed by the trivial connection, for which the free and the wired measures on uniform
spanning forests are equal (see [LP16]).
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4.2. Study of the roots of the characteristic polynomial in the unit torus

4.2.3 Free-energy of the model

By analogy with other statistical physics models, we de�ne the free energy of the in�nite
volume measure obtained as the limit of a sequence of measures µn on an exhaustion of
the in�nite graph by growing �nite subgraphs as the following quantity:

F = − lim
n→∞

1
nd

log(|Fn|),

where Fn is the partition function of the measure µn.

Theorem 4.17. The free energy of the limit measure µP is given by the following integral
expression :

F = −
∫
z∈Td

log(|Ph(z)|),

that is the Mahler measure of the polynomial Ph, as studied in [BZ20, GM21, BGMP22].

For a fundamental domain of size 1, the free energy is given by

F = −
∫

(z1,...,zd)∈Td
log

(
|det

(
2dIN −

d∑
i=1

(ziMi + (ziMi)−1)
)
|
)
.

Proof. From [KL23], as recalled in (section 2.3, Theorem 2.19), the partition function of the
model is the reduced determinant det 0(∆̃h,n) of the Laplacian operator associated to h on
the graph G̃n. From the diagonal decomposition of the Laplacian operator restricted to the
orthogonal of the kernel of the covariant derivative (Equation (4.3)), this determinant is
given by det 0(∆̃h,n) =

∏
zn1 =1,...,zn

d
=1 det 0∆̃h(z1,...,zd).

By de�nition of the free energy, we have

F = − lim
n→∞

1
nd

log(| det 0(∆̃h,n)|)

= − lim
n→∞

1
nd

log

 ∏
zn1 =1,...,zn

d
=1
|det 0∆̃h(z1,...,zd)|


= − lim

n→∞
1
nd

∑
zn1 =1,...,zn

d
=1

log(| det 0∆̃h(z1,...,zd)|)

= − lim
n→∞

1
nd

∑
1≤l1,...,ld≤n

log

|det 0∆̃
h

(
e

2il1π
n ,...,e

2ildπ
n

)|
 .

The function z 7→ det 0∆̃h(z1,...,zd) does not vanish on Td = {|z1| = 1, . . . , |zd| = 1}
and has at most a �nite number of discontinuity points, corresponding to the roots of the
characteristic polynomial on the unit torus. On a neighborhood of each discontinuity point,
the map (z1, . . . , zd) ∈ Td 7→ det 0∆̃h(z1,...,zd) coincides with Ph(z1, . . . , zd) since it does
not vanish, and thus is a polynomial function. Therefore, the function obtained by applying

the logarithm, that is to say (z1, . . . , zd) 7→ log

|det 0∆̃
h

(
e

2il1π
n ,...,e

2ildπ
n

)|
 is integrable.

In particular, we obtain the convergence of the Riemannian sum towards

−
∫
|z1|=1,...,|zd|=1

log(|det 0∆̃h(z1,...,zd)|)
dz1

2iπz1

dzd
2iπzd

.
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For almost every (z1, . . . , zd) ∈ Td, the characteristic polynomial does not vanish, then
the quantity det 0∆̃h(z1,...,zd) coincides with Ph(z1, . . . , zd). Therefore, we can replace the
�rst quantity by the second one in the integral, which concludes the proof of the �rst
statement. From Equation (4.2), for a fundamental domain of size 1, the characteristic
polynomial is given by

Ph(z1, . . . , zd) = det
(

2dIN −
d∑
i=1

(ziMi + (ziMi)−1)
)
,

which concludes the proof of the second statement.

In the following, we will consider the determinantal measure in in�nite volume whose
kernel is given by the integral expression and study the asymptotic behavior under this
measure, that is the edge-to-edge correlations decay.

4.3 Edge-to-edge correlations decay

In this section, we still denote by G an in�nite Zd-periodic graph endowed with a connec-
tion h which is Zd-periodic. We assume that the free and the wired measure on QSF of G
coincide and we denote by µ this measure which is determinantal of kernel K de�ned by
the integral expression :

Ke,e′ =
∫
z∈Td

zx−y(Kh)[e],[e′](z)
dz

2iπz

where we recall that

(Kh)(z) = dh(z)∆̃h(z)−1d∗h(z) = 1
Ph(z)dh(z)tCom(∆̃h(z))d

∗
h(z) (4.5)

where the polynomial Ph is the characteristic polynomial associated to the connection h.
We will show in this section that there are di�erent phases in the model depending

on the edge-to-edge correlations’ decay and that those phases depend on the existence of
zeros of the characteristic polynomial in the unit torus.

Edge-to-edge correlations do not depend on the bases

De�nition 4.18. We call edge-to-edge correlations the quantities Cov(ne, ne′)e,e′ where
we recall that for every e ∈ E, the random variable ne is the dimension of the random
subspace Qe of the �ber Fe.

If we �x a basis (bei )1≤i≤N of Fe for every e ∈ E, the law of the couple (ne, ne′) is the
law of (

∑
i 1bi∈Qe ,

∑
i 1bi∈Qe′ ).

By bi-linearity of the covariance, we have

Cov(ne, ne′) = Cov(
∑
i

1bi∈Qe ,
∑
j

1bj∈Qe′ )) =
∑
i,j

Cov(1bi∈Qe , 1bj∈Qe′ ).
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4.3. Edge-to-edge correlations decay

By de�nition of the kernel of the process, we have the following formula for the covariances

Cov(1bi∈Qe , 1bj∈Qe′ ) = P(bi ∈ Qe, bj ∈ Qe′)− P(bi ∈ Qe)P(bj ∈ Qe′)

∝ det

Kbei ,b
e
i

K
be
′
j ,b

e
i

K
bei ,b

e′
j

K
be
′
j ,b

e′
j

−Kbei ,b
e
i
K
be
′
j ,b

e′
j

∝ −K
be
′
j ,b

e
i
K
bei ,b

e′
j

∝ −Kj,i
e′,eK

j,i
e,e′ .

Recall that when we change the bases of �bers, we replace K by PKP−1 where P is a
block-diagonal unitary matrix. Therefore, the decay of edge-to-edge correlations does not
depend on the choice of the bases of �bers.

We will see in the following that the edge-to-edge correlations’ decay depends on the
existence of roots of the characteristic polynomial in the unit torus, which depends on the
values of the unitary connection.

4.3.1 Regular and singular connections

In the following, we will consider the following de�nition of a regular connection.

De�nition 4.19 (Regular connection). If ∀z ∈ Td, P (z) 6= 0, we say that the connection
is regular. Otherwise, we say that the connection is singular.

Recall that in [KL23], the following de�nition of a regular connection is given.

De�nition 4.20. [KL23] A connection is said to be singular if ker(dh) 6= {0}. Otherwise,
we say that the connection is regular.

We will prove in the following that both de�nitions are equivalent.

Proposition 4.21. For a square lattice with a fundamental domain of size 1, both de�nitions
of a regular connection are equivalent.

Proof. Assume that ker(dh) 6= {0}. Consider f ∈ ker(dh)\{0} and denote

F = vect(f(v), v ∈ Zd).

We have F 6= {0} and if v ∈ Zd, ∀j ∈ [1, d], f(v + tj) = Mjf(v). Then, ∀i, j ∈ [1, d],

f(v + tj + ti) = MiMjf(v) = MjMif(v).

Therefore, for every x ∈ F , ∀i, j ∈ [1, d], MiMjx = MjMix. Then, F is invariant un-
derMi sinceMif(v) = f(v+ti). F is an invariant nonzero subspace on whichM1, . . . ,Md

commute, then they are co-diagonalizable on this subspace and have a common eigenvector.
Assume that there exists z ∈ Td such that P (z) = 0, thus there exists X a com-

mon eigenvector for the eigenvalues z1, . . . , zd. De�ne f by f(0) = X and for ev-
ery (n1, . . . , nd) ∈ Zd, de�ne f(n1, . . . , nd) = zn1

1 . . . zndd X . Notice that

dhf(e) = zn1
1 . . . zndd X −Mjz

n1
1 . . . z

nj−1
j . . . zndd X = zn1

1 . . . zndd X − zn1
1 . . . zndd X = 0.

Thus f ∈ ker(dh).
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4. Periodic thermodynamic limits.

Slight modi�cations of the proof of Proposition 4.21 imply the following theorem in
the case of larger fundamental domain and other lattices.

Let G be a Zd-periodic graph with a fundamental domain G1, endowed with a periodic
connection h de�ned by its values onG1. Let x ∈ G1. Let Vx be the set of vertices translated
from x. Note that when the fundamental domain is of size 1, Vx is G. Let x+ t1, . . . , x+ td
be the set of vertices of G obtained by translating x by the action of Zd.

Let Cx(G̃1) be the set of closed cycles of G̃1 rooted at x. Let (γ1(x), . . . , γd(x)) be a
family of shortest paths in G, where for every i, γi(x) joins x to x+ ti and if γ̃i(x) is the
image of γi(x) in Cx(G̃1), the homotopy class of γ̃i(x) is exactly 1 in direction i.

Note that the family (γ̃1(x), . . . , γ̃d(x)) forms a basis of the �rst homology group of
the torus of dimension d. More generally, if γ̃ ∈ Cx(G̃1) is a cycle of non trivial homotopy
class, and if γ is a path in G lifting γ̃, let x+ tγ ∈ Vx be the translated vertex from x which
is the end of the path γ.

Theorem 4.22. The following properties are equivalent:

• The connection h is singular in the sense that ker dh 6= {0}.

• There exists z = (z1, . . . , zn) ∈ Td such that P (z) = 0.

Proof. Assume that the connection is singular in the sense that ker dh 6= {0} and let f be
a non-zero horizontal section on G. Let x ∈ G1. Let F (x) = V ect({f(v), v ∈ Vx}). For
every γ̃ ∈ Cx(G̃1), for every v ∈ Vx, holh(γ̃)f(v) = f(v + tγ) ∈ F (x). Therefore, the
space F (x) is invariant under every γ̃ ∈ Cx(G̃1). Furthermore, if γ̃1, γ̃2 ∈ Cx(G̃1), then
if v ∈ V (x),

holh(γ̃1)holh(γ̃2)f(v) = f(v + tγ1 + tγ2) = f(v + tγ2 + tγ1) = holh(γ̃2)holh(γ̃1)f(v).

Then, there exists X ∈ F (x) a common eigenvector to every holh(γ̃) for γ̃ ∈ Cx(G̃1). In
particular, the vector X ∈ CN is a common eigenvector to holh(γ̃1(x)), . . . , holh(γ̃d(x))
associated with unitary complex eigenvalues z1, . . . , zd. If γ̃ ∈ Cx(G̃1) is a contractible
cycle on the torus, then for every v ∈ Vx, holh(γ̃)f(v) = f(v) since f ∈ ker dh. Then,
holh(γ̃) is the identity on F (x) and holh(γ̃)X = X .

Then, for such an eigenvector X , the 0-form de�ned by f(x) = X and for every y, if γ
is a path from x to y, f(y) = holh(γ)X , is in ker(dh)∩Ez1,...,zd , that is ker(dh(z̄1, . . . , z̄d))
and thus, the characteristic polynomial P vanishes at (z̄1, . . . , z̄d).

Assume now that the characteristic polynomial P vanishes on Td and let z ∈ Td be
a root of the characteristic polynomial and f ∈ ker dh(z) be a horizontal section for the
connection h(z) on G̃1.

De�ning f on G as in the proof of Proposition 4.21 by (z1, . . . , zd)-periodicity, that is
for every y ∈ G1 and (n1, . . . , nd) ∈ Zd,

f(y + (n1, . . . , nd)) = zn1
1 . . . zndd f(y),

to obtain a horizontal section of G for the connection h concludes the proof.
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4.3. Edge-to-edge correlations decay

4.3.2 Exponential decay of correlations for a regular connection

In this section, we assume that the connection is regular, that this to say that z 7→ P (z)
does not vanish on Td. Let us recall from Equation (4.5) that for two edges e, e′ ∈ G, we
have

Ke,e′ =
∫
z∈Td

zy−x
1

P (z)(d(z)tCom(∆̃(z))d
∗(1/z))[e],[e′]

dz

2iπz . (4.6)

Theorem 4.23. If we choose to isolate a variable w and write z̃ = (z1, . . . , ŵ, . . . , zd) ∈
Td−1, then we have c > 0, β < 1 such that for all y ∈ Z and α̃ ∈ Zd−1,

Cy :=
∫
z∈Td

wy z̃α̃
1

P (z)
dz

2iπz ≤ c exp(−β|y|).

Proof. Since z 7→ P (z) is continuous on the compact set Td and with strictly positive
values, we know that P (z) ≥ m with m > 0. By Fubini Lebesgue we can integrate the
integrand in whatever order. Then we have

Cy =
∫
z∈Td

wy z̃α̃
1

P (z)
dz

2iπz

=
∫
z̃∈Td−1

z̃α̃
(∫

w∈T
wy

1
P (z̃, w)

dw

2iπw

)
dz̃

2iπz̃ :=
∫
z̃∈Td−1

z̃α̃I(z̃) dz̃

2iπz̃ ,

where

I(z̃) =
(∫

w∈T
wy

1
P (z̃, w)

dw

2iπw

)
=
(∫

θ∈[0,2π]
eiθy

1
P (z̃, eiθy)

dθ

2π

)
.

Let z̃ ∈ Td−1. P (z̃, .) is a polynomial with one variable which does not vanish on T
and which takes a �nite number of roots. Then, there exists r(z̃) < 1 such that P (z̃, .)
does not have any root in

Ar(z̃) = {w ∈ C, r(z̃) ≤ |w| ≤ 1
r(z̃)}.

Since z̃ ∈ Td−1 7→ (λ1(z̃), . . . , λn(z̃)) where (λ1(z̃), . . . , λn(z̃)) is the set of roots
of P (z̃, .) is continuous, the application z̃ 7→ r(z̃) is continuous on a compact set, thus
there exists 0 < r < 1 such that r(z̃) ≤ r for all z̃ and P (z̃, .) does not have any root in Ar
for all z̃.

For all z̃, the application w 7→ wy 1
P (z̃,w)

1
2iπw is holomorphic on Ar as a rational

fraction whose denominator does not vanish on Ar .
Up to replacing r by r < r′ < 1, we also know that w 7→ wy 1

P (z̃,w)
1

2iπw is holomorphic
on a neighborhood of the compact domain Ar and by Cauchy’s theorem,

I(z̃) =
∫
|w|=1

wy
1

P (z̃, w)
dw

2iπw =
∫
|w|=r

wy
1

P (z̃, w)
dw

2iπw =
∫
|w|= 1

r

wy
1

P (z̃, w)
dw

2iπw .

Then

|I(z̃)| ≤ min
(∣∣∣∣∣
∫
|w|=r

wy
1

P (z̃, w)
dw

2iπw

∣∣∣∣∣ ,
∣∣∣∣∣
∫
|w|= 1

r

wy
1

P (z̃, w)
dw

2iπw

∣∣∣∣∣
)
.
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4. Periodic thermodynamic limits.

Therefore

|I(z̃)| ≤ min
(
ry

1
min|w|=r |P (z̃, w)| ,

1
ry

1
min|w|=1/r |P (z̃, w)|

)
,

and
|I(z̃)| ≤ c(z̃)r|y|,

where c(z̃) = 1
min|w|=r,|w|=1/r |P (z̃,w)| where the minimum is strictly positive because P (z̃, .)

is continuous with strictly positive values on the compact set {|w| = r, |w| = 1/r}.
Moreover, z̃ 7→ c(z̃) is continuous on a compact set, thus it reaches its bounds, thus there
exists c > 0 such that

|I(z̃)| ≤ cr|y|.

Finally, we obtain

|Cy| ≤
∫
z̃∈Td−1

|z̃|α̃|I(z̃)| dz̃2iπz̃ ≤ cr
|y| = c exp(− ln(1/r)|y|),

which concludes the proof.

This theorem implies the following result on the rate of decay of edge-to-edge correla-
tions for a regular connection.

Corollary 4.24. If the function z 7→ P (z) does not vanish on Td, then, for every couple of
edges (e, e′) ∈ E(Zd)2, the edge-to-edge correlation Cov(ne, ne′) decreases at exponential
rate with the distance |e− e′| → ∞.

Proof. From Equation (4.6), there exists a polynomial Q such that

K̃[e],[e′](z1, . . . , zd) =
(Q(z))[e],[e′]

P (z) .

Then, Theorem 4.23 implies that the quantity |Ke,e′ | decreases at an exponential rate when
the distance |e− e′| → ∞. From the beginning of Section 4.3, it implies the exponential
decay of Cov(ne, ne′).

Let us emphasize that Corollary 4.24 holds for periodic connections on fundamental
domains of any size or for other lattices such as the triangular lattice.

Note that in each direction, the exponential rate of decay is larger than the logarithm
of the inverse of the largest radius such that the characteristic polynomial does not vanish
in the annulus centered around the unit circle. In particular, the further the roots of P are
from the unit torus, the faster the edge-to-edge correlations decrease.

In the following, we will prove that when the connection is singular, then the model
is in some way equivalent to a superposition of spanning trees and a model for which
the connection is regular. When this is the case, the rate of decay of the edge-to-edge
correlations in some directions is not faster than polynomial with the distance.
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4.3. Edge-to-edge correlations decay

4.3.3 Singular and reducible connections

Recall the de�nition 2.17 of a reducible connection as de�ned in [KL20c] and [KL23].

De�nition 4.25 (Reducible connections). [KL23] We say that the connection is reducible
if there exists sub-bundles F (1), F (2) of F = (Fe)e∈Zd and connections h(1), h(2) on these
sub-bundles such that F = F (1)⊕F (2), h = h(1)⊕h(2). Then the splitting Ω1(Zd) = ⊕Fe
can be re�ned in

Ω1(Zd) = F (1)
e ⊕ F (2)

e .

Periodic unitary connection of rank 1 on Zd. Notice that if h is a unitary periodic
complex connection of rank 1 on a vector-bundle L(i) of rank 1 over the square lattice Zd,
then h is given by some unitary complex numbers (u1, . . . , ud) ∈ Cd, in the sense that for
every j ∈ [1, d],

h(x, x+ tj) = uj

where (ti) is the set of translation-vectors, that is here the canonical basis of Rd.
Let us recall that the case of rank 1 with a trivial connection h0 = id gives a measure µid

which is the uniform spanning forests measure as studied in [Pem91, BP93, BLPS01, LP16].
In [Ken19] and [Sun16], the model of determinantal cycle-rooted spanning forests

associated with a connection is studied for non unitary complex periodic connections on
planar periodic graphs. It is established in particular that for a periodic unitary complex
connection h, the measure µh coincides with µid and the model has the same law as the
uniform spanning forest. Temperley’s bijection (see [KPW00]) between spanning forests
and dimers and the quadratic decay for the dimer model (see [KSO03]) imply that edge-to-
edge correlations have quadratic decay.

The equality between µh and µid for a periodic unitary complex connection h as
above relies on the fact that the connection h is gauge equivalent to the trivial connection.
This equality can be established with a change of variable in the integral expression of
the kernel of the model and therefore we obtain the following extension of the result
of [Ken19] and [Sun16] for non planar graphs. Furthermore, we justify that the edge-to-
edge correlations decrease polynomially in that case.

Theorem 4.26. (see [Ken19, Sun16] for planar graphs) If h is a unitary periodic connection
of rank 1 as above, the measure µh coincides with µid and the model has the same law as the
uniform spanning forest. Edge-to-edge correlations have polynomial decay of order 1

|e−e′|2d .

In particular, from [Pem91], under this measure, almost surely, there are only in�nite
connected components.

Proof. From Equation (4.4) and Equation (4.1), note that the kernel Kh of the model in this
case is not the same as the kernel Kid of the uniform spanning forest but is the conjugate
of the kernel of the uniform spanning tree model by a diagonal unitary matrix as follows.
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4. Periodic thermodynamic limits.

For every e, e′ edges of Zd,

Kh
e,e′ =

∫
|z1|=1,...,|zd|=1

K̃h
[e],[e′](z1, ..., zd)zx1−y1

1 ...zxd−ydd

dz1
2iπz1

...
dzd

2iπzd

=
∫
|z1|=1,...,|zd|=1

K̃id
[e],[e′](z1u1, ..., zdud)zx1−y1

1 ...zxd−ydd

dz1
2iπz1

...
dzd

2iπzd
= (ux1

1 ...u
xd
d )−1Kid

e,e′u
y1
1 ...u

yd
d = (UKidU∗)e,e′

where U = diag(u(e))e∈E(Z) is a diagonal unitary matrix, whose entries are

u([e] + (x1, . . . , xd)) =
d∏
i=1

u−xii .

Then the generating polynomial of the measure µh is given by

gµh(z1, ..., zn) = det(I + (diag(z1, ..., zn)− I)Kh
e1,...,en)

= det(I + (diag(z1, ..., zn)− I)(UKidU∗)e1,...,en)
= det(U(I + (diag(z1, ..., zn)− I)Kid)U∗)e1,...,en
= det(I + (diag(z1, ..., zn)− I)Kid)e1,...,en
= gµid(z1, ..., zn).

Then the generating polynomial of the measure µh is the same as the generating polynomial
of the uniform spanning forest and µh coincides with µid.

It is well known that in the case of the uniform spanning forest, the kernel is the transfer
current matrix and that the transfer current T (e, e′) is related to the Green’s function as
follows:

T (e, e′) = G(e−, e′−)−G(e+, e′−)−G(e−, e′+) +G(e+, e′+).

From [LL10, Uch98, MS22], for a symmetric random walk on Zd, there exists a constant a
depending on d such that as ‖x− y‖ goes to in�nity in Zd,

G(x, y) = a

‖x− y‖d−2 +O

( 1
‖x− y‖d

)
(4.7)

Writing e = (x, x+ ei), e′ = (y, y + ej), when the quantity |e− e′| goes to in�nity,

T (e, e′) = G(x, y)−G(x, y + ej)−G(x+ ei, y) +G(x+ ei, y + ej)

= a

‖x− y‖d−2 −
a

‖x− y − ej‖d−2 −
a

‖x+ ei − y‖d−2 + a

‖x+ ei − y − ej‖d−2

+O

( 1
‖x− y‖d

)
Then, if x− y = (z1, . . . , zd),
‖x− y‖2 =

∑
z2
k

‖x+ ei − y‖2 =
∑
k 6=i z

2
k + (zi + 1)2 = ‖x− y‖2 + 1 + 2zi

‖x− y − ej‖2 =
∑
k 6=j z

2
k + (zj − 1)2 = ‖x− y‖2 + 1− 2zj

‖x+ ei − y − ej‖2 =
∑
k 6=i,j z

2
k + (zi + 1)2 + (zj − 1)2 = ‖x− y‖2 + 2zi − 2zj + 2.
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4.3. Edge-to-edge correlations decay

Therefore, we have
‖x+ ei − y‖d−2 =

(
‖x− y‖2

(
1 + 1+2zi

‖x−y‖2
))(d−2)/2

‖x− y − ej‖d−2 =
(
‖x− y‖2

(
1 + 1−2zj

‖x−y‖2
))(d−2)/2

‖x+ ei − y − ej‖d−2 =
(
‖x− y‖2

(
1 + 2−2zj+2zi

‖x−y‖2
))(d−2)/2

,

which implies when x− y = (z1, . . . , zd) that

T (e, e′)

=
a

(
1−

(
1 + 2zi+1∑

z2
k

)− d−2
2
−
(

1 + 1−2zj∑
z2
k

)− d−2
2

+
(

1 + 2−2zj+2zi∑
z2
k

)− d−2
2
)

‖x− y‖d−2

+O

( 1
‖x− y‖d

)

=

(
ad−2

2 (1 + 2zi + 1− 2zj − 2 + 2zj − 2zi)
)

‖x− y‖d
+O

( 1
‖x− y‖d

)
= O

( 1
‖x− y‖d

)
.

Thus, coe�cients of the transfer current matrix T (e, e′) have polynomial decay of
order O

(
1

|e−e′|d
)

. The polynomial decay cannot be uniformly faster than 1
|e−e′|d . Indeed, if

we consider β > 1, and x0, x, y0, y such that |x0 − y0| ∼ n and |x− x0| ∼ |y − y0| ∼ nβ ,
we have when (x0, . . . , x) and (y0, . . . , y) are shortest paths from x0 to x and from y0 to y,

Gx,y −Gx0,y0 =
∑
i

∑
j

T (xixi+1, yjyj+1)

If coe�cients of the transfer current matrix T (e, e′) have polynomial decay of order α
then

|Gx,y −Gx0,y0 | ≤ n−(α−2β).

But we also know from Equation (4.7), that |Gx,y − Gx0,y0 | ∼ n−(d−2). Then we must
have α−2β < d−2. Therefore, α < d−2+2β < d. To conclude the proof, the polynomial
decay of correlations of order 1

|e−e′|2d relies on the expression of correlations in terms of
coe�cients of the transfer current matrix recalled at the beginning of Section 4.3.

Let us mention that [KW14, Theorem 1] establishes that for d ≥ 3, on a simply
connected �nite domain D ⊂ Zd, approximated in a “good” way by embedded connected
weighted graphs, the transfer current matrix converges, up to a local weight factor, to the
di�erential of Green’s function on D. It implies that correlations of the spanning tree model
have polynomial decay of order 1

n2d .

Singular connections are reducible. Assume in the following that the graph is the
square lattice G = Zd for some �xed d ≥ 2 with a fundamental domain of size 1 is
endowed with a connection which is given by some unitary matricesM1, . . . ,Md ∈ UN (C)
with N > 1.
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4. Periodic thermodynamic limits.

Theorem 4.27. If a connection is given byM1, . . . ,Md ∈ UN (C) with N > 1 is singular,
then it is reducible. The pair (F, h) is isomorphic to

(⊕1≤i≤pL
(i) ⊕BN−p , ⊕1≤i≤ph

(i) ⊕ hN−p),

where p is at least the number of distinct roots of the characteristic polynomial in the unit
torus, hN−p is a regular connection and for every 1 ≤ i ≤ p, L(i) is a vector-bundle of rank 1
spanned by the ith common eigenvector and h(i) is a periodic connection of rank 1 given
by (ui1, . . . , uid) ∈ Cd, the-ith eigenvalues of the matricesM1, . . . ,Md.

Proof. From Theorem 4.12, for every root z = (z1, . . . , zd) of the characteristic polyno-
mial P , there exists a unit vector X which is a common eigenvector to the matrices Mj .

We construct an orthogonal familyX1, ..., Xp of common eigenvectors of matrices (Mj)
by recursion over N , such that the matrices (Mj) restricted to V ect(X1, . . . , Xp)⊥ do not
have any common eigenvector.

IfX1 is a common eigenvector of matrices (Mj) obtained for the root z, we can consider
an orthonormal basis (e2, . . . , eN ) of X⊥1 and this subspace is invariant under the action of
matrices (Mj). Then, considering the model with basis (X1, e2, . . . , eN ) does not change
the characteristic polynomial P since it only conjugates the Laplacian operator. Then, P is
the product of the determinant PN−1 of the Laplacian on the sub-bundle of rank N − 1
and basis (e2, . . . , eN ) and the determinant P1 of the Laplacian on the sub-bundle of rank 1
and basis (X1). Both determinants PN−1 and P1 are Laurent polynomials with d variables
and by construction the only root of P1 in the unit torus is z. In particular, if |r(P )| is the
number of distinct roots of P in the unit torus and |r(PN−1)| is the number of distinct
roots of PN−1 in the unit torus, we get

|r(PN−1)| ≥ |r(P )| − 1.

By assumption of recursion on PN−1, there exists an orthogonal family X2, ..., Xp

of X⊥1 which is a family of eigenvectors of the (Mj)X⊥1 , with p− 1 ≥ |r(PN−1)|, such that
the matrices (Mj)X⊥1 restricted to V ect(X2, . . . , Xp)⊥ do not have any common eigenvec-
tor. Therefore, we obtain an orthogonal family (X1, ..., Xp) of common eigenvectors of
matrices (Mj), with p ≥ |r(PN−1)|+ 1 ≥ |r(P )|, such that the matrices (Mj) restricted
to V ect(X1, . . . , Xp)⊥ do not have any common eigenvector.

Then, if we complete the familyX1, ..., Xp into a basis of CN over �bers, the pair (F, h)
is isomorphic to (⊕1≤i≤pL

(i) ⊕BN−p , ⊕1≤i≤ph
(i) ⊕ hN−p) where h is the connec-

tion given by matrices (Mj) restricted to V ect(X1, . . . , Xp)⊥ whose characteristic poly-
nomial does not vanish on Td. Therefore, hN−p is a regular connection.

Polynomial decay of correlations for singular connections. The following corollary
is a consequence of Theorem 4.27 and of Theorem 4.26 which is used as a tool to compute
the decay of edge-to-edge correlations for a reducible connection.

Corollary 4.28. If a connection is given byM1, . . . ,Md ∈ UN (C) with N > 1 is singular,
then for some sequences edges (ek)k, (e′k)k such that |ek − e′k| →k→∞ ∞, we have

Cov(nek , ne′k)→ 0

at polynomial rate of order 1
|ek−e′k|2d

for (ek)k, (e′k)k well-chosen.
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4.3. Edge-to-edge correlations decay

Proof. Assume that the connection is singular. Thus, from Theorem 4.27, the connection
is reducible and there exists an orthogonal family (X1, . . . , Xp) of CN of eigenvectors
of the matrices Mj . Then, if we complete this family in an orthonormal basis of CN ,
for this choice of basis for each �ber of the bundle, the kernel of the process is the ma-
trix (Ki,j

e,e′)e,e′∈E,i,j∈[1,N ] where the sub-matrix obtained for every i, j ∈ [1, p] is a block-
diagonal matrix, all of whose blocks (Ki,i

e,e′)e,e′∈E are the kernels associated to the rank 1
vector bundle L(i) and the connection h(i) of rank 1 given by (ui1, . . . , uid) ∈ Cd.

From Theorem 4.26, the quantity |Ki,i
e,e′ | decreases at a polynomial rate of order 1

|e−e′|2d

when |e− e′| goes to in�nity for some edges e, e′. Indeed, when i ∈ [1, p],

−|Ki,i
e,e′ |

2 = Cov(1bi∈Qe , 1bi∈Qe′ ) = Cov(1e∈Ti , 1e′∈Ti)

where Ti has the same law as a uniform spanning forest, as in [BP93, BLPS01].
Therefore, |Cov(ne, ne′)| is a sum of terms with a positive sign, some of which decrease

at a polynomial rate of order 1
|e−e′|2d and other terms decrease at an exponential rate.

Therefore,

|Cov(ne, ne′)| =
∑
i,j

|Ki,j
e,e′ |

2 ≥ |K1,1
e,e′ |

2 = |Cov(1e∈T1 , 1e′∈T1)|

decreases at a polynomial rate of order 1
|e−e′|2d for e, e′ well chosen.

Null-correlations for diagonally-translated edges. In this subsection, we are inter-
ested in the correlations between edges which are translated on the diagonal for a speci�c
class of connections on the square lattice Zd.

Theorem 4.29. Let M ∈ UN (C). For all (M ε1 , . . . ,M εd) with (ε1, . . . , εd) ∈ {±1}d
which de�ne the kernel K as above, for all couple of edges e, e′ = e + (ε1x, . . . , εdx)
with x ∈ Z\{0}, we have

Ke,e′ = 0MN (C).

Proof. Assume �rstly that M1 = . . . = Md =: M ∈ UN (C). Let e, e′ ∈ E edges such
that e′ = e+ (x, . . . , x) with x ∈ Z\{0}. Then [e], [e′] are equal in G1 and can be written
as ek with k ∈ [1, d]. Then,

Ke,e′ =
∫
|z1|=1,...,|zd|=1

K[e],[e′](z1, . . . , zd)zx1 . . . zxd
dz1

2iπz1
. . .

dzd
2iπzd

= 1
(2iπ)d

∫
z∈Td

K[e],[e′](z)zx
dz

z
.

And if σ ∈ Sd and σ(z) =: (zσ(1), . . . , zσ(d)), then since x = (x, . . . , x), we have

zx

z
=
σ(z)x

σ(z) ∀z ∈ Td.

Since M1 = . . . = Md = M ,

Kek,ek(z) = Keσ(k),eσ(k)(σ(z)) ∀z ∈ Td.
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4. Periodic thermodynamic limits.

Then, with the change of variable z 7→ σ(z),

Ke,e′ = 1
(2iπ)d

∫
z∈Td

 1
d!
∑
σ∈Sd

Keσ(k),eσ(k)(σ(z))

 zxdz
z

= 1
d!

1
(2iπ)d

∫
z∈Td

∑
σ∈Sd

Keσ(k),eσ(k)(z)

 zxdz
z
.

Since
∑
σ∈Sd Keσ(k),eσ(k)(z)

=
∑
σ∈Sd

(d(z)∆̃(z)−1d∗(1/z))σ(k),σ(k)

=
∑
σ∈Sd

(IN − zσ(k)M)(
∑
m

2IN − zmM − (zmM)−1)−1(IN − z−1
σ(k)M

−1)

=
∑

1≤i≤d

∑
{σ∈Sd,σ(k)=i}

(IN − ziM)(IN − z−1
i M−1)(

∑
m

2IN − zmM − (zmM)−1)−1

= (d− 1)!
∑

1≤i≤d
(IN − ziM)(IN − z−1

i M−1)(
∑
m

2IN − zmM − (zmM)−1)−1

= (d− 1)!∆̃(z)∆̃(z)−1 = (d− 1)!IN .

we have

Ke,e′ = (d− 1)!
d!

1
(2iπ)d

∫
z∈Td

(IN ) zxdz
z

= 0MN (C).

We consider now the model with (M1, . . . ,M
−1
i , . . . ,Md). If (z1, . . . , zd) ∈ Td,

K
(M1,...,M

−1
i ,...,Md)

[e],[e′] (z1, . . . , z̄i, . . . , zd) = K
(M1,...,Mi,...,Md)
[e],[e′] (z1, . . . , zi, . . . , zd)

Then, with the change of variable zi 7→ z̄i,

Ke,e′

=
∫
|z1|=1,...,|zd|=1

K
(M1,...,M

−1
i ,...,Md)

[e],[e′] (z1, . . . , z̄i, . . . , zd)zx1 . . . z̄−xi . . . zxd
∏
j

dzj
2iπzj

=
∫
|z1|=1,...,|zd|=1

K
(M1,...,Mi,...,Md)
[e],[e′] (z1, . . . , zi, . . . , zd)zx1 . . . zxi . . . zxd

dz1
2iπz1

. . .
dzd

2iπzd
= 0MN (C)

which concludes the proof.

This theorem extends the result [LP16, Theorem 4.8] which holds for the uniform
spanning forest obtained as the limit of uniform spanning trees.

It follows from this theorem that the edge-to-edge correlations do not decrease at a
polynomial rate in all directions.
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4.3. Edge-to-edge correlations decay

Larger fundamental domains and other lattices For larger fundamental domains, the
following result gives a link between the number of roots of the characteristic polynomial
on the unit torus and the dimension of the kernel of the covariant derivative.

Theorem 4.30. Each distinct root of the characteristic polynomial gives an eigenvector which
de�nes a periodic horizontal 0-form in ker dh. Then, the dimension of ker(dh) is larger than
the number of distinct roots of the characteristic polynomial P in the unit torus and smaller
than the number of roots of the characteristic polynomial P in the unit torus counted with
multiplicity.

Proof. On the one hand, if (f1, . . . , fk) is an orthogonal basis of ker dh, then the eigenvec-
tors X1, . . . , Xk to the holonomies holh(γ̃1(x)), . . . , holh(γ̃d(x)), obtained from the con-
struction in the proof of Theorem 4.22 are such that for every i,Xi ∈ V ect({fi(v), v ∈ Vx}),
and thusX1, . . . , Xk are orthogonal vectors and the characteristic polynomial has at least k
roots counted with multiplicity.

On the other hand, if P has |r(P )| distinct roots, as in the proof of Theorem 4.27, we
construct by recursion an orthogonal family of common eigenvectors (X1, . . . , Xp) to the
holonomies of cycles which form a basis of the fundamental group, with p ≥ |r(P )|. Those
eigenvectors are associated with eigenvalues which are given by roots of P .

It gives a family of p orthogonal periodic sections (f1, . . . , fp) (in the sense of De�-
nition 4.2), whose periodicity is given by the associated eigenvalues, which are in ker dh.
Therefore, ker dh is of dimension larger than p and then larger than |r(P )|.

Theorem 4.30 implies the following result, which relies on a statement of [KL23]. We
give the proof for completeness.

Corollary 4.31. If a periodic connection is singular, then it is reducible. The pair (F, h) is
isomorphic to

(⊕1≤i≤pL
(i) ⊕BN−p, ⊕1≤i≤ph

(i) ⊕ hN−p),
where p is the dimension of ker dh, hN−p is a regular connection and for every 1 ≤ i ≤ p, L(i)

is a line bundle endowed with a trivial connection h(i).

Proof. Let (f1, . . . , fp) be an orthogonal basis of ker dh. For each i ∈ {1, . . . , p}, de�ne,
for each vertex v and for each edge e,

L(i)
v = Cfi(v), L(i)

e = Che,e−fi(e−)

Finally, let BN−p be the orthogonal in the vector bundle F of the sum ⊕L(i). Therefore,
the pair (F, h) is isomorphic to

(⊕1≤i≤pL
(i) ⊕BN−p, ⊕1≤i≤ph

(i) ⊕ hN−p),

and by construction, the restriction hN−p is a regular connection of rankN−p onBN−p and
for every 1 ≤ i ≤ p, L(i) is a vector-bundle of rank 1 and h(i) is the trivial connection.

Note that from [Uch98], the asymptotic development of the Green function holds more
generally on other Zd-periodic lattices (see also [KW14] for a comparison of the transfer
current kernel with the second derivative of the Green function on Rd). In particular, when
a connection is singular and thus reducible, the edge-to-edge correlations also decrease at
polynomial rate.
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Chapter5
Wilson algorithm measures on

spanning forests.

In this chapter, we study probability measures on cycle-rooted spanning forests associated
with a weight function on cycles which takes values in [0, 1], as de�ned in Section 2.2.

Let G = (V,E) be a �nite connected graph endowed with a weight function on
cycles p : C→(G)→ [0, 1], which is symmetric under orientation reversal.

If W ⊂ V , recall that we say that F is a wired (or essential) oriented cycle-rooted
spanning forest with respect to W if every connected component of F is either an oriented
cycle-rooted tree disjoint from W or an unrooted tree which contains a unique vertex
of W , seen as a tree rooted at that vertex. We denote by U→W (F ) the set of essential
oriented cycle-rooted spanning forests with respect toW . There exists a natural Boltzmann
probability measure on U→W (F ), denoted by µWc,p which is de�ned for every F ∈ U→W (F )
by

µWc,p(F ) =
∏
e∈F c(e)

∏
γ∈C→(F ) p(γ)

ZWc,p

where ZWc,p =
∑
F∈U→W (F )

∏
e∈E c(e)

∏
γ∈C→(F ) p(γ) is the partition function.

The weight function p does not necessarily come from a connection h and therefore,
the measure µWc,p is not necessarily determinantal. As recalled in subsection 2.2.4, the
measure µWc,p can be sampled by an algorithm of loop-erased random walk where we keep
an oriented cycle γ with probability p(γ).

• Let x1, . . . , xn be an ordering of the vertex set V of G and let F0 = W .

• At each step i, let (X(xi)
n )n≥0 be a random walk on the graph G with conduc-

tances (c(e)) starting from xi. Every time the random walk makes a loop, the
oriented cycle γ is kept with probability p(γ) or erased with probability 1− p(γ).

• The random walk (X(xi)
n )n≥0 is stopped when it meets W or reaches the set of

already explored vertices denoted by V (Fi−1) or when a cycle is kept. At the end of
the ith step, let Fi = Fi−1 ∪ L(X(xi)

n ) where L(X(xi)
n ) is obtained from (X(xi)

n )n≥0
after removing all the loops except the last one if a loop is kept at the end of the ith
step.
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5. Wilson algorithm measures on spanning forests.

• At the end, V (Fn) = V (Gn). Notice that the algorithm always �nishes if and only if
there exists at least a loop γ in G such that p(γ) > 0 or if W 6= ∅.

Figure 5.1 – Simulation of an ECRSF for p : γ 7→ 0.75 and c = 1.

When the size of the graph is large, we observe for positive constant values of p, with
high probability, that the size of the cycles remains small and that the points which are far
away from the boundary are not connected to the boundary.

In the next section, we will introduce a tool, so called p-loop erased random walks,
which will be useful to extend the algorithm described just above for �nite graphs to in�nite
graphs in order to de�ne an in�nite volume measure on cycle-rooted spanning forests of
an in�nite graph.

In the remainder of this chapter, we will assume that the conductances are equal to 1 in
order to simplify the notations but it is possible to consider other conductances by replacing
every simple random walk on G by random walks with jump probabilities proportional to
conductances.
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5.1. p-Loop erased random walks and rooting times

5.1 p-Loop erased random walks and rooting times

In the following, we will consider a countably in�nite connected graph G = (V,E),
with bounded vertex degree, exhausted by an increasing sequence (Gn)n≥1 of connected
induced subgraphs of G, with respective vertex set Vn. We denote by ∂Gn the subset of Vn
of vertices which are connected by an edge to the complement ofGn inG. For every v ∈ V ,
we denote by Pv the law of a simple random walk on G starting from v.

We assume that G is endowed with a weight function p : C→(G) → [0, 1] on cy-
cles, which is symmetric under orientation reversal, and we assume that the following
assumption is satis�ed for the exhaustion (Gn) of the graph G and the weight function p.

Assumption 5.1. There exist α > 0 and β > 0, such that for every n ∈ N∗, for every
vertex v ∈ ∂Gn, for every random walk (Xk)k≥0 on G, starting from v, there exists a loop γv
in Gn+1\(Gn ∪ ∂Gn+1) which satis�es p(γv) ≥ α and Pv((X1, . . . , X|γv |) = γv) > β.

p(γ) > α

Gn+1

Gn

Figure 5.2 – Assumption 5.1

5.1.1 Hitting times

In the following we denote by v0 a vertex of G1.

De�nition 5.2. If C is a subset of the vertex set V , we de�ne for a random walk (Xk) the
hitting time of C , that is to say

TC := min{k ≥ 0|Xk ∈ C}.

Notice that in this de�nition, TC can be equal to 0 if the random walk starts from a vertex
of C .

De�nition 5.3. Let (Xk) be a simple random walk starting from v0. Let (Tn) be the
sequence of random hitting times of ∂Gn for the random walk (Xk), that is to say

Tn := T∂Gn = min{k ≥ 0|Xk ∈ ∂Gn}.
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5. Wilson algorithm measures on spanning forests.

Lemma 5.4. The hitting-time Tn is �nite almost-surely for every n ∈ N∗. Furthermore,

lim
k→∞

Pv0(Tn ≥ k) = Pv0(Tn =∞) = 0.

Proof. Let n ∈ N∗. Almost surely, Tn is �nite because almost surely if k ≥ 1, there exists a
time such that the random walk makes k consecutive steps in the same direction. Therefore,
the random walk exits every �nite ball in �nite time almost surely. Since the events (Tn ≥ k)
are decreasing in k (for a �xed n) with respect to inclusion, the monotone convergence
theorem implies

lim
k→∞

Pv0(Tn ≥ k) = Pv0

⋂
k≥1
{Tn ≥ k}

 = Pv0(Tn =∞),

which concludes the proof.

5.1.2 Rooting time

Let (Xn) be a simple random walk on G starting from v0 and let (Yn) be a sequence of
independent random variables of uniform law on [0, 1], which are independent of the
random variables Xn.

We want to de�ne a p-loop-erased random walk such that, if at time n, the random
walk (Xn) closes a loop γn, the loop is kept if Yn ≤ p(γn) and erased else.

Given (Xn, Yn), we construct a sequence of random walks ((Zkn)n)k as follows. We
de�ne recursively (Zkn)n≥1 for k ∈ N∗. Let (Z1

n) = (Xn) and given (Zkn)n, let us consider
the �rst time nk such that Zkn closes a loop that is to say

nk = min{j > nk−1 ∈ N∗|Zkj ∈ {Zk0 , . . . , Zkj−1}}.

Then, let n′k be the time of the beginning of the loop, that is to say

n′k = min{j ∈ N, Zkj = Zknk}.

Therefore, the loop which is closed at time nk is the loop γnk := (Zkn′
k
, . . . , Zknk) Finally,

if Ynk ≥ p(γnk), then de�ne for every n ∈ N,

Zk+1
n =

{
Zknk if n′k ≤ n ≤ nk,
Zkn else.

The random walk (Zk+1
n )n≥0 is obtained from (Zkn)n≥0 by erasing the loop γnk .

Otherwise, if Ynk ≤ p(γnk), for every m ≥ k + 1 and n ∈ N, let

Zmn =
{
Zkn if n ≤ nk,
Zknk else.

The random walk (Zmn )n≥0 is obtained from (Zkn)n≥0 by stopping the random walk at
time nk.
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5.1. p-Loop erased random walks and rooting times

De�nition 5.5. If (Xn) is a simple random walk on G starting from v0 and (Yn) is a se-
quence of independent random variables of uniform law on [0, 1], which are independent of
the Xn, we say that (nk)n≥1 is the sequence of random times where the random walk (Xn)
closes a loop γnk . Let Tr be called the random rooting time for (Xn, Yn) that is to say the
�rst time where a loop is kept:

Tr := min{nk|Ynk ≤ p(γnk)}.

where min ∅ = +∞. If k is such that Tr = nk, then let (Zn)n≤Tr = (Zkn)n≤Tr be called
the p-loop-erased random walk obtained from (Xn, Yn).

Let us emphasize that if Tr is �nite, then there exists a k such that Tr = nk and then
the p-loop erased random walk (Zn)n≤Tr is well de�ned and is obtained from (Xn)n≤Tr ,
erasing every loop excepted the last one. Here, the loop-erased random walk is indexed
on the same time set than the random walk (Xn). Nevertheless, Zn does not depend only
on (Xk)k≤n.

For instance, if there exists exactly two disjoint loops (Xn′1
, . . . , Xn1), (Xn′2

, . . . , Xn2)
with n′2 ≥ n1 and if Yn1 > p(Xn′1

, . . . , Xn1), Yn2 ≤ p(Xn′2
, . . . , Xn2), then Tr = n2 and

Zn =
{
Xn1 if n′1 ≤ n ≤ n1,

Xn if n1 ≤ n ≤ n2.

In particular, for n′1 ≤ n ≤ n1, Zn depends on (Xk)k≤n1 .

5.1.3 The rooting time is almost surely �nite.

We will show in this subsection that the rooting time Tr is a stopping time and that almost
surely, it is �nite.

De�nition 5.6. Let (Fn)n be the �ltration adapted to the process ((Xn, Yn))n, that is
de�ned by

Fn = σ(X0, . . . , Xn, Y0, . . . , Yn),

which is the smallest sigma-�eld which makes the (Xi)0≤i≤n, (Yi)1≤i≤n measurable.

Lemma 5.7. For everym ∈ N∗, the hitting time of ∂Gm, denoted by Tm, is a stopping time
with respect to the �ltration (Fn)n. The rooting time Tr is also a stopping time with respect
to the �ltration (Fn). Moreover, for everym ∈ N, if we consider the σ-�eld adapted to the
stopping time Tm, de�ned by

FTm = {A ∈ F : ∀k ≥ 0, {Tm ≤ k} ∩A ∈ Fk},

then, the event {Tm < Tr} is in FTm .

Proof. Let m ∈ N. The events ({Tm ≥ k} = {X1, . . . , Xk ∈ Gm\∂Gm})k are measurable
with respect to (Fk)k and therefore Tm is a stopping time.

The proof for Tr relies on the fact that the event {Tr ≤ k} only depends on the random
walk (Xn, Yn)n≤k and therefore, for every k, the event {Tr ≥ k} is in Fk .
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5. Wilson algorithm measures on spanning forests.

Let k ∈ N. Let us de�ne a family of functions (Fi)1≤i≤k such that

max
1≤i≤k

Fi(X0, . . . , Xk, Y0, . . . , Yk) = 1

if and only if the event {Tr ≤ k} is satis�ed. Let (Z̃1
n)n≤k = (Xn)n≤k and ñ0 = 0. Then,

we de�ne recursively a sequence ((Z̃in)n≤k)1≤i≤k and a sequence (ñi)i≤k as follows.
De�ne ñi : (X0, . . . , Xk) 7→ min{ñi−1 < j ≤ k|Z̃ij ∈ {Z̃i0, . . . , Z̃ij−1}} with the

convention min ∅ = +∞.
If ñi(X0, . . . , Xk) = +∞, de�ne Fi(X0, . . . , Xk, Y0, . . . , Yk) = 0 and Z̃i+1 = Z̃i.
Else, let ñ′i be the �rst time j < ñi such that Z̃ini = Z̃iñ′i

and if Yñi ≤ p(γñi), let

{
Fi(X0, . . . , Xk, Y0, . . . , Yk) = 1Yñi≤p(γñi )
Z̃i+1 = Z̃i,

and otherwise, let for n ≤ k,

Z̃i+1
n =

{
Z̃iñi if ñ′i ≤ n ≤ ñi
Z̃in else.

Observe that the sequence (ni)i is increasing and while i is such that ni ≤ k, we
have ñi = ni and Z̃i = Zi. For i such that ni ≥ k, ñi = +∞ and Fi(X0, . . . , Yk) = 0.
In particular, max1≤i≤k Fi(X0, . . . , Xk, Y0, . . . , Yk) = 1 if and only if there exists i such
that ni ≤ k and such that Yni ≤ p(γni), which is exactly the event {Tr ≤ k}.

The event {Tm < Tr} is in FTm because if k ≥ 0,

{Tm ≤ k} ∩ {Tm < Tr} = ∪1≤i≤k ({Tm = i} ∩ {Tr > i}) ∈ Fk.

which concludes the proof.

Let us emphasize that Tr is a stopping time for the �ltration (Fn) even if (Zn) is not
adapted to the �ltration (Fn). Indeed, Zn depends on (Xk) for k ≥ n. Lemma 5.7 is a
useful tool to show that the rooting time is almost surely �nite for a simple random walk
starting from v0.

Lemma 5.8. Under Assumption 5.1, the rooting time Tr for a simple random walk (Xn)
starting from v0 and (Yn) as de�ned in De�nition 5.5 is �nite almost surely and Pv0(Tr > Tm)
decays exponentially fast to 0 withm. More precisely, there exists δ ∈]0, 1[ such that

Pv0(Tm < Tr) ≤ δm.

Proof. Letm ∈ N∗ be �xed. The process ((Xk, Yk))k≥0 satis�es the strong Markov property.
Therefore, conditional on the event {Tm < ∞} which is almost sure by Lemma 5.4,
for every k ≥ 0, the pair of random variables (XTm+k, YTm+k) is independent of FTm
given (XTm , YTm).

From Assumption 5.1, there exists a loop γXTm which lies insideGm+1\(Gm∪∂Gm+1)
with weight larger than α and such that the probability that a random walk (XTm+k)k
makes this loop γXTm is greater than β.
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5.1. p-Loop erased random walks and rooting times

Let us denote byAXTm the event that the random walk (XTm+k)k makes this loop γXTm ,
and let us denote by BXTm the event {YTm+|γXTm |

≤ p(γXTm )}. Conditional on XTm ,
the events AXTm and BXTm are independent and have probabilities PXTm (γXTm ) ≥ β
and p(γXTm ) ≥ α.

The eventAXTm∩{YTm+|γXTm |
≤ p(γXTm )} for the random walk (XTm+k, YTm+k)k≥0

starting from (XTm , YTm) ∈ ∂Gm has a probability greater than αβ.
Conditional on (XTm , YTm), it is independent of FTm , therefore from Lemma 5.7, it is

independent of the event {Tm < Tr}.
Conditional on Tm < Tr, if the event AXTm ∩ {YTm+|γXTm |

≤ p(γXTm )} is satis�ed,
then the event {Tm+1 > Tr} is satis�ed. Indeed, we show that on this event, the random
walk keeps a loop before reaching ∂Gm+1 and therefore Tm+1 > Tr .

Let i be the largest integer such that ni ≤ Tm. Then, by construction of (Zi+1
n )n,

assuming Tr > Tm ≥ ni, (Zi+1
n ) coincides with (Xn) after time ni and therefore after

time Tm. For n ≤ Tm, Zi+1
n ∈ {X0, . . . , XTm} by construction and therefore Zi+1

n ∈ Gm.
If the event AXTm ∩{YTm+|γXTm |

≤ p(γXTm )} is satis�ed, then, for n between Tm + 1
and Tm + |γXTm |, we have Zi+1

n ∈ Gm+1\(Gm ∪ ∂Gm+1), and therefore, for such a n,

Zi+1
n /∈ (Zi+1

0 , . . . , Zi+1
Tm

).

Since we haveni+1 ≥ Tm by assumption on i, we have necessarilyni+1 = Tm+|γXTm | .
Since the event {YTm+|γXTm |

≤ p(γXTm )} is satis�ed by assumption and Tr > ni, we
haveTr = ni+1 = Tm+|γXTm |, and sinceAXTm is satis�ed, forTm+1 ≤ n ≤ Tm+|γXTm |,
we have Xn ∈ Gm+1\(Gm ∪ ∂Gm+1) and therefore Tm+1 > Tm + |γXTm | = Tr .

Therefore, denoting by δ := 1− αβ < 1,

Pv0(Tm+1 < Tr | Tm < Tr) ≤ 1− P(XTm ,YTm )(AXTm ∩ {YTm+|γXTm |
≤ α} | Tm < Tr)

= 1− P(XTm ,YTm )(AXTm ∩ {YTm+|γXTm |
≤ α})

= 1− PXTm (AXTm )P(YTm+|γXTm |
≤ α)

≤ 1− αβ = δ.

This inequality holds for every m ∈ N∗ and δ does not depend on m. Then, writing

Pv0(Tm+1 < Tr) = Pv0(Tm+1 < Tr | Tm < Tr)Pv0(Tm < Tr),

we obtain by induction on m the exponential decay of the following probability:

Pv0(Tm < Tr) ≤ δm.

Let ε > 0. For �xed m large enough, δm ≤ ε.
For k large enough, we have Pv0(Tm ≥ k) ≤ ε. Then for k large enough, we have

Pv0(Tr ≥ k) = Pv0({Tr ≥ k} ∩ {Tm ≥ k}) + Pv0({Tr ≥ k} ∩ {Tm ≤ k − 1})
≤ Pv0(Tm ≥ k) + Pv0(Tr > Tm) ≤ 2ε.
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Therefore we have shown that for every ε > 0, for k large enough, Pv0(Tr ≥ k) < 2ε,
which means that

lim
k→∞

Pv0(Tr ≥ k) = 0.

Therefore, from the monotone convergence theorem,

Pv0(Tr =∞) = Pv0(
⋂
k≥1
{Tr ≥ k}) = lim

k→∞
Pv0(Tr ≥ k) = 0.

This concludes the proof.

The proof of Lemma 5.8 can be adapted to show that the rooting time is almost surely
�nite for a random walk starting from another vertex of G, even if this vertex is not in G1,
as follows.

Lemma 5.9. Let (X(x)
n ) be a random walk starting from x ∈ G and let (Yn) be the process

de�ned in De�nition 5.5. Under Assumption (5.1), the rooting time Tr for (X(x)
n ) is �nite

almost surely and Px(Tr > Tn) decays exponentially fast to 0 with n.

Proof. Notice that x is not anymore inG1 and therefore the bound Px(Tn ≤ Tr) ≤ δn does
not hold.

Nevertheless, if mx is such that x ∈ Gmx , then for n ≥ mx, the proof of Lemma 5.8
shows that for the loop-erased random walk starting from x,

Px(Tn+1 < Tr|Tn < Tr) ≤ δ,

and therefore, for n ≥ mx,
Px(Tn < Tr) ≤ δn−mx .

Therefore Px(Tn ≤ Tr) tends to 0 exponentially fast with n and an argument similar to
the one given in the proof of Lemma 5.8 gives that Tr is �nite almost surely.

Lemma 5.9 shows that if we start a simple random walk on G from a vertex v, almost
surely Tr is �nite. It implies that almost surely the sequence ((Zkn)n≥0)k≥0 is constant
eventually and its limit (Zn)n≥0 is well de�ned with (Zn)n≥Tr constant.

5.1.4 p-loop-erased random walk with a boundary condition

Let us brie�y recall our current notations. We still assume that (Xn) is a simple random
walk on G starting from any vertex v, (Yn) is a sequence of independent random variables
of uniform law in [0, 1], which are independent of the Xn and W ⊂ V is a deterministic
set of vertices.

We de�ne in this subsection a p-loop-erased random walk obtained from (Xn, Yn)n≥0
with a boundary condition W .

De�nition 5.10. Let TW be the hitting time of W , and let Tr be the rooting time of the
process (Xn, Yn)n≥0. Let Tf = min(Tr, TW ) be called the ending time of (Xn, Yn)n≥0
with boundary condition W .
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5.1. p-Loop erased random walks and rooting times

Given (Xn, Yn)n≤TW , we construct a p-loop erased random walk (ZWn )n with bound-
ary conditions W as follows. We de�ne recursively nWk and (Zk,Wn )n≥0 for k ∈ N∗.
Let (Z1,W

n )n≤TW = (Xn)n≤TW and nW0 = 0.
Then, we de�ne recursively a sequence ((Zi,Wn )n≤TW )i≥1 and a sequence (ni)i≤k as

follows.
Let nWi : (X0, . . . , Xk) 7→ min{nWi−1 < j ≤ TW |Zi,Wj ∈ {Zi,W0 , . . . , Zi,Wj−1}} be

the i-th loop-closing time before reaching W , where min ∅ =∞.
If nWi (X0, . . . , Xk) =∞, let us de�ne Zi+1,W = Zi,W .

Else, let n′Wi be the �rst time j < nWi such that Zi,W
nWi

= Zi,W
n′Wi

and if YnWi ≤ p(γnWi ),
let for every m ≥ i+ 1,

Zm,Wn =

Z
i,W
n if n ≤ nWi ,

Zi,W
nWi

else,

and otherwise, for n ≤ TW , let

Zi+1,W
n =

Z
i,W

nWi
if n′Wi ≤ n ≤ nWi ,

Zi,Wn else.

Notice that Zi+1,W
n is obtained from Zi,Wn by erasing the �rst loop which ends be-

fore TW . While i is small enough such that ni ≤ TW , , we have nWi = ni and Zi+1,W =
Zi+1.

Proposition 5.11. Almost surely, Tf is �nite and ((Zi,Wn )n≤Tf )i≥1 is constant eventually.

We de�ne the p-loop erased random walk with boundary conditionsW as

(ZWn )n≤Tf = lim
i→∞

(Zi,Wn )n≤Tf .

• If Tf = TW , (ZWn )n≤Tf = (Zifn )n≤TW where if = min{i|ni > TW }.

• If Tf = Tr , (ZWn )n≤Tf = (Zn)n≤Tf where (Zn) denotes the p-loop-erased random
walk without any boundary condition.

Proof. Recall from Lemma 5.9 that Tr is �nite almost surely. Since Tf ≤ Tr, the ending
time Tf is almost surely �nite. Assume that Tr < ∞. Recall that the sequence (ni) is
strictly increasing.

If TW < Tr, then TW is �nite and there exists i such that ni > TW and then we
have nWi = ∞ and Zm,W = Zi,W for m ≥ i. Let if = min{i|ni > TW } be the �rst
index such that it happens. Then nif−1 ≤ TW and (Zif ,Wn )n≤TW = (Zifn )n≤TW . Then,
for m ≥ if , nm > TW and then nWm =∞. Then, for every m ≥ if ,

(Zm,Wn )n≤Tf = (Zif ,Wn )n≤Tf = (Zifn )n≤Tf .

Else, there exists i such that Tr = ni ≤ TW . Then, nWi = ni and YnWi ≤ p(γnWi )
and for m ≥ i, (Zm,Wn )n≤Tr = (Zi,Wn )n≤Tr = (Zin)n≤Tr . Since ni = Tr, then we
have (Zin)n≤Tr = (Zn)n≤Tr and therefore, (ZWn )n≤Tf = (ZWn )n≤Tf where (Zn) denotes
the p-loop erased random walk without any boundary condition.
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5. Wilson algorithm measures on spanning forests.

Notice that a p-loop-erased random walk with boundary condition W is obtained
from (Xn, Yn)n≤min(Tr,TW ) erasing every loop except the last one if Tr < TW . Let us
emphasize that when Tr > TW , the p-loop erased random walk with boundary condi-
tions (ZWn )n≤TW is not equal to the p-loop erased random walk (Zn)n≤TW stopped at TW .

In the next section, we will construct a probability measure on CRSF of an in�nite
graph from an algorithm based on the sampling of p loop-erased random walks.

5.2 Measures on CRSF in in�nite volume and
thermodynamic limits

In this section, we still consider a countably in�nite connected graph G, an exhaus-
tion (Gn)n≥1 and a weight function p ∈ [0, 1] on cycles which satis�es Assumption
5.1.

We will construct in this section a measure de�ned by a Wilson type algorithm on
in�nite graphs associated with an ordering of the vertex set. Then, we will show that for
whatever ordering of the vertex set, the measure in in�nite volume is the weak limit of
sequences of measures on cycle-rooted spanning forests of growing �nite graphs associated
with the weight function p and free or wired boundary conditions. We will �nally conclude
that the measure in in�nite volume does not depend on the ordering of the vertex set.

5.2.1 Sampling algorithm for a �xed ordering on an in�nite graph

We construct a probability measure on cycle-rooted spanning forests ofGwhich is sampled
by an algorithm of Wilson type with respect to an ordering of the in�nite vertex set V .
This measure will depend on the weight function p.

We may also construct such a probability measure on vertex-and-cycle-rooted spanning
forests depending on masses and conductances with slight modi�cations but we assume
here that m = 0 and c = 1 in order to simplify notations.

De�nition 5.12. If B = {e1, . . . , en} is a �nite subset of size n of E, and if we are
given ε1, . . . , εn ∈ {0, 1}n, let us de�ne the corresponding cylinder as

Cε1,...,εn := {(wi)i∈|E| ∈ {0, 1}|E||w1 = ε1, . . . , wn = εn}.

Let C := σ((Cε1,...,εn)ε1,...,εn) be the smallest σ-�eld which makes the cylinders measurable.

Let ϕ be an ordering of the vertex set V of G, in the sense of a bijection ϕ : N→ V .
Let (vi)i≥1 be the sequence of vertices of G with ordering ϕ, that is (vi)i = (ϕ(i))i.

We will construct a measure on CRSF of G by means of a family of p-loop-erased
random walks with boundary conditions which are de�ned recursively. This family will be
obtained deterministically from a family of independent simple random walks and a family
of independent Bernoulli laws, following results of Section 5.1.

De�nition 5.13. Let ((X(x)
n )n≥1)x∈G, ((Y (x)

n )n≥1)x∈G be independent random variables
such that for all x ∈ G, (X(x)

n )n is a simple random walk on G starting from x and (Y (x)
n )n

is a sequence of independent random variables with uniform law on [0, 1].
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For a �xed x ∈ V , consider the sequence
(
(X(x)

n , Y
(x)
n )

)
n≥1

and denote by T xr the

rooting time of the p-LERW that is to say the �rst time n such that (X(x)
n )n closes a loop γn

such that the inequality p(γn) ≥ Y (x)
n holds.

Under Assumption 5.1 on p, Lemma 5.9 shows that T v1
r is almost surely �nite and

therefore the �rst step of the algorithm �nishes, whatever the �rst vertex in the ordering is.

De�nition 5.14. For a �xed random data ((X(x)
n )n≥1)x∈V , ((Y (x)

n )n≥1)x∈V as above, we
construct the subgraphs (Fi) recursively. Let F0 = ∅. Let i ∈ N∗ and assume that Fi−1 is
constructed. Denote by T vif the ending time of ((X(vi)

n )n≥1, (Y (vi)
n )n≥1) with boundary

condition V (Fi−1), that is
T
vi
f = min(T vir , TV (Fi−1)),

where vi = (v1, . . . , vi) refers to all previous vertices with respect to the ordering.
Let Fi = Fi−1 ∪ L(vi) be the component obtained at the end of step i, where L(vi)

is the p-LERW with boundary condition V (Fi−1) obtained from
(
(X(vi)

n , Y
(vi)
n )

)
n≥1

un-
til T vif .

Each step i of the algorithm �nishes either if the random walk reaches a connected
component created during a previous step or if the random walk is rooted to a loop. Notice
that T vif is the time where the ith-step of the algorithm with ordering ϕ �nishes. Recall
that under Assumption 5.1 on p, Proposition 5.11 implies that T vif is �nite almost surely.

Lemma 5.15. For every bijection ϕ : N → V , there exists a measure µϕ on (U(G), C)
which is sampled by the previous algorithm with ordering ϕ. The measure on �nite cylinders
corresponds to �nite random con�gurations which are sampled in a �nite time.

Proof. Sample a sequence ((X(x)
n )n≥1)x∈V , ((Y (x)

n )n≥1)x∈V like in De�nition 5.13.
From De�nition 5.14, we obtain a con�guration of CRSF on G by F = ∪i≥1Fi. The

con�guration F is well de�ned since it is a deterministic function of

((X(x)
n )n≥1)x∈V , ((Y (x)

n )n≥1)x∈V .

Letµϕ be the law of F associated to a random choice of ((X(x)
n )n≥1)x∈V , ((Y (x)

n )n≥1)x∈V ,
that is to say the push-forward by the algorithm of the measure which gives

((X(x)
n )n≥1)x∈V , ((Y (x)

n )n≥1)x∈V .

Then, µϕ is a measure on (U(G), C). Let B be a �nite subset of size n of E, with
edges e1, . . . , en and let ε1, . . . , εn ∈ {0, 1}n. Let K be the �nite set of vertices containing
all the extremities of edges of B and vertices which are preceding those vertices for the
order ϕ. Let us consider the previous algorithm for vertices v1, . . . , v|K| for the order-
ing ϕ. Almost surely, the algorithm to construct F|K| ends in �nite time. The constructed
graph F|K| is a random subgraph of G which is spanning for K and therefore it is spanning
for B. Then µϕ(Cε1,...,εn) is the probability that the random con�guration F|B obtained
from the previous construction satis�es

F|B ∈ Cε1,...,εn .
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The measure µϕ restricted to (2B, C) is the law of the random con�guration F|B , which is
sampled in a �nite time.

In the following, we will show that the measure in in�nite volume constructed from an
enumeration of the vertex set V does not depend on the choice of the enumeration of the
vertices. The proof of this statement will rely on a comparison between the measure µϕ for
an ordering ϕ and a measure on CRSF on a large �nite subgraph of G. We will see that,
under some assumptions, the thermodynamic limit of sequences of measures on CRSF of
growing subgraphs coincides with the measure sampled by the previous algorithm and
does not depend on the ordering of the in�nite vertex set.

5.2.2 Thermodynamic limits of the Wilson measures

Assume that Assumption 5.1 on the existence of a lower bound α > 0 on the weight of
a family of loops holds. We will show in this section that the measure de�ned by the
Wilson type algorithm on in�nite graphs is the weak limit of sequences of measures on
cycle-rooted spanning forests of growing �nite graphs associated to the weight function p
and free or wired boundary conditions.

Let n ∈ N and ϕn be an ordering of the vertex set Vn of the graph Gn. We consider the
measures µFn and µWn as de�ned in Subsection 3.1.1. Those measures are sampled by the
algorithm introduced in Section 2.2.4 and recalled at the beginning of the chapter, with
respective boundary conditions ∅ and ∂Gn. According to [KK17], the measures µFn and µWn
do not depend on the ordering of the vertices of Gn\∂Gn. Therefore, the measures µFn
and µWn are also sampled by the algorithm described just above (De�nition 5.14) on the
�nite graph Gn with the setting F0 = ∂Gn at the beginning.

Theorem 5.16. Let ϕ be an ordering of V (G) in the sense of a bijection ϕ : N → V (G).
Let (Gn) be an increasing exhaustion ofG, and let (µFn ), (µWn ) be the corresponding sequences
of probability measures on CRSF of Gn with free and wired boundary conditions, respectively.
The sequences of probability measures (µFn ) and (µWn ) converge weakly to the measure µϕ.

Proof. We consider an event B ∈ 2E which depends on only �nitely many edges, and we
consider K0 the set of vertices incident to the edges on which B depends. Let K be the
union of K0 and the set of vertices that precede some vertex in K0 in the ordering ϕ of the
vertices. Let n be large enough such that K ⊂ Gn.

Let us construct a coupling (F, F̃n
F
, F̃n

W ) of random con�gurations obtained from the
same random data ((X(x)

n )n≥1)x∈G, (Y (x)
n )n≥1,x∈G, such that the law of F is µϕ, the law

of F̃n
F is µFn and the law of F̃n

W is µWn and such that the three con�gurations coincide
with high probability on B.

We denote by ϕ̃n the ordering ϕ|K completed in an ordering on Gn.
We follow the algorithm for every vertex of K following the ordering ϕ|K . If at one

step of the algorithm, the random walk (X(x)
n ) starting from a vertex x ∈ Gn reaches ∂Gn,

the con�guration F is obtained following the random walk in the in�nite graph Zd until
the step of the algorithm �nishes and F̃n

F , F̃n
W is obtained following the random walk

with boundary conditions. More precisely, F̃n
W is obtained from the p-loop erased random
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walks with boundary conditions ∂Gn and F̃n
F is obtained following the random walk on

the graph Gn, until the end of the step, that is the ending time of the process (X(x)
n , Y

(x)
n )n.

Once every vertex of K has been explored, we complete the con�guration F follow-
ing the ordering ϕ and we complete the con�gurations F̃n

F , F̃n
W on Gn following the

ordering ϕ̃n, with boundary conditions.
Let us denote by E(K) the set of edges whose extremal vertices are in K . The con�g-

urations F, F̃n
F and F̃n

W obtained from the algorithm are respectively subgraphs of Zd
andGn. The three con�gurations are spanning subgraphs ofGn and in particular spanning
subgraphs of (K,E(K)).

FE(K) is the restriction to (K,E(K)) of a random con�guration following the law µϕ.
Since Gn is �nite, F̃n

W,F
E(K) is the restriction to (K,E(K)) of a random con�guration

following the law µW,Fn and this law does not depend on ϕ̃n (see [KK17]).
Since B depends only on edges whose endpoints are in K0, we know that

|µϕ(B)− µF,Wn (B)| ≤ P(FE(K) 6= F̃nE(K)).

Following the previous algorithm, while each step starting from a vertex of K �n-
ishes before the random walk reaches ∂Gn, both con�gurations FE(K), F̃nE(K) which are
obtained are equal. Therefore, from the union bound,

P(FE(K) 6= F̃nE(K)) ≤ P(
⋃

i∈[|K|]
{T vin ≤ T

vi
f }) ≤

∑
i∈[|K|]

P(T vin ≤ T
vi
f )

≤
∑

i∈[|K|]
P(T vin ≤ T vir ) ≤ |K| max

i∈[|K|]
P(T vin ≤ T vir ).

From Lemma 5.9, we obtain when n→∞,

|µϕ(B)− µW,Fn (B)| ≤ |K| max
i∈[|K|]

P(T vin ≤ T vir )→ 0,

which implies the weak convergence of (µW,Fn ) towards µϕ.

5.2.3 Independence on the ordering

Recall that for every n, the measure µWn is sampled by an algorithm and does not depend
on the ordering of vertices of Gn chosen in the algorithm. Combined with Theorem 5.16,
this independence implies the following result.

Theorem 5.17. Let ϕ be an ordering of the vertices, as de�ned as a bijection ϕ : N → V .
Let p be a weight function satisfying Assumption 5.1. Let µϕ be the measure on the cycle-
rooted spanning forests of G associated with the algorithm of loop-erased random walk with
weights p(γ). The measure µϕ does not depend on ϕ.

Proof. Let ϕ, τ be two orderings, with (vi) = (ϕ(i)), (wi) = (τ(i)) let K1 and K2 be
respectively the sets of vertices that precede some vertex in K0 in the ordering ϕ (resp. τ )
and let n large enough such that K1 ∪K2 ⊂ Gn. Then, from Theorem 5.16,
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|µϕ(B)− µτ (B)| ≤ |K1| max
i∈[|K1|]

Pvi(Tn ≤ Tr) + |K2| max
i∈[|K2|]

Pwi(Tn ≤ Tr)→ 0.

This shows that both distributions in in�nite volume coincide on cylinders and therefore
the measure in in�nite volume does not depend on the ordering of the vertices.

For a weight function p satisfying Assumption 5.1, we will denote by µp the corre-
sponding probability measure on CRSFs of G, which does not depend on the ordering of
the vertices. The measure µp is also the limit of free and wired sequences of measures
on cycle-rooted spanning forests of growing subgraphs and therefore, the limit does not
depend on the boundary conditions.

5.3 Study of the con�gurations sampled under the Wilson
measure

In this section, we will study the asymptotic behavior of con�gurations and the rate of decay
of correlations with the distance for the measure µp which is sampled by an algorithm
of p-loop erased random walks in in�nite volume and which will be called the Wilson
measure. We will study this measure under the following assumption.

Assumption 5.18. There exists α > 0, β > 0,M,M ′ > 0, C > 0, d ∈ N, a family of
oriented cycles C ⊂ C→(G) and for every x ∈ G, an increasing sequence (Bx

n) of subgraphs
of G, exhausting G and containing x such that :

• For every γ ∈ C , α ≤ p(γ) ≤ 1.

• For every v ∈ ∂Bx
n, there exists a loop γv ∈ C ∩ (Bx

n+1\(Bn ∪ ∂Bx
n+1)) such that the

probability for a random walk starting from v of making this loop γv is greater than β.

• For every x, for every n ∈ N,M ′n ≤ d(x, ∂Bx
n) ≤Mn, and |∂Bx

n| ≤ Cnd.

Assumption 5.18 implies Assumption 5.1 and is satis�ed in particular if the graph and
the weight function w on cycles are invariant under translations and if Assumption 5.1
is satis�ed for an exhaustion (Gn)n such that d(0, ∂Gn) ∼Mn when n tends to in�nity,
where M > 0.

In this section, we will only study properties of the con�gurations sampled under the
Wilson measure in in�nite volume.

5.3.1 Every connected component is �nite for the Wilson measure

De�nition 5.19. For every vertex x and every subset A ⊂ G, we denote by {x↔ A} the
event {A∩Cx 6= ∅}whereCx is the connected component of x in the random con�guration
sampled under µ. In particular, {x ↔ y} means that x and y are in the same connected
component.

We will denote by T xm,x the hitting-time of ∂Bx
m for the random walk (X(x)

n ). Recall
that T xm is the hitting-time of ∂Gm for the random walk (X(x)

n ).
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Lemma 5.20. Under Assumption 5.18, there exists δ > 0 such that the following inequality
holds for everym, for every x ∈ G

Px({T xr ≥ T xm,x}) ≤ δm.

Proof. Let x ∈ G. Under Assumption 5.18, Assumption 5.1 is satis�ed for the vertex x, and
therefore, if we denote by T xm,x the hitting time of ∂Bx

m for a p-loop erased random walk
starting from x, and T xr its rooting time, Lemma 5.8 gives the existence of a 0 < δ < 1 such
that the following inequality holds for every m,

Px({T xr ≥ T xm,x}) ≤ δm,

where δ = 1−αβ for parameters α, β of 5.18. In particular, δ does not depend on x, which
concludes the proof.

Lemma 5.21. Let δ > 0 as in Lemma 5.20 andM as in Assumption 5.18. Let x, y be two
vertices of G and denote by d(x, y) the distance between x and y that is to say the length of
the shortest path from x to y. Then, if n ≤ d(x,y)

2M ,

µp(x↔ y) ≤ 2δn.

Proof. According to Theorem5.17, the measure µp does not depend on the ordering of the
vertices. We may choose an ordering ϕ in which x and y are the �rst two vertices.

Since n ≤ d(x,y)
2M , d(x, ∂Bx

n) ≤Mn ≤ d(x,y)
2 and d(y, ∂By

n) ≤Mn ≤ d(x,y)
2 . If x and y

are in the same connected component in a con�guration obtained from this algorithm, we
know that either for the p-loop erased random walk starting from x or for the one starting
from y, we have {T xr ≥ T xfϕ ≥ T xn,x} or {T yr ≥ T yfϕ ≥ T yn,x}. Indeed, if T xfϕ ≤ T xn,x
and T yfϕ ≤ T xn,y , then the p-loop erased random walk starting from x and from y cannot
intersect, and form two disjoint connected component in the con�guration. Therefore,
from the union bound,

µp(x↔ y) ≤ Px({T xr ≥ T xn,x}) + Py({T yr ≥ T yn,y}) ≤ 2δn,

which concludes the proof.

Theorem 5.22. µp-almost surely, for every x ∈ V of G, the connected component of x is
�nite.

Proof. Let x ∈ V . For every n ∈ N, for every y ∈ ∂Bx
n, d(x, y) ≥ M ′n. Let n′ = bM ′n2M c.

Then n′ ≤ d(x,y)
2M , and therefore, from Lemma 5.21,

µp(x↔ y) ≤ 2δn′ .

Then, from the union bound, the following upper bound on the probability that the
connected component of x contains vertices of the boundary of Bx

n holds for every n ∈ N,
with δ′ = δ

M′
2M ,

P(x↔ ∂Bx
n) ≤

∑
y∈∂Bxn

P(x ∼ y) ≤ 2|∂Bx
n|δb

M′n
2M c ≤ 2Cndδ′n.
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5. Wilson algorithm measures on spanning forests.

Then, from the monotone convergence theorem, we have

P(x↔∞) = P(∩n{x↔ ∂Bx
n}) = limP(x↔ ∂Bx

n) = 0.

Since G is countable, we know that µ-almost surely, for every x ∈ G, the connected
component of x is �nite.

5.3.2 Exponential decay of correlations for the Wilson measure

We still assume that weights are in [0, 1] and satisfy Assumption 5.18. Let m ∈ N and
let e1 = (x1, y1) and e2 = (x2, y2) be such that d({x1, y1}, {x2, y2}) ≥ m.

If F is a CRSF following the law µp it can be sampled from the algorithm described in
section 5.2.1 and from Theorem 5.17, it does not depend on the chosen ordering of vertices,
therefore we may assume that the �rst four vertices of the ordering ϕ are x1, y1, x2, y2.

Let us consider in the following, four independent couples of sequences of random
variables (Xx1

n , Y x1
n ), (Xy1

n , Y
y1
n ), (Xx2

n , Y x2
n ), (Xy2

n , Y
y2
n ), as de�ned in section 5.3.1.

For i ∈ {1, 2}, let us denote by Ai the event that both p-loop-erased random walks
obtained from (Xxi

n , Y
xi
n )n, (Xyi

n , Y
yi
n )n starting from xi, yi are rooted before leaving the

subgraphs Bxi
m/2, B

yi
m/2, that is to say that

Ai = {T xir < T xixi,m/2} ∩ {T
yi
r < T yiyi,m/2}.

Lemma 5.23. Conditional on A1 ∩A2, the events {e1 ∈ F} and {e2 ∈ F} are independent.

Proof. Let F4 be the subgraph obtained after the �rst four runs of the algorithm.
Notice that, once F4 has been sampled, during every subsequent run of the algo-

rithm, the p-loop-erased random walk stops if it reaches x1, y1, x2, y2 because F4 con-
tains x1, y1, x2, y2. Therefore, for F the con�guration obtained following the algorithm in
in�nite volume, we have the following equality of events for i ∈ [1, 2],

{ei ∈ F} = {ei ∈ F4}.

Let (Zx1
n )n≤Tx1

r
be the p-loop-erased random walk obtained from (Xx1

n , Y x1
n ) and let

W1 = V ((Zx1
n )n≤Tx1

r
)

be the set of vertices explored by this p-loop-erased random walk. Let (Zy1
n )n≤min(T y1r ,T

y1
W1

)
be the p-loop erased random walk starting from y1 with boundary condition W1. Let F1 be
the subgraph given by (Zx1

n )n≤Tx1
r
, (Zy1

n )n≤min(T y1r ,T
y1
W1

).

Let (Zx2
n )n≤Tx2

r
be the p-loop-erased random walk obtained from (Xx2

n , Y x2
n ) and let

W2 = V ((Zx2
n )n≤Tx2

r
)

be the set of vertices explored by this p-loop erased random walk. Let (Zy2
n )n≤min(T y2r ,T

y2
W2

)
be the p-loop-erased random walk starting from y1 with boundary condition W2. Let F2
be the subgraph given by (Zx2

n )n≤Tx2
r
, (Zy2

n )n≤min(T y2r ,T
y2
W2

).
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5.3. Study of the con�gurations sampled under the Wilson measure

Let us emphasize that the p-loop erased random walk corresponding to the third and
the fourth runs of the algorithm has boundary conditions V (F1), corresponding to the
con�guration created during the �rst two runs of the algorithm. Therefore, in general, F1
and F2 are not disjoint and their union is not the component created after four runs of the
algorithm.

If A1 is satis�ed, F1 is contained in Bx1
m/2 ∪B

y1
m/2 and if A2 is satis�ed,

T
x2
r < T x2

x2,m/2 < TV (F1),

T y2
r < T y2

y2,m/2 < TV (F1),

and therefore, the third and the fourth runs �nish before the p-loop erased random walks
reach V (F1), that is to say that the p-loop erased random walks with boundary condi-
tion V (F1) coincides with the p-loop erased random walks without this boundary condition
(see Proposition 5.11). Therefore, if A1 and A2 are satis�ed, F1 and F2 are disjoint con-
nected components and their union is exactly the component created after four runs of the
algorithm.

In particular, if A1 ∩ A2 is satis�ed, for i ∈ [1, 2], {ei ∈ F} is satis�ed if and only
if {ei ∈ Fi} is satis�ed.

We show that conditional on A1 ∩ A2, the random con�gurations F1 and F2 are
independent. Recall that (Zx1

n ), (Zy1
n ) and (Zx2

n ), (Zy2
n ) are independent and F1, A1 only

depends on (Zx1
n ), (Zy1

n ) and F2, A2 only depends on (Zx2
n ), (Zy2

n ). Therefore, if F1, F2
are some �xed con�gurations,

P(F1 = F1, A1,F2 = F2, A2) = P(F1 = F1, A1)P(F2 = F2, A2).

Therefore, using independence of {Fi = Fi} ∩Ai and Aj for i 6= j, we obtain

P(F1 = F1,F2 = F2|A1, A2) = P(F1 = F1, A1)P(F2 = F2, A2)
P(A1 ∩A2)

= P(F1 = F1|A1)P(F2 = F2|A2)
= P(F1 = F1|A1 ∩A2)P(F2 = F2|A1 ∩A2).

Therefore, conditional on A1 ∩A2, the random variables F1 and F2 are still independent.
Therefore, conditional on A1 ∩A2, {e1 ∈ F} = {e1 ∈ F1} and {e2 ∈ F} = {e2 ∈ F2}

are independent.

As a consequence, we obtain the following decay of correlations

Theorem 5.24. There exists a parameter ι < 1 such that for everym large enough,

µp(e2 ∈ F)µp(e1 ∈ F)− ιm ≤ µp({e2 ∈ F} ∩ {e1 ∈ F}) ≤ µp(e2 ∈ F)µp(e1 ∈ F) + ιm.

Proof. The event {e2 ∈ F} ∩ {e1 ∈ F} can be decomposed as the following disjoint union:

({e2 ∈ F} ∩ {e1 ∈ F} ∩A1 ∩A2) ∪
(
{e1 ∈ F} ∩ {e2 ∈ F} ∩ (A{1 ∪A{2)

)
.
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5. Wilson algorithm measures on spanning forests.

Since {e1 ∈ F} ∩ {e2 ∈ F} ∩ (A{1 ∪A{2) is included in A{1 ∪A{2, it has probability less
than µp(A{1 ∪A{2).

From Lemma 5.8, there exists some δ < 1 such that from the union bound, we get

µp(A{1 ∪A{2) ≤ 4δm/2.

For the other term, we use the independence of {e1 ∈ F} and {e2 ∈ F} conditional
on A1 ∩A2 proved in Lemma 5.23, which implies

µp({e2 ∈ F} ∩ {e1 ∈ F} ∩A1 ∩A2) = µp({e1 ∈ F} ∩ {e2 ∈ F}|A1 ∩A2)µp(A1 ∩A2)

= µp({e1 ∈ F} ∩A1 ∩A2)µp({e2 ∈ F} ∩A1 ∩A2)
µp(A1 ∩A2)

≤ µp({e1 ∈ F})µp({e2 ∈ F})
µp(A1 ∩A2) .

Using again the lower bound on µp(A1 ∩A2) which comes from Lemma 5.8, we have

µp(A1 ∩A2) ≥ 1− 4δm/2.

Let η < 1 be such that for m large enough,

4δm/2 < ηm.

Therefore, we have the following upper bound on 1
µp(A1∩A2) ,

1
µp(A1 ∩A2) ≤

1
1− ηm =

∑
k≥0

ηmk = 1 +
∑
k≥1

ηmk ≤ 1 +
∑
k≥m

ηk ≤ 1 + ηm

1− η .

Therefore we get

µp({e2 ∈ F} ∩ {e1 ∈ F} ∩A1 ∩A2) ≤ µp(e1 ∈ F)µp(e2 ∈ F)(1 + ηm

1− η ).

For the other inequality, notice that µp({e1∈F}∩A1∩A2)µp({e2∈F}∩A1∩A2)
µp(A1∩A2) is larger than

(µp({e1 ∈ F}µp({e2 ∈ F})− 2µp(A{1 ∪A{2)
≥ (µp({e1 ∈ F}µp({e2 ∈ F})− 2ηm.

Therefore,

µp({e2 ∈ F} ∩ {e1 ∈ F} ∩A1 ∩A2) ≥ (µp({e1 ∈ F}µp({e2 ∈ F})− 2ηm,

and since the event {e2 ∈ F}∩{e1 ∈ F} contains the event{e2 ∈ F}∩{e1 ∈ F}∩A1∩A2,
we get

µp({e2 ∈ F} ∩ {e1 ∈ F}) ≥ µp({e2 ∈ F} ∩ {e1 ∈ F} ∩A1 ∩A2)
≥ (µp({e1 ∈ F}µp({e2 ∈ F})− 2ηm.

Finally, considering ι < 1 such that for m large enough, both inequalities 2ηm < ιm

and ηm 1
1−η + 4δm/2 < ιm hold, concludes the proof.
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Chapter6
Measures on CRSF associated to

weights larger than 1 and
determinantal measures.

In this chapter, we study probability measures on cycle-rooted spanning forests of an
in�nite graph G = (V,E) depending on a weight function w on cycles of the graph.
We saw in chapters 2 and 5 that there are two families of probability measures on cycle-
rooted spanning forests of a �nite graph, one which is determinantal and one which is
sampled by a random walks algorithm. Considering an exhaustion of G by a sequence of
growing �nite subgraphs gives rise to in�nite volume measures, obtained as weak limit
of probability measures sequences. In the case of determinantal measures associated to
a unitary connection, the weak convergence of the sequence of measures is given by the
convergence of the sequence of kernels (see chapters 3 and 4), whereas in the case of
measures sampled by an extension of the Propp-Wilson algorithm, the weak convergence
of the sequence of measures is given by bounds on the rooting time (see chapter 5). Both
families generalize Uniform Spanning Forests and are limits of probability measures on
increasing sequences of �nite subgraphs.

In this chapter, we will be interested in the comparison between Boltzmann probabil-
ity measures on cycle-rooted spanning forests of a �nite graph depending on a weight
function w. Then, we will use properties on the measures studied in chapter 5 as a tool to
understand properties of determinantal measures on cycle-rooted spanning forests of an
in�nite graph associated to a unitary complex connection.

6.1 Comparison between families of measures.

6.1.1 Comparison between measures when w is uniformly increased

Let G = (V,E) be a �nite graph endowed with a non-negative function w : C→(G)→ R+
de�ned on oriented cycles of G which is symmetric under orientation reversal.

For a subgraph F of G, we will denote by C+(F ) and call positive cycles the set of
non-oriented cycles of F of weight strictly larger than 1 and denote by C−(F ) and call
negative cycles the set of non-oriented cycles of G of weight less than or equal to 1.
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6. Measures on CRSF associated to weights larger than 1 and determinantal
measures.

Assume that there exists C > 1 such that w = Cp with p : C→(F ) → [0, 1] a non-
negative function de�ned on oriented cycles of G which is symmetric under orientation
reversal. We denote by µw and µp the measures on U(G) de�ned as follows :

µw(F ) =
∏
γ∈C(F ) 2w(γ)

Zw
, µp(F ) =

∏
γ∈C(F ) 2p(γ)

Zp
,

where Zw, Zp are the partition functions of the model as de�ned in section 2.2.

Theorem 6.1. LetW be the set of wired vertices and let us denote by F a random cycle-rooted
spanning forest on G sampled under the measure µWw or µWp . For every event A, the following
equality links both measures:

µWw (A) = µWp (A)
EWp (C |C(F)||A)
EWp (C |C(F)|)

.

IfA is an event such that the inequality EWp (C |C(F)||A) ≥ EWp (C |C(F)|) holds, then this event
is more likely to happen for the measure µWw :

µWw (A) ≥ µWp (A).

This theorem says that if an event “raises” the number of cycles, in the sense that,
conditional on this event, the mean-value of C |C(F)| is larger, then it is more likely for the
measure µWw than for the measure µWp . In the same way, an event which “reduces” the
number of cycles is more likely for the measure µWp than for the measure µWw .

Proof. Let F ∈ UW (G).

µWw (F ) = 1
ZWw

C |C(F )| ∏
γ∈C(F )

2p(γ) =
ZWp
ZWw

C |C(F )|µWp (F ).

In particular, if A is an event,

EWw (1A) =
ZWp
ZWw

∑
F∈UW (G)

1A(F )C |C(F )|µWp (F ) =
ZWp
ZWw

EWp (1AC |C(F)|).

Then, for A = Ω, it gives ZWp
ZWw

= 1
EWp (C|C(F)|) , which concludes the proof.

A consequence of Theorem 6.1 is the following theorem where we apply the result to a
family of events which “raises” the number of cycles.

Theorem 6.2. LetW be the set of wired vertices and let us denote by F a random vertex-
and-cycle-rooted spanning forest on G sampled under the measure µWw or µWp . The following
inequality holds for every k ≥ 1,

µWw (|C(F)| ≥ k) ≥ µWp (|C(F)| ≥ k).
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6.1. Comparison between families of measures.

Proof. Let us consider the events (Ak)k≥1 de�ned by

Ak = {|C(F)| ≥ k}.

Let k ≥ 1. By de�nition of Ak, the following inequality holds,

EWp (C |C(F)||Ak) ≥ EWp (Ck|Ak) = Ck ≥ EWp (C |C(F)||A{k).

Since we can write the following decomposition:

EWp (C |C(F)|) = EWp (C |C(F)||Ak)PWp (Ak) + EWp (C |C(F)||A{k)(1− PWp (Ak)),

the previous inequality gives

EWp (C |C(F)||Ak) = EWp (C |C(F)||Ak)PWp (Ak) + EWp (C |C(F)||Ak)(1− PWp (Ak))
≥ EWp (C |C(F)|).

Therefore, from Theorem 6.1, µWw (Ak) ≥ µWp (Ak) , which concludes the proof.

Remark 6.3. Letwh be a weight function which comes from a unitary connection h. Sincewh
takes values in [0, 2], if ph is de�ned by ph(γ) = wh(γ)

2 , then ph takes values in [0, 1]. Then
Theorem 6.2 applied to C = 2 implies that a spanning forest distributed according the
determinantal measure µh is more likely to have a lot of cycles than a spanning forest sampled
by the algorithm of loop-erased random walks associated to ph.

Assume that p is de�ned by p = min(1, w). This weight function is studied in [FB22]
and since it takes values in [0, 1], it corresponds to a measure which can be sampled by
a cycle-popping algorithm and which is linked to the measure associated to w by the
following formula.

Lemma 6.4. LetW be the set of wired vertices and let us denote by F a random cycle-rooted
spanning forest on G sampled under the measure µWw or µWp . For every event A, the following
equality links both measures.

µWw (A) = µWp (A)
EWp (

∏
γ∈C+(F) 2w(γ)|A)

EWp (
∏
γ∈C+(F) 2w(γ)) .

Proof. Let F ∈ UW (G). Then µWw (F ) = ZWp
ZWw

∏
γ∈C+(F ) 2w(γ)µWp (F ) . In particular, if A

is an event,

EWw (1A) =
ZWp
ZWw

∑
F∈UW (G)

1A(F )
∏

γ∈C+(F )
2w(γ)µWp (F ) =

ZWp
ZWw

EWp (1A
∏

γ∈C+(F)
2w(γ)).

Then, for A = Ω, it gives ZWp
ZWw

= 1
EWp (

∏
γ∈C+(F) 2w(γ)) , which concludes the proof.

Remark 6.5. Since the following inequality holds,

EWp

 ∏
γ∈C+(F)

2w(γ) | C+(F) 6= ∅

 ≥ 2 ≥ EWp

 ∏
γ∈C+(F)

2w(γ) | C+(F) = ∅

 = 1,

the previous theorem implies

µWw (C+(F) 6= ∅) ≥ µWp (C+(F) 6= ∅).
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6. Measures on CRSF associated to weights larger than 1 and determinantal
measures.

6.1.2 Algorithm conditional on cycles with weights larger than 1.

Let G = (V,E) be a �nite graph endowed with a non-negative function w : C→(G)→ R+
de�ned on oriented cycles of G which is symmetric under orientation reversal.

De�nition 6.6. Let W ⊂ G be a set of vertices of G (which can be empty). Let w− be a
weight function de�ned from the weight function w as follows:{

w−|C−(G\W ) = w|C−(G\W ),

w−|C+(G\W ) = 0.

Theorem 6.7. Let C be a subset of C+(G\W ) and let A be the set of vertices which are
extremities of edges in C . Let F be an ECRSF with respect to W sampled according µW .
Conditional on C+(F) = C , the random forest F\C has the same law than a ECRSF with
respect to A ∪W with weight function w−.

Proof. Let F0 ∈ UW (G).

µW (F = F0|C+(F ) = C) = µ(F = F0 ∩ C+(F) = C)
µ(C+(F) = C) .

Notice that this quantity is null if C+(F0) 6= C . Then, if C+(F0) = C and F0 ∈ UW (G),
every connected component of F0 either contains a unique cycle in C−(G) or a unique
cycle in C or is connected to a unique point in W . Therefore, every connected component
of F0\C either contains a unique cycle inC−(G) or is connected to a unique point inW ∪A
which means that F0\C ∈ UW∪A(G).

Then, the measure µW (.|C+(F ) = C) has support in

UCW (G) = {F ∈ UW (G)|C+(F ) = C} = {F ∈ UW (G)|F = C ∪ F−, F− ∈ UW∪A(G)},

and if F0 ∈ UCW (G),

µW (F = F0|C+(F ) = C) =
∏
γ∈C w(γ)

∏
γ∈C−(F0)w(γ)∑

F∈UW (G)|C+(F )=C
∏
γ∈C w(γ)

∏
γ∈C−(F )w(γ)

=
∏
γ∈C−(F0)w(γ)∑

F∈UCW (G)
∏
γ∈C−(F )w(γ) .

Writing every F ∈ UCW (G) on a unique way as C ∪ F− with F− ∈ UW∪A(G),

µW (F = F0|C+(F) = C) =
∏
γ∈C−(F0−)w(γ)∑

F−∈UW∪A(G)
∏
γ∈C−(F−)w(γ)

= µW∪AwC−(G\W )
(F0−) = µW∪AwC−(G\W )

(F0\C).

Finally,
µW (F\C = .|C+(F) = C) = µW∪AwC−(G\W )

(.),

which concludes the proof.
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6.2. In�nite volume measures

SincewC−(G\W ) takes values in [0, 1] by de�nition ofC−(G\W ), the measureµW∪AwC−(G\W )

can be sampled by the wired Wilson algorithm (Subsection 2.2.4) with boundary condi-
tions A ∪W .

Therefore, under the measure µW , conditional on C+(F ), a ECRSF with respect to W
can be sampled from an algorithm which samples a ECRSF with respect toW and extremities
of edges in C+(F ).

6.2 In�nite volume measures

In this section, we consider a countably in�nite connected graphG = (V,E) with bounded
vertex degree, and an exhaustion (Gn) of G.

Recall from section 3.1.1 that for a weight functionw on cycles, we can de�ne sequences
denoted by (µWn ), (µFn ) of free and wired measures on the CRSF on Gn. When the weight
function w is provided by a complex unitary connection, those sequences converge and
under some assumptions, they converge towards the same limit.

We study in this section properties of the con�gurations sampled under the free or wired
measures which correspond to a unitary connection h, in the case where the connection is
such that Assumption 5.18 holds for the functionwh− obtained from the weight functionwh
as de�ned in De�nition 6.6.

6.2.1 Comparison between the determinantal measure and a Wilson
measure

Let h be a unitary complex connection such that Assumption 5.18 holds for the functionwh−
obtained from the weight function wh. Let µWh,n be the wired measure on ECRSF of Gn
with wired boundary conditions on ∂Gn, corresponding to the connection h.

Let us denote by ph the weight function which is de�ned by ph(γ) = wh(γ)
2 . Let

us denote by µp,n the measure on ECRSF with boundary conditions ∂Gn and weight
function ph. Since the weight function ph satis�es Assumption 5.18 of the previous chapter,
the measure in in�nite volume µp associated to ph is well de�ned and µp is the weak-limit
of the sequence (µp,n)n. From Theorem 5.22, µp almost surely, every connected component
is �nite and therefore almost surely there are in�nitely many connected components.

We deduce from Theorem 6.2 and from this result the following result.

Proposition 6.8. For every integer n ≥ 1, let Fn be a con�guration sampled according to the
measure µWh,n, and let C(Fn) be the set of cycles of Fn. Then, for every k ≥ 1, when n→∞,

µWh,n(|C(Fn)| ≥ k)→ 1.

Proof. Let k ≥ 1 be �xed. From Theorem 5.22,

µp(|C(F )| ≥ k) = 1.

Let ε > 0. Since {|C(F )| ≥ k} = ∪m{|C(F ∩Gm)| ≥ k}, the monotone convergence
theorem implies the existence of m large enough such that µp(|C(F ∩Gm)| ≥ k) ≥ 1− ε..
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6. Measures on CRSF associated to weights larger than 1 and determinantal
measures.

Since {|C(F ∩ Gm)| ≥ k} depends on �nitely many edges, the weak convergence
of (µWp,n) gives the existence of n ≥ m large enough such that

µWp,n(|C(Fn ∩Gm)| ≥ k) ≥ 1− 2ε,

and then, for n large enough,

µWp,n(|C(Fn)| ≥ k) ≥ µWp,n(|C(Fn ∩Gm)| ≥ k) ≥ 1− 2ε.

Therefore, when n→∞, µWp,n(|C(Fn)| ≥ k)→ 1.
According to Theorem 6.2, for every n,

µWh,n(|C(Fn)| ≥ k) ≥ µWp,n(|C(Fn)| ≥ k).

Therefore, when n→∞, µWh,n(|C(Fn)| ≥ k)→ 1.

Nevertheless, we cannot deduce directly that for every k ≥ 1, almost surely for the
determinantal wired measure µWh in in�nite volume, which is the weak limit of the se-
quence (µWh,n),

µWh (|C(F)| ≥ k) = 1,

and that µWh -almost surely, there are in�nitely many connected components.
Indeed, the convergence of (µWh,n) towards µWh is only a weak convergence. If we

consider, thanks to the Skorokhod’s representation theorem, a sequence Fn such that Fn
converges almost surely towards F with F following the law µWh and Fn following the
law µWh,n for every n, then if ε > 0, we have m large enough such that

µWh,m(|C(Fm)| ≥ k) ≥ 1− ε.

Then, almost surely, for n large enough, Fn coincides with F on the graph Gm. Never-
theless, Fn ∩ Gm does not have the same law as Fm and therefore we cannot deduce
that

µWh,n(|C(Fn ∩Gm)| ≥ k) ≥ 1− ε,

which would have proved that when m→∞,

µWh (|C(F ∩Gm)| ≥ k)→ 1,

and would have implied from the monotone convergence theorem that

µWh (|C(F)| ≥ k) = 1.

We will prove in Theorem 6.25 that under a stronger assumption on the weight func-
tion wh coming from a unitary connection h, Assumption 6.17, the free and wired measures
are equal, and using the determinantal aspect of this measure µh, we will show that µh-
almost surely there are in�nitely many �nite unicycles and therefore in�nitely many �nite
connected components.

Recall that we know from Proposition 3.3 that every �nite connected component
contains a unique cycle which has non-trivial holonomy. In the next subsection, we prove
that under Assumption 5.18 on the cycle weights, every connected component with a cycle
is �nite.
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6.2.2 All the connected components with cycles are �nite

In this subsection, let w− be the weight function obtained from w as in De�nition 6.6 and
assume that there exists a family of cycles C ⊂ C−(G) such that Assumption 5.18 holds
for w−.

We denote by (µn) the sequence of free measures on CRSF in �nite volume associated
to the weight function w and we assume that this sequence converges weakly towards a
measure in in�nite volume, denoted by µ. Let us emphasize that this assumption is satis�ed
whenever the weight function is provided by a unitary connection h or when the weight
function takes values in [0, 1] and w− = w satis�es Assumption 5.18.

We will show in this subsection that under those assumptions, every connected compo-
nent with a cycle is �nite.

We will use the following Lemma on the exponential decay of the tail distribution of
ending times, which is a corollary of Lemma 5.8 (Section 5.1).

Lemma 6.9. Let m ∈ N, n ≥ m. Let C ⊂ Gn be a subgraph of Gn. Let Px be the law of
a w−-loop erased random walk (Xn) starting from x and Tr be the rooting time of (Xn).
Let TC and Tm,x be the hitting times of C and ∂Bx

m. Under Assumption 5.18, the following
inequality holds

Px(min(TC , Tr) ≥ Tm,x) ≤ δm,

which concludes the proof.

Proof. Applying Lemma 5.8 to the random walk (Xn) with weight function w− which
satis�es Assumption 5.1, we get

Px(Tr ≥ Tm,x) ≤ δm.

But since min(TC , Tr) ≤ Tr ,

Px(min(TC , Tr) ≥ Tm,x) ≤ Px(Tr ≥ Tm,x) ≤ δm,

which concludes the proof.

Let x ∈ G be �xed. We introduce some events with compact support which depend
on x and prove an upper bound on the probability of those events.

De�nition 6.10. Form ∈ N, we denote byAm = {x↔ ∂Bx
2m} the event that x and ∂Bx

2m
are connected in F , that is to say that there exists a path between x and ∂Bx

2m in Bx
2m.

If n ∈ N, we denote by Γ−n = {x↔ C−(FGn)} the event that x is connected to a closed
cycle in Gn of weight less than 1.

Lemma 6.11. Letm ∈ N. For n ≥ m large enough, if Fn is distributed according to the free
measure µn on Gn,

µn(Am ∩ Γ−n ) ≤ (|∂Bx
2m|+ 1)δm.

Proof. Let n large enough such that for every y ∈ ∂Bx
2m, By

m ⊂ Gn. Let C ⊂ C+(Gn).
From Theorem 6.7, conditional on C+(Fn) = C , Fn is given by an algorithm of w−-loop
erased random walks with boundary conditions on C . The proof relies on the same ideas
as the proof of Lemma 5.21 and Theorem 5.22.
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The event Am ∩ Γ−n is satis�ed if there exists y ∈ {x} ∪ ∂Bx
2m such that the w−-loop

erased random walk starting from y has left By
m before being rooted to a cycle in C−(Gn)

and before touching C .
From Lemma 6.9, for every y ∈ {x} ∪ ∂Bx

2m,

Py(min(TC , Tr) ≥ Tm,y) ≤ δm.

Then, the union bound concludes the proof.

Lemma 6.12. For every x ∈ V ,

µ({x↔ C−(F )} ∩ {|cc(x)| =∞}) = 0.

Gn

x B
x

2m

B
x

m

w(γ) > 1

w(γx) ≤ 1
y

Figure 6.1 – Idea of proof of Lemma 6.12: if a vertex x is connected to a cycle of weight
smaller than 1, the cycle is not too large and not too far from x, thus x is not connected to
the boundary of a large enough neighborhood.

Proof. Let ε > 0. Let m ∈ N �xed, large enough such that (|∂Bx
2m| + 1)δm < ε. We

consider the notations from De�nition 6.10.
Since (Γ−n ) is increasing, if we let Γ− := {x↔ C−(F )} = ∪Γ−n , then

µ(Am ∩ Γ−) = µ(Am ∩ ∪Γ−n ) = µ(∪n(Am ∩ Γ−n )) = lim
n
µ(Am ∩ Γ−n ).

Let us consider n0 large enough such that the inequality from Lemma 6.11 holds. Since
for n ≥ n0, we have µn(Am ∩ Γ−n0) ≤ µn(Am ∩ Γ−n ) ≤ ε, we obtain

µ(Am ∩ Γ−n0) = lim
n
µn(Am ∩ Γ−n0) ≤ ε.

It holds for every n0 large enough and therefore, µ(Am ∩ Γ−) ≤ ε. Since this inequality
holds for m large enough, we have when m→∞, µ(Am ∩ Γ−)→ 0.

Therefore, since (Am) is decreasing and ∩mAm = {|cc(x)| = ∞}, the monotone
convergence theorem concludes the proof.
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De�nition 6.13. For l ∈ N, let Γ+
l = {x↔Bx

l
C+(FBx

l
)} be the event that x is connected

inside Bx
l to a cycle with weight larger than 1 which is inside Bx

l , that is to say the event
that in FBx

l
, the connected component of x contains a cycle with weight larger than 1.

For m ∈ N, let Am := {x ↔ ∂Bx
m} be the event that x is connected to the boundary

of Bx
m.

Lemma 6.14. Letm0 ∈ N. Form large enough, there exists n0 such that if n ≥ n0 and if Fn
is distributed according to µn, then,

µn(Am ∩ Γ+
l ) ≤ |∂Bx

m0 |δ
m0 .

Proof. Let m0,m ∈ N. Assume that m is large enough such that for every y ∈ ∂Bx
m, the

equality By
m0 ∩ B

x
l = ∅ holds. Let n be large enough such that for every y ∈ ∂Bx

m, the
inclusion By

m0 ⊂ Gn holds.
Let C ∈ C+(Gn). Conditional on C+(Fn) = C , Fn is given by an algorithm of w−-loop

erased random walks with wired conditions on C .
The event Γ+

l ∩Am is satis�ed if the w−-loop erased random walk starting from x hits
a cycle in C+(FBx

l
) before leaving Bx

l and before being rooted to another cycle and if one
of the w−-loop erased random walks starting from points of ∂Bx

m reaches Bx
l before being

rooted to a cycle or hitting C . Therefore, from Lemma 6.9 and from the union bound,

µn(Am ∩ Γ+
l ) ≤ |∂Bx

m0 |δ
m0 ,

which concludes the proof.

Lemma 6.15. For every x ∈ V ,

µ({x↔ C+(F )} ∩ {|cc(x)| =∞}) = 0.

x

yB
y
m0

Gn

B
x
l

B
x
m

Figure 6.2 – Idea of proof of Lemma 6.15: if a vertex x is connected to a �xed �nite cycle of
weight larger than 1, vertices which are far enough from this cycle are not connected to x.
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Proof. Let x ∈ G and let

A := {|cc(x)| =∞} = ∩mAm

be the event that the connected component of 0 is in�nite.
Let l ∈ N. Let ε > 0. Let m0 large enough such that |∂Bx

m0 |δ
m0 ≤ ε. Let m be large

enough such that for every y ∈ ∂Bx
m, By

m0 ∩B
x
l = ∅. Let n be large enough such that for

every y ∈ ∂Bx
m, By

m0 ⊂ Gn.
Let Fn distributed according µn. Then, from Lemma 6.2.2,

µn(Am ∩ Γ+
l ) ≤ |∂Bx

m0 |δ
m0 ≤ ε.

Since this inequality holds for every n large enough and Am ∩ Γ+
l depends on �nitely

many edges,
µ(Am ∩ Γ+

l ) = lim
n
µn(Am ∩ Γ+

l ) ≤ ε.

Since this inequality holds for every ε for m large enough, we obtain when m→∞,

µ(Am ∩ Γ+
l )→ 0.

Since Am is decreasing,

µ(A ∩ Γ+
l ) = µ(∩mAm ∩ Γ+

l ) = lim
m
µ(Am ∩ Γ+

l ) = 0.

Since (Γ+
l ) is increasing and Γ+ = {x↔ C+(F )} = ∪lΓ+

l ,

µ(A ∩ Γ+) = µ(A ∩ (∪lΓ+
l )) = µ(∪l(A ∩ Γ+

l )) = lim
l
µ(A ∩ Γ+

l ) = 0.

which is precisely what we wanted to prove.

Let us emphasize that Lemma 6.15 and Lemma 6.12 show that for every x ∈ G, almost
surely, if x is connected to a cycle in the random con�guration F , the connected component
of x is �nite. Therefore, sinceG is countable, we immediately deduce the following theorem.

Theorem 6.16. Under an in�nite volume measure µw such thatw− satis�es Assumption 5.18,
every connected component with a cycle is �nite.

Let us emphasize that Theorem 6.16 holds for measures which are not necessarily deter-
minantal. From Proposition 3.3 and Theorem 6.16, we know that a connected component
does not have a cycle if and only if it is an in�nite connected component. We believe
that when the weight function w is provided by a unitary connection h, the determinantal
aspect of the limit measure µh avoids the existence of a connected component without a
cycle but it is still a conjecture.

In the next section (6.3), we present some results based on the determinantal aspect
of the measure µh for a weight function wh which is provided by a unitary connection h.
We will study the probability of missing some edges sets to show that, under a stronger
assumption, almost surely, some �nite unicycles are observed in�nitely many times. Under
this stronger assumption, the decay of edge-to-edge correlations is exponential. We believe
that in that case, there are no in�nite connected component.
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6.3 Determinantal measures associated to a unitary
complex connection.

In this section, we assume that the graph G is invariant under translations and that G is
endowed with a unitary complex connection h which is also invariant under translations.
Let wh be the weight function associated to this connection.

Recall from [KL23] (see subsection 3.2.2) that the following decomposition holds:

Ω1
`2(F ) =F`2 ⊕ dh(H)⊕ ♦`2 ,

whereH = {f ∈ Ω0 : ∆hf = 0 and dhf ∈ Ω1
`2(F )}.

6.3.1 Acceptable unicycles are observed in�nitely many times for the
determinantal measure.

We assume that Assumption 5.18 holds forwh− and we also make the following assumption.

Assumption 6.17. There exists some constantsm,N, l > 0 such that for every x ∈ G, there
exists a cycle γx of length ‖γx‖ ≤ l and holonomy qx 6= 1 such that |1 − qx| > m and
if e ∈ E, the inequality |{x|e ∈ γx}| ≤ N holds.

From Subsection 3.2.2, the sequences of measures (µWh,n), (µFh,n) on CRSF on the se-
quence of growing subgraphs (Gn) with wired or free boundary conditions converge
towards thermodynamic limits µFh and µWh , which are determinantal measures whose
kernels are orthogonal projections on spaces ♦⊥`2 andF`2 .

The following lemma, from [KL23] shows that under Assumption 6.17, the following
orthogonal decomposition holds:

Ω1
`2(F ) =F`2 ⊕ ♦`2 .

Lemma6.18. [KL23] Under Assumption 6.17, dh(H) = {0} and therefore spaces♦⊥`2 andF`2

are equal.

Proof. Let C = l
m . Let f ∈ Ω0(G), such that dhf ∈ Ω1

`2(G). Assume that f is harmonic
that is to say that ∆h(f) = 0. Let x in G and γx a cycle as in Assumption 6.17. Then, we
have

|f(x)||1− qx| ≤
∑
e∈γx
|dhf(e)| ≤ ||γx||max

e∈γx
|dhf(e)|,

and therefore,

|f(x)|2 ≤
(

l

1− qx
max
e∈γx
|dhf(e)|

)2
≤ C2 max

e∈γx
|dhf(e)|2.

Therefore,∑
x

|f(x)|2 ≤ C2∑
x

max
e∈γx
|dhf(e)|2 ≤ C2∑

x

∑
e∈γx
|dhf(e)|2 ≤ C2∑

e

∑
x|e∈γx

|dhf(e)|2.

From Assumption 6.17, |{x|e ∈ γx}| ≤ N . Therefore,∑
x

|f(x)|2 ≤ C2N2∑
e

|dhf(e)|2 <∞.

Therefore f ∈ `2, and ||dhf ||2 = 〈dhf, dhf〉 = 〈f,∆hf〉 = 0. Thus, we have dhf = 0.
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Therefore, under Assumption 6.17, the measures µWh and µFh are equal. In the remainder
of this subsection, we will denote by µh the determinantal measure in in�nite volume
associated to the connection h, whose kernel is the orthogonal projection onF`2 .

Lemma 6.19. Let U ⊂ E be a �nite subgraph of G. Let A be the set of vertices of U and
letCU = (E\U)∩ (A×V ∪V ×A) be the �nite set of edges which have at least an extremity
in A and which are not in U . Then, if F is a random con�guration distributed according µh,
the following conditions are equivalent :

• Almost surely, F intersect CU , that is to say,

µh(F ∩ CU = ∅) = 0.

• There exists f 6= 0 such that dh(f) ∈ V ect(we)e∈CU .

Proof. From the determinantal aspect of µh, we have

µh(F ∩ CU = ∅) = det(I −ΠF)CUCU = det(Π♦)CUCU = det(〈Π♦(we),Π♦(we′)〉)e,e′∈CU .

The previous determinant vanishes if and only if the family (Π♦(we))we∈CU is not inde-
pendent. Let us consider (αe)e∈CU . By linearity of Π♦, we have∑

Π♦(we)αe = Π♦(
∑

weαe).

Therefore, the family (Π♦(we))we∈CU is not independent if and only if there exists (αe)e∈CU
such that ∑

weαe ∈ im(dh)\{0},

which concludes the proof.

The equivalence of Lemma 6.19 implies the following corollary, which gives another
proof of Proposition 3.3 in the case of the determinantal measure µh.

Corollary 6.20. If F is distributed according to µh and if T is a �nite connected component
without any cycle of non trivial holonomy, then,

µh(CT ∩ F = ∅) = 0.

Therefore, under µh, almost surely, every �nite connected component of F contains a cycle of
non trivial holonomy.

Proof. Let x ∈ V and let Fx be the connected component of x in F. Let T be a �nite
subgraph which contains x and which does not contain a cycle of non-trivial holonomy.

Let r be a vertex of T . Let us de�ne f by f(r) = 1 and for every edge e ∈ T , if f(e−)
is de�ned, let f(e+) = hef(e−). Since every cycle of T has trivial holonomy, f is well-
de�ned. Therefore, for every e ∈ T , dhf(e) = 0. Then, de�ne f by fV \V (T ) = 0. Then,
if e has both extremities in V \V (T ), dhf(e) = f(e+) − hef(e−) = 0. Therefore, there
exists f 6= 0 such that dh(f) ∈ V ect(we)e∈CT and Lemma 6.19 implies that

µh(CT ∩ F = ∅) = 0.
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6.3. Determinantal measures associated to a unitary complex connection.

Since the set Tx of �nite subgraphs which contain x and which do not contain a cycle of
non trivial holonomy is countable, we deduce that

µh(Fx ∈ Tx) = 0.

Since the graph G is countable, almost surely, every �nite connected component of F
contains a cycle of non trivial holonomy.

Notice that this new proof of Proposition 3.3 for µh does not use the weak convergence
of the sequence of measures in �nite volume but the determinantal property of the limit
measure µh.

De�nition 6.21. Let U1, . . . , Up be a �nite family of �nite disjoints unicycles, all of whose
cycles γi have holonomies qi 6= 1. Let A = {v ∈ V |v ∈ U1 ∪ . . . ∪ Up} be the set of
vertices of U := ∪iUi. We say that U1, . . . , Up is an admissible unicycles family if in every
connected component of the induced subgraph by A{, GA{ = (A{, {e : e−, e+ ∈ A{}),
there exists a cycle of non trivial holonomy.

Lemma 6.22. Let U1, . . . , Up be an admissible unicycles family. Let CU be the �nite set of
edges which have at least an extremity in A and which are not in U := ∪iUi. Then, if F is a
random con�guration distributed according to µh, we have

µh(F ∩ CU = ∅) > 0.

Proof. Let f be such that
∑
weαe = dh(f), with (αe)e∈CU ∈ CCU . Let us prove that f = 0.

Let i ∈ [1, p] and let e ∈ Ui. By de�nition of CU , e /∈ CU . Therefore, dhf(e) = 0. In
particular, for every e ∈ γi, dhf(e) = 0. If x is a vertex of γi,

(1− qi)f(x) =
∑
e∈γi

dhf(e) = 0.

Therefore, since qi 6= 1, f(x) = 0. If v ∈ A, there exists a path in U between v and a
vertex xi ∈ V (γi) and therefore f(v) = 0.

Now, if v /∈ A, the connected component of v in A{ contains a cycle of non trivial
holonomy in E(A{) and since E(A{) ∩ CU = ∅, we also have f(v) = 0 for every v ∈ A{ .

Therefore, f = 0 and if e ∈ CU , we have

αe = dhf(e) = f(e+)− hef(e−) = 0,

and the family (Π♦(we))we∈CA is independent. Therefore

µh(F ∩ CU = ∅) > 0,

which is the desired inequality.

Let us underline that the admissible condition on the family of unicycles is a necessary
one. First of all, from Corollary 6.20, every Ui must contain a cycle of non-trivial holonomy.
Moreover, the following Lemma shows that the condition on A{ is a necessary one.
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Lemma 6.23. LetU1, . . . , Up a �nite family of disjoint unicycles such that there exists x ∈ A{

whose connected component in the induced subgraph by A{ does not contain any cycle of non
trivial holonomy. Then,

µh(F ∩ CU = ∅) = 0.

Proof. Let T be the connected component in the induced subgraph by A{ of x. If the
event {F∩CU = ∅} is satis�ed, then the connected component cc(x) of x in F is included
in T . Indeed, if an edge e connects a point of A{ to a point of A, it is in CU and therefore
not in F. Since T does not contain any cycle of non trivial holonomy, neither does cc(x),
which cannot happen from Proposition 3.3.

Theorem 6.24. Let p ∈ N∗ and let U1, . . . , Up be an admissible unicycles family. Let us
denote byK1 a �nite box containing U1, . . . , Up, (Kk)k a family of disjoint boxes translated
from K1, and Uk1 , . . . , U

k
p the translated cycle-rooted trees from U1, . . . , Up. Let Bk be the

event
Bk = {F ∩ (∪iCUki ) = ∅}.

Then,
µh(lim sup

k→∞
Bk) = 1.

Proof. From invariance under translation,

µh(Bk) = µh(F ∩ (∪iCUki ) = ∅) > 0,

and therefore ∑
k

µh(Bk) =∞.

The events (B{k)k≥1 are not independent but they are negatively associated since the
measure is determinantal and the events are growing and have disjoint supports. Therefore,
for every l ≤ m,

µh(∩l≤k≤mBk{) ≤
∏

l≤k≤m
µh(B{k).

Therefore we can adapt the proof of the lemma of Borel-Cantelli to see that

µh(lim supBk) = 1.

Indeed, for every l ≤ m,

µh(∪l≤k≤mBk) = 1− µh(∩l≤k≤mB{k)

≥ 1−
∏

l≤k≤m
µh(B{k)

= 1− exp(
∑

l≤k≤m
ln(1− µh(Bk))).

Since
∑
k µh(Bk) =∞ , when m→∞,

∑
l≤k≤m ln(1− µh(Bk))→ −∞ ,

µh(∪l≤k≤mBk)→ 1.
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Therefore, for every l ∈ N,
µh(∪l≤kBk) = 1.

By countable intersection,
µh(lim supBk) = 1.

which is precisely the claim of the theorem.

Notice that if the event Bk is satis�ed, for every i ∈ [1, p], for every x ∈ V (Uki ),
the connected component of x in F is included in Uki . From Proposition 3.3, every �nite
connected component of F contains exactly one cycle, then, for every x ∈ V (Uki ), the
connected component of x contains the cycle γki and therefore the connected component
of x in F is precisely the unicycle Uki .

By countable intersection over p ∈ N∗ and U1, . . . , Up families of p disjoints cycle-
rooted trees which are in an accepted con�guration, we deduce the following result.

Theorem 6.25. µh almost surely, we observe whatever �nite admissible family of unicycles
in�nitely many times.

6.3.2 Examples of periodic complex connections

Assume that h is a periodic connection h of rank 1 with fundamental domain of size 1
which is given by some unitary complex numbers (u1, . . . , ud) ∈ Cd, in the sense that for
every j ∈ [1, d],

h(x, x+ tj) = uj ,

where (ti) is the set of translation-vectors, that is here the canonical basis of Rd.
Notice that every cycle has a trivial holonony since complex numbers commute. There-

fore, Assumptions 5.18 and 6.17 do not hold here. Moreover, the function z 7→ P (z)
vanishes at (u−1

1 , . . . , u−1
d ) and therefore, Corollary 4.24 does not hold here.

From Theorem 4.26, the measure µh coincides with µid and the model has the same
law as the uniform spanning forest. In particular, the edge-to-edge correlations decay at
polynomial rate, no connected component has a cycle and all connected components are
in�nite trees.

We may also consider a connection which is 2-periodic in the following sense. Let u be
a unitary complex and let us consider in this subsection the graph G = Z2 endowed with
the following connection

h((x, y), (x+ 1, y)) =
{
u if y = 0 [2]
1 else

, h((x, y), (x, y + 1)) = 1

The graph is (2Z)2-periodic with fundamental domain [−1, 1]2, and the weight func-
tion wh is invariant under translations.

Lemma 6.26. If u /∈ {1,−1}, Assumptions 5.18 and 6.17 hold for the graphG and the weight
function wh− obtained from the connection h.
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Proof. We �rst assume that <(u) ∈ [0, 1[. From invariance under translation, and since
the exhaustion (Gn) satis�es d(0, ∂Gn) ∼ 4n, it is enough to show the existence of α > 0
and β > 0 and a family of loopsC ⊂ C−(Z2) such that for every loop γ ∈ C ,α ≤ w(γ) ≤ 1
and for every x ∈ ∂Gn, there exists a loop γx ∈ C ∩ (Gn+1\(Gn ∪ ∂Gn+1)) such that the
inequality Px(γx) ≥ β holds.

Let us construct a family of loops (γ+
j , γ

−
j )j∈[1,2] such that for every x ∈ ∂Gn, there

exists a loop starting from x which stays in Gn+1\(Gn ∪ ∂Gn+1) and which is a loop
translated from a loop of this family.

We still denote by (ti) the canonical basis of Z2. Let j ∈ [1, 2] and de�ne γ+,−
j by{

γ+
j = (0, tj , 2tj , 2tj + tj[2]+1, tj + tj[2]+1, tj)
γ−j = (0,−tj ,−2tj ,−2tj + tj[2]+1,−tj + tj[2]+1,−tj)

Let x ∈ ∂Gn be a �xed vertex and let j be such that xj = ±n. If xj = n, the loop
de�ned by γx := x+ γ+

j satis�es the assumption and if xj = −n, the loop γx := x+ γ−j
satis�es the assumption.

If (Xn) is a simple random walk starting from x, it makes the loop γx of length 5 with
probability

Px(γx) =
( 1

2d

)5
.

Notice that from invariance under translation, the weight of the loop γx is

wh(γx) = 1−<(u±1).

Denoting by α = min(1−<(u), 1−<(u−1)), Assumption 5.18 is satis�ed.
If u is such that <(u) ∈]− 1, 0], then <(u2),<(u−2) ∈ [0, 1[. Then, the family of loops

de�ned by (x+ γ+,−
j )x∈G,j∈[1,d] with{

γ+
j = (0, tj , 2tj , 3tj , 3tj + tj[2]+1, 2tj + tj[2]+1, tj + tj[2]+1, tj)
γ−j = (0,−tj ,−2tj ,−3tj ,−3tj + tj[2]+1,−2tj + tj[2]+1,−tj + tj[2]+1,−tj)

satisfy Assumption 5.18 with β =
(

1
2d

)7
and α = min(1−<(u2), 1−<(u−2)).

We also check that Assumption 6.17 holds. For every v ∈ Z2, there exists a cycle γv
rooted at v, of length 4 and of holonomy u 6= 1. More precisely, if v = (x, y), γv = v + lr
where lr = ((0, 0), (1, 0), (1, 1), (0, 1), (0, 0)). Notice that if y = 0 [2], γv has holonomy u,
whereas if y = 1 [2], γv has holonomy u−1. For every edge e ∈ E(Zd), |{v|e ∈ γv}| = 2.
Therefore, Assumption 6.17 is satis�ed for m = min(|1− u|, |1− u−1|) and N = 2.

We deduce from Theorem 6.25 that µh almost-surely every �nite admissible family
of unicycles is observed in�nitely many times and in particular, there are almost surely
in�nitely many �nite connected components. Moreover, every connected component with
a cycle is �nite.
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Chapter7
Q-determinantal measures

associated to a unitary
quaternionic connection.

In this chapter, we denote by H the algebra of quaternions which is an associative normed
division algebra over the real numbers. Quaternions are generally represented in the
form a+ bi+ cj + dk, where a, b, c, d are real numbers and 1, i, j, k are the basis vectors.
Recall that the multiplication of quaternions is non commutative but i, j, k are de�ned such
that the following formula for quaternion multiplication hold:

ij = −ji = k, jk = −kj = i, ki = −ik = j, i2 = j2 = k2 = ijk = −1.

Conjugation of quaternions is analogous to conjugation of complex numbers. To
de�ne it, let q = a + bi + cj + dk be a quaternion. Then, the conjugate of q is the
quaternion q∗ = a − bi − cj − dk. The norm over quaternions is de�ned for every
quaternion q = a+ bi+ cj + dk by

|q| =
√
qq∗ =

√
a2 + b2 + c2 + d2.

We denote by U(H) the subgroup of unit quaternions.
Just as complex numbers can be represented as matrices, so can quaternions. There is

an injective homomorphism from H to the matrix ring M(2,C) de�ned as follows. The
quaternion q = a+ bi+ cj + dk can be represented as(

a+ bi c+ di
−c+ di a− bi

)

The norm of a quaternion is the square root of the determinant of the corresponding
matrix. By restriction, this representation yields an isomorphism between the subgroup of
unit quaternions U(H) and their image SU2(C).

In 1922, Moore ([Moo22]) introduced determinants of quaternion Hermitian matrices,
called Q-determinants. The Q-determinant of a self-dual matrix M is de�ned as

Qdet(M) =
∑
σ∈Sn

sgn(σ)
∏
cycles

1
2Tr(w)
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7. Q-determinantal measures associated to a unitary qaternionic connection.

where each permutation σ is written as a product of disjoint cycles and tr(w) is the trace
of the product of matrix entries in that cycle.

In [Meh04], this notion of Q-determinant is extended to self-dual matrices with entries
in GL2(C) and the following formula from [Meh04] allows us to compute Q-determinants
explicitly. If M is an n× n self-dual matrix with entries in GL2(C) and M̂ is the associ-
ated 2n× 2n matrix obtained by replacing each entry with the 2× 2 block of its entries,
then

Qdet(M) = Pf(ZM̂),

the Pfa�an of the antisymmetric matrix ZM̂ where Z is the matrix with 2× 2 diagonal

blocks
(

0 1
−1 0

)
and zeros elsewhere.

Finally, we know (see for instance [KL20c, Proposition 6.4]) that if M is a quaternion
Hermitian matrix, and M̂ is the associated matrix obtained by replacing each quaternionic
entry with the 2× 2 block of its complex entries, then we have the following relation:

Qdet(M)2 = det(M̂).

The Laplacian ∆ associated to a unitary quaternionic connection is a self-dual operator.
According to [Ken11], its Q-determinant has the following expansion:

Qdet ∆ =
∑

F CRSF

∏
γ cycle

(2− Tr(hol(γ)))

where Tr(hol(γ)) is the trace of the holonomy of the cycle γ (see also [Kas15, KL20a] for
alternative proofs).

On a �nite graph denoted by G = (V,E), the model of random CRSF can also be
de�ned for a quaternionic unitary connection. In this case, the model is a Q-determinantal
process. Indeed, the expansion of the Q-determinant of the Laplacian de�nes a natural Q-
determinantal measure µQ on CRSF whose partition function is given by theQ-determinant
of the Laplacian. This measure is studied in [Kas15] and [KL20c] and satis�es some similar
properties to the determinantal measures.

The generating polynomial gµQ of the measure µQ is the square-root of a generating
polynomial associated to a kernel K̂ obtained by replacing unitary quaternions of the
connection by SU2 matrices:

gµQ(z1, . . . , zn) =
√

det(I + (diag(z1, z1, . . . , zn, zn)− I)K̂)e1,...,en .

This kernel K̂ is the kernel of the determinantal linear process, so-called quantum
spanning forest, associated to a rank 2 complex connection, as de�ned in Section 2.3. More
generally, the model of quantum spanning forests associated to a quaternionic unitary
connection on a vector-bundle of larger rank can be de�ned as in [KL20c] and Section 2.3,
and we have a correspondence between quaternionic and complex connections.
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7.1. Correspondence between quaternionic and complex connections

7.1 Correspondence between quaternionic and complex
connections

According to [KL20c], the superposition of two independent samples of this quantum
spanning forests has the same distribution as a quantum spanning forests associated to
a complex unitary connection on a larger rank vector-bundle. This correspondence is
established for �nite graphs in [KL20c, Proposition 6.13], and we extend this result to the
case of in�nite graphs in the following subsection.

7.1.1 Superposition of two samples associated to a quaternionic unitary
connection.

Assume that G is a countably in�nite graph and that (Gn) is an exhaustion of G by �nite
graphs. Recall the following result from [KL20c] which gives a way to prove Theorem 7.2
for in�nite graphs.

Theorem 7.1. [KL20c, Proposition 6.13] For every n ∈ N, if Q(1) and Q(2) are independent
quantum spanning forests associated to a kernel kn on a �nite graph Gn with values in the
quaternionic �eld and Q is the quantum spanning forest associated to kn on Gn with values
in the complex �eld, we have the following equality in law:

(dimCQe)e∈Gn
L= (dimHQ

1
e + dimHQ

2
e)e∈Gn .

Theorem 7.2. If Q(1) and Q(2) are independent quantum spanning forests of kernel k on G
associated to a unitary connection h of rank N with values in the quaternionic �eld and Q
is the quantum spanning forest of kernel k̂ associated to the corresponding connection ĥ of
rank 2N with values in the complex �eld, we have for every (e1, ..., em) ∈ G,

(dimCQe)e∈(e1,...,em)
L= (dimHQ

1
e + dimHQ

2
e)e∈(e1,...,em).

Proof. We give two proofs of this theorem, one which is based on the convergence of kn
to k and on Theorem [KL20c, Proposition 6.13] for �nite graphs and the other one which is
based on a direct computation of Laplace transform, with the same ideas as in the proof
of Theorem [KL20c, Proposition 6.13].

1. Let n large enough such that (e1, ..., em) ∈ Gn. Let µn be the determinantal measure
whose kernel, denoted by kn, is associated to the unitary quaternionic connection h
of rank N and µ̂n be the determinantal measure whose kernel, denoted by k̂n, is
associated to the corresponding unitary complex connection ĥ of rank 2N .
Then, if ((Qn)e)e∈Gn and ((Q1

n)e)e∈Gn , ((Q2
n)e)e∈Gn are determinantal linear pro-

cesses of respective kernels k̂n and (kn
⊗
kn), according to [KL20c, Proposition 6.13],

we have the following equality in law:

(dimC(Qn)e)e∈Gn
L= (dimH(Q1

n)e + dimH(Q2
n)e)e∈Gn ,

and in particular,

(dimC(Qn)e)e∈(e1,...,em)
L= (dimH(Q1

n)e + dimH(Q2
n)e)e∈(e1,...,em).
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7. Q-determinantal measures associated to a unitary qaternionic connection.

Since we have the weak convergence of the determinantal measures associated to kn
and k̂n to the determinantal measure associated to k and k̂, we deduce that

(dimCQe)e∈(e1,...,em)
L= (dimHQ

1
e + dimHQ

2
e)e∈(e1,...,em).

2. For every e ∈ E, let (bei )i≤N be an orthonormal basis a the �ber Fe, for instance the
canonical basis of CN , and let K be the matrix in those bases of the kernel associated
to a connection with values in the quaternionic �eld and K̂ be the matrix in those
bases of the same kernel seen as an operator with values in the complex �eld, which
corresponds to a complex-valued connection of rank 2N .
Let Λ ⊂ E be a �nite subset of edges. Let B = ((bei )i≤N )e∈Λ be the �nite collections
of the bases of the �bers (Fe)e∈Λ over the edges of the �nite set Λ.
We can compute the Laplace transform for the quantum spanning forest with quater-
nionic connexion. If X is a random quantum spanning forest of kernel K adapted
to the �bers (Fe)e∈E . From properties of determinantal or Q-determinantal point
processes, we have for every (w(b))b∈B ,

E

 ∏
b∈X∩B

(1 + w(b))

 = det(1 + wK|B) =
∑
J⊂B

∏
b∈J

w(b)

detKJ
J .

Writing detH instead of Qdet, we have the following relation between the determi-
nant of an operator with values in the quaternionic �eld and the same operator seen
as an operator with values in the complex �eld:

det
C

(1 + wK̂) = det
H

(1 + wK)2.

Then if B̂ = B ×B, since K̂ is the operator K seen as an operator with values in
the complex �eld, we have,

det
C

(1 + wK̂B̂) = det
H

(1 + wKB)2

=
∑

J1,J2⊂B

 ∏
b1∈J1

w(b1)

 ∏
b2∈J2

w(b2)

 det
H
KJ1
J1

det
H
KJ2
J2
.

Since K̂ is also the kernel of a determinantal linear process on a complex vector
bundle of rank 2N , we also have the relation

det
C

(1 + wK̂B̂) =
∑

J1×J2⊂B̂

 ∏
(b1,b2)∈J1×J2

w(b1)w(b2)

 det
C
K̂J1×J2
J1×J2

.

Notice that if J1 ⊂ B, J2 ⊂ B, we have ∏
b1∈J1

w(b1)

 ∏
b2∈J2

w(b2)

 =
∏

(b1,b2)∈J1×J2

w(b1)w(b2).

Therefore, for every J1 ⊂ B, J2 ⊂ B,

det
C
K̂J1×J2
J1×J2

= det
H
KJ1
J1

det
H
KJ2
J2
,
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7.1. Correspondence between quaternionic and complex connections

which means that for every R1, R2 in ⊕e∈ΛFe adapted to the bases ((bei )i≤N )e∈E ,
we have

P(R1 ⊕R2 ⊂ Q) = P(R1 ⊂ Q(1))P(R2 ⊂ Q(2)).

Since it holds for every choice of bases over the �bers of the vector bundle, we have
for every R1, R2 ∈ ⊕e∈ΛFe,

P(R1 ⊕R2 ⊂ Q) = P(R1 ⊂ Q(1))P(R2 ⊂ Q(2)).

In particular,
(dimCQe)e∈Λ

L= (dimHQ
1
e + dimHQ

2
e)e∈Λ,

which concludes the proof.

An immediate consequence of this theorem is that in the case of N = 1, on a in�nite
graph, the superposition of two independent samples of the associated Q-determinantal
probability measure on CRSF gives a random {0, 1, 2}-valued �elds of occupation number
which has the same distribution as the occupation number of a rank 2 quantum spanning
forest with a SU2-connection.

In the following subsection, we justify that Q determinantal measures are negatively
associated just like the determinantal measures. This lemma will be useful to apply results
such as Theorem 6.25 for Q-determinantal measures on CRSF.

7.1.2 Q-determinantal measures are negatively associated.

Let K be the kernel of a Q-determinantal measure µQ and denote by K̂ the operator which
is obtained from K by replacing quaternions by matrices in M2(C).

Lemma 7.3. The measure µQ is negatively associated.

Proof. Recall that if E = {e1, . . . , en}, the generating polynomial of the Q-determinantal
measure µQ, associated to a kernel K is given by

gµQ(z1, . . . , zn) = E

 ∏
i|ei∈F

zi

 = Qdet(I + (diag(z1, . . . , zn)− I)K).

From [BBL09], a measure which is strongly Rayleigh, which means that its generating
polynomial is real stable, is negatively associated. Therefore, we just need to check that
the polynomial gµQ is real stable, that is to say that for every complex numbers z1, . . . , zn
such that the inequality =(zj) > 0 holds for every j ≤ n, we have gµQ(z1, . . . , zn) 6= 0.

According to Q-determinant properties, if z1, . . . , zn are complex numbers such that
the inequality =(zj) > 0 holds for every j ≤ n, then

gµQ(z1, . . . , zn)2 = Q det(I + (diag(z1, . . . , zn)− I)K)2

= det(I + (diag(z1, z1, . . . , zn, zn)− I)K̂),

where K̂ is obtained from K replacing quaternions by matrices in M2(C).

113



7. Q-determinantal measures associated to a unitary qaternionic connection.

The operator K̂ is the kernel of a determinantal linear process which is Strongly
Rayleigh and therefore the function

(z1, ẑ1, . . . , zn, ẑn) 7→ det(I + (diag(z1, ẑ1, . . . , zn, ẑn)− I)K̂)

is a real stable polynomial. Then, for z1, . . . , zn such that the inequality =(zj) > 0 holds
for every j ≤ n, we have

det(I + (diag(z1, z1, . . . , zn, zn)− I)K̂) 6= 0,

and �nally gµQ is strongly Rayleigh.

In the following subsection, we compute the kernel of a quantum spanning forest
associated to a quaternionic connection on a vector bundle of rank N in the case where
the graph and the connection are periodic.

7.1.3 Kernel for a periodic quaternionic unitary connection

Let d ≥ 2. Let us consider in this subsection the graphG = Zd endowed with the following
connection. Let M1, . . . ,Md ∈ UN (H) be unitary matrices with quaternionic values
and (ti) be the canonical basis of Zd. For every j ∈ [1, d], de�ne for every x ∈ Zd,

h(x, x+ tj) = Mj .

For every n, we consider the quaternionic operator of orthogonal projection Kn

on im(d̃h,n) with periodic boundary conditions;

Kn : Ω1(G̃n)→ Ω1(G̃n).

From the correspondence between UN (H) and U2N (C), for every i ∈ {1, . . . , d}, de-
�ne M̂i ∈ U2N (C) as the associated matrix to Mi, and denote by K̂n the operator of
orthogonal projection with complex values, which corresponds to the connection de�ned
by M̂1, . . . , M̂d ∈ U2N (C). Notice that for every edges e, e′, the matrix (K̂n)e,e′ ∈M2N (C)
is the corresponding matrix to (Kn)e,e′ ∈MN (H).

From Lemma 4.15, the sequence of kernels (K̂n)n, associated to a complex periodic
connection (M̂1, . . . , M̂d) on a vector bundle of rank 2N , with periodic boundary con-
ditions, converges weakly in the sense that for every edges e, e′, we have the following
convergence in M2N (C).

(K̂n)e,e′ → K̂e,e′ =
∫
|z1|=1,...,|zd|=1

K̂[e],[e′](z1, ..., zd)zx1−y1
1 ...zxd−ydd

∏ dzi
2iπzi

where K̂(z1, ..., zd) : Ω1(G̃1)→ Ω1(G̃1) is the kernel associated to the connection de�ned
by (z1M̂1, . . . , zdM̂d).

For every edges e, e′, we know that for every n, (Kn)e,e′ ∈MN (H) and therefore, from
the identi�cation between H et M2(C), the following convergence holds in MN (H):

(Kn)e,e′ → Ke,e′ ∈MN (H).

with the identi�cation Ke,e′ 7→ K̂e,e′ between MN (H) et M2N (C).
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7.2. Periodic unitary quaternionic connection of rank 1 on the graph Zd

Therefore, the sequence of kernels Kn with quaternionic values converges towards
a kernel K which is the kernel of the in�nite volume measure and the complex-valued
operator K̂ which corresponds to K has the following integral expression for every couple
of edges e, e′:

K̂e,e′ =
∫
|z1|=1,...,|zd|=1

K̂[e],[e′](z1, ..., zd)zx1−y1
1 ...zxd−ydd

∏ dzi
2iπzi

.

Recall that the norm of a quaternion is given by |q|2 = a2 + b2 + c2 + d2 where the
corresponding matrix to q is

Mq =
(
a+ ib −c− di
c− di a− ib

)
.

Therefore, edge-to-edge correlations decay for a quaternionic unitary connection are given
by decay of coe�cients of the corresponding complex-valued operator. If each entry of the
matrix K̂e,e′ ∈M2N (C) has exponential decay with the distance |e− e′| → ∞, then the
norms of the entries of Ke,e′ ∈MN (H) have exponential decay.

In the next section, we will study the case where N = 1 and the measure associated to
a unitary quaternionic connection has support in CRSF and we will still assume that the
graph and the connection are periodic.

7.2 Periodic unitary quaternionic connection of rank 1 on
the graph Zd

Let d ≥ 2. Let us consider in this subsection the graphG = Zd endowed with the following
connection. Let q1, . . . , qd ∈ U(H) be unitary quaternions and (ti) be the canonical basis
of Zd. For every j ∈ [1, d], de�ne for every x ∈ Zd,

h(x, x+ tj) = qj .

From subsection 7.1.3, if for every i ∈ {1, . . . , d}, we denote by Ai ∈ SU2(C) the
corresponding matrix to the unitary quaternion qi and by K̂ ∈ M2(C) the operator of
orthogonal projection with complex values, which corresponds to the connection de�ned
by A1, ..., Ad ∈ SU2(C), then for every couple of edges e, e′, we have

K̂e,e′ =
∫
|z1|=1,...,|zd|=1

K̂[e],[e′](z1, ..., zd)zx1−y1
1 ...zxd−ydd

∏ dzi
2iπzi

.

where K̂(z1, ..., zd) : Ω1(G̃1) → Ω1(G̃1) is the kernel associated to a U2-valued con-
nection, obtained from the connection multiplied by z1, . . . , zd, that is to say the con-
nection de�ned by (z1A1, . . . , zdAd). Therefore, for every couple of edges e, e′, the ma-
trix ˜̂

K[e],[e′](z1, . . . , zd) is a U2 matrix whose entries are rational fractions in (z1, . . . , zd).
In particular, edge-to-edge decay of correlations are determined by the existence of com-

mon eigenvectors of the matricesA1, . . . , Ad. Since the matricesA1, . . . , Ad are in SU2(C),
we know that there exists a common eigenvector of A1, . . . , Ad if and only if A1, . . . , Ad
commute which is equivalent to the condition that q1, . . . , qd commute in the quater-
nionic �eld. We will distinguish in the following the case where all quaternions q1, . . . , qd
commute and the case where at least two of them do not commute.
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7. Q-determinantal measures associated to a unitary qaternionic connection.

7.2.1 When the quaternions do not commute

Let us assume that there exists k, l such that qk and ql do not commute, that is to say
that qkqlq−1

k q−1
l 6= 1. Then, the matrices A1, . . . , Ad do not have a common eigenvector.

It implies the following result.

Proposition 7.4. If there exist k, l such that qk and ql do not commute, edge-to-edge correla-
tions decrease at exponential rate.

Proof. The kernel of the model associated to the SU2-valued connection A1, . . . , Ad can
be written as

K̂e,e′ =
∫
|z1|=1,...,|zd|=1

K̂[e],[e′](z1, . . . , zd)zx1−y1
1 . . . zxd−ydd

dz1
2iπz1

. . .
dzd

2iπzd

where K̂(z1, ..., zd) : Ω1(G̃1)→ Ω1(G̃1) is the kernel associated to the connection de�ned
by (z1A1, . . . , zdAd). From equation (4.6), there exists a U2 matrix Q whose entries are
Laurent polynomials in (ξ1, . . . , ξd) such that

K̂[e],[e′](z1, . . . , zd) =
(Q(z))[e],[e′]

P (z) .

where P (z1, . . . , zd) is the characteristic polynomial associated to (A1, . . . , Ad).
Since the matrices A1, . . . , Ad do not have a common eigenvector, from Theorem 4.12,

the characteristic polynomial z 7→ P (z) does not vanish on Td, and from Corollary 4.24,
if e, e′ ∈ E(Zd), ||K̂e,e′ || decays at exponential rate when |e− e′| → ∞.

Since a Q-determinantal measure is negatively associated, under Assumption 6.17,
Theorem 6.25 holds for Q-determinantal measures on CRSF. Let us justify that both As-
sumptions 6.17 and 5.18 hold in the case where quaternions do not commute.

Lemma 7.5. If there exist two indices k, l such that qk and ql do not commute, and such that
the inequality <(qkqlq−1

k q−1
l ) ≥ 0 holds, then Assumptions 6.17 and 5.18 hold for the weight

function w− obtained from w.

Proof. Let us construct a family of loops (γ+
j , γ

−
j )j∈[1,d] such that for every vertex x ∈ ∂Gn,

there exists a loop starting from x which stays in Gn+1\(Gn ∪ ∂Gn+1) and which is a loop
translated from a loop of this family.

Let j ∈ [1, d]. De�ne γ+,−
j by{

γ+
j = (0, tj , tj + tk, tj + tk + tl, tj + tl, tj)
γ−j = (0,−tj ,−tj − tk,−tj − tk − tl,−tj − tl,−tj)

Let x ∈ ∂Gn be a �xed vertex and let j be such that xj = ±n. If xj = n, the loop
de�ned by γx := x+ γ+

j satis�es the assumption and if xj = −n, the loop γx := x+ γ−j
satis�es the assumption.

If (Xn) is a simple random walk starting from x, it makes the loop γx of length 5 with
probability

Px(γx) =
( 1

2d

)5
.
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7.2. Periodic unitary quaternionic connection of rank 1 on the graph Zd

Notice that from the invariance under translation, the weight of the loop γx is

wh(γx) = 1−<((qkqlq−1
k q−1

l )±1).

Therefore, if there exist k, l such that qk and ql do not commute, and such that the
inequality <(qkqlq−1

k q−1
l ) ≥ 0 holds, then Assumptions 6.17 and 5.18 hold.

Under those assumptions, every connected component with a cycle is �nite and there
exist in�nitely many �nite connected components, since almost surely every �nite admis-
sible family of unicycles is observed in�nitely many times and in particular every �nite
unicycle of non trivial holonomy is observed in�nitely many times.

In the following subsection, we study the case where all quaternions commute.

7.2.2 Commuting quaternions and uniform spanning forest

Assume with the same notations as in the previous subsection that for every k, l,

qkql = qlqk.

Theorem 7.6. Under this assumption, the model has the same law as the uniform spanning
forest of [BLPS01]. In particular, some speci�c edge-to-edge correlations decrease at polynomial
rate and all connected components are in�nite trees.

Proof. Recall that the generating polynomial of the model of rank 1 with a unitary quater-
nionic connection is the square-root of the generating polynomial of the model associated
to the complex connection of rank 2 obtained by replacing unitary quaternions of the
connection by SU2 matrices.

Using the correspondence between U(H) and SU2, under the assumption that the
quaternions qj commute, the matrices in SU2 which are associated to the quaternions qj
can be all diagonalized in a �xed orthonormal basis.

qj ↔Mqj

(
uj 0
0 ūj

)

Then, if we denote by K̂ the kernel obtained by replacing unitary quaternions by SU2
matrices, then, for every z ∈ Td, for every couple of edges e, e′, the matrix denoted
by K̂[e],[e′](z1, . . . , zd) is, in the �xed orthonormal basis, a diagonal matrix whose entries
are equal to the quantities obtained for the complex-valued connections de�ned by unitary
complex numbers (z1u1, . . . , zdud) and (z1ū1, . . . , zdūd).

Therefore, the kernel obtained by replacing unitary quaternions by SU2 matrices can
be written as

K̂e,e′ =
(
uy1−x1

1 . . . uyd−xdd Kid
e,e′ 0

0 ūy1−x1
1 . . . ūyd−xdd Kid

e,e′

)
.

Therefore, the kernel of the model is

K̂ =
(
U∗ 0
0 U

)(
Kid 0

0 Kid

)(
U 0
0 U∗

)
,
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7. Q-determinantal measures associated to a unitary qaternionic connection.

where U is a diagonal matrix in U2 and Kid is the kernel associated to a trivial connection,
that is the kernel of the model of uniform spanning forests, as de�ned in [BP93, BLPS01],
whose integral expression, obtained by [BP93], is recalled in Equation (4.1).

Then, the generating polynomial of the model of rank 1 with a unitary quaternionic
connection q1, . . . , qd is given by

gµQ(z1, . . . , zn) =
√

det(I + (diag(z1, z1, . . . , zn, zn)− I)K̂)e1,...,en
= det(I + (diag(z1, . . . , zn)− I)Kid

e1,...,en)
= gµid(z1, . . . , zn)

which concludes the proof.
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Conclusion

In this thesis, we presented two families of Boltzmann probability measures on cycle-
rooted spanning forests of �nite graphs associated to weight functions on cycles which are
symmetric under orientation reversal.

The �rst one, which is the family of probability measures associated to a complex
or quaternionic unitary connection of rank 1 of the graph, is a family of determinantal
measures whereas the second one, which is the family of probability measures associated
to a weight function smaller than 1 is a family of measures which are sampled by a Wilson
type algorithm. We justi�ed that for both families, under some assumptions, sequences of
probability measures on cycle-rooted spanning forests of �nite growing subgraphs converge
towards a probability measure on subgraphs of an in�nite graph and described properties
of random con�gurations under this limit measure.

We proved that under the Wilson algorithm measure in in�nite volume, under an
assumption of minoration satis�ed by the weight function, all connected components are
�nite. For determinantal measures in in�nite volume, we proved under similar assumptions
that every connected component is �nite if and only if it has a cycle and that there are
almost surely in�nitely many unicycles. In particular, the following question naturally
arises:

Question 1. Under a determinantal measure associated to a rank 1 connection such that there
exists a family of cycles, invariant under translations, all of whose cycles have non-trivial
holonomies, can we observe with positive probability an in�nite tree?

In other words, could we observe in in�nite volume a component without any cycle
which arises from growing cycles? When the connection h is such that the residual
space dh(H) is null, we know that edge-to-edge correlations decrease at exponential rate
and therefore we believe that every connected component is �nite.

Nevertheless, Kenyon introduced in [Ken19, Sun16] some Gibbs determinantal measures
on spanning forests of an in�nite planar graph which are determinantal associated to kernels
which are not self-adjoint operators. Under those measures, all connected components are
in�nite almost surely, even if correlations can decrease at exponential rate.

More precisely, those measures are de�ned as limits of determinantal measures, as-
sociated to a non unitary connection, on growing �nite planar graphs which are seen as
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graphs on growing tori, such that the only cycles whose holonomies are non trivial are
cycles whose homotopy classes are non trivial, that are cycles winding around the torus.
Under those measures, we observe almost surely large cycles winding around the torus
which give rise to bi-in�nite connected components which are characterized by their slopes.
Intuitively, we believe that if a sequence of measures on cycle-rooted spanning forests on
growing �nite graphs converges towards a measure on subgraphs of an in�nite graph, the
only in�nite connected components that we could observe are bi-in�nite trees which arise
from the limit of growing cycles in both directions. Following this idea, we naturally ask
the following question:

Question 2. If an in�nite tree is observed, is it a bi-in�nite tree?

However, this intuition is not always correct. Indeed, as we mentioned in Chapter 6,
the limit of the sequence of determinantal measures on cycle-rooted spanning forests
associated to a periodic unitary complex connection on an exhaustion of the lattice Zd is
the uniform spanning forest measure on Zd studied by [BP93, LP16, BLPS01], under which
every connected component is almost surely a tree with only one end.

Furthermore, a theorem from Lyons ([Lyo03, Theorem 7.2]) which holds for every
determinantal point process implies that for a random cycle-rooted spanning forest F
distributed according to the determinantal measure µh, we have µh-almost surely,

Ω1
`2(F) = Π`2(F)(Fh,`2(G))

`2

=Fh,`2(F).

Let us assume for a while that F contains a bi-in�nite tree T and an edge e = (x, y)
such that if we remove e then F is the disjoint union of two in�nite trees Tx and Ty . The
theorem of Lyons mentioned above states that almost surely, every 1-form θ ∈ Ω1

`2(F) on F
can be approximated in `2-norm by derivatives (dF

hfn) of functions (fn) with compact
support. We believe that choosing θ to be the indicator function of the edge e, the sequence
of functions (fn) is forced to converge towards a function which is constant non zero either
on Tx or Ty . Nevertheless, even if the sequence (fn) is a sequence of 0-forms with compact
support, (fn) does not necessarily converge towards a 0-form in `2 and unfortunately we
cannot �nd a contradiction.

The proof that every connected component is �nite under the Wilson measure relies on
algorithms of loop-erased random walks. In the same way, to prove that every connected
component with a cycle is �nite, we used an algorithm of loop-erased random walks
conditional on cycles of weights larger than 1, on a �nite graph. Unfortunately, this
algorithm does not hold on in�nite graphs since we cannot consider the measure conditional
on the in�nite set of cycles of weights larger than 1. A natural question that we can ask is
the following:

Question 3. Could we construct an algorithm to sample determinantal measures from loop-
erased random walks?

This question is also studied by [FB22] who give an algorithm of loop-erased random
walks to sample cycle-rooted spanning forests associated to the weight function min(1, w)
and approximate determinantal measures associated to a magnetic Laplacian from measures
associated to this weight function. Nevertheless, this method does not seem enough sharp
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to show the �niteness of connected components under the determinantal measures in our
case.

We emphasize that the Wilson measures on cycle-rooted spanning forests are not only
a tool to study con�gurations under determinantal measures but measures of relevant
interest to sample randomly a cycle-rooted spanning forests according to a loop-erased
random walks algorithm. From that point of view, open questions about those measures
seem to be worth paying attention to. In particular, we ask the following question:

Question 4. Can we compute edge-to-edge correlations exactly and are the Wilson algorithm
measures negatively correlated under some assumptions?

We proved that under some assumptions, correlations between edges which are far
enough appart are exponentially small. We have not succeeded yet in computing exactly
edge-to-edge correlations, but it would be worth working on it further.

We also emphasize that one of the goal of the thesis is to study more general spanning
forests in rank N , called quantum spanning forests, which correspond to a superposition
of random cycle-rooted spanning forests, whose joint law is determinantal. We proved in
Chapter 4 that under the determinantal measure associated to a Zd-periodic connection on
the lattice Zd, de�ned by d unitary commutating matrices of size N , the joint law is the
superposition of N independent uniform spanning forests. We also proved in Chapter 7
that the superposition of two independent samples of the Q-determinantal measure on
cycle-rooted spanning forests has the same law as the occupation number of a rank 2
quantum spanning forest with a SU2-connection.

More generally, the superposition of N independent samples of a probability mea-
sure on CRSF, non necessarily determinantal, gives a random {1, . . . , N}-valued �elds
of occupation number. Another natural question about the Wilson algorithm measure
on cycle-rooted spanning forests is to understand the law of the superposition of several
samples of this measure.

Question 5. What is the law of the number of occupation of a superposition of independent
random con�gurations distributed according to the Wilson measure? Can we observe a
percolation phase transition according to the value of the cycle weights?

The law of a superposition of cycle-rooted spanning forests is better understood in
the case of determinantal measures associated to a unitary connection on a vector bundle
of rank N over a graph, but even in the determinantal case, several questions of relevant
interest remain open. As mentioned above, in the case of rank 1, Kenyon [Ken19, Sun16]
introduced Gibbs determinantal measures associated to non-unitary connections of rank
1 over a planar periodic graph, which gave rise to random spanning forests, all of whose
connected components are bi-in�nite trees with slopes.

Those determinantal measures are in correspondence with dimer measures on planar
graphs and their kernel have integral expression involving a characteristic polynomial.
Di�erent phases can be observed, depending on the rate of decay of edge-to-edge correla-
tions and the corresponding phase diagram involves the spectral curve, that is the zero set
of the characteristic polynomial. In the case of a unitary connections on a vector bundle
of rank N over a periodic graph, we observed two phases of edge-to-edge correlations
decay depending on the existence of zeros of the polynomial in the unit torus, that are
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zeros whose coordinates have unit modulus. The following question naturally arises to go
further in the study of the phase diagram of the model of quantum spanning forests.

Question 6. Could we de�ne measures associated to a non-unitary connection for arbitrary
rank N ≥ 2? Would we observe a phase diagram involving the zeros of the characteristic
polynomial whose coordinates have modulus di�erent than 1?

The construction of the determinantal measures associated to a non-unitary connec-
tion of rank 1 in [Ken19, Sun16] relies on combinatorial formulas for the vector-bundle
Laplacian that hold in rank 1 and in a particular case of rank 2, which is the case where the
matrices are of unit determinant ([For93, Ken11, KL20a]). Unfortunately, even in rank 2,
the combinatorial expression of the Laplacian determinant is not su�cient to extend the
construction. Indeed, this construction relies on Fourier decompositions, as in Chapter 4,
which involve multiplications of matrices by scalars, and combinatorial formulas do not
hold anymore for those new matrices.

As mentioned above, in the case of a unitary periodic connection of rankN , the edge-to-
edge correlations decay depends on the existence of zeros of the characteristic polynomial
in the unit torus. We proved in Chapter 4 that this condition is equivalent to the existence of
common eigenvectors of the unitary matrices. In particular, in the case of a special unitary
periodic connection of rank 2, or equivalently in the case of a quaternionic connection of
rank 1, as studied in Chapter 7, the edge-to-edge correlations rate of decay depends on
the commutation of the parameters. We observe therefore a phase transition when the
commutator of quaternions tends to 0. A natural quantity which characterizes a phase
transition is the free energy of the model and its degree of non-analyticity is called the
order of the phase transition.

Question 7. What is the degree of non analyticity of the free-energy when the commutator
of quaternionic parameters, de�ning a periodic unitary quaternionic connection, tends to 0?

We tried to compute the free-energy of the model for some particular unitary quater-
nions, expressed as matrices in SU2 but we have not obtained yet an exact asymptotic
expansion of the free energy and its degree of non-analyticity when the commutator tends
to 0.

On speci�c graphs called isoradial graphs, authors of [BdTR17] study a Z-invariant
model (see [BD78]) of rooted spanning forests de�ned by a determinantal probability
measure associated to a massive Laplacian. They compute the order of a phase transition,
that is the degree of non-analyticity of the free-energy, when an elliptic parameter which
de�nes the probability measure tends to 0. Those computations rely on local formulas for
the Green function and the kernel of the model, which hold thanks to the Z-invariance. It
raises the following question:

Question 8. Do there exist unitary connections such that the Z-invariance property holds for
the associated determinantal measures? For such connections, can we compute local formulas
for the kernels and deduce the order of the phase transition?

Notice that it makes sense to look for such connections since the model of rooted
spanning forests associated to a massive Laplacian can be interpreted as a particular case
of the model of cycle-rooted spanning forests associated to a unitary connection, by adding
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on every vertex a small self-loop whose holonomy is equal to the mass of the vertex. We
have not succeeded yet in computing connections which satisfy the Z-invariance property
but we believe that this question is worth working on further.

Other questions of relevant interest can be raised, in particular in the case of large N .
As mentioned in Chapter 2, a relevant quantity to understand quantum spanning forests is
the trace, that is the set of dimensions of random subspaces of the �bers, whose marginal
expectations and variances are given by the eigenvalues of the kernel. When the measure
on quantum spanning forests is associated to a periodic unitary connection of rank N , this
kernel has an integral expression involving unitary matrices of sizeN . Since the asymptotic
behavior of eigenvalues of random matrices of large size is well understood, the following
question naturally arises:

Question 9. What is the asymptotic behavior when N → ∞ of the trace of a quantum
spanning forest distributed according to the determinantal probability measure associated to
a random periodic unitary connection on a vector-bundle of size N over an in�nite periodic
graph, depending on the probability law on the set of unitary matrices UN (C)?

We also believe that the model of quantum spanning forests could be related to other
statistical physics models such as loop soups [LW03], Gaussian free �eld [LW16, WP20], co-
variant �elds [KL20b], matrix valued �elds [Lup22], Fortuin-Kasteleyn percolation [FK72]
for q < 1, also called the random cluster model which is believed to be negatively corre-
lated (see [GW04]), in particular in the limit case q → 0, and a recently studied model of
random forests, so-called arboreal gas [BCHS21, BCH21, HH23]), and exploring precise
links between those models seems to be worth paying attention to.
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