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Chapter 1

Introduction

The ever-increasing number of users and applications on the Internet sets many challenges
for network operators and engineers in order to keep up with the high traffic demands.
Indeed, not only the number of people using the Internet has grown abruptly, going from
7% of the global population in 2000 to 60% today [1], but so did the number of connected
devices per capita, going from 2.4 in 2018 to 3.6 currently [2]. In this scenario, making
efficient use of the resources available has become imperative. In this thesis, we develop
optimization methods to improve the utilization of the network in two specific applications
enabled by the Internet: network edge caching and distributed model training.

Network edge caching is a recent technique that proposes to store at the network edge
copies of contents that have a high probability of being requested. The motivation lies on
the fact that bringing popular content geographically close to the end-users can reduce
latency and improve the overall user experience. Traditionally, when a user requests a
web page or application, the request is sent to a remote server that stores the data. The
server retrieves the requested data and sends it back to the user. This process can be
slow and can lead to latency and congestion issues, especially when multiple users are
accessing the same data simultaneously.

To address this issue, network operators can deploy edge caching servers at strategic
locations within their networks, close to the end-users. During off-peak hours, frequently
accessed content (images, audio, videos) is moved to these servers so that when a user
issues a request, the content is retrieved from the nearest edge caching server containing
the content. This allows the request to be satisfied in a short time and high quality
independently of the traffic conditions of the backhaul network.

On the other hand, distributed model training, or more generally, distributed optimiza-
tion, is a method for training large-scale machine learning models using multiple com-
putational agents that work together to find the optimal parameters of the model. In
this thesis, we consider settings where the data at each agent are different, and agents
interleave local computation steps and communication steps (either with other agents
or with a central coordinator) to train a model that takes into account the data of all
agents. To achieve this, agents may communicate optimization values (parameters, gra-
dients) but not the data. Such a setting may be found in a computing cluster, where
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CHAPTER 1. INTRODUCTION

data can be distributed among the servers either to speed up the training process by
parallelization, or due to storage limitations at each individual server. Another typical
use case is collaborative model training at the network edge, where multiple entities are
interested in the same model but do not want to share their data due to privacy reasons.
Examples are mobile users who want to have better-performing applications (e.g. next-
word keyboard prediction [3]), health centers that are eager to collaborate to train more
accurate models [4–6], or industrial applications that require potentially sensitive client
data [7–9].

Here we consider two such distributed training settings: the decentralized and the fed-
erated. In the decentralized setting, agents are interconnected in a network and com-
municate their optimization values only to their direct neighbors. In the federated, the
agents communicate with a central server that regularly averages the most recent values
of (usually a subset of) the agents and broadcasts the result to all of them. Naturally, the
success of such techniques relies on the frequent communication of the agents between
them or with the server. Furthermore, in order to reach a certain accuracy, both the
number of communication rounds and the amount of data transmitted at each round
increase with the complexity of the model (i.e., with its number of parameters). There
is thus great interest in designing distributed optimization algorithms that achieve state-
of-the-art performance at lower communication costs.

In this thesis, we propose algorithms that improve the performance of existing methods
for popular content delivery and distributed machine learning by making a better uti-
lization of the network resources. In Chapter 2, we propose an algorithm that exploits
recommendation engines to design jointly the contents cached at the network edge and
the recommendations shown to the user. This algorithm achieves a higher fraction of
requests served by the cache than its competitors and thus requires less communication
with the remote server. In Chapter 3, we design an asynchronous algorithm for decen-
tralized optimization that requires minimum coordination between the agents and thus
partially mitigates the problem of leaving fast nodes idle while slow nodes complete their
updates. We then show that, if the agents are allowed to increase the amount of data
they transmit by a factor equal to their node degree, the convergence of this algorithm
can potentially be made much faster by letting the agents decide their communication
scheme according to the gains provided by communicating with each of their neighbors.
Finally, in Chapter 4 we propose an algorithm that exploits inter-agent communication
within the classical federated learning setup (where, in principle, agents communicate
only with the server), and which can achieve the same convergence speed as the classical
setup with much fewer communication rounds with the server, which constitute the main
bottleneck in this setting.

In the next section, we give a more detailed overview of the contents of each of these
chapters with an emphasis on our technical contributions in each case.
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1.1. OUTLINE OF THE THESIS AND CONTRIBUTIONS

1.1 Outline of the thesis and contributions

1.1.1 Chapter 2: Joint design of caching and recommendations

Background

Caching popular content at the network edge can benefit both the network operator and
the users by alleviating the backhaul traffic and reducing access latency, respectively.
A successful caching system is one that satisfies as many requests as possible with the
contents stored at the network edge, so that the amount of data retrieved from the
remote server is minimized. The fraction of the total requests satisfied with the edge
cache is called cache hit ratio (CHR), and is a classical measure of the quality of a
caching system. Most of the caching literature [10–14] proposes algorithms that choose
a few items to maximize the CHR under the constraint that their total size does not
exceed the capacity of the cache, whose size is orders of magnitude smaller than that of
the complete content catalog.

Recently, major content providers like Netflix and Google started partnering with In-
ternet service providers to implement their own content distribution network solutions
inside the network [15, 16]. This has opened a new possibility for the design of both
the content to cache and the recommendations for the user, since now the same entity
can control both. This seems to be a great opportunity to improve the performance of
caching systems, since it is reported that up to 80% of requests on popular content distri-
bution platforms (Netflix, Spotify, YouTube) come from user recommendations [17, 18].
Overall, this suggests that designing caching and recommendation policies separately is
suboptimal: caching could benefit by knowing the recommender’s actions in advance, and
recommendation algorithms could try to favor cached content (among equally interesting
options) to improve network performance and user experience.

In this chapter, we tackle the problem of optimally making caching and recommendation
decisions jointly, in the context of the recently introduced “soft cache hits” [19] setup.
A soft hit occurs when the content requested by the user is not found in the cache but
the user accepts an alternative content that is offered by the system and is in the cache.
This is in contrast with the standard direct hits, which occur when the content requested
is in the cache. Previous work considering soft cache hits assumed that any number
of contents stored in the cache may be offered as substitutes, and potentially the whole
content of the cache. This is an unrealistic assumption, since although the cache capacity
is much smaller than the total size of the catalog, it can still contain many more contents
than what is practical to display to a user when browsing. Instead, here we consider that
the number of substitute contents offered, i.e. the recommendations, is constrained and
much smaller than the capacity of the cache. As we discuss next, this additional constraint
complicates significantly the problem, and this increased complexity constitutes the base
for our contributions.
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CHAPTER 1. INTRODUCTION

Technical contributions

We start by showing that the problem of designing jointly the caching and recommen-
dation decisions is NP-hard. This is a direct consequence of the fact that the original
soft cache hits framework [19], where only the caching variables are considered, is already
NP-hard by reduction to the maximum coverage problem with weighted elements.

However, we show that the joint caching and recommendation problem can be decom-
posed into an inner (recommendation-related) problem and an outer (caching-related)
problem. The inner problem can be solved to optimality in polynomial time, i.e. for
a given set of caching decisions, we can find the optimal recommendations for each po-
tential request efficiently. Furthermore, we show that once decomposed, the complete
problem is submodular in the caching decisions. This allows us to define an iterative
greedy algorithm that runs in polynomial time and has approximation guarantees to the
optimal solution.

We test the performance of the proposed algorithm in numerical simulations using both
synthetic and real-world datasets, and demonstrate that it outperforms the competitors
in all cases. Furthermore, for the real-world datasets considered, we observe a high
variability in (i) the fraction of CHR accrued through direct hits versus soft hits, (ii)
the performance ranking of the algorithms considered (although our proposal always
ranks first), and (iii) the magnitude of CHR by which our algorithm outperforms the
competitors.

These observations motivate us to investigate further what features of the datasets and
the system setup affect the performance of caching and recommendation policies, and how
they do so. For this, we model the similarity relations that make some contents good
substitutes for some others as a graph (denoted content graph), where each content is a
node and related contents are linked by a weighted edge. We then consider a set of features
representative of the graph structure (degree skewness, clustering coefficient, Newman’s
modularity) and of the caching system design (cache size, number of recommendations)
and study how these features impact on the absolute and relative performance of (i) our
proposed caching and recommendation algorithm and (ii) a simple baseline that caches
the most popular contents and chooses the recommendations a posteriori.

Our results confirm that features such as the degree distribution and the clustering co-
efficient of the graph are crucial to decide whether our proposed algorithm will perform
significantly better than the simple baseline. Furthermore, the impact of some features
is tightly related to the values of others, e.g. community structure and cache size, or
popularity skewness and number of recommendations.

Motivated by these observations, we next address the question of whether these features
related to the content graph and system setup could be used to predict the gains attainable
by each of the tested algorithms. Our goal with this experiment is to test whether we
could train a predictor to decide, based on these features, whether significant CHR gains
could be obtained by our joint caching and recommendation algorithm compared to a
simple baseline. Indeed, even polynomial algorithms can be prohibitively slow for large
catalog sizes. Therefore, having such a classifier could help the system operators decide
whether it is worth running a relatively complex algorithm for the joint caching and

4



1.1. OUTLINE OF THE THESIS AND CONTRIBUTIONS

recommendation design, or a simple baseline will do just as well. Our results show that
with careful training of the classifier and a sufficiently representative dataset it is indeed
possible to get good predictions.

The contributions of this chapter appear in:

• Costantini, M., Spyropoulos, T., Giannakas, T., & Sermpezis, P, “Approximation guar-
antees for the joint optimization of caching and recommendation,” in 2020 IEEE Inter-
national Conference on Communications (ICC) (pp. 1-7).

• Costantini, M., & Spyropoulos, T., “Impact of popular content relational structure on
joint caching and recommendation policies,” in 2020 18th International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOPT) (pp.
1-8).

1.1.2 Chapter 3: Local Gauss-Southwell rule for decentralized
optimization

Background

Many timely applications require solving optimization problems over a network where
nodes can only communicate with their direct neighbors. This may be due to the need of
distributing storage and computation loads (e.g. training large machine learning models
[20]), or to avoid transferring data that is naturally collected in a decentralized manner,
either due to the communication costs or to privacy reasons (e.g. sensor networks [21],
edge computing [22], and precision medicine [23]).

We consider a setting where nodes interleave local computation steps and communication
steps with their direct neighbors to collaboratively solve an optimization problem given
by

minimize
θ∈Rd

n∑
i=1

fi(θ), (1.1)

where n is the number of nodes, each local function fi is known only by node i, and
nodes can exchange optimization values (parameters, gradients) but not the local func-
tions themselves. This setting was first introduced in [24] and it has been extensively
studied ever since. Contributions in this field include the design of algorithms with
faster convergence guarantees [25–28], with reduced communication overhead [29, 30],
or tailored to specific settings such as directed-communication [31, 32] or time-changing
networks [33,34], to name only a few.

In this setting, most works consider synchronous updates where all nodes must complete
their local computations and have exchanged their values with their neighbors before a
new iteration can take place [26–29, 33–38]. However, synchronizing the updates of all
nodes can entail a far from optimal use of the resources, since (i) the control messages
needed to coordinate the updates increase the congestion of the network, and (ii) if nodes
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have different computing speeds (known as systems heterogeneity) fast nodes may stay
idle for large periods of time waiting for the slow nodes (known as stragglers) before
starting a new update.

In order to reduce such problems, much of the recent literature has focused on the
analysis and design of asynchronous decentralized optimization algorithms where nodes
can activate anytime and contact a single neighbor to complete an iteration together
[25, 31, 39–42]. However, most of these works assume that when a node activates, it
simply selects the neighbor to contact randomly, based on a predefined probability dis-
tribution. This approach overlooks the possibility of letting nodes choose the neighbor
to contact taking into account the optimization landscape at the time of activation.

In contrast, in this chapter we propose to exploit the extra degree of freedom of asyn-
chronous algorithms given by the neighbor choice to speed up convergence. In particular,
we propose an algorithm where at each iteration the agents select the neighbor yielding
the maximum suboptimality reduction. While this selection requires increasing the num-
ber of neighbors queried each time a node activates, we show remarkable gains in the
progress made at each iteration. This indicates that, in settings where the nodes and
the communication links are not working at capacity and their load can be increased,
our algorithm can achieve the target accuracy in less wall-clock time than its random
neighbor sampling counterpart.

Technical contributions

We consider an asynchronous decentralized setting where nodes can activate at any time
and choose a neighbor to complete an iteration. To design algorithms that can run under
such scheme, we depart from a reformulation of (1.1) as the constrained problem:

minimize
θ1,...,θn∈Rd

n∑
i=1

fi(θi)

s.t. θi = θj ∀ (i, j) ≡ ℓ ∈ E ,
(1.2)

where E is the set of communication links (with size |E| = E) and ℓ ≡ (i, j) indicates
that ℓ ∈ E connects nodes i and j. We propose to find the solution to (1.2) by solving
its dual problem, which allows us to define an asynchronous algorithm closely related to
coordinate descent methods, as explained next.

When going to the dual problem, instead of having one variable θi, i ∈ [n] per node (cf.
eq. (1.2)) we have one variable λℓ, ℓ ∈ [E] per edge. Therefore, given our asynchronous
communication scheme, we define an algorithm where every time a node i activates
and contacts a neighbor j, both nodes perform a gradient update to the dual variable
λℓ, ℓ ≡ (i, j) corresponding to the edge that connects them. We show that the two nodes
involved have all the information necessary to perform this update. Therefore, many
pairs of nodes can simultaneously update their shared dual variables independently of
what is happening in the rest of the network.

We then remark that such algorithm can be seen as a coordinate descent (CD) [43,44] algo-

6



1.1. OUTLINE OF THE THESIS AND CONTRIBUTIONS

rithm: indeed, if we concatenate the dual variables such that λ = [λ1, . . . , λE] ∈ REd×1

is our dual parameter vector, the updates described above correspond to a CD algorithm
that updates a single (vector, also called block) coordinate λℓ ∈ Rd at a time. This insight
allows us to leverage a few results of classical CD theory and define two versions of the
decentalized asynchronous protocol defined above: one based on random (uniform) sam-
pling [43] for the coordinate (or in our case, neighbor) selection, and another one which
instead applies the Gauss-Southwell rule [45,46], which selects the coordinate (neighbor)
that provides the maximum suboptimality reduction at that time.

There is, however, a crucial difference between our algorithm and standard (single-
machine) CD methods: while in the latter any of the coordinates may be updated, in our
algorithm only a small subset of coordinates is accessible at each step, which consists of
the dual variables associated with the edges connected to the node activated. We call this
generic family of algorithms set-wise coordinate descent algorithms (Sx-CD), and denote
the two versions proposed above for our decentralized asynchronous setting set-wise uni-
form CD (SU-CD) and set-wise Gauss-Southwell CD (SGS-CD). We show that, despite
the similarities with classical CD, proving linear convergence of the Sx-CD algorithms
for smooth and strongly convex fi is not straightforward. Indeed, the analysis is greatly
hindered by the fact that (i) even if the node functions fi are smooth and strongly con-
vex, the dual function in general is not, and that (ii) the sets of coordinates accessible by
each node are overlapping, since each edge is connected to two nodes, and thus its dual
variable appears in two such sets.

Despite these difficulties, by means of carefully defining the norms in which the functions’
strong convexity is measured in each case, we prove linear convergence rates for both SU-
CD and SGS-CD. In particular, we show that in terms of number of iterations SGS-CD
can be up to Nmax times faster than SU-CD, where Nmax is the size of the largest set of
coordinates (or in the decentralized case, the largest degree in the network). These algo-
rithms are not only suitable for (dual) decentralized optimization, but also for (primal)
parallel distributed optimization with parameter server, for which we show that the Nmax

speedup of SGS-CD with respect to SU-CD can be achieved.

Inspired once again by results in CD literature, we further propose two SxCD algorithms
that exploit the knowledge of the per-coordinate Lipschitz constants of the dual function,
each of them based on SU-CD and SGS-CD, and called SL-CD and SGSL-CD respectively.
We prove linear rates also for these algorithms, and we show how the convergence in terms
of the number of iterations of all four Sx-CD versions compare: (i) as SGS-CD, also SL-
CD is always equal or faster than SU-CD, (ii) we cannot decide which between SL-CD
and SGS-CD may be faster, but (iii) SGSL-CD is the fastest of them all. As with SU-
CD and SGS-CD, proving the rates of the Lipschitz-informed versions required defining
carefully the norms in which to measure strong convexity and also keeping the bounds
tight for the comparison between algorithms.

Additionally, we propose an algorithm based on backtracking [43] to estimate the per-
coordinate Lipschitz constants when they are not known a priori. We show that the
versions of SL-CD and SGSL-CD using this algorithm, called SeL-CD and SGSeL-CD
respectively, can achieve a remarkable performance in terms of number of iterations, at
the cost of an increased amount of communication and computation.
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We verify in numerical simulations that the relative performance of the algorithms (in
terms of the number of iterations) agrees with our theoretical results. We also ana-
lyze their convergence in terms of the number of vectors in Rd transmitted through the
network, which provides additional insight: under this view, the performance of the al-
gorithms using the GS rule is much closer to those performing random sampling, and
the latter actually take the lead place as the network becomes more connected. This
is expectable, since the communication complexity of SGS-CD and SGSL-CD grows di-
rectly with the degree of the nodes, while that of SU-CD and SL-CD remains unchanged.
However, we remark that neither the convergence of the algorithms in terms of the num-
ber of iterations nor of the number of vectors transmitted gives a complete picture to
decide which algorithm will be faster in terms of wall-clock time: since the algorithms are
asynchronous and can modify multiple coordinates simultaneously, in a real setup many
iterations and vector transmissions will occur at the same time. We expect therefore that
for networks that are not too densely connected, if the system is not working at capacity
and the extra computation and communication costs of the Sx-CD algorithms using the
GS rule can be accommodated without exceeding the capacity, these will converge faster
in terms of wall-clock time than their randomized variants.

The contributions of this chapter appear in:

• Costantini, M., Liakopoulos, N., Mertikopoulos, P., & Spyropoulos, T., “Pick your
Neighbor: Local Gauss-Southwell Rule for Fast Asynchronous Decentralized Optimiza-
tion,” in 2022 IEEE 61st Conference on Decision and Control (CDC) (pp. 1602-1609).
IEEE.

• Costantini, M., Liakopoulos, N., Mertikopoulos, P., & Spyropoulos, T., “Set-wise Co-
ordinate Descent for Dual Asynchronous Decentralized Optimization,” to be submitted
to IEEE Transactions on Automatic Control.

1.1.3 Chapter 4: Peer-to-peer aided federated learning

Background

Federated learning (FL) is a recent machine learning framework that allows multiple
agents, each of them with their own dataset, to train a model collaboratively without
sharing their data. While this is similar to other distributed settings such as decentral-
ized optimization or parallel distributed computing, the FL setting has three distinctive
characteristics: (i) high data heterogeneity among the agents (both very non-iid and with
large differences in dataset size), (ii) a massive number of participating agents, and (iii)
limited communication due to unreliable connections.

Given these constraints, the authors of [47] proposed FederatedAveraging (FedAvg), the
first and currently most popular FL algorithm, whose steps consist on the following:

1. The agents run H epochs of mini-batch stochastic gradient descent.
2. The server selects K agents at random and computes the weighted average of their
current parameters, where the weight is proportional to the amount of data of each
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selected agent.
3. The server broadcasts the new value to all agents, who set this as their current pa-
rameter value. The process then repeats from step 1.

Despite the excellent performance of FedAvg in simulations, the authors of [47] did not
provide a theoretical analysis of the algorithm in the paper. This set off the distributed
learning community to try to confer convergence guarantees to FedAvg, sometimes with
slight modifications of the algorithm [48–53]. Indeed, FedAvg may not even converge
when the number of stragglers and/or the data heterogeneity are high [48].

A fundamental trade-off in FL (as in most distributed optimization algorithms) is com-
munication cost versus convergence speed: if the communication rounds with the server
become more spaced in time (i.e., if H increases), convergence slows down [50, 54]. In
this chapter, we propose an algorithm that exploits inter-agent communication to allow
for more infrequent server communication rounds (i.e., larger H) without slowing down
convergence, or equivalently, we show that for a fixed H, inter-agent communication leads
to faster convergence. Moreover, we show that the magnitude of this speedup is directly
related to the connectivity of the network. Our proposal can be thought of as redistribut-
ing the communication load in the FL setting by allocating a larger part of the spectrum
to inter-agent communication and a smaller part to server communication rounds, which
can now happen more infrequently without hurting convergence.

Technical contributions

We consider an FL setting where the agents can communicate with the server and be-
tween them. We assume that the agent-server communication is constrained by the very
large number of devices and the limited bandwidth, which results in infrequent server
communication rounds and partial device participation (i.e., only a few devices are sam-
pled by the server in each server communication round). On the other hand, since (i)
each agent is expected to have much fewer neighbors than the total number of agents,
and (ii) short-range inter-agent communications allow for spectrum reuse, agents can
communicate much more often between them than with the server [55,56].

In this setting, we propose to interleave neighbor communication and parameter averaging
in between the stochastic gradient descent (SGD) local updates of FedAvg. In other
words, after every (mini-batch) SGD step taken at an agent, our algorithm lets the agent
exchange its new parameter with its neighbors and perform a weighted average of all the
received values and its own before the next SGD step. We additionally assume that due
to fluctuations of the communication channel, the agents may communicate with only
a subset of its neighbors at each time. We call this algorithm FedDec, since it can be
thought of as a mixture between FL and (primal) decentralized optimization updates.

We analyze the convergence of FedDec under the assumptions of non-iid data distribution,
partial device participation, and smooth and strongly convex costs. We show that for a
diminishing stepsize, FedDec converges at the O(1/T ) rate (where T is the total number of
iterations executed) of FL algorithms that do not account for inter-agent communication
[50, 54], but improves the dependence on the number of local updates H from O(H2) to
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O(H). This improvement can be seen from two different points of view: either (i) H can
be increased without severely hurting convergence speed, which means obtaining the same
results as FedAvg with less server communication, or (ii) for the same communication
cost FedDec can converge faster than FedAvg [47].

Furthermore, our analysis reveals that the term improved in the bound is multiplied by a
constant α that depends on the spectrum of the inter-agent communication graph. This
constant vanishes quickly the more connected the network is, and therefore, the more
connected the network the smaller is the impact of the server communication round pe-
riod H. While a few works have considered inter-agent communication within FL in the
past [57–61], none of them has characterized analytically how inter-agent communica-
tion reduces the impact of the server communication period H on convergence, and in
particular, how this reduction depends on the inter-agent connectivity.

Our simulations confirm our theoretical findings: in all cases, FedDec converges faster
than FedAvg, and the gains are greater as either H or the connectivity of the network
increase. These results indicate that the reallocation of the resources enabled by inter-
agent communication in FL could allow for reaching the target accuracy in less wall-clock
time.

We conclude this chapter considering whether the server is even necessary in settings
where inter-agent communication is possible, and conversely, how often communication
rounds with the server should be if the inter-agent communication graph is not connected
(case in which the server becomes indispensable). These and other trade-offs in peer-to-
peer communication within FL are interesting directions for future work.

The contributions of this chapter appear in:

• Costantini, M., Neglia, G., & Spyropoulos, T. “FedDec: Peer-to-peer Aided Federated
Learning,” submitted to 2023 IEEE 62st Conference on Decision and Control (CDC).

1.1.4 Chapter 5: conclusion

We review the methods proposed in each chapter and their contributions to achieving
better utilization of the network resources and higher system performance. We recall
the trade-offs involved in each case and the scenarios where each method is expected to
provide significant gains. We conclude by enumerating a few orthogonal approaches in
the literature that could be combined with the methods presented here to further improve
performance.

10



Chapter 2

Joint design of caching and
recommendations

2.1 Introduction

Storing popular items at the edge of the wireless network (i.e. caching) is one of the
main solutions that have been proposed to deal with the large, ever-increasing demand
of content stored in the cloud [62,63]. Caching at the network edge is beneficial for both
the users, who can get content at a higher bitrate and reduced latency [64, 65], and the
network operators, who can thus alleviate the congestion during peak traffic periods by
having a large fraction of requests being served by the local caches [66]. The cached
content can then be updated during off-peak hours.

Recommendation systems, on the other hand, are engines embedded in content distri-
bution applications (YouTube, Netflix, Spotify, etc.) trained to offer the user contents
that with high probability will interest them. Recommendation systems are known to
greatly affect user requests: it is reported that up to 80% of requests on popular content
distribution platforms come from user recommendations [17, 18]. Nevertheless, the tra-
ditional role of a recommendation system has been to bring forward items from a vast
catalog that best match the users’ interests. Where the content is cached and how this
affects delivery (e.g., streaming rate) does not usually play a role in the decision of most
recommenders.

Recently, major content providers like Netflix and Google started partnering with In-
ternet service providers to implement their own content distribution network solutions
inside the network [15, 16]. This naturally brings together content caching and recom-
mendations, as now the same entity can control and coordinate both, towards better user
experience, lower network costs, or both. As a result, some recent works propose caching
and recommendation policies that take into account this interplay [19,67–72]. Neverthe-
less, many of these works still focus on one side of the problem, e.g., network-friendly
recommendations [68], [72], or recommendation-aware caching policies [19]. Some works
that do try to modify both the caching and recommendation policies are usually based
on heuristics [69], [71].
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In this chapter we consider the design and analysis of caching and recommendation poli-
cies under the soft cache hits model [19]. This model assumes that, if the requested
content is not locally cached, the user might agree to accept an alternative (but related)
content that is locally available. One reason for this acceptance might be better stream-
ing quality for similarly interesting content (e.g., it is known that low bitrate can lead to
increase in the abandonment rate [73]). Another reason is that the network or content
provider that benefits thus from network cost reduction, is willing to offer appropriate in-
centives to counterbalance the occasional utility loss (e.g. zero-rating). While soft cache
hits were formally introduced in [19, 74], other related works also implicitly or explicitly
assume soft cache hits. E.g, the pliable index coding of [72] allows for content of lower
preference to be served to the user, if that benefits the transmission scheme, while the
works of [69,70] introduce a “distortion” parameter that allows lower (but bounded) rel-
evance content to be recommended if that content is cached. Hence, the framework of
soft cache hits targetted in this work has more general applicability.

The first main contribution of this chapter (Section 2.3) is to propose departing from
the assumption of [19] that any content in the cache can be recommended to the user.
This new setting is significantly more realistic, since standard caches at the edge can
contain in the order of 100-1000 contents [15], while only a few 5-20 contents may be
recommended to the user in small devices such as smartphones or laptops. However, we
now need to choose not only the contents to cache but also the recommendations offered
to the user, which renders the problem considerably more challenging. Our contributions
in this respect are:

1. Starting from the framework of [19], we introduce (per user) recommendation vari-
ables, and formulate the problem of jointly optimizing both sets of (caching and
recommendations) variables.

2. We show that even the simplest version of the joint problem (one user, one cache)
is NP-hard, and that straightforward application of existing submodularity-based
frameworks [10,19] does not lead to approximation guarantees.

3. We show that using a primal decomposition of the joint problem into an inner
(recommendation related) problem and an outer (caching related) problem, leads
to an iterative yet efficient (i.e., polynomial) algorithm with constant approximation
to the jointly optimal solution.

4. Using a range of real-world datasets we show that the proposed algorithm always
outperforms existing heuristics, and discuss the implications of different content
types on relative and absolute performance of these schemes.

The second main contribution of this chapter is to study how the intrinsic relations be-
tween contents, which make some of them good substitutes of some others, affect the
performance of joint caching and recommendation policies. The idea of related content
naturally motivates the modeling of the set of potentially requested contents (the catalog)
as a graph where each content is a node and related contents are linked by a (possibly
weighted) edge. The structure of this graph can have a significant impact on the per-
formance of policies for related content delivery: if e.g. there exist tight communities of
many interconnected contents, any of these could be recommended as an alternative for
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any of the other, potentially increasing the gains of joint recommendation and caching
algorithms. The particular contributions here are:

1. We formalize the model of a content catalog as a graph and identify key content
graph and network setup parameters1 (e.g. degree distribution and clustering co-
efficient for the former, and cache size and number of recommendations for the
latter) that have an impact on the performance of the caching and recommenda-
tion algorithms. We isolate their individual effect by running experiments with
synthetic data and changing one parameter at a time, and observe their impact on
the absolute and relative performances of the two policies considered.

2. We validate our findings by running the policies on the real-world datasets intro-
duced before, and attempt an analysis of the outcome based on the graph features
of each dataset. Furthermore, we show that modifications of the network setup
parameters affect the joint policy’s performance in each trace differently, and these
differences highly depend on the traces’ graph structure.

3. Inspired by the dependencies observed between the graph structural parameters
and policy performance, we do a preliminary test on training a classifier to predict
whether the relative performance between the policies will exceed a given threshold
using only a handful of content graph and network setup parameters as predictor
variables, with very encouraging results.

2.2 System setup

We tackle the problem of jointly designing which contents to cache at each small cell
(SC) and what contents to recommend to each user in the network. The goal is to
maximize the number of requests served with the local caches either by (i) providing the
user with their original request (“direct” cache hit) or (ii) offering them an alternative
content related to their request and stored locally (“soft” cache hit). Our model relies on
the hypothesis that since most of the material distributed by content providers such as
Netflix and YouTube is entertainment-oriented, the user can be flexible and may accept
(with a certain probability) a substitute that is close enough to their original request.
Indeed, recommendations have shown to have a significant impact on user behavior when
browsing entertainment-oriented platforms [75]. Therefore, our model seeks to provide
the user with good recommendations not only from the point of view of showing relevant
content that might interest them, but also that can be retrieved easily to have it fast
and in good quality. We describe each of the components of our system model in detail
below.

1We remark that we will use the word “network” to refer to the communication and content distri-
bution network, while we will reserve the word “graph” for the relational model of the content catalog.
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2.2.1 Network and caching model

We consider a set of SCs M and a set of users I, each of them connected to at least
one SC inM. We indicate whether a user i can retrieve content from a base station m
with the binary variables qim ∈ {0, 1}. Our model can be easily extended to consider the
uncertainty in the user-SC association by making qim ∈ [0, 1] the probability of finding
user i in the range of SC m. Each SC is equipped with a cache memory of capacity C,
i.e. that can store up to C contents2. We use variables xkm ∈ {0, 1} to indicate whether
content k is stored in the cache of helper m. A user can only retrieve contents from the
SCs they are connected to and only if the cache contains the file.

2.2.2 Content graph model

We denote with K the catalog of contents from which the users make their requests. Since
many pairs of contents in K may be related to each other, the catalog can be represented
by a graph where each content is a node and related contents are linked by a weighted edge
indicating the level of relevance of one content with respect to the other. For example,
if K is a catalog of music videos, two songs of the same artist will be linked with a high
weight and two songs from different artists but of the same genre will be linked with a
low weight. Therefore, the relations between the contents in K can be represented with
an adjacency matrix U = {ukn ∈ [0, 1]}, k, n = 1, . . . , K indicating the relative value that
a content has to replace another. The values are normalized to have ukn = 1 if n = k.
From now on we will refer to this model of the catalog as the content graph.

2.2.3 Recommendation model

In our model each user generates random iid requests for contents in catalog K where
content k is requested with a probability pk that might be different for each user (in
which case we will have a pik for each user i). In our simulations, the pk follow a Zipf
distribution, as shown in related literature [78].

When a new request for a content k arrives from a user i, three things can happen:

1. Direct hit (qim = 1, xkm = 1): The content is found in one or more caches that
the user is connected to.

2. Soft hit (xkm = 0 ∀m/qim = 1; ∃ n,m : ukn > 0, xnm = 1, qim = 1): The caches
do not contain the requested content k but the user is offered a maximum of N
alternative contents n (the recommendations) that are related to the request and
found in the caches. If the user accepts to take any of the recommendations instead,
a soft hit occurs whose value depends on the ukn.

2We assume for simplicity that each content has roughly equal size (e.g., video chunks), as is commonly
assumed in related work [10,19,76]. However, our method can be applied to variable size content as well,
giving rise to ‘knapsack-type’ constraints [77].
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Table 2.1: Important notation

M Set of SCs (|M| = M)

I Set of users (|I| = I)

qim User i is in range of SC m (qim = 1) or not (qim = 0)

C Storage capacity of a SC

xkm Content k is stored in SC m (xkm = 1) or not (xkm = 0)

K Set of contents, catalog (|K| = K)

uikn Utility of content n for a user i requesting content k

pk Probability of content k being requested

yikn Recommend n when i requests k (yikn = 1) or not (yikn = 0)

N Maximum number of items that can be recommended per request

3. Cache miss (xkm = 0, ukn = 0 ∀i, k, n,m/qim = 1, xnm = 1): Neither the requested
item nor any related content is found in the accessible caches.

Our model assumes that given a request for content k that is not locally available, the
user will be sequentially offered alternative contents n that they might accept with a
certain probability vkn ∈ [0, 1]. It is reasonable to assume that the probability of ac-
cepting a substitute depends directly on how related the substitute is to the content
originally requested (and this is what standard recommenders do, e.g. through collab-
orative filtering). Thus, in the following we will assume vkn = ukn, and discard the
notation vkn. This model for soft cache hits was first introduced in [19]. However, here
we make the assumption that the number of contents accessible by the user is limited by
the number of recommendations. While in [19] it was assumed that any content stored
in the cache could be offered to the user as a substitute of their request, this is actually
unrealistic, since the number of contents in the cache may be much larger than what is
practical to recommend through an application interface. This new assumption, however,
introduces an additional variable to optimize over (the ykn) and an additional constraint
(Σnykn ≤ N).

We also consider the possibility that even if two contents k and n are related, the utility
of getting one of them when the other is requested depends on the user’s particular
preferences and thus it may differ between users. Thus in the multi-user case we will
consider individual matrices U i = {uikn} for each user i. Since the utility of each content
has a direct impact on whether it is recommended or not, we will define the user-specific
recommendation matrices Y i = {yikn} analogously.

Table 2.1 summarizes the notation of the variables described above.
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2.3 Joint problem formulation and joint caching and

recommendation algorithm

Based on the previous setup description, it is clear that there are two sets of variables
to optimize: what is cached where (variables xkm) and what to recommend to each user
(variables yikn). We formalize our objective below.

2.3.1 Joint optimization: single-user single-cache

In order to better illustrate the problem’s hardness, our methodology, and the intuition
behind it, we will first tackle the problem of designing the caching and recommendation
variables in the single-user single-cache scenario, and we will then extend this result to the
multi-user femto-caching setting [79]. We will evaluate the performance of each policy
by its attained Cache Hit Ratio (CHR), which measures the expected quotient of the
number of hits to the number of requests.

Optimization Problem 1 (Joint Caching and Recommendation - Single User, Single
Cache).

maximize
x,Y

CHR =

K∑
k=1

pk

[
1−

K∏
n=1

(1− xn · ukn · ykn)

]
(2.1)

s.t.
K∑
k=1

xk ≤ C (2.2)

K∑
n=1

ykn ≤ N, ∀k (2.3)

xn, ykn ∈ {0, 1} (2.4)

In the problem above the objective function (2.1) computes the expectation of a cache
hit over all contents in the catalog. A (potentially soft) hit occurs when a content k
is requested and a related (ukn > 0) content n that is cached (xn = 1) is recommended
(ykn = 1). In case of a direct hit, we assume that ukk = 1 for all k, and we set ykk = 1, i.e.
a requested content is always recommended if it is cached (and the user accepts it with
probability 1, since they got what they wanted). It is easy to see that the product term
in (2.1) corresponds to the probability that no content n leads to a cache hit: this is clear
if the content is not cached (xn = 0), or it is not recommended (ykn = 0); if it is cached
and recommended, then the user rejects it with probability 1 − ukn. Constraint (2.2)
states that we cannot cache more contents than the capacity of the cache, and constraint
(2.3) limits the number of recommended items to N . Altogether, our general objective
could be loosely described as “maximizing the cache hit rate for the operator, while at
the same time making sure that the recommendations to each user are relevant”.

Previous works considering the possibility of enhancing the cache hits through recom-
mendations [19, 69, 70] solve a different or partial version of this problem. In [69, 70] the
model captures the “distortion” by alternative recommendations in a different manner

16



2.3. JOINT PROBLEM AND JCR ALGORITHM

(as a constraint outside the objective), and the algorithm solves the problem for xn only
and amends the recommendations in a posterior step. In [19] only the caching problem
(choosing xn) is solved without accounting for the selection of the limited number of rec-
ommendations to show to the user. Problem 1 can be reduced to that of [19] by setting
N = C and making ykn = 1 ∀k, n.

Note that the above problem is already NP-hard, even for a single cache and one user,
since the simpler problem in [19] considering variables xn only is already NP-hard. How-
ever, the objective can be decomposed to optimize over each variable separately and
iteratively, which allows to define a polynomial-time algorithm with approximation guar-
antees. We remark that this is not always the case, and submodularity methods such as
those in [10,19] cannot always be extended directly on both sets of variables (this is easy
to see with a counterexample and was proved formally in [70]).

Our method solves a primal decomposition of the joint problem in (2.1): An outer problem
that maximizes its objective with respect to x and an inner problem that, for a given
x, maximizes the objective in (2.1) with respect to y. This decomposition is equivalent
to the original problem and allows to define a “nested” algorithm where the outer loop
tries to find the best content to add to the cache, and the inner loop selects the best
recommendations for the user for each potential cache configuration. We provide the
details in the following.

2.3.2 Approximation algorithm for problem 1

Let us first assume that the caching vector (variables xn) are given and consider the
subproblem of maximizing (2.1) with respect to variables ykn. We will show first that
this can be done in polynomial time, and it will constitute a subroutine of our algorithm.

Let us denote the terms in the objective as

fk(x, Y ) = 1− Πn (1− xn · ukn · ykn) . (2.5)

Let us further denote as

f ∗
k (x) = max

Y
s.t. (2.3), (2.4)

{1− Πn (1− xn · ukn · ykn)}. (2.6)

Lemma 1. Let

F ∗(x) = max
Y

s.t. (2.3), (2.4)

{Σkpk [1− Πn (1− xn · ukn · ykn)]},

then F ∗(x) =
∑

k pk · f ∗
k (x).

Proof. This follows easily from the fact that the constraints for Y (i.e. Eq. (2.3)) are
decoupled per line, so finding the optimal recommendations, given a caching vector, de-
couples toK independent subproblems of maximizing one term in the sum (corresponding
to a row k of Y ) subject to the respective constraint (3) for line k.
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Hence, we can focus on optimizing each term in the sum (corresponding to each line k of
matrix Y ) separately.

Given this observation, Lemma 2 gives the optimal choice of recommendation variables
for each possible caching configuration. We denote S = {j ∈ 1, K : xj = 1} the set of
cached elements, and use notation f ∗

k (S) and f
∗
k (x), interchangeably.

Lemma 2. Let u
(j)
k (S) denote the jth order statistic of elements {ukn : n ∈ S}, i.e., the

jth largest element in that set. Then,

f ∗
k (S) = 1− (1− u(1)k (S)) · (1− u(2)k (S)) . . . (1− u(N)

k (S)). (2.7)

Proof. We need to choose at most N contents to recommend, so as to maximize 1 −
Πn∈S (1− ukn · ykn). Assume that choosing the N cached elements with the highest ukj
values for each potential request k was not optimal, as claimed above, and recommending
another element l ∈ S leads to a better objective. Let us further assume that l replaces

the Nth highest content. Then, our assumption implies

1− (1− u(1)k (S)) . . . (1− u(N−1)
k (S)) · (1− ukl) > 1− (1− u(1)k (S)) . . . (1− u(N)(S))

⇒ (1− u(N)(S)) > (1− ukl)
⇒ u(N)(S) < ukl

which is clearly a contradiction, since we assumed that l is not among the N -highest ukj
values in the cached elements set S.

It is easy to see that the proof holds (in fact strengthens) when replacing any other order

statistic apart from the Nth in Eq.(2.7).

The following lemma and theorem are used to prove Corollary 1 below, which will be
essential to define our polynomial-time algorithm. The proofs of the lemmas are given in
the appendix.

Lemma 3. f ∗
k (S) is a monotonically non-decreasing function of |S|, the cardinality of

set S.

Proof. The proof can be found in Appendix A.1.

Theorem 4. The function f ∗
k (S) is submodular in S, for any k.

Proof. The proof can be found in Appendix A.2.

Corollary 1. The objective of Problem 1, i.e. eq. (2.1), is monotone submodular in x.

Proof. The objective of Problem 1 is equivalent to (Lemma 1)

maximize
x

F ∗(x) ≡ maximize
x

∑
k

pk · f ∗
k (x)
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since it holds that [80]:

max
X,Y

g(X, Y ) = max
X

(
max
Y

g(X, Y )
)

Therefore the objective is a positive weighted sum of monotone submodular functions
f ∗
k (S) (Lemma 3 and Theorem 4), and hence the sum is monotone submodular as well [77].

The submodularity and monotonicity properties of the objective function of Problem 1
allow us to define a primal decomposition algorithm with performance guarantees. We
propose Algorithm 1 to design the cache vector x and recommendation matrix Y defined
in the problem.

The Algorithm works as follows: in an outer loop (lines 6-15) it looks for the content
j that maximizes the marginal gain obtained from adding that content to the cache, as
is standard with greedy algorithms for submodular problems. However, for each candi-
date content it performs an inner loop that sorts the utility values for the new cache
configuration and chooses the recommendations in accordance with Lemma 2 (function
ChooseRecommendations() in line 11), i.e. for each content k it selects the N cached
items with highest ukn and sets ykn = 1. The procedure is then repeated until the cache
is full.

Algorithm 1 Joint caching and recommendation algorithm (JCR)

1: Input: U,N,C, p
2: Output: x, Y
3: x = 0K , Y = 0K×K
4: while t < C do
5: xaux = x,R = 0K
6: for j = 1, . . . , K do
7: if xj == 1: ▷ If content j is already cached
8: continue
9: else:
10: xauxj = 1 ▷ Try what happens if content j is added to the cache
11: Y = ChooseRecommendations(xaux, N, U)
12: Rj = Σkpk(1− Πn(1− xauxn · ykn · ukn)) ▷ Compute hit ratio for this cache

configuration
13: xauxj = 0 ▷ Return cache to its initial state
14: end if
15: end for
16: j∗ = argmaxj Rj

17: xj∗ = 1
18: end while
19: Y = ChooseRecommendations(x,N, U)
20: return x, Y

Theorem 5 states the approximation guarantees of Algorithm 1 for the Joint Caching and
Recommendation problem for a single cache:
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Theorem 5. Let xOPT be the optimal caching vector to Problem 1 and x∗ the caching
vector returned by Algorithm 1.3 It holds that

F ∗(x∗) >

(
1− 1

e

)
F ∗(xOPT )

Proof. As stated by Corollary 1, the objective function of Problem 1 is monotone sub-
modular, and the problem has a cardinality constraint. It is known that for this class
of problems the greedy algorithm achieves in the worst case a (1 − 1

e
)-approximation

solution [77].

2.3.3 Joint optimization: multi-user multi-cache

The results obtained above for a single cache can be extended to prove submodularity
and monotonicity also in the multi-user femto-caching (i.e. multi-cache) scenario. In this
new setting, a user i ∈ I may be connected to one or more helpers m ∈ M. We will
indicate this association with the indicator matrix qim. We also consider now that the
utility of a content to replace another may be user-dependent, and thus now we have a
per-user content relation matrix U i = {uikn} and an associated recommendation matrix
Y i = {yikn}. We will use U and Y to denote the 3-dimensional arrays resulting from the
concatenation of the U i and Y i matrices, respectively. The problem of maximizing the
cache hit ratio with soft cache hits and limited number of recommendations in this new
scenario is stated in Problem 2.

Optimization Problem 2 (Joint Femto-caching and Recommendation - Multi User,
Multi Cache, and User-specific Recommendations).

maximize
X,Y

K∑
k=1

U∑
i=1

pik

[
1−

K∏
n=1

[ M∏
m=1

(1− xnm · qim)+ (2.8)

(
1−

M∏
m=1

(1− xnm · qim)
)
(1− uikn · yikn)

]]

s.t.
K∑
k=1

xkm ≤ C, ∀m ∈M (2.9)

K∑
k=1

yikn ≤ N, ∀k ∈ K, ∀i ∈ U (2.10)

xnm, y
i
kn ∈ {0, 1} (2.11)

The steps in the proof of Theorem 4 allow us to easily extend the submodilarity and
monotonicity results to the multi-user femtocaching scenario of Problem 2, as shown
next.

Corollary 2. The problem of joint femto-caching (i.e. multiple co-dependent caches) and
recommendation is also submodular (subject to matroid constraint).

3Note that the optimal recommendation matrices YOPT and Y ∗ are immediately obtained from xOPT

and x∗ respectively by recommending the N cached elements with the highest utility (see Lemma 2)
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Proof. The proof can be found in appendix A.3.

A greedy algorithm analogous to Algorithm 1 can be defined for Problem 2, where now the
outer loop goes through all potential (content, cache) assignments (see Appendix A.3).
This algorithm can guarantee a 1

2
-approximation of the optimal solution, since Problem

2 is a maximization problem with a submodular objective and a matroid constraint [81].

2.4 Performance of JCR versus independent cache

and recommendation design

We performed simulations with both synthetic and real-world data to test the performance
of our algorithm, JCR, which designs the caching and the recommendation jointly, against
two alternative approaches that design these variables separately, introduced next.

Baseline caching policies:

1. Soft Cache Hits (SCH): Chooses the contents to store taking into account the pos-
sibility of having soft cache hits but without considering the limited number of
recommendations. This method is identical to that in [19] and implicitly assumes
that all cached contents can be recommended.

2. Popularity caching (POP): Caches the most popular contents until the cache is full.
This approach is completely blind to the possibility of satisfying the user request
with alternative but related content.

Recommendation policy: The recommendations in the two approaches above are
chosen after having filled the cache with their respective criteria, and these are chosen
in accordance with Lemma 2 (for each content k, the N contents with highest ukn are
recommended).

For our implementation of the greedy-based approaches (JCR and SCH) we used the
lazy evaluations method, which exploits the submodularity property of the objective to
significantly accelerate the greedy search process [77].

2.4.1 Synthetic data

We performed experiments with synthetic data to test the effect of the graph structure
and the network parameters on the performance of the algorithms. This allowed us
to appreciate the relative performance of the schemes in a controlled environment for
different setup parameters before testing them on the real-world data. Figure 2.1 shows
these results for a synthetic content graph generated with the Barabassi-Albert model
and two different scenarios: (1) catalog size K=500, cache size C=50 and number of
links added by each new node n=10, and (2) K=1000, C=75 and n=2. In both cases
the recommendations were N=1, the popularity Zipf exponent α = 1, and the ukn=0.5.
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Figure 2.1 shows that JCR can beat the other two algorithms in both scenarios and
achieve over a 10% of difference with the weakest, but there is a trade-off that (with
this particular graph structure) does not allow it to significantly beat both at once. In
Scenario 1 the high C/K ratio and the large number of edges favor the “confusion” of
SCH, which adopts the strategy of trying to accumulate many soft hits but in the end its
performance is constrained by the limited number of recommendations. On the contrary,
POP can accrue a lot of direct hits thanks to the large C, and its CHR is further boosted
by the soft hits obtained thanks to the high connectivity of the graph. The situation
is reversed in Scenario 2: low connectivity and low C/K ratio harm the performance of
POP but push SCH towards adopting a strategy more similar to that of JCR, where the
fractions of soft and direct hits are more balanced than in Scenario 1. The differences
between JCR and SCH will be more notorious when N ≪ C ≪ K, as in real scenarios.
However, to appreciate them in our limited-size datasets we had to set it to N = 1. As
can be expected, increasing N with C fixed makes SCH perform more similarly to JCR,
and identically in the limit N = C.

In Section 2.5 we go deeper into the impact of these system choices on the performance
of JCR and POP, taking into account also the role of the graph properties of the content
graph.

Figure 2.1: Expected cache hit ratio (CHR) of the three algorithms tested in the two
synthetic scenarios. The fraction of CHR earned by direct and soft hits have both been
indicated in each bar in dark and light colors, respectively.

2.4.2 Real-world data

For our experiments with real data we considered four datasets:

MovieLens (K=3306): for this dataset we built U from the user ratings using collabo-
rative filtering (see details of preprocessing in [19]).

YouTube (K=2098) [82]: here we built matrix U setting ukn to non-zero if k is in the
list of recommended videos for n or vice versa.

We also considered two datasets not related to video content to further compare the
algorithms:
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Amazon Videogames (Azn-VG, K=5614) and Amazon for Android applications
(Azn-Apps, K=8229) [83]: For these we built U from the “also bought” list of the
datasets, setting ukn ̸= 0 when items k and n were bought together.

In all cases we kept the largest component of the dataset graphs, and we set the off-
diagonal elements of U to ukn = 0.5. Since the Amazon datasets did not contain the
content popularity distribution, we synthetically generated random popularity values for
each content following a Zipf distribution with exponent α = 2. In our experiments we
set the cache size C to be 5% the size of the dataset catalog and N = 1 recommendation
was shown to the user for each content request.

Figure 2.2 shows the performance of our algorithms in the single-cache scenario for all
datasets. We have indicated the fraction of cache hits coming from direct and soft hits
in dark and light colors, respectively. Below we make some remarks on these results.

The joint approach outperforms the other two in all cases. In all cases
JCR achieves a higher CHR that the other two approaches (both in real and synthetic
datasets). This demonstrates the importance of not only accounting for the possibility of
soft cache hits, but also for the limited number of recommendations. It is worth noticing
that even if greedy has a worst case approximation in theory, in practice it performs very
close to optimal.

The magnitude of the difference between JCR and the other algorithms de-
pends very much on the source of the greatest fraction of hits (direct or
soft). Whether JCR can beat one or both of the other algorithms by a large difference
depends on how it does so. In the YouTube dataset, for example, all approaches perform
similarly and they go for a lot of direct hits. This suggests that for this dataset the
gains are dominated by the popularity values and even JCR and SCH tend to adopt the
strategy of POP. Conversely, for MovieLens it seems that the graph structure benefits the
acquisition of soft hits. Thus in this case the approaches accounting for soft hits (JCR
and SCH) prioritize this source of CHR and adopt a similar strategy that significantly
outperforms POP. The greatest gains of JCR with respect to the other two are better
appreciated when similar gains can be obtained either by caching popular items or by
exploiting the soft hits, as observed in the Azn-VG and Azn-Apps datasets.

The overall performance of each algorithm and the differences between them
highly depend on the graph structure. As shown in the experiment with synthetic
data, by just modifying the graph properties we can invert “who JCR beats by a large
difference”. The real traces show even more variability in the performance of the three
algorithms, both in terms of their ranking order and the source of the largest CHR fraction
achieved by each of them (if either by direct or soft hits).

Motivated by the last observation, in the next section, we investigate more deeply (i)
the interplay between the system parameters (values C and N) and the structure of the
content graph, and (ii) their impact on caching and recommendation policies.
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Figure 2.2: Expected CHR of the three tested algorithms in all four datasets.

2.5 Impact of the content graph structure and the

system setup

In Sections 2.3 we presented JCR, a polynomial-time algorithm with approximation guar-
antees for solving the (NP-hard) problem of designing caching and recommendations
jointly. However, in large instances, even polynomial-time approximation algorithms can
become prohibitively slow. Furthermore, such algorithms provide (close to) optimal val-
ues of the control variables, but no insights as to what key parameters lead to these
choices, or why the gains are sometimes moderate and others large, depending on the
catalog considered. This motivates us to ask a number of questions:

1. What is the added value of doing the joint optimization with respect to a fast
heuristic (e.g. POP) when considering e.g. the Netflix catalog of movies?

2. How does this value depend on key properties of the graph? Will it change if we
consider a catalog of Amazon Prime movies instead?

3. Could we use these properties to predict performance on a new catalog, without
actually running the optimization algorithm?

Here we carry out a preliminary investigation of these questions, by identifying which
characteristics of the content graph affect the policies for caching and recommendation
and how they do so. To better illustrate our methodology and findings, we will consider
only the JCR and POP policies in this section, since they represent two extremes of
complexity: JCR needs to run Algorithm 1, while POP simply caches the most popular
files and recommends the most relevant cached items as proposed in Lemma 2.

This analysis, as we show in Section 2.7, may allow us to state a priori whether, for a given
content graph, it is worth finding the optimal (or close to optimal) cache configuration
and content recommendations, as we do with JCR, or a low-complexity heuristic such as
POP will perform similarly enough, only based on the graph features and without having
to actually run the complex algorithm.
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Table 2.2: Graph parameter notation

R Node degree

E[R]/K Density

α Zipf popularity exponent

plink Link probability in an ER graph

ℓnew Number of links added per node in a BA graph

γ(X) Skewness of random variable X

κ Clustering coefficient

n Newman’s modularity

2.6 Numerical tests of parameter impact

In this section we concentrate on a few aspects of the content graph structure and study
their effect on the performance of the policies introduced before. We also consider dif-
ferent system parameters (e.g. cache sizes) which, as we will show, can further affect the
(absolute and relative) impact of the content graph properties.

Understanding the impact of these parameters can be helpful for, given a content graph
of interest, deciding whether it is worth running a computationally expensive but close-
to-optimal algorithm over a quick and simple heuristic (see Section 2.7 on performance
prediction), for designing the network setup to make the most of a particular policy (see
Fig. 2.5 on the impact of N and C on different real-world traces), or to define the limits
of performance achievable by any approach.

A fair question to ask at this point is how do we characterize the structure of a graph?
The answer is not straightforward, since graphs are complex structures over which many
metrics can be computed (see e.g. [84]). Furthermore, an exhaustive characterization
(through the adjacency matrix, for example) is not insightful and impractical for large
graphs. Here we have concentrated on a few macroscopic parameters that can be easily
measured in any graph and that we could expect to have a significant impact on the
performance of the joint caching and recommendation problem.

In the first part of this section, we perform experiments with synthetic data changing
one parameter at a time to isolate their effect on the policies’ performance as much as
possible. In the second part, we measure the graph parameter values of real-world traces
and look at the performance of the two considered policies on them. We then attempt to
interpret the latter results in light of the trends identified with the synthetic data.

Table 2.2 summarizes the notation used in this section, where the skewness γ(X) of a
random variable X is measured with Pearson’s moment coefficient γ(X) = E[((X −
µX)/σX)

3], and the clustering coefficient κ is measured as the number of triangles over
the number of triples in the graph.
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Table 2.3: Parameter values used in each experiment with synthetic data. Each column
shows a different test, and the cell of the variable tested is highlighted in gray.

Experiments

Feature
tested

Degree
skewness

C
Zipf

exponent
N

Community
structure

Graph {ER, BA} ER ER ER {ER, comm}
K 1000 1000 1000 1000 1000

C 10 {10, 50, 100} 50 50 50

N 1 1 1 {1, 2, 3} 1

α 1 1 {0.5, 1, 1.5} 1 1

plink 0.04 0.01 0.01 0.04 0.02

ℓnew 10 - - - -

2.6.1 Synthetic data

We tested the effect of both (i) content graph parameters: degree skewness, popularity
skewness and community structure, and (ii) network setup parameters: cache size and
number of recommendations. For our simulations with synthetic data we used three
probabilistic models of graphs:

• Erdős–Rényi (ER): a link between each pair of nodes is generated at random and
independently with probability plink. The resulting node degree is a random variable with
binomial distribution, i.e. R ∼ B(K, plink).

• Barabási–Albert (BA): starting from an initial graph of K0 nodes, a new node is
added by connecting it with ℓnew ≤ K0 new links to the nodes already in the graph. The
probability of connecting to a node in the graph is proportional to its degree. The degree
distribution of the resulting graph follows a power law distribution with exponent 3 [84].

• Community graph: this is a disconnected graph where each community is connected
and there are no links between different communities.

Next we describe the experiments done to test the impact of each graph parameter on
the policies’ performance and discuss the results. The parameter values used in each
experiment are shown in Table 2.3, where each column indicates a different experiment
where the effect of only one feature was tested. The cells showing the different values
that the feature of interest takes are highlighted in gray. In all cases and without loss of
generality, we set uij = 0.5 if contents i ̸= j are related.4 For all graphs, we assume a
Zipf popularity distribution with tunable exponent α, and assign the popularities pi to
the graph nodes randomly. For each experiment we perform 32 repetitions of the graph
generation and policy testing. We then report the average and standard deviation of the
CHR accrued by each policy.

Degree skewness. The first panel of Figure 2.3 shows the performance of the two
policies for both BA and ER graphs with ℓnew = 10 and plink = 0.04, respectively. These

4We observed empirically that the choice of this value (barred from the two extremes of 0 and 1) only
affects the total CHR but not the qualitative impact of different graph parameters.
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Figure 2.3: Effect of degree skewness, cache size, popularity Zipf exponent and number
of recommendations on performance.

values were selected so that the density E[R]/K would be the same for both types of
graphs, since a higher density would automatically increase the CHR thanks to more soft
hits, and the comparison in that case would be unfair. The bars show the total CHR
accrued, and the fraction obtained from direct and soft hits are shown in dark and light
color respectively.

The CHR achieved by JCR on the BA graph is much larger than that of the ER graph.
This happens because JCR is capable of picking the high-degree nodes in the BA graph to
earn many soft hits. The ER graph, however, does not provide such a possibility, since all
nodes have approximately the same degree and there is no clearly winning strategy that
JCR can take. POP, on the other hand, performs almost identically for both graph types.
This is because the popularity values were assigned to the nodes randomly, thus caching
the most popular nodes is equivalent to picking up randomly and uniformly C nodes in
the graph. Therefore the performance of POP depends on the average connectivity, and
since E[R]/K is the same for both graph types, POP achieves approximately the same
CHR in both cases.

Cache size. The second panel shows the performance of both algorithms on an ER graph
and for different cache sizes. As expected, as the cache size increases both algorithms
achieve a higher CHR. However, the high popularity skewness helps POP to boost its
performance more than it helps JCR: by making the cache size only a 10% of the total
catalog size, POP can achieve with its simple criterion a CHR ≈ 0.5 coming from direct
hits and a total CHR comparable to that achieved by JCR. Note that if the popularity
distribution was uniform (α = 0) the amount of direct hits accrued by POP would equal
C/K. The effect of the skewed distribution of pi is discussed next.

Popularity skewness. The third panel shows the performance for different Zipf popu-
larity exponents. Again, increasing this parameter helps both algorithms, but the boost
is larger for POP. The reason is analogous to that of increasing C for fixed α: a larger
percentage of requests can be served with direct hits, which is what POP goes after by
caching the most popular contents. Note that as α increases, JCR tends to “copy” the
strategy of POP and go for more direct hits.

Number of recommendations. The last panel shows the performance when we change
N . The gap between JCR and POP increases with N in favor of the former. This is due
to POP getting more soft hits just by chance, while JCR adjusts its strategy to exploit
the larger number of recommendations. Note that the fractions of soft and direct hits of
JCR increase and decrease respectively as N gets larger, and added together they achieve
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a higher total CHR each time.

Community structure. Figure 2.4 shows the performance for different cache sizes
and two types of graphs: a community graph that contains 50 communities of 20 nodes
connected in a clique (i.e. a complete graph) and an ER graph withK = 1000 and E[R] =
20. The strong community structure enhances the performance of JCR with respect to the
ER case, and the effect is larger when the cache size matches the number of communities.
This is because JCR can recognize that choosing one content per community is the best
strategy. When C is smaller than the number of communities, the effectiveness of this
strategy is limited by the cache size. When it is larger, JCR has to pick more than one
node per community and the gains with respect to ER are more moderate. Again there
are no significant effects on POP when the graph type changes, since popularity values
are assigned at random and the density of both graphs is the same.

In the experiments with real-world data of the next section we measured the degree of
community structure with two parameters: the clustering coefficient κ and Newman’s
modularity n [85]. For the latter, we used the implementation of [86], which applies the
method of [87] to find communities in the graph before computing n.

Figure 2.4: Effect of community structure. Community structure boosts the performance
of JCR respect to POP, provided that C approximately matches the number of commu-
nities.

Overall, the results with synthetic data seem to indicate that there is indeed a direct
relation between graph parameters and policy performance. But can we observe similar
tendencies in real-world data? We address this question next.

2.6.2 Real-world data

We tested the performance of JCR and POP in the datasets AznApp, MovieLens, and
YouTube introduced in Section 2.4.2. We also used the LastFM dataset [88], which
contains for each song a list of similar songs, and thus we considered songs i and j related
when song i was in the list of j or vice-versa.

Like in the synthetic data, we set uij = 0.5. Since the Amazon and LastFM datasets did
not contain the content popularity distribution, we generated random popularity values
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Figure 2.5: Results on traces for different cache sizes and number of recommendations.

following a Zipf distribution with α = 1. Table 2.4 shows the graph parameter values of
all traces.

Table 2.4: Graph parameter values of the real-world traces. Notation is explained in
Tables 2.1 and 2.2.

AznApp LastFM MovLens YouTube

K 8229 3506 3306 2098

E[R] 15.97 4.25 25.49 5.38

E[R]/K 0.0019 0.0012 0.0077 0.0026

γ(R) 11.95 3.6 2.41 1.42

γ(p) 1.94 1.89 2.07 7.57

κ 0.08 0.13 0.55 0.38

n 0.59 0.81 0.78 0.84

Figure 2.5 shows the performance of both algorithms in the traces for different C/K
ratios and values of N . Note that there is no standard deviation specified in these plots,
since the traces are taken from real-world data and are thus unique.

As observed in synthetic data, increasing either C or N improves the performance of
both algorithms. In the case of POP, increasing C is consistently better than increasing
N , as we could expect. For JCR, however, which of the two parameters has the greatest
impact to boost the performance in a trace depends heavily on the characteristics of the
content graph. The changes produced by increasing N are seen by comparing the second
panel with the first one in Fig. 2.5. Similarly, the changes produced by increasing C are
seen by comparing the third panel with the first one. Our observations are the following:

When the graph structure favors the accrual of soft hits, it is more beneficial
to increase N: This is true for AznApp, which has very high degree skewness, thus
confirming the observations done with synthetic data. The MovLens dataset has high
density and clustering coefficient, which also favors the accrual of soft hits. However,
the structure of this trace seems not to be as convenient for JCR as that of AznApp to
exploit soft hits, and increasing C achieves a similar total CHR as increasing N .

When the graph is not particularly well-connected or the popularity skewness
is high, it is better to increase C: This happens for YouTube, which has a very high
popularity skewness, and for LastFM, whose parameters are similar to those of MovLens
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but is more sparsely connected (it has significantly lower average dergee E[R], density
E[R]/K, and clustering coefficient κ). In these cases JCR can do better by accruing
direct hits rather than soft ones, and thus increasing C is preferable over increasing N .

These observations suggest that, as observed with synthetic data, qualitative and quanti-
tative performance differences in these much more complex traces can be, to some extent,
attributed to structural differences in their content graphs. This motivates our next and
final step in this work: to investigate whether these features can be used to predict the
expected performance of the policies in a given dataset.

2.7 Performance prediction

The results of the previous section with both synthetic and real-world data show that the
performances of JCR and POP are heavily affected by the content graph structure and
the network setup parameters. This suggests that looking at the parameters alone might
suffice to design an automated performance predictor that, given a new graph (i.e. a new
dataset), will be able to decide whether optimizing the caching and recommendations
jointly can provide significant benefits over just caching the most popular items without
actually having to run the optimization algorithm. Given the limited amount of training
data (data catalogs and related content graphs), we choose in this work to perform a
simple classification task: will joint optimization (JCR) provide relative gains that exceed
a threshold T , compared to the baseline (POP)? We will attempt to answer this question
using only the graph and network-related features introduced before, and a support vector
machine (SVM) classifier.

2.7.1 Dataset

We have chosen SVM because it can achieve reasonable performance even with small
amounts of training data (compared to e.g. deep neural networks). Nevertheless, our
baseline consists of 6 collected traces, and 2 synthetic graph types. It is thus important
to devise a methodology to come up with a proper training set out of these, that has
diversity in the graph structure and not too many samples of a particular type of graph
that could generate bias. Our complete dataset was constructed from:

Splitting traces: We randomly split the traces in groups of 500 ≤ K ≤ 700 nodes (the
average number of nodes in our traces was 4257), each of which constitutes a new graph of
our dataset. Apart from the four traces used in Section 2.6.2, here we also considered the
Amazon Virtual Games (AznVG, K = 5614) and Amazon Movies & TV data (AznTV,
K = 2789) datasets [83]. The adjacency values uij were obtained as those for AznApp.

Synthetic graphs: To add variability to the dataset and potentially improve general-
ization we generated six additional cases: three ER graphs with plink = 0.002, 0.005 and
0.01 respectively, and three BA graphs with ℓnew = 1, 4 and 8. The number of nodes of
these graphs was chosen randomly and uniformly in [500, 700].
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This procedure provided a total of 47 graphs (41 from real traces, 6 from synthetic
data). We will refer to the set of graphs generated from a particular real-world dataset
or synthetic graph as their “child graph”, e.g. out of the YouTube dataset we generated
36 YouTube child graphs with this subsampling method. For every such child graph, we
also create different network setups from combinations of the following parameters: (i) 3
values of Zipf popularity α = 0.5, 1 and 1.5, (ii) 3 values of C/K = 0.01, 0.05 and 0.1,
and (iii) N = 3. This gives a total of 9 network setups per child graph, and thus a total
of 423 different scenarios to consider for training (and testing).

2.7.2 Experiment design

Each case i in the dataset was represented by a vector xi ∈ R7 with the values of the
parameters {K, E[R], γ(R), κ, n, α, C}. We assigned a binary label yi to each case
according to:

yi =

{
1 if CHRJCR(i)−CHRPOP(i)

CHRJCR(i)
> T

−1 otherwise,

where T ∈ [0, 1] is a threshold for relative performance that we chose arbitrarily, and the
subindex of CHRP(i) indicates the CHR obtained by policy P when applied to case i. The
choice of the threshold T defines the number of cases with each label. Table 2.5 shows
the distribution of labels of the child graphs for each real-world or synthetic dataset and
the two thresholds T = 0.1, 0.15 used in our experiments. Note that the addition of the
two numbers gives the total number of child graphs for each dataset.

To test the generalization power of the obtained model, we carried out the training using
the child graphs of 7 out of the 8 datasets considered and used the remaining dataset
for testing. This resulted in 8 different training and testing experiments, each using a
different dataset as testing data. Such a splitting allowed us to make sure that the test
set was new unseen data, completely unrelated from that used for training. Furthermore,
to test the robustness of the results we repeated each of the 8 experiments 10 times. We
report the mean and standard deviation of the training and testing accuracies in each
experiment.

2.7.3 Support vector machines

The SVM is a non-probabilistic binary linear classifier method that finds the hyperplane
in the feature space that better separates the two classes. The optimization problem
solved by SVM can be formulated as

min
β,β0,ξ

1

2
∥β∥2 + δ

m∑
i=1

ξi

s.t. yi(β
Txi + β0) ≥ 1− ξi, i = 1, . . . ,m

ξi ≥ 0, i = 1, . . . ,m
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Table 2.5: Distribution of labels per set (y = 1/y = −1).

Dataset T = 0.1 T = 0.15 Dataset T = 0.1 T = 0.15

AznVG 44 / 37 38 / 43 MovLens 28 / 17 20 / 24

AznApp 66 / 42 57 / 51 YouTube 13 / 23 10 / 26

AznTV 20 / 25 15 / 30 ER 12 / 15 10 / 17

LastFM 13 / 41 11 / 43 BA 21 / 6 18 / 9

where m is the number of samples in the data (in our case graph-network setup combi-
nations), f(x) = βTxi + β0 defines the separating hypeplane between the two classes, ξi
are slack variables that allow for having points on the wrong side of the boundary and δ
is a cost parameter that penalizes having a large number of misclassified points [89].

For our experiments we normalized the features xi by subtracting their mean and di-
viding by their standard deviation. For the training of the SVM we used the Matlab
function fitcsvm and let the software optimize the hyperparameter δ through the option
OptimizeHyperparameters.

2.7.4 Results of automatic performance prediction

Table 2.6 shows the mean and standard deviation (between parenthesis) of both the
training and testing accuracies over the 10 repetitions of the experiments and for two
values of T . The distribution of labels (y = 1/y = −1) is shown next to each value of T .
Next we make some remarks on these results.

Table 2.6: Accuracy of the SVM classifier for relative performance prediction.

Set used T = 0.1 (217/206) T = 0.15 (180/243)

for testing Test Train Test Train

AznVG 0.93 (0.006) 0.94 (0.002) 0.96 (0.020) 0.93 (0.003)

AznApp 0.93 (0.012) 0.95 (0.001) 0.89 (0.035) 0.93 (0.005)

AznTV 0.96 (0.000) 0.95 (0.004) 0.86 (0.015) 0.93 (0.002)

LastFM 0.83 (0.020) 0.95 (0.004) 0.86 (0.049) 0.94 (0.007)

MovLens 0.84 (0.007) 0.95 (0.001) 0.91 (0.000) 0.93 (0.003)

YouTube 0.87 (0.037) 0.95 (0.002) 0.94 (0.000) 0.92 (0.003)

ER 0.96 (0.000) 0.95 (0.001) 0.83 (0.031) 0.93 (0.001)

BA 0.91 (0.031) 0.94 (0.001) 0.83 (0.019) 0.93 (0.001)

Mean 0.90 (0.051) 0.95 (0.005) 0.89 (0.049) 0.93 (0.006)

The features considered are good indicators to distinguish between high-
and low-gain scenarios for the joint approach with respect to the baseline.
This observation is based on the high training and testing accuracies observed in all
experiments. However, in some cases there is a large gap between the training and
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testing accuracies (differences larger than 5% in Table 2.6 have been highlighted in blue),
which leaves room for further improvement, discussed below.

More features or non-linear combinations of the current features might be
needed when the generalization power changes with T . This comes from the fact
that for some traces (AznTV, MovLens, YouTube, ER and BA) the training and testing
accuracies are very similar for one value of T and quite different for the other. Thus, for
one T the “separation rule” learned from the training data applies well to the test set
(i.e. the hyperplane found makes a good split of the testing points), but when the labels
change for the new T the rule learned at training does not apply to the test set anymore.
For the former case a potential solution is enlarging the training set (discussed in the next
point). Another alternative is considering more complex, non-linear interactions between
the features: an example of such interplay was the link between the cache size and the
number of communities identified in the experiments with synthetic datasets, where the
gains of JCR due to strong community structure were maximized when both quantities
were equal. Thus, adding new combinations of the features already considered may allow
for capturing effects not well represented yet. Adding completely new features could help
to this end as well, but contrary to what we want they might broaden the accuracy gap
by allowing more easily for overfitting.

Enlarging the dataset with new, different and diverse graphs that enrich the
feature space would probably improve generalization significantly. This would
most likely help particularly the experiment using the LastFM child graphs for testing,
apart from being beneficial also for the cases mentioned in the previous paragraph. When
testing with the LastFM child graphs the gap between training and testing accuracies is
large for both values of T . This suggests that this test set might have specific character-
istics not accounted for in the training set. In such case using a larger dataset with more
varied content graphs that are potentially more similar to that of the LastFM dataset
could help to improve testing accuracy.

2.8 Conclusion

Caching and recommendation are two distinct technologies that impact each other but
that are currently optimized separately. We have proposed a simple algorithm with prov-
able approximation guarantees that can jointly design the caching and recommendation
strategies in very general scenarios and consistently outperform schemes that take these
choices separately.

Furthermore, we observed how the magnitude of the gains highly depends on the graph
structure of the dataset. This motivated us to study how the graph properties of the
dataset, the system setup parameters, and the interplay between all of these affect the
outcome of the algorithms. For this study, we compared our polynomial-time algorithm
against a simple heuristic that caches the most popular contents without taking into ac-
count the recommendations. We could associate particular graph properties and setup
parameters to specific changes in the outcomes of the two policies considered. Such
connection between graph parameters and policy performance reveal that there is a fun-
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damental limit on the gains that any smart policy can achieve, compared to the baseline,
that is intricately tied to the properties of the dataset (graph) itself, rather than the
algorithm.

These results encouraged us to test whether we could do automatic performance pre-
diction from a few content graph and system setup descriptors. Our results with SVM
classification support the hypothesis that with careful training of the classifier and a suf-
ficiently representative dataset it is indeed possible to get good predictions. This not
only gives further proof of the tight relation between graph properties and policy per-
formance, but it also opens the possibility of using automatic classification for deciding
whether applying a “smart” but computationally costly policy is worthy with respect to
just using a simple baseline.

We remark that the JCR algorithm introduced here achieves a higher CHR without re-
quiring any architectural changes in the current caching networks and recommendation
engines. This means that by using our joint design policy, the network load can be re-
duced (since fewer contents are fetched from the remote server) without additional costs
when it comes to the physical structure of the network. There is, however, the com-
putational cost of running this policy. The performance predictor proposed intends to
give a tool to decide whether this cost is worth paying, and thus, in conjunction with the
JCR algorithm, they can achieve a better use of the communication and the computation
resources.
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Chapter 3

Local Gauss-Southwell rule for
decentralized optimization

3.1 Introduction

Many timely applications require solving optimization problems over a network where
nodes can only communicate with their direct neighbors. This may be due to the need of
distributing storage and computation loads (e.g. training large machine learning models
[20]), or to avoid transferring data that is naturally collected in a decentralized manner,
either due to the communication costs or to privacy reasons (e.g. sensor networks [21],
edge computing [22], and precision medicine [23]).

Specifically, we consider a setting where the nodes want to solve the decentralized opti-
mization problem

minimize
θ∈Rd

n∑
i=1

fi(θ), (3.1)

where each local function fi is known only by node i and nodes can exchange optimization
values (parameters, gradients) but not the local functions themselves. We represent the
communication network as a graph G = (V , E) with n = |V| nodes (agents) and E = |E|
edges, which are the links used by the nodes to communicate with their neighbors.

Existing methods to solve this problem usually assign to each node a local variable θi
and execute updates that interleave a local gradient step at the nodes followed by an
averaging step (usually carried out by a doubly-stochastic matrix) that aggregates the
latest parameter of the node with those of its neighbors [28,36,90–93].

Alternatively, the consensus constraint can be stated explicitly between node pairs con-
nected by an edge:

minimize
θ1,...,θn∈Rd

n∑
i=1

fi(θi) (3.2a)

s.t. θi = θj ∀ (i, j) ≡ ℓ ∈ E , (3.2b)
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where ℓ ≡ (i, j) indicates that edge ℓ links nodes i and j.

In this work, we solve the decentralized optimization problem by solving the dual of (3.2),
which allows us to propose asynchronous decentralized algorithms where each update
involves a single pair of nodes and many updates can happen simultaneously. In our
setup, nodes activate anytime at random and select one of their neighbors to make an
update together. Methods with such minimal coordination requirements avoid incurring
extra costs of synchronization that may also slow down convergence, which is the reason
why many algorithms for this asynchronous setting have been proposed in the literature
[25, 39–42]. However, most of these works assume that when a node activates, it simply
selects the neighbor to contact randomly, based on a predefined probability distribution.
This approach overlooks the possibility of letting nodes choose the neighbor to contact
taking into account the optimization landscape at the time of activation. Therefore, here
we depart from the probabilistic choice and ask: can nodes pick the neighbor smartly to
make the optimization converge faster?

In this chapter, we give an affirmative answer and propose algorithms that achieve this
by solving the dual problem of (3.2). In the dual formulation, there is one dual variable
λℓ ∈ Rd per constraint θi = θj, hence each dual variable can be associated with an edge ℓ
in the graph. Our algorithms let an activated node i contact a neighbor j so that together
they update their shared variable λℓ, ℓ ≡ (i, j) with a gradient step. In particular, we
propose to select the neighbor j such that the updated λℓ is the one whose directional
gradient for the dual function is the largest, and thus the one that provides the greatest
cost improvement at that iteration.

Interestingly, the above protocol where a node activates and selects a λℓ to update can
be seen as applying the coordinate descent (CD) method [43] to solve the dual problem
of (3.2), with the following key difference: unlike standard CD methods, where any of
the coordinates may be updated, now only a small subset of coordinates are accessible
at each step, which are the coordinates associated with the edges connected to the node
activated. Moreover, our proposal of updating the λℓ with the largest gradient is similar
to the Gauss-Southwell (GS) rule [45], but applied only to the parameters accessible by
the activated node.

We name such protocols set-wise CD algorithms, and we analyze a number of possibilities
for the coordinate (or equivalently, neighbor) choice: random sampling, local GS, and two
extensions that take into account the smoothness constants of the dual function. Com-
pared to standard CD literature, three difficulties complicate the analysis and constitute
the base of our contributions: (i) for arbitrary graphs, the dual problem of (3.2) has an
objective function that is not strongly convex, even if the primal functions fi are strongly
convex, (ii) the fact that the GS rule is applied to a few coordinates prevents the use of
standard norms to obtain the linear rate, as commonly done for CD methods [43,45,46],
and (iii) the coordinate sets are overlapping (i.e. non-disjoint), which makes the problem
even harder.

Our results also apply to the (primal) parallel distributed setting where multiple workers
modify different sets of coordinates of the parameter vector, which is stored in a server
accessible by all workers [94–96]. In particular, we show that for this setting the GS
selection attains the maximum speedup promised by the theory (see Theorem 13).
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Our contributions can be summarized as follows:

• We introduce the class of set-wise CD algorithms for asynchronous optimization
applicable to both the decentralized and the parallel distributed settings.

• We prove linear convergence rates for strongly convex and smooth fi and four
coordinate (equivalently, neighbor) choices: random uniform, GS, and their variants
when the coordinate smoothness constants are known.

• For the cases when these constants are not known, we propose an estimation al-
gorithm based on backtracking [43] for estimating them online, and show that for
certain problems this method achieves faster per-iteration convergence than the
exact knowledge of these constants.

• To obtain the rates of all considered algorithms, we prove strong convexity in
uniquely-defined norms that (i) take into account the graph structure to show strong
convexity in the linear subspace where the coordinate updates are applied, and (ii)
account for both the random uniform node activation and the application of the
GS rule to just a subset of the coordinates.

• We show that the speedup in terms of number of iterations of GS selection with
respect to random uniform can be up to Nmax (the size of the largest coordinate
set).

• We prove that the versions accounting for coordinate smoothness are provably faster
than those that do not account for these constants. In particular, we show that the
algorithm exploiting both the GS rule and the smoothness knowledge is provably
faster than all others.

• We support all our results with thorough simulations.

3.2 Related work

A number of algorithms have been proposed to solve (3.1) asynchronously. In [42], the
activated node chooses a neighbor uniformly at random and both nodes average their
primal local values. In [39] the authors adapted the ADMM algorithm to the decentralized
setting, but it was the ADMM of [25] the first one shown to converge at the same rate as
the centralized ADMM. The algorithm of [40] tracks the average gradients to converge
to the exact optimum instead of just a neighborhood around it, as many algorithms
back then. The algorithm of [31] can be used on top of directed graphs, which impose
additional challenges. A key novelty of our scheme, compared to this line of work, is that
we consider the possibility of letting the nodes choose smartly the neighbor to contact in
order to make convergence faster.

Work [97] is, to the best of our knowledge, the only work similarly considering smart
neighbor selection. The authors propose Max-gossip, a version of the (primal) algorithm
in [90] where the activated node averages its local parameter with that of the neigh-
bor with whom the parameter difference is the largest. They show that the algorithm
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converges sublineraly to the optimum (for convex functions), and show in numerical simu-
lations that it outperforms random neighbor selection. In contrast, here we propose dual
algorithms for which we show linear convergence rates (for smooth and strongly convex
functions), and most importantly, (i) we prove analytically that either applying the GS
rule and/or using the Lipschitz information achieves faster convergence than random
neighbor sampling, and (ii) we quantify the magnitude of the gains in each case.

Finally, as mentioned earlier, our work relates to standard CD literature. In particular,
our theorems extend the results in [45], where the GS rule was shown to be up to d times
faster than uniform sampling for f : Rd→R, to the case where this choice is constrained
to a subset of the coordinates only, sets have different sizes, each coordinate belongs to
exactly two sets, and sets activate uniformly at random. As we explain in Sections 3.4
and 3.5, these considerations bring important new challenges with respect to the standard
single-machine CD algorithms. Furthermore, our algorithms are not only applicable to
the decentralized case but also to parallel distributed settings such as [94–96]. For the
latter, [98] also analyzed the GS applied to coordinate subsets, but their sets are disjoint,
accessible by any worker, and they do not quantify the speedup of the method with
respect to random uniform sampling.

3.3 Dual formulation

In this section, we define the notation, obtain the dual problem of (3.2), and analyze the
properties of the dual objective function. We will assume throughout that the functions fi
areMi-smooth and µi-strongly convex, i.e. there exist finite constantsMi ≥ µi > 0, i ∈ [n]
such that:

fi(y) ≤ fi(x) + ⟨∇f(x), y − x⟩+ (Mi/2)∥y − x∥22
fi(y) ≥ fi(x) + ⟨∇f(x), y − x⟩+ (µi/2)∥y − x∥22.

We define the concatenated primal and dual variables θ = [θT1 , . . . , θ
T
n ]
T ∈ Rnd and

λ = [λT1 , . . . , λ
T
E]
T ∈ REd, respectively. The graph’s incidence matrix A ∈ Rn×E has

exactly one 1 and one -1 per column ℓ, in the rows corresponding to nodes i, j : ℓ ≡ (i, j),
and zeros elsewhere (the choice of sign for each node is irrelevant). We call ui ∈ Rn

the vector that has 1 in entry i and 0 elsewhere; we define eℓ ∈ RE analogously. We use
k ∈ [K] to indicate k = 1, . . . , K. Vectors 1 and 0 are respectively the all-one and all-zero
vectors, and Id is the d× d identity matrix. Finally, in order to use matrix operations in
the equations below for some operations, we define the block arrays Λ = A⊗ Id ∈ Rnd×Ed

and Ui = ui ⊗ Id ∈ Rnd×d, where ⊗ is the Kronecker product. This operation generates
arrays analogous to A and ui where the original entries 1, -1, and 0 have been replaced
by Id, −Id, and the all-zero d× d matrix, respectively.

We can rewrite now (3.2b) as ΛT θ = 0, and the node variables as θi = UT
i θ. The minimum
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value of (3.2) satisfies:

inf
θ:ΛT θ=0

n∑
i=1

fi(U
T
i θ)

(a)
= inf

θ
sup
λ

[
n∑
i=1

fi(U
T
i θ)− λTΛT θ

]
(b)
= sup

λ
inf
θ

[
n∑
i=1

fi(U
T
i θ)− λTΛT θ

]

= − inf
λ
sup
θ

n∑
i=1

[
(UT

i Λλ)
TUT

i θ − fi(UT
i θ)
]

= − inf
λ

n∑
i=1

f ∗
i (U

T
i Λλ) ≜ − inf

λ
F (λ), (3.3)

where (a) holds due to Lagrange duality and (b) holds by strong duality (see e.g. Sec.
5.4 in [80]). Functions f ∗

i are the Fenchel conjugates of the fi, and are defined as

f ∗
i (y) = sup

x∈Rd

(
yTx− fi(x)

)
.

Our set-wise CD algorithms converge to the optimal solution of (3.2) by solving (3.3). In
particular, they update a single dual variable λℓ, ℓ ∈ [E] at each iteration and converge
to some minimum value λ∗ of F (λ).

Since
∑n

i=1 fi(U
T
i θ) in (3.2a) isMmax-smooth and µmin-strongly convex in θ, withMmax =

maxiMi and µmin = mini µi, function F is L-smooth with L = γmax

µmin
, where γmax is the

largest eigenvalue of Λ+Λ (Sec. 4 in [38]). We call γ+min the smallest non-zero eigenvalue1

of Λ+Λ.

However, as shown next, function F is not strongly convex in the standard L2 norm, which
is the property that usually facilitates obtaining linear rates in optimization literature.

Lemma 6. F is not strongly convex in ∥·∥2.

Proof. Since Λ does not have full column rank in the general case (i.e., unless the graph
is a tree), there exist w ∈ REd such that w ̸= 0 and F (λ) = F (λ+ tw) ∀t ∈ R.

Nevertheless, we can still show linear rates for the set-wise CD algorithms using the
following result.

Lemma 7 (Appendix C of [99]). F is σA-strongly convex in the semi-norm ∥x∥A ≜

(xTΛ+Λx)
1
2 , with σA =

γ+min

Mmax
.

Above, Λ+ denotes the pseudo-inverse of Λ. A key fact for the proofs in the next section
is that matrix Λ+Λ is a projector onto range(ΛT ), the column space of ΛT .

1The “+” stresses that γ+
min is the smallest strictly positive eigenvalue.
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To simplify the notation, in what follows we assume that d = 1, so that Λ = A, Ui = ui,
and the gradient ∇ℓF (λ) =

∂F (λ)
∂λℓ

of F (λ) in the direction of λℓ is a scalar. In Sec. 3.6.3
we discuss how to adapt our proofs to the case d > 1.

3.4 Set-wise coordinate descent algorithms

In this section we present the set-wise CD algorithms, which can solve generic convex
problems (and (3.3) in particular) optimally and asynchronously. In this section, we
analyze two possibilities for the coordinate choice within the accessible coordinate subset:
(i) sampling uniformly at random (SU-CD), and (ii) applying the GS rule (SGS-CD).

If coordinate ℓ is updated at iteration k and assuming d = 1, the standard CD update
applied to F (λ) is [43]:

λk+1 = λk − ηk∇ℓF (λ
k)eℓ, (3.4)

where ηk is the stepsize. Since F (λ) is L-smooth, choosing ηk = 1/L ∀k guarantees
descent at each iteration [45]:

F (λk+1) ≤ F (λk)− 1

2L

(
∇ℓF (λ

k)
)2
. (3.5)

Eq. (3.5) will be the departure point to prove the linear convergence rates of SU-CD and
SGS-CD.

We now define formally the set-wise CD algorithms.

Definition 1 (Set-wise CD algorithm). In a set-wise CD algorithm, every coordinate
ℓ ∈ [E] is assigned to (potentially multiple) sets Si, i ∈ [n], such that all coordinates
belong to at least one set. At any time, a set Si may activate with uniform probability
among the i; the set-wise CD algorithm then chooses a single coordinate ℓ ∈ Si to update
using (3.4).

The next remark shows how the decentralized problem (3.2) can be solved asynchronously
with set-wise CD algorithms.

Remark 1. By letting (i) the E coordinates2 in Definition 1 be the dual variables λℓ,
and (ii) the Si, i ∈ [n] be the sets of dual variables corresponding to the edges that are
connected to each node i, nodes can run a set-wise CD algorithm to solve (3.3) (and thus,
also (3.2)) asynchronously.

In light of Remark 1, in the following we illustrate the steps that should be performed by
the nodes to run the set-wise CD algorithms to find a λ∗. We first note that the gradient

2If d > 1, the standard CD terminology calls each λℓ a “block coordinate”, i.e. a vector of d coordinates
out of the E · d coordinates of function F (λ).
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Table 3.1: Set-related definitions

Si Set of edges connected to node i

Ni Set of neighbors of node i

Ni Degree of node i, i.e. Ni = |Si| = |Ni|
Nmax Maximum degree in the network, i.e. maxiNi

Ti Selector matrix of set Si (see Definition 2)

S ′
i Subset S ′

i ⊆ Si such that S ′
i ∩ S ′

j = ∅ if i ̸= j

T ′
i Selector matrix of set S ′

i

S ′
i Complement set of S ′

i such that S ′
i = Si \ S ′

i

T ′
i Selector matrix of set S ′

i

of F (λ) in the direction3 of λℓ for ℓ ≡ (i, j) is (computing the gradient of (3.3))

∇ℓF (λ) = Aiℓ∇f ∗
i (u

T
i Aλ) + Ajℓ∇f ∗

j (u
T
j Aλ). (3.6)

Nodes can use (3.4) and (3.6) to update the λℓ that they have access to (i.e., those
corresponding to the edges they are connected to) as follows: each node i keeps in memory
the current values of λℓ, ℓ ∈ Si, which are needed to compute ∇f ∗

i (u
T
i Aλ). Then, when

edge ℓ ≡ (i, j) is updated (either because node i activated and contacted j, or vice versa),
both i and j compute their respective terms in the right-hand side of (3.6) and exchange
them through their link. Finally, both nodes compute (3.6) and update their copy of λℓ
applying (3.4).

Algorithms 2 and 3 below detail these steps for SU-CD and SGS-CD, respectively. We
have used Ni to indicate the set of neighbors of node i (note that Si = {ℓ : ℓ ≡ (i, j), j ∈
Ni}). Table 3.1 shows this and other set-related notation that will be frequently used in
the sections that follow.

We now proceed to describe the SU-CD and SGS-CD algorithms in detail, and prove
their linear convergence rates.

3.4.1 Set-wise uniform CD (SU-CD)

In SU-CD, the activated node chooses the neighbor uniformly at random, as shown in
Alg. 2. We can compute the per-iteration progress of SU-CD taking expectation in (3.5):

E
[
F (λk+1) | λk

]
≤ F (λk)− 1

2L
E
[(
∇ℓF (λ

k)
)2 | λk]

= F (λk)− 1

2Ln

n∑
i=1

1

Ni

∑
ℓ∈Si

(
∇ℓF (λ

k)
)2

≤ F (λk)− 1

LnNmax

∥∥∇F (λk)∥∥2
2

(3.7)

3This is equivalent to saying “the ℓ-th (block) entry of the gradient ∇F (λ)”.
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Algorithm 2 Set-wise Uniform CD (SU-CD)

1: Input: Functions fi, step η
k, incidence matrix A, graph G

2: Initialize θ0i , i = 1, . . . , n and λ0ℓ , ℓ = 1, . . . , E

3: for k = 1, 2, . . . do

4: Sample activated node i ∈ {1, . . . , n} uniformly

5: Node i picks neighbor j ← U{h : h ∈ Ni}
6: Node i computes ∇f ∗

i (u
T
i Aλ) and sends it to j

7: Node j computes ∇f ∗
j (u

T
j Aλ) and sends it to i

8: Nodes i, j: (i, j) ≡ ℓ use (3.6) to update their local copies of λℓ by λ
k
ℓ ← λk−1

ℓ −
ηk∇ℓF (λ)

9: λkm ← λk−1
m ∀ edges m ̸= ℓ

where Ni = |Si|, Nmax = maxiNi, and the factor 2 in the denominator disappears because
each coordinate ℓ ≡ (i, j) is counted twice (once in the sum through Si and once in that
through Sj).

The standard procedure to show the linear convergence of CD in the single-machine case
is to lower-bound ∥∇F (λ)∥22 using the strong convexity of the function [43,45]. However,
since F is not strongly convex (Lemma 6), we cannot apply this procedure to get the
linear rate of SU-CD.

We can, however, use F ’s strong convexity in ∥·∥A instead (Lemma 7). The next result
gives the core of the proof.

Lemma 8. It holds that

∥∇F (λ)∥2 = ∥∇F (λ)∥A = ∥∇F (λ)∥∗A , (3.8)

where ∥·∥∗A is the dual norm of ∥·∥A, defined as (e.g. [80])

∥z∥∗A = sup
x∈Rd

{
zTx

∣∣∣∣ ∥x∥A ≤ 1

}
. (3.9)

Proof. Note that ∀w ̸= 0 such that F (λ + tw) = F (λ) ∀t, it holds that wT∇F (λ) = 0
and thus ∇F (λ) ∈ range(AT ). This means that A+A∇F (λ) = IE∇F (λ), and therefore
it holds that ∥∇F (λ)∥A = ∥∇F (λ)∥2. Finally, since the dual norm of the L2 norm is the
L2 norm itself, we have that also ∥∇F (λ)∥∗A = ∥∇F (λ)∥2, which gives the result.

We now use Lemma 8 to prove the linear rate of SU-CD.

Theorem 9 (Rate of SU-CD). SU-CD converges as

E
[
F (λk+1) | λk

]
− F (λ∗) ≤

(
1− 2σA

LnNmax

)[
F (λk)− F (λ∗)

]
.

Proof. Since F (λ) is strongly convex in ∥·∥A with strong convexity constant σA (Lemma
7), it holds

F (y) ≥ F (x) + ⟨∇F (x), y − x⟩+ σA
2
∥y − x∥2A .
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Algorithm 3 Set-wise Gauss-Southwell CD (SGS-CD)

1: Input: Functions fi, step η
k, incidence matrix A, graph G

2: Initialize θ0i , i = 1, . . . , n and λ0ℓ , ℓ = 1, . . . , E

3: for k = 1, 2, . . . do

4: Sample activated node i ∈ {1, . . . , n} uniformly

5: All h ∈ Ni compute ∇f ∗
h(u

T
hAλ) and send it to i

6: Node i computes ∇f ∗
i (u

T
i Aλ)

7: Compute ∇ℓF (λ) ∀ℓ ∈ Si (equivalently, ∀h ∈ Ni) with (3.6) using the received
∇f ∗

h(u
T
hAλ)

8: Node i selects j ← maxh∈Ni
|∇ℓF (λ)|, ℓ≡(i, h)

9: Node i sends ∇f ∗
i (u

T
i Aλ) to j

10: Nodes i, j: (i, j) ≡ ℓ use (3.6) to update their local copies of λℓ by λ
k
ℓ ← λk−1

ℓ −
ηk∇ℓF (λ)

11: λkm ← λk−1
m ∀ edges m ̸= ℓ

Minimizing both sides with respect to y as in [45] we get

F (x∗) ≥ F (x)− 1

2σA
(∥∇F (x)∥∗A)

2
, (3.10)

and rearranging terms we can lower-bound (∥∇F (x)∥∗A)
2
.

Finally, we can use Lemma 8 to replace ∥∇F (x)∥22 with (∥∇F (x)∥∗A)
2
in (3.7), and use

the lower bound on (∥∇F (x)∥∗A)
2
given by (3.10) to get the result.

Note that vector λ has 1
2

∑
iNi = E ≤ nNmax

2
coordinates, where the inequality holds

with equality for regular graphs. We make the following remark.

Remark 2. If G is regular, the linear convergence rate of SU-CD is σA
LE

, which matches
the rate of single-machine uniform CD for strongly convex functions [43, 45], with the
only difference that now the strong convexity constant σA is defined over norm ∥·∥A.

In the next section we analyze SGS-CD and show that its convergence rate can be up to
Nmax times that of SU-CD.

3.4.2 Set-wise Gauss-Southwell CD (SGS-CD)

In SGS-CD, as shown in Alg. 3, the activated node i selects the neighbor j to contact
applying the GS rule within the edges in Si:

ℓ = argmax
m∈Si

(∇mF (λ))
2,
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and then j is the neighbor that satisfies ℓ ≡ (i, j). In order to make this choice, all
nodes h ∈ Ni must send their ∇f ∗

h(u
T
hAλ) to node i (line 5 in Alg. 3). We discuss this

additional communication step of SGS-CD with respect to SU-CD in Sec. 3.8.

To obtain the convergence rate of SGS-CD we will follow the steps taken for SU-CD in
the proof of Theorem 9. As done for SU-CD, we start by computing the per-iteration
progress taking expectation in (3.5) for SGS-CD:

E
[
F (λk+1) | λk

]
≤ F (λk)− 1

2Ln

n∑
i=1

max
ℓ∈Si

(
∇ℓF (λ

k)
)2
. (3.11)

Given this per-iteration progress, to proceed as we did for SU-CD we need to show
(i) that the sum on the right-hand side of (3.11) defines a norm, and (ii) that strong
convexity holds in its dual norm. We start by defining the selector matrices Ti, which
will significantly simplify notation.

Definition 2 (Selector matrices). The selector matrices Ti ∈ {0, 1}Ni×E, i = 1, . . . , n
select the coordinates of a vector in RE that belong to set Si. Note that any vertical
stack of the unitary vectors

{
eTℓ
}
ℓ∈Si

gives a valid Ti.

We can now show that the sum in (3.11) is a (squared) norm. Since the operation involves
applying max(·) within each set Si, we will denote this norm ∥x∥SM, where the subscript
SM stands for “Set-Max”.

Lemma 10. The function ∥x∥SM ≜
√∑n

i=1 ∥Tix∥
2
∞ =

√∑n
i=1maxj∈Si

x2j is a norm in

RE.

Proof. Using maxj∈Si

(
x2j+y

2
j

)
≤maxj∈Si

x2j+maxj∈Si
y2j and

√
a+ b ≤

√
a +
√
b we can

show that ∥·∥SM satisfies the triangle inequality. It is straightforward to show that
∥αx∥SM = |α| ∥x∥SM and ∥x∥SM = 0 if and only if x = 0.

Following the proof of Theorem 9, we would like to show that F is strongly convex in the
dual norm ∥·∥∗SM. Furthermore, we would like to compare the strong convexity constant
σSM with σA to quantify the speedup of SGS-CD with respect to SU-CD. It turns out,
though, that computing ∥·∥∗SM is not easy at all; the main difficulty stems from the fact
that the sets Si are overlapping (or non-disjoint), since each coordinate ℓ ≡ (i, j) belongs
to both Si and Sj. The first scheme in Figure 3.1 illustrates this fact for the 3-node
clique.

To circumvent this issue, we define a new norm ∥·∥∗SMNO (“Set-Max Non-Overlapping”)
that we can directly relate to ∥·∥∗SM (Lemma 11) and whose value we can compute explic-
itly (Lemma 12), which will later allow us to relate the three strong convexity constants
σSM, σSMNO, and σA (Theorem 13).

Definition 3 (Norm ∥·∥∗SMNO). We assume that each coordinate ℓ ≡ (i, j) is assigned
to only one of the sets S ′

i ⊆ Si or S ′
j ⊆ Sj, such that the new sets {S ′

i}
n
i=1 are non-

overlapping (some sets can be empty), and all coordinates ℓ belong to exactly one set in
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Figure 3.1: Example of sets Si and one possibility for S ′
i and S ′

i

{S ′
i}. We name the selector matrices of these new sets T ′

i , so that each possible choice of
{S ′

i} defines a different set {T ′
i}. Then, we define

∥z∥∗SMNO = sup
x

zTx
∣∣∣∣
√√√√ n∑

i=1

∥T ∗
i x∥

2
∞ ≤ 1

, (3.12)

with the choice of non-overlapping sets

{T ∗
i } = argmax

{T ′
i}

n∑
i=1

∥T ′
ix∥

2
∞. (3.13)

Note that the maximizations in (3.12) and (3.13) are coupled. We denote the value of x
that attains (3.12) by x∗SMNO.

The definition of sets S ′
i corresponds to assigning each edge ℓ to one of the two nodes

at its endpoints, as illustrated in the second scheme of Figure 3.1. Therefore, for each
possible pair ({S ′

h}, {T ′
h}), h ∈ [n] we can define a complementary pair ({S ′

h}, {T ′
h}) such

that if ℓ ≡ (i, j) was assigned to S ′
i in {S ′

h}, then it is assigned to S ′
j in {S ′

h}. This
corresponds to assigning ℓ to the opposite endpoint (node) to the one originally chosen,
as shown in the third scheme of Figure 3.1. With these definitions, it holds (potentially
with some permutation of the rows):

Ti =

[
T ′
i

T ′
i

]
=

[
T ′
i

0

]
+

[
0

T ′
i

]
, i = 1, . . . , n.

We remark that the equality above holds for any {T ′
i} corresponding to a feasible assign-

ment {S ′
i}, and in particular it hols for ({S∗

i }, {T ∗
i }). This fact is used in the proof of the

following lemma, which relates norms ∥·∥∗SM and ∥·∥∗SMNO. This will allow us to complete
the analysis with ∥·∥∗SMNO, which we can compute explicitly (Lemma 12).

Lemma 11. The dual norm of ∥·∥SM, denoted ∥·∥
∗
SM, satisfies

1
2
(∥z∥∗SMNO)

2 ≤ (∥z∥∗SM)
2 ≤

(∥z∥∗SMNO)
2
.

Proof. By definition

∥z∥∗SM = sup
x

zTx
∣∣∣∣
√√√√ n∑

i=1

∥Tix∥2∞ ≤ 1

. (3.14)

45



CHAPTER 3. LOCAL GS RULE FOR DECENTRALIZED OPTIMIZATION

By inspection we can tell that the x that attains the supremum, denoted x∗SM, will satisfy∑n
i=1 ∥Tix∗SM∥

2
∞ = 1. Similarly, x∗SMNO (defined under (3.13)) must satisfy

∑n
i=1 ∥T ∗

i x
∗
SMNO∥

2
∞ =

1. Note that in these two equalities the {Ti} are overlapping sets and the {T ∗
i } are non-

overlapping. Therefore, in order to satisfy both equalities it must hold that |[x∗SM]ℓ| ≤
|[x∗SMNO]ℓ|, ℓ ∈ [E], i.e. the magnitude of the entries of x∗SMNO are equal or larger than the
magnitudes of the corresponding entries of x∗SM. Referring to the definitions (3.12) and
(3.14), this means that ∥z∥∗SM ≤ ∥z∥

∗
SMNO.

We now proceed to show the first inequality in the lemma. We note that

n∑
i=1

∥Tix∥2∞ =
n∑
i=1

∥∥∥∥∥
[
T ′
i

0

]
x+

[
0

T ′
i

]
x

∥∥∥∥∥
2

∞

≤
n∑
i=1

∥T ′
ix∥

2
∞ +

n∑
i=1

∥∥T ′
ix
∥∥2
∞ ≤ 2

n∑
i=1

∥∥∥T̂ ′
ix
∥∥∥2
∞
, (3.15)

with

{T̂ ′
i} = arg max

{T ′
i},{T ′

i}

(
n∑
i=1

∥T ′
ix∥

2
∞,

n∑
i=1

∥∥T ′
ix
∥∥2
∞

)
. (3.16)

We now evaluate (3.15) and (3.16) at x∗SMNO. Due to (3.13) we have {T̂ ′
i} = {T ∗

i },
and since

∑n
i=1 ∥T ∗

i x
∗
SMNO∥

2
∞ = 1, the rightmost member of (3.15) takes value 2. Then,

dividing both sides of (3.15) by 2 we obtain

1

2

n∑
i=1

∥Tix∗SMNO∥
2
∞ =

n∑
i=1

∥∥∥∥Tix∗SMNO√
2

∥∥∥∥2
∞
≤ 1,

and since
∑n

i=1 ∥Tix∗SM∥
2
∞ = 1, we conclude that it must hold that 1√

2
|[x∗SMNO]ℓ| ≤

|[x∗SM]ℓ|, ℓ ∈ [E], and thus 1√
2
∥z∥∗SMNO ≤ ∥z∥

∗
SM.

The next lemma gives the value of ∥x∥∗SMNO explicitly, which will be needed to compare
the strong convexity constant σSMNO with σA.

Lemma 12. It holds that ∥x∥∗SMNO =
√∑n

i=1 ∥T ∗
i x∥

2
1.

Proof. Since the sets {S∗
i } are non-overlapping and in (3.12) norm ∥·∥∞ is applied per-set,

the entries xℓ of x
∗
SMNO will have |xℓ| = x(i) ≥ 0 ∀ ℓ ∈ S∗

i and the sign will match that of
the entries of z, i.e. sign(xℓ) = sign(zℓ). The maximization of (3.12) then becomes

maximize
{x(i)}

n∑
i=1

∑
ℓ∈S∗

i

(
|zℓ| · x(i)

)

s.t.

√√√√ n∑
i=1

(x(i))
2 ≤ 1.

46



3.4. SET-WISE COORDINATE DESCENT ALGORITHMS

Factoring out x(i) in the objective and noting that
∑

ℓ∈S∗
i
|zℓ| = ∥T ∗

i z∥1, we can define

w = [x(1), . . . , x(n)]T and y = [∥T ∗
1 z∥1, . . . , ∥T ∗

nz∥1]
T so that (3.12) now reads

∥z∥∗SMNO = sup
w

{
yTw

∣∣∣∣∥w∥2 ≤ 1

}
.

The right-hand side is the definition of ∥·∥∗2, the dual of the L2 norm, evaluated at y.

Since ∥·∥∗2 = ∥·∥2, we have that ∥z∥∗SMNO = ∥y∥2 =
√∑n

i=1 ∥T ∗
i z∥

2
1.

We can now prove the linear convergence rate of SGS-CD.

Theorem 13 (Rate of SGS-CD). SGS-CD converges as

EF (λk+1)|λk [−]F (λ∗) ≤
(
1− σSM

Ln

)[
F (λk)− F (λ∗)

]
,

with
σA
Nmax

≤ σSM ≤ 2σA. (3.17)

Proof. Similarly to what we did for SU-CD, we can depart from the strong convexity of
F in the ∥·∥SM norm:

F (y) ≥ F (x) + ⟨∇F (x), y − x⟩+ σSM
2

(∥y − x∥∗SM)
2
,

then minimize both sides with respect to y to obtain

F (x∗) ≥ F (x)− 1

2σSM
(∥∇F (x)∥SM)

2, (3.18)

which is analogous to (3.10), and then rearrange terms to obtain a lower bound on
∥∇F (λ)∥2SM. Using this lower bound in (3.11) gives the rate of SGS-CD.

Since this rate is given in terms of σSM and that of SU-CD in Theorem 9 is given in terms
of σA, we need (3.17) to compare both rates. However, we cannot prove these inequalities
directly because we cannot compare norms ∥·∥A and ∥·∥∗SM (due to the overlap of the
coordinate sets, which prevents us from computing the latter). However, we can compare
∥·∥A with ∥·∥∗SMNO and ∥·∥∗SM with ∥·∥∗SMNO individually, from which we will obtain (3.17).
In particular, we will show the inequalities

σA
Nmax

≤ σSMNO ≤ σA (3.19)

and
σSMNO ≤ σSM ≤ 2σSMNO. (3.20)

We start by proving (3.19). Below we assume x ∈ range(AT ); the results here can then
be directly applied to the proofs above because ∥·∥A , ∥·∥SM , ∥·∥SMNO and their duals are
applied to ∇F , which is always in range(AT ) (Lemma 8).

47



CHAPTER 3. LOCAL GS RULE FOR DECENTRALIZED OPTIMIZATION

For x ∈ range(AT ) it holds that (Lemmas 8 and 12):

∥x∥2A = ∥x∥2
2 =

E∑
i=1

x2i =
n∑
i=1

∥T ∗
i x∥2

2

(∥x∥∗SMNO)
2
=

n∑
i=1

∥T ∗
i x∥

2
1.

We also note that, using the Cauchy-Schwarz inequality and denoting [v]i the i
th entry

of vector v, it holds both that

n∑
i=1

∥T ∗
i x∥2

2 ≤
n∑
i=1

(∑
j∈S∗

i

|xj|

)2

=
n∑
i=1

∥T ∗
i x∥

2
1, and

n∑
i=1

∥T ∗
i x∥

2
1 =

n∑
i=1

(
1T
[∣∣∣[T ∗

i x]1

∣∣∣, . . . , ∣∣∣[T ∗
i x]N∗

i

∣∣∣]T)2

C.S.

≤
n∑
i=1

N∗
i ∥T ∗

i x∥2
2 ≤ Nmax

n∑
i=1

∥T ∗
i x∥2

2,

where N∗
i = |S∗

i |. We can summarize these relations as

1

Nmax

(∥x∥∗SMNO)
2 ≤ ∥x∥2A ≤ (∥x∥∗SMNO)

2
.

Using these inequalities in the strong convexity definitions, similarly to [45], we get both

F (y) ≥ F (x)+⟨∇F (x), y − x⟩+σA
2
(∥y − x∥A)

2

≥ F (x)+⟨∇F (x), y − x⟩+ σA
2Nmax

(∥y − x∥∗SMNO)
2
,

(3.21)

and
F (y)≥F (x)+⟨∇F (x), y−x⟩+σSMNO

2
(∥y−x∥∗SMNO)

2

≥ F (x)+⟨∇F (x), y − x⟩+σSMNO

2
(∥y − x∥A)

2.
(3.22)

Equation (3.21) says that F is at least σA
Nmax

-strongly convex in ∥·∥∗SMNO, and eq. (3.22)
says that F is at least σSMNO-strongly convex in ∥·∥A. Together they imply (3.19).

We can show (3.20) by the same procedure applied in eqs. (3.21) and (3.22), but now
using the strong convexity of F in norms ∥·∥∗SM and ∥·∥∗SMNO together with Lemma 11.
From 1

2
(∥z∥∗SMNO)

2 ≤ (∥z∥∗SM)2 we get 1
2
σSM ≤ σSMNO, and from (∥z∥∗SM)2 ≤ (∥z∥∗SMNO)

2

we get σSMNO ≤ σSM.

Finally, putting (3.19) and (3.20) together gives (3.17).

Theorems 9 and 13 together allow us to compare the convergence rates of SU-CD and
SGS-CD. We note that when σSM takes the upper value in (3.17), SGS-CD is (in expec-
tation) Nmax times faster than SU-CD. The lower bound in (3.17), on the other hand,
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suggests that SGS-CD could be slower than SU-CD. We remark that (in expectation)
this is not true and the lower bound is vacuous, since the following holds.

Remark 3. For the same sequence of node activations, the suboptimality reduction of
SGS-CD at each iteration is equal to or larger than that of SU-CD.

Taking this fact into account, we have the following result.

Corollary 3. In expectation, SGS-CD converges at least as fast as SU-CD, and can be
up to Nmax times faster.

Note that this result is analogous to that of [45] for single-machine CD, where they
show that the GS rule can be up to d times faster than uniform sampling, d being the
dimensionality of the problem.

We remark that achieving the upper bound of Nmax speedup may require designing a
scenario particularly favorable to SGS-CD with respect to SU-CD. Similarly, finding a
setting where the former converges at the same speed as the latter also requires designing
a particularly adversarial setting.

In our simulations of Section 3.7 for the decentralized setting, SGS-CD achieves a speedup
approximately in the middle of the range between 1 and Nmax. We show that this speedup
increases linearly with Nmax, achieving remarkable gains in terms of suboptimality reduc-
tion versus number of iterations (see Fig. 3.2). Furthermore, in the same figure we show
that for the parallel distributed setting the maximum speedup of Nmax is attainable. We
explain this further in Section 3.6.1.

3.5 Set-wise Lipschitz CD algorithms

In Section 3.4 we stated that the dual function F is L-smooth and therefore a sufficient
condition for the set-wise algorithms to converge was using stepsize ηk = 1/L. How-
ever, the updates of some (and maybe many) coordinates could use larger stepsizes by
exploiting the fact F has coordinate-wise smoothness Lℓ ≤ L, i.e. for α ∈ R:

|∇ℓF (λ+ αeℓ)−∇ℓF (λ)| ≤ Lℓα. (3.23)

Therefore, when the coordinate-wise Lipschitz constants Lℓ are known or can be estimated
(see Section 3.5.3) we can apply the update (3.4) with stepsize ηk = 1/Lℓ, with ℓ being
the coordinate updated at iteration k.

In the sections that follow we show that by using the knowledge (or estimation) of the
coordinate-wise Lipschitz constants and per-coordinate stepsizes we can have:

1. An algorithm that has randomized but non-uniform neighbor selection that is prov-
ably faster than SU-CD. We call this algorithm Set-wise Lipschitz CD (SL-CD).
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2. An algorithm that applies locally the Gauss-Southwell Lipschitz rule [45] and that
converges provably faster than both SL-CD and SGS-CD. We call this algorithm
Set-wise GS Lipschitz CD (SGSL-CD).

Once again, while the seminal work of [45] has analyzed both of these rules in the context
of single-machine coordinate descent, their adaptation to set-wise CD brings important
new challenges. In this section, we prove that SL-CD is at least as fast as SU-CD, and
that SGSL-CD is at least as fast as the fastest algorithm between SGS-CD and SL-CD.

In the proofs that follow we will use the following fact.

Fact 1. Denote a ◦ b the per-entry product of vectors a and b. Then, for any norm
∥·∥ and finite a : ai > 0 ∀i, if we define ∥x∥a := ∥a ◦ x∥, then ∥x∥∗a := ∥a−1 ◦ x∥∗ with
a−1 = [ 1

a1
, . . . , 1

ad
].

Proof. By definition

∥z∥∗a = sup
∥x∥a≤1

zTx,

and defining y := a ◦ x we get

∥z∥∗a = sup
∥y∥≤1

zT (a−1 ◦ y) = ∥a−1 ◦ z∥∗.

3.5.1 Set-wise Lipschitz CD (SL-CD)

In SL-CD, an activated node i chooses the edge ℓ ∈ Si to update at random with proba-
bility

pℓ =
Lℓ∑

m∈Si
Lm

(3.24)

and updates λℓ applying (3.4) with stepsize ηk = 1/Lℓ, where ℓ is the chosen edge.

For convenience, we define the quantities

L(i) :=
∑
m∈Si

Lm

and

Lℓ :=
(

1

L(i)
+

1

L(j)

)
for ℓ ≡ (i, j).

With these definitions, and taking expectation in (3.5) for the Lipschitz-dependent neigh-
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bor sampling probabilities (3.24) gives

E
[
F (λk+1) | λk

]
≤ F (λk)− 1

2
E
[

1

Lℓk

[
∇ℓkF (λ

k)
]2]

= F (λk)− 1

2n

n∑
i=1

1

L(i)

∑
ℓ∈Si

[
∇ℓF (λ

k)
]2

(a)
= F (λk)− 1

2n

E∑
ℓ=1

Lℓ
[
∇ℓF (λ

k)
]2

where in (a) we used that ℓ ≡ (i, j) implies ℓ ∈ Si,Sj.

In order to prove the convergence rate of SL-CD, provided in Theorem 14, we define the
norm

∥x∥L :=

√√√√ E∑
ℓ=1

Lℓx2ℓ ,

so that we can write the per-iteration progress of SL-CD as

E[F (λk+1)] ≤ F (λk)− 1

2n

∥∥∇F (λk)∥∥2L. (3.25)

Noting that ∥x∥L =
∥∥x ◦ [√L1, . . . ,

√
LE
]∥∥

2
we can apply Fact 1 to get its dual norm:

∥x∥∗L =

√√√√ E∑
ℓ=1

1

Lℓ
x2ℓ .

We call σL the strong convexity constant of F in this norm:

F (y) ≥ F (x) + ⟨∇F (x), y − x⟩+ σL
2
(∥y − x∥∗L)

2. (3.26)

We use the definitions of ∥·∥∗L and σL in the proof of the linear rate of SL-CD, given in
the theorem below.

Theorem 14 (Rate of SL-CD). SL-CD converges as

E
[
F (λk+1) | λk

]
− F (λ∗) ≤

(
1− σL

n

)[
F (λk)− F (λ∗)

]
and it holds that

σALmin ≤ σL ≤ σALmax (3.27)

with Lmin = minℓ Lℓ and Lmax = maxℓ Lℓ.

Proof. We start by proving the linear rate. Minimizing both sides of (3.26) with respect
to y as done in (3.10) and (3.18) we get

F (x∗) ≥ F (x)− 1

2σL
∥∇F (x)∥2L.
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Rearranging terms gives a lower bound on ∥∇F (x)∥2L, and replacing in (3.25) gives the
result.

We now move on to show (3.27). Once again, since the norms are evaluated at ∇F (λ)
and (3.8) holds, to obtain the relation between σL and σA we will compare ∥·∥∗L with ∥·∥2
directly. We have that

c∥x∥22 − (∥x∥∗L)
2 = c

∑
ℓ

x2ℓ −
∑
ℓ

1

Lℓ
x2ℓ =

∑
ℓ

(
c− 1

Lℓ

)
x2ℓ .

For c ≥ maxℓ
1
Lℓ

= 1
Lmin

the expression above is larger than zero, and thus

1

Lmin

∥x∥22 ≥ (∥x∥∗L)
2. (3.28)

Similarly, we have that

c∥x∥2L − ∥x∥
2
2 =

∑
ℓ

(
c

Lℓ
− 1

)
x2ℓ

is larger than zero for c ≥ Lmax, and therefore

Lmax(∥x∥∗L)
2 ≥ ∥x∥22. (3.29)

Using these inequalities (and Lemma 8) in the strong convexity definitions we have on
the one hand:

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ σA
2
∥y − x∥2A

≥ f(x) + ⟨∇f(x), y − x⟩+ σALmin

2
(∥y − x∥∗L)

2, (3.30)

and on the other hand:

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ σL
2
(∥y − x∥∗L)

2

≥ f(x) + ⟨∇f(x), y − x⟩+ σL
2Lmax

∥y − x∥2A. (3.31)

Eqs. (3.30) and (3.31) indicate respectively that σL ≥ σALmin and that σA ≥ σL
Lmax

.
Putting both together gives (3.27).

Having obtained the rate of SL-CD, we can compare it against that of SU-CD. We have
the following result.

Corollary 4. SL-CD converges as fast or faster than SU-CD.

Proof. The convergence rate of SU-CD is 2σA
LnNmax

(Theorem 9) and that of SL-CD is σL
n

(Theorem 14). Since in the slowest case of SL-CD we have σL = σALmin, it suffices to
show that Lmin ≥ 2

LNmax
. Indeed, we have that

L(i) =
∑
ℓ∈Si

Lℓ ≤ Lmax|Si| ≤ LmaxNmax
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and therefore

Lmin = min
(i,j)∈E

(
1

L(i)
+

1

L(j)

)
≥ 2

LmaxNmax

The proof is complete by noting that it always holds that Lmax ≤ L [44].

Since both SL-CD and SGS-CD can converge at the same speed as SU-CD in the worst
case, we cannot claim that either of them is faster than the other. We can, however,
exploit the knowledge of the Lipschitz constants to get an improved version of the GS
rule, known as the Gauss-Southwell Lipschitz rule [45], that when combined with per-
coordinate stepsizes allows for faster convergence than both SGS-CD and SL-CD. We
call this algorithm SGSL-CD, and we analyze it next.

3.5.2 Set-wise Gauss-Southwell Lipschitz CD (SGSL-CD)

If node i goes active, the Gauss-Southwell Lipschitz (GSL) rule chooses to update λℓ, ℓ ∈
Si according to

ℓ = argmax
m∈Si

∣∣∇mf(x
k)
∣∣

√
Lm

.

If we now use the GSL rule with the per-coordinate stepsizes ηk = 1/Lℓ, the per-iteration
progress given by (3.5) becomes:

EF (λk+1) ≤ F (λk)− 1

2n

n∑
i=1

max
ℓ∈Si

(
1

Lℓ

[
∇ℓF (λ

k)
]2)

. (3.32)

Note the resemblance of this expression with the per-iteration progress of SGS-CD in
(3.11). Similarly to the previous procedures, we define the “Set-Max Lipschitz” norm:

∥x∥SML :=

√√√√ n∑
i=1

max
ℓ∈Si

(
1

Lℓ
x2ℓ

)
, (3.33)

and call σSML the strong convexity constant of F in the dual norm ∥·∥∗SML

F (y) ≥ F (x) + ⟨∇F (x), y − x⟩+ σSML

2
(∥y − x∥∗SML)

2
. (3.34)

We can now state the convergence rate of SGSL-CD.

Theorem 15 (Rate of SGSL-CD). SGSL-CD converges as

EF (λk+1)|λk [−]F (λ∗) ≤
(
1− σSML

n

)[
F (λk)− F (λ∗)

]
, (3.35)

and it holds that
σSM
L
≤ σSML. (3.36)
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Proof. The expression of the rate is obtained with the procedure followed for the previous
algorithms: minimizing both sides of (3.34) with respect to y and arranging terms we
can find ∥∇F (x)∥SML ≥ 2σSML(F (x)− F (x∗)), and using this in (3.32) gives (3.35).

We now show (3.36). By definition, the dual norm of ∥·∥SML is

∥z∥∗SML := sup
x

{
zTx

∣∣∣∣ ∥x∥SML ≤ 1

}
= sup

x

zTx
∣∣∣∣
√√√√ n∑

i=1

max
ℓ∈Si

(
1

Lℓ
x2ℓ

)
≤ 1

.
Similarly, we can write the dual norm of ∥·∥SM provided in (3.14) also as

∥z∥∗SM := sup
x

{
zTx

∣∣∣∣ ∥x∥SM ≤ 1

}
= sup

x

zTx
∣∣∣∣
√√√√ n∑

i=1

max
ℓ∈Si

x2ℓ ≤ 1

.
We call the values that achieve the supremum x∗SML and x∗SM, respectively. To maximize
zTx, these values will satisfy the constraints of each dual norm with equality, i.e.

∥x∗SML∥SML = 1 and ∥x∗SM∥SM = 1.

From these conditions and the definitions of the dual norms above we obtain

x∗SML ◦
[

1√
L1

, · · · , 1√
LE

]
= x∗SM.

Furthermore, using again Lmax ≤ L, we have

x∗SM = x∗SML ◦
[

1√
L1

, · · · , 1√
LE

]
⪰ 1√

Lmax

x∗SML ⪰
1√
L
x∗SML,

where “⪰” indicates coordinate-wise inequality, and therefore

∥z∥∗SM ≥
1√
L
∥z∥∗SML.

Lastly, using this inequality in the strong convexity equation of F in ∥·∥∗SM:

F (y) ≥ F (x) + ⟨∇F (x), y − x⟩+ σSM
2

(∥y − x∥∗SM)
2

≥ F (x) + ⟨∇F (x), y − x⟩+ σSM
2L

(∥y − x∥∗SML)
2
,

from where we obtain σSM
L
≤ σSML

Theorem 15 states that SGSL-CD converges (in expectation) at least as fast as SGS-
CD. Algorithm SGSL-CD is also at least as fast as SL-CD by an argument analogous to
Remark 3: for the same sequence of node activations, the set-wise GSL rule achieves an
equal or larger suboptimality reduction than the random coordinate sampling with the
probabilities in (3.24). We thus have the following result.
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Corollary 5. In expectation, SGSL-CD converges equally fast or faster than both SGS-
CD and SL-CD.

We remark that we could have compared the convergence rates of SGSL-CD and SL-CD
following a procedure similar to the one used to compare SGS-CD and SU-CD, where
we would define a norm using non-overlapping sets (in this case, accounting also for
the coordinate-wise Lipschitz consants) as an intermediate step to compare the strong
convexity constants σL and σSML. We did this derivation and observed that just as it
happened with σSM in eq. (3.17), the lower bound on σSML is not tight and suggests that
SL-CD could be faster than SGSL-CD, which as we argued above, is not true.

Corollary 4 states that SL-CD is faster than SU-CD, and Corollary 5 states that SGSL-
CD is the fastest of all algorithms analyzed here. However, these two methods depend
on the knowledge of the per-coordinate Lipschitz constants Lℓ (see eq. (3.23)). These
constants are the global upper bounds on the diagonal entries of the Hessian H = ∇2F ,
given by

Hℓℓ(λ) = ∇2f ∗
i (U

T
i Λλ) +∇2f ∗

j (U
T
j Λλ), ℓ ≡ (i, j),

i.e. Hℓℓ(λ) ≤ Lℓ ∀λ. We next describe a decentralized algorithm to estimate these values
when they are not known. In Section 3.7 we show that the versions of SL-CD and SGSL-
CD that use estimated constants, which we call SeL-CD and SGSeL-CD, still perform
remarkably well.

3.5.3 Smoothness constants estimation

In [43] the author proposed a method to estimate the value of the instantaneous Lipschitz
constants Lℓ(λ) when they are not known. By instantaneous we mean the value of the
Lipschitz constants at the current point λk, and not global values valid for any value of
λ.

The procedure consists on finding, every time that variable λℓ is going to be updated at
iteration k, the lowest value Lℓ(λ

k) such that after applying update (3.4) with stepsize
ηk = 1/Lℓ(λ

k) it holds that ∇ℓF (λ
k) · ∇ℓF (λ

k+1) > 0. In other words, the procedure
searches for a Lipschitz constant (or equivalently, a stepsize) for which the update (3.4)
does not overshoot, making the gradient take a completely different direction.

The procedure to estimate Lℓ(λ
k) is shown in Algorithm 4. In our numerical simulations,

we denote SeL-CD and SGSeL-CD the versions of SL-CD and SGSL-CD that use esti-
mated Lipschitz constants instead of the exact L values. SeL-CD is obtained by replacing
line 8 in Alg. 2 with Alg. 4 and using the estimated values Lℓ for the random sampling.
SGSeL-CD is obtained by replacing line 10 in Alg. 3 with Alg. 4 and using the estimated
values Lℓ for the GSL neighbor choice.

The choice of the initial value L̂0
ℓ before entering the search loop is subject to a trade-off:

if L̂0
ℓ is too big, the loop will be exited after only one iteration but we risk being too

conservative and making a much smaller step than we could. Conversely, if L̂0
ℓ is too

small, by repeated doubling we will eventually find the value L̂ℓ that is closest to the
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Algorithm 4 Online smoothness constant estimation

1: Assumption: Nodes i and j will update λℓ, ℓ ≡ (i, j) and they have already ex-
changed their ∇f ∗

x(u
T
xAλ), x = i, j.

Inputs: Instantaneous smoothness starting value L̂0
ℓ

Each node x = i, j then runs:

2: Compute ∇ℓF (λ
k) with (3.6) using ∇f ∗

x(u
T
xAλ), x = i, j

3: Set L̂ℓ ← L̂0
ℓ

4: do ...

5: Set L̂ℓ ← 2 · L̂ℓ
6: Compute λ̂ℓ = λkℓ − (1/L̂ℓ) · ∇ℓF (λ

k)

7: Compute ∇f ∗
x(u

T
xAλ̂ℓ) and send to neighbor

8: Compute ∇ℓF (λ̂) with (3.6) using ∇f ∗
x(u

T
xAλ̂ℓ), x=i, j

9: ... while ∇ℓF (λ
k) · ∇ℓF (λ̂) ≤ 0

10: end do-while

11: Set Lk+1
ℓ ← L̂ℓ and λ

k+1
ℓ ← λ̂ℓ

true instantaneous smoothness Lℓ(λ
k), but this may take many iterations inside the loop,

which means many rounds of computation and communication for the nodes involved.

How are these estimated values expected to perform with respect to the analytical ones?
This depends very much on the problem at hand. We can easily construct a case (for
where the exact constants perform better than the estimated: assume that the function
to optimize is f(x) = xTdiag(L1, . . . , Ld)x. If x0 ̸= 0, then the algorithm using the
analytic constants converges in d steps (one in each coordinate). However, using estimated

constants will most likely exit the search loop finding values L̂i ̸= Li, and thus will need
more iterations. Conversely, the analytical constants are global quantities, and therefore,
although they are valid in the complete optimization space, they might be very different
to the real instantaneous Lipschitz constants for many values of λ. In that case, we may
get a much better approximation to the instantaneous value using the estimations, and
therefore a faster convergence due to using a larger stepsize. In Section 3.7 we provide
numerical tests where we observe both behaviors.

3.6 Additional considerations

3.6.1 Application to parallel distributed optimization

In the parallel distributed setup, the parameter vector is stored in a server accessible by
multiple workers, each of which modifies some or all of the coordinates of the parameter.
We assume that coordinates are updated by a single worker at each iteration and workers
always access the most recent value of the parameter.

In this setting, if there are E coordinates, n workers, and we let each worker i update a
different set Si of coordinates such that (i) the sets overlap, and (ii) each coordinate can
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be updated by exactly two workers, then all results presented previously (Theorems 9, 13,
14, and 15) hold also for this setting. We remark these two conditions are not necessary
conditions to apply the set-wise CD algorithms to the parallel distributed setting, but
only to directly apply the results of the theorems, which were derived for the decentralized
setting. In fact, the family of set-wise CD algorithms can always be applied to the parallel
distributed setting independently of the degree of overlapping of the sets and the number
of the coordinates modified by each worker.

We can then also easily construct a setting where SGS-CD is Nmax times faster than
SU-CD: let all sets have the same size |Si| = Nmax ∀i, exactly (Nmax − 1) coordinates in
each set have ∇mF (λ) = 0, and only one ℓ have ∇ℓF (λ) ̸= 0. In this case, on average
only 1

Nmax
times will SU-CD choose the coordinate that gives some improvement, while

SGS-CD will do it at all iterations.

Note that achieving the maximum speedup for this carefully crafted scenario requires that
the gradients of all coordinates are independent, which is not verified in the decentralized
optimization setting: according to eq. (3.6), for a ∇mF to be zero, it must hold that
∇f ∗

i = ∇f ∗
j for m ≡ (i, j). But unless this equality holds for all (i, j) ∈ E (i.e., unless

the minimum has been attained), λ will continue to change, and the ∇f ∗
i will differ. This

prevents us from easily designing a scenario in the decentralized setting where SGS-CD
attains the speedup upper bound with respect to SU-CD. Nevertheless, in Figure 3.2 we
show examples where (i) the speedup increases linearly with Nmax for the decentralized
setting, and (ii) the speedup matches Nmax for the parallel distributed setting.

3.6.2 Dual-unfriendly functions and relation to dual ascent

The exposition that we have adopted up to this point may suggest that in order to run
the set-wise CD methods presented here, one should be able to compute the Fenchel
conjugates f ∗

i for i ∈ [n]. Computing these functions may be tedious, and in some cases,
like the logistic regression example presented in the next section, simply impossible.

However, we remark that the dual coordinate algorithm presented here is equivalent to
the dual decomposition method (Section 2.2 in [100]) and therefore the gradients ∇f ∗

i

can be directly computed by minimizing the per-node Lagrangian (see also Proposition
11.3 in [101])

∇f ∗
i (u

T
i Aλ) = argmin

θi

[
fi(θi) +

∑
ℓ∈Si

Aiℓλℓθi

]
. (3.37)

Therefore, to apply the algorithms presented here we do not need to be able to compute
the Fenchel conjugates f ∗

i , as long as we can solve (3.37) analytically or numerically to
a high precision. This is what we do in our experiments of Section 3.7 for the logistic
regression problem.
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Figure 3.2: Comparison of the convergence rates of SU-CD and SGS-CD for quadratic
problems in two settings: decentralized optimization over a network (left plots), and
parallel distributed computation with parameter server (right plots).

3.6.3 Case d > 1

To extend the proofs above for d > 1, the block arrays Λ and Ui should be used instead
of A and ui, and the selector matrices Ti should be redefined in the same way (i.e., by
making a Kronecker product with the identity). Then, all the operations that in the
proofs above are applied per entry (scalar coordinate) of the vector λ, should now be
applied to the magnitude of each vector (or “block” [46]) coordinate λℓ ∈ Rd of λ ∈ REd.
Also, since ∇mF ∈ Rd, in this case the GS rule becomes argmaxm∈Si

∥∇mF (λ)∥22 (and
the GSL rule is modified analogously).

3.7 Numerical results

In this section, we test the algorithms proposed in numerical simulations and analyze
their performance in a range of different scenarios. In all cases, we used (3.37) to compute
the ∇f ∗

i needed in (3.6). For quadratic and linear least squares problems (3.37) has a
closed-form expression, while for logistic regression we used the SciPy module for the
optimization [102].

3.7.1 SU-CD vs SGS-CD: speedup increase with Nmax

Figure 3.2 shows an example in the decentralized setting where the speedup of SGS-CD
compared to SU-CD increases linearly with Nmax (left plots), and an example in the
parallel distributed setting where SGS-CD achieves the maximum speedup of Nmax (right
plots).

For the decentralized setting, we created two regular graphs of n = 32 nodes and degrees
Nmax = 8 and 12, respectively. The local functions were fi(θ) = θT cIdθ with d = 5, and
the constant c being much larger for one node than all others. This choice gave a few
edges with smoothness constants much smaller than the rest, maximizing the chances to
observe the advantages of SGS-CD versus SU-CD (see also the discussion in Section 4.1
of [45]).

For the parallel distributed setting, we created a problem that was separable per-coordinate,
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and we tried to recreate the conditions described in Section 3.6.1 to approximate the Nmax

gain. We chose F (x) = xTdiag(a1, ..., ad)x with d = 48 and ai ∼ N (10, 3) ∀i. We then
created n sets of Nmax coordinates such that each coordinate belonged to exactly two sets,
and simulated two different distributions of the d = 48 coordinates: one with n = 24 sets
of Nmax = 4 coordinates, and another with n = 12 sets of Nmax = 8 coordinates. Follow-
ing the reasoning in Sec. 3.6.1, we set the initial value of (Nmax − 1) coordinates in each
set to x0m = 1 (close to the optimal value x∗m = 0), and the one remaining to x0ℓ = 100
(far away from x∗ℓ = 0).

In all plots of Fig. 3.2 we used the portion of the curves highlighted with thicker lines
to estimate the suboptimality reduction factor (1− ρ), and called ρU and ρG the rates of
SU-CD and SGS-CD, respectively. In all cases we see that 1 ≤ ρG

ρU
≤ Nmax, as predicted

by Theorem 13. We additionally observe that this ratio increases approximately in the
same proportion as Nmax for the decentralized setting, and is approximately equal to
Nmax in the parallel distributed.

3.7.2 Number of iterations vs communication complexity

Figure 3.3 shows the performance of all algorithms proposed for the linear least squares
problem

fi(θ) =
1

M
∥Xiθ − Yi∥22, Xi ∈ RM×d, Yi ∈ RM ,

in two random graphs of n = 32 nodes and link probabilities of 0.1 (left plots) and 0.5
(right plots), respectively. The data was generated with the model of [35], d = 5,M = 30,
and the Y values were additionally multiplied by the index of the corresponding node
to have non-iid data between the nodes. Here we do not only show the convergence of
the algorithms in terms of the number of iterations (top plots) but also in terms of the
number of vectors in Rd transmitted through the network for each suboptimality value
computed. Table 3.2 shows the communication complexity of each algorithm in these
terms.

Table 3.2: Communication complexity of each algorithm: number of vectors in Rd trans-
mitted in one iteration for an arbitrary activated node i. Variable I indicates the number
of iterations inside the do-while loop in Alg. 4.

SU-CD 2 SGS-CD Ni + 1

SL-CD 2 SGSL-CD Ni + 1

SeL-CD 2 + 2I SGSeL-CD Ni + 1 + 2I

In terms of the number of iterations, we confirm the conclusions of all our corollaries,
namely (i) SGS-CD converges faster than SU-CD (Corollary 3), (ii) SL-CD converges
faster than SU-CD (Corollary 4), and (iii) SGSL-CD converges faster than both SL-
CD and SGS-CD (Corollary 5). Whether the versions with estimated Lipschitz constants
SeL-CD and SGSeL-CD are faster than their counterparts with exact Lipschitz knowledge
SL-CD and SGSL-CD depends on the problem instance. We discuss this further in Section
3.8. As already observed in Fig. 3.2, the speedup of the algorithms applying either the
GS or the GSL rule increases radically as the graph becomes more connected.
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Figure 3.3: Performance of the algorithms presented in a linear least squares problem
and two random graphs with different numbers of edges (left and right columns). The
top plots show convergence in terms of the number of iterations and the bottom plots, in
terms of the number of vectors in Rd transmitted.

The plots in terms of the number of vectors transmitted provide a complementary point
of view of the relative performance of all these algorithms. We observe that for a sparsely
connected graph (bottom-left plot in Fig. 3.3), SGS-CD and SGSL-CD may still achieve
lower suboptimality than SU-CD for the same number of transmissions, but they are
already outperformed by SL-CD. Algorithms SeL-CD and SGSeL-CD are the slowest
when plotted against number of transmissions, since they have the additional overhead
of estimating the smoothness constants. The gap between SU-CD and SL-CD, which
are the algorithms with the lowest number of vector transmissions per iteration (see
Table 3.2) and the rest of the algorithms becomes larger (in favor of the former) as the
graph becomes more connected (bottom-left plot in Fig. 3.3). While it is natural that
plotting the suboptimality reduction versus the number of vector transmissions benefits
the algorithms using randomized neighbor selection (and no smoothness estimation), this
does not necessarily mean that they will converge faster in a real system in terms of
wall-clock time. We discuss this further in Section 3.8.
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Figure 3.4: Convergence of SeL-CD and SGSeL-CD in a logistic regression problem.

3.7.3 A dual-unfriendly problem with no L knowledge

Figure 3.4 shows the convergence of SeL-CD and SGSeL-CD in the logistic regression
problem

fi(θ) =
1

M

M∑
j=1

log
(
1 + exp(−(Yi)j · ((Xi)j)

T θi)
)
+ c∥θi∥22

where (Yi)j and (Xi)j are the j-th component and the j-th row of arrays Yi and Xi,
respectively. We ran the simulation for the same graphs and parameter choices used
for the experiments in Section 3.7.2. In this case, we cannot compute analytically the
optimal value of (3.37), so we did the optimization in (3.37) using the SciPy module. For
the same reason, we do not know the true coordinate Lipschitz values Lℓ, so we test only
the algorithms using estimated constants.

As in the previous examples, both algorithms converge linearly, and SGSeL-CD is faster
than SeL-CD. We may remark however that in this example the gap between the two
algorithms does not increase with the graph connectivity, as observed with the algorithms
that do not use estimated Lipschitz constants. Indeed, we observed that when the Lℓ are
estimated, the gap between SGSeL-CD and SeL-CD may or may not increase with the
connectivity of the graph. We attribute this effect to the fact that the performance of the
algorithms depends very much on how close to optimal the estimated Lipschitz constants
are, and therefore, some instances that allow for a better fit of the true constants using
Alg. 4 have advantage over others whose true constants cannot be well approximated. In
the case of Fig. 3.4, we conjecture that the setting of the left plot allowed for particularly
good estimation of the true Lipschitz constants by SeL-CD. In Section 3.8 we discuss in
more detail how to improve the estimation of Alg. 4, and the associated costs of this
improvement.

3.8 Discussion and conclusion

We have presented the class of set-wise CD optimization algorithms, where in a multi-
agent system workers are allowed to modify only a subset of the total number of coordi-
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nates at each iteration. These algorithms are suitable for (dual) asynchronous decentral-
ized optimization and (primal) distributed parallel optimization.

We studied the convergence of a number of set-wise CD variants: random uniform and
Gauss-Southwell set-wise coordinate selection (SU-CD and SGS-CD), and their Lipschitz-
informed versions (SL-CD and SGSL-CD). We showed linear convergence for all variants
for smooth and strongly convex functions fi, which required developing a new method-
ology that extends previous results on CD methods.

In particular, we proved that in expectation, when convergence is measured in terms of
number of iterations, both SGS-CD and SL-CD are faster than SU-CD, and SGSL-CD is
the fastest of them all. However, running one iteration of each algorithm requires different
amount of computation and communication (see Table 3.2). When the convergence is
measured in terms of number of vectors transmitted through the network, the random
algorithms become better than the ones based on the GS rule as the connectivity of
the network increases. However, neither the performance measured against number of
iterations nor of vectors transmitted is sufficient to decide which will perform the fastest in
a real setup. Since all algorithms are asynchronous and can modify multiple coordinates
simultaneously, in a real scenario many iterations and vector transmissions will occur
at the same time, and the actual wall-clock time of the algorithm will depend on the
network connectivity and where the bottlenecks of the system are (e.g. low link capacities,
presence of stragglers).

Lastly, we proposed the methods SeL-CD and SGSeL-CD, which run respectively SL-CD
and SGSL-CD but with online coordinate Lipschitz constant estimation for the cases
where these values cannot be easily obtained. While these estimations can achieve re-
markably good performance in terms of number of iterations (top plots in Fig. 3.3) they
come with a greater penalty in number of vectors transmitted, which shows clearly in
the bottom plots of Fig. 3.3. In cases where there is no alternative but to use estimated
Lipschitz constants, as in our logistic regression example of Section 3.7.3, and if the com-
municaion constraints allow it, we could design an algorithm better than Alg. 4 that,
instead of doubling L̂ℓ at each time (line 5), runs a bisection search to approximate the
true Lℓ as much as possible. This would, of course, increase the communication cost even
further, and once again, whether this penalty is worth paying is an engineering decision
that will depend on the system setup and its constraints.
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Chapter 4

Peer-to-peer aided federated
learning

4.1 Introduction

Federated learning (FL) is a recent machine learning framework that allows multiple
agents, each of them with their own dataset, to train a model collaboratively without
sharing their data [47–49, 103]. The federated setting assumes that all agents are con-
nected to a server that can communicate with each of them and that is in charge of
aggregating the agents’ updates to obtain the global model. This is similar to parallel
distributed (PD) model training [96, 104–106], with one crucial difference: in the latter,
the agents send gradients to the central server to update the parameter value with a
gradient step, while in FL the agents send their own local parameters for the server to
average them. This has an impact on the communication frequency required by each
framework: in PD, one round of communication between (usually all) the agents and
the server has to happen every time a (mini-batch) stochastic gradient descent (SGD)
step is taken at the nodes, while in FL (i) multiple SGD updates can happen before a
new server communication round takes place (which in FL literature are usually called
local updates), and (ii) not all devices need to engage in the server communication round
(which is known as partial participation). This makes FL a much more suitable option
for settings with a large number of agents and a limited communication bandwidth with
the server.

In contrast to the approaches described above, the decentralized setting does not rely on
a central server for the aggregation of the nodes’ updates. Instead, it assumes that the
agents are interconnected in a network and each of them can exchange optimization values
(either parameters or gradients, depending on the algorithm) with its direct neighbors
[20, 24, 26, 28, 29, 35, 38]. In the decentralized setting, every node performs an averaging
step of all its neighbors’ received values before taking a new gradient step. Algorithms
for this setting are designed such that the local parameters of all nodes converge to the
global minimizer, while in FL it is the central server who keeps track of the most recent
parameter value and broadcasts it to all agents every once in a while.
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The attractive feature of FL of allowing to have server communication rounds every once
in a while comes at a cost: the more infrequent the server communication rounds are
(i.e., the more local updates are performed at the agents), the slower is the convergence
[50,107]. For this reason, in this chapter we propose to exploit inter-agent communication
to reduce the negative impact of infrequent server communication rounds. Given that (i)
each agent is expected to have much fewer neighbors than the total number of agents,
and (ii) short-range inter-agent communications allow for spectrum reuse, agents can
communicate much more often between them than with the server [55,56].

We propose FedDec, an FL algorithm where the agents can exchange and average their
current parameters with those of their neighbors in between the local SGD steps. We
show that this modification reduces the dependence of the convergence bound on the
number of local SGD steps H from O(H2) [50,54] to O(H) (Theorem 16). Furthermore,
we show that, in our analysis, the extra H factor is replaced by a value α that depends
on the spectrum of the graph defining the inter-agent communication. Since the value
of α quickly decreases as the network becomes more connected, our result indicates that
for mildly connected networks H can be increased without severely hurting convergence
speed (or conversely, for fixed H, FedDec will be faster than FedAvg [47], its counterpart
without inter-agent communication).

Peer-to-peer communication within FL has been considered a few times in the past [57–
61]. These works either analyze very general distributed settings that have FL with
inter-agent communication as a particular case [60, 61], or show that FL with inter-
agent communication converges at the same rate as standard FL, and outperforms it in
simulations [57–59]. However, none of them has characterized analytically how inter-agent
communication reduces the impact of local updates on convergence, and in particular,
how this reduction depends on the inter-agent connectivity.

Our contributions can be summarized as follows:

• We introduce FedDec, an FL algorithm where the agents can average their param-
eters with those of their neighbors in between the SGD steps. Our model accounts
for failures in the inter-agent communication links, so that only a few (or even none)
of the parameters of a node’s neighbors may be averaged at some iterations.

• We prove that, for non-iid data, partial device participation, and smooth and
strongly convex objectives, FedDec converges at the O(1/T ) rate (where T is the
total number of iterations executed) of FL algorithms that do not account for inter-
agent communication [50,54], but improves the dependence on the number of local
updates H from O(H2) to O(H).

• Furthermore, we show that the improved term is multiplied by a quantity that
depends on the spectrum of the inter-agent communication network, and which
quickly vanishes the more connected the network is.

• We support our theoretical findings with numerical simulations, where we confirm
that the performance of FedDec with respect to FedAvg [47] increases with both H
and the connectivity of the network.
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Figure 4.1: The FedDec setting. Peer-to-peer communication links are shown in dotted
lines (high-bandwidth links). Communication links between the agents and the server
are shown in dashed lines (low-bandwidth links).

4.2 System model and the FedDec algorithm

We consider a system where n agents can exchange messages with a central server and
also with some other nearby agents. We assume that the inter-agent communication
links may fail at some iterations (e.g. due to outage), but when all links are active the
agents form a connected network (see Figure 4.1). Each node i ∈ [n] has a local cost
Fi : Rd → R,

Fi(z) := Eψi∼Di
Fi(z, ψi),

where Di can be an underlying local data distribution from where new samples (or mini-
batches) are drawn each time an SGD step is taken, or the uniform distribution over a
static dataset. Note that the Di can be different at each node. The objective of the nodes
and the server is to find the minimizer

z∗ := argmin
z∈Rd

f(z), f(z) :=
1

n

n∑
i=1

Fi(z)

under the constraints that nodes can only communicate with their direct neighbors (high-
bandwidth links) and every once in a while they can get a request from the server to send
their current parameter values (low-bandwidth links). In wireless settings, these capaci-
ties are imposed by the shared nature of the cellular medium. While the communication
with the server is constrained by the bandwidth available, device-to-device communica-
tions in the short range allows for spectrum reuse, and thus for higher throughput [55,56].

At each server communication round, the server samples the devices uniformly1 at random
with replacement to form an index pool St of devices that it will poll during that round.
We assume |St| = K ∀ t. It then averages the parameters of all j ∈ St and broadcasts the
new value to all nodes in the network. Due to the limited bandwidth, we assume partial
participation, i.e. K ≪ n. We assume that the server aggregation rounds happen every
H local updates, and we call H = {t : t modulo H = 0} the set of those times.

One local update of FedDec for a node i consists on (i) taking an SGD step, (ii) for all

1Our analysis is readily extendable to the case where the server samples with non-uniform probabilities

{pi}ni=1, in which case the cost becomes f(z)=
∑n

i=1piFi(z) and the term σ2

n in Theorem 16 becomes∑n
i=1p

2
iσ

2
i .
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Algorithm 5 Peer-to-peer aided FL: FedDec algorithm

1: Initialize z1i = z1 ∀i ∈ [n] and let ηt =
2

µ(t+γ)
.

2: for t = 1, . . . , T all agents i ∈ [n] do
3: Sample mixing matrix W t ∼ W
4: Sample mini-batch ξti and compute ∇Fi(zti, ξti)
5: Update local parameter x

t+ 1
2

i = zti − ηt∇Fi(zti, ξti)
6: Average with neighbors xt+1

i =
∑n

j=1W
t
ijx

t+ 1
2

j

7: If t+ 1 ∈ H then
8: Server samples St = {jℓ : jℓ ∼ U([n])}Kℓ=1

9: it computes zt+1 = 1
K

∑K
ℓ=1 x

t+1
jℓ

10: and broadcasts so that zt+1
i = zt+1 ∀i ∈ [n]

11: otherwise
12: zt+1

i = xt+1
i

13: end for
14: Output zT+1

active links (i.e. ∀j:W t
ij > 0), exchanging the new parameter value with its neighbors,

and (iii) combining all new values (including its own) with weights W t
ij to form the new

iterate. We call this algorithm FedDec, and the precise steps are shown in Algorithm 5.

With slight abuse of notation, the stochastic gradient of a node i computed on a mini-
batch ξi = {ψji : ψ

j
i ∼ Di}mj=1 of size m is given by ∇Fi(zi, ξi) = 1

m

∑m
j=1∇Fi(zi, ψ

j
i ). For

simplicity, we will assume that the number of iterations T satisfies (T modulo H) = 0,
so that the outputted value in Alg. 5 is the current parameter at all nodes. We will also
take the following assumptions, which are standard in the literature [29,50,54,57–59].

Assumption 1. We assume the following ∀Fi(z), i ∈ [n]:

1) L-smoothness and µ-strong convexity:

Fi(y) ≤ Fi(x) + ⟨∇Fi(x),y − x⟩+ (L/2)∥y − x∥22, (4.1)

Fi(y) ≥ Fi(x) + ⟨∇Fi(x),y − x⟩+ (µ/2)∥y − x∥22. (4.2)

2) Bounded variance of the local gradients:

E∥∇Fi(x, ξi)−∇Fi(x)∥22 ≤ σ2
i .

3) Bounded energy of the local gradients:

E∥∇Fi(x, ξi)∥22 ≤ G2 for i ∈ [n]. (4.3)

We remark that (4.2) implies ∥∇Fi(zi)∥2 ≥ µ∥zi − z∗i ∥2 (see definition of z∗i below).
Therefore, in order to satisfy (4.3) we must additionally assume that the parameter
iterates zi belong to a bounded set throughout the iterations.

Note that L-smoothness implies

∥∇Fi(x)−∇Fi(y)∥ ≤ L∥x− y∥2, (4.4)

66



4.3. CONVERGENCE ANALYSIS

∥∇f(z)∥22 = ∥∇f(z)−∇f(z
∗)∥22 ≤ 2L(f(z)− f(z∗)). (4.5)

Furthermore, the local gradients’ bounded variance implies

E

∥∥∥∥∥ 1n
n∑
i=1

(
∇Fi(zti)−∇Fi(zti, ξti)

)∥∥∥∥∥
2

2

≤ σ2

n
, (4.6)

with σ2 = 1
n

∑n
i=1σ

2
i .

We quantify the degree of heterogeneity (or non-iidness) between the local functions
through the quantity

Γ =
1

n

n∑
i=1

(Fi(z
∗)− Fi(z∗i )), where z∗i = argmin

z
Fi(z).

FedDec uses two parameters to track the updates: zi, the parameters just before the SGD
and neighbor averaging steps, and xi, the parameters just after those steps. These values
may be equal or not depending on t and whether it is a server communication round (see
Alg. 5). We define

xt =
1

n

n∑
i=1

xti, zt =
1

n

n∑
i=1

zti,

which will be useful in the analysis. Note that zt = xt only when t /∈ H. Otherwise, if
t ∈ H, the equality holds only in expectation:

EStz
t = ESt

1

n

n∑
i=1

zti =
1

n

n∑
i=1

1

K

K∑
ℓ=1

EStx
t
jℓ
= xt. (4.7)

Lastly, we assume the following about the W t = {W t
ij}.

Assumption 2. The averaging matrices W t ∈ Rn×n are iid random variables drawn
from a distribution W of matrices that (i) are symmetric, (ii) are doubly stochastic, and
(iii) have W t

ij ≥ 0 if agents i and j are connected and W t
ij = 0 otherwise. Note that

this implies that ∀W ∈ W : W1 = 1, 1TW = 1T . Additionally, we require that the
eigenvalues of EW

[
WW T

]
satisfy 1 = λ1 > |λ2| ≥ . . . ≥ |λn|.

In the next section, we prove that FedDec converges as O(1/T ), similarly to other FL
algorithms taking the same assumptions, but it reduces the negative impact of local
updates by replacing an H2 factor [50,54], with Hα, where α is a quantity that decreases
quickly as the inter-agent communication network becomes more connected.

4.3 Convergence analysis

The following theorem establishes the convergence rate of FedDec and constitutes our
main result.
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Theorem 16. Under Assumptions 1, 2, and for diminishing stepsize ηt =
2

µ(γ+t)
, FedDec

in Algorithm 5 converges as

E[f(zt)]− f(z∗) ≤ L

γ + t

(
2B

µ2
+

(γ + 1)

2

∥∥z1 − z∗
∥∥2
2

)
where

γ = max{8(L/µ)− 1, H}
B = (4/K + 8)αHG2 + 6LΓ + σ2/n

α = |λ̂2| / (1− |λ̂2|)

and |λ̂2| = |λ2
(
EW
[
WW T

])
|.

The theorem shows that factors like the energy and the variance of the local gradients,
the heterogeneity of the local functions, and the distance of the starting point to the
optimum all slow down convergence, which are known facts. However, this bound also
shows how inter-agent communication partially mitigates the negative impact of local
updates: the term where H appears decreases with α, and therefore decreases very fast
with |λ̂2| (see Figure 4.2).

Note that if all inter-agent communication links are assumed to be always active, then
W t = W is a fixed matrix and |λ̂2| = |λ2|2. For any given heuristic to construct W
(e.g. based on the Laplacian of the graph [108]), the value of |λ2| is, in general, lower
the more connected the network is (see Table 4.1 in Section 4.4). Therefore, the more
densely connected the network is, the faster FedDec is expected to converge. In fact, the
averaging weights Wij can be designed in order to minimize |λ2| (and thus maximize the
speedup from inter-agent communication) using eigenvalue optimization techniques [109].

Comparing the bound of Theorem 16 with that of Theorem 2 in [50], obtained for the same
setting but without allowing inter-agent communication, we note that the dependence of
the first term in B on the number of local iterations H drops from O(H2) in [50] to O(H)
in our theorem. This suggests that the peer-to-peer communication of FedDec reduces the
impact of the infrequent communication rounds with the server, and thus its convergence
should be less affected than that of FedAvg as H increases. We verify this behavior in
our simulations in Section 4.4.

To prove the theorem, we will need to bound the quantity ∥zt − z∗∥22. For this we will

decompose the term and bound ∥zt − xt∥22 and ∥xt − z∗∥22 separately. The following
lemmas present these intermediate results, and we prove Theorem 16 at the end of the
section. The proofs of the lemmas are given in Appendix B.2.

Lemma 17. For FedDec with stepsize ηt ≤ 1
4L

it holds

E
∥∥xt+1 − z∗

∥∥2
2
≤ (1− µηt)E

∥∥zt − z∗
∥∥2
2
+

2

n
E

n∑
i=1

∥∥zti − zt
∥∥2
2
+ 6Lη2tΓ + η2t

σ2

n
.

Lemma 17 bounds the one-step progress of the algorithm before a potential server aggre-
gation round.
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Figure 4.2: Dependence of α with |λ̂2|. For networks moderately connected (see Section
4.4) we can expect that α≪ H, and thus also that FedDec will be faster than FedAvg.

Lemma 18. For stepsizes satisfying ηt ≤ 2ηt+H , it holds that

E
n∑
i=1

∥∥zti − zt
∥∥2
2
≤ η2t 4αHnG

2

with α = |λ̂2|
1−|λ̂2|

.

Lemma 18 bounds the divergence of the local parameters to their average, which increases
through the H iterations in between the server broadcasting rounds. It is in this pro-
cess (which involves multiple neighbor averaging steps) where we see the impact of the
connectivity of the graph.

As remarked in Section 4.2, zt = xt ∀ t /∈ H. Otherwise, the equality holds only in
expectation (eq. (4.7)). Lemma 19 bounds the variance of z in the latter case.

Lemma 19. For t ∈ H and stepsizes satisfying ηt ≤ 2ηt+H

E
∥∥xt − zt

∥∥2
2
≤ 1

K
η2t 4αHG

2,

with α given in Lemma 18.

Lastly, we have the following lemma from [50].

Lemma 20. Let a sequence ∆t satisfy

∆t+1 ≤ (1− µηt)∆t + η2tB (4.8)

with µ,B > 0. Then, for a diminishing stepsize ηt =
2

µ(γ+t)
with γ > 0, it holds that

∆t ≤ v
γ+t

, where v = max{4B
µ2
, (γ + 1)∆1}.

Proof. See proof of Theorem 1 in [50].
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This bound establishes the parameter choices that allow the sequence ∆t to converge.
We have now all the tools necessary to prove the main theorem.

Proof of Theorem 16. We start by noting that

E
∥∥zt+1 − z∗

∥∥2
2
= E

∥∥zt+1 − xt+1 + xt+1 − z∗
∥∥2
2

= E
∥∥zt+1 − xt+1

∥∥2
2
+ E

∥∥xt+1 − z∗
∥∥2
2
+ 2E

〈
zt+1 − xt+1,xt+1 − z∗

〉
.

The last term becomes zero when taking expectation, since EStz
t = xt (eq. (4.7)). The

first term is zero when t + 1 /∈ H, and for all other iterations we can bound it using
Lemma 19 (and the fact that η2t+1 < η2t ). We bound the second term using Lemma 17.
We have then

E
∥∥zt+1 − z∗

∥∥2
2
≤ 1

K
η2t 4αHG

2+(1−µηt)E
∥∥zt − z∗

∥∥2
2
+

2

n
E

n∑
i=1

∥∥zti − zt
∥∥2
2
+6Lη2tΓ+η2t

σ2

n
.

Using Lemma 18 to bound E
∑n

i=1∥zti − zt∥22 we get

E
∥∥zt+1 − z∗

∥∥2
2
≤ (1− µηt)E

∥∥zt − z∗
∥∥2
2
+ η2t

[(
4

K
+ 8

)
αHG2 + 6LΓ +

σ2

n

]
.

This has the form of (4.8) with ∆t = ∥zt − z∗∥22 and B =
(

4
K
+ 8
)
αHG2 + 6LΓ + σ2/n,

so applying Lemma 20:

E
∥∥zt − z∗

∥∥2
2
≤ v

γ + t
≤ 1

γ + t

(
4B

µ2
+ (γ + 1)∆1

)
. (4.9)

Note that in order to ensure ηt ≤ 1
4L

(Lemma 17) and ηt ≤ 2ηt+H (Lemmas 18 and 19)
we need to set γ = max{8L

µ
− 1, H}. Finally, using L-smoothness and ∇f(z∗) = 0,

E[f(zt)]− f(z∗) ≤ L

2
E
∥∥zt − z∗

∥∥2
2
.

Using (4.9) in the inequality above gives the result.

4.4 Numerical results

In this section we compare the performance of FedDec with that of FedAvg [47] in a
problem with partial device participation and heterogeneous data.

We consider the linear regression problem

Fi(z) =
1

M
∥Xi z− Yi∥22, i ∈ [n],

70



4.4. NUMERICAL RESULTS

Figure 4.3: Graphs used in the simulations. Left: sparse graph with r = 0.35. Right:
dense graph with r = 0.5.

with Xi, Yi ∈ RM×d,M = 10, and d = 25. For generating the regression data we follow a
procedure similar to [35]: we set [Xi]j ∼ N (0, 0.252), j ∈ [d] and Yi = ci(v+cos(v)), where
v = Xi1 and ci = 2i, i ∈ [n] is a factor that makes the data at each node significantly
different from all others.

For the inter-agent communication, we generate geographic graphs of n = 20 nodes by
taking n points distributed uniformly at random in a 1 × 1 square and joining with a
link all pairs of points whose Euclidean distance is smaller than a radius r. We test our
algorithms in two graphs with r = 0.35 and 0.5, respectively (see Figure 4.3). We run
T = 5000 iterations with K = 2, m = 1, and H = 10, 100.

Figure 4.4 shows the convergence of FedDec and FedAvg for each graph in Fig. 4.3 and
the two values of H. The stepsize was set to the value indicated in Theorem 16. The lines
shown are the average of ten independent runs of the algorithms on the same problem
instance.

Comparing the plots in Fig. 4.4 vertically (i.e., comparing the two graphs for the same
H), we confirm that higher connectivity leads to larger gains of FedDec over FedAvg.
This can be understood intuitively by noticing that a denser graph facilitates a faster
spread of information. Since |λ2| correlates with the graph connectivity (see Table 4.1),
in this case it is a good predictor of the convergence speed of FedDec. However, we note
that it has been reported that connectivity, as measured by |λ2|, seems to be predictive
of the convergence speed of decentralized algorithms (in terms of number of iterations)
only when the nodes have sufficiently different data [91], as is the case in our simulations.
When the data is iid among the nodes, the number of effective neighbors seems to be a
better predictor [110].

Comparing the plots in Fig. 4.4 horizontally (i.e., comparing the effect of changing H for
a given graph), we verify that as H increases the convergence speed of FedAvg decreases
more than that of FedDec. Therefore, FedDec allows for sparser server communication
rounds without significantly sacrificing convergence speed, which is in accordance with
Theorem 16.

One may wonder whether in practice α takes values much smaller thanH so that the gains
of FedDec can actually be observed. Assuming a fixed W , this question is equivalent to
asking what are typical values for |λ2|2 (see Fig. 4.2). Table 4.1 shows this value for many
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Figure 4.4: FedDec versus FedAvg for the sparse graph (top) and the dense graph (bot-
tom). When the communication with the server is less frequent (larger H), the perfor-
mance of FedAvg is more degraded than that of FedDec.

graphs, where W was constructed using the graph’s Laplacian [108]. We computed these
values for geographic graphs with different linking radii r and random (Erdős–Rényi)
graphs with different link probabilities p, and in both cases, for different number of nodes.
Geographic graphs are good models for wireless networks [111], while random graphs
have the small-world property of other kinds of networks, such as the Internet [112]. The
values of r and p are such that the networks in the same row and column under each
graph type have approximately the same number of edges. The numbers shown are the
average over 10 independent realizations, and the values corresponding to the graphs in
Fig. 4.3 are shown in gray. We observe that in all cases |λ2|2 < 0.9, which implies α < 9.

Table 4.1: Values of |λ2|2 for different graphs.

Geographic graph

Connection radius n = 10 n = 20 n = 40

r = 0.35 0.78 0.87 0.83

r = 0.5 0.7 0.64 0.56

r = 0.65 0.41 0.33 0.34

Random graph

Link probability n = 10 n = 20 n = 40

p = 0.3 0.7 0.62 0.4

p = 0.5 0.42 0.29 0.17

p = 0.7 0.25 0.13 0.083
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Therefore, unless H is particularly small, FedDec is expected to be (potentially, much)
faster than FedAvg. In particular, for random graphs, which have low network diameter,
|λ2|2 decreases more abruptly as connectivity grows. This further indicates that for well-
connected networks, inter-agent communication can make the first term of B in Theorem
16 become negligible.

4.5 Conclusion

We have presented FedDec, an algorithm that exploits inter-agent communication in FL
settings by averaging the agents’ parameters with those of their neighbors before each
new local SGD update. We proved that this modification reduces the negative impact of
local updates on convergence and that the magnitude of this reduction depends on the
spectrum of the graph defining the communication network. This further indicates that
the effect of local updates and partial device participation can become negligible if the
communication network is well-connected.

This insight suggests that there exists a connectivity threshold where the server does not
help convergence anymore. Furthermore, we conjecture that for sufficiently dense net-
works, server communication rounds might even hurt. Future directions include studying
this threshold and other trade-offs of peer-to-peer aided FL.

On the other hand, if inter-agent communication does not form a connected network
when all links are active, communication with the server is essential to have convergence.
Interesting questions to tackle in this scenario include how often the server should com-
municate with each sub-network in order to converge, and how this value depends on the
heterogeneity of data between subnetworks.

In any case, FedDec should be seen as an algorithm that redistributes the communication
load in FL by reducing the agent-server communication and increasing (in fact, intro-
ducing, or making larger than zero) the inter-agent. We expect that in real systems this
better utilization of the medium will lead to shorter wall-clock training time.
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Chapter 5

Conclusion

In this thesis, we have proposed solutions for making better utilization of the resources
of communication networks in the context of two timely applications: popular content
delivery and distributed machine learning. As the number of devices connected to the
Internet rapidly increases, it becomes imperative to design protocols and algorithms that
make the best use of the resources available in order to cope with the demands without
saturating the network. The techniques presented here have as the main goal to increase
the performance of techniques designed for the two applications of interest either at the
same or slightly higher communication cost.

In the context of popular content delivery, we have proposed to exploit recommendation
systems to boost the performance of caching networks by designing jointly the contents
to store in the cache and to recommend to the user (Chapter 2). Unlike previous work
attempting to exploit recommendations to improve the performance of caching systems,
our proposed algorithm has approximation guarantees to the jointly optimal solution. We
confirmed in simulations that this algorithm outperforms others that take these decisions
independently instead of jointly, in some cases with remarkable gains. By increasing the
CHR exploiting recommendations, our algorithm reduces the network load by requesting
fewer contents from the remote server than its competitors. Furthermore, this is achieved
without entailing any system setup changes. In contrast, achieving a higher CHR with
standard caching approaches would require increasing both the cache size and the number
of files transmitted through the network. Our algorithm achieves the same result without
these added communication and storage costs.

During the benchmarking of our proposed algorithm, we made the following interesting
observation: while it always outperformed its competitors, the magnitude of the gains
varied significantly with the dataset tested. This led us to investigate how the dataset
structure and the system setup affected the performance of our algorithm with respect
to a very simple heuristic based on popularity caching. We identified a few features of
the dataset and system setup values that affected significantly the CHR gap between the
two algorithms. Most notably, we identified interactions between pairs of features that
could either enlarge or close the performance gap, such as skewed degree distribution
and the number of recommendations, or cache size and popularity skewness. Based on
these observations, we trained a classifier to predict when our proposed algorithm could

74



provide significant gains with respect to the baseline for a given system setup and dataset
structure, with very good results. Such classifiers could, on top of the communication
gains provided by the caching systems and the exploitation of recommendation engines,
bring computational gains : the classifier could tell us whether we can expect significant
performance gains by utilizing our proposed polynomial-time algorithm, or whether the
system setup and dataset structure are such that the low-cost heuristic will do just as
well.

In the context of distributed machine learning, we have studied two particular configu-
rations, the decentralized and the federated, which differ in the communication scheme
used by the agents. For the decentralized setting, where the agents can communicate be-
tween them and there is no central coordinator, we have proposed a family of algorithms
that solve the distributed machine learning model problem through its dual, which can
be run asynchronously and can be seen as a coordinate descent algorithm where only a
small subset of all the coordinates can be modified at each iteration (Chapter 3). Thanks
to this insight, we proposed adaptations of standard (single-machine) coordinate descent
methods to our dual asynchronous decentralized algorithms.

However, the subtle difference of having only a subset of the total number of coordinates
to choose from complicated the analysis substantially, and required defining particular
norms for each algorithm in which to measure the function’s strong convexity. It was also
important to keep the bounds as tight as possible in order to compare the convergence
rate of the multiple variants proposed. In particular, we showed that (i) exploiting either
the knowledge of the coordinate Lipschitz constants or the Gauss-Southwell rule, which
chooses to update the dual variable with the largest gradient from those accessible, attains
faster per-iteration performance than random uniform sampling, and (ii) exploiting both
simultaneously achieves the largest gains. However, using the GS rule (and also the
Lipschitz constants, if they need to be estimated) requires more communication between
the agents than random uniform sampling. However, in settings where the available
resources can accommodate this increased communication complexity, the algorithms
based on GS rule and/or coordinate Lipschitz exploitation have the potential to reach
the target accuracy in less wall-clock time.

The federated setting, on the other hand, considers in principle that the agents can only
communicate with a central server that once in a while requests their local parameters,
averages them with those of (a subset of all) other agents, and broadcasts the result to
all nodes. In this setting, the agent-to-server link constitutes the main communication
bottleneck, which is the reason why it is usually assumed that agents communicate with
the server only once in a while and only a few agents send their local parameters at each
server communication round. For this reason, here we have proposed exploiting inter-
agent communication in the context of federated learning to allow for more infrequent
communication with the server without hurting convergence speed (Chapter 4). Since
low-range communications allow for spectrum reuse, the agents can communicate more
frequently between them than with the server. We show that allowing the parameter ex-
change and averaging that is proper of decentralized primal methods in between the local
updates of federated learning reduces the dependence on the number of local updates H
from O(H2) to O(H), and this term vanishes as the network becomes more connected.
This indicates that exploiting inter-agent communication can achieve the same conver-
gence speed as standard federated learning with much sparser communication with the
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CHAPTER 5. CONCLUSION

server, alleviating therefore the communication bottleneck of this setting.

It is worth noting that the methods presented here can be combined with many recent
proposals in the literature to further improve the performance of the system at the same
communication cost or, equivalently, to lower the communication cost without degrading
performance. In the context of network caching, examples of these techniques are data
encoding and explicit energy optimization [113], and accounting for the age of information
of the contents cached [114]. For distributed machine learning, examples are gradient
compression techniques [29,115] and variance reduction [49].

Overall, the reader should take the methods presented in this thesis as examples of how
system performance can be improved by carefully designing better algorithms that entail
minimal or no structural changes. In the best case, they will also serve as an inspiration
and grounds for new and high-performing optimization methods over networks.
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Appendix A

Proofs of Chapter 2

A.1 Proof of Lemma 3

According to Lemma 2, for set S, it holds that f ∗
k (S) = 1−(1−u(1)k (S))·(1−u(2)k (S)) . . . (1−

u
(N)
k (S)). Now, assume that we add some element i in S. Then, there exist two cases:

(a) If uki ≤ u
(N)
k (S), then f ∗

k (S ∪ {i}) = f ∗
k (S), the objective remains unchanged.

(b) If uki > u
(N)
k (S), then

f ∗
k (S ∪ {i}) = 1− (1− u(1)k (S)) . . . (1− u(N−1)

k (S)) · (1− uki)

= 1− (1− f ∗
k (S))

(1− uki)
(1− u(N)

k (S))

(a)

≥ f ∗
k (S)

(
1− (1− uki)

(1− u(N)
k (S))

)
+ f ∗

k (S)
(1− uki)

(1− u(N)
k (S))

= f ∗
k (S),

where in (a) we used the fact that f ∗
k (S) ≤ 1.

A.2 Proof of Theorem 4

Consider the powerset F of {1, 2, . . . , K}, i.e. the set of all subsets of S. Assume that
we add element i to some set S ∈ F . We denote

∆f(S, i) = f ∗
k (S ∪ {i})− f ∗

k (S). (A.1)

Then, we can consider the following cases:(
uki ≤ u

(N)
k (S)

)
⇒ ∆f(S, i) = 0.
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(
uki > u

(N)
k (S))

)
⇒ ∆f(S, i) = (1− u(1)k (S)) . . . (1− u(N−1)

k (S)) ·
[
uki − u(N)

k (S)
]
(A.2)

To show submodularity, we need to prove that ∆f(A, i) − ∆f(B, i) ≥ 0, for any sets
A,B ∈ F , such that A ⊂ B, and any i ∈ {1, 2, . . . , K}. There are three separate cases
to consider:

(Case 1) ∆f(A, i) = ∆f(B, i) = 0: Adding element i to either set A or B does not
improve the objective (i.e. the new content i added to the cache has a value uki that is
lower than the top N values of contents already in A (or B)).

(Case 2) ∆f(A, i) > 0,∆f(B, i) = 0: Then, according to eq. (A.2) we have that

∆f(A, i)−∆f(B, i) = (1− u(1)k (S)) . . . (1− u(N−1)
k (S)) · [uki − u(N)

k (S)]

which is strictly higher than 0.

(Case 3) ∆f(A, i) > 0,∆f(B, i) > 0: In this case, it is easy to see that according to
Lemma 3 the highest order statistics of sets A and B will coincide up to some order m,
and will differ from order m+ 1 up to N . Then, we can write

∆f(A, i) = (1− u(1)k (B)) . . . (1− u(m)
k (B))(1− u(m+1)

k (A)) . . .

. . . (1− u(N−1)
k (A))

[
uki − u(N)

k (A)
]

(A.3)

∆f(B, i) = (1− u(1)k (B)) . . . (1− u(m)
k (B))(1− u(m+1)

k (B)) . . .

. . . (1− u(N−1)
k (B)) ·

[
uki − u(N)

k (B)
]

(A.4)

Let’s denote the common term in the product as C, and as CA and CB the different terms
in each product, respectively. Then,

∆f(A, i)−∆f(B, i) = C
[
CA

(
uki − u(N)

k (A)
)
− CB

(
uki − u(N)

k (B)
)]

≥ C · CB ·
[(
uki − u(N)

k (A)
)
−
(
uki − u(N)

k (B)
)]

(A.5)

= C · CB ·
(
u
(N)
k (B)− u(N)

k (A)
)
≥ 0. (A.6)

Eq. (A.5) follows from the fact that f ∗
k (S) is monotonically increasing and thus

f ∗
k (B) ≥ f ∗

k (A)⇒ 1− C · CB ≥ 1− C · CA ⇒ CA ≥ CB.

Eq. (A.6) also follows easily from Lemma 3, as all order statistics are monotonically
increasing in the cardinality of the considered set.

Finally, the case ∆f(A, i) = 0,∆f(B, i) > 0 cannot occur due to f ∗
k being monotonically

increasing in the cardinality of the chosen set of elements. This concludes the proof that
∆f(A, i)−∆f(B, i) ≥ 0 for all possible cases, and thus that f ∗

k is submodular.
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A.3 Proof of Corollary 2

We denote

fki(X,Y
i) =

[
1−

K∏
n=1

[ M∏
m=1

(1− xnm · qim) +
(
1−

M∏
m=1

(1− xnm · qim)
)
(1− uikn · yikn)

]]

and f ∗
ki(X) = maxYi fki(X,Y

i).

We can then repeat the argument of Lemma 1 to show that F ∗(X) =
∑

k

∑
i p

i
kf

∗
ki(X),

since we can maximize the terms in the sum for each k and i independently.

We denote now S = {(ℓ,m), ℓ ∈ {1, K},m ∈ {1,M} : xℓm = 1} the pairs (content,
helper) such that content ℓ is stored in helper m. We will use the notation f ∗

ki(S) and
f ∗
ki(X) interchangeably. Furthermore, let Si ⊂ S be the subset of pairs in S such that
user i has access to a helper m ∈ S, i.e. qim = 1. Note that since a user cannot get any
benefit (cache hit) from a helper that they are not connected to, f ∗

ki(S) = f ∗
ki(Si), and

furthermore

f ∗
ki(Si) = 1− (1− u(1)k (Si)) · (1− u(2)k (Si)) . . . (1− u(N)

k (Si))

by the same arguments used in Lemma 2.

Therefore, we can decouple the problem per user and take the elements of S to be the
pairs (ℓ,m) and repeat the steps of Lemma 3 and Theorem 4 to show submodularity and
monotonicity for f ∗

ki(S). Since the objective F ∗(X) of Problem 2 is a positive weighted
sum of f ∗

ki(S), it is monotone submodular as well.
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Appendix B

Proofs of Chapter 4

B.1 Useful properties

This section groups a number of facts used in the proofs of Section B.2.

Fact 2. For two vectors u, v ∈ Rd and δ > 0 it holds

−2⟨u,v⟩ ≤ 1

δ
∥u∥22 + δ∥v∥22. (B.1)

This also holds for matrices u, v ∈ Rm×n and the Frobenius norm. It can be shown by

manipulating the term
∥∥1
δ
u+ δv

∥∥2
2
≥ 0.

Fact 3. For two matrices A,B ∈ Rm×n it holds that

∥A+B∥2F ≤ (1 + α−1)∥A∥2F + (1 + α)∥B∥2F . (B.2)

This can be shown using (B.1).

Fact 4. For a matrix A ∈ Rm×n it can be shown that∥∥∥∥A(I − 1

n
11T

)∥∥∥∥2
F

≤ ∥A∥2F . (B.3)

Fact 5. LetM ∈ Rn×n be a symmetric matrix satisfying 1TM = 1 and having eigenvalues
1 = λ1 > |λ2| ≥ . . . ≥ |λn|. Then, for a vector x ∈ Rn with the average of its entries
denoted xavg = 1Tx, it holds

(x− xavg1)TM(x− xavg1) ≤ |λ2| ∥x− xavg1∥22. (B.4)

This is a consequence of the spectral theorem and the fact that (x− xavg1) ⊥ span{1}.
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B.2 Proofs of Lemmas

Proof of Lemma 17. It holds that

E
∥∥xt+1 − z∗

∥∥2
2
= E

∥∥∥∥∥zt − ηt
n

n∑
i=1

∇Fi(zti, ξti)− z∗

∥∥∥∥∥
2

2

= E

∥∥∥∥∥zt − z∗ − ηt
n

n∑
i=1

∇Fi(zti)

∥∥∥∥∥
2

2

+ η2t E

∥∥∥∥∥ 1n
n∑
i=1

∇Fi(zti)−
1

n

n∑
i=1

∇Fi(zti, ξ
jt
i )

∥∥∥∥∥
2

2

+ 2 E
〈
zt − z∗ − ηt

n

n∑
i=1

∇Fi(zti),
ηt
n

n∑
i=1

∇Fi(zti)−
ηt
n

n∑
i=1

∇Fi(zti, ξ
jt
i )

〉
(B.5)

where in the first equality we used that

xt+1 =
1

n

n∑
i=1

xt+1
i =

1

n

n∑
i=1

n∑
j=1

Wijx
t+ 1

2
i =

1

n

n∑
i=1

x
t+ 1

2
i

n∑
j=1

Wij = xt+
1
2 = zt−ηt

n

n∑
i=1

∇Fi(zti, ξti)

and in the second equality we added and subtracted ηt
n

∑n
i=1∇Fi(xti) inside the norm.

Note that the last term in (B.5) is zero, since Eξti [∇Fi(z
t
i, ξ

t
i)] = ∇Fi(zti), and the second

term is bounded by η2t
σ2

n
(eq. (4.6)). The first term in (B.5) can be written as (we will

apply the expectation directly to the end result)

∥∥∥∥∥zt − z∗ − ηt
n

n∑
i=1

∇Fi(zti)

∥∥∥∥∥
2

2

=
∥∥zt − z∗

∥∥2
2
+ η2t

∥∥∥∥∥ 1n
n∑
i=1

∇Fi(zti)

∥∥∥∥∥
2

2︸ ︷︷ ︸
(A)

−2ηt

〈
zt − z∗,

1

n

n∑
i=1

∇Fi(zti)

〉
︸ ︷︷ ︸

(B)

. (B.6)

We can bound term (A) with

∥∥∥∥∥ 1n
n∑
i=1

∇Fi(zti)

∥∥∥∥∥
2

2

≤ 1

n

n∑
i=1

∥∥∇Fi(zti)∥∥22
=

1

n

n∑
i=1

∥∥∇Fi(zti)−∇Fi(z∗i )∥∥22
(4.5)

≤ 1

n

n∑
i=1

2L(Fi(z
t
i)− Fi(z∗i )). (B.7)

81



APPENDIX B. PROOFS OF CHAPTER 4

On the other hand, term (B) can be bounded as

−2ηt

〈
zt − z∗,

1

n

n∑
i=1

∇Fi(zti)

〉
=
−2ηt
n

n∑
i=1

〈
zt − zti + zti − z∗,∇Fi(zti)

〉
=
−2ηt
n

n∑
i=1

〈
zt − zti,∇Fi(zti)

〉
− 2ηt

n

n∑
i=1

〈
zti − z∗,∇Fi(zti)

〉
(B.1),(4.2)

≤ ηt
n

n∑
i=1

(
1

ηt

∥∥zt − zti
∥∥2
2
+ ηt

∥∥∇Fi(zti)∥∥22)

− 2ηt
n

n∑
i=1

(
(Fi(z

t
i)− Fi(z∗)) +

µ

2

∥∥zti − z∗
∥∥2
2

)
.

where we applied (B.1) with the choice δ = ηt.

Replacing the bounds on (A) and (B) in (B.5) gives∥∥∥∥∥zt−z∗ − ηt
n

n∑
i=1

∇Fi(zti)

∥∥∥∥∥
2

2

≤
∥∥zt − z∗

∥∥2
2
+
η2t
n
2L

n∑
i=1

(Fi(z
t
i)− Fi(z∗i ))

+
ηt
n

n∑
i=1

(
1

ηt

∥∥zt − zti
∥∥2
2
+ ηt

∥∥∇Fi(zti)∥∥22)− 2ηt
n

n∑
i=1

(
(Fi(z

t
i)− Fi(z∗)) +

µ

2

∥∥zti − z∗
∥∥2
2

)
(B.7)

≤ (1− µηt)
∥∥zt − z∗

∥∥2
2
+

1

n

n∑
i=1

∥∥zt − zti
∥∥2
2

+ η2t
4L

n

n∑
i=1

(Fi(z
t
i)− Fi(z∗i ))−

2ηt
n

n∑
i=1

(Fi(z
t
i)− Fi(z∗))︸ ︷︷ ︸

(C)

where we used

−ηtµ
n

n∑
i=1

∥∥zti − z∗
∥∥2
2
≤ −ηtµ

∥∥∥∥∥ 1n
n∑
i=1

(zti − z∗)

∥∥∥∥∥
2

2

= −ηtµ
∥∥zt − z∗

∥∥2
2
.

Term (C) was bounded in the proof of Lemma 1 of [50], where for ηt ≤ 1
4L

and Γ =
1
n

∑n
i=1(Fi(z

∗)− Fi(z∗i )) they obtained

(C) ≤ 1

n

n∑
i=1

∥∥zti − zt
∥∥2
2
+ 6Lη2tΓ.

Replacing these bounds in (B.5) gives the lemma.

Proof of Lemma 18. We define

Zt =
[
zt1 · · · ztn

]
∈ Rd×n

82



B.2. PROOFS OF LEMMAS

Z
t
= Zt 1

n
11T =

[
zt · · · zt

]
∈ Rd×n

∂F (Zt, ξt) =
[
∇F1(z

t
1, ξ

t
1) · · · ∇Fn(ztn, ξtn)

]
∈ Rd×n

and X t, X
t
analogously. Note that with these definitions,

∑n
i=1∥zti − zt∥22 =

∥∥∥Zt − Zt
∥∥∥2
F
.

We denote tb ∈ H the last time the central server broadcasted the sample average to all
nodes so that ztbi = ztb ∀i ∈ [n], and define h := t− tb ≤ (H − 1). Note that if t = tb then∑n

i=1∥zti − z∥22 = 0. Therefore, below we assume h ≥ 1. We have that

E
∥∥∥Zt − Zt

∥∥∥2
F

t/∈H
= E

∥∥∥X t −X t
∥∥∥2
F
= E

∥∥∥ (X t− 1
2 −X t− 1

2 )︸ ︷︷ ︸
Y

W t−1
∥∥∥2
F

= E
d∑
i=1

∥∥Y[i,:]W t−1
∥∥2
2
= E

d∑
i=1

Y[i,:]EW
[
WW T

]
[Y[i,:]]

T

(B.4)

≤ E
d∑
i=1

Y[i,:]
∣∣λ2(EW [WW T

])∣∣︸ ︷︷ ︸
|λ̂2|

[Y[i,:]]
T = |λ̂2| E

∥∥∥X t− 1
2 −X t− 1

2

∥∥∥2
F

= |λ̂2| E
∥∥∥Zt−1 − Zt−1 − ηt−1∂F (Z

t−1, ξt−1)(I − 1

n
11T )

∥∥∥2
F

(B.2)

≤ |λ̂2|
(
1 +

1

α

)
E
∥∥∥Zt−1 − Zt−1

∥∥∥2
F
+ |λ̂2|(1 + α)η2t−1E

∥∥∥∥∂F (Zt−1, ξt−1)(I − 1

n
11T )

∥∥∥∥2
F

(B.3)

≤ |λ̂2|
(
1 +

1

α

)
E
∥∥∥Zt−1 − Zt−1

∥∥∥2
F
+ |λ̂2| (1 + α)η2t−1E

∥∥∂F (Zt−1, ξt−1)
∥∥2
F

= |λ̂2|
(
1 +

1

α

)
E
∥∥∥Zt−1 − Zt−1

∥∥∥2
F
+ |λ̂2|(1 + α)η2t−1nG

2,

where in the second line we used that 1TW t = 1T , and in the fourth line, that the
matrices W t are identically distributed independently of the time t. We also used Y[i,:] to
indicate the i-th row of matrix Y .

We can now apply the inequality recursively to get

E
∥∥∥Zt − Zt

∥∥∥2
F
≤
(
1 +

1

α

)
|λ̂2| E

∥∥∥Zt−1 − Zt−1
∥∥∥2
F
+ (1 + α)|λ̂2| η2t−1nG

2

≤
(
1 +

1

α

)
|λ̂2|

[(
1 +

1

α

)
|λ̂2| E

∥∥∥Zt−2 − Zt−2
∥∥∥2
F
+ (1 + α)|λ̂2| η2t−2nG

2

]
+ (1 + α)|λ̂2| η2t−1nG

2

=

[(
1 +

1

α

)
|λ̂2|

]2
E
∥∥∥Zt−2 − Zt−2

∥∥∥2
F
+ (1 + α)|λ̂2| nG2

2∑
i=1

[(
1 +

1

α

)
|λ̂2|

]i−1

η2t−i

≤
[(

1 +
1

α

)
|λ̂2|

]h
E
∥∥∥Ztb − Ztb

∥∥∥2
F
+ (1 + α)|λ̂2| nG2

h∑
i=1

[(
1 +

1

α

)
|λ̂2|

]i−1

η2t−i.

We note that the first term is zero, since at broadcasting time Ztb = Z
tb
. We now set
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α = |λ̂2|
1−|λ̂2|

so that the expression between square brackets takes value 1. Therefore,

E
∥∥∥Zt − Zt

∥∥∥2
F
≤ αnG2Hη2tb ≤ αnG2H4η2t

where we have used that for the choice of α given above it holds (1 + α)|λ̂2| = α, and
that the stepsizes ηt are monotonically decreasing and satisfy ηt ≤ 2ηt+H .

Note that in the result above we could have used (H − 1) instead of H. However, since
this bound is used again in the proof of Lemma 19 for h = H, we loosen it slightly here
to be able to apply it directly in the next proof.

Proof of Lemma 19. For t ∈ H we have that

E
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E
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where we used that for independent Xi, Var(
∑

iXi) =
∑

iVar(Xi), and that for a random
variable X ∈ Ω with a discrete probability density function X ∼ fX and a function
g : Ω→ R it holds E[g(X)] =

∑
x g(x)fX(x).

Since
∑n

i=1∥xti − xt∥22 =
∥∥X t −X t∥∥2

F
we can repeat the procedure done in Lemma 18 to

bound this term.
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