
HAL Id: tel-04197593
https://theses.hal.science/tel-04197593

Submitted on 6 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design space exploration of image processing algorithms
on FPGAs
Ilias Bournias

To cite this version:
Ilias Bournias. Design space exploration of image processing algorithms on FPGAs. Data Structures
and Algorithms [cs.DS]. Sorbonne Université, 2023. English. �NNT : 2023SORUS179�. �tel-04197593�

https://theses.hal.science/tel-04197593
https://hal.archives-ouvertes.fr

T H È S E D E D O C T O R AT
D E S O R B O N N E U N I V E R S I T É

D E S I G N S PA C E E X P L O R AT I O N O F I M A G E P R O C E S S I N G A L G O R I T H M S O N
F P G A S

présentée par
ilias bournias

École Doctorale Informatique, Télécommunications et Électronique

réalisée au
LIP6

soutenue le

devant le jury composé de :

M. Florent De Dinechin, Professeur, INSA, Lyon, France Rapporteur

M. Steven Derrien, Professeur, Université Rennes 1, Rennes, France Rapporteur

Mme. Fabienne Jézéquiel, Maître de conférences, HDR, LIP6, Paris, France Examinateur

M. François Berry, Professeur, Université Cl. Auvergne, Clermont-Ferrand, France Examinateur

M. Nicolas Rambaux, Maître de Conférences, Sorbonne Université, Paris, France Invité

M. Lionel Lacassagne, Professeur, LIP6, Paris, France Co-directeur de Thèse

Mme. Roselyne Chotin, Maître de conférences, HDR, LIP6, Paris, France Directrice de Thèse

Ilias Bournias: Design Space Exploration Of Image Processing Algorithms On FPGAs, ©
May 2023

To my Family that always supported me

A B S T R A C T

Implementing image processing algorithms for embedded systems is a scientific topic of
great importance and many researchers focus their work on this domain. Many trade-offs
have to be made in order to fit these algorithms in a specific embedded system and at the
same time achieve real time computation and acceptable precision.

In this thesis, we focus on the design space exploration of an optical flow algorithm
called Multi-scale Horn and Schunck algorithm in an Arria 10 FPGA. Although we fo-
cus on a specific algorithm and a specific device, the exploration we perform and the
propositions of this thesis can also be applied to other algorithms and FPGA devices too.

The first thing we explore is the accuracy of the algorithm. We use different floating
point formats and we tune different parameters of the algorithm in order to increase the
accuracy and at the same time provide an implementation which achieves real time com-
putation. As this algorithm is a multi-rate image processing algorithm, we propose solu-
tions in order to tackle this nature of the algorithm and increase computation throughput.
We use pipeline and vectorized architectures in order to further increase the computation
speed and we introduce trans-floating computation which enables us to fit more process-
ing elements in our FPGA. We explore how all these solutions affect the resources usage of
the FPGA, such as the LUTs, DSPs and Block RAMs utilization. Furthermore, we propose
approaches in order to overcome the bottleneck of the external memory bandwidth. Fol-
lowing that, and by taking into account all our propositions, we perform a design space
exploration of the algorithm, which helps the optical flow designer to choose among dif-
ferent configurations according to his constraints.

We compare our designs with other state of the art works on optical flow in FPGAs
and we show that to the best of our knowledge our fastest design achieves the highest
throughput compared to all the rest optical flow designs on single FPGA. At the same
time our implementations achieve comparable accuracy of detection.

R É S U M É

La mise en œuvre d’algorithmes de traitement d’image pour les systèmes embarqués est
un sujet scientifique de grande importance et de nombreux chercheurs concentrent leurs
travaux sur ce domaine. De nombreux compromis doivent être réalisés afin d’adapter ces
algorithmes au système ciblé et obtenir en même temps un calcul en temps réel et une
précision acceptable.

Dans cette thèse, nous nous concentrons sur l’exploration de l’espace de conception
d’un algorithme de flot optique appelé algorithme de Horn et Schunck multi-échelles
dans un FPGA Arria 10. Bien que nous nous concentrions sur un algorithme et une cible
spécifiques, l’exploration que nous effectuons et les propositions de cette thèse peuvent
élargies à d’autres algorithmes et FPGAs.

La première chose que nous explorons est la précision des calculs. Nous utilisons diffé-
rents formats de virgule flottante et nous ajustons différents paramètres de l’algorithme
afin d’augmenter la précision et en même temps fournir une implémentation qui réa-
lise le calcul en temps réel. Comme cet algorithme est un algorithme de traitement
d’images multi-débits, nous proposons des solutions pour augmenter le débit de calcul.
Nous utilisons des architectures pipeline et vectorisées afin d’augmenter encore la vitesse
de calcul et nous introduisons le calcul trans-flottant qui nous permet d’intégrer plus
d’éléments de traitement sur le FPGA. Nous explorons comment toutes ces solutions af-
fectent l’utilisation des ressources du FPGA, telles que l’utilisation des LUTs, des DSPs et
des blocs de RAM. De plus, nous proposons des approches afin de surmonter le goulot
d’étranglement lié à la bande passante de la mémoire externe. Enfin, en tenant compte de
toutes nos propositions, nous effectuons une exploration de l’espace de conception, qui
aide le concepteur à implanter l’algorithme de flot optique sur FPGA en choisissant parmi
différentes configurations en fonction de ses contraintes.

Nous comparons nos résultats d’implémentations sur FPGA de l’algorithme de flot
optique avec d’autres travaux à la pointe du domaine. Ainsi, nous montrons que notre
implémentation la plus rapide atteint le débit le plus élevé par rapport à tous les autres
travaux portés à notre connaissance et implantés sur un unique FPGA. En même temps,
nos implémentations permettent d’obtenir une précision de détection comparable à ces
travaux et une utilisation moindre des ressources du FPGA.

v

P U B L I C AT I O N S

The following body of work has been published in the course of the thesis at hand:

[1] I. Bournias, R. Chotin, and L. Lacassagne, “Fpga acceleration of the horn and
schunck hierarchical algorithm,” in 2021 IEEE International Symposium on Circuits
and Systems (ISCAS), 2021, pp. 1–5. doi: 10.1109/ISCAS51556.2021.9401068.

[2] I. Bournias, R. Chotin, and L. Lacassagne, “Using hls for designing a parametric
optical flow hierarchical algorithm in fpgas,” in 2022 IEEE International Symposium
on Circuits and Systems (ISCAS), 2022, pp. 1600–1604. doi: 10.1109/ISCAS48785.
2022.9937732.

vii

https://doi.org/10.1109/ISCAS51556.2021.9401068
https://doi.org/10.1109/ISCAS48785.2022.9937732
https://doi.org/10.1109/ISCAS48785.2022.9937732

scientia potentia est

— Sir Francis Bacon, 1668

A C K N O W L E D G M E N T S

Three and a half wonderful years finally come to an end. It has been a very interesting
journey, during which i met some amazing people.

First of all i would like to thank Roselyne. Thanks for guiding me through all these
years and supporting me in all the decisions i took. I am really lucky that you were my
supervisor as you are a truly wonderful person with endless will for life. The second per-
son I would like to thank is my co-supervisor, Lionel. Lionel transmitted me the passion
for research and was always there to help me with any difficulty i faced.

I would like to thank all my friends in the Lab with whom i spent many tremendous
moments which i am already missing. Thank you Fedia, Julian, Gabriel, Sarah, Mohamed,
Jonathan, Nathan, Thomas, Alan, Maxime, Rieul, Ning, Spyros, Theofilos and Antonis. I
would also like to thank my friends, Dimitris, John, George, George and Kyrgiakos from
the Fondation Hellenique with whom i spent many hours playing cards and walking
around Paris. I will never forget these moments and the time we spent together.

I am very lucky that my sister, my mother and Maria were very patient with me and
supported me through all these years. Finally, this thesis is dedicated to my father who
led me to the world of engineering. I hope you can see this.

ix

C O N T E N T S

1 introduction 1

1.1 Context 1

1.2 Contributions 3

1.2.1 Outline of The Thesis 5

2 optical flow and embedded devices 7

2.1 Optical Flow 7

2.2 Different Optical Flow Algorithms 8

2.2.1 Lukas and Kanade 8

2.2.2 Horn and Schunck 10

2.2.3 Other Optical Flow algorithms 14

2.2.4 Advantages and disadvantages of each algorithm 15

2.3 Optical Flow In Embedded Devices 15

2.4 Different Components of the multi-scale H&S 18

2.5 Discussion on the state of the art in FPGAs 19

2.6 Conclusion 20

3 accuracy 21

3.1 Evaluation Metrics 22

3.1.1 Peak Signal to Noise Ratio 22

3.1.2 Average Angular Error 22

3.1.3 Average Endpoint Error 23

3.1.4 Exploration Methodology 23

3.2 Levels of the pyramid and iterations in each level 23

3.3 Interpolation 25

3.4 Floating point formats 27

3.5 Trans-floating formats 30

3.6 Comparison with state of the art 30

3.7 Conclusions 32

4 throughput 35

4.1 Monoscale Horn and Schunck 35

4.1.1 Pipeline 36

4.1.2 Vectorization 38

4.2 Warping 38

4.3 Down-sampling 41

4.4 Up-sampling 44

4.5 Multi-Scale H&S 45

4.5.1 Pipeline and Parallelization 45

xi

xii contents

4.5.2 Multi-rate Architecture 46

4.5.3 Multi-level Architecture 47

4.5.4 Computation Time 48

4.5.5 Trans-floating architecture 48

4.5.6 Computation Time for the Trans-floating architecture 50

4.6 Throughput Results and Comparison with State of the Art 50

4.6.1 Results of implementation 50

4.6.2 Comparison with State of the Art 52

4.7 Conclusion 52

5 hardware resources utilization 55

5.1 Mono-scale Horn and Schunck Agorithm 55

5.2 Warping 60

5.3 Down-sampling 63

5.4 Up-sampling 65

5.5 Multi-scale H&S algorithm 66

5.5.1 Multi-rate Architecture 66

5.5.2 Multi-level Architecture 67

5.6 Resources Utilization Results and Comparison with state of the Art 68

5.6.1 Results of Implementation 69

5.6.2 Comparison with the state of the art 71

5.7 Conclusions 73

6 design space exploration 75

6.1 Methodology 75

6.1.1 Notation 75

6.1.2 DSPs Utilization 76

6.1.3 Block RAMs 77

6.1.4 External memory bandwidth 78

6.1.5 Execution Time and Throughput 79

6.1.6 Design Space Exploration and OpenCL 79

6.2 Results 82

6.3 Conclusion 83

7 conclusion and future work 85

7.1 Conclusion 85

7.2 Future Work 87

bibliography 89

L I S T O F F I G U R E S

Figure 1 H&S mono-scale iterative scheme 10

Figure 2 Pyramid of images 12

Figure 3 Description of the multi-scale H&S Algorithm 13

Figure 4 Number of pyramid level 24

Figure 5 Number of iterations in each pyramid level 25

Figure 6 Interpolation’s accuracy 26

Figure 7 AEE for G3 and G2 with different Floating Point formats 26

Figure 8 AAE for G3 and G2 with different Floating Point formats 27

Figure 9 AEE for H, D and V with different Floating Point formats 27

Figure 10 AAE for H, D and V with different Floating Point formats 28

Figure 11 AEE for G3 and G2 with trans Floating Point format 28

Figure 12 AAE for G3 and G2 with trans Floating Point format 29

Figure 13 AEE for D, H and V with trans Floating Point format 29

Figure 14 AAE for D, H and V with trans Floating Point format 30

Figure 15 Deep Pipeline Architecture 37

Figure 16 Vectorized Architecture 39

Figure 17 Interpolation Pattern 40

Figure 18 Warping Architecture 41

Figure 19 Down-Sampling Pattern 42

Figure 20 Down-sampling 43

Figure 21 Up-Sampling Pattern 44

Figure 22 Up-sampling 44

Figure 23 Partial pipeline parallel architecture 45

Figure 24 Fully pipeline architecture 46

Figure 25 Trans-floating architecture 49

Figure 26 Derivatives Reuse 56

Figure 27 Deep Pipeline Architecture 57

Figure 28 Deep Pipeline Architecture for 4 Iterations 58

Figure 29 Vectorized-Deep Pipeline Architecture for 4 Iterations 59

Figure 30 Pyramid level implementation of [68] 66

Figure 31 Pyramid level implementation 67

Figure 32 Shift Buffers 68

Figure 33 Streamed velocities 68

Figure 34 Design Space Exploration Steps 80

Figure 35 Results 81

xiii

xiv List of Tables

L I S T O F TA B L E S

Table 1 Advantages of the FPGA State of the Art Works 19

Table 2 Comparison with other State of the Art (AAE) 31

Table 3 Comparison with other State of the Art (AEE) 32

Table 4 Throughput Results with the Same Numeric Format 51

Table 5 Throughput Results with the Smaller Numeric Format in level 0 51

Table 6 Comparison with other State of the Art 53

Table 7 Mono-scale Core 57

Table 8 Mono-Scale Architecture 60

Table 9 Mono-Scale Core with Different Floating Point Formats 61

Table 10 Bi-cubic Interpolation Core with Different Floating Point Formats 62

Table 11 Bi-linear Interpolation Core with Different Floating Point Formats 62

Table 12 Down-sampling Core 64

Table 13 Resources Utilization with Π=5 69

Table 14 Resources Utilization with Π=10 69

Table 15 Resources Utilization with Π=20 70

Table 16 Resources Utilization with Π=40 70

Table 17 Resources With The Smaller Numeric Format in level 0 70

Table 18 Block RAMs usage with different image sizes 71

Table 19 Comparison with other State of the Art 72

Table 20 Notations for the Theoretical Model I 76

Table 21 Notations for the Theoretical Model II 76

1
I N T R O D U C T I O N

1.1 context

This thesis was conducted in the LIP6 Lab in Sorbonne University of Paris and is a part
of the Meteorix project [1]. Meteorix is a university CubeSat mission and its aim is to
integrate inside the CubeSat all the materials necessary (such as the cameras, the embed-
ded devices, the algorithms, the memories etc.) for the detection and characterization of
meteors. Meteor tracking and characterization requires fast meteor detection algorithms
which in the case of the Meteorix project have to be able to fit in embedded systems.
Within the LIP6 lab, this thesis was a collaboration between the Analog and Digital Inte-
grated Circuit team (CIAN) and the Hardware and Software for Embedded System team
(ALSOC). The activities of the ALSOC team concern methods, algorithms and tools for
multiprocessors system on chip design and cots. Such highly integrated multiprocessors
architectures are used in embedded applications such as automotive, nomad, audio and
video, and telecommunications. The design of these systems requires the development of
hardware and software co-design methods. They focus on advanced hardware architec-
ture, communication protocols, embedded operating system, real-time constraints, formal
methods for verification systems and optimization of code generation. The research areas
of CIAN team focus on designing methods for analog and digital components which are
integrated on the same chip (AMS SOC). The main aim is to design generic components
that can be adapted for a wide range of applications. Components differ depending upon
the nature of the signal to process : signal processors (DSP), digital ASIC, programmable
logic component (FPGA), analog circuits, multi-standard RF components and SOC Clocks.
The LIP6 laboratory is in charge of the embedded meteor detection and the expertise of
the CIAN and ALSOC teams is employed to integrate the algorithms in the CubeSat. To
this direction, CPUs [2] and GPUs [3] have been considered so far by the ALSOC team
for the optimization of the algorithms . In this thesis, we will focus in FPGAs to make
the implementation of the algorithms (specifically the optical flow) that detect the mete-
ors, sustainable in terms of resources utilization and able to compute the required tasks
in real time as the CPUs and GPUs implementations are not always able to achieve that.
This is the main contribution of the CIAN team.

An essential algorithm which is part of the meteor detection is the optical flow which
is used to estimated the pixel movement of two consecutive images [4],[2]. This algorithm
is the one which demands the most computation time (over 80% of the total computation
time[5]) and it demands special attention in order to be accelerated. Nowadays, neural

1

2 introduction

networks are used widely for optical flow and they achieve the best accuracy compared
to all the other algorithms [6],[7]. However, the computation power they demand is way
higher than the one embedded devices can offer [8]. Consequently, it is unrealistic to use
neural networks for the detection of meteors in small CubeSats as they do not usually
carry powerful processing units which require a lot of energy and space to function. By
taking that into consideration, in this thesis we turn to a classical optical flow algorithm
which with the appropriate handling and optimizations in an FPGA, offers real time
computation, competitive accuracy and limited hardware resources consumption.

Nevertheless, optical flow is a vital part of many other computer vision applications
in real life. Autonomous driving and vehicle navigation is the kind of algorithms which
make a good use of optical flow [9],[10],[11],[12],[13],[14]. For example, when the car is
moving along a flat road and the optical axis of the camera is parallel to the ground, the
motion field is expected to be almost quadratic and have a specific structure and con-
sequently information about the angular velocity and the speed can be extracted from
the flow vectors [10]. Optical flow can be employed to provide strong information for
hypothesis generation about the possible presence of cars. Approaching vehicles at an op-
posite direction produce a diverging flow, which can be quantitatively distinguished from
the flow caused by the car ego-motion. In robotics navigation, it is used with the aim of
helping solving the obstacle avoidance problem in the ground and in the air. With the vec-
tors, the rotational velocity, translational velocity and terrain information can be estimated
separately through the integration of optical flow with inertial, GPS, and range data as
thoroughly explained in [13]. Optical flow is a vital algorithm in the biomedical domain
too. It has been used to measure the functionality of many body organs with remarkable
precision [15],[16],[17][18],[19]. The flow is used for the measurement of organs velocity
in centimeter per second in each studied pixel and after that it is visualized as colored
vectors superimposed on Magnetic resonance imaging (MRI) images. The measured flow
is also used to extract useful biological information for some part detection in the organ
which otherwise can not be extracted or even to measure some anomalies in the blood
pressure[20],[21],[22],[23] . Moreover, optical flow is used widely in the Defence domain.
In video surveillance finding the velocity vectors of the video is of great importance in
order to extract useful information [24],[25],[26],[27],[28],[29], [30],[31],[32]. In [25] these
vectors are used in the Histograms of Oriented Gradient (HOG) descriptors for captioning
the motion information for gesture recognition. In [26] it was used for assessing crowd
behaviors from videos in terms of motion pattern and dominant paths. To do that, they
rely on the estimation of a collection of sub-affine motion models in the image. In [27]
they propose to use optical flow as an igniting point for video recording. As the amount
of data when recording for a long time is huge, the velocity vectors can be used to store on
the memory data when only movement is happening. In [29], [30] and [28] they use opti-
cal flow for video denoising where the flow vectors are used for the detection of the noise

1.2 contributions 3

in the image. Finally, optical flow can be used for video indexing [33],[34],[32], restoration
of aged videos [35] and aerodynamics or fluid mechanics [36],[37].

A special mention has to be done in the LIP6 lab in Sorbonne University where optical
flow is developed for the detection of meteors in the sky and which is also part of the Me-
teorix Project. Millet [4],[2] in his work is implementing a large image processing pipeline
where the dominant part is the optical flow [3], for the flow vectors estimation and in
these vectors a component labeling algorithm is applied for the detection of the meteors
[38],[39]. With this pipeline which is designed in CPU and GPUs the meteor detection is
accomplished with remarkable accuracy.

As in the case of the CubeSat mission project, installing huge computation units in cars,
biomedical devices and surveillance cameras for neural networks optical flow computa-
tions is not usually feasible. Moreover, the training they require is complex and a massive
amount of data which must be also relevant has to be found in order to achieve an ef-
fective one. Conventional optical flow algorithms does not suffer from these bottlenecks.
They achieve comparable accuracy and they are ideal for embedded devices as they can
be massively accelerated. This is why still the conventional optical flow algorithms take
the largest piece of the pie in embedded systems and the research done in this domains
remains one of the most hot research topics.

The aforementioned applications demand specific constraints in terms of throughput
and accuracy [2],[1]. Designing computer vision application for embedded devices is a
challenging task and it requires a lot of trade off to be made in order to achieve real
time computation and in the same time the hardware to remain low. In FPGAs, the trade
off can be made in the arithmetic format used for the representation of the data, in the
pipeline and the parallelism with respect to the resources utilization. However, increas-
ing the paralellism might lead to cases where the external memory can not deliver the
requested throughput. Thus, we have to take into account that different FPGAs offer dif-
ferent possibilities. It is essential for a design to be scalable in order to fit in different
devices and meet certain constraints. In this thesis we offer this possibility which as far as
we know is something that is missing from the state of the art.

To sum up, the first challenge that shows up when designing an optical flow algo-
rithm for FPGAs is the accuracy of the detected flow. Increasing the accuracy too much
potentially leads to excessive hardware resources utilization. Real time computation also
demands careful handling in order to avoid a huge hardware resources utilization. As a re-
sult the design has to respect certain constraints, regarding the accuracy of the algorithm,
the resources utilization and the computation throughput.

1.2 contributions

In this thesis we concentrate on the design space exploration of the multi-scale Horn and
Schunck algorithm on FPGAs. We will use techniques which are widely used in FPGA

4 introduction

designing as well as new ones to overcome several bottlenecks. Although we focus on a
specific algorithm, the propositions can be used in other image processing algorithms to
deal with existing bottlenecks

Our main contributions are:

• One of the most important parts of the algorithm is the accuracy it achieves. Thus,
we will explore the pyramid levels and iterations number of the algorithm with the
aim of improving the accuracy of the flow detection. We implement two interpola-
tion algorithms and we show the impact they have on the accuracy. Since we talk
about embedded designs, we use less bit to decrease the resources utilization to
represent the data and keep the accuracy as high as possible. We also use different
arithmetic formats in each pyramid level and we observe the drop in accuracy. Thus,
we show how all these parameters impact the accuracy.

• Optical flow in real world problems require real time and sometimes higher than
real time throughput. Consequently, we explore different techniques to accelerate
every part of the algorithm. We make use of previous state of the art techniques
such as vectorization and deep pipeline to accelerate the mono-scale kernel. We treat
the multi-rate nature of the algorithm more effectively than previous state of the art
works by proposing architectures which are friendly to the external memory bus and
bandwidth. We use trans-floating point arithmetic and lower precision arithmetic to
fit more cores in the design which increases accuracy. We scale up our designs and
we show that our fastest FPGA design outperforms in terms of throughput all the
previous single FPGA State of The Art designs.

• Although throughput is very important, it usually comes with an excessive cost in
hardware. This is not the case in our work as we propose solutions to keep the
resource utilization low. Such solutions are the bi-linear interpolation and more
important of all, the computation reuse. We focus on inter-iteration computation
reuse which to the best of our knowledge, has never been done before in optical
flow. We offer a way to use properly the Block RAMs and by using smaller arithmetic
formats, the bus of the external memory can be used for increased vectorization.

• After accuracy, throughput and resources usage has been explored, we are perform-
ing a design space exploration by taking these three factors into account. We pro-
vide the FPGA designer with the ability to choose between different configurations
according to his needs and his applications constraints. These configurations vary
from small to large architectures which are either accurate or flexible in terms of
resources. As far as we know, contrary to all the previous state of the art works in
FPGAs, we offer a design which is scalable in terms of throughput, accuracy and
resource utilization.

1.2 contributions 5

1.2.1 Outline of The Thesis

This thesis is composed from 7 chapters including this one.
The second chapter is about an introduction of the optical flow algorithm. A definition

is given in the beginning. Following that, several optical flow algorithms are discussed
and how they are already implemented by other state of the art works. Their designing
advantages and disadvantages are pointed out and it is mentioned why a new optical
flow implementation is needed. The multi-scale Horn and Schunck optical flow algorithm,
which is used in this thesis, is described and we make an introduction of how a scalable
design of this algorithm can solve many existing bottlenecks of other designs. A summary
of the strong points of each state of the art work in FPGAs concludes this chapter.

Accuracy is essential in optical flow. Chapter three is devoted in the accuracy. In the
beginning, the error metrics that are used for the evaluation are presented. The multi-
scale Horn and Schunck is a pyramid design. Thus, an exploration is done regarding the
number of the levels of the pyramid and the iterations’ numbers in each pyramid level.
Bi-linear and bi-cubic interpolation is included in the exploration too. With the aim of
reducing the hardware usage, several floating point formats are explored to show their
impact in the flow vectors. Trans-floating arithmetic is proposed as an alternative and in
the end we do a comparison with the state of the art regarding the accuracy.

Achieving real time computation is very challenging in embedded systems. During the
fourth chapter we deal with accelerating the algorithm in terms of throughput. Classic
iterative stencil loops techniques are employed to accelerate the mono-scale algorithm.
Warping is treated in a way in order not to stall the whole pipeline. The multi-rate nature
of the algorithm is mentioned and solutions to overcome the bottlenecks of this kind of
algorithms are proposed. Trans-floating point arithmetic format is used to further speed
up the computation and finally a comparison with other state of the art works is done
regarding the throughput.

Throughput comes with a cost in hardware resources. The resources utilization of the
FPGA is a major part in this thesis and chapter five is solely related to this. The resources
usage needs of the different components of the algorithm are discussed. Several trade-off
are explored concerning the DSPs, logic blocks utilization, Blocks RAMs and the external
memory bandwidth. The impact of the different floating point formats in the hardware
resources is shown and with the help of trans-floating arithmetic the design is scaled up.

In chapter six all the information are combined in order to perform a design space
exploration. This exploration gives the designer the opportunity to tune the design ac-
cording to his needs. By inserting certain parameters on our model he can choose among
different options. Then, we show the results of the exploration.

Finally, in chapter seven a conclusion of our work is done. We point out the strong
contributions that this thesis is offering in the state of the art. We discuss the perspectives

6 introduction

and how our contributions can be employed in other algorithms too. We refer to the future
work that can follow as this is an ongoing research.

2
O P T I C A L F L O W A N D E M B E D D E D D E V I C E S

In the introduction it was pointed out, why image processing and especially optical flow
computation in real time speed is very important in real life. Furthermore, the context
of the thesis and how this thesis contributes in the state of the art was analyzed. In
this thesis, optical flow is the kind of algorithm we will concentrate on. As so, we will
present the different application domains where optical flow has been used by other state
of the art works and why it is considered one of the most important image processing
algorithms. The applications vary from the medical world to the autonomous driving
and the surveillance systems. Then, we will describe the algorithms that are widely used
now. Depending on the algorithm, better accuracy can be accomplished for example with
convolution neural networks or in another case reduced computation time and effort with
gradient based algorithms. Furthermore, since embedded devices require sophisticated
designs we will mention to other recent state of the art implementation in embedded
systems. We will refer to their strong parts, their disadvantages and why a new optical
flow design in embedded systems is needed. The new algorithm will be presented, its
different parts will be analyzed and other state of the art works will be presented which
address the same problems. We will mention why our work is needed and where the
other works lack in terms of design. Finally, we will sum up the chapter.

2.1 optical flow

Image processing is a method to perform some operations on an image, in order to get an
enhanced image or to extract some useful information from it. There is a vast variety of
image processing algorithms, one of the most hot topics in science. In this thesis we will
focus in a family of image processing algorithms called optical flow algorithms.

Optical flow is defined as the motion of each pixel on the whole surface of an image
[40]. It often serves as a good approximation of the true physical motion projected onto
the image plane. This motion is usually ascribed to the motion of objects in the scene [41].
The notion of optical flow actually refers to the displacement of intensity patterns. It is
caused by relative motion between the observer and the objects of the observed scene and
it represents motion of intensities in the image plane. In computer vision, optical flow
is usually used to detect the displacement of objects. Thus, the variable that we actually
want to retrieve with optical flow is the projection on the image plane of the 3D motion
in the scene, usually called motion field. A major issue that occurs with optical flow
algorithms is that often the intensity changes are not happening due to pixel displacement

7

8 optical flow and embedded devices

but because of other disturbing phenomena like lighting changes, reflection effects or
modifications of the properties of the objects affecting their light emission or reflectance.

The optical flow methods try to calculate the motion between two image frames which
are taken at times t and t+∆t at every pixel position. The equation that describes the
optical flow solver is Equation 1. I is the image where the optical flow is performed, x
represents the movement in the x axis, y in the y axis, t the time and ∆x, ∆y and ∆t are
the partial derivatives of each one of them which are used to detect the movement. These
methods are called differential since they are based on local Taylor series approximations
of the image signal. That is, they use partial derivatives with respect to the spatial and
temporal coordinates.

I(x,y, t) = I(x+∆x,y+∆y, t+∆t) (1)

2.2 different optical flow algorithms

2.2.1 Lukas and Kanade

2.2.1.1 Mono-scale

One of the most famous algorithms that is used for optical flow estimation is the Lucas
Kanade mono-scale algorithm (L&K) [42]. This algorithm is a gradient based one. The ve-
locities are computed from the spatial and temporal derivatives of the image’s brightness.
In order to obtain correct optical flow values using gradient-based optical flow algorithms,
certain assumptions have to be met such as the assumption that the flow is not changing
a lot between consecutive frames and that the pixel brightness remains the same (const
in Equation 2). With these two assumptions Equation 2 derives (t is the time for the first
frame while t+1 is the time for the second frame). By taking the partial derivatives of this
equation with respect to time (Equations 3, 4), Equation 5 derives.

I(x(t),y(t), t) = I(x(t+ 1),y(t+ 1), t+ 1) = const (2)

I(x(t),y(t), t)
dt

= 0 (3)

dI

dx

dx

dt
+

dI

dy

dy

dt
+

dI

dt
= 0 (4)

Ixu+ Iyv+ It = 0 (5)

2.2 different optical flow algorithms 9

In Equation 5 there are two unknown variables (u,v) but with only one equation to be
found. These two variable are the velocity in the x axis (u) and in the y axis (v). For this
reason, a method has to be proposed to solve this problem. Lucas and Kanade considered
a small neighbourhood of each pixel and they said that inside this neighbourhood, a pixel
moves in the same direction as it nearest neighbours. With this assumption from Equation
5 the next step is Equation 6.

Ix(p1) Iy(p1)

Ix(p2) Iy(p2)
...

...

Ix(pn) Iy(pn)

×

[
u

v

]
= (−1)

It(p1)

It(p2)
...

It(pn)

 (6)

p1 ... pn in 6 are the neighbouring pixels where the assumptions of (L&K) are referred
to. Now, there is enough information to estimate the optical flow vectors (u,v).

Ix(p1) Iy(p1)

Ix(p2) Iy(p2)
...

...

Ix(pn) Iy(pn)

 = A,

[
u

v

]
= d,

It(p1)

It(p2)
...

It(pn)

 = b (7)

The notations as shown in Equation 7 are used to form the following optimization
problem which is shown in Equation 8.

Ad = B → min∥Ad− b∥2 (8)

To determine the solution of d, the equation was multiplied by ATW on both sides
where W is a weight matrix which is usually called a mask of the neighborhood pixels.
Thus the final equation where the velocities vectors are estimated is Equation 9. One major
drawback of the algorithm is that the invertibility of the matrix ATWA does not always
guarantee a correct solution

(ATWA)d = ATWb →

[
u

v

]
= (ATWA)−1ATWb (9)

The serious disadvantage from which L&K suffers is that it can only detect small pixel
displacements because of the assumptions made.

10 optical flow and embedded devices

calc avg

grad

U

<latexit sha1_base64="ElTHfRLO/zGd10NhMMgkEOzqta0=">AAACxnicjVHLSsNAFD2Nr1pfVZduglVwVRIpqLuCmy4rmrZQiyTptA7Ni8lEKaXgD7jVTxP/QP/CO2MKahGdkOTMufecmXuvlwQ8lZb1WjAWFpeWV4qrpbX1jc2t8vZOK40z4TPHj4NYdDw3ZQGPmCO5DFgnEcwNvYC1vdG5irfvmEh5HF3JccJ6oTuM+ID7riTqcuJMb8oVq2rpZc4DOwcV5KsZl19wjT5i+MgQgiGCJBzARUpPFzYsJMT1MCFOEOI6zjBFibQZZTHKcIkd0XdIu27ORrRXnqlW+3RKQK8gpYlD0sSUJwir00wdz7SzYn/znmhPdbcx/b3cKyRW4pbYv3SzzP/qVC0SA5zqGjjVlGhGVefnLpnuirq5+aUqSQ4JcQr3KS4I+1o567OpNamuXfXW1fE3nalYtffz3Azv6pY0YPvnOOdB67hq16pnF7VK/SAfdRF72McRzfMEdTTQhEPeQzziCc9Gw4iMzLj/TDUKuWYX35bx8AGswZBU</latexit>

V

<latexit sha1_base64="GzsHf8XBZ3NF/bmesRmvNHx++GA=">AAACxnicjVHLSsNAFD2Nr1pfVZduglVwVRIpqLuCmy4r2gfUIsl0WkPTJEwmSikFf8Ctfpr4B/oX3hmnoBbRCUnOnHvPmbn3+kkYpNJxXnPWwuLS8kp+tbC2vrG5VdzeaaZxJhhvsDiMRdv3Uh4GEW/IQIa8nQjujfyQt/zhuYq37rhIgzi6kuOEd0feIAr6AfMkUZeT5vSmWHLKjl72PHANKMGselx8wTV6iMGQYQSOCJJwCA8pPR24cJAQ18WEOEEo0HGOKQqkzSiLU4ZH7JC+A9p1DBvRXnmmWs3olJBeQUobh6SJKU8QVqfZOp5pZ8X+5j3RnupuY/r7xmtErMQtsX/pZpn/1alaJPo41TUEVFOiGVUdMy6Z7oq6uf2lKkkOCXEK9yguCDOtnPXZ1ppU16566+n4m85UrNozk5vhXd2SBuz+HOc8aB6X3Ur57KJSqh6YUeexh30c0TxPUEUNdTTIe4BHPOHZqlmRlVn3n6lWzmh28W1ZDx+vIpBV</latexit>

Ū

<latexit sha1_base64="K1aZTBz0FKmdphXDsdGum+PWgzE=">AAACynicjVHLSsNAFD2Nr/quunQTrIKrkkhB3RXcuHBRwbSFtkgyndbQvJhMhBK68wfc6oeJf6B/4Z0xBbWITkhy5txz7sy910sCP5WW9VoyFhaXllfKq2vrG5tb25Wd3VYaZ4Jxh8VBLDqem/LAj7gjfRnwTiK4G3oBb3vjCxVv33OR+nF0IycJ74fuKPKHPnMlUe2e54rcmd5WqlbN0sucB3YBqihWM668oIcBYjBkCMERQRIO4CKlpwsbFhLi+siJE4R8HeeYYo28Gak4KVxix/Qd0a5bsBHtVc5UuxmdEtAryGniiDwx6QRhdZqp45nOrNjfcuc6p7rbhP5ekSskVuKO2L98M+V/faoWiSHOdA0+1ZRoRlXHiiyZ7oq6ufmlKkkZEuIUHlBcEGbaOeuzqT2prl311tXxN61UrNqzQpvhXd2SBmz/HOc8aJ3U7Hrt/LpebRwWoy5jHwc4pnmeooFLNOHoKh/xhGfjyhDGxMg/pUap8Ozh2zIePgADdJIN</latexit>

V̄

<latexit sha1_base64="/ZcvL/TV38D/U4nCfCrSOApZfig=">AAACynicjVHLSsNAFD2Nr/quunQTrIKrkkhB3RXcuHBRwT6gLTJJpzU0TcJkIpTQnT/gVj9M/AP9C++MU1CL6IQkZ849587ce70kDFLpOK8Fa2FxaXmluLq2vrG5tV3a2W2mcSZ83vDjMBZtj6U8DCLekIEMeTsRnI29kLe80YWKt+65SIM4upGThPfGbBgFg8BnkqhW12Mib05vS2Wn4uhlzwPXgDLMqselF3TRRwwfGcbgiCAJh2BI6enAhYOEuB5y4gShQMc5plgjb0YqTgpG7Ii+Q9p1DBvRXuVMtdunU0J6BTltHJEnJp0grE6zdTzTmRX7W+5c51R3m9DfM7nGxErcEfuXb6b8r0/VIjHAma4hoJoSzajqfJMl011RN7e/VCUpQ0Kcwn2KC8K+ds76bGtPqmtXvWU6/qaVilV732gzvKtb0oDdn+OcB82TilutnF9Xy7VDM+oi9nGAY5rnKWq4RB0NXeUjnvBsXVnCmlj5p9QqGM8evi3r4QMF1ZIO</latexit>

Ix

<latexit sha1_base64="5Bi+gYFmg5je1qg/T1WtCdToB4g=">AAACxnicjVHLSsNAFD2Nr1pfVZduglVwVRIpqLuCm7qraB9QS0mm0zo0L5KJWorgD7jVTxP/QP/CO2MKahGdkOTMufecmXuvG3kikZb1mjPm5hcWl/LLhZXVtfWN4uZWMwnTmPEGC70wbrtOwj0R8IYU0uPtKOaO73q85Y5OVbx1w+NEhMGlHEe86zvDQAwEcyRRF2e9u16xZJUtvcxZYGeghGzVw+ILrtBHCIYUPjgCSMIeHCT0dGDDQkRcFxPiYkJCxznuUSBtSlmcMhxiR/Qd0q6TsQHtlWei1YxO8eiNSWlinzQh5cWE1WmmjqfaWbG/eU+0p7rbmP5u5uUTK3FN7F+6aeZ/daoWiQGOdQ2Caoo0o6pjmUuqu6Jubn6pSpJDRJzCfYrHhJlWTvtsak2ia1e9dXT8TWcqVu1ZlpviXd2SBmz/HOcsaB6W7Ur55LxSqu5lo85jB7s4oHkeoYoa6miQ9xCPeMKzUTMCIzVuP1ONXKbZxrdlPHwAQYeQJw==</latexit>

Iy

<latexit sha1_base64="9Hs2GWkwauC8pOq1q8JAETCpu3Q=">AAACxnicjVHLSsNAFD2Nr1pfVZduglVwVRIpqLuCm7qraB9QS0mm0zqYJiGZKKUI/oBb/TTxD/QvvDNOQS2iE5KcOfeeM3Pv9eNApNJxXnPW3PzC4lJ+ubCyura+UdzcaqZRljDeYFEQJW3fS3kgQt6QQga8HSfcG/kBb/k3pyreuuVJKqLwUo5j3h15w1AMBPMkURdnvXGvWHLKjl72LHANKMGselR8wRX6iMCQYQSOEJJwAA8pPR24cBAT18WEuISQ0HGOexRIm1EWpwyP2Bv6DmnXMWxIe+WZajWjUwJ6E1La2CdNRHkJYXWareOZdlbsb94T7anuNqa/b7xGxEpcE/uXbpr5X52qRWKAY12DoJpizajqmHHJdFfUze0vVUlyiIlTuE/xhDDTymmfba1Jde2qt56Ov+lMxao9M7kZ3tUtacDuz3HOguZh2a2UT84rpeqeGXUeO9jFAc3zCFXUUEeDvId4xBOerZoVWpl195lq5YxmG9+W9fABQ+eQKA==</latexit>

It

<latexit sha1_base64="subGWySRg0ftg6vfyaLJgAbk324=">AAACxnicjVHLSsNAFD2Nr1pfVZduglVwVRIpqLuCm7qraB9QS0mm0zqYJiGZKKUI/oBb/TTxD/QvvDNOQS2iE5KcOfeeM3Pv9eNApNJxXnPW3PzC4lJ+ubCyura+UdzcaqZRljDeYFEQJW3fS3kgQt6QQga8HSfcG/kBb/k3pyreuuVJKqLwUo5j3h15w1AMBPMkURdnPdkrlpyyo5c9C1wDSjCrHhVfcIU+IjBkGIEjhCQcwENKTwcuHMTEdTEhLiEkdJzjHgXSZpTFKcMj9oa+Q9p1DBvSXnmmWs3olIDehJQ29kkTUV5CWJ1m63imnRX7m/dEe6q7jenvG68RsRLXxP6lm2b+V6dqkRjgWNcgqKZYM6o6Zlwy3RV1c/tLVZIcYuIU7lM8Icy0ctpnW2tSXbvqrafjbzpTsWrPTG6Gd3VLGrD7c5yzoHlYdivlk/NKqbpnRp3HDnZxQPM8QhU11NEg7yEe8YRnq2aFVmbdfaZaOaPZxrdlPXwAOAeQIw==</latexit>

I1

<latexit sha1_base64="qw/xWBk2elln68fIAf7dXvD81ks=">AAACxnicjVHLSsNAFD2Nr1pfVZduglVwVRIpqLuCm7qraB9QS0mm0zqYJiGZKKUI/oBb/TTxD/QvvDNOQS2iE5KcOfeeM3Pv9eNApNJxXnPW3PzC4lJ+ubCyura+UdzcaqZRljDeYFEQJW3fS3kgQt6QQga8HSfcG/kBb/k3pyreuuVJKqLwUo5j3h15w1AMBPMkURdnPbdXLDllRy97FrgGlGBWPSq+4Ap9RGDIMAJHCEk4gIeUng5cOIiJ62JCXEJI6DjHPQqkzSiLU4ZH7A19h7TrGDakvfJMtZrRKQG9CSlt7JMmoryEsDrN1vFMOyv2N++J9lR3G9PfN14jYiWuif1LN838r07VIjHAsa5BUE2xZlR1zLhkuivq5vaXqiQ5xMQp3Kd4Qphp5bTPttakunbVW0/H33SmYtWemdwM7+qWNGD35zhnQfOw7FbKJ+eVUnXPjDqPHezigOZ5hCpqqKNB3kM84gnPVs0Krcy6+0y1ckazjW/LevgAmNiP4A==</latexit>

I2

<latexit sha1_base64="0bBq2tZ/2Y2QzUHjvtExNUGgD7Y=">AAACxnicjVHLSsNAFD2Nr1pfVZduglVwVZJSUHcFN3VX0T6glpKk0zo0LyYTpRTBH3Crnyb+gf6Fd8YU1CI6IcmZc+85M/deN/Z5Ii3rNWcsLC4tr+RXC2vrG5tbxe2dVhKlwmNNL/Ij0XGdhPk8ZE3Jpc86sWBO4Pqs7Y7PVLx9y0TCo/BKTmLWC5xRyIfccyRRl+f9Sr9YssqWXuY8sDNQQrYaUfEF1xgggocUARhCSMI+HCT0dGHDQkxcD1PiBCGu4wz3KJA2pSxGGQ6xY/qOaNfN2JD2yjPRao9O8ekVpDRxSJqI8gRhdZqp46l2Vuxv3lPtqe42ob+beQXEStwQ+5dulvlfnapFYogTXQOnmmLNqOq8zCXVXVE3N79UJckhJk7hAcUFYU8rZ302tSbRtaveOjr+pjMVq/ZelpviXd2SBmz/HOc8aFXKdrV8elEt1Q6yUeexh30c0TyPUUMdDTTJe4RHPOHZqBuhkRp3n6lGLtPs4tsyHj4AmziP4Q==</latexit>

Figure 1: H&S mono-scale iterative scheme

2.2.1.2 Multi-scale

The multi-scale L&K method is a solution in order to tackle the bottleneck of the small
pixel displacements of the L&K mono-scale algorithm. At first, an image pyramid is con-
structed for every image, where optical flow is performed. Then, the mono-scale algorithm
is applied to every scale and the associated flow vectors are extracted. Since, the pyramid
images are down-scaled, the flow vectors of every scale, correspond to larger pixel dis-
placements for the initial image. This way larger pixel displacements are detected. In the
end, all the velocity vectors are summed to provide the final velocities [43],[44].

2.2.2 Horn and Schunck

2.2.2.1 Mono-scale

The algorithm that we implement and focus in this thesis is the Horn and Schunck (H&S)
[45] which is one of the most famous algorithms for optical flow and its scheme is shown
in Figure 1. It is also a gradient based algorithm but in contrast to L&K, the global min-
imum of a function is searched. In [45] an additional assumption was proposed to solve
Equation 5 which is that the optical flow should be smooth over the entire image. As a
result for every pixel the computed flow in a small neighbourhood is similar. The problem
formulation in the case of H&S is described by Equation 10. Parameter α is a regulariza-
tion constant. Larger values of α lead to a smoother flow. Equation 10 can be minimized
by solving the associated multi-dimensional Euler–Lagrange equations.

∫ ∫
[(Ixu+ Iyv+ It)

2 + a2(∥∇2
u∥+ ∥∇2

v∥)]dxdy (10)

2.2 different optical flow algorithms 11

By using Cramer’s rule the following iterative scheme is derived (Equations 11 and 12)
which is used to estimate the optical flow vectors and in Figure 1 is denoted as calc. The
mean of the velocities is done with Equations 26 (avg in Figure 1). The derivatives Ix, Iy
and It are computed by Equations 13, 14 and 15 (grad in Figure 1).

u(i) = ū(i−1) − Ix
Ixu

(i−1) + Iyv
(i−1) + It

α2 + I2x + I2y
(11)

v(i) = v̄(i−1) − Iy
Ixu

(i−1) + Iyv
(i−1) + It

α2 + I2x + I2y
(12)

Ix =
1

4
(((I1(x+ 1,y) − I1(x,y))+

(I1(x+ 1,y+ 1) − I1(x,y+ 1))+

(I0(x+ 1,y) − I0(x,y))+

(I0(x+ 1,y+ 1) − I0(x,y+ 1)))

(13)

Iy =
1

4
(((I1(x,y+ 1) − I1(x,y))+

(I1(x+ 1,y+ 1) − I1(x+ 1,y))+

(I0(x,y+ 1) − I0(x,y))+

(I0(x+ 1,y+ 1) − I0(x+ 1,y)))

(14)

It =
1

4
(((I1(x,y) − I0(x,y))+

(I1(x,y+ 1) − I0(x,y+ 1))+

(I1(x+ 1,y) − I0(x+ 1,y))+

(I1(x+ 1,y+ 1) − I0(x+ 1,y+ 1)))

(15)

ū =
1

12

1 2 1

2 0 2

1 2 1

 ∗ u v̄ =
1

12

1 2 1

2 0 2

1 2 1

 ∗ v (16)

The advantage of the H&S algorithm is that it yields a high density of flow vectors, i.e.
the flow information missing in inner parts of homogeneous objects is filled in from the
motion boundaries. On the negative side, it is more sensitive to noise than local methods.
TVL1 [46] also belongs in the gradient based algorithm family and it originates from the
H&S.

12 optical flow and embedded devices

mono-scale

mono-scale

mono-scale

down

down

up

up

Figure 2: Pyramid of images

2.2.2.2 Multi-scale

Mono-scale optical flow algorithms suffer from limited pixel displacement detection [45].
Nevertheless, many applications such as meteor detection [4] require larger pixel displace-
ment detection and the multi-scale algorithms offer a solution to this problem.

As referred in [45] the mono-scale H&S algorithm is able to detect a flow of one pixel
per two consecutive frames. By taking this into account, when down-sampling the image
by a specific factor which in our case is 2 and performing the H&S there, the detection
might stay the same in this down-sampled scale of the image, but after up-sampling
the computed velocities in the initial image size, the displacement is doubled. Consid-
ering that, a pyramid of images can be created as shown in Figure 2, whose levels and
down-sampling factor can be defined with the aim of increasing the pixel displacement
detection.

The description of the algorithm is shown in Figure 3. In the beginning, the two con-
secutive frames are down-sampled in order to create the images of the pyramid. For the
down-sampling a five tap Gaussian filter is used. When this procedure has finished, the
mono-scale H&S computation is performed iteratively in the smallest image (coarse level
of the pyramid). The computed velocities for this level ((u, v)λ+1

initial) of the pyramid are
extracted and are up-sampled (up) in order to be used in the next pyramid level. It is of
great importance to take into account the motion that was extracted in the previous level,
in this level too. Thus, in the beginning of the next level a warping is performed between
these pre-computed velocities and the image (I2rec) that will be computed in this level.
This is done to compensate the motion because of the previous extracted flow. To imple-
ment warping either bi-linear or bi-cubic interpolation is used depending on the accuracy.
The same procedure followed in the previous pyramid level is followed in this level too.
The only difference is that in the end of the level, the computed velocities from the pre-
vious pyramid level and this pyramid level ((du,dv)λ+1

final) have to be accumulated and
then up-scaled to be used for the next pyramid warping. In the final pyramid level (fine
level) where the initial images are used, the same pattern with the warping and the mono-
scale kernel is followed. In the end all the velocities from all the levels are accumulated to
provide the final computed flow vectors ((u, v)λ+1

final).

2.2 different optical flow algorithms 13

I1

I2

du dv

grad

I1 I2rec

I1 I2

UV

I2

grad

I1

Ix Iy It

du dv

warp

I2rec

U V

I2

warp U V

+

+

U V

U V

calc
UV

calc
UmVm

Um
Vm

grad

calc
UV

calc
UmVm

Um
Vm

du dvcalc
UV

calc
UmVm

Um
Vm

Ix Iy It init UV

Ix Iy It

Init UV

init UV

initial
final

final

final
initial

le
ve

l0
le

ve
l1

le
ve

l2

Figure 3: Description of the multi-scale H&S Algorithm

14 optical flow and embedded devices

In each pyramid level the displacement detection of pixels is 1. For a three levels pyra-
mid and for a down-sampling factor of 2, the largest total displacement that can be com-
puted is

∑2
λ=0 2

λ = 7 pixels. One can choose different down-sampling factors to increase
the motion displacement detection but it becomes really complicated for the hardware
design [47] and can lead to inaccurate results.

2.2.3 Other Optical Flow algorithms

Block methods algorithms are also used for optical flow [48]. There, the operation scheme
is based on determining the maximum correlation of a certain area between two frames.
The displacement of this area is equivalent to the determined optical flow [43]. The disad-
vantage of this method is that the analysis is predetermined to characteristic points. This
ultimately can lead to sparse flow but with the advantage of being more prone to errors.

In [49] it is analyzed how phase and frequency are used for estimating the velocity flow.
There, they make use of the fact that phase is more robust compared to the amplitude
with changes in contrast, scale, orientation and speed. For the analysis Gabor filters and
Fourier transform is applied in the signals. The biggest disadvantage of this method is
the heavy computational effort that has to be performed.

During the last few years neural networks and especially deep neural networks (DNN)
are used for the extraction of the optical flow. These approaches excel in the accuracy
of the detection but they require sophisticated training and huge computational effort.
More precisely in [50] the FlowNet neural network was presented. Convolutional neural
networks are known to be very efficient at learning input relations given enough data
for training. Thus, in the work of [50] they follow an end to end learning approach to
predict optical flow which is to start with a given data set consisting of image pairs and
ground truth flows which they use to train their network to predict the x and y flows
directly from the images. In order to perform the optical flow they create two separate,
yet identical processing streams for the two images and then they combine them at a later
stage in the neural network in order to extract the flows. In [6] the new improved version
of FLowNet is presented where they solve the problems of small displacements and noisy
artifacts in estimated flow fields. They do that by firstly using more sophisticated data
sets to train their networks. They introduce a warping operation and show how stacking
multiple networks using this operation can significantly improve the results. Finally, they
focus in small displacement of pixels by introducing real problem data sets to achieve that.
In LiteFlowNet2 and LiteFlowNet3 [51],[52] regularisation is used to reduce the influence
of noise and smooth the flow, while conserving the edges. In SpyNet [51],[53] a pyramid
of images is used and small sized network for each scale which is trained independently.
There, the learned convolution filters appear similar to classical spatio-temporal filters,
giving insight into the method and how to improve it. However, since they compute many
pyramid scales there is the possibility of loosing objects when the image is down-scaled.

2.3 optical flow in embedded devices 15

2.2.4 Advantages and disadvantages of each algorithm

The neural networks are able to compute the optical flow with the best accuracy com-
pared to all the other state of the art works. The drawback they have, is the enormous
computation cost and the very high computation time they require for large images. The
same happens with the block matching algorithms, although the accuracy they achieve
is lower related to the neural networks. H&S and L&K are ideal for implementing in
embedded devices because of their computation patterns. Nevertheless, the accuracy of
the mono-scale version is deteriorated compared to other state of the art algorithms. Thus,
the multi-scale version is considered which is able to improve drastically the accuracy and
detect large pixel movements. The advantage of the H&S algorithm compared to L&K is
that it is a 100% dense algorithm which means that the optical flow is detected in the
whole image and not locally as in the L&K case.

In the next subsection we will present the state of the art of optical flow in embedded
devices.

2.3 optical flow in embedded devices

Despite the impressive accuracy the DDNs achieve in computing the optical flow, their
computations demands make it really challenging to implement in embedded devices.
In [6] they implement in the Nvidia GTX 1080 GPU the FlowNet2 and they present a
trade off between accuracy and FPS (Frames per Second). The highest FPS they achieve
is 123 but for small image sizes and with limited accuracy of detection even in this pow-
erful GPU. A recent work in implementing neural networks for optical flow in FPGAs
is presented in [8]. In their work they use a multiplexing binary neural network (BNN)
which is less demanding computation wise, instead of a CNN, for pyramidal feature
extraction and they make the design independent of the pyramidal level number. They
achieve impressive accuracy in the Middlebury data set [54], but there are no information
about the resources utilization of the FGPA. The FPS they achieve for the image size they
considered is deteriorated compared to other optical flow designs in embedded systems.
Furthermore, a correlation is not presented between hardware utilization and throughput
to see how it scales.

Many embedded works design the L&K for the optical flow detection. In [55] they use
the Nvidia Jetson CPU (only the ARM CPU and not the GPU) to accelerate the L&K.
They optimize the throughput with respect to the energy consumption. They also include
an implementation on a Nvidia Tegra AGX in order to increase the throughput. Their
design which also includes the TVL1 achieves an FPS of 25 for an image size of 960×540

pixel. In [56] they design a multi-scale L&K in a custom processor in the Artix XC7A100T-
CSG324 Xilinx FPGA and in an ASIC with a 40 nm CMOS implementation. In order
to increase the accuracy they implement a 4 levels pyramid but the FPS they achieve is

16 optical flow and embedded devices

only 5 for a 640x480 pixel image. Their design is not scaling for larger images too. In
[57] the Texas Instruments C66x, a 10 Watt embedded digital signal processor (DSP) is
used for the acceleration of a pyramidal L&K. They perform an exploration concerning
the number of cores needed to compute different images sizes and different iterations
for a 4 levels pyramid. In [58] they use a CPU-GPU (Core 2 Quad 2.83GHz CPU and
an NVidia GeForce GTX285 GPU) for the implementation of the L&K image registration
algorithm for 3D computational platform stabilisation. They manage to compute 30 FPS
for a 512×512×2 region of interest. In [44] the L&K is again implemented on a Titan GPU
for very large image size of 3840x2160 pixels. They achieve real time computation but
there are no information about accuracy. [59] design a L&K in a Virtex 6 FPGA. Their
work is mainly focused on reducing the demand of external memory bandwidth of the
image. They achieve that by compressing the image when they write it to the external
memory. Then when they process the image they up-sample it with as much as possible
minimum loss of accuracy. They perform an exploration regarding the wordlength of the
data but since they use the mono-scale version their accuracy of detection is not very
competitive compared to other state of the art works. In their resources utilization there
is a slight increase due to the compression of the image. In [60] the authors present a
mono and a multi-scale implementation of the L&K algorithm in the Virtex 4 FPGA. They
explore different arithmetic formats such as fixed or floating point and they parallelize
their code to increase the throughput. They perform warping in each pyramid level which
highly reduces their computation speed since they want to make the design to use as less
hardware as possible. The final L&K implementation which we will refer to is the one
of [61]. They achieve the highest throughput of all the other state of the art works for an
image with size 1024x1024 pixels. Their working clock frequency is only 90 MHz which
is very impressive. However, they use two FPGAs to make the computation, one for the
handling of the inputs and one for the computation of the algorithm. Some parts of the
algorithm are also performed in a power PC. That is why we believe they achieve an
impressive throughput. Finally, in their work there are no information about the accuracy
of their algorithm.

[62] is implementing a hierarchical block matching-based optical flow algorithm in the
Virtex 7 FPGA. The accuracy they achieve is higher compared to other state of the art
works in FPGAs as they use a multi-scale algorithm. However, the demand of the algo-
rithm is huge in terms of Block RAMs especially when images larger that 640x480 pixel
are considered. This happens because they use on-chip memory as blocks where they
store the data which they want to process to extract the flow vectors. When the num-
ber of blocks is increased with the aim of improving the accuracy of the detection, the
throughput is significantly decreased due to the huge computation demand.

A multi-scale, multi-orientation phase based algorithm is employed by [63] on a Virtex
4 FPGA. For the implementation they use various fixed point formats and they warp the
images in the different pyramid levels to increase accuracy. They have 4 pyramid levels

2.3 optical flow in embedded devices 17

and they perform the optical flow in 640x480 pixel images. However, they do not include
enough information about accuracy and they do not present how their design scales up
in terms of throughput.

Along with L&K, H&S is the most famous algorithm which is implemented widely
in embedded devices. [64] designed a mono-scale H&S on the Jetson TK1 board. They
applied various optimizations, such as half precision IEEE arithmetic format, SIMD and
various pipeline patterns. They tried also different iteration numbers and different image
sizes. They achieved 25 frames per second for up to 8Mpix images for 0.35J per image.
There were no information provided for the impact of the arithmetic format in the quality
of the detection. [3] is using the Jetson AGX Xavier GPU for the implementation and it
achieves remarkable throughput for large images by using half precision floating point
and an alternative pipeline pattern. [65] is implementing the same algorithm but on an
FPGA. The computation time their algorithm needs is very high compared to other state
of the art works. They also store the intermediate computed velocities in the Block RAMs
which leads to huge cost of on chip memory or the ability to compute only small im-
ages. [66] on the other side is able to compute full HD images with a throughput of 283

MPixel/sec. However, it is not using techniques to reduce the resources utilization or to
provide a scalable architecture which would fit in a smaller FPGA than the one it is us-
ing. There are no information regarding the accuracy achieved too. [67] is implementing
exactly the same algorithm and it also achieves impressive throughput compared to other
state of the art works. However compared to [66], they deal with the iterations number,
the floating or fixed point format and the convergence. Moreover, they claim that in order
to detect large pixel displacements they perform the mono-scale algorithm very fast. The
last two works are not exploring the trade-offs that have to be made between the exter-
nal memory bandwidth and the on chip memory. [43] is implementing a multi-scale H&S

algorithm on the ZCU 104 platform. The pyramid’s levels are two and for the motion com-
pensation the bi-linear interpolation. The throughput they achieve is very high but this
comes with an important cost in the DSPs units of the FPGA. They use both vectorization
and deep pipeline techniques to accelerate the algorithm. They use fixed point arithmetic
and a simple convolution algorithm to down-sample the images. However, since they use
two pyramid levels the accuracy is reduced compared to previous state of the art works
with more scales. Furhtermore, they perform the interpolation in the end of the pipeline
of each pyramid level and then they create the new image for the fine level. This also
affects negatively the accuracy. Finally, as all the previous H&S designs in FPGAs they
use computation reuse for the derivatives.

In this thesis we will explore and implement the multi-scale H&S algorithm in FPGAs.
We believe that since the previous state of the art works focus solely either on the accuracy
or the throughput part, there should be a work which would offer a clear trade off between
them. The multi-scale H&S is the kind of algorithm which offers this advantage as it can
be tuned in many ways.

18 optical flow and embedded devices

2.4 different components of the multi-scale h&s

In Figure 3 the different blocks that form the described algorithm in this thesis are pre-
sented. The hierarchical H&S algorithm is a multi-rate image processing algorithm [68]
which consists different processing units.

The mono-scale H&S kernel is an Iterative Stencil Loop (ISL) algorithm. ISL is a kind of
algorithms where a grid is iteratively updated cell by cell according to a multidimensional
local fixed input array from the starting grid. Usually, the computation is done for all the
cells of the grid for iteration i− 1 before calculating all the cells for iteration i. Instead of
doing the computation with all the grid there is a possibility to compute a subset of cells
for the grid in iteration i− 1 in order to calculate some adequate cells for the iteration
i. Each approach has a different impact in the implementation as we will describe in the
next sections.

There are already a lot of works optimizing the above kind of algorithms especially
for CPU and GPUs [69]–[74] in terms of parallelism, efficient blocking to reduce memory
bandwidth and data locality.

More recently, for FPGAs, there was a great effort to optimize the ISL. These works
[66], [67], [75]–[78] take advantage of the deep pipeline approach between consecutive
iterations in a similar way as proposed by [79], [80] who also performs the acceleration
with the help of OpenCL. Sano [81] in his work combines the deep pipeline and the
parallel approaches in multi-FPGA architectures. Zohouri [82], [83] combined temporal
and spatial parallelism targeting 2D and 3D iterative stencils in order to deal with different
input sizes. In his work, shift registers were used as on-chip buffers to provide the PEs
with the adequate data. A similar strategy with [79] was followed by Dest [84] and Chi
[85], [86]. Chi proposed a design framework which also solves the problem of halo regions
in iterative stencil computations. Nacci [87] followed a different approach compared to the
aforementioned works. Instead of doing the computation frame by frame for all the ca
points of the grid (in a current iteration), he takes advantage of the fact that ca need
only a neighborhood of ca−1 to be computed. He performs the desired processing by
repeatedly applying a cone to portions of the input matrix. In that way he reduces the
external memory bandwidth rate with an overhead for on chip memory and computation
time. A similar approach was also followed by [88], [89]. Waidyasooriya in his work [90]
uses Multi-FPGAs architectures and OpenCL to accelerate Stencil Computation and he
also targets very large inputs which he handles with spatial pipelining. Finally, in the
work of [91] there is a description of how stencil computation should be handled with
high level synthesis tools.

Warping, with the appropriate designing can be considered as a stencil algorithm. The
same happens with the down-sampling and the up-sampling core. Still, with the last two
algorithms there is a fundamental difference. The input rate of the two algorithms is
different from the output rate they produce. This makes them multi-rate algorithms.

2.5 discussion on the state of the art in fpgas 19

Table 1: Advantages of the FPGA State of the Art Works

algorithm Accuracy Image Size throughput Resources Tunability

H&S [66] NA !!!! !!!! !! !!

H&S [67] ! !!!! !!!! !! !!!

H&S [95] ! !!!! !! !! !

H&S [96] ! !!!! !!! !!!! !

MH&S [43] !! !!!! !!!! !!! !!!

L&K [59] !! !! !! !!!! !

L&K [61] NA !!!! !!!! !!!! !!

L&K [97] ! !!! !! !! !

ML&K [43] !! !!!! !!!! !!! !!

ML&K [60] !! !! ! !! !

ML&K [43] !! !!!! !!!! !!! !!!

MPB [47] !! !! ! !! !

HBM [62] !!!! ! ! !! !

DNN [8] !!!! ! !! NA NA

Multi-rate algorithms are widely used in image processing pipelines and a lot of re-
search groups concentrate their efforts on optimizing these kind of algorithms. In [92]
[93] [94] they are using static scheduling for accelerating the aforementioned kind of al-
gorithms. Despite the benefits of static scheduling there are no FPGA image processing
compilers that can statically schedule realistic size multi-rate applications and they are
relying on on the inter-stage FIFO approach which highly increases the usage of Block
RAMs and decreases the throughput. There is not also the option of vectorizing the com-
putation with the aim of increasing the throughput. The only work which concentrates
on accelerating multi-rate algorithms for FPGAs is the one of [68]. In their work they ef-
fectively pipelining stencils with different rates and they try to keep the resources usage
low. However, they do not take into account the external memory reads and writes which
highly impacts the throughput. They also do not explore the different trade-offs that have
to be explored between the external memory interaction and the Block RAMs.

2.5 discussion on the state of the art in fpgas

Since in this thesis we are designing the optical flow multi H&S in an FPGA, it is important
to summarize what other state of the art works are lacking and why our work is essential.

20 optical flow and embedded devices

In table 1 we are presenting the strong points of the state of the art FPGA implementa-
tions. In this table, we include information about the algorithm used, the image size, the
throughput, the FPGA resources utilization and the tunability, meaning from how many
options the designer can choose in order to tune the design according to its needs. For ex-
ample, if there is the option to parallelize the design or to use fewer hardware in order to
compute the flow in real time. We grade the strength of each implementation in each do-
main. We can see from this table that the DNN implementation and the hierarchical block
matching implementations achieve the best accuracy detection of the optical flow. Espe-
cially the DNN design achieves the highest accuracy between all the state of the art works
in the Middlebury data set of images [54]. We also see that the mono-scale H&S designs
achieve remarkable throughput but the work of Ishii[61] is achieving the highest through-
put among all works for a mono-scale L&K algorithm. Nevertheless he uses two FPGAs
for some part of the computation of the algorithm. [43] is implementing multi-scale H&S
and L&K algorithms and it performs less iterations in the finest level which highly in-
creases throughput. The gradient based designs are able to compute large images, while
this is not the case for HBM and DNNs. Most of the works do not offer tunable designs
which can fit to smaller FPGA devices, something we consider very important as with
limited resources, still real time processing can be achieved with acceptable accuracy. Fi-
nally, it is important to point out, that designs with high accuracy are unable to compute
the optical flow with high throughput for large images.

2.6 conclusion

In the beginning of the second chapter of this thesis we have made an introduction to the
optical flow algorithms. The definition of the optical flow was given. Different algorithms
were presented and the advantages and disadvantages of each one of them were given.
Their implementation in embedded devices was discussed and it was pointed out how
demanding it is to design effective optical flow algorithms for them. We described the
multi-scale H&S algorithm which is the optical flow algorithm we will explore and de-
sign in this thesis. The key characteristics of the algorithm were explained and the main
challenges that we have to overcome in order to have a sustainable architecture. We re-
ferred on how other state of the art works dealt with these challenges and why there is
a need for a new FPGA optical flow design dealing with all the factors that impact the
design.

In the third chapter we will explore the accuracy of the multi-scale algorithm. We will
see why the mono-scale architecture is not enough for detecting the optical flow and how
other various factors impact the accuracy. We will use smaller arithmetic formats and we
will use a very known sequence of images to evaluate our work.

3
A C C U R A C Y

An increase in the word length of the data representation usually leads to an improve-
ment in the extracted information from a computer vision algorithm and better precision
for the human eye as it is able to detect the difference in accuracy of the pixels of the
image. A fundamental part when designing image processing algorithms for embedded
applications is the precision of the value representing the pixels of the image compared
to a ground truth [54] and it has a key impact on the image quality level which the design
achieves [98]. Addressing the issue of accuracy of the observed scene in optical flow is
tremendously challenging and it requires careful steps and considerations [99]. Accuracy
in optical flow depends on the observed scene, however in any case the accuracy can be
augmented with careful handling of certain parameters of the design. In this chapter, an
accuracy exploration analysis will be performed regarding the optical flow Hierarchical
Horn and Schunck algorithm. Several factors are essential for the tracking of the accuracy
in a multi-scale algorithm. Thus, the exploration will include different factors of the algo-
rithm, such as the number of the pyramid levels, the iterations number in each pyramid
level and the interpolation algorithm for the warping. As reducing the number of itera-
tions play a significant role in throughput, in this chapter the impact it has in accuracy
and convergence will be explored. Embedded applications usually demand the hardware
to remain low in order be sustainable in terms of resources usage design. Since we are
talking about embedded applications, the impact of reducing the arithmetic format will
be explored [100],[101]. Consequently, in this thesis a deep exploration is performed in the
multi-scale algorithm concerning the arithmetic formats which to the best of our knowl-
edge has never been done before for a pyramid algorithm. For the exploration results the
Arria 10 Han Pilot Platform was used and the components were designed with the help
of the FloPoCo library [102]. Since decreasing the data size, decreases the stretching of the
external memory bandwidth which potentially leads to higher throughput, the possibility
of using smaller arithmetic formats in the last scale of the image which takes the longest
time is explored in terms of the accuracy. Finally, a thorough comparison will be made
with the state of the art and the most known sequence of images will be used for fair
comparisons[54]. The first section will be about the evaluation metrics which are widely
used in the literature to compare the different designs[97],[67].

21

22 accuracy

3.1 evaluation metrics

The optical flow is computed between two images. For evaluating the accuracy of the
optical flow, it have to be compared with a reference value[98],[103]. However, evaluating
the result is subjective, it depends on the observed scene but also on the application where
optical flow is used[104],[105]. Nevertheless, by comparing our results with the rest state
of the art designs, we can get an idea if our accuracy is acceptable on a very common data
set. In order to do a fair comparison of the result with other state of the art works, certain
metrics that are used widely will be used in this thesis too.

3.1.1 Peak Signal to Noise Ratio

The Peak Signal to Noise Ratio (PSNR) metric defined by Equation 18, computes the peak
signal-to-noise ratio, in decibels, between two images[106],[107]. The higher the PSNR is,
the better the quality of the optical flow is. The Maximum Square Error (MSE) [108],[109]
which is shown in Equation 17 represents the cumulative squared error between the two
images, whereas PSNR represents a measure of the peak error. The lower the value of
MSE is, the lower the error is.

MSE requires two images for the computation of its value. The first image (I1) is the
one against which the optical flow is computed. The second image has to be created
(I2). Thus the optical flow vectors are used for the creation of this image. The initial
image, where optical flow is computed, is interpolated by using bi-cubic interpolation
with the computed velocities of the optical flow. The warped final image is used for the
computation of the MSE metric. W is the width of the image while H is the height. Since
the images that are considered, are gray scale images with a representation of 8 bits, R
is the maximum fluctuation in the input image data type which, in our case, is unsigned
integer 8 bit, so 255.

MSE =

∑
w,h[I1(w,h) − I2(w,h)]2

W ·H
(17)

PSNR = 10 · log(
R2

MSE
) (18)

3.1.2 Average Angular Error

As explained in [54] the PSNR metric is not a very accurate metric because interpolation
affects the accuracy. Thus, the quality of the interpolation highly impacts the result and
in this thesis we will avoid using this metric. A more accurate metric for the evaluation

3.2 levels of the pyramid and iterations in each level 23

of the optical flow is the Average Angular Error (AAE) [56],[110],[111]. The AAE between
two flows is the angle in 3D space between them ((u, v, 1.0) and (ur, vr, 1.0)). (u, v) is
the computed flow and (ur, vr) is the ground truth flow (ground truth is the real optical
flow vectors between the two images [54]). The AAE is computed by normalizing the
optical flow vectors, taking the dot product, and then taking the inverse cosine of their
dot product. AAE is described by Equation 19.

EAAE =
1

W ·H
∑
W,H

arccos
1+ ur · u+ vr · v√

(1+ u2
r + v2r) · (1+ u2 + v2)

(19)

3.1.3 Average Endpoint Error

In AAE normalizing results leads in a situation, in which errors from small flows have
the same influence in the final result as errors in large flows[54]. This is why a second
metric is used which is also used widely in literature. This is the Average Endpoint Error
(AEE)[112]. AAE is computed by Equation 20. The Euclidean norm is used to compute
the average error between the obtained optical flow and the ground truth in pixels.

EAEE =
1

W ·H
∑
W,H

√
(u2 − u2

r) + (v2 − v2r) (20)

3.1.4 Exploration Methodology

For the exploration of the number of the pyramid levels and the iteration numbers in
each pyramid level, single precision floating point format was used and bi-cubic interpo-
lation which is widely used by the community for the experiments of the optical flow
[60][113][63][47]. By doing that, we first determine these two factors, without reducing
the accuracy of the detection by using smaller arithmetic formats or less accurate interpo-
lation algorithms. Following that, we determine the interpolation factor but at this time
we take into account the reduced floating point formats as it is essential for the algorithm
selection. Finally, we evaluate the impact in the accuracy of reduced size floating point
numbers and of trans-floating representations.

3.2 levels of the pyramid and iterations in each level

The problem with the mono-scale algorithms is that they can not detect pixel displace-
ment larger than one pixel per frame [67]. As a result, when someone wants to detect
displacements larger than one pixel per frame alternative approaches have to be followed.
One approach that is widely used in the literature is to perform the mono-scale algorithm

24 accuracy

1 2 3 4

pyramid levels

1

1.5

2

2.5

3

3.5

4

A
E
E

Figure 4: Number of pyramid level

extremely fast[66],[44],[114]. By doing that, many frames per second can be computed
[67]. The largest detectable pixel displacement is still one pixel per frame but by comput-
ing many frames per second it is assumed, that the pixel movement between consecutive
frames is not larger than one. This approach demands cameras that are able to produce
this number of frames per second which are very expensive. Another significant problem
these cameras face, is the noise that is created due to the demand for high frame rate
which results to too few photons been detected[67].

In this thesis we address this problem by using the multi-scale H&S algorithm[3],[4],[115].
Multi-scale algorithms are used to detect larger pixel displacement by creating a pyramid
of the images [116],[117],[118]. In each level of the pyramid the mono-scale algorithm is
performed and finally the computed velocities in each level are summed for the final out-
put [47]. A question that arises from this approach and which has not yet been answered
by the previous multi-scale designs is how many levels should the pyramid be in order
to achieve enough motion detection. We address this problem by testing different known
sequences of images and we then choose the number of the levels of the pyramid. All the
images of the Middlebury data set were tested [54]. The mathematical relation connect-
ing the number of levels of the pyramid which is known as level constraint (λ) and the
maximum pixel movement detection is given by Equation 21.

λ = log2(max_pixel_motion) (21)

In Figure 4 the impact of the number of pyramid levels on AEE is presented on the
Groove3 sequence of images. Thus, AAE is used to determine the accuracy. It can be
seen that better convergence is achieved with four and three pyramid levels. In this thesis
we will stay with the 3 levels pyramid because the value of the AAE for level 3 and 4

pyramids are not very far from each other and we consider the more pyramid levels as
future work.

3.3 interpolation 25

(1,1,1) (5,5,5) (5,10,10) (10,5,5) (10,10,5) (20,10,5) (20,20,5) (40,20,5) (40,40,5) (40,40,40) (100,100,100)

iterations

1

1.5

2

2.5

3

A
E
E

Figure 5: Number of iterations in each pyramid level

Now that the number of the pyramids levels has been decided it is of great importance
to determine how many iterations in each level of the pyramid should be performed.
In Figure 5 the exploration that has been performed regarding the number of iterations
is shown (G3 sequence). It is shown in this graph that performing more iterations in
the finest level of the pyramid does not lead to better accuracy. This is expected as in
the biggest image, smaller pixel displacement is detected. On the contrary, when more
iterations are performed in the smallest image, AAE is reduced and so better accuracy is
achieved. The ideal in terms of accuracy would be to perform 100 iterations in each level
as shown in the graph but this comes with a huge cost in the throughput and computation
as we will see in the next chapter. In this thesis we choose to perform (20,10,5) iterations
(20 iterations in pyramid level 2, 10 iterations in pyramid level 1, 5 iterations in pyramid
level 0) when throughput is important or (40,20,5) when accuracy is the primary goal.
Nevertheless, the accuracy is better in both cases than almost all the state of the art works
as we will show later. In the future we plan to remove completely the computation in the
finest level of the pyramid and increase the pyramids’ levels as the computation in the
smallest image takes less time.

3.3 interpolation

In the multi-scale H&S algorithm a crucial part is the warping[119],[120]. Bi-cubic [121],[122]
and bi-linear [123] interpolations are used in this thesis. We perform interpolation in the
beginning of each pyramid level. Blachut in his work [43] who is implementing exactly
the same algorithm, is performing interpolation in the end of each pyramid level and then
he up-samples the results with the aim of creating the new image for the next pyramid
level. Thus, for a 2 levels pyramid he is only performing one interpolation in the end of
the coarse level. This reduces accuracy and he has to perform pre-processing in the image
to achieve good accuracy. This is not the case in our work. We perform the interpolation

26 accuracy

F13 F14 F16 F32
Floating Point Format

0.5

1

1.5

2

2.5

A
E
E

G3 bi-cubic

G3 bi-linear

G2 bi-cubic

G2 bi-linear

Figure 6: Interpolation’s accuracy

F9 F10 F11 F12 F13 F14 F15 F16 F32

Floating Point Format

0.5

1

1.5

2

2.5

A
E
E

G2(40,20,5)

G2(20,10,5)

G3(40,20,5)

G3(20,10,5)

Figure 7: AEE for G3 and G2 with different Floating Point formats

in the beginning of each pyramid level and in this case there is no need for recreating the
image.

In Figure 6 the results regarding the bi-linear (dotted line) and the bi-cubic interpolation
type (continuous line) are shown against the AEE. The results for the Groove 3 and Groove
2 sequences of images are shown. We include the floating point format used as it is
essential for the interpolation type. In the cases of F32 IEEE single precision floating point
arithmetic format and F16 half precision arithmetic format [124] the difference between
the two interpolations types is smaller than 0.04. In the case of F13 (sign=1, exponent=5,
mantissa=7) the difference is up to 0.15. Thus, for small floating point arithmetic in this
thesis we are using the bi-cubic interpolation and for bilinear F16 and F32.

3.4 floating point formats 27

F9 F10 F11 F12 F13 F14 F15 F16 F32

Floating Point Format

10

15

20

25

30

A
A
E

G2(40,20,5)

G2(20,10,5)

G3(40,20,5)

G3(20,10,5)

Figure 8: AAE for G3 and G2 with different Floating Point formats

F9 F10 F11 F12 F13 F14 F15 F16 F32

Floating Point Format

1

1.5

2

2.5

3

A
E
E

D(40,20,5)

D(20,10,5)

H(40,20,5)

H(20,10,5)

V(40,20,5)

V(20,10,5)

Figure 9: AEE for H, D and V with different Floating Point formats

3.4 floating point formats

One of the basic issues the designer has to consider when designing embedded imple-
mentations for image processing algorithms is the arithmetic format of the data that are
processed because when reducing the word length of the data less hardware resources
are used. In this section, an exploration is performed regarding the arithmetic format that
will be used in the design. Floating point arithmetic was used for the design of the algo-
rithm. Fixed point arithmetic was also considered but we need more bits and iterations
compared to floating point arithmetic as also explained by other state of the art works
[67] to achieve convergence and we leave this as potential future work.

Floating-point numbers are usually a subset of rational numbers, with some additional
values for handling exceptions (e.g. infinities). A radix β is associated to a floating-point
arithmetic, and its finite numbers can be represented as S.M ·βE with M (mantisa) and E
(exponent) two integers and S the sign bit. The most common radix is β=2 which is used
widely in computer engineering and which we will use [125],[126].

28 accuracy

F9 F10 F11 F12 F13 F14 F15 F16 F32

Floating Point Format

10

15

20

25

30

35

40
A
A
E

D(40,20,5)

D(20,10,5)

H(40,20,5)

H(20,10,5)

V(40,20,5)

V(20,10,5)

Figure 10: AAE for H, D and V with different Floating Point formats

F12 TF9 F13 TF10 F14 TF11

Floating Point Format

1

1.5

2

2.5

A
E
E

G2(40,20,5)

G2(20,10,5)

G3(40,20,5)

G3(20,10,5)

Figure 11: AEE for G3 and G2 with trans Floating Point format

A very important parameter associated with floating point arithmetic is the lowest and
largest allowable exponents, emin and emax. In this thesis the largest allowable exponent
is essential as the largest possible number that may occur has to be able to be represented.
As the input images are 8 bit (unsigned) we select at least 5 bits for the exponent to cover
the largest number.

In Figures 7,8,9 and 10 the exploration we performed regarding the floating point for-
mats is shown. The five most used by other state of the art works [62] image data sets
from the Middlebury data set are used for the presentation of the results (Groove 3 (G3),
Groove 2 (G2), Hydrangea (H), Dimetrodon (D) and Venus (V)). F32 is the single preci-
sion floating point format. For all the rest floating point numbers, 1 bit is dedicated for the
signs, 5 bit for the exponents and the rest bits are devoted for the mantissas. For example
F9 is S=1, E=5, M=3. Rounding to the nearest was also used [127],[128]. In these figures
the AEE and AAE metrics for error are used for the evaluation of the result and we used
(20,10,5) and (40,20,5) for the levels (λ2,λ1,λ0).

3.5 trans-floating formats 29

F12 TF9 F13 TF10 F14 TF11

Floating Point Format

12

14

16

18

20

A
A
E

G2(40,20,5)

G2(20,10,5)

G3(40,20,5)

G3(20,10,5)

Figure 12: AAE for G3 and G2 with trans Floating Point format

F12 TF9 F13 TF10 F14 TF11

Floating Point Format

1

1.5

2

A
E
E

D(40,20,5)

D(20,10,5)

H(40,20,5)

H(20,10,5)

V(40,20,5)

V(20,10,5)

Figure 13: AEE for D, H and V with trans Floating Point format

It is shown that in all cases after F14 and for larger representations the error difference
is negligible. For F9 the accuracy is much worse that the other formats but still better com-
pared to other state of the art works. Nevertheless F10 provides relatively not so different
accuracy compared to larger formats and we will use it in our designs. F8 was also tested
but the accuracy achieved is totally unacceptable. We tried different quantification factors
to fit the data in the the F8 (1.4.3) but none of them worked. It has to be mentioned that all
the results were obtained by running the designs on the Arria 10 FPGA with the help of
the FloPoCo library [102] and not by simulations. Another point that has to be mentioned
is that when more iterations are performed in the coarse level, the accuracy is significant
improved as shown in Figures 7,8,9 and 10.

30 accuracy

F12 TF9 F13 TF10 F14 TF11

Floating Point Format

10

15

20

25

30

35
A
A
E

D(40,20,5)

D(20,10,5)

H(40,20,5)

H(20,10,5)

V(40,20,5)

V(20,10,5)

Figure 14: AAE for D, H and V with trans Floating Point format

3.5 trans-floating formats

In order to further accelerate the throughput of our algorithm and encouraged by the fact
that the accuracy is not dominated by the finest level of the pyramid, we decide to use
smaller arithmetic format for the finest level of the pyramid, where the computation time
is the longest [64],[55]. Thus, for the levels 2 and 1 we use F16 and for level one we use
either F11, F10 or F9. The final result is represented with either F11, F10 or F9 because
otherwise the impact in the external memory bandwidth would remain the same (if F16

was used for the result). When we switch from F16 to the other formats in level 0 we
truncate the extra bits in the mantissa. We have to mention here that smaller arithmetic
formats were tested. However the results were not acceptable at all. One can also try
larger arithmetic formats than F11 in level 0, however this will only increase the LUTs
utilization and decrease vectorization as we will explain in the chapter 5 and as explained
in [129]. Finally, one solution we tried is to fit the results of the finest level in F8 which is
very friendly to the external memory bus but the loss in accuracy was very high and we
consider this approach as future work.

In Figures 13 and 14 the results concerning the AEE and AAE are shown for TF9 (F16,
F16, F9) , TF10 (F16, F16, F10) and TF11 (F16, F16, F11) and for (40,20,5) and (20,10,5)
iterations. It is shown that the TF9 accuracy is higher than that of F12, TF10 has better
accuracy than F13 and TF11 has better accuracy than F14.

3.6 comparison with state of the art

In this section we will compare our work with all the other state of the art works in terms
of accuracy (AEE,AAE). It is very difficult to do a fair comparison with other state of the
art works, because not all of them are using the same set of images. Only designs imple-
mented on FPGAs are included. Deep neural network-based methods are not included.

3.6 comparison with state of the art 31

Table 2: Comparison with other State of the Art (AAE)

Implem. algo. Format V H G2 G3 AVG

ours(20,10,5) MH&S bi-lin F16 24.31 17.05 18.16 17.48 19.25

ours(40,20,5) MH&S bi-lin F16 18.86 10.09 12.09 14.07 13.75

ours(20,10,5) MH&S bi-cub F13 24.77 17.6 18.66 17.80 19.7

ours(40,20,5) MH&S bi-cub F13 19.61 10.92 12.92 14.54 14.49

ours(20,10,5) MH&S bi-cub F10 27.05 19.80 19.91 19.85 21.65

ours(40,20,5) MH&S bi-cub F10 23.30 14.47 15.57 17.60 17.73

ours(40,20,5) MH&S bi-cub F16 F16 F10 19.23 10.97 12.48 14.45 14.28

[62] Block - 6.41 14.80 5.80 10.90 9.47

[43] L&K Q1.4.8→1.19 41.92 34.51 38.22 37.36 38.02

[43] ML&K Q1.4.8→1.19 28.14 18.08 17.81 24.88 22.22

[43] MH&S Q1.4.8→1.19 29.63 18.60 17.90 26.76 23.2

[56] L&K Q8.8→44.20 24.16 19.32 11.51 16.05 17.75

[56] ML&K Q8.8→44.20 16.21 8.28 5.50 10.08 10.01

[95] H&S - - 40.30 - - 40.30

[95] H&S - - 36.93 - - 36.93

[96] H&S Q8→28 26.12 25.23 26.88 26.64 26.21

[96] H&S Q8→28 26.88 25.56 27.08 26.89 26.6

This is done because they are not able to compute in real time the optical flow for embed-
ded devices [50],[130],[131] and we only include works that do the evaluation in real time
.

For the evaluation we use the images from the Middlebury [54] data set which is the
most known data set of images for evaluating optical flow. In tables 3 and 2 the results
from the comparison between our work and the rest state of the art papers are shown. For
the comparison we used the AAE and AEE error metrics which are the most widely used
metrics and the ones that most works use for their evaluation.

In these two tables we can see that our F10 (40,20,5) design achieves comparable and in
many cases better accuracy than the previous state of the art works which also use larger
arithmetic formats. In fact, this design is only outperformed in terms of accuracy by Seyid
[62] and Smets works [56]. However, Smets in his work is using a much larger arithmetic
format and a 4 levels pyramid which reduces the throughput of the design significantly.
Seyid’s work achieves impressive accuracy results but his implementation is not scaling
for images larger than 640x480 image pixels because too many Blocks RAMs are used

32 accuracy

Table 3: Comparison with other State of the Art (AEE)

Implem. algo. Format V H G2 G3 AVG

ours(20,10,5) MH&S bi-lin F16 1.90 1.57 1.13 1.78 1.59

ours(40,20,5) MH&S bi-lin F16 1.53 1.09 0.85 1.54 1.25

ours(20,10,5) MH&S bi-cub F13 1.93 1.61 1.15 1.80 1.62

ours(40,20,5) MH&S bi-cub F13 1.59 1.17 0.90 1.59 1.31

ours(20,10,5) MH&S bi-cub F10 2.05 1.70 1.19 1.89 1.70

ours(40,20,5) MH&S bi-cub F10 1.83 1.38 1.01 1.75 1.49

ours(40,20,5) MH&S bi-cub F16 F16 F10 1.16 1.56 1.16 0.88 1.57

[62] Block - 0.47 1.98 0.42 0.99 0.97

[43] L&K Q1.4.8→1.19 3.33 2.47 2.22 3.11 2.78

[43] ML&K Q1.4.8→1.19 2.53 1.45 1.19 2.35 1.88

[43] H&S Q1.4.8→1.19 2.97 2.41 1.90 3.02 2.57

[43] MH&S Q1.4.8→1.19 2.31 1.40 1.21 2.38 1.82

[95] H&S - - 2.71 - - 2.71

[95] H&S - - 2.21 - - 2.21

[96] H&S Q8→28 0.63 2.34 2.23 1.56 2.53

[96] H&S Q8→28 0.65 2.43 2.34 1.66 2.62

and so the design is not implementable. This is the disadvantage of the blocking match
algorithm. Our trans-floating F16, F16, F10 design also largely outperforms the previous
state of the art works except of the two aforementioned ones. However, as we will show
in the chapter 4 the acceleration in the finest level of the image is highly increased.

3.7 conclusions

To recap, in this chapter the main objective was to explore the accuracy of the multi-scale
H&S algorithm. The first thing that was determined was the number of the levels of the
pyramid in our multi-scale algorithm. It was shown that by increasing the number of
levels, the AEE error was decreasing and the mono-scale architecture was significantly
outperformed in terms of accuracy. Following that, an exploration has been performed
regarding the iterations number in each pyramid level. By trying different iterations num-
bers, we deduced that by performing more iterations in the coarse level, the convergence
is better. We also show that it is not necessary to compute many iterations in the finest
pyramid level as the accuracy is not significantly improved because only small pixel move-

3.7 conclusions 33

ment is detected. We tried two interpolation algorithms and we saw the impact they have
in the convergence. Bi-linear interpolation is effective for F32 and F16 while for the rest
formats we turned to bi-cubic interpolation. As we are talking for embedded architectures,
we tried different floating point formats and we showed that even with F10 the accuracy is
acceptable. Trans-floating point arithmetic was employed and the results were evaluated
to check if using them is beneficial for the design. Finally, a comparison with the state of
the art was presented where we saw that our designs achieve comparable accuracy. As
future work, we plan to implement a 4 or even 5 levels pyramid and remove completely
the computation in level 0 which is the level which requires the most computation time.

In the next chapter, the throughput of our algorithm will be explored. As it is a multi-
scale algorithm a lot of tradeoffs have to be considered. The accuracy results will be used
to accelerate the architecture but other things will be examined too, such as the depth of
the pipeline, vectorization and how to deal with multi-rate architectures.

4
T H R O U G H P U T

In chapter 3 an analysis regarding the accuracy of the flow detection in the multi-scale
H&S algorithm was performed. Another very important factor that has to be taken into
account when implementing image processing algorithms for FPGAs is to make them
able to perform the computation in real time[132] [7]. This is crucial because computing
image processing algorithms in real time is used in domains such as autonomous driving,
object detection, security and health applications. Making the implementation of an im-
age processing algorithm able to perform in real time can be very challenging especially
when multi-rate image processing algorithms which include huge pipelines and costly
computations are considered [133][132][134]. In order to address the bottleneck of speed,
a lot of widely used hardware techniques such as parallelisation have to be pondered and
combined with new techniques. The multi-scale Horn and Schunck algorithm which is
considered in this thesis, is a multi-rate and a multi-level algorithm which makes it a chal-
lenging algorithm to accelerate in FPGAs [68]. In this chapter, a lot of techniques will be
discussed in order to accelerate effectively every component of the multi-scale Horn and
Schunck algorithm. Pipeline and parallelism which are widely used to accelerate algo-
rithms in FPGAs, will be employed for each component as well as smaller floating point
formats [100],[129]. Furthermore, efficient architectures are explored in order to achieve
pipeline and parallelism between the different components which will lead to the further
improvement of the throughput. For the design of the algorithm VHDL is used and also
the Intel FPGA SDK for OpenCL [135]. Finally it will be shown that real time speed is
accomplished even when images of size 1024×1024 are considered.

4.1 monoscale horn and schunck

As detailed in subsection 2.2.2.2 and in Figure 3, one of the components of the multi-scale
H&S algorithm is the mono-scale one. The mono-scale H&S algorithm is an Iterative Sten-
cil Loop algorithm (ISL) and so iterative stencil techniques to accelerate the computation
are applied [80][82][75][136][137]. A significant attention was given in ISL algorithms dur-
ing the last years in high performance computing (HPC) and especially in FPGAs in HPC
[85] as they offer high throughput possibilities.

35

36 throughput

4.1.1 Pipeline

In order to attain real time processing in the mono-scale H&S, an output of at least one
velocity computation per clock cycle has to be achieved in the mono-scale component.
Consequently, pipeline should be employed.

The most classic technique to accelerate an ISL, such as the mono-scale H&S algorithm
in FPGAs is the deep pipeline technique [75][81]. This technique is also referred as tem-
poral pipeline or full pipeline computation in other works. In the deep pipeline approach,
stencil computation is streamed and pipelined over successive iterations. The proposed
architecture for the mono-scale Horn and Schunck core is shown in Figure 15.

Horn and Schunck [45] requires a convolution with a 3×3 mask in order to get the
average velocity between the neighbored velocities which were computed in the previous
iteration (ut−1

i,j). The computed value will be fed to the main processing unit (H&S) where
the estimation of the velocity for the next iteration is computed (ut

i,j). As shown in Figure
15 one velocity is read from the external memory. This velocity is propagated through the
registers and the shift buffers until it is no more needed for the computation of the next
iteration velocity. Since the memory layout of the Horn and Schunck supports consecutive
memory reads, the efficiency of the memory controller is 100 % and there are no stalls
in the pipeline [82]. This is crucial as the throughput of the cores is almost 1 velocity per
clock cycle (there are some stalls which can not be avoided because of the refresh of the
memory). The length of the shift buffers is SBl = W − 3, where W is the width of the
image.

With the deep pipeline technique multiple iterations can be computed simultaneously
when a velocity is read from the memory before written back to the external memory
[85]. The number of iterations which are computed, is equal to the number of the H&S
cores which are cascaded. If deep pipeline is not applied then, only one iteration can
be performed when data are written from the external memory before written back to
the external memory. This leads to a significant reduce of throughput, as the goal of the
computation of one velocity per clock cycle is diverged. Another point that has to be
mentioned is that when a very large number of iterations is required then in most cases it
is not possible to create a deep pipeline line to compute all the iterations at once. However,
even in this case, the proposed technique accomplishes much better throughput.

With the deep pipeline technique the drawback of the low external memory bandwidth
of the FPGAs compared to GPUs and CPUs is overcame. The potential bottleneck of this
method might be the increase in the need of Block RAM [66].

Another technique that is considered by other works to accelerate ISL is the scalable
computation. The main idea of the pipeline of this method is similar to that of the deep
pipeline but the handling of the on chip memory is more complex which requires more
hardware resources [138]. However the throughput achieved is similar to that of the deep
pipeline [87].

4.1 monoscale horn and schunck 37

H&S

H&S

Ui+1,j+1
t-1

U i,j+1
t-1

Ui-1,j+1
t-1

U i+1,j
t-1Ui+1,j-1

t-1

U i,j
t-1U i,j-1

t-1

U i-1,j
t-1U i-1,j-1

t-1

U i,j
t

Ut-1

Ut-1

U t

U i+1,j
tUi+1,j-1

t

U i,j
tU i,j-1

t

U i-1,j
tU i-1,j-1

t

Ui+1,j+1
t

U i,j+1
t

Ui-1,j+1
t

U i,j
t+1

Shift Buffer

Shift Buffer

Shift Buffer

Shift Buffer

External
Memory

U i,j
t-1

Figure 15: Deep Pipeline Architecture

By taking all these into account, depending on the number of H&S cores Π used and
the number of iterations ITER, the total time T for the mono-scale algorithm calculation
of an image size with height of H and width of W, can be estimated by (22).

T =
H ·W · ITER

f ·Π
(22)

The extra latency added in order to fill the shift buffers is not taken into account as it is
negligible (we measured it less than 1%) compared to the total computation time. f is the
working frequency of the design.

38 throughput

4.1.2 Vectorization

With the deep pipeline technique the external memory bandwidth is not fully utilized
as only one pixel is read in every clock cycle but the bus of the external memory allows
for simultaneous reads and writes. In order to further accelerate the computation of the
mono-scale H&S algorithm, this free margin of the bus has to be taken advantage of [80].
This is done with the vectorization or pixel parallelization of the processing velocities. In
such manner the throughput is increased to more than one velocities per clock cycle. The
proposed vectorized technique with a throughput of 2 velocities per clock cycle is shown
in Figure 16. The Horn and Schunck cores have to have access to 2×Q velocities in order
to compute the mean of the neighbored velocities where Q is the level of vectorization.
The length of the shift buffers in this case is SBl = W

Q −Q× 2. Q is always chosen to be
a multiple of power of two as these numbers are better handled by the external memory
bandwidth and this is what is suggested by the Intel manual [135]. The number of the
parallel H&S cores needed in this case is Q. The number of data needed to be read and
written back from and to the external memory is also Q. Finally, the velocities which
are read are consecutive (the memory layout remains the same as the velocities are read
horizontally and not both vertically and horizontally) which makes the reads and writes
burst friendly for the external memory.

The total computation time by taking into account both the vectorization and the deep
pipeline approach can be estimated by Equation (23).

T =
H ·W · ITER
f ·Π(Q)

(23)

It is shown that the computation time can be reduced drastically by increasing vector-
ization, as Π(Q) (Π(Q) is the total number of the H&S cores with a vectorization of Q)
is increased. Another major point that has to be stated is that a trade off can be made
between the depth of the pipeline and the level of vectorization. This might have a sub-
stantial effect when either the external memory bandwidth or the on chip memory is
the bottleneck. The same computation time can be accomplished by both increasing the
depth of the pipeline and decreasing vectorization or the opposite. If both approaches are
combined then the computation time can be decreased remarkably.

4.2 warping

The next part of the multi-scale H&S algorithm that is studied is the warping core. Warp-
ing, as in the case of the mono-scale H&S requires a neighborhood of pixels in order for
the interpolation operation to be computed. However the memory layout of the warping
is not standard which means that not consecutive pixels are read [64][60]. The pixels that
are read from the external memory depend on the velocities computed in the previous

4.2 warping 39

H&S

H&S

Ui+1,j+2
t-1

U i,j+2
t-1

Ui-1,j+2
t-1

U i+1,j
t-1Ui+1,j-1

t-1

U i,j
t-1U i,j-1

t-1

U i-1,j
t-1U i-1,j-1

t-1

U i,j
t

U i,j
t+1

Shift Buffer

Shift Buffer

External
Memory

U i,j
t-1

Ui-1,j+1
t-1

Ui+1,j+1
t-1

U i,j+1
t-1

Ui+1,j+2
t

U i,j+2
t

Ui-1,j+2
t

U i+1,j
tUi+1,j-1

t

U i,j
tU i,j-1

t

U i-1,j
tU i-1,j-1

t Shift Buffer

Shift Buffer

Ui-1,j+1
t

Ui+1,j+1
t

U i,j+1
t

H&S

U i,j+1
t

H&S

U i,j+1
t+1

U i,j+1
t-1

Figure 16: Vectorized Architecture

pyramid level. Consequently, a continuous streaming of computations can not be sup-
ported (because of the random reads in the external memory) and therefore a solution
has to be proposed in order to fulfill the goal of calculating at least one pixel per clock
cycle.

For the warping core two, cases have been explored, the bi-linear and the bi-cubic
interpolation [60]. For the bi-linear (resp. bi-cubic) interpolation, a neighbourhood of 2x2

(resp. 4x4) pixels in the input image is required as show in Figure 17. As mentioned before,
the goal is to interpolate one pixel per clock cycle, so it has to be ensured that in every
clock cycle all the required neighboured pixels are already read from the external memory
and available in the on chip memory for the interpolation and at the time that they are
needed. Hopefully, the computed velocities in the previous levels have an upper and a
lower bound. Consequently, in this thesis we propose a new architecture to achieve the
continuous computation of pixels which is show in Figure 17. In order to accomplish that,
all the adequate pixels are available the max velocity range has to be taken into account.
For example, in the warping of the first level, the velocities computed in the previous
levels are in the range of ((V ,U) ⩽ |2|) where V is the velocity in the y axis and U is the

40 throughput

warping

initial
image

warped
image

bi-cubic
interpolation

bi-linear
interpolation

Figure 17: Interpolation Pattern

velocity in the x axis. So the largest velocity range is 2 and -2. This means, that for the
bi-linear interpolation 5 lines (-2-0 to +1+2 for the 2x2 neighborhood) and for the bi-cubic
7 lines have to be stored in the Block RAM to ensure consecutive reads from the external
memory and consecutive computations.

The worst case scenario occurs when the optical flow vectors summed from levels 2

and 1 have to be interpolated with the input image in level 0 . In this case, the summed
optical flow vectors from level 2 and 1 are (V ,U) < |6|. So a pixel in position (i, j) needs
to have access from the pixel (i− 7, j− 7) to pixel (i+ 8, j+ 8) in the bi-cubic interpolation
and from (i− 6, j− 6) to (i+ 7, j+ 7) for the bi-linear interpolation. This means that for
bi-linear (resp. bi-cubic) interpolation, 14 (resp. 16) lines have to be stored in 14 (resp. 16)
shift buffers. In every clock cycle a new pixel is read from the external memory and all
the remaining pixels inside the Shift Buffers are moved one position to the right so that all
the required pixels for the interpolation are available without latency. In order to choose
the right neighbouring pixels in the two cases, the integer parts of the velocity vectors
are needed and the interpolation is done with the fraction part of the velocities. For the
interpolation 2 multiplexers 16:1 are required one for each dimension. Furthermore, the
fraction part of the velocities is required for the interpolation.

As in the case of the mono-scale H&S core and in all the ISL algorithms, vectorization
can be applied. In order to process Q pixels per clock cycle, we have to parallelize the
computation. Thus, the neighbouring pixels required for the interpolation are from (−i−

7, j− 7−Q) to (i+ 8, j+ 8+Q) for the bi-cubic interpolation and from (−i− 6, j− 6−Q)

to (i+ 7, j+ 7+Q) for the bi-linear interpolation. In that case, Q pixels per clock cycle are
read from the memory.

In Figure 18 the warping operation is shown for velocities in the range of ((V ,U) ⩽
|1|). The first multiplexer is used to choose the correct neighborhood in the horizontal
axis and its output is a 2×4 matrix. The second multiplexer is used to select the correct
neighborhood in the vertical axis. With this architecture a throughput of at least one pixel
per clock cycle is guaranteed because the reads are consecutive from the external memory
and the anomalies are bypassed by the multiplexers.

4.3 down-sampling 41

Interp

I i+1,j+1

I i,j+1

I i-1,j+1

I i+1,jI i+1,j-1

Ii,jI i,j-1

I i-1,jI i-1,j-1 Shift Buffer

Shift Buffer

External
Memory

I i,j

I i+1,j+1

I i,j+1

I i-1,j+1

I i+2,j+1I i+2,jI i+2,j-1 I i+2,j+1

Shift Buffer

M
U
X

Ir i,j+1

Ir i-1,j+1

Iri,jIr i,j-1

Ir i-1,jIr i-1,j-1

Ir i,j+1

Ir i-1,j+1

M
U
X

V i,j U i,j

Iwi,j

Figure 18: Warping Architecture

4.3 down-sampling

In this section the new architecture proposed in this thesis for the down-sampling com-
ponent will be discussed. Down-sampling is computed with a convolution of the initial
image with a 5×5 Gaussian filter to produce the down-sampled image. In this thesis, the
down-sampled image has ×2 smaller width and ×2 smaller height compared to the ini-
tial image. However, down-sampling is not a classic stencil algorithm [68]. For every four
new pixels that are read from the external memory, there is only one pixel of output. This
indicates, that in order to achieve a throughput of 1 pixel per clock then at least 4 pixels
have to be read from the external memory.

A very significant issue that has to be pointed out is that when the pixels of the even
lines are read then no down-sampling operation can be performed [68][120]. This is due
to the fact that down-sampling has a stride of two both in the vertical and in the horizon-
tal direction as it is shown in Figure 19. Thus, in the odd lines of the initial image the
processing has to be doubled with the aim of sustaining the throughput of one pixel per
clock. This is the technique that is proposed by most of the previous works.

An alternative strategy that is proposed by [43] is to read the horizontal lines two by
two in order to overcome the stride of 2. The output image is then stored in the same
size of matrices as the inputs (the size of the output image is four times smaller) but in a
sparse format in order to be computed without any modifications by the rest cores of the

42 throughput

down-
sample

initial
image

down-
sampled
image

Figure 19: Down-Sampling Pattern

designs of the work. This has a major disadvantage, which is that "empty" pixels are read
from the external memory which will not be used, thus overusing the external memory
bandwidth.

Algorithm 1 Pseudo code of down-sampling

1: for (i=0; i<H; i++) do
2: for (j=0; j<W; j++) do
3:

4: if (i− 1)%2 == 0 then Idsi
2 ,j

= C0,0Ii,j +C0,1Ii,j+1 +C1,0Ii+1,j +C1,1Ii+1,j+1

5: end for
6: end for

Algorithm 1 shows the pseudo code of a simple down-sampling core with a 2×2 con-
volution for a 1024×1024 image. Ids is the down-sampled image, I is the initial image, C
are the weights of the convolution and (i,j) are the coordinates for the vertical and hori-
zontal dimensions. As stated before, it is obvious from line 4 that the operators perform
the computation only in the odd lines of the image as they wait for the adequate data (the
next horizontal image line) to fill the shift buffers. Thus the operators remain unused half
the time of the computation.

It is of great significance to mention that if the pipeline of the down-sampling feeds
another operation, then the next operation will get new data as input only half of the total
time. This significantly reduces the throughput unless the hardware for the operations is
doubled in order to have an output of at least one pixel per clock as mentioned before.

By taking all the previous into account in this thesis a new architecture for the down-
sampling is proposed which overcomes this problem. The new architecture is presented
in Figure 20. In this figure, the red arrows denote the pixel that are written in a 1X4

format to the Block RAM and which are read from the external memory (pixel). With the
decoder and the choose signal (ch) the pixels are written either in the one Block RAMs
or to the other. If the pixels are written to the first Block RAM, then the pixels that are
needed for the down-sampling are read from the second Block RAM. The blue arrows

4.3 down-sampling 43

Algorithm 2 Pseudo code of up-sampling

1: for (i=0; i<H; i++) do
2: for (j=0; j<W; j++) do
3:

4: Un
2i,2j = f(Ui,j,Ui,j+1,Ui+1,j,Ui+1,j+1)

5: Un
2i,2j+1 = f(Ui,j,Ui,j+1,Ui+1,j,Ui+1,j+1)

6: Un
2i+1,2j = f(Ui,j,Ui,j+1,Ui+1,j,Ui+1,j+1)

7: Un
2i+1,2j+1 = f(Ui,j,Ui,j+1,Ui+1,j,Ui+1,j+1)

8: end for
9: end for

External
Memory

D
E
C

ch

Down
sampl

M
U
X

ch

Pixel
Pixel

ds

Figure 20: Down-sampling

denote the pixels in a 2x2 format that are read and that are fed to the down-sampling
core. With this architecture the memory reads from the external memory are consecutive
as the two Block RAMs read only neighborhood pixels from it. The final down-sampled
pixel (Pixelds) is written back in the memory.

With the proposed architecture the aim of a steady output of at least one pixel per clock
is attained. In this manner there is no reason for replicating the processing units to achieve
the same throughput as the obstacle of the even lines is bypassed.

Another solution that was examined is to read from the external memory 2×2×Q pixels
in a similar way as it was done in [43] . The first 2 corresponds to stride in the vertical
dimension, the second 2 corresponds to the stride of 2 in the horizontal dimension and
Q to the vectorization. Although this technique overcomes the need for replicating the
processing units to maintain a steady output of one pixel per clock, it seriously reduces
the throughput of the external memory as non consecutive pixels are read.

In the multi-scale H&S algorithm there is no component which is fed from the down-
sampling core. However in many image processing algorithms this core is the forefront
unit or a significant part of a large pipeline [132][133] and that is why it is believed that
this architecture can lead to the saving of significant hardware.

44 throughput

up-sample

initial
image

up-
sampled
image

Figure 21: Up-Sampling Pattern

External
Memory

D
E
C

ch ch

Vel up
sampl interp

M
U
X

Velup

Velup

Figure 22: Up-sampling

4.4 up-sampling

Up-sampling is the first component in the pipeline in each level of the pyramid. Hence,
it is of great importance to design this component without adding additional stalls to the
total computation chain. In the up-sampling, every new up-sampled velocity is computed
by interpolating a 2×2 neighbourhood of velocities in the initial grid of velocities as it
is shown in Figure 21(the initial grid is ×2 smaller in both the height and width than
the up-sampled grid). This means that for every new velocity read, four velocities are
produced [68]. Algorithm 2 describes a simple up-sampling algorithm. Un

2i,2j are the up-
sampled velocities and f is the function of the initial grid velocities(Ui,j) to compute the
up-sampling.

As far as we know, in all the previous implementations, for every new velocity input,
four outputs are produced in a 2×2 matrix format. Consequently, the components that
follow the up-sampling have to perform their computations with an input of 2×2 matrix
formats (similar to down-sampling). This causes stalls and degrades the performance of
the external memory bandwidth usage when the following components need to access
the memory in 2×2 matrix formats. This happens because no consecutive reads are done
to the external memory. Thus, it affects considerably the throughput and an alternative
approach has to be enacted in order to fulfill the goal of computing at least one pixel per
clock.

In the multi-scale H&S algorithm up-sampling is the leading the interpolation core
[2]. Therefore, the interpolation cores needs to access non neighbourhood pixels in the
memory. This situation makes it even more imperative to propose an alternative imple-

4.5 multi-scale h&s 45

warp
core

ram

(I1,I2)λ (u,v)initλ

(δu,δv)λk
(δu,δv)λ(k+q)

(u,v)λ

H&S
core

H&S
core

Figure 23: Partial pipeline parallel architecture

mentation for the up-sampling compared to all the previous state of the art architectures
in order to overcome this issue and increase the throughput.

In Figure 22 the new architecture of the up-sampling component is presented. The red
arrows denote the up-sampled velocities which are written in the same way as in the case
of down-sampling in the Block RAMs. For every new velocity that the up-sampling core
consumes its output is a 2x2 velocity matrix. With the decoder, this matrix is either written
to the first or to the second Block RAMs. However, the components that are lead from the
up-sampling core need an input of 1Xn and not a 2xn input to function without stalls.
The blue arrows show how the up-sampled velocities are forwarded to the interpolation
unit (next steps of the algorithm) and how the proposed architecture shown in Figure 22

serves the goal of an output of 1xn velocities.
To sum up this subsection, with the proposed implementation, the next component in

the pipeline which follows the up-sample component gets as an input an 1×Q matrix
rather than a 2× Q

2 . This is very effective for the interaction with the external memory
bandwidth as fully consecutive reads are made and a throughput of one or more velocities
per clock can be computed without stalls [85].

4.5 multi-scale h&s

The aim of this section is to efficiently pipeline and parallelize all the components in each
pyramid level in order to achieve a throughput of one or more velocities per clock cylce
increasing in this way the throughput.

4.5.1 Pipeline and Parallelization

The disadvantage of the FPGAs compared to CPUs and GPUs is the reduced external
memory bandwidth [82]. However, the Block RAM is restricting this drawback as more

46 throughput

warp
core

H&S
core

H&S
core

.........

......

...

... (u,v)initλ(I1,I2)λ (u,v)λ

Figure 24: Fully pipeline architecture

data can be kept in the FPGA chip. Accordingly, to increase the throughput, the interaction
with the external memory should be lessened and the data should be kept in the on-chip
memory until they are no more needed [60][43]. This way the bottleneck of the external
memory bandwidth can be bypassed and the computations can be fused between the
different component of the algorithm.

In sections 4.1 and 4.2 the architectures proposed in this thesis for the warping and the
mono-scale H&S architectures are able to compute one or more outputs per clock and
therefore these components can be pipelined. This has a major advantage: interpolated
pixels do not need to be written back to the external memory and then read again, but
they can be directly processed by the H&S core in a pipeline way.

In Figure 23 and in Figure 24 the two new architectures proposed in this thesis for
fusing the computation between the warping and the mono-scale H&S are presented. In
the case where the number of the H&S cores is fewer than the number of iterations in this
specific level of the pyramid, the Partial Pipeline Parallel (PPP) architecture is employed
(Figure 23). If the number of the H&S cores is Π and the number of iterations is ITER,
then in each read from the external memory Π iterations are fused and computed. When
ITER=Π then the Fully Pipeline Parallel (FPP) architecture is designed (Figure 24). In this
case, with one read of the data from the external memory all the iterations are performed.
Both designs can be vectorized with the aim of further reducing the computation time.

4.5.2 Multi-rate Architecture

The leading component in each level of the pyramid is the up-sampling core. Up-sampling
makes the multi-scale H&S algorithm a multi-rate algorithm. Multi-rate algorithms are the
kind of algorithms where some stages of the algorithm produce matrices of outputs which
are of different size from their inputs matrices [133]. This is very common in many image
processing algorithms. The up-sampling and the down-sampling cores are such cases and
it is very frequent to find them in an image processing pipeline. Up-sampling is getting a
new velocity as an input and it up-scales by 2 in both dimensions producing a square as
an output. Pipelining multi-rate architectures is challenging because these anomalies of
inputs and outputs have to be addressed [68].

4.5 multi-scale h&s 47

In Sec. 4.4 the new proposed architecture of this thesis for the up-sampling core was
presented. With the aforementioned design the square output of the up-sampling is trans-
formed to a 1× 2×Q output. Thus, this output can be fused directly to the input of the
warping core and the read from the external memory remain completely consecutive. As
a result, stalls because of irregular memory reads are not created in the pipeline.

In all the previous works the multi-rate algorithms are treated either with sparse ma-
trices or with non consecutive reads from the external memory. For example in the work
of [43][68], in order to reuse the same resources in each level of the pyramid the storage
in the external memory of the down-sampled images is done as all the down-sampled
images sizes is the same with the input images. In this way pixels which are "empty" are
processed as normal pixels. However this reduces the computation time dramatically [43].

4.5.3 Multi-level Architecture

In the multi-scale Horn and Schunck algorithm more iterations are performed in the
coarse level (small images) and less iterations in the fine level (large images) as in this way
the convergence is better as it was explained in Chapter 3. The iteration factor between
the levels of the pyramid in this thesis is ×2 and ×4. The architectures used in all the
levels, except the first level where the fully pipeline parallel is used, is the partial parallel
pipeline architecture. If the fully pipeline parallel design is used in all the levels, then
unnecessary iterations are performed in the finest pyramid level (increasing the number
of iterations in this level does not increase accuracy). This happens because, if in level 2,
20 iterations are performed then in level 0 20 iterations will be performed. However, 20

iterations in level 0 are useless, and the Horn and Schunck cores in this level should be
parallelized with the aim of computing the iterations in level 0 faster.

In this work the same vectorization factor is used in all the levels of the pyramid. With
the proposed architectures of all the cores in this thesis dense inputs are created and the
stride of computation is always 1 which enables the same vectorization in all the levels.
Contrary to this thesis, in the work of [43], the vectorization factor changes between the
levels, as empty pixels are processed because a stride larger than one is considered (2 for
level 1 and 4 for level 0). Hence, no matter that their processing units compute 4 pixels per
clock, the actual computation per clock in level 1 is 2 and in level 2 is one. In this thesis
the only thing that changes between the levels is the depth of the cyclic buffers which is
adapted to the size of the images.

It is obvious from the above that the computation time required in the finest levels is
longer, as the sizes of the images are larger and the vectorization the same.

48 throughput

4.5.4 Computation Time

By taking all the previous into account, the total computation time in order to compute
the whole pyramid is given by Equation (24). Height and width are the sizes of the image
and t0, t1 and t2 are the number of iterations in level 0, 1 and 2 respectively. lat is the
time needed to fill the shifting buffers of the pipeline but this time is negligible compared
to the total time and can be ignored.

T =
H ·W · (t0 + t1

4 + t2
16)

f ·Π(Q)
+ lat · 1

f
(24)

4.5.5 Trans-floating architecture

As mentioned in the subsection 4.5.2 the finest level of the pyramid is the one which
demands the most computation time. Nevertheless, this level is the one where the smallest
displacement of the pixel is detected. In this manner, methods which would accelerate
this level of the pyramid where considered in this thesis. The main bottleneck of the
acceleration of this part is the external memory bandwidth which does not allow for
the vectorization of the processing beyond 4 for the Arria 10 FPGA if single precision
arithmetic is considered. Hence, the number of the H&S cores which are used in this level
is the same as in level 1 and 2 where the computation time is lower.

Therefore, smallest arithmetic formats were considered in order to overcome the bot-
tleneck of external memory bandwidth [139], increase vectorization and as a result the
number of the H&S cores which is the ultimate goal. The last 5 years this technique has
already been applied to deep neural networks [140][51][141]. The formats that were con-
sidered are the half precision floating point format (F16) [142], F15, F14, F13, F12, F11 ,
F10 , F9 and F8 (their impact in accuracy was evaluated in chapter 3). All these formats
enable at least the doubling of the vectorization and especially the F9 enables to increase
three times the vectorization as the F32 demands 32 bits for one read or write while the
F9 demands 27 bits for 3.

In Figure 25 the architecture proposed in this thesis to support a smaller arithmetic
format in level 0 is shown. In this figure, in level 1 F16 computation is used while in level
0 the F10 arithmetic format. The vectorization of level one is 1 while in level 0 is 4. The
up-sampling core is designed as proposed in section 4.4 which enables external mem-
ory reads of consecutive addresses which leads to increased throughput. Moreover, the
computed velocities in level 1 are not written back to the external memory but processed
immediately by the cores of level 0. Consequently, level 0 and level 1 are computed at the
same time and as a result the computation time is further improved. In level 2 the same
cores which are used in level 1 are utilized.

4.5 multi-scale h&s 49

External
Memory

up-sampling

intepolation

H&S

H&S

up-sampling

sum

intepolation

H&S

H&S

sum

10
F

16
F

16
F

16
F

16
F

16
F

16
F

10
F

10
F

10
F

10
F

pixel

pixel

Figure 25: Trans-floating architecture

A more efficient design in terms of hardware resources would be to use MAC units
which would be able to compute the velocities in more than one arithmetic formats. For
example the ideal would be to have a MAC which would be able to compute 1 MAC
in F16 in level 1 and 2 MACs in F10 in level 0 as it was done by [143] for F32 and F16.
Nevertheless, the MAC units used in this thesis are the standard MAC single precision
floating point units provided by intel and the floating point ones which enable the compu-
tation of smaller formats provided by the open source Flopoco library [102]. This means
that the H&S cores used in level 2 and level 1 can not be reused in level 0 as they do
not support trans-floating computations. Making the MAC units able to compute trans-
floating numbers is crucial as the same MAC units will be used in all the levels, keeping
the throughput in the same level but decreasing at the same time the resources used.

50 throughput

4.5.6 Computation Time for the Trans-floating architecture

Equation (24) is transformed to Equation (25) as now the H&S cores which compute level
0 (Π0) have to be taken into account. Moreover, level 1 is computed at the same time
as level 0. It is clear from this equation that since the number of Π0 > Π1,2 then the
computation time is decreased drastically compared to the proposed architecture where
not trans-floating point formats are used. Level 0 of the pyramid is no more the dominant
part by far which requires the most computation time.

T =
H ·W · (t216)
f ·Π2,1(Q2,1)

+
H ·W · t0
f ·Π0(Q0)

+ lat · 1
f

(25)

4.6 throughput results and comparison with state of the art

In the previous sections all the designs that were followed of the different cores of the
multi-scale H&S algorithm were presented. The next step in this section, is to present the
results of the implementations and to compare with the other state of the art designs in
order to see if the proposed designs are efficient in terms of throughput.

4.6.1 Results of implementation

For the implementation of the algorithm, the FPGA Intel Arria 10 Han Pilot platform
was used and the intel Opencl 19.1. The Arria 10 is equipped with 1518 DSPs and a
peak external memory bandwidth rate of 17 GB/sec. Smaller precision floating point
numeric formats were built with the help of the FloPoCo library [102] and were inserted
as libraries in the Opencl software as custom RTL designs. Detailed instructions in order
to add custom RTL in the Opencl software is provided in the manual [135]. 2 iteration
factors are considered, the ×2 and ×4. With the ×2, 20 iterations are performed in level 2,
10 iterations in level 1 and 5 iterations in level 0. With the ×4, 40 iterations are performed
in level 2, 20 iterations in level 1 and 5 iterations in level 0.

In Table 4 the information about the throughput of the multi-scale H&S algorithm for
an image size of 1024x1024 pixels when the same arithmetic format is used in all the pyra-
mid levels is shown (FPS is the frames per second, ×2 is for (20,10,5) iterations and ×4

is for (40,20,5) iterations. When single precision numeric format (F32) is considered the
maximum vectorization that can be applied is (Q=2) as the external memory bandwidth
of the Han Pilot Platform is saturated. With the half precision format (F16) vectorization is
increased to 4 and with F10 to 8. From Table 4 it is obvious that by increasing the vectoriza-
tion, throughput is increased sub-linearly. The ideal increase would be linear. However, as
resource usage is increased the working frequency of the clock is decreased. Furthermore,
by increasing vectorization, this does not mean that the maximum theoretical bandwidth

4.6 throughput results and comparison with state of the art 51

Table 4: Throughput Results with the Same Numeric Format

Format iter #H&S Cores Throughput (Mpixel/s) FPS

F32 ×2 5 130 124

F32 ×2 10 247 216

F32 ×4 5 89 85

F32 ×4 10 172 164

F16 ×2 10 270 257

F16 ×2 20 449 428

F16 ×4 10 165 157

F16 ×4 20 334 319

F10 ×2 10 235 230

F10 ×2 40 731 698

F10 ×4 10 172 164

F10 ×4 40 553 528

Table 5: Throughput Results with the Smaller Numeric Format in level 0

Format iter #H&S Cores Throughput (Mpixel/s) FPS

F32 F32 F16 ×2 102,1 200 363 346

F32 F32 F16 ×4 102,1 200 226 215

F16 F16 F10 ×2 202,1 400 580 553

F16 F16 F10 ×4 202,1 400 422 402

of the external memory given by the manufacturer of the device will be reached as the
efficiency of the memory controller is dropping as it is thoroughly explained in [144][145].

In Table 5 the information about the throughput of the multi-scale H&S algorithm for
an image size of 1024x1024 pixels when a smaller arithmetic format is applied in the finest
pyramid levels is shown. F32 F32 F16 means that in level 2 and 1 F32 is used, while in level
0 F16. 102,1 denotes that in level 2 and 1 the same 10 cores are used while 200 means that
in level 0, 20 cores are used. It is shown that the algorithm is further accelerated compared
to the case were the same format is used in all the pyramid levels. Nevertheless this comes
with a cost in accuracy which was explained thoroughly in chapter 3. In the case of F32

F32 F16 a vectorization of 4 is achieved in level 0 while with F16 F16 F10 a vectorization
of 8 in level 0 as explained in section 4.5.5.

52 throughput

4.6.2 Comparison with State of the Art

In Table 6 we make a comparison in terms of throughput of the works presented in this
thesis with all the state of the art optical flow algorithms implemented in FPGA during the
last 15 years. In this table information are given about the algorithm used, the arithmetic
format, the throughput and the frames per second achieved. It can be seen from this table
that the designs proposed in this thesis achieve comparable throughput and in most cases
outperform in terms of throughput all the previous state of the art optical flow algorithms.

More precisely, the ×4 designs (v1,v2,v3 and v4) achieve real time speed for an image
size of 1024X1024. The fastest trans-floating ×4 design in terms of throughput is only
slower to Blachut’s [43] and Ishiis [61] designs. However, Blanchut’s implementation re-
quires a very large usage of resources and the scales of the pyramid is only restricted
to two. The number of iterations implemented in level 0 is 5, while in level 1 is 10. Ishii
on the other side is not performing the whole computation in a single FPGA but in two
and a PC. V5 is the fastest ×2 design proposed in this thesis and is only second to Ishii’s
implementation.

It can be seen by Table 4 and Table 5 that with trans-floating and smaller floating point
formats than single precision floating point arithmetic, the throughput can be significantly
boosted as more words can be read and written from and to the external memory. As also
shown in Table 6 these smaller floating point formats lead to very fast designs compared
to the previous state of the art implementations, even compared with mono-scale designs
as less iterations are performed in the finest pyramid level which demands the most
computation time or designs with a fewer number of scales. Smaller floating point formats
achieve similar or better throughput compared to designs which use fixed point numeric
with more bits and variable word length inside the computation.

4.7 conclusion

To conclude this chapter, the thorough explanation of the design of every component of
the multi-scale Horn and Schunck algorithm was done. The primary goal of each design
was to achieve one or more pixel computations per clock cycle for every component with
the aim of boosting throughput. Moreover, external memory bandwidth was taken into
account as it poses the main obstacle in order to accelerate the algorithm. The next step
was the connection of the different components in a very large pipeline in each pyramid
level. The classic deep pipeline technique which is used in accelerating iterative stencil
algorithms was used and the computation was vectorized to saturate the external memory
bandwidth. Solutions were provided to overcome the issue of multi-rate architectures and
a technique to deal with the irregular reads of the external memory was proposed. Smaller
arithmetic floating point formats were also considered. As the finest pyramid level is the
one which demands the most computation time, smaller arithmetic formats were used

4.7 conclusion 53

Table 6: Comparison with other State of the Art

Implem. algo. Format Thr. (Mpixel/s) FPS

This work v1 MH&S (×4) F16 165 157

This work v2 MH&S (×4) F10 553 528

This work v3 MH&S (×4) F32 F32 F16 226 215

This work v4 MH&S (×4) F16 F16 F10 422 402

This work v5 MH&S (×2) F16 F16 F10 580 553

Bahar [146] H&S - 79 1029

Komor. [67] H&S Q1.4.8→1.19 174 84

Kunz [66] H&S Q 283 30

Johnson [96] H&S Q8→28 418 200

Blachut [43] MH&S(×2) Q1.4.8→1.19 498 60

Diaz [97] L&K - 82 170

Seong [59] L&K Q4.6→26 94 196

Ishii [61] L&K Q10→32 1048 1000

Barranco [60] ML&K Q9.0→29.8 9.8 32

Blachut [147] ML&K - 46 50

Blachut [43] ML&K Q1.4.8→1.19 498 60

Tommasi [63] MPB Q8.0→8.4 10 32

Seyid [62] HBM Q10→32 12 39

in this level in a trans-floating architecture. Comparison with all the other state of the
art optical flow designs in FPGAs was done and it was shown that the fastest design
proposed in this thesis achieves the fastest throughput compared to all the previous single
FPGA implementations. Furthermore, all the designs are able to compute an image of size
1024x1024 pixels in real time. However, some applications such as comets detection and
image processing in health application request speeds higher than real time processing.
The designs of this thesis are able to provide this throughput.

In the next chapter, the impact of all these designs in the resource usage will be dis-
cussed. The usage of DSPs, Block RAMs and LUTs will be analyzed along with need of
external memory bandwidth . The challenges that were faced during the design of the
different components will be presented and how all these obstacles were overcame.

5
H A R D WA R E R E S O U R C E S U T I L I Z AT I O N

In the previous chapter, a throughput analysis of the multi-scale Horn and Schunck algo-
rithm was performed. However, when designing an algorithm in FPGAs increasing or de-
creasing the throughput has a major effect in the hardware resources usage[67]. Hardware
resources in FPGAs are not unlimited and subsequently they have to be taken seriously
into account when designing an algorithm. Increasing the throughput drastically might
potentially lead to designs that may not be able to fit to a specific FPGA device or take
more space than intended compared to other accelerators that form the whole system. In
this chapter an analysis will be made considering the hardware resources usage by the
multi-scale H&S algorithm. DSPs, LUTs and Block RAMs utilization will be discussed.
Interaction with the external memory bandwidth is considered in this thesis as hardware
resources as it is one of the main bottlenecks when trying to accelerate the multi-scale
H&S algorithm. Solutions will be provided for the effective usage of all these resources in
the FPGA considering the currently studied algorithm. It will be discussed how pipeline
and parallelism in each component affect the resources usage. As different arithmetic for-
mats are used, their impact will also be pointed out in terms of DSPs, LUTs and Block
RAMs. Moreover, it will be shown how larger sized images have a different impact in the
Block RAMs utilization. A comparison will be made with all the recent FPGA state of
the art works in terms of resources. Finally it will be shown that even with a limited us-
age of the whole FPGA area, real-time computation can be achieved for an image of size
1024X1024 pixels. For the design of the components with different floating point numbers,
the open source FloPoCo library was used [102].

5.1 mono-scale horn and schunck agorithm

The first algorithm that will be discussed in terms of resources is the mono-scale H&S
algorithm [45]. This algorithm is an iterative stencil loop algorithm[69][70]. In this algo-
rithm, first a convolution is performed between the neighboring velocities computed in
the previous iterations as shown in Equations 26 to extract a mean of the previous itera-
tion velocity. Following that, the mean velocity that has been computed is provided to the
Equations 27 and 28 in order to compute the velocities of the next iterations.

In the beginning of the algorithm the derivatives Ix, Iy and It are computed. These
derivatives are used for the computation of the Id= 1

a2+I2x+I2y
term. As it can be seen in

Equations 27 and 28 the derivatives computation and the division (Id) is repeated in every
iteration. Computing the derivatives and the division in every iteration is costly in terms

55

56 hardware resources utilization

H&S

H&S

Ui+1,j+1

U i,j+1

Ui-1,j+1

U i+1,jUi+1,j-1

U i,jU i,j-1

U i-1,jU i-1,j-1

U i,j

Ut-1

Ut-1

U t

U i+1,j
tUi+1,j-1

t

U i,j
tU i,j-1

t

U i-1,j
tU i-1,j-1

t

Ui+1,j+1
t

U i,j+1
t

Ui-1,j+1
t

U i,j
t

Shift Buffer

Shift Buffer

Shift Buffer

Shift Buffer

External
Memory

U i,j

t

t-1 t-1 t-1

t-1 t-1 t-1

t-1 t-1 t-1

S
h
i
f
t

B
u
f
f
e
r

Ix Iy It Id

Figure 26: Derivatives Reuse

of DSPs[66]. By taking that into consideration a new solution is proposed in this thesis
for inter-iteration computation reuse. This means that the derivatives and the division
are computed in the first iteration, they are streamed with shift registers and they are
reused by the next iteration as it is shown in Figure 26 (red path of the Figure 26). So, the
idea is to store the results of the division and the other derivatives and use them in the
next iteration. This leads to a decrease in DSPs and LUTs consumption but with a cost in
Block RAMs. Moreover, this leads to a saving in external memory bandwidth as for the
computation of the derivatives the pixels of the image have to be read from the external
memory[67] (green path of the Figure 26).

Computation reuse can be also applied in Equations 26 as it is done in CPUs and
GPUs for stencils with shared coefficients [143],[148]. We employ computation reuse in
the convolution of the H&S core which to the best of our knowledge has never been done
before. In the Equation (26) there are computations that are repeated both vertically and
horizontally. In most of the previous implementations in FPGAs of Iterative Stencil Loops
(ISL) algorithms with shared constant coefficients [82],[138],[149] the reuse computation
is only limited to point-wise operations. Nevertheless, we extend it to include reduction

5.1 mono-scale horn and schunck agorithm 57

Table 7: Mono-scale Core

Mode DSPs LUTs FFs Block RAMs

With Computation Reuse 19 1677 12871 40

Without Computation Reuse 36 2010 11242 31

UU U

U

U UU

i-1,j-1

i+1,j+1

i-1,j i-1,j+1

i,j+1i,j-1

i+1,j-1

i,j

i+1,j

Shift Buffer

Shift Buffer

i-1,j-1 i-1,j i-1,j+1+2U +U

i-1,j-1 i-1,j+1+UU

U U U

H&S

new

velocity
t t t

t t t

t t t

i,j
t+1U

Figure 27: Deep Pipeline Architecture

operations [86] [150]. The total number of additions in Equation (26) are 14. However, the
computations Ui−1,j−1+Ui−1,j+1 (multiplied by 2) and Ui−1,j−1+ 2 ·Ui−1,j−1+Ui−1,j+1

are repeated vertically. Thus, we compute these 2 additions and we stream them, instead
of the velocities. This technique requires one more shift buffer compared to [66] but it
comes with a save of 6 additions in total for each H&S core compared to [66] and [67].
The architecture of the computation reuse in the convolution is shown in Figure 27.

In table 7 it is shown that with the computation reuse there is a 48% save in the use of
DSPs and 17% in the use of LUTs but with a cost of 29% increase in the number of Block
RAMs and 14% in the FFs. The image size is 2048x2048 pixels.

ū =
1

12

1 2 1

2 0 2

1 2 1

 ∗ u v̄ =
1

12

1 2 1

2 0 2

1 2 1

 ∗ v (26)

58 hardware resources utilization

H&S

H&S

Ui+1,j+1

U i,j+1

Ui-1,j+1

U i+1,jUi+1,j-1

U i,jU i,j-1

U i-1,jU i-1,j-1

U i,j
0

Ut-1

Ut-1

U t

U i+1,j
2Ui+1,j-1

2

U i,j
2U i,j-1

2

U i-1,j
2U

i-1,j-1

2

Ui+1,j+1
2

U i,j+1
2

Ui-1,j+1
2

U i,j
3

Shift Buffer

Shift Buffer

Shift Buffer

Shift Buffer

External
Memory

U i,j

U i,j
2

x2

Figure 28: Deep Pipeline Architecture for 4 Iterations

u(i) = ū(i−1) − Ix
Ixu

(i−1) + Iyv
(i−1) + It

α2 + I2x + I2y
(27)

v(i) = v̄(i−1) − Iy
Ixu

(i−1) + Iyv
(i−1) + It

α2 + I2x + I2y
(28)

As the mono-scale H&S algorithm is an iterative stencil loop algorithm, the deep pipeline
and the vectorization techniques will be applied [80],[82],[81],[84],[76]. This two tech-
niques affect widely the external memory bandwidth and the Block RAMs memory uti-
lization [85].

The same number of pixels can be processed at the same time either by increasing
vectorization [151] or the depth of the pipeline [85],[152]. For example, if 4 iterations have

5.1 mono-scale horn and schunck agorithm 59

H&S

H&S

Ui+1,j+2

U i,j+2

Ui-1,j+2

U i+1,jUi+1,j-1

U i,jU i,j-1

U i-1,jUi-1,j-1

U i,j
0

U i,j
1

Shift Buffer

Shift Buffer

External
Memory

U i,j Ui-1,j+1

Ui+1,j+1

U i,j+1

Ui+1,j+2
0

U i,j+2
0

Ui-1,j+2
0

U i+1,j
0Ui+1,j-1

0

U i,j
0U i,j-1

0

U i-1,j
0Ui-1,j-1

0 Shift Buffer

Shift Buffer

Ui-1,j+1
0

Ui+1,j+1
0

U i,j+1
0

H&S

U i,j+1
0

H&S

U i,j+1

1

U i,j+1

Figure 29: Vectorized-Deep Pipeline Architecture for 4 Iterations

to be computed then this can be done either with an architecture with a depth of pipeline
of 4 units and a vectorization of 1 as shown in Figure 28 or with a depth of pipeline of 2

units and vectorization of 2 as shown in Figure 29 (in the two schematics the green is the
depth of the pipeline and orange is the vectorization). The shift buffers required in the first
case is twice as much as the shift buffers required by the second architecture. However, the
external memory bandwidth of the first architecture requires half the bandwidth required
by the second architecture due to less vectorization in the memory. In this thesis, the
second architecture is used, as the only accelerator in the system is the multi-scale H&S
accelerator and there is no need for other algorithms to access the memory. Thus, all the
bandwidth is dedicate for the multi-scale H&S algorithm.

60 hardware resources utilization

Table 8: Mono-Scale Architecture

Arch. DSPs LUTs FFs Block RAMs Mem. Band.(GB/s)

Π=4 Q=2 144 5132 65011 94 4.3

Π=4 Q=1 144 7012 71051 127 2.1

In table 8 the two architectures’ resources demand is shown. The working clock fre-
quency in both cases is 250 Mhz. Π is the depth of the pipeline and Q is the vectorization.
In the second case the demand for Block RAMs is increased by 35 % while the demand
for external memory is reduced by 52 %. Following that, when saving Block RAMs is im-
portant, the first architecture should be chosen while the second one should be preferred
when external memory bandwidth is the bottleneck.

As a new proposal, in this thesis for the design of the mono-scale architecture, different
floating point formats were used. The different arithmetic formats impact the resources
utilization[153],[154]. In table 9 the results of the designing of the mono-scale core with
different arithmetic formats is shown. The image size is 2048x2028 pixels. For the F10

and F9 designs the option not to use DSPs was preferred. This was done because the
mantissa size in both cases is very small (4 and 3 bits respectively) and as a result the cost
of designing the arithmetic units with only LUTs is less costly [129]. It can be seen from
this table that when decreasing the arithmetic format, the number of the Block RAMs is
decreased and also the number of LUTs and FFs. The number of DSPs is the same for
all arithmetic formats except that of F32, F10 and F9. This happens because the Arria 10

FPGA does not have dedicated floating point units for smaller arithmetic floating point
formats [129],[141],[155]. In the future computations will be coupled in the same DSPs in
order to decrease the number of DSPs in a similar way as it was done in [155] ,[154],[156]
and [157]. Another important factor that has to be pointed out is that when using smaller
floating point formats, more pixels can be read parallelly from the external memory [140],
[158], something that highly increases the throughput as vectorization is increased.

5.2 warping

The next algorithm that is discussed is the warping. In this thesis bi-linear and bi-cubic
interpolation has been used for the warping. The bi-linear interpolation requires a 2x2

neighbourhood of pixels and the computation of each point is done according to Equa-
tions 29,30 and 31. f00 f01, f10 and f11 are the neighboring pixels from the 2x2 neighbor-
hood, Uf and Vf are the fraction parts of the velocities of the previous pyramid level and
F is the new computed warped pixel.

5.2 warping 61

Table 9: Mono-Scale Core with Different Floating Point Formats

Floating Point DSPs LUTs FFs Block RAMs

F32 19 1677 12081 38

F16 10 1241 70991 21

F15 10 1202 68531 21

F14 10 1125 67122 20

F13 10 1078 65012 20

F12 10 1051 63912 20

F11 10 1002 61239 18

F10 0 2749 58544 15

F9 0 2431 56923 15

F0 = (1−Uf)f00 +Uff01 (29)

F1 = (1−Uf)f10 +Uff11 (30)

F = (1− Vf)F0 + VfF1 (31)

The bi-cubic interpolation is performed with a 4x4 neighbourhood of pixels according to
the Equations 32,33,34,35 and 36. It is clear from the Equations that the demand for DSPs
in the bi-cubic interpolation is higher than the bi-linear interpolation as also stated in [159].
When vectorization is applied then the demand of DSPs for the bi-cubic interpolation,
requests the highest amount of DSPs between all the components.

F0 = f01 + 0.5Uf(f02 − f00 +Uf(2f00 − 5f01+

4f02 − f03 +Uf(3(f01 − f02) + f03 − f00)))
(32)

F1 = f11 + 0.5Uf(f12 − f10 +Uf(2f10 − 5f11+

4f12 − f13 +Uf(3(f11 − f12) + f13 − f10)))
(33)

F2 = f21 + 0.5Uf(f22 − f20 +Uf(2f20 − 5f21+

4f22 − f23 +Uf(3(f21 − f22) + f23 − f20)))
(34)

F3 = f21 + 0.5Uf(f22 − f20 +Uf(2f20 − 5f21+

4f32 − f33 +Uf(3(f31 − f32) + f33 − f30)))
(35)

62 hardware resources utilization

Table 10: Bi-cubic Interpolation Core with Different Floating Point Formats

Floating Point DSPs LUTs FFs Block RAMs

F32 67 70700 49659 63

F16 35 40898 27911 37

F15 35 39147 27015 37

F14 35 38214 26801 34

F13 35 37109 26491 31

F12 35 36813 25817 30

F11 35 36412 24901 28

F10 35 31471 31231 25

F9 35 25411 29031 25

Table 11: Bi-linear Interpolation Core with Different Floating Point Formats

Floating Point DSPs LUTs FFs Block RAMs

F32 10 16849 9520 68

F16 5 9122 5931 40

F13 5 8179 4701 34

F = F1 + 0.5Vf(F2 − F0 + Vf(2F0 − 5F1+

4F2 − F3 + Vf(3(F1 − F2) + F3 − F0)))
(36)

In Section 4.2 the importance of reading consecutive addresses from the external mem-
ory is pointed out in order to achieve the goal of the computation of one or more pixels
per clock cycle [144][142][160]. To fulfill this, it is mandatory to store in the on-chip mem-
ory all the possible pixels that might potentially be the adequate neighboring pixels. This
leads to an increase in the RAM usage. A different approach is followed by the work
of [43] where non consecutive pixels are read from the external memory which highly
reduces the throughput but it saves on-chip memory.

Another important matter that has to be pointed out is that the multiplexers which are
used for the choice of the right pixels, are 2→1 instead of 8→1 with the aim of reducing
the consumption of LUTs. The choice of the correct pixels is done with the integer part of
the velocities computed in the previous levels (Ui).

5.3 down-sampling 63

As in the case of the mono-scale algorithm different arithmetic floating point formats
were used for the design of the warping core. In table 10 the hardware resources utilization
is shown for the bi-cubic interpolation [159] and in table 11 the results are shown for the bi-
linear [43] interpolation. The image size in both cases is 2048x2028 pixels. It is clear from
the two matrices that bi-cubic interpolation demands more resources. By using smaller
floating point formats, the DSPs usage is not affected (only if F32 is used) but the number
of LUTs and Block RAMs is highly reduced as also stated in [129]. F10 and F9 in the
warping case are designed with the use of DSPs because otherwise the ALUTs usage
is enormous. The warping core, when bi-cubic interpolation is used, is the one which
demands the largest resources utilization. Nevertheless, as we show in chapter 3 for F32
and F16 there is no need for the bi-cubic interpolation and we will not use it in this too
formats to save resources.

5.3 down-sampling

The initial component of the multi-scale H&S algorithm is the down-sampling core. Down-
sampling is a component which is widely used in image processing pipelines [68], [161].
In this thesis, it is computed by applying a 5x5 gaussian filter in the initial image in order
to provide the final down-sampled image.

As we have seen, in the works of [68],[60],[162] down-sampling is done line by line in
the initial image. This means that, as explained in algorithm 1 and in section 4.3 in the
odd lines of images there is no computation performed. Thereafter, to achieve an output
of Q pixels per clock cycle, vectorization should be 2×Q as the computation in the even
lines should be doubled. This impacts the resources consumption by 2 in terms of DSPs
usage.

Algorithm 3 Pseudo code of Shift Buffers with 2 clocks
1: int ShiftBuf[width]

2:

3: if ch == 0 then par = 2

4: if ch == 1 then par = 4

5: #pragma unroll
6: for (w=0; w<width; w+=par) do
7: #pragma unroll
8: for (p=0; p<par; p++) do
9: ShiftBuf[w× par+ p] = ShiftBuf[(w− 1)× par+ p]

10: end for
11: end for

In section 4.3 the architecture for the down-sampling followed in this thesis is explained.
With the proposed described approach, half the number of DSPs is saved compared to the

64 hardware resources utilization

Table 12: Down-sampling Core

Architecture DSPs LUTs FFs Block RAMs

This Thesis 25 23133 24574 62

Classic 50 21174 18714 50

one of [68] as computations are performed in every clock cycle and in every line of the
image. Nevertheless, when designing the unit in OpenCL, careful consideration should
be given when handling the on chip memory. A way to implement this unit is to shift the
shift registers by a different value every time. For example, when reading values from the
external memory the shift is four, while when writing the shift is 2. This is done because
for the computation of the down-sampling as shown in Figure 20 a 2x2 matrix is needed
and at the same time 4 pixels are read from the external memory. A pseudo code for
the implementation of this shifting buffers is shown in algorithm 3. In this code with the
choose signal (ch) we can choose the shifting (par) of the buffer (ShiftBuf). Although this
design functions wells in terms of pipeline, the problem that arises is that two clock are
created by the Intel Opencl Compiler 19.1 for the shifting of the buffers. The first clock
functions with a frequency of f for the double shifting of the buffers, while the second
clock with f

2 . Nevertheless the working frequency of the whole design is the one with the
lowest clock frequency. This has a major impact in the throughput of the system as the
working frequency is significantly low.

In order to overcome the above bottleneck, we provide an alternative solution for the
design of the shift buffers. The pseudo code which avoids the use of two clocks is shown
in algorithm 4. The shift buffers are designed with the internal Block RAMs (local int in
lines 1,2,3 and 4 of the algorithm 4) as explained in the intel SDK openCL manual [135]
and not as shift registers and depending on the ch value, either the first and second, or
the third or fourth registers are shifted. This way there is no need for two clock working
frequencies as the compiler treats the shift buffers as internal RAM and not shift registers.

With this design, the ultimate goal of at least one output per clock cycle is achieved (in
the Opencl report [163] this is marked as ||=1 and it is called loop-carried dependencies
and it refers to the possible outputs per clock cycle), contrary to all the aforementioned
works [68],[60],[113],[63] where more DSPs have to be used to increase the throughput
but even then ||̸=1 as there are loop-carried dependencies.

In table 12 the resources utilization is shown for the two implementation for the down-
sampling core. The first one is the one proposed in this thesis, while the second one is
the classic one as also proposed by other works [68]. F16 floating point format was used
in both cases and it is obvious from the table that the approach proposed in this thesis
requires half the number of DSPs. The downside is that more Block RAMs are needed in
order to avoid the issue with the two clocks.

5.4 up-sampling 65

Algorithm 4 Pseudo code of Shifth Buffers without 2 clocks

1: local int ShiftBuf1[width
4]

2: local int ShiftBuf2[width
4]

3: local int ShiftBuf3[width
4]

4: local int ShiftBuf4[width
4]

5: if ch == 0 then

6: #pragma unroll
7: for (w=0; w<width

4 ; w++) do
8: ShiftBuf1[w× par+ p] = ShiftBuf1[(w− 1)× par+ p]

9: ShiftBuf2[w× par+ p] = ShiftBuf2[(w− 1)× par+ p]

10: end for

11: if ch == 1 then

12: #pragma unroll
13: for (w=0; w<width

4 ; w++) do
14: ShiftBuf3[w× par+ p] = ShiftBuf1[(w− 1)× par+ p]

15: ShiftBuf4[w× par+ p] = ShiftBuf2[(w− 1)× par+ p]

16: end for

Another solution proposed by the work of [43] is to read not consecutive pixels from
the external memory in order to perform the down-sampling. This highly reduces the
throughput as the efficiency of the memory controller is affected (it is given by the
OpenCL profiler [164]) and so this implementation was not used in this thesis.

5.4 up-sampling

The same bottlenecks that were faced in the case of the down-sampling in terms of re-
sources are faced in the case of the up-sampling too. All the previous works [68],[60],[113],[63]
are reading from the external memory non consecutive neighboring pixels from the ex-
ternal memory which highly decreases the effectiveness of the memory controller. In this
thesis a different approach is followed as explained in section 4.4. This different approach
suffers from the two clocks bottleneck which is bypassed with the use of more Block
RAMs in the same way as it is done in the down-sampling core.

By providing a steady output of one or more pixels (1×Q) per clock cycle the following
components can consume the incoming data in every clock cycle and produce an output
without changing the memory layout [165].

66 hardware resources utilization

External
Memory

Up
Sampling Warp H&S

velocities matrix

image matrix

velocity

pixels

velocities

new computed
velocities

new computed
velocities

n

new computed
velocities matrix

Figure 30: Pyramid level implementation of [68]

5.5 multi-scale h&s algorithm

Now that the resources utilization of all the components have been explained, it will be
analyzed in this section how the connection of all this components impact the resources
and the design.

5.5.1 Multi-rate Architecture

The multi-scale H&S algorithm is a multi-rate algorithm [68], which means that the inter-
connection between the components needs to be synchronized according to the different
rates of inputs and outputs in each component [94],[166],[167].

In all the previous works [68],[63],[168] the approach that was followed for a multi-rate
algorithm design is shown in Figure 30. The algorithm because of which the system is a
multi-rate algorithm is the up-sampling. For every new velocity input in the up-sampling,
four new velocities are produced in a square format. The input to the warping algorithm
is then, these velocities in a square format. This requires that the pixels that are read from
the external memory to also be in a 2x2 format. Finally, the new computed velocities are
written back to the external memory in the same format. Nevertheless, if no change in
the memory layout is done for the image and the velocities to be friendly for the memory
controller to this square formats, this will lead to a decrease in throughput due to the
fall in the effectiveness and the stalls of the memory controller (effectiveness and stalls
are given by the OpenCL Profiler). Even in the case when a different memory layout is
applied, this will impact the computation time of the down-sampling as it will not be
friendly for the acceleration of this part of the design as explained in section 4.3.

5.5 multi-scale h&s algorithm 67

External
Memory

Up
Sampling Warp H&S

velocities matrix

image matrix

velocity

pixels

velocities

new computed
velocities

new computed
velocities

n

new computed
velocities matrix

Figure 31: Pyramid level implementation

Consequently, in this thesis an alternative approach was followed which was explained
thoroughly in section 4.5. This implementation is also shown in Figure 31. Here, there is
no need for changing the memory layout because the pixels are read in a continuous way
and not in squares as in the previous approaches. Down-sampling is also performed with
the same memory layout by reading consecutive addresses. The stalls are less (4%) and
the effectiveness of the controller is close to 80 %.

5.5.2 Multi-level Architecture

Multi-scale H&S is a multi-level architecture where the same computations are applied
in every pyramid level. However, the size of the image in each pyramid level is not the
same because of the scaling. Therefore, the size of the shift buffers have to be different in
each level to fit the size of the image. This leads to extra Block RAMs usage which with a
specific modification in the pipelines can be avoided. This modification is shown in Figure
32.

In this architecture more but smaller block RAMs are used with some extra registers
and multiplexers to choose the right depth of the shift buffers depending on sizes of the
image. If the computations in the largest image are made then all the Shift Registers are
used (blue dotted lines denote the registers in the Figure 32 that are used in this pyramid
level for the convolution of the H&S algorithm), whereas when computations in the small
image are made only some of them are used (red dotted lines). The green dotted lines
denote the registers used when the medium sized image is computed.

When the velocities are computed in each pyramid level, they have to be stored some-
where in order to be read in the next pyramid level for the following computations. In this
thesis, two new approaches have been examined. The first one is to store the computed

68 hardware resources utilization

Shift Buffer2Shift Buffer Shift Buffer

Shift Buffer

M
U
X

pyramid
level

External
Memory

H&S

0

12

Figure 32: Shift Buffers

warp
core

H&S
core

(I1,I2)λ
(u,v)init

λ

(u,v)λ

H&S
core sum

streamed velocities (u,v)final
λ

Figure 33: Streamed velocities

velocities in the on chip memory. This requires a lot of Block RAMs used but it reliefs the
pressure from the external memory bandwidth. Nevertheless if large image are computed
(2048x2048 pixels) on chip memory is not enough even if a large FPGA is considered like
the Arria 10.

The second approach that was followed in this thesis is to store the intermediate veloc-
ities in the external memory. With this way in each pyramid level, both the two images
have to be read from the external memory along with the computed velocities from the
previous pyramid level in order to perform the warping. Furthermore, these velocities
have to be read again after the mono-scale H&S computation in each pyramid level. This
is obligatory in order to perform the summation between the velocities computed in the
previous level and the ones calculated in this level. To avoid the last read, the up-sampled
velocities can be streamed alongside the H&S cores in order to further reduce the inter-
action with the external memory as shown in Figure 33. This comes with a cost in the
on-chip memory but it is negligible compared to the whole Block RAMs usage. Finally,
the computed velocities are written back in the external memory.

5.6 resources utilization results and comparison with state of the art

In the previous sections in this chapter the resource utilization of each component of the
hierarchical H&S algorithm was analyzed. In this section, the total resources consumption
of the whole implementation will be presented.

5.6 resources utilization results and comparison with state of the art 69

Table 13: Resources Utilization with Π=5

Format interpolation DSPs ALUTs Block RAMS EMB

F32 bi-linear 170 95k 528 9.3

F32 bi-cubic 227 140k 540 9.1

F16 bi-linear 95 78k 427 4.71

F16 bi-cubic 125 107k 434 4.52

F13 bi-linear 95 88k 422 4.41

F13 bi-cubic 125 102K 423 4.38

F10 bi-cubic 93 91k 386 3.2

Table 14: Resources Utilization with Π=10

Format interpolation DSPs ALUTs Block RAMS EMB

F32 bi-linear 288 167k 580 14.9

F32 bi-cubic 402 238k 588 15.2

F16 bi-linear 188 149K 455 8.1

F16 bi-cubic 248 194k 463 8

F13 bi-linear 188 131k 448 6.7

F13 bi-cubic 248 184K 450 6.6

F10 bi-cubic 148 158k 406 5

5.6.1 Results of Implementation

For the implementation of the components with floating point arithmetic, the FloPoCo
library was used [102] and the Han Pilot platform. The components were inserted in
the OpenCls’ libraries as custom components directly from the FloPoCo libraries. All the
results were taken by the report file provided by the AOC compiler and the results of the
DDR4 usage were taken from the profiler report. The externals memory bandwidth of the
Han Pilot Platform is 17 GByte/s (given by the manufacturer), the DSPs number is 1687,
the number of ALUTs is 503360 and the number of Block RAMs is 2131 .

In tables 13,14,15 and 16 the resources consumption are shown for four arithmetic for-
mats, for 2 interpolation types (we include the F32 and F16 bi-cubic designs to see the
impact in the resources usage) and for a vectorization of Q=1, 2, 4 and 8 as the designs
are scaled up to see which is the largest design that fit the Arria 10. The clock frequency
is from 243 MHz to 270 MHz in all the designs.

70 hardware resources utilization

Table 15: Resources Utilization with Π=20

Format interpolation DSPs ALUTs Block RAMS EMB

F16 bi-linear 324 235K 561 15.7

F16 bi-cubic 444 267k 567 15.6

F13 bi-linear 324 197k 546 13.1

F13 bi-cubic 444 248K 550 12.5

F10 bi-cubic 244 250k 481 7.5

Table 16: Resources Utilization with Π=40

Format interpolation DSPs ALUTs Block RAMs EMB

F10 bi-cubic 436 439k 691 16.1

In these tables, it is obvious that the DSPs number and the externals memory bandwidth
requirement scales almost linearly. With the computation reuse the number of DSPs is re-
duced with some extra cost in Block RAMs. F32 is not implementable with a vectorization
of 4 and 8 because of the the external memory bottleneck. For a vectorization of 8 only
the F10 architecture is implementable and almost the whole bandwidth is utilized. When
going from F16 to F13 the number of DSPs remains the same as there is no support in the
Arria 10 FPGA for small arithmetic formats. However, the external memory bandwidth is
reduced for the F13. Finally, the mono-scale part of the F10 design is implemented with-
out DSPs and that is why the DSPs usage is reduced compared to F13. It is obvious and
expected that switching to a smaller arithmetic formats enables the designer to fit more
cores in the FPGA, save resources and scale up further the design. As a result, switching
from single precision floating arithmetic to smaller floating point numbers significantly
benefits the implementation. Finally, bi-linear designs save a large number of DSPs and
LUTs compared to the bi-cubic ones. As we presented in chapter 3 for F32 and F16 there is
no accuracy degradation if bi-linear interpolation is used and so for these two arithmetic
formats only bi-linear interpolation is used.

Table 17: Resources With The Smaller Numeric Format in level 0

Format interpolation DSPs ALUTs Block RAMs EMB

F16 F16 F10 bi-cubic 640 490k 883 15.7

5.6 resources utilization results and comparison with state of the art 71

Table 18: Block RAMs usage with different image sizes

Format image size Block RAMs

F16 512x512 301

F16 1024x1024 455

F16 2048x2048 589

F10 512x512 271

F10 1024x1024 406

F10 2048x2048 521

In table 18 the Block RAMs usage is presented for different sizes of the image. The
number of the cores in the designs is Π=10. There is a significant decrease in the on
chip memory usage when smaller arithmetic formats are used. Even if a 2048x2048 pixels
image is the case in a F10 design, the memory usage is smaller than when a 1024x1024 is
considered in a F16 design.

In table 17 the resources usage is shown for a custom floating point format. Here the
number of ALUTs is very high but also the external memory bandwidth requirement.
However as shown in section 4.6 this design achieves very high throughput. Without a
smaller arithmetic format in the level 0 it would not be possible to fit this number of cores
as the external memory can not support this vectorization.

An important technical issue that has to be mentioned about the external memory is
that because 4 reads (two images and two velocities) and 2 writes (new computed veloc-
ities) are made the efficiency of the external memory controller is dropping [144],[145].
The fact that the Han Pilot Platform is equipped with only one external memory interface
which does not allow the allocation of the reads and writes in separate memory interfaces.

As future work, it is planned to couple the smaller arithmetic formats computations in
the same DSPs. Furthermore, this units will be able to compute both in larger arithmetic
floating point (F32,F16) and in smaller floating point formats (F10,F9). This will further
reduce the resources usage as the same cores will be reused in every pyramid level in a
trans-floating architecture but will keep the same throughput.

5.6.2 Comparison with the state of the art

The next step is to compare the design with other state of the art designs in terms of
resources. The results are shown in table 19. The designs q1 and q2 are with Π=10, the
designs q4 and q5 are with Π=20, q5 is with Π=40 and q6 is with Π1,2=20 and Π0=40.
Design q1 and q3 are with bi-linear interpolation while the rest are bi-cubic interpolations.

72 hardware resources utilization

Table 19: Comparison with other State of the Art

Implem. algo. Format DSPs ALUTs B. RAMs FPGA

q1 MH&S F16 188 149k 455 A10

q2 MH&S F10 148 158k 406 A10

q3 MH&S F16 324 205k 561 A10

q4 MH&S F10 244 309k 550 A10

q5 MH&S F10 436 439k 691 A10

q6 MH&S F16 F16 F10 640 490k 883 A10

[146] H&S - 12 3k 595k CII

[67] H&S Q1.4.8→1.19 - 490k 1346 V7

[66] H&S Q 316 11k 3.5M StrIV

[96] H&S Q8→28 237 - 467 V7

[43] MH&S Q1.4.8→1.19 523 104k 312 ZCU

[97] L&K - - - 760k V2

[59] L&K Q4.6→26 54 16k 120 V6

[61] L&K Q10→32 80 14k 28 V2

[60] ML&K Q9.0→29.8 88 51k 244 V4

[43] ML&K Q1.4.8→1.19 861 122K 311 ZCU

[63] MPB Q8.0→8.4 52 32k 112 V4

[62] HBM Q10→32 48 36k 132 V7

The image size is 1024x1024. The clock frequency for all the designs is from 245 to 280

MHz.
It can be seen that the smallest design q3 uses similar resources with [60], [61] and [59].

The increased usage of Block RAMs is due to the static partitioning of the Block RAMs of
the intel OpenCL Compiler for the HAN Pilot Platform. However, in terms of throughput
the aforementioned designs are massively outperformed as explained analytically in sec-
tion 4.6 (the design of [61] is not outperformed, however the computation is not done in a
single FPGA but in a PC and two FPGAs and that is why the resources remain low and the
throughput very high). Moreover, these works consider smaller images than ours. Works
[113], [62], [146] are using less resources, but the throughput they achieve (section 4.6)
is at least 10 times less than q3 and also the image size is smaller. Implementations [67]
and [66] are implementing a mono-scale H&S algorithm and the number of their cores is
Π=128 and Π=30 but without any interpolation. Nevertheless their resources utilization is

5.7 conclusions 73

comparable with our multi-scale designs. Blachut work, which is very recent [43] and is
implementing a multi-scale H&S algorithm is using similar resources as the q4. However,
our design is a 3 scales algorithm while theirs is a 2 scale algorithm and that affects the
accuracy. Furthermore in Blachut’s work only bi-linear interpolation is done and not in
the beginning of each pyramid level but only in the end of the previous computation
chain[43]. It is worth mentioning that we are as far as we know among the only ones who
use floating point formats for the design of the algorithm ([67], [63] and [47] have some
floating point design in their works). All the rest use fixed point formats (Q) with more
bits to represent the data than ours which reduces the possible parallel interactions with
the external memory and the Block RAMs usage.

5.7 conclusions

To sum up this chapter, an extended analysis has been performed regarding the hardware
resources utilization of each component of the Multi-scale H&S algorithm. Challenges
in the design that were faced were pointed out, while solutions to overcome them were
proposed. It was explained how computation reuse can decrease the resources usage, how
smaller arithmetic formats can save external memory bandwidth and two interpolation
types and their resources consumption were presented. We dealt with challenges that one
faces in the multi-rate architectures and we proposed how to deal with it effectively in
terms of external memory. Finally we compared our designs with other state of the art
designs and we showed that for better throughput or accuracy that we achieve, less or
slightly more resources are used.

In the next chapter a design space exploration will be performed for the multi-scale
H&S algorithm. This exploration will take into account accuracy, throughput and hard-
ware resources consumption analysis that was explained in this chapter and the previous
ones and it will give the designer the opportunity to tune the design according to his
requirements.

6
D E S I G N S PA C E E X P L O R AT I O N

In the previous chapters, we performed an analysis of the multi-scale H&S algorithm re-
garding its accuracy, throughput and resources utilization. We proposed ways to increase
the accuracy of the flow detection, by performing more iterations, using a higher number
of pyramid levels and trying different numeric formats. Following that, we showed the
impact of these propositions in the throughput. Concerning the throughput, we provided
solutions in order to cope with the multi-rate nature of the algorithm and to accelerate
the computation of the ISL part of the algorithm. However, by increasing throughput, re-
sources utilization of the FPGA are increased. Thus, techniques in order to reduce this
increase were proposed. In this chapter, we take into account all this information and
we perform a design space exploration concerning the multi-scale H&S algorithm. In the
design space exploration we will deal with the total computation time, the resources uti-
lization like the DSPs number and the Block RAMs, the external memory bandwidth and
the accuracy of the detection.

6.1 methodology

In order to establish the theoretical values of all the parameters of our architecture, the
information provided in in the previous chapters are used. Depending on the number of
the components used (for example the number of H&S cores) and the aforementioned
information, a theoretical model can be established. The floating point numeric format is
also taken into account as we introduced every floating point format in the model. The
code of the implementation is tunable in terms of the depth of the pipeline, which means
how many H&S cores are cascaded with the autorun kernel attribute (Π) provided from
the OpenCL [135] and the vectorization (Q) as it was explained in subsection 4.1.2 and
section 4.2. In order to verify our theoretical model, we extract the information from the
model we created, and we compare it to the information we gather when we compile the
tunable OpenCL code of our architecture and to the information we get when we run the
design in our device.

6.1.1 Notation

In table 20 the notations which we use in our theoretical model are presented for the DSPs
and Block RAMs usage. H&S0, H&S2,1, Warp0 and Warp2,1 are the H&S and warping
cores DSPs and Block RAMs utilization, for levels 0, levels 2 and 1 respectively, for the

75

76 design space exploration

Table 20: Notations for the Theoretical Model I

H&S0 H&S2,1 Warp0 Warp2,1 Sum Up Down

DSP NHS0
NHS2,1 Nwarp0

Nwarp2,1 Nsum Nup Ndown

Block RAMs MHS0
MHS2,1 Mwarp0

Mwarp2,1 Msum Mup Mdown

Table 21: Notations for the Theoretical Model II

WL Word length

Q Vectorization

Π Deep pipeline

Ps Pixel size

H Height

W Width

f clock frequency

trans-floating architecture. For the non trans-floating architecture, it is the same notation
but without further information about the scale of the pyramid. In table 21, the rest of the
notations that are used in theoretical model are presented.

6.1.2 DSPs Utilization

We start with the DSPs. The DSPs utilization for the non trans-floating designs can be
modeled by Equations (37) and (38).

N = Π(Q) ·NHS +Q ·Nwarp +N1 (37)

N1 = Q ·Nsum +Q ·Nup +Ndown (38)

We see in these equations, that the number of DSPs is proportional to the number of
the H&S cores and the interpolation cores.

For the trans-floating designs the usage of DSPs is modeled by Equations 39, 40 and 41.

N = Π0(Q0) ·NHS0
+Q0 ·Nwarp0

+Q0 ·Nsum +N1 +N2 (39)

N1 = Π2,1(Q2,1) ·NHS2,1 +Q2,1 ·Nwarp2,1 (40)

N2 = Q2,1 ·Nsum +Q2,1 ·Nup +Ndown (41)

It can be seen, that the trans-floating format demands more DSPs compared to the non
trans-floating format. This happens because, our current components from the FloPoCo

6.1 methodology 77

[102] library can not do the computation with different arithmetic formats. This is why in
the future we plan to create cores that can compute in both the arithmetic formats used
in level2,1 and level0 as it was done by [155] but for smaller floating point formats than
half precision arithmetic.

The validity of the theoretical model for the DSPs number is 87.65%. It is not 100%,
because the Arria 10 Han Pilot Platform instantiates some DSPs for the Static Partition
[169]. Otherwise, it is able to estimate with a validity of 100% the usage of DSPs for the
warping, H&S cores, down-sampling and up-sampling.

6.1.3 Block RAMs

As explained in subsection 5.5.2 in this thesis we use the external memory for storing the
intermediate velocities between the pyramid levels for the non trans-floating implementa-
tion. The total memory M in Block RAMS number for the non-trans floating implementa-
tion is modeled by Equation (42) and Equation (43) .

M = Π(Q) ·MHS +Q ·Mwarp +M1 +M2 (42)

M1 = Msum + ·Mup +Mdown (43)

The streamed velocities in each pyramid level as described in subsection 5.5.2 and
shown in Figure 33 are included in the MHS core. Similar to the DSPs case, the num-
ber of Block RAMs is proportional to the number of the H&S cores.

For the trans-floating design the model that gives the Block RAMs number utilization
are Equation 44, 45 and 46.

M = Π0(Q0) ·MHS0
+Q0 ·Mwarp0

+Q0 ·Msum +M1 +N2 (44)

M1 = Π2,1(Q2,1) ·MHS2,1 +Q2,1 ·Mwarp2,1 (45)

M2 = Q2,1 ·Msum +Q2,1 ·Mup +Mdown (46)

As in the case of the DSPs, separate Block RAMs are used for level 0 which increases
the usage of them. In the future, we plan to reuse the same Block RAMs in every pyramid
level. This is something we plan to solve in the future as we plan to reuse the same Block
RAMs in every pyramid level, as the same computation components will be used in every
pyramid level.

The validity of the model for the number of Block RAMs utilization is 54%. This hap-
pens due to the fact of the static partitioning which instantiates 162 Block RAMs for the
Han Pilot platform Arria 10 FPGA. By taking this into account the validity of the model
is increased to 80%. As it is stated in [82] which are accelerating ISL with FPGAs and
OpenCL, it is very challenging to create an effective model to predict the utilization of the

78 design space exploration

memory because the Block RAMs are quantified and it is difficult to predict the optimiza-
tion of the intel OpenCl compiler. Vectorization also affects the number as more Block
RAMs have to be used in order to satisfy the increased need of ports for the simultaneous
reads and writes in the on-chip memory.

6.1.4 External memory bandwidth

The external memory bandwidth for the non trans-floating implementation is modeled
by Equation 47.

EMB = 2 · f · ((Ps+ 2 ·WL+
1

4
·WL) ·Q) (47)

In Equation 47, 2 is because two images are read and the two computed velocities are
written back to the external memory (u,v). 2 refers to the re-reads of the velocities when
Π is less than the iteration numbers. This happens because, all the iterations can not be
fused with only one full image read from the external memory, so both the image and the
computed velocities has to be read to compute the derivatives as show in Figure 23. In
any other case, this term is equal to 0 as there is no need to re-read the velocities. The 1

4

term refers to the reads of the computed velocities from the previous pyramid level which
in our case are not stored in the Block RAMs, but in the external memory.

In the trans-floating designs the bandwidth is modeled by Equation (48)

EMB = 2 · f · ((Ps+WL2,1) + 4 · (Ps+WL0)) ·Q) (48)

The extra term (4 · (8 + WL0))) is because both level 1 and level 0 are computed at
the same time as explained in subsection 4.5.5. 4 is due to the fact, that in level 0 the
vectorization is always a multiple of 4 compared to the one of level 1 as also explained
in subsection 4.5.5. It can be seen that the trans-floating implementation demands more
external memory bandwidth, as two pyramid levels are computed at the same time which
highly impacts the bandwidth.

For the external memory bandwidth results, the OpenCL Profiler [164] provided by
Intel for the FPGA was used. The validity of our theoretical model for the EMB is 72%.
As stated in [144] which performed an exploration regarding the intel FPGAs external
memory estimation, there is a degradation in the effectiveness of the external memory
controller when multiple data are read and written back to the memory. This degradation
can not be predicted in our model. This bottleneck is even higher in our case because our
FPGA has only one external memory, whereas the one of [144] has two which doubles
the external memory bandwidth capabilities. Another issue that we faced, is that we have
to read from the external memory words that are not always power of two. To tackle
this bottleneck we align data words together, as it is proposed by the Intel Manual [135].

6.1 methodology 79

However, this can not be added in the model. For the F32 and F16, the prediction is better
because of the aforementioned reason. The occupancy of the external memory is around
90% as given by the OpenCl Profiler. Finally, we have to mention that there are on average
5% stalls in the reads and writes which also impacts the utilization prediction.

6.1.5 Execution Time and Throughput

The total execution time of the whole algorithm computation is modeled by Equation (49).

T =
H ·W · (i0 + i1

4 + i2
16)

f ·Π(Q)
+

(H·W
16 + H·W

4)

f ·Qdown
(49)

The term (H·W
16 +H·W

4)

f·Πdown
refers to the computation time of the down-sampling operation,

while the rest of the terms refer to computation of the three pyramid levels. Qdown refers
to the vectorization of the down-sampling core. We can see that the computation time
depends on the number of the H&S cores (Π(Q)) and the computation frequency (f).

In the case of trans-floating designs the computation time of the pyramid (the computa-
tion time for the down-sampling is the same as in the non trans-floating design) is given
by Equation (50).

T =
H ·W · (t216)
f ·Π2,1(Q2,1)

+
H ·W · t0
f ·Π0(Q0)

(50)

It can be seen by these equations, that level 0 and level 1 are computed at the same time
as also described in subsection 4.5.5 and contrary to the non-transfloating implementa-
tion where each level is computed separately. This is essential as the computation of the
algorithm is furthered accelerated.

The throughput of the algorithm can be modeled by Equation (51) in pixel per second

throughput =
1

T
·H ·W (51)

The term 1
T corresponds to how many times the algorithm can run in one second an it

also gives the value of the FPS. The throughput’s validity is 79%. This happens due to the
fact that the external memory highly impacts the result as it was stated in chapter 4.

6.1.6 Design Space Exploration and OpenCL

We implement the previous equations in a script, with the help of which we perform our
design space exploration. Our theoretical model takes as inputs: the desired throughput,

80 design space exploration

Measured
EMB

theoretical
model

WL
Thr

FPGA
arch

iter

H,W

Code
Q

Π
Compile .aocx

HostFPGAProfiler Verify

Measured
Thr

Implementation
resources

Verify

res

Figure 34: Design Space Exploration Steps

Algorithm 5 Algorithm of the theoretical model
Input: H,W, thr, FPGAres,arch, iter,WL

Output: Π(Q)

Choose the correct file regarding the WL and Arch

for Π(Q) = 500 → Π(Q) = 1 do

if threst ≈ thr(iter,H,W) then

if FPGAest⩽FPGAres then

mem[i] = (FPGAest,Π(Q)); return;

end if

end if

keep mem[i] with FGPAestmin

the image dimension,the iterations numbers, the FPGA devices resources, the arithmetic
format and the desired architecture (trans-floating or no) as shown in Figure 34. Given
these inputs, our script is able to determine: the level of the parallelism (Q) and the depth
of the pipeline (Π). The algorithm for our theoretical model is described by Algorithm
5. These two factors are given to our OpenCL code and after the compilation ends, the
DSPs number, the Block RAMs, the LUTs and the Registers numbers are provided by
the Intel tool. The depth of the pipeline is implemented with the auto-run kernel option
[83] and the vectorization by manual unroll [83] of the code. Since the compilation of the
OpenCL code takes a long time, if the goal is to verify the estimation for the resources
utilization, the compilation can be stopped when the resources file is ready as explained
by the OpenCL manual [135] and as shown in Figure 34. Following the compilation, the
host code is tuned and the executable files are ready for the testing in the FPGA device. In
order to measure the external memory bandwidth and the throughput, the Intel profiler
[164] is used. These two values can be used to verify our theoretical model as shown in
Figure 34.

6.1 methodology 81

165.0

353.7

542.3

731.0

148.0

312.0

476.0

640.0

135.0
256.0

377.0
498.0365.0

539.0

713.0

887.0

5.0

8.8

12.7

16.5

1.2
1.3

1.5
1.6

15.3

18.1

20.8

23.6

Throughput(Mpixel/s)

DSPs

ALUTS(K)

Block RAMsEMB(GB/S)

Accuracy(AEE)

Accuracy(AAE)

F16(20,10,5),10(2)
F16(20,10,5),20(4)
F16(40,20,5),10(2)
F16(40,20,5),20(4)
F10(20,10,5),10(2)
F10(20,10,5),40(8)
F10(40,20,5),10(2)
F10(40,20,5),40(8)
TF10(20,10,5),20(2)40(8)
TF10(40,20,5),20(2)40(8)

Figure 35: Results

The OpenCL code can be tuned, in order to provide a huge number of different designs,
and since sometimes the goal is to verify the estimation of the theoretical model for the
resources utilization, the time required for the exploration is negligible. This code helps
the optical flow designer choose among a variety of options such as, the throughput, the
floating point format and information about the accuracy. For example, if the goal of the
designer is the high throughput, then our theoretical model suggest a large number of
cores, the number of which is only constrained by the capabilities of the external memory
bandwidth of the design. On the contrary, if the aim is a small design, then the smaller
possible floating point format is chosen and the number of cores is set in order to pro-
vide real time computation with the least possible resources utilization. This number is
strictly related to the dimensions of the computed image, as larger images demand more
computation power and so more cores.

Our results, which are presented in section 6.2, are obtained by using this code. A lot
of different configuration were tested and a different aim every time (for example, higher
throughput).

82 design space exploration

6.2 results

In Figure 35 the FPGA running results regarding our implementations are shown in a
spider plot for the Terasic Han Pilot Platform FPGA Arria 10 device. We include results
regarding the throughput, DSPs, Logic Blocks, Block RAMs utilization, external memory
bandwidth and accuracy. In Figure 35, FN denotes the floating point arithmetic format
used, (L2, L1, L0) the number of iterations in each pyramid level and Π(Q), the number
of H&S cores and vectorization respectively. During this thesis, at least one thousand
configurations where implemented in the FPGA with the help of the aforementioned
OpenCL code, but in the spider plot we provide the information of those, which according
to us are the most important.

As explained in chapter 3 and 4, implementations which achieve higher throughput, are
less effective in terms of accuracy because more iterations are performed which increases
the computation time. Implementations with smaller floating point formats are using less
hardware resources than F16 in terms of DSPs and especially Logic Blocks and Block
RAMs as also explained in [129] and in chapter 5. It is also obvious, that with the trans-
floating (TF10) architecture we achieve higher throughput compared to F16 as we are able
to fit in the device a larger number of H&S cores. The accuracy of the detected flow is also
comparable with F16 designs as F16 is used in the pyramid levels where the larger motion
displacement is detected as explained in chapter 3. However, the number of Logic Blocks
and Block RAMs is increased because the same resources are not used in every level of
the pyramid. Our units are not able to compute both in F16 and F9 and this we consider
as future work in order to reduce the resources utilization.

If a high throughput design is desired, then the F10 design should be used with Π=40

which is denoted by the red line in the spider graph. As we have shown in chapter 4, this
design outperforms most of the previous state of the art FPGA designs as we are able to fit
a large number of H&S cores in the device. If accuracy is the main objective, then the F16

designs should be preferred as the average AAE and AEE are the smallest compared to all
the designs (light green lines). When both accuracy and throughput are important then
the TF10 offers comparable accuracy compared to F16 and is able to achieve a throughput
up to 422 Mpixel/s (light blue lines). However, this architecture demands a large FPGA
device as the needs for resources is increased and can not be fulfilled by small devices. If a
small FPGA device is considered, then F10 with Π=10 should be the choice as the resources
utilization is relatively small compared to the other designs (pink and red dotted lines)
and it offers real time computation as the same time. Finally, it can be seen in the plot,
that we try to optimize the designs in terms of Block RAMs utilization and that is why
EMB is very high.

6.3 conclusion 83

6.3 conclusion

In this chapter, we have described how we perform the design space exploration for the
multi-scale H&S algorithm. We described our theoretical model that estimate the DSPs,
Block RAMs and external memory bandwidth utilization and which are able to predict
the throughput of our algorithm. We detailed how our exploration is performed, how
accurate our model is and how our OpenCL code can be used in order to accelerate the
exploration. With this code, we have produced at least one thousand designs. The code is
written in a parametric way to accelerate the exploration and to test different architectures
with a different aim every time. We proposed a way, the spider plot, which contains the
aggregated information of our chosen designs. The designer can use the spider plot, in
order to choose among different implementations which fit the constraints that are set by
his problem.

In the next chapter, we will conclude this thesis and we will describe our future work
and perspectives as this is an ongoing research.

7
C O N C L U S I O N A N D F U T U R E W O R K

In this thesis, we have analyzed and we have proposed solutions regarding the accuracy,
the throughput and the resources utilization of the design of the multi-scale H&S algo-
rithm in an FPGA. We have used these propositions and analysis in order to perform a
design space exploration of the algorithm in the HAN Pilot Platform Arria 10 FPGA. In
this chapter, we will conclude this thesis contributions for the acceleration of the algo-
rithm. Following that, we will discuss on how these contributions can be applied to other
algorithms in order to accelerate their computation. Finally, we will discuss about the fu-
ture work that can be conducted in the acceleration of the multi-scale H&S algorithm in
FPGAs and some future ideas that can be applied to other algorithms too.

7.1 conclusion

Optical flow computation remains a very important algorithm for real life applications
like autonomous driving and biomedical purposes and it requires accurate and real time
computations. The computations in these domains are usually performed by embedded
devices as there is not always the possibility to install large computers to perform them.
However, computing optical flow in real time and with embedded devices demands trade-
offs to be made in the design and new solution to be proposed in order to overcome
certain bottlenecks of the implementation. Concurrently, the objective of this thesis was
to explore and propose solutions for the multi-scale H&S optical flow algorithm in order
to be accelerated in a FPGA device. This algorithm offers high tunability to the designer
which makes it an ideal algorithm to be accelerated in FPGAs.

The first thing that we explored was the accuracy. We first started with the levels of the
pyramid and the iterations number in each pyramid level. We came up with the conclusion
that a 3 pyramid level, more iterations in the smaller images and less in the larger ones
gives us acceptable results compared to when we perform 4 levels pyramids and many
iterations in each pyramid level. Bi-linear and bi-cubic interpolations were considered
for warping and we found that using bi-linear interpolation for F32 and F16 is enough
for the accuracy and for smaller numeric formats bi-cubic is more effective. We explored
different floating point arithmetic formats and we showed that even with F9, we detect
the optical flow with higher accuracy compared to other state of the art works. Trans-
floating arithmetic was used and we have shown that using smaller arithmetic formats in
the finest level of the pyramid does not affect heavily the detection of the flow.

85

86 conclusion and future work

In order to accelerate the algorithm in terms of throughput, the first thing that we em-
ployed was the deep pipeline and vectorization technique for the ISL part of the algorithm.
With this architecture, the iterative nature of the algorithm is tackled as the iterations are
fused. For the warping, we store in the on-chip memory enough data with the aim of
having a continuous pipeline without stalls. For the multi-rate nature of the algorithm,
we proposed a solution for the handling of the Block RAMs in order to perform con-
tinuous reads in the external memory which highly benefits the throughput. With the
trans-floating architecture, we are able to fit more cores for the computation of the finest
pyramid level, which demands the most computation time. Regarding the throughput, we
performed a comparison of our designs with other state of the art works and we showed
that our fastest one outperforms all the single FPGA designs as far as we know in terms
of throughput even for large images.

Since the increase in throughput demands more hardware resources, we performed an
exploration regarding the FPGA resources utilization. We extensively used computation
reuse in the H&S core to decrease the number of DSPs usage. We proposed a trade off
between the depth of the pipeline and the vectorization to reduce the Block RAMs utiliza-
tion. For the warping, bi-linear interpolation demands far less resources compare to the
bi-cubic one. For both the H&S and the warping core, we have shown the impact of the
arithmetic format in the DSPs, Logic Block and Block RAMs utilization. With a smaller
arithmetic format, more words can be read and written back to the external memory,
which benefits vectorization and consequently throughput. The careful handling of the
on-chip memory was explained for the effective design of multi-rate architectures. More-
over, the resources utilization of the trans-floating architecture was discussed and we did
a thorough comparison in terms of resources of our work with other state of the art works.

Since the goal of this thesis is to perform a design space exploration on the multi-scale
H&S optical flow algorithm, we used all the analysis that we have done in order to built
a tool which would estimate the hardware resources regarding the throughput and the
numeric format. The exploration was performed with a tunable code in OpenCL. By using
this code, we produced at least one thousand architectures in order to test factors of the
design. Finally, we presented a way (Figure 35) where the designer can choose between
different architectures depending on its constraints.

The trans-floating architecture can be applied to many algorithms where the accuracy
is not of same importance in all the levels of the algorithm. For example, it can be applied
to other multi-scale image processing algorithms. With this way, higher throughput can
be achieved with minimal losses in accuracy. The computation reuse in ISL algorithms is
something that gained significant attention during the last few years in FPGAs as it helps
in saving of DSPs and external memory bandwidth as intermediate results can be fused
and not recomputed. Our proposition of handling the multi-rate architectures is able to
better treat the external memory bandwidth compared to previous state of the art works
which impacts positively the throughput. Multi-rate architectures are very common in

7.2 future work 87

many image processing and not only pipelines and that is why we believe it is a strong
contribution.

7.2 future work

At first, more exploration can be done regarding the multi-rate algorithm in terms of
accuracy. A good improvement would be to increase the levels of the pyramid to 4 or 5

and to not do any computation in the finest level of the pyramid which demands the most
computation time. This will increase the throughput of the algorithm and maybe the loss
in accuracy will not be very high. Following that, fixed point arithmetic can be considered
as a potential solution to decrease the usage of FPGA resources. However, more iterations
might be needed to achieve convergence for the optical flow.

In the architectural part, we plan to fit the final results in the trans-floating architecture
of level 0 in F8 floating point arithmetic format. By doing that, the reads and writes from
and to the external memory are more friendly to the memory bus, which might potentially
increase the throughput. On the other site, the impact of this in the accuracy of the optical
flow detection should be explored. An essential future work we consider, is to design IPs
which will be able to make operations in more that one floating point formats. This will
highly reduce the resources utilization. Since these IPs will be able to do computations
in parallel for smaller floating point formats, this will increase the throughput of the
computation. Moreover, we plan to use the Block RAMs in the same way in order to
reduce their number too. This is a new trend in FPGAs especially for image processing
application and we consider this future work very important not only for our case but for
other algorithms too.

In order to compute the optical flow, other algorithms can be considered. Convolution
neural networks might be a case but they demand a lot of trade offs in order to compute
the flow for reasonable large images. One solution would be the binary neural networks
which demand less computations. Finally, we plan to use our accelerator in a large image
processing pipeline which is the meteor detection case.

B I B L I O G R A P H Y

[1] N. Rambaux, J. Vaubaillon, L. Lacassagne, et al., “Meteorix: a cubesat mission dedi-
cated to the detection of meteors and space debris,” in 1st ESA NEO and Debris De-
tection Conference, Darmstadt, Germany: ESA Space Safety Programme Office, Jan.
2019, 9 p. [Online]. Available: https://hal.archives-ouvertes.fr/hal-02198139.

[2] M. Millet, N. Rambaux, A. Cassagne, M. Bouyer, A. Petreto, and L. Lacassagne,
“Meteorix: High performance computer vision application for Meteor detection
from a CubeSat,” in 44th Scientific Assembly of the Committee on Space Research
(COSPAR), Athens, Greece, Jul. 2022. [Online]. Available: https://hal.archives-
ouvertes.fr/hal-03737605.

[3] T. Romera, A. Petreto, F. Lemaitre, M. Bouyer, Q. Meunier, and L. Lacassagne,
“Implementations impact on iterative image processing for embedded gpu,” in
2021 29th European Signal Processing Conference (EUSIPCO), 2021, pp. 736–740. doi:
10.23919/EUSIPCO54536.2021.9615947.

[4] M. Millet, N. Rambaux, A. Petreto, F. Lemaitre, and L. Lacassagne, “Meteorix - a
new processing chain for real-time detection and tracking of meteors from space,”
WGN, Journal of the International Meteor Organization, vol. 49, no. 6, Dec. 2021.

[5] N. Rambaux, P. Keckhut, A. Hauchecorne, D. Galayko, G. Guignan, J. Vaubaillon, L.
Lacassagne, M. Birlan, P. Boisse, M. Capderou, et al., “Meteorix: A cubesat mission
dedicated to the detection of meteors,” 42nd COSPAR Scientific Assembly, vol. 42,
B0–2, 2018.

[6] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “Flownet 2.0:
Evolution of optical flow estimation with deep networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 2462–2470.

[7] T.-W. Hui, X. Tang, and C. C. Loy, “Liteflownet: A lightweight convolutional neu-
ral network for optical flow estimation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 8981–8989.

[8] Y. Ling, Y. Yan, K. Huang, and G. Chen, “Flowacc: Real-time high-accuracy dnn-
based optical flow accelerator in fpga,” in 2022 Design, Automation Test in Europe
Conference Exhibition (DATE), 2022, pp. 112–115. doi: 10.23919/DATE54114.2022.
9774506.

[9] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the
kitti vision benchmark suite,” in 2012 IEEE Conference on Computer Vision and Pat-
tern Recognition, 2012, pp. 3354–3361. doi: 10.1109/CVPR.2012.6248074.

89

https://hal.archives-ouvertes.fr/hal-02198139
https://hal.archives-ouvertes.fr/hal-03737605
https://hal.archives-ouvertes.fr/hal-03737605
https://doi.org/10.23919/EUSIPCO54536.2021.9615947
https://doi.org/10.23919/DATE54114.2022.9774506
https://doi.org/10.23919/DATE54114.2022.9774506
https://doi.org/10.1109/CVPR.2012.6248074

90 bibliography

[10] A. Giachetti, M. Campani, and V. Torre, “The use of optical flow for road naviga-
tion,” IEEE Transactions on Robotics and Automation, vol. 14, no. 1, pp. 34–48, 1998.
doi: 10.1109/70.660838.

[11] D. Kapsalis, O. Sename, V. Milanés, and J. J. Martinez Molina, “Gain-Scheduled
Steering Control for Autonomous Vehicles,” IET Control Theory and Applications,
vol. 14, no. 20, pp. 3451 –3460, Feb. 2021. doi: 10.1049/iet- cta.2020.0698.
[Online]. Available: https://hal.univ-grenoble-alpes.fr/hal-02904666.

[12] Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection: A review,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 28, no. 5, pp. 694–711, 2006.
doi: 10.1109/TPAMI.2006.104.

[13] H. Chao, Y. Gu, and M. Napolitano, “A survey of optical flow techniques for
robotics navigation applications,” Journal of Intelligent & Robotic Systems, vol. 73,
no. 1, pp. 361–372, 2014.

[14] W. Enkelmann, “Obstacle detection by evaluation of optical flow fields from image
sequences,” Image and Vision Computing, vol. 9, no. 3, pp. 160–168, 1991.

[15] M. Xavier, A. Lalande, P. M. Walker, F. Brunotte, and L. Legrand, “An adapted op-
tical flow algorithm for robust quantification of cardiac wall motion from standard
cine-mr examinations,” IEEE Transactions on Information Technology in Biomedicine,
vol. 16, no. 5, pp. 859–868, 2012. doi: 10.1109/TITB.2012.2204893.

[16] T.-C. Huang, C.-K. Chang, C.-H. Liao, and Y.-J. Ho, “Quantification of blood flow
in internal cerebral artery by optical flow method on digital subtraction angiogra-
phy in comparison with time-of-flight magnetic resonance angiography,” PloS one,
vol. 8, no. 1, e54678, 2013.

[17] D. Rueckert, L. Sonoda, C. Hayes, D. Hill, M. Leach, and D. Hawkes, “Nonrigid
registration using free-form deformations: Application to breast mr images,” IEEE
Transactions on Medical Imaging, vol. 18, no. 8, pp. 712–721, 1999. doi: 10.1109/42.
796284.

[18] A. Sotiras, C. Davatzikos, and N. Paragios, “Deformable medical image registra-
tion: A survey,” IEEE Transactions on Medical Imaging, vol. 32, no. 7, pp. 1153–1190,
2013. doi: 10.1109/TMI.2013.2265603.

[19] F. Amat, E. W. Myers, and P. J. Keller, “Fast and robust optical flow for time-lapse
microscopy using super-voxels,” Bioinformatics, vol. 29, no. 3, pp. 373–380, 2013.

[20] D. Fortun, C. Chen, P. Paul-Gilloteaux, F. Waharte, J. Salamero, and C. Kervrann,
“Correlation and variational approaches for motion and diffusion estimation in flu-
orescence imaging,” in 21st European Signal Processing Conference (EUSIPCO 2013),
2013, pp. 1–5.

https://doi.org/10.1109/70.660838
https://doi.org/10.1049/iet-cta.2020.0698
https://hal.univ-grenoble-alpes.fr/hal-02904666
https://doi.org/10.1109/TPAMI.2006.104
https://doi.org/10.1109/TITB.2012.2204893
https://doi.org/10.1109/42.796284
https://doi.org/10.1109/42.796284
https://doi.org/10.1109/TMI.2013.2265603

bibliography 91

[21] J. Delpiano, J. Jara, J. Scheer, O. A. Ramírez, J. Ruiz-del Solar, and S. Härtel, “Perfor-
mance of optical flow techniques for motion analysis of fluorescent point signals
in confocal microscopy,” Machine Vision and Applications, vol. 23, no. 4, pp. 675–689,
2012.

[22] D. Fortun, P. Bouthemy, P. Paul-Gilloteaux, and C. Kervrann, “Aggregation of
patch-based estimations for illumination-invariant optical flow in live cell imag-
ing,” in 2013 IEEE 10th International Symposium on Biomedical Imaging, 2013, pp. 660–
663. doi: 10.1109/ISBI.2013.6556561.

[23] K. Liu, S. S. Lienkamp, A. Shindo, J. B. Wallingford, G. Walz, and O. Ronneberger,
“Optical flow guided cell segmentation and tracking in developing tissue,” in 2014
IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014, pp. 298–301.
doi: 10.1109/ISBI.2014.6867868.

[24] N.-M. T. Kokolakis, A. Kanellopoulos, and K. G. Vamvoudakis, “Bounded ratio-
nal unmanned aerial vehicle coordination for adversarial target tracking,” in 2020
American Control Conference (ACC), 2020, pp. 2508–2513. doi: 10.23919/ACC45564.
2020.9147737.

[25] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), vol. 1, 2005, 886–893 vol. 1. doi: 10.1109/CVPR.2005.177.

[26] A. Basset, P. Bouthemy, and C. Kervrann, “Recovery of motion patterns and dom-
inant paths in videos of crowded scenes,” in 2014 IEEE International Conference on
Image Processing (ICIP), 2014, pp. 184–188. doi: 10.1109/ICIP.2014.7025036.

[27] N. Kiryati, T. R. Raviv, Y. Ivanchenko, and S. Rochel, “Real-time abnormal motion
detection in surveillance video,” in 2008 19th International Conference on Pattern
Recognition, 2008, pp. 1–4. doi: 10.1109/ICPR.2008.4761138.

[28] M. Tassano, J. Delon, and T. Veit, “Fastdvdnet: Towards real-time video denoising
without explicit motion estimation,” 2019.

[29] C. Liu and W. T. Freeman, “A high-quality video denoising algorithm based on re-
liable motion estimation,” in European conference on computer vision, Springer, 2010,
pp. 706–719.

[30] C. Zuo, Y. Liu, X. Tan, W. Wang, and M. Zhang, “Video denoising based on a spa-
tiotemporal kalman-bilateral mixture model,” The Scientific World Journal, vol. 2013,
2013.

[31] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, “Action recognition by dense trajec-
tories,” in CVPR 2011, 2011, pp. 3169–3176. doi: 10.1109/CVPR.2011.5995407.

[32] M. Jain, H. Jégou, and P. Bouthemy, “Better exploiting motion for better action
recognition,” in 2013 IEEE Conference on Computer Vision and Pattern Recognition,
2013, pp. 2555–2562. doi: 10.1109/CVPR.2013.330.

https://doi.org/10.1109/ISBI.2013.6556561
https://doi.org/10.1109/ISBI.2014.6867868
https://doi.org/10.23919/ACC45564.2020.9147737
https://doi.org/10.23919/ACC45564.2020.9147737
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/ICIP.2014.7025036
https://doi.org/10.1109/ICPR.2008.4761138
https://doi.org/10.1109/CVPR.2011.5995407
https://doi.org/10.1109/CVPR.2013.330

92 bibliography

[33] W. Hu, N. Xie, L. Li, X. Zeng, and S. Maybank, “A survey on visual content-based
video indexing and retrieval,” IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), vol. 41, no. 6, pp. 797–819, 2011. doi: 10.1109/
TSMCC.2011.2109710.

[34] D. Shulman and J.-Y. Herve, “Regularization of discontinuous flow fields,” in
[1989] Proceedings. Workshop on Visual Motion, 1989, pp. 81–86. doi: 10.1109/WVM.
1989.47097.

[35] R. Gal, N. Kiryati, and N. Sochen, “Progress in the restoration of image sequences
degraded by atmospheric turbulence,” Pattern Recognition Letters, vol. 48, pp. 8–14,
2014, Celebrating the life and work of Maria Petrou, issn: 0167-8655. doi: https:
//doi.org/10.1016/j.patrec.2014.04.007. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0167865514001251.

[36] T. Corpetti, E. Memin, and P. Perez, “Dense estimation of fluid flows,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 24, no. 3, pp. 365–380, 2002.
doi: 10.1109/34.990137.

[37] D. Heitz, E. Mémin, and C. Schnörr, “Variational fluid flow measurements from
image sequences: Synopsis and perspectives,” Experiments in fluids, vol. 48, no. 3,
pp. 369–393, 2010.

[38] N. Maurice, F. Lemaitre, J. Sopena, and L. Lacassagne, “Lsl3d: A run-based con-
nected component labeling algorithm for 3d volumes,” in Image Analysis and Pro-
cessing. ICIAP 2022 Workshops, P. L. Mazzeo, E. Frontoni, S. Sclaroff, and C. Distante,
Eds., Cham: Springer International Publishing, 2022, pp. 132–142, isbn: 978-3-031-
13324-4.

[39] F. Lemaitre, A. Hennequin, and L. Lacassagne, “Taming voting algorithms on gpus
for an efficient connected component analysis algorithm,” in ICASSP 2021 - 2021
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2021, pp. 7903–7907. doi: 10.1109/ICASSP39728.2021.9413653.

[40] P. Turaga, R. Chellappa, and A. Veeraraghavan, “Advances in video-based human
activity analysis: Challenges and approaches,” in Advances in Computers, ser. Ad-
vances in Computers, M. V. Zelkowitz, Ed., vol. 80, Elsevier, 2010, pp. 237–290.
doi: https://doi.org/10.1016/S0065- 2458(10)80007- 5. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0065245810800075.

[41] D. Fortun, P. Bouthemy, and C. Kervrann, “Optical flow modeling and computa-
tion: A survey,” Computer Vision and Image Understanding, vol. 134, pp. 1–21, 2015,
Image Understanding for Real-world Distributed Video Networks, issn: 1077-3142.
doi: https://doi.org/10.1016/j.cviu.2015.02.008. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1077314215000429.

https://doi.org/10.1109/TSMCC.2011.2109710
https://doi.org/10.1109/TSMCC.2011.2109710
https://doi.org/10.1109/WVM.1989.47097
https://doi.org/10.1109/WVM.1989.47097
https://doi.org/https://doi.org/10.1016/j.patrec.2014.04.007
https://doi.org/https://doi.org/10.1016/j.patrec.2014.04.007
https://www.sciencedirect.com/science/article/pii/S0167865514001251
https://www.sciencedirect.com/science/article/pii/S0167865514001251
https://doi.org/10.1109/34.990137
https://doi.org/10.1109/ICASSP39728.2021.9413653
https://doi.org/https://doi.org/10.1016/S0065-2458(10)80007-5
https://www.sciencedirect.com/science/article/pii/S0065245810800075
https://doi.org/https://doi.org/10.1016/j.cviu.2015.02.008
https://www.sciencedirect.com/science/article/pii/S1077314215000429
https://www.sciencedirect.com/science/article/pii/S1077314215000429

bibliography 93

[42] B. D. Lucas, T. Kanade, et al., An iterative image registration technique with an applica-
tion to stereo vision. Vancouver, 1981, vol. 81.

[43] K. Blachut and T. Kryjak, “Real-time efficient fpga implementation of the multi-
scale lucas-kanade and horn-schunck optical flow algorithms for a 4k video stream,”
Sensors, vol. 22, no. 13, 2022, issn: 1424-8220. doi: 10.3390/s22135017. [Online].
Available: https://www.mdpi.com/1424-8220/22/13/5017.

[44] A. Plyer, G. Le Besnerais, and F. Champagnat, “Massively parallel Lucas Kanade
optical flow for real-time video processing applications,” Journal of Real-Time Image
Processing, vol. 11, pp. 713–730, 2016.

[45] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial Intelligence,
vol. 17, no. 1, pp. 185 –203, 1981.

[46] C. Zach, T. Pock, and H. Bischof, “A duality based approach for realtime tv-l 1

optical flow,” in Joint pattern recognition symposium, Springer, 2007, pp. 214–223.

[47] M. Tomasi, M. Vanegas, F. Barranco, J. Diaz, and E. Ros, “Real-Time Architecture
for a Robust Multi-Scale Stereo Engine on FPGA,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 20, no. 12, pp. 2208–2219, 2012.

[48] P. Anandan, Measuring visual motion from image sequences. University of Massachusetts
Amherst, 1987.

[49] D. J. Fleet and A. D. Jepson, “Computation of component image velocity from local
phase information,” International journal of computer vision, vol. 5, no. 1, pp. 77–104,
1990.

[50] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazirbas, V. Golkov, P. v. d. Smagt,
D. Cremers, and T. Brox, “Flownet: Learning optical flow with convolutional net-
works,” in 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 2758–
2766. doi: 10.1109/ICCV.2015.316.

[51] Z. Sun and H. Wang, “Deeper spatial pyramid network with refined up-sampling
for optical flow estimation,” in Pacific Rim Conference on Multimedia, Springer, 2018,
pp. 492–501.

[52] T.-W. Hui, X. Tang, and C. C. Loy, “A lightweight optical flow cnn—revisiting
data fidelity and regularization,” IEEE transactions on pattern analysis and machine
intelligence, vol. 43, no. 8, pp. 2555–2569, 2020.

[53] A. Ranjan and M. J. Black, “Optical flow estimation using a spatial pyramid net-
work,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
2017, pp. 4161–4170.

[54] D.Scharstein and R. Szeliski, “A Taxonomy and Evaluation of Dense Two-Frame
Stereo Correspondence Algorithms,” International Journal of Computer Vision, vol. 47,
pp. 7–42, 2002.

https://doi.org/10.3390/s22135017
https://www.mdpi.com/1424-8220/22/13/5017
https://doi.org/10.1109/ICCV.2015.316

94 bibliography

[55] A. Petreto, T. Romera, F. Lemaitre, I. Masliah, B. Gaillard, M. Bouyer, Q. L. Meunier,
and L. Lacassagne, “A new real-time embedded video denoising algorithm,” in
2019 Conference on Design and Architectures for Signal and Image Processing (DASIP),
2019, pp. 47–52. doi: 10.1109/DASIP48288.2019.9049189.

[56] S. Smets, T. Goedemé, and M. Verhelst, “Custom processor design for efficient, yet
flexible lucas-kanade optical flow,” in 2016 Conference on Design and Architectures
for Signal and Image Processing (DASIP), 2016, pp. 138–145. doi: 10.1109/DASIP.
2016.7853810.

[57] F. Zhang, Y. Gao, and J. D. Bakos, “Lucas-kanade optical flow estimation on the
ti c66x digital signal processor,” in 2014 IEEE High Performance Extreme Computing
Conference (HPEC), 2014, pp. 1–6. doi: 10.1109/HPEC.2014.7040984.

[58] B. Duvenhage, J. P. Delport, and J. de Villiers, “Implementation of the lucas-kanade
image registration algorithm on a gpu for 3d computational platform stabilisa-
tion,” in Proceedings of the 7th International Conference on Computer Graphics, Virtual
Reality, Visualisation and Interaction in Africa, ser. AFRIGRAPH ’10, Franschhoek,
South Africa: Association for Computing Machinery, 2010, 83–90, isbn: 9781450301183.
doi: 10.1145/1811158.1811172. [Online]. Available: https://doi.org/10.1145/
1811158.1811172.

[59] H. Seong, C. E. Rhee, and H. Lee, “A Novel Hardware Architecture of the Lu-
cas–Kanade Optical Flow for Reduced Frame Memory Access,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 26, no. 6, pp. 1187–1199, 2016.

[60] F. Barranco, M. Tomasi, J. Diaz, M. Vanegas, and E. Ros, “Parallel Architecture for
Hierarchical Optical Flow Estimation Based on FPGA,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 20, no. 6, pp. 1058–1067, 2012.

[61] I. Ishii, T. Taniguchi, K. Yamamoto, and T. Takaki, “High-Frame-Rate Optical Flow
System,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 1,
pp. 105–112, 2012.

[62] K. Seyid, A. Richaud, R. Capoccia, and Y. Leblebici, “FPGA-Based Hardware Im-
plementation of Real-Time Optical Flow Calculation,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 28, no. 1, pp. 206–216, 2018.

[63] M. Tomasi, M. Vanegas, F. Barranco, J. Diaz, and E. Ros, “High-Performance Optical-
Flow Architecture Based on a Multi-Scale, Multi-Orientation Phase-Based Model,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 20, no. 12, pp. 1797–
1807, 2010.

[64] A. Petreto, A. Hennequin, T. Koehler, T. Romera, Y. Fargeix, B. Gaillard, M. Bouyer,
Q. L. Meunier, and L. Lacassagne, “Energy and Execution Time Comparison of
Optical Flow Algorithms on SIMD and GPU architectures,” in 2018 Conference on
Design and Architectures for Signal and Image Processing (DASIP), 2018, pp. 25–30.

https://doi.org/10.1109/DASIP48288.2019.9049189
https://doi.org/10.1109/DASIP.2016.7853810
https://doi.org/10.1109/DASIP.2016.7853810
https://doi.org/10.1109/HPEC.2014.7040984
https://doi.org/10.1145/1811158.1811172
https://doi.org/10.1145/1811158.1811172
https://doi.org/10.1145/1811158.1811172

bibliography 95

[65] R. Rustam, N. H. Hamid, and F. A. Hussin, “FPGA-based hardware implemen-
tation of optical flow constraint equation of Horn and Schunck,” in 2012 4th In-
ternational Conference on Intelligent and Advanced Systems (ICIAS 2012), vol. 2, 2012,
pp. 790–794.

[66] M. Kunz, A. Ostrowski, and P. Zipf, “An FPGA-optimized architecture of horn
and schunck optical flow algorithm for real-time applications,” in 2014 24th Inter-
national Conference on Field Programmable Logic and Applications (FPL), 2014, pp. 1–
4.

[67] M. Komorkiewicz, T. Kryjak, and M. Gorgon, “Efficient hardware implementation
of the Horn-Schunck algorithm for high-resolution real-time dense optical flow
sensor,” Sensors, vol. 14, no. 2, pp. 2860–2891, 2014.

[68] D. Huff, S. Dai, and P. Hanrahan, “Clockwork: Resource-efficient static scheduling
for multi-rate image processing applications on fpgas,” in 2021 IEEE 29th Annual
International Symposium on Field-Programmable Custom Computing Machines (FCCM),
2021, pp. 186–194. doi: 10.1109/FCCM51124.2021.00030.

[69] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey, “3.5-d blocking opti-
mization for stencil computations on modern cpus and gpus,” in SC ’10: Proceed-
ings of the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, 2010, pp. 1–13. doi: 10.1109/SC.2010.2.

[70] G. Jin, T. Endo, and S. Matsuoka, “A parallel optimization method for stencil com-
putation on the domain that is bigger than memory capacity of gpus,” in 2013
IEEE International Conference on Cluster Computing (CLUSTER), 2013, pp. 1–8. doi:
10.1109/CLUSTER.2013.6702633.

[71] J. Pekkilä, M. S. Väisälä, M. J. Käpylä, M. Rheinhardt, and O. Lappi, “Scalable com-
munication for high-order stencil computations using cuda-aware mpi,” Parallel
Computing, vol. 111, p. 102 904, 2022.

[72] L. Peng, R. Seymour, K. ichi Nomura, R. K. Kalia, A. Nakano, P. Vashishta, A. Lod-
doch, M. Netzband, W. R. Volz, and C. C. Wong, “High-order stencil computations
on multicore clusters,” in 2009 IEEE International Symposium on Parallel Distributed
Processing, 2009, pp. 1–11. doi: 10.1109/IPDPS.2009.5161011.

[73] X. Liu, Y. Liu, H. Yang, J. Liao, M. Li, Z. Luan, and D. Qian, “Toward accelerated
stencil computation by adapting tensor core unit on gpu,” in Proceedings of the 36th
ACM International Conference on Supercomputing, 2022, pp. 1–12.

[74] A. Gorobets and P. Bakhvalov, “Heterogeneous cpu+ gpu parallelization for high-
accuracy scale-resolving simulations of compressible turbulent flows on hybrid
supercomputers,” Computer Physics Communications, vol. 271, p. 108 231, 2022.

https://doi.org/10.1109/FCCM51124.2021.00030
https://doi.org/10.1109/SC.2010.2
https://doi.org/10.1109/CLUSTER.2013.6702633
https://doi.org/10.1109/IPDPS.2009.5161011

96 bibliography

[75] R. Cattaneo, G. Natale, C. Sicignano, D. Sciuto, and M. D. Santambrogio, “On how
to accelerate iterative stencil loops: A scalable streaming-based approach,” ACM
Trans. Archit. Code Optim., vol. 12, no. 4, Dec. 2015, issn: 1544-3566. doi: 10.1145/
2842615. [Online]. Available: https://doi.org/10.1145/2842615.

[76] G. Natale, G. Stramondo, P. Bressana, R. Cattaneo, D. Sciuto, and M. D. Santam-
brogio, “A polyhedral model-based framework for dataflow implementation on
fpga devices of iterative stencil loops,” in 2016 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2016, pp. 1–8. doi: 10.1145/2966986.2966995.

[77] X. Tian, Z. Ye, A. Lu, L. Guo, Y. Chi, and Z. Fang, “Sasa: A scalable and auto-
matic stencil acceleration framework for optimized hybrid spatial and temporal
parallelism on hbm-based fpgas,” arXiv preprint arXiv:2208.10770, 2022.

[78] K. Kamalakkannan, G. R. Mudalige, I. Z. Reguly, and S. A. Fahmy, “Fpga ac-
celeration of structured-mesh-based explicit and implicit numerical solvers using
sycl,” in International Workshop on OpenCL, ser. IWOCL’22, Bristol, United Kingdom,
United Kingdom: Association for Computing Machinery, 2022, isbn: 9781450396585.
doi: 10.1145/3529538.3530007. [Online]. Available: https://doi.org/10.1145/
3529538.3530007.

[79] H. M. Waidyasooriya, Y. Takei, S. Tatsumi, and M. Hariyama, “Opencl-based fpga-
platform for stencil computation and its optimization methodology,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 28, no. 5, pp. 1390–1402, 2017. doi:
10.1109/TPDS.2016.2614981.

[80] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, and S. Matsuoka, “Evaluating
and optimizing opencl kernels for high performance computing with fpgas,” in
SC ’16: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2016, pp. 409–420. doi: 10.1109/SC.2016.34.

[81] K. Sano, Y. Hatsuda, and S. Yamamoto, “Multi-fpga accelerator for scalable stencil
computation with constant memory bandwidth,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 3, pp. 695–705, 2014. doi: 10.1109/TPDS.2013.51.

[82] H. R. Zohouri, A. Podobas, and S. Matsuoka, “High-performance high-order sten-
cil computation on fpgas using opencl,” in 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2018, pp. 123–130. doi: 10.
1109/IPDPSW.2018.00027.

[83] H. R. Zohouri, A. Podobas, and S. Matsuoka, “Combined spatial and temporal
blocking for high-performance stencil computation on fpgas using opencl,” in Pro-
ceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2018, 153–162.

https://doi.org/10.1145/2842615
https://doi.org/10.1145/2842615
https://doi.org/10.1145/2842615
https://doi.org/10.1145/2966986.2966995
https://doi.org/10.1145/3529538.3530007
https://doi.org/10.1145/3529538.3530007
https://doi.org/10.1145/3529538.3530007
https://doi.org/10.1109/TPDS.2016.2614981
https://doi.org/10.1109/SC.2016.34
https://doi.org/10.1109/TPDS.2013.51
https://doi.org/10.1109/IPDPSW.2018.00027
https://doi.org/10.1109/IPDPSW.2018.00027

bibliography 97

[84] G. Deest, T. Yuki, S. Rajopadhye, and S. Derrien, “One size does not fit all: Imple-
mentation trade-offs for iterative stencil computations on fpgas,” in 2017 27th Inter-
national Conference on Field Programmable Logic and Applications (FPL), 2017, pp. 1–8.
doi: 10.23919/FPL.2017.8056781.

[85] Y. Chi, J. Cong, P. Wei, and P. Zhou, “Soda: Stencil with optimized dataflow ar-
chitecture,” in 2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2018, pp. 1–8. doi: 10.1145/3240765.3240850.

[86] Y. Chi and J. Cong, “Exploiting computation reuse for stencil accelerators,” in 2020
57th ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6. doi: 10.1109/
DAC18072.2020.9218680.

[87] A. A. Nacci, V. Rana, F. Bruschi, D. Sciuto, P. di Milano, I. Beretta, and D. Atienza,
“A high-level synthesis flow for the implementation of iterative stencil loop algo-
rithms on fpga devices,” in 2013 50th ACM/EDAC/IEEE Design Automation Confer-
ence (DAC), 2013, pp. 1–6. doi: 10.1145/2463209.2488797.

[88] A. Akin, I. Beretta, A. A. Nacci, V. Rana, M. D. Santambrogio, and D. Atienza, “A
high-performance parallel implementation of the chambolle algorithm,” in 2011
Design, Automation Test in Europe, 2011, pp. 1–6. doi: 10.1109/DATE.2011.5763232.

[89] V. Rana, A. A. Nacci, I. Beretta, M. D. Santambrogio, D. Atienza, and D. Sciuto,
“Design methods for parallel hardware implementation of multimedia iterative
algorithms,” IEEE Design Test of Computers, vol. 30, no. 04, pp. 71–80, 2013, issn:
1558-1918. doi: 10.1109/MDT.2012.2223191.

[90] H. M. Waidyasooriya and M. Hariyama, “Multi-fpga accelerator architecture for
stencil computation exploiting spacial and temporal scalability,” IEEE Access, vol. 7,
pp. 53 188–53 201, 2019. doi: 10.1109/ACCESS.2019.2910824.

[91] J. Cong, J. Lau, G. Liu, S. Neuendorffer, P. Pan, K. Vissers, and Z. Zhang, “Fpga hls
today: Successes, challenges, and opportunities,” ACM Trans. Reconfigurable Tech-
nol. Syst., vol. 15, no. 4, 2022, issn: 1936-7406. doi: 10.1145/3530775. [Online].
Available: https://doi.org/10.1145/3530775.

[92] J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-Kelley, and M. Horowitz,
“Programming heterogeneous systems from an image processing dsl,” ACM Trans-
actions on Architecture and Code Optimization (TACO), vol. 14, no. 3, pp. 1–25, 2017.

[93] N. Chugh, V. Vasista, S. Purini, and U. Bondhugula, “A dsl compiler for acceler-
ating image processing pipelines on fpgas,” in Proceedings of the 2016 International
Conference on Parallel Architectures and Compilation, 2016, pp. 327–338.

[94] J. Hegarty, R. Daly, Z. DeVito, J. Ragan-Kelley, M. Horowitz, and P. Hanrahan,
“Rigel: Flexible multi-rate image processing hardware,” ACM Transactions on Graph-
ics (TOG), vol. 35, no. 4, pp. 1–11, 2016.

https://doi.org/10.23919/FPL.2017.8056781
https://doi.org/10.1145/3240765.3240850
https://doi.org/10.1109/DAC18072.2020.9218680
https://doi.org/10.1109/DAC18072.2020.9218680
https://doi.org/10.1145/2463209.2488797
https://doi.org/10.1109/DATE.2011.5763232
https://doi.org/10.1109/MDT.2012.2223191
https://doi.org/10.1109/ACCESS.2019.2910824
https://doi.org/10.1145/3530775
https://doi.org/10.1145/3530775

98 bibliography

[95] B. Johnson and S. R. J, “A high throughput fully parallel-pipelined fpga accelerator
for dense cloud motion analysis,” in 2016 IEEE Region 10 Conference (TENCON),
2016, pp. 2589–2592. doi: 10.1109/TENCON.2016.7848505.

[96] B. Johnson, S. Thomas, and R. Sheeba, “A high-performance dense optical flow
architecture based on red-black sor solver,” Journal of Signal Processing Systems,
pp. 357–373, 2020.

[97] J. Díaz, E. Ros, R. Agís, and J. L. Bernier, “Superpipelined high-performance optical-
flow computation architecture,” Computer Vision and Image Understanding, vol. 112,
no. 3, pp. 262–273, 2008, issn: 1077-3142. doi: https://doi.org/10.1016/j.cviu.
2008.05.006. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1077314208000684.

[98] H.-H. Nagel and W. Enkelmann, “An investigation of smoothness constraints for
the estimation of displacement vector fields from image sequences,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 5, pp. 565–593,
1986. doi: 10.1109/TPAMI.1986.4767833.

[99] J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani.

[100] S. Piskorski, L. Lacassagne, S. Bouaziz, and D. Etiemble, “Customizing CPU In-
structions for Embedded Vision Systems,” in 2006 International Workshop on Com-
puter Architecture for Machine Perception and Sensing, 2006, pp. 59–64.

[101] B. Barrois, O. Sentieys, and D. Menard, “The hidden cost of functional approxi-
mation against careful data sizing — a case study,” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2017, 2017, pp. 181–186. doi: 10.23919/DATE.
2017.7926979.

[102] F. de Dinechin and B. Pasca, “Designing Custom Arithmetic Data Paths with
FloPoCo,” IEEE Design Test of Computers, vol. 28, no. 4, pp. 18–27, 2011.

[103] C. Rhemann, C. Rother, J. Wang, M. Gelautz, P. Kohli, and P. Rott, “A perceptually
motivated online benchmark for image matting,” in 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition, 2009, pp. 1826–1833. doi: 10.1109/CVPR.2009.
5206503.

[104] S. Baker and T. Kanade, “Limits on super-resolution and how to break them,” in
Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000
(Cat. No.PR00662), vol. 2, 2000, 372–379 vol.2. doi: 10.1109/CVPR.2000.854852.

[105] A. Wedel, D. Cremers, T. Pock, and H. Bischof, “Structure- and motion-adaptive
regularization for high accuracy optic flow,” in 2009 IEEE 12th International Confer-
ence on Computer Vision, 2009, pp. 1663–1668. doi: 10.1109/ICCV.2009.5459375.

[106] Z. Wang and A. Bovik, “A universal image quality index,” IEEE Signal Processing
Letters, vol. 9, no. 3, pp. 81–84, 2002. doi: 10.1109/97.995823.

https://doi.org/10.1109/TENCON.2016.7848505
https://doi.org/https://doi.org/10.1016/j.cviu.2008.05.006
https://doi.org/https://doi.org/10.1016/j.cviu.2008.05.006
https://www.sciencedirect.com/science/article/pii/S1077314208000684
https://www.sciencedirect.com/science/article/pii/S1077314208000684
https://doi.org/10.1109/TPAMI.1986.4767833
https://doi.org/10.23919/DATE.2017.7926979
https://doi.org/10.23919/DATE.2017.7926979
https://doi.org/10.1109/CVPR.2009.5206503
https://doi.org/10.1109/CVPR.2009.5206503
https://doi.org/10.1109/CVPR.2000.854852
https://doi.org/10.1109/ICCV.2009.5459375
https://doi.org/10.1109/97.995823

bibliography 99

[107] H. Sheikh, M. Sabir, and A. Bovik, “A statistical evaluation of recent full refer-
ence image quality assessment algorithms,” IEEE Transactions on Image Processing,
vol. 15, no. 11, pp. 3440–3451, 2006. doi: 10.1109/TIP.2006.881959.

[108] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? a new look at
signal fidelity measures,” IEEE Signal Processing Magazine, vol. 26, no. 1, pp. 98–117,
2009. doi: 10.1109/MSP.2008.930649.

[109] S. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for image denois-
ing and compression,” IEEE Transactions on Image Processing, vol. 9, no. 9, pp. 1532–
1546, 2000. doi: 10.1109/83.862633.

[110] M. Liu and T. Delbruck, “Block-matching optical flow for dynamic vision sensors:
Algorithm and fpga implementation,” in 2017 IEEE International Symposium on Cir-
cuits and Systems (ISCAS), 2017, pp. 1–4. doi: 10.1109/ISCAS.2017.8050295.

[111] J. Barron, D. Fleet, S. Beauchemin, and T. Burkitt, “Performance of optical flow
techniques,” in Proceedings 1992 IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, 1992, pp. 236–242. doi: 10.1109/CVPR.1992.223269.

[112] D. Sun, S. Roth, and M. J. Black, “A quantitative analysis of current practices in
optical flow estimation and the principles behind them,” Int. J. Comput. Vision,
vol. 106, no. 2, 115–137, 2014, issn: 0920-5691. doi: 10.1007/s11263-013-0644-x.
[Online]. Available: https://doi.org/10.1007/s11263-013-0644-x.

[113] M. Tomasi, M. Vanegas, F. Barranco, J. Daz, and E. Ros, “Massive Parallel-Hardware
Architecture for Multiscale Stereo, Optical Flow and Image-Structure Computa-
tion,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 2,
pp. 282–294, 2012.

[114] A. Garcia-Dopico, J. Pedraza, M. Nieto, A. Perez, S. Rodrigeuz, and J. Navas, “Par-
allelization of the optical flow computation in sequences from moving cameras,”
EURASIP Journal on Image and Video Processing, p. 18, 2014.

[115] S. Meyer, O. Wang, H. Zimmer, M. Grosse, and A. Sorkine-Hornung, “Phase-based
frame interpolation for video,” in 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015, pp. 1410–1418. doi: 10.1109/CVPR.2015.7298747.

[116] R. Sun, P. Liu, J. Wang, C. Accetti, and A. A. Naqvi, “A 42fps full-hd orb feature
extraction accelerator with reduced memory overhead,” in 2017 International Con-
ference on Field Programmable Technology (ICFPT), 2017, pp. 183–190. doi: 10.1109/
FPT.2017.8280137.

[117] Z. Pan, Y. Jin, X. Jiang, and J. Wu, “An fpga-optimized architecture of real-time
farneback optical flow,” in 2020 IEEE 28th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2020, pp. 223–223. doi: 10.1109/
FCCM48280.2020.00054.

https://doi.org/10.1109/TIP.2006.881959
https://doi.org/10.1109/MSP.2008.930649
https://doi.org/10.1109/83.862633
https://doi.org/10.1109/ISCAS.2017.8050295
https://doi.org/10.1109/CVPR.1992.223269
https://doi.org/10.1007/s11263-013-0644-x
https://doi.org/10.1007/s11263-013-0644-x
https://doi.org/10.1109/CVPR.2015.7298747
https://doi.org/10.1109/FPT.2017.8280137
https://doi.org/10.1109/FPT.2017.8280137
https://doi.org/10.1109/FCCM48280.2020.00054
https://doi.org/10.1109/FCCM48280.2020.00054

100 bibliography

[118] V. Suse and D. Ionescu, “A real-time reconfigurable architecture for face detection,”
in 2015 International Conference on ReConFigurable Computing and FPGAs (ReConFig),
2015, pp. 1–6. doi: 10.1109/ReConFig.2015.7393281.

[119] K. Daniilidis, A. Makadia, and T. Bulow, “Image processing in catadioptric planes:
Spatiotemporal derivatives and optical flow computation,” in Proceedings of the
IEEE Workshop on Omnidirectional Vision 2002. Held in conjunction with ECCV’02,
2002, pp. 3–10. doi: 10.1109/OMNVIS.2002.1044483.

[120] Y. Hu, R. Song, and Y. Li, “Efficient coarse-to-fine patch match for large displace-
ment optical flow,” in 2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2016, pp. 5704–5712. doi: 10.1109/CVPR.2016.615.

[121] H.-T. Yau, M.-T. Lin, and M.-S. Tsai, “Real-time nurbs interpolation using fpga for
high speed motion control,” Computer-Aided Design, vol. 38, no. 10, pp. 1123–1133,
2006.

[122] M. A. Nuño-Maganda and M. O. Arias-Estrada, “Real-time fpga-based architec-
ture for bicubic interpolation: An application for digital image scaling,” in 2005
International Conference on Reconfigurable Computing and FPGAs (ReConFig’05), IEEE,
2005, 8–pp.

[123] K. S. Rani and W. J. Hans, “Fpga implementation of bilinear interpolation algo-
rithm for cfa demosaicing,” in 2013 International Conference on Communication and
Signal Processing, IEEE, 2013, pp. 857–863.

[124] D. Etiemble, S. Bouaziz, and L. Lacassagne, “Customizing 16-bit floating point
instructions on a nios ii processor for fpga image and media processing,” in 3rd
Workshop on Embedded Systems for Real-Time Multimedia, 2005., 2005, pp. 61–66. doi:
10.1109/ESTMED.2005.1518073.

[125] D. Zuras, M. Cowlishaw, A. Aiken, M. Applegate, D. Bailey, S. Bass, D. Bhandarkar,
M. Bhat, D. Bindel, S. Boldo, et al., “Ieee standard for floating-point arithmetic,”
IEEE Std, vol. 754, no. 2008, pp. 1–70, 2008.

[126] D. Goldberg, “What every computer scientist should know about floating-point
arithmetic,” ACM computing surveys (CSUR), vol. 23, no. 1, pp. 5–48, 1991.

[127] F. de Dinechin, B. Pasca, O. Cret, and R. Tudoran, “An fpga-specific approach to
floating-point accumulation and sum-of-products,” in 2008 International Conference
on Field-Programmable Technology, 2008, pp. 33–40. doi: 10.1109/FPT.2008.4762363.

[128] F. de Dinechin, C. Klein, and B. Pasca, “Generating high-performance custom
floating-point pipelines,” in 2009 International Conference on Field Programmable Logic
and Applications, 2009, pp. 59–64. doi: 10.1109/FPL.2009.5272553.

https://doi.org/10.1109/ReConFig.2015.7393281
https://doi.org/10.1109/OMNVIS.2002.1044483
https://doi.org/10.1109/CVPR.2016.615
https://doi.org/10.1109/ESTMED.2005.1518073
https://doi.org/10.1109/FPT.2008.4762363
https://doi.org/10.1109/FPL.2009.5272553

bibliography 101

[129] R. DiCecco, L. Sun, and P. Chow, “Fpga-based training of convolutional neural
networks with a reduced precision floating-point library,” in 2017 International
Conference on Field Programmable Technology (ICFPT), 2017, pp. 239–242. doi: 10.

1109/FPT.2017.8280150.

[130] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “Pwc-net: Cnns for optical flow using
pyramid, warping, and cost volume,” in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018, pp. 8934–8943. doi: 10.1109/CVPR.2018.00931.

[131] J.-M. Lin, K.-T. Lai, B.-R. Wu, and M.-S. Chen, “Efficient two-stream action recog-
nition on fpga,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW), 2021, pp. 3070–3074. doi: 10.1109/CVPRW53098.2021.
00343.

[132] S. W. Hasinoff, D. Sharlet, R. Geiss, A. Adams, J. T. Barron, F. Kainz, J. Chen, and
M. Levoy, “Burst photography for high dynamic range and low-light imaging on
mobile cameras,” ACM Transactions on Graphics (ToG), vol. 35, no. 6, pp. 1–12, 2016.

[133] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, “Pyramid
methods in image processing,” RCA engineer, vol. 29, no. 6, pp. 33–41, 1984.

[134] T. Mertens, J. Kautz, and F. Van Reeth, “Exposure fusion: A simple and practical
alternative to high dynamic range photography,” in Computer graphics forum, Wiley
Online Library, vol. 28, 2009, pp. 161–171.

[135] Intel® fpga sdk for opencl™ software technology, Intel Corporation, 2019.

[136] G. Singh, D. Diamantopoulos, C. Hagleitner, J. Gómez-Luna, S. Stuijk, O. Mutlu,
and H. Corporaal, “Nero: A near high-bandwidth memory stencil accelerator for
weather prediction modeling,” in 2020 30th International Conference on Field-Programmable
Logic and Applications (FPL), IEEE, 2020, pp. 9–17.

[137] G. Singh, D. Diamantopoulos, J. Gómez-Luna, C. Hagleitner, S. Stuijk, H. Corpo-
raal, and O. Mutlu, “Accelerating weather prediction using near-memory recon-
figurable fabric,” ACM Trans. Reconfigurable Technol. Syst., vol. 15, no. 4, 2022, issn:
1936-7406. doi: 10.1145/3501804. [Online]. Available: https://doi.org/10.1145/
3501804.

[138] M. Koraei, O. Fatemi, and M. Jahre, “Dcmi: A scalable strategy for accelerating
iterative stencil loops on fpgas,” ACM Trans. Archit. Code Optim., vol. 16, no. 4, Oct.
2019, issn: 1544-3566. doi: 10.1145/3352813. [Online]. Available: https://doi.
org/10.1145/3352813.

[139] L. Song, L. Guo, S. Basalama, Y. Chi, R. F. Lucas, and J. Cong, “Callipepla: Stream
centric instruction set and mixed precision for accelerating conjugate gradient
solver,” arXiv preprint arXiv:2209.14350, 2022.

https://doi.org/10.1109/FPT.2017.8280150
https://doi.org/10.1109/FPT.2017.8280150
https://doi.org/10.1109/CVPR.2018.00931
https://doi.org/10.1109/CVPRW53098.2021.00343
https://doi.org/10.1109/CVPRW53098.2021.00343
https://doi.org/10.1145/3501804
https://doi.org/10.1145/3501804
https://doi.org/10.1145/3501804
https://doi.org/10.1145/3352813
https://doi.org/10.1145/3352813
https://doi.org/10.1145/3352813

102 bibliography

[140] P. Colangelo, N. Nasiri, E. Nurvitadhi, A. Mishra, M. Margala, and K. Nealis, “Ex-
ploration of low numeric precision deep learning inference using intel® fpgas,” in
2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), 2018, pp. 73–80. doi: 10.1109/FCCM.2018.00020.

[141] A. Boutros, S. Yazdanshenas, and V. Betz, “Embracing diversity: Enhanced dsp
blocks for low-precision deep learning on fpgas,” in 2018 28th International Con-
ference on Field Programmable Logic and Applications (FPL), 2018, pp. 35–357. doi:
10.1109/FPL.2018.00014.

[142] D. Etiemble and L. Lacassagne, “Introducing image processing and simd computa-
tionswith fpga soft-cores and customized instructions,” in Ist International Workshop
on Reconfigurable Computing Education, Karlsruhe, Germany, March2006, Citeseer.

[143] T. Zhao, P. Basu, S. Williams, M. Hall, and H. Johansen, “Exploiting reuse and
vectorization in blocked stencil computations on cpus and gpus,” in Proceedings
of the International Conference for High Performance Computing, Networking, Storage
and Analysis, ser. SC ’19, Denver, Colorado: Association for Computing Machinery,
2019, isbn: 9781450362290. doi: 10.1145/3295500.3356210. [Online]. Available:
https://doi.org/10.1145/3295500.3356210.

[144] H. R. Zohouri and S. Matsuoka, “The memory controller wall: Benchmarking
the intel fpga sdk for opencl memory interface,” in 2019 IEEE/ACM International
Workshop on Heterogeneous High-performance Reconfigurable Computing (H2RC), 2019,
pp. 11–18. doi: 10.1109/H2RC49586.2019.00007.

[145] Y.-k. Choi, Y. Chi, W. Qiao, N. Samardzic, and J. Cong, “Hbm connect: High-
performance hls interconnect for fpga hbm,” in The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’21, Virtual Event, USA:
Association for Computing Machinery, 2021, 116–126, isbn: 9781450382182. doi:
10 . 1145 / 3431920 . 3439301. [Online]. Available: https : / / doi . org / 10 . 1145 /

3431920.3439301.

[146] M. R. Balazadeh Bahar and G. Karimian, “High performance implementation of
the horn and schunck optical flow algorithm on fpga,” in 20th Iranian Conference
on Electrical Engineering (ICEE2012), 2012, pp. 736–741. doi: 10.1109/IranianCEE.
2012.6292451.

[147] K. Blachut, T. Kryjak, and M. Gorgon, “Hardware implementation of multi-scale
lucas-kanade optical flow computation algorithm—a demo,” in 2018 Conference on
Design and Architectures for Signal and Image Processing (DASIP), 2018, pp. 60–61.

[148] P. Basu, M. Hall, S. Williams, B. Van Straalen, L. Oliker, and P. Colella, “Compiler-
directed transformation for higher-order stencils,” in 2015 IEEE International Par-
allel and Distributed Processing Symposium, 2015, pp. 313–323. doi: 10.1109/IPDPS.
2015.103.

https://doi.org/10.1109/FCCM.2018.00020
https://doi.org/10.1109/FPL.2018.00014
https://doi.org/10.1145/3295500.3356210
https://doi.org/10.1145/3295500.3356210
https://doi.org/10.1109/H2RC49586.2019.00007
https://doi.org/10.1145/3431920.3439301
https://doi.org/10.1145/3431920.3439301
https://doi.org/10.1145/3431920.3439301
https://doi.org/10.1109/IranianCEE.2012.6292451
https://doi.org/10.1109/IranianCEE.2012.6292451
https://doi.org/10.1109/IPDPS.2015.103
https://doi.org/10.1109/IPDPS.2015.103

bibliography 103

[149] H. M. Waidyasooriya and M. Hariyama, “Multi-fpga accelerator architecture for
stencil computation exploiting spacial and temporal scalability,” IEEE Access, vol. 7,
pp. 53 188–53 201, 2019. doi: 10.1109/ACCESS.2019.2910824.

[150] P. Basu, S. Williams, B. Van Straalen, L. Oliker, P. Colella, and M. Hall, “Compiler-
based code generation and autotuning for geometric multigrid on gpu-accelerated
supercomputers,” Parallel Computing, vol. 64, pp. 50–64, 2017.

[151] M. Kowalczyk and T. Kryjak, “A comparison of real-time 4k/ultrahd connected
component labelling architectures,” in 2021 31st International Conference on Field-
Programmable Logic and Applications (FPL), 2021, pp. 401–401. doi: 10.1109/FPL53798.
2021.00086.

[152] J. de Fine Licht, A. Kuster, T. De Matteis, T. Ben-Nun, D. Hofer, and T. Hoefler,
“Stencilflow: Mapping large stencil programs to distributed spatial computing sys-
tems,” in 2021 IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO), 2021, pp. 315–326. doi: 10.1109/CGO51591.2021.9370315.

[153] K. Manolopoulos, D. Reisis, and V. Chouliaras, “An efficient multiple precision
floating-point multiply-add fused unit,” Microelectronics Journal, vol. 49, pp. 10–18,
2016, issn: 0026-2692. doi: https://doi.org/10.1016/j.mejo.2015.10.012.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0026269215002591.

[154] L. Huang, L. Shen, K. Dai, and Z. Wang, “A new architecture for multiple-precision
floating-point multiply-add fused unit design,” in 18th IEEE Symposium on Com-
puter Arithmetic (ARITH ’07), 2007, pp. 69–76. doi: 10.1109/ARITH.2007.5.

[155] H. Zhang, D. Chen, and S.-B. Ko, “Efficient multiple-precision floating-point fused
multiply-add with mixed-precision support,” IEEE Transactions on Computers, vol. 68,
no. 7, pp. 1035–1048, 2019. doi: 10.1109/TC.2019.2895031.

[156] C. Wu, M. Wang, X. Chu, K. Wang, and L. He, “Low-precision floating-point arith-
metic for high-performance fpga-based cnn acceleration,” ACM Trans. Reconfig-
urable Technol. Syst., vol. 15, no. 1, 2021, issn: 1936-7406. doi: 10.1145/3474597.
[Online]. Available: https://doi.org/10.1145/3474597.

[157] M. Sun, Z. Li, A. Lu, Y. Li, S.-E. Chang, X. Ma, X. Lin, and Z. Fang, “Film-qnn: Ef-
ficient fpga acceleration of deep neural networks with intra-layer, mixed-precision
quantization,” in Proceedings of the 2022 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’22, Virtual Event, USA: Association for
Computing Machinery, 2022, 134–145, isbn: 9781450391498. doi: 10.1145/3490422.
3502364. [Online]. Available: https://doi.org/10.1145/3490422.3502364.

[158] J. Fowers, K. Ovtcharov, M. Papamichael, et al., “A configurable cloud-scale dnn
processor for real-time ai,” in 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), 2018, pp. 1–14. doi: 10.1109/ISCA.2018.00012.

https://doi.org/10.1109/ACCESS.2019.2910824
https://doi.org/10.1109/FPL53798.2021.00086
https://doi.org/10.1109/FPL53798.2021.00086
https://doi.org/10.1109/CGO51591.2021.9370315
https://doi.org/https://doi.org/10.1016/j.mejo.2015.10.012
https://www.sciencedirect.com/science/article/pii/S0026269215002591
https://www.sciencedirect.com/science/article/pii/S0026269215002591
https://doi.org/10.1109/ARITH.2007.5
https://doi.org/10.1109/TC.2019.2895031
https://doi.org/10.1145/3474597
https://doi.org/10.1145/3474597
https://doi.org/10.1145/3490422.3502364
https://doi.org/10.1145/3490422.3502364
https://doi.org/10.1145/3490422.3502364
https://doi.org/10.1109/ISCA.2018.00012

104 bibliography

[159] S. Boukhtache, B. Blaysat, M. Grédiac, and F. Berry, “Alternatives to bicubic inter-
polation considering fpga hardware resource consumption,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 29, no. 2, pp. 247–258, 2021. doi:
10.1109/TVLSI.2020.3032888.

[160] J. Stanisz, K. Lis, T. Kryjak, and M. Gorgon, “Optimisation of the pointpillars
network for 3d object detection in point clouds,” in 2020 Signal Processing: Algo-
rithms, Architectures, Arrangements, and Applications (SPA), 2020, pp. 122–127. doi:
10.23919/SPA50552.2020.9241265.

[161] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe,
“Halide: A language and compiler for optimizing parallelism, locality, and recom-
putation in image processing pipelines,” SIGPLAN Not., vol. 48, no. 6, 519–530,
2013, issn: 0362-1340. doi: 10.1145/2499370.2462176. [Online]. Available: https:
//doi.org/10.1145/2499370.2462176.

[162] J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-Kelley, and M. Horowitz,
“Programming heterogeneous systems from an image processing dsl,” ACM Trans.
Archit. Code Optim., vol. 14, no. 3, Aug. 2017, issn: 1544-3566. doi: 10.1145/3107953.
[Online]. Available: https://doi.org/10.1145/3107953.

[163] Introduction to intel® fpga sdk for opencl™ pro edition best practices guide, Intel Corpo-
ration, 2019.

[164] Intel® fpga sdk for opencl™ standard edition: Programming guide, Intel Corporation,
2019.

[165] C. Ferry, T. Yuki, S. Derrien, and S. Rajopadhye, “Increasing fpga accelerators
memory bandwidth with a burst-friendly memory layout,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pp. 1–1, 2022. doi: 10.1109/
TCAD.2022.3201494.

[166] J. Hegarty, R. Daly, Z. DeVito, J. Ragan-Kelley, M. Horowitz, and P. Hanrahan,
“Rigel: Flexible multi-rate image processing hardware,” ACM Trans. Graph., vol. 35,
no. 4, 2016, issn: 0730-0301. doi: 10.1145/2897824.2925892. [Online]. Available:
https://doi.org/10.1145/2897824.2925892.

[167] J. Thomas, P. Hanrahan, and M. Zaharia, “Fleet: A framework for massively paral-
lel streaming on fpgas,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems, 2020,
pp. 639–651.

[168] M. B. S. Ahmad, J. Ragan-Kelley, A. Cheung, and S. Kamil, “Automatically trans-
lating image processing libraries to halide,” ACM Transactions on Graphics (TOG),
vol. 38, no. 6, pp. 1–13, 2019.

[169] Terasic han pilot platform demonstration manual, 2019.

https://doi.org/10.1109/TVLSI.2020.3032888
https://doi.org/10.23919/SPA50552.2020.9241265
https://doi.org/10.1145/2499370.2462176
https://doi.org/10.1145/2499370.2462176
https://doi.org/10.1145/2499370.2462176
https://doi.org/10.1145/3107953
https://doi.org/10.1145/3107953
https://doi.org/10.1109/TCAD.2022.3201494
https://doi.org/10.1109/TCAD.2022.3201494
https://doi.org/10.1145/2897824.2925892
https://doi.org/10.1145/2897824.2925892

D E C L A R AT I O N

Paris, May 2023

Ilias Bournias

	Dedication
	Abstract
	Résumé
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Contributions
	1.2.1 Outline of The Thesis

	2 Optical Flow and Embedded Devices
	2.1 Optical Flow
	2.2 Different Optical Flow Algorithms
	2.2.1 Lukas and Kanade
	2.2.2 Horn and Schunck
	2.2.3 Other Optical Flow algorithms
	2.2.4 Advantages and disadvantages of each algorithm

	2.3 Optical Flow In Embedded Devices
	2.4 Different Components of the multi-scale H&S
	2.5 Discussion on the state of the art in FPGAs
	2.6 Conclusion

	3 Accuracy
	3.1 Evaluation Metrics
	3.1.1 Peak Signal to Noise Ratio
	3.1.2 Average Angular Error
	3.1.3 Average Endpoint Error
	3.1.4 Exploration Methodology

	3.2 Levels of the pyramid and iterations in each level
	3.3 Interpolation
	3.4 Floating point formats
	3.5 Trans-floating formats
	3.6 Comparison with state of the art
	3.7 Conclusions

	4 Throughput
	4.1 Monoscale Horn and Schunck
	4.1.1 Pipeline
	4.1.2 Vectorization

	4.2 Warping
	4.3 Down-sampling
	4.4 Up-sampling
	4.5 Multi-Scale H&S
	4.5.1 Pipeline and Parallelization
	4.5.2 Multi-rate Architecture
	4.5.3 Multi-level Architecture
	4.5.4 Computation Time
	4.5.5 Trans-floating architecture
	4.5.6 Computation Time for the Trans-floating architecture

	4.6 Throughput Results and Comparison with State of the Art
	4.6.1 Results of implementation
	4.6.2 Comparison with State of the Art

	4.7 Conclusion

	5 Hardware Resources Utilization
	5.1 Mono-scale Horn and Schunck Agorithm
	5.2 Warping
	5.3 Down-sampling
	5.4 Up-sampling
	5.5 Multi-scale H&S algorithm
	5.5.1 Multi-rate Architecture
	5.5.2 Multi-level Architecture

	5.6 Resources Utilization Results and Comparison with state of the Art
	5.6.1 Results of Implementation
	5.6.2 Comparison with the state of the art

	5.7 Conclusions

	6 Design Space Exploration
	6.1 Methodology
	6.1.1 Notation
	6.1.2 DSPs Utilization
	6.1.3 Block RAMs
	6.1.4 External memory bandwidth
	6.1.5 Execution Time and Throughput
	6.1.6 Design Space Exploration and OpenCL

	6.2 Results
	6.3 Conclusion

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	Bibliography
	Declaration

