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Résumé

English version

The pendulum again swings away from centralized IT infrastructure back towards decen-
tralization, with the rise of edge computing. Besides resource-constrained devices that can
only run tiny tasks, edge computing infrastructure consists of server-class compute nodes that
are collocated with wireless base stations, complemented by servers in regional data centers.
These compute nodes have cloud-like capabilities, and are thus able to run cloud-like work-
loads. Furthermore, many smart devices that support containerization and virtualization can
also handle cloud-like workloads. The « containers as a service » (CaaS) service model,
with its minimal overhead on compute nodes, is particularly well adapted to the less scalable
cloud environment that is found at the edge, but cloud container orchestration systems have
yet to catch up to the new edge cloud environment.

This thesis shows a way forward for edge cloud container orchestration. We make our
contributions in two primary ways: the reasoned conception of a set of empirically tested
features to simplify and improve container orchestration at the edge, and the deployment of
these features to provide EdgeNet, a sustainable container-based edge cloud testbed for the
internet research community.

We have built EdgeNet on Kubernetes, as it is open-source software that has become to-
day’s de facto industry standard cloud container orchestration tool. The edge cloud requires
multitenancy for the sharing of limited resources. However, this is not a Kubernetes-native
feature, and a specific framework must be integrated into the tool to enable this functional-
ity. Surveying the scientific literature on cloud multitenancy and existing frameworks to ex-
tend Kubernetes to offer multitenancy, we have identified three main approaches: (1) multi-
instance through multiple clusters, (2) multi-instance through multiple control planes, and
(3) single-instance native. Considering the resource constraints at the edge, we argue for and
provide empirical evidence in favor of a single-instance multitenancy framework.

Our design includes a lightweight mechanism for the federation of edge cloud compute
clusters in which each local cluster implements our multitenancy framework, and a user gains
access to federated resources through the local cluster that her local cloud operator provides.
We further introduce several features and methods that adapt container orchestration for the
edge cloud, such as a means to allow users to deploy workloads according to node location,
and an in-cluster VPN that allows nodes to operate from behind NATs.

We put these features into production through the EdgeNet testbed, a globally distributed
compute cluster that is inherently less costly to deploy and maintain, and easier to document
and to program than previous such testbeds.
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French version

Avec l’essor des infrastructures de type edge où les ressources informatiques sont en pé-
riphérie de réseau, la tendance est une fois de plus orientée vers la décentralisation. En plus
des appareils à ressources contraintes qui peuvent effectuer des tâches limitées, le « edge
cloud » se compose de nœuds de calcul de classe serveur qui sont colocalisées avec des
stations de base des réseaux sans-fil et qui sont soutenus par des serveurs dans des centres
informatiques régionaux. Ces nœuds de calcul ont des capacités de type cloud et ils sont
capables d’exécuter des charges de travail (workloads) typiques du cloud. En outre, de nom-
breux appareils intelligents qui supportent la conteneurisation et la virtualisation peuvent
exécuter de telles tâches. Nous pensons que le modèle de service « containers as a service »,
ou CaaS, avec sa surcharge minime sur des nœuds de calcul, est particulièrement bien adapté
pour l’environnement edge cloud qui est moins évolutif que le cloud classique. Pourtant,
les systèmes d’orchestration de conteneurs en cloud ne sont pas encore intégrés dans les
nouveaux environnements edge cloud.

Dans cette thèse nous montrons une voie à suivre pour l’orchestration des conteneurs
pour des edge clouds. Nous apportons nos contributions de deux manières principales : la
conception raisonnée d’un ensemble de fonctionnalités testées empiriquement pour simpli-
fier et améliorer l’orchestration des conteneurs pour des edge clouds et le déploiement de ces
fonctionnalités pour fournir une plateforme edge durable, basée sur des conteneurs, pour la
communauté de recherche sur Internet.

Ce logiciel et cette plateforme s’appellent EdgeNet. Elle consiste en une extension de
Kubernetes, qui est l’outil de facto standard d’orchestration de conteneurs pour l’industrie
cloud. L’edge cloud nécessite une architecture mutualisée, ou « multitenancy », pour le
partage de ressources limitées. Cependant, cela n’est pas une fonctionnalité native de Ku-
bernetes et alors un cadre spécifique doit être ajouté au système afin d’activer cette fonction-
nalité.

En étudiant la littérature scientifique sur les cadres multitenancy dans le cloud ainsi que
les cadres multitenancy déjà existants pour Kubernetes, nous avons développé une nouvelle
classification de ces cadres en trois approches principles: (1) multi-instance via plusieurs
clusters, (2) multi-instance via plusieurs plans de contrôle et (3) instance-unique. Compte
tenu des contraintes de ressources à l’edge, nous défendons et apportons des preuves em-
piriques en faveur d’un cadre multitenancy qui est instance-unique.

Notre conception comprend un mécanisme léger pour la fédération des clusters de calcul
de l’edge cloud dans lequel chaque cluster local implémente notre cadre multitenancy, et
un utilisateur accède à des ressources fédérées par le biais du cluster local fourni par son
opérateur de cloud local. Nous introduisons en outre plusieurs fonctionnalités et méthodes
qui adaptent l’orchestration des conteneurs à l’edge cloud, telles qu’un moyen de permettre
aux utilisateurs de déployer des charges de travail en fonction de l’emplacement du nœud, et
un VPN en cluster qui permet aux nœuds de fonctionner derrière des NAT.

Nous mettons ces fonctionnalités en production avec la plateforme d’expérimentation
d’EdgeNet, un cluster de calcul distribué à l’échelle mondiale qui est intrinsèquement moins
coûteux à déployer et à entretenir, et plus facile à documenter et à programmer que les
plateformes d’expérimentation précédents.
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Chapter 1

Introduction

The open-ended debate on whether to centralize or distribute IT resources was initiated
following the dawn of the technology itself [41]. Many determining factors steer cen-
tralization or decentralization decisions [119], which includes telecommunication/hardware
costs, infrastructure/hardware capacities, application/service requirements, and organiza-
tional/operational capabilities. The pendulum, therefore, constantly swings back and forth
between centralized and decentralized approaches as a function of changes in such factors.
To date, we deem four breakthroughs that have strongly influenced the tendency: central-
ized mainframe computing, the advent of personal computers, cloud computing, and edge
computing [54]. With edge computing, the trend is once again towards decentralizing IT
resources.

It is perceived that edge computing is only about resource-constrained devices that can
run tiny tasks. However, in addition to such devices, edge computing infrastructure consists
of server-class compute nodes that are collocated with wireless base stations [36, 88], which
are complemented by servers in regional data centers [134]. These compute nodes have
cloud-like capabilities and are thus able to run cloud-like workloads [143]. Furthermore,
many smart devices that support containerization and virtualization can also handle such
cloud-like workloads [135].

In our anticipation of the future of edge computing infrastructure, multiple providers,
such as cloud providers and operators, offer compute resources [24] in many locations on
a global scale [126, 37]. Put in other words, edge clouds will be launched by multiple
providers who will mainly be operators, and they will be geographically scattered worldwide.
These edge clouds will be more constrained in compute resources than are in clouds. Edge
cloud customers will deploy and constantly move their workloads across these resource-
constrained edge clouds to meet service requirements. The reasoning behind this can be
ascribed to having workloads remain deployed on each edge location would prove uneco-
nomical for some customers, as well as inefficient use of constrained resources. One more
reason can be a need for disaster recovery mechanisms regarding autonomous cars in the
event of a critical failure of internally situated hardware. We may need to quickly deploy and
move workloads across the closest roadside infrastructure to pull over malfunctioning self-
driving cars in motion safely. The aforementioned factors necessitate a new service model
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Chapter 1

that, imposing low overhead, facilitates customers to deploy and move their workloads from
one operator’s edge cloud to another in different locations as well as fosters interoperability
between edge clouds.

Containers are being lightweight than VMs. They introduce low overhead and also are
portable, enhancing workload mobility with the ability to rapidly spin up and down with
the minimal cost of resources. These characteristics of containers have contributed to the
widespread adoption of them by the cloud community, especially for application and service
deployments. This speedy uptake has even given rise to a new cloud service model called
CaaS, which is typically built upon container orchestration tools (See Sec.2.1.3 for details).

We think the CaaS service model is particularly well adapted to the less scalable and
widely distributed cloud environment that is found at the edge. Still, cloud container orches-
tration systems have yet to catch up to the new edge cloud environment. In consideration of
the resource-constrained and geographically dispersed essence of edge clouds that multiple
providers offer, the available multitenancy frameworks for CaaS are either not efficient or
not designed to allow multiple tenants to share such federated infrastructure. As for CaaS
federation tools, they do not make a standard solution that is ample in scope to incentivize
providers, including small-sized ones, to offer compute resources to this federated edge in-
frastructure.

With this thesis, we recognize the need and show a way forward for container orchestra-
tion for the edge cloud. While undertaking this task, our main emphasis is on two building
blocks, multitenancy (Chapter 3) and federation (Chapter 4), and is on how to incorporate
these with supplementary features to present a method of enabling a sustainable edge cloud
testbed (Chapter5) to function for the research community.

Within this introduction, we foremost provide the terminology and conventions that this
thesis follows (Sec.1.1), then bring forward the problem domain that is accompanied by our
motivation for studying container orchestration for the edge cloud (Sec. 1.2), and conclude
this chapter with our contributions to the field (Sec.1.3).

1.1 Upcoming edge infrastructure and use cases

This section provides background information regarding edge computing, its envisaged ar-
chitecture, and potential use cases. Since edge computing is a relatively new computing
paradigm, there is not yet a consensus on the terms in both academia and industry. For this
reason, we, in this thesis, follow edge cloud terminology from the Sharpening The Edge
2020 white paper [135] and from a project on edge computing glossary1 of Linux Founda-
tion.2 Below is the summary of conceived infrastructure these sources introduce, along with
some edge-specific use cases.

The edge computing term intrinsically is associated with an infrastructure that consists
of low-capacity devices located at the edge of the network. However, the edge infrastructure
is not limited to such low-capacity devices. It also incorporates geographically dispersed

1Open Glossary of Edge Computing https://stateoftheedge.com/projects/glossary/
2Linux Foundation https://www.linuxfoundation.org/
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resources that support cloud-like capabilities [143]. Briefly, there are two main infrastructure
tiers: Service Provider Edge and User/Device Edge, as seen in Fig. 1.1. When deploying
services closer to the centralized data centers, users typically experience higher latency and
jitter, whereas the infrastructure can ensure better scalability and physical security. The more
go in the opposite direction reduces latency and jitter, despite driving the lack of scalability
and possibly physical security. Ownership of resources, contrary to centralized data centers,
belongs to many providers, enterprises, and individuals. Workloads running on each tier can
work in concert with the ones on others, providing compute continuum.

The infrastructure of service provider edge is made up of IT hardware that delivers cloud-
like capabilities. Providers deploy these resources in close proximity to users and to where
data is produced. This tier encompasses a geographic area extending from the access net-
works to the nearest internet exchange points as a means of support to the metropolitan
network. Service provider edge is further subdivided into two sublayers to fulfill this duty:
Regional Edge and Access Edge.

As its name implies, regional edge consolidates resources in regional data centers. This
server-class infrastructure is expected to ensure a latency that ranges from 30ms to 100ms.
Organizations like cloud providers and CDNs can also colocate their compute resources in
these sites in order to reduce latency by decreasing hops between the services and end-users.
Access edge is the nearest infrastructure to the physical last-mile networks, a maximum of
one hop away from RAN or cable headend to provide latency between sub-1ms to 30ms.
This server-class infrastructure is deployed in sites such as base stations, roadside cabinets,
and central offices.

The constrained compute resources on the user side of the last-mile network composes of
the infrastructure in user/device edge. These constrained resources that hardware like mobile
devices, gateways, computers, as well as servers offer are highly heterogeneous. As data is
processed on-site, it prevents data from traveling through the access network, thus saving
bandwidth. It also makes sure of significantly lower latencies than does service provider
edge. There are three subcategories of user/device edge: On-Premises Data Center Edge,
Smart Device Edge, and Constrained Device Edge.

On-premises data center edge refers to data centers consisting of servers that are under
the control of users. Although this sounds like existing on-premise computing, edge comput-
ing integrates it with the continuum of computing. In smart device edge, compute resources
can still support virtualization and containerization, as does in on-premises data center edge,
which allows for handling cloud-like workloads. Smartphones, IoT gateways, and PCs are
typical examples of these resources. However, constrained device edge is of low-capacity de-
vices, including microcontroller-based devices, which do not support cloud-like workloads.
Such devices can only run tiny tasks but can do that in real time and offload tasks to other
tiers.

The edge infrastructure is reasoned by the fact that some emerging use cases require
lower latency and jitter, better control of data security, privacy, and sovereignty to comply
with regional data regulations, and broader bandwidth than clouds can offer. To better un-
derstand these novel requirements, the research community endeavors to characterize edge-
specific use cases. Video analytics, smart homes, and smart cities are some of these use
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Figure 1.1: Edge continuum, derived from LF Edge’s white paper [135].

cases studied by researchers [138], as are intelligent transportation, industry automation, and
tactile internet, which are latency-critical [108].

On the one hand, use cases like autonomous vehicles, drone delivery, and factory floor,
where communication between devices takes place without user intervention, compel lower
latencies and jitters. On the other hand, many applications nowadays allow users to share
and stream videos and make video calls, which drives them to produce data. Considering
data generated both through these applications and by IoT devices, data transmission toward
clouds is inflated, saturating bandwidth. Both these scenarios can be addressed through
processing as well as distributing data on edge nodes in proximity.

1.2 Problem domain and motivation

This section introduces the problem domain that provides the context in which one of the
problems of container orchestration for the edge cloud lives and our motivation to address
this problem.

Cloud infrastructure consists of centralized data centers on which customers run their
services. A strong point of this infrastructure is that these services can be scaled out as end-
user demand increases. Cloud providers can also launch these centralized data centers in
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sites at a number of different geolocations in order to lower latency between services and
end-users. This allows cloud customers who offer services over the Internet to make them
available from one or a few of these centralized data centers if needed. Overall, this is a
solution that meets the requirements of many applications.

In contrast, edge computing infrastructure will consist of numerous data centers that are
geographically dispersed worldwide. We will see that services are offered from the edge
of the network, closer to the users [122], or to the location where data is generated. Such
services will run in combination with services offered from centralized data centers as well
as from the user/device edge. With 5G, edge cloud customers will offer their services from
servers that are co-located with wireless base stations [88], maybe in roadside cabinets as
well. Server locations will be many, near users and devices, across cities and countries
worldwide.

We assert that multiple operators will potentially cover these geographical locations
rather than a single one spanning across all those regions. In such a scenario, some work-
loads will need to be moved from one tier to another regarding edge continuum, from one
location to another, and from one operator’s infrastructure to another. As compute resources
in edge clouds are more constrained than are in clouds, multitenancy along with such work-
load mobility needs to be handled with minimal resource consumption. In certain edge use
cases, moving workloads swiftly between edge clouds may also be necessary. But there is not
yet a standard orchestration system that allows multiple providers to serve many cloud/edge
customers simultaneously, which also imposes such a low overhead.

1.3 Contributions

In this thesis, we make our contributions in two primary ways: the reasoned conception of a
set of empirically tested features to simplify and improve container orchestration at the edge
and the deployment of these features to provide a sustainable container-based edge cloud
testbed for the internet research community.3 We have implemented these features to extend
Kubernetes,4 made them available as free, open-source software,5 and enabled the EdgeNet
testbed, a running instance of the software code, that is open to researchers worldwide.6 As
of April 2023, the size of the codebase, regarding the main components, is 16,548 lines of
code written in Go, which excludes both blank lines and comment lines.7

We present a unique interpretation of the CaaS service model to address the challenges

3Contributions have been communicated with the scientific community through five peer-reviewed publi-
cations: an extended abstract published in NSF workshop, WOMBIR 2021 [133]; an extended abstract, demo
session, published in IEEE INFOCOM International Workshop, CNERT 2021 [130]; a short paper, best paper
award, published in EdgeSys workshop held in conjunction with the ACM EuroSys 2021 [129]; a short paper
published in the SLICES workshop held in conjunction with IFIP Networking 2022 [131]; an extended abstract,
demo session, published in IEEE ICDCS 2022 [128]. In addition to these, a preprint has been made available
on arXiv [132].

4The EdgeNet contributors https://github.com/EdgeNet-project/edgenet/graphs/contributors
5The EdgeNet software https://github.com/EdgeNet-project/edgenet
6The EdgeNet testbed https://edge-net.org/
7We used the SCC tool to calculate the size of the codebase (https://github.com/boyter/scc)
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that stem from the edge infrastructure and use cases that we anticipate. With our multi-
tenancy framework, we disengage CaaS multitenancy from the multi-instance model that
imposes high overhead to shift it to the single-instance model that introduces low overhead
and is also lightweight. This change allows a single cluster to support up to 10,000 tenants,
whereas it is 40 tenants for the closest multi-instance approach. The marked contrast in ten-
ant count that is supported in a single cluster becomes crucial for the resource-constrained
edge cloud. Likewise, for four simultaneous tenant creation requests, our framework pro-
vides a median creation time of under a second per tenant, which is more than a minute for
the nearest multi-instance approach. Regarding pod creation time, our framework also im-
poses a negligible overhead. These findings show that our multitenancy framework can be
adopted to achieve a CaaS offering that enables multitenancy and workload mobility with
minimal overhead.

A lingering issue still lacks a definitive solution: how can multiple providers offer their
compute resources within edge clouds in many locations, and how can these edge clouds
interoperate? We develop a federation strategy for CaaS in which a federation can be estab-
lished node-wise, cluster-wise, system-wise, or a combination of these three. Node-wise ar-
chitecture, as nodes are deployed to the same cluster, does not hinder interoperability, but the
other two architectures do so. These three federation architectures, regardless, work together
with our multitenancy framework to take advantage of its lightweight build. Especially for
clusters operating with the same container orchestration tool, this also helps accomplish in-
teroperability between edge clouds, as our multitenancy framework is designed to accept
federation deployments that spring from tenants of other clusters. The measurements we
have conducted on our prototype of cluster-wise architecture show that it takes under two
seconds for a tenant to deploy a pod on a remote cluster and have it scheduled there.

Incorporating our multitenancy framework and node-wise federation with additional fea-
tures, we have enabled an edge cloud testbed. At the time of writing, 51 tenants, who are
research organizations, research groups, and individual researchers, have registered with the
testbed. Since its launch, over 10 experiments, up to 7 parallel experiments, have been con-
ducted on EdgeNet, besides several class exercises.

We organize this thesis in the sense that the two building blocks, multitenancy and feder-
ation, and the testbed that leverages these two and exploits other supplementary features are
covered through three separate chapters. The basis of our reasoning for devoting two chap-
ters to multitenancy and federation is that each constitutes a component of our overarching
vision for CaaS to run for clouds and edge clouds at scale, and as such, they are characterized
by profound expounding. Below is the synopsis of the scope and content of each of these
chapters:

• Lightweight and Federation Oriented Multitenancy Framework in Chapter 3, which
improves the CaaS multitenancy frameworks such that it ensures that each edge cloud
provider can accept incoming workloads that originate from tenants of other providers
without collisions while imposing low overhead to support a large number of tenants in
a single cluster to promote a future where CaaS can thrive, particularly at the network
edge [129, 128, 132]. A list of contributions of this study:

– We provide a novel classification of the multitenancy frameworks into three main
approaches (Sec.2.3.1.1).
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– We identify four features that bring CaaS to run for edge clouds as well as for
clouds: consumer and vendor modes (Sec. 2.3.1.3), tenant resource quota for
hierarchical namespaces (Sec. 2.3.1.4), variable slice granularity (Sec. 2.3.1.5),
and federation support (Sec.2.3.1.6).

– We have developed the multitenancy framework that covers these four features
as a free and open-source extension to Kubernetes (Sec.3.2).

– We benchmarked the three main multitenancy approaches using a representative
implementation for each of them to explore their pros and cons from a tenancy-
centered edge computing viewpoint (Sec.3.3).

• Integrated Federation Strategy, comprising three levels as node, cluster, and system
in Chapter 4, which expands the current CaaS federation approaches in a way that
multiple providers can offer compute resources in many locations to a federated edge
infrastructure while preserving the efficiency of our multitenancy framework [129,
131]. A list of contributions of this study:

– We have devised an integrated federation strategy for CaaS to help establish a
federated edge infrastructure at scale: node-wise federation (Sec. 4.1), cluster-
wise federation (Sec.4.2), and system-wise federation (Sec.4.3).

– We have developed a node deployment procedure (Sec.4.1.2).
– We have crafted a functioning prototype for cluster-wise federation, which re-

moves the need for a centralized federation control plane while preserving the
lightweight nature of our multitenancy framework (Sec.4.2.1).

• Edge Cloud Testbed for researchers in Chapter5, which improves software and hard-
ware sustainability to provide and maintain a geographically distributed testbed as well
as enhances their use to deploy experiments on such infrastructure [133, 130, 129, 131,
128, 132]. A list of contributions of this study:

– We put our multitenancy framework into production as the EdgeNet testbed,
which allows multiple researchers to conduct measurements in parallel (Sec.5.1).

– We have developed a node selection feature through which users deploy contain-
ers onto nodes based on their locations (Sec.5.2).

– We have made our node deployment procedure operational within the EdgeNet
testbed, which allows contributors to provide the cluster with nodes (Sec.5.3).

– We have implemented an aggregate manager (AM) to federate EdgeNet with
Fed4FIRE+ so that researchers can use EdgeNet as they do for the other federated
testbeds (Sec.5.4).

– The EdgeNet testbed has supported more than 10 experiments (Sec.5.5).

The following chapter provides the state-of-the-art passage, then Sec.2.4 caters to this section
with a concise description of the problem this thesis tackles.
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Chapter 2

State of the art and problem statement

This chapter gives background information, discusses the rationale, provides the state-of-
the-art in the domains in which our contributions exist, and concisely describes the problem
statement. Background information is in Sec. 2.1 fundamentally related to cloud comput-
ing and edge computing, including containers and their orchestration, acknowledging the
advancements in virtualization technologies. Sec. 2.2 discusses the reasoning behind our
proposed architecture. Then a specific related work for each particular chapter is given in
Sec.2.3, which also presents how our work differs from others. We then introduce a concise
description of the problem statement with challenges in Sec.2.4. These four sections eluci-
date the problem domain, our motivation, and the problem that our contributions address.

2.1 Background

In this section, we first present a brief chronicle of centralization and decentralization his-
tory. We then introduce cloud computing and edge computing, discuss the advantages and
disadvantages of each, argue the differences between the two, and look at their projected
market sizes. Container orchestration is then explored.

2.1.1 Pendulum of centralization and decentralization

In the early age of the technology, centralization was more feasible due to costs and limited
capacity of hardware [41, 109]. Mainframe systems running batch processes [8] were a no-
ticeable centralization movement. Primarily, large organizations adopted these mainframe
computers [168], which are then also used through the timesharing model [21, 8], but they
were unavailable to the broad public access. With the advent of personal computers, central-
ized mainframe computing offloaded its tasks to a decentralized model [21]. This moment
was another breakthrough in the computation domain.

Over the course of time, determining factors changed once again. Personal computers
being constrained in resources and being required to be physically accessible to make use
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of the compute resources and data became a limitation. The spread of the Internet created
a possibility to consolidate IT resources at a centralized location and make them accessible
through the Internet, with which the cloud computing paradigm emerged. Cloud computing
enables broad on-demand access to compute resources at scale, with the pay-as-you-go pric-
ing model protecting clients from up-front costs [16]. Over the past decades, virtualization
advancements in concert with cloud computing, from virtual machines to containers, have
changed how we develop and deliver applications. However, use cases such as autonomous
vehicles and drone delivery, along with the rise of IoT, impose stringent latency and jitter
requirements that clouds cannot meet. The more devices at the network’s edge, the more
likely bandwidth saturation clouds confront as well. Hence, the pendulum now swings to-
ward decentralizing IT resources to meet these requirements, so toward edge computing that
brings compute resources near locations where data is produced [137], as well as closer to
end-users [76].

2.1.2 From clouds to edge clouds

As discussed in the previous subsection, the trend between centralization and distribution of
IT hardware constantly shifts back and forth. Over the last few years, we have witnessed
another change in interest toward decentralization via edge computing.

2.1.2.1 Cloud computing

The centralization trend via cloud computing1 has changed how we develop and deploy ap-
plications as well as services over the last two decades. Clouds provide their customers
with on-demand access to IT resources such as storage, computing, and network resources
through the Internet, ensuring broad network access to these resources, along with the pay-
as-you-go model that prevents the customers from undergoing upfront investments for needed
infrastructure. What makes the cloud distinctive is also the way of delivering on-demand ac-
cess to resources. In simple terms, a cloud provider manages infrastructure on behalf of
customers.

There are many reasons a customer chooses cloud computing over purchasing and main-
taining on-premise infrastructure. It can be, for example, financial such as upfront costs,
or operational such as the need for employing on-site engineers for infrastructure manage-
ment. Then a question arises: to what extent is it feasible for a customer to delegate the
responsibility of managing resources to a cloud provider?

This question is addressed by cloud computing, which offers diverse service models that
provide different levels of abstraction for infrastructure management. For example, such
abstraction delivered by a service model can span different layers, such as hardware, vir-
tualization, operating system, and application. Cloud operators enable various abstraction
alternatives through many service models [117, 116] among which IaaS, PaaS, and SaaS

1The oldest use of the cloud computing term with respect to its current context dates to the mid-1990s, and
the term itself has been broadly adopted in the mid-2000s [114].
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Figure 2.1: Levels of abstraction in cloud computing for on-premise (on-site) infrastructure, IaaS, CaaS, PaaS, and SaaS. This figure
is derived from a Red Hat article [61].

are the three primary ones [95]. Cloud computing, including these service models, typically
uses hypervisors for hardware virtualization, allowing multiple customers dynamically share
infrastructure in isolation through multitenancy [13].

On the other hand, advancements in OS-level virtualization make containers an appeal-
ing option to isolate workloads. Although containers cannot provide the same isolation as
hardware virtualization offers [139], they are more lightweight and faster, impose lower over-
head, and perform better in many aspects than VMs [44, 111]. This more lightweight and
portable nature of containers compared to VMs has led to the rapid uptake of CaaS in re-
cent years, which falls between IaaS and PaaS regarding control abstraction. Fig.2.1 depicts
a high-level comparison of the abstraction level in resource management for self-managed,
on-premise infrastructure, IaaS, CaaS, PaaS, and SaaS.

Regarding the abstraction levels, an organization that has and maintains self-managed,
on-premise infrastructure is responsible for entirely managing it from the hardware to appli-
cations, as well as for security risks. Such an organization can offload some of its hardware
and virtualization management responsibility, including risks, to a cloud provider through
IaaS, becoming a customer. Meaning that, in IaaS, customers rent compute resources on-
demand with the help of hardware virtualization.

Customers, who want more abstraction in management control, can take advantage of the
flexibility of CaaS while disengaging from OS-related tasks. CaaS is based on OS-level vir-
tualization, so containers, where customers benefit from underlying compute infrastructure,
typically via container orchestration tools [139]. A user manages the lifecycle of containers
through a container orchestration tool, which we explore in greater detail in Sec.2.1.3: some
operations are their deployments, scale, and networking.
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PaaS abstracts control further by managing runtime on behalf of customers, in broad
terms, providing them with the tools for application development and deployment. These
are such tools with which customers can develop, build, and deploy their applications while
committing minimal effort. As the last one, SaaS distinguishes itself as a software delivery
method that uses multitenancy, where users belonging to different tenants commonly access
an instance of the software via a web browser. This reduces the burden on software ven-
dors: no longer delivering software to each customer, reduced maintenance workload, and
accelerated software release cycle.

Cost-effectiveness, scalability, latency reduction, broadband network access, and robust-
ness of clouds are the pillars behind the constantly increasing adoption of cloud services.
With its above advantages, cloud computing allows consumers to access scalable compute
resources instantly and at an affordable price, giving the power to consumers [20]. Cloud
computing combines certain characteristics with a set of enabler techniques, through which
it makes renting out compute resources that are consolidated at a central location via the
Internet economically viable. This economically feasible model for both providers and con-
sumers contributes to the continuous growth of cloud computing. It is forecasted that world-
wide end-user spending on cloud services, including IaaS, PaaS, and SaaS, will reach $494.7
billion in 2022, a 20.4% enlargement from the previous year [52], and such an upward trend
is estimated to persist to 2030 at least [29].

2.1.2.2 Edge Computing

The cloud computing paradigm converges compute resources through centralized data cen-
ters that are located relatively distant from the end-users and devices than are for envis-
aged edge computing infrastructure; each hop between these data centers with the end-users
and devices causes more latency, bandwidth consumption, and more jitter. Although cloud
providers establish sites in different regions to shorten this physical distance, such an in-
frastructure is of limited use for bandwidth-intensive applications as well as for latency-
critical applications, even including latency-sensitive ones. Network congestion in the cloud
may also lead to delays and jitter, impeding real-time communications that are required by
some applications. Given that connected devices are expected to proliferate in the following
years [30, 53], cloud bandwidth will likely become considerably more saturated.

Contemporary domains such as IoT, video analytics, and industry 4.0 introduce novel ap-
plication requirements, due to which cloud architecture’s capabilities have been put in ques-
tion. With edge computing, compute resources, appearing in numerous locations compared
to clouds, are brought closer to the end users and devices in order to achieve three critical
enablers: low latency, low jitter, and high bandwidth, all provided by local or near-local pro-
cessing. A high-level comparison of cloud computing and edge computing is presented in
Table2.1.

Given that edge computing extends CDN’s concept,2 which emerged in the late 1990s,
to running computer code, similar to how cloud computing runs code but near end-users and
devices, CDNs can be considered the initial footprints of edge computing [125]. In CDNs,

2CDNs cache content at edge nodes close to consumers in order to save bandwidth and provide low latency.
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Table 2.1: A concise summary of cloud computing and edge computing, derived from a paper that reviews edge computing reference
architectures [141].

Cloud computing
Edge computing

Service Provider Edge User/Device Edge

Strengths Scalable, big data processing,
broad network access, secured fa-
cilities, easier maintenance.

Data security, lower latency and
jitter, saved bandwidth, cloud-like
capabilities.

Real time responses, ultra low la-
tency, low jitter, high bandwidth,
autonomous.

Weaknesses High latency and jitter, bandwidth
bottleneck, no offline mode, little
control over data locations.

Limited scalability of compute re-
sources, operational costs due to
numerous locations.

Constrained compute resources,
limitations of user-owned private
networks.

Edge computing does not replace cloud computing but rather supports it.
Many edge workloads will run in conjunction with those running on clouds [24].

saved bandwidth and low latency are ensured through caching, but in edge computing, these
are provided through processing at the edge, which also presents low jitter and involves de-
vices in addition to end-users. 1997 is the first time edge computing’s potential value has
been demonstrated by offloading computational tasks from a resource-constrained mobile
device to a nearby server for speech recognition and advancing this approach to improve
battery life; two breakthrough improvements were made in the following years [125]: the
foundational concept discussing two-level architecture, cloud infrastructure as it is, and dis-
tributed resources called cloudlets [126], along with the term fog computing, which refers to
scattered cloud infrastructure [18].

In short, the foremost characteristic of edge computing is its end-user and device-centric
approach, deploying compute resources where real-time processing needs to happen. This
way, it ensures low latency, low jitter, and reduced bandwidth consumption, which some edge
use cases require. The second one is its ubiquitous infrastructure, maintaining sites in widely
dispersed locations that host compute resources. With this decentralization movement, real-
time processing near devices will be achievable at scale extensively. Likewise, location-
aware systems will put services on one or more of the feasible edge nodes that are in the
closest proximity to end users. Through such infrastructure, edge computing, therefore, will
guarantee not just low latency, low jitter, and reduced bandwidth consumption but also broad
access to these benefits.

We contend that multiple operators will establish the edge sites occurring at widely dis-
persed locations [126], making interoperability more challenging than is in the cloud. It is
not only the multi-provider aspect that hinders interoperability but also the heterogeneity that
comes along with this decentralized infrastructure. By the heterogeneity term, we refer to
nodes with varying environments such as locations, network settings, hardware in terms of
amount and type, operating systems, device connection protocols, and API types. Pulling all
together, the lack of interoperability becomes a hindrance to edge computing’s adoption.

With 5G, the MEC technology enables cloud-like capabilities at the edge, more precisely
at the edge of the wireless access networks [88]. This technology takes advantage of the
wireless access technologies provided by 5G [36], allowing edge services to be offered at
the network edge closer to end users [122], thus ensuring low latency and high bandwidth
performance. ETSI addresses the above-mentioned interoperability issue through Inter-MEC
system communication while standardizing MEC paradigm [99].
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Since the trend is now toward decentralization, hyperscaler cloud service providers ex-
tend their architecture with the goal of reaching all regions rather than remaining with their
core locations [144]. Similar to cloud computing, the edge computing market has constantly
been growing in recent years. By 2025, it can achieve an economical size between $175 bil-
lion and $215 billion in hardware [30]. In terms of overall spending on hardware, software,
and services, it is forecast to reach $274 billion through 2025 [31].

2.1.3 Container orchestration

Containers provide virtualization at the OS level, harnessing Linux namespaces for isolation
and Linux control groups (cgroups) for resource consumption, thus being lightweight and
portable compared to VMs [96]. Namespaces, such as user, process ID, network, and mount,
are used to confine a container by removing both its ability to see and access the environment
outside the container, and cgroups is responsible for controlling the resource consumption
of a group of processes, including setting limits for them [44]. This lightweight OS-level
virtualization approach, taking advantage of these two key features, makes containers an
alternative to VMs. Containers are lightweight, faster, and more performant and even intro-
duce less overhead compared to VMs, but they cannot ensure isolation at the same level that
VMs offer.

Above mentioned benefits contribute to the rapid adoption of containers by the industry,
thus stimulating container orchestration tools. A container orchestration tool, in broad terms,
manages the entire lifecycle of containers from their deployment to networking, including
scaling up and down according to demand. Someone who wishes to deploy containerized
services to the cloud has a choice of open source container orchestration systems with which
to do so, four of the most prominent being [69]: Apache Mesos,3 Docker Swarm,4 Kuber-
netes,5 and Rancher’s Cattle.6 We focus on Kubernetes, as it has in recent years become the
de facto industry standard. All of the major cloud providers offer Kubernetes-based CaaS
to their customers (See Table2.2). And Datadog, a company that provides cloud monitoring
and security services, reports [32] that nearly 50% of their customers that deploy containers
use Kubernetes to do so, this having increased about 10 percentage points over the past three
years. We have, therefore, implemented our contributions in this thesis in a way that natively
extends Kubernetes.

Container orchestration has a scheduling aspect for which each tool offers its own so-
lution. Constraint satisfaction problems and scheduling are two domains of research that
the researchers have intensely been studying, so research on the scheduling algorithms for
container orchestration is also conducted in regard to cloud computing and edge computing.
This thesis does not tackle this aspect, so the scope of this thesis does not include scheduling
algorithms. However, we propose a federation architecture in Sec. 4.2 where each cluster
can employ its own scheduler, thanks to Kubernetes which natively supports replacing the

3Apache Mesos https://github.com/apache/mesos
4Docker Swarm https://github.com/docker/swarmkit
5Kubernetes https://kubernetes.io/
6Rancher’s Cattle https://github.com/rancher/cattle
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Table 2.2: Major cloud providers’ Kubernetes-based containers-as-a-service (CaaS) offerings.

Cloud provider Kubernetes-based CaaS offering URL

Amazon Web Services Elastic Kubernetes Service https://aws.amazon.com/eks/

Microsoft Azure Azure Kubernetes Service https://azure.microsoft.com/en-us/products/kubernetes-service

Google Cloud Platform Google Kubernetes Engine https://cloud.google.com/kubernetes-engine

Alibaba Cloud Alibaba Cloud Container Service for K8s https://www.alibabacloud.com/product/kubernetes

Oracle Cloud Oracle Container Engine for K8s https://www.oracle.com/cloud/cloud-native/container-engine-kubernetes/

IBM Cloud IBM Cloud Kubernetes Service https://www.ibm.com/cloud/kubernetes-service

Tencent Cloud Tencent Kubernetes Engine https://www.tencentcloud.com/products/tke

OVHcloud Free Managed Kubernetes https://us.ovhcloud.com/public-cloud/kubernetes/

DigitalOcean DigitalOcean Kubernetes https://try.digitalocean.com/kubernetes-in-minutes/

Linode Linode Kubernetes Engine https://www.linode.com/lp/kubernetes/

default scheduler with a custom one.7 For reasoning a need for such architecture, we present
a quick overview of scheduling below without delving into them for simplicity.

Due to the sheer amount of resources available in public clouds, scheduling persists as a
research interest [70, 136, 26] to improve cost-effectiveness through achieving high resource
utilization of the infrastructure. Many studies have already explored the effectiveness as well
as scheduling architecture of container orchestration tools, along with their other aspects [63,
127, 159, 156]. We think that scheduling solutions depend on the context: a scheduler can
consider image transmission cost, CPU and memory usage, hardware requirements for con-
tainers, and container grouping as main factors [86], and another may prioritize eco-friendly
objectives to ensure lower carbon emissions and energy consumption [75]. Similarly, the
approach can differ for optimization; one can frame the scheduling problem as minimum
cost flow problem [66, 65], whereas another may make use of ant colony optimization [73].
The heterogeneous nature of edge computing introduces diverse factors, which depend on
the context, regarding scheduling, which studies address in various ways [87, 45, 7, 85, 62].
As there is no one-size fits all approach to solving scheduling problems, there are also ef-
forts that empower users to set their constraints on the cluster configuration along with their
optimization objectives [146].

2.2 Rationale

We envisage a future in which tenants deploy services on a continuum of computing re-
sources from cloud to edge cloud, about which we make the following assumptions:

• Edge clouds are ubiquitous, scattered across the world [37].

• Compute and storage resources are constrained in the edge cloud, making it harder to
scale tenant workloads there than in the cloud.

• Tenants value the ability to easily move their workloads from one edge cloud cluster
to another and between the edge cloud and the cloud.

7Kubernetes documentation: Configure Multiple Schedulers https://kubernetes.io/docs/tasks/extend-kubernetes/config

ure-multiple-schedulers/
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• Each tenant’s user database is maintained by that tenant. User management is not a
functionality provided by the compute clusters.
• Tenants and their users are unreliable. They may purposely or accidentally harm each

other, or the compute cluster, or themselves.

These assumptions instruct and support us in conceiving our architecture, and we de-
scribe the rationale for our design choices in the following subsections: the necessity of a
novel Kubernetes CaaS multitenancy framework (Sec.2.2.1) that takes container-specific se-
curity and performance considerations into account (Sec.2.2.2), and that enables federation
across edge clouds and control over slice granularity at the edge (Sec.2.2.3).

2.2.1 Multitenancy

It is an often-repeated commonplace that cloud computing is not just “using someone else’s
computer”, as the cloud goes beyond this to promise more flexible, convenient, and cost-
effective access to computing resources. Multitenancy is required to realize this promise.
The NIST Definition of Cloud Computing [95] mentions resource pooling as one of the “five
essential characteristics” of cloud computing, saying that:

The provider’s computing resources are pooled to serve multiple consumers us-
ing a multi-tenant model, with different physical and virtual resources dynami-
cally assigned and reassigned according to consumer demand.

And in their Defining Multi-Tenancy paper from 2014 [72], Kabbedijk et al. state:

Multi-tenancy is a property of a system where multiple customers, so-called ten-
ants, transparently share the system’s resources, such as services, applications,
databases, or hardware, with the aim of lowering costs, while still being able to
exclusively configure the system to the needs of the tenant.

Multitenancy is a standard feature of the three established cloud service models, Software
as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS) [117,
14]. If Containers as a Service (CaaS) is to provide the promised benefits of the cloud
and the edge cloud at scale, then it requires an efficient multitenancy model as well. We
further discuss why such efficiency is required for CaaS to run for clouds and edge clouds in
Sec.2.3.1, and the results of our experiments in Sec.3.3 support our contention.

Multitenancy has a broad meaning and can be enabled at different cloud abstraction lay-
ers using different techniques to share resources among multiple customers. This thesis
discusses multitenancy in the context of CaaS and methods for accomplishing it. CaaS of-
ferings are mostly based upon Kubernetes [170], so we focus on the ways in which it can
serve multiple customers using multitenancy. To be clear, with respect to the discussion of
multitenancy in the Kubernetes documentation, which describes how a tenant can deploy
an application in a Kubernetes cluster to serve its multiple customers using a multi-tenant
model: that is also multitenancy, but at the application layer, and more precisely at the SaaS
layer, however it is not multi-tenant CaaS, which is what this thesis considers.

16



State of the art and problem statement

2.2.2 Security and performance

While multitenancy is an essential cloud feature, it raises security issues that researchers have
been considering for over a decade [20], notably with respect to the IaaS service model [33].
For example, potential users are concerned about the security of their data when multiple
tenants share the same infrastructure [12], and the resulting lack of trust can hamper cloud
adoption [117].

Virtualization is used to isolate tenants from one another, but containers tend to of-
fer weaker isolation [13], which introduces new concerns for multitenant container plat-
forms [120], such as information leakage between colocated containers [51]. In general,
Sultan et al. [145] have identified four categories of threat in containerized environments:
malicious applications within containers, one container harming another, a container harm-
ing its host, and a container within an untrustworthy host.

In Kubernetes, container security must be considered in the context of the pod, which
is that system’s smallest deployable unit, consisting of a set of one or more containers. The
Kubernetes pod security standards define three profiles, Privileged, Baseline, and Restricted.8

However, these standards address a single-tenant environment, and so overlook some of the
multitenant security issues mentioned above.

We therefore see the need for a solution that diminishes the security risks of running
colocated containerized workloads. In order to be of interest for CaaS, such a solution needs
to maintain the performance advantage of containers over virtual machines.

2.2.3 Edge computing, federation, and slicing

As described in the Linux Foundation’s 2021 State of the Edge report [143], cloud-like infras-
tructure is being developed at the network edge in order to serve edge devices that produce
bandwidth-intensive and/or latency-sensitive workloads. ETSI’s multi-access edge comput-
ing (MEC) architecture [99] provides a standard structure for making servers at cellular
operators’ radio access networks available for the deployment of such workloads by third
parties. That is, the emerging edge cloud will be a multitenant cloud [5].

Since the MEC architecture anticipates that workloads may be containerized, we argue
that there is a need for a multitenant CaaS framework that meets the specific requirements of
the network edge. The prime edge requirements that we identify are federation and variable
slice granularity.

MEC facilities will be provided by multiple operators. Just as a mobile phone user is
able to roam from one regional operator to another today, a mobile edge device will need to
be able to connect to different operators and find its containerized edge services spun up near
each base station to which it connects. And ETSI describes a requirement for edge devices to
be able to engage in low-latency interactions with each other when they are near each other,

8Kubernetes documentation: Cloud Security Standards https://kubernetes.io/docs/concepts/security/pod-security-stand

ards/
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even if they are connected to different operators’ base stations. ETSI uses the term federation
to describe such interoperability scenarios.

To enable federation, we argue, a CaaS framework must support the deployment of third
parties’ containers across multiple operators’ edge clouds. That is, the framework will not
just be multitenant, it will also be multi-provider, with providers furnishing geographically
dispersed heterogeneous resources. Those who deploy CaaS services to a multi-provider en-
vironment will be in need of a unified interface that simplifies the task of moving workloads
between remote clusters that are owned by different providers [166].

In addition, as anticipated by the Next Generation Mobile Networks Alliance in 2016 [35],
operators will have to support third party services that put a much more heterogeneous set
of requirements on their networks than is currently the case. Extreme requirements are in-
compatible with a one-size-fits-all approach. The way that MEC handles this is through
slicing [88, 100, 169], which allows network and compute resources to be allocated and
custom-configured to meet the specific needs of individual services. In the CaaS context,
we argue that no single slice granularity will meet the full range of needs. The standard
CaaS sub-node-level slicing, in which containers are provided from a shared resource pool
on individual node, while no doubt appropriate for many services, will not be appropriate
for those that are the most sensitive to performance variation. For those services, node-level
slice granularity will be needed.

2.3 Related work

We subdivide this section into three in the sense that each subsection corresponds to a chapter
in the thesis. This decision is based on the opinion that each major contribution should be
accompanied by its corresponding related work for convenience.

• Multitenancy (Sec.2.3.1) corresponds to a native multitenancy (Chapter3).
• Federation (Sec.2.3.2) corresponds to a federation that spreads by local action (Chap-

ter4).
• Platforms and tools (Sec.2.3.3) corresponds to a real-world instance as a distributed

testbed (Chapter5).

In each chapter, we further examine the corresponding state of the art. We believe this
choice makes the related work section more precise for readers while providing them with
more context in the chapters.

2.3.1 Multitenancy

In the commercial cloud offerings, each customer gets their own Kubernetes cluster, which
is a straightforward form of multitenancy. Some providers add on more advanced features.
For example, an Amazon EKS customer can use a service called Fargate9 to manage the

9Amazon Web Services (AWS) Elastic Kubernetes Cloud (EKS) documentation: Fargate https://docs.aws.ama

zon.com/eks/latest/userguide/fargate.html
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capacity of their Kubernetes cluster, adding and removing nodes as they need to. Similarly,
a Google Cloud customer can hand over control of their cluster capacity management to a
service called Autopilot,10 to do the same thing for them automatically.

While Kubernetes multitenancy in this form might be fine for large centralized data cen-
ter clouds, there are drawbacks when looking to an edge cloud future. Setting up a separate
cluster for each tenant is far from the most efficient approach, as we will show in Sec. 3.3.
Resources are liable to be underused, which will be of particular concern in the smaller data
centers that we can anticipate at the edge. And when tenants need to be repeatedly instan-
tiated as their workloads migrate, for instance at one roadside cabinet after another to serve
vehicles that are moving along a highway, spinning up an entire cluster for each arrival of
a tenant risks taking too much time. We anticipate that lighter forms of multitenancy will
be needed: ones that allow more efficient resource sharing, even at some cost in workload
isolation, and that allow more rapid creation and deletion of tenants. Furthermore, propri-
etary systems for enabling multitenancy risk being a hindrance in a federated environment, in
which a single customer might deploy their workloads to many edge clouds, each owned by
a different operator. If all of the operators use a common open-source multitenancy frame-
work, it will promote interoperability.

Starting in 2019, as Table 2.3 shows, a fair number of open-source Kubernetes multite-
nancy frameworks have been developed. Some, such as Virtual Kubelet [154] and frame-
works that are derived from that code, take the same starting point as the commercial ser-
vices, which is each tenant having its own cluster. But others offer worker nodes to tenants
out of a shared cluster, which is more resource efficient. And some of these serve multiple
tenants out of a shared control plane, which is yet more efficient.

The Kubernetes community has recognized the importance of developing such frame-
works, as evidenced by the fact that one of the Kubernetes working groups, of which there
are just eight,11 is devoted to multitenancy.12 Both of the frameworks that this working group
supports take the shared cluster approach. VirtualCluster (VC) [155] offers a separate con-
trol plane to each tenant while the control plane is shared among tenants by the Hierarchical
Namespace Controller (HNC) [151]. These frameworks, along with the others shown in
Table2.3, comprise the essential related work for our own EdgeNet framework.

We look at six aspects of Kubernetes multitenancy frameworks when comparing EdgeNet
to the related work: the multitenancy approach (Sec. 2.3.1.1), the customization approach
(Sec. 2.3.1.2), support for consumer and vendor modes (Sec. 2.3.1.3), management of ten-
ant resource quotas (Sec.2.3.1.4), support for variable slice granularities (Sec.2.3.1.5), and
support for federation (Sec.2.3.1.6).

10Google Cloud documentation: Create an Autopilot cluster https://cloud.google.com/kubernetes-engine/docs/how-to/

creating-an-autopilot-cluster
11Kubernetes working groups https://github.com/kubernetes/community/blob/master/sig-list.md
12Kubernetes Multi-tenancy Working Group https://github.com/kubernetes-sigs/multi-tenancy
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Table 2.3: Comparison table of related work (open-source Kubernetes multitenancy frameworks).

EdgeNet HNC Capsule kiosk Arktos VC k3v vcluster Kamaji VK+

v1.0.0-
alpha.5

v1.0.0 v0.3.1 v0.2.11 v1.0 v0.1.0 v0.0.1 v0.15.0-
alpha.1

v0.2.1 VK
v1.8.0

2023-04 2022-04 2023-03 2021-11 2022-03 2021-06 2019-07 2023-03 2023-02 2023-03

Multitenancy Approach

Multi-instance

- Through Multiple Clusters �

- Through Multiple Control Planes � � � �

Single-instance

- Single-instance Native � � � � �

Customization Approach

Control Plane

- Full Control Plane View � � � � �

- Tenant-wise Abstraction �

- Flat Namespaces � �

- Hierarchical Namespaces � �

Data Plane

- SSH Access to Worker Nodes � Partial

Consumer & Vendor Modes

- Consumer Mode � � � � � � � � � �

- Vendor Mode � �

Tenant Resource Quota � Incomplete � � � � � � �

Variable Slice Granularity

- Node-level Slicing � � � � � � � � � �

- Sub-node-level Slicing � � � � � � � � �

- Automated Selection �

Federation Support � Unknown �

Short name Name First release Source code

EdgeNet EdgeNet 2019-10 https://github.com/EdgeNet-project/edgenet

HNC Hierarchical Namespace Controller 2019-11 https://github.com/kubernetes-sigs/hierarchical-namespaces

Capsule Clastix Labs’ Capsule 2020-09 https://github.com/clastix/capsule

kiosk Loft’s kiosk 2020-02 https://github.com/loft-sh/kiosk

Arktos Centaurus’s Arktos 2020-04 https://github.com/CentaurusInfra/arktos

VC VirtualCluster 2021-06 https://github.com/kubernetes-sigs/cluster-api-provider-nested/tree/main/virtualcluster

k3v Rancher’s k3v 2019-07 https://github.com/ibuildthecloud/k3v

vcluster Loft’s vcluster 2021-04 https://github.com/loft-sh/vcluster

Kamaji Clastix Labs’ Kamaji 2022-05 https://github.com/clastix/kamaji

VK+ Virtual Kubelet based frameworks

Virtual Kubelet 2018-02 https://github.com/virtual-kubelet/virtual-kubelet

Liqo 2020-10 https://github.com/liqotech/liqo

Admiralty 2018-12 https://github.com/admiraltyio/admiralty

Tencent’s tensile-kube 2021-02 https://github.com/virtual-kubelet/tensile-kube
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2.3.1.1 Multitenancy Approach

The scientific literature describes two approaches to enabling CaaS multitenancy: multi-
instance [60], and single-instance native [71]. We ourselves further distinguish between
multi-instance through multiple clusters and multi-instance through multiple control planes,
making three approaches altogether, as shown in Table2.3. The approaches are illustrated in
Fig.2.2 and we describe them as follows:

Worker 
node

Cluster

Tenant 
control 
planes

Container

(a) Multi-instance through multiple
clusters. Each tenant receives a
separate cluster, including both the control
plane and worker nodes. This imposes
considerable overhead.

Host
control 
plane

Worker 
node

Container

Tenant 
control 
planes

Cluster

(b) Multi-instance through multiple con-
trol planes. A physical cluster is divided
into logical ones, each offered to a differ-
ent tenant. It can reuse worker nodes and
the networking of the host cluster.

Worker 
node

Container

Shared 
control 
plane

Cluster

(c) Single-instance native. This low over-
head approach has all tenants share a sin-
gle cluster and a single control plane. Iso-
lation between tenants is ensured by logi-
cal entities such as K8s namespaces.

Figure 2.2: Multitenancy Approaches. The multi-instance approaches provide each tenant with its own instance of the control
plane (or, at the least, of certain control plane components) and, optionally, its own set of worker nodes, ensuring better isolation
between tenants. The single-instance native approach caters to multiple tenants through a single control plane, while having them
share the resources of a single set of worker nodes, thereby providing improved performance.

Multi-instance through multiple clusters. Fig.2.2a illustrates the multi-instance through
multiple clusters approach, in which each tenant receives its own cluster. The proprietary
commercial CaaS offerings (see Table 2.2) are structured in this way, but there is no open-
source framework to enable precisely this form of multitenancy, spinning up and spinning
down full Kubernetes clusters on demand for different tenants. Existing open-source tools for
deploying Kubernetes clusters, such as RKE13 and Kubespray,14 do not address multitenancy.

There is, however, a set of open-source Kubernetes frameworks that do address multite-
nancy for the case in which there are already multiple tenants, each of which possesses one
or more of their own clusters, even if these frameworks do not spin up or spin down the clus-
ters on demand. These frameworks, based on the code of Virtual Kubelet [154], a sandbox
project of the Cloud Native Computing Foundation, are designed to allow workloads from
one cluster to be deployed to another cluster. Their primary focus is on cross-cluster deploy-
ment in general, and multitenancy arises only in the specific case of clusters belonging to
different tenants, but since they do enable this sort of multitenancy, we examine the advan-
tages and disadvantages of doing so.

13RKE https://rke.docs.rancher.com/
14Kubespray https://kubespray.io
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Worker 
node

Cluster

Tenant 
control 
planes

Container

Virtual 
kubelet

Figure 2.3: Multitenancy through Virtual Kubelet. The virtual kubelet masquerades as the kubelet of a node in a cluster, but in
reality deploys workloads from that cluster to other clusters via those clusters’ APIs. When a local cluster belongs to one tenant
and a remote cluster belongs to another tenant, this results in a distinctive form of multitenancy, with clusters that, while otherwise
belonging to one tenant, host pods from other tenants.

As illustrated in Fig. 2.3, Virtual Kubelet establishes a connection from one cluster to
another by leveraging Kubernetes’ kubelet15 API. A kubelet is the agent that runs on each
node of a Kubernetes cluster in order to manage the life cycles of pods, which are groups of
containers associated with a workload. By implementing the kubelet API, a virtual kubelet
masquerades as the kubelet of an individual node, but is in reality a stand-in for the remote
cluster. It, in turn, uses the remote cluster’s control plane API to deploy and manage work-
loads on that cluster.

Although we might think of this as a small scale form of federation, the Virtual Kubelet
authors expressly say that “VK is not intended to be an alternative to Kubernetes federation”,
by which we understand a full-featured and scalable federation. Similarly, as we have men-
tioned, Virtual Kubelet is not primarily designed for multitenancy. By contrast, EdgeNet
is designed precisely for federation and multitenancy. While similar to Virtual Kubelet in
the sense that EdgeNet introduces agents to transfer workloads from one cluster to another,
EdgeNet avoids the overhead associated with each tenant having its own cluster. This is be-
cause, in EdgeNet, it is the cloud and edge cloud providers that possess the clusters. Provider
ownership of the clusters also means that an EdgeNet tenant can rely upon a provider to en-
sure the privacy of its workloads, rather than relying upon another tenant to do so.

Liqo [153], Admiralty [150] and tensile-kube [149] are all based on the Virtual Kubelet
code. Liqo is one of the few frameworks to date to be the subject of a peer-reviewed scientific
paper [67]. The authors are careful to state that some of the issues that arise from multite-
nancy, such as the manner in which the workloads of different tenants in the same cluster
are isolated from each other, remain to be addressed.16 Sec. 3.1.2 describes our proposed
resolution for this problem.

Multi-instance through multiple control planes. In the multi-instance through multiple
control planes approach, all tenants are supported by a single cluster, but each tenant acquires

15Kubernetes documentation: kubelet https://kubernetes.io/docs/concepts/overview/components/#kubelet
16From the Liqo paper [67]: “Specifically, we foresee a shared security responsibility model, with the

provider responsible for the creation of well-defined sandboxes and the possible provisioning of additional
security mechanisms (e.g., secure storage) negotiated at peering time.”
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its own control plane within that cluster, as illustrated by Fig.2.2b. In doing so, the approach
gives each tenant a full control plane view for customizing its environment. One or more
nodes are dedicated to supporting the tenant control planes, and containers isolate those
from each other within those nodes. Isolation based upon containers, or containers grouped
into pods, imposes lower overhead than isolation based on VMs. There are variants to this
approach, in which some control plane components, like the scheduler, are shared among
tenants, while others, such as the API server and database, are duplicated so as to provide
one instance to each tenant.

Frameworks that follow this approach differ in how they isolate tenant workloads from
each other. If tenants share a common set of worker nodes as they do in VirtualCluster, k3v,
and vcluster, the degree of isolation will depend upon the container runtime used to run the
containers. If each tenant acquires its own dedicated set of worker nodes, as happens in
Kamaji, then there is better isolation.

VirtualCluster [155] is one of the two open-source frameworks incubated by the Kuber-
netes Multi-Tenancy Working Group. It virtualizes the control plane components per tenant,
with the exception of the scheduler. For isolation between the worker nodes of different
tenants, it uses Kata containers [113].

A drawback of VirtualCluster is the cost of providing separate control plane components
per tenant. In a peer-reviewed scientific paper [170], the VirtualCluster authors state that this
cost is a blocking point when more than a thousand tenants are in the cluster. We compare
how the multiple control plane approach scales as compared to the shared control plane ap-
proach by benchmarking the relative performance of VirtualCluster and EdgeNet in Sec.3.3
and find that the shared control plane approach allows far more tenants to be allowed into a
given cluster, and allows more tenants to arrive within a short period of time. In a federated
edge cloud environment, where we anticipate limited resources, large numbers of workloads,
and the rapid propagation of workloads from one cluster to another, the shared control plane
approach has a clear advantage. In fairness to VirtualCluster, it is designed for a different
sort of environment.

In Rancher’s k3v [112], the control plane is virtualized on a per-tenant basis, similar
to VirtualCluster, but it does not provide data plane isolation, as VirtualCluster does. Ex-
ceptionally among the frameworks, k3v does not provide a mechanism for managing tenant
resource quotas, as mentioned in Sec.2.3.1.4.

vcluster [90], not to be confused with VirtualCluster, is one of two open-source frame-
works developed by Loft, the other being kiosk, which takes the single-instance native ap-
proach. In the control plane, each vcluster has a separate API server and data store. Work-
loads created on a vcluster are copied into the namespace of the underlying cluster to be
deployed by the shared scheduler.

Kamaji [28] is one of two open-source frameworks developed by Clastix Labs, the other
being Capsule, which takes the single-instance native approach. Kamaji enables Kubernetes
multitenancy by running tenant control planes as pods on the same host cluster, known as
the admin cluster. It provides control plane isolation as well as strong workload isolation
to tenants, as each tenant is also allocated to its dedicated worker nodes. As these tenant
worker nodes are not shared, if they need to be run on the same hardware to reduce overhead,
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isolation can be done through the use of virtual machines, which still introduces considerable
overhead.

Single-instance native. In the single-instance native approach, all tenants share a single
control plane and a common set of worker nodes, as illustrated in Fig. 2.2c. Control plane
isolation is ensured through a logical entity, such as Kubernetes namespaces, that introduces
negligible overhead but provides less control plane isolation compared to a multi-instance
approach. An implementation issue, for instance, could lead to an isolation break between
tenants. Workload isolation depends upon the container runtime, as it does for the multi-
instance through multiple clusters that are federated approach and for the multi-instance
through multiple control planes with shared worker nodes approach.

This approach demands significant coding work to give each tenant an experience akin
to using their own separate cluster.

The single-instance native approach’s scaling advantage is illustrated by a scenario ex-
amined by Guo et al. in which it supported thousands of tenants, as opposed to just dozens
for a multi-instance approach [60]. It also has lower operational costs [25]. And it is lighter
weight for workload mobility, allowing containers to be spun up and spun down with less
overhead than in a multi-instance approach, as we show through benchmarking in Sec.3.3.
For these reasons, we have adopted the single-instance native approach for EdgeNet.

The Hierarchical Namespace Controller (HNC) is one of the two open-source frame-
works incubated by the Kubernetes Multi-Tenancy Working Group, the other being Virtu-
alCluster. HNC takes the single-instance native approach, whereas VirtualCluster takes the
multi-instance through multiple control planes approach. HNC uses a hierarchical names-
pace structure in order to enable multitenancy.17 Functionalities such as policy inheritance
that allows replicating objects across namespaces are built upon this hierarchy.

Aspects of this work that have inspired our own multitenancy framework are its hierar-
chical namespace structure and the terminology that it employs. We have also designed our
own framework to avoid what we perceive to be its defects:

• HNC does not enforce unique names for namespaces, opening the possibility for
namespace conflicts.
• HNC’s quota management system is not aligned with the hierarchical namespace struc-

ture so as to limit a child’s quota based upon its parent’s quota, though community
documentation states18 that work is underway to enable this.
• HNC’s quota management system allows namespaces without quota to coexist along-

side namespaces that have quotas, which puts those quotas at risk (See Fig. 2.5b and
discussion in Sec.2.3.1.4).

Capsule [27] is one of two open-source frameworks developed by Clastix Labs, the other
17Kubernetes Multi-tenancy Working Group documentation: HNC: Concepts https://github.com/kubernetes-sigs/hi

erarchical-namespaces/blob/master/docs/user-guide/concepts.md
18Kubernetes Multi-tenancy Working Group documentation: HNC: Policy inheritance and object propaga-

tion https://github.com/kubernetes-sigs/hierarchical-namespaces/blob/master/docs/user-guide/concepts.md#policy-inheritance-and-obj

ect-propagation
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being Kamaji. Capsule takes the single-instance native approach, whereas Kamaji takes the
multi-instance through multiple control planes approach. This is one of two frameworks that
adopts flat namespaces (See Sec. 2.3.1.2) as its customization approach, along with kiosk.
A tenant can create multiple namespaces, but however, this responsibility belongs to the
owner of that tenant. Tenant owners can create resources across a set of namespaces of their
preference, and the cluster administrator can copy resources to the namespaces of various
tenants. Although this approach facilitates the management of multiple namespaces that
belong to a tenant, so it eases management complexity, it may not be fully scalable for
extensive tenant settings, as we further discuss in Sec.2.3.1.2. Capsule aims at allowing an
organization to share a single cluster efficiently, hence not accounting for the needs of the
envisaged edge computing infrastructure.

kiosk [89] is one of two open-source frameworks developed by Loft, the other being
vcluster. The kiosk framework takes the single-instance native approach, whereas vclus-
ter takes the multi-instance through multiple control planes approach. This solution uses
flat namespaces approach, as does Capsule, for customization. A tenant is represented by
an abstraction called an account, and an account can create a namespace through an entity
called a space. Each space is strictly tied to only one namespace. This framework permits
the preparation of templates that can be employed during namespace creation, facilitating
the automated provisioning of resources as defined within these templates in the designated
namespaces. Despite alleviating management complexity, this approach still shares Cap-
sule’s limitations stemming from flat namespaces. Multi-cluster tenant management is listed
on their roadmap, but the project does not seem to be under active development, as the latest
commit in its main branch was around a year ago.

Centaurus’s Arktos [22] takes the single-instance native approach to multitenancy. As
discussed in Sec. 2.3.1.2, it is the only framework that takes a tenant-wise abstraction ap-
proach to enabling customization. Arktos achieves this through API modifications,19 which
may require a significant amount of effort to keep aligned with the upstream Kubernetes
control plane code. Its architecture primarily consists of three main software entities: an
API gateway that receives tenant requests, a Tenant Partition (TP) that gives the illusion of
each tenant acquiring an individual cluster, and a Resource Partition (RP) that operates on
resources like nodes [39]. Although not all of its features are precisely presented, based
upon our reading of their documentation, we consider that this solution addresses some fed-
eration aspects, such as scalability and cloud-edge communication. They provide a vision of
consolidating 300,000 nodes belonging to different resource partitions into a single regional
control plane. However, the main branch of their project repository has not received commits
for around a year, implying that it may not be currently undergoing active development.

2.3.1.2 Customization Approach

Containers-as-a-service cannot scale to a large number of tenants if the mechanism by which
each tenant obtains the environments in which to deploy its workloads, and configures each
environment to meet the needs of its workload, requires manual intervention at every stage

19Arktos documentation: Multi-tenancy Overview https://github.com/CentaurusInfra/arktos/blob/master/docs/design-pro

posals/multi-tenancy/multi-tenancy-overview.md#api-server
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by the cloud administrator. Each tenant should have a degree of autonomy to: create and
delete the environments in which its workloads can be deployed; obtain resource quotas and
assign them to those environments; and designate users for the environments, assign roles to
those users, and grant permissions based upon those roles. Some combination of automation
of these processes and delegation of administrative responsibility is needed to enable that
autonomy. In Table 2.3, we call the way in which a multitenancy framework does this its
Customization Approach.

By giving each tenant its own control plane, which the tenant’s administrator can use to
configure its environments as they wish, the multi-instance frameworks provide the greatest
flexibility. We call this approach the Full Control Plane View. As Table 2.3 shows, it is
offered by the frameworks that follow the multi-instance through multiple clusters approach
(Virtual Kubelet based frameworks), since each cluster has its own control plane, and, of
course, by the multi-instance through multiple control planes approach (VirtualCluster, k3v,
vcluster, and Kamaji).

Some of these frameworks (Kamaji and, partially, Virtual Kubelet based frameworks)
allow additional server environment configuration to take place regarding the data plane by
enabling SSH access to worker nodes, and this is noted as Data Plane customization in the
comparison table. In Virtual Kubelet based frameworks, administrators of a tenant that owns
a cluster can typically access the worker nodes in that cluster by SSH, but not the ones in
other clusters, and this is classified as Partial in the comparison table.

In frameworks that follow the single-instance native multitenancy approach, some exten-
sions to Kubernetes are required in order to safely enable customization. This is because in
standard Kubernetes, giving a tenant’s administrator the permissions necessary to configure
their own environments means giving them the ability to configure other tenants’ environ-
ments as well. Since there is no control plane isolation mechanism other than namespaces,
an administrator who has permission to create, modify, and delete namespaces can do so
freely across the board. Rather than hand out such permissions, a single-instance customiza-
tion approach needs to provide one or more custom resources that a tenant’s administrator
can access, and the controllers of those will ensure safety while configuring the tenant envi-
ronment on the administrator’s behalf.

Among the single-instance frameworks, Arktos employs the most elaborate customiza-
tion approach: that of introducing a new abstraction, beyond namespaces, by which to isolate
tenants from one another in the control plane. As this abstraction is meant to capture the no-
tion of a tenant, we refer to it in Table2.3 as a Tenant-wise Abstraction. Our concern about
this approach is the amount of development work that it might entail, both to develop this
new abstraction and to maintain its compatibility with Kubernetes’ upstream version of the
control plane code.

Instead of introducing an entirely new abstraction, frameworks can build on Kubernetes’
existing control plane isolation mechanism: namespaces. We identify two ways of doing
so. The simpler one, followed by Capsule and kiosk, is to follow the standard Kubernetes
approach, in which each namespace exists independently of every other namespace. This is
described as Flat Namespaces in Table2.3.

Another way, but one that requires more development work, is to provide controllers
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Figure 2.4: Customization Approach: Hierarchical versus Flat Namespaces. The same seven namespaces organized into a
hierarchy (left) and without a hierarchy (right), in each case under a root environment r, which is not itself a namespace.

The hierarchy captures relationships between the namespaces: a and b are the core namespaces belonging to two ten-
ants, whereas the others belong to sub-trees of those core namespaces. For example, aa and ab are subnamespaces of a. They
belong to the same tenant as a and they may inherit a portion of that tenant’s resource quota, user roles, and the permissions
that accompany those roles. Likewise, aba and abb belongs to the same tenant as ab and may inherit from it. Management of
tasks such as the approval of new namespaces, and the modification of quotas, users, etc., can be delegated to each tenant’s
administrators, and, further down the hierarchy, to sub-tree administrators.

The flat structure does not express these relationships. For example, no mechanism provides for aa to inherit from a. If
they are to share configuration parameters, this needs to be expressly requested by the common administrator of the two
namespaces. There are efforts to solve this issue through configuration templates to be applied to multiple namespaces.
Nevertheless, as the number of namespaces that a tenant has grows, it results in management complexity for the root admin of this
tenant, which makes it challenging to keep track of independent namespaces.

that keep track of the relationships between namespaces, such as several namespaces all
belonging to the same tenant. Since the two frameworks that do this, EdgeNet and HNC,
do so by maintaining a hierarchical structure through which to track the relationships, we
identify this approach as Hierarchical Namespaces in Table2.3.

Fig.2.4 compares the two namespace structures. A hierarchical structure permits config-
urations to be inherited and allows for configuration tasks to be delegated, offloading tasks
from administrators at the top of the hierarchy to administrators further down. The prime
disadvantage of a flat namespace structure is that, even with automation, the root admins of
tenants are highly solicited. EdgeNet adopts a hierarchical namespace structure, which is
implemented by the architecture described in Sec.3.2.1 and Sec.3.2.2.

2.3.1.3 Consumer and vendor modes

Cloud services generally support two types of tenancy: Consumer Mode, in which the
tenant is the end user of the resources; and Vendor Mode, in which the tenant can resell
access to the resources to others.

The type of tenancy affects the visibility that the manager of a tenant has into that ten-
ant’s isolated environments. For a consumer tenant, these environments are generally termed
workspaces, and they are created to be used by the members of that tenant’s group or or-
ganization. A manager of a set of workspaces needs visibility into who the users of each
workspace are, and needs fine-grained control over the rights of those users with respect to
those workspaces. But a vendor tenant manages a set of subtenant environments that are
destined for its own customers. A customer expects a certain level of privacy, with the users
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and user rights of their subtenant environment remaining hidden from the vendor.

As shown in Table 2.3, all of the CaaS multitenancy frameworks that we have studied
support consumer tenancy, but only EdgeNet and Virtual Kubelet based frameworks support
vendor tenancy. We expect that the same commercial logic that has driven other cloud ser-
vice models towards both forms of tenancy will lead to support for vendor tenancy being
generalized for containers-as-a-service.

In order to enable any sort of tenancy, a system must support authorization and isolation
mechanisms. It requires greater expressiveness to support both consumer and vendor tenancy
than it does to support consumer tenancy alone. Such expressiveness, for example, allows a
tenant to create a subtenant for the purpose of reselling its own allocated resources. This can
be done in different ways depending upon the multitenancy approach:

• Multi-instance through multiple clusters: A tenant who owns a cluster can open this
cluster for use by one of its subtenants. Because of the ease of doing so, we indicate
Virtual Kubelet based frameworks as offering support for a vendor mode, even though
their documentation does not explicitly mention this. However, since such an approach
requires a cluster per tenant, this introduces high overhead, as our benchmarking shows
in Sec.3.3.

• Multi-instance through multiple control planes: A tenant could create a subtenant gen-
erated with its subtenant control plane instance running on top of the tenant control
plane instance. None of the frameworks that we have studied currently do this.

• Single-instance native: A tenant can create a subtenant assigned with private names-
paces that the tenant is solely authorized to remove. EdgeNet, having adopted the
single-instance native approach to multitenancy, builds consumer and vendor modes
on top of its hierarchical namespace structure. The implementation is described in
Sec.3.2.2.1 and illustrated in Fig.3.5.

2.3.1.4 Tenant resource quota allocation

Resource quotas are popular in commercial settings, where they provide a basis for providers
to bill their customers. In situations where resources are constrained, quotas are also a simple
means by which to ensure an equitable allocation of those resources. Quotas are commonly
used in the cloud, and Kubernetes supports them by providing a mechanism for allocating
quotas to namespaces.20 The Kubernetes mechanism is conceived for the relatively small
scale scenario of a single organization using a cluster, and an administrator who manually
sets resource quotas per namespace so as to share out the resources among different teams in
the organization. A multitenancy framework that is built on Kubernetes needs to automate
this process, to enable it to scale.

As Table2.3 shows, all of the Kubernetes multitenancy frameworks that we have studied
offer a mechanism for managing tenant resource quotas, with the exception of k3v. We
classify k3v in this way as we consider its mechanism to be incomplete. In that framework,

20Kubernetes documentation: Resource Quotas https://kubernetes.io/docs/concepts/policy/resource-quotas/
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which is no longer under active development, a cluster administrator can set a resource quota
in the host namespace of a virtual cluster, but the tenant will not be aware of it.

In the edge cloud, we can expect resources to be more constrained than in the cloud, and
so the need for a quota allocation mechanism is even stronger. Since our EdgeNet framework
is designed for the edge cloud as well as the cloud, such a mechanism is a required feature
of the framework.

Having made the design decision to use a hierarchical namespace structure, our quota
management system needs to follow that structure. This means building in dependencies
between quotas: as shown in Fig. 2.5a, at each node in the namespace tree, quota must be
shared out between the parent namespace located at that node and the sub-trees that are
rooted at the children of that node. EdgeNet’s quota implementation is more thoroughly
described in Sec.3.2.3.

The only other framework that uses hierarchical namespaces, HNC, also allows quota
to be shared out hierarchically. The mechanism employed in doing so relies on Google
Cloud’s Hierarchy Controller21 as its foundation. But since it does not require that a quota
be attributed to each namespace, it can end up constraining some namespaces while not
constraining others, opening the possibility for a sub-tree to not enjoy the full resource quota
that it has been allocated, as shown in Fig.2.5b. In EdgeNet, quotas apply either to the entire
tenant namespace hierarchy or not at all, so this problem cannot arise.

Resource quotas can be wasteful of resources if they are not used fully, while best-effort
distribution of resources is more efficient without providing guarantees. None of the Kuber-
netes multitenancy frameworks provides an intermediate solution. Providing such a solution
is on the EdgeNet development road map.

2.3.1.5 Variable slice granularity

We use the term slicing to refer to a mechanism that enables multitenancy by dividing a
larger pool of resources into smaller portions, each portion being for the exclusive use of one
of the tenants. For CaaS, the larger pool is a compute cluster that consists of nodes, which
may be either physical servers or virtual machines. But what size should a smaller portion
be: a full node, or a subset of the resources of a node? A subset can be acquired through the
use of container, sandboxed to a greater or lesser degree, as Sec.3.1.2 will describe. Fig.2.6
depicts the different possible node and slice granularities. In our estimation, neither of the
slicing granularities is ideal for all use cases, and a multitenancy framework should offer
both, and automate the ability to switch between them.

Node-level Slicing (Figs. 2.6a and 2.6b). Slicing at this granularity, which is offered by
all of the frameworks that we have studied, provides a tenant with one or more entire nodes,
so that isolation of a tenant workload is ensured at the level of the node in which it runs. By
this means, it offers greater freedom in choosing a container runtime to support a particular
containerized workload. And it can better ensure stable access to resources. Reserving an

21Google Cloud Anthos: Hierarchical Resource Quotas https://cloud.google.com/anthos-config-management/docs/how

-to/using-hierarchical-resource-quotas
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(a) EdgeNet example. The quota allocated to a sub-tree
must be divided among a portion reserved for the names-
pace at which this sub-tree is rooted and the portions allo-
cated to each subnamespaces.
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(b) HNC example. In the same hierarchy as sub-trees that
are constrained by quotas, it is possible to have sub-trees
that are not constrained in this way.

Figure 2.5: Hierarchical allocation of resource quotas. Examples of a quota of 100 being divided up among the sub-trees of a
hierarchical namespace rooted at r. The tenant of the sub-tree rooted at a has been allocated a quota of 60, from which it reserves
20 for its core namespace and allocates 25 and 15 to the sub-trees rooted at aa and ab, respectively.

In EdgeNet, the quota of 15 must also be distributed within the sub-tree rooted at ab. For example, here, 3 is reserved for
the namespace ab and 8 and 4 are allotted to the sub-trees rooted at aba and abb, respectively. Likewise, quota must be allocated
to the sub-tree rooted at b and distributed within that sub-tree.

HNC, on the other hand, allows portions of the hierarchy to be free of quotas. In this example, in HNC, the administrator
of namespace ab has, perhaps inadvertently, not set quotas for its subnamespaces, and likewise for the tenant administrator of
b. If workloads in aba and abb were to exceed a resource consumption of 12 or the workloads at b were to consume resources
exceeding 40, other namespaces with quotas might not be able to fully enjoy the resources quotas that had been reserved for them.

entire physical server (Fig.2.6a) can be valuable, in particular, for a tenant that needs to meet
an unusual requirement, such as guaranteed access to GPU resources. However, when entire
nodes are reserved for tenants, some nodes might be under-utilized.

Sub-node-level Slicing (Figs. 2.6c and 2.6d). Sub-node-level slicing improves the ability
of a cluster to maximize the efficiency of its resources. This is enabled through containers
where each container on a node takes a portion of its resources. Isolation between multi-
tenant workloads on the same host is provided at the level of containers, so it is weak. Better
isolation can be ensured through container runtimes that provide sandboxes to containers.
This approach restricts tenant autonomy in selecting a container runtime as there are just a
few of them available.

As Table2.3 shows, all of the CaaS multitenancy frameworks that we have studied offer
node-level slicing, and all but Kamaji offer sub-node-level slicing. When it is available, sub-
node-level slicing is the default. Upon the request of a tenant, a cluster administrator can
manually configure node-level slicing.

The EdgeNet framework is the only one for which the process of switching granularity
is automated. Sec.3.2.4 describes how we implement this. It might seem that the node-level
slicing that we thereby enable suffers from all of the inefficiency of the multi-instance CaaS
model that we critique (See Chapter 3), but this is not so, as our architecture preserves the
single-instance efficiency of a single control plane.
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ContainerServerCluster Node Agent

(a) Node-level slicing of servers. An entire node that is
a physical server is made available to a tenant.

ContainerServerCluster VMNode Agent

(b) Node-level slicing of VMs. An entire node that is a
VM is made available to a tenant.

ContainerServerCluster Node Agent

(c) Sub-node-level slicing of servers. A subset of re-
sources of a node that is a physical server is made avail-
able to a tenant.

ContainerServerCluster VMNode Agent

(d) Sub-node-level slicing of VMs. A subset of resources
of a node that is a VM is made available to a tenant.

Figure 2.6: Node and slice granularities. Dashed vertical lines indicate how a cluster’s resources are sliced so as to make those
resources available to tenants. A node in a cluster can be a physical server (left illustrations) or a VM (right illustrations), presented
as node granularities. Slicing can be performed so as to make an entire node available to a tenant (top illustrations) or so as to make
a subset of a node’s resources available to a tenant (bottom illustrations). Different node and slice granularities can coexist within a
cluster (e.g., the scenarios shown in all four illustrations could appear simultaneously in a single cluster). Our EdgeNet multitenancy
framework automates the process of varying the slice granularity, allowing a node to be reserved for a tenant, or returning a reserved
node to the pool of nodes available to be subdivided.

2.3.1.6 Federation support

CaaS multitenancy frameworks have to date generally been aimed at the use case of a single
cluster operator offering its resources to its own tenants. However, the resources of sev-
eral operators from different regions or countries will generally be required by a tenant that
wishes to provide its edge cloud based services to large numbers of end-users. Such a tenant
might prefer to be the customer of just one operator and, through that operator, gain access
to the others. We anticipate that operators will see a commercial interest in federation, which
will allow them to more broadly commercialize access to their clusters. We also anticipate
that operators will want to lower the barrier to entry for those who deploy services by allow-
ing them to orchestrate their containers across multiple clusters with a single tool.

Many edge cloud services, such as cognitive services [37, 55], are expected to involve
workloads that are spread across the cloud and the edge cloud [1], with workloads moving
back and forth between the two, so there are voices in industry that argue [166], and we are
convinced, that a unified, single interface for users is a necessity. As a first step towards
this goal, the EdgeNet multitenancy architecture presents an essential first brick in such
a federation architecture: the ability to generate object names that are universally unique to
cluster and tenant. Such uniqueness avoids name collisions during the propagation of objects
across clusters. The details of our implementation are found in Sec.3.2.2.4.

Besides our EdgeNet framework, five of the frameworks that we study support scaling
up the infrastructure that multiple tenants share, and four of them do so through federa-
tion: Virtual Kubelet based frameworks (See Table 2.3). Even for their main purpose of
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enabling deployment of workloads to multiple clusters, Virtual Kubelet suffers from a sig-
nificant drawback: Kubernetes’ automatic scaling up and down of workloads to meet demand
gets lost in remote clusters. This is because the Kubernetes objects that get deployed through
a virtual kubelet are pods rather than the Deployment or StatefulSet workload resources that
manage pod life cycles on a user’s behalf, and the Kubernetes Horizontal Pod Autoscaling
mechanism22 in each cluster works on these sorts of objects, not on individual pods.

Like Virtual Kubelet, EdgeNet enables the deployment of workloads from local clusters
on remote clusters, but EdgeNet handles this through an intermediate cluster between local
and remote clusters. The intermediate cluster that does this for EdgeNet is called the Fed-
eration Manager. When a tenant, using its local cluster, makes a deployment in federation
scope, the Federation Manager creates the deployment on the remote cluster on behalf of the
tenant, as we discuss in Sec.4.2.

Some of Liqo’s extensions to Virtual Kubelet start to tackle some of the concerns that
would arise in a multi-tenant federation, such as collisions between the names of namespaces
generated in local clusters and in remote clusters. Liqo’s solution is a naming scheme that
ensures that the name of a namespace used by a workload will be unique in the remote cluster
in which it is deployed.23 However, the same workload risks running in namespaces with
different names in different clusters, which can itself lead to problems. EdgeNet by contrast
generates globally unique names that avoid collisions, and a workload runs in namespaces
that carry the same name on all clusters to which it is deployed.

The other framework that provides for cloud-edge communication and significant scaling
is Arktos, but we have been unable to determine whether federation is involved. Its stated aim
is to achieve a single regional control plane to manage 300,000 nodes that multiple tenants
will share.24

2.3.2 Federation

Kubernetes is single-tenant and single-provider by design. Neither has a multi-provider as-
pect for multi-ownership of nodes by default, nor it natively offers a federation solution. A
lack of the former may impair scalability in the context of edge clouds. Without the latter,
a cluster supports 5,000 nodes at maximum, meaning limited scalability. One can overcome
this limitation by creating another cluster. However, each created cluster will be separated
from others, which may lead to a problem, cluster sprawl, as cluster count increases, resulting
in management difficulties. Furthermore, the applications and services will be logically con-
fined within the boundaries of their host cluster regarding in-cluster networking. The Kuber-
netes community has already acknowledged the need for systems that provide inter-cluster
solutions, as confirmed by the fact that a special interest group25 is dedicated to managing
multiple Kubernetes clusters, which includes a federation subproject called KubeFed.26

22Kubernetes documentation: Horizontal Pod Autoscaling https://kubernetes.io/docs/tasks/run-application/horizontal-p

od-autoscale/
23Liqo documentation: Namespace Offloading https://docs.liqo.io/en/v0.7.0/usage/namespace-offloading.html
24Arktos documentation: Large Scalability https://github.com/CentaurusInfra/arktos#large-scalability
25Multicluster Special Interest Group https://github.com/kubernetes/community/blob/master/sig-multicluster/README.md
26KubeFed https://github.com/kubernetes-sigs/kubefed
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KubeFed provides a centralized federation control plane that manages member clusters.
Users communicate with this centralized federation control plane to deploy their services on
the member clusters, introducing a single point of failure problem. In a split-brain scenario, it
may prevent users from making use of the resources of one or more member clusters locally.
Furthermore, the centralized federation control plane hampers scalability, and in terms of
multitenancy, it can only support a limited number of tenants due to the namespace threshold
we discussed in Chapter3.

Larsson et al. [82] introduces Decentralized Kubernetes Federation Control Plane to re-
place the centralized federation control plane of KubeFed. With the use of a shared database
of conflict-free replicated data types (CRDTs), the authors state that the proposed architec-
ture avoids the single point of failure problem that the centralized control plane for manage-
ment causes as well as improves scalability. A distributed algorithm that takes advantage
of CRDT storing scheduling status makes clusters iteratively collaborate to meet the desired
state. This work aims to support thousands of clusters owned by a single organizational
entity. We argue that thousands of clusters are not sufficient for edge cloud federation; fur-
thermore, it does not discuss how to federate clusters provided by many different entities.

Federated Coalition Cloud with Kubernetes [6] achieves interoperability of sovereign
clusters owned by different nations. It enables peer-to-peer discovery to eliminate a need for a
central authority, thus avoiding central control planes so single point of failure problem. The
authors contribute with main extensions; the first is Service and Resource Discovery APIs for
available services and hardware capabilities, whereas the latter is Deployment Orchestrator,
using data served by the mentioned discovery APIs, that does orchestration job and executes
optimization algorithms. However, there are too few clusters in the federation to be able to
assess its potential for a worldwide edge cloud federation.

Faticanti et al. [42] demonstrate Kubernetes Cluster Federation, using KubeFed, in a fog
computing environment. The authors compare two setups; the former is a single control
plane cluster that has worker nodes in separate regions, and the latter is a federation of mul-
tiple clusters consisting of one cloud and one edge region cluster. The results show that
the cluster-wise federation approach is more resilient to network failures or a sort of service
interruption as users can keep using the edge region control plane in order to deploy work-
loads. This approach disregards the fact that federation-level and cluster-local deployments
may conflict, which is more likely to occur when the federation runs at scale. Furthermore,
KubeFed offers a centralized control plane to manage member clusters, thus introducing a
scalability issue considering the ubiquitous nature of edge computing infrastructure.

Although the federation provides more resiliency to network failures, as discussed above,
instability in a geo-distributed Kubernetes federation based on KubeFed is further studied by
Tamiru et al. [147]. This paper reveals that static configuration may lead to instability of
deployments in such federation due to network conditions between host and member clus-
ters. The authors also present a feedback controller that dynamically adjusts the configura-
tion parameter, Cluster Health Check Timeout, that influences the stability most in order to
overcome the instability problem. The experiments show that such an approach significantly
increases the application deployment efficiency by decreasing the failures. Given that the ex-
perimental setup is relatively small in the context of edge computing, consisting of one host
cluster and five-member clusters with distances between the range of 100 km to 850 km, it
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lacks the proposed controller’s evaluation for a worldwide federation. It shares the identical
scalability drawback with previous work because of the centralized federation control plane.

Another work introduces an orchestration platform, mck8s [148], that offers policy-based
scheduling, pod autoscaling, cloud cluster provisioning and autoscaling, and rescheduling in
the context of multi-cluster management. Their scheduling policy significantly reduces the
proportion of pods in a pending state from 65% in KubeFed to 6%. Furthermore, mck8s
moves applications closer to where network traffic increases and scales them out as needed.
They address the resource bottleneck of geo-distributed clusters by provisioning and de-
provisioning cloud clusters according to the resource requirements of the multi-cluster de-
ployment. However, centralized software entities come at the cost of scalability. The authors
mention that deployment time increases as the number of clusters upsurges. This casts doubt
on its suitability for an extensive federation consisting of numerous clusters.

There are also similar efforts to enable federation that uses Kubernetes [77, 68]. Kar-
mada [152] is one of which that is further developed as a continuation of KubeFed. However,
they share a similar drawback in terms of scalability that stems from having a centralized fed-
eration control plane. Since we expect to have numerous clusters federated in a typical edge
computing scenario, centralized components also cause problems, such as latency between
the federation control plane and member clusters. Another issue is whether multiple un-
reliable tenants share such federations or not. Last but not least, the number of tenants a
centralized federation control plane can support directly sets bounds for the number of ten-
ants that can access federated resources, regardless of how many member clusters there are.
This also provokes a scalability deficit regarding multitenancy.

Another technique to enable Kubernetes-based cluster-wise federation relies on the Vir-
tual Kubelet [154] abstraction that can register remote clusters as virtual nodes in a clus-
ter. This technique allows users to make deployments as they do with upstream Kubernetes
clusters without any API disruption. Another advantage is that it is possible to connect
clusters to other systems through APIs. Liqo [67] expanding the functionality provided by
Virtual Kubelet to enable multi-cluster topologies can establish a federation in which mul-
tiple providers can bring their own clusters. It makes propagation to remote clusters at the
abstraction level of pods rather than higher-level ones such as deployments. In a split-brain
scenario, as the life of a pod is ephemeral, a pod that dies can lead to weak resiliency. To
overcome this issue, Liqo introduces ShadowPod, which holds the pod specification to en-
force keeping the corresponding pod up and running on remote clusters. But this method
requires another mechanism to manage pod autoscaling on remote clusters due to workload
resources, such as deployments, not being created remotely, as we discuss in Sec. 2.3.1.6.
Big virtual nodes may also become a scalability bottleneck in an edge computing scenario
with many clusters, as do autoscaling the pods deployed on remote clusters through local
operations. Regarding scheduling, if multiple virtual node redirections exist, the scheduling
decisions must be made at each level, introducing latency and higher overhead. As discussed
in Sec.2.3.1.1, it offers a multi-instance multitenancy, leading to high overhead. Other Vir-
tual Kubelet-based solutions, such as Admiralty [150] and tensile-kube [149], share similar
drawbacks as Liqo.

Our proposed architecture offers an integrated architecture allowing providers to offer
compute resources at the level of nodes, clusters, and systems level. Through node-wise
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federation, besides larger providers, small-size providers can bring their compute resources
in the form of nodes to edge clusters, which ensures an infrastructure at scale. Multiple
providers can also offer these clusters with the aim of establishing a federation of clusters.
In this case, a lightweight federation is formed, which consists of local worker clusters and
regional federation managers.

Each worker cluster is shared by multiple tenants and runs workloads of federation ten-
ants with the goal of achieving high resource utilization in geographically distributed edge
clouds. Tenants gain access to federated resources through these worker clusters provided
by their operators, which protects from the need for the centralized federation control plane
with which users communicate. Federation managers, being responsible for resource discov-
ery, object propagation, and federation-level scheduling, support three deployment models
to federate a large number of clusters: standalone, peer-to-peer, and hierarchical.

In cluster-wise federation, scheduling occurs at two levels at most: the former at the fed-
eration manager and the latter at the worker cluster. Once a deployment is made in a worker
cluster, the worker cluster scheduler can employ any required scheduling algorithm. Our
federation tool works with workload resources such as deployments and statefulsets rather
than pods in terms of workload placement. Given that our worker clusters manage the pod
autoscaling of these with an existing mechanism, it removes a bottleneck, improving scal-
ability. Eliminating a centralized federation control plane to manage member clusters also
contributes to scalability. We further envisage system-wise federation to federate different
systems, which highlights interoperability.

2.3.3 Platforms and tools

This subsection reviews similar efforts in two categories: endeavors to bring Kubernetes to
the edge and the edge cloud testbeds that the networking and distributed systems research
communities have provided.

2.3.3.1 Container orchestration at the edge

Much work has been done to adapt container technology to edge clouds [102, 103, 11]. A
growing number of publications address various aspects, such as IoT task offloading, en-
abling long-running functions in containerization for IoT devices, and designing a scheduler
for Kubernetes in Industrial IoT, which allows edge cloud nodes to consume less energy and
to deploy applications in less time than usual. [40, 74, 75].

In Cloud4IoT [110], the authors discuss a platform using containers to deploy, orches-
trate, and dynamically configure software components related to IoT and data-intensive ap-
plications while providing scalability in the cloud layer. The main difference with EdgeNet
is that it concentrates on IoT solutions, meaning the device edge, whereas EdgeNet’s core
use case is for more somewhat more powerful nodes positioned at the network edge.

Kristiani et al. [79] provide an implementation of an edge computing architecture by
taking advantage of OpenStack and Kubernetes to cover the cloud, the edge cloud, and the

35



Chapter 2

device edge cloud. This implementation reduces the workload on the cloud side by assigning
data processing tasks to the edge front to be performed at the edge of the network. The
focus is different from the scope of this thesis, focusing on task offloading while providing
communication between three layers.

KubeEdge [164], a project that is incubating within the Cloud Native Computing Foun-
dation, offers a Kubernetes-based infrastructure that brings specific cloud capabilities to the
edge. It aims to overcome edge computing challenges such as limited resources and non-
connectivity. KubeEdge uses Docker as its containerization technology, Kubernetes as the
orchestrator, and Mosquitto for IoT devices talking to edge nodes. Again, the focus is dif-
ferent from the contributions of this thesis: multitenancy, federation, easy node installation,
and selective deployment.

Another project that brings Kubernetes to the edge is Rancher’s Lightweight Kuber-
netes,27 which focuses on lightweight Kubernetes for resource-constrained environments as
does k0s28 and MicroK8s,29 which is a feature that a container orchestration tool should pro-
vide, but which is not the subject of the present study. Instead, we conceive our contributions
to work with such certified Kubernetes distributions.

2.3.3.2 Internet-scale shared measurement platforms

The networking and distributed systems research communities have provided various edge
cloud testbeds typically spanning broad geolocations such as PlanetLab [107], PlanetLab
Europe, OneLab [43], Geni [94], Fed4Fire [34], Emulab [115], G-Lab [98], V-Node [101],
Grid’5000 [17], Fit IoTLab [50], and Savi [84] in the past decades. All of these testbeds
required dedicated hardware and delivered custom software. These two design decisions
hindered efficiency and sustainability.

First, dedicated hardware has caused an increase in maintenance and scaling costs be-
cause of a need for on-site support and initial purchase investment. Thus, contributors aban-
doned nodes to their fate over time. Second, typically, these testbeds have been supported
by researchers writing custom software. This introduces a heavy workload on coding and
preparing tutorials for those who maintain that testbed. Furthermore, it commonly obliges
an experimenter to learn a new control framework for each testbed. We draw lessons from
decades-long experience (See Table 2.4) and provide an alternative approach to establish a
production-grade, internet-scale, and general-purpose platform with extensive measurement
capabilities.

The philosophy of the introduced testbed in Chapter 5 is different from these testbeds
in two respects. It encourages contributors to supply virtual machines as a node instead of
dedicated hardware, in order to decrease the cost of providing and maintaining the testbed.
And to reduce programming and documentation workload, it adapts industry-standard open-
source software for the needs of the testbed. Thus, we strive to attract potential contributors
to the cluster and contribute back to the open-source community.

27Rancher K3s https://k3s.io/
28k0s https://k0sproject.io/
29MicroK8shttps://microk8s.io/
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Table 2.4: Comparison table of testbeds.

Ark (prev. Skitter) Y over two hundred to researchers to researchers Y
BisMark N over ten to collaborators to collaborators Y
Dimes N hundreds N N Y
Etomic N tens to researchers to researchers Y
Geni racks Y tens Y Y slice-dependent
iPlane N all PlanetLab nodes N N traceroute-only
M-Lab Y hundreds vetted only Y Y
NLanr Amp N one hundred N N Y
Nimi N tens Y Y slice-dependent
Ono plug-in N over one hundred thousand N N N
perfSonar Y thousands N to NRen operators N
Pinger Y tens N N Y
PlanetLab {Europe} Y tens, formerly hundreds Y Y slice-dependent
Ripe Atlas (prev. TTM) Y ten thousand N Y Y
SamKnows Y thousands N N N
Seattle N tens of thousands Y TCP and UDP slice-dependent

currently
active

number of
vantage points

open to run
code

open to run
measurements

open
measurement data

2.4 Problem statement and challenges

We conclude this chapter with a concise description of the problem along with the challenges
that this thesis addresses. The main objectives of our contributions in this thesis are then
outlined again.

Presuming the occurrence of globally distributed edge cloud sites, which are not scal-
able as clouds, provided by multiple operators [24], nobody, even cloud providers, has a
monopoly on knowing how to manage these edge clouds [106]. These edge clouds compel
a service model or a set of service models that helps to achieve high resource utilization of
each edge site while ensuring infrastructure cost-efficiency. An edge-adapted service model,
through which numerous tenants are incentivized to deploy and move their workloads from
one site to another in different locations [166], needs to be architecturally optimized to run on
a ubiquitous and resource-constrained infrastructure. An edge cloud testbed, to be sustain-
able at scale, also needs to adopt such a service model and adapt it to its own requirements.

Regarding the challenges, it must first guarantee interoperability between edge resources
that different providers deploy. Lacking such interoperability can rapidly lead to vendor
lock-in problems, as is in clouds, which can lessen the cost-effectiveness of infrastructure in-
vestments due to the widely distributed nature of edge clouds. It must also be straightforward
for customers to deploy workloads and move them across numerous edge clouds provided
by multiple operators [135] according to demand. Otherwise, it will become a tedious task
for a customer to create deployment per location and per provider and move them as needed.
A relatively small edge cloud must be prepared to run workloads from potentially hundreds
of thousands of tenants. This is also because, depending on end-user demand and device
locations, such workloads will be moved across clusters at different locations.

Since the edge infrastructure is being built to support cloud-like workloads [143], it is
likely that such a service model to be inherited from cloud computing but adapted to edge
computing. We assert that the CaaS service model is well-adapted for this purpose. Thus,
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the objectives of our contributions, introduced in Sec. 1.3, are twofold: the primary one is
enabling a sustainable edge cloud testbed for researchers to leverage containers, and the
second is bringing an alternative CaaS option to edge computing.
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A native multitenancy

Multitenancy is what makes cloud computing economical. From a single bare metal ma-
chine, a cloud provider can offer resources to multiple tenants, where each tenant is a cus-
tomer that contracts for cloud services on behalf of one or more users. These resources are,
for example, virtual machines in the Infrastructure as a Service (IaaS) service model, or tools
for application development and deployment in the Platform as a Service (PaaS) model. Ten-
ants that are prepared to accept less than perfect isolation from other tenants benefit from the
lower prices that providers can offer thanks to more efficient use of the providers’ hardware.

But, despite the greater efficiency of containers as compared to virtual machines, and de-
spite recent improvements in ensuring isolation between containers, the cloud industry does
not yet propose a multitenant Containers as a Service (CaaS) offering that takes advantage
of these advances. What passes for CaaS today is in fact multiple side-by-side instances
of single-tenant clusters of compute nodes, each cluster having its own container orchestra-
tion control plane and its own data plane, and isolated from other clusters through the use
of virtual machines. For example, automated services such as AWS Fargate1 and Google
Autopilot2 that manage cluster capacity on behalf of a user who is deploying containers to
the cloud do not do away with virtual machine overhead and do not improve control plane
efficiency.3 In brief, although CaaS ought to offer greater efficiency than IaaS,4 it does not
yet do so.

With the emergence of the edge cloud, such efficiency will take on greater importance be-
cause resources will typically be more constrained than in the cloud. As part of the vision for
5G, it is projected that mobile network operators will become edge cloud providers, offering
up compute resources from servers that are colocated with their wireless base stations [36,
88], at what is being termed the ‘service provider edge’ [135, 143, 144]. These operators are
also expected to offer resources from their peering sites, or the ‘regional edge’ [134]. Such
edge cloud instances will be data centers that are geographically dispersed to be closer to the

1Amazon Web Services’ Fargate https://aws.amazon.com/fargate
2Google Cloud’s Autopilot https://cloud.google.com/kubernetes-engine/docs/concepts/autopilot-overview
3Google Cloud documentation: Cluster Architecture https://cloud.google.com/kubernetes-engine/docs/concepts/cluste

r-architecture#nodes
4We make the assumption that IaaS is offered through virtual machines, which is commonly the case [44].
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users of cloud services or to edge devices than are the centralized data centers that dominate
the present-day cloud.5 With fewer resources, an edge cloud will not scale as elastically
as a cloud, yet it must be prepared to receive a large number of workloads that have been
deployed to serve local users and devices.

The problem that we aim to resolve is how to move CaaS multitenancy away from a high-
overhead multi-instance model to a more efficient one that will be suitable for the resource-
constrained edge cloud. In the solution that we propose, multiple tenants share a single
instance of the control plane, which is used to deploy containers that coexist within a single
instance of a shared cluster, while still allowing tenants to enjoy isolation from each other as
well as the opportunity to customize their resources.

Our multitenancy solution has the particularity that it is designed to work in a federated
environment. Today, a cloud customer typically deploys their workloads to a single cloud
provider, but if they want to extend those workloads to be close to users and edge devices,
a customer will also need to obtain resources from multiple edge cloud providers [24].6

Doing so will be easiest for a customer if those providers are federated (See Chapter 4),
meaning that the customer will be able to contract with just one cloud or edge cloud provider
and the customer will be able to deploy its workloads through a single interface offered by
that provider [166], and the provider will manage the propagation of the workloads to the
other providers. Accordingly, our multitenancy solution ensures that each cloud provider can
accept tenant workloads that originate from other providers.

As we use the term, a multitenancy framework consists of a set of rules that govern how a
cloud provider offers resources to its tenants such that each tenant can use their portion of the
resources and configure those resources to meet their needs without regard for the presence of
the other tenants. The rules address the creation of isolated environments, resource sharing,
and user permission management. They determine which rights over resources are given to
which tenants, under which conditions, and how those rights affect the relationships of other
tenants with the same resources. The term equally well refers to the set of entities that are
coded to enforce these rules.

In this chapter, we describe our framework, argue for it, and show how we have imple-
mented it in EdgeNet, a production edge cloud.7 What we henceforth refer to as the EdgeNet
multitenancy framework is part of the larger EdgeNet code base,8 which is free, liberally-
licensed, and open source software that enables CaaS deployments to the edge cloud. It is
designed as a set of extensions to the Kubernetes container orchestration system,9 which is
itself free, liberally-licensed, and open source. Our reasoning in building upon Kubernetes
is that cloud customers will want to continue using this familiar system, which is today’s de
facto industry standard container orchestration tool.

As Kubernetes does not natively support multitenancy, others have identified the need
for such an extension and have developed their own Kubernetes multitenancy frameworks.

5To be clear, we do not include low-powered IoT devices that are unable to run cloud-like workloads (the
‘constrained device edge’) [135] in our conception of the edge cloud that we anticipate for CaaS.

6In addition, a customer might bring resources to bear from its own ‘user edge’.
7The EdgeNet testbed https://edge-net.org/
8The EdgeNet software https://github.com/EdgeNet-project/edgenet
9Kubernetes https://github.com/kubernetes/kubernetes
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(See Table 2.3 for details) We show that the existing frameworks, while no doubt fine for
the cloud, will not be suitable for CaaS in the edge cloud. There are a few prior studies
concerning these frameworks [170, 56, 39], but this is the first study to situate them, and
EdgeNet, within the existing scientific literature on cloud multitenancy.

Our contributions, and the sections of the chapters that address them, are as follows:

• We look at Kubernetes multitenancy frameworks through the lens of the scientific lit-
erature on cloud multitenancy and, in Sec.2.3.1.1, we provide a novel classification of
these frameworks into three main approaches: multi-instance through multiple clus-
ters, multi-instance through multiple control planes, and single-instance native.

• Based upon our analysis of the literature, we distill out four features that we believe
will promote a future in which CaaS can thrive, in particular at the network edge, and
we describe how we have incorporated these features into the EdgeNet multitenancy
framework: consumer and vendor tenancy in Sec. 2.3.1.3, tenant resource quota for
hierarchical namespaces in Sec. 2.3.1.4, variable slice granularity in Sec. 2.3.1.5, and
federation support in Sec.2.3.1.6.

• We have implemented the EdgeNet multitenancy framework as a free and open-source
extension to Kubernetes, and have put it into production as the EdgeNet testbed, as
described in Sec.3.2.

• Our EdgeNet multitenancy framework constitutes a prototype for the federation of
clouds and edge clouds, as explained in Sec.3.2.2.4, and we further describe this pro-
totype in Sec.4.2 for the future development of a full federation framework.

• We benchmark the three multitenancy framework approaches using a representative
implementation for each approach, and we reveal their pros and cons from a tenancy-
centered edge computing perspective in Sec.3.3.

The chapter is structured as follows. Sec. 3.1 discusses design principles for a CaaS
multitenancy framework, and Sec.3.2 presents the architecture of the EdgeNet multitenancy
framework that we have developed. In Sec.3.3, we benchmark our framework against repre-
sentative frameworks for two alternate approaches , and we conclude this chapter as well as
point to our future work in Sec.3.4.

3.1 Design decisions

Our vision for EdgeNet’s multitenancy framework is to promote a future in which the CaaS
service model can thrive, particularly at the network edge. We have made nine design deci-
sions, listed below, to support this vision. The first six were discussed in relation to related
work in Sec. 2.3.1, and the latter three are discussed in this section. The implementation
details are provided in the Architecture section that follows (Sec.3.2).

• Multitenancy approach. EdgeNet obtains the lower overhead offered by a single
instance native approach to multitenancy, compromising on the isolation that would
be offered by a multi-instance one (Sec.2.3.1.1).

• Customization approach. We mitigate customization limitations that stem from the
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single-instance approach through the use of hierarchical namespaces (Sec.2.3.1.2).
• Consumer and vendor tenancy. We design EdgeNet to support both the consumer

and vendor forms of tenancy (Sec.2.3.1.3).
• Tenant resource quota. EdgeNet incorporates a control mechanism to manage the

allocation of resource quotas in a hierarchical tenancy structure, allowing tenants to
grant quotas to their subtenants and recoup those quotas from them (Sec.2.3.1.4).
• Variable slice granularity. Considering that there is no ideal granularity at which to

slice a compute cluster in order to deliver resources to tenants, we allow an EdgeNet
cluster to be sliced into individual compute nodes or at a sub-node-level granularity
(Sec.2.3.1.5).
• Federation support. Our framework allows each EdgeNet cluster to receive the work-

loads of tenants from other EdgeNet clusters with which it is federated, while avoid-
ing name collisions by generating object names that are unique to cluster and tenant
(Sec.2.3.1.6).
• Kubernetes custom resources. For ease of integration into existing systems and ease

of adoption by users, we implement EdgeNet using the Kubernetes custom resources
feature, rather than creating a wrapper around Kubernetes or forking the Kubernetes
code (Sec.3.1.1).
• Lightweight hardware virtualization. We compensate for the loosened isolation of

workloads in the native approach through the use of lightweight hardware virtualiza-
tion that is optimized for running containers (Sec.3.1.2).
• External authentication. In a federated multitenancy environment, users will need to

authenticate with remote clusters, and for that reason EdgeNet adopts an authentication
method that is external to any individual cluster (Sec.3.1.3).

3.1.1 Kubernetes custom resources

Kubernetes’ custom resource feature10 allows new entities to be added that, by the fact of
their presence, extend the standard Kubernetes API, thereby maintaining backward compati-
bility with tools and interfaces that are familiar to users. By building our EdgeNet framework
in this way, instead of as a wrapper around Kubernetes or as a separate system that interacts
with Kubernetes, we increase the chances that the framework will be compatible with a vari-
ety of Kubernetes distributions. For example, we have successfully tested and run EdgeNet
framework as an extension of k3s,11 a lightweight certified Kubernetes distribution for IoT
and edge computing.

We have containerized the EdgeNet extensions, and we provide them in the form of pub-
lic Docker images and configuration files. The core Kubernetes code remains untouched, and
there is no need to recompile any existing code that runs a cluster. Any cluster administrator
can deploy the extensions to their cluster with a single kubectl apply command without the
need to bring down the cluster or interrupt its work in any way.

10Kubernetes documentation: Custom Resources https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/cus

tom-resources/
11K3s https://k3s.io/
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Aside from the choice of Kubernetes and of Kubernetes custom resources, all of our other
design decisions should, in principle, apply to enabling multitenancy in any other container
orchestration tool.

3.1.2 Lightweight hardware virtualization

The choice of virtualization technology, in the context of edge computing, between hyper-
visors providing the best isolation and containers being lightweight [167], is a longstand-
ing discussion. We prioritize virtualized environments as they are lightweight and incur low
overhead; in so doing, we favor enhanced performance over delivering the best isolation [54].
A native framework with operating-system-level virtualization satisfies these requirements,
but it presents security concerns having to do with containers sharing the same kernel. We
want to offer each tenant the security of its own guest kernel, which hardware virtualization
provides, but without going so far as to adopt a multi-instance approach that would negate
the performance advantages of containers over VMs. Fortunately, this is possible through the
use of lightweight virtual machines, which offer the isolation benefits of hardware virtualiza-
tion while offering near-container-level performance. Our multitenancy framework therefore
adopts a single-instance native approach with lightweight hardware virtualization.

We follow earlier work [49, 113] that has recommended the Kata runtime12 for providing
isolation between containers in a multitenant environment [158, 80, 2, 162]. Kata spawns a
lightweight VM that is optimized to run containers, delivering near-container-level perfor-
mance [158, Fig. 5] and better isolation than OS-level virtualization.

Fig.3.1 depicts three methods for workload isolation: virtual machines, Docker contain-
ers, and Kata containers. We consider a single workload per method that can improve isola-
tion and performance at the cost of overhead. One workload per virtual machine provides the
best isolation among the three while introducing high overhead. The containerization tech-
nique can lower such overhead, having one workload per container, although it diminishes
the isolation. The Kata method falls between VMs and containers in terms of isolation and
overhead, as a containerized single workload runs in a lightweight virtual machine.

Tenants who require better isolation and performance at the same time, can obtain these
using the slice software entity in our framework. As described in Sec. 3.2.4, this entity
provides a tenant with the option of selecting container runtimes on an isolated subcluster so
that the tenant can select one that meets its application requirements.

3.1.3 External authentication

A tenant’s users must authenticate themselves in order to access the resources that they are
authorized to access. For multitenant CaaS to run at scale, it is not feasible to require users to
have individual accounts at every different cluster location where they will deploy their work-
loads [15]. Instead, authentication should be managed by an integrated identity management
system. For example, an identity federation that consists of multiple identity providers, using

12Kata containers https://katacontainers.io/
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HARDWARE

WorkloadVM

(a) One workload per virtual machine, the
best isolation among the three, introducing
high overhead.

HARDWARE

Container Workload

(b) One workload per container, the weak-
est isolation among the three, providing
improved performance.

HARDWARE

ContainerKata Workload

(c) One workload per container sandboxed
by Kata, providing both intermediate isola-
tion and intermediate overhead.

Figure 3.1: Methods for isolating workloads. The dashed vertical lines distinguish one tenant from another. Each thick blue horizontal
line designates a node.

OpenID Connect (OIDC)13 running on top of OAuth 2.014 as the authentication method, can
support large-scale federations. With this in mind, EdgeNet uses this type of authentication
(See Sec.3.2.8).

3.2 Architecture

Our EdgeNet architecture has been conceived around the design decisions articulated in
Sec.3.1, with the aim of introducing as low overhead as possible while making Kubernetes
ready for the edge. As a reminder, our main design decision has been to take a single-instance
native approach, meaning that tenants share a cluster’s control plane components and com-
pute nodes, rather than having each tenant acquire its own control plane components and
compute nodes. To compensate for the diminished isolation that comes with sharing the
same cluster, EdgeNet uses lightweight VMs to isolate workloads while retaining low over-
head.

The architecture of our EdgeNet multitenant CaaS framework is illustrated in Fig.3.2. It
is designed as a set of custom resources and custom controllers that extend Kubernetes from
within. The framework consists of six principal new entities:15

• Tenant is the fundamental entity that isolates a tenant from other tenants (Sec.3.2.1).

• Subsidiary Namespace is an isolated environment created by a tenant (Sec.3.2.2).

• Tenant Resource Quota controls a tenant’s use of resources (Sec.3.2.3).

• Two entities, Slice and Slice Claim, allow dynamically reserving sub-clusters isolated
from multitenant workloads, entitled node-level-slicing (Sec.3.2.4).

• Admission Control Webhook enforces custom policies16 such as employing Kata Con-
tainers for multitenant workloads (Sec.3.2.5).

13OpenID Connect https://openid.net/connect/
14OAuth 2.0 https://oauth.net/2/
15EdgeNet multitenancy software entities: Principal custom controllers https://github.com/EdgeNet-project/edgenet

/tree/v1.0.0-alpha.5/pkg/controller/core/v1alpha1, Assistant custom controllers https://github.com/EdgeNet-project/edgenet/tree/

v1.0.0-alpha.5/pkg/controller/registration/v1alpha1, Admission control webhook https://github.com/EdgeNet-project/edgenet/tre

e/v1.0.0-alpha.5/pkg/admissioncontrol
16Kubernetes documentation: Dynamic Admission Control https://kubernetes.io/docs/reference/access-authn-authz/ext

ensible-admission-controllers/#what-are-admission-webhooks
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Figure 3.2: Architectural overview of EdgeNet multitenant CaaS framework implemented on Kubernetes. Much of the architecture is
built upon native Kubernetes (blue) and third-party software components (green). Our innovation can be seen in the control plane,
which consists of resources and controllers (yellow). This allows multiple tenants (left) to make use of the same control plane (center)
via the API server to create workloads (right). What is more, our contributions enable the creation of two types of worker nodes;
shared (top right) and reserved to a node-level slice (bottom right). Upon inclusion in a slice, a worker node’s type switches to
reserved, reverting to shared after slice termination. Multitenant workloads (top right) share the compute resources of shared worker
nodes, yet, each is isolated from the others through hardware virtualization, lightweight virtual machines that are optimized for running
containers, called Kata Containers. Every pod has its lightweight VM-based sandbox for isolation, and container(s) defined in a pod
specification runs in the virtual machine tied to that pod. This single instance shared approach eliminates any overhead introduced
due to employing conventional virtual machines for the isolation of single-tenant clusters from each other, addressing the overhead
not only related to worker nodes but also the control plane. With that being said, worker nodes in a slice that is dynamically created
by a tenant (bottom right) are isolated from multitenant workloads, hence providing the tenant with container runtime selection. In
this way, the tenant can make the most of the advantages of containerization, such as lower overhead, and shorter creation and
startup time. At the bottom right of the figure, several worker nodes are subclustered in Tenant A’s slice, each hosting the workloads,
for which the tenant employs Kata Containers as well as another container runtime like runC.

These are assisted by new entities that facilitate cluster and tenant management: Role Request
(Sec.3.2.6), and Tenant Request and Cluster Role Request (Sec.3.2.7). Our architecture also
covers user authentication via existing mechanisms (Sec.3.2.8). Aside from these, it provides
cluster operators with configuration files in YAML format that can be carefully customized,
which define runtime class17 and predefined role resources.

3.2.1 Tenant

In the context of the namespace structure maintained by the EdgeNet framework, the Tenant
entity is a controller that acts at the top level of the hierarchy: creating, updating, and deleting
the core namespaces of cluster-scoped tenants, which are the ones that are admitted into the
cluster by the cluster’s administrator. Here, we describe the Tenant entity, while Sec. 3.2.2
describes the Subsidiary Namespace entity, which acts lower down in the hierarchy, on the
subtenants that are admitted either by top-level tenants or, recursively, by subtenants. The
roles of these two controllers are shown in Fig.3.3.

17Kubernetes documentation: Runtime Class https://kubernetes.io/docs/concepts/containers/runtime-class/
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Figure 3.3: Namespace Hierarchy in EdgeNet. EdgeNet’s multitenancy framework provides two principal controllers for managing
its namespace hierarchy. The Tenant controller creates, updates, and deletes the tenant core namespaces at the top level of the
hierarchy, while the Subsidiary Namespace controller handles all namespaces further down in the hierarchy.

In this example, a and b are tenant core namespaces, directly under the root of the hierarchy, r, which is not itself a
namespace; the subsidiary namespaces are aa, ab, aba, abb, and ba.

Kubernetes’ initial namespaces, default (d), kube-node-lease (knl), kube-public (kp), and kube-system (ks) are not
included in the hierarchy and are not managed by these controllers.

The Tenant entity handles the creation of a tenant environment in a cluster. It starts
by generating a namespace for this tenant, using a tenant name supplied by the tenant and
checked for uniqueness among the cluster’s namespaces. Because the tenant will be able to
create its own hierarchy of namespaces rooted at this namespace, we distinguish this one,
which will be at the root of any sub-tree that the tenant creates, by calling it the tenant’s core
namespace.

The controller also applies four labels to the namespace:

• kind=<namespace-type>, which is core in this case;
• tenant=<tenant-name>, the name supplied by the tenant;
• tenant-uid=<tenant-uid>, a locally-generated unique identifier for the tenant;
• cluster-uid=<cluster-uid>, the UID of the kube-system namespace.

UIDs are defined in Kubernetes as being 128-bit-long universally unique identifiers [83],18

and the Kubernetes community suggests using the UID of the kube-system namespace as
a cluster identifier.19 The labels allow the tenant namespaces to be consumed by policies
and other entities locally. This labeling model is also required for the inter-cluster object
propagation mechanism.

Each tenant has an owner who has control over the tenant and its resources, including
any subnamespaces that the tenant might create. Having created the core namespace, the

18Kubernetes documentation: Object Names and IDs; UIDs https://kubernetes.io/docs/concepts/overview/working-wit

h-objects/names/#uids
19Cluster ID API discussion in the Kubernetes Architecture SIG mailing list https://groups.google.com/g/kubernet

es-sig-architecture/c/mVGobfD4TpY/m/uEjVVsinAAAJ
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Tenant entity uses the Kubernetes role-based access control (RBAC) mechanism to grant
this control, while at the same time limiting the tenant owner’s control to the scope of its
core namespace, so that it may not interfere with other tenants’ namespaces. The Subsidiary
Namespace entity will be responsible for extending the scope of the owner’s control to the
subnamespaces. With their control over the core namespace, the owner can manage the
tenant by, among other things: admitting users; granting roles, which are sets of permissions,
for those users; and deploying workloads.

Kubernetes’ network policies allow confining pod communication into a namespace or
set of namespaces by using labels. In our multitenancy framework, the policies consume the
UID labels, as specified earlier, attached to tenant namespaces. Since tenants have complete
authorization on their network policies, an authorized user can, willingly or not, misconfig-
ure network policies in a namespace, thus resulting in security threats. To overcome this
vulnerability, we let a tenant enable or disable cluster-level network policy in the tenant
specification, which confines the tenant’s namespaces thanks to VMware’s Antrea.20

3.2.2 Subsidiary namespaces

Authorizations are issued hierarchy-wise, establishing a chain of accountability. In other
words, the permissions of a tenant owner to use the system are granted in the tenant’s core
namespace, applying to all its hierarchical namespaces. Each individual user in a tenant, in
turn, is authorized by the tenant owner. According to permissions granted, the owner can
create different roles in different subnamespaces as needed. For example, an owner can grant
some users administrative rights to approve other users in core and subnamespaces. As their
permissions are limited to their hierarchy tree, tenants cannot interfere with other tenants’
environments. A tenant, at the same time, can use the system as if it has the authorization to
create namespaces directly, thus having a relatively customizable environment.

The subsidiary namespaces custom resource, also known as a subnamespaces, is a soft-
ware entity through which tenants can create Kubernetes namespaces without having the
authorization to do so directly. Subnamespaces are indispensable for realizing the key fea-
tures of our framework that are described in this chapter’s introduction, as we see in our
discussion of Tenancy Modes, Inheritance, Naming Convention, and Federation, below.

3.2.2.1 Consumer and vendor tenancy

The subnamespace entity relies on the parent-child relationship between the namespaces,
starting from the core namespace of a tenant. Each subsidiary namespace can be both a
parent and a child at the same time. The entity exists in one of two modes, workspace or
subtenant, corresponding to the two forms of tenancy: consumer and vendor. The sequence
diagram in Fig.3.4 sketches out how the workspace and subtenant modes differ in creating a
child namespace.

The hierarchical namespaces approach allows an organization to isolate workspaces of

20Antrea https://antrea.io/
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Figure 3.4: Sequence diagram of the Subnamespace entity performing namespace and permission creation.

different products by generating a subnamespace per product. Each child namespace as-
signed to a product can be used to isolate its teams, for example, backend and frontend,
in the same way. Another real-world example consists in using subnamespaces to create
isolated environments for multiple groups of students working on a laboratory experiment.

Fig.3.5 demonstrates a tree of namespaces where a parent is blind to information about a
child’s namespace and its children. This shielding assists a tenant in subleasing the desired
amount of resources to its customers, thus becoming a vendor. Accordingly, the customer
of a vendor becomes a subtenant. A vendor can remove any of its subtenants when the
customer-vendor relationship comes to an end.

A key characteristic of subnamespaces is enabling the choice of either mode, workspace
or subtenant, at any depth of the hierarchy. By extension, subnamespaces allow a subtenant
to be created in a child namespace with the workspace mode and another to be created with
the subtenant mode, as shown in Fig. 3.5. Not only can these two modes co-exist in the
same subtree, but they also reinforce each other’s benefits. Last but not least, a subsidiary
namespace can also be formed to be propagated across federated clusters. If so, it generates
object names that are unique to the originating cluster and tenant to prevent name collisions
during object propagation across the federation. Sec. 3.2.2.4 describes how our federation
solution functions.
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Figure 3.5: Consumer and Vendor Tenancy in EdgeNet, showing workspace (w) and subtenant (s) modes. EdgeNet
uses its hierarchical namespace structure to build consumer and vendor tenancy. In this example, the namespace a belongs
to a consumer tenant and the namespace b belongs to a vendor tenant that is reselling containers-as-a-service to its own customers.

The Subnamespace controller creates workspaces rooted at aa and ab for the consumer tenant by placing those names-
paces into workspace mode. The consumer tenant has visibility into those workspaces.

The controller creates subtenants rooted at ba and bb for the vendor tenant by placing those namespaces into subtenant
mode. The vendor tenant does not have visibility into its subtenants. Note that the subtenant that owns the sub-tree rooted at bb
does have visibility into its own workspaces at bba and bbb.

3.2.2.2 Inheritance

In the subnamespace specification, an authorized user can declare which objects are passed
by inheritance from parent to child. The Kubernetes resource kinds that can be inherited are
currently as follows:

• Role-based access control (RBAC): Roles and Role Bindings; both together adjust
permissions of users.
• Network policies; make a namespace restricted to defined ingress/egress rules.
• Limit ranges; set a resource quota per pod.
• Secrets; keep sensitive information such as credentials to be consumed by pods.
• Config Maps; configuration to be used by pods.
• Service Accounts; an entity that allows applications and services to authenticate with

the Kubernetes API.

If RBAC objects are not inherited, the specification must include the owner of the subnames-
pace for management purposes. Further, it is possible to declare continuous inheritance. In
this case, the controller constantly syncs objects from a parent to its child.

Note that a resource quota is not an entity subject to inheritance, so as to avoid overcon-
sumption by a tenant, which could get around quotas by generating subnamespaces at will.
The logic ensures that the aggregated child resource quotas cannot exceed their parent’s ini-
tial resource quota, including the core namespace. Each subnamespace creation taxes its
parent’s resource quota so that the aggregation of resource quotas in the parent and child
namespaces remain the same, as we discuss in Sec.3.2.3. In other words, a tenant’s resource
quota is a cake to be shared out, and each subnamespace gets a piece of cake from its parent’s
cut.
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3.2.2.3 Naming convention

The naming convention has been conceived so as to enable federation deployments. As men-
tioned in Sec.3.2.1, a core namespace shares the same name with its tenant. Independent of
its depth, a subnamespace follows the pattern of <subnamespace-name>-<hash>. We feed
the hash function with the parent namespace and subnamespace name. This naming con-
vention reduces the chance of name collisions while creating subnamespaces. If a collision
nonetheless occurs, the subnamespace object enters a failure state, indicating a collision sta-
tus. This is vital to the interoperability of multiple clusters. The reason is that tenants or
namespaces holding the same names in different clusters probably occur in many clusters.
Consequently, conflicts will inevitably arise while propagating objects, unless there is an
adjustment mechanism such as the one described here.

3.2.2.4 Federation

In our federation vision, each cluster, even before it is federated, is a multitenant cluster,
making its worker nodes available to multiple tenants, and federation further opens the clus-
ter to the workloads of tenants from other clusters. (As we have discussed in Sec.2.3.1, this
differs from the approach of the Liqo framework, based on Virtual Kubelet, in which clusters
only achieve multitenancy by federating.) We have developed a proof-of-concept federation
architecture with a prototype implementation, which works jointly with our multitenancy
framework (See Sec. 4.2). The source code of the prototype is publicly accessible via our
repository.

We see each tenant gaining access to a federated set of clusters via what we might term a
home cluster or local cluster. For example, a company that has developed an application that
serves vehicles in several countries might need to deploy its workloads to the edge clusters of
mobile operators in each of those countries, and it can do so via a cluster in its home country
that is federated with these other clusters. To obtain access to a local cluster, it might contract
with a cloud provider that has a commercial presence in its home country, leaving the cloud
provider to manage the commercial relationships with the other providers in the federation.
Information regarding the identity of the company and its contract with its local provider
remains local, while only the workload-related objects necessary for the deployment of the
application get propagated to remote clusters. Propagating as few objects as possible has
three significant benefits: (1) it avoids replication of tenant information across clusters, thus
reducing bandwidth consumption and unnecessary traffic; (2) it enhances data privacy and
sovereignty and mitigates security risks; and (3) it significantly reduces overhead that could
stem from running a control plane or worker nodes per tenant at the scale of a federation.

In EdgeNet, the deployment scope of any subnamespace can be set to either federated or
local. If federated, the subnamespace controller adds the UID of the kube-system namespace
as a prefix to the namespace name, and this cluster UID is also fed into the hash function
described just above (Sec. 3.2.2.3). This ensures the uniqueness of each name across all of
the federated clusters.

In our prototype federation, a tenant deploys its workloads to remote clusters by creating
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a Selective Deployment [129] that targets the remote clusters using affinities, such as loca-
tions and connected devices.21 A manager entity, called the Federation Manager, is informed
by the local cluster for federation-scoped Selective Deployments. When it receives one, it
searches for remote clusters that satisfy the affinities, in order to deploy the workload there
on behalf of the tenant. To move towards a production federation architecture, issues such as
caching and scheduling will need to be tackled.

3.2.3 Tenant resource quota

As described in Sec. 2.3.1.4, Kubernetes provides the ability to associate resource quotas
with namespaces, but in the context of independent namespaces. Since our multitenancy
framework extends Kubernetes namespaces to work in a hierarchical fashion, we need to
extend the quota mechanism to take into account the dependency of each namespace on
other namespaces above it and below it in the hierarchy. The EdgeNet quota mechanism
is designed to allow for a given resource to be shared out between a namespace and its
child namespaces, and for the parent namespace to recoup each child’s portion when it is
relinquished. Child namespaces can in turn share out their quota with their children, and so
on, recursively. Our framework covers the following resources: CPU, memory, local storage,
ephemeral storage, and bandwidth, each accounted for individually.22

We model tenant resource quotas by representing the tree of a hierarchical namespace as
a graph T = (V, E) composed of vertices V and parent-to-child edges E. For our purposes,
each vertex v ∈ V is a namespace, except for the root node. The tenant of a namespace
v is entitled to construct a subtree Tv rooted at that namespace v, which is also called a
core namespace. Denote q(T ) the resource quota of tree T , and each namespace v ∈ V
has a resource quota q(v). Here, we assume that there is only a quota for different types of
resources for simplicity. In fact, different quotas can be set for different resources, such as
CPU and memory.

Let σ(v) = {w1,w2 . . .} ⊂ V represent the subnamespaces of v. Likewise, assume
σ(w) = {z1, z2 . . .} ⊂ V represent the subnamespaces of w. The hierarchical resource quota
problem here is twofold. First, we must ensure that a tenant resource quota q(Tv) is equal
to aggregated resource quota across all its namespaces: q(v) +

∑
w∈σ(v) q(w) +

∑
z∈σ(w) q(z).

The latter is to guarantee that the resource quota allocated to a subtree rooted at a names-
pace w is also equal to aggregated resource quota across the namespaces of that subtree, thus
q(Tw) = q(w) +

∑
z∈σ(w) q(z).

We solve this problem by partitioning resource quotas among parents and their children
while keeping with the container orchestration tool’s declarative approach. A tenant resource
quota works by applying an identical resource quota, a Kubernetes resource, to the tenant’s
core namespace. Then, each subsidiary namespace in the core namespace takes its portion

21This is an extension to the Selective Deployment mechanism in our previous work [129]. There, workloads
could be deployed to remote nodes within a single geographically dispersed cluster. Now, workloads can be
deployed to entire remote clusters within a federation of clusters.

22Tenant resource quotas will be expanded to include other resources in the future, such as namespaces,
pods, and configmaps.
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from that resource quota, as shown in Fig.2.5a.

As mentioned above, when resources are constrained, ensuring a fair share of them is
essential. Static allocation of quotas, however, may lead to inefficient use of the resources.
There are two sides to this problem. Such resource quotas that are allocated to tenants, as-
suming some tenants’ resource consumptions are inferior to their quotas, may result in sub-
optimal utilization of compute resources in clusters. Likewise, the resource quotas that are
allocated statically to subnamespaces by tenants, assuming some subnamespaces consume
fewer resources than their quotas, may provoke less-than-ideal use of their tenant resource
quotas. Even though our system allows temporary addition to and removal from tenant re-
source quotas as well as manually updating subnamespace quotas, this solution cannot scale
when there are many clusters. Sec.3.4 introduces how we plan to address this problem.

3.2.4 Slice and slice claim

Two software entities enable node-level slicing; slice and slice claim. Slice, a cluster-scoped
entity, forms a subcluster by slicing among nodes, as its name signifies. A slice isolates the
nodes within it from multitenant workloads once it is established. These nodes are chosen
via a selector composed of fields that denote labels, number of nodes, and desired resources.
On the other hand, a slice claim is a namespaced entity that tenants may create for their
subnamespaces.

Nodes in a slice remain in the pre-reserved status until a subnamespace uses that slice.
Once a subnamespace is bound to a slice, the multitenant workloads that runs on the nodes
in this slice are terminated within a grace period of a minute. That is to say, workloads
created in that subnamespace are isolated from other tenants. Thus, the container runtime
configuration within such subnamespaces becomes available to tenants.23 Regarding the
termination grace period, we have set it to one minute by default, as twice the default grace
period of 30 seconds in Kubernetes. However, providers can adjust this termination grace
period according to their requirements.

A slice claim has two working modes; dynamic and manual. The dynamic mode permits
a tenant to automatically create a slice if the resource quota in the slice claim’s namespace
is sufficient. In contrast, the manual mode prevents a slice claim from generating a slice
even if the slice claim’s namespace has an adequate resource quota. In this case, a cluster
administrator must satisfy the tenant’s request. This kind of behavior can be desirable if the
number of nodes in a cluster is scarce. Fig.3.6 depicts how a tenant can receive node-level
isolation. We discuss the need for a daemon to improve isolation in Sec.3.4.

3.2.5 Admission control webhook

An admission control webhook is a software entity that allows for enforcing custom policies.
It can mutate and validate object operation requests of users. Such mutating and validating

23Resource-constrained environments may compel CaaS to operate on bare metal. We will, therefore, assess
the performance of Kata with a specific experiment setup described in Sec.3.4.
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Figure 3.6: Sequence diagram of a tenant acquiring node-level isolation. For the dynamic mode, we assume the tenant has enough
quota in the namespace.

operations are critical so as to ensure that users adhere to framework-specific policies. We
enforce custom policies for subnamespaces, slice and slice claim, role requests, tenant re-
quests, cluster role requests, as well as pods.

Kubernetes, by default, lets users pick runtime classes that they desire for their pods.
Likewise, in our framework, a tenant can select the container runtime for the containers
running on the nodes in its slice. However, this is not the preferred behavior unless a tenant
acquires entire nodes through node-level slicing. For the purpose of better isolation, we
constantly mutate the runtime class to employ Kata (See Sec.3.1.2) for multitenant workloads
through admission control.

3.2.6 Role request

This feature facilitates permission management at namespace scope. Thanks to its design,
this entity provides granular control over tenant users. A user can request a specific role
in a core namespace or any subnamespace of a tenant. This role can be one of the cluster
roles offered by the cluster provider or a role in that namespace. Once a request is made,
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an authorized user in that namespace can approve or deny it. That is to say, tenant owners
and admins can delegate responsibilities to team leaders in child namespaces. When a tenant
represents a large organization, delegation becomes crucial to facilitate management.

3.2.7 Other entities

There are two more assistant entities. A tenant request stands for tenant registration. A
central administrator or a trust strategy, for example, credit card verification, can approve
the establishment of tenants and their owners. In our implementation, a cluster admin may
approve a request or deny it. Another option is, as mentioned above, a provider can integrate
a credit card verification-like mechanism with our framework to avoid the manual adminis-
tration of clusters, supporting CaaS to operate with many clusters at scale. There are four
pieces of information in the request; the organization, the owner, the tenant resource quota,
if desired, and whether or not to apply a cluster-level network policy. A cluster role request
is an entity that allows a user to claim to hold a role at the cluster scope. This entity eases
shaping a cluster administration team and encourages the platform users to ask for the roles
that they need.

3.2.8 Authentication

Our general design approach is to build, wherever possible, upon what is already available for
Kubernetes, as we do by adopting OpenID Connect (OIDC)24 running on top of OAuth 2.025

as our authentication method. A feature that is still under development is to extend OIDC
with Pinniped26 so as to access resources across clusters. This allows a user to authenticate
once to access namespaces and objects, for which the user has access rights, in all of the
clusters to which the objects have propagated.

3.3 Benchmarking

This section analyzes the performance of our EdgeNet single-instance native Kubernetes
multitenancy framework. One of our goals is to assess to what extent native and multi-
instance approaches are suitable for edge computing use cases. To this end, we compare
our framework to single cluster per tenant offerings with the help of Rancher Kubernetes
Engine (RKE)27 in order to automate cluster creations and to the VirtualCluster [170] code
that realizes a multi-instance-based multitenancy framework. That is to say, to represent the
multi-instance through multiple clusters approach, we pick RKE, which is widely known for
installing Kubernetes; VirtualCluster for the multi-instance through multiple control planes
approach, which is a Kubernetes working group framework that is described in the scientific
literature [170]; and our own EdgeNet framework is single-instance.

24OpenID Connect https://openid.net/connect/
25OAuth 2.0 https://oauth.net/2/
26Pinniped https://pinniped.dev/
27RKE https://rancher.com/products/rke
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Both RKE and VirtualCluster perform well when the compute resources are nearly un-
limited, or scalability with regard to the number of tenants is less of a concern. Compared
to RKE, VirtualCluster is well-adapted to address the issues of the single cluster per tenant
solution, such as high overhead. However, as we shall see, there is a tradeoff between perfor-
mance and isolation, which means that existing solutions are not ideal for edge computing.

We used the Geni infrastructure [94] to spawn four Ubuntu 20.04 LTS virtual machines
with 8 CPUs and 16 GB of memory in order to conduct experiments with EdgeNet and Virtu-
alCluster. Using these virtual machines, we created a Kubernetes v1.21.9 cluster consisting
of one control plane node and three worker nodes. The control plane node is completely
isolated from any workloads.

For the VirtualCluster experiments, we reserved a worker node for running the manager,
syncer, and agent components. Likewise, the per-VirtualCluster-tenant entities, which are
apiserver, etcd, and controller-manager, are deployed on a dedicated worker node. For the
EdgeNet experiment, an isolated worker node was sufficient to run the entities. A separate
worker node hosted monitoring tools in both cases. We used the default configuration set-
tings for both frameworks, including the number of workers that process concurrently and
the execution period that triggers the controller.

We compared the frameworks’ performance for tenant creation and for pod creation. For
VirtualCluster tenant creation, inter-arrival times of 0, 8, 16, and 32 seconds were used for
creating 2, 4, 8, 16, 32, and 64 tenants, respectively. For EdgeNet, inter-arrival times of 0,
2, 4, 8, 16, and 32 seconds were used for creating up to 10,000 tenants. (We discuss the
reasons for the disparity in the number of tenants below.) For both framework, pods created
were 1,000, 2,500, 5,000, and 10,000. Timeout is two minutes to create tenants and pods
separately.

To measure the performance of a cluster per tenant method, reserved resources for tenant
entities, a virtual machine with 8 CPUs and 16 GB of memory, were divided evenly among
four Ubuntu 20.04 LTS virtual machines with 2 CPUs and 4 GB of memory on GENI. 2
CPUs were chosen because cluster provisioning repeatedly failed with VMs having a single
CPU. We repeated measurements at least three times for each case.

3.3.1 Tenant creation

As discussed throughout this thesis, besides security, overhead is a noteworthy factor in
qualifying a multitenancy framework, especially for edge clouds. Our experiments measure
a framework implementation’s ability to handle simultaneous creation requests; the time it
takes to create a tenant; entities’ resource consumption; and consumption per tenant, if it
exists. Each request is considered successful if the framework returns a success status within
two minutes after the control plane receives the request.
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3.3.1.1 VirtualCluster

The experiments show a correlation between request inter-arrival time and tenant creation
success rate. For example, with a 32 s inter-arrival time for 32 creation requests, the number
of successfully created tenants ranges from 26 to 32; when the inter-arrival time is lowered
to 8 s, the successes decrease to between 13 and 18, as shown in Fig.3.7a. It is possible that
VirtualCluster’s difficulties in handling simultaneous requests stem from an implementation
issue that starves tenants of the compute resources necessary to establish their control planes
in these circumstances.

Similarly, as seen in Fig. 3.7b, decreasing the request inter-arrival time increases the
tenant creation time. At a 32 s inter-arrival time, the median creation time is 76 s; put another
way, it would take more than an hour to create 128 tenants. Furthermore, as the figure shows,
the creation time fluctuates more widely as inter-arrival time decreases.

The most critical scaling weakness for VirtualCluster is that every tenant introduces addi-
tional overhead in terms of memory and CPU usage due to the per tenant isolation of control
plane components: apiserver, etcd, and controller manager. Fig. 3.7c presents the regular
memory usage for 2, 4, 8, 16, and 32 tenants. For example, a thousand tenants would con-
sume around 300 GB of memory just to be present in the cluster. This limitation ultimately
affected our experiment, which could not reach a high number of tenants on the single node
that we had reserved for tenant components; the maximum number of tenants that we could
create stably was approximately 40.

In addition to this, a tenant starting to use the cluster results in an increase in resource
consumption. We also noticed that a successful status message for the tenant control plane
does not imply that all its components are present and functioning properly. Therefore,
we only considered the cases where control plane components per tenant were all created
successfully.

3.3.1.2 EdgeNet

As opposed to VirtualCluster, EdgeNet supported the creation of 128 tenants simultaneously
with an almost zero failure rate across experiments. It also scaled well beyond this number,
stably generating 2,560 and 10,000 tenants when the request inter-arrival time was set to 2 s
and 4 s respectively, as shown in Fig. 3.7a. This is as far as one can go before running into
Kubernetes’ maximum namespace threshold28 of 10,000 in a cluster; if tenants are allowed
to have around ten namespaces each, the number of tenants per cluster is limited to around
1,000.

When requests arrive simultaneously, the median time for EdgeNet to create a tenant
object in the control plane increases with the number of tenants: 38 ms, 48 ms, 63 ms, 68 ms,
106 ms, 175 ms, 216 ms, and 270 ms for 2, 4, 8, 16, 32, 64, 128, 256 tenants respectively.
Another pattern of results is obtained with an inter-arrival time of 2 s: creation times are

28Kubernetes Scalability SIG documentation: Kubernetes Scalability thresholds https://github.com/kubernetes/co

mmunity/blob/master/sig-scalability/configs-and-limits/thresholds.md
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11 ms for 1,280 tenants, 11 ms for 2,560 tenants, and we tested as far as 5,120 tenants, also
clocking in at a median of 12 ms. For 10,000 tenants, the median value is still 12 ms when
inter-arrival time is set to 4 s. However, the maximum values increase as a function of the
number of requests.
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Figure 3.7: Experiment results for VirtualCluster and EdgeNet.

This suggests that concurrent or many requests saturate the shared API server, controller
manager, and etcd moderately. Thus, when arrivals are simultaneous, the average time to
fully establish a tenant increases as follows: 500 ms for 2 tenants, going up to 937 ms for 128
tenants. But Fig. 3.7b reveals that the time to fully establish a tenant drops when requests
are spread out in time. For 32 tenants, the median times are 11.5 s for simultaneous arrivals,
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271 ms for 8 s, 274 ms for 16 s, and 274 ms for 32 s.

Good results are seen for EdgeNet since it configures the state of the cluster rather than
replicating the components, it does not generate per-tenant overhead, as shown in Fig.3.7c.
Given that the resource consumption of controllers is negligible, it is fair to state that there
is no significant overhead in our framework.

It takes EdgeNet approximately 1 min 41 s to create 128 tenants. Furthermore, EdgeNet’s
creation time can be shortened if needed by adjusting the number of workers and the running
period. By default, the tenant controller uses two workers with a running period of 1 s, and
the client’s query per second (QPS) rate and burst size are set to 5 and 10, respectively. We
tried altering the setup to have ten workers with a 500 ms running period, setting QPS and
burst to 1,000,000 each. With these settings, it takes just 17 s to fully create 128 tenants, as
seen in Fig.3.8a. The same figure shows that EdgeNet can handle simultaneous requests if a
cluster welcomes around 1,000 tenants. The time it takes to establish all tenants eventually
converges towards two minutes for both settings, thereby satisfying the success criteria we
described at the beginning of Sec.3.3.1. However, we noticed it surpasses two minutes when
simultaneous requests are more than 1,280. We presume that this may be due to client or
control plane saturation resulting in the API server receiving delayed requests, which we
need to investigate further. Fig.3.8b shows that EdgeNet with default settings can scale up to
10,000 tenants when inter-arrival time is set to 4 s, but it takes more than ten hours in total.

3.3.1.3 Comparison

Our findings on tenant creation at least hint that better isolation provided by the multi-
instance approach comes at the cost of performance loss. What can be clearly seen is that
EdgeNet surpasses VirtualCluster on scalability and speed. The peak number of tenants in a
cluster is 10,000 for EdgeNet but around 40 for VirtualCluster, even with longer inter-arrival
times. VirtualCluster offers a separate control plane per tenant, meaning an increase in base
resource consumption, which is one of the major limitations. In contrast, EdgeNet can scale
up to the cluster namespace threshold thanks to the native approach discussed in Sec.2.3.1.1.

Scalability is only one aspect of evaluating a framework’s performance, especially for
edge-specific workloads. Speed, stability, and overall reliability are also important. EdgeNet
is considerably faster than VirtualCluster at tenant establishment for all inter-arrival times.
Fig.3.8a shows how optimizing the number of workers, running period, QPS, and burst can
further improve EdgeNet’s performance. Furthermore, when arrivals are not simultaneous,
EdgeNet handles each request in microseconds, whereas VirtualCluster takes seconds, even
minutes. On the one hand, such a brief tenant provisioning time is essential, especially for
short-lived workloads that require a quick start-up time or use cases where workloads need
to be moved across edge clouds. On the other hand, speed is an important contributing factor
to establishing many tenants concurrently or in sequence, but stability and reliability are also
critical.

VirtualCluster cannot adequately address simultaneous requests or requests with a short
inter-arrival time, even if they are not many. Because of this issue, we observe a marked
fall in the success rate of tenant establishment in such cases. We speculate that an imple-
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Figure 3.8: Effect of the number of workers, running period, QPS, and burst on EdgeNet’s performance, including comparison with
the effect of time between arrivals.

mentation issue might be provoking resource starvation in tenant control planes. The time
it takes to finish establishing all tenants is significantly more deterministic for EdgeNet than
for VirtualCluster; EdgeNet exhibits almost no variation, irrespective of whether 128 tenants
or 2,560 tenants are being created. However, EdgeNet’s performance is tied to the control
plane capacity as well. When many requests with little time between arrivals oversaturate
the control plane, it has difficulty establishing all tenants properly. Nonetheless, EdgeNet
can process 1,000 simultaneous requests, allowing tenants to use ten namespaces for each,
as discussed above.

The multi-instance approach limits VirtualCluster’s scalability since the base resource
consumption increases as tenant numbers grow; providing one control plane per tenant costs
about 285 MB of memory each. It is a large memory consumption, especially for edge
computing use cases. This would also increase cloud computing expenses per tenant. Such
overhead is not present in EdgeNet.

VirtualCluster, with its multi-instance approach, falls on the isolation side of the isolation-
performance trade-off. Thus, performance degradation is expected. Considering this infor-
mation is crucial to interpreting results correctly. Table 3.1 shows how much better Virtu-
alCluster performs than a single cluster per tenant system. Regardless, our framework pro-
duced a more robust outcome with a significant performance advantage. Based on the results,
EdgeNet is better suited for edge computing, as well as for cloud-edge collaborations.

3.3.2 Pod creation

To examine the effect of VirtualCluster’s syncer on performance, we measure the time that
it takes to create a representation of a pod as an object. The syncer gathers pod objects from
the tenant control plane and creates them in the host control plane, called a supercluster.
The time that we measure is the time that it takes for pods to show a pending status in the
supercluster.
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Table 3.1: Quick comparison of native and multi-instance approaches

Max Tenants
Creation Time (s) Per Tenant

Median Max Overhead (MB)

EdgeNet 10,000 0.616 1.741 None
VC 40 82 93 285
RKE 4 343 395 711

Max number represents the maximum number of successfully established tenants that can be stably reached with respect to
allocated resources for tenant creation.
Creation time is the time that it takes to establish a tenant for four simultaneous requests.
Per tenant overhead refers to the fixed proportion of resources each tenant consumes in an average manner, regardless of
activity. VC consumption was measured using pods that deliver control planes to tenants, and RKE consumption was measured
through containers that provide clusters to tenants. Traditional VM-based overhead is not included in RKE.

We focus on pods instead of containers as that helps us reveal the framework’s capabili-
ties, as the creation of containers is dependent upon many factors such as available resources
on the host, container runtime, and volume type. There are already many papers that evaluate
these aspects for different container runtimes.

3.3.2.1 VirtualCluster

Request inter-arrival time affects the number of successfully created pods similarly to how it
affects the number of successfully created tenants. This is because, as described above, cre-
ated tenants struggle to enter a healthy state when inter-arrival time is short. Also, increasing
the number of tenants that create pods degrades pod creation performance. One reason for
this is the increased resource use in tenants’ control planes. Pod creation success, for 16 or
32 tenants, is 100% for 1,250 and 2,500 pods; performance drops slightly for the creation of
5,000 pods; for 10,000 pods, a median of 9,431 are successfully created. The time it takes to
create pods also increases with the number of pods created.

3.3.2.2 EdgeNet

Up to 10,000 pods can be created simultaneously for up to 300 tenants in a deterministic
manner. Performance for 10,000 pods started to degrade at 384 tenants due to saturation
of the Kubernetes API server in processing requests from different core namespaces. Pod
creation time does not spike, as there is no intermediate layer syncing the objects. A lin-
ear relationship is observed between the median creation times and the number of pods in
Table3.2.

3.3.2.3 Comparison

In VirtualCluster, the syncer is an intermediate layer between the supercluster and tenant
control planes in order to sync pod objects. The disadvantage of this approach is that ev-
ery pod operation introduces synchronization overhead, both on the supercluster and tenant
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Table 3.2: Time in seconds, median values, to create a representation of a pod as an object in the host control plane. The number
of tenants used for the experiments is set to 32 for both VirtualCluster and EdgeNet

Number of pods 1,250 2,500 5,000 10,000

VirtualCluster 12 22.5 46 134
EdgeNet 2.5 6 12 27

sides. We should emphasize that every synchronization process causes a delay for a pod to
be up and running. This may raise concerns about running VirtualCluster at scale; however,
it can be mostly overcome by providing more computing resources to the framework, lead-
ing to higher costs. In contrast, EdgeNet allows tenants to directly make use of the same
control plane so as to create pods. Its performance is directly related to the capabilities of
the control plane. Thus, EdgeNet produces superior results, where VirtualCluster takes at
least three times as much time as EdgeNet to create 1,250 pods, 2,500 pods, 5,000 pods,
and 10,000 separately. Table 3.2 shows how far VirtualCluster’s synchronization of objects
between the supercluster and tenant control planes causes significant delays while achieving
better isolation.

3.4 Conclusion and future work

We have presented EdgeNet, a Kubernetes-based multitenancy framework for Containers as
a Service (CaaS) that, because it is native, i.e., serves all tenants through a single control
plane and a single data plane per cluster, is a more efficient alternative to the current multi-
instance manner in which cloud providers offer CaaS. Our benchmarking results demon-
strated good scalability and response times for EdgeNet as compared to a leading multi-
instance alternative. Though, in our framework, tenants are not isolated into separate control
planes, their containers nonetheless receive the high level of isolation that is provided by
Kata containers. For edge computing to succeed, we believe that security and isolation must
be handled natively in software so that workloads can be moved between distant clusters
within short delays.

There are, of course, still many questions to be answered. What are the most optimal
ways to establish a robust CaaS federation that is composed of ubiquitous clusters offered by
numerous providers? In order for clusters to join and leave such a federation seamlessly and
securely, what trust mechanisms must be in place? How can users get reliable and transparent
billing systems in such an environment? Chapter 4 discusses our federation strategy that
addresses some aspects of such a robust CaaS federation.

Anyone may avail themselves of our liberally-licensed, free, open-source code to enable
multitenancy in a Kubernetes cluster. It is already in production use in the EdgeNet edge
cloud testbed, for which the tenants are research groups around the world. And it is particu-
larly suited for edge clouds, where resources are limited, as well as for the cloud. Because of
its federation features, we see this framework as paving the way for tenants to deploy their
services across edge clouds operated by many different operators worldwide.

Although the work presented in this chapter goes a long way to establishing a Kubernetes
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multitenancy framework that is suitable for the edge cloud, there is still considerable room
for improvement. We describe areas for future work below.

Sub-node-level VIP Slicing. In order for tenants to receive guaranteed access to re-
sources that are both available and dedicated to them, node-level slicing is currently the only
option. By adding a new point to the slice spectrum, it will be possible to do so at sub-node-
level granularity. We will deploy a pod that consumes almost no real resources on a node to
ensure that resources are secured. Priority classes will enable the reservation mechanism for
pods.

Resource Quota Reallocation. Resource usage is sub-optimal if tenants reserve quotas
that they do not then fully use. We plan to develop an algorithm to redistribute unused quotas
in a best-effort fashion. Tenants that consume all of their quotas would receive additional
resources. Quotas can also be redistributed among the namespaces of each individual tenant.
This would improve overall efficiency at little cost, provided that tenants and namespaces
can recoup their assigned quota if and when it is needed.

Storage. Sharing storage among containers securely at the edge is a challenge due to
the security issues discussed in the Rationale section (see Sec.2.2.2). We plan to develop an
agent that runs on every node and is ready, upon tenant demand, to prepare a disk partition
that the tenant can use as a storage volume for its Kata containers.

Security. We plan to encrypt each tenant’s data separately, across its namespaces and
cluster-scoped resources. In this way, even if a tenant’s data leaks, another tenant will not be
able to read it. This improvement may affect the performance of our framework slightly.

Customization. Tenants cannot currently create cluster-scoped resources independently.
We plan to develop a namespace-scoped custom resource that allows users to dynamically
create cluster-scoped resources. This entity will be using the namespace name as a prefix in
generating cluster-scoped resource names to avoid collisions.

Subnamespaces. A user may want to attach labels to subnamespaces. There is a risk,
however, of a malicious actor breaching another tenant’s network policies if labels are de-
fined independently. For example, one can launch a brute-force attack to correctly guess the
namespace labels used in a tenant’s network policies. By using the name of the subsidiary
namespace as a prefix, we plan to solve this issue. Inheritance will then allow labels to be
passed down from parent to child.

Container Isolation. Based on the reasons outlined at the end of our discussion of
lightweight hardware virtualization (see Sec.3.1.2), we will use a specific experiment setup
to assess how Kata, gVisor,29 and runC perform. We will examine a setup in which Kata and
gVisor run on a physical server while runC runs on a virtual machine created on that server.

Isolation Daemon. Kubernetes garbage collection removes unused images. However,
our slicing feature provides on-demand node-level isolation, so we need to instantly clean
the node from multi-tenant pods and container images. We also consider clear iptables rules
during this process. An isolation daemon that runs on each node will be further developed to
fulfill these operations.

29gVisor https://gvisor.dev/
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A federation that spreads by local action

Cloud computing has changed how applications are developed and deployed over the last
decades. The adoption of cloud computing has been stably growing as it protects customers
from upfront infrastructure investments and provides on-demand access to scalable resources
with the charging model of pay-as-you-go. The more organizations take advantage of cloud
computing, the more additional services likely are to be delivered by CSPs with the aim of
satisfying customer requirements, as it already happens with the cloud providers constantly
bringing out new self-specific services [81]. These provider-specific offerings hinder inter-
operability [47]. Furthermore, such diverse services that are specific to a particular CSP
cause vendor lock-in problems such that customers cannot easily move between CSPs. With
time, this becomes a burden for customers as they cannot effortlessly benefit from the infras-
tructure, service, and maybe better prices of other CSPs. It is through the development of
intercloud solutions that this problem can be overcome.

Resource provisioning and application deployment in an intercloud environment is a
long-lasting topic in both research and industrial communities [157, 10, 104, 163, 97, 118].
The main motivations are to improve scalability, reduce downtime, optimize costs, avoid
vendor lock-in, benefit from various services, leverage more geographical locations, pro-
vide enhanced security, and comply with legal obligations [9, 105, 64, 3]. Five main deliv-
ery models are available, which can be used in combination to achieve these goals: hybrid
clouds, multi-clouds, sky computing, multi-clouds tournament, and cloud federations [78].1

Still, the fast-evolving nature of cloud computing requires continuous adaptation of these
intercloud solutions to encompass new APIs, services, and concepts [46]. The provider-
centric techniques, therefore, fail to facilitate client-centric and flexible mixtures of cloud
services [140].

As these problems are being dealt with in the cloud, edge computing infrastructure is
also being deployed. With the requirements imposed by the internet of things (IoT), network
function virtualization (NFV), and mobile computing, it is no longer debatable whether dis-
tributed cloud infrastructures are needed [124]. Interoperability between these clouds and

1Alongside hybrid clouds, multi-cloud and federation are the areas of greatest interest, to the best of our
knowledge.
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edge clouds becomes a fundamental requirement for some edge computing use cases [37,
55]. We think the CaaS service model can facilitate establishing such interoperability since
most offerings are built upon Kubernetes, a de facto industry standard container orchestration
tool for clouds.2 However, there remains the question of which delivery model to adopt.

Table 3.1 shows that spinning up a cluster per location introduces high overhead and
slow startup. Such slow startup hinders workload mobility, and high overhead results in
inefficient use of constrained resources in edge clouds. This can be manageable for large
organizations that can have clusters ready at required locations but can quickly become te-
dious and costly for a small-sized edge cloud customer. In adherence with our assumption
that multiple operators will provide edge clouds in many locations, we assert that a CaaS
federation that employs our multitenancy framework can incentivize edge cloud customers,
especially small and medium-sized ones, with three benefits: (1) lower costs, (2) abstrac-
tion of cluster management per location, and (3) quicker tenant environment preparation.3

This inclusive approach can also help edge cloud providers achieve their infrastructure cost-
efficiency despite widely dispersed site locations.

That being the case, we have developed our federation solutions so as to extend Ku-
bernetes, which helps maintain interoperability between many clouds and edge clouds at
plentiful locations. Another advantage of using Kubernetes is its declarative approach: users
declare their desired states of resources to which corresponding controllers converge the ac-
tual state within a continuous control cycle. This principle provides a robust failure resiliency
for distributed systems. However, Kubernetes is not designed to run on a geographically
distributed environment like edge computing infrastructure but to run on centralized data
centers.

Based upon our analysis of the scientific literature, we argue that an integrated federation
strategy is required for CaaS built upon Kubernetes to work for clouds and edge clouds
sustainably, thus identifying three delivery models of federation:

• Node-wise: multiple providers offer nodes to a cluster. The cluster’s control plane
becomes a control plane for federation, and resources that are federated are the nodes.
This approach allows small-size providers to offer their resources. It is also suitable
when resources are tightly constrained and are probably needed at various locations,
so an additional control plane overhead should be avoided.
• Cluster-wise: multiple providers open their clusters to each others’ tenants. It requires

a mechanism to propagate objects and move workloads across clusters securely, and
resources that are federated are the clusters. This approach is reasonable when re-
sources can relatively scale and are presumptively needed at multiple regions, so an
additional cluster control plane is acceptable.
• System-wise: multiple providers can interconnect and interoperate their systems. Each

system can be a standalone federation itself, and the form of resources that are fed-
erated are the systems. Such an approach is required if and when providers employ

2Kubernetes, being a standard tool for container orchestration, mostly overcomes the continuous adaptation
problem occurring in intercloud efforts.

3Even if a large-sized edge cloud customer wants to acquire a set of dedicated clusters across a number of
regions, our proposed federation approach is still suitable to interoperate these clusters located in edge clouds
offered by multiple providers.
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different tools and systems and when resources are likely to be needed at various spots.

Our reasoning behind an integrated federation strategy is that we contend there is no one-size
fits all solution to federate resources in the edge continuum. This is evidenced by the fact that
WAN deployment made in a geographically distributed node-wise federation causes a high
latency between the control plane and worker nodes, resulting in performance degradation
for some regards, and that a centralized federation control plane brings about limitations and
weaknesses, e.g., the direct interaction of local actors to member clusters can result in their
misconfiguration in a split-brain scenario [93]. These two approaches also share a deficit in
scalability; Kubernetes suggests having 5000 nodes in a single cluster at the maximum4, and
the KubeFed-based cluster-wise federation option targets dozens of clusters [82], which is
relatively low for envisaged edge infrastructure.

Below are our contributions and the sections of the chapter that address them:

• We have devised an integrated federation strategy that we believe will foster a future
in which CaaS can grow to help establish a federated edge infrastructure at scale by
enabling multiple providers to offer compute resources in the form of nodes (Sec.4.1),
clusters (Sec. 4.2), and systems (Sec. 4.3) in many locations while preserving the
lightweight and low overhead essence of our multitenancy framework.

• We have implemented a node deployment procedure in which providers run a bootstrap
script to make their nodes join the cluster (Sec.4.1.2) and have brought it into operation
in the EdgeNet testbed (See Sec.5.3.2 for details).

• After analyzing the Kubernetes federation tools, we have developed a functioning pro-
totype of cluster-wise federation (Sec. 4.2.1), which aims at federating a large num-
ber of clusters while covering different use case scenarios through its three federation
manager deployment model (Sec. 4.2.1.1). Our proposed architecture also removes
the necessity for a centralized federation control plane that manages member clusters,
and by this means, it addresses the single point of failure and the split-brain problems
(Sec.4.2.1.2).5

The chapter is organized as follows. Sec.4.1 describes how to establish a node-wise fed-
eration and how we have implemented the node deployment procedure. Sec.4.2 introduces
a conceptual architecture for cluster-wise federation, argues it, and explains how we have
developed a prototype on top of this architecture. In Sec.4.3, we provide a vision for system-
wise federation and discuss why it can be needed, and we conclude the chapter along with a
future work in Sec.4.4.

4.1 Node-wise federation

We believe that a federation of edge nodes, each node being offered by a different provider,
is essential to establish heterogeneity in compute resources and devices as well as to enable
numerous vantage points. Such a federation can virtually address two problems that are re-

4Kubernetes documentation: Large Clusters https://kubernetes.io/docs/setup/best-practices/cluster-large/
5The architecture of cluster-wise federation has not yet been validated through the in-depth experiments

and analysis, which we will do through future work (Sec.4.4).
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Figure 4.1: A depiction of the establishment of a node-wise federation.

source provisioning and maintenance. As multiple providers deliver edge nodes, a federation
can ensure an infrastructure at scale. It also facilitates the maintenance of the nodes through
physical operation, thanks to a shared workload between the providers.

4.1.1 Architecture

This delivery model is based on a regular control plane with a set of compute nodes that
form a federation, as shown in Fig. 4.1a. A federation is initiated by a federation provider,
which can be a single institution or an association, that delivers a cluster that consists of a
control plane and conceivably compute nodes. Multiple providers supply compute nodes to
such a cluster, scaling out the federation infrastructure, as seen in Fig. 4.1b. All compute
nodes inside clusters, in this case, are fully accessible to their clusters’ control plane for the
purpose of supervision.

A federation provider is responsible for cluster administration, from maintaining the con-
trol plane nodes as well as compute nodes that it provides to auditing. If multiple providers
deploy their nodes to their sites, this model alleviates the federation provider’s workload in
terms of node maintenance, as providers share the maintenance burden.6 Regarding who can
provide nodes, it depends on the policies of federation provider. It is possible to have control
over who can offer nodes, or a federation provider may choose to allow anybody to supply
nodes.7 In any case, tenants who deploy workloads on nodes should be able to target them
by their providers.

6If federation activity is for profit, node providers, in return, can receive a payment according to how much
customers use their nodes. Our work does not cover such an aspect.

7Within the EdgeNet testbed that supports not-for-profit research, we allow anonymous contributions. Their
contribution can be acknowledged through a website or a leaderboard in the future.
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4.1.2 How providers deploy nodes?

Our procedure consists of three main components for node deployment: a bootstrap script,
a node agent, and a controller. A provider is only required to run the bootstrap script on the
target node. This script is designed to install the container orchestration tool, the container
runtime, along with a dedicated node agent, as well as to set up a secure communication
channel through which the control plane nodes can access the node to be joined. Once the
node agent starts, it configures hostname and VPN, and then creates a node contribution
object in the cluster. Following the creation of a node contribution object in the control
plane, the controller gets informed, then generates a token for the join command that is
invoked remotely on the node.

We have implemented this procedure to extend Kubernetes.8 A node is a machine, phys-
ical or virtual, that runs a container runtime and the Kubernetes agent, kubelet. Our imple-
mentation uses containerd as the container runtime. While installing containerd and kubelet
is relatively easy for a user comfortable with the command line, we seek to make the process
as easy and error-proof as possible in order to encourage contributions.

To do so, we describe a configuration through a set of Ansible playbooks. Ansible is a
popular configuration management tool and is commonly used to deploy Kubernetes clusters
(see, for example, the Kubespray project9). By using Ansible, we can reuse community-
maintained playbooks for deploying containerd and kubelet, and we can benefit from the
ecosystem of tools that integrate with Ansible. Most notably, we make use of the Packer
tool10 to build ready-to-use virtual machines from the playbooks. We currently support the
deployment of nodes on the major Linux distributions (CentOS, Fedora, and Ubuntu) on x86
machines. We will extend support to ARM hosts in the future. The current implementation
is very flexible:

• The bootstrap script works on any recent Debian or RedHat-based Linux distribution,
on aarch64 or x86_64 architectures, and it doesn’t require any preinstalled software.

• The bootstrap script URL can be passed to cloud-init11 to automatically set up the
instances on first boot.

• The Ansible playbooks can be used in a standalone fashion for bulk deployment or
node maintenance.

• The Ansible playbooks can be used together with Packer to create VM images with
our software pre-installed.

In order to make this process as easy and as transparent as possible, a set of Ansible
playbooks automatically perform some of the node deployment steps. The node agent is
written in Go, and the controller is a Kubernetes operator, node contribution,12 that consists
of a custom resource and its custom controller. Fig. 4.2 presents a flowchart of our current
deployment procedure, and its main steps are summarized as follows:

8EdgeNet node provisioning https://github.com/EdgeNet-project/node.
9Kubespray https://github.com/kubernetes-sigs/kubespray

10Packer https://www.packer.io
11cloud-init https://cloud-init.io
12Since our edge cloud testbed, which is described Chapter5, uses this feature, we name it node contribution.
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• A provider runs the bootstrap.sh script on the target node. This script installs An-
sible, fetches the deployment playbook, and runs it.

• The playbook setups SSH access and installs the container runtime, Kubernetes, and a
dedicated node agent written in Go.

• The node agent starts and configures the node hostname and the VPN as described in
Sec.5.3.1, and it creates a node contribution object in the cluster.

• The controller connects to the node through SSH, generates a token, and runs a join
command using this token. If the node joins the cluster, the controller then adds a DNS
record for it. If not, the controller retries its step until the failure count reaches back
off-limit.

Our node contribution procedure can spawn a node in under 5 minutes.
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Figure 4.2: Flowchart of the node contribution procedure. A controller typically resyncs objects at an interval to converge the actual
state to the desired state in a continuous loop. In the diagram, Node Contribution Controller includes two ends for clarity and view.
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In our current implementation, no input is required from the user, and anyone can deploy
a node without authentication. However, a cluster administrator can manually configure the
cluster to require providers to authenticate first to make their nodes join that cluster. As our
edge cloud testbed, described in Chapter 5, adopts a node-wise federation delivery model,
we further discuss how this architecture is used to provide a globally distributed testbed
infrastructure, along with other features such as node labeler and selective deployment (See
Sec.5.2).

4.1.3 Time to deploy a node

A node can be deployed in two ways: from a pre-built cloud image, or from a bootstrap shell
script in a dedicated virtual machine. We perform our measurements for both methods on an
AWS (Amazon Web Services) t2.small instance with 1 vCPU and 2 GB of memory, in the
eu-west-1 (Ireland) region. We neglected setting up VPN during these measurements. The
measurements were carried out on the EdgeNet testbed in 2021.

With the bootstrap script, counting from the launch of the script, it takes 2 minutes and
50 seconds to install Docker and Kubernetes, 3 minutes and 5 seconds for the node to be
detected by the cluster, and 3 minutes and 50 seconds to be ready to deploy containers.

With the prebuilt AMI (Amazon Machine Image), counting from the instance creation, it
takes 40 seconds for the node to be detected by the cluster, and 1 minute 20 seconds for the
node to be ready to deploy containers.

4.2 Cluster-wise federation

We aim at a federation of a large number of clusters that are hosted, besides in clouds, mainly
in edge clouds that are geographically dispersed and that multiple operators provide. As mul-
tiple providers deliver clusters, similar to the node-wise federation, an infrastructure at scale
can be accomplished. In other words, the more operators supply clusters to the federation,
the more coverage of regions in which an operator’s customer can run containers.13 Thanks
to a division of labor in maintaining federated clusters between the providers, this approach
facilitates the maintenance of the clusters in many locations through physical operation.

We have conceived an architecture to federate clusters with the goal of overcoming the
single point of failure problem, ensuring scalability, and reducing attack vectors. We have
also implemented a prototype, which works in concert with our multitenancy framework
discussed in Chapter3, that deploys tenants’ containers to remote clusters. This architecture
has not been validated yet through rigorous experiments and analysis, which we have started
to work on, as explained in Sec.4.4. Below, we describe our proposed architecture and argue
it.

13We have an architecture where tenants contract with only one operator they prefer; federated resources are
accessible through a worker cluster of this chosen operator.

69



Chapter 4
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(a) A cluster that is made up of a control plane that mul-
tiple providers share and of compute nodes that run the
federation manager’s software components.
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Cluster 
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Federation
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(b) A federation provider delivers a federation consisting of a feder-
ation manager with one compute cluster, and two cluster providers
each contribute a compute clusters to it.

Figure 4.3: A depiction of the establishment of a cluster-wise federation.

4.2.1 Architecture

A federation provider is conceived to be both a single institution, like a prominent cloud
provider, or an association, such as small data center owners. It delivers a federation that
can consist of one or more federation managers, as well as compute clusters that run tenants’
workloads (Fig.4.3). Multiple providers then can contribute to this federation with their own
compute clusters, as depicted in Fig.4.3b. These providers can also bring their own manager
clusters to the federation.

A cluster provider can be a cloud provider, operator, and small data center owner. It can
even be a small or medium-sized enterprise that wants to access federated resources as well
as rent out resources on its on-premises infrastructure. A federation provider is responsible
for ensuring the satisfaction of federation-level agreements and service-level agreements that
these providers offer.

We describe our architecture through five primary aspects: federating clusters, resource
discovery, accessing federated resources, scheduling, and autoscaling. Our prototype im-
plementation, a CaaS federation tool, is designed as a set of custom resources and custom
controllers that extend Kubernetes from within.14 This prototype works together with our
multitenant CaaS framework so that it enables multiple tenants to share federated clusters
besides their local clusters. Below are seven new entities that our prototype introduces to
address the first four primary aspects of our architecture:

• Cluster is the fundamental entity through which providers can federate their clusters
(Sec.4.2.1.1).

• Selective deployment anchor helps propagate federation-scoped deployment informa-
tion across federation managers (Sec.4.2.1.2).

• Selective deployment is a feature through which users can target clusters on which their
containers will be run (Sec.4.2.1.2).

14We follow the same approach that we use for our multitenancy framework to implement our prototype.
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• Federation agent, named as Fedlet, runs on compute clusters and sends their available
resources to their managers (Sec.4.2.1.3).

• Manager cache contains minimal information for the federation scheduler to make
decisions (Sec.4.2.1.3).

• Cluster labeler is a service, which is derived from node labeler (See Sec. 5.2.1), that
attaches labels to clusters according to their location information (Sec.4.2.1.4).

• Federation scheduler is a simple scheduler that selects worker clusters (Sec.4.2.1.4).

We benefit from the existing mechanisms for autoscaling purposes, which is the fifth aspect
of our architecture (Sec.4.2.1.5).

4.2.1.1 Federating clusters

We conceived of two types of clusters: (1) the compute clusters (Fig. 4.1a), namely the
worker clusters, which run tenants’ workloads; and (2) the manager clusters (Fig. 4.3a),
known as the federation managers, which discover federated resources, make federation-
level scheduling decisions, and propagate objects. Both of these clusters employ our multi-
tenancy framework.

Compute clusters. As their name suggests, compute clusters are designated for running
tenants’ workloads and are therefore called worker clusters as well. These clusters can be on
the cloud, service provider edge, or user/device edge. Each worker cluster is managed and
maintained autonomously by its provider. Providers make their clusters part of the federation
through the use of federation managers.

Multiple tenants share these worker clusters, thus multi-tenant, and access the federa-
tion resources through the worker clusters with which they are registered. Our multitenancy
framework allows these clusters to receive federation deployments from other worker clus-
ters without collision (See Sec.3.2.2.4). When a worker cluster receives a federation deploy-
ment instruction, the cluster is not dependent on any additional information that comes from
any central federation component in order to make in-cluster scheduling, pod autoscaling,
and cluster autoscaling decisions. This, aside from preventing the concentration of compu-
tational load on centralized components, allows cluster providers to apply their own strategy
to maximize their profits, whether by shutting down nodes or changing outsource/insource
balance [57].

Manager clusters. A federation is initiated with a federation provider delivering the core
federation manager. A manager cluster consists of a control plane with which providers
communicate to federate their clusters and of compute nodes that run software entities that
fulfill the federation manager’s responsibilities. In this way, a manager cluster can scale out
and down as a function of demand in the federation.

Multiple providers share a federation manager to federate their own federation managers
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or worker clusters with the federation.15 Registration of providers with federation man-
agers is subject to the administrator approval. Once approved, each provider is allocated an
isolated environment in their requested manager cluster’s control plane. Having their own
environment, providers can start generating a token for each cluster to be federated and put
these tokens in their environments. Federation managers consume these tokens to establish
bidirectional communication with clusters to be federated.

Providers declare their clusters through our cluster entity’s specification, which consists
of the following:

• UUID of the cluster such that the federation manager can verify it.

• The role to determine whether it is a worker cluster or a manager cluster.

• An IP address through which the federation manager can communicate with the clus-
ter’s API server.

• The name of the secret that stores the token, which allows the federation manager to
authenticate with the target cluster.

• Visibility of the cluster where public means open to federation deployments and private
indicates closed.

• Sharing preferences, through the use of an allowlist or a denylist, that restrict who can
access the cluster resources.

• Enabled that allows making the cluster open or close to the incoming or outgoing
federation deployments.

If the visibility of a cluster is set to private, it means that tenants of this cluster can access
federated resources, but the cluster does not accept federation deployments. We consider
such an option valuable as a small-size enterprise may want to benefit from the federated
resources while being ensured that the federation workloads do not run on its infrastructure.

It is also not uncommon for a provider to demand control over what resources are shared
and with whom. Our architecture gives providers the ability to configure sharing preferences
at two layers. The former allows a provider to share a set of nodes in a worker cluster, while
the rest of the nodes does not accept federation deployments. This can be done simply by
labeling the nodes to be shared with federation workloads. The latter is to form an allow list
or deny list with which providers can open or close their clusters, both manager and worker,
to certain operators and tenants.

Edge computing, as discussed in Sec. 2.1.2.2, comes with heterogeneity in locations,
network settings, hardware, software resources as well as resource owners. Some use cases
will likely mandate different federation deployments. We hereby suggest that there is no one-
size fits all solution regarding the federation deployment model for edge computing. We look
at the earlier work that discusses various federation deployment scenarios [15] and distill
out three of them to be adapted for the edge cloud infrastructure that this thesis envisages.
Fig. 4.4 depicts these three deployment models: (1) Standalone; (2) Peer-to-peer; and (3)
Hierarchical.

15No end user communicates with federation managers to create federation-scoped deployments.
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Figure 4.4: A depiction of three federation manager deployment scenarios. Each color represents a different provider.

Standalone deployment. A federation provider can launch a standalone federation man-
ager to be shared by multiple operators with the goal of federating their worker clusters
(Fig. 4.4a). Clusters provided by different operators are inter-communicated through a sin-
gle federation manager.16 Such a deployment can be contained in a region, which results in
preventing customers from accessing resources outside of the region. It can also consist of
clusters scattered around the world to overcome this issue.

Lightweight as this deployment model is, it has some disadvantages as well. First of all,
a single, standalone federation manager can federate a limited number of worker clusters,
thus causing scalability deficiency. Although the worker clusters are autonomous, having
one federation manager, even if it can have multiple control plane nodes to ensure HA, also
introduces a single point of failure in the context of the federation. In other words, a down
federation manager prevents users from accessing federated resources.

Peer-to-peer deployment. This model is based on federation managers peering with
each other (Fig.4.4b). Multiple operators can provide their own federation managers, becom-
ing federation providers, then peer with others for their tenants to gain access to resources
in different regions. In this deployment model, each federation manager is more likely to
retain worker clusters in a particular region rather than having them distributed to a wide
area. This approach lowers the latency between federation managers with their worker clus-
ters. This low latency enables a federation manager to quickly move workloads between its
worker clusters as well as to receive available resource updates from these clusters with a
brief delay, which improves scheduling decisions’ accuracy.

This model addresses two drawbacks of standalone deployments. First, it overcomes the
single point of failure as multiple federation managers peer with each other. If a federation
manager in a region is down, the others can keep on sharing their resources without inter-
ruption. Having multiple federation managers also partially alleviates scalability weakness.
However, the more peers there are, the more direct connection will occur, which may result
in slower performance. Regarding security, each federation manager bears responsibility for
its own protection as well as the collective safety of the federation. A security downside
of peer-to-peer connections is that it might be tedious for a federation manager provider to

16No worker cluster establishes peer-to-peer communication with another unless they host identical deploy-
ments.
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detect and cut off the flow of malicious activity in order to keep such traffic in a particular
region in case of an organized attack.

Hierarchical deployment. This is a federation that is hierarchical in nature, forming a
general tree that is owned and maintained by its federation provider (Fig.4.4c). Federation
managers construct a parent-child relationship where parents have control over their children.
Multiple operators share federation managers, similar to the previous deployment models,
with one difference: they can also federate their own federation managers as a child besides
their worker clusters. In our estimation, a hierarchical deployment will cover one region,
with a root-level federation manager running in the regional data center of the region. Then
each federation located in a different region can form a federation of federations by peering
with each other through the core network.17

There is no hard limit to the number of levels a hierarchy can employ, but the more
levels, the more delays may occur in moving workloads between different subtrees. A feder-
ation provider can enrich these levels by putting in new ones or can refine them according to
the physical infrastructure. Every level has one or more federation managers that may hold
worker clusters. Direct communication occurs neither between federation managers at the
same level nor between worker clusters, except for the worker clusters that host the replicas
of the same services and applications. This limited access to federation managers reduces
attack vectors, thus mitigating the security issues that arise from peer-to-peer deployments.
A provider can cut malicious traffic that comes from a subtree off by disabling its corre-
sponding child federation manager. The rest of the hierarchical federation remains serving
well in this case. We believe that having fewer direct connections than solely peer-to-peer
deployments contributes to better scalability. Although this deployment model addresses
such disadvantages of previous ones, lacking direct connections might result in slight delays
in moving workloads across federated clusters.

4.2.1.2 Accessing federated resources

Sec.3.2.2.4 describes a lightweight mechanism through which every worker cluster can re-
ceive deployment instructions from tenants of other clusters without collisions. Tenants
make deployments on remote worker clusters in the federation through the use of their local
worker clusters. No tenant communicates with a federation manager in order to make such
deployments. It means that a network disconnection of a worker cluster from the federation
does not prevent its cluster admins and local tenants, as well as its worker nodes, from using
its control plane locally, thus ensuring robustness [23].

Let us consider an example shown in Fig.4.5 that illustrates a federation deployment:18 A
given federation F consists of one federation manager FM and three worker clusters, WC1,
WC2, and WC3, one of which is used by a tenant T in order to make deployment on remote
clusters in the federation. First of all, this tenant needs to be registered with one of these

17An example could be telco operators that run their business in different regions can build their own hierar-
chical federations and then peer them to achieve high utilization of their infrastructures.

18For clarity, we use the deployment term for selective deployment and the deployment package term for
selective deployment anchor.
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Figure 4.5: A tenant deploys three identical workloads on a local worker cluster and two remote worker clusters.

worker nodes. Let us assume that tenant T has registered with WC1, which is now the local
worker cluster to the tenant.

T needs to prepare a specification for deployment D in order to run a workload W on
remote clusters. This specification targets remote clusters, for example, by their locations,
on which workload W will run. In our scenario, two remote clusters, WC2 and WC3, are
targeted to receive D instruction; local cluster WC1 could also be targeted along with the
other two.

Once D is made, it creates workload W on WC1 if it is included as a target, and then
prepares a package DP for deployment D to be transmitted to federation manager FM.19 DP
contains as little information as possible regarding deployment, which is required for FM
to make a scheduling decision at the level of federation. It also carries a secret of access
credentials that FM uses to retrieve further information from D and that worker clusters
WC2 and WC3 uses to update the status of D.

FM makes a scheduling decision based on information from DP, so selecting remote
clusters WC2 and WC3. Once these two remote clusters are selected, the deployment pro-
cedure then begins with FM obtaining missing information from D. This missing infor-
mation is used to create a deployment D′ in WC2 and a deployment D′′ in WC3, where
D ≡ D′ ≡ D′′.

These three deployments have the same specification that describes how to run work-
loads. Each deployment in a separate worker cluster creates its own workloads: D, D′, and
D′′ create W, W ′, and W ′′ respectively, where W ≡ W ′ ≡ W ′′. Upon the creation of these
workloads, deployment D continuously receives updates on the status of W ′ and W ′′ from
deployment D′ and D′′.

19If multiple federation managers collaborate, the foremost manager makes a scheduling decision and sends
the deployment package to the selected manager through the intermediary managers if any.
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4.2.1.3 Resource discovery

Resource discovery occurs in two flows: first from worker clusters to their federation man-
agers, then between federation managers. Every worker cluster, through our fedlet entity,
sends resource updates to its federation manager at an interval if there are no significant
changes regarding resource availability. The status stanza of each cluster resource in a fed-
eration manager holds information related to the readiness and allocatable resources of the
corresponding cluster. Our manager cache entity then consolidates these announcements
and makes a cache from them.

In the context of peer-to-peer deployment, this cache is sent to all peers at an interval.
If there is a hierarchical deployment, this cache is conveyed to the children managers at an
interval. Subsequently, this federation manager pulls cache information from its children
managers to synchronize with up-to-date caches made by others. These caches are used in
order to search for feasible worker clusters during scheduling.

4.2.1.4 Scheduling

Sec.2.1.3 glances through state-of-the-art scheduling solutions and states that scheduling al-
gorithms are not in the scope of our thesis but that our federation architecture allows compute
clusters to employ their own scheduling algorithms. This is because our architecture adopts
a two-level scheduler approach that separates federation-level scheduler from cluster-level
scheduler. The upper-level scheduler at federation managers selects feasible worker clusters,
whereas the lower-level scheduler at worker clusters chooses feasible worker nodes.

The upper-level scheduler, namely the federation scheduler, first checks with the feder-
ation manager’s clusters to see if any of them meets the requirements. This way, we aim to
shorten the time it takes to move a workload from one cluster to another. Another advantage
is that the federation scheduler has more up-to-date state information about these clusters,
which may lead to more accurate scheduling decisions. If there are no feasible worker clus-
ters, the federation scheduler acts on cached states of clusters that belong to other federation
managers and prioritizes location over available resources.20

Once a worker cluster is selected, it receives the required information about the deploy-
ment to make its own scheduling decision to choose which nodes to run containers. We
believe that there is no one-size fits all scheduling algorithm and that worker clusters can
make the best scheduling decisions taking the workload context into account, compared to
any central scheduling algorithm that runs on a federation scale.

4.2.1.5 Autoscaling

Sec.4.2.1.1 presents the worker clusters that providers manage and maintain autonomously.
It comes with its own advantages and disadvantages. For example, it does not require a

20Clusters are given labels, which contain their location information, programmatically by the cluster labeler
entity.
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central mechanism that manages autoscaling, which allows employing existing autoscaler
tools to scale out and down pods and nodes. In other words, a compute cluster or a pod can
independently be scaled out and down as a function of user requests, even if its connection
to the federation is lost. When user requests are high, autoscalers that run locally can add
new nodes to the cluster as well as can spin up new pods to meet the demand. However,
this approach lacks a general view of federation resources, which may lead to inefficiency in
utilizing federated resources.

4.2.2 Evaluation

This section assesses the performance of our cluster-wise federation architecture through our
prototype. We aim to reveal how much overhead locating a federation manager cluster be-
tween worker clusters introduces and to what extent our multitenancy framework promotes
workload mobility. To this end, we compare our prototype with native Kubernetes regarding
pod deployment times. We measure the time it takes to make a deployment within a cluster
in native Kubernetes experiments, whereas this is the time it takes to make a selective de-
ployment from a local cluster to a remote cluster for our prototype. The measurements were
carried out in 2023.

The results demonstrate that a tenant can deploy a single pod to a remote cluster, which
includes creating the tenant’s workspace, with a brief delay of approximately 1.5 s (median
time) compared to native Kubernetes deployments. This indicates that introducing a federa-
tion manager between worker clusters does not entail a significant increase in pod scheduling
time. For 20 concurrent deployments, the maximum time required for pods to be deployed
and scheduled on a remote cluster is shorter than the median time required for creating
a tenant environment through VirtualCluster when 4 simultaneous tenant creation requests
are made. These outcomes offer additional evidence supporting our claim that our single-
instance framework promotes workload mobility. Nevertheless, we observed a decrease in
performance when concurrent deployment requests were made, which was also evident in
the native Kubernetes experiments. This finding highlights the need for further optimization
studies regarding federation components.

In Sec.4.2.2.1, we describe the setups that we use for experiments, and Sec.4.2.2.2 pro-
vides a step-by-step account of the experiments we conducted.

4.2.2.1 Setup

We prepared two experiment setups by using the GENI infrastructure to spawn four Ubuntu
20.04.6 LTS virtual machines: a VM with 8 CPUs and 12 GB of memory, a VM with 4
CPUs and 6 GB of memory, two VMs with 2 CPUs and 3 GB of memory each. We installed
containerd version 1.7.0, Kubernetes 1.26.3 using kubeadm, and Calico version 3.25.0 to
these VMs. Each VM hosts a separate one-node Kubernetes cluster.

For the native Kubernetes experiments, we assigned the VM with 8 CPUs and 12 GB of
memory. The experiments were conducted on the Kubernetes cluster running on this VM.
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For the experiments on our federation prototype, we reserved the remaining three VMs: two
VMs with 2 CPUs and 3 GB of memory for the federation manager and for the worker-1
cluster, and one VM with 4 CPUs and 6 GB of memory for the worker-2 cluster. We created
the VMs so that the resources allocated to the VM used for native Kubernetes experiments
are equal to the combined resources allocated to the three VMs used for experiments on
our prototype. 4 CPUs and 6 GB of memory were chosen for the worker-2 cluster because
containers run on it. We federated the worker clusters through the use of the federation
manager cluster, as explained in Sec.4.2.1.1.

For the native Kubernetes experiments, we implemented a script that creates and deletes
deployments while watching and recording events of deployments and pods. The deploy-
ments run a busybox container with the command to sleep indefinitely. This is to have
containers consume as low as possible resources at the host. We conducted, for each case,
50 measurements to create deployments with the pod replica count set at 1, 5, and 20. We
also conducted, for each case, 50 measurements to simultaneously create 1, 5, and 20 de-
ployments with 1 pod replica each.

For the experiments on our federation prototype, we prepared a script that creates and
deletes selective deployments, as well as watches and records events of selective deploy-
ments on the worker-1 and worker-2 clusters, selective deployment anchors on the federa-
tion manager cluster, and deployments and pods on the worker-2 cluster. We conducted, for
each case, 50 measurements to create selective deployments with the pod replica count set
at 1, 5, and 20. We also conducted, for each case, 50 measurements to simultaneously create
1, 5, and 20 selective deployments with 1 pod replica each. Similar to the native Kuber-
netes experiments, we used a busybox image with the command to sleep indefinitely for our
containers.

4.2.2.2 Findings

We measure the time it takes to schedule pods, counting from the API call. For a single
deployment, in Kubernetes, the median times are 272 ms for 1 pod, 470 ms for 5 pods, and
836 ms for 20 pods. An outlier is evident for the 1 pod case, where the maximum time is
4762 ms. In this case, long response times occur concerning the API server, controller man-
ager, and etcd; it takes, respectively, 1155 ms and 4474 ms when creating a deployment and
a pod. Additional investigation is required to reveal the underlying reason for such perfor-
mance decline of these Kubernetes components. In EdgeNet, the median times are 1868 ms
for 1 pod, 2285 ms for 5 pods, and 3129 ms for 20 pods, as shown in Fig.4.6. This signifies
that it takes 1868 ms in median time to create a single pod at the remote cluster and then have
this pod scheduled. Regarding median times, EdgeNet introduces a brief delay of 1596 ms,
1815 ms, and 2293 ms for 1, 5, and 20 pods respectively. Since the selective deployment
created on the local cluster is conveyed through the federation manager to the remote cluster,
we may conclude that the federation manager component introduces negligible overhead,
especially in the case of a single deployment.

Examining the maximum time spent deploying pods, we observe unexpected fluctuations
for 1 pod and 5 pods. It clocks in at a maximum time of 6068 ms for 1 pod, 6578 ms for 5
pods, and 7613 ms for 20 pods. A rise is anticipated for deployment with multiple pods;
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Figure 4.6: Pod scheduling time comparison for a single deployment. For EdgeNet, the time it takes to schedule pods on a remote
cluster through a single selective deployment. For Kubernetes, the time it takes to schedule pods on a local cluster through a single
deployment.

the Kubernetes scheduler assigns a node for each pod individually following its creation,
which results in more time for the last pod to be scheduled. However, this is not expected
behavior, especially in the case of a single deployment with 1 pod replica. The subsequent
paragraphs further investigate how much time is expended on each component with the aim
of elucidating the underlying cause.

We provide some context regarding operations done throughout a deployment period to
lay the basis for an explanation. Once an API call is made, it takes some time to create an ori-
gin selective deployment in the local cluster. The selective deployment controller processes
it and then creates a selective deployment anchor in the federation manager. Our simple fed-
eration scheduler then selects a cluster for this selective deployment. Upon assignment of a
cluster, the selective deployment anchor controller conveys the selective deployment to the
remote cluster. In order to accomplish this, the controller first communicates with the local
cluster to obtain necessary information related to selective deployment and then creates it in
the remote cluster. Subsequent to its creation, the selective deployment controller creates the
deployment in the remote cluster, and then the deployment creates pods.

Regarding the median times for a single deployment with 1 pod, it takes 215 ms for ori-
gin selective deployment creation, 530 ms for selective deployment anchor creation, 245 ms
for federation manager scheduling, 185 ms for follower selective deployment creation, 83 ms
for deployment creation, 189 ms for pod creation, and 107 ms for pod scheduling. Fig. 4.7
demonstrates that the variation is considerably greater for operations that require commu-
nicating with other clusters, as is for selective deployment anchor creation and follower
selective deployment creation. Among all, follower selective deployment creation presents
the most pronounced fluctuations. We think the underlying reason for this is that it commu-
nicates both the local and the remote clusters during the operation. Consistent with these
findings, we observe reduced fluctuations in the outcomes of operations that are handled lo-
cally, such as origin selective deployment creation, federation manager scheduling, and pod
scheduling.

We encounter extended time spans when we analyze the simultaneous creation of mul-
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Figure 4.7: Time usage comparison for cluster-wise federation components. The case of a single deployment with 1 pod.

tiple deployments with one pod replica, as seen in Fig. 4.8. For 1, 5, and 20 deployments
in EdgeNet, respectively, the median times are 1868 ms, 9600 ms, and 31,932 ms, and the
maximum times recorded are 6068 ms, 19,153 ms, and 72,651 ms. Kubernetes experiments
exhibit a similar outcome; for 1, 5, and 20 deployments, respectively, the median times are
272 ms, 769 ms, and 2874 ms, and the maximum times are 4762 ms, 7701 ms, and 16812 ms.
This behavior aligns with our analysis in Sec.3.3.1.2; the controllers process a higher quan-
tity of objects, which includes both creation and modification, leading to an elevated number
of API calls that saturate the API server, controller manager, and etcd moderately. As can
be observed in Fig. 3.8a, changing the number of workers, running period, QPS, and burst
values can improve the performance of these controllers.

Figure 4.8: Pod scheduling time comparison for deployments that are created simultaneously. For EdgeNet, the time it takes to
schedule pods on a remote cluster by using selective deployments. For Kubernetes, the time it takes to schedule pods on a local
cluster by using deployments.

Fig. 4.9 shows the amount of time devoted to each component in the case of 5 simulta-
neous selective deployment creations. The three components appearing in the middle of the
bars consume more time than others for each deployment, whether the first or last. This is
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Figure 4.9: Time-based comparison of five concurrently made selective deployments from a local cluster to a remote cluster. Average
time spent on each component.

also related to the controllers set to process two objects concurrently, which explains aug-
mentation between the second and third deployments as well as between the fourth and fifth.

For the first deployment, the time allocated to scheduling at the federation manager is
363 ms on average, which is 158 ms to pod scheduling. For the last one, the federation
manager scheduling records at 2624 ms, whereas pod scheduling measures at 218 ms. Our
analysis suggests that the federation manager’s components cause delays when the creation
of 5 selective deployments occurs simultaneously, which results in the creation of pods at
the remote cluster with time intervals. As the pods are created non-concurrently, we do not
observe substantial variations, comparing all deployments, between the average pod creation
times as well as between the average pod scheduling times. In addition, we noticed an
implementation issue of the selective deployment anchor controller regarding status updates,
which may also lead to a delay. Further investigation is needed to reveal the precise influence
of this implementation issue on the deployment time.

When making 20 selective deployments concurrently, a discernible pattern is noticeable.
Fig.4.10 depicts that the time consumed by federation manager components takes a greater
percentage of the overall time than other components for the last selective deployment in the
series. Although this time taken by the federation manager components can be shortened
with the optimization, these components will still account for a greater fraction of the total
time for the last deployment than for the first deployment. As some workloads are more
sensitive to time constraints than others are, prioritization must be enabled for selective de-
ployments, as does Kubernetes for pods. In this way, a selective deployment with priority
over others can be scheduled earlier.

In conclusion, we assert that the results indicate that our cluster-wise federation archi-
tecture introduces a reasonable overhead to run workloads on remote clusters. Through an
optimization study, it is possible to reduce the time spent on federation managers when re-
quests are concurrent. Our findings also show that a fully developed scheduling algorithm
for the federation must include selective deployment priorities so that time-sensitive and
time-critical workloads can be deployed on remote clusters with brief delays. With our fed-
eration prototype working in concert with our multitenancy framework, a single deployment
for a tenant’s pod onto a remote cluster, including scheduling and tenant workspace creation,
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Figure 4.10: The case wherein twenty concurrent selective deployments are initiated from a local cluster to a remote cluster. Average
time that is spent on each federation component for the 20th deployment.

takes under 2 s (median time). It even takes approximately 72 s at maximum for a tenant
to make 20 concurrent deployments on a remote cluster. For VirtualCluster, as seen in Ta-
ble 3.1, only preparing a tenant environment at a remote cluster would take 82 s (median
time) when 4 simultaneous creation requests are made, excluding the time it would take to
make 20 deployments that originate from a local cluster onto a remote cluster. This compar-
ison proves that our EdgeNet multitenancy framework, which is single-instance, promotes
workload mobility in federated environments. It is our contention that these findings also
show that, in EdgeNet, tenants of a local cluster can quickly move their workloads across
federated clusters while imposing low overhead.

4.3 System-wise federation

With edge computing, we are witnessing heterogeneity not only in resources and devices but
also in architectures and their implementations, including APIs, and we will continue to see
these unfold. In the context of container orchestration, what we mean by the system-wise
federation is the interconnection and interoperability of the tools and platforms that can man-
age containers’ life-cycle. It is, therefore, necessary to standardize container orchestration,
as has been done for containers through OCI21 from our perspective.

CNCF22 endeavors to provide such standardization for container orchestration through
Kubernetes, today’s de facto industry standard container orchestration tool.23 These valuable
efforts can lead to standardization, but a biased assumption may be that alternative tools
(See Sec. 2.1.3 for details) are not suitable for orchestrating containers at the edge and that
they will remain unsuitable even if they are so now. We believe there is no one-size fits all

21Open Container Initiative https://opencontainers.org/
22CNCF https://www.cncf.io/
23Kubernetes, which is Google’s third container orchestration system built on top of the knowledge acquired

from Borg and Omega [19], had been developed under the roof of Google until being donated to CNCF and
open-sourced.

82

https://opencontainers.org/
https://www.cncf.io/


A federation that spreads by local action

solution that can address the diverse requirements of many edge use cases. Furthermore, the
more operators who offer edge clouds, the more likely they are to employ various container
orchestration tools to satisfy the needs of their customers in the future.

For standardization, foundational properties24 that a container orchestration tool should
possess must be identified. We think that it can pave the way toward developing new con-
tainer orchestration tools, each to address a set of different requirements. It could facilitate
interoperability between these tools. Thus, edge clouds can still interoperate with minimal
effort even if edge cloud providers adopt different container orchestration tools for their CaaS
solutions.

Regarding the system-wise federation, we have developed an aggregate manager (AM),
which empowers researchers to use our globally distributed edge cloud testbed, EdgeNet,
through Fed4Fire+25 as they do for the other federated testbeds. This AM removes the
requirement of registering with the testbed to conduct measurements on our globally dis-
tributed edge cloud. Sec.5.4 explains how we have implemented it.

4.4 Conclusion and future work

We have devised an integrated federation strategy for Containers as a Service (CaaS) that
incorporates compute resources in the forms of nodes, clusters, and systems that providers
offer in many locations, which is a more comprehensive approach than the scope of current
federation tools. Our strategy encourages the inclusivity of all sizes of providers to mitigate
the resource provisioning challenges that stem from the highly distributed and heterogeneous
infrastructure that edge computing envisages. This, we believe, can ensure a federated edge
infrastructure at scale.

We also contend that for edge computing infrastructure to be successfully built at scale
while being sustainable, compute resources must be offered in various forms changing from
nodes to clusters by multiple providers as well as must be shared by multiple tenants (See
Sec.3.4 for details). Such that shared and federated clusters allow tenants’ workloads to be
seamlessly moved between edge clouds operated by multiple providers with low overhead.
Our CaaS federation toolset that works in concert with our CaaS multitenancy framework
provides a basis to achieve establishing such a sustainable edge infrastructure.

Scheduling decisions occur at the two levels at most in our prototype that establishes
the cluster-wise federation. This approach prevents repetitive decisions from being made,
avoiding a possible overhead. As our prototype works with workload resources such as de-
ployments, existing mechanisms are employed locally to manage pod and node autoscaling,
improving scalability. The removal of a centralized federation control plane with which
users communicate addresses the single point of failure and split-brain problems as well as
contributes to scalability.

Our measurement results show that it takes under 5 minutes to provide a node to a cluster

24Namespaces, Pods, Service, Ingress, and Workload Resources are some of the Kubernetes primitives that
can be the basis for standardization effort.

25Fed4FIRE+ https://www.fed4fire.eu/
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with our deployment procedure. Sec.3.3 demonstrates that with RKE, it still takes around 5
minutes to start a cluster that runs in Docker containers if the host environment is ready. Fur-
thermore, the results of our experiments on the cluster-wise federation architecture show that
it does not cause a significant increase in the time it takes to deploy a pod to a remote clus-
ter. Our findings also support our assertion that our single-instance multitenancy framework
enhances workload mobility.

Everyone has access to our free, open-source code to apply our federation strategy for
Kubernetes, which is particularly tailored for edge clouds, where providers and locations are
many. The node-wise federation is actively being used in the EdgeNet edge cloud testbed,
for which the providers are research centers, universities, and individual contributors across
the globe. An instance for system-wise federation is also currently operational, which al-
lows Fed4Fire+ users to make use of the EdgeNet testbed. As future work, the following
assignments remain to be addressed.

Node sharing preferences. A provider who offers nodes should have control over what
nodes are shared with whom, as does in the cluster-wise federation. We will develop a
mechanism that allows node providers to declare allowlist or denylist for each node that they
provide.

Authentication for node providers. In our vision, multiple node providers will con-
stantly offer nodes in many locations to clusters. Although the operators of these clusters
can manually enforce authentication to node providers, it is not a scalable approach for both
these operators and node providers. We envisage a process in which node providers authen-
ticate through a system, using a command line interface or web application, so as to retrieve
their provider-specific bootstrap script to be run on the target node.

Experiments on federated clusters. Our cluster-wise federation architecture has not
been validated yet through rigorous experiments and analysis. Our first step is to reveal how
many worker clusters a federation manager support to scrutinize scalability competency.
Henceforth, peer-to-peer and hierarchical deployment models will be subject to experiments
with the same purpose. Then we will deploy federation managers as well as worker clusters
in an array of dissimilar locations to assess which deployment model is suitable for what
kind of edge use case. Further experiments will probe the competence of features such as
the federation scheduler and will benchmark our architecture with other solutions.

Federation scheduler algorithm. The current federation scheduler employs a simple al-
gorithm that prioritizes the locations of clusters. Resources of clusters are partially included
in these decisions, which might lead to inaccurate decisions under challenging scenarios.
Along with a cache optimization study, an algorithm that the federation scheduler will use is
another research direction.

Consensus algorithm for failover. As part of our architecture, tenants contract with a
single operator they choose; they can access federated resources through a worker cluster of
the preferred operator. Tenants must be able to continue using the system if a worker cluster
that they belong to goes down. HA can be achieved through multiple control plane nodes,
but it does not address a disaster scenario in which the site that hosts this worker cluster
can go down. We plan to handle this by replicating tenant data toward multiple worker
clusters in different sites and forwarding tenant traffic to available clusters if a worker cluster
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is down. The same method can be applied to federation managers with regard to peer-
to-peer and hierarchical deployments in order to keep worker clusters accessing federated
resources if their federation manager is down. If these clusters are mobile, it introduces
another complexity, which may require a consensus algorithm to be developed.

Orchestration tool properties. It is important to identify and characterize the founda-
tional properties of container orchestration tools for standardization. This is also an open
research question that requires intense collaboration with the communities that develop con-
tainer orchestration tools.

Cluster-level slicing. Besides node-level slicing and sub-node-level slicing, a tenant may
need to acquire an entire cluster in the federation. Our slice feature introduced in Sec. 3.2
will be extended to include this functionality.

Networking in cluster-wise federation. There are a number of available tools to estab-
lish inter-cluster networking, such as Submariner,26 Skupper,27 and Istio.28 We will analyze
these tools to reveal their pros and cons in the context of our cluster-wise federation archi-
tecture. A VPN solution, as is in the node-wise federation, can also be developed.

26Submariner https://submariner.io/
27Skupper https://skupper.io/index.html
28Istio https://istio.io/latest/
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A real-world instance as a globally dis-
tributed testbed

Traditional cloud architectures are concerned with providing on-demand access for external
users to compute and storage resources located in centralized data centers. This model is
challenged with the emergence of new applications, such as content delivery, peer-to-peer
multicast, distributed messaging, and the Internet of Things (IoT). These applications are
sensitive to latency and they benefit from compute resources that are geographically close to
the user.

Edge clouds complement centralized clouds by placing computation and storage re-
sources close to users or data sources, to offer high bandwidth and low latency between
cloud computing resources, data producers, and data consumers. For well over a decade, the
networking and distributed systems research communities have deployed a series of wide-
area edge cloud testbeds, such as PlanetLab Central [107], PlanetLab Europe [43], Geni [94],
G-Lab [98], V-Node [101] and Savi [84]. These testbeds degraded over time for two reasons:
they relied on dedicated hardware, which required on-site support, and they used custom
control frameworks.

The requirement for dedicated hardware has led to maintenance and scalability issues.
On one hand, the cost of purchase and replacement of servers discouraged people from con-
tributing to the testbeds. On the other hand, the human resources required to maintain servers
over the long term were costly. In the long term, the testbeds were not able to scale.

The testbeds also relied on custom software for managing the nodes and the experi-
ments. These control frameworks were typically written and maintained by a small team of
researchers, and used by a relatively small community of distributed-systems experimenters.
Such software gets quickly outdated, and is only improved by the small communities of the
original developers and dedicated experimenters. This lack of standardization resulted in a
waste of resources, as each testbed has to be documented individually, and experimenters
had to learn testbed-specific knowledge.

We argue that the solution to make the next generation of distributed testbeds viable
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is to rely on widely used control frameworks and on inexpensive virtual machines. This
approach reduces the cost per site, as the virtual machines can be created for free on an exist-
ing infrastructure, and requires almost no maintenance. This solves the scalability problem
by lowering the entry barrier for contributing new nodes. In addition, there is no need to
maintain extensive testbed-specific documentation and software, as most of it is reused from
external projects. This also benefits the users of a testbed, as by learning how to use it, they
gain industry-valuable knowledge. However, today’s common cloud frameworks treat nodes
as homogeneous entities in a centralized data center, whereas a key feature of edge testbeds
is their heterogeneity and geo-diversity. Up until now been no production-ready framework
for edge cloud testbeds.

This chapter provides further details on the EdgeNet free, open-source software that al-
lows an edge cloud to be deployed onto virtual machines as worker nodes, with Kubernetes
as the orchestration framework. EdgeNet offers a novel architecture for edge computing,
which directly addresses the sustainability and maintenance issues described above. Since
an EdgeNet worker node is typically a VM running at a site’s local cloud, the expense of
maintaining a dedicated hardware resource disappears; in fact, an EdgeNet VM is just an-
other VM among many running at that cloud, requiring no marginal maintenance commit-
ment. Using Kubernetes directly addresses the maintenance, upgrade, and training issues of
control frameworks mentioned above. A worldwide community of developers maintains and
extends Kubernetes, and extensive documentation and training resources are available on the
internet.

The challenge that EdgeNet overcomes is that the use of Kubernetes as an edge cloud
orchestration framework breaks Kubernetes’ central design assumptions in three important
areas:

• Kubernetes was designed for a single-tenant deployment. In our cluster, there are
mutually-untrusting multiple tenants.

• Kubernetes was designed for homogeneous nodes, where computation could be rapidly
moved from one node to another in the cluster. For EdgeNet, a node’s physical location
is a first-class design parameter, and so nodes are heterogeneous in physical location.
Further, experimenters must be able to choose where their worker nodes are placed.

• Kubernetes was designed so that control plane nodes and all worker nodes were within
the same cluster, so communication was on layer 2 and latencies were on the order of
microseconds. In our deployment, layer-2 connectivity is not available, and inter-node
latencies are on the order of 10s of milliseconds.

Kubernetes is widely used in central data centers for container organization. EdgeNet brings
it to the edge with three key contributions: (1) Multi-tenancy at the edge, providing isola-
tion between tenants and sharing limited resources fairly, so that multiple organizations can
concurrently benefit from the edge cloud (Sec.5.1). (2) A node selection feature that makes
it possible to deploy containers on nodes based on their locations. It is easy to configure
deployments to schedule pods to cities, countries, continents, or latitude-longitude polygons
(Sec. 5.2). (3) A single-command node installation procedure lowers the entry barrier for
the institutions wishing to contribute nodes to the cluster, thus simplifying the establishment
of an edge cloud (Sec. 5.3). This procedure includes a virtual private network solution that
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makes it possible for nodes located behind NATs to join a cluster.

Other noteworthy contributions that we make are as follows. (4) We have developed an
aggregate manager (AM), which allows users from the Fed4Fire+ federation to make use of
the EdgeNet testbed as they do for the other federated testbeds (Sec.5.4). (5) The EdgeNet
has supported more than 10 experiments since its start (Sec.5.5).

The following is how we organize the sections of this chapter. In Sec. 5.1, we explain
how we use our multitenancy framework in the context of the testbed. Sec. 5.2 describes
a feature that allows location-based node selections. Sec. 5.3 provides details about how
our node deployment procedure is employed in production. In Sec. 5.4, we present how
EdgeNet is federated with Fed4FIRE+. In Sec.5.5, we describe the current status of the plat-
form along with several experiments that have been conducted on it. Sec. 5.6 evaluates the
performance of EdgeNet. Sec. 5.7 explains how we deploy observability tools in EdgeNet.
In Sec. 5.8, we showcase EdgeNet’s ability with its geographically distributed nodes to un-
cover an experimental CDN framework’s performance issues through experiments that we
ourselves conduct, and the conclusion and future work are discussed in Sec.5.9.

EdgeNet’s open-source software is freely available on GitHub1, and the testbed that it
supports2 is open to researchers worldwide.

5.1 Multitenancy

EdgeNet employs the multitenancy framework introduced in Chapter3 to allow multiple re-
search groups to conduct experiments in parallel, thus opening up its infrastructure to be
shared by a broader community with the aim of achieving high resource utilization in the
cluster. An EdgeNet tenant can be a not-for-profit research organization, a research team, or
even a teaching unit supervised by a professor. Through tenant resource quotas, we ensure
that the testbed’s resources are fairly shared among them. The subnamespaces feature allows
organizations to assign a namespace per research team, as does research teams per experi-
ment and as does teaching units per class. EdgeNet users can participate in multiple tenants
and subnamespaces, and this approach facilitates collaboration between different research
groups. Our multitenancy framework, however, does not allow users of other testbeds to use
EdgeNet without enrollment by default, a concern that we address in Sec.5.4.

In the testbed context, a shared node can be either a VM or dedicated hardware, like
ODROIDs,3 to which multiple researchers deploy containers. Lightweight virtualization is
still required to better isolate experimenters’ containers: VM nodes must support the nested
virtualization for this purpose, causing increased overhead. Additionally, a noisy neighbor
is a major problem, as is in the cloud, that degrades neighboring experiments’ performance,
which may result in varied experiment outcomes. Although resource quota enforcement
fairly mitigates this problem, not every resource is detected by Kubernetes. Depending on
the requirements of experiments, there may be a need for more isolation and guaranteed

1The EdgeNet software https://github.com/EdgeNet-project
2The EdgeNet testbed https://edge-net.org/
3On the home networks, we deploy ODROID nodes (Sec.5.3.1).
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access to those resources at a specific location. To do so, our variable slice granularity
allows experimenters to acquire entire nodes that are isolated from multi-tenant workloads
for a given time.

5.2 Location-based node selection

EdgeNet’s main value as compared to pure Kubernetes is its ability to deploy containerized
software to a widely distributed set of nodes rather than to nodes that are all grouped in a
centralized datacenter. To do so, the users must be able to deploy containers based upon a
node’s location. Note that Kubernetes offers the ability to choose specific nodes based on
labels, but it is up to the cluster administrators to attach the relevant labels to the nodes. Ed-
geNet achieves location-based deployments with two components: (1) a service that geolo-
cates nodes and attaches the appropriate labels to them; (2) a selective deployment resource,
which allows the users to select amongst nodes based on geographic criteria.

5.2.1 Node labeler

In order to be able to select nodes by their location, EdgeNet attaches multiple labels to
the nodes according to their city, state/region, country, continent, and coordinates. This is
done by the node labeler, a controller that watches the cluster for new nodes, or for node IP
updates, and geolocates the nodes. By default, the nodes are located by IP address, using the
MaxMind GeoLite2 database. If the node is running at a known cloud provider, we use the
location of the data center in which the node is running, obtained from the instance metadata.
For example, we assign the following labels to a node located at Stanford:

• edge-net.io/city=Stanford

• edge-net.io/state-iso=CA

• edge-net.io/country-iso=US

• edge-net.io/continent=North_America

• edge-net.io/lat=n37.423000

• edge-net.io/lon=w-122.163900

5.2.2 Selective deployment

Once the labels are attached to the nodes, they can be used to select specific nodes when
creating resource objects such as deployments. However Kubernetes’ built-in selectors are
limited, consisting only of equality comparison (city = Stanford), and set inclusion (city in
(Paris, Stanford)). In order to enable additional selection criteria, we introduce the selective
deployment resource.

A selective deployment is comprised of a resource type (a deployment, for example),
and of geographic queries associated with a number of nodes. It can target nodes by con-
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tinent, country, region, and city, as well as polygons that are described using latitudes and
longitudes. In order to efficiently determine which nodes lie within a polygon, we use the
Point-in-Polygon algorithm [48]. When a selective deployment is created, the controller
finds the relevant nodes and creates the appropriate resource objects. If a node goes down,
the controller re-configures its resource objects in order to start a new pod on a new node in
the same geographic area.

5.3 Node contributions

The edge computing paradigm captures the attention of researchers in launching experiments
from the edge of the network. While providing an edge cloud testbed at scale is possible
to satisfy this demand, it poses a challenge since the nodes are located and maintained at
the edge and they require physical and remote access, thus incurring additional costs. If
these nodes are located behind network address translation (nat) boxes, it introduces an extra
burden in terms of remote access. Taken together, the issues of delivering, maintaining, and
accessing nodes at the edge, also considering hindrances that come from nat boxes, impair
the long-term viability of edge cloud testbeds due to economic constraints.

We grouped the challenges of delivering edge nodes into three categories: provision,
access, and maintenance. Geographically distributed infrastructure conceived for edge com-
puting causes an increase in the complexity of provisioning nodes. In order to alleviate this
complexity, an easy node deployment procedure is necessary. However, this kind of pro-
cedure does not address economic and organizational obstacles to a provider establishing
ubiquitous edge clouds that run at scale. To overcome such economic and organizational
difficulties, a collaboration between edge cloud providers, where they open up their infras-
tructures to each other’s users, possibly through a federation, can be an efficient method, as
discussed in Chapter4.

The edge infrastructure mentioned above also limits physical access to the nodes. This
physical access issue is primarily related to maintenance and also urges collaboration across
organizations providing nodes. On the other hand, remote access is a technical problem.
Nodes behind nats do not hold a public IP address but a private IP address to communicate;
thus, they become unreachable outside the local network remotely by default. That is to
say, a system’s control plane cannot reach such a node to take necessary actions such as
service deployment. Being physically inaccessible and having connectivity issues raises
maintenance challenges for edge nodes.

We tackle these three issues on EdgeNet: providing, accessing, and maintaining edge
nodes:

• Home Networks: With the advent of edge computing, home networks have drawn
heavy attention from internet researchers for the past few years. With home networks,
the presence of nat boxes is an important deterrent to deployment. Thus, it is not a
trivial task to manage the life-cycle of an experiment, such as deployment and version
updates, that launches measurements from a node behind a nat box.

We offer a virtual private network solution that makes it possible for nodes at home

91



Chapter 5

networks to take part in a cluster, handling the access issue, as explained in Sec.5.3.1.
An agent running on each node configures the VPN network by actions such as as-
signing an IPv4/IPv6 pair of addresses. Current deployment ensures a VPN tunnel is
established between two public nodes or between a public node and a natted node. In
future releases, we plan to support communication between two natted nodes through
the VPN network.

• Node Deployment: A fundamental necessity is a simple procedure that safely sets up
a node and makes it join a cluster. By providing nodes in such a forthright manner, a
contributor is less likely to give up during the process.

EdgeNet facilitates node contributions to the cluster via the deployment procedure that
Sec. 4.1.2 describes. In Sec. 5.3.2, we show that anyone can contribute a node to the
EdgeNet public cluster using either our bootstrap script or pre-built cloud image, and
Sec.5.3.3 discusses how we plan to achieve node robustness in the future.

5.3.1 Home networks

Kubernetes is designed for centralized data centers, and on that basis, the system assumes
that cluster nodes share a local network. Put another way, it does not provide an off-the-shelf
solution for nodes on different networks without public IP addresses. This introduces two
communications problems:

• A node behind a nat box can access control plane nodes, but a control plane node
cannot access that node.

• Containers on a node behind a nat box are unreachable from other cluster nodes.

Kubernetes has an extensible architecture that allows developing and using plugins. A
container network interface (CNI) plugin typically establishes networking between pods.
EdgeNet employs VMware’s Antrea CNI4 for this purpose. Antrea uses the Open vSwitch
(OVS) bridge5 on every node. Furthermore, it forms a virtual ethernet (veth) pair for each
pod, a gateway (gw) to the node subnet, and a tunnel (tun) for inter-node communications.6

The OVS bridge forwards packets using veth pairs on the node regarding local pod traffic.
If traffic is toward an external destination, packets to be routed are forwarded through the
gateway port. Antrea benefits from source network address translation (SNat) so that the
pod IP address is preserved. In terms of inter-node communication, tunnels encapsulate
and decapsulate packets. Fig.5.1a depicts the traffic flow where every node has a public IP
address.

However, if a node is behind a nat box on another network, it blocks inter-node commu-
nication. To overcome this problem, we set up a VPN tunnel between every pair of nodes in
the cluster. We settled on using the WireGuard VPN [38] for multiple reasons:

• its performance: it offers throughput 5 times higher than OpenVPN and 1.1 times

4VMware Antrea https://antrea.io/
5Open vSwitch https://www.openvswitch.org/
6The VMware Antrea architecture https://antrea.io/docs/main/docs/design/architecture/
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(a) Pod traffic where every node has a public IP address. Or-
ange is for pod-to-external, cyan is for inter-node, and purple is
for intra-node traffic.
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(b) Pod traffic where a node has a private IP address. Cyan
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source and destination nodes.

Figure 5.1: Traffic flow in EdgeNet. The drawings are inspired by VMware architecture documentation.6

higher than IPsec on the same configuration;7

• its simplicity: it only requires generating of public/private pair of keys for each client
and does not requires a PKI infrastructure as OpenVPN certificate-based authentica-
tion does;

• its integration in the Linux kernel: it is natively integrated in the kernel since Linux
5.6, requiring no additional kernel modules.

Our solution provides IPv4 and IPv6 peer-to-peer communication for every nodes of the
cluster (with the exception of nat-to-nat communications, see Sec. 5.3.1.2) over the public
IPv4 internet, as seen in Fig.5.1b.

5.3.1.1 Bootstrapping VPN peers

A node must have established VPN connectivity with the rest of the cluster before Kubernetes
starts. To achieve this, an agent present on each node performs the following actions on boot:

1. It checks if a public/private key pair has ever been generated. If none, it generates one
and saves it for subsequent boots.

2. It checks if an IPv4/IPv6 pair of address has ever been generated. If none, it queries
the cluster to get the list of used IP address in the VPN network, and chooses a random
pair of addresses amongst the ones available. Randomization allows to reduce the risk
of two new nodes choosing the same IP address if booted at the same time.

3. It publishes its public key, its private IP address pair, and its public IP address to the
cluster by creating a VPNPeer Kubernetes resource.

4. It queries the list of VPNPeer resources and configures the tunnel interface to add each
peer.

7The WireGuard benchmarking https://www.wireguard.com/performance

93

https://www.wireguard.com/performance


Chapter 5

5.3.1.2 NAT-to-NAT communications

In our current deployment, a VPN tunnel can be established between two public nodes, or
between one public node and one natted node. Establishing a connection between two natted
nodes requires the use of an external server to exchange port numbers and perform UDP hole
punching. We will implement such a technique in future iterations.

5.3.2 Node deployment

There are two ways forward to contribute a node to the EdgeNet cluster: Bootstrap script
and pre-built cloud images.

For users who want to deploy nodes on their own machines, we provide a bootstrap script
that installs Ansible, downloads the playbooks, and runs them. Note that users comfortable
with Ansible can directly use the EdgeNet playbooks to deploy a node.

We provide prebuilt cloud images for the major cloud providers (Amazon Web Services,
Google Cloud Platform and Microsoft Azure). These images allow any user of these clouds
to deploy an EdgeNet node with no configuration required. On first boot, a NodeContribution
object is created and the node is allowed to join the cluster.

5.3.3 Node robustness

In comparison to other testbeds such as PlanetLab, EdgeNet nodes are not expected to be
maintained by system administrators. Besides VM nodes, a physical node can be deployed
in a user’s home with limited debugging time and knowledge. As such, we must ensure that
the nodes are able to self-heal in case of problems. We have currently identified two main
issues: unresponsive nodes and file system corruption. We describe below two tentative
solutions that we will try to implement in the next iteration of EdgeNet.

5.3.3.1 Unresponsive nodes

A node can become unresponsive if some application consumes all of its resources, or if
an excessive amount of network traffic saturates the network interface and the CPU. We are
investigating the use of the hardware watchdog present on Raspberry Pi and Odroid single-
board computers to automatically reboot unresponsive nodes. The kernel periodically sends
heartbeats to the watchdog. If the watchdog stops receiving heartbeats, it power cycles the
node. This procedure can fix unresponsive nodes without any user intervention.

5.3.3.2 File system corruption

Single-board computers often use flash-based memory such as SD cards or eMMCs. These
memories are prone to failure as they are usually not designed for continuous random writes
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over long period of times. When these memories fail, the file system is corrupted and the
systems stop working properly. It is also possible that a user improperly changes the config-
uration of a node.

To handle this issue, we are exploring the possibility of booting nodes over the internet.
The petitboot8 bootloader can boot a kernel and a live disk image over the internet. The disk
image and the kernel would live in ram, and the node’s flash storage would only be used to
store container data. If the flash memory fails, the node would still be accessible and the user
would only have to replace the SD card.

This method also has the benefit of making system updates very easy: deploy a new disk
image on the server and reboot the remote nodes. If the update fails, roll back the disk image
on the server. The main concern with this approach is security and how to authenticate the
boot server as well as the disk images.

5.4 Federating EdgeNet with Fed4FIRE+

The EdgeNet testbed provides nodes scattered around the world, with access to the inter-
net and private network connectivity between each nodes, and thereby constitutes a valuable
platform for running Next-Generation Internet (NGI) experiments. For this reason, we re-
ceived funding from the European Commission sponsored Fed4Fire+ project to integrate
EdgeNet into a federation alongside many other computer networking testbeds in Europe.
The project, in conjunction with the Geni project in the United States, provided a unified
way of accessing heterogeneous testbeds through a common API called the Geni Aggregate
Manager (AM) API v3. We implemented this API for EdgeNet, thereby granting access to
our testbed to experimenters who presented electronic Fed4Fire+ credentials, allowing them
to deploy and access containers on nodes of their choice.

This federation with Fed4Fire+ presented an interesting challenge in reconciling two
very different system control approaches. The Kubernetes API is natively a declarative API:
users define the desired state of a resource (e.g., a container) and a control loop (also called
the controller) keeps the resource in sync. In contrast, the AM API is imperative by na-
ture: users perform actions that change the state of a resource, such as allocate, provision,
shutdown, etc. In order to reconcile the two paradigms, we have created an AM API that
manages Kubernetes objects on the behalf of the users.

5.4.1 Mapping GENI resources to Kubernetes resources

The AM specification defines three main kinds of resources: users, slices, and slivers. Slivers
are collections of compute resources, and users are given rights to create slivers in slices.
In our case, we seek to offer experimenters SSH access to Docker containers running on
EdgeNet. Thus, a sliver maps to a collection of three Kubernetes objects:

• A Deployment object defines the specification of the container: image, node and CPU

8petitboot https://github.com/open-power/petitboot
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architecture. Kubernetes will ensure that a container matching these specifications will
always be running.

• A Service object maps an available TCP port of the host node, to the SSH port of the
container.

• A ConfigMap object holds the SSH keys of the user and is mounted on
~/.ssh/authorized_keys.

Users can choose a specific Docker image, node, and CPU architecture (aarch64 or
x86_64). If none are specified, the AM API will choose a default image and Kubernetes
will create the container on any available node.

5.4.2 Resource expiration

Slivers have an expiration time, which can be extended by performing the renew action.
When a sliver expires, the associated resources must be deleted. Kubernetes has currently
no way of specifying expiration dates for objects and automatically deletes them (excepted
for Jobs resources). To work around this, we run a garbage collector goroutine which peri-
odically checks for the expiration of the resources and deletes them.

5.4.3 Object naming

Object names are derived from the first 8 bytes of the SHA512 hash of the sliver name. This
allows the creation of objects with names that are valid in the Geni AM specification, but not
in Kubernetes which allows only alphanumeric chars.

5.4.4 Non-standard TLS certificated workaround

As per the specification, clients are authenticated using client TLS certificates. The certifi-
cates provided by Fed4Fire+ contain non-standard OIDs (Object IDentifiers) which cannot
be parsed by the Go X.509 parser. Specifically, the Authority Information Access OID con-
tains numbers larger than 32-bits. This makes it impossible to authenticate clients using Go
code and prevents the use of reverse proxies written in Go such as the popular Caddy9 and
Traefik10 proxies. Upon discussion with the Fed4Fire+ administrators, it became clear that
there is no immediate plan for the Fed4Fire+ OID format to change. To work around this
issue, we place an NGINX11 reverse proxy in front of our AM API server. This proxy per-
forms client TLS authentication and forwards the request to the AM API server by including
the certificate in a custom X-Fed4Fire-Certificate HTTP header. This information is
then passed to external tools by the AM API, such as xmlsec1 to validate credentials and
authorize users.

9Caddy https://caddyserver.com
10Traefik https://doc.traefik.io/traefik
11NGINX https://www.nginx.com
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5.4.5 Deployment

Our AM API is publicly deployed12 and its source code is available on GitHub.13 It can
easily be deployed on any Kubernetes cluster to federate that cluster with Fed4Fire+. That
is to say, the API that we provide is general to Kubernetes and is not specific to just the
EdgeNet Kubernetes cluster.

5.5 Platform status

As of April 2023, EdgeNet is up and running at over 40 nodes worldwide including 7 in
France, 1 in Germany, 1 in Greece, 2 in Japan and the others in the United States.14 The
current nodes are hosted by universities and the Geni [94] testbed in the USA. In addition,
several experiments have been conducted on EdgeNet over the past year:

CacheCash (NYU Tandon School)
CacheCash [4] is a blockchain-based CDN that involves the end users themselves into the
network to serve content through their own machines. More than 30 EdgeNet nodes have
been used to deploy CacheCash and perform extensive latency, throughput, and resource
usage measurements.

PacketLab (CAIDA)
CAIDA’s PacketLab, which made a demonstration using EdgeNet in IMC’22, allows vantage
point sharing among measurement researchers [165]. PacketLab offers EdgeNet nodes as
external endpoints to its users.

Internet scale topology discovery (Sorbonne Université)
The Multilevel MDA-Lite Paris Traceroute [161] tool, an evolved version of the well known
traceroute tool, was used to survey the internet from EdgeNet nodes continuously. Also,
Diamond-Miner [160], which conducts high speed internet-scale route traces, has been de-
ployed on 7 EdgeNet nodes as part of a production internet topology measurement system.

Neuropil (pi-lar)
An open-source project for cyber security mesh is Neuropil.15 The experimenters put their
implementation to the test regarding scalability and functionality in a real-world environment
through EdgeNet. Thanks to these experiments, they detected memory leaks and scalability
issues due to their implementation.

Cyberlab Honeypot Experiment (University of Ljubljana)
The honeypot experiment uses EdgeNet to expose fake SSH servers on the internet and detect
malicious activities.

12EdgeNet AM API https://fed4fire.edge-net.io
13EdgeNet AM software https://github.com/EdgeNet-project/fed4fire
14In 2021, EdgeNet was up and running at over 40 nodes worldwide including 5 in Europe, 1 in Brasil, 1 in

Australia, and the others in the United States.
15Neuropil https://www.neuropil.org/
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Reveal topologies of remote networks
(Université de Liège - Institut Montefiore)
This experiment sends ICMP probes from EdgeNet nodes to perform internet topology dis-
covery.

Darknet Watch (University College Dublin)
This bandwidth-intensive experiment conducts measurements on the I2P anonymous net-
work.

NDT Client (M-Lab)
EdgeNet supports continuous measurements by the M-Lab NDT (Network Diagnostic Tool)
client that measures download and upload speeds [92].

Murakami (M-Lab)
Being a tool for automating Internet measurements, Murakami supports NDT, Neubot DASH,
Ookla’s speedtest-cli, and OONI Probe [91]. EdgeNet supports continuous measurements by
Murakami.

RIPE Atlas (RIPE)
RIPE Atlas, as an Internet measurement network, provides real-time insight into the state of
the IP Layer across the globe [142]. RIPE Atlas network measurement software is run on
EdgeNet nodes, adding to their collection of software nodes.

The EdgeNet cluster, as it stands in April 2023, includes a resource pool of 130 vCPUs
and 248 GB of memory, with 51 registered tenants representing research institutions, groups,
and teams, as well as individual researchers. Since its start, EdgeNet has supported more
than 10 experiments and up to 7 parallel experiments. Several class exercises have been
done through EdgeNet as well. Scaling the system is ongoing work: currently, if a new
experiment requires a node that does not have enough available resources to handle a new
experiment, the system does not deploy the experiment on that node. In future work, we plan
to fix this limitation by automatically instantiating a new EdgeNet node on the overloaded
site (if resources are available). The node contribution procedure (Sec. 5.3) that automates
the deployment of a new node goes in that direction.

5.6 Benchmarks

EdgeNet is a global Kubernetes cluster with nodes all over the world communicating over
the internet. This differs from the classic Kubernetes use case with nodes located in well-
interconnected data centers. When we started work on EdgeNet, it was not at all clear that
Kubernetes would be able to support such a highly distributed cluster.

Kubernetes is designed such that there is a brief delay between its control plane nodes and
worker nodes within a cluster. Worker nodes are typically expected to have more resources
than are in EdgeNet. EdgeNet, which has a resource-constrained, geographically dispersed
cluster where RTT between control plane nodes and a worker node reaches 215 ms, puts
Kubernetes’ capabilities to the test. In the event of Kubernetes malfunctioning under these
conditions, we would have needed to alter its core code rather than only extend it. Our study
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has revealed that Kubernetes can operate properly in these circumstances, as evidenced by
the fact that EdgeNet has been stressed and tested by various experiments introduced in
Sec. 5.5, which were carried out successfully. Sec. 5.8 also demonstrates that such a geo-
distributed cluster can be used to build a CDN, which is a specific type of distributed system.

In this section, we study how the cluster performs in terms of deploying containers and
networking. The measurements described here were conducted in 2021.

5.6.1 Time to deploy an experiment

We measured the time necessary to schedule and run pods using selective deployments in 5
use cases: 1 pod anywhere in the European Union, 5 pods anywhere in the United States, 20
pods anywhere in the United States, and 1 and 20 pods in a polygon with 18 vertices provided
in the GeoJSON format. We also simulated node failures by stopping the Kubernetes agent,
kubelet, on them. The results are presented in Table5.1.

Table 5.1: Time in seconds to schedule and run pods on EdgeNet using selective deployments.

Selection
Creation Time

Node Failure Detection
Recovery Time

Selective Deployment Daemon Set Pod Daemon Set Pod

1 pod in the EU 0.42 3.9 3.4 36.7 4.6 3.5
5 pods in the US 0.19 10.1 10.5 45.5 79.9 79.2
20 pods in the US 0.47 60.6 79.6 39.8 8.2 8.3
1 pod in a polygon 0.18 6.7 6.2 41.1 8.3 8.3
20 pods in a polygon 0.33 57.2 56.8 37.4 9.8 9.8

Selective Deployment is the time to create a selective deployment object and select the nodes. Daemon Set is the time for the
selective deployment to create the daemon set and its pods. Pod is the time between the creation of the first pod and having the
last pod in the running state. Node Failure Detection is the time to detect a node failure. The last two columns are the time to
reconfigure the daemon sets and to recreate the pods after the node failure.

We first see that creating a selective deployment, including the node selection, is done in
a very short time, always under half a second. Thus, selecting nodes geographically incurs
almost no overhead over the classical Kubernetes selector.

Next, when the number of pods is small, the time to create the daemon set and to get all
the pods up and running is under 10 seconds. However, when 20 pods are requested, this
time jumps up to 80 seconds. This is explained by the lack of resources on some nodes of
the cluster. Pods typically are scheduled in under 10 seconds, but if the node where a pod is
scheduled has a bottleneck of the resources in terms of CPU and memory, it spikes the time
for the pod to be up and running.

The cluster can detect a node failure in under 45 seconds, and in all cases but one that
we have tested, restart the pods on a new node in under 10 seconds. In the case of 5 pods
in the US, it took 80 seconds to recover the pods. In that instance, the Kubernetes scheduler
removed all pods from nodes and redeployed them even though only one node was changed
and others remained the same in the selector. We assume that changing the selector, the
node affinity, in the workload spec caused this unexpected behavior. Further investigation is
needed to understand the underlying cause.
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These findings raise questions about the ability of the default Kubernetes scheduler to
meet globally distributed edge cloud requirements and indicates the need for an edge sched-
uler for edge-specific applications. A health-check mechanism between the control plane and
worker nodes could also be put in place to reduce the time needed to detect a node failure.

5.6.2 Cluster network performance

At the time that experiments were conducted, EdgeNet was relying on the Calico network
plugin to enable intra-cluster communications, that is, communications between the pods
of the cluster. Calico establishes a private pod network on each node, and exchanges routes
through full-mesh BGP peerings. Packets between the pod networks are sent over the internet
using an IP-in-IP encapsulation. In this section we investigate the performance impact of this
encapsulation in terms of throughput and RTT.

Throughput We used the standard iPerf3 tool to measure the throughput between nodes
of the cluster and a node in Paris, and between nodes and a public server hosted by an ISP
in France. This allows us to assess the impact of the IP-in-IP encapsulation on the network
throughput. The results are presented in Fig.5.2.
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Figure 5.2: Average throughput between intra and extra-cluster targets. The throughput was measured over 10 seconds with iPerf 3.
Bouygues is a 10Gbit/s iPerf server hosted by an ISP, and LIP6 is an EdgeNet node, both located in Paris, France. Measurements
towards the EdgeNet node are routed through the Calico IP-in-IP tunnel.

In almost every case, the intra and extra cluster throughput is similar. However, for the
uvm, uky, and utdallas nodes the extra-cluster throughput is much higher than the intra-
cluster one. Similarly, the gcp node located in the Google Cloud Platform, has significantly
worse intra-cluster performance. Further investigations are needed to determine if this is due
to congestion in the network, different IP routes for the two destinations, or to the IP-in-IP
encapsulation.
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Round-trip time Similarly to the throughput measurements, we measure the round-trip
time between the nodes of the cluster and a node at our laboratory in Paris, France. The
measurements are done towards the external IP of the node as well as towards the internal
IP of the node. The measurements towards the external IP involve the packets being directly
sent over the internet. On the other hand, the measurements toward the internal IP entail the
packets being encapsulated before transmission. The results are presented in Fig.5.3.
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Figure 5.3: Minimum RTT between EdgeNet nodes and a node in Paris, France. The RTT was computed over 100 ICMP ping
measurements. Pings towards the external IP are directly sent over the internet, while pings towards the internal IP are routed
through the Calico IP-in-IP tunnel.

In all cases the minimum RTT is identical between the external and internal IP, indicating
that the IP-in-IP encapsulation has no effect on the RTT. This makes EdgeNet suitable for
research on computer networks, as the platform overhead is minimal. We have also done this
measurement towards 3 nodes in the USA, and 1 node in Brazil. We observe no overhead for
the nodes in the USA, but for the node in Brazil the intra-cluster delay is consistently longer
by 4 milliseconds. Further investigation is needed to understand why this is the case for this
node.

5.7 Observability

As the EdgeNet testbed is free for non-profit research, we employ a policy that provides com-
plete transparency in such a way that observability tools are publicly accessible. Besides the
cluster administration, this way, providers can monitor activity on their nodes by using these
tools, and so do users for their experiments. There are two toolsets we run on EdgeNet: (1)
Prometheus,16 cAdvisor,17 and Grafana18 for system monitoring19 and (2) VMware’s Antrea

16Prometheus https://prometheus.io
17cAdvisor https://github.com/google/cadvisor
18Grafana https://grafana.com
19EdgeNet monitoring https://grafana.edge-net.org
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for network flow visibility.20 A dedicated node in the cluster, under EdgeNet’s authority,
stores the data gathered by these tools.

5.8 Experimenting within EdgeNet

With container orchestration capabilities at the edge, we will see design changes in the ar-
chitectures of services and applications. These capabilities, for example, enable us to move
services and applications across many locations to reduce their response time and optimize
their bandwidth consumption. As an edge cloud testbed, EdgeNet is particularly suitable for
putting these edge-adapted, new designs to the test. We believe that CDNs, in particular,
may benefit from container orchestration at the edge, leading to architectural improvements
for delivering large chunks of content more optimally.

We had the opportunity to participate in the testing of an experimental CDN framework
on the EdgeNet testbed, not just by supporting the experiment as a testbed provider, but also
by being directly involved in the performance evaluation of the CDN. In this subsection, we
report on this work, which showcases EdgeNet’s ability to support advanced experiments.
For confidentiality reasons, we are not allowed to disclose the name of the experimental
CDN.

The CDN framework that was tested on EdgeNet is designed around three agents: (1) a
publisher that offers content to clients, (2) caches that serve the publisher’s content to clients
in exchange for payment, and (3) clients that consume content retrieved through caches.
Two steps must be completed for successful content delivery. A client requests content from
the publisher, and the publisher returns instructions that name the caches that the client must
contact in order to retrieve content. As a security measure for untrusted nodes in the network,
caches deliver data chunks to clients in an encrypted state, and those can be decrypted when
a client has a preset number of chunks.

Below we first discuss how we configured deployment of the experimental CDN on Ed-
geNet (Sec.5.8.1) and how we prepared six different CDN setups (Sec.5.8.2) to be tested. We
examine the extent to which EdgeNet is suitable for supporting proper testing of the CDN
(Sec.5.8.3) and describe our findings regarding the CDN itself (Sec.5.8.4).

5.8.1 Deployment

The requirements of testing the experimental CDN led us to adjust the EdgeNet testbed’s
infrastructure. At the time of the experiments, most of the testbed’s nodes had a dual-core
processor and 2 GB of RAM. This amount of resources is adequate for running caches but
not for running daemons. We included a node with a quad-core processor and 8 GB of RAM
that hosts the main daemons as they consume more resources than an ordinary EdgeNet node
would have. Once the namespace dedicated to experiments is created, the remaining step is
developing the configuration files for the deployment.

20EdgeNet auditing https://audit.edge-net.org
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To secure communication between the daemons, we used cert-manager21 instead of man-
aging certificates manually. As part of EdgeNet’s design, which is based on Kubernetes, we
benefit from several secrets and a config map22 to keep the credentials and initial settings
within the cluster. Additionally, a daemonset is used to create a required configuration file
across the nodes being used in the experiments. Our selective deployment feature allowed us
to straightforwardly deploy them on the desired nodes. The same strategy is applied to the
cache deployments as well. Pods are put in communication within the cluster through the
use of services besides the external IP addresses of the nodes.

To monitor and harvest data from the experiments on EdgeNet, we could choose from a
number of available tools. The ones that we deployed can be grouped into two categories:
(1) the operational logs and (2) the resource usage and performance metrics. Elasticsearch,23

Filebeat,24, Kibana,25 and Jaeger26 are employed to collect, explore, and visualize operational
logs, whereas cAdvisor, Prometheus, and Grafana enable resource-based performance anal-
ysis. A script written in Golang automates data collection from these tools so measurement
data can be published in spreadsheet format.

5.8.2 CDN setups

Below discusses which setups we prepared, where caches and daemons are deployed in
those setups, and what resources are incorporated into the nodes that host these caches and
daemons.

Our experiments aim to reveal the performance of the CDN framework regarding time
to first byte served (TTFB) and content access duration (CAD) and analyze the factors on
which these parameters depend. TTFB refers to the total amount of time it takes between
a client issuing a request to a server and the moment that it receives the first byte of the
data. In this CDN framework, TTFB has an added twist, as the client receives the data in an
encrypted state and must perform a decryption operation. CAD can be described as the time
between a client requesting content from a publisher and having it decrypted entirely.

There are six setups in which the caches are deployed in different locations while the
daemons are run at our laboratory in Paris. In five setups, the caches run in one specific
location, whereas the last one includes distributed geolocations. The geodiversity of the
EdgeNet nodes contributes to the setup’s ability to obtain metrics for real-world clients across
different locations. These setups have been crafted separately as below:

• Paris case; the caches and daemons both running in Paris. Over 750 measurements are
taken, benefiting from more than 30 vantage points.

21cert-manager https://cert-manager.io/
22ConfigMap is a native Kubernetes resource that allows storing configuration information to be consumed

by pods.
23Elasticsearch https://www.elastic.co
24Filebeat https://www.elastic.co/beats/filebeat
25Kibana https://www.elastic.co/kibana/
26Jaeger https://www.jaegertracing.io
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• Rio case; 5 caches are running in Rio de Janeiro, daemons running in Paris. Over 550
measurements are taken from over 30 vantage points.
• Wisconsin case; 5 caches running in the state of Wisconsin in the United States, dae-

mons running in Paris. More than 650 measurements are taken from over 30 vantage
points.
• Ohio case; 5 caches running in the state of Ohio in the United States, daemons run-

ning in Paris. Approximately 850 measurements are taken from more than 30 vantage
points.
• Los Angeles case; 5 caches running in Los Angeles, daemons running in Paris. More

than 700 measurements are taken from over 30 vantage points.
• Distributed case; one cache per location in Paris, Los Angeles, Ohio, Wisconsin, and

Rio, daemons running in Paris. More than 900 measurements are taken from more
than 30 vantage points.

In Table 5.2, we show which nodes are used for what purpose in these six cases and the
resources of these nodes. In all cases, the experiments use a 5.52 MB video file.

In the next subsection, we examine the network performance of the EdgeNet nodes before
looking at the metrics associated with the CDN framework.

5.8.3 Evaluation of the infrastructure being used

To begin with, we examine RTT and geographic distance between clients and caches to
provide us with insight when evaluating TTFB and CAD in the CDN framework. An RTT
value between a client and a cache is determined by taking the minimum value over 100
pings made from the client to the cache. Our reasoning for taking the minimum value is
to minimize the negative impact of network congestions and delays on any network devices
between these clients and caches. The results show that the RTT values of a group of nodes,
which make up most of the cluster, range from 10 milliseconds to 60 milliseconds, as seen
for the Wisconsin case in Table5.3.

In almost all cases, the results are identical for external and internal IP addresses; the in-
tracluster networking shows slightly lower or higher RTTs for several cases. Such deviations
may be caused by network congestion in intermediate routers. However, a delay of around 3
milliseconds on average constantly appears in the Rio case. There needs to be further inves-
tigation to find out why this is the case. Considering the results are identical for external and
internal IP addresses in almost all cases, we think these findings indicate that it is possible
to establish a distributed Kubernetes cluster with reliable cluster network performance as we
have done with EdgeNet.

Physical proximity matters for achieving low RTT because installing direct fiber connec-
tions that form a mesh among all endpoints is not feasible, and each hop between a source
and a destination introduces some overhead [125]. In analyzing geographic distance, we
consider two parameters that can influence the outcome. First, we use MaxMind’s GeoLite2
Database to programmatically find the latitude/longitude coordinates of the nodes in the clus-
ter, even though the database can sometimes be misleading about the precise locations of the
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Table 5.2: Information about the nodes that are used in the experiments, including their roles.

Node Location Client Cache CPU (Cores) RAM (GB)

bbn-1 MA, US � 2 2
cache-metro OH, US � � 3 3
cache-stanford CA, US � 1 1
cache-ucla CA, US � � 3 3
cache-wisc WI, US � � 3 3
case-1 OH, US � 2 2
colorado-1 CO, US � 2 2
cornell-1 NY, US � 2 2
edgenet.planet-lab.eu IDF, FR � 4 8
illinois-1 IL, US � 2 2
ku-1 KS, US � 2 2
lip6-lab.cache IDF, FR � 4 8
lip6-lab.ple-1 IDF, FR � � 2 6
lip6-lab.ple-2 IDF, FR � 4 6
maxgigapop-1 MD, US � 2 2
metrodatacenter-1 OH, US � 2 2
missouri-1 MO, US � 2 2
northwestern-1 IL, US � 2 2
nps-1 CA, US � 2 2
nysernet-1 NY, US � 2 2
nyu-1 NY, US � 2 2
princeton-1 NJ, US � 2 2
rnp.rnp-1 RIO, BR � � 4 4
rutgers-1 NJ, US � 2 2
uky-1 KY, US � 2 2
umich-1 MI, US � 2 2
umkc-1 MO, US � 2 2
utc-1 TN, US � 2 2
utdallas-1 TX, US � 2 2
uvm-1 VT, US � 2 2
vcu-1 VA, US � 2 2
vt-1 VA, US � 2 2
wisc-1 WI, US � 2 2

All setups used the node lip6-lab.cache to run the daemons.
The nodes of case-1 and nps-1 were used in a few experiments.
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Table 5.3: Minimum RTTs between clients and caches. The RTT was computed over 100 ICMP ping measurements. Pings towards
the external IP are directly sent over the internet. Time in milliseconds.

Node Paris Rio Wisconsin Ohio Los Angeles

bbn-1 90 149 60 29 84
cache-metro 96 148 40 0.088 55
cache-stanford 141 184 60 59 9
cache-ucla 140 166 49 58 0.148
cache-wisc 102 146 0.092 40 49
case-1 Undetermined 138 44 29 53
colorado-1 119 163 28 34 33
cornell-1 79 136 21 25 58
edgenet.planet-lab.eu 5 215 121 101 148
illinois-1 100 138 16 15 48
ku-1 108 143 17 45 34
lip6-lab.cache 0.294 215 102 96 140
lip6-lab.ple-1 0.044 215 102 96 139
lip6-lab.ple-2 0.309 215 102 96 140
maxgigapop-1 84 137 21 26 59
metrodatacenter-1 96 148 40 1 55
missouri-1 111 146 20 24 37
northwestern-1 98 135 20 12 44
nysernet-1 90 147 53 24 78
nyu-1 72 141 25 22 62
princeton-1 74 125 27 26 64
rnp.rnp-1 215 0.053 146 153 171
rutgers-1 76 142 24 25 62
uky-1 107 135 16 27 54
umich-1 103 146 12 19 49
umkc-1 109 146 17 32 34
utc-1 101 132 33 28 65
utdallas-1 119 142 28 35 40
uvm-1 81 138 35 31 65
vcu-1 97 129 40 28 72
vt-1 89 142 33 29 67
wisc-1 102 146 0.429 40 49

The nps-1 node is excluded from the list due to its non-utilization in RTT-related analysis.
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nodes. In the second place, we calculate the distance in kilometers between any two EdgeNet
nodes by applying the Haversine formula, which assumes the world is a perfect sphere. The
Haversine formula’s impact on the results is less considerable than the first precise location
issue. It is, therefore, important to consider geographic distance information is not totally
reliable when interpreting Fig.5.4.

Figure 5.4: Scatter plot of geographic distance and network delay for five setups.

RTT outcome depends on many factors. During a measurement, congestion on routers
between the source and destination may result in varied RTT values. Another key deter-
minant is the transmission medium. Fig. 5.4 shows that RTT typically rises as the distance
between the nodes increases substantially. Although we observe such a positive correlation,
possibly due to the number and spatial distribution of EdgeNet nodes, outliers that can be
seen in the Rio case are evident. RTT between the Paris nodes and the Rio node presents a
notable spike even though the distance in kilometers between these two points is shorter than
in a few other cases. We assume that the underlying reason for this behavior is the Internet
backbone.

This scatter plot also provides insight into the geographic distribution of EdgeNet nodes;
we can infer that many nodes are scattered around Ohio and Wisconsin from this plot, veri-
fied by Fig.5.5. This map demonstrates the minimum RTT between EdgeNet nodes used in
the experiments and a node in Wisconsin, US.

Based on our interpretation of the data, we verify that physical proximity matters when
it comes to end-to-end latency. However, it is not the only deciding factor, as we discussed
above. We do not use geographic distance as a criterion for any further comparison or anal-
ysis since it is unreliable for analyzing network performance. The following subsection
investigates the correlation of RTT with TTFB and CAD.
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Figure 5.5: Map demonstrates minimum RTT between EdgeNet nodes used in the experiments and a node in Wisconsin, US.

5.8.4 Findings from the data

A consumer starts watching a video on their browser and experiences a delay. If the con-
nection is not dramatically slow, this consumer is probably distant from the node hosting the
content. There are some factors in this CDN framework, such as TTFB and CAD, which are
crucial to ensure a better consumer experience. Assessing these factors via experiments that
are conducted on a single machine or a cluster of nodes connected via LAN is unattainable.
Powerful machines can mask the significance of free CPU resources for this framework, and
LAN communication does not provide an accurate assessment of whether the framework can
deliver low TTFB and CAD in a real-world deployment. An emulation setup could be es-
tablished to appraise the framework’s performance in a real-world deployment scenario, but
this would be fraught with complexities and require a significant amount of work. Whereas,
EdgeNet, with its geographically distributed, resource-constrained edge nodes, excels in ad-
dressing these limitations and allows the evaluation of this framework accurately. In the
subsequent paragraphs, we describe the experiments we ourselves carried out on this CDN
framework by using our own edge cloud testbed and showcase EdgeNet’s function in uncov-
ering its performance issues, primarily related to decryption operations.

Our anticipation was that the cryptographic operations in this CDN framework would
introduce minimal overhead. However, our experiments in a real-world environment that
EdgeNet delivers revealed that any CPU shortage can result in extended decryption times
at clients, negatively affecting TTFB and CAD. The results demonstrate that the percentage
of overall time consumed by decryption operations is higher when a client is closer to the
caches, as compared to when the client is farther away. The framework can still provide a
TTFB below 600 ms depending on cache geo-distribution, but decryption times undermine
this promising approach’s benefits. Thus, we assert that it requires more lightweight and
efficient cryptography techniques. Below we discuss how we come to this conclusion.

As a starting point, we expect CAD to be typically lower in the distributed case than
in other cases, as the distributed case has 5 caches in all locations that other cases sepa-
rately cover. However, we confront an unexpected outcome showing that the distributed case
presents longer CAD than some others, as seen Fig. 5.6. The underlying reason is that the
publisher daemon does not choose caches that serve content to clients in such a way as to
result in a shorter RTT. For example, it should have chosen the caches with lower RTT for the
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client location of edgenet.planet-lab, but the selection includes the cache in Rio, resulting
in higher CAD. The distributed case is not included in our further analysis for this reason.
The following analysis also discerns the effect of the cryptography operations on TTFB and
CAD by separating it from any network delays that may have influenced fluctuations in the
datasets.

Figure 5.6: CAD comparison of four client locations for six setups.

We find that TTFB readings are typically shorter when clients are closer to the caches
regarding RTT, as seen in Fig. 5.7. Shorter TTFBs result in consumers accessing content
more quickly. From another standpoint, the more effectively the background tasks in the
CDN framework work without causing major delays, the greater the correlation between
RTT and TTFB. Although we can see a positive correlation between them, TTFB exhibits
fluctuations in many cases. To comprehend if the decryption operations at the clients are the
root cause, we subtract the time spent on decryption on the client side from TTFB, which is
called Time To Encrypted Data Chunks (TTEDC).

TTEDC measures the complete time it takes between a client making a request from the
caches and the moment that it finishes receiving the data chunks in an encrypted state. In
this case, no decryption operation is included. Since we exclude a parameter on which TTFB
depends in the CDN framework, the correlation between RTT and TTEDC should be more
assertive.

Fig. 5.8 portrays that TTEDC results in a shorter time than TTFB for all cases. We can
assume that this time would decrease more if we remove the encryption process on the cache
side. However, the correlation does not change dramatically even if fluctuations decrease for
several cases. It creates the perception that the encryption and decryption operations do not
cause a break in the correlation between RTT and TTFB as long as there is no overload of
CPU resources of the nodes that run caches or of the clients. If there is a bottleneck in CPU
resources for the client or the nodes that run caches, such notable variability occurs.

As we examined the data further to see the impact of decryption operations on CAD,
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Figure 5.7: TTFB vs RTT for five setups. Minimum RTT between clients and caches.

we noticed an implementation issue. For small content deliveries, retrieving the first data
chunks dramatically affects CAD. This implementation error adds a delay of approximately
850 milliseconds on average, which can reach 8 seconds. If a CAD is less than 5 seconds,
then a delay of 850 milliseconds is considerable.

Say a consumer opened a tab on the browser, went to a video streaming platform, and
picked a movie without any issue. Once the consumer pressed the play button, however, she
had to wait for an extra second for the movie to start. If she tries to watch another movie, she
would again have to wait for a second before watching. Given this waiting time can reach 8
seconds, it is a reasonable inference that this behavior is unacceptable.

The data presented in Fig.5.9 illustrates the effect of this delay on CAD. Not only is the
time shorter, but also lowered variability is observed compared to CAD. This is our expected
result, but when we look at the correlation, it still appears to be weaker than between TTFB
and RTT. This is likely due to two factors: (1) Clients must contact the publisher multiple
times to receive instructions that allow retrieving all data chunks of content through selected
caches, and (2) the number of cryptographic operations that must be done throughout this
timespan.

On the one hand, our previous arguments have emphasized that decryption does not have
a significant impact on the TTFB outcome as long as there are free CPU resources on the
client and the nodes running the cache. On the other hand, we state it negates the correlation
between TTFB and RTT if there is a shortage or inconsistency in CPU resources. When this
occurs, the magnitude of the negative impact of the decryption operations is more severe
for CAD. In the Ohio case, such a CPU shortage adds up to a delay of 3 seconds in CAD.
Fig. 5.10 demonstrates a significant number of outliers even when the publisher delay is
excluded from CAD. Considering the likelihood that network congestion contributes to these
fluctuations, we conduct a deeper analysis of the effects of decryption operations below.
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Figure 5.8: Comparison of TTFB and TTEDC for the Wisconsin case. Minimum RTT between clients and caches.

Figure 5.9: Wisconsin case, the influence of the publisher delay on CAD. The trace of CAD without publisher delay neglects the delay
caused by an implementation issue. Minimum RTT between clients and caches.
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Figure 5.10: Ohio case, CAD without the publisher delay vs RTT. Minimum RTT between clients and caches.

It is important to know that there is no independent causality of RTT with TTFB and CAD
in this CDN framework because of its cryptography techniques. TTFB is dependent on three
factors: RTT, data chunk encryption in caches, and decryption operation time bonded to the
client’s free resources. CAD depends on these three factors plus on the publisher daemon
preparing instructions for clients to retrieve content.

Our analysis above suggests that data encryption and decryption do not have to be an
obstacle to achieving a TTFB below 600 ms. Fig.5.11 highlights that the decryption opera-
tion requires a small amount of time in comparison to the total time. A decryption time of
around 70 ms is acceptable where the TTFB is around 400 ms. The node in LA has a TTFB
of 223 ms, the Stanford node’s TTFB is lower than 500 ms, the node in Illinois has a TTFB
of 552 ms, and the TTFB of the node in Paris is longer than a second. This bar chart shows
that closer proximity to the caches results in a shorter TTFB for clients. However, the shorter
TTFB is, the larger the percentage of time dedicated to decryption operations typically.

The question is, what is the underlying reason behind the high cryptography overhead
in CAD when everything appears acceptable in TTFB? We need to provide some context
regarding the design details of the CDN framework to provide a basis for an explanation.
For retrieval of a 5.52 MB file, the publisher breaks this content into four bundles, each typ-
ically owning three handling operations. In turn, each handling operation generally contains
four requests from caches so that the client receives four data chunks. Simple math says
we typically have twelve data chunks per bundle. Each handling operation also includes a
decryption process. As it requires four data chunks present at the client, there are three data
decryption operations to complete a bundle, except for one. The final bundle has only two
data decryption operations because it contains seven data chunks instead of twelve. In total,
a client executes 11 decryption operations to have the entire content in a decrypted state.

Looking at the percentage of decryption cost in CAD is a better way to understand its
effect rather than looking at the raw numbers. Fig. 5.12 compares the impact of decryption
operations on TTFB and CAD. It is evident that decryption presents an aberrant behavior
for CAD as it takes a significantly greater percentage of time compared to TTFB. Fig.5.12a
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Figure 5.11: The implications of the decryption time on TTFB for the Los Angeles case.

shows that clients dedicate a concise timeframe to decryption operations in TTFB, as do the
clients in the Los Angeles case discussed above. By way of contrast, almost half of the time
in CAD for several cases is spent on decryption, which nearly doubles the time, as seen in
Fig.5.12b.

To comprehend this unanticipated conduct, we investigate how much time is spent on
each decryption operation. In Fig. 5.13, it is apparent that the time of the third decryption
nearly quadruples the first one. A more severe occurrence exists in the Los Angeles case for
the maxgigapop-1 node; the first decryption time is 18 ms, while the slowest decryption is
at 673 ms. We also observe that the mean time spent on the decryption operations following
the first one is typically higher. This contributes to our interpretation of how pivotal free
CPU resources at the client are for this CDN framework. It also explains why the decryption
operations take a greater percentage in CAD than TTFB as well as shows that data decryption
plays a role in the fluctuations that we observe in Fig.5.10 besides network congestion.

It is clear that the amount of decryption time needs to be reduced. We now look for solu-
tions after discussing how the decryption step significantly slows down performance. TTFB
can be improved by approximately in the range of 30 ms and 40 ms by decreasing the num-
ber of data chunks the client needs to start data decryption. Another option is reducing the
requests clients make from caches to retrieve content, and lowering the number of decryp-
tion operations in a bundle can also shorten CAD. The level of security that is provided by
cryptography techniques needs to be kept in mind when assessing these options.

Alternatively, it can be done by using client machines with more powerful CPU re-
sources, as there is a correlation between decryption operations and CPU usage. Another
possibility is putting caches closer to the end-user, resulting in shorter RTT. These all are
future research questions to be tackled regarding this CDN framework. We examine below
to what degree changing bundle design can shorten CAD and then conclude this work.

As mentioned before, there are four data chunks in a handling operation of a bundle, and
these must be present at the client to start decryption. We thought of lowering the number
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(a) The implications of the decryption time on TTFB.

(b) The implications of the decryption time on CAD.

Figure 5.12: Comparison of the effect of the decryption time on TTFB and CAD for the Wisconsin case.
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Figure 5.13: Comparison of time spent on each performed decryption during content retrieval for the Rio case. The bars represent
the maximum time expensed on decryption at the client of rutgers-1.

of chunks to initiate the decryption operation in order to decrease time.27 With this aim in
mind, we measure the difference in time between the fastest and second-fastest data chunk
retrievals as well as between the slowest and second-slowest ones.

In certain cases, longer time differences occur between the fastest chunks than the slowest
ones, as seen in Fig. 5.14, while in other instances, vice versa. Our analysis points to no
guiding pattern existing in this behavior. We assume either using the first three chunks or the
last three chunks over four chunks does not make a significant difference in reducing time
loss. However, based on data collected from clients at a close distance, we can see a pattern
where differences in time are longer for the handling operations in the middle. This pattern
may indicate the consistency in data chunk retrieval.

At the beginning and end of content retrieval, there are typically fewer differences in time,
whether for the fastest chunks or the slowest chunks. But in the middle of the process, time
differences almost doubled. Moreover, these time differences become inconsistent, which
means they are variable, as noticed in Fig. 5.14. More interesting is that the same pattern,
which is a bigger time difference range in the middle as opposed to the beginning and end
of the content retrieval, occurs in data collected from some distant clients as well. The cause
might be the encryption processes on the cache side, which requires further investigation.

Taken together, using three data chunks instead of four saves around 40 ms on average to
start the decryption operation, thus shortening TTFB. Is it worth changing the bundle design?
This issue needs to be addressed while considering its impact on security. Another question
is, does it help us to significantly shorten CAD by decreasing the effect of decryption opera-
tions in total? A quick answer is no.

Fig.5.15 demonstrates that the decryption operations append a considerable time to CAD.

27While this approach might improve TTFB, it could also reduce the system’s security. This area of inquiry
needs further scrutiny.
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Figure 5.14: The difference in elapsed time between the fastest and second fastest data chunk retrievals, as well as between the
slowest and second slowest ones. Los Angeles case, the client is in Illinois.

When the client is closer to caches, as is in Fig. 5.15b, the decryption operations occupy a
larger proportion of the overall time than when the client is distant from caches, as shown in
Fig.5.15a. In light of current circumstances, we assert that a need for a new bundle design
emerges for this CDN framework. We argue that rather than reducing the number of chunks
needed to start decryption, having fewer total decryption operations is a better option. Let
us assume a new bundle design for the same content at a 5.52 MB size. Each bundle has
twelve data chunks, there are still three handling operations per bundle, and clients can start
decryption with the presence of three chunks. In this particular scenario, instead of eleven,
there will be four decryption operations, one per first handling operation in a bundle. Such
an approach may reduce both TTFB and CAD, but it should be examined through the lens
of security.

This CDN framework employs cryptography techniques to involve untrusted nodes to
serve content. With this approach, this framework offers an inspiring design change as con-
ventional CDN architecture is built upon trusted nodes. On the one hand, it can shorten
TTFB and CAD since caches can be both many and located closer to consumers. On the
other hand, this framework’s current cryptography techniques introduce a notable overhead,
which impairs these gains. We conclude that more lightweight cryptography mechanisms,
which ensure encryption and decryption operations expend less time than it takes now, should
be investigated to unlock this framework’s full potential.

5.9 Conclusion and future work

In this chapter, we introduced EdgeNet, a multi-tenant and multi-provider edge cloud testbed
based on Kubernetes. EdgeNet extends Kubernetes through custom resources and con-
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(a) The client is rnp.rnp-1. Among the two, the minimum
RTT between the client and the cache is longer, and the
decryption operations take up a smaller portion of the
overall time.

(b) The client is maxgigapop-1. Among the two, the min-
imum RTT between the client and the cache is shorter,
and the decryption operations take up a larger portion
of the overall time.

Figure 5.15: Time analysis to ascertain the percentage of CAD that each process consumed in the Wisconsin case. Download time
includes the time spent for the publisher to send instructions as well as for caches to convey data chunks in an encrypted state to
the client.

trollers, making it usable with nothing other than the standard Kubernetes tools. In its cur-
rent state, the EdgeNet cluster offers reasonable performance with minimal overhead, and
is suited to all kinds of experiments on networked systems. EdgeNet shows that a public
Kubernetes cluster with nodes distributed over the world works.

We have introduced challenges associated with nodes at the edge that distributed testbed
providers face: provision, access, and maintenance. Three contributions, home networks,
node deployment, and federation, addressed these issues. A node agent configures a virtual
private network, thus enabling nodes behind nat boxes to participate in a cluster with the
help of the native VPN peer controller in Kubernetes. A node can join a cluster in less than
ten minutes via our node deployment procedure that includes installing the above-mentioned
agent. Finally yet importantly, our aggregate manager (AM), which integrates EdgeNet into
the European Commission financed Fed4Fire+ federation of computer networking testbeds,
shows that our testbed is capable of running in concert with other testbeds. In conclusion,
these three features allow the testbed to reach out to a wider community and scale up the
cluster, including edge nodes typically blocked by nat boxes.

Several steps can be taken to improve EdgeNet, and more generally Kubernetes at the
edge.

Remote maintenance. Individuals and institutions that contribute nodes to the clusters
should be isolated from operational burdens to the extent possible. Aside from running a
quick and easy node deployment script, the work required for maintaining a node should be
minimal, so as to better motivate contributors to provide nodes. Sec.5.3.3 described our plan
to tackle this issue.

Reproducibility. EdgeNet can improve its way of providing the reproducibility of ex-
periments, which is a major challenge for computer science [123], by providing immutable
infrastructure through node replacements instead of mutations [121]. We use Ansible for
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node deployments, contributing to creating reproducible Kubernetes clusters [58]. However,
our current approach does not follow immutable infrastructure principles as we mutate the
nodes as requirements change. In addition to cloud nodes, every VM node that joins the
cluster can be spawned using pre-built machine images. This can contribute to having re-
liable repeatability regarding the environment for experiments. We can base future work
on EdgeNet’s reproducibility strategy on a research study that tackled the reproducibility of
environments in distributed systems through a tool called NixOS [59].

Edge-specific scheduler. An edge-specific scheduler for Kubernetes could be designed
so as to minimize the deployment times and to better take into account the limitations of each
edge node.

IPv4/IPv6 dual-stack. The EdgeNet cluster currently provides support for allocating
only IPv4 addresses to pods and services. We will enable dual-stack networking to support
both IPv4 and IPv6 allocations.28

DNS cache. EdgeNet currently runs in-cluster DNS services according to the regional
distributions of its nodes. We will employ the DNS cache feature of Kubernetes and conduct
measurements on it to assess its performance for a cluster with geographically distributed
nodes.29

28Kubernetes documentation: IPv4/IPv6 dual-stack https://kubernetes.io/docs/concepts/services-networking/dual-stack/
29Kubernetes documentation: Using NodeLocal DNSCache https://kubernetes.io/docs/tasks/administer-cluster/nodeloc

aldns/
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Conclusion

Presented in this thesis are our contributions to container orchestration for the edge cloud.
These are organized around three fundamental elements: a native multitenancy, a federation
that spreads by local action, and an edge cloud testbed. Sec. 6.1 summarizes the contribu-
tions, and Sec.6.2 introduces the perspectives looking forward from this thesis.

6.1 Summary of contributions

The field of container orchestration for the edge cloud is enriched by the work that has been
done throughout this thesis. At the outset, we have investigated cloud multitenancy and
framed CaaS multitenancy frameworks into single-instance and multi-instance approaches.
The findings of these earlier studies on cloud multitenancy, accompanied by the resource
constraints in edge clouds, have brought us to choose the single-instance approach for our
multitenancy framework to introduce low overhead. The single-instance multitenancy frame-
work that we have developed improves the state-of-the-art via new mechanisms that activate
vendor mode, establish variable slice granularity, set tenant resource quota for hierarchical
namespaces, and enable clusters to accept federation workloads from remote clusters without
collisions. Through empirical investigation and analysis, we have revealed the strengths and
weaknesses of the single-instance and multi-instance approaches as well as demonstrated
that single-instance is more lightweight and is faster in creating tenants and pods, which has
important implications for enabling multitenancy in edge clouds. Pertaining to our frame-
work, being of a lightweight build enables a resource-constrained edge cloud to accommo-
date many tenants with minimal resource usage, and being time-saving to create tenants and
pods improves workload mobility across edge clouds.

Accounting for the heterogeneous essence of edge computing, we have developed an
integrated federation strategy for CaaS that allows multiple providers to offer compute re-
sources in the forms of node, cluster, and system to a federation. This strategy, which is more
comprehensive than existing state-of-the-art approaches, also serves as a means to prioritize
local action to form a federation. Taken together, it can ensure a federated infrastructure at
scale and facilitates the maintenance of such infrastructure through physical operations by
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virtue of a shared workload between the providers. We have developed a toolset to enact our
federation strategy in which the proposed federation architectures work in concert with our
multitenancy framework, thus benefiting from its advantages of being lightweight and fast.

Last but not least, we have combined our multitenancy framework with our federation
architectures that are node-wise and system-wise to enable an edge cloud testbed for Inter-
net researchers, on which researchers have conducted more than 10 experiments. We have
further developed innovative features, such as location-based node selection, that facilitate
the use of the testbed by researchers. The EdgeNet testbed removes the dependency on ded-
icated hardware and custom control frameworks that its precedents suffered from, lowering
maintenance costs and supporting the sustainability of an edge cloud testbed.

Overall, by developing a new vision, a novel multitenancy framework, a new federation
strategy, a new federation toolset, new procedures, mechanisms, and algorithms, by inves-
tigating multitenancy approaches, and by enabling an edge cloud testbed, this thesis has
contributed to the field of container orchestration for the edge cloud. All our code is publicly
available, and our framework, tools, and systems are free for all to use.

6.2 Perspectives

We conclude our dissertation on "Container Orchestration for the Edge Cloud" with the
perspective section that reports the state of the field after this thesis and how we envision it
heading in the future.

6.2.1 CaaS at the edge

Prior to this thesis, limited standardization with respect to the scientific literature on cloud
multitenancy was observed in classifications of multitenancy frameworks in the context of
CaaS. There already existed an understanding of the fundamental features a CaaS multite-
nancy framework should offer, but no study was conducted to characterize these features for
CaaS to thrive in clouds and edge clouds considering envisaged edge computing infrastruc-
ture. This thesis presented a novel classification of these frameworks by analyzing the scien-
tific literature on cloud multitenancy, with a set of fundamental features that are conceived for
upcoming edge cloud infrastructure and are consolidated in a single instance multitenancy
framework that we developed. Even though there was already a common understanding
of which kind of frameworks introduce low or high overhead, this thesis has benchmarked
three multitenancy approaches and revealed their pros and cons from a tenancy-centered
edge computing standpoint.

As for CaaS federation, the community around Kubernetes has already been offering
several solutions that are typically based upon a centralized federation control plane or a
Virtual Kubelet abstraction. The ones using the centralized federation control plane method
establish a federation at the level of clusters, whereas Virtual Kubelet-based ones can launch
a federation in connection with both clusters and systems. This thesis has suggested an
integrated federation strategy, which benefits from the lightweight build of our multitenancy
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framework, in which providers can offer compute resources in the shape of nodes, clusters, or
systems. Node-wise federation allows small-sized providers to contribute to infrastructure,
cluster-wise federation introduces a new method based on lightweight federation managers
that spread deployments across federated clusters without taking control of worker clusters,
and system-wise federation interconnects different systems.

We envision the future of edge computing infrastructure to be geographically widely
distributed and offered by multiple providers and accordingly provide a well-defined and
inspiring vision that presents a future in which CaaS thrives to contribute to the economic
feasibility of the edge computing paradigm. By utilizing our multitenancy framework, many
tenants can share a single cluster, which can support up to 10,000 tenants, as well as feder-
ated resources, and our federation strategy ensures infrastructure scalability. By this means,
customers that tolerate less than perfect isolation from others can make use of geographi-
cally dispersed resources at lower prices. Regarding providers that offer compute resources
to the edge infrastructure, they can ensure high resource utilization of these resources with
this inclusive approach.

There is still plenty of room for improvement. First, although we choose the Kata run-
time to isolate multi-tenant workloads, our multitenancy framework can be enhanced by new
techniques to discover underlying hardware in order to select the best-fitting container run-
time, which can be gVisor for some scenarios. Second, such a discovery mechanism can
also improve the slicing mechanism that an isolation daemon will complement to make sure
of complete isolation in terms of processes and networking. Third, the integrated federation
strategy cannot be based on trust between parties in the context of a commercial partnership.
In order to prevent malicious actors from tampering with federation data or ensure agree-
ments between parties are being satisfied, it requires putting relevant trust mechanisms in
place, which can benefit from smart contracts. Next, providers adopting a single instance
multitenancy framework imply that they manage the infrastructure on behalf of customers.
This may not be suitable for all customers, but providers can offer clusters with different ver-
sions to appeal to a broader customer base. In this way, the multi-tenant CaaS would support
the provisioning of tenants and their migration onto specific cluster versions based on their
preferences. Furthermore, tenants can make deployment choices based on cluster version in
a federation. Lastly but not least important, regarding the workloads that need to move as a
function of client/end-user requests, we believe the choice of locations in which containers
to be run must be abstracted from customers if they desire. A scheduling study is needed
to tackle this aspect; it can extract locations that requests come from and accordingly move
or replicate workloads at available locations across the federation in accordance with users’
budgets.

6.2.2 Edge cloud testbed

Prior to this thesis, the networking and distributed systems research communities have pro-
vided geographically distributed testbeds that have been particularly successful in the past
decades. However, the requirement for dedicated hardware and bespoke software develop-
ment hampered the efficiency and sustainability of these testbeds. Our edge cloud testbed
embraces an alternative philosophy that enables providers to contribute with VM nodes in-
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stead of requiring dedicated hardware and steers the software development in a way that
researchers just implement a set of extensions to Kubernetes, a de facto industry standard
container orchestration tool. Our multi-tenant and multi-provider edge cloud testbed, with
globally distributed nodes, ensures an infrastructure at scale with lower hardware and main-
tenance costs as well as allows many researchers to make use of this infrastructure.

We believe, in addition to the current EdgeNet testbed, there are two more ways forward
to enable different types of edge cloud testbeds while upholding a similar philosophy. The
first case employs the same node deployment model as does the EdgeNet testbed, geograph-
ically dispersed nodes, but only deploys nodes to home networks. As individuals are more
vulnerable than organizations in case they go under investigation due to malicious traffic on
their home networks, such a testbed will only be open to vetted experiments and be managed
by the testbed administrators. We have created a cluster to launch such a testbed but have
yet to scale it up to a large number of nodes. The focus of the second case lies in leveraging
the existing clusters of universities and research centers. Universities and research centers
typically have their own Kubernetes clusters for their researchers to conduct experiments.
Except for the periods of measurement campaigns, the resources in these clusters are gener-
ally in an idle state. These clusters can be federated for better use of these resources devoted
to research, forming a global resource pool for not-for-profit researchers. Cluster-wise feder-
ation described in Sec.4.2 is conceived, including sharing preferences, with this perspective
in mind.
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