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The current research falls within the scope of administrative document image classification, which has been widely adopted in various document image processing applications. This thesis focuses mainly on cross-modal interactions between visual and textual information within document images, aiming for the design of an effective learning environment.

The process of designing such systems involves studying the benefits of cross-modal interactions in multimodal learning. Such systems encourage cross-modal learning between visual and textual features from vision and language modalities to enhance their distribution in the common representation space. The frameworks developed were the outcome of an iterative process of analysis and synthesis between existing theories and our performed studies. In this thesis, we wish to study cross-modality learning for contextualized comprehension on document components across language and vision. The main idea is to leverage multimodal information from document images into a common semantic space.

The principle consists of automatically extracting information from the content presented in the information systems (scan of documents, structured and unstructured information).

Then, to understand the interactions between visual and textual data, to reorganize the research space, and to find a common semantic space to perform the required downstream applications.

This thesis focuses on advancing the research on cross-modality learning and makes contributions on four fronts: (i) to proposing a cross-modal approach with deep twoheaded neural network which is capable of learning simultaneously the textual content and the visual information from scanned document images. The aim is to jointly leverage visual-language information into a common semantic representation space to automatically perform and make predictions about multimodal documents (i.e. the subject matter they are about); (ii) to investigating competitive strategies to address the tasks of cross-modal document classification, few-shot document classification, and content-based retrieval; (iii) to addressing data-related issues like learning when data is not annotated, by proposing a network that learns generic representations from a collection of unlabeled documents; and (iv) to exploiting few-shot learning settings when data contains only a few examples.

Résumé

Les données papier et numériques produites par les grandes institutions publiques ou privées intègrent différents types de contenus très hétérogènes. En effet, ces contenus se présentent souvent sous diverses formes, sous forme de graphiques dans des rapports techniques, de diagrammes dans des articles scientifiques et de conceptions graphiques dans des bulletins. Effectivement, pour prendre des décisions sur des sujets d'intérêt tels que la science, les affaires, la santé, etc., l'être humain peut traiter efficacement les informations visuelles et textuelles contenues dans ces documents. Toutefois, comprendre et analyser manuellement de grandes quantités de données à partir de documents prend généralement du temps et coûte cher. En général, les données de document sont souvent présentées dans des mises en page complexes en raison des différentes manières d'organiser chaque document. Contrairement aux images générales de scènes naturelles, les documents sont très difficiles compte tenu de leurs propriétés structurelles visuelles et de leur contenu textuel hétérogène. Dans ces conditions, le développement d'outils informatiques capables de comprendre et d'extraire automatiquement des informations structurées précises à partir d'une grande variété de documents reste crucial, d'une manière qui conduit à effectuer d'importantes applications administratives et/ou commerciales. Il existe aujourd'hui plusieurs applications utilisées pour comprendre automatiquement les données des documents administratifs et commerciaux telles que : la classification des documents, la récupération de documents basée sur le contenu, la classification de documents en quelques prises de vue et le regroupement de documents. Par conséquent, la clé de la compréhension automatisée des documents réside dans l'intégration efficace des signaux provenant de multiples modalités de données. Étant donné que les documents sont nativement multimodaux, il est important de tirer parti des informations multimodales du langage et de la vision. Contrairement à d'autres formats de données tels que les images ou leur texte brut OCR, les documents combinent des informations visuelles et linguistiques, complétées par la mise en page du document. En outre, d'un point de vue pratique, de nombreuses tâches liées à la compréhension des documents sont rares. Un cadre qui peut apprendre à partir de documents non étiquetés (c.-à-d. une pré-formation), effectuer un réglage fin du modèle pour des applications de documents en aval spécifiques est plus préféré que celui qui nécessite des données de formation entièrement annotées (c.-à-d. formés dans un mode d'apprentissage entièrement supervisé).

Le propos de cette recherche actuelle s'inscrit dans le cadre de la classification des images de documents administratifs, qui a été largement adoptée dans diverses applications de traitement d'images de documents. Cette thèse se concentre principalement sur les interactions intermodales entre les informations visuelles et textuelles dans les images de documents, visant la conception d'un environnement d'apprentissage efficace. Effectivement, le processus de conception de tels systèmes implique l'étude des avantages des interactions intermodales dans l'apprentissage multimodal. En effet, de tels systèmes encouragent l'apprentissage intermodal entre les caractéristiques visuelles et textuelles des modalités visuelles et langagières afin d'améliorer leur distribution dans l'espace de représentation commun. Encore, les cadres développés sont le résultat d'un processus itératif d'analyse et de synthèse entre les théories existantes et nos études réalisées. Notre recherche part alors du fait d'étudier l'apprentissage intermodal pour la compréhension contextualisée sur les composants du document à travers le langage et la vision. L'idée principale est de tirer parti des informations multimodales des images de documents dans un espace sémantique commun. Le principe consiste à extraire automatiquement des informations du contenu présenté dans les systèmes d'information (scan des documents, informations structurées et non structurées). Ensuite, comprendre les interactions entre données visuelles et textuelles, réorganiser l'espace de recherche, et enfin trouver un espace sémantique commun pour réaliser les applications en aval requises. Dans l'ensemble, cette thèse se concentre sur l'avancement de la recherche sur l'apprentissage intermodalité et apporte des contributions sur quatre fronts : (i) proposer une approche intermodale avec un réseau neuronal bicéphale profond capable d'apprendre simultanément le contenu textuel et l'information visuelle de images de documents numérisés. En effet, l'objectif est d'exploiter conjointement les informations du langage visuel dans un espace de représentation sémantique commun pour effectuer et faire automatiquement des prédictions sur les documents multimodaux (c'est-à-dire le sujet dont ils traitent); (ii) étudier des stratégies concurrentielles pour s'attaquer aux tâches de classification intermodale des documents, de classification de documents en few-shot, et de récupération basée sur le iv contenu; (iii) résoudre les problèmes liés aux données comme l'apprentissage lorsque les données ne sont pas annotées, en proposant un réseau qui apprend des représentations génériques à partir d'une collection de documents non étiquetés ; enfin (iv) à exploiter les paramètres d'apprentissage à quelques coups lorsque les données ne contiennent que quelques exemples.

Mots-clés : Compréhension de documents multimodaux, Classification de documents intermodaux, Fusion multimodale, Apprentissage à plusieurs reprises, Mécanismes d'autoattention, Apprentissage contrastif, Apprentissage en profondeur. v
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Motivation

Multimodal Machine Learning (MML) has seen increased attention lately and has been considered as an active multi-disciplinary research field. MML addresses some of the original goals of artificial intelligence (AI) which have been already incorporated in many domains by integrating and modeling multiple sensory input modalities including linguistic, visual, and layout information. This research field brings various challenges for multimodal researchers given the heterogeneity of document data and the contingency often found between its different modalities. Intuitively, the multimodality of documents require multimodal reasoning over multimodal inputs, where data related to the same topic of interest tend to appear together. These multimodal inputs (e.g., visual, textual, and layout) within document images are presented in a diverse set of sources such as handwritten text, tables, forms, figures, multi-column layouts, plain text, curved text, and exotic fonts, etc. As humans, we regularly extract information from illustrations in document data like advertisement, scientific publications, and articles; parse graphs and charts to make decisions; and allow informational data to influence our opinions regarding the type and/or the category of these documents, as the visuals burn into our memory.

Meanwhile, understanding documents visually encounters the problem of low inter-class discrimination, and high intra-class structural variations between the different categories of document data. In a general way, visual data can be more telling (a picture is worth a thousand words). However, some documents contain abundant visual information such as reports, and scholarly articles, in which case a stronger emphasis on the semantic meaning of language is more helpful. Therefore, handling the semantic and stylistic variability in documents is challenging to computational models that are trained mostly on natural images. Furthermore, multimodal reasoning allows one to integrate information from language and vision modalities, to reason about the structure of the documents (e.g., how the accompanying figures support the text), and to gather the relevant semantic information from the text corpus (e.g., how to distinguish between a letter and an email), to finally gather the most important information within the common representation space for decision-making. Hence, multimodal reasoning has been the defacto for many document understanding research projects which fall at the interface of Computer Vision (CV), and Natural Language Processing (NLP) (if an image is worth a thousand words, then a multimodal document is worth a thousand concepts).

This thesis is mainly centered on cross-modality learning, focusing more on the most frequent and principal modalities studied in the state-of-the-art, which are the vision and the language ones. The first parts of this thesis address the document classification problem in a fully supervised learning fashion. At first, frameworks that project uni-modal representations together into a joint multimodal representation space are proposed. Joint representations are mostly used in tasks where multimodal data is present during both the training and inference steps. The simplest example of a joint representation is an early fusion methodology such as dot product, concatenation, and average ensembling of 1.2. Problem Statement individual modality features. Second, an alternative to a joint multimodal representation is a coordinated representation which has been explored in the following parts of this thesis. Instead of projecting the vision and language modalities into a joint representation space, we learn vision-language representations by coordinating them through a mutual learning constraint. We start our discussion with coordinated representations that mimic the probability distributions of each modality, moving on to coordinated representations that enforce similarity between representations, to finally address more powerful coordinated representation constraints. The latter focuses more on enhancing the structure of the resulting representative space in a self-supervised learning fashion, where we introduce two novel downstream applications (i.e. vision-language few-shot document classification, and vision-language content-based document retrieval) that were not established before in the document understanding literature. We evaluate our proposed strategies on publicly available benchmark document datasets, compared to the most recent state-of-the-art studies related to document understanding.

The following section provides an overview of the main challenges of multimodal document understanding (e.g. a document can be either a scanned image or plain text). Later on, we refer to multimodal document understanding as the ability of a system to use multiple sensory modalities (i.e. multiple data inputs: vision and language) to perform a desired task. In contrast, we refer to cross-modal learning as the ability of that system to use and learn information from different modalities to improve the performance of the system (i.e. a scientific publication can be categorized by its visual spatial properties and by semantic language information).

Problem Statement

In general terms, multimodal learning is more related to sensory modalities like the sound, the speech, the touch, etc. A modality refers to a certain type of information and/or the representation format in which information is stored. The word modality is mostly associated with sensory modalities which are one of the primary forms of sensation, like vision or touch, considered as channels of communication. Also, thinking of multimodality engender thinking of multi-disciplinary. This comes from many different fields all together to be combined/involved in an approach to a topic or a problem, in a sense that almost Artificial Intelligence (AI) is coming together: there are the vision, the language, and the aspect of learning cross-modal knowledge. Specifically, the core of this thesis is about multimodal document understanding, based on the vision and the language, as two of the building blocks of our application on document data. In order for AI to make progress in understanding the world around us, it needs to be able to interpret and reason about multimodal messages. Multimodal document understanding aims to build models that can process and relate information from multiple modalities related to a phenomenon. This can provide different perspectives which enable a system to:

• Learn complementary and additional information to transfer knowledge from each modality to another in a collaborative learning fashion, in contrast to dealing with just uni-modal modalities.

• Discover patterns or changes that are only visible when two or multiple modalities are studied.

• Capture correspondences between modalities and gaining an in-depth understanding of a natural phenomenon.

Therefore, it is crucial to develop systems that may lead to some enlightenment about the world around us, by thinking of systems that learn from multimodal sources.

Core Multimodal Challenges

The research field of multimodal document understanding brings some unique challenges given the heterogeneity of document data. The core challenge for many problems but also for multimodal document understanding is how to bring vision and language together.

The first level is very important as everyone nowadays uses deep neural networks (DNNs)

to understand the challenges of representation learning. There are some key core challenges that are related to multimodal representation learning: Alignment, which is a very multimodal key with the goal to identify relations between elements from two or multiple different modalities. As humans, we could learn a representation. For example, when we say "I like it!" with a happy face, or when we are tense or surprised, the representation will encode that similarity at some level. Today, we are a lot closer to that, because as humans, we are able to learn joint representations where we see an object as a visual representation, and we see some language associated with this object as a language representation. We observe that we have some kind of paired data, and so a joint representation that allows to learn this one space where both of them will coexist together. In the 2010-2011 era, this sounded impossible. However, we have seen a lot more of that in the recent past.

We got to see these kind of joint representations as a very important milestone. In fact, Representation Learning (RL) can be defined as learning how to represent and summarize multimodal data in a way that exploits the complementarity and redundancy. For example, when we have multiple documents from the same category (e.g. Scientific publications, emails, etc.), these types of documents share the same visual spatial information that we want to take advantage of in order to be more efficient and more robust. Meanwhile, we also want to do complementarity, like when two things are not sufficient by themselves and we want to bring them together. One of the greatest challenges of multimodal data is to summarize the information from multiple modalities (or views) in a way that complementary information is used as a conglomerate while filtering out the redundant parts of the modalities. Due to the heterogeneity of the data, some challenges naturally spring up including different kinds of noise, alignment of modalities (or views), etc. To sum up, we explore four challenges which are: representation, alignment, transference, and finally reasoning [START_REF] Baltrušaitis | Multimodal machine learning: A survey and taxonomy[END_REF] as depicted in the Figure 1.1.

Representation

Good representations are important for the performance of MML models. This first core challenge is concerned with how to represent and summarize multimodal data, by either fusing or coordinating them. 

Fusion

Fusion involves projecting all the different modalities to a common representation space while preserving information from the given modalities. In this type of representation learning, input data from all modalities is required at the training and inference steps which can potentially be hard while missing some kind of input data. In our study, we propose a case-study model which can fuse different views of a modality at each time-step and finally use the joint representation to complete the required downstream tasks as in Figure 1.2(a). This task can be performed in a late, early, intermediate, or attention-based fusion approach [START_REF] Gao | A survey on deep learning for multimodal data fusion[END_REF][START_REF] Lahat | Multimodal data fusion: an overview of methods, challenges, and prospects[END_REF].

Coordination

Instead of bringing everything together, we bring each one of the language and vision modalities, having their one representation space. The coordination involves projecting all the modalities to their space coordinated using a constraint. The coordination should be seen as a spectrum; At one end, the coordination can be so strong that the representations are equal, forcing the language representation to be equal to the visual representation. At this point, it is mostly a joint representation. At the other end, the representations are separate, so we don't coordinate at all. One example is to say, instead of making them equal, we make them correlated (i.e. it is not as much as equal but close). Another example is to say we are going to bring together only a subset of each representation;

there are some items that we want to be very close to each other, and for the rest we will let each modality separate and let them be themselves (see Figure 1.2(b)). This kind of approaches is more useful for modalities which are fundamentally very different and might not work well in a joint space. Due to the variety of modalities in nature, Coordinated

Representations have a huge advantage over Joint Representations which gives us reason to believe that the coordination using constraints is the way to go in the field of multimodal representation learning [START_REF] Md Zakir Hossain | A comprehensive survey of deep learning for image captioning[END_REF][START_REF] Zhen | Deep supervised cross-modal retrieval[END_REF].

Alignment

One thing that is core to multimodal learning is alignment, like synchrony, where we want to be able to align speech and reading as an example. Alignment is defined as identifying cross-modal interactions and the direct relations between (sub)elements from two or multiple different modalities, building from the data structure [START_REF] Datta | Align2ground: Weakly supervised phrase grounding guided by imagecaption alignment[END_REF]. Alignment can be differentiated as Explicit and Implicit: Implicit Alignment where the aim is representation taking into consideration the structure.

Explicit Alignment

Explicit Alignment is defined as taking advantage of how each modality has its internal structure. Some modalities might be temporal, spatial, or hierarchical, etc. Within a specific modality, a document image has in it multiple elements, and each one of them are linked somewhat. As such, explicit alignment enables not only linking elements within a modality, but more interestingly between modalities, being able to see which element from one modality connects with the other element from the other modality (see Figure 1.3(a)).

The sub-challenge here is to directly find correspondences between elements from different modalities (ex. which sequences align the most with which document image).

Implicit Alignment

In the world of deep learning, the alignment task is often defined as a sub-task, a latent process where the real task is representation where we take into consideration the structure. One popular architecture that is mostly used nowadays is the transformer-based architecture; this type of architecture applies implicit alignment and they often end up being fully connected, aiming to look at what are the relevant elements between modalities and then learn new representations from that (see Figure 1.3(b)).

Transference

Transference is defined as transferring knowledge between two or different modalities, usually to help the target modality which may be noisy or have limited resources [START_REF] Pham | Found in translation: Learning robust joint representations by cyclic translations between modalities[END_REF][START_REF] Zhang | Deep mutual learning[END_REF]. The idea behind is having one modality which doesn't have as much data or noisy, and the other modality will come to help. There are two sub-challenges of transference:

Transfer and Co-learning. 

Transfer

Transfer is where both modalities will learn a representation and then from there there will be a transfer (see Figure 1.4(a)).

Co-Learning

In co-learning, the same model gets both modalities as input, but at test time, only one modality will be used (see Figure 1.4(b)).

Reasoning

Another core challenge in multimodal learning is to try to not just look at lower levels, but also to think about how do we combine knowledge, usually through multiple steps of inference to exploit the alignment and the problem structure [START_REF] Mafla | Multi-modal reasoning graph for scene-text based fine-grained image classification and retrieval[END_REF]. Reasoning goes beyond a local representation or a representation with alignment (see Figure 1.5). we present the evolution and description from uni-modal to multimodal representations as illustrated in Figure 1.6. We perform a general review of the main representation models for language and vision separately, ending with the main approaches for multimodal learning for these two modalities. We also present the state-of-the-art of tasks addressed in this thesis, with a summary of our proposed strategies that will be presented in the following chapters.

Language-based Representations

Regarding the language-based representations, they are extracted from the textual content generated from an Optical Character Recognition (OCR) [START_REF] Islam | A survey on optical character recognition system[END_REF] engine. Then, the textual content is used to perform the desired downstream task. In many natural language processing (NLP) tasks, the representation of words has drawn significant attention. The development of static word embeddings such as Word2Vec, Glove [START_REF] Mikolov | Efficient estimation of word representations in vector space[END_REF][START_REF] Pennington | Glove: Global vectors for word representation[END_REF], to contextualized dynamic word embeddings such as ELMO, Fasttext, XLNet, and Bert [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF][START_REF] Mikolov | Advances in Pre-Training Distributed Word Representations[END_REF][START_REF] Peters | Deep Contextualized Word Representations[END_REF][START_REF] Yang | Xlnet: Generalized autoregressive pretraining for language understanding[END_REF] have made a huge progress to address the polysemy problem and the semantic aspect of words. Meanwhile, several approaches handled the task of document image classification by performing OCR techniques [START_REF] Forman | An extensive empirical study of feature selection metrics for text classification[END_REF][START_REF] Lai | Recurrent convolutional neural networks for text classification[END_REF][START_REF] Michał | A recent overview of the state-of-the-art elements of text classification[END_REF]. The task of document image classification is then transformed into text classification [START_REF] Zhang | Character-level convolutional networks for text classification[END_REF]. Yang et al. [START_REF] Yang | Learning to extract semantic structure from documents using multimodal fully convolutional neural networks[END_REF] combined generated text features with visual features in a fully convolutional neural network. Also, [START_REF] Olivier Augereau | Improving Classification of an Industrial Document Image Database by Combining Visual and Textual Features[END_REF][START_REF] Dauphinee | Modular Multimodal Architecture for Document Classification[END_REF] experimented with shallow Bag-of-Words (BoW) [START_REF] Deselaers | Bag-of-visual-words models for adult image classification and filtering[END_REF] along visual features in a two-modality classifier. Moreover, similar to our approach, Lai et al. [START_REF] Lai | Recurrent convolutional neural networks for text classification[END_REF] presented a hybrid approach to extract contextual information using a RNN-CNN.

Vision-based Representations

Over (key points in the document image) of an object, and represent the patterns in a specific region which differs from its immediate neighborhood. There exist a variety of local descriptors such as Scale Invariant Feature Transform (SIFT) [START_REF] David G Lowe | Distinctive image features from scale-invariant keypoints[END_REF], Principal Component Analysis with Scale Invariant Feature Transform (PCA-SIFT) [START_REF] Ke | PCA-SIFT: A more distinctive representation for local image descriptors[END_REF], Speeded Up Robust Features (SURF) [START_REF] Bay | Surf: Speeded up robust features[END_REF], Gradient Location and Orientation Histogram (GLOH) [START_REF] Mikolajczyk | A performance evaluation of local descriptors[END_REF], Shape context [START_REF] Belongie | Shape matching and object recognition using shape contexts[END_REF], and so on. These descriptors have been employed widely in computer vision tasks such as image classification [START_REF] Deselaers | Bag-of-visual-words models for adult image classification and filtering[END_REF][START_REF] Scovanner | A 3-dimensional sift descriptor and its application to action recognition[END_REF], object tracking [START_REF] Zhou | Object tracking using SIFT features and mean shift[END_REF], etc. Earlier attempts on document understanding have applied local descriptors to classify document images.

In [START_REF] Viet | Logo spotting for document categorization[END_REF], Phuong et al. proposed a logo spotting model based on the matching key-points extracted from the document images and a given set of logos using SIFT. Specifically, local features are used to describe the logo and document images. Then, the detected key-points between the document image and each logo are matched based on their SIFT descriptors using its two nearest neighbors in the SIFT feature space [START_REF] David G Lowe | Distinctive image features from scale-invariant keypoints[END_REF]. Figure 1.7 illustrates an example of SIFT local descriptor. Also, in [START_REF] Viet | Improving logo spotting and matching for document categorization by a post-filter based on homography[END_REF], improve the problem of the unmatched key-point pairs in [START_REF] Viet | Logo spotting for document categorization[END_REF] by filtering the incorrectly matched key-points based on filter by homography. Although local descriptors are robust to image distortions, they encounter the problem of having many local descriptors when computed on document images, which leads to inconsistent classifiers. As for the global descriptors, they describe the image as a whole to generalize the entire object, such as intensity, textures, and color histograms.

Global descriptors include histogram-oriented gradients (HOG) [START_REF] Aly | Automatic discovery of image families: Global vs. local features[END_REF] are generally used in image retrieval [START_REF] Hu | A performance evaluation of gradient field hog descriptor for sketch based image retrieval[END_REF], object detection [START_REF] Mizuno | Architectural study of HOG feature extraction proces-sor for real-time object detection[END_REF] and image classification [START_REF] Kobayashi | BFO meets HOG: feature extraction based on histograms of oriented pdf gradients for image classification[END_REF]. Bag-Of-Visual-Words (BOVW) and Fisher Vectors. The Bag-of-Visual-Words (BOVW) [START_REF] Sivic | Video Google: A text retrieval approach to object matching in videos[END_REF] is commonly used in image classification [START_REF] Deselaers | Bag-of-visual-words models for adult image classification and filtering[END_REF][START_REF] Amir | Image classification using bag of visual words (bovw)[END_REF]. The general idea is adapted from information retrieval and NLP's Bag-Of-words (BOW) [START_REF] Zhao | Fuzzy bag-of-words model for document representation[END_REF]. In Bag-Of-Words (BOW), the number of each word appearing in a document is counted, where the frequency of each word is used to know the keywords of the document, and then, a frequency histogram is made from it. In the text domain context, a document is treated as a Bag-Of-Words (BOW). However, in the vision domain, a document image is represented as a set of features, which consist of key-points and descriptors (the description of the as in [START_REF] Lazebnik | Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories[END_REF]. Then, a random forest classifier is performed for the task of document image classification. The Fisher vector representations [START_REF] Perronnin | Fisher kernels on visual vocabularies for image categorization[END_REF] are considered as an extension of the BOVW model. They extract a set of local patch descriptors to encode them in a high dimensional feature vector. It has been applied to classify document images [START_REF] Csurka | Document image classification, with a specific view on applications of patent images[END_REF][START_REF] Csurka | What is the right way to represent document images?[END_REF]. [171] proposed a new Viola-Jones based method to classify documents and to detect the placement and orientation of documents within an image. Some other works employed histograms and binarization methods to classify documents. Gordo et al. [START_REF] Gordo | Large-scale document image retrieval and classification with runlength histograms and binary embeddings[END_REF] represented document images using binarized runlength histograms followed by a 1-NN classifier to perform classification. Also, Reddy et al. [START_REF] Kleber | Form classification and retrieval using bag of words with shape features of line structures[END_REF] applied binarization on document images along pixel density, followed by K-means clustering and adaptive boosting methods for form classification.

Deep Feature-based Methods

Image data is represented as a two-dimensional grid of pixels, be it monochromatic or in color. Accordingly each pixel corresponds to one or multiple numerical values respectively.

The advancements in computer vision with deep learning have been constructed and per- CNNs have been extensively applied in various computer vision tasks [START_REF] Kim | Deep CNN-based blind image quality predictor[END_REF][START_REF] Tian | Image denoising using deep CNN with batch renormalization[END_REF][START_REF] Zhang | Learning deep CNN denoiser prior for image restoration[END_REF]. the obtained deep features. The architecture performs a better fitting to the image dataset due to the reduction in the number of parameters involved and re-usability of weights. In other words, the network can be trained to understand the sophistication of the image even better. For instance, CNNs have been extensively utilized in document understanding approaches, and more specifically, for document image classification, which may be either trained document image classifiers in an end-to-end manner [START_REF] Sherif Abuelwafa | Unsupervised exemplarbased learning for improved document image classification[END_REF][START_REF] Muhammad Zeshan Afzal | Deepdocclassifier: Document classification with deep convolutional neural network[END_REF][START_REF] Muhammad Zeshan Afzal | Cutting the error by half: Investigation of very deep cnn and advanced training strategies for document image classification[END_REF][START_REF] Harley | Evaluation of deep convolutional nets for document image classification and retrieval[END_REF][START_REF] Kang | Convolutional neural networks for document image classification[END_REF][START_REF] Szegedy | Going deeper with convolutions[END_REF][START_REF] Tensmeyer | Analysis of convolutional neural networks for document image classification[END_REF][START_REF] Yang | Handwritten/printed receipt classification using attention-based convolutional neural network[END_REF], or used as an off-the-shelf feature extractor [START_REF] Csurka | What is the right way to represent document images?[END_REF][START_REF] Das | Document image classification with intra-domain transfer learning and stacked generalization of deep convolutional neural networks[END_REF][START_REF] Kölsch | Real-time document image classification using deep CNN and extreme learning machines[END_REF][START_REF] Roy | Generalized stacking of layerwise-trained deep convolutional neural networks for document image classification[END_REF][START_REF] Sarkhel | Deterministic routing between layout abstractions for multi-scale classification of visually rich documents[END_REF]. Training convolu-tional neural networks (CNN) in an end-to-end fashion was firstly adopted by Kang et al. [START_REF] Kang | Convolutional neural networks for document image classification[END_REF]. They proposed a shallow CNN representation to classify documents. they showed that CNNs outperform handcrafted feature-based methods, which indicates the potential of deep features. The AlexNet architecture is employed in [START_REF] Muhammad Zeshan Afzal | Deepdocclassifier: Document classification with deep convolutional neural network[END_REF] for document classification. Despite the large differences between document images and images in the ImageNet dataset [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF], they showed that pretrained weights perform better than a random weight initialization. Moreover, Tensemeyer et al. [START_REF] Tensmeyer | Analysis of convolutional neural networks for document image classification[END_REF] conducted an exhaustive investigation of numerous factors that have an impact of the classification performance of convolutional neural networks (CNNs). These factors include document image size, aspect ratio preservation, training set size, data augmentation, etc. Furthermore, Afzal et al. [START_REF] Muhammad Zeshan Afzal | Cutting the error by half: Investigation of very deep cnn and advanced training strategies for document image classification[END_REF] trained four convolutional networks including AlexNet, VGG-16 [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], GoogLeNet [START_REF] Szegedy | Going deeper with convolutions[END_REF], and ResNet-50 [START_REF] He | Deep residual learning for image recognition[END_REF] to perform document classification. They also investigate the performance of CNNs with and without the pretrained ImageNet weights, and confirm their effectiveness in improving the classification performance compared to random weigh initialization. Likewise, several different deep CNNs such as Inception-ResNet-v2 [START_REF] Szegedy | Inceptionv4, inception-resnet and the impact of residual connections on learning[END_REF], DenseNet [START_REF] Huang | Densely connected convolutional networks[END_REF], and

ResNeXt [START_REF] Xie | Aggregated residual transformations for deep neural networks[END_REF] have been proposed and proved to be effective for document image classification on the large-scale RVL-CDIP1 and the low-scale Tobacco-3482 datasets. In [START_REF] Kölsch | Real-time document image classification using deep CNN and extreme learning machines[END_REF],

Kolsch et al. proposed to classify document images by replacing the last fully connected layer in the AlexNet architecture with the Extreme Learning Machines as in [START_REF] Huang | Extreme learning machine: a new learning scheme of feedforward neural networks[END_REF][START_REF] Huang | Extreme learning machine: theory and applications[END_REF] Therefore, employing convolutional neural networks (CNNs) as an off-the-shelf feature extractor has also been studied, where feature extraction and classifier learning are conducted in an integrated fashion. The obtained pretrained features are then passed to a classifier to perform the final downstream task (i.e. document image classification).

In [START_REF] Roy | Generalized stacking of layerwise-trained deep convolutional neural networks for document image classification[END_REF] pretrained model on the whole document image. Finally, a stacked generalization scheme is used to combined the predictions of the different pretrained VGG-16 models as in [START_REF] Roy | Generalized stacking of layerwise-trained deep convolutional neural networks for document image classification[END_REF].

Generally speaking, training convolutional neural networks in an end-to-end fashion works well when a large amount of training samples is available. Nevertheless, employing convolutional neural networks as off-the-shelf feature extractors is more helpful when training data is limited. Thus, when pretrained, a suitable classifier is crucial to achieve compelling performance.

Multimodal Representations

In this subsection, we present some multimodal methods that have been proposed recently, which combine textual features with either visual features, or structural features. The common pipeline of multimodal methods involves two streams: textual stream, visual stream. For the textual stream, the text is first extracted from the document image based on an OCR engine. then, a text classifier is trained for the textual stream, and an image classifier is trained for the image stream. Finally, the two streams are fused to determine the class of the document image (see Figure 1.10). In an attempt to fuse the two streams, different fusion strategies can be employed, e.g. early fusion, late fusion, and middle fusion.

Joint Representations

As stated before, documents are natively multimodal. Multimodal learning for computer vision and natural language processing has been widely used for image and text level understanding problems such as text document image-based classification, visual question answering [START_REF] Yang | Stacked Attention Networks for Image Question Answering[END_REF][START_REF] Zhou | Simple Baseline for Visual Question Answering[END_REF], image captioning [START_REF] Anderson | Bottom-up and top-down attention for image captioning and visual question answering[END_REF] and image-text matching [START_REF] Li | Visual Semantic Reasoning for Image-Text Matching[END_REF]. Most multimodal fusion and attention learning methods require multimodal reasoning over multimodal inputs that are represented into a common space, where data related to the same topic of interest tend to appear together. For the multimodal fusion methods, earlier attempts used naive concatenation, element-wise multiplication, and/or ensemble methods for mul- timodal features [START_REF] Nabeel | Two stream deep network for document image classification[END_REF][START_REF] Audebert | Multimodal deep networks for text and image-based document classification[END_REF][START_REF] Gallo | Image and Encoded Text Fusion for Multi-Modal Classification[END_REF][START_REF] Liu | Graph convolution for multimodal information extraction from visually rich documents[END_REF][START_REF] Sierra | Combining Textual and Visual Representations for Multimodal Author Profiling: Notebook for PAN at CLEF 2018[END_REF][START_REF] Yang | Exploring deep multimodal fusion of text and photo for hate speech classification[END_REF][START_REF] Yang | Learning to extract semantic structure from documents using multimodal fully convolutional neural networks[END_REF][START_REF] Zahavy | Is a picture worth a thousand words? A Deep Multi-Modal Fusion Architecture for Product Classification in e-commerce[END_REF][START_REF] Zhang | TRIE: end-to-end text reading and information extraction for document understanding[END_REF] 

Attention-based Representations

Attention learning was adopted to learn to attend to the most relevant regions of the input space in order to assign different weights to different regions. It was first proposed by Bahdanau et al. [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF] for neural machine translation. The mechanism is firstly used for machine translation where the most relevant words for the output often occur at similar positions in the input sequence. Later, Vaswani et al. [START_REF] Vaswani | Attention is all you need[END_REF] proposed a self-attention module in machine translation models which could achieve state-of-the-art results at the moment. Then, the self-attention module was introduced to guide the visual attention from images. For the image modality, the self-attention-based modules learn to focus on particular image regions within a given document image [START_REF] Ramachandran | Stand-Alone Self-Attention in Vision Models[END_REF][START_REF] Wang | Non-local Neural Networks[END_REF][START_REF] Zhao | Exploring Self-Attention for Image Recognition[END_REF]. Beyond the visual attention modules that are applied solely to the image modality, recent studies have introduced co-attention models that learn simultaneously from visual and textual attention to benefit from fine-grained representations of both modalities [START_REF] Kim | Bilinear attention networks[END_REF][START_REF] Nguyen | Improved Fusion of Visual and Language Representations by Dense Symmetric Co-attention for Visual Question Answering[END_REF]. Wang et al. [START_REF] Wang | Position focused attention network for image-text matching[END_REF] proposed a novel position-focused attention network to investigate the relation between the visual and textual views. Chen et al. [START_REF] Chen | Abc-cnn: An attention based convolutional neural network for visual question answering[END_REF] proposed a question-guided attention map that projects the question embeddings to the visual space, and formulates a configurable convolutional kernel to search the image attention region. Furthermore, some existing works that handled the task of jointly learning the interaction between image and text features used co-attention and self-attention modules [START_REF] Lu | Hierarchical questionimage co-attention for visual question answering[END_REF][START_REF] Yu | Multimodal unified attention networks for vision-and-language interactions[END_REF][START_REF] Yu | Multi-modal factorized bilinear pooling with co-attention learning for visual question answering[END_REF][START_REF] Yu | Beyond bilinear: Generalized multimodal factorized high-order pooling for visual question answering[END_REF].

However, with such approaches the learning processes of the vision-language modalities are still independent one from another, and lack focusing on the inner relations and the interactions between language and vision modalities. Therefore, some other works intended to exploit pre-training techniques for language-vision representation learning to construct a better multimodal representation space [START_REF] Gu | Self-Supervised Relationship Probing[END_REF][START_REF] Peters | Deep Contextualized Word Representations[END_REF]. These techniques have been exploited lately in document understanding tasks to learn more generic cross-modality representations between visual-textual information incorporated within documents. Aiming to alleviate the heterogeneity gap within and across modalities have shown that, when pretrained in an end-to-end fashion on large amounts of data, these models learn more generic representations, and thus, yield to accurate performance when transferred to downstream tasks with low-scale datasets.

Coordinated Representations

Multimodal document pre-training has seen increased attention recently as it allows to train semantically meaningful embeddings as a prior to a learnable downstream task.

Given its great success from a NLP perspective, Devlin et al. [46] extended the transformer [START_REF] Vaswani | Attention is all you need[END_REF] framework to introduce a transformer-based architecture applied directly to sequences of image patches to extract generic visual representations. Besides, the mechanisms used to leverage features from document modalities differ one from another. LayoutLMv1 [START_REF] Xu | Layoutlm: Pre-training of text and layout for document image understanding[END_REF] jointly models interactions between text and layout information across document images by adding 2D word positions in the language representation to better align the layout information with the semantic representation.

LayoutLMv2 [START_REF] Xu | LayoutLMv2: Multi-modal pretraining for visually-rich document understanding[END_REF] leverages vision, language, and layout modalities in a cross-modal pretraining scheme for a better cross-modality interaction. In LayoutLMv3 [START_REF] Huang | LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking[END_REF], the authors propose a joint multimodal approach to model the interaction between textual, visual, and layout information in a unified multimodal pre-training network, with different pre-text tasks for a better generality to image-centric and text-centric downstream document AI tasks. SelfDoc [START_REF] Li | Selfdoc: Self-supervised document representation learning[END_REF] exploits cross-modal learning in the pre-training stage to perform a task-agnostic framework to model information across textual, visual, and layout infor-mation modalities without requiring document data annotation. In DocFormer [START_REF] Appalaraju | Docformer: End-to-end transformer for document understanding[END_REF], the authors encourage multimodal interaction using a multimodal transformer architecture to perform visual document understanding. TILT [START_REF] Powalski | Going full-tilt boogie on document understanding with text-image-layout transformer[END_REF] used bounding boxes of the OCRed words to serve as a region proposals, and add the region features to the corresponding language embeddings. UDOC [START_REF] Gu | Unified Pretraining Framework for Document Understanding[END_REF] used document object proposals and concatenate Faster R-CNN region features with their language embeddings.

A broad category of pre-training techniques are those that use contrastive losses, which have been used in a wide range of CV applications like image-text similarity, and crossmodal retrieval [START_REF] Yuan | Multimodal contrastive training for visual representation learning[END_REF][START_REF] Zhang | Crossmodal contrastive learning for text-to-image generation[END_REF]. Such methods aim at mapping text and images into a common space, where semantic similarity across different modalities can be learned by rankingbased contrastive losses [START_REF] Gu | Self-Supervised Relationship Probing[END_REF][START_REF] Harold | Visualbert: A simple and performant baseline for vision and language[END_REF][START_REF] Lu | Vilbert: Pretraining taskagnostic visiolinguistic representations for vision-and-language tasks[END_REF]. While dealing with vision-language sample pairs, though individual samples may demonstrate inherent heterogeneity in their content, they are usually coupled with each other based on some higher-level concepts such as their categories. This shared information can be useful in measuring semantics of samples across modalities in a relative manner. Verma et al. [START_REF] Verma | Cross-specificity: modelling data semantics for cross-modal matching and retrieval[END_REF] analyzed the degree of specificity in the semantic content of a sample in the vision modality with respect to semantically similar samples in the language modality. Krishnan et al. [START_REF] Krishnan | Matching handwritten document images[END_REF] measured the similarity score between the word distributions across two document images, by detecting patterns of text re-usages across documents written by different individuals irrespective of the minor variations in word forms, word ordering, layout or paraphrasing of the content.

In the next section, we describe the methodology followed through our work in more detail, as well as our objectives and principal contributions.

Downstream Applications

This thesis comprises the application of three different kinds of downstream tasks. This includes well-established tasks in document understanding literature like document classification, and also two novel downstream tasks introduced in this thesis: few-shot document classification and content-based document retrieval. To perform these downstream applications, we make use of two publicly available benchmark document datasets, containing samples of images from scanned documents from USA Tobacco companies, published by Legacy Tobacco Industry Documents and created by the University of California San Francisco (UCSF). 

Datasets

Tobacco-3482 Dataset

The Tobacco-3482 dataset is a smaller sample containing 3,482 gray-scale document images presented in [START_REF] Kumar | Structural similarity for document image classification and retrieval[END_REF]. This dataset is formed by documents belonging to 10 classes not uniformly distributed, which are: ADVE, Email, Form, Letter, Memo, News, Notes, Report, Resume and Scientific. Some representative images from the dataset are shown in Figure 1.12.

Document Classification

The document image classification task aims to predict the category of visually rich document images. It is considered as one of the branches of scanned document image and text classification, where the classifier is able to tag a suitable class to the document from a list of predefined classes [START_REF] Muhammad Zeshan Afzal | Deepdocclassifier: Document classification with deep convolutional neural network[END_REF][START_REF] Das | Document image classification with intra-domain transfer learning and stacked generalization of deep convolutional neural networks[END_REF][START_REF] Harley | Evaluation of deep convolutional nets for document image classification and retrieval[END_REF]. This makes the process of organizing and maintaining documents/data easy and efficient. Figure 1.13 presents an overview of the process of classifying document images based on two-stream deep neural networks. 

Content-based Document Retrieval

Multimodal content-based document retrieval aims to identify relevant data across different modalities. The principal approach to address this task is to learn a joint semantic embedding space that can capture the inherent relationships between both modalities (see Figure 1.14). We aim to retrieve the category of the retrieved samples based on the given query sample. Specifically, retrieval involves computing the Euclidean distance between a query descriptor and every descriptor of the training set. The sorted distances are then used to rank the document images of the training data, and return a sorted list of documents. In the cross-modal content-based document retrieval context, given a query document image, we aim to retrieve meaningful semantic information related to the query, and then retrieve the category of each top-k ranked retrieved samples. The task of cross-modal retrieval has been a hot research topic in both computer vision and NLP communities. This is mainly carried on between images and text [START_REF] Wang | A comprehensive survey on crossmodal retrieval[END_REF][START_REF] Zhen | Deep supervised cross-modal retrieval[END_REF]. The principal approach to address this task is to learn a joint semantic embedding space that can capture the inherent relationships between both modalities [START_REF] Wang | Joint and individual matrix factorization hashing for large-scale cross-modal retrieval[END_REF][START_REF] Wu | Modality-specific and shared generative adversarial network for cross-modal retrieval[END_REF].

Few-Shot Document Classification

Few-shot learning is a challenging problem as it has only limited data for training and needs to verify the performance on the data for unseen classes. An effective solution for few-shot classification problem is to apply a meta-learning (also called learning-tolearn with multi-auxiliary tasks) scheme on top of a pre-trained embedding network (see In the next section, we describe the methodology followed through our work in more detail, along with our objectives and principal contributions.

Major Contributions

As we explained in the previous sections, multimodal document learning comprises a large set of challenges and applications. Although developments in this area have achieved outstanding performance in different applications such as document classification, named entity recognition, etc. Research in this field continually grows as improvements in the precision of these systems are demanded. In this dissertation, we propose to tackle the problem of multimodal document understanding through language and vision being the two principal data types. Our principal objective is to develop strategies that find a common semantic space that produces effective multimodal representations. We also aim to develop approaches easily adapted and evaluated for the downstream applications described earlier. The advantage of finding a common semantic space is to allow easily perform comparisons between target textual and visual content by mapping each modality to this space. This approach has been a successful strategy not only when working with vision and language, but also in the combination of multiple modalities. In this section, we present our contributions to the field of multimodal document understanding as well as a description of the methodology adopted in each one. Next, we present the organization of the document.

• Chapter 2 -Multimodal Deep Feature Fusion. In this chapter, we propose hybrid cross-modal deep networks based on deep learning techniques that leverage textual and visual data into a joint representation space. This objective seeks to achieve the development of systems that explore the semantic relationships between document images and their corresponding textual content that are easily adaptable to perform document classification. With this approach, we show that merging the two modalities with different fusion schemes enables the system to learn effective multimodal representations, and thus, boost the performance compared to singlemodal networks. Moreover, we show that, dynamic word embeddings learn relevant semantic information from the text corpus compared to static word embeddings, as well as the ability of heavyweight deep neural networks to learn higher level features comparing to lightweight architectures. The proposed frameworks can handle any given document image with its corresponding language content, projects them into a common space based on a feature fusion methodology, and sort out accurate predictions regarding the category of the given document. This goal is linked to our first two contributions that carry out the tasks of multimodal document classification in which the proposed frameworks have similarities. Our works present a new baseline on two benchmark document datasets. The results are presented in two published articles titled "Cross-modal deep networks for document image classification" [START_REF] Bakkali | Crossmodal deep networks for document image classification[END_REF] and "Visual and textual deep feature fusion for document image classification" [START_REF] Bakkali | Visual and textual deep feature fusion for document image classification[END_REF].

• Chapter 3 -Multimodal Deep Mutual Learning. With this chapter, we explore and develop novel learning strategies that evaluate the impact of the quality of the data in the model performance when the problems of noisy text (i.e. where there is a lack of semantic meaning) are encountered. For example, some types of documents are mainly not recognizable by OCR algorithms, leading most of the time to losing textual information and semantic meaning. Thus, the visual information within the visual regions of the document should be strongly emphasized. Meanwhile, some other types of documents do not contain any visual spatial information, in which case a stronger emphasis on the textual information within the language cues is highly required. Understanding and analyzing document data properly enables us to create strategies able to leverage it aiming for good performance. This goal is linked to our third contribution where we present a mutual learning strategy to model the interaction between visual and textual features learned across the vision and language modalities throughout the learning stage. The mutual learning strategy encourages collaborative learning, allowing the vision and language modalities to simultaneously learn their discriminant features in a mutual learning manner.

The main objective of this contribution is to enable our framework to be efficient in improving not only the overall performance of the multimodal fusion modality, but also the performance of the single-modal modalities. The results of this work are presented in the journal article "EAML: ensemble self-attention-based mutual learning network for document image classification" [START_REF] Bakkali | EAML: ensemble self-attention-based mutual learning network for document image classification[END_REF] • Chapter 4 -Multimodal Document Representation Learning. The interpretation of a piece of content in document data relies heavily on its semantic meaning.

For example, a heading can indicate and summarize the meaning of subsequent blocks of text, and a text sequence could be useful for understanding the type of Classification" [START_REF] Bakkali | VLCDoC: Vision-Language Contrastive Pre-Training Model for Cross-Modal Document Classification[END_REF], which is currently in the process of revision and submission.

• Chapter 5 -Improved Multimodal Semantic Representation Learning.

With this last contribution, we intend to decrease the gap between vision-language models and vision-language-layout prior works and extend our last framework from Chapter 4 to perform fine-tuning on three downstream applications: multimodal document classification, multimodal content-based document retrieval and few-shot document classification, when insufficient labelled data are present. The objective of this chapter is to encourage multimodal interaction from language and vision in a self-supervised learning manner. We propose a framework that enables to pre-train multimodal transformers with a two-step approach where feature learning and clustering are decoupled. Our network is first pre-trained with a nearest-neighbour instance discrimination technique to obtain semantically meaningful features. Then, the obtained features are used as a prior in a learnable clustering approach to remove the ability for cluster learning to depend on low-level features. The introduced framework has shown its effectiveness on three main downstream applications which 

List of Publications

The publications originating from this thesis are as follows: CHAPTER 2

Multimodal Deep Feature Fusion

Fusion will be the final way out for the future.

-Shen Wenquan

Motivation

In our first approximation to the topic of document image classification -which has been explored extensively over the past few years-we adopt a two-stream neural architecture for cross-modal feature fusion. Most recent approaches handled this task by jointly learning the visual features of document images and their corresponding textual content. Due to the various structures of document images, the extraction of semantic information from its textual content is beneficial for document image processing tasks. Given their natural design, we aim to solve the following research question of how to develop and efficiently implement deep network-based models for discriminative and compact crossmodal representations.

In this chapter, we conduct an exhaustive investigation of nowadays widely used deep networks as well as word embedding procedures used as the main backbones in our two-33 stream network, in order to extract both visual and textual features from document images.

Moreover, a joint feature learning approach that combines visual features and textual embeddings is introduced as an early fusion methodology. Our goal is to evaluate the representation learning capability of our two-stream deep network to encode meaningful information from the vision and language modalities to perform the cross-modal document classification task.

Recent advances in deep learning techniques have made significant progress in many areas in CV and NLP. The main reason for such success is the ability to train a deep learning model that can retain profound knowledge from large-scale labeled dataset such as the ImageNet dataset [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF] used for image classification. From a computer vision perspective, the concept of transfer learning from the object recognition domain was used to improve the recognition accuracy on smaller datasets [START_REF] Russakovsky | Imagenet large scale visual recognition challenge[END_REF]. To investigate this approach more efficiently, we train our vision modality using ImageNet weights as it has shown to be effective in earlier attempts on document image classification [START_REF] Muhammad Zeshan Afzal | Cutting the error by half: Investigation of very deep cnn and advanced training strategies for document image classification[END_REF]. Several research studies in the literature have been using deep neural networks for document analysis tasks.

They focused on the structural similarity constraints and the visual features of document images [START_REF] Byun | Form classification using DP matching[END_REF][START_REF] Kumar | Learning document structure for retrieval and classification[END_REF][START_REF] Kumar | Structural similarity for document image classification and retrieval[END_REF][START_REF] Shin | Document Image Retrieval Based on Layout Structural Similarity[END_REF]. As most recent deep learning methods do not require extracting features manually, the state-of-the-art approaches based on visual information of document images treated the problem as a conventional image classification task. Additionally, from a natural language processing perspective, Yang et al. [START_REF] Yang | Learning to extract semantic structure from documents using multimodal fully convolutional neural networks[END_REF] presented a neural network to extract meaningful semantic information based on word embeddings from pre-trained natural language models. Nevertheless, classifying documents with only visual information may encounter the problem of low inter-class discrimination, and high intra-class structural variations of highly overlapped document images [START_REF] Muhammad Zeshan Afzal | Deepdocclassifier: Document classification with deep convolutional neural network[END_REF]. As such, jointly learning visual cues and text semantic relationships is an inevitable step to mitigate the issue of highly correlated classes. Recent methods have used multimodal techniques to leverage both vision and language modalities extracted by an optical character recognition OCR engine [START_REF] Islam | A survey on optical character recognition system[END_REF] to perform fine-grained document image classification [START_REF] Nabeel | Two stream deep network for document image classification[END_REF][START_REF] Audebert | Multimodal deep networks for text and image-based document classification[END_REF][START_REF] Dauphinee | Modular Multimodal Architecture for Document Classification[END_REF][START_REF] Xu | Layoutlm: Pre-training of text and layout for document image understanding[END_REF].

Therefore, we study the capability of static and dynamic word embeddings to extract meaningful information from the text corpus. While static word embeddings fail to capture polysemy, by generating the same embedding for the same word in different contexts, dynamic word embeddings are able to capture word semantics in different contexts to address the issue of polysemous and context-dependent nature of words. We explored and evaluated both static and dynamic word embeddings on the large-scale RVL-CDIP 1 [START_REF] Harley | Evaluation of deep convolutional nets for document image classification and retrieval[END_REF] dataset. Furthermore, we propose in this chapter a two-stream cross-modal deep neural network to learn simultaneously from the visual structural properties and the textual information from document images based on two different models. The learnt cross-modal features are combined as the final representation of our proposed network to boost the classification accuracy of document images. However, to perform text classification, an OCR is employed to extract the textual content of each document image, followed by a latent semantic analysis. We utilize the pre-trained Glove and FastText [START_REF] Mikolov | Advances in Pre-Training Distributed Word Representations[END_REF][START_REF] Pennington | Glove: Global vectors for word representation[END_REF] models as two static word embeddings, followed by a gated recurrent unit (GRU) mechanism introduced by J.Chung et al. . and K.Cho et al. [START_REF] Chung | Empirical evaluation of gated recurrent neural networks on sequence modeling[END_REF]. GRU is a simplified variant of LSTM architectures introduced by S. Hochreiter and J. Schmidhuber [START_REF] Greff | LSTM: A search space odyssey[END_REF] to overcome the vanishing gradient problems. Moreover, based on both left and right context, the deep bidirectional pre-trained Bert Base model [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF] is utilized as a contextualized dynamic word embedding to learn the textual semantic features.

To conduct the document image classification task, we investigate the impact of both heavyweight (i.e. with a large amount of parameters) and lightweight (i.e. with a much lower number of parameters) deep network architectures on learning deep structural properties from document images. These models have been chosen for their performance on the ImageNet [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF] dataset at different levels of computational and time cost, starting from models operating in a constrained computational environment for mobile applications (i.e.

NasNet M obile [START_REF] Zoph | Learning transferable architectures for scalable image recognition[END_REF]), to computationally-heavy models (i.e. Inception-ResNet-v2 [START_REF] Szegedy | Inceptionv4, inception-resnet and the impact of residual connections on learning[END_REF],

NasNet Large [START_REF] Zoph | Learning transferable architectures for scalable image recognition[END_REF]) designed to achieve real-time accurate results. The heavyweight models with large size parameters such as NasNet Large , and Inception-ResNet-v2 can achieve state-of-the-art classification accuracy on the widely used ImageNet [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF] dataset in the cost of the computational complexity and time consuming. Instead, the lightweight models with fewer parameters designed for the constrained environment (e.g. real-time environment), for mobile applications with less hardware resources, focus on the trade-off between the efficiency and the model accuracy.

The analysis of document data present in both document datasets, we found that amongst all classes, some samples from specific categories present particular layout properties and document structures as illustrated in the In summary, the main contributions of this chapter are as follows:

• We propose a two-stream cross-modal deep network that leverages both the learned textual embeddings and visual features to classify document images. We show that the proposed joint learning methodology boosts the overall accuracy compared to the single-modal networks.

• We introduce two feature fusion methodologies to merge vision-language features in the cross-modal framework.

• We evaluate the performance of static and contextualized dynamic word embeddings to classify textual content of document images.

• As well, we review the impact of training heavyweight and lightweight deep neural networks on learning relevant structural information from document images.

Approach

This section briefly presents the deep convolutional neural networks and word embedding procedures used in this chapter. On the one hand, we intend to investigate the impact of 

Vision Modality

For the document visual embeddings, we propose to explore two well-known deep CNNs (NasNet and Inception-ResNet-v2) as main backbones to extract the image features.

NasNet-A(6@4032): The NasNet architecture [START_REF] Zoph | Learning transferable architectures for scalable image recognition[END_REF] [START_REF] Bakkali | Crossmodal deep networks for document image classification[END_REF][START_REF] Bakkali | Visual and textual deep feature fusion for document image classification[END_REF] .

that returns a feature map, where the feature map height and width is reduced by a factor of two. For NasNet-A(6@4032), 6 means N = 6, i.e. number of layers repeated, 4, 032 means the number of filters in the penultimate layer of the network. It has 88.02M

parameters. We denote the model as NasNet Large .

NasNet-A(4@1056): A second architecture based on the same network was studied with N = 4 layers repeated and 1, 056 filters in the penultimate layer of the network. This light network only has 4.23M parameters. We denote it as NasNet M obile .

Inception-ResNet-v2: The Inception-ResNet-v2 [START_REF] Szegedy | Inceptionv4, inception-resnet and the impact of residual connections on learning[END_REF] architecture is a convolutional neural network that achieved state-of-the-art results on the ILSVRC image classification benchmark. Inception-ResNet-v2 is a variation of the earlier Inception-V3 model by introducing the bypass connection as in ResNet [START_REF] He | Deep residual learning for image recognition[END_REF]. The model has 54.36M parameters.

Language Modality

For the textual part of documents, we use three well-known word-embeddings mixing static and dynamic approaches to perform text classification.

GloVe: GloVe [START_REF] Pennington | Glove: Global vectors for word representation[END_REF] The next section presents in detail the components of each modality of our proposed cross-modal deep neural network.

Cross-Modal Feature Learning

In this section, we present in detail the proposed cross-modal deep neural network for document image classification. In the first stream, we feed input document images to the vision backbone. In the second stream, we extract the textual corpus from document images with an OCR engine. Then, we feed the text corpus generated as the input to the word embedding backbone. Finally, we consider an early fusion process to merge the two modalities to enhance the performance of the cross-modal modality compared to the single-modalities.

Visual Features

Deep CNNs have exhibited their exceptional performance in both general image recognition and image classification tasks. Since transfer learning has shown its effectiveness while transferring to smaller datasets, we train the three deep CNNs discussed above using the pre-trained ImageNet weights. The vision modality extracts visual features that are passed to a global average pooling layer to reduce the spatial dimensions of a threedimensional tensor. It performs also a more extreme type of dimensionality reduction. For the final layers of the three deep CNNs, the global average pooling layer is passed to the last fully connected layer to perform classification with a softmax layer. The categorical cross-entropy loss function of softmax is given by:

L s1 (X 1 ; Θ 1 ) = K k=1 -y k logP (ŷ k |X 1 , θ k ) = - K k=1 y k log e f θ k (X 1 ) K 1 e f θ k ′ (X 1 ) (2.1)
where

{X 1 , Θ 1 } ∈ R d 1
, and d 1 is the dimension of X 1 features of the vision modality. K is the number of classes in the dataset where K = 16, y k is the one-shot label of the feature

X 1 , P (ŷ k |X 1 , θ k )
is the estimated probability of y k calculated by the softmax function over the activation function

f θ k (X 1 ), where {θ k } K k=1 = Θ 1 , θ k ∈ R d 1 .
The bottleneck layer of the image branch is extracted as the feature X 1 of the input image.

Textual Features

As textual content is required to perform text classification, we process all document images with an off-the shelf optical character recognition (OCR) engine, i.e. Tesseract OCR2 [START_REF] Smith | An overview of the Tesseract OCR engine[END_REF]. It is based on LSTM layers and includes a neural network subsystem configured in English as a text line recognizer. Besides, the OCRed text extracted is noisy and not clean due to the different ways of presenting documents from plain, handwritten, and curved text, exotic fonts, multi-column layouts, the wide variety of tables, forms, and figures. Many word embeddings process a good tokenization of the words by getting the embedding (i.e. a vector of real numbers) for each word in the sequence, where each word is mapped to a emb_dim dimensional vector that the model will learn during training.

In average, for GloVe word embedding, we found 3, 581, 896 unique tokens and a total number of 400, 000 word vectors on the RVL-CDIP corpus. As well, we found 3, 601, 377 unique tokens, 24, 109 of null word embeddings, and a dictionary size of 3, 601, 377 for FastText word embedding on the same standard dataset. Contrary to traditional shallow representations (i.e. Word2Vec [START_REF] Goldberg | word2vec Explained: deriving Mikolov et al.'s negative-sampling word-embedding method[END_REF], GloVe [START_REF] Pennington | Glove: Global vectors for word representation[END_REF], FastText [START_REF] Mikolov | Advances in Pre-Training Distributed Word Representations[END_REF]), as they fail to capture higher-level information, many different dynamic word embedding procedures (i.e. ELMO [START_REF] Peters | Deep Contextualized Word Representations[END_REF], Bert [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF], XLNet [START_REF] Yang | Xlnet: Generalized autoregressive pretraining for language understanding[END_REF]) have been proposed to capture semantic meaning to deal with the context-dependent nature of words. For the Bert Base model, we processed the tokenization by splitting the input text into a 128 sequence list of tokens. To deal with out of vocabulary (OOV), Bert Base uses a WordPiece tokenization technique in which every OOV word is split into sub-words. The input embeddings are then computed by summing the corresponding word embeddings, and segment embeddings. Then, the input embeddings are passed to the attention-based bidirectional transformer. After preprocessing the textual content extracted by the OCR engine from document images, we pass the input embeddings of both Glove and FastText to a GRU network of 32 nodes and 3 hidden layers. Figure 2.3 illustrates the LSTM and GRU units taken from [START_REF] Chung | Empirical evaluation of gated recurrent neural networks on sequence modeling[END_REF]. The final layers of the three models are passed to a softmax layer with categorical cross-entropy loss function.

Cross-Modal Features

In this part, we intend to study the effectiveness of the cross-modal features that are jointly learned from the vision and language modalities to classify document images. We adopt an early fusion process with two different methodologies, (i.e. equal concatenation, and average ensemble fusion). We assume that the dimension of the features extracted from the vision modality or the language modality is denoted as d.

(a) Equal Concatenation: We add a fully connected layer to the vision modality, having the same dimensional output vector as the language modality. The final crossmodal features are the concatenation of the two equal embedding features given by:

X a = [X 1 |X 2 ]; X a ∈ R 2d 1 (2.2)
where X 1 ∈ R d 1 is the obtained image embedding feature, and

X 2 ∈ R d 2 is the text embedding feature, d 1 = d 2 and | is the concatenation operation.
(b) Superposing Fusion: We employ a pixel-wise addition between the image and text embedding features, (i.e. superposing directly the two embeddings to generate the crossmodal features). Note that the obtained cross-modal features have the same dimension as the image or text embedding features.

X Av = [X 1 + X 2 ]; X Av ∈ R d 1 (2.3)

Training Protocol

The learning of the cross-modal features include two main parts: the learning of the parameters of the vision modality Θ 1 and the parameters of the language modality Θ 2 .

Then, the parameters of the network Θ = {Θ 1 , Θ 2 } are optimized by the global crossentropy loss function L(Θ) given by:

L(Θ) = K k=1 -y k logP (ŷ k |X, Θ) (2.4)
where X is the cross-modal features X a or X Av .

Experiments and Analysis

To evaluate the performance of our proposed ensemble trainable network, we make use of the two benchmark datasets RVL-CDIP and Tobacco-3482 introduced in the Section 1.5.1.

Preprocessing

As the deep convolutional neural networks (DCNNs) used in this chapter require fixed size input images, we first downscale all document images presented in both RVL-CDIP and Tobacco-3482 datasets to the expected input size of the networks. The original document images size is about 1000x750 pixels. For the NasNet Large backbone, document images are resized to 331x331 pixels. For the Inception-ResNet-v2 backbone, the images are resized to 299x299 pixels, and resized to 224 × 224 for NasNet M obile . As a data augmentation typical step, we intended to minimize the high intra-class similarity variations in document images. To do so we applied shear transform with a range of 0.1 as in [START_REF] Tensmeyer | Analysis of convolutional neural networks for document image classification[END_REF]. This technique is a common practice to stochastically transform each input during stochastic gradient descent (SGD) training [START_REF] Amari | Backpropagation and stochastic gradient descent method[END_REF], to artificially enlarge the training data in order to improve the performance. Also, we randomly shifted images horizontally and vertically with a range of 0.1. For effective training, we introduced cutout data augmentation [START_REF] Devries | Improved regularization of convolutional neural networks with cutout[END_REF] that has shown its efficiency towards improving regularization of DCNNs. It consists of randomly masking a square region in an image at every training step, thus removing the redundancy of the images and augmenting the dataset by partially occluded versions of existing samples.

As a final pre-processing step for vision modalities, we convert the gray-scaled document images to RGB images.

Intuitively, the text corpus fed to the input layer of the text branch was extracted with an off-the-shelf optical character recognition OCR (i.e. Tesseract OCR). We utilized this OCR engine to conduct a fully automatic page segmentation, as the document images from the datasets are well-oriented and relatively clean. Hence, we run the Tesseract OCR engine. We used the version 4.0.0 -beta.1 of Tesseract based on a LSTM engine to aim for better accuracy. Also, a fully automatic page segmentation without orientation or script detection is conducted. The resulting extracted text was not post-processed.

Although document information might be lost in OCR, such as typeface, graphics, layout, stop words, mis-spellings, symbols and characters. It could benefit from some level of spell checking to improve the semantic learning. However, we chose to provide the true output of Tesseract OCR as it is.

Implementation Details

In this subsection, we describe the implementation details used to train the proposed single-modal and cross-modal approaches. We have trained all networks on a NVIDIA Quadro GP100 GPU, using stochastic gradient descent optimizer (SGD), with a momentum of 0.9, a learning rate of 1e -3, and a step decay schedule defined as:

Lr = initial_lr * drop iter iter_drop (2.5)
where drop and iter_drop took values of 0.5.

The visual modalities were trained with a batch size of 16 for 50 epochs. Early stopping was considered within 5 epochs to stop training once the performance of the model stops improving on the hold out validation dataset. Further, L 2 regularization was adopted to add a penalty for weight size to the loss function. Dropout was also applied to the final softmax layer with a probability of 0.5. For the language modality, it was trained with a batch size of 40, and a sequence length of 128 for 50 epochs. The cross-modal feature learning approach was fine-tuned using document pretraining weights obtained by the single modalities. We froze all layers except the last fully connected layers and trained our cross-modal network with both the equal concatenation and the superposing fusion methods, followed by the softmax layer to perform the final task of document image classification.

Overall Evaluation

Overall Evaluation on the Tobacco-3482 Dataset On the low-scale Tobacco-3482 dataset, the adopted cross-modal fusion methodologies achieve state-of-the-art performance. We report the overall accuracy results in Table 2.1, with the superposing fusion scheme achieving the best performance of 99.71% classification accuracy.

Overall Evaluation on the RVL-CDIP Dataset

On the large-scale RVL-CDIP dataset, all of the adopted networks in this work achieve comparable performance with the state-of-the-art results. We report the overall accuracy results in Table 2 concatenation and superposing respectively. Thus, exceeding the current state-of-the-art results by a 2.63% margin.

Ablation Study

Evaluation on the Tobacco-3482 Dataset

To evaluate the effectiveness of our proposed cross-modal approach for document image classification, we firstly investigate the performance of the single modalities based on visual and textual features. Then, we compare our cross-modal method to the single modalities, and finally, to the state-of-the-art baselines based on two-stream deep neural networks.

In classification performance significantly although the images are substantially different.

Amongst all the current state-of-the-art baselines, we managed to push the performance much further by 3.15%.

Besides, for the single-modal language pipeline, we tested combined architectures such as CNN-LSTM and GRU on top of Glove word embeddings as shown in Table 2 learning approach with superposing fusion outperforms all current state-of-the-art baselines with a significant margin of 3.91% compared to the two-stream-based methods, and of 2.53% compared to the single-modal-based methods. Thus, the superposing fusion (i.e.

S.F) approach raises the performance of all classes regarding their structural property differences.

Out of the two proposed methods that merge both textual and visual features, the superposing fusion (i.e. S.F) method jointly learns more relevant information from textual features and visual features, achieving the best performance with 99.71% classification accuracy.

Evaluation on the RVL-CDIP Dataset

To evaluate the effectiveness of our proposed cross-modal approach for document image classification, we firstly investigate the performance of the single-modal modalities based on the textual content and the corresponding visual features. As seen in Table 2.5, the classification results of each class of the three word embedding procedures are very low concerning three main categories that are: Advertisement, File Folder, and Handwritten.

For Glove, the classification results of the three classes are 53%, 90%, and 53% respectively. Whereas for FastText, it improved slightly the accuracy results for each class to 57%, 94%, and 64% respectively. More specifically, the GloVe method predicted 36.32%, Besides, the aim of this work is to leverage the ability of the cross-modal network to enhance the performance compared to the single-modal modalities. To do so, we proposed to merge textual and visual features with two different fusion modalities. For the superposing fusion method, it requires two feature vectors with the same size. Since the language output vector is of size 768, and the vision output vector is of size 4032, we added a fully connected layer on top of NasNet Large (4032) . We re-trained it to study its effect on the classification results. . This comparison illustrates that visual features are more important than textual features with both feature embeddings of size 4032d and 768d. The network performs the best for the Resume category with a 99.46%, 99.50% classification accuracy for equal concatenation and superposing respectively. Whereas it performs the worst for the class Form with a 93.38%, 94.13% accuracy for the two fusion modalities.

To this end, we conclude that either Glove, FastText, or Bert are not able to outperform the vision-based approaches for this task. This proves that relying only on textual content is not sufficient. Hence, it needs the visual features to achieve accurate results. It is clear from all reported results that combining the visual structural properties of document images with the extracted text corpus improves the quality and accuracy of the final predictions for the document classification task. for the class Form, with a deterioration to 56% for the class Scientific report.

Additional Results

Lastly, for our best heavyweight model NasNet Large , it shows an important ability to classify document images with a lower recall and precision of 83% for the Scientific report category. The higher recall is of 99% for the class Email, while the higher precision is of 98% for both Email and Resume classes. On the other hand, Table 2.9 illustrates the importance of Bert Base in capturing meaningful information, thus, improving the recall and precision rates for each category of the RVL-CDIP dataset compared to other word embedding models.

Discussion

In this chapter, we proposed a cross-modal methodology that learns simultaneously from the input token embeddings extracted from the text corpus, and the structural information from document images to perform document image classification. We showed that, merging the two modalities with different fusion schemes boosts the performance compared to single-modal networks. The dynamic Bert Base word embedding has proved its efficiency to learn relevant semantic information from the text corpus compared to static word embeddings, as well as the ability of heavyweight networks to learn higher level features compared to lightweight architectures. The extensive experimental results achieved state-of-th-art performance on the two benchmark RVL-CDIP and Tobacco-3482 document datasets.

After analyzing of the obtained single-modal results regarding the performance of the different backbones on document classification, we have seen that the accuracy regarding some document categories remains very low. Even-though we achieved compelling results with the early feature fusion scheme, we intended to learn better information with the goal to improve the classification performance of the specific document categories where the accuracy remains very low. For example, the accuracy of handwritten documents is high for the vision modality and very low for the language modality. In this case, a framework which can transfer the knowledge from one modality to another is needed to help both vision and language modalities to learn better information, and thus, improve representation learning. Meanwhile, some type of documents such as File Folder category do not contain any visual spatial information, in which case a stronger emphasis on the textual information within the language cues is highly required. Hence, the general idea of Chapter 3 is to improve the representation learning and the performance for the single-modal modalities in an intermediate/middle-fusion methodology, instead of the early fusion schemes adopted in the current chapter.

CHAPTER 3

Multimodal Deep Mutual Learning

Competition has been shown to be useful up to a certain point and no further, but cooperation, which is the thing we must strive for today, begins where competition leaves off.

-Franklin D. Roosevelt

Motivation

In this chapter, our goal is to improve the robustness of the proposed model in Chapter 2

for the task of document image classification. Instead of leveraging the visual and textual features through an early feature fusion methodology as in Chapter 2, we aim to learn higher-level interactions between the middle blocks of the vision and language modalities in an intermediate/middle-fusion fashion before fusing them in the final stage in an early fusion manner. In contrast to Chapter 2 where the learning process of the vision and language modalities is independent one from another, we intend in this chapter, to improve representation learning of single-modal modalities by transferring the knowledge from one modality to another during the training stage. Therefore, the cross-modal representations 55 will be improved accordingly. Thus, we aim to answer the following research question of how to effectively coordinate, learn the connections, and model the interactions between vision and language modalities in a fully-supervised learning paradigm. Meanwhile, we demonstrate in this chapter the generalization ability of deep networks to classify unseen document data. In a general overview, people learning new concepts can often generalize successfully from just a single example, yet machine learning algorithms typically require hundreds or thousands of examples to perform with similar accuracy [START_REF] Brenden M Lake | Human-level concept learning through probabilistic program induction[END_REF]. People can also use learned concepts in richer ways than conventional algorithms for action, imagination, and explanation. This opens to the research question:

On a challenging document image classification task, are these multimodal interactions and alignment between visual and textual information sufficient to generalize the learned knowledge to the unseen document data as humanperformance ?

Multimodal methods for document classification rely mainly on vision and language modalities. They contain two or an ensemble of deep networks which are trained on largescale datasets to extract discriminate features from the input data. With such approaches, the learning process of the vision modality and the language modality is still independent one from another. The output features of both modalities are subsequently combined together to perform an ensemble trainable document classification network [START_REF] Nabeel | Two stream deep network for document image classification[END_REF][START_REF] Ferrando | Improving accuracy and speeding up document image classification through parallel systems[END_REF][START_REF] Xu | LayoutLMv2: Multi-modal pretraining for visually-rich document understanding[END_REF][START_REF] Xu | Layoutlm: Pre-training of text and layout for document image understanding[END_REF]]. Yet, these independent learning approaches might be enhanced if the visual and the textual features share some mutual information between them.

In general, knowledge transfer-based approached have been extensively studied in the literature in the CV and NLP fields [START_REF] Ba | Do deep nets really need to be deep?[END_REF][START_REF] Hinton | Distilling the knowledge in a neural network[END_REF][START_REF] Parisotto | Actor-mimic: Deep multitask and transfer reinforcement learning[END_REF][START_REF] Romero | Fitnets: Hints for thin deep nets[END_REF]. These approaches encourage collaborative learning between modalities, allowing vision and language modalities to simultaneously learn their discriminant features in a mutual learning manner [START_REF] Zhang | Deep mutual learning[END_REF]. They aim to align the current modality to the other modality by minimizing the difference in class probabilities produced by each modality [START_REF] Hinton | Distilling the knowledge in a neural network[END_REF]. However, rather than the conventional distillation-based teacher-student approach with one-way knowledge transfer from a pre-trained teacher to a student [START_REF] Hinton | Distilling the knowledge in a neural network[END_REF], the mutual learning strategy starts with a pool of untrained students in a student-to-student peer-teaching model to learn to solve the tasks collaboratively [START_REF] Zhang | Deep mutual learning[END_REF]. It turns out that conventional mutual learning achieves better results than independent learning in either a supervised or a conventional distillation learning approach from a larger pre-trained teacher. Nonetheless, conventional mutual learning is a bi-directional knowledge transfer-based method, in which the current student modality can learn from a better example from the other modality, meanwhile the good student learns from the worst modality. That is to say, if the other student is worse than the current student, then the negative knowledge will be introduced and might weaken the ongoing training. This violates the motivation of the conventional mutual learning setting.

Therefore, we encourage mutual learning by transferring the positive knowledge between vision and language modalities during the training stage. This constraint is realized by adding a truncated-Kullback-Leibler divergence loss (Tr-KLD Reg ) as a regularization term to the conventional supervised setting., which will be elaborated on the next sections.

To the best of our knowledge, this is the first time to leverage a mutual learning approach along with a self-attention-based fusion module to perform document classification.

As we mentioned before, deep Learning has provided compelling results in various document understanding problems such as document classification, form understanding, receipt understanding, etc. Existing works covered several techniques including document binarization [START_REF] Afzal | Document Image Binarization using LSTM: A Sequence Learning Approach[END_REF][START_REF] Pastor-Pellicer | Insights on the Use of Convolutional Neural Networks for Document Image Binarization[END_REF], layout analysis [START_REF] Pastor-Pellicer | Complete System for Text Line Extraction Using Convolutional Neural Networks and Watershed Transform[END_REF][START_REF] Seuret | PCA-Initialized Deep Neural Networks Applied to Document Image Analysis[END_REF], and structural similarity constraints [START_REF] Chen | A survey of document image classification: problem statement, classifier architecture and performance evaluation[END_REF] for many document analysis tasks. However, to ensure a good generalization, many deep neural networks with large amount of parameters have been used for document classification in order to extract the most relevant visual features [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF].

Unlike the general images from the ImageNet dataset [START_REF] Russakovsky | Imagenet large scale visual recognition challenge[END_REF], document images have a distinct visual style. Therefore, numerous studies on document processing tasks have used transfer learning. It has been shown to be effective in boosting the classification performance of document images [START_REF] Muhammad Zeshan Afzal | Deepdocclassifier: Document classification with deep convolutional neural network[END_REF][START_REF] Das | Document image classification with intra-domain transfer learning and stacked generalization of deep convolutional neural networks[END_REF][START_REF] Harley | Evaluation of deep convolutional nets for document image classification and retrieval[END_REF], whereas randomly initialized networks are under-performing [START_REF] Kang | Convolutional neural networks for document image classification[END_REF]. Additionally, from the perspective of a natural language processing classifier, document images can be categorized into various classes based on their textual content processed by an Optical Character Recognition (OCR) system [START_REF] Qian | A Novel Approach for Online Handwriting Recognition of Tibetan Characters[END_REF][START_REF] Ul-Hasan | A sequence learning approach for multiple script identification[END_REF]. Yang et al. [START_REF] Yang | Learning to extract semantic structure from documents using multimodal fully convolutional neural networks[END_REF] presented a neural network to extract semantic enriched information from textual content based on a word embedding mechanism. Also, Appiani et al. Furthermore, as one of the goals of this chapter is to combine visual and language features through a better multimodal feature fusion methodology, we introduce a selfattention-based feature fusion module that serves as a middle block in our ensemble trainable network. Moreover, we aim to simultaneously extract more powerful and representative features from different middle blocks of the vision and language modalities through the self-attention-based feature fusion module. This approach enables us to focus more on the salient parts of the feature maps of each modality, and aims to capture relevant semantic information between the pairs of image regions and text words. Such self-attention-based modules have recently became an elemental component in many multimodal tasks such as visual question answering, image captioning, image-text matching, etc [START_REF] Kim | Bilinear attention networks[END_REF][START_REF] Lee | Stacked cross attention for image-text matching[END_REF][START_REF] Nguyen | Improved Fusion of Visual and Language Representations by Dense Symmetric Co-attention for Visual Question Answering[END_REF][START_REF] Yan | Image captioning via hierarchical attention mechanism and policy gradient optimization[END_REF]. Furthermore, we adopt an early average ensemble fusion scheme in the final model to ensure a more stable and better-performing solution for the task of document image classification.

This work is built on the results and analysis of Chapter 2. In the following parts, we denote mutual learning trained with the standard (KLD) as ML KLD , mutual learning trained with regularization as ML T r-KLD Reg , and ensemble self-attention-based mutual learning with regularization as EAML T r-KLD Reg .

Following are the main contributions of this chapter:

• We introduce a mutual learning strategy with a regularization term to overcome the drawback of the conventional mutual learning. This approach allows the current modality in process to learn the positive knowledge from the other modality, instead of the negative knowledge which weakens the learning capacity of the current modality in process.

• We present a self-attention-based feature fusion module for a better multimodal feature extraction to perform fine-grained document image classification. Our proposed self-attention-module enhances the overall accuracy of the ensemble network and achieves state-of-the-art classification performance compared to single-modal and multimodal learning methods.

• We perform a comprehensive ablation study on the benchmark RVL-CDIP and

Tobacco-3482 datasets to analyze the effectiveness of our proposed ensemble trainable network with/without the mutual learning approach, and with/without the self-attention-based feature fusion module.

• We evaluate the performance and the generalization ability of the proposed ensemble network on unseen document data through inter-dataset and intra-dataset evaluation on the benchmark RVL-CDIP and Tobacco-3482 datasets for the single-modal and multimodal fusion modalities.

Approach

In this section, we present in detail the proposed multimodal mutual learning and selfattention-based feature fusion approaches.

The proposed ensemble deep network (see Figure 3.1) is based on a multimodal architecture, which consists of vision, language, and vision-language fusion modalities. The vision and language modalities are dedicated to extracting visual features and textual embeddings respectively. The fusion branch is used to combine the extracted visual and language features into multimodal features. After the training of the ensemble network, the classification of document images is conducted by either the vision modality or the language modality. Moreover, the visual features and the the text embeddings learned are fused to conduct document image classification in a multimodal fashion.

Vision Modality

The vision modality extracts the visual features using the Inception-ResNet-V2 [START_REF] Szegedy | Inceptionv4, inception-resnet and the impact of residual connections on learning[END_REF] as a backbone network, which is a convolutional neural network that achieved state-of-the-art results on the ILSVRC image classification benchmark. The model has 54.36M parameters.

Language Modality

Further, we process all document images with an off-the shelf optical character recognition (OCR) system, i.e. Tesseract OCR1 to extract the text from document images. Since document images from RVLCDIP and Tobacco-3482 datasets are well-oriented and relatively clean, it is quite straightforward to run the Tesseract OCR engine on such documents. We utilized this OCR engine to conduct a fully automatic page segmentation without orientation or script detection. We analyzed the output of the OCR and found a lot of errors in 

Cross-Modal Modality

After the training of the vision modality/branch and the language modality/branch by the proposed mutual learning approach with regularization (i.e. ML T r-KLD Reg ), we attempt to fuse these two modalities/branches to simultaneously learn the visual and textual features extracted from the two vision and language branches. Moreover, we adopt an early fusion 

Self-Attention-based Fusion Module

The proposed self-attention-based fusion module has been inspired by the attention modules in the squeeze and excitation network [START_REF] Hu | Squeeze-and-excitation networks[END_REF], which is based on re-weighting the channelwise responses in a certain layer of a CNN by using soft self-attention in order to model the inter-dependencies between the channels of the convolutional features. As shown in 

Attention Fusion

Attention Fusion (a) The architecture for the attention fusion module between vision modality and language modality [START_REF] Bakkali | EAML: ensemble self-attention-based mutual learning network for document image classification[END_REF]. 

Proposed Method

In this section, we present in detail the proposed multimodal mutual learning and selfattention-based feature fusion approaches.

Multimodal Mutual Learning

As seen in the Figure 3.1, the proposed multimodal mutual learning network consists of three different modalities: vision modality (image branch), language modality (text branch) and the multimodal modality (fusion of the two vision an language modalities). The total training loss of the ensemble network L train is the sum of the weighted losses of the different modalities, i.e. the vision modality loss L 1 , the language modality loss L 2 and the multimodal fusion (image/text) loss L 3 . Specifically, L 1 and L 2 are obtained by the mutual learning, which can be also called as the mutual learning loss. Thus, the total loss L train for a pair (x n , y n ) is defined as follows:

L train (X n ; Θ) = M i=1 w i L i (X (i) n ; Θ i ) = w 1 L 1 + w 2 L 2 + w 3 L 3 (3.2)
where M = 3 is the number of modalities to be performed. X i and Θ i are the corresponding features and the parameters learned from each modality, Θ = {Θ i } M i=1 are the overall parameters of the networks to be optimized by L train . w i ∈ [0, 1] s.t.

w i = 1 denote hyper-parameters which balance the independent loss terms. Thus X i ∈ R d i , where d i is the dimension of the features X i , and L i , w i ∈ R 1 .

Mutual Learning Loss

The conventional mutual learning task loss consists of two losses: a supervised learning loss (e.g. cross-entropy loss) and a mimicry loss (e.g. Kullback-Leibler divergence (KLD). The conventional mutual learning setting aims to help the training of the current modality by transferring the knowledge between one or an ensemble of modalities in a mutual learning manner as in [START_REF] Zhang | Deep mutual learning[END_REF]. However, the knowledge learned from the other modality through the conventional (KLD) includes both the negative part and the positive part that is transferred to the current modality. Yet, instead of using the standard (KLD) in the original mutual learning [START_REF] Zhang | Deep mutual learning[END_REF], we propose a so-called truncated-KLD loss (Tr-KLD Reg )

as a new regularization term in the training loss of the current modality, which enables us to filter the negative knowledge learned from the other modality, and only keep the knowledge being positive to the current modality. In this work, the cross-entropy loss L s of the current modality in the process can be written as:

L s (X; Θ) = K k=1 -y k log(P s (ŷ k |X, θ k )) (3.3) 
where the probability P s is the softmax operation given by:

P s (X; θ k ) = e f θ k (X) K k ′ e f θ k ′ (X) (3.4)
where K is the number of classes in the dataset, y k is the one-shot label of the feature X of the input sample, P s is the class probability estimated by the softmax function.

The truncated-Kullback-Leibler divergence regularization (Tr-KLD Reg ) loss of the current modality in process D KL Reg is given by:

D KL Reg (P s 2 ∥ P s 1 ) = K k=1 P s 2 max 0, log P s 2 P s 1 (3.5)
where P s 1 is the class probability estimated by the current modality, while P s 2 refers to the class probability estimated by the other modality. In this way, the mutual learning approach transfers the positive knowledge learned from the current modality to the other modality, by adapting the conventional mutual learning with the constraints of the mimicry loss D KL Reg (i.e. Tr-KLD Reg ). In the following part, P s 1 refers to the class probabilities of the vision modality, while P s 2 refers to the class probabilities of the language modality.

(i) Vision Modality Setting: For the vision modality, the overall loss function L 1 is given by:

L 1 (X 1 ; Θ 1 ) = L s 1 (X 1 ; Θ 1 ) + βD KL Reg (P s 2 ∥ P s 1 ) (3.6) 
where β = 0.5 is a hyper-parameter denoting the regularization weight.

The motivation of the conventional mutual learning aims to augment the training capacity of the network, by introducing the mimicry loss to align the classification probability of the current modality to the other modality with better training. However, it is not always true that the other/language modality performs better than the current/vision modality. In that case, the ongoing training of the current/vision modality will be weakened by the sum of the mimicry loss with the supervised loss (i.e. the cross-entropy loss for the classification of the document image). For instance, the mutual learning with regularization D KL Reg loss will encourage the current/vision modality to learn only the positive knowledge from the other/language modality, and thus, prevent the negative knowledge from being introduced in the ongoing training of the current/vision modality.

(ii) Language Modality Setting: For the language modality, the overall loss function L 2 can be written as:

L 2 (X 2 ; Θ 2 ) = L s 2 (X 2 ; Θ 2 ) + βD KL Reg (P s 1 ∥ P s 2 ) (3.7)
Similar to the vision modality setting, the mutual learning with regularization D KL Reg loss will prevent to transfer the negative knowledge that might be introduced from the other/vision modality, and thus, will encourage the transfer of only the positive knowledge to the current/language modality throughout the training process.

Multimodal Learning Loss

Instead of classifying document images using the independent vision or language modalities mentioned before, we can also conduct document image classification in a multimodal manner by combining the visual features and textual embeddings extracted from the two modalities trained with the mutual learning approach with regularization (i.e.

ML T r-KLD Reg ). We directly superpose the visual features of the trained vision modality and text embeddings of the trained language modality to generate the ensemble crossmodal features as shown in Equation 3.9. Note that the dimension of the features extracted from the vision modality and the language modality are equal in this work and are denoted as d. A softmax layer at the end of the network is used to learn the classification of document images based on the ensemble cross-modal features X 3 . The parameter Θ 3 of the softmax layer is optimized by the cross-entropy loss function L 3 (X 3 ; Θ 3 ) which is given by:

L 3 (X 3 ; Θ 3 ) = - K k=1 y k logP (ŷ k |X 3 , Θ 3 ) (3.8)
with X 3 given by:

X 3 = [X 1 + X 2 ], X 3 ∈ R d (3.9)

Self-Attention-based Fusion Module

The aim of the self-attention-based fusion module (see Figure 3.3) is to enhance the representation of the concatenated visual and textual feature maps to capture their salient features while eliminating to some extent the irrelevant or noisy ones. The adopted selfattention-based fusion module has been inspired by the attention module in [START_REF] Hu | Squeeze-and-excitation networks[END_REF][START_REF] Vaswani | Attention is all you need[END_REF],

which is based on the channel-wise re-calibration of feature maps to model the dependency of channels. The intermediate feature maps of each individual modality can be interpreted as a set of local descriptors that include global information in the decision process of the network. This is achieved by using global max pooling and global average pooling layers to generate channel-wise information. The advantage of these pooling operations is to enforce correspondences between feature maps and categories.

Consider a set of input features X = [x 1 , ..., x m ] ∈ R m.dx and output features

F = [f 1 , ..., f m ] ∈ R m.d f ,
where m is the number of samples, d x and d f are the dimensions of input and output features respectively. For the vision modality, the input features X are passed to global average pooling and global max pooling layers. The spatial information for each layer is computed as:

F ′ I Avg = GlobalAvgP ool2D(X I Avg ) (3.10) F ′ I M ax = GlobalM axP ool2D(X I M ax ) (3.11) 
where For the language modality, the input features are fed to a global max pooling layer:

F ′ I Avg ,
F ′ T M ax = GlobalM axP ool1D(X T M ax ) (3.12)
where F ′ T M ax corresponds to the intermediate feature maps of the input features X T M ax of the language modality. For our proposed self-attention-based fusion module, the intermediate feature maps of the vision and language modalities extracted by the pooling operations are fed to three independent fully-connected layers which correspond to the vectors query, keys, and values respectively as follows:

Q = FC q (F ′ ); (3.13) K = FC k (F ′ ); (3.14) 
V I = FC v (F ′ ) (3.15)
where Q, K, V ∈ R m.d are three vectors of the same shape fed to the attention function, which consists of computing the compatibility of the query with the key vectors to retrieve the corresponding value.

Given a query q and all keys K, we calculate the dot products of q with all keys K, divide each by a scaling factor d f and apply the softmax function to get the attention weights on the values. The output features of each self-attention module of vision and language modalities F are given as follows:

A = softmax( Q.K T d f ) (3.16) F = A.V (3.17)
where A is the attention map containing the attention weights for all query-key pairs, and the output features of the self-attention blocks F are the weighted summation of the values V determined by the attention function A.

Learning an accurate attention map A is crucial for self-attention learning. The scaled dot-product attention in Equations 3.16 and 3.17 models the relationship between feature pairs. Once the spatial information is extracted and fed into the self-attention blocks to compute the attention maps, they are then concatenated and multiplied by the input features of the vision and language modalities for adaptive feature fusion, which is computed as follows:

M(F) = σ(F).F (3.18)
where M is the feature map that is passed to the following intermediate vision and language blocks of the vision and language modalities. The term σ(.) denotes the sigmoid function. This feature map generated by the proposed self-attention-based fusion module focuses on the important features of the channels and concentrates on where the salient features are located.

Experimental Setup

Preprocessing

As the vision modality requires document images of a fixed size as an input, we first downscale all images to 229 × 229 pixels. Intuitively, when training DCNNs, data augmentation has been shown to be effective for real-world image classification [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]. The training data is augmented by shifting it horizontally and vertically with a range of 0.1. Also, shear transform is applied with a range of 0.1. To improve regularization of our vision modality, cutout [START_REF] Devries | Improved regularization of convolutional neural networks with cutout[END_REF] is applied, which augments the training data by partially occluded versions of the existing sample images. On the other hand, document images from the RVL-CDIP dataset are well-oriented and relatively clean. Hence, we run the Tesseract OCR engine.

We used the version 4.0.0 -beta.1 of Tesseract based on a LSTM engine to aim for better accuracy. The resulting extracted text was not post-processed. Although document information might be lost in OCR, such as typeface, graphics, layout, stop words, mis-spellings, symbols and characters, it could benefit from some level of spell checking to improve the semantic learning. However, we chose to provide the true output of Tesseract OCR as is.

Implementation Details

The network used in our proposed approaches were conducted on a 4 NVIDIA RTX-2080 GPU, using stochastic gradient descent optimizer (SGD), with Nesterov momentum, minibatch size of 16, and a learning rate of 1e -3 decayed with a value of 0.5 every 10 epochs.

the learning rate decay is defined as

lr = initial_lr * drop iter iter_drop (3.19)
The mutual learning strategy with regularization (i.e. ML T r-KLD Reg ) is performed in each mini-batch throughout the training process. At each iteration, the predictions of each modality are computed and the parameters are updated according to the predictions of the other modality as in Equations 3.6, 3.7 and 3.8. The optimization process of parameters Θ 1 , Θ 2 , and Θ 3 is performed iteratively until convergence. We considered early stopping within 10 epochs to stop the training process once the model's performance stops improving on the hold out validation dataset.

Experiments and Ablation Study

Evaluation Protocol

To evaluate the performance and the generalization ability of our proposed ensemble network, we proceed with intra-dataset and inter-dataset evaluation on the benchmark RVL-CDIP and Tobacco-3482 datasets. For the intra-dataset evaluation, we train and test the model on the same dataset -in which the train set and test sets have the same data distribution-to evaluate the performance of the proposed approaches. Whereas, for the inter-dataset evaluation, we train and test the ensemble network on different datasets -having different data distribution-to evaluate the generalization ability of the trained model. We first train our ensemble network on the RVL-CDIP dataset, then we employ the intra-dataset evaluation on RVL-CDIP and the inter-dataset evaluation on Tobacco-3482. Secondly, we train our ensemble network on the Tobacco-3482 dataset, then we employ the intra-dataset evaluation on Tobacco-3482 and the inter-dataset evaluation on RVL-CDIP. Note that there is no overlap between training set and test set either in intradataset or inter-dataset evaluation.

We report the accuracy, recall, and precision metrics achieved on the test set for the following methods: Independent Learning based on the single-modal vision and language modalities; Mutual Learning trained with the standard Kullback-Leibler divergence (KLD); Mutual Learning trained with the truncated-Kullback-Leibler divergence regularization (Tr-KLD Reg ) loss; and Ensemble Self-Attention Mutual Learning trained with (Tr-KLD Reg ). We denote them respectively as IL, ML KLD , ML T r-KLD Reg , and EAML T r-KLD Reg (see Tables 3.2, 3.3). We also compute the average precision (AP) from prediction scores which summarizes a precision-recall curve as the weighted mean of precision achieved at each threshold, with the increase in recall from the previous threshold used as the weight:

AP = n (R n -R n-1 )P n (3.20)
where P n and R n are the precision and recall at the n th threshold. The high area under the (AP) curve represents both high recall and high precision, where high precision relates to a low false positive rate, and high recall relates to a low false negative rate. High scores for both precision and recall show that the model is returning accurate results (high precision), as well as returning a majority of all positive results (high recall). In addition, we compare our work against other state-of-the-art methods on the RVL-CDIP and Tobacco-3482 datasets. Note that the baseline methods in Tables 3.1 and 3.4 are not necessarily based on vision and language modalities. For example, [START_REF] Xu | Layoutlm: Pre-training of text and layout for document image understanding[END_REF] leverages visual features to incorporate words' visual information into LayoutLM for document-level pre-training. Also, [START_REF] Xu | LayoutLMv2: Multi-modal pretraining for visually-rich document understanding[END_REF] leverages pre-training text, layout and image in a multimodal framework by using textimage alignment and text-image matching tasks in the pre-training stage, where the crossmodality interaction is better learned.

Intra-dataset Evaluation

Results on the RVL-CDIP Dataset

On the large-scale RVL-CDIP dataset, all of the adopted approaches in this work achieve comparable performance with the state-of-the-art models. We report the overall accuracy results in Table 3.1. compared to our previous results in Chapter 2 and in our work from [START_REF] Bakkali | Visual and textual deep feature fusion for document image classification[END_REF] and other baseline methods. The proposed EAML T r-KLD Reg model achieves the best performance in terms of accuracy for the single-modal vision and language modalities, and for the multimodal fusion modality at an accuracy of 97.67%, 97.63%, and 97.70% respectively. The adopted self-attention-based fusion module has shown its effectiveness in capturing simultaneously the inter-modal interactions between image features and text embeddings, along with the mutual learning approach with regularization (i.e.

ML T r-KLD Reg

). Therefore, it improves the global classification performance of the single- Evaluation of the Single-Modal Tasks on the RVL-CDIP dataset (I.) IL vs ML KLD : The reported results in Table 3.2 illustrate the impact of training the independent vision and language modalities in a mutual learning manner, on the learning process of both modalities. We observe that the ML KLD approach improves the classification performance of the vision modality from 85.04% to 88.87%, while it deteriorated the performance of the language modality from 84.96% to 80.89%. We explain this performance deterioration of the language modality by learning the negative knowledge from the vision modality. In fact, the knowledge transferred via the standard (KLD) loss harms the ongoing training of the current/language modality in process. Here, given image features from an image sample with its corresponding text embeddings, the negative learning comes from the low class probabilities predicted by the vision modality, while at the same time, the language modality has made the right predictions from the same sample. In this way, the mutual training is harmed for the language modality and its loss variation L 2 (X 2 ; Θ 2 ) becomes slower. Thus, using the Mutual Learning ML KLD approach actually makes the language modality worse than the Independent Learning (IL) approach.

Nonetheless, for the vision modality, the classification accuracy has improved. This means that transferring the knowledge from the language modality to the vision modality by learning mutually from the text predictions is effective.

(II.) IL vs ML T r-KLD Reg : The classification results in Table 3.2 show that, training the vision and language modalities in a mutual learning manner -trained with the regularization term (i.e. Tr-KLD Reg )-provide an improvement compared to the IL and the ML KLD methods. It improves the classification accuracy of the vision modality from 85.04% for the IL method to 90.81% for the ML T r-KLD Reg method. Also, it enhances the predictions of the language modality from 84.96% to 88.80% respectively.

Accordingly, the network keeps learning only from its cross-entropy loss L s (X; Θ) when the knowledge to be transferred from the other modality will harm the ongoing training of the current modality.

(III.) ML T r-KLD Reg vs EAML T r-KLD Reg : The proposed self-attention-based fusion module for visual and textual feature fusion focuses on the salient feature maps gen-erated from the image and the text modalities and suppresses the unnecessary ones to efficiently leverage these two modalities. The introduction of this attention module to fuse the two modalities along with the mutual learning approach has shown its efficiency compared to the ML T r-KLD Reg method as shown in Table 3.2. We demonstrate that the EAML T r-KLD Reg method outperforms ML T r-KLD Reg method with a significant margin at an accuracy of 97.67%, 97.63% for the vision and language modalities respectively. The attention module enhances the classification performance of all classes for the single-modal modalities. therefore, leveraging both modalities to one another in a middle fusion manner along with the mutual learning strategy encourage collaborative learning.

Evaluation of the Multimodal Tasks on the RVL-CDIP Dataset

In the multimodal learning task, the learned visual and language features are combined to conduct document image classification. At first, from Table 3.2, we see that the multimodal fusion predictions outperform the independent predictions of the single-modal modalities for each method. Moreover, jointly learning both modalities in an ensemble network benefit from training vision modality and text modalities both independently (IL) and in a mutual learning manner (ML T r-KLD Reg ). The ensemble predictions learned across the EAML T r-KLD Reg method with an accuracy of 97.70%, outperform the predictions learned from training the ensemble network across either the ML T r-KLD Reg , the ML KLD , or the IL approaches at an accuracy of 96.28%, 90.06%, and 94.44% respectively. That is to say, the ability of the self-attention-based fusion module along with the mutual learning strategy -trained with the regularization term (i.e. Tr-KLD Reg )-to improve ensemble models is beneficial for the task of document image classification, which outperforms the state-ofthe-art results for the multimodal task as seen in Table 3.1. Accordingly, the proposed EAML T r-KLD Reg method manages to correct the classification errors produced by vision and language modalities during the learning process. Hence, it provides state-of-the-art classification results for the task of document image classification.

In this manner, we showed the effectiveness of leveraging visual and textual features learned in a mutual learning with regularization strategy through a self-attention-based feature fusion module. Our approach learns simultaneously relevant and accurate infor- 

Results on the Tobacco-3482 Dataset

As reported in Table 3.3, which corresponds to the achieved performance on the Tobacco-3482 dataset, the EAML T r-KLD Reg method improves the classification performance significantly. The proposed EAML T r-KLD Reg method improves the overall performance of the single-modal and cross-modal modalities at an accuracy of 97.99%, 96.27%, and 98.57%

for the vision modality, for the language modality, and for the multimodal fusion modality respectively compared to other methods. Thus, it achieves compelling performance results compared to the baseline methods on the Tobacco-3482 dataset (see Table 3.4). Besides, the results illustrate that training the vision and language modalities in a mutual learning manner with the ML KLD method weakens the learning capacity of the language modality. Therefore, we show the effectiveness of the ML T r-KLD Reg approach that transfers only the positive knowledge from the current modality in process to the other modality. 

Intra-Dataset Confusion Matrices

Inter-dataset Evaluation

This subsection describes an experimental investigation into the inter-dataset generalization of our fully-supervised deep network models, trained to distinguish between several categories of documents. The experiments conducted on inter-dataset evaluation question the implied link that learning cross-modal interactions and alignment between different 

Generalization Experiment Design on the Tobacco-3482 Dataset

To evaluate the generalization ability of our ensemble network trained on the RVL-CDIP dataset, we use the benchmark Tobacco-3482 dataset and report the overall accuracy, recall, precision, and F1-score as useful metrics to evaluate the performance of the singlemodal and cross-modal modalities. Since the Tobacco-3482 is an imbalanced dataset, we focus more on the precision-recall metrics which are useful to measure the success of predictions when the classes are imbalanced, which are reported in Tables 3.5 and 3.6. Note that the precision metric is a measure of result relevancy, while the recall metric is a mea- The EAML T r-KLD Reg method performs better with an overall accuracy of 87.29% for the vision modality, 87.23% for the language modality, and 87.63% for the multimodal fusion the ability of the model to find the positive samples of the Scientific publication category is only at 37.93%, 36.02%, and 39.46% for the vision modality, the language modality and the multimodal fusion modality respectively for the EAML T r-KLD Reg method, while it is at 33.72%, 33.72%, and 34.10% for each modality respectively for the ML T r-KLD Reg method. The low recall for the two methods is due to the overlap between two categories that are Scientific publication and Scientific report.

After all, we see that for the two proposed EAML T r-KLD Reg and ML T r-KLD Reg methods, the model returns very few results compared to the intra-dataset evaluation, but most of its predicted labels are correct when compared to the training labels for the single-modal modalities, as well as for the multimodal fusion modality. Amongst all classes, the generalization ability of the model given the two methods is very poor regarding the class Scientific report, where the precision and recall are very low, whereas, for the intra-dataset evaluation, the performance of the ensemble network concerning the category Scientific report is at 94.62%, and 94.30% for the multimodal fusion modality of the EAML T r-KLD Reg and ML T r-KLD Reg methods respectively.

Therefore, Table 3.8 illustrates the average-precision scores (AP) of the common categories for the two proposed methods ML T r-KLD Reg , and EAML T r-KLD Reg . Hence, we relate We illustrate in Figure 3.6 the precision-recall curves of the best and worst classes for the cross-modal modalities of the EAML T r-KLD Reg and ML T r-KLD Reg methods respectively. It shows the trade-off between precision and recall for different thresholds. We compute the average precision (AP) from prediction scores which summarizes a precisionrecall curve. We see that the model is returning accurate results (high precision), as well as a majority of positive results (high recall), as it is the case for the categories Resume, Email, and Memo, where most of the predicted samples are labeled correctly for either the EAML T r-KLD Reg or the ML T r-KLD Reg methods. However, we observe a good precision but low recall for the Scientific publication category, and a bad precision and recall for the Scientific report category.

Generalization Experiment Design on the RVL-CDIP Dataset

Symmetrically, we propose to evaluate the generalization ability of our proposed model trained on the Tobacco-3482 dataset and validated on the large-scale RVL-CDIP dataset. The overall accuracy, recall, precision, and F1-score metrics of our best EAML T r-KLD Reg approach are proposed in Table 3.7. We proceed with the same evaluation protocol as in Section 3.5.4, where there are 9 classes of the Tobacco-3482 dataset that overlap with the classes of the RVL-CDIP dataset.

From Table 3.7, the EAML T r-KLD Reg method displays a better generalization ability compared to the other methods. It performs the best with an overall accuracy of 78.89%

for the vision modality, 79.06% for the language modality, and 86.68% for the multimodal fusion modality. Amongst all classes, and similarly to the inter-dataset evaluation on the Tobacco-3482 dataset, the network generalizes the worst for the same categories which are Scientific publication and Scientific report, while it generalizes the best for the categories Resume, Letter, Memo, and Email. Moreover, the ensemble network manages to predict only 10.50% of samples that belong to the Scientific report category as true positives, while 85.26% are predicted as they belong to the Scientific publication category. At this stage, the precision and recall of the model are very low regarding the Scientific report category for each modality. As mentioned in Section 3.5.4, the bad precision and recall are due to the overlap between the two categories, which results to a bad generalization Therefore, we relate a good generalization ability of our proposed EAML T r-KLD Reg trained on Tobacco-3482, and evaluated on RVL-CDIP, regarding 7 common classes between the RVL-CDIP and Tobacco-3482 datasets, except for the Scientific publication and the Scientific report categories where it generalizes the worst. These results are encouraging as we can see that our proposed system is able to learn on a smaller dataset consisting of 6k documents compared to the RVL-CDIP training set, which consists of 320k.

Inter-Dataset Confusion Matrices

The Confusion matrices in Figure 3.7 display the generalization ability of our best EAML T r-KLD Reg approach for the vision, and language, modalities respectively. Symmetrically, Figure 3.8 refer to the vision, and language modalities of the proposed ML T r-KLD Reg method. Note that these methods are trained on RVLCDIP, and evaluated on the Tobacco-3482 dataset. We make use of a cross-attention middle feature fusion transformer module to establish representation learning at the semantic level (by exploiting the relations between different document components). As well, specifically, we introduce a cross-modality learning strategy in the pre-training phase for contextualized comprehension on document components across vision and language modalities, which is further fine-tuned on two downstream applications which are document classification, and few-shot learning.

CHAPTER 4

Multimodal Document Representation Learning

The deepest of level of communication is not communication, but communion. It is wordless. . . beyond speech. . . beyond concept.

-Thomas Merton

Motivation

In Multimodal learning from document data has achieved great success lately as it allows us to pre-train semantically meaningful features as a prior into a learnable downstream approach. In this chapter we approach the document classification problem by learning cross-modal representations through language and vision cues, considering intraand inter-modality relationships. Instead of merging features from different modalities into a common representation space, the proposed method exploits high-level interactions and learns relevant semantic information from effective attention flows within and across modalities. The proposed learning objective is devised between intra-and inter-modality alignment tasks, where the similarity distribution per task is computed by contracting positive sample pairs while simultaneously contrasting negative ones in the common feature representation spaces.

The recent research has started to consider how to leverage and incorporate the relations within those different modalities in a unified network to capture latent information for exploring better yet effective multimodal representations. Such systems have shown their effectiveness in improving multimodal representation learning in a pretrain-then-finetune paradigm, where models are first pre-trained with large-scale data and then fine-tuned to each downstream task [START_REF] Appalaraju | Docformer: End-to-end transformer for document understanding[END_REF][START_REF] Bao | Beit: Bert pre-training of image transformers[END_REF][START_REF] Huang | LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking[END_REF][START_REF] Li | DiT: Self-supervised Pre-training for Document Image Transformer[END_REF][START_REF] Li | Selfdoc: Self-supervised document representation learning[END_REF][START_REF] Powalski | Going full-tilt boogie on document understanding with text-image-layout transformer[END_REF][START_REF] Xu | LayoutLMv2: Multi-modal pretraining for visually-rich document understanding[END_REF][START_REF] Xu | Layoutlm: Pre-training of text and layout for document image understanding[END_REF].

Several studies that have been devoted to perform the downstream document classification task, often used shallow cross-modal feature fusion modules to leverage visual and textual features such as naive concatenation, element-wise multiplication, and ensemble methods to extract cross-modal features [START_REF] Sierra | Combining Textual and Visual Representations for Multimodal Author Profiling: Notebook for PAN at CLEF 2018[END_REF][START_REF] Yang | Exploring deep multimodal fusion of text and photo for hate speech classification[END_REF][START_REF] Zahavy | Is a picture worth a thousand words? A Deep Multi-Modal Fusion Architecture for Product Classification in e-commerce[END_REF]. Despite being studied extensively, the shortcomings of the preceding cross-modal feature fusion approaches are twofold. First, during inference, the vision-language sample pairs need to be fed to the fusion modules to calculate the prediction scores in order to perform the document classification task, which remains computationally expensive. Second, the existing vision-language modality gap makes it difficult to capture high-level interactions between image regions and text sequences, as the feature representations of the visual and textual modalities are usually inconsistent and their distributions span different feature space.

In contrast, to embody the idea that better features make better classifiers, a framework that is based on the pretrain-then-finetune paradigm, which allows us to learn more general and task-agnostic cross-modal representations is highly required. Incorporating intramodality and inter-modality relations from vision and language modalities can lead to more compact common representations. The resulting common representation space is an intermediate that implicitly measures the cross-modal similarities between image and text sequence sample pairs. Intuitively, the multimodality of documents requires multimodal reasoning over multimodal inputs, where data related to the same topic of interest tend to appear together. For instance, some types of documents such as handwriting categories are mainly not recognizable by OCR algorithms, which leads to losing textual information, and thus, semantic meaning. Thus, the visual information within the image regions of the document should be strongly emphasized. Meanwhile, some type of documents such as file folder category do not contain any visual spatial information, in which case a stronger emphasis on the textual information within the language cues is highly required.

To address the heterogeneity gap and the lack of closer interactions between image regions and text sequences within and across vision-language modalities, we propose a novel cross-modal contrastive pre-training model by learning cross-modal representations as a prior in a unified pre-training network. To encourage cross-modal learning, we model intra-modality and inter-modality representations between the cues of the vision-language modalities in the pre-training stage. We design an Inter-Modality Cross-Attention module denoted as (InterMCA) to capture relevant features from image regions and semantic meaning from text sequences. We aim to ensure that features from vision and language modalities map to closer points in the joint embedding space. Nevertheless, existing crossmodal document understanding approaches lack an explicit measure that also ensures that similar features from the same modality stay closer in the same joint embedding space. We assume that if similar features from the same category of each modality map to distant points in the joint embedding space, then the embeddings generated within vision and language modalities will lack semantically enriched information, and thus, will generalize badly for downstream applications. As a remedy, we introduce intra-modality representation which is carried within an Intra-Modality Self-Attention module denoted as (IntraMSA). This module is devoted to constructing intra-modality relations within each modality according to the self-attention weights of image regions and text sequences.

Moreover, leveraging cross-modal relations through the InterMCA and IntraMSA attention modules requires a cross-modal learning objective. In the pre-training stage, we propose to train the network with a combinatorial cross-modal contrastive learning loss, which aims to simultaneously learn visual and textual features that represent document data in a more efficient manner than direct adoption of a single-modal contrastive loss for vision or language only modalities. For the downstream application, we run single-modal inference on top of the generated cross-modal embeddings to perform the specific document classification task. Also, we propose a new baseline in the few-shot setting. To the best of our knowledge, this is the first time to evaluate the generalization ability of a multimodal document embedding network on fewer samples in the document understanding field. The superior performance on the benchmark document datasets (i.e. RVL-CDIP and Tobacco-3482) demonstrates that the proposed cross-modal learning network, denoted as VLCDoC, can lead to learn robust and domain-agnostic cross-modal features in both document image classification and for few-shot document classification settings.

The main contributions of this work are summarized as follows:

• We design a unified task-agnostic document pre-training framework for a better cross-modal representation learning. Our network consists of leveraging two flexible extra levels of cross-modal interactions through cross-attention (InterMCA) and selfattention (IntraMSA) middle feature fusion-based attention modules. These modules capture high-level interactions between visual-textual cues within the different document components.

• We propose a cross-modal contrastive learning objective to further explore the relations between vision and language cues. Compared to the classic single-modal has two main modalities to perform visual-textual feature extraction. VLCDoC enforces deep multimodal interaction in transformer layers using a cross-modal attention module.

The VLCDoC architecture network consists of two main schemes: one contrastive learning branch for cross-modal representation learning, and one cross-entropy learning branch for classifier learning. This feature learning strategy aims to learn a feature space which has the property of intra-class compactness and inter-class separability, while the classifier learning branch is expected to learn a domain-agnostic classifier with less bias based on the discriminative features obtained from the encoder branch.

Model Architecture

In this chapter, we design a multimodal transformer-based architecture for document un- 

Visual Features

To extract the visual embeddings, we follow the original pre-trained vision transformer architecture ViT-B/16 [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF] as a backbone. Let v visn ∈ R H×W ×C be the document image.

We reshape it into a sequence of flattened

2D patches v visnp ∈ R N ×(P 2 •C) , where (H, W )
is the resolution of the document image, C = 3 is the number of channels, (P, P ) is the resolution of each document patch, and N = HW/P 2 is the resulting number of patches, which serve as the input sequence length for the transformer encoder. The patches obtained are then flattened and mapped to d dimensions as the hidden embedding size.

The resulting visual embeddings are then represented as

V = v i visn ∈ R d visn , where d visn is FC multiply add FC multiply add InterMCA Module V K V V L K L Q L V V Q softmax softmax Visual Features Language features InterMCA L->V InterMCA V->L V K V V L K L Q L V V Q softmax softmax IntraMSA Module IntraMSA V->V IntraMSA L->L

Update Vision Features

Update Language Features 

Textual Features

To extract the textual embeddings, we first extract the text t lang within the document images via an off-the shelf optical character recognition (OCR) system, e.g. Tesseract OCR 1 . The input sequences extracted with the OCR are further fed into the pre-trained BERT Base uncased encoder [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF]. The resulting textual embeddings are then represented as T = t i lang ∈ R d lang , where d lang is a 2D vector of the same size as d visn . This way, we ensure that the visual and the textual embeddings are of the same shape.

Cross-Modal Alignment

In this subsection, we introduce the cross-attention (InterMCA) and self-attention (In-traMSA) modules that capture intrinsic patterns by modeling the inter-modality and intra-modality relationships for image regions and texts. Specifically, our proposed attention modules are transformer-based architectures as in [START_REF] Vaswani | Attention is all you need[END_REF]. It consists of a multi-head self-attention sub-layer, and a position-wise feed-forward sub-layer f F F . Meanwhile, residual connections followed by the layer normalization f LN are also applied around each of the two sub-layers. In the multi-head self-attention sub-layer, the attention is calculated h times, making it to be multi-headed. This is achieved by projecting the queries Q, keys K, and values V h times by using different learnable linear projections.

Inter-Modality Alignment

The inter-modality cross-attention module InterMCA aims to enhance the cross-modal features by embracing cross-modal interactions across image regions and texts. This module aims to transfer the salient information from one modality to another as illustrated in Figure 4.2. Let V l = {v 1 , v 2 , ..., v m }, L l = {l 1 , l 2 , ..., l m } be the sets of intermediate visual and textual features at the l-th layer of the vision and language modalities respectively, where v i ∈ R 1×d f , l i ∈ R 1×d f , and V ∈ R m×d f , L ∈ R m×d f . Note that the visual and textual features have the same dimensional feature vector d f . To accomplish cross-modal interaction, we apply at first dot-product attention to combine the queries of each modality with the keys of the other. The weighted sum of the value of each modality is computed following the equations:

InterMCA L→V (V l ) = softmax Q V l K ⊤ L l √ d k V L l (4.1)
InterMCA V→L (L l ) = sof tmax Q L l K ⊤ V l √ d k V V l (4.2)
In this way, we emphasize the interaction and agreement between the visual regions and the semantic meaning of texts. The attention weights are then sent into the feed-forward sub-layer. Finally, we get the output features of the next layer of the vision modality V l+1 computed as:

V l Att = f LN V (InterMCA L→V (V l ) + V l ) (4.3) 
V l+1 = f LN V (f F F (V l Att ) + V l Att ) (4.4) 
Similarly, the output features L l+1 of the language modality are computed as:

L l Att = f LN L (InterMCA V→L (L l ) + L l ) (4.5) 
L l+1 = f LN L (f F F (L l Att ) + L l Att ) (4.6) 
Further, the outputs of each vision and language InterMCA modules are subsequently fed into the vision and language IntraMSA modules.

Intra-Modality Alignment

The IntraMSA attention module illustrated in Figure 4.2, aims to update the vision and language information and to capture inner-modality attention weights. For each modality, the information is updated according to a feature fusion scheme. At first, we perform element-wise product to the attention flow V l+1 with the the visual region features V l , then after a residual connection, features are fused by a linear additive function to yield the final updated visual information. To keep the dimension of the updated information consistent, a fully connected f F C layer is employed. The updated textual information is computed likewise, following the equations: the same modality should be mapped to a close location in the joint embedding space (intra-modality), but also similar samples x i and t j should be mapped in close proximity (inter-modality). Therefore, the vision modality loss shown on the left of Figures 4.3a 

V = f F C ((V l+1 ⊙ V l ) + V l ) (4.7) 
L = f F C ((L l+1 ⊙ L l ) + L l ) (4.8) X i X j X 1 k X 2 k X 3 k V➔ V :
L V = N i=1 L V →V (x i ) + N i=1 L L→V (x i ) (4.11) L V →V (x i )= -1 |{x + i }| x j ∈{x + i } log exp(x i • x j /τ ) x k ,k̸ =i exp(x i • x k /τ )
Intra modality vision loss (4.12)

L L→V (x i )= -1 |{t + i }| t j ∈{t + i } log exp(x i • t j /τ ) t k ,k̸ =i exp(x i • t k /τ )
Inter modality vision loss (4.13) where • computes similarity scores between example pairs and τ is a scalar temperature hyper-parameter. N is the minibatch size, |{x + i }| and |{t + i }| denote the number of positive samples of anchors x i and t i respectively. Similarly, the language modality loss shown on the right of Figures 4.3a and 4.3b is computed as:

L L = N i=1 L L→L (t i ) + N i=1 L V →L (t i ) (4.14) 
Therefore, the learning objective is based on four contrastive components including V → V , L → V , L → L, and V → L alignments, which is computed as:

L CrossCL = L V →V + λL L→V + L L→L + λL V →L (4.15)
where λ is a hyper-parameter to control inter-modality alignment.

Experiments

In this section, we evaluate the effectiveness of the proposed method on low-scale and large-scale document classification datasets. We make use of the two benchmark datasets RVL-CDIP and Tobacco-3482 introduced in Section 1.5.1.

Pre-Training VLCDoC

The proposed VLCDoC method is implemented in Tensorflow with 4 NVIDIA GeForce 12Gb RTX 2080Ti GPU. For the vision modality, documents are resized into a fixed size of (H, W ) = (224, 224). The image region feature vector extracted by the ViT-B/16

backbone is of d visn = [START_REF] Zellers | From recognition to cognition: Visual commonsense reasoning[END_REF]768). The final vision representation which is fed into the projection head is of dimension d = 768. As for the textual data, we tokenize the plain text t lang using a word-peace tokenizer to get t tok . Each input sequence is expected to start with a [CLS] token, and should end with a [SEP ] token. The t tok is then represented as:

t tok = [CLS], t tok 1 , t tok 2 , ..., t tokn , [SEP ],
where n = 197 is the maximum sequence length. For each document, if n > 197, the input sequence is truncated so that it fits the desired length. For sequences that are shorter than n < 197, they are padded until they are n = 197 long. In the pre-training phase, the model is trained using AdamW optimizer with a learning rate of 2e -5, linear warmup ratio to 0.1 and a linear decay.

We set the batch size to 64 and we use the pre-trained weights of both ViT-B/16 and BERT Base uncased backbones. We conduct pre-training for 100 epochs for the RVL-CDIP and Tobacco datasets. We use the Adam [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] optimizer with learning rate of 5e -5. For Tobacco-3482 dataset, we split the original sets to 80% for training, and 10% for validation and test. The temperature parameter τ is set to 0.1, and λ is set to 0.5. Note that we didn't use any type of data augmentation during pre-training, and we kept the OCRed text as is without any pre-or post-processing. Note that the InterMCA and IntraMSA modules in our method are flexibly stacked two times to enhance the modeling of intermodality and intra-modality relations during pre-training. We split the query, key, and value vectors of the visual features and textual features into four heads and concatenate the results in different sub-spaces.

Fine-tuning on Multimodal Tasks

Task I: Document Image Classification. The document image classification task aims to predict the category of visually rich document images. We conduct experiments on the RVL-CDIP and the Tobacco-3482 datasets. We take the encoder outputs on the special tokens [LANG] and [VISN] from the last IntraMSA module module as holistic representations of the textual and visual inputs, which are used as the inputs to the vision and language classifiers. The whole fine-tuning takes 20 epochs with a batch size of 64 and a learning rate of 5e -5 for both datasets.

Task II: Few-Shot Document Image Classification.

Given a pre-trained embedding network from stage one (i.e. pre-training), meta-testing is applied to the model with an episodic manner. A few-shot K-way multimodal document image classification task can be illustrated as a K-way C-shot problem. Given C labelled samples for each unseen class, the model should fast adapt to them to classify novel classes.

The entire test set can be presented by

D = {[(v 1 , y N ), ..., (v N , y Y )], [(l 1 , y N ), ..., (l N , y Y )]},
where N is the total number of classes in D, v, l are the samples from the test set with label y. During the meta-testing stage, the proposed model is tested to learn an embedding function to map all input image and text samples from the same class to a mean vector c in a description space as a class descriptor for each class. For class k, it is represented by the centroid of embedding features of test samples and can be obtained as:

C k = 1 |S k | (v i ,y i )∈S F(v i , l i ) (4.16)
where F (v i , l i ) is the embedding function initialized by the pretext task, S k is the test samples labelled with class k. As a metric learning based method, we employ a distance function d and produce a distribution over all classes given a query sample q from the query set Q: 

Effects of Attention Mechanisms

To investigate the effectiveness of the attention mechanisms used in our VLCDoC model, we evaluate the performance of the learned cross-modal representations with and w/o the attention modules. Note that the evaluation protocol is single-modal based. At first, we consider the scheme where the vision and language modalities are pre-trained independently. In Table 4.1, we observe a significant drop to 85.71%, and 86.01% in classification performance when removing both attention mechanisms in the vision and language modalities respectively. When removing only the InterMCA module, we see that our model manages to improve slightly the performance of both modalities to 86.66% and 86.31% for the vision-language modalities. Note that at this stage, the pre-training of both modalities is still independent from one another. Further, removing the IntraMSA and keeping only the InterMCA module enables multimodal pre-training in an end-to-end fashion. The reported results in Table 4.1 show that our model gains in performance, and achieves the best performance with 90.94%, 90.62% top-1 accuracy for the vision and language modalities.

The improvement of the classification accuracy is attributed to the flexible attention flows adopted in both the InterMCA and IntraMSA modules, which have shown their effectiveness and capability to enhance vision-language relations by capturing the relevant 

Effects of Cross-Contrastive Learning

The Cross-modal Contrastive Loss (CrossCL) contains two components: the intra-modality alignment, and inter-modality alignment. We show the effects of cross-modal contrastive learning (CrossCL) on the proposed method against the standard supervised contrastive learning (SCL) loss. As such, we compare our model with the related work EAML [START_REF] Bakkali | EAML: ensemble self-attention-based mutual learning network for document image classification[END_REF]. We first pre-train the model on the Tobacco dataset, then we conduct fine-tuning and test on the RVL-CDIP dataset. The reported results in Table 4.3 show that we slightly outperform EAML on both vision and language modalities. Even-though EAML is an ensemble network trained with a different setting, based on vision, language, and fusion modalities, the results confirm that our model benefits from cross-modal pre-training with a small amount of document 

VLCDoC outperforms Baselines

The comparison between the proposed VLCDoC network and existing methods on the large-scale RVL-CDIP document classification dataset is presented in Table 4.4. The compared methods cover various training strategies with different modalities used to perform document classification. These methods include (vision-only), (language-only), (visionlanguage), and (vision-language-layout) methods. Although our VLCDoC network learns feature space with vision and language cues, they use only single-modality (either vision or language) to classify document during the test. In Table 4.4, we can see that our VL-CDoC model achieves the best performance with 92.64% and 91.37% of top-1 accuracy for using the vision or language modality respectively even compared to the methods that use the fusion of visual and language modalities. Note that the last group of methods use the layout as the supplementary information. For a fair comparison, we may integrate the layout information in our current framework as a new modality in the future work.

Therefore, the results reported demonstrate that our proposed approach outperforms all the methods that do not require any supplementary information such as layout information as used in [START_REF] Appalaraju | Docformer: End-to-end transformer for document understanding[END_REF][START_REF] Huang | LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking[END_REF][START_REF] Li | Selfdoc: Self-supervised document representation learning[END_REF][START_REF] Xu | LayoutLMv2: Multi-modal pretraining for visually-rich document understanding[END_REF][START_REF] Xu | Layoutlm: Pre-training of text and layout for document image understanding[END_REF]. Meanwhile, it achieves competitive results against the methods that include layout information in the pre-training setting. The results confirm that an encoder-only transformer-based architecture trained in an end-to-end fashion can help achieve compelling results against other methods which are mostly based on deep-CNN architectures.

Few-Shot Classification.

We also provide a scenario where fewer available instances can be accessed in document classification. To do so, we apply meta-testing on the test set of the RVL-CDIP and Tobacco-3482 datasets. We propose a new baseline in both intra-dataset and inter-dataset generalization by pre-training on dataset A, and testing on dataset B as detailed in Ta- We report the mean of 600 randomly generated test episodes as well as the 95% confidence intervals. On the common few-shot classification setting, the observation confirms that our multimodal document embedding network is also effective when pre-training and testing samples are rare across three tasks i.e. 1-shot, 5-shot, and 20-shot.

Discussion

In CHAPTER 5

Improved Multimodal Semantic Document Representation Learning

All our knowledge begins with the senses, proceeds then to the understanding, and ends with reason. There is nothing higher than reason.

-Immanuel Kant

Motivation

In the previous chapter, we addressed the problem of document image classification by learning cross-modal representations through contrastive learning by exploiting high-level interactions from effective attention flows within and across language and vision modalities. We have shown that the pre-trained embedding network is task-agnostic and enables us to generalize on fewer data in a domain-agnostic inter-dataset evaluation setting. In this chapter, our goal is to encourage multimodal interaction from language and vision in a self-supervised learning manner. Most multimodal pre-trained models rely on feature learning to learn their pretext objectives. Therefore, we propose to pre-train multimodal transformers with a two-step approach where feature learning and clustering are decoupled. We propose to develop a more general domain-agnostic and task-agnostic multimodal document embedding model destined for document understanding applications. The idea of this chapter is to build a pre-trained multimodal document embedding, named LSRD (Learning Improved Semantic Representations for Document Understanding , which improves the semantic representation learning. At first, LSRD is pre-trained based on a nearest-neighbour instance discrimination technique to obtain semantically meaningful features. Second, we use the obtained features as a prior in a learnable clustering approach to remove the ability for cluster learning to depend on low-level features.

While most methods treat different views of the same image as positives for a contrastive loss, we are interested in using positives from other instances in the dataset. We propose to sample nearest neighbors from the dataset in the latent space, and treats them as positives in both vision and language modalities. This provides more semantic variations, as having more information helps in making more robust models. However, people learning from new data to be able to acquire newer concepts quickly depending on what they have already experienced is a key role in developing more complex multimodal machine learning algorithms having the same human subconscious understanding. Therefore, this assumption implies answering the following question of how can an ability to find similarities across items of different modalities within previously seen samples improve self-supervised semantic representation learning ?

With the recent rapid growth in the number of documents in business and academic fields, the annotation of large-scale documents is labor-intensive. Thus, learning multimodal knowledge from unlabeled documents is highly required, where the scale of the embedding network is constrained under a self-supervised learning (SSL) objective. Selfsupervised pre-training techniques have been making remarkable progress recently in document representation learning [START_REF] Doersch | Unsupervised visual representation learning by context prediction[END_REF][START_REF] Gidaris | Unsupervised representation learning by predicting image rotations[END_REF][START_REF] Noroozi | Unsupervised learning of visual representations by solving jigsaw puzzles[END_REF][START_REF] Wu | Unsupervised feature learning via non-parametric instance discrimination[END_REF][START_REF] Zhang | Colorful image colorization[END_REF]. Representation learning relies on pre-designed tasks, which do not require any annotated data to learn the weights of the multimodal embedding network. Instead, the multimodal features are learnt by minimizing the objective function of the pretext task. There have been extensive studies in the literature which include predicting the patch context in a given image [START_REF] Mundhenk | Improvements to context based self-supervised learning[END_REF][START_REF] Wu | Unsupervised feature learning via non-parametric instance discrimination[END_REF], inpainting patches [START_REF] Pathak | Context encoders: Feature learning by inpainting[END_REF], solving jigsaw puzzles [START_REF] Noroozi | Unsupervised learning of visual representations by solving jigsaw puzzles[END_REF][START_REF] Noroozi | Boosting self-supervised learning via knowledge transfer[END_REF], colorizing images [START_REF] Larsson | Colorization as a proxy task for visual understanding[END_REF][START_REF] Zhang | Colorful image colorization[END_REF], using adversarial training [START_REF] Donahue | Adversarial feature learning[END_REF][START_REF] Donahue | Large scale adversarial representation learning[END_REF], predicting noise [START_REF] Bojanowski | Unsupervised learning by predicting noise[END_REF], counting [START_REF] Noroozi | Representation learning by learning to count[END_REF], predicting rotations [START_REF] Gidaris | Unsupervised representation learning by predicting image rotations[END_REF],

spotting artifacts [START_REF] Jenni | Self-supervised feature learning by learning to spot artifacts[END_REF], generating images [START_REF] Ren | Cross-domain self-supervised multi-task feature learning using synthetic imagery[END_REF], using predictive coding [START_REF] Henaff | Data-efficient image recognition with contrastive predictive coding[END_REF][START_REF] Van Den Oord | Representation learning with contrastive predictive coding[END_REF], performing instance discrimination [START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF][START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF][START_REF] Misra | Self-supervised learning of pretextinvariant representations[END_REF][START_REF] Tian | Contrastive multiview coding[END_REF][START_REF] Wu | Unsupervised feature learning via non-parametric instance discrimination[END_REF], etc. Furthermore, recent studies in document representation learning rely on multimodal reasoning on multimodal input data (vision, language, and layout). For example, DocFormer [START_REF] Appalaraju | Docformer: End-to-end transformer for document understanding[END_REF] learns to reconstruct document image pixels through a CNN decoder, which tends to learn noisy details rather than high-level structures such as document layouts. SelfDoc [START_REF] Li | Selfdoc: Self-supervised document representation learning[END_REF] proposes to regress masked region features, which is noisier and harder to learn than classifying discrete features in a smaller vocabulary. LayoutLMv3 [START_REF] Huang | LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking[END_REF] learns to reconstruct masked word tokens of the language modality and symmetrically reconstruct masked patch tokens of the vision modality. Despite these efforts, representation learning approaches are mainly used as the first pre-training stage in a pre-train-then-finetune paradigm. The second stage includes fine-tuning the pre-trained network in a fully-supervised learning fashion on a specific downstream task, with the goal to verify how well the pre-trained embeddings transfer to the new downstream application.

Whereas most multimodal pre-trained document understanding techniques use Masked-Language Modeling (MLM) [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF], Masked-Vision Modeling (MVM) [START_REF] Bao | Beit: Bert pre-training of image transformers[END_REF], and Vision-Language Modeling (VLM) [START_REF] Huang | LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking[END_REF] techniques to learn cross-modal alignment between masked image patches and masked text tokens, we aim to study cross-modality learning for contextualized comprehension on document components across language and vision modalities in a self-supervised learning approach. We develop a model that learns both intra-modality and inter-modality relationships between visual and textual cues of document images through a multimodal attention feature fusion module following the architecture of Chapter 4.

Given a collection of unlabelled documents, we attempt to learn a robust representation and maximize the mutual information between the vision and language modalities using nearest-neighbour contrastive learning as the self-supervision representation learning pretext task [START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF][START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF][START_REF] Wu | Unsupervised feature learning via non-parametric instance discrimination[END_REF]. Further, after learning the feature representations, we propose to mine the vision-language nearest neighbours learnt through contrastive learning, based on a vision-language feature similarity approach, and use them as a prior into a learnable approach. We aim to classify each document image and its mined language content neighbours together by maximizing their dot product after applying the softmax objective function. This strategy enables us to push the network to produce discriminative and consistent predictions. Thus, it prevents the cluster degeneracy scenario [START_REF] Caron | Deep clustering for unsupervised learning of visual features[END_REF], leading to one cluster dominating the others by assigning all its probability mass to the same cluster when learning the decision boundary.

For downstream usage, we leverage the visual-textual semantic features learnt across our pre-trained embedding network into a feature fusion methodology for a more stable and better-performing solution for document-related downstream applications. One popular solution for few-shot classification is to apply a fine-tuning process on an existing embedding network to adapt to new classes. The main challenge is that the fine-tuning could easily lead to over-fitting, as only a few samples (1-shot, 5-shot, or 20-shot) for each class are available. One proposed solution for few-shot classification is a meta-learning process, in which the dataset is divided into subsets for different meta-tasks to learn how to adapt the model according to the task change. These methods highly rely on an effective pre-trained embedding network. As for content-based document retrieval, our goal is to evaluate the representation learning capability of our network to encode the input modalities in a meaningful way for cross-modal document retrieval. Retrieving data in documents generally relies on one modality (either vision or language). Thus, leveraging information from language and vision cues in an integrated fashion is crucial for developing an ideal system which proposes a diversity of ways in which document data could be used.

We also investigate our model in the case where there is no annotation available.

The main challenge of our work is to design a pretext task which can exploit high-level compact visual-semantic representations that are useful for solving downstream tasks. The following are the main contributions in this chapter:

• We introduce multimodal nearest-neighbour contrastive learning to learn self-supervised representations that go beyond single instance positives as the first pretext task of our two-step pre-training approach.

• We propose to mine the multimodal nearest-neighbours learnt through contrastive learning as prior into a learnable approach, as the second pretext task, in order to produce consistent discriminative predictions.

• We evaluate our approach on cross-modal few-shot document classification, contentbased document retrieval, and document classification. We show that our network can efficiently leverage the multimodal information from unlabeled documents which benefits from modeling the interaction between language and vision modalities in the model's pre-training stage.

• Experimental evaluation shows that our network outperforms prior works which are based on the vision-language modalities, and achieves compelling results compared to models which are based on vision, language, and layout modalities on the specific task of document classification.

• We address and explore two new downstream applications in document understanding, which are few-shot document classification and content-based document retrieval, to evaluate the effectiveness of the learnt multimodal representations to transfer to new tasks.

Method

In this section, we present the cornerstones of our approach. First, we show that instead of learning single instance positives (i.e. the instance discrimination task), multimodal nearest-neighbours are capable of learning better features that are invariant to the intraclass variability encountered in document images. To facilitate multimodal representation learning, we propose to pre-train multimodal transformers with unified vision-language objectives, following the architecture previously used in Chapter 4. LSRD learns more diverse positive pairs and thus better uni-modal representations before fusion using nearestneighbor contrastive learning. Moreover, LSRD learns an alignment objective loss which predicts whether a pair of vision and language is matched (positive) or not matched (negative) after leveraging the visual-textual features into a joint feature-based transformer module. Second, we show how mining multimodal nearest-neighbors from the pretext task can be used as a prior into a learnable approach designed for semantic clustering.

LSRD integrates the pre-trained multimodal features and learns a novel objective which LSRD is a pre-trained multimodal transformer for document understanding with unified vision and language cross-modal learning objectives.

aims to classify each vision-language pair and their neighbours together.

Model Architecture

LSRD is an encoder transformer-based architecture. It applies a unified vision-language multimodal transformer to enforce deep multimodal interaction in transformer layers using novel multi-modal cross-attention feature fusion module. The multimodal transformer fusion network has a multi-layer architecture where each layer consists of multi-head selfattention and position-wise fully connected feed-forward networks [START_REF] Vaswani | Attention is all you need[END_REF]. Note that we use the same transformer architecture as in Chapter 4. The input of the multimodal transformer encoder is a concatenation of visual embeddings and language embeddings.

Through the multimodal transformer, the last layer outputs vision-language contextual representations. Figure 5.1 illustrates the proposed LSRD approach.

Visual Features

Let v visn ∈ R H×W ×C be the document image. We reshape it into a sequence of flattened

2D patches v visnp ∈ R N ×(P 2 •C)
, where (H, W ) is the resolution of the document image, C = 3 is the number of channels, (P, P ) is the resolution of each document patch, and N = HW/P 2 is the resulting number of patches, which serve as the input sequence length for the transformer encoder. The patches obtained are then flattened and mapped to d dimensions as the hidden embedding size. The resulting visual embeddings are then represented as V = v i visn ∈ R d visn , where d visn is a 1D vector.

Textual Features

To extract textual embeddings, we first extract the text l lang within document images via an off-the shelf optical character recognition (OCR) system, e.g. Tesseract OCR 1 . The input sequences extracted with the OCR are further fed into the pre-trained BERT Base uncased encoder [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF]. The resulting textual embeddings are then represented as L = t i lang ∈ R d lang , where d lang is a 1D vector of the same size as d visn . This way, we ensure that the visual and the textual embeddings are of the same shape.

Pre-training Objectives

We pre-train LSRD with three objectives: vision-language nearest-neighbor contrastive learning (VLN-NCLR) on the uni-modal encoders, vision-language matching (VLM) on the multimodal encoder, and vision-language nearest-neighbor mining (VLN-NM) on the pre-trained embedding network.

Objective I: Vision-Language Nearest-Neighbor Contrastive Learning (VLN-NCLR). We first describe the commonly used contrastive learning loss (i.e. InfoNCE) utilized in instance discrimination, and discuss NNCLR [START_REF] Dwibedi | With a little help from my friends: Nearest-neighbor contrastive learning of visual representations[END_REF] which is based on nearestneighbours of visual representations. Next, we introduce our approach, Vision-Language Nearest-Neighbor Contrastive Learning (VLN-NCLR) as cross-modal positives to learn better uni-modal representations before fusion, and thus, to improve contrastive instance discrimination between sample pairs from language and vision modalities.

InfoNCE (Noise-Contrastive Estimation) [START_REF] Van Den Oord | Representation learning with contrastive predictive coding[END_REF][START_REF] Sohn | Improved deep metric learning with multi-class n-pair loss objective[END_REF][START_REF] Wu | Unsupervised feature learning via non-parametric instance discrimination[END_REF]: loss is commonly used in the instance discrimination setting [START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF][START_REF] He | Momentum contrast for unsupervised visual representation learning[END_REF][START_REF] Wu | Unsupervised feature learning via non-parametric instance discrimination[END_REF]. The main idea is to pull representations of augmented versions/views of the same sample closer to each other (contracting positives), while simultaneously pushing different samples away from each other (contrasting negatives) in the representation space. For each given embedded sample z i , another embedded sample (often a random augmentation of the sample) known as a positive sample pair z + i is associated in addition to many negative embedding samples z - i ∈ N i . The InfoNCE loss is then defined as:

L InfoNCE i = -log exp(z i • z + i /τ ) exp(z i • z + i /τ ) + z -∈N i exp(z i • z -/τ ) (5.1)
where the sample pairs (z i , z + i ) is considered as the positive pair, while (z i , z -) is any negative pair in the minibatch. τ is the softmax temperature. In the vision-language context, given an image x and its corresponding description s, we define the score function following Equation 5.1 as follows:

S(v, l) = cos(f visn (v), f lang (l))/τ (5.2) 
where cos(v, l) = v T l/||v||||l|| denotes cosine similarity, and τ denotes a temperature hyper-parameter. f visn is an image encoder to extract the overall image feature vector and f lang is a text encoder to extract the global text feature vector. This maps the image and text representations into a joint embedding space R D . The contrastive loss between image v i and its paired text l i is computed as:

Lv i , l i ) = -log exp(cos(f visn (v i ), f lang (l i ))/τ ) M j=1 exp(cos(f visn (v i ), f lang (l j ))/τ ) (5.3) 
The following two metrics are used for monitoring the pre-training performance:

(i.) Contrastive accuracy: Self-supervised metric, the ratio of cases in which the representation of an image is more similar to its corresponding text, than to the representation of any other image and text in the current batch.

( 

L NNCLR i = -log exp(NN(z i , Q) • z + i /τ ) n k=1 exp(NN • z + k /τ ) (5.4) 
where NN(z, Q) is the nearest neighbour operator defined as:

NN(z, Q) = arg min q∈Q || z -q || 2 (5.5)
VLN-NCLR (Vision-Language Nearest-Neighbour Contrastive Learning): The proposed learning objective VLN-NCLR aims to force samples from language and vision that are semantically related to be closer according to the computed nearest-neighbors of each modality. As in SimCLR [START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF], a projection head is implemented on top of the visual and textual embeddings to map the visual-textual representations into a vector representation so that the two training schemes do not interfere with each other. The projection head is implemented as a nonlinear multiple-layer perceptron (MLP) with one hidden layer, as it is more suitable for contrastive learning [START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF]. Then, L 2 normalization is applied to the visual-textual embeddings so that the inner product between features can be used as distance measurements. Building upon the NNCLR objective (see Equation 5.4), we define intra-modal and inter-modal learning losses defined as L VLCLR Intra and L VLCLR Inter . For the intra-modal loss, it is composed of the vision modality loss L VLCLR V isn→V isn and the language

The NN(v i ,V), NN(l i ,L) denote the nearest neighbor operators, defined as:

NN(v i , V) = arg min qv∈V || v i -q v || 2 (5.12) NN(l i , L) = arg min q l ∈L || l i -q l || 2 (5.13)
Objective II: Vision-Language Matching (VLM). The aim of this objective is to predict whether a pair of document images and their corresponding language is matched (positive) or negative (not matched). We compute the pairwise dot-product similarity between each language sequence l i and document image v i in the mini-batch as the predictions. The target similarity between the language sequence l i and the document image v i is computed as the average of the (dot-product similarity between l i and l j ) and (the dot-product similarity between v i and v j ). Then, the cross-entropy loss function is computed between the targets and the predictions. Given a mini-batch with M document images and sequence samples, for each document image v i , the vision-language pairs are constructed as {(v i , l j ), y i,j } M j=1 , where y i,j = 1 means that (v i , l j ) is a matched pair, while y i,j = 0 indicates the unmatched ones. The probability of matching v i to l j is defined as:

P i,j = exp(v T i l j ) M k=1 exp(v T i l k ) (5.14)
where l j denotes the language feature vector, and P i,j is the percent of scalar projection v i , l j among all pairs {(v i , l j )} M j=1 in the mini-batch M . Geometrically, v T i l j represents the scalar projection vision feature vector v i onto the language feature vector l j . The more similar vision feature to the language feature vector, the larger the scalar projection would be. Figure 5.2 shows the geometrical explanation of the cross-modal vision-language projection. Note that the scalar projection could be negative if the two feature vectors lie in opposite directions in the representation space. Then, the matching loss of associating v i with correctly matched language samples is defined as:

L VLM V isn→Lang = 1 M M i=1
-log(P i,j ) (5.15) In the vision-language matching scenario, the matching loss is usually computed in two directions as in [START_REF] Chen | A closer look at few-shot classification[END_REF][START_REF] Liu | Learning a recurrent residual fusion network for multimodal matching[END_REF][START_REF] Wang | Learning two-branch neural networks for image-text matching tasks[END_REF]. The V isn → Lang matching loss requires the matched text to be closer to the document image than unmatched ones, and in verse the Lang → V isn matching loss constrains the related text to rank before unrelated ones. Similarly, the language matching loss L VLM Lang→V isn can be formulated by exchanging v and l in Equation 5.14. Then, the total VLM loss is computed as follows: 

L VLM = L VLM V isn→Lang + L VLM Lang→V isn ( 
C Lang = {1, ..., C Lang } with Θ η (v i ) ∈ [0, 1] C V isn and Θ η (l i ) ∈ [0, 1] C Lang . The probabili- ties of sample pairs v i , l i being assigned to cluster C V isn , C Lang are denoted as Θ c V isn η (v i )
and Θ c Lang η (l i ) respectively. We then learn the weights of Θ η by minimizing the following objectives for the vision modality:

L VLM V isn = - 1 |M | v∈M k∈Nv log⟨Θ η (v), Θ η (k)⟩ + λ c V isn ∈C V isn Θ ′ c V isn η log Θ ′ c V isn η (5.17) with; Θ ′ c V isn η = 1 |M | v∈M Θ c V isn η (v) (5.18) 
with ⟨.⟩ denoting the dot product operator. The first term in Equation 5.17 forces Θ η to make sure that neighbors have the same clustering assignment. Thus, to make consistent predictions for a sample document image or v i and its neighboring samples N v i . Note that the dot product is maximal when the predictions are confident (one-hot) and assigned to the same cluster (consistent). In order to avoid Θ η from assigning all samples to a single cluster, we include the second term in Equation 5.17, which is basically an entropy loss assigned to the clusters to make sure that the cluster distribution C is roughly uniform, so it can avoid assigning most of the document image instances to one cluster. Similarly to the vision modality, the language modality loss L VLM Lang can be written as:

L VLM Lang = - 1 |M | l∈M k∈N l log⟨Θ η (l), Θ η (k)⟩ + λ c Lang ∈C Lang Θ ′ c Lang η log Θ ′ c Lang η (5.19) with; Θ ′ c Lang η = 1 |M | l∈M Θ c Lang η (l) (5.20)
In general, the number of clusters is unknown. However, similar to prior works [START_REF] Li | Selfdoc: Self-supervised document representation learning[END_REF], we choose C V isn and C Lang equal to the number of ground-truth clusters for the purpose of evaluation.

Experiments

Model Configurations

The proposed LSRD method is based on transformer encoders. For the vision modality, documents are resized into a fixed size of (H, W ) = (224, 224). The image region feature vector extracted by the V iT -B/16 backbone is of d visn = 768. The final vision representation which is fed into the projection head is of dimension d = 768. As for the textual data, the textual feature vector is extracted by the Bert BASE as the language backbone.

To pre-process the text input, we tokenize the plain text t lang using a Bert tokenizer to get We also use a gradient accumulation mechanism to split the batch of samples into several mini-batches to overcome memory constraints for a large batch size. We adopt distributed training to reduce memory costs and speed up training procedures. We also use a gradient accumulation mechanism to split the batch of samples into several mini-batches to overcome memory constraints for a large batch size.

t tok .

Pre-Training LSRD

In the pre-training phase, we use the training set of the RVL-CDIP document dataset to learn multimodal representations. LSRD is initialized from the pre-trained weights of the pre-trained vision and language backbones. For the multimodal transformer encoder, the weights are randomly initialized. We pre-train LSRD using the AdamW [START_REF] Loshchilov | Decoupled weight decay regularization[END_REF] optimizer with a batch size of 128 for 249, 800 steps. We use a weight decay of 1e -2, (β1, β2) = (0.9, 0.999). The learning-rate is warmed-up to 1e -4 in the first 10% iterations, and decayed to 2e -5 following a linear decay schedule. The temperature parameter τ is set to 0.1, and the size of the queue used for vision-language contrastive learning is set as 65, 536. Note that we didn't use any type of data augmentation during pre-training, and we kept the OCRed text as is without any post-processing.

Fine-Tuning on Multimodal Tasks

Task I: Document Image Classification [START_REF] Appalaraju | Docformer: End-to-end transformer for document understanding[END_REF] 5M V+T+L 96.17 183M

The document image classification task aims to predict the category of visually rich document images. We conduct experiments on the RVL-CDIP dataset. We use pooled features to predict a classification label for a document. The whole fine-tuning takes 20 epochs with a batch size of 64 and a learning rate of 2e -5. We report in Table 5. During the meta-learning stage, the proposed model is trained to learn an embedding function to map all input image and text samples from the same class to a mean vector c in a description space as a class descriptor for each class. For class k, it is represented by the centroid of embedding features of test samples and can be obtained as: Different meta-learning methods have been applied in the literature to make predictions conditioned on the support set. We choose ProtoNet [START_REF] Snell | Prototypical networks for few-shot learning[END_REF] as a first baseline to start with, which we denote as LSRD + . In LSRD + , the prediction of the samples in a query Q is based on comparing the distance between the query feature and the support feature from each class as in Equation 5.22. LSRD + compares the euclidean distance between the query features and the class mean of the support features.

C k = 1 |S k | (v i ,y i )∈S F(v i , l i ) (5.
As detailed in Table 5.2, we evaluate the few-shot classification accuracy on the RVL-CDIP dataset. LSRD -denotes the results without meta-learning (i.e. only meta-testing is applied). We conduct experiments for each pre-training task (i.e. VLN-NCLR, VLN-NCLR+VLM, and VLN-NCLR+VLM+VLN-NM), with and without the projectors (i.e.

MLP, and ME) For each task, the best-performing method is highlighted. We average the results over 600 experiments as in [START_REF] Chen | A closer look at few-shot classification[END_REF]. In each experiment, we randomly sample ties compared to a one-step only pre-training approach. Also, with a multimodal encoder, we learn better information by aligning and matching the image-text sample pairs. Furthermore, we observe that the performance of our proposed method significantly increases when receiving more samples as input (i.e. 20-shot) with/without meta-learning. To sum up, with the two-step pre-trained LSRD model, we demonstrate a good generalization ability when fine-tuned on fewer data. The experiments conducted in this work on the few-shot setting will be used as a baseline for future works to start with, as compelling performance has been achieved on both vision and language modalities.

Task III: Uni-Modal and Cross-Modal document Retrieval

To the best of our knowledge, this is the first time to evaluate the representation learning of multimodal document networks on the task of content-based retrieval. We focus on the evaluation of both uni-modal and cross-modal retrieval tasks to answer the question of how useful are the multimodal representations encoded by the proposed LSRD task-agnostic model to solve queries in cross-modal retrieval tasks ? Assuming the LSRD is already pre-trained, the problem of uni-modal and cross-modal document retrieval is then defined as follows: In the first phase, which corresponds to the indexing phase, we extract the vision and language backbones, and then, we generate the embeddings for all document images -in the dataset in which our model LSRD has been already pre-trained on-using the target modality only. In the second phase, which corresponds to the retrieval phase, we process the query modality using the pre-trained LSRD model without activating (i.e. with backbones frozen) the network of the target modality (i.e.

which can be either vision or language). For example, let us carry out the task of vision → language retrieval, where we assume the query contains visual document data. The objective of this specific task is to retrieve relevant textual information contained in documents which belong to the same category as the given query visual document image. This is done by encoding all texts in the dataset using the pre-trained language backbone, and then, the query document image is sent using the pre-trained vision backbone. Further, we compare the embeddings of the query document image with the embeddings of the for the inter-modal retrieval task, which corresponds to the cross-modal retrieval setting, the retrieval R@K score drops significantly for the two Vision → Language and Language → Vision tasks. This drop of R@K is mainly due to the fact that LSRD did not learn any cross-modal information and high-level interactions across vision and language modalities.

Hence, the significant drop of the R@K scores for both modalities.

Evaluation on VLN-NCLR+VLM Pre-training Task. In this pre-training task, we add a multimodal transformer encoder to model the cross-modal interactions between vision and language modalities, with a matching learning objective. Here, we aim to overcome the problem of the first pre-training task when performed on the inter-modal (i.e. cross-modal) retrieval setting. Therefore, we can see from Table 5.3 that, with the multimodal encoder and the vision-language matching learning objective-by matching the vision-language sample pairs-, we do not only improve the scores of the R@K for the inter-modal setting with nearly 71.59% for the vision modality, and 70.06% for the language modality, given all R@K scores. Meanwhile, for the intra-modal setting, we boost the R@K scores with nearly 1.07% and 1.31% for the vision and language modalities respectively. Hence, the importance of learning high-level features with a multimodal transformer encoder in a matching learning objective.

Evaluation on VLN-NCLR+VLM+VLN-NM Pre-training Task. With this last pre-training task in our two-step approach (indicated as ('+') with meta-learning, we aimed to improve the semantic representation learning of document data through a document semantic clustering approach. We highlight the reported results in Table 5.3. The results indicate that the best R@K scores have been achieved with the semantic clustering approach, which was performed on the pre-trained representation learning embedding (i.e. pre-trained with VLN-NCLR+VLM learning objectives). Therefore, we improve the R@K scores for all intra-modal (i.e. uni-modal) and inter-modal (i.e. cross-modal) retrieval tasks.

Does a different sequence length of the query text help ? So far we used a sequence length of 256 for downstream evaluation as in the pre-training stage. In Table 5.4, we vary the sequence length in the content-based retrieval task to see whether a larger or a smaller sequence is beneficial to retrieve more relevant information. We vary the sequence length R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 

Qualitative Results

In this subsection, we show representative samples of the retrieval output of the pretrained LSRD network on the test set of RVL-CDIP dataset. In each one of the Fig- Retrievals from other classes are considered incorrect, but they are often good retrievals nonetheless.

Uni-Modal Document Retrieval

Vision → Vision. In Figure 5.3, it is interesting to notice that in the first row, in which the query document image is a form, the top seven retrievals are all different memos from the same author (with the same signature) as the memo in the query image. The final row is similarly impressive: every document in the top ten retrievals has the same letterhead as the query document, despite variations in the other content, and also despite differing typefaces of the letterhead. There may exist biases in the dataset that lead to such fortunate retrievals (e.g., only a few letterheads, and only a few memo authors), but the results are still remarkable. for a better visualisation.

Cross-Modal Document Retrieval

Vision → Language. In Figure 5.5, we retrieve the top-5 relevant text content given a query document image. In the second row, we observe that the retrieved advertisement document is visually dissimilar compared to the query news_article document image.

Similarly, the top-5 retrieved text samples are all different to the query image in terms of the category label, and do not share the same visual information either. Therefore, the vision backbone is unable to retrieve similar text content of the given query document. We show the corresponding document images of the retrieved text results for a better visualisation.

Language → Vision. In Figure 5.6, we retrieve the top-5 relevant document images given a query text sequence. In the final row, we observe that the incorrectly retrieved resume document is visually similar and share the same layout information compared to the query presentation document image. 

Discussion

In this chapter, we approached the document understanding problem by proposing a novel two-step pre-training cross-modal representation learning network, called LSRD.

With the two-step pre-training approach, we first designed a novel cross-modal pre-text task, which models the intra-modality and inter-modality relations between visual and language cues using a multimodal transformer and two novel learning objectives (i.e.

vision-language nearest-neighbor contrastive learning, and vision-language matching). In addition, we performed multimodal semantic clustering as our second pretext-task to improve the representation learning of the pre-trained embedding network. Moreover, we performed two new downstream applications in the literature of document understanding on the RVL-CDIP dataset. We evaluated the generalization ability of the learnt representations on fewer document data (i.e. on the few-shot classification setting), as well as its effectiveness on retrieving relevant uni-modal and cross-modal information given a query document image/text sample. Besides, we conducted the classic document classification task, which demonstrated that the gap between vision+language methods, and vision+language+layout state-of-the-art works has been narrowed. In summary, our initial goal was to build a baseline and to encourage future works in the document understanding domain to address the tasks of content-based document retrieval and few-shot document classification on the RVL-CDIP dataset.

CHAPTER 6

Conclusions and Future Work

The future of work consists of learning a living.

-Marshall McLuhan

Overview

In this chapter, we first summarize the contributions of this thesis to the pattern recognition and computer vision fields. In particular, its application to document understanding.

Then, we highlight the main achievements and limitations of the proposed approaches.

Finally, we lead the reader towards possible new research lines and natural extensions of the proposed methodologies.

Conclusions

In this thesis, we have introduced a study on how to classify document images using visual and textual cues incorporated within document data, by understanding and conglomerating different pattern recognition and machine learning strategies. In particular, the 139 huge vastness of digital document data requires a highly efficient and intuitive document understanding system. The complex layouts in which document data is often presented, poses a real challenge to vision-only-based document understanding systems. Such systems have failed to distinguish between highly correlated document categories. Though image processing research has improved significantly over the past few years, natural language research has also improved a lot in learning the semantic context of text sequences.

This is where we make the assumption that jointly learning the textual content along with the visual spatial information incorporated within document data is crucial for a better understanding of multimodal document data. Although a document image is worth a thousand words, a multimodal document is worth a thousand concepts. This is where the real challenge lies to understand the nature of a document through its jointly learnt multimodal information.

Summary of Contributions

In this thesis, we presented the problem of multimodal document understanding. We limited our explorations to two of the well-studied modalities in the document literature, which are the vision and the language. After an introduction to the concept of multimodal document understanding and the motivation behind this thesis, we decided to make the readers familiar with the state-of-the-art of different concept and ideas for document understanding in Chapter 1. On the one hand, as an application of document understanding, we approached the document image classification problem by proposing frameworks that find a common semantic representation space for both vision and language modalities using well-known deep networks as the main backbones. Document image classification is then performed in an early feature fusion methodology (see Chapter 2). Then, we improved the semantic representation space by aligning the predictions and enabling both modalities to transfer relevant information and positive knowledge from one modality to another in a middle feature fusion manner. Document image classification is further conducted under different experimental settings (see Chapter 3). On the other hand, we also took into account the new advancements in machine learning to incorporate its strategies. We opted to design task-agnostic and domain-agnostic pre-trained frameworks to validate the assumption that great intra-dataset generalization leads to great inter-dataset generalization. This task is performed under a pretrain-then-finetune paradigm (see Chapter 4). As well, we tackled the problem of lack of availability of human annotated document data and improved semantic representation learning by encouraging multimodal interaction within language and vision modalities in a self-supervised learning manner. We performed different ablation studies demonstrating the effectiveness of our approach on the well-established document classification task. Thus, reducing the gap with state-of-the-art works that rely on vision, language, and layout information. Also, we performed new experiments on two novel downstream tasks that we introduced as a baseline in the document understanding literature. These tasks are few-shot document classification and content-based document retrieval (see Chapter 5).

The contributions presented in this work are enumerated in four points. Moreover, even though the focus of this thesis is the development of multimodal document image classification methodologies, some of the contributions are generic algorithms applied for multimodal data in the computer vision field. Let us briefly summarize these four contributions:

• Multimodal Deep Feature Fusion: In Chapter 2, we proposed a two-stream deep neural network that leverages both the learned textual embeddings and visual features in an early fusion manner to classify document images. We showed that the joint learning methodology boosts the overall accuracy compared to the singlemodal networks. We introduced two feature fusion methodologies to merge vision and language features in the cross-modal framework. We evaluated the performance • Improved Multimodal Semantic Document Representation Learning: In Chapter 5, we intended to improve the semantic representation learning of our previous model introduced in chapter 3 in a self-supervised learning fashion. We introduced multimodal nearest-neighbour contrastive learning to learn self-supervised representations that go beyond single instance positives as pretext task. We showed that our network can efficiently leverage the multimodal information from unlabeled documents which benefits from modeling the interaction between language and vision modalities in the pre-training stage. Experimental evaluation showed that our network outperforms some prior works which are based on the vision-language modalities, and achieved compelling results compared to models which are based on vision, language, and layout modalities on the specific task of document classification. We addressed and explored two new downstream applications in document understanding, which are few-shot document classification and content-based document retrieval, to evaluate the effectiveness of the learnt multimodal representations to transfer to new tasks. Multimodal Fusion and Reasoning. In this thesis, we explored several multimodal fusion techniques to leverage information from vision and language cues. However, in the multimodal machine learning literature, there have been several studies on designing models capable of reasoning to explore the synergy between visual and textual features [START_REF] Li | Visual Semantic Reasoning for Image-Text Matching[END_REF][START_REF] Zellers | From recognition to cognition: Visual commonsense reasoning[END_REF] in a sequential manner. Also, significant advances have been made by the use of Graph convolutional networks (GCN) [START_REF] Thomas | Semi-supervised classification with graph convolutional networks[END_REF] which are gaining importance in many multimodal tasks such as image captioning [START_REF] Li | Know more say less: Image captioning based on scene graphs[END_REF], image-sentence retrieval [START_REF] Liu | Graph structured network for image-text matching[END_REF], and visual question answering (VQA) [START_REF] Narasimhan | Out of the box: Reasoning with graph convolution nets for factual visual question answering[END_REF]. GCN are able to model relationships between nodes in a given graph and to explore semantic correlation between visual and textual features [START_REF] Mafla | Multi-modal reasoning graph for scene-text based fine-grained image classification and retrieval[END_REF][START_REF] Schlichtkrull | Modeling relational data with graph convolutional networks[END_REF]. Therefore, as a first future line of research, we aim to combine textual features with salient image regions in document images to exploit the complementary information carried by the two sources. Specifically, we will employ a Graph Convolutional Network (GCN) to perform multimodal reasoning and obtain relationship-enhanced features by learning a common semantic space between salient image regions and text sequences in document images.

Multimodal Document Understanding with GNNs. Graph reasoning has been recently applied to document understanding tasks such as key-information extraction [START_REF] Carbonell | Named entity recognition and relation extraction with graph neural networks in semi structured documents[END_REF],

document layout analysis [START_REF] Pau Riba | Table detection in invoice documents by graph neural networks[END_REF], table structure recognition [START_REF] Liu | Neural Collaborative Graph Machines for Table Structure Recognition[END_REF], table extraction [START_REF] Gemelli | Graph neural networks and representation embedding for table extraction in PDF documents[END_REF], visual question answering [START_REF] Liang | Multi-modal Contextual Graph Neural Network for Text Visual Question Answering[END_REF], and synthetic document generation [START_REF] Biswas | Graph-Based Deep Generative Modelling for Document Layout Generation[END_REF], etc. In the future work, we intend to use the power of graphs in representing: (1) the spatial structure of document images with usage of the positional information of object categories like tables, titles, figures; (2) the semantic conceptual connections between the different object categories in a document (e.g. recognizing the semantic text entities and their relationships from documents). Therefore, we will study the impact of leveraging graph representations as a third modality in our proposed task-agnostic pretrained framework in Chapter 5, on enhancing the quality of document representation. However, as there exists no positional information in the RVL-CDIP and Tobacco-3482 datasets, we will explore the heavy-scale document datasets (i.e. Industry document dataset (IDL) which consists of 26M documents with OCR Annotations). Such document understanding system will be able to generalize better on unseen data, and thus, can be transferred to other domainspecific multimodal data. Hence, deriving an off-the-shelf document analysis solution, to be performed on various document downstream tasks that we have not explored before in this thesis, which are: Document (DoCVQA), form and receipt understanding,sequence labeling, and also document layout detection.

Synergistic Learning between Multiple Modalities/Domains. Given the heterogeneity and variability of complex layouts and graphical entities incorporated within document data, it poses a great challenge to deep CNNs and transformers to distinguish between highly correlated documents. Despite huge vision-language model pre-training methods achieving superior performance on most multimodal document understanding tasks, large-scale document pre-training comes with a high computational cost both in terms of memory and training time. Therefore, as synergistic learning is one of the future
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Figure 1 . 1 :

 11 Figure 1.1: Overview of the core multimodal challenges.

Figure 1 . 2 :

 12 Figure 1.2: Two types of frameworks about multimodal representation learning. (a) Joint representation aims to learn a shared semantic subspace. (b) Coordinated representation learns separated but coordinated representations for each modality under some constraints.
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 13 Figure 1.3: Two types of Alignment techniques to identifying cross-modal correspondences and dependencies between elements of multiple modalities, following their structure about multimodal representation learning. (a) Explicit Alignment where the goal in itself is to find the alignment (i.e. which sequence is aligned with which document image). (b)
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 14 Figure 1.4: (a) Transfer: where both modalities will learn a representation, and from there, there will be a transfer. (b) Co-Learning: The same model gets both modalities, but at test time only one modality will be used.
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 1516 Figure 1.5: Reasoning combines knowledge, usually through multiple intermediate steps of inference exploiting multimodal alignment and problem structure. It can be interpretable using attention weights to know where are located the most important visual features in the document, or what are the relevant meaningful words in a given text sequence.

  the past few years, a variety of research studies have been proposed for document understanding. Due to the different manners of organizing each document, document images might be classified based on their heterogeneous visual structural properties and/or their textual content. The visual appearances of document images can be divided into two subcategories which are: handcrafted feature-based methods, and deep feature-based methods. We will elaborate these two types of methods in the following sub-sections. Handcrafted Feature-based Methods Handcrafted feature extraction methods are used to extract features from the document images, which are then utilized to train machine learning classifiers. Different handcrafted feature-based methods have been employed to perform the task of document image classification. Some of the handcrafted features used for document data include (1) local and global descriptors, (2) bags-of-visual-words, and (3) other miscellaneous methods. Local and Global Descriptors. Local features describe the document image patches

Figure 1 . 7 :

 17 Figure 1.7: A SIFT local descriptor: red lines show the matching between keypoints of the original document (left side) and the query document (right side).
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 18 Figure 1.8: An example of a BOVW model
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 19 Figure 1.9: A Typical convolutional neural network (CNN) architecture.

  Figure 1.9 illustrates a typical CNN architecture. The first component represents feature learning which are able to successfully capture the spatial and temporal dependencies in an image through the application of relevant filters. The features extracted are called deep features. The other component is fully connected. It takes care of the classification using
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 110 Figure 1.10: Multimodal semantic space: Combining multiple data types such as vision and language allows us to exploit correspondences that exist between them. Different shapes are used to denote different modalities. The circle represents language feature distributions, and the triangle represents visual feature distributions. Different shapes with the same color mean that they are semantically similar in content. Different modalities reside in different feature spaces, whereby, a mapping function that transform the modalities into a common and semantic feature space is required to mitigate the heterogeneity gap, by reducing the inter-modality gap and exploring the semantic correlations. Learning this mapping still represents a complex challenge.

[ 41 ]

 41 introduced a model called BERT, a deep bidirectional encoder based-transformers, which learns representations from unlabeled text by jointly conditioning on both left and right context. From a CV perspective, given the success of pre-training methods in NLP, Dosovitskiy et al.
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 111 Figure 1.11: Samples of different document classes in the RVL-CDIP dataset which illustrate the low inter-class discrimination and high intra-class structural variations of document images. From left to right: Advertisement, Budget, Email, File folder, Form, Handwritten, Invoice, Letter, Memo, News article, Presentation, Questionnaire, Resume, Scientific publication, Scientific report, Specification.

Figure 1 . 12 :

 112 Figure 1.12: Samples of different document classes in the Tobacco-3482 dataset which illustrate the low inter-class discrimination and high intra-class structural variations of document images. From left to right: ADVE, Email, Form, Letter, Memo, News, Note, Report, Resume, Scientific.
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 113 Figure 1.13: Overview of a multimodal deep neural network to perform cross-modal document image classification. The network is based on vision and language modalities.
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 114 Figure 1.14: Examples of content-based document retrieval. The first query is given from the language modality. the expected results contain relevant and semantic visual representations. Then we retrieve the category of each result as Top-k retrieved samples which belong to the same category as the language query. The second query corresponds to the query document image from the vision modality. The goal is to retrieve relevant semantic information related to the query document image. Then, the category of each result is retrieved as Top-k retrieved samples belonging to the same category as the vision query.

Figure 1 .

 1 Figure 1.15). The key is how to robustly accelerate the learning progress of the network without suffering from over-fitting with limited training data [49, 141, 163, 174].
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 115 Figure 1.15: Meta-learning with an episodic task(5-way, 1-shot example). For each task, the training samples from the support set and the query samples are encoded by the embedding network. Query sample embeddings are compared with the centroid of training sample embeddings and make a further prediction.

  the document. In contrast to other data formats like images or plain text, documents combine textual and visual information, and both of the two modalities are complemented by the document layout. From a practical perspective, many tasks related to document understanding are label-scarce. A framework that can learn from unlabeled documents (i.e. pre-training) and perform model fine-tuning for specific downstream applications is more preferred than the one that requires fullyannotated training data. This goal is linked to our fourth contribution that carries out the downstream tasks of multimodal document classification, multimodal content-based retrieval, and few-shot document classification. This chapter presents our fourth contribution. We design a unified network for cross-modal representation learning. Our network consists of leveraging two flexible extra levels of cross-modal interactions through co-attention module, to capture high-level interactions between vision-language cues in document images. The proposed approach shows its superiority over the uni-modal methods. A superior performance shows that a good generalization has been achieved which enables to classify the documents in different domains. The results of this work will be presented in the journal article titled "VL-CDoC: Vision-Language Contrastive Pre-Training Model for Cross-Modal Document

  are: document classification, few-shot document classification, and content-based document retrieval. The results of this work will be submitted in a conference article titled "LSRD: Learning Improved Semantic Representations for Document Understanding". This dissertation is organized as follows. Chapter 2 presents our proposed approaches related to cross-modal feature fusion learning to perform document classification, along with the experimental settings, and ablation studies performed to demonstrate the effectiveness of the proposed approaches in two studies: first, the different feature fusion methodologies to leverage visual-textual features into a common representation space, and second, an extended evaluation of the impact of training static and dynamic word embeddings, the heavyweight and lightweight DCNNs on the classification performance of document data. Chapter 3 addresses the limitations of Chapter 2 and presents a collaborative mutual learning strategy to transfer positive information from one modality to another, enabling to improve the accuracy results for each category, demonstrated in the ablation studies. Chapter 4 presents details about document pre-training aiming for a better multimodal document understanding. This chapter comprises the description of the experimental pretraining settings, as well as the results obtained on two downstream applications: document classification, and cross-domain few-shot learning. Chapter 5 presents a more general and model-agnostic pre-trained model for document understanding applications which are: document classification, content-based document retrieval, and few-shot learning. Finally, Chapter 6 presents general conclusions of the proposed developments during this thesis along with the future ideas for the future research.

Figure 2 . 1 .

 21 Most classes are mainly composed of text information such as Report, while the classes like Advertisement, and File Folder contain only images with very little text information. Specifically, some samples do not contain any text data. Another class such as Handwritten, which is composed of handwritten text characters, produces noisy output text resulted by the processing of the OCR engine. The idea behind this chapter relies on whether combining the learnt visual features with the learnt textual features could be effective in enhancing the feature representation space, and thus, achieving better yet effective results for the specific categories mentioned above (i.e. Advertisement, File Folder, Handwritten).
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 21 Figure 2.1: Sample images from the benchmark Tobacco-3482 dataset showing the low inter-class and high intra-class of structural variations of document images.

Figure 2 . 2 :

 22 Figure 2.2: The proposed cross-modal deep neural network. The NasNet Large model is used for the vision modality, while Bert Base model is used for the language modality[16,
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 23 Figure 2.3: Illustration of (a) LSTM and (b) gated recurrent units (GRU). (a) i, f and o are the input, forget and output gates, respectively. c and c denote the memory cell and the new memory cell content. (b) r and z are the reset and update gates, and h and h are the activation and the candidate activation.
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 24 Figure 2.4: Confusion Matrix of the Equal Concatenation fusion scheme for the proposed cross-modal feature learning network.

Figure 2 . 5 :

 25 Figure 2.5: Confusion Matrix of our best cross-modal network with the superposing (i.e.A.E) fusion method.

  [START_REF] Appiani | Automatic document classification and indexing in high-volume applications[END_REF] described a system that exploits a structural analysis approach to characterize and automatically index heterogeneous documents with variable layout, by determining the class of the document image based on reliable automatic information extraction methods.Nevertheless, the challenge of document images remains in their wide range of visual variability, where documents from the same category might have different spatial properties. Due to their various visual styles, relying on deep convolutional networks to extract visual properties to perform document image classification might fail to distinguish between highly correlated classes. The inter-class discrimination of document images might be smaller than the intra-class variability, where two or multiple document images of different categories can be visually, and in terms of their textual content, closer than two or multiple documents from the same category. This level of intra-class variability can be mitigated by introducing the latent semantic information from the text corpus within the document image. Once the visual features of the vision modality and the textual features of the language modality are extracted, they are leveraged into a multimodal network to combine both feature vectors into one feature vector based on a feature fusion methodology[START_REF] Audebert | Multimodal deep networks for text and image-based document classification[END_REF][START_REF] Dauphinee | Modular Multimodal Architecture for Document Classification[END_REF][START_REF] Noce | Embedded textual content for document image classification with convolutional neural networks[END_REF].Thus, we introduce a mutual learning approach based on a truncated-Kullback-Leibler divergence regularization term (Tr-KLD Reg ). This approach enables the current modality to learn only the positive knowledge from the other modality and prevents the negative knowledge from being introduced in the ongoing learning of the current modality. The proposed mutual learning approach with regularization improves the quality of the final predictions of the single-modal and cross-modal modalities, and helps to overcome the drawback of the conventional mutual learning trained with the standard Kullback-Leibler divergence (KLD).
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 31 Figure 3.1: The proposed Ensemble Self-Attention-based Mutual Learning Network (EAML [18]).
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 32 Figure 3.2: Sample document images and their corresponding OCR results of 9 classes of the Tobacco-3482 dataset that overlap with the RVLCDIP dataset.

Figure 3 .

 3 Figure 3.3a, the attention fusion module is used as a middle fusion block in our ensemble trainable network. The intermediate features extracted from the middle blocks of the image branch (e.g. the output of Residual block0) and the text branch (e.g. the output of Transform block0) are passed to the corresponding attention block as the inputs of the attention block. The channel-wise information is then extracted from the input image or text intermediate features by performing down-sampling with the global average pooling and global max pooling layers in the attention blocks (see Figure 3.3a). The generated

  Visual/Textual attention blocks.
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 33 Figure 3.3: The proposed self-attention-based Fusion Module.

  Consider a training dataset with a set of samples and labels (x n , y n ) ∈ (X , Y), over a set of K classes Y ∈ {1, 2, .., K}. To learn the parametric mapping function f s (x n ) : X → Y, we train our ensemble network with the parameter f s (x n , Θ), where Θ are the parameters obtained by minimizing a training objective function L train denoted as: Θ = arg min θ L train (y, f s (x, θ)) (3.1)

  and F ′ I M ax correspond to the intermediate feature maps of the intermediate input features X I Avg , and X I M ax of the vision modality.
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 34 Figure 3.4: Multimodal Fusion Modality of the ML T r-KLD Reg method.

Figure 3 . 5 :

 35 Figure 3.5: Multimodal Fusion Modality of the EAML T r-KLD Reg method.

Figures 3 .

 3 Figures 3.4 and 3.5 illustrate the confusion matrices of the EAML T r-KLD Reg and ML T r-KLD Reg methods. The figures show that the combined predictions from the vision and language modalities through a fusion methodology improve the classification accuracy of each class of the dataset independently, compared to the single-modal vision and language modalities. Furthermore, the EAML T r-KLD Reg method outperforms the ML T r-KLD Reg methods given the multimodal fusion classification results.

Figure 3 . 6 :

 36 Figure 3.6: The Precision-Recall Curves of the Inter-Dataset Evaluation of the best and the worst classes of the cross-modal modalities for the two EAML T r-KLD Reg and ML T r-KLD Reg methods. (a) illustrates the P-R curves of the best classes. (b) illustrates the P-R curves of the worst classes.
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 37 Figure 3.7: (a.) The Confusion Matrix of the Vision Modality of our best EAML T r-KLD Reg ) method. (b.) The Confusion Matrix of the Language Modality of our best EAML T r-KLD Reg ) method.

Figure 3 . 8 :

 38 Figure 3.8: (a.) The confusion matrix of the Vision Modality of the ML T r-KLD Reg method. (b.) The confusion matrix of the Language Modality of the ML T r-KLD Reg method

  Chapter 2, we developed a two-stream deep network to perform cross-modal document image classification based on an early feature fusion methodology (i.e. equal concatenation, average ensembling). As well, in chapter 3, we developed a multimodal deep network, trained in an end-to-end fully-supervised learning fashion, based on an intermediate selfattention feature fusion methodology. In contrast to the previous chapters, our goal is to develop a task-agnostic representation learning framework for document understanding in a pre-train-then-finetune paradigm. We aim to develop a domain-agnostic multimodal backbone for a better document understanding, by enhancing the cross-modal interactions within and across vision and language modalities. This leads to the following research questions of: (1) can multimodal deep networks lead to task-agnostic cross-modal representations for document data ?; (2) how to fully exploit visual and textual information of semantically meaningful components in document data, and to model the internal relationships among its components; (3) is a task-agnostic framework -pre-trained either on large-scale or low-scale document datasetsable to lead to domain-agnostic inter-dataset generalization over end-to-end fully-supervised learning frameworks, as established in Chapter 3 ?.

  derstanding with unified cross-modal representation learning. Transformers have achieved great success in NLP, and are now heavily applied to images for different tasks such as image recognition, image classification, image captioning, image retrieval, and so on. Unlike deep CNNs which use pixel arrays, transformers applied to images (i.e. vision transformers (ViT)) split the images into visual tokens. The visual transformer divides an image into fixed-size patches, correctly embeds each of them, and includes positional embedding as an input to the transformer encoder. Moreover, ViT models have proven to be effective and outperform deep CNN models by almost four times when it comes to computational efficiency and accuracy.
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 42 Figure 4.2: Illustration of the InterMCA and IntraMSA attention modules. The visual and textual features are transformed into query, key, and value vectors. They are jointly leveraged and are further fused to transfer attention flows between modalities to update the original features.
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 43 Figure 4.3: The proposed cross-modal contrastive learning objective

and 4 .

 4 3b is computed as:

  For a specific K-way C-shot meta-task T , Y = {yi|i = 1, ..., K} denotes the class labels randomly chosen from dataset D. Samples from these classes are randomly chosen to form a Support set and a Query set: (a) the support set for task T is denoted by S, which contains CK samples (K-way C-shot); (b) the query set is Q where n is the number of samples selected for meta-testing.

3 ,

 3 which refers to the cross-dataset test, RVL-CDIP→Tobacco denotes that the pre-training stage is firstly conducted on the RVL-CDIP dataset, then the fine-tuning stage of the previously pre-trained model is conducted on the Tobacco dataset. Finally, the test phase is conducted on the Tobacco dataset as well. Note that during the fine-tuning stage, we only train linear classifiers on the top of the final embeddings of the vision and language modalities of our pre-trained model, with the parameters of the rest of the layers freezed. Thus, even though the document categories are different between the dataset A used for pre-training and test dataset B used for fine-tuning and test, we can still evaluate our model on dataset B. The results confirm that our approach leads to a model with a better generalization ability compared to prior works.

  this chapter, we approached the document classification problem by proposing a novel cross-modal representation learning network, called VLCDoC, which models the intramodality and inter-modality relations between visual and language cues via cross-modal contrastive learning. In addition, we introduced InterMCA and IntraMSA attention mechanisms by incorporating visual and textual features to further improve the cross-modal representations. A superior performance shows that a good generalization has been achieved with large-scale and low-scale datasets, which enables us to classify the document images in different domains. Although a compelling classification performance has not been achieved compared to related works that are based on vision+language+layout modalities, we aim to improve the multimodal representation learning of document images in the pre-training phase through self-supervised pretext-tasks. The general idea of Chapter 5 of this manuscript is to reduce the gap between vision and language-based methods and vision+language+layout based methods in terms of classification accuracy.
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 51 Figure 5.1: The architecture and pre-training representation learning objectives of LSRD.

Figure 5 . 2 :

 52 Figure 5.2: Interpretation of the cross-modal projection. The visual feature v i is projected onto different text directions l i , l j andl k . The scalar projection of v i onto the matched text sequence l i is larger than that of unmatched text sequences l j and l k .
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 516 Objective III: Vision-Language Nearest-Neighbor Mining (VLN-NM) This objective aims to leverage the pretext features learnt across VLN-NCLR objective as a prior for clustering both the document images and their corresponding sequence samples. We motivated that a pretext task from representation learning can be used to obtain semantically meaningful features. Specifically, we freeze the multimodal embedding network obtained from representation learning pretext task (i.e. instance discrimination), and train only the last fully-connected layers on top of the pre-trained multimodal embedding network. For every document image sample v i ∈ M and its corresponding text sequences l i ∈ M , we mine their K nearest neighbors in the embedding space Θ θ . Let N v i , and N l i be the sets of the neighboring samples of v i l i in the mini-batch M respectively. We aim 5.2. Method 123 to learn a clustering function Θ η -parametrized by a deep neural network with weights ηthat classifies a sample document image v i , and a sample text sequence l i and their mined neighbors N v i N l i together. The function Θ η terminates in a softmax function to perform a soft assignment over the vision clusters C V isn = {1, ..., C V isn } and language clusters

  1 the classification performance on the test set, where the metric used is the Top-1 classification accuracy. LSRD achieves state-of-the-art performance of 93.19% regarding the Vision+Text modalities. It outperforms our VLCDoC model introduced in Chapter 4. LSRD reduces the gap with related works based on three modalities (Vision+Text+Layout) which are pre-trained on much more training data (i.e. 11M) against 320k document images in our case. Task II: Few-Shot Document Image Classification We conduct the same few-shot classification as in Chapter 4r. We use the pre-trained embedding network from stage one (i.e. pre-training), then apply meta-learning with an episodic manner. A few-shot K-way multimodal document image classification task can be illustrated as a K-way C-shot problem. Given C labelled samples for each unseen class, the model should fast adapt to them to classify novel classes. The entire test set can be presented by D = {[(v 1 , y N ), ..., (v N , y Y )], [(l 1 , y N ), ..., (l N , y Y )]}, where N is the total number of classes in D, v, l are the samples from the test set with label y. For a specific K-way C-shot meta-task T , Y = {yi|i = 1, ..., K} denotes the class labels randomly chosen from dataset D. Samples from these classes are randomly chosen to form a Support set and a Query set: (a) the support set for task T is denoted by S, which contains CK samples (K-way C-shot); (b) the query set is Q where n is the number of samples selected for meta-learning.

  [START_REF] Bao | Beit: Bert pre-training of image transformers[END_REF] where F (v i , l i ) is the embedding function initialized by the pretext task, S k is the test setting. In the meta-training stage, the algorithm first randomly selects N classes, and samples small base support set S b and a base query set Q b from document data samples within these classes. The objective is to train a classification model M that minimizes N -way prediction loss L N -way of the samples in the query set Q b . Here, the classifier M is conditioned on the provided support set S b . By making the predictions conditioned on the given support set, a meta-learning method can learn how to learn from limited labeled data through training from a collection of tasks (i.e. episodes). In the meta-testing stage, all novel class data X n are considered as the support set for novel classes S n , and the classification model M can be adapted to predict novel classes with the new support set S n .

5

  classes from novel classes, and in each class, we also pick k instances for the support set and 15 for the query set. We conduct experiments on the most common setting in few-shot classification: 1-shot, 5-shot, and 20-shot classification (i.e. 1 or 5 or 20 labeled instances are available from each novel class). We use the pre-trained LSRD network as the embedding network, and perform 5-way classification for only novel classes. During meta-training, we follow the data split strategy in[START_REF] Ravi | Optimization as a model for few-shot learning[END_REF] to sample document samples of 11 classes for fine-tuning, and 5 classes for testing. Note that we sample only 600 samples for each class. The results show that the two-step pre-training approach improves semantic representation learning, and thus boosts the overall results of the vision-language modali-

ures 5 . 3 , 5 . 4 , 5 . 5 , 5 . 6 ,

 53545556 the first column corresponds to the input query, and the top 5 retrievals are shown in following columns in order. Retrievals from the same class are shown with a green border; retrievals from a different class are shown in a red border.

Figure 5 . 3 :

 53 Figure 5.3: Vision to Vision Representative output of the retrieval process. Randomly selected Query document images are shown in the first column, and the top-5 document image retrievals are shown in the following columns in order. Retrievals from the same class are shown with a green border; retrievals from a different class are shown with a red border.

Figure 5 . 4 :

 54 Figure 5.4: Language to Language Representative output of the retrieval process. Randomly selected Text sequences are used as query in the first column, and the top-5 text sequence retrievals are shown in the following columns in order. Retrievals from the same class are shown with a green border; retrievals from a different class are shown with a red border. We show the corresponding document images of the queries and retrieved results

Figure 5 . 5 :

 55 Figure 5.5: Vision to Language Representative output of the retrieval process. Randomly selected Query document images are shown in the first column, and the top-5 text sequence retrievals are shown in the following columns in order. Retrievals from the same class are shown with a green border; retrievals from a different class are shown with a red border.

Figure 5 . 6 :

 56 Figure 5.6: Language to Vision Representative output of the retrieval process. Randomly selected Query text sequences are shown in the first column, and the top-5 document image retrievals are shown in the following columns in order. Retrievals from the same class are shown with a green border; retrievals from a different class are shown with a red border. We show the corresponding document images of the retrieved text results for a better visualisation.

  of static and contextualized dynamic word embeddings to classify textual content of document images. As well, we reviewed the impact of training heavyweight and lightweight deep neural networks on learning relevant structural information from document images. Both the theoretical analysis and the experimental results demonstrated the superiority of our proposed joint feature learning method compared to the single-modal (i.e. uni-modal) modalities. This joint learning approach outperforms the state-of-the-art results with a classification accuracy of 97.05% on the large-scale RVL-CDIP dataset, and outperforming the current state-of-the-art method by 3.91% of classification accuracy on the low-scale benchmark Tobacco-3482 dataset.• Multimodal Deep Mutual Learning: In Chapter 3, we introduced a mutual learning strategy to overcome the limitations of the conventional mutual learning strategy when tested on document data. The proposed approach allowed us to learn the positive knowledge from one modality to another during the training stage, instead of the negative knowledge which we proved to weaken the learning capacity of the modality in the learning process. We presented a self-attention-based feature fusion module for a better multimodal feature extraction to perform fine-grained document image classification. Our proposed self-attention-module enhanced the overall accuracy of the ensemble network and achieved state-of-the-art classification performance compared to single-modal and multimodal methods. We performed a comprehensive ablation study on the benchmark RVL-CDIP and Tobacco-3482 datasets to analyze the effectiveness of our proposed ensemble trainable network with/without the mutual learning approach, and with/without the self-attentionbased feature fusion module. We evaluated the performance and the generalization ability of the proposed ensemble network on unseen document data through interdataset and intra-dataset evaluation on both datasets for the single-modal and crossmodal fusion modalities. The experimental results demonstrated the effectiveness of our approach in terms of accuracy for the single-modal and cross-modal modalities. Thus, the proposed ensemble self-attention-based mutual learning model outperforms the state-of-the-art classification results based on the benchmark RVL-CDIP and Tobacco-3482 datasets.• Multimodal Document Representation Learning: In Chapter 4, we designed a unified task-agnostic document pre-training framework for a better cross-modal representation learning. Our network consisted of leveraging two flexible extra levels of cross-modal interactions through cross-attention (InterMCA) and self-attention (In-traMSA) middle feature fusion-based attention modules. These modules captured high-level interactions between visual-textual cues within different document compo-nents. We proposed a cross-modal contrastive learning objective to further explore the relations between vision and language cues. Compared to the classic singlemodal contrastive learning, the proposed cross-modal contrastive learning objective allowed us to learn and align the feature representations within and across modalities. Under a fair comparison setting, our task-agnostic framework demonstrated a good generalization ability among vision and language approaches on the benchmark document datasets. It enabled us to learn robust and domain-agnostic feature representations. Thus, it achieved better results compared to the generalization experiment design conducted in Chapter 3 for the document classification task. We showed that a transformer-based architecture used in our task-agnostic pre-trained framework can achieve comparable performance when pre-trained on fewer data.The extensive experiments conducted on the public document classification datasets demonstrated the effectiveness and the generalization capacity of our model on both low-scale and large-scale datasets.

6. 4

 4 Future ResearchTaking into account the lessons learnt from this work, and the improvements due to recent models that are actively being developed in the research community, we list in the following paragraphs what we identified as key topics for future research in the field of multimodal document understanding. Along the thesis, we have already stressed upon some open worth considering questions as unexplored lines that are actively being developed in the research community. Moreover, taking into account the improvement of deep learning methods, we are convinced that there is still a wide variety of research tasks for improving and advancing our work. Also, note that the new methodologies derived from the deep learning field have opened several research lines that were not covered in this dissertation.Deep learning is experiencing an evolution from the point of view of the learning strategies. The huge amount of data required for the supervision of new models causes a huge bottleneck dealing with new problems. Therefore, self-supervised learning strategies are gaining popularity among the machine learning community, and more specifically, among the document understanding community in the last three years. Taking into account the outcomes of this dissertation, there are many extensions that can be made. We list in the following paragraphs key topics for future research in the field of multimodal document understanding.

  

  

  

  

  

  

Table 1

 1 

	.1: The Distribution of document pages over the RVL-CDIP and Tobacco-3482
	datasets.				
		RVL-CDIP		Tobacco-3482
	Categories	#Training Data #Validation Data #Test Data	#Available Data
	advertisement	19,963	2,522	2,515	238
	budget	20,010	2,485	2,505	-
	email	19,954	2,530	2,516	611
	file folder	20,012	2,451	2,527	-
	form	19,957	2,537	2,506	441
	handwritten	20,031	2,434	2,532	-
	invoice	19,944	2,576	2,477	-
	letter	20,103	2,430	2,464	580
	memo	19,975	2,533	2,489	631
	news article	19,987	2,526	2,463	190
	presentation	20,043	2,468	2,489	-
	questionnaire	20,042	2,516	2,435	-
	resume	20,006	2,424	2,536	122
	scientific publication	19,829	2,524	2,569	265
	scientific report	19,984	2,508	2,498	271
	specification	19,997	2,531	2,472	-
	note	-	-	-	204
	RVL-CDIP Dataset				
	The RVL-CDIP (Ryerson Vision Lab Complex Document Information Processing) dataset
	is a subset of the IIT-CDIP Test Collection presented in [61]. This dataset consists of gray-
	scale labeled scanned document images into 16 classes (advertisement, budget, email, file
	folder, form, handwritten, invoice, letter, memo, news article, presentation, questionnaire,
	resume, scientific publication, scientific report, specification). The dataset is split into
	320K training documents, 40K documents documents for validation and test sets. For
	notation simplicity, we denote the dataset as RVL-CDIP. Some representative images
	from the dataset are shown in Figure 1.11.			
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is composed of two types of layers: Normal layer, and Reduction layer. The Normal layer is a convolutional layer that returns a feature map of the same dimension, where the Reduction layer is a convolutional layer

Table 2 .

 2 1: Overall accuracy on the Tobacco-3482 dataset versus model. E.C refers to Equal Concatenation, and S.F refers to Superposing Fusion.

	Model	Accuracy(%) ADVE Email Form Letter Memo News Notes Report Resume Scientific
	single-Modal (Vision)	96.25	1	1	0.96	0.94	0.98	1	0.90	1	0.78	0.90
	single-Modal (Language)	97.18	0.97	0.99 0.98	0.93	0.97	0.98 0.89	1	0.96	0.95
	Ensemble [12]	87.8	0.93	0.98 0.88	0.86	0.90	0.90 0.85	0.71	0.96	0.68
	Two Stream Model [11]	95.8	0.94	0.98 0.95	0.98	0.97	0.97 0.88	0.92	1	0.93
	Cross-Modal (E.C)	98.42	0.98	0.99 0.95	1	0.98	0.97	1	1	0.96	0.98
	Cross-Modal (S.F)	99.71	1	1	0.97	1	1	1	1	1	1	1

Table 2 .

 2 As for the language modalities, the Bert Base model achieves comparable performance with the state-of-the-art results on the same benchmark dataset, with an accuracy of 84.96%. Bert Base manages to improve the performance thanks to its attention-based mech-2: The overall accuracy of the proposed methods with different backbones and different fusion modalities on the RVL-CDIP dataset. E.C refers to Equal Concatenation, and A.E refers to superposing Fusion.

	Method	Model	Acc.(%) Top-5 Acc. Precision Recall F1-Score #Params
		Harley et al. [61]	89.80	-	-	-	-	-
		Nicolas et al. [12]	90.06	-	-	-	-	-
		Csurka et al. [35]	90.70	-	-	-	-	-
	Baselines	Tensemeyer et al. [166] 90.94 Afzal et al. [4] 90.97	--	--	--	--	--
		Das et al. [36]	91.11	-	-	-	-	-
		Das et al. [36]	92.21	-	-	-	-	-
		Dauphinee et al. [38]	93.03	-	-	-	-	-
		Dauphinee et al. [38]	93.07	-	-	-	-	-
		Xu et al. [185]	94.42	-	-	-	-	160 M
		Glove-GRU	71.54	93.86	0.75	0.72	0.72	179 M
	Language-only	FastText-GRU	77.31	95.15	0.80	0.78	0.78	30.47 M
		Bert Base	84.96	96.74	0.86	0.86	0.85	109.19 M
		NasNet M	81.54	97.29	0.84	0.83	0.83	4.23 M
	Vision-only	Inception-ResNet-v2 NasNet L 4032d NasNet L 768d	85.04 91.12 91.45	97.80 98.61 98.60	0.88 0.92 0.92	0.86 0.91 0.92	0.87 0.92 0.92	54.36 M 84.98 M 88.02 M
	vision+Language	Cross-Modal (E.C) Cross-Modal (A.E)	96.94 97.05	99.83 99.85	0.97 0.97	0.97 0.97	0.97 0.97	197.22 M 197.21 M

.2. The heavyweight NasNet Large (768d) model performs the best for our vision modalities at an accuracy of 91.45%, outperforming the other tested models NasNet Large (4032d) , Inception-ResNet-v2, and NasNet M obile at an accuracy of 91.12%, 85.04%, and 81.54% respectively. anism, while Glove and FastText still achieve good results on the text classification task at an accuracy of 71.54%, and 77.31% respectively. As each single modality is trained independently one from another, merging both modalities boosts the performance significantly for the two fusion modalities to 96.94%, 97.05% classification accuracy for equal

Table 2 .

 2 this part of evaluation, we propose to use NASNet Large to classify the document images with only visual features. As shown in Table2.3, the NASNet Large gains the best 3: Evaluation of the Vision modality against Baselines on Tobacco-3482 dataset.

	Method	Accuracy(%)
	AlexNet [4]	90.04
	GooGleNet [4]	88.4
	VGG-16 [4]	91.01
	ResNet-50 [4]	91.13
	MobileNetV2 [12]	84.50
	InceptionV3 [11]	93.2
	NASNet Large	96.25

result of 96.25% which outperforms the state-of-the-art single-modal method based on the InceptionV3 network by a 3.05% margin. Note that the NASNet Large is pre-trained on ImageNet, used as weight initialization as transfer learning is known to improve the

Table 2 .

 2 4: Accuracy comparison of Language-stream state-of-the-art models on the Tobacco-3482 dataset.

	Method	Accuracy(%)
	FastText-CNN [12]	73.8
	Feature Ranking (ACC2) [11]	87.1
	Glove-CNN1D-LSTM	51
	Glove-GRU	61
	Bert Base	97.18

Table 2 .

 2 5: The classification accuracy of the language streams for each class of the RVL-CDIP dataset. Model Adv. Budg. Email File Form Handw. Inv. Letter Memo News Pres. Quest. Res. Public. Report Spec.

	tics.
	In addition, Table 2.1. compares the performance of the two proposed fusion methods
	to perform cross-modal document image classification. For Equal Concatenation (E.C)
	feature fusion operation, we compress the visual features and concatenate them with the

.

[START_REF] Muhammad Zeshan Afzal | Cutting the error by half: Investigation of very deep cnn and advanced training strategies for document image classification[END_REF]

. Results demonstrate that the Bert Base model achieves a new state-of-the-art result of 97.18%, outperforming all existing methods with a very high margin of 10.08%. Therefore, attentionbased approaches are highly-efficient operations thanks to their fast run-time characteristextual features, having both the same dimensional feature vector. As well, our crossmodal network manages to raise the performance for all classes except for the classes News and Form, where it drops by 1%. This is mainly due to the highly overlapped categories (Form, Report, Email) shown in Figure

2

.1. Finally, our cross-modal feature

Table 2 .

 2 7: The classification accuracies of the cross-modal network for each class of the RVL-CDIP dataset, with the proposed fusion modalities. Model Adv. Budg. Email File Form Handw. Inv. Letter Memo News Pres. Quest. Res. Public. Report Spec. 66% of Advertisement and Handwritten class documents as File Folder documents. Also, FastText managed to improve the performance and reduced the classification error by 4% where 31.13% of Advertisement, and 28.28% of Handwritten class documents are predicted as File Folder documents. Furthermore, the bidirectional Bert Base enhanced the performance to 68% for Advertisement, 85% for File Folder, and 69% for Handwritten categories. The Bert Base network boosted the performance of the three classes and cut Still, all vision networks trained on the RVL-CDIP dataset achieve comparable performance with the state-of-the-art methods. Table 2.6 illustrates the performance of our best single-modal vision modality NasNet Large (768d) . It shows an improvement in the classification results of all classes, especially for the classes Advertisement, File Folder, and Handwritten to 94.08%, 96.04%, 95.07% in comparison of language modality results. Nevertheless, the lightweight NasNet M obile network fails to improve the performance for most of the classes compared to Bert Base , our best language-based model. Whereas, the

	Concat. 0.97 0.96	0.98	0.98 0.93 0.97	0.97 0.95	0.97	0.96 0.94 0.97	0.99 0.97	0.94	0.98
	Avg.	0.97 0.97	0.98	0.98 0.94 0.97	0.97 0.95	0.97	0.96 0.94 0.97	0.99 0.97	0.95	0.98
	32.									

the error-classification by half where 15.98% of Advertisement, and 15.84% of Handwritten categories are predicted as File Folder document images. The classification errors are mainly due to either OCR error recognition, or empty document images which result to empty text files. Advertisement documents contain mostly images with few invisible text sequences, where the corresponding text generated by OCR is much too noisy and non-recognized. File Folder class presents in most cases empty document images with no text in it to be processed by the OCR engine. Finally, OCR technique fail to recognize handwritten characters in document images as a result of the different handwriting manners. Inception-ResNet-v2 network slightly outperforms our language modalities with 85.04% accuracy in comparison to Bert Base model (84.96%), surpassing significantly both Glove and FastText word embeddings.

Table 2

 2 

.2 shows that indeed, adding a fully connected layer slightly increases the performance of the vision modality from 91.12% for NasNet Large (4032) , to 91.45% for NasNet Large (768)
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 28 As illustrated in the Table2.8, the lightweight NasNet M obile framework fails to capture

	NasNet M obile	Recall Precision 0.83 0.91	0.97 0.90	0.96 0.89	0.75 0.69	0.95 0.83	0.71 0.95	0.82 0.68	0.69 0.87	0.95 0.82	0.63 0.77
	Inception-ResNet-v2	Recall Precision 0.90 0.90	0.97 0.99	0.97 0.86	0.73 0.78	0.93 0.93	0.88 0.83	0.73 0.84	0.76 0.90	0.96 0.91	0.86 0.56
	NasNet Large 4032d	Recall Precision 0.92 0.94	0.99 0.98	0.96 0.95	0.84 0.86	0.95 0.95	0.93 0.93	0.86 0.84	0.90 0.87	0.97 0.98	0.83 0.83
	NasNet Large 768d	Recall Precision 0.93 0.93	0.99 0.98	0.95 0.96	0.84 0.84	0.92 0.95	0.92 0.94	0.85 0.82	0.89 0.88	0.97 0.97	0.82 0.83

: The Recall and Precision metrics of the vision backbones of the most relevant classes in the RVL-CDIP dataset. Model Metrics Adve. Email Folder Form Hand. Invoice Pres. Quest. Resume Sci.

higher level features from Form, Invoice, Questionnaire, and Scientific report classes. The model seems to be less sensitive with a recall rate of 75%, 71%, 69%, and 63% for the four classes respectively. Also, we measured the precision of the NasNet M obile network for

Table 2 .

 2 9: The Recall and Precision metrics of the vision backbones of the most relevant classes of the RVL-CDIP dataset. It is less precise with a precision rate of 68%, 69% for the classes Presentation and Form. Furthermore, the Inception-ResNet-v2 framework's recall rate for the classes Form, Presentation, and Questionnaire is low in comparison with other categories. The recall for each class is of 73%, 73%, and 76% respectively, while the precision is of 78%

	Model	Metrics	Adve. Email Folder Form Hand. Invoice Pres. Quest. Resume Sci.
	Glove	Recall Precision 0.61 0.54	0.86 0.88	0.91 0.41	0.62 0.81	0.54 0.57	0.81 0.80	0.57 0.64	0.73 0.93	0.95 0.97	0.63 0.63
	FastText	Recall Precision 0.77 0.57	0.90 0.96	0.94 0.45	0.69 0.85	0.64 0.60	0.88 0.80	0.63 0.76	0.82 0.89	0.95 0.99	0.74 0.70
	Bert Base	Recall Precision 0.78 0.68	0.95 0.97	0.86 0.60	0.80 0.81	0.69 0.83	0.88 0.90	0.82 0.81	0.87 0.89	0.98 0.99	0.80 0.82
	each class.										

Table 3 .

 3 1: The overall classification accuracy of our best EAML T r-KLD Reg method against baseline methods on the RVL-CDIP dataset.

	Method	Model	Accuracy(%)
	Vision		89.1
	Language	Nicolas et al. [12]	74.6
	Multimodal		90.6
	Vision		90.24
	Language	Dauphinee et al. [38]	82.23
	Multimodal		93.07
	Vision		91.45
	Language	Cross-Modal [17]	84.96
	Multimodal		97.05
	Vision		97.67
	Language Multimodal	EAML T r-KLD Reg (Ours)	97.63 97.70
		Harley et al. [61]	89.80
		Csurka et al. [35]	90.70
	Baselines	Tensmeyer et al. [166] Azfal et al. [4]	90.94 90.97
		Das et al. [36]	91.11
		Das et al. [36]	92.21
		Ferrando et al. [48]	92.31
		Xu et al. [185]	94.42
		Xu et al. [184]	95.64

modal and cross-modal modalities and outperforms the state-of-the-art baselines.

Table 3 .

 3 2: The overall classification accuracy(Acc.), recall(R.), precision(Pr.) metrics of the proposed approaches on the RVL-CDIP dataset. IL, ML KLD , ML T r-KLD Reg , and EAML T r-KLD Reg denote Independent Learning, Mutual Learning with the standard KLD, Mutual Learning with the truncated-KLD, and Ensemble self-attention-based Mutual

	Learning with the truncated-KLD respectively.		
					Modality		
	Method	Vision Modality	Language Modality	Cross-Modal Fusion
		Acc.(%) R.	Pr.	Acc.(%) R.	Pr.	Acc.(%) R.	Pr.
	IL	85.04	0.85 0.85	84.96	0.85 0.85	94.44	0.94 0.94
	ML KLD	88.87	0.89 0.88	80.89	0.81 0.80	90.06	0.90 0.90
	ML T r-KLD Reg EAML T r-KLD Reg	90.81 97.67 0.98 0.98 0.91 0.91	88.80 97.63 0.98 0.98 0.89 0.89	96.28 97.70 0.98 0.98 0.96 0.96

Table 3 .

 3 3: The overall classification accuracy(Acc.), recall(R.), precision(Pr.) metrics of the proposed approaches on the Tobacco-3482 dataset. IL, ML KLD , ML T r-KLD Reg , and EAML T r-KLD Reg denote Independent Learning, Mutual Learning with the standard KLD, Mutual Learning with the truncated-KLD, and Ensemble self-attention-based Mutual Learning with the truncated-KLD respectively.

	Modality

Table 3 .

 3 4: The overall classification accuracy of the proposed approaches against baseline methods on the Tobacco-3482 dataset.

	Method	Model	Accuracy(%)
	Image		84.5
	Text	Nicolas et al. [12]	73.8
	multimodal		87.8
	Image		93.2
	Text	Asim et al. [11]	87.1
	multimodal		95.8
	Image		94.04
	Text	Ferrando et al. [48]	-
	multimodal		94.90
	Image		96.25
	Text	Cross-Modal [16]	97.18
	multimodal		99.71
	Image		97.99
	Text multimodal	EAML T r-KLD Reg (Ours)	96.27 98.57
		Kumar et al. [90]	43.8
	Baselines	Kang et al. [76] Afzal et al. [3]	65.37 76.6
		Harley et al. [61]	79.9
		Noce et al. [126]	79.8
	modalities (i.e. vision and language) -leading to great intra-dataset generalization-are an
	essential component for building generalized frameworks that lead to great inter-dataset
	generalization.		

Table 3 .

 3 5: The Inter-Dataset Evaluation results of the Mutual Learning ML T r-KLD Reg method on the Tobacco-3482 dataset.

				Mutual Learning (ML T r-KLDReg )				
	Class Labels	Vision Modality	Language Modality	Modality Fusion	#Nb. Samples
		Precision Recall F1-Score	Precision Recall F1-Score	Precision Recall F1-Score	
	Advertisement	0.9659 0.9659 0.9103	0.9596 0.8261 0.8879	0.9772 0.9304 0.9532	230
	Email	0.9688 0.9850 0.9768	0.9577 0.9833 0.9703	0.9673 0.9866 0.9769	599
	Form	0.9484 0.8956 0.9212	0.9360 0.8817 0.9080	0.9408 0.9582 0.9494	431
	Letter	0.8959 0.9718 0.9323	0.9035 0.9577 0.9298	0.9329 0.9806 0.9561	567
	Memo	0.9562 0.9855 0.9706	0.9466 0.9726 0.9594	0.9717 0.9968 0.9841	620
	News article	0.8650 0.9202 0.8918	0.8406 0.9255 0.8810	0.9146 0.9681 0.9406	188
	Resume	0.9836	1	0.9917	0.9836	1	0.9917	0.9756	1	0.9877	120
	Scientific publication	0.9462 0.3372 0.4972	0.8889 0.3372 0.4889	0.9368 0.3410	0.50	261
	Scientific report	0.2907 0.2491 0.2683	0.2707 0.2340 0.2510	0.2773 0.2302 0.2515	265
	Overall Accuracy (%)			84.82			83.72			86.68	

Table 3 .

 3 6: The Inter-Dataset Evaluation results of the Ensemble Self-Attention MutualLearning (EAML T r-KLD Reg ) approach on the Tobacco-3482 dataset.

			Ensemble Self-Attention Mutual Learning (EAML T r-KLDReg )			
	Class Labels	Vision Modality	Language Modality	Multimodal Fusion	#Nb. Samples
		Precision Recall F1-Score	Precision Recall F1-Score	Precision Recall F1-Score	
	Advertisement	0.9910 0.9565 0.9735	0.9911 0.9696 0.9802	0.9865 0.9565 0.9713	230
	Email	0.9916	0.99	0.9908	0.9933	0.99	0.9916	0.99	0.99	0.99	599
	Form	0.9628 0.9606 0.9617	0.9630 0.9652 0.9641	0.9627 0.9582 0.9605	431
	Letter	0.8983 0.9965 0.9448	0.9040 0.9965 0.9480	0.9056 0.9982 0.9497	567
	Memo	0.9857	1	0.9928	0.9841	1	0.9920	0.9857	1	0.9928	620
	News article	0.9490 0.9894 0.9688	0.9588 0.9894 0.9738	0.9487 0.9840 0.9661	188
	Resume	0.9917	1	0.9959	0.9917	1	0.9959	0.9836	1	0.9917	120
	Scientific publication	0.9519 0.3793 0.5425	0.9592 0.3602 0.5237	0.9364 0.3946 0.5553	261
	Scientific report	0.2374 0.1774 0.2030	0.2261 0.1698 0.1940	0.2709 0.2075 0.2350	265
	Overall Accuracy (%)			87.29			87.23			87.63	
	sure of how many truly relevant results are returned. The F1-score measures the weighted
	average of the precision and recall, while the relative contribution of precision and recall
	to the F1-score are equal. However, we evaluate on 9 classes of the RVL-CDIP dataset
	which overlap with the classes of the Tobacco-3482 dataset, that are: Advertisement,
	Email, Form, Letter, Memo, News article, Resume, Scientific publication, and Scientific
	report. We exclude the category named Note from the Tobacco-3482 dataset which does
	not overlap with any of the categories of the RVL-CDIP dataset.			
	As it can be seen from Tables 3.5 and 3.6 and Figures 3.7 and 3.9a, the proposed
	EAML T r-KLD Reg method displays a better generalization behavior than the ML T r-KLD Reg

method Figures 3.8 and 3.9b over 8 categories that overlap with the RVL-CDIP dataset.

Table 3 .

 3 7: The Inter-Dataset Evaluation results of the Ensemble Self-Attention MutualLearning (EAML T r-KLD Reg ) approach on the RVL-CDIP dataset.

		Ensemble Self-Attention Mutual Learning (EAML T r-KLD Reg )
	Class Labels	Vision Modality	Language Modality	Multimodal Fusion
		Precision Recall F1-Score	Precision Recall F1-Score	Precision Recall F1-Score
	Advertisement	0.8292 0.9337 0.8783	0.8702 0.7281 0.7929	0.9381 0.9769 0.9571
	Email	0.9654 0.9799 0.9726	0.9820 0.9366 0.9588	0.9944 0.9964 0.9954
	Form	0.7953 0.9126 0.8499	0.9289 0.8746 0.9009	0.9588 0.9846 0.9715
	Letter	0.9763 0.8109 0.8859	0.9417 0.8816 0.9106	0.9970 0.9574 0.9768
	Memo	0.9660 0.8874 0.9250	0.9630 0.8926 0.9265	0.9972 0.9729 0.9849
	News article	0.9577 0.7579 0.8462	0.9574 0.8076 0.8762	0.9966 0.9197 0.9566
	Resume	0.9811 0.8802 0.9279	0.9985 0.9718 0.9850	0.9998 0.9891 0.9944
	Scientific publication	0.5298 0.8827 0.6622	0.5218 0.9268 0.6677	0.5203 0.9856 0.6810
	Scientific report	0.1858 0.0565 0.0867	0.3246 0.0974 0.1498	0.2889 0.0197 0.0368
	Overall Accuracy (%)	78.89	79.06	86.68

modality, compared to 84.82%, 83.72%, and 86.68% for the ML T r-KLD Reg method respectively. Regarding the Scientific publication category, the recall of the model considering the EAML T r-KLD Reg and ML T r-KLD Reg methods is very low. Amongst all the samples,

Table 3 .

 3 8: The average precision (AP) scores of the inter-dataset evaluation of the ML T r-KLD Reg and the EAML T r-KLD Reg for the multimodal Fusion modality on the Tobacco-3482 dataset.

	Method

a good generalization ability of our proposed EAML T r-KLD Reg and ML T r-KLD Reg methods trained on RVL-CDIP, and evaluated on Tobacco-3482, regarding 7 common classes between the RVL-CDIP and Tobacco-3482 datasets, except for the Scientific publication and the Scientific report categories where it generalizes the worst.

Table 4 .

 4 1: Ablation study on VLCDoC on cross-modality attention components, pretrained on Tobacco dataset.

	Pre-training setting	IntraMSA InterMCA #Parameters Accuracy(%)
	-w/o language modality			
		√ √	√ √	198M 201M 209M 217M	85.71 86.66 87.20 90.94
	-w/o vision modality			
		√ √	√ √	198M 201M 209M 217M	86.01 86.31 87.50 90.62

Table 4 .

 4 2: Top-1 accuracy (%) comparison results of our proposed cross-modal contrastive learning loss against the standard supervised contrastive learning (SCL) loss on the To-

	bacco dataset.			
	Model	Modality CrossCL(%) SCL(%)
	VLCDoC	Vision	90.94	89.88
		Language	90.62	89.29
	semantic information of images and sentences. The results demonstrate the effectiveness
	of cross-modal learning and the importance of both attention modules in learning more
	effective cross-modal representations during the pre-training stage.

Table 4 .

 4 [START_REF] Afzal | Document Image Binarization using LSTM: A Sequence Learning Approach[END_REF] shows that the CrossCL loss has a positive impact on the results. The VLCDoC with cross-modal contrastive learning loss CrossCL yields the best performance gain compared to VLCDoC with the Supervised Contrastive Loss (SCL).To illustrate the generalization capacity and the robustness of the learned cross-modal representations, we validate our proposed VLCDoC network on benchmark document classification datasets with different size and document types. We refer as the cross-dataset test to the process of pre-training our cross-modal network on dataset A, and fine-tune it and test it on dataset B. The motivation behind is to confirm whether our model displays a

	This indicates the importance of CrossCL by enforcing the compactness of intra-class rep-
	resentations (intra-modality), while separating inter-class features by contrasting positive
	and negative sample pairs within and across each modality. Note that, as described in
	Equation 4.15, the CrossCL can be vision cue-based or language cue-based, thus we have
	two different CrossCL presented in Table 4.2.
	Cross-Dataset Test

Table 4 .

 4 3: Cross-dataset test on datasets with different size and document types. Tobacco-3482, RVL-CDIP, Tobacco-3482 → RVL-CDIP denotes pre-train on the Tobacco-3482, fine-tune and test on RVL-CDIP. generalization ability in terms of the downstream document classification task. Since there are no publicly available cross-document datasets for this specific task, we evaluate the ability of our model to perform document classification on a new set of documents that had not been seen by our model during the pre-training phase. For example, as denoted in

	Model	Accuracy (%)	
		Tobacco-3482 → RVL-CDIP RVL-CDIP → Tobacco-3482
	w/o language modality		
	-EAML [18]	78.89	84.82
	-VLCDoC	79.04	89.73
	w/o vision modality		
	-EAML [18]	79.06	83.72
	-VLCDoC	81.96	89.88

good

Table 4 .
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Table 4 .

 4 4: Top-1 accuracy (%) comparison results of different document classification methods evaluated on the of RVL-CDIP dataset. V+L denotes vision+language modali-

	ties.			
	Method	Pre-Training Data Accuracy(%) #Parameters
	vision methods			
	VGG-16 [4]	320k	90.31	138M
	AlexNet [166]	320k	90.94	61M
	ResNet-50 [4]	320k	91.13	-
	Ensemble [36]	320k	92.21	-
	DiT Base [101]	320k	92.11	87M
	(language+layout) methods			
	BERT Base [41]	-	89.81	110M
	RoBERTa Base [110]	-	90.06	125M
	LayoutLM Base [185]	11M	91.78	113M
	(vision+language) methods			
	w/o language			
	-Multimodal [12]	320k	89.1	-
	-Ensemble [38]	320k	91.45	-
	-EAML [18]	320k	90.81	-
	w/o vision			
	-Multimodal [12]	320k	74.6	-
	-Ensemble [38]	320k	82.23	-
	-EAML [18]	320k	88.80	-
	VLCDoC (V+L) w/o language	320k	92.64	217M
	VLCDoC (V+L) w/o vision	320k	91.37	217M
	(vision+language+layout) methods			
	SelfDoc [104]	320k	93.81	-
	LayoutLM Base [185]	11M	94.42	160M
	TILT Base [139]	1M	95.25	230M
	LayoutLMv2 Base [184]	11M	95.25	200M
	LayoutLMv3 Base [72]	11M	95.44	133M
	DocFormer Base [9]	5M	96.17	183M
	data, achieving better performance with only vision and language modalities. Similarly,
	following similar protocol, we pre-train our encoder on RVL-CDIP, and then conduct fine-
	tuning and test on the Tobacco datasets with fewer document data. We clearly see that
	our model outperforms the work EAML with a significant margin of 4.91% and of 6.16%
	for vision and language modalities respectively. These results demonstrate that our model

Table 4 .

 4 5: Intra-Dataset and Inter-dataset evaluation on the Few-shot document classification setting. The best embedding network is pre-trained on RVL-CDIP dataset, then tested on Tobacco-3482 dataset. All accuracy results are averaged over 600 test episodes and are reported with 95% confidence intervals.

	Pre-train Data Fine-tune Data Distance	Embedding Net	1-Shot-5way	5-Shot-5way	20-Shot-5way
	RVL-CDIP	RVL-CDIP Tobacco-3482 Euclidean Euclidean	VLCDoC (w/o Language) 85.35 ± 0.046 % 91.12 ± 0.015 % 91.76 ± 0.015 % VLCDoC (w/o Vision) 84.93 ± 0.046 % 91.23 ± 0.015 % 91.72 ± 0.015 % VLCDoC (w/o Language) 54.31 ± 0.052 % 66.61 ± 0.046 % 71.81 ± 0.036 % VLCDoC (w/o Vision) 53.29 ± 0.052 % 66.40 ± 0.045 % 72.16 ± 0.035 %
	Tobacco-3482	Tobacco-3482 Euclidean Rvlcdip Euclidean	VLCDoC (w/o Language) 48.00 ± 0.021 % 54.22 ± 0.015 % 61.24 ± 0.015 % VLCDoC (w/o Vision) 47.32 ± 0.021 % 56.33 ± 0.015 % 61.51 ± 0.015 % VLCDoC (w/o Language) 47.99 ± 0.021 % 55.27 ± 0.018 % 57.64 ± 0.017 % VLCDoC (w/o Vision) 46.81 ± 0.021 % 55.21 ± 0.018 % 56.77 ± 0.016 %
	ble 4.5.				

  on top of the frozen encoder. Note that contrary to the traditional approach where the classifier is trained after the pre-training phase, in this example we train it during pre-training.NNCLR (Nearest-Neighbour Contrastive Learning)[START_REF] Dwibedi | With a little help from my friends: Nearest-neighbor contrastive learning of visual representations[END_REF]: proposes nearest-neighbours to obtain more diverse positive pairs by keeping a support set of embeddings which is representative of the full data distribution. To form the positive pairs, z i 's nearest-neighbours are constructed from the support set Q. The NNCLR objective is then defined as:

.) Linear probing accuracy: Linear probing is a popular metric to evaluate selfsupervised classifiers. It is computed as the accuracy of a logistic regression classifier trained on top of the encoder's features. In our case, this is done by training a single dense layer

  Each input sequence is expected to start with a [CLS] token, and should end with a [SEP ] token. The t tok is then represented as: t tok = [CLS], t tok 1 , t tok 2 , ..., t

tokn , [SEP ],

where n = 256 is the maximum sequence length. For each document, if n > 256, the input sequence is truncated so that it fits the desired length. Sequences that are shorter than n < 256 are padded until they are n = 256 long. We adopt distributed training and mixed-precision training to reduce memory costs and speed up training procedures.
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	1: Top-1 accuracy (%) comparison results of different document classification
	methods evaluated on the of RVL-CDIP dataset. V, T, and L denote Vision, Text, and
	Layout modalities.				
	Method	Pre-Training Data Modality Accuracy(%) #Params
	CNN Ensemble [61]	320k	V	89.80	*60M
	VGG-16 [4]	320k	V	90.31	138M
	GoogLeNet [35]	320k	V	90.70	13M
	AlexNet [166]	320k	V	90.94	61M
	Single Vision Model [166]	320k	V	91.11	*140M
	ResNet-50 [4]	320k	V	91.13	-
	Ensemble [36]	320k	V	92.21	-
	DiT Base [101]	320k	V	92.11	87M
	LadderNet [152]	320k	V	92.77	-
	BERT Base [41]	-	T	89.81	110M
	RoBERTa Base [110]	-	T	90.06	125M
	LayoutLM Base [185]	11M	T+L	91.78	113M
	LiLT Base [176]	11M	T+L	95.68	113M
	VLCDoC [19]	320k	V+T	92.64	217M
	SelfDoc [104]	320k V+T+L	92.81	-
	LSRD	320k	V+T	93.19	-
	LayoutLM Base [185]	11M V+T+L	94.42	160M
	UDoc [60]	11M V+T+L	95.05	272M
	TILT Base [139]	1M V+T+L	95.25	230M
	LayoutLMv2 Base [184]	11M V+T+L	95.25	200M
	LayoutLMv3 Base [72]	11M V+T+L	95.44	133M
	DocFormer Base				

Table 5 .

 5 4: Effects of sequence length on content-based document retrieval.

	Pre-training	Sequence Intra-Modal Retrieval	Inter-Modal Retrieval
	Tasks	length	Lang → Lang	Visn → Lang	Lang → Visn

  VLN-NCLR+VLM 512 71.57 89.48 93.82 71.06 88.51 92.88 68.79 85.43 90.92 256 79.00 92.07 95.03 75.28 90.07 93.58 73.74 88.00 92.29 128 73.17 89.12 93.18 71.09 88.51 92.87 68.39 84.55 89.80 64 70.85 88.07 92.53 67.34 87.20 91.85 62.60 80.17 86.13 +VLN-NM 32 62.99 84.88 90.32 62.27 85.02 90.64 52.76 71.20 77.18 8 38.02 67.83 79.94 46.91 75.95 85.03 21.33 34.83 41.02 from 8, 32, 64, 128, 256, 512. The reported results indicate that with the same sequence length of 256 as used in the pre-training stage, we manage to get the best R@K scores.

https://www.cs.cmu.edu/~aharley/rvl-cdip/

https://github.com/tesseract-ocr/tesseract

https://github.com/tesseract-ocr/tesseract

to learn cross-modal representations in a cross-modal contrastive learning fashion [START_REF] Bakkali | VLCDoC: Vision-Language Contrastive Pre-Training Model for Cross-Modal Document Classification[END_REF] .

contrastive learning, the proposed cross-modal contrastive loss allows to learn and align the feature representations within and across vision-language modalities.

• Under a fair comparison setting, our task-agnostic framework demonstrates a good generalization ability among vision-language based approaches on the benchmark document datasets. It enables us to learn robust and domain-agnostic feature representations. Thus, it achieves better results compared to the generalization experiment design conducted in Chapter 3 for the document classification task.

• On the benchmark RVL-CDIP and Tobacco-3482 document datasets. We conduct for the first time in the document understanding literature, a new baseline on the few-shot learning setting. Thus, it achieves compelling results with significantly fewer document images used in the pre-training stage (i.e. when pre-trained on the Tobacco-3482 dataset). 

Methodology

)

These two modules can be stacked repeatedly to enable the network to explore further latent intra-modality and inter-modality alignments between image regions and texts.

Cross-Modal Contrastive Learning

We design a visual-textual contrastive loss to force samples from language and vision that are semantically related to be closer.

Besides, a projection head is implemented on top of the IntraMSA and InterMCA modules to map the image and text representations into a vector representation so that the two training schemes do not interfere with each other. The projection head is implemented as a nonlinear multiple-layer perceptron (MLP) with one hidden layer, as it is more suitable for contrastive learning [START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF]. Then, L 2 normalization is applied to the visual and textual embeddings so that the inner product between features can be used as distance measurements. In the following parts, we denote cross-modal contrastive learning as CrossCL.

Intra-Modality and Inter-Modality Contrastive Learning

Let {x + i } = {x j |y j = y i , i ̸ = j}, {t + i } = {t j |y j = y i , i ̸ = j} be the sets of all positive samples from the same class of an anchor image x i and an anchor text t i respectively, and

be the sets of the remaining negative samples from other classes within the minibatch N. Not only should the pairs (x i , x j ), (t i , t j ) from

Euclidean distance is chosen as distance function d. As shown in Equation 4.17, the distribution is based on a softmax over the distance between the embedding of the samples (in the query set) and the class descriptors. The loss in the meta-testing stage can then read:

In the meta-testing stage we average the results over 600 experiments as in [START_REF] Chen | A closer look at few-shot classification[END_REF]. In 

Ablation Study

In this subsection, we conduct ablation studies to characterize our VLCDoC network on the low-scale Tobacco dataset. We analyze the following contributions of: i) validating the effectiveness of the proposed InterMCA and IntraMSA attention modules in learning generic cross-modal representations, ii) investigating whether contrastive learning enhances the cross-modal representations, resulting in a performance gain in terms of classification accuracy, iii) illustrating the generalization capacity and robustness of the proposed VLCDoC network. modality loss L VLCLR Lang→Lang which are computed respectively as:

Intra-modality Vision loss

(5.6)

Intra-modality Language loss (5.7) where (•) computes similarity scores between sample pairs and τ is a scalar temperature hyper-parameter, and M is the mini-batch size. Finally, the total intra-modal loss L VLCLR Intra can be written as:

The second learning objective is an inter-modal loss which is composed of vision → language L VLCLR V isn→Lang and language → vision L VLCLR Lang→V isn losses. For the L VLCLR V isn→Lang loss, it is computed as the similarity score between the nearest neighbors of the given document image NN(v i ) and the corresponding text sample l + i . Similarly, the → vision L VLCLR Lang→V isn loss is calculated as the similarity score between the nearest neighbors of the given text sample NN(l i ) and its corresponding visual sample pair v + i :

Inter-modality Vision loss (5.9)

Inter-modality Language loss

(5.10)

Finally, the inter-modal loss L VLCLR Inter is the sum of the vision and language losses over the mini-batch M . samples labelled with class k. As a metric learning based method, we employ a distance function d and produce a distribution over all classes given a query sample q from the query set Q:

Euclidean distance is chosen as distance function d. As shown in Equation 5.22, the distribution is based on a softmax over the distance between the embedding of the samples (in the query set) and the class descriptors. The loss in the meta-testing stage can then read:

In contrast to Chapter 4, where we applied only the meta-testing stage to evaluate the ability of our pre-trained model to generalize on fewer data, in this chapter we introduce a novel baseline setting to perform both meta-training and meta-testing on top of the pre-trained multimodal embedding network to study the ability of our task-agnostic pretrained multimodal embedding network to perform fine-tuning on fewer data in few-shot Table 5.3: Quantitative evaluation results of Intra-Modal and Inter-Modal Content-based retrieval on RVLCDIP 40K test set in terms of Recall@K(R@K).

Pre-train Intra-Modal Retrieval Inter-Modal Retrieval Tasks

Vision → Vision Language → Language Vision → Language Language → Vision R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 VLN-NCLR 78. [START_REF] Kölsch | Real-time document image classification using deep CNN and extreme learning machines[END_REF] text data in a semantic way and retrieve the most similar ones. In this work, we evaluate the cross-modal retrieval tasks using the same pre-trained LSRD model. These tasks include Vision → Vision, Language → Language, Vision → Language, and Language → Vision. As an example, the Language → Vision retrieval corresponds to the task where the queries are texts and the retrieved samples are document images. As a performance measure of the ranking of the retrieved results, we use the Recall@K(R@K), which is a standard evaluation metric in content-based retrieval. We calculate the Recall@K(R@K) on a different number of samples to retrieve. As detailed in Table 5.3, we present results of different pre-training objectives in both intra-and inter-modal retrieval task. We obtain competitive results on the RVL-CDIP test set, which contains about 40k document images.

Evaluation on VLN-NCLR Pre-training Task. As reported in Table 5.3, we conduct the first experiments on content-based retrieval using the first pre-trained task (i.e. VLN-NCLR). We see that in the intra-modal retrieval setting, which corresponds to the unimodal retrieval. The pre-trained LSRD model achieves good performance in retrieving relevant information regarding the input query. Note that, given a document image as the vision query, we aim to retrieve the top-k relevant document images which belong to the same category as the query image. Similarly, given a query text as an input, we aim to retrieve the top-k relevant textual information that is contained in document images, which belong to the same category as the query text. Therefore, for the intramodal retrieval task, we achieve good performance as the first new baseline in this chapter, with a better R@K score where we retrieve top-1, 5 top-5 and top-10 relevant document data with 78.85%, 91.21% and 94.23% accuracies respectively for the vision modality, and 80.63%, 92.02% and 94.83% accuracies respectively for the language modality. However, research lines we would like to explore, we principally aim to view each document category as a unique modality/domain. We want the model to learn more specific information about each category of document data in an incremental learning manner. Then, mutual learning can be introduced to transfer the information learnt within each modality/domain. We believe this approach will help the model to learn more relevant information that is hard to be learnt in the case where the model is given all document data at once. 

Appendices