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Abstract

The current research falls within the scope of administrative document image classifi-

cation, which has been widely adopted in various document image processing applications.

This thesis focuses mainly on cross-modal interactions between visual and textual informa-

tion within document images, aiming for the design of an effective learning environment.

The process of designing such systems involves studying the benefits of cross-modal in-

teractions in multimodal learning. Such systems encourage cross-modal learning between

visual and textual features from vision and language modalities to enhance their distribu-

tion in the common representation space. The frameworks developed were the outcome

of an iterative process of analysis and synthesis between existing theories and our per-

formed studies. In this thesis, we wish to study cross-modality learning for contextualized

comprehension on document components across language and vision. The main idea is to

leverage multimodal information from document images into a common semantic space.

The principle consists of automatically extracting information from the content presented

in the information systems (scan of documents, structured and unstructured information).

Then, to understand the interactions between visual and textual data, to reorganize the

research space, and to find a common semantic space to perform the required downstream

applications.

This thesis focuses on advancing the research on cross-modality learning and makes

contributions on four fronts: (i) to proposing a cross-modal approach with deep two-

headed neural network which is capable of learning simultaneously the textual content

and the visual information from scanned document images. The aim is to jointly leverage

visual-language information into a common semantic representation space to automatically

perform and make predictions about multimodal documents (i.e. the subject matter they

are about); (ii) to investigating competitive strategies to address the tasks of cross-modal

document classification, few-shot document classification, and content-based retrieval; (iii)

to addressing data-related issues like learning when data is not annotated, by proposing a

network that learns generic representations from a collection of unlabeled documents; and

(iv) to exploiting few-shot learning settings when data contains only a few examples.
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Résumé

Les données papier et numériques produites par les grandes institutions publiques ou

privées intègrent différents types de contenus très hétérogènes. En effet, ces contenus se

présentent souvent sous diverses formes, sous forme de graphiques dans des rapports tech-

niques, de diagrammes dans des articles scientifiques et de conceptions graphiques dans

des bulletins. Effectivement, pour prendre des décisions sur des sujets d’intérêt tels que la

science, les affaires, la santé, etc., l’être humain peut traiter efficacement les informations

visuelles et textuelles contenues dans ces documents. Toutefois, comprendre et analyser

manuellement de grandes quantités de données à partir de documents prend généralement

du temps et coûte cher. En général, les données de document sont souvent présentées

dans des mises en page complexes en raison des différentes manières d’organiser chaque

document. Contrairement aux images générales de scènes naturelles, les documents sont

très difficiles compte tenu de leurs propriétés structurelles visuelles et de leur contenu

textuel hétérogène. Dans ces conditions, le développement d’outils informatiques capa-

bles de comprendre et d’extraire automatiquement des informations structurées précises

à partir d’une grande variété de documents reste crucial, d’une manière qui conduit à

effectuer d’importantes applications administratives et/ou commerciales. Il existe au-

jourd’hui plusieurs applications utilisées pour comprendre automatiquement les données

des documents administratifs et commerciaux telles que : la classification des documents,

la récupération de documents basée sur le contenu, la classification de documents en

quelques prises de vue et le regroupement de documents. Par conséquent, la clé de la

compréhension automatisée des documents réside dans l’intégration efficace des signaux

provenant de multiples modalités de données. Étant donné que les documents sont na-

tivement multimodaux, il est important de tirer parti des informations multimodales du

langage et de la vision. Contrairement à d’autres formats de données tels que les images ou

leur texte brut OCR, les documents combinent des informations visuelles et linguistiques,

complétées par la mise en page du document. En outre, d’un point de vue pratique, de

nombreuses tâches liées à la compréhension des documents sont rares. Un cadre qui peut

apprendre à partir de documents non étiquetés (c.-à-d. une pré-formation), effectuer un

réglage fin du modèle pour des applications de documents en aval spécifiques est plus



préféré que celui qui nécessite des données de formation entièrement annotées (c.-à-d.

formés dans un mode d’apprentissage entièrement supervisé).

Le propos de cette recherche actuelle s’inscrit dans le cadre de la classification des

images de documents administratifs, qui a été largement adoptée dans diverses applica-

tions de traitement d’images de documents. Cette thèse se concentre principalement sur

les interactions intermodales entre les informations visuelles et textuelles dans les images

de documents, visant la conception d’un environnement d’apprentissage efficace. Effec-

tivement, le processus de conception de tels systèmes implique l’étude des avantages des

interactions intermodales dans l’apprentissage multimodal. En effet, de tels systèmes

encouragent l’apprentissage intermodal entre les caractéristiques visuelles et textuelles

des modalités visuelles et langagières afin d’améliorer leur distribution dans l’espace de

représentation commun. Encore, les cadres développés sont le résultat d’un processus

itératif d’analyse et de synthèse entre les théories existantes et nos études réalisées. Notre

recherche part alors du fait d’étudier l’apprentissage intermodal pour la compréhension

contextualisée sur les composants du document à travers le langage et la vision. L’idée

principale est de tirer parti des informations multimodales des images de documents dans

un espace sémantique commun. Le principe consiste à extraire automatiquement des in-

formations du contenu présenté dans les systèmes d’information (scan des documents,

informations structurées et non structurées). Ensuite, comprendre les interactions entre

données visuelles et textuelles, réorganiser l’espace de recherche, et enfin trouver un espace

sémantique commun pour réaliser les applications en aval requises.

Dans l’ensemble, cette thèse se concentre sur l’avancement de la recherche sur l’apprentissage

intermodalité et apporte des contributions sur quatre fronts : (i) proposer une approche in-

termodale avec un réseau neuronal bicéphale profond capable d’apprendre simultanément

le contenu textuel et l’information visuelle de images de documents numérisés. En effet,

l’objectif est d’exploiter conjointement les informations du langage visuel dans un espace

de représentation sémantique commun pour effectuer et faire automatiquement des pré-

dictions sur les documents multimodaux (c’est-à-dire le sujet dont ils traitent); (ii) étudier

des stratégies concurrentielles pour s’attaquer aux tâches de classification intermodale des

documents, de classification de documents en few-shot, et de récupération basée sur le
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contenu; (iii) résoudre les problèmes liés aux données comme l’apprentissage lorsque les

données ne sont pas annotées, en proposant un réseau qui apprend des représentations

génériques à partir d’une collection de documents non étiquetés ; enfin (iv) à exploiter

les paramètres d’apprentissage à quelques coups lorsque les données ne contiennent que

quelques exemples.

Mots-clés : Compréhension de documents multimodaux, Classification de documents

intermodaux, Fusion multimodale, Apprentissage à plusieurs reprises, Mécanismes d’auto-

attention, Apprentissage contrastif, Apprentissage en profondeur.
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CHAPTER 1

Introduction

Multimodal presentations have an inherent critical potential to the extent that we learn

how to use the images to deconstruct the viewpoint of the text, and the text to subvert the

naturalness of the image.

– Jay Lemke

1.1 Motivation

Multimodal Machine Learning (MML) has seen increased attention lately and has been

considered as an active multi-disciplinary research field. MML addresses some of the orig-

inal goals of artificial intelligence (AI) which have been already incorporated in many

domains by integrating and modeling multiple sensory input modalities including lin-

guistic, visual, and layout information. This research field brings various challenges for

multimodal researchers given the heterogeneity of document data and the contingency

often found between its different modalities. Intuitively, the multimodality of documents

require multimodal reasoning over multimodal inputs, where data related to the same

topic of interest tend to appear together. These multimodal inputs (e.g., visual, textual,

1
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and layout) within document images are presented in a diverse set of sources such as

handwritten text, tables, forms, figures, multi-column layouts, plain text, curved text,

and exotic fonts, etc. As humans, we regularly extract information from illustrations in

document data like advertisement, scientific publications, and articles; parse graphs and

charts to make decisions; and allow informational data to influence our opinions regarding

the type and/or the category of these documents, as the visuals burn into our memory.

Meanwhile, understanding documents visually encounters the problem of low inter-class

discrimination, and high intra-class structural variations between the different categories

of document data. In a general way, visual data can be more telling (a picture is worth a

thousand words). However, some documents contain abundant visual information such as

reports, and scholarly articles, in which case a stronger emphasis on the semantic mean-

ing of language is more helpful. Therefore, handling the semantic and stylistic variability

in documents is challenging to computational models that are trained mostly on natural

images. Furthermore, multimodal reasoning allows one to integrate information from lan-

guage and vision modalities, to reason about the structure of the documents (e.g., how

the accompanying figures support the text), and to gather the relevant semantic infor-

mation from the text corpus (e.g., how to distinguish between a letter and an email), to

finally gather the most important information within the common representation space

for decision-making. Hence, multimodal reasoning has been the defacto for many docu-

ment understanding research projects which fall at the interface of Computer Vision (CV),

and Natural Language Processing (NLP) (if an image is worth a thousand words, then a

multimodal document is worth a thousand concepts).

This thesis is mainly centered on cross-modality learning, focusing more on the most

frequent and principal modalities studied in the state-of-the-art, which are the vision and

the language ones. The first parts of this thesis address the document classification prob-

lem in a fully supervised learning fashion. At first, frameworks that project uni-modal

representations together into a joint multimodal representation space are proposed. Joint

representations are mostly used in tasks where multimodal data is present during both

the training and inference steps. The simplest example of a joint representation is an

early fusion methodology such as dot product, concatenation, and average ensembling of
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individual modality features. Second, an alternative to a joint multimodal representation

is a coordinated representation which has been explored in the following parts of this the-

sis. Instead of projecting the vision and language modalities into a joint representation

space, we learn vision-language representations by coordinating them through a mutual

learning constraint. We start our discussion with coordinated representations that mimic

the probability distributions of each modality, moving on to coordinated representations

that enforce similarity between representations, to finally address more powerful coordi-

nated representation constraints. The latter focuses more on enhancing the structure of

the resulting representative space in a self-supervised learning fashion, where we introduce

two novel downstream applications (i.e. vision-language few-shot document classification,

and vision-language content-based document retrieval) that were not established before

in the document understanding literature. We evaluate our proposed strategies on pub-

licly available benchmark document datasets, compared to the most recent state-of-the-art

studies related to document understanding.

The following section provides an overview of the main challenges of multimodal docu-

ment understanding (e.g. a document can be either a scanned image or plain text). Later

on, we refer to multimodal document understanding as the ability of a system to use

multiple sensory modalities (i.e. multiple data inputs: vision and language) to perform

a desired task. In contrast, we refer to cross-modal learning as the ability of that system

to use and learn information from different modalities to improve the performance of the

system (i.e. a scientific publication can be categorized by its visual spatial properties and

by semantic language information).

1.2 Problem Statement

In general terms, multimodal learning is more related to sensory modalities like the sound,

the speech, the touch, etc. A modality refers to a certain type of information and/or

the representation format in which information is stored. The word modality is mostly

associated with sensory modalities which are one of the primary forms of sensation, like

vision or touch, considered as channels of communication. Also, thinking of multimodality
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engender thinking of multi-disciplinary. This comes from many different fields all together

to be combined/involved in an approach to a topic or a problem, in a sense that almost

Artificial Intelligence (AI) is coming together: there are the vision, the language, and the

aspect of learning cross-modal knowledge. Specifically, the core of this thesis is about

multimodal document understanding, based on the vision and the language, as two of the

building blocks of our application on document data. In order for AI to make progress

in understanding the world around us, it needs to be able to interpret and reason about

multimodal messages. Multimodal document understanding aims to build models that can

process and relate information from multiple modalities related to a phenomenon. This

can provide different perspectives which enable a system to:

• Learn complementary and additional information to transfer knowledge from each

modality to another in a collaborative learning fashion, in contrast to dealing with

just uni-modal modalities.

• Discover patterns or changes that are only visible when two or multiple modalities

are studied.

• Capture correspondences between modalities and gaining an in-depth understanding

of a natural phenomenon.

Therefore, it is crucial to develop systems that may lead to some enlightenment about the

world around us, by thinking of systems that learn from multimodal sources.

1.3 Core Multimodal Challenges

The research field of multimodal document understanding brings some unique challenges

given the heterogeneity of document data. The core challenge for many problems but also

for multimodal document understanding is how to bring vision and language together.

The first level is very important as everyone nowadays uses deep neural networks (DNNs)

to understand the challenges of representation learning. There are some key core chal-

lenges that are related to multimodal representation learning: Alignment, which is a very

multimodal key with the goal to identify relations between elements from two or multiple
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Figure 1.1: Overview of the core multimodal challenges.

different modalities. As humans, we could learn a representation. For example, when we

say "I like it!" with a happy face, or when we are tense or surprised, the representation will

encode that similarity at some level. Today, we are a lot closer to that, because as humans,

we are able to learn joint representations where we see an object as a visual representation,

and we see some language associated with this object as a language representation. We

observe that we have some kind of paired data, and so a joint representation that allows

to learn this one space where both of them will coexist together. In the 2010-2011 era,

this sounded impossible. However, we have seen a lot more of that in the recent past.

We got to see these kind of joint representations as a very important milestone. In fact,

Representation Learning (RL) can be defined as learning how to represent and summarize

multimodal data in a way that exploits the complementarity and redundancy. For exam-

ple, when we have multiple documents from the same category (e.g. Scientific publications,



6 Chapter 1. Introduction

emails, etc.), these types of documents share the same visual spatial information that we

want to take advantage of in order to be more efficient and more robust. Meanwhile, we

also want to do complementarity, like when two things are not sufficient by themselves

and we want to bring them together. One of the greatest challenges of multimodal data

is to summarize the information from multiple modalities (or views) in a way that com-

plementary information is used as a conglomerate while filtering out the redundant parts

of the modalities. Due to the heterogeneity of the data, some challenges naturally spring

up including different kinds of noise, alignment of modalities (or views), etc. To sum up,

we explore four challenges which are: representation, alignment, transference, and finally

reasoning [20] as depicted in the Figure 1.1.

1.3.1 Representation

Good representations are important for the performance of MML models. This first core

challenge is concerned with how to represent and summarize multimodal data, by either

fusing or coordinating them.

Figure 1.2: Two types of frameworks about multimodal representation learning. (a) Joint
representation aims to learn a shared semantic subspace. (b) Coordinated representation
learns separated but coordinated representations for each modality under some constraints.
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Fusion

Fusion involves projecting all the different modalities to a common representation space

while preserving information from the given modalities. In this type of representation

learning, input data from all modalities is required at the training and inference steps

which can potentially be hard while missing some kind of input data. In our study, we

propose a case-study model which can fuse different views of a modality at each time-step

and finally use the joint representation to complete the required downstream tasks as in

Figure 1.2(a). This task can be performed in a late, early, intermediate, or attention-based

fusion approach [53, 91].

Coordination

Instead of bringing everything together, we bring each one of the language and vision

modalities, having their one representation space. The coordination involves projecting

all the modalities to their space coordinated using a constraint. The coordination should be

seen as a spectrum; At one end, the coordination can be so strong that the representations

are equal, forcing the language representation to be equal to the visual representation. At

this point, it is mostly a joint representation. At the other end, the representations are

separate, so we don’t coordinate at all. One example is to say, instead of making them

equal, we make them correlated (i.e. it is not as much as equal but close). Another

example is to say we are going to bring together only a subset of each representation;

there are some items that we want to be very close to each other, and for the rest we will

let each modality separate and let them be themselves (see Figure 1.2(b)). This kind of

approaches is more useful for modalities which are fundamentally very different and might

not work well in a joint space. Due to the variety of modalities in nature, Coordinated

Representations have a huge advantage over Joint Representations which gives us reason to

believe that the coordination using constraints is the way to go in the field of multimodal

representation learning [66, 206].
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1.3.2 Alignment

One thing that is core to multimodal learning is alignment, like synchrony, where we

want to be able to align speech and reading as an example. Alignment is defined as

identifying cross-modal interactions and the direct relations between (sub)elements from

two or multiple different modalities, building from the data structure [37]. Alignment can

be differentiated as Explicit and Implicit:

Figure 1.3: Two types of Alignment techniques to identifying cross-modal correspondences
and dependencies between elements of multiple modalities, following their structure about
multimodal representation learning. (a) Explicit Alignment where the goal in itself is
to find the alignment (i.e. which sequence is aligned with which document image). (b)
Implicit Alignment where the aim is representation taking into consideration the structure.

Explicit Alignment

Explicit Alignment is defined as taking advantage of how each modality has its internal

structure. Some modalities might be temporal, spatial, or hierarchical, etc. Within a

specific modality, a document image has in it multiple elements, and each one of them are

linked somewhat. As such, explicit alignment enables not only linking elements within a

modality, but more interestingly between modalities, being able to see which element from

one modality connects with the other element from the other modality (see Figure 1.3(a)).

The sub-challenge here is to directly find correspondences between elements from different

modalities (ex. which sequences align the most with which document image).
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Implicit Alignment

In the world of deep learning, the alignment task is often defined as a sub-task, a latent

process where the real task is representation where we take into consideration the struc-

ture. One popular architecture that is mostly used nowadays is the transformer-based

architecture; this type of architecture applies implicit alignment and they often end up

being fully connected, aiming to look at what are the relevant elements between modalities

and then learn new representations from that (see Figure 1.3(b)).

1.3.3 Transference

Transference is defined as transferring knowledge between two or different modalities,

usually to help the target modality which may be noisy or have limited resources [138,

203]. The idea behind is having one modality which doesn’t have as much data or noisy,

and the other modality will come to help. There are two sub-challenges of transference:

Transfer and Co-learning.

Figure 1.4: (a) Transfer: where both modalities will learn a representation, and from
there, there will be a transfer. (b) Co-Learning: The same model gets both modalities,
but at test time only one modality will be used.

Transfer

Transfer is where both modalities will learn a representation and then from there there

will be a transfer (see Figure 1.4(a)).
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Co-Learning

In co-learning, the same model gets both modalities as input, but at test time, only one

modality will be used (see Figure 1.4(b)).

1.3.4 Reasoning

Another core challenge in multimodal learning is to try to not just look at lower levels,

but also to think about how do we combine knowledge, usually through multiple steps

of inference to exploit the alignment and the problem structure [116]. Reasoning goes

beyond a local representation or a representation with alignment (see Figure 1.5).

Figure 1.5: Reasoning combines knowledge, usually through multiple intermediate steps of
inference exploiting multimodal alignment and problem structure. It can be interpretable
using attention weights to know where are located the most important visual features in
the document, or what are the relevant meaningful words in a given text sequence.

1.4 Background

One important part of any problem in multimodal document understanding is related

to the representation of the data involved. Representation learning aims to find repre-

sentations of raw and unstructured data as useful information to perform tasks such as

classification or prediction. Good representations are important for the performance of

machine learning models. While the development of uni-modal representations has been

extensively studied, multimodal representations still represent a challenge. In this section,
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Figure 1.6: Categorization of the existing document image classification methods.

we present the evolution and description from uni-modal to multimodal representations

as illustrated in Figure 1.6. We perform a general review of the main representation mod-

els for language and vision separately, ending with the main approaches for multimodal

learning for these two modalities. We also present the state-of-the-art of tasks addressed

in this thesis, with a summary of our proposed strategies that will be presented in the

following chapters.

1.4.1 Language-based Representations

Regarding the language-based representations, they are extracted from the textual content

generated from an Optical Character Recognition (OCR) [73] engine. Then, the textual

content is used to perform the desired downstream task. In many natural language pro-

cessing (NLP) tasks, the representation of words has drawn significant attention. The

development of static word embeddings such as Word2Vec, Glove [118, 135], to contex-

tualized dynamic word embeddings such as ELMO, Fasttext, XLNet, and Bert [41, 119,

137, 190] have made a huge progress to address the polysemy problem and the seman-

tic aspect of words. Meanwhile, several approaches handled the task of document image

classification by performing OCR techniques [50, 92, 120]. The task of document image

classification is then transformed into text classification [202]. Yang et al. [189] combined
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generated text features with visual features in a fully convolutional neural network. Also,

[13, 38] experimented with shallow Bag-of-Words (BoW) [40] along visual features in a

two-modality classifier. Moreover, similar to our approach, Lai et al. [92] presented a

hybrid approach to extract contextual information using a RNN-CNN.

1.4.2 Vision-based Representations

Over the past few years, a variety of research studies have been proposed for document

understanding. Due to the different manners of organizing each document, document

images might be classified based on their heterogeneous visual structural properties and/or

their textual content. The visual appearances of document images can be divided into

two subcategories which are: handcrafted feature-based methods, and deep feature-based

methods. We will elaborate these two types of methods in the following sub-sections.

Handcrafted Feature-based Methods

Handcrafted feature extraction methods are used to extract features from the document

images, which are then utilized to train machine learning classifiers. Different handcrafted

feature-based methods have been employed to perform the task of document image clas-

sification. Some of the handcrafted features used for document data include (1) local and

global descriptors, (2) bags-of-visual-words, and (3) other miscellaneous methods.

Local and Global Descriptors. Local features describe the document image patches

(key points in the document image) of an object, and represent the patterns in a specific

region which differs from its immediate neighborhood. There exist a variety of local

descriptors such as Scale Invariant Feature Transform (SIFT) [113], Principal Component

Analysis with Scale Invariant Feature Transform (PCA-SIFT) [78], Speeded Up Robust

Features (SURF) [22], Gradient Location and Orientation Histogram (GLOH) [117], Shape

context [23], and so on. These descriptors have been employed widely in computer vision

tasks such as image classification [40, 154], object tracking [208], etc. Earlier attempts

on document understanding have applied local descriptors to classify document images.

In [96], Phuong et al. proposed a logo spotting model based on the matching key-points

extracted from the document images and a given set of logos using SIFT. Specifically, local
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features are used to describe the logo and document images. Then, the detected key-points

between the document image and each logo are matched based on their SIFT descriptors

using its two nearest neighbors in the SIFT feature space [113]. Figure 1.7 illustrates an

example of SIFT local descriptor. Also, in [97], improve the problem of the unmatched

key-point pairs in [96] by filtering the incorrectly matched key-points based on filter by

homography. Although local descriptors are robust to image distortions, they encounter

the problem of having many local descriptors when computed on document images, which

leads to inconsistent classifiers. As for the global descriptors, they describe the image as

a whole to generalize the entire object, such as intensity, textures, and color histograms.

Global descriptors include histogram-oriented gradients (HOG) [6] are generally used in

image retrieval [68], object detection [122] and image classification [84].

Figure 1.7: A SIFT local descriptor: red lines show the matching between keypoints of
the original document (left side) and the query document (right side).

Bag-Of-Visual-Words (BOVW) and Fisher Vectors. The Bag-of-Visual-Words

(BOVW) [159] is commonly used in image classification [40, 77]. The general idea is

adapted from information retrieval and NLP’s Bag-Of-words (BOW) [205]. In Bag-Of-

Words (BOW), the number of each word appearing in a document is counted, where the

frequency of each word is used to know the keywords of the document, and then, a fre-

quency histogram is made from it. In the text domain context, a document is treated as a

Bag-Of-Words (BOW). However, in the vision domain, a document image is represented

as a set of features, which consist of key-points and descriptors (the description of the
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key-points). Vocabularies are constructed from the extracted key-points and descriptors

to represent each document image as a frequency histogram of features in the document

image. From the frequency histogram, the category of the document image can be then

predicted. Figure 1.8 illustrates an example of a BOVW model, which is composed of

two steps: vocabulary learning and representation generating. In vocabulary learning,

given a training set of document images, the descriptors are first extracted with a local

descriptor (e.g. SIFT). Then, a clustering approach is employed such as K-means [74] to

group the descriptors extracted into K clusters, where each cluster is considered as a visual

word. Afterwards, a visual vocabulary consisting of K words is built to finally represent

document images as vectors. The BOVW model has been applied to document image

classification. In [149], Rusinol et al. employed BOVW for document classification using

logo spotting. Also, Kumar et al. [88–90] learned the characteristics of document images

by extracting patches of the document images both horizontally and vertically. Further,

the BOVW model is employed to generate visual representations for each extracted region

as in [95]. Then, a random forest classifier is performed for the task of document image

classification. The Fisher vector representations [136] are considered as an extension of

the BOVW model. They extract a set of local patch descriptors to encode them in a high

dimensional feature vector. It has been applied to classify document images [34, 35].
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Figure 1.8: An example of a BOVW model

Miscellaneous Methods. There exist other handcrafted feature-based methods that

have been applied in the document image classification task. For instance, Sarkar et

al. [151] used Viola-Jones based features to represent document forms, followed by a

latent conditional independence model to perform classification. Besides, Usilin et al.

[171] proposed a new Viola-Jones based method to classify documents and to detect the

placement and orientation of documents within an image. Some other works employed

histograms and binarization methods to classify documents. Gordo et al. [57] represented

document images using binarized runlength histograms followed by a 1-NN classifier to

perform classification. Also, Reddy et al. [83] applied binarization on document images

along pixel density, followed by K-means clustering and adaptive boosting methods for

form classification.

Deep Feature-based Methods

Image data is represented as a two-dimensional grid of pixels, be it monochromatic or in

color. Accordingly each pixel corresponds to one or multiple numerical values respectively.

The advancements in computer vision with deep learning have been constructed and per-
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Figure 1.9: A Typical convolutional neural network (CNN) architecture.

fected with time, primarily over one particular algorithm — a Convolutional Neural Net-

works (CNN) [99]. A CNN is a deep learning algorithm which can take in an input image,

assign learnable weights and biases to various aspects and/or objects in the image, and be

able to differentiate one from the other. The pre-processing required in a CNN is much

lower as compared to other classification algorithms. While in primitive methods described

above filters are hand-crafted, CNNs have the ability to learn these filters/characteristics

of images with enough training time. With the great success of AlexNet architecture in

the ImageNet Large-Scale Visual Recognition Challenge 2012 (ILSVRC2012) contest [87],

CNNs have been extensively applied in various computer vision tasks [80, 167, 199]. Fig-

ure 1.9 illustrates a typical CNN architecture. The first component represents feature

learning which are able to successfully capture the spatial and temporal dependencies in

an image through the application of relevant filters. The features extracted are called deep

features. The other component is fully connected. It takes care of the classification using

the obtained deep features. The architecture performs a better fitting to the image dataset

due to the reduction in the number of parameters involved and re-usability of weights. In

other words, the network can be trained to understand the sophistication of the image

even better. For instance, CNNs have been extensively utilized in document understand-

ing approaches, and more specifically, for document image classification, which may be

either trained document image classifiers in an end-to-end manner [1, 3, 4, 61, 76, 165, 166,

187], or used as an off-the-shelf feature extractor [35, 36, 85, 148, 152]. Training convolu-
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tional neural networks (CNN) in an end-to-end fashion was firstly adopted by Kang et al.

[76]. They proposed a shallow CNN representation to classify documents. they showed

that CNNs outperform handcrafted feature-based methods, which indicates the potential

of deep features. The AlexNet architecture is employed in [3] for document classifica-

tion. Despite the large differences between document images and images in the ImageNet

dataset [39], they showed that pretrained weights perform better than a random weight

initialization. Moreover, Tensemeyer et al. [166] conducted an exhaustive investigation

of numerous factors that have an impact of the classification performance of convolutional

neural networks (CNNs). These factors include document image size, aspect ratio preser-

vation, training set size, data augmentation, etc. Furthermore, Afzal et al. [4] trained four

convolutional networks including AlexNet, VGG-16 [158], GoogLeNet [165], and ResNet-

50 [63] to perform document classification. They also investigate the performance of

CNNs with and without the pretrained ImageNet weights, and confirm their effectiveness

in improving the classification performance compared to random weigh initialization. Like-

wise, several different deep CNNs such as Inception-ResNet-v2 [164], DenseNet [69], and

ResNeXt [183] have been proposed and proved to be effective for document image classi-

fication on the large-scale RVL-CDIP1 and the low-scale Tobacco-3482 datasets. In [85],

Kolsch et al. proposed to classify document images by replacing the last fully connected

layer in the AlexNet architecture with the Extreme Learning Machines as in [70, 71]

Therefore, employing convolutional neural networks (CNNs) as an off-the-shelf fea-

ture extractor has also been studied, where feature extraction and classifier learning are

conducted in an integrated fashion. The obtained pretrained features are then passed

to a classifier to perform the final downstream task (i.e. document image classification).

In [148], Roy et al. divided document images into five separate sections: header, footer,

left body, right body, and the whole document image. After training each CNN on each

different section, generalized stacking is employed to combine the five normalized outputs

by training a meta-classifier (i.e. SVM in this work). In [36], Das et al. utilized two levels

of transfer learning. On the one hand, inter-domain transfer learning is used for training

the VGG-16 network for the whole document image with ImageNet pretrained weights.

1https://www.cs.cmu.edu/~aharley/rvl-cdip/

https://www.cs.cmu.edu/~aharley/rvl-cdip/
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On the other hand, intra-domain transfer learning is used for training the VGG-16 models

for four sections (i.e. header, footer, left body, and right body) with the latter VGG-16

pretrained model on the whole document image. Finally, a stacked generalization scheme

is used to combined the predictions of the different pretrained VGG-16 models as in [148].

Generally speaking, training convolutional neural networks in an end-to-end fashion

works well when a large amount of training samples is available. Nevertheless, employ-

ing convolutional neural networks as off-the-shelf feature extractors is more helpful when

training data is limited. Thus, when pretrained, a suitable classifier is crucial to achieve

compelling performance.

1.4.3 Multimodal Representations

In this subsection, we present some multimodal methods that have been proposed recently,

which combine textual features with either visual features, or structural features. The

common pipeline of multimodal methods involves two streams: textual stream, visual

stream. For the textual stream, the text is first extracted from the document image based

on an OCR engine. then, a text classifier is trained for the textual stream, and an image

classifier is trained for the image stream. Finally, the two streams are fused to determine

the class of the document image (see Figure 1.10). In an attempt to fuse the two streams,

different fusion strategies can be employed, e.g. early fusion, late fusion, and middle

fusion.

Joint Representations

As stated before, documents are natively multimodal. Multimodal learning for computer

vision and natural language processing has been widely used for image and text level un-

derstanding problems such as text document image-based classification, visual question an-

swering [191, 207], image captioning [8] and image-text matching [102]. Most multimodal

fusion and attention learning methods require multimodal reasoning over multimodal in-

puts that are represented into a common space, where data related to the same topic of

interest tend to appear together. For the multimodal fusion methods, earlier attempts

used naive concatenation, element-wise multiplication, and/or ensemble methods for mul-
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Figure 1.10: Multimodal semantic space: Combining multiple data types such as vision
and language allows us to exploit correspondences that exist between them. Different
shapes are used to denote different modalities. The circle represents language feature dis-
tributions, and the triangle represents visual feature distributions. Different shapes with
the same color mean that they are semantically similar in content. Different modalities
reside in different feature spaces, whereby, a mapping function that transform the modal-
ities into a common and semantic feature space is required to mitigate the heterogeneity
gap, by reducing the inter-modality gap and exploring the semantic correlations. Learning
this mapping still represents a complex challenge.

timodal features [11, 12, 52, 109, 157, 188, 189, 196, 200]. Noce et al. [126] proposed

an approach that combines OCR and NLP algorithms to extract and manipulate relevant

text concepts from document images, which are visually embedded within each document

image to improve the classification results of a convolutional neural network. Fukui et

al. [51] proposed a multimodal compact bi-linear pooling to efficiently and expressively

combine multimodal features. Yang et al. [189] proposed a multimodal, fully convolu-

tional network to extract meaningful semantic structures from document images. Based

on a graph convolution based model, Liu et al. [109] combined textual and visual infor-

mation presented in visually rich documents to perform entity recognition on document

data. Zhang et al. [200] proposed a multimodal framework for simultaneous text reading

and information extraction in visually rich documents for document understanding. By



20 Chapter 1. Introduction

utilizing the graphical property of business documents, Raja et al. [142] employed deep

neural networks for table structure recognition. Madhav et al. [5] utilized an end-to-end

trainable cascade deep architecture for table detection in document images. Olivier et

al. [169] proposed a document retrieval model for answering questions on handwritten

document image collections. Dauphinee et al. [38] constructed a model that uses both

the visual information and the textual content of a given document to make a decision in

a late fusion manner. Javier et al. [48] introduced an ensemble pipeline by combining

image predictions with the text predictions produced by image and text modalities.

Attention-based Representations

Attention learning was adopted to learn to attend to the most relevant regions of the

input space in order to assign different weights to different regions. It was first proposed

by Bahdanau et al. [15] for neural machine translation. The mechanism is firstly used for

machine translation where the most relevant words for the output often occur at similar

positions in the input sequence. Later, Vaswani et al. [172] proposed a self-attention

module in machine translation models which could achieve state-of-the-art results at the

moment. Then, the self-attention module was introduced to guide the visual attention

from images. For the image modality, the self-attention-based modules learn to focus

on particular image regions within a given document image [143, 179, 204]. Beyond the

visual attention modules that are applied solely to the image modality, recent studies have

introduced co-attention models that learn simultaneously from visual and textual attention

to benefit from fine-grained representations of both modalities [79, 125]. Wang et al. [180]

proposed a novel position-focused attention network to investigate the relation between

the visual and textual views. Chen et al. [29] proposed a question-guided attention map

that projects the question embeddings to the visual space, and formulates a configurable

convolutional kernel to search the image attention region. Furthermore, some existing

works that handled the task of jointly learning the interaction between image and text

features used co-attention and self-attention modules [115, 192–194].

However, with such approaches the learning processes of the vision-language modali-

ties are still independent one from another, and lack focusing on the inner relations and
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the interactions between language and vision modalities. Therefore, some other works

intended to exploit pre-training techniques for language-vision representation learning to

construct a better multimodal representation space [59, 137]. These techniques have been

exploited lately in document understanding tasks to learn more generic cross-modality rep-

resentations between visual-textual information incorporated within documents. Aiming

to alleviate the heterogeneity gap within and across modalities have shown that, when pre-

trained in an end-to-end fashion on large amounts of data, these models learn more generic

representations, and thus, yield to accurate performance when transferred to downstream

tasks with low-scale datasets.

Coordinated Representations

Multimodal document pre-training has seen increased attention recently as it allows to

train semantically meaningful embeddings as a prior to a learnable downstream task.

Given its great success from a NLP perspective, Devlin et al. [41] introduced a model

called BERT, a deep bidirectional encoder based-transformers, which learns representa-

tions from unlabeled text by jointly conditioning on both left and right context. From

a CV perspective, given the success of pre-training methods in NLP, Dosovitskiy et al.

[46] extended the transformer [172] framework to introduce a transformer-based architec-

ture applied directly to sequences of image patches to extract generic visual representa-

tions. Besides, the mechanisms used to leverage features from document modalities differ

one from another. LayoutLMv1 [185] jointly models interactions between text and lay-

out information across document images by adding 2D word positions in the language

representation to better align the layout information with the semantic representation.

LayoutLMv2 [184] leverages vision, language, and layout modalities in a cross-modal pre-

training scheme for a better cross-modality interaction. In LayoutLMv3 [72], the authors

propose a joint multimodal approach to model the interaction between textual, visual, and

layout information in a unified multimodal pre-training network, with different pre-text

tasks for a better generality to image-centric and text-centric downstream document AI

tasks. SelfDoc [104] exploits cross-modal learning in the pre-training stage to perform

a task-agnostic framework to model information across textual, visual, and layout infor-
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mation modalities without requiring document data annotation. In DocFormer [9], the

authors encourage multimodal interaction using a multimodal transformer architecture to

perform visual document understanding. TILT [139] used bounding boxes of the OCRed

words to serve as a region proposals, and add the region features to the corresponding lan-

guage embeddings. UDOC [60] used document object proposals and concatenate Faster

R-CNN region features with their language embeddings.

A broad category of pre-training techniques are those that use contrastive losses, which

have been used in a wide range of CV applications like image-text similarity, and cross-

modal retrieval [195, 198]. Such methods aim at mapping text and images into a common

space, where semantic similarity across different modalities can be learned by ranking-

based contrastive losses [59, 103, 114]. While dealing with vision-language sample pairs,

though individual samples may demonstrate inherent heterogeneity in their content, they

are usually coupled with each other based on some higher-level concepts such as their

categories. This shared information can be useful in measuring semantics of samples across

modalities in a relative manner. Verma et al. [173] analyzed the degree of specificity in the

semantic content of a sample in the vision modality with respect to semantically similar

samples in the language modality. Krishnan et al. [86] measured the similarity score

between the word distributions across two document images, by detecting patterns of

text re-usages across documents written by different individuals irrespective of the minor

variations in word forms, word ordering, layout or paraphrasing of the content.

In the next section, we describe the methodology followed through our work in more

detail, as well as our objectives and principal contributions.

1.5 Downstream Applications

This thesis comprises the application of three different kinds of downstream tasks. This

includes well-established tasks in document understanding literature like document classi-

fication, and also two novel downstream tasks introduced in this thesis: few-shot document

classification and content-based document retrieval. To perform these downstream appli-

cations, we make use of two publicly available benchmark document datasets, containing
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samples of images from scanned documents from USA Tobacco companies, published by

Legacy Tobacco Industry Documents and created by the University of California San

Francisco (UCSF).

1.5.1 Datasets

Table 1.1: The Distribution of document pages over the RVL-CDIP and Tobacco-3482
datasets.

RVL-CDIP Tobacco-3482

Categories #Training Data #Validation Data #Test Data #Available Data

advertisement 19,963 2,522 2,515 238
budget 20,010 2,485 2,505 -
email 19,954 2,530 2,516 611
file folder 20,012 2,451 2,527 -
form 19,957 2,537 2,506 441
handwritten 20,031 2,434 2,532 -
invoice 19,944 2,576 2,477 -
letter 20,103 2,430 2,464 580
memo 19,975 2,533 2,489 631
news article 19,987 2,526 2,463 190
presentation 20,043 2,468 2,489 -
questionnaire 20,042 2,516 2,435 -
resume 20,006 2,424 2,536 122
scientific publication 19,829 2,524 2,569 265
scientific report 19,984 2,508 2,498 271
specification 19,997 2,531 2,472 -
note - - - 204

RVL-CDIP Dataset

The RVL-CDIP (Ryerson Vision Lab Complex Document Information Processing) dataset

is a subset of the IIT-CDIP Test Collection presented in [61]. This dataset consists of gray-

scale labeled scanned document images into 16 classes (advertisement, budget, email, file

folder, form, handwritten, invoice, letter, memo, news article, presentation, questionnaire,

resume, scientific publication, scientific report, specification). The dataset is split into

320K training documents, 40K documents documents for validation and test sets. For

notation simplicity, we denote the dataset as RVL-CDIP. Some representative images

from the dataset are shown in Figure 1.11.
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Figure 1.11: Samples of different document classes in the RVL-CDIP dataset which il-
lustrate the low inter-class discrimination and high intra-class structural variations of
document images. From left to right: Advertisement, Budget, Email, File folder, Form,
Handwritten, Invoice, Letter, Memo, News article, Presentation, Questionnaire, Resume,
Scientific publication, Scientific report, Specification.

Tobacco-3482 Dataset

The Tobacco-3482 dataset is a smaller sample containing 3,482 gray-scale document im-

ages presented in [90]. This dataset is formed by documents belonging to 10 classes not

uniformly distributed, which are: ADVE, Email, Form, Letter, Memo, News, Notes, Re-

port, Resume and Scientific. Some representative images from the dataset are shown in

Figure 1.12.

1.5.2 Document Classification

The document image classification task aims to predict the category of visually rich docu-

ment images. It is considered as one of the branches of scanned document image and text

classification, where the classifier is able to tag a suitable class to the document from a

list of predefined classes [3, 36, 61]. This makes the process of organizing and maintaining

documents/data easy and efficient. Figure 1.13 presents an overview of the process of

classifying document images based on two-stream deep neural networks.
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Figure 1.12: Samples of different document classes in the Tobacco-3482 dataset which
illustrate the low inter-class discrimination and high intra-class structural variations of
document images. From left to right: ADVE, Email, Form, Letter, Memo, News, Note,
Report, Resume, Scientific.

Figure 1.13: Overview of a multimodal deep neural network to perform cross-modal doc-
ument image classification. The network is based on vision and language modalities.

1.5.3 Content-based Document Retrieval

Multimodal content-based document retrieval aims to identify relevant data across differ-

ent modalities. The principal approach to address this task is to learn a joint semantic

embedding space that can capture the inherent relationships between both modalities

(see Figure 1.14). We aim to retrieve the category of the retrieved samples based on the
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Figure 1.14: Examples of content-based document retrieval. The first query is given
from the language modality. the expected results contain relevant and semantic visual
representations. Then we retrieve the category of each result as Top-k retrieved samples
which belong to the same category as the language query. The second query corresponds
to the query document image from the vision modality. The goal is to retrieve relevant
semantic information related to the query document image. Then, the category of each
result is retrieved as Top-k retrieved samples belonging to the same category as the vision
query.

given query sample. Specifically, retrieval involves computing the Euclidean distance be-

tween a query descriptor and every descriptor of the training set. The sorted distances

are then used to rank the document images of the training data, and return a sorted

list of documents. In the cross-modal content-based document retrieval context, given

a query document image, we aim to retrieve meaningful semantic information related to

the query, and then retrieve the category of each top-k ranked retrieved samples. The

task of cross-modal retrieval has been a hot research topic in both computer vision and

NLP communities. This is mainly carried on between images and text [177, 206]. The

principal approach to address this task is to learn a joint semantic embedding space that

can capture the inherent relationships between both modalities [175, 181].
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1.5.4 Few-Shot Document Classification

Few-shot learning is a challenging problem as it has only limited data for training and

needs to verify the performance on the data for unseen classes. An effective solution

for few-shot classification problem is to apply a meta-learning (also called learning-to-

learn with multi-auxiliary tasks) scheme on top of a pre-trained embedding network (see

Figure 1.15). The key is how to robustly accelerate the learning progress of the network

without suffering from over-fitting with limited training data [49, 141, 163, 174].

Figure 1.15: Meta-learning with an episodic task(5-way, 1-shot example). For each task,
the training samples from the support set and the query samples are encoded by the
embedding network. Query sample embeddings are compared with the centroid of training
sample embeddings and make a further prediction.

In the next section, we describe the methodology followed through our work in more

detail, along with our objectives and principal contributions.
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1.6 Major Contributions

As we explained in the previous sections, multimodal document learning comprises a large

set of challenges and applications. Although developments in this area have achieved

outstanding performance in different applications such as document classification, named

entity recognition, etc. Research in this field continually grows as improvements in the

precision of these systems are demanded. In this dissertation, we propose to tackle the

problem of multimodal document understanding through language and vision being the

two principal data types. Our principal objective is to develop strategies that find a

common semantic space that produces effective multimodal representations. We also aim

to develop approaches easily adapted and evaluated for the downstream applications de-

scribed earlier. The advantage of finding a common semantic space is to allow easily

perform comparisons between target textual and visual content by mapping each modal-

ity to this space. This approach has been a successful strategy not only when working with

vision and language, but also in the combination of multiple modalities. In this section,

we present our contributions to the field of multimodal document understanding as well as

a description of the methodology adopted in each one. Next, we present the organization

of the document.

• Chapter 2 - Multimodal Deep Feature Fusion. In this chapter, we propose

hybrid cross-modal deep networks based on deep learning techniques that leverage

textual and visual data into a joint representation space. This objective seeks to

achieve the development of systems that explore the semantic relationships between

document images and their corresponding textual content that are easily adaptable

to perform document classification. With this approach, we show that merging the

two modalities with different fusion schemes enables the system to learn effective

multimodal representations, and thus, boost the performance compared to single-

modal networks. Moreover, we show that, dynamic word embeddings learn relevant

semantic information from the text corpus compared to static word embeddings, as

well as the ability of heavyweight deep neural networks to learn higher level features

comparing to lightweight architectures. The proposed frameworks can handle any
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given document image with its corresponding language content, projects them into a

common space based on a feature fusion methodology, and sort out accurate predic-

tions regarding the category of the given document. This goal is linked to our first

two contributions that carry out the tasks of multimodal document classification in

which the proposed frameworks have similarities. Our works present a new baseline

on two benchmark document datasets. The results are presented in two published

articles titled "Cross-modal deep networks for document image classification" [16]

and "Visual and textual deep feature fusion for document image classification" [17].

• Chapter 3 - Multimodal Deep Mutual Learning. With this chapter, we ex-

plore and develop novel learning strategies that evaluate the impact of the quality

of the data in the model performance when the problems of noisy text (i.e. where

there is a lack of semantic meaning) are encountered. For example, some types of

documents are mainly not recognizable by OCR algorithms, leading most of the time

to losing textual information and semantic meaning. Thus, the visual information

within the visual regions of the document should be strongly emphasized. Mean-

while, some other types of documents do not contain any visual spatial information,

in which case a stronger emphasis on the textual information within the language

cues is highly required. Understanding and analyzing document data properly en-

ables us to create strategies able to leverage it aiming for good performance. This

goal is linked to our third contribution where we present a mutual learning strategy

to model the interaction between visual and textual features learned across the vi-

sion and language modalities throughout the learning stage. The mutual learning

strategy encourages collaborative learning, allowing the vision and language modali-

ties to simultaneously learn their discriminant features in a mutual learning manner.

The main objective of this contribution is to enable our framework to be efficient

in improving not only the overall performance of the multimodal fusion modality,

but also the performance of the single-modal modalities. The results of this work

are presented in the journal article "EAML: ensemble self-attention-based mutual

learning network for document image classification" [18]
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• Chapter 4 - Multimodal Document Representation Learning. The interpre-

tation of a piece of content in document data relies heavily on its semantic meaning.

For example, a heading can indicate and summarize the meaning of subsequent

blocks of text, and a text sequence could be useful for understanding the type of

the document. In contrast to other data formats like images or plain text, docu-

ments combine textual and visual information, and both of the two modalities are

complemented by the document layout. From a practical perspective, many tasks

related to document understanding are label-scarce. A framework that can learn

from unlabeled documents (i.e. pre-training) and perform model fine-tuning for

specific downstream applications is more preferred than the one that requires fully-

annotated training data. This goal is linked to our fourth contribution that car-

ries out the downstream tasks of multimodal document classification, multimodal

content-based retrieval, and few-shot document classification. This chapter presents

our fourth contribution. We design a unified network for cross-modal representation

learning. Our network consists of leveraging two flexible extra levels of cross-modal

interactions through co-attention module, to capture high-level interactions between

vision-language cues in document images. The proposed approach shows its su-

periority over the uni-modal methods. A superior performance shows that a good

generalization has been achieved which enables to classify the documents in different

domains. The results of this work will be presented in the journal article titled "VL-

CDoC: Vision-Language Contrastive Pre-Training Model for Cross-Modal Document

Classification" [19], which is currently in the process of revision and submission.

• Chapter 5 - Improved Multimodal Semantic Representation Learning.

With this last contribution, we intend to decrease the gap between vision-language

models and vision-language-layout prior works and extend our last framework from

Chapter 4 to perform fine-tuning on three downstream applications: multimodal

document classification, multimodal content-based document retrieval and few-shot

document classification, when insufficient labelled data are present. The objective

of this chapter is to encourage multimodal interaction from language and vision in

a self-supervised learning manner. We propose a framework that enables to pre-
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train multimodal transformers with a two-step approach where feature learning and

clustering are decoupled. Our network is first pre-trained with a nearest-neighbour

instance discrimination technique to obtain semantically meaningful features. Then,

the obtained features are used as a prior in a learnable clustering approach to remove

the ability for cluster learning to depend on low-level features. The introduced

framework has shown its effectiveness on three main downstream applications which

are: document classification, few-shot document classification, and content-based

document retrieval. The results of this work will be submitted in a conference

article titled "LSRD: Learning Improved Semantic Representations for Document

Understanding".

This dissertation is organized as follows. Chapter 2 presents our proposed approaches

related to cross-modal feature fusion learning to perform document classification, along

with the experimental settings, and ablation studies performed to demonstrate the ef-

fectiveness of the proposed approaches in two studies: first, the different feature fusion

methodologies to leverage visual-textual features into a common representation space,

and second, an extended evaluation of the impact of training static and dynamic word

embeddings, the heavyweight and lightweight DCNNs on the classification performance

of document data. Chapter 3 addresses the limitations of Chapter 2 and presents a col-

laborative mutual learning strategy to transfer positive information from one modality

to another, enabling to improve the accuracy results for each category, demonstrated in

the ablation studies. Chapter 4 presents details about document pre-training aiming for a

better multimodal document understanding. This chapter comprises the description of the

experimental pretraining settings, as well as the results obtained on two downstream appli-

cations: document classification, and cross-domain few-shot learning. Chapter 5 presents

a more general and model-agnostic pre-trained model for document understanding applica-

tions which are: document classification, content-based document retrieval, and few-shot

learning. Finally, Chapter 6 presents general conclusions of the proposed developments

during this thesis along with the future ideas for the future research.
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CHAPTER 2

Multimodal Deep Feature Fusion

Fusion will be the final way out for the future.

– Shen Wenquan

2.1 Motivation

In our first approximation to the topic of document image classification -which has been

explored extensively over the past few years- we adopt a two-stream neural architecture for

cross-modal feature fusion. Most recent approaches handled this task by jointly learning

the visual features of document images and their corresponding textual content. Due to

the various structures of document images, the extraction of semantic information from

its textual content is beneficial for document image processing tasks. Given their natural

design, we aim to solve the following research question of how to develop and efficiently

implement deep network-based models for discriminative and compact cross-

modal representations.

In this chapter, we conduct an exhaustive investigation of nowadays widely used deep

networks as well as word embedding procedures used as the main backbones in our two-

33
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stream network, in order to extract both visual and textual features from document images.

Moreover, a joint feature learning approach that combines visual features and textual

embeddings is introduced as an early fusion methodology. Our goal is to evaluate the

representation learning capability of our two-stream deep network to encode meaningful

information from the vision and language modalities to perform the cross-modal document

classification task.

Recent advances in deep learning techniques have made significant progress in many

areas in CV and NLP. The main reason for such success is the ability to train a deep

learning model that can retain profound knowledge from large-scale labeled dataset such

as the ImageNet dataset [87] used for image classification. From a computer vision per-

spective, the concept of transfer learning from the object recognition domain was used to

improve the recognition accuracy on smaller datasets [150]. To investigate this approach

more efficiently, we train our vision modality using ImageNet weights as it has shown

to be effective in earlier attempts on document image classification [4]. Several research

studies in the literature have been using deep neural networks for document analysis tasks.

They focused on the structural similarity constraints and the visual features of document

images [26, 89, 90, 156]. As most recent deep learning methods do not require extracting

features manually, the state-of-the-art approaches based on visual information of document

images treated the problem as a conventional image classification task. Additionally, from

a natural language processing perspective, Yang et al. [189] presented a neural network

to extract meaningful semantic information based on word embeddings from pre-trained

natural language models. Nevertheless, classifying documents with only visual informa-

tion may encounter the problem of low inter-class discrimination, and high intra-class

structural variations of highly overlapped document images [3]. As such, jointly learning

visual cues and text semantic relationships is an inevitable step to mitigate the issue of

highly correlated classes. Recent methods have used multimodal techniques to leverage

both vision and language modalities extracted by an optical character recognition OCR

engine [73] to perform fine-grained document image classification [11, 12, 38, 185].

Therefore, we study the capability of static and dynamic word embeddings to extract

meaningful information from the text corpus. While static word embeddings fail to capture
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polysemy, by generating the same embedding for the same word in different contexts,

dynamic word embeddings are able to capture word semantics in different contexts to

address the issue of polysemous and context-dependent nature of words. We explored and

evaluated both static and dynamic word embeddings on the large-scale RVL-CDIP 1 [61]

dataset. Furthermore, we propose in this chapter a two-stream cross-modal deep neural

network to learn simultaneously from the visual structural properties and the textual

information from document images based on two different models. The learnt cross-modal

features are combined as the final representation of our proposed network to boost the

classification accuracy of document images. However, to perform text classification, an

OCR is employed to extract the textual content of each document image, followed by a

latent semantic analysis. We utilize the pre-trained Glove and FastText [119, 135] models

as two static word embeddings, followed by a gated recurrent unit (GRU) mechanism

introduced by J.Chung et al. . and K.Cho et al. [33]. GRU is a simplified variant of

LSTM architectures introduced by S. Hochreiter and J. Schmidhuber [58] to overcome the

vanishing gradient problems. Moreover, based on both left and right context, the deep

bidirectional pre-trained BertBase model [41] is utilized as a contextualized dynamic word

embedding to learn the textual semantic features.

To conduct the document image classification task, we investigate the impact of both

heavyweight (i.e. with a large amount of parameters) and lightweight (i.e. with a much

lower number of parameters) deep network architectures on learning deep structural prop-

erties from document images. These models have been chosen for their performance on

the ImageNet [39] dataset at different levels of computational and time cost, starting from

models operating in a constrained computational environment for mobile applications (i.e.

NasNetMobile [209]), to computationally-heavy models (i.e. Inception-ResNet-v2 [164],

NasNetLarge [209]) designed to achieve real-time accurate results. The heavyweight mod-

els with large size parameters such as NasNetLarge, and Inception-ResNet-v2 can achieve

state-of-the-art classification accuracy on the widely used ImageNet [39] dataset in the cost

of the computational complexity and time consuming. Instead, the lightweight models with

fewer parameters designed for the constrained environment (e.g. real-time environment),

1https://www.cs.cmu.edu/~aharley/rvl-cdip/

https://www.cs.cmu.edu/~aharley/rvl-cdip/
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for mobile applications with less hardware resources, focus on the trade-off between the

efficiency and the model accuracy.

The analysis of document data present in both document datasets, we found that

amongst all classes, some samples from specific categories present particular layout prop-

erties and document structures as illustrated in the Figure 2.1. Most classes are mainly

composed of text information such as Report, while the classes like Advertisement, and

File Folder contain only images with very little text information. Specifically, some sam-

ples do not contain any text data. Another class such as Handwritten, which is composed

of handwritten text characters, produces noisy output text resulted by the processing of

the OCR engine. The idea behind this chapter relies on whether combining the learnt

visual features with the learnt textual features could be effective in enhancing the fea-

ture representation space, and thus, achieving better yet effective results for the specific

categories mentioned above (i.e. Advertisement, File Folder, Handwritten).

In summary, the main contributions of this chapter are as follows:

• We propose a two-stream cross-modal deep network that leverages both the learned

textual embeddings and visual features to classify document images. We show that

the proposed joint learning methodology boosts the overall accuracy compared to

the single-modal networks.

• We introduce two feature fusion methodologies to merge vision-language features in

the cross-modal framework.

• We evaluate the performance of static and contextualized dynamic word embeddings

to classify textual content of document images.

• As well, we review the impact of training heavyweight and lightweight deep neural

networks on learning relevant structural information from document images.

2.2 Approach

This section briefly presents the deep convolutional neural networks and word embedding

procedures used in this chapter. On the one hand, we intend to investigate the impact of
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(a) Form (b) Report

(c) News (d) Email

Figure 2.1: Sample images from the benchmark Tobacco-3482 dataset showing the low
inter-class and high intra-class of structural variations of document images.

training lightweight and heavyweight deep networks on the classification performance on

the RVL-CDIP and Tobacco-3482 datasets. On the other hand, we attempt to compare the

performance of static and dynamic word embedding procedures used to generate features

to process the text classification task. Figure 2.2 illustrates the proposed cross-modal

network with NasNetLarge and BertBase as the vision and language backbones respectively.

2.2.1 Vision Modality

For the document visual embeddings, we propose to explore two well-known deep CNNs

(NasNet and Inception-ResNet-v2) as main backbones to extract the image features.

NasNet-A(6@4032): The NasNet architecture [209] is composed of two types of layers:

Normal layer, and Reduction layer. The Normal layer is a convolutional layer that returns

a feature map of the same dimension, where the Reduction layer is a convolutional layer
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Figure 2.2: The proposed cross-modal deep neural network. The NasNetLarge model is
used for the vision modality, while BertBase model is used for the language modality[16,
17]

.

that returns a feature map, where the feature map height and width is reduced by a

factor of two. For NasNet-A(6@4032), 6 means N = 6, i.e. number of layers repeated,

4, 032 means the number of filters in the penultimate layer of the network. It has 88.02M

parameters. We denote the model as NasNetLarge.

NasNet-A(4@1056): A second architecture based on the same network was studied with

N = 4 layers repeated and 1, 056 filters in the penultimate layer of the network. This light

network only has 4.23M parameters. We denote it as NasNetMobile.

Inception-ResNet-v2: The Inception-ResNet-v2 [164] architecture is a convolutional

neural network that achieved state-of-the-art results on the ILSVRC image classification

benchmark. Inception-ResNet-v2 is a variation of the earlier Inception-V3 model by in-

troducing the bypass connection as in ResNet [63]. The model has 54.36M parameters.

2.2.2 Language Modality

For the textual part of documents, we use three well-known word-embeddings mixing static

and dynamic approaches to perform text classification.

GloVe: GloVe [135] is an unsupervised learning algorithm that generates word embed-

dings by aggregating global word-word co-occurrence matrix from a corpus. The resulting

embeddings show interesting linear substructures of the words in a vector space. We use
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the pre-trained GloVe model on Wikipedia 2014 with Gigaword 5 (6B tokens, 400K vocab,

uncased, 50d vectors) parameters.

FastText: FastText [119] is a library for efficient learning of word representations and

sentence classification. FastText breaks words into several character n-grams, which allows

computation of word representations for words that did not appear in the training data,

known as out-of-vocabulary words. We use the pre-trained FastText model on 2 million

word vectors trained on Common Crawl (600B tokens), and uses 1, 999, 996 word vectors.

Bert: Bert [41] is a contextualized bi-directional word embedding based on the transformer

architecture. Bert representations are jointly conditioned on both left and right context

in all layers, using a faster highly-efficient attention-based approach. The BertBase model

we use consists of 12 attention layers, 768 hidden layers, 12 heads, 109M parameters, and

uses a vocabulary of 30, 522 words.

The next section presents in detail the components of each modality of our proposed

cross-modal deep neural network.

2.3 Cross-Modal Feature Learning

In this section, we present in detail the proposed cross-modal deep neural network for

document image classification. In the first stream, we feed input document images to

the vision backbone. In the second stream, we extract the textual corpus from document

images with an OCR engine. Then, we feed the text corpus generated as the input to

the word embedding backbone. Finally, we consider an early fusion process to merge the

two modalities to enhance the performance of the cross-modal modality compared to the

single-modalities.

2.3.1 Visual Features

Deep CNNs have exhibited their exceptional performance in both general image recog-

nition and image classification tasks. Since transfer learning has shown its effectiveness

while transferring to smaller datasets, we train the three deep CNNs discussed above us-

ing the pre-trained ImageNet weights. The vision modality extracts visual features that
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are passed to a global average pooling layer to reduce the spatial dimensions of a three-

dimensional tensor. It performs also a more extreme type of dimensionality reduction. For

the final layers of the three deep CNNs, the global average pooling layer is passed to the

last fully connected layer to perform classification with a softmax layer. The categorical

cross-entropy loss function of softmax is given by:

Ls1(X1; Θ1) =
K∑
k=1

−yklogP (ŷk|X1, θk)

= −
K∑
k=1

yklog
ef

θk (X1)∑K
1 ef

θk′ (X1)

(2.1)

where {X1,Θ1} ∈ Rd1 , and d1 is the dimension of X1 features of the vision modality. K is

the number of classes in the dataset where K = 16, yk is the one-shot label of the feature

X1, P (ŷk|X1, θk) is the estimated probability of yk calculated by the softmax function

over the activation function f θk(X1), where {θk}Kk=1 = Θ1, θk ∈ Rd1 . The bottleneck layer

of the image branch is extracted as the feature X1 of the input image.

2.3.2 Textual Features

As textual content is required to perform text classification, we process all document

images with an off-the shelf optical character recognition (OCR) engine, i.e. Tesseract

OCR2 [160]. It is based on LSTM layers and includes a neural network subsystem con-

figured in English as a text line recognizer. Besides, the OCRed text extracted is noisy

and not clean due to the different ways of presenting documents from plain, handwritten,

and curved text, exotic fonts, multi-column layouts, the wide variety of tables, forms, and

figures. Many word embeddings process a good tokenization of the words by getting the

embedding (i.e. a vector of real numbers) for each word in the sequence, where each word

is mapped to a emb_dim dimensional vector that the model will learn during training.

In average, for GloVe word embedding, we found 3, 581, 896 unique tokens and a total

number of 400, 000 word vectors on the RVL-CDIP corpus. As well, we found 3, 601, 377

unique tokens, 24, 109 of null word embeddings, and a dictionary size of 3, 601, 377 for

2https://github.com/tesseract-ocr/tesseract

https://github.com/tesseract-ocr/tesseract
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Figure 2.3: Illustration of (a) LSTM and (b) gated recurrent units (GRU). (a) i, f and o
are the input, forget and output gates, respectively. c and c̃ denote the memory cell and
the new memory cell content. (b) r and z are the reset and update gates, and h and h̃ are
the activation and the candidate activation.

FastText word embedding on the same standard dataset. Contrary to traditional shallow

representations (i.e. Word2Vec [56], GloVe [135], FastText [119]), as they fail to cap-

ture higher-level information, many different dynamic word embedding procedures (i.e.

ELMO [137], Bert [41], XLNet [190]) have been proposed to capture semantic meaning

to deal with the context-dependent nature of words. For the BertBase model, we pro-

cessed the tokenization by splitting the input text into a 128 sequence list of tokens. To

deal with out of vocabulary (OOV), BertBase uses a WordPiece tokenization technique in

which every OOV word is split into sub-words. The input embeddings are then computed

by summing the corresponding word embeddings, and segment embeddings. Then, the

input embeddings are passed to the attention-based bidirectional transformer. After pre-

processing the textual content extracted by the OCR engine from document images, we

pass the input embeddings of both Glove and FastText to a GRU network of 32 nodes and

3 hidden layers. Figure 2.3 illustrates the LSTM and GRU units taken from [33]. The final

layers of the three models are passed to a softmax layer with categorical cross-entropy loss

function.
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2.3.3 Cross-Modal Features

In this part, we intend to study the effectiveness of the cross-modal features that are

jointly learned from the vision and language modalities to classify document images. We

adopt an early fusion process with two different methodologies, (i.e. equal concatenation,

and average ensemble fusion). We assume that the dimension of the features extracted

from the vision modality or the language modality is denoted as d.

(a) Equal Concatenation: We add a fully connected layer to the vision modality,

having the same dimensional output vector as the language modality. The final cross-

modal features are the concatenation of the two equal embedding features given by:

Xa = [X1|X2]; Xa ∈ R2d1 (2.2)

where X1 ∈ Rd1 is the obtained image embedding feature, and X2 ∈ Rd2 is the text

embedding feature, d1 = d2 and | is the concatenation operation.

(b) Superposing Fusion: We employ a pixel-wise addition between the image and text

embedding features, (i.e. superposing directly the two embeddings to generate the cross-

modal features). Note that the obtained cross-modal features have the same dimension as

the image or text embedding features.

XAv = [X1 +X2]; XAv ∈ Rd1 (2.3)

Training Protocol

The learning of the cross-modal features include two main parts: the learning of the

parameters of the vision modality Θ1 and the parameters of the language modality Θ2.

Then, the parameters of the network Θ = {Θ1,Θ2} are optimized by the global cross-

entropy loss function L(Θ) given by:

L(Θ) =
K∑
k=1

−yklogP (ŷk|X,Θ) (2.4)

where X is the cross-modal features Xa or XAv.
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2.4 Experiments and Analysis

To evaluate the performance of our proposed ensemble trainable network, we make use of

the two benchmark datasets RVL-CDIP and Tobacco-3482 introduced in the Section 1.5.1.

2.4.1 Preprocessing

As the deep convolutional neural networks (DCNNs) used in this chapter require fixed size

input images, we first downscale all document images presented in both RVL-CDIP and

Tobacco-3482 datasets to the expected input size of the networks. The original document

images size is about 1000x750 pixels. For the NasNetLarge backbone, document images are

resized to 331x331 pixels. For the Inception-ResNet-v2 backbone, the images are resized

to 299x299 pixels, and resized to 224 × 224 for NasNetMobile. As a data augmentation

typical step, we intended to minimize the high intra-class similarity variations in document

images. To do so we applied shear transform with a range of 0.1 as in [166]. This technique

is a common practice to stochastically transform each input during stochastic gradient

descent (SGD) training [7], to artificially enlarge the training data in order to improve the

performance. Also, we randomly shifted images horizontally and vertically with a range

of 0.1. For effective training, we introduced cutout data augmentation [42] that has shown

its efficiency towards improving regularization of DCNNs. It consists of randomly masking

a square region in an image at every training step, thus removing the redundancy of the

images and augmenting the dataset by partially occluded versions of existing samples.

As a final pre-processing step for vision modalities, we convert the gray-scaled document

images to RGB images.

Intuitively, the text corpus fed to the input layer of the text branch was extracted with

an off-the-shelf optical character recognition OCR (i.e. Tesseract OCR). We utilized this

OCR engine to conduct a fully automatic page segmentation, as the document images

from the datasets are well-oriented and relatively clean. Hence, we run the Tesseract

OCR engine. We used the version 4.0.0− beta.1 of Tesseract based on a LSTM engine to

aim for better accuracy. Also, a fully automatic page segmentation without orientation

or script detection is conducted. The resulting extracted text was not post-processed.
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Although document information might be lost in OCR, such as typeface, graphics, layout,

stop words, mis-spellings, symbols and characters. It could benefit from some level of spell

checking to improve the semantic learning. However, we chose to provide the true output

of Tesseract OCR as it is.

2.4.2 Implementation Details

In this subsection, we describe the implementation details used to train the proposed

single-modal and cross-modal approaches. We have trained all networks on a NVIDIA

Quadro GP100 GPU, using stochastic gradient descent optimizer (SGD), with a momen-

tum of 0.9, a learning rate of 1e− 3, and a step decay schedule defined as:

Lr = initial_lr ∗ drop
(

iter
iter_drop

)
(2.5)

where drop and iter_drop took values of 0.5.

The visual modalities were trained with a batch size of 16 for 50 epochs. Early stopping

was considered within 5 epochs to stop training once the performance of the model stops

improving on the hold out validation dataset. Further, L2 regularization was adopted

to add a penalty for weight size to the loss function. Dropout was also applied to the

final softmax layer with a probability of 0.5. For the language modality, it was trained

with a batch size of 40, and a sequence length of 128 for 50 epochs. The cross-modal

feature learning approach was fine-tuned using document pretraining weights obtained

by the single modalities. We froze all layers except the last fully connected layers and

trained our cross-modal network with both the equal concatenation and the superposing

fusion methods, followed by the softmax layer to perform the final task of document image

classification.
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2.4.3 Overall Evaluation

Overall Evaluation on the Tobacco-3482 Dataset

Table 2.1: Overall accuracy on the Tobacco-3482 dataset versus model. E.C refers to
Equal Concatenation, and S.F refers to Superposing Fusion.

Model Accuracy(%) ADVE Email Form Letter Memo News Notes Report Resume Scientific

single-Modal (Vision) 96.25 1 1 0.96 0.94 0.98 1 0.90 1 0.78 0.90
single-Modal (Language) 97.18 0.97 0.99 0.98 0.93 0.97 0.98 0.89 1 0.96 0.95

Ensemble [12] 87.8 0.93 0.98 0.88 0.86 0.90 0.90 0.85 0.71 0.96 0.68
Two Stream Model [11] 95.8 0.94 0.98 0.95 0.98 0.97 0.97 0.88 0.92 1 0.93

Cross-Modal (E.C) 98.42 0.98 0.99 0.95 1 0.98 0.97 1 1 0.96 0.98
Cross-Modal (S.F) 99.71 1 1 0.97 1 1 1 1 1 1 1

On the low-scale Tobacco-3482 dataset, the adopted cross-modal fusion methodologies

achieve state-of-the-art performance. We report the overall accuracy results in Table 2.1,

with the superposing fusion scheme achieving the best performance of 99.71% classification

accuracy.

Overall Evaluation on the RVL-CDIP Dataset

On the large-scale RVL-CDIP dataset, all of the adopted networks in this work achieve

comparable performance with the state-of-the-art results. We report the overall accu-

racy results in Table 2.2. The heavyweight NasNetLarge (768d) model performs the best

for our vision modalities at an accuracy of 91.45%, outperforming the other tested mod-

els NasNetLarge (4032d), Inception-ResNet-v2, and NasNetMobile at an accuracy of 91.12%,

85.04%, and 81.54% respectively.

As for the language modalities, the BertBase model achieves comparable performance

with the state-of-the-art results on the same benchmark dataset, with an accuracy of

84.96%. BertBase manages to improve the performance thanks to its attention-based mech-

anism, while Glove and FastText still achieve good results on the text classification task

at an accuracy of 71.54%, and 77.31% respectively. As each single modality is trained

independently one from another, merging both modalities boosts the performance signif-

icantly for the two fusion modalities to 96.94%, 97.05% classification accuracy for equal
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Table 2.2: The overall accuracy of the proposed methods with different backbones and
different fusion modalities on the RVL-CDIP dataset. E.C refers to Equal Concatenation,
and A.E refers to superposing Fusion.

Method Model Acc.(%) Top-5 Acc. Precision Recall F1-Score #Params

Baselines

Harley et al. [61] 89.80 - - - - -
Nicolas et al. [12] 90.06 - - - - -
Csurka et al. [35] 90.70 - - - - -
Tensemeyer et al. [166] 90.94 - - - - -
Afzal et al. [4] 90.97 - - - - -
Das et al. [36] 91.11 - - - - -
Das et al. [36] 92.21 - - - - -
Dauphinee et al. [38] 93.03 - - - - -
Dauphinee et al. [38] 93.07 - - - - -
Xu et al. [185] 94.42 - - - - 160 M

Language-only
Glove-GRU 71.54 93.86 0.75 0.72 0.72 179 M
FastText-GRU 77.31 95.15 0.80 0.78 0.78 30.47 M
BertBase 84.96 96.74 0.86 0.86 0.85 109.19 M

Vision-only
NasNetM 81.54 97.29 0.84 0.83 0.83 4.23 M
Inception-ResNet-v2 85.04 97.80 0.88 0.86 0.87 54.36 M
NasNetL4032d

91.12 98.61 0.92 0.91 0.92 84.98 M
NasNetL768d

91.45 98.60 0.92 0.92 0.92 88.02 M

vision+Language Cross-Modal (E.C) 96.94 99.83 0.97 0.97 0.97 197.22 M
Cross-Modal (A.E) 97.05 99.85 0.97 0.97 0.97 197.21 M

concatenation and superposing respectively. Thus, exceeding the current state-of-the-art

results by a 2.63% margin.

2.4.4 Ablation Study

Evaluation on the Tobacco-3482 Dataset

To evaluate the effectiveness of our proposed cross-modal approach for document image

classification, we firstly investigate the performance of the single modalities based on visual

and textual features. Then, we compare our cross-modal method to the single modalities,

and finally, to the state-of-the-art baselines based on two-stream deep neural networks.

In this part of evaluation, we propose to use NASNetLarge to classify the document

images with only visual features. As shown in Table 2.3, the NASNetLarge gains the best

result of 96.25% which outperforms the state-of-the-art single-modal method based on

the InceptionV3 network by a 3.05% margin. Note that the NASNetLarge is pre-trained

on ImageNet, used as weight initialization as transfer learning is known to improve the
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Table 2.3: Evaluation of the Vision modality against Baselines on Tobacco-3482 dataset.

Method Accuracy(%)

AlexNet [4] 90.04
GooGleNet [4] 88.4
VGG-16 [4] 91.01
ResNet-50 [4] 91.13
MobileNetV2 [12] 84.50
InceptionV3 [11] 93.2

NASNetLarge 96.25

Table 2.4: Accuracy comparison of Language-stream state-of-the-art models on the
Tobacco-3482 dataset.

Method Accuracy(%)

FastText-CNN [12] 73.8
Feature Ranking (ACC2) [11] 87.1
Glove-CNN1D-LSTM 51
Glove-GRU 61

BertBase 97.18

classification performance significantly although the images are substantially different.

Amongst all the current state-of-the-art baselines, we managed to push the performance

much further by 3.15%.

Besides, for the single-modal language pipeline, we tested combined architectures such

as CNN-LSTM and GRU on top of Glove word embeddings as shown in Table 2.4. Results

demonstrate that the BertBase model achieves a new state-of-the-art result of 97.18%, out-

performing all existing methods with a very high margin of 10.08%. Therefore, attention-

based approaches are highly-efficient operations thanks to their fast run-time characteris-

tics.

In addition, Table 2.1. compares the performance of the two proposed fusion methods

to perform cross-modal document image classification. For Equal Concatenation (E.C)

feature fusion operation, we compress the visual features and concatenate them with the

textual features, having both the same dimensional feature vector. As well, our cross-

modal network manages to raise the performance for all classes except for the classes

News and Form, where it drops by 1%. This is mainly due to the highly overlapped
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Table 2.5: The classification accuracy of the language streams for each class of the RVL-
CDIP dataset.

Model Adv. Budg. Email File Form Handw. Inv. Letter Memo News Pres. Quest. Res. Public. Report Spec.
GloVe 0.53 0.68 0.85 0.90 0.62 0.53 0.81 0.57 0.62 0.78 0.56 0.72 0.94 0.77 0.62 0.85
FastText 0.57 0.72 0.89 0.94 0.68 0.64 0.88 0.69 0.70 0.78 0.62 0.81 0.95 0.85 0.73 0.88
BertBase 0.68 0.83 0.95 0.85 0.80 0.69 0.88 0.84 0.90 0.84 0.82 0.87 0.97 0.89 0.80 0.92

Table 2.6: The classification accuracy of the vision modalities for each class in RVL-CDIP
dataset.

Model Adv. Budg. Email File Form Handw. Inv. Letter Memo News Pres. Quest. Res. Public. Report Spec.
Inception-ResNetv2 0.89 0.78 0.97 0.96 0.72 0.93 0.88 0.82 0.93 0.83 0.72 0.75 0.96 0.87 0.86 0.85
NasNetMobile 0.91 0.79 0.97 0.95 0.75 0.95 0.70 0.79 0.83 0.90 0.81 0.68 0.94 0.80 0.63 0.85
NasNetL4032d

0.92 0.90 0.98 0.94 0.84 0.94 0.91 0.89 0.94 0.91 0.85 0.89 0.96 0.93 0.82 0.93
NasNetL768d

0.94 0.90 0.98 0.96 0.83 0.95 0.93 0.90 0.93 0.92 0.85 0.89 0.96 0.93 0.82 0.93

categories (Form, Report, Email) shown in Figure 2.1. Finally, our cross-modal feature

learning approach with superposing fusion outperforms all current state-of-the-art base-

lines with a significant margin of 3.91% compared to the two-stream-based methods, and

of 2.53% compared to the single-modal-based methods. Thus, the superposing fusion (i.e.

S.F) approach raises the performance of all classes regarding their structural property

differences.

Out of the two proposed methods that merge both textual and visual features, the

superposing fusion (i.e. S.F) method jointly learns more relevant information from textual

features and visual features, achieving the best performance with 99.71% classification

accuracy.

Evaluation on the RVL-CDIP Dataset

To evaluate the effectiveness of our proposed cross-modal approach for document image

classification, we firstly investigate the performance of the single-modal modalities based

on the textual content and the corresponding visual features. As seen in Table 2.5, the

classification results of each class of the three word embedding procedures are very low

concerning three main categories that are: Advertisement, File Folder, and Handwritten.

For Glove, the classification results of the three classes are 53%, 90%, and 53% respec-

tively. Whereas for FastText, it improved slightly the accuracy results for each class to

57%, 94%, and 64% respectively. More specifically, the GloVe method predicted 36.32%,
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Table 2.7: The classification accuracies of the cross-modal network for each class of the
RVL-CDIP dataset, with the proposed fusion modalities.

Model Adv. Budg. Email File Form Handw. Inv. Letter Memo News Pres. Quest. Res. Public. Report Spec.
Concat. 0.97 0.96 0.98 0.98 0.93 0.97 0.97 0.95 0.97 0.96 0.94 0.97 0.99 0.97 0.94 0.98
Avg. 0.97 0.97 0.98 0.98 0.94 0.97 0.97 0.95 0.97 0.96 0.94 0.97 0.99 0.97 0.95 0.98

32.66% of Advertisement and Handwritten class documents as File Folder documents.

Also, FastText managed to improve the performance and reduced the classification error

by 4% where 31.13% of Advertisement, and 28.28% of Handwritten class documents are

predicted as File Folder documents. Furthermore, the bidirectional BertBase enhanced the

performance to 68% for Advertisement, 85% for File Folder, and 69% for Handwritten

categories. The BertBase network boosted the performance of the three classes and cut

the error-classification by half where 15.98% of Advertisement, and 15.84% of Handwrit-

ten categories are predicted as File Folder document images. The classification errors

are mainly due to either OCR error recognition, or empty document images which result

to empty text files. Advertisement documents contain mostly images with few invisible

text sequences, where the corresponding text generated by OCR is much too noisy and

non-recognized. File Folder class presents in most cases empty document images with

no text in it to be processed by the OCR engine. Finally, OCR technique fail to recog-

nize handwritten characters in document images as a result of the different handwriting

manners. Still, all vision networks trained on the RVL-CDIP dataset achieve comparable

performance with the state-of-the-art methods. Table 2.6 illustrates the performance of

our best single-modal vision modality NasNetLarge (768d). It shows an improvement in the

classification results of all classes, especially for the classes Advertisement, File Folder,

and Handwritten to 94.08%, 96.04%, 95.07% in comparison of language modality results.

Nevertheless, the lightweight NasNetMobile network fails to improve the performance for

most of the classes compared to BertBase, our best language-based model. Whereas, the

Inception-ResNet-v2 network slightly outperforms our language modalities with 85.04%

accuracy in comparison to BertBase model (84.96%), surpassing significantly both Glove

and FastText word embeddings.
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Figure 2.4: Confusion Matrix of the Equal Concatenation fusion scheme for the proposed
cross-modal feature learning network.

Besides, the aim of this work is to leverage the ability of the cross-modal network to

enhance the performance compared to the single-modal modalities. To do so, we proposed

to merge textual and visual features with two different fusion modalities. For the superpos-

ing fusion method, it requires two feature vectors with the same size. Since the language

output vector is of size 768, and the vision output vector is of size 4032, we added a fully

connected layer on top of NasNetLarge (4032). We re-trained it to study its effect on the

classification results. Table 2.2 shows that indeed, adding a fully connected layer slightly

increases the performance of the vision modality from 91.12% for NasNetLarge (4032), to
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91.45% for NasNetLarge (768). This comparison illustrates that visual features are more

important than textual features with both feature embeddings of size 4032d and 768d.

Figure 2.5: Confusion Matrix of our best cross-modal network with the superposing (i.e.
A.E) fusion method.

Accordingly, Tables 2.2 and 2.7 show the accuracy of each class and the overall accu-

racy of the cross-modal network that merges the best single-modal modalities NasNetLarge,

and BertBase. Jointly learning both modalities with an early fusion scheme achieves accu-

rate results in comparison with the current state-of-the-art methods. The joint learning

approach shows its capability to learn more relevant information from document images.

Thus, it improves the accuracy of each class independently in comparison to single-modal
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modalities. The cross-modal network manages to correct the error of the text classification

generated by the language-based approaches for the three main classes: Advertisement,

File Folder, and Handwritten.

Also, Figures 2.4 and 2.5 show the confusion matrices of our state-of-the-art cross-

modal network with the equal concatenation and superposing fusion methods respectively.

The network performs the best for the Resume category with a 99.46%, 99.50% classifica-

tion accuracy for equal concatenation and superposing respectively. Whereas it performs

the worst for the class Form with a 93.38%, 94.13% accuracy for the two fusion modalities.

To this end, we conclude that either Glove, FastText, or Bert are not able to outperform

the vision-based approaches for this task. This proves that relying only on textual content

is not sufficient. Hence, it needs the visual features to achieve accurate results. It is

clear from all reported results that combining the visual structural properties of document

images with the extracted text corpus improves the quality and accuracy of the final

predictions for the document classification task.

Additional Results

Table 2.8: The Recall and Precision metrics of the vision backbones of the most relevant
classes in the RVL-CDIP dataset.

Model Metrics Adve. Email Folder Form Hand. Invoice Pres. Quest. Resume Sci.

NasNetMobile

Recall 0.91 0.97 0.96 0.75 0.95 0.71 0.82 0.69 0.95 0.63
Precision 0.83 0.90 0.89 0.69 0.83 0.95 0.68 0.87 0.82 0.77

Inception-ResNet-v2
Recall 0.90 0.97 0.97 0.73 0.93 0.88 0.73 0.76 0.96 0.86

Precision 0.90 0.99 0.86 0.78 0.93 0.83 0.84 0.90 0.91 0.56

NasNetLarge4032d
Recall 0.94 0.99 0.96 0.84 0.95 0.93 0.86 0.90 0.97 0.83

Precision 0.92 0.98 0.95 0.86 0.95 0.93 0.84 0.87 0.98 0.83

NasNetLarge768d
Recall 0.93 0.99 0.95 0.84 0.92 0.92 0.85 0.89 0.97 0.82

Precision 0.93 0.98 0.96 0.84 0.95 0.94 0.82 0.88 0.97 0.83

As illustrated in the Table 2.8, the lightweight NasNetMobile framework fails to capture

higher level features from Form, Invoice, Questionnaire, and Scientific report classes. The

model seems to be less sensitive with a recall rate of 75%, 71%, 69%, and 63% for the

four classes respectively. Also, we measured the precision of the NasNetMobile network for
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Table 2.9: The Recall and Precision metrics of the vision backbones of the most relevant
classes of the RVL-CDIP dataset.

Model Metrics Adve. Email Folder Form Hand. Invoice Pres. Quest. Resume Sci.

Glove Recall 0.54 0.86 0.91 0.62 0.54 0.81 0.57 0.73 0.95 0.63
Precision 0.61 0.88 0.41 0.81 0.57 0.80 0.64 0.93 0.97 0.63

FastText Recall 0.57 0.90 0.94 0.69 0.64 0.88 0.63 0.82 0.95 0.74
Precision 0.77 0.96 0.45 0.85 0.60 0.80 0.76 0.89 0.99 0.70

BertBase
Recall 0.68 0.95 0.86 0.80 0.69 0.88 0.82 0.87 0.98 0.80
Precision 0.78 0.97 0.60 0.81 0.83 0.90 0.81 0.89 0.99 0.82

each class. It is less precise with a precision rate of 68%, 69% for the classes Presentation

and Form. Furthermore, the Inception-ResNet-v2 framework’s recall rate for the classes

Form, Presentation, and Questionnaire is low in comparison with other categories. The

recall for each class is of 73%, 73%, and 76% respectively, while the precision is of 78%

for the class Form, with a deterioration to 56% for the class Scientific report.

Lastly, for our best heavyweight model NasNetLarge, it shows an important ability to

classify document images with a lower recall and precision of 83% for the Scientific report

category. The higher recall is of 99% for the class Email, while the higher precision is

of 98% for both Email and Resume classes. On the other hand, Table 2.9 illustrates the

importance of BertBase in capturing meaningful information, thus, improving the recall

and precision rates for each category of the RVL-CDIP dataset compared to other word

embedding models.

2.5 Discussion

In this chapter, we proposed a cross-modal methodology that learns simultaneously from

the input token embeddings extracted from the text corpus, and the structural information

from document images to perform document image classification. We showed that, merg-

ing the two modalities with different fusion schemes boosts the performance compared to

single-modal networks. The dynamic BertBase word embedding has proved its efficiency to

learn relevant semantic information from the text corpus compared to static word embed-

dings, as well as the ability of heavyweight networks to learn higher level features compared
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to lightweight architectures. The extensive experimental results achieved state-of-th-art

performance on the two benchmark RVL-CDIP and Tobacco-3482 document datasets.

After analyzing of the obtained single-modal results regarding the performance of the

different backbones on document classification, we have seen that the accuracy regarding

some document categories remains very low. Even-though we achieved compelling results

with the early feature fusion scheme, we intended to learn better information with the goal

to improve the classification performance of the specific document categories where the

accuracy remains very low. For example, the accuracy of handwritten documents is high

for the vision modality and very low for the language modality. In this case, a framework

which can transfer the knowledge from one modality to another is needed to help both vi-

sion and language modalities to learn better information, and thus, improve representation

learning. Meanwhile, some type of documents such as File Folder category do not contain

any visual spatial information, in which case a stronger emphasis on the textual informa-

tion within the language cues is highly required. Hence, the general idea of Chapter 3 is

to improve the representation learning and the performance for the single-modal modal-

ities in an intermediate/middle-fusion methodology, instead of the early fusion schemes

adopted in the current chapter.



CHAPTER 3

Multimodal Deep Mutual Learning

Competition has been shown to be useful up to a certain point and no further,

but cooperation, which is the thing we must strive for today,

begins where competition leaves off.

– Franklin D. Roosevelt

3.1 Motivation

In this chapter, our goal is to improve the robustness of the proposed model in Chapter 2

for the task of document image classification. Instead of leveraging the visual and textual

features through an early feature fusion methodology as in Chapter 2, we aim to learn

higher-level interactions between the middle blocks of the vision and language modalities

in an intermediate/middle-fusion fashion before fusing them in the final stage in an early

fusion manner. In contrast to Chapter 2 where the learning process of the vision and lan-

guage modalities is independent one from another, we intend in this chapter, to improve

representation learning of single-modal modalities by transferring the knowledge from one

modality to another during the training stage. Therefore, the cross-modal representations

55
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will be improved accordingly. Thus, we aim to answer the following research question

of how to effectively coordinate, learn the connections, and model the inter-

actions between vision and language modalities in a fully-supervised learning

paradigm. Meanwhile, we demonstrate in this chapter the generalization ability of deep

networks to classify unseen document data. In a general overview, people learning new

concepts can often generalize successfully from just a single example, yet machine learning

algorithms typically require hundreds or thousands of examples to perform with similar

accuracy [93]. People can also use learned concepts in richer ways than conventional al-

gorithms for action, imagination, and explanation. This opens to the research question:

On a challenging document image classification task, are these multimodal

interactions and alignment between visual and textual information sufficient

to generalize the learned knowledge to the unseen document data as human-

performance ?

Multimodal methods for document classification rely mainly on vision and language

modalities. They contain two or an ensemble of deep networks which are trained on large-

scale datasets to extract discriminate features from the input data. With such approaches,

the learning process of the vision modality and the language modality is still independent

one from another. The output features of both modalities are subsequently combined

together to perform an ensemble trainable document classification network [11, 48, 184,

185]. Yet, these independent learning approaches might be enhanced if the visual and the

textual features share some mutual information between them.

In general, knowledge transfer-based approached have been extensively studied in the

literature in the CV and NLP fields [14, 65, 131, 147]. These approaches encourage

collaborative learning between modalities, allowing vision and language modalities to si-

multaneously learn their discriminant features in a mutual learning manner [203]. They

aim to align the current modality to the other modality by minimizing the difference in

class probabilities produced by each modality [65]. However, rather than the conven-

tional distillation-based teacher-student approach with one-way knowledge transfer from

a pre-trained teacher to a student [65], the mutual learning strategy starts with a pool

of untrained students in a student-to-student peer-teaching model to learn to solve the
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tasks collaboratively [203]. It turns out that conventional mutual learning achieves bet-

ter results than independent learning in either a supervised or a conventional distillation

learning approach from a larger pre-trained teacher. Nonetheless, conventional mutual

learning is a bi-directional knowledge transfer-based method, in which the current student

modality can learn from a better example from the other modality, meanwhile the good

student learns from the worst modality. That is to say, if the other student is worse than

the current student, then the negative knowledge will be introduced and might weaken

the ongoing training. This violates the motivation of the conventional mutual learning

setting.

Therefore, we encourage mutual learning by transferring the positive knowledge be-

tween vision and language modalities during the training stage. This constraint is realized

by adding a truncated-Kullback–Leibler divergence loss (Tr-KLDReg) as a regularization

term to the conventional supervised setting., which will be elaborated on the next sections.

To the best of our knowledge, this is the first time to leverage a mutual learning approach

along with a self-attention-based fusion module to perform document classification.

As we mentioned before, deep Learning has provided compelling results in various

document understanding problems such as document classification, form understanding,

receipt understanding, etc. Existing works covered several techniques including document

binarization [2, 133], layout analysis [132, 155], and structural similarity constraints [30]

for many document analysis tasks. However, to ensure a good generalization, many deep

neural networks with large amount of parameters have been used for document classifica-

tion in order to extract the most relevant visual features [98].

Unlike the general images from the ImageNet dataset [150], document images have

a distinct visual style. Therefore, numerous studies on document processing tasks have

used transfer learning. It has been shown to be effective in boosting the classification

performance of document images [3, 36, 61], whereas randomly initialized networks are

under-performing [76]. Additionally, from the perspective of a natural language processing

classifier, document images can be categorized into various classes based on their textual

content processed by an Optical Character Recognition (OCR) system [140, 170]. Yang et

al. [189] presented a neural network to extract semantic enriched information from textual
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content based on a word embedding mechanism. Also, Appiani et al. [10] described a

system that exploits a structural analysis approach to characterize and automatically index

heterogeneous documents with variable layout, by determining the class of the document

image based on reliable automatic information extraction methods.

Nevertheless, the challenge of document images remains in their wide range of visual

variability, where documents from the same category might have different spatial proper-

ties. Due to their various visual styles, relying on deep convolutional networks to extract

visual properties to perform document image classification might fail to distinguish be-

tween highly correlated classes. The inter-class discrimination of document images might

be smaller than the intra-class variability, where two or multiple document images of dif-

ferent categories can be visually, and in terms of their textual content, closer than two

or multiple documents from the same category. This level of intra-class variability can

be mitigated by introducing the latent semantic information from the text corpus within

the document image. Once the visual features of the vision modality and the textual

features of the language modality are extracted, they are leveraged into a multimodal

network to combine both feature vectors into one feature vector based on a feature fusion

methodology [12, 38, 126].

Thus, we introduce a mutual learning approach based on a truncated-Kullback–Leibler

divergence regularization term (Tr-KLDReg). This approach enables the current modality

to learn only the positive knowledge from the other modality and prevents the negative

knowledge from being introduced in the ongoing learning of the current modality. The

proposed mutual learning approach with regularization improves the quality of the final

predictions of the single-modal and cross-modal modalities, and helps to overcome the

drawback of the conventional mutual learning trained with the standard Kullback–Leibler

divergence (KLD).

Furthermore, as one of the goals of this chapter is to combine visual and language

features through a better multimodal feature fusion methodology, we introduce a self-

attention-based feature fusion module that serves as a middle block in our ensemble train-

able network. Moreover, we aim to simultaneously extract more powerful and representa-

tive features from different middle blocks of the vision and language modalities through the
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self-attention-based feature fusion module. This approach enables us to focus more on the

salient parts of the feature maps of each modality, and aims to capture relevant semantic

information between the pairs of image regions and text words. Such self-attention-based

modules have recently became an elemental component in many multimodal tasks such

as visual question answering, image captioning, image-text matching, etc [79, 100, 125,

186]. Furthermore, we adopt an early average ensemble fusion scheme in the final model

to ensure a more stable and better-performing solution for the task of document image

classification.

This work is built on the results and analysis of Chapter 2. In the following parts,

we denote mutual learning trained with the standard (KLD) as MLKLD, mutual learning

trained with regularization as MLTr−KLDReg
, and ensemble self-attention-based mutual

learning with regularization as EAMLTr−KLDReg
.

Following are the main contributions of this chapter:

• We introduce a mutual learning strategy with a regularization term to overcome the

drawback of the conventional mutual learning. This approach allows the current

modality in process to learn the positive knowledge from the other modality, in-

stead of the negative knowledge which weakens the learning capacity of the current

modality in process.

• We present a self-attention-based feature fusion module for a better multimodal

feature extraction to perform fine-grained document image classification. Our pro-

posed self-attention-module enhances the overall accuracy of the ensemble network

and achieves state-of-the-art classification performance compared to single-modal

and multimodal learning methods.

• We perform a comprehensive ablation study on the benchmark RVL-CDIP and

Tobacco-3482 datasets to analyze the effectiveness of our proposed ensemble train-

able network with/without the mutual learning approach, and with/without the

self-attention-based feature fusion module.

• We evaluate the performance and the generalization ability of the proposed ensemble

network on unseen document data through inter-dataset and intra-dataset evaluation
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on the benchmark RVL-CDIP and Tobacco-3482 datasets for the single-modal and

multimodal fusion modalities.

3.2 Approach

In this section, we present in detail the proposed multimodal mutual learning and self-

attention-based feature fusion approaches.

The proposed ensemble deep network (see Figure 3.1) is based on a multimodal ar-

chitecture, which consists of vision, language, and vision-language fusion modalities. The

vision and language modalities are dedicated to extracting visual features and textual

embeddings respectively. The fusion branch is used to combine the extracted visual and

language features into multimodal features. After the training of the ensemble network,

the classification of document images is conducted by either the vision modality or the

language modality. Moreover, the visual features and the the text embeddings learned are

fused to conduct document image classification in a multimodal fashion.

3.2.1 Vision Modality

The vision modality extracts the visual features using the Inception-ResNet-V2 [164] as a

backbone network, which is a convolutional neural network that achieved state-of-the-art

results on the ILSVRC image classification benchmark. The model has 54.36M parame-

ters.

3.2.2 Language Modality

Further, we process all document images with an off-the shelf optical character recognition

(OCR) system, i.e. Tesseract OCR1 to extract the text from document images. Since doc-

ument images from RVLCDIP and Tobacco-3482 datasets are well-oriented and relatively

clean, it is quite straightforward to run the Tesseract OCR engine on such documents. We

utilized this OCR engine to conduct a fully automatic page segmentation without orienta-

tion or script detection. We analyzed the output of the OCR and found a lot of errors in
1https://github.com/tesseract-ocr/tesseract

https://github.com/tesseract-ocr/tesseract
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Figure 3.1: The proposed Ensemble Self-Attention-based Mutual Learning Network
(EAML [18]).

the recognition especially for the classes Handwritten, and Notes, due to its incapability

of recognizing handwriting. Besides, the Tesseract OCR engine is not always good at ana-

lyzing the natural reading order of documents. For example, it may fail to recognize that

a document contains two columns, and may try to join text across columns, which is the

case of some samples from the classes ADVE, and Scientific as shown in the qualitative

results of the OCR engine in Figure 3.2. In addition, it may produce poor quality OCR

results, as a result of poor quality scans of documents, or the distinct forms of document

images as shown in Figure 3.2. They may contain handwritten text, tables, figures, and

multi-column layouts. The embedded features extracted from the generated text corpus

are computed using a Bert-based model [41]. It is a contextualized bi-directional word

embedding mechanism, that uses a joint word representation conditioned on both left and

right context in all layers using self-attention-based approaches.

3.2.3 Cross-Modal Modality

After the training of the vision modality/branch and the language modality/branch by the

proposed mutual learning approach with regularization (i.e. MLTr−KLDReg
), we attempt to

fuse these two modalities/branches to simultaneously learn the visual and textual features

extracted from the two vision and language branches. Moreover, we adopt an early fusion
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ADVE Email Form

Letter Memo News
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Figure 3.2: Sample document images and their corresponding OCR results of 9 classes of
the Tobacco-3482 dataset that overlap with the RVLCDIP dataset.

methodology, (i.e. average ensembling) as in Chapter 2, which enables us to enhance the

global performance of multimodal networks.

3.2.4 Self-Attention-based Fusion Module

The proposed self-attention-based fusion module has been inspired by the attention mod-

ules in the squeeze and excitation network [67], which is based on re-weighting the channel-

wise responses in a certain layer of a CNN by using soft self-attention in order to model

the inter-dependencies between the channels of the convolutional features. As shown in

Figure 3.3a, the attention fusion module is used as a middle fusion block in our ensemble

trainable network. The intermediate features extracted from the middle blocks of the

image branch (e.g. the output of Residual block0) and the text branch (e.g. the output

of Transform block0) are passed to the corresponding attention block as the inputs of the

attention block. The channel-wise information is then extracted from the input image or

text intermediate features by performing down-sampling with the global average pooling

and global max pooling layers in the attention blocks (see Figure 3.3a). The generated
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(a) The architecture for the attention fusion module between vision modality and language modal-
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(b) Visual/Textual attention blocks.

Figure 3.3: The proposed self-attention-based Fusion Module.

channel-wise features are then inputted to the self-attention block(s) to compute the at-

tention maps. Specially, the self-attention maps obtained from the different self attention

blocks are concatenated as the final self-attention map in the visual attention block.

Finally, the obtained self-attention maps from the visual attention block and text attention

block are concatenated to generate the fusion attention map of the different modalities.

The obtained fusion attention map is multiplied by the visual and textual intermediate

features respectively (i.e. the input of the visual and text attention block) as the input to
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the following Residual/Transform block in the image/text branch (see Figure 3.3b).

3.3 Proposed Method

In this section, we present in detail the proposed multimodal mutual learning and self-

attention-based feature fusion approaches.

3.3.1 Multimodal Mutual Learning

As seen in the Figure 3.1, the proposed multimodal mutual learning network consists

of three different modalities: vision modality (image branch), language modality (text

branch) and the multimodal modality (fusion of the two vision an language modalities).

Consider a training dataset with a set of samples and labels (xn, yn) ∈ (X ,Y), over a set

of K classes Y ∈ {1, 2, .., K}. To learn the parametric mapping function fs(xn) : X 7→ Y ,

we train our ensemble network with the parameter fs(xn,Θ), where Θ are the parameters

obtained by minimizing a training objective function Ltrain denoted as:

Θ = argmin
θ

Ltrain(y, fs(x, θ)) (3.1)

The total training loss of the ensemble network Ltrain is the sum of the weighted losses of

the different modalities, i.e. the vision modality loss L1, the language modality loss L2

and the multimodal fusion (image/text) loss L3. Specifically, L1 and L2 are obtained by

the mutual learning, which can be also called as the mutual learning loss. Thus, the total

loss Ltrain for a pair (xn, yn) is defined as follows:

Ltrain(Xn; Θ) =
M∑
i=1

wiLi(X
(i)
n ; Θi) = w1L1 + w2L2 + w3L3 (3.2)

where M = 3 is the number of modalities to be performed. Xi and Θi are the corresponding

features and the parameters learned from each modality, Θ = {Θi}Mi=1 are the overall

parameters of the networks to be optimized by Ltrain. wi ∈ [0, 1] s.t.
∑

wi = 1 denote

hyper-parameters which balance the independent loss terms. Thus Xi ∈ Rdi , where di is
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the dimension of the features Xi, and Li, wi ∈ R1.

Mutual Learning Loss

The conventional mutual learning task loss consists of two losses: a supervised learning loss

(e.g. cross-entropy loss) and a mimicry loss (e.g. Kullback-Leibler divergence (KLD). The

conventional mutual learning setting aims to help the training of the current modality by

transferring the knowledge between one or an ensemble of modalities in a mutual learning

manner as in [203]. However, the knowledge learned from the other modality through

the conventional (KLD) includes both the negative part and the positive part that is

transferred to the current modality. Yet, instead of using the standard (KLD) in the

original mutual learning [203], we propose a so-called truncated-KLD loss (Tr-KLDReg)

as a new regularization term in the training loss of the current modality, which enables

us to filter the negative knowledge learned from the other modality, and only keep the

knowledge being positive to the current modality. In this work, the cross-entropy loss Ls

of the current modality in the process can be written as:

Ls(X; Θ) =
K∑
k=1

−yk log(Ps(ŷk|X, θk)) (3.3)

where the probability Ps is the softmax operation given by:

Ps(X; θk) =
ef

θk (X)∑K
k′ e

fθk′ (X)
(3.4)

where K is the number of classes in the dataset, yk is the one-shot label of the feature

X of the input sample, Ps is the class probability estimated by the softmax function.

The truncated-Kullback-Leibler divergence regularization (Tr-KLDReg) loss of the current

modality in process DKLReg
is given by:

DKLReg
(Ps2 ∥ Ps1) =

K∑
k=1

Ps2 max

{
0, log

(
Ps2

Ps1

)}
(3.5)
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where Ps1 is the class probability estimated by the current modality, while Ps2 refers to

the class probability estimated by the other modality. In this way, the mutual learn-

ing approach transfers the positive knowledge learned from the current modality to the

other modality, by adapting the conventional mutual learning with the constraints of the

mimicry loss DKLReg
(i.e. Tr-KLDReg). In the following part, Ps1 refers to the class prob-

abilities of the vision modality, while Ps2 refers to the class probabilities of the language

modality.

(i) Vision Modality Setting: For the vision modality, the overall loss function L1 is

given by:

L1(X1; Θ1) = Ls1(X1; Θ1) + βDKLReg
(Ps2 ∥ Ps1) (3.6)

where β = 0.5 is a hyper-parameter denoting the regularization weight.

The motivation of the conventional mutual learning aims to augment the training

capacity of the network, by introducing the mimicry loss to align the classification prob-

ability of the current modality to the other modality with better training. However, it is

not always true that the other/language modality performs better than the current/vision

modality. In that case, the ongoing training of the current/vision modality will be weak-

ened by the sum of the mimicry loss with the supervised loss (i.e. the cross-entropy loss

for the classification of the document image). For instance, the mutual learning with regu-

larization DKLReg
loss will encourage the current/vision modality to learn only the positive

knowledge from the other/language modality, and thus, prevent the negative knowledge

from being introduced in the ongoing training of the current/vision modality.

(ii) Language Modality Setting: For the language modality, the overall loss function

L2 can be written as:

L2(X2; Θ2) = Ls2(X2; Θ2) + βDKLReg
(Ps1 ∥ Ps2) (3.7)

Similar to the vision modality setting, the mutual learning with regularization DKLReg

loss will prevent to transfer the negative knowledge that might be introduced from the
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other/vision modality, and thus, will encourage the transfer of only the positive knowledge

to the current/language modality throughout the training process.

Multimodal Learning Loss

Instead of classifying document images using the independent vision or language modal-

ities mentioned before, we can also conduct document image classification in a multi-

modal manner by combining the visual features and textual embeddings extracted from

the two modalities trained with the mutual learning approach with regularization (i.e.

MLTr−KLDReg
). We directly superpose the visual features of the trained vision modality

and text embeddings of the trained language modality to generate the ensemble cross-

modal features as shown in Equation 3.9. Note that the dimension of the features ex-

tracted from the vision modality and the language modality are equal in this work and are

denoted as d. A softmax layer at the end of the network is used to learn the classification

of document images based on the ensemble cross-modal features X3. The parameter Θ3

of the softmax layer is optimized by the cross-entropy loss function L3(X3; Θ3) which is

given by:

L3(X3; Θ3) = −
K∑
k=1

yklogP (ŷk|X3,Θ3) (3.8)

with X3 given by:

X3 = [X1 +X2], X3 ∈ Rd (3.9)

3.3.2 Self-Attention-based Fusion Module

The aim of the self-attention-based fusion module (see Figure 3.3) is to enhance the rep-

resentation of the concatenated visual and textual feature maps to capture their salient

features while eliminating to some extent the irrelevant or noisy ones. The adopted self-

attention-based fusion module has been inspired by the attention module in [67, 172],

which is based on the channel-wise re-calibration of feature maps to model the depen-

dency of channels. The intermediate feature maps of each individual modality can be
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interpreted as a set of local descriptors that include global information in the decision

process of the network. This is achieved by using global max pooling and global aver-

age pooling layers to generate channel-wise information. The advantage of these pooling

operations is to enforce correspondences between feature maps and categories.

Consider a set of input features X = [x1, ..., xm] ∈ Rm.dx and output features F =

[f1, ..., fm] ∈ Rm.df , where m is the number of samples, dx and df are the dimensions of

input and output features respectively. For the vision modality, the input features X are

passed to global average pooling and global max pooling layers. The spatial information

for each layer is computed as:

F ′

IAvg
= GlobalAvgPool2D(XIAvg

) (3.10)

F ′

IMax
= GlobalMaxPool2D(XIMax

) (3.11)

where F ′
IAvg

, and F
′
IMax

correspond to the intermediate feature maps of the intermediate

input features XIAvg
, and XIMax

of the vision modality.

For the language modality, the input features are fed to a global max pooling layer:

F ′

TMax
= GlobalMaxPool1D(XTMax

) (3.12)

where F
′
TMax

corresponds to the intermediate feature maps of the input features XTMax
of

the language modality.

For our proposed self-attention-based fusion module, the intermediate feature maps of

the vision and language modalities extracted by the pooling operations are fed to three

independent fully-connected layers which correspond to the vectors query, keys, and values

respectively as follows:

Q = FCq(F
′
); (3.13)

K = FCk(F
′
); (3.14)

VI = FCv(F
′
) (3.15)
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where Q,K,V ∈ Rm.d are three vectors of the same shape fed to the attention function,

which consists of computing the compatibility of the query with the key vectors to retrieve

the corresponding value.

Given a query q and all keys K, we calculate the dot products of q with all keys K, divide

each by a scaling factor
√
df and apply the softmax function to get the attention weights

on the values. The output features of each self-attention module of vision and language

modalities F are given as follows:

A = softmax(
Q.KT√

df
) (3.16)

F = A.V (3.17)

where A is the attention map containing the attention weights for all query-key pairs,

and the output features of the self-attention blocks F are the weighted summation of the

values V determined by the attention function A.

Learning an accurate attention map A is crucial for self-attention learning. The scaled

dot-product attention in Equations 3.16 and 3.17 models the relationship between feature

pairs. Once the spatial information is extracted and fed into the self-attention blocks to

compute the attention maps, they are then concatenated and multiplied by the input fea-

tures of the vision and language modalities for adaptive feature fusion, which is computed

as follows:

M(F) = σ(F).F (3.18)

where M is the feature map that is passed to the following intermediate vision and lan-

guage blocks of the vision and language modalities. The term σ(.) denotes the sigmoid

function. This feature map generated by the proposed self-attention-based fusion module

focuses on the important features of the channels and concentrates on where the salient

features are located.
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3.4 Experimental Setup

3.4.1 Preprocessing

As the vision modality requires document images of a fixed size as an input, we first down-

scale all images to 229×229 pixels. Intuitively, when training DCNNs, data augmentation

has been shown to be effective for real-world image classification [87]. The training data

is augmented by shifting it horizontally and vertically with a range of 0.1. Also, shear

transform is applied with a range of 0.1. To improve regularization of our vision modality,

cutout [42] is applied, which augments the training data by partially occluded versions of

the existing sample images. On the other hand, document images from the RVL-CDIP

dataset are well-oriented and relatively clean. Hence, we run the Tesseract OCR engine.

We used the version 4.0.0− beta.1 of Tesseract based on a LSTM engine to aim for better

accuracy. The resulting extracted text was not post-processed. Although document infor-

mation might be lost in OCR, such as typeface, graphics, layout, stop words, mis-spellings,

symbols and characters, it could benefit from some level of spell checking to improve the

semantic learning. However, we chose to provide the true output of Tesseract OCR as is.

3.4.2 Implementation Details

The network used in our proposed approaches were conducted on a 4 NVIDIA RTX-2080

GPU, using stochastic gradient descent optimizer (SGD), with Nesterov momentum, mini-

batch size of 16, and a learning rate of 1e− 3 decayed with a value of 0.5 every 10 epochs.

the learning rate decay is defined as

lr = initial_lr ∗ drop
(

iter
iter_drop

)
(3.19)

The mutual learning strategy with regularization (i.e. MLTr−KLDReg
) is performed in

each mini-batch throughout the training process. At each iteration, the predictions of

each modality are computed and the parameters are updated according to the predictions

of the other modality as in Equations 3.6, 3.7 and 3.8. The optimization process of

parameters Θ1, Θ2, and Θ3 is performed iteratively until convergence. We considered
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early stopping within 10 epochs to stop the training process once the model’s performance

stops improving on the hold out validation dataset.

3.5 Experiments and Ablation Study

3.5.1 Evaluation Protocol

To evaluate the performance and the generalization ability of our proposed ensemble net-

work, we proceed with intra-dataset and inter-dataset evaluation on the benchmark RVL-

CDIP and Tobacco-3482 datasets. For the intra-dataset evaluation, we train and test

the model on the same dataset -in which the train set and test sets have the same data

distribution- to evaluate the performance of the proposed approaches. Whereas, for the

inter-dataset evaluation, we train and test the ensemble network on different datasets

-having different data distribution- to evaluate the generalization ability of the trained

model. We first train our ensemble network on the RVL-CDIP dataset, then we employ

the intra-dataset evaluation on RVL-CDIP and the inter-dataset evaluation on Tobacco-

3482. Secondly, we train our ensemble network on the Tobacco-3482 dataset, then we

employ the intra-dataset evaluation on Tobacco-3482 and the inter-dataset evaluation on

RVL-CDIP. Note that there is no overlap between training set and test set either in intra-

dataset or inter-dataset evaluation.

We report the accuracy, recall, and precision metrics achieved on the test set for

the following methods: Independent Learning based on the single-modal vision and lan-

guage modalities; Mutual Learning trained with the standard Kullback-Leibler diver-

gence (KLD); Mutual Learning trained with the truncated-Kullback-Leibler divergence

regularization (Tr-KLDReg) loss; and Ensemble Self-Attention Mutual Learning trained

with (Tr-KLDReg). We denote them respectively as IL, MLKLD, MLTr−KLDReg
, and

EAMLTr−KLDReg
(see Tables 3.2, 3.3). We also compute the average precision (AP) from

prediction scores which summarizes a precision-recall curve as the weighted mean of pre-

cision achieved at each threshold, with the increase in recall from the previous threshold
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used as the weight:

AP =
∑
n

(Rn − Rn−1)Pn (3.20)

where Pn and Rn are the precision and recall at the nth threshold. The high area under the

(AP) curve represents both high recall and high precision, where high precision relates to

a low false positive rate, and high recall relates to a low false negative rate. High scores for

both precision and recall show that the model is returning accurate results (high precision),

as well as returning a majority of all positive results (high recall). In addition, we compare

our work against other state-of-the-art methods on the RVL-CDIP and Tobacco-3482

datasets. Note that the baseline methods in Tables 3.1 and 3.4 are not necessarily based on

vision and language modalities. For example, [185] leverages visual features to incorporate

words’ visual information into LayoutLM for document-level pre-training. Also, [184]

leverages pre-training text, layout and image in a multimodal framework by using text-

image alignment and text-image matching tasks in the pre-training stage, where the cross-

modality interaction is better learned.

3.5.2 Intra-dataset Evaluation

Results on the RVL-CDIP Dataset

On the large-scale RVL-CDIP dataset, all of the adopted approaches in this work achieve

comparable performance with the state-of-the-art models. We report the overall accuracy

results in Table 3.1. compared to our previous results in Chapter 2 and in our work

from [17] and other baseline methods. The proposed EAMLTr−KLDReg
model achieves the

best performance in terms of accuracy for the single-modal vision and language modal-

ities, and for the multimodal fusion modality at an accuracy of 97.67%, 97.63%, and

97.70% respectively. The adopted self-attention-based fusion module has shown its effec-

tiveness in capturing simultaneously the inter-modal interactions between image features

and text embeddings, along with the mutual learning approach with regularization (i.e.

MLTr−KLDReg
). Therefore, it improves the global classification performance of the single-
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Table 3.1: The overall classification accuracy of our best EAMLTr−KLDReg
method against

baseline methods on the RVL-CDIP dataset.

Method Model Accuracy(%)

Vision
Nicolas et al. [12]

89.1
Language 74.6
Multimodal 90.6

Vision
Dauphinee et al. [38]

90.24
Language 82.23
Multimodal 93.07

Vision
Cross-Modal [17]

91.45
Language 84.96
Multimodal 97.05

Vision
EAMLTr−KLDReg

(Ours)
97.67

Language 97.63
Multimodal 97.70

Baselines

Harley et al. [61] 89.80
Csurka et al. [35] 90.70

Tensmeyer et al. [166] 90.94
Azfal et al. [4] 90.97
Das et al. [36] 91.11
Das et al. [36] 92.21

Ferrando et al. [48] 92.31
Xu et al. [185] 94.42
Xu et al. [184] 95.64

modal and cross-modal modalities and outperforms the state-of-the-art baselines.

Evaluation of the Single-Modal Tasks on the RVL-CDIP dataset

(I.) IL vs MLKLD: The reported results in Table 3.2 illustrate the impact of training the

independent vision and language modalities in a mutual learning manner, on the learning

process of both modalities. We observe that the MLKLD approach improves the classifi-

cation performance of the vision modality from 85.04% to 88.87%, while it deteriorated

the performance of the language modality from 84.96% to 80.89%. We explain this per-

formance deterioration of the language modality by learning the negative knowledge from

the vision modality. In fact, the knowledge transferred via the standard (KLD) loss harms

the ongoing training of the current/language modality in process. Here, given image fea-

tures from an image sample with its corresponding text embeddings, the negative learning
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Table 3.2: The overall classification accuracy(Acc.), recall(R.), precision(Pr.) metrics
of the proposed approaches on the RVL-CDIP dataset. IL, MLKLD, MLTr−KLDReg

, and
EAMLTr−KLDReg

denote Independent Learning, Mutual Learning with the standard KLD,
Mutual Learning with the truncated-KLD, and Ensemble self-attention-based Mutual
Learning with the truncated-KLD respectively.

Modality

Method Vision Modality Language Modality Cross-Modal Fusion

Acc.(%) R. Pr. Acc.(%) R. Pr. Acc.(%) R. Pr.
IL 85.04 0.85 0.85 84.96 0.85 0.85 94.44 0.94 0.94
MLKLD 88.87 0.89 0.88 80.89 0.81 0.80 90.06 0.90 0.90
MLTr−KLDReg

90.81 0.91 0.91 88.80 0.89 0.89 96.28 0.96 0.96
EAMLTr−KLDReg

97.67 0.98 0.98 97.63 0.98 0.98 97.70 0.98 0.98

comes from the low class probabilities predicted by the vision modality, while at the same

time, the language modality has made the right predictions from the same sample. In

this way, the mutual training is harmed for the language modality and its loss variation

L2(X2; Θ2) becomes slower. Thus, using the Mutual Learning MLKLD approach actually

makes the language modality worse than the Independent Learning (IL) approach.

Nonetheless, for the vision modality, the classification accuracy has improved. This

means that transferring the knowledge from the language modality to the vision modality

by learning mutually from the text predictions is effective.

(II.) IL vs MLTr−KLDReg
: The classification results in Table 3.2 show that, train-

ing the vision and language modalities in a mutual learning manner -trained with the

regularization term (i.e. Tr-KLDReg)- provide an improvement compared to the IL and

the MLKLD methods. It improves the classification accuracy of the vision modality from

85.04% for the IL method to 90.81% for the MLTr−KLDReg
method. Also, it enhances the

predictions of the language modality from 84.96% to 88.80% respectively.

Accordingly, the network keeps learning only from its cross-entropy loss Ls(X; Θ) when

the knowledge to be transferred from the other modality will harm the ongoing training

of the current modality.

(III.) MLTr−KLDReg
vs EAMLTr−KLDReg

: The proposed self-attention-based fusion

module for visual and textual feature fusion focuses on the salient feature maps gen-
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erated from the image and the text modalities and suppresses the unnecessary ones to

efficiently leverage these two modalities. The introduction of this attention module to

fuse the two modalities along with the mutual learning approach has shown its efficiency

compared to the MLTr−KLDReg
method as shown in Table 3.2. We demonstrate that the

EAMLTr−KLDReg
method outperforms MLTr−KLDReg

method with a significant margin at

an accuracy of 97.67%, 97.63% for the vision and language modalities respectively. The

attention module enhances the classification performance of all classes for the single-modal

modalities. therefore, leveraging both modalities to one another in a middle fusion manner

along with the mutual learning strategy encourage collaborative learning.

Evaluation of the Multimodal Tasks on the RVL-CDIP Dataset

In the multimodal learning task, the learned visual and language features are combined to

conduct document image classification. At first, from Table 3.2, we see that the multimodal

fusion predictions outperform the independent predictions of the single-modal modalities

for each method. Moreover, jointly learning both modalities in an ensemble network

benefit from training vision modality and text modalities both independently (IL) and in

a mutual learning manner (MLTr−KLDReg
). The ensemble predictions learned across the

EAMLTr−KLDReg
method with an accuracy of 97.70%, outperform the predictions learned

from training the ensemble network across either the MLTr−KLDReg
, the MLKLD, or the IL

approaches at an accuracy of 96.28%, 90.06%, and 94.44% respectively. That is to say, the

ability of the self-attention-based fusion module along with the mutual learning strategy

-trained with the regularization term (i.e. Tr-KLDReg)- to improve ensemble models is

beneficial for the task of document image classification, which outperforms the state-of-

the-art results for the multimodal task as seen in Table 3.1. Accordingly, the proposed

EAMLTr−KLDReg
method manages to correct the classification errors produced by vision

and language modalities during the learning process. Hence, it provides state-of-the-art

classification results for the task of document image classification.

In this manner, we showed the effectiveness of leveraging visual and textual features

learned in a mutual learning with regularization strategy through a self-attention-based

feature fusion module. Our approach learns simultaneously relevant and accurate infor-
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Figure 3.4: Multimodal Fusion Modality of the MLTr−KLDReg
method.

mation from the vision modality, and the language modality during the training stage. It

enhances the ensemble model predictions by encouraging attention collaborative learning

from one modality to another. Also, it boosts the overall classification performance. We

report in Figures 3.4 and 3.5, the confusion matrices of the cross-modal modalities of the

MLTr−KLDReg
and the EAMLTr−KLDReg

methods respectively.
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Figure 3.5: Multimodal Fusion Modality of the EAMLTr−KLDReg
method.

Results on the Tobacco-3482 Dataset

As reported in Table 3.3, which corresponds to the achieved performance on the Tobacco-

3482 dataset, the EAMLTr−KLDReg
method improves the classification performance signif-

icantly. The proposed EAMLTr−KLDReg
method improves the overall performance of the

single-modal and cross-modal modalities at an accuracy of 97.99%, 96.27%, and 98.57%

for the vision modality, for the language modality, and for the multimodal fusion modality

respectively compared to other methods. Thus, it achieves compelling performance results

compared to the baseline methods on the Tobacco-3482 dataset (see Table 3.4).
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Table 3.3: The overall classification accuracy(Acc.), recall(R.), precision(Pr.) metrics
of the proposed approaches on the Tobacco-3482 dataset. IL, MLKLD, MLTr−KLDReg

,
and EAMLTr−KLDReg

denote Independent Learning, Mutual Learning with the standard
KLD, Mutual Learning with the truncated-KLD, and Ensemble self-attention-based Mu-
tual Learning with the truncated-KLD respectively.

Modality

Method vision modality language modality multimodal Fusion

Acc.(%) R. Pr. Acc.(%) R. Pr. Acc.(%) R. Pr.
IL 96.17 0.96 0.96 96.02 0.96 0.95 96.95 0.97 0.97
MLKLD 93.69 0.92 0.92 88.82 0.87 0.86 94.84 0.95 0.93
MLTr−KLDReg

97.70 0.97 0.96 96.27 0.95 0.96 98.28 0.97 0.98
EAMLTr−KLDReg

97.99 0.97 0.98 96.27 0.95 0.96 98.57 0.98 0.98

Besides, the results illustrate that training the vision and language modalities in a

mutual learning manner with the MLKLD method weakens the learning capacity of the

language modality. Therefore, we show the effectiveness of the MLTr−KLDReg
approach

that transfers only the positive knowledge from the current modality in process to the

other modality.

3.5.3 Intra-Dataset Confusion Matrices

Figures 3.4 and 3.5 illustrate the confusion matrices of the EAMLTr−KLDReg
and MLTr−KLDReg

methods. The figures show that the combined predictions from the vision and language

modalities through a fusion methodology improve the classification accuracy of each class

of the dataset independently, compared to the single-modal vision and language modali-

ties. Furthermore, the EAMLTr−KLDReg
method outperforms the MLTr−KLDReg

methods

given the multimodal fusion classification results.

3.5.4 Inter-dataset Evaluation

This subsection describes an experimental investigation into the inter-dataset generaliza-

tion of our fully-supervised deep network models, trained to distinguish between several

categories of documents. The experiments conducted on inter-dataset evaluation question

the implied link that learning cross-modal interactions and alignment between different



3.5. Experiments and Ablation Study 79

Table 3.4: The overall classification accuracy of the proposed approaches against baseline
methods on the Tobacco-3482 dataset.

Method Model Accuracy(%)

Image
Nicolas et al. [12]

84.5
Text 73.8
multimodal 87.8

Image
Asim et al. [11]

93.2
Text 87.1
multimodal 95.8

Image
Ferrando et al. [48]

94.04
Text -
multimodal 94.90

Image
Cross-Modal [16]

96.25
Text 97.18
multimodal 99.71

Image
EAMLTr−KLDReg

(Ours)
97.99

Text 96.27
multimodal 98.57

Baselines

Kumar et al. [90] 43.8
Kang et al. [76] 65.37
Afzal et al. [3] 76.6

Harley et al. [61] 79.9
Noce et al. [126] 79.8

modalities (i.e. vision and language) -leading to great intra-dataset generalization- are an

essential component for building generalized frameworks that lead to great inter-dataset

generalization.

Generalization Experiment Design on the Tobacco-3482 Dataset

To evaluate the generalization ability of our ensemble network trained on the RVL-CDIP

dataset, we use the benchmark Tobacco-3482 dataset and report the overall accuracy,

recall, precision, and F1-score as useful metrics to evaluate the performance of the single-

modal and cross-modal modalities. Since the Tobacco-3482 is an imbalanced dataset, we

focus more on the precision-recall metrics which are useful to measure the success of pre-

dictions when the classes are imbalanced, which are reported in Tables 3.5 and 3.6. Note

that the precision metric is a measure of result relevancy, while the recall metric is a mea-
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Table 3.5: The Inter-Dataset Evaluation results of the Mutual Learning MLTr−KLDReg

method on the Tobacco-3482 dataset.

Mutual Learning (MLTr−KLDReg
)

Class Labels Vision Modality Language Modality Modality Fusion #Nb. Samples

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score
Advertisement 0.9659 0.9659 0.9103 0.9596 0.8261 0.8879 0.9772 0.9304 0.9532 230
Email 0.9688 0.9850 0.9768 0.9577 0.9833 0.9703 0.9673 0.9866 0.9769 599
Form 0.9484 0.8956 0.9212 0.9360 0.8817 0.9080 0.9408 0.9582 0.9494 431
Letter 0.8959 0.9718 0.9323 0.9035 0.9577 0.9298 0.9329 0.9806 0.9561 567
Memo 0.9562 0.9855 0.9706 0.9466 0.9726 0.9594 0.9717 0.9968 0.9841 620
News article 0.8650 0.9202 0.8918 0.8406 0.9255 0.8810 0.9146 0.9681 0.9406 188
Resume 0.9836 1 0.9917 0.9836 1 0.9917 0.9756 1 0.9877 120
Scientific publication 0.9462 0.3372 0.4972 0.8889 0.3372 0.4889 0.9368 0.3410 0.50 261
Scientific report 0.2907 0.2491 0.2683 0.2707 0.2340 0.2510 0.2773 0.2302 0.2515 265

Overall Accuracy (%) 84.82 83.72 86.68

Table 3.6: The Inter-Dataset Evaluation results of the Ensemble Self-Attention Mutual
Learning (EAMLTr−KLDReg

) approach on the Tobacco-3482 dataset.

Ensemble Self-Attention Mutual Learning (EAMLTr−KLDReg
)

Class Labels Vision Modality Language Modality Multimodal Fusion #Nb. Samples

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score
Advertisement 0.9910 0.9565 0.9735 0.9911 0.9696 0.9802 0.9865 0.9565 0.9713 230
Email 0.9916 0.99 0.9908 0.9933 0.99 0.9916 0.99 0.99 0.99 599
Form 0.9628 0.9606 0.9617 0.9630 0.9652 0.9641 0.9627 0.9582 0.9605 431
Letter 0.8983 0.9965 0.9448 0.9040 0.9965 0.9480 0.9056 0.9982 0.9497 567
Memo 0.9857 1 0.9928 0.9841 1 0.9920 0.9857 1 0.9928 620
News article 0.9490 0.9894 0.9688 0.9588 0.9894 0.9738 0.9487 0.9840 0.9661 188
Resume 0.9917 1 0.9959 0.9917 1 0.9959 0.9836 1 0.9917 120
Scientific publication 0.9519 0.3793 0.5425 0.9592 0.3602 0.5237 0.9364 0.3946 0.5553 261
Scientific report 0.2374 0.1774 0.2030 0.2261 0.1698 0.1940 0.2709 0.2075 0.2350 265

Overall Accuracy (%) 87.29 87.23 87.63

sure of how many truly relevant results are returned. The F1-score measures the weighted

average of the precision and recall, while the relative contribution of precision and recall

to the F1-score are equal. However, we evaluate on 9 classes of the RVL-CDIP dataset

which overlap with the classes of the Tobacco-3482 dataset, that are: Advertisement,

Email, Form, Letter, Memo, News article, Resume, Scientific publication, and Scientific

report. We exclude the category named Note from the Tobacco-3482 dataset which does

not overlap with any of the categories of the RVL-CDIP dataset.

As it can be seen from Tables 3.5 and 3.6 and Figures 3.7 and 3.9a, the proposed

EAMLTr−KLDReg
method displays a better generalization behavior than the MLTr−KLDReg

method Figures 3.8 and 3.9b over 8 categories that overlap with the RVL-CDIP dataset.

The EAMLTr−KLDReg
method performs better with an overall accuracy of 87.29% for the

vision modality, 87.23% for the language modality, and 87.63% for the multimodal fusion
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Table 3.7: The Inter-Dataset Evaluation results of the Ensemble Self-Attention Mutual
Learning (EAMLTr−KLDReg

) approach on the RVL-CDIP dataset.

Ensemble Self-Attention Mutual Learning (EAMLTr−KLDReg
)

Class Labels Vision Modality Language Modality Multimodal Fusion

Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score
Advertisement 0.8292 0.9337 0.8783 0.8702 0.7281 0.7929 0.9381 0.9769 0.9571
Email 0.9654 0.9799 0.9726 0.9820 0.9366 0.9588 0.9944 0.9964 0.9954
Form 0.7953 0.9126 0.8499 0.9289 0.8746 0.9009 0.9588 0.9846 0.9715
Letter 0.9763 0.8109 0.8859 0.9417 0.8816 0.9106 0.9970 0.9574 0.9768
Memo 0.9660 0.8874 0.9250 0.9630 0.8926 0.9265 0.9972 0.9729 0.9849
News article 0.9577 0.7579 0.8462 0.9574 0.8076 0.8762 0.9966 0.9197 0.9566
Resume 0.9811 0.8802 0.9279 0.9985 0.9718 0.9850 0.9998 0.9891 0.9944
Scientific publication 0.5298 0.8827 0.6622 0.5218 0.9268 0.6677 0.5203 0.9856 0.6810
Scientific report 0.1858 0.0565 0.0867 0.3246 0.0974 0.1498 0.2889 0.0197 0.0368

Overall Accuracy (%) 78.89 79.06 86.68

modality, compared to 84.82%, 83.72%, and 86.68% for the MLTr−KLDReg
method respec-

tively. Regarding the Scientific publication category, the recall of the model considering

the EAMLTr−KLDReg
and MLTr−KLDReg

methods is very low. Amongst all the samples,

the ability of the model to find the positive samples of the Scientific publication category

is only at 37.93%, 36.02%, and 39.46% for the vision modality, the language modality

and the multimodal fusion modality respectively for the EAMLTr−KLDReg
method, while

it is at 33.72%, 33.72%, and 34.10% for each modality respectively for the MLTr−KLDReg

method. The low recall for the two methods is due to the overlap between two categories

that are Scientific publication and Scientific report.

After all, we see that for the two proposed EAMLTr−KLDReg
and MLTr−KLDReg

meth-

ods, the model returns very few results compared to the intra-dataset evaluation, but most

of its predicted labels are correct when compared to the training labels for the single-modal

modalities, as well as for the multimodal fusion modality. Amongst all classes, the general-

ization ability of the model given the two methods is very poor regarding the class Scientific

report, where the precision and recall are very low, whereas, for the intra-dataset evalu-

ation, the performance of the ensemble network concerning the category Scientific report

is at 94.62%, and 94.30% for the multimodal fusion modality of the EAMLTr−KLDReg
and

MLTr−KLDReg
methods respectively.

Therefore, Table 3.8 illustrates the average-precision scores (AP) of the common cate-

gories for the two proposed methods MLTr−KLDReg
, and EAMLTr−KLDReg

. Hence, we relate
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Table 3.8: The average precision (AP) scores of the inter-dataset evaluation of the
MLTr−KLDReg

and the EAMLTr−KLDReg
for the multimodal Fusion modality on the

Tobacco-3482 dataset.

Method

Class Labels MLTr−KLDReg
EAMLTr−KLDReg

Advertisement 0.94 1.00
Email 0.99 1.00
Form 0.97 0.99
Letter 0.98 0.99
Memo 0.99 1.00
News article 0.96 1.00
Resume 1.00 1.00
Scientific publication 0.50 0.69
Scientific report 0.28 0.29

Micro-Average Precision 0.86 0.91

a good generalization ability of our proposed EAMLTr−KLDReg
and MLTr−KLDReg

meth-

ods trained on RVL-CDIP, and evaluated on Tobacco-3482, regarding 7 common classes

between the RVL-CDIP and Tobacco-3482 datasets, except for the Scientific publication

and the Scientific report categories where it generalizes the worst.

We illustrate in Figure 3.6 the precision-recall curves of the best and worst classes

for the cross-modal modalities of the EAMLTr−KLDReg
and MLTr−KLDReg

methods respec-

tively. It shows the trade-off between precision and recall for different thresholds. We

compute the average precision (AP) from prediction scores which summarizes a precision-

recall curve. We see that the model is returning accurate results (high precision), as well

as a majority of positive results (high recall), as it is the case for the categories Resume,

Email, and Memo, where most of the predicted samples are labeled correctly for either

the EAMLTr−KLDReg
or the MLTr−KLDReg

methods. However, we observe a good precision

but low recall for the Scientific publication category, and a bad precision and recall for the

Scientific report category.

Generalization Experiment Design on the RVL-CDIP Dataset

Symmetrically, we propose to evaluate the generalization ability of our proposed model

trained on the Tobacco-3482 dataset and validated on the large-scale RVL-CDIP dataset.
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Figure 3.6: The Precision-Recall Curves of the Inter-Dataset Evaluation of the best and the
worst classes of the cross-modal modalities for the two EAMLTr−KLDReg

and MLTr−KLDReg

methods. (a) illustrates the P-R curves of the best classes. (b) illustrates the P-R curves
of the worst classes.

The overall accuracy, recall, precision, and F1-score metrics of our best EAMLTr−KLDReg

approach are proposed in Table 3.7. We proceed with the same evaluation protocol as in

Section 3.5.4, where there are 9 classes of the Tobacco-3482 dataset that overlap with the

classes of the RVL-CDIP dataset.

From Table 3.7, the EAMLTr−KLDReg
method displays a better generalization ability

compared to the other methods. It performs the best with an overall accuracy of 78.89%

for the vision modality, 79.06% for the language modality, and 86.68% for the multimodal

fusion modality. Amongst all classes, and similarly to the inter-dataset evaluation on the

Tobacco-3482 dataset, the network generalizes the worst for the same categories which are

Scientific publication and Scientific report, while it generalizes the best for the categories

Resume, Letter, Memo, and Email. Moreover, the ensemble network manages to predict

only 10.50% of samples that belong to the Scientific report category as true positives,

while 85.26% are predicted as they belong to the Scientific publication category. At this

stage, the precision and recall of the model are very low regarding the Scientific report

category for each modality. As mentioned in Section 3.5.4, the bad precision and recall

are due to the overlap between the two categories, which results to a bad generalization
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Figure 3.7: (a.) The Confusion Matrix of the Vision Modality of our best EAMLTr−KLDReg
)

method. (b.) The Confusion Matrix of the Language Modality of our best
EAMLTr−KLDReg

) method.

ability of the EAMLTr−KLDReg
method considering only the two categories, contrary to

the intra-dataset evaluation, where the ensemble network achieves accurate results with

high precision and recall for all the categories.

Therefore, we relate a good generalization ability of our proposed EAMLTr−KLDReg

trained on Tobacco-3482, and evaluated on RVL-CDIP, regarding 7 common classes be-

tween the RVL-CDIP and Tobacco-3482 datasets, except for the Scientific publication and

the Scientific report categories where it generalizes the worst. These results are encourag-

ing as we can see that our proposed system is able to learn on a smaller dataset consisting

of 6k documents compared to the RVL-CDIP training set, which consists of 320k.

3.5.5 Inter-Dataset Confusion Matrices

The Confusion matrices in Figure 3.7 display the generalization ability of our best EAMLTr−KLDReg

approach for the vision, and language, modalities respectively. Symmetrically, Figure 3.8

refer to the vision, and language modalities of the proposed MLTr−KLDReg
method. Note

that these methods are trained on RVLCDIP, and evaluated on the Tobacco-3482 dataset.
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Figure 3.8: (a.) The confusion matrix of the Vision Modality of the MLTr−KLDReg
method.

(b.) The confusion matrix of the Language Modality of the MLTr−KLDReg
method

3.6 Discussion

In this chapter, we have proposed a hybrid ensemble network that jointly learns the visual

structural properties and the corresponding textual embeddings from document images

through a self-attention-based mutual learning strategy ( i.e. EAMLTr−KLDReg
). We

have shown that the designed self-attention-based fusion module along with the mutual

learning approach with the regularization term enables the current modality to learn the

positive knowledge from the other modality instead of the negative knowledge, which

weakens the learning capacity of the current modality during the training stage. This

constraint has been realized by adding a mimicry truncated-Kullback–Leibler divergence

regularization loss (i.e. Tr-KLDReg) to the conventional supervised setting. With this

approach, we have further combined the mutual predictions computed by the trained vision

and language modalities in an ensemble network through multimodal learning to boost the

overall classification accuracy of document images. The proposed mutual learning strategy

with regularization has shown to be efficient in improving the overall performance of the

ensemble model, as well the performance of the single-modal modalities. Finally, we

displayed in detail the generalization capacity of our proposed models to classify unseen
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Figure 3.9: (a.) The confusion matrix of the Multimodal Fusion Modality of our best
EAMLTr−KLDReg

method. (b.) The confusion matrix of the Multimodal Fusion Modality
of the MLTr−KLDReg

method.

document data by performing inter-dataset evaluation. We have demonstrated that cross-

modal interactions and alignment between vision and language input queries in a fully-

supervised manner are beneficial for developing a multimodal network that leads to good

inter-dataset generalization.

Nevertheless, although these end-to-end multimodal deep neural networks often achieve

superior performance, they have several limitations in real-world scenarios: (1) When per-

forming cross-modal document classification during inference, the vision-language sample

pairs need to be fed to the fusion modules to calculate the prediction scores to classify

documents, which remains computationally expensive, as depicted in this Chapter as well

as in Chapter 2. (2) To model high-level interactions between image regions and text

sequences, in contrast to the previous related works that leverage different modalities into

a joint embedding space, align them on the final embedding level, and thus, fail to model

fine-grained interactions between the different modalities. In the Chapter 4, we address a

more general and model-agnostic multimodal document understanding framework which is

capable of learning more efficient cross-modal representations by modeling intra-modality

and inter-modality interactions and relationships between vision and language modalities.
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We make use of a cross-attention middle feature fusion transformer module to establish

representation learning at the semantic level (by exploiting the relations between different

document components). As well, specifically, we introduce a cross-modality learning strat-

egy in the pre-training phase for contextualized comprehension on document components

across vision and language modalities, which is further fine-tuned on two downstream

applications which are document classification, and few-shot learning.
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CHAPTER 4

Multimodal Document Representation Learning

The deepest of level of communication is not communication, but communion. It is

wordless. . . beyond speech. . . beyond concept.

– Thomas Merton

4.1 Motivation

In Chapter 2, we developed a two-stream deep network to perform cross-modal document

image classification based on an early feature fusion methodology (i.e. equal concatena-

tion, average ensembling). As well, in chapter 3, we developed a multimodal deep network,

trained in an end-to-end fully-supervised learning fashion, based on an intermediate self-

attention feature fusion methodology. In contrast to the previous chapters, our goal is

to develop a task-agnostic representation learning framework for document understanding

in a pre-train-then-finetune paradigm. We aim to develop a domain-agnostic multimodal

backbone for a better document understanding, by enhancing the cross-modal interactions

within and across vision and language modalities. This leads to the following research ques-

tions of: (1) can multimodal deep networks lead to task-agnostic cross-modal

89
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representations for document data ?; (2) how to fully exploit visual and textual

information of semantically meaningful components in document data, and to

model the internal relationships among its components; (3) is a task-agnostic

framework -pre-trained either on large-scale or low-scale document datasets-

able to lead to domain-agnostic inter-dataset generalization over end-to-end

fully-supervised learning frameworks, as established in Chapter 3 ?.

Multimodal learning from document data has achieved great success lately as it al-

lows us to pre-train semantically meaningful features as a prior into a learnable down-

stream approach. In this chapter we approach the document classification problem by

learning cross-modal representations through language and vision cues, considering intra-

and inter-modality relationships. Instead of merging features from different modalities

into a common representation space, the proposed method exploits high-level interactions

and learns relevant semantic information from effective attention flows within and across

modalities. The proposed learning objective is devised between intra- and inter-modality

alignment tasks, where the similarity distribution per task is computed by contracting pos-

itive sample pairs while simultaneously contrasting negative ones in the common feature

representation spaces.

The recent research has started to consider how to leverage and incorporate the rela-

tions within those different modalities in a unified network to capture latent information for

exploring better yet effective multimodal representations. Such systems have shown their

effectiveness in improving multimodal representation learning in a pretrain-then-finetune

paradigm, where models are first pre-trained with large-scale data and then fine-tuned to

each downstream task [9, 21, 72, 101, 104, 139, 184, 185].

Several studies that have been devoted to perform the downstream document classifi-

cation task, often used shallow cross-modal feature fusion modules to leverage visual and

textual features such as naive concatenation, element-wise multiplication, and ensemble

methods to extract cross-modal features [157, 188, 196]. Despite being studied extensively,

the shortcomings of the preceding cross-modal feature fusion approaches are twofold. First,

during inference, the vision-language sample pairs need to be fed to the fusion modules

to calculate the prediction scores in order to perform the document classification task,
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which remains computationally expensive. Second, the existing vision-language modality

gap makes it difficult to capture high-level interactions between image regions and text

sequences, as the feature representations of the visual and textual modalities are usually

inconsistent and their distributions span different feature space.

In contrast, to embody the idea that better features make better classifiers, a framework

that is based on the pretrain-then-finetune paradigm, which allows us to learn more general

and task-agnostic cross-modal representations is highly required. Incorporating intra-

modality and inter-modality relations from vision and language modalities can lead to

more compact common representations. The resulting common representation space is an

intermediate that implicitly measures the cross-modal similarities between image and text

sequence sample pairs. Intuitively, the multimodality of documents requires multimodal

reasoning over multimodal inputs, where data related to the same topic of interest tend to

appear together. For instance, some types of documents such as handwriting categories

are mainly not recognizable by OCR algorithms, which leads to losing textual information,

and thus, semantic meaning. Thus, the visual information within the image regions of the

document should be strongly emphasized. Meanwhile, some type of documents such as

file folder category do not contain any visual spatial information, in which case a stronger

emphasis on the textual information within the language cues is highly required.

To address the heterogeneity gap and the lack of closer interactions between image

regions and text sequences within and across vision-language modalities, we propose a

novel cross-modal contrastive pre-training model by learning cross-modal representations

as a prior in a unified pre-training network. To encourage cross-modal learning, we model

intra-modality and inter-modality representations between the cues of the vision-language

modalities in the pre-training stage. We design an Inter-Modality Cross-Attention module

denoted as (InterMCA) to capture relevant features from image regions and semantic

meaning from text sequences. We aim to ensure that features from vision and language

modalities map to closer points in the joint embedding space. Nevertheless, existing cross-

modal document understanding approaches lack an explicit measure that also ensures

that similar features from the same modality stay closer in the same joint embedding

space. We assume that if similar features from the same category of each modality map
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to distant points in the joint embedding space, then the embeddings generated within

vision and language modalities will lack semantically enriched information, and thus, will

generalize badly for downstream applications. As a remedy, we introduce intra-modality

representation which is carried within an Intra-Modality Self-Attention module denoted as

(IntraMSA). This module is devoted to constructing intra-modality relations within each

modality according to the self-attention weights of image regions and text sequences.

Moreover, leveraging cross-modal relations through the InterMCA and IntraMSA at-

tention modules requires a cross-modal learning objective. In the pre-training stage, we

propose to train the network with a combinatorial cross-modal contrastive learning loss,

which aims to simultaneously learn visual and textual features that represent document

data in a more efficient manner than direct adoption of a single-modal contrastive loss for

vision or language only modalities. For the downstream application, we run single-modal

inference on top of the generated cross-modal embeddings to perform the specific docu-

ment classification task. Also, we propose a new baseline in the few-shot setting. To the

best of our knowledge, this is the first time to evaluate the generalization ability of a mul-

timodal document embedding network on fewer samples in the document understanding

field. The superior performance on the benchmark document datasets (i.e. RVL-CDIP

and Tobacco-3482) demonstrates that the proposed cross-modal learning network, denoted

as VLCDoC, can lead to learn robust and domain-agnostic cross-modal features in both

document image classification and for few-shot document classification settings.

The main contributions of this work are summarized as follows:

• We design a unified task-agnostic document pre-training framework for a better

cross-modal representation learning. Our network consists of leveraging two flexible

extra levels of cross-modal interactions through cross-attention (InterMCA) and self-

attention (IntraMSA) middle feature fusion-based attention modules. These mod-

ules capture high-level interactions between visual-textual cues within the different

document components.

• We propose a cross-modal contrastive learning objective to further explore the re-

lations between vision and language cues. Compared to the classic single-modal
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Figure 4.1: Overview of the proposed cross-modal contrastive learning method. The net-
work is composed of InterMCA and IntraMSA modules with flexible attention mechanisms
to learn cross-modal representations in a cross-modal contrastive learning fashion [19]

.

contrastive learning, the proposed cross-modal contrastive loss allows to learn and

align the feature representations within and across vision-language modalities.

• Under a fair comparison setting, our task-agnostic framework demonstrates a good

generalization ability among vision-language based approaches on the benchmark

document datasets. It enables us to learn robust and domain-agnostic feature rep-

resentations. Thus, it achieves better results compared to the generalization experi-

ment design conducted in Chapter 3 for the document classification task.

• On the benchmark RVL-CDIP and Tobacco-3482 document datasets. We conduct

for the first time in the document understanding literature, a new baseline on the

few-shot learning setting. Thus, it achieves compelling results with significantly

fewer document images used in the pre-training stage (i.e. when pre-trained on the

Tobacco-3482 dataset).

4.2 Methodology

Figure 4.1 shows the overall architecture of the proposed cross-modal network. VLCDoC

is an encoder-only transformer-based architecture trained in an end-to-end fashion. It
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has two main modalities to perform visual-textual feature extraction. VLCDoC enforces

deep multimodal interaction in transformer layers using a cross-modal attention module.

The VLCDoC architecture network consists of two main schemes: one contrastive learning

branch for cross-modal representation learning, and one cross-entropy learning branch for

classifier learning. This feature learning strategy aims to learn a feature space which has

the property of intra-class compactness and inter-class separability, while the classifier

learning branch is expected to learn a domain-agnostic classifier with less bias based on

the discriminative features obtained from the encoder branch.

4.2.1 Model Architecture

In this chapter, we design a multimodal transformer-based architecture for document un-

derstanding with unified cross-modal representation learning. Transformers have achieved

great success in NLP, and are now heavily applied to images for different tasks such as im-

age recognition, image classification, image captioning, image retrieval, and so on. Unlike

deep CNNs which use pixel arrays, transformers applied to images (i.e. vision transform-

ers (ViT)) split the images into visual tokens. The visual transformer divides an image

into fixed-size patches, correctly embeds each of them, and includes positional embedding

as an input to the transformer encoder. Moreover, ViT models have proven to be effective

and outperform deep CNN models by almost four times when it comes to computational

efficiency and accuracy.

Visual Features

To extract the visual embeddings, we follow the original pre-trained vision transformer

architecture ViT-B/16 [46] as a backbone. Let vvisn ∈ RH×W×C be the document image.

We reshape it into a sequence of flattened 2D patches vvisnp ∈ RN×(P 2·C), where (H,W )

is the resolution of the document image, C = 3 is the number of channels, (P, P ) is

the resolution of each document patch, and N = HW/P 2 is the resulting number of

patches, which serve as the input sequence length for the transformer encoder. The patches

obtained are then flattened and mapped to d dimensions as the hidden embedding size.

The resulting visual embeddings are then represented as V = vivisn ∈ Rdvisn , where dvisn is
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Figure 4.2: Illustration of the InterMCA and IntraMSA attention modules. The visual
and textual features are transformed into query, key, and value vectors. They are jointly
leveraged and are further fused to transfer attention flows between modalities to update
the original features.

a 2D vector.

Textual Features

To extract the textual embeddings, we first extract the text tlang within the document

images via an off-the shelf optical character recognition (OCR) system, e.g. Tesseract

OCR1. The input sequences extracted with the OCR are further fed into the pre-trained

BERTBase uncased encoder [41]. The resulting textual embeddings are then represented

as T = tilang ∈ Rdlang , where dlang is a 2D vector of the same size as dvisn. This way, we

ensure that the visual and the textual embeddings are of the same shape.

1https://github.com/tesseract-ocr/tesseract

https://github.com/tesseract-ocr/tesseract
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4.2.2 Cross-Modal Alignment

In this subsection, we introduce the cross-attention (InterMCA) and self-attention (In-

traMSA) modules that capture intrinsic patterns by modeling the inter-modality and

intra-modality relationships for image regions and texts. Specifically, our proposed atten-

tion modules are transformer-based architectures as in [172]. It consists of a multi-head

self-attention sub-layer, and a position-wise feed-forward sub-layer fFF . Meanwhile, resid-

ual connections followed by the layer normalization fLN are also applied around each of

the two sub-layers. In the multi-head self-attention sub-layer, the attention is calculated

h times, making it to be multi-headed. This is achieved by projecting the queries Q, keys

K, and values V h times by using different learnable linear projections.

Inter-Modality Alignment

The inter-modality cross-attention module InterMCA aims to enhance the cross-modal

features by embracing cross-modal interactions across image regions and texts. This mod-

ule aims to transfer the salient information from one modality to another as illustrated in

Figure 4.2. Let Vl = {v1, v2, ..., vm}, Ll = {l1, l2, ..., lm} be the sets of intermediate visual

and textual features at the l-th layer of the vision and language modalities respectively,

where vi ∈ R1×df , li ∈ R1×df , and V ∈ Rm×df , L ∈ Rm×df . Note that the visual and

textual features have the same dimensional feature vector df . To accomplish cross-modal

interaction, we apply at first dot-product attention to combine the queries of each modality

with the keys of the other. The weighted sum of the value of each modality is computed

following the equations:

InterMCAL→V(Vl) = softmax

(
QVlK⊤

Ll√
dk

)
VLl (4.1)

InterMCAV→L(Ll) = softmax

(
QLlK⊤

Vl√
dk

)
VVl (4.2)

In this way, we emphasize the interaction and agreement between the visual regions and

the semantic meaning of texts. The attention weights are then sent into the feed-forward
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sub-layer. Finally, we get the output features of the next layer of the vision modality Vl+1

computed as:

Vl
Att = fLNV(InterMCAL→V(Vl) + Vl) (4.3)

Vl+1 = fLNV(fFF (Vl
Att) + Vl

Att) (4.4)

Similarly, the output features Ll+1 of the language modality are computed as:

Ll
Att = fLNL(InterMCAV→L(Ll) + Ll) (4.5)

Ll+1 = fLNL(fFF (Ll
Att) + Ll

Att) (4.6)

Further, the outputs of each vision and language InterMCA modules are subsequently

fed into the vision and language IntraMSA modules.

Intra-Modality Alignment

The IntraMSA attention module illustrated in Figure 4.2, aims to update the vision and

language information and to capture inner-modality attention weights. For each modality,

the information is updated according to a feature fusion scheme. At first, we perform

element-wise product to the attention flow Vl+1 with the the visual region features Vl,

then after a residual connection, features are fused by a linear additive function to yield

the final updated visual information. To keep the dimension of the updated information

consistent, a fully connected fFC layer is employed. The updated textual information is

computed likewise, following the equations:

V̂ = fFC((Vl+1 ⊙ Vl) + Vl) (4.7)

L̂ = fFC((Ll+1 ⊙ Ll) + Ll) (4.8)
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After updating original features based on cross-modal interactions, these features are

fed into the transformer unit to intensify the inner-modality information, to preserve

the original features and to establish inner-interactions simultaneously. Following the

Equations 4.1 and 4.2, we have:

IntraMSAV→V = softmax

(
QV̂lK⊤

V̂l√
dk

)
VV̂l (4.9)

IntraMSAL→L = softmax

(
QL̂lK⊤

L̂l√
dk

)
VL̂l (4.10)

These two modules can be stacked repeatedly to enable the network to explore further

latent intra-modality and inter-modality alignments between image regions and texts.

4.2.3 Cross-Modal Contrastive Learning

We design a visual-textual contrastive loss to force samples from language and vision that

are semantically related to be closer.

Besides, a projection head is implemented on top of the IntraMSA and InterMCA

modules to map the image and text representations into a vector representation so that

the two training schemes do not interfere with each other. The projection head is im-

plemented as a nonlinear multiple-layer perceptron (MLP) with one hidden layer, as it

is more suitable for contrastive learning [31]. Then, L2 normalization is applied to the

visual and textual embeddings so that the inner product between features can be used as

distance measurements. In the following parts, we denote cross-modal contrastive learning

as CrossCL.

Intra-Modality and Inter-Modality Contrastive Learning

Let {x+
i } = {xj|yj = yi, i ̸= j}, {t+i } = {tj|yj = yi, i ̸= j} be the sets of all positive

samples from the same class of an anchor image xi and an anchor text ti respectively, and

{x−
i } = {xj|yj ̸= yi, }, {t−i } = {tj|yj ̸= yi} be the sets of the remaining negative samples

from other classes within the minibatch N. Not only should the pairs (xi, xj), (ti, tj) from
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Figure 4.3: The proposed cross-modal contrastive learning objective

the same modality should be mapped to a close location in the joint embedding space

(intra-modality), but also similar samples xi and tj should be mapped in close proximity

(inter-modality). Therefore, the vision modality loss shown on the left of Figures 4.3a

and 4.3b is computed as:
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LV =
N∑
i=1

LV→V (xi) +
N∑
i=1

LL→V (xi) (4.11)

LV→V (xi)=
−1

|{x+
i }|

∑
xj∈{x+

i }

log
exp(xi · xj/τ)∑

xk,k ̸=i exp(xi · xk/τ)︸ ︷︷ ︸
Intra modality vision loss

(4.12)

LL→V (xi)=
−1

|{t+i }|
∑

tj∈{t+i }

log
exp(xi · tj/τ)∑

tk,k ̸=i exp(xi · tk/τ)︸ ︷︷ ︸
Inter modality vision loss

(4.13)

where · computes similarity scores between example pairs and τ is a scalar temperature

hyper-parameter. N is the minibatch size, |{x+
i }| and |{t+i }| denote the number of positive

samples of anchors xi and ti respectively. Similarly, the language modality loss shown on

the right of Figures 4.3a and 4.3b is computed as:

LL =
N∑
i=1

LL→L(ti) +
N∑
i=1

LV→L(ti) (4.14)

Therefore, the learning objective is based on four contrastive components including

V → V , L → V , L → L, and V → L alignments, which is computed as:

LCrossCL = LV→V + λLL→V + LL→L + λLV→L (4.15)

where λ is a hyper-parameter to control inter-modality alignment.

4.3 Experiments

In this section, we evaluate the effectiveness of the proposed method on low-scale and

large-scale document classification datasets. We make use of the two benchmark datasets

RVL-CDIP and Tobacco-3482 introduced in Section 1.5.1.
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4.3.1 Pre-Training VLCDoC

The proposed VLCDoC method is implemented in Tensorflow with 4 NVIDIA GeForce

12Gb RTX 2080Ti GPU. For the vision modality, documents are resized into a fixed size

of (H,W ) = (224, 224). The image region feature vector extracted by the ViT-B/16

backbone is of dvisn = (197, 768). The final vision representation which is fed into the

projection head is of dimension d = 768. As for the textual data, we tokenize the plain

text tlang using a word-peace tokenizer to get ttok. Each input sequence is expected to start

with a [CLS] token, and should end with a [SEP ] token. The ttok is then represented

as: ttok = [CLS], ttok1 , ttok2 , ..., ttokn , [SEP ], where n = 197 is the maximum sequence

length. For each document, if n > 197, the input sequence is truncated so that it fits

the desired length. For sequences that are shorter than n < 197, they are padded until

they are n = 197 long. In the pre-training phase, the model is trained using AdamW

optimizer with a learning rate of 2e − 5, linear warmup ratio to 0.1 and a linear decay.

We set the batch size to 64 and we use the pre-trained weights of both ViT-B/16 and

BERTBase uncased backbones. We conduct pre-training for 100 epochs for the RVL-CDIP

and Tobacco datasets. We use the Adam [81] optimizer with learning rate of 5e− 5. For

Tobacco-3482 dataset, we split the original sets to 80% for training, and 10% for validation

and test. The temperature parameter τ is set to 0.1, and λ is set to 0.5. Note that we

didn’t use any type of data augmentation during pre-training, and we kept the OCRed

text as is without any pre- or post-processing. Note that the InterMCA and IntraMSA

modules in our method are flexibly stacked two times to enhance the modeling of inter-

modality and intra-modality relations during pre-training. We split the query, key, and

value vectors of the visual features and textual features into four heads and concatenate

the results in different sub-spaces.

4.3.2 Fine-tuning on Multimodal Tasks

Task I: Document Image Classification. The document image classification task

aims to predict the category of visually rich document images. We conduct experiments

on the RVL-CDIP and the Tobacco-3482 datasets. We take the encoder outputs on the
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special tokens [LANG] and [VISN] from the last IntraMSA module module as holistic

representations of the textual and visual inputs, which are used as the inputs to the vision

and language classifiers. The whole fine-tuning takes 20 epochs with a batch size of 64

and a learning rate of 5e− 5 for both datasets.

Task II: Few-Shot Document Image Classification.

Given a pre-trained embedding network from stage one (i.e. pre-training), meta-testing is

applied to the model with an episodic manner. A few-shot K-way multimodal document

image classification task can be illustrated as a K-way C-shot problem. Given C labelled

samples for each unseen class, the model should fast adapt to them to classify novel classes.

The entire test set can be presented by D = {[(v1, yN), ..., (vN , yY )], [(l1, yN), ..., (lN , yY )]},

where N is the total number of classes in D, v, l are the samples from the test set with

label y. For a specific K-way C-shot meta-task T , Y = {yi|i = 1, ..., K} denotes the class

labels randomly chosen from dataset D. Samples from these classes are randomly chosen

to form a Support set and a Query set: (a) the support set for task T is denoted by S,

which contains CK samples (K-way C-shot); (b) the query set is Q where n is the number

of samples selected for meta-testing.

During the meta-testing stage, the proposed model is tested to learn an embedding

function to map all input image and text samples from the same class to a mean vector c

in a description space as a class descriptor for each class. For class k, it is represented by

the centroid of embedding features of test samples and can be obtained as:

Ck =
1

|Sk|
∑

(vi,yi)∈S

F(vi, li) (4.16)

where F (vi, li) is the embedding function initialized by the pretext task, Sk is the test

samples labelled with class k. As a metric learning based method, we employ a distance

function d and produce a distribution over all classes given a query sample q from the

query set Q:
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P(y = k|q) = exp (−d(f(q), ck))∑K
k′ exp(−d(f(q), ck′))

(4.17)

Euclidean distance is chosen as distance function d. As shown in Equation 4.17, the

distribution is based on a softmax over the distance between the embedding of the samples

(in the query set) and the class descriptors. The loss in the meta-testing stage can then

read:

Lmeta = d(f(q), ck) + log
∑
k′

d(f(q), ck′) (4.18)

In the meta-testing stage we average the results over 600 experiments as in [32]. In

each experiment, we randomly sample 5 classes from novel classes, and in each class, we

also pick k instances for the support set and 15 for the query set. We conduct experiments

on the most common setting in few-shot classification. 1-shot and 5-shot classification

(i.e. 1 or 5 labeled instances are available from each novel class). We use the pre-trained

(VLCDoC) network as the embedding network, and perform 5-way classification for only

novel classes during the meta-testing stage.

4.3.3 Ablation Study

In this subsection, we conduct ablation studies to characterize our VLCDoC network

on the low-scale Tobacco dataset. We analyze the following contributions of: i) vali-

dating the effectiveness of the proposed InterMCA and IntraMSA attention modules in

learning generic cross-modal representations, ii) investigating whether contrastive learn-

ing enhances the cross-modal representations, resulting in a performance gain in terms of

classification accuracy, iii) illustrating the generalization capacity and robustness of the

proposed VLCDoC network.
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Table 4.1: Ablation study on VLCDoC on cross-modality attention components, pre-
trained on Tobacco dataset.

Pre-training setting IntraMSA InterMCA #Parameters Accuracy(%)

-w/o language modality
198M 85.71√
201M 86.66√
209M 87.20√ √
217M 90.94

-w/o vision modality
198M 86.01√
201M 86.31√
209M 87.50√ √
217M 90.62

Effects of Attention Mechanisms

To investigate the effectiveness of the attention mechanisms used in our VLCDoC model,

we evaluate the performance of the learned cross-modal representations with and w/o

the attention modules. Note that the evaluation protocol is single-modal based. At

first, we consider the scheme where the vision and language modalities are pre-trained

independently. In Table 4.1, we observe a significant drop to 85.71%, and 86.01% in

classification performance when removing both attention mechanisms in the vision and

language modalities respectively. When removing only the InterMCA module, we see that

our model manages to improve slightly the performance of both modalities to 86.66% and

86.31% for the vision-language modalities. Note that at this stage, the pre-training of

both modalities is still independent from one another. Further, removing the IntraMSA

and keeping only the InterMCA module enables multimodal pre-training in an end-to-end

fashion. The reported results in Table 4.1 show that our model gains in performance,

and achieves the best performance with 90.94%, 90.62% top-1 accuracy for the vision and

language modalities.

The improvement of the classification accuracy is attributed to the flexible attention

flows adopted in both the InterMCA and IntraMSA modules, which have shown their

effectiveness and capability to enhance vision-language relations by capturing the relevant
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Table 4.2: Top-1 accuracy (%) comparison results of our proposed cross-modal contrastive
learning loss against the standard supervised contrastive learning (SCL) loss on the To-
bacco dataset.

Model Modality CrossCL(%) SCL(%)
VLCDoC Vision 90.94 89.88

Language 90.62 89.29

semantic information of images and sentences. The results demonstrate the effectiveness

of cross-modal learning and the importance of both attention modules in learning more

effective cross-modal representations during the pre-training stage.

Effects of Cross-Contrastive Learning

The Cross-modal Contrastive Loss (CrossCL) contains two components: the intra-modality

alignment, and inter-modality alignment. We show the effects of cross-modal contrastive

learning (CrossCL) on the proposed method against the standard supervised contrastive

learning (SCL) loss. Table 4.2 shows that the CrossCL loss has a positive impact on the

results. The VLCDoC with cross-modal contrastive learning loss CrossCL yields the best

performance gain compared to VLCDoC with the Supervised Contrastive Loss (SCL).

This indicates the importance of CrossCL by enforcing the compactness of intra-class rep-

resentations (intra-modality), while separating inter-class features by contrasting positive

and negative sample pairs within and across each modality. Note that, as described in

Equation 4.15, the CrossCL can be vision cue-based or language cue-based, thus we have

two different CrossCL presented in Table 4.2.

Cross-Dataset Test

To illustrate the generalization capacity and the robustness of the learned cross-modal

representations, we validate our proposed VLCDoC network on benchmark document

classification datasets with different size and document types. We refer as the cross-dataset

test to the process of pre-training our cross-modal network on dataset A, and fine-tune it

and test it on dataset B. The motivation behind is to confirm whether our model displays a
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Table 4.3: Cross-dataset test on datasets with different size and document types. Tobacco-
3482, RVL-CDIP, Tobacco-3482 → RVL-CDIP denotes pre-train on the Tobacco-3482,
fine-tune and test on RVL-CDIP.

Model Accuracy (%)
Tobacco-3482 → RVL-CDIP RVL-CDIP → Tobacco-3482

w/o language modality
- EAML [18] 78.89 84.82
- VLCDoC 79.04 89.73

w/o vision modality
- EAML [18] 79.06 83.72
- VLCDoC 81.96 89.88

good generalization ability in terms of the downstream document classification task. Since

there are no publicly available cross-document datasets for this specific task, we evaluate

the ability of our model to perform document classification on a new set of documents that

had not been seen by our model during the pre-training phase. For example, as denoted

in Table 4.3, which refers to the cross-dataset test, RVL-CDIP→Tobacco denotes that

the pre-training stage is firstly conducted on the RVL-CDIP dataset, then the fine-tuning

stage of the previously pre-trained model is conducted on the Tobacco dataset. Finally, the

test phase is conducted on the Tobacco dataset as well. Note that during the fine-tuning

stage, we only train linear classifiers on the top of the final embeddings of the vision and

language modalities of our pre-trained model, with the parameters of the rest of the layers

freezed. Thus, even though the document categories are different between the dataset A

used for pre-training and test dataset B used for fine-tuning and test, we can still evaluate

our model on dataset B. The results confirm that our approach leads to a model with a

better generalization ability compared to prior works.

As such, we compare our model with the related work EAML [18]. We first pre-train

the model on the Tobacco dataset, then we conduct fine-tuning and test on the RVL-CDIP

dataset. The reported results in Table 4.3 show that we slightly outperform EAML on both

vision and language modalities. Even-though EAML is an ensemble network trained with

a different setting, based on vision, language, and fusion modalities, the results confirm

that our model benefits from cross-modal pre-training with a small amount of document
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Table 4.4: Top-1 accuracy (%) comparison results of different document classification
methods evaluated on the of RVL-CDIP dataset. V+L denotes vision+language modali-
ties.

Method Pre-Training Data Accuracy(%) #Parameters
vision methods

VGG-16 [4] 320k 90.31 138M
AlexNet [166] 320k 90.94 61M
ResNet-50 [4] 320k 91.13 -
Ensemble [36] 320k 92.21 -
DiTBase [101] 320k 92.11 87M

(language+layout) methods

BERTBase [41] - 89.81 110M
RoBERTaBase [110] - 90.06 125M
LayoutLMBase [185] 11M 91.78 113M

(vision+language) methods

w/o language
- Multimodal [12] 320k 89.1 -
- Ensemble [38] 320k 91.45 -
- EAML [18] 320k 90.81 -
w/o vision
- Multimodal [12] 320k 74.6 -
- Ensemble [38] 320k 82.23 -
- EAML [18] 320k 88.80 -

VLCDoC (V+L) w/o language 320k 92.64 217M
VLCDoC (V+L) w/o vision 320k 91.37 217M

(vision+language+layout) methods

SelfDoc [104] 320k 93.81 -
LayoutLMBase [185] 11M 94.42 160M
TILTBase [139] 1M 95.25 230M
LayoutLMv2Base [184] 11M 95.25 200M
LayoutLMv3Base [72] 11M 95.44 133M
DocFormerBase [9] 5M 96.17 183M

data, achieving better performance with only vision and language modalities. Similarly,

following similar protocol, we pre-train our encoder on RVL-CDIP, and then conduct fine-

tuning and test on the Tobacco datasets with fewer document data. We clearly see that

our model outperforms the work EAML with a significant margin of 4.91% and of 6.16%

for vision and language modalities respectively. These results demonstrate that our model
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displays a good generalization capacity which enables us to learn a robust and domain-

agnostic feature representation for classifying documents with different document types

and document data size.

VLCDoC outperforms Baselines

The comparison between the proposed VLCDoC network and existing methods on the

large-scale RVL-CDIP document classification dataset is presented in Table 4.4. The com-

pared methods cover various training strategies with different modalities used to perform

document classification. These methods include (vision-only), (language-only), (vision-

language), and (vision-language-layout) methods. Although our VLCDoC network learns

feature space with vision and language cues, they use only single-modality (either vision

or language) to classify document during the test. In Table 4.4, we can see that our VL-

CDoC model achieves the best performance with 92.64% and 91.37% of top-1 accuracy

for using the vision or language modality respectively even compared to the methods that

use the fusion of visual and language modalities. Note that the last group of methods use

the layout as the supplementary information. For a fair comparison, we may integrate the

layout information in our current framework as a new modality in the future work.

Therefore, the results reported demonstrate that our proposed approach outperforms

all the methods that do not require any supplementary information such as layout infor-

mation as used in [9, 72, 104, 184, 185]. Meanwhile, it achieves competitive results against

the methods that include layout information in the pre-training setting. The results con-

firm that an encoder-only transformer-based architecture trained in an end-to-end fashion

can help achieve compelling results against other methods which are mostly based on

deep-CNN architectures.

Few-Shot Classification.

We also provide a scenario where fewer available instances can be accessed in document

classification. To do so, we apply meta-testing on the test set of the RVL-CDIP and

Tobacco-3482 datasets. We propose a new baseline in both intra-dataset and inter-dataset

generalization by pre-training on dataset A, and testing on dataset B as detailed in Ta-
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Table 4.5: Intra-Dataset and Inter-dataset evaluation on the Few-shot document classifi-
cation setting. The best embedding network is pre-trained on RVL-CDIP dataset, then
tested on Tobacco-3482 dataset. All accuracy results are averaged over 600 test episodes
and are reported with 95% confidence intervals.

Pre-train Data Fine-tune Data Distance Embedding Net 1-Shot-5way 5-Shot-5way 20-Shot-5way

RVL-CDIP
RVL-CDIP Euclidean VLCDoC (w/o Language) 85.35 ± 0.046 % 91.12 ± 0.015 % 91.76 ± 0.015 %

VLCDoC (w/o Vision) 84.93 ± 0.046 % 91.23 ± 0.015 % 91.72 ± 0.015 %

Tobacco-3482 Euclidean VLCDoC (w/o Language) 54.31 ± 0.052 % 66.61 ± 0.046 % 71.81 ± 0.036 %
VLCDoC (w/o Vision) 53.29 ± 0.052 % 66.40 ± 0.045 % 72.16 ± 0.035 %

Tobacco-3482
Tobacco-3482 Euclidean VLCDoC (w/o Language) 48.00 ± 0.021 % 54.22 ± 0.015 % 61.24 ± 0.015 %

VLCDoC (w/o Vision) 47.32 ± 0.021 % 56.33 ± 0.015 % 61.51 ± 0.015 %

Rvlcdip Euclidean VLCDoC (w/o Language) 47.99 ± 0.021 % 55.27 ± 0.018 % 57.64 ± 0.017 %
VLCDoC (w/o Vision) 46.81 ± 0.021 % 55.21 ± 0.018 % 56.77 ± 0.016 %

ble 4.5. We report the mean of 600 randomly generated test episodes as well as the 95%

confidence intervals. On the common few-shot classification setting, the observation con-

firms that our multimodal document embedding network is also effective when pre-training

and testing samples are rare across three tasks i.e. 1-shot, 5-shot, and 20-shot.

4.4 Discussion

In this chapter, we approached the document classification problem by proposing a novel

cross-modal representation learning network, called VLCDoC, which models the intra-

modality and inter-modality relations between visual and language cues via cross-modal

contrastive learning. In addition, we introduced InterMCA and IntraMSA attention mech-

anisms by incorporating visual and textual features to further improve the cross-modal rep-

resentations. A superior performance shows that a good generalization has been achieved

with large-scale and low-scale datasets, which enables us to classify the document im-

ages in different domains. Although a compelling classification performance has not been

achieved compared to related works that are based on vision+language+layout modali-

ties, we aim to improve the multimodal representation learning of document images in the

pre-training phase through self-supervised pretext-tasks. The general idea of Chapter 5

of this manuscript is to reduce the gap between vision and language-based methods and

vision+language+layout based methods in terms of classification accuracy.
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CHAPTER 5

Improved Multimodal Semantic Document Representation Learning

All our knowledge begins with the senses, proceeds then to the understanding, and ends

with reason. There is nothing higher than reason.

– Immanuel Kant

5.1 Motivation

In the previous chapter, we addressed the problem of document image classification by

learning cross-modal representations through contrastive learning by exploiting high-level

interactions from effective attention flows within and across language and vision modali-

ties. We have shown that the pre-trained embedding network is task-agnostic and enables

us to generalize on fewer data in a domain-agnostic inter-dataset evaluation setting. In

this chapter, our goal is to encourage multimodal interaction from language and vision in

a self-supervised learning manner. Most multimodal pre-trained models rely on feature

learning to learn their pretext objectives. Therefore, we propose to pre-train multimodal

transformers with a two-step approach where feature learning and clustering are decou-

pled. We propose to develop a more general domain-agnostic and task-agnostic multimodal

111
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document embedding model destined for document understanding applications. The idea

of this chapter is to build a pre-trained multimodal document embedding, named LSRD

(Learning Improved Semantic Representations for Document Understanding , which im-

proves the semantic representation learning. At first, LSRD is pre-trained based on a

nearest-neighbour instance discrimination technique to obtain semantically meaningful

features. Second, we use the obtained features as a prior in a learnable clustering ap-

proach to remove the ability for cluster learning to depend on low-level features.

While most methods treat different views of the same image as positives for a con-

trastive loss, we are interested in using positives from other instances in the dataset. We

propose to sample nearest neighbors from the dataset in the latent space, and treats them

as positives in both vision and language modalities. This provides more semantic varia-

tions, as having more information helps in making more robust models. However, people

learning from new data to be able to acquire newer concepts quickly depending on what

they have already experienced is a key role in developing more complex multimodal ma-

chine learning algorithms having the same human subconscious understanding. Therefore,

this assumption implies answering the following question of how can an ability to find

similarities across items of different modalities within previously seen samples

improve self-supervised semantic representation learning ?

With the recent rapid growth in the number of documents in business and academic

fields, the annotation of large-scale documents is labor-intensive. Thus, learning multi-

modal knowledge from unlabeled documents is highly required, where the scale of the

embedding network is constrained under a self-supervised learning (SSL) objective. Self-

supervised pre-training techniques have been making remarkable progress recently in doc-

ument representation learning [43, 55, 127, 182, 201]. Representation learning relies on

pre-designed tasks, which do not require any annotated data to learn the weights of the

multimodal embedding network. Instead, the multimodal features are learnt by mini-

mizing the objective function of the pretext task. There have been extensive studies in

the literature which include predicting the patch context in a given image [123, 182], in-

painting patches [134], solving jigsaw puzzles [127, 129], colorizing images [94, 201], using

adversarial training [44, 45], predicting noise [25], counting [128], predicting rotations [55],
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spotting artifacts [75], generating images [145], using predictive coding [64, 130], perform-

ing instance discrimination [31, 62, 121, 168, 182], etc. Furthermore, recent studies in

document representation learning rely on multimodal reasoning on multimodal input data

(vision, language, and layout). For example, DocFormer [9] learns to reconstruct doc-

ument image pixels through a CNN decoder, which tends to learn noisy details rather

than high-level structures such as document layouts. SelfDoc [104] proposes to regress

masked region features, which is noisier and harder to learn than classifying discrete fea-

tures in a smaller vocabulary. LayoutLMv3 [72] learns to reconstruct masked word tokens

of the language modality and symmetrically reconstruct masked patch tokens of the vision

modality. Despite these efforts, representation learning approaches are mainly used as the

first pre-training stage in a pre-train-then-finetune paradigm. The second stage includes

fine-tuning the pre-trained network in a fully-supervised learning fashion on a specific

downstream task, with the goal to verify how well the pre-trained embeddings transfer to

the new downstream application.

Whereas most multimodal pre-trained document understanding techniques use Masked-

Language Modeling (MLM) [41], Masked-Vision Modeling (MVM) [21], and Vision-Language

Modeling (VLM) [72] techniques to learn cross-modal alignment between masked image

patches and masked text tokens, we aim to study cross-modality learning for contextual-

ized comprehension on document components across language and vision modalities in a

self-supervised learning approach. We develop a model that learns both intra-modality and

inter-modality relationships between visual and textual cues of document images through

a multimodal attention feature fusion module following the architecture of Chapter 4.

Given a collection of unlabelled documents, we attempt to learn a robust representation

and maximize the mutual information between the vision and language modalities using

nearest-neighbour contrastive learning as the self-supervision representation learning pre-

text task [31, 62, 182]. Further, after learning the feature representations, we propose

to mine the vision-language nearest neighbours learnt through contrastive learning, based

on a vision-language feature similarity approach, and use them as a prior into a learn-

able approach. We aim to classify each document image and its mined language content

neighbours together by maximizing their dot product after applying the softmax objective
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function. This strategy enables us to push the network to produce discriminative and

consistent predictions. Thus, it prevents the cluster degeneracy scenario [28], leading to

one cluster dominating the others by assigning all its probability mass to the same cluster

when learning the decision boundary.

For downstream usage, we leverage the visual-textual semantic features learnt across

our pre-trained embedding network into a feature fusion methodology for a more stable

and better-performing solution for document-related downstream applications. One pop-

ular solution for few-shot classification is to apply a fine-tuning process on an existing

embedding network to adapt to new classes. The main challenge is that the fine-tuning

could easily lead to over-fitting, as only a few samples (1-shot, 5-shot, or 20-shot) for each

class are available. One proposed solution for few-shot classification is a meta-learning

process, in which the dataset is divided into subsets for different meta-tasks to learn how

to adapt the model according to the task change. These methods highly rely on an ef-

fective pre-trained embedding network. As for content-based document retrieval, our goal

is to evaluate the representation learning capability of our network to encode the input

modalities in a meaningful way for cross-modal document retrieval. Retrieving data in

documents generally relies on one modality (either vision or language). Thus, leveraging

information from language and vision cues in an integrated fashion is crucial for developing

an ideal system which proposes a diversity of ways in which document data could be used.

We also investigate our model in the case where there is no annotation available.

The main challenge of our work is to design a pretext task which can exploit high-level

compact visual-semantic representations that are useful for solving downstream tasks. The

following are the main contributions in this chapter:

• We introduce multimodal nearest-neighbour contrastive learning to learn self-supervised

representations that go beyond single instance positives as the first pretext task of

our two-step pre-training approach.

• We propose to mine the multimodal nearest-neighbours learnt through contrastive

learning as prior into a learnable approach, as the second pretext task, in order to

produce consistent discriminative predictions.
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• We evaluate our approach on cross-modal few-shot document classification, content-

based document retrieval, and document classification. We show that our network

can efficiently leverage the multimodal information from unlabeled documents which

benefits from modeling the interaction between language and vision modalities in the

model’s pre-training stage.

• Experimental evaluation shows that our network outperforms prior works which are

based on the vision-language modalities, and achieves compelling results compared

to models which are based on vision, language, and layout modalities on the specific

task of document classification.

• We address and explore two new downstream applications in document understand-

ing, which are few-shot document classification and content-based document re-

trieval, to evaluate the effectiveness of the learnt multimodal representations to

transfer to new tasks.

5.2 Method

In this section, we present the cornerstones of our approach. First, we show that instead

of learning single instance positives (i.e. the instance discrimination task), multimodal

nearest-neighbours are capable of learning better features that are invariant to the intra-

class variability encountered in document images. To facilitate multimodal representation

learning, we propose to pre-train multimodal transformers with unified vision-language

objectives, following the architecture previously used in Chapter 4. LSRD learns more di-

verse positive pairs and thus better uni-modal representations before fusion using nearest-

neighbor contrastive learning. Moreover, LSRD learns an alignment objective loss which

predicts whether a pair of vision and language is matched (positive) or not matched (neg-

ative) after leveraging the visual-textual features into a joint feature-based transformer

module. Second, we show how mining multimodal nearest-neighbors from the pretext

task can be used as a prior into a learnable approach designed for semantic clustering.

LSRD integrates the pre-trained multimodal features and learns a novel objective which
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Figure 5.1: The architecture and pre-training representation learning objectives of LSRD.
LSRD is a pre-trained multimodal transformer for document understanding with unified
vision and language cross-modal learning objectives.

aims to classify each vision-language pair and their neighbours together.

5.2.1 Model Architecture

LSRD is an encoder transformer-based architecture. It applies a unified vision-language

multimodal transformer to enforce deep multimodal interaction in transformer layers using

novel multi-modal cross-attention feature fusion module. The multimodal transformer

fusion network has a multi-layer architecture where each layer consists of multi-head self-

attention and position-wise fully connected feed-forward networks [172]. Note that we

use the same transformer architecture as in Chapter 4. The input of the multimodal

transformer encoder is a concatenation of visual embeddings and language embeddings.

Through the multimodal transformer, the last layer outputs vision-language contextual

representations. Figure 5.1 illustrates the proposed LSRD approach.

Visual Features

Let vvisn ∈ RH×W×C be the document image. We reshape it into a sequence of flattened

2D patches vvisnp ∈ RN×(P 2·C), where (H,W ) is the resolution of the document image,

C = 3 is the number of channels, (P, P ) is the resolution of each document patch, and
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N = HW/P 2 is the resulting number of patches, which serve as the input sequence length

for the transformer encoder. The patches obtained are then flattened and mapped to

d dimensions as the hidden embedding size. The resulting visual embeddings are then

represented as V = vivisn ∈ Rdvisn , where dvisn is a 1D vector.

Textual Features

To extract textual embeddings, we first extract the text llang within document images via

an off-the shelf optical character recognition (OCR) system, e.g. Tesseract OCR1. The

input sequences extracted with the OCR are further fed into the pre-trained BERTBase

uncased encoder [41]. The resulting textual embeddings are then represented as L =

tilang ∈ Rdlang , where dlang is a 1D vector of the same size as dvisn. This way, we ensure

that the visual and the textual embeddings are of the same shape.

5.2.2 Pre-training Objectives

We pre-train LSRD with three objectives: vision-language nearest-neighbor contrastive

learning (VLN-NCLR) on the uni-modal encoders, vision-language matching (VLM) on

the multimodal encoder, and vision-language nearest-neighbor mining (VLN-NM) on the

pre-trained embedding network.

Objective I: Vision-Language Nearest-Neighbor Contrastive Learning (VLN-

NCLR). We first describe the commonly used contrastive learning loss (i.e. InfoNCE)

utilized in instance discrimination, and discuss NNCLR [47] which is based on nearest-

neighbours of visual representations. Next, we introduce our approach, Vision-Language

Nearest-Neighbor Contrastive Learning (VLN-NCLR) as cross-modal positives to learn

better uni-modal representations before fusion, and thus, to improve contrastive instance

discrimination between sample pairs from language and vision modalities.

InfoNCE (Noise-Contrastive Estimation) [130, 162, 182]: loss is commonly used in

the instance discrimination setting [31, 62, 182]. The main idea is to pull representations of

augmented versions/views of the same sample closer to each other (contracting positives),

1https://github.com/tesseract-ocr/tesseract

https://github.com/tesseract-ocr/tesseract
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while simultaneously pushing different samples away from each other (contrasting nega-

tives) in the representation space. For each given embedded sample zi, another embedded

sample (often a random augmentation of the sample) known as a positive sample pair z+i
is associated in addition to many negative embedding samples z−i ∈ Ni. The InfoNCE

loss is then defined as:

LInfoNCE
i = − log

exp(zi · z+i /τ)
exp(zi · z+i /τ) +

∑
z−∈Ni

exp(zi · z−/τ)
(5.1)

where the sample pairs (zi, z
+
i ) is considered as the positive pair, while (zi, z

−) is any

negative pair in the minibatch. τ is the softmax temperature. In the vision-language

context, given an image x and its corresponding description s, we define the score function

following Equation 5.1 as follows:

S(v, l) = cos(fvisn(v), flang(l))/τ (5.2)

where cos(v, l) = vT l/||v||||l|| denotes cosine similarity, and τ denotes a temperature

hyper-parameter. fvisn is an image encoder to extract the overall image feature vector and

flang is a text encoder to extract the global text feature vector. This maps the image and

text representations into a joint embedding space RD. The contrastive loss between image

vi and its paired text li is computed as:

Lvi, li) = −log
exp(cos(fvisn(vi), flang(li))/τ)∑M
j=1 exp(cos(fvisn(vi), flang(lj))/τ)

(5.3)

The following two metrics are used for monitoring the pre-training performance:

(i.) Contrastive accuracy: Self-supervised metric, the ratio of cases in which the

representation of an image is more similar to its corresponding text, than to the

representation of any other image and text in the current batch.

(ii.) Linear probing accuracy: Linear probing is a popular metric to evaluate self-

supervised classifiers. It is computed as the accuracy of a logistic regression classifier

trained on top of the encoder’s features. In our case, this is done by training a single



5.2. Method 119

dense layer on top of the frozen encoder. Note that contrary to the traditional

approach where the classifier is trained after the pre-training phase, in this example

we train it during pre-training.

NNCLR (Nearest-Neighbour Contrastive Learning) [47]: proposes nearest-neighbours

to obtain more diverse positive pairs by keeping a support set of embeddings which is rep-

resentative of the full data distribution. To form the positive pairs, zi’s nearest-neighbours

are constructed from the support set Q. The NNCLR objective is then defined as:

LNNCLR
i = − log

exp(NN(zi, Q) · z+i /τ)∑n
k=1 exp(NN · z+k /τ)

(5.4)

where NN(z, Q) is the nearest neighbour operator defined as:

NN(z,Q) = argmin
q∈Q

|| z − q ||2 (5.5)

VLN-NCLR (Vision-Language Nearest-Neighbour Contrastive Learning): The

proposed learning objective VLN-NCLR aims to force samples from language and vision

that are semantically related to be closer according to the computed nearest-neighbors

of each modality. As in SimCLR [31], a projection head is implemented on top of the

visual and textual embeddings to map the visual-textual representations into a vector

representation so that the two training schemes do not interfere with each other. The

projection head is implemented as a nonlinear multiple-layer perceptron (MLP) with one

hidden layer, as it is more suitable for contrastive learning [31]. Then, L2 normalization is

applied to the visual-textual embeddings so that the inner product between features can be

used as distance measurements. Building upon the NNCLR objective (see Equation 5.4),

we define intra-modal and inter-modal learning losses defined as LVLCLR
Intra and LVLCLR

Inter . For

the intra-modal loss, it is composed of the vision modality loss LVLCLR
V isn→V isn and the language
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modality loss LVLCLR
Lang→Lang which are computed respectively as:

LVLCLR
V isn→V isn = − log

exp(NN(vi,V) · v+i /τ)∑M
k=1 exp(NN(vi,V) · v+k /τ)︸ ︷︷ ︸

Intra-modality Vision loss

(5.6)

LVLCLR
Lang→Lang = − log

exp(NN(li,L) · l+i /τ)∑M
k=1 exp(NN(li,L) · l+k /τ)︸ ︷︷ ︸

Intra-modality Language loss

(5.7)

where (·) computes similarity scores between sample pairs and τ is a scalar temperature

hyper-parameter, and M is the mini-batch size. Finally, the total intra-modal loss LVLCLR
Intra

can be written as:

LVLCLR
Intra =

1

M

M∑
i=1

LVLCLR
V isn→V isn(vi) +

1

M

M∑
i=1

LVLCLR
Lang→Lang(li) (5.8)

The second learning objective is an inter-modal loss which is composed of vision → lan-

guage LVLCLR
V isn→Lang and language → vision LVLCLR

Lang→V isn losses. For the LVLCLR
V isn→Lang loss, it

is computed as the similarity score between the nearest neighbors of the given document

image NN(vi) and the corresponding text sample l+i . Similarly, the → vision LVLCLR
Lang→V isn

loss is calculated as the similarity score between the nearest neighbors of the given text

sample NN(li) and its corresponding visual sample pair v+i :

LVLCLR
V isn→Lang = − log

exp(NN(vi,V) · l+i /τ)∑M
k=1 exp(NN(vi,V) · l+k /τ)︸ ︷︷ ︸

Inter-modality Vision loss

(5.9)

LVLCLR
Lang→V isn = − log

exp(NN(li,L) · v+i /τ)∑M
k=1 exp(NN(li,L) · v+k /τ)︸ ︷︷ ︸

Inter-modality Language loss

(5.10)

Finally, the inter-modal loss LVLCLR
Inter is the sum of the vision and language losses over the

mini-batch M .

LVLCLR
Inter =

1

M

M∑
i=1

LVLCLR
V isn→Lang(vi, li) +

1

M

M∑
i=1

LVLCLR
Lang→V isn(li, vi) (5.11)
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The NN(vi,V), NN(li,L) denote the nearest neighbor operators, defined as:

NN(vi,V) = argmin
qv∈V

|| vi − qv ||2 (5.12)

NN(li,L) = argmin
ql∈L

|| li − ql ||2 (5.13)

Objective II: Vision-Language Matching (VLM). The aim of this objective is to

predict whether a pair of document images and their corresponding language is matched

(positive) or negative (not matched). We compute the pairwise dot-product similarity

between each language sequence li and document image vi in the mini-batch as the pre-

dictions. The target similarity between the language sequence li and the document image

vi is computed as the average of the (dot-product similarity between li and lj) and (the

dot-product similarity between vi and vj). Then, the cross-entropy loss function is com-

puted between the targets and the predictions. Given a mini-batch with M document

images and sequence samples, for each document image vi, the vision-language pairs are

constructed as {(vi, lj), yi,j}Mj=1, where yi,j = 1 means that (vi, lj) is a matched pair, while

yi,j = 0 indicates the unmatched ones. The probability of matching vi to lj is defined as:

Pi,j =
exp(vTi lj)∑M
k=1 exp(v

T
i lk)

(5.14)

where lj denotes the language feature vector, and Pi,j is the percent of scalar projection

vi, lj among all pairs {(vi, lj)}Mj=1 in the mini-batch M . Geometrically, vTi lj represents

the scalar projection vision feature vector vi onto the language feature vector lj. The

more similar vision feature to the language feature vector, the larger the scalar projection

would be. Figure 5.2 shows the geometrical explanation of the cross-modal vision-language

projection. Note that the scalar projection could be negative if the two feature vectors lie

in opposite directions in the representation space. Then, the matching loss of associating

vi with correctly matched language samples is defined as:

LVLM
V isn→Lang =

1

M

M∑
i=1

− log(Pi,j) (5.15)
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Figure 5.2: Interpretation of the cross-modal projection. The visual feature vi is projected
onto different text directions li, ljandlk. The scalar projection of vi onto the matched text
sequence li is larger than that of unmatched text sequences lj and lk.

In the vision-language matching scenario, the matching loss is usually computed in two

directions as in [32, 111, 178]. The V isn → Lang matching loss requires the matched text

to be closer to the document image than unmatched ones, and in verse the Lang → V isn

matching loss constrains the related text to rank before unrelated ones. Similarly, the lan-

guage matching loss LVLM
Lang→V isn can be formulated by exchanging v and l in Equation 5.14.

Then, the total VLM loss is computed as follows:

LVLM = LVLM
V isn→Lang + LVLM

Lang→V isn (5.16)

Objective III: Vision-Language Nearest-Neighbor Mining (VLN-NM) This ob-

jective aims to leverage the pretext features learnt across VLN-NCLR objective as a prior

for clustering both the document images and their corresponding sequence samples. We

motivated that a pretext task from representation learning can be used to obtain seman-

tically meaningful features. Specifically, we freeze the multimodal embedding network

obtained from representation learning pretext task (i.e. instance discrimination), and

train only the last fully-connected layers on top of the pre-trained multimodal embedding

network. For every document image sample vi ∈ M and its corresponding text sequences

li ∈ M , we mine their K nearest neighbors in the embedding space Θθ. Let Nvi , and Nli

be the sets of the neighboring samples of vi li in the mini-batch M respectively. We aim
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to learn a clustering function Θη -parametrized by a deep neural network with weights η-

that classifies a sample document image vi, and a sample text sequence li and their mined

neighbors Nvi Nli together. The function Θη terminates in a softmax function to per-

form a soft assignment over the vision clusters CV isn = {1, ..., CV isn} and language clusters

CLang = {1, ..., CLang} with Θη(vi) ∈ [0, 1]CV isn and Θη(li) ∈ [0, 1]CLang . The probabili-

ties of sample pairs vi, li being assigned to cluster CV isn, CLang are denoted as ΘcV isn
η (vi)

and Θ
cLang
η (li) respectively. We then learn the weights of Θη by minimizing the following

objectives for the vision modality:

LVLM
V isn = − 1

|M |
∑
v∈M

∑
k∈Nv

log⟨Θη(v),Θη(k)⟩+ λ
∑

cV isn∈CV isn

Θ
′cV isn
η log Θ

′cV isn
η (5.17)

with; Θ
′cV isn
η =

1

|M |
∑
v∈M

ΘcV isn
η (v) (5.18)

with ⟨.⟩ denoting the dot product operator. The first term in Equation 5.17 forces Θη to

make sure that neighbors have the same clustering assignment. Thus, to make consistent

predictions for a sample document image or vi and its neighboring samples Nvi . Note that

the dot product is maximal when the predictions are confident (one-hot) and assigned to

the same cluster (consistent). In order to avoid Θη from assigning all samples to a single

cluster, we include the second term in Equation 5.17, which is basically an entropy loss

assigned to the clusters to make sure that the cluster distribution C is roughly uniform,

so it can avoid assigning most of the document image instances to one cluster. Similarly

to the vision modality, the language modality loss LVLM
Lang can be written as:

LVLM
Lang = − 1

|M |
∑
l∈M

∑
k∈Nl

log⟨Θη(l),Θη(k)⟩+ λ
∑

cLang∈CLang

Θ
′cLang
η log Θ

′cLang
η (5.19)

with; Θ
′cLang
η =

1

|M |
∑
l∈M

ΘcLang
η (l) (5.20)

In general, the number of clusters is unknown. However, similar to prior works [104], we

choose CV isn and CLang equal to the number of ground-truth clusters for the purpose of

evaluation.
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5.3 Experiments

5.3.1 Model Configurations

The proposed LSRD method is based on transformer encoders. For the vision modality,

documents are resized into a fixed size of (H,W ) = (224, 224). The image region feature

vector extracted by the V iT −B/16 backbone is of dvisn = 768. The final vision represen-

tation which is fed into the projection head is of dimension d = 768. As for the textual

data, the textual feature vector is extracted by the BertBASE as the language backbone.

To pre-process the text input, we tokenize the plain text tlang using a Bert tokenizer to get

ttok. Each input sequence is expected to start with a [CLS] token, and should end with

a [SEP ] token. The ttok is then represented as: ttok = [CLS], ttok1 , ttok2 , ..., ttokn , [SEP ],

where n = 256 is the maximum sequence length. For each document, if n > 256, the

input sequence is truncated so that it fits the desired length. Sequences that are shorter

than n < 256 are padded until they are n = 256 long. We adopt distributed training

and mixed-precision training to reduce memory costs and speed up training procedures.

We also use a gradient accumulation mechanism to split the batch of samples into several

mini- batches to overcome memory constraints for a large batch size. We adopt distributed

training to reduce memory costs and speed up training procedures. We also use a gra-

dient accumulation mechanism to split the batch of samples into several mini-batches to

overcome memory constraints for a large batch size.

5.3.2 Pre-Training LSRD

In the pre-training phase, we use the training set of the RVL-CDIP document dataset to

learn multimodal representations. LSRD is initialized from the pre-trained weights of the

pre-trained vision and language backbones. For the multimodal transformer encoder, the

weights are randomly initialized. We pre-train LSRD using the AdamW [112] optimizer

with a batch size of 128 for 249, 800 steps. We use a weight decay of 1e − 2, (β1, β2) =

(0.9, 0.999). The learning-rate is warmed-up to 1e − 4 in the first 10% iterations, and

decayed to 2e − 5 following a linear decay schedule. The temperature parameter τ is set
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to 0.1, and the size of the queue used for vision-language contrastive learning is set as

65, 536. Note that we didn’t use any type of data augmentation during pre-training, and

we kept the OCRed text as is without any post-processing.

5.3.3 Fine-Tuning on Multimodal Tasks

Task I: Document Image Classification

Table 5.1: Top-1 accuracy (%) comparison results of different document classification
methods evaluated on the of RVL-CDIP dataset. V, T, and L denote Vision, Text, and
Layout modalities.

Method Pre-Training Data Modality Accuracy(%) #Params

CNN Ensemble [61] 320k V 89.80 *60M
VGG-16 [4] 320k V 90.31 138M
GoogLeNet [35] 320k V 90.70 13M
AlexNet [166] 320k V 90.94 61M
Single Vision Model [166] 320k V 91.11 *140M
ResNet-50 [4] 320k V 91.13 -
Ensemble [36] 320k V 92.21 -
DiTBase [101] 320k V 92.11 87M
LadderNet [152] 320k V 92.77 -

BERTBase [41] - T 89.81 110M
RoBERTaBase [110] - T 90.06 125M
LayoutLMBase [185] 11M T+L 91.78 113M
LiLTBase [176] 11M T+L 95.68 113M

VLCDoC [19] 320k V+T 92.64 217M
SelfDoc [104] 320k V+T+L 92.81 -
LSRD 320k V+T 93.19 -
LayoutLMBase [185] 11M V+T+L 94.42 160M
UDoc [60] 11M V+T+L 95.05 272M
TILTBase [139] 1M V+T+L 95.25 230M
LayoutLMv2Base [184] 11M V+T+L 95.25 200M
LayoutLMv3Base [72] 11M V+T+L 95.44 133M
DocFormerBase [9] 5M V+T+L 96.17 183M

The document image classification task aims to predict the category of visually rich

document images. We conduct experiments on the RVL-CDIP dataset. We use pooled

features to predict a classification label for a document. The whole fine-tuning takes 20
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epochs with a batch size of 64 and a learning rate of 2e − 5. We report in Table 5.1 the

classification performance on the test set, where the metric used is the Top-1 classification

accuracy.

LSRD achieves state-of-the-art performance of 93.19% regarding the Vision+Text

modalities. It outperforms our VLCDoC model introduced in Chapter 4. LSRD reduces

the gap with related works based on three modalities (Vision+Text+Layout) which are

pre-trained on much more training data (i.e. 11M) against 320k document images in our

case.

Task II: Few-Shot Document Image Classification

We conduct the same few-shot classification as in Chapter 4r. We use the pre-trained

embedding network from stage one (i.e. pre-training), then apply meta-learning with an

episodic manner. A few-shot K-way multimodal document image classification task can

be illustrated as a K-way C-shot problem. Given C labelled samples for each unseen

class, the model should fast adapt to them to classify novel classes. The entire test set can

be presented by D = {[(v1, yN), ..., (vN , yY )], [(l1, yN), ..., (lN , yY )]}, where N is the total

number of classes in D, v, l are the samples from the test set with label y. For a specific

K-way C-shot meta-task T , Y = {yi|i = 1, ..., K} denotes the class labels randomly chosen

from dataset D. Samples from these classes are randomly chosen to form a Support set

and a Query set: (a) the support set for task T is denoted by S, which contains CK

samples (K-way C-shot); (b) the query set is Q where n is the number of samples selected

for meta-learning.

During the meta-learning stage, the proposed model is trained to learn an embedding

function to map all input image and text samples from the same class to a mean vector c

in a description space as a class descriptor for each class. For class k, it is represented by

the centroid of embedding features of test samples and can be obtained as:

Ck =
1

|Sk|
∑

(vi,yi)∈S

F(vi, li) (5.21)

where F (vi, li) is the embedding function initialized by the pretext task, Sk is the test
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Table 5.2: Few-shot classification accuracy results on the test set of the RVL-CDIP dataset.
All accuracy results are averaged over 600 test episodes and are reported with 95% con-
fidence intervals. MLP denotes the projector used on top of the vision and language
modalities to perform (VLN-NCLR) pre-training objective. ME denotes the multimodal
encoder used on top of the vision and language modalities to perform the vision-language
matching pre-training objective (VLM). (’+’, ’-’) indicate results w/wo meta-learning.

Pre-train Inference Modality
Task Method Projector Vision Language

5-way/15-Query 5-way/15-Query
1-shot 5-shot 20-shot 1-shot 5-shot 20-shot

VLN-NCLR
LSRD- wo/MLP 34.66 ± 0.66 44.70 ± 0.64 51.15 ± 0.66 32.49 ± 0.63 41.73 ± 0.58 48.84 ± 0.54
LSRD- w/MLP 41.33 ± 0.71 61.55 ± 0.65 75.05 ± 0.49 38.02 ± 0.68 54.87 ± 0.66 68.92 ± 0.55
LSRD+ wo/MLP 43.81 ± 0.71 63.63 ± 0.63 76.46 ± 0.51 38.91 ± 0.63 57.40 ± 0.61 72.57 ± 0.54
LSRD+ w/MLP 53.51 ± 0.80 74.48 ± 0.67 82.86 ± 0.51 38.14 ± 0.61 57.04 ± 0.61 72.20 ± 0.56

VLN-NCLR +VLM LSRD- w/ME 54.89 ± 0.83 74.58 ± 0.62 82.91 ± 0.49 67.23 ± 0.96 77.82 ± 0.41 78.87 ± 0.35
LSRD+ w/ME 67.23 ± 0.96 77.82 ± 0.41 78.87 ± 0.35 67.01 ± 0.94 77.53 ± 0.42 78.86 ± 0.35

VLN-NCLR + VLM LSRD- w/ME 79.08 ± 0.88 89.10 ± 0.39 89.96 ± 0.37 75.45 ± 0.94 86.79 ± 0.41 88.45 ± 0.38
+VLN-NM LSRD+ w/ME 80.63 ± 0.64 89.36 ± 0.49 90.34 ± 0.38 79.77 ± 0.61 89.54 ± 0.56 90.33 ± 0.38

samples labelled with class k. As a metric learning based method, we employ a distance

function d and produce a distribution over all classes given a query sample q from the

query set Q:

P(y = k|q) = exp (−d(f(q), ck))∑K
k′ exp(−d(f(q), ck′))

(5.22)

Euclidean distance is chosen as distance function d. As shown in Equation 5.22, the

distribution is based on a softmax over the distance between the embedding of the samples

(in the query set) and the class descriptors. The loss in the meta-testing stage can then

read:

Lmeta = d(f(q), ck) + log
∑
k′

d(f(q), ck′) (5.23)

In contrast to Chapter 4, where we applied only the meta-testing stage to evaluate the

ability of our pre-trained model to generalize on fewer data, in this chapter we introduce

a novel baseline setting to perform both meta-training and meta-testing on top of the

pre-trained multimodal embedding network to study the ability of our task-agnostic pre-

trained multimodal embedding network to perform fine-tuning on fewer data in few-shot
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setting. In the meta-training stage, the algorithm first randomly selects N classes, and

samples small base support set Sb and a base query set Qb from document data samples

within these classes. The objective is to train a classification model M that minimizes

N -way prediction loss LN−way of the samples in the query set Qb. Here, the classifier M

is conditioned on the provided support set Sb. By making the predictions conditioned on

the given support set, a meta-learning method can learn how to learn from limited labeled

data through training from a collection of tasks (i.e. episodes). In the meta-testing stage,

all novel class data Xn are considered as the support set for novel classes Sn, and the

classification model M can be adapted to predict novel classes with the new support set

Sn.

Different meta-learning methods have been applied in the literature to make predictions

conditioned on the support set. We choose ProtoNet [161] as a first baseline to start with,

which we denote as LSRD+. In LSRD+, the prediction of the samples in a query Q is

based on comparing the distance between the query feature and the support feature from

each class as in Equation 5.22. LSRD+ compares the euclidean distance between the query

features and the class mean of the support features.

As detailed in Table 5.2, we evaluate the few-shot classification accuracy on the RVL-

CDIP dataset. LSRD- denotes the results without meta-learning (i.e. only meta-testing

is applied). We conduct experiments for each pre-training task (i.e. VLN-NCLR, VLN-

NCLR+VLM, and VLN-NCLR+VLM+VLN-NM), with and without the projectors (i.e.

MLP, and ME) For each task, the best-performing method is highlighted. We average

the results over 600 experiments as in [32]. In each experiment, we randomly sample

5 classes from novel classes, and in each class, we also pick k instances for the support

set and 15 for the query set. We conduct experiments on the most common setting in

few-shot classification: 1-shot, 5-shot, and 20-shot classification (i.e. 1 or 5 or 20 labeled

instances are available from each novel class). We use the pre-trained LSRD network as

the embedding network, and perform 5-way classification for only novel classes. During

meta-training, we follow the data split strategy in [144] to sample document samples of 11

classes for fine-tuning, and 5 classes for testing. Note that we sample only 600 samples for

each class. The results show that the two-step pre-training approach improves semantic
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representation learning, and thus boosts the overall results of the vision-language modali-

ties compared to a one-step only pre-training approach. Also, with a multimodal encoder,

we learn better information by aligning and matching the image-text sample pairs. Fur-

thermore, we observe that the performance of our proposed method significantly increases

when receiving more samples as input (i.e. 20-shot) with/without meta-learning. To sum

up, with the two-step pre-trained LSRD model, we demonstrate a good generalization

ability when fine-tuned on fewer data. The experiments conducted in this work on the

few-shot setting will be used as a baseline for future works to start with, as compelling

performance has been achieved on both vision and language modalities.

Task III: Uni-Modal and Cross-Modal document Retrieval

To the best of our knowledge, this is the first time to evaluate the representation learning

of multimodal document networks on the task of content-based retrieval. We focus on the

evaluation of both uni-modal and cross-modal retrieval tasks to answer the question of

how useful are the multimodal representations encoded by the proposed LSRD

task-agnostic model to solve queries in cross-modal retrieval tasks ? Assuming

the LSRD is already pre-trained, the problem of uni-modal and cross-modal document

retrieval is then defined as follows: In the first phase, which corresponds to the indexing

phase, we extract the vision and language backbones, and then, we generate the embed-

dings for all document images -in the dataset in which our model LSRD has been already

pre-trained on- using the target modality only. In the second phase, which corresponds

to the retrieval phase, we process the query modality using the pre-trained LSRD model

without activating (i.e. with backbones frozen) the network of the target modality (i.e.

which can be either vision or language). For example, let us carry out the task of vision

→ language retrieval, where we assume the query contains visual document data. The

objective of this specific task is to retrieve relevant textual information contained in docu-

ments which belong to the same category as the given query visual document image. This

is done by encoding all texts in the dataset using the pre-trained language backbone, and

then, the query document image is sent using the pre-trained vision backbone. Further,

we compare the embeddings of the query document image with the embeddings of the
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Table 5.3: Quantitative evaluation results of Intra-Modal and Inter-Modal Content-based
retrieval on RVLCDIP 40K test set in terms of Recall@K(R@K).

Pre-train Intra-Modal Retrieval Inter-Modal Retrieval
Tasks Vision → Vision Language → Language Vision → Language Language → Vision

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
VLN-NCLR 78.85 91.21 94.23 74.52 90.00 93.67 5.37 14.60 21.20 4.73 13.30 19.29
VLN-NCLR+VLM 80.63 92.06 94.83 75.15 90.39 93.96 73.05 89.48 93.41 70.11 86.05 91.34
VLN-NCLR+VLM+VLN-NM 82.85 93.15 95.49 79.00 92.07 95.03 75.28 90.07 93.58 73.74 88.00 92.29

text data in a semantic way and retrieve the most similar ones. In this work, we evalu-

ate the cross-modal retrieval tasks using the same pre-trained LSRD model. These tasks

include Vision → Vision, Language → Language, Vision → Language, and Language →

Vision. As an example, the Language → Vision retrieval corresponds to the task where

the queries are texts and the retrieved samples are document images. As a performance

measure of the ranking of the retrieved results, we use the Recall@K(R@K), which is a

standard evaluation metric in content-based retrieval. We calculate the Recall@K(R@K)

on a different number of samples to retrieve. As detailed in Table 5.3, we present results

of different pre-training objectives in both intra- and inter-modal retrieval task. We ob-

tain competitive results on the RVL-CDIP test set, which contains about 40k document

images.

Evaluation on VLN-NCLR Pre-training Task. As reported in Table 5.3, we conduct

the first experiments on content-based retrieval using the first pre-trained task (i.e. VLN-

NCLR). We see that in the intra-modal retrieval setting, which corresponds to the uni-

modal retrieval. The pre-trained LSRD model achieves good performance in retrieving

relevant information regarding the input query. Note that, given a document image as

the vision query, we aim to retrieve the top-k relevant document images which belong

to the same category as the query image. Similarly, given a query text as an input,

we aim to retrieve the top-k relevant textual information that is contained in document

images, which belong to the same category as the query text. Therefore, for the intra-

modal retrieval task, we achieve good performance as the first new baseline in this chapter,

with a better R@K score where we retrieve top-1, 5 top-5 and top-10 relevant document

data with 78.85%, 91.21% and 94.23% accuracies respectively for the vision modality, and

80.63%, 92.02% and 94.83% accuracies respectively for the language modality. However,
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for the inter-modal retrieval task, which corresponds to the cross-modal retrieval setting,

the retrieval R@K score drops significantly for the two Vision → Language and Language

→ Vision tasks. This drop of R@K is mainly due to the fact that LSRD did not learn any

cross-modal information and high-level interactions across vision and language modalities.

Hence, the significant drop of the R@K scores for both modalities.

Evaluation on VLN-NCLR+VLM Pre-training Task. In this pre-training task,

we add a multimodal transformer encoder to model the cross-modal interactions between

vision and language modalities, with a matching learning objective. Here, we aim to

overcome the problem of the first pre-training task when performed on the inter-modal

(i.e. cross-modal) retrieval setting. Therefore, we can see from Table 5.3 that, with

the multimodal encoder and the vision-language matching learning objective-by matching

the vision-language sample pairs-, we do not only improve the scores of the R@K for

the inter-modal setting with nearly 71.59% for the vision modality, and 70.06% for the

language modality, given all R@K scores. Meanwhile, for the intra-modal setting, we boost

the R@K scores with nearly 1.07% and 1.31% for the vision and language modalities

respectively. Hence, the importance of learning high-level features with a multimodal

transformer encoder in a matching learning objective.

Evaluation on VLN-NCLR+VLM+VLN-NM Pre-training Task. With this last

pre-training task in our two-step approach (indicated as (’+’) with meta-learning, we

aimed to improve the semantic representation learning of document data through a doc-

ument semantic clustering approach. We highlight the reported results in Table 5.3. The

results indicate that the best R@K scores have been achieved with the semantic cluster-

ing approach, which was performed on the pre-trained representation learning embedding

(i.e. pre-trained with VLN-NCLR+VLM learning objectives). Therefore, we improve

the R@K scores for all intra-modal (i.e. uni-modal) and inter-modal (i.e. cross-modal)

retrieval tasks.

Does a different sequence length of the query text help ? So far we used a sequence

length of 256 for downstream evaluation as in the pre-training stage. In Table 5.4, we vary

the sequence length in the content-based retrieval task to see whether a larger or a smaller

sequence is beneficial to retrieve more relevant information. We vary the sequence length
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Table 5.4: Effects of sequence length on content-based document retrieval.

Pre-training Sequence Intra-Modal Retrieval Inter-Modal Retrieval
Tasks length Lang → Lang Visn → Lang Lang → Visn

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

VLN-NCLR+VLM

512 71.57 89.48 93.82 71.06 88.51 92.88 68.79 85.43 90.92
256 79.00 92.07 95.03 75.28 90.07 93.58 73.74 88.00 92.29
128 73.17 89.12 93.18 71.09 88.51 92.87 68.39 84.55 89.80
64 70.85 88.07 92.53 67.34 87.20 91.85 62.60 80.17 86.13

+VLN-NM 32 62.99 84.88 90.32 62.27 85.02 90.64 52.76 71.20 77.18
8 38.02 67.83 79.94 46.91 75.95 85.03 21.33 34.83 41.02

from 8, 32, 64, 128, 256, 512. The reported results indicate that with the same sequence

length of 256 as used in the pre-training stage, we manage to get the best R@K scores.

5.3.4 Qualitative Results

In this subsection, we show representative samples of the retrieval output of the pre-

trained LSRD network on the test set of RVL-CDIP dataset. In each one of the Fig-

ures 5.3, 5.4, 5.5, 5.6, the first column corresponds to the input query, and the top 5

retrievals are shown in following columns in order. Retrievals from the same class are

shown with a green border; retrievals from a different class are shown in a red border.

Retrievals from other classes are considered incorrect, but they are often good retrievals

nonetheless.

Uni-Modal Document Retrieval

Vision → Vision. In Figure 5.3, it is interesting to notice that in the first row, in which

the query document image is a form, the top seven retrievals are all different memos

from the same author (with the same signature) as the memo in the query image. The

final row is similarly impressive: every document in the top ten retrievals has the same

letterhead as the query document, despite variations in the other content, and also despite

differing typefaces of the letterhead. There may exist biases in the dataset that lead to

such fortunate retrievals (e.g., only a few letterheads, and only a few memo authors), but

the results are still remarkable.
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Figure 5.3: Vision to Vision Representative output of the retrieval process. Randomly
selected Query document images are shown in the first column, and the top-5 document
image retrievals are shown in the following columns in order. Retrievals from the same
class are shown with a green border; retrievals from a different class are shown with a red
border.

Language → Language. In Figure 5.4, the first row, in which the text query is a

presentation, the top-5 text retrievals are all different from the query. The fourth row

is similarly impressive: every document in the top-5 retrievals has the same letterhead

as the query document, despite variations in the other content, and also despite differing

typefaces of the letterhead. In spite of the differences in semantic meaning of the text
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content between a form document and a letter document, the information shared from

vision across the multimodal transformer encoder may have led to the incorrect prediction.

Figure 5.4: Language to Language Representative output of the retrieval process. Ran-
domly selected Text sequences are used as query in the first column, and the top-5 text
sequence retrievals are shown in the following columns in order. Retrievals from the same
class are shown with a green border; retrievals from a different class are shown with a red
border. We show the corresponding document images of the queries and retrieved results
for a better visualisation.

Cross-Modal Document Retrieval

Vision → Language. In Figure 5.5, we retrieve the top-5 relevant text content given a

query document image. In the second row, we observe that the retrieved advertisement

document is visually dissimilar compared to the query news_article document image.
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Similarly, the top-5 retrieved text samples are all different to the query image in terms of

the category label, and do not share the same visual information either. Therefore, the

vision backbone is unable to retrieve similar text content of the given query document.

Figure 5.5: Vision to Language Representative output of the retrieval process. Randomly
selected Query document images are shown in the first column, and the top-5 text sequence
retrievals are shown in the following columns in order. Retrievals from the same class are
shown with a green border; retrievals from a different class are shown with a red border.
We show the corresponding document images of the retrieved text results for a better
visualisation.

Language → Vision. In Figure 5.6, we retrieve the top-5 relevant document images
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given a query text sequence. In the final row, we observe that the incorrectly retrieved

resume document is visually similar and share the same layout information compared to

the query presentation document image.

Figure 5.6: Language to Vision Representative output of the retrieval process. Randomly
selected Query text sequences are shown in the first column, and the top-5 document
image retrievals are shown in the following columns in order. Retrievals from the same
class are shown with a green border; retrievals from a different class are shown with a red
border. We show the corresponding document images of the retrieved text results for a
better visualisation.
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5.4 Discussion

In this chapter, we approached the document understanding problem by proposing a

novel two-step pre-training cross-modal representation learning network, called LSRD.

With the two-step pre-training approach, we first designed a novel cross-modal pre-text

task, which models the intra-modality and inter-modality relations between visual and

language cues using a multimodal transformer and two novel learning objectives (i.e.

vision-language nearest-neighbor contrastive learning, and vision-language matching). In

addition, we performed multimodal semantic clustering as our second pretext-task to im-

prove the representation learning of the pre-trained embedding network. Moreover, we

performed two new downstream applications in the literature of document understanding

on the RVL-CDIP dataset. We evaluated the generalization ability of the learnt repre-

sentations on fewer document data (i.e. on the few-shot classification setting), as well

as its effectiveness on retrieving relevant uni-modal and cross-modal information given a

query document image/text sample. Besides, we conducted the classic document classi-

fication task, which demonstrated that the gap between vision+language methods, and

vision+language+layout state-of-the-art works has been narrowed. In summary, our initial

goal was to build a baseline and to encourage future works in the document understanding

domain to address the tasks of content-based document retrieval and few-shot document

classification on the RVL-CDIP dataset.
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CHAPTER 6

Conclusions and Future Work

The future of work consists of learning a living.

–Marshall McLuhan

6.1 Overview

In this chapter, we first summarize the contributions of this thesis to the pattern recogni-

tion and computer vision fields. In particular, its application to document understanding.

Then, we highlight the main achievements and limitations of the proposed approaches.

Finally, we lead the reader towards possible new research lines and natural extensions of

the proposed methodologies.

6.2 Conclusions

In this thesis, we have introduced a study on how to classify document images using visual

and textual cues incorporated within document data, by understanding and conglomer-

ating different pattern recognition and machine learning strategies. In particular, the

139
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huge vastness of digital document data requires a highly efficient and intuitive document

understanding system. The complex layouts in which document data is often presented,

poses a real challenge to vision-only-based document understanding systems. Such sys-

tems have failed to distinguish between highly correlated document categories. Though

image processing research has improved significantly over the past few years, natural lan-

guage research has also improved a lot in learning the semantic context of text sequences.

This is where we make the assumption that jointly learning the textual content along with

the visual spatial information incorporated within document data is crucial for a better

understanding of multimodal document data. Although a document image is worth a

thousand words, a multimodal document is worth a thousand concepts. This is where

the real challenge lies to understand the nature of a document through its jointly learnt

multimodal information.

6.3 Summary of Contributions

In this thesis, we presented the problem of multimodal document understanding. We

limited our explorations to two of the well-studied modalities in the document literature,

which are the vision and the language. After an introduction to the concept of multimodal

document understanding and the motivation behind this thesis, we decided to make the

readers familiar with the state-of-the-art of different concept and ideas for document un-

derstanding in Chapter 1. On the one hand, as an application of document understanding,

we approached the document image classification problem by proposing frameworks that

find a common semantic representation space for both vision and language modalities using

well-known deep networks as the main backbones. Document image classification is then

performed in an early feature fusion methodology (see Chapter 2). Then, we improved

the semantic representation space by aligning the predictions and enabling both modali-

ties to transfer relevant information and positive knowledge from one modality to another

in a middle feature fusion manner. Document image classification is further conducted

under different experimental settings (see Chapter 3). On the other hand, we also took

into account the new advancements in machine learning to incorporate its strategies. We
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opted to design task-agnostic and domain-agnostic pre-trained frameworks to validate the

assumption that great intra-dataset generalization leads to great inter-dataset generaliza-

tion. This task is performed under a pretrain-then-finetune paradigm (see Chapter 4). As

well, we tackled the problem of lack of availability of human annotated document data and

improved semantic representation learning by encouraging multimodal interaction within

language and vision modalities in a self-supervised learning manner. We performed differ-

ent ablation studies demonstrating the effectiveness of our approach on the well-established

document classification task. Thus, reducing the gap with state-of-the-art works that rely

on vision, language, and layout information. Also, we performed new experiments on two

novel downstream tasks that we introduced as a baseline in the document understanding

literature. These tasks are few-shot document classification and content-based document

retrieval (see Chapter 5).

The contributions presented in this work are enumerated in four points. Moreover,

even though the focus of this thesis is the development of multimodal document image

classification methodologies, some of the contributions are generic algorithms applied for

multimodal data in the computer vision field. Let us briefly summarize these four contri-

butions:

• Multimodal Deep Feature Fusion: In Chapter 2, we proposed a two-stream

deep neural network that leverages both the learned textual embeddings and visual

features in an early fusion manner to classify document images. We showed that

the joint learning methodology boosts the overall accuracy compared to the single-

modal networks. We introduced two feature fusion methodologies to merge vision

and language features in the cross-modal framework. We evaluated the performance

of static and contextualized dynamic word embeddings to classify textual content

of document images. As well, we reviewed the impact of training heavyweight and

lightweight deep neural networks on learning relevant structural information from

document images. Both the theoretical analysis and the experimental results demon-

strated the superiority of our proposed joint feature learning method compared to the

single-modal (i.e. uni-modal) modalities. This joint learning approach outperforms

the state-of-the-art results with a classification accuracy of 97.05% on the large-scale
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RVL-CDIP dataset, and outperforming the current state-of-the-art method by 3.91%

of classification accuracy on the low-scale benchmark Tobacco-3482 dataset.

• Multimodal Deep Mutual Learning: In Chapter 3, we introduced a mutual

learning strategy to overcome the limitations of the conventional mutual learning

strategy when tested on document data. The proposed approach allowed us to learn

the positive knowledge from one modality to another during the training stage, in-

stead of the negative knowledge which we proved to weaken the learning capacity

of the modality in the learning process. We presented a self-attention-based feature

fusion module for a better multimodal feature extraction to perform fine-grained

document image classification. Our proposed self-attention-module enhanced the

overall accuracy of the ensemble network and achieved state-of-the-art classification

performance compared to single-modal and multimodal methods. We performed

a comprehensive ablation study on the benchmark RVL-CDIP and Tobacco-3482

datasets to analyze the effectiveness of our proposed ensemble trainable network

with/without the mutual learning approach, and with/without the self-attention-

based feature fusion module. We evaluated the performance and the generalization

ability of the proposed ensemble network on unseen document data through inter-

dataset and intra-dataset evaluation on both datasets for the single-modal and cross-

modal fusion modalities. The experimental results demonstrated the effectiveness of

our approach in terms of accuracy for the single-modal and cross-modal modalities.

Thus, the proposed ensemble self-attention-based mutual learning model outper-

forms the state-of-the-art classification results based on the benchmark RVL-CDIP

and Tobacco-3482 datasets.

• Multimodal Document Representation Learning: In Chapter 4, we designed a

unified task-agnostic document pre-training framework for a better cross-modal rep-

resentation learning. Our network consisted of leveraging two flexible extra levels of

cross-modal interactions through cross-attention (InterMCA) and self-attention (In-

traMSA) middle feature fusion-based attention modules. These modules captured

high-level interactions between visual-textual cues within different document compo-
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nents. We proposed a cross-modal contrastive learning objective to further explore

the relations between vision and language cues. Compared to the classic single-

modal contrastive learning, the proposed cross-modal contrastive learning objective

allowed us to learn and align the feature representations within and across modal-

ities. Under a fair comparison setting, our task-agnostic framework demonstrated

a good generalization ability among vision and language approaches on the bench-

mark document datasets. It enabled us to learn robust and domain-agnostic feature

representations. Thus, it achieved better results compared to the generalization ex-

periment design conducted in Chapter 3 for the document classification task. We

showed that a transformer-based architecture used in our task-agnostic pre-trained

framework can achieve comparable performance when pre-trained on fewer data.

The extensive experiments conducted on the public document classification datasets

demonstrated the effectiveness and the generalization capacity of our model on both

low-scale and large-scale datasets.

• Improved Multimodal Semantic Document Representation Learning: In

Chapter 5, we intended to improve the semantic representation learning of our pre-

vious model introduced in chapter 3 in a self-supervised learning fashion. We in-

troduced multimodal nearest-neighbour contrastive learning to learn self-supervised

representations that go beyond single instance positives as pretext task. We showed

that our network can efficiently leverage the multimodal information from unla-

beled documents which benefits from modeling the interaction between language

and vision modalities in the pre-training stage. Experimental evaluation showed that

our network outperforms some prior works which are based on the vision-language

modalities, and achieved compelling results compared to models which are based on

vision, language, and layout modalities on the specific task of document classifica-

tion. We addressed and explored two new downstream applications in document

understanding, which are few-shot document classification and content-based docu-

ment retrieval, to evaluate the effectiveness of the learnt multimodal representations

to transfer to new tasks.
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6.4 Future Research

Taking into account the lessons learnt from this work, and the improvements due to re-

cent models that are actively being developed in the research community, we list in the

following paragraphs what we identified as key topics for future research in the field of mul-

timodal document understanding. Along the thesis, we have already stressed upon some

open worth considering questions as unexplored lines that are actively being developed in

the research community. Moreover, taking into account the improvement of deep learning

methods, we are convinced that there is still a wide variety of research tasks for improving

and advancing our work. Also, note that the new methodologies derived from the deep

learning field have opened several research lines that were not covered in this dissertation.

Deep learning is experiencing an evolution from the point of view of the learning strate-

gies. The huge amount of data required for the supervision of new models causes a huge

bottleneck dealing with new problems. Therefore, self-supervised learning strategies are

gaining popularity among the machine learning community, and more specifically, among

the document understanding community in the last three years. Taking into account the

outcomes of this dissertation, there are many extensions that can be made. We list in the

following paragraphs key topics for future research in the field of multimodal document

understanding.

Multimodal Fusion and Reasoning. In this thesis, we explored several multimodal

fusion techniques to leverage information from vision and language cues. However, in the

multimodal machine learning literature, there have been several studies on designing mod-

els capable of reasoning to explore the synergy between visual and textual features [102,

197] in a sequential manner. Also, significant advances have been made by the use of

Graph convolutional networks (GCN) [82] which are gaining importance in many mul-

timodal tasks such as image captioning [105], image-sentence retrieval [107], and visual

question answering (VQA) [124]. GCN are able to model relationships between nodes in a

given graph and to explore semantic correlation between visual and textual features [116,

153]. Therefore, as a first future line of research, we aim to combine textual features

with salient image regions in document images to exploit the complementary information
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carried by the two sources. Specifically, we will employ a Graph Convolutional Network

(GCN) to perform multimodal reasoning and obtain relationship-enhanced features by

learning a common semantic space between salient image regions and text sequences in

document images.

Multimodal Document Understanding with GNNs. Graph reasoning has been re-

cently applied to document understanding tasks such as key-information extraction [27],

document layout analysis [146], table structure recognition [108], table extraction [54], vi-

sual question answering [106], and synthetic document generation [24], etc. In the future

work, we intend to use the power of graphs in representing: (1) the spatial structure of

document images with usage of the positional information of object categories like tables,

titles, figures; (2) the semantic conceptual connections between the different object cate-

gories in a document (e.g. recognizing the semantic text entities and their relationships

from documents). Therefore, we will study the impact of leveraging graph representations

as a third modality in our proposed task-agnostic pretrained framework in Chapter 5,

on enhancing the quality of document representation. However, as there exists no po-

sitional information in the RVL-CDIP and Tobacco-3482 datasets, we will explore the

heavy-scale document datasets (i.e. Industry document dataset (IDL) which consists of

26M documents with OCR Annotations). Such document understanding system will be

able to generalize better on unseen data, and thus, can be transferred to other domain-

specific multimodal data. Hence, deriving an off-the-shelf document analysis solution, to

be performed on various document downstream tasks that we have not explored before in

this thesis, which are: Document (DoCVQA), form and receipt understanding,sequence

labeling, and also document layout detection.

Synergistic Learning between Multiple Modalities/Domains. Given the hetero-

geneity and variability of complex layouts and graphical entities incorporated within doc-

ument data, it poses a great challenge to deep CNNs and transformers to distinguish

between highly correlated documents. Despite huge vision-language model pre-training

methods achieving superior performance on most multimodal document understanding

tasks, large-scale document pre-training comes with a high computational cost both in

terms of memory and training time. Therefore, as synergistic learning is one of the future
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research lines we would like to explore, we principally aim to view each document cate-

gory as a unique modality/domain. We want the model to learn more specific information

about each category of document data in an incremental learning manner. Then, mutual

learning can be introduced to transfer the information learnt within each modality/do-

main. We believe this approach will help the model to learn more relevant information

that is hard to be learnt in the case where the model is given all document data at once.
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APPENDIX A

Appendix

Additional Results: Evaluation On Uni-Modal Content-based
Document Retrieval

Figure A.1: Vision to Vision Representative output of the retrieval process. Randomly
selected Query document images are shown in the first column, and the top-5 document
image retrievals are shown in the following columns in order. Retrievals from the same
class are shown with a green border; retrievals from a different class are shown with a red
border.
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Figure A.2: Language to Language Representative output of the retrieval process. Ran-
domly selected Text sequences are used as query in the first column, and the top-5 text
sequence retrievals are shown in the following columns in order. Retrievals from the same
class are shown with a green border; retrievals from a different class are shown with a red
border. We show the corresponding document images of the queries and retrieved results
for a better visualisation.



APPENDIX B

Appendix

Additional Results: Evaluation On Cross-Modal Content-based
Document Retrieval

Figure B.1: Vision to Language Representative output of the retrieval process. Randomly
selected Query document images are shown in the first column, and the top-5 text sequence
retrievals are shown in the following columns in order. Retrievals from the same class are
shown with a green border; retrievals from a different class are shown with a red border.
The corresponding document images of the retrieved text results are shown.
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Figure B.2: Language to Vision Representative output of the retrieval process. Randomly
selected Query text sequences are shown in the first column, and the top-5 document
image retrievals are shown in the following columns in order. Retrievals from the same
class are shown with a green border; retrievals from a different class are shown with a red
border. We show the corresponding document images of the retrieved text results for a
better visualisation.



Bibliography

[1] Sherif Abuelwafa, Marco Pedersoli, and Mohamed Cheriet. “Unsupervised exemplar-

based learning for improved document image classification”. In: IEEE Access 7

(2019), pp. 133738–133748.

[2] M. Afzal, Joan Pastor-Pellicer, F. Shafait, T. Breuel, Andreas Dengel, and Mar-

cus Liwicki. “Document Image Binarization using LSTM: A Sequence Learning

Approach”. In: HIP ’15. 2015.

[3] Muhammad Zeshan Afzal, Samuele Capobianco, Muhammad Imran Malik, Simone

Marinai, Thomas M Breuel, Andreas Dengel, and Marcus Liwicki. “Deepdocclassi-

fier: Document classification with deep convolutional neural network”. In: 2015 13th

international conference on document analysis and recognition (ICDAR). IEEE.

2015, pp. 1111–1115.

[4] Muhammad Zeshan Afzal, Andreas Kölsch, Sheraz Ahmed, and Marcus Liwicki.

“Cutting the error by half: Investigation of very deep cnn and advanced training

strategies for document image classification”. In: 2017 14th IAPR International

Conference on Document Analysis and Recognition (ICDAR). Vol. 1. IEEE. 2017,

pp. 883–888.

153



154 Bibliography

[5] Madhav Agarwal, Ajoy Mondal, and CV Jawahar. “Cdec-net: Composite deformable

cascade network for table detection in document images”. In: 2020 25th Interna-

tional Conference on Pattern Recognition (ICPR). IEEE. 2021, pp. 9491–9498.

[6] Mohamed Aly, Peter Welinder, Mario Munich, and Pietro Perona. “Automatic dis-

covery of image families: Global vs. local features”. In: 2009 16th IEEE International

Conference on Image Processing (ICIP). IEEE. 2009, pp. 777–780.

[7] Shun-ichi Amari. “Backpropagation and stochastic gradient descent method”. In:

Neurocomputing 5.4-5 (1993), pp. 185–196.

[8] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen

Gould, and Lei Zhang. “Bottom-up and top-down attention for image captioning

and visual question answering”. In: Proceedings of the IEEE conference on com-

puter vision and pattern recognition. 2018, pp. 6077–6086.

[9] Srikar Appalaraju, Bhavan Jasani, Bhargava Urala Kota, Yusheng Xie, and R Man-

matha. “Docformer: End-to-end transformer for document understanding”. In: Pro-

ceedings of the IEEE/CVF International Conference on Computer Vision. 2021,

pp. 993–1003.

[10] Enrico Appiani, Francesca Cesarini, Anna Maria Colla, Michelangelo Diligenti,

Marco Gori, Simone Marinai, and Giovanni Soda. “Automatic document classi-

fication and indexing in high-volume applications”. In: International Journal on

Document Analysis and Recognition 4.2 (2001), pp. 69–83.

[11] Muhammad Nabeel Asim, Muhammad Usman Ghani Khan, Muhammad Imran

Malik, Khizar Razzaque, Andreas Dengel, and Sheraz Ahmed. “Two stream deep

network for document image classification”. In: 2019 International Conference on

Document Analysis and Recognition (ICDAR). IEEE. 2019, pp. 1410–1416.

[12] Nicolas Audebert, Catherine Herold, Kuider Slimani, and Cédric Vidal. “Multi-

modal deep networks for text and image-based document classification”. In: Joint

European Conference on Machine Learning and Knowledge Discovery in Databases.

Springer. 2019, pp. 427–443.



Bibliography 155

[13] Olivier Augereau, N. Journet, Anne Vialard, and Jean-Philippe Domenger. “Im-

proving Classification of an Industrial Document Image Database by Combining

Visual and Textual Features”. In: 2014 11th IAPR International Workshop on Doc-

ument Analysis Systems (2014), pp. 314–318.

[14] Jimmy Ba and Rich Caruana. “Do deep nets really need to be deep?” In: Advances

in neural information processing systems 27 (2014).

[15] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine trans-

lation by jointly learning to align and translate”. In: arXiv preprint arXiv:1409.0473

(2014).

[16] Souhail Bakkali, Zuheng Ming, Mickaël Coustaty, and Marçal Rusiñol. “Cross-

modal deep networks for document image classification”. In: 2020 IEEE Interna-

tional Conference on Image Processing (ICIP). IEEE. 2020, pp. 2556–2560.

[17] Souhail Bakkali, Zuheng Ming, Mickaël Coustaty, and Marçal Rusiñol. “Visual and

textual deep feature fusion for document image classification”. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.

2020, pp. 562–563.

[18] Souhail Bakkali, Zuheng Ming, Mickaël Coustaty, and Marçal Rusiñol. “EAML:

ensemble self-attention-based mutual learning network for document image classifi-

cation”. In: International Journal on Document Analysis and Recognition (IJDAR)

24.3 (2021), pp. 251–268.

[19] Souhail Bakkali, Zuheng Ming, Mickael Coustaty, Marçal Rusiñol, and Oriol Ramos

Terrades. “VLCDoC: Vision-Language Contrastive Pre-Training Model for Cross-

Modal Document Classification”. In: arXiv preprint arXiv:2205.12029 (2022).

[20] Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. “Multimodal

machine learning: A survey and taxonomy”. In: IEEE transactions on pattern anal-

ysis and machine intelligence 41.2 (2018), pp. 423–443.

[21] Hangbo Bao, Li Dong, and Furu Wei. “Beit: Bert pre-training of image transform-

ers”. In: arXiv preprint arXiv:2106.08254 (2021).



156 Bibliography

[22] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “Surf: Speeded up robust fea-

tures”. In: European conference on computer vision. Springer. 2006, pp. 404–417.

[23] Serge Belongie, Jitendra Malik, and Jan Puzicha. “Shape matching and object

recognition using shape contexts”. In: IEEE transactions on pattern analysis and

machine intelligence 24.4 (2002), pp. 509–522.

[24] Sanket Biswas, Pau Riba, Josep Lladós, and Umapada Pal. “Graph-Based Deep

Generative Modelling for Document Layout Generation”. In: International Confer-

ence on Document Analysis and Recognition. Springer. 2021, pp. 525–537.

[25] Piotr Bojanowski and Armand Joulin. “Unsupervised learning by predicting noise”.

In: International Conference on Machine Learning. PMLR. 2017, pp. 517–526.

[26] Yungcheol Byun and Yillbyung Lee. “Form classification using DP matching”. In:

Proceedings of the 2000 ACM symposium on Applied computing-Volume 1. 2000,

pp. 1–4.

[27] Manuel Carbonell, Pau Riba, Mauricio Villegas, Alicia Fornés, and Josep Lladós.

“Named entity recognition and relation extraction with graph neural networks in

semi structured documents”. In: 2020 25th International Conference on Pattern

Recognition (ICPR). IEEE. 2021, pp. 9622–9627.

[28] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. “Deep

clustering for unsupervised learning of visual features”. In: Proceedings of the Eu-

ropean conference on computer vision (ECCV). 2018, pp. 132–149.

[29] Kan Chen, Jiang Wang, Liang-Chieh Chen, Haoyuan Gao, Wei Xu, and Ram Neva-

tia. “Abc-cnn: An attention based convolutional neural network for visual question

answering”. In: arXiv preprint arXiv:1511.05960 (2015).

[30] Nawei Chen and Dorothea Blostein. “A survey of document image classification:

problem statement, classifier architecture and performance evaluation”. In: Interna-

tional Journal of Document Analysis and Recognition (IJDAR) 10.1 (2007), pp. 1–

16.



Bibliography 157

[31] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. “A sim-

ple framework for contrastive learning of visual representations”. In: International

conference on machine learning. PMLR. 2020, pp. 1597–1607.

[32] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin

Huang. “A closer look at few-shot classification”. In: arXiv preprint arXiv:1904.04232

(2019).

[33] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. “Empir-

ical evaluation of gated recurrent neural networks on sequence modeling”. In: arXiv

preprint arXiv:1412.3555 (2014).

[34] Gabriela Csurka. “Document image classification, with a specific view on applica-

tions of patent images”. In: Current Challenges in Patent Information Retrieval.

Springer, 2017, pp. 325–350.

[35] Gabriela Csurka, Diane Larlus, Albert Gordo, and Jon Almazan. “What is the right

way to represent document images?” In: arXiv preprint arXiv:1603.01076 (2016).

[36] Arindam Das, Saikat Roy, Ujjwal Bhattacharya, and Swapan K Parui. “Document

image classification with intra-domain transfer learning and stacked generalization

of deep convolutional neural networks”. In: 2018 24th international conference on

pattern recognition (ICPR). IEEE. 2018, pp. 3180–3185.

[37] Samyak Datta, Karan Sikka, Anirban Roy, Karuna Ahuja, Devi Parikh, and Ajay

Divakaran. “Align2ground: Weakly supervised phrase grounding guided by image-

caption alignment”. In: Proceedings of the IEEE/CVF International Conference on

Computer Vision. 2019, pp. 2601–2610.

[38] T. Dauphinee, N. Patel, and Mohammad Mehdi Rashidi. “Modular Multimodal

Architecture for Document Classification”. In: ArXiv abs/1912.04376 (2019).

[39] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet:

A large-scale hierarchical image database”. In: 2009 IEEE conference on computer

vision and pattern recognition. Ieee. 2009, pp. 248–255.



158 Bibliography

[40] Thomas Deselaers, Lexi Pimenidis, and Hermann Ney. “Bag-of-visual-words models

for adult image classification and filtering”. In: 2008 19th International Conference

on Pattern Recognition. IEEE. 2008, pp. 1–4.

[41] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “Bert: Pre-

training of deep bidirectional transformers for language understanding”. In: arXiv

preprint arXiv:1810.04805 (2018).

[42] Terrance DeVries and Graham W Taylor. “Improved regularization of convolutional

neural networks with cutout”. In: arXiv preprint arXiv:1708.04552 (2017).

[43] Carl Doersch, Abhinav Gupta, and Alexei A Efros. “Unsupervised visual represen-

tation learning by context prediction”. In: Proceedings of the IEEE international

conference on computer vision. 2015, pp. 1422–1430.

[44] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. “Adversarial feature learn-

ing”. In: arXiv preprint arXiv:1605.09782 (2016).

[45] Jeff Donahue and Karen Simonyan. “Large scale adversarial representation learn-

ing”. In: Advances in neural information processing systems 32 (2019).

[46] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, et al. “An image is worth 16x16 words: Transformers for

image recognition at scale”. In: arXiv preprint arXiv:2010.11929 (2020).

[47] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre Sermanet, and An-

drew Zisserman. “With a little help from my friends: Nearest-neighbor contrastive

learning of visual representations”. In: Proceedings of the IEEE/CVF International

Conference on Computer Vision. 2021, pp. 9588–9597.

[48] Javier Ferrando, Juan Luis Domínguez, Jordi Torres, Raúl García, David García,

Daniel Garrido, Jordi Cortada, and Mateo Valero. “Improving accuracy and speed-

ing up document image classification through parallel systems”. In: International

Conference on Computational Science. Springer. 2020, pp. 387–400.



Bibliography 159

[49] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-learning for

fast adaptation of deep networks”. In: International conference on machine learning.

PMLR. 2017, pp. 1126–1135.

[50] George Forman et al. “An extensive empirical study of feature selection metrics for

text classification.” In: J. Mach. Learn. Res. 3.Mar (2003), pp. 1289–1305.

[51] Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and

Marcus Rohrbach. “Multimodal compact bilinear pooling for visual question an-

swering and visual grounding”. In: arXiv preprint arXiv:1606.01847 (2016).

[52] I. Gallo, Alessandro Calefati, S. Nawaz, and Muhammad Kamran Janjua. “Image

and Encoded Text Fusion for Multi-Modal Classification”. In: 2018 Digital Image

Computing: Techniques and Applications (DICTA) (2018), pp. 1–7.

[53] Jing Gao, Peng Li, Zhikui Chen, and Jianing Zhang. “A survey on deep learning

for multimodal data fusion”. In: Neural Computation 32.5 (2020), pp. 829–864.

[54] Andrea Gemelli, Emanuele Vivoli, and Simone Marinai. “Graph neural networks

and representation embedding for table extraction in PDF documents”. In: arXiv

preprint arXiv:2208.11203 (2022).

[55] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. “Unsupervised representation

learning by predicting image rotations”. In: arXiv preprint arXiv:1803.07728 (2018).

[56] Yoav Goldberg and Omer Levy. “word2vec Explained: deriving Mikolov et al.’s

negative-sampling word-embedding method”. In: arXiv preprint arXiv:1402.3722

(2014).

[57] Albert Gordo, Florent Perronnin, and Ernest Valveny. “Large-scale document image

retrieval and classification with runlength histograms and binary embeddings”. In:

Pattern Recognition 46.7 (2013), pp. 1898–1905.

[58] Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and Jürgen

Schmidhuber. “LSTM: A search space odyssey”. In: IEEE transactions on neural

networks and learning systems 28.10 (2016), pp. 2222–2232.



160 Bibliography

[59] Jiuxiang Gu, Jason Kuen, Shafiq Joty, Jianfei Cai, Vlad Morariu, Handong Zhao,

and Tong Sun. “Self-Supervised Relationship Probing”. In: Advances in Neural In-

formation Processing Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. F.

Balcan, and H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 1841–1853.

[60] Jiuxiang Gu, Jason Kuen, Vlad I Morariu, Handong Zhao, Nikolaos Barmpalios,

Rajiv Jain, Ani Nenkova, and Tong Sun. “Unified Pretraining Framework for Doc-

ument Understanding”. In: arXiv preprint arXiv:2204.10939 (2022).

[61] Adam W. Harley, A. Ufkes, and K. Derpanis. “Evaluation of deep convolutional

nets for document image classification and retrieval”. In: 2015 13th International

Conference on Document Analysis and Recognition (ICDAR) (2015), pp. 991–995.

[62] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. “Momentum

contrast for unsupervised visual representation learning”. In: Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition. 2020, pp. 9729–

9738.

[63] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning

for image recognition”. In: Proceedings of the IEEE conference on computer vision

and pattern recognition. 2016, pp. 770–778.

[64] Olivier Henaff. “Data-efficient image recognition with contrastive predictive cod-

ing”. In: International conference on machine learning. PMLR. 2020, pp. 4182–

4192.

[65] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a neural

network”. In: arXiv preprint arXiv:1503.02531 (2015).

[66] MD Zakir Hossain, Ferdous Sohel, Mohd Fairuz Shiratuddin, and Hamid Laga. “A

comprehensive survey of deep learning for image captioning”. In: ACM Computing

Surveys (CsUR) 51.6 (2019), pp. 1–36.

[67] Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-excitation networks”. In: Proceedings

of the IEEE conference on computer vision and pattern recognition. 2018, pp. 7132–

7141.



Bibliography 161

[68] Rui Hu and John Collomosse. “A performance evaluation of gradient field hog

descriptor for sketch based image retrieval”. In: Computer Vision and Image Un-

derstanding 117.7 (2013), pp. 790–806.

[69] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

“Densely connected convolutional networks”. In: Proceedings of the IEEE confer-

ence on computer vision and pattern recognition. 2017, pp. 4700–4708.

[70] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. “Extreme learning ma-

chine: a new learning scheme of feedforward neural networks”. In: 2004 IEEE inter-

national joint conference on neural networks (IEEE Cat. No. 04CH37541). Vol. 2.

Ieee. 2004, pp. 985–990.

[71] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. “Extreme learning ma-

chine: theory and applications”. In: Neurocomputing 70.1-3 (2006), pp. 489–501.

[72] Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and Furu Wei. “LayoutLMv3:

Pre-training for Document AI with Unified Text and Image Masking”. In: arXiv

preprint arXiv:2204.08387 (2022).

[73] Noman Islam, Zeeshan Islam, and Nazia Noor. “A survey on optical character

recognition system”. In: arXiv preprint arXiv:1710.05703 (2017).

[74] Anil K Jain. “Data clustering: 50 years beyond K-means”. In: Pattern recognition

letters 31.8 (2010), pp. 651–666.

[75] Simon Jenni and Paolo Favaro. “Self-supervised feature learning by learning to spot

artifacts”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2018, pp. 2733–2742.

[76] Le Kang, Jayant Kumar, Peng Ye, Yi Li, and David Doermann. “Convolutional

neural networks for document image classification”. In: 2014 22nd International

Conference on Pattern Recognition. IEEE. 2014, pp. 3168–3172.

[77] Abdul Amir Abdullah Karim and Rafal Ali Sameer. “Image classification using bag

of visual words (bovw)”. In: Al-Nahrain Journal of Science 21.4 (2018), pp. 76–82.



162 Bibliography

[78] Yan Ke and Rahul Sukthankar. “PCA-SIFT: A more distinctive representation

for local image descriptors”. In: Proceedings of the 2004 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. Vol. 2.

IEEE. 2004, pp. II–II.

[79] Jin-Hwa Kim, Jaehyun Jun, and Byoung-Tak Zhang. “Bilinear attention networks”.

In: Advances in neural information processing systems 31 (2018).

[80] Jongyoo Kim, Anh-Duc Nguyen, and Sanghoon Lee. “Deep CNN-based blind image

quality predictor”. In: IEEE transactions on neural networks and learning systems

30.1 (2018), pp. 11–24.

[81] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.

In: arXiv preprint arXiv:1412.6980 (2014).

[82] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph con-

volutional networks”. In: arXiv preprint arXiv:1609.02907 (2016).

[83] Florian Kleber, Markus Diem, and Robert Sablatnig. “Form classification and re-

trieval using bag of words with shape features of line structures”. In: Document

Recognition and Retrieval XXI. Vol. 9021. SPIE. 2014, pp. 61–69.

[84] Takumi Kobayashi. “BFO meets HOG: feature extraction based on histograms

of oriented pdf gradients for image classification”. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. 2013, pp. 747–754.

[85] Andreas Kölsch, Muhammad Zeshan Afzal, Markus Ebbecke, and Marcus Liwicki.

“Real-time document image classification using deep CNN and extreme learning

machines”. In: 2017 14th IAPR international conference on document analysis and

recognition (ICDAR). Vol. 1. IEEE. 2017, pp. 1318–1323.

[86] Praveen Krishnan and CV Jawahar. “Matching handwritten document images”. In:

European Conference on Computer Vision. Springer. 2016, pp. 766–782.

[87] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification

with deep convolutional neural networks”. In: Communications of the ACM 60.6

(2017), pp. 84–90.



Bibliography 163

[88] Jayant Kumar and David Doermann. “Unsupervised classification of structurally

similar document images”. In: 2013 12th International Conference on Document

Analysis and Recognition. IEEE. 2013, pp. 1225–1229.

[89] Jayant Kumar, Peng Ye, and David Doermann. “Learning document structure for

retrieval and classification”. In: Proceedings of the 21st International Conference

on Pattern Recognition (ICPR2012). IEEE. 2012, pp. 1558–1561.

[90] Jayant Kumar, Peng Ye, and David S. Doermann. “Structural similarity for doc-

ument image classification and retrieval”. In: Pattern Recognit. Lett. 43 (2014),

pp. 119–126.

[91] Dana Lahat, Tülay Adali, and Christian Jutten. “Multimodal data fusion: an

overview of methods, challenges, and prospects”. In: Proceedings of the IEEE 103.9

(2015), pp. 1449–1477.

[92] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. “Recurrent convolutional neural

networks for text classification”. In: Twenty-ninth AAAI conference on artificial

intelligence. 2015.

[93] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. “Human-level

concept learning through probabilistic program induction”. In: Science 350.6266

(2015), pp. 1332–1338.

[94] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. “Colorization as a

proxy task for visual understanding”. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. 2017, pp. 6874–6883.

[95] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. “Beyond bags of features:

Spatial pyramid matching for recognizing natural scene categories”. In: 2006 IEEE

computer society conference on computer vision and pattern recognition (CVPR’06).

Vol. 2. IEEE. 2006, pp. 2169–2178.

[96] Viet Phuong Le, Muriel Visani, Cao De Tran, and Jean-Marc Ogier. “Logo spotting

for document categorization”. In: Proceedings of the 21st International Conference

on Pattern Recognition (ICPR2012). IEEE. 2012, pp. 3484–3487.



164 Bibliography

[97] Viet Phuong Le, Muriel Visani, Cao De Tran, and Jean-Marc Ogier. “Improving

logo spotting and matching for document categorization by a post-filter based on

homography”. In: 2013 12th International Conference on Document Analysis and

Recognition. IEEE. 2013, pp. 270–274.

[98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-based

learning applied to document recognition”. In: Proceedings of the IEEE 86.11

(1998), pp. 2278–2324.

[99] Yann LeCun, Larry Jackel, Leon Bottou, A Brunot, Corinna Cortes, John Denker,

Harris Drucker, Isabelle Guyon, UA Muller, Eduard Sackinger, et al. “Comparison

of learning algorithms for handwritten digit recognition”. In: International confer-

ence on artificial neural networks. Vol. 60. 1. Perth, Australia. 1995, pp. 53–60.

[100] Kuang-Huei Lee, Xi Chen, Gang Hua, Houdong Hu, and Xiaodong He. “Stacked

cross attention for image-text matching”. In: Proceedings of the European confer-

ence on computer vision (ECCV). 2018, pp. 201–216.

[101] Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, and Furu Wei. “DiT:

Self-supervised Pre-training for Document Image Transformer”. In: arXiv preprint

arXiv:2203.02378 (2022).

[102] Kunpeng Li, Yulun Zhang, K. Li, Yuanyuan Li, and Yun Fu. “Visual Semantic

Reasoning for Image-Text Matching”. In: 2019 IEEE/CVF International Conference

on Computer Vision (ICCV) (2019), pp. 4653–4661.

[103] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang.

“Visualbert: A simple and performant baseline for vision and language”. In: arXiv

preprint arXiv:1908.03557 (2019).

[104] Peizhao Li, Jiuxiang Gu, Jason Kuen, Vlad I Morariu, Handong Zhao, Rajiv Jain,

Varun Manjunatha, and Hongfu Liu. “Selfdoc: Self-supervised document represen-

tation learning”. In: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition. 2021, pp. 5652–5660.



Bibliography 165

[105] Xiangyang Li and Shuqiang Jiang. “Know more say less: Image captioning based on

scene graphs”. In: IEEE Transactions on Multimedia 21.8 (2019), pp. 2117–2130.

[106] Yaoyuan Liang, Xin Wang, Xuguang Duan, and Wenwu Zhu. “Multi-modal Con-

textual Graph Neural Network for Text Visual Question Answering”. In: 2020 25th

International Conference on Pattern Recognition (ICPR). IEEE. 2021, pp. 3491–

3498.

[107] Chunxiao Liu, Zhendong Mao, Tianzhu Zhang, Hongtao Xie, Bin Wang, and Yong-

dong Zhang. “Graph structured network for image-text matching”. In: Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition. 2020,

pp. 10921–10930.

[108] Hao Liu, Xin Li, Bing Liu, Deqiang Jiang, Yinsong Liu, and Bo Ren. “Neural

Collaborative Graph Machines for Table Structure Recognition”. In: Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022,

pp. 4533–4542.

[109] Xiaojing Liu, Feiyu Gao, Qiong Zhang, and Huasha Zhao. “Graph convolution

for multimodal information extraction from visually rich documents”. In: arXiv

preprint arXiv:1903.11279 (2019).

[110] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. “Roberta: A robustly

optimized bert pretraining approach”. In: arXiv preprint arXiv:1907.11692 (2019).

[111] Yu Liu, Yanming Guo, Erwin M Bakker, and Michael S Lew. “Learning a recurrent

residual fusion network for multimodal matching”. In: Proceedings of the IEEE

international conference on computer vision. 2017, pp. 4107–4116.

[112] Ilya Loshchilov and Frank Hutter. “Decoupled weight decay regularization”. In:

arXiv preprint arXiv:1711.05101 (2017).

[113] David G Lowe. “Distinctive image features from scale-invariant keypoints”. In: In-

ternational journal of computer vision 60.2 (2004), pp. 91–110.



166 Bibliography

[114] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. “Vilbert: Pretraining task-

agnostic visiolinguistic representations for vision-and-language tasks”. In: Advances

in neural information processing systems 32 (2019).

[115] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. “Hierarchical question-

image co-attention for visual question answering”. In: Advances in neural informa-

tion processing systems 29 (2016).

[116] Andres Mafla, Sounak Dey, Ali Furkan Biten, Lluis Gomez, and Dimosthenis Karatzas.

“Multi-modal reasoning graph for scene-text based fine-grained image classification

and retrieval”. In: Proceedings of the IEEE/CVF Winter Conference on Applica-

tions of Computer Vision. 2021, pp. 4023–4033.

[117] Krystian Mikolajczyk and Cordelia Schmid. “A performance evaluation of local

descriptors”. In: IEEE transactions on pattern analysis and machine intelligence

27.10 (2005), pp. 1615–1630.

[118] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient estimation

of word representations in vector space”. In: arXiv preprint arXiv:1301.3781 (2013).

[119] Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Armand

Joulin. “Advances in Pre-Training Distributed Word Representations”. In: Proceed-

ings of the International Conference on Language Resources and Evaluation (LREC

2018). 2018.

[120] Marcin Michał Mirończuk and Jarosław Protasiewicz. “A recent overview of the

state-of-the-art elements of text classification”. In: Expert Systems with Applica-

tions 106 (2018), pp. 36–54.

[121] Ishan Misra and Laurens van der Maaten. “Self-supervised learning of pretext-

invariant representations”. In: Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition. 2020, pp. 6707–6717.

[122] Kosuke Mizuno, Yosuke Terachi, Kenta Takagi, Shintaro Izumi, Hiroshi Kawaguchi,

and Masahiko Yoshimoto. “Architectural study of HOG feature extraction proces-



Bibliography 167

sor for real-time object detection”. In: 2012 IEEE Workshop on Signal Processing

Systems. IEEE. 2012, pp. 197–202.

[123] T Nathan Mundhenk, Daniel Ho, and Barry Y Chen. “Improvements to context

based self-supervised learning”. In: Proceedings of the IEEE conference on computer

vision and pattern recognition. 2018, pp. 9339–9348.

[124] Medhini Narasimhan, Svetlana Lazebnik, and Alexander Schwing. “Out of the box:

Reasoning with graph convolution nets for factual visual question answering”. In:

Advances in neural information processing systems 31 (2018).

[125] Duy-Kien Nguyen and Takayuki Okatani. “Improved Fusion of Visual and Language

Representations by Dense Symmetric Co-attention for Visual Question Answer-

ing”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(2018), pp. 6087–6096.

[126] Lucia Noce, Ignazio Gallo, Alessandro Zamberletti, and Alessandro Calefati. “Em-

bedded textual content for document image classification with convolutional neural

networks”. In: Proceedings of the 2016 ACM Symposium on Document Engineering.

2016, pp. 165–173.

[127] Mehdi Noroozi and Paolo Favaro. “Unsupervised learning of visual representations

by solving jigsaw puzzles”. In: European conference on computer vision. Springer.

2016, pp. 69–84.

[128] Mehdi Noroozi, Hamed Pirsiavash, and Paolo Favaro. “Representation learning by

learning to count”. In: Proceedings of the IEEE international conference on com-

puter vision. 2017, pp. 5898–5906.

[129] Mehdi Noroozi, Ananth Vinjimoor, Paolo Favaro, and Hamed Pirsiavash. “Boost-

ing self-supervised learning via knowledge transfer”. In: Proceedings of the IEEE

conference on computer vision and pattern recognition. 2018, pp. 9359–9367.

[130] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation learning with

contrastive predictive coding”. In: arXiv preprint arXiv:1807.03748 (2018).



168 Bibliography

[131] Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. “Actor-mimic: Deep

multitask and transfer reinforcement learning”. In: arXiv preprint arXiv:1511.06342

(2015).

[132] Joan Pastor-Pellicer, M. Afzal, Marcus Liwicki, and M. J. Bleda. “Complete System

for Text Line Extraction Using Convolutional Neural Networks and Watershed

Transform”. In: 2016 12th IAPR Workshop on Document Analysis Systems (DAS)

(2016), pp. 30–35.

[133] Joan Pastor-Pellicer, Salvador España Boquera, Francisco Zamora-Martínez, Muham-

mad Zeshan Afzal, and María José Castro Bleda. “Insights on the Use of Convolu-

tional Neural Networks for Document Image Binarization”. In: IWANN. 2015.

[134] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A

Efros. “Context encoders: Feature learning by inpainting”. In: Proceedings of the

IEEE conference on computer vision and pattern recognition. 2016, pp. 2536–2544.

[135] Jeffrey Pennington, Richard Socher, and Christopher D Manning. “Glove: Global

vectors for word representation”. In: Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP). 2014, pp. 1532–1543.

[136] Florent Perronnin and Christopher Dance. “Fisher kernels on visual vocabularies

for image categorization”. In: 2007 IEEE conference on computer vision and pattern

recognition. IEEE. 2007, pp. 1–8.

[137] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher

Clark, Kenton Lee, and Luke Zettlemoyer. “Deep Contextualized Word Represen-

tations”. In: NAACL. 2018.

[138] Hai Pham, Paul Pu Liang, Thomas Manzini, Louis-Philippe Morency, and Barn-

abás Póczos. “Found in translation: Learning robust joint representations by cyclic

translations between modalities”. In: Proceedings of the AAAI Conference on Ar-

tificial Intelligence. Vol. 33. 01. 2019, pp. 6892–6899.



Bibliography 169

[139] Rafał Powalski, Łukasz Borchmann, Dawid Jurkiewicz, Tomasz Dwojak, Michał

Pietruszka, and Gabriela Pałka. “Going full-tilt boogie on document understanding

with text-image-layout transformer”. In: International Conference on Document

Analysis and Recognition. Springer. 2021, pp. 732–747.

[140] Jianjun Qian, Weilan Wang, and Daohui Wang. “A Novel Approach for Online

Handwriting Recognition of Tibetan Characters”. In: 2010.

[141] Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L Yuille. “Few-shot image recognition

by predicting parameters from activations”. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. 2018, pp. 7229–7238.

[142] Sachin Raja, Ajoy Mondal, and CV Jawahar. “Visual Understanding of Complex

Table Structures from Document Images”. In: Proceedings of the IEEE/CVF Win-

ter Conference on Applications of Computer Vision. 2022, pp. 2299–2308.

[143] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm Lev-

skaya, and Jonathon Shlens. “Stand-Alone Self-Attention in Vision Models”. In:

(2019). arXiv: 1906.05909 [cs.CV].

[144] Sachin Ravi and Hugo Larochelle. “Optimization as a model for few-shot learning”.

In: (2016).

[145] Zhongzheng Ren and Yong Jae Lee. “Cross-domain self-supervised multi-task fea-

ture learning using synthetic imagery”. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2018, pp. 762–771.

[146] Pau Riba, Anjan Dutta, Lutz Goldmann, Alicia Fornés, Oriol Ramos, and Josep

Lladós. “Table detection in invoice documents by graph neural networks”. In: 2019

International Conference on Document Analysis and Recognition (ICDAR). IEEE.

2019, pp. 122–127.

[147] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo

Gatta, and Yoshua Bengio. “Fitnets: Hints for thin deep nets”. In: arXiv preprint

arXiv:1412.6550 (2014).

https://arxiv.org/abs/1906.05909


170 Bibliography

[148] Saikat Roy, Arindam Das, and Ujjwal Bhattacharya. “Generalized stacking of

layerwise-trained deep convolutional neural networks for document image classi-

fication”. In: 2016 23rd International Conference on Pattern Recognition (ICPR).

IEEE. 2016, pp. 1273–1278.

[149] Marçal Rusinol and Josep Llados. “Logo spotting by a bag-of-words approach for

document categorization”. In: 2009 10th international conference on document anal-

ysis and recognition. IEEE. 2009, pp. 111–115.

[150] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. “Ima-

genet large scale visual recognition challenge”. In: International journal of computer

vision 115.3 (2015), pp. 211–252.

[151] Prateek Sarkar. “Image classification: Classifying distributions of visual features”.

In: 18th International Conference on Pattern Recognition (ICPR’06). Vol. 2. IEEE.

2006, pp. 472–475.

[152] Ritesh Sarkhel and Arnab Nandi. “Deterministic routing between layout abstrac-

tions for multi-scale classification of visually rich documents”. In: 28th International

Joint Conference on Artificial Intelligence (IJCAI), 2019. 2019.

[153] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan

Titov, and Max Welling. “Modeling relational data with graph convolutional net-

works”. In: European semantic web conference. Springer. 2018, pp. 593–607.

[154] Paul Scovanner, Saad Ali, and Mubarak Shah. “A 3-dimensional sift descriptor and

its application to action recognition”. In: Proceedings of the 15th ACM international

conference on Multimedia. 2007, pp. 357–360.

[155] Mathias Seuret, M. Alberti, Marcus Liwicki, and R. Ingold. “PCA-Initialized Deep

Neural Networks Applied to Document Image Analysis”. In: 2017 14th IAPR Inter-

national Conference on Document Analysis and Recognition (ICDAR) 01 (2017),

pp. 877–882.



Bibliography 171

[156] Christian K. Shin and David S. Doermann. “Document Image Retrieval Based on

Layout Structural Similarity”. In: IPCV. 2006.

[157] Sebastián Sierra and Fabio A. González. “Combining Textual and Visual Repre-

sentations for Multimodal Author Profiling: Notebook for PAN at CLEF 2018”. In:

CLEF. 2018.

[158] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for

large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[159] Josef Sivic and Andrew Zisserman. “Video Google: A text retrieval approach to

object matching in videos”. In: Computer Vision, IEEE International Conference

on. Vol. 3. IEEE Computer Society. 2003, pp. 1470–1470.

[160] Ray Smith. “An overview of the Tesseract OCR engine”. In: Ninth international

conference on document analysis and recognition (ICDAR 2007). Vol. 2. IEEE.

2007, pp. 629–633.

[161] Jake Snell, Kevin Swersky, and Richard Zemel. “Prototypical networks for few-shot

learning”. In: Advances in neural information processing systems 30 (2017).

[162] Kihyuk Sohn. “Improved deep metric learning with multi-class n-pair loss objec-

tive”. In: Advances in neural information processing systems 29 (2016).

[163] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy

M Hospedales. “Learning to compare: Relation network for few-shot learning”. In:

Proceedings of the IEEE conference on computer vision and pattern recognition.

2018, pp. 1199–1208.

[164] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. “Inception-

v4, inception-resnet and the impact of residual connections on learning”. In: Thirty-

first AAAI conference on artificial intelligence. 2017.

[165] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. “Going

deeper with convolutions”. In: Proceedings of the IEEE conference on computer

vision and pattern recognition. 2015, pp. 1–9.



172 Bibliography

[166] Chris Tensmeyer and Tony Martinez. “Analysis of convolutional neural networks

for document image classification”. In: 2017 14th IAPR International Conference

on Document Analysis and Recognition (ICDAR). Vol. 1. IEEE. 2017, pp. 388–393.

[167] Chunwei Tian, Yong Xu, and Wangmeng Zuo. “Image denoising using deep CNN

with batch renormalization”. In: Neural Networks 121 (2020), pp. 461–473.

[168] Yonglong Tian, Dilip Krishnan, and Phillip Isola. “Contrastive multiview coding”.

In: European conference on computer vision. Springer. 2020, pp. 776–794.

[169] Oliver Tüselmann, Friedrich Müller, Fabian Wolf, and Gernot A Fink. “Recognition-

free Question Answering on Handwritten Document Collections”. In: arXiv preprint

arXiv:2202.06080 (2022).

[170] Adnan Ul-Hasan, M. Afzal, F. Shafait, Marcus Liwicki, and T. Breuel. “A sequence

learning approach for multiple script identification”. In: 2015 13th International

Conference on Document Analysis and Recognition (ICDAR) (2015), pp. 1046–

1050.

[171] Sergey Usilin, Dmitry Nikolaev, Vassili Postnikov, and Gerald Schaefer. “Visual ap-

pearance based document image classification”. In: 2010 IEEE International Con-

ference on Image Processing. IEEE. 2010, pp. 2133–2136.

[172] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan

N Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is all you need”. In:

Advances in neural information processing systems 30 (2017).

[173] Yashaswi Verma, Abhishek Jha, and CV Jawahar. “Cross-specificity: modelling

data semantics for cross-modal matching and retrieval”. In: International journal

of multimedia information retrieval 7.2 (2018), pp. 139–146.

[174] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. “Matching

networks for one shot learning”. In: Advances in neural information processing

systems 29 (2016).



Bibliography 173

[175] Di Wang, Quan Wang, Lihuo He, Xinbo Gao, and Yumin Tian. “Joint and individ-

ual matrix factorization hashing for large-scale cross-modal retrieval”. In: Pattern

Recognition 107 (2020), p. 107479.

[176] Jiapeng Wang, Lianwen Jin, and Kai Ding. “Lilt: A simple yet effective language-

independent layout transformer for structured document understanding”. In: arXiv

preprint arXiv:2202.13669 (2022).

[177] K Wang, Q Yin, W Wang, S Wu, and L Wang. “A comprehensive survey on cross-

modal retrieval (2016)”. In: arXiv preprint arXiv:1607.06215 ().

[178] Liwei Wang, Yin Li, Jing Huang, and Svetlana Lazebnik. “Learning two-branch

neural networks for image-text matching tasks”. In: IEEE Transactions on Pattern

Analysis and Machine Intelligence 41.2 (2018), pp. 394–407.

[179] X. Wang, Ross B. Girshick, A. Gupta, and Kaiming He. “Non-local Neural Net-

works”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition (2018), pp. 7794–7803.

[180] Yaxiong Wang, Hao Yang, Xueming Qian, Lin Ma, Jing Lu, Biao Li, and Xin Fan.

“Position focused attention network for image-text matching”. In: arXiv preprint

arXiv:1907.09748 (2019).

[181] Fei Wu, Xiao-Yuan Jing, Zhiyong Wu, Yimu Ji, Xiwei Dong, Xiaokai Luo, Qinghua

Huang, and Ruchuan Wang. “Modality-specific and shared generative adversarial

network for cross-modal retrieval”. In: Pattern Recognition 104 (2020), p. 107335.

[182] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. “Unsupervised feature

learning via non-parametric instance discrimination”. In: Proceedings of the IEEE

conference on computer vision and pattern recognition. 2018, pp. 3733–3742.

[183] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. “Aggre-

gated residual transformations for deep neural networks”. In: Proceedings of the

IEEE conference on computer vision and pattern recognition. 2017, pp. 1492–1500.



174 Bibliography

[184] Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu,

Dinei Florencio, Cha Zhang, Wanxiang Che, et al. “LayoutLMv2: Multi-modal pre-

training for visually-rich document understanding”. In: arXiv preprint arXiv:2012.14740

(2020).

[185] Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou.

“Layoutlm: Pre-training of text and layout for document image understanding”. In:

Proceedings of the 26th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining. 2020, pp. 1192–1200.

[186] Shiyang Yan, Yuan Xie, F. Wu, J. Smith, Wenjin Lu, and B. Zhang. “Image cap-

tioning via hierarchical attention mechanism and policy gradient optimization”. In:

Signal Process. 167 (2020).

[187] Fan Yang, Lianwen Jin, Weixin Yang, Ziyong Feng, and Shuye Zhang. “Handwrit-

ten/printed receipt classification using attention-based convolutional neural net-

work”. In: 2016 15th International Conference on Frontiers in Handwriting Recog-

nition (ICFHR). IEEE. 2016, pp. 384–389.

[188] Fan Yang, Xiaochang Peng, Gargi Ghosh, Reshef Shilon, Hao Ma, Eider Moore,

and Goran Predovic. “Exploring deep multimodal fusion of text and photo for hate

speech classification”. In: Proceedings of the third workshop on abusive language

online. 2019, pp. 11–18.

[189] Xiao Yang, Ersin Yumer, Paul Asente, Mike Kraley, Daniel Kifer, and C Lee Giles.

“Learning to extract semantic structure from documents using multimodal fully

convolutional neural networks”. In: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition. 2017, pp. 5315–5324.

[190] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,

and Quoc V Le. “Xlnet: Generalized autoregressive pretraining for language under-

standing”. In: Advances in neural information processing systems 32 (2019).

[191] Zichao Yang, X. He, Jianfeng Gao, L. Deng, and Alex Smola. “Stacked Attention

Networks for Image Question Answering”. In: 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) (2016), pp. 21–29.



Bibliography 175

[192] Zhou Yu, Yuhao Cui, Jun Yu, Dacheng Tao, and Qi Tian. “Multimodal unified at-

tention networks for vision-and-language interactions”. In: arXiv preprint arXiv:1908.04107

(2019).

[193] Zhou Yu, Jun Yu, Jianping Fan, and Dacheng Tao. “Multi-modal factorized bilinear

pooling with co-attention learning for visual question answering”. In: Proceedings

of the IEEE international conference on computer vision. 2017, pp. 1821–1830.

[194] Zhou Yu, Jun Yu, Chenchao Xiang, Jianping Fan, and Dacheng Tao. “Beyond

bilinear: Generalized multimodal factorized high-order pooling for visual question

answering”. In: IEEE transactions on neural networks and learning systems 29.12

(2018), pp. 5947–5959.

[195] Xin Yuan, Zhe Lin, Jason Kuen, Jianming Zhang, Yilin Wang, Michael Maire,

Ajinkya Kale, and Baldo Faieta. “Multimodal contrastive training for visual rep-

resentation learning”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition. 2021, pp. 6995–7004.

[196] Tom Zahavy, Alessandro Magnani, Abhinandan Krishnan, and Shie Mannor. “Is

a picture worth a thousand words? A Deep Multi-Modal Fusion Architecture for

Product Classification in e-commerce”. In: arXiv preprint arXiv:1611.09534 (2016).

[197] Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. “From recognition to

cognition: Visual commonsense reasoning”. In: Proceedings of the IEEE/CVF con-

ference on computer vision and pattern recognition. 2019, pp. 6720–6731.

[198] Han Zhang, Jing Yu Koh, Jason Baldridge, Honglak Lee, and Yinfei Yang. “Cross-

modal contrastive learning for text-to-image generation”. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, pp. 833–

842.

[199] Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang. “Learning deep CNN

denoiser prior for image restoration”. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. 2017, pp. 3929–3938.



176 Bibliography

[200] Peng Zhang, Yunlu Xu, Zhanzhan Cheng, Shiliang Pu, Jing Lu, Liang Qiao, Yi Niu,

and Fei Wu. “TRIE: end-to-end text reading and information extraction for doc-

ument understanding”. In: Proceedings of the 28th ACM International Conference

on Multimedia. 2020, pp. 1413–1422.

[201] Richard Zhang, Phillip Isola, and Alexei A Efros. “Colorful image colorization”. In:

European conference on computer vision. Springer. 2016, pp. 649–666.

[202] Xiang Zhang, Junbo Zhao, and Yann LeCun. “Character-level convolutional net-

works for text classification”. In: Advances in neural information processing systems

28 (2015).

[203] Ying Zhang, Tao Xiang, Timothy M Hospedales, and Huchuan Lu. “Deep mutual

learning”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2018, pp. 4320–4328.

[204] Hengshuang Zhao, Jiaya Jia, and V. Koltun. “Exploring Self-Attention for Image

Recognition”. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR) (2020), pp. 10073–10082.

[205] Rui Zhao and Kezhi Mao. “Fuzzy bag-of-words model for document representation”.

In: IEEE transactions on fuzzy systems 26.2 (2017), pp. 794–804.

[206] Liangli Zhen, Peng Hu, Xu Wang, and Dezhong Peng. “Deep supervised cross-modal

retrieval”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition. 2019, pp. 10394–10403.

[207] B. Zhou, Yuandong Tian, Sainbayar Sukhbaatar, Arthur Szlam, and R. Fergus.

“Simple Baseline for Visual Question Answering”. In: ArXiv abs/1512.02167 (2015).

[208] Huiyu Zhou, Yuan Yuan, and Chunmei Shi. “Object tracking using SIFT fea-

tures and mean shift”. In: Computer vision and image understanding 113.3 (2009),

pp. 345–352.

[209] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. “Learning trans-

ferable architectures for scalable image recognition”. In: Proceedings of the IEEE

conference on computer vision and pattern recognition. 2018, pp. 8697–8710.


	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Core Multimodal Challenges
	Representation
	Alignment
	Transference
	Reasoning

	Background
	Language-based Representations
	Vision-based Representations
	Multimodal Representations

	Downstream Applications
	Datasets
	Document Classification
	Content-based Document Retrieval
	Few-Shot Document Classification

	Major Contributions
	List of Publications
	International Journals
	International Conferences
	International Workshops


	Multimodal Deep Feature Fusion
	Motivation
	Approach
	Vision Modality
	Language Modality

	Cross-Modal Feature Learning
	Visual Features
	Textual Features
	Cross-Modal Features

	Experiments and Analysis
	Preprocessing
	Implementation Details
	Overall Evaluation
	Ablation Study

	Discussion

	Multimodal Deep Mutual Learning
	Motivation
	Approach
	Vision Modality
	Language Modality
	Cross-Modal Modality
	Self-Attention-based Fusion Module

	Proposed Method
	Multimodal Mutual Learning
	Self-Attention-based Fusion Module

	Experimental Setup
	Preprocessing
	Implementation Details

	Experiments and Ablation Study
	Evaluation Protocol
	Intra-dataset Evaluation
	Intra-Dataset Confusion Matrices
	Inter-dataset Evaluation
	Inter-Dataset Confusion Matrices

	Discussion

	Multimodal Document Representation Learning
	Motivation
	Methodology
	Model Architecture
	Cross-Modal Alignment
	Cross-Modal Contrastive Learning

	Experiments
	Pre-Training VLCDoC
	Fine-tuning on Multimodal Tasks
	Ablation Study

	Discussion

	Improved Multimodal Semantic Document Representation Learning
	Motivation
	Method
	Model Architecture
	Pre-training Objectives

	Experiments
	Model Configurations
	Pre-Training LSRD
	Fine-Tuning on Multimodal Tasks
	Qualitative Results

	Discussion

	Conclusions and Future Work
	Overview
	Conclusions
	Summary of Contributions
	Future Research

	Appendix Appendix
	Appendix Appendix
	Bibliography

