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Let ku be the connective complex K-theory spectrum, localized at a prime p, and let ℓ be its connective Adams summand. The Bockstein spectral sequence, related to the multiplication by v 1 ∈ ℓ * , that compute the topological Hochschild homology groups THH * (ℓ), is known. The purpose of this thesis is, first, to extend these results to the Bockstein spectral sequence, related to the multiplication by u ∈ ku * , that compute THH * (ku); and second, to study the composition

that captures part of the units in the algebraic K-theory of ku via the Bökstedt trace map into THH. We first develop general tools, that relate a spectral sequence to what we call gathered and truncated spectral sequences. We then study how the extensions in a Bockstein spectral sequence can sometimes be recovered from the spectral sequence itself. We use these general results to compute the Bockstein spectral sequence for THH * (ku) from the one for THH * (ℓ). We give a second computation of THH * (ku) using logarithmic THH. We then give a presentation of ku * K(Z, 3) and compute the non-torsion part of the map ku * K(Z, 3) → THH * (ku).

Suites spectrales rassemblées, Bocksteins et applications à THH

Soit ku le spectre de la K-théorie complexe connective, localisée en un premier p, et soit ℓ la summand d'Adams connective. La suite spectrale de Bockstein associée à la multiplication par v 1 ∈ ℓ * , et qui calcule les groupes d'homologie de Hochschild topologique THH * (ℓ), est connue. Le but de cette thèse est, dans un premier temps, d'étendre ces résultats à la suite spectrale de Bockstein associée à la multiplication par u ∈ ku * , qui calcule THH * (ku) ; dans un second temps, d'étudier la composée

Σ ∞ + K(Z, 3) → Σ ∞ + BGL 1 (ku) → K(ku) → THH(ku)
capturant une partie des unités de la K-théorie algébrique de ku via la trace de Bökstedt dans THH. Nous développons d'abord des outils généraux, qui relient une suite spectrale à ce que nous appellerons des suites spectrales rassemblées et tronquées. Nous étudions ensuite comment les extensions dans une suite spectrale de Bockstein sont parfois déterminées par la suite spectrale elle-même. Ce résultats généraux nous permettent de calculer la suite spectrale de Bockstein de THH * (ku) à partir de celle de THH * (ℓ). Nous ferons ensuite un deuxième calcul de THH * (ku) en utilisant THH logarithmique. Enfin nous donnons une présentation de ku * K(Z, 3) et nous calculons la partie sans torsion de l'application ku * K(Z, 3) → THH * (ku).

Mots clefs : topologie algébrique, homotopie stable, K-théorie algébrique, suites spectrales, homologie de Hochschild topologique, K-théorie complexe Gathered spectral sequences, Bocksteins and applications to THH

Introduction

The algebraic K-theory groups of a ring are difficult to compute, and thus are often studied through so-called trace maps. The first of this kind, the Dennis trace map K → HH, maps algebraic K-theory to Hochschild homology. It was conjectured by Goodwillie that the Dennis trace map factors through a version of Hochschild homology where the ground ring is not the integers Z, but the sphere spectrum S; this hypothetical object was then named topological Hochschild homology. Such a construction was eventually carried out by Bökstedt in unpublished work [START_REF] Bökstedt | The topological Hochschild homology of Z and Z/p[END_REF], where the first definition of THH and of the trace map K → THH appear.

However, Bökstedt lacked a sufficiently structured category of spectra to mimic the definition of Hochschild homology over the sphere spectrum; it was only after the description of the category of S-modules or the category of symmetric spectra that such a definition could be made. Topological Hochschild homology then offers a trace map from the K-theory not only of a ring, but of any E 1 ring spectrum. Furthermore, THH can be seen to be equipped with an action of the circle S 1 , and the study of the homotopy fixed points for this action led to the definition of topological cyclic homology and the cyclotomic trace K → TC that factorizes the Bökstedt trace map.

Many methods used to compute topological Hochschilds homology are based on varying the coefficients; when A is commutative and B is a symmetric (A, A)-bimodule, a first important property to manipulate the coefficients is the equation

THH(A; B) ∼ = B ∧ A THH(A) (0.0.1)
This allows us to identify the E 1 terms in the Bockstein spectral sequence obtained by some multiplication by q ∈ B map in THH(A; B) with the homotopy of the spectrum THH(A; B/q). This also identify the modulo p homotopy of THH(A; B) with THH(A; V (0)∧B) where V (0) is the modulo p Moore spectrum; likewise, for the Smith-Toda complex V (1), the V (1) homology of THH(A; B) will be the homotopy of THH(A; V (1) ∧ B). This produces spectral sequences whose first page might be computable by virtue of having a hopefully simpler coefficients ring. Another kind of manipulation on the coefficients will come from the equation

THH(A; B) ≃ B ∧ A e A ∼ = (B ∧ A B) ∧ L A e B (0.0.2)
which will produce a Brun spectral sequence computing the homotopy of THH(A; B) from that of THH(B; Hπ * (B ∧ A B)), which once again is hopefully easier. This method was studied with the level of generality we will need by Höning in [START_REF] Höning | On the Brun spectral sequence for topological Hochschild homology[END_REF].

Examples of computations related to our present work are those of McClure and Staffeldt in [START_REF] Mcclure | On the topological Hochschild homology of bu, I[END_REF]. For a prime p ≥ 3, they computed V (0) * THH(ℓ), the modulo p homotopy of the topological Hochschild homology of the Adams summand ℓ of ku, the connective cover of topological complex K-theory. They also obtained the formula

THH(L) ≃ L ∨ (ΣL) Q (0.0.3)
for the periodic Adams summand L.

The computation of V (0) * THH(ℓ) was extended to p = 2 by Angelveit and Rognes in [START_REF] Angeltveit | Hopf algebra structure on topological Hochschild homology[END_REF]; a similar result for ku was computed by Ausoni in [START_REF] Ausoni | Topological Hochschild homology of connective complex K-theory[END_REF], and an analogous periodic formula THH(KU ) ≃ KU ∨ (ΣKU ) Q (0.0.4) was given.

McClure and Staffeldt's work was aiming at computing THH * (ℓ) via an Adams spectral sequence; that computation never appeared. However, THH * (ℓ) was computed by Angelveit, Hill and Lawson in [START_REF] Angeltveit | Topological Hochschild homology of ℓ and ko[END_REF], using what they called dueling Bockstein spectral sequences: multiple spectral sequences having the same target must somehow agree, and the resulting constraints lead to the result. This idea and their results are the basis of much of the present work.

Another point of interest is the study of the algebraic K-theory spectrum K(ku) through THH(ku) and trace method. It is conjectured (see [START_REF] Baas | Twovector bundles define a form of elliptic cohomology[END_REF]) that K(ku) is an elliptic cohomology theory of chromatic filtration 2 -a theory with meaningful geometrical content that is suitable to study v 2 -periodic phenomenons, as topological K-theory is suitable to study v 1 -periodicity.

One way to constuct classes in K-theory is to use the so-called unit map

Σ ∞ + BGL 1 (R) → K(R).
When R is a classical commutative ring, the unit map has a right inverse K(R) → Σ ∞ + BGL 1 (R) called the determinant map. For ku, GL 1 (ku) is the product of infinite loop spaces K(Z, 2) × Z/2 × BSU ⊗ . Thus, there is a map Σ ∞ + K(Z, 3) → K(ku) (0.0.5) that captures part of the units. The π 3 of this map is computed in [START_REF] Ausoni | Divisibility of the Dirac magnetic monopole as a two-vector bundle over the three-sphere[END_REF], and a corollary of this computation is that there is no determinant map K(ku) → Σ ∞ + BGL 1 (ku).

When computing topological Hochschild homology, it is possible and often necessary to combine multiple steps of computation to arrive to a result. We will compute the homotopy of THH(ku); equation (0.0.1) tautologically identify that with computing the ku homology in the category of ku-modules of THH(ku). This is still interesting; p-localized ku has coefficients ring Z (p) [u], which give two possibilities for non-trivial Bockstein spectral sequences: multiplying by p or by u. Thus, to compute the ku-homology of a spectrum X (e.g. to compute THH(ku)), we can take two different approaches that start with F p -homology, that we give in the following diagram of spectral sequences:

(V (0) ∧ ku) * X ⊗ P (p)
ku * X H * (X; F p ) ⊗ P (p) ⊗ P (u) H * (X; Z (p) ) ⊗ P (u) (0.0.6)

We will show how that square of Bockstein spectral sequences contains information relative to the additive extension problems that might arise in computing ku * X.

The existence of the Adams summand ℓ in relation to ku also offers another piece of the computation; ℓ has coefficients ring Z (p) [v 1 ] where the map ℓ → ku send v 1 to u p-1 . This equation makes the v 1 -Bockstein spectral sequence not map into the u-Bockstein spectral sequence computing ku * X, but more nicely into another v 1 -Bockstein spectral sequence (ku/v 1 ) * X ⊗ P (v 1 ) ⇒ ku * X (0.0.8)

Moreover, the element (ku/v 1 ) * X can be computed from a truncated u-Bockstein spectral sequence:

H * (X; Z (p) ) ⊗ P p-1 (u) ⇒ (ku/v 1 ) * X (0.0.9)

These three spectral sequences fit in a diagram H * (X; Z (p) ) H * (X; Z (p) ) ⊗ P (u) ku * X H * (X; Z (p) ) ⊗ P p-1 (u) ⊗ P (v 1 ) (ku/v 1 ) * X ⊗ P (v 1 ) (0.0.10) where any information on one of the path, top or bottom, can be translated into information on the other.

Both diagram (0.0.6) and (0.0.10) present situations that are not specific to ku. A similar square diagram can be written for ℓ or any integral Morava K-theory. We will also develop the theory translating between the two path in the triangular diagram for any spectral sequence coming from a tower of spectra, not just for the Bockstein spectral sequences obtained from an element in a ring and its powers. Thus, our results could be used to compute spectral sequences in any case where it would make sense to gather steps in the filtration (potentially in order to compare more easily with another spectral sequence, as in our computation). For example, the Lubin-Tate spectrum E n share with some homotopy fixed point spectra the same relationship as ku p has with ℓ. The Adams summand ℓ is obtained as the homotopy fixed point of a C p-1 -action on ku p , and a similar result can be stated for the E n at other chromatic levels, see the results of [START_REF] Devinatz | A Lyndon-Hochschild-Serre spectral sequence for certain homotopy fixed point spectra[END_REF], recounted as theorem 5.4.4 of [START_REF] Rognes | Galois Extensions of Structured Ring Spectra -Stably Dualizable Groups[END_REF]. Computations with similar steps could then be carried out, starting with the Morava K-theory K(n) (that can be seen to be computable for any n in some cases, e.g. [START_REF] Ravenel | The Morava K-theories of Eilenberg-MacLane spaces and the Conner-Floyd conjecture[END_REF]) and their connective covers k(n).

This thesis is organized in two parts; the first one -chapters 1 to 3 -contains general results on spectral sequence; the second one -chapters 4 to 7 -deals with the topological Hochschild homology of ku and the trace map from K(Z, 3).

Chapter 1 results are on a generalized version of the situation of diagram (0.0.10). We provide a dictionnnary between the differentials of a spectral sequence coming from a tower of spectra, truncated versions of that spectral sequence and gathered versions. A tower of spectra is a functor from the poset of the integers to a category of spectra; when considered together with the cofibers of the maps constituting the tower, it provides an unrolled exact couple by taking homotopy, and thus a spectral sequence. For ku, the tower we will use is the Whitehead tower, that can be obtained by repeating the multiplication by u map

• • • → Σ 4 ku ∧ X → Σ 2 ku ∧ X → ku ∧ X. (0.0.11)
The tower -and the exact couple and spectral sequence -can be truncated by setting all the morphisms outside some bounds to be the identity. In the diagram (0.0.10), this is how we get the spectral sequence H * (X; Z (p) ) ⊗ P p-1 (u) ⇒ (ku/v 1 ) * X. (0.0.12)

The tower can also be gathered along an increasing map Z → Z -in diagram (0.0.10), the map x → |v 1 |x gives the spectral sequence (ku/v 1 ) * X ⊗ P (v 1 ) ⇒ ku * X. (0.0.13)

We will state general results, which for our example will specialize the following: differentials in the u-Bockstein spectral sequence H * (X; Z (p) ) ⊗ P (u) ⇒ ku * X (0.0.14) that are smaller than |v 1 | result in differential in (0.0.12) (theorem 1.2.11); that the differentials longer than |v 1 |, on the other hand, are related to differentials in (0.0.13) (theorem 1.2.21). We also provide results going the other way, from either the truncated or gathered spectral sequences to the base spectral sequence (theorem 1.2.11 and theorem 1.2.28), as well as results for null differentials that are sufficient to manage computations (theorem 1.2.35). Chapter 2 explains how the additive extensions in a Bockstein spectral sequence can sometimes be recovered from the differentials in a generalized diagram (0.0.6) (theorem 2.4.1). We will not work with ku but with any homology theory whose coefficients are polynomial in two elements q and v, analogous to p and u. We will provide two sets of hypotheses on the four Bockstein spectral sequences of diagram (0.0.6) under which this is possible. The stronger set of hypotheses constrain H * (X; F p ) to be of rank at most 1 in each degree, and constrain the length of the u-towers in the E ∞ -page of the spectral sequence on the right side of diagram (0.0.6) so that the extensions that can occur are unique. The weaker set of hypotheses relax the rank 1 hypothesis to only the infinite cycle in the bottom and left side spectral sequences, and relax the previous unicity property; in order to still be able to recover the extensions from the differentials, we will have to remark that some divisibilities by p, and thus additive extensions, are visible through a pattern in the differentials. Then it will be necessary to constrain the length of the u-towers in the E ∞ -page to ensure that all the possible divisibilities are visible through this pattern.

Chapter 3 provide a proof of folklore result -an isomorphism between the Atiyah-Hirzebruch spectral sequence obtained from a skeletal filtration and the spectral sequences obtained from the Whitehead tower or the Postnikov tower (theorem 3.2.5).

Chapter 4 introduce topological Hochschild homology and the results we will need for our following computation of THH * (ku).

Chapter 5 compute THH * (ku) as a ku-module from THH * (ℓ) and using the results from chapter 1 and 2 to compute the Bockstein spectral sequence THH * (ku; HZ (p) ) ⊗ P (u) ⇒ THH * (ku).

(0.0.15) be analyzed one prime p at a time. It can be separated into increasingly large submodules T k n for any n ≥ 1 and 1 ≤ k ≤ p -1, generated by the classes σuµ kp n , σuµ kp n +p , σuµ kp n +2p , . . . σuµ kp n -p (0.0.16) such that for any k and k ′ , T k n and T k ′ n are isomorphic when forgetting the degree, and T • n contains p -1 copies of T • n-1 as submodules, as well as one more copy as a quotient. This is of course very similar to the result on THH * (ℓ), but it must be noted that THH * (ku) ̸ = THH * (ℓ) ⊗ P (v1) P (u).

(0.0.17)

Chapter 6 provide another computation of THH * (ku) the using logarithmic topological Hochschild homology THH * (ku, ⟨u⟩). That computation still requires the knowledge of THH * (ℓ) and of some fact on the suspension map ku → THH(ku). Logarithmic topological Hochschild homology comes with a short exact sequence 0 → THH * (ℓ) → THH * (ℓ, ⟨v 1 ⟩) → THH * -1 (HZ (p) ) → 0 (0.0.18) as well as one for ku, and a weak equivalence

THH(ku, ⟨u⟩) ≃ ku ∧ ℓ THH(ℓ, ⟨v 1 ⟩) (0.0.19)
which state that ku is formally log-THH-étale. The sequence (0.0.18) allows us to compute THH * (ℓ, ⟨v 1 ⟩) (theorem 6.2.4), and from equation (0.0.19), we can deduce THH * (ku, ⟨u⟩) (theorem 6.2.6) as well as THH * (ku).

Chapter 7 introduces the Bökstedt trace map into THH, and provides a computation of the non-torsion part of ku * K(Z, 3) (proposition 7.2.51), a computation of the torsion part up to the additive extensions in the u-Bockstein spectral sequence (theorem 7.2.50), and a computation of the non-torsion part of the map ku * K(Z, 3) → THH * (ku) induced by the trace (theorem 7.3.34). The non-torsion part of ku * K(Z, 3) is similar to that of THH * (ku), with a class σβ (0) mapping to σu, but differs in that when mutiplied by u, σβ (0) become as divisible by integers as σu after one more mutiplication. Thus, the non-torsion part of ku * K(Z, 3) injects into THH * (ku).

Finally, appendix A contains a computer program that was used to generated pictures of some submodules of THH * (ku).

Notations and conventions

We will use the following notations to describe various algebras:

• P (x) is a polynomial algebra over a generator x • P n (x) is a truncated polynomial algebra at height n, that is the quotient of P (x) by the relation x n = 0

• Γ(x) is a divided power algebra, which is generated additively by the divided power of x, denoted γ i x for any i ≥ 0, and with the multiplicative relations:

γ i x • γ j x = i + j i γ i+j x. • E(x)
is what we will call an exterior algebra, which will always mean P 2 (x); however, this is not what is usually called an exterior algebra when not in odd characteristic, since in that case the relation we have is 2x 2 = 0.

The base ring for these algebras will be determined in most case by the context in which they appear. When computing homology with coefficient in F p or modulo p homotopy, the base ring will be F p . When computing homology with coefficients in Z, Z (p) or Z p (the integers, the p-localized integers or the p-completed integers), it will be Z, Z (p) or Z p . When computing THH, it will be the base ring for the coefficient spectrum. If we need to specify the base ring, we will note it in a subscript:

P Q (x), E Q (x), etc.
When writing spectral sequences, we will use tensor products ⊗ of these algebras. One of these tensor product will be written ⊗, it will separate the algebras generated by classes whose bidegree lies on the x-axis -on the left of ⊗ -and those generated by classes whose bidegree lies on the y-axis -on the right of ⊗.

Part I

Computational tools for diagrams of spectral sequences

Chapter 1

Spectral sequences from towers of spectra

Our vocabulary concerning spectral sequences will follow Boardman's in [START_REF] Michael Boardman | Conditionally convergent spectral sequences[END_REF]. We will work in a stable homotopy category, that is to say the homotopy category of a category of spectra. The underlying category of spectra could be Boardman's spectra (see [START_REF] Frank | Stable homotopy and generalised homology[END_REF] or [START_REF] Robert | Algebraic topology-homotopy and homology[END_REF]), or S-module from [START_REF] Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF]. What we really use is that we have a triangulated category, with a functor to the graded group that produces long exact sequences from the triangles, with some unicity on the maps between two triangles (arising from the unicity up to homotopy of the maps between cofiber sequences).

We study spectral sequences arising from a tower of spectra indexed by Z:

... Y n+1 Y n Y n-1 ... (1.0.1)
Let Y ∞ be the limit of the tower and Y -∞ be the colimit. For any a and b integers or ±∞ with a ≤ b, let Y b a be the cofiber of the map Y b → Y a . For each n ∈ Z, the cofiber sequence:

Y n+1 Y n Y n+1 n (1.0.2)
gives a long exact sequence in homotopy. Pasting each of these sequences defines an unrolled exact couple, and a spectral sequence.

To ensure (weak) convergence of the spectral sequence, we quotient the tower of spectra by the limit. To this end, we need to discuss the maps between these cofibers.

The octahedral axiom and consequences

The octahedral axiom is assumed true in any triangulated category. Here we will use it in the homotopy category of spectra, which is triangulated by virtue of being the homotopy category of a stable model category.

Axiom 1.1.1 (Octahedral). Let A → B → C, A → D → E and B → D → F 1.1
The octahedral axiom and consequences be triangles such that the diagram

A B A D id (1.1.2)
commutes. Then there are six triangles and a commutative diagram:

A B C A D E * F F id id (1.1.3)
where * is the zero-object of the category.

Remark that in the specific case of the stable homotopy category, the maps C → E and E → F are unique, and thus are unique up to homotopy in the category of spectra.

Our first lemma is a reformulation of this axiom with our notations: 

Y c Y b Y c b Y c Y a Y c a id (1.1.5)
Then there is a cofiber sequence:

Y c b Y c a Y b a (1.1.6)
and a weak equivalence f :

Y b a → Y b a making the following diagram commute. Y b Y a Y b a Y c b Y c a Y b a f (1.1.7)
We can conclude the following, which ensure that our spectral sequences can converge to their colimit Proposition 1.1.8. For any a ≤ b integers, the cofiber of

Y ∞ b → Y ∞ a is Y b a . Then the towers of spectra ... Y ∞ n+1 Y ∞ n Y ∞ n-1 ... (1.1.9) ... Y n+1 Y n Y n-1 ... (1.1.10)
induce isomorphic spectral sequences, beginning from the E 1 pages.

Proof. This is lemma 1.1.4: we have a morphism of exact couple induced by the diagrams

Y n+1 Y n Y n+1 n Y ∞ n+1 Y ∞ n Y n+1 n ≃ (1.1.11)
that is an isomorphism on the E 1 pages. The induced morphisms on the derived exact couples are then automatically isomorphisms on the following pages, and thus we have two isomorphic spectral sequences.

This corollary will be used with towers of spectra such that for some m ∈ Z and for all k ≥ m, all the Y k+1 → Y k are isomorphism -that is, Y m is the limit of the tower; and thus ∞ will be replaced by m. In fact, we will mostly deal with towers quotiented by their limits, and we will need another version of the octahedral axiom.

In the following, whenever i ≤ j ≤ k are integers or ±∞, the map Y k j → Y k i is the map coming from the morphism between the cofiber sequences 

Y k → Y j → Y k j and Y k → Y i → Y k i , and the map Y k i → Y j i is from the cofiber sequence Y k j → Y k i → Y j i of lemma
Y d c Y d b Y c b Y d c Y d a Y c a * Y b a Y b a id ≃ Y d c Y d a Y c a Y d b Y d a Y b a Y c b * ΣY c b id (1.1.13)
Proof. The left one is direct from the octahedral axiom. The right one must be shifted one time in the horizontal direction using Σ to have the same form as the octahedral axiom. The maps can be seen to be the canonical one since they are unique up to homotopy.

Truncated and gathered spectral sequences

We won't say anything on the convergence of such general spectral sequences, other than the quotient by the limit which is necessary for weak convergence. We will use the techniques we develop hereafter with spectral sequences that are otherwise know to converge, e.g. Bockstein spectral sequence or Atiyah-Hirzebruch spectral sequences.

Truncated and gathered spectral sequences

For any spectrum Γ, write Γ * = π * (Γ) its homotopy groups. The tower

... Y ∞ n+1 Y ∞ n Y ∞ n-1 ... (1.2.1)
gives a spectral sequence of the form

(B) : E 1 = n∈Z (Y n+1 n ) * ⇒ (Y ∞ -∞ ) * . (1.2.2)
For any integers a ≤ b, we can truncate the tower at a and b, and thus the spectral sequence (B). Let X be the tower such that:

X n =      Y ∞ b if n ≥ b Y ∞ a if n ≤ a Y ∞ n otherwise (1.2.3)
with identities when necessary and maps induced by the original tower. This defines a truncated spectral sequence:

(T b a ) : E 1 = a≤n<b (Y n+1 n ) * ⇒ (Y b a ) * . (1.2.4)
Remark that the tower quotiented by the limit has components:

X ′ n =      Y b b ≃ * if n ≥ b Y b a if n ≤ a Y b n otherwise.
(1.2.5)

For any strictly increasing map ϕ : Z → Z, consider the tower whose n-th level is Y ∞ ϕ(n) and maps the composition of the maps in the original tower. This defines a gathered spectral sequence:

( ϕ B) : E 1 = n∈Z (Y ϕ(n+1) ϕ(n) ) * ⇒ (Y ∞ -∞ ) * . (1.2.6)
We have choosen the term gathered by analogy with bookbinding -we are, after all, talking about the pages of a spectral sequence. Our sequence (B) is the book. If we let ϕ = id, then ( ϕ B) is a folio. If ϕ is the multiplication by 2, ( ϕ B) is an uncut quarto: the pages are gathered together two-by-two; the first differential d 1 of ( ϕ B) contains information about the d 2 and d 3 of (B), the second about d 4 and d 5 , etc. If ϕ is multiplication by 8, ( ϕ B) is an uncut octavo; its d 1 contains information about d 4 , d 5 , d 6 and d 7 of (B). We will provide the 1.2 Truncated and gathered spectral sequences necessary paper knife to recover (B) from ( ϕ B), but we will also say how to glue back the pages of (B) into ( ϕ B). It is left to the reader to choose a suitable name in latin when ϕ is a more complex function.

x y • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • (Y 1 0 ) * (Y 2 1 ) * (Y 3 2 ) * (Y 4 3 ) * (Y 5 4 ) * (Y 6 5 ) * (Y 7 6 ) * d 1 d 2 d 4
If one wants to compute (Y ∞ -∞ ) * , this gives two ways to do it: computing (B),

or computing each (Y ϕ(n+1) ϕ(n) ) * by means of (T ϕ(n+1) ϕ(n)
) and thereafter computing ( ϕ B). These two computations are not independent. Let us represent our spectral sequences graphically with the following grading: the n in (Y n ) * (the filtration degree) is the y-coordinate, and the x-coordinate is such that * = x + y. With such bidegree, the differentials will have |d r | = (-r -1, r) when we let the exact couple given by the tower of spectra be the E 1 page. We will draw first quadrant spectral sequences, but our results apply to whole plane spectral sequences.

For each of figs. 1.1 to 1.5, a • represent a copy of a field F on the E 1 -page, and the • n in fig. 1.5 represent n copies of F. On the fig. 1.1 we have figured 3 non-zero differentials of different size. We will choose our function ϕ : Z → Z such that ϕ(0) = 0, ϕ(1) = 3 and ϕ(2) = 7. Our first result is that the d 1 and d 2 figured will respectively be seen in (T 4 0 ) and (T ) will ensure a differential in (B). This discussion is theorem 1.2.11.

However, the differentials d 4 is too long and is "jumping" from the area covered by (T 3 0 ) to that covered by (T 7 3 ), and thus is not visible in either of the truncated spectral sequences. When computing (Y 3 0 ) * with (T 3 0 ), in the end all the remaining classes are gathered on the y = 0 line (see fig. 1.4) to compute this line in the E 1 -page of ( ϕ B).

The d 4 differential will be visible in ( ϕ B), as we will prove in theorem 1.2.21; in the fig. 1.5, we see that it gives a d 1 between the class in (Y 3 0 ) * represented by its source, and the class in (Y 7 3 ) * represented by its target. It is to be noted that differentials in (B) between the zone covered by (T 3 0 ) and (T 7 3 ) all give d 1 in ( ϕ B) regardless of their original length. Generally, differentials between the zone of (T

ϕ(n+1) ϕ(n)
) and (T

ϕ(n+m+1) ϕ(n+m)
) will be d m in ( ϕ B). Some regularity in the length of the differentials in ( ϕ B) can be recovered when ϕ is linear; this is not the case in our example, but it will be later when comparing Bockstein spectral x y x y 

• • • (Y 1 0 ) * (Y 2 1 ) * (Y 3 2 ) * d 1
• • • (Y 4 3 ) * (Y 5 4 ) * (Y 6 5 ) * (Y 7 6 ) * d 2
• • • Figure 1.4: The E ∞ page of (T 3 0 ), isomorphic to (Y 3 0 ) * .
The lines fix the degree.

1.2

Truncated and gathered spectral sequences x y sequences obtained by filtering with multiplication by an element and by some power of the same element. Finally, theorem 1.2.28 deals with the case of transferring a differential of ( ϕ B) into (B), and theorem 1.2.35 deals with the null differentials in (B) and ( ϕ B).

• 2 • 3 • 3 • 2 • 2 • 3 • 3 • 3 • 3 • 3 • 3 • 3 • 3 • 4 • 4 • 4 • 4 • 4 • 4 • 3 • 3 • 4 • 4 • • • 2 d 1 = d4 (Y 3 0 ) * (Y 7 
Consider an unrolled exact couple:

... A n+1 A n ... E 1 n i i i j k (1.2.7)
For r ≥ 0, let Z r n and B r n be the groups of r-cycles and of r-boundaries in E 1 n , that is:

Z r n = k -1 (Im(i r-1 : A n+r → A n+1 )) B r n = j(Ker(i r-1 : A n → A n-r+1 )).
(1.2.8)

We let E r be the quotient Z r /B r for r ≥ 1, and the differential d r will be a map E r n → E r n+r . We will write ϕ Z r n and ϕ B r n for the r-cycles and r-boundaries in the spectral sequence ( ϕ B) to distinguish them from those in (B). Definition 1.2.9. For x ∈ E r n and y ∈ E r n+r , we write d r (x) = y when for some x ∈ Z r n representing x in the quotient and some ȳ ∈ Z r n+r representing y, k(x) can be lifted r -1 times through i, and the image of the (r -1)-th lift by j is ȳ.

Let us also remark that stating y ̸ = 0 is stating that r is maximal for such lift of k(x).

Truncated and gathered spectral sequences

We can visualize this in the exact couple diagram:

A n+r+1 A n+r ... A n+1 A n E 1 n+r E 1 n α ... i r-1 (α) ȳ x i i j i i j k k (1.2.10)
We now describe how the differential in the spectral sequences (B), ( ϕ B) and

(T ϕ(n+1) ϕ(n) ) are interlinked.
First, we see how a differential in (B) short enough to fit in (T

ϕ(n+1) ϕ(n)
) will occur.

Theorem 1.2.11. Let n, r and N be integers such that ϕ(N ) ≤ n ≤ n + r < ϕ(N + 1), and let x ∈ Z r n and y ∈ Z r n+r in (B). Then there is an equivalence between these propositions:

• d r (x) = y in (B). • d r (x) = y in (T ϕ(N +1) ϕ(N )
).

where x and y stand for the quotients in the respective E r -pages of the two spectral sequences.

Proof. This is seen directly in the differential diagram after definition 1.2.9. Remark that the cycles are not the same generally between (B) and (T

ϕ(N +1) ϕ(N )
), but here we have r < ϕ(N + 1) -ϕ(N ) so that the r-cycles are indeed the same.

We then need a technical lemma to describe the longer differentials. Lemma 1.2.12. For integers a ≤ b ≤ c, if the commutative diagram

(Y b+1 b ) * (Y c b ) * (Y c a ) * (Y ∞ b+1 ) * -1 (Y ∞ c ) * -1 (Y ∞ c ) * -1 f e p i c-b-1 id (1.2.13)
can be populated with classes

x i c-b-1 (β) β β (1.2.14) 20 1.2
Truncated and gathered spectral sequences then there exists lifts

x x -i(u) x i c-b-1 (β) β β (1.2.15)
Proof. The diagram of the statement is commutative because of lemma 1.1.12, which can also be used to check that the following diagram is commutative and has rows and column exact:

(Y ∞ b ) * (Y ∞ b ) * (Y c b+1 ) * (Y c b ) * (Y b+1 b ) * (Y c b+1 ) * -1 (Y c b+1 ) * (Y ∞ c ) * -1 (Y ∞ b+1 ) * -1 (Y c b+1 ) * -1 (Y ∞ b ) * -1 (Y ∞ b ) * -1 id i id p e f g id δ i c-b-1 i c-b i id (1.2.16)
Here we can see that (1.2.17)

x ∈ (Y b+1 b ) * can be lifted through p to (Y c b ) * : indeed, f (x) = i c-b-1 (β) so g(x) = 0,
p(x -i(u)) = p(x) = x. (1.2.18) It remains to push x -i(u) ∈ (Y c b ) * into (Y c a )
* , and we have:

x x -i(u) x i c-b-1 (β) β β (1.2.19) 1.2
Truncated and gathered spectral sequences

We now describe how a longer differential in (B) occurs in the gathered spectral sequence ( ϕ B). We need the following definition:

Definition 1.2.20. An infinite cycle x ∈ (Y n+1 n ) * in the spectral sequence (B)
is said to represent an element x of the target group (Y ∞ -∞ ) * of (B) when: • x is not a boundary, i.e. is not the target of a differential.

• x lifts through the map (Y ∞ n ) * → (Y n+1 n ) * to an element x ∈ (Y ∞ n ) * whose image in (Y ∞ -∞ ) * is x.
Theorem 1.2.21. Let n, m, N and M be integers such that

ϕ(N ) ≤ n < ϕ(N + 1) ≤ ϕ(M ) ≤ m < ϕ(M + 1) (1.2.22)
and let x ∈ Z m-n n and y ∈ Z m-n m be classes in (B) such that d m-n (x) = y ̸ = 0. Then:

• x is an infinite cycle in (T ϕ(N +1) ϕ(N ) ), thus represent a class x ∈ (Y ϕ(N +1) ϕ(N ) ) * . • y is an infinite cycle in (T ϕ(M +1) ϕ(M ) ), thus represent a class ŷ ∈ (Y ϕ(M +1) ϕ(M ) ) * -1 . • There is a differential d M -N (x) = ŷ in ( ϕ B).
Proof. We see that x and y are infinite cycles in the truncated spectral sequences using definition 1.2.9.

The canonical maps assemble into a commutative diagram (it can be checked that each square is commutative using lemma 1.1.12):

(Y n+1 n ) * (Y ϕ(N +1) n ) * (Y ϕ(N +1) ϕ(N ) ) * (Y ∞ n+1 ) * -1 (Y ∞ ϕ(N +1) ) * -1 (Y ∞ ϕ(N +1) ) * -1 (Y ∞ m ) * -1 (Y ∞ m ) * -1 (Y ∞ ϕ(M ) ) * -1 (Y m+1 m ) * -1 (Y ϕ(M +1) m ) * -1 (Y ϕ(M +1) ϕ(M ) ) * -1 f e p id id (1.2.23) Remark that x ∈ (Y n+1 n ) * and y ∈ (Y m+1 m ) * -1 . Having a differential d m-n (x) = y is having a class α ∈ (Y ∞ m ) * -1 with (Y m+1 m ) * -1 (Y ∞ m ) * -1 (Y ∞ n+1 ) * -1 (Y n+1 n ) * y α i m-n-1 (α)
x.

(1.2.24) This is the left column of our diagram.

Truncated and gathered spectral sequences

Having y represent a class ŷ ∈ (Y

ϕ(M +1) ϕ(M ) ) * in (T ϕ(M +1) ϕ(M )
) is having an element

ỹ ∈ (Y ϕ(M +1) m ) * such that (Y m+1 m ) * -1 (Y ϕ(M +1) m ) * -1 (Y ϕ(M +1) ϕ(M ) ) * -1 y ỹ ŷ.
(1.2.25)

We choose ŷ and ỹ by pushing α in the bottom right square. We now have populated our commutative diagram with the elements

x i m-n-1 (α) i m-ϕ(N +1) (α) i m-ϕ(N +1) (α) α α i m-ϕ(M ) (α) y ỹ ŷ (1.2.26)
We use lemma 1.2.12 with a = ϕ(N ), b = n and c = ϕ(N + 1), and with β = i m-ϕ(N +1) (α), that is on our first two rows. We thus get lifts:

x x -i(u) x i m-n-1 (α) i m-ϕ(N +1) (α) i m-ϕ(N +1) (α) α α i m-ϕ(M ) (α) y ỹ ŷ (1.2.27)
The right column states that d M -N (x) = ŷ in ( ϕ B).

The next result describes how differentials in ( ϕ B) have counterparts in (B). ) and (T

ϕ(M +1) ϕ(M )
). Let x and y be fixed.

Then there is a unique integer n ′ such that ϕ(N ) ≤ n ≤ n ′ < ϕ(N + 1), and there is an element

x ′ ∈ (Y ϕ(N +1) ϕ(N ) ) * which is represented by x′ ∈ (Y n ′ +1 n ′ ) * in the spectral sequence (T ϕ(N +1) ϕ(N ) ), that supports a differential d M -N (x ′ ) = y in ϕ(N +1) n+1
) * . Denote x such a lift and x its non-zero image in (Y n+1 n ) * . Our diagram is populated as such:

x x x i m-n-1 (α) i m-ϕ(N +1) (α) i m-ϕ(N +1) (α) α α i m-ϕ(M ) (α) y ỹ y (1.2.29) It is however possible that i m-n-1 (α) is null. Let n ′ be the biggest integer such that i m-n ′ (α) = 0 ∈ (Y ∞ n ) * -1 . Since i m-n-1 (α) = f (x), i m-n (α) = 0 so n ≤ n ′ . We now work in diagram (1.2.23) with n replaced by n ′ : i m-n ′ -1 (α) can be lifted to (Y n ′ +1 n ′ ) * since i m-n ′ (α) = 0.
Denote x′ such a lift. Again using lemma 1.2.12 on our first two rows we can construct classes x′ ∈ (Y

ϕ(N +1) n ′ ) * and x ′ ∈ (Y ϕ(N +1) ϕ(N )
) * to complete the diagram and get the result.

Remark that with this level of generality, the statement made cannot be ameliorated regarding the fact that we may have to change x into x′ to get the differential in (B). In fact, let us consider the tower of spectra such that:

Y n =          * if n ≥ 3 HZ if n = 2 * if n = 1 ΣHZ if n ≤ 0 (1.2.30)
and the integer function ϕ such that:

ϕ(n) = n if n ≤ 0 n + 1 if n ≥ 1. (1.2.31)
We will figure the interesting part the tower of spectra for each spectral sequence with the cofibers below. Remark that with (T 2 0 ) we quotient the tower by the limit which is Y 2 , and that we put between braces the name of a generator for the homotopy.

(B) :

Y 3 Y 2 Y 1 Y 0 Y 3 2 Y 2 1 Y 1 0 * HZ * ΣHZ HZ{ȳ} ΣHZ{x ′ } ΣHZ{x -x′ } (1.2.32) In (B) there is a differential d(x ′ ) = ȳ. (T 2 0 ) : Y 2 2 Y 2 1 Y 2 0 Y 2 1 Y 1 0 * ΣHZ{x ′ } ΣHZ{x ′ } ∨ ΣHZ{x -x′ } ΣHZ{x ′ } ΣHZ{x -x′ } (1.2.33)
In (T 2 0 ) there is no non-zero differential.

( ϕ B) : Truncated and gathered spectral sequences such that d(x) = ȳ in ( ϕ B), and that class is represented by x -x′ at the end of (T 2 0 ) since x′ is of lower filtration. But in (B), d(x -x′ ) = 0, the differential is really supported by x′ . Thus, we cannot get a better result. However, this will not be an issue in the practical application following, since we will be able to prove a better result on the Bockstein spectral sequences we will compute.

Y 3 Y 2 Y 0 Y 3 2 Y 2 0 * HZ ΣHZ HZ{ȳ} ΣHZ{x ′ } ∨ ΣHZ{x -x′ } (1.2.
Statements can also be made regarding null differentials. ) * be an M -N -cycle in ( ϕ B), that is

d i (x) = 0 for i ∈ {1, . . . , M -N }. Then any x ∈ (Y n+1 n ) * representing x in (T ϕ(N +1) ϕ(N ) ) * is such that d m-n (x) = 0 in (B) for any m such that n < m ≤ ϕ(M + 1). (b) Let x ∈ (Y n+1 n ) * be an m -n-cycle in (B). Then there exists a class x ∈ (Y ϕ(N +1) ϕ(N ) ) * represented by x in (T ϕ(N +1) ϕ(N ) ) * such that x is an M -N - cycle in ( ϕ B) for any M such that ϕ(N + 1) < ϕ(M + 1) ≤ m. Proof. First point is direct in diagram (1.2.23).
Second point is using lemma 1.2.12 to get a class represented by x whose image in (Y ∞ ϕ(N +1) ) * -1 can be lifted as much as the image of x in (Y ∞ n+1 ) * -1 .

Chapter 2

Recovering the extensions from the Bockstein spectral sequences

Let k be a ring spectrum such that k * = Z[v] is a polynomial ring on some generator v of positive even degree, and Z is a discrete valuation ring concentrated in degree zero, with a maximum ideal (q) and a quotient field denoted by F. Let X be a bounded below spectrum. In this chapter, we will discuss the circumstances under which it is possible to compute the extensions, thus computing k * X as a k * -module, from the four Bockstein spectral sequences associated to q and v that we can construct for k. Generally, a Bockstein spectral is determined from a ring spectrum k, an element v of k * and any spectrum X. The usual point of view on the Bockstein is that of a single column spectral sequence, obtained by considering the exact sequence in homotopy associated to the cofiber sequence of the multiplication by v map:

k * X k * X k/v * X v (2.0.1)
That exact couple has only the homology degree, and thus cannot be unrolledor is already unrolled. We will use another point of view which will allow us to present our results more naturally. We need to consider only ring spectra k and v ∈ k * such that k is bounded below and v is of non-negative degree. Hereafter, v can be substituted with q. We will consider the spectral sequence arising from the tower of spectra . . .

Σ 2|v| k ∧ X Σ |v| k ∧ X k ∧ X k ∧ X . . . v v v id id
(2.0.2) The transition from the multiplication by v map and the identity will be on the piece of the tower indexed by 0, and the v map will decrease this index by 1. When taking homotopy groups, the colimit of the tower is k * X and the limit is null since k is bounded below; in the case of multiplication by q, it is null since Z is a discrete valuation ring. Thus, we get a spectral sequence of the type:

E 1 s,t = k/v s X ⊗ P (v) t ⇒ k s+t X (2.0.3)
with differentials of degrees |d r | = (-r -1, r). We see this point of view as more convenient than the classical one, because the E ∞ -page will have all the named classes needed to represent the target group, provided we can compute the extensions. When k * ∼ = P (v) ⊗ A where A is a ring concentrated in degrees d such that -|v| < d < |v|, then the multiplication by v maps will weak equivalences between Σ |v| k and k ≥|v| and the tower will be a gathered (see chapter 1) Whitehead tower (see chapter 3). This is true for k * , since k * ∼ = P (v) ⊗ Z and Z is concentrated in degree 0.

Z is the homotopy ring of a ring spectrum k/v which is the cofiber of the multiplication by v map in k. Similarly, the cofiber k/q of the multiplication by q map has homotopy group the ring F[v]. We can go further and quotient k/v and k/q by respectively q and v to get the Eilenberg-MacLane spectrum HF, and we have four Bockstein spectral sequences of the form:

k/q * X ⊗ P (q) k * X H * (X; F) ⊗ P (q) ⊗ P (v) k/v * X ⊗ P (v) (q.2) (q.1) (v.1) (v.2) (2.0.4)
The names chosen reflect on which element the Bockstein spectral sequence is computed and its rank in the computation. As in (2.0.3), the elements will have bidegrees (0, 0) for q, (0, |v|) for v and (|x|, 0) for any x in the specified homology group. Examples of such spectra are ku, ℓ and the others integral Morava K-theories with coefficients Z p [v n ] for some n ≥ 2. Our main example will be ku, the p-localized connective complex K-theory, with coefficients ku * ∼ = Z (p) [u] where u is in degree 2. The application we have in mind is the computation of THH * (ku) done in chapter 5. The four Bockstein spectral sequences for ku will be:

(V (0) ∧ ku) * X ⊗ P (p) ku * X H * (X; F p ) ⊗ P (p) ⊗ P (u) H * (X; Z (p) ) ⊗ P (u)
(2.0.5)

We will give two sets of hypothesis under which the spectral sequences determine the k * -module structure of the target group. The second set will be a simplified version of the first, less general but easier check. It is in fact this simplified hypothesis that we will use to compute THH * (ku) as a ku * -module. We will first provide an example of how the differentials can determine the extensions, and then an example where the spectral sequences will be shown not to determine the target module, which will provide some motivation for the hypothesis.

The following hypotheses and formulas are exact, but in applications, the differentials in the spectral sequences will often only be determined up to units; in what follows, it would mean that the π(q k 0 a i ) might only be determined up to a unit, or equivalently, that the formulas obtained for the extensions might only be determined up a to a unit.

A note on extensions

We will begin by reviewing what are extension problems in spectral sequences. Strong convergence in the sense of [START_REF] Michael Boardman | Conditionally convergent spectral sequences[END_REF] is relative to an abelian group G, called the target group, and a filtration • • • ⊂ F s+1 ⊂ F s ⊂ . . . of G, and implies that all the pieces E ∞ s of the E ∞ -page fit in short exact sequences

0 → F s+1 → F s → E ∞ s → 0. (2.1.1)
For our Bockstein spectral sequences (v.1) and (v.2), G is respectively k/q * X and k * X and F s for s ≥ 0 is the image of the multiplication by v s map in G.

For (q.1) and (q.2), G is respectively k/v * X and k * X and F s for s ≥ 0 is the image of the multiplication by q s map in G. If one of the F r is known, and the E ∞ -page of the spectral sequence is known, then the F s for s ≤ r can be determined inductively from the short exact sequences by solving the extension problems, that is, knowing the two groups on both sides of the short exact sequence, what group can sit in the middle? Each F s is said to be an extension of E ∞ s by F s+1 . Since we are interested not only in the group structure but in an R-modules (with R being here k/v * , k/q * or F), such extensions are classified by the extensions groups (see for example theorem 3.4.3 of [START_REF] Weibel | An introduction to homological algebra[END_REF])

Ext 1 R (E ∞ s ; F s+1 ). (2.1.2) 
In the case of (v.1) or (q.1), R is F and each E ∞ s is a free F-module, thus the Ext 1

F are trivial and F s is simply the sum F s+1 ⊕ E ∞ s over F. The structure of the exact couple defining our Bockstein spectral sequence ensure that the multiplication by respectively v or q on the E ∞ -page is the same as in the target group, thus for (v.1) and (q.1) there is an isomorphism between the E ∞ -page and the target group respectively as k/q * -modules or k/v * -modules.

There will, however, be extension problems in (v.2) and (q.2). We will make our statement about (v.2). In that case, R is k/v * , and each E ∞ s is not free but a sum of some R and R/(q k ) for various k ≥ 1. Then the Ext 1 R will be a product of F s+1 /q k F s+1 for each element R/(q k ) of the initial sum. This can be computed using proposition 3.3.4 of [START_REF] Weibel | An introduction to homological algebra[END_REF] and using the straightforward resolution of R/(q k ) with the map q k : R → R. Thus when an element x ∈ E ∞ s has q k x = 0, it is possible that a lift x ′ ∈ F s of x is such that q k x ′ is not zero, but is an element y ∈ F s+1 determined up to q k F s+1 by an element in the Ext 1 R group. Determining all these elements y is what we call solving the extension problems. When it is the case, we will say that q k x makes an extension with y, or sometimes just that there is an extension between x and y. Moreover, as in the case of (v.1), the multiplication by v is determined by the Bockstein spectral sequence, so solving the extension problems is the only things to do to determine the target group as a k * -module from the E ∞ -page. Finally, everything we just said about (v.2) can also be stated about (q.2) by replacing every v's with q's and vice versa.

Examples of computations

We will now present a basic example of extension and of the kind of reasoning we will use later to compute them. Assume given a spectrum

X such that k/v * X a • • • • • b • • • • • • Figure 2.1: First example: the E ∞ page of (v.2). a • • • • • b • • • • • • a • • • • • b • • • • • • Figure 2.2: First example: two possibilities for k * X.
is generated over k/v * by two classes a and b such that qa = 0, qb = 0 and |a| = |v| + |b|. Assume also that the spectral sequence (v.2) collapses at its first page, so that

E ∞ ∼ = E 1 ∼ = F{a, b} ⊗ P (v) as seen in fig. 2.1
, where multiplication by v is horizontal and multiplication by q is vertical. From this description, we know that k * X is generated by two classes a and b that are lifts of the classes of the same name in E ∞ , and we know that qb = 0 since b is alone in its degree. However, we do not know what qa is: it is possible that qa = 0 as it is in E ∞ , or that qa = vb up to a unit, since vb is in higher filtration that a. These two possibilities, depicted in fig. 2.2, are not presenting isomorphic k * -modules, and we cannot distinguish between them using (v.2) alone; here we need to know (v.1), whose E ∞ -page is isomorphic to k/q * X, and can be seen in fig. 2.3. If qa = 0, then v k b is not divisible by q for any k, but if qa = vb, then v k b is divisible by q for any k ≥ 1. In the second case, v k b = 0 in k/q * X for k ≥ 1, and the classes with these names in (v.1) will be in the image of the differential; in the first case, they will not be in the image of the differential.

We will now work out a second example. Here, we began with a module that we know is determined from the spectral sequences. We have computed the spectral sequences from the module, but we will present the computation beginning with the spectral sequences and deriving the module, as if we were doing a real computation. We let X be a suitable space for what follows.

Let H * (X; F) be the free F-module on sixteen generators

a, b, c, d, α, β, γ, δ, a ′ , b ′ , c ′ , d ′ , α ′ , β ′ , γ ′ , δ ′ (2.2.1) a • • • • • b • • • • • • a • • • • • b Figure 2.3: First example: two possibilities for k/q * X. a b c d α β γ δ a ′ b ′ c ′ d ′ α ′ β ′ γ ′ δ ′ Figure 2.4: Second example: the F-module H * (X; F). a • • • • • a ′ • • • • • b • • • • • • b ′ • • • • • • c • • • • • • c ′ • • • • • • d • • • d ′ • • • Figure 2.5: Second example: the k/q * -module k/q * X.
with b in lowest degree and

|a| = |b| + 3|v| |c| = |b| + |v| |d| = |b| + 2|v| |α| = |b| + 6|v| + 1 |β| = |b| + 9|v| + 1 |γ| = |b| + 8|v| + 1 |δ| = |b| + 7|v| + 1 |x ′ | = |x| + 1 for any x. (2.2.2)
We place them in fig. 2.4 by order of degrees, to scale with |v| = 2.

We now describe the spectral sequence (v.1) that compute k/q * X:

d 4 (α) = v 4 d d 4 (α ′ ) = v 4 d ′ d 6 (β) = v 6 a d 6 (β ′ ) = v 6 a ′ d 7 (δ) = v 7 b d 7 (δ ′ ) = v 7 b ′ d 8 (γ) = v 8 c d 8 (γ ′ ) = v 8 c ′ (2.2.3)
so that k/q * X, which is isomorphic to the E ∞ page of (v.1), is given by fig. 2.5.

On the other side, we have the spectral sequence (q.1):

d 1 (x ′ ) = qx for x equal to b, c, d, α, δ and γ. d 2 (x ′ ) = q 2 x for x equal to a and β. (2.2.4) whose E ∞ -page, isomorphic to k/v * X, is given by fig. 2.6. a b c d α β γ δ • • Figure 2.6: Second example: the k/v * -module k/v x X. a • • • • • • • • b • • • • • • • • c • • • • • • d • • • • Figure 2.7: Second example: the E ∞ -page of (v.2).
Following that spectral sequence is (v.2), whose target is k * X. However, this time the E ∞ -page need not be isomorphic to k * X; there may be extensions. We begin with the differentials in (v.2):

d 3 (α) = v 3 qa d 5 (δ) = v 5 d d 6 (β) = v 6 a d 7 (γ) = v 7 c d 9 (qβ) = v 9 b. (2.2.5)
The E ∞ -page is given in fig. 2.7. We now have to lift the remaining class in k * X. We do so by using definition 1.2.9. The differential

d 5 (δ) = v 5 d implies that we can lift d ∈ E ∞ into d ∈ k * X such that v 5 d = 0. Similarly, we get a c ∈ k * X such that v 7 c = 0.
The differentials supported by β and qβ imply that we can lift a and b into a b ∈ k * X, with v 6 a = 0 and v 9 b = 0, but because of the linearity of the connecting map k/v * X → k * -1 X, we can also take our lifts such that qv 5 a = v 8 b. Later, we will write π(a) = b when that kind of case occurs. This is the only relationship given by a multiplication by q that we now for sure on our lifts at the moment; it is possible, for example, that qd is not zero but is vc. The last differential allow us to lift qa ∈ E ∞ into q 0 a ∈ k * X such that v 3 q 0 a = 0. Here, we have chosen the notation q 0 a to emphasize the fact that we do not know if, with the lifts chosen, qa is equal to q 0 a; q 0 is not an element in any ring, and q 0 a is not a product but a name for a lift in k * X of qa ∈ k/v * X. In fact, here, because of the relationship qv 5 a = v 8 b, q 0 cannot be equal to qa in k * X. We write all the known properties of our lifts in fig. 2.8, where the dotted lines indicate that we do not know the corresponding multiplication by q.

We solve the extensions problems by going from the lowest degree generator to the highest. The class b must have qb = 0 since there is no element divisible by v in its degree. Next, qc could be zero or vb up to a unit; but if it were vb, then vb would be divisible by q, and thus project to zero in k/q * X; from our previous description of k/q * X, this is not the case, so qc = 0. Similarly, if qd were not zero, one of the classes v 2 b or vc would project to zero in k/q * X, but this is impossible. So, qd = 0. Lastly, since neither vd, v 2 c or v 3 b project to zero modulo q, it must be that qq 0 a = 0. It remains to compute qa. Since q 0 a is a lift of qa ∈ E ∞ , it must appear in the formula. From the already known relation qv 5 a = v 8 b, v 3 b must also appear in the formula. Thus, we have:

Examples of computations

a • • • • • q 0 a • • b • • • • • • • • c • • • • • • d • • • •
qa = q 0 a + v 3 b + t (2.2.6)
where t is such that v 5 t = 0. Here, t can be any linear combination ηvd + νv 2 c. We use k/q * X again: we know that for some y, v 4 d + v 5 y is zero modulo q.

Adding y is necessary because we only that d ∈ k * X project to what we called d ∈ k/q * X up to some element divisible by v. For this to be possible, it must be that η is not zero. This implies that v 7 b + νv 6 c is divisible by q, but v 6 b + νv 5 x is not. But no combination of v 6 b and v 5 c has this property in k/q * X, excepted if ν = 0. So we have determined that

qa = q 0 a + v 3 b + ηvd. (2.2.7)
The formula still has an undetermined unit η; later, by inspecting carefully the differentials, we will be able to determine η. Our result is presented in fig. 2.9 Finally, we review an example where the spectral sequences do not determine the module. After this following example, we will provide hypotheses under which it is always possible to recover the module: the hypothesis that is not verified in what follows is hypothesis 2.3.30 (Q i ) for a i = a. We will present two non-isomorphic k * -modules with the same four Bockstein spectral sequences.

We can see that in both case, there is a relationship

qd d ≃ v 2 c since there is a differential d 1 (d ′ ) = qd in (q.1) and a differential d 2 (d ′ ) = v 2 c in (v.1), but that |d| < |v o1(a) q 0 a|. (2.2.8)
The module M 1 of fig. 2.10 has a presentation with five generators a, q 0 a, b,

a • • • • • q 0 a • • b • • • • • • • • c • • • • • • d • • • • Figure 2.9: Second example: the k * -module k * X. a • • • • • q 0 a • • b • • • • • • • c • • • • d • • Figure 2.10: Third example: the k * -module M 1 = k * X 1 . a • • • • • q 0 a • • b • • • • • • • c • • • • d • • Figure 2.11: Third example: the k * -module M 2 = k * X 2 .
c and d over k * and the relations:

qa = q 0 a + v 2 b v 6 a = 0 qq 0 a = 0 v 3 q 0 a = 0 qb = 0 v 8 b = 0 qc = 0 v 5 c = 0 qd = v 2 c v 3 d = 0.
(2.2.9)

The module M 2 of fig. 2.11 has a presentation with the same five generators, but with relations:

qa = q 0 a + vc + v 2 b v 6 a = 0 qq 0 a = 0 v 3 q 0 a = 0 qb = 0 v 8 b = 0 qc = 0 v 5 c = 0 qd = v 2 c v 3 d = 0.
(2.2.10)

These two modules are not isomorphic, since M 1 has an element (namely b) in degree |b| and an element (namely a) in degree |a| such that

v 3 (qa -v 2 b) = 0 (2.2.11)
but no elements of M 2 in these degrees verify this equation. However, if we realize M 1 and M 2 as some homologies k * X 1 and k * X 2 , then the four Bockstein spectral sequences associated to these spectra are isomorphic. Indeed, for X = X 1 or X = X 2 , the module k/v * X will be the one of fig. 2.12, with generators b, a, c, δ, γ and α over k/v * and relations

q 2 a = 0, qb = 0, qc = 0, qδ = 0, q 2 γ = 0, qα = 0. (2.2.12) b c a • d δ γ • β α • Figure 2.12: Third example: the k/v * -module k/v * X.
The non-zero differentials in the (v.2) spectral sequence are given by:

d 3 (δ) = v 3 qa d 3 (γ) = v 3 d d 5 (qγ) = v 5 c d 6 (α) = v 6 a d 8 (qα) = v 8 b (2.2.13) a • • • • • qa • • b • • • • • • • c • • • • d • • Figure 2.13: Third example: the E ∞ -page of (v.2). a • • • • • b • • • • c • d • • b ′ • • • • • • • c ′ • • • • a ′ • • Figure 2.14: Third example: the k/q * -module k/q * X.
thus the E ∞ -page of (v.2) is given by fig. 2.13, and the difference between k * X 1 and k * X 2 is only produced by the extensions for the multiplication by q.

The module H * (X; F) has generators b, c, a, d, δ, γ, α and b ′ , c ′ a ′ , d ′ , δ ′ , γ ′ , α ′ over F, and the (q.1) spectral sequence has differentials given by d 1 (x ′ ) = qx for any x excepted a, γ and α, which have d 2 (x ′ ) = q 2 x.

On the other side of the four spectral sequences, we have k/q * X as seen on fig. 2.14 generated by b, b ′ , c, c ′ , a, a ′ , and d over k/q * , and with relations:

v 5 b = 0, v 8 b ′ = 0, v 2 c = 0, v 5 c ′ = 0 v 6 a = 0, v 3 a ′ = 0, v 4 d = 0. (2.2.14)
The non-zero differentials in the spectral sequence (q.2) are given by:

d 1 (b ′ ) = qb d 1 (c ′ ) = qc d 2 (v 5 b ′ ) = q 2 v 3 a d 2 (v 2 c ′ ) = q 2 d d 3 (a ′ ) = q 3 a (2.2.15) a • • • • • qa • • • • • b • • • • c • d • • qd • • Figure 2.15: Third example: the E ∞ -page of (q.2).
thus the E ∞ -page of (q.2) is given by fig. 2.15 and the difference between k * X 1 and k * X 2 is only produced by the extensions for the multiplication by v.

With the same notation as before, the (v.1) spectral has non-zero differentials given in both cases by:

d 2 (d ′ ) = v 2 c d 3 (δ ′ ) = v 3 a ′ d 3 (γ) = v 3 dd 5 (δ) = v 5 b d 5 (γ ′ ) = v 5 c ′ d 6 (α) = v 6 a d 8 (α ′ ) = v 8 b ′ .
(2.2.16)

Statements of the hypotheses and a lemma

We will recover k * X when X is a bounded below spectrum from the computation of the spectral sequences (q.1) followed by (v.2). However the spectral sequence (v.1) will also be used. Our first hypothesis will be used in lemma 2.3.18 and will provide some structure to the generators of k * X that we will choose.

Recall that an infinite cycle in a spectral sequence is an element (in any page) whose differential in any subsequent page is zero. Thus, an infinite cycle can be projected in every page of the spectral sequence, is also an element of the E ∞ -page and can be lifted in the target group, but might be zero if it is the target of a differential. Hypothesis 2.3.1 (R1). In any degree * , the codimension over F of the subspace of the infinite cycles

r≥1 Z r 0 ⊂ E 1 0 = H * (X; F) (2.3.2)
is at most 1 in both the spectral sequences (v.1) and (q.1). Moreover, for any degree * , there exists x ∈ k/v * X such that every non-zero differential going out of the bidegree ( * , 0) in (v.2) is of the form

d n (q h x + y) = v n a (2.3.3)
for some n, h and y such that d n (y) = 0.

We will use the first part of the hypothesis in lemma 2.3.18 the following way: there are two connecting homomorphism

H * (X; F) k/q * -|v|-1 k/v * -1 (2.3.4)
and if we have two elements α ∈ k/v * -1 and β ∈ k/q * -|v|-1 that we know can both be lifted to H * (X; F), then their lifts are not infinite cycles in one of the spectral sequences (v.1) or (q.1). Since from two hyperplanes, it is always possible to choose a third space that is in direct sum with both hyperplanes, we can choose a common lift for α and β up to a unit. The name (R1) stands for rank 1, and is coming from the simplified version of this hypothesis: Hypothesis 2.3.5 (sR1). H * (X; F) is of dimension at most 1 over F in any degree * .

(sR1) is directly implying the first part of (R1), and the second part follow from the fact that under (sR1), k/v * X is generated over Z by at most one element in each degree.

To complete the structure of the lift of the E ∞ -page that we will use in k * X, we add the following: Hypothesis 2.3.6 (D). Assume (R1). We can choose a family (a i ) i∈I of nondivisible by q elements of k/v * X, such that the k/v * = Z-sub-modules of k/v * X generated by the a i decompose k/v * X as a direct sum of summands of the type Z or Z/(q m ) for any m, and is such that the element x of hypothesis (R1) is in the family and carry differentials in (v.2) of the form

d n (q h x) = v n q k a i (2.3.7)
for any n and h such that d n (q h x) is not zero.

Putting it differently, we have a family of elements of k/v * X, that decompose it in a similar manner to the decomposition of finitely generated modules over an integral domain, such that any differential of (v.2) is between two elements of the family. The integer n associated to k and a i will be denoted by o k (a i ), it is the v-torsion order of q k a i in the E ∞ -page of (v.2). When q k a i doesn't receive any differential, we will put o k (a i ) = +∞ so that 1 ≤ o k (a i ) ≤ +∞ for any k and i.

That hypothesis is not a consequence of (R1), as we will argue in section 2.5. However, (D) is a consequence of (sR1), since when there is a differential d n (q h x) = v n y, then y has a well-defined degree.

We need to state a consequence of these hypotheses to state the rest of our hypothesis. We will make the following distinction: Notation 2.3.8. When we lift a class q k a ∈ k/v * X that survive to the E ∞ -page of (v.2), we will use the notation q k 0 a for the class obtained in k * X. The spectral sequence (v.2) is a Bockstein spectral sequence associated to the multiplication by v, and thus, the classes lifted from the E ∞ -page into k * X will have the same properties for the multiplication by v in the E ∞ -page and in k * X, but might not have the same properties for the multiplication by q.

The notation q will be used only for the multiplication by q in the spectral sequence or for the multiplication by q in k * X, which is still unknown at this stage: if we have two lifts q k 0 a and q k+1 0 a of q k a and q k+1 a, it is possible that q • q k 0 a ̸ = q k+1 0 a. The notation is analogous to our use of v 0 instead of p when computing over ℓ or ku. Proposition 2.3.9. Under (D), there are lifts q k 0 a i ∈ k * X of all the q k a i ∈ k/v * X that are infinite cycles in (v.2) such that:

(a) When q k a i is of v-torsion in the E ∞ -page of (v.2), then v o k (ai) q k 0 a i = 0, otherwise q k 0 a i is not of v-torsion either.
(b) when there are differentials

d(q h x) = v o k (ai) q k a i and d(q h+1 x) = v o ℓ (aj ) q ℓ a j (2.3.10) in (v.2), then q • (v o k (ai)-1 q k 0 a i ) = v o ℓ (aj )-1 q ℓ 0 a j (2.3.11)
in k * X. Note that it might be that a i = a j and ℓ = k + 1.

(c) when d(q h x) = v o k (ai) q k a i and q h+1 x = 0 (2.3.12)

in (v.2), then q • (v o k (ai)-1 q k 0 a i ) = 0 (2.3.13) in k * X.
The q k 0 a i generate k * X as a k * -module.

Proof. We work in the exact couple diagram of definition 1.2.9 for our spectral sequence. If there is a non-zero differential d(q h x) = v o k (ai) q k a i , then:

k * X k * X ... k * X k * X k/v * X k/v * X q k 0 a i ... v o k (ai)-1 q k 0 a i 0 q k a i q h x v v j v v j ∂ ∂ (2.3.14) Here v o k (ai)-1 q k 0 a i is obtained by setting v o k (ai)-1 q k 0 a i = ∂(q h x)
; the differential ensure that it is divisible by v o k (ai)-1 , and that j(q k 0 a i ) = q k a i , so q k 0 a i is a lift of q k a i .

To get the second and third points of our claim, we use the fact that the connecting map ∂ is a map of k * -module, and thus:

∂(q h+1 x) = q • ∂(q h x) = q • v o k (ai)-1 q k 0 a i (2.3.15)
which might be the lift of another element in case (b), or zero in case (c).

The case of the non-torsion classes remains. If q k a i ∈ k/v * X is an infinite cycle, then ∂(q k a i ) = 0 so that it lifts through j to q k 0 a i ∈ k * X. Furthermore, if q k a i is not of v-torsion in the E ∞ -page, then q k 0 a i cannot be of v-torsion in k * X, otherwise q k a i would be a boundary in some page of the spectral sequence.

We will write π(q k 0 a i ) = q ℓ 0 a j when we are in the situation of (b), and π(q k 0 a i ) = 0 in the situation of (c), and note that when we will talk about degrees later we will use the convention that |0| = -∞. Note that the q k 0 a i are not a minimal set of generators of k * X: if there is no extension to construct the target group from the E ∞ -page, there should be a relation

q • q k 0 a i = q k+1 0 a i . (2.3.16)
This is possible only if π(q k 0 a i ) = 0 -if it is not the case, the relation of (b) is an obstruction. In general, there should be relations of the type

q • q k 0 a i = q k+1 0 a i + v • π(q k 0 a i )+??? (2.3.17)
where • is determined by homogeneity the unknown part of the formula will be determined by the rest of the hypotheses. We now state the following result related to the divisibility by q in k * X; this result is central to the rest of the analysis. Lemma 2.3.18 (divisibility by q). We assume (R1). Suppose given an element b of k * X not divisible by v such that v m b is not divisible by q but v m+1 b is, that there is an element a of k * X not divisible by v such that qv n a = v m+1 b. Then the modulo q reduction of v m b is non-zero, but that of v m+1 b is zero, and there is a differential d(x) = v m+1 b in (v.1). Moreover, (a) if n = 0, then there is a differential d(x) = q k+1 a ′ in (q.1) for some a ′ ∈ H * (X; F) which is the reduction of a ′ ∈ k/v * X such that q k a ′ = a, and the relationship qv n a = v m+1 b in k * X results from an extension in (v.2).

(b) if n > 0, then x ∈ H * (X; F) lifts to x ′ ∈ k/v * X, which support a differential in (v.2) that can be written either d(-x ′ ) = v n qa when n < m + 1, d(x ′ ) = v m+1 b when m + 1 < n or d(x ′ ) = v m+1 (b -qa) when n = m + 1.
Proof. We work in the following commutative diagram of cofiber sequences obtained from multiplication by v and q

Σ -2 HF Σ |v|-1 k/q Σ -1 k/q Σ -1 HF Σ -1 k/v Σ |v| k k k/v Σ -1 k/v Σ |v| k k k/v Σ -1 HF Σ |v| k/q k/q HF (2.3.19)
that we smash with X take homotopy groups to obtain long exact sequences. On one hand, when n = 0, we write the relationship qa = v m+1 b in k * X in the central square. Using exactness, there exist x and y in H * +1 (X; F) such that

y a q k a ′ ̸ = 0 v m b v m+1 b = qa 0 x v m b 0 (2.3.20)
Since from two hyperplanes, we can always choose a third subspace of dimension 1 that is in direct sum with both hyperplanes, under the first part of (R1), we can choose x and y to be equal up to a unit, and its image through the vertical map yield the claimed differential in (q.1).

On the other hand, when n > 1, we can start similarly from the central square with a supplemental lift

v n-1 a v n a v m b v m+1 b = qv n a x v m b ̸ = 0 0 (2.3.21)
and so starting to push from the top left corner we get

v n-1 a v n a qv n-1 a v m+1 b = qv n a 0 (2.3.22)
and subtracting the bottom part of the two diagrams

x ′ v m b -qv n-1 a 0 x v m b 0 (2.3.23)
which gives the claimed differentials depending on the highest filtration degree in v m b -qv n-1 a.

The cases that will be particularly of interest to us will be (a) (n = 0) and (b) with n < m + 1, since we are interested in the extensions, and in that case the class multiplied by q must be in lower filtration than the class receiving the multiplication. Thus, when a class becomes divisible by q because of an extension, it is always possible to determine from the spectral sequence the name of a class that will represent the quotient with this lemma, that is, to determines a from b.

To keep track of the possible extensions that would make a class a i divisible by q, we introduce the following relation on the first page of the spectral sequence (v.2): when in the (a) case of lemma 2.3.18, precisely when there are differentials d(x) = v m+1 a i in (v.1) and d(x) = q k+1 a j in (q.1), we will write q k+1 a j d ≃ v m+1 a i ; when in the (b) case of lemma 2.3.18, that is there are

differentials d(x) = v m+1 a i in (v.1) and d(-x) = v n q k a j in (v.2) with n < m + 1, we will write v n q k a j d ≃ v m+1 a i . That relation d ≃ lift
as an equality in k * X if we allow the classes on the left and right side to be replaced by classes represented by the same name in (v.2), that is we can add some v ω c with ω > n on the left side and some v ω ′ c ′ with ω ′ > m + 1 on the left side. We will be more interested in the converse: when the spectral sequences do not witness a relation d ≃, then no such equality can hold in k * X. We also remark that under (R1) and (D), when y d ≃ v m+1 a i then the name y is unique, since (D) results in unicity on the lift x ′ in the (b) case of lemma 2.3.18.

We will now state our last two hypotheses: (T i ) is related to the length of the tower for the multiplication by v for some a i , and (Q i ) will prevent some divisibility by q to occur using d ≃ statements. These hypotheses depend on i and are not stated for all a i . For the a i such that (T i ) and (Q i ) hold, we will be able to compute the extensions. It might be the case that our target module can be split into M 1 ⊕ M 2 , where the hypothesis holds on M 1 but not on M 2 ; for THH * (ku) the splitting is between the torsion and the non-torsion, and we will recover the extensions on the torsion using the techniques of this chapter, but the extensions on the non-torsion will be computed by other means.

Hypothesis 2.3.24 (T i ). For each k, when π(q k 0 a i ) = q h 0 a j , with i ̸ = j and a j might be taken to be 0, the followings are true:

(a) If ℓ is such that |a ℓ | < |a j | |a ℓ | ≡ |a i | (mod |v|) |v o0(a ℓ ) a ℓ | > |a i | (2.3.25) then |v o0(a ℓ ) a ℓ | ≥ |v o k (ai) q k 0 a i |. (2.3.26) (b) If ℓ 1 and ℓ 2 are both such that (for ℓ = ℓ 1 or ℓ = ℓ 2 ) |a j | ≤ |a ℓ | < |a i | |a ℓ | ≡ |a i | (mod |v|) |v o k+1 (ai) q k+1 0 a i | < |v o0(a ℓ ) a ℓ | < |v o k (ai) q k 0 a i | (2.3.27) then |a ℓ1 | < |a ℓ2 | ⇒ |v o0(a ℓ 2 ) a ℓ2 | < |v o0(a ℓ 1 ) a ℓ1 |. (2.3.28)
When a j = 0, we recall that we use the convention |0| = -∞. If q k 0 a i is not of v-torsion, we will let |v o k (ai) q k 0 a i | be +∞ and for the purpose of (2.3.28), we will assume that the relation +∞ < +∞ is false.

This hypothesis state nothing when π(q k 0 a i ) = q k+1 0 a i .

a 3 • • • • • • • • • • a 5 • • • • • • a 4 • • • • q h 0 a 2 • • • • • • • • q k 0 a 1 • • • • • q k+1 0 a 1 • • Figure 2.16: Structure of k * X under (T 1 ).
We illustrate hypothesis (T i ) with fig. 2.16, where multiplication by q is denoted by going up and multiplication by v by going right (thus the horizontal axis denote the degree). In that example we have π(q k 0 a 1 ) = q h 0 a 2 , so the only multiplication by q denoted is the one we already know about, that is the one at the end of the v-tower of q k 0 a 1 according to proposition 2.3.9. All the other formulas for multiplying by q are unknown, so we depict nothing. The part (a) of hypothesis (T 1 ) state that since a 3 is of degree lower than a 2 , its v-tower must finish after those of q h 0 a 2 and q k 0 a 1 . Remark that if a 2 = 0, then that first part is not constraining anything. The part (b) of the hypothesis state the v-tower of a 4 and a 5 must end in the reverse order compared to the degrees of a 4 and a 5 .

Under (T i ), we can thus order the a ℓ of part (b) of the hypothesis by the degree at which their v-tower ends. We will use the following notation: Notation 2.3.29. Let q k 0 a i bet such that π(q k 0 a i ) = q h 0 a j with i ̸ = j (but a j might be 0), and let b k,i 1 , . . . b k,i n be the classes a ℓ verifying (2.3.27), ordered by increasing degree of v o0(a ℓ ) a ℓ .

It is possible, when |b k,i ℓ | = |b k,i ℓ+1 |, that |v o0(b k,i k ) b k,i ℓ | = |v o0(b k,i ℓ+1 ) b k,i ℓ+1 |
, and in that case the ordering between the two classes can be chosen either ways. We are in the situation of fig. 2.17

b k,i n • • • • • • • • • b k,i 2 • • • • • • b k,i 1 • • • • q k 0 a i • • • • • • q k+1 0 a i • • . . . Figure 2
.17: Ordering above q k 0 a i under (T i ).

Remark that (2.3.28) when q k 0 a i is not of v-torsion implies that there can be at most one other a ℓ with |a ℓ | ≡ |a i | (mod |v|). This is a drastic condition on the periodic classes, but it is necessary for our purpose.

2.4

Computing the module k * X under the hypothesis Hypothesis 2.3.30 (Q i ). Let q k 0 a i be such that π(q k 0 a i ) = q h 0 a j with i ̸ = j (a j might be 0).

If it exists, let ℓ 1 be such that there is a relation

v o k+1 (ai) q k+1 a i d ≃ v • b k,i
ℓ1 , and then inductively let ℓ j+1 be such that there is a v

o0(b k,i ℓ j ) b k,i ℓj d ≃ v • b k,i
ℓj+1 . We thus have an eventually empty subsequence

1 ≤ ℓ 1 < • • • < ℓ j < • • • ≤ n.
The hypothesis state the following:

For all 1 ≤ ℓ ≤ n there is no relation y d ≃ v • b k,i ℓ with |y| < |v o k+1 (ai) q k+1 0 a i |. (2.3.31)
For any j and ℓ such that ℓ j < ℓ ≤ n, there is no relation

y d ≃ v • b k,i ℓ with |q k 0 a i | < |y| < |v o0(b k,i ℓ j ) b k,i ℓj |. (2.3.32)
This will ensure that the b k,i ℓ that will appear in the formula for q • q k 0 a i are correctly detected by the differentials, by not being divisible by q before they can be detected.

The simplified version of hypothesis (T i ) and (Q i ) will be that there are no classes b k,i ℓ : Hypothesis 2.3.33 (sT i ). For each k, when π(q k 0 a i ) = q h 0 a j , with i ̸ = j and a j might be taken to be 0, and for each ℓ ̸ = j such that

|a ℓ | ≡ |a i | (mod |v|) |v o0(a ℓ ) a ℓ | > |a i |.
(2.3.34)

then |a ℓ | < |a j | |v o0(a ℓ ) a ℓ | ≥ |v o k (ai) q k 0 a i |.
(2.3.35) That simplified hypothesis (sT i ) can then be seen to imply both (T i ) and (Q i ). Lastly, for J a subset of the indices of the family (a i ), we will write (T J ) for the hypothesis (T i ) holds for all i ∈ J and similarly (Q J ) and (sT J ).

Computing the module k * X under the hypothesis

In this section, we will see how we can recover k * X as a k * -module from the spectral sequences when under the hypothesis (R1), (D), (T I ) and (Q I ), which are stated only using the spectral sequences. The same results can be obtained using the simplified hypothesis (sR1) and (sT I ), since they imply the previous one.

Theorem 2.4.1. Let I be the set of indices appearing in the lifts of proposition 2.3.9.

Under the hypothesis (R1), (D), (T I ) and (Q I ), we can choose the lifts q k 0 a i of proposition 2.3.9 such that k * X is presented as a k * -module by the q k 0 a i and the relations:

• v o k (ai) q k 0 a i = 0. • q • q k 0 a i = q k+1 0 a i whenever π(q k 0 a i ) = q k+1 0 a i . • otherwise q • q k 0 a i = v • π(q k 0 a i ) + n ℓ=1 β k,i ℓ v • b k,i ℓ (2.4.2)
where the • are simply determined to make the formula homogeneous in degree, the b k,i ℓ are those of 2.3.29 and the β k,i ℓ are in F with the ℓ 1 , ℓ 2 , . . . such that β k,i ℓj ̸ = 0 are determined by the existence of a relation

v o k+1 (ai) q k+1 a i d ≃ v • b k,i ℓ1 (2.4.3)
and then inductively by the existence of

v o0(b k,i ℓ j ) b k,i ℓj d ≃ v • b k,i ℓj+1 .
(2.4.4)

Proof. We will prove the formulas by considering the lifts q k 0 a i and ordering them by increasing |a i | and increasing k. Fix some i ∈ I. Let us denote by J the set of indices j such that |a j | < |a i |. Assume that our results is established for all q h 0 a j with j ∈ J and any h, and for all q h 0 a i such that h < k. If there is some

i ′ ̸ = i such that |a i ′ | = |a i |, can consider them in either order.
First consider the case where π(q k 0 a i ) = q k+1 0 a i . The convergence of the spectral sequence (v.2) implies that

q • q k 0 a i = q k+1 0 a i + j∈J α j v • q hj a j (2.4.5)
with the • determined only by homogeneity. Thus, by proposition 2.3.9,

v o k (ai)-1 • j∈J α j v • q hj a j = 0 (2.4.6)
and we can simply change our lift q k+1 0 a i to be

q k+1 0 a ′ i = q k+1 0 a i + j∈J α j v • q hj a j (2.4.7)
to get the formula claimed. The lift q k+1 0 a i and q k+1 0 a ′ i of q k+1 a i have the exact same property with regard to proposition 2.3.9, so we can continue our induction.

The second case is where our hypothesis are really used. Assume now that π(q k 0 a i ) = q t 0 a ℓ for some ℓ ̸ = i or that π(q k 0 a i ) = 0. We can write a similar formula:

q • q k 0 a i = q k+1 0 a i + v • π(q k 0 a i ) + j∈J\{ℓ} α j v • q hj a j (2.4.8)
and the sum is still null before the end of the v-tower of q k 0 a i

v o k (ai)-1 • j∈J\{ℓ} α j v • q hj a j = 0.
(2.4.9)

We can eliminate all the j with h j > 1 of the formula by changing our lift q k 0 a i into

q k 0 a ′ i = q k 0 a i - j∈J\{ℓ}, hj >1 α j v • q hj -1 a j (2.4.10)
which once again have the same property from proposition 2.3.9. More generally we can eliminate the a j that becomes divisible by q in a degree less than |q k 0 a i | by also subtracting them. We can eliminate the a j whose v-tower ends before the degree |v o k+1 (ai) q k+1 0 a i | by adding them to q k+1 0 a i , which also conserves all the relevant properties. Thus, from the hypothesis (T i ), we can assume without loss of generality that only the b k,i ℓ relative to q k 0 a i appear in the sum. We then have:

q • q k 0 a i = q k+1 0 a i + v • π(q k 0 a i ) + n ℓ=1 β k,i ℓ v • b k,i ℓ (2.4.11)
and we only need to determine which β k,i ℓ are zero or a unit. The formula implies that

q • v o k+1 (ai) q k 0 a i = v • π(q k 0 a i ) + n ℓ=1 β k,i ℓ v • b k,i ℓ .
(2.4.12)

From our previous construction and hypothesis (Q i ), the sum on the right-hand side of the equation becomes divisible by q in the degree of the equation, and by lemma lemma 2.3.18 this will be visible in the differentials. However, we now need to prove some reciprocal to that lemma. In a first time, assume that o k+1 (a i ) ≥ 0. We work again in the diagram (2.3.19) of the proof of lemma 2.3.18.

Let the ℓ j be defined as in the statement of our result. The element

v o k+1 (ai)-1 q k+1 0 a i = q • v o k+1 (ai)-1 q k 0 a i -v • π(q k 0 a i ) - n ℓ=1 β k,i ℓ v • b k,i ℓ (2.4.13)
of k * X has a null multiplication by v, and the relation

v o k+1 (ai) q k+1 a i d ≃ v • b k,i ℓ1
implies that its image in k/q * X is represented by b k,i ℓ1 . Since by (Q i ), b k,i ℓ cannot be divisible by q up to that degree, ℓ 1 must be the first index of the sum with a non-zero β k,i ℓ . We determine the rest of the formula with the same argument applied to the relations v

o0(b k,i ℓ j ) b k,i ℓj d ≃ v • b k,i ℓj+1 . In a second time, assume that o k+1 (a i ) = 0, that is to say q k+1 0 a i = 0. The element v • π(q k 0 a i ) + n ℓ=1 β k,i ℓ v • b k,i ℓ (2.4.14)
in degree * = |q k 0 a i | -|v| of k * X cannot be divisible by q because of (Q i ), but its multiplication by v is divisible by q, the dividend being q k 0 a i . Thus again the element of lowest filtration of the sum must appear in a d ≃ relation, and it must be b k,i ℓ1 .

Remark that if we otherwise know that k * X is split as M 1 ⊕ M 2 as a k * -module, and that only M 1 verify the hypothesis, the formulas given will be internal to M 1 , which is then entirely determined as a k * -module.

The hypothesis (D) is not a consequence of (R1)

In this section we will see why, as stated earlier, the hypothesis (D) is not a consequence of (R1), and how this hypothesis can otherwise be reasoned about in terms of linear algebra on matrices. We begin by providing a k/v * -module that verify (R1) but not (D). Our example has four generators over k/v * , named a, b, x and y, and has relations:

q 2 a = 0 q 2 b = 0 qx = 0 qy = 0.
(2.5.1)

Assume that the (v.2) spectral sequence from this module has non-zero differentials given by:

d 1 (x) = vqa d 2 (y) = v 2 (a -qb). (2.5.2)
This verifies (R1), but we cannot change the generator x and y other than up to a unit since they are alone in their respective degree, and we cannot change the generators a and b to make the formulas respect (D). We can take a supplementary subspace (generated by x and y) of the infinite cycles (generated by a and b) and write the differentials as

  q 1 0 q   (2.5.3)
in the basis (a, b) for the rows and (x, y) for the columns. This matrix cannot be diagonalized by using only operations on the rows (this represents changing the chosen generators a and b for the infinite cycles), and the operations on the columns of the form C j ← C j + αC i for some i < j (this represents the fact that after each differential we have quotiented the cycles by some boundaries). Thus, (D) cannot hold in that case.

Chapter 3

Isomorphisms between Whitehead, Postnikov and Atiyah-Hirzebruch spectral sequences

In this chapter, we give explicit isomorphisms between the spectral sequences coming from a Whitehead tower, a Postnikov tower and the Atiyah-Hirzebruch spectral sequence constructed from a skeletal filtration. These results are well known, and a proof for the cohomological case can be found in [START_REF] Maunder | The spectral sequence of an extraordinary cohomology theory[END_REF] and the appendix of [START_REF] Patrick | Generalized Tate cohomology[END_REF]; however the author is not aware of them having a proof written down in the homological case. We will work in the category of S-modules; all the proof in this chapter shall work in the homotopy category of any reasonable category of spectra. Let X and Y be spectra: Y will be our homology theory, and we want to compute Y * X. First we will compare the spectral sequence coming from the Whitehead tower of Y to that coming from the Postnikov tower of Y . Then, X will need to have a CW structure (e.g. X is a CW-complex, a CW-R-module, . . . ); we will compare the Whitehead spectral sequences to the Atiyah-Hirzebruch spectral sequence defined by the CW structure on X.

Whitehead and Postnikov spectral sequences

A Whitehead tower for Y will be a tower of spectra Y ≥n for n ∈ Z with cofibers:

. . . Y ≥n+1 Y ≥n Y ≥n-1 . . . Σ n+1 HY n+1 Σ n HY n Σ n-1 HY n-1 (3.1.1)
such that each Y ≥n is (n -1)-connected, Y is the colimit of the Y ≥n , each map Y ≥n → Y ≥n-1 is an isomorphism on homotopy group in degrees greater or equal to n, and HY n is the Eilenberg-MacLane spectra associated to the group π n (Y ).

3.2

Whitehead and Atiyah-Hirzebruch spectral sequences A Postnikov tower for Y will be a tower of spectra Y <n for n ∈ Z with cofibers:

. . . Y <n+1 Y <n Y <n-1 . . . Σ n+2 HY n+1 Σ n+1 HY n Σ n HY n-1 (3.1.2)
such that each Y <n is n-truncated, Y is the limit of the Y <n , each map Y <n+1 → Y <n is an isomorphism on homotopy group in degrees lesser than n, and HY n is the Eilenberg-MacLane spectra associated to the group π n (Y ).

By smashing with X for the Whitehead tower, and desuspending one time the Postnikov tower then smashing with X, we get two spectral sequences with

E 1 p,q = π p+q (X ∧ Σ q HY q ) = H p (X; Y q ). (3.1.3)
However, one would be computing its colimit and the other its limit. We already have the tool to compare them in the form of proposition 1.1.8. We just need to ensure that in our category of spectra, we can construct the Whitehead tower and the Postnikov tower of Y such that there are cofiber sequences:

Y → Y <n → ΣY ≥n (3.1.4)
for each n. The Whitehead tower is then the quotient of the Postnikov tower by its colimit.

Proposition 3.1.5. With the hypothesis above, the first, non-derived exact couples defined by the Whitehead tower and the Postnikov tower are isomorphic.

Whitehead and Atiyah-Hirzebruch spectral sequences

To define the Atiyah-Hirzebruch spectral sequence, we need X to have a CW structure, which for us will imply that is there is a tower with cofibers:

. . .

X (p-1) X (p) X (p+1) . . . S p-1 S p S p+1 (3.2.1)
such that X (p) ≃ * whenever p < 0, the cofibers are wedges of spheres of dimension p. Let (A 1 , D 1 ) then be the exact couple obtained by smashing with Y and taking the homotopy:

A 1 p,q = π p+q (X (p) ∧ Y ) D 1 p,q = π p+q ( S p ∧ Y ). (3.2.2)
We need also that in the derived exact couple (A 2 , D 2 ) the wanted homology appears:

A 2 p,q = Im(π p+q (X (p-1) ∧ Y ) → π p+q (X (p) ∧ Y )) D 2 p,q ∼ = H p (X; Y q ). (3.2.3)
This will be the case for example for a CW-R-module or a CW-complex. This spectral sequence will converge to π * (X ∧ Y ) under the right conditions -for X a CW-R-module, it might be that R is a connective cofibrant commutative Salgebra, and the spectral sequence will be strongly convergent. We suppose from this point that our construction gives a strongly convergent Atiyah-Hirzebruch spectral sequence.

Let us also explicit the exact couple (W 2 , E 2 ) for the Whitehead spectral sequence. What was the first page in the previous section is now the second for convenience.

W 2 p,q = π p+q (X ∧ Y ≥q ) E 2 p,q = π p+q (X ∧ Σ q HY q ) = H p (X; Y q ).
(3.2.4) Theorem 3.2.5. The exact couples (A 2 , D 2 ) and (W 2 , E 2 ) are isomorphic, and thus define isomorphic spectral sequences.

The rest of the chapter will be a proof of this theorem. We will introduce a third, intermediary exact couple (B 1 , F 1 ), where

B 1 p,q = π p+q (X (p) ∧ Y ≥q ) (3.2.6)
and its derived couple (B 2 , F 2 ). We will see how

(B 1 , F 1 ) is isomorphic to (A 1 , D 1
), thus all their derived couples are also isomorphic, and then how

(B 2 , F 2 ) is isomorphic to (W 2 , E 2
), yielding our theorem by composition.

The bidegrees of the maps in the exact couples are as follows:

A 1 A 1 A 2 A 2 D 1 D 2 (1,-1) (0,0) (1,-1) (-1,1) (-1,0) (-1,0) (3.2.7) W 2 W 2 E 2 (1,-1) (0,0) (-2,1) (3.2.8)
We are looking to construct a morphism of exact couples with E 2 → D 2 of bidegree (0, 0), so it must be that the map W 2 → A 2 have bidegree (1, -1). Remark also that the differentials d r in both sequences have bidegrees (-r, r -1).

We will need the following lemma:

Lemma 3.2.9.

• The map π * (X (p) ∧ Y ≥q ) → π * (X (p) ∧ Y ≥q-1
) is an isomorphism when * ≥ p + q and is injective when * = p + q -1.

• The map π * (X (p) ∧ Y ≥q ) → π * (X (p+1) ∧ Y ≥q
) is an isomorphism when * ≤ p + q -1 and is surjective when * = p + q.

• The map π * (X (p) ∧ Y ≥q ) → π * (X (p) ∧ Y ) is an isomorphism when * ≥ p + q and is injective when * = p + q -1.

• The map π * (X (p) ∧Y ≥q ) → π * (X∧Y ≥q ) is an isomorphism when * ≤ p+q-1 and is surjective when * = p + q.

Proof. The third and fourth claims follow easily from respectively the first and second one.

To prove the first claim, let us consider the Atiyah-Hirzebruch spectral sequences computing π * (X (p) ∧ Y ≥q ) and π * (X (p) ∧ Y ≥q-1 ) -the Whitehead-Postnikov spectral sequences would also work here. It follows from the hypothesis on X that the homology groups H * (X (p) ; Y q ) are concentrated in degrees between 0 and p. The E 2 pages are then as follows:

q -1 q p * = p + q • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Each • is a group that is in both spectral sequences. Each • is a group that is only in the spectral sequence computing π * (X (p) ∧ Y ≥q-1
). The differentials having source or target above or on the line * = p + q can be seen to be the same in both sequences. Thus, the E ∞ pages are isomorphic in this zone, and the part about isomorphism in our claim follows. On the line below, * = p + q -1, the differentials are again the same, but there can be a non-zero group in bidegree (p, q -1), and we can only get an injection. Remark that no result of this sort can be stated for all the lines * < p + q -1, since in that zone there might be differentials with source one the horizontal q -1 line.

To get the second claim, we proceed similarly with the spectral sequences computing π * (X (p) ∧ Y ≥q ) and π * (X (p+1) ∧ Y ≥q ). The E 2 pages are as follows:

q p p + 1 * = p + q • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
We get isomorphisms for * ≤ p + q -1, a surjection for * = p + q since there can be differentials of source in bidegree (p + 1, q), and nothing can be said of * > p + q.

We will construct a third exact couple that we will use to compare the two already defined. For any integers p and q, let F p,q be the fiber of the map X (p) ∧ Y ≥q → X (p+1) ∧ Y ≥q-1 . The groups for our exact couples will be:

B 1 p,q = π p+q (X (p) ∧ Y ≥q ) F 1 p,q = π p+q (F p,q ).
(3.2.10)

The maps will not be the one induced by the long exact sequence in homotopy of the fiber sequence. We will define them in the commutative diagram of fig. 3.1, with rows exact -the first two rows are to be ignored for the moment; the maps for the exact couple are going from the bottom left (sixth row) to the middle right (third row), and the bend arrow is simply the composition of the maps in the commutative square it crosses. The decorations of the arrows (isomorphisms and injections) are coming from lemma 3.2.9, except for the middle injection which come from half a five lemma. The decorations are enough to check that we have indeed defined a long exact sequence, and thus an exact couple. The bidegrees in the exact couple and in the first derived exact couple are as follows:

B 1 B 1 B 2 B 2 F 1 F 2 (1, -1) (-1,0) (1,-1) 
(-2,1) (0,0) (0,0) (3.2.11) 
Proposition 3.2.12. The exact couples (A 1 , D 1 ) and (B 1 , F 1 ) are isomorphic.

Proof. This can be seen in fig. 3.1, this time paying attention to the whole diagram. Once again, the isomorphisms come from lemma 3.2.9, except for the middle one which is the five lemma.

The second part of our proof is to use the map X (p) → X to compare the first derived exact couple (B 2 , F 2 ) with the Whitehead exact couple (W 2 , E 2 ). Proposition 3.2.13. For all p and q, there are isomorphisms B 2 p+1,q-1 ∼ = W 2 p,q that commutes with the exact couples maps:

W 2 p,q W 2 p+1,q-1 B 2 p+1,q-1 B 2 p+2,q-2 ≃ ⟲ ≃ (3.2.

14)

Proof. There is a commutative diagram: 

π p+q (X ∧ Y ≥q ) π p+q (X (p) ∧ Y ≥q ) π p+q (X (p+1) ∧ Y ≥q ) π p+q (X (p+1) ∧ Y ≥q-1 ) ≃ (3.
A 1 p,q+1 A 1 p+1,q D 1 p+1,q A 1 p,q A 1 p+1,q-1 π p+q+1 (X (p) ∧ Y ) π p+q+1 (X (p+1) ∧ Y ) π p+q+1 ( S p+1 ∧ Y ) π p+q (X (p) ∧ Y ) π p+q (X (p+1) ∧ Y ) F 1 p,q B 1 p,q B 1 p+1,q-1 π p+q+1 (X (p) ∧ Y ≥q ) π p+q+1 (X (p+1) ∧ Y ≥q-1 ) π p+q (F p,q ) π p+q (X (p) ∧ Y ≥q ) π p+q (X (p+1) ∧ Y ≥q-1 ) π p+q+1 (X (p) ∧ Y ≥q+1 ) π p+q+1 (X (p+1) ∧ Y ≥q ) π p+q (F p,q+1 ) π p+q (X (p) ∧ Y ≥q+1 ) π p+q (X (p+1) ∧ Y ≥q ) B 1 p,q+1 B 1 p+1,q ≃ ≃ ≃ ≃ ≃ ≃ ≃
so that there are two isomorphisms:

W 2 p,q = π p+q (X ∧ Y ≥q ) Im(π p+q (X (p) ∧ Y ≥q ) → π p+q (X (p+1) ∧ Y ≥q )) B 2 p+1,q-1 = Im(π p+q (X (p) ∧ Y ≥q ) → π p+q (X (p+1) ∧ Y ≥q-1 )) ≃ ≃ (3.2.16)
which we compose to get the isomorphism claimed. The compatibility with the exact couples maps come from the commutative diagram:

π p+q (X ∧ Y ≥q ) π p+q (X ∧ Y ≥q-1 ) π p+q (X (p+1) ∧ Y ≥q ) π p+q (X (p+2) ∧ Y ≥q-1 ) π p+q (X (p+1) ∧ Y ≥q-1 ) π p+q (X (p+2) ∧ Y ≥q-2 ) (3.2.17)
of which we considered restriction to images to get our isomorphisms.

From the bidegree of our maps, we need to construct an isomorphism F 2 → E 2 of bidegree (1, 0) to complete our isomorphism between the exact couples. Proposition 3.2.18. For all p and q, there are isomorphisms F 2 p,q ∼ = E 2 p+1,q that, together with the isomorphisms of the previous proposition, assemble into an isomorphism of exact couples between (B 2 , F 2 ) and (W 2 , E 2 ).

Proof. Let us first remark that simply having maps F 2 p,q → E 2 p+1,q , which together with the previous isomorphisms define a morphism of exact couple, would be sufficient for these maps to be isomorphism by the five lemma. The commutative diagram of fig. 3.2 allow us to construct such a map; it has rows exact, and the arrows are decorated according to lemma 3.2.9 and the five lemma.

We will define an application f from Ker(d 1 :

F 1 p,q → F 1 p-1,q ) to E 2 p+1,q
first. Let x ∈ Ker(F 1 p,q → F 1 p-1,q ) (start chasing in F 1 p,q near the middle of the diagram), and let its image in π p+q (X (p) ∧ Y ≥q ) be denoted by y. By pushing y into the bottom portion of the diagram, we see that y can be lifted to π p+q (X (p) ∧ Y ≥q+1 ), which imply that x can be lifted to x ′ ∈ π p+q (F p,q+1 ); such lift is unique, and its image x ′′ ∈ E 2 p+1q,q allow us to define f (x) = x ′′ . Next we have to prove that Im(d 1 : F 1 p+1,q → F 1 p,q ) ⊂ Ker f in order for our application f to be well-defined on the homology, that is on

F 2 p,q . Let a ∈ F 1 p+1,q
-we begin our chase on the bottom left -and let b ∈ π p+q+1 (X (p+1) ∧ Y ≥q ) be its image; b can be pushed all the way up to π p+q+1 (X ∧ Y ≥q ), and following the other path using the big curved arrow, we see that its image must be 0 in π p+q+1 (X ∧ Y ≥q ). In order to do so, it is useful to remark that the two path 54
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W p+1,q E p+1,q W p-1,q+1 π p+q+1 (X ∧ Y ≥q+1 ) π p+q+1 (X ∧ Y ≥q ) π p+q+1 (X ∧ Σ q HY q ) π p+q (X ∧ Y ≥q+1 ) π p+q (X ∧ Y ≥q ) π p+q+1 (X (p) ∧ Y ≥q+1 ) π p+q+1 (X (p+1) ∧ Y ≥q ) π p+q (F p,q+1 ) π p+q (X (p) ∧ Y ≥q+1 ) π p+q (X (p+1) ∧ Y ≥q ) π p+q+1 (X (p) ∧ Y ≥q ) π p+q+1 (X (p+1) ∧ Y ≥q-1 ) π p+q (F p,q ) = F 1 p,q π p+q (X (p) ∧ Y ≥q ) π p+q (X (p+1) ∧ Y ≥q-1 ) π p+q+1 (F p+1,q ) π p+q+1 (X (p+1) ∧ Y ≥q ) π p+q+1 (X (p+2) ∧ Y ≥q-1 ) F 1 p+1,q π p+q+1 (X (p+2) ∧ Y ≥q ) π p+q (X (p-1) ∧ Y ≥q ) π p+q (X (p) ∧ Y ≥q-1 ) π p+q-1 (F p-1,q ) π p+q (X (p-1) ∧ Y ≥q+1 ) F 1 p-1,q ≃ ≃ ≃ ≃ ≃ ≃ ≃ ≃ 55 3.2
Whitehead and Atiyah-Hirzebruch spectral sequences taken, when the isomorphism are inverted, lie in a commutative square:

π p+q+1 (X (p+1) ∧ Y ≥q ) π p+q+1 (X (p+2) ∧ Y ≥q ) π p+q+1 (X (p+1) ∧ Y ≥q ) π p+q+1 (X (p+2) ∧ Y ≥q-1 ) id (3.2.19)
Then we see that f (d 1 (a)) = 0, since to compute f we need the lift of d 1 (a) to π p+q (F p,q+1 ), and b gives us such a lift whose image in E 2 p+1,q must be zero. Thus, we have constructed an application as claimed.

To check commutativity, we work in the same diagram. We need to check that the following is commutative:

B 2 p+2,q-1 F 2 p,q B 2 p,q W 2 p+1,q E 2 p+1,q W 2 p-1,q+1 ≃ f ≃ (3.2.20) F 2 p,q is a quotient of a subgroup of F 1 p,q ; B 2 p+2,q-1 = Im(π p+q+1 (X (p+1) ∧ Y ≥q ) → π p+q+1 (X (p+2) ∧ Y ≥q-1 ) (below F 1
p,q in the diagram) and the isomorphism with W 2 p+1,q is constructed using the injection and the big curved arrow; similarly, B 2 p,q = Im(π p+q (X (p-1) ∧ Y ≥q+1 ) → π p+q (X (p) ∧ Y ≥q ) and the isomorphism with W 2 p-1,q+1 is constructed using the injection and isomorphism in the column on the right of F 1 p,q . This part of the diagram is sufficient to check that we indeed have commutativity as claimed.

Chapter 4

Topological Hochschild homology

In this chapter, we will define topological Hochschild homology and some of the tools, mostly spectral sequences, that we will later use in our computation.

The spectral sequence that appears with the first definition of Topological Hochschild homology by Bökstedt in [START_REF] Bökstedt | The topological Hochschild homology of Z and Z/p[END_REF] is of the following type:

HH * (H * (R; F p )) ⇒ H * (THH(R); F p ) (4.0.1)
where R is a ring spectrum and HH * is the Hochschild homology. Both the source and the target of the spectral sequence can be seen to have the structure of a comodule over the dual Steenrod algebra and the structure of a commutative H * (R; F p )-algebra, and the spectral sequence is compatible with these structures (see for example [START_REF] Angeltveit | Hopf algebra structure on topological Hochschild homology[END_REF]), and this was used to compute THH * (Z p ) and THH * (F p ) in [START_REF] Bökstedt | The topological Hochschild homology of Z and Z/p[END_REF].

The existence of an algebra structure on THH(R) allows the construction of various Bockstein spectral sequences associated to the multiplication by some element of the algebra; as we studied in chapter 2, the exact couple of a Bockstein spectral sequence is obtained from the cofiber sequence of the multiplication by the chosen element. The Bökstedt spectral sequence can also be extended to compute other homology theories in situation where a Künneth formula holds; in [START_REF] Mcclure | On the topological Hochschild homology of bu, I[END_REF], this is used to compute the first periodic Morava K-theory K(1) * THH(ℓ). That computation is extended to ku in [START_REF] Ausoni | Topological Hochschild homology of connective complex K-theory[END_REF] and this result is the basis to the computation of V (0) * THH(ku) via the Bockstein spectral sequence for the multiplication by u.

Although multiple Bockstein spectral sequences can be constructed from an algebra, they must all compute the same thing. That fact yields a computation of THH * (ℓ) in [START_REF] Angeltveit | Topological Hochschild homology of ℓ and ko[END_REF] by making the Bockstein spectral sequences for multiplication by p and u compete. We will extend their result to THH * (ku) and study some part of the computation with greater generality.

The spectral sequence of Brun compute THH of a ring A with coefficients in an A-algebra B from THH of B with coefficients in a generalized Tor group in the sense of [START_REF] Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF]. In [START_REF] Brun | Topological Hochschild homology of Z/p n[END_REF], that spectral sequence is introduced to compute THH * (Z/p n ). Modern categories of spectra allow us to express this spectral sequence as an Atiyah-Hirzebruch spectral sequence, as done in [START_REF] Höning | On the Brun spectral sequence for topological Hochschild homology[END_REF] to compute V (1) * THH(ku) and V (0) * THH(K(F q ); Z p ). Switching the ring with the coefficients often yield a smaller object to compute; moreover, this can be repeated multiple times, and when the Tor groups is simple enough, the Brun spectral sequence will also be a Bockstein spectral sequence. Part of our computation of THH * (ku) will use these facts.

Other techniques to compute THH include the use of results relating THH of a Thom spectrum T (f ) with a product of Thom spectra constructed from a map f classifying a spherical fibration. This can be seen in [START_REF] Andrew | Topological Hochschild homology of Thom spectra which are E ∞ -ring spectra[END_REF] or [START_REF] Andrew | Topological Hochschild homology of Thom spectra and the free loop space[END_REF] to be able to compute THH(HZ), THH(HF p ) or THH(M U ) since these spectra can be described as Thom spectra.

We work in the category M R of R-modules of [START_REF] Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF], from which most of our definitions will come.

Simplicial spectra and their realization

Let ∆ be the simplex category, whose object are the ordered sets of integers [n] = {0, . . . , n} and morphisms are the order preserving maps.

Definition 4.1.1. A simplicial R-module is a functor F : ∆ op → M R .
For such a functor, its geometric realization, denoted |F |, is the coend

∆ F ∧ (∆ • ) + (4.1.2)
that is the coend of the functor

∆ op ×∆ → M R that sends (n, m) to F (n)∧(∆ m ) + ,
where ∆ • is the topological simplex, viewed as a functor ∆ → T op. Similarly, a simplicial based space is a functor F : ∆ op → T op * , and its geometric realization |F | is the coend of the functor F ∧ (∆ • ) + .

The geometric realization, as a coend, is in fact a coequalizer, and thus will commute with colimits. Other useful properties of the geometric realization are: Proposition 4.1.3 (X.1.3 of [START_REF] Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF]).

• For a simplicial based space X • , there is a natural isomorphism

Σ ∞ |X • | ∼ = |Σ ∞ X • |. (4.1.4)
• For a simplicial based space X • and a simplicial spectrum

Y • , a simplicial R- module Y • ∧X • can be obtained by composing the diagonal ∆ op → ∆ op ×∆ op with the functor ∆ op × ∆ op → M R sending (n, m) to Y n ∧ X m ,
and there is a natural isomorphism

|Y • ∧ X • | ∼ = |Y • | ∧ |X • |. (4.1.5)
• For two simplicial spectra Y • and Z • , again using the diagonal structure, there is a natural isomorphism

|Y • ∧ Z • | ∼ = |Y • | ∧ |Z • |. (4.1.6)
A useful example of simplicial R-module is given by the bar construction: Definition 4.1.7 (IV.7.2 of [START_REF] Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF]). For an S-algebra R, a right R-module M and a left R-module N , the bar construction of (M, R, N ) is the simplicial S-module B • (M, R, N ) whose n-th simplicial level is

B n (M, R, N ) = M ∧ R ∧n ∧ N (4.1.8)
whose i-th face map is multiplication on the i-th ∧, and whose i-th degeneracy map is given by adding an R between the i-th R and the (i + 1)-th R via the unit

S → R. Denote by B(M, R, N ) the realization |B • (M, R, N )|.
Proposition 4.1.9 (IV.7.5 of [START_REF] Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF]). For M a cell R-module and N any R-module, there is a natural weak equivalence

B(M, R, N ) ≃ M ∧ R N. (4.1.10)
If R is commutative, A is an R-algebra and M and N are right and left A-modules, one can also form the bar construction B R

• (M, A, N ) by replacing all the smash products by smash products over R. In that case: Proposition 4.1.11 (X.1.2 and XII.1.2 of [START_REF] Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF]). There is a natural weak equivalence B R (A, A, N ) ≃ N .

The next section will also define topological Hochschild homology as a simplicial spectrum.

Simplicial definition of THH and consequences

Let R be a cofibrant commutative S-algebra; A be a cofibrant R-algebra; M be an (A, A)-bimodule. Let ϕ : A ∧ R A → A and η : R → A (4.2.1) be the multiplication and unit of A. Let

ξ ℓ : A ∧ R M → M and ξ r : M ∧ R A → M (4.2.2)
be the left and right action of A on M . Let

τ : M ∧ R A ∧n ∧ R A → A ∧ R M ∧ R A ∧n (4.2.3)
be the map cyclically permuting the factors. Here and after all the smash products are over R.

Definition 4.2.4 (IX.2.1 of [START_REF] Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF]). The topological Hochschild homology of A with coefficients in M is the realization, denoted THH R (A; M ), of the simplicial R-module THH R (A; M ) • whose n-th simplicial level is given by

THH R (A; M ) n = M ∧ R A ∧n (4.2.5)
with i-th face map given by ξ r ∧ id n-

1 if i = 0, id ∧ id i-1 ∧ ϕ ∧ id n-i-1 if 0 < i < n, (ξ ℓ ∧ id n-1 ) • τ if i = n;
and with i-th degeneracy map given by id

∧ id i ∧ η ∧ id n-1 .
This construction is also called the cyclic bar construction; we will use it again in chapter 7 and write it as B cy (A; M ).

When working over R = S, we will drop the S from the notation. When M = A, we will write THH R (A) = THH R (A; A). When A is commutative, topological Hochschild homology has the following structure: Proposition 4.2.6 (IX.2.2 of [START_REF] Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF]). Let A be a commutative R-algebra. Then THH R (A) is naturally a commutative A-algebra with unit map the inclusion of the 0-th simplicial level

A → THH R (A); THH R (A; M ) is a THH R (A)-module.
From the cited properties of the geometric realization with respect to the smash product, and by seeing M as a constant simplicial spectrum, one can see that: Proposition 4.2.7. When A is commutative and M is a symmetric (A, A)bimodule, there is a natural isomorphism of simplicial R-modules

M ∧ A THH R (A) • ∼ = THH R (A; M ) • (4.2.8)
and thus a natural isomorphism of R-modules

M ∧ A THH R (A) ∼ = THH R (A; M ). (4.2.9)
We will use this mostly with the fact that for the Smith-Toda complex V (0) (the modulo p sphere), we have

V (0) ∧ HZ ∼ = V (0) ∧ HZ p ∼ = HF p , so V (0) ∧ THH(A; HZ) ∼ = V (0) ∧ THH(A; HZ p ) ∼ = THH(A; HF p ). (4.2.10)
The simplicial construction of THH can also be linked with the bar construction. For an R-algebra A, let A e = A ∧ R A op be the enveloping algebra of A, where A op is the R-algebra obtained by composing the multiplication A ∧ R A → A of A with the map permuting the two factors A ∧ A → A ∧ A. Proposition 4.2.11 (IX.2.4 and IX.2.5 of [START_REF] Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF]). There is a natural isomorphism

THH R (A; M ) ∼ = M ∧ A e B R (A, A, A) (4.2.12)
that gives a natural weak equivalence

THH R (A; M ) ≃ M ∧ A e A (4.2.13)
when M is a cell A e -module.

Proof. On the n-th simplicial level, by seeing M as a constant simplicial spectrum, here are natural isomorphism

M ∧ R A ∧n ∼ = M ∧ A e (A e ∧ R A ∧n ) ∼ = M ∧ A e (A ∧ R A ∧n ∧ R A) (4.2.14)
and the simplicial maps can be seen to be that of B R • (A, A, A) on the right. The properties of the geometric realization yield the result.

The weak equivalence comes from proposition III.3.8 of [START_REF] Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF] and the weak equivalence B R (A, A, A) ≃ A.

Thus, we could have defined THH R (A; M ) as the derived smash product M ∧ L A e A, which is the second definition proposed in [START_REF] Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF]. 

Spectral sequences computing THH

The original result of Brun was the following:

Theorem 4.3.1 (Brun). When R → A is a ring homomorphism between (discrete) commutative rings, there is a multiplicative spectral sequence:

E 2 n,m = THH n (HA; H Tor R m (A, A)) ⇒ THH(HR; HA). (4.3.2)
That result was generalized by Höning in [START_REF] Höning | On the Brun spectral sequence for topological Hochschild homology[END_REF] Theorem 4.3.3 (1.1 of [START_REF] Höning | On the Brun spectral sequence for topological Hochschild homology[END_REF]). Let A be a cofibrant commutative S-algebra and B be a connective cofibrant commutative A-algebra. Let E be an S-ring spectrum.

Then there is a multiplicative spectral sequence of the form

E 2 n,m = THH n (B; HE S m (B ∧ A B)) ⇒ E S n+m (THH(A; B)). (4.3.4)
The lemma below is in important step to the previous theorem.

Lemma 4.3.5 (4.8 of [START_REF] Höning | On the Brun spectral sequence for topological Hochschild homology[END_REF]). Let S → A → B be cofibration of commutative S-algebras. Then we have an isomorphism of A e -ring spectra

THH(A; B) ∼ = (B ∧ A B) ∧ L A e B. (4.3.6) 
The theorem then comes from constructing a multiplicative Atiyah-Hirzebruch spectral sequence with the skeletal filtration on a CW model of B, and rewriting the E 2 page using the lemma again with the arising Eilenberg-MacLane spectra. The Atiyah-Hirzebruch spectral sequence is the following: Theorem 4.3.7 (IV.3.7 of [START_REF] Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF]). Let R be a connective cofibrant commutative S-algebra. Let M be a connective R-module and let G be an arbitrary R-module. Then, we have a strongly convergent spectral sequence of the form

(HG * ) R * M ⇒ G R * M. (4.3.8)
These spectral sequences enjoys multiplicative property:

Lemma 4.3.9 (3.17 of [START_REF] Höning | On the Brun spectral sequence for topological Hochschild homology[END_REF]). Let R be a connective cofibrant commutative S-algebra. Let M , N and L be connective R-modules and let G be a cell Rmodule. Let M E * * , * , N E * * , * and L E * * , * be the Atiyah-Hirzebruch spectral sequences computing the G homology of M , N and L. Then maps

G ∧ L R G → G and M ∧ L R N → L in the derived category of R-module induce a pairing of spectral sequences M E * * , * ⊗ N E * * , * → L E * * , * (4.3.10)
that converge to the products

π * (G ∧ L R M ) ⊗ π * (G ∧ L R N ) → π * (G ∧ L R L). ( 4 

.3.11)

There is also another spectral sequence we will use to compute topological Hochschild homology: Proposition 4.3.12 (Lemma 2.2 and corollary 2.3 of [START_REF] Angeltveit | Topological Hochschild homology of ℓ and ko[END_REF]). Suppose R → Q is a map of S-algebras and M is a (Q, R)-bimodule, given an (R, R)-bimodule structure by pullback. Then there is a weak equivalence

THH(R; M ) ≃ M ∧ L Q∧R op Q (4.3.13)
and thus a Künneth spectral sequence

Tor Q * R op * , * (M * , Q * ) ⇒ THH * (R; M ). (4.3.14)
The last spectral sequence we will use in our computation is the Bockstein spectral sequence, studied already in chapter 2. We will now specify our definition in the context if topological Hochschild homology.

Assume that A and M are R-algebra, that A is commutative, that M is a connective, symmetric (A, A)-bimodule and that there is a map of (A, A)bimodule m : Σ n M → M for some n ≥ 0, which factorizes through a weak equivalence Σ n M ≃ M ≥n with the nth Whitehead section. Let M/m be the cofiber

Σ n M M M/m. m (4.3.15)
We can define an exact couple from the tower of spectra with cofibers . . .

Σ 2n M Σ n M M Σ 2n M/m Σ n M/m M/m m m m (4.3.16)
after smashing it with ∧ A THH(A). We prove in chapter 3 that these king of Whitehead spectral sequence is in fact an Atiyah-Hirzebruch spectral sequence, thus we can use theorem 4.3.7 and lemma 4.3.9 to get: Here, the map m need not be a multiplication; the P (m) represent the different copies of THH * (A; M/m) of the first page of the spectral sequence. Moreover, if M is and A-algebra, and M/m can also be realized as an A-algebra, then that spectral sequence is a spectral sequence of algebras.

Smashing localizations and THH

Let R be a cofibrant commutative S-algebra; A be a cofibrant R-algebra and M be an (A, A)-bimodule. Let E be a cell R-module. We will study the Bousfield localization at E, whose definition and useful properties can be found in chapter VIII of [START_REF] Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF]. We suppose that the Bousfield localization at E of R-module is smashing, that is the localization of any R-module X, denoted X E , can be realized as R E ∧ R X where R E is the Bousfield localization of R at E. Precisely, we can construct R E to be an R-algebra and the localization map λ : R → R E to be an algebra map. Then the localization map of

A λ : A R ∧ R A R E ∧ R A ≃ λ∧id (4.4.1)
can be seen to be an R-algebra map, where the multiplication on

R E ∧ R A is R E ∧ R A ∧ R R E ∧ R A R E ∧ R R E ∧ R A ∧ R A R E ∧ R A id∧τ ∧id µ∧µ (4.4.2)
where τ switch the two factors and µ are the multiplications. Similarly, B E can be given both an (A, A)-bimodule such that λ is an (A, A)-bimodule map, and an (A E , A E )-bimodule structure.

Proposition 4.4.3. If the condition above are meet, then there is an isomorphism

THH R (A; B) E ∼ = THH R (A; B E ) (4.4.4)
and a weak equivalences

THH R (A; B E ) ≃ THH R (A E ; B E ). (4.4.5)
Proof. THH R (A; B) E can be seen to be the realization of the simplicial object

R E ∧ R THH R (A; B) • , which is also THH R (A; B E ) • .
This yields the isomorphism.

The map λ : R E → R E ∧ R R E as defined above is an E-equivalence between E-local R-modules, and thus a weak equivalence. Define a simplicial map

THH R (A; B E ) • → THH R (A E ; B E ) • (4.4.6)
such that on the n-th simplicial level we have:

B E ∧ R A ∧n = R E ∧ R B ∧ R A ∧n R E ∧ R R ∧n ∧ R B ∧ R A ∧n R E ∧ R R ∧n E ∧ R B ∧ R A ∧n R E ∧ R B ∧ R (R E ∧ R A) ∧n = B E ∧ R A ∧n E . ≃ id∧λ n ∧id τ (4.4.7)
Each of these maps is a weak equivalence, so by taking a suitable cellular replacement and by theorem X.1.2 of [START_REF] Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF], we get a weak equivalence between the realizations.

Chapter 5

Topological Hochschild homology of ku

In this chapter, we will compute THH * (ku). The spectral sequences used in this computation are summed up in table 5.1 on the next page. We first give a computation of THH * (ku; HZ) using the Brun spectral sequence and some knowledge of the modulo 2 homotopy of that spectrum in section 5.2. Then the Bockstein spectral sequence (ℓ), computing THH * (ℓ), is known from [START_REF] Angeltveit | Topological Hochschild homology of ℓ and ko[END_REF]. We review this result in section 5.3. In order to lift this computation to the Bockstein spectral sequence (u), computing THH * (ku), one must find another way to compare the sequences than the map induced by the inclusion ℓ → ku, since σv 1 ∈ THH 2p-1 (ℓ; HZ p ) should be compared to u p-2 σu which is not a class in THH 2p-1 (ku; Z p ). A solution is to consider the cofiber of the multiplication by v 1 :

Σ 2p-1 ku ku ku/v 1 .

v1

(5.0.1)

We will have to work p-locally for an odd prime p, and we will see that u p-2 σu is indeed a class of THH 2p-1 (ku; ku/v 1 ), that we compute in section 5.5 using a comparison between the Brun spectral sequences (ℓ Z ) and (u T B ) and the truncated Bockstein spectral sequence (u T ) -which has fewer classes and is easier to track.

The techniques we developed in chapter 1 can then be used to determine the u-Bockstein spectral sequence for ku, which is done in section 5.6. We can compare the v 1 -Bockstein spectral sequences (ℓ) and (v 1 ), and the Bockstein spectral sequence (u) can be recovered from the truncated Bockstein spectral sequence (u T ) and the reindexed Bockstein spectral sequence (v 1 ).

Lastly, the extensions can be computed with the results of chapter 2 from the structure of the Bockstein spectral sequence (u), thus determining THH * (ku) as ku * -module.

Our q-cofibrant commutative S-algebra model for the connective complex K-theory spectrum ku will be the one of theorem VII.4.3 of [START_REF] Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF]; notwithstanding, the E ∞ structure on ku can be seen to be unique (see [START_REF] Baker | Uniqueness of E ∞ structures for connective covers[END_REF]). In section 5.2 we will use this integral model for ku, but beginning with section 5.3 ku will denote p-localized connective complex K-theory and ℓ its Adams summand, unless otherwise stated. We obtain an S-algebra structure on the localization using 65 
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|µ kp | = (2kp -1, 0), k ≥ 1 the generators of THH * (HZ (p) ) |σv 1 | = (0, 2p -1) |v 1 | = (0, 2(p -1)) |σu| = (3, 0) |λ 1 | = (2p -1, 0) |µ 1 | = (2p, 0) |u| = (0, 2) |φu| = (2p, 0)
On the left side of the ⊗, the generators have bidegrees lying on the horizontal axis; on the right, on the vertical axis.

5.1

The periodic case the result on Bousfield localization stated in proposition VIII.1.8 of [START_REF] Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF]. Our S-algebra model for the quotient of ku by v 1 will be

ku/v 1 = ku ∧ ℓ HZ (p) (5.0.2)
which is also a q-cofibrant commutative S-algebra by remark VII.6.8 of [START_REF] Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF].

The periodic case

The spectra ku and ℓ are the connective cover of the spectra KU and L, the (periodic) p-completed complex K-theory spectrum and its (periodic) Adams summand. Since we already defined the connective version, we will consider KU and L to be the spectra obtained by inverting the Bott element or v 1 and then p-completing. Inverting these elements is a smashing localization as stated in before theorem VIII. 4.3 of [20]. This can also be seen to be the localization of ku and ℓ at the Johnson-Wilson spectrum E(1). In either case, they have the structure of S-algebras. Moreover, what we proved earlier about smashing localization and THH applies.

The homotopy type of p-completed topological Hochschild homology of L was computed in [START_REF] Mcclure | On the topological Hochschild homology of bu, I[END_REF] (theorem 8.1):

THH(L) p ≃ (L ∨ ΣL Q ) p (5.1.1)
where the subscript p denotes p-completion and the subscript Q denotes rationalization. The argument was extended in [START_REF] Ausoni | Topological Hochschild homology of connective complex K-theory[END_REF] (proposition 7.13) to a compatible splitting with KU :

THH(KU ) p ≃ (KU ∨ ΣKU Q ) p . (5.1.2)
This periodic result allow us to prove the following important lemma on the structure of the connective case: Lemma 5.1.3. In THH * (ku) (p) and for any p prime, the p-torsion elements and the u-torsion elements are the same. Here, the subscript (p) denotes plocalization.

Proof. We will work with the following commutative diagram where the maps are formally inverting the elements given:

THH * (ku) (p) THH * (ku) (p) [u -1 ] THH * (ku) (p) [p -1 ] THH * (ku) (p) [p -1 , u -1 ] a b c d (5.1.4)
The kernel of a is the u-torsion elements, the kernel of b is the p-torsion elements.

To prove our claim, we only have to prove that c and d are monomorphisms.

In each degree, THH * (ku) (p) will be a p-local finitely generated abelian group; this can be seen from the E 1 -page of the Bockstein spectral sequence (u). Thus, from the structure theorem of finitely generated abelian groups, we can see that to check if a map is a monomorphism, it is sufficient to check if the induced map on p-completion is a monomorphism. THH * (ku) (p) [p -1 ] is the rationalization THH * (ku) Q , which can be computed using the Künneth spectral sequence:

Tor E * A e (E * A, E * M ) ⇒ E * THH R (A; M ). (5.1.5) 
Here, E = HQ, A = M = ku and R is the sphere spectrum, and we have:

Tor ku Q * ⊗ku Q * (ku Q * , ku Q * ) ⇒ THH * (ku) Q . (5.1.6) ku Q * has a resolution as a ku Q * ⊗ ku Q * -module given by 0 ← ku Q * ← ku Q * ⊗ ku Q * {1} ← ku Q * ⊗ ku Q * {σu} ← 0 (5.1.7) with d(σu) = 1 ⊗ u -u ⊗ 1, thus the spectral sequence collapses at the E 2 -page with THH * (ku) Q ∼ = ku Q * ⊗ E(σu) (5.1.8) 
and |σu| = 3. This is sufficient to see that the map d from the initial diagram is a monomorphism, and that

THH * (ku) (p) [p -1 , u -1 ] ∼ = KU Q * ⊗ E(σu). (5.1.9) 
On the other side, inverting u is a smashing localization (see lemma V.1.15 of [START_REF] Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF]), so that our proposition 4.4.3 yields a weak equivalence

THH * (ku) (p) [u -1 ] ≃ THH * (KU ) (p) . (5.1.10) 
The previous result on p-completed THH(KU ) and equation (5.1.9) allow us to conclude that c is also a monomorphism.

Topological Hochschild homology of ku with coefficients in HZ

In this section, we compute THH * (ku; HZ) using the Brun spectral sequence: E 2 p,q = THH p (HZ; Hπ q (HZ ∧ ku HZ)) ⇒ THH p+q (ku; HZ)

(u Z )
whose differentials are of the form:

d r p,q : E r p,q → E r p-r,q+r-1 . (5.2.1) 
The Künneth spectral sequence can be used to compute the coefficients.

Proposition 5.2.2. π * (HZ ∧ ku HZ) ∼ = E(σu) (5.2.3) 
an exterior algebra over Z on the generator σu of degree 3.

Proof. Z has a resolution as a free ku * -module given by E(σu), with σu of bidegree (1, 2) and d(σu) = u, so that Tor ku * * , * (Z, Z) ∼ = E(σu). Then the Künneth spectral sequence

E 2
p,q = Tor ku * p,q (Z, Z) ⇒ π p+q (HZ ∧ ku HZ) (5.2.4) collapses for bidegree reasons with no extensions possible.

Topological Hochschild homology of ku with coefficients in HZ

The E 2 page of our Brun spectral sequence will then be two copies of THH * (HZ; HZ) = THH * (HZ), which was computed by Bökstedt in [START_REF] Bökstedt | The topological Hochschild homology of Z and Z/p[END_REF]:

THH k (HZ) =      Z if k = 0 0 if k ≥ 2 is even Z/n if k = 2n -1 ≥ 2.
(5.2.5)

Let µ n be a generator of the Z/n in degree 2n -1.

The spectral sequence then begin with:

E 2 p,q = THH p (HZ) ⊗ E(σu) q . (5.2.6) 
For bidegree reason, the only possible non-zero differentials are the d 4 between µ n+2 and σuµ n . Proposition 5.2.7. Let n ≥ 2. When n is odd, d 4 (µ n+2 ) = 0. When n is even, d 4 (µ n+2 ) can only be 0 or n 2 σuµ n up to a unit. Proof. µ n+2 must be sent to an element of order dividing n + 2 in the copy of Z/n generated by σuµ n . But two consecutive odd integers are coprime, so that d 4 (µ n+2 ) = 0 when n is odd. The greatest common divisor of two consecutive even integers is 2, so that d 4 (µ n+2 ) = 0 or d 4 (µ n+2 ) = n 2 σuµ n when n is even. We will see that that even differentials are indeed all non-zero by computing the modulo 2 homotopy of THH * (ku; HZ). Let V (0) be the Moore spectrum for multiplication by 2. There is a Brun spectral sequence:

E 2 p,q = THH p (HZ; H(V (0) q (HZ∧ ku HZ))) ⇒ V (0) p+q (THH(ku; HZ)). (5.2.8)
The Künneth spectral sequence, as in the integral case, can be used to compute:

V (0) * (HZ ∧ ku HZ) = E(σu) (5.2.9) 
an exterior algebra over F 2 on one generator σu of degree 3. We need to know THH * (HZ; F 2 ) ∼ = V (0) * THH(HZ):

Proposition 5.2.10. 

V (0) * THH(HZ) ∼ = E(λ 1 ) ⊗ P (µ 1 ) (5. 

5.3

Topological Hochschild homology of ℓ Proposition 5.2.31.

THH * (ku; HZ) ∼ =Z{1, µ 2 } ⊕ n≥3 odd Z ⧸ n {µ n , σuµ n }⊕ n≥4 even Z ⧸ (n/2) {2µ n , σuµ n } (5.2.32)
where |µ n | = 2n -1 and the name of the generators have been chosen to reflect the multiplicative relations between them, with σu = 2µ 2 .

Topological Hochschild homology of ℓ

In this section, we will review the results of [START_REF] Angeltveit | Topological Hochschild homology of ℓ and ko[END_REF] on THH * (ℓ). The results, relative to any prime p, will be stated about the following spectral sequences:

THH * (HZ (p) ; H(HZ (p) ∧ ℓ HZ (p) ) * ) ∼ = THH * (HZ (p) ) ⊗ E(σv 1 ) ⇒ THH * (ℓ; HZ (p) ) (ℓ Z ) THH * (ℓ; HZ (p) ) ⊗ P (v 1 ) ⇒ THH * (ℓ). (ℓ) 
The spectral sequence (ℓ Z ) is a Brun spectral sequence; (ℓ) is a Bockstein spectral sequence. We chose to name the written pages as the E 1 pages, so that the differentials have bidegrees |d r | = (-r -1, r). We have the bidegrees

|µ kp | = (2kp -1, 0), k ≥ 1 the generators of THH * (HZ (p) ) |σv 1 | = (0, 2p -1) |v 1 | = (0, 2(p -1)).
(5.3.1) When we will deem it necessary, for formulas in some discrete R-algebra A, we will use x • y for the R-action of x ∈ R on y ∈ A, and xy for the product of x, y ∈ A. From [START_REF] Angeltveit | Topological Hochschild homology of ℓ and ko[END_REF], proposition 3.4, which compute THH * (ℓ; HZ (p) ) we can deduce: Proposition 5.3.2. All the differentials in (ℓ Z ) are given by the formulas:

d 2p-1 (µ (k+1)p ) = p ν(k) • σv 1 µ kp (5.3.3)
up to a unit where k ≥ 1 and ν is the p-adic valuation.

There is an extension given by pµ p = σv 1 .

(ℓ) is also computed in [START_REF] Angeltveit | Topological Hochschild homology of ℓ and ko[END_REF]. We will use the following notations:

THH * (ℓ; HZ (p) ) ∼ = Z (p) {1, µ p } ⊕ k≥2 Z ⧸ p ν(k){v0µkp, σv 1 µ kp }. (5.3.4) 
Here from the Brun spectral sequence (ℓ Z ) we have σv 1 = p • µ p and v 0 µ kp is a class represented by p • µ kp . As in [START_REF] Angeltveit | Topological Hochschild homology of ℓ and ko[END_REF], we differentiate between the multiplication by p in the previous spectral sequence (ℓ Z ), denoted by v 0 , and multiplication by p in the current spectral sequence (ℓ), denoted by p. This is the same distinction we made in chapter 2 between q and q 0 : p denote the multiplication by p ∈ Z in a Z-module, and v 0 will be used to name classes that are lifts of classes in the image of the multiplication by p.

We use the Brun spectral sequence to compute THH * (ku/v 1 ; HZ (p) ) and THH * (ku/v 1 ; HF p ):

THH * (HZ (p) ; H(HZ (p) ∧ ku/v1 HZ (p) ) * ) ⇒ THH * (ku/v 1 ; HZ (p) ) (5.5.2) 
THH * (HF p ; H(HF p ∧ ku/v1 HF p ) * ) ⇒ THH * (ku/v 1 ; HF p ).

(5.5.

3)

The Künneth spectral sequence computing (HZ (p) ∧ ku/v1 HZ (p) ) * has E 2 page T or

Pp-1(u) * , * (Z (p) , Z (p) ) ∼ = E(σu) ⊗ Γ(φu) with |σu| = (1, 2) and |φu| = (2, 2p -2) 
. The indecomposables are σu and the divided power γ p i φu. For degree reasons, they cannot support non-zero differentials, so the spectral sequence collapse with no possible extensions, and we have (HZ (p) ∧ ku/v1 HZ (p) ) * ∼ = E(σu) ⊗ Γ(φu). A similar argument yields (HF p ∧ ku/v1 HF p ) * ∼ = E(σu) ⊗ Γ(φu), this time over F p .

Getting back to the Brun spectral sequences, when looking at the degrees modulo 2p, we see that the indecomposables also cannot support non-zero differentials in both the integral and V (0) case, so that the two spectral sequences collapse. The modulo p E ∞ page has exactly the right rank over F p to fit into a long exact sequence of the multiplication by p for the integral E ∞ page. Having an extension in the integral spectral sequence would then mean that there is a non-zero differential in the modulo p one. We conclude that there is no extension in the integral spectral sequence, and there can also be none in the modulo p one.

Thus, we can write the following two spectral sequences computing THH of ku with coefficients in ku/v 1 :

THH * (ku; HZ (p) ) ⊗ P p-1 (u) ∼ = THH * (HZ (p) ) ⊗ E(σu) ⊗ P p-1 (u) ⇒ THH * (ku; ku/v 1 ) (u T ) THH * (ku/v 1 ; H(ku/v 1 ∧ ku ku/v 1 ) * ) ∼ = THH * (HZ (p) ) ⊗ E(σu) ⊗ Γ(φu) ⊗ E(σv 1 ) ⊗ P p-1 (u) ⇒ THH * (ku; ku/v 1 ). (u T B ) (5.5.4) 
Here (u T ) is a truncated Bockstein spectral sequence, and (u T B ) is a Brun spectral sequence, and

|σu| = (3, 0) |φu| = (2p, 0) |µ kp | = (2kp -1, 0), k ≥ 1 the generators of THH * (HZ (p) ) |u| = (0, 2) |σv 1 | = (0, 2p -1). 
(5.5.5)

For the following lemma, we will briefly use the non-truncated u-Bockstein spectral sequence (u) computing THH * (ku) that we will study in the next section. It links the class σv 1 of THH * (ℓ) to a class of THH * (ku). Another incomplete point of view on this result can be found in section 5.8. Lemma 5.5.6. The map THH * (ℓ) → THH * (ku) sends σv 1 to a non-zero class represented up to a unit by u p-2 σu in the Bockstein spectral sequence computing THH * (ku).

Proof. Since L is the (smashing) localization of ℓ at the Johnson-Wilson spectrum E(1), we can conclude from proposition 4.4.3 that there is a weak equivalence THH(L) ≃ THH(ℓ; L).

(5.5.7)

Similarly, there is a weak equivalence THH(KU ) ≃ THH(ku; KU ).

(5.5.8) THH(ℓ; L) can be computed using a periodic Bockstein spectral sequence

THH * (ℓ; HZ (p) ) ⊗ P (v 1 , v -1 1 ) ⇒ THH * (ℓ; L) (L)
which is entirely determined by the map (ℓ) → (L). In particular, we can see that σv 1 is a generator over Q and

P Q (v 1 , v -1 1 ) of the summand ΣL Q in the splitting THH(L) p ≃ (L ∨ ΣL Q ) p .
(5.5.9)

Since the splitting on THH(L) and THH(KU ) are compatible, it must be that σv 1 ∈ THH 2p-1 (ℓ) is sent to a non-zero class in THH 2p-1 (ku). There is also a relation pµ p = σv 1 , so that the only possibility is that the image of σv 1 in THH 2p-1 (ku) is represented by u p-2 σ to get both the extension with pµ p and the splitting of THH(KU ).

Since ℓ/v 1 is just HZ (p) , we have a morphism between the Brun spectral sequences (ℓ Z ) → (u T B ) induced by i : ℓ → ku. This allows us to prove: Proposition 5.5.10. In (u T B ), there are differentials

d 2p-4 (γ k φu) = u p-2 σuγ k-1 φu (5.5.11)
up to a unit for all k ≥ 1.

Proof. In the following commutative diagram:

THH(ℓ) THH(ku) THH(ℓ; HZ (p) ) THH(ku; ku/v 1 ) i f f i (5.5.12) 
we have up to units, using lemma 5.5.6

f (i(σv 1 )) = f (u p-2 σu) = u p-2 f (σu) = i(f (σv 1 )) = i(σv 1 ). (5.5.13) 
In order for this to be possible, there must be an extension u • u p-3 σu = σv 1 in (u T B ), and it must be that u p-2 σu is either a boundary or not an infinite cycle. Since it is an infinite cycle for degree reasons, it is a boundary. The only class in degree 2p is φu, so up to a unit there is a differential d 2p-4 (φu) = u p-2 σu in (u T B ).

In the divided power algebra Γ(φu), φu γ k-1 φu = k γ k φu. We can then prove our formula by induction on k, using the facts that

k d(γ k φu) = d(φu)γ k-1 φu + φu d(γ k-1 φu) (5.5.14)
and that Z (p) is an integral domain.

Proof. Except for the extension p • µ p = u p-2 σu this is the E ∞ page of (u T ). This extension is present in (ℓ Z ), and since the map i : THH * (ℓ; HZ (p) ) → THH * (ku; ku/v 1 ) is such that i(σv 1 ) = u p-2 σu, and on the E ∞ pages is such that i(µ p ) = µ p , it must be that u p-2 σu is also divisible by p in THH 2p-1 (ku; ku/v 1 ).

The only possible extension is with µ p , so we get our formula up to a unit.

Without the module structure, writing all the classes, this is:

Z (p) {1, u, . . . , u p-2 , σu, uσu, . . . , u p-2 σu, µ p } ⊕ k≥1 Z ⧸ p ν(k)+1{uµkp, u 2 µ kp , . . . , u p-2 µ kp } ⊕ k≥1 Z ⧸ p ν(k)+1{σuµkp, uµ kp , . . . , u p-3 µ kp } ⊕ k≥2 Z ⧸ p ν(k){v0µkp, u p-2 σuµ kp } (5.5.23) 
with relations u p-2 σu = p • µ p and u • v 0 µ kp = p • uµ kp .

Computation of the Bockstein spectral sequence for THH * (ku)

We know enough of these first three spectral sequences to compute the fourth: 

THH * (ℓ; HZ (p) ) ⊗ P (v 1 ) ⇒ THH * (ℓ) (ℓ 
From the map THH(ℓ; HZ (p) ) → THH(k; ku/v 1 ) comes a morphism of spectral sequences (ℓ) → (v 1 ), which determines some differentials in (v 1 ). These differentials, the one computed in the previous section in (u T ) and the lemmas relating a spectral sequence and its truncations yield a description of the differentials in (u).

Theorem 5.6.1. The differentials in (u) are given by the formula:

d p n+1 -2 (p n µ (k+1)p n+1 ) = ku p n+1 -2 σuµ kp n+1 , k ≥ 0, n ≥ 0 (5.6.2)
up to a unit and linearity with respect to multiplication by u.

Proof. Here we make good use of our results on truncated spectral sequences. First, the differentials in (u T ) from proposition 5.5.15 are lifted to (u) using theorem 1.2.11, that is in (u) there are differentials:

d 2p-4 (µ (k+1)p ) = p ν(k) u p-2 σu µ kp , k ≥ 1
(5.6.3) repeated for each power of u. These are the only differentials d r with 2 ≤ r ≤ 2p -4 in (u) since these are the only differentials in (u T ), again using theorem 1.2.11.

We will now use theorem 1.2.21 and theorem 1.2.28. With regard to theorem 1.2.28, it is important to see that in our current computation, a statement stronger than the general case can be made. The general case would say that a differential d(x) = y in (v 1 ) would result in the existence of an element x ′ such that d(x ′ ) = y in (v 1 ), and such that this differential can be lifted to one in (u); but in (v 1 ), each generator is alone in its bidegree, so that necessarily x = x ′ . So each differential d(x) = y in (v 1 ) can really be lifted to a differential d(x) = y in (u).

Using theorem 1.2.21, the differentials of formula (5.6.3) results in (v 1 ) in

d 1 (u i µ (k+1)p ) = p ν(k) v 1 u i-1 σu µ kp , k ≥ 1, 1 ≤ i ≤ p -2 (5.6.4) 
repeated for each power of v 1 . These are the only differentials d 2p-2 in (v 1 ) since having more differentials would result in more differentials d r in (u) with 2 ≤ r ≤ 2p -4. This gives the E 2 page of (v 1 ):

(v 1 ) : E 2 ∼ =Z (p) {1, u, . . . , u p-2 , σu, uσu, . . . , u p-3 σu, µ p } ⊗ P (v 1 ) ⊕ k≥2 Z ⧸ p ν(k){v0µkp} ⊗ P p-1 (u) ⊗ P (v 1 ) ⊕ k≥1 Z ⧸ p ν(k)+1{σuµkp, u σuµ kp , . . . , u p-3 σuµ kp } ⊕ k≥1 Z ⧸ p ν(k){u p-2 σuµ kp , v 1 σuµ kp , u v 1 σuµ kp , . . . }. (5.6.5) 
We have written all the generators v 0 µ kp with v 0 because we will now account for the differentials in (ℓ) of theorem 5.3.5:

d p n +•••+p (p n-1 • v 0 µ kp n ) = (k -1)v p n +•••+p 1 σv 1 µ (k-1)p n , k ≥ 1, n ≥ 1. (5.6.6)
That formula is also true in (v 1 ), and from theorem 1.2.28 we deduce the formula in (u) that was claimed (which also encompass the formula (5.6.3)).

It remains to prove that the classes σuµ kp , k ≥ 1 are infinite cycles in (u). The classes u p-2 σuµ kp 2 , k ≥ 1 are in the image of (ℓ) → (v 1 ) and so are infinite cycles in (v 1 ), thus also in (u) by theorem 1.2.35. Since in (u) the only u p-2torsion is in even degree, it must be that σuµ kp 2 are infinite cycles in (u). The remaining classes to check are the σuµ kp with p not dividing k. Once again we now that these classes support no differentials of height up to u p-2 , and are of u p-2 -torsion after d p-2 by formula (5.6.3). If some σuµ kp supports a non-zero differential the target must be p ν(k-i) u ip+1 µ (k-i)p , 1 ≤ i ≤ k -1 for degree reasons, and that target must be of u p-2 -torsion, that is to say some

p ν(k-i) u ip+2 µ (k-i)p , p ν(k-i) u ip+3 µ (k-i)p , . . . p ν(k-i) u ip+p-1 µ (k-i)p
(5.6.7) is already the target of a differential. But the only possible differentials still not accounted for are the one targeting p ν(k-i) u ip+1 µ (k-i)p , 1 ≤ i ≤ k -1, and these are of height u h with h reducing to 1 modulo p.

In the language of chapter 2, this is

π(σuµ (bp+p-1)p n ) = v ν(b) 0 σuµ bp n+1 π(σuµ (bp+j)p n ) = 0 whenever 0 < j < p -1 π(v h 0 σuµ ap n ) = 0 whenever h ≥ 1.
(5.7.11)

Let n ≥ 1, a ≥ 1 not divisible by p and h ≥ 0. We will check (sT i ) for all classes v h 0 σuµ ap n , that is to say proving that the only other class that can appear in p • v h 0 σuµ ap n is π(v h 0 σuµ ap n ), thus proving the formula. Hypothesis (sT i ) is proved by examining, for m ≥ 1, b ≥ 1 not divisible by p and k ≥ 0, the classes v k 0 σuµ bp m that can appear in the inequality

|v k 0 σuµ bp m | ≤ |v h 0 σuµ ap n | < |u p m-k -2 v k 0 σuµ bp m | ≤ |u p n-h -2 v h 0 σuµ ap n |.
(5.7.12) This equation (5.7.12) is indeed equivalent to i)

i≥0 b i p m+i + 1 ≤ i≥0 a i p n+i + 1 ii) i≥0 a i p n+i + 1 < i≥0 b i p m+i + m-k-1 i=0 (p -1)p i iii) i≥0 b i p m+i + m-k-1 i=0 (p -1)p i ≤ i≥0 a i p n+i + n-h-1 i=0 (p -1)p i .
(5.7.13)

Here we have written a = i≥0 a i p i and b = i≥1 b i p i in base p.

If m < n, i) and ii) cannot hold together. If m = n, but then for i) and ii) to hold together, we must also have a = b. Then any k such that h ≤ k is suitable.

If m > n, then to have i) and ii), bp m must be a truncation of ap n , and m -k -1 ≥ n. Then for iii) to hold, we must have h = 0 and iii) is an equality, that is to say the firsts digits a 0 , . . . , a ω of a are p -1, and then we can have n ≤ m -k -1 ≤ n + ω, with k = 0 except if m -k -1 = n + ω and a ω+1 = 0. In that case, k must be the number of digits of a equal to zero after the position ω.

For n = m -1, we get the class v k 0 σuµ bp m = π(v h 0 σuµ ap n ), and for m -1 > n we get classes such that |v k 0 σuµ bp m | < |π(v h 0 σuµ ap n )| (remark that all these classes will be connected by a tower of extensions, one for every p -1 digits at the end of a). Thus, (sT i ) holds for all torsion classes.

From the two previous results, we can give a presentation of THH * (ku) as a ku * -module. by the relations: 

• p • µ p = u p-2 σu. σuµ 3 σuµ 9 • • • • • • • σuµ 12 σuµ 15
• p • v n 0 µ p n+1 = u p n+1 -p n v n-1 0 µ p n for any n ≥ 1.
• u p n-h -2 • v h 0 σuµ ap n = 0 for any h, a and n, a not divisible by p. • v n 0 σuµ ap n = 0 for any a and n, a not divisible by p.

• p•σuµ (bp+p-1)p n = v 0 σuµ (bp+p-1)p n +u p n+1 -p n v ν(b) 0 σuµ bp n+1 for any b ≥ 1 not divisible by p and any n.

• p • v h 0 σuµ ap n = v h+1
0 σuµ ap n for any a, n and h ≥ 1 or h = 0 not in the previous case.

For the non-torsion part, we can state an integral, non-local version of this result; at each power u p n -2 for n ≥ 1, σu becomes divisible by p one more time. In what follows, ku is not localized at a prime. Proposition 5.7.16. The non-torsion part THH * (ku) includes a tower Z[u] generated by σu where for each n ≥ 1, u n-2 σu is divisible by the least common multiple of the integers 1, 2, . . . , n. That is, the non-torsion part is

Z[u]{1} ⊕ Q (5.7.17)
where Q is the sub-Z-module of Q[u]{σu} generated by the u n-1 σβ (0) lcm(1, 2, . . . , n)

(5.7.18)

for n ≥ 1.

However, we are not able to provide such an integral description for the torsion part.

As studied in [START_REF] Angeltveit | Topological Hochschild homology of ℓ and ko[END_REF] for THH * (ℓ), the torsion modules of THH * (ku) are divided into periodic submodules T n for n ≥ 1. Each T n correspond to the submodules of the torsion elements of degrees between |σuµ p n | = 2p n + 2 and |σuµ 2p n | -1 = 2(2p n ) + 1. Each of these appears p -1 times, by replacing the leftmost class with σuµ kp n for 1 ≤ k ≤ p -1, and p copies (as submodules or quotients) of T n are present in T n+1 , so T n appears an infinite numbers of times. In the following figures, the generators are named and placed on the bottom horizontal line; the rest of the non-zero class are indicated by a • when they come from THH * (ℓ), a • otherwise; going straight up indicate a multiplication by p, and going upward and right is a multiplication by u; when two lines go up from a single class, it means the multiplication by p is the sum of the two elements reached. None of the named classes come from THH * (ℓ).

The code used to generate these pictures can be found in appendix A. We can see that THH * (ku) is not THH * (ℓ) étale, by which we mean that THH * (ku) ̸ = ku * ⊗ ℓ * THH * (ℓ).

(5.7. [START_REF] Devinatz | A Lyndon-Hochschild-Serre spectral sequence for certain homotopy fixed point spectra[END_REF]) 

σuµ 27 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • σuµ 30 σuµ 33 σuµ 36 • • • • • • • σuµ 39 σuµ 42 σuµ 45 • • • • • • • σuµ 48 σuµ 51
σuµ 25 • • • • • • • • • • • • • • • • • • • • • • • • • σuµ 30 • • σuµ 35 • • σuµ 40 • • σuµ 45 • •
|T | 1 ≃ B ∧ B ∧q ∧ B ∧ B e B ∧ A B ≃ B ∧q ∧ B ∧ A B |T | 2 ≃ B ∧ B e B ∧ A ∧p ∧ B ≃ B ∧ A ∧p |T | ≃ THH(A; B) ≃ THH(B; B ∧ A B).
(5.8.13)

We have a map η : P → T which is the inclusion using the units of the component on the right of the ∧ B e . After realizing with | -| 1 , this can be seen to be the inclusion

B ∧ A B → B ∧ B ∧q ∧ B ∧ B e B ∧ A B (5.8.14)
of the 0-cells into the simplicial construction of THH(B; B ∧ A B). This is also the edge homomorphism of the Brun spectral sequence computing THH(A; B), since the Brun spectral sequence is constructed from a CW-structure on B, and in the construction in the proof of theorem III.2.10 (approximation by cell modules) of [START_REF] Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF] can begin with a map that represents our 0-cells correctly.

The map σ : ΣA → THH(A; B) is constructed from the map ω : S 1 + ∧ A → THH(A; B), that can be seen simplicially to be defined as

SA 0,q = A → B ∧ B ∧q ∧ B ∧ B e B ∧ B = T 0,q (5.8.15) 
from the unit A → B into the penultimate B on the right, and on the second non-degenerate cell -the A on the right of A ∨ A -to be 5.8.16) the identity id A into the only A on the right. The rest of the cells in S 1 + are degenerate, so we have defined a bisimplicial map. That map can be seen to factorize through P , so that we have a commutative diagram of bisimplicial spectra maps SA T P (5.8.17)

SA 1,q = A ∨ A → B ∧ B ∧q ∧ B ∧ B e B ∧ A ∧ B = T 1,q ( 
that after realization gives If we were working with spaces, we could give an explicit point-set model of the realization of the bar construction (see e.g. (7.7) of [START_REF] Wilson | Brown-Peterson Homology: An Introduction and Sampler[END_REF]), and we could identify the image of the map ΣA → B(B, A, B) with the suspension in the bar resolution, so that we could also name that map σ and the classes we named σa in the Tor computing π * (B ∧ A B) are indeed σ(a). Thus, given that the map σ into THH is a derivation, we would automatically have the equation σv 1 = (p -1)u p-2 σu in THH * (ku) and T HH * (ku; ku/v 1 ). But we don't have such a fine control on the realization of simplicial spectra.
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Chapter 6

Logarithmic topological Hochschild homology

It is known -e.g. from V (1) computations in [START_REF] Ausoni | Topological Hochschild homology of connective complex K-theory[END_REF] -that there is no weak equivalence between THH(ku) and ku ∧ ℓ THH(ℓ). However, such weak equivalence is true for the so called logarithmic topological Hochschild homology. This, along with knowledge of THH * (ℓ) and a little input on its image in THH * (ku), is sufficient to compute the latter.

There exist various constructions of logarithmic topological Hochschild homology. In [START_REF] Hesselholt | On the K-theory of local fields[END_REF], Hesselholt and Madsen construct it for discrete valuation rings. Here we will deal with the construction of Rognes, Sagave and Schlichtkrull in [START_REF] Rognes | Localization sequences for logarithmic topological Hochschild homology[END_REF] and [START_REF] Rognes | Logarithmic topological Hochschild homology of topological K-theory spectra[END_REF]. Another account of the logarithmic sequence for ku by Blumberg and Mandell can be found in [START_REF] Blumberg | Localization for THH(ku) and the topological hochschild and cyclic homology of Waldhausen categories[END_REF].

Logarithmic topological Hochschild homology of ku

Logarithmic THH is constructed in [START_REF] Rognes | Logarithmic topological Hochschild homology of topological K-theory spectra[END_REF] for symmetric spectra enticed with a "log ring structure". of THH(e)-module with circle action, where ρ is a map of commutative symmetric ring spectra and e <d is the (d -1)-st Postnikov section of e.

Here THH(e, ⟨x⟩) is logarithmic THH for the log ring structure coming from the unit x.

From that we can write diagram (8.1) of [START_REF] Rognes | Logarithmic topological Hochschild homology of topological K-theory spectra[END_REF]: The last thing we need from [START_REF] Rognes | Logarithmic topological Hochschild homology of topological K-theory spectra[END_REF] is theorem 6.3: Theorem 6.1.5. The map of pre-log ring spectra (ℓ, ⟨v 1 ⟩) → (ku, ⟨u⟩) is formally log-THH-étale, i.e. there is a weak equivalence of ku-modules: We work in the homotopy long exact sequences resulting from corollary 6.1.3. If we denote g : THH * (HZ (p) ) → THH * (ℓ) the map induced in the long exact sequence, then g(1) = 0 since Im ρ = Ker g and ρ is a ring morphism, thus injective on THH 0 (ℓ). Moreover, g(µ kp ) = 0 since |µ kp | = 2kp -1 and there is no p-torsion in odd degree in THH * (ℓ). Thus g = 0, and f • g : THH * (HZ (p) ) → THH * (ku) must also be 0. The long exact sequence splits into short exact sequence:

THH(ku, ⟨u⟩) ≃ ku ∧ ℓ THH(ℓ, ⟨v 1 ⟩). ( 6 
0 THH * (ℓ) THH * (ℓ, ⟨v 1 ⟩) THH * -1 (HZ (p) ) 0 0 THH * (ku) THH * (ku, ⟨u⟩) THH * -1 (HZ (p) ) 0 ρ f ∂ f ′ id ρ ′ ∂ ′ (6.
2.1) Equation (6.1.7) ensures that f ′ is an injection, and then f must also be an injection. The maps are of THH(ℓ) or THH(ku)-modules, so of ℓ or kumodules depending on the line. Let x ∈ THH * (ℓ) be any of the classes σv 1 α, with α ∈ {1, µ kp 2 , k ≥ 1}. We know that f (x) is divisible by u, and thus ρ ′ (f (x)) = f ′ (ρ(x)) is divisible by u. But then from the eq. ( 6.1.7), ρ(x) must

• p • µ p = u p-1 d. • p • v n 0 µ p n+1 = u p n+1 -p n v n-1 0 µ p n for any n ≥ 1.
• u p n-h -1 • v h 0 dµ ap n = 0 for any h, a and n, a not divisible by p. • v n 0 dµ ap n = 0 for any a and n, a not divisible by p.

• p • dµ (bp+p-1)p n = v 0 dµ (bp+p-1)p n + u p n+1 -p n v ν(b) 0
dµ bp n+1 for any b ≥ 1 not divisible by p and any n.

• p • v h 0 dµ ap n = v h+1
0 dµ ap n for any a, n and h ≥ 1 or h = 0 not in the previous case.

From these descriptions of THH * (ℓ, ⟨v 1 ⟩), THH * (ku, ⟨u⟩), and of the maps f ′ , ∂ and ∂ ′ , it is easy to derive a description of THH * (ku) similar to that of theorem 5.7.14 with ρ ′ sending σu to ud.

We are also able to provide a logarithmic counterpart of the integral result of proposition 5.7. [START_REF] Cartan | Détermination des algèbres H * (π, n; Z)[END_REF]. In what follows, ku is not localized at a prime. Once again, we cannot state anything of the sort for the torsion. 

9 • • • • • • • • • • • dµ 12 dµ 15 Figure 6.2: T ′ 2 for p = 3. • dµ 27 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • dµ 30 dµ 33 • dµ 36 • • • • • • • • • dµ 39 • dµ 42 • dµ 45 • • • • • • • • • dµ 48 • dµ 51

Hopf rings

A Hopf ring is a graded ring object in a category of coalgebras. All our examples will be from the following constructions: let E * be a homology satisfying a Künneth isomorphism, and let G be a group. The homology of the Eilenberg-MacLane spaces E * K(G, * ) has a Hopf ring structure. Here, there are two graduations. The homology graduation is internal -we forget about it to get a coalgebra from our graded coalgebra -and the graduation corresponding to the level of the Eilenberg-MacLane spaces is the one we mentioned previously in "graded ring object". Precisely, for each n ≥ 0, the diagonal map

∆ : K(G, n) → K(G, n) × K(G, n) (7.1.1)
gives the homology E * K(G, n) the structure of a (graded) cocommutative coalgebra. There is also a first monoid map (the sum in our graded ring)

* : K(G, n) × K(G, n) → K(G, n) (7.1.2)
induced by the group law on G. The product comes from the cup product in the cohomology theory represented by the K(G, * ), which gives a map

• : K(G, m) × K(G, n) → K(G, m + n) (7.1.3) 
for each m, n ≥ 0, so that this is indeed a graded product in E * K(G, * ). That map can be constructed to be compatible in some sense with the bar spectral sequence computing K(G, n + 1) as the classifying space BK(G, n). This is the basis of the computation in [START_REF] Ravenel | The Morava K-theories of Eilenberg-MacLane spaces and the Conner-Floyd conjecture[END_REF] and [START_REF] Wilson | Brown-Peterson Homology: An Introduction and Sampler[END_REF], and the explicit construction can be found in section 1 of [START_REF] Ravenel | The Morava K-theories of Eilenberg-MacLane spaces and the Conner-Floyd conjecture[END_REF]. We will also simply write * , • and ∆ for the products and coproduct on E * K(G, * ).

Both product * and • are maps of coalgebra, with the cocommutative coalgebra structure on E * K(G, * ) ⊗ E * K(G, * ) being given by ∆ ⊗ ∆, and the product being term by term. The distributivity of • over * correspond to a homotopy commutative diagram of spaces

K(G, m) × K(G, n) × K(G, n) K(G, m) × K(G, n) K(G, m) × K(G, m) × K(G, n) × K(G, n) K(G, m) × K(G, n) × K(G, m) × K(G, n) K(G, m + n) × K(G, m + n) K(G, m + n) ∆×id×id id× * • id×τ ×id •×• * (7.1.4)
which, applying E * , results in the following distributivity formula:

x • (y * z) = (-1) |x ′′ | |y| (x ′ • y) * (x ′′ • z) (7.1.5)
where ∆(x) = x ′ ⊗ x ′′ and the degrees are the graded ring one, i.e. n and m in the previous diagram.

The Bockstein spectral sequences we will study come from the cofiber sequence

HZ (p) HZ (p) HF p ×p (7.1.6)
that induces a homology long exact sequence for our spaces. The homology Bockstein spectral sequence of an H-space is a spectral sequence of Hopf algebras, see for example chapter 10 of [START_REF] Mccleary | A user's guide to spectral sequences[END_REF]. In our case, it means that the differentials β are derivations with respect to both products - * gives an H-space structure to each K(G, * ), and • gives an H-space structure to their union -and coderivation with respect to the coproduct. That Tor yields a divided power algebra Γ(σx) over the suspension of x from an exterior algebra E(x); an exterior algebra E(σx) from a polynomial algebra P (x); an exterior algebra E(σx) and a divided power algebra Γ(ϕx) over the transpotence of x from a truncated polynomial algebra P p (x). Remark that a divided power algebra Γ(x) in characteristic p decomposes as the product i≥0 P p (γ p i x). Moreover, in that case, for bidegree reasons, all the spectral sequences collapse, so that we can write:

H * (K(Z/p, 0); F p ) ∼ = P p ([1] -[0]) (7.1.8)
H * (K(Z/p, 1); F p ) ∼ = E(e 1 ) ⊗ Γ(α 1 ). (7.1.9)

Here, e 1 is the suspension of [1] -[0], in degree 1, and α 1 its transpotence, in degree 2. We will write α (i) for the divided power γ p i α 1 , so that

Γ(α 1 ) ∼ = i≥0 P p (α (i) ). (7.1.10)
Thus, next we have:

H * (K(Z/p, 2); F p ) ∼ = Γ(σe 1 ) ⊗ i≥0 E(σα (i) ) ⊗ Γ(ϕα (i) ). (7.1.11)
This is when the Hopf ring structure becomes handy. It can be seen geometrically that the suspension of a class is in fact its • product with e 1 . Furthermore, the classes γ p j α (i) can be rewritten modulo decomposables for the * product as α (j) • α (i+j+1) . We denote e 1 • e 1 by β 1 = β (0) , in degree 2, and let β (i) = γ p i β 1 , so that we can write:

H * (K(Z/p, 2); F p ) ∼ = i≥0 E(e 1 • α (i) ) ⊗ P p (β (i) ) ⊗ i,j≥0 P p (α (j) • α (i+j+1)
).

(7.1.12) That process continues to compute the Hopf ring H * (K(Z/p, * ); F p ) entirely. 100 Theorem 7.1.13 (8.5 of [START_REF] Wilson | Brown-Peterson Homology: An Introduction and Sampler[END_REF]). H * (K(Z/p, * ); F p ) is the free Hopf ring on H * (K(Z/p, 0); F p ) and the generator e 1 , α (i) and β (i) for i ≥ 0 with the relation e 1 • e 1 = β (0) .

In fact, e 1 can be seen to be the image of the fundamental class of H * (K(Z, 1); Z) and β (0) is the generator of the divided power algebra H * (K(Z, 2); Z). We use the same notation for all these classes and their images into homologies with various coefficients, and with respect to the maps from K(Z, * ) into K(Z (p) , * ) or K(F p , * ).

The specialized result for K(Z/p, 3) can be seen in the local version of the previous theorem, which is 8.11 of [START_REF] Wilson | Brown-Peterson Homology: An Introduction and Sampler[END_REF]:

H * (K(Z/p, 3); F p ) ∼ = i≥0 E(e 1 • β (i) ) ⊗ i,j≥0 E(e 1 • α (i) • α (i+j+1) ) ⊗ P p (α (i) • β (j) ) ⊗ i,j,k≥0 P p (α (i) • α (i+j+1) • α (i+j+k+2) ). (7.1.14)
We now turn to the integral Eilenberg-MacLane spaces. With the previous notations, we have:

H * (K(Z, 1); F p ) ∼ = E(e 1 ) (7.1.15) 
H * (K(Z, 2); F p ) ∼ = Γ(β (0) ) ∼ = i≥0 P p (β (i) ) (7.1.16) 
as sub-Hopf algebras of H * (K(Z/p, 1); F p ) and H * (K(Z/p, 2); F p ) with the reduction modulo p maps. This gives next:

H * (K(Z, 3); F p ) ∼ = i≥0 E(σβ (i) ) ⊗ Γ(ϕβ (i) ). (7.1.17)
That can be rewritten as a sub-Hopf algebra of H * (K(Z/p, 3); F p ) using claim 8.16 of [START_REF] Wilson | Brown-Peterson Homology: An Introduction and Sampler[END_REF]:

H * (K(Z, 3); F p ) ∼ = i≥0 E(e 1 • β (i) ) ⊗ i,j≥0 P p (α (i) • β (i+j+1) ) (7.1.18)
where

γ p i ϕβ (j) = α (i) • β (i+j+1) modulo * -decomposables.
From the proof of claim 8.16 we see that this decomposable is zero when i = 0, so that there is an equality ϕβ

(j) = α (0) • β (j+1) .
To compute the Bockstein on H * (K(Z, 3); F p ), we need some input on the Bockstein on K(Z, 1) and K(Z, 2). Proposition 7.1. [START_REF] Devinatz | A Lyndon-Hochschild-Serre spectral sequence for certain homotopy fixed point spectra[END_REF]. In H * (K(Z/p, 1); F p ) the Bockstein are given by the formula:

β 1 (γ k α (0) ) = e 1 * γ k-1 α (0) (7.1.20)
for all k ≥ 1.

In H * (K(Z, 2); F p ) the classes β (i) , i ≥ 0 are all infinite cycles in the Bockstein spectral sequence.

On the other hand:

∆(σβ (i+1) γ p n -1 ϕβ (i) ) = (1 ⊗ σβ (i+1) + σβ (i+1) ⊗ 1) p n -1 k=0 γ k ϕβ (i) ⊗ γ p n -1-k ϕβ (i) (7.1.39) so that β 1 (γ p n ϕβ (i) ) -σβ (i+1) γ p n -1 ϕβ (i)
is primitive, and is in degree 2p n+i+1 + 2p n -1. But the non-zero primitives classes of odd degree are in degree 2p k + 1 for some k ≥ 0. This concludes our induction step.

Furthermore, β r (σβ (0) ) = 0 for degree reasons. There can be no other differentials since now everything is either in the image of the Bockstein or supporting a Bockstein. This formula for the Bockstein also appears in Cartan's seminar (see again [START_REF] Moore | Cartan's constructions, the homology of H(π, n)'s, and some later developments[END_REF] page 201). This is sufficient to compute the homology of K(Z, 3) with Z (p) coefficients.

Proposition 7.1.40.

H * (K(Z, 3); Z (p) ) ∼ = Z (p) {1, σβ (0) } ⊕ T (7.1.41)
where the torsion submodule T is isomorphic to Im(β 1 ) ⊂ H * (K(Z, 3); F p ).

We won't try to give another description of the torsion part, but we will use the following notation: let δ : HF p → ΣHZ (p) be the connecting map for the multiplication by p cofiber sequence; we will write δ(x) for the torsion element of H * (K(Z, 3); Z (p) ) corresponding to β 1 (x) in the previous isomorphism, when x ∈ H * (K(Z, 3); F p ). This way, we know that δ(x) = δ(y) if and only if β 1 (x -y) = 0.

7.2

The u-Bockstein spectral sequence computing ku * K(Z, 3)

In the section, we compute ku * K(Z, 3) using the Bockstein spectral sequence of the multiplication by u:

H * (K(Z, 3); Z (p) ) ⊗ P (u) ⇒ ku * K(Z, 3). ( 7 

.2.1)

To do so, we will use the map δ : HF p → ΣHZ (p) and the Bockstein spectral sequence reduced modulo p:

H * (K(Z, 3); F p ) ⊗ P (u) ⇒ (V (0) ∧ ku) * K(Z, 3). (7.2.2)
Since all the torsion in the image of δ and the non torsion part is easy to study, the mod p sequence will determine the integral one.

To compute the mod p sequence, we will first compute the Bockstein spectral sequence associated to the multiplication by v 1 in the mod p Adams summand V (0) ∧ ℓ, which is in fact the connective Morava K-theory k(1) as remarked in [START_REF] Würgler | Morava K-theories: A survey[END_REF] after theorem 1.3. The periodic Morava K-theory K(1) * K(Z, 3) is computed in [START_REF] Ravenel | The Morava K-theories of Eilenberg-MacLane spaces and the Conner-Floyd conjecture[END_REF], along with all the K(n) * K(Z, m), which using the coalgebra structure allows us to recover the connective case. differentials claimed are sufficient to do that; if we prove they are present, there can be no further differentials.

First, σβ (0) cannot be the source of a differential because of its degree, and thus must receive a differential

d 2p-2 (x) = v 1 σβ (0) . (7.2.20)
Since σβ (0) is in the lowest degree that can receive a differential, x must be indecomposable. The only possibility is that x is ϕβ (0) up to a unit, so that

d 2p-2 (ϕβ (0) ) = v 1 σβ (0) (7.2.21)
To get the result for all the divided power γ k ϕβ (0) , we work with the coproduct in the same fashion as in the proof of proposition 7.1.34 for the Bockstein. For each n ≥ 1, d 1 (γ p n ϕβ (0) ) -v 1 γ p n -1 ϕβ (0) is primitive and in degree 2p n+1 + 2p n -1, thus zero, and the result follows. Now assume that up to a unit

d p j (γ k ϕβ (j) ) = v p j 1 σβ (j) γ k-1 ϕβ (j) (7.2.22)
is true for all k ≥ 0 and j such that 0 ≤ j < i. Consider the element σβ (i) in degree 2p i + 1. The differentials are already determined for all element in degrees between 1 and 2p i+1 . If σβ (i) is the source of a differential, its target must be a coalgebra primitive in even degree, that is one of the ϕβ (j) with j ≤ i -2. But these classes are already determined to hold differentials. Thus, σβ (i) survive to the E 2(p-1)p i -1 -page, and is the non-unit class of lowest degree in that page, so that if it is the target of a differential, it must be from an indecomposable and before the E 2(p-1)p i +1 -page. The only possibility is that up to a unit,

d 2(p-1)p i (ϕβ (i) ) = v p i 1 σβ (i) . ( 7 

.2.23)

The rest of the divided power of ϕβ (i) follow as in the i = 0 case.

Since k(1) = V (0) ∧ ℓ, the map ℓ → ku sending v 1 to u p-1 allow us to conclude the following: Corollary 7.2.24. In the u-Bockstein spectral sequence computing (V (0) ∧ ku) * K(Z, 3), the differentials are given by the formula

d (p-1)p i (γ k ϕβ (i) ) = u (p-1)p i σβ (i) γ k-1 ϕβ (i) (7.2.25)
up to a unit, with i, k ≥ 0.

The connective complex K-theory of K(Z, 3)

To deduce the integral result from the modulo p one, we use the connecting map δ : V (0) ∧ ku → Σku of the cofiber sequence of the multiplication by p. That map reduces modulo u to the already similarly denoted δ : HF p → ΣHZ (p) , so that we have a morphism of spectral sequences:

H * (K(Z, 3); F p ) ⊗ P (u) (V (0) ∧ ku) * K(Z, 3) H * (K(Z, 3); Z (p) ) ⊗ P (u) ku * K(Z, 3) ⇒ δ δ ⇒ (7.2.26)
The σ I ϕ J do form a basis of H * (K(Z, 3); F p ), and each term of the sum will vanish if and only if one the exterior classes appears two times in the product, that is if j + 1 ∈ I.

We will now describe the differentials from the point of view of the targets.

Proposition 7.2.36. In the u-Bockstein spectral sequence computing ku * K(Z, 3), if δ(σ I ϕ J ) ̸ = 0 is a (p -1)p n-1 -cycle and receive a differentials d (p-1)p n (δ(a)) = u (p-1)p n δ(σ I ϕ J ) ̸ = 0 for some a ∈ H * (K(Z, 3); F p ), then we are in one of the following two cases:

• n ∈ I.

• I ̸ = ∅, min I > n, min J = n -1, m J (n -1) = 1, ∀j ∈ J, j ̸ = n -1 ⇒ j + 1
∈ I and the differentials can be realized by

d (p-1)p n (δ(σ I\{i} ϕ J[(i-1) + ,(n-1) -,n + )] ) = u (p-1)p n δ(σ I ϕ J ) (7.2.37)
for any i ∈ I.

Proof. Assume that n / ∈ I, we need to prove that it implies that we are in the case of (7.2.37). Since δ is a morphism of spectral sequences,

d (p-1)p n (δ(a)) = u (p-1)p n δ(σ I ϕ J ) ⇔ δ(d (p-1)p n (a)) -u (p-1)p n δ(σ I ϕ J ) = 0 ⇔ β 1 (d (p-1)p n (a) -u (p-1)p n σ I ϕ J ) = 0 (7.2.38) 
d p n (a) is a sum in which σβ (n) can be factored, so that it can also be factored in β 1 (d p n (a)). Thus all the terms of

β 1 (σ I ϕ J ) = j∈J j+1 / ∈I σ I σβ (j+1) ϕ J[j -] (7.2.39) 
not having σβ (n) as a factor must be zero, that is:

∀j ∈ J, j ̸ = n -1 ⇒ j + 1 ∈ I. (7.2.40)
Moreover, since δ(σ I ϕ J ) ̸ = 0 we know that β 1 (σ I ϕ J ) ̸ = 0, and then n -1 ∈ J, otherwise all the terms of the sum are zero. We now consider the different cases in comparing min I, min J and n.

• Assume that min I < n and min I ≤ min J. Then:

∀k < min I, d (p-1)p k (δ(σ I\{min I} ϕ J[min I + ] )) = 0 d (p-1)p min I (δ(σ I\{min I} ϕ J[min I + ] )) = ±u (p-1)p min I δ(σ I ϕ J ) (7.2.41)
so that the differential d (p-1)p n (δ(a)) we were considering must be zero.

• Assume that min J < min I < n. Then min I = min J + 1 since n -1 ∈ J, and ∀k < min J, d (p-1)p k (δ(σ I ϕ J )) = 0

d (p-1)p min J (δ(σ I ϕ J )) = ±u (p-1)p min J δ(σ I σβ (min J) ϕ J[min J -] ) ̸ = 0 (7.2.42) since n -1 ∈ J[min J -] and n / ∈ I. Thus δ(σ I ϕ J ) is not a p n-1 -cycle.
• Assume that min I > n. Then because of (7.2.40), min(J \ {n -1}) ≥ n and min J = n -1. We now refine this disjunction.

• Assume that min I > n and m J (n -1) ≥ 2. Then:

∀k < n -1, d (p-1)p k (δ(σ I ϕ J )) = 0 d (p-1)p n-1 (δ(σ I ϕ J )) = ±u (p-1)p n-1 δ(σ I σβ (n-1) ϕ J[(n-1) -] ) ̸ = 0 (7.2.43) since n -1 ∈ J[(n -1) -] and n / ∈ I ∪ {n -1}. Thus δ(σ I ϕ J ) is not a p n-1 -cycle.
• Finally, assume that min I > n and m J (n -1) = 1. The previous formula is also valid, but this time d (p-1)p n-1 (δ(σ I ϕ J )) = 0.

If I = ∅, then (7.2.40) implies that σ I ϕ J = ϕβ (n-1) , but then β 1 (ϕβ (n-1) ) = σβ (n) which is not a term in β 1 (d (p-1)p n (a)), since those have all at least two different σ as a factor. Thus, the δ(ϕβ (n-1) ) are infinite cycles whose u-towers cannot be the target of a differential, and hereafter I ̸ = ∅. Now for any i ∈ I, i ̸ = 0 since min I > n ≥ 0, and we have:

β 1 (σ I\{i} ϕ J[(i-1) + ] )
= ±σ I\{i}∪{n} ϕ J[(i-1) + , (n-1) -] ± σ I ϕ J (7.2.44) and there is indeed a differential d (p-1)p n (δ(σ I\{i} ϕ J[(i-1) + , (n-1) -, n + ] ))

= ±u (p-1)p n δ(σ I\{i}∪{n} ϕ J[(i-1) + , (n-1) -] ) = ±u (p-1)p n δ(σ I ϕ J ) (7.2.45) as we claimed.

We can also partially describe the differentials from the point of view of the sources. When min J < min I, the first potentially non-zero differential supported by δ(σ I ϕ J ) is d (p-1)p min J , and we have the following: Proposition 7.2.46. Let I and J be such that δ(σ I ϕ J ) ̸ = 0. If min J < min I and d (p-1)p min J (δ(σ I ϕ J )) = 0, then we are either in the case of (7.2.37) and δ(σ I ϕ J ) is the target of a d (p-1)p min J+1 , or we have σ I ϕ J = ϕβ (min J) , an infinite cycle whose u-tower is not the target of any differential.

Proof. We have d (p-1)p min J (δ(σ I ϕ J ))

= u (p-1)p min J δ(σ I σβ (min J) ϕ J[min J -] ) (7.2.47) and β 1 (σ I σβ (min J) ϕ J[min J -] ) can be seen to be zero only in the cases we claimed when β 1 (σ I ϕ J ) ̸ = 0.

The claim about σβ (min J) was already established in the proof of proposition 7.2.36.

We are now able to describe the E ∞ page of our spectral sequence. When min J < min I or I = ∅, δ(σ I ϕ J ) ̸ = 0 support a non-zero differential d (p-1)p min J , or we are in the case of proposition 7.2.46, and then we have either an infinite cycle ϕβ (min J) which is not of u-torsion, or we have the differential of (7.2.47). But we saw in (7.2.45) in the proof of proposition 7.2.36 that the target of this differential can be rewritten as δ(σ I\{i}∪{min J+1} ϕ J[(i-1) + , (min J) -] ) (7.2.48) for any i ∈ I, which is a class with min(I \ {i} ∪ {min J + 1}) ≤ min(J[(i -1) + , (min J) -]) so that we won't need δ(σ I ϕ J ) in our following description of E ∞ . Conversely, when I ̸ = ∅ and min I ≤ min J, δ(σ I ϕ J ) is the target of the differential: d (p-1)p min I (δ(σ I\{min I} ϕ J[min I + ] ))

= u (p-1)p min I δ(σ I ϕ J ) (7.2.49) the u-tower of δ(σ I ϕ J ) is of infinite cycles, and we get an u-torsion class in the E ∞ page. Thus, we have proved:

Theorem 7.2.50. In the E ∞ page of the u-Bockstein spectral sequence computing ku * K(Z, 3), the non u-torsion part is generated as a P (u)-module by 1 and σβ (0) , which give two copies of Z (p) , and by the δ(ϕβ (n) ) for all n ≥ 0, which give copies of F p . The u-torsion part is generated as a P (u)-module by the δ(σ I ϕ J ) with I ̸ = ∅ and min I ≤ min J, which all give copies of F p . There are some relations between the generators given for the torsion: the torsion submodule is the free F p -module over the δ(σ I ϕ J ) with I ̸ = ∅ and min I ≤ min J, quotiented by Ker(β 1 ).

Degreewise, there can be extension both in the torsion and non-torsion part. We will now prove that, as for THH * (ku), the p-torsion and the u-torsion are the same because of some of the extensions. Proof. Our computation of the connective u-Bockstein spectral sequence also determines the periodic u-Bockstein spectral sequence computing KU * K(Z, 3), whose E ∞ page is generated as a P (u, u -1 )-module by 1, σβ (0) and the δ(ϕβ (i) ).

All our differentials comes from the v 1 -Bockstein spectral sequence computing L * K(Z, 3), so that its E ∞ page is generated as a P (v 1 , v -1 1 )-module by the same classes. However, reducing modulo p, we have: These extensions induces the one we claimed over ku.

Here, we see a phenomenonp-torsion and the u-torsion coincide -that occur similarly in THH * (ku). From the E ∞ of the u-Bockstein spectral sequence, we now in both case that the u-torsion is included into the p-torsion. The formula for the periodic case then implies the converse, because inverting u get rid of the p-torsion too.

It is once again possible to describe the non-torsion part for integral ku as in proposition 5.7.16. The trace of K(Z, 3) in THH(ku)

as we have seen at the beginning of the chapter.

Our map reduces to maps we will also call f HZ (p) ∧ K(Z, 3) + → THH(ku; HZ (p) )

HF p ∧ K(Z, 3) + → THH(ku; HF p ) (7.3.3)

and we will study it from theses and the p and u Bockstein spectral sequences. The reduced maps are also algebra maps.

Our model for the modulo p map will be induced by It is known (see for example [START_REF] Ausoni | Topological Hochschild homology of connective complex K-theory[END_REF]) that and in the previous spectral sequence, σx is represented by σx, λ 1 by σξ 1 , µ 1 by ϕx and µ p i 1 by στ i+1 when i ≥ 1.

Σ ∞ + K(Z,
Proof. The claim about THH * (ku; HF p ) ∼ = V (0) * THH(ku; HZ (p) ) is theorem 6.8 of [START_REF] Ausoni | Topological Hochschild homology of connective complex K-theory[END_REF] For degree reasons, σx is indeed σx, λ 1 must be σξ 1 and µ 1 must be ϕx. Then there must be a multiplicative extension since ϕx p = 0 and µ p 1 ̸ = 0. The only suitable class in lower filtration is στ 2 . Then for the same reasons, for each i ≥ 1, µ p i 1 is represented by στ i+1 . This allows us to describe f on the multiplicative generators of H * (K(Z, 3); F p ). The elements β (0) ∈ H 2 (K(Z, 2); F p ) is sent to x ∈ H 2 (ku; F p ), thus f (σβ (0) ) = σx. For bidegree reasons, whenever j ≥ 1 and i ≥ 0 the images by f of σβ (j) and ϕβ (i) must be zero. Whenever i ≥ 0 and k ≥ 1 the γ p k ϕβ (i) are generating truncated polynomial algebras, thus their images can only be zero or a square-zero class. The only possible square-zero class is f : γ p k ϕβ (i) σxλ 1 µ p i+k +p k-1 -1 1 ? (7.3.20) because of the degree.

Now we are able to describe f on part of the torsion of H * (K(Z, 3); Z (p) ) and on the class in degree 3. We also have f (δ(σβ (i) )) = 0 (7.3.29) since δ(σβ (i) ) = 0, so that we now the map f δ on every multiplicative generators, and δ have a sufficient multiplicative property to determine f on part the torsion of H * (K(Z, 3); HZ (p) ). This time, we work in the exact couple H * (K(Z, 3); HZ (p) ) H * (K(Z, 3); HZ (p) )

H * (K(Z, 3); HF p ) m π δ (7.3.30) in which we have chosen to represent the torsion by the image of δ. But in our case, since there is no higher p-Bockstein, the torsion is also isomorphic via π to the image of β 1 , and π is an algebra map. Thus, for a and b in H * (K(Z, 3); F p ), 7.4 A remark on ku * as a ku * K(Z, 2)-module

In this section we present some difficulties we had at computing a resolution of ku * as a ku * K(Z, 2)-module. The goal was to compute Tor ku * K(Z,2) * , *

(ku * , ku * ), as a first step for the bar spectral sequence computing ku * K(Z, 3). We will first review some facts about the algebra ku * K(Z, 2), and then fail at providing a proper resolution.

7.4.1

The algebra structure on ku * K(Z, 2)

As a complex-oriented homology theory, the connective complex K-theory ku of CP ∞ ∼ = K(Z, 2) has an algebra structure determined by its formal group law. We recall the following facts, which can be found in [START_REF] Ravenel | The Hopf ring for complex cobordism[END_REF] or [START_REF] Frank | Stable homotopy and generalised homology[END_REF] Lemma 7.4.1 (3.3 of [START_REF] Ravenel | The Hopf ring for complex cobordism[END_REF]). When E is a complex-oriented homology theory, with complex orientation given by x E ∈ E 2 CP ∞ , then in cohomology:

• E * CP ∞ ∼ = E * [[x E ]
] the power series on x E over E * .

• E * (CP ∞ × CP ∞ ) ∼ = E * CP ∞ ⊗ E * E * CP ∞ .
In homology:

• E * CP ∞ is E * free on β i ∈ E 2i CP ∞ for i ≥ 0, dual to x i . • E * (CP ∞ × CP ∞ ) ∼ = E * CP ∞ ⊗ E * E * CP ∞ .
Moreover:

• The diagonal CP ∞ → CP ∞ × CP ∞ induces a coproduct ψ on E * CP ∞ with ψ(β n ) = n i=0 β i ⊗ β n-i . • The H-space product m : CP ∞ × CP ∞ → CP ∞ induces a coproduct m * on E * CP ∞ with m * (x E ) = i,j≥0 a ij x i ⊗ x j and a ij ∈ E -2(i+j+1) = E 2(i+j+1) .

• F (y, z) = y + F z = i,j≥0 a ij y i z j is a commutative associative formal group law over E * , i.e.

F (y, z) = F (z, y) F (y, 0) = y F (y, F (z, w)) = F (F (y, z), w). where β(r) = i≥0 β i r i and the product is the H-space product.

• Define putStrLn "\\begin{document}" putStrLn "\\begin{tikzpicture}" mapM_ (putStrLn . écrireNoeudTikz p n (u1,u2) (0,p2)) (listeDesNoeuds p n) mapM_ (putStrLn . écrireTraitTikz p n) (listeDesTraits p n) putStrLn "\\end{tikzpicture}" putStrLn "\\end{document}"
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 114 Let a ≤ b ≤ c be integers or ±∞. There is a morphism of cofiber sequences, and commutative diagram:
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 11 Figure 1.1: Example of the spectral sequence (B).

Figure 1 . 2 :

 12 Figure 1.2: The spectral sequence (T 3 0 ) corresponding to the (B) of fig. 1.1.

Figure 1 . 3 :

 13 Figure 1.3: The spectral sequence (T 7 3 ) corresponding to the (B) of fig. 1.1.

3 ) * Figure 1 . 5 :

 3*15 Figure 1.5: The spectral sequence ( ϕ B) corresponding to the (B) of fig. 1.1.

  and then there exists x ∈ (Y c b ) * such that p(x) = x. In the central square of the diagram, we have chosen two elements in (Y ∞ c ) * -1 , β and e(x), whose images by i c-b-1 are equal. By pushing β -e(x) in the bottom square, we can see that it is in the image of e, and thus so is β. Write x′ such that e(x ′ ) = β, and x ′ the image of x′ in (Y b+1 b ) * by p. Now in the central square, i c-b-1 (e(x -x′ )) = 0, so that there exists u ∈ (Y c b+1 ) * with δ(u) = e(x -x′ ). But the map δ factors through (Y c b ) * as e • i, and i(u) ∈ (Y c b ) * has image 0 in (Y b+1 b ) * by p since u ∈ (Y c b+1 ) * . Consider the element x -i(u) ∈ (Y c b ) * : e(x -i(u)) = e(x) -δ(u) = e(x) -e(x -x′ ) = e(x ′ ) = β

Theorem 1 . 2 . 28 .

 1228 Let N < M be integers and letx ∈ ϕ Z M -N N and y ∈ ϕ Z M -N M be classes in ( ϕ B) such that d M -N (x) = y ̸ = 0.For some unique ϕ(N ) ≤ n < ϕ(N + 1) and ϕ(M ) ≤ m < ϕ(M + 1), x and y are represented by x ∈ (Y n+1 n ) * and y ∈ (Y m+1 m ) * -1 in the spectral sequence (T ϕ(N +1) ϕ(N )

34 )

 34 In ( ϕ B) there are differentials d(x ′ ) = ȳ, and d(x -x′ ) = 0. But now, with slightly different notation from theorem 1.2.28, we have a class x = (x -x′ ) + x′ 1.2
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 1235 (a) Let x ∈ (Y ϕ(N +1) ϕ(N )
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 28 Figure 2.8: Second example: the known relationships between the lifts.
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 31 Figure 3.1: Definition of the third exact couple.
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 4317 Bockstein spectral sequence). Under the hypotheses of the paragraph above, when THH(A; M/m) is connective, we have a strongly convergent spectral sequence THH * (A; M/m) ⊗ P (m) ⇒ THH * (A; M ). (4.3.18)

4 Figure 5 . 1 :

 451 Figure 5.1: E 4 page of the Brun spectral sequence for THH * (ku, HZ).

2 . 11 )

 211 over F 2 , where |λ 1 | = 3 and |µ 1 | = 4.

)

  THH * (ku; HZ (p) ) ⊗ P p-1 (u) ⇒ THH * (ku; ku/v 1 ) (u T ) THH(ku; ku/v 1 ) ⊗ P (v 1 ) ⇒ THH * (ku) (v 1 ) THH * (ku; HZ (p) ) ⊗ P (u) ⇒ THH * (ku).

Theorem 5 . 7 . 14 .

 5714 THH * (ku) is a quotient of the Z (p) [u]-module P (u) ⊗ Z (p) {1, σu, v n 0 µ p n+1 , n ≥ 0} ⊕ P (v 0 ) ⊗ Z (p) {σuµ ap n , n ≥ 1, a ≥ 1,a not divisible by p} (5.7.15)
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 52 Figure 5.2: T 1 and T 2 for p = 3.
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 53 Figure 5.3: T 3 for p = 3.
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 54 Figure 5.4: T 1 for p = 5.
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 55 Figure 5.5: T 2 for p = 5.
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 18 that gives after precomposing with the map ΣA → S 1 +

6 . 2 Deriving 6 . 1 . 3 .

 62613 THH(ku) from THH(ℓ) and logarithmic THHCorollary There is a map of homotopy cofiber sequences:THH(ℓ) THH(ℓ, ⟨v 1 ⟩) Σ THH(HZ (p) )THH(ku) THH(ku, ⟨u⟩) Σ THH(HZ (p) )

.1. 6 )

 6 The Künneth spectral sequence can then be used to conclude that additively,THH * (ku, ⟨u⟩) ∼ = P p-1 (u) ⊗ THH * (ℓ, ⟨v 1 ⟩) (6.1.7)with the relation u p-1 = v 1 . Remark that the inclusion of THH * (ℓ, ⟨v 1 ⟩) in THH * (ku, ⟨u⟩) is the map induced by f ′ .6.2 Deriving THH(ku) from THH(ℓ) and logarithmic THHWe need to know that in the image of the map THH * (ℓ) → THH * (ku), the classes σv 1 and σv 1 µ kp 2 , k ≥ 1 are divisible by u; this is true from our previous computation of THH * (ku), but it can be established only from the fact that σv 1 = u p-2 σu in THH * (ku) (lemma 5.5.6), and the multiplicative properties of the map THH * (ℓ) → THH * (ku). The previous results and the description of THH * (ℓ) of[START_REF] Angeltveit | Topological Hochschild homology of ℓ and ko[END_REF] are enough to compute THH * (ℓ, ⟨v 1 ⟩), THH * (ku, ⟨u⟩) and THH * (ku).

Proposition 6 . 2 . 8 .

 628 The non-torsion part THH * (ku, ⟨u⟩) includes a tower Z[u] generated by d where for each n ≥ 1, u n-1 d is divisible by least common multiple of the integers 1, 2, . . . , n. All the elements can be written as such a quotient.We can revisit the figures of chapter 5 for logarithmic topological Hochschild homology. THH * (ℓ, ⟨v 1 ⟩) and THH * (ku, ⟨u⟩) are divided into submodules T ′ n for n ≥ 1 that are obtained from the T n of THH * (ℓ) and THH * (ku) by adding the extension u • d = σu.

dµ 3 •Figure 6 . 1 :

 361 Figure 6.1: T ′ 1 for p = 3.

  dµ

Figure 6 .

 6 Figure 6.3: T ′ 3 for p = 3.
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 72 51. In ku * K(Z, 3), there are relationsp • δ(ϕβ (0) ) = u p-1 σβ (0) p • δ(ϕβ (i) ) = u (p-1)p i δ(ϕβ (i-1) ) (7.2.52)for any i ≥ 1.

(

  L ∧ V (0)) * K(Z, 3) ∼ = K(1) * K(Z, 3) ∼ = K(1) * (7.2.53)and the only possibility to get that from the E ∞ page is having the extensionspδ(ϕβ (0) ) = v 1 σβ (0) pδ(ϕβ (i) ) = v p i 1 δ(ϕβ (i-1) ) (7.2.54) so that L * K(Z, 3) ≃ L ∨ Σ 3 L Q . (7.2.55)

Proposition 7 . 2 . 7 . 3

 7273 56. The non-torsion part ku * K(Z, 3) includes a tower Z[u] generated by σβ (0) where for each n ≥ 1, u n-1 σβ (0) is divisible by least common multiple of the integers 1, 2, . . . , n. That is, the non-torsion part isZ[u]{1} ⊕ Q (7.2.57)where Q is the sub-Z-module of Q[u]{σβ (0) } generated by theu n-1 σβ (0) lcm(1, 2, . . . , n) (7.2.58)for n ≥ 1. The trace of K(Z, 3) in THH(ku)We will compute partially the algebra mapf : ku ∧ K(Z, 3) + → THH(ku) (7.3.1)that factorizes the composition of the inclusion of part of the units in algebraic K-theory with the Bökstedt trace mapΣ ∞ + K(Z, 3) K(ku) THH(ku)ku ∧ K(Z, 3)

H 3 |λ 1 | = 2p - 1 |µ 1

 3111 * (ku; F p ) ∼ = P p-1 (x) ⊗ H * (ℓ; F p )(7.3.9) and the homology of ℓ can be written as a sub-Hopf algebra of the dual Steenrod algebraH * (ℓ; F p ) ∼ = E(τ i , i ≥ 2) ⊗ P (ξ i , i ≥ 1) (7.3.10)so that our spectral sequence begin withTor H * (ku;Fp) * , * (F p , F p ) ∼ = E(σx) ⊗ E(σξ i , i ≥ 1) ⊗ Γ(ϕx) ⊗ Γ(στ i , i ≥ 2) (7.3.11)with bidegrees |σx| = (1, 2)|σξ i | = (1, 2p i -2) |ϕx| = (2, 2p-2)|στ i | = (2, 2p i -1). (7.3.12) Proposition 7.3.13. THH * (ku; HF p ) ∼ = E(σx, λ 1 ) ⊗ P (µ 1 ) (7.3.14) with degrees |σx| =

Proposition 7 . 3 . 16 .

 7316 In THH * (ku; HF p ) we havef (σβ (0) ) = σx f (σβ (i) ) = 0 for any i ≥ 1 f (ϕβ (i) ) = 0 for any i ≥ 0 f (γ p k ϕβ (i) ) = 0 or σxλ 1 µ p i+k +p k-1 -1 1for any i ≥ 0 and k ≥ 1.

( 7 . 3 . 17 )

 7317 Proof. We denoted earlierTor H * (ku;Fp) * , * (F p , F p ) ∼ = i≥0 E(σβ (i) ) ⊗ Γ(ϕβ (i) )(7.3.18)with bidegrees|σβ (i) | = (1, 2p i ) |ϕβ (i) | = (2, 2p i+1 ).(7.3.19)

Proposition 7 . 3 . 21 . 1 δ(µ k 1 )

 732111 In THH * (ku; HZ (p) ), we have in the torsion f (δ(σϕ (i) )) = 0(7.3.22) for any i ≥ 0 and f (δ(σ I ϕ J )) = 0 (7.3.23) for any I and J such that I is neither empty nor {0}. The non torsion element σβ (0) in degree 3 has image σu by f . Proof. We need to describe the exact couple THH * (ku; HZ (p) ) THH * (ku; HZ (p) ) THH * (ku; HF p ) Here the map δ is reducing the degree by 1. Recall that THH * (ku; HZ (p) ) ∼ = E(σu) ⊗ THH * (HZ (p) ) (7.3.25) since our prime p is odd. The map m is multiplication by p and we can choose our generator such that:π(σu) = σx π(µ kp ) = λ 1 µ k-1 = ν(k)µ kp (7.3.26)where ν is the p-adic valuation.Since there is a commutative diagramH * (K(Z,3); F p ) THH * (ku; HF p ) H * -1 (K(Z, 3); Z (p) ) THH * -1 (ku; HZ (p) ) that whether equation (7.3.20) is true or not, for all integers i and k, f (δ(γ p k ϕβ (i) )) = 0. (7.3.28)

  we have:π(δ(aβ 1 (b))) = β 1 (aβ 1 (b)) = β 1 (a)β 1 (b) = π(δ(a))π(δ(b))= π(δ(a)δ(b))(7.3.31) 

•

  In the power series ringE * CP ∞ [[s, t]], β(s)β(t) = β(s + F t) (7.4.3)

[ 1 ]

 1 F (s) = s and inductively [n] F (s) = [n -1] F (s) + F s, then β(s) n = β([n] F (s)). (7.4.4) The formal group law on KU is known Part III Appendix --return the list of all the edges to be drawn in the --module corresponding to \sigma u \mu_{p^n} listeDesTraits :: Int -> Int -> [(Bool, ((Int, (Int, Int)), (Int, (Int, Int))))] listeDesTraits p n = concat $ map (catMaybes . traitsDuNoeud p n) $ listeDesNoeuds p n --write a string to be used as a label in the tikz drawing écrireÉtiquette :: Int -> Int -> (Int, (Int, Int)) -> [Char] écrireÉtiquette p n (r, (q, k)) = "u" ++ show k ++ "p" ++ show q ++ "m" ++ show (p^n + r) --write a string of latex to be shown at the node écrireNomLatex :: Int -> Int -> (Int, (Int, Int)) -> [Char] écrireNomLatex p n (r, (q, k)) | k == 0 && q == 0 = "\\sigma u \\mu_{" ++ show (p^n + r) ++ "}" | otherwise = "\\bullet" --write the line of tikz for a node écrireNoeudTikz :: Int -> Int -> (Float, Float) -> (Float, Float) -> (Int, (Int, Int)) -> [Char] écrireNoeudTikz p n vecteuru vecteurp no = "\\node[inner sep=1pt] (" ++ (écrireÉtiquette p n no) ++ ") at " ++ (show $ coordonnéesNoeud vecteuru vecteurp no) ++ " {$" ++ (écrireNomLatex p n no) ++ "$};" --coordinate of the node, p1 should really be 0 coordonnéesNoeud :: (Float, Float) -> (Float, Float) -> (Int, (Int, Int)) -> (Float, Float) coordonnéesNoeud (u1, u2) (p1, p2) (r, (q, k)) = (p1 * fromIntegral q + u1 * fromIntegral k + u1 * fromIntegral r , p2 * fromIntegral q + u2 * fromIntegral k) --write the line of tikz for an edge écrireTraitTikz :: Int -> Int -> (Bool, ((Int, (Int, Int)), (Int, (Int, Int)))) -> [Char] écrireTraitTikz p n (b, (no1, no2)) | b = "\\draw (" ++ (écrireÉtiquette p n no1) ++ ") to[bend right=8] (" ++ (écrireÉtiquette p n no2) ++ ");" | otherwise = "\\draw (" ++ (écrireÉtiquette p n no1) ++ ") to (" ++ (écrireÉtiquette p n no2) ++ ");" main :: IO () main = do a:b:c:d:e:[] <-getArgs let p = read a :: Int let n = read b :: Int let u1 = read c :: Float let u2 = read d :: Float let p2 = read e :: Float putStrLn "\\documentclass[tikz]{standalone}" putStrLn "\\usepackage[utf8]{inputenc}" putStrLn "\\usepackage[T1]{fontenc}"
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 51 Table of the spectral sequences used.

	Name	Type	E 1 n,m	Target
	(ℓ Z )	Brun	THH n (HZ (p) ; H(HZ (p) ∧ ℓ HZ (p) ) m )	THH

* (ℓ; HZ (p)

  We will only state what we need about this. Let E be a non-zero, d-periodic, positive fibrant commutative symmetric ring spectrum. Here d-periodic means that d is the smallest positive integer such that π * (E) has a unit x of degree d. Let e be the connective cover of E, also assumed to be positive fibrant. Then there is a log ring structure denoted by (e, ⟨x⟩) on e. The following is theorem 4.4 of[START_REF] Rognes | Logarithmic topological Hochschild homology of topological K-theory spectra[END_REF]:

	Theorem 6.1.1. There is a natural homotopy cofiber sequence	
	THH(e)	ρ	THH(e, ⟨x⟩)	∂	Σ THH(e <d )	(6.1.2)

  2) → ku(7.3.4) adjunct to the mapK(Z, 2) → GL 1 (ku). (7.3.5)The spectral sequence from proposition 4.3.12 is in this caseTor H * (K(Z,2);Fp) * , * (F p , F p ) ⇒ THH * (Σ ∞ + K(Z, 2); HF p ). (7.3.6)That spectral sequence collapses for degree reasons, and since they have the same first page, it is formally the same as the bar spectral sequence computing H

* (K(Z, 3); F p ); we have an isomorphism

T HH * (Σ ∞ + K(Z, 2); F p ) ∼ = H * (K(Z, 3); F p ).

(7.3.7)

Let us compare it with the same spectral sequence computing ku:

Tor H * (ku;Fp) * , * (F p , F p ) ⇒ THH * (ku; HF p ).

(7.3.8) 



Remerciements

Part II

Topological Hochschild Homology of ku and the Bökstedt trace map

Proof. We can use the same method as theorem 5.7 of [START_REF] Ausoni | Topological Hochschild homology of connective complex K-theory[END_REF] for p=2. V (0) ∧ THH(HZ) is an HF 2 -module, thus the Hurewicz homomorphism V (0) * THH(HZ) → H * (V (0) ∧ THH(HZ); F 2 ) (5.2.12) is an injection with image the A * -comodule primitives, A * being the dual Steenrod algebra. From theorem 5.12 of [START_REF] Angeltveit | Hopf algebra structure on topological Hochschild homology[END_REF],

H * (THH(HZ); F 2 ) ∼ = H * (HZ; F 2 ) ⊗ E(σ ξ2 1 ) ⊗ P (σ ξ2 ) (5.2. [START_REF] Bökstedt | The topological Hochschild homology of Z and Z/p[END_REF] and then H * (V (0) ∧ THH(HZ); F 2 ) ∼ = A * ⊗ E(σ ξ2 1 ) ⊗ P (σ ξ2 ).

(5.2.14)

The primitives classes can be seen to be generated by σ ξ2 1 and σ ξ2 -ξ 1 σ ξ2 1 , and we denote their preimages respectively λ 1 and µ 1 .

We also evaluate V (0) * THH(ku; HZ) non-multiplicatively using the spectral sequence from proposition 4.3.12:

Tor H * (ku;F2) * , * (F 2 , F 2 ) ⇒ THH * (ku; HF 2 ).

(5.2.15)

We know H * (ku; F 2 ), see for example proposition 5.3 of [START_REF] Angeltveit | Hopf algebra structure on topological Hochschild homology[END_REF]:

thus Tor H * (ku;F2) * , * (F 2 , F 2 ) ∼ = E(σ ξ2 1 , σ ξ2 2 , σ ξk , k ≥ 3) (5.2.17 . The spectral sequence collapses for bidegree reasons, and we now know the order of V (0) * THH(ku; HZ) in each degree. In particular, V (0) 3 THH(ku; HZ) ∼ = F 2 . Proposition 5.2.18. In the Brun spectral sequence E(σu, λ 1 ) ⊗ P (µ 1 ) ⇒ V (0) * THH(ku; HZ) (5.2.19) the differentials are given by

up to multiplication by units.

Proof. λ 1 of bidegree (3, 0) is an infinite cycle. It also cannot be in the image of a differential. The other generator σu of bidegree (0, 3) must then vanish for V (0) 3 THH(ku; HZ) to be of dimension 1 over F 2 . Since it is also an infinite cycle, it must be the target of a differential, which can only be d 4 (µ 1 ) = σu up to a unit. The rest of the result is obtained multiplicatively. This is sufficient to compute the integral case. ( 5.2.27) This also yield morphisms between the integral and mod 2 Brun spectral sequences. Depending on the parity of k, we use one of these maps to conclude. If k is even, then

(5.2.28) so that d 4 (µ 2k ) = σuµ 2k-2 (5.2.29) up to a unit, and k -1 is a unit. When k is odd,

(5.2.30)

These are the formulas we claimed. Since σu is a boundary in the mod 2 spectral sequence, between the E ∞ pages we have f (σu) = 0. Moreover, since σu is in the lowest filtration possible, this cannot be because of a shift of filtration, so that σu must be divisible by 2 in THH 3 (ku; HZ). The only possibility is the extension claimed. There can be no other extensions for degree reasons.

The result of this section can now be stated from the previous description of the spectral sequence.

Review of the modulo p results

Theorem 5.3.5 (Theorem 6.4 of [START_REF] Angeltveit | Topological Hochschild homology of ℓ and ko[END_REF]). The differentials in (ℓ) are given by the formula:

up to a unit and linearity with respect to multiplication by v 1 .

There are extensions at the end of this spectral sequence. We now state the result with our notations: Theorem 5.3.7 (different results in sections 6.2 and 6.3 of [START_REF] Angeltveit | Topological Hochschild homology of ℓ and ko[END_REF]). THH * (ℓ) is a quotient of the Z (p) -module

by the relations:

for any h, a and n, a not divisible by p.

• v n-1 0 σv 1 µ ap n = 0 for any a and n, a not divisible by p.

for any b ≥ 1 not divisible by p and any n.

0 σv 1 µ ap n for any a, n and h ≥ 1 or h = 0 not in the previous case.

Review of the modulo p results

From here, and for the next sections of this chapter related to THH(ku), p is an odd prime. Remark that for p = 2, ku = ℓ so that the results of the previous section about THH(ℓ) are results about THH(ku). The following Bockstein spectral sequence relative to the modulo p reduction of THH * (ku) are known.

Once again, these are the E 1 pages, with |d r | = (-r -1, r), and:

(5.4.1)

From theorem 1.2.11, we know that (u V ) determine (u V T ) entirely: the differentials in (u V T ) are those of (u V ) that are small enough to fit.

The spectral sequence (u V ) is known from [START_REF] Ausoni | Topological Hochschild homology of connective complex K-theory[END_REF]. We will now describe it.

For n ∈ Z, let a(n) and b(n) be the integers

(5.4.3) Proposition 5.4.4. In (u V ), the differentials are determined by multiplicativity by the equations:

(5.4.5)

For n ≥ 1, a(n) ≥ p -1 so that (u V T ) only see the first differentials with n = 0: Proposition 5.4.6. All the differentials in (u V T ) are given by the formulas:

where ϵ ∈ {0, 1} and k ≥ 1.

5.5

Computation of THH * (ku; ku/v 1 )

We will now compute THH * (ku; ku/v 1 ) using both a Brun spectral sequence and a Bockstein spectral sequence. We first state results that allow us to compute the first page of the Brun spectral sequences. Proof. The Künneth spectral sequence computing (ku/v 1 ∧ ku ku/v 1 ) * has E 2 page Tor P (u) * , * (P p-1 (u), P p-1 (u)) = P p-1 (u)⊗E(σv 1 ) with |u| = (0, 2) and |σv 1 | = (1, 2p -2). For degree reasons, the spectral sequence collapse with no possible extensions, yielding the result. The V (0) result follows from the absence of p-torsion.

We can now get a description of all the differentials in the truncated Bockstein spectral sequence (u T ): Proposition 5.5.15. In the spectral sequence (u T ), the differentials are given by the formula:

up to a unit, where ν is the p-adic valuation.

Proof. The differentials given are the only possible in (u T ) for degree reasons; we only need to prove that they are indeed non-zero. We now know enough about (u T B ) to do so. By looking at the degrees modulo 2p, we can list the classes in E 1 2kp-1 of (u T B ):

(5.5.17)

We know the following differentials in (u T B ):

for i ≥ 1 from proposition 5.5.10;

from the map (ℓ Z ) → (u T B ) and proposition 5.3.2;

To complete the multiplicative description, we also note that d(σv 1 ) = 0 and that all the degreewise possible value for d 2p-4 (µ (k-i)p ) results in a non-zero

From this description, after d 2p-1 the only generator left in E 2p 2kp-1 is pµ kp , so that THH 2kp-1 (ku; ku/v 1 ) is isomorphic to Z/p ν(k) Z. This proves our claim about (u T ).

We will now describe THH * (ku; ku/v 1 ), and as in [START_REF] Angeltveit | Topological Hochschild homology of ℓ and ko[END_REF], we will use v 0 to denote multiplication by p in the spectral sequence (u T ), as opposed to p denoting the multiplication in the target group. with the relations:

(5.5.22)

5.6

Computation of the Bockstein spectral sequence for THH * (ku)

We can change our generators so that the differentials are not given up to a unit but exactly. Proposition 5.6.8. We can change the generators µ N and σuµ N ′ of THH * (ku; HZ (p) ) with a multiplication by a unit so that the differentials in (u) are given by the formula:

(5.6.9)

Proof. Note that we have chosen p ν(k) instead of k, but these are the same up to a unit. We could have written the same statement with k.

The differentials are making the µ N and σuµ N ′ interact, and once we have chosen a specific unit for one of them, we have to use the same unit for all the p i µ N or p j σuµ N ′ . Consider the graph G whose vertices are the µ N and σuµ N ′ and with an edge for each differential

(5.6.10)

for any i and j, up to a unit, in the spectral sequence. The graph G is bipartite, since the differentials are always from a µ N to a σuµ N ′ . If we prove that G is a forest (as in a collection of trees), then we have proven our statement. Indeed, this is sufficient to choose a coherent set of µ N and σuµ N ′ , by choosing an arbitrary root for all the trees in the forest, and then changing each generation by a unit to verify the given formula. We will reason on the p-adic valuation of N and N ′ , denoted ν(N ) and ν(N ′ ). There is an edge in G between µ N and σuµ N ′ if and only if N = (k + 1)p n+1 and N ′ = kp n+1 for some k ≥ 0 and n ≥ 0. In that case, ν(N ) ≥ ν(N ′ ) if and only if n + 1 = ν(N ′ ), so that for N ′ fixed, there is only one edge from σuµ N ′ to some µ N that satisfy ν(N ) ≥ ν(N ′ ). Moreover, ν(N ′ ) ≥ ν(N ) if and only if n + 1 = ν(N ), so that for N fixed, there is only one edge from µ N to some σuµ N ′ that satisfy ν(N ′ ) ≥ ν(N ). Thus, if there is a cycle in G, then it must be confined to vertices whose p-adic valuation are all equal. But any vertex can only have at most one edge going to another vertex of the same p-adic valuation, so that such cycles are impossible.

We can also state a result about the integral, non-local Bockstein spectral sequence THH * (ku; HZ) ⇒ THH * (ku).

(5.6.11)

We will use the following notations for the non-local classes:

where

when k is even (5.6.13) ϵ(k) = 0 when k is odd 1 when k is even (5.6.14) and 2µ 2 = σu.

Computing the extensions and a presentation of THH * (ku)

In this section only -we later go back to p-local computation -let us write µ (p) for the p-local generators. We can choose to lift them to the non-local case such that when k and p are coprime,

(5.6.15)

The p-local differentials can be rewritten as

(5. 6.16) in the integral Bockstein spectral sequence, when k and p are coprime and 0 ≤ n < m. Thus, we can conclude from all the maps THH * (ku; HZ) → THH * (ku; HZ (p) ):

Proposition 5.6.17. In the Bockstein spectral sequence computing not localized THH * (ku), the differentials are given by:

where p is any prime, k ≥ 1, k and p coprime, m ≥ 1, and 0 ≤ n < m. The formula is valid up to multiplication by a unit of Z/ kp m -p n+1 2 .

Computing the extensions and a presentation of THH * (ku)

We first compute the extensions in the torsion-free part of the spectral sequence, from the knowledge that the p-torsion and the u-torsion must be the same in THH * (ku).

Proposition 5.7.1. The torsion-free part of THH * (ku) is a quotient of

(5.7.4)

Proof. From the differentials of theorem 5.6.1, the generators written are the only one not of u-torsion. We already know from lemma 5.1.3 that they must not be of p-torsion. We can give a second proof of this fact using the spectral sequences, by studying the connecting map of multiplication by p:

which is a map of ku * -modules.

Let n ≥ 0. In order for p • v n 0 µ p n+1 to be zero, v n 0 µ p n+1 needs to be in the image of δ, and since it is not divisible by u, it needs to be the image by δ of an element not divisible by u. Be there is no such element in V (0) 2p n+1 THH(ku): in the E 1 page of the Bockstein spectral sequence computing V (0) * THH(ku), the only suitable element is µ p n 1 , but it is not an infinite cycle (see proposition 5.4.4). So p • v n 0 µ p n+1 is not zero. 81 5.7

Computing the extensions and a presentation of THH * (ku)

We now have to prove that the extensions given are present. The u-tower over 1 is in even degree, so no extension are possible with the rest of the classes. We prove the rest of our formula by induction on n. Let us first observe that each extension must be with an element not already divisible by p; otherwise if p • v n 0 µ p n+1 = p • u k x for some k ≥ 1 and x, then v n 0 µ p n+1 -u k x would be a non-divisible by u class in degree 2p n+1 -1 whose product with p is zero, which we already deemed impossible. Then u p-2 σu is the only choice (up to a unit) for p • µ p . Let n ≥ 1. If our formula holds up to rank n -1, then p • v n 0 µ p n+1 could degreewise be:

but the only one not already divisible by p is

Using the results of chapter 2, we can recover the torsion extensions. in degree 2ap n + 2 where h, a and n are integers such that h ≥ 0, n ≥ 1, a ≥ 1 and p does not divide a, together with the relations:

• v h 0 σuµ ap n = 0 for any h, a and n. 2) v n 0 σuµ ap n = 0 for any a and n.

3

for any b ≥ 1 not divisible by p and any n.

for any a, n and h ≥ 1 or h = 0 not in the case of 3).

Proof. Here we will use the results of chapter 2 applied to the torsion elements of THH * (ku). Hypothesis (sR1), which is in our case a statement about V (0) * THH(ku; HZ (p) ) is easy to check from the modulo p results of section 5.4.

Our lifts q k 0 a i of the E ∞ -page will be the v ν(k) 0 σuµ kp n+1 obtained from the differentials of proposition 5.6.8:

(5.7.9)

These differentials gives us the relations at the end of the u-towers A remark on bisimplicial spectra and the suspension map Further discussions of these kinds of properties can be found in chapter 6. The extensions of scalars, however, does yield an injection, and in fact a short exact sequence

where the cokernel C can be presented as the quotient of the Z (p) [u]-module

by the relation p n σuµ ap n = 0 for any a and n, a not divisible by p.

A remark on bisimplicial spectra and the suspension map

This section will offer a more general but incomplete point of view on lemma 5.5.6. Topological Hochschild homology can be seen to have other structures in addition to the algebra structure. By viewing the simplicial construction of THH as a tensor product S 1 ⊗ A with a simplicial model of S 1 , THH can be equipped with a Hopf algebra structure and an S 1 action; an account of such results can be found in [START_REF] Angeltveit | Hopf algebra structure on topological Hochschild homology[END_REF]. Here we are interested in the suspension map σ : ΣA → THH(A), which is constructed after remark 3.11 of [START_REF] Angeltveit | Hopf algebra structure on topological Hochschild homology[END_REF] by splitting S 1 + as S 1 ∨ S 0 , and composing S 1 ∧ A → S 1 + ∧ A → S 1 ⊗ A. We will study the map σ simplicially, in order to show that it enjoys some compatibility with the Brun spectral sequence, but we will not get a result good enough to used as our lemma 5.5.6. To do so, we need to introduce bisimplicial S-modules. Definition 5.8.1. A bisimplicial S-module is a functor

or, equivalently, a simplicial object in the category of simplicial S-modules.

Since we have two simplicial directions, we can also realize F into a simplicial S-module in two different ways, that we will denote |F | 1 and |F | 2 for respectively realize following the first and second variable. These simplicial S-modules can then be realized a second time. As a consequence of the Fubini theorem for coend (see for example [START_REF] Mac | Categories for the working mathematician[END_REF]), the following result holds: Proposition 5.8.3. There are natural isomorphism of S-modules

(5.8.4)

Let S 1 • be the simplicial set that is the quotient of the 1-simplex ∆ 1 = Hom(-, [START_REF] Frank | Stable homotopy and generalised homology[END_REF]) by its boundary ∂∆ 1 , i.e. the coequalizer of * ∆ 1 (5.8.5)

where the maps are the inclusion of the two 0-cells of ∆ 1 . One can think of that coequalizer as having n-th simplicial level:

Be wary though that this notation is not to be used with the simplicial maps, since the property "0 being in the image of f " is not stable by precomposing with a face map. It is only useful to have a representing set of our quotient and to count the number of cells. Here, our S 1

• has only two non-degenerate cells, one in dimension 0 and one in dimension 1. Hereafter, we consider that model to be a discrete based simplicial space, the base point being the zero map.

Let A and B be commutative S-algebras, with an algebra map η : A → B. By considering A to be a constant simplicial S-module, we have a simplicial model for the suspension:

Since S 1

• is discrete, each simplicial level is a wedge of copies of A, one for each cell in S 1

• that is not the base point. Thus:

We can also write explicitly the simplicial model for S 1 + ∧ A coming from the same simplicial S 1 , which have

(5.8.9)

However, we cannot control the map ΣA → S 1 + ∧ A simplicially. This is the first issue to get a usable result mimicking lemma 5.5.6.

We will need a simplicial version of lemma 4.3.5, that can be proved similarly to proposition 4.2.11.

Lemma 5.8.10. Let A and B be commutative S-algebras with a map of algebra A → B. There is a natural isomorphism of S-modules B,A,B).

(5.8.11)

Let us define the three following bisimplicial spectra:

(5.8.12)

SA is constantly (S 1 + ∧ A) • in the direction q. P is constantly B • (B, A, B) in the direction q. T has a B • (B, B, B) on the left of ∧ B e and a B • (B, A, B) on 6.2 Deriving THH(ku) from THH(ℓ) and logarithmic THH be divisible by v 1 . Let y ∈ THH * -2(p-1) (ℓ, ⟨v 1 ⟩) be such that v 1 y = ρ(x): y cannot be in the image of ρ since x is not divisible by v 1 in THH * (ℓ). Then ∂(y) ̸ = 0 and must be a multiple of the class named α in THH * -2p+1 (HZ (p) ). The coefficient must be a unit, since otherwise y would be divisible by p, and thus ρ(x) too, but then this would mean that ∂(p -1 ρ(x)) ̸ = 0 which is impossible for degree reasons.

The remaining elements in THH * (HZ (p) ) that we need to account for are the µ kp with k not divisible by p. These can be lifted to classes we name

= 0 then it must be equal for degree reason to an element divisible by v 1 coming from THH 2kp+2(p-1) (ℓ); if v 1 dµ kp = v 1 β we can rename dµ kp to be dµ kp -β. We still have ∂(dµ kp ) = µ kp , but now v 1 dµ kp = 0.

Thus, we have proved:

quotiented by the relations v 1 d = σv 1 , v 1 dµ kp = σv 1 µ kp with the convention σv 1 µ kp = 0 ∈ THH * (ℓ) when k is not divisible by p, and p ν(k)+1 dµ kp = 0.

We now describe explicitly the structure of THH * (ℓ; ⟨v 1 ⟩) and THH * (ku, ⟨u⟩).

by the relations:

• v h 0 dµ ap n = 0 for any h, a and n, a not divisible by p.

• v n 0 dµ ap n = 0 for any a and n, a not divisible by p.

dµ bp n+1 for any b ≥ 1 not divisible by p and any n.

0 dµ ap n for any a, n and h ≥ 1 or h = 0 not in the previous case. Theorem 6.2.6. THH * (ku, ⟨u⟩) is a quotient of the Z (p) [u]-module

by the relations:

Chapter 7

The K(Z, 3) units and the trace map

In this chapter, we study the trace in topological Hochschild homology of the map

This map capture part of the units of the ring spectrum ku. The units GL 1 (R) of a ring spectrum R can be defined as the homotopy pullback of the square

The units of ku can thus be seen to be

The natural inclusion BU (1) → BU ⊗ and the fact that U (1) = K(Z, 1) define our map K(Z, 2) → GL 1 (ku). Furthermore, as seen in [START_REF] May | E ∞ Ring Spaces and E ∞ Ring Spectra[END_REF] (lemma V.3.1), the inclusion induces a splitting

The other ingredients in our discussion are the natural map from the ring units into algebraic K-theory and the Bökstedt trace map from algebraic Ktheory to topological Hochschild homology. Both these maps are studied in e.g. [START_REF] Schlichtkrull | Units of ring spectra and their traces in algebraic K-theory[END_REF] or [START_REF] Antieau | On localization sequences in the algebraic K-theory of ring spectra[END_REF].

Following [START_REF] Antieau | On localization sequences in the algebraic K-theory of ring spectra[END_REF] proposition 2.5, the composition of the unit map and the trace map

is equivalent to the composition

The first part is the map coming from the bar construction

The second part comes from the counit of the adjunction

which gives a map

Thus, we have a composition

that will factor through ku ∧ K(Z, 3) + by extension of the scalars. The map

is what we will partially compute. Our model from that map will be induced by the cyclic bar construction and the identification

); ku) → B cy ku (7.0.11) obtained by proposition 4.2.11, the commutativity of Σ ∞ + K(Z, 2) and proposition II.1.2 of [START_REF] Elmendorf | Rings, modules, and algebras in stable homotopy theory[END_REF] applied to the simplicial constructions.

We can sumarize all the maps we have mentioned in the diagram of fig. 7.1 where ϕ 1 is the extension of scalars, f is the map we will compute, ϕ 2 is the inclusion of the units in K-theory and ϕ 3 is the Bökstedt trace map. Triangle (1) commute by functoriality, square (2) by naturality and square (3) by functoriality in the composition

The area (4) is the equivalence of proposition 2.5 of [START_REF] Antieau | On localization sequences in the algebraic K-theory of ring spectra[END_REF]. We will first compute the Bockstein spectral sequences Then, the identification ku ∧ K(Z, 3) + ≃ T HH(Σ ∞ + K(Z, 2); ku) will allow us to partially compute the map f .

Hopf rings and the external Bockstein of

H * (K(Z, 3); F p )

The groups H * (K(Z, 3); Z), along with the homology of Eilenberg-MacLane spaces in general, were computed in the Cartan's seminar [START_REF] Cartan | Détermination des algèbres H * (π, n; Z)[END_REF] (see also [START_REF] Moore | Cartan's constructions, the homology of H(π, n)'s, and some later developments[END_REF] for an overview). Here we will compute H * (K(Z, 3); Z (p) ) using Hopf rings techniques. What we will use about Hopf ring comes from part 2, section 7 of [START_REF] Wilson | Brown-Peterson Homology: An Introduction and Sampler[END_REF], along with a computation of H * (K(Z/p, n); F p ) for all n ≥ 0 in part 2, section 8 that will be the basis of our own computation. Hopf rings techniques are also studied and used in [START_REF] Ravenel | The Morava K-theories of Eilenberg-MacLane spaces and the Conner-Floyd conjecture[END_REF].

Figure 7.1: The map f , the units and the trace.

Proof. We have:

so that the γ k α (0) are not in the image of the integral homology and must support a Bockstein; the formula given is the only possible for degree reasons.

We get the results up to a unit, and we can rename our classes when necessary to enforce the equality strictly. Conversely, the β (i) are all in the image of the integral homology so that they must be infinite cycles.

We will also need the coalgebra structure on H * (K(Z/p, * ); F p ). Proposition 7.1.23. In H * (K(Z/p, * ); F p ), the coproduct is generated with the Hopf ring properties and the formulas:

The formulas are mentioned in the proof of 8.11 of [START_REF] Wilson | Brown-Peterson Homology: An Introduction and Sampler[END_REF]. This type of formula for the two transpotences α (0) and β (0) are also valid for all the next transpotences. The only source for the formula for the coproduct of a transpotence seems to be Cartan's seminar sections [START_REF] Cartan | Opérations dans les constructions acycliques[END_REF], [START_REF] Cartan | Puissances divisées[END_REF], and [START_REF] Cartan | Relations entre les opérations précédentes et les opérations de Bockstein; algèbre universelle d'un module libre gradué[END_REF]. Proposition 7.1.27. For any x ∈ H * (K(Z/p, * -1); F p ), the divided powers of its transpotence ϕx have coproducts

Proof. We work from two claims established by Cartan: the transpotences are primitive classes (see [START_REF] Moore | Cartan's constructions, the homology of H(π, n)'s, and some later developments[END_REF] page 201) and the diagonal induces a morphism of algebras with divided powers (see [START_REF] Moore | Cartan's constructions, the homology of H(π, n)'s, and some later developments[END_REF] page 193). We then use the Leibniz formula for the divided power of a sum ((3) in [START_REF] Cartan | Puissances divisées[END_REF]) and the formula for the divided power of a product ((4) in [START_REF] Cartan | Puissances divisées[END_REF]).

We need to establish the following claim, whose proof will also give an example on how to use the Hopf rings properties to compute the coproducts: Proposition 7.1.30. In H * (K(Z, 3); F p ), the coalgebra primitives are generated additively by the classes σβ (i) and ϕβ (i) for i ≥ 0.

Proof. We use the following properties of Hopf rings: 1 • a = 0 when a is not a unit, so that:

Moreover,

and other products can be seen not to be primitive.

Proposition 7.1.34. The differentials in the Bockstein spectral sequence on H * (K(Z, 3); F p ) are given by

and thus, all the p-torsion in H * (K(Z, 3); Z (p) ) is annihilated by p.

Proof. Let i be a non-negative integer. We will work inductively on the divided power using the coproduct. Proposition 7.1.19 implies that

then it is established for all γ k ϕβ (i) with 0 ≤ k ≤ p n -1 multiplicatively. Assume this is the case, and let us prove our claim for γ p n ϕβ (i) .

On one hand: 

First connective Morava K-theory of K(Z, 3)

We begin by citing the periodic result, which is computed in [START_REF] Ravenel | The Morava K-theories of Eilenberg-MacLane spaces and the Conner-Floyd conjecture[END_REF] using the bar spectral sequence:

Theorem 7.2.3 (12.1 of [START_REF] Ravenel | The Morava K-theories of Eilenberg-MacLane spaces and the Conner-Floyd conjecture[END_REF]). The first periodic Morava K-theory of K(Z, 3) is trivial.

We are, however, interested in the v 1 -Bockstein spectral sequence

since it determines the connective sequence

We will compute the connective v 1 -Bockstein sequence with some input from the connective bar spectral sequence. Lemma 7.2.7. There is a bar spectral sequence

and the Tor-groups include classes σβ (i) for any i ≥ 0, such that v p i 1 σβ (i) = 0 and that map to the classes with the same name in Tor H * (K(Z,2);Fp) (F p , F p ).

Proof. We begin by stating theorem 5.6 from [START_REF] Ravenel | The Morava K-theories of Eilenberg-MacLane spaces and the Conner-Floyd conjecture[END_REF]: K(1) * K(Z, 2) is generated as an algebra over K(1) * by the elements β (i) with i ≥ 0 and the relations

Here, the name of the classes are chosen so that they reduce to the class of the same name in H * (K(Z, 2); F p ). We see that the periodic v 1 -Bockstein spectral sequence computing K(1) * K(Z, 2) has no non-zero differentials, but has multiplicative extensions giving the relations. Thus, the connective v 1 -Bockstein spectral sequence computing k(1) * K(Z, 2) also collapses and has the same extensions, and k(1) * K(Z, 2) is generated as an algebra over k(1) * by the same classes with the same relations. The bar spectral sequence exists for any homology theory, since it is constructed from the bar filtration of the space K(Z, 3). However, the identification of the second page with the Tor-groups is only possible when there is a Künneth isomorphism. Here, k(1) * does not generally have a Künneth isomorphism, but since k(1) * K(Z, 2) is torsion free over k(1) * , it has one for products of K(Z, 2), thus for the bar construction of K(Z, 3), and we have identified the E 2 -page.

The k(1) * -algebra k(1) * K(Z, 2) splits as

where all the tensor products are over k(1) * . Thus, if we prove that for each i ≥ 0, the augmented complex

The u-Bockstein spectral sequence computing ku * K(Z, 3) is exact, then we have constructed a resolution of k(1) * as a free k(1) * K(Z, 2)module.

In that complex, in odd degrees, the differentials are given by

for any η ∈ k(1) * K(Z, 2). This is zero if and only if

for some η ′ ∈ k(1) * K(Z, 2). In that case,

In even degrees, the differentials are given by

which is zero if and only if η = β (i) η ′ and in that case,

Then, we have a resolution as claimed. After tensoring with k(1) * over k(1) * K(Z, 2), the non-zero differentials are the

which yields the results, since our resolution of k(1) * is compatible with the resolution F p and the map k(1) * → F p .

Proposition 7.2.18. In the v 1 -Bockstein spectral sequence computing K(1) * K(Z, 3), the differentials are given by the formula

up to a unit, with i, k ≥ 0.

The differentials are given by the same formula in the v 1 -Bockstein spectral sequence computing k(1) * K(Z, 3).

Proof. Our periodic v 1 -Bockstein spectral sequence is an Atiyah-Hirzebruch spectral sequence for a space (see chapter 3), and thus a spectral sequence of algebras from lemma 4.3.9. But, from the naturality of the diagonal map, it is also a spectral sequence of coalgebras, and thus a spectral sequence of Hopf algebras.

The connective v 1 -Bockstein spectral sequence has by definition the same differentials. However, we can use lemma 7.2.7 to constraint its target: we know that for any i ≥ 0, if there exists an antecedent of

1 torsion, so that if σβ (i) survives to the connective v 1 -Bockstein spectral sequence, then it must be of a torsion smaller than v p i 1 in its E ∞ -page. We will work by induction on i. Because of theorem 7.2.3, all the classes except the units in the periodic sequence must disappear somehow, and the

7.2

The u-Bockstein spectral sequence computing ku * K(Z, 3)

In the integral spectral sequence, the non-torsion generators 1 and σβ (0) cannot support differentials for degree reasons, and cannot be the target of a differential coming from the torsion. Thus, it remains only to compute the differentials internal to the torsion, which is entirely in the image of δ. The difficulty will then be to keep track of the different names given to a single element by writing it as an image δ(x); that is, to keep track of Ker(δ) = Ker(β 1 ).

We will use the following notation to denote all the products of the algebra generators of H * (K(Z, 3); F p ), i.e. all the additive generators. For I a finite subset of the non-negative integers N, denote by σ I the product taken in ascending order:

Let J be a finite multiset included in N, that is to say an application

whose support is finite, i.e. m J (n) ̸ = 0 only for a finite number of n. We call m J (j) the multiplicity of j in J, and we write j ∈ J when m J (j) > 0. Generally, when taking a set operation on a multiset J, we mean taking the operation on the underlying set J = {j ∈ J}, so that min J is the smallest integer n such that m J (n) > 0. Denote by ϕ J the product (taken in any order since the classes are of even degrees):

When j ∈ N, denote by J[j + ] the multiset whose multiplicity function is given by

Similarly, when j ∈ J, denote by J[j -] the multiset whose multiplicity function is given by

We will also write J[j ++ ] and J[j --] to increment or decrement by 2, and

. . . . The torsion elements in H * (K(Z, 3, ); Z (p) ) are then generated additively by the δ(σ I ϕ J ). These elements do not form a free family over F p , and some of them are even null:

and from proposition 7.1.34 that When I is neither empty nor {0}, we can choose some element i ≥ 1 in I, and then δ(σ I ϕ J ) = ±δ(σ I\{i} ϕ J β 1 (ϕβ (i-1) ))

= ±δ(σ I\{i} ϕ J )δ(ϕβ (i-1) ) (7.3.33) and thus f (δ(σ I ϕ J )) = 0.

Finally, the claim about the class of degree 3 is true modulo p, so it must be true up to the p-torsion, which is null in degree 3.

Because of the extensions in ku * K(Z, 3), this is enough to determines f on the non-torsion part. For the torsion, the way it is generated additively reduces the number of classes whose image by f we cannot say anything about, because the torsion is generated by the δ(σ I ϕ J ) such that I is not empty and min I ≤ min J. The following comes from comparing the u-Bockstein spectral sequences computing ku * K(Z, 3) and THH * (ku).

Theorem 7.3.34. In THH * (ku), in the non-torsion part,

for any i ≥ 0.

In the torsion, for any I and J such that I is not neither empty nor {0}, and min I ≤ min J, f (δ(σ I ϕ J )) is divisible by u.

We still cannot say anything about f (δ(σβ (0) ϕ J )). We can draw the tower above σu in THH * (ku) for p = 3, with multiplication by p going up and multiplication by u going up and right. σu

Here the class σu in bold and the classes represented by • are in the image of f , but the rest of the named classes are not. Proposition 7.4.5 (example II.2.9 of [START_REF] Frank | Stable homotopy and generalised homology[END_REF]). The formal group law on KU is the multiplicative one F (y, z) = y + z + yz. (7.4.6) Since the map ku * CP ∞ → KU * CP ∞ is a map of Hopf algebra, the formal group law is the same on ku. Remark that it is convenient not to write the Bott element in the formal group law, which should really be written as

In what follows, we will not write the Bott element either; every computation we will do will be homogeneous, so that the suitable power of u should be inserted when needed. We know that ku * K(Z, 2) is a free ku * -module over the β i ∈ ku 2i K(Z, 2). We want to determine the algebra structure on ku * K(Z, 2), that is the multiplicative relations between the β i . This is entirely given by the formal group law. We know that the following is true in that algebra:

so when computing the coefficient of s n of each term, we have the equality

-n β j (7.4.9)

for any n ≥ 0. The element β 0 is what we usually call 1, so now we see that these equations determine the β n inductively from β 1 , since on the left-hand side the coefficient of β n is 2, and on the right-hand side it is 2 n . Proposition 7.4.10. In ku * K(Z, 2), the following equivalent formulas are true:

Proof. Since the equations (7.4.9) determine the β n inductively, we only need to prove that the formulas we propose make them hold for each n ≥ 0. Let P n be the polynomial in β 1 we get when inserting our first formula in the left-hand side of (7.4.9):

(7.4.12) 118 7.4

A remark on ku * as a ku * K(Z, 2)-module Let Q n be the one we get from the right-hand side:

For any positive integer k, we have

(7.4.15)

Combinatorially, P n (k) is the number of ways, in a set E with k elements, to choose an integers i, and to choose a subset A of E with i elements and a subset B of E with n -i elements. On the other hand, Q n (k) is the number of ways to choose an integer j, to choose a subset U of E with j elements, to choose a subset V of U with n -j elements, and a subset W of U \ V (which has j -(n -j) = 2j -n elements) of any cardinality. These two processes are equivalent, and we can go from one to the other by setting

so that for any integers n and k, P n (k) = Q n (k); then P n (β 1 ) = Q n (β 1 ), and we have proved our claim.

From this formula we can deduce one for all the products between the β n 's. In what follows, we use the usual convention that p k = 0 when k < 0 or k > p. Proposition 7.4.17. In ku * K(Z, 2)

.4.18)

The convention above makes that formula symmetrical, and the first term of the sum is really β max(n,m) .

Proof. Let m be a fixed integer. We prove the claim by induction on n. For n = 1, this is proposition 7.4.10. Assume that the formula for β n β m holds. Then:

) so that our formula holds for β n+1 β m . This complete our induction.

A non-resolution of ku *

Let C be the augmented algebra complex presented as: Since this does not solve our problem, and that the divisibility of m+n n by m + n is not an easy problem, this cannot be a reasonable way to obtain a resolution.

Remark that everything we said about ku * K(Z, 2) is also an obstruction when substituting ku with HZ, that is when putting u = 0 in all the equations. where p is an odd prime, n ≥ 1 is an integer, (u1, u2) is a couple of (decimal) numbers which determines the offset of multiplying by u in the plane, and p2 is a decimal number which determines the vertical offset of multiplying by p. Suggested parameters can be: $ ./prog 3 3 0.5 0.5 1 Be wary though that tikz is a bad backend to draw big pictures, and that any attempt to up p or n too much will result in an uncompilable L A T E X documente.g., p = 5 and n = 3 might fail depending on the sizes chosen. --tell if an element u^k v_0^q \sigma u \mu_{p^n+r} is a valid --element of the module corresponding to \sigma u \mu_{p^n} noeudExiste :: Int -> Int -> Int -> Int -> Int -> Bool noeudExiste p n r q k = r 'mod' p == 0 && 0 <= r && r <= p^n -p && 0 <= q && q <= valuation p (p^n + r) -1 && 0 <= k && k <= p^(valuation p (p^n + r) -q) -3 --return a list of the line needed in the drawing from the --node r q k, in a Maybe --a line is (Bool, (Node1, Node2)) going from Node1 to Node2 --with Bool being true if the line need to be bended traitsDuNoeud :: Int -> Int -> (Int, (Int, Int)) -> [Maybe (Bool, ((Int, (Int, Int)), (Int, (Int, Int))))] traitsDuNoeud p n (r, (q, k)) = [traitPossible1, traitPossible2, traitPossible3] where maybeFromBool t a = if t then Just a else Nothing traitPossible1 = maybeFromBool (noeudExiste p n r q (k + 1)) (False, ((r, (q, k)), (r, (q, k + 1)))) traitPossible2 = maybeFromBool (noeudExiste p n r (q + 1) k) (False, ((r, (q, k)), (r, (q + 1, k)))) traitPossible3 = maybeFromBool (q == 0 && b == p -1) (True, ((r, (q, k)), (c -p^n, (valuation p c -m -1, k + p^(m + 1) -p^m)))) b = premierChiffre p (p^n + r) c = p^n + r -(p -1) * p^m m = valuation p (p^n + r)