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Abstract 

PhD thesis on microscopic modeling of Personal Mobility Devices (PMDs) under mixed traffic and 

share space conditions is proposed in the context of the implementation of an eco-district LaVallée 

in Châtenay-Malabry, Île de France, France. LaVallée is an eco-district where the implementation of 

micromobility services will generate spaces where vehicles, pedestrians and PMDs can interact with 

each other. In order to ensure harmony and road security among the different users of the eco-

district, the interactions of the different users are studied at a microscopic level in this thesis. The 

first chapter includes a comprehensive review of the existing literature review with emphasis on 

microscopic-level traffic simulation models of pedestrians, bicycles and cars. Both classical traffic 

models such as the Social Force Model (SFM) for pedestrians and the Car Following Model (CFM) for 

cars, as well as recent machine learning models such as the use of neural networks for microscopic 

traffic simulation. The second chapter focuses on the database, where the data was collected, and 

the development of a software based on advanced computer vision techniques (µ-scope) and which 

has been the subject of previous research. The methodology of data collection was thoroughly 

explained, and the locations where the data was collected were identified. In the third chapter, a 

process of calibrating existing traffic models is performed. Calibration allows to determine the 

parameters corresponding to the PMDs for both the SFM and the CFM, and therefore to make the 

first conclusions on the hybrid behavior of the PMDs. In view of the low performance of the existing 

models in Chapter 4, two new models based on Long-Short Term Memory (LSTM) recurrent deep 

neural networks are proposed. These models aim to improve the accuracy of traffic simulation by 

incorporating advanced machine learning techniques. The results of the simulation and the 

effectiveness of the proposed models are discussed and evaluated. The overall aim of the thesis is to 

advance the understanding of traffic behavior of PMDs and to contribute to the development of 

more effective traffic management under mixed traffic conditions. 

It is important to emphasize that this thesis includes a large part of informatics development, code 

development and algorithms that are accessible through the following link 

https://github.com/yeltsinvc/THESIS_DOCTORAT and µ-scope software developed during this thesis 

https://github.com/yeltsinvc/THESIS_DOCTORAT/tree/main/u-scope_sofware. 

Keywords: Microscopic traffic simulation, Personal Mobility Devices, Shared space, Mixed Traffic, 

Long-Short Term Memory, Computer vision data collection. 
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Résumé 

La thèse de doctorat sur la Modélisation microscopique des engins de déplacement personnel (EDP), 

dans des conditions de trafic mixte et d’espaces partagés est proposée dans le contexte de la mise 

en place d'un éco-quartier LaVallée à Châtenay-Malabry, Île de France, France. LaVallée est un éco-

quartier où la mise en place de services de micromobilité va générer des espaces où les véhicules, 

les piétons et les EDP interagissent entre eux. Afin d'assurer l'harmonie et la sécurité de la 

circulation entre les différents utilisateurs de l'éco-quartier, les interactions des différents 

utilisateurs sont étudiées à un niveau microscopique dans cette thèse. Le premier chapitre 

comprend une revue complète de la littérature existante en se focalisant sur les modèles de 

simulation de trafic au niveau microscopique des piétons et des voitures. Il s'agit aussi bien de 

modèles de trafic classiques tels que le Social Force Model (SFM) pour les piétons et le Car Following 

Model (CFM) pour les voitures, que de modèles récents d'apprentissage automatique tels que 

l'utilisation de réseaux neuronaux pour la simulation de trafic microscopique. Le deuxième chapitre 

se concentre sur la base de données, où les données ont été recueillies, et sur le développement 

d'un logiciel basé sur des techniques avancées de vision par ordinateur (µ-scope) et qui a fait l'objet 

de recherches précédentes. La méthodologie de recueil des données est expliquée en détail, et les 

endroits où les données ont été recueillies sont identifiés. Dans le troisième chapitre, un processus 

de calibrage des modèles de trafic existants est effectué. Le calibrage permet de déterminer les 

paramètres correspondant aux EDP pour le SFM et le CFM, et donc de réaliser les premières 

conclusions sur le comportement hybride des EDP. En raison de la performance insuffisante des 

modèles existants, le chapitre 4 propose deux nouveaux modèles basés sur des réseaux neuronaux 

profonds récurrents à mémoire à long terme (LSTM). Ces modèles ont pour but d'améliorer la 

performance de la simulation du trafic en incorporant des techniques avancées d'apprentissage 

automatique. Les résultats de la simulation et la performance des modèles proposés sont discutés et 

évalués. L'objectif global de la thèse est de faire avancer la compréhension du comportement du 

trafic des PMD et de contribuer au développement d'une gestion plus efficace du trafic dans des 

conditions de trafic mixte. 

Il est important de préciser que cette thèse comprend une grande partie de développement 

informatique, de développement de code et d'algorithmes qui sont accessibles via le lien suivant 

https://github.com/yeltsinvc/THESIS_DOCTORAT ainsi que le logiciel µ-scope développé lors de la 

thèse https://github.com/yeltsinvc/THESIS_DOCTORAT/tree/main/u-scope_sofware. 

Mots-clés: Simulation microscopique du trafic, Engis de déplacement personnel, Espaces partagés, 

trafic mixte, Long-Short Term Memory, Vision par ordinateur recueil de données. 

https://github.com/yeltsinvc/THESIS_DOCTORAT
https://github.com/yeltsinvc/THESIS_DOCTORAT/tree/main/u-scope_sofware
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Introduction 

1. Motivation 

A personal transporter (also powered transporter, electric rideable, personal light electric vehicle, 

personal mobility device, etc.) is any of a class of compact, mostly recent (21st century), motorized 

micromobility vehicle for transporting an individual at speeds that do not normally exceed 25 km/h 

(16 mph)1. The use of Personal Mobility Devices (PMDs) has drastically increased in dense urban 

areas over the last years because it offers an interesting alternative for both door-to-door and  first/ 

last mile trips. According to [1], passenger trips of less than 8 kilometers (5 miles) represent 

between 50% and 60% of current total passenger kilometers traveled in China, the European Union 

and the United States. For instance, about 60% of car trips are less than 8 kilometers and could 

benefit from PMDs solutions. The intensive use of these vehicles can be confirmed with the revenue 

of the e-scooter sharing market segment presented by [1] and which can be seen in  Figure 1 a 

progressive increase in revenue worldwide. 

 Figure 1. Revenue of the E-scooter sharing segment in worldwide (Source: [1]) 

                                                        
1
 https://en.wikipedia.org/wiki/Personal_transporter 
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This increase is the result of the different advantages that PMD vehicles offer, particularly over short 

distances of travel. They are low-cost and environmentally friendly solutions (i.e. compared to 

private cars) offering increased flexibility and comfort (i.e. compared to mass transit) as discussed in 

[2]. Furthermore; they take up a small space both for circulation and parking. As a result, they can 

contribute to congestion mitigation and can be easily stored in apartments or offices in dense urban 

areas or transported in public transport vehicles. PMDs are also flexible in their usage as they can be 

privately owned or part of sharing fleets while driving has no specific prerequisites in terms of age or 

driving license. Evidence from surveys suggests that they are used for all travel purposes: work, 

studies, tourism, shopping, day and night and leisure activities [2]. In all cases, playfulness is found 

to be one of the key drivers for choosing PMDs over other transportation modes.  

PMDs usage comes, of course, with certain shortcomings. First and foremost, the number of 

accidents involving PMDs has significantly increased as their number increases. PMD users are 

vulnerable road users and the severity of collisions with private cars is high. Also, in case of collisions 

with pedestrians, the latter may suffer from severe injuries [3]. The problem of “co-existence” with 

other road users is accentuated by the fact that relevant traffic rules are not well defined in various 

cities and the legislative framework presents certain gaps, ambiguities, or inconsistencies. Overall, it 

remains an open research question whether PMDs are over- or under-represented in traffic 

accidents and if they represent an important accident risk compared to other modes. Furthermore, 

PMDs often use Li-ion batteries and their environmental footprint is far from being negligible [4]. 

Especially when substituting public transport or walking, PMDs may have an important impact on 

the environment and contribute to climate change.  

Besides, those shortcomings have led Paris mayor to call for a referendum on April 2nd 2023 in order 

for Parisians to decide whether they want to keep the operations of e-scooter free-floating 

companies or not2. The Parisian case is important as PMDs are extremely popular and Paris is often 

cited as the showcase of micromobility for free-floating bicycles and e-scooters. Free-floating e-

scooters made their first appearance in 2018 and by the end of 2019 a dozen companies were 

competing totalizing almost 40,000 vehicles. The covid outbreak in 2020 and the curfew that 

followed reduced significantly their usage while local Authorities decided to limit the number of 

companies to 3, with the authorization to deploy a maximum of 5,000 devices for each operator, in 

order to better regulate their usage. 15,000 e-scooters free-floating are offered every day in Paris by 

the three operators (Dott, Lime and TIER) with a total of 55,000 trips per day in October 2022. The 

contract with the 3 operators will be terminated on March 23th, 2023 for this reason the Mayor of 

Paris started to put in question the continuity of the service on both safety and environmental 

                                                        
2
https://www.lemonde.fr/en/france/article/2023/01/15/paris-to-hold-referendum-on-e-scooter-rental-

services_6011644_7.html 
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grounds. Nevertheless, privately-owned PMDs are not included in the eventual prohibition and their 

usage is expected to grow in the coming years. In parallel, the French central government was 

among the first to vote a law defining the rights and obligations of PMD drivers in 20193.  

PMDs have the right to use cycling infrastructure, such as bike paths and lanes, for their movement. 

They also have the right to use normal traffic lanes when bicycle infrastructure is not available. The 

use of sidewalks is prohibited unless indicated otherwise. The speed limit is fixed at 25km/h. 

Consequently, PMDs do have a footprint on city traffic and level of road safety. As their movement 

is made on different types of urban infrastructure, their footprint concerns car traffic, bicycle traffic 

and, also, pedestrian movements. Their presence may have a direct impact upon other road users’ 

choices (for example driving speed, lateral and longitudinal safety distance) and accident risk. Their 

presence is naturally influencing macroscopic flow characteristics such as average speed, traffic 

density or travel time. However, this impact has not been quantified so far and their movement has 

not been integrated in current urban traffic simulators. A first reason for this is certainly their rapidly 

growing popularity that made it difficult for engineers and decision-makers to follow up. A second 

reason is also the lack of knowledge and evidence regarding the dynamics of their movement and 

their safety performance.  

In [5], a strategic framework for evaluating if neighborhoods are suitable for different micromobility 

modes was proposed to help local authorities, planners and mobility operators in their decision 

making. However, this framework remains macroscopic and does not integrate the modeling part of 

PMDs and their interactions with other modes of transport, either with existing models used for the 

simulation of vehicles or pedestrians, or with new models that allow a more detailed 

representation. The main motivation of this research is thus to contribute in the description of the 

movement of PMDs in urban contexts in order to be able to better understand and analyze their 

proprieties, to quantify their impact on traffic flow and safety as well as on the environment. This 

knowledge is expected to be useful to researchers, engineers and decision-makers who wish to 

integrate PMDs in urban models, perform socio-economic assessments, and make evidence-based 

decisions. 

   

2. Research questions and thesis objectives 

In view of the above, the thesis research questions are formulated as follows: 

RQ1: To what extent are current traffic models capable of reproducing the movement of PMDs? 

RQ2: How can the performance of existing models be ameliorated?  

                                                        
3
 https://www.legifrance.gouv.fr/loda/id/JORFTEXT000039272656 
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The objective of the present thesis is to develop and test a microscopic modeling framework 

suitable for PMD particular characteristics. Specific objectives include: 

O1. Perform a literature review of previous PMD modeling efforts 

O2. Comparatively assess existing microscopic traffic models as to their suitability for PMDs 

O3. Calibrate the most prominent existing models for the PMD case 

O4. Propose ways to improve model performance, going from new data acquisition techniques to 

new model formulations 

 

3. Research perimeter 

This paragraph describes the perimeter in which the research questions will be addressed. The 

perimeter is defined in terms of (i) PMD vehicles considered, (ii) geographical space and type of road 

infrastructure analyzed, and (iii) travel patterns, trips and usage included in the analysis.  

3.1. Vehicles 

Personal Mobility Devices (PMDs) are easy-to-carry or easy-to-push vehicles. They may range from 

lighter rollers and skis to heaviest two-wheeled self-balancing personal transporters and include 

bikes, e-bikes, e-scooters among others. They may be motorized or not, shared or privately-owned 

and they allow their users to make a ’hybrid usage’ at their convenience. Thus, they behave either as 

a pedestrian or a vehicle [2] when riders use at their convenience different types of infrastructure. 

Figure 2 shows indicatively some types of PMDs. The present thesis focuses on e-scooters and 

regular bikes.  
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Figure 2. Different types of PMDs 

3.2. Area and infrastructure 

As micromobility has mainly emerged in metropolitan areas, the main emphasis of the thesis will be 

placed on urban contexts where interrupted vehicular flows are observed. The scope of the analysis 

covers all urban infrastructure used, legally or illegally according to national legislation and local 

prohibitions. In that sense, the developed models will address pedestrian areas and shared spaces 

where interactions between pedestrians and PMDs are observed. They will also address road traffic 

lanes where interactions with private cars mostly occur. PMD specific infrastructure, such as bike 

lanes and paths, are also in the scope of the thesis.  

3.3. Trips and usage 

PMDs can be used for door-to-door trips or to cover the first/last mile in a multimodal context, 

combined with private cars or public transport vehicles. They also serve leisure and tourism-related 

travel purposes or, in some cases, physical activity and sports. PMDs can be either privately owned 

by the user or part of a shared vehicle scheme. In the latter case, the PMD service operates either 

with specific drop off points (docks) or dockless using GPS information to find available vehicles. All 

of the aforementioned cases are included in the analysis with no distinction. However, recent 
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evidence suggests that there may exist differences in the driving behavior according to the user 

profiles and travel purpose. For example, tourists seem to travel at lower speeds compared to locals 

[6].  

 

4. Context 

The thesis is part of the E3S program, a "living lab" of micro-mobility, i.e. to test the implementation 

of PMDs. In this context, the creation of "pilot" applications of reduced size are necessary, with the 

objective of highlighting the possible difficulties and the obstacles to a wider deployment. This very 

ambitious program has a budget of 2 million €, financed 50/50 by Eiffage and I-SITE Future This 

paragraph provides key information on the project. For further details, the reader can refer to the 

project’s official website: https://www.programme-e3s.com/en/  

4.1. LaVallée Eco neighbourhood 

The LaVallée eco-neighborhood in Châtenay-Malabry (in Southern Paris) is designed as an innovative 

eco-neighborhood with a surface area of 213,000    that provides a connection between 

downtown Châtenay-Malabry, the green corridor and the Sceaux park. The eco-neighborhood will 

include 2,200 houses, 8,000 inhabitants and numerous services. Transportation accessibility is 

currently moderate for the RER B and buses; however, it is planned in the route of the future T10 

tramway, which will improve the public transportation offer in the area.  

https://www.programme-e3s.com/en/
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Figure 3. Localisation of eco-neighborhood     Source : https://lavallee-chatenay-malabry.com/ 

 

In Figure 4 we can observe the future configuration of the eco-neighborhood as follow: 

Public Transportation 

 RER B that is located between 5-8 minutes walking time from the La Croix de Berny station. 

 Future Tramway T10, which will include a station in front of the neighborhood entrance, on 

the Division-Leclerc side (in 2023).  

 Numerous bus lines  

Road 

 Several automobile access points 

 The A86 motorway is 5 minutes away 

 Underground parking 

Soft Mobility 

 Numerous pedestrian paths 

 Wide sidewalks in the avenue where the shops will be installed 

 New bicycle paths along Avenue de la Division-Leclerc  
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As a consequence, numerous trips will be generated, in particular to ensure connections. In this 

perspective PMDs appear as a mobility solution perfectly adapted to the future mobility needs of 

the eco-district. 
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Figure 4. Configuration of eco-neighborhood     Source : https://lavallee-chatenay-malabry.com/ 
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4.1.1. Project structure and planning 

The eco-neighborhood is designed according to the following 5 points:  

- Green: LaVallée will promote the development of biodiversity, thanks to the creation of 

numerous planted spaces, on a site that was originally poor in this area. 

 

Figure 5. Green Point     Source : https://lavallee-chatenay-malabry.com/ 

 

- Connected: LaVallée will be a new destination for strolling, relaxing and shopping thanks to a 

new offer of shops. LaVallée will be easily accessible by public transportation but also for 

motorists who will have an underground parking lot. 

 

Figure 6. Connected Point    Source : https://lavallee-chatenay-malabry.com/ 
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- Intense: a new offer of shops, will create a lively place to live. 

 

Figure 7. Intense Point    Source : https://lavallee-chatenay-malabry.com/ 

- Exemplary: The ambition of LaVallée is to be an eco-neighborhood, a demonstrator of 

sustainable living in the Ile-de-France. 

 

Figure 8. Exemplary  Point   Source : https://lavallee-chatenay-malabry.com/ 

 

 Ideal: ideal to live in regardless of their location, the future homes with their contemporary 

architecture will take advantage of the omnipresent nature in and around the neighborhood. 
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Figure 9. Ideal Point    Source : https://lavallee-chatenay-malabry.com/ 

 

Concerning the planning of the project as shown in Figure 10, the first works of the project started 

in May 2019, and the opening of the neighborhood to the first people was planned at the beginning 

of 2022, however due to some inconveniences it was rescheduled to July 2022. This rescheduling of 

the project did not allow the installation of cameras and data collection at the time of project 

operation that was previously planned for the thesis. 

 

 

Figure 10. Planning of the project    Source : https://lavallee-chatenay-malabry.com/ 

 

The contribution of the thesis to the project was to be able to simulate at the microscopic level the 

interactions between the different modes of transport including the PMDs. In the present thesis 

different methods were developed to model this interaction, but due to the current state of the 
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project, which is in the phase of opening to the first residents, it has not been possible to implement 

during the thesis cameras to analyze the behavior of the PMDs and their interaction with other 

modes of transport in the eco-neighborhood. 

5. Thesis outline 

The present PhD dissertation consists of 5 chapters. 

Chapter 1 presents the literature review that focuses on microscopic simulation of vehicular and 

pedestrian traffic. 

Chapter 2 describes the methodology used to obtain the data, the scenarios analyzed and the 

databases generated. 

Chapter 3 investigates the performance of existing models for simulating vehicles and pedestrians 

interacting with PMDs. A calibration of the Car Following Model and the Social Force Model is also 

realized. 

Two new models are proposed in Chapter 4. The first emphasizes on scenarios with vehicle 

interaction while the second focuses on scenarios with pedestrians and bicycle interactions. 

Finally, in the last chapter overall conclusions and future perspectives are provided. 
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Chapter I                                                                                                                              

Literature review 

This chapter presents a literature review in order to understand the state of the art in the research 

on the movement and behavior of pedestrians, bicycles, and vehicles. Traffic models can be 

classified in macro, meso or microscopic according to the level of detail used to represent traffic 

attributes and characteristics. Macroscopic models are well suited for large-scale applications and 

provide useful aggregated indicators capable of describing the network performance. Mesoscopic 

models are an intermediate solution between macro and microscopic models as they describe 

traffic entities at a high level of detail but, contrarily to microscopic models, the interactions are 

described at a lower level of detail. Microscopic models need more technical resources and data but 

provide a finer representation of vehicle dynamics and interactions considering individual moving 

objects instead of flows [7]. For the needs of our analysis, this research adopts a microscopic 

approach of the interactions between vehicles, pedestrians, and PMDs. Therefore, the literature 

review focuses on microscopic modeling approaches for pedestrians, PMDs and private cars and. 

Figure 11 shows the structure of each of the subchapters analyzed in the literature review and 

developed throughout this chapter. 

 

Figure 11. Structure of chapter 1 
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1.1. Pedestrian modeling 

Pedestrian behavior is chaotic, very irregular, difficult and complex to predict. However, there are 

some situations in which behavior can be considered as predictable. In this context, to model 

pedestrian interactions, models describing the behavior of objects moving in a two-dimensional 

environment are required. In the literature review, microscopic and macroscopic models are 

observed to describe the interactions of pedestrians. 

Macroscopic models are based on fluid mechanics (e.g. [8]), perform rather well for high density 

crowds, but not for mixed traffic with the presence of other road user type like bicycle and PMDs. 

This is the reason why they were not chosen for the present analysis. Microscopic models simulate 

the movement at a single-unit level, i.e. the movement of each pedestrian and their interaction with 

the environment. Microscopic models can be divided into 6 sub-categories: rule-based models, 

cellular automaton models, geometric models, data-based models, social force models and agent-

based models [9]. The most commonly used software tools to simulate the behavior of people when 

they move (and in particular how the design of a certain infrastructure influences their behavior) are 

(i) Viswalk which uses the Social Force Model and (ii) Legion which uses the Agent-Based Model. The 

6 sub-categories and a comparison between Social Force Model and Agent-Based Model are 

explained below. 

1.1.1. Rule-based model 

The rule-based model is a method of simulating the movement of a crowd based on a set of rules 

that govern the behavior of individuals within the group [10]. Each individual follows rules such as 

avoiding collisions, adjusting their speed based on their neighbor's speed, and staying with the 

group. These rules were initially observed in birds and adapted to humans for simulation. The basic 

idea behind a rule-based model is to define a set of rules that dictate how pedestrians move, 

interact with each other and their environment, and make decisions based on their perception of 

the situation. These rules are typically based on real-world observations of pedestrian behavior, and 

are often fine-tuned to accurately reflect the specific context being simulated. For example, some 

common rules in a pedestrian simulation might include: 

 Pedestrians will walk in the direction of their intended destination. 

 Pedestrians will avoid collisions with other pedestrians and objects in their path. 

 Pedestrians will slow down or speed up based on the density of the crowd around them. 

 Pedestrians will adjust their paths based on perceived obstacles or congestion in their path. 

 Pedestrians will make decisions based on the available information and their own 

preferences, such as choosing a shorter route over a longer one or avoiding stairs if they are 

carrying heavy bags. 
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In this model, each pedestrian makes discrete choices while moving [11], and the space is divided 

into angles and distances to surrounding pedestrians. This model also considers two types of 

behavior: constrained, which includes collision avoidance and leader tracking, and unconstrained, 

which is independent of other individuals [12]. 

The rule-based model produces simulation results that are consistent with real-world observations, 

but there are limitations due to the possibility of contradictory rules. For example, in the case of 

personal mobility devices (PMDs), there is a trade-off between safety and travel time savings, and 

the combination of rules may not always be clear. 

1.1.2. Cellular automata model 

The Cellular Automata (CA) model is a method of simulating pedestrian movement by discretizing a 

2D space into a matrix of cells [13] [14]. The pedestrian moves from cell to cell on this matrix, and 

obstacles are modeled as inaccessible cells. In this model, each pedestrian has a preferred direction 

of movement, and a cellular matrix is generated at each time-step containing the probabilities of 

each pedestrian's movement. Pedestrian movements can be obtained consecutively or 

simultaneously [15], [16]. 

One of the early applications of CA to pedestrian simulation was in the work of [14], who developed 

a CA model to simulate the movement of pedestrians in a panic situation. In their model, the 

pedestrians had different preferred velocities and tried to move towards their destination while 

avoiding collisions with other pedestrians and obstacles. The model was able to capture the self-

organized behavior of crowds and reproduce some of the features observed in real-world crowd 

behavior during emergencies. 

Since then, many studies have applied CA to simulate various aspects of pedestrian movement. For 

example, [17] developed a CA model that could reproduce the formation of lanes in crowds, as well 

as the emergence of congestion and stop-and-go traffic. They used the model to study the impact of 

different factors, such as the size of the corridor and the speed distribution of the pedestrians, on 

crowd behavior. 

In another study, [18] developed a CA model to simulate the movement of pedestrians in a 

bottleneck situation. The model included features such as the anticipation of the bottleneck and the 

different walking speeds of the pedestrians. The simulation results were compared with 

experimental data, and the model was able to reproduce the observed behavior, such as the 

formation of arching and the reduction of the flow rate. 

More recent studies have further developed CA models for pedestrian simulation, often with a focus 

on improving the accuracy and realism of the simulation. For example, [19] proposed a CA model 

that could simulate the walking behavior of individuals with different age and gender characteristics, 
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as well as the interactions between pedestrians and environmental factors such as weather and 

lighting conditions. 

Overall, CA has been shown to be a useful tool for simulating pedestrian movement in various 

scenarios. While the accuracy of the simulation results is sometimes limited due to the probabilistic 

approach applied in CA, these models have provided valuable insights into the mechanisms 

underlying crowd behavior and have the potential to inform the design of public spaces and 

transportation systems. Another disadvantage is that the discretization of space results is a 

discretization of the pedestrian's trajectory, which is not ideal for microscopic analysis. 

1.1.3. Geometric model 

Geometric models are a type of microscopic model used to predict the speed at which pedestrians 

can move to avoid obstacles without changing direction. They have been adapted to describe 

pedestrian movement and can take into account the acceleration and speed of other pedestrians in 

the simulation process [17][18]. One such model allows each pedestrian to explore the space 

around them and guess the movement of neighboring pedestrians by linear extrapolation [19].  

In recent years, geometric models have been adapted to describe pedestrian movement, and have 

been used to take an increased number of humans into account in the simulation process [23]. The 

resulting models allow the acceleration and speed of other pedestrians to be taken into 

consideration, and can simulate the movement of a large number of people in a given area. 

One such model proposed by [24] uses a force-based approach to describe the movement of 

pedestrians. In this model, each pedestrian is assumed to be influenced by a repulsive force from 

other pedestrians and an attractive force to the desired destination. The model also accounts for 

obstacles in the environment and allows for the simulation of different pedestrian behaviors. 

Another model proposed by [25] uses a differential drive model to simulate the movement of 

pedestrians. In this model, each pedestrian is represented by a circle and the movement is 

determined by the position and orientation of the circle. The model takes into account the 

interaction between pedestrians and can simulate complex pedestrian behaviors, such as avoiding 

collisions with other pedestrians. 

Several studies have explored the use of geometric models in emergency scenarios, such as 

evacuations from buildings and mass gatherings. For example, one study proposed a geometric 

model for simulating evacuation scenarios in a shopping mall. The model takes into account the 

layout of the mall, the location of exits, and the movement of shoppers in response to an 

emergency situation. 
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Overall, geometric models provide an effective approach to simulate pedestrian movement and can 

be used to study a wide range of scenarios. However, these models may not capture the 

complexities of human behavior in all situations and may require additional calibration to accurately 

represent real-world scenarios. 

1.1.4. Data-based model 

Data-based models are developed on the basis of video recording analysis to create databases of 

pedestrian interactions. They are modeled by drawing similar situations from the database. Several 

works led by [20] and [21] resulted to the creation of a learning model from observed trajectories. 

The model decides the movements of each neighbor along with the characteristics of the 

environment, and store them in a database in order to reconstruct a similar situation later on. These 

models come up against the lack of data as well as the eventual lack of similarity between two 

situations. In order for these models to be effective, one of an infinite number of examples should 

be available and similar enough to the studied situation. As PMD traffic data are relatively few, this 

method was rejected for the needs of the present thesis.  

There is a growing body of research on data-based models for pedestrian simulation that use video 

recording analysis to create databases of pedestrian interactions. In [22] developed a data-based 

model for simulating pedestrian movement in crowds. They used video recordings of pedestrian 

movements to analyze the interactions between individuals and used this information to develop a 

model that captured the essential features of pedestrian behavior. [29] used video recordings to 

create a database of pedestrian interactions that was used to inform the behavior of simulated 

pedestrians. The resulting model was able to reproduce the observed patterns of pedestrian 

movement in a variety of scenarios, such as walking on sidewalks and crossing streets. [30] 

developed a model that used video recordings to analyze the behavior of pedestrians at 

intersections. They used this data to develop a database of pedestrian movements that was used to 

inform the behavior of simulated pedestrians. The resulting model was able to replicate the 

observed patterns of pedestrian behavior at intersections. [30] developed a model that used video 

recordings to analyze the behavior of pedestrians in a shopping center. They used this data to create 

a database of pedestrian interactions that was used to inform the behavior of simulated 

pedestrians. The resulting model was able to reproduce the observed patterns of pedestrian 

movement in the shopping center. 

Overall, data-based models that use video recording analysis to create databases of pedestrian 

interactions have shown promise in improving the accuracy and realism of pedestrian simulation. 

However, there are also challenges associated with this approach, such as the difficulty of collecting 

and analyzing video data and the potential for overfitting to specific datasets. 
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1.1.5. Social force model 

The social force model (SFM) is a microscopic model of social forces which utilizes Newtonian 

physics concepts and allows objects to move continuously inside the environment [22, 23, 24]. In 

SFM, each pedestrian is subject to (i) propelling forces which direct his/her movement towards 

his/her goal, and (ii) repulsive forces which are exercised by other individuals and obstacles into 

himself/herself. The propelling force is expressed with parameters related to free speed and 

direction of the pedestrian, while the repulsive force depends on the nature of the interaction. The 

addition of the repulsive and propelling forces leads to the formulation of the model.  

Among all microscopic models reviewed above, SFM seems to be the most suitable to use as a 

starting point for e-scooter modeling. The movement of the pedestrian is expressed by the 

fundamental principle of dynamics that fragments the forces acting on the pedestrian. When a new 

individual interacts with the existing individuals, the propelling force and the repulsive force no 

longer have the same properties. The propelling and repulsive forces get modified by the presence 

of PMDs. To apply the social force model, an earlier approach is adapted [23], through a special 

parameter specification, to allow the model to distinguish pedestrians to PMDs. 

In the case of high pedestrian density, the initial formulations of SFM generates over-lapping 

between pedestrians, which is, of course, not realistic. Therefore, [25] propose to take into account 

an additional  body force    and a sliding friction force    (Figure 12). This adaptation allows for 

more realistic simulations in high-density conditions such as evacuation in a panic event. 

Applications of this adaptation can be found in [26, 27, 28]. 

 

 
Figure 12. Body and sliding friction force i (SFM). 

Further improvements of the models proposed by [24] and [25] are presented in detail in [29]. 

Those improvements concern pedestrian attributes such as shape, mass, maximum speed, desired 

speed. In [24] and [30], the shape of the pedestrian is considered as elliptical (Figure 13 (a)); ie. as if 

it was projected on a two-dimensional plane. In an effort to improve computational efficiency, [25], 

replaced the elliptical by a circular shape (Figure 13(b)). The efficiency has been improved, but the 

simulation error increased. [31] and [32] proposed a three-circle representation (Figure 13(c)). The 

latter allows for a more realistic modeling of the pedestrian shape (i.e. compared to the circle); 
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while the computational cost is reasonable. Concluding, in cases of large-scale simulations such as 

stadiums and stations, it is advisable to use the circular shape for its computational time efficiency. 

For medium scale pedestrian simulations, such as simulation of sidewalks and walkways, it seems 

preferable to use the elliptical shape or three-circle [33]. This thesis is focused on the objective of 

using the model at an eco-neighborhood scale, so it was decided to consider pedestrians in a 

circular shape. 

 

 

Figure 13. (a) Circular shape, (b) Elliptical shape and (c) Three circles shape of pedestrian i. 

 

Beyond pedestrian interactions, SFM has been extensively used to model the interactions of 

different agents in spaces shared by pedestrians, bicycles, and vehicles. In [34], the authors 

introduced the dynamic movement of the motorcycle in the social force theory. A database 

containing vehicle trajectories obtained from video recordings was used for calibration. Model 

parameters were obtained with calibration, but they cannot be compared to pedestrian parameters 

because a different exponential function was used for the repulsion forces. 

An adaptation of the social force-based model to simulate mixed car and bicycle traffic was 

proposed in [35]. This adaptation was used for the purpose of risk analysis. Results suggest that 

vehicles have a higher strength and period of repulsive force than bicycles. As expected, the collision 

risk in mixed bicycle-car traffic increases with increasing traffic density. In [36], the authors 

proposed an extension of SFM to simulate the movements of vehicles on a two-dimensional space. 

A database containing vehicle trajectories at a T-intersection that was converted to a shared space 

area was used for calibration. Results show that simulated trajectories provide a good 

approximation of real trajectories. 

Turning to PMDs, a process of calibration of the parameters of SFM to simulate the behavior of a 

Segway was realized by [22]. Calibration was performed using the cross-entropy method and Root 

Mean Squared Error (RMSE) was used to assess the measurement error. Results show that the 
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calibrated model can sufficiently reproduce the movements and interactions of Segway users and 

pedestrian shared spaces for uncongested scenarios (maximum pedestrian density = 0.5 ped/m2), 

even without modifying the original social force model. In [37], the parameters of an e-scooter were 

calculated, based on a database obtained by data image processing. The results of the cited paper 

are part of the present article and will be discussed in the following Sections. 

Overall, SFM is a well-established model that has been extensively used in a variety of applications 

and has proven to be capable of realistic pedestrian representations. However, its usage remains 

limited in the case of PMDs even if they act as pedestrians in many contexts.  

1.1.6. Agent-based model 

The agent based model is based in a multi-agent system, denoted as auto-navigation by [20]. This 

type of model considers each pedestrian as an autonomous agent with a group of rules that control 

their movements, providing the agents with artificial intelligence [35]. The concept in the case of 

pedestrian movement is that each pedestrian performs an evaluation of all feasible options looking 

for the path with the minimum effort [36]. This is done first at the macro level, looking for the 

shortest path to the target destination. This macro-level navigation determines path choice.  

Secondly, the pedestrian evaluates his/her possibilities at the micro level, optimizing the next step. 

This means that a main path is found at the macro level and then the path is modified at the micro 

level. The effort, which pedestrians try to minimize, includes three factors: 

 Frustration: when traffic jams force you to slow down. 

 Inconvenience: when you have to avoid the shortest route 

 Discomfort: when your personal space is invaded 

 Pedestrians acquire information from their environment, zone of perception, and use it to 

decide their next step. This decision includes:avoid obstacles  

 personal preferences, such as personal zone and desired speed  

 collision avoidance  

 identifying other pedestrians as "friend or foe", to determine how to interact with them  

 learning on the way, accumulating memories  

 possibility to configure preferences and characteristics 

 commercial sensitive algorithms and parameters, not distributed information. 

 parameters have no physical explanation 

Due to the previous advantages, the agent-based model was shortlisted for use in the present thesis 

along with SFM. A detailed comparison between the two models follows.  
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1.1.7. Comparison between Social Force Model and Agent-based model 

In this part we compare the two models that were found to be most suitable for PMD modeling and 

are also used by the most popular pedestrian simulation software tools. On the one hand, SFM 

implemented in Viswalk software and, on the other hand, the agent-based model implemented in 

Legion and Aimsun walk. 

Table 1. Comparison of social force and agent-based models. 

Social Force Model Agent-based model 

 Pedestrians automatically find their 
path through the model, from origin 
to destination. 

 Pedestrians automatically find their 
path through the model, from origin 
to destination. 
 

 Intermediate points can be 
constructed to steer pedestrian 

 Decision nodes can be used to steer 
pedestrians 
 

 It is possible modify the parameters 
on which route choice is based 

 It is possible modify behavior 
parameters 

 It is possible choose entity profile, 
but is limited to the available profiles 

 

 Transparent algorithms and 
parameters, all information available 
 

 Commercial sensitive algorithms and 
parameters, not distributed 
information. 
 

 Large number of Python libraries 
tested 

 Few Python libraries and scarce 
documentation 

 

 

Social force and agent-based models are both used for pedestrian simulation. In the case of the 

social force model there is a larger number of libraries in Python to simulate pedestrians compared 

to the agent-based models. In the case of commercial software, for the social force model all 

information is available compared to the agent-based model in which commercially sensitive 

algorithms are not available. That is why social force model was chosen to be used in this thesis. 

1.2. Microscopic Car Traffic Modeling 

The scientific literature on microscopic car traffic modeling is vast as numerous modeling 

approaches have been proposed. Two major ‘families’ of models can be identified: models 

describing either the lateral or the longitudinal movement. The description of longitudinal behavior 
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is most commonly made using Car-Following models. In essence, those models use statistical 

distributions and functions to define maximum, minimum and desired acceleration/deceleration 

rates, maximum and desired velocity, and other vehicle characteristics [23][37]. Lateral movements 

have been traditionally described by lane- changing models which are of particular importance in 

the case of two-wheeled vehicles. In the modeling of two-wheeled vehicles, an important part is the 

modeling of lateral behavior. This paragraph describes both modeling approaches.   

 

1.1.1. Car Following Model 

Car-following model (CFM) is a microscopic simulation model of vehicular traffic, which describes 

the pairwise interactions between a leading and a following vehicle moving on the same lane (Figure 

14). The one-by-one following process of a vehicle called ’follower’ is influenced by a vehicle called 

’leader’ [40]. The CFM initially proposed by General Motors [41] considered that acceleration was 

proportional to relative velocity. An acceleration/deceleration rate was calculated for the following 

vehicle depending on the relative speed between the leader and follower. Studies on the calibration 

and validation of the GM model were undertaken by [42, 43]; and [44], who obtained incoherent 

parameters between the exponent of the distance headway and the exponent of the velocity. As a 

result, the GM model stopped being used in the seventies [45]. 

 

Figure 14. Car Following Model 

Different approaches of CFM, based on safety speed, were proposed later by various researchers as 

[46, 47] and IDM Model [48]. These models assume that the following vehicle will maintain a safety 

distance from the leading vehicle. The follower chooses a maximum speed allowing him/her to stop 

safely in the case of an abrupt deceleration and avoid a rear-end collision [49]. In what follows, the 

most commonmy used CFM are presented and discussed.  

1.1.2. Gipps Model 

The Gipps model is the most common CFM model and is based on safety distance. In each instant of 

time, a driver plans his speed for the next instant in such way that he/she can stop even if the 

leading vehicle suddenly stops [41]. The formula used in Gipps’ model, allows updating the speed in 

a time t + τ [42], as shown below: 
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                                                                                                                                Equation 1 

                                                          
     

  
       

     

  
                                 Equation 2 

                   
                                            

              

Equation 3 

Where: 

     : speed of vehicle   in time  . 

  : maximum acceleration that the driver of vehicle   wishes to undertake 

  : apparent reaction time 

   : desired speed of vehicle n 

  : most severe braking that the driver of vehicle n wishes to undertake. 

     : Location of the front of vehicle n in time t. 

    : Effective length of the vehicle n 

  : Value of estimated for the driver of vehicle n who cannot know this value by direct observation. 

The parameters used in the Gipps car following model are in a microscopic scale and different 

characteristics are assigned to each vehicle, i.e. each vehicle has its own parameters of the car 

following model, which results in different maximum accelerations and decelerations due to the fact 

that some of the parameters correspond to a normal distribution. This model was used in [43], to 

analyze Time To Collision (TTC), i.e., and assess the risk in mixed traffic conditions. In addition, in 

[42, 15, 44], the Gipps model was used to simulate the behavior of a two-wheeler and results were 

satisfactory as the mean absolute percentage error (MAPE) of the speed simulation was small. In our 

literature review, we found no specific adaptations of CFM for PMDs. On the contrary, some 

adaptations to two-wheeled vehicles, such as motorcycles and bicycles, have been indeed proposed. 

[45] modeled the behavior of vehicles in mixed traffic conditions including motorcycles based on 

[18]. The authors justify their selection on the following grounds: (i) The Gipps model suggests that 

‘followers’ search to avoid rear end collisions and a similar driving strategy is usually adopted by 

motorcyclists when moving in dense traffic, especially on urban networks, (ii) the equations 

proposed in [26] allow flexibility to modify kinematic properties.  
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The main drawback of this model is that it is deterministic but in real life not all PMDs drivers have 

the same behavior. 

1.1.3. Krauss model 

The Krauss model is essentially a stochastic version of the Gipps model [48]. The model was 

implemented in the software Simulation of Urban Mobility - SUMO [54]. Given the possibilities that 

SUMO offers and the performance of Krauss model, we chose to use it in the present research. The 

formulation of the model for one lane is given in [47], as shown below: 

                                                                    
            
           

  
   

                                                        Equation 4 

Where : 

      : is the safety speed (m/s); 

     : is velocity leader vehicle (m/s); 

     : is the gap (m); 

   : is the reaction time s; 

      : is velocity follower vehicle (m/s); 

  : is the deceleration capabilities (m/s2). 

If the       is higher than the maximum speed allowed on the road or higher than the speed the 

vehicle is able to reach until the next pass owing to its acceleration capabilities, the minimum of 

these values is calculated as the resultant speed, called ”desired speed”     . 

                                                                                                                                Equation 5 

Where: 

    : is the maximum velocity (m/s); 

 : is acceleration capabilities (m/s2); 

 : is the step duration of the simulation (s); 

Finally, there are two boundary parameters, the minimum gap value      and the maximum 

deceleration bemergency under emergency conditions. 
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This model, is used for the multimodal simulation of traffic, but also because this model is a 

stochastic adaptation of the Gipps model, we can also analyze the TTC with this model. The 

advantage of this model is that in [34], they present the simulation of two- wheeled vehicles and 

bicycle in urban areas, obviously with the help of complementary models such as the lane change 

model and sub lane model. In addition this, model is the default model of the free software SUMO, 

which allows to simulate mixed traffic conditions. 

 

1.1.4. IDM model 

The Intelligent Driver Model (IDM) is a model that produces realistic acceleration profiles and 

plausible behavior in virtually all single lane traffic situations. 

The equations that describe this model are shown below: 

                                                      
 

  
 
 

  
        

 
 
 

                                                             Equation 6 

Where the acceleration is given for              consists of two parts, in the first part we compare 

the current speed v with the desired speed    and the second part, we compare the current 

distance with the desired distance   . 

This expression has an equilibrium term         and dynamic term
   

    
, which put the ’smart’ 

braking strategy. 

IDM gives much better results in terms of the acceleration profile if compared to Gipps model, but 

its main disadvantage is the high value at the initial acceleration, which would be more realistic if it 

increased gradually. The same is observed for the braking process, with the exception of the first 

vehicle which moves in a free-flow regime. 

1.1.5. Wiedman model 

The Wiedman 74 model uses random numbers to simulate mixed traffic behavior, aiming to model 

the behavior of different drivers. The Wiedamn model presents 5 areas that represent the state of a 

vehicle. These are: (1) no reaction area, (2) reaction area, (3) unconscious reaction, (4) deceleration 

and (5) collision as shown below. 
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Figure 15. Thresholds and one vehicle trajectory, wiedemann model.  Source: Fellendorf, Martin & Ag, Ptv. (2001).  

The area of unconscious reaction represents the area of following vehicle. The formulation of the 

model equation is shown below: 

                                                                                                                 Equation 7 

                                                                                                                                     Equation 8 

Where: 

d: safety distance between lead and follower vehicle 

AX: Desired distance between the fronts of two successive vehicles in a standing queue 

VehL: Length of the leading vehicle 

      normally distributed N(0.5,0.15); 

     Desired minimum following distance; 

    Safety delta distance 

 : speed of vehicles; 

In addition to these parameters, for the 5 zones of these models there are different parameters to 

calibrate. The VISSIM simulator uses the Wiedman model as a following model, which is considered 

as a psychophysical model of the driver. 
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1.1.6.  Comparison of car following models 

In this part, a comparative table of the models has been made, with advantages and disadvantages, 

this information is the main conclusions of [8, 47, 2]; as shown below: 

 

Table 2. Comparison of car following models 

Advantage Disadvantage 

  
 

Criteria Gipps model Krauss model IDM model Wiedeman 

Speed results Relative high 
values of Mean 
Absolute 
Percentage Error 
(MAPE) of the 
speed simulation 
for other vehicles 
except two-
wheelers 

Acceptable 
values for MAPE 

Small values of 
MAPE for speed 
simulation for 
cars. 

Acceptable 
values for MAPE 

Acceleration 
results 

Low performance 
for acceleration 
profile modeling 

Improved Gipps 
model for better 
performance and 
more realistic 
acceleration 
profiles 

High values when 
estimating the 
acceleration at 
the beginning of 
the vehicle's 
entry into the 
network. 
 
High deceleration 
values during 
braking. 

Acceptable 
values for MAPE 

Density results 
The MAPE of the 
density 
simulation is low 

Improved Gipps 
model for better 
performance and 
more realistic 
density results 

Acceptable 
values for MAPE 

Acceptable 
values for MAPE 

Capacity 
Acceptable 
values 

May tend to 
overestimate 
capacity. 

May tend to 
overestimate 
capacity 

Acceptable 
values 

Calibration Small number of 
parameters to 

Small number of 
parameters to 

Small number of 
parameters to 

High number of 
parameters to 
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calibrate. calibrate. calibrate. calibrate. 

TTC Model used to 
analyze TTC. 

Model used to 
analyze TTC. 

Model used to 
analyze TTC. 

Model used to 
analyze TTC. 

Two-wheeled 
vehicles 

Small value of 
MAPE of the 
speed simulation 
for two- wheeled 
vehicles. 
 

Small value of 
MAPE of the 
speed simulation 
for two- wheeled 
vehicles. 

Small value of 
MAPE of the 
speed simulation 
for two- wheeled 
vehicles. 

Small value of 
MAPE of the 
speed simulation 
for two- wheeled 
vehicles. 

Type of model Deterministic Stochastic Stochastic Stochastic 

Software 
Open source 

Open source Open source Commercial 
source 

 

All of the aforementioned models are proven to provide realistic results for private cars. Relative 

advantages and disadvantages do exist and are considered in the choice of the present thesis along 

with the particularities of PMDs that present important similarities to powered two-wheelers. The 

elimination criteria are described below.  

 The Gipps model does not have a high performance in the results obtained for two-wheelers 

with respect to the acceleration profile, so it has not been taken into account.  

 Wiedeman model has a high number of parameters where the number of parameters to be 

calibrated after a sensitivity analysis proposed by [48] is thirteen (13) parameters of 

calibration. Therefore, in order to avoid high computational costs in the calibration process, 

the Wiedman model was not selected. 

 IDM model performs well in representing the acceleration profile compared to the Gipps 

model, but has weaknesses in modeling the accelerations at vehicle entry into the network 

and in the deceleration process. In the present thesis there are certain characteristics of the 

database, which are explained in chapter 2. The characteristics of the database show that 

we have a database in which the average time of each vehicle in the network is 5s, i.e. it is 

an interval in which the vehicle enters the network, therefore, and because the IDM model 

does not model with high performance in this interval, it was not taken into account. 

Considering the disadvantages of the different models analyzed in table 2, the Krauss model was 

chosen, because it is an improved version of the Gipps model, which means that it presents a 

good performance in the acceleration profile. It is a model that has 7 calibration parameters 

which implies an acceptable computational cost and presents better acceleration results at the 

input of the vehicle network. 
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1.3. Lane Changing Models 

The limitations of the CFM models are that they only analyze longitudinal movement, therefore, in 

addition to the CFM models, lane change models were proposed to analyze lateral movement. 

Initially proposed lane-change models were based on decision rules [46, 56, 39], where the drivers 

compare the conditions on all antagonistic lanes using a hierarchy of considerations (e.g. 

downstream lane blockages, vehicle restrictions, obstructions, type of vehicle already using the lane, 

and speed gains). Other studies such as [57, 51, 58], use the random utility theory to describe the 

random decision of a driver to change lanes based on the maximization of his utility. These models 

are commonly estimated using the maximum likelihood approach based on vehicular trajectory data 

to describe lane selection behavior, and are able to capture trade-offs among various 

considerations. Several authors proposed discrete lane-change models similar to those used under 

homogeneous traffic conditions. In [59], a new approach for modeling mixed traffic flows with non-

standard vehicles is proposed. The model allows the use of various types of vehicles; including 

motorcycles, bicycles, and three-wheelers on main streets. In order to take these aspects into 

account, the model adopts a detailed lateral motion modeling approach in which both longitudinal 

and lateral movements are covered. 

In [60], a division of a lane into a large number of lane stripes, the sub-lanes, is proposed. In the sub-

lane model where each vehicle occupies a number of sub-lanes depending on its lateral position and 

width. This means that a vehicle can have several immediate leaders and, therefore, the car-

following model is applied to all leading vehicles and uses the minimum safety speed to ensure safe 

driving. Sub-lane model is used in mixed traffic conditions, in order to simulate the movement of 

two-wheeled vehicles more realistically. Results were validated with real data and show a good 

efficacy. The sub-lane model was implemented in the SUMO software under the label ’SL2015’. 

The “sub lane” model, is a recent model that was proposed in [60], this model consists of laterally 

dividing the traditional lanes into a number of sub-lanes, with the objective of simulating a more 

realistic behavior for two-wheeled vehicles, so it is a model that can be used for PMDs. In this 

model, each vehicle occupies a number of sub-lanes depending on its lateral position and width. 

This means that a vehicle can have several immediate leaders. Therefore, the lane change model 

applies to all vehicles following a lead vehicle and the minimum safe speed is used to ensure safe 

driving.. For the case of the lane change model, the “sub lane” model, proposes the following 

modifications: 

1. The number of possible maneuvers to be considered increases, since in the lane change 

models it is considered that the vehicle can change a maximum of 2 neighboring lanes, 

but in the case of the sub-lanes, all the sub-lanes that are within the two lanes are 
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considered, i.e. a higher number depending on the number of sub-lanes to be 

considered per lane.  

2. The number of choices requires new exchanges: (e.g. should a vehicle try to find some 

space in the right sub-lane to increase its speed or should it move immediately to the left 

sub-lane when the speed is also higher, but not to the right) 

3. When crossing multiple sub lanes in the same maneuver, each of the intervening sub 

lanes must be checked to avoid collisions. 

4. The reasons for changing lanes are no longer mutually exclusive: a strategic change to 

the right lane does not exclude sub-lane changes in this lane in order to optimize travel 

speed 

This model was initially developed to model mixed traffic behavior that includes motorcycles, and 

from this model, a more realistic simulation can be made for the following cases 

1. For two-wheeled vehicles traveling in parallel in a single lane 

2. Vehicles overtaking a bicycle in a single lane 

3. Formation of virtual lanes in heavy traffic (3 vehicles running in parallel on 2 lanes) 

4. Virtual lane formation for emergency traffic 

5. Lateral behavior 

Turning to our work, the lateral behavior PMDs within a traffic lane can be well described by the 

sub-lane model. We use the SL2015 SUMO component that has proven to successfully simulate 

lateral behavior of two-wheeled vehicles. 

1.4. Artificial Neural Networks 

Artificial neural networks are inspired by the functioning of biological neural networks. Biological 

neurons essentially have three components: the cell body, the dendrites that act as channels for 

receiving signals coming from other neurons, and the axon that is the signal emitting channel of a 

neuron. The junction point of a dendrite of one cell with the axon of another is called a synapse. At 

this junction point, which is between cell membranes, there is an exchange of chemical substances 

and therefore chemical reactions of electrical impulses, i.e. a complex process of transfer of 

information [53]. Based on this functionality, artificial neural networks are able to learn a 

phenomenon, even complex phenomena. This ability to learn even complex phenomena makes it 

possible to study phenomena such as transport. In the case of transport, neural networks was 

successfully used in user route choice modeling, in traffic volume modeling and prediction, for 

intersection delay prediction, in gas emission prediction, etc. 
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1.4.1. Basic neuronal network 

Artificial Neural Networks receive a vector as input and, after some transformation, produce an 

output vector. Like any function they can represent a phenomenon if their parameters are chosen 

correctly [48]. Their main advantages are: 

1. Neural networks do not have an a priori form for the function, which implies that the 

network, through a process called learning, takes the form of the phenomenon from the 

information of the input data. 

2. Neural networks can have any complexity, the networks can in theory take any form 

however complex it may be. 

A model of an artificial neuron includes the essential characteristics and is formulated by means of 

the following diagram: 

 

Figure 16. ANN Diagram 

 

The vector                    represents a set of n signals, where each of them inputs to the 

neuron through the corresponding dendrite; the associated number is    called weight. The set of 

dentrites corresponds to the vector of weights                   . When a   signal vector 

arrives to the neuron, the process that follows inside the cell body, it is represented by the sum of 

the products of each signal by its weight, added to a value called the gain or bias of the neuron. All 

this is represented by the following transformation: 

                                                                                                               Equation 9  
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1.4.2. Activation functions 

The activation function defines the relationship between the input and output signal of each 

network. In theory, all derivable functions can be activation functions.  Among the most common 

transfer functions used in the design of neural networks are the following: 

 

Table 3. Activation functions 

Name Function 

Logistic, sigmoid 
     

 

     
 

Hyperbolic tangent (tanh) 
        

      

      
 

Rectified linear unit (RELU) 
      

        
        

  

                
Softplus           

Gaussian    
 
 

 

The processing of an input neuron through the activation function gives an output of each neuron. 

However, each neuron output in the network communication system between neurons has its own 

weight coefficient. Network training is a nonlinear minimization problem that iteratively changes the 

coefficients of the neuron weights in order to reduce the discrepancies between the desired and 

obtained values of output network results. 

 

1.4.3. Deep Learning 

Deep learning is among a larger family of machine learning methods based on artificial neural 

networks with rich representation learning. This learning can be supervised, semi-supervised or 

unsupervised [61]. 

The adjective "deep" in deep learning means the use of several layers in the network. Unlike non-

deep neural networks where one has a linear perceptron that cannot be a universal classifier, but a 

network with a non-polynomial activation function and a hidden layer of unlimited width. Deep 

learning is a state-of-the-art variant that concerns itself with an unlimited number of layers of 

bounded size, which allows for practical application and optimized implementation, at the same 

time preserving theoretical universality under soft conditions. In deep learning, layers are also 
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permitted to be heterogeneous and deviate extensively from connectionist biologically informed 

models, for the sake of efficiency, trainability, and comprehensibility. 

The main deep learning architectures of deep neural networks are deep reinforcement learning, 

recurrent neural networks and convolutional neural networks. These architectures have been 

applied to fields such as computer vision, speech recognition, etc. The literature review shows that 

deep recurrent neural networks were used for traffic simulation, specifically Long-Short Term 

Memory neural networks, since they are deep neural networks used for time series [61, 53]. 

1.4.3.1. Long Short Term Memory 

Neural networks have been extensively used for traffic prediction and have been compared to 

conventional statistical models. Results indicate that neural networks can be more accurate 

predictors than classical time series models. Among deep neural networks of time series, one of the 

most commonly used is the Long Short Term Memory LSTM. [62] used LSTM to model the 

longitudinal behavior of a vehicle as an alternative to CFM. The model was estimated using the 

NGSIM dataset [63] and takes into consideration the asymmetric driving behavior to produce more 

realistic traffic simulations. The calibration was performed by comparing real to simulated 

trajectories. Results showed that the LSTM neural network can well reproduce traffic conditions. 

The use of LSTM is based on the fact that a driver makes a decision based on scenarios in which the 

driver has been subjected to before, i.e. the driver has a short and long term memory that allows 

the driver to make a new decision. 

The impact of driving memory on longitudinal behavior, in particular historical driving memory, was 

analyzed by [50]. The authors employed an LSTM neural network to investigate the relationship 

between driving memory and car following behavior. Results show that LSTM neural network model 

can learn the driving memory information. The prediction accuracy was found to be higher 

compared to the Gipps model. The use of LSTM for lateral behavior modeling was also compared to 

lane-changing models in [64] and [61]. Again, LSTM neural network model showed higher 

performance compared to conventional lane change models. In [65] the authors proposed an LSTM 

neural network to model the two basic behaviors simultaneously (i.e. Car following and Lane 

Change) using the I-80 trajectory data of NGSIM dataset. The authors conclude that the neural 

network- based model is able to simulate the trajectory of a vehicle more realistically than classical 

models. 

Regarding the case of PMDs, no model has been proposed for microscopic simulation. Since the 

LSTM neural network allows to model with high performance the longitudinal and lateral behavior 

in the case of other vehicles, in this article the input and output variables of the model are defined 

and the structure of a LSTM neural network is proposed to model both behaviors. 
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1.5. Conclusion 

This chapter has provided an overview and comparative analysis of microscopic models used to 

describe and predict the behavior of drivers and pedestrians. The models used in the present thesis 

were presented in further detail, namely (i) the Social Force Model in continuous space, (ii) the 

Krauss model for longitudinal behavior, and (iii) the LSTM model for both lateral and longitudinal 

behavior. The implementation methodology, along with the datasets used, is presented in the 

following chapters. It is worth noting that the calibration of those models in the particular case of 

PMDs is a novelty introduced by the present thesis.  
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Chapter II                                                                                                                              

Data Collection 

This chapter provides the different data collection technologies and databases used for the present 

research, as well as the traffic scenarios considered. The first part describes existing data collection 

technologies and justifies the choice of camera recordings as the main data collection technique. 

The second part describes thoroughly the data collection methodology. An initial overview of the 

methodology is shown in Fig. 6 and mixes existing and newly created databases, sites from 3 

European countries, different experimental settings (on site or semi-controlled experiment), and 

diverse traffic scenarios from urban intersections to pedestrianized areas.  

A database of data collected at intersections in Germany is available from this technology, which will 

allow validation of the vehicle-PMD interaction model. As for the other databases, they have been 

obtained using data processing tools as explained in the methodology. These obtained databases 

have been used both for calibration and to validate the model proposed in chapter 4. 

 

Figure 17. Data collection structure 
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2.1. Data collection technologies 

Different methodologies for collecting data were evaluated in order to select the most relevant ones 

with the objective of simulating the interactions of PMDs with vehicles. In this context, we found 

three types of sensors that could achieve the objective: GPS, cameras and sonar. A comparative 

table with the advantages and weaknesses has been made, as shown below: 

Table 4. Comparative of data collection technologies 

Methodology Advantages Disadvantages 

GPS Easy installation. Low cost.  Metric precision, Not possible 
to measure interactions with 
other modes. Needs the 
approval of user.  

Camera Large database. Data from 
other modes/users. Centimeter 
accuracy. Methodology already 
applied in [51] 

Local measure. Installation 
somewhat complicated, 
authorizations are necessary. 

Sonar More relevant for car following 
model.  
Database depends on the 
number of sensors in different 
vehicles.  
Possible model to analyze TTC. 
Adaptation to different 
scenarios. 

Metric precision. 
Not possible to measure 
interactions with other modes 

 

Between the different options, the collection of data through cameras was retained, because it 

allows us to have a centimetric precision for the trajectories and it is a methodology in the literature 

review that has been half-automated in [50] and that has been used to make adaptations of the 

microscopic simulation models of the bikes in [52]. This methodology that was selected consists of 

the installation of a camera, which allows filming of different movements in a determined place. 

Another important criterion is the fact that cameras capture all road users and their interactions 

which is one the thesis objectives.  

2.2. Data collection methodology 

To obtain the data, the image processing methodology was chosen. That is why in the thesis a 

software ”μ-scope” was developed to automate the acquisition of trajectories of vehicles, bicycles 
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and PMDs. The different functionalities and steps to be followed to obtain the trajectories are 

detailed below. 

2.2.1. Preprocessing 

Step 1: Create background from video In this step a random frame is obtained from the video, this 

frame will be used to determine the points corresponding to a plane image in real measurements. 

 

Figure 18. View of the camera 

Step 2: Define analysis area this step consists of indicating the area from which the trajectories are 

to be obtained, i.e. a mask is defined that defines the analysis area. 
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Figure 19. Mask to define the analysis area 

Step 3: Get camera calibration file (.tcal) In order to transform the trajectories extracted from videos 

to trajectories with real measurements, the T-Analysis software developed by [35] was used. 

Specifically, the T-Calibration module was used to obtain the camera parameters in order to obtain 

the trajectory with real measurements. The trajectory transformation methodology is extensively 

explained by [53] and consists of defining some reference points in the camera view and the image 

with real measurements as shown below: 

 

Figure 20. Calibration of camera 
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2.2.2. Processing: Trajectory extraction 

The automated extraction of trajectories is divided into three parts, (1) object detection, which is 

represented by a frame border, (2) object tracking and (3) obtain trajectories with real 

measurements. Trajectory extraction in our work is based on yolo v5 (You Only Look Once) 

proposed by [54] for object detection and classification. YOLO models are able to detect objects 

with high accuracy, can be used in real time and are based on convolution neural networks-CNN. 

Yolo uses a single neural network to process the whole image, then the image is divided into equal 

parts and in each of these parts an object probability is calculated. Then a max-non suppression is 

performed to ensure that the object detection is not repeated. In our work we have used the pre-

trained model YOLOv5m. This model is able to detect and classify cars, bicycles, pedestrians, buses, 

trucks. However, it is not able to identify a bicycle and  bicycle rider as a single object nor an e-

scooter and an e-scooter rider as a single object. That is why some algorithms were developed to 

detect the bicycle and its rider as a single object and similarly for e-scooters. In addition, an 

algorithm based on acceleration classification was developed to differentiate a bicycle from an e-

scooter. The latter is one of the contributions of the thesis that could be used for further research 

and future PMD analyses.  

For the object tracking process, i.e. to associate a bounding box detected in one frame of the video 

with another bounding box in another frame of the video, deep SORT (Simple Online and Real-time 

Tracking) proposed by [55] was used, which is an algorithm that has shown remarkable results in the 

Multiple Object Tracking (MOT) problem. 
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Figure 21. Methodology of detection/tracking 

Finally, based on the .tcal file containing the camera calibration data and the trajectories of the 

tracking process, we can obtain the trajectories with real measurements and can perform statistics 

of velocities and accelerations of each detected object. 

 

Figure 22. Results of trajectories 

 

2.2.3. Validation of software “µ-scope” 

The validation of the software developed during the thesis was studied in [56]. In which the 

acceleration results obtained through the µ-scope software and the acceleration results obtained 

through an application installed called Phyphox on the cell phones of the participants to the 

experiment were compared. The Phyphox app [57] is used to provide acceleration estimation of 

moving objects using the built-in sensors in every smartphone. 

In the paper, the calculated acceleration rates of μ-scope and Phyphox were compared by error 

analysis and with the use of RMSE. The RMSE analysis was performed for different scenarios, 

explaining in which scenario the best performance of the u-scope software is obtained. The overall 

results validate the algorithm used by u-scope based on image analysis indicating that μ-scope is 

reliable in all micromobility configurations, both in unidirectional and bidirectional bicycle lanes.  
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For example, Figure 23 shows a comparison of the accelerations for one of the e-scooters in the 

experiment along with the corresponding velocity along time. Similar results can be observed for the 

acceleration curve with close values and following the same trend.  

 

Figure 23. Comparison of µ-scope and phyphox software acceleration of an e-scooter 

 

Consequently, the μ-scope can be considered reliable for all velocities in the 0-25 km/h range. It can 

also be observed that as the e-scooter approaches the camera the divergence decreases. Therefore, 

we can reasonably assume that the estimation accuracy decreases with distance, with a critical 

point at about 30 m from the camera, so a recommendation is also made regarding the camera 

location as a larger distance from the camera increases the estimation error. 

2.3. Sites of data collection 

In this section we present the different traffic scenarios considered along with the methodology of 

data acquisition for all cases. 
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2.3.1. Pedestrians and PMDs interactions 

The study area is a large (approximately 60-meters) pedestrianized corridor along the river Seine 

”Quais de la Seine”, in Paris (Figure 24). It was selected in the objective to observe a maximum 

number of interaction situations between e-scooters, two-wheelers, and pedestrians. It consists of 

an old expressway where motorized traffic was prohibited in 2016. Main travel purposes observed 

on the site are tourism, leisure and, secondarily, commuting. 

The data collection methodology is presented in detail in [37] and [70]. It consists of 45 minutes 

camera recording totalizing 6,320 e-scooter position registrations. The level of analysis was at 20 

frames per second and interactions were observable every 5-10 seconds. 

 

Figure 24. Study area for pedestrian interactions (Quais de la Seine) 

An ad hoc image analysis process was implemented to track the moving objects and extract their 

trajectories. The Urban Tracker software [67] was used to tag videos and label each object in the 

video recording. The results produced by the software were stored in a database, saving the 

position information at each period. Figure 25 shows a set of random trajectories after labeling the 

video with Urban Tracker software. Figure 26 shows the trajectories of the same video frame in 

plane after image processing. 
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Figure 25. Trajectories in video frame: Greenyellow color = e-scooter; Blue and green = pedestrian. 

 

Figure 26. Trajectories in plane: Greenyellow color = e-scooter; Blue and green = pedestrian. 
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2.3.2. Vehicles and PMDs interactions 

The study area is a 50-meter stretch of an urban street, the Rivoli Avenue in Paris, France (Figure 

27). The right lane is a dedicated bus lane with permissive access to bicycles and taxis. The left lane 

is a two-directional cycle path. The central lane accommodates general traffic. A heavily used 

pedestrian crossing obliges vehicles to stop regularly. The site was selected in the objective to 

observe a maximum number of interactions among road users. 

 

Figure 27. Study area and view of camera for interactions with vehicles (Rue Rivoli) 

A recording of 30 minutes was made and provided 6,120 e-scooter position registrations. 

The traffic composition is distributed as follows: 55% cars (595 veh/h), 16% bicycles (176 veh/h), 

11% motorcycles (116 veh/h), 17% scooters (178 veh/h), and 1% buses (6 buses/h). 
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Figure 28 : Traffic composition for interactions with vehicles 

  

2.3.3. PMDs behavior in cycle path 

Neural networks need large databases for training and validation; and the previous record- ings 

were not sufficient for this purpose. Instead, we used inD database obtained by [58]. This database 

contains vehicle trajectories from urban and interurban intersections in Germany, captured from 

UAVs. We developed and implemented a suitable methodology for the extraction of the input data 

(i.e. mainly position in the X and Y directions) and the definition of the architecture of the neural 

network. 

Our database includes 4 geometrical configurations (Figure 29) and 32 traffic scenarios, i.e. 

recordings at different times of the day. Configurations   and   are interurban, while configurations 

  and   are in urban contexts with important PMD (i.e. bicycle) flows. 

178 

6 

116 

176 

595 

0 

100 

200 

300 

400 

500 

600 

700 

E-scooter Bus Moto Bicycle Car 

Traffic composition 

veh/h 



62 
 

 

Figure 29. Scenarios of the InD (Intersections in Germany). 

A preliminary analysis of the dataset gives the results of Figure 30. The duration of each video 

recording is in the Range of 10-22 minutes. We observe the dominant presence of private cars in all 

scenarios and particularly scenarios 1 and 4 (interurban intersections). As expected, a significant 

number of pedestrians and PMDs is observed in scenarios 2 and 3 (urban intersections). 
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Figure 30. Traffic composition of each scenario from InD Dataset . 

The InD dataset does not contain exact information about the lane number where the vehicle is 

located, therefore, a python-based algorithm was developed ad hoc to graphically represent the 

lane number and classify the position of vehicles in each lane number. This process was realized 

because this information is needed as an input variable to the neural network.  

 

2.3.4. Semi-controlled scenario 

A real-track experiment was designed and realized for the purposes of this research in a semi-

controlled environment. The experiment was conducted in the campus of the University of Patras, 

Greece, with over 100 participants who received specific indications for the scenarios considered to 

simulate. In Figure 31, four(4) scenarios are observed and that have been conducted: (a) One-way 

bicycle path where interactions between bicycles and PMDs can be observed, (b)  One-way bicycle 

path and a crosswalk where interactions between bicycles, PMD and pedestrians crossing the 

bicycle path can be observed, (c) shared road between pedestrians, bicycles and PMDs in the same 

direction where interactions between them can be observed, (d) shared road between pedestrians, 

bicycles and PMD in the same direction and with pedestrian crosswalks where interactions between 

them can be observed. Participants were asked to circulate freely on each shared space at the speed 

of their convenience and in low, medium, and high traffic conditions. 
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Figure 31. Scenarios: (a) bicycle lane, (b) bicycle lane with crosswalk, (c) road pedestrian, (d) road pedestrian with crosswalk 

 

Figure 32. Camera view: (a) bicycle lane, (b) bicycle lane with crosswalk, (c) shared road, (d) shared road with crosswalk 

  

Data was obtained through video recordings and view of each of the scenarios is presented in Figure 

32}. Posterior automated methodology post-processing image processing was developed ad hoc and 

allows for the automatic extraction of all moving objects individual trajectories (see Figure 33 and, 

thus, positions, speeds, accelerations in each time step and travel time. 
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Figure 33. Trajectory extraction: (a) bicycle lane, (b) bicycle lane with crosswalk, (c) shared road, (d) shared road wit 

2.4. Conclusion 

In this chapter we analyzed the different data collection technologies, concluding that the most 

suitable technology to obtain the trajectories is by the use of cameras. To obtain the trajectories 

through cameras, image processing was used, in this context μ-scope software was developed that 

uses deep artificial neural network to detect and track vehicles including e-scooters.  

This software has allowed to obtain the databases composed of positions, velocities and 

accelerations, which will allow us to calibrate and validate the different scenarios, will be obtained. 

The scenarios included are: (1) Pedestrian-PMDs interaction (Quais de la Seine), (2) vehicle-PMDs 

interaction (Rue Rivoli), (3) only PMDs behavior (InD dataset) and (4) pedestrian, bicycle and PMDs 

interaction (semi-controlled environment). Based on the data from each scenario, the next chapters 

analyze existing models and propose two new models. 
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Chapter III                                                                                                                              

Calibration of selected existing models 

3.1. Interaction between pedestrians and PMDs 

The idea of Social Force Model (SFM) is to consider that behavioral changes can be explained by 

force fields exerted on the moving object; i.e., the person varies his/her behavior due to external 

forces. This is the basic idea of microscopic pedestrian simulation. SFM is a continuous microscopic 

model of social forces proposed initially by [24], where pedestrian behavior is affected by the forces 

of the environment and other moving objects. These forces cause the pedestrian to make two levels 

of decision, the strategic decision that involves determining the minimum distance between his 

departure point and destination point and the tactic decision that is a consequence of his 

interaction with his environment. According to SFM, the movement of pedestrian   is driven by 

three forces as shown in (Fig 1): 

1. term   
  describing the acceleration towards a destination   i.e. the object tries to reach its 

desired velocity by accelerating or decelerating, 

2. repulsive forces exerted by j other individuals     and w obstacles    ; and 

3. a term   
 modeling attraction effects of a group of pedestrians a. The resultant of these forces 

      represents the motivation of a pedestrian to move with a specific orientation and 

magnitude of movement. This model was initially developed for low pedestrian densities, but 

posterior improvements were made to include diversified traffic contexts. 
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Figure 34. Forces exerted towards a pedestrian i(SFM). 

 

It’s means the movement of a particle   is a result of all the forces with which the pedestrian 

interacts. The resultant force       at time  , can be expressed as follows: 

        
                                                                                                   Equation 10 

Where:  

   
   :  the propelling force to conduct the object towards its objective; 

       :  the repulsive force from object j; 

      :  the repulsive force from obstacle w; 

  :  the error of the model. 

 

3.1.1. Strategic level: route choice 

The propelling force is expressed as follows [24]: 

                                                            
  

 
 
          

  
                                                                           Equation 11 

 where: 

     is the observed speed of object  ; 
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        is the desired speed of particle  ; 

    is relaxation time (property of particle  ), which determines the ability of the particle to 

follow its desired trajectory in case of disturbance. 

 

Through       ,  a  will  must  be  conferred  to  the  objects. Several  strategies  have  been 

proposed, including behavior rules or heuristics as in [23, 10, 72]. However, these rules presume 

knowledge about the interaction processes, or addition of new parameters to the model which 

requires a supplementary drive of calibration. 

 

3.1.2. Tactical level: interaction with environment (obstacles, other particles) 

As a first approach, a simple expression of repulsive force is proposed: 

                                      
  
                

      

   
                                                                 Equation 12 

 

where: 

       is the distance between object   and   ; 

        is the unit vector, oriented from   to   ; 

     and     are parameters that respectively adjust the amplitude of the strength, and the 

span; 

      is the angle between the direction of object   and object i. 

We chose to make parameters     and     dependent upon both object   features and object   

features. This allows us to distinguish interactions between (i) pedestrian and pedestrian, (ii) 

pedestrian and e-scooter, (iii) e-scooter and pedestrian, and (iv) e-scooter and e-scooter. These 

parameters will be determined in this article, by calibration methods. 

 

        is  a  function  to  represent  the  anisotropy  of  the  perception  of  the  objects  as humans 

are usually more attentive to the oncoming environment ahead than to the environment in the 

back. We propose here to use a commonly spread expression [24, 22, 23]. 

 

                                                                    
           

 
                                             Equation 13 

Where    is a parameter, so as that    = 1 implies that the perception of object j is fully isotropic, 

and, on the contrary,    = 0, that the perception is particularly anisotropic. A similar expression is 

used for repulsive forces from permanent obstacles. 
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The calibration process consists in determining the optimal parameters of the proposed model to 

obtain the lowest error between the simulated data and the real data i.  e. a minimization process 

that depends on the simulated and real data, as follow: 

                                                                                                         Equation 14 

The function f(.) is the metric of the error between real and simulated data. 

In this work RMSE is used as an error metric to measure the performance of SFM, which allows to 

compare real to simulated pedestrian trajectories [22]. 

                                                   
 

                     Equation 15 

 Where      is pedestrian trajectory from the database and      is pedestrian simulated trajectory 

based on a vector    containing the parameters to calibrate SFM. Based on Equations, SFM 

parameters for pedestrians and PMDs (e-scooters) are calculated taking into account that 

parameters abide by log-normal law to avoid negative values. 

 free speed    for pedestrians and e-scooters; 

 relaxation time   for pedestrians and e-scooters; 

 matrix of amplitude of repulsive forces     ; 

 matrix of spans of repulsive forces      

The    parameter was calibrated in [35] for the case of pedestrians and found to be equal to 0.06. 

For the case of e-scooters in [22]    was fixed to 0.56. These two values were introduced in the 

present analysis. 

Different optimization algorithms exist to determine the minimum of Equation 18. Cross-Entropy 

method (CEM) is used following [22]. CEM is a general Monte-Carlo type optimization method and is 

composed of the following two phases:  

Initialization. Initial value for the vector    of parameters 

At each iteration: 

1. we generate a set of values of the model parameters: free speed, relaxation time, 

amplitudes and spans of repulsive forces randomly taken following the probability 

distribution in accordance with current assessment of parameters ;  

2. for each set of parameters generated in step 1, 

3. we make simulations giving initial conditions from experimental data ;  

4. we compare simulation outputs with experimental data thanks to the computation of RMSE; 

simulations are sorted in accordance with their RMSE; 

5. we only keep ρ of the best simulations ; 
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6. we update    using unbiased estimators on the set of parameters associated with remaining 

simulations. 

We stop when average RMSE of simulations stop decreasing and when the values of      are 

converging. Let us notice that simulations are made on selected configurations observed on the 

experimental site that are chosen in order to represent typical behaviors (frontal avoidance, 

overtaking.). 

 

 

3.1.3. Results 

The evolution of the RMSE is shown in Fig. 14 where we observe that convergence of the algorithm 

is reached. Likewise, Fig. 15 shows the parameters mean value and standard deviation for the first 

trajectory. 

 

Figure 35. Calibration process: evolution of average error 

At the end of calibration process for the 6320 e-scooter positions (20 trajectories), all parameters 

seem to converge towards a stable value. 
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Figure 36. Calibration process for free speed of pedestrian and e-scooter 

Calibration results for the 20 trajectories of pedestrians and e-scooters are presented in Table. 1 

The free speed for pedestrians was estimated at 1.65m/s(±0.37SD), higher than the usual speed for 

pedestrians which has a range between 1.1m/s and 1.4m/s [7] The high value of the free speed can 

be explained by the lack of distinction between running and walking pedestrians. Indeed, many 

Parisians use the banks of River Seine for jogging and this was confirmed in the video footage. 

Table 5. LSTM deep neural network-based model for the modeling of interaction between vehicles and PMDs- Parameters 
estimation results 

 
Parameters 

Pedestrian avoiding 

e-scooter 

E-scooter avoiding 

pedestrian 

v0(m/s) 1.65(±0.37) 5.34(±0.89) 
A(kg.m/s

2
) 320(±140) 414(±256) 

B(m) 0.44(±0.15) 0.60(±0.41) 
τ(s) 0.25(±0.08) 0.19(±0.08) 

 

The free speed of e-scooters is estimated at 5.34m/s(±0.89SD), well below the maximum speed limit 

for e-scooters (i.e. 6.9 m/s) as determined by the French legislation (2019). This may be attributed 

to the site-specific geometric conditions and pedestrian affluence impeding speeding. 

Parameters A and B are estimated (i) for the case of a pedestrian avoiding an e-scooter at 

320kg.m/s2 (±140SD) and 0.44m (±0.15SD) respectively and (ii) for the case of an e-scooter avoiding 

a pedestrian at 414kg.m/s2(±256SD) and 0.60m(±0.41mSD) respectively.  This shows that the 

repulsive force of an e-scooter to avoid a pedestrian is greater than the force of a pedestrian 

avoiding an e-scooter. 
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Likewise, the relaxation time was estimated equal to 0.25s (±0.08SD) for pedestrians and 0.19s 

(±0.08SD) for e-scooters.  According to the estimated values for the relaxation time, we notice that 

the e-scooter drivers react faster than pedestrians. 

 

3.2. Interaction vehicle - PMDs 

In the literature review (Section 2), we presented different types of CFM. Their relative performance 

was evaluated by [49]. The authors concluded that implementing a correct calibration process leads 

to similar performance metrics for all models. In this work, we have used the Krauss model, 

implemented in SUMO software, which is essentially a stochastic version of the Gipps model [48]. 

The Krauss model allows considering two-wheeled vehicles, as explained in [54]. The model 

formulation for a single lane is given in [47]: 

                                                                  
            
           

  
   

                                                      Equation 16 

Where : 

      : is the safety speed (m/s); 

     : is velocity leader vehicle (m/s); 

     : is the gap (m); 

   : is the reaction time s; 

      : is velocity follower vehicle (m/s); 

  : is the deceleration capabilities (m/s2). 

If the       is higher than the maximum speed allowed on the road or higher than the speed the 

vehicle is able to reach until the next pass owing to its acceleration capabilities, the minimum of 

these values is calculated as the resultant speed, called ”desired speed”     . 

                                                                                                                             Equation 17 

Where: 

    : is the maximum velocity (m/s); 

 : is acceleration capabilities (m/s2); 
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 : is the step duration of the simulation (s); 

Finally, there are two boundary parameters, the minimum gap value      and the maximum 

deceleration bemergency under emergency conditions. 

The calibration methodology employed is the cross-entropy method (CEM). CEM was used as 

optimization algorithm and the RMSE as an error metric. Based on  Equations  11 and 12 and  

boundary  parameters,  in  this  work we determine the parameters of the Krauss model for PMDs 

(in particular e-scooters and bicycles), taking into account that parameters abide by log-normal law 

to avoid negative values. The method is applied to determine the mean and standard deviation of 

each parameter: 

 Acceleration capabilities     for e-scooter j; 

 Deceleration capabilities     for e-scooter j; 

 Emergency deceleration              

 Reaction time     for e-scooter j; 

 Maximum velocity        for e-scooter j; 

 Minimum gap          for e-scooter j; 

  

3.2.1. Results 

A sample of 15 trajectories was used for calibration for each iteration that is to say in each iteration 

a sample of different combinations of parameters produce different trajectories. The results show 

that from iteration 8 the algorithm arrives at convergence Figure 37. 

 

Figure 37. Model Interaction vehicle and PMDs - Calibration process 
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The six (6) calibration parameters of the car- following model (Krauss model) were thus calibrated. 

The optimal parameters show an intermediate behavior between a bicycle and a moped. The error 

of the real trajectory is of 1.08m with a standard deviation of 0.54. This value is high because the 

car- following model, cannot simulate the ’zig-zag’ movement and lane-changing that e-scooters and 

bicycles make. This error can be reduced, if we consider a calibration for the lane change model and 

the sub-channel model. However, in this case, the number of parameters to be calibrated and 

optimization time would be greater.  In Table 6, we provide the values of parameters for PMDs and 

other class of vehicles as given in SUMO software: 

 

Table 6. Parameters estimation results 

Vehicle Class Bicycle Moped Motorcycle E-scooter 

maxSpeed (m/s) 20 45 200 28(±1.5) 
minGap (m)5 0.5 2.5 2.5 0.5(±0.11) 
accel (m/s) 1.2 1.1 6 3.5(±0.59) 
decel (m/s2) 3 7 10 7.5(±0.8) 
emergencydecel 
(m/s2) 

7 10 10 9.6(±1.2) 

τ (s) – – – 0.3(±0.1) 

 

Results show that in terms of maximum speed, PMDs are similar to bicycles. Standard deviation is 

only provided for e-scooters in the software. In relation to minimum gap, PMDs have same behavior 

as a bicycle, probably because of similar average speed. In terms of average acceleration and 

deceleration however, PMDs are closer to a moped and a motorcycle, while emergency acceleration 

is practically equal to the one of moped and motorcycle. This is an intuitive finding due to the 

electric assistance of e-scooters and comes to verify our initial hypothesis on the hybrid nature of e-

scooters. 
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Chapter IV                                                                                                                              

Proposed novel models 

In the previous chapter, adaptations of car and pedestrian traffic simulation models were studied. 

High values of the error rate were found between the comparison of the real trajectory and the 

simulated trajectory. Although high error rates were found, estimating calibration parameters 

allowed to better determine the behavior of the PMDs and their interaction with pedestrians and 

vehicles. In this chapter, two novel models are proposed to ameliorate the descriptive force of the 

existing models: (1) First model combines particle dynamics, social force modeling and LSTM deep 

neural network-based model for the simulation of interaction between pedestrians and PMDs and 

(2) LSTM deep neural network-based model for the modeling of interaction between vehicles and 

PMDs. The choice of deep neural networks is based on the literature review, where it was observed 

that artificial neural network-based models, mainly deep recurrent neural networks of the LSTM 

type, performed better than classical traffic simulation models.  

4.1. Interaction pedestrians - PMDs 

In this part, a new model based on artificial neural networks is presented, specifically in the type of 

LSTM neural networks. The PMD type considered are bicycles and e-scooters, but the modeled 

behavior concerns exclusively the e-scooter rider.  

The database was generated in a semi-controlled experiment at the campus of University of Patras, 

Greece and was used for model training and validation. The database is composed of 285 

pedestrians (51.5%), 113 e-scooters (20,4%) and 155(28%) bicycles, totalizing 80 451 registers of 

position, instant speed and acceleration data. 

Table 7. Composition of database of semi controlled environment 

 

Number of 
pedestrians 

Number of 
e-scooters 

Number of 
bicycles 

Number of 
positions 

One-way bicycle path 0 11 12 2088 

One-way bicycle path with crosswalk 17 32 31 13325 

Shared road 101 28 29 26258 

Shared road with crosswalk 167 42 83 38780 

Total 285 113 155 80451 

Percentage 51,5% 20,4% 28,0% 
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Figure 38. User type distribution in semi-controlled experiment 

 

Based on the database, 75%  was used for training and 25% for testing, This chapter presents the 

proposed model and the results obtained. 

 

4.1.1. Model principle 

The model principle combines particle dynamics, social force modeling and neural networks and is 

detailed below. First, the particle dynamics equation is presented. Then, the space discretization 

methodology is described and justified.  
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Figure 39. Scheme of new model for simulation interaction PMDs with pedestrian an bicycles 

 

4.1.2. Particle dynamics 

The quantity of motion (or linear momentum) of the system is the sum of the quantities of motion 

of each of the particles. In the proposed model we consider as each particle a pedestrian, a bicycle 

or a PMD. 

Figure 40 shows a general scheme of a scenario in which a shared space between pedestrians, 

bicycles and PMDs is observed. Each of these road users has a position xi,yi, mass mi and speed vi. 
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Figure 40. General scheme of quantity of motion 

 

From mass and velocity, the quantity of motion of the center of mass pi can be calculated for each 

type of user, as shown below: 

                                                                                         

                                                                                                                 

Equation 18 

Where: 

            : Quantity of motion of user type (pedestrian, bicycle or e-scooter). 

             : Mass of user type (pedestrian  , bicycle   or e-scooter  ). 

           : velocity of user_type (pedestrian  , bicycle   or e-scooter  ). 

Using Eq. 19 we can calculate the velocity of the center of mass of a set of particles, which in this 

case are divided into pedestrians, bicycles and PMDs. 
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                                                  Equation 19 

Where           = (pedestrians, bicycles or PMDs) and               is the total mass.  

If we consider that all pedestrians have equal mass and equally for bicycles and e-scooters, we can 

reduce Equation 19 to the following expression: 

                                                                       
 

                 

 
                                                  Equation 20 

Where   is the number of pedestrians, bicycles or e-scooters. 

A system of particles has a center of mass, the position vector of center of mass is determined by 

the weighted sum of their positions: 

                                                       
 

                

          
 

                

 
                        Equation 21 

Where              
 is the position vector of center of mass by user type (pedestrian, bicycle or PMDs) 

Finally, to summarize, based on the quantity of motion, the location              
 and velocity 

                 
 of the center of mass can be determined by type of user. These variables will be 

calculated from a discretized space and then used as input variables for the training of a LSTM 

neural network as is explained in the following chapters. 

4.1.3. Space discretization 

In [61], an adaptation of the social force model for vehicles is proposed including a discretization of 

space used by private cars into 3 zones (1) Front area, (2) Body area and (3) Rear area as shown in 

the following figure. 
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Figure 41. Discretization for simulation of vehicle proposed in [61] 

The results show a great performance in reproducing the behavior of vehicles in the side and rear 

area of the vehicle. 

Another proposal of spatial discretization can be found in [62]. Here a discretization is proposed in 

the zone delimited by the angle of view of a pedestrian. The proposed zones are (1) Intimate space, 

(2) Personal space, (3) Social space and (4) Public space as follow in Figure 42 . 
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Figure 42. Discretization for simulation of pedestrian proposed in [62]. 

Based on [61] and [62], a discretization of the combination is proposed and explained below: 

 Divide space into right and left zone of the road user to be modeled. 

 Divide space into 3 zones (1) Front area, (2) Body area and (3) Rear area. Unlike that 

proposed in 5, the frontal area proposed for the model is bounded by the road user's angle 

of view. 

 Divide the Front area into 4 zones (1) Intimate space, (2) Personal space, (3) Social space and 

(4) Public space. 

 

 

Figure 43. Discretization proposed  

Figure 43 shows the proposed discretization of the space. The equations describing the proposed 

zoning are shown below. The origin for all coordinates is considered to be the eye of the rider of the 

non-controlled vehicle. The x-axis is considered parallel to the body of the vehicle to simplify 

calculations.  

           

      
                

               

              Equation 22 

 

 
 



82 
 

          

 
 
 

 
 
                 
  

  
     

 

 
         

  

              

               

    Equation 23 

               

 
 
 
 

 
 
 

    
  

  
     

 

 
 

     
    

    

                

               

    Equation 24 

               

 
 
 
 

 
 
 

    
  

  
     

 

 
 

      
    

    

                

               

    Equation 25 

             

 
 
 
 

 
 
 

    
  

  
     

 

 
 

      
    

    

                

               

    Equation 26 

             

 
 
 
 

 
 
 

    
  

  
     

 

 
 

      
    

 

                

               

    Equation 27 

Where         is the coordinates of space discretization,     is the distance of the origin of 

coordinates to the rear end of the vehicle   is the angle of view,              are unknown 

parameters concerning the delimitation of the front area .  

   is a parameter that can be obtained from observations, the values considered can be seen in 

Table 10. In the case of the distances,               some values are shown in [62], but in the 
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present thesis, these distances were determined and adjusted from the optimal architecture of the 

neural network. The horizontal field of view   of a person is 120°; however this field decreases as 

the person has a certain speed, that is why a value of 120° was initially assumed for the case of 

bicycles and e-scooters. This is a starting value to be confirmed by future analyses.   

In addition, in each area portion shown in Figure 43, two subclasses are defined according to the 

direction of the road user:  

 Subclass A, comprises all road users who have the same direction of traffic as the vehicle 

under analysis. In other words, the angle of the velocity vectors is less than 90°. 

 Subclass B, comprises all road users who have the opposite direction of traffic compared to 

the vehicle under analysis. In other words, the angle of the velocity vectors is over 90°.  

 

 

                                                                  

Figure 44. Sub-classification in each area with respect to velocity direction 

 

 

 
 

Subclass A 

Subclass B 
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4.1.4. Long Short Term Memory 

The estimation of the proposed model was made using again an LSTM model. The neural network of 

type LSTM is a time series neural network, this means that from data of a state  , the neural 

network is able to predict a new state in    . Additionally, since this neural network has a short 

and long term memory at the training, it is possible to predict from   state sequences            

      the state    . In the proposed model,  acceleration   at instant     is predicted from 

accelerations of n-1 sequences. In addition, at each sequence variables are added to explain the 

different interactions to which the road user is exposed. The position at instant t+n is deduced from 

acceleration and previous position at instant t+n-1. 

 

 

Figure 45. LSTM architecture 

 

4.1.4.1. Input Variables 

The variables with the interaction of the environment are calculated (i) for each type of road user (ii) 

in each area and (iii) at the center of mass. In each of the areas the following variables are 

generated: 

Table 8. Input variables of LSTM 

Nomenclature Description 

       
 X-Position of the center of mass of area A, side S, direction D 

and road user type rut. 

       
 Y-Position of the center of mass of area A, side S, direction D 

and road user type rut. 

        
 X-Velocity of the center of mass of area A, side S, direction D 

and road user type (RUT). 

        
 Y-Velocity of the center of mass of area A, side S, direction D 

and road user type (RUT). 

+ 

  

… 

     

+ 

       

     

INPUT VARIABLE OUTPUT VARIABLE 
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Where: 

                                                                                 

                

                                                   

                                         

Depending on the number of combinations between the different options, a total of 288 input 

variables are obtained. However, to this number of variables it is necessary to add the variables of 

the road user to be modeled, that is, the road user                               , the velocity 

        and the acceleration         . There are then a total of 292 input variables. 

4.1.4.2. Output Variables 

The proposed output variable is the acceleration; this means that the acceleration         will be 

calculated from n data sequences containing the acceleration and variables that explain the 

interaction with the environment. From the acceleration it will be possible to calculate the velocity 

and the predicted position. There are then a total of 2 output variables. 

4.1.4.3. Training and Architecture of LSTM 

To determine the best architecture, the following values have been considered for each type of road 

user. 

The distance sight could only concern the pubic space and is neglected here because it can be 

supposed not to influence immediate acceleration decisions as low speeds make it possible to react 

slower.  

Table 9. Values of parameters of road user types in novel interaction pedestrian and PMDs model 

Road user type      

Pedestrian 0.15 m 120 ° 

Bicycle 0.8 m 120 ° (starting value) 

 E-scooter 0.6 m 120 ° (starting value) 

 

In Table 10, different architectures for the neural network are tested and based on the error results 

obtained for training process (75% of data) and validation (25% of data), the best architecture can 

be determined.  
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Table 10. Tested architectures with Root Mean Squared Error 

Number of 

sequences 

Architecture RMSE of 

acceleration in 

training process 

(m/s2) 

RMSE of 

acceleration in 

validation process 

(m/s2) 

4 128 tanh 128 tanh 2 tanh 0,3828 0,4899 

4 32 sigmoid 32 sigmoid 2 sigmoid 0,25 0,2975 

4 64  tanh 64 tanh 2 tanh 0,3720 0,4092 

4 32 tanh 32 tanh 2 tanh 0,28 0,3416 

4 48  tanh 48 tanh 2 tanh 0,2731 0,3495 

4 60 tanh 60 tanh 6 tanh 2 tanh 0,2598 0,3195 

4 128 tanh 128 tanh 6 tanh 2 tanh 0,2023 0,2629 

3 32 tanh 32 tanh 2 tanh 0,2635 0,2951 

3 18 tanh 18 tanh 2 tanh 0,4155 0,4902 

3 18 relu 18 tanh 2 tanh 0,4740 0,5830 

3 18 relu 18 relu 2 relu 0,2478 0,3072 

3  36  tanh 36 tanh 2 tanh  0,3134  0,3635 

3 36  relu 36 relu 2 relu  0,3282  0,3938 

1  16 tanh 16 tanh 2 tanh  0,3903  0,5073 

1 18 relu 18 relu 2 relu  0,2478  0,3072 
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The best architecture is composed of 4 sequences with 292 neurons in the first layer (input 

variables), 128 neurons in the second layer with a tanh activation function, 128 neurons in the third 

layer with a tanh activation function, 6 neurons in the fourth layer with a tanh activation function 

and 2 neurons in the last layer with a tanh activation function. The value of RMSE of the acceleration 

in determined in 0.2023. 

Once the best neural network architecture was determined, different boundaries for intimate space, 

personal space, social space and public space were tested to determine the best performance for 

each of the road users as shown in Table 11. 

Table 11. Determination of range in meters? of each area 

Road user 
type 

Intimate space 
(m) 

Personal space 
(m) 

Social space (m) 
Public space 

(m) 

RMSE 
acceleration 
(m/s2) 

Pedestrian 

0 - 0,4 0,4 - 3 3 - 6   > 6 0,23 

0 - 0,4 0,4 - 1,5 1,5 - 5   > 5 0,19 

0 - 0,4 0,4 - 1,3 1,3 - 4,5   > 4,5 0,2 

0 - 0,4 0,4 - 1 1 - 4   > 4 0,21 

Bicycle 

0 - 0,4 0,4 - 3 3 - 6   > 6 0,41 

0 - 0,4 0,4 - 1,5 1,5 - 5   > 5 0,55 

0 - 0,4 0,4 - 2 2 - 6   > 6 0,39 

0 - 0,4 0,4 - 2,2 2,2 - 7   > 7 0,38 

E-scooters 

0 - 0,4 0,4 - 3 3 - 6   > 6 0,44 

0 - 0,4 0,4 - 1,5 1,5 - 5   > 5 0,56 

0 - 0,4 0,4 - 2 2 - 7   > 7 0,43 

0 - 0,4 0,4 - 2,5 2,5 - 8   > 8 0,42 

 

Based on the values determined for pedestrians, we can compare with the values in [63] as shown 

in the table. 

Table 12. Comparaison of values of areas 

 Values suggest by [62] for 
pedestrian 

Values finding with LSTM for 
pedestrian 

Intimate space 0 to 0,46 m 0 to 0,40 m 

Personal space 0,46 to 1,2 m 0,4 to 1,5 m 

Social space 1,2 to 5,7 m 1,5 to 5,0 m 

Public space > 5,7 m > 5,0 m 
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The suggested values show similar values to those found with the neural networks with a small 

difference in the personal space. However, only values similar to those suggested in [62] were 

tested, therefore, in future works optimization algorithms can be developed to determine these 

values more accurately. Additionally, values for bicycles and e-scooters were determined. 

A variation of the angle of sight for e-scooters and bicycles was also obtained, giving the following 

results for the training process (75% of the data) and for the testing process (25% of the data) 

Table 13. Determination of the most appropriate angle of sight for e-scooters and bicycles 

Angle of 
sight 

RMES of acceleration (m/s2) for e-
scooter 

RMES of acceleration (m/s2) for bicycle 

 Training Testing Training Testing 

120° (Initially 
angle) 

0,38 0,42 0,45 0,51 

110° 0,36 0,44 0,44 0,56 

100° 0,34 0,43 0,44 0,56 

90° 0,36 0,45 0,43 0,52 

80° 0,36 0,43 0,44 0,55 

 

The best performing angle for e-scooters has been determined to be 100° and for bicycles 90°.  Of 

course, this topic needs to be further explored in order to obtain more robust conclusions.  

Finally, the following table shows the values of the error rate for both acceleration and trajectories. 

Table 14. RMSE for training and test 

 RMSE of training process RMSE of testing process 

 Acceleration(m/s2) Trajectory(m) Acceleration(m/s2) Trajectory(m) 

Pedestrian 0,19 0,034 0,24 0,043 

E-scooter 0,34 0,031 0,43 0,041 

Bicycle 0,43 0,033 0,52 0,038 

 

4.1.5. Comparison with the social force model 

Based on social force model and the neural network model, the following table was elaborated to 

compare the two models. 

 

 



89 
 

 

Table 15. Comparison of Social Force Model and LSTM model 

 Social Force Model 
LSTM Model for interactions 

between pedestrians and 
PMDs 

Database  Small, medium and large 
databases can be used. 

 Database from camera can 
be used. 

 

 Large database model is 
needed. 

 Database from camera can 
be used 

Model  Model based on physics, so 
it is a general model that 
can be applied to different 
scenarios. 

 Simple to understand 

 Model based on the 
database, after a training 
process; therefore, it is 
possible that the model can 
only be used in a specific 
case. 

 Complex to find the 
architecture of the neural 
network 

 

Performance  RMSE of the real and 
simulated trajectory in 
training process of 0,4 for 
pedestrian, 0,88 for e-
scooters and 0,93 for 
bicycles. 

 RMSE of the real and 
simulated trajectory in test 
of 0,44 for pedestrian, 0,98 
for e-scooters and 1,19 for 
bicycles 

 

 RMSE of the real and 
simulated trajectory in 
training process of 0,134 for 
pedestrian, 0,131 for e-
scooters and 0,133 for 
bicycles. 

 RMSE of the real and 
simulated trajectory in test 
of 0,143 for pedestrian, 
0,141 for e-scooters and 
0,138 for bicycles 

 

 

The choice of which model to use for PMDs simulation in interactions with pedestrians depends on 

different aspects. LSTM seems to clearly outperform SFM as the RMSE is significantly lower for both 

training and testing. However, LSTM requires large datasets that are not always available and has 

not been tested in as many contexts and scenarios as the SFM and provides acceptable results in 

terms of coherence and error.  In the case of the thesis,  the model developed is in the context of an 

eco-neighborhood in which it is possible to install cameras and obtain a large database. 
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Consequently, neural networks based on LSTM are the best option because they offer better 

performance. 

4.2. Interaction vehicle - PMDs 

We propose a recurrent neural network (RNN), and more specifically a long and short term memory 

network (LSTM), to model the trajectory of a PMD. In this case the PMD type considered is bicycle. 

LSTM has connection and feedback and can process entire sequences of data (such as vehicle 

trajectories). LSTM networks are well suited to classify, process and make predictions based on time 

series data, because there can be shifts of unknown duration between important events. 

4.2.1. Input variables 

The proposed model is able to learn the displacement in the x and y direction of a vehicle (orange 

color in Figure 46 and Figure 47), interacting with other vehicles (blue color in Fig. 17 and 18).  The 

InD dataset [58] was used to train the model. Each of the input variables are explained below : 

 Gap distance between vehicles in the x-direction, (Figure 46). In case the vehicle does not 

exist, the entered gap x-distances takes the value of zero. 

 

Figure 46. Gap distance in direction X. (1) Orange: Vehicle to be analyzed (2) Blue: Vehicles around. 

 . 

 Gap distance between vehicles in the y-direction, (Figure 47). Similarly, if a second vehicle 

does not exist, a value of zero is assumed. 
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Figure 47. Gap distance in direction Y. (1) Orange: Vehicle to be analyzed (2) Blue: Vehicles around. 

 

 The other variables used are the length and width of all vehicles and their speeds in x and y 

directions. Table 4 provides the notations used in the sub-indexes for each of the variables 

and Table 5 provides the necessary input variables for the model. 

 

Table 16. Notation of the sub-indexes of the input variables 

Notation Description 

fl Vehicle in front and on the left side of the analyzed vehicle. 

f Vehicle in front of the analyzed vehicle. 

fr Vehicle in front and on the right side of the analyzed vehicle. 

bl Vehicle behind and on the left side of the analyzed vehicle. 

b Vehicle behind of the analyzed vehicle. 

br Vehicle behind and on the right side of the analyzed vehicle 

 

Table 17. LSTM - Input variables 

Name Notation Description 

Vehicle exists                                   Presence of the vehicle 
at instant  . 1 if the 
vehicle exist, 0 
otherwise. 
 

Vehicle length                                   Length of each vehicle 
at instant  , including 
the vehicle to be 
modeled. 

 Vehicle width                                   Width of each vehicle 
at instant  , including 
the vehicle to be 
modeled. 
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Gap distance x-axis                                         Gap x-distance at 
instant   in relation to 
each vehicle. 0 if the 
vehicle does not exist. 

Gap distance y-axis                                         Gap y-distance at 
instant   in rela- tion to 
each vehicle. 0 if the 
vehicle does not exist. 

Speed  direction x-axis                                         Speed in   direction at 
instant   for be 
modeled. 0 if the 
vehicle does not exist. 

Speed  direction y-axis                                         Speed in   direction at 
instant   for be 
modeled. 0 if the 
vehicle does not exist. 

Relative position        Relative position of the 
vehicle at instant  . 

 

4.2.2. Outputs 

The objective is to predict the trajectory in the next time step as a function of p previous scenarios, 

which we can express as follows: 

                                                              

Where: 

   : Scenario in frame i, which is composed of all the variables in Table 5 

  : Number of frames 

  : Number of previous scenarios 

    : Position x and y at the frame   

 

4.2.3. Architecture of LSTM 

The architecture of an LSTM is composed of 3 parts (Figure 48): the forget gate, the update gate and 

the output gate. Each of these parts consists of a neural network, a sigmoid function and a 
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multiplier. The sigmoid function gives the balloon effect, i.e. the balloon is more ”open” for values 

closer to 1, and more ”closed” for values closer to 0. 

 

  

 

Figure 48. Architecture of the LSTM network. 

The forget gate allows to decide which information to delete and therefore not to transmit. The 

output of this part is expressed in Eq. (11), where coefficients wf  and bf  are learned during the 

training process. 

                                                                                                                   Equation 28 

The update gate allow to update information. An initial process gives in Eq. 

(12). Coefficients    and    are learned during training. 

                                                                                                               Equation 29 

Once we have vector   , we generate a candidate vector in                                                                 

Equation 30, where the coefficients    et    are learned during neural network training. 

                                                                                                                   Equation 30 

Then, we filter values       , and the output of the update gate is added to the values of the forget 

gate partition. This allows us to generate the updated memory ct. To scale the values between 0 and 

1, we use the          function. 

                                                                                                                      Equation 31 
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The output gate is a filtered version of the cell, where coefficients    and    are learned during the 

training process. 

                                                                                                               Equation 32 

Finally, to calculate the new position of vehicle, we use the following equation: 

                                                                                                                    Equation 33 

 

4.2.4.  LSTM Training 

For training we used the ”Adam” algorithm which is an optimization algorithm that can be applied 

instead of the classic stochastic gradient descent procedure to update iterative network weights 

based on training data. The interesting advantages of using Adam on non-convex optimization 

problems are explained by [75] and are shown below:  

 Easy to implement. 

 Computer efficient. 

 Low memory requirements. 

 Well suited for problems that are important in terms of data and/or parameters. 

 Suitable for non-stationary objectives. 

 Suitable for problems with very noisy and/or few gradients. 

 

4.2.5. Training results and testing 

In this part, we show the comparison of real trajectories to simulated trajectories with the neural 

network model (Figure 49). We observe that the Neural Network Model can describe the lateral 

behavior of a PMD. In addition, the error is very small (approximately 0,03 m), indicating that the 

model is capable of modeling the behavior of a PMD with respect to the vehicle’s surrounding 

conditions. 
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(a) Vehicle ID = 5 

 
(b) Vehicle ID = 21 

 

 

 
(c) Vehicle ID = 128 

 
(d) Vehicle ID = 348 

 

Figure 49. Real and predicted trajectories 

 We used 75% of the available 22,653 input data for training and the remaining 25% for testing. The 

function to be optimized in the training was RMSE, which was found at 0.03 m. Considering that 

obtaining the trajectories by image processing has an error of 0.10 m, we can conclude that the 

overall RMSE is of 0.13 m. 

For the test the RMSE was found to be of 0.04 m. Considering that methodology by image 

processing has an error of 0.10 m, we can conclude that the RMSE is 0.14 m, for the test. RMSE is 

very low in both cases and slightly higher in the test case. We can thus conclude that the RNN can 

well describe PMD traffic at the microscopic level. 

 

4.2.6. Comparison to car following model 

Based on the car following model and the neural network model, the following table was elaborated 

to compare the two models. 
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Table 18. Comparison of Car Following Model and LSTM model 

 Car Following LSTM Model for interaction 
between vehicles and PMDs  

Database  Small, medium and large 
databases can be used. 

 Database from camera can 
be used. 

 

 Large database model is 
needed. 

 Database from camera can 
be used 

Model  Model based on physics, so 
it is a general model that 
can be applied to different 
scenarios. 

 Simple to understand 

 Model based on the 
database, after a training 
process; therefore, it is 
possible that the model 
can only be used in a 
specific case. 

 Complex to find the 
architecture of the neural 
network 

 

Performance RMSE of the real and 
simulated trajectory of 1.08m 
for the calibration process and 
1.2m for the validation 
process. 

RMSE of the real and 
simulated trajectory of 0.13m 
for the training process and 
0.14m for the validation 
process. 

 

The choice of which model to use for PMDs simulation in interactions with pedestrians depends on 

different aspects. LSTM seems to clearly outperform CFM as the RMSE is significantly lower for both 

training and testing. Additionally, in contrast to the CFM, the LSTM in this thesis have been trained 

to provide longitudinal and lateral behavior. However, LSTM requires large datasets that are not 

always available and has not been tested in as many contexts and scenarios as the CFM and 

provides acceptable results in terms of coherence and error.  In the case of the thesis,  the model 

developed is in the context of an eco-neighborhood in which it is possible to install cameras and 

obtain a large database. Consequently, neural networks based on LSTM are the best option because 

they offer better performance. 
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Chapter V                                      

Conclusions and recommendations 

5.1. Summary of findings 

The present thesis aims to contribute in the analysis of the movement of PMDs in urban contexts in 

order to gain new insight into PMD characteristics and, thus, be capable of quantifying their impact 

on traffic flow and safety as well as on the environment. The main research questions concerned (i) 

the extent to which current traffic models are able to reproduce PMD movement and (ii) the 

possibilities of model enhancement. The research perimeter includes all PMDs but focuses on e-

scooters and regular bikes. The scope of the analysis covers all urban infrastructure from 

pedestrianized areas and shared spaces to cycle paths and mixed traffic lanes. However, particular 

attention is given to the particularities of the LaVallée Eco-neighborhood in Southern Paris where a 

sustainable micromobility system is being designed for future residents and visitors. The scope of 

the thesis also addresses without differentiation all travel purposes, as well as free-floating and 

privately owned vehicles. The objective of the thesis was to develop and test a modeling framework 

suitable for PMD particularities going from (O1) literature review to comparative assessment (O2) 

and calibration of models (O3), and developments for enhancement (O4).  

Chapter 1 addressed O1 and O2 where most popular traffic models were presented and assessed as 

to their suitability for PMDs. Among all microscopic models reviewed above, SFM seems to be the 

most prominent  to use as a starting point for modeling the interactions between PMDs and 

pedestrians. The literature on microscopic traffic modeling for cars is more voluminous and well-

established under different contexts and scenarios. The comparative assessment showed that the 

Krauss model seems to be more prominent for the modeling of interactions between PMDs and 

motorized vehicles for longitudinal behavior. In fact, it is an enhanced version of the Gipps model as 

it presents a better performance in the acceleration profile. It has seven calibration parameters 

which implies an acceptable computational cost. Nevertheless, more recent neural network models 

present important advantages that have not yet been considered for PMD modeling.      

Chapter 3 addressed thesis objective O3. The models identified as most prominent through the 

literature review were calibrated for the case of PMDs. The Cross-Entropy method, a general 

Monte-Carlo type optimization technique, was used in this purpose. Results show acceptable errors 

in reproducing the dynamics of PMDs. When interacting with pedestrians, PMDs seem to have low 
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speeds (5.34 ±0.89 m/s), well below the legal limit of 6.9 m/s determined by French legislation. This 

finding indicates that PMDs can coexist in the same space with pedestrians. Also, the repulsive force 

of a PMD avoiding a pedestrian is greater than the force of a pedestrian avoiding a PMD. This finding 

suggests that PMD users are more careful in the presence of pedestrians. Turning to interactions 

with general traffic, it was found that maximum speed (28km/h) and minimum gap for e-scooters 

are close to the one of bicycles (20km/h). However, in terms of average acceleration and 

deceleration, e-scooters are closer to a motorcycle and a moped; probably due to electric 

propulsion.  Overall, results suggest a certain hybrid behavior for PMDs in all cases. 

Chapters 2 and 4 addressed O4. The former proposes new methodologies for data acquisition while 

the latter proposes new models for the representation of their movement at the microscopic scale. 

In the former case, various technologies were assessed and trajectory extraction from camera 

recordings was found to be the most suitable for immediate application. However, existing software 

tools do not cover PMDs. An ad hoc software, μ-scope, was developed and used for the purposes of 

the thesis. It is worth noting that essentially different databases were used in the analyses: 3 

different countries, real world data from drones and from fixed point cameras, semi-controlled 

experiment on vehicle track. The diversity of case studies and fields ensures a significant level of 

generality of findings.  Turning to new models, the thesis proposes two models: a first for the 

interactions between pedestrians and PMDs and a second for the interactions between general 

traffic and PMDs. The first model combines particle dynamics, social force modeling and neural 

networks for parameter estimation. Space is discretized and intimate, personal, social, public space 

are geometrically defined. The second model is an RNN with 8 input variables and the trajectories as 

output. In both cases, calibration and test were performed. The findings suggest that the novel 

models outperform the previous models as they provide more precise estimations and RMSE is 

significantly lower (by a factor of 7 to 10).    

5.2. Recommendations 

The comparative analysis of all models can provide a roadmap for future micromobility analysts 

from the academia or the industry. Table 17 presents a comparative table for all models analyzed in 

the present thesis.  

 

  Table 19. Comparison of all models 

Advantage 
Depends on the 

scenario 
Disadvantage 
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Criteria 

Interaction between pedestrians and 
PMD 

Interaction between pedestrians and 
PMD 

Social Force 
Model 

LSTM deep 
neural network-

based model 

Car Following 
Model Krauss 

LSTM deep 
neural network-

based model 

Database  Small, 
medium and 
large 
databases can 
be used. 

 Database 
from camera 
can be used. 

 Large 
database 
model is 
needed. 

 Database 
from camera 
can be used  

 

 Small, 
medium and 
large 
databases can 
be used. 

 Database 
from camera 
can be used. 

 Large 
database 
model is 
needed. 

 Database 
from camera 
can be used 

 

Model  Model based 
on physics, so 
it is a general 
model that 
can be applied 
to different 
scenarios. 

 Simple to 
understand 

 

 Model based 
on the 
database, 
after a 
training 
process; 
therefore, it is 
possible that 
the model can 
only be used 
in a specific 
case. 

 Easy to find 
the 
architecture 
of the neural 
network 

 Model based 
on physics, so 
it is a general 
model that 
can be applied 
to different 
scenarios. 

 Simple to 
understand 

 

 Model based 
on the 
database, 
after a 
training 
process; 
therefore, it is 
possible that 
the model can 
only be used 
in a specific 
case. 

 Complex to 
find the 
architecture 
of the neural 
network 

Calibration o 
training process 

 Easy 
calibration 
process when 
there is not a 
large 
database. 

 Complex 
calibration 
process when 
the database 
is medium or 
large. 

 Easy training 
even with a 
large 
database 

 Easy 
calibration 
process when 
there is not a 
large 
database. 

 Complex 
calibration 
process when 
the database 
is medium or 
large. 

Easy training even 
with a large 
database 

Performance  RMSE of the  RMSE of the RMSE of the real RMSE of the real 
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real and 
simulated 
trajectory in 
training 
process of 0,4 
for 
pedestrian, 
0,88 for e-
scooters and 
0,93 for 
bicycles. 

 RMSE of the 
real and 
simulated 
trajectory in 
test of 0,44 
for 
pedestrian, 
0,98 for e-
scooters and 
1,19 for 
bicycles 
 

real and 
simulated 
trajectory in 
training 
process of 
0,19 for 
pedestrian, 
0,38 for e-
scooters and 
0,42 for 
bicycles. 

 RMSE of the 
real and 
simulated 
trajectory in 
test of 0,24 
for 
pedestrian, 
0,45 for e-
scooters and 
0,51 for 
bicycles 

and simulated 
trajectory of 
1.08m for the 
calibration 
process and 1.2m 
for the validation 
process. 

and simulated 
trajectory of 
0.13m for the 
training process 
and 0.14m for the 
validation 
process. 

 

As can be seen in the table above, each model has its advantages and disadvantages. For our 

particular case at the scale of an eco-neighborhood in which it is planned to install cameras and 

through them obtain a large database, it is concluded that the most appropriate model is the LSTM 

models based on neural networks due to the following main reasons: (1) There is a particular case of 

behavior, i.e. the study area is delimited to an eco-neighborhood with particular behavioral 

characteristics. (2) The installation of cameras in the eco-neighborhood is planned, which will 

provide a large database. (3) The performance of LSTM models based on deep neural networks is 

better in relation to classical vehicular and pedestrian traffic models and (4) The database 

acquisition methodology using the µ-scope software was validated. 

5.3. Main Contributions 

The main contributions of this dissertation are listed as follows: 

 Contribution 1: Development of a methodology to obtain data such as trajectories, speeds, 

accelerations of scenarios that include interaction of vehicles, pedestrians and PMDs 

through image processing techniques. 
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 Contribution 2. Development of a simulation methodology in free software that includes 

PMDs and with interaction of vehicles and pedestrians. 

 Contribution 3. Determination of the Car Following Model parameters for PMDs 

 Contribution 4. Determination of the Social Force Model parameters for PMDs 

 Contribution 5. New traffic microsimulation model based on neural networks to simulate the 

interaction between PMDs and vehicles. 

 Contribution 6. New traffic microsimulation model based on neural networks to simulate the 

interaction between PMDs and pedestrian. 

 

5.4. Perspectives and further research 

In the present thesis, different databases were used and the acquisition of a database in the eco 

neighborhood LaVallée was planned, however, this was not possible due to the extension of the 

deadlines for the implementation of the project and the arrival of the first residents. This is why one 

of the shortcomings of the proposed model and the proposed neuronal network architecture is 

based on data other than those of an eco neighborhood, but the methodology remains the same as 

that proposed in the thesis. That is why the following perspectives are proposed to extend this 

research work: 

1. Through the proposed methodology, verify if the neural network architecture proposed in this 

thesis shows satisfactory results for the simulation of a database collected in an eco-

neighborhood. This database can be acquired once the La Valle project is operational. 

2. In the present work two models are presented separately, one for the simulation with vehicle 

interaction and the second model with pedestrian interaction, that is why future work could 

focus on the connection and integration of both models in open source traffic simulation 

software such as SUMO. This will allow simulating the behavior of PMDs in different scenarios 

under the same framework. 

Further research works are currently in progress for submission, which are listed along: 

1. Valero, Y., Christoforou, Zhao, Z., Farhi, N. Long Short-Term Memory Neural Networks for 

modeling shared spaces between pedestrians, vehicles and PMDS.  
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Annex: 

Test of µ-scope with CEREMA4 data 

In the present thesis, a test of the u-scope software was realized with CEREMA. The results interface 

as well as the validation realized by CEREMA is presented below. 

Figure 50, shows the u-scope software interface where the location of the project under analysis can 

be observed. 

 

Figure 50. µ-scope software, localization of the project under analysis 

 

Figure 51, shows the u-scope software interface where a frame of the video under analysis can be 

observed on the left and on the right an orthophoto with real measurements of the area under 

analysis. 

                                                        
4
 is the major French public agency for developing public expertise in the fields of urban planning, regional cohesion 

and ecological and energy transition 
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Figure 51. µ-scope software, video frame and orthophoto of the analysis area 

 

Figure 52 shows the u-scope software interface where the vehicle counts classified every 5 minutes 

during a half-hour period are observed. It is important to note that the counting interval is 

configurable, i.e. the counts can be displayed at any desired time interval. The types of vehicles 

counted are: bicycle, bus, car, e-scooter, motorcycle, pedestrian and truck. 

 

Figure 52. µ-scope software, Vehicle counts each 5 minutes 
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Figure 53, show the u-scope software interface where the vehicle counts classified every 5 minutes 

during a half-hour period are observed in format of table. 

 

Figure 53. µ-scope software, Vehicle counts each 5 minutes in table 

Figure 54, shows the u-scope software interface where the trajectories of the vehicles after 

processing can be observed. 

 

Figure 54. µ-scope software, Vehicle trajectories after processing 
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Figure 55, shows the real speed measured by vehicle type. The graphic allows us to observe the 

mean speed, and the standard deviation. 

 

Figure 55. µ-scope software, Speed results, by vehicle type 

 

In Figure 56 the results of detection and tracking by type of vehicle are shown. As can be seen in the 

Figure, each road user is represented by an ID and is classified as car, pedestrian, bicycle, e-scooter, 

bus, truck, bus, truck and bus. 

The results are exported in the form of a video and a sql database, which contains the following 

information: position, velocity, acceleration and typology at each time instant. 
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Figure 56. u-scope software detection and tracking results 
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Figure 57. Comparison of u-scope with real data 

 

The Figure 57, shows a comparison of the percentage of flow by vehicle type from the µ-scope results and real results. The results 

clearly show a good performance of the µ-scope software. 

 

21% 

3% 

65% 

4% 
7% 

% Flow  reference 

17% 

4% 

67% 

4% 
8% 

% Flow µ-scope  



116 
 

 

Figure 58. Comparison bar of u-scope with real data  

The Figure 58, shows a comparison of the flow by vehicle type from the µ-scope results and real results. The results clearly show a 

good performance of the µ-scope software. This performance has allowed the use of the software in this thesis. 
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