
HAL Id: tel-04198469
https://theses.hal.science/tel-04198469

Submitted on 7 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formalisation et vérification des systèmes blockchain
Zeinab Nehaï

To cite this version:
Zeinab Nehaï. Formalisation et vérification des systèmes blockchain. Informatique et langage [cs.CL].
Université Paris Cité, 2022. Français. �NNT : 2022UNIP7046�. �tel-04198469�

https://theses.hal.science/tel-04198469
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT EN INFORMATIQUE
UNIVERSITÉ PARIS CITÉ

École Doctorale Sciences Mathématiques de Paris Centre (ED 386)
Institut de Recherche en Informatique Fondamentale

Formalisation et Verification des Systèmes
Blockchain

Formalisation and Verification of Blockchain Systems

Présentée et soutenue publiquement par

Zeinab Nehaï

Dirigée par

Hugues Fauconnier

Pour l’obtention du grade de docteur

Le 12 juillet 2022

Composition du jury :

Pierre Fraigniaud Directeur de recherche - Université Paris Cité Président du jury
Emmanuelle Anceaume Directrice de recherche - CNRS, IRISA Rapportrice
Yann Régis-Gianas Chercheur HDR - Nomadic labs Rapporteur
Cezara Drăgoi Chargée de recherche - ENS, INRIA Paris Examinatrice
Mihaela Sighireanu Professeur - ENS Paris-Saclay Examinatrice
François Bobot Ingénieur-chercheur - CEA List Co-Encadrant de thèse
Hugues Fauconnier Professeur - Université Paris Cité Directeur de thèse
Sara Tucci-Piergiovanni Cheffe de Laboratoire - CEA List invitée

ii

Résumé

Une blockchain est un système distribué qui permet de stocker des données ne pouvant être ni modi-
fiées ni supprimées. Bitcoin est la première application ayant implémenté la technologie blockchain
avec succès. Le but de Bitcoin est de pouvoir échanger de la monnaie virtuelle (des bitcoins) sans
passer par un intermédiaire de confiance, par exemple une banque. Les applications blockchain
sont très complexes, car elles sont constituées de plusieurs programmes, souvent tous liés les uns aux
autres. Une caractéristique qui a suscité un fort intérêt pour les blockchains est la possibilité d’écrire
des smart contracts. Ces derniers sont des programmes séquentiels dans lesquels des règles de transac-
tion peuvent être définies. Ce type de programme a révolutionné l’utilisation de la blockchain, no-
tamment dans le développement des applications décentralisées. Cependant, l’utilisation croissante
de la blockchain a fait émerger les limites de cette technologie. En effet, l’augmentation du nom-
bre de blockchains, a fait naître auprès des utilisateurs l’envie d’échanger avec d’autres utilisateurs
n’étant pas sur la même blockchain qu’eux. Pour répondre à ce cas d’utilisation, les applications ap-
pelées cross-chain swap ont été développées. Leur but est d’assurer l’échange d’actifs entre différents
utilisateurs se trouvant sur différentes blockchains. Les actifs peuvent être des crypto-monnaies ou
des actifs physiques qu’on a virtualisé. Ces applications sont souvent basées sur l’utilisation des
smart contracts pour établir les règles de transfert d’actifs. Bien qu’étant une technologie qui se pop-
ularise grandement, la blockchain souffre d’un manque de formalisme de ses systèmes. Par exemple,
le langage le plus répandu qui permet d’écrire des smart contracts est Solidity. C’est un langage avec
une sémantique non-formelle, rendant les smart contracts rédigés dans ce langage, vulnérable aux
attaques. De plus, un autre aspect dont souffre la blockchain est la présence de participants malveil-
lants, communément appelés participants Byzantins. Ces participants ont un comportement aléa-
toire, et sont susceptibles de ne pas suivre les règles du système. Ainsi, les systèmes, comme les
cross-chain swap, ont nécessairement besoin d’employer des moyens pour assurer leur bon fonction-
nement malgré la présence de Byzantins.

Un moyen d’y parvenir est l’utilisation des méthodes formelles. Ces techniques permettant de
raisonner rigoureusement, à l’aide de logique mathématique, sur un programme informatique, afin
de démontrer leur validité par rapport à une certaine spécification. La vérification de modèles et la
démonstration automatique de théorèmes sont des exemples de techniques de vérification. La vérifica-
tion demodèles est uneméthode d’abstraction de système pour en faire unmodèle à état. L’approche
consiste à vérifier que le modèle satisfait bien la spécification donnée. Quant à la démonstration
automatique de théorèmes, la méthode se base sur la formulation de théorème mathématique, du
raisonnement, et de la logique, pour prouver un ensemble de propositions.

Dans cette thèse, nous proposons d’appliquer ces méthodes de vérification aux systèmes que
nous avons cités, à savoir les smart contracts et les applications cross-chain swap. Dans un premier
temps, nous proposons le langage WhyML, dédié à la vérification formelle de programme, comme
langage d’écriture de smart contract. Le langage WhyML, se base sur de la logique mathématique
pour prouver l’exactitude du programme. L’approche est de définir un smart contract sous forme
de formules mathématiques et ensuite d’appliquer des outils qui permettent de prouver que les
formules sont vraies. En appliquant cette approche, on s’assure de la correction des contracts avant
leur stockage dans la blockchain. Les résultats obtenus à l’issue de cette première étude ont montré
que WhyML convenait comme langage d’écriture de smart contracts, permettant ainsi d’avoir des
programmes corrects par construction. Dans un second temps, nous appliquons des méthodes
de formalisme à des applications cross-chain swap. La première étape de cette formalisation est de

iii

définir une spécification formelle du problème des cross-chain swaps. L’approche consiste à définir
les propriétés qui caractérisent la spécification du problème, par exemple, la spécification se doit
d’être résiliente aux participants Byzantins. Dans les systèmes distribués, on caractérise deux types
de propriétés : les propriétés de sûreté, qui garantissent que “rien de mauvais n’arrivera”, et les
propriétés de vivacité qui garantissent que “quelque chose de bien finira par arriver”. La vivacité est
une propriété qui est exprimée en fonction du temps, ce qui n’est pas le cas de la sûreté. Ainsi, le
problème du cross-chain swap défini une propriété de sûreté et deux propriétés de vivacité.

La seconde étape est la construction d’un algorithme qui doit satisfaire la spécification du cross-
chain swap. Une fois ces deux étapes accomplies, nous appliquons desméthodes formelles à l’algorith-
me pour prouver sa correction. Pour cette approche, nous avons modélisé notre algorithme en
utilisant TLA+ qui est un langage spécifique pour modéliser des systèmes distribués et concurrents.
Nous avons ensuite vérifié si le modèle obtenu satisfait bien les propriétés du problème étudié.
Nous avons employé deux méthodes différentes en fonction des types de propriétés. Pour cette
vérification, nous avons appliqué la méthode par démonstration de théorème pour la preuve de la
sûreté, et la méthode de vérification de modèles pour vérifier les propriétés de vivacité. Les résultats
obtenus ont montré que l’algorithme du cross-chain swap que nous avons construit satisfaisait bien
les propriétés de la spécification du cross-chain swap.

Mots clés : méthodes formelles, vérification demodèles, démonstration automatique de théorèmes,
systèmes distribués,blockchain, smart contracts, cross-chain swap, why3, tla+.

iv

Abstract

A blockchain is a distributed system for storing data that cannot be changed or deleted. Bitcoin is
the first application to implement blockchain technology successfully. The purpose of Bitcoin is to
exchange virtual money (bitcoins) without going through a trusted intermediary, such as a bank.
Blockchain applications are very complex, as they consist of several programs that are often linked
to each other. One feature that has attracted much interest in blockchains is the ability to write
smart contracts. These are sequential programs in which transaction rules can be defined. This
type of program has revolutionised the use of blockchain, particularly in developing decentralised
applications. However, the increasing use of blockchain has brought to light the limits of this
technology. Indeed, the increase in the number of blockchains has given rise to the desire of users
to exchange with other users who are not on the same blockchain as them. To meet this use case,
applications called cross-chain swap have been developed. They aim to ensure the exchange of assets
between different users on different blockchains. The assets can be crypto-currencies or physical
assets that have been virtualised. These applications are often based on smart contracts to establish
the rules for the transfer of assets. Although blockchain is a rapidly growing technology, it suffers
from a lack of formalism in its systems. For example, Solidity is the most widely used language for
writing smart contracts. Solidity is a language with non-formal semantics, making smart contracts
written in this language vulnerable to attacks. In addition, another aspect that blockchain suffers
from is the presence of malicious participants, commonly known as Byzantine participants. These
participants have random behaviour and are likely not to follow the system’s rules. Thus, systems,
such as the cross-chain swap, need to employ means to ensure their proper functioning despite the
presence of Byzantine participants.

One way of doing this is through the use of formal methods. These are techniques for rigor-
ous mathematical logic reasoning about a computer program to demonstrate its validity against a
specific specification. Model-checking and automatic theorem proving are examples of verification
techniques. Model-checking is a method of abstracting a system into a state model and checking if
that model satisfies the given specification. As for automatic theorem proving, the method is based
on mathematical theorem formulation, reasoning, and logic, to prove a set of propositions.

In this thesis, we propose to apply these verificationmethods to the systems we havementioned,
namely smart contracts and cross-chain swap applications. First, we propose the WhyML language,
dedicated to formal program verification, as a smart contractwriting language. The language is based
on mathematical logic to prove the correctness of the program. The approach is to define a smart
contract in the form of mathematical formulas and then apply tools that prove that the formulas
are true. Applying this approach ensures that the contracts are correct before they are stored in
the blockchain. The results obtained from this first study showed that WhyML was suitable as
a language for writing smart contracts, thus allowing for programs correct by construction. In a
second step, we apply formalism methods to cross-chain swap applications. The first step of this
formalisation is to define a formal specification of the cross-chain swap problem. The approach
consists in defining the properties that characterise the specification of the problem; for example,
the specification must be resilient to Byzantine participants. In distributed systems, two types of
properties are characterised: safety properties, which guarantee that “nothing bad will happen”, and
liveness properties, which guarantee that “something good will eventually happen”. Liveness is a
property expressed as a function of time, which is not the case for safety. Thus, the cross-chain swap
problem defines one property of safety and two properties of liveness.

v

The second step is constructing an algorithm that must satisfy the specification of the cross-chain
swap. Once these two steps are completed, we apply formal methods to the algorithm to prove
its correctness. For this approach, we modelled our algorithm using TLA+, a specific language
for modelling distributed and concurrent systems. We then checked whether the resulting model
satisfies the properties of the problem under study. We used two different methods depending on
the types of properties. We applied the theorem proving method for the proof of safety and the
model checking method to verify liveness properties. The results obtained showed that the cross-
chain swap algorithm we constructed satisfies the properties of the cross-chain swap specification in
the presence of Byzantine participants.

Keywords: formal methods, model-checking, theorem proving, distributed systems, blockchain,
smart contracts, cross-chain swap, why3, tla+.

vi

Contents

Contents vii

I Introduction 1

0 Introduction En Français 3
0.1 Contexte et Motivation . 4
0.2 Contributions et Organisation . 11

1 Introduction 15
1.1 Context and Motivation . 16
1.2 Contributions and Organisation . 23

II Background 25

2 Basics of Distributed Systems and Blockchain 27
2.1 Basics of Distributed Systems . 28
2.2 Blockchain Overview . 34
2.3 Conclusion . 42

3 Formalisation and Formal Proof of Blockchain Systems 43
3.1 Proof of Smart Contracts . 44
3.2 Cross-Chain Swap Algorithms . 51
3.3 Conclusion . 59

4 Tools 61
4.1 Mathematical Logic Notations . 62
4.2 Why3 . 65
4.3 TLA+ . 71
4.4 Conclusion . 90

III A Formal Language for Writing Smart Contracts 93

5 Using Deductive Verification on Smart Contracts 95
5.1 A New Approach to Writing and Verifying Smart Contracts Using Why3 96
5.2 Use Case: The BEMP Decentralised Application . 105
5.3 Compiling WhyML Contracts and Proving gas Consumption 113
5.4 Conclusion . 116

vii

CONTENTS

IV Formalisation and Proof of a Blockchain Distributed Algorithm based on
Smart Contracts 119

6 Distributed Cross-Chain Swap Algorithm 121
6.1 Cross-Chain Swap Problem . 122
6.2 Problem Definition . 123
6.3 Protocol Specification . 125
6.4 Description of the Protocol Based on Proof-of-Actions 130
6.5 Pswap Implementation in TLA+ . 131
6.6 Conclusion . 148

7 Proof of Pswap Correctness 149
7.1 Proof of the Safety Property . 150
7.2 Proof of the Liveness Properties . 166
7.3 Conclusion . 173

8 Analysis of Pswap Instantiation in a Blockchain Environment 175
8.1 Pswap in a Blockchain Environment . 176
8.2 Protocol Compatibility with Different Known Blockchains 185
8.3 Conclusion . 189

V Conclusion 191

9 Conclusion 193
9.1 General Conclusion of the Thesis . 194
9.2 Future Work . 195

A Appendix I
A.1 Two-Phase Commit TLA+ Code . I
A.2 Pswap TLA+ Code . III

References XIII

List of Figures XXV

List of Tables XXVII

Listings XXIX

viii

Part I

Introduction

1

Chapter 0

Introduction En Français

“ Ce n’est pas assez d’avoir l’esprit
bon, mais le principal est de
l’appliquer bien. ”

– René Descartes

Contents
0.1 Contexte et Motivation . 4

0.1.1 Les Bases de la Blockchain . 5
0.1.2 Vulnérabilités des Smart Contracts . 7
0.1.3 Interopérabilité entre les Blockchains . 8
0.1.4 Correction des Applications de Cross-Chain Swap 8
0.1.5 Les Méthodes Formelles . 9

0.2 Contributions et Organisation . 11

3

CHAPTER 0. INTRODUCTION EN FRANÇAIS

0.1 Contexte et Motivation

Imaginons deux personnes, Alice, une investisseuse vivant à Paris, et Bob, un propriétaire d’immo-
bilier vivant à Séoul. Alice souhaite investir une grosse somme d’argent dans un bien immobilier
dont Bob est propriétaire. Elle ne prévoit pas de se rendre en Corée du Sud et souhaite investir à
distance. Il en va de même pour Bob, qui ne souhaite pas se rendre en France. Les deux personnes
ne sont pas amies et ne se font pas confiance. Elles doivent donc trouver un moyen efficace et sûr
d’effectuer la transaction.

Une solution consiste à faire appel à un tiers ou à un intermédiaire. Appelons cet intermédiaire
Charlie. La transaction se déroule comme suit : Alice donne à Charlie l’argent à investir. Bob fait
de même et donne les droits immobiliers d’Alice à Charlie. Charlie a maintenant l’argent et les
droits en sa possession et peut ensuite transférer l’argent à Bob et les droits à Alice. Cependant,
Alice et Bob doivent faire confiance à Charlie. Charlie a un pouvoir total sur les actifs d’Alice et
de Bob et peut décider de ne pas conclure la transaction et de repartir avec l’argent et les droits
immobiliers. De plus, Alice ne peut pas envoyer l’argent directement à Bob via sa banque, car elle
ne peut pas garantir que Bob reconnaîtra l’investissement une fois qu’il aura reçu son argent. Les
solutions proposées jusqu’à présent ne sont pas suffisamment efficaces pour les deux personnes, car
l’une ou l’autre peut être perdante lors du transfert. Le principal problème des solutions citées est
que les transactions sont exécutées de manière centralisée et nécessitent une partie de confiance. Par
conséquent, nous pouvons imaginer qu’une solution décentralisée pourrait résoudre le problème.

Des systèmes tels que Bitcoin [144] ou Ethereum [50] fournissent précisément une solution dé-
centralisée, permettant des transactions en ligne utilisant un système décentralisé pour envoyer de
l’argent ou d’autres données numériques directement d’une partie à une autre sans dépendre d’un
tiers. Ces systèmes sont basés sur la technologie blockchain [144]. La blockchain a fait l’objet d’une
attention croissante ces dernières années. Un système blockchain est un grand registre distribué
qui stocke des données et ne peut être modifié. Cette technologie populaire a été appliquée à la
finance [166], aux dossiers médicaux [75], et même à la politique avec le vote numérique [84]. Les
transactions de diverses données peuvent être améliorées en utilisant des smart contracts [187].

Les smart contracts sont des programmes informatiques qui permettent de définir des règles de
transactions. Lorsque le smart contract est écrit et approuvé par les deux parties, le contrat peut
être stocké dans la blockchain, et personne ne peut le modifier. Par conséquent, si nous supposons
que les droits immobiliers peuvent être dématérialisés et envoyés par voie numérique, Alice et Bob
peuvent utiliser efficacement une blockchain et un smart contract pour réaliser la transaction. Les
deux parties doivent établir un smart contract qui permet l’échange d’actifs de manière contrôlée
et automatique. Les deux parties se mettent d’accord sur les conditions et les règles du transfert.
Par exemple, une règle qui pourrait être énoncée dans le contrat serait que l’échange d’actifs doit
se faire de manière atomique. Alice reçoit les droits immobiliers en même temps que Bob reçoit
l’argent. Cette règle garantit que Bob ne peut pas récupérer l’argent d’Alice sans lui donner les droits
immobiliers. Une fois écrit et exécuté sur la blockchain, le smart contract agira comme Charlie.
Alice apporte son investissement au contrat, et Bob fait de même avec les droits immobiliers. Les
deux parties obtiendront leurs actifs si les conditions du contrat sont remplies.

Cependant, pouvons-nous être sûrs que la transaction aura lieu en toute sécurité ?
Par sécurité, on entend que la transaction se déroule comme il se doit, sans bugs ni erreurs pen-

dant son exécution. Néanmoins, le processus de transfert est basé sur des programmes informatiques
tels que les smart contracts et la blockchain. Nous sommes confrontés à un problème commun :
Tout logiciel ou ordinateur peut comporter des bugs ou des erreurs. Un bug dans la blockchain
peut avoir de graves conséquences, par exemple la perte d’argent d’Alice ou les droits immobiliers
de Bob. En outre, nous sommes également confrontés à un éventuel mauvais comportement des
deux parties. Pour garantir une transaction sûre, nous devons appliquer des méthodes ou des tech-
niques pour vérifier les programmes dont dépend la transaction.

4

CHAPTER 0. INTRODUCTION EN FRANÇAIS

Les méthodes formelles sont un moyen rigoureux et fiable de s’assurer qu’un programme fonc-
tionne sans bugs. Elles désignent des techniques et un ensemble de notations permettant de mod-
éliser et d’analyser des systèmes complexes en tant qu’entités mathématiques. La construction d’un
modèle mathématique d’un système et l’utilisation de preuves mathématiques permettent de véri-
fier ses propriétés afin de garantir un comportement correct. Il existe un large éventail de techniques
de vérification pour établir la justesse d’un système. Cette thèse se concentre sur les techniques de
vérification de modèles [58] et de démonstration automatique de théorèmes [163]. En appliquant l’une
des méthodes de vérification au système dont dépend la transaction d’Alice et Bob, nous pouvons
garantir que la transaction peut être effectuée efficacement par la blockchain et en toute sécurité par
des méthodes formelles. Ce scénario d’échange d’actifs entre Alice et Bob basé sur la blockchain
a motivé les travaux réalisés dans cette thèse. Les principaux travaux de recherche peuvent être
formulés comme suit :

• Comment s’assurer que le smart contract utilisé par Alice et Bob soit correct et respecte les
conditions de transfert ?

• En supposant que le smart contract soit correct, comment garantir le transfert des actifs dans
l’hypothèse où l’une des deux parties se comporterait de manière malveillante ? C’est-à-dire
qu’elle ne respecterait pas les règles de transfert.

Dans ce qui suit, nous donnons un aperçu de la technologie utilisée dans cette thèse, comme les
bases de la blockchain et les méthodes formelles, et nous expliquons notre contribution.

0.1.1 Les Bases de la Blockchain

Un système blockchain est un grand registre de comptes distribué et décentralisé. Le terme décen-
tralisé fait référence aux niveaux de contrôle et de prise de décision. Dans les systèmes décentralisés,
il n’y a pas d’entité centrale de contrôle. Au lieu de cela, le contrôle est partagé entre plusieurs en-
tités indépendantes. Le terme distribué fait référence aux niveaux de localisation. Dans un système
distribué, toutes les parties du système sont situées dans des lieux physiques distincts.

La blockchain est devenue connue comme la technologie sous-jacente qui permet l’existence des
crypto-monnaies. Le bitcoin [144], la crypto-monnaie la plus connue, est le premier exemple de
mise en œuvre réussie de la technologie blockchain. Il s’agit d’unemonnaie numérique décentralisée
que les utilisateurs peuvent transférer anonymement sans l’interférence d’une autorité tierce en en-
voyant la monnaie en pair à pair à travers le réseau Bitcoin. Les crypto-monnaies de l’utilisateur sont
stockées dans des portefeuilles numériques. Outre le bitcoin, d’autres crypto-monnaies sont égale-
ment alimentées par la technologie blockchain comme l’ether [50] (la crypto-monnaie d’Ethereum).
Aumoment d’écrire ces lignes, il existe pas moins de 10 000 autres crypto-monnaies en circulation 1.

La structure d’une chaîne de blocs. La blockchain conserve un historique en croissance con-
tinue d’informations ordonnées inaltérables organisées en une chaîne de blocs, comme le montre
la Figure 1. Un bloc est identifié par un hachage généré à l’aide d’un algorithme de hachage cryp-
tographique et possède une hauteur qui lui permet d’être positionné dans la chaîne ; le bloc N est
plus ancien que le bloc N + 1, qui est lui-même plus ancien que le bloc N + 2. Chaque bloc fait
référence au bloc précédent dans la chaîne, appelé bloc parent, par le biais du champ “Hash du bloc
...” de la Figure 1. Un bloc contient le hachage de son parent ; ainsi, la séquence de hachages reliant
chaque bloc à son parent crée une chaîne remontant au premier bloc jamais créé, connu sous le nom
de genesis block. Le genesis block est le premier bloc de la blockchain. C’est l’ancêtre commun de
tous les blocs, ce qui signifie que si l’on part de n’importe quel bloc et que l’on suit la chaîne en re-
montant dans le temps, on finit par arriver au genesis block. Sans ce composant, il n’y aurait pas de
chronologie et de connexion entre chaque bloc. Un autre composant important de la Figure 1 est la

1Données de février 2022 provenant du site web : https://www.statista.com/statistics/863917/

number-crypto-coins-tokens/

5

https://www.statista.com/statistics/863917/number-crypto-coins-tokens/
https://www.statista.com/statistics/863917/number-crypto-coins-tokens/

CHAPTER 0. INTRODUCTION EN FRANÇAIS

Figure 1 – Structure de données d’une blockchain

liste des transactions. Cette liste est une structure de données conteneur regroupant les transactions
confirmées dans le bloc. Chaque transaction émise et confirmée par la blockchain est stockée dans
un bloc afin d’avoir une traçabilité des transactions.

Mécanisme de consensus. Les blocs sont ajoutés à la blockchain par un mécanisme de consensus
qui garantit la préservation de la structure de la chaîne. Les utilisateurs chargés de la validation des
blocs doivent se mettre d’accord sur le prochain bloc ajouté afin d’éviter les forks. On parle de fork
lorsque deux ou plusieurs utilisateurs de la blockchain ont une vision différente de la chaîne. Il
existe différents mécanismes de consensus, et chacun a ses spécificités. On peut citer, Proof-of-Stake
(PoS) [178], Proof-of-Authority (PoA) [66], et Practical Byzantine Fault-Tolerant (PBFT) [54]. Dans
le cas de Bitcoin, le mécanisme de consensus est le Proof-of-Work (PoW) qui nécessite la résolution
d’un calcul cryptographique pour avoir le droit d’ajouter un bloc. Dans Bitcoin, les utilisateurs qui
effectuent le calcul sont appelés mineurs. Cependant, le consensus PoW n’offre pas une cohérence
solide, car des forks peuvent se produire, ce qui entraîne des problèmes critiques. Pour surmonter ce
problème, de nouvelles techniques d’ajout de blocs ont vu le jour. Ces techniques garantissent qu’un
fork ne peut pas se produire, en supposant des hypothèses claires. Ces mécanismes de consensus,
par exemple PBFT , définissent un ensemble de validateurs pour valider les blocs et un sous-ensemble
de validateurs signe chaque bloc.

Smart contracts. Une caractéristique qui a suscité un vif intérêt pour les blockchains est l’écriture
de smart contrats [187]. Un contrat est un ensemble de promesses qui reconnaît et régit les devoirs
et les règles de transaction préétablies découlant d’accords entre des participants non-confiants, qui
sont appliqués par le consensus de la blockchain [57].

Nick Szabo a proposé pour la première fois des smart contrats en 1994 [172]. Szabo a défini
les smart contrats comme des protocoles de transaction informatisés qui exécutent les termes d’un
contrat. Des années après l’article de Szabo, les smart contrats ont été popularisés par Ethereum
publié en 2015 [187]. Un smart contrat est devenu un protocole numérique écrit dans un langage
de programmation de haut niveau. Par exemple, Solidity [78] est le langage de programmation de
contrat d’Ethereum. Chaque contrat Solidity est identifié par une adresse et contient une quantité
d’ethers, la crypto-monnaie d’Ethereum. Un contrat est un programme séquentiel impératif et
exécutable qui s’exécute dans les blockchains. Cela consiste en un ensemble d’instructions pour
effectuer des actions spécifiques. Il peut manipuler des fonctions et des variables et invoquer d’autres
contrats en envoyant des transactions à l’adresse du contrat cible.

L’architecture blockchain. L’architecture blockchain peut être vue en couches, comme le mon-
tre la Figure 2. La couche matérielle peut être considérée comme la couche sur laquelle le système
blockchain est construit. Le contenu de la blockchain (les blocs et les transactions) est stocké dans
des serveurs physiques situés quelque part sur terre. En d’autres termes, la couche matérielle stocke
la couche de données qui se compose des éléments de la Figure 1. La couche réseau représente la
communication entre les utilisateurs de la blockchain. Lorsqu’un bloc est créé dans la blockchain,
il est propagé à tous les utilisateurs de la blockchain. Cette propagation s’effectue en pair à pair
à travers la couche réseau. Comme mentionné précédemment, les utilisateurs de la blockchain

6

CHAPTER 0. INTRODUCTION EN FRANÇAIS

Couche application smart contracts . dapps

Couche consensus PoW . PoS . PBFT

Couche réseau pair à pair (p2p)

Couche données transactions . blocs

Couche matérielle machines virtuelles . serveurs

Figure 2 – Les couches d’une blockchain

doivent effectuer un mécanisme de consensus pour ajouter des blocs à la chaîne. La couche de con-
sensus est chargée de valider les blocs, de les ordonner et de garantir que tout le monde est d’accord.
Cette couche est l’une des fonctions les plus critiques des blockchains. La dernière est la couche
d’application qui comprend les programmes que les utilisateurs finaux utilisent pour interagir avec
la blockchain, par exemple les smart contracts et les applications décentralisées (dapp). Une appli-
cation décentralisée (dapp) est construite sur un réseau décentralisé qui combine un smart contract
et une interface utilisateur frontale.

0.1.2 Vulnérabilités des Smart Contracts

Les smart contracts sont un sujet d’actualité depuis leur apparition en 2015. Les avantages qu’ils pro-
curent ont contribué à populariser l’utilisation de la blockchain. On trouve des smart contracts dans
de nombreux domaines, de la finance [166] à l’agriculture [160]. Bien qu’il existe différents types de
contrats sur le marché, tels que Michelson [173] et Chaincode [21], Solidity reste dominant quant au
nombre de contrats déployés sur la blockchain. Solidity a connu une explosion d’utilisation, mais est
maintenant victime de son succès. L’utilisation accrue des contrats s’est faite au détriment de la sécu-
rité des contrats. Au fil du temps, il est devenu évident que les contrats présentent plusieurs failles
et vulnérabilités. Ils sont souvent confrontés à des attaques croissantes exploitant les vulnérabilités
d’exécution des smart contracts, ce qui conduit à d’importants scénarios malveillants. L’une des
attaques les plus connues est l’attaque “the DAO” [24]. Un DAO, pour “decentralised autonomous
organisation”, est un smart contract déployé sur la blockchain Ethereum qui fonctionne comme
un fonds de capital-risque décentralisé. Un hacker a exploité de manière récursive une faille dans
le code de “the DAO” qui lui a permis de collecter des ethers dans une DAO secondaire à plusieurs
reprises. L’attaque a entraîné une perte de 3,6 millions d’ethers.

Un autre exemple d’attaque contre les smart contracts est le “Parity Wallet Hack” [8]. Par-
ity [7] est une société qui construit des infrastructures blockchain dans l’écosystème Ethereum, et
les portefeuilles sont des smart contracts qui stockent de l’argent. L’origine de la faille provient
d’une bibliothèque qui est elle-même un smart contract. Ce contrat bibliothèque possède des fonc-
tions permettant de créer des portefeuilles multi-signatures. Les portefeuilles multi-signatures sont
comme les portefeuilles ordinaires en ce sens qu’ils sont également des smart contracts, mais ils
nécessitent plusieurs approbations pour retirer un montant quelconque du portefeuille. Tous les
portefeuilles multi-signatures créés dépendent de la bibliothèque. Un hacker a profité d’une faille
dans le contrat pour contrôler la bibliothèque, rendant tous les portefeuilles dépendants inutiles.
Tous les fonds stockés dans les portefeuilles Parity affectés ne pouvaient plus être retirés. Les porte-
feuilles affectés avaient une somme estimée à 500 000 ethers.

Ces exemples montrent qu’une vulnérabilité dans un smart contract peut avoir de graves con-
séquences. De plus, les erreurs dans les smart contracts, une fois publiées, ne peuvent pas être
corrigées en raison de la nature immuable de la blockchain.

7

CHAPTER 0. INTRODUCTION EN FRANÇAIS

Dans cette thèse, nous étudions, en particulier, les vulnérabilités des smart contracts écrits en
Solidity. L’étude montre que Solidity présente différentes causes de bugs qui augmentent sa vulnéra-
bilité aux attaques.

0.1.3 Interopérabilité entre les Blockchains

Revenons à l’exemple d’Alice et Bob, qui utilisent la blockchain pour effectuer des transferts d’actifs.
Supposons que l’argent d’Alice soit sur une blockchain différente de celle de Bob, où les droits de
propriété sont numérisés. La question est de savoir comment effectuer l’échange en sachant que les
deux actifs sont sur des blockchains différentes ? Cette question devient courante à mesure que la
technologie blockchain devient populaire dans de nombreux domaines. Ainsi, son utilisation a con-
sidérablement augmenté ces dernières années depuis la création de nombreuses crypto-monnaies et
blockchains. Le besoin de communication entre les différentes blockchains est apparu chez les util-
isateurs. Par conséquent, le développement d’infrastructures permettant la communication entre
elles est devenu nécessaire.

En 1996, Wegner a déclaré que “l’interopérabilité est la capacité de deux ou plusieurs composants
logiciels à coopérer malgré les différences de langage, d’interface et de plate-forme d’exécution” [183].
Améliorer l’interopérabilité entre les blockchains semble être la solution pour établir des moyens
d’échange entre elles. L’avantage d’assurer l’interopérabilité entre les blockchains est d’explorer de
nouvelles fonctionnalités, de mettre à l’échelle les fonctionnalités existantes et de créer de nouveaux
cas d’utilisation, par exemple le cas d’Alice et Bob, qui devraient pouvoir transférer leurs actifs d’une
blockchain à l’autre.

Il existe plusieurs techniques d’interopérabilité pour permettre la communication entre les block-
chains [35]. Certaines permettent l’échange entre blockchains de la même famille, c’est-à-dire que
les blockchains doivent être du même type et sont construites selon les mêmes règles. D’autres
permettent la communication entre des blockchains qui ne sont pas de la même famille, c’est-à-dire
que les blockchains ont des règles et des mécanismes de fonctionnement différents. En fonction du
type de blockchain, le système assurant l’interopérabilité sera différent. En effet, une blockchain
peut être décrite comme permissioned, permissionless, public, et private. La caractéristique de per-
missioned/permissionless fait référence à l’anonymat des utilisateurs, tandis que public/private fait
référence à la participation au mécanisme de consensus. Cette thèse se concentre sur un système qui
aborde ces questions d’applications distribuées pour le commerce d’actifs exploitant des smart con-
tracts. Récemment, une application basée sur les smart contracts a gagné en popularité, à savoir les
applications d’échanges inter-chaîne (cross-chain swap). Ces applications permettent aux utilisateurs
de différentes blockchains de transférer des actifs de manière décentralisée et sans l’intervention
d’un intermédiaire. Certaines applications cross-chain swap nécessitent une synchronisation entre
les utilisateurs du système pour procéder au transfert ; d’autres ne le font pas, c’est-à-dire que le
système peut être exécuté dans un environnement asynchrone, ce qui implique que les utilisateurs
n’ont pas à synchroniser leurs actions.

0.1.4 Correction des Applications de Cross-Chain Swap

Un système d’échanges inter-chaîne implique plusieurs participants qui exécutent des actions du
système pour atteindre un objectif commun connu. Cependant, ces systèmes sont compliqués à
gérer, car ils sont distribués et souvent sujets à des comportements involontaires, c’est-à-dire des
utilisateurs malveillants. Les auteurs de [193] prouvent qu’aucun système cross-chain asynchrone
n’est tolérant aux utilisateurs malveillants à moins de supposer un tiers de confiance. Ce tiers de
confiance peut être centralisé ou décentralisé, par exemple une autre blockchain. Le problème
qui peut se poser est qu’un système qui prétend être tolérant aux utilisateurs malveillants dans
un environnement asynchrone ne l’est pas. Par conséquent, les participants corrects du système
peuvent être perdants à la fin de l’exécution du système.

8

CHAPTER 0. INTRODUCTION EN FRANÇAIS

Compte tenu de ces problèmes, il est apprécié d’appliquer une correction comportementale
à de tels systèmes. La correction comportementale est la capacité de garantir que le système est
exécuté comme prévu, sans conséquences involontaires, par exemple le verrouillage ou le vol d’actifs.
Un moyen est de s’assurer que le système (ou l’algorithme du système 2) soit correct en ce qui
concerne sa spécification. Par exemple, on applique des méthodes de vérification formelle pour
vérifier l’exactitude des algorithmes en fonction d’une spécification. Cependant, quand on parle
de vérification formelle, on parle de vérification automatique ou semi-automatique, qui implique
l’utilisation d’outils de vérification. Par ailleurs, il est essentiel de définir une spécification réaliste
pour un problème de cross-chain swap. Par exemple, plusieurs spécifications existantes de cross-chain
swap incluent la propriété d’atomicité, même dans un environnement asynchrone [191]. L’atomicité
fait référence au transfert de tous les actifs ou d’aucuns. Cependant, cette propriété ne semble pas
satisfaite dans un système avec des participants malveillants ; ainsi, l’atomicité est souvent remise
en question.

Dans cette thèse, nous présentons une spécification du problème cross-chain swap ainsi qu’un
algorithme satisfaisant la spécification. Nous expliquons comment nous assurons un algorithme
sûr en supposant la présence de participants malveillants dans un environnement asynchrone sans
assurer l’atomicité.

0.1.5 Les Méthodes Formelles

Les systèmes logiciels augmentent inévitablement en taille et en fonctionnalité ; le nombre d’erreurs
subtiles augmente avec la complexité. Une erreur ou un bug est un problème courant que tout pro-
gramme informatique peut rencontrer. Elle peut provenir d’une mauvaise écriture du programme,
d’une faute de frappe ou d’une mauvaise gestion de la mémoire. De plus, certaines de ces erreurs
peuvent devenir un problème important et entraîner des pertes catastrophiques d’argent, de temps,
voire de vie humaine. On peut citer le tristement célèbre crash d’ARIANE 5 [72]. Il est donc néces-
saire de construire des systèmes, et en particulier des systèmes critiques, en tenant compte de cette
complexité. Les méthodes formelles font référence aux techniques et notations logiques permettant
de modéliser et d’analyser des systèmes complexes en tant qu’entités mathématiques. La construc-
tion d’un modèle mathématique d’un système et l’utilisation de preuves mathématiques permettent
de vérifier ses propriétés pour garantir un comportement correct. Elles s’appliquent aussi bien aux
programmes séquentiels qu’aux programmes distribués.

Une propriété est une caractéristique d’un programme qui est vraie pour chaque exécution pos-
sible de ce programme. Les propriétés d’intérêt pour les programmes distribués se divisent en deux
catégories : sûreté et vivacité. Une propriété de sûreté affirme que “rien de mauvais n’arrivera pen-
dant l’exécution”, c’est-à-dire que le programme n’atteint pas un mauvais état. Les propriétés de
sûreté représentent des exigences que le système doit maintenir en permanence. Elles expriment
souvent des propriétés d’invariance. La propriété de vivacité affirme que “quelque chose de bon finira
par arriver”, c’est-à-dire que le programme doit finir par atteindre un bon état. Les propriétés de
vivacité représentent des exigences qui n’ont pas besoin d’être maintenues en permanence, mais
qui doivent garantir une réalisation éventuelle (ou répétée). Habituellement, dans les programmes
séquentiels, ce qui est prouvé, ce sont les propriétés de sûreté.

La vérification formelle des programmes est un domaine de recherche actif depuis les débuts de
l’informatique, et diverses techniques sont apparues depuis. Nous distinguons trois grandes familles
d’approches de la vérification : la vérification de modèles, l’interprétation abstraite et la démonstration
automatique de théorèmes.

Démonstration automatique de théorèmes

La démonstration de théorèmes, ou démonstration automatisée de théorèmes, repose sur la for-
mulation d’un théorème mathématique, le raisonnement et la logique, pour prouver un ensem-
ble de propositions. Elle peut être utilisée pour traiter des systèmes infinis. Ces systèmes sont

2Un algorithme caractérise une suite d’étapes qui permet de fournir un résultat à partir d’éléments d’entrée [134].

9

CHAPTER 0. INTRODUCTION EN FRANÇAIS

Vérificateur
de preuve

Objectif de preuve φ Théorèmes S

S satisfait φφ est prouvé

Analyse
humaine

Modifier SModifier φ

oui

non

Figure 3 – Processus interactif de démonstration de théorèmes

définis et spécifiés par les utilisateurs dans une logique mathématique appropriée. Les prouveurs
de théorèmes vérifient les propriétés fondamentales et critiques du système et utilisent des tech-
niques d’aide à la preuve. Les fondements de la preuve automatique de théorèmes sont la logique
propositionnelle, la logique du premier ordre et la logique de l’ordre supérieur [107]. L’utilisation de
ces langages permet d’énoncer rigoureusement un large éventail de problèmes de manière non-
ambiguë. La logique propositionnelle est utilisée pour représenter les propositions atomiques à
l’aide d’opérateurs booléens mathématiques. La logique du premier ordre est l’extension de la
logique propositionnelle qui autorise les quantificateurs. La logique des prédicats est la catégorie
générale à laquelle appartient la logique du premier ordre. La logique d’ordre supérieur étend la
logique du premier ordre en supportant de nombreux types de quantification. La logique de l’ordre
supérieur permet aux prédicats d’accepter des prémisses (également des prédicats) et permet la quan-
tification sur les prédicats et les fonctions, ce qui n’est pas le cas pour la logique du premier ordre.
Cependant, dans cette thèse, nous utilisons la logique propositionnelle et la logique du premier
ordre.

La Figure 3 illustre le cadre interactif du prouveur de théorème pour construire une preuve
vérifiée mécaniquement. Une étape automatique et une étape d’interaction humaine sont menées
consécutivement pour chaque objectif de preuve. Une méthodologie de preuve interactive com-
mence par la construction manuelle de la preuve, qui consiste à décrire le but de la preuve φ et à
fournir les théorèmes correspondants S qui sont soit prouvés soit supposés. Étant donné le but
de la preuve φ et un ensemble de théorèmes S comme exigences écrites dans un langage de spé-
cification formel, un prouveur de théorèmes automatique peut être lancé comme indiqué dans la
Figure 3 pour déduire automatiquement la preuve en utilisant les règles ou les calculs intégrés mis
en œuvre dans ces prouveurs. Si le but de la preuve φ est mécaniquement dérivable de l’ensemble
des théorèmes S , le prouveur répondra avec une preuve le vérifiant. Sinon, en fonction de l’analyse
humaine, soit les théorèmes, soit le but doivent être modifiés.

Des outils comme Dafny [130], Frama-C [64], VeriFast [109], et Why3 [83] prouvent des pro-
grammes en utilisant cette technique appelée aussi la vérification déductive. Par exemple, Why3 est
une plateforme de vérification déductive de programmes. Elle fournit un langage riche pour la
spécification (code logique) et la programmation (code impératif) appelé WhyML.

Vérification de modèles

La vérification de modèles est une technique de vérification formelle automatique basée sur une
description du comportement compris dans une machine à états finis [58]. Cette technique effectue
une inspection systématique efficace de toutes les séquences d’états possibles décrites par le modèle.
La technique prouve si le modèle satisfait certaines propriétés comportementales. La sémantique de
la machine à états est donnée par un système de transitions qui peut être plus ou moins complexe.

10

CHAPTER 0. INTRODUCTION EN FRANÇAIS

Modélisation de la
mise en œuvreM

Spécifications des
propriétés φ

M satisfait φM satisfait les propriétés

Jouer un contre-exemple

Modifier φModifier M
Analyse
humaine

oui

non

Figure 4 – Processus de la vérification de modèles

Un système de transitions va des machines à états finis (automates finis) aux programmes réels (ma-
chines de Turing). Ainsi, le principal défi de la vérification de modèles est l’explosion combinatoire
du modèle. Néanmoins, cette technique est pertinente pour vérifier les spécifications partielles au
début du processus de conception [58]. La Figure 4 représente le processus de vérification de mod-
èles, qui vérifie si le modèle M d’un système satisfait ou non sa spécification φ écrite sous forme
de formule logique. Si le modèle viole une propriété considérée, la vérification de modèles fournit
un contre-exemple d’une séquence qui conduit à la propriété de violation. Le contre-exemple peut
être avantageux pour adapter le modèle (ou la spécification). En effet, de nombreuses applications
industrielles réussies témoignent de la performance des outils de vérification de modèles [27].

Un large choix d’outils effectue la vérification de modèles, dont la toolbox TLA+ [120]. TLA+

utilise comme vérificateur de modèle TLC [190] qui fournit une plateforme pour vérifier le mod-
èle des spécifications écrites dans le langage TLA+. Parmi les autres outils existants, SPIN [106],
ProB [131], UPPAAL [96] et NuSMV [55] peuvent être cités pour représenter trois types de vérifi-
cateurs de modèles basés sur différentes techniques de modélisation [85].

Interpretation abstraite

La résolution de la fiabilité des programmes informatiques est un problème bien connu dans le do-
maine des logiciels. L’analyse statique du comportement des programmes pendant leur exécution
fournit des solutions à ce problème. Cependant, ce moyen d’analyse peut être indécidable et néces-
site une certaine forme d’approximation. L’objectif de l’interprétation abstraite est de formaliser
cette idée d’approximation [63].

L’interprétation abstraite est basée sur un raisonnement sémantique abstrait, moins précis mais
plus facile à manipuler. Par conséquent, certaines informations seront volontairement perdues,
résultant d’une exécution partielle d’un programme informatique. Cette méthode permet d’obtenir
des informations sur la sémantique du programme sans effectuer tous les calculs.

Cette méthode est appliquée à la sûreté et à la sécurité des systèmes informatiques matériels
et logiciels complexes. Sa principale application est l’analyse statique formelle et l’extraction au-
tomatique d’informations sur les exécutions possibles des programmes informatiques. Ces analyses
ont deux usages principaux : à l’intérieur des compilateurs, pour analyser les programmes afin de
décider si des optimisations ou des transformations spécifiques sont applicables, pour le débogage,
ou même la certification des programmes contre des classes de bugs.

0.2 Contributions et Organisation

Cemanuscrit est organisé comme suit. Le Chapitre 2 fournit un contexte théorique sur la technolo-
gie utilisée dans cette thèse, et le Chapitre 3 présente l’état de l’art sur les aspects de la recherche

11

CHAPTER 0. INTRODUCTION EN FRANÇAIS

abordés dans cette thèse et donne un aperçu de ce qui existe pour fournir un positionnement sci-
entifique claire. Le Chapitre 4 fournit les contextes techniques tels que les notations et les outils
utilisés tout au long du manuscrit. Les Chapitres 5, 6, 7, et 8 présentent les résultats techniques de
cette thèse, et le Chapitre 9 donne une conclusion générale sur les différents résultats et les directions
pour les travaux futurs dans la continuité des résultats obtenus dans ce manuscrit.

Dans ce qui suit, nous donnons un aperçu des contributions de la thèse.

Des smart contracts corrects et prouvés. Les systèmes de blockchain manipulent les informa-
tions relatives aux crypto-monnaies et aux transactions par le biais de smart contracts. Par con-
séquent, si un bug survient dans la blockchain, de graves conséquences peuvent se produire, comme
par exemple la perte d’argent. Un contrat peut définir n’importe quel ensemble de règles représen-
tées dans son langage de programmation (Par exemple, Solidity pour Ethereum), permettant ainsi la
mise en œuvre d’applications décentralisées. Les smart contracts sont des programmes qui présen-
tent des vulnérabilités pouvant être exploitées et attaquées. Il est crucial de garantir des smart con-
tracts sûrs et corrects et d’éviter les bugs informatiques avant leur utilisation. Il serait intéressant
d’utiliser des langages formels pour écrire, vérifier et compiler de tels programmes et définir leurs
propriétés.

Cette thèse propose un langage dédié à la vérification déductive, appelé WhyML, pour être un
nouveau langage d’écriture de smart contracts formels et vérifiés. L’objectif est d’éviter les attaques
exploitant les vulnérabilités d’exécution de ces contrats. Nous appliquons les concepts de la véri-
fication déductive et développons une méthodologie de preuve des smart contracts. La méthode
présentée a été appliquée à un cas d’utilisation qui décrit une place de marché de l’énergie permet-
tant le commerce local de l’énergie entre les habitants d’un quartier. La modélisation qui en résulte
permet d’établir un contrat d’échange non-trivial pour mettre en relation des consommateurs et
des producteurs désireux d’échanger de l’énergie. En outre, ce dernier point démontre qu’avec une
approche déductive, il est possible de modéliser et de prouver des programmes à une échelle réaliste,
permettant ainsi la vérification de propriétés fonctionnelles plus réalistes.

Cette contribution, détaillée dans le Chapitre 5, a été publiée et présentée dans les actes d’une con-
férence évaluée par des pairs [146].

Description d’un algorithme de cross-chain swap, Pswap , et sa vérification formelle. Une fois
stocké dans la blockchain, tout utilisateur de la blockchain peut utiliser et appeler un smart contract,
y compris d’autres smart contracts. Par conséquent, les applications blockchain peuvent exploiter
les smart contracts stockés et les utiliser pour répondre aux besoins de l’application. Les applications
cross-chain swap sont de tels systèmes qui utilisent des smart contracts pour réaliser des transactions
entre utilisateurs. Les avantages de ce type de système ont donné lieu à de nombreux articles de
recherche ces dernières années. Cependant, la plupart d’entre eux ne sont pas suffisamment formels
et ne reflètent pas la réalité. Dans cette thèse, nous avons modélisé formellement un algorithme qui
permet des échanges inter-chaîne entre différents registres distribués appeléPswap . En effet, puisque
qu’un registre distribué est une classe haut niveau des blockchain, l’algorithme Pswap abstrait toute
notion de blockchain afin de ne pas limiter son cadre d’application aux blockchains. De plus, cet
algorithme satisfait une spécification réaliste qui prend en compte des hypothèses d’implémentation
jamais considérées dans la littérature. Ainsi, la spécification est tolérante aux utilisateurs malveil-
lants, sans hypothèses de proportions, que l’on retrouve le plus souvent dans les systèmes distribués.
La spécification définit une propriété de sûreté et une propriété de vivacité qui reste satisfaite même
dans un environnement asynchrone. De plus, la description de l’algorithme est définie de manière
formelle, ce qui facilite sa compréhension et la possibilité de vérifier son comportement. Cette par-
tie de la contribution est détaillée dans le Chapitre 6. Le Chapitre 7 présente un autre aspect de
la contribution, à savoir la vérification formelle de l’algorithme. Par conséquent, nous appliquons
l’outil TLA+ à l’algorithme pour prouver qu’il satisfait l’ensemble des propriétés de la spécification
cross-chain swap. Nous appliquons la méthode de vérification déductive pour prouver la propriété
de sûreté et la vérification de modèles pour prouver les propriétés de vivacité sur un modèle qui

12

CHAPTER 0. INTRODUCTION EN FRANÇAIS

inclut des participants malveillants.
Cette contribution et les résultats ont été publiés et présentés dans des actes de conférence examinés

par des pairs [147].

Analyse de la compatibilité du cross-chain swap Pswap dans un environnement blockchain.
La spécification et l’algorithme présentés dans la contribution précédente font des hypothèses de
mise en œuvre et imposent des exigences d’instanciation de l’algorithme Pswap . Toutefois, certains
registres distribués, tel que certains types de blockchains, ne peuvent pas satisfaire l’ensemble de ces
exigences. Par conséquent, dans cette thèse, une analyse est faite sur un ensemble de blockchains
existantes qui peuvent ou non mettre en œuvre l’algorithme Pswap . L’analyse est basée sur les
caractéristiques du type de blockchain, qu’elle soit permissioned/permissioneless ou public/private,
et sur leur capacité à instancié les exigences de l’algorithme Pswap .

Cette contribution, détaillée dans le Chapitre 8, a été partiellement publiée et présentée dans les actes
d’une conférence évaluée par des pairs [147].

13

CHAPTER 0. INTRODUCTION EN FRANÇAIS

14

Chapter 1

Introduction

“ Research is what I’m doing when I
don’t know what I’m doing. ”

– Wernher von Braun

Contents
1.1 Context and Motivation . 16

1.1.1 Blockchain Basics . 17
1.1.2 Vulnerabilities of Smart Contracts . 18
1.1.3 Interoperability Between Blockchains . 19
1.1.4 Correctness of Cross-Chain Swap Applications 20
1.1.5 Formal Methods . 20

1.2 Contributions and Organisation . 23

15

CHAPTER 1. INTRODUCTION

1.1 Context and Motivation

Let us imagine two people: Alice, an investor living in Paris, and Bob, a real estate owner living
in Seoul. Alice wants to invest a large sum of money in real estate that Bob owns. She does not
plan to travel to South Korea and wishes to invest remotely. So does Bob, who does not wish to
travel to France. The two peoples are not friends and do not trust each other. Though, they need
to develop an efficient and safe way to undertake the transaction.

One solution is to use a third party or intermediary. Let us call this intermediary Charlie.
The transaction proceeds as follows: Alice gives Charlie the money to invest. Bob does the same
and gives Alice’s immovable rights to Charlie. Now, Charlie has the money and the rights in his
possession and can then transfer the money to Bob and the rights to Alice. However, both Alice and
Bob have to trust Charlie. Charlie has total power over Alice’s and Bob’s assets and can decide not
to complete the transaction and leave with the money and the immovable rights. Moreover, Alice
cannot send the money directly to Bob via her bank because she cannot guarantee that Bob will
acknowledge the investment once he receives Alice’s money. The solutions so far are not efficient
enough for both people, as either onemay lose out on the transfer. Themain problemwith the cited
solutions is that the transactions are executed centrally and need a trusting part. Consequently, we
can imagine that coming up with a possible decentralised solution could solve the problem.

Systems such as Bitcoin [144] or Ethereum [50] provide a precisely decentralised solution, allow-
ing online transactions using a decentralised system to send money or other digital data directly
from one party to another without relying on a third party. Such systems are based on blockchain
technology [144]. Blockchain has received increasing attention these recent years. A blockchain
system is a distributed ledger that stores data and cannot be modified. This popular technology
has been applied to finance [166], medical records [75], and even politics with digital voting [84].
Transactions of various data can be enhanced using smart contracts [187].

Smart contracts are computer programs that allow setting rules of transactions. When the smart
contract is written and approved by both parties, the contract can be stored in the blockchain,
and nobody can modify it. Therefore, if we assume immovable rights can be dematerialised and
sent digitally, Alice and Bob can efficiently use a blockchain and smart contract to complete the
transaction. Both have to establish a smart contract that allows the exchange of assets in a controlled
and automatic way. The two parties agree on the conditions and rules of the transfer. For instance,
a rule that could be set out in the contract would be that the exchange of assets should be done
in an atomic way. Alice receives immovable rights at the same time that Bob receives the money.
This rule guarantees that Bob cannot get Alice’s money back without giving immovable rights to
her. Once written and executed on the blockchain, the smart contract will act as Charlie. Alice
provides her investment to the contract, and Bob does the same with the immovable rights. Both
parties will get their assets if the contract’s conditions are met.

However, can we be sure that the transaction will take place safely?
Safely is meant that the transaction takes place as it should be without bugs or errors during

the transaction’s execution. Nevertheless, the transfer process is based on computer programs such
as smart contracts and the blockchain. We face a common problem: any software or computer
problem may have bugs or errors. A bug in the blockchain can have serious consequences, e.g. the
loss of Alice’s money or Bob’s immovable rights. Moreover, we also face possible misbehaviour
from both parties. To ensure a safe transaction, we must apply methods or techniques to verify
programs on which the transaction depends.

Formal methods are a rigorous and reliable way to ensure that a program works without bugs.
These refer to techniques and a collection of notations for modelling and analysing complex systems
as mathematical entities. Building a mathematical system model and using mathematical proof
makes it possible to verify its properties to ensure correct behaviour. There is a wide range of
verification techniques to establish the correctness of a system. This thesis focuses on the model-

16

CHAPTER 1. INTRODUCTION

checking [58] and the theorem proving [163] techniques. By applying one of the verificationmethods
to the system onwhich Alice’s and Bob’s transaction depends, we can guarantee that the transaction
can be done efficiently through the blockchain and safely through formal methods. This scenario
of trading assets between Alice and Bob based on blockchain drove the work done in this thesis.
The main research work can be formulated as follows:

• How to ensure that the smart contract used by Alice and Bob is correct and respects the
transfer conditions?

• Assuming the smart contract is correct, how to ensure the transfer of the assets assuming that
one of the two parties may behave maliciously? i.e. does not respect the transfer rules.

In the following, we give an overview of the technology used in this thesis, such as blockchain
basics and formal methods, and explain our contribution.

1.1.1 Blockchain Basics

A blockchain system is a distributed and decentralised ledger. The term decentralised refers to levels
of control and decision-making. In decentralised systems, there is no central controlling entity.
Instead, control is shared among several independent entities. The term distributed refers to levels
of location. In a distributed system, all parts of the system are located in separate physical locations.

Blockchain became known as the underpinning technology that enables the existence of cryp-
tocurrency. Bitcoin [144], the best-known cryptocurrency, is the first example of the successful
implementation of blockchain technology. It is a decentralised digital currency that users can anony-
mously transfer without the interference of a third-party authority by sending the currency in a
peer-to-peer way through the Bitcoin network. The user’s cryptocurrencies are stored in digitalwal-
lets. Besides bitcoin, other cryptocurrencies are powered by blockchain technology like ether [50]
(Ethereum’s cryptocurrencies). When writing these lines, there are no less than 10,000 other cryp-
tocurrencies in circulation 1.

The structure of a chain of blocks. The blockchain maintains a continuously growing history of
unalterable ordered information organised in a chain of blocks, as depicted in Figure 1.1. A block
is identified by a hash generated using a cryptographic hash algorithm and has a height that allows
it to be positioned in the chain; Block N is older than Block N +1, which is itself older than Block
N +2. Each block refers to the previous block in the chain, known as the parent block, through the
“Hash of block ...” field in Figure 1.1. A block contains the hash of its parent; thus, the sequence
of hashes linking each block to its parent creates a chain going back to the first block ever created,
known as the genesis block. The genesis block is the first block in the blockchain. It is the common
ancestor of all the blocks, meaning that if we start at any block and follow the chain backwards in
time, we will eventually arrive at the genesis block. Without this component, there would be no
chronology and connection between each block. Another significant component from Figure 1.1
is the list of transactions. This list is a container data structure aggregating confirmed transactions
within the block. Each transaction issued and confirmed by the blockchain is stored in a block to
have transactions traceability.

Consensus mechanism. Blocks are added to the blockchain through a consensus mechanism that
ensures the preservation of the chain structure. The users in charge of the block validation must
agree on the next added block to avoid forks. A fork is when two or more blockchain users have
a different view of the chain. There are different consensus mechanisms, and each has its specifici-
ties. One can cite, Proof-of-Stake (PoS) [178], Proof-of-Authority (PoA) [66], and Practical Byzantine
Fault-Tolerant (PBFT) [54]. In Bitcoin, the consensus mechanism is the Proof-of-Work (PoW) which

1Data of February 2022 from the website: https://www.statista.com/statistics/863917/

number-crypto-coins-tokens/

17

https://www.statista.com/statistics/863917/number-crypto-coins-tokens/
https://www.statista.com/statistics/863917/number-crypto-coins-tokens/

CHAPTER 1. INTRODUCTION

Figure 1.1 – Data structure of a blockchain

requires solving a cryptographic computation to have the right to add a block. In Bitcoin, the
users that perform the computation are called miners. However, PoW consensus does not provide
a strong consistency since forks can happen, leading to critical issues. To overcome this issue, new
techniques of adding blocks have emerged. These techniques ensure that a fork cannot happen,
assuming clear assumptions. Those consensus mechanisms, e.g. PBFT , define a set of validators to
validate blocks and a subset of validators signs each block.

Smart contracts. A feature that has given rise to a strong interest in blockchains is writing smart
contracts [187]. A contract is a set of promises that recognises and governs duties and pre-specified
transaction rules arising from agreements between non-trusting participants, which are enforced
by the blockchain’s consensus [57].

Nick Szabo first proposed smart contracts in 1994 [172]. Szabo defined smart contracts as
computerised transaction protocols that execute the terms of a contract. Years after Szabo’s paper,
smart contracts were popularised by the Ethereum framework released in 2015 [187]. A smart
contract became a digital protocol written in a high-level programming language. For example,
Solidity [78] is the Ethereum contract-oriented programming language. Each Solidity contract is
identified by an address and holds an amount of ethers, Ethereum’s cryptocurrency. A contract is
an imperative sequential and executable program that runs in blockchains. That program consists
of a set of instructions for performing specific actions. It can manipulate functions and variables
and invoke other contracts by sending transactions to the target contract address.

The blockchain architecture. The blockchain architecture can be viewed in layers, as depicted
in Figure 1.2. The hardware layer can be seen as the layer on which the blockchain system is built.
The blockchain’s content (the blocks and the transactions) is stored in physical servers located
somewhere on earth. In other words, the hardware layer stores the data layer that consists of the
elements in Figure 1.1. The network layer represents the communication between the blockchain
users. When a block is created in the blockchain, it is propagated to all the blockchain users. This
propagation is carried out in a peer-to-peer way across the network layer. As mentioned earlier,
blockchain users must perform a consensus mechanism to add blocks to the chain. The consensus
layer is in charge of validating the blocks, ordering them and guaranteeing that everyone agrees.
This layer is one of the most critical features in blockchains. The last one is the application layer
that comprises the programs that end-users use to interact with the blockchain, e.g. smart contracts
and decentralised applications (dapp). A decentralised application (dapp) is built on a decentralised
network that combines a smart contract and a frontend user interface.

1.1.2 Vulnerabilities of Smart Contracts

Smart contracts have been a hot topic since they emerged in 2015. The benefits they provide have
helped popularise the use of blockchain. Smart contracts can be found in many fields, from fi-
nance [166] to agriculture [160]. Although there are different contracts on the market, such as
Michelson [173] and Chaincode [21], Solidity remains dominant regarding the number of contracts
deployed on the blockchain. Solidity has undergone an explosion of use but is now a victim of its

18

CHAPTER 1. INTRODUCTION

Application layer smart contracts . dapps

Consensus layer PoW . PoS . PBFT

Network layer peer-to-peer (p2p)

Data layer transactions . blocks

Hardware layer virtual machines . servers

Figure 1.2 – Blockchain layers

success. The increased use of contracts has been at the expense of contract security. Over time, it has
become apparent that contracts have several flaws and vulnerabilities. They are often confronted
with increasing attacks exploiting smart contract execution vulnerabilities leading to significant
malicious scenarios. One of the best-known attacks is the “the DAO attack” [24]. A DAO, for “de-
centralised autonomous organisation”, is a smart contract deployed on the Ethereum blockchain
that operates as a decentralised venture capital fund. The hacker recursively exploited a flaw in the
code of “the DAO” that allowed the hacker to collect ethers in a secondary DAO repeatedly. The
attack resulted in a loss of 3.6 million ethers.

Another example of an attack on smart contracts is the “Parity Wallet Hack” [8]. Parity [7] is
a company that builds blockchain infrastructure in the Ethereum ecosystem, and wallets are smart
contracts that store money. The origin of the flaw comes from a library which is a smart contract
itself. This library contract has functions to create multi-signature wallets. Multi-signature wallets
are like regular wallets in that they are also smart contracts, but they require multiple approvals to
withdraw any amount from the wallet. All multi-signature wallets created are dependent on the
library. The hacker took advantage of a loophole in the contract to control the library, making all
dependent wallets useless. All the funds stored in affected Parity wallets were no longer withdraw-
able. The affected wallets had an estimated sum of 500,000 ethers.

These examples show that a vulnerability in a smart contract can have serious consequences.
Moreover, once published, errors in smart contracts cannot be corrected due to the immutable
nature of the blockchain.

In this thesis, we study, in particular, the vulnerabilities of smart contracts written in Solidity.
The study shows that Solidity has different bug causes that increase its vulnerability to attacks.

1.1.3 Interoperability Between Blockchains

Let us go back to Alice and Bob’s example, which uses blockchain to perform asset transfers. Sup-
pose that Alice’s money is on a different blockchain than Bob’s, where property rights are digitised.
The question is, how tomake the exchange knowing that the two assets are on different blockchains?
This issue is becoming common as blockchain technology becomes popular in many areas. As a
result, its use has increased considerably in recent years since the creation of many cryptocurrencies
and blockchains. The need for communication between the different blockchains has arisen among
users. Consequently, the development of infrastructures allowing communication between them
has become necessary.

In 1996, Wegner stated that “interoperability is the ability of two or more software components
to cooperate despite differences in language, interface, and execution platform” [183]. Enhancing the
interoperability between blockchains seems to be the solution to establishing ways of exchanging
between them. The advantage of providing interoperability between blockchains is exploring new
functionalities, scaling the existing ones, and creating new use cases, e.g. the use case of Alice and

19

CHAPTER 1. INTRODUCTION

Bob, where they should be able to transfer their assets from one blockchain to another.

There are several interoperability techniques for enabling communication across blockchains [35].
Some enable exchanging between blockchains of the same family, i.e. the blockchains must be of
the same type and are built according to the same rules. Others enable the communication be-
tween blockchains that are not of the same family means that blockchains have different rules and
operating mechanisms. Depending on the type of blockchain, the system ensuring interoperability
will differ. Indeed, a blockchain can be described as permissioned, permissionless, public, and private.
The characteristic of permissioned/permissionless refers to the users’ anonymity, while public/pri-
vate refers to the participation in the consensus mechanism. This thesis focuses on a system that
addresses these issues of distributed applications for trading assets exploiting smart contracts. Re-
cently, one application based on smart contracts has gained popularity, namely the cross-chain swap
applications. These applications allow users of different blockchains to transfer assets in a decen-
tralised manner and without the involvement of an intermediary. Some cross-chain swap applica-
tions requires synchrony between users of the system to proceed with the transfer; others do not,
i.e. the system can be executed in an asynchronous environment implying that users do not have
to synchronise their actions.

1.1.4 Correctness of Cross-Chain Swap Applications

A cross-chain swap system involves several participants executing actions from the system to achieve
a common known goal. However, these systems are complicated to manage because they are dis-
tributed and often subject to unintended behaviour, i.e. malicious users. The authors in [193] prove
that no asynchronous cross-chain system is tolerant to malicious users unless assuming a trusted
third party. A trusted third party can be centralised or decentralised, e.g. another blockchain. The
issue that can arise is that a system that claims to be tolerant to malicious users in an asynchronous
environment is not. As a result, correct participants in the system may lose out at the end of the
system’s execution.

Given these issues, applying behavioural correctness to such systems is appreciated. Behavioural
correctness is the ability to guarantee that the system is issued as intended, without unintended
consequences, e.g. asset lock or asset theft. A way is to ensure that the system (or the system’s
algorithm 2) is correct concerning its specification. For instance, one applies formal verification
methods to verify the correctness of algorithms according to a specification. However, when we
say formal verification, we mean automatic or semi-automatic verification, which involves using
verification tools. Besides, it is essential to define a realistic specification for a cross-chain swap
problem. For instance, several existing cross-chain swap specifications include atomicity property,
even in an asynchronous environment [191]. The atomicity refers to the transfer of all assets or
none. However, this property seems not satisfied in a system with malicious participants; thus,
atomicity is often questioned.

In this thesis, we present a cross-chain swap problem specification along with an algorithm sat-
isfying the specification. We explain how we ensure a safe algorithm assuming the presence of
malicious participants in an asynchronous environment without ensuring atomicity.

1.1.5 Formal Methods

Software systems inevitably increase in scale and functionality; the number of subtle errors increases
along with complexity. An error or a bug is a common problem that any computer program may
encounter. It can occur from poorly writing the program, a typing error or bad memory man-
agement. Moreover, some of these errors can become a significant issue and result in catastrophic
losses of money, time, or even human life. One can cite the infamous crash of ARIANE 5 [72].

2An algorithm characterises a sequence of steps that provides a result from input elements [134]

20

CHAPTER 1. INTRODUCTION

Proof checker

Proof goal φ Theorems S

S satisfy φφ is proven

Human
analyse

Modify SModify φ

yes

no

Figure 1.3 – Interactive theorem proving process

Therefore, it is necessary to build systems, particularly critical systems, considering this complex-
ity. Formal methods refer to logical techniques and notations for modelling and analysing complex
systems as mathematical entities. Building a mathematical system model and using mathematical
proof makes it possible to verify its properties to ensure correct behaviour. They are applied to
both sequential and distributed programs.

A property is a characteristic of a program that is true for every possible execution of that pro-
gram. Properties of interest for distributed programs fall into two categories: safety and liveness.
A safety property asserts that “nothing bad happens during execution”, e.g. the program does not
reach a bad state. Safety properties represent requirements that the system should continuously
maintain. They often express invariance properties. Liveness property asserts that “something good
eventually happens”, e.g. the program must eventually reach a good state. Liveness properties rep-
resent requirements that do not need to hold continuously but must ensure eventual (or repeated)
realisation. Usually, in sequential programs, what is proven is safety properties.

The formal verification of programs has been an active research area since the early days of
computer science, and various techniques have appeared since then. We distinguish three main
family approaches to verification: model-checking, abstract interpretation and theorem proving.

Theorem Proving

Theorem proving, or automated theorem proving, relies on formulating a mathematical theorem,
reasoning, and logic, to prove a set of propositions. It can be used to handle infinite systems. These
systems are defined and specified by users in an appropriate mathematical logic. Theorem provers
verify the fundamental and critical properties of the system and use techniques for helping a proof.
The basic foundation of automated theorem proving is Propositional Logic (PL), First-Order Logic
(FOL) and Higher-Order Logic (HOL) [107]. The use of such languages allows to state rigorously
a wide range of problems in an unambiguous way. Propositional logic is used to represent atomic
propositions with the help of mathematical boolean operators. First-order logic is the extension
of propositional logic that allows quantifiers. Predicate logic is the general category to which FOL
belongs. Higher-order logic extends FOL by supporting many types of quantification. HOL per-
mits predicates to accept premises (also predicates) and allows quantification over predicates and
functions, which is not the case for FOL. However, in this thesis, we use PL and FOL.

Figure 1.3 illustrates the interactive theorem prover framework to construct a mechanically
verified proof. An automatic and human-interacting step is conducted consecutively for each proof
goal. An interactive proof methodology starts with manual construction of the proof, which con-
cerns describing the proof goal φ and providing their corresponding theorems S that are either
proved or assumed. Given the proof goal φ and a set of theorems S as requirements written in a
formal specification language, an automatic theorem prover can be launched as shown in Figure 1.3

21

CHAPTER 1. INTRODUCTION

Implementation
modelingM

Properties
specifications φ

M satisfies φM satisfies the properties

Play a counter-example

Human
analysis

Modify φModify M

yes

no

Figure 1.4 – Model-checking process

to automatically deduce the proof using the embedded rules or calculi implemented in these provers.
If the proof goal φ is mechanically derivable from the set of theorems S , the prover will reply with
a proof verifying it. Otherwise, depending on the human analysis, either the theorems or the goal
must be modified.

Tools like Dafny [130], Frama-C [64], VeriFast [109], and Why3 [83] prove programs using this
technique, also called deductive verification. For example, Why3 is a platform for deductive program
verification. It provides a rich language for specification (logic code) and programming (imperative
code) called WhyML.

Model-Checking

Model-checking is an automatic formal verification technique based on a description of the be-
haviour under study in a finite-state machine [58]. This technique performs an efficient systematic
inspection of all possible state sequences described by the model. The technique proves if the model
satisfies some behavioural properties. The state machine’s semantics is given by a system of transi-
tions that can be more or less complex. A system of transitions ranges from finite state machines
(finite automata) to real programs (Turing machines). Thus, the main challenge in model-checking
is the combinatory explosion of the model. Nevertheless, this technique is relevant to checking
partial specifications early in the design process [58]. Figure 1.4 represents the process of the model-
checking, which verify whether or not the modelM of a system satisfies its specification φ written
as a logical formula. If the model violates a property under consideration, the model checker pro-
vides a counter-example of a sequence that leads to the violation property. The counter-example can
be advantageous in adapting the design (or the specification). Indeed, many successful industrial
applications witness the performance of model-checking tools [27].

A wide choice of tools performs model-checking, including the TLA+ toolbox [120]. TLA+

uses as model-checker TLC [190] that provides a platform to model-check the specifications writ-
ten in TLA+ language. Among other existing tools, SPIN [106], ProB [131], UPPAAL [96] and
NuSMV [55] can be cited to represent three kinds of model-checkers based on different modelling
techniques [85].

Abstract Interpretation

Reliability resolution of computer programs is a well-known problem in software verification.
Static analysis of the behaviour of programs during execution provides solutions to this problem.
However, this means of analysis can be undecidable and requires some form of approximation. The
objective of abstract interpretation is to formalise this idea of approximation [63].

Abstract interpretation is based on abstract semantic reasoning, which is less precise but easier
to handle. As a result, some information will be voluntarily lost, resulting from a partial execution

22

CHAPTER 1. INTRODUCTION

of a computer program. This method gains information about the program semantics without
performing all the calculations.

This method is applied to the safety and security of complex hardware and software computer
systems. Its main application is the formal static analysis and the automatic extraction of infor-
mation about the possible executions of computer programs. Such analyses have two main usages:
inside compilers, to analyse programs to decide whether specific optimisations or transformations
are applicable, for debugging, or even the certification of programs against classes of bugs.

1.2 Contributions and Organisation

This manuscript is organised as follows. Chapter 2 provides theoretical background on the technol-
ogy used in this thesis, and Chapter 3 presents state of the art on research aspects addressed in this
thesis. It gives an overview of what exists to provide a clear scientific position. Chapter 4 provides
technical backgrounds such as notations and tools used throughout the manuscript. Chapters 5, 6,
7 and 8 present the technical results of this thesis, and Chapter 9 gives a general conclusion about
the different results and directions for future work in the continuity of the results obtained in this
manuscript.

In the following, we give a glance at the thesis contributions.

Correct and proven smart contracts. Blockchain systems manipulate cryptocurrency and trans-
action information through smart contracts. Therefore, if a bug occurs in the blockchain, severe
consequences can happen, e.g. losingmoney. A contract can define any set of rules represented in its
programming language (e.g. Solidity for Ethereum Blockchain), thus enabling the implementation
of decentralised applications. Smart contracts are programs that present vulnerabilities that can be
exploited and attacked. It is crucial to ensure safe and correct smart contracts and avoid computer
bugs before use. It would be interesting to use formal languages to write, check, and compile such
programs and define their properties.

This thesis proposes a language dedicated to deductive verification, called WhyML, to be a new
language for writing formal and verified smart contracts. The aim is to avoid attacks exploiting
such contract execution vulnerabilities. We apply concepts of deductive verification and develop
a methodology of proof of smart contracts. The presented method was applied to a use case that
describes an energy marketplace allowing local energy trading among neighbourhood inhabitants.
The resulting modelling allows a non-trivial trading contract to match consumers with producers
willing to trade energy. In addition, this last point demonstrates that with a deductive approach, it
is possible to model and prove programs at a realistic scale, thus allowing the verification of more
realistic functional properties.

This contribution, detailed in Chapter 5, has been published and presented in the proceedings of a
peer-reviewed conference [146].

Description of a cross-chain swap algorithm, Pswap , and its formal verification. Once stored
in the blockchain, any blockchain user can use and call a smart contract, including other smart con-
tracts. Therefore, blockchain applications can exploit stored smart contracts and use them to meet
the application’s needs. Cross-chain swap applications are such systems that use smart contracts to
achieve transactions across users. The advantages of this type of system have led to many research
articles in recent years. However, most of them are not sufficiently formal and do not reflect reality.
In this thesis, we have formally modelled an algorithm that allows cross-chain exchanges between
different distributed ledgers called Pswap . Indeed, since a distributed ledger is a high-level class of
blockchain, the Pswap algorithm abstracts any notion of blockchain so as not to limit its scope
to blockchains. Moreover, this algorithm satisfies a realistic specification that considers implemen-
tation assumptions never before considered in the literature. Thus, the specification is tolerant to
malicious users, without assumptions of proportions, which are most often found in distributed
systems. The specification defines a safety and a liveness property that remains satisfied even in an

23

CHAPTER 1. INTRODUCTION

asynchronous environment. Moreover, the algorithm’s description is defined formally, facilitating
its understanding and the possibility of verifying its behaviour. This part of the contribution is
detailed in Chapter 6. Chapter 7 gives another aspect of the contribution, which is the formal veri-
fication of the algorithm. Consequently, we apply the TLA+ tool to the algorithm to prove that it
satisfies the set of properties of the cross-chain swap specification. We apply the deductive verifica-
tion method to prove the safety property and model-checking to prove the liveness properties on a
model that includes malicious participants.

This contribution and the results have been published and presented in peer-reviewed conference
proceedings [147].

Analysis of the cross-chain swap Pswap compatibility in a blockchain environment. The spec-
ification and algorithm introduced in the previous contribution make implementation assumptions
and impose instantiation requirements of thePswap algorithm. However, some distributed ledgers,
such as certain types of blockchains, can not satisfy all these requirements. Therefore, in this thesis,
an analysis is made on a set of existing blockchains that may or may not implement the Pswap

algorithm. The analysis is based on the characteristic of the blockchain type, whether permis-
sionless/permissioned or public/private, and on their ability to instantiate the requirements of the
Pswap algorithm.

This contribution, detailed inChapter 8, has been partially published and presented in the proceedings
of a peer-reviewed conference [147].

24

Part II

Background

25

Chapter 2

Basics of Distributed Systems and
Blockchain

“ The scientist is not a person who
gives the right answers, he’s one who
asks the right questions. ”

– Claude Levi-Strauss

Contents
2.1 Basics of Distributed Systems . 28

2.1.1 Examples of Distributed Systems . 28
2.1.2 Participants . 30
2.1.3 Failure Model . 32
2.1.4 Messages Communication Model . 33
2.1.5 Common Properties of Distributed Systems 33

2.2 Blockchain Overview . 34
2.2.1 Participants in Blockchain . 34
2.2.2 Asset’s Ownership in Blockchain . 34
2.2.3 Asset Tokenisation . 35
2.2.4 Consensus Protocols . 35
2.2.5 Forks . 37
2.2.6 Types of Blockchains . 38

2.3 Conclusion . 42

27

CHAPTER 2. BASICS OF DISTRIBUTED SYSTEMS AND BLOCKCHAIN

This chapter introduces the notions about blockchain and distributed systems that are necessary and
sufficient for understanding this thesis. The first Section 2.1 describes distributed systems and their specific
characteristics, such as the failure and communication message model. Section 2.2 gives an overview
of blockchain systems and their specificities, such as the different involved participants, the consensus
protocols used, and the different types of blockchains.

2.1 Basics of Distributed Systems

A distributed system [134] consists of several entities communicating to achieve a common goal
using a common protocol and appearing as a single entity to the user. A protocol is a set of rules
that govern how each entity in a system must operate to achieve the desired outcome [134]. Using
distributed systems has several advantages, such as dealing with fault tolerance [110]. Fault tolerance
refers to the ability of a system to continue operating without interruption when one or more of
its components fail (see Section 2.1.3 for more details). Unlike centralised systems that are prone to
a single point of failure, distributed systems do not have this problem. Indeed, if a single point of
failure occurs, the distributed system will continue to function as the working servers of the system
take over, and the fault becomes unnoticeable. Moreover, distributed systems are characterised by
concurrency between system entities that operate simultaneously. It refers to the ability of different
entities to be executed simultaneously without affecting the desired protocol outcome.

Distributed systems are often more complex than centralised systems that run on a single com-
puter. This complexity of distributed systems arises because different parts of the system are in-
dependently managed, and there is no single authority in charge of it. In addition, distributed
systems face a lack of observability of the system’s state and concurrency. This complexity makes
them challenging to study and analyse. While distributed systems can satisfy fault tolerance and
continuity of service despite some entities failing, they are also victims of increased potential faults.
Indeed, these systems are designed to perform several tasks by adding components, making them
more complex and more exposed to failures. A single fault can bring the system down if the system
is not correctly designed. Hence, fault tolerance is not automatic, but a system must be designed to
be so to ensure the continuity of service.

Finally, scalability in distributed systems also represents a challenge in maintaining a consistent
performance as the number of participants increases. Such a system must maintain service stability
to ensure its security and reduce its vulnerability to attacks.

2.1.1 Examples of Distributed Systems

Distributed systems are found almost everywhere. For instance, they can be found in web ser-
vices [165], online games [73], client-server applications [152] and peer-to-peer applications [171].
In the following, we define underlying concepts of distributed systems that are crucial for the reader
to follow the rest of the thesis. We define two examples of such systems: the Two-Phase Commit
protocol [37] and Distributed Ledgers [136]. We have chosen these examples because they will be
studied in greater depth in the following chapters.

The Two-Phase Commit Protocol

The Two-Phase Commit protocol is a distributed synchronisation algorithm that solves the atomic
commitment problem [97]. The protocol ensures that a transaction either commits at all the partici-
pants or aborts at all of them. In other words, the “commit” result allows the transaction to occur,
while the “abort” result enables the transaction to be aborted so that it does not occur. Essentially,
the protocol is used when a set of participants wish to update a distributed database by sending
transactions [92]. There is a need for synchronisation among participants to achieve atomicity, en-
suring a unanimous outcome for each distributed transaction regardless of failures. In distributed
systems, synchronisation is achieved via clocks [122] so that the participants can obtain a common
notion of time. Synchronised clocks are used to realise some behaviours that need to be executed in

28

CHAPTER 2. BASICS OF DISTRIBUTED SYSTEMS AND BLOCKCHAIN

Figure 2.1 – Phases of the Two-Phase Commit algorithm

a known time range (see Section 2.1.4 for more details). As a result, the Two-Phase Commit protocol
ensures that a transaction to a distributed system (or database) is executed atomically while being
fault-tolerant.

The Two-Phase Commit algorithm comprises two different types of entities: the coordinator and
the participants (or followers). The coordinator has the role of managing a transaction to commit or
to abort, and the participants are those whowill generate transactions. As the name of the algorithm
implies, The Two-Phase Commit is divided into two phases (see Figure 2.1):

1. Voting Phase. The first phase is when the coordinator sends a query to commit a transaction
to all the participants. The request is given through the prepare message. After the sending
message, the coordinator waits for a reply. On the participants’ side, they receive the prepare
message and have to give the coordinator a response, either a yes vote if they agree to commit
the transaction or a no vote if they do not agree.

2. Decision Phase. Once all the participants have given a response, the coordinator can decide.
If all participants answered the coordinator with yes, the coordinator sends a commit decision
message to all participants. If at least one participant votes no for the commit, the coordina-
tor sends an abort decision message to all the participants. Once the participant receives the
decision message (either commit or abort), it sends an acknowledgement (Ack) to the coor-
dinator. The coordinator completes the transaction when all acknowledgements have been
received.

For example, the acknowledgement step (Ack) makes it possible to detect if one of the par-
ticipants has failed from a crash. Therefore, the coordinator only considers the transaction to be
committed or aborted if it receives as many acknowledgements as the number of participants. How-
ever, this step leads to the drawback of latency. Since the coordinator waits for all the acknowledge-
ments, a single slow participant will slow down the transaction process. Moreover, the Two-Phase
Commit algorithm may encounter a “blocking problem”. Suppose every participant votes “yes”
for the transaction commit, and the coordinator fails (due to a crash, for example) before sending
the decision message. In that case, the participants will be blocked as they await the coordinator’s
decision.

Distributed Ledger Technology

A distributed ledger is a replicated, shared, and synchronised digital database spread across a set
of participants [49]. It enables the secure functioning of a decentralised digital database. It can be

29

CHAPTER 2. BASICS OF DISTRIBUTED SYSTEMS AND BLOCKCHAIN

seen as a ledger of transactions maintained in a decentralised form without the need for a central
authority. All participants having access to the ledger have the same view; hence any changes or
additions made to the ledger are known to all. A distributed ledger is more resilient to attacks than
a centralised ledger because for an attack to be successful, most of the distributed ledger servers
must be attacked.

Underlying distributed ledgers is the same technology used by blockchain [144], which is a dis-
tributed database recording information about transactions. When we mention distributed ledgers,
we often think of blockchain, but it is just the most famous type of distributed ledger. In the next
section, we define blockchain technology, but one can cite other distributed ledgers not backed by
a blockchain, e.g. Tangle [159] and Hedera [29] 1.

Tangle [159] is the distributed ledger of the IOTA cryptocurrency created for the IoT indus-
try [90]. IOTA does not use a chain of blocks like Bitcoin (the first deployed blockchain) but a
DAG (Distributed Acyclic Graph), also called Tangle. The DAG consists of nodes and edges. Each
node represents a single transaction called a “site” connected to other sites via edges. A site contains
all transactions details, such as the sender, the receiver and the number of coins. A transaction, or a
site, must be connected to at least two other transactions. This connection by edges validates those
two transactions. This referencing of transactions is considered an approval and indirectly that a
subsection of the Tangle is valid and compliant with the Tangle’s protocol rules. A transaction that
does not have incoming edges is unconfirmed and cannot yet be trusted.

Adding a new transaction to the Tangle requires connecting it to two unconfirmed transactions
selected randomly by an algorithm. By adding the new transaction, the two unconfirmed trans-
actions are now verified. This approach is very scalable since every added transaction confirms
two others. The more transactions are added, the more unconfirmed transactions become verified.
Tangle uses a weight attributed to the site/transaction proportional to the level of trust in the trans-
actions. This weight represents the amount of work a user has done to generate this transaction.
The higher the weight, the more time the user spends validating that transaction. Moreover, each
transaction has a cumulative height representing the sum of its weight and that of all those transac-
tions. The transactions with high cumulative weight are older, so we can trust those transactions
more than others. As a result, Tangle is an open-source framework that is scalable and permission-
less.

Hedera [29] is a public distributed ledger for building and deploying decentralised applications
and microservices. Hedera was created as an alternative to blockchain. It has a native cryptocur-
rency HBAR and is structured as a DAG based on a Byzantine fault-tolerant protocol [125] (see
Section 2.2.4). Hedera’s network is atop the Hashgraph consensus algorithm [28]. Hashgraph uses
“gossip” to share information and establish consensus. A gossip protocol [39] works on the same
principle as information sharing on social networks, i.e. the information is spread among the users.

A node of the DAG shares its information about some transactions with multiple other random
nodes via gossip. Each gossip message contains information about one or more transactions and is
sent to network nodes. The nodes of the DAG combine all newly received information about the
transactions and obtain aggregated information. The latter is then sent to other random nodes. The
protocol continues similarly until all nodes have the complete information about all the transactions
created at the beginning. The history of how the information is related to each other is called a gossip
about gossip.

2.1.2 Participants

A distributed system consists of processes or participants identified by a unique identifier. Partic-
ipants run the protocol within the distributed system and execute the action they are supposed

1Note that these two types of distributed ledger do not fall within the scope of our study; we introduce them to
provide an overview of how these alternatives to blockchains work.

30

CHAPTER 2. BASICS OF DISTRIBUTED SYSTEMS AND BLOCKCHAIN

s1start s2

s3

s4

a
p
1

a
p
2

a
p
3

a
p
4

a
p
5

a
p
6

Figure 2.2 – State machine of participant p

Qp = {s1,s2,s3,s4}

Σp = ∑6
i=1a

p

i

δp =

s1 ×ap1 7−→ s2

s1 ×ap2 7−→ s1

s2 ×ap3 7−→ s3

s2 ×ap4 7−→ s4

s3 ×ap5 7−→ s1

s4 ×ap6 7−→ s1

q0p = {s1}

Fp = {s4}

Table 2.1 – Elements of the participant p’s state
machine

to carry out. They communicate through messages sent across the system’s network, where each
message has a unique identifier. The participants have a local clock [122] that allows them to order
the occurrence of events and know when these events occur. Sending or receiving a message is an
event for our participants. Local clocks use logical time rather than physical time (i.e. real-time) to
order events, i.e. they assign them a number corresponding to their occurrence’s time. The partici-
pants are said to be synchronous if they all take the same amount of time to execute an action; thus,
their local clocks tend to be synchronised. The participants are called asynchronous if their time to
execute an action is unpredictable. There are no bounds on the participants’ execution speed and
no bounds on clock drifts. Clock drift is when a clock does not run at the same rate as a reference
clock.

A participant’s behaviour can be formally described as an input/output automaton [134] (a type
of state machine). By running their state machine, the participants execute each action at a time.
The execution of action can change the state of the state machine. A state machine is defined by
the following elements (Q , Σ, δ, q0, F):

• Q : a non-empty finite set of states;

• Σ: a non-empty finite collection of internal, input and output actions;

• δ: the transition relation from one state to another as caused by an action in Σ. The set of all
transition is δ :Q ×Σ→Q ′.

• q0: the non-empty set of initial states.

• F : the set of final states (possibly empty), where F ⊆Q .

The participants run their state machines sequentially. When a transition is activated, the par-
ticipant performs an action that allows it to change state. Figure 2.2 is a state machine example that
represents the behaviour of the participants p. Its elements (Qp , Σp , δp , q0p , Fp) are defined in Ta-
ble 2.1. The participant p has four states defined by Qp , with s1 its initial state and s4 its final state.
p can change states by performing any action from Σp thanks to the relation transitions defined in
δp .

31

CHAPTER 2. BASICS OF DISTRIBUTED SYSTEMS AND BLOCKCHAIN

Byzantine

Response

Timing

Omission

Crash

Figure 2.3 – Classification of failure types

2.1.3 Failure Model

The appearance of failures in any system is inevitable. A distributed system comprises many com-
ponents working together to complete a task. As the system gets more complex and has more
components, failures will increase [110]. Faults and failures are often confused, but they do not
have the same meaning. A fault is the incorrect internal state of the system, whereas failure is
the inability of the system to complete a task. Faults will lead to failures if they are not correctly
handled on time. A faulty participant is defined as a participant that does not follow its protocol.
A distributed system can have several types of failures, but the most common failures are Crash
failures, Omission failures, Timing failures, Response failures and Byzantine failures (see Figure 2.3).

Crash failure occurs when a component (or a participant) crashes. The faulty participant will
follow its protocol and actions correctly and then suddenly stop following it. Omission failure oc-
curs when a participant does not receive incoming requests from the client or fails to send messages
in response to the client’s request. Timing failure occurs when a participant fails to respond within
a particular time frame. Response failure occurs when a participant sends an incorrect message in
response to the client’s message.

Finally, we have the arbitrary type of failure – the Byzantine failure. Arbitrary failure occurs
when a participant sends an arbitrary message. It is the most general form of failure and encom-
passes all types of failures, making it difficult to manage because we cannot predict how the par-
ticipant will behave. Therefore, it is challenging to study, and design protocols subject to these
failures, also called Byzantine attacks. The solution is to introduce fault tolerance in risky systems,
thus allowing the system to continue functioning when a failure of any kind occurs.

The cited failures do not have the same severity level, and there is an ordering among them.
For example, if we know that a set of participants might show omission failures, we can assume
that the participants will also show crash failures. Furthermore, a participant who might show a
timing failure might show an omission failure as well and so on. More formally: Byzantine failures
⊃ Response failures ⊃ Timing failures ⊃ Omission failures ⊃ Crash failures.

Definition 2.1. (Correct Participant). A participant who never fails in the system is said to be
correct.

A correct participant will always follow its protocol and never deviates from it.

Definition 2.2. (Byzantine Participant). A Byzantine is a participant for whom nothing can be
assumed about its behaviour.

A Byzantine participant can behave in any imaginable way, e.g. it can delay or modify its
messages but never that of others participants. It can cause, among others, all failures from Figure
2.3. Note that a Byzantine participant can also follow its protocol.

32

CHAPTER 2. BASICS OF DISTRIBUTED SYSTEMS AND BLOCKCHAIN

2.1.4 Messages Communication Model

Participants in distributed systems use messages to communicate, exchange data, and synchronise
their actions. The model of messages transmissions plays an important role in distributed systems.
However, communication in distributed systems presents complex challenges like the unreliability
of communication on a large scale. Messages can be lost, duplicated or delayed because of communi-
cation failures. Techniques and protocols have been designed to solve these problems and guarantee
reliable message delivery. In addition to the assumption of communication reliability, the commu-
nication model can be classified according to assumptions of message transmission delay. A message
can be transmitted synchronously or asynchronously, and messages may be received in the same
order they were sent or out of order.

When a participant sends a message, the delivery of that message is not instantaneous because
of the message transmission delay. Let us define ∆ ≥ 0 as the maximum message delay between
two participants. Based on the value ∆, we define three communication models: the synchronous
communication, the asynchronous communication, and the semi-synchronous communication:

• Synchronous communication. In synchronous communication systems, the value ∆ is finite
and known by the participants. Correct participants receive sentmessages at the latest at t+∆,
with t the time when the message was sent. A Byzantine participant can delay its message by
at most ∆.

• Asynchronous communication. In asynchronous communication systems, the value ∆ is un-
bounded. That means that there are no assumptions about the message transmission delay.
Therefore, a Byzantine participant can delay the delivery of its message by any finite amount
of time. It is assumed that all correct participants will eventually receive the message of other
correct participants.

• Semi-synchronous communication. Semi-synchronous communication is a trade-off between
the two previous models. In semi-synchronous communication systems, ∆ is bounded but
not known by the participants.

2.1.5 Common Properties of Distributed Systems

A property is an attribute of a system that is true for each of its possible executions. A set of prop-
erties specifies any distributed system problem, and for evaluating the correctness of a system, the
properties belonging to the set must be satisfied. Properties of interest for distributed systems fall
into: safety and liveness. Any specification can be expressed regarding liveness and safety proper-
ties [124]. Informally, safety is a property that guarantees us that “nothing bad will happen”, and
liveness guarantees us that “something good will eventually happen”. In other words, safety is con-
cerned with a program not reaching a bad state and liveness is concerned with a program eventually
reaching a good state.

Safety. Safety properties represent requirements that the system should continuously maintain.
They often refer to invariant properties that are required to be always true. A safety property does
not ensure termination, but all terminating computations produce correct results. Therefore, it
can be qualified as partial correctness. Some safety property examples are deadlock freedom (lack
of a blocking state), first-come-first-serve and mutual exclusion. The example of mutual exclusion
property states that only one process is allowed to execute the critical section at any given time.
In first-come-first-serve, the property states that requests are served in the order they were made.
Unlike liveness properties, if a safety property is violated, a finite execution always shows the vio-
lation.

Liveness. Liveness properties require the system to progress and guarantee termination. The
progress property asserts that it is always the case that at least one action is eventually executed.

33

CHAPTER 2. BASICS OF DISTRIBUTED SYSTEMS AND BLOCKCHAIN

If we consider a system with a failure point, the property expresses that a subset of the participants
eventually progresses. Another example of liveness property is starvation-free. This property is
stronger than the progress, and it guarantees that all participants must eventually progress in the
system.

The intersection of partial correctness (safety) and termination (liveness) gives total correct-
ness [15].

2.2 Blockchain Overview

This section aims at providing the reader with enough information about blockchain without too
much detail. We discuss the main participants in a blockchain and how virtual ownership of assets
is managed. Furthermore, we define the different consensus mechanisms and types of blockchains.

2.2.1 Participants in Blockchain

We can identify two distinct types of participants in a blockchain; the block validators and partic-
ipants connected to the blockchain. A block validator participates in the consensus by verifying
transactions and validating blocks added to the blockchain. The participants get involved in the
operation of the blockchain by generating transactions. Once connected to a blockchain, a partic-
ipant is assigned to a wallet. A blockchain wallet allows participants to store, manage and transfer
their cryptocurrencies. Both types of participants (regular participants and validators) maintain
the reliability of the blockchain by having its complete history from the genesis block (i.e. the very
first block) to the current block.

A participant is identified by two keys, a private and a public key. A public key is known
information, like an address, through which anyone receives transactions. A private key is a key
that unlocks the right for the participant to spend the associated cryptocurrencies or tokens, proving
its ownership. Since the cryptocurrencies are stored in the wallet, the private key is the only way to
unlock the wallet and access the cryptocurrencies. Therefore, the private key should remain private
and never be shared. It is assumed that the keys cannot be compromised.

2.2.2 Asset’s Ownership in Blockchain

In this section, we are interested in looking at cryptocurrency asset ownership from a legal point of
view in a blockchain environment. In the real world, the transfer of the ownership of physical assets
is done by applying national laws. Property law enumerates thoroughly how ownership may be
transferred from one party to another. Agreements must be established between the current asset
owner and the future owner [128]. However, transferring and managing cryptocurrency assets in
a blockchain are not done through intermediaries as they can be in real life. Transferring assets
is independent of any legal requirements, and there is no guarantee that these requirements will
be established for blockchain transfers. Transferring cryptocurrency assets between participants is
possible by achieving a consensus or validating pre-defined smart contracts rules. As a recall, smart
contracts are computer programs deployed in the blockchain that allows transaction rules to be set.
What proves the ownership of a cryptocurrency asset is the concept of correct public and private
keys that are associated with the transferred asset. The private key is used to prove the legitimacy
of a cryptocurrency and acquire it. Therefore, when a participant owns cryptocurrencies, it owns
a private key.

The blockchain protocol guarantees specific requirements about asset ownership that may limit
the wrong actions of malicious participants. A cryptocurrency asset has a unique owner that can
use it through a unique private key; thus, a participant who owns assets can use them at will. In
addition, a participant cannot claim to own an asset if it is not the case, thanks to the validation

34

CHAPTER 2. BASICS OF DISTRIBUTED SYSTEMS AND BLOCKCHAIN

operation. If a participant claims to own an asset that it does not have and attempts to send it, the
transaction validation process at the consensus level will refuse the transaction. As the blockchain
records all transactions since its inception (the genesis block), it is easy to verify whether or not a
participant owns an asset.

As we can see, this technological solution does not need the intervention of notaries, lawyers
or any legal institution like banks or insurance. Moreover, it does not need any legal agreement
document. In this sense, the depiction of the “code is law” seems to be entirely appropriate. The
“code is law” implies that the technology scrupulously applies the code. Hence, it does not con-
sider mistakes, fraud, or improper threats, because these are not part of the protocol. Therefore,
a mistaken transfer would be effective from a technological point of view. Hence, it is possible
to have fraudulent actions made by Byzantine participants that can be seen as valid actions. To
illustrate the case, suppose a hacker (Byzantine participant) has stolen a participant’s private key
and appropriates its corresponding crypto-assets. The hacker wishes to transfer the assets to its
public key (i.e. its wallet). Legally, this transfer should be invalid, given that the legal owner of the
asset has never agreed to it. However, since the hacker owns the private key, the hacker becomes
the rightful owner of the stolen assets from the blockchain perspective. Therefore, a hacker who
wishes to transfer dishonestly obtained assets to its address will not be considered Byzantine by the
validators. This private key gives the Byzantine participant the real power to dispose of the asset
even though there was no legal basis for the transfer. As a result, the transaction will be validated,
and even though the hacker illegally possesses crypto-assets, it can dispose of them.

Such a situation will be difficult to undo because when the validators accept a transaction, it
will be added to the blockchain permanently. The only possible way to invalidate a transaction
is if most participants of the blockchain vote for a hard fork – a permanent divergence from the
current blockchain version (see Section 2.2.5). However, a hard fork is not feasible except for the
most extreme and rare cases, such as discovering a significant hack that corrupts a vast number of
transfers. For all other purposes, undoing a transfer is impractical.

2.2.3 Asset Tokenisation

The initial purpose of creating the blockchain was to transfer cryptocurrencies. Nowadays, block-
chain use is not limited to transferring virtual currencies and other crypto-assets but can also trans-
fer objects of the physical world, such as gold, land, or houses, using Asset Tokenisation. Therefore,
the tokenisation of real-world assets has expanded the blockchain’s application areas. Tokenisation
refers to the digitalisation of a real-world item into a token. Thus, asset tokenisation is when an
issuer creates digital tokens on a distributed ledger or blockchain to represent a physical asset. As-
set tokenisation depends on the legally enforceable linkage between token and asset. Sound legal
structuring enables the holder of a tokenised asset to have a legal claim on the physical asset itself.
If an asset is truly tokenised, the token owner has a clear legally-supported claim on ownership
of the asset. Owning the whole set of tokens (as tokens are often divisible) that correlate to an
asset means that the owner wholly owns the asset without any restrictions. Thereby, blockchain
guarantees that once a participant buys tokens representing an asset, no single authority can erase
or change its ownership which remains entirely immutable [192].

2.2.4 Consensus Protocols

The notion of consensus in a blockchain is essential to guarantee that participants observe the
same blockchain state view. Moreover, through the consensus protocol, participants agree on val-
idating transactions. The consensus of blockchain is that all participants must maintain the same
distributed ledger and guarantee the system’s stable operation. A suitable consensus protocol guar-
antees the fault tolerance and security of the blockchain systems, including Byzantine participants.
The consensus protocol must fit the blockchain; therefore, depending on the type of blockchain, the
consensus protocol will be different regarding the finality of added blocks. The finality affirms that

35

CHAPTER 2. BASICS OF DISTRIBUTED SYSTEMS AND BLOCKCHAIN

no well-formed block will be revoked once added to the blockchain. Hence, consensus protocols
currently used in most blockchains can be divided into two categories: the probabilistic-finality
consensus protocols; like Proof-of-Work (PoW), Proof-of-Stake (PoS) and Delegated Proof-of-Stake
(DPoS), and the absolute-finality consensus protocols; like Proof-of-Authority (PoA) and Practical
Byzantine Fault Tolerant (PBFT). In the following, we introduce some popular blockchain consen-
sus protocols.

Proof-of-Work (PoW). The PoW algorithm is the first consensus protocol used in blockchains,
including Bitcoin [144]. This protocol requires specific participants, called miners, to solve a dif-
ficult cryptographic problem to add a new block to the blockchain. The miner applies a hashing
algorithm to find the result, and the first miner solving this problem will be the next to create a
block and add it to the blockchain. The difficulty of mining is readjusted by the network every
2,016 blocks [44]. Taking part in the consensus by solving the problem uses considerable comput-
ing power. This protocol tends to demand more computing power from the miners, who have to
make several attempts to find the correct result. However, it can require less computing power to
keep an average time of 10 minutes between each block creation [86]. This calculation method is
intended to deter malicious participants from attacking the system, such as denial-of-service [53] or
Sybil attacks [71]. A Sybil attack is when a malicious participant creates multiple pseudonyms to
influence or control the system.

A PoW validation system is cost-effective and gives a high level of security. This system is complex
to produce and costs the onewho performs the calculation a consequent computer processing power
resulting in time and energy consumption. This problem is designed so that the work involved in
solving it must be difficult to achieve (in terms of computing power and energy) for the applicant
but easily verifiable by a third party. Therefore, everyone feels incentivised to work towards the
proper functioning of the network. However, the massive energy consumption remains the most
significant disadvantage of the PoW . Thereby, in order to reduce this drawback, more efficient and
much less energy-consuming protocols have been proposed, such as PoS, DPoS and PoA.

Proof-of-Stake (PoS). The process of PoS [178] is that each network participant must prove that it
has a particular share of the circulating supply currency if it wishes to take part in block validation.
The network protocol will then choose to delegate the validation of a new block to one of the
network participants according to an algorithm taking into account a few criteria such as the age
of the coins owned or the quantity of owned coins. Under a PoS-type consensus mechanism, the
probability for a participant to be selected to validate a new block corresponds to its percentage
of ownership (its “stake”) in the circulating supply. Unlike PoW , PoS does not need considerable
computing power to solve the consensus; thus, it is less energy-consuming.

Delegated Proof-of-Stake (DPoS). The difference between the classic PoS mechanism and the DPoS
mechanism [189] is that in a DPoS system, participants of the network vote and elect delegates to
validate the next block. Delegates are also called block producers. When performing the validation
of the transactions, delegates sign each of the new blocks with their private key. Thereby, they
guarantee the data inviolability in the ledger and recover the costs of the transactions entered in the
block. Compared to PoW , DPoS is less energy consuming and has a better transaction throughput.

Proof-of-Authority (PoA). This consensus method allows a limited number of participants to par-
ticipate in the validation of transactions and blocks [66]. One or more validators are responsible
for generating each new block of transactions included in the blockchain. The new block does not
necessarily need validation to be accepted. Therefore, PoA consumes much less energy than PoW
since there is no complicated computation for validating transactions.

36

CHAPTER 2. BASICS OF DISTRIBUTED SYSTEMS AND BLOCKCHAIN

Practical Byzantine Fault Tolerant (PBFT). When an algorithm solves the Byzantine Generals’
Problem [125], the algorithm is said to be Byzantine fault-tolerant (BFT). The Byzantine generals’
problem is a metaphor that questions the reliability of transmissions and the integrity of inter-
locutors. Therefore, the question is how and to what extent it is possible to consider information
whose source or transmission channel is suspect. The solution involves the establishment of an ap-
propriate algorithm that must be tolerant of components that may be malicious. Thereby, BFT is a
mechanism to reach consensus even when some system participants are malicious (or Byzantine).

Practical Byzantine fault tolerance is an example of such an algorithm. It is a consensus mecha-
nism proposed by [54] that constitutes the first practical solution to the problem of the Byzantine
generals’ problem in reaching consensus despite Byzantine faults. This mechanism can withstand
up to ‘f ’ Byzantine faults if and only if the network consists of at least ‘3f +1’ participants. The
PBFT algorithm in blockchain inherits many concepts from its version used in classical distributed
systems. A set of validators are allowed to take part in the consensus protocol. An elected leader
creates an ordered list of transactions broadcasted to other validators, who execute them. After the
transactions’ execution, validators compute the hash code for the new block, which is then broad-
cast to their peers. If two-thirds of the received hash codes are the same, the block is committed
and added to the blockchain.

2.2.5 Forks

Probabilistic consensus mechanisms, like Proof-of-Work [144] and Proof-of-Stake [178], can generate
forkswhen adding blocks to the chain. When a blockchain is said to be forked, there is a divergence
in the structure of the chain. As a result, two participants in the network may have different views
of the blockchain and, therefore, not the same version. There are three types of forks: hard forks,
soft forks, and temporary forks. A hard fork is a permanent divergence from the previous blockchain
version. It is a fork intended by the blockchain community. It occurs when there is a change in the
blockchain system, e.g. adding new features. The result of the fork is the creation of two completely
separate versions of the blockchain, for example, classical Bitcoin with Bitcoin cash [82, 117]. Soft
forks are generally used to implement software updates that do not require a separation of the
blockchain. The changes remain compatible with earlier versions of the system. A temporary fork
is when two or more blocks have the same height, as depicted in Figure 2.4. The blockchain starts
with b0, the genesis block with a height of 0. Block bi has two children bi+1 and b′

i+1 of the same
height i +1. Temporary forks occurrence is a crucial issue for adopting blockchain technologies in
critical applications.

This type of fork occurs in public blockchains using probabilistic-finality consensus protocols
that allow all participants to participate in the consensus to validate transactions. This situation is
usually resolved quickly by respecting, for example, the rule of the longest chain [82]. The rule
that participants adopt the longest chain of blocks allows every blockchain participant to agree on
what the blockchain looks like and agree on the same transaction history. The longest chain is the
one that took the most effort to construct.

Consensusmechanisms such as PBFT or PoA can avoid the appearance of forks in their blockchain
because of absolute-finality consensus protocols [66].

b0 b1 bi

bi+1

b′
i+1

Figure 2.4 – Temporary fork of a blockchain

37

CHAPTER 2. BASICS OF DISTRIBUTED SYSTEMS AND BLOCKCHAIN

2.2.6 Types of Blockchains

Blockchain technology has continued to evolve since its emergence in 2008 [144]. It has attracted
much interest from many people, and the application areas are increasing.

However, blockchain’s definitions are not standardised due to its rapid evolution, and only a few
documents formally describe blockchain aspects [20]. This sectionwill try to overview the different
types of blockchain as precisely as possible. The sources come mainly from white papers [94, 164],
blogs and websites like 101Blockchains [1], medium [6] and FOLEY [5]. In the following, we will
detail the interest of each type of blockchain by citing examples of applications.

The Limitations of First-Generation Blockchain

Bitcoin [144] was the first generation of blockchain technology, and at its inception, it was seen
as a real technological innovation with great promises. The idea of decentralised and encrypted
currencies that Bitcoin brings increased its popularity. Bitcoin was created to carry out cryptocur-
rency transactions by anonymous participants without a central controlling body. The Bitcoin
blockchain technology has several qualities, such as data immutability, that have attracted the pri-
vate sector, including companies. Ethereum [187] is also a first-generation blockchain. It is an
electronic platform that allows people to transfer cryptocurrency, ethers (Ethereum’s currency),
and build decentralised applications.

Enterprises took an interest in this technology and wanted to take advantage of it. However, the
first generation of blockchains had multiple drawbacks, including inefficiency and unscalability.
Moreover, Bitcoin and other first-generation blockchains are public blockchains; anyone can join
the network and do transactions. While this is part of the reason for Bitcoin’s success, this feature
is not suitable for everyone and all applications. For example, enterprises or organisations will be
concerned about the public aspect of blockchains like Bitcoin or classic Ethereum due to business
confidentiality [157]. For instance, they may have critical data that must be kept private from
competitors. Banks, for example, deal with loads of transactions every day, so there should be
no scalability problems. Therefore, a Bitcoin-based blockchain would not be suitable for their use
cases. In addition, another drawback of Bitcoin is its energy consumption since it uses PoW to
validate transactions. In its early days, computing tasks did not consume as much energy as today.
The difficulty of the calculation increased with time, as did the amount of energy needed for the
calculation. This inefficiency makes it unsuitable for any system that needs to stay efficient no
matter what.

Creating other blockchains was inevitable to solve these issues because the use cases have evolved,
and the needs have changed. In the early days of blockchain, with Bitcoin and Ethereum, it could
only be characterised as public permissionless blockchains. Today, the evolution of this technology
means that there are, by contrast, additional characteristics called private and permissioned, which
are described below. Each of them has its specificities to solve a particular problem or set of prob-
lems; however, all types of blockchain have one goal in common: carrying out transactions and
exchanging information through a secure network. The types of blockchains are differentiated ac-
cording to the participants’ anonymity (permissionless and permissioned) and their participation in
the consensus protocol (public and private). The permissionless characteristic gives anonymity to
participants, where a public key identifies them. No permission is required to join the network,
and participants’ rights are not restricted. Conversely, the permissioned characteristic requires the
identification of participants and asks for permission to join the network. Permissionless and per-
missioned characteristics indicate how the network will perceive the participants. The possibility
of participating in the consensus is assessed according to the public and private characteristics. The
public feature implies that everyone can participate in the consensus process. In contrast, the private
feature is more restricted. Only a group of participants will have the authority over the network.
Thereby, by combining these two groups of characteristics, we obtain the following four types of

38

CHAPTER 2. BASICS OF DISTRIBUTED SYSTEMS AND BLOCKCHAIN

blockchain: Public permissionless, private permissioned, public permissioned and private permission-
less.

We can define the public permissionless and private permissioned as classical blockchains. The
remaining two types can be described as hybrid blockchains that benefit from the most valuable
aspects of the classical blockchains. The hybrid blockchains support many customisation options
and can be modified according to needs.

Public Permissionless Blockchains

The first generation of public blockchains, like Bitcoin and Ethereum, consists of permissionless
distributed ledgers. Blockchain technology has become known through this category. Its main
feature is that anyone can access the network making it an open environment. Moreover, they
access it completely anonymously without following any rules or regulations. Each participant has
a copy of the ledger, and the only requirement to get it is a good internet connection and a computer.
A public permissionless blockchain is non-restrictive since all participants have equal rights to read
and write in the ledger. Writing in the blockchain means sending and validating transactions, and
reading means having free access to the blockchain transactions. The participants can check the
validity of each recorded transaction. These benefits offer public blockchains the possibility of being
entirely decentralised, transparent and trustless, i.e. there is no need for intermediaries. A public
permissionless blockchain gives a high level of data immutability. A block cannot be modified
or deleted, and no one can tamper with the system or rob the money. Suppose someone tries to
tamper with the blocks like double-spending: all the other participants will reject the transaction.
Double-spending is the risk that a cryptocurrency can be used more than once.

Because of their anonymous characteristic, public permissionless blockchain can attractmalicious
participants. However, it is possible to prevent fraudulent behaviour through a high decentralisa-
tion and a high number of correct active participation. The more correct participants there are in
the network, the more difficult it will be for malicious participants to attack. The result is increased
network security. Nevertheless, the network must employ additional verification mechanisms to
increase security further. The transactions’ validation is done through consensus methods such as
PoW . The first participant to complete the calculation will be rewarded by the blockchain. In addi-
tion, to complete a transaction with PoW , a certain fee to pay is often included in the transactions.
The fee can increase significantly due to the pressure of participants requesting transactions. These
fees and rewards require the public permissionless blockchain to have a cryptocurrency.

One of the main drawbacks of a public permissionless blockchain is a slow transaction validation.
Since anyone can send a transaction, too many sent transactions may slow down the network.
Reaching consensus on the status of many transactions takes time due to the calculation during the
PoW . This issue impacts blockchain efficiency, taking a few minutes to hours before a transaction
is validated. For instance, Bitcoin can only manage seven transactions per second compared to
a centralised payment processor such as Visa, which can execute on average 56,000 transactions
per second [174]. There are also limits on the number of transactions entering a block, making
the transaction validation slower. Some engaging solutions improve the validation efficiency; for
example, Bitcoin works to lighten the network by taking transactions off-chain to make the Bitcoin
network faster and more scalable [158].

Private Permissioned Blockchains

This type of blockchain has emerged to meet business needs. It is designed to help companies
develop their private blockchain and provide them with means of safely and securely exploiting
blockchain technology. It gives complete privacy where information, e.g. specific transactions, can
be secured and private. Also called consortium or federated blockchain, this kind of blockchain is

39

CHAPTER 2. BASICS OF DISTRIBUTED SYSTEMS AND BLOCKCHAIN

where a group of participants, the organisation, controls the system. In a private permissioned
blockchain, some aspects of the network can be public, while others remain private. This feature
allows companies to take advantage of blockchain technology without making everything public.
A private permissioned blockchain is a closed network that offers a restrictive environment where
the organisation chooses pre-selected known participants having the authorisation to enter the net-
work.

Since a group of participants control the blockchain, the authority is partially decentralised.
They are the only ones having complete access and rights to the network, i.e. writing, reading and
validating transactions. The set of participants whowill contribute to the validation of transactions,
i.e. the consensus, is determined beforehand. Unlike public permissionless blockchain, where
the consensus is built in the system, in private permissioned blockchain, a consensus can easily
be customised. For example, switching from a PoW consensus to a PoA is easy. However, PoW
consensus is not engaging in this type of blockchain. There is no need to encourage participants to
maintain the network as the organisation takes care of this.

For a participant to join the network, it must follow specific rules and regulations established
by the organisation. All these restrictions considerably reduce the number of participants in the
network. The low number of participants and validators makes it more scalable and faster to reach
consensus than public permissionless blockchains. As a small group of participants validates trans-
actions, the number of participants joining the network does not affect the speed and efficiency
of the validation. Hence, speed and efficiency always remain the same, resulting in high efficiency
and low energy consumption. In addition, it does not suffer from high transaction fees as a public
permissionless blockchain. As only a handful of people can request transactions, there is not any
form of delay, and the fee remains the same. There is no requirement for a private permissioned
blockchain to hold a cryptocurrency. However, few participants can already affect the network’s
security on the downside. It is easier for a small group of malicious participants to compromise the
consensus outcome and take control of the network.

There are many controversial opinions about calling private permissioned blockchains. Indeed,
by definition, a blockchain is decentralised. In contrast, private permissioned blockchains are par-
tially decentralised because the network must be constructed and maintained by a company or con-
sortium of industry participants, which can be viewed as centralisation. This form of centralisation
is one of the most significant disfavors of private permissioned blockchains and goes against the core
philosophy of blockchain technology. However, although private permissioned blockchains do not
have all the characteristics of a blockchain, they do satisfy essential blockchain features. They are
append-only ledgers with immutable records ensuring that a transaction cannot be deleted. Every
network participant has the complete replication of the ledger, and each transaction is verified and
validated through a consensus mechanism. Some examples of blockchains that meet the characteris-
tics of a private permissioned blockchain are ConsenSys Quorum [161], Corda [47] and Hyperledger
Fabric [21].

Quorum, Corda and Hyperledger Fabric are managed by a group of participants that allow only
trusted and identified participants to participate in the blockchain. These examples of blockchain
are flexible in the implementation of consensus. They can be tailored to the trust assumption of a
particular deployment or solution. This modular architecture allows the platform to rely on well-
established crash fault-tolerant or Byzantine fault-tolerant arrangement tools. Quorum, built on
top of Ethereum with privacy extensions, supports protocols such as Raft [153], IBFT 2 and PoA,
which provide immediate block finality, and a short time to reach consensus. Moreover, Corda
applies consensus through notaries to prevent double-spending. The notaries attest that a given
transaction has not already been executed. In Hyperledger Fabric, the ordering of transactions is

2IBFT, for Istanbul Byzantine Fault Tolerant, is an alternative to PoW in Quorum. https://consensys.net/

docs/goquorum/en/21.10.0/configure-and-manage/configure/consensus-protocols/ibft/

40

https://consensys.net/docs/goquorum/en/21.10.0/configure-and-manage/configure/consensus-protocols/ibft/
https://consensys.net/docs/goquorum/en/21.10.0/configure-and-manage/configure/consensus-protocols/ibft/

CHAPTER 2. BASICS OF DISTRIBUTED SYSTEMS AND BLOCKCHAIN

delegated to a modular component for consensus that is logically decoupled from the participants
that execute transactions and maintain the ledger. In Hyperledger Fabric, channels can be created
which participants on a Fabric network establish a sub-network where every member can access a
particular set of transactions. Thus, only participants who participate in a channel have access to
specific information, such as smart contracts (called chaincode in Fabric) and transactions.

Remark (Corda architecture). Corda differs from a classic blockchain in several ways. Corda ar-
chitecture is not built as a sequence of blocks, and the transaction information is not broadcast to
all participants but in a point-to-point manner. Information is shared on a need-to-know basis. The
architecture of the ledger is such that there is no single version of the network. Two participants do
not have the same network view and may have a completely different network construction. Each
participant p maintains its ledger, and it is only visible to participants who interact with p. The
Corda Ledger is a subjective construct from each peer’s point of view, and for some, Corda can not
be considered a blockchain but rather a distributed ledger.

Public Permissioned Blockchains

A public permissioned network is open to everyone but with some restrictions. It combines the
participant identification from private permissioned blockchain with the liberty to participate in
the consensus from public permissionless blockchains. The network is fully decentralised; thus,
there is no need for a trusted party or intermediary. Participants who want to join the network are
not entirely anonymous and must be identifiable or partially identifiable. Anyone who meets the
predefined criteria of the network can download the protocol and have total write equity, i.e. they
can create transactions and participate in the validation process. Transactions are issued among
partially identified participants without a central authority, and depending on the use case, the
network can handle a cryptocurrency. For example,Ripple [22], one of the largest cryptocurrencies,
supports permission-based roles for participants in a public environment.

For a public permissioned network, participants’ permissioning allows the usage of consensus
protocols other than PoW or PoS, taking advantage of the known identities of the participants
executing the consensus algorithm. The consensus being open to everyone increases the transaction
speed. The transaction validation process is lengthy and can usually take minutes. The consensus
is chosen according to the use case; it could be PoS, PoA, or BFT. However, a public permissioned
network requires a consensus protocol with strong transaction finality. EOS [188], Sovrin [112],
and Monet [23] are examples of such blockchains.

EOS is designed for enterprise use cases, and it can be used in both private and public environ-
ments thanks to its customisation capacity. A human-readable name identifies participants. EOS
provides a permissioned system and secure application transactions processing. The implemented
consensus is DPoS, and it achieves high transaction throughputs because DPoS does not need to
wait for all the participants to complete a transaction to achieve finality. This behaviour results in
faster confirmations and lower latency.

Sovrin is an open-source network built on distributed ledger technology for self-sovereign iden-
tity. Anyone can join the network but must be identified and follow the Sovrin foundation’s specific
rules. The blockchain uses the decentralised identifier (DID) to create unique and permanent par-
ticipant identifiers. Sovrin is the first global public utility exclusively for self-sovereign identity and
verifiable declarations.

Monet brings decentralisation and easily scalable blockchains to mobile devices. It is based
on the Babble consensus system [25]. Monet is an open-source infrastructure that allows groups
of people involved in any task or activity to form temporary networks with their mobile devices
and coordinate themselves without trusted intermediaries. Monet is a public network architecture,
whichmeans anyone can initiate a temporarymobile network. The blockchain is formed by a small,
localised group of individuals taking part in the same activity, making the blockchain permissioned.

41

CHAPTER 2. BASICS OF DISTRIBUTED SYSTEMS AND BLOCKCHAIN

Anyone willing to participate in the consensus and stake some voting tokens can become a validator
in Monet.

Private Permissionless Blockchains

Like the previous type of blockchain, this blockchain is a combination of private permissioned
and public permissionless blockchain. The network is best suited for enterprise usage as it allows
the enterprise to comply and meet the needed privacy. Anyone can join a private permissionless
blockchain with full transactions, read equity and transparency. Participants are not preapproved
and do not have to be identified; they can remain anonymous. However, permission to write is
restricted, and not all participants can issue transactions. The participants participating in the con-
sensus are few and are restricted to a selection of participants. Therefore, the transaction validation
is short, resulting in a fast transaction speed and reduced transaction fees. The implemented consen-
sus depends on the use case and the network rules. If participants are unknown, it could be PBFT ,
although malicious participants cannot perform writing transactions and only read information.
It is difficult to define precisely this type of blockchain as enterprises may set different rules for
different applications.

Multichain [93] is an example of a private permissionless blockchain. It is a platform for creating
a private blockchain based on a fork of the Bitcoin core. Anyone can connect to the network, but
only restricted participants can send or receive transactions. In other words, the blockchain is
publicly readable and only applies restrictions on the ability to transact. The consensus process is
also restricted to chosen participants, and the participants are kept anonymous.

Public Permissionless Private Permissioned Public Permissioned Private Permissionless

Participant anonymity anonymous identified identified anonymous
Consensus anyone selected participants anyone selected participants
Transaction speed slow fast slow fast
Efficiency low high medium high

Table 2.2 – Comparison between blockchain types

2.3 Conclusion

The emergence of distributed systems has significantly advanced computer science. However, their
design and usage can be complicated, mainly due to the number of participants involved, the overlap
of their actions, and the involvement of Byzantine participants. We showed the importance of the
formal definition of a system concerning the representation of a participant’s behaviour (via an
automaton, for example), the communication model, and the definition of the failure model, which
impacts the problem specification. In this chapter, we gave the example of Two-Phase Commit
and distributed ledgers to illustrate distributed systems. This choice is not insignificant because
these two examples have a central role in the work presented in this thesis. Indeed, in the second
part of the chapter, we introduced blockchain technology, an example of a distributed ledger. We
tried to provide clear and straightforward definitions to give the reader the necessary knowledge to
understand the rest of the manuscript. We provided a comparative analysis of the different types of
blockchain, which are too often confused. Table 2.2 compares blockchains differentiated according
to the anonymity of the participants and the participants who perform the consensus protocol. The
table also highlights the speed of transaction validation and the level of efficiency of the blockchain.
This chapter does not pretend to be complete regarding distributed systems and blockchains, but it
provides the necessary notions for understanding the thesis.

42

Chapter 3

Formalisation and Formal Proof of
Blockchain Systems

“ Everything is theoretically
impossible, until it is done. ”

– Robert A. Heinlein

Contents
3.1 Proof of Smart Contracts . 44

3.1.1 Proof by Model-Checking . 44
3.1.2 Proof by Deduction . 47
3.1.3 Alternative Formal Verification Methods 50
3.1.4 Our Contribution to Smart Contract’s Proof of Correctness 51

3.2 Cross-Chain Swap Algorithms . 51
3.2.1 Cross-Chain Swap based on HTLC . 52
3.2.2 Cross-Chain Swap based on Verifiable Proofs 53
3.2.3 Alternative Cross-Chain Swap Solutions . 56
3.2.4 Applying Formal Methods on Cross-Chain Swap Algorithms 58
3.2.5 Our Contribution On Cross-Chain Swap Algorithms 58

3.3 Conclusion . 59

43

CHAPTER 3. FORMALISATION AND FORMAL PROOF OF BLOCKCHAIN SYSTEMS

The literature on blockchain systems has been growing in recent years. Its success stems from its char-
acteristics as an immutable distributed ledger, authenticated transactions, data transparency, and the
absence of a trusted third party. As a result, several scientific papers related to blockchain systems have
been published, addressing very diverse aspects. The popularity of this technology has enriched the possi-
bility of use, thus, leading to the emergence of new applications, e.g. using blockchain to manage artists’
royalties [177]. This thesis focuses on blockchain systems and their formal verification. The blockchain
community has realised that applying formal verification methods to such systems is critical to ensure
their proper functioning. A blockchain system is complex and consists of several components. In this the-
sis, we focus on applying verification methods to smart contracts and on the study and correctness proof
of a recent blockchain application, the cross-chain swap. This chapter designs a non-exhaustive state of the
art concerning applying formal methods to blockchain systems. First, we discuss the use of formal proof
on smart contracts and the employed techniques to ensure the correctness of such programs (Section 3.1).
Then, in a second step, we go through various algorithms that provide asset exchange among distributed
ledgers and different formal approaches to prove these algorithms (Section 3.2).

3.1 Proof of Smart Contracts

Interest in blockchains has been overgrowing, thanks in particular to smart contracts. These com-
puter programs capable of setting up transaction rules have made blockchain technology successful
in the academic [114], industrial [80] and governmental services [145]. If, at the early stage of smart
contracts, the application of formal verification was not of much interest, following the infamous
“the DAO” attack [24] the interest in formal methods at the level of smart contracts has increased.
The attack has exploited a combination of vulnerabilities of “the DAO” smart contract that resulted
in the loss of 3.6 million ethers (valued at the time at $50 million). A formal analysis of “the DAO”
smart contract could have prevented this tragedy because the flaw that led to the attack would have
been detected [38, 98, 111, 133].

In the literature, most smart contracts subject to formal verification are Solidity contracts [78],
as they represent one of the vast majority of contracts existing on blockchain platforms. Several
techniques are used, but we focus on model-checking and proof by deduction methods. In the
following, we overview works that use the two mentioned methods on smart contracts.

3.1.1 Proof by Model-Checking

Model-checking is a method that checks if a finite-state model of a system satisfies a given speci-
fication. If the model does not satisfy one of the specification’s properties, a counter-example is
generated and provides the trace execution that leads to the violation. This technique is widely
used in verifying smart contracts because of their ability to be modelled in state machines. A smart
contract starts its life in an initial state and then transits to intermediate states before ending its
life in its final state. Moreover, the contract can execute different functionalities in each state, thus
changing its behaviour from one state to another. The ability to model a smart contract as a state
machine facilitates the choice of applying model-checking for the verification like in [26, 61, 154].
Moreover, one advantage of applying model-checking is checking the termination of a program,
represented by liveness properties. In the literature, we notice two approaches to smart contracts
representation. The first is modelling smart contracts as a state machine (or, more generally, an
automaton) [10, 26, 61, 148, 155], and the second is the translation of a contract written in its
implementation language into the verification language [111, 154, 182].

The authors in [26] provide a smart contract formal template that standardises the design of a
smart contract and asks the user to fill the parameters to its needs. As said before, this formalisation
easily allows the application of formal verification methods such as model-checking. The authors
use the SPIN [106] model checker for correctness and security verification. Models are written in
PROMELA, which is the SPIN modelling language. PROMELA supports modelling asynchronous

44

CHAPTER 3. FORMALISATION AND FORMAL PROOF OF BLOCKCHAIN SYSTEMS

distributed systems and expresses Linear Temporal Logic (LTL) properties which are properties
that specify behaviours over time (see Section 4.1). They illustrate their methodology through a
shopping example and verify the absence of deadlock and livelock. They also show that the contract
can be in exactly one state at a time.

Similarly, the authors in [154] use SPIN and PROMELA to verify smart contracts, but un-
like [26], they do not build a smart contract model from scratch but from a translation of ex-
isting contracts. The authors propose a framework to translate Solidity smart contracts from the
specification to the operation level. They provide a set of logical formulas that represent Solid-
ity’s functional semantics. The methodology translates the contracts into an equivalent PROMELA
model, considering the functional semantics of Solidity to ensure the proper translation.

The implementation consists of a parser that parses the Solidity code and generates an abstract
syntax tree from the parsed code. The generated tree represents the input of the framework that
outputs a PROMELA model. The following step is to add assertions into the generated PROMELA
model, apply the SPIN model checker, and verify LTL properties. The assertions depend on the
verified contract and must be added by the developer in charge of the verification.

The authors in [148] 1 describe an approach to model the operation of an Ethereum application
and formulate properties in temporal logic to verify that the model satisfies them. They provide an
example of an energy marketplace application and define safety and liveness properties. The article
established a methodology to construct a three-fold application model, with properties formalised
in temporal logic CTL (see Section 4.1). The three-fold model consists of (i) the kernel layer that
models the Ethereum blockchain behaviour, (ii) the application layer that models functions of the
smart contracts, and finally, (iii) the environment layer that models the execution framework. The
authors use the NuSMV model checker [55] to verify the application’s smart contracts.

In the same approach, the authors in [10] provide a minimal blockchain system model to verify
smart contracts’ behaviour in their execution framework. They simulate the interaction between
the smart contract, the user and the blockchain model (execution framework). Moreover, they
define several behavioural scenarios from users according to possibly malicious actions from mali-
cious users. A smart contract is modelled as a component, and each function is represented as an
automaton. They make use of statistical model-checking to achieve modelling and verification. Sta-
tistical model-checking is a technique that combines simulation and statistical methods to analyse
stochastic systems. The authors use the framework BIP (Behavior Interaction Priorities) [31] to
benefit from its modelling formalism and statistical model-checking engine. They verify properties
expressed in PB-LTL (Probabilistic Bounded Linear Time Logic) formalism [10]. To illustrate their
methodology, they apply the approach to a name registration contract. The contract consists in
associating a blockchain account address to a unique username. Therefore, they analyse the proba-
bility that a malicious user succeeds in stealing users’ identities by registering their username with
its address.

In another approach, the authors in [111] combine abstract interpretation and symbolic model-
checking2 to ensure the correctness of smart contracts using the ZEUS framework [46]. ZEUS is
a tool that consists of a policy builder, a source code translator and a verifier. The tool supports
Ethereum and Hyperledger Fabric smart contracts. It takes as input the smart contract written in
its programming language (e.g. Solidity) and generates, with the assistance of the user, an XACML
(eXtensible Access Control Markup Language) template [162]. XACML is a proposed XML syntax
for describing authorisation and rights policies. ZEUS adds annotations on the smart contract
input and then translates it into an LLVM (Low-Level Virtual Machine) bitcode. This low-level
representation also helps ZEUS support the verification of smart contracts, written in Java, C# and
Go, from different blockchain platforms. ZEUS only accounts for parameters that can be computed
at the source code level and hence cannot verify properties such as gas consumption.

1This article refers to a working project from before the thesis.
2Symbolic model-checker [138] allow the verification of extremely large state-spaces.

45

CHAPTER 3. FORMALISATION AND FORMAL PROOF OF BLOCKCHAIN SYSTEMS

Other tools like UPPAAL [34], UMC4M [180] and Cubicle [60] are used to verify smart con-
tracts. The authors in [155] provide a way to verify smart contracts by applying UPPAAL on an
auction smart contract and check if the model satisfies the required properties. The smart contract
is modelled as timed automata, and properties are expressed in TCTL formula (Timed Compu-
tational Tree Logic) [16]. The authors in [182] provide a method for modelling, simulating and
verifying smart contracts using a verification language, MSVL [181], which is a temporal logic pro-
gramming language. They developed a tool, SOL2M, that translates Solidity contracts into an MSVL
model. Then, they define PPTL (Propositional Projection Temporal Logic) formula to express the
security properties of smart contracts. Finally, the model checker UMC4M [180] verifies whether
the MSVL model satisfies the PPTL security properties. They apply their methodology to a bank
transfer smart contract to verify properties as functional and logical correctness. Nevertheless, the
SOL2M does not translate all of Solidity’s languages.

Finally, the authors in [61] use a parametrised model checker, Cubicle [60], based on SMT and
define the properties in first-order logic (FOL) formulas (see Section 4.1). They provide a two-
layers framework for smart contract verification [61]. The first layer consists of the model of the
blockchain transactional mechanism, while the second layer is a model of the smart contract. They
defined a methodology of proving smart contracts’ safety using ghost variables; thus, to avoid code
changes while proving it. Thereby, to be verified, functional properties such as safety are expressed
in their negated form, characterising unsafe states. If Cubicle finds a way to reach an unsafe state,
an error trace is printed (i.e. a counter-example). To illustrate their approach, they use the example
of an auction smart contract.

Table 3.1 compares the different approaches presented above. The cited articles differ according
to the used model checker and the expression of the properties to be proved. The properties are
generally expressed in temporal logic except in ZEUS [111] and Cubicle [61], where properties
are expressed in first-order logic (FOL). ZEUS supports quantifier-free FOL for defining safety
properties expressed as assertions in the code. The approach of Cubicle in [61] is the only one to
use a parametric tool, thus avoiding the generation of combinatorial explosions. However, since
both rely on FOL to express their properties, the tools do not support liveness verification that
needs temporal logic to express those properties.

The approach in [148] gives interesting results from the modelling method; however, the ex-
pression of property verification is limited due to combinatorial explosion and invariant genera-
tion (most frequently implicit). Thus, proving properties involving many states was impossible to
achieve. Hence, ambitious verification could not be achieved because of the limitation of the model
checker, e.g. a model for m consumers and n producers.

The authors of the cited articles illustrate their approach through examples, which often have
to handle money (tokens). Two verification methods can be noticed, either translating an existing
contract into the language of the verification tool or modelling the contract, abstracting the im-
plementation language. For example, in [26], the authors did not focus on specific smart contract
languages since the methodology is independent of any language. Their technique allows them
to be very generic on all contracts, but they do not discuss the problems related to the language.
A model may seem correct, but the implementation can contain bugs. In addition, although the
authors in [10] mention the Solidity language, it does not seem to depend on the implementation
language of smart contracts. The modelling is generic enough to be applied to other languages.
However, the simulation and models are dependent on the verified contract.

Finally, the authors in [154] focus their study solely on Solidity. Nevertheless, the translation
function in [154] does not handle every Solidity feature; events, inheritance, structs, local variables
and strings are not covered in the article. Moreover, the framework is limited to the correctness
of individual contracts. Indeed, it does not handle the verification of a network of smart contracts
that interact with each other.

46

CHAPTER 3. FORMALISATION AND FORMAL PROOF OF BLOCKCHAIN SYSTEMS

Reference Tools Logic properties Type of properties Method of verification

Bai et al. [26] SPIN /PROMELA LTL
• Safety – no deadlock
• Liveness – no livelock

Modelling smart contracts
into state machines.

Osterland et al. [154] SPIN /PROMELA LTL
• Safety – “the initial balance is cor-

rectly set”

Translates Solidity contract
into PROMELA model.

Nehaï et al. [148] NuSMV CTL
• Safety – “Alice cannot sell more

energy that the amount she has
supplied to the grid”

• Liveness – “Once opened, the
market will eventually be closed”

Modelling Solidity smart
contracts into NuSMV
modules.

Abdellatif et al. [10] BIP PB-LTL
• Safety – “A hacker cannot register

a user name”

Modelling smart contracts
into timed automata.

Kalra et al. [111] ZEUS FOL
• Safety – policy confirmation

Translates Solidity contract
into LLVM bitcode.

Park et al. [155] UPPAAL TCTL
• Safety – “bidding cannot be made

by two people at the same time”
• Liveness – “when the auction be-

gins, the auction must end at the
specified end time”

Modelling smart contracts
into timed automata.

Wang et al. [182] UMC4M PPTL
• Safety – logical correctness
• Liveness – functional correctness

Translates Solidity contract
into MSVL language.

Conchon et al. [61] Cubicle FOL
• Safety – “no loss of money”

Modelling smart contracts
into automaton.

Table 3.1 – Various approachs of smart contracts’ verification using model-checking

3.1.2 Proof by Deduction

The deductive approach has the advantage of being parametric and does not require the exhaus-
tive generation of all possible states of a system. It allows complex systems to be verified without
encountering the main problem of model-checking – the combinatorial explosion. Aware of this
advantage, several research studies apply the deductive verification method to smart contracts. The
methodology can consist of annotating the source code to apply verification tools for proving the
contract’s correctness [32, 98] or designing an abstract contract model to be verified [18, 103]. How-
ever, much deductive verification work involves translating smart contracts into the formal verifi-
cation language [12, 36, 38, 65, 98]. The deductive approach often implies a language-dependent
methodology. In this section, most of the contracts studied are written in Solidity language, which
is the most widespread.

The authors in [38] outline a framework to analyse and verify the runtime safety and the func-
tional correctness of Ethereum contracts translated to F∗. F∗ is a function dependently typed pro-
gramming language aimed at program verification. The language uses an SMT solver to prove func-
tional properties. The F∗ framework consists of two advanced tools: Solidity∗ to verify Solidity
smart contracts and EVM∗ to verify the Ethereum Virtual Machine (EVM). EVM∗ is a decompiler
of EVM bytecode into an F∗ code.

The process can be decomposed into three steps. (i) Solidity∗ translates Solidity contracts to F∗,
and this level of verification allows verifying functional specification and safety properties. F∗ is a
modular language, and each translated contract represents a module in F∗. (ii) Solidity contracts are
compiled into the EVM, and the EVM generates a bytecode. (iii) The generated bytecode is given

47

CHAPTER 3. FORMALISATION AND FORMAL PROOF OF BLOCKCHAIN SYSTEMS

as input to EVM∗, which generates an equivalent F∗ code as output. The bytecode level enables
analysing of low-level properties such as the amount of gas consumed to complete a transaction.
The F∗ framework verifies the equivalence between the F∗ code generated by EVM∗ and Solidity∗.

The approach defined in [98] describes a method for verifying Solidity contracts. The authors
employ the tool SOLC−Verify [98], which uses annotation and translation methods. The verifica-
tion is at the source code level, on top of the Solidity compiler – i.e. EVM. Although the tool reason
on high-level contract properties, it models low-level language semantics precisely.

The methodology uses the source code annotation done by the developer to perform the ver-
ification. It is built such that Solidity contracts, including specification annotations, are translated
into the Boogie intermediate verification language [129]. The extended compiler creates a Boogie
program from the Solidity contract, and Boogie transforms the program into verification condi-
tions (VCs) and discharges them using SMT solvers. Boogie uses Z3 [67] and CVC4 [30] but can
also support YICES2 [74]. The results are mapped back and presented at the Solidity code level.

SOLC−Verify targets functional correctness of contracts such as invariants, loop invariants,
and pre- and postconditions. The tool can infer implicit specifications in unannotated contracts.
Examples of such implicit specifications are overflow checking, e.g. array lengths or loop counters,
requiring statements and assertion checking. Conversely, some properties such as flaw detection
need to be annotated in the contract.

The authors in [103] use the Lem language [142] to formally define the EVM and apply interactive
theorem provers for smart contract verification. Examples of some popular theorem provers are
Coq [62], Isabelle/HOL [151] and HOL4 [170]. The corresponding article applies Isabelle/HOL3

for proving safety properties and invariants of a smart contract presenting a reentrancy flaw (see
Section 5.1.1 for reentrancy definition). The authors specify the interface between smart contract
execution and the rest of the world. Moreover, they define a function to calculate the exact gas
consumption during the execution of an instruction. The authors argue that their formal definition
of the EVM can serve as a basis for further analysis and development of Ethereum smart contracts.

It is indeed based on that paper that the authors in [18] have developed a methodology of smart
contract verification. The authors argue that the method is independent of any high-level language
compiler. They use the Isabelle/HOL theorem prover to analyse smart contract correctness at the
bytecode level. The reason for targeting the bytecode is because it is the only language understood
by the EVM. All compiled smart contracts are translated into bytecode. Thereby, the authors
base their work on an EVM formalism [103] and extend the Isabelle/HOL framework to verify
smart contracts. Moreover, they provide logical rules of proof to automatically generate verification
conditions (VCG 4). However, the framework does not support reasoning about inter-contract
message calls.

In [32], the authors show that the architecture of smart contracts provides a suitable computa-
tional model for applying deductive verification methods. They use the KeY tool [11] to verify
smart contracts of the Hyperledger Fabric blockchain [21]. Fabric makes it possible to write smart
contracts in different languages like Go or Java. Since KeY allows proving programs written in Java,
the authors focus on smart contracts written in that language. Their article presents three different
classes of smart contract correctness properties: generic properties, specific properties and prop-
erties of the distributed ledger application. The generic properties are independent of the smart
contract, and the specific correctness properties relate to the behaviour of the smart contract pro-
gram (commonly expressed in functional properties). Correctness of distributed ledger application
implies invariants and liveness properties defined in temporal logic. Although the authors mention

3Isabelle is an interactive logical framework for theorem proving.
4AVCG synthesises a set of formal verification conditions by analysing an annotated program, which is verified using

a theorem prover.

48

CHAPTER 3. FORMALISATION AND FORMAL PROOF OF BLOCKCHAIN SYSTEMS

the proof of liveness at the level of the distributed ledger application, it seems that in their article,
no example defines such property.

The KeY tool benefits from an advantage in that it supports transaction verification to deal
with the rollback of interrupted transactions. This feature is the mechanism used by EVM to deal
with transaction failures. Consequently, the authors in [12] also use the KeY tool and present an
approach to verifying smart contracts written in Solidity. In addition, benefiting from the advantage
of the KeY tool, they provide support for rollbacks in case of exceptions. This work is a translation-
based verification of Solidity contracts. The authors design a tool, JAVADITY, that takes as input
the Solidity contract and generates a Java program to be completed with the specification in JML
(Java Modeling Language [127]) that can express ghost fields. The translation is automatic, and
the resulting Java program can then be checked with the KeY tool. They verify business logic and
contract-specific specifications.

More recently, other smart contract writing languages have emerged, such as the Michelson lan-
guage [173]; the smart contract language of the Tezos blockchain [14]. WhylSon [65] is a tool for
verifying smart contracts written in that language. The formal language behind the WhylSon tool
is WhyML, a programming language of the Why3 framework (see Section 4.2 for more detail about
Why3). The input of WhylSon is a Michelson contract that goes through a parser producing an
abstract syntax tree. The tree is sent to the Why3 API that generates a WhyML contract to apply
verification to it. The translation within WhylSon is semi-automatic, thanks to the Why3 frame-
work. One significant advantage of this approach is the VCG (verification condition generation)
provided by the Why3 framework and the backend support for several automated theorem provers.
Moreover, WhylSon can infer some categories of safety conditions as the length of the array and
type variables. However, the authors did not formalise the internal details of the cryptographic
operations; instead, they defined these instructions as abstract operations that follow the expected
specification.

Similarly, Mi−Cho−Coq [36] is a framework for verifying smart contracts written inMichelson.
The framework implements a Michelson interpreter in Coq [62] and applies the weakest precondi-
tion calculus (see Section 4.1.2). The interpreter translates Michelson contracts into Mi−Cho−Coq
abstract syntax tree. Mi−Cho−Coq makes use of Coq for proving functional properties. Still, the
tool is currently not expressive enough to state properties about the lifetime of a smart contract
nor the interaction between smart contracts.

The deductive approach is of great interest because it can be parametric and express functional
properties. Moreover, smart contracts programs are perfectly adapted to the application of deduc-
tive verification tools because of their architecture and sequential structure. Table 3.2 summarises
the methods presented in this section by mentioning the tools used by each and the target of the
smart contracts being verified. The targeted smart contract language is often Solidity [12, 38, 98].
However, applying theorem proving techniques to Solidity contracts is challenging because its se-
mantics have no formal definition. Therefore, translating Solidity contracts into a formal language
can be tricky. For example, the authors in [12] face the difficulty of translating nested Solidity
expressions into Java. Therefore, although they advance an automatic proof approach, verifying
some expressions requires user assistance. Moreover, the authors in [65] admit having encountered
difficulties in automating proof ofMichelson contracts. For example, the numerous encoding of the
Michelson language in Why3 made the proof of safety properties difficult to achieve by the SMT.
Similarly, in [36] where the approach does not provide automation.

The authors in [18] and [103] rely on EVM bytecode contracts to overcome these language issues
and are separated from all high-level languages. However, like in [12], the level of automation in
the [18] approach is limited, and the user needs to interact with the proof system to discharge
elaborated claims.

49

CHAPTER 3. FORMALISATION AND FORMAL PROOF OF BLOCKCHAIN SYSTEMS

Table 3.2 also defines the verification method and how properties are expressed by giving exam-
ples. The use of a deductive approach increases the possibility of property expressions. Many of
the cited work rely on Hoare’s logic (see Section 4.1) to prove their program. For example, an
important property to verify is the gas consumption, as was done in [18, 38, 103]. However, the
authors in [12, 32, 36, 65, 98] do not formalise gas semantics nor provide proof of gas consumption.

Reference Tools Smart contracts Type of properties Method of verification

Bhargavan et
al. [38]

F∗ Solidity and EVM bytecode
• Source level (Solidity∗): func-
tional correctness (contract’s in-
variants), runtime errors.

• Bytecode level (EVM∗): gas con-
sumption.

Translates Solidity contract
into F* contract.

Hajdu et al. [98] SOLC−Verify Solidity
• Pre- and postconditions, loop
invariants, invariants, assertions
and functional correctness.

• Examples of properties: reen-
trancy detection, absence of
overflow.

Annotates Solidity contract
and translates it into Boogie
program.

Yoichi Hirai [103] Lem EVM bytecode
• Safety invariants.
• Example of property: reen-
trancy detection.

Modelling EVM and smart
contracts in a formal defini-
tion.

Amani et al. [18] Lem EVM bytecode
• Safety and security.
• Functional correctness, pre- and
postconditions.

• Examples of properties: gas con-
sumption.

Modelling EVM and smart
contracts in a formal defini-
tion.

Beckert et al. [32] KeY Hyperledger Fabric
• Generic properties: termina-
tion.

• Specific properties: functional
correctness.

• Correctness of distributed
ledger: invariants.

Annotates the original con-
tracts.

Ahrendt et al. [12] KeY (JAVADITY) Solidity
• Pre- and postconditions, invari-
ants and functional correctness.

• Examples of properties: absence
of under and overflow.

Translates Solidity contract
into Java program.

da Horta et
al. [65]

WhylSon and Why3 Michelson
• Functional properties, invari-
ants, pre- and postcondition.

• Examples of properties: length
of variables, type correctness.

Translates Michelson con-
tract into WhyML program.

Bernardo et
al. [36]

Mi−Cho−Coq Michelson
• Weakest precondition and func-
tional correctness.

Translates Michelson con-
tract into Mi−Cho−Coq
program.

Table 3.2 – Various approachs of smart contracts’ verification using deductive verification

3.1.3 Alternative Formal Verification Methods

The method of symbolic execution [45] is also an approach to verify existing smart contracts. The
approach consists of providing the code to the symbolic execution tool, which will analyse all the
possible paths to generate test or verify assertions. OYENTE is a symbolic execution tool to find
security bugs. It has been developed to analyse Ethereum smart contracts to detect flaws as a pre-
deployment mitigation. The analysis focuses on the EVM bytecode; thus, no high-level language is

50

CHAPTER 3. FORMALISATION AND FORMAL PROOF OF BLOCKCHAIN SYSTEMS

targeted (e.g. Solidity). In the corresponding paper [133], the authors were able to run OYENTE
on the bytecode of 19,366 existing Ethereum contracts, and as a result, the tool flagged 8,833 of
them as vulnerable. The tool was able to detect the “the DAO” bug [24]. OYENTE is based on
a formalisation of the Ethereum semantics, for example, the execution of EVM instructions and
recommended solutions based on this formalism. The methodology is that the bytecode is given
as input of the tool along with the Ethereum global state to initialise the contracts variables. The
goal is to browse a control flow graph that corresponds to the symbolic execution of the bytecode
smart contract being analysed. Then they use solvers, like Z3, to decide on the feasibility of the
branching conditions. The tool can detect four well-known bugs in smart contracts. This work
represents one of the first approaches to formal verification of smart contracts, although the tool is
not a formal verification tool per se. OYENTE is more defined as a debugger than a prover. There-
fore, although that work provides interesting conclusions, it uses symbolic execution on Ethereum
bytecode, analysing execution paths, so it does not allow to prove functional properties.

The authors in [137] provide a framework to model smart contracts as state machines in rigor-
ous semantics. The framework called FSolidM automatically generates Ethereum smart contracts
from the designed state machine. Their approach is to create correct contracts before their deploy-
ment on the blockchain. The framework automatically generates Solidity contracts from a graphical
representation of the smart contract (the FSM state machine). Each transition of the FSM is trans-
lated as a Solidity function. They provide solutions for known vulnerabilities such as reentrancy
and unpredictable state by using a set of plugins that users can add to their contracts. Although the
paper does not propose a formal smart contract language, it allows for building a contract from a
formal representation (i.e. state machines). The tool is built to generate Solidity code, although the
authors claim it can generate other types of contracts.

3.1.4 Our Contribution to Smart Contract’s Proof of Correctness

This thesis studies how a language dedicated to deductive verification can be a suitable language
for writing correct and proven contracts. The proposed language is WhyML from the framework
Why3, introduced in Chapter 4. In Chapter 5, we introduce the methodology of writing smart
contracts correct by design using writing and proof rules. Then, we formulate properties as the
absence of runtime errors and functional properties, including the verification of gas consumption.
These two contributions are described in Section 5.1. Finally, Section 5.3 defines the contribution
where we describe the approach of compiling WhyML contracts into EVM code to prove the cost
of gas.

These contributions to the verification of smart contracts have been presented and published in the
proceedings of peer-reviewed conferences [146].

3.2 Cross-Chain Swap Algorithms

As blockchain has become more widespread, some limitations have emerged, such as communica-
tion between different blockchains. On this note, one of the most popular applications in recent
years involving blockchain and smart contracts is cross-chain swap algorithms. At a high level, cross-
chain swap algorithms aim to have a set of participants settling transfers on different blockchains.
For example, Alice, Bob and Charlie are respectively in blockchains A, B and C, but they want to
exchange some assets without the need for intermediaries. Suppose that Alice wants to transfer coin
A to Bob, which wants to transfer coin B to Charlie, who wants to transfer coin C to Alice. The
users being on different blockchains, a distributed protocol is needed for realising the swap among
participants. What is often expected from cross-chain swap is that at the end of the algorithm, all
transfers must take place or none at all, often translated into the atomicity property. However, in
the current literature, specifications do not agree on what a swap protocol should guarantee regard-
ing the safety and liveness properties. For instance, the author in [104] analyses cross-chain swap
protocols and the feasibility of the atomicity property. The author argues that it is impossible to

51

CHAPTER 3. FORMALISATION AND FORMAL PROOF OF BLOCKCHAIN SYSTEMS

have atomicity as it is defined without proper assumptions in an asynchronous system. They use a
Kripke model 5 of intuitionistic propositional logic to prove it. In addition, underlying timing and
failure assumptions vary from one protocol to another [95, 101, 176, 191].

This section provides an overview of existing swap algorithms divided into two families. Al-
gorithms based on Hashed Timelock Contracts (HTLC), defined in Section 3.2.1, and those using
Verifiable Proofs to accomplish the swap, are defined in Section 3.2.2. An HTLC [186] is a smart
contract used in blockchain applications. It reduces participant risk by creating a time-based es-
crow that requires a cryptographic secret for unlocking. In the literature, swaps protocol are often
modelled as a directed graph (DAG) [19, 95, 101, 169, 191, 195].

3.2.1 Cross-Chain Swap based on HTLC

The one that remains the reference is the atomic cross-chain swap of Herlihy [101]. This paper
introduces a distributed transactions algorithm, the atomic cross-chain swap, based on HTLC. The
algorithm is modelled as a directed graph to transfer assets (cryptocurrency, cars, houses) across
different blockchains. The author defines two types of users: rational users that act in their self-
interest and can deviate from the protocol if it is profitable for them, and irrational users (also
called Byzantine) that may deviate from the protocol whether this is beneficial to them or not.
If all participants behave rationally, the swap takes place atomically. However, if a participant
acts irrationally and deviates from the protocol, only the irrational participant will worsen. The
protocol presented in [101] is designed such as rational participants have no incentive to deviate
from the protocol. The HTLCs are used to escrow (or lock) the transferred assets in the algorithm.
For example, consider Alice, Bob and Charlie from previously. Alice first generates a random secret
s and produces a hashlock h, where h =H (s) and H is a cryptographic hash function. Then, Alice
publishes a contract to lock her coin A. She adds to the contract the hashlock h and sets a timelock
t to ensure a refund of her coin if something goes wrong. Bob and Charlie publish their contract
using the same h but different t . Then, Alice reveals her secret s to Charlie’s contract to unlock
the asset, which reveals s to Bob’s contract and receives coin B, which in turn reveals s to Alice’s
contract and receives the coin A.

The algorithm is designed so that its time execution depends on the size of the swap because
each execution (contract publication) depends on the previous execution. This process results in
increased latency. The authors in [108] propose a protocol to improve the space and local time
complexity of [101]’s protocol by using only signatures to set hashed timelocks instead of the graph
topology. Unlike Herlihy’s paper, the authors in [108] provide a formal description of the partici-
pants’ behaviour through detailed algorithms.

Herlihy’s protocol strongly inspires the paper [169]. The paper presents a uniform protocol
for generic cross-chain transactions modelled as a directed graph that uses HTLCs. In [101, 102],
Herlihy showed no uniform protocol for cross-chain transactions exists unless the transactions are
strongly connected.

However, in [169], the authors present a synchronous three-phase protocol (3PP) to execute
cross-chain transactions, including graphs with sequence steps and graphs with off-chain steps that
may not require strongly connected transactions. A sequenced step is an asset on an outgoing edge
of the graph representing the sender’s asset that it does not own yet (the case of cross-chain deals
in [102]). The authors came up with a tool, XCHAIN, that takes the graph of transactions and
the participants’ addresses as input and removes sequences of steps from the input transactions by
transforming the graph. Moreover, the tool automatically generates a Solidity smart contract for
each asset transfer from a high-level description of a cross-chain transaction.

The authors in [68] address the latency problem for transactions within the cross-chain carried
out in the blockchain (on-chain). They propose a new payment protocol that reduces the number

5A kripke model is an alternative way of representing finite-state machines.

52

CHAPTER 3. FORMALISATION AND FORMAL PROOF OF BLOCKCHAIN SYSTEMS

of transactions committed to the blockchain and the transaction confirmation delay. The protocol
is built upon off-chain micropayment channels to construct what they call a duplex micropayment
channel. Off-chain solutions are intended to perform transactions off the chain, increasing the
bandwidth simultaneously. As a result, the blockchain is only involved during the setup and clo-
sure step of the channel. The duplex micropayment protocol guarantees end-to-end security and
allows immediate transfers, unlike Bitcoin transfers, which take minutes to be confirmed. The du-
plex micropayment uses HTLCs to ensure an end-to-end secure protocol and track money transfers
without trust among the participants. A micropayment channel is established between two partic-
ipants, who make payments to one another, none of which are recorded on the blockchain. The
setup consists of two transactions, a 2-of-2 multi-signature transaction and a time-locked refund.

Still based on [101]’s protocol, the authors in [40] propose the concept of atomic loans that can
be implemented as an extension of atomic swaps. In this work, it is assumed that two participants
on different chains communicate through a communication protocol. The protocol allows partic-
ipants to create loans and enables the trustless transfer of value between various cryptocurrency
systems. Atomic loans extend the concept of sharing secrets of HTLC from the atomic swap pro-
tocol to enable debt and repayment between participants at different intervals in a loan process.
Therefore, as in atomic swap, atomic loans are based on HTLCs. This requirement implies the
need for blockchains that implement smart contracts. As a result, blockchains such as Bitcoin are
incompatible with implementing atomic loans. When the users agree on loan terms, the loan is
issued, and the terms are incorporated into a smart contract.

Through these works, we note that developing a cross-chain algorithm based on HTLC requires
the involvement of a blockchain capable of supporting smart contracts. The authors in [195] pro-
pose an extension of the common cross-chain swap based onHTLC for blockchains that cannot write
such contracts. Their protocol is designed for blockchain with smart contracts that only support
multi-signature transactions. This extension provides more outstanding capabilities for cross-chain
communications without adding any trust assumption among the participants. Those transactions
are controlled by multiple private keys and require, to be valid, a certain number of signatures. A
different private key generates each signature, and all those signatures need to be explicitly attached
to the transaction.

Several projects implement HTLCs differently, providing different correctness guarantees. How-
ever, the general algorithm is quite similar in most of the solutions. The protocols based on HTLC
require synchronous communication, and the participants must be connected during the entire
swap process. This requirement can be a disadvantage because if a swap participant unintentionally
disconnects (e.g. due to a failed network connection), the participant may lose assets.

3.2.2 Cross-Chain Swap based on Verifiable Proofs

In synchronous solutions [95, 101], based on timed actions, a swap can result in a correct but
slow participant being worse off at the end of the swap. Various cross-chain solutions have been
developed to counter this constraint. One of the solutions is based on the proof of content to
perform the swap [88, 95, 102, 191, 193]; others use relays [77] like in [126, 193].

Zakhary et al. [191] are the first to propose a protocol in which correct asynchronous participants
are never worse off at the end of the swap. The authors have coped with this problem by drawing on
a well-known protocol in distributed transactions, namely the Two-Phase Commit [37]. By getting
close to this algorithm, participants in [191] lock their assets at the beginning of the protocol.
Afterwards, a coordinator (a witness smart contract) either authorises or aborts all the transfers.
This swap is modelled as a directed graph and consists of sub-transactions. Each sub-transaction
transfers an asset on some blockchain. They present a solution to the problem of implementing
such a swap while aiming to ensure Atomicity and Commitment properties. Atomicity ensures that

53

CHAPTER 3. FORMALISATION AND FORMAL PROOF OF BLOCKCHAIN SYSTEMS

either all transactions occur or none of them, and Commitment guarantees that once the protocol
decides the commitment of the swap, all asset transfers must eventually take place. They guard
against behaviour deviating from the protocol by checking the blockchains’ content during the
swap.

However, the specification does not cover all deviating behaviours. For example, if we consider
a swap between A and B. A transfers bitcoins to B, which in turn transfers ethers to A. If the swap
is authorised to commit, A safely retrieves the transferred ethers. However, imagine that B crashes
just before being able to retrieve the transferred bitcoins. The sub-transaction that characterises the
bitcoins transfer will never occur. Thereby, we face the violation of the Atomicity and Commitment
properties.

Such as Herlihy’s protocol, the execution logic of the swap is handled by smart contracts (im-
mutable and permanent in the blockchain), and assets are put in escrow thanks to smart contracts.
Smart contracts have a state that can change depending on the protocol. These changes represent
proofs of content used in the protocol to unlock assets. The protocol has two mutually exclusive
events (that never co-occur) to satisfy the atomicity: redeem and refund. Each event value depends
on the coordinator state characterised by the witness smart contract. The protocol proposes a way
to ensure that the proof of content is in a block, deep enough to have a negligible probability of
having a fork (see Section 2.2.5). Therefore, The protocol is atomic with a probability of 1−ε, with
ε the probability of having a fork.

In [102], the authors provide a new definition problem of atomic transactions across distributed
ledgers, namely cross-chain deals. The cross-chain deals is modelled as a matrixM whereMi ,j char-
acterises a transfer of some asset from participant i to participant j . They illustrate the implemen-
tation of the cross-chain deals into two different protocols: a protocol that assumes synchronous
communication based on HTLC (similar to [101]) and another assuming partially synchronous
communication based on certified blockchain and verifiable proofs. The atomic cross-chain swap
inspires cross-chain deals. However, in [102], the authors detail why a swap is considered a special
case of deals and that deals are more powerful and flexible. For example, the atomic cross-chain
swap does not handle indirect transfers, as mediated by a broker, but the cross-chain deals do. A
deal is divided into five phases:

1. The clearing phase: the deal’s setup (creating the matrix).

2. The escrow phase: the locking of assets willing to be transferred.

3. The transfer phase: the potential asset transfer.

4. The validation phase: the participants check whether the created deal (at the transfer phase)
corresponds to the created matrix (at the clearing phase).

5. The commit phase: the participants vote for the commit or the abort of the potential trans-
fers.

In this part, we focus on the so-called CBC protocol (certified blockchain) inspired by the Two-
Phase Commit protocol to perform the deal. As in [191], the authors in [102] use a particular
blockchain to endorse the role of the coordinator. Each deal participant votes on the CBC to abort
or commit the deal. The result of the vote is stored in the CBC, and any participant can extract
this information that will correspond to proof of action. If the vote is a commit vote, the proof
extracted from CBC will serve for claiming the assets, while an abort vote will be for refunding the
assets. Smart contracts are deployed to verify the extracted proofs to unlock the escrowed assets for
the recipients.

54

CHAPTER 3. FORMALISATION AND FORMAL PROOF OF BLOCKCHAIN SYSTEMS

Some protocols are developed to perform cryptocurrency exchanges between specific blockchains,
as in [95]. The protocol describes achieving atomic swaps between two untrusted Bitcoin andMon-
ero blockchains participants. Untrusting any central authority ensures that their funds are safe if
both participants follow the protocol. The protocol does not require timelocks on the Monero
blockchain or script capabilities but requires two cryptographical proofs and synchronous commu-
nication. In addition, the protocol is based on the private key generation and addresses, making
this scheme blockchain agnostic. The authors argue that the protocol can be adapted to any other
cryptocurrencies that are Monero-like blockchain and Bitcoin-like blockchain.

Briefly, the protocol works as follows: the participant on Monero generates a private spend key
that is split into two secrets. Then, it moves the funds into a specific address where each participant
controls half of the private spend key. Depending on who reveals their half of the private spend
key, the locked Monero changes ownership. Therefore, to achieve an outcome, one participant
must gain knowledge of the entire private spend key at the end of the protocol execution, either
for a completed swap or for an aborted swap. If the swap takes place, the participant on Monero
owns the bitcoins by revealing its private key share, thus allowing the user on Bitcoin to own the
locked moneros.

Some approaches use relays to achieve a cross-chain swap [126, 193]. A relay is an untrusted com-
ponent that relays block headers between two blockchains. The authors in [126] propose Horizon,
a gas-efficient cross-chain protocol to transfer assets from a Byzantine Fault Tolerant (BFT) [125]
blockchain to another blockchain. The protocol requires the first blockchain of the protocol to be
BFT because the blockchain ensures finality blocks (see Section 2.2.4). The second blockchain may
be any other blockchain but must provide the possibility of writing smart contracts, for example,
Ethereum. The authors construct a super-light client that relies on cryptographic proof of content,
allowing a client to prove that a transaction has been recorded on a BFT chain. The system con-
sists of (i) a client who wants to perform cross-chain transactions to transfer some x tokens from a
blockchain A to a blockchain B, (ii) a relay that periodically submits information about A’s chain
to B, and (iii) a full node 6 that maintains an up-to-date copy of A’s chain. Moreover, a smart con-
tract is deployed on blockchain B to verify the proof that guarantees that the transaction is recorded
correctly on the BFT chain (the blockchain A).

The transaction consists of two on-chain transactions, Tburn and Tunlock , recorded on A (the
BFT chain) and B, respectively. Tburn translates the transfer of x coins in blockchain A to an empty
address, i.e. deleting the coins. Tunlock represents the proof to unlock the asset from blockchain B.

Horizon protocol is divided into two parts. The first part is the synchronisation between the
relay and the contract. The relay sends every 24 hours the most recent block of blockchain A
which contains sufficient and necessary information for the contract on blockchain B to verify
the inclusion of a burn transaction submitted by the client. The second step is the cross-chain
transaction initiated by the client. Once the burn transaction, Tburn , is validated in A (i.e. added
to the chain by the validators of A), the client sends a request to the full node. Once the request
is received, the full node finds the block that includes Tburn . Then, it generates the proof of burn
Πburn that depends on the transactionTburn . The full node sendsΠburn to the client; then, the client
creates a transaction Tunlock . The latter transaction is submitted to the contract of blockchain B.
The contract verifies the validity ofΠburn , and if the proof is valid, the contract unlocks the token x
on B. The verification of verifying the inclusion ofTburn submitted by the client and the consistency
of the information extracted from Πburn , e.g. the amount in Πburn equals x .

XCLAIM [193] proposes protocols for issuing, transferring, swapping and receiving cryptocurrency-
backed assets securely in a non-interactive manner on existing blockchains. XCLAIM constructs
a publicly verifiable audit log of participants’ actions on blockchains and employs collateralisa-
tion and punishments to enforce the correct behaviour of participants. Thereby, XCLAIM follows
a proof-of-punishment method, i.e. participants must proactively prove commitment to system

6A full node is a component that holds a copy of the entire blockchain.

55

CHAPTER 3. FORMALISATION AND FORMAL PROOF OF BLOCKCHAIN SYSTEMS

rules. XCLAIM is a framework for performing cross-chain exchanges in a trustless environment.
A smart contract on each chain controls the exchanges between the two chains (e.g. Bitcoin and
Ethereum) and penalises malicious parties by taking their collateral in favour of honest parties.
The structure of XCLAIM consists of three main components: A participant who wishes to per-
form the assets’ exchange, e.g. from Bitcoin to Ethereum, a vault for locking the Bitcoin assets
received from the participant, and an Ethereum relay contract called BTCRelay [77], which stores
Bitcoin block headers to allow verification of SPV (Simple Payment Verification) proofs [79]. The
protocol starts with locking sufficient collateral on the Ethereum smart contract in the vault. The
participant then sends its bitcoins to the vault and submits proof to the contract showing that the
transaction has been recorded on the Bitcoin blockchain. Consequently, the chain relay verifies this
proof and confirms that the lock has been executed rightly to the contract. This last step allows re-
leasing Ethereum assets to the participant. Although the example presented in the paper is between
Bitcoin and Ethereum, the authors claim that all blockchains are compatible with the protocol.

Zendoo [88] is a system that performs decentralised cross-chain payment between Bitcoin-like
blockchains. The protocol defines a mainchain (a parent blockchain) and a set of sidechains (child
blockchains). A sidechain [89] is a mechanism for two existing blockchains to interoperate where
one blockchain (mainchain) considers another blockchain as an extension of itself (the sidechain).
Nodes from the sidechain can observe the mainchain’s state, but the mainchain can only watch the
sidechains via cryptographically authenticated certificates. They use zero-knowledge cryptography
called Zk-SNARKSs [194] that enables the authentication, validation, and integrity of the informa-
tion provided by the sidechains via verifiable proofs. Such proofs are used to generate certificate
proofs for the mainchain, enabling a secure verification scheme.

However, the authors in [43] showed that, in practice, it is not possible to verify the existence
of specific data on one blockchain from within another blockchain. To verify the presence of
particular data on one blockchain, one must pull the blockchain up by its roots, i.e. one must verify
the entire chain up to the genesis block, to achieve definite certainty over the presence of the data in
the blockchain. The authors in [43] formalise the cross-blockchain proof problem and describe the
concept of a cross-blockchain asset transfer protocol using claim-first transactions. This protocol
allows for the decentralised transfer of assets between blockchains despite the cross-blockchain proof
problem by avoiding the necessity of proving that an asset is spent when claiming it. Conversely,
the protocol relies on eventual spending on the source blockchain by rewarding parties.

3.2.3 Alternative Cross-Chain Swap Solutions

So far, we have seen algorithms that rely on HTLC and verifiable proofs. However, other solutions
do not use these solutions and perform cross-chain transactions between different blockchains. The
authors in [176] introduce a new specification formalism called Asynchronous Networks of Timed
Automata (ANTA) to formalise cross-chain payments. Their article ensures the protocol termina-
tion within a known time-bound and a protocol that works correctly in the presence of clock
skew between participants. Moreover, the ANTA formalism provides an algorithm that solves the
cross-chain payment problem only by assuming partial synchrony and in the presence of Byzantine
failures. ANTA simplifies the representation of cross-chain payment to a participant (a customer)
automaton and an escrow automaton that describes states from which outgoing transitions are im-
mediately enabled and conditional upon some predicates. An escrow is a specific process that can
handle values, and customers (named Alice and Bob), are the participants wishing to make the
transfer of a particular value (a payment). Moreover, intermediary customers, called connectors,
are involved in transferring the value from Alice to Bob as being the intermediaries between them.
Each escrow is connected to two customers (whether a customer or a connector), and each con-
nector (intermediary customers) is connected to two escrows. The customers and connectors must
trust their escrow.

To achieve a transfer, participants must send to customers or escrow connected to it a promise
to send or receive some data. This data can be either some value or a certificate. The receiver of the

56

CHAPTER 3. FORMALISATION AND FORMAL PROOF OF BLOCKCHAIN SYSTEMS

payment (i.e. Bob) generates a signed certificate to attest the receipt of the payment and sends it to
the escrow to which it is connected.

CAPER [19] is a permissioned blockchain system designed to support a set of non-trusting collab-
orating distributed applications. Each application runs on a disjoint subset of asynchronous nodes.
The CAPER system is Byzantine fault-tolerant as nodes might be faulty. The purpose of CAPER is to
allow both internal and cross-application transactions. Internal transactions are visible only to the
application generating the transaction, and cross-application transactions are public and accessible
to all applications in the system. The CAPER’s ledger is formed as a directed acyclic graph (DAG)
where nodes of the graph are transactions and edges enforce the order of transactions. Applica-
tions do not maintain the blockchain ledger, but each application maintains its local view of the
ledger, including its internal and cross-application transactions. Unlike the Bitcoin or Ethereum
blockchain, the CAPER ledger is the union of all the applications views, and there is no single ver-
sion of the mainchain. A CAPER system can be defined as a blockchain of blockchains. As CAPER is
a permissioned blockchain system, it makes it a perfect solution for trading within an organisation
that wishes to keep certain information private.

The authors in [99] propose a novel cross-chain mechanism to provide interconnection using
tunnels between different blockchains using plug-ins as nodes added to applications. They introduce
the concept of membranes to describe the cross-chain mechanism easily, where a membrane is a
plane of the blockchain. The cross-chain principle of the paper is to project the blockchain networks
involved in the cross-chain protocol onto a plane. Thus, several blockchains are several planes, i.e.
several membranes. Asset transfers are done between the membranes using plug-ins added to the
network nodes. Between two nodes with a plug-in from two different membranes, a connection
tunnel will allow transfers to be made. The protocol is designed to perform transfers between
blockchains (membranes) but not to perform asset swaps.

Table 3.3 draws a parallel between the different approaches presented so far concerning cross-chain
swap algorithms. The table is divided into three parts, corresponding to the various algorithm ap-
proaches: HTLC-based algorithms, verifiable proof algorithms and alternative solutions. The table
informs whether the algorithms can be applied in a non-blockchain environment, as for the arti-
cles [102, 176]. Furthermore, through this table, it is defined which article provides a problem spec-
ification that is independent of the implemented protocol. Indeed, the articles define a specification
(a set of properties) that requires knowledge of the underlying protocol, making it a non-generic
specification. In [102], the authors assert that “no asset belonging to a compliant party is escrowed
forever”. Although putting assets in escrow is present in most cross-chain protocols, this prop-
erty makes the specification protocol dependent. The same analysis applies to [176]. Conversely,
the specification in [191] is completely protocol-agnostic. The analysis of these articles revealed
whether the Byzantine participants’ presence was taken into account. Some papers do not men-
tion it like in [43, 88, 95], but knowing that the algorithm assumes synchronous communication
(i.e. HTLC’s approach), we can consider that there a non-BFT protocols. In addition, the author
in [101] assumes synchronous communication by timelocks defined in the HTLCs. Thereby, if a
rational user is slow because of a problem in the network, the user may end up worse. The authors
in [195] mentioned their protocol vulnerability against attacks such as the Eclipse attack [100]. The
attack consists of controlling a sufficient number of Bitcoin addresses to monopolise the connec-
tions of those addresses.

The authors in [102, 176] contradict what is said in [191] and show that atomicity in a system in
the presence of Byzantine participants cannot be atomic. They define an algorithm that can perform
cross-chain transfers through intermediaries without asserting atomicity. The authors in [102, 191]
describe the protocol in natural language without applying a formal approach, unlike [176], where
an automaton defines the protocol. It is not intuitive to identify the exact behaviour of the protocol
participants. In contrast, both articles provide the pseudo-code of the smart contracts involved in

57

CHAPTER 3. FORMALISATION AND FORMAL PROOF OF BLOCKCHAIN SYSTEMS

the protocol. It is necessary to define the steps of an algorithm precisely via a formal description to
avoid any ambiguity and prove the correctness of the approaches.

Approachs References Blockchain agnostic Protocol agnostic specification BFT protocol Formal description

HTLC

Herlihy [101] 7 3 7 7

Decker et al. [68] 7 7 7 7

Shadab et al. [169] 7 7 7 3

Zie et al. [195] 7 3 7 3

Imoto et al. [108] 7 7 7 3

Verifiable Proofs

Zakhary et al. [191] 7 3 7 7

Herlihy et al. [102] 3 7 3 7

Gugger [95] 7 7 – 3

Lan et al. [126] 7 7 3 3

Zamyatin et al. [193] 7 7 3 3

Garoffolo et al. [88] 7 7 – 7

Borkowski et al. [43] 7 7 – 7

Alternative solutions

Amiri et al. [19] 7 * 3 3

He et al. [99] 7 7 7 7

van Glabbeek et al. [176] 3 7 3 3

3: the criteria is fulfilled

7: the criteria is not fulfilled

–: not specified

*: the specification depends on the system

Table 3.3 – Various cross-chain swap algorithms

3.2.4 Applying Formal Methods on Cross-Chain Swap Algorithms

To date, very little work has focused on the formal verification of such protocols hindering their
safe application [3], more so with Byzantine participants. The difficulty of proving a distributed
protocol in the presence of Byzantine failures is well-known due to its ability to deviate arbitrarily
from the protocol, which poses difficulty in representing its behaviour with formal tools [113].

The authors in [101, 191] prove their presented algorithm by applying the method of pen and
paper proof without using any automatic or semi-automatic tools. In the current literature, to our
knowledge, the only proof approach using formal methods is that of [175]. The authors verify
atomic swap smart contracts using model-checking. The model considers two participants, Alice
and Bob, in the swap, and they study the possible strategy of the participants to terminate the swap.
The paper describes the specification of an atomic swap step by step by considering Alice and Bob’s
possible strategy to reach the desired goal, assuming that both participants can act dishonestly. They
use the model checker MCK [87] to perform their verification. In this paper, the authors highlight
the insufficient verification of smart contracts alone and the need to reason about user strategies
in a multi-agent environment. The authors use Herlihy’s swap model with one contract for each
exchange.

3.2.5 Our Contribution On Cross-Chain Swap Algorithms

This thesis specifies a cross-chain swap problem formally, resilient to Byzantine failures. We define
safety and liveness properties that guarantee no correct participant will be worse off in an asyn-
chronous system. The formal specification separates the swap problem from the protocol in a clear
way. In addition, we provide an abstract swap protocol formally proved, inspired by [191], that
satisfies the swap specification. The protocol relies on an abstraction that we call “proof-of-action”
to cope with Byzantine participants related to verifiable proofs defined in [102]. The definition of

58

CHAPTER 3. FORMALISATION AND FORMAL PROOF OF BLOCKCHAIN SYSTEMS

the specification and the protocol is in Chapter 6. The protocol formal proof is found in Chapter 7,
where it consists of performing a semi-automatic tool called TLA+ [120] on the protocol.

Moreover, the defined protocol abstracts the blockchain enough to suit other distributed ledger
frameworks aiming to perform a cross-chain swap. We illustrate, in Chapter 8, how the described
abstract protocol can be instantiated in a blockchain system.

These contributions have been presented and published in the proceedings of peer-reviewed confer-
ences [147].

3.3 Conclusion

This chapter has reviewed several articles that are related to our research topics. Of course, we
have not made an exhaustive list of all the articles dealing with verifying smart contracts and the
different algorithms executing cross-chain transactions. We wanted to show the readers a shallow
overview of the existing approaches in these two fields, smart contract verification and cross-chain
swaps. The main subject of this thesis is the formalisation and verification of blockchain systems,
and we focus on smart contracts and cross-chain applications systems. The verification approach
of smart contracts is described in Chapter 5. This chapter highlights the advantage of using a de-
ductive approach to verification rather than model-checking. As a result, more precise modelling
of smart contracts is desirable to address more ambitious verification and validation issues since
model-checking faces combinatorial explosions. This conclusion led us to consider applying de-
ductive verification, which has the advantage of being less dependent on the size of the state space.
Although more complicated for the developer as it is asked to write the invariants.

In addition, in this thesis, we provide a cross-chain swap protocol that allows the transfer of assets
across different distributed ledgers in the presence of Byzantine participants. The description of the
protocol is defined in Chapter 6. Protocols based on HTLC require that participants be connected
during the swap process, unlike protocols based on proofs. Moreover, a very slow participant
who follows its protocol is considered faulty in protocols using HTLC that require synchronous
communication. Our approach does not allow such a result and guarantees that a slow participant
will never be worse off. As a result, our protocol follows the approach of the verifiable proofs to be
satisfied in a system that assumes asynchronous communication. Unlike several articles like [108]
and [101], which guarantee the atomicity property in a synchronous system, our swap problem
does not argue to be atomic.

59

CHAPTER 3. FORMALISATION AND FORMAL PROOF OF BLOCKCHAIN SYSTEMS

60

Chapter 4

Tools

“ Nothing in life is to be feared, it is
only to be understood. Now is the
time to understand more, so that we
may fear less. ”

— Marie Curie

Contents
4.1 Mathematical Logic Notations . 62

4.1.1 Modal Logics . 62
4.1.2 Hoare Logic and Weakest Precondition Calculus (WP) 64

4.2 Why3 . 65
4.2.1 Structure of a Why3 Program . 66
4.2.2 Proving Euclidean Division Using Why3 . 69

4.3 TLA+ . 71
4.3.1 The TLA+ Verification Tools . 71
4.3.2 PlusCal . 72
4.3.3 The Two-Phase Commit Protocol in TLA+ 73
4.3.4 Methodology of the Two-Phase Commit Proof of Correctness 81

4.4 Conclusion . 90

61

CHAPTER 4. TOOLS

This chapter aims to provide the reader with technical notions helpful in understanding the rest of
the thesis. It includes the definition of mathematical notations such as logical operators, temporal logic,
and temporal properties formulation (Section 4.1). In addition, this chapter introduces the tools that we
use in Chapters 5 and 7, which are Why3 (Section 4.2) and TLA+ (Section 4.3). A tutorial approach is
used to understand how each work and their verification approach. When reading the technical chapters,
the reader is encouraged to refer to this.

4.1 Mathematical Logic Notations

4.1.1 Modal Logics

Modal logic [107] refers to the enrichment of standard formal logic where the standard operations
(and, or, not, implication) are accompanied by certain extra operations – called modal operators.
The language of basic modal logic is that of propositional logic, defined as follows.

Propositional logics. In propositional logic [107], an expression is represented by a symbol
whose relationship with other expressions is defined via a set of logic operators. A logical oper-
ator is a symbol or word used to connect two or more expressions. This type of logical expression
is also known as a boolean expression because they create a boolean answer or value when evaluated.

Let b a proposition value. b has one of two possible values denoted true and false, b ∈ {true , false}.
The negation of b is denoted by ¬b. If b = true, then ¬b = false; thus, the statement ¬b is true if
and only if b is false. We define two propositions values b1 and b2. The statement b1∧b2 is true if b1

and b2 are both true; otherwise, it is false. The statement b1∨b2 is true if b1 or b2 (or both) are true;
if both are false, the statement is false. The implication is denoted by b1 =⇒ b2. The implication is
false if and only if b1 is true and b2 is false; otherwise, it is true. Table 4.5 gives the truth table of
the operators, negation 4.1, conjunction 4.2, disjunction 4.3 and implication 4.4.

Table 4.1 – Negation

b1 ¬b1

false true
true false

Table 4.2 – Conjunction

b1 b2 b1 ∧b2

false false false
false true false
true false false
true true true

Table 4.3 – Disjunction

b1 b2 b1 ∨b2

false false false
false true true
true false true
true true true

Table 4.4 – Implication

b1 b2 b1 =⇒ b2

false false true
false true true
true false false
true true true

Table 4.5 – Truth tables of logical operators

Predicate logic. The predicate logic, also called First-Order Logic [107], extends propositional
logic with quantification. Quantification is the ability to assert that a specific property holds for
all elements or some element. In propositional logic, the expressions are either true or false vari-
ables. An expression in predicate logic is a predicate that asserts a relation between variables. For
example, the expression P (x) evaluates the proposition x , where P is a predicate. In predicate logic,
expressions that reason about every or some variables are possible using the quantifiers. The symbol
∀ is used to indicate a universal quantification. ∀n ∈ N : P (n) means P (n) is true for all natural
numbers n. The symbol ∃ is used to indicate existential quantification. ∃n ∈ N :P (n) means at least
one natural number n such that P (n) is true.

62

CHAPTER 4. TOOLS

We can combine logical operators with quantifiers to express expressions in predicate logic. For
example, let us define the sentence “Not all animals can swim” in predicate logic. We need to define
two predicates, A and S , that have one argument: “A(x) : x is an animal” and “S (x) : x can swim”.
Therefore, the sentence can be formally defined as ¬(∀x (A(x) → S (x))).

The following grammar defines a predicate logic formula (ϕ):

ϕ ::= P (t1,t2, ...,tn) | (¬ϕ) | (ϕ∧ϕ) | (ϕ∨ϕ) | (ϕ→ϕ) | (∀x ϕ) | (∃x ϕ)

where x is a variable, P is a predicate symbol and ti are terms over a set of function symbols.

Temporal logic. Temporal logics [107] are special cases of modal logic, which are formalised in
several ways. The idea of temporal logic is that a formula is not statically true or false in a model, as it
is in propositional and predicate logic. Temporal logic is a logic for specifying properties over time
like the behaviour of a finite-state system. Temporal logic is widely used in formal verification [156],
where the basic technique is essentiallymodel-checking. For example, it can express that a dangerous
event must not occur until a particular safety condition is satisfied. There exist various kinds of
logic, such as Linear Temporal Logic (LTL) and Computation Tree Logic (CTL) [107].

Linear temporal logic. LTL formula is properties that refer to the future over a single computation
path. An LTL temporal logic formula is built with propositional variables, logical operators and
temporal operators. The following grammar defines the well-formed LTL formulas (ϕ):

ϕ ::= p | (¬ϕ) | (ϕ∧ϕ) | (ϕ∨ϕ) | (ϕ→ϕ) | (Xϕ) | (Fϕ) | (Gϕ) | (ϕUϕ)

where p is a propositional variable and X, F, G, and U are temporal operators. X stands for
next, F for eventually (finally), G for always (globally) and U for Until. X, F, andG are also defined
by the symbols: ©, ♦, and �. Let us define, in the following, examples of LTL propositions over a
sequence of states:

• �p means that p will always hold, at any time, and on the entire subsequent path (Figure 4.1).

• ♦p means that p eventually has to hold, some time in the future, along some subsequent path
(Figure 4.2).

• ©p means that p holds at the next state (Figure 4.3).

p p p p

Figure 4.1 – p holds on the entire path

p

Figure 4.2 – p holds some time in the future

p

Figure 4.3 – p holds at the next state

63

CHAPTER 4. TOOLS

Computation tree logic. CTL formulas are properties expressed over a tree of all possible exe-
cutions meaning that there are different paths in the future. It is built with all LTL operators in
addition to path quantifiers (∀ and ∃). Thus it is possible to combine temporal operators with
quantifiers and obtain the CTL formula grammar:

ϕ ::= p | (¬ϕ) | (ϕ∧ϕ) | (ϕ∨ϕ) | (ϕ→ϕ) | (AXϕ) | (EXϕ) | (AFϕ)

| (EFϕ) | (EGϕ) | (A[ϕUϕ]) | (E [ϕUϕ])

where p is a propositional value, and the five first symbols are similar to LTL grammar. The
symbols A and E are another way of expressing ∀ and ∃ meaning, respectively, “along all paths”
and “along at least one path”. Examples of such properties are the following:

• AGp (or ∀�p) means that the property p holds along all computation paths starting from
the state where AGp holds (Figure 4.4).

• EGp (or ∃�p) means that the property p holds along at least one path starting from the state
where EGp holds (Figure 4.5).

p

p

p

p

p

p

p

Figure 4.4 – p holds in all possible path execution

p

p p

p

p

Figure 4.5 – p holds at least in one path execution

4.1.2 Hoare Logic and Weakest Precondition Calculus (WP)

Hoare logic uses the first-order logic formula to present the program logic and express the program’s
properties. The main feature of Hoare logic is the Hoare triple denoted {P }s{Q } where P and Q
are logic propositions and s a statement. P is called precondition, and it characterises a condition
that must be true before beginning a function within the program. Q is a postcondition and says
what is true at the end of the program s . Thus, the Hoare triple means that when the precondition
P is met, executing the statement s establishes the postcondition Q . Hoare logic is relational such
that for each Q , there are many P , and for each P , there are many Q . Using standard Hoare logic
ensures partial correctness of programs, i.e. termination cannot be proved. Partial correctness can be
considered a weak requirement since any program that does not terminate satisfies the postcondi-
tion, e.g. infinite loops. Partial correctness says what must happen if the program terminates. The
property that requires the program to terminate is the total correctness. We say that the Hoare triple
satisfies the total correctness if for all states in which s is executed and satisfies the precondition P ,
s is guaranteed to terminate, and the resulting state satisfies the postcondition Q .

The Weakest Precondition Calculus is a technique that comes from Dijkstra [69] to prove im-
perative programs’ properties. WP is about evaluating a function; thus, given a statement s and a
postcondition Q , the goal is to find the unique precondition P – the weakest precondition for s
and Q .

The weakest precondition for s to Q is an assertion that is true for precisely those initial states
from which s must terminate and execute s must produce a state satisfying Q . Unlike Hoare
logic, WP is functional, and for each Q , there is precisely one assertion P that equals wp(s ,Q).

64

CHAPTER 4. TOOLS

Consequently, WP does respect Hoare logic and the formula {wp(S ,Q)}S {Q } is true. WP ensures
total correctness and proves the termination of the program.

Here is an example to understand the difference between the two logic. We consider the state-
ment x := x +1 with its postcondition x > 0. Considering a Hoare triple, a valid precondition is
x > 0, so the following formula is true:

{x > 0}x := x +1{x > 0}

Another valid precondition is x >−1 that also satisfies the following formula:

{x >−1}x := x +1{x > 0}

We can conclude that the precondition x >−1 is weaker than x > 0 because x > 0 =⇒ x >−1. As a
result, the precondition x >−1 is the weakest precondition of the program defined by the formula:

wp(x := x +1,x > 0) = x >−1

Invariant loops. A function that defines a loop in its program cannot be proven by defining pre-
and postconditions alone. In addition, we cannot mechanically generate the weakest precondition.
Instead, we must reason about the loop inductively and define an inductive proof. The proof shows
that each time the loop executes, we get one step closer to the final result and that when the loop
terminates, we obtain the expected result. This inductive proof is called loop invariants.

When proving a program using Hoare logic [105], guessing the appropriate loop invariants is
a significant difficulty. In formal verification, especially in Hoare logic, loop invariants are logical
predicates used to prove the correctness of algorithms. As a result, one needs to discover a suitable
loop invariant to prove the pre- and postconditions of our program. Remark that the knowledge of
completeness gives only hints on effectively determining a suitable loop invariant when required.

A sound loop invariant should satisfy three properties:

1. Initialisation. It should be true before the first iteration of the loop.

2. Preservation. If the invariant is true before an iteration of the loop, it must be true after the
iteration.

3. Termination. When the loop terminates, the invariant must give useful information to show
that the algorithm is correct.

4.2 Why3

Why3 tool [83] is a platform for deductive program verification. It provides a rich language for
specification and programming, called WhyML, and can be used as an intermediate language. An
intermediate language is platform-independent; thus, it can be run in any computer environment
that has a runtime engine for the language. Moreover, the logical language of Why3 does not depend
on the programming language. It can serve as a standard format for theorem proving problems,
readily suitable (via Why3) for multiple automated and interactive provers, such as Alt-Ergo [41],
CVC4 [30], Z3 [67] and Coq [62]. Why3 comes with a standard library1 of logical theories and
programming data structures.

The logic of Why3 is first-order logic with polymorphic types and several extensions: recur-
sive definitions, algebraic data types and inductive predicates. In addition, first-order language is
extended, both in terms and formulas, with pattern matching, let-expressions, and conditional (if-
then-else) expressions. This approach defines properties as preconditions, postconditions, asserts
and invariants. The development of Why3 is mainly motivated by the necessity to model the be-
haviour of programs and formally prove their properties.

1http://why3.lri.fr/

65

http://why3.lri.fr/

CHAPTER 4. TOOLS

Pure logical definitions, axioms and lemmas are organised in collections called theories. The stan-
dard library of Why3 contains numerous theories describing integer and real arithmetic, lists, binary
trees, mappings, and abstract algebraic notions. In WhyML, a type, a function, or a predicate can be
given a definition or just declared abstract symbols and then axiomatised. A WhyML file contains
modules, and each module contains declarations. This declaration can be program data types, logi-
cal declarations as types, functions, predicates, axioms, lemmas and constructs as sequences, loops,
and exceptions.

Why3 allows expressing ghost expressions in a program by using the keyword ghost. It marks
the expression as ghost code added for verification, i.e. only for the specification or proof. Ghost
code is removed from the code intended for execution (it is not part of the executable code). Thus,
it cannot affect the computation of the program results nor the content of the observable memory.
As a consequence, ghost code cannot interfere with regular code in the following sense:

• Ghost code cannot modify regular data, but it can access it in a read-only way.

• Ghost code cannot modify the control flow of regular code.

• Regular code cannot access or modify ghost data.

Why3 provers. The Why3 tool is equipped with an intuitive graphical interface that allows apply-
ing certain operations such as splitting a proof and verifying a goal’s validity by calling the desired
prover. The principal activity of Why3 can be described as processing proof tasks. A task is a logical
context: a list of declarations followed by one goal, that is, a formula. Tasks are extracted from the
various theories. When a goal is sent to a prover that does not support some language features, Why3
apply a series of encoding transformations, for example, to eliminate pattern matching or polymor-
phic types. Another example is if the target prover is Z3, Why3 will apply a transformation to
remove inductive predicates since Z3 does not handle it. WhyML functions are annotated with pre-
and postconditions for normal and exceptional termination, and WhyML loops are annotated with
invariants. While-loops and recursive functions can be given variants (i.e. values that decrease at
each recursive iteration or call) to ensure termination. We can insert assertions (statically checked)
at arbitrary points in a program. Verification conditions are generated using a standard weakest
precondition procedure. Functions, predicates and pure types introduced in the logical language
can be used in the program. For example, the type of integers and basic arithmetic operations are
shared between specifications and programs.

4.2.1 Structure of a Why3 Program

Modules. Program declarations and theories are grouped into modules. Why3 depicts a standard
library where a set of theories are defined. It is possible to use a theory by using use import

(or use depending on the language version) following its name. For example, the standard library
contains a module Fact, where a factorial function is defined. The module is as follows:

1 module Fac
2 use Int
3
4 let rec fact_rec (x:int) : int
5 requires { x ≥ 0 }
6 variant { x }
7 ensures { result = fact x }
8 = if x = 0 then 1 else x * fact_rec (x-1)
9
10 end

Amodule starts with module and ends with end. It begins by importing theory Int for the integer
numbers, then defines the factorial function. If we want to use the recursive function fact_rec,
we must import the logical theory use import int.Fact into the current context that is theory
Fact from Why3 standard library 2.

2http://why3.lri.fr/stdlib/int.html

66

http://why3.lri.fr/stdlib/int.html

CHAPTER 4. TOOLS

In WhyML syntax, we can define recursive functions using the let rec construct like the func-
tion fact_rec. The function defines a precondition that the function’s input must be positive or
null. Within the postcondition, the variable result stands for the value returned by the function.
To prove the termination of this function, we must define a variant that is a term that decreases at
each recursive call for a well-founded order relation.

The Why3 standard library contains many theories and modules, thus enabling the modularity
that avoids rewriting certain types or expressions. Another useful module from the standard library
of WhyML is the module Ref. The module provides references enabling mutable variables. A
reference is created with function ref, we access the contents of reference x with !x and assign it
with x := e. Notice that the same symbol (!) is used for both a pure access function and a program
function. Since program symbols cannot appear in specifications, !r in pre-and postconditions can
only refer to the pure function. In the program code, !r will refer to the WhyML function. An
exception is made for logic functions and predicates specified directly on program types. These
functions and predicates have uncontrolled access to ghost components of program types; therefore,
they can only be used in specifications.

Machine integers. Previously, we said that Why3 could be used as an intermediate language us-
ing WhyML when needed. So far, we have shown the possibility of using arithmetic from Why3
standard library, with the type int of mathematical integers with unbounded precision. However,
assume we need to model machine arithmetic (like, signed 32-bit integers) to show the absence
of arithmetic overflow in a program or reason about possible overflows. The main difficulty is
that we do not want to lose the arithmetic capabilities of SMT solvers (which only know about
mathematical arithmetic). One way to do this is to introduce a new, uninterpreted type int32 for
machine integers “type int32”, together with a function giving the corresponding value of type
int: “function toint int32 : int”. The idea is to use only type int in program annotations,
that is, to apply function toint systematically around sub-expressions of type int32. If our pur-
pose is to build a model to prove the absence of arithmetic overflow, we need a function to build a
value of type int32 from a value of type int with a suitable precondition.

Therefore, the standard library provides a generic theory in module Bounded_int 3 that can
instantiate integers to n-bit signed and unsigned integers by giving them a minimal and a maximal
value. The instantiation is possible thanks to the specifications modularity. In WhyML, we can refer
to a module by the mean of “cloning”.

Notice an important difference between use and clone. If we use a theory, say List, twice,
there is no duplication; hence, there is still only one type of list and a unique pair of constructors.
On the contrary, a clone declaration constructs a local copy of the cloned module, possibly instan-
tiating some of its abstract symbols. Despite having the same names, the newly created symbols
are different from their originals. This cloning mechanism is very useful since we can define a mod-
ule as general as possible. Then we can implement it and verify it only once and then reuse it in
different contexts.

The theory Bounded_int defines a non-interpreted type t with two constants, min and max.
The declarations inside the theory are dependent on the type t. Moreover, Bounded_int defines
a set of functions for mapping a value int to a value t and conversely. The module also defines
classical integer functions, like the addition and subtraction, between two t values. For example,
the following val function

1 val to_int (n:t) : int
2 ensures { result = n }

corresponds to a value given as input (n) to an integer (the function result). Thus, if we wish to
instantiate a machine integer type, we must clone the theory Bounded_int in the current context

3http://why3.lri.fr/stdlib/mach.int.html

67

http://why3.lri.fr/stdlib/mach.int.html

CHAPTER 4. TOOLS

with the necessary information. If we take the example of the Int32 integer, the cloning is done as
depicted in Listing 4.1.

1 module Int32
2
3 use int.Int
4
5 type int32 = < range -0x8000_0000 0x7fff_ffff >
6
7 let constant min_int32 : int = - 0x8000_0000
8 let constant max_int32 : int = 0x7fff_ffff
9
10 clone export Bounded_int with
11 type t = int32,
12 constant min = min_int32,
13 constant max = max_int32,
14 end

Listing 4.1 – Example of cloning mechanism

Types. A type can be an algebraic data type, an alias for a type expression or non-interpreted. For
example, the type of polymorphic binary trees is introduced as follows:

1 type tree α = Leaf | Node (tree α) α (tree α)

The symbol (|) represents an enumeration. Built-in types include integers (int), real numbers
(real) and polymorphic tuples. Record types are a particular case of algebraic types with a single
unnamed constructor and named fields. Here is a definition of a generic queue with two fields:

1 type queue α = { front: list α;
2 rear: list α }

In Why3 standard library, we find the following algebraic data types:
1 type bool = True | False
2 type option α = None | Some α (in option.Option)
3 type list α = Nil | Cons α (list α) (in list.List)

None stands for the absence of value, Some stands for an entry α, Nil for an empty list, and Cons

for an entry list α.

Why3 standard library provides arrays in module array.Array 4. This module declares a poly-
morphic type array α, an access operation written a[e], an assignment operation a[e1] <- e2,
and various operations such as create, length, append, sub, or copy. The type being abstract in
programs, we cannot implement operations over this type, but we can declare function prototypes
to provide a usable interface. For example, the access operation of an array is declared as follows:

1 val ([]) (a: array α) (i: int) : α
2 requires { 0 ≤ i < length a }
3 ensures { result = a[i] }

This function takes a and i as arguments, together with a precondition to ensure array access within
bounds. It returns a value of type α, and the postcondition states that the returned value is the value
contained in the array at the index i.

In addition, the assignment operation is declared in a similar way:
1 val ([]←) (a: array α) (i: int) (v: α) : unit writes { a }
2 requires { 0 ≤ i < length a }
3 ensures { a.elts = Map.set (old a).elts i v }
4 ensures { a = (old a)[i ← v] }

The main difference is that the annotation writes {a}, which indicates that a call to this func-
tion modifies the content of a. The modification is allowed since the field elts was declared to be
mutable. The term ((old a).elts) in the postcondition refers to the pre-call value of the field
a.elts before it is modified by ([]<-).

4http://why3.lri.fr/stdlib/array.html

68

http://why3.lri.fr/stdlib/array.html

CHAPTER 4. TOOLS

Function symbol Definition
let A program function, with prototype, contract, and body.
val A program function, with prototype and contract only.
let function A pure program function which can be used in specifications as a log-

ical function symbol.
let predicate A pure boolean program function which can be used in specifications

as a logical predicate symbol.
val function A pure program function which can be used in specifications as a log-

ical function symbol.
val predicate A pure boolean program function which can be used in specifications

as a logical predicate symbol.
function A logical function symbol which can be used as a program function in

ghost code.
predicate A logical predicate symbol which can be used as a boolean program

function in ghost code.
let lemma A special pure program function which serves not as an actual code to

execute but to prove the function’s contract as a lemma.

Table 4.6 – Functions declaration from the Why3 manual [185]

Functions in WhyML. WhyML language allows several different functions to be definedwith vary-
ing declarations. Functions introduced by the “function” keyword are pure functions5 that can be
used in both specification and program, whereas functions introduced by “let” can only be used
in the program. Another difference is that functions introduced by the function keyword cannot
be annotated, but the provers can access their body. In contrast, functions introduced by the let
keyword are black boxes that are only seen by provers through their specification. Every function
or predicate symbol in Why3 has a (polymorphic) type signature. For example, an abstract function
that merges two integer trees can be declared as follows:

1 function merge (tree int) (tree int) : tree int

Moreover, functions and predicates can be given definitions, possibly mutually recursive. For
instance, a recursive function that can calculate the height of a tree is defined as follows:

1 function height (t: tree α) : int =
2 match t with
3 | Leaf → 0
4 | Node l _ r → 1 + max (height l) (height r)
5 end

And, the definition of a recursive predicate mem checking for the presence of an element x in a
list l:

1 predicate mem (x: α) (l: list α) = match l with
2 | Nil → false
3 | Cons y r → x = y ∨ mem x r
4 end

Table 4.6 defines the different functions that can be expressed in a WhyML program.

4.2.2 Proving Euclidean Division Using Why3

In the following, we proceed step by step by building the conventionalEuclid’s algorithm to illustrate
how Why3 works. The algorithm’s goal is to calculate the division of two integers producing a
quotient and a remainder 6. First, we create a module and name it Division. This module will
contain the program.

5In the sense that they cannot mutate some state or perform any side effects. There are many other limitations on
what functions can be defined using the function keyword. For example, they cannot feature loops.

6The example can be found in http://toccata.lri.fr/gallery/division.en.html.

69

http://toccata.lri.fr/gallery/division.en.html

CHAPTER 4. TOOLS

1 module Division

We import the theory of integers int.Int from Why3 standard library — the prefix int indicates
the file in the standard library containing theory Int. Then, we need the usual operations on
references for mutable variables. Therefore, we import the theory Refint.

1 use int.Int
2 use ref.Refint

Now that we have all the necessary modules to write our program, we can define the Euclid algo-
rithm. The program takes two integers, a and b, as parameters and returns an integer; the quotient
q. We initialise two local variables, the quotient q to 0 and the remainder r to the value of a. To
calculate the quotient, we need a loop on the program. While the remainder is greater than the
divisor b, we increment the quotient and subtract to r the value of b.

1 while r ≥ b do
2 incr q;
3 r -= b
4 done;
5 q

The function incr comes from the theory Refint. The quotient is calculated once the remainder
is less than b, and the program returns its value (line 5).

We have built the program; now, we have to prove it. Euclidean division is based on the following
theorem: “Given two positive integers a and b, with b 6= 0, there exist unique integers q and r such
that: a = b ∗q +r and 0 ≤ r < |b|, where |b| denotes the absolute value of b.” This theorem is used to
define the program’s precondition, noted requires, and postcondition, noted ensures.

1 requires { 0 ≤ a && 0 < b }
2 ensures { exists r. result * b + r = a && 0 ≤ r < b }

Moreover, we need to define a loop invariant, introduced with the keyword invariant, to
prove that a property is true before and after each loop iteration. It can help to prove the correct-
ness of the program. In the example of Euclid, the property to hold is the conservation of the
relationship between the four integers, and the remainder must be positive. Proving that a loop
always terminates is a common requirement when verifying software. The usual approach pro-
vides a loop variant function introduced with variant. The variant declaration tells Why3 to
check for structural decreasing, as it does for logical definitions. Usually, an integer expression that
decreases on every loop iteration is used to define a variant declaration. In the example, the integer
that decreases is r. The complete program of the Euclid division algorithm is in Listing 4.2.

1 module Division
2
3 use int.Int
4 use ref.Refint
5
6 let division (a b: int) : int
7 requires { 0 ≤ a && 0 < b }
8 ensures { exists r. result * b + r = a && 0 ≤ r < b }
9 =
10 let ref q = 0 in
11 let ref r = a in
12 while r ≥ b do
13 invariant { q * b + r = a && 0 ≤ r }
14 variant { r }
15 incr q;
16 r -= b
17 done;
18 q
19
20 end

Listing 4.2 – Euclidean division in WhyML

We can prove the program by launching the Why3 GUI, as illustrated in Figure 4.6. We can see
from the figure that we have a tree view on the left side. It shows the properties we have proved
(green check). On the right side of the figure is the program written in WhyML.

70

CHAPTER 4. TOOLS

Figure 4.6 – The Why3 GUI

We invite the reader to refer to the project web page (http://why3.lri.fr) for a complete
presentation of Why3 and WhyML, which provides a detailed introduction and a large collection of
examples.

4.3 TLA+

TLA+ is a specification language based on the Temporal Logic of Action (TLA) [119] and Zermelo-
Fraenkel’s (ZF) set theory [141]. On the one hand, this combination brings the possibility to
describe dynamic behaviours of state-transition systems through TLA and, on the other hand, a
way to specify the system’s data structure through ZF. Zermelo-Fraenkel’s set theory with the
axiom of choice is considered the standard foundation for mathematics.

Leslie Lamport designed TLA+ in the 90s to specify and model concurrent and distributed
systems. TLA+ is a well-known tool and is frequently used by the industry as Amazon [150],
Intel [33], Microsoft [2] and OpencomRTOS [179].

A TLA+ specification is structured as a module that can extend other modules using the key-
word EXTENDS . A system is composed of variables x1, ...,xn . The system is represented as actions
that, when carried out, move it from one state to another. A state is assigning a value to the system’s
set variables. Thus, an action is a relation between two states through a predicate over variables
x1, ...,xn and x ′1, ...x ′n . Unprimed variables refer to the value of variables in the current state, and the
primed variables refer to the value of variables in the next state of the system. Therefore, a TLA+

predicate describes a behaviour of the system when the predicate evaluates to true.
A TLA+ system is specified as Spec = Init ∧2[Next]vars . The predicate Init specifies the possi-

ble initial states; Next specifies a disjunction of all possible actions of the system and vars the tuple
of all variables. The expression 2[Next]vars means it is always true that either one of the actions
defined in Next is executed or vars is in a state of stuttering. Stuttering is when a variable has
the same value in the current and the new states. Consequently, the Spec defines a set of infinite
sequences of steps, characterising a behaviour, where at each step, either an action is true, and the
state changes or vars stutters.

4.3.1 The TLA+ Verification Tools

The model checker TLC. To verify the specification of a system written in TLA+, the tool relies
on a model checker called TLC [190]. TLC is an explicit-state model checker that performs a
breadth-first search to traverse the state graph for checking invariance properties. To reduce the
combinatorial explosion problem, well known in model-checking, TLC uses a state compression

71

http://why3.lri.fr

CHAPTER 4. TOOLS

method by using fingerprints. This method reduces the amount of space required during the model-
checking process, thereby reducing space complexity.

When TLC is launched, it first generates the initial states that satisfy the specification and
verifies all invariant properties. The execution stops when all state transitions lead to states already
discovered. If TLC faces a state that violates a system property, the execution halts, and TLC

returns a counter-example that traces the violation’s path.

The proof system TLAPS. TLA+ was extended, in 2012, by the introduction of a proof system
TLAPS [56]. TLAPS is an interactive proof environment where users can deductively verify
safety properties written in TLA+. Verification by theorem proving, provided withTLAPS , meets
the need to strengthen the correctness property of an inductive invariant. For example, proving
that a safety property is an invariant of the system comes down to defining an inductive invariant
that implies the safety property. The proof system uses declarative notation to write hierarchical
proofs that are mechanically checked by generating proof obligations and passes them to back-end
verifiers like Isabelle [184], Zenon [42] and SMT solvers. Z3 [67] is the SMT solver distributed
with TLAPS . However, it is possible to add other SMT solvers by downloading and installing
them, for example, CVC4 [30]. By default, TLAPS does not reprove an obligation that it has
already proved. The Proof Manager computes a fingerprint of every obligation. The fingerprint is
a compact canonical representation of the obligation and the relevant part of its context.
TLAPS allows the user to decompose a complex proof into smaller proofs until they can be prov-
able by the available back-end provers. The TLAPS proof language is prover-independent, and
all reasoning is done at the TLA+ level. Therefore, users do not need to have any knowledge of
back-end provers.

A proof in TLAPS is built on the specification written in TLA+. A TLA+ module contains
declarations, assertions and definitions. Assertions state valid facts which do not need to be proven.
Assertions can be expressed through axiom or assume keywords. Other formulas such as theorems
theorem and lemmas lemma can be expressed. They assert that facts are provable in the current
context.

A hierarchical proof is either a leaf proof established by elementary steps that indicate the
known facts and definitions of the desired goal or sequences of assertions followed by qed . Each
proof in the hierarchy ends with a qed step that asserts the proof’s goal. Note that definitions and
facts must be cited explicitly for TLAPS to use them. The TLAPS standard module defines some
operators that are used when writing proofs to be checked by the TLAPS proof system like PTL
(for Propositional Temporal Logic), SMT and other back-ends.

4.3.2 PlusCal

TLA+ language can become challenging if we have no background in TLA+ formalism. In order
to make it easy for inexperienced users to use TLA+, PlusCal [121] has been proposed. It is a high-
level language for describing concurrent and distributed algorithms in the form of pseudo-code.
The PlusCal language expresses simple statements while being quite powerful and allows interesting
features such as non-determinism, procedures, and grain of atomicity, i.e. atomic actions. PlusCal
is a handy language for those who do not want to master TLA+ specification but still want to use
the underlying technology of TLA+ as the model-checking. However, using PlusCal for checking
a model or proving a program requires a minimum understanding of TLA+ language. Indeed,
properties to verify are written according to the TLA+ specification.

PlusCal is designed to express concurrent systems, allowing multiprocessor algorithms, each
with its own definition. The PlusCal language provides interesting features to design algorithms.
We find familiar imperative language constructs such as while loop to express repetitive algorithm
instruction, either -or and with to express non-deterministic behaviours and if - then -else in-
structions. The language also provides constructs that allow conditioning the behaviour of a pro-
cess using when or await statement. This construct can impose a synchronisation of processes that
wait for a condition to be true.

72

CHAPTER 4. TOOLS

Once written, a PlusCal code is parsed with the PlusCal translator, automatically generating
a TLA+ specification. The PlusCal translator inserts the generated TLA+ specification between
the BEGIN and END translation comment lines. Although the tool tries to preserve the variable
names, it can create new names if necessary. For example, the translator adds the variable pc, for
“program control”, to explicitly track the point of execution of the program that corresponds to
which label the process is currently on.

Labels. The grain of atomicity is possible by using labels. A grain of atomicity is the ability to
ensure that a block of instruction executes without interleaving other process statements. In Plus-
Cal, as many instructions as possible can be labelled. Instructions between two labels are executed
atomically and constitute one action. In addition, it is possible to jump from one label to another
using the keyword goto followed by the label name. However, one must be careful in the way of
using labels. The more labels the program has, the more exact it will be, but significantly increasing
possible states. Conversely, few labels reduce the number of possible states but decrease the exacti-
tude of the program. It is a trade-off between clarity and performance. There are specific rules in
the placement of labels. It is mandatory to place a label in the following locations:

• At the first line of a process.

• Before a while statement.

• Right after a call , return or goto statement. call and return are used in a procedure context.
Their role is to, respectively, call a procedure in the program of a process and to mark the
end of a procedure. Although it may look like, return does not return any value.

• If one possible branch of a if or either statement has a label, then the whole control structure
must follow with a label.

Note that it is impossible to put a label in a with statement or assign a variable more than once in
a label.

Fair process. A system satisfies a liveness property under fairness assumptions on actions. Ex-
pressing fairness in a concurrent system is an important assumption. In PlusCal, it is expressed using
the keyword fair before the process definition. In a PlusCal algorithm, each label corresponds to an
action. An action is enabled if, and only if it can be executed, i.e. a fair process cannot stop at that
action. If two actions are enabled, the executed action is non-deterministically chosen. Omitting
the word fair makes the process unfair and has no fairness assumptions on its actions, which can
also reflect a crash process’s behaviour. There is two kinds of fairness assumptions: weak fairness, us-
ing the keyword fair ensures that the transition must occur if it remains continuously enabled, and
strong fairness, using the keyword strong fair ensures that a transition must occur if it is repeatedly
enabled from time to time.

4.3.3 The Two-Phase Commit Protocol in TLA+

Several examples in the literature of the Two-Phase Commit protocol are implemented in TLA+.
This section defines a version of it. First, we define the algorithm in the PlusCal language, and then
we translate it using the PlusCal translator to generate the TLA+ specification.

1. The PlusCal algorithm. The algorithm follows the steps defined in Section 2.1.1. Before
we start describing the algorithm in PlusCal, we name the module, module TwoPhaseCommit .
Because we assign an integer identifier to participants, we need to extend the Integers module from
the TLA+ library. The total number of participants is defined by a constant N :

73

CHAPTER 4. TOOLS

extends Integers

constant N

We reason about the states of the participants to build the algorithm, namely the coordinator
and the participants (also called followers). Hence, we define a set of possible states in which the
participants can be:

CStates
∆= {“init”,“pre-commit”,“commit”,“abort”}

PStates
∆= {“working”,“committed”,“aborted”,“prepared”}

CStates is the set of the coordinator’s states.“init”represents the initial state of the coordinator,
“pre-commit”represents the state where the coordinator sends the participants the query to commit,
“commit”represents the decision of the commit and“abort”the decision of the abort. PStates is the
set of the participants’ states with“working”the initial state,“prepared”representing the yes vote for
the commit,“committed”representing the acknowledgement of the commit decision, and“aborted”
representing the no vote for the commit.

Participants are given an identifier to track their behaviours and actions efficiently. A unique
identifier must identify each participant from the following sets:

CoordinatorID
∆= 0

Participants
∆= 1..N

The identifier of the coordinator is 0. The identifiers of the other participants are assigned so
that there is no participant with the same identifier as the coordinator. Therefore, Participants is
the set of all numbers starting from 1 to N , and each number represents a participant identifier.

The PlusCal algorithm is enclosed as a comment in TLA+ using ∗ ..∗ , and we give it the name
TwoPhaseCommit . The algorithm defines and initialises three global variables: the coordinator’s
state cState, the participants’ state pState, and abortFlag . The variables are respectively initialised
to “init”, “working”, and false. abortFlag is used to detect if a participant has voted no for the
commit.

--algorithm TwoPhaseCommit

variables cState =“init”,
pState = [p ∈ Participants 7→“working”],
abortFlag = false ;

Remark. The addition of the boolean abortFlag serves to avoid the existential quantifier ∃. Indeed,
we could have defined a predicate that is true if: ∃p ∈ Participants : abortFlag[p] = true. It can be
complicated to reason with the existential quantifier in proofs [76]. Therefore, we replace it with a
true boolean when a participant aborts the commit.

The participants’ state pState is defined as a function with Participants as its domain. In TLA+,
a function is different from other programming languages. It is closer to hashtables or dictionaries
with values in the state space of algorithms. Hence, the domain of the function can be seen as the
index set of a dictionary or hashtable. The declaration of variables allows them to be initialised as
well.

We choose tomodel themessage sent between participants by updating the state of their variable
cState and pState. That is to say, if cState is set to“pre-commit”, then this translates into “the
coordinator has sent a commit request to all participants”.

74

CHAPTER 4. TOOLS

The PlusCal language has an optional define statement for inserting TLA+ definitions in algo-
rithms. It must come before the definition of the process algorithm. It permits predicates defined
in terms of variables to be used in the algorithm’s expressions. In our algorithm, allPCommit and
atLeastOneAbort are predicates that inform the coordinator on which decision to make.

define {
allPCommit

∆= ∀p ∈ Participants : pState[p] =“prepared”
atLeastOneAbort

∆= abortFlag = true }

The predicate allPCommit is valid if all the participants agree to commit. In the classical Two-
Phase Commit, the agreement is a yes sending message. In our PlusCal algorithm, the yes message
is represented by updating the state pState to“prepared”. Conversely, atLeastOneAbort is valid if
at least one participant changes the state of the variable abortFlag and assigns it to true. In the
following, we describe the behaviour of the coordinator and the participants defined as process .

The coordinator process. The coordinator, defined inDefinition 1, is identified by its signature
fair process (Coordinator =CoordinatorID), with Coordinator the name of the process. The
process is assumed fair thanks to the fair keyword. The coordinator starts at the label“c0”with
a conditional statement using the await construct. The condition is that the coordinator must be
in the initial state. Once the condition is satisfied, the coordinator moves to the second statement
and faces a non-deterministic construct. The coordinator can either execute action c1 and abandon
the commit by changing its state from“init” to“abort”or query the participant for a prepared to
commit by changing its state from“init” to“pre-commit”. Note that if the coordinator decides to
take the either branch, it reaches the end of its program. Indeed, after the cState variable changes
state, the program has no further action to perform.

However, suppose it decides to query the participants. The coordinator executes action“c2”after
updating its state to“pre-commit”. The label“c2”defines a non-deterministic conditional action.
The coordinator waits until one of the two predicates defined in the define statement is valid.
Either allPCommit is valid, meaning that all participants are prepared to commit, or the predicate
atLeastOneAbort is valid, meaning that at least one participant has decided to abort. In the first
case, the state of the variable cState changes to“commit”, which ends the coordinator program.
The second case returns the coordinator to the label“c1”, which represents the abort state of the
coordinator and does not allow the commit to taking place. The last statement uses the keyword
goto that enables the program to jump to the label“c1”. Three possible atomic actions define the
coordinator program: {c0,c1,c2}.

Definition 1 (The coordinator’s PlusCal program).

fair process (Coordinator =CoordinatorID){
c0 : await cState =“init”;

either {
c1 : cState :=“abort”; }

or {
cState :=“pre-commit”;

c2 : either {
await allPCommit ;
cState :=“commit”; }

or {
await atLeastOneAbort ;
goto c1 ; } ; } ;

} ;

75

CHAPTER 4. TOOLS

The participants’ process. Similarly to the coordinator, we define in Definition 2 a process for
the participants. It is identified by the signature fair process (Participant ∈ Participants), with
Participant as the name of the process. The participant starts the process with the label p0. The
label represents a conditional action and asks the participant that executes p0 to be in the“working”
state. self represents the process identifier that executes the code.

According to Figure 2.1 in Chapter 2, the participants have no choice but to wait for the first
action of the coordinator. Suppose the coordinator decides to abort from the beginning of the
algorithm. In that case, the participants will have no choice but to abort and execute the ac-
tion on label p1. Suppose the coordinator decides to query the participant for a commit, i.e.
cstate =“pre-commit”. It that case, each participant can make a non-deterministic choice of either
voting yes to the commit or no. The no vote is represented in the label p1, and the participant’s state
changes from“working”to“aborted”and sets the boolean abortFlag to true. This action validates
the predicate atLeastOneAbort giving information to the coordinator for an abort decision. More-
over, the participants reach the end of their program when executing p1. Conversely, if they decide
to accept the commit, characterised by the yes vote, their pState value will change from“working”
to“prepared”.

Once the participant sends its agreement to the commit (updating their state), it executes the
label p2. This label is a non-deterministic conditional action representing the waiting for the coor-
dinator’s decision. If all participants agree to commit, then the predicate allPCommit is satisfied
and is set to true. As a result, the coordinator can change its state from“pre-commit” to“com-
mit”, representing its decision. Conversely, suppose one of the participants wishes to abandon the
commit and decides to abort. In that case, the coordinator’s decision will be“abort”, and its state
will change from“pre-commit”to“abort”. Whatever the decision, the participant sends an acknowl-
edgement to the coordinator by changing their state to“committed”if the decision is“commit”and
“aborted”if the decision is“abort”.

Definition 2 (The participants’ PlusCal program).

fair process (Participant ∈ Participants) {
p0: await pState[self] =“working”;

either {
p1: await cState ∈ {“pre-commit”,“abort”} ;

pState[self] :=“aborted”;
abortFlag := true ; }

or {
await cState =“pre-commit”;
pState[self] :=“prepared”;

p2: either {
await cState =“commit”;
pState[self] :=“committed”; }

or {
await cState =“abort”;
goto p1 ; } ; } ;

} ;

Consequently, the participant has three possible atomic actions: {p0,p1,p2}. Note that the partic-
ipant can take the label p1 for two reasons. It decides to abort voluntarily at the beginning of the
process or because the coordinator has decided to abort.

Remark. Done is a label defined in PlusCal that designates the end of the process. Therefore, it
is possible to write goto Done, which jumps the program at the end of the process. Even if it is

76

CHAPTER 4. TOOLS

not visible in the processes algorithm, be aware that in addition to the {p0,p1,p2,c0,c1,c2} labels,
there is Done.

2. The PlusCal translation. Once the PlusCal code is written, we can translate it to generate the
TLA+ specification. The translation is done through a command line or the TLA+ toolbox. The
program looks like the following7:

module TwoPhaseCommit

extends Integers ,TLAPS
constant N

Participants
∆= 1 . .N

CoordinatorID
∆= 0

CStates
∆= {“init”,“pre-commit”,“commit”,“abort”}

PStates
∆= {“working”,“committed”,“aborted”,“prepared”}

(∗ --algorithm TwoPhaseCommit {

fair process (Coordinator =CoordinatorID){ } ;

fair process (Participant ∈ Participants) { } ;
}
∗)

(∗ BEGIN TRANSLATION ∗)

Generated TLA+ speci�cation here

(∗ END TRANSLATION ∗)

The generated TLA+ specification contains the same variables as the PlusCal code (cState, pState
and abortFlag). An additional variable has been created during the translation; pc, the program
control variable that tracks which label a process is currently on. All variables are gathered in a tuple
vars . The translation preserves the define statements that include the predicates allPCommit and
atLeastOneAbort .

(∗ BEGIN TRANSLATION ∗)

variables cState , pState , abortFlag , pc

allPCommit
∆= ∀p ∈ Participants : pState[p] =“prepared”

atLeastOneAbort
∆= abortFlag = true

vars
∆= 〈cState , pState , abortFlag , pc〉

(∗ END TRANSLATION ∗)

The translation also generates a definition; ProcSet , which is the set of the algorithm’s processes. In
our example, ProcSet is the union set ofCoordinatorID and Participants . The setCoordinatorID
contains one element (itself), and the set Participants contains N elements:

ProcSet
∆= {CoordinatorID }∪ (Participants)

As a recall, a TLA+ system is specified as Spec = Init ∧2[Next]vars . With Init , the initial states;
Next , the next action to execute and the predicate Spec is the desired protocol behaviour. In the
Two-Phase Commit example, Init is defined in Definition 3.

7Please refer to the Appendix A.1 for the complete PlusCal code.

77

CHAPTER 4. TOOLS

Definition 3 (The initial predicate Init).

Init
∆= ∧cState =“init”

∧pState = [p ∈ Participants 7→“working”]
∧abortFlag =FALSE
∧pc = [self ∈ ProcSet 7→CASE self =CoordinatorID → "c0"

�self ∈ Participants→ "p0"]

TLA+ syntax is based on conjunctions and disjunctions. Typically, a TLA+ expression starts
with a conjunction symbol or disjunction symbol. This kind of expression gives a better overview
of the hierarchical structure of the logical formula. Definition 3 initialises the variables according
to the information given by the PlusCal code. The program control initialises the coordinator’s
state (using the CASE statement, similar to a pattern-matching) to c0, which is its first action and
all the participants to p0. The specification of a TLA+ system is a set of predicates representing
a possible action that the system can execute. Each defined label in the PlusCal code refers to an
action in TLA+.

The coordinator’s actions. The possible actions of the coordinator are c0, c1 and c2. The content
of these actions is derived from the PlusCal code. Let us start with the c0 action in Definition 4.

Definition 4 (The first action of the coordinator).

c0
∆= ∧pc[CoordinatorID] =“c0”

∧cState =“init”
∧ ∨ ∧pc′ = [pc except ! [CoordinatorID] =“c1”]

∧unchanged cState

∨ ∧cState ′ =“pre-commit”
∧pc′ = [pc except ! [CoordinatorID] =“c2”]

∧unchanged 〈pState , abortFlag〉

The action c0 can be executed if the program control of the coordinator is in c0 (the first statement
of the conjunction), and the state of the variable cState must be in“init”(the second conjunction).
The third conjunction represents the either -or statement. Either the next state of the program
control (represented by the prime) is c1, and the state of cState does not change, i.e. stays in the
“init”state, or the next state of pc is c2, and the variable cState changes to“pre-commit”. Finally,
the last conjunction states that when the action c0 is executed, variables pState and abortFlag are
unchanged and keep their current states.

Remark. TLA+ introduce the notation: f except ![e1] = e2. It means that the resulting function,
say f ′, is equal to the function f except at the point e1, where its value is replaced with e2, namely
f ′[e1] = e2.

The second possible action of the coordinator is c1 defined in Definition 5.

Definition 5 (The second action of the coordinator).

c1
∆= ∧pc[CoordinatorID] =“c1”

∧cState ′ =“abort”
∧pc′ = [pc except ! [CoordinatorID] =“Done”]
∧unchanged 〈pState , abortFlag〉

78

CHAPTER 4. TOOLS

Action c1 represents the abort decision. It can be executed from the previous action, c0 if the
coordinator aborts voluntarily, and from the following action c2 if the predicate atLeastOneAbort
is valid. The program control of the coordinator must be equal to c1 to execute the action (the
first conjunction). The execution sets the next state of the variable cState to“abort”(the second
conjunction). The program of the coordinator ends when the next state of its program control is
set to“Done”(the third conjunction).
Definition 6 introduces the last possible action of the coordinator, c2.

Definition 6 (The third action of the coordinator).

c2
∆= ∧pc[CoordinatorID] =“c2”

∧ ∨ ∧allPCommit
∧cState ′ =“commit”
∧pc′ = [pc except ! [CoordinatorID] =“Done”]

∨ ∧atLeastOneAbort
∧pc′ = [pc except ! [CoordinatorID] =“c1”]
∧unchanged cState

∧unchanged 〈pState , abortFlag〉

This action is the decision step after the query for commit to the participants. This action can
be reached only from the action“c0”. When c2 is executed, either allPCommit is valid (the first
disjunction) or atLeastOneAbort is valid (the second disjunction). The former case sets the next
state of cState to“commit”, and the program of the coordinator ends, and the latter case sets the next
state of the program control to“c1”. In TLA+, the behaviour of a process is expressed by associating
actions with disjunctions or conjunctions. Thus, the behaviour of the coordinator is defined by
the expression Coordinator , which consists of the disjunction of the three actions presented in
Definition 4, 5 and 6:

Coordinator
∆= c0∨c1∨c2

If two or more actions are enabled, then the choice is made in a non-deterministic way.

The participants’ actions. The process remains the same for the participants, with a few differ-
ences. The actions c0, c1, and c2 are actions that only the coordinator can execute. However, we
have N participants who can execute a participant’s possible actions concurrently. The actions are
“p0”,“p1”, and“p2”and take as argument the participant’s identifier executing the action. Thereby
it is possible to track each participant’s behaviour. By default, self represents the variable that
characterises the participant’s identifier.
Definition 7 represents the participants’ first action expressed by p0(self).

Definition 7 (The first action of the participants).

p0(self)
∆= ∧pc[self] =“p0”
∧pState[self] =“working”
∧ ∨ ∧pc′ = [pc except ! [self] =“p1”]

∧unchanged pState

∨ ∧cState =“pre-commit”
∧pState ′ = [pState except ! [self] =“prepared”]
∧pc′ = [pc except ! [self] =“p2”]

∧unchanged 〈cState , abortFlag〉

79

CHAPTER 4. TOOLS

The action is executed by self and represents the first action that the participant self can execute.
The executor of the action must be in its initial state to execute the action (second conjunction). If
this condition is satisfied, two possible choices can be executed by the participant self (the two dis-
junctions). Either abandon the commit and set the next state of the program control to p1 (first dis-
junction) or wait for the coordinator to send the request, characterised by (cState =“pre-commit”)
and go to the next action, p2. Once executed, the action“p0”does not change cState and abortFlag
variables.
Definition 8 represents the second action of self , which is p1(self).

Definition 8 (The second action of the participants).

p1(self)
∆= ∧pc[self] =“p1”

∧cState ∈ {“pre-commit”,“abort”}
∧pState ′ = [pState except ! [self] =“aborted”]
∧abortFlag ′ = true

∧pc′ = [pc except ! [self] =“Done”]
∧unchanged cState

This action can be executed as long as the coordinator aborts or queries for the commit (sec-
ond conjunction). p1(self) can be reached from p0(self) if the participant decides to abort from
the beginning or from the p2(self) action if the coordinator decides to abort. Whatever the case,
the action sets the next state of abortFlag to true, the state of the self participant to“aborted”
(third conjunction) and the program control to“Done”. The execution of this action terminates the
participant’s program.
Definition 9 represents the third and last action of a participant, which is p2(self).

Definition 9 (The participant third action).

p2(self)
∆= ∧pc[self] =“p2”

∧ ∨ ∧cState =“commit”
∧pState ′ = [pState except ! [self] =“committed”]
∧pc′ = [pc except ! [self] =“Done”]

∨ ∧cState =“abort”
∧pc′ = [pc except ! [self] =“p1”]
∧unchanged pState

∧unchanged 〈cState , abortFlag〉

The action p2(self) is reached only from p0(self). If self is executing p2(self), that means that
self has voted yes for the commit. If the coordinator gives a commit decision, then the next state
of pState is “committed”, and its program control is set to “Done”. On the contrary, an abort
decision sets the next state of self ’s program control to“p1”. Consequently, the possible behaviour
of a participant self is defined by Participant(self), which consists of the disjunction of the three
actions defined in Definition 7, 8, and 9:

Participant(self)
∆= p0(self)∨p1(self)∨p2(self)

We have the set of the coordinator and the participants’ possible actions. We can build the Next
predicate of the TLA+ specification from these expressions. Next is the disjunction of all actions
that we just defined and is represented as follows:

80

CHAPTER 4. TOOLS

Next
∆= Coordinator ∨ (∃self ∈ Participants :Participant(self))∨Terminating

With Terminating , the predicate that allows infinite stuttering to prevent deadlock on termina-
tion is defined as follows:

Terminating
∆= ∧∀self ∈ ProcSet : pc[self] =“Done”

∧unchanged vars

This first step has designed the specification of the Two-Phase Commit algorithm defined by
Spec = Init ∧2[Next]vars . We can apply formal methods to the specification and verify the model
according to defined properties, either with TLC or TLAPS .

4.3.4 Methodology of the Two-Phase Commit Proof of Correctness

This section describes the Safety proof methodology of a Two-Phase Commit algorithm by using
the proof system of TLA+; TLAPS 8. Accordingly, the module must extend the TLAPS standard
module. The methodology consists of three distinct steps that are detailed in the following.

Step 1. The definition of the Safety property. A safety property of the Two-Phase Commit is
that the possible decisions that the coordinator can take are mutually exclusive; i.e. it is not possible
to have two participants, one in an aborted state and the other in a committed state. The property
formula obtained in TLA+ is defined in Definition 10.

Definition 10 (The safety property).

Safety
∆= ∀a , b ∈ Participants : ¬∧pState[a] =“aborted”

∧pState[b] =“committed”

The property is a conjunction and the symbol (¬) represents the negation in TLA+.

Step 2. The definition of the inductive invariant. The safety property is verified through the
inductive proof of invariants. The most subtle part of the verification approach is searching for an
appropriate inductive invariant that implies the required property and is inductively preserved for
all behaviour states. An invariant is sound according to a program if:

1. The invariant is true in the initial state.

2. If the invariant is true in any state of the behaviour; then, it is true in the next state of the
behaviour.

3. Safety is valid in all reachable states.

The resulting invariant rule is:

Init =⇒ Inv Inv ∧ [Next]vars =⇒ Inv ′ Inv =⇒ Safety

Init ∧�[Next]vars =⇒ �Safety (4.1)

Inductive invariants contain interesting implementation information about themodel and represent
the overall correctness idea. Thus, Inv must be sufficiently complete to manage the proof of the
system.

8The deductive proof method for TLA+ is more recent than the TLC model checker. However, TLAPS can be
combined with TLC to quickly find minor errors using TLC and prove the system using TLAPS .

81

CHAPTER 4. TOOLS

Type correctness. The characteristic of TLA+ is that it is an untyped language. It is not possible
to distinguish an integer from a non-integer expression. The authors of TLA+ assume this choice
because an untyped language brings flexibility for writing specifications and does not restrict the
expressiveness of a specification like a typed language can do [123]. Checking the type correctness
of a specification is not mandatory by the language. However, it is customary to prove that all
system variables belong to a set of values throughout all reachable states. Although TLA+ is an
untyped language, one can define four basic types in TLA+, namely; number, string, boolean and
model value.
Definition 11 defines the type correctness property.

Definition 11 (The type invariant predicate).

TypeOk
∆= ∧cState ∈ CStates
∧pState ∈ [Participants→PStates]
∧abortFlag ∈ boolean

∧pc ∈ [ProcSet → {“c0”,“c1”,“c2”,“p0”,“p1”,“p2”,“Done”}]
∧pc[CoordinatorID] ∈ {“c0”,“c1”,“c2”,“Done”}

The property defines the type constraints for all the system’s variables. The variables consist of
the coordinator’s state and participants’ state, where pState is a function that maps from the set
of participants to the set of participants’ possible states. Besides, the type invariant constrains the
program control variable to the set of available labels of the system.

The coordinator’s correctness. We have chosen to build the invariant according to the coordinator
because it has a central role in the system’s progression, and it is assumed to be correct. Thus, we
build a predicate for each possible action of the coordinator that establishes the state of the system’s
variables. The resulting invariant is represented by Definition 12.

Definition 12 (The coordinator invariant).

IInv
∆= ∧pc[CoordinatorID] =“c0”=⇒ cInit

∧pc[CoordinatorID] =“c1”=⇒ Abort

∧pc[CoordinatorID] =“c2”=⇒ PreCommit

∧pc[CoordinatorID] =“Done”∧cState =“commit”=⇒ doneCommit

∧pc[CoordinatorID] =“Done”∧cState =“abort”=⇒ doneAbort

In the following, we explain each conjunction of the invariant. The invariant is constructed to
set the system’s state in each possible case of the coordinator’s program control. As a reminder, the
pc can be {c0,c1,c2,Done}. It is, therefore, necessary to describe and define an invariant for each
case, which provides five predicates. The case of“Done” is split into two different predicates, one
for the commit decision and one for the abort.

1. The coordinator is in“c0”. The first conjunction pc[CoordinatorID] =“c0”=⇒ cInit describes
the state of the system when the coordinator is in the initial state. It can be read as “when the
program control of the coordinator is in“c0” state that implies that cInit is true”. The predicate
cInit is defined in Definition 13.

82

CHAPTER 4. TOOLS

Definition 13 (The cInit predicate).

cInit
∆= ∀p ∈ Participants : ∧cState =“init”

∧pState[p] =“working”
∧abortFlag = false

∧pc[p] ∈ {“p0”,“p1”}

For the predicate cInit to be valid, the system variables must be in their initial state. Note that
the program control of the participants can be in p0 or p1. A participant can be in the initial state,
i.e.“p0”, or“p1”, if it decides to abandon the commit before waiting for the coordinator’s decision
(without changing its state yet, pState remains unchanged).

2. The coordinator is in“c1”. The second conjunction, pc[CoordinatorID] =“c1”=⇒ Abort , de-
scribes the system’s state where the coordinator decides to abort the system. The predicate Abort
is defined in Definition 14.

Definition 14 (The Abort predicate).

Abort
∆= ∀p ∈ Participants : ∧cState ∈ {“init”,“pre-commit”}

∧pc[p] ∈ {“p0”, “p1”,“p2”,“Done”}
∧pc[p] =“Done”=⇒ ∧abortFlag = true

∧pState[p] =“aborted”
∧pc[p] =“p2”=⇒ pState[p] =“prepared”
∧pc[p] ∈ {“p0”,“p1”} =⇒ pState[p] =“working”

The coordinator can be in two states because the action“c1” is reached from“c0” and“c2”. If
cState is in “init”, then “c1” is executed because the coordinator decided to abort the system at
the beginning of the program. If cState is“pre-commit”, the abort wish comes from one of the
participants. Besides, if a participant p has finished its program, i.e. pc[p] =“Done”, then p has
decided to abort, changing the variable abortFlag to true.

3. The coordinator is in“c2”. The third conjunction, pc[CoordinatorID] =“c2”=⇒ PreCommit),
describes the system’s state where the coordinator has to query the participants to commit andwaits
for their vote. The predicate PreCommit is defined in Definition 15.

Definition 15 (The PreCommit predicate).

PreCommit
∆= ∀p ∈ Participants : ∧cState =“pre-commit”

∧pc[p] ∈ {“p0”,“p1”, “p2”,“Done”}
∧pc[p] =“Done”=⇒ ∧abortFlag = true

∧pState[p] =“aborted”
∧pc[p] =“p2”=⇒ pState[p] =“prepared”
∧pc[p] ∈ {“p0”,“p1”} =⇒ pState[p] =“working”

The participants’ behaviour is identical to the Abort predicate. However, in Definition 15, the
coordinator cannot be in an initial state, which means it cannot spontaneously abort the system.
Because the system is concurrent, each participant may have different behaviour from the other.

83

CHAPTER 4. TOOLS

Their program control may be in all possible states. A pc in“Done”translates the participant’s ter-
minationwith an abort vote and sets abortFlag to true. A pc in“p2”represents a participant willing
to commit. The pc in“p0”represents a participant in the initial state, and in“p1”, a participant who
decides to abandon the commit but has not yet updated its state.

4. The coordinator is in“Done”with a commit decision. The fourth conjunction, pc[CoordinatorID]
=“Done”∧cState =“commit”=⇒ doneCommit , describes the system’s state where the coordina-
tor finishes its program with a commit decision. The predicate doneCommit is defined in Defini-
tion 16.

Definition 16 (The doneCommit predicate).

doneCommit
∆= ∀p ∈ Participants : ∧pc[p] ∈ {“p2”,“Done”}

∧pState[p] ∈ {“prepared”,“committed”}
∧pc[p] =“Done”=⇒ pState[p] =“committed”
∧pc[p] =“p2”=⇒ pState[p] =“prepared”

This system’s state is only possible if all participants responded positively to the commit. Par-
ticipants have no choice but to be in “p2” if they have not yet noted the coordinator’s decision
or in “Done” if they have taken note of it and finished their program by updating their state to
“committed”.

5. The coordinator is in“Done”with an abort decision. The fifth conjunction, pc[CoordinatorID]
=“Done”∧cState =“abort”=⇒ doneAbort , describes the system’s state where the coordinator fin-
ishies its program with an abort decision. The predicate doneAbort is defined in Definition 17.

Definition 17 (The predicate doneAbort).

doneAbort
∆= ∀p ∈ Participants : ∧pc[p] ∈ {“p0”,“p1”,“p2”,“Done”}

∧pc[p] =“p2”=⇒ pState[p] =“prepared”
∧pc[p] =“p1”=⇒ pState[p] ∈ {“working”,“prepared”}
∧pc[p] =“p0”=⇒ pState[p] =“working”
∧pc[p] =“Done”=⇒ ∧pState[p] =“aborted”

∧abortFlag = true

Participants can be in all possible states except“committed”. They will eventually all be in an
“aborted”state when they reach the end of their program.

Remark. When constructing the invariant with the presented methodology, one has to be careful
to treat each coordinator case. Suppose the process that is the subject of the invariant definition ends
in“Done”by three possible paths. In that case, its invariant must be described by specifying what
happens in each case. If we have three possible paths leading to the program’s end, the invariant
must deal with the three cases. That is why we have the case where the coordinator finishes with
the commit and abort decisions.

The invariant defined inDefinition 12 turns out to be incomplete when launchingTLAPS . The
proof system will notice a missing case corresponding to the case where the coordinator is in“pre-
commit”and“init”when pc[CoordinatorID] =“Done”. Therefore, we must add the missing case to
the invariant 12, represented by the sixth conjunction of the invariant. The complete coordinator
invariant is defined in Definition 18.

84

CHAPTER 4. TOOLS

Definition 18 (The complete coordinator invariant).

IInv
∆= ∧pc[CoordinatorID] =“c0”=⇒ cInit

. . .
∧pc[CoordinatorID] =“Done”∧cState ∈ {“pre-commit”,“init”} =⇒ done

The predicate done is described as follows:

done
∆= ∧cState ∈ {“commit”,“abort”}

This last conjunction and predicate are needed to show that the coordinator can be in the“com-
mit”or the“abort”state only when its program control is in“Done”. Otherwise, the provers will
try to prove for the remaining cases, namely“pre-commit”and“init”. In this way, the invariant is
provided with the necessary information that the coordinator cannot be in these two states when
it reaches the end of its program.
The complete formula of the invariant in TLA+ is the conjunction of type correctness, expressed by
TypeOk , and the coordinator correctness, expressed by IInv . The resulting invariant is as follows:

Inv
∆= TypeOk ∧ IInv

This Step 2 ends with constructing the inductive invariant Inv , which is sufficiently complete to
give the information about the system’s state to prove the safety property defined in Step 1.

Step 3. The proof of the resulting invariant. The two previous steps allowed us to define the
formulas and predicates necessary for the proof. This third step aims to prove whether the system
satisfies the safety property in definition 10, using definitions from 11 to 18. A theorem inTLAPS
has the following form:

Theorem 1. Structure of a theorem

theorem name
∆=

assume assumptions

prove goalToProve

It has a name and a set of assumptions. The property to prove is right after the prove keyword.
Applying the structure of Theorem 1 to the inductive invariant Inv , we obtain Theorem 2.

Theorem 2. The invariant theorem

theorem Inv
∆=

assume Init =⇒ Inv ,
Inv ∧ [Next]vars =⇒ Inv ′,
Inv =⇒ Safety

prove Init ∧2[Next]vars =⇒ Safety

85

CHAPTER 4. TOOLS

Each assumption statement refers to a component of the invariant rule defined in formula 4.1. The
goal of the theorem is to prove that the system’s specification (Spec) satisfies the Safety according
to the defined assumptions. We decompose the theorem to ease the proof, and each component will
represent a theorem to prove in TLAPS .

The set theorem. A theorem manipulates definitions and facts from the system. In TLAPS , one
has to cite the definitions that provers need for the proof explicitly. However, this can quickly
clutter the theorem because all the definitions must be cited. Moreover, sending a non-negligible
volume of definitions to the prover can complicate the proof. In order to lighten the construction
and the information sent to the prover, we define Theorem 3. It is used to prevent opening the set
definitions in the various theorems. A step in a theorem can cite the setsTheorem; thus, avoiding
the necessity to recall all the definitions used in the theorem.

Theorem 3. Sets theorem

theorem setsTheorem
∆=

∧CStates = {“init”,“pre-commit”,“commit”,“abort”}
∧PStates = {“working”,“committed”,“aborted”,“prepared”}
∧ProcSet = {CoordinatorID }∪ (Participants)
∧CoordinatorID ∉ Participants
∧∀p ∈ Participants : p 6=CoordinatorID

by def CStates ,PStates ,ProcSet ,CoordinatorID ,Participants

The theorem setsTheorem proves the domain of the sets that constitute the system. In addition,
it proves that a participant will never have the same identifier as the coordinator. Therefore, instead
of citing the definitions, e.g. CStates and PStates , in each proof of each theorem, it is sufficient
to cite the setsTheorem. setsTheorem is a leaf-proof because it consists of elementary steps, and
there is no qed step. To be used, a step must be called after the by keyword.

According to Theorem 2, the first theorem to prove is the initial state invariant defined in The-
orem 4.

Theorem 4. The theorem Init =⇒ Inv

theorem InitImpliesInv
∆=

assume Init

prove Inv

〈1〉 use def Init

〈1〉1. TypeOk
by setsTheorem def TypeOk

〈1〉2. IInv
by setsTheorem def cInit , IInv

〈1〉3. qed
by 〈1〉1, 〈1〉2 def Inv

The structure of a TLAPS proof is hierarchical. Each step has a level, and the more we divide
the proof into sub-proofs, the more the level increases. In the first example, the proof has only one
level, characterised by 〈1〉. The theorem assumes that the predicate Init is true and proves Inv . In
TLAPS , it is possible to extend a definition to all the proof using the keyword use def .

86

CHAPTER 4. TOOLS

The theorem consists of three sub-proofs; the first is for the TypeOk conjunction of the invariant.
Proving the invariant demands citing the setsTheorem theorem, which will be a known fact for the
sub-proof. The definition ofTypeOk must be cited. The second sub-proof concerns the coordinator
invariant. As for theTypeOk , the setsTheorem is necessary for the proof. The definitions that must
be cited are the invariant itself, IInv , and the predicate cInit , which represents the system’s initial
state when the coordinator is in the initial state. Finally, the third sub-proof is the qed step. This
step closes the proof and checks if the cited known facts are sufficient to prove the theorem.

Figure 4.7 is a screenshot of the TLA+ toolbox representing the theorem Init =⇒ Inv . The
formula turns green when the theorem is proved, as depicted in Figure 4.7a. Conversely, a non-
proven step is highlighted in red (see Figure 4.7b). In the latter figure, we have removed from the
known facts of the qed the level 〈1〉2. In that case, the qed step will not be proven, as the cited
known facts are not sufficient to prove the theorem. It is common to start by proving the qed step
to see if there are any missing steps in the theorem.

(a) Proven theorem (b) Omitting the level 〈1〉2 from the qed

Figure 4.7 – The theorem Init =⇒ Inv represented in TLA+ toolbox

The second component of formula 4.1 is Inv ∧Next =⇒ Inv ′, the invariant for any behaviour
state. The formula can be decomposed in TypeOk ∧ IInv ∧Next =⇒ Inv ′. Before proving the in-
ductive invariant, let us prove the type correctnessTypeOk invariant;TypeOkInvariant (Theorem 5)
and then we prove the IInv invariant; InvInvariant (Theorem 6). The theorem TypeOkInvariant

assumes TypeOk and Next and proves the preservation of the TypeOk predicate in any next be-
haviour. As for the theorem of the initial state, we split the proof according to the Next predicate.

Theorem 5. The type correctness invariant

theorem TypeOkInvariant
∆=

assume TypeOk ,Next
prove TypeOk ′

〈1〉 use def TypeOk

〈1〉1.case Coordinator
by 〈1〉1, setsTheorem def c0, c1, c2,Coordinator

〈1〉2.case ∃self ∈ Participants :Participant(self)
by 〈1〉2, setsTheorem def p0, p1, p2,Participant

〈1〉3.case Terminating
by 〈1〉3, setsTheorem def Terminating , vars

〈1〉4. qed
by 〈1〉1, 〈1〉2, 〈1〉3 def Next

The theorem defines four sub-proofs, each for a component of the Next , by using the case

structure. First, we extend the definition of TypeOk to all the proof and avoid the redundancy in

87

CHAPTER 4. TOOLS

each sub-proof. For the case of the coordinator, the proof needs the setsTheorem and the definition
of the coordinator’s actions {c0,c1,c2} along with the Coordinator definition. We proceed with
the same approach for the two remaining cases; Participant and Terminating . The theorem ends
with the qed step needed to verify the sufficiency of the known facts to prove the theorem.

The theorem InvInvariant defined in Theorem 6 assumes the predicate IInv , Next andTypeOk ,
and proves Inv ′. The theorem defines seven sub-proofs, and each represents a conjunction of the
invariant IInv . Level 〈1〉 expands IInv ,TypeOk and Inv definitions to the theorem.

Theorem 6. The inductive invariant

theorem InvInvariant
∆=

assume IInv ,Next ,TypeOk
prove Inv ′

〈1〉 use def IInv ,TypeOk , Inv
〈1〉1.case pc[CoordinatorID] =“c0”
〈1〉2.case pc[CoordinatorID] =“c1”
〈1〉3.case pc[CoordinatorID] =“c2”
〈1〉4.case pc[CoordinatorID] =“Done”∧cState =“commit”
〈1〉5.case pc[CoordinatorID] =“Done”∧cState =“abort”
〈1〉6.case pc[CoordinatorID] =“Done”∧cState ∈ {“init”,“pre-commit”}
〈1〉7. qed
by 〈1〉1, 〈1〉2, 〈1〉3, 〈1〉4, 〈1〉5, 〈1〉6, setsTheorem def Coordinator ,Participant

If we decompose the theorem’s step according to the predicate Next , each step is split into sub-
proofs of the level 〈2〉. The following represents the first two levels of Theorem 6.

〈1〉1.case pc[CoordinatorID] =“c0”
〈2〉1.case Coordinator
〈2〉2.case ∃self ∈ Participants :Participant(self)
〈2〉3.case Terminating
〈2〉4. qed
by 〈2〉1, 〈2〉2, 〈2〉3 def Next

〈1〉2.case pc[CoordinatorID] =“c1”
〈2〉1.case Coordinator
〈2〉2.case ∃self ∈ Participants :Participant(self)
〈2〉3.case Terminating
〈2〉4. qed
by 〈2〉1, 〈2〉2, 〈2〉3 def Next

We will not detail the proof of all theorem steps as the methodology is the same. We detailed
the first case, step 〈1〉1. In TLA+, case F is equivalent to saying assume F prove G with G the
current goal of the step. The formula above can be read as “we assume the case where the coordinator’s
program control is in c0 (without executing it), and we prove the four sub-proofs in the lower level of the
tree”. Each sub-proof represents a disjunction formula ofNext . To lighten the proof, we decompose
the tree again, according to the Coordinator predicate, and obtain third level steps defined in the
following structure (we give the case of the step 〈2〉1):

88

CHAPTER 4. TOOLS

〈1〉1.case pc[CoordinatorID] =“c0”
〈2〉1.case Coordinator
〈3〉 use def Coordinator

〈3〉1.case c0
by setsTheorem , 〈2〉1, 〈3〉1,TypeOkInvariant def c0, cInit ,PreCommit ,Abort

〈3〉2.case c1
by setsTheorem , 〈2〉1, 〈3〉2 def c1, doneAbort ,Abort

〈3〉3.case c2
by setsTheorem , 〈2〉1, 〈3〉3 def c2,PreCommit , doneCommit , allPCommit ,Abort

〈3〉4. qed
by 〈2〉1, 〈3〉1, 〈3〉2, 〈3〉3, setsTheorem

Each sub-proof is independent of the other. From this example, what is given to the back-
end provers are four obligations of proof. The first is; assume 〈1〉1,〈2〉1 prove 〈3〉1. The sec-
ond is; assume 〈1〉1,〈2〉1 prove 〈3〉2. The third is; assume 〈1〉1,〈2〉1 prove 〈3〉3. The fourth is;
assume 〈1〉1,〈2〉1 prove 〈3〉4. Each sub-proof represents a disjunction of the predicateCoordinator .
The step cites the necessary defintions for the proof. For example, case“c1”represents the action
that allows the coordinator to abort. In order to prove this step, the provers need information from
the system about the abort behaviour. Therefore, the necessary definitions to cite are the predicates
doneAbort and Abort . If a step seems too complicated for the provers to prove, we continue the
decomposition of the sub-proofs. As a result, the level 〈3〉1 can be decomposed into a fourth level
of sub-proofs according to the predicate IInv ′. The result of the split of the step 〈3〉1 is as follows:

〈1〉1.case pc[CoordinatorID] =“c0”
〈2〉1.case Coordinator
〈3〉 use def Coordinator

〈3〉1.case c0
〈4〉1. (pc[CoordinatorID] =“c0”=⇒ cInit)′

by setsTheorem , 〈2〉1, 〈3〉1, 〈1〉1 def c0
〈4〉2. (pc[CoordinatorID] =“c2”=⇒ PreCommit)′

by setsTheorem , 〈2〉1, 〈3〉1, 〈1〉1 def c0,PreCommit , cInit
〈4〉3. (pc[CoordinatorID] =“Done”∧cState =“commit”=⇒ doneCommit)′

by setsTheorem , 〈2〉1, 〈3〉1, 〈1〉1 def c0
〈4〉4. (pc[CoordinatorID] =“Done”∧cState =“abort”=⇒ doneAbort)′

by setsTheorem , 〈2〉1, 〈3〉1, 〈1〉1 def c0
〈4〉5. (pc[CoordinatorID] =“c1”=⇒ Abort)′

by setsTheorem , 〈2〉1, 〈3〉1, 〈1〉1 def c0, cInit ,Abort
〈4〉6. (pc[CoordinatorID] =“Done”∧cState ∈ {“init”,“pre-commit”} =⇒ done)′

by setsTheorem , 〈2〉1, 〈3〉1, 〈1〉1 def c0
〈4〉7. qed
by 〈4〉1, 〈4〉2, 〈4〉3, 〈4〉4, 〈4〉5, 〈4〉6,TypeOkInvariant

Remark. In a TLAPS proof, one has to be careful about opening the definitions. Using use def

at the beginning of the proof extends the definitions to the entire proof. However, too much
information may be given to the provers. In that case, the qed may struggle to prove the proof
since it has to manage too many unnecessary definitions.

The third component of formula 4.1 is Inv =⇒ Safety . The theorem, defined in Theorem 7,
assumes the predicate Inv and proves the property Safety . The theorem has seven sub-proofs of
level 〈1〉. Each step represents a conjunction of the predicate IInv , with the last step the qed step.

89

CHAPTER 4. TOOLS

Theorem 7. The theorem Inv =⇒ Safety

theorem InvImpliesSafety
∆=

assume Inv

prove Safety

〈1〉 use def IInv , Inv , Safety
〈1〉1.case pc[CoordinatorID] =“c0”
by 〈1〉1, setsTheorem def cInit

〈1〉2.case pc[CoordinatorID] =“c2”
by 〈1〉2, setsTheorem def PreCommit

〈1〉3.case pc[CoordinatorID] =“c1”
by 〈1〉3, setsTheorem def Abort

〈1〉4.case pc[CoordinatorID] =“Done”∧cState =“commit”
by 〈1〉4, setsTheorem def doneCommit , allPCommit
〈1〉5.case pc[CoordinatorID] =“Done”∧cState =“abort”
by 〈1〉5, setsTheorem def doneAbort , atLeastOneAbort
〈1〉6.case pc[CoordinatorID] =“Done”∧cState ∈ {“pre-commit”,“init”}
by 〈1〉6, setsTheorem def done

〈1〉7. qed by 〈1〉1, 〈1〉2, 〈1〉3, 〈1〉4, 〈1〉5, 〈1〉6, setsTheorem def TypeOk

The invariant Inv is complete enough for Theorem 7 to be proved. The proven theorems 4, 6
and 7 can be used to prove the fourth and last component of the formula 4.1. The theorem, defined
in Theorem 8, has four steps, and each represents a component of the formula 4.1.

Theorem 8. The theorem Init ∧2[Next]vars =⇒ Safety

theorem InductiveInvariant
∆= Spec =⇒ 2Safety

〈1〉1. Init =⇒ Inv

by InitImpliesInv def Inv

〈1〉2. Inv ∧ [Next]vars =⇒ Inv ′

by InvInvariant def Inv , vars ,TypeOk , IInv ,Abort , doneAbort , doneCommit ,
PreCommit , cInit , done

〈1〉3. Inv =⇒ Safety

by InvImpliesSafety def Safety , Inv
〈1〉4. qed by 〈1〉1, 〈1〉2, 〈1〉3,PTL def Spec

The step 〈1〉1 is proven using the fact InitImpliesInv (Theorem 4), the step 〈1〉2 is proven using
the fact InvInvariant (Theorem 6), and the step 〈1〉3 is proven using the fact InvImpliesSafety
(Theorem 7). The qed step cites PTL, for Propositional Temporal Logic, from the TLAPS stan-
dard module because the theorem uses temporal symbols (2). The complete proof of the Two-Phase
Commit algorithm is in the following GitHub link 9.

4.4 Conclusion

This chapter provides the reader with the technical background necessary to understand the thesis.
This chapter does not entirely describe the logic and the two tools presented, namely Why3 and

9https://github.com/ZeinabYeong/2PC-Proof/blob/master/TwoPhaseCommit.tla

90

https://github.com/ZeinabYeong/2PC-Proof/blob/master/TwoPhaseCommit.tla

CHAPTER 4. TOOLS

TLA+. However, we hope that the notions will be clear and sufficient to make this thesis as self-
contained as possible.
In addition, the methodology applied to the Two-Phase Commit example will be helpful in Chap-
ters 6, 7 and 8, where we will repeat the three proof steps using TLAPS on a second algorithm of
the same structure.

91

CHAPTER 4. TOOLS

92

Part III

A Formal Language for Writing Smart
Contracts

93

Chapter 5

Using Deductive Verification on Smart
Contracts

“ Every great advance in science has
issued from a new audacity of
imagination. ”

– John Dewey

Contents
5.1 A New Approach to Writing and Verifying Smart Contracts Using Why3 . . 96

5.1.1 Solidity . 96
5.1.2 A LibraryModel for Encoding Solidity Primitives into the WhyML language 98
5.1.3 Functions in Smart Contracts . 100
5.1.4 Functions Properties in a Smart Contract 103

5.2 Use Case: The BEMP Decentralised Application 105
5.2.1 Description of BEMP . 105
5.2.2 BEMP in WhyML . 106
5.2.3 Trading Algorithm in BEMP . 108
5.2.4 Trading Smart Contract in WhyML . 109

5.3 Compiling WhyML Contracts and Proving gas Consumption 113
5.3.1 The Ethereum Virtual Machine (EVM) and Why3 113
5.3.2 The Calculation of the gas Consumed by a Function 114

5.4 Conclusion . 116

95

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

A bug or error is a common problem that any software or computer program may encounter. It can
occur from a poorly written program, a typing error or bad memory management. However, errors can
become a significant issue if the unsafe program is used for critical systems. Therefore, formal methods for
these kinds of systems are significantly required.
This chapter proposes a language dedicated to deductive verification, WhyML, as a new language for
writing formal and verified smart contracts. The purpose is to avoid attacks exploiting such contract
execution vulnerabilities. Because they manipulate cryptocurrency and transaction information, serious
consequences can happen if a bug occurs in such programs, such as loss of money. This chapter shows that a
language dedicated to deductive verification like WhyML can be suitable for writing correct and proven
contracts.
The methodology, introduced in Section 5.1, is first to write a WhyML smart contracts program; then,
formulate specifications to be proved as functional properties and the absence of RunTime Errors (RTE).
Next, we verify the program’s behaviour using the Why3 tool. Finally, we compile the WhyML contracts
to the well-known Ethereum Virtual Machine (EVM) (Section 5.3). Moreover, we provide a set of generic
mathematical statements that verify functional properties suited to any smart contracts holding cryp-
tocurrency, showing that WhyML can be a suitable language for writing smart contracts. We describe a
real industrial use case to illustrate the methodology approach in Section 5.2.

5.1 A New Approach to Writing and Verifying Smart Contracts Us-
ing Why3

This section shows the expressiveness of the WhyML language [83] that allows for writing smart
contracts in a formal and verifiedway. To highlight the advantages ofWhyML, we choose to compare
this language with the most widespread smart contract language, Solidity [78].
We focus on Solidity because it is the most well-known and used language for smart contracts;
thus, drawing the parallel between the Solidity contracts and the WhyML contracts seems relevant
to study. Moreover, through this section, we want to highlight that using the WhyML language
instead of Solidity is to be considered because Solidity changes very frequently. As a result, Solidity
contracts face several attacks, and their semantics is not clear enough to directly apply proving
methods to the source code. We believe WhyML could be a language for writing smart contracts
while proving their correctness and absence of bugs.

5.1.1 Solidity

Solidity is a high-level, object-oriented language for implementing smart contracts. This language is
designed to target the EthereumVirtual Machine (EVM). Listing 5.1 gives a simple Solidity contract
example, “contract Recording”. The function consists of a variable “owner” and a mapping
“dataBalance” that maps an address “address” with an unsigned integer “uint”. Moreover, the
contract defines a “modifier” function, “onlyOwner”, and a function “recordData”.

The modifier primitive in line 5 is a primitive feature in the Solidity language. Its role is to
restrict access to a function and can be used to model the states and guard against incorrect usage
of the contract. An exception is thrown if a function does not meet the modifier condition. The
example of onlyOwner says that the modifier limits the access of a function to the owner user.
Moreover, Solidity defines primitive variables intended to be assigned to information included in a
transaction. For example, msg.sender is for the sender address; for a transaction that characterises a
function call, msg.senderwill be the address of the function caller, msg.value is for the amount of
transferred ethers (Ethereum’s cryptocurrency), and msg.data is for storing the function arguments
data (acting as a memory).
Thereby, recordData is restricted to being executed by the owner address (i.e. msg.sender – the
calling contract); otherwise, a throw is raised (line 6), representing an exception. The recordData
function assigns an unsigned integer (_amount) to an address (_usersID) each time owner calls

96

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

1 contract Recording {
2 address owner;
3 mapping (address => uint) public dataBalance;
4
5 modifier onlyOwner () {
6 if (msg.sender != owner){throw;}
7 _;}
8
9 function recordData(address _userID , uint _amount) onlyOwner returns (bool) {
10 if (_userID == address (0x0)) return false;
11 if (_amount == 0) return false;
12 dataBalance[_userID] = _amount;
13 return true ;}}

Listing 5.1 – A Solidity contract example

Level Cause of vulnerability

Solidity language

Call to the unknown
Gasless send
Exception disorders
Reentrancy

Table 5.1 – An extract from [24] on taxonomy of vulnerabilities in Ethereum contracts

it. The function returns false when the user address is invalid (line 10) or there is no amount to
record (line 11); otherwise, it returns true.

Since its creation in 2014 [187], the Solidity language has provided a suitable area for malicious
users desiring to take advantage of vulnerabilities that smart contracts encounter [24, 133], e.g. to
earn an amount of money through a flaw found in a contract. Hence, the language has constantly
evolved and developed to create a secure environment against potential attacks. Atzei et al. in [24]
have established a summary of common programming pitfalls and identified two major causes of
vulnerabilities: problems in the Solidity language and poor documentation of weaknesses. More-
over, they give a taxonomy of vulnerabilities in Ethereum smart contracts. We are interested in
the vulnerability category related to the Solidity language presented in [24]. Table 5.1 summarises
some causes of vulnerabilities that we are interested in this study. As explained before, a contract
can invoke a function of another contract and send money to a user or another contract using prim-
itive functions such as send() and call(), or by direct call (i.e. as a traditional function call of
an imperative language). However, the primitives can be a source of bugs, and in the following, we
explain how these bugs can occur:

• Call to the unknown: if a function that does not exist is called, the EVM will still try to exe-
cute it. What happens is that the non-existing function signature will not match any of the
available signatures in a Solidity contract, thus, triggering the fallback function. A fallback
is a function without a signature (no name, no parameters); function() { x = 1;} is an
example. Some Solidity primitive functions, such as send(), always trigger the fallback func-
tion of the target address if it exists. The role of send() function is to send ethers; therefore,
if a malicious user calls this function using a contract address instead of a user address, and its
fallback function implements an infinite loop, the user can block the process.

• Gasless send: the gas is a unit that measures the amount of computational effort it will take
to execute certain operations in Ethereum. It is a source of bugs that can lead us to a phe-
nomenon of running out-of-gas when a function consumes more gas than it should. This
exception can occur if we transfer ethers to a contract address using the send() function. As
a result, the fallback function will be triggered, and extra gas consumption can occur depend-
ing on the execution code of the fallback function.

97

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

• Exception disorders: Solidity uses state-reverting exceptions to handle errors. Such an excep-
tion (e.g. not enough gas) will undo all changes made to the state in the callee contract and
warn the caller by returning false if an error occurs. However, if the call is made via the
send() instruction, the caller contract should explicitly check the return value to verify that
the call has been executed correctly. Furthermore, if a chain of nested calls is made, the ex-
ception in the callee contract may or may not be propagated to the caller. This inconsistent
exception propagation leads to many cases where exceptions are not handled correctly.

• Reentrancy: reentrancy occurs when a function can be called repeatedly before the first in-
vocation of the function is finished. It is also a consequence of the Call to the unknown
vulnerability. For example, if a function calls itself, we have a recursive call; hence the func-
tion is called an n-th time before the (n-1)-th invocation is completed. This scenario causes a
reentrancy phenomenon. This vulnerability can cause repeated withdrawals of the balance,
which was the source of a previously mentioned attack, “the DAO” hack [24].

5.1.2 A Library Model for Encoding Solidity Primitives into the WhyML language

Previously, we presented the reasons that led us to consider Solidity as a language that is not safe
enough for critical applications. In this section, we show how, based on the principles of the Solidity
language, we have designed an approach to write smart contracts using the WhyML language. To
fully understand this section, we invite the reader to refer to Section 4.2 for notions about the
WhyML language.

Solidity is an imperative object-oriented programming language characterised by static typing. It
provides several elementary types that can be combined to form complex types such as booleans,
signed, unsigned, fixed-width integers, settings, and domain-specific types like addresses. Moreover,
the address type has primitive functions able to transfer ethers (send(), transfer()) or manipulate
cryptocurrency balances (.balance). Solidity contains elements that are not part of the WhyML
language. One could model these as additional types or primitive features. Let us take a simple
example to illustrate how WhyML could model Solidity primitives. The following Solidity function
transfers an integer amount from the address owner, defined in Listing 5.1 (line 2), to the address
x:

1 function _transfer (address x, int amount) onlyOwner {
2 if (owner.balance >= amount) x.send(amount); }

It is necessary to perform some type encoding to express the above example in WhyML. Indeed,
types like uint256 1 and address do not exist in WhyML; thus, we must introduce them as new
WhyML abstract types: type uint256 and type address.

Machine integers model. We define several machine integers types, and for each one created,
we define a corresponding module. For example, the type Int160, Uint160 (which characterises
type int and uint in Solidity) are defined, respectively, in the module “module Int160” and
“module Uint”. The latter module defines the type uint160 and bounded it by setting it to a
range of values: type uint160 = < range 0 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF >
Then, it defines the unsigned integer type, which is equal to: type uint = uint160. However, spec-
ifications in WhyML use only mathematical integers, e.g. int type; hence, we cannot introduce
partial functions in the logic, such as an uint160 addition or subtraction. If an addition appears
within a specification, it should be the usual addition over mathematical integers. Thus WhyML
implicitly maps values of type uint160 to the corresponding value in type int. We introduce a
logical function, to_int, that maps a value of type uint160 to its corresponding value in type int:
function to_int (x : uint160) : int = uint160’int x

1Integers in Solidity are of various sizes (from uint8 to uint256)

98

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

In the module Uint, we use the cloning to instantiate a module defined in the Why3 library
named “module Unsigned” which itself clones the module Bounded_int. The instruction clone

export mach.int.Unsigned with in module Uint allow to instantiate the abstract type t to uint160

and set the maximum value max to 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF >.

Applying the same approach, we have defined abstract types for representing integers int160
and uint256. The type uint256 is used to represent the value of exchanged ethers and we define
its range of values as:
type uint256 = <range 0 0x7FFF>
The module Uint256, defined in Listing 5.2, clones the Unsigned module (line 8) and, as for
Uint160, it instantiates the abstract type t to uint256 and max to its maximum value (lines 9 and
10).

1 module UInt256
2 use int.Int
3 use Uint
4
5 type uint256
6 constant max_uint256 : int = 0x7FFF
7
8 clone export mach.int.Unsigned with
9 type t = uint256,
10 constant max = max_uint256
11
12 val v_of_uint (n : uint) : uint256
13 ensures {to_int result = Uint.to_int n}
14
15 val v_to_uint (n : uint256) : uint
16 ensures {Uint.to_int result = to_int n}
17
18 end

Listing 5.2 – The module Uint256

We define two val functions to map a uint value to a uint256 value (line 12) and conversely (line
15). Note that in the two val functions, we use the function to_int instantiated by the module
Unsigned and themodule Uint256. To avoid confusion and distinguish them, we add a prefix Uint
to the function to_int from the module Unsigned. This way, we indicate from which module the
function comes.

Address and hashtable model. Based on the same reasoning, we also model the address type
and its members as the msg.sender primitive and the send() function. We choose to encode the
private storage (balance) by an interface close to a hashtable having as a key-value an address and
the associated value a uint256 value.
The module that mimicks hashtables is “module Hashtbl”. It is defined generically, and it defines
the following abstract types:

1 type key
2 type t α = abstract { mutable contents: map key α;
3 mutable defined: S.fset key;}

Line 2 and 3 say that the content of the type can be modified (mutable), and each key is mapped
to a set of values. Moreover, the module defines functions to create and clear a hashtable and to
add, find and remove an element from a hashtable.

As a result, the module Address clone the Hashtbl module, named Bal, to define its private
storage balance:

1 clone import Hashtbl as Bal with type key = address
2 val balance : Bal.t uint256

The current value of the balance of addresses is balance[address]. In addition, the sendmember
is translated by a val function, which performs operations on the balance hashtable. In Solidity,
the send() function can fail (return False) due to an out-of-gas, e.g. an overrun of 2300 units of

99

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

gas, because in some cases, the transfer of ethers to a contract involves the execution of the contract
fallback; therefore, the function might consume more gas than expected (more than 2300).

In WhyML, we chose to modify the Solidity send() function. The WhyML send() function,
Listing 5.3, does not allow fallback execution; it only transfers ethers from one address to another.
Thus, the WhyML send() function does not return a boolean because we assume that the transfer
must occur if the function is executed. It is assumed that the function never fails, but it could have
been encoded to accept the failure of the function by introducing a boolean, as is the case for the
Solidity version. In our case study, we made this choice for the sake of simplification. Knowing
that this choice is not satisfactory, in the case of a future study, it would be considered to adapt the
send() function to manage execution failures.

1 let address_send (amount : uint256) (from_ : address) (to_ : address) : unit
2 requires { uniqueAddress from_ to_ }
3 requires { acceptableEtherTransaction balance from_ to_ amount }
4 ensures { etherTransactionCompletedSuccessfully (old balance) balance from_ to_ amount}
5 =
6 balance[from_] ← balance[from_] - amount;
7 balance[to_] ← balance[to_] + amount

Listing 5.3 – WhyML send function

The function address_send defines a set of specifications with preconditions and postconditions
to ensure proper execution. The specification requires to have a different user for the sender (from_)
and the receiver (to_), using the predicate: predicate uniqueAddress (a: address) (b: address) = a 6= b

from the module Address, and that the transaction must be acceptable (line 3). An acceptable
transaction requires that the sender has a sufficient amount of ethers and that the transfer does not
cause an overflow at the receiver.
Moreover, the address_send function ensures a successful transaction in line 4. It ensures that the
receiver gets the amount it wants, and the balance between the sender and receiver remains after
the function’s execution. The formal definition of the two predicates is defined in Section 5.1.4.

Gas model. We give a gas model, “module Gas”, to specify the maximum amount of gas needed
for each defined function. We define a value “gas” to express the amount of gas consumed and a
value “alloc” to express the memory allocation. Both are defined as mutable integers.

1 val gas: ref int
2 val alloc: ref int

Moreover, we introduce a “val add_gas” function (Listing 5.4) that adds to the variable gas the
amount of gas consumed each time the function is called (the input g). The same goes for the
variable alloc:

1 val add_gas (g:int) (a:int) : unit
2 requires { 0 ≤ g }
3 requires { 0 ≤ a }
4 ensures { !gas = old !gas + g }
5 ensures { !alloc = old !alloc + a }
6 writes { gas, alloc }

Listing 5.4 – add_gas function

The function has no body and is defined only by its set of properties (see Table 4.6). The function
requires non-negative inputs (g and a) values and ensures the modification of gas and alloc vari-
ables. The number of allocations is essential because the real gas consumption of EVM integrates
the maximum quantity of volatile memory used.

5.1.3 Functions in Smart Contracts

Oracles. Often, developing smart contracts relies on the concept ofOracles [4]. An oracle can be
seen as the link between the blockchain and the “real world”. In the context of blockchain, the real

100

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

Figure 5.1 – Data routing process between on-chain and off-chain

world is everything outside the blockchain, also called off-chain. On the other hand, the blockchain
world is everything that comes under the blockchain, i.e. on-chain.
Some smart contract functions have arguments that are external to the blockchain. However, the
blockchain does not have access to information from an untrusted off-chain data source. Accord-
ingly, the oracle provides a service responsible for entering external data into the blockchain, having
the role of a trusted third party. However, questions arise about the reliability of such oracles and
the accuracy of information. Oracles can have unpredictable behaviour, e.g. a sensor that measures
the temperature might be an oracle but might be faulty; thus, one must account for invalid informa-
tion from oracles. Figure 5.1 illustrates the three steps to provide various information from outside
the blockchain to the blockchain:

Step 1: Off-chain raw data collection. The first step is to collect the off-chain data (produced in the real
world) used by the blockchain application. The data can be of various kinds, depending on
the application. For example, as we will see inmore detail in Section 5.2, energy consumption
data can be used by the blockchain in the context of a local energy consumption application.
The entity that collects this data are oracles, and they can be a person, a sensor or software.

Step 2: Provide data to the blockchain. The second step is to provide the blockchain with the collected
data that the application requires. This action is applied by the oracles who have access to the
off-chain and on-chain world. Providing the data can be done via an interface or a directly
linked platform to the smart contracts responsible for receiving this data.

Step 3: Data processing. The smart contracts responsible for processing this data have functions de-
signed to have input arguments that accept data from outside the blockchain. Once the data
is assigned in the smart contract, it becomes on-chain data, and other smart contracts can use
it.

Private and public functions. Considering these different steps of the data routing process and
the distinction between the real world and the blockchain world, we defined two types of functions
involved in contracts. We noted that some functions are called internally by other smart contracts
functions; they are called “private functions”. In contrast, others are called externally by oracles,
and they are called “public functions”. The proof approach of the two types is different.

101

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

For the private functions, one defines preconditions and postconditions, and then we prove that
no error can occur and that the function behaves as it should. It is thus not necessary to define
exceptions to be raised throughout the program; they are proved never to occur.
Conversely, the public functions are called by oracles, the behaviour of the function must take
into account any input values, and it is not possible to require conditions upstream of the call.
In contrast, exceptions are necessary; we use so-called defensive proof to protect ourselves from
errors that oracles can generate. No constraints are applied to postconditions. However, since
specifications in WhyML are modular when a function calls another, it must verify and satisfy the
preconditions of the callee function before the call.

Let us take an example of a send_data() function (see Listing 5.5) that is intended to transfer
some data from one address to another, which in its current state can generate data overflow.

1 function send_data(address receiver , uint _data) onlyOwner {

2 if (balance[owner] < _data) return;

3 balance[owner] -= _data;

4 balance[receiver] += _data; }

Listing 5.5 – Simple Solidity function of sending data

The variable owner and the modifier onlyOwner are those of the contract defined in Listing 5.1.
To understand the difference in proof approach according to the type of function, we apply the two
proof approaches to the function defined in Listing 5.5. Therefore, if we qualify this function as a
private function, we obtain the result in Listing 5.6.

1 let private_send_data (data: uint256)(receiver: address): uint
2 requires {data > 0 ∧ balance[owner] ≥ data}
3 requires {msg_sender 6= receiver ∧ msg_sender == owner}
4 requires {balance[receiver] + data < max_uint256}
5 ensures {balance[msg_sender] = old (balance[msg_sender]) - data}
6 ensures {balance[receiver] = old (balance[receiver]) + data }
7 =
8 balance[owner]← balance[owner] - data;
9 balance[receiver]← balance[receiver] + data;

Listing 5.6 – send_data private function in WhyML

The specification states that we require positive data to send and that the owner owns at least the
amount of data (line 2). Moreover, the address that will receive the data cannot be the caller of
the function, i.e. msg_sender (line 3). The third precondition in line 4 states an absence of integer
overflow; this part is detailed in Section 5.1.4. We appreciate from the postconditions (lines 5-6)
that, at the end of the function execution, data is transferred from one address to another (lines 8-9).
A complete set of specifications must provide sufficient information to know the role of a function
without even looking at the program. The properties of private_send_data() are sufficient to
prove the function and interpret it without seeing the program.

The second proof approach is applied to public functions. We take the example of Listing 5.5
and assume this function to be public. The result is shown in Listing 5.7.

1 exception InvalidData, InvalidAddress, OnlyOwner, NoData, Overflow
2
3 let public_send_data (data: uint256)(receiver: address): uint
4 raises {InvalidData → data = 0}
5 raises {InvalidAddress → msg_sender == receiver}
6 raises {OnlyOwner → msg_sender != owner}
7 raises {NoData → balance[owner] < data}
8 raises {Overflow → balance[receiver] + data > max_uint256}
9 ensures {balance[msg_sender] = old (balance[msg_sender]) - data}
10 ensures {balance[receiver] = old (balance[receiver]) + data }
11 =
12 if msg_sender != owner then raise OnlyOwner;
13 if data = 0 then raise InvalidData;
14 if msg_sender == receiver then raise InvalidAddress;
15 if balance[owner] < data then raise NoData;
16 if balance[receiver] > max_uint256 - data then raise Overflow;
17 balance[owner]← balance[owner] - data;

102

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

18 balance[receiver]← balance[receiver] + data;

Listing 5.7 – send_data public function in WhyML

Following the modelling rules, we define exceptions (lines 1 and 4-8) to be raised and no defined
preconditions. What we have as requirements in Listing 5.6, we have as exceptions in the public
case. We raise an exception in the two cases where we have no data to send (lines 4, 13) and if the
receiver is also the sender (lines 5, 14). In addition, the modifier primitive can be modelled in two
ways in our approach. In Listing 5.6, it is modelled as a precondition (line 3), and in Listing 5.7, it is
modelled as an exception to handle (lines 6, 12). Lines (8-16) refer to the integer overflow property
discussed in the following.

5.1.4 Functions Properties in a Smart Contract

In a WhyML contract, we distinguish two types of properties to be proven: the absence of runtime
errors and functional properties.

Runtime Errors (RTE). RTE are an annoying and frustrating experience for users. RTE are
errors that are only detected when running the program. The cost of such bugs can be very high,
and many methods have been proposed to reduce these failures [132, 135]. There are so many
runtime errors that they are not always easy to diagnose. We focus on the principal RTE, namely:

1. Positive values. The parameters of a function must be valid; therefore, the parameters that
express a quantity (gas, ethers, data, or other) must be positive (in some instances positive
or null), and those that represent recorders such as arrays or hashtables must not be empty.
Most of the exchanged data express an amount of cryptocurrency; hence, a transferred neg-
ative amount can cause damage, i.e. the receiver could lose money instead of receiving. To
counter this error, we have encoded the values of ethers and gas as an unsigned integer (see
Section 5.1.2).

2. Integer overflow and underflow. In many situations, performing proof of the absence of inte-
ger overflow/underflow is extremely difficult and invasive. In our programs, we manipulate
machine integers; thus, we fix amaximum and aminimum bound. Wemust show the absence
of arithmetic overflow/underflow by defining bounding preconditions. Hence, such bounds
invade specifications throughout the program, resulting in an impractical annotation/proof
burden. When manipulating counters, we use the Peano number from [59] to avoid such
proof.

3. Index out of array bounds. If the program manipulates an array, all the requests must use a
non-negative index and an index less than the size of the array element. Defining an invariant
is enough to prove that the index will never be more than the size of the array. It is also
possible to define a precondition to prove the absence of such RTE.

4. Division by zero. In computing, a program error may result from an attempt to divide by
zero, which may generate positive or negative infinity, generate an exception, generate an
error message, or cause the program to terminate.

Recall that properties that express the absence of RTE defined in a function f must be extended and
proved to functions that call f to satisfy their preconditions.

Functional properties. Proving that a program does not cause RTE does not mean it behaves
as it should. We also want to prove its correctness and termination. A correct program precisely
does what its designers and users intend. Furthermore, a formally correct program is one whose
correctness can be proved mathematically by specifying what the program is intended to do for all
possible values of its input. We providemathematical formulas that can be used to express predicates,

103

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

axioms, and invariants to define functional properties. For each mathematical formula useful to the
proof, we refer to the vulnerabilities stated in Section 5.1.1, resulting from the paper [24].

• An acceptable transfer. Sending a quantity of ethers via the primitive send() or transfer() of
Solidity smart contracts can cause various vulnerabilities. Hence, securing the process of such
primitives is fundamental. Therefore, we introduce in WhyML contracts a predicate that states
an acceptable transaction thatmust be satisfiedwhen used. This predicate has been introduced
previouslywith theWhyML send function 5.3. The predicate acceptableEtherTransaction
must be satisfied to execute the address_send function. The predicate takes four arguments:
a hashtable, two addresses and some ethers amount. The hashtable of balances h is a hashtable
that records the balance of users (identified by their address). The two addresses are those of
the sender and receiver.

1 predicate acceptableEtherTransaction (h: t uint256) (sender : address)(receiver: address) (amount
: uint256)

2 = h[sender] ≥ amount ∧ h[receiver] + amount ≤ max_uint256

This predicate can be used in a precondition specification of a function that performs a
transfer of ethers, such as the send() primitive of an address. Thus, a user cannot send an
amount of ethers that it does not have. Note that the predicate also defines the RTE prop-
erty “h[receiver] + amount <= max_uint256”. In addition, the WhyML address_send

function does not implement a fallback function, which allows us to avoidCall to the unknown
and Reentrancy vulnerabilities from Table 5.1.

• A successfully completed transaction. When executing a function that is supposed to transfer
ethers or any other data, what is hoped for is that once the function is executed, we are sure
that the transfer is successful. The predicate etherTransactionCompletedSuccessfully models
this expectation to ensure that a transaction is successfully executed.

1 predicate etherTransactionCompletedSuccessfully (hBefore : t uint256) (hAfter : t uint256) (
sender, receiver: address) (data: uint256)

2 = hBefore[sender] + hBefore[receiver] = hAfter[sender] + hAfter[receiver] ∧ hAfter[sender] =
hBefore - data ∧ hAfter[receiver] = hBefore[receiver] + data

A transfer completes if the sum of the sender and the receiver balance before and after does
not change. That is, there is no loss of money during the sending. Moreover, the receiver
receives the quantity of data it wants. This predicate avoids the occurrence of Exception dis-
order and Reentrancy errors (see Table 5.1).

• Duplicate recording. Several defined functions in a contract record data, typically in arrays or
hashtables. However, duplicate recording can cause errors in memory management. A mem

function allows checking a hashtable to determine if a value is already present or not before
the execution of the function. mem returns True if it is the case; otherwise, the function
returns False:

1 requires {¬ mem nameOfHashtable keyValue}

This type of error can cause double expenses if a transfer is recorded twice in the blockchain.

• Ensuring a maximum consumption of gas. The vulnerability Gasless send can be avoided by
the gas model. Instructions in Solidity consume an amount of gas, and they are categorised
by level of difficulty; e.g. for the set Wverylow = {ADD , SUB , ...}, the amount to pay is
Gverylow = 3 units of gas , and for a create operation, the amount to pay is Gcreate = 32000
units of gas [187]. The price of an operation is proportional to its difficulty. Accordingly, we
fix for each WhyML function the appropriate amount of gas needed to execute it. Thus, at the
end of the function instructions, a variable gas expresses the total quantity of gas consumed
during the process. We give more details about the gas calculation in Section 5.3.

104

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

This first section introduces WhyML as a language for writing smart contracts. We elaborate a
parallel between the two languages, Solidity and WhyML, to show interest in using WhyML to write
contracts in a formal and proven way. We have introduced the encodings made to express values
like ethers and gas and two approaches of proofs according to the type of functions of the contracts.

5.2 Use Case: The BEMP Decentralised Application

This section demonstrates how to apply WhyML, as a smart contract writing language, in a case
study, “the Blockchain Energy Market Place application” (BEMP) [148]. This blockchain appli-
cation based on smart contracts, popularised by the Brooklyn microgrid [139], aims at managing
peer-to-peer energy exchanges between prosumers (producer and consumer) in a microgrid.

5.2.1 Description of BEMP

Figure 5.2 depicts an energy trade between two users, Alice and Bob, of the BEMP application. In
this figure, transfers 1 and 1’ are performed continuously and independently of the market, whereas
transfers 2, 2’ and 3 are performed regularly by smart contracts according to transfers 1 and 1’ (users’
smart meters are the oracles that feed the BEMP with energy production and consumption data).
The figure illustrates:

• (1) Alice produces energy and supplies her excess production to the grid.

• (1’) Bob consumes a certain amount of energy pulling from the grid.

• (2) Alice’s production is capitalised as “crypto-kilowatt-hours” (crypto-kWh), and her smart
meter provides to the BEMP her production data.

• (2’) Bob’s energy consumption data are collected by his smart meter and sent to the BEMP
application.

• (3) Bob pays Alice in ethers for his energy consumption.

Figure 5.2 – The BEMP Process

The BEMP application allows the payment to be regulated according to consumption. It is a decen-
tralised application, and each user wishing to participate in the market will need to download the
application and create an account. The considered application implementation is deployed in the
Ethereum blockchain and composed of the following smart contracts coded into Solidity language:

• Account contract. The contract stores the properties of an account (user location, usermarket
and purchasing capacity) and performs the ethers payment. One such instance is created for
each user.

105

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

• Accounts contract. It stores a mapping (kind of hashtables) of the application user’s account
and defines a function that records the account into that mapping.

• Market contract. It receives all sales and orders and ensures the transit of crypto-kWh.

• Algorithm contract. It determines the best way to satisfy sales and orders.

• Registry contract. It logs any events occurring in BEMP (account creation, sales and orders,
actual transactions).

Once deployed in an Ethereum blockchain, the calling of these contracts’ functions is performed
by a JavaScript oracle running regularly. In practice, the oracle is connected to the blockchain as a
casual client and regularly sends the same sequence of transactions to smart contracts.
The process begins with the market opening via a transaction sent to the Market contract. Then,
the application records each user’s production and consumption amounts. The record is performed
with a sent transaction to theRegistry contract, which triggers three automatic transactions between
the contracts Registry, Account and Market. Once all records have been done, the application’s al-
gorithm runs. A transaction is sent to the Algorithm contract, which triggers four internal transac-
tions between the contracts Algorithm, Registry, and two instances of Account andMarket contract.
A transaction is sent to the Market contract to close the market when all the transfers have been
completed.

5.2.2 BEMP in WhyML

This part shows how our proof methodology described in the previous section can be applied to
a real case. In the initial work, we applied our method to a simplified version of the application:
a one-to-one exchange (one producer and one consumer, as depicted in Figure 5.2). This first test
allowed us to identify and prove RTE such as overflow or index out of array bounds. The simplicity
of the unidirectional exchange model did not allow the definition of complex functional properties
to show the importance and utility of the Why3 tool. Plus, this number of users does not express
a real application implementation.

An energy trade application is a suitable case study to show the potential of the formal deductive
verification provided by Why3. Moreover, in addition to transferring ethers, users transfer crypto-
kWh to reward consumers for consuming locally produced energy. Hence, the system needs to
formulate and prove predicates and functional properties of functions handling various data other
than cryptocurrency.
Our approach was first to define which smart contract’s function was of the public and private
type. Secondly, to express in WhyML the functions defined in the various Solidity contracts. Then,
to establish the specification for each function of the contracts based on the proof rules accord-
ing to the function types. Therefore, predicates such as acceptableAmountTransaction and
amountTransactionCompletedSuccessfully must be added. The BEMP consists of five dif-
ferent contracts; some only communicate internally, e.g. contract Account allowing to create an
account, while others only serve to communicate with oracles; e.g. contract Accounts allowing to
register an account.

Examples of private function from the BEMP application. In this part, we apply the rules of
proof and modelling according to the private function type.

1 let transferFromMarket (_to : address) (cryptokwh : uint) : bool

2 requires {msg_sender == market ∧ cryptokwh > 0 }

3 requires {acceptableAmountTransaction marketBalanceOf importBalanceOf market _to cryptokwh}

4 ensures {amountTransactionCompletedSuccessfully (old marketBalanceOf) marketBalanceOf (old

importBalanceOf) importBalanceOf market _to cryptokwh}

5 = (* The program *)

Listing 5.8 – Example of a WhyML private function from BEMP

106

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

Listing 5.8 illustrates a proof example of a private function resulting from the contract Registery
of the BEMP application. The function transfers a positive amount of cryptokwh from the global
address market “market”, defined in the contract, to the _to address. This process is internal to the
blockchain; there is no external exchange; hence the function is qualified as private. According to
themodelling approach, we define complete preconditions and postconditions. The precondition in
line 2 expresses the modifier primitive discussed in Section 5.1.1; thus, the tranferFromMarket()
function can only be executed by the market, restricting the function’s caller, msg_sender, to the
market. Note that marketBalanceOf is the hashtable that records crypto-kWh balances associated
with market addresses, and importBalanceOf is the hashtable that records the amount of crypto-
kWh intended for the buyer addresses. The second precondition is the condition to guarantee an
acceptable transaction; thus, satisfying the following predicate:

1 predicate acceptableAmountTransaction (h1 h2: t uint) (sender receiver : address) (data : uint) =

2 h1[sender] ≥ data ∧ h2[receiver] ≤ max_uint - data

Moreover, the function ensures a successful transaction if the following predicate is satisfied:
1 predicate amountTransactionCompletedSuccessfully (h1_before : t uint) (h1_after : t uint) (h2_before :

t uint) (h2_after : t uint) (sender receiver : address) (data : uint) =

2 h1_before[sender] + h2_before[receiver] = h1_after[sender] + h2_after[receiver] ∧ h1_after[sender]

= h1_before[sender] - data ∧ h2_after[receiver] = h2_before[receiver] + data

It ensures the conservation of the user’s balance during the transaction. From the specification set
in Listing 5.8, we understand the function’s behaviour without referencing the program. There-
fore, the function transferFromMarketmust satisfy the following absence of RTE and functional
properties:

• RTE: (1) Positive values; before executing the function, it is necessary to require (line 2) that
there is a valid amount of crypto-kWh to transfer. (2) Integer overflow; before the execu-
tion of the function, it is necessary to require that no overflow will occur when _to receives
cryptokwh (line 3, see acceptableAmountTransaction).

• Functional properties: (1) Acceptable transfer; before executing the function, it is necessary
to require (line 3) that the transfer can be done; hence the market has enough crypto-kWh to
send. (2) Successful transfer; after executing the function, we ensure (line 4) that the transaction
is completed successfully; hence the sum of the two balances (sender + receiver) remains
unchanged before and after the execution, and the sender transfers the amount of crypto-
kWh intended by the receiver. (3) modifier function; the function can be executed only by
the market; thus, we require that the function’s caller may be solely the market (line 2).

The set of specifications is necessary and sufficient to prove the expected behaviour of the function.

Examples of public function from the BEMP application. Listing 5.9 illustrates a public func-
tion from the Registry contract of the BEMP application. The function registerSmartMeters is
identified by a name (meterID) and an owner (ownerAddress) parameters. Note that all meter
owners are recorded in a hashtable addressOf associated with a key-value meterID of the string
type. The main bug of the function is to register a meter twice. There are no preconditions follow-
ing the modelling rules; instead, we define exceptions.

1 exception OnlyOwner, ExistingSmartMeter

2
3 let registerSmartMeter (meterID : string) (ownerAddress : address)

4 raises { OnlyOwner→ msg_sender 6= owner }

5 raises {ExistingSmartMeter → mem addressOf meterID}

6 ensures { (size addressOf) = (size (old addressOf) + 1) }

7 ensures { mem addressOf meterID}

8 = (*The program*)

Listing 5.9 – Example of a WhyML public function from BEMP

107

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

registerSmartMeter must respect the following absence of RTE and functional properties:

• RTE: Duplicate record; during the function execution, it is necessary to raise an exception,
ExistingSmartMeter, if a smart meter and its owner is already recorded (line 1 and 5).

• Functional properties: (1) modifier function; the first exception, OnlyOwner, is the modifier
function, which restricts the function execution to the owner – the function’s caller (msg_sender).
The exception is raised when the function’s caller is not the owner (lines 1 and 4). (2) Success-
ful record; at the end of the function execution, we ensure (line 6) that a record is made. (3)
Existing record. At the end of the function execution, we ensure (line 7) that the registered
smart meter has been recorded correctly in the hashtable addressOf.

The set of specifications is necessary and sufficient to prove the expected behaviour of the function.

5.2.3 Trading Algorithm in BEMP

In a second step of the use case study, we extended the application to an indefinite number of users
and enriched our specifications. The deductive approach is quite suitable for this order of magni-
tude. The significant aspect that differs between the two versions is consumers’ choice between
the various offers of sale at their disposal on the market. Indeed, we had only two actors in the
first version, so there was no way to choose with whom to make a trade. Alice supplies Bob with
electricity, and the price of a kilowatt-hour was fixed in advance. We want to introduce a market-
place environment with sale and purchase offers based on a simple trading algorithm. Therefore, a
sixth contract, the Trading contract, is added to the five existing contracts to perform the trading
function.

Figure 5.3 represents the flowchart of the trading algorithm defined in the Trading contract. The
algorithm takes as input sell and buy orders arrays. The two arrays are sorted in descending order
according to the price. The algorithm goes through the two arrays to match a seller with a buyer
and create a list of orders (the output). If the algorithm reaches the end of one of the two arrays, it
returns the result of the trading order list. The algorithm starts by taking the first element of each
array. The i buyer of the buy order array and the j seller of the sell order array. The algorithm
is made so that a seller cannot sell its energy to a buyer willing to pay less than the seller offers.
Consequently, if a match is done between a seller and a buyer, we keep the seller’s price. As we
favour the buyer, the algorithm checks whether the bid to buy the energy of buyer i is higher or
equal to that of seller j . Suppose the seller at the top of the table makes a bid too high for i . In
that case, we move on to the next seller, return to the beginning of the algorithm, and carry out the
same check between buyer i and the price of the seller j +1. If, on the contrary, the seller’s price is
lower than or equal to the buyer’s, then we continue.

The third level of decision is whether the seller has enough energy tokens to supply the buyer
i . If the seller j does not have the quantity of token requested by the buyer, then the seller sells all
of its token (which amounts to setting its token balance to zero). Then, we create a record order
with the information necessary for the trading: the seller and the buyer’s address, the number of
exchanged tokens and the purchase price. That record is added to the order list, the output of the
trading algorithm.
Since the current seller j could not provide the entire quantity of token requested by the buyer i ,
we move on to the next seller to satisfy the requirements of i . That brings us back to the beginning
of the loop to repeat the same decision steps as previously explained. On the other hand, if the
seller has the number of tokens requested by the buyer, the token balance is updated. The buyer’s
balance token is reset to zero since the seller has provided the entire quantity of tokens requested
by the buyer. Then, we create and add the order record to the order list returned at the end of
the algorithm. Once this stage is carried out, one passes to the next buyer i +1 and checks if the
seller still has tokens to sell. If the seller has exhausted all its tokens, we move on to the next seller;

108

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

otherwise, it returns to the loop and returns to the first decision step. This process ends once we
reach the end of one of the two arrays, and there is no longer any possibility of making a match
between sellers and buyers.

This example of a trading algorithm is straightforward from an order management point of view.
However, it is more complex than most smart contract functions and is efficient enough to match
a producer (seller) with a consumer (buyer) of our BEMP application. For a first approach to
trading, we adapted an order book matching algorithm with the limit orders algorithm to our case
study [70].

5.2.4 Trading Smart Contract in WhyML

The Trading contract has the role of matching a buyer with a seller. The function that performs
the trading algorithm implements the diagram in Figure 5.3. We assume that all users have smart
meters that record their energy consumption and production data. A smart contract is implemented
to receive consumption and production data from the real world provided by the smart meters
oracles. The smart contract will store and analyse this data to create a consumption and production
array. The BEMP application is configured to make these measurements by fixed time intervals
to have fixed size consumption and production arrays and not a dynamic one. Indeed, the latter
case would generate a more complex algorithm different from the current one. The contract defines
two types illustrated in Listing 5.10: consumption, which corresponds to the buyer’s consumption
and production, which corresponds to the seller’s production. Both types are records that have
the following members: the user’s address of the type address, the smart meter identifier2, the
selling price for a producer price_s and the purchase price for a consumer price_b, and the
amount of energy produced amount_s and consumed amount_b. We define a val function value
to represent the array of production prod_array and the array of consumption consum_array.
Once all the smart contracts are implemented in the application deployed on the blockchain, the
data prod_array and consum_array will represent the input data of the Trading contract.

1 type consumption = {buyer : address;

2 smb_id: smartMeterID;

3 price_b: uint;

4 amount_b: uint}

5
6 type production = {seller : address;

7 sms_id : smartMeterID;

8 price_s: uint;

9 amount_s: uint}

10
11 val consum_array : array consumption

12 val prod_array : array production

Listing 5.10 – Consumption and production records encoded in a WhyML contract

Implementing the trading algorithm in WhyML needs to add some additional types (Listing 5.11).
We introduce additional types such as order and order_trading. The order type is a record con-
taining orderAddress, a seller or a buyer, tokens that express the crypto-Kilowatthours, and
price_order; the purchase or sale price. The order_trading type is a record that contains
seller information seller_index, buyer information buyer_index and the transferred amount
amount_t. The buyer and seller’s information corresponds to their index that places them in their
respective order arrays. For example, if the member seller_index equals 3, it corresponds to the
third seller from the top of the sell order array.

2smartMeterID is an abstract type created in WhyML.

109

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

Input: sell and buy order arrays

Reachs end
of any
array?

Output: order list

i price ≥ j

price?

i token ≤ j

token?

update token
balance

create and
add the
record to
order list

update token
balance

create and
add the
record to
order list

i + 1

seller
balance=0?

j + 1

yes

no

yes

no

yes

yes

no

no

Figure 5.3 – Trading algorithm diagram

110

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

1 type order = {orderAddress : address;

2 tokens: uint;

3 price_order: uint}

4
5 type order_trading = {seller_index: uint;

6 buyer_index: uint;

7 amount_t: uint}

Listing 5.11 – Additional types in WhyML contract

The trading function takes two arrays of orders (buy and sell) and outputs a list of order_trading;
the signature is as follows 3:
let trading (buy_order : array order) (sell_order : array order) : list order_trading

Properties to prove. The trading function matches a potential buyer with a potential seller,
recorded in two arrays; buy_order and sell_order. The function’s properties must be respected
to obtain an expected result at the end of the execution. trading is a private function; thus, no
exceptions are defined, but preconditions are. Listings 5.12 illustrates the set of properties defined
for the private trading function.

1 let trading (buy_order : array order) (sell_order : array order) : list order_trading

2 requires {length buy_order > 0 ∧ length sell_order > 0}

3 requires {sorted_order buy_order}

4 requires {sorted_order sell_order}

5 requires {forall j:int. 0 ≤ j < length buy_order → 0 < buy_order[j].tokens }

6 requires {forall j:int. 0 ≤ j < length sell_order → 0 < sell_order[j].tokens }

7 ensures { correct result (old buy_order) (old sell_order) }

8 ensures { forall l. correct l (old buy_order) (old sell_order) → nb_token l ≤ nb_token result }

9 ensures {!gas ≤ old !gas + 374 + (length buy_order + length sell_order) * 363}

10 = (*The program*)

Listing 5.12 – The trading function specification

Moreover, to prove the pre- and postconditions, the function must define loop invariants since the
function defines a loop that iterates over the arrays given as inputs (see Figure 5.3). Hence, the
trading function must respect the following functional properties and the absence of RTE:

• RTE: (1) Positive values; the parameters of the functionsmust not be empty (empty array, line 2),
in which case the trading can not occur. (2) Index out of array bounds (lines 5-6); the corresponding
invariants can be defined as follows:

1 invariant {forall k:int. !i ≤ k < length (buy_order at Before) → 0 < buy_order[k].tokens}

2 invariant {forall k:int. !j ≤ k < length (sell_order at Before) → 0 < sell_order[k].tokens }

3 invariant {0 ≤ !i ≤ length (buy_order) ∧ 0 ≤ !j ≤ length (sell_order)}

The variables i and j are the ones that iterate on, respectively, the buy array and the sell array
order.

• Functional properties: the function is intended to match consumers and producers. We favour
consumers; thereby, sellers can only provide energy to consumers who make an offer to buy at a
price greater than or equal to the selling offer. We defined four properties to prove:

(1) Sorted arrays; the inputs must be sorted (lines 3-4); thus, the predicate sorted_order must
be satisfied both for buy_order and sell_order. In Why3, arrays are defined according to the
sequence type from the library seq.Seq. As a result, we can apply operations to arrays that require
sequence inputs since Why3 makes the correspondence automatically:

1 predicate sorted_order (a: seq order) =

2 forall k1 k2 : int. 0 ≤ k1 ≤ k2 < length a → a[k2].price_order ≤ a[k1].price_order

3The complete code of the function can be found in the following website http://francois.bobot.eu/fm2019/
BEMP.mlw

111

http://francois.bobot.eu/fm2019/BEMP.mlw
http://francois.bobot.eu/fm2019/BEMP.mlw

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

As an argument, the predicate takes a sequence of orders (seq order). It ensures that the sequence
elements are sorted in decreasing order according to the price.

(2) Correct trading; the trading function must be correct at the end of its execution (line 7)
according to its inputs and its output result. The postcondition uses a predicate “correct” to
express the property to prove. Its definition is as follows:

1 predicate correct (l:list order_trading) (buy_order: seq order) (sell_order: seq order) =

2 (forall i:uint. 0 ≤ i < length sell_order → sum_seller l i ≤ sell_order[i].tokens) ∧
3 (forall i:uint. 0 ≤ i < length buy_order → sum_buyer l i ≤ buy_order[i].tokens) ∧
4 matching l buy_order sell_order

The predicate has three members; the first one expresses that, at the end of the trading, the seller has
not sold more tokens than it owned before the trading execution. We define a function that takes
as inputs a list of trading orders and an integer that represents the index of the seller and outputs
an integer which is the calculated sum. The function is as follows:

1 function sum_seller (l : list order_trading) (sellerIndexe : int) : int

2 =

3 match l with

4 | Nil → 0

5 | Cons h t → (if h.seller_index = sellerIndexe then h.amount_t

6 else 0) + sum_seller t sellerIndexe

7 end

sum_seller is a recursive function that defines pattern-matching over the list of trading orders. h
represents the head of the list l (the first order element of the list) and t the tail (the rest of the list).
If the seller_indexmember of h is equal to the integer given as a parameter, sellerIndexe, then
the function returns the amount_t of h. This returned value is added to the value returned by the
sum_seller function applied to the list’s tail t. The execution of this recursive function ends when
l matches with Nil, i.e. we have gone through the whole list. Thus, we obtain the calculation of
the sum of tokens that a seller has sold.
The same goes for the second member of the predicate correct, that, at the end of the trading, the
buyer will not have purchased more tokens than it had requested at the beginning of the trading.
The function is as follows:

1 function sum_buyer (l : list order_trading) (buyerIndexe : int) : int

2 =

3 match l with

4 | Nil → 0

5 | Cons h t → (if h.buyer_index = buyerIndexe then h.amount_t

6 else 0) + sum_buyer t buyerIndexe

7 end

Similarly to sum_seller, the function sum_buyer calculates the sum of the amount_t value of
the index buyerIndexe. At the end of the execution, we get the sum of amount_t bought by the
buyer.
The third member of the predicate ensures a correct matching which means no seller will match a
buyer willing to pay less than its price. The recursive matching predicate is defined as follows:

1 predicate matching (order: list order_trading) (b_order : seq order) (s_order : seq order) =

2 match order with

3 | Nil → true

4 | Cons k l → matching_order k b_order s_order ∧ matching l b_order s_order

5 end

The predicate defines a pattern-matching over the list order. It uses the predicate matching_order
on the first element of the list, k, and recursively applies matching on the rest of the list l. The
predicate matching_order ensures that the price of the order k is nomore than the price offered by
the buyer k.buyer_index. Moreover, the predicate ensures a positive order amount k.amount_t
and that the buyer and seller indexes are in the inputs bounds.

1 predicate matching_order (k: order_trading) (b_order :seq order) (s_order : seq order) =

2 s_order[k.seller_index].price_order ≤ b_order[k.buyer_index].price_order ∧
3 0 ≤ k.buyer_index < length b_order ∧ 0 ≤ k.seller_index < length s_order ∧ 0 < k.amount_t

112

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

Provers Number of proofs Time (seconds)
minimum maximum average

Z3 4.6.0 2 0.04 0.49 0.27
Alt-Ergo 2.2.0 205 0.00 1.34 0.07
Alt-Ergo 2.3.0 572 0.00 0.47 0.03
CVC4 1.6 507 0.04 0.96 0.12

Table 5.2 – Statistics per prover applied to BEMP

(3) Best tokens exchange:
1 ensures { forall l. correct l (old buy_order) (old sell_order) → nb_token l ≤ nb_token result }

We choose to qualify the trading as one of the best if it maximises the total number of tokens
exchanged. Whatever the correct trading, our solution will be the most optimal in terms of the
number of tokens exchanged. Our solution will always have more or as many tokens exchanged as
another correct trading. nb_token, defined below, is a recursive function that outputs the sum of
traded tokens of the order list given as input.

1 function nb_token (l : list order_trading) : int =

2 match l with

3 | Nil → 0

4 | Cons h t → h.amount_t + nb_token t

5 end

(4) Gas consumption: when a function consumes more gas than expected, an out-of-gas exception
is raised. The following property

1 ensures {!gas ≤ old !gas + 374 + (length buy_order + length sell_order) * 363}

ensures that, at the end of the execution, the trading function consumes precisely or less than the cal-
culation of “374 + (length buy_order + length sell_order) * 363”. The gas consump-
tion depends on the length of both lists. 374 and 363 are constants that have been calculated ac-
cording to the operations that constitute the trading function. In the next section, we detail how
to obtain these calculations.

This second version of the case study allowed it to express more properties than the first version.
We have defined a smart contract that allows us to create a list of trading orders and define complex
properties. Table 5.2 gives some metrics concerning the writing and the proof of the WhyML smart
contracts. The updated case study consists of 353 lines of specification code and 327 ligne of imple-
mentation code. We notice that the specification part in smart contracts is as important as the code
itself. This result supports the interest of WhyML in writing formal and proven smart contracts.

5.3 Compiling WhyML Contracts and Proving gas Consumption

This section aims to describe the approach to compile WhyML contracts into EVM. In the first step
(Section 5.3.1), we explain how the compilation in EVM works with Why3, and in the second step
(Section 5.3.2), we explain how to calculate the expected gas consumption of a function and the
method of proving such consumption.

5.3.1 The Ethereum Virtual Machine (EVM) and Why3

The final step of the deductive verification approach is the deployment of WhyML contracts. EVM is
designed to be the runtime environment for the smart contracts on the Ethereum blockchain [187].
Smart contracts are like regular accounts, except they run EVM bytecode when receiving a trans-
action, allowing them to perform calculations and further transactions.

113

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

The EVM is a stack-based machine (word of 256 bits) and uses a set of instructions called opcodes4
to execute specific tasks. The EVM features two memories, one volatile that does not survive the
current transaction and a second for storage that does survive but is a lot more expensive to modify.
Opcodes are encoded to bytecode to be efficiently stored, and each opcode is allocated a byte (for
example, the opcode ADD is 0x01).

The compilation5 in itself is straightforward; it is done in three phases: (1) the compilation to
an EVM that uses symbolic labels for jump destination and macro instructions; (2) computing
the absolute address of the labels, it must be done inside a fixpoint because the size of the jump
addresses has an impact on the size of the instruction, and (3) translating the assembly code to pure
EVM assembly and printing it.
Most of the WhyML statements can be translated into opcodes. The proof-of-concept compiler (an
extraction module of Why3) allows using algebraic data types without nesting pattern-matching,
mutable records, recursive functions, while loops, and integer bounded arithmetic (32, 64,128, 256
bits). Global variables are restricted to mutable records with fields of integers. It could be extended
to a hashtable using the hashing technique of the keys used in Solidity. Without using specific
instructions, like for C, WhyML is extracted to garbage-collected language; here, all the allocations
are done in the volatile memory, so the memory is reclaimed only at the end of the transaction.
We have not formally proved the correction of the compilation yet. We only tested the compiler
on function examples using a reference interpreter 6 and asserting some invariants during the trans-
formation (WhyML code to EVM).

However, we could list the following arguments for the compilation improvement:

1. The compilation of WhyML is straightforward to stack machines.

2. The precondition on all the arithmetic operations (always bounded) ensures arithmetic op-
erations could directly use 256bit operations.

3. Raising exceptions are accepted only in public function before any mutation, so the fact they
are translated into REVERT opcode does not change their semantics.

4. Only immutable data types can be stored in the permanent store. Currently, only integers
can be stored; they could be extended to other immutable data by copying the data to and
from the store.

5. The send function in WhyML only modifies the state of balance of the contracts and re-
quires that the transfer is acceptable and never fails, as discussed previously. So it is compiled
similarly to the Solidity function send function with a gas limit small enough to disallow
modification of the store.

6. The public functions are differentiated from private ones using the attribute [@ evm:external].
The private functions do not appear in the dispatching code at the contract entry point, so
that they can be called only internally.

5.3.2 The Calculation of the gas Consumed by a Function

The execution of each bytecode instruction has an associated cost. When sending a transaction, one
must pay some gas; if there is not enough gas to execute the transaction, the execution stops, and the
state is rolled back. Therefore, it is essential to be sure that the execution of a smart contract will
not require an excessive quantity of gas at any later date. The computation of WCET (Worst-Case

4https://ethervm.io
5The implementation can be found at http://francois.bobot.eu/fm2019/
6https://github.com/ethereum/go-ethereum

114

https://ethervm.io
http://francois.bobot.eu/fm2019/
https://github.com/ethereum/go-ethereum

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

Execution Time) is facilitated in EVM by the absence of cache. WCET is a software development
metric that determines the maximum length of time a task or set of tasks requires on a specific
hardware platform.
To track the amount of gas, we could use techniques of [17] which annotates in the source code
the quantity of gas used. However, in our approach, we use the function add_gas (defined in
Listing 5.4) to calculate the quantity of gas consumed.

The following code in Listing 5.13 is a basic WhyML contract, module A, consisting of a simple
function ite that takes as parameter amachine integer x. The contract needs some externalmodules
to write its function as the module Int for integer. The function checks whether the integer is
negative or null. If it is, the function returns 0; otherwise, it returns 1. The function calls in lines
9 and 11 the add_gas ghost function defined in the module mach.evm.Gas.

1 module A

2 use int.Int

3 use mach.int.UInt32

4 use mach.int.Int32

5 use mach.evm.Gas

6
7 let ite (x: int32) : int32

8 =

9 add_gas 59 0;

10 if x ≤ 0 then 0 else

11 (add_gas 10 0; 1)

12 end

Listing 5.13 – An example of a simple WhyML
contract

Startgas(0) JUMPDEST(Lsym:ite)

Addgas(59) PUSH1(00) DUP2

DUP2 DUP2 SLT SWAP2 EQ OR

JUMPI(ifthen) Addgas(10)

PUSH1(02) JUMP(ifend)

JUMPDEST(ifthen) PUSH1(00)

JUMPDEST(ifend) SWAP1 POP

SWAP1 JUMPDYN Stopgas(0)

Listing 5.14 – The WhyML contract in opcode

During the compilation, the WhyML code is translated into opcodes. Each opcode has a specific in-
struction, and each opcode is stacked on the other. The resulted translation of the WhyML contract
is represented in Listing 5.14. Executing opcodes consumes a quantity of gas, and the cost ranges
from 0 to over 32000. According to the path taken by the function (either the if or the or path), the
cost of the function will be different. Let us notice that the compiler does not execute Startgas,
Addgas and Stopgas; we added them for clarity of code reading. The compilation checks that all
the function paths have a cost smaller than the sum of the add_gas on it. Paths of a function are
defined on the EVM code by starting at the function-entry and loop-head and going through the
code following jumps that are not going back to the loop-head.

We assign to each opcode their corresponding gas cost. Let us consider the if path. The beginning
of gas calculation starts with Startgas. The first instruction is the JUMPDESTwhich costs 1 unit of
gas and marks a valid destination for jumps. The next instruction is the Addgas which consists of
an argument of the value 59. This quantity corresponds to the gas function consumption estimation
for the if path that the developer defines. The followed opcodes have a specific action and a fixed
amount of gas consumed. Table 5.3 gives the action of each along with their gas consumption.
Since we consider the if path, when the program counter arrives at the opcode JUMPI(ifthen),
it will jump to the indicated valid destination, which is JUMPDEST(ifthen) and then continue to
execute the opcodes until reaching Stopgas(0). Therefore, the following sequence of opcodes are
not executed: {Addgas(10), PUSH1(02), JUMP(ifend)}, because they refer to the else path.
At the end of the function execution, we must obtain 0 or less when we sum all the opcodes values
minus the value of gas consumption indicated by the developer, i.e. 59.
If we do the same for the else path, we will have the call of the Addgas function two times.
Therefore, instead of consuming 59 units of gas, the function must consume 69 units of gas. When
we sum all opcodes costs minus 69, we must get 0, which means that the estimation corresponds to
the actual cost of the function. The calculation stopped when we met Stopgas.

115

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

Mnemonic Cost in gas Description
JUMPDEST 1 Mark a valid destination for jumps.
JUMPI 13 Conditionally alter the program counter.
JUMP 11 Alter the program counter.
PUSH1 3 Place 1 byte item on stack.
DUP2 3 Duplicate 2nd stack item.
SLT 3 Signed less-than comparision.
SWAP2 3 Exchange 1st and 3rd stack items.
EQ 3 Equality comparision.
OR 3 Bitwise OR operation.
SWAP1 3 Exchange 1st and 2nd stack items.
POP 2 Remove item from stack.

Table 5.3 – Extract from [187] of some opcodes with their description and corresponding gas consumption

Similarly to the trading specification of gas consumption, we ensure that the function will con-
sume exactly or less at the end of the execution, either 59 or 69, according to the function’s path.
The corresponding postcondition will be:

1 ensures { !gas - old !gas ≤ (if x ≤ 0 then 59 else 69) }

If a function needs to allocate memory, a postcondition must be defined to ensure that the function
will not run out of memory. For example, the following code in Listing 5.15 is a function that takes
as a parameter the positive size (line 2) of the list to build and returns it. Through this example,
we want to show the memory allocation according to the path taken by the function (if path no
dependent on i, or else path dependent on i). Since it is a recursive function (rec key-word), we
need to add a variant (line 2) to prove the termination.

1 let rec create_list (i:int32) : list int32

2 requires { 0 ≤ i }

3 ensures { i = length result }

4 ensures { !gas - old !gas ≤ i * 185 + 113 }

5 ensures { !alloc - old !alloc ≤ i * 96 + 32 }

6 variant { i }

7 =

8 if i ≤ 0 then (add_gas 113 32; Nil)

9 else (let l = create_list (i-1) in add_gas 185 96; Cons (0x42:int32) l)

Listing 5.15 – A function example to calculate memory allocation

The output list of the function must have the length of the input integer (line 3). Line 4 is a
postcondition that ensures a correct gas consumption which depends on the value of i. As a result,
113 corresponds to the minimum quantity of gas that the function consumes. The larger the value
of i, the greater the amount of gas consumed—the same observation for the memory allocation in
line 5. The function needs a minimum of 32 units of memory to execute the function.
Once we get the appropriate information about gas and allocation, we can lift this information
using the WhyML specification to prove that a function that given i builds a list of length l has a cost
smaller than 185i+113 and allocates at most 96i+32 bytes. Currently, the cost of the modification
of storage is over-approximated; we could specify that it is less expensive to use a memory cell
already used.

5.4 Conclusion

In this chapter, we applied concepts of deductive verification to a computer protocol intended
to enforce some transaction rules within an Ethereum blockchain application. The aim is to avoid
errors that could have serious consequences. Reproduce, with WhyML, the behaviour of Solidity
functions showed that WhyML is suitable for writing and verifying smart contracts programs. In
this theorem proving approach, we define mathematical statements to be proved as preconditions,

116

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

postconditions, and invariants. Furthermore, because the Solidity language contains elements that
are not part of the WhyML language, we built a WhyML library dedicated to Solidity expressions.
The presented method was applied to a use case that describes an energy marketplace allowing local
energy trading among inhabitants of a neighbourhood. The resulting modelling allows establishing
a trading contract to match consumers with producers willing to make transactions. This last point
demonstrates that with a deductive approach, it is possible to model and prove the operation of
the BEMP application at a realistic scale. We manage to prove the application that matches m
consumers with n producers, contrary to model-checking in [148]; thus, verifying more realistic
functional properties. However, the user is asked to write the invariants in the presented approach,
which can be hard to achieve.

117

CHAPTER 5. USING DEDUCTIVE VERIFICATION ON SMART CONTRACTS

118

Part IV

Formalisation and Proof of a Blockchain
Distributed Algorithm based on Smart

Contracts

119

Chapter 6

Distributed Cross-Chain Swap
Algorithm

“ Aerodynamically the bumble bee
shouldn’t be able to fly, but the
bumble bee doesn’t know it so it goes
on flying anyway. ”

- Mary Kay Ash

Contents
6.1 Cross-Chain Swap Problem . 122

6.1.1 System Model . 122
6.1.2 Swap Model . 123

6.2 Problem Definition . 123
6.3 Protocol Specification . 125

6.3.1 Representation of Asset’s States in a Swap 125
6.3.2 The Abstract Protocol Pswap . 126
6.3.3 Participants State Machines . 127

6.4 Description of the Protocol Based on Proof-of-Actions 130
6.5 Pswap Implementation in TLA+ . 131

6.5.1 Module, Declarations and Definitions . 131
6.5.2 The Cross-Chain Swap Algorithm in PlusCal 134
6.5.3 TLA+ Translation . 139

6.6 Conclusion . 148

121

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

The previous chapter showed an application based on smart contracts, BEMP, that runs sequentially.
Therefore, proving the correctness of the smart contract was enough to ensure that the BEMP application
works properly. However, some applications based on smart contracts require users’ collaboration and
need a distributed execution. In that case, proving the smart contract’s code is not enough to ensure that
the application works properly, as the behaviour of the users comes into account. In addition to the proof
of smart contracts’ code, it is necessary to prove the underlying distributed protocol.
This chapter addresses these issues of distributed applications exploiting smart contracts. Recently, one
application based on smart contracts has gained popularity, namely cross-chain swap applications [99,
101, 102, 104, 169, 176, 195]. These applications allow users of different blockchains to trade assets in a
decentralised manner and without the involvement of an intermediary. In this chapter, we describe the
cross-chain swap problem in Sections 6.1 and 6.2, and its formal modelisation in Section 6.3. We proceed
in two steps; the first is modelling the protocol into state machines based on verifiable proofs (Section 6.4),
and the second is implementing the model into a formal language called TLA+ (Section 6.5).

6.1 Cross-Chain Swap Problem

The studied distributed application in this chapter is the cross-chain swap. These applications find
their use in blockchain systems. The aim is to achieve the exchange of assets between participants
of different blockchains. The underlying protocol’s difficulty is to ensure the security and the
protection of the assets and the correct participants. Most cross-chain swap protocols use smart
contracts to secure transactions, especially the exchanged assets. Smart contracts are used to put
in escrow assets for the duration of the protocol to avoid double-spending, i.e. sending an asset to
two different recipients. Although cross-chain swap protocols find their application in blockchains,
we propose a protocol that abstracts blockchain implementations. We chose to bring a level of
abstraction to our protocol that can be applied to other distributed ledgers than blockchains. The
design provides a generic approach to the problem.

6.1.1 System Model

Participants

The system is composed of a set of participants Π and a set of assets Λ. The participants run the
system, and they can be of two types, Πs and Πr with Π=Πs ∪Πr . Πs represents the set of partici-
pants transferring assets, and Πr is the set of participants receiving transferred assets. A participant
in Πs can be in Πr , and conversely, if it receives and sends one or more assets. Participants have a
local clock to timestamp events. We assume that each participant in the model is, by default, asyn-
chronous. They communicate by sending and receiving messages, and all messages are digitally
signed; hence we assume that they cannot be forged. We define some assumptions on messages;
there are no duplication messages, and a message is received at most once. Moreover, there is no
creation message, and no message is received unless some participant did send it. If a participant
sends a message to a participant and both are correct, the message is eventually delivered.

Assets

An asset is any entity having a specific value and a unique owner (who is also a participant). It can
be a cryptocurrency or a physical asset’s ownership certificate. A participant can own assets and can
transfer its asset’s ownership to another participant. Throughout the study, we use the term “asset”
for reasons of clarity, but it should be remembered that it is the “asset’s ownership”, as defined in
Definition 6.1, that is transferred and not the physical asset. Moreover, assets’ ownership can be
tokenised to facilitate the transfer through the network (tokenisation is defined in Section 2.2.2) .

Definition 6.1. (Asset Ownership). An asset is defined by its value (economic value or future ben-
efit) and its owner. The ownership of an asset is unique to each asset.

122

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

AB C
e1 e3

e2

e4

Figure 6.1 – A swap graph S with Π= {A,B ,C } and E = {e1,e2,e3,e4}

Definition 6.2. (Transferring Asset). The transfer of an asset from participant A to participant B is
the attribution of the asset’s ownership to participant B.

6.1.2 Swap Model

A swap is a distributed transactions 1 model. The objective is to transfer assets between participants
across multiple distributed ledgers in a trustless environment without an intermediary. In a swap,
the number of participants and assets is finite. A participant runs the system; thus, it is a user of a
distributed ledger involved in the swap. Therefore, it can be a source, a recipient or both. The source
transfers its asset’s ownership, as defined in Definition 6.2, and the recipient receives a transferred
asset’s ownership. Moreover, there are no constraints to one source transferring multiple assets and
one recipient receiving multiple transferred assets within the same swap.
A swap S is modelled as a directed graph S = (Π,E) (see Figure 6.1). S is composed of a set of
vertices Π (the set of participants) and a set of labelled edges E = {e1,e2, ...,em }. The label of an edge
is the transferred asset. Each edge of S transfers a unique asset from the set of assets, Λ, involved in
the swap. Consequently, |E | =m represents the total number of transferred assets in S . An edge
is defined as ei = (s ,ai ,r) ∈ Πs ×Λ×Πr with i ∈ {1, ..,m}, s 6= r , and ai the label of the edge that
designates the transferred asset. Moreover, Πs is the set of participants transferring assets, “sources”
(vertices with outgoing edges) andΠr the set of participants receiving transferred assets, “recipients”
(vertices with incoming edges).
Note that a participant who is both a source and a recipient will have two different representations.
For example, participant A in Figure 6.1 is a source for edges {e1,e3}; hence it will be represented
by sA, and is a recipient, represented by rA, for the edge {e2}. A source and a recipient perform
actions on assets defined in Definition 6.3 and Definition 6.4.

Definition 6.3. (Recovers). Recovering an asset is an action only performed by a source participant,
which means that the source takes over its asset ownership.

Definition 6.4. (Retrieves). Retrieving an asset is an action only performed by a recipient partici-
pant, which means that the recipient takes ownership of the received asset.

When a recipient retrieves an asset, it receives the transferred asset’s ownership and becomes the
asset’s new owner.

Remark. (Swap Graph Construction). We assume that, before the swap, the graph is constructed
by all the participants. Thereby, they agree with its configuration. How the graph is built is not
part of our study. We will see later that the graph, once constructed, is visible to all participants.
Therefore, an error or fraud in the graph construction, for example, the wrong source identifier
for an edge, will be identified. Accordingly, one could imagine an algorithm that will construct the
graph by having the list of the recipients and the sources along with their assets.

6.2 Problem Definition

This section introduces the specification of the swap problem. It is defined in three properties, one
of safety; Consistency and two of liveness; Ownership and Retrieving.

1Following blockchain terminology, a transaction is a payment or set of payments, not an atomic unit of synchroni-
sation as in databases or transactional memory.

123

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

The Consistency property. A swap must ensure properties to protect the correct participants
and the exchanged assets. Consistency is a safety property that does not require synchrony to be
satisfied. The property states that no correct participant will end up worse off. In several cross-
chain swap protocols, one of the safety properties that often comes up is atomicity [101, 191]. This
property aims to prove that asset transfers occur in an atomic manner, so either all transfers occur or
none. Therefore, it also proves that no correct participant terminates worse off. However, since the
system tolerates Byzantine participants, the classical atomicity definition “all-or-nothing” cannot be
applied, as said in [102]. It is impossible to force a participant to initiate its asset transfer. Moreover,
one can have a situation where assets are transferred, by Byzantine sources, even if the swap does not
authorise the transfer of the assets. For this reason, safety is intended to be weaker than classical
atomicity while ensuring that a correct participant will always terminate safely. Therefore, we
define the Consistency property as follows:

Definition 6.5. (Consistency). For any correct source s1 of an edge e1 = (s1,a1,r1) and correct recipient
r2 of an edge e2 = (s2,a2,r2), at the end of the swap execution, either s1 owns a1 or r2 owns a2.

Reasoning about a correct source and recipient pair is sufficient to extrapolate the property to all
pairs of correct participants. Let us take a simple example to illustrate the property by simplifying
Figure 6.1. We only consider the transfer of the assets between the participants A and B . Below,
we give the four possible combinations of the transfer of the assets. For the example, we consider
the participant B , when it is a source, as a Byzantine participant (represented by a red circle), and
all other participants are correct. We suppose that the participant B decides to be correct when
it is a recipient. In addition, the position of the edge label indicates whether the source or the
recipient owns the asset. If the label is near the node, the node owns the asset corresponding to
the label. Therefore, among the four possible combinations of transfers, two seem to violate the
Consistency property (the pair of source-recipient highlighted in red). The first case involves the
Byzantine source; thus, this case does not violate the property, and it is an acceptable combination.
The second case does not respect the Consistency property as both sA and rA are correct. This
combination is not acceptable by the property and must not occur.

sA rB

sB rA

sA rB

sB rA

sA rB

sB rA

sA rB

sB rA

e1

e2

e1

e2

e1

e2

e1

e2

This example shows that considering only a pair of correct source-recipient is sufficient to de-
duce the property to all pairs of the swap, thus avoiding the limitation of checking the execution
completion of all correct participants.

TheOwnership property. Ownership is a property that does not require synchrony to be satisfied.
Through this property, we wish to provide guarantees on assets’ ownership so that they are never
lost forever. The Ownership is defined as follows:

Definition 6.6. (Ownership). No asset owned initially by a correct source is ownerless forever or, no
asset intended to be transferred to a correct recipient is ownerless forever.

The Ownership property comprises that a Byzantine participant may choose never to retrieve its
asset(s) (if the swap is authorised) or to recover its asset(s) (if the swap is aborted) and to leave the
asset(s) ownerless (the asset is neither owned by the source nor by the recipient). However, a slow
participant will never end up worse off. Thereby, it will always either retrieve or recover its asset(s)
asynchronously.

124

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

The conjunction or in the property seems unusual in the expression of the properties, and instinc-
tively one would think of the conjunction and. The Ownership property expresses the ownership
of assets according to the outcome of the swap. The first member of the conjunction, which is “No
asset owned initially by a correct source is ownerless forever”, ensures that if the swap does not take
place, the correct sources will recover their assets. The second member of the conjunction, which is
“No asset intended to be transferred to a correct recipient is ownerless forever”, ensures that if the swap
takes place, the correct recipients will retrieve their assets. As the two swap results cannot happen
simultaneously, it is the or conjunction that must be chosen. Let us take the example of A and B
again. Suppose the second combination results from a swap that does not take place. In that case,
the first member of the Ownership property is satisfied since the asset corresponding to the label
e1 is initially owned by sA (a correct source), and the asset of e2 is initially owned by a Byzantine
source sB .

TheRetrieving property. Retrieving property is a property that requires synchrony to be satisfied.
The Retrieving property state the desired outcome in the case where all participants are correct.

Definition 6.7. (Retrieving). If all participants are correct then all recipients will retrieve their in-
tended assets.

This property assumes strong assumptions, such as the mode of communication and the partici-
pants’ behaviour. However, this property allows us to state the ideal case of the protocol and avoids
any empty protocols.

6.3 Protocol Specification

This section describes the protocol specification that details the asset representation, which defines
asset states and transitions and the participants’ state machines. Moreover, this section details the
different phases of the abstract protocol Pswap .

6.3.1 Representation of Asset’s States in a Swap

This part introduces a representation of the asset’s possible states in the swap. For the proof of the
protocol, detailed later, we project the possible states of an asset ai as follows (see Figure 6.2):

• the state “OwS” characterisesOwned by its Source; the original owner si . This state is reached
in the initial state and when the source recovers its asset.

• “Locked” state is when si locks the asset and designates the new owner of the asset (the
receiver of the asset; ri).

• “OwR” state, Owned by its Recipient, is when the asset has been retrieved by ri (the new
owner).

• We introduce an additional state “Other” that characterises all other states beyond the swap.
For example, if an asset is transferred to a participantwho is not part of the swap or transferred
without following the swap transfer’s rules, the asset is set to “Other”. We detail this point
later.

The participants have operations that, once executed, cause a change in the asset’s state. The proto-
col interacts with assets through trigger2 events εi , where i ∈ N. Triggers make it possible to modify
the states of the assets.
An asset can change its state legally (following an action made by a correct or a Byzantine partici-
pant; plain edges→) or illegally (following an action made by a Byzantine participant, dashed edges
99K). The meaning of the term legally means following the rules of the swap.

2In the study context, a trigger is a mechanism that initiates an action when an event occurs.

125

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

OwSstart Locked

other

OwR

ε
ai
1

ε
a i

6

ε
ai
4

εai2

ε
ai
3

ε a
i7

ε
ai
5

Figure 6.2 – Representation of an asset ai possible states

Sources have two operations: (1) locking its asset ai and assigning ri as the new owner of the
asset (εai1 in Figure 6.2), and (2) recovering its asset ai and becoming again the owner of ai (εai2).
Recipients have one operation, which is retrieving the asset ai and becoming the new owner of ai
(εai3).
Moreover, a Byzantine participant has actions that can also change the assets’ state. Their actions
are the following (see Figure 6.2):

• ε
ai
4 : a Byzantine source transfers its asset directly to the recipient without passing through
the swap.

• ε
ai
5 : a Byzantine recipient, once it retrieves its asset, can send back the asset to the original
owner, the source.

• ε
ai
{6,7}: a Byzantine source or recipient can transfer its asset to an unknown participant or lock
it somewhere or perform all other actions not recognised by the swap.

We can see from Figure 6.2 that there is no illegal action from “Locked”. This state reflects the
locking asset respecting the swap’s rules. Therefore, once an asset is legally locked, it can only be
legally unlocked. In addition, we did not represent the outgoing edges from “Other”, as this would
not add any significant information since the outgoing edges would cancel the incoming edges.

6.3.2 The Abstract Protocol Pswap

The abstract protocol, Pswap , is modelled as a set of state machines that influences the assets’ state
introduced in Section 6.3.1.

Overview of the Protocol Pswap

Pswap is inspired by the defined protocol in [191]. The idea is similar to the well-known Two-
Phase Commit protocol [37] (defined in Section 2.1.1). The Two-Phase Commit ensures that a trans-
action either commits or aborts for all the participants. It avoids the undesirable outcome that
the transaction commits for one participant and aborts for another. A special entity, known as a
coordinator, is required for a Two-Phase Commit to take place. The coordinator decides whether to
commit or abort the transaction and communicates the result to all the participants.
In Pswap the coordinator is defined as a public entity. We assume a communication channel be-
tween the coordinator and each participant, but we do not assume direct communication among
the participants during the swap. The behaviour of each participant is independent of the others.
On the other hand, the coordinator’s behaviour influences the participants and vice versa. Wemake
no assumptions about participants’ behaviour; thus, they can behave arbitrarily, i.e. be a Byzantine
participant.

126

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

After constructing the swap graph, all correct participants have a local copy of it. All sources
must lock their asset(s) to prove their wish to commit the swap. The coordinator has the role of
authorising the swap or not by giving a decision to the swap participants. Only the coordinator’s
decision can unlock the assets. The possible decisions are the redeem decision to authorise the swap
or the refund decision to abort the swap.

The coordinator correctness. The coordinator has a central role in this protocol since it is in-
spired by the Two-Phase Commit algorithm. Pswap wants to be tolerant to possible Byzantine at-
tacks from the participants but also from the coordinator. Thus, we assume that correct participants
can evaluate the correctness of the coordinator. If the coordinator is Byzantine, the swap could not
start in the first place because correct participants will abandon the swap. From this premise, if
the swap starts, we assume the coordinator is correct. Therefore, to simplify the description of the
protocol, it is necessary to assume a correct coordinator.

Proof-of-Actions

The protocol is tolerant to an unbounded number of Byzantine participants. Thus, our properties
must hold despite their presence. The protocol uses a method to withstand Byzantine attacks that
allow countering their behaviour called proof-of-actions. A proof-of-actionmeans proving to someone
that a particular action has been performed. A proof-of-action, once provided, cannot be forged, even
if a Byzantine participant provides the proof. In cryptography, similar methods are used, like the
zero-knowledge protocol [91]. In addition, in the context of blockchains, a transaction stored in
a block can be a reliable proof-of-action. Since blockchain data is unforgeable, it is easy to prove
whether or not an action has been carried out. In the case of Pswap protocol, the coordinator and
participants can verify executed actions in the swap by using proof-of-action. The coordinator and
participants can produce proof that a given action or state change is correctly done. This proof
cannot be falsified. If any proof is false, then it will be detected. If a given action is correctly done,
the proof is valid.

6.3.3 Participants State Machines

Pswap interacts with participants of the swap, consisting of three kinds of participants; a publisher,
a coordinator, sources, and recipients. Their behaviour is represented by a state machine structured
with the following elements (Γ, Q , Σ, δ, q0, F) (see Section 2.1.2 for more details about the par-
ticipant’s state machine).
In addition, Σ contains three parts (each one is optional), written q ε;σ;ω−−−→ q ′ with an action name
ε, a guard σ expressing a condition and an operation name ω. A guard is a condition to satisfy the
transition, and an action is an event that allows taking the transition. An action can be a sending
message action, denoted by the discrete action ε!, or a receiving message, denoted by the discrete
action ε?. An operation ω is the computation of an operation in Γ. Actions and operations can
contain arguments. The symbol ® is used where the label does not contain one of the three parts.
We recall that participants have a local clock and a timeout for each step where the participant waits
for a coordinator’s action.

The Publisher. The publisher is a participant in Π, represented by Figure 6.3 and defined by the
elements of Table 6.1. Its role is to publish the swap graph swap to the coordinator with the action
ε
p
1 . A publisher can also be a source or a recipient. How the publisher is selected is not part of
our study. Although this step could be done through a leader election algorithm or randomly. We
assume that for each swap, only one publisher is selected. However, in the following, we explain
how we maintain the swap properties in the case of several publishers. Furthermore, we explain
why the selection method does not violate the swap properties.

127

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

Init

start

Publish Exit

(εp1 ;®;®)

(®;®;®)

Figure 6.3 – State machine of the publisher

Qp = {Init,Publish,Exit}

Σp = {(εp1 ;®;®), (®;®;®)}

δp = Init× (εp1 ;®;®) 7−→Publish

Publish× (®;®;®) 7−→Exit

q0p = {Init}

Fp = {Exit}

ε
p
1 = publish(swap)!

Table 6.1 – Elements of the publisher

The Coordinator. The role of the coordinator is to coordinate the evolution of the swap. It
is represented by Figure 6.4 and defined by the elements of Table 6.2. The coordinator gives the
authorisation to carry out the swap or not by changing states. Its state machine is public; therefore,
any state updates are known to all. As explained previously, the coordinator evolves according to the
participants’ behaviour. In εc1, the coordinator waits for the publisher to execute the publish(swap)!
action. Then, in εc2, the coordinator waits for the participants to ask for a refund or a redeem
decision. If σc3 is true (resp. σc4), it satisfies σ

si
4 ,σri5 (resp. σsi6 ,σri3) from Figures 6.5 and 6.6. We

define a predicate ValidTransfer as the conjunction of the swap’s conditions to allow the transfer
of assets. The predicate is conditioned by a valid proof-of-action, Proof lock, given as a parameter
(the definition of Proof lock is detailed later). When ValidTransfer is satisfied, assets are ready to
be retrieved by their recipient. We define a second predicate, AbortTransfer, which characterises
the conditions for an asset to be recovered by its source. When AbortTransfer is satisfied, assets
are ready to be recovered by their source. Both predicates, ValidTransfer and AbortTransfer, are
mutually exclusive. We define the two predicates in more detail in the next section.

Initstart Published

OkRM

OkRF

(εc1 ;®;®)

(®;σc4 ;®)

(εc2 ;®;®)

(®;σc3 ;®)

Figure 6.4 – State machine of the coordinator

Qc = {Init,Published,OkRM,OkRF}

Σc = {(εc1 ;®;®), (εc2 ;®;®), (®;σc3 ;®), (®;σc4 ;®)}

δc =
Init× (εc1 ;®;®) 7−→Published

Published× (εc2 ;®;®) 7−→Published

Published× (®;σc3 ;®) 7−→OkRM

Published× (®;σc4 ;®) 7−→OkRF

q0c = {Init}

Fc = {OkRM,OkRF}

εc1 = publish?

εc2 = askRM ?∨askRF ?

σc3 = ValidTransfer(Proof lock)

σc4 = AbortTransfer()

Table 6.2 – Elements of the coordinator

Sources. The role of the source is to transfer assets to recipients. A source is represented by
Figure 6.5 and defined by the elements in Table 6.3. Let us introduce the four predicates of the
source’s protocol.

• CorrectSwap: it takes the proof-of-action Proof publish as a parameter that proves the swap graph
publication to the coordinator. To be valid, the predicate must satisfy the following two

128

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

Initstart Published WaitForD

Exit Refunded

(®;ω
si
2 ;σ

si
2)

(®;σ
si
1 ;®)

(ε
si
3 ;®;®)

(®;σ
si
6 ;ω

si
6)

(®;σ s
i

4 ;®)

(ε
si
5 ;σ

si
5 ;®)

(®;®;®)

Figure 6.5 – State machine of a source si

Qsi = {Init,Published,WaitForD,Refunded,Exit}

Σsi = {(®;σ
si
1 ;®), (®;σ

si
2 ;ω

si
2), (ε

si
3 ;®;®), (®;σ

si
4 ;®),

(ε
si
5 ;σ

si
5 ;®), (®;σ

si
6 ;ω

si
6), (®;®;®)}

δsi =

Init× (®;σ
si
1 ;®) 7−→Exit

Init× (®;σ
si
2 ;ω

si
2) 7−→Published

Published× (ε
si
3 ;®;®) 7−→WaitForD

WaitForD× (ε
si
5 ;σ

si
5 ;®) 7−→WaitForD

WaitForD× (®;σ
si
6 ;ω

si
6) 7−→Refunded

WaitForD× (®;σ
si
4 ;®) 7−→Exit

Refunded× (®;®;®) 7−→Exit

q0p = {Init}

Fp = {Exit}

σ
si
1 =¬ CorrectSwap(Proof publish)

σ
si
2 =CorrectSwap(Proof publish)

σ
si
4 =AuthoRM()

σ
si
5 = NoDecision()

σ
si
6 = AuthoRF()

ε
si
3 = askRM (Proof lock)!

ε
si
5 = askRF !

ω
si
2 =LockAsset(ai ,ri)

ω
si
6 =RecoveringAsset(ai ,Proof refund)

Table 6.3 – Elements of the source si

conjunctions; (1) the source’s local copy of the graph and the graph located in Proof publish are
identical, and (2) the source’s local timeout is not reached.

• NoDecision: it is valid if the coordinator has not yet decided after the source’s timeout.

• AuthoRM: it is true when the coordinator state machine is in “OkRM” state.

• AuthoRF: it is true when the coordinator is in “OkRF” state.

The source starts by checking the status of the graph. If the graph does not satisfy CorrectSwap,
i.e. an invalid Proof publish or a reaching timeout, it exits the swap (σsi1). Otherwise (σsi2), it computes
the ωsi

2 operation, locks its asset ai and assigns the new owner ri . The source needs the proof-of-
action to ensure that the swap graph is correct before locking its asset. Consequently, εai1 from
Figure 6.2 of its asset is triggered. Then, the source sends a request message to the coordinator to
give a redeem decision through the εsi3 action. The source adds a proof (Proof lock) for certifying that
the locked asset operation has been executed properly. Hence, this step allows the coordinator to
assess the validity of the lock operation executed by the source.
Depending on the coordinator’s decision, either the source exits the swap if σsi4 is satisfied, or the
source recovers its asset if σsi6 is satisfied. In that case, the source computes the ωsi

6 operation to
recover its asset. The source needs the proof-of-action Proof refund certifying that the coordinator has
given a refund decision to satisfy εai2 from Figure 6.2 of its asset. However, if no decision has been
made after the source’s timeout, σsi5 is set to true, the source asks for a refund decision by sending
a request message to the coordinator through εsi5 action.
It is essential to clarify that Figure 6.5 represents the source’s state machine of one transfer. Indeed,
a source may have more than one asset to transfer and must run the protocol for each one. Consid-
ering, separately, each of the participants’ tasks for each asset simplifies the formalisation without

129

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

Initstart WaitForD

RedeemedExit

(®;σ
ri
2 ;®)

(®;σ
ri
1 ;®)

(®;σ
ri
5 ;ω

ri
5)

(ε
ri
4 ;σ

ri
4 ;®)

(®;σ r
i3 ;®)

(®;®;®)

Figure 6.6 – State machine of a recipient ri

Qr = {Init,WaitForD,Redeemed,Exit}

Σr = {(®;σ
ri
1 ;®), (®;σ

ri
2 ;®), (ε

ri
4 ;σ

ri
4 ;®), (®;σ

ri
3 ;®),

(®;σ
ri
5 ;ω

ri
5), (®;®;®)}

δr =

Init× (®;σ
ri
1 ;®) 7−→Exit

Init× (®;σ
ri
2 ;®) 7−→WaitForD

WaitForD× (ε
ri
4 ;σ

ri
4 ;®) 7−→WaitForD

WaitForD× (®;σ
ri
3 ;®) 7−→Exit

WaitForD× (®;σ
ri
5 ;ω

ri
5) 7−→Redeemed

Redeemed× (®;®;®) 7−→Exit

q0r = {Init}

Fr = {Exit}

σ
ri
1 =¬ CorrectSwap(Proof publish)

σ
ri
2 =CorrectSwap(Proof publish)

σ
ri
3 =AuthoRF()

σ
ri
4 = NoDecision()

σ
ri
5 = AuthoRM()

ε
ri
4 = askRF !

ω
ri
5 =RetrievingAsset(ai ,Proof redeem)

Table 6.4 – Elements of the recipient ri

loss of generalisation. Thereby, to help understand the protocol and afterwards help the formal
proof, a source transferring multiple assets will have different identification for each transfer asset.
If we take the example of Figure 6.1, A as a source will have the following identification: {sA1 ,sA3 }.

Recipients. The recipient, represented in Figure 6.6 and defined by the elements in Table 6.4, is
the asset’s new owner. The predicates enumerated previously, CorrectSwap, NoDecision, AuthoRM
and AuthoRF, have the same definition for recipients. Like the source, the recipient must run the
protocol in Figure 6.6 for each asset it receives for the same reason defined above. For example, the
participant B from Figure 6.1 as a recipient will be represented by {rB1 ,rB4 } and the protocol for
each one is the following: the recipient starts by checking the status of the graph using the proof-
of-action Proof publish (σ

ri
1 and σri2). Depending on the coordinator’s decision, either the recipient

exits the swap if σri3 is true, or the recipient retrieves its asset if σri5 is true. To retrieve its asset, the
recipient computes the ωri

5 operation. The recipient adds to the operation the proof Proof redeem
that the coordinator has given a redeem decision. Consequently, this triggers εai3 from Figure 6.2 of
its asset, and the recipient becomes the new owner. However, if σri4 is satisfied, the recipient asks
for a refund decision through εri4 action.

6.4 Description of the Protocol Based on Proof-of-Actions

In this part, we describe in detail the different phases of the protocol and how proof-of-actions allow
countering the unacceptable behaviours of the Byzantine participants that we want to prove. The
protocol Pswap runs through three phases, where the validation of a proof-of-action conditions each
phase:

Phase 1: proof of graph publication. In phase 1, participants designate a publisher to publish
the swap graph to the coordinator. Each correct participant, i.e. sources and recipients, waits for
a proof-of-action, “Proof publish”, from the coordinator that the graph has been published. Since all
information about the coordinator is public, participants can retrieve the Proof publish information

130

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

and verify its validity. The correct participants extract from the proof the graph published by the
publisher. If their local graph and the published one are identical, the proof is valid. The coordinator
being public helps prevent misbehaviour from the publisher. If “Proof publish” is invalid or the graph
has not been published after the timeout of one of the correct participants, then CorrectSwap is
violated, and correct participants will abandon the swap.
Besides, imagine that a Byzantine publisher decides to publish the swap graph simultaneously with
the one decided by the participants. Two swap graphs will be published to the coordinator. How-
ever, the correct participants will ignore the graph published by the Byzantine publisher because
the publisher’s identifier (i.e. the Byzantine one) will not match the one chosen before the swap.

Phase 2: proof of locking assets. During phase 2, sources lock their assets. The phase starts with
assuming a valid Proof publish. Indeed, if a source locks an asset before the graph publication, the
asset can be locked forever if the Byzantine publisher decides not to publish the graph. The locking
operation assigns the asset’s new owner, and only the recipient designated as the new owner can
retrieve the asset. Once the asset is locked, each correct source sends a message to the coordinator
to request a redeem decision. This request is accompanied by the proof Proof lock that the source
has successfully computed LockAsset . All sources must send a request message accompanied by
Proof lock for each transferred asset; otherwise, the swap cannot occur. The coordinator collects all
proofs through the askRM (Proof lock)! action of all sources and checks their validity. If one proof
is invalid, the coordinator aborts the swap by giving a refund decision.
To give a redeem decision, the conditions of the predicateValidTransfer(Proof lock) are: (1) all sources
must request the coordinator to give a redeem decision; (2) all sources’ “Proof lock” must be valid and
verified by the coordinator. If no decision is given after some time, any correct participant can send
a refund request.
For instance, if a source crashes before sending a redeem request message, any correct participant
can ask for a refund decision. A single request message is enough for the coordinator to authorise
the refund if no decision has been made previously. Thus, the conditions of the AbortTransfer()
predicate are (1) any correct participant asks for a refund decision or (2) at least one Proof lock is
invalid.

Phase 3: proof of decision. In phase 3, participants wait until the coordinator gives a decision.
Consequently, if the coordinator gives a redeem decision by updating its state to “OkRM”, the
changing state satisfies the predicate AuthoRM(). Therefore, correct recipients retrieve the proof
“Proof redeem” from the coordinator and can redeem their assets using the proof-of-action Proof redeem.
Conversely, if the coordinator changes its state to “OkRF”, the predicate AuthoRF() is satisfied.
Therefore, correct sources retrieve from the coordinator the proof “Proof refund” to be refunded.
The two proof-of-actions are the only way to unlock these assets.

6.5 Pswap Implementation in TLA+

The previous section formally described the protocol based on state machines. In this section,
we model the cross-chain swap protocol, Pswap , in a language dedicated to the specification of dis-
tributed systems, TLA+. This modelling aims to apply the verification methods that the TLA+

tool provides. This verification step is done in the next chapter. The Two-Phase Commit strongly
inspires the Pswap protocol; therefore, the modelling method will use the same approach described
in Section 4.3.3.

6.5.1 Module, Declarations and Definitions

The module of Pswap starts by its name, which is module CrossChainSwap, and it extends the
modules: Integers for the participants’ identifiers and arithmetic operations like {+, -, *}, and
TLAPS needed for the verification proof. The module’s body is a sequence of statements, where

131

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

a statement is a declaration, a definition, an assumption or a theorem. Declarations in the body of
module CrossChainSwap are: constant NTxs ,Correct ,Timeout . NTxs is the number of trans-
actions corresponding to the number of traded assets. Correct is the set of correct participants
involved in the swap. Timeout is a boolean that models the synchrony between the participants.
Timeout set to true means that the system is assumed to be asynchronous, and participants can
timeout.

Set definitions. The modelling of the protocol is based on states; thus, we define the set of states
of each component. As defined in Section 6.3.1, an asset has four possible states represented in
AStates (seeDefinition 19), with“OwS”the state that corresponds to the asset owned by its source
and“OwR”owned by its recipient. The state“locked”reflects the locking asset, and the state“other”
is any state not recognised by the swap. The coordinator and publisher states are defined in Tables
6.2 and 6.1; thereby, their set of states are formalised in TLA+ as CStates and PStates .
As described in the protocol, the state of the swap graph affects the protocol; thus, we define a set
of possible states of the swap graph in SwapStates . At the initial state, the swap graph is in“init”
state. Depending on the publisher’s behaviour, the swap graph can be“correct”, i.e. identical to the
participants’ local graph or“different”, i.e. different from the participants’ local graph.

Although sources and recipients were identified by their state in the state machine protocol de-
scription, in the TLA+ modelling, we did not define their set of states. The approach does not define
a set of states but instead uses the labels of the source’s and recipient’s PlusCal code. Recall that a
PlusCal code defines labels in the code to define atomic actions. When the PlusCal translator gen-
erates the TLA+ specification code, the program control is created, and each label corresponds to a
TLA+ action. Therefore, if the labels are correctly defined, one can identify the program’s current
state using the program control. For example, we define a label named WaitForD in the source’s
PlusCal code. If the source’s program control p is set to WaitForD , that means the source’s state
corresponds to “WaitForD” of Figure 6.5. Thus, tracking the state of the source’s (and recipient’s)
program control is equivalent to monitoring the source’s (and recipient’s) state.

Definition 19 (Set of states).

AStates
∆= {“OwS”,“OwR”,“locked”,“other”}

CStates
∆= {“init”,“published”,“okRM”,“okRF”}

PStates
∆= {“init”,“publish”}

SwapStates
∆= {“init”,“correct”,“different”}

Identification. We give an identifier to each participant and asset to track their state. We attribute
to the coordinator and the publisher, respectively, the values 0 and -1. However, we have a paramet-
ric number of sources, recipients and assets, and we must assign a unique identifier to each. Note
that assets are not processes but must have an identifier to track their state. The identifiers must
be calculated according to the number of traded assets, NTxs . As defined in Section 6.1.2, a swap
is modelled as a directed graph S = (Π,E), where vertices are participants and edges are transferred
assets. If a source transfers more than one asset in the swap, it will have as many identifiers as assets
to transfer. The same applies to recipients that receive more than one asset and will have as many
identifiers as assets received.
NTxs is the number of transactions that correspond to the number of asset transfers. Each transac-
tion has a source and a recipient; thus, we can define a relation between these three components to
assign an identifier. The identifiers 0 and -1 have already been assigned and are no longer available;
thus, the identification must start from 1. The intuitive relation is that “1 transfers 2 to 3” with 1
the source’s identifier, 2 the asset’s identifier and 3 the recipient’s identifier. This relation gives the
following formulas to calculate the identifier set of sources Πs , assets Λ and recipients Πr :

132

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

Πs =
NTxs∑
x=1

3x −2 Πr =
NTxs∑
x=1

3x Λ=
NTxs∑
x=1

3x −1

E =
NTxs∑
x=1

(3x −2, 3x −1, 3x)

In the TLA+ formalism, the formulas are defined as follows:

Sources
∆= {3∗x −2 : x ∈ 1 . .NTxs}

Assets
∆= {3∗x −1 : x ∈ 1 . .NTxs}

Recipients
∆= {3 ∗x : x ∈ 1 . .NTxs}

Moreover, we define a set of predicates that return the asset belonging to the argument given as a
parameter. Since each asset is linked to its source and its recipient, from the identifier of a source,
we can have that of its asset and the asset’s recipient. Conversely, one can know the identifier of a
source and the recipient from that of the asset. The predicates are AofS , AofR, SofA, and RofA.
Therefore, we can have the identifier of an asset from its source with AofS and its recipient with
AofR. The set of predicates is as follows:

AofS (x)
∆= x +1

AofR(x)
∆= x −1

SofA(x)
∆= x −1

RofA(x)
∆= x +1

For example, suppose a source with the identifier 1 and a recipient with an identifier 6. Their asset
are respectively:

AofS (1)
∆= 1+1 = 2

AofR(6)
∆= 6−1 = 5

Set of participants. The system consists of correct and Byzantine participants. We introduce
the sets defined in Definition 20 to allocate actions to each participant. We define Pi as the union
set of sources and recipients and Pc as the set of correct participants. Remember that Correct is
a constant that designates the set of correct participants. We define both sets of correct sources
and recipients, respectively, in CSources and CRecipients . Finally, we define the set of Byzantine
sources and recipients in BSources and BRecipients . The Byzantine participants’ sets are the set of
sources (respectively recipients) excluded from the set of correct sources (respectively recipients).

Definition 20 (Set of Participants).

Pi
∆= Sources ∪Recipients

Pc
∆= Pi ∩Correct

CSources
∆= Pc∩Sources

CRecipients
∆= Pc∩Recipients

BSources
∆= Sources \CSources

BRecipients
∆= Recipients \CRecipients

133

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

6.5.2 The Cross-Chain Swap Algorithm in PlusCal

The algorithm is written in PlusCal code and then translated into TLA+ language for the proof.
As for the Two-Phase Commit example, we first define a set of variables needed for the algorithm.
assets , pState , swapGraph and coordState are the variables that represent the state of, respectively,
assets, the publisher, the swap graph and the coordinator. In the initial state, assets are owned
by their source“OwS”, and the publisher, the coordinator and the swap graph are set to“init”. In
the protocol, the participants can request a redeem or a refund decision from the coordinator. To
model these actions, we define the variable qrm, a sequence of sources’ identifiers that has requested
a redeem decision. Similarly, the refund request is defined by the variable qrf , a sequence of partici-
pants’ identifier that has requested a refund decision. Finally, all the proof-of-actions are modelled as
boolean variables. When the value of the variable is true, that means the proof is valid. The proof
of graph publication, the proof of decision redeem, and the proof of decision refund are respec-
tively ProofPublish, ProofOkRM and ProofOkRF . The proof of locking asset variable, ProofLock ,
is a function that maps for each source a boolean value. Therefore, if the value of the ProofLock
function at index i is true, that means the source i has provided a valid Proof lock.

In the protocol defined in the previous section, we defined predicates that conditioned the evolu-
tion of the system, namely CorrectSwap, ValidTransfer, and AbortTransfer. In PlusCal, we define
the predicate ValidTransfer, and AbortTransfer in the define statement. The predicate that makes it
possible for the coordinator to give a redeem decision is ValidTransfer . The predicate that must be
valid for the coordinator to give a refund decision is AbortTransfer . For getting a redeem decision,
the sequence qrm must contain all the elements of the set Sources , and the variable ProofLock must
have all its elements to true. A refund decision is given when the sequence qrf contains at least
one element. Both are defined as follows:

ValidTransfer
∆= qrm = Sources ∧∀s ∈ Sources :ProofLock [s] = true

AbortTransfer
∆= qrf 6= {}

The predicate CorrectSwap is valid if the swap graph’s state equals swapGraph =“correct”, and
Timeout is set to false.

Functions and Predicates

In Section 6.3, the swapmodelling distinguishes between a participant’s operation and action. How-
ever, their implementation in the TLA+ language does not make this distinction. An action and
an operation are modelled by the definition of a macro function. Note that the parameters of
the functions may vary from Section 6.3 because of the TLA+ language. The following functions,
written in PlusCal, are actions and operations of participants:

• The source’s operation LockAsset :

macro lockAsset(self) {
if (ProofPublish = true∧ self ∈ Sources ∧assets[AofS (self)] =“OwS”)
assets[AofS (self)] :=“locked”; ProofLock [self] := true ; }

self is the function caller, and Sources the set of sources. The primitive AofS (self) gives the
identifier of self ’s asset, and assets[] is the hashtable that maps an asset with its state. A source can
lock its asset only if it owns it.

134

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

• The askRM and askRF actions:

macro askRM (self) {
if (self ∈ Sources ∧ProofLock [self] = true∧coordState =“published”)
qrm := qrm∪ {self } ; }

macro askRF (self) {
if (coordState =“published”) qrf := qrf ∪ {self } ; }

The askRM function can be executed only by sources; self ∈ Sources . The askRM function mod-
elled in TLA+ does not contain the lock proof-of-action of the source as a parameter. The modelling
of proof-of-action is defined as global system variables since they represent the coordinator’s public
information. Therefore, it is not necessary to add the lock proof-of-action as a parameter to the
function.

• Below is the RetrievingAsset and RecoveringAsset operations:

macro retrievingAsset(self) {
if (self ∈ Recipients ∧ProofOkRM = true∧assets[AofR(self)] =“locked”)
assets[AofR(self)] :=“OwR”; }

macro recoveringAsset(self) {
if (self ∈ Sources ∧ProofOkRF = true∧assets[AofS (self)] =“locked”)
assets[AofS (self)] :=“OwS”; }

The first function can be executed only by recipients, while the second is executed only by sources.
Similarly to the action askRM , the functions do not require the proof-of-action as a parameter of
the function. ProofOkRM and ProofOkRF are global variables.

• In the following, we describe additional actions specific to Byzantine participants:

macro otherS (self) {
if (self ∈ Sources ∧assets[AofS (self)] =“OwS”)
assets[AofS (self)] :=“other”; }

macro otherR(self) {
if (self ∈ Recipients ∧assets[AofR(self)] =“OwR”)
assets[AofR(self)] :=“other”; }

macro directToR(self) {
if (self ∈ Sources ∧assets[AofS (self)] =“OwS”)
assets[AofS (self)] :=“OwR”; }

macro directToS (self) {
if (self ∈ Recipients ∧assets[AofR(self)] =“OwR”)
assets[AofR(self)] :=“OwS”; }

otherS (respectively otherR) is a function only executed by a Byzantine source (respectively
recipient) that executes the illegal action εai6 (respectively εai7) from Figure 6.2. directToR (respec-
tively directToS) is a function only executed by a Byzantine recipient (respectively source) that
executes the illegal action εai4 (respectively εai5).

135

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

Processes

The processes are modelled according to the state machines of the participants. Thus, a process
state with several outgoing arcs will be modelled by either -or statement. We define the following
processes: (1) the publisher, (2) the coordinator, (3) correct sources, (4) Byzantine sources, (5)
correct recipients and (6) Byzantine recipients. The description of their protocol is in the following.

The publisher. The Publisher has -1 as an identifier (PublisherID = −1). The publisher has one
non-deterministic possible action,“init p”(the only label defined in the code below). The publisher
either (1) publishes the swap graph by changing its state to“publish”, or (2) the publisher does not
publish the graph and exists the swap (skip), i.e. acting like a Byzantine publisher. Suppose the
publisher publishes the graph, a second level of non-deterministic behaviour is defined. Hence, the
graph can be either correct or different depending on the publisher’s correctness. The publisher
is not defined as a fair process (see Section 4.3.2). Therefore, even if an action is enabled, it can
halt and stay in“init p” forever and stutters. These steps of stuttering can model the crash of the
publisher. Note that the process describes both a correct and a Byzantine publisher making it
different from Figure 6.3.

The publisher’s PlusCal code is the following:

process (Publisher =PublisherID)
{

init_p : either {
pState :=“publish”;
either swapGraph :=“correct”;
or swapGraph :=“different”; }

or skip ;
} ;

The coordinator. The coordinator is identified by 0 (CoordinatorID = 0) and is defined by four
possible actions to execute (represented by the labels of the code below). We add a fairness condition
that the process cannot stop at a non-blocking action.

• init_c: the action is conditioned by the await construct. The coordinator has to wait until
the Publisher publishes the graph. When the graph is published, the coordinator can update
its state, and the proof of publication ProofPublish is set to true.

• decision: the next action is a non-deterministic either −or construct, in which each branch
refers to the two possible coordinator’s decisions. Each branch is conditioned by the await
construct. Consequently, the coordinator takes the either branch if ValidTransfer is valid
or the or branch if AbortTransfer is valid.

• decisionValid : the action can be executed if the predicate ValidTransfer has been validated.
Such a result means that all sources have a valid ProofLock . The coordinator updates its
state to“okRM”, and the ProofOkRM is set to true. Therefore, correct recipients will be
able to retrieve their assets using this information. The execution of decisionValid leads the
coordinator to the end of its program, i.e. goto Done.

• decisionAbort : the action can be executed only if the predicate AbortTransfer is satisfied.
The coordinator updates its state to“okRF”, and the ProofOkRF is set to true. Therefore,
correct sources will be able to recover their assets usingProofOkRF . Similarly to the previous
action, the execution of decisionAbort marks the end of the coordinator’s program.

136

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

The coordinator’s PlusCal code is the following:

fair process (Coordinator =CoordinatorID)
{
init_c : await pState =“publish”∧ swapGraph 6=“init”;

coordState :=“published”;
ProofPublish := true ;

decision : either {
await ValidTransfer ;

decisionValid : coordState :=“okRM”;
ProofOkRM := true ;
goto Done ; }

or {
await AbortTransfer ;

decisionAbort : coordState :=“okRF”;
ProofOkRF := true ;
goto Done ; } ;

} ;

The source. Source defined in the code below is a multiprocess of CSources processes (correct
sources). As mentioned earlier, the state of a source is described according to its labels. For each
state of Figure 6.5, a label describes the action to be executed corresponding to the actions of the
outgoing edges of the state machine. Therefore, we have the following four actions:

• init_src: from Figure 6.5, the initial state of a source has two outgoing edges. Consequently,
the initial action of the source’s process describes a non-deterministic behaviour of two possi-
ble behaviours. The either branch corresponds to the violation of the predicate CorrectSwap,
and the or branch to its validation. If the predicate is violated, the source leaves the swap;
otherwise, it goes to the next action lock .

• lock : correct sources can lock their asset if the swap has been correctly published. The source
executes the action lock ; thus, it sets to true its ProofLock proof-of-action. After locking its
asset, the source can go to the next action published .

• published : the action refers to asking for a redeem decision from the coordinator. The func-
tion can only be executed if the ProofLock of self is valid (i.e. set to true).

• waitForD : in Figure 6.5, the state “WaitForD” has three outgoing edges. This state describes
when the source waits for the coordinator’s decision. Consequently, the action waitForD

describes a non-deterministic action of three branches. The construct await conditions each
branch. The first branch is when the coordinator gives its approval to redeem, in which case
the correct source can leave the swap. The Done label corresponds to the Exit state of the
source’s state machine. If the coordinator gives its authorisation to refund the assets, i.e.
ProofOkRF = true, the correct source can execute the recoveringAsset function, recover its
asset, and leave the swap. The third branch is the case where NoDecision is validated because
the correct source has reached its timeout (Timeout = true). The correct source can request
a refund from the coordinator, then go back to the label waitForD and wait once again for a
decision from the coordinator.

The source’s Pluscal code is the following:

137

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

fair process (Source ∈ CSources)

{
init_src : either {

await swapGraph =“different”∨Timeout = true ;
goto Done ; }

or {
await ProofPublish = true∧ swapGraph =“correct”;

lock : lockAsset(self) ;
published : askRM (self) ;
waitForD : either {

await ProofOkRM = true ;
goto Done ; }

or {
await ProofOkRF = true ;
recoveringAsset(self) ;
goto Done ; }

or {
await coordState =“published”∧Timeout = true ;
askRF (self) ;
goto waitForD ; } ;

} ;
} ;

The recipient. Recipient is a multiprocess of CRecipients processes (correct recipients). The
recipient has two possible actions, including the Done action, which characterises the termination
of the process. The recipient starts with the init_rcp action. The action evaluates whether the swap
is correct or different. In the case of a different swap, the recipient exists the swap. However, if the
swap is published and correct, the recipient executes the action waitForD_rcp. The recipient waits
for the coordinator’s decision and exists the swap if the decision is refund or retrieves its asset if the
decision is redeem. The recipient can ask for a refund in the case where Timeout = true.

fair process (Recipient ∈ CRecipients)
{

init_rcp : either {
await swapGraph =“different”∨Timeout = true ;
goto Done ; }

or {
await ProofPublish = true∧ swapGraph =“correct”;

waitForD_rcp : either {
await ProofOkRF = true ;
goto Done ; }

or {
await ProofOkRM = true ;
retrievingAsset(self) ;
goto Done ; }

or {
await coordState =“published”∧Timeout = true ;
askRF (self) ;
goto waitForD_rcp ; } ; } ;

} ;

138

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

Byzantine Participants Models

In TLA+, we model Byzantine participants as unpredictable participants. Hence, we use the non-
determinism structure (either −or statement) in Byzantine processes design. A Byzantine source
(resp. recipient) may execute actions and operations of a correct source (resp. recipient) in com-
pletely random order. As a result, there exists a run execution of the protocol where Byzantine
behaves as a correct participant. The following PlusCal code characterises the process of a Byzan-
tine source. It can execute actions of correct sources and additional actions defined in Section 6.5.2.

process (BSource ∈ BSources)
{
init_bsrc :

either { BdirectToR : directToR(self) ; goto init_bsrc ; }
or { Bother : otherS (self) ; goto init_bsrc ; }
or { BaskRM : askRM (self) ; goto init_bsrc ; }
or { BlockAsset : lockAsset(self) ; goto init_bsrc ; }
or { BSaskRF : askRF (self) ; goto init_bsrc ; }
or { BrecoveringAsset : recoveringAsset(self) ; goto init_bsrc ; } ;

} ;

BSource is the process name, and BSources is the set of Byzantine sources. After each action
execution, the process returns to the initial state and non-deterministically executes another action.

The following code is the process of a Byzantine recipient. Similarly to the Byzantine sources,
a Byzantine recipient can execute actions of the correct recipient and actions specific to Byzantine
recipients.

process (BRecipient ∈ BRecipients)
{
init_brcp :

either { BRaskRF : askRF (self) ; goto init_brcp ; }
or { BRretrievingAsset : retrievingAsset(self) ; goto init_brcp ; }
or { BRdirectToS : directToS (self) ; goto init_brcp ; }
or { BRother : otherR(self) ; goto init_brcp ; } ;

} ;

BRecipient is the process name, and BRecipients is the set of Byzantine recipients. Infinitely,
the Byzantine performs the actions defined in its program in totally random order. After each
execution, it returns to its initial state. A label represents each action of the two processes; for
example, the action otherR(self) of the Byzantine recipient has the label BRother . Consequently,
{init_brcp,BRretrievingAsset ,BRother ,BRdirectToS ,BRaskRF } are the Byzantine recipient’s
labels, and {BrecoveringAsset , init_bsrc,BdirectToR,BaskRM ,BlockAsset ,BSaskRF ,Bother}
are the Byzantine source’s labels.

As a result, a Byzantine participant may execute any branch of its code or do nothing, acting like
a crashed participant since there is no fair keyword. As a recall, the publisher can be Byzantine, and
its possible actions are either publishing a wrong graph or doing nothing. The swap does not occur
in both cases if at least one correct participant detects the behaviour of a Byzantine participant.

6.5.3 TLA+ Translation

As described in the example with the Two-Phase Commit, after describing the PlusCal algorithm
of each participant, we translate the code into the TLA+ language. The result is a set of predicates

139

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

and actions that may or may not be enabled. Once we translate the PlusCal code, we obtain the
following complete system specification:

vars
∆= 〈assets , pState , coordState , qrm , qrf , swapGraph ,ProofPublish ,ProofLock ,

ProofOkRM ,ProofOkRF , pc〉
ProcSet

∆= {PublisherID }∪ {CoordinatorID }∪ (CSources)∪ (BSources)∪
(CRecipients)∪ (BRecipients)

Init
∆= ∧assets = [a ∈ Assets 7→“OwS”]

∧pState =“init”
∧coordState =“init”
∧qrm = {}
∧qrf = {}
∧ swapGraph =“init”
∧ProofPublish = false

∧ProofLock = [c ∈ Sources 7→ false]
∧ProofOkRM = false

∧ProofOkRF = false

∧pc = [self ∈ ProcSet 7→ case self =PublisherID →“init p”
2 self =CoordinatorID →“init c”
2 self ∈ CSources→“init src”
2 self ∈ BSources →“init bsrc”
2 self ∈ CRecipients→“init rcp”
2 self ∈ BRecipients →“init brcp”]

Next
∆= Publisher ∨Coordinator
∨ (∃self ∈ CSources : Source(self))
∨ (∃self ∈ BSources :BSource(self))
∨ (∃self ∈ CRecipients :Recipient(self))
∨ (∃self ∈ BRecipients :BRecipient(self))

Spec
∆= ∧ Init ∧2[Next]vars

∧WFvars (Next)
∧WFvars (Coordinator)
∧∀self ∈ CSources :WFvars (Source(self))
∧∀self ∈ CRecipients :WFvars (Recipient(self))

vars is the variables that make up the system and update their states according to the system
evolution. The translation creates a new variable, the program control variable pc. The pc initial-
isation gives the start of each process of the system. In addition, the translation of the algorithm
creates ProcSet , which corresponds to the set of identifiers of the system participants.

The predicate Init is the initial state of the system’s variables, and the predicate Next is the
possible participant action from the set of all participants. When the system runs, one action is
executed at a time. The predicate Spec defines the algorithm specification. Because we define the
coordinator, the correct sources and the correct recipients as fair processes, the specification formula
adds a weak fairness requirementWFvars . Moreover, the requirement to the Next predicate implies
that infinitely many Next steps must occur.

The publisher action. The publisher has only one action defined by: Publisher ∆= init_p, and it
can possibly execute it or not. The action, defined inDefinition 21, corresponds to the label defined

140

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

in the PlusCal code. If the publisher is Byzantine, it can decide to do nothing, and its program
control pc remains in init_p without executing it. In case it executes its action, the program control
of the publisher must be in the initial state. Once the action is executed, the program control’s next
state (characterised by the quote) is“Done”. The keyword unchanged informs the variables that
have not been changed during the execution of the action.

Definition 21 (The publisher “initial” action).

init_p ∆= ∧pc[PublisherID] =“init p”
∧ ∨ ∧pState ′ =“publish”

∧ ∨ ∧swapGraph ′ =“correct”
∨ ∧ swapGraph ′ =“different”

∨ ∧true

∧unchanged 〈pState , swapGraph〉
∧pc′ = [pc except ! [PublisherID] =“Done”]
∧unchanged 〈assets , coordState , qrm , qrf ,ProofPublish ,ProofLock ,

ProofOkRM ,ProofOkRF 〉

The coordinator actions. Formally, the coordinator is defined by the disjunction of four possible
actions as follows:

Coordinator
∆= init_c∨decision∨decisionValid ∨decisionAbort

The four actions represent the four labels of the PlusCal code. Each actionmodifies a set of variables
that evolves the system. The action init_c, defined in Definition 22, describes the acknowledge-
ment of the graph publication and updates the coordinator’s next state and the ProofPublish’s next
state. The next state of the program control is the next action to execute, which is“decision”.

Definition 22 (the coordinator “initial” action).

init_c ∆= ∧pc[CoordinatorID] =“init c”
∧pState =“publish”∧ swapGraph 6=“init”
∧coordState ′ =“published”
∧ProofPublish ′ = true

∧pc′ = [pc except ! [CoordinatorID] =“decision”]
∧unchanged 〈assets , pState , qrm , qrf , swapGraph ,ProofLock ,ProofOkRM ,

ProofOkRF 〉

The decision action inDefinition 23 describes the two possible decisions that the coordinator can
make. One of the two disjunctions must be valid when the action is validated. Thereby, one of the
two predicates, ValidTransfer and AbortTransfer , must be valid.

Definition 23 (The coordinator “decision” action).

decision
∆= ∧pc[CoordinatorID] =“decision”

∧ ∨ ∧ValidTransfer
∧pc′ = [pc except ! [CoordinatorID] =“decisionValid”]

∨ ∧AbortTransfer
∧pc′ = [pc except ! [CoordinatorID] =“decisionAbort”]

∧unchanged 〈assets , pState , coordState , qrm , qrf , swapGraph ,ProofPublish ,
ProofLock ,ProofOkRM ,ProofOkRF 〉

141

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

The decisionValid action, defined inDefinition 24, updates the coordState variable to authorise
the swap and updates the ProofOkRM ’s next state to true. The next state of the coordinator
program control is its termination.

Definition 24 (The coordinator “valid decision” action).

decisionValid
∆= ∧pc[CoordinatorID] =“decisionValid”

∧coordState ′ =“okRM”
∧ProofOkRM ′ = true

∧pc′ = [pc except ! [CoordinatorID] =“Done”]
∧unchanged 〈assets , pState , qrm , qrf , swapGraph ,ProofPublish ,

ProofLock ,ProofOkRF 〉

The decisionAbort action, defined in Definition 25, authorises the refund by updating the next
state of coordState to“okRF”and theProofOkRF to true. After giving its decision, the coordinator
completes its program.

Definition 25 (The coordinator “abort decision” action).

decisionAbort
∆= ∧pc[CoordinatorID] =“decisionAbort”

∧coordState ′ =“okRF”
∧ProofOkRF ′ = true

∧pc′ = [pc except ! [CoordinatorID] =“Done”]
∧unchanged 〈assets , pState , qrm , qrf , swapGraph ,ProofPublish ,

ProofLock ,ProofOkRM 〉

The sources actions. Formally, a source is defined by the following disjunction actions:

Source(self)
∆= init_src(self)∨ lock (self)∨published (self)∨waitForD(self)

The formula Source is parametric and takes as input the source identifier self . The first action,
defined in Definition 26, is init_src(self) and evaluates the state of the swapGraph variable. De-
pending on its state, whether the action sets the source program control to“Done”; hence no more
source action is enabled, or if ProofPublish is valid and the variable swapGraph is evaluated to
“correct”, then the program control of the source self goes to the next action, lock .

Definition 26 (The source “initial” action).

init_src(self)
∆= ∧pc[self] =“init src”

∧ ∨ ∧swapGraph =“different”∨Timeout = true

∧pc′ = [pc except ! [self] =“Done”]
∨ ∧ProofPublish = true∧ swapGraph =“correct”
∧pc′ = [pc except ! [self] =“lock”]

∧unchanged 〈assets , pState , coordState , qrm , qrf , swapGraph ,
ProofPublish ,ProofLock ,ProofOkRM ,ProofOkRF 〉

142

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

The lock action, defined in Definition 27, first evaluates if ProofPublish is valid and if the ac-
tion caller, self , is a source and its corresponding asset is in“OwS”state. This condition prevents a
participant other than a source from executing the action. Thus, if this condition is not met (the
else conjunction), no change is applied to the assets’ and ProofLock ’s state. Therfore, the con-
junction unchanged 〈assets ,ProofLock 〉 is satisfied, and the program control of the source goes to
the next action. Conversely, validating the condition (the if conjunction) changes the asset’s state
from“OwS”to“locked”and updates the source’s ProofLock .

Definition 27 (The source “lock” action).

lock (self)
∆= ∧pc[self] =“lock”

∧ if ProofPublish = true∧ self ∈ Sources ∧assets[AofS (self)] =“OwS”
then ∧assets ′ = [assets except ! [AofS (self)] =“locked”]

∧ProofLock ′ = [ProofLock except ! [self] = true]
else ∧true

∧unchanged 〈assets ,ProofLock 〉
∧pc′ = [pc except ! [self] =“published”]
∧unchanged 〈pState , coordState , qrm , qrf , swapGraph ,ProofPublish ,

ProofOkRM ,ProofOkRF 〉

The published action, defined inDefinition 28, evaluates if the asset of the action caller is correctly
locked by checking the proof-of-actionProofLock [self]. If the condition is valid (the if conjunction),
the action adds the element self into the sequence qrm to confirm the redeem request by the source
to the coordinator; otherwise (the else conjunction), the qrm variable remains unchanged.

Definition 28 (The source “published” action).

published (self)
∆= ∧pc[self] =“published”

∧ if self ∈ Sources ∧ProofLock [self] = true∧coordState =“published”
then ∧qrm ′ = (qrm∪ {self })
else ∧true

∧qrm ′ = qrm
∧pc′ = [pc except ! [self] =“waitForD”]
∧unchanged 〈assets , pState , coordState , qrf , swapGraph ,

ProofPublish ,ProofLock ,ProofOkRM ,ProofOkRF 〉

The waitForD(self) action, defined in Definition 29, is a disjunction of three possible outcomes:
a valid proof-of-action for the redeem or the refund decision, or none of them, i.e. the coordinator
has not given any decision. In the case of a valid ProofOkRM , no change is applied to the system
variable, except for the source’s program control that updates to “Done”. A valid ProofOkRM

modifies the source’s asset state from“locked”to“OwS”. In the case where the coordState variable
is still in the published state, and the Timeout is true, the action adds self to the variable qrf and
updates the program control. However, it is possible that despite a request for a refund, the result
is redeem. If the refund request were made just before the state change of the coordState variable,
the request would be ignored, and the decision will be redeem.

143

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

Definition 29 (The source “wait for decision” action).

waitForD(self)
∆= ∧pc[self] =“waitForD”

∧ ∨ ∧ProofOkRM = true

∧pc′ = [pc except ! [self] =“Done”]
∧unchanged 〈assets , qrf 〉

∨ ∧ProofOkRF = true

∧ if self ∈ Sources ∧ProofOkRF = true∧assets[AofS (self)] =“locked”
then ∧assets ′ = [assets except ! [AofS (self)] =“OwS”]
else ∧true

∧unchanged assets

∧pc′ = [pc except ! [self] =“Done”]
∧qrf ′ = qrf

∨ ∧coordState =“published”∧Timeout = true

∧ if coordState =“published”
then ∧qrf ′ = (qrf ∪ {self })
else ∧true

∧qrf ′ = qrf
∧pc′ = [pc except ! [self] =“waitForD”]
∧unchanged assets

∧unchanged 〈pState , coordState , qrm , swapGraph ,
ProofPublish ,ProofLock ,ProofOkRM ,ProofOkRF 〉

The recipients actions. Formally, a recipient is defined by the two following disjunction actions:

Recipient(self)
∆= init_rcp(self)∨waitForD_rcp(self)

The action init_rcp(self), defined in Definition 30, has the same definition as init_src(self). The
second level of the action is a disjunction on the swapGraph state. Either the recipient program
control changes to“Done”and no more action can be enabled, or the swapGraph variable is correct,
and the program control next state equals “waitForD rcp”. Except for the program control, no
variable changes state.

Definition 30 (The recipient “initial” action).

init_rcp(self)
∆= ∧pc[self] =“init rcp”

∧ ∨ ∧ swapGraph =“different”∨Timeout = true

∧pc′ = [pc except ! [self] =“Done”]
∨ ∧ProofPublish = true∧ swapGraph =“correct”
∧pc′ = [pc except ! [self] =“waitForD rcp”]

∧unchanged 〈assets , pState , coordState , qrm , qrf ,
swapGraph ,ProofPublish ,ProofLock ,
ProofOkRM ,ProofOkRF 〉

Like the waitForD(self) source’s action, the waitForD_rcp(self) action, defined inDefinition 31,
evaluates the decisions proof-of-action. The first disjunction that evaluates to valid ProofOkRF

makes no changes to the system, and the recipient has no further enable action. If the disjunction
of a valid ProofOkRM is satisfied, then the action changes the recipient’s asset state from“locked”
to“OwR” . The third disjunction changes the value of qrf if the state of the coordState variable is
still published . Consequently, the program control’s next state is“waitForD rcp(self)”action.

144

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

Definition 31 (The recipient “wait for decision” action).

waitForD_rcp(self)
∆= ∧pc[self] =“waitForD rcp”

∧ ∨ ∧ProofOkRF = true

∧pc′ = [pc except ! [self] =“Done”]
∧unchanged 〈assets , qrf 〉

∨ ∧ProofOkRM = true

∧ if self ∈ Recipients ∧ProofOkRM = true

∧assets[AofR(self)] =“locked”
then ∧assets ′ = [assets except ! [AofR(self)] =“OwR”]
else ∧true

∧unchanged assets

∧pc′ = [pc except ! [self] =“Done”]
∧qrf ′ = qrf

∨ ∧coordState =“published”∧Timeout = true

∧ if coordState =“published”
then ∧qrf ′ = (qrf ∪ {self })
else ∧true

∧qrf ′ = qrf
∧pc′ = [pc except ! [self] =“waitForD rcp”]
∧unchanged assets

∧unchanged 〈pState , coordState , qrm , swapGraph ,
ProofPublish ,ProofLock ,ProofOkRM ,ProofOkRF 〉

The Byzantine sources actions. A Byzantine participant has unpredictable behaviour, so it is
impossible to define a precise protocol. However, to apply verification tools to the model, it is
necessary to represent the impact of Byzantine participants in our system. To do so, we have
defined possible actions of a Byzantine source while being as little restrictive as possible. Formally,
the following formula defines a Byzantine source:

BSource(self)
∆= init_bsrc(self)∨BdirectToR(self)∨Bother (self)∨BaskRM (self)∨

BlockAsset(self)∨BSaskRF (self)∨BrecoveringAsset(self)

The first possible action of a Byzantine source is init_bsrc, defined inDefinition 32. This action
is the disjunction of all possible actions of a Byzantine source defined in its corresponding PlusCal
code. They can be executed randomly without respecting a given order.

Definition 32 (The Byzantine source “initial” action).

init_bsrc(self)
∆= ∧pc[self] =“init bsrc”

∧ ∨ ∧pc′ = [pc except ! [self] =“BdirectToR”]
∨ ∧pc′ = [pc except ! [self] =“Bother”]
∨ ∧pc′ = [pc except ! [self] =“BaskRM”]
∨ ∧pc′ = [pc except ! [self] =“BlockAsset”]
∨ ∧pc′ = [pc except ! [self] =“BSaskRF”]
∨ ∧pc′ = [pc except ! [self] =“BrecoveringAsset”]

∧unchanged 〈assets , pState , coordState , qrm , qrf , swapGraph ,
ProofPublish ,ProofLock ,ProofOkRM ,ProofOkRF 〉

145

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

One of the possible actions that a Byzantine source can execute is BdirectToR(self). The action,
defined in Definition 33, modifies the asset variable of the Byzantine self from“OwS”to“OwR”.
The protocol does not allow this transition; however, it can be performed by a Byzantine source.

Definition 33 (the Byzantine source “direct to the recipient” action).

BdirectToR(self)
∆= ∧pc[self] =“BdirectToR”

∧ if self ∈ Sources ∧assets[AofS (self)] =“OwS”
then ∧assets ′ = [assets except ! [AofS (self)] =“OwR”]
else ∧true

∧unchanged assets

∧pc′ = [pc except ! [self] =“init bsrc”]
∧unchanged 〈pState , coordState , qrm , qrf , swapGraph ,

ProofPublish ,ProofLock ,ProofOkRM ,ProofOkRF 〉

The action defined in Definition 34 is the second specific action of Byzantine sources. Bother
action modifies the self ’s asset state and sets its value to“other”.

Definition 34 (The Byzantine source “other” action).

Bother (self)
∆= ∧pc[self] =“Bother”

∧ if self ∈ Sources ∧assets[AofS (self)] =“OwS”
then ∧assets ′ = [assets except ! [AofS (self)] =“other”]
else ∧true

∧unchanged assets

∧pc′ = [pc except ! [self] =“init bsrc”]
∧unchanged 〈pState , coordState , qrm , qrf , swapGraph ,ProofPublish ,

ProofLock ,ProofOkRM ,ProofOkRF 〉

We notice from Definition 33 and Definition 34 that actions specific to Byzantine sources can
onlymodify the state of their asset and their program control. They do not influence other variables
from the system.
A Byzantine source can execute the same actions as correct sources (see the definitions below).
Hence, the actions BaskRM (self), BlockAsset(self), BSaskRF (self) and BrecoveringAsset(self)
have the same execution as correct source actions. The only difference is that when an action is
executed, the Byzantine source never terminates and always returns to the init_bsrc action.

BaskRM (self)
∆= askRM (self)

BlockAsset(self)
∆= lockAsset(self)

BSaskRF (self)
∆= askRF (self)

BrecoveringAsset(self)
∆= recoveringAsset(self)

The Byzantine recipient actions. Formally, a Byzantine recipient is defined by the following five
disjunctions actions:

BRecipient(self)
∆= init_brcp(self)∨BRaskRF (self)∨BRretrievingAsset(self)∨

BRdirectToS (self)∨BRother (self)

146

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

A Byzantine recipient starts with the action init_brcp(self), defined in Definition 35, which is
the disjunction of all possible actions that a Byzantine recipient can execute. Each action can be
performed as often as possible in a non-deterministic way.

Definition 35 (The Byzantine recipient “initial” action).

init_brcp(self)
∆= ∧pc[self] =“init brcp”

∧ ∨ ∧pc′ = [pc except ! [self] =“BRaskRF”]
∨ ∧pc′ = [pc except ! [self] =“BRretrievingAsset”]
∨ ∧pc′ = [pc except ! [self] =“BRdirectToS”]
∨ ∧pc′ = [pc except ! [self] =“BRother”]

∧unchanged 〈assets , pState , coordState , qrm , qrf , swapGraph ,ProofPublish ,
ProofLock ,ProofOkRM ,ProofOkRF 〉

Thus, like the source, a Byzantine recipient executes specific actions and actions of a correct recipi-
ent. BRdirectToS (self) andBRother (self) are specific to Byzantine recipients. BRdirectToS (self),
defined in Definition 36, modifies self ’s asset variable from“OwR”to“OwS”.

Definition 36 (The Byzantine recipient “direct to the source” action).

BRdirectToS (self)
∆= ∧pc[self] =“BRdirectToS”

∧ if self ∈ Recipients ∧assets[AofR(self)] =“OwR”
then ∧assets ′ = [assets except ! [AofR(self)] =“OwS”]
else ∧true

∧unchanged assets

∧pc′ = [pc except ! [self] =“init brcp”]
∧unchanged 〈pState , coordState , qrm , qrf , swapGraph ,

ProofPublish ,ProofLock ,ProofOkRM ,ProofOkRF 〉

The action BRother (self), defined inDefinition 37, modifies the asset from“OwR”to“other”with-
out modifying the other system’s variables.

Definition 37 (The Byzantine recipient “other” action).

BRother (self)
∆= ∧pc[self] =“BRother”

∧ if self ∈ Recipients ∧assets[AofR(self)] =“OwR”
then ∧assets ′ = [assets except ! [AofR(self)] =“other”]
else ∧true

∧unchanged assets

∧pc′ = [pc except ! [self] =“init brcp”]
∧unchanged 〈pState , coordState , qrm , qrf , swapGraph ,ProofPublish ,

ProofLock ,ProofOkRM ,ProofOkRF 〉

Similarly to the Byzantine sources, the Byzantine recipients only update their asset’s state and pro-
gram control. The actions BRaskRF (self) and BRretrievingAsset(self) execute the same action
of askRF (self) and retrievingAsset(self) (see the code below).

BRaskRF (self)
∆= askRF (self)

BRretrievingAsset(self)
∆= retrievingAsset(self)

The complete TLA+ code of Pswap is defined in the Appendix A.2.

147

CHAPTER 6. DISTRIBUTED CROSS-CHAIN SWAP ALGORITHM

6.6 Conclusion

This chapter presents a protocol that is becoming popular in the blockchain area, namely the cross-
chain swap application. Their benefits in exchanging assets without an intermediary makes them
ideal for being used in assets transfer between different blockchains. This chapter aims to establish
the swap problem and its specification formally. In addition, we put forward a blockchain agnostic
protocol, Pswap , which aims at satisfying the swap specification. The protocol is built in a way
that prevents possible Byzantine actions from violating the specification. We use the notion of
proof-of-action to implement a mechanism of verifiable proof to ensure the correct behaviour of the
participants. In a second step, we describe the protocol implemented in a specification language
TLA+. This step is necessary to apply verification tools to prove that our protocol satisfies the
problem specification.

148

Chapter 7

Proof of Pswap Correctness

“What we know is a drop, what we
don’t know is an ocean. ”

– Isaac Newton

Contents
7.1 Proof of the Safety Property . 150

7.1.1 Handwritten Proof of the Consistency Property 150
7.1.2 Proof of the Consistency Property Using TLAPS 152

7.2 Proof of the Liveness Properties . 166
7.2.1 Handwritten Proof of the Ownership and Retrieving Properties 166
7.2.2 Proof of the Ownership and Retrieving Properties Using TLC 168

7.3 Conclusion . 173

149

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

In this chapter, we prove the protocol Pswap using formal methods provided by the TLA+ tool. We
focus on the theorem proving [163] for the safety property (Section 7.1) and the model-checking [58] for
proving the liveness properties (Section 7.2). Regarding the safety proof approach, we apply the proof
methodology described in Section 4.3.4. The methodology describes an inductive invariant and proves
that this invariant is maintained in the system’s initial state, then at each stage of the system’s behaviour,
and finally that the invariant satisfies the safety property. We prove that our system specification satisfies
the safety property by assuming these three steps. Before going through the TLAPS proof, we do a rough
hand proof to understand the intuition of the TLA+ approach. In contrast to the proof of safety, the
methodology of proving liveness consists of defining the liveness properties and launch the model checker,
TLC , on the system. To get conclusive results, we vary the value of constants, which are the number of
transactions and the share of Byzantine participants in the system.

7.1 Proof of the Safety Property

As a recall, the Consistency property of a cross-chain swap problem, introduced in Section 6.2, is
defined as follows:

“For any correct source s1 of an edge e1 = (s1,a1,r1) and correct recipient r2 of an edge e2 =
(s2,a2,r2), at the end of the swap execution, either s1 owns a1 or r2 owns a2”.

Consistency

As a first step, we provide a handwritten proof of safety that consists of four lemmas and the
safety theorem. The proof is built around the behavioural possibilities of the coordinator. Then,
in a second step, we transcribe the handwritten proof into semi-automatic proof using TLAPS .

7.1.1 Handwritten Proof of the Consistency Property

In this section, we prove manually the safety property of the swap problem defined in Section 6.2.
Properties are written as an LTL formula (see Section 4.1), and we need to introduce some defi-
nitions to express the necessary lemma and theorem. Let loc(x) be the location state of ‘x ’, e.g.
loc(a) is the location state of the asset a. Once the coordinator decides the swap outcome, assets are
described as available (whether to the source or the recipient). Therefore, we introduce a predicate
Ar (a) that takes an asset identifier as input, and it describes “available to its recipient” with:

Ar (a) = (loc(a) = "OwR"∨ (Proof redeem∧ loc(a) = "locked"))

The first predicate member represents the redeemed asset a by the recipient. The second member
is when the redeem decision is available (a valid Proof redeem), but the recipient has not yet redeemed
its asset a. Similarly, As (a) is the predicate that defines “available to its source” with:

As (a) = (loc(a) = "OwS"∨ (Proof refund∧ loc(a) = "locked"))

The first member represents the recovered asset a by the source. The second predicate member is
when the refund decision is available (a valid Proof refund), but the source has not yet recovered its
asset a.

In the following, we recall the symbols defined in Chapter 6:

• Π: the set of participants (sources and recipients).

• Πs : the set of sources.

• Πr : the set of recipients.

150

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

• Πc : the set of correct participants with Πc ⊆Π.
• Λ: the set of assets of the swap.

• Proof redeem: the redeem decision proof-of-action.

• Proof publish: the swap graph publication proof-of-action.

• Proof refund: the refund decision proof-of-action.

• Proof lock: the lock asset proof-of-action.

We introduce two additional symbols defined as follows:

• Λs : the set of assets initially owned by correct sources, with Λs ⊆Λ.
• Λr : the set of assets intended for correct recipients, with Λr ⊆Λ.

Let us denote ‘c’ the coordinator.

Lemma 7.1. When the coordinator is in its initial state, then no correct sources are in published state
and, assets initially owned by a correct source are owned by their source.

Formally: loc(c) = "Init" =⇒ ∀s ∈ (Πc ∩Πs) : loc(s) 6= "Published" ∧∀a ∈ Λs : loc(a) = "OwS".

Proof. From Figure 6.4, we can see that in the initial state, the coordinator has not triggered εc1.
Hence, no correct sources and correct recipients (Figures 6.5 and 6.6) will have their guard σsi2 and
σ
ri
2 satisfied. However, σsi1 and σ

ri
1 can be satisfied if the publisher takes a long time to trigger

ε
p
1 (Figure 6.3), i.e. more time than the source’s or recipient’s timeout. Consequently, correct
participants can exit the swap. Correct sources would not lock their assets in both scenarios, and
these remain owned by their source.

Lemma 7.2. When the coordinator is in “Published” state, then no assets initially owned by a correct
source are available to their recipient.

Formally: loc(c) = "Published" =⇒ ∀a ∈ Λs : ¬Ar (a).

Proof. When the coordinator is in the “Published” state, then εp1 has been triggered by the publisher
in Figure 6.3, allowing the coordinator to change its state. Consequently, correct participants will
verify “Proof publish”; if the proof is valid, correct sources could lock their assets (executing ωsi

2) and
trigger εai1 from Figure 6.2. Since the coordinator is in the “Published” state, neither σc2 nor σc3 is
satisfied. Thereby, no decision has been taken by the coordinator. Therefore, an asset cannot be
available to the recipient as long as the coordinator is in the “Published” state.

Lemma 7.3. When the coordinator gives a redeem decision, then all assets are available to their recipient.

Formally: loc(c) = "OkRM" =⇒ ∀a ∈ Λ : Ar (a).

Proof. For the coordinator to make a redeem decision, σc3 from Figure 6.4 must be satisfied. Valid-
Transfer is satisfied when all sources have executed the action εsi3 from Figure 6.5, and the “Proof lock”
provided by the sources to the coordinator is correct and valid. Consequently, satisfying σc3 makes
all assets accessible to their recipients. Depending on the recipient’s behaviour, assets can stay in
“locked” or move to the “OwR” state by using “Proof redeem” to satisfy AuthoRM. In both cases, the
assets are available to their recipient. If the recipient is correct, its asset will eventually be retrieved
by executing ωri

5 .

Lemma 7.4. When the coordinator gives a refund decision, then assets initially owned by a correct
source are available to their source.

151

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

Formally: loc(c) = "OkRF" =⇒ ∀a ∈ Λs : As (a).

Proof. For the coordinator to make a refund decision, σc4 from Figure 6.4 must be satisfied. Hence,
the conditions for the AbortTransfer predicate are fulfilled. Namely, either a “Proof lock” provided
by a source has been proven invalid, or there exists a participant who asked for a refund decision
(triggering εsi5 if the participant is a source or triggering εri4 if the participant is a recipient). Conse-
quently, σc4 is satisfied, and all assets initially owned by a correct source are now available to their
sources. Hence, depending on the source’s behaviour, assets can stay in “locked” or move to the
“OwS” state by using “Proof refund” to satisfy AuthoRF. Both cases set the assets available to their
source. If the source is correct, its asset will eventually be recovered by executing ωsi

6 .

Theorem 7.5. For any correct source s1 of an edge e1 = (s1,a1,r1) and correct recipient r2 of an edge
e2 = (s2,a2,r2), at the end of the swap execution, either s1 owns a1 or r2 owns a2.

Proof. We have proven from Lemma 7.1 that a correct source s1 can timeout and finish its execution
before locking its asset a1. Consequently, a1 remains in the “OwS” state. Lemma 7.3 proves that
a correct recipient r2 can finish its execution by retrieving its asset a2 if a redeem decision is given.
In that case, the asset’s state changes to “OwR”. However, though r2 can timeout at the beginning
of the swap (before the swap graph publication), a2 is accessible by the recipients when the redeem
decision is given. Indeed, they can retrieve a2 asynchronously since the decision will always be
available. From Lemma 7.4, s1 finishes its execution by recovering its asset if a refund decision is
given. Consequently, a1’s state is “OwS”.
We can see that we can extrapolate this result to all correct sources and recipients from the swap.
From Lemma 7.1, Lemma 7.2 and Lemma 7.4, we have proven that no assets initially owned by
a correct source can be available to their recipient if no redeem authorisation is given. However,
an asset can be owned by a recipient if the source of that asset is Byzantine. Indeed, a Byzantine
source that behaves arbitrarily can transfer its asset directly to the recipient; without waiting for the
coordinator’s decision. From Lemma 7.3, we have proven that the assets may be available to the
recipients only when the coordinator authorises the swap by giving the redeem decision. Moreover,
this decision is only possible if all the sources are correct up to the moment of the locking assets.
Therefore, we proved that considering each possible end of execution of s1 and r2; then the outcome
is that s1 owns its asset or r2 owns its asset. Hence, the Consistency property of the swap is proven.

7.1.2 Proof of the Consistency Property Using TLAPS

In the following, we demonstrate the proof strategy described in Section 4.3.4 applied to the cross-
chain swap system. The methodology is divided into three steps. The first step is to define the
safety property – the Consistency. The second step is to define an inductive invariant according to
the coordinator’s behaviour. Finally, the third step is the proof of the resulting invariant.

Step 1. The definition of theConsistency property. In the previous Section 7.1.1, we introduced
two predicates, “available to its source” and “available to its recipient”, describing assets’ availability.
We define these two predicates into a TLA+ formalism in Definition 38.

Definition 38 (Asset’s availability predicates).

AvailableS (a)
∆= assets[a] =“OwS”∨ (ProofOkRF = true∧assets[a] =“locked”)

AvailableR(a)
∆= assets[a] =“OwR”∨ (ProofOkRM = true∧assets[a] =“locked”)

152

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

AvailableS (a) (resp. AvailableR(a)) is a predicate that evaluates the asset ownership whether is
owned by its source, assets[a] = “OwS”(resp. by its recipient, assets[a] = “OwR”), or accessible by
the source,ProofOkRF = true∧assets[a] =“locked”(resp. by the recipient,ProofOkRM = true∧
assets[a] =“locked”).
Accessible by source or recipient describes that any participant that has timeout prematurely will
still have the possibility to recover/retrieve its asset asynchronously even if the swap is terminated
since the proof of decision will always be available. Consequently, the TLA+ Consistency property
is defined in Invariant 1.

Invariant 1 (Consistency Property).

Consistency
∆= ∀s ∈ CSources , r ∈ CRecipients :
Finish(s , r) =⇒ AvailableS (AofS (s))∨AvailableR(AofR(r))

With CSources and CRecipients , the set of correct sources and correct recipients. The predicate
Finish(s ,r) is true if both s and r processes have finished their protocol:

Finish(s ,r)
∆= pc[s] =“Done”∧pc[r] =“Done”

AofS and AofR are defined in Section 6.5.1.

Step 2. The definition of the inductive invariant. The strategy described in Section 4.3.4 defines
an inductive invariant Inv . We need to prove that the invariant holds for all states of behaviour.
For that, it suffices to prove: (1) The invariant is true in the initial state, (2) if the invariant is true
in any state of the behaviour, then it is true in the next state of the behaviour; (3) the Consistency
is true in all reachable states. The resulting invariant rule is:

Init =⇒ Inv Inv ∧Next =⇒ Inv ′ Inv =⇒ Consistency

Spec =⇒ 2Consistency
(7.1)

We construct the inductive invariant Inv of the Pswap system based on the proof methodology
described in Section 4.3.4 for proving the Two-Phase Commit algorithm and the proven lemmas in
the previous Section 7.1.1. The following predicate captures the inductive invariant:

Inv = TypeOk ∧CoordInv

with TypeOk , the type correctness invariant, defined in Invariant 2, and CoordInv , defined in
Invariant 3, the predicate that specifies the system’s state of each variable at each coordinator’s
step.

Type correctness invariant. The TLA+ language is untyped; thus, state variables should conform
to their expected data structure to ensure successful access to data. This requirement represents
the variables’ type correctness for the proof of safety, and it is proved to be an invariant for the
system. Therefore, TypeOk , defined in Invariant 2, asserts that all relevant variables have values of
the expected sets.

153

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

Invariant 2 (Type Correctness Invariant).

TypeOk
∆= ∧assets ∈ [Assets→AStates]
∧pState ∈ PStates
∧coordState ∈ CStates
∧ProofLock ∈ [Sources→ boolean]
∧ProofPublish ∈ boolean

∧ProofOkRM ∈ boolean

∧ProofOkRF ∈ boolean

∧qrm ⊆ Sources
∧qrf ⊆Pi
∧ swapGraph ∈ SwapStates
∧pc[CoordinatorID] ∈ {“init c”,“decision”,“decisionValid”,“decisionAbort”,“Done”}
∧pc[CoordinatorID] =“Done”=⇒ coordState ∈ {“okRM”,“okRF”}
∧∀s ∈ CSources : pc[s] ∈ {“published”,“waitForD”,“init src”,“lock”,“Done”}
∧∀r ∈ CRecipients : pc[r] ∈ {“init rcp”,“waitForD rcp”,“Done”}
∧pc ∈ [ProcSet →Labels]

With Labels (Definition 39) the set of all defined labels in the module:

Definition 39 (Labels Definition).

Labels
∆= {“init c”,“decision”,“decisionValid”,“decisionAbort”,“Done”,“init p”,“init src”,“lock”,

“published”,“waitForD”,“refunded”,“Done”,“init bsrc”,“BdirectToR”,“Bother”,
“BaskRM”,“BlockAsset”,“BSaskRF”,“BrecoveringAsset”,“init rcp”,“waitForD rcp”,
“redeemed”,“exit rcp”,“Done”,“init brcp”,“BRaskRF”,“BRretrievingAsset”,
“BRdirectToS”,“BRother”}

For example, the invariant ensures that the domain set values of the assets variable is Assets
that maps to AStates . With Assets , the set of asset identifiers and AStates the possible states of
an asset. The set of values of the proof-of-actions (ProofPublish ,ProofOkRM ,ProofOkRF) is the
set of booleans. Note that the variables qrm and qrf are not defined in the same domain. Indeed,
qrm is a variable that translates the function calls of askRM defined in Section 6.5.2. In the TLA+

model, if a participant calls the askRM function, then the caller’s identifier is added to qrm. The
protocol only allows sources to execute this function. Therefore, the elements of qrm are included
in the Sources set. Conversely, qrf translates askRF function calls defined in Section 6.5.2. Both
sources and recipients can execute this function. Therefore, the elements of qrf are included in Pi ,
which corresponds to the set of the system’s participants. Moreover, the program control type is
also defined, depending on whether it is of the coordinator, a source or a recipient. That makes it
possible to prove that a source cannot execute an action defined for the coordinator.

Coordinator correctness invariant. The Invariant 3 consists of six conjunctions, where three of
them have an equivalent proven lemma. The first conjunction describes Lemma 7.1, the fifth con-
junction describes Lemma 7.3, and the sixth conjunction describes Lemma 7.4. The Lemma 7.2
is represented by the second, third, and fourth conjunctions. Intermediate states do not appear
explicitly in the handwritten approach, thanks to abstraction and infer steps. However, using a
formal tool need to describe all the intermediate steps. It is necessary to make everything explicit
to constitute complete and sufficient proof. Recall that CoordinatorID is the identifier of the co-
ordinator.

154

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

Invariant 3 (The Coordinator Invariant).

CoordInv
∆= ∧pc[CoordinatorID] =“init c”=⇒ init_cInv

∧pc[CoordinatorID] =“decision”=⇒ decisionInv

∧pc[CoordinatorID] =“decisionValid” =⇒ decisionValidInv

∧pc[CoordinatorID] =“decisionAbort”=⇒ decisionAbortInv

∧ (pc[CoordinatorID] =“Done”∧coordState =“okRM”) =⇒ okRMInv

∧ (pc[CoordinatorID] =“Done”∧coordState =“okRF”) =⇒ okRFInv

The CoordInv elements are defined as follows: {“init c”, “decision”, “decisionValid”, “decision-
Abort”,“Done”} are labels of the coordinator and pc[] the program control variable that tracks which
label the coordinator is currently on. The elements okRMInv , init_cInv ,decisionInv ,decisionValidInv ,
decisionAbortInv ,okRFInv are sub-invariants defined later, and coordState represents the state of
the coordinator. The defined invariant CoordInv represents the overall correctness of the swap.
Therefore, it must be sufficiently complete to permit the proof of Consistency. The effort in this
part of the proof is the construction of the invariant. It requires a lot of work done in several
iterations before having the inductive invariant for the proof. In the following, we describe each
coordinator’s action:

1. The coordinator is in“init c”. The first conjunction is constructed according to Lemma 7.1.
The Invariant 4 describes the initial state of the coordinator that does not allow the majority of
the variables to evolve or change. For example, proof-of-actions remain in their initial state, which
is false and cannot evolve while the coordinator is in its initial state. A correct source may exit
the swap, described by its program control equal to“Done”. The same is true for recipients. On
the other hand, the publisher can remain in its initial state, just like the swapGraph variable. If the
publisher takes action and publishes the graph, whether the publisher is correct, i.e. the swapGraph
changes its state to“correct”, or the publisher is Byzantine, i.e. the swapGraph changes its state to
“ different”.

Invariant 4 (The init_cInv predicate).

init_cInv ∆= ∧coordState =“init”
∧ (ProofOkRM = false∧ProofOkRF = false∧ProofPublish = false)
∧qrf = {}
∧qrm = {}
∧∀s ∈ Sources : ∧ProofLock [s] = false

∧∀s ∈ CSources : ∧pc[s] ∈ {“init src”, “Done”}
∧ProofLock [s] = false

∧assets[AofS (s)] =“OwS”
∧∀r ∈ CRecipients : pc[r] ∈ {“init rcp”,“Done”}
∧ swapGraph =“init”=⇒ pState =“init”
∧ swapGraph =“correct”=⇒ pState =“publish”
∧ swapGraph =“different”=⇒ pState =“publish”
∧∀a ∈ AssetsFromCS : assets[a] =“OwS”
∧pState =“publish”=⇒ pc[PublisherID] =“Done”

Note that AssetsfromCS is the set of assets of correct sources defined as:

AssetsFromCS
∆= {AofS (x) : x ∈ CSources}

155

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

2. The coordinator is in“decision”. The second conjunction is the one that describes the state of
the variables when the coordinator is in the published state, and the“decision”action is enabled.
The Invariant 5 is constructed according to Lemma 7.2. The invariant asserts that the publisher
has finished its protocol (its program control is at“Done”), and it has published the swap graph
(its state is at“publish”). Therefore, the proof-of-action ProofPublish must be set to true. Given
the distributed and asynchronous aspect of the system, the sources are not at the same level in the
protocol. The sources that execute the“published”or“waitForD” actions have locked their asset,
and their proof-of-actionmust be valid. Conversely, the correct sources that execute init_src or lock
action still own their asset and have not yet validated their proof-of-action ProofLock []. At this stage
of the coordinator protocol, if a source finishes its protocol, i.e. its program control is at“Done”,
the source has decided to leave the swap before locking its asset. That describes that the correct
source has reached its timeout while waiting for the graph publication. The only possible states of
an asset are“OwS”if the source has not yet locked the asset and still owns it or“locked”if the asset
is locked.

Invariant 5 (The decisionInv predicate).

decisionInv
∆= ∧coordState =“published”

∧ (pState =“publish”∧pc[PublisherID] =“Done”)
∧ (ProofPublish = true∧ProofOkRM = false∧ProofOkRF = false)
∧∀s ∈ Sources : ∧ s ∈ qrm =⇒ ProofLock [s] = true

∧ProofLock [s] = true =⇒ assets[AofS (s)] =“locked”
∧∀s ∈ CSources : ∧pc[s] ∈ {“published”,“waitForD”}

=⇒ ∧ProofLock [s] = true∧assets[AofS (s)] =“locked”
∧pc[s] ∈ {“init src”,“lock”,“Done”}
=⇒ ∧ProofLock [s] = false∧assets[AofS (s)] =“OwS”

∧pc[s] ∈ {“init src”,“lock”,“Done”,“published”} =⇒ s ∉ qrm
∧ s ∈ qrm =⇒ pc[s] =“waitForD”

∧∀a ∈ AssetsFromCS : assets[a] ∈ {“locked”,“OwS”}

3. The coordinator is in“decisionValid”. The third conjunction of the invariant is an intermediate
step imbedded in Lemma 7.2. The invariant decisionValidInv defined in Invariant 6 describes the
system’s state that satisfies the conditions for the coordinator to authorise the redeem. All sources
must have asked for a redeem decision. Therefore, the set qrm must contain all elements of the set
Sources . As a result, the proof-of-action ProofLock [] of all sources must be valid, and all assets are
in“locked”state.

Invariant 6 (The decisionValidInv predicate).

decisionValidInv
∆= ∧coordState =“published”

∧ (pState =“publish”∧pc[PublisherID] =“Done”)
∧ (ProofPublish = true∧ProofOkRM = false∧ProofOkRF = false)
∧qrm = Sources
∧∀s ∈ Sources : ∧ProofLock [s] = true

∧assets[AofS (s)] =“locked”
∧∀s ∈ CSources : ∧pc[s] ∈ {“waitForD”}
∧∀r ∈ CRecipients : ∧assets[AofR(r)] =“locked”

∧pc[r] =“init src”=⇒ assets[AofR(r)] =“locked”
∧qrm = Sources =⇒ ∀a ∈ Assets : assets[a] =“locked”

156

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

4. The coordinator is in“decisionAbort”. As the decisionValidInv invariant, the decisionAbortInv
is an additional step needed for the TLAPS proof. The invariant defined in Invariant 7 is the
system’s state that satisfies the condition for the coordinator to authorise the assets refund. The
state of qrf must not be empty, which implies that at least one participant has made the refund
request. At this protocol stage, the assets of correct sources are either in the“locked”state or“OwS”
state.

Invariant 7 (The decisionAbortInv predicate).

decisionAbortInv
∆= ∧coordState =“published”

∧ (pState =“publish”∧pc[PublisherID] =“Done”)
∧ (ProofOkRM = false∧ProofOkRF = false∧ProofPublish = true

∧qrf 6= {}
∧∀s ∈ CSources : ∧assets[AofS (s)] ∈ {“locked”,“OwS”}

∧assets[AofS (s)] =“locked”=⇒ ProofLock [s] = true

∧pc[s] ∈ {“Done”,“init src”} =⇒ assets[AofS (s)] =“OwS”
∧∀a ∈ AssetsFromCS : assets[a] ∈ {“locked”,“OwS”}

5. The coordinator is in“Done”with a redeem decision. The fifth conjunction describes the sys-
tem’s state that allows the recipients to redeem their assets. The invariant okRMInv defined in
Invariant 8 is constructed according to Lemma 7.3. The state variable of coordState is“okRM”,
and the proof-of-action ProofOkRM must be valid. Consequently, recipients can asynchronously
change the state of their assets from“locked”to“OwR”. A redeem decision implies that all sources
are correct participants. However, it is possible for recipients to be Byzantine so that the assets
intended for them remain in the“locked”or in the“other”state (see Figure 6.2).

Invariant 8 (The okRMInv predicate).

okRMInv
∆= ∧ (ProofOkRM = true∧ProofOkRF = false∧ProofPublish = true)

∧qrm = Sources
∧∀s ∈ CSources : ∧pc[s] ∈ {“waitForD”,“Done”}
∧∀r ∈ CRecipients : ∧assets[AofR(r)] ∈ {“locked”,“OwR”}

∧pc[r] =“Done”
=⇒ assets[AofR(r)] ∈ {“OwR”,“locked”}

∧pc[r] ∈ {“init rcp”,“waitForD rcp”}
=⇒ assets[AofR(r)] =“locked”

∧ pc[r] =“init src”=⇒ assets[AofR(r)] =“locked”
∧ qrm = Sources =⇒ ∀a ∈ AssetsForCR :

assets[a] ∈ {“locked”,“OwR”}

Note that AssetsforCR is the set of assets of correct recipients defined as:

AssetsForCR
∆= {AofR(x) : x ∈ CRecipients}

6. The coordinator is in“Done”with a refund decision. The sixth and last conjunction corresponds
to the system’s state that authorises the refund of assets. The invariant okRFInv defined in Invari-
ant 9 is constructed according to Lemma 7.4. The proof-of-actionProofOkRF must be valid, and the
state of the coordState variable is at“okRF”. Consequently, the correct sources can asynchronously
change the state of the assets from“locked”to“OwS”if the asset has been locked before the refund
decision. However, a Byzantine source may leave the asset in the“locked”state or perform any other
action unknown to the protocol (see Section 6.5.2 for the possible Byzantine sources’ behaviour).

157

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

Invariant 9 (The okRFInv predicate).

okRFInv
∆= ∧ (ProofOkRM = false∧ProofOkRF = true∧ProofPublish = true)

∧qrf 6= {}
∧∀s ∈ CSources : ∧assets[AofS (s)] ∈ {“locked”,“OwS”}

∧pc[s] ∈ {“init src”,“Done”} =⇒ assets[AofS (s)] =“OwS”
∧∀a ∈ AssetsFromCS : assets[a] ∈ {“locked”,“OwS”}

Remark. In the proof approach of the Two-Phase Commit algorithm in Section 4.3.4, it was nec-
essary to add a conjunction that dealt with the case where the coordinator’s program control is
at“Done”, and the coordinator state is at“pre-commit”, and“init”. However, the approach defined
in this chapter did not require the addition of equivalent cases because additional conjunction was
added in theTypeOk invariant. The twelfth conjunction inTypeOk : “pc[CoordinatorID] =“Done”
=⇒ coordState ∈ {“okRM”, “okRF”}”, ensures that if the coordinator’s program control is at

“Done”, then the only possible states of coordState are either “okRM” or “okRF”. This example
shows the interest in defining the TypeOk invariant. It can lighten the construction of a proof.

Step 3. The proof of the resulting invariant. We have fulfilled two steps of the proof method-
ology. It remains the last step, which is the proof of the resulting invariant. As for the proof of the
Two-Phase Commit, we decompose the equation of the inductive invariant in such a way that each
component will be a theorem to prove. The inductive invariant is defined in Invariant 10.

Invariant 10 (Inductive Invariant).

Inv
∆= TypeOk ∧CoordInv

The set theorem. We introduce a theorem, SetTheorem defined in Theorem 9, that sets the links
between sets, similarly to Theorem 3. For the theorem citing SetTheorem, all definitions will be
opaque. The theorem expresses, for example, the proof that an element in the set Pc cannot be
found in the setBSources orBRecipients , given that the latter contains the identifiers of the Byzan-
tine participants and that Pc contains the identifiers of the correct participants. The theorem also
proves the uniqueness of the identifiers of the different participants. Thus, ensuring that the iden-
tifier of the coordinator, publisher, sources and recipients cannot be equal. Moreover, the theorem
proves the different equivalences between the following functions: AofS (),AofR(), SofA(),RofA().
To summarise, the theorem proves the following elements:

• A unique identifier for each participant, and abstracting arithmetic calculations for provers.

• Sets of assets, AssetsFromCS and AssetsForCR are subsets of Assets .

• Sets Sources andRecipients are the subsets ofPi . In addition, setCSources andCRecipients
are subset of Pc (thereby, a subset of Pi). The set of correct participants and Byzantine
participants are mutually exclusive.

• The equivalence between the helping function used to calculate the asset identifier from a
source or a recipient (and vice versa).

• Set of participants states.

158

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

Theorem 9. Set Theorem

theorem SetTheorem
∆=

∧CoordinatorID 6=PublisherID
∧∀a ∈ AssetsFromCS , b ∈ AssetsForCR : a ∈ Assets ∧b ∈ Assets
∧∀s ∈ Sources , r ∈ Recipients : s ∈ Pi ∧r ∈ Pi
∧∀p ∈ Pc : ∧p ∈ Pi

∧ ∨ ∧ (p ∈ CSources ∧p ∈ Sources)
∨ ∧ (p ∈ CRecipients ∧p ∈ Recipients)

∧ (p ∉ BSources ∧p ∉ BRecipients)
∧∀s ∈ CSources : ∧ (s ∈ Sources ∧ s ∈ Pi ∧ s ∈ Pc)

∧ (s ∉ BSources ∧ s ∉ CRecipients ∧ s ∉ Recipients
∧ s ∉ BRecipients)

∧ (s 6=PublisherID ∧ s 6=CoordinatorID)
∧AofS (s) ∈ AssetsFromCS

∧∀r ∈ CRecipients : ∧ (r ∈ Recipients ∧r ∈ Pi ∧r ∈ Pc)
∧r ∉ BRecipients
∧ (r 6=PublisherID ∧r 6=CoordinatorID)
∧AofR(r) ∈ AssetsForCR
∧SofA(AofR(r)) ∈ Sources

∧∀bs ∈ BSources : ∧ (bs ∈ Pi ∧bs ∈ Sources)
∧ (bs ∉ CSources ∧bs ∉ Pc)
∧ (bs 6=PublisherID ∧bs 6=CoordinatorID)
∧AofS (bs) ∉ AssetsFromCS

∧∀br ∈ BRecipients : ∧ (br ∈ Recipients ∧br ∈ Pi)
∧ (br ∉ Pc∧br ∉ CRecipients)
∧ (br 6=PublisherID ∧br 6=CoordinatorID)
∧AofR(br) ∉ AssetsForCR

∧ProcSet = {PublisherID }∪ {CoordinatorID }∪ (CSources)
∪ (BSources)∪ (CRecipients)∪ (BRecipients)

∧Pi = Sources ∪Recipients
∧Pc =Pi ∩Correct
∧CSources =Pc∩Sources
∧CRecipients =Pc∩Recipients
∧BSources = Sources \CSources
∧BRecipients =Recipients \CRecipients
∧BSources ∩CSources = {}
∧BRecipients ∩CRecipients = {}
∧AStates = {“OwS”,“OwR”,“locked”,“other”}
∧CStates = {“init”,“published”,“okRM”,“okRF”}
∧PStates = {“init”,“publish”}
∧SwapStates = {“init”,“correct”,“different”}
∧∀s ∈ Sources : SofA(AofS (s)) = s
∧∀r ∈ Recipients :RofA(AofR(r)) = r
∧∀a ∈ Assets : (AofS (SofA(a)) = a∧AofR(RofA(a)) = a)
∧∀s ∈ Sources :AofS (s) ∈ Assets
∧∀a ∈ Assets : SofA(a) ∈ Sources

by def ProcSet ,CSources ,CRecipients , Sources ,Recipients ,AssetsFromCS ,Assets ,
AssetsForCR,AofS ,AofR, SofA,RofA,Pi ,Pc,BSources ,BRecipients ,PublisherID ,
CoordinatorID ,AStates ,CStates ,PStates , SwapStates

159

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

Prove that Inv is true assuming Init true. According to formula 7.1, the first component to
prove is the one that states the initial conditions and is defined in Theorem 10.

Theorem 10. The theorem Init =⇒ Inv

theorem InitImpliesInv
∆=

assume Init

prove Inv

〈1〉 use def Init , Inv ,TypeOk ,CoordInv
〈1〉1. TypeOk
by SetTheorem

〈1〉2. CoordInv
by SetTheorem def init_cInv

〈1〉3. qed
by 〈1〉1, 〈1〉2 def Inv

The theorem InitImpliesInv has one level 〈1〉 since the proof is simple and does not need to be
decomposed. The 〈1〉 use def line expend the definitions to all the proof since definitions and
facts must be cited explicitly for TLAPS to use them. The way for that is by using the keyword
by and def . We prove the two conjunctions, TypeOk and CoordInv , separately. They both use
the theorem SetTheorem, to prove the membership of the elements in the different sets. For the
CoordInv proof, we need to cite the action init_cInv , which corresponds to the initialisation action.
The theoremmust end with a qed step that asserts all the needed sub-proofs for the theorem proof.

Prove that Inv holds for arbitrary state transitions permitted by the predicate Next . The
second component is the proof that if the invariant is true in any state of the behaviour, it is true
in the next state of the behaviour, and the formula is Inv ∧Next =⇒ Inv ′. The formula needs to
be decomposed into two distinct theorems—one for the conjunction of type correctness invariant
and a second for the invariant coordinator conjunction.

The type correctness invariant theorem. Once the Inv invariant is decomposed according to its
invariant member, we obtain for the type correctness part the following formula to prove:

TypeOk ∧Next =⇒ TypeOk ′

The theorem TypeOkInvariant , defined in Theorem 11, proves that at each iteration or be-
haviour of the system, the type of the variables remains unchanged. The first level, steps numbered
〈1〉, is a case step on participants (like a pattern-matching). The level 〈1〉1 states for the publisher,
the level 〈1〉2 for the coordinator, the level 〈1〉3 for the correct sources, the level 〈1〉4 for the Byzan-
tine sources, the level 〈1〉5 for the correct recipients, the level 〈1〉6 for the Byzantine recipients and
the level 〈1〉7 for the terminating proof. All theorems constructed in cases must finish with a last
qed step, e.g. the level 〈1〉8. When the proof is too complicated, it is necessary to decompose it
until the provers are capable of proving it. For instance, the sub-proofs of the level 1 (except for
〈1〉1 and 〈1〉7) are decomposed into level 〈2〉. The sub-proofs of the second level iterate on the
possible actions of the participants. Indeed, if we take the level 〈1〉2, which is the coordinator’s
case, we have four sub-proofs, and each corresponds to the four possible actions of the coordinator:
{init_c, decision , decisionValid , decisionAbort }. For the sake of clarity, we have deliberately omit-
ted parts of the theorem that are repetitive. For example, the sub-proof 〈2〉1 has the same structure
as 〈2〉2 with the exception that the init_c action must be replaced by the decision action and the
action is cited after the def . The same applies to the remaining two actions.

160

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

Theorem 11. The theorem TypeOk ∧Next =⇒ TypeOk ′

theorem TypeOkInvariant
∆=

assume TypeOk ,Next
prove TypeOk ′

〈1〉use def TypeOk

〈1〉1.case Publisher
by 〈1〉1, SetTheorem def Publisher , init_p

〈1〉2.case Coordinator
〈2〉1.case init_c
by 〈2〉1, 〈1〉2, SetTheorem def init_c

...
〈2〉5. qed by 〈1〉2, 〈2〉1, 〈2〉2, 〈2〉3, 〈2〉4 def Coordinator

〈1〉3.case ∃self ∈ CSources : Source(self)
〈2〉 suffices assume new self ∈ CSources , Source(self)

prove TypeOk ′

by 〈1〉3
〈2〉1.case init_src(self)
〈2〉2.case lock (self)
...
〈2〉5. qed by 〈1〉3, 〈2〉1, 〈2〉2, 〈2〉3, 〈2〉4 def Source

〈1〉4.case ∃self ∈ BSources :BSource(self)
〈2〉 suffices assume new self ∈ BSources ,BSource(self)

prove TypeOk ′

by 〈1〉4
〈2〉1.case init_bsrc(self)
...
〈2〉8. qed by 〈1〉4, 〈2〉1, 〈2〉2, 〈2〉3, 〈2〉4, 〈2〉5, 〈2〉6, 〈2〉7 def BSource

〈1〉5.case ∃self ∈ CRecipients :Recipient(self)
〈2〉 suffices assume new self ∈ CRecipients ,Recipient(self)

prove TypeOk ′

by 〈1〉5
〈2〉1.case init_rcp(self)
...
〈2〉3. qed by 〈1〉5, 〈2〉1, 〈2〉2 def Recipient

〈1〉6.case ∃self ∈ BRecipients :BRecipient(self)
〈2〉 suffices assume new self ∈ BRecipients ,BRecipient(self)

prove TypeOk ′

by 〈1〉6
〈2〉1.case init_brcp(self)
...
〈2〉6. qed by 〈1〉6, 〈2〉1, 〈2〉2, 〈2〉3, 〈2〉4, 〈2〉5 def BRecipient

〈1〉7. qed by 〈1〉1, 〈1〉2, 〈1〉3, 〈1〉4, 〈1〉5, 〈1〉6 def Next

The coordinator invariant theorem. The second part of the Invariant 10 is the coordinator invari-
ant. The theorem we want to prove is that:

CoordInv ∧TypeOk ∧Next =⇒ CoordInv ′

161

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

We add the type correctness to facilitate the proof of the coordinator invariant. The resulting
theorem is defined in Theorem 12.

Theorem 12. The Coordinator Invariant

theorem CoordInvariant
∆=

assume CoordInv ,TypeOk ,TypeOk ′,Next
prove CoordInv ′

〈1〉use def TypeOk ,CoordInv
〈1〉1.case pc[CoordinatorID] =“init c”

. . .
〈1〉2.case pc[CoordinatorID] =“decision”

. . .
〈1〉3.case pc[CoordinatorID] =“decisionValid”

. . .
〈1〉4.case pc[CoordinatorID] =“decisionAbort”

. . .
〈1〉5.case pc[CoordinatorID] =“Done”∧coordState =“okRM”

. . .
〈1〉6.case pc[CoordinatorID] =“Done”∧coordState =“okRF”

. . .
〈1〉7. qed by 〈1〉1, 〈1〉2, 〈1〉3, 〈1〉4, 〈1〉5, 〈1〉6

As with the type correctness theorem, the structure of the CoordInv proof is decomposed into
several levels. The decomposition is performed according to the conjunctions of the Invariant 3,
i.e. CoordInv . The latter comprises six conjunctions; thus, the first level of the theorem will be
divided into six steps to prove. The proof begins with the extension of the TypeOk and CoordInv
definitions via the use def to lighten the structure of the theorem.
For each case of level 〈1〉1, there will be sub-proofs of a higher level than 〈1〉1. A proof is read from
the lowest to the highest level. Each theorem step is independent and must be provable with only
the information provided by the step. We describe the proof pattern for the case 〈1〉1, which is
pc[CoordinatorID] =“init c”, to illustrate the construction of the proof.

Description of the level 〈1〉1. The first step of the first level assumes the first conjunction of the
CoordInv invariant to be true, which is pc[CoordinatorID] =“init c”. The second step of the first
level assumes the second conjunction of the CoordInv invariant to be true, and so on.

The first level needs to be decomposed because the step is too complicated to prove by the provers.
With the TLA+ toolbox, we can choose which definition we want to decompose. The definitions
that can be decomposed are the predicates that we assume to be true, which in our case can be
TypeOk ,CoordInv and Next . The first level has been decomposed according to the CoordInv
predicate; hence, for the second, we choose to decompose the Next predicate. The split gives us
seven cases of level 〈2〉, which correspond to the seven possible disjunctions of the Next predicate:
Publisher ,Coordinator , Source(self),BSource(self),Recipient ,BRecipient(self),Terminating .
The first case to prove is that of thePublisher . Step 〈2〉1 assumes thatPublisher is true and attempts
to prove init_cInv . The information needed for the proof of step 〈2〉1 is the context of step 〈1〉1
and its own context. Then, after the def keyword, the step cites the definition it tries to prove
and the publisher’s information, i.e. its behaviour definition and its initial action.

162

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

〈1〉1.case pc[CoordinatorID] =“init c”
〈2〉1.case Publisher
by 〈1〉1, 〈2〉1 def Publisher , init_p, init_cInv

〈2〉2.case Coordinator
〈3〉1.case init_c
by 〈3〉1 def init_c, init_cInv , decisionInv

〈3〉2.case decision
by 〈1〉1, 〈3〉2 def decision

. . .
〈3〉5. qed by 〈2〉2, 〈3〉1, 〈3〉2, 〈3〉3, 〈3〉4 def Coordinator

〈2〉3.case ∃self ∈ CSources : Source(self)
〈3〉use def init_cInv
〈3〉suffices assume new self ∈ CSources , Source(self)

prove CoordInv ′

by 〈2〉3
〈3〉1.case init_src(self)
by 〈3〉1, 〈1〉1, SetTheorem def init_src

. . .
〈3〉5.qed by 〈2〉3, 〈3〉1, 〈3〉2, 〈3〉3, 〈3〉4 def Source

〈2〉4. case ∃self ∈ BSources :BSource(self)
〈3〉use def init_cInv
〈3〉suffices assume new self ∈ BSources ,BSource(self)

prove CoordInv ′

by 〈2〉4
〈3〉1.case init_bsrc(self)
by 〈3〉1, 〈1〉1, SetTheorem def init_bsrc

. . .
〈3〉8.qed by 〈2〉4, 〈3〉1, 〈3〉2, 〈3〉3, 〈3〉4, 〈3〉5, 〈3〉6, 〈3〉7 def BSource

〈2〉5. case ∃self ∈ CRecipients :Recipient(self)
〈3〉use def init_cInv
〈3〉suffices assume new self ∈ CRecipients ,Recipient(self)

prove CoordInv ′

by 〈2〉5
〈3〉1.case init_rcp(self)
by 〈3〉1, 〈1〉1, SetTheorem def init_rcp

. . .
〈3〉3.qed by 〈2〉5, 〈3〉1, 〈3〉2 def Recipient

〈2〉6. case ∃self ∈ BRecipients :BRecipient(self)
〈3〉use def init_cInv
〈3〉suffices assume new self ∈ BRecipients ,BRecipient(self)

prove CoordInv ′

by 〈2〉6
〈3〉1.case init_brcp(self)
by 〈3〉1, 〈1〉1, SetTheorem def init_brcp

. . .
〈3〉6.qed by 〈2〉6, 〈3〉1, 〈3〉2, 〈3〉3, 〈3〉4, 〈3〉5 def BRecipient

〈2〉7. qed by 〈2〉1, 〈2〉2, 〈2〉3, 〈2〉4, 〈2〉5, 〈2〉6 def Next

The second case of the level 〈2〉 is for the coordinator. Step 〈2〉2 assumes that one of the coordi-
nator’s actions is executed. The coordinator has four possible actions to execute; therefore, the step
〈2〉2 is split into four sub-steps at a higher level, the level 〈3〉. Step 〈3〉1 assumes the init_c action is

163

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

true. This step is proved by sending the context of step 〈3〉1 to the provers and citing the definitions
needed for the proof.
Since proofs are constructed hierarchically and in levels, a higher level step usually cites the step
from which it originates. However, it is possible not to do this if calling a step does not provide
additional information to the proof. For example, the case 〈3〉1 is self-sufficient and does not cite
the steps that precede it, namely steps 〈2〉2 and 〈1〉1. The reason is that step 〈1〉1 assumes that
the coordinator’s program control is at“init c”, yet step 〈3〉1 assumes that init_c is at true, which
amounts to the same thing. Therefore, we can omit citing step 〈1〉1 and thus lighten the proof
obligation. Moreover, citing step 〈2〉2 is unnecessary since assuming that the action init_c is true
implies that it is the coordinator who performs an action, so it is no longer necessary to cite step
〈2〉2. Following this proof logic, we have constructed the rest of the theorem. For instance, the
following steps, which are 〈3〉2, 〈3〉3 and 〈3〉4, need in their context the step 〈1〉1.

The third step of the second level 〈2〉3 concerns the correct sources. We decompose the step
according to the disjunctions of the Source(self) predicate, which gives us four sub-proofs of a
higher level. These steps correspond to the actions of a correct source. We start with step 〈3〉 by
extending the definition of the predicate init_cInv to the entire level 〈3〉. The next statement is a
suffices step asserting that to prove the goal of 〈2〉3 it suffices to assume a new variable self from
the set CSources that satisfies Source(self) and prove CoordInv ′. The two facts are unnamed; thus,
the backend provers use them without being mentioned in a by step.
What follows is a step proof for each source’s actions. Step 〈3〉1 assumes that the action init_src(self)
is true. This step is the only one that requires citing the SetTheorem. The reason is that, at this level
of the proof, i.e. assuming that the coordinator’s program control is on“init c”(without having ex-
ecuted the action init_c), the action init_src(self) is the only one that can be true. The remaining
cases, 〈3〉2, 〈3〉3 and 〈3〉4 are by definition false. Therefore, it is not necessary to cite SetTheorem
because provers do not need to prove a step that is false.

The proof of the following cases, i.e. 〈2〉4,〈2〉5, 〈2〉6, which corresponds to Byzantine sources,
correct recipients and Byzantine recipients, is similar to case 〈2〉3. Therefore, it is not necessary
to explain these steps in more detail. The same applies to the steps 〈1〉2, 〈1〉3, 〈1〉4, 〈1〉5, and 〈1〉6,
which use the same proof approach as the step 〈1〉1 The complete proof of the invariant is in the
following GitHub link 1.

We define a Theorem 13 that gathers the Theorem 11 and Theorem 12 to have a single theorem
that expresses the second component of the formula 7.1.

Theorem 13. The Inductive Invariant

theorem InvInvariant
∆=

assume Inv ,Next
prove Inv ′

by TypeOkInvariant ,CoordInvariant def Inv

The theorem InvInvariant assumes Inv and Next to be true and proves the next possible states
of Inv ′. We provide to the provers the theorems TypeOkInvariant and CoordInvariant by citing
them after the by step.

Prove that theConsistency is true in all reachable states. The third component of formula 7.1 is
Inv =⇒ Consistency . AlthoughConsistency is an invariant of the algorithm, it is not an inductive
invariant. For proving the invariance of Consistency , it suffices to assume Inv . The inductive

1https://github.com/ZeinabYeong/ICDCN22/blob/main/CrossChain.tla

164

https://github.com/ZeinabYeong/ICDCN22/blob/main/CrossChain.tla

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

invariant Inv is true in all reachable states, which implies that Consistency is true in all reachable
states, so it is an invariant. The proof of the Consistency invariant is defined in Theorem 14.

Theorem 14. Invariant Implies Consistency

theorem InvImpliesConsistency
∆=

assume Inv

prove Consistency

〈1〉 use def CoordInv , Inv ,Consistency
〈1〉1.case pc[CoordinatorID] =“init c”
by 〈1〉1 def init_cInv ,AvailableS

〈1〉2.case pc[CoordinatorID] =“decision”
by 〈1〉2 def decisionInv , Finish ,AvailableS

〈1〉3.case pc[CoordinatorID] =“decisionValid”
by 〈1〉3 def decisionValidInv , Finish

〈1〉4.case pc[CoordinatorID] =“decisionAbort”
by 〈1〉4 def decisionAbortInv , Finish ,AvailableS

〈1〉5.case (pc[CoordinatorID] =“Done”∧coordState =“okRM”)
by 〈1〉5 def okRMInv ,AvailableR

〈1〉6.case (pc[CoordinatorID] =“Done”∧coordState =“okRF”)
by 〈1〉6 def okRFInv ,AvailableS

〈1〉7. qed by 〈1〉1, 〈1〉2, 〈1〉3, 〈1〉4, 〈1〉5, 〈1〉6 def TypeOk

We decompose the theorem according to the CoordInv invariant, and we get six steps of level
〈1〉. Each one corresponds to a conjunction of the invariant CoordInv . Each step must cite its
corresponding CoordInv ’s sub-invariant. Thus, step 〈1〉1 cites the definition init_cInv and also
AvailableS . We need to expand the definition AvailableS because the provers must evaluate if this
predicate is true since a source can reach the end of its program when the coordinator is at“init c”.
Thereby, AvailableS can be evaluated as true. This is not the case for step 〈1〉3, which does not
require extending the AvailableS predicate. Indeed, if we look at the invariant decisionValidInv ,
all the system assets are in“locked” state. This implies that the AvailableS (but also AvailableR)
predicate is set to false. Therefore, the provers do not need to evaluate this predicate. On the other
hand, Finish needs to be extended because a recipient may have its program control set to“Done”;
thus, the provers need to evaluate the predicate.

Breaking down the proof into sub-proofs provides a better understanding of how the proof sys-
tem in TLAPS works. For example, what definition a step should cite or what context provers
need to prove a step. For this reason, we have decomposed the InvImpliesConsistency theorem to
explain the proof logic. Indeed, the theorem can be written in a much more simplified way, defined
in Theorem 15.

Theorem 15. Simplified Theorem

theorem InvImpliesConsistency
∆=

assume Inv

prove Consistency

by def TypeOk ,CoordInv ,Consistency ,Inv ,okRFInv ,AvailableS ,okRMInv ,AvailableR,
decisionAbortInv ,Finish ,decisionValidInv ,decisionInv , init_cInv

165

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

Prove the Consistency property. The last step is to prove the safety property. Proving that
Consistency is an invariant of our system requires proving the three components of formula 7.1.
The theorems 10, 13, and 15 prove, respectively, the formulas: init =⇒ Inv , Inv ∧ [Next]vars
=⇒ Inv ′, and Inv =⇒ Consistency . Theorem 16 is the theorem that proves the invariance of
the cross-chain swap algorithm. Assuming the three steps, which are 〈1〉1, 〈1〉2, and 〈1〉3, to be true,
we can ensure that the safety property of Consistency is always true for all reachable states of the
system.

Theorem 16. Invariance Proof of Algorithm cross-chain swap

theorem Safety
∆= Spec =⇒ 2Consistency

〈1〉1. Init =⇒ Inv

by InitImpliesInv

〈1〉2. Inv ∧ [Next]vars =⇒ Inv ′

〈2〉1.case Next
by 〈2〉1, InvInvariant

〈2〉2.case unchanged vars
by 〈2〉2 def vars , Inv ,TypeOk ,CoordInv , okRFInv , okRMInv , decisionAbortInv ,
decisionValidInv , init_cInv , decisionInv

〈2〉3. qed by 〈2〉1, 〈2〉2
〈1〉3. Inv =⇒ Consistency

by InvImpliesConsistency def Inv

〈1〉4. qed by 〈1〉1, 〈1〉2, 〈1〉3,PTL def Spec

We cite the PTL backend (Propositional Temporal Logic) in the qed step since the theorem
contains temporal logic symbols (2 describing the always symbol). We have launched the prover
on the module, and it takes less than 8 minutes to prove the model.

7.2 Proof of the Liveness Properties

In this section, we verify the liveness properties ofOwnership andRetrieving. As for theConsistency
property, we apply two verification approaches. The first is a handwritten proof, and the second is
a verification by model-checking using the toolbox of TLA+. As a recall, the liveness properties of
the cross-chain swap problem, introduced in Section 6.2, are defined as follows:

“No asset owned initially by a correct source is ownerless forever or, no asset intended to be
transferred to a correct recipient is ownerless forever”.

Ownership

“If all participants are correct then all recipients will retrieve their intended assets”.

Retrieving

7.2.1 Handwritten Proof of the Ownership and Retrieving Properties

In this section, we prove manually the liveness properties defined in Section 6.2. The properties are
expressed over time in LTL formulas. From Lemma 7.1, Lemma 7.2, Lemma 7.3, and Lemma 7.4,
we prove that the coordinator’s decisions are mutually exclusive and a correct participant is never
worse off. Please refer to the previous Section 7.1.1 for the symbols’ definition.

166

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

Lemma 7.6. If “Proofpublish” is valid and at least one participant is correct, then the coordinator even-
tually makes a decision.

Formally: Proof publish∧Πc 6= {} =⇒ ♦(loc(c) = “OkRF"∨ loc(c) = “OkRM")

Proof. From Lemma 7.2, we have proven that the coordinator in the state “Published” satisfies the
proof-of-action Proof publish. From Figure 6.4, we can see that after being published, the coordinator
has only two possibilities of decision, redeem or refund. These two decisions are possible to achieve
depending on the actions of the participants. Suppose the coordinator is in the “Published” state
for a while without evolving. It suffices to have only one correct participant to ensure the sys-
tem’s evolution and exit from the blocking state. Assuming this scenario, the correct participant,
whether the source (Figure 6.5) or the recipient (Figure 6.6), must be in the “WaitForD” state.
After reaching the participant’s timeout, the predicate NoDecision() will be satisfied (σsi5 if the
participant is a source and σri4 if the participant is a recipient). The validated predicate allows the
participant to request a refund decision from the coordinator (εsi5 or εri4). The operation of asking
refund satisfies the predicate AbortTransfer() and leads to the coordinator’s decision for a refund
authorisation. Moreover, if all participants are correct, then all sources will lock their assets and
give a valid “Proof lock” to the coordinator. Hence, conditions of the ValidTransfer predicate will be
satisfied and lead to a redeem authorisation from the coordinator.

Lemma 7.7. If the coordinator authorises the refund, then no asset initially owned by a correct source
is ownerless forever.

Formally: loc(c) = “OkRF" =⇒ ∀a ∈ Λs : ♦(loc(a) = “OwS")

Proof. If the coordinator authorises the refund, the predicate AbortTransfer() has been satisfied
(Lemma 7.4). As a result, assets ownership return to their sources (εai2 is satisfied); hence all assets
initially owned by a correct source become available to their source. A correct source will retrieve
the proof-of-action “Proof refund” from the coordinator. A valid proof satisfies σsi6 , and a correct
source will be able to recover its assets by executing ωsi

6 and become the owner again. If the source
is Byzantine, it might never recover its asset, thus leaving the asset ownerless. In addition, the
Byzantine source could lock its asset out of the swap with no way to recover it. These two situations
are acceptable and satisfy the property.

Lemma 7.8. If the coordinator authorises the redeem, then no asset intended for a correct recipient is
ownerless forever.

Formally: loc(c) = “OkRM" =⇒ ∀a ∈ Λr : ♦(loc(a) = “OwR")

Proof. If the coordinator authorises the redeem, then the predicate ValidTransfer has been satisfied
(see Lemma 7.3). In the redeem case, all assets become available to the recipient. A correct recipient
will retrieve the proof-of-action “Proof redeem” from the coordinator. A valid proof satisfies σri5 , and
a correct recipient only has to retrieve the asset by executing ωri

5 and updating the state of the asset
to “OwS” (εai3). However, if a Byzantine recipient decides not to get its asset back, then that asset
will be ownerless. It is an acceptable situation and satisfies the property.

Theorem 7.9. No asset owned initially by a correct source is ownerless forever or no asset intended to
be transferred to a correct recipient is ownerless forever.

Proof. From Lemma 7.6, we have proven that if “Proof publish” is valid, it only takes one correct
participant in our system for the coordinator to issue a decision. Moreover, if all participants are
Byzantine, the theorem is still satisfied. From Lemma 7.7, we have proven that correct sources will
not lose their asset. However, no conclusions are possible for assets owned by Byzantine sources.
From Lemma 7.8, the same assumption has been proven for assets intended for correct recipients.
Likewise, no conclusions are possible for assets intended for Byzantine recipients. As a result, we
have proven the Ownership property of the swap.

167

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

Theorem 7.10. If all participants are correct, then all recipients will retrieve their intended assets.

Proof. If all participants are correct, they will all execute their protocol within the bounded time
limits. The swap graph will be published and be correct (a valid “Proof publish”), and all sources
will request the coordinator for a redeem decision, providing a valid “Proof lock”. Consequently, the
coordinator will authorise the swap, and recipients will eventually be redeemed using “Proof redeem”.

7.2.2 Proof of the Ownership and Retrieving Properties Using TLC

In this part, the model checker TLC is applied to the swap model, Pswap , to verify the liveness
properties. In the case of model-checking, it is necessary to set a value to the constants defined in our
model. As a reminder, the constants areNTxs ; the number of transactions in our swap,Correct the
set of correct participants involved in the swap, and Timeout ; the constant that describes whether
the participants can timeout.

The Ownership property. The property is defined in TLA+ formalism in Definition 40 2.

Definition 40 (The Ownership Propertiy).

Ownership
∆= AtLeastOneCorrect; (OwnershipS ∨OwnershipR)

This property ensures that it is sufficient to have at least one correct participant so that the assets
of the correct ones are not locked forever, i.e. in a locked state and without any possibility of using
them. The expression of at least one correct participant is defined inDefinition 41, and it expresses
that the set Pc , which is the correct sets, must not be equal to the empty set and thus must contain
at least one element. The predicate is true if the condition is verified.

Definition 41 (At least one participant is correct).

AtLeastOneCorrect
∆= Pc 6= {}

Not being locked means that the assets will eventually be either in possession of a source or in
possession of a recipient. These expressions are represented by the definitions OwnershipS and
OwnershipR, respectively defined in Definition 42 and Definition 43.

Definition 42 (The ownership of a source asset).

OwnershipS
∆= ∀a ∈ AssetsFromCS :AvailableS (a)

The definition says that all assets from the set AssetsFromCS , which correspond to the set of
assets initially owned by correct sources, satisfy the predicate AvailableS defined inDefinition 38.
Saying that the asset belongs to the set AssetsFromCS excludes assets belonging to Byzantine
sources. It is not possible to predict the state of these assets since it is impossible to predict the
behaviour of a Byzantine source. As a result, the predicate only targets assets from correct sources.

2Note that (A;B) is “syntactic sugar” for 2(A =⇒ 3B), with the temporal operators 2; always, 3; eventually and
=⇒ ; implies.

168

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

Definition 43 (Expressing the ownership of a recipient asset).

OwnershipR
∆= ∀a ∈ AssetsForCR :AvailableR(a)

The second definition says that all assets from the set AssetsForCR, which correspond to the set
of assets intended for correct recipients, satisfy the predicate AvailableR defined in Definition 38.
As withDefinition 42, one can assert the state of assets that are intended for the correct recipients,
hence the use of the AssetsForCR set. Byzantine recipients may never get back an asset due to
them or may give it to others immediately after receiving it.

The Retrieving property. The property is defined in TLA+ formalism in Definition 44.

Definition 44 (The Retrieving Properties).

Retrieving
∆= AllParticipantsAreCorrect; (∀r ∈ Recipients : assets[AofR(r)] =“OwR”)

This property ensures that if all participants are correct, then the expected result is to have made
the swap and therefore, the asset transfer must occur. If the transfer takes place, all assets must be
in the“OwR”state, reflecting the state owned by recipient. In this case, we have the set Recipients
and CRecipients equal, and the set BRecipients is empty. The expression, which represents that
all participants are correct, is defined in Definition 45.
AllParticipantsAreCorrect is a true predicate if all participants (sources, recipients and publisher)
are correct. The statement swapGraph =“correct”describes that the publisher is correct.

Definition 45 (Expressing all participants are correct).

AllParticipantsAreCorrect
∆= (Pi =Pc)∧ swapGraph =“correct”

Model-checking of Pswap . Once the liveness properties and definitions are well established, we
can launch the model checker to the model. TLC is multithreaded and can take advantage of mul-
tiprocessors. Traditional model-checking works on finite-state specifications—specifications with
an a priori upper bound on the number of reachable states. TLC explores reachable states, look-
ing for the violation of an invariant or for deadlock occurrence—meaning that there is no possible
next state. TLC stops when it has examined all states reachable by traces that contain only states
satisfying the constraint. The power of model-checking allows exploring even infinite executions
over finite state spaces. From the invariants’ point of view, the model checker’s invariant is that all
reachable states of the program are either in the visited set or queued to be visited later or reachable
from some queued state. When the queue is empty, all reachable states have been visited. Suppose
the model-checking process exceeds the threshold of running time or memory, usually due to state-
space explosion. In that case, the model checker is typically interrupted, and the model is supposed
to be reduced.

Running the model checker from the TLA+ toolbox. Running the model checker can be done via
a command line or the TLA+ toolbox. Figure 7.1 is a screenshot of the toolbox user interface. To
launch the model checker, the user must click on the green button at the top left. AGeneral section
in the interface gives us the date and time we started the checking. Just below, we have a set of

169

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

Figure 7.1 – Screenshot of the TLA+ toolbox Figure 7.2 – Example of a counter-example

statistical data about the result of the checking. From left to right, we have the Time taken to check
the property; the Diameter gives us the graph’s diameter or depth. Remember, TLC transforms
the model into a graph. In graph theory, the diameter of a graph is the largest possible distance
between two of its vertices, the distance between two vertices being defined by the length of the
shortest path between them. We also find the number of States found and the Distinct states among
the statistics. The number of states could depend on the unspecified parameter; NTxs and Correct .
Finally, Queue Size gives the number of states not yet explored. If TLC has successfully checked
the property, the toolbox returns the time taken by the check. Conversely, if a property is violated,
then TLC returns a counter-example, as shown in Figure 7.2. When a variable is modified, the
variable is highlighted in red. The counter-example simulates the trace from the initial state to the
state violating the property. When the model takes a long time to be checked, there are tricks to
reduce the time. For example, in the TLC options, it is possible to disable the profiling option.
Profiling helps to identify specification errors such as permanently disabled actions. Similarly, it
helps identify the source of state-space explosion by reporting the states found and distinct states on
a per action level. Profiling negatively impacts model checking performance and should be disabled
when checking large models.

Results interpretations. We run the model checker on a model that ensures the transfer of 3 assets,
NTxs = 3, involving 6 participants (3 sources and 3 recipients). While the number of transfers
remains unchanged throughout our calculations, the share of correct participants varies. Correct is
a set, and its elements are the correct participant identifiers. If the set is empty, Correct = {}, then it
means that all sources and recipients turn out to be Byzantine participants. TheOwnership property
does not require synchrony to be satisfied; thus, the constant Timeout is set to true. Conversely,
the Retrieving property requires synchrony; thus, the constant Timeout is set to false.

Table 7.1 gives some results concerning the model-checking carried out on Pswap for the Own-
ership and Retrieving property. The results of the liveness verification are according to the pro-
portion of Byzantine participants in the model. Accordingly, we have four tables corresponding
to the number of Byzantine sources in the system. Table 7.2 gives the results with no Byzantine

170

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

sources, Table 7.3 with one Byzantine source, Table 7.4 with two Byzantine sources, and Table 7.5
with three Byzantine sources, i.e. all the sources. Each table gives the Ownership and Retrieving
verification results according to the number of Byzantine recipients in the model (second column).
The tables give the time of checking, the depth of the generated graph, the generated distinct states,
and the last column gives information about the result of the checking.

Table 7.2 gives the checking results without considering Byzantine sources in the model. The
computation time for both the Ownership and the Retrieving does not exceed 6min, which is rel-
atively fast. The number of generated distinct states is also low. The model checker manages to
verify the model without any optimisation. However, we can see from the different tables that the
verification time and the generated distinct states increase as the share of Byzantine participants
in the model increases. In addition, this observation is even more true as the share of Byzantine
sources increases in the model. We also notice that, although the number of Byzantine recipients
increases the verification time, it seems negligible compared to the influences of Byzantine sources.
If we compare the row with 1 Byzantine recipient in Table 7.2 and the row with 0 Byzantine re-
cipient in Table 7.3. In both cases, the system has an equal number of Byzantine participants, only
one participant. Nevertheless, the verification time is almost four times longer considering the
Byzantine participant as a source than if it were a recipient. The diameter is also larger, and there
are 1766184 more distinct states. We conclude that recipients do not have as much impact on the
system as sources. Indeed, the behavioural model of a Byzantine recipient in TLA+ has less actions
than a Byzantine source (see Section 6.5.3). The more actions a process defines, the more possible
states are generated, increasing the verification time.

Moreover, the verification time of Retrieving is faster than Ownership since the former requires
synchrony, and the constant Timeout is set to false. Indeed, considering a model where the partic-
ipants do not timeout disables the possibility of satisfying the predicate ¬CorrectSwap and NoDeci-
sion from the Figures 6.5 and 6.6. Consequently, the model is reduced, which decreases the number
of generated distinct states.

The increase in the number of states in the system increases the memory allocation, and if we
face a run out of memory, the model-checking stops. The calculations of the first three tables (7.2,
7.3 and 7.4) were possible via the TLA+ toolbox on a computer Intel® Core™ i7-8850H CPU @
2.60GHz × 12 (except for the case “Byzantine sources = 2 and Byzantine recipients = 3” from Ta-
ble 7.4, for bothOwnership andRetrieving property). The computer had enoughmemory to handle
the generated number of distinct states. However, the cases in Table 7.5 and the case “Byzantine
sources = 2 and Byzantine recipients = 3” from 7.4 have generated a large number of states requiring
a larger quantity of memory. As a result, those cases have been checked using the TLC command-
line java -cp tla2tools.jar tlc2.TLC CrossChain.tla on a server having more memory
allocation. The last Table 7.5, gives themodel-checking results considering all the sources are Byzan-
tine. Although the used server had more memory than the computer, the case where all sources are
Byzantine could not be verified (except for the two first cases of Retrieving). TLC has produced
an enormous file to store the state exploration queue and exceeds the memory storage.

171

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

Table 7.1 – Model-checking results

Table 7.2 – Model-checking results with 6 participants, including 0 Byzantine sources

Properties
Number of Byzantine

recipients Time Depth Distinct States Result

Ownership

0 22s 29 150105 validated
1 38s 33 385175 validated
2 1min15 37 1248225 validated
3 05min10 41 5482375 validated

Retrieving

0 02s 23 867 validated
1 12s 28 23010 validated
2 26s 33 142650 validated
3 05min54s 38 956500 validated

Table 7.3 – Model-checking results with 6 participants, including 1 Byzantine source

Properties
Number of Byzantine

recipients Time Depth Distinct States Result

Ownership

0 02min22s 35 2151359 validated
1 05min45 35 4771585 validated
2 15min38 39 11683175 validated
3 43min39 43 35268625 validated

Retrieving

0 30s 30 123494 validated
1 01min04s 31 648550 validated
2 03min03s 31 648550 validated
3 01h12min 41 13980750 validated

Table 7.4 – Model-checking results with 6 participants, including 2 Byzantine sources

Properties
Number of Byzantine

recipients Time Depth Distinct States Result

Ownership

0 28min32 41 32606609 validated
1 06h39min39 41 69945295 validated
2 10h07min37 41 158633825 validated
3 2 days 45 405517875 validated

Retrieving

0 23min27 37 4078466 validated
1 01h52min28s 38 17111780 validated
2 06h23min 39 68974850 validated
3 2days 40 611282250 validated

Table 7.5 – Model-checking results with 6 participants, including 3 Byzantine sources

Properties
Number of Byzantine

recipients Time Depth Distinct States Result

Ownership

0 − − − run out of memory
1 − − − run out of memory
2 − − − run out of memory
3 − − − run out of memory

Retrieving

0 10h12min56 44 122382400 validated
1 21h51min36 45 500112074 validated
2 − − − run out of memory
3 − − − run out of memory

172

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

7.3 Conclusion

In this chapter, we apply formal verification tools to the swap model Pswap to verify if the model
satisfies the specification of a cross-chain swap problem. The first Section 7.1, deals with verifying
the safety property – the Consistency. The verification approach is the one described in Chapter 4
using TLAPS , and we have shown that the methodology was perfectly adapted to the Pswap al-
gorithm. Using the deductive approach allows proving the system without limiting the number of
participants, which is a great advantage. Consistency has been proven in a system including Byzan-
tine participants. The two remaining properties are liveness, verified using the model-checking
approach. TLC was able to verify that the models with less than three Byzantine sources satisfy
the liveness properties, but not the models with three Byzantine sources. Those cases generate an
enormous number of states. In addition, the verification time can be very long for some models (2
days for the model with 3 Byzantine recipients and 2 Byzantine sources) if we compare it with the
time taken by TLAPS , which is less than 8 minutes. Considering using TLAPS on liveness prop-
erties would be interesting. Unfortunately, TLAPS is not suited for proving eventually temporal
logic.

173

CHAPTER 7. PROOF OF PSWAP CORRECTNESS

174

Chapter 8

Analysis of Pswap Instantiation in a
Blockchain Environment

“ However bad life may seem, there
is always something you can do and
succeed at. ”

— Stephen Hawking

Contents
8.1 Pswap in a Blockchain Environment . 176

8.1.1 Pinst Outline and Instantiation of Pswap Requirements 176
8.1.2 How Can the Swap Graph and the Coordinator be Public? 176
8.1.3 How Can Assets be Locked During the Swap? 177
8.1.4 How to Instantiate Trustworthy proof-of-actions? 177
8.1.5 Description of the Pinst Phases . 178

8.2 Protocol Compatibility with Different Known Blockchains 185
8.2.1 Public Data . 185
8.2.2 Smart Contracts . 186
8.2.3 Certified Blocks and Absence of Forks . 187

8.3 Conclusion . 189

175

CHAPTER 8. ANALYSIS OF PSWAP INSTANTIATION IN A BLOCKCHAIN ENVIRONMENT

The last step of our study is to show that the protocol introduced in Chapter 6 and proved in Chapter 7
is quite adapted to blockchain systems. This chapter describes how we instantiate the participants, the
actions and other primitives described in earlier chapters in a blockchain environment. We discuss how
the specifics of blockchains can be exploited to meet the requirements of the Pswap protocol (Section 8.1).
Furthermore, in the second part of the chapter, we analyse how the protocol can be applied or adapted
depending on the types of blockchain introduced in Chapter 2 (Section 8.2). As a recall, the different
types of blockchains are public permissionless, public permissioned, private permissionless and private
permissioned.

8.1 Pswap in a Blockchain Environment

We have described a Pswap protocol that is voluntarily agnostic of all blockchain systems refer-
ences not to limit possible use cases. However, this thesis focuses on studying blockchain systems;
hence, in this section, we show how the protocol could be instantiated within such an environ-
ment. Therefore, we present the protocol Pinst , an instantiation of Pswap . The goal of Pinst is to
transfer assets between different participants of different blockchains. Every action and primitive
described in the abstract protocol applies to the Pinst protocol with the addition of blockchain-
specific implementations. After recalling the requirements ofPswap , we describe which blockchain
specificities can fulfil the requirements. We set four requirements for the instantiated protocol to
satisfy the abstract protocol as follows:

1. The swap graph must be public and available to all the participants.

2. The coordinator must be public and its correctness verifiable.

3. The asset must be locked.

4. The mechanism of proof-of-action must be trustworthy.

8.1.1 Pinst Outline and Instantiation of Pswap Requirements

The participants of Pinst consist of sources, recipients, a publisher, and a coordinator. They are
assigned a public and a private key to each (except the coordinator). As for the abstract protocol,
their behaviour is defined by their state machine depicted, respectively, in Figures 6.5, 6.6, 6.3 and
6.4 of Chapter 6.
Before beginning the swap, the participants agree on the transfers and create the swap graph that
will serve as an input of the protocol. Sources are participants who own the asset to be transferred,
and recipients are those who will receive the assets. The publisher is the one who makes the swap
graph public, and the coordinator is the one who provides the decision to redeem or refund the
assets. The source’s private key allows it to access its wallet, where its assets are stored. A source
may own several assets stored on different blockchains, e.g. an asset aA is stored in wallet WA on
blockchain A, and an asset aB is stored in walletWB on blockchain B , with both walletsWA and
WB belonging to the source.

8.1.2 How Can the Swap Graph and the Coordinator be Public?

For the graph to be accessible and visible to all, storing it in a blockchain is the most fitting choice.
The best way to store data in the blockchain is by creating a smart contract and storing the data on
it. As defined in Section 1.1.1, a unique address identifies a smart contract, and once it is published,
its location is known to all the blockchain’s participants thanks to its address. Therefore, a smart
contract can be created to contain the swap graph and then published on the blockchain. The
participants can use the smart contract’s address containing the graph to access it. As a result, the
coordinator will be represented by the smart contract that contains the swap graph noted SCc . The
smart contract SCc implements the state machine logic introduced in Figure 6.4. This contract is

176

CHAPTER 8. ANALYSIS OF PSWAP INSTANTIATION IN A BLOCKCHAIN ENVIRONMENT

used to coordinate the protocol preventing the occurrence of both redeem and refund decisions.
The participants choose the blockchain that will host SCc before the beginning of the swap. The
algorithm and the criteria for choosing the blockchain where SCc is published are out of scope.
However, specific requirements must be met to claim to be the “coordinating” blockchain (the one
containing the coordinator contract). These characteristics will be discussed in the second section
of this chapter.
We assume that correct participants can evaluate the coordinator’s correctness in the Pswap pro-
tocol. Delegating the coordinator’s responsibility to a contract makes it possible to satisfy this
assumption. Once published on a blockchain, everyone should analyse SCc smart contract. All
participants can obtain information from SCc using its address and evaluate its correctness. How-
ever, some blockchains do not yet offer the possibility of writing smart contracts, which would
pose a problem for instantiating the swap protocol. We analyse blockchains’ compatibility with
the protocol Pinst in the next Section 8.2.

8.1.3 How Can Assets be Locked During the Swap?

Smart contracts also ensure the locking of assets. Each edge of the swap (i.e. each transfer) will
result in a smart contract creation with information such as the asset’s identifier and the recipient’s
identifier (its public key). The smart contract functions are implemented in such a way as to estab-
lish rules based on these two pieces of information. According to Pswap , each source has to lock
each asset it wants to transfer. InPinst , each asset ai is locked in a unique smart contract SCai , with
i ∈ {1, ...,m} andm the total number of assets. As a result, a source publishes a smart contract SCai

on its corresponding blockchain for each asset it wants to transfer within the swap. The publication
of SCai sets the new asset’s owner ri . By publishing a contract, sources express their agreement to
transfer assets and prevent the asset from double-spending. This operation of publishing asset ai
corresponds to the operation LockAsset(ai , ri) defined in Section 6.3.3. By publishing the contract,
the asset is locked and can only be unlocked if pre-defined conditions in the contract are met. The
only ones who can unlock the asset are the recipient of the asset defined in the contract and the
contract creator, i.e. the source. The smart contract identifies the source and the recipient thanks
to their public key.

Each participant’s action in Pswap has an equivalent function in the smart contracts. For in-
stance, a source has actions LockingAsset(ai , ri) and RecoveringAsset(ai ,Proof refund) in Pswap ,
where the second action allows for the recovery of the asset in case of a swap refund. Both actions
will be coded as a function in the SCai smart contract. Similarly, the recipient can retrieve the asset
that the source has transferred to it using the action RetrievingAsset(ai ,Proof redeem), which will
be coded in the SCai contract as well. As a reminder, when a source wants to transfer a physical
asset to a recipient, the source must tokenise the asset (see Section 2.2.3). Since the transfer is done
within the blockchain, the asset needs to have a token representation to perform actions on it. A
template of SCc and SCai smart contracts are depicted in Algorithms 1 and 2.

8.1.4 How to Instantiate Trustworthy proof-of-actions?

As described in Section 6.3.2, the proof-of-action is a mechanism to guard against Byzantine par-
ticipants. This mechanism of verifiable proof can be instantiated in various ways. Pinst relies
on smart contracts to ensure locking assets and coordinate the swap. Participants invoke a series of
function calls of involved contracts to execute the swap throughout the protocol. Each function call
or contract modification generates a transaction stored in a block of its corresponding blockchain.
Blocks that contain the transactions can neither be removed nor modified and therefore represent
a guarantee of confidence that a transaction has taken place. Therefore, a block that records trans-
actions could constitute a reliable proof-of-action to certify the execution of a particular action or
operation, as in [102]. However, as discussed in Sections 2.2.4 and 2.2.5, there are different types of
blockchain, each with various characteristics. For example, the blockchain consensus mechanism

177

CHAPTER 8. ANALYSIS OF PSWAP INSTANTIATION IN A BLOCKCHAIN ENVIRONMENT

may be different, and depending on the consensus, the blockchain behaves differently. Bitcoin [144]
and Ethereum [50], are based on Proof-of-Work (PoW) [144] and Proof-of-Stake (PoS) [178] consen-
sus. Their mechanism for adding blocks to the chain can generate forks (see Section 2.2.5). The
result is that some participants might not have the same chain view locally. The rule of the longest
chain allows reconciling the blockchain state. However, after reconciliation, the blocks of alter-
natives chains parallel to the longest chain are revoked, i.e. the transactions inside those blocks
are cancelled. In that case, we say that confirmation is probabilistic. As a result, what we have
introduced about blocks used for proof-of-action is likely to be complicated.
Conversely, a committee-based blockchain 1 is a category of blockchain that relies on the Byzantine
Fault Tolerant (BFT) consensus mechanism [125]. As a recall, the block creators are known and
clearly defined as the validators. Each produced block is signed by a subset of validators called a
committee. Using deterministic BFT consensus offers consistency guarantees that forks will never
occur as long as no more than 1

3 of the committee members are Byzantine participants; hence the
blockchain will always have a unique chain. These blockchains guarantee immediate block finality,
i.e. when a block is added to the chain, it is immediately confirmed. For any decision concerning
the validity of a block, a quorum of 2f +1 validator signatures is needed in the committee. f is the
maximum number of participants that can deviate from the protocol, i.e. that can be Byzantine. A
block signed by a quorum is called a certified block. Examples of such blockchains are Zilliqa [167]
and Tendermint [115].
As a result, we rely on committee-based blockchains in the instantiated protocol presented in this
section, and all the blockchains involved in the swap are of this category. Thus, an added block
to the chain is an immediately confirmed block and can no longer be undone. Consequently, the
instantiated protocol uses proofs based on certified blocks to implement proof-of-action that condi-
tioned the protocol.

8.1.5 Description of the Pinst Phases

In addition to the swap graph, the list of validator addresses of the blockchains participating in the
swap is given as input to the protocol. The participants define a coordinating blockchain where SCc

is published. In the following, we describe the phases of the protocol Pinst referring to Figures 8.1
and 8.2 and Algorithms 1 and 2. Figure 8.1 illustrates the protocol execution flow in the case of a
redeem scenario, while Figure 8.2 illustrates the case of the refund scenario. Note that the case of the
refund can be achieved by other possible scenarios, unlike the redeem, which can only be reached
by the one shown in Figure 8.1.
Figures 8.1 and 8.2 are sequence diagrams that give high-level interactions between participants of
Pinst and the involved blockchains. The figures visually show the interaction’s order by using the
vertical axis of the diagram to symbolise time, what messages are sent and when.

The redeem scenario. We start by describing Figure 8.1, which represents the scenario where the
swap occurs. We distinguish three phases (identified by the three different colours). The assumption
for achieving the redeem scenario is that the publisher and the sources must be correct.

Phase 1: proof of SCc publication. First of all, the Pswap protocol starts with the publisher’s
action. As mentioned earlier, the swap graph is stored in the SCc smart contract. Therefore, the
publisher’s role is to publish the smart contract SCc on the coordinating blockchain containing the
swap graph swap and the list of validators addresses validators . The function that provides this
action is Publish(Swap_swap, list_validators), defined in Algorithm 1 line 9. Once the function is
executed, it initialises the SCc global variables swap and validators with the value given as inputs
(swap and validators). Moreover, the contract state (represented by the state variable in line 6) is
set to Published . Line 5 of the SCc represents the set of states in which the variable state can be

1Note that committee-based does not refer to the types of blockchain we introduced in Section 2.2.6. It refers to a
category of blockchain that relies on a committee (or set of validators) to validate blocks, not a type of blockchain.

178

CHAPTER 8. ANALYSIS OF PSWAP INSTANTIATION IN A BLOCKCHAIN ENVIRONMENT

(i.e. the state of the contract). The execution of the Publish function from Algorithm 1 creates a
transaction inside the coordinating blockchain. After being signed and validated by the validators of
the blockchain, the transaction is permanently added to a block called BSCc

. That block represents
the proof of SCc publication that can be noted as proof _of _publish (referring to Proof publish in
Section 6.4). At this point, the role of the publisher is over. However, it is not excluded that
the publisher is also a source or recipient of the swap. In this case, it has to execute the protocol
corresponding to the source or recipient.

At the beginning of the protocol, the source assets are in their associated wallet, not yet locked.
The proof _of _publish is needed for each source to publish its contract and lock its asset. The
sources must wait for SCc publication before publishing SCai to avoid a forever locking asset.
Consequently, sources retrieve blockBSCc

from the coordinating blockchain and verify its validity.
If the block satisfies the validity conditions, it can be considered a valid proof _of _publish. A valid
proof of publication means that the transaction of SCc publication exists in block BSCc

. Plus, the
information contained in it must be consistent with that held locally by the sources and recipients.
For example, if the swap graph swap stored in the SCc contract does not match the swap graph
constructed upstream, the sources (and the recipients) may abandon the swap. The same applies
if the list of validators validators is not consistent with the actual set of validators. Note that this
proof-checking step is done at the protocol level (via CorrectSwap predicate defined in Figure 6.5),
not at the smart contract level.

Phase 2: proof of locking assets in SCai . The validity of BSCc
enables the lock of each asset ai in

a smart contract SCai by its corresponding source and publishing it. In this instantiation example
of Pswap , the Publish function defined in Algorithm 2 has no precondition to satisfy, unlike its
equivalent LockAsset(ai , ri) action implemented in TLA+. The way the function is instantiated is
perfectly adaptable according to the needs.
The locking asset action, executed by the sources, represents the publication of the contract that
contains the asset ai to be transferred. Once the asset is locked in its contract, it is no longer in the
source’s wallet. The function Publish(Asset _asset , Address _recipient , Block proof _of _publish)
is defined in the Algorithm 2 line 9. When the source publishes SCai , it must provide the address
of the recipient ri and the proof _of _publish; that is BSCc

. Similarly to SCc , the publication of
SCai initialises the variables asset (line 3) and recipient (line 2) with the values given as inputs
(_asset and _recipients). Plus, the state of the contract updates by assigning the state variable
(line 6) to Published . The function extracts the SCc ’s information from BSCc

, such as its address,
and assigns it to scc (line 12). Once the sources’ contracts are published, a transaction is created
for each, validated and added to a block in their corresponding blockchain. The block where the
transaction representing SCai publication is located is named BScai

. That block will correspond to
the proof of locking asset noted proof _of _lock , proving the good behaviour of sources. This proof
refers to Proof lock in Section 6.4.
According to the source’s protocol, each correct source must request a redeem decision to SCc

along with a proof _of _lock . Therefore, the sources retrieve from their blockchain the block BScai
,

representing the proof _of _lock , and perform the request represented by the call of the function
ValidTransfer(BScai

) from the contract SCc (line 13 in Algorithm 1). Notice that if a source
transfers multiple assets, it must make for each asset a request. The ValidTransfer function can
only be executed if its precondition is satisfied. The precondition is that the contract SCc must
already be published, and the provided proof _of _lock must be valid (line 14). The verification of
proof _of _lock is done at the SCc level using the helping functionValidPoA(Block proof _of _lock)
(line 21).

As the contract SCc has the list of validators of each blockchain of the swap (validators , line 3 in
Algorithm 1), the function in line 21will check if the blockBScai

, that represents the proof _of _lock ,
has at least 2f +1 signatures of the validators . The function extracts information about the sources’

179

CHAPTER 8. ANALYSIS OF PSWAP INSTANTIATION IN A BLOCKCHAIN ENVIRONMENT

asset and the recipient meant to receive the asset from the swap variable. The verification succeeds
if the source has correctly published its contract (giving the correct recipient address and locked the
correct asset) and if the block belongs to a real blockchain (it has the necessary validators’ signa-
ture). The contract defines a kind of a hashtable variable ProofLock [] with the sources’ address as
the key and the value a boolean that sets True if the proof _of _lock provided by the source is valid.

Phase 3: proof of redeem decision. Participants, sources and recipients wait for SCc to change state
from Published to OkRM . As mentioned previously, the function responsible for changing the
state of SCc to OkRM is ValidTransfer defined in Algorithm 1. If all sources provide a valid
proof _of _lock (i.e. all values of ProofLock are set to True), the redeem decision is given by chang-
ing the state of SCc to OkRM . The changing state of SCc to OkRM creates a transaction. After
being validated by the coordinating blockchain validators, the transaction is added to a block. The
block where the transaction is located is named BOkRM . Therefore, correct recipients can retrieve
the block BOkRM from the coordinating blockchain representing the proof _of _redeem. They ex-
ecute the function RetrievingAsset(BOkRM) from SCai (line 14 in Algorithm 2) to retrieve their
assets from their corresponding contract. The function is conditioned by the fact that the contract
must be published and the proof _of _redeem must be valid. The contract SCai defines a helping
function, ValidRedeemPoA(Block proof _of _redeem), to check whether the proof is valid. The
verification confirms that the smart contract contained in proof _of _redeem, i.e. BOkRM , is the
same as scc. It is sufficient to check that the addresses of the two contracts are the same to confirm
the correspondence. Moreover, the helping function verifies if the function caller is the rightful
recipient. If the conditions of the function are not met like the function caller does not have the
same public key as defined in the contract, the function is not executed, and the asset remains locked
in Scai . Thus, if all the conditions are met, the correct recipient can retrieve its expected asset by
using its public key to attest its legitimacy to the received asset. Thereby, the contract state changes
from Published to Redeemed .

The refund scenario. The second described scenario is the refund case (Figure 8.2), which is
divided into four phases (identified by the four colours). The scenario assumes that the publisher
is correct and that there exists a subset of Byzantine sources that do not lock their assets correctly.
Therefore, the Phase 1 is identic to the redeem scenario, meaning that the swap is correctly published
in the coordinating blockchain and the proof _of _publish is valid.

Phase 2: proof of locking assets in SCai . The second phase of the refund scenario is almost identical
to the redeem scenario with one exception. The assumptions said that a subset of sources are Byzan-
tine and do not perform the asset locking step correctly. Conversely, the correct sources perform
the Phase 2 described in the redeem scenario.
Suppose that a proof _of _lock provided by a Byzantine source is invalid (e.g. a wrong recipient
address). In that case, the precondition of the ValidTransfer function in SCc will not be satisfied
because the helping function ValidPoA will return False. This result prevents the update of the
ProofLock [] variable at the Byzantine source’s index. In doing so, the contract will not be able to
change state to OkRM , and the only possible end for the protocol is a refund decision.

Phase 2’: asking for refund decision. As the state of the contract SCc does not change, due to
Byzantine sources’ actions, at any time, a participant 2 can request a refund decision. The function
responsible for changing the state of SCc to OkRF is AbortTransfer (line 18 in Algorithm 1).
The only precondition to satisfy the function is that the contract is still in the Published state. If
so, the contract SCc changes its state to OkRF .

2The dashed arrows in Figure 8.2 express that the function call of AbortTransfer can be made by a source (correct
or Byzantine) or a recipient (correct or Byzantine), or both.

180

CHAPTER 8. ANALYSIS OF PSWAP INSTANTIATION IN A BLOCKCHAIN ENVIRONMENT

Phase 3: proof of refund decision. If a participant calls the function AbortTransfer, the contract
SCc updates its state to OkRF . The changing state creates a transaction and it is added in a block
BOkRF . The correct sources retrieve the block BOkRF , referring to the proof for a refund decision
noted proof _of _refund , to recover their assets. The recover asset operation is possible due to the
function RecoveringAsset(Block proof _of _refund) in SCai (line 19 in Algorithm 2) that need
proof of refund decision. The contract SCai defines a helping function to verify the validity of
proof _of _refund , i.e. the function ValidRefundPoA(Block proof _of _refund) line 28 in Algo-
rithm 2. The verification consists of checking if the public key calling the function matches the
public key of the contract creator. Moreover, the function verify if the address of the contract
extracted from proof _of _refund correspond to scc. If the conditions are not met, the function
cannot be executed, and the asset remains locked in SCai . Conversely, once the conditions are sat-
isfied, the RecoveringAsset function in line 19 unlocks the asset, and correct sources can retrieve
the assets they have locked using their public key, changing the contract state to Refunded .

181

C
H
A
PTER

8.
A
N
A
LYSIS

O
F

P
S
W
A
P
IN

STA
N
TIATIO

N
IN

A
BLO

C
KC

H
A
IN

EN
V
IRO

N
M
EN

T

Smart Contract 1 SCc contract
1: variables
2: swap : Swap . The swap graph of Pinst that the participants must construct
3: validators : list address . The list of block validators of the involved blockchains
4: ProofLock [address] : boolean . The size of the hashtable is the number of sources
5: Enum State = {Published ,OkRM ,OkRF } . Possible states of the contract
6: state : State . The variable that characterises the state of the contract
7: variables
8:
9: function Publish(Swap _swap, list _validators) . The function executed by the publisher in Phase 1
10: Assign the variables swap and validators to _swap and _validators parameters;
11: Assign the keys of ProofLock [] to the sources’ addresses and initialise the values to False;
12: Upate the state of the contract state to “Published”;
13:
14: function ValidTransfer(Block proof _of _lock) . The function executed by the sources in Phase 2
15: if state =Published and ValidPoA(proof _of _lock) =True then . ValidPoA is the helping function defined in line 22
16: ProofLock [caller] =True ; . caller is the ValidTransfer function caller
17: if ∀i ∈ {the set of sources from swap}, ProofLock [i] =True then . the set of sources is extracted from the swap variable by ValidPoA

18: state←OkRM ;
19:
20: function AbortTransfer . The function can be executed by a source or a recipient in Phase 2’
21: if state =Published then state←OkRF ;
22:
23: function ValidPoA(Block proof _of _lock) . The function that verifies the proof _of _lock
24: Extract from swap the set of sources;
25: Check if proof _of _lock is valid according to the swap and the set of sources;

182

C
H
A
PTER

8.
A
N
A
LYSIS

O
F

P
S
W
A
P
IN

STA
N
TIATIO

N
IN

A
BLO

C
KC

H
A
IN

EN
V
IRO

N
M
EN

T

Smart Contract 2 SCai contract

1: variables
2: recipient :Address . The new owner of the asset asset
3: asset :Asset . The locked asset
4: scc : SmartContract . The variable that instantiates the contract SCc

5: Enum State = {Published ,Redeemed ,Refunded } . The possible states of the contract
6: state : State . The variable that characterises the contract state
7: variables
8:
9: function Publish(Asset _asset , Address _recipient , Block proof _of _publish) . The function is executed by the sources in Phase 2
10: Assign the variables asset and recipient to _asset and _recipients parameter;
11: Upate the state of the contract state to “Published”;
12: Extract from proof _of _publish the contract SCc and assign it to scc variable;
13:
14: function RetrievingAsset(Block proof _of _redeem) . The function is executed by the recipients in Phase 3 of the redeem scenario
15: if state =Published and ValidRedeemPoA(proof _of _redeem) =True then . ValidRedeemPoA is a helping function defined in line 24
16: Transfer the asset’s ownership to the recipient recipient ;
17: Upate the state of the contract state to “Redeemed”;
18:
19: function RecoveringAsset(Block proof _of _refund) . The function is executed by the sources in Phase 3 of the refund scenario
20: if state =Published and ValidRefundPoA(proof _of _refund) then . ValidRefundPoA is a helping function defined in line 28
21: Transfer the asset’s ownership to the contract creator; . The creator is the source of the asset
22: Upate the state of the contract state to “Refunded”;
23:
24: function ValidRedeemPoA(Block proof _of _redeem) . The function that verifies the proof _of _redeem
25: Check if the proof _of _redeem is valid according to the variable scc;
26: Verify if the function caller is the expected recipient, i.e. recipient ;
27:
28: function ValidRefundPoA(Block proof _of _refund) . The function that verifies the proof _of _refund
29: Check if the proof _of _refund is valid according to the variable scc;
30: Verify if the function caller is the expected source, i.e. the contract creator;

183

C
H
A
PTER

8.
A
N
A
LYSIS

O
F

P
S
W
A
P
IN

STA
N
TIATIO

N
IN

A
BLO

C
KC

H
A
IN

EN
V
IRO

N
M
EN

T

Publisher Coordinating blockchain Sources ai ’s blockchains Recipients
Publish(swap,validators)

SCc is added in the
block BSCc sources retrieve BSCc

Publish(ai ,ri ,BSCc
)

SCai is added in the
block BSCai

sources retrieve BSCai
ValidTransfer(BSCai

)

SCc .state =OkRM is added in
the block BOkRM correct recipients retrieve BOkRM

RetrievingAsset(BOkRM)

from correct recipients

Phase1

Phase2

Phase3

Figure 8.1 – The execution flow of a redeem scenario

Publisher Coordinating blockchain Sources ai ’s blockchains Recipients
Publish(swap,validators)

SCc is added in the
block BSCc correct sources retrieve BSCc

Publish(ai ,ri ,BSCc
)

from correct sources SCai is added in the
block BSCai

correct sources retrieve BSCai

ValidTransfer(BSCai
) from correct sources

AbortTransfer

AbortTransfer

SCc .state =OkRF is added in
the block BOkRF

correct sources retrieve BOkRF RecoveringAsset(BOkRF)

from correct sources

Phase1

Phase2

Phase2′

Phase3

Figure 8.2 – The execution flow of a refund scenario

184

CHAPTER 8. ANALYSIS OF PSWAP INSTANTIATION IN A BLOCKCHAIN ENVIRONMENT

8.2 Protocol Compatibility with Different Known Blockchains

In the previous section, we introduced the requirements of the blockchain involved in the swap,
which is, among others, the possibility to write smart contracts and to have immediate finality
of blocks possible with non-forking blockchains. To contextualise these requirements, we analyse
the adaptability of the protocol to a set of blockchains. This section considers some blockchains
already defined in Section 2.2.6, namely public/private and permissionless/permissioned. The pre-
vious section explored how the protocol could exploit the specificities of blockchain technology to
instantiate the swap protocol Pswap . That said, not all blockchains provide the same specificities.
Therefore, it is necessary to identify the essential characteristics to be compatible with the protocol.
Four requirements must be satisfied for a blockchain to take part in Pinst :

1. The block data must be public (at least the coordinating blockchain).

2. The possibility of writing smart contracts with a high level of expressiveness.

3. A consensus mechanism based on a committee and validators producing certified blocks.

4. A blockchain with immediate finality without the appearance of forks.

We study 13 blockchains, some of them are introduced in Section 2.2.6: Bitcoin [144], Ethereum[50],
Ripple [22], Hyperledger Fabric [21], Monet [23], MultiChain [93], Quorum [161], EOS [188],
Cosmos Hub [116], Tendermint [9, 48], Cardano [51], Tezos [14], and Zilliqa [167].
Table 8.1 summarises the analysis made below and provides the necessary information to set the
compatibility of the analysed blockchains with the protocol Pinst . The left-hand column of the
table lists the requirements that a blockchain must meet to participate in the Pinst swap. The
blockchain satisfies the requirement if a checkmark (3) is drawn. Conversely, a cross mark (7)
means that the blockchain does not fulfil the requirement.

8.2.1 Public Data

First of all, one of the four requirements for a blockchain to instantiate the protocol is to have
complete data read access. Remember, the role of the coordinator is endorsed by a smart contract in
the blockchain environment. In order to track the state of the smart contract, the participants must
have constant access to that contract; hence, the contract SCc must be readable by all participants.
Suppose the state of the contract SCc changes to authorise the assets to be redeemed, i.e. becomes
“OkRM ”. In that case, the recipients must read the information on the coordinating blockchain
that hosts the contract SCc . This feature of public readable data is found in public blockchains such
as Bitcoin and Ethereum, representing the first generation of blockchain. Other blockchains allow
open data reading, such as Ripple [22], Monet [23], Tezos [14], MultiChain [93], Cardano [51], and
Zilliqa [167]. Moreover, each user of the cited blockchains can participate in the consensus mecha-
nism by creating and validating transactions. EOS, part of the public permissioned blockchain type,
allow authorised users to access the blockchain data; however, EOS can create custom permission
on specific features of a smart contract imperceptible to users.

Not all blockchains have their transactions and blocks data open to users by design. The Hyper-
ledger Fabric [21] and Quorum [161] blockchains are private and permissioned with customisation
and modularity services in their privacy rules (the consensus mechanism depends on the organi-
sation). Both offer developers the ability to make their transaction data private or public. For
example, Hyperledger has no unique blockchain network. Instead, businesses, consortia, and other
organisations deploy Hyperledger technologies to build networks that support their needs. Thus,
whoever deploys a blockchain based on Hyperledger technology will have the choice to make the
data of the blockchain public or not. Therefore, if either blockchain becomes involved in Pinst ,
the transaction data must be configured to be public; otherwise, the blockchain will not apply to
the protocol. At least, the transactions concerning the protocol must remain public, i.e. the SCc

185

CHAPTER 8. ANALYSIS OF PSWAP INSTANTIATION IN A BLOCKCHAIN ENVIRONMENT

contract and the transactions that reflect the change of the smart contract state. From a protocol
point of view, all other data that does not concern the swap can remain private.

Similarly, the Cosmos Hub [116] and Tendermint [9] are frameworks for building public and
private blockchain applications. Tendermint offer, like an engine, the network and consensus layers
so that the developer only has to focus on the application layer. Tendermint is a blockchain protocol
used to replicate and launch blockchain applications across machines securely and consistently.
Therefore, if a blockchain based on the Tendermint foundation wishes to participate in the swap,
it must to publicise the block data.
The Cosmos Hub is a blockchain based on Tendermint. It presents functionalities allowing inde-
pendent blockchains to rely on pre-elaborated methods of consensus and governance and commu-
nicate easily by sending tokens or messages. Using the Tendermint protocols, Cosmos presents
itself as the internet of blockchains. It relies on a set of validators responsible for committing new
blocks in the blockchain. These validators participate in the consensus protocol by broadcasting
votes that contain cryptographic signatures signed by each validator’s private key. Access to the
blockchain data is decided at the time of deployment of the blockchain by the developer. Thus, like
Tendermint, a Cosmos blockchain can be protocol compliant if access to transaction data is open.

8.2.2 Smart Contracts

Blockchains must handle the implementation of smart contracts to execute the protocol or equiv-
alent programs with the same level of expressiveness. Programs establishing transaction rules
appeared with Nick Szabo [172] and later with Ethereum smart contracts. As a result, most
Ethereum-derived blockchains maintain the specificity of writing smart contracts, such as the Quo-
rum blockchain – a private permissioned Ethereum blockchain. It has all the features of Ethereum,
including the ability to write smart contracts. Quorum is adapted to the protocol where the net-
work allows publicly publishing contracts. Ethereum smart contracts can share or transact unique
physical or digital assets and tokens across many of the world’s leading blockchain platforms and
networks that use the Ethereum virtual machine (EVM).

Solidity [78] is the Ethereum smart contract’s programming language and allows complex user-
defined types. Solidity supports mapping data structures, which act as hash tables and consist of
key types and key-value pairs. That makes it perfect for the instantiation of the protocol from a
smart contract language point of view. This feature has allowed blockchain to emancipate and reach
a broader range of users. As a result, many new blockchains have adopted this feature as ideal for
developing decentralised applications like the Monet Hub platform [23], where anyone can publish
smart contracts.
The Hyperledger Foundation supports different programming languages to write smart contracts,
such as Javascript, C++, and Solidity. Hyperledger Fabric (one of the six graduated Hyperledger
projects) allows the building of smart contracts called chaincode. A chaincode is programmatic
code published on the network, where it is executed and validated by chain validators together
during the consensus process. Similarly, in Tendermint and Cosmos Hub, the application layer
can be developed in any programming language. The same goes for EOS, which implements smart
contracts with a high expressiveness written in C++. A virtual machine executes smart contracts,
and the generated files are the smart contracts that can be published on EOS blockchains.
Zilliqa and Tezos blockchain implement so-called formal smart contracts. The smart contract lan-
guage in Zilliqa called Scilla [168] follows a dataflow programming paradigm. Scilla is motivated by
functional programming languages such as OCaml, making it suitable for formal verification. Like-
wise, Tezos blockchain offers a platform to create smart contracts in the Michelson language [173].
The Cardano blockchain is a developing platform and supports the development and publication of
smart contracts using various programming languages, including formal language like Plutus [52].

186

CHAPTER 8. ANALYSIS OF PSWAP INSTANTIATION IN A BLOCKCHAIN ENVIRONMENT

The possibility or not ofwriting smart contracts will depend on the blockchain. Some blockchains
implement the concept of smart contracts differently but with the same goal of establishing rules
for transactions execution. For example, the very first blockchain, Bitcoin, has its equivalent scripts
that establish rules for execution. These scripts can only be applied to a limited number of scenar-
ios. For instance, the Bitcoin smart contract excludes loops to avoid potential ongoing operations
resulting in the workflow bottleneck. As for Ripple, it does not allow writing smart contracts as
defined above. One can use Ripple Ledger escrows3 as smart contracts that release the escrowed as-
set after a particular time or after a fulfilled cryptographic condition. Those limits of Bitcoin and
Ripple smart contracts make them unsuitable for the protocol.
The last example of a smart contract equivalent is the smart filters of theMultiChain blockchain [143].
A Smart Filter is a Turing-complete piece of code embedded in the blockchain and allows custom
rules to be defined regarding the validity of transactions. They are written in JavaScript and handle
the definition of functions. Although they are different from smart contracts, smart filters seem
adapted to the Pinst .

8.2.3 Certified Blocks and Absence of Forks

Another requirement of the protocol is the implementation of the proof-of-action. In order to im-
plement the concept of proof-of-action, what is crucial from blockchain is to ensure the reliability
of the proof provided on the one hand to the smart contract coordinator and the other hand to the
smart contract of the sources. Therefore, it is essential to have blockchains based on a consensus
mechanism that does not generate forks and ensures blocks with immediate finality. These require-
ments exclude all blockchains based on PoW -type and PoS-type consensus, including the Bitcoin
and Ethereum blockchains. This type of blockchain uses probabilistic consensus mechanisms, and
we have shown that it is impossible to implement proof-of-action assuming this type of consensus.
Indeed, probabilistic consensus can generate forks in case of simultaneous block validation, which
leads to the possibility of a different reading of the chain by two users. In case of a probabilistic
consensus, for the proof-of-action validation based on blocks, it would be necessary to provide the
function verifying the proof-of-action, the whole blockchain chain, i.e. from block genesis to the
current block. This scenario seems impossible to achieve, so this type of blockchain is not suit-
able for the instantiated protocol because of the consensus mechanism that cannot provide certified
blocks.

In addition, built on a probabilistic consensus, Ripple and Cardano (based on PoS) can not ensure
certified blocks. These blockchains apply the longest chain rule to solve the fork problem. As a
result, blocks are not immediately finite, which compromises the reliability of the proof-of-action.
Tezos also implements PoS consensus called Emmy+ [118]. The protocol is a PoW -style consensus;
hence, it offers only probabilistic finality.
MultiChain can generate blockchains that might fork. MultiChain has a very high level of customi-
sation of the blockchain. Each user who wants to create a blockchain can configure it as it wishes. It
has a list of parameters, and depending on this configuration, the blockchain can be forkable or not.
For example, by varying parameters such as target-block-time4, the average time between each
block, the forks are minimised or maximised. Moreover, a lower value of the mining-turnover4
parameter reduces the number of forks, making the blockchain more efficient, but increasing the
level of validator concentration. Depending on its implementation, a MultiChain blockchain can
be a Bitcoin-based blockchain or a committee-based blockchain.

Blockchains that rely on a committee to perform the consensus mechanismmore efficiently solve
the fork problem, as with Hyperledger Fabric, Quorum and Monet. It ensures that the blocks
generated are immediately final and that each block added to the blockchain is certified.

3Ripple Ledger escrows: https://xrpl.org/use-an-escrow-as-a-smart-contract.html
4List of API commands: https://www.multichain.com/developers/json-rpc-api/

187

https://xrpl.org/use-an-escrow-as-a-smart-contract.html
https://www.multichain.com/developers/json-rpc-api/

CHAPTER 8. ANALYSIS OF PSWAP INSTANTIATION IN A BLOCKCHAIN ENVIRONMENT

The EOS blockchain consensus mechanism is divided into two levels. The first level is the “pro-
ducer voting/scheduling”, which uses the consensus mechanism of Delegated Proof-of-Stake (DPoS)
to elect the active producers authorised to sign valid blocks. The second level is the “block pro-
duction/validation”, which performs an asynchronous Byzantine Fault Tolerant (aBFT) consen-
sus [140] to confirm each produced block until it becomes final (irreversible). The EOS consensus
model achieves algorithmic finality through signatures from the chosen set of participants (active
producers) arranged in a schedule to determine which party is authorised to sign the block at a par-
ticular time slot. When a valid block meets the consensus requirements, the block becomes final
and is considered irreversible. EOS consensus mechanism does not need to wait for all the nodes to
finish a transaction. Consequently, EOS achieves high transaction throughputs to achieve finality.
This behaviour results in faster confirmations and lower latency. We can assume that a fork will
have a low probability of appearing.
Tendermint, Cosmos Hub and Zilliqa do not employ PoW -based protocol to achieve consensus.
These blockchains make use of the BFT protocol [125] to create and add a block to the chain. As
a result, once a transaction is included in a block, it cannot be cancelled. More precisely, Zilliqa
leverages PoW to establish identities but employs the Practical Byzantine Fault Tolerance protocol
(PBFT) [54] for consensus.

Pinst requirements

R
ip
pl
e

Bi
tc
oi
n

Et
he
re
um

H
yp

er
le
dg
er

Fa
br
ic EO

S

M
ul
tiC

ha
in

M
on

et

Q
uo

ru
m

C
os
m
os

H
ub

Te
nd

er
m
in
t

C
ar
da
no

Te
zo
s

Z
ill
iq
a

Public data 3 3 3 * 3 3 3 * * * 3 3 3

Smart contracts 7 7 3 3 3 3 3 3 3 3 3 3 3

No forks occurence 7 7 7 3 ? ? 3 3 3 3 7 7 3

Certified Blocks 7 7 7 3 3 • 3 3 3 3 7 7 3

*: The public aspect of these blockchains depends on their configuration.

?: These blockchains can be configured to have a very low probability of fork.

•: The MultiChain can be configured to provide certified blocks.

Table 8.1 – Compatibility of Pinst requirements of some known blockchains

Through these examples of blockchains, we showhow to identify the applicability of a blockchain
to the Pinst protocol. The private blockchains (permissionless or permissioned) are favoured be-
cause they guarantee deterministic consensus. A set of validators performs the validation of blocks.
Table 8.1 gives a comparison between the analysed blockchain regarding the protocol requirements.
We can conclude that the adapted blockchains are Monet [23] and Zilliqa [167] by design. How-
ever, several blockchains are customisable and can be suitable for implementing the Pinst proto-
col. The blockchain group that brings together Hyperledger Fabric [21], Quorum [161], Cosmos
Hub [116], and Tendermint [9] has the same characteristic of customising openness and access to
blockchain data. Therefore, a participant on one of these blockchains can participate in the swap
if its underlying blockchain has been configured to have open access to transactions.
The adaptability of EOS [188] and MultiChain [93] to the protocol needs more than an analysis of
the documentation. Both ensure a very low probability of forks (or even none) if the blockchain’s
configuration parameters are correctly tuned. In order to conclusively assess the applicability of
these blockchains, it would be necessary to implement a running example of the protocol that
involves EOS and MultiChain blockchains.

188

CHAPTER 8. ANALYSIS OF PSWAP INSTANTIATION IN A BLOCKCHAIN ENVIRONMENT

8.3 Conclusion

This chapter shows how the protocol defined in Chapter 6 is suitable in a blockchain environment.
We have shown that some blockchain-specificities, such as the ability to write smart contracts, fit
perfectlywith the protocolPinst . However, we have seen inChapter 2 that there are several types of
blockchains with different characteristics, and we cannot ensure the compatibility of the protocol
with all types of blockchains. Table 8.1 shows the diversity of existing blockchains, making it
impossible to implement the protocol for some of them. It can be seen that blockchains based on
the BFT consensus are better able to fulfil all the protocol requirements. It should be noted that
the analysis in this chapter is not intended to provide a precise implementation method. Instead, it
provides an example of instantiation that can be different from one instantiation to another.

189

CHAPTER 8. ANALYSIS OF PSWAP INSTANTIATION IN A BLOCKCHAIN ENVIRONMENT

190

Part V

Conclusion

191

Chapter 9

Conclusion

“ Those who can imagine anything,
can create the impossible. ”

– Alan Turing

Contents
9.1 General Conclusion of the Thesis . 194
9.2 Future Work . 195

9.2.1 Improvement of WhyML Smart Contracts 195
9.2.2 Improvement of the Pswap Algorithm . 195
9.2.3 Going Further into the Proof of the Pswap Algorithm 195
9.2.4 Analysis of the Implementation Feasibility of Pinst 196

193

CHAPTER 9. CONCLUSION

This section gives general conclusion about the work that has been done in this thesis. In addition, we
provide some perspectives and future work.

9.1 General Conclusion of the Thesis

A distributed system is a computing environment in which different components are spread
across multiple computers on a network. They are complex to configure and difficult to man-
age. Interesting features characterise distributed systems: scalability, fault tolerance, concurrency,
replication, and transparency, making these systems appealing to use. However, a program or
a system shared and used by many processes or participants can quickly become a source of is-
sues. Blockchains are examples of complex distributed systems. The study of a blockchain system
is multi-level and brings together a wide range of skills like cryptography, algorithmics and eco-
nomics. This thesis studies two aspects of blockchain systems, smart contracts and cross-chain swap
applications. The study consists of the system’s design and its formal verification. In the case of
smart contracts, an additional step is their compilation to a virtual machine.
The first question introduced at the beginning of the manuscript is “ how to ensure that a contract
is correct and respects its specification?”. One of the answers to this question is to manage to write
precise contracts using languages with formal semantics. In Chapter 5, it was shown that the Solidity
language does not fulfil this requirement making their smart contracts prone to bugs and flaws. In
response to this observation, we used a formal language with well-defined semantics to write smart
contracts. The WhyML language is well adapted for this kind of use since it allows for writing both
logical and imperative code; Chapter 4 provides sufficient information on the language to support
this. In addition to providing a precise and concise description of the proof methodology, a case
study with contracts written entirely in WhyML is provided. This approach made it possible to
ensure the correctness of WhyML smart contracts and to prove that these contracts respect their
specification.

The second question of the thesis is that “assuming the smart contract correct, how to ensure the
transfer of assets assuming the implication of Byzantine participants?”. Indeed, a smart contract is con-
sidered an account; hence, it has a balance and can send transactions over the network. As a result,
transferring digitised assets can be empowered by smart contracts. The answer to this question is
the same as the first question, which is the application of formal modelling and verification tools.
In this thesis, we take the example of an application designed for transferring assets across different
blockchains based on smart contracts, namely the cross-chain swap algorithms. First of all, we had
to design an algorithm that allows the transfer of assets in the presence of Byzantine participants.
We defined the algorithm Pswap that abstracts blockchain implementations so as not to limit the
algorithm to a blockchain environment.
Nevertheless, before that, we defined a specification and then designed the algorithm, both for-
mally, to avoid any ambiguity. In a second step, we expressed the specification and modelled the
algorithm into a formal language, TLA+. Chapter 6 gives the modelling details, including how we
have represented the Byzantine participants in the system. This study step partly answers our ques-
tion, as it provides a precise and formal system model. Moreover, it is necessary to be able to apply
verification tools and prove that our model satisfies the problem specification. We have proven in
Chapter 7 that the model satisfies the safety property of the cross-chain swap problem by applying a
well-defined proof methodology described in Chapter 4. The methodology applies concepts of de-
ductive verification, while liveness properties have been verified using model-checking. Moreover,
we give in Chapter 8 the instantiation of Pswap into a blockchain environment. In this chapter, we
define how the abstractions of the Pswap protocol can be represented in a blockchain instantiation,
and we obtain the Pinst protocol. The approach defined therein shows that the protocol is well
suited to blockchains. So far, Chapters 6, 7 and 8 provide a proper answer to the question, “assum-
ing the smart contract correct, how to ensure the transfer of assets assuming the implication of Byzantine
participants?”. However, we wanted to go a step further in our analysis of cross-chain swaps. We

194

CHAPTER 9. CONCLUSION

provide in Chapter 8 an analysis of a set of well-known blockchains and their eligibility, based on
specific characteristics, to implement the defined Pinst protocol.

9.2 Future Work

This section presents open research questions from the work presented in this thesis.

9.2.1 Improvement of WhyML Smart Contracts

Simplifying the proofs. This thesis proposes a formal language, WhyML, as a writing language
for smart contracts. We express complex contract properties requiring a non-negligible amount
of proof. The writing of the logic part (preconditions, postconditions, invariants) is the user’s
responsibility (the developer of the contracts). However, this step is often a difficult task because
of the invariants definition. Therefore, one approach to improve contracts in WhyML would be
to simplify the proofs, as we have seen that proofs require some expertise and can sometimes be
complicated to write. Alleviating the burden of proof would be possible by enriching the Why3
library to automate as much proof as possible.

Compilation to other virtual machines. Once the contracts have been written and proven, the
last step is to compile the contracts into a virtual machine. In this thesis, contracts are compiled to
the EthereumVirtual Machine (EVM). This step allows calculating the amount of gas consumed by
each executed function. We focused on the Ethereum VM as a first approach because it is currently
the most important blockchain in terms of use cases. However, one can consider compiling WhyML
contracts towards other virtual machines. For instance, NeoVM [149] or Algorand VM [13]. The
approach would be similar to what was done with the EVM. It will be necessary to create a library
for each virtual machine. These libraries will contain the contract parser, which takes the contracts
as input and translates them into opcodes.

9.2.2 Improvement of the Pswap Algorithm

Detailed the Pswap assumptions. In the algorithm described in Chapter 6, we made some mod-
elling assumptions. For example, we assumed that the participants chose the coordinator and the
publisher before the swap. However, it would be interesting to more detail this working hypothesis
and define the algorithm that allows for making those choices. The same comment applies to the
swap graph construction, which is assumed to be built upstream of the swap. In the study, the
swap graph is an input. However, we could imagine a smart contract that allows the construction
of the swap according to the wishes and desires of the users, for instance, like the Trading contract
of the BEMP application defined in Chapter 5, which allows matching an energy consumer with
a producer. In this way, the construction of the swap would be decentralised via a smart contract,
thus ensuring its well-construction.

9.2.3 Going Further into the Proof of the Pswap Algorithm

Proof of liveness using deductive verification approach. In this thesis, we have applied two
methods of verifying the Pswap algorithm. A deductive approach, using the TLAPS tool to prove
the safety, and a model-checking approach with TLC to prove the liveness properties. Although
the deductive approach requires user interaction, it was able to prove the Consistency of a para-
metric model in a relatively short time. In contrast, the results obtained for model-checking were
limited by the combinatorial explosion of the number of generated states, making verification of
the Ownership (and partially Retrieving) property impossible with a large number of Byzantines
participants.
The intuition to correct this problem is to apply deductive verification methods to liveness. How-
ever, verifying liveness properties with an unbounded number of processes is difficult. A solution to

195

CHAPTER 9. CONCLUSION

this could be to reduce the liveness properties to a safety property. For example, the methodology
in [81] is based on the generation of an inductive invariant and a “liveness monitor” that observes
the system’s behaviour. The methodology consists of a parametrised system S and a liveness prop-
erty of the form: φ : q =⇒ ♦r , with q and s states of the system. The property φ is bounded if
there is a chosen bound, K , independent of the number of processes, such that once q is reached
after at most K rounds in which each process takes at least one step, a goal r is reached.
The liveness monitor, Mφ, increases a round counter when each process takes a step and resets it
once q is reached. The round counter never exceeds K if K bounds φ. Therefore, proving the
liveness property φ will be equivalent to proving the formula: S |||Mφ |=�(rnd <K), with rnd the
round counter.

Proof of the protocol Pinst . The model proven in Chapter 7 is the abstract cross-chain swap
model, the Pswap algorithm. The modelling in TLA+ is also abstract and models, for example,
proof-of-actions as a boolean, which is true or false depending on its validity. One can imagine the
proof of the instantiated model in a blockchain environment Pinst in future work. According to
that, we would implement and model the specificities of blockchains, such as blocks, transactions,
and the set of validators that compose the blockchains committee. Thus, the proof-of-action (i.e.
certified blocks) could be modelled in such a way as to consider the number of signatures. With
the resulting Pinst model, we could verify whether the properties of the swap specification are still
satisfied with this new model.

9.2.4 Analysis of the Implementation Feasibility of Pinst

A running implementation of thePinst protocol. In this thesis, a theoretical approach to a cross-
chain swap protocol was undertaken. Although the protocol has been modelled and proven using
technical tools, our approach does not involve a practical implementation of Pswap . Chapter 8
is a first step in the practical implementation of the protocol, in the sense that we analyse the
blockchains that can implement Pinst . The continuation of these results would be developing a
practical application, with smart contracts written in WhyML, that enable the transfer of tokens
between the blockchains, cited in Chapter 8, that are considered suitable to implement Pinst .

196

Appendix A

Appendix

A.1 Two-Phase Commit TLA+ Code

module TwoPhaseCommit

extends Integers ,TLAPS
constant N

Participants
∆= 1 . .N

CoordinatorID
∆= 0

CStates
∆= {“init”,“pre-commit”,“commit”,“abort”}

PStates
∆= {“working”,“committed”,“aborted”,“prepared”}

--algorithm TwoPhaseCommit {
variables cState =“init”, pState = [p ∈ Participants 7→“working”], abortFlag = false ;

define {
allPCommit

∆= ∀p ∈ Participants : pState[p] =“prepared”
atLeastOneAbort

∆= abortFlag = true

}

fair process (Coordinator ∈ CoordinatorID)
{

c0: await cState =“init”;
either {

c1: cState :=“abort”; }
or {

cState :=“pre-commit”;
c2 : either {

await allPCommit ;
cState :=“commit”; }

or {
await atLeastOneAbort ;
goto c1 ; } ; } ;

} ;

fair process (Participant ∈ Participants)
{

p0: await pState[self] =“working”;
either {

p1: await cState ∈ {“pre-commit”,“abort”} ;
pState[self] :=“aborted”;

I

APPENDIX A. APPENDIX

abortFlag := true ; }
or {

await cState =“pre-commit”;
pState[self] :=“prepared”;

p2: either {
await cState =“commit”;
pState[self] :=“committed”; }

or {
await cState =“abort”;
goto p1 ; } ; } ;

} ;

BEGIN TRANSLATION
variables cState , pState , abortFlag , pc

allPCommit
∆= ∀p ∈ Participants : pState[p] =“prepared”

atLeastOneAbort
∆= abortFlag = true

vars
∆= 〈cState , pState , abortFlag , pc〉

ProcSet
∆= {CoordinatorID }∪ (Participants)

Init
∆=
∧cState =“init”
∧pState = [p ∈ Participants 7→“working”]
∧abortFlag = false

∧pc = [self ∈ ProcSet 7→ case self =CoordinatorID →“c0”
2 self ∈ Participants→“p0”]

c0
∆= ∧pc[CoordinatorID] =“c0”

∧cState =“init”
∧ ∨ ∧pc′ = [pc except ! [CoordinatorID] =“c1”]

∧unchanged cState

∨ ∧cState ′ =“pre-commit”
∧pc′ = [pc except ! [CoordinatorID] =“c2”]

∧unchanged 〈pState , abortFlag〉
c1

∆= ∧pc[CoordinatorID] =“c1”
∧cState ′ =“abort”
∧pc′ = [pc except ! [CoordinatorID] =“Done”]
∧unchanged 〈pState , abortFlag〉

c2
∆= ∧pc[CoordinatorID] =“c2”

∧ ∨ ∧allPCommit
∧cState ′ =“commit”
∧pc′ = [pc except ! [CoordinatorID] =“Done”]

∨ ∧atLeastOneAbort
∧pc′ = [pc except ! [CoordinatorID] =“c1”]
∧unchanged cState

∧unchanged 〈pState , abortFlag〉
Coordinator

∆= c0∨c1∨c2

p0(self)
∆= ∧pc[self] =“p0”
∧pState[self] =“working”
∧ ∨ ∧pc′ = [pc except ! [self] =“p1”]

II

APPENDIX A. APPENDIX

∧unchanged pState

∨ ∧cState =“pre-commit”
∧pState ′ = [pState except ! [self] =“prepared”]
∧pc′ = [pc except ! [self] =“p2”]

∧unchanged 〈cState , abortFlag〉
p1(self)

∆= ∧pc[self] =“p1”
∧cState ∈ {“pre-commit”,“abort”}
∧pState ′ = [pState except ! [self] =“aborted”]
∧abortFlag ′ = true

∧pc′ = [pc except ! [self] =“Done”]
∧unchanged cState

p2(self)
∆= ∧pc[self] =“p2”

∧ ∨ ∧cState =“commit”
∧pState ′ = [pState except ! [self] =“committed”]
∧pc′ = [pc except ! [self] =“Done”]

∨ ∧cState =“abort”
∧pc′ = [pc except ! [self] =“p1”]
∧unchanged pState

∧unchanged 〈cState , abortFlag〉
Participant(self)

∆= p0(self)∨p1(self)∨p2(self)

Terminating
∆= ∧∀self ∈ ProcSet : pc[self] =“Done”

∧unchanged vars

Next
∆= Coordinator ∨ (∃self ∈ Participants :Participant(self))∨Terminating

Spec
∆= ∧ Init ∧2[Next]vars

Termination
∆= 3(∀self ∈ ProcSet : pc[self] =“Done”)

END TRANSLATION

A.2 Pswap TLA+ Code

module CrossChainSwap

extends Integers ,TLAPS
constant NTxs ,Correct ,Timeout

CStates
∆= {“init”,“pre-commit”,“commit”,“abort”}

PStates
∆= {“working”,“committed”,“aborted”,“prepared”}

AStates
∆= {“OwS”,“OwR”,“locked”,“other”}

SwapStates
∆= {“init”,“correct”,“different”}

PublisherID
∆= −1

CoordinatorID
∆= 0

Sources
∆= {3∗x −2 : x ∈ 1 . .NTxs}

Assets
∆= {3∗x −1 : x ∈ 1 . .NTxs}

Recipients
∆= {3 ∗x : x ∈ 1 . .NTxs}

Pi
∆= Sources ∪Recipients

III

APPENDIX A. APPENDIX

Pc
∆= Pi ∩Correct

CSources
∆= Pc∩Sources

CRecipients
∆= Pc∩Recipients

BSources
∆= Sources \CSources

BRecipients
∆= Recipients \CRecipients

AofS (x)
∆= x +1

AofR(x)
∆= x −1

SofA(x)
∆= x −1

RofA(x)
∆= x +1

AssetsFromCS
∆= {AofS (x) : x ∈ CSources}

AssetsForCR
∆= {AofR(x) : x ∈ CRecipients}

--fair algorithmCrossChainSwap {
variable coordState =“init”,

assets = [a ∈ Assets 7→“OwS”],
pState =“init”,
qrm = {},
qrf = {},
swapGraph =“init”,
ProofPublish = false,
ProofOkRM = false,
ProofOkRF = false,
ProofLock = [s ∈ Sources 7→ false] ;

define {
ValidTransfer

∆= qrm = Sources ∧∀s ∈ Sources :ProofLock [s] = true

AbortTransfer
∆= qrf 6= {}

}

macro lockAsset(self) {
if (ProofPublish = true∧ self ∈ Sources ∧assets[AofS (self)] =“OwS”)
assets[AofS (self)] :=“locked”; ProofLock [self] := true ; }

macro askRM (self) {
if (self ∈ Sources ∧ProofLock [self] = true∧coordState =“published”)
qrm := qrm∪ {self } ; }

macro askRF (self) {
if (coordState =“published”) qrf := qrf ∪ {self } ; }

macro retrievingAsset(self) {
if (self ∈ Recipients ∧ProofOkRM = true∧assets[AofR(self)] =“locked”)
assets[AofR(self)] :=“OwR”; }

macro recoveringAsset(self) {
if (self ∈ Sources ∧ProofOkRF = true∧assets[AofS (self)] =“locked”)
assets[AofS (self)] :=“OwS”; }

macro otherS (self) {
if (self ∈ Sources ∧assets[AofS (self)] =“OwS”)

IV

APPENDIX A. APPENDIX

assets[AofS (self)] :=“other”; }

macro otherR(self) {
if (self ∈ Recipients ∧assets[AofR(self)] =“OwR”)
assets[AofR(self)] :=“other”; }

macro directToR(self) {
if (self ∈ Sources ∧assets[AofS (self)] =“OwS”)
assets[AofS (self)] :=“OwR”; }

macro directToS (self) {
if (self ∈ Recipients ∧assets[AofR(self)] =“OwR”)
assets[AofR(self)] :=“OwS”; }

process (Publisher =PublisherID)
{

init_p : either {
pState :=“publish”;
either swapGraph :=“correct”;
or swapGraph :=“different”; }

or skip ;
} ;

fair process (Coordinator =CoordinatorID)
{
init_c : await pState =“publish”∧ swapGraph 6=“init”;

coordState :=“published”;
ProofPublish := true ;

decision : either {
await ValidTransfer ;

decisionValid : coordState :=“okRM”;
ProofOkRM := true ;
goto Done ; }

or {
await AbortTransfer ;

decisionAbort : coordState :=“okRF”;
ProofOkRF := true ;
goto Done ; } ;

} ;

fair process (Source ∈ CSources)

{
init_src : either {

await swapGraph =“different”∨Timeout = true ;
goto Done ; }

or {
await ProofPublish = true∧ swapGraph =“correct”;

lock : lockAsset(self) ;
published : askRM (self) ;
waitForD : either {

await ProofOkRM = true ;
goto Done ; }

or {

V

APPENDIX A. APPENDIX

await ProofOkRF = true ;
recoveringAsset(self) ;
goto Done ; }

or {
await coordState =“published”∧Timeout = true ;
askRF (self) ;
goto waitForD ; } ;

} ;
} ;

fair process (Recipient ∈ CRecipients)
{

init_rcp : either {
await swapGraph =“different”∨Timeout = true ;
goto Done ; }

or {
await ProofPublish = true∧ swapGraph =“correct”;

waitForD_rcp : either {
await ProofOkRF = true ;
goto Done ; }

or {
await ProofOkRM = true ;
retrievingAsset(self) ;
goto Done ; }

or {
await coordState =“published”∧Timeout = true ;
askRF (self) ;
goto waitForD_rcp ; } ; } ;

} ;

process (BSource ∈ BSources)
{
init_bsrc :

either { BdirectToR : directToR(self) ; goto init_bsrc ; }
or { Bother : otherS (self) ; goto init_bsrc ; }
or { BaskRM : askRM (self) ; goto init_bsrc ; }
or { BlockAsset : lockAsset(self) ; goto init_bsrc ; }
or { BSaskRF : askRF (self) ; goto init_bsrc ; }
or { BrecoveringAsset : recoveringAsset(self) ; goto init_bsrc ; } ;

} ;

process (BRecipient ∈ BRecipients)
{
init_brcp :

either { BRaskRF : askRF (self) ; goto init_brcp ; }
or { BRretrievingAsset : retrievingAsset(self) ; goto init_brcp ; }
or { BRdirectToS : directToS (self) ; goto init_brcp ; }
or { BRother : otherR(self) ; goto init_brcp ; } ;

} ;

BEGIN TRANSLATION
variables assets , pState , coordState , qrm , qrf , swapGraph ,ProofPublish ,

VI

APPENDIX A. APPENDIX

ProofLock ,ProofOkRM ,ProofOkRF , pc

ValidTransfer
∆= qrm = Sources ∧∀s ∈ Sources :ProofLock [s] = true

AbortTransfer
∆= qrf 6= {}

vars
∆= 〈assets , pState , coordState , qrm , qrf , swapGraph ,ProofPublish ,ProofLock ,

ProofOkRM ,ProofOkRF , pc〉
ProcSet

∆= {PublisherID }∪ {CoordinatorID }∪ (CSources)∪ (BSources)∪
(CRecipients)∪ (BRecipients)

Init
∆= ∧assets = [a ∈ Assets 7→“OwS”]

∧pState =“init”
∧coordState =“init”
∧qrm = {}
∧qrf = {}
∧ swapGraph =“init”
∧ProofPublish = false

∧ProofLock = [c ∈ Sources 7→ false]
∧ProofOkRM = false

∧ProofOkRF = false

∧pc = [self ∈ ProcSet 7→ case self =PublisherID →“init p”
2 self =CoordinatorID →“init c”
2 self ∈ CSources→“init src”
2 self ∈ BSources →“init bsrc”
2 self ∈ CRecipients→“init rcp”
2 self ∈ BRecipients →“init brcp”]

init_p ∆= ∧pc[PublisherID] =“init p”
∧ ∨ ∧pState ′ =“publish”

∧ ∨ ∧ swapGraph ′ =“correct”
∨ ∧ swapGraph ′ =“different”

∨ ∧true

∧unchanged 〈pState , swapGraph〉
∧pc′ = [pc except ! [PublisherID] =“Done”]
∧unchanged 〈assets , coordState , qrm , qrf ,ProofPublish ,

ProofLock ,ProofOkRM ,ProofOkRF 〉
Publisher

∆= init_p

init_c ∆= ∧pc[CoordinatorID] =“init c”
∧pState =“publish”∧ swapGraph 6=“init”
∧coordState ′ =“published”
∧ProofPublish ′ = true

∧pc′ = [pc except ! [CoordinatorID] =“decision”]
∧unchanged 〈assets , pState , qrm , qrf , swapGraph ,ProofLock ,

ProofOkRM ,ProofOkRF 〉
decision

∆= ∧pc[CoordinatorID] =“decision”
∧ ∨ ∧ValidTransfer

∧pc′ = [pc except ! [CoordinatorID] =“decisionValid”]
∨ ∧AbortTransfer
∧pc′ = [pc except ! [CoordinatorID] =“decisionAbort”]

∧unchanged 〈assets , pState , coordState , qrm , qrf , swapGraph ,
ProofPublish ,ProofLock ,ProofOkRM ,ProofOkRF 〉

VII

APPENDIX A. APPENDIX

decisionValid
∆= ∧pc[CoordinatorID] =“decisionValid”

∧coordState ′ =“okRM”
∧ProofOkRM ′ = true

∧pc′ = [pc except ! [CoordinatorID] =“Done”]
∧unchanged 〈assets , pState , qrm , qrf , swapGraph ,

ProofPublish ,ProofLock ,ProofOkRF 〉
decisionAbort

∆= ∧pc[CoordinatorID] =“decisionAbort”
∧coordState ′ =“okRF”
∧ProofOkRF ′ = true

∧pc′ = [pc except ! [CoordinatorID] =“Done”]
∧unchanged 〈assets , pState , qrm , qrf , swapGraph ,

ProofPublish ,ProofLock ,ProofOkRM 〉
Coordinator

∆= init_c∨decision∨decisionValid ∨decisionAbort
init_src(self)

∆= ∧pc[self] =“init src”
∧ ∨ ∧swapGraph =“different”∨Timeout = true

∧pc′ = [pc except ! [self] =“Done”]
∨ ∧ProofPublish = true∧ swapGraph =“correct”
∧pc′ = [pc except ! [self] =“lock”]

∧unchanged 〈assets , pState , coordState , qrm , qrf ,
swapGraph ,ProofPublish ,ProofLock ,
ProofOkRM ,ProofOkRF 〉

lock (self)
∆= ∧pc[self] =“lock”

∧ if ProofPublish = true∧ self ∈ Sources ∧assets[AofS (self)] =“OwS”
then ∧assets ′ = [assets except ! [AofS (self)] =“locked”]

∧ProofLock ′ = [ProofLock except ! [self] = true]
else ∧true

∧unchanged 〈assets ,ProofLock 〉
∧pc′ = [pc except ! [self] =“published”]
∧unchanged 〈pState , coordState , qrm , qrf , swapGraph ,

ProofPublish ,ProofOkRM ,ProofOkRF 〉
published (self)

∆= ∧pc[self] =“published”
∧ if self ∈ Sources ∧ProofLock [self] = true∧coordState =“published”

then ∧qrm ′ = (qrm∪ {self })
else ∧true

∧qrm ′ = qrm
∧pc′ = [pc except ! [self] =“waitForD”]
∧unchanged 〈assets , pState , coordState , qrf , swapGraph ,

ProofPublish ,ProofLock ,ProofOkRM ,ProofOkRF 〉
waitForD(self)

∆= ∧pc[self] =“waitForD”
∧ ∨ ∧ProofOkRM = true

∧pc′ = [pc except ! [self] =“Done”]
∧unchanged 〈assets , qrf 〉

∨ ∧ProofOkRF = true

∧ if self ∈ Sources ∧ProofOkRF = true∧assets[AofS (self)] =“locked”
then ∧assets ′ = [assets except ! [AofS (self)] =“OwS”]
else ∧true

∧unchanged assets

∧pc′ = [pc except ! [self] =“Done”]
∧qrf ′ = qrf

VIII

APPENDIX A. APPENDIX

∨ ∧coordState =“published”∧Timeout = true

∧ if coordState =“published”

then ∧qrf ′ = (qrf ∪ {self })
else ∧true

∧qrf ′ = qrf
∧pc′ = [pc except ! [self] =“waitForD”]
∧unchanged assets

∧unchanged 〈pState , coordState , qrm , swapGraph ,
ProofPublish ,ProofLock ,ProofOkRM ,ProofOkRF 〉

Source(self)
∆= init_src(self)∨ lock (self)∨published (self)∨waitForD(self)

init_rcp(self)
∆= ∧pc[self] =“init rcp”

∧ ∨ ∧swapGraph =“different”∨Timeout = true

∧pc′ = [pc except ! [self] =“Done”]
∨ ∧ProofPublish = true∧ swapGraph =“correct”

∧pc′ = [pc except ! [self] =“waitForD rcp”]
∧unchanged 〈assets , pState , coordState , qrm , qrf ,

swapGraph ,ProofPublish ,ProofLock ,
ProofOkRM ,ProofOkRF 〉

waitForD_rcp(self)
∆= ∧pc[self] =“waitForD rcp”

∧ ∨ ∧ProofOkRF = true

∧pc′ = [pc except ! [self] =“Done”]
∧unchanged 〈assets , qrf 〉

∨ ∧ProofOkRM = true

∧ if self ∈ Recipients ∧ProofOkRM = true

∧assets[AofR(self)] =“locked”

then ∧assets ′ = [assets except ! [AofR(self)] =“OwR”]
else ∧true

∧unchanged assets

∧pc′ = [pc except ! [self] =“Done”]
∧qrf ′ = qrf

∨ ∧coordState =“published”∧Timeout = true

∧ if coordState =“published”

then ∧qrf ′ = (qrf ∪ {self })
else ∧true

∧qrf ′ = qrf
∧pc′ = [pc except ! [self] =“waitForD rcp”]
∧unchanged assets

∧unchanged 〈pState , coordState , qrm , swapGraph ,
ProofPublish ,ProofLock ,ProofOkRM ,ProofOkRF 〉

Recipient(self)
∆= init_rcp(self)∨waitForD_rcp(self)

init_bsrc(self)
∆= ∧pc[self] =“init bsrc”

∧ ∨ ∧pc′ = [pc except ! [self] =“BdirectToR”]
∨ ∧pc′ = [pc except ! [self] =“Bother”]
∨ ∧pc′ = [pc except ! [self] =“BaskRM”]
∨ ∧pc′ = [pc except ! [self] =“BlockAsset”]
∨ ∧pc′ = [pc except ! [self] =“BSaskRF”]
∨ ∧pc′ = [pc except ! [self] =“BrecoveringAsset”]

∧unchanged 〈assets , pState , coordState , qrm , qrf , swapGraph ,
ProofPublish ,ProofLock ,ProofOkRM ,ProofOkRF 〉

IX

APPENDIX A. APPENDIX

BdirectToR(self)
∆= ∧pc[self] =“BdirectToR”

∧ if self ∈ Sources ∧assets[AofS (self)] =“OwS”

then ∧assets ′ = [assets except ! [AofS (self)] =“OwR”]
else ∧true

∧unchanged assets

∧pc′ = [pc except ! [self] =“init bsrc”]
∧unchanged 〈pState , coordState , qrm , qrf , swapGraph ,

ProofPublish ,ProofLock ,ProofOkRM ,ProofOkRF 〉
Bother (self)

∆= ∧pc[self] =“Bother”

∧ if self ∈ Sources ∧assets[AofS (self)] =“OwS”

then ∧assets ′ = [assets except ! [AofS (self)] =“other”]
else ∧true

∧unchanged assets

∧pc′ = [pc except ! [self] =“init bsrc”]
∧unchanged 〈pState , coordState , qrm , qrf , swapGraph ,

ProofPublish ,ProofLock ,ProofOkRM ,ProofOkRF 〉
BaskRM (self)

∆= ∧pc[self] =“BaskRM”

∧ if self ∈ Sources ∧ProofLock [self] = true∧coordState =“published”

then ∧qrm ′ = (qrm∪ {self })
else ∧true

∧qrm ′ = qrm
∧pc′ = [pc except ! [self] =“init bsrc”]
∧unchanged 〈assets , pState , coordState , qrf , swapGraph ,

ProofPublish ,ProofLock ,ProofOkRM ,ProofOkRF 〉
BlockAsset(self)

∆= ∧pc[self] =“BlockAsset”

∧ if ProofPublish = true∧ self ∈ Sources ∧assets[AofS (self)] =“OwS”

then ∧assets ′ = [assets except ! [AofS (self)] =“locked”]
∧ProofLock ′ = [ProofLock except ! [self] = true]

else ∧true

∧unchanged 〈assets ,ProofLock 〉
∧pc′ = [pc except ! [self] =“init bsrc”]
∧unchanged 〈pState , coordState , qrm , qrf , swapGraph ,

ProofPublish ,ProofOkRM ,ProofOkRF 〉
BrecoveringAsset(self)

∆= ∧pc[self] =“BrecoveringAsset”

∧ if self ∈ Sources ∧ProofOkRF = true∧assets[AofS (self)] =“locked”

then ∧assets ′ = [assets except ! [AofS (self)] =“OwS”]
else ∧true

∧unchanged assets

∧pc′ = [pc except ! [self] =“init bsrc”]
∧unchanged 〈pState , coordState , qrm , qrf , swapGraph ,
ProofPublish ,ProofLock ,ProofOkRM ,ProofOkRF 〉

BSaskRF (self)
∆= ∧pc[self] =“BSaskRF”

∧ if coordState =“published”

then ∧qrf ′ = (qrf ∪ {self })
else ∧true

∧qrf ′ = qrf
∧pc′ = [pc except ! [self] =“init bsrc”]
∧unchanged 〈assets , pState , coordState , qrm , swapGraph ,

ProofPublish ,ProofLock ,ProofOkRM ,ProofOkRF 〉

X

APPENDIX A. APPENDIX

BSource(self)
∆= init_bsrc(self)∨BdirectToR(self)∨Bother (self)∨BaskRM (self)

∨BlockAsset(self)∨BSaskRF (self)∨BrecoveringAsset(self)

init_brcp(self)
∆= ∧pc[self] =“init brcp”

∧ ∨ ∧pc′ = [pc except ! [self] =“BRaskRF”]
∨ ∧pc′ = [pc except ! [self] =“BRretrievingAsset”]
∨ ∧pc′ = [pc except ! [self] =“BRdirectToS”]
∨ ∧pc′ = [pc except ! [self] =“BRother”]

∧unchanged 〈assets , pState , coordState , qrm , qrf , swapGraph ,
ProofPublish ,ProofLock ,ProofOkRM ,ProofOkRF 〉

BRdirectToS (self)
∆= ∧pc[self] =“BRdirectToS”

∧ if self ∈ Recipients ∧assets[AofR(self)] =“OwR”

then ∧assets ′ = [assets except ! [AofR(self)] =“OwS”]
else ∧true

∧unchanged assets

∧pc′ = [pc except ! [self] =“init brcp”]
∧unchanged 〈pState , coordState , qrm , qrf , swapGraph ,

ProofPublish ,ProofLock ,ProofOkRM ,ProofOkRF 〉
BRother (self)

∆= ∧pc[self] =“BRother”

∧ if self ∈ Recipients ∧assets[AofR(self)] =“OwR”

then ∧assets ′ = [assets except ! [AofR(self)] =“other”]
else ∧true

∧unchanged assets

∧pc′ = [pc except ! [self] =“init brcp”]
∧unchanged 〈pState , coordState , qrm , qrf , swapGraph ,

ProofPublish ,ProofLock ,ProofOkRM ,ProofOkRF 〉
BRretrievingAsset(self)

∆= ∧pc[self] =“BRretrievingAsset”

∧ if self ∈ Recipients ∧ProofOkRM = true

∧assets[AofR(self)] =“locked”

then ∧assets ′ = [assets except ! [AofR(self)] =“OwR”]
else ∧true

∧unchanged assets

∧pc′ = [pc except ! [self] =“init brcp”]
∧unchanged 〈pState , coordState , qrm , qrf , swapGraph ,

ProofPublish ,ProofLock ,ProofOkRM ,ProofOkRF 〉
BRaskRF (self)

∆= ∧pc[self] =“BRaskRF”

∧ if coordState =“published”

then ∧qrf ′ = (qrf ∪ {self })
else ∧true

∧qrf ′ = qrf
∧pc′ = [pc except ! [self] =“init brcp”]
∧unchanged 〈assets , pState , coordState , qrm , swapGraph ,

ProofPublish ,ProofLock ,ProofOkRM ,ProofOkRF 〉
BRecipient(self)

∆= init_brcp(self)∨BRaskRF (self)∨BRetrievingAsset(self)∨
BRother (self)∨BRdirectToS (self)

Next
∆= Publisher ∨Coordinator
∨ (∃self ∈ CSources : Source(self))
∨ (∃self ∈ BSources :BSource(self))
∨ (∃self ∈ CRecipients :Recipient(self))

XI

APPENDIX A. APPENDIX

∨ (∃self ∈ BRecipients :BRecipient(self))

Spec
∆= ∧ Init ∧2[Next]vars

∧WFvars (Next)
∧WFvars (Coordinator)
∧∀self ∈ CSources :WFvars (Source(self))
∧∀self ∈ CRecipients :WFvars (Recipient(self))

END TRANSLATION

XII

REFERENCES

References
[1] 101 blockchains. https://101blockchains.com. 38

[2] Azure cosmos db. https://github.com/Azure/azure-cosmos-tla. 71

[3] Dexter flaw. https://forum.tezosagora.org/t/dexter-flaw-discovered-funds-are-safe/
2742. 58

[4] Ethereum foundation : Ethereum and oracles. https://blog.ethereum.org/2014/07/

22/ethereum-and-oracles/. 100

[5] Foley. https://www.foley.com/en/. 38

[6] Medium. https://medium.com. 38

[7] Parity. https://www.parity.io. 7, 19

[8] Parity wallet hack. https://blog.openzeppelin.com/

on-the-parity-wallet-multisig-hack-405a8c12e8f7/. 7, 19

[9] Tendermint. https://tendermint.com. 185, 186, 188

[10] Tesnim Abdellatif and Kei-Léo Brousmiche. Formal verification of smart contracts based on
users and blockchain behaviors models. In 2018 9th IFIP International Conference on New
Technologies, Mobility and Security (NTMS), pages 1–5. IEEE, 2018. 44, 45, 46, 47

[11] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel, Martin Giese, Reiner
Hähnle, Wolfram Menzel, Wojciech Mostowski, Andreas Roth, Steffen Schlager, et al. The
key tool. Software & Systems Modeling, 4(1):32–54, 2005. 48

[12] Wolfgang Ahrendt, Richard Bubel, Joshua Ellul, Gordon J Pace, Raúl Pardo, Vincent Rebis-
coul, and Gerardo Schneider. Verification of smart contract business logic. In International
Conference on Fundamentals of Software Engineering, pages 228–243. Springer, 2019. 47, 49,
50

[13] Algorand. Algorand virtual machine. https://developer.algorand.org/docs/

get-details/dapps/avm/. 195

[14] Victor Allombert, Mathias Bourgoin, and Julien Tesson. Introduction to the tezos
blockchain. In 2019 International Conference on High Performance Computing & Simulation
(HPCS), pages 1–10. IEEE, 2019. 49, 185

[15] Bowen Alpern and Fred B Schneider. Recognizing safety and liveness. Distributed computing,
2(3):117–126, 1987. 34

[16] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking in dense real-time. In-
formation and computation, 104(1):2–34, 1993. 46

[17] RobertoM. Amadio, Nicolas Ayache, Francois Bobot, Jaap P. Boender, Brian Campbell, Ilias
Garnier, Antoine Madet, James McKinna, Dominic P. Mulligan, Mauro Piccolo, Randy Pol-
lack, Yann Régis-Gianas, Claudio Sacerdoti Coen, Ian Stark, and Paolo Tranquilli. Certified
complexity (cerco). In Ugo Dal Lago and Ricardo Peña, editors, Foundational and Practical
Aspects of Resource Analysis, pages 1–18, Cham, 2014. Springer International Publishing. 115

[18] Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. Towards verifying
ethereum smart contract bytecode in isabelle/hol. In Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs, pages 66–77, 2018. 47, 48, 49, 50

XIII

https://101blockchains.com
https://github.com/Azure/azure-cosmos-tla
https://forum.tezosagora.org/t/dexter-flaw-discovered-funds-are-safe/2742
https://forum.tezosagora.org/t/dexter-flaw-discovered-funds-are-safe/2742
https://blog.ethereum.org/2014/07/22/ethereum-and-oracles/
https://blog.ethereum.org/2014/07/22/ethereum-and-oracles/
https://www.foley.com/en/
https://medium.com
https://www.parity.io
https://blog.openzeppelin.com/on-the-parity-wallet- multisig-hack-405a8c12e8f7/
https://blog.openzeppelin.com/on-the-parity-wallet- multisig-hack-405a8c12e8f7/
https://tendermint.com
https://developer.algorand.org/docs/get-details/dapps/avm/
https://developer.algorand.org/docs/get-details/dapps/avm/

REFERENCES

[19] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. Caper: a cross-
application permissioned blockchain. Proceedings of the VLDB Endowment, 12(11):1385–
1398, 2019. 52, 57, 58

[20] Emmanuelle Anceaume, Antonella Del Pozzo, Romaric Ludinard, Maria Potop-Butucaru,
and Sara Tucci-Piergiovanni. Blockchain abstract data type. In The 31st ACM Symposium on
Parallelism in Algorithms and Architectures, pages 349–358, 2019. 38

[21] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
AngeloDeCaro, David Enyeart, Christopher Ferris, Gennady Laventman, YacovManevich,
et al. Hyperledger fabric: a distributed operating system for permissioned blockchains. In
Proceedings of the thirteenth EuroSys conference, pages 1–15, 2018. 7, 18, 40, 48, 185, 188

[22] Frederik Armknecht, Ghassan OKarame, AvikarshaMandal, Franck Youssef, and Erik Zen-
ner. Ripple: Overview and outlook. In International Conference on Trust and Trustworthy
Computing, pages 163–180. Springer, 2015. 41, 185

[23] Martin Arrivets. Monet: Mobile ad hoc blockchains, 2018. 41, 185, 186, 188

[24] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on ethereum
smart contracts. In Principles of Security and Trust, pages 164–186. Springer, 2017. 7, 19, 44,
51, 97, 98, 104, XXVII

[25] Babble. Babble consensus. https://github.com/mosaicnetworks/babble. 41

[26] Xiaomin Bai, Zijing Cheng, Zhangbo Duan, and Kai Hu. Formal modeling and verification
of smart contracts. In Proceedings of the 2018 7th international conference on software and
computer applications, pages 322–326, 2018. 44, 45, 46, 47

[27] Christel Baier, Joost-Pieter Katoen, and KimGuldstrand Larsen. Principles of model checking.
MIT press, 2008. 11, 22

[28] Leemon Baird. The swirlds hashgraph consensus algorithm: Fair, fast, byzantine fault toler-
ance. Swirlds Tech Reports SWIRLDS-TR-2016-01, Tech. Rep, 2016. 30

[29] Leemon Baird, Mance Harmon, and Paul Madsen. Hedera: A public hashgraph network &
governing council. White Paper, 1, 2019. 30

[30] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović,
Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Proceedings of the 23rd Interna-
tional Conference on Computer Aided Verification. Springer, 2011. 48, 65, 72

[31] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous real-time compo-
nents in bip. In Fourth IEEE International Conference on Software Engineering and Formal
Methods (SEFM’06), pages 3–12. Ieee, 2006. 45

[32] Bernhard Beckert, Jonas Schiffl, and Mattias Ulbrich. Smart contracts: application scenarios
for deductive program verification. In International Symposium on Formal Methods, pages
293–298. Springer, 2019. 47, 48, 50

[33] Robert Beers. Pre-rtl formal verification: an intel experience. In Proceedings of the 45th
Annual Design Automation Conference, pages 806–811, 2008. 71

[34] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John Håkansson, Paul Petters-
son, Wang Yi, and Martijn Hendriks. Uppaal 4.0. 2006. 46

[35] Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia. A sur-
vey on blockchain interoperability: Past, present, and future trends. arXiv preprint
arXiv:2005.14282, 2020. 8, 20

XIV

https://github.com/mosaicnetworks/babble

REFERENCES

[36] Bruno Bernardo, Raphaël Cauderlier, Zhenlei Hu, Basile Pesin, and Julien Tesson. Mi-cho-
coq, a framework for certifying tezos smart contracts. In International Symposium on Formal
Methods, pages 368–379. Springer, 2019. 47, 49, 50

[37] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency control and
recovery in database systems, volume 370. Addison-wesley New York, 1987. 28, 53, 126

[38] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha Gollamudi,
Georges Gonthier, NadimKobeissi, Natalia Kulatova, AseemRastogi, Thomas Sibut-Pinote,
Nikhil Swamy, et al. Formal verification of smart contracts: Short paper. In Proceedings of
the 2016 ACMworkshop on programming languages and analysis for security, pages 91–96, 2016.
44, 47, 49, 50

[39] Ken Birman. The promise, and limitations, of gossip protocols. ACM SIGOPS Operating
Systems Review, 41(5):8–13, 2007. 30

[40] Matthew Black, Tingwei Liu, and Tony Cai. Atomic loans: Cryptocurrency debt instru-
ments. arXiv preprint arXiv:1901.05117, 2019. 53

[41] F Bobot, Sylvain Conchon, Évelyne Contejean, Mohamed Iguernelala, Stéphane Lescuyer,
and Alain Mebsout. The alt-ergo automated theorem prover, 2008. 65

[42] Richard Bonichon, David Delahaye, and Damien Doligez. Zenon: An extensible automated
theorem prover producing checkable proofs. In International Conference on Logic for Pro-
gramming Artificial Intelligence and Reasoning, pages 151–165. Springer, 2007. 72

[43] Michael Borkowski, Christoph Ritzer, Daniel McDonald, and Stefan Schulte. Caught in
chains: Claim-first transactions for cross-blockchain asset transfers. Technische Universität
Wien, Whitepaper, 2018. 56, 57, 58

[44] Rory Bowden, Holger Paul Keeler, Anthony EKrzesinski, and Peter GTaylor. Block arrivals
in the bitcoin blockchain. arXiv preprint arXiv:1801.07447, 2018. 36

[45] Robert S Boyer, Bernard Elspas, and Karl N Levitt. Select—a formal system for testing and
debugging programs by symbolic execution. ACM SigPlan Notices, 10(6):234–245, 1975. 50

[46] Vıctor Braberman, Alfredo Olivero, and Fernando Schapachnik. Zeus: A distributed timed
model-checker based on kronos. Electronic notes in theoretical computer science, 68(4):503–
522, 2002. 45

[47] Richard Gendal Brown, James Carlyle, Ian Grigg, and Mike Hearn. Corda: an introduction.
R3 CEV, August, 1(15):14, 2016. 40

[48] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains. PhD thesis,
University of Guelph, 2016. 185

[49] Daniel Burkhardt, Maximilian Werling, and Heiner Lasi. Distributed ledger. In 2018 IEEE
International Conference on Engineering, Technology and Innovation (ICE/ITMC), pages 1–9,
2018. 29

[50] Vitalik Buterin et al. A next-generation smart contract and decentralized application plat-
form. white paper, 2014. 4, 5, 16, 17, 178, 185

[51] Cardano. Cardano blockchain. https://docs.cardano.org/. 185

[52] Cardano. Plutus. the scripting language embedded in the cardano ledger. https://github.
com/input-output-hk/plutus. 186

XV

https://docs.cardano.org/
https://github.com/input-output-hk/plutus
https://github.com/input-output-hk/plutus

REFERENCES

[53] Glenn Carl, George Kesidis, Richard R Brooks, and Suresh Rai. Denial-of-service attack-
detection techniques. IEEE Internet computing, 10(1):82–89, 2006. 36

[54] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. InOSDI, volume 99,
pages 173–186, 1999. 6, 17, 37, 188

[55] Roberto Cavada, Alessandro Cimatti, Charles Arthur Jochim, Gavin Keighren, Emanuele
Olivetti, Marco Pistore, Marco Roveri, and Andrei Tchaltsev. Nusmv 2.4 user manual. CMU
and ITC-irst, 2005. 11, 22, 45

[56] Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. Verifying safety
properties with the tla+ proof system. In International Joint Conference on Automated Rea-
soning, pages 142–148. Springer, 2010. 72

[57] Christopher D Clack, Vikram A Bakshi, and Lee Braine. Smart contract templates: foun-
dations, design landscape and research directions. arXiv preprint arXiv:1608.00771, 2016. 6,
18

[58] Edmund M Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT press, 1999. 5,
10, 11, 17, 22, 150

[59] Martin Clochard, Jean-Christophe Filliâtre, and Andrei Paskevich. How to avoid proving
the absence of integer overflows. InWorking Conference on Verified Software: Theories, Tools,
and Experiments, pages 94–109. Springer, 2015. 103

[60] Sylvain Conchon, Amit Goel, Sava Krstić, Alain Mebsout, and Fatiha Zaïdi. Cubicle: A
parallel smt-based model checker for parameterized systems. In International Conference on
Computer Aided Verification, pages 718–724. Springer, 2012. 46

[61] Sylvain Conchon, Alexandrina Korneva, and Fatiha Zaïdi. Verifying smart contracts with
cubicle. In International Symposium on Formal Methods, pages 312–324. Springer, 2019. 44,
46, 47

[62] Coq. The coq proof assistant. https://coq.inria.fr. 48, 49, 65

[63] Patrick Cousot. The role of abstract interpretation in formal methods. pages 135 – 140, 10
2007. 11, 22

[64] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and
Boris Yakobowski. Frama-c. In International conference on software engineering and formal
methods, pages 233–247. Springer, 2012. 10, 22

[65] Luís Pedro Arrojado da Horta, João Santos Reis, Mário Pereira, and Simão Melo
de Sousa. Whylson: Proving your michelson smart contracts in why3. arXiv preprint
arXiv:2005.14650, 2020. 47, 49, 50

[66] Stefano De Angelis, Leonardo Aniello, Roberto Baldoni, Federico Lombardi, Andrea
Margheri, and Vladimiro Sassone. Pbft vs proof-of-authority: Applying the cap theorem
to permissioned blockchain. 2018. 6, 17, 36, 37

[67] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages 337–
340. Springer, 2008. 48, 65, 72

[68] Christian Decker and Roger Wattenhofer. A fast and scalable payment network with bit-
coin duplex micropayment channels. In Symposium on Self-Stabilizing Systems, pages 3–18.
Springer, 2015. 52, 58

XVI

https://coq.inria.fr

REFERENCES

[69] Edsger W Dijkstra. Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communications of the ACM, 18(8):453–457, 1975. 64

[70] Ian Domowitz. A taxonomy of automated trade execution systems. Journal of International
Money and Finance, 12:607–631, 1993. 109

[71] John R Douceur. The sybil attack. In International workshop on peer-to-peer systems, pages
251–260. Springer, 2002. 36

[72] Mark Dowson. The ariane 5 software failure. ACM SIGSOFT Software Engineering Notes,
22:84, 1997. 9, 20

[73] Ta Nguyen Binh Duong and Suiping Zhou. A dynamic load sharing algorithm for massively
multiplayer online games. In The 11th IEEE International Conference on Networks, 2003.
ICON2003., pages 131–136. IEEE, 2003. 28

[74] BrunoDutertre. Yices 2.2. In International Conference on Computer Aided Verification, pages
737–744. Springer, 2014. 48

[75] Ariel Ekblaw, Asaph Azaria, John D Halamka, and Andrew Lippman. A case study for
blockchain in healthcare:medrec prototype for electronic health records andmedical research
data. In Proceedings of IEEE open & big data conference, volume 13, page 13, 2016. 4, 16

[76] S Epp. Proof issues with existential quantification. In Proceedings of the ICMI study 19 con-
ference: Proof and Proving in Mathematics Education, volume 1, pages 154–159, 2009. 74

[77] Ethereum. Btc relay. https://github.com/ethereum/btcrelay. 53, 56

[78] Ethereum. Ethereum foundation. the solidity contract-oriented programming language.
https://github.com/ethereum/solidity. 6, 18, 44, 96, 186

[79] Ethereum. Simple payment verification (spv). https://electrum.readthedocs.io/en/
latest/spv.html. 56

[80] Kuan Fan, Zijian Bao, Mingxi Liu, Athanasios V Vasilakos, and Wenbo Shi. Dredas: De-
centralized, reliable and efficient remote outsourced data auditing scheme with blockchain
smart contract for industrial iot. Future Generation Computer Systems, 110:665–674, 2020. 44

[81] Yi Fang, Kenneth L McMillan, Amir Pnueli, and Lenore D Zuck. Liveness by invisible
invariants. In International Conference on Formal Techniques for Networked and Distributed
Systems, pages 356–371. Springer, 2006. 196

[82] Antonio Fernández Anta, Chryssis Georgiou, Maurice Herlihy, and Maria Potop-Butucaru.
Principles of blockchain systems. Synthesis Lectures on Computer Science, (0):1–213, 2021. 37

[83] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 – where programs meet provers. In
European Symposium on Programming, pages 125–128. Springer, 2013. 10, 22, 65, 96

[84] George Foroglou and Anna-Lali Tsilidou. Further applications of the blockchain. Columbia
University PhD in Sustainable Development, 10, 2015. 4, 16

[85] Marc Frappier, Benoît Fraikin, Romain Chossart, Raphaël Chane-Yack-Fa, and Mohammed
Ouenzar. Comparison of model checking tools for information systems. In International
Conference on Formal Engineering Methods, pages 581–596. Springer, 2010. 11, 22

[86] Daniel Fullmer and A Stephen Morse. Analysis of difficulty control in bitcoin and proof-of-
work blockchains. In 2018 IEEEConference onDecision andControl (CDC), pages 5988–5992.
IEEE, 2018. 36

XVII

https://github.com/ethereum/btcrelay
https://github.com/ethereum/solidity
https://electrum.readthedocs.io/en/latest/spv.html
https://electrum.readthedocs.io/en/latest/spv.html

REFERENCES

[87] Peter Gammie and Ron van der Meyden. Mck: Model checking the logic of knowledge. In
International Conference on Computer Aided Verification, pages 479–483. Springer, 2004. 58

[88] Alberto Garoffolo, Dmytro Kaidalov, and Roman Oliynykov. Zendoo: a zk-snark verifiable
cross-chain transfer protocol enabling decoupled and decentralized sidechains. In 2020 IEEE
40th International Conference on Distributed Computing Systems (ICDCS), pages 1257–1262.
IEEE, 2020. 53, 56, 57, 58

[89] Peter Gaži, Aggelos Kiayias, and Dionysis Zindros. Proof-of-stake sidechains. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 139–156. IEEE, 2019. 56

[90] Pradyumna Gokhale, Omkar Bhat, and Sagar Bhat. Introduction to iot. International Ad-
vanced Research Journal in Science, Engineering and Technology, 5(1):41–44, 2018. 30

[91] OdedGoldreich andYairOren. Definitions and properties of zero-knowledge proof systems.
Journal of Cryptology, 7(1):1–32, 1994. 127

[92] JimGray and Leslie Lamport. Consensus on transaction commit. ACMTrans. Database Syst.,
31(1):133–160, mar 2006. 28

[93] Gideon Greenspan. Multichain. https://www.multichain.com/download/

MultiChain-White-Paper.pdf. 42, 185, 188

[94] BitFury Group. Public versus private blockchains. https://bitfury.com/content/

downloads/public-vs-private-pt1-1.pdf, 2015. 38

[95] Joël Gugger. Bitcoin-monero cross-chain atomic swap. IACR Cryptol. ePrint Arch.,
2020:1126, 2020. 52, 53, 55, 57, 58

[96] Kim Guldstrand Larsen, Paul Pettersson, and Wang yi. Uppaal in a nutshell. 1:134–152, 12
1997. 11, 22

[97] Vassos Hadzilacos. On the relationship between the atomic commitment and consensus
problems. In Fault-Tolerant Distributed Computing, pages 201–208. Springer, 1990. 28

[98] ÁkosHajdu andDejan Jovanović. solc-verify: Amodular verifier for solidity smart contracts.
In Working Conference on Verified Software: Theories, Tools, and Experiments, pages 161–179.
Springer, 2019. 44, 47, 48, 49, 50

[99] Yucen He, Xinyi Zhu, Fangfang Xu, Yulu Wu, Xiang Fan, Xin Cui, Xiangrui Kong, and
Bobinson Kalarikkal Bobby. A novel cross-chain mechanism for blockchains. In Interna-
tional Conference on Smart Blockchain, pages 139–148. Springer, 2018. 57, 58, 122

[100] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse attacks on
{Bitcoin’s}{Peer-to-Peer} network. In 24th USENIX Security Symposium (USENIX Security
15), pages 129–144, 2015. 57

[101] Maurice Herlihy. Atomic cross-chain swaps. In Proceedings of the 2018 ACM symposium on
principles of distributed computing, pages 245–254, 2018. 52, 53, 54, 57, 58, 59, 122, 124

[102] Maurice Herlihy, Barbara Liskov, and Liuba Shrira. Cross-chain deals and adversarial com-
merce. Proceedings of the VLDB Endowment, 13(2):100–113, 2019. 52, 53, 54, 57, 58, 122,
124, 177

[103] Yoichi Hirai. Defining the ethereum virtual machine for interactive theorem provers. In In-
ternational Conference on Financial Cryptography and Data Security, pages 520–535. Springer,
2017. 47, 48, 49, 50

XVIII

https://www.multichain.com/download/MultiChain-White-Paper.pdf
https://www.multichain.com/download/MultiChain-White-Paper.pdf
https://bitfury.com/content/downloads/public-vs-private-pt1-1.pdf
https://bitfury.com/content/downloads/public-vs-private-pt1-1.pdf

REFERENCES

[104] Yoichi Hirai. Blockchains as kripke models: An analysis of atomic cross-chain swap. In Inter-
national Symposium on Leveraging Applications of Formal Methods, pages 389–404. Springer,
2018. 51, 122

[105] Charles Antony Richard Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576–580, 1969. 65

[106] Gerard Holzmann. Spin Model Checker, the: Primer and Reference Manual. Addison-Wesley
Professional, first edition, 2003. 11, 22, 44

[107] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and reasoning about
systems. Cambridge university press, 2004. 10, 21, 62, 63

[108] Soichiro Imoto, Yuichi Sudo, Hirotsugu Kakugawa, and Toshimitsu Masuzawa. Atomic
cross-chain swaps with improved space and local time complexity. In International Sympo-
sium on Stabilizing, Safety, and Security of Distributed Systems, pages 194–208. Springer, 2019.
52, 58, 59

[109] Bart Jacobs and Frank Piessens. The verifast program verifier. Technical report, Technical
Report CW-520, Department of Computer Science, Katholieke . . . , 2008. 10, 22

[110] Pankaj Jalote. Fault tolerance in distributed systems. Prentice-Hall, Inc., 1994. 28, 32

[111] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. Zeus: analyzing safety of
smart contracts. In Ndss, pages 1–12, 2018. 44, 45, 46, 47

[112] Dmitry Khovratovich and Jason Law. Sovrin: digital identities in the blockchain era. Github
Commit by jasonalaw October, 17:38–99, 2017. 41

[113] Igor Konnov, Marijana Lazić, Ilina Stoilkovska, and Josef Widder. Tutorial: Parameterized
verification with byzantine model checker. In International Conference on Formal Techniques
for Distributed Objects, Components, and Systems, pages 189–207. Springer, 2020. 58

[114] Sakthi Kumaresh. Academic blockchain: An application of blockchain technology in edu-
cation system. In Neha Sharma, Amlan Chakrabarti, Valentina Emilia Balas, and Jan Marti-
novic, editors, Data Management, Analytics and Innovation, pages 435–448, Singapore, 2021.
Springer Singapore. 44

[115] Jae Kwon. Tendermint: Consensus without mining. Draft v. 0.6, fall, 1(11), 2014. 178

[116] Jae Kwon and Ethan Buchman. Cosmos whitepaper. A Netw. Distrib. Ledgers, 2019. 185,
186, 188

[117] Yujin Kwon, Hyoungshick Kim, Jinwoo Shin, and Yongdae Kim. Bitcoin vs. bitcoin cash:
Coexistence or downfall of bitcoin cash? In 2019 IEEE Symposium on Security and Privacy
(SP), pages 935–951. IEEE, 2019. 37

[118] Nomadic Labs. Emmy+: an improved consensus algo-
rithm. https://research-development.nomadic-labs.com/

emmy-an-improved-consensus-algorithm.html. 187

[119] Leslie Lamport. The temporal logic of actions. ACMTransactions on Programming Languages
and Systems (TOPLAS), 16(3):872–923, 1994. 71

[120] Leslie Lamport. Specifying systems: the TLA+ language and tools for hardware and software
engineers. Addison-Wesley Longman Publishing Co., Inc., 2002. 11, 22, 59

[121] Leslie Lamport. The pluscal algorithm language. In International Colloquium on Theoretical
Aspects of Computing, pages 36–60. Springer, 2009. 72

XIX

https://research-development.nomadic-labs.com/emmy-an-improved-consensus-algorithm.html
https://research-development.nomadic-labs.com/emmy-an-improved-consensus-algorithm.html

REFERENCES

[122] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. In Concur-
rency: the Works of Leslie Lamport, pages 179–196. 2019. 28, 31

[123] Leslie Lamport and Lawrence C Paulson. Should your specification language be typed. ACM
Transactions on Programming Languages and Systems (TOPLAS), 21(3):502–526, 1999. 82

[124] Leslie Lamport and Fred B Schneider. The“hoare logic”of csp, and all that. ACMTransactions
on Programming Languages and Systems (TOPLAS), 6(2):281–296, 1984. 33

[125] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. In
Concurrency: the Works of Leslie Lamport, pages 203–226. 2019. 30, 37, 55, 178, 188

[126] Rongjian Lan, Ganesha Upadhyaya, Stephen Tse, and Mahdi Zamani. Horizon: A gas-
efficient, trustless bridge for cross-chain transactions. arXiv preprint arXiv:2101.06000, 2021.
53, 55, 58

[127] Gary T Leavens, Albert L Baker, and Clyde Ruby. Jml: a java modeling language. In Formal
Underpinnings of Java Workshop (at OOPSLA’98), pages 404–420. Citeseer, 1998. 49

[128] Matthias Lehmann. Who owns bitcoin: Private law facing the blockchain. Minn. JL Sci. &
Tech., 21:93, 2019. 34

[129] K Rustan M Leino. This is boogie 2. manuscript KRML, 178(131):9, 2008. 48

[130] K Rustan M Leino. Dafny: An automatic program verifier for functional correctness. In
International Conference on Logic for Programming Artificial Intelligence and Reasoning, pages
348–370. Springer, 2010. 10, 22

[131] Michael Leuschel, Michael Butler, et al. Prob: A model checker for b. In FME, volume 2805,
pages 855–874. Springer, 2003. 11, 22

[132] Fan Long, Stelios Sidiroglou-Douskos, and Martin Rinard. Automatic runtime error repair
and containment via recovery shepherding. In ACM SIGPLAN Notices, volume 49, pages
227–238. ACM, 2014. 103

[133] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Making smart
contracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 254–269. ACM, 2016. 44, 51, 97

[134] Nancy A Lynch. Distributed algorithms. Elsevier, 1996. 9, 20, 28, 31

[135] Laurent Mauborgne. Astrée: Verification of absence of runtime error. In Building the Infor-
mation Society, pages 385–392. Springer, 2004. 103

[136] Roger Maull, Phil Godsiff, Catherine Mulligan, Alan Brown, and Beth Kewell. Distributed
ledger technology: Applications and implications. Strategic Change, 26(5):481–489, 2017. 28

[137] Anastasia Mavridou and Aron Laszka. Designing secure ethereum smart contracts: A finite
state machine based approach. In International Conference on Financial Cryptography and
Data Security, pages 523–540. Springer, 2018. 51

[138] Kenneth L McMillan. Symbolic model checking. In Symbolic Model Checking, pages 25–60.
Springer, 1993. 45

[139] Esther Mengelkamp, Johannes Gärttner, Kerstin Rock, Scott Kessler, Lawrence Orsini, and
Christof Weinhardt. Designing microgrid energy markets: a case study: the brooklyn mi-
crogrid. Applied Energy, 2017. 105

XX

REFERENCES

[140] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of bft
protocols. In Proceedings of the 2016 ACM SIGSAC conference on computer and communica-
tions security, pages 31–42, 2016. 188

[141] Yiannis Moschovakis. Paradoxes and axioms. Notes on Set Theory, pages 19–31, 2006. 71

[142] Dominic P Mulligan, Scott Owens, Kathryn E Gray, Tom Ridge, and Peter Sewell. Lem:
reusable engineering of real-world semantics. ACM SIGPLAN Notices, 49(9):175–188, 2014.
48

[143] Multi-chain. Smart filters. https://www.multichain.com/developers/

smart-filters/. 187

[144] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report,
Manubot, 2019. 4, 5, 16, 17, 30, 36, 37, 38, 178, 185

[145] ES Negara, AN Hidyanto, R Andryani, and D Erlansyah. A survey blockchain and smart
contract technology in government agencies. In IOP Conference Series: Materials Science and
Engineering, volume 1071, page 012026. IOP Publishing, 2021. 44

[146] ZeinabNehaï and François Bobot. Deductive proof of industrial smart contracts using why3.
In International Symposium on Formal Methods, pages 299–311. Springer, 2019. 12, 23, 51

[147] ZeinabNehaï, François Bobot, Sara Tucci-Piergiovanni, Carole Delporte-Gallet, andHugues
Fauconnier. A tla+ formal proof of a cross-chain swap. In 23rd International Conference on
Distributed Computing and Networking, pages 148–159, 2022. 13, 24, 59

[148] Zeinab Nehaï, Pierre-Yves Piriou, and Frédéric Daumas. Model-checking of smart contracts.
In The 2018 IEEE International Conference on Blockchain. IEEE, 2018. 44, 45, 46, 47, 105, 117

[149] Neo. Neo virtual machine. https://docs.neo.org/docs/en-us/basic/neovm.html.
195

[150] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael
Deardeuff. How amazon web services uses formal methods. Communications of the ACM,
58(4):66–73, 2015. 71

[151] Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Isabelle/HOL: a proof assistant
for higher-order logic. Springer, 2002. 48

[152] Haroon Shakirat Oluwatosin. Client-server model. IOSRJ Comput. Eng, 16(1):2278–8727,
2014. 28

[153] Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm.
In 2014 USENIX Annual Technical Conference (Usenix ATC 14), pages 305–319, 2014. 40

[154] Thomas Osterland and Thomas Rose. Model checking smart contracts for ethereum. Perva-
sive and Mobile Computing, 63:101129, 2020. 44, 45, 46, 47

[155] Woong Sub Park, Hyuk Lee, and Jin-Young Choi. Formal modeling of smart contract-
based trading system. In 2022 24th International Conference on Advanced Communication
Technology (ICACT), pages 48–52. IEEE, 2022. 44, 46, 47

[156] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science (sfcs 1977), pages 46–57. ieee, 1977. 63

[157] Julien Polge, Jérémy Robert, and Yves Le Traon. Permissioned blockchain frameworks in
the industry: A comparison. Ict Express, 7(2):229–233, 2021. 38

XXI

https://www.multichain.com/developers/smart-filters/
https://www.multichain.com/developers/smart-filters/
https://docs.neo.org/docs/en-us/basic/neovm.html

REFERENCES

[158] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain instant
payments, 2016. 39

[159] Serguei Popov. The tangle. White paper, 1(3), 2018. 30

[160] Tahmid Hasan Pranto, Abdulla All Noman, Atik Mahmud, and AKM Bahalul Haque.
Blockchain and smart contract for iot enabled smart agriculture. PeerJ Computer Science,
7:e407, 2021. 7, 18

[161] Quorum. Consensys quorum. https://github.com/ConsenSys/quorum/blob/

master/docs/Quorum20Whitepaper20v0.2.pdf. 40, 185, 188

[162] Carroline Dewi Puspa Kencana Ramli, Hanne Riis Nielson, and Flemming Nielson. The
logic of xacml. Science of Computer Programming, 83:80–105, 2014. 45

[163] Alan JA Robinson and Andrei Voronkov. Handbook of automated reasoning, volume 1. El-
sevier, 2001. 5, 17, 150

[164] Jesus Ruiz. Public-permissioned blockchains as common-pool resources. PhD thesis, Alastria
Blockchain Ecosystem, 2020. 38

[165] Brahmananda Sapkota, Dumitru Roman, Sebastian Ryszard Kruk, and Dieter Fensel. Dis-
tributed web service discovery architecture. In Advanced Int’l Conference on Telecommuni-
cations and Int’l Conference on Internet and Web Applications and Services (AICT-ICIW’06),
pages 136–136. IEEE, 2006. 28

[166] Fabian Schär. Decentralized finance: On blockchain-and smart contract-based financial mar-
kets. FRB of St. Louis Review, 2021. 4, 7, 16, 18

[167] A Secure. The zilliqa project: A secure, scalable blockchain platform. 2018. 178, 185, 188

[168] Ilya Sergey, Amrit Kumar, and Aquinas Hobor. Scilla: a smart contract intermediate-level
language. arXiv preprint arXiv:1801.00687, 2018. 186

[169] Narges Shadab, Farzin Houshmand, and Mohsen Lesani. Cross-chain transactions. In 2020
IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pages 1–9. IEEE,
2020. 52, 58, 122

[170] Konrad Slind and Michael Norrish. A brief overview of hol4. In International Conference
on Theorem Proving in Higher Order Logics, pages 28–32. Springer, 2008. 48

[171] Ralf Steinmetz andKlausWehrle. Peer-to-peer systems and applications, volume 3485. Springer,
2005. 28

[172] Nick Szabo. Smart contracts. https://www.fon.hum.uva.nl/rob/Courses/

InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.

vwh.net/smart.contracts.html. 6, 18, 186

[173] Tezos. Michelson: the language of smart contracts in tezos. https://tezos.gitlab.io/
active/michelson.html. 7, 18, 49, 186

[174] Shobha Tyagi and Madhumita Kathuria. Study on Blockchain Scalability Solutions, page
394–401. Association for Computing Machinery, New York, NY, USA, 2021. 39

[175] Ron van der Meyden. On the specification and verification of atomic swap smart contracts.
arXiv preprint arXiv:1811.06099, 2018. 58

[176] Rob van Glabbeek, Vincent Gramoli, and Pierre Tholoniat. Cross-chain payment protocols
with success guarantees. arXiv preprint arXiv:1912.04513, 2019. 52, 56, 57, 58, 122

XXII

https://github.com/ConsenSys/quorum/blob/master/docs/Quorum20Whitepaper20v0.2.pdf
https://github.com/ConsenSys/quorum/blob/master/docs/Quorum20Whitepaper20v0.2.pdf
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://tezos.gitlab.io/active/michelson.html
https://tezos.gitlab.io/active/michelson.html

REFERENCES

[177] Lauren van Haaften-Schick and AmyWhitaker. From the artist’s contract to the blockchain
ledger: New forms of artists’ funding using equity and resale royalties. Available at SSRN
3842210, 2021. 44

[178] Pavel Vasin. Blackcoin’s proof-of-stake protocol v2. URL: https://blackcoin. co/blackcoin-
pos-protocol-v2-whitepaper. pdf, 71, 2014. 6, 17, 36, 37, 178

[179] Eric Verhulst, Raymond T Boute, José Miguel Sampaio Faria, Bernhard HC Sputh, and
Vitaliy Mezhuyev. Formal Development of a Network-Centric RTOS: software engineering for
reliable embedded systems. Springer Science & Business Media, 2011. 71

[180] Meng Wang, Junfeng Tian, and Hong Zhang. Umc4m: A verification tool via program
execution. In International Workshop on Structured Object-Oriented Formal Language and
Method, pages 88–98. Springer, 2019. 46

[181] Xiaobing Wang, Cong Tian, Zhenhua Duan, and Liang Zhao. Msvl: a typed language for
temporal logic programming. Frontiers of Computer Science, 11:762–785, 2016. 46

[182] Xiaobing Wang, Xiaoyu Yang, and Chunyi Li. A formal verification method for smart
contract. In 2020 7th International Conference on Dependable Systems and Their Applications
(DSA), pages 31–36. IEEE, 2020. 44, 46, 47

[183] Peter Wegner. Interoperability. ACMComputing Surveys (CSUR), 28(1):285–287, 1996. 8, 19

[184] Makarius Wenzel, Lawrence C Paulson, and Tobias Nipkow. The isabelle framework. In
International Conference on Theorem Proving in Higher Order Logics, pages 33–38. Springer,
2008. 72

[185] The Why3 development team. Why3 documentation - release 1.4.0. http://why3.lri.fr/
manual.pdf. 69, XXVII

[186] Wiki. Hash time locked contracts. https://en.bitcoin.it/wiki/Hash_Time_Locked_
Contracts. 52

[187] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151:1–32, 2014. 4, 6, 16, 18, 38, 97, 104, 113, 116, XXVII

[188] Brent Xu, Dhruv Luthra, Zak Cole, and Nate Blakely. Eos: An architectural, performance,
and economic analysis. Retrieved June, 11:2019, 2018. 41, 185, 188

[189] Fan Yang, Wei Zhou, QingQing Wu, Rui Long, Neal N Xiong, and Meiqi Zhou. Delegated
proof of stake with downgrade: A secure and efficient blockchain consensus algorithm with
downgrade mechanism. IEEE Access, 7:118541–118555, 2019. 36

[190] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking tla+ specifications. In
Advanced ResearchWorking Conference on Correct Hardware Design and Verification Methods,
pages 54–66. Springer, 1999. 11, 22, 71

[191] Victor Zakhary, Divyakant Agrawal, and Amr El Abbadi. Atomic commitment across
blockchains. arXiv preprint arXiv:1905.02847, 2019. 9, 20, 52, 53, 54, 57, 58, 124, 126

[192] Victor Zakhary, Mohammad Javad Amiri, Sujaya Maiyya, Divyakant Agrawal, and Amr El
Abbadi. Towards global asset management in blockchain systems. arXiv preprint
arXiv:1905.09359, 2019. 35

[193] Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayiotis Panayiotou, Arthur Gervais, and
William Knottenbelt. Xclaim: Trustless, interoperable, cryptocurrency-backed assets. In
2019 IEEE Symposium on Security and Privacy (SP), pages 193–210. IEEE, 2019. 8, 20, 53, 55,
58

XXIII

http://why3.lri.fr/manual.pdf
http://why3.lri.fr/manual.pdf
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts

REFERENCES

[194] Zcash. zk-snarks. https://z.cash/technology/zksnarks/. 56

[195] Jean-Yves Zie, Jean-Christophe Deneuville, Jérémy Briffaut, and Benjamin Nguyen. Extend-
ing atomic cross-chain swaps. In Data Privacy Management, Cryptocurrencies and Blockchain
Technology, pages 219–229. Springer, 2019. 52, 53, 57, 58, 122

XXIV

https://z.cash/technology/zksnarks/

List of Figures

1 Structure de données d’une blockchain . 6
2 Les couches d’une blockchain . 7
3 Processus interactif de démonstration de théorèmes 10
4 Processus de la vérification de modèles . 11

1.1 Data structure of a blockchain . 18
1.2 Blockchain layers . 19
1.3 Interactive theorem proving process . 21
1.4 Model-checking process . 22

2.1 Phases of the Two-Phase Commit algorithm . 29
2.2 State machine of participant p . 31
2.3 Classification of failure types . 32
2.4 Temporary fork of a blockchain . 37

4.1 p holds on the entire path . 63
4.2 p holds some time in the future . 63
4.3 p holds at the next state . 63
4.4 p holds in all possible path execution . 64
4.5 p holds at least in one path execution . 64
4.6 The Why3 GUI . 71
4.7 The theorem Init =⇒ Inv represented in TLA+ toolbox 87

5.1 Data routing process between on-chain and off-chain 101
5.2 The BEMP Process . 105
5.3 Trading algorithm diagram . 110

6.1 A swap graph S with Π= {A,B ,C } and E = {e1,e2,e3,e4} 123
6.2 Representation of an asset ai possible states . 126
6.3 State machine of the publisher . 128
6.4 State machine of the coordinator . 128
6.5 State machine of a source si . 129
6.6 State machine of a recipient ri . 130

7.1 Screenshot of the TLA+ toolbox . 170
7.2 Example of a counter-example . 170

8.1 The execution flow of a redeem scenario . 184
8.2 The execution flow of a refund scenario . 184

XXV

LIST OF FIGURES

XXVI

List of Tables

2.1 Elements of the participant p’s state machine . 31
2.2 Comparison between blockchain types . 42

3.1 Various approachs of smart contracts’ verification using model-checking 47
3.2 Various approachs of smart contracts’ verification using deductive verification . . . 50
3.3 Various cross-chain swap algorithms . 58

4.1 Negation . 62
4.2 Conjunction . 62
4.3 Disjunction . 62
4.4 Implication . 62
4.5 Truth tables of logical operators . 62
4.6 Functions declaration from the Why3 manual [185] 69

5.1 An extract from [24] on taxonomy of vulnerabilities in Ethereum contracts 97
5.2 Statistics per prover applied to BEMP . 113
5.3 Extract from [187] of some opcodes with their description and corresponding gas

consumption . 116

6.1 Elements of the publisher . 128
6.2 Elements of the coordinator . 128
6.3 Elements of the source si . 129
6.4 Elements of the recipient ri . 130

7.1 Model-checking results . 172
7.2 Model-checking results with 6 participants, including 0 Byzantine sources 172
7.3 Model-checking results with 6 participants, including 1 Byzantine source 172
7.4 Model-checking results with 6 participants, including 2 Byzantine sources 172
7.5 Model-checking results with 6 participants, including 3 Byzantine sources 172

8.1 Compatibility of Pinst requirements of some known blockchains 188

XXVII

LIST OF TABLES

XXVIII

Listings

4.1 Example of cloning mechanism . 68
4.2 Euclidean division in WhyML . 70
5.1 A Solidity contract example . 97
5.2 The module Uint256 . 99
5.3 WhyML send function . 100
5.4 add_gas function . 100
5.5 Simple Solidity function of sending data . 102
5.6 send_data private function in WhyML . 102
5.7 send_data public function in WhyML . 102
5.8 Example of a WhyML private function from BEMP 106
5.9 Example of a WhyML public function from BEMP 107
5.10 Consumption and production records encoded in a WhyML contract 109
5.11 Additional types in WhyML contract . 111
5.12 The trading function specification . 111
5.13 An example of a simple WhyML contract . 115
5.14 The WhyML contract in opcode . 115
5.15 A function example to calculate memory allocation 116

XXIX

LISTINGS

XXX

	Contents
	I Introduction
	Introduction En Français
	Contexte et Motivation
	Contributions et Organisation

	Introduction
	Context and Motivation
	Contributions and Organisation

	II Background
	Basics of Distributed Systems and Blockchain
	Basics of Distributed Systems
	Blockchain Overview
	Conclusion

	Formalisation and Formal Proof of Blockchain Systems
	Proof of Smart Contracts
	Cross-Chain Swap Algorithms
	Conclusion

	Tools
	Mathematical Logic Notations
	Why3
	TLA+
	Conclusion

	III A Formal Language for Writing Smart Contracts
	Using Deductive Verification on Smart Contracts
	A New Approach to Writing and Verifying Smart Contracts Using Why3
	Use Case: The BEMP Decentralised Application
	Compiling WhyML Contracts and Proving gas Consumption
	Conclusion

	IV Formalisation and Proof of a Blockchain Distributed Algorithm based on Smart Contracts
	Distributed Cross-Chain Swap Algorithm
	Cross-Chain Swap Problem
	Problem Definition
	Protocol Specification
	Description of the Protocol Based on Proof-of-Actions
	P_swap Implementation in TLA+
	Conclusion

	Proof of P_swap Correctness
	Proof of the Safety Property
	Proof of the Liveness Properties
	Conclusion

	Analysis of P_swap Instantiation in a Blockchain Environment
	P_swap in a Blockchain Environment
	Protocol Compatibility with Different Known Blockchains
	Conclusion

	V Conclusion
	Conclusion
	General Conclusion of the Thesis
	Future Work

	Appendix
	Two-Phase Commit TLA+ Code
	P_swap TLA+ Code

	References
	List of Figures
	List of Tables
	Listings

