Keywords: * Initial Conditions, Type=Solution Cylinder-1.Set-1, 20.0 * Initial Conditions, type=Temperature Cylinder-1.Set-1, 20.0 * Material, name=Steel * Conductivity 34.0 * Density 7.83e-09 * Inelastic Heat Fraction 0.9 Conditions, type=Temperature Cylinder-1.Set-1, 20.0

Depvar 7 * Specific Heat 4.6e+08

The initial conditions for the VUMAT subroutine are defined in the predefined fields. In this case, the initial values of the solution-dependent variable and the temperature are defined. The values can be changed during the analysis.

Initial conditions for VUMAT Johnson-Cook constitutive law
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F rom a general point of view, it is usual to observe that one of the main difficulties in the field of mechanics, as in other fields, is the non-homogeneity of notations between the various authors. It is then easy to make completely incomprehensible the slightest theory when one decides to change notation. As the notion of universal notation is not yet valid (even if certain conventions can be assimilated to universal concepts), then we present below the set of notations used throughout this document. T his work concerns the development of an inverse identification framework for the evaluation of the optimal parameters sets for dynamic non-linear constitutive laws, which can be applied to metal forming and machining. The basic principle of this framework is to propose an appropriate parameters set for the dynamic non-linear constitutive law by minimizing the discrepancy between the experimentally measured and the numerically computed responses. In the following, the backgrounds of the parameter determining for the dynamic non-linear constitutive laws will be introduced firstly. Based on previous studies, we will propose the objective of this work. In the final section, the outline of this work will be introduced.

Notations Conventions

Parametric identification of dynamic non-linear constitutive laws

For a very long time, two prominent widely used methods of converting raw material into a product have been metal forming (Figure 1) and machining (Figure 2) [START_REF] Dixit | Modeling of metal forming and machining processes: by finite element and soft computing methods[END_REF]. Metal forming is the process of plastically deforming the raw material into product form, and machining is any of various processes in which a piece of raw material is cut into a desired final shape and size by a controlled material-removal process. Both of these processes involve large deformation of elastoplastic materials due to applied loads. Modeling and optimization of the metal forming and machining process with the help of computers can reduce expensive and time consuming experiments for manufacturing good quality products. Therefore, over the last past years, numerous studies have been concentrated on mechanical behaviors of elastoplastic materials under dynamic conditions [START_REF] Pantalé | An ale three-dimensional model of orthogonal and oblique metal cutting processes[END_REF][8][9][10].

Under large deformations and high deformation rates, dynamic non-linear constitutive laws play a significant role in predicting the mechanical behavior of materials. Therefore, the nonlinear constitutive laws have also received much attention and a great number of dynamic non-linear constitutive laws have been proposed. As different physical phenomena have been encountered, different physics (such as plasticity, thermal dependence, damage, etc) have been taken into account in the dynamic non-linear constitutive laws. One of the classic empirical non-linear constitutive law is the Johnson-Cook law, which is applicable for materials subjected to large strains, high strain rates and high temperatures [11,[START_REF] Johnson | A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[END_REF]. Andrade et al. [START_REF] Andrade | Constitutive description of work-and shock-hardened copper[END_REF] modified the temperature term of the Johnson-Cook law to model the effect of Rule and Jones [14] proposed the revised Johnson-Cook constitutive strength law, since for many ductile metals the yield strength increases more rapidly with strain rate than that described by Johnson-Cook constitutive law for strain rates in excess of 10 3 s -1 . Calamaz et al. [START_REF] Calamaz | Numerical simulation of titanium alloy dry machining with a strain softening constitutive law[END_REF] proposed TANH constitutive law by adding a term modeling the strain softening to Johnson-Cook constitutive law. If more physics are taken into account, the constitutive laws can more precisely represent the material behaviors in specific applications. However, this leads to more complicated expressions of constitutive laws and correspondingly, the implementation of these constitutive laws in numerical codes requires more parameters to be identified.

In the literature, the parameters for some dynamic non-linear constitutive laws have been determined by performing experiments [START_REF] Hendriks | Identification of the mechanical behavior of solid materials[END_REF]. Specimens with a well designed shape are manufactured under the assumption that they are representative for the material mechanical properties. The design of the samples and the choice of the applied loading are meant to lead specific deformation in the useful zone of the sample. The stress, strain and other quantities can be measured in order to fit the constitutive parameters. For example, the parameters of the Johnson-Cook constitutive law can be identified with the combination of quasi-static test and split Hopkinson bar test [START_REF] Li | Parameters calibration for Johnson-Cook constitutive equation[END_REF]. However, this method always has strict requirement for the testing devices. That is, the testing devices must provide stress-strain curves under different strain rates and temperatures for parameter fitting. For some kinds of tests, such as Taylor impact test [18,[START_REF] Sarva | Mechanics of Taylor impact testing of polycarbonate[END_REF], it is impossible to obtain stress-strain curves in real time with a direct method. Moreover, when the constitutive laws have complex forms or involve a large number of parameters, it can be a daunting task to characterize the constitutive parameters completely using experimental methods.

Fortunately, inverse methods offer a powerful tool for the identification of the dynamic nonlinear constitutive parameters. The basic principle of the inverse method is the comparison between experimental measurements and those computed by the finite element numerical method. The unknown material parameters in the numerical model are iteratively tuned to match the experimental measurements and the numerical computations of the same experimental procedure as closely as possible.

Early attempts for such an approach can be found in the publications of Kavanagh et al. [START_REF] Kavanagh | Finite element applications in the characterization of elastic solids[END_REF][21][22]. He solved the identification problem for plane, anisotropic materials, based on rearranging the constitutive laws to obtain an iterative procedure for the determination of the constitutive parameters. The interaction of analysis and experiment was discussed. In the work of Liu and Lin [START_REF] Edward | Identification of the dynamic properties of nonlinear vicoelastic materials and the associated wave propagation problem[END_REF] in 1970's, a criterion was minimized based on the sum of squares of the differences between calculated and measured displacements to obtain material properties of an intervertebral joint. The method had limited success, because the data did not contain enough information to identify all parameters. Iding et al. [START_REF] Iding | Identification of nonlinear elastic solids by a finite element method[END_REF] extended the use of finite element discretization by introducing a technique of material parameterization that utilized finite elements over the domain of the deformation invariants. The method was focused on incompressible elastic materials subjected to plane stress. A numerically simulated experiment on an isotropic solid was used to show that it was possible to obtain strain energy functions from the measurement of an inhomogeneous strain field. Maier, Bittanti and Nappi [START_REF] Hendriks | Identification of the mechanical behavior of solid materials[END_REF] used an identification approach for the determination of yield-limits in elastic-plastic structural models from measured displacements. After a state representation of the model is derived, the inverse problem is solved by an extended Kalman filter method. Numerical examples illustrate and test the methodology. N. Tounsi [START_REF] Tounsi | From the basic mechanics of orthogonal metal cutting toward the identification of the constitutive equation[END_REF] proposed a methodology to identify the material constants of the constitutive equation, based on analytical modeling of the primary shear zone in conjunction with orthogonal cutting experiments. The least-square approximation techniques applied to the resulting values yielded an estimation of the material coefficients of the constitutive equation. In the work of S. Cooreman [START_REF] Cooreman | Identification of mechanical material behavior through inverse modeling and DIC[END_REF], a FE based inverse method was applied for the characterization of the hardening behavior and the yield locus of DC06 steel, based on a biaxial tensile test on a perforated cruciform specimen. A Gauss-Newton algorithm was applied to minimize the discrepancy between the experimentally measured and the numerically computed strain fields. Some French applications were proposed for the constants identification, such as SiDoLo, Z-simopt, etc. The SiDoLo code (SiDoLo: Simulation and iDentification of constitutive models) is a general simulation and optimization code. The code is strictly reserved for optimization, whereas a few subroutines are available for performing simple simulations directly within the code [START_REF] Rhpy Zentar | Identification of soil parameters by inverse analysis[END_REF]. The Z-simopt solution is a Graphical User Interface integrating two powerful tools, Z-sim and Z-opt, and provides instruments to streamline the identification process [START_REF] Missoum-Benziane | Z-set/zebulon: une suite logicielle pour la mécanique des matériaux et le calcul de structures[END_REF]. The identification needs to be performed in the environment of the Z-set software.

Inverse identification of the constitutive parameters is also a major subject of interest for our laboratory LGP (Laboratoire Génie de Production). I. Nistor et al. [START_REF] Nistor | Identification of a dynamic viscoplastic flow law using a combined levenberg-marquardt and monte-carlo algorithm[END_REF] proposed a complete identification procedure of the Johnson-Cook constitutive law parameters for 42CrMo4 steel and 2017-T3 aluminum. Taylor impact tests were used to conduct high strain rate compression experiments, and the difference between numerically deformed shape and experimentally deformed shape was minimized by a combined Monte-Carlo [START_REF] Nistor | Identification of a dynamic viscoplastic flow law using a combined levenberg-marquardt and monte-carlo algorithm[END_REF] and Levenberg-Marquardt algorithm [START_REF] Nistor | Identification of a dynamic viscoplastic flow law using a combined levenberg-marquardt and monte-carlo algorithm[END_REF][START_REF] Levenberg | A method for the solution of certain non-linear problems in least squares[END_REF][START_REF] Marquardt | An algorithm for least-squares estimation of nonlinear parameters[END_REF][START_REF] Lourakis | A brief description of the Levenberg-Marquardt algorithm implemented by levmar[END_REF]. Moreover, two kinds of new dynamic tests using Taylor gas gun device were developed for the identification of high speed friction law [START_REF] Nistor | A new dynamic test for the identification of high speed friction law using a gas-gun device[END_REF] and the identification of a dynamic crack propagation criterion [START_REF] Nistor | A new impact test for the identification of a dynamic crack propagation criterion using a gas-gun device[END_REF]. Based on the same identification algorithm, H. Abichou [START_REF] Abichou | Identification of metallic material behaviors under high-velocity impact: A new tensile test[END_REF] presented a new tensile test used for the identification of metallic material behaviors using Taylor technique.

Objective of this work

As already reported in literature, the values of the identified constitutive parameters are closely related to the types of experimental loading, depending on the nature of the major solicitation. That is, identification of a constitutive law using compression, traction or shear tests gives different constitutive parameters sets. It probably leads to wrong material behaviors if the identification and application of constitutive parameters sets involve different kinds of loadings. The parameters for constitutive laws proposed in literature are mostly identified with traction tests, which means the application of these constitutive parameters sets is also restricted to traction loadings, while in the machining processes, the work-piece is subjected to shear, bending and compression by the tool. Combined loading effects as well as heat generation due to plastic deformation and friction influence the chip formation [START_REF] Dixit | Modeling of metal forming and machining processes: by finite element and soft computing methods[END_REF]. Therefore, an inverse identification procedure based on a combination of multiple experiment tests has been found necessary to be developed in this work.

Moreover, the numerical simulations of metal forming and machining processes are usually built with the use of the dynamic Johnson-Cook constitutive law [START_REF] Shrot | Determination of Johnson-Cook parameters from machining simulations[END_REF], which is a Ludwig plastic law including strain, strain rate and temperature dependence. Although the Johnson-Cook constitutive law has already been natively implemented in many finite element softwares and its parameters are easy to be determined, unfortunately this kind of phenomenological law cannot exhibit a correct behavior of the material on a large range of strains as encountered in forming and machining processes, for example, strain softening and dynamic recrystallization are not taken into account. Some nonstandard constitutive laws should be employed to more accurately simulate material behaviors during forming and machining processes.

The objective of the present research is to propose a new inverse identification procedure applied to metal forming and machining situations, which can provide an appropriate parameters set for any elastoplastic constitutive law following J 2 plasticity and isotropic hardening, by evaluating the correlation between the experimental and numerical responses. Compared with the previous version developed in LGP, many improvements have been proposed in order to increase the robustness and the stability of the new identification procedure. A general scheme of the new identification procedure is illustrated in Figure 3.
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Figure 3: General scheme of the proposed inverse identification procedure applied to metal forming and machining situations

In order to propose an inverse identification procedure, the primary work is to develop the identification program, which combines the Levenberg-Marquardt algorithm and the data processing methods to propose constitutive parameters sets covering a compromise of multiple experimental tests. The previous approach has already been built in LGP using C ++ language [START_REF] Sattouf | Identification and comparison of different constitutive laws for high speed solicitation[END_REF][START_REF] Sattouf | Caractérisation en dynamique rapide du comportement de matériaux utilisés en aéronautique[END_REF][START_REF] Nistor | Identification of a dynamic viscoplastic flow law using a combined levenberg-marquardt and monte-carlo algorithm[END_REF][START_REF] Nistor | A new dynamic test for the identification of high speed friction law using a gas-gun device[END_REF][START_REF] Nistor | A new impact test for the identification of a dynamic crack propagation criterion using a gas-gun device[END_REF][START_REF] Abichou | Identification of metallic material behaviors under high-velocity impact: A new tensile test[END_REF][START_REF] Sattouf | A methodology for the identification of constitutive and contact laws of metallic materials under High Strain Rates[END_REF], which tunes the unknown constitutive parameters iteratively to minimize the difference between experimental measurements and numerical responses of the same experimental procedure. In this work, a new identification program based on the previous version has been developed using Python language [START_REF] Langtangen | Python scripting for computational science[END_REF] to increase the robustness and stability.

In terms of experimentation, dynamic compression, tensile and shear tests based on Taylor impact technique are employed. In LGP, the Taylor gas gun has been built to conduct high strain rate impact tests, as shown in Figure 4, where strain rates of 10 5 s -1 or higher can be attained. In this work, these dynamic tests are conducted to provide experimental responses for the identification procedure. We assume that the strain field is homogeneous in the deformed part of the loaded specimen under investigation, and the final deformed shape of specimens is selected as the observation quantity.

To obtain the numerical responses of the same experimental procedure, there are two main tasks that need to be completed. First is to built numerical models of the same experimental procedure with the finite element software. Second is to use an appropriate constitutive law to accurately simulate the material behavior under large deformations and high deformation rates. Since many of the constitutive laws are nonstandard, they have to be numerically implemented into the finite element software through user subroutines. The commercial finite element software Abaqus/Explicit [START_REF]Abaqus v.6.14 User's manual[END_REF] is selected to perform numerical simulation, which is commonly used to solve non-linear dynamic or quasi-static problems. 

Outline of the manuscript

The contents of the proposed PhD thesis manuscript can be summarized as following:

Chapter 1 mainly introduces three kinds of high strain rate experiments based on the Taylor impact technique, which are called the Taylor compression, tensile and shear tests. In the beginning, some commonly used experiments for the study of material mechanical properties are presented, including the quasi-static test and split Hopkinson bar test. Compared with those tests, higher strain rates can be achieved in the Taylor impact technique, where a cylindrical projectile is launched to impact a target at high velocities. The experiment setup of the Taylor impact technique installed in LGP is introduced. The original application of the Taylor impact technique was to conduct the Taylor compression test to estimate metallic material behavior, while the tensile test and shear test based on Taylor impact technique that were previously developed in LGP are optimized in this work. The geometries of the specimens for the three Taylor tests are detailed in this first chapter of the manuscript.

Chapter 2 presents the development of an efficient and robust numerical algorithm for the implementation of elastoplastic constitutive laws in the commercial nonlinear finite element software Abaqus/Explicit. Instead of the widely used explicit time integration scheme forward Euler approach, an implicit scheme called radial return mapping algorithm has been employed to compute the plastic strain, the plastic strain rate and the temperature at the end of each increment. The corrector term of the radial return scheme is obtained through the root-finding process. An example of implementing a user-defined elastoplastic material model using the radial return mapping integration scheme is presented in detail.

Chapter 3 mainly concerns the validation of the proposed algorithm for implementing elastoplastic constitutive laws in Abaqus/Explicit. The widely used Johnson-Cook constitutive law and its hardening law are implemented through VUMAT subroutine, and its efficiency and robustness is validated by three sets of benchmarks, including the one element tests, necking of a circular bar and the Taylor test. Some alternative constitutive laws, including the TANH constitutive law, modified TANH constitutive law and Bäker constitutive law, are also implemented in the VUMAT subroutine to simulate the Taylor compression test, in order to validate the application of the proposed algorithm and study the influence of constitutive laws on impact.

Chapter 4 introduces the proposed platform for the identification procedure, which contains a new inverse identification procedure and the numerical models corresponding to the experimental tests. An identification program is built using the Python language, where an objective function is defined and the lmfit library [START_REF] Newville | Lmfit: non-linear least-square minimization and curve-fitting for Python[END_REF] is employed. The objective function evaluates the correlation between the final deformed shape of experimental specimens and numerical models, and the lmfit library in Python is used to optimize the objective function using the Levenberg-Marquardt algorithm. In order to obtain accurate numerical responses, data processing is a mandatory step, which includes the data extraction and data estimation.

Complete numerical models for Taylor compression, tensile and shear tests are built thank to Abaqus/Explicit and the optimizations of the specimens are verified. In order to speed-up the identification process, complete models are replaced by the simplified models, where some non-essential parts are deleted and the boundary conditions are modified. Considering the kinetic energy of the deleted parts, equivalent impact velocities are proposed for the simplified models, which is based on the inverse identification procedure comparing numerical responses of the complete models and numerical responses of the simplified models.

The main concern of Chapter 5 is to integrate the parts introduced in previous chapters to identify the parameters sets of several kinds of constitutive laws for the material aluminum alloy 2017, in order to validate the proposed inverse identification procedure. The Taylor compression tests and the tensile tests based on Taylor impact technique are conducted with different impact velocities to provide the experimental results. The parameters of the Johnson-Cook law built-in Abaqus/Explicit are identified through two methods. One is to be identified with single experimental test, and the other one is to be identified with a covering of multiple experimental tests. The results of the two methods are compared in order to propose a way to identify a parameters set having good accuracy in a wide range of solicitations. The identification procedure is also conducted to identify the parameters of some alternative constitutive laws following J 2 plasticity and isotropic hardening. The accuracy of these parameters sets are compared.

In the part Conclusions and future work, a brief review of this work is presented, three main contributions are introduced, and the limits and unsolved problems are discussed. In the very ending part, we identify several key tasks that could be interesting for other researchers in the future.

Chapter 1

High strain rate experiments T he mechanical behaviors of materials generally show a strong dependence on the strain rate of the applied loading. To study the mechanical properties of materials under high strain rate loading, some experimental methods have been proposed over the past few decades. Among these tests, the Taylor impact test [18], which is conducted to estimate metallic material behavior subjected to compression loading, is well known because it is easy to be performed and high strain rates can be attained. This chapter mainly presents the Taylor impact test and two other experimental tests based on the Taylor impact technique for characterizing the behavior of materials subjected to dynamic tensile and shear loading, which are called the Dynamic tensile test and Dynamic shear test respectively. The experimental set-up of Taylor impact technique installed in the laboratory LGP and the specimens for performing the Taylor compression, tensile and shear tests are introduced.

Experiments for studying the dynamic mechanical properties of materials

High strain rate deformation of materials are numerously observed in military and civil applications. The deformation processes of materials subjected to high strain rate loading can significantly differ from the deformation processes of materials under static or quasistatic situations. In quasi-static deformation we have a situation of static equilibrium at any time, that is, any element in the body has a summation of forces acting on it close to zero [START_REF] Meyers | Dynamic behavior of materials[END_REF]. When the loading is imparted from the outside at a very high rate, stress has to travel within bodies at specified velocities and more complex mechanism can be involved in the deformation processes. In order to gain a good knowledge of the dynamic mechanical properties of materials, an increasing interest has been focused on the high strain rate experimental methods over the past few decades.

High strain rate compression tests

A widely used experimental device to conduct the high strain rate compression test, which is called the Split Hopkinson Pressure Bar (SHPB), was introduced by Kolsky [START_REF] Kolsky | An investigation of the mechanical properties of materials at very high rates of loading[END_REF] in 1949.

The schematic of the SHPB apparatus is shown in Figure 1.1. In the SHPB test, a small cylindrical specimen of the material of interest is sandwiched between two long cylindrical bars, which are called the incident and transmit bars respectively, and a striker bar is launched towards the incident bar at a known velocity.
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Figure 1.1: Schematic of the SHPB apparatus

Through the record of the incident compressive pulse, reflected tensile pulse and transmitted compressive pulse involved in the SHPB test, one can determine the dynamic stress-strain relation of the specimen [START_REF] Kolsky | An investigation of the mechanical properties of materials at very high rates of loading[END_REF][START_REF] Li | About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[END_REF][START_REF] Zhao | On the use of a viscoelastic split hopkinson pressure bar[END_REF]. The strain rates of the SHPB test normally range from about 500 to 10 4 s -1 and the highest strain rates that can be nominally achieved are in the range of (2.5-4.5) × 10 4 s -1 [START_REF] Sarva | Mechanics of Taylor impact testing of polycarbonate[END_REF]. However, these strain rates are lower than the ones usually encountered in some important dynamic loading events, such as high speed machining, high rate forming, explosive welding and crash-worthiness of vehicles.

Some experimental methods which can achieve ultra-high strain rates were proposed, one of which is the flyer-plate experiment as illustrated in Figure 1.2. In the flyer-plate experiment, an impactor consisting of a disc-shaped specimen and a sabot is shot on a stationary diagnostic target. From the transmission and reflection of the shock wave generated due to the impact, the stresses and velocities in the impactor and the target can be determined [START_REF] Gebbeken | Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact tests[END_REF]. This test requires elaborate experimental and specimen preparation techniques.

Taylor proposed a simple experiment to estimate the dynamic yield stress of metals as presented in Figure 1.3, which is subsequently referred to as Taylor anvil or Taylor impact test [18]. To distinguish it from other tests, it is denoted by the Taylor compression test in this work. This test is well known because it is easy to be performed and ultra-high strain rates (10 5 s -1 or higher) can be attained. A cylindrical projectile is launched by the gas gun device to impact a large, rigid anvil at high velocities, resulting in their non-uniform deformation. 

Figure 1.3: Schematic of the Taylor test set-up

Taylor determined a relationship between the dynamic yield stress of the material and residual geometry measurements [START_REF] Sarva | Mechanics of Taylor impact testing of polycarbonate[END_REF]. Moreover, Johnson and Holmquist [START_REF] Johnson | Evaluation of cylinder-impact test data for constitutive model constants[END_REF][START_REF] Brünig | Numerical simulation of Taylor impact tests[END_REF] critically discussed the usefulness of cylinder impact test results in evaluating constitutive models and in determining material constants for phenomenological approaches.

Nowadays, the Taylor impact technique combined with numerical simulations is primarily used for validating constitutive models for various ductile materials due to the large deformation and very high strain rate. I. Nistor et al. [START_REF] Nistor | Identification of a dynamic viscoplastic flow law using a combined levenberg-marquardt and monte-carlo algorithm[END_REF] proposed a complete identification of the Johnson-Cook constitutive law parameters for the 42CrMo4 steel from the Taylor impact test.

High strain rate tensile tests

In order to achieve dynamic tensile loading, the split Hopkinson bar technique has been modified for tension applications, which is referred to as the Split Hopkinson Tension Bar (SHTB) [START_REF] Staab | A direct-tension split Hopkinson bar for high strain-rate testing[END_REF]. Compared with the SHPB test, it is more difficult to conduct and analyze. The schematic of the SHTB apparatus is shown in Figure 1.4. A typical specimen for the SHTB test has a dog bone geometry with a middle section of small cross-sectional area and ends with a larger cross-sectional area. A tensile load initially stored at the end section of the incident bar is released to generate the tensile loading wave.
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Figure 1.4: Schematic of the SHTB apparatus

The elastic waves are measured both on the incident bar and on the transmitter bar. The stress, strain and strain rate determined from the recorded waves give an accurate measure of the material response [START_REF] Gilat | Full field strain measurement in compression and tensile split hopkinson bar experiments[END_REF]. Strain rates of the SHTB test range from about 10 2 to 10 3 s -1 .

The University of Leeds has developed a so-called flying wedge test for high strain rate tensile testing, which is capable of generating strain rates from around 10 2 s -1 up to in excess of 10 4 s -1 . The schematic of the flying wedge test is shown in Figure 1.5. It consists of two essential assemblies: a gas gun system to propel the wedge and the slider mechanism to grip and strain the specimen. The kinetic energy of the flying wedge provides a sudden tensile impulse for the specimen [START_REF] Sturges | The flying wedge: A method for high-strain-rate tensile testing. part 1. reasons for its development and general description[END_REF][START_REF] Bonora | Simulation of ductile failure in metals under dynamic loading conditions using advanced material damage modeling[END_REF]. The study on the effective strain rate imposed to the specimen showed that strain rate is not constant due to the multiple reflections of the stress waves along the specimen length [START_REF] Bonora | Simulation of ductile failure in metals under dynamic loading conditions using advanced material damage modeling[END_REF].
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Figure 1.5: Schematic of the flying wedge test

In the laboratory LGP, the Taylor impact technique has been originally extended for characterizing the behavior of materials subjected to dynamic traction [START_REF] Abichou | Identification of metallic material behaviors under high-velocity impact: A new tensile test[END_REF], which is referred to as the Dynamic tensile test in this work. The projectile is launched to impact a target with specially designed geometry as reported in Figure 1.6. Tensile deformation is mainly generated in the center zone of the target and strain rates of the Dynamic tensile test range from about 10 3 to 10 4 s -1 . The final deformed shape of the target is measured through a post-mortem analysis.

High strain rate shear tests

Meanwhile, researchers have developed several experimental techniques to study the dynamic shear behavior of materials. The Torsional Split Hopkinson Bar (TSHB) technique is widely used to test materials at strain rates typically ranging from 5 × 10 2 to 5 × 10 4 s -1 . In this technique, a short material specimen (thin-walled tube) is placed between two bars. It The history of stress, strain rate, and strain in the specimen is determined from the records of the waves in the bars [START_REF] Gilat | Torsional split Hopkinson bar tests at strain rates above 10 4 s -1[END_REF][START_REF] Gilat | Modeling torsional split Hopkinson bar tests at strain rates above 10,000 s -1[END_REF].

Meyer and Manwaring [START_REF] Meyer | Critical adiabatic shear strength of low alloyed steel under compressive loading[END_REF] proposed a technique to conduct the dynamic shear test base on the SHPB set-up, which makes use of hat-shaped specimens. Due to the hat-shaped geometry, large shear plastic deformation can occur in a confined zone of the specimen after impact. Even materials that do not show strain localization spontaneously can be forced up to shearing failure [START_REF] Peirs | The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti-6Al-4V[END_REF].

The hat-shaped specimen was also employed in our laboratory during the work of Sattouf who developed the Dynamic shear test based on Taylor impact technique [START_REF] Sattouf | Caractérisation en dynamique rapide du comportement de matériaux utilisés en aéronautique[END_REF], which is presented in Figure 1.7. The red area of the specimen is the confined zone where shear plastic deformation occurs. In this test, a projectile is launched by the Taylor gas gun device to impact the hat-shaped specimen. Similar to the Dynamic tensile test, the final deformation of the specimen relies on the post-mortem measurement. Strain rates of 10 4 -10 5 s -1 can be obtained in the Dynamic shear test. 

Experimental set-up for the Taylor tests

The Taylor experimental set-up installed in the laboratory LGP consists of 6 parts: a Taylor gas gun device, a laser speed measure system, a target support, a target, a projectile and a projectile sabot, as already shown in Figure 1.3. As different projectiles and targets are adopted in different loading cases, we will discuss them in Section 1.3, 1.4 and 1.5.

The most important part of the experimental set-up is the Taylor gas gun. It launches a projectile to perform the impact test, of which the propulsion is provided by nitrogen-oxygen compressed gas up to 190 bar, and the speed of a projectile with 30 gr weight ranges from 30 up to 350 m/s. The main parts of the Taylor gas gun device include the gas cylinders, vacuum pump, control console and the barrel, which are introduced in details here after.

The gas cylinders provide gas to create a controlled pressure in the tank of the breech, which is necessary to launch a projectile. During the test, two gas cylinders are needed: one for the system controlled pressure and the other for launch properly.

The control console allows the operator to control the main stages of the test: evacuation of the system, inflating the tank of the breech to the desired pressure and execution of the launch.

The barrel guides the projectile to the exit in the launching chamber. Two laser barriers are placed at the end of the exit to measure the velocity of the projectile. The length and caliber of the barrel are 2 m and 20 mm respectively.

The vacuum pump is used to empty the enclosure of the barrel after the preparation of launching. The aim of obtaining vacuum inside the barrel is to conduct the launching properly.

The laser speed system is used to measure the velocity of the projectile. It consists of two laser barriers, the power source and a time counter. The specimen interrupts the two laser lines successively during its flight. The time delay between the two interruptions can be used to calculate the velocity.

The projectile is held by a polycarbonate sabot in proper orientation during launching. The sabot can ensure the tightness behind the projectile by an elastic ring and guide the projectile during its movement along the barrel. The original shape of the sabot is shown in Figure 1.9 and 1.10(a) with the mass of m = 13.4 gr. However, it is found that in the Taylor compression test, this kind of sabot will prevent the expansion of the projectile, which significantly affects its deformation. As the estimation of the dynamic mechanical properties of materials relies on the final deformation of the specimen, this problem requires to be solved. Thus, the geometry of the sabot for the Taylor compression test has been modified and is presented in Figure 1.10(b) and 1.11 with the mass of m = 12 gr, where two perpendicular notches have been made to vanish the influence of the sabot on the projectile behavior during the impact. However, in the Dynamic tensile and shear tests our focus is on the deformation of the target rather than the deformation of the projectile. The main function of the projectile in these two tests is to provide enough kinetic energy for the deformation of the target. The material and geometry of the projectile are totally different from the one used in the the Taylor compression test as it will be presented further. Therefore, the Dynamic tensile and shear tests still adopt the original sabot for the projectile Section A-A 10. 0

Figure 1.9: Dimensions of the original sabot for the Taylor tests

A massive target support, with a mass of m = 2.85 kg, presented in Figure 1.12, which is not fixed during impact, is used to sustain the target during impact and ensure a good alignment between the target and the projectile in the impact chamber of the gas gun. As we can see in Figure 1.13, the two ends of the target support have different geometry, which is designed for different tests. In the Taylor compression test, a cylindrical disk, with a 10 mm thickness and 30 mm in diameter, made of C100 steel is fixed on the left side of the target support, which can be used as a rigid target. If we want to conduct the Dynamic tensile and shear tests, the right side of the same cylinder is used to sustain specially designed targets. The target support can provide the necessary difference of inertial mass, allowing targets to generate tensile or shear deformation in the useful area. The material for the target support is 42CrMo4 steel.

As introduced above, in Taylor impact technique the history of stress, strain rate, and strain in the specimen cannot be recorded during the impact. Instead, the final deformed shapes of the specimens are used as experimental responses. Therefore, a post-mortem analysis is required to obtain the final deformed shapes of the specimens. Before the post-mortem analysis, the integrity of the deformed specimens has to be checked to see if there is damage or fracture. Only the specimens without damage or fracture can be used for the analysis.

A dimensional measurement is carried out for the deformed specimens, which is realized by a macro-photographic procedure. A digital camera Nikon D1X equipped by a 60 mm 1 : 2.8 D macro objective is used to take pictures of the deformed specimens. This camera can obtain a digital image of 4028 × 2648 pixels having 5.9 × 10 -3 mm spatial resolution for a macro ratio 1 : 1. The images of the deformed specimens are analyzed by a home-made software called imageAnalyser [START_REF] Sattouf | Caractérisation en dynamique rapide du comportement de matériaux utilisés en aéronautique[END_REF]. This software can build a 2D reference system to associate each pixel of the image with the real coordinate in millimeters. The profile of the specimen can be automatically extracted from the image by contour recognition and the coordinates of these points are output to a text file.

Besides the image analysis system, some classic techniques using measurement tools, for example the calipers, inside micrometer and spiral micrometer, are also employed to measure the dimensions of the deformed specimens. 

Taylor compression test

As mentioned above, the Taylor compression test is usually called Taylor impact test in other literature. In this test, a flat-ended cylindrical specimen is launched normally with a prescribed impact speed to a target in order to induce deformation. According to the target shapes, the Taylor compression test can be divided into two cases. If the target is identical to the cylindrical projectile, it is referred to as the symmetric Taylor compression test, as shown in Figure 1.14(a). If the target is a rigid anvil, it is called the direct Taylor compression test, as shown in Figure 1.14(b) [START_REF] Sattouf | Caractérisation en dynamique rapide du comportement de matériaux utilisés en aéronautique[END_REF]. The symmetric Taylor compression test reduces the friction effects on the contacting faces, but it requires a very precise alignment of the projectile and target. The direct Taylor compression test, which is adopted in this work, is easier to conduct.

The projectile used in the Taylor compression test is a cylinder with 50 mm length and 10 mm After it is launched to a rigid target, large strains and high strain rates are generated in the region close to the impacted end of the projectile. The projectile is shortened in length in a non-uniform manner, manifesting a mushroom head at the impacted end [START_REF] Sarva | Mechanics of Taylor impact testing of polycarbonate[END_REF]. The final length L f , the final radius of the bottom R f , the radii R 10 , R 20 and R 30 at the heights of 10 mm, 20 mm and 30 mm from the impacted face of the projectile can be used to describe the deformation. 

Dynamic tensile test based on Taylor impact technique

The high strain rate Dynamic tensile test is an update of an originally designed test by the laboratory LGP [START_REF] Abichou | Identification of metallic material behaviors under high-velocity impact: A new tensile test[END_REF]. To conduct the Dynamic tensile test, the Taylor gas gun device is used to launch a projectile into a specially designed tensile target with different impact velocities. In this work, the previous Dynamic tensile test has been optimized in order to obtain higher strains and higher strain rates.

The projectile used in the Dynamic tensile test and Dynamic shear test, as reported in Figure 1.16, is quite different from the one used in the Taylor compression test. The geometry is presented in Figure 1.17. The material for the projectile is 42CrMo4 steel, because in the Dynamic tensile test, the projectile needs to have enough mass to provide the energy for the large plastic deformation and enough strength to force the deformation to occur in the center zone of the target instead of the projectile. The weight of the projectile is m = 35.7 gr, therefore the total weight of the projectile including the sabot is about m = 49 gr.

The geometry of the target for the previously designed Dynamic tensile test [START_REF] Abichou | Identification of metallic material behaviors under high-velocity impact: A new tensile test[END_REF] is presented in Figure 1.18. The red area is the so-called useful zone where tensile deformation mainly occurs. In the present work, the geometry of the target has been modified with regards to the previous approach and optimized in order to obtain higher strains and higher strain rates without reaching the critical state of the rupture of the specimen. The optimization of the tensile target is mainly based on the following considerations:

• Lighten the zone where the projectile impacts the target in order to reduce the inertia of the target,

• Make the kinetic energy of the projectile better transferred to the useful zone of the target,

• Reduce the global mass of the target,

• Enlarge the inner diameter of the target to prevent the contact between the projectile and the target because of the striction phenomena during the impact. Just as the Taylor compression test, a post-mortem measurement is carried out as an evaluation of the deformation. In this case, the deformation of the projectile is no longer used 

Dynamic shear test based on Taylor impact technique

Besides the Dynamic tensile test, the Taylor impact technique was also extended for the Dynamic shear test in the laboratory LGP [START_REF] Sattouf | Caractérisation en dynamique rapide du comportement de matériaux utilisés en aéronautique[END_REF]. The Dynamic shear test is conducted in a similar way to the Dynamic tensile test except that the geometry of the shear target is totally different from the tensile target.

As mentioned previously, the projectile of the Dynamic shear test is identical to the one used in the Dynamic tensile test as shown in Figure 1.17, and the material is 42CrMo4 steel. The target used for the Dynamic shear test illustrated in Figure 1.24, generally referred to as the hat-shaped specimen, has a geometry as shown in Figure 1.25. It can be divided into three regions: the upper hat part, the lower brim part and the shear region where large shear strains develop.

To describe the shear deformation of the target, we choose 2 dimensions along the axial direction (H T op and H M iddle ) to carry out the post-mortem measurement, as presented in Figure 1.26. Elastoplastic deformation in solids T he deformation enhancing both elastic and plastic behavior is often referred to as the elastoplastic deformation, typically as a result of being deformed beyond the elastic limit. Over the last past years, numerous studies have been concentrated on the elastoplastic constitutive laws, which play a key role in numerically predicting the elastoplastic deformation in materials. This chapter mainly presents the development of an efficient and robust numerical algorithm for the implementation of elastoplastic constitutive laws in the commercial nonlinear finite element software Abaqus/Explicit. Instead of the widely used explicit time integration scheme forward Euler approach, an implicit time integration scheme of the rate equations of the constitutive model called radial return mapping algorithm has been employed to compute the plastic strain, the plastic strain rate and the temperature at the end of each increment. The corrector term of the radial return scheme is obtained through the root-finding process. An example of implementing a user-defined elastoplastic material model using the radial return mapping integration scheme is presented in details.

Kinematics in large deformations

Kinematics is the study of the motion of points, bodies, and systems of bodies. It begins with a description of the geometry of the system and the initial conditions of the position, velocity or acceleration of a part of the system, then from geometrical arguments it can determine the position, the velocity and the acceleration of any part of the system. In this section, the polar decomposition theorem is firstly introduced, by which the rigid body rotation can be obtained for any motion. Then the effect of rigid body rotations on constitutive equations is considered. A modification of the time derivatives called objective rate of stress is presented to formulate rate constitutive equations. Two objective stress rates are presented: the Jaumann rate and the Green-Naghdi rate. In the last subsection, the analytical solutions of hypoelastic constitutive equations for the simple shear problem with these two rates are compared.

Polar decomposition and frame invariance

Conforming to Figure 2.1, the motion of the body Ω is described by a function #» φ of the Lagrangian coordinates #» X and time t which specifies the position #» x of each material point as a function of time:

#» x = #» φ ( #» X, t) (2.1) 
where

#» φ ( #» X, t
) is called a deformation function. Using such an approach, the deformation gradient tensor F is therefore defined by:

F = ∂ #» φ ∂ #» X = ∂ #» x ∂ #» X (2.2)

Figure 2.1: Domain under consideration

The polar decomposition theorem, illustrated in Figure 2.2, is a fundamental theorem which explains the role of rotation in large deformation problems. It states that any deformation gradient tensor F can be multiplicatively decomposed into the product of an orthogonal matrix R and a symmetric tensor U (also called the right stretch tensor), or V (the left stretch tensor) [START_REF] Belytschko | Nonlinear finite elements for continua and structures[END_REF]:

F = RU = VR (2.3)
where:

R -1 = R T ; U = U T or V = V T (2.4)

Figure 2.2: Polar decomposition of the gradient of deformation F

Thus, if we consider an infinitesimal line segment d #» X in the reference configuration, the corresponding line segment d #» x in the current configuration can be given by:

d #» x = Fd #» X = RUd #» X = VRd #» X (2.5)
That means any motion of a body consists of a deformation, which can be represented by a rigid body rotation R and the symmetric mapping U. R is recognized as a rigid body rotation because all proper orthogonal transformations are rotations. Rigid body translation is not included in this equation because d #» x and d #» X are differential line segments in the current and reference configurations respectively which are not affected by translation. If Equation (2.5) is integrated in order to obtain the deformation function #» x = #» φ ( #» X, t), the rigid body translation will appear in the function as a constant of integration. In a translation, F = 1,

and d #» x = d #» X.
Then we will prove the polar decomposition theorem. For the simplification, the tensors are treated as matrices. Multiplying both sides of Equation (2.3) by its transpose gives:

F T F = (RU) T (RU) = U T R T RU = U T U = UU = U 2 (2.6)
where the third and fourth equalities are obtained using Equation (2.4). The last term is the square of the U matrix, therefore, U can be written as:

U = (F T F) 1/2
(2.7)

The fractional power of a matrix is computed by first transforming the matrix to its principal coordinates, where the matrix becomes a diagonal matrix with the eigenvalues on the diagonal. The fractional power is then applied to all the diagonal terms, and the matrix is transformed back. As the matrix F T F is positive definite, all of its eigenvalues are positive. Consequently the matrix U is always real. The rotation tensor R, can then be obtained from Equation (2.3), which is given by: R = FU -1

(2.8)

The existence of U -1 follows from the fact that all the eigenvalues of U are always positive. The matrix U is closely related to engineering strain. The elongations of line segments in the principal directions of U are represented by its principal values. Therefore, this tensor has been found to be appealing for developing constitutive equations. The tensor U -1 is called the Biot strain tensor.

Meanwhile, a deformation gradient tensor F can also be decomposed in terms of a left stretch tensor and a rotation given by:

F = VR (2.9)
Compared with Equation (2.3), this form of the polar decomposition is less used. The polar decomposition theorem applies to any invertible square matrix and any square matrix can be decomposed into a rotation matrix and a symmetric matrix.

It is worth noting that the rotations of different line segments at the same point depend on the orientation of the line segment. In a 3D body, only three line segments which corresponds to the principal directions of the stretch tensor U are rotated exactly by R( #» X, t) at any point #» X. These are also the principal directions of the Green strain tensor. The rotations of line segments oriented in directions other than the principal directions of E are not given by R.

Objective rates in constitutive equations

The principle of material frame indifference (or objectivity) stipulates that a constitutive law must be insensitive to a change of reference frame. An objective quantity is one which transforms in the same manner as the energy conjugate stress and strain rate pair under a superposed rigid-body motion [START_REF] Dp Flanagan | An accurate numerical algorithm for stress integration with finite rotations[END_REF]. However, the stress rate σ is not objective. We represent an arbitrary superposed rigid-body motion by:

#» x * = #» c (t) + Q(t) #» x (2.10)
where #» c (t) represents a rigid-body translation and Q(t) is a proper orthogonal tensor which represents a rigid-body rotation. We assume T is simply the tensor σ in the fixed global reference frame, and the conjugate rate strain measures to T and σ are D and d. The stresses, strain rates and stress rates transform as follows [START_REF] Dp Flanagan | An accurate numerical algorithm for stress integration with finite rotations[END_REF]:

σ * = σ; T * = QTQ T (2.11) d * = d; D * = QDQ T (2.12) σ * =σ; T * =Q TQ T + Q T Q T + QT Q T (2.13)
Clearly T is the only nonobjective quantity in the above relationships.

Belytschko and Liu [START_REF] Belytschko | Nonlinear finite elements for continua and structures[END_REF] explained why objective rates are needed for the Cauchy stress tensor using the rod shown in Figure 2.3, by taking the hypoelastic law where the stress rate is linearly related to the rate of deformation as the simplest example:

σ= M : D (2.14)
where M is a fourth order tensor that characterizes the material behavior, : is the double contracted product and D is the rate of the deformation tensor. However, Equation (2.14)

is not a valid constitutive equation, and the explanation given by Belytschko and Liu [START_REF] Belytschko | Nonlinear finite elements for continua and structures[END_REF] is presented as following.

Consider a solid, such as the bar in Figure 2.3, which is stressed in its initial configuration with σ x = σ 0 . Now assume that the bar rotates as shown at constant length, so there is no deformation, i.e. D = 0. Recall that in rigid body motion a state of initial stress is frozen in the body in a solid, i.e. since the deformation does not change in a rigid body rotation, the stress as viewed by an observer riding with the body should not change.

Therefore the components of Cauchy stress in a fixed coordinate system will change during the rotation, so the material derivative of the stress must be nonzero. However, in a pure rigid body rotation, the right hand side of Equation (2.14) will vanish throughout the motion, for we have already shown that the rate of deformation vanishes in rigid body motion.

Therefore, something must be missing in Equation (2.14) because D = 0 but σ should not be zero. The situation mentioned above is representative of what happens in real situations and simulations. A body may be in a state of stress due to thermal stresses or prestressing. An element may undergo large rotations in rigid body motions of the body or large local rotations. The rotation need not be as large as 90 • for the same effect; 90 • is chosen to simplify the numbers. The fallacy in Equation (2.14) is that it does not account for the rotation of the material, which can be accounted for correctly by using an objective rate of the stress tensor.

In this work, two objective rates are considered, which are the Jaumann rate and the Green-Naghdi rate. Both of these are frequently used in current finite element softwares.

The Jaumann rate

The Jaumann rate

∇ J
σ of the Cauchy stress tensor σ is given by the following expression:

∇ J σ =σ -Wσ -σW T (2.15)
where W is the so-called spin tensor given by:

W = 1 2 (L -L T ) (2.16) 
and:

L = ∂ #» v ∂ #» x =F F -1
(2.17)

is the velocity gradient tensor. The superscript ∇ , replacing the traditional sign designing the classic time derivative of a quantity represents an objective rate and the subsequent superscript J represents the Jaumann rate. One appropriate hypoelastic constitutive equation is therefore given by the following expression:

∇ J σ = M J : D (2.18)
The material rate for the Cauchy stress tensor, i.e. the correct form corresponding to Equation (2.14), is then:

σ= ∇ J σ + Wσ + σW T = M J : D + Wσ + σW T (2.19) 
We see that the objective rate is a function of material response. Therefore, the material derivative of the Cauchy stress depends on two parts:

• the rate of change due to material response reflected in the objective rate,

• the change of stress due to the rotation corresponding to the last two terms in Equation (2.19).

The Green-Naghdi rate

Another frequently used objective rate is the Green-Naghdi rate

∇ G
σ of the Cauchy stress tensor σ. It differs from the Jaumann rate only in the measurement of the rotation of the material which markedly changes the behavior of the material model, given by:

∇ G σ =σ -ωσ -σω T (2.20)
where the angular velocity tensor ω is defined by: ω = RR T (2.21) Thus, the material rate for the Cauchy stress tensor can be written as:

σ= ∇ G σ + ωσ + σω T = M G : D + ωσ + σω T (2.22)
where the subsequent superscript G represents the Green-Naghdi rate.

Analytical solutions depending on objective stress rate

The difference between the Jaumann rate and Green-Naghdi rate can lead to different analytical solutions of constitutive equations, if finite rotation of a material point is accompanied by finite shear. We take a simple pure shear problem as an example [START_REF] Belytschko | Nonlinear finite elements for continua and structures[END_REF][START_REF] Sowerby | Rotations, stress rates and strain measures in homogeneous deformation processes[END_REF]. Consider a square block in shear as shown in Figure 2.4. Then we will calculate the shear stress using the Jaumann and Green-Naghdi rates respectively for a hyperelastic, isotropic material.

Figure 2.4: Pure shearing of a square block

The motion inside the element is given by the following equations:

x = X + eY ; y = Y (2.23)
where x, y are the current coordinates, X, Y are the initial coordinates and e is the elongation along the #» x axis as illustrated in Figure 2.4. The deformation gradient F is defined by: (2.24) so in this case:

F = ∂ #» x ∂ #» X = ∂x ∂X ∂x ∂Y ∂y ∂X ∂y ∂Y
F = 1 e 0 1 ; F = 0 1 0 0 ; F -1 = 1 -e 0 1 (2.25)
The velocity gradient is given by:

L = FF -1 = 0 1 0 0 (2.26)
and the rate of deformation D and spin W are its symmetric and skew symmetric parts respectively, so they can be written as:

D = 1 2 0 1 1 0 ; W = 1 2 0 1 -1 0 (2.27)
• The hypoelastic, isotropic constitutive equation in terms of the Jaumann rate is given by:

σ= (λ J tr D)1 + 2µ J D + Wσ + σW T (2.28)
where λ and µ are the Lamé coefficients. As we can see, the superscripts are placed on the material constants to distinguish the material constants used with different objective rates. Writing out the matrices in the above gives:

σ x σ xy σ xy σ y = µ J 0 1 1 0 + 1 2 0 1 -1 0 σ x σ xy σ xy σ y + 1 2 σ x σ xy σ xy σ y 0 -1 1 0 so: σ x = σ xy ; σ y = -σ xy ; σ xy = -µ J + 1 2 (σ y -σ x ) (2.29)
The solution to the differential equations above are:

σ x = -σ y = µ J (1 -cos(e)) (2.30) 
and:

σ xy = µ J sin(e) (2.31) 
• As for the solution for the Cauchy stress by means of the Green-Nagdhi rate, we need to find the rotation matrix R using the polar decomposition theorem. We first diagonalize: As the closed form solution by hand is quite complicated, here a computer solution is recommended [START_REF] Belytschko | Nonlinear finite elements for continua and structures[END_REF], therefore, the solutions are given by:

F T F = 1 e e 1 +
σ x = -σ y = 4µ G cos (2β) ln (cos β) + β sin (2β) -sin 2 (β) (2.33) 
and:

σ xy = 2µ G cos (2β) (2β -2 tan (2β) ln (cos β) -tan β) (2.34)
where β is defined by:

β = arctan e 2 (2.35)
The comparison of the shear stresses σ 12 using the Jaumann and Green-Naghdi stress rates for simple shear problem is clearly shown in Figure 2.5, where the same material constants are used. We can see that the result of the Green-Naghdi rate is a monotonically increasing curve while the result of the Jaumann rate is a sinusoidal curve. 

General plasticity

It is referred to as deformation when changes of shape or size appears in a solid material due to applied forces. Before the yield occurs, the deformation of the material is elastic, that is, the deformation disappears as soon as the external loading is removed. When nonreversible changes of shape appears, it is called anelastic deformation. The plasticity [START_REF] Yu | Generalized plasticity[END_REF] deals with the theories and methods of yield initiation of materials under complex stress state and calculation of stresses and strains in a deformed structure after a part or the whole structure has yield.

Within the framework of large deformation analysis, and conforming to Equation (2.14), the rate form of the stress-strain canonical equation is defined as:

∇ σ= M : D (2.36)
where ∇ σ is an objective stress rate in order to take into account the objectivity in large deformations. According to Nemar-Nasser et al. [START_REF] Nemat-Nasser | On finite deformation elasto-plasticity[END_REF], the rate of deformation tensor D can be decomposed into the elastic part D e and the plastic part D p , given by:

D = D e + D p (2.37)
Therefore, the elastic stress-strain equation is usually written in the following incremental form: [START_REF] Langtangen | Python scripting for computational science[END_REF] where H is the linear isotropic fourth order elastic tensor given by:

∇ σ= H : D e (2.
H = K1 ⊗ 1 -2G(I - 1 3 1 ⊗ 1) (2.39)
with 1 the second order identity tensor, I the fourth order identity tensor, ⊗ the Dyadic product, G the Coulomb modulus and K the Bulk modulus linked to the Young's modulus E and Poisson's ratio ν by the following:

G = E 2(1 + ν) and K = E 3(1 -2ν) (2.40)
In many problems of solid mechanics, the small strain tensor is sufficient to characterize the material deformation. In this case, Equation (2.36) can be written in the following form:

σ= M :ε (2.41)
where σ is the stress rate tensor and ε is the strain rate tensor.

In 1D linear elastic deformation, the stress σ is a linear function of the elastic strain ε e , and the gradient of the stress-strain curve is defined as Young's modulus E:

σ = Eε e (2.42) 
When the stress reaches the initial yield stress σ y 0 , the material goes into plastic deformation, which means the deformation becomes irreversible. The total strain ε consists of the elastic strain ε e and the plastic strain ε p , given by:

ε = ε e + ε p (2.43)
and the stress can be obtained by:

σ = Eε e = E(ε -ε p ) (2.44)
If stress does not change with strain increasing during the plastic deformation, the behavior is called perfect plasticity, indicated in Figure 2.6. For materials with strain hardening, the stress increases with strain compared with perfect plastic behavior. 

Finite deformation plasticity

In this section, a widely used J 2 plasticity theory, which is used to predict yielding of materials, is firstly presented. Then an implicit time integration algorithm of J 2 plasticity called radial return mapping algorithm is demonstrated. To obtain the solution of the nonlinear yield function, three root-finding methods are introduced: the bisection method, the Regular Falsi method and the safe version of Newton-Raphson method. The stress tensor is usually divided into two distinct parts:

General

σ = p1 + s (2.45)
where p1 is the spherical part of the stress tensor with:

p = 1 3 tr [σ] (2.46)
the hydrostatic pressure, and s is the deviatoric part of the stress tensor given by:

s = σ -1 3 tr [σ]1 (2.47)
Therefore, we assume the existence of a scalar yield function f given by:

f = σ -σ y (ε p , ε p , T ) = 0 (2.48)
where σ is the von Mises equivalent stress, or effective stress, defined from the deviatoric stress as:

σ = 3 2 s : s (2.49)
and σ y is the so-called current yield stress of the material. In this work, we only take into consideration that σ y depends on equivalent plastic strain ε p , equivalent plastic strain rate ε p and temperature T , written as σ y (ε p , ε p , T ). The equivalent plastic strain ε p , the equivalent plastic strain rate ε p and the temperature T are given by:

       ε p = 2 3 D p : D p ε p = t 0 ε p dt T = η ρCp σ : D p (2.50)
where η is the Taylor-Quinney [START_REF] Taylor | The latent energy remaining in a metal after cold working[END_REF] coefficient defining the amount of plastic work converted into heat energy, C p is the specific heat coefficient and ρ is the density of the material.

Assuming an associative plastic flow rule, the plastic strain rate D p can be expressed with the following equation:

D p = γn (2.51)
where γ is a scalar representing the flow intensity and n is a second order tensor (the unit normal to the flow stress determined exclusively in terms of the trial elastic stress [START_REF] Simo | Computational inelasticity[END_REF]) representing the flow direction given by:

n = s √ s : s (2.52)
From Equations (2.50) one can easily obtain:

ε p = 2 3 γ and ε p = 2 3 t 0 γdt = 2 3 Γ (2.

53)

As J 2 = 1 2 s : s, the yield function can be written as:

f = J 2 - 1 3 σ y ε p , ε p , T 2 (2.54) 
and for this reason the von Mises yield criterion is usually referred to as J 2 plasticity.

When the material deforms plastically with hardening, the stress continues to increase with the strain. According to different hardening models, the yield surface has different variation in order to satisfy J 2 plasticity.

• If the yield surface is expanded uniformly in all directions compared with the original one, the hardening is called isotropic, which is shown in Figure 2.8(a). The loading is in the σ 2 direction. At first, the material deforms elastically and the von Mises equivalent stress increases from zero to the initial yield surface at σ 2 = σ y 0 . Then the material starts to yield. Since the loading point must stay on the yield surface during plastic deformation, the yield surface has to expand to the load point 1, where σ y is the current yield stress. Then the loading is reversed, and the material deforms elastically again until reaching the load point 2. From this point, with the loading increasing, the yield surface will continue to expand.

• Another hardening model is the kinematic hardening shown in Figure 2.8(b), where the yield surface translates in stress space instead of expanding. In the beginning, von Mises equivalent stress increases elastically to the initial yield stress σ y 0 . Then deformation goes into plastic period and the yield surface translates until the load point 1 is reached. With the reversed loading, the material behaves elastically as in the isotropic hardening process. However, the elastic region is much smaller. From the Figure 2.8, it can be noticed that the size of the elastic region of kinematic hardening (i.e. the diameter of the elastic zone) is 2σ y 0 . While the size of the isotropic hardening is 2σ y . The smaller elastic region in kinematic hardening is caused by Bauschinger effect. The von Mises equivalent stress with kinematic hardening is defined with the following equation:

σ = 3 2 (s -α) : (s -α) 1/2 (2.55)
where α is called back stress, defining the location of the center of the yield surface.

In this thesis, we just consider the case with isotropic hardening in our developments. 

Time integration algorithm of J 2 plasticity

To obtain the stress state at a point from Equation (2.36), we have to solve two main problems. The first one is defining the material behavior M. It is referred to as the constitutive law in our case, which will be discussed later. The second one is the time integration of the stress quantity.

In the time integration algorithms of the rate equations of the constitutive model, time is discretized on a finite grid, and the distance between consecutive points on the grid is defined as the time step ∆t. With the positions and some of the time derivatives at time t 0 , the integration scheme calculates the same quantities at a later time t 1 (t 1 = t 0 + ∆t).

Through the iteration of the procedure, the time evolution of those quantities can be traced. The schemes can be categorized into two groups: explicit and implicit [START_REF] Dunne | Introduction to computational plasticity[END_REF][START_REF] Stouffer | Inelastic deformation of metals: models, mechanical properties, and metallurgy[END_REF], which depend on the way how the increment of the plastic strain is calculated.

Explicit time integration scheme

A widely used explicit time integration algorithm of the rate equations of the constitutive model is called the first-order forward Euler scheme [START_REF] Dunne | Introduction to computational plasticity[END_REF]. In this scheme, the consistency condition at time t 0 can be written in terms of the stress tensor:

df 0 = ∂f ∂σ 0 dσ 0 + ∂f ∂ε p 0 dε p 0 = 0 (2.56)
and the increment of the plastic strain tensor dε p 0 is obtained by:

dε p 0 = dλ 0 ∂f ∂σ 0 (2.57)
where dλ 0 is the plastic multiplier at time t 0 . The stress increment dσ 0 is calculated by:

dσ 0 = C(dε 0 -dε p 0 ) (2.58)
where C is the elastic stiffness matrix.

For a von Mises material there is:

dε p 0 = dλ 0 (2.59)
so that Equation (2.56) can be written as:

∂f ∂σ 0 C(dε 0 -dε p 0 ) + ∂f ∂ε p 0 dλ 0 = 0 (2.60)
Thus, the plastic multiplier is given by:

dλ 0 = (∂f /∂σ) 0 Cdε 0 (∂f /∂σ) 0 C (∂f /∂σ) 0 -(∂f /∂ε p ) 0 (2.61)
and the stress increment dσ 0 is therefore obtained by:

dσ 0 = C dε 0 -dλ 0 ∂f ∂σ 0 (2.62)
The stress at time t 1 is then written as:

σ 1 = σ 0 + dσ 0 (2.63)
Although this scheme is simple and can be implemented without iterations, it has a number of disadvantages. As it is an explicit scheme, it is conditionally stable, that is, it may become unstable. Meanwhile, the accuracy of the integration depends on the size of the time step ∆t, so great attention is required to ensure the time step does not become too large. In addition, the solution might "drift", which means the stress state no longer lies on the yield surface at time t 1 .

Implicit time integration scheme

Thus, the implicit scheme of the rate equations of the constitutive model using radial return mapping algorithm was introduced by Wilkins [START_REF] Wilkins | Calculation of elastic-plastic flow[END_REF] and Maenchen and Sack [START_REF] Maenchen | The tensor code[END_REF]. This algorithm is now extensively used and detailed in numerous books such as [START_REF] Yu | Generalized plasticity[END_REF][START_REF] Dunne | Introduction to computational plasticity[END_REF] or papers like Simo et al. [START_REF] Simo | Computational inelasticity[END_REF] or Ponthot [START_REF] Ponthot | Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes[END_REF].

In return mapping algorithm, we assume the strain increment between time t 0 and t 1 is ∆E and the deviatoric stress tensor at time t 0 is s 0 . The trial deviatoric part of the stress tensor s tr and the final hydrostatic pressure p 1 are calculated from the strain increment ∆E assuming that the whole step is fully elastic in a first time:

s tr = s 0 + 2G dev ∆E (2.64) 
p 1 = p 0 + K tr ∆E (2.65)
At time t 1 , the trial stress, or elastic predictor, is therefore:

f = σ tr -σ y ε p 0 , ε p 0 , T 0 = σ tr -σ y 0 (2.66)
with:

σ tr = 3 2 s tr : s tr (2.67)
and σ y 0 is the yield stress at t = t 0 , the beginning of the increment. In order to know if s tr is admissible or not, a test has to be performed on the sign of f leading to the two options here after:

• If f 0, the whole step is fully elastic, and the deviatoric stress tensor at time t 1 is obtained by s 1 = s tr . • If f > 0, the trial stress is not admissible. The step is at least partly plastic, and s 1 has to be updated with a plastic correction to satisfy the von Mises criterion.

The plastic correction is computed enforcing the (discrete) generalized consistency parameter f = 0 at time t 1 :

f (Γ) = 3 2 s 1 : s 1 -σ y (ε p 1 , ε p 1 , T 1 ) = 0 (2.68) with:            s 1 = s tr -2GΓn ε p 1 = ε p 0 + 2 3 Γ ε p 1 = 1 ∆t 2 3 Γ T 1 = T 0 + η ρCp Γ √ s 1 : s 1 (2.69)
where the scalar parameter Γ is defined in Equation (2.53).

Substituting Equation (2.69) into Equation (2.68) leads to a non-linear yield function:

f (Γ) = σ tr - √ 6GΓ -σ y 1 (Γ) = 0 (2.70)
where the computation of Γ is concerned with finding the solution to the non-linear equation, which will be discussed in Section 2.3.3. Once the value of Γ has been obtained, the final stress is computed using the following equation:

σ 1 = s 1 + p 1 1 (2.71)
The method described above is known as the radial return mapping method, shown as the blue curve in Figure 2.9. Since all quantities are written at the end of the time increment, it can be ensured that the yield criterion is satisfied at time t 1 . As a result, this approach is selected for the implementation of constitutive laws.

The Figure 2.9 also illustrates other two approaches, which are related to the discretization of the flow direction. The flow direction can be discretized as:

n θ = (1 -θ)n 0 + θn tr (2.72)
where n 0 is the normal at the beginning of the increment, and n tr is the normal at elastic predictor which will be discussed later. Different values of θ represent different flow directions, that is, different integration approaches.

Figure 2.9: Global scheme of the radial return algorithm

• θ = 0 corresponds to the tangent rigidity approach,

• θ = 1 2 corresponds to the mean normal approach,

• while θ = 1 corresponds to the radial return approach.

To solve Equation (2.70), one proposed an approximate method to avoid local iteration. According to Gao et al. [START_REF] Gao | Fe realization of a thermo-visco-plastic constitutive model using VUMAT in ABAQUS/Explicit program[END_REF] or the Abaqus manual [START_REF]Abaqus v.6.14 User's manual[END_REF], if a quasi-linear of the material during the time step can be assumed, it is calculated explicitly with the following equation:

Γ = 3 2 σ tr -σ y 0 3G + h (2.73)
with h = dσ y 0 /dε p 0 , the slope of the hardening law at the current point, assumed to be constant during the time increment ∆t. This approach is usually adopted in VUMAT implementations when the size of the time increment used in Abaqus/Explicit analysis is generally very small. Unfortunately, as it will be presented further, this lead to many instabilities because of the approximation proposed by this approach when the non-linear terms of the constitutive equation becomes important.

In this work, we have chosen an approach similar to the one presented in Zaera et al. [START_REF] Zaera | An implicit consistent algorithm for the integration of thermoviscoplastic constitutive equations in adiabatic conditions and finite deformations[END_REF] to solve Equation (2.70), and the so called root-finding methods will be presented in Section 2.3.3.

Root-finding of non-linear equation

Several root-finding methods have been developed and tested in order to find the numerical solution of the non-linear equation (2.70), including the bisection method, the Regula Falsi method and the safe version of Newton-Raphson method [START_REF] Acton | Numerical methods that work[END_REF][START_REF] Press | Numerical recipes 3rd edition: The art of scientific computing[END_REF].

Bisection method

The first root-finding method proposed here is the so-called bisection method. The bisection is a root-finding method where the interval of the root is successively halved until it becomes sufficiently small, which is also called interval halving method [START_REF] Kiusalaas | Numerical methods in engineering with Python 3[END_REF]. This process is repeated until the interval is small enough, which satisfies:

| x i+1 -x i | ε bis (2.74)
where ε bis is the error tolerance of bisection method. Assuming the root (1) to be found is initially bracketed in an interval [x 0 , x 1 ] satisfying f (x 0 ) f (x 1 ) < 0. The midpoint x 2 of this interval is used as the first guess of root, where x 2 = 1 2 (x 0 + x 1 ), and the sign of f (x 2 ) is checked. If f (x 2 ) = 0, x 2 is the root we are finding, otherwise the bracket requires to be redefined. If f (x 2 ) and f (x 0 ) have opposite signs, the root must be in [x 0 , x 2 ] and the original bound x 1 is replaced by x 2 . Otherwise the root is in [x 2 , x 1 ] and the original bound x 0 is replaced by x 2 . This method converges linearly, which is comparatively slow, but the main advantage is that it only requires the evaluation of the function f (x) itself and not its derivative f ′ (x) as in other methods such as the Newton-Raphson. (1) The bisection algorithm also assumes that the searched root is unique within the given interval [x 0 , x 1 ]

The Regula Falsi method

The Regula Falsi method is a combination of the secant method and bisection method. As in the bisection method, we have to start with an initial interval [x 0 , x 1 ] satisfying f (x 0 ) f (x 1 ) < 0. We follow the secant line to get a new guess of the root, given by:

x 2 = x 1 - x 1 -x 0 f (x 1 ) -f (x 0 ) f (x 1 ) (2.75)
and the sign of f (x 2 ) is checked. If it is the same as the sign of f (x 0 ) then x 2 becomes the new x 0 , otherwise the x 2 becomes the new x 1 . This process is repeated until the last two roots satisfying:

|x i+1 -x i | ε RF (2.76)
where ε RF is the error tolerance of the Regula Falsi method. Its convergence rate is also between the bisection method and the Newton-Raphson method.

The safe version of Newton-Raphson method

The Newton-Raphson method is the best known method of finding roots because of its simplicity and efficiency. The only drawback of this method is that it requires the evaluation of the derivative f ′ (x) of the function f (x), so it's only usable in problems where f ′ (x) can be readily computed.

From Taylor series expansion of f (x) about x, we obtain:

f (x i+1 ) = f (x i ) + f ′ (x i )(x i+1 -x i ) + O(x i+1 -x i ) 2 (2.77)
where O(x i+1 -x i ) 2 is of the order of (x i+1 -x i ) 2 . We assume x i+1 is a root of f (x) = 0, that is:

f (x i ) + f ′ (x i )(x i+1 -x i ) + O(x i+1 -x i ) 2 = 0 (2.78) If x i is close to x i+1 , the term O(x i+1 -x i )
2 can be ignored and Equation (2.78) becomes:

x i+1 = x i - f (x i ) f ′ (x i ) (2.79)
which is called Newton-Raphson formula [START_REF] Press | Numerical recipes 3rd edition: The art of scientific computing[END_REF][START_REF] Kaw | Newton-raphson method[END_REF]. The Newton-Raphson is an iterative process starting with a first guess x 0 for a root of the function f (x) and the process is repeated until the convergence criterion is reached, given by:

| x i+1 -x i | ε N R (2.80)
where ε N R is the error tolerance of the Newton-Raphson method. In general, the convergence of the Newton-Raphson method is quadratic.

In some situations, the Newton-Raphson method appears to have poor global convergence, because the tangent line is not always an acceptable approximation of the function. As a result, a safe version resulting from a combination of the Newton-Raphson and the bisection methods is proposed here after, as described in Figure 2.10.

get f (x), f ′ (x), x 0 , x 1 x = 1 2 (x 0 + x 1 ) x 1 = x if f (x).f (x 0 ) < 0 x 0 = x if f (x).f (x 0 ) > 0 ∆x = -f (x)/f ′ (x) x ← x + ∆x x ∈ [x 0 , x 1 ] Yes No ∆x = 1 2 (x 1 -x 0 ) x = x 0 + ∆x |∆x| < ε N R No Yes Return x

Figure 2.10: Flowchart of the safe version of Newton-Raphson algorithm

If there is a root in the interval [x 0 , x 1 ] satisfying f (x 0 ) f (x 1 ) < 0, the safe version of Newton-Raphson method regards the midpoint of [x 0 , x 1 ] as the first guess of root and Newton-Raphson iteration starts. After each iteration, the interval is updated. If the iteration is out of the interval, it is disregarded and replaced by bisection.

According to Equation (2.70), the Newton-Raphson algorithm requires to calculate the derivative f ′ (Γ) of the yield function f (Γ) with respect to the Γ parameter when solving the problem so that:

f ′ (Γ) = - √ 6G - dσ y (Γ) dΓ (2.81)
According to Equations (2.50), ε p , T and ε p are linked by the following relations:

ε p = 1 ∆t ∆ε p (2.82) T = ησ y ρC p ∆ε p (2.83)
With the general form of the yield stress σ y = σ y (ε p , ε p , T ), the derivatives of σ y can be written as:

dσ y (Γ) dΓ = ∂σ y ∂ε p dε p dΓ + ∂σ y ∂ ε p d ε p dΓ + ∂σ y ∂T dT dΓ = 2 3 
∂σ y ∂ε p + 1 ∆t ∂σ y ∂ ε p + ησ y ρC p ∂σ y ∂T (2.84)
The methods to calculate the derivatives of σ y with respect to ε p , ε p and T can be divided into the analytical solution and the numerical solution.

• Analytical solution. A common method to calculate the derivatives of σ y with respect to ε p , ε p and T is to use an analytical method, which is to calculate the analytical expression for every partial derivative based on the hardening flow law of the material. However, for most yield functions, it may be difficult to obtain derivatives using the analytical method. Therefore, we propose here after a numerical solution as an alternative.

• Numerical solution. In the numerical solution, a small increment is added to ε p , ε p and T respectively in order to calculate the gradient, given by Equation (2.85-2.87). For example, the gradient between σ y (ε p + ∆ε p , ε p , T ) and σ y (ε p , ε p , T ) can be used as the derivative of σ y with respect to ε p .

∂σ y ∂ε p = σ y (ε p + ∆ε p , ε p , T ) -σ y (ε p , ε p , T ) ∆ε p (2.85) ∂σ y ∂ ε p = σ y (ε p , ε p +∆ ε p , T ) -σ y (ε p , ε p , T ) ∆ ε p (2.86) ∂σ y ∂T = σ y (ε p , ε p , T + ∆T ) -σ y (ε p , ε p , T ) ∆T (2.87)
Of course, accurate results depends on a correct choice for the three increments ∆ε p , ∆ ε p and ∆T . In all following numerical tests, the three increments have been arbitrary fixed to the same value ∆x. For the single precision, the value is ∆x = 10 -1 , while for the double precision, the value is ∆x = 10 -8 .

Comparison

According to the literature, these methods are compared in three aspects: convergence rate, computational complexity and convergence condition, shown in Table 2.1.

In terms of the convergence rate, the safe version of Newton-Raphson method is the fastest. The Regula Falsi method converges faster than the bisection method.

As for the computational complexity, it means the number of the points to calculate the new guess x i . The bisection method needs two points, which are

(x i-2 , f (x i-2 )) and (x i-1 , f (x i-1 )), the Newton-Raphson method needs (x i-1 , f (x i-1
)) and f ′ (x i-1 ), and the Regula Falsi method needs

(x i-2 , f (x i-2 )) and (x i-1 , f (x i-1 )).
For the convergence condition, the Newton-Raphson method has the most rigorous requirement. The convergence condition of the Regula Falsi method is easy to be satisfied if the root-finding interval of every iteration is defined correctly. The bisection method is unconditionally convergent. 

VUMAT implementation in Abaqus/Explicit

Although many kinds of constitutive laws have been built in the finite element software Abaqus, in some conditions they cannot fit complex behaviors of materials well. As a result, Abaqus provides the ability for users to implement constitutive laws defined by themselves in Abaqus via user subroutine (UMAT for Abaqus/Standard or VUMAT for Abaqus/Explicit).

All details concerning the implementation of the radial return mapping algorithm using a Fortran VUMAT subroutine for any elastoplastic constitutive law following J 2 plasticity and isotropic hardening and having the general form of σ y (ε p , ε p , T ) are introduced in this section.

In order to make it convenient to implement different constitutive laws in Abaqus/Explicit, the definitions of the yield function σ y and yield hardening parameter h are written above the main program (2) . If the constitutive law is required to be changed, we can only modify this part without rewriting the main program. The general algorithm of the main program is illustrated in Figure 2.11 on page 56, and the complete listing of the implementation of the subroutine based on a numerical evaluation of the derivatives is presented in Appendices part, page 149.

The first block of the proposed algorithm in Figure 2.11, Start of VUMAT , is used to get the material properties defined as user material constants. Both elastic and plastic properties of materials are required to be input through the settings in the inp file as described page 5.3.6.

Abaqus/Explicit provides VUMAT the quantities below at the beginning of the subroutine:

• the strain increment for the current time-step ∆E,

• the stress tensor σ 0 and the temperature T 0 at the beginning of the current increment,

• the time increment corresponding to the current time-step ∆t,

• a table of solution dependent state variables (SDV) used to store important data such as ε p , ε p , Γ and transfer them from one increment to the other (3) .

(2) Therefore, the VUMAT FORTRAN program is splited into different parts. One is in charge of the time integration algorithm of a general J 2 plasticity isotropic model, the other one is dedicated to the computation of the yield stress and the hardening coefficient of a given constitutive law. (3) The SDVs is a table under the control of the user used to store informations on the current increment and

In the first block, some constants are also defined, for example, the Lamé's constants, the coefficient of the temperature increment and the precision of Newton-Raphson algorithm.

The Lamé's constants are given by:

2G = E 1 + ν ; 3K = E 1 -2ν ; λ = 2νG (1 -2ν) = νE (1 -2ν)(1 + ν)
where E is Young's modulus and ν is Poisson's ratio.

The coefficient of the temperature increment is defined as:

T f r = η ρC p
By default, depending if Abaqus/Explicit is run in single or in double precision, the precision tolerance of the Newton-Raphson algorithm is changed. In fact, two levels of precision are defined, ε N R = 10 -4 for single precision and ε N R = 10 -8 for double precision. The VUMAT subroutine must compute and return the value of the stress σ 1 and the SDVs variables at the end of the increment for each integration point. The internal and dissipated energies have also to be evaluated in order to compute the temperatures in the model.

Abaqus package subroutine

The package part in the Abaqus software is a mandatory step used to compute the initial values (∆t for example) for a reference time t = 0. We first compute the elastic stress due to a virtual strain increment ∆E provided by Abaqus using the following expression:

σ 1 = σ 0 + 2G dev ∆E + λ tr ∆E 1 (2.88)
where the trace and the deviatoric part of the strain increment ∆E are given by:

tr ∆E = ∆E 11 + ∆E 22 + ∆E 33 (2.89)
and:

dev ∆E = ∆E - 1 3
tr ∆E 1

(2.90)

The elastic stress will be discarded after the end of the package step.

During the package, a check is performed in order to verify that the precision requested for the Newton-Raphson algorithm ε N R is larger than the actual epsilon precision of the computer.

transfer them from the current increment to the next one. In the proposed implementation, 7 SDV variables are used, but only 5 are mandatory, as the two last one are used only to measure the performances of the VUMAT.

Elastoplastic constitutive law integration 2.4.2.1 Elastic predictor

The aim of this subsection is to calculate the von Mises equivalent stress σ tr and compare it with the yield stress at the beginning of the increment σ y 0 , in order to test if the current step is fully elastic or partly plastic. Therefore, we need to first decompose the initial stress σ 0 into its hydrostatic pressure p 0 and deviatoric part s 0 according to Equation (2.45). Then we compute the new pressure p 1 and the deviatoric part of the trial stress tensor s tr at the end of the increment from the strain increment ∆E using the following equations:

p 1 = p 0 + K tr ∆E s tr = s 0 + 2G dev ∆E (2.91)
Thus the norm of the predicted deviatoric part s tr of the stress tensor is defined as:

σ = √ s tr : s tr (2.92)
and the von Mises equivalent stress (trial stress) σ tr from the predicted deviatoric part s tr of the stress tensor is:

σ tr = 3 2 s tr : s tr (2.93)
We get the temperature at the beginning of the increment T 0 , the previous values of plastic strain and plastic strain rate:

     T = T 0 ε p = ε p 0 ε p =ε p 0 (2.94)
Initialize the Γ parameter Γ = 0 and the counter of the root-finding iteration iterate = 0.

Then we get the yield stress at the beginning of the increment:

σ y 0 = σ y (ε p 0 , ε p 0 , T 0 ) (2.95)
If the current increment is the first increment, which means the previously stored value of the yield stress σ y 0 = 0, we initialize ε p init = Γ init , ε p init = 1 ∆t Γ init and Γ init = 10 -10 , and the yield stress is calculated thanks to the constitutive law :

σ y 0 = σ y ε p init , ε p init , T (2.96) 
At last, we compare the von Mises trial stress σ tr to the yield stress at the beginning of the increment σ y :

• If σ tr σ y 0 the plastic corrector is zero, so the plastic correction steps can be skipped.

We assume that the predicted stress is the final one s 1 = s tr , the plastic corrector Γ = 0, the yield stress remains unchanged σ y 1 = σ y 0 and we can go directly to the final computations defined in Section 2.4.2.3.

• If σ tr > σ y 0 , the step is at least partly plastic and the plastic corrector described in Section 2.4.2.2 has to be computed in order to draw back the predicted stress onto the yield surface of the material.

Plastic corrector

To recover the stress in accordance with the elastoplastic constitutive behavior law, the parameter Γ defining the correction due to the increase of the strain is required. A rootfinding method discussed in Section 2.3.3 is used to solve the von Mises yield function given in Equation (2.70). We present here after the use of the safe version of Newton-Raphson method.

We first need to initialize the interval of the parameter Γ for the bisection part of the safe version of Newton-Raphson method to be [0, Γ max ] with:

Γ max = σ tr √ 6G (2.97)
In order to enhance the computations, we initialize the value of the parameter Γ to its value at the end of the last increment (Γ = Γ 0 ). As mentioned above, if the current increment is the first plastic increment, as we cannot compute the value of h(Γ) when the plastic strain is zero, we initialize Γ = Γ init .

The predicted equivalent plastic strain ε p 1 , plastic strain rate ε p 1 and temperature T 1 at the end of the increment are computed thanks to Equation (2.69). We need to compute the yield stress σ y (ε p 1 , ε p 1 , T 1 ) and its derivative h(ε p 1 , ε p 1 , T 1 ) from the constitutive law definition in order to obtain the values of the yield function f (Γ) and its derivative f ′ (Γ).

Then, we test the convergence of the Newton-Raphson algorithm by computing the increment of the parameter Γ:

∆Γ = - f (Γ) f ′ (Γ) (2.98)
and comparing it to the Newton-Raphson precision defined earlier.

• If ∆Γ > ε N R we need to iterate to compute the correction of the Γ value using the following relation:

Γ ← Γ + ∆Γ (2.99)
update the values of f (Γ) and f ′ (Γ) with respect to the new value of Γ and re-evaluate the increment of the parameter Γ.

• If ∆Γ

ε N R we have obtained the final value of the Γ parameter, and the final deviatoric part s 1 of the stress tensor is computed from the predicted value using:

s 1 = s tr -2GΓn (2.100)
Finally, if the total number of iterations is greater than the total number of iterations allowed for the Newton-Raphson procedure, we stop the root-finding and exit the Abaqus/Explicit with an error (4) .

Final computations

The main work of the final computations is to update the state variables, energy and temperature. The final stress tensor at the end of the increment σ 1 is computed thanks to Equation (2.71), and the equivalent plastic strain ε p 1 , equivalent plastic strain rate ε p 1 and final temperature T 1 are stored for subsequent re-use in the next increment. We also have to compute the new specific internal energy e 1 from:

e 1 = e 0 + 1 2ρ (σ 0 + σ 1 ) : ∆E (2.101)
and the dissipated inelastic energy ω p 1 from :

ω p 1 = ω p 0 + 1 2ρ 2 3 (σ y 0 + σ y 1 ) Γ (2.102)
At this point, the VUMAT subroutine comes to an end but the final temperature is not computed, since the software uses a subsequent thermal step to evaluate the temperature raise due to the dissipated inelastic energy and the conduction. The internal energy is modified during this thermal step and this seems to be taken into account during this extra step (out of the VUMAT subroutine) since the tests on 1 element with imposed displacement of all nodes gives the exact same results as the build-in routine as it will be presented further in Chapter 3.

In each step of computation, the temperature raise is calculated two times. Firstly it is calculated in the mechanical part inside the VUMAT subroutine, which is due to the increment of the plastic strain. Then in the evaluation of the internal energy outside the VUMAT subroutine, the temperature raise is calculated again.

Start of VUMAT t = 0 Yes

No Numerical implementation of the constitutive laws through user subroutines I n the previous chapter, we have introduced the algorithm for the implementation of elastoplastic constitutive laws in the commercial nonlinear finite element software Abaqus/Explicit. In order to validate the performance of the proposed algorithm, several constitutive laws are implemented through the VUMAT subroutine in this chapter. Firstly the widely used Johnson-Cook constitutive law [START_REF] Johnson | A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[END_REF] and its hardening parameter are introduced in details. The efficiency and robustness of the Johnson-Cook law implemented through VUMAT subroutine is validated by three sets of benchmarks, including the one element tests, necking of a circular bar and Taylor test. Some alternative constitutive laws, including the TANH constitutive law [START_REF] Calamaz | Numerical simulation of titanium alloy dry machining with a strain softening constitutive law[END_REF], modified TANH constitutive law [11] and Bäker constitutive law [11,[START_REF] Bäker | Finite element simulation of high-speed cutting forces[END_REF], are also implemented in the VUMAT subroutine to simulate the Taylor compression test, in order to validate the application of the proposed algorithm and study the influence of constitutive laws on impact.
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The Johnson-Cook constitutive law

In J 2 plasticity, the two parameters used to determine the stress state are the von Mises equivalent stress σ, which is already discussed previously, and the current yield stress of the material σ y . In this section, we will talk about a widely used equation for calculating the yield stress, which is called the Johnson-Cook constitutive law (J-C constitutive law). The J-C constitutive law is a particular type of von Mises plasticity model with analytical forms of the hardening law and rate dependence, and the J-C hardening is a particular type of isotropic hardening.

It is well known that the mechanical behaviors, such as yield stress, ductility, and strength of materials will change due to external stimuli, for example, fields or forces. A description of deformation behavior of metals over a wide range of loading conditions is significant in metal forming, high-speed machining, high-velocity impact and other dynamic conditions. Constitutive laws are the equations describing the response of materials due to external loading.

Constitutive models are generally categorized into three groups: empirical models, semiempirical models and models based on physics of deformation processes [11]. As for the empirical (or phenomenological) models, if there is no coupling between the influence of hardening, temperature sensitivity and strain rate sensitivity, they are referred to as decoupled models, otherwise they are called coupled models. The probably most widely used empirical decoupled constitutive law within our field of interest is the Johnson-Cook constitutive law, which is applicable for materials subjected to large strains, high strain rates and high temperatures.

In 1980s, there was a great deal of effort directed at computations for intense impulsive loading due to high-velocity impact and explosive detonation. The capabilities of computer codes at that time were extended to the point that the limiting factor was often that of adequately defining material characteristics of both strength and fracture. Johnson and Cook first put forward the J-C constitutive law in 1983 which was well suited for computations [START_REF] Johnson | A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[END_REF]. It is not based on traditional plasticity theory, but a phenomenological model. This model reproduces three material responses observed in impact and penetration of metals, which are strain hardening, strain rate strengthening and thermal softening. Meanwhile, they proposed the constitutive constants of the J-C constitutive law for various materials, such as OFHC copper, Cartridge brass, Nickel 200, 2024-T351 aluminum, 4340 steel and so on, which were obtained from torsion tests over a wide range of strain rates (quasi-static to about 400 s -1 ), static tensile tests, dynamic Hopkinson bar tests at elevated temperature.

The J-C constitutive law is a constitutive model that is primarily intended for computations. It is recognized that more complicated models may indeed give more accurate descriptions of material behavior. Similarly, various models may give better descriptions for various materials. However, in many instances, the computational user cannot readily incorporate complicated and diverse models. In recent years, due to the simple form, small calculation cost and rapid calculation speed of the J-C constitutive law, it has been widely applied in various kinds of commercial finite element analysis softwares such as Abaqus [START_REF]Abaqus v.6.14 User's manual[END_REF] and a lot of efforts have been made to identify the constitutive parameters for many materials.

The Johnson-Cook flow law

The general formulation of the Johnson-Cook flow law σ y (ε p , ε p , T ) is given by the following equation:

σ y = A + Bε p n 1 + C ln ε p ε 0 1 - T -T 0 T m -T 0 m (3.1)
where ε 0 is the reference strain rate, T 0 and T m are the reference temperature and the melting temperature of the material respectively and A, B, C, n and m are the five constitutive flow law parameters. Therefore, the J-C flow law represents the yield stress σ y (ε p , ε p , T ) as a product of three functions: the dependence on strain hardening σ y ε (ε p ), strain rate strengthening σ y ε (ε p ) and thermal softening σ y T (T ), leading to the following expression:

σ y = σ y ε (ε p )σ y ε (ε p )σ y T (T ) (3.2) 
• The dependence on strain hardening σ y ε (ε p ) has the following form:

σ y ε (ε p ) = A + Bε p n (3.3)
where ε p is the equivalent plastic strain. It describes the flow stress of material under the reference conditions. Hence, parameters A, B and n refer to initial yield stress, hardening modulus and strain hardening exponent respectively under the reference conditions.

• The dependence on the plastic strain rate σ y ε (ε p ) is originally written as:

σ y ε (ε p ) = 1 + C ln ε p ε 0 (3.4)
where ε p is the equivalent strain rate, ε 0 is the reference strain rate, C is a dimensionless strain rate strengthening coefficient and the term ε p ε 0 is also called the dimensionless plastic strain rate. In this work, σ y ε (ε p ) is modified according to [START_REF] Johnson | A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[END_REF][START_REF] Zaera | An implicit consistent algorithm for the integration of thermoviscoplastic constitutive equations in adiabatic conditions and finite deformations[END_REF][START_REF] Schwer | Optional strain-rate forms for the Johnson Cook constitutive model and the role of the parameter epsilon_0[END_REF], that is, the dependence on the plastic strain rate is taken into account only if ε p ε 0 , so that:

   σ y ε (ε p ) = 1 + C ln ε p ε 0 if ε p ε 0 σ y ε (ε p ) = 1 if ε p <ε 0 (3.5)
In the original implementation of the Built-in Johnson-Cook flow law in Abaqus/Explicit, there is no comparison between ε p and ε 0 . Since the parameters A and B are usually determined under the quasi-static condition, the value of ε 0 is 10 -4 s -1 [START_REF] Schwer | Optional strain-rate forms for the Johnson Cook constitutive model and the role of the parameter epsilon_0[END_REF], which can ensure ε p ε 0 . However, sometimes ε 0 is set to 1 s -1 as a matter of convenience.

It should be noticed that if ε p <ε 0 , the value of the term 1 + C ln ε p ε 0 might be below zero, which will make the yield stress less than the value in quasi-static state.

Therefore, in our implementation and conforming to [START_REF] Johnson | A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[END_REF][START_REF] Zaera | An implicit consistent algorithm for the integration of thermoviscoplastic constitutive equations in adiabatic conditions and finite deformations[END_REF][START_REF] Schwer | Optional strain-rate forms for the Johnson Cook constitutive model and the role of the parameter epsilon_0[END_REF], to avoid this situation, the dependence of yield stress on deformation rate is divided into two forms. If ε p ε 0 , it is the same as the original one in the J-C constitutive law. If ε p <ε 0 , the yield stress is independent of the deformation rate.

• The dependence on temperature σ y T (T ) is defined so that, if T < T 0 , there is no temperature dependence of the yield stress, and if T T m , the material is assumed to behave like liquid:

     σ y T (T ) = 1 -T -T 0 Tm-T 0 m if T 0 T T m σ y T (T ) = 1 if T < T 0 σ y T (T ) = 0 if T > T m (3.6)
where T 0 and T m are the reference temperature and the melting temperature of the material, m is power exponent of thermal softening terms, and the term T -T 0 Tm-T 0 is the homologous temperature. It characterizes the material softening due to adiabatic heating, not the environmental temperature.

It is worth noting that the role of the reference strain rate ε 0 is sometimes misunderstood. It is often thought this parameter simply plays the role of making the time units in the strain rate term non-dimensional and then the value of ε 0 is set to 1s -1 as a matter of convenience. In fact, the value of this parameter must be consistent with the choices of the initial yield stress and hardening modulus, i.e. A and B. If A and B are determined from the quasi-static effective stresses vs. effective plastic strain data, ε 0 should be set to the value of the effective plastic strain rate of the quasi-static test. If ε 0 is set to be 1 s -1 , then the previously determined values of A and B have to be modified [START_REF] Schwer | Optional strain-rate forms for the Johnson Cook constitutive model and the role of the parameter epsilon_0[END_REF]. This is the approach we have chosen in this work since all 5 parameters will be identified from dynamic tests only.

The Johnson-Cook hardening parameter

The yield hardening parameter h is defined as the derivative of the yield stress with respect to plastic strain, given by:

h = dσ y dε p (3.7)
As the flow stress of the J-C constitutive law depends on equivalent plastic strain ε p , equivalent strain rate ε p and temperature T , the J-C hardening parameter can be calculated using the following equation: ∂ε p is easy to be calculated, given by:

h = dσ y dε p =
∂σ y ∂ε p = nBε p n-1 σ y ε (ε p )σ y T (T ) (3.10)
As the dependence on the plastic strain rate σ y ε (ε p ) is divided into two parts in Equation (3.5) and the dependence on temperature σ y T (T ) is divided into three parts in Equation (3.6), the analytical forms for ∂σ y ∂ε p and ∂σ y ∂T are given here after:

   ∂σ y ∂ε p = C(A+Bε p n ) ε p σ y T (T ) if ε p ε 0 ∂σ y ∂ε p = 0 if ε p <ε 0 (3.11)
and:

∂σ y ∂T = -m(A+Bε p n ) T -T 0 σ y ε (ε p ) T -T 0 Tm-T 0 m if T ∈ [T 0 , T m ] ∂σ y ∂T = 0 if T / ∈ [T 0 , T m ] (3.12) 

Discussion

Although the J-C constitutive law is simple to implement and the parameters are readily obtained from a limited number of experiments, it has obvious shortcomings. It is purely empirically designed for ease of computational implementation and does not represent any thermal or strain rate history effects [START_REF] Liang | A critical review of experimental results and constitutive models for bcc and fcc metals over a wide range of strain rates and temperatures[END_REF]. It fails to predict the deformation behaviors of material in some cases, such as the strain rate sensitivity of the ductile metals for strain rates in excess of 10 3 s -1 [14] and the competition between work hardening and softening [START_REF] Calamaz | Numerical simulation of titanium alloy dry machining with a strain softening constitutive law[END_REF]. To obtain more accurate prediction of the material deformation, many researchers proposed alternative constitutive laws, such as the TANH constitutive law and so on, which will be discussed later.

In this chapter, we choose the J-C constitutive law to realize the implementation of elastoplastic constitutive laws in the commercial nonlinear finite element software Abaqus/Explicit using the proposed numerical algorithm, although the proposed VUMAT algorithm is applicable for all the elastoplastic constitutive laws which follow isotropic hardening and have the general form of σ y (ε p , ε p , T ). The J-C constitutive law is more appropriate for validating the proposed approach, because it has already been built in Abaqus/Explicit code, which means the benchmark tests can be conducted between the Abaqus built-in J-C constitutive law and the J-C constitutive law implemented in VUMAT.

As we can see, those two conditions defined by equations (3.5) and (3.6) lead to some discontinuities in the hardening relation σ y (ε p , ε p , T ), its derivative h(ε p , ε p , T ) and the yield function itself resulting in numerical difficulties in the iterative solving procedure. The yield function is therefore not differentiable at ε 0 and T 0 . Nevertheless, the Newton-Raphson procedure proposed in Section 2.3.3.3 has been found sufficiently robust to overcome this kind of difficulties. Another problem usually encountered is that, because of the term nBε p n-1 in equation (3.10), h tends to infinity when ε p = 0. As presented in Section 2.4.2.2, a special treatment has been applied in the hardening parameter computation on the first plastic step (i.e. when ε p = 0) in order to solve this problem.

VUHARD implementation in Abaqus/Explicit

Besides the VUMAT subroutine, there is an alternative way to implement user-defined constitutive laws in Abaqus/Explicit, which is called the VUHARD subroutine. It can be used to define a material's isotropic yield behavior. It only requires the definition of the yield stress and its derivatives with respect to the appropriate variables, and the other work is completed by the Abaqus built-in algorithm [START_REF]Abaqus v.6.14 User's manual[END_REF]. The VUHARD subroutine is called at all material points of elements for which the material definition includes user-defined isotropic hardening for metal plasticity, and can include material behavior dependent on field variables or state variables [START_REF]Abaqus v.6.14 User's manual[END_REF]. The most significant difference between VUHARD and VUMAT subroutines is the time integration algorithm. Abaqus/Explicit employs an explicit centraldifference time integration algorithm, while the proposed VUMAT subroutine employs the radial return mapping algorithm.

The VUHARD subroutine is a straightforward approach to implement a new constitutive flow law in Abaqus/Explicit by just implementing a FORTRAN subroutine to compute the yield stress of the material σ y (ε p , ε p , T ) and its derivatives with respect to ε p , ε p and T . The main part of the Built-In constitutive law is used for time integration of the stress, for a given time increment, and the provided user subroutine is used to compute the hardening flow law. Very few details are given about this implementation in the Abaqus documentation, but some useful informations are available in Jansen van Rensburg et al. [START_REF] Jansen Van Rensburg | Tutorial on state variable based plasticity: an abaqus uhard subroutine[END_REF].

The numerical implementation of the VUHARD subroutine for the Johnson-Cook flow has been done through a FORTRAN program defining the hardening flow law σ y (ε p , ε p , T ) according to equation (3.1) and the three analytical derivatives of σ y with respect to ε p , ε p and T defined by equations (3.10-3.12). The complete listing of the implementation of the VUHARD subroutine based on an analytical evaluation of the derivatives is presented in Appendices on page 158.

Validation of the proposed implementations

In this section, in order to validate the efficiency and accuracy of the proposed implemented algorithms, the performance of the J-C law programmed in the VUMAT subroutine, based on various solvers for the non-linear equation, is compared with the performance of the Abaqus/Explicit built-in J-C law and the J-C law programmed using the VUHARD subroutine.

The benchmark tests consist of two different one element tests (tensile test and shear test), the necking of a circular bar and the well known Taylor impact test. A 42CrMo4 steel has been selected for those tests, and all material properties coming from previous studies are reported in Table 3.1 [START_REF] Sattouf | Identification and comparison of different constitutive laws for high speed solicitation[END_REF]. The following models have been tested for each benchmark:

• Built-in : native implementation of the built-in Johnson-Cook constitutive law, in order to compare the results with a reference solution.

• A-N-R : VUMAT with safe Newton-Raphson procedure and an analytical computation of the derivatives using Equations (3.10-3.12).

• N-N-R : VUMAT with safe Newton-Raphson procedure and a numerical computation of the derivatives using Equations (2.85-2.87).

• Direct : VUMAT with a direct evaluation of Γ using Equation (2.73).

• Bisection : VUMAT with bisection procedure using Equation (2.74).

• R-F : VUMAT with Regula Falsi procedure using Equations (2.75-2.76).

• VUHARD : VUHARD defining the Johnson-Cook constitutive law and its analytical derivatives using Equations (3.10-3.12).

At this point, it has to be noted that not only one objective stress rate is used for the solid element in Abaqus/Explicit. In fact, and referring to the Abaqus manual [START_REF]Abaqus v.6.14 User's manual[END_REF], the Jaumann stress rate is used for the built-in formulation while the Green-Naghdi stress rate is used for the VUMAT subroutine. However, the Abaqus manual does not specify which objective stress rate is used for the VUHARD subroutine.

As discussed in Section 2.1.3, the difference between the Jaumann rate and Green-Naghdi rate can lead to different analytical solutions of constitutive equations if finite rotation of a material point is accompanied by finite shear. Thus, we will check elastic responses of the VUHARD model for one element shear test in order to know which objective stress rate is used for VUHARD subroutines.

One element tensile and shear tests

One element test, also called single element test, is a very simple and practical method to investigate the accuracy and sensitivity of the behavior of an element to the external loading. In this subsection, the deformation of a 4-node bilinear displacement and temperature, reduced integration with hourglass control element CPE4RT (5) will be simulated using the proposed VUMAT and VUHARD subroutines and the Built-in implementation. The "Dynamic Temperature-displacement, Explicit" procedure of Abaqus/Explicit is used. The inelastic heat fraction parameters has been set to the default value of 0.9. This thermo-mechanical coupling option allows heat to be generated by plastic dissipation or viscoelastic dissipation. In this kind of test, all nodes of the element are constrained with a prescribed displacement. As the geometry change is exactly the same in each of the two tests, it will be easy to compare the results in terms of plastic deformations, stresses and temperatures. The original size of the element is 10 mm × 10 mm.

One element tensile test

In this benchmark, the two left nodes of the element are encastred and a prescribed horizontal displacement d = 10 mm is applied on the two right nodes of the same element as illustrated in Figure 3.1. As we are using an explicit integration scheme, the total simulation time is set to t = 0.01 s.

Figure 3.2 shows the equivalent plastic strain ε p evolution vs. the displacement and the von Mises equivalent stress σ evolution vs. the displacement for the seven proposed models, where all the curves coincide with each other. Table 3.2 reports some results at the end of the computation concerning the total number of increments, equivalent plastic strain ε p , the von Mises stress σ and the temperature T for these models.

A perfect match between all the results except results of the Direct model has been found for the one element tensile test, with final values of the plastic strain ε p = 0.46, the stress σ = 1282.4 M P a and the temperature T = 164.1 • C. Differences in computational time cannot be measured since the total computational time in less than 1 s.

Figure 3.1:

Model of one element tensile test (5) The Abaqus CPE4RT element is a 4-node bilinear displacement and temperature, reduced integration with hourglass control element. 

One element shear test

The second benchmark is similar to the previous one. In this test, the two bottom nodes of the element are encastred and a prescribed horizontal displacement d = 10 mm is applied on the two top nodes of the same element as illustrated in Figure 3.3. The total simulation time is set again to t = 0.01 s.

Figure 3.4 show the equivalent plastic strain ε p evolution vs. the displacement and the equivalent stress σ evolution vs. the displacement for the seven proposed models, and Table 3.3 shows again the comparison of the results concerning the total number of increments, equivalent plastic strain ε p , the von Mises stress σ and the temperature T .

Again, a perfect match between all the results except results of the Direct model has been found, with final values of the plastic strain ε p = 0.57, the stress σ = 1285.4 M P a and the temperature T = 192.2 • C. As discussed above, and presented in section 2.1.3, page 37 the elastic responses for one element shear test can be used to determine objective stress rates used in different models. Therefore, the test described above has been modified to model an hyperelastic behavior in the element. To avoid the plastic deformation, the initial yield stress of the material (i.e. the parameter A in Table 3.1) is set to A = 100 GP a. The total simulation time is set to t = 0.1 s and the prescribed horizontal displacement is changed to 100 mm.

Besides the VUHARD model, the Built-in model and N-N-R model are also used to conduct the shear test as comparisons. The results of the analytical analysis proposed in Section 2.1.3 page 37 and defined by Equations (2.30-2.31) for the Jaumann stress rate and Equations (2.33-2.34) for the Green-Naghdi stress rate are also reported here for comparison.

• The results of normal stresses σ 11 , σ 22 and shear stress σ 12 are compared in Figure 3.5, 3.6 and 3.7 respectively. As we can see, the N-N-R model and the analytical solution of Green-Naghdi rate exhibit the same variation of the stresses σ 11 , σ 22 and σ 12 , which verifies that the Green-Naghdi stress rate is used for the VUMAT subroutine.

• Meanwhile, the results of the Built-in model, the VUHARD model and the analytical solution of Jaumann rate coincide with each other, which indicates that the Jaumann stress rate is used for the built-in formulation as well as the VUHARD subroutine.

The conclusions of this study are reported in Table 3.4. Therefore, we must now know that a straightforward comparison of built-in, VUHARD and VUMAT results is not possible when large rotations occur because of the difference in stress rate computation. 

Necking of a circular bar

The necking of a circular bar test is useful to evaluate the performance of the VUMAT and VUHARD subroutines for materials in presence of plasticity and large deformation [START_REF] Simo | Computational inelasticity[END_REF][START_REF] Ponthot | Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes[END_REF].

Because of the symmetric structure, an axis-symmetric quarter model of the specimen is established. Dimensions of the specimen are reported in Figure 3.8.

The loading is realized through an imposed displacement of 7 mm along the #» z axis on the left side of the specimen while the radial displacement of the same edge is supposed to remain zero. On the opposite side, the axial displacement is restrained while the radial displacement is free.

The mesh consists of 400 CAX4RT (6) elements with a refined zone of 200 elements on the right side on 1/3 of the total height. Again, and because of the explicit approach, the total simulation time is set to t = 0.01 s. 3.5 for equivalent plastic strain ε p , von Mises equivalent stress σ and temperature T . Table 3.5 reports some results at the end of the computation concerning the total number of increments and the total computing time for these models. As reported in this table, the results of the A-N-R model and N-N-R model are identical, this tends to prove that there is no difference in using numerical or analytical derivatives of the flow law.

It is noticeable in this case that the total number of increments needed to perform the whole simulation is lower for the Newton-Raphson models than for the Built-in model and (6) The Abaqus CAX4RT element is a 4-node thermally coupled axisymmetric quadrilateral, bilinear displacement and temperature, hybrid, constant pressure, reduced integration, hourglass control element. VUHARD model. This difference is illustrated in Figure 3.11 where the evolution of the time increment ∆t with the displacement during the computation is reported. The smoother variation of the time increment, and greatest values, are obtained with both versions of Newton-Raphson, leading to the minimal number of increments to complete the simulation. Using the Built-in model and VUHARD model, a reduction of the stable time increment from ∆t = 6.5 × 10 -8 s to ∆t = 5.2 × 10 -8 s is noticed after 2.53 mm, while using the Direct model, a large reduction of the stable increment from ∆t = 6.4 × 10 -8 s to ∆t = 3.4 × 10 -8 s with some residual oscillations is encountered after 2.08 mm. The stable time increments are reduced slowly from ∆t = 6.5 × 10 -8 s to ∆t = 5.5 × 10 -8 s after 2.06 mm for the Bisection model and from ∆t = 6.5 × 10 -8 s to ∆t = 5.2 × 10 -8 s after 1.92 mm for the R-F model, accompanied by the intensive oscillations. From those results we can conclude that the integration of the constitutive equation has an influence on the evaluation of the stable time increment ∆t. We can also note, from the results reported in Table 3.5 that, compared with the Built-in model, the VUMAT Newton-Raphson models do not increase too much the total computational time (around 8.3 more time in this case) as the total number of increments has been reduced by a factor of 3.9%.

As for the VUHARD model, it increases not only the total computational time (19.1%), but also the total number of increments (0.4%). Of course, the computational cost of the VUMAT model can be reduced by optimizing the FORTRAN routine and removing the numerous number of tests inside of the code. It has also to be noted that the requested precision for the Newton-Raphson subroutine ε N R also has an influence on the computational time, therefore, global performance in terms of computational time can be raised if needed.

In order to check the influence of mesh on the performances of the proposed algorithms, the necking of a circular bar test is simulated with a coarse mesh and a refined mesh separately. In the coarse mesh, there are 50 CAX4RT elements (Figure 3.12), while in the refined mesh, there are 1600 CAX4RT elements (Figure 3.13). Both of them have half of the total elements located on the right side on 1/3 of the total height. Figures 3.14 and 3.15 show the equivalent plastic strain contour-plot of the deformed bar with two kinds of meshes for the two models. With both kinds of meshes, the N-N-R model (right side) exhibit almost the same strain distribution as the Built-in model (left side). The maximum equivalent plastic strain ε p is located in the center elements of the model (the red elements in Figure 3.12 and 3.13).

More details are reported in Tables 3.6 and 3.7. With either kind of meshes, the two models give almost the same values of the final equivalent plastic strain, von Mises stress and temperature inside of the red elements. Although compared with the Built-in model, the computation time is increased in the N-N-R model (16.7% and 10.3%), the total number of increments is reduced by 4.3% and 3.4%. 

Taylor impact test

Finally, the performance of the proposed VUMAT subroutine is validated under high deformation rate with the simulation of the Taylor impact test. In the Taylor test, a cylindrical specimen is launched to impact a rigid target with a prescribed initial velocity as introduced in Section 1.3 page 23. This test is simulated using both 2D and 3D models.

Taylor 2D test

The 2D model of Taylor specimen, reported in Figure 3.16, is established as axis-symmetric. The height is 32.4 mm and the radius is 3.2 mm. The axial displacement is restrained on the right side of the specimen while the radial displacement is free (this corresponds to a perfect contact without friction of the projectile onto the target). A predefined velocity of V c = 287 m/s is imposed on the specimen. The mesh consists of 250 CAX4RT elements (5 × 50 elements). The total simulation time for the Taylor impact test is t = 80 µs. .17 shows the equivalent plastic strain contour-plot of the deformed rod for two models: the Built-in model (left side) and the N-N-R model (right side). The maximum equivalent plastic strain ε p is located in the center element of the model (the red element in Figure 3.17), and the two models give quite the same values as reported in Table 3.8 for the equivalent plastic strain ε p , final length L f , final radius R f and temperature T . Figure 3.18 illustrates the evolution of the equivalent plastic strain ε p and the temperature T with time of the red element in Figure 3. [START_REF] Hendriks | Identification of the mechanical behavior of solid materials[END_REF], where the curves of the seven models almost coincide with each other. No comparison of the total computing times is proposed in this Section, since for all the proposed simulation cases, the total CPU time doesn't excess 4 s.

Taylor 3D test

A 3D quarter model of the Taylor cylindrical specimen is built, shown in Figure 3. [START_REF] Sarva | Mechanics of Taylor impact testing of polycarbonate[END_REF]. The Taylor 3D model has the same dimensions as the Taylor 2D model. For the right end of the specimen, the displacement along the #» z axis is restrained while the displacement in the xy plane is free (this corresponds to a perfect contact without friction of the projectile onto the target). Because of the symmetric structure, the displacement of the two vertical sections along their normal directions is restrained. A predefined velocity of V c = 287 m/s is imposed on the specimen. The mesh consists of 4455 C3D8RT (7) elements. The total simulation time for the Taylor impact test is t = 80 µs.

As noted in the previous benchmarks concerning the Necking of a circular bar, since the Regula Falsi algorithm gives poor results and computation times are much longer, it was decided in this section to suppress the test cases related to this algorithm in order to reduce the number of curves on the different graphs and lines in the subsequent tables.

Figure 3.20 shows the equivalent plastic strain contour-plot of the deformed specimen for the N-N-R model. The plastic deformation is concentrated at the bottom of the model, while the maximum equivalent plastic strain ε p is not located in the red element in Figure 3.20. (7) The Abaqus C3D8RT element is a 8-node thermally coupled brick, trilinear displacement and temperature, reduced integration, hourglass control element. 3.9 reports some results for the six models, including the final length L f , final radius R f , equivalent plastic strain ε p and temperature T of the red element in Figure 3.19. Although the six models give quite different values of equivalent plastic strain and temperature, it is not appropriate to use these two parameters to validate the proposed implementation algorithm. Because each element use only one Gauss integration point to obtain the strain at the element center, the equivalent plastic strain of an element is too localized to reflect the deformation of the whole model accurately in 3D condition. As the temperature of an element is closely related to its equivalent plastic strain, it is not accurate to be a criterion of the verification either.

Thus in this case, we choose more global parameters to compare, which are the final length L f and final radius R f . These six models give quite similar deformed shapes, and the differences between the Built-in model and the other models are less than 0.2% (L f ) and 3% (R f ) respectively.

Meanwhile, the Taylor 3D test is simulated with other two kinds of meshes in the same loading condition. The coarse mesh consists of 600 elements (Figure 3.21) and the refined mesh consists of 37 422 elements (Figure 3.22). The results of the six models with the coarse mesh and refined mesh are reported in Tables 3.10 and 3.11, separately.

• When using the coarse mesh, the two models give almost the same values of the equivalent plastic strain, final length, final radius and temperature.

• When using the refined mesh, the differences of the equivalent plastic strain and temperature are quite obvious, which are 31% and 7.9%. However, as discussed above, comparison of these two parameters are not appropriate in this case. While the differences of the more global parameters, final length and final radius, are very small, and the maximum values are 0.38% and 5%. Simulation times are quite long (around 25 minutes) in this case, but differences in computing times between models are less than 10%. 

Discussion

In all the proposed benchmark tests, it is noteworthy that the results of the VUMAT subroutines, Abaqus Built-in model and VUHARD subroutine are very closed but some slight differences can be pointed. Those differences can mainly be explained by the following remarks:

• The Johnson-Cook constitutive law implemented through the VUMAT and VUHARD subroutines does not have exactly the same expression as the Abaqus/Explicit Builtin model because the dependence on the deformation rate has been modified in our implementation as discussed before in Section 3.1.1.

• The Built-in model and the VUHARD are integrated through an explicit centraldifference time integration rule, while the radial return method, which belongs to an implicit integration algorithm, is employed in the VUMAT subroutine.

• As the root of the function is not an exact solution, but an approximation, the choice of the precision tolerance has an effect on the final results.

• Different stress rates are used for the Built-in model and the VUHARD subroutine with regards to the VUMAT subroutine, which can cause differences in the results in large deformations models when finite rotation of a material point is accompanied by finite shear, as discussed above.

In the benchmark tests discussed above, the VUMAT models with Newton-Raphson procedure shows its robustness and efficiency. Compared with the other VUMAT and VUHARD models, the numerical responses are in good agreement with the responses of the Built-in model, the number of increments needed to perform the whole simulation is reduced when using these two models, and the convergence rate is fast. Considering the VUMAT model with Newton-Raphson procedure and a numerical computation of the derivatives has a strong applicability, this becomes for us the optimal model for the identification of constitutive laws using VUMAT implementations presented in Chapter 119.

VUMAT implementation of some alternative constitutive laws

Previously we mentioned that the proposed algorithm for the implementation of elastoplastic constitutive laws in Abaqus/Explicit could be applied to all the elastoplastic constitutive laws which follow isotropic hardening and have the general form of σ y (ε p , ε p , T ). In this section, the J-C constitutive law and three alternative constitutive laws are implemented in the VUMAT subroutine to simulate the Taylor compression test, in order to validate the application of the proposed algorithm and study the influence of constitutive laws on impact. These alternative constitutive laws are the TANH constitutive law, modified TANH constitutive law and Bäker constitutive law. As discussed before, only the first part of the subroutine, where the yield function and hardening function are defined, needs to be modified to implement a new constitutive law in a VUMAT subroutine.

The TANH constitutive law

Based on the assumption of strain softening phenomenon, Calamaz et al. [START_REF] Calamaz | Numerical simulation of titanium alloy dry machining with a strain softening constitutive law[END_REF] proposed the so-called TANH constitutive law by adding a term modeling the strain softening to the J-C constitutive law, given by:

σ y = σ JC D + (1 -D) tanh 1 ε p + ε 0 (3.13)
with:

D = 1 - pε p 1 + pε p tanh T -T 0 T rec -T 0 q (3.14)
in which σ JC represents the original J-C constitutive law. The constant ε 0 can modulate the strain corresponding to the peak stress, p and q are the additional constitutive law parameters, and T rec is the onset temperature for the strain softening phenomenon.

The Modified TANH constitutive law

Hor et al. [11] proposed a constitutive law by modifying the TANH constitutive law, which is easier to identify and does not require knowledge of the saturation stress. Two different couplings are introduced in this model. The first involves coupling between the effects of work hardening and temperature. The second coupling is between the effects of strain rate and temperature. It is referred to as modified TANH constitutive law in this work, given by the following equation:

σ y = σ ε p (ε p , T )σ T (T )σ ε p (ε p , T ) (3.15) 
where: [START_REF] Hendriks | Identification of the mechanical behavior of solid materials[END_REF] with: and:

         σ ε p (ε p , T ) = A + Bε p n D + (1 -D) tanh 1 ε p +ε 0 σ T (T ) = 1 -m 1 T -T 0 Tm-T 0 m 2 σ ε p (ε p , T ) = 1 + C(T ) ln ε p ε 0 (3.
D = 1 - pε p 1 + pε p tanh T -T 0 T rec -T 0 (3.
C(T ) = C 1 exp C 2 T Tm T Tm (3.18) A, B, C 1 , C 2 , m 1 , m 2
, n and p are the constitutive law parameters. As with TANH model, the constant ε 0 can modulate the strain corresponding to the peak stress and T rec is the onset temperature for the strain softening phenomenon.

The Bäker constitutive law

A constitutive law proposed by Bäker [START_REF] Bäker | Finite element simulation of high-speed cutting forces[END_REF] is based on flow stress measurements using a split Hopkinson bar apparatus at strain rates of up to 10 4 s -1 at different temperatures. As strain rates in excess of 10 7 s -1 were reached in the orthogonal metal-cutting simulations, an extrapolation over several orders of magnitude was necessary. Thus a logarithmic rate dependence was assumed and the Bäker constitutive law is given by:

σ y = Aε p n 0 f (T ) 1 + C ln ε p ε 0 f (T ) (3.19) 
with:

f (T ) = exp - T T α m (3.20)
where A, n 0 , T α and m are the temperature-dependent material parameters, and C and ε 0 are constants.

Influence of constitutive laws on impact

To validate the application of the proposed algorithm for the implementation of elastoplastic constitutive laws in Abaqus/Explicit and study the influence of the constitutive laws on impact, numerical simulations of the Taylor compression test using the four constitutive laws are performed respectively for the same material, which is the 42CrMo4 steel with ferrito-perlitic (referred to as 42CrMo4-FP). The parameters of the four constitutive laws for 42CrMo4-FP steel were proposed by Hor et al. For each model, the plastic deformation is concentrated at the bottom, and the maximum equivalent plastic strain is located in the center element of the specimen. More details concerning the maximum equivalent plastic strain ε p , final length L f , final radius R f of the bottom and maximum temperature T are reported in Table 3. [START_REF] Hendriks | Identification of the mechanical behavior of solid materials[END_REF].

The results of the J-C model and TANH model are almost identical. Compared with the previous two models, the modified TANH model achieves larger equivalent plastic strain at the bottom, and correspondingly it also achieves larger final radius and higher temperature at the bottom. However, as we can see, this model has less plastic deformation in the other part. No matter in terms of the maximum equivalent plastic strain and temperature or in terms of the geometric responses, the Bäker model has the least plastic deformation. From the numerical simulations discussed above, it can be seen that for the same impact process, different constitutive laws lead to quite different simulation results. That is because some constitutive laws emphasize the physics of the deformation processes, while some aim to decrease the computational and experimental cost.

Moreover, most constitutive laws are proposed for different specific applications, for example, high strain rates, high temperature or large plastic strains. In these particular conditions, these models are capable of reproducing the experimental results. However, the accuracy of these models cannot be ensured in other cases. When these constitutive laws are used to simulate the same impact process, their results are not exactly the same. Thus, the choice of the constitutive law is of primary importance for the accuracy of the impact process simulation.

( I n dynamic mechanics, the inverse identification problem is defined as finding system inputs based on given responses, boundary conditions and system model. The inverse identification method has been studied and developed over the last decades, the basic principle of this method is the comparison between experimental measurements and numerical results calculated by finite element simulation. A common application of this method is to identify the unknown parameters for constitutive laws.

In this chapter, an identification platform is built, including a new inverse identification procedure and the numerical models corresponding to the experimental tests. The new identification procedure is proposed to provide appropriate parameters sets for constitutive laws. An objective function is built to evaluate the correlation between the final deformed shape of experimental specimens and their respective numerical models.

A Python identification program using the Levenberg-Marquardt algorithm has been set-up to optimize the objective function. In addition, a data processing step is proposed to obtain more accurate numerical responses, including data extraction and data estimation.

Complete numerical models for Taylor compression, tensile and shear tests are built thanks to Abaqus/Explicit and the optimizations of the specimens are verified. The complete models are replaced by the simplified models, where some non-essential parts are deleted and the boundary conditions are modified. Considering the kinetic energy of the deleted parts, equivalent impact velocities are proposed for the simplified models, which is based on the inverse identification procedure comparing numerical responses of the complete models and numerical responses of the simplified models.

The inverse identification procedure

Under large deformations and high deformation rates such as forming or machining processes, non-linear constitutive laws play a significant role in predicting the mechanical behavior of materials. The commercial finite element software Abaqus not only implements phenomenological constitutive laws with a limited number of unknown parameters but also allows users to implement some user-defined constitutive laws, to describe some more complex behavior of materials. These newly defined constitutive laws will become more complicated if more physics are taken into account. A good knowledge of the constitutive laws parameters is the mostly important in order to perform an accurate simulation and to obtain reliable results. If the constitutive parameters are already known, one can input these parameters directly in Abaqus for the constitutive law built-in the Abaqus software or the constitutive law implemented through the user-defined subroutine. If the constitutive parameters are unknown, before they are input in Abaqus, these parameters firstly require to be identified. Thus, a so-called inverse identification method is proposed.

The main goal of this method is to identify a selected set of unknown parameters in a numerical model. The unknown parameters are determined iteratively by minimizing the discrepancy between the experimental and the computed responses of the physical system under study, e.g., by comparing displacement fields, strain fields, resonant frequencies [START_REF] Cooreman | Identification of mechanical material behavior through inverse modeling and DIC[END_REF]. In this work, this concept is realized by minimizing iteratively an objective function based on the difference between a vector of experimental and numerical data. The final deformed shapes of specimens are selected as the experimental quantity and the computed corresponding responses are provided by the finite element software Abaqus/Explicit [START_REF] Nistor | Identification of a dynamic viscoplastic flow law using a combined levenberg-marquardt and monte-carlo algorithm[END_REF][START_REF] Abichou | Identification of metallic material behaviors under high-velocity impact: A new tensile test[END_REF]. It is worth noting that the final deformed shapes of the specimens in the experiments are obtained through a post-mortem analysis. As introduced previously, the experiments conducted in this work are the Taylor compression, tensile and shear tests. During these tests, it is impossible to obtain the data related to the deformation of specimens vs. time. Only the post-mortem analysis can be carried out to measure the final deformed shapes when the experiments are completed. As we build numerical models to simulate the deformation of these specimens, in this case we assume that if the shapes of the specimens and numerical models are the same at the beginning and the end of the tests, their deformation processes are the same [START_REF] Johnson | Evaluation of cylinder-impact test data for constitutive model constants[END_REF][START_REF] Brünig | Numerical simulation of Taylor impact tests[END_REF].

The identification program

In the past, the parameter identification technique was developed for each constitutive model, which was the sequence of rather tedious manual processes. Nowadays, the advance of computer hardware allows an approach where all the parameters are identified simultaneously. In such approach, an optimization method is most commonly used to find the parameters in conjunction with the method of least squares, where the residual between the measured data and the computed model response becomes the objective function to be minimized [78].

Inverse identification of the constitutive parameters has already been developed and used in our laboratory LGP (Laboratoire Génie de Production) [START_REF] Sattouf | Caractérisation en dynamique rapide du comportement de matériaux utilisés en aéronautique[END_REF][START_REF] Nistor | Identification of a dynamic viscoplastic flow law using a combined levenberg-marquardt and monte-carlo algorithm[END_REF][START_REF] Nistor | A new dynamic test for the identification of high speed friction law using a gas-gun device[END_REF][START_REF] Nistor | A new impact test for the identification of a dynamic crack propagation criterion using a gas-gun device[END_REF][START_REF] Sattouf | A methodology for the identification of constitutive and contact laws of metallic materials under High Strain Rates[END_REF]. I. Nistor et al. [START_REF] Nistor | Identification of a dynamic viscoplastic flow law using a combined levenberg-marquardt and monte-carlo algorithm[END_REF] proposed a complete identification procedure, where the difference between numerically deformed shape and experimentally deformed shape was minimized by a combined Monte-Carlo and Levenberg-Marquardt algorithm. In his work, the Johnson-Cook constitutive law parameters for both the 42CrMo4 steel and the 2017-T3 aluminum were identified using the Taylor impact tests. Moreover, two new dynamic tests using the same Taylor gas gun device were developed for the identification of high speed friction law [START_REF] Nistor | A new dynamic test for the identification of high speed friction law using a gas-gun device[END_REF] and the identification of a dynamic crack propagation criterion [START_REF] Nistor | A new impact test for the identification of a dynamic crack propagation criterion using a gas-gun device[END_REF]. Based on the same identification algorithm, the same team et al. [START_REF] Abichou | Identification of metallic material behaviors under high-velocity impact: A new tensile test[END_REF] proposed a new tensile test used for the identification of metallic material behaviors using the Taylor technique.

In the present work, a new identification program is developed to evaluate the correlation between the final deformed shapes of numerical models and the final deformed shapes of experimental specimens using the Python language (the previous version was implemented in C ++ ). In the new version of the identification program, many improvements have been developed in order to increase the robustness and the stability of the identification procedure.

Objective function

In the identification procedure, we have firstly to build an objective function that takes the values of experimental responses and numerical responses and calculates the residuals to be minimized. Although the optimization methods chosen for the minimization are various, the mathematical formulations of the objective functions in almost all papers are expressed using a norm [START_REF] Nistor | Identification of a dynamic viscoplastic flow law using a combined levenberg-marquardt and monte-carlo algorithm[END_REF]79,[START_REF] Lloyd | Identification of spring parameters for deformable object simulation[END_REF].

The general shape can be improved by taking into account the weightings on the results, the kind of norm or introducing uncertainties on the experimental results. In this case, the objective function f o is expressed through a form of an Euclidean norm, with the following expression:

f o = 1 m m j=1 w r j r n j -r e j r e j 2 (4.1)
where m is the total number of responses, # » w r is the vector of the responses weights, #» r n is the vector of the numerical responses and #» r e is the vector of the experimental responses. The term rn j -re j re j is intended to make the residuals dimensionless. Meanwhile, #» r n is a function of the constitutive parameters, defined by:

#» r n = #» r n (c 1 , c 2 , ...) (4.2)
where c 1 , c 2 , ... are the parameters of a constitutive law. Different sets of constitutive parameters lead to different numerical responses.

Since the constitutive laws studied in this work are non-linear, f o is a non-linear function of the constitutive parameters. The aim of the identification program is to seek an appropriate set of constitutive parameters that minimizes the value of the objective function f o using gradient methods.

The Levenberg-Marquardt algorithm and the lmfit library

The Levenberg-Marquardt algorithm The Levenberg-Marquardt (LM) algorithm is a widely adopted iterative technique that locates the minimum of a multivariate function that is expressed as the sum of squares of non-linear real-valued functions [START_REF] Levenberg | A method for the solution of certain non-linear problems in least squares[END_REF][START_REF] Marquardt | An algorithm for least-squares estimation of nonlinear parameters[END_REF][START_REF] Lourakis | A brief description of the Levenberg-Marquardt algorithm implemented by levmar[END_REF]. It has become a standard technique for non-linear least-squares problems. The premise of using the LM algorithm to minimize the proposed objective function is the uniqueness of the minimum, otherwise the local minimum might be treated as the global minimum by the LM algorithm.

According to the previous experience, the minimum of the objective function proposed above is unique (there are no local minimums in the standard parameter variation spaces). Therefore, in the new identification program, only the LM algorithm is employed to conduct the minimization. To confirm the uniqueness of the minimum, different starting points have been chosen for the same identification procedure to test if the same minimization results can be obtained.

The LM method can be thought of as a combination of steepest descent method and the Gauss-Newton method.

• When the current solution is far from the correct one, the algorithm behaves like a steepest descent method: slow, but guaranteed to converge.

• When the current solution is close to the correct solution, it becomes a Gauss-Newton method [START_REF] Lourakis | A brief description of the Levenberg-Marquardt algorithm implemented by levmar[END_REF].

Let g be an assumed functional relation which maps a parameter vector #» p ∈ R m to a calculated vector #» x = g( #» p ), #» x ∈ R n . An initial parameter estimate #» p 0 and a measured vector # »

x + are provided and it is desired to find the vector # » p + that best satisfies the functional relation g, i.e. minimizes the squared distance

#» ǫ T #» ǫ = #» ǫ • #» ǫ with #» ǫ = # » x + -#» x .
The basis of the LM algorithm is a linear approximation to g in the neighborhood of #» p . For a small increment vector #» δ p , the approximation can be obtained through a Taylor series expansion with the following form:

g( #» p + #» δ p ) ≈ g( #» p ) + J #» δ p (4.3)
where J is the Jacobian matrix defined by J = ∂g( #» p ) ∂ #» p . Like all non-linear optimization methods, the LM method is iterative. The aim of each step is to find the #» δ p that minimizes the quantity:

# » x + -g( #» p + #» δ p ) ≈ # » x + -g( #» p ) -J #» δ p = #» ǫ -J #» δ p (4.4)
where . denotes the 2 norms.

Thus, the sought #» δ p is the solution to a linear least-squares problem: the minimum is obtained when J #» δ p -#» ǫ is orthogonal to the column space of J. This leads to J T (J #» δ p -#» ǫ ) = 0, which yields #» δ p as the solution of the so-called normal equations:

J T J #» δ p = J T #» ǫ (4.5)
where the matrix J T J on the left hand side is the approximation to the matrix of second order derivatives.

In fact, the equation solved by the LM method is slightly different from Equation (4.5), known as the augmented normal equation:

(J T J + µ1) #» δ p = J T ( # » x + -g( #» p )) (4.6)
where µ is referred to as the damping term.

If the updated parameter vector ( #» p + #» δ p ) with #» δ p computed from Equation (4.6) leads to a reduction in the error #» ǫ , the update is accepted and the process repeats with a decreased damping term. Otherwise, the damping term is increased, the augmented normal equation is solved again and the process iterates until a value of #» δ p that decreases the error is found.

The process of repeatedly solving Equation (4.6) for different values of the damping term until an acceptable update to the parameter vector is found corresponds to one iteration of the LM algorithm [START_REF] Lourakis | A brief description of the Levenberg-Marquardt algorithm implemented by levmar[END_REF].

In the LM method, the damping term is adjusted at each iteration to ensure a reduction in the error #» ǫ : it is raised if a step fails to reduce #» ǫ ; otherwise it is reduced. In this way, the LM method is capable to alternate between a slow descent approach when being far from the minimum and a fast convergence when being at the minimum's neighborhood. The LM algorithm terminates when at least one of the following conditions is met [START_REF] Lourakis | A brief description of the Levenberg-Marquardt algorithm implemented by levmar[END_REF]:

• the magnitude of J T #» ǫ drops below a threshold ǫ 1 ,

• the relative change in the magnitude of #» δ p drops below a threshold ǫ 2 ,

• the error #» ǫ T #» ǫ drops below a threshold ǫ 3 ,

• a maximum number of iterations is completed.

The lmfit Python library In order to achieve the optimization of the objective function using the Levenberg-Marquardt algorithm, the lmfit library in Python language [START_REF] Newville | Lmfit: non-linear least-square minimization and curve-fitting for Python[END_REF] is employed. It is designed to provide simple tools to help build complex fitting models for non-linear leastsquares problems and apply these models to real data. It provides a high-level interface to non-linear optimization and curve fitting problems for Python. It builds on and extends many of the optimization algorithm of the Python module scipy.optimize, especially the Levenberg-Marquardt method from the algorithm optimize.leastsq.

Although the minimization process can be performed with the Python module scipy.optimize, there are several practical challenges, including:

• Although there is no intrinsic meaning, the order and meaning of the variables must be kept track of.

• If the variation of a variable is changed, the objective function has to be modified, which becomes a significant work for more complex models.

• The boundaries of the variables or the mathematical relationships between the variables are not easy to be enforced.

The lmfit module overcomes these shortcomings by using objects -a core reason for working with Python. The key concept for lmfit is to replace plain floating point numbers with the Parameter objects as the variables for the fit. By using Parameter objects (or the closely related Parameters -a dictionary (8) of Parameter objects), one can:

• refer to the variables directly by their names without worrying about their order and meaning,

• easily set bounds as attributes for the variables,

• change the variation of the variables without having to rewrite the objective function,

• place algebraic constraints on the variables.

The minimize function built in lmfit is used for running an optimization problem. It takes an objective function, a Parameters object, and several optional arguments controlling the convergence of the minimization algorithm to perform a fit of a set of parameters by minimizing an objective function using one of the several available methods. In this case, we choose the LM method for the minimization, which is denoted as leastsq in lmfit.

Different from the form of the objective function defined in Section 4.1.1.1, the LM algorithm in lmfit requires the objective function to be input in another form, which must return an array of residuals to be minimized, with a length greater than or equal to the number of fitting variables in the model. Thus, the array #» f o returned by the new objective function has the following form:

f o j = w r j r n j -r e j r e j , j = 1, 2...m (4.7)
The objective function should return an array to be minimized with the initial values of the parameters. The sum of squares of the array (i.e. the scalar product #» f o • #» f o ) will be sent to the LM method and an optimization will be done effectively. The iteration repeats until the values of the arguments controlling the convergence of the LM algorithm are less than the specified tolerance amounts, or until a maximum number of iterations have been performed. Importantly, the parameters passed into the minimize function will not be changed. An optimization with the minimize function will return a MinimizerResult object, which contains the best-fit values, where appropriate, estimated uncertainties and correlations.

Numerical implementation

The combination of the identification algorithms is implemented through a new identification program developed in LGP, which is called Identif-v2 (so-called after the previous version Identif ). The complete listing of the current version is available at page 163 of the Appendices. It is a home made program written in the Python language. The aim of this program is to provide an appropriate set of constitutive law parameters giving a good prediction of material behavior by minimizing the difference between experimental results and simulation responses.

In the previous version of the identification procedure, the minimization process was divided into two steps: the first step was a coarse research and the second step was a refinement research [START_REF] Nistor | Identification of a dynamic viscoplastic flow law using a combined levenberg-marquardt and monte-carlo algorithm[END_REF][START_REF] Nistor | A new dynamic test for the identification of high speed friction law using a gas-gun device[END_REF]. In the coarse research, the Monte-Carlo algorithm was employed to find the global minimum zone of the objective function avoiding local minima of the function. In the refinement research, the LM algorithm was employed to find the global minimum of the function inside of the global minimum zone provided by the Monte-Carlo algorithm.

As it has been found during our previous investigations that the minimum of the objective function is unique (there are no local minima within the seeking zone), in this new version, the Monte-Carlo algorithm has been removed, in order to increase the computational efficiency of the identification procedure, and only the LM algorithm is used. As introduced above, the lmfit library in Python is employed to perform the minimization with the LM algorithm.

The previous identification program was written in C ++ language, and a graphical user interface (GUI) was used to introduce the parameters to be identified, the responses taken into account and the requested accuracy of the identification procedure. In this work, the new version is written using the Python language, because Python scripting is the best solution to run numerous simulations automatically.

Python itself also provides a great amount of powerful tools to edit and modify text files like the simulation input files (the inp files), which can be very useful to run parametric studies.

To be more efficient, development of a graphical user interface has been removed and replaced by text files containing command lines defining the following parameters and arguments to control the identification process defined here after:

• Declaration of the constitutive parameters to be identified, including their names, initial values, variation ranges and imposed variations.

Parameters for Johnson-Cook constitutive law

Parameter, name=A, value=360.08, min=250, max=700, vary=True Parameter, name=B, value=316.55, min=250, max=700, vary=True Parameter, name=n, value=0.289, min=0.1, max=0.6, vary=False Parameter, name=C, value=0.0188, min=0.005, max=0.9, vary=False Parameter, name=m, value=0.961, min=0.1, max=3, vary=False

• Declaration of the arguments controlling the convergence of the Levenberg-Marquardt iterations.

Arguments of Levenberg-Marquardt

Minimizer, xtol=0.00001, epsfcn=0.01, ftol=1e-06, maxfev=50

The functions of these arguments are detailed in Table 4.1.

• The experimental responses, including their names, values and associated weights (which are called factor in the text file).

Experimental results

name=FinalLength, value=46.9605, factor=1 name=FinalRadius, value=5.93385, factor=1 The detailed process of Identif-v2 is illustrated in Figure 4.1. With this program, the users can control the identification process by choosing the variation domain of all the constitutive parameters to be identified, the accuracy of the LM algorithm and the maximum number of iterations. Although Identif-v2 is the main program of the proposed identification procedure, it is only one of the many files used in the identification procedure. In order to explain the relation between these files more clearly, the data flow of the proposed identification procedure is presented in Figure 4.2, where the program Extract will be introduced in the next section.

For each iteration, the constitutive parameters and numerical responses are stored in a numerical database. Every time a new set of constitutive parameters is generated, it is compared to the sets of parameters stored in the database. When the same sets of parameters are generated during the optimization procedure, this comparison can avoid running Abaqus/Explicit and data processing, and can reduce the computing time.

Data extracting and processing

As discussed above, for each iteration of the minimization, a new set of numerical responses generated by Abaqus/Explicit is required to evaluate the objective function. In the process of obtaining numerical responses, two main problems remain to be solved, which are presented as following:

1. The first one is how to extract these numerical responses from the output database (odb) file generated by Abaqus/Explicit. As the identification program is a repeated 2. The second one is how to obtain accurate numerical responses in a short computing time. It is found that the responses extracted from the odb file are not constant but oscillating with time (because of the elastic waves within the specimens). If we want to obtain the stable responses, a great amount of time should be spent on the simulation (after introduction of some artificial damping to absorb those elastic waves). As one of our aims is to improve the efficiency of the identification program, long-time simulation must be avoided. In order to obtain the approximation of stable responses within a short simulation time, a data estimation method has been developed and implemented in the Identif-v2 program.

Identification platform based on dynamics tests

Identif-v2 

Data extraction from odb files

In order to extract numerical responses automatically from the odb file generated by Abaqus/-Explicit, a program named Extract written in Python2 language is proposed. The execution of this program is controlled by Identif-v2. It is used when the numerical simulation of Abaqus/Explicit is completed, and it mainly deals with extracting some selected results and performing some basic operations from the history output of the odb file.

It is used to extract geometrical positions of some selected nodes of the numerical model. Every time the numerical simulation is completed, the program Extract extracts the coordinates of these nodes from the history output and calculates some variations of the distances between these nodes leading to a set of selected geometrical dimensions.

Moreover, this program can also calculate some geometric parameters at certain locations of the numerical model with the help of some interpolation methods. The time evolutions of these numerical responses are stored in an output file, and the content of this file will be used in the data estimation step described here after.

Data estimation

The responses extracted from the odb file cannot be used directly for the identification procedure. Due to the algorithm of Abaqus/Explicit and the nature of the simulated process, these responses are not constant but oscillating with time mainly because of the presence of elastic waves propagating inside of the specimen during the computation.

As an illustration, we are going to take the tensile test based on Taylor impact technique as an example here after. As introduced in Section 1.4 page 24, in this test, a projectile is launched to impact a specially designed target and tensile deformation mainly occurs in the useful zone of the tensile target. This test is simulated with Abaqus/Explicit and the schematic diagram of the numerical model is illustrated in Figure 4.3. The impact speed of the projectile is set to 75 m/s. The five dimensions introduced in Figure 1.21 page 27 are selected as the numerical responses.

The evolution of the geometrical response H 10 vs. time extracted by the Extract program is plotted in Figure 4.4. As the simulation time increases, the oscillations will decay and the stable result can be obtained finally, but the calculation takes a great amount of time.

To improve the efficiency of the identification program, a method to estimate the stable responses in a short simulation time is proposed in this section and is validated in Section 4.1.2.3.

The useful zone

Dynamic tensile target Projectile 

Data with high frequency oscillations

The first step is to filter high frequency oscillations in the output signal. This first step is mandatory because of the procedure used to estimate the long time stable responses. A Savitzky-Golay [START_REF] Savitzky | Smoothing and differentiation of data by simplified least squares procedures[END_REF][START_REF] Guest | Numerical methods of curve fitting[END_REF] digital filter is employed. It can be applied to smooth a series of data points, which means increasing the signal-tonoise ratio without greatly distorting the signal. It smooths data by fitting successive subsets of adjacent data points with a low-degree polynomial using the linear least-squares method. When the data points are equally spaced, an analytical solution to the leastsquares equations can be found, which can give estimates of the smoothed signal at the central point of each sub-set.

The Savitzky-Golay filter can be used directly in Python language, because it is natively implemented in the Python library scipy. It requires 2 parameters to be defined: the window length M (M must be a positive odd integer) and the polynomial order N . In the Savitzky-Golay filter, a polynomial of order N is used to approximate M data points. Generally, N is chosen considerably smaller than M to achieve more smoothing data and numerical stability.

As the total number of the data points (T P ) is defined according to the step time and the requested output frequency, it is impossible to propose an a-priori fixed value of M for all kinds of numerical models. Thus, we proposed to define a ratio of M to T P to calculate the window length for all kinds of model. In our case, the proposed ratio is set to M T P ≅ 1 40 and the order is set to N = 1. Data with low frequency oscillations Thanks to the Savitzky-Golay filter, the high frequency oscillations are now filtered from the original response. However, the low frequency oscillations still exist. The example is represented by the blue curve shown in Figure 4.6, which is the time variation of the H 10 geometrical distance for the tensile target already filtered by the Savitzky-Golay filter. Therefore, the next problem is how to estimate the stable response of the data with low frequency oscillations using as little simulation time as possible. Since the filtered response is a regular decay curve, the average of the extreme points can be used as the estimation of the stable response, which is represented by the red line in Figure 4.6. The method to estimate the stable response is introduced as following.

First of all, the data with low frequency oscillations need to be reversed (backward in time), and the reason will be explained later. Although we try to avoid long-time simulation, enough data points are required to ensure the accuracy. Thus, at least five extreme points are required in every kind of filtered responses.

After testing, it is found that the average value of the first two extreme points is quite close to the stabilized response. Therefore, their average can be used as the approximation of the steady state. To be more clearly, we have marked the required five extreme points for the time variation of H 10 geometrical distance in Figure 4.6.

As the data are reversed, the first two extreme points used to estimate the stabilized response are the Extreme point 1 and the Extreme point 2.

In practical calculation, the number of the extreme points in the filtered data is usually more than five. The estimation result will be more accurate if the extreme points are closer to the stable response. The data reversing mentioned above allows us to quickly find the extreme points which are the closest to the stable response in the filtered data, and meanwhile, the accuracy and efficiency of the calculation can be increased. 

Validation of the data estimation method

The simulation of the tensile test is still employed in this paragraph to validate the data estimation method proposed here above. Therefore, for this validation process, two simulation times t have been chosen (t = 0.1 s and t = 300 µs). Here, the numerical damping associated with the explicit time integration scheme and used to stabilize the solution reduces the amplitude of the oscillations with time leading to a stabilized long time response.

• The first value t = 0.1 s is found sufficiently long to obtain the stable responses of the geometric parameters while the simulation process in this case takes about 5 hours.

• The second value t = 300 µs is used to obtain geometric responses within a short computing time which is less than 1 minute, although these geometric responses are not stabilized at the end of the computation as seen before.

The predefined impact speed is set to 75 m/s. For the geometric responses obtained in these two cases, their approximations are calculated using the data estimation method and reported together with the stable responses in Table 4.2. The approximations of the responses simulated with t = 0.1 s and t = 300 µs are denoted as ApproxL (Approximated solution Long) and ApproxS (Approximated solution Short) respectively. Correspondingly, the errors between the stable responses and ApproxL are denoted as ErrL, and the errors between the stable responses and ApproxS are denoted as ErrS.

We firstly compare ApproxL with the stable responses. As we can see, each term of ErrL is 0.00%. That is, the stable responses and ApproxL are almost identical. That means the errors caused by the proposed data estimation method are negligible when the same simulation time is used.

Then we compare ApproxS with the stable responses. The maximum error appears in the geometrical response of H 10 , of which the value is 0.18%. The minimum error appears in the geometrical response of H T with the value of 0.00%. Although not all the terms of ErrS are 0.00%, the accuracy of ApproxS is within an acceptable range, which means the proposed data estimation method can be used to estimate the stabilized responses within a short simulation time.

In conclusion, the proposed data estimation method has been validated by the tensile test. It can achieve the balance of efficiency and accuracy during calculation considering the huge computation cost gap (5 hours vs. 1 minute) and minor errors (maximum 0.18%) between the stable responses and ApproxS. 

Applications of the inverse identification procedure

As introduced above, the proposed inverse identification procedure can be applied to determine the unknown constitutive law parameters by minimizing the differences between experimental and numerical responses.

However, its application is not limited to this. In this section, another application of the proposed inverse identification procedure is introduced, which is to identify the equivalent loading conditions for the simplified numerical models, by minimizing the differences between numerical responses of complete models and numerical responses of simplified models, as presented in Table 4.3.

In the finite element simulation process, it is very common to use the simplified models to replace the complex original models, in order to reduce the calculation cost. For example, 2D models are widely used to replace 3D models, some non-essential parts in the models are deleted, some complex boundary conditions are replaced by simple boundary conditions, etc... Although these simplifications can improve the computational efficiency, they can be source of errors if the simplified models are simulated under the same loading conditions as the original models (such as the applied loading, temperature, impact speed and so on).

Thus, the equivalent loading conditions are required for the simplified models to improve the accuracy of numerical simulation. This problem can be solved by the proposed inverse identification procedure. That is, the loading conditions which minimize the correlation between the final deformed shape of the original numerical models and the final deformed shape of the simplified numerical models can be used as the equivalent loading conditions. Those applications will be found in the next Section.

Numerical simulation of dynamic tests

In the last section, an inverse identification procedure was proposed to provide appropriate parameters sets for constitutive laws by minimizing the discrepancy between the experimental results and the numerical simulation responses. Therefore, accurate and efficient finite element models are necessary to conduct the identification procedure.

This section mainly concerns the development of finite element models. Complete numerical models for the Taylor compression, tensile and shear tests introduced in Chapter 1 are built thanks to Abaqus/Explicit and the optimizations of the specimens are verified. The complete models are replaced by the simplified models, where some non-essential parts are deleted and the boundary conditions are modified.

Considering the kinetic energy of the deleted parts, the inverse identification procedure is applied to propose equivalent impact velocities for the simplified models. The N-N-R VUMAT subroutine presented in Section 3.3 is also employed for the simulation of the Taylor compression, tensile and shear tests.

The material properties for aluminum alloy 2017-T3 and polycarbonate are shown in Table 4.4 [START_REF] Sattouf | Caractérisation en dynamique rapide du comportement de matériaux utilisés en aéronautique[END_REF] and Table 4.5 [START_REF] Dwivedi | Mechanical response of polycarbonate with strength model fits[END_REF], while the material properties for 42CrMo4 steel have already been reported in Table 3.1.

Simulation of the Taylor compression test

In the simulation of the Taylor compression test, a complete model is firstly established through Abaqus/Explicit to simulate the real experimental situation. In order to decrease the computing costs, a simplified model is proposed to replace the complete model. To obtain more accurate simulation results, a function to calculate equivalent impact velocities 

The complete model and simplified model

The axis-symmetric 2D complete model is established to simulate the Taylor compression test as presented in Figure 4.7, including a sabot made of polycarbonate, a projectile made of 2017-T3 aluminum and a target support made of steel. As previously mentioned, the geometry of the sabot has been modified by adding two perpendicular notches.

Considering that it is impossible to build the axis-symmetric 2D model for the sabot with new geometry, in this case the sabot is replaced by a cylinder with the same mass, of which the height is 25 mm, the radius is 5 mm and the density ρ is 6.11 g/cm 3 .

To simulate the actual boundary condition, the axial displacement of the target support is free during the impact. A predefined velocity of V c = 287 m/s along the #» z axis is imposed on the projectile and sabot. The sabot, projectile and target support consist of 500, 1625 and 2235 CAX4RT elements respectively. The total simulation time is t = 80 µs.

Figure 4.7: Complete Taylor compression model

Although the complete model can simulate the actual impact condition, too many elements need to be computed in this model, which will generate a great number of increments and cost a lot of computing time. In order to decrease the computing costs, a simplified model is proposed to replace the complete model, which only consists of a cylindrical sabot (500 CAX4RT elements) and a projectile (1625 CAX4RT elements), as shown in Figure 4.8. The simplified model is simulated under the same loading conditions as the complete model except the boundary conditions.

In order to simulate the contribution of the massive target support, the axial displacement is restrained on the left side of the projectile while the radial displacement is free (this corresponds to a perfect contact without friction of the projectile onto the target).

Figure 4.8: Simplified Taylor compression model

The equivalent plastic strain contour-plots of the projectile for the complete model and simplified model are reported in Figure 4.9. The two models have quite similar strain distributions and the maximum deformation occurs in the bottom of the projectile. Table 4.6 reports the values of the maximum equivalent plastic strain ε p and some geometrical results, including the final length L f , the final radius of the bottom R f , the radii R 10 , R 20 and R 30 at the heights of 10 mm, 20 mm and 30 mm from the bottom respectively.

The differences between the complete model and simplified model concerning these results are so small that we can conclude the overall deformations of the two models are almost identical. That is, the complete model of the Taylor compression test can be replaced by the simplified model. It is noticeable that since the complete model is built to simulate the actual impact condition, the axial displacement of the target support is not fixed during the impact. That means the projectile and target support in the complete model are not stationary after impact. Instead, they still move in the impact chamber at a residual speed V r = 2.26 m/s.

However, the movement of the projectile for the simplified model is fixed to simulate the contribution of the massive target support. This change will introduce errors to the numerical simulations if the same impact velocity is used for both the complete model and the simplified model. In order to obtain more accurate simulation results, the residual kinetic energy of the projectile and target support should be taken into account. Thus, an equivalent impact velocity should be used when the Taylor compression test is simulated with the simplified model.

As discussed in Section 4.1.3, the proposed inverse identification procedure can be applied to identify the equivalent loading conditions by minimizing the differences between two kinds of responses both obtained from numerical simulation. In this case, the inverse identification procedure is employed to identify the equivalent impact velocity for the simplified model by minimizing the difference between the final deformed shape of the complete model and the final deformed shape of the simplified model. At first, both the complete model and simplified model are simulated with the original impact velocities in the range of 30 m/s to 300 m/s, and then the simplified model is simulated again with the impact velocities proposed by the identification procedure. Their computing time and geometrical responses are compared in Table 4.7. In order to reduce the length of the table, we omit the results with the original velocities of 60 m/s, 150 m/s, 210 m/s and 270 m/s.

As the simplified model has fewer elements to be calculated, the computing time for the simplified model is less than that for the complete model with a factor of about 28.6%. As for the geometrical responses, the differences between the complete model and simplified model are generally reduced by using the equivalent velocities.

The original velocities for the complete model and the corresponding equivalent velocities for the simplified model are plotted in Figure 4.10 in order to study their relation, which are represented by the red dots. As we can see, their relation is almost linear. Therefore, a linear function is proposed to estimate the equivalent velocity V S when the original impact velocity V R of the Taylor compression test is determined, which has the expression as following:

V S = 1.00448V R -1.45767 (4.8)
This function is shown in Figure 4.10 by the blue solid line. In the present simulation, the gap between the blue line and the axis bisector (where V S = V R ) is quite small. 

Validation of the proposed VUMAT subroutine

The Taylor compression test is employed to validate the performance of the proposed VUMAT subroutine. The built-in Johnson-Cook constitutive law for the simplified model is replaced by the N-N-R VUMAT subroutine and the predefined velocity imposed on the projectile is 287 m/s. The equivalent plastic strain contour-plots for these two models (the built-in model 4.11. Moreover, since the simulation results of the model with a refined mesh are more precise than the results of the model with a coarse mesh, the mesh of the projectile in the simplified model is refined to evaluate the accuracy of the built-in Johnson-Cook constitutive law and N-N-R VUMAT subroutine. The refined mesh consists of 6250 CAX4RT elements. The results concerning the maximum equivalent plastic strain and geometric responses for these four models are reported in Table 4.8. With the same mesh of the projectile (no matter the coarse mesh or the refined mesh), the built-in model and N-N-R model give almost the same results.

Table 4.8: Comparison between the Built-in and N-N-R VUMAT for the Taylor compression test

Constitutive models 

ε p L f R f R 10 R 20 R 30 (mm) (mm) (mm) (mm) (mm) Built-in J-C 1 

Simulation of the tensile test based on Taylor impact technique

In the simulation of the tensile test, we firstly build the complete models in Abaqus/Explicit to verify the optimization of the tensile target which is introduced in Section 1.4. Then a simplified model is proposed to replace the complete model in order to decrease the 

Verification of the optimization

To validate the optimization mentioned in Section 1.4, the deformations of the previous and optimized targets are compared. Because of the symmetric structure, axis-symmetric 2D models are established separately. Each model includes 4 parts: a sabot made of polycarbonate, a projectile made of 42CrMo4 steel, a target made of 2017-T3 aluminum and a target support made of steel, which is referred to as the complete model. These two models are simulated under the same loading conditions.

Here we take the model with the optimized target for example, as presented in Figure 4.12. A predefined velocity of V c = 70 m/s along the #» z axis is imposed on the projectile and the sabot. To simulate the actual boundary condition, the axial displacement of the target support is free during the impact. The sabot, projectile, tensile target and target support consist of 169, 240, 3814 and 2190 CAX4RT elements respectively (the previous target mesh consists of 4963 CAX4RT elements). The total simulation time is t = 300 µs. The deformations of the two targets are compared in Figure 4.13. The undeformed previous target and its equivalent plastic strain ε p contour-plot are shown on the left side, while the undeformed optimized target and its equivalent plastic strain ε p contour-plot are shown on the right side.

As we can see, plastic deformations mainly occur in the useful zones of the two targets. The maximum equivalent plastic strains of the previous and optimized targets are ε p max = 0.352 and ε p max = 0.218 separately, which indicates that strain concentration is more likely to occur in the previous target under the same loading conditions. Moreover, in Figure 4.13 the bottoms of the two undeformed targets, the tops of the two previous targets and the tops of the two optimized targets are aligned (marked by the red lines in Figure 4.13) respectively in order to compare their elongation directly. Since the bottom of the deformed optimized target is lower than the bottom of the deformed previous target, the optimized target can achieve more elongation. In summary, compared with the previous target, the optimized target can achieve less strain concentration in the useful zone which can avoid necking and rupture, and larger deformation in a shorter distance.

The simplified model

Due to the same reason as the Taylor compression test, a simplified model is also proposed to replace the complete model. It only consists of a projectile (240 CAX4RT elements) and a target (2190 CAX4RT elements), as shown in Figure 4.14.

The axial displacement of the top of the target is fixed to simulate the contribution of the massive target support. The contribution of the sabot is considered in the simulation by adding the sabot mass on the projectile instead of building the numerical model of the sabot, therefore the density of the projectile ρ changes to ρ = 10 760 kg/m 3 . Figure 4.15 shows the equivalent plastic strain contour-plot of the tensile target for the complete model and simplified model. The strain distributions of the two models are the same. The maximum equivalent plastic strains are concentrated in their useful zones, and the difference between the maximum values is 3.21%.

Moreover, Table 4.9 presents the geometrical responses for the two models, including 3 dimensions along the axial direction (H 10 , H M and H T ) and 2 dimensions along the radial dimension (R I and R E ). The differences of these responses between the complete model and simplified model are small enough to indicate that the complete model can be replaced by the simplified model in further numerical simulations.

Similar to the simulation of the Taylor compression test, an equivalent impact velocity should be used for the simplified model of the tensile test, in order to take into account the residual kinetic energy of the target and target support. The proposed inverse identification procedure is used to identify the equivalent impact velocity. 4.10 reports the geometrical responses of the complete model and simplified model with the original impact velocities ranging from 60 m/s to 75 m/s, and the simplified model with the impact velocities proposed by the identification procedure. Again, the simulation with the simplified model takes less computing time with a ratio of 4.4%. The differences of the geometrical responses between the complete model and simplified model are obviously decreased by using the equivalent identified velocities. Figure 4.16 shows the relation between the original velocities for the complete model and the corresponding equivalent velocities for the simplified model, which are represented by the red dots. These data points are fitted by a linear function giving the equivalent velocity V S as a function of the original impact velocity V R , given by: which is represented by the blue solid line and can be used to estimate the equivalent velocity when the original impact velocity of tensile test is determined. The gap between the blue line and the axis bisector (where V S = V R ) is quite obvious, which proves the necessity for using equivalent velocities.

V S = 1.00618V R -2.1419 (4.9)

Validation of the proposed VUMAT subroutine

The tensile test is also employed to validate the performance of the proposed VUMAT subroutine. The built-in Johnson-Cook constitutive law for the simplified model is replaced by the N-N-R VUMAT subroutine and the predefined velocity imposed on the projectile is 70 m/s.

The equivalent plastic strain contour-plots are compared in Figure 4.17. Moreover, the mesh of the tensile target in the simplified model is refined to evaluate the accuracy of the builtin Johnson-Cook constitutive law and N-N-R VUMAT subroutine, which consists of 8569 CAX4RT elements.

The results concerning the maximum equivalent plastic strain and geometrical responses for these four models are reported in Table 4.11. Although the results for the maximum equivalent plastic strain and geometrical responses are not exactly the same, the differences between these four models are slight. 0.59% 0.58% 0.08% 0.00% 0.08% 0.17% * C-M represents the complete model, S-M represents the simplified model 

Table 4.11: Comparison between the built-in J-C constitutive law and N-N-R VUMAT subroutine for tensile test

Constitutive models

ε p H 10 H M H T R I R E (mm) (mm) (mm) (mm) (mm) Built-in J-C 0.

Simulation of the shear test based on Taylor impact technique

In the numerical simulation of the shear test, a complete model is established to simulate the real condition. Then a simplified model is proposed to replace the complete model, which can reduce the computing costs. The function to calculate equivalent impact velocities for the simplified model is proposed with the help of the identification procedure. Finally, the previously proposed VUMAT subroutine is validated with the simplified model.

The complete model and simplified model

The axis-symmetric 2D complete model is established as presented in Figure 4.18, including a sabot made of polycarbonate, a projectile made of 42CrMo4 steel, a target made of 2017-T3 Aluminum and a target support made of steel. A predefined velocity of V c = 45 m/s along the #» z axis is imposed on the projectile and sabot, and the axial displacement of the target support is free during impact. The sabot, projectile, shear target and target support consist of 131, 233, 4457, 2223 CAX4RT elements respectively. The total simulation time is t = 100 µs.

Figure 4.18: Complete shear model

Similar to the tensile test, the simplified model of the shear test is also proposed to decrease the computing costs, which only encloses a projectile (233 CAX4RT elements) and a target (4457 CAX4RT elements). This simplified model is simulated under the same loading conditions as the complete model except that the axial displacement of the top of the shear target is fixed to simulate the contribution of the massive target support, as shown in Figure 4.19. Same as the simulation of the tensile test, the mass of the original sabot is added to the projectile as well. Thus its density ρ changes to ρ=10 760 kg/m 3 .

Figure 4.19: Simplified shear model

The equivalent plastic strains of the simplified model and complete model are compared in Figure 4.20. These two models have the similar strain distributions: a zone where the material is mainly deformed in shear exists due to the specific geometry of the specimen, and strain localization also occurs in this zone. In terms of the maximum equivalent plastic strain ε p , the difference between these two models is quite large (22.51%). However, this difference is not convincing because the element where strain concentration occurs is too localized to represent the overall deformation.

Table 4.12 reports the results of more global responses, H T op and H M iddle . As we can see, the differences of H T op and H M iddle are both lower than 1%, which means the overall deformations of the two models are almost identical. Thus, the complete model of the shear test can be replaced by the simplified model. Meanwhile, because of the residual kinetic energy of the target and target support, an equivalent impact velocity is identified by the inverse identification procedure for the simplified model. Table 4.13 reports the geometrical responses of the complete model and simplified model with the original impact velocities ranging from 25 m/s to 45 m/s, and the simplified model with the impact velocities proposed by the identification procedure. The gap of the geometrical responses between the complete model and simplified model is narrowed by using the equivalent velocities.

Moreover, the relation between the original velocities for the complete model and the corresponding equivalent velocities for the simplified model can be approximated as linear, as illustrated in Figure 4.21 by the red dots. The fitting function giving the equivalent velocity V S as a function of the original impact velocity V R , can be written as:

V S = 0.89988V R + 0.1066 (4.10)
which is represented by the blue solid line and can be used to estimate the equivalent velocity when the original impact velocity of the shear test is determined. Again, the gap between the blue line and the axis bisector (where V S = V R ) is quite obvious, which proves the necessity for identifying equivalent velocities. 

Validation of the proposed VUMAT subroutine

Similar to the tensile test, the shear test is also employed to validate the performance of the proposed VUMAT subroutine. The built-in Johnson-Cook constitutive law for the simplified The equivalent plastic strain contour-plots are shown in Figure 4.22. Besides, the mesh of the shear target in the simplified model is also refined to evaluate the accuracy of the built-in Johnson-Cook constitutive law and N-N-R VUMAT subroutine. The refined mesh consists of 8584 CAX4RT elements.

The results concerning the maximum equivalent plastic strain and geometric responses for these four models are compared in Table 4.14. As can be seen, all the models have exactly the same results of the geometrical responses. As for the maximum equivalent plastic strain, the N-N-R model gives more precise value than the built-in J-C model when they have the same mesh of the shear target. n the previous chapters, we have introduced the required parts for identifying the parameters sets of dynamic non-linear constitutive laws, including the numerical algorithm for the implementation of elastoplastic constitutive laws in the Abaqus/Explicit, the inverse identification program and the numerical models corresponding to the experiments. In this chapter, these parts are integrated to identify the parameters sets of several kinds of constitutive laws for the material aluminum alloy 2017-T3, in order to validate the proposed inverse identification procedure. The Taylor compression tests and Dynamic tensile tests based on Taylor impact technique are conducted with different impact velocities to provide the experimental results.

Table 4.14: Comparison between the built-in J-C constitutive law and N-N-R VUMAT subroutine for the shear test

Constitutive models

ε p H T op H M iddle (mm) (mm) Built-in J-C 1 
Generally, the identification procedure leads to several sets of parameters for the same constitutive law depending on the main nature of the loading applied to the specimen. In this work, two approaches are applied to propose a unified parameters set for the Johnson-Cook law built in Abaqus/Explicit. The classic one is to calculate the average of these sets, and the new one is to use multiple experimental tests in a unified identification procedure. The two approaches are compared in order to propose a way to identify a parameters set having good accuracy in a wide range. The identification procedure is also conducted to identify the parameters of the alternative constitutive laws following J 2 plasticity and isotropic hardening. The accuracy of these parameters sets are compared.

As introduced above, the material studied in this case is aluminum alloy 2017-T3. It is a type of aluminum alloy 2017 which is furnished in the T3 temper. To achieve this temper, the metal is solution heat-treated, strain hardened, then naturally aged. It has the highest strength and second highest ductility compared to the other variants of aluminum alloy 2017 [START_REF] Cantor | Aerospace materials[END_REF]5].

The chemical compositions and mechanical properties of aluminum alloy 2017-T3 are listed in Table 5.1 [START_REF] Sattouf | Caractérisation en dynamique rapide du comportement de matériaux utilisés en aéronautique[END_REF] and Table 5.2 [START_REF] Cantor | Aerospace materials[END_REF]5].

It is worth stressing that the raw material for manufacturing the specimens for the Taylor compression, tensile and shear tests is from the same 6 m long and φ = 40 mm diameter bar of aluminum alloy 2017-T3. We ensure that all the specimens are made of the same exact material.

Table 5.1: Chemical compositions (wt.%) of aluminum alloy 2017-T3 [2]

Al

Si Fe Cu Mn Mg Cr Zn -0.2 -0.8 0.7 3.5 -4.5 0.4 -1 0.4 -1 0.1 0.25 Table 5.2: Mechanical properties of aluminum alloy 2017-T3 [START_REF] Cantor | Aerospace materials[END_REF]5] Tensile strength (M P a) Proof strength (M P a) Elongation (%) E (Gpa) 460 280 11 72.4 ν T m (°C) ρ (kg/m 3 ) 0.33 513 2790

Experimental results using the gas gun device

The Taylor compression test and Dynamic tensile test introduced in Chapter 1 are conducted respectively under different impact velocities. The experimental results with regard to the two tests measured through the post-mortem analysis are illustrated as below. These results will be used for the identification procedure in the next section. The identification using the Dynamic shear tests has not been done during this work.

Experimental results of the Taylor compression test

The Taylor compression tests are conducted under different impact velocities. The impact velocities and geometrical measurement results for the projectiles are reported in Table 5.3. These projectiles are numbered from N • 1 to N • 3 in ascending order of the impact velocity. As we can see, compared with the original geometries, the deformed projectile is shortened in length and correspondingly stretched in radius. If the impact velocity is higher, the projectile has shorter final length L f and larger radii R f , R 10 , R 20 and R 30 .

Figure 5.1 compares the shapes of these deformed projectiles with the shape of the undeformed projectile U, where the order of the projectiles is shown. It is obvious that deformation is mainly concentrated in the impacted ends of the deformed projectile, where a mushroom head occurs, and the final deformed shape of the projectile is significantly affected by the impact velocity. 

Table 5.3: Results of the Taylor compression test

Specimen Velocity L f R f R 10 R 20 R 30 (m/s) (mm) (mm) (mm) (mm) (mm) N • 1 undeformed 50 

Experimental results of the Dynamic tensile test

The tensile tests are conducted under different impact velocities and three of them are selected to be discussed in detail, because the deformations of these targets are quite representative. These targets are numbered from N • 1 to N • 3 in ascending order of the impact velocity. Their geometrical measurement results are reported in Table 5.4. We first consider the results of the targets N • 1 and N • 2. After impacted, they are stretched in the axial direction (H 10 , H M and H T ) and shortened in the radial direction (R I and R E ) due to the tensile deformation. Their deformations are illustrated in Figure 5.2. Both targets are axisymmetrically deformed without rupture. Therefore, the final deformed shapes of these two targets can be used as the experimental results for the inverse identification procedure.

As for the target N • 3, there is a crack in the center zone since the impact velocity of 71.16 m/s exceeds the limit. Therefore, the results of the target N • 3 in Table 5.4 are only rough estimates, which means they are not accurate enough for the identification procedure. Nevertheless, the deformation of the target N • 3 is very meaningful. From Figure 5.3(a), we can see that the target N • 3 is damaged in the center zone instead of being penetrated from the top zone. It proves that the thickness of the top zone of the optimized target is enough for the damage to occur first in the center zone. Figure 5.3(b) illustrates the target N • 3 is impacted axisymmetrically, which means the deformation of the target is also axisymmetric. Moreover, the deformations of the center zone of the targets N • 1, N • 2 and N • 3 are studied through the post-mortem analysis. That is, the distances between every two grid lines are measured before and after deformation respectively using the software imageAnalyser, in order to calculate the true strain.

Table 5.4: Results of the Dynamic tensile test

Specimen Velocity H 10 H M H T R I R E (m/s) (mm) (mm) (mm) (mm) (mm) 
As shown in Figure 5.4, the gaps between the grid lines are marked from G1 to G10 in the order from the bottom to the top of the target. The original and deformed length of these gaps is reported in Tables 5.5-5.7 separately for the targets N • 1, N • 2 and N • 3. The strain ε is calculated from the following formula:

ε = ln 1 + ∆L L 0 (5.1)
From the overall point of view, the true strain gradually decreases from G1 to G10. The simplified numerical model introduced in Section 4.2 is employed here to simulate the longitudinal deformation of the Dynamic tensile target N • 2 as a comparison. The equivalent velocity for this case, which is calculated according to Equation (4.9), is 61.771 m/s. The logarithmic strain contour-plot of the Dynamic tensile target N • 2 is shown in Figure 5.5. As we can see, the maximum value of the logarithmic strain is 0.15, which approximately agrees with the true strain of G1. However, in numerical simulation the largest deformation occurs in the center of the H 10 zone, which is different from the experimental result. The most probable cause for this difference is the laser engraving or the machining of the target. In order to study this difference, the laser engraving can be done in both directions (the axial direction and the radial direction) on the surface of the tensile target in the future work. 

Identification of the parameters set of Johnson-Cook

The inverse identification procedure proposed in Chapter 4 is employed to identify the parameters for the Johnson-Cook constitutive law built in Abaqus/Explicit, including 3 Taylor compression tests (with the projectiles N • 1, N • 2 and N • 3) and 2 Dynamic tensile tests (with the targets N • 1 and N • 2). The geometrical results of these tests are input as the experimental responses.

The corresponding simplified finite element models introduced in Section 4.2 are employed to provide the numerical responses. As introduced previously, if the simplified model is used, the original impact velocity V R should be replaced by the equivalent impact velocity V S in order to improve the accuracy of the simulation.

Thus, the equivalent impact velocities V S for these models are calculated according to Equations (4.8) and (4.9), and reported in Tables 5.8 and 5.9.

The starting points and the variation ranges of the 5 constitutive parameters are reported in Table 5.10. The values of the fixed parameters for the Johnson-Cook constitutive law are reported in Table 5.11. The values of the other parameters for the material aluminum alloy 2017-T3 are in accordance with Table 5.2 in Section 4.2 page 101. In order to evaluate the identification results, the norm of the errors between the experimental responses and the numerical responses is adopted. The identification results are detailed in the following. 

Identification using single tests

Firstly the identification procedure is conducted using a single test. That is, only one experimental test is used in one identification procedure to obtain the corresponding parameters sets. In our case, the identification procedure is carried out 5 times, with the three Taylor compression tests and two Dynamic tensile tests respectively. To be more clear, here we take the Taylor compression test with the projectile N • 1 for example. The identification procedure is conducted using the Taylor compression test with the projectile N • 1. The parameters set obtained is denoted by Compression N • 1 and the corresponding numerical responses are compared with the experimental results of the Taylor compression test N • 1.

Table 5.12 reports the identification results with single tests, including the parameters sets

Compression N • 1, Compression N • 2, Compression N • 3, Tensile N • 1 and Tensile N • 2.
As we can see, although the identification procedures are conducted for the same material, quite different constitutive parameters are obtained for different experimental tests. In other words, the identification procedure leads to several sets of parameters for the same constitutive law depending on the main nature of the loading applied to the specimen.

A common way to propose a constitutive parameters set for a material from the different identification results is to calculate their average. Thus, the average of parameters sets Compression N • 1, N • 2 and N • 3 (denoted as Average of C), the average of parameters sets Tensile N • 1 and N • 2 (denoted as Average of T) and the average of all the 5 parameters sets (denoted as Average of CT) are calculated and presented in Table 5.13. 

Identification with a covering of multiple tests

The second way to propose a parameters set for a constitutive law is to identify with a covering of multiple tests, which means to use multiple experimental tests in a unified identification procedure in order to propose a parameters set covering a compromise of these experimental tests. In order to achieve this goal, all the numerical models of these experimental tests should be calculated in every iteration of the optimization procedure, and the correlations between their numerical responses and the respective experimental results should be minimized simultaneously.

In this case, three constitutive parameters sets are obtained in this way, including the parameters set identified with a combination of Taylor compression tests N • 1, N • 2 and N • 3 (denoted as Combination of C), the parameters set identified with a combination of Dynamic tensile tests N • 1 and N • 2 (denoted as Combination of T) and the parameters set identified with a combination of all the 5 tests (denoted as Combination of CT), as reported in Table 5.14. 

Comparison of the identification results

Based on the identification results introduced in Section 5.2.1 and 5.2.2, we have obtained 11 parameters sets for the native Johnson-Cook constitutive law. In order to compare these parameters sets more intuitively, the yield stress vs. the equivalent plastic strain curves of the Johnson-Cook constitutive law with regard to these parameters sets are plotted, as shown in Figures 5.6 and 5.7. In this case, the equivalent plastic strain rate ε p and temperature T are set to 10 s -1 and 65°C respectively. The curves Average of compression-tensile and Combination of compression-tensile are both in the middle of the other curves, as reported in Figure 5.7. Compared with the former one, the latter one is more close to the curves of the parameters sets obtained with the Taylor compression tests.

As we want to obtain a parameters set which can achieve good accuracy in a wide range of application, the current problem is how to evaluate the performance of these parameters sets. To solve this problem, we switch these parameters sets for different numerical models and compare their differences. That is, all of these parameters sets are applied to each of the 5 numerical models to calculate the numerical responses, which are reported in Tables 5.15-5.19. As mentioned above, the norms of the differences between these numerical responses and experimental results are calculated as evaluation.

Table 5.15 reports the numerical responses of the Taylor compression test N • 1, while the evolutions of L f and R f are reported in Figure 5.8. The responses obtained with the parameters sets Compression N • 1 and Combination of compression-tensile are more close to the experimental results, of which the norms of differences are 0.77% and 0.87% respectively. The largest norm of differences occurs in the results calculated with the parameters set Compression N • 3, where the value is 1.22%. This shows that the parameters set identified with a higher impact velocity may not be suitable for the numerical simulation with lower impact velocity, even for the same type of the applied loading. The numerical responses of the Taylor compression test N • 2 are presented in Table 5.16, while the evolutions of L f and R f are reported in Figure 5.9. Smaller norms of differences are achieved with the parameters sets Combination of compression-tensile (1.16%) and Average of compression (1.24%), while the parameters sets Tensile N • 2 and Combination of tensile give the numerical responses with the largest norm of differences (2.42%). It proves that the parameters sets identified using the Dynamic tensile tests may not perform well in the simulation of the Taylor compression tests.

A similar situation can be seen in Table 5.17, which reports the results of the Taylor compression test N • 3, while the evolutions of L f and R f are reported in Figure 5.10. The numerical responses calculated with the parameters sets Combination of compression, Compression N • 3 and Average of compression are more close to the experimental results, of which the norms of differences are 2.24%, 2.32% and 2.32% respectively. The results obtained with the This conclusion is proved again by the results of Dynamic tensile test N • 2 in Table 5. [START_REF] Sarva | Mechanics of Taylor impact testing of polycarbonate[END_REF] and the evolutions of H 10 and R E reported in Figure 5.12. The parameters set Compression N • 2 gives the numerical responses with the largest norm of differences 1.02%. Then is the set Combination of compression-tensile with the norm of differences 0.85%. The smallest norm of differences is given by the set Tensile N • 2 and Combination of tensile, of which the value is 0.32%.

Moreover, the phenomenon that the accuracy of the numerical simulation with the same set of constitutive parameters is significantly influenced by the impact velocity can also be observed in Tables 5.18 and 5.19. For all the parameters sets we obtained, their corresponding numerical responses have an increasing norm of differences from Dynamic tensile test N • 1 to Dynamic tensile test N • 2.

Through the analysis above, we can see that the application of the parameters set identified with a single test has obvious dependence on the main nature of the loading applied on the specimen. The parameters set identified using one type of experimental test may not perform well in the numerical simulation of another type of experimental test. The parameters set identified with a low impact velocity may have poor accuracy in the numerical simulation with a high impact velocity. As the aim of this work is not to propose a way to identify a parameters set having best accuracy in some cases, but to propose a way to identify a parameters set having good accuracy in a wide range, we mainly consider two approaches.

One is to calculate the average of these different parameters sets, as the parameters sets Average of compression, Average of tensile and Average of compression-tensile. The other one is to use multiple experimental tests in a unified identification procedure to propose a parameters set covering a compromise of these experimental tests, as the parameters sets Combination of compression, Combination of tensile and Combination of compression-tensile.

In order to obtain more detailed information about these parameters sets, each of them is reinjected to the numerical models which corresponds to the experimental tests used for identifying itself, and its norm of the differences between the numerical responses and the experimental responses is calculated. For example, the parameters sets Average of compression and Combination of compression are both identified using the Taylor compression tests N • 1, N • 2 and N • 3. Now they are reinjected to the numerical models of the three Taylor compression tests, and the norms of the differences with regard to the three Taylor compression tests are reported in Table 5. [START_REF] Kavanagh | Finite element applications in the characterization of elastic solids[END_REF]. We can see that the set Average of compression achieves better accuracy than the set Combination of compression.

Table 5.21 presents the norms of the differences of the sets Average of tensile and Combination of tensile with regard to the Dynamic tensile tests N • 1 and N • 2. In this case, the set Average of tensile has worse accuracy than the set Combination of tensile.

In Table 5.22, where the norms of the differences of the sets Average of compression-tensile and Combination of compression-tensile with regard to the Taylor compression tests N • 1, N • 2 and N • 3 and Dynamic tensile tests N • 1 and N • 2 are reported, the set Average of compression-tensile shows worse accuracy than the set Combination of compression-tensile.

In general, the average of the parameters sets identified with several single tests does achieve better accuracy in some cases, however, the performance of the parameters set identified using multiple experimental tests in a unified identification procedure is more stable. This tends to prove that their use is suitable to a large domain of application which is the aim of this work. 

Identification of the parameters sets using VU-MAT

In the above, we have identified the parameters for the Johnson-Cook law built in Abaqus/-Explicit. Although the Johnson-Cook constitutive law is widely used and its parameters are easy to be determined, unfortunately this law cannot exhibit a correct behavior of the material in some cases. That is why the aim of this work is to propose an inverse identification procedure which can provide an appropriate parameters set for any elastoplastic constitutive law following J 2 plasticity and isotropic hardening besides the Johnson-Cook constitutive law.

Since the algorithm for implementing this kind of nonstandard constitutive laws in Abaqus/-Explicit and the numerical implementation of several alternative constitutive laws in VUMAT subroutine have been described in Chapter 2 and Chapter 3 respectively, the identification procedure is conducted in this section to identify the parameters of these constitutive laws for the material aluminum alloy 2017-T3. These constitutive laws includes the Johnson-Cook law implemented through the VUMAT subroutine, the TANH constitutive law, the modified TANH constitutive law and the Bäker constitutive law. Similar to the previous identification procedure, the experimental responses are provided by the geometrical measurement of the specimens for the Taylor compression tests N • 1, N • 2 and N • 3 and the Dynamic tensile tests

N • 1 and N • 2.
The numerical responses are provided by their respective simplified finite element models. The accuracy of the identified parameters sets for the alternative constitutive laws and the native Johnson-Cook law are compared in the last part.

Simulation of the Dynamic tensile test

To ensure the success of the identification procedure, we should verify the performance of these alternative constitutive laws in simulating the Taylor compression test and Dynamic tensile test before conducting the identification. Since these constitutive laws have already been implemented in the VUMAT subroutine to simulate the Taylor compression test in Section 3.4, here we only employ these constitutive laws to simulate the Dynamic tensile test. The material of the tensile target is 42CrMo4-FP steel. The parameters are taken from Tables 3.12-3.15 separately. The simplified model of Dynamic tensile test is adopted in this case. A predefined velocity of V c = 120 m/s is imposed on the projectile and the total simulation time is t = 300 µs.

The equivalent plastic strain contour-plots of the Dynamic tensile target with regard to the four constitutive laws are shown in Figure 5.13. As we can see, the plastic deformation of each model is mainly concentrated in the useful zone. The values of the maximum equivalent plastic strain ε p in the useful zone and the maximum temperature T for these models are compared in Table 5.23. Meanwhile, the 5 dimensions characterizing the final shape of the target for these models are also reported in Table 5. 

Identification of the Johnson-Cook constitutive law parameters

The parameters set for the Johnson-Cook law implemented through the VUMAT subroutine is firstly identified in order to verify the feasibility of the identification procedure combined with the VUMAT subroutine. The parameter settings are the same as those introduced at the beginning of Section 5.2. Here we use the combination of all the 5 tests (Taylor compression tests N • 1, N • 2 and N • 3 and Dynamic tensile tests N • 1 and N • 2) in a unified identification procedure. In other words, the parameters set VUMAT-JC obtained in this case, which is reported in Table 5.24, corresponds to the parameters set Combination of compression-tensile above.

The numerical responses of these tests with this parameters set are presented in Tables 5.25 and 5.26. As we can see, the norms of differences of the five tests are all less than 3%, which proves that the identification procedure can be conducted with the combination of the proposed VUMAT subroutine and a good accuracy can be achieved. 

Identification of the TANH constitutive law parameters

The next constitutive law to be identified is the TANH constitutive law. The relevant formulas have already been introduced in Section 3.4, therefore they are no longer described here. Since this constitutive law was proposed by adding a strain softening term to the Johnson-Cook constitutive law, it has more parameters than the Johnson-Cook constitutive law, of which the number is 12. Although it is possible to identify more parameters, in this case we choose 7 of them to identify in order to decrease the computing cost, which are A, B, n, C, m, p and q.

The starting points and the variation ranges of them are presented in Table 5.27. The other parameters have been given a fixed value, as listed in Table 5.28. It is worth mentioning that the parameters T rec and ε 0 are defined by the author, because the relevant data cannot be found in the literature.

This constitutive law is also identified using the combination of all the 5 tests ( 

Identification of the modified TANH constitutive law parameters

The modified TANH constitutive law is also employed for the identification. Similarly, this constitutive law has already been introduced in Section 3.4, which is obtained by modify the TANH constitutive law. In this constitutive law, there are 13 parameters involved in the calculation. For the same reason as the identification of the TANH model, 8 parameters reported in Table 5.32 have been fixed while we choose 5 parameters (p, m 1 , m 2 , C 1 and C 2 ) to identify. The starting points and the variation ranges are presented in Table 5. [START_REF] Nistor | A new dynamic test for the identification of high speed friction law using a gas-gun device[END_REF]. The values of the parameters T rec and ε 0 are still the same as those in the TANH constitutive law. As for the parameters A, B and n, their values are taken from Table 5.24 page 137 showing the identification of VUMAT-JC as a Combination of compression-tensile tests. This constitutive law is identified using the combination of all the 5 tests (Taylor compression tests N • 1, N • 2 and N • 3 and Dynamic tensile tests N • 1 and N • 2) in a unified identification procedure.

The identification results are shown in Table 5.34, and the numerical responses of these tests with the parameters set Modified-TANH are presented in Tables 5. [START_REF] Abichou | Identification of metallic material behaviors under high-velocity impact: A new tensile test[END_REF] and 5.36. 

Identification of the Bäker constitutive law parameters

At last, the identification procedure is conducted for the Bäker constitutive law described in Section 3.4. It has less parameters compared with the TANH and modified TANH constitutive laws, of which the number is 6. Here we only fix the parameter ε 0 with the value of 1 s -1 .

The starting points and the variation ranges of the parameters A, C, n 0 , m and T α remaining to be identified are presented in Table 5.37.

The combination of all the 5 tests ( 

Discussion

Through the identification procedure, the parameters sets are obtained for all the alternative constitutive laws. Figure 5.14 illustrates the yield stress vs. the equivalent plastic strain curves of these constitutive laws with the identified parameters sets. Meanwhile, the curve of the Johnson-Cook law with the parameters set Combination of compression-tensile is also plotted in the same figure as a comparison. The equivalent plastic strain rate ε p and temperature T used for plotting these curves are set to 10 s -1 and 65°C respectively. When the equivalent plastic strain is low (except the value 0), the yield stress of the Bäker law is obviously larger than all the other laws. The VUMAT-JC has the smallest yield stress, and the curve TANH almost coincides with the curve Combination of compression-tensile. When the equivalent plastic strain is larger than about ε p = 0.4, the curve VUMAT-JC goes beyond the curves TANH and Combination of compression-tensile in turn, and the curves TANH and Combination of compression-tensile are no longer coincident.

Figure 5.14: Stress-strain curves of the alternative constitutive laws

In order to more directly compare the accuracy of the identification results for the alternative constitutive laws, the norms of differences of these parameters sets as well as the parameters set Combination of compression-tensile with regard to the 5 experimental tests are presented in Table 5.41. The minimum and maximum values for each experimental test are marked in blue and red respectively. Overall, the maximum norms of the differences all occur in the simulation with the parameters set TANH, while the minimum norms of the differences occur in the simulation with the parameters set VUMAT-JC three times. This illustrates that among these parameters sets, the set TANH has the worst accuracy in all cases and the parameters set VUMAT-JC can achieve best accuracy in some cases. Then we will discuss more details.

Firstly the parameters sets Combination of compression-tensile and VUMAT-JC are compared. From the table we can see that the latter has less norms of the differences in all the tests except the Taylor compression test N • 2, which proves that the parameters set VUMAT-JC can achieve better accuracy than the parameters set Combination of compression-tensile in most cases.

Through the comparison Combination of compression-tensile vs. Modified-TANH and the comparison Combination of compression-tensile vs. Bäker, we can get the similar conclusion: the parameters sets Modified-TANH and Bäker also can achieve better accuracy than the parameters set Combination of compression-tensile in most cases. That is, the accuracy of the sets Modified-TANH and Bäker is between the sets VUMAT-JC and Combination of compression-tensile.

The reasons for these differences are mainly in the following aspects:

• The most important reason is the constitutive law itself. As already described in Section 3.4, these constitutive laws are proposed for different specific applications. In the particular conditions, they are capable of reproducing the experimental results, while the accuracy of these constitutive laws cannot be ensured in other cases. This indicates again that the choice of the constitutive law is of primary importance for the accuracy of the impact process simulation.

• The values of the fixed parameters of these alternative constitutive laws also have an influence on the numerical responses. Since the main goal of this chapter is to validate the proposed identification procedure, some constitutive parameters are fixed to reduce the computing time and cost. However, if we want to obtain more accurate numerical responses, some of them should be identified as well, for example the parameters T rec and ε 0 in the TANH law and the modified TANH law.

• Another reason is the variation ranges of the constitutive parameters. If their variation ranges are not set correctly, the identification procedure cannot find the optimal solution to the objective function, or the numerical responses cannot be obtained at all. In order to obtain the optimal parameters set, the setting of variation ranges of these parameters should be set properly, which depends on a good understanding of the constitutive law.

• The last reason is the arguments controlling the Levenberg-Marquardt iterations. These arguments can influence both the convergence and the computing cost of the identification procedure. Attention should also be paid to the setting of these arguments.

Conclusions and future work

Conclusions

Usability of constitutive laws for metal forming and machining simulations requires an identification of the parameters in closed conditions with respect to the one encountered in the real process. The main concern of this thesis was to propose a new inverse identification procedure applied to metal forming and machining situations, which can provide an appropriate parameters set for any elastoplastic constitutive law following J 2 plasticity and isotropic hardening, by evaluating the correlation between the experimental and numerical responses.

To obtain the experimental responses under high strain rates, we have introduced three experiments developed in LGP based on Taylor impact technique (Chapter 1). The experiment set-up and the specimens for performing the Taylor compression, tensile and shear tests have been presented.

In order that the proposed identification procedure can be applied to elastoplastic constitutive law following J 2 plasticity and isotropic hardening, we have developed an efficient and robust numerical algorithm for the implementation of elastoplastic constitutive laws in the commercial nonlinear finite element software Abaqus/Explicit (Chapter 2).

The efficiency and robustness of the proposed algorithm has been validated by the benchmark tests, where the Johnson-Cook constitutive law implemented through the VUMAT subroutine has been compared with the native one. Some alternative constitutive laws have also been implemented in the VUMAT subroutine to validate the application of the proposed algorithm (Chapter 3).

The identification platform has been built, including the new inverse identification procedure to provide appropriate parameters sets for constitutive laws and the numerical models corresponding to the experimental tests to provide the numerical responses. The simplified numerical models have been established to replace the complete numerical models, and the inverse identification procedure has been applied to propose equivalent impact velocities for the simplified models (Chapter 4).

Finally, the Taylor compression and tensile tests have been conducted to obtain the experimental responses. The numerical algorithm for the implementation of elastoplastic constitutive laws in the Abaqus/Explicit, the identification platform and the experimental responses have been integrated to identify the parameters sets of several kinds of constitutive laws for the material aluminum alloy 2017-T3. The different identification methods have been compared and the performance of the method using multiple experimental tests in a unified identification procedure has been found more stable (Chapter 5).

In this work, three main contributions can be identified:

• the optimization of the target for the Dynamic tensile test. The geometries of the target have been modified with regards to the previous approach, and it has been proved that the new target can achieve less strain concentration in the useful zone which can avoid necking and rupture, and larger deformation in a shorter distance;

• the numerical implementation of elastoplastic constitutive laws in Abaqus/Explicit. Compared with current literature, this work has extensively explain how to program the radial return mapping algorithm in Abaqus/Explicit, and has compared the accuracy and efficiency of the native constitutive law, the VUMAT subroutine and VUHARD subroutine;

• the identification procedure and its applications. The objective function, lmfit Python library and data processing have been integrated and multiple experiments have been used in a unified identification procedure to propose a parameters set covering a compromise of these experiments. The identification procedure has been applied not only to determine the unknown constitutive law parameters by minimizing the differences between experimental and numerical responses, but also to identify the equivalent loading conditions for the simplified numerical models by minimizing the differences between numerical responses of complete models and numerical responses of simplified models.

Future work

In the experiments phase, considering that fewer responses can be obtained from the Dynamic shear tests compared with the Taylor compression and tensile tests, the Dynamic shear tests weren't done. Although the Taylor compression and tensile tests have been conducted to provide experimental responses for the identification procedure, in machining processes shear is the major solicitation of the material and most of the deformation occurs in the primary and secondary shear zones. In the future work, the Dynamic shear test needs to be studied further, in order to provide more responses and enlarge the application range of the identification procedure.

The efficiency of the identification procedure remains to be improved, especially when the identification procedure is conducted for the user-defined constitutive laws. Great efforts have been done to improve the efficiency of the VUMAT subroutine, identification program and the numerical models, but they are all limited to data computing inside these files.

The identification procedure proposed in this work is an integration of multiple files. Data reading, writing and transfer in these files, as illustrated in Figure 4.2 in Chapter 4, all take some time. However, the efficiency of data flow between these files are not improved. Thus, work should be done in this aspect in order to reduce computing time costs. One possible way of improvement is to carry out numerical simulations on several machines in the case of an identification from several simultaneous tests, or in parallel during the gradient calculation phases. The first method is the easiest to implement, while the second requires a heavier intervention on the source code of the current version of the Identif-v2 software.

It has been shown that the identification of constitutive law parameters based on minimization of the gap between numerical simulation results and experimental tests generally leads to several sets of parameters for the same constitutive law depending on the main nature of the loading applied on the specimen. In this work, two approaches to propose a unified parameters set have been compared. The classic one is to calculate the average of these sets, and the new one is to use multiple experimental tests in a unified identification procedure.

Although the new approach has been found more stable, this advantage is not obvious and it has also shown limitations in some cases. To more precisely represent the actual behavior of the material concerned, another approach needs to be proposed in the future work. As already described in the next thesis proposal, a new method for calculating stresses within the Abaqus/Explicit FEM code capable of simultaneously taking into account several sets of parameters for a given constitutive law and in real time able to switch from one set of parameters to another one for a given integration point. Thus, based on several tests and several identifications for different types of stresses, the best set of parameters can be used independently from one integration point to another.

Another area for improvement concerns the taking into account of different weights for different experimental responses in the identification algorithm (currently, all weights are taken arbitrarily equal to 1). This approach requires further investigation in the analysis of the behavior of samples during impact tests in order to be able to scientifically quantify the value assigned to these different weights. Similarly, taking into account more experimental responses on samples can help improve the accuracy and robustness of the identification algorithm.

Moreover, in the numerical algorithm for the implementation of elastoplastic constitutive laws in Abaqus/Explicit, only J 2 plasticity and isotropic hardening have been considered in the current work. More mechanisms can be considered in the future work in order to more accurately describe the dynamic behavior of material. To conduct the analysis with the VUMAT subroutine, the user-defined material parameters and initial conditions should be defined in the inp file for the Johnson-Cook constitutive law.

Listing

In the user-defined material behavior definition, the density is required. Other material behaviors needed during the computation, for example the conductivity, inelastic heat fraction and specific heat, should be included in the same material definition. The user material constants that are needed in the VUMAT subroutine must be specified, which corresponds to the properties from line 147 to line 160 in the VUMAT subroutine. The number and the order of these material constants in the inp file should be in consistent with those in the VUMAT subroutine.

Parameters for VUMAT Johnson-Cook constitutive law

Listing of the VUHARD subroutine and settings in the inp file

The following pages present the listing of the VUHARD subroutine for the Johnson-Cook constitutive law, which corresponds to the VUHARD model introduced in Section 3.3. In the VUHARD subroutine, only the definition of the Johnson-Cook yield stress and its derivatives with respect to the appropriate variables (ε p , ε p and T ) is required, and the other work is completed by the Abaqus built-in algorithm. Similar to the VUMAT subroutine, the computation with the VUHARD subroutine requires the definition of the user-defined hardening parameters and initial conditions in the inp file for the Johnson-Cook constitutive law.

In the material behavior definition, the material properties needed during the computations, for example the density, conductivity, inelastic heat fraction, elastic and specific heat, should be defined. The user hardening constants that are needed in the VUHARD subroutine should also be specified, which corresponds to the properties from line 155 to line 162 in the VUHARD subroutine. The number and the order of these hardening constants in the inp file should be in consistent with those in the VUHARD subroutine. 

Parameters for VUHARD
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 116117 Figure 1.16: Projectile for the Dynamic tensile and shear tests
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 1 Figure 1.19 shows the optimized geometry of the target. Two photos showing a comparison of the external shape of both versions are presented in Figure 1.20.
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 118119120121122123 Figure 1.18: Dimensions of the first version of the target for the Dynamic tensile test
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 124125126 Figure 1.24: Target for the Dynamic shear test
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 23 Figure 2.3: Rotation of a pre-stressed bar showing the change of Cauchy stress without deformation
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 25 Figure 2.5: Comparison of stresses for Jaumann and Green-Naghdi stress rates for pure shear problem
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 26 Figure 2.6: Perfect plasticity and elastic-plastic non-linear hardening
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 27 Figure 2.7: The stress state defined by the yield function
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 28 Figure 2.8: Von Mises materials with hardening
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 2 Figure 2.11: Flowchart of the VUMAT implementation
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 33 Figure 3.3: Model of one element shear test
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 34 Figure 3.4: Equivalent plastic strain ε p and von Mises equivalent stress σ vs. displacement for the one element shear test
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 353637 Figure 3.5: Normal stress σ 11 vs. displacement for the one element shear test
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 38 Figure 3.8: Numerical model for the necking of a circular bar
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 3 Figure 3.10 shows the evolution of the von Mises stress σ vs. the displacement and the evolution of the temperature T vs. the displacement of the red element in Figure 3.8 for the seven models. As reported in this figure, the Built-in model, A-N-R model, N-N-R model and VUHARD model give almost the same results. A slight difference can be seen in the Direct model, Bisection model and R-F model. The Direct model has a little over-estimation of the von Mises stress in the forward part of the simulation while the Bisection model and the R-F model have under-estimation in the backward part of the simulation.
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 39 Figure 3.9: Equivalent plastic strain ε p contour-plot comparison for the necking of a circular bar
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 3 Figure 3.10: Von Mises stress σ and T vs. displacement for the necking of a circular bar
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 311312 Figure 3.11: Time increment ∆t vs. displacement for the necking of a circular bar
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 313314315 Figure 3.13: Numerical model for the necking of a circular bar with a refined mesh (1600 elements)
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 316 Figure 3.16: Numerical model for Taylor 2D test
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 317 Figure 3.17: Equivalent plastic strain ε p contour-plot for the Taylor 2D test
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 3319 Figure 3.18: Equivalent plastic strain ε p vs. time for the Taylor 2D test
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  [11]. The parameters of J-C model, TANH model, the modified TANH model and Bäker model are shown in Tables 3.12-3.15 separately.

  The equivalent plastic strain contour-plots of the Taylor compression specimen for the J-C model, TANH model, modified TANH model and Bäker model are shown in Figure3.23.
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 42 Figure 4.2: Data flow diagram of the proposed inverse identification procedure
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 4344 Figure 4.3: The schematic diagram of tensile test
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 4 Figure 4.5 illustrates the high frequency filtering result for H 10 of the tensile target, where the red curve represents the original response and the blue curve represents the filtered response. To be more clearly, the circular area on the left is enlarged and shown on the right, where the oscillations of the original data are replaced by an extreme point of the filtered data. The smoothed filtered blue signal can now be used for the estimation of the long time stable response.
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 45 Figure 4.5: The high frequency filtering for H 10 of tensile target
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 46 Figure 4.6: H 10 of tensile target with low frequency oscillations
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 49 Figure 4.9: Equivalent plastic strain contour-plots of the complete model and simplified model for Taylor compression test
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 410 Figure 4.10: Relation between V S and V R for theTaylor compression test

  plastic strain contour-plot for the built-in J-C law (b) Equivalent plastic strain contour-plot for the N-N-R VUMAT subroutine
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 411 Figure 4.11: Equivalent plastic strain contour-plots of the built-in J-C constitutive law and N-N-R VUMAT subroutine for the Taylor compression test
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 412 Figure 4.12: Complete tensile model with the new target

  Equivalent plastic strain contour-plot of the previous target (b) Equivalent plastic strain contour-plot of the new target

Figure 4 . 13 :

 413 Figure 4.13: Equivalent plastic strain ε p contour-plots for the previous and new tensile targets
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 414 Figure 4.14: Simplified tensile model

  plastic strain contour-plot of the complete model (b) Equivalent plastic strain contour-plot of the simplified model
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 415416 Figure 4.15: Equivalent plastic strain contour-plots of the complete model and simplified model for tensile test

  plastic strain contour-plot for the built-in J-C law (b) Equivalent plastic strain contour-plot for the N-N-R VUMAT subroutine
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 417 Figure 4.17: Equivalent plastic strain contour-plots of the built-in J-C constitutive law and N-N-R VUMAT subroutine for tensile test
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 420 Figure 4.20: Equivalent plastic strain contour-plots of the complete model and simplified model for the shear test
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 421 Figure 4.21: Relation between V S and V R for the shear test

(a)

  Equivalent plastic strain contour-plot for the built-in J-C law (b) Equivalent plastic strain contour-plot for the N-N-R VUMAT subroutine
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 422 Figure 4.22: Equivalent plastic strain contour-plots of the built-in J-C constitutive law and N-N-R VUMAT subroutine for the shear test
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 51 Figure 5.1: Shapes of the undeformed and deformed projectiles for the Taylor compression tests

2 Figure 5 . 2 :Figure 5 . 3 :

 25253 Figure 5.2: Deformation of the tensile targets N • 1 and N • 2
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 55 Figure 5.5: The logarithmic strain contour-plot of the Dynamic tensile target N • 2
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 56 Figure 5.6: Stress-strain curves of the Johnson-Cook law with regard to different parameters sets

Figure 5 . 7 :

 57 Figure 5.7: Stress-strain curves of the Johnson-Cook law with regard to different parameters sets
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 510 Figure 5.10: Numerical responses L f and R f of Taylor compression test N • 3 with different sets of constitutive parameters

23 .

 23 The results of the Johnson-Cook model implemented through VUMAT and the TANH model are almost identical in all respects. As for the modified TANH model and the Bäker model, their maximum equivalent plastic strains and elongations of the useful zone are less than the previous two models, which means these two models have less plastic deformation in the useful zone.
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 513 Figure 5.13: Equivalent plastic strain contour-plot of the Dynamic tensile target

  of the N-N-R VUMAT subroutine and settings in the inp file C ********************************************************************** C Function to compute the Johnson-Cook yield stress C ********************************************************************** function yieldStress ( C Parameters 1 epsp, depsp, temp, C Constants of the constitutive law 2 parA, parB, parC, parn, parm, pardepsp0, parT0, parTm) include 'vaba_param.inc' C Hardening part of the Johnson-Cook law hardPart = parA + parB * epsp**parn C Dependence to the deformation rate if (depsp .gt. pardepsp0) then viscPart = 1.0 + parC * log (depsp/pardepsp0) else viscPart = 1.0 end if C Dependence to the temperature if parT0 < temp < parTm tempPart = 1.0 if (temp > parT0) then if (temp < parTm) then tempPart = 1.0 -((temp -parT0) / (parTm -parT0))**parm else tempPart = 0.0 end if end if C Compute and return the yield stress yieldStress = hardPart * viscPart * tempPart return end C ********************************************************************** C The numerical solution of Johnson-Cook hardening / epsp C ********************************************************************** function yieldHardEpsp ( C Parameters 1 yield, epsp, depsp, temp, C Constants of the constitutive law 2 parA, parB, parC, parn, parm, pardepsp0, parT0, parTm) include 'vaba_param.inc' C Increment of the plastic strain deltaEpsp = 1.0e-1 if (j_sys_Dimension .eq. 2) deltaEpsp = 1.0e-8 epspForward = epsp + deltaEpsp c yieldForward yieldForward = yieldStress (epspForward, depsp, temp, 1 parA, parB, parC, parn, parm, pardepsp0, parT0, parTm) yieldHardEpsp = (yieldForward -yield) / deltaEpsp return end C ********************************************************************** C The numerical solution of Johnson-Cook hardening / depsp C ********************************************************************** function yieldHardDepsp ( C Parameters 1 yield, epsp, depsp, temp, C Constants of the constitutive law 2 parA, parB, parC, parn, parm, pardepsp0, parT0, parTm) include 'vaba_param.inc' c Increment of the plastic strain rate deltaDepsp = 1.0e-1 if (j_sys_Dimension .eq. 2) deltaDepsp = 1.0e-8 depspForward = depsp + deltaDepsp c yieldForward yieldForward = yieldStress (epsp, depspForward, temp, 1 parA, parB, parC, parn, parm, pardepsp0, parT0, parTm) yieldHardDepsp = (yieldForward -yield) / deltaDepsp return end 71 72 C ********************************************************************** 73 C Function to compute the Johnson-Cook hardening / T 74 C *********************************************************************(epsp, depsp, tempForward, 87 parA, parB, parC, parn, parm, pardepsp0, parT0, parTm) 88 yieldHardTemp = (yieldForward -yield) / deltaTemp 89 return 90 end 91 92 C ********************************************************************** 93 C J2 Mises Plasticity with isotropic Johnson-Cook hardening for plane 94 C strain case and 3D case. 95 C Elastic predictor, radial corrector algorithm. 96 C 97 C The state variables are stored as: 98 C STATE(*,1) = equivalent plastic strain 99 C STATE(*,2) = equivalent plastic strain rate 100 C STATE(*,3) = last value of gamma 101 C STATE(*,4) = yield stress of the material 102 C STATE(*,5) = temperature due to plastic strain without conduction 103 C STATE(*,6) = total number of Newton-Raphson iterations 104 C STATE(*,7) = total number of bissection operations 105 C ********************************************************************

  ******************************************************************** C Start of the subroutine grab the parameters of the constitutive law C *********************************************************************(14) C ********************************************************************** C Compute various material parameters needed further twoG = Young / (1.0 + xnu) twoG32 = sqrt32 * twoG alamda = xnu * twoG / (1.0 -2.0 * xnu) bulk = Young / (3.0 * (1.0 -2.0 * xnu)) heatFr = taylorQ / (density0 * heatCap) C ********************************************************************** C Define precision of the Newton-Raphson algorithm C Depending on the type of solver : explicit or explicit_dp TolNR = TolNRSP if (j_sys_Dimension .eq. 2) TolNR = TolNRDP C ********************************************************************** C If first increment, only compute the elastic part of the C constitutive law. C This is mainly for internal use of the Abaqus software when C package is runningC Check number of material properties if (stepTime .eq. 0.0) then if (nprops .ne. neednprops) then write (*,*) "Vumat subroutine needs ", 1 neednprops," material propreties" write (*,*) "While ", 1 nprops," are declared in the .inp file" call exit (-1) end if C Check number of state variables if (nstatev .ne. neednstatev) then write (*,*) "Vumat subroutine needs ", 1 neednstatev," state variables" write (*,*) "While ", 1 nstatev," are declared in the .inp file" call exit (-1) end if C Printout material proprerties for debug analysis write (*,*)"Summary of the parameters for the constitutive law" write (*,*) "Elastic properties" write (*,*) "E=", Young write (*,*) "nu=", xnu write (*,*) "Johnson-Cook parameters" write (*,*) "A=", parA write (*,*) "B=", parB write (*,*) "C=", parC write (*,*) "n=", parn write (*,*) "m=", parm write (*,*) "deps0=", pardepsp0 write (*,*) "T0=", parT0 write (*,*) "Tm=", parTm write (*,*) "tq=", taylorQ write (*,*) "p0=", density0Listing of the N-N-R VUMAT subroutine and settings in the inp file if (nshr .gt. 1) then s23 = s23 + twoG * strainInc(k,5) s31 = s31 + twoG * strainInc(k,6) end if C Compute stress norm if (nshr .eq. 1) then Snorm = sqrt(s11*s11 + s22*s22 + s33*s33 + 1 2.0 * s12*s12) else Snorm = sqrt(s11*s11 + s22*s22 + s33*s33 + 1 2.0 * (s12*s12 + s23*s23 + s31*s31)) end if C Compute J2 equivalent stress Strial = sqrt32 * Snorm C ********************************************************************** C Compute the Constitutive law equivalent stress due to plastic flow C ********************************************************************** C Get the current temperature at the beginning of the increment if (mCoupled .eq. 0) then tempInit = stateOld(k,5) else tempInit = tempOld(k) end if temp = tempInit C Get the previous values of plastic strain and plastic strain increment epsp = stateOld(k,1) depsp = stateOld(k,2) C Initialize gamma value to zero gamma = 0.0 C Get the previously stored yield stress of the material yield = stateOld(k,4) C If the yield stress is zero C compute the first yield stress thank's to the constitutive law C using the default initial value of gamma if (yield .eq. 0.0) then yield = yieldStress(gammaInitial, gammaInitial/dt, temp, 1 parA, parB, parC, parn, parm, pardepsp0, parT0, parTm) end if C Initialize the iterate counter iterate = 0 iBissection = 0 C ********************************************************************** C Plasticity criterion test and begin of plastic corrector C ********************************************************************** if (Strial > yield) then C Minimum value of Gamma gammaMin = 0.0 C Maximum value of Gamma gammaMax = Strial / twoG32 C Initialize gamma to the last value except if epsp = 0.0 gamma = stateOld(k,3) C If first plastic increment, initialise value of gamma if (gamma .eq. 0.0) gamma = 0.5 * gammaMax C If epsp=0 set gamma to the default initial value of gamma if (epsp .eq. 0.0) gamma = sqrt32 * gammaInitial C Update the values of epsp, depsp and temp for next loop depsp = sqrt23 * gamma / dt epsp = stateOld(k,1) + sqrt23 * gamma temp = tempInit + 0.5 * gamma * heatFr * 1 (sqrt23 * yield + Snorm0) C Initialisations for the Newton-Raphson routine irun = 1 C Main loop for the Newton-Raphson procedure do while (irun .eq. 1) C Compute yield stress and hardening parameter yield = yieldStress(epsp, depsp, temp, 1 parA, parB, parC, parn, parm, pardepsp0, parT0, parTm) C Compute the radial return equation for isotropic case fun = Strial -gamma*twoG32 -yield C Reduce the range of solution depending on the sign of fun if (fun < 0.0) then gammaMax = gamma else gammaMin = gamma endif C Compute three hardening parameters hardEpsp = yieldHardEpsp(yield, epsp, depsp, temp, 1 parA, parB, parC, parn, parm, pardepsp0, parT0, parTm) hardDepsp = yieldHardDepsp(yield, epsp, depsp, temp, 1 parA, parB, parC, parn, parm, pardepsp0, parT0, parTm) hardTemp = yieldHardTemp(yield, epsp, depsp, temp, 1 parA, parB, parC, parn, parm, pardepsp0, parT0, parTm) C Compute the hardening coefficient hard = hardEpsp + hardDepsp/dt + heatFr * yield * hardTemp C Compute derivative of the radial return equation for isotropic case dfun = twoG32 + sqrt23 * hard C Compute the increment of the gamma parameter dgamma = fun/dfun C Increment on the gamma value for Newton-Raphson gamma = gamma + dgamma C If solution is outside of the brackets do one bisection step if ((gammaMax -gamma) * (gamma -gammaMin) < 0.0) then dgamma = 0.5 * (gammaMax -gammaMin) gamma = gammaMin + dgamma iBissection = iBissection + 1 end if C Algorithm converged, end of computations if (abs(dgamma) < tolNR) irun = 0 C Update the values of epsp, depsp and temp for next loop depsp = sqrt23 * gamma / dt epsp = stateOld(k,1) + sqrt23 * gamma temp = tempInit + 0.5 * gamma * heatFr * 1 (sqrt23 * yield + Snorm0) C Increase the number of iterations iterate = iterate + 1 if (iterate > itMax) then C Break with no convergence !! write (*,*) "NO CONVERGENCE in Newton-Raphson" write (*,*) "After", iterate, "iterations" write (*,*) "Time", stepTime, dt write (*,*) "Precision", abs(fun/yield) write (*,*) "Strial", Strial write (*,*) "Gamma0", stateOld(k,3) write (*,*) "Gamma", gamma write (*,*) "Gamma M", gammaMin, gammaMax write (*,*) "DGamma", dgamma write (*,*) "epsp0", stateOld(k,1)+sqrt23*stateOld(k,3) write (*,*) "depsp0", sqrt23*stateOld(k,3)/dt write (*,*) "epsp", epsp write (*,*) "depsp", depsp write (*,*) "temp", temp write (*,*) "hardEpsp", hardEpsp write (*,*) "hardDepsp", hardDepsp write (*,*) "hardTemp", hardTemp write (*,*) "old sdv1", stateOld(k,1) write (*,*) "old sdv2", stateOld(k,2) write (*,*) "old sdv3", stateOld(k,3) write (*,*) "old sdv4", stateOld(k,4) write (*,*) "old sdv5", stateOld(k,5) call EXIT(-1) end if end do C ********************************************************************** C End of Newton-Raphson procedure C ********************************************************************** C Compute the new stress tensor xcor = (1.0 -twoG * gamma / Snorm) s11 = s11 * xcor s22 = s22 * xcor s33 = s33 * xcor

1 C

 1 ********************************************************************** 2 C Function to compute the Johnson-Cook yield stress 3 C *********************************************************************parB, parC, parn, parm, pardepsp0, parT0, parTm ) 9 include 'vaba_param.inc' 10 C Hardening part of the Johnson-Cook law 11 hardPart = parA + parB * epsp**parn 12 C Dependence to the deformation rate 13 if (depsp .gt. pardepsp0) then 14 viscPart = 1.0 + parC * log (depsp/pardepsp0) the temperature if parT0 < temp < parTm 19 tempPart = 1.0 20 if (temp > parT0) then 21 if (temp < parTm) then 22 tempPart = 1.0 -((temp -parT0) / (parTm -parT0))**parm 23 ******************************************************************** 33 C Function to compute the Johnson-Cook hardening / epsp 34 C *********************************************************************parB, parC, parn, parm, pardepsp0, parT0, parTm ) 40 include 'vaba_param.inc' Listing of the VUHARD subroutine and settings in the inp file hardPart = 0.0 C Dependence to the deformation rate if (depsp .gt. pardepsp0) then hardPart = (parA + parB * epsp**parn) * parC / depsp end if C Dependence to the temperature if parT0 < temp < parTm tempPart = 1.0 if (temp > parT0) then if (temp < parTm) then tempPart = 1.0 -((temp -parT0) / (parTm -parT0))**parm else tempPart = 0.0 end if end if C Compute and return the yield stress yieldHardDepsp = hardPart * tempPart return end C C ********************************************************************** C Function to compute the Johnson-Cook hardening / T C ********************************************************************** function yieldHardTemp ( C Parameters 1 epsp, depsp, temp, C Constants of the constitutive law 2 parA, parB, parC, parn, parm, pardepsp0, parT0, parTm ) include 'vaba_param.inc' C Hardening part of the Johnson-Cook law hardPart = parA + parB * epsp**parn C Dependence to the deformation rate if (depsp .gt. pardepsp0) then viscPart = 1.0 + parC * log (depsp/pardepsp0) else viscPart = 1.0 end if C Dependence to the temperature if parT0 < temp < parTm tempPart = 0.0 if (temp > parT0 .and. temp < parTm) then tempPart = -parm*(((temp -parT0)/(parTm -parT0))**(parm)) 1 / (temp -parT0) end if C Compute and return the yield stress yieldHardTemp = hardPart * viscPart * tempPart return end C C ********************************************************************** C J2 Mises Plasticity with isotropic Johnson-Cook hardening C *********************************************************************
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J 2 plasticity theory for rate independent plas- ticity J

  2 plasticity, also called von Mises yield criterion, was proposed by Huber in 1904 and von Mises in 1913 [59]. It is widely applied in mechanical engineering and metal forming. It assumes the existence of a scalar yield function f , and different values of f defines different stress states, which are shown in Figure 2.7.
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Table 2 . 1 :

 21 Comparison of root-finding methods

				Newton	Newton
	Method	Bisection	Regula Falsi	analytical	numerical
				solution	solution
	Convergence rate	Slow	Fast	Very fast	Very fast
	Computational complexity	Very low	Low	Very high	High
	Convergence condition	Very easy	Easy	Rigorous	Rigorous

  In Section 2.3.3.3, we proposed two methods to calculate the derivatives of σ y with respect to ε p , ε p and T . As Equation (2.85-2.87) can be directly used to calculate the numerical solutions, here we only give the analytical solutions of ∂σ y ∂ε p , ∂σ y ∂ε p and ∂σ y ∂T here after. The analytical form for ∂σ y

		∂σ y ∂ε p	dε p dε p +	∂σ y ∂ ε p	d ε p dε p +	∂σ y ∂T	dT dε p	(3.8)
	According to Equations (2.82) and (2.83), we can write the yield hardening parameter as:
	h =	∂σ y ∂ε p +	1 ∆t	∂σ y ∂ ε p	+	ησ y ρC p	∂σ y ∂T	(3.9)

Table 3 . 1 :

 31 Material parameters of the 42CrMo4 steel[START_REF] Sattouf | Identification and comparison of different constitutive laws for high speed solicitation[END_REF] All benchmarks tests have been solved using Abaqus/Explicit v.6.14 on a Dell Precision T7500 computer running Ubuntu 16.04 64bits with 12Gb of Ram and two 4 core E5620 Intel Xeon Processors. All computations have been done using the double precision option of Abaqus, with one CPU and the VUMAT and VUHARD subroutines have been compiled using the Intel Fortran 64 v.14 compiler.

	E (Gpa)	ν	A (M P a)	B (M P a)	C
	206.9	0.29	806	614	0.0089
	n	m	ε 0 (s -1 )	T 0 (°C) T m (°C)
	0.168	1.1	1	20	1540
	ρ (kg/m 3 ) λ (W/m°C) C p (J/Kg°C)	η	
	7830	34.0	460	0.9	

Table 3 . 2 :

 32 Comparison of results for the one element tensile test Equivalent plastic strain ε p and von Mises equivalent stress σ vs. displacement for the one element tensile test

	Model	Incr.	ε p	σ	T
				(M P a) (°C)
	Built-in 7 590 0.46 1282.4 164.1
	A-N-R	7 986 0.46 1282.4 164.1
	N-N-R	7 986 0.46 1282.4 164.1
	Direct	7 986 0.46 1292.5 165.3
	Bisection 7 986 0.46 1282.4 164.1
	R-F	7 986 0.46 1282.4 164.1
	VUHARD 7 590 0.46 1282.4 164.1

Table 3 . 3 :

 33 Comparison of results for the one element shear test

	Model	Incr.	ε p	σ	T
				(M P a) (°C)
	Built-in 7 818 0.57 1285.4 192.2
	A-N-R	8 226 0.57 1285.4 192.2
	N-N-R	8 226 0.57 1285.4 192.2
	Direct	8 226 0.57 1295.2 193.7
	Bisection 8 226 0.57 1285.4 192.2
	R-F	8 226 0.57 1285.4 192.2
	VUHARD 7 818 0.57 1285.4 192.2

Table 3 . 4 :

 34 Objective stress rates used for the solid element in Abaqus/Explicit

	Constitutive model	Objective rate
	All including VUHARD except viscoelastic, brittle cracking and VUMAT	Jaumann
	Viscoelastic, brittle cracking and VUMAT	Green-Naghdi

Table 3 . 5 :

 35 Comparison of results for the necking of a circular bar benchmark

	Model	Incr.	∆Incr.	Time	∆Time ε p	σ	T
						(M P a) (°C)
	Built-in 199 421		01m 24s	2.16 1051.3 579.8
	A-N-R N-N-R Direct	191 655 -3.9% 01m 31s 8.3% 2.18 1048.2 583.6 191 653 -3.9% 01m 32s 9.5% 2.18 1048.2 583.6 267 731 34.3% 02m 09s 53.6% 2.18 1052.6 588.2
	Bisection 199 341 0.0% 02m 07s 51.2% 2.20 1044.9 587.5
	R-F	204 280 2.4% 04m 12s 200.0% 2.22 1041.0 591.8
	VUHARD 200 185 0.4% 01m 40s 19.1% 2.18 1048.1 583.6

Table 3 . 6 :

 36 Results for the necking of a circular bar benchmark with a coarse mesh

	Model	Incr. ∆Incr. Time ∆Time ε p	σ	T
			(s)		(M P a) (°C)
	Built-in 93 939	12	1.69 1142.6 467.3
	A-N-R N-N-R Direct Bisection 90 062 -4.1% 89 859 -4.3% 89 859 -4.3% 90 062 -4.1% R-F 89 929 -4.3% VUHARD 94 186 0.3%	13 14 14 16 27 13	8.3% 1.71 1140.3 470.4 16.7% 1.71 1140.3 470.4 16.7% 1.71 1146.6 474.0 33.3% 1.71 1139.3 471.8 125.0% 1.71 1139.9 470.9 8.3% 1.71 1140.4 470.3

Table 3 . 7 :

 37 Results for the necking of a circular bar benchmark with a refined mesh

	Model	Incr.	∆Incr.	Time	∆Time ε p	σ	T
						(M P a) (°C)
	Built-in 427 790		10m 09s	2.61 954.4 689.1
	A-N-R N-N-R Direct	413 382 -3.4% 11 m07s 9.5% 2.63 950.2 693.7 413 384 -3.4% 11 m12s 10.3% 2.63 950.2 693.7 620 822 45.1% 17 m04s 68.1% 2.64 951.8 699.9
	Bisection 443 824 3.7% 15 m41s 54.5% 2.69 940.5 704.2
	R-F	470 211 9.9% 28 m13s 178.0% 2.83 918.3 727.5
	VUHARD 427 424 -0.1% 12 m40s 24.8% 2.61 954.4 689.1

Table 3 . 8 :

 38 Comparison of the results for the Taylor 2D test

	Model	Incr. ∆Incr. ε p	T	L f	R f
				(°C) (mm) (mm)
	Built-in 3832	1.80 560.2 26.57 5.57
	A-N-R	3938 2.8% 1.81 561.1 26.56 5.55
	N-N-R	3938 2.8% 1.81 561.1 26.56 5.55
	Direct	3967 3.5% 1.80 570.4 26.66 5.49
	Bisection 3939 2.8% 1.81 561.1 26.56 5.55
	R-F	3938 2.8% 1.81 561.1 26.56 5.55
	VUHARD 3848 0.4% 1.81 561.5 26.55 5.56

Table 3 . 9 :

 39 Equivalent plastic strain ε p contour-plot for the Taylor 3D test Comparison of the results for the Taylor 3D test

	SDV1			
	(Avg: 75%)			
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	Figure 3.20: Model	Incr. ∆Incr. Time ∆Time ε p	L f	R f	T
					(mm) (mm) (°C)
	Built-in 7 253	48s	3.09 26.55 5.57	925.9
	A-N-R	8 466 16.7% 1m 07s 39.6% 4.64 26.50 5.72 1231.3
	N-N-R	8 344 15.0% 1m 08s 41.7% 4.72 26.50 5.72 1197.8
	Direct	8 311 14.6% 1m 07s 39.6% 4.74 26.56 5.69 1222.0
	Bisection 8 351 15.1% 1m 12s 50.0% 4.15 26.50 5.71 1130.9
	VUHARD 7 399 2.0%	54s	12.5% 3.10 26.53 5.64	928.5

Table 3 .10:

 3 Results for the Taylor 3D test with a coarse mesh

	Model	Incr. ∆Incr. Time ε p	L f	R f	T
			(s)		(mm) (mm) (°C)
	Built-in 2 623	3	1.66 26.59 5.46 517.5
	A-N-R	2 721 3.7%	3	1.67 26.57 5.45 520.6
	N-N-R	2 723 3.8%	3	1.67 26.57 5.45 520.5
	Direct	2 767 5.5%	3	1.66 26.63 5.41 525.9
	Bisection 2 721 3.7%	3	1.67 26.57 5.45 520.6
	VUHARD 2 635 0.5%	3	1.67 26.57 5.45 519.4

Figure 3.22:

Model of the Taylor 3D test with a refined mesh

(37 422 elements) 

Table 3 .11:

 3 Results for the Taylor 3D test with a refined mesh

	Model	Incr.	∆Incr.	Time	∆Time	ε p	L f	R f	T
							(mm) (mm) (°C)
	Built-in 22 671		22m 38s		7.67 26.41 5.90 1451.0
	A-N-R N-N-R Direct Bisection 18 921 -16.5% 23m 32s 4.0% 20 702 -8.7% 23m 54s 5.6% 20 834 -8.1% 24m 27s 7.8% 10.84 26.41 6.02 1526.7 8.99 26.41 6.03 1507.4 8.54 26.47 5.97 1500.0 19 872 -12.3% 23m 19s 3.0% 9.77 26.42 6.02 1511.8 VUHARD 22 498 -0.8% 24m 57s 10.2% 7.53 26.40 5.86 1434.0

Table 3 .12:

 3 

	E (Gpa)	ν	A (M P a)	B (M P a)	C
	206.9	0.29	504	370	0.025
	n	m	ε 0 (s -1 )	T 0 (°C) T m (°C)
	0.170	0.793	0.01	20	1540
	ρ (kg/m 3 ) λ (W/m°C) C p (J/Kg°C)	η	
	7830	34.0	460	0.9	

J-C model coefficients for 42CrMo4-FP steel

Table 3 . 13

 313 

		: TANH model coefficients for 42CrMo4-FP steel	
	E (Gpa)	ν	A (M P a)	B (M P a)	C	p	q
	206.9	0.29	504	370	0.025	7.9	5
	n	m	ε 0 (s -1 )	T 0 (°C) T m (°C) T rec (°C)	ε 0
	0.170	0.793	0.01	20	1540	400	0.547
	ρ (kg/m 3 ) λ (W/m°C) C p (J/Kg°C)	η			
	7830	34.0	460	0.9			

Table 3 . 15 :

 315 Bäker model coefficients for 42CrMo4-FP steel

	E (Gpa)	ν	A (M P a)	C
	206.9	0.29	838	0.025
	n 0	m	ε 0 (s -1 )	T α (°C)
	0.067	4.005	0.01	766
	ρ (kg/m 3 ) λ (W/m°C) C p (J/Kg°C)	η
	7830	34.0	460	0.9

The 2D model introduced in Section (3.3.3) is employed to simulate Taylor compression test. A predefined velocity of V c = 200 m/s is imposed on the specimen, and the total simulation time is t = 80 µs.

Table 3 . 16 :

 316 Results for the Taylor compression test

	Model	Incr. Time	ε p	T	L f	R f
				(°C) (mm) (mm)
	J-C	2 357 34.0 s 1.243 308.6 28.26 4.87
	TANH	2 372 35.9 s 1.268 309.0 28.27 4.89
	Modified TANH 3 064 35.3 s 1.744 461.2 29.24 5.17
	Bäker	1 376 34.9 s 0.666 282.7 29.78 4.16

Table 4 . 1 :

 41 The arguments controlling theLevenberg-Marquardt iterations 

	Argument	Description
	xtol	The relative error in the approximate solution
	epsfcn	The step length for the forward-difference approximation of the Jacobian
	ftol	The relative error in the desired sum of squares
	maxfev	The maximum number of function calls
	The main program can be divided into the following steps:
	1. Pass one set of constitutive parameters to the Abaqus inp file of the numerical model.
	2. Run the Abaqus/Explicit solver to simulate the numerical model.

3. Extract from the Abaqus odb database the desired outputs. 4. Evaluate the objective function and checks the arguments controlling the convergence of the LM iterations. 5. If LM iterations are completed, output the minimization results including the best-fit values for the parameters and terminate the identification program. If LM iterations are not completed, generate a new set of constitutive parameters and go back to Step #1.

Table 4 . 2 :

 42 Data processing results of the geometric parameters for the tensile test

	Response	Time	H 10	H M	H T	R I	R E
			(mm) (mm) (mm) (mm) (mm)
	Stable	0.1 s	12.037 22.378 38.303 11.063 11.897
	ApproxL	0.1 s	12.037 22.378 38.303 11.063 11.897
	ErrL		0.00% 0.00% 0.00% 0.00% 0.00%
	ApproxS	300 µs	12.059 22.380 38.301 11.059 11.892
	ErrS		0.18% 0.01% 0.00% 0.04% 0.04%

Table 4 . 3 :

 43 Applications of the inverse identification procedure

	Differences to be minimized	Objective
	Experimental responses vs. numerical responses Identify constitutive law parameters
	Numerical responses vs. numerical responses	Identify equivalent loading conditions

Table 4 . 4 :

 44 Material parameters of the aluminum alloy 2017-T3[START_REF] Sattouf | Caractérisation en dynamique rapide du comportement de matériaux utilisés en aéronautique[END_REF] 

	E (Gpa)	ν	A (M P a)	B (M P a)	C
	72.4	0.33	360.08	316.55	0.0188
	n	m	ε 0 (s -1 )	T 0 (°C) T m (°C)
	0.289	0.961	1	20	513
	ρ (kg/m 3 ) λ (W/m°C) C p (J/Kg°C)	η	
	2790	134	880	0.9	

Table 4 . 5 :

 45 Material parameters of the polycarbonate[START_REF] Dwivedi | Mechanical response of polycarbonate with strength model fits[END_REF] 

	E (Gpa)	ν	A (M P a)	B (M P a)	C
	2.59	0.395	80	75	0.052
	n	m	ε 0 (s -1 )	T 0 (°C) T m (°C)
	2	0.548	1	20	289
	ρ (kg/m 3 ) λ (W/m°C) C p (J/Kg°C)	η	
	1220	0.163	1200	0.9	

is proposed for the simplified model thanks to the inverse identification procedure. At last, the simplified model is used to validate the previously proposed VUMAT subroutine.

Table 4 . 6 :

 46 Comparison between the complete model and simplified model for Taylor com-

	pression test					
		ε p	L f	R f	R 10	R 20	R 30
			(mm) (mm) (mm) (mm) (mm)
	Complete model 1.994 39.18	8.83	5.73	5.28	5.08
	Simplified model 1.964 39.09	8.80	5.75	5.28	5.09
	Difference	1.50% 0.23% 0.34% 0.35% 0.00% 0.20%

Table 4 . 7 :

 47 Identification of the equivalent impact velocity for the simplified model of the Taylor compression test

	Numerical model Velocity	L f	R f	R 10	R 20	R 30	Norm
		(m/s)	(mm) (mm) (mm) (mm) (mm)
	C-M	30	49.94	5.01	5.01	5.01	5.00
	S-M (V R )	30	49.96	5.00	5.00	5.00	5.00
	∆ (V R )		0.04% 0.08% 0.01% 0.09% 0.01% 0.02%
	S-M (V S )	29.963	49.96	5.00	5.00	5.00	5.00
	∆ (V S )		0.04% 0.08% 0.01% 0.09% 0.01% 0.02%
	C-M	90	48.91	5.26	5.12	5.03	5.01
	S-M (V R )	90	48.82	5.27	5.14	5.03	5.01
	∆ (V R )		0.17% 0.25% 0.29% 0.09% 0.05% 0.09%
	S-M (V S )	87.399	48.89	5.25	5.13	5.03	5.01
	∆ (V S )		0.03% 0.09% 0.14% 0.18% 0.04% 0.05%
	C-M	120	48.01	5.50	5.23	5.05	5.01
	S-M (V R )	120	47.94	5.52	5.23	5.05	5.01
	∆ (V R )		0.14% 0.30% 0.06% 0.06% 0.04% 0.07%
	S-M (V S )	118.787 47.98	5.50	5.23	5.05	5.01
	∆ (V S )		0.06% 0.03% 0.01% 0.05% 0.12% 0.03%
	C-M	180	45.58	6.25	5.45	5.12	5.02
	S-M (V R )	180	45.52	6.26	5.45	5.13	5.02
	∆ (V R )		0.12% 0.19% 0.09% 0.08% 0.04% 0.05%
	S-M (V S )	179.130 45.57	6.25	5.45	5.12	5.02
	∆ (V S )		0.03% 0.03% 0.03% 0.03% 0.00% 0.01%
	C-M	240	42.41	7.48	5.63	5.22	5.05
	S-M (V R )	240	42.34	7.49	5.65	5.22	5.05
	∆ (V R )		0.17% 0.16% 0.26% 0.08% 0.02% 0.07%
	S-M (V S )	239.970 42.34	7.49	5.65	5.22	5.05
	∆ (V S )		0.17% 0.15% 0.26% 0.08% 0.01% 0.07%
	C-M	300	38.26	9.26	5.75	5.30	5.10
	S-M (V R )	300	38.11	9.21	5.77	5.30	5.10
	∆ (V R )		0.40% 0.60% 0.26% 0.01% 0.00% 0.15%
	S-M (V S )	300	38.11	9.21	5.77	5.30	5.10
	∆ (V S )		0.39% 0.60% 0.26% 0.01% 0.00% 0.15%
	* C-M represents the complete model, S-M represents the simplified model

Table 4 . 9 :

 49 Comparison between the complete model and simplified model for tensile test

		ε p	H 10	H M	H T	R I	R E
			(mm) (mm) (mm) (mm) (mm)
	Complete model 0.218 11.54 22.05 37.78 11.20 12.08
	Simplified model 0.225 11.71 22.01 37.87 11.17 12.05
	Difference	3.21% 1.44% 0.20% 0.24% 0.28% 0.25%

Table 4 .10:

 4 Identification of the equivalent impact velocity for the simplified model of tensile test

	Numerical model Velocity H 10	H M	H T	R I	R E	Norm
		(m/s)	(mm) (mm) (mm) (mm) (mm)
	C-M	60	11.02 21.47 37.07 11.41 12.33
	S-M (V R )	60	11.16 21.41 37.15 11.38 12.31
	∆ (V R )		1.27% 0.28% 0.22% 0.26% 0.16% 0.27%
	S-M (V S )	58.145	11.09 21.30 37.02 11.42 12.35
	∆ (V S )		0.64% 0.79% 0.13% 0.09% 0.16% 0.21%
	C-M	65	11.28 21.76 37.41 11.30 12.21
	S-M (V R )	65	11.43 21.69 37.50 11.27 12.18
	∆ (V R )		1.33% 0.32% 0.24% 0.27% 0.25% 0.29%
	S-M (V S )	63.369	11.32 21.59 37.39 11.31 12.22
	∆ (V S )		0.35% 0.78% 0.05% 0.09% 0.08% 0.17%
	C-M	70	11.54 22.05 37.78 11.20 12.08
	S-M (V R )	70	11.71 22.01 37.87 11.17 12.05
	∆ (V R )		1.47% 0.18% 0.24% 0.27% 0.25% 0.31%
	S-M (V S )	68.324	11.60 21.90 37.75 11.20 12.10
	∆ (V S )		0.61% 0.68% 0.08% 0.00% 0.17% 0.19%
	C-M	75	11.86 22.40 38.18 11.10 11.94
	S-M (V R )	75	12.06 22.38 38.30 11.06 11.89
	∆ (V R )		1.69% 0.09% 0.31% 0.36% 0.42% 0.36%
	S-M (V S )	73.263	11.91 22.24 38.15 11.10 11.95
	∆ (V S )					

Table 4 .12:

 4 Comparison between the complete model and simplified model for the shear test

		ε p	H T op H M iddle
			(mm) (mm)
	Complete model	1.084	24.68	14.70
	Simplified model 1.328	24.59	14.60
	Difference	22.51% 0.36% 0.63%

Table 4 . 13 :

 413 Identification of the equivalent impact velocity for the simplified model of the shear test

	Numerical model Velocity H T op H M iddle Norm
		(m/s)	(mm) (mm)
	C-M	25	24.95	14.95
	S-M (V R )	25	24.93	14.92
	∆ (V R )		0.08% 0.19%	0.10%
	S-M (V S )	22.361	24.96	14.95
	∆ (V S )		0.02% 0.03%	0.02%
	C-M	30	24.91	14.91
	S-M (V R )	30	24.87	14.88
	∆ (V R )		0.13% 0.21%	0.12%
	S-M (V S )	27.504	24.91	14.91
	∆ (V S )		0.00% 0.01% 0.005%
	C-M	35	24.85	14.86
	S-M (V R )	35	24.77	14.80
	∆ (V R )		0.31% 0.38%	0.25%
	S-M (V S )	31.496	24.85	14.86
	∆ (V S )		0.01% 0.00% 0.005%
	C-M	40	24.77	14.78
	S-M (V R )	40	24.70	14.71
	∆ (V R )		0.30% 0.51%	0.30%
	S-M (V S )	36.082	24.77	14.78
	∆ (V S )		0.01% 0.00% 0.005%
	C-M	45	24.68	14.70
	S-M (V R )	45	24.59	14.60
	∆ (V R )		0.36% 0.63%	0.36%
	S-M (V S )	40.569	24.69	14.70
	∆ (V S )		0.02% 0.02%	0.01%
	* C-M represents the complete model, S-M represents the simplified model

Table 5 . 5 :

 55 Deformation of the center zone of the target N • 1

		G1	G2	G3	G4	G5	G6	G7	G8	G9	G10
	Def. (mm) 1.074 1.057 1.074 1.043 1.043 1.043 1.043 1.011 1.011 1.011
	Orig. (mm) 0.959 0.973 0.973 0.945 0.973 0.959 0.987 0.945 0.959 0.959
	ε	0.11 0.09 0.10 0.10 0.07 0.09 0.06 0.07 0.05 0.05

Table 5 . 6 :

 56 Deformation of the center zone of the target N • 2 Marks of the gaps between the grid lines

		G1	G2	G3	G4	G5	G6	G7	G8	G9	G10
	Def. (mm) 1.167 1.151 1.136 1.120 1.089 1.089 1.074 1.074 1.074 1.058
	Orig. (mm) 0.989 0.975 0.975 0.989 0.961 0.975 0.975 0.961 0.961 0.946
	ε	0.17 0.17 0.16 0.12 0.12 0.11 0.10 0.11 0.11 0.11

Table 5 . 7 :

 57 Deformation of the center zone of the target N • 3

		G1	G2	G3	G4	G5	G6	G7	G8	G9	G10
	Def. (mm)	-	1.183 1.151 1.136 1.105 1.120 1.089 1.089 1.074 1.089
	Orig. (mm) 0.930 0.960 0.973 0.959 0.945 1.002 1.002 1.002 1.002 1.002
	ε	-	0.21 0.17 0.17 0.16 0.11 0.09 0.09 0.07 0.09

Table 5 . 8 :

 58 Impact velocities for the Taylor compression tests

	Velocity	Specimen N • 1 Specimen N • 2 Specimen N • 3
	Original V R (m/s)	171.095	205.886	230.247
	Equivalent V S (m/s)	170.404	205.351	229.821

Table 5 .9:

 5 Impact velocities for the tensile tests

	Velocity	Specimen N • 1 Specimen N • 2
	Original V R (m/s)	50.578	63.523
	Equivalent V R (m/s)	48.751	61.771

Table 5 .10:

 5 Parameter setting for the identification for the Johnson-Cook constitutive law

		A (M P a) B (M P a)	n	C	m
	Starting point	360.08	316.55	0.289 0.0188 0.961
	Min	250	250	0.1	0.005	0.1
	Max	700	700	0.6	0.9	3

Table 5 .11:

 5 Fixed material parameters of the Johnson-Cook constitutive law

	ε 0 (s -1 ) T 0 (°C) T m (°C)
	1	20	513

Table 5 . 12 :

 512 Identification results with single tests

	Set of parameters A (M P a) B (M P a)	n	C	m
	Compression N • 1	258.92	361.21	0.534 0.0257 1.105
	Compression N • 2	256.29	318.72	0.480 0.0208 0.898
	Compression N • 3	251.28	257.26	0.520 0.0480 0.813
	Tensile N • 1	274.51	487.98	0.512 0.0179 1.317
	Tensile N • 2	250.84	699.91	0.600 0.0157 2.719

Table 5 . 13 :

 513 Average value of the identification results with single tests

	Set of parameters A (M P a) B (M P a)	n	C	m
	Average of C	255.50	312.39	0.511 0.0315 0.939
	Average of T	262.67	593.94	0.556 0.0168 2.018
	Average of CT	258.37	425.01	0.529 0.0256 1.370

Table 5

 5 

	.14: Identification results with multiple tests
	Set of parameters A (M P a) B (M P a)	n	C	m
	Combination of C	250.88	298.02	0.420 0.0261 0.938
	Combination of T	250.88	699.53	0.595 0.0152 2.985
	Combination of CT	260.38	375.63	0.370 0.00520 1.035

Table 5 . 15 :

 515 Numerical responses of Taylor compression test N • 1 with different sets of constitutive parameters Numerical responses L f and R f of Taylor compression test N • 1 with different sets of constitutive parameters

	Set of parameters	L f	R f	R 10	R 20	R 30	Norm of
		(mm) (mm) (mm) (mm) (mm) differences
	Compression N • 1 44.283 6.056 5.556 5.303 5.112	0.77%
	Compression N • 2 43.893 6.259 5.595 5.297 5.039	1.18%
	Compression N • 3 44.466 6.292 5.555 5.234 5.055	1.22%
	Average of C	44.272 6.172 5.567 5.279 5.088	0.91%
	Combination of C 44.250 6.227 5.570 5.269 5.036	1.13%
	Tensile N • 1	44.745 5.867 5.500 5.292 5.121	1.04%
	Tensile N • 2	44.504 5.763 5.463 5.327 5.183	1.17%
	Average of T	44.664 5.777 5.478 5.314 5.157	1.19%
	Combination of T 44.507 5.762 5.463 5.327 5.183	1.17%
	Average of CT	44.536 5.905 5.517 5.302 5.126	0.92%
	Combination of CT 44.136 6.170 5.577 5.292 5.103	0.87%
	Figure 5.8:						

Table 5 . 16 :

 516 Numerical responses of Taylor compression test N • 2 with different sets of constitutive parameters Numerical responses L f and R f of Taylor compression test N • 2 with different sets of constitutive parameters parameters sets Tensile N • 2 and Combination of tensile have larger norms of differences, which are 3.68% and 3.67% separately.Meanwhile, it is worth noting that for all the parameters sets, their corresponding numerical responses have an increasing norm of differences from Taylor compression test N • 1 to Taylor compression test N • 3. Here we take the parameters set Compression N • 1 for example. With this set of parameters, the numerical responses of the Taylor compression test N • 1 has the norm of differences of 0.77%. The value changes to 1.61% for the Taylor compression test N • 2 and 2.40% for the Taylor compression test N • 3. This phenomenon can be observed in all the other parameters sets. That means for the same kind of experimental test (Taylor compression test), the accuracy of the numerical simulation with the same set of constitutive parameters is significantly influenced by the impact velocity. Now we turn to the numerical responses of the Dynamic tensile test N • 1. From Table5.18 we can see that the parameters sets Tensile N • 2 and Average of tensile give the numerical responses with smaller norms of differences, with the value of 0.21% and 0.22% respectively. The evolutions of H 10 and R E are reported in Figure5.11. The results with

	Set of parameters	L f	R f	R 10	R 20	R 30	Norm of
		(mm) (mm) (mm) (mm) (mm) differences
	Compression N • 1 41.994 6.474 5.736 5.419 5.071	1.61%
	Compression N • 2 41.385 6.800 5.782 5.411 5.074	1.44%
	Compression N • 3 42.111 6.863 5.737 5.334 5.107	1.55%
	Average of C	41.906 6.669 5.752 5.391 5.151	1.24%
	Combination of C 41.851 6.774 5.752 5.375 5.064	1.53%
	TensileN • 1	42.794 6.206 5.658 5.401 5.187	2.00%
	Tensile N • 2	42.644 5.985 5.602 5.441 5.263	2.42%
	Average of T	42.744 6.048 5.621 5.425 5.230	2.30%
	Combination of T 42.647 5.985 5.602 5.440 5.263	2.42%
	Average of CT	42.494 6.253 5.679 5.416 5.194	1.81%
	Combination of CT 41.733 6.697 5.759 5.402 5.165	1.16%
	Figure 5.9:						

Table 5 . 17 :

 517 Numerical responses of Taylor compression test N • 3 with different sets of constitutive parameters

	Set of parameters	L f	R f	R 10	R 20	R 30	Norm of
		(mm) (mm) (mm) (mm) (mm) differences
	Compression N • 1 40.262 6.821 5.860 5.501 5.110	2.40%
	Compression N • 2 39.545 7.254 5.915 5.229 5.010	2.67%
	Compression N • 3 40.307 7.339 5.859 5.406 5.012	2.32%
	Average of C	40.115 7.082 5.878 5.468 5.012	2.32%
	Combination of C 40.034 7.233 5.881 5.448 5.012	2.24%
	TensileN • 1	41.274 6.481 5.773 5.479 5.234	3.09%
	Tensile N • 2	41.263 6.172 5.700 5.521 5.321	3.68%
	Average of T	41.316 6.260 5.725 5.505 5.284	3.52%
	Combination of T 41.220 6.172 5.700 5.520 5.320	3.67%
	Average of CT	40.920 6.533 5.797 5.497 5.246	2.87%
	Combination of CT 39.913 7.137 5.886 5.197 5.093	2.66%

Table 5 .18:

 5 Numerical responses of Dynamic tensile test N • 1 with different sets of constitutive parameters Numerical responses H 10 and R E of Dynamic tensile test N • 1 with different sets of constitutive parameters

	Set of parameters	H 10	H M	H T	R I	R E	Norm of
		(mm) (mm) (mm) (mm) (mm) differences
	Compression N • 1 11.025 21.261 37.075 11.462 12.405	0.34%
	Compression N • 2 11.097 21.339 37.136 11.426 12.362	0.49%
	Compression N • 3 11.011 21.230 37.035 11.461 12.404	0.33%
	Average of C	11.035 21.266 37.074 11.454 12.395	0.36%
	Combination of C 11.041 21.268 37.062 11.450 12.391	0.38%
	TensileN • 1	10.921 21.137 36.932 11.517 12.469	0.23%
	Tensile N • 2	10.928 21.172 37.048 11.524 12.477	0.21%
	Average of T	10.917 21.147 36.985 11.524 12.477	0.22%
	Combination of T 10.921 21.137 36.932 11.517 12.469	0.23%
	Average of CT	10.964 21.192 37.016 11.495 12.444	0.24%
	Combination of CT 11.045 21.271 37.042 11.451 12.392	0.38%
	Figure 5.11:						

Table 5 . 19 :

 519 Numerical responses of Dynamic tensile test N • 2 with different sets of constitutive parameters Numerical responses H 10 and R E of Dynamic tensile test N • 2 with different sets of constitutive parameters

	Set of parameters	H 10	H M	H T	R I	R E	Norm of
		(mm) (mm) (mm) (mm) (mm) differences
	Compression N • 1 11.686 22.096 38.128 11.192 12.095	0.69%
	Compression N • 2 11.845 22.250 38.257 11.129 12.015	1.02%
	Compression N • 3 11.702 22.082 38.108 11.176 12.073	0.74%
	Average of C	11.726 22.125 38.148 11.172 12.070	0.78%
	Combination of C 11.749 22.137 38.135 11.161 12.054	0.83%
	TensileN • 1	11.484 21.868 37.887 11.269 12.187	0.41%
	Tensile N • 2	11.432 21.874 38.005 11.299 12.224	0.32%
	Average of T	11.439 21.853 37.926 11.292 12.215	0.35%
	Combination of T 11.429 21.872 38.002 11.300 12.225	0.32%
	Average of CT	11.551 21.959 38.011 11.245 12.159	0.46%
	Combination of CT 11.762 22.143 38.098 11.159 12.050	0.85%
	Figure 5.12:						

Table 5 . 20 :

 520 Comparison of the sets Average of compression and Combination of compression

	Set of parameters Norm of differences
	Average of C	0.93%
	Combination of C	1.04%

Table 5 .21:

 5 Comparison of the sets Average of tensile and Combination of tensile

	Set of parameters Norm of differences
	Average of T	0.21%
	Combination of T	0.20%

Table 5 .22:

 5 Comparison of the sets Average of compression-tensile and Combination of compression-tensile

	Set of parameters Norm of differences
	Average of CT	0.71%
	Combination of CT	0.63%

Table 5 . 23 :

 523 Results for the Dynamic tensile test

	Model	ε p	T	H 10	H M	H T	R I	R E
			(°C) (mm) (mm) (mm) (mm) (mm)
	J-C	0.287 20	12.28 22.78 34.48 10.94 11.79
	TANH	0.287 20	12.28 22.77 34.47 10.94 11.79
	Modified TANH 0.137 20	11.16 21.41 32.78 11.35 12.29
	Bäker	0.182 20	11.50 21.82 33.36 11.23 12.13

Table 5 . 24 :

 524 Identification results with the VUMAT subroutine for the Johnson-Cook law

	Set of parameters A (M P a) B (M P a)	n	C	m
	VUMAT-JC	251.57	672.54	0.508 0.0228 0.482

Table 5 . 25 :

 525 Numerical responses of the Taylor compression tests with the parameters set VUMAT-JC

	Experimental test	L f	R f	R 10	R 20	R 30	Norm of
		(mm) (mm) (mm) (mm) (mm) differences
	Compression N • 1 44.388 6.130 5.544 5.271 5.098	0.83%
	Compression N • 2 42.165 6.651 5.724 5.371 5.149	1.32%
	Compression N • 3 40.414 7.105 5.841 5.440 5.074	2.23%

Table 5 .26:

 5 Numerical responses of the Dynamic tensile tests with the parameters set VUMAT-JC

	Experimental test	H 10	H M	H T	R I	R E	Norm of
		(mm) (mm) (mm) (mm) (mm) differences
	Tensile N • 1	11.000 21.223 37.012 11.471 12.416	0.30%
	Tensile N • 2	11.670 22.056 38.036 11.189 12.089	0.68%

Table 5 . 27 :

 527 Taylor compression tests N • 1, N • 2 and N • 3 and Dynamic tensile tests N • 1 and N • 2) in a unified identification procedure, and the results are shown in Table 5.29. The numerical responses of these tests with the parameters set TANH are presented in Table 5.30 and 5.31. Parameter setting of the identification for the TANH constitutive law

		A (M P a) B (M P a)	n	C	m	p q
	Starting point	260.38	375.63	0.370 0.00520 1.035 0 0
	Min	250	250	0.1	0.005	0.1	0 0
	Max	700	700	0.6	0.9	3	10 10

Table 5 . 28

 528 

	0

: Fixed parameters for the TANH constitutive law

ε 0 (s -1 ) T 0 (°C) T m (°C) T rec (°C) ε

Table 5 . 29 :

 529 Identification results for the TANH constitutive law

	Set of parameters A (M P a) B (M P a)	n	C	m	p	q
	TANH	266.22	399.36	0.430 0.00500 1.145 1.070 0.00206

Table 5 . 30 :

 530 Numerical responses of the Taylor compression tests with the parameters set TANH

	Experimental test	L f	R f	R 10	R 20	R 30	Norm of
		(mm) (mm) (mm) (mm) (mm) differences
	Compression N • 1 44.821 5.755 5.665 5.288 5.123	1.53%
	Compression N • 2 43.175 6.015 5.883 5.392 5.160	2.67%
	Compression N • 3 41.848 6.212 6.027 5.468 5.189	3.98%

Table 5 . 31 :

 531 Numerical responses of the Dynamic tensile tests with the parameters set TANH

	Experimental test	H 10	H M	H T	R I	R E	Norm of
		(mm) (mm) (mm) (mm) (mm) differences
	Tensile N • 1	10.119 20.110 36.275 11.999 12.998	2.17%
	Tensile N • 2	10.124 20.127 36.854 11.999 12.998	3.33%

Table 5 . 32 :

 532 Fixed parameters for the modified TANH constitutive lawε 0 (s -1 ) T 0 (°C) T m (°C) T rec (°C) ε 0 A (M P a) B (M P a)

	n

Table 5 . 33 :

 533 Parameter setting of the identification for the modified TANH constitutive law

		p	m 1	m 2	C 1	C 2
	Starting point 7.9 1.61 1.18 0.0012 7.42
	Min	0	0.1	1	0.0001	7
	Max	10 2.5	5	0.005	10

Table 5 . 34 :

 534 Identification results for the modified TANH constitutive law

	Set of parameters p	m 1	m 2	C 1	C 2
	Modified-TANH	7.9 2.446 1.106 0.000143 9.136

Table 5 . 35 :

 535 Numerical responses of the Taylor compression tests with the parameters set Modified-TANH

	Experimental test	L f	R f	R 10	R 20	R 30	Norm of
		(mm) (mm) (mm) (mm) (mm) differences
	Compression N • 1 44.230 6.014 5.528 5.311 5.146	0.65%
	Compression N • 2 42.071 6.590 5.684 5.405 5.197	1.14%
	Compression N • 3 40.357 7.271 5.737 5.455 5.232	1.69%

Table 5 . 36 :

 536 Numerical responses of the Dynamic tensile tests with the parameters set Modified-TANH

	Experimental test	H 10	H M	H T	R I	R E	Norm of
		(mm) (mm) (mm) (mm) (mm) differences
	Tensile N • 1	10.979 21.218 37.052 11.489 12.437	0.26%
	Tensile N • 2	11.608 22.019 38.050 11.219 12.128	0.56%

Table 5 . 37 :

 537 Taylor compression tests N • 1, N • 2 and N • 3 and Dynamic tensile tests N • 1 and N • 2) are used in a unified identification procedure for the Bäker constitutive law, and the identification results are shown in Table 5.38. The numerical responses of these tests with the parameters set Bäker are presented in Table 5.39 and 5.40. Parameter setting of the identification for the Bäker constitutive law

		A (M P a)	C	n 0	m T α (°C)
	Starting point	260.38	0.025 0.067 4	200
	Min	250	0	0	0	20
	Max	700	1	0.07 10	513

Table 5 . 38 :

 538 Identification results for the Bäker constitutive law

	Set of parameters A (M P a)	C	n 0	m	T α (°C)
	Bäker	533.42	0.218 0.0627 0.780 267.15

Table 5 . 39 :

 539 Numerical responses of the Taylor compression tests with the parameters set Bäker

	Experimental test	L f	R f	R 10	R 20	R 30	Norm of
		(mm) (mm) (mm) (mm) (mm) differences
	Compression N • 1 44.059 6.076 5.522 5.303 5.146	0.57%
	Compression N • 2 41.905 6.638 5.696 5.217 5.187	1.55%
	Compression N • 3 40.188 7.167 5.817 5.247 5.107	2.48%

Table 5 . 40 :

 540 Numerical responses of the Dynamic tensile tests with the parameters set Bäker

	Experimental test	H 10	H M	H T	R I	R E	Norm of
		(mm) (mm) (mm) (mm) (mm) differences
	Tensile N • 1	11.031 21.333 37.283 11.467 12.412	0.38%
	Tensile N • 2	11.680 22.171 38.326 11.185 12.093	0.71%

Table 5 . 41 :

 541 The norms of the differences of different parameters sets with regard to the five experimental tests

	Experimental test	Combination of	VUMAT-JC TANH Modified-TANH Bäker
		compression-tensile				
	Compression N • 1	0.87%	0.83%	1.53%	0.75%	0.57%
	Compression N • 2	1.16%	1.32%	2.67%	1.34%	1.55%
	Compression N • 3	2.66%	2.23%	3.98%	2.32%	2.48%
	Tensile N • 1	0.38%	0.30%	2.17%	0.35%	0.38%
	Tensile N • 2	0.85%	0.68%	3.33%	0.73%	0.71%

Johnson-Cook constitutive law def getComputingFiles

  ,i]=np.average(lf[st:sp]) return average[0,1:] # Average a table of data by Columns, find the max or min, calculate the average from the max/min to the end, every column has its own max/min def AverageArrayColumns(data,start=1): # Get the dimensions of the array lines, columns = data.shape # Create zero array average = np.zeros((1,columns)) Get the average values array average[0,i]=np.average(data[ind:,i]) return average[0,1:] # Average a table of data by Columns, find the max/min of a specified column and use it as the starting point, calculate average def AverageArrayByColumn(data,column,start=1):

			Listing of the Identif-v2 Python program Listing of the Identif-v2 Python program
		except: else :
		return None if (sp5==False): print("No 5 exremum points")
		dat={}	average[0,i]=np.average(Num_savgol[st:sp2])
	#	for key, expVal in ds.items(): print("sp1=", sp1,"sp2=", sp2,"sp3=", sp3,"sp4=", sp4,"sp5=", sp5,"\n")
		dat[key]=expVal[elem] return average[0,1:]
		return dat
	# Save the database
	def dataStorageSave(file): # Average a table of data by Columns, find 3 extremum points and calculate the
	with open(workingDir+file,'w') as fileHandle: average between the first and the third
	json.dump(dataStorage,fileHandle) def AverageArrayColumnsNew(data,nbr=1):
		# Get the dimensions of the array
	(): lines, columns = data.shape # Load the database
	try: def dataStorageLoad(file): # Create zero array
		# copy the inp file with open(workingDir+file,'r') as fileHandle: average = np.zeros((1,columns))
		return json.load(fileHandle) for i in range(1,columns):
		shutil.copy(workingDir+abaqusInputName+'.inp',currentDir+abaqusInputName+'.i # Get the minimum
	np') # Wait the end of the Abaqus Job lf=list(data[:,i])
	except: pass def waitAbaqusJob(jobFile): lf.reverse()
		test_completed=0 st=sp=FindNextExtremum(lf)
	# Compute CPU time left test_aborted=0 for j in range(0,nbr):
	def computeCpuTimeLeft(loop, totalLoops): if (verbose) : print("Read Log File : "+jobFile) sp=FindNextExtremum(lf,sp+3)
		global startTime while test_completed==0 and test_aborted==0: sp=FindNextExtremum(lf,sp+3)
	if (loop==1) : startTime=time.time() return 0 timeActual=time.time() timeLeft=int((timeActual-startTime)*(totalLoops-loop+1)/(loop-1)) return timeLeft # Delete the old abaqus files def deleteAbaqusFiles(filename,listExtensions): # Attente de 1 seconde puis suppression des fichiers bizarres time.sleep(1) try : TRA=open(workingDir+jobFile+".log","r") test=TRA.read() test_completed=test.count("COMPLETED") test_aborted=test.count("exited with errors") TRA.close time.sleep(1) except: pass return test_aborted average[0for i in range(1,columns):
	for ext in listExtensions: # Write Parameters INP file, par_Taylor.inp # Get the minimum
	try: def writeAbaqusParamsFile(file,params): i_min=np.argmin(data[:,i])
		os.remove(workingDir+filename+ext) with open(workingDir+file,'w') as fileHandle: # Get the maximum
		except: pass fileHandle.write("*PARAMETER\n") i_max=np.argmax(data[:,i])
		for item in params: ind=lines
	def dataStorageAdd(block,data): fileHandle.write(params[item].name+"="+str(params[item].value)+"\n") if (i_min!=0):
		# Check if block exists ind=i_min
	try: # Write Parameters INP file, Identif.log if (i_max!=0):
	ds=dataStorage[block] def logFileReport(numResults,resultsDelta,params): ind=i_max
	for key, expVal in ds.items(): expVal.append(data[key]) except: dataStorage[block]={} for key, expVal in data.items(): dataStorage[block][key]=[data[key]] # Get size of data # Write the parameters for item in params: logFile.write(params[item].name+"="+str(params[item].value)+"\n") # Write the results logFile.write("Numerical results : "+str(numResults)+"\n") logFile.write("Delta : "+str(resultsDelta)+"\n") # Run the Abaqus Solver # # Get the dimensions of the array
	def dataStorageSize(block): def runAbaqusSolver(inputFile,jobFile): lines, columns = data.shape
		try: commandLine=abaqusExec+" job="+jobFile+" input="+workingDir+inputFile+" # Create zero array
		ds=dataStorage[block] output_precision=full double=both cpus="+str(args.cpu)+" >/dev/null 2>&1" average = np.zeros((1,columns))
		return len(ds) if (verbose) : print("Run Abaqus Solver : "+commandLine) # Get the minimum
		except: try: i_min=np.argmin(data[:,column])
		return 0 subProcess.check_call(commandLine, shell=True) # Get the maximum
		except: i_max=np.argmax(data[:,column])
	# Get elements print ("Simulation aborded with errors") ind=lines
	def dataStorageGetElements(block,item): exit() if (i_min!=0):
		try: return 0 ind=i_min
		ds=dataStorage[block][item] if (i_max!=0):
	except: # Run the Abaqus Python Extractor, Extract.py ind=i_max
	return None def runAbaqusExtractor(pyFile): # Get the average values array
		return ds writeExtractorDataEchangeFile(workingDir+abaqusExtractExchange) for i in range(start,columns):
		#commandLine=abaqusExec+" cae noGUI="+pyFile+" >/dev/null 2>&1" average[0,i]=np.average(data[ind:,i])
	# Get an element of the database commandLine=abaqusExec+" python "+pyFile return average[0,1:]
	def dataStorageGetElement(block,elem): if (verbose) : print("Run Abaqus Extractor : "+commandLine) # the number of lines in a file
	try: try: def rawReadLineNumber(file,number):
		ds=dataStorage[block] subProcess.check_call(commandLine, shell=True) # Read the whole file

A Numerical Platform for the Identification of Dynamic Non-linear Constitutive Laws Using Multiple Impact Tests Lu MING

[START_REF] Cantor | Aerospace materials[END_REF] Hopefully, this now never append and all simulations have been found to run until their end, but this test was useful during the debugging phase in the development period of the VUMAT.A Numerical Platform for the Identification of Dynamic Non-linear Constitutive Laws Using Multiple Impact Tests Lu MING

(8) See the Python documentation in order to understand why the use of dictionaries greatly simplifies the development.
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Chapter 5

Identification of the parameters sets of dynamic constitutive laws

Appendices

Listing of the N-N-R VUMAT subroutine and settings in the inp file

The following pages present the listing of the VUMAT subroutine with Newton-Raphson root-finding procedure and a numerical computation of the derivatives for the Johnson-Cook constitutive law, which corresponds to the N-N-R model introduced in Section 3.3. The structure of the VUMAT subroutine has been detailed in Section 2. [START_REF] Cantor | Aerospace materials[END_REF]. write (*,*) "heatCap=", heatCap write (*,*) "coupled=", mCoupled write (*,*) "State dependent variables" write (*,*) "SDV1", stateOld(1,1) write (*,*) "SDV2", stateOld(1,2) write (*,*) "SDV3", stateOld [START_REF] Sattouf | Identification and comparison of different constitutive laws for high speed solicitation[END_REF][START_REF] Dwivedi | Mechanical response of polycarbonate with strength model fits[END_REF] write (*,*) "SDV4", stateOld [START_REF] Sattouf | Identification and comparison of different constitutive laws for high speed solicitation[END_REF][START_REF] Cantor | Aerospace materials[END_REF] write (*,*) "SDV5", stateOld [START_REF] Sattouf | Identification and comparison of different constitutive laws for high speed solicitation[END_REF]5) write (*,*) "SDV6", stateOld [START_REF] Sattouf | Identification and comparison of different constitutive laws for high speed solicitation[END_REF][START_REF] Dixit | Modeling of metal forming and machining processes: by finite element and soft computing methods[END_REF] write (*,*) "SDV7", stateOld ( 

Listing of the Identif-v2 Python program

The following pages present the listing of the Identif-v2