Mes premiers mots s'adressent à mes deux directeurs de thèse Djalil et Sylvia. Je ne vous serai jamais assez reconnaissante pour votre soutien sans faille, vos encouragements continus, tout ce que vous m'avez donné de votre temps, de votre optimisme et de votre vision des mathématiques. Je vous remercie également pour l'immense liberté que vous m'avez laissée dans le choix de mes sujets et de mes horloges, dans le choix de ma localisation physique qui m'a permis d'écrire cette thèse sous les cocotiers (bretons souvent hélas). Merci Djalil, pour avoir proposé ce très joli problème sur le temps de mélange, pour m'avoir partagé ta grande érudition et ta joie, pour les innombrables tasses de café, ta disponibilité et tes conseils. Merci Sylvia pour m'avoir donné ta confiance dès ce jour on s'est rencontrées, pour m'avoir appris à naviguer les calculs et les problèmes quand tous les dix du mois le monde s'effondrait, pour les constantes optimales et les invitations à New York où je me suis régalée.

Profonds remerciements à Paul Bourgade et Gaultier Lambert pour votre travail de rapporteur et pour les multiples discussions à New York, vos encouragements, lettres et corrections minutieuses. Merci à David Dereudre, Christophe Garban, Alice Guionnet et Mathieu Lewin d'avoir accepté de faire partie de mon jury. Merci beaucoup Alice de m'accueillir à Lyon et dans un nouveau sujet, j'ai hâte de me lancer.

Merci à toutes les personnes extraordinaires que j'ai eu la chance de rencontrer depuis mes débuts. En particulier Thomas pour ton aide constante, toutes les discussions, la patience infinie d'avoir mis le nez dans mes brouillons et le jambon Villani. Promis dès que j'ai soutenu je te relaie un peu dans l'envoi de mails pour l'ANR ! Michel Ledoux pour les premiers pas dans la recherche en Master 1, pour ta grande sollicitude et tes encouragements qui ont été déterminants. Je pense également à de nombreuses personnes à Dauphine, Maria Esteban pour le mentorat, Béatrice de Tillère pour m'avoir sauvée plus d'une fois, David Gontier, Alessandra Iacobucci, Cyril Labbé -j'ai beaucoup appris en travaillant avec toi -mes coburaux et collègues doctorants... Aux personnes que j'ai rencontrées à New York, Ofer, Gaultier et Paul encore une fois, Guillaume et Margaret, Scott pour l'ego boost stratégique, Sophie Marbach -tes "teaching letters" m'ont été d'une aide précieuse -Krishnan, Ben, Lucas, Emmanuel... Un grand merci à l'équipe administrative de Dauphine notamment Isabelle Bellier et César Faivre quand il a fallu réserver un avion à deux jours du départ. Et à la fondation CFM pour l'appui matériel, à Nathalie Bilimoff pour tous les tickets de caisse.

Une pensée pour l'équipe de la MIR, Pierre, Sholom, Johan, Adam et Nicolas. Vous côtoyer depuis ces six ou sept années m'a énormément appris et peut-être que notre groupe de travail sur la géométrie métrique verra enfin le jour, qui sait... Pierre et Sholom, je suis désolée d'être toujours aussi nulle aux échecs malgré vos leçons (mais toujours moins nulle que Adam en rapide). Un grand merci Eléonore, Clé, Alice votre amitié m'est extrêmement précieuse et j'espère qu'on va tous.tes se retrouver au complet à Paris bientôt. Merci à Ninon M et Adam encore une fois, le temps de la rue Benard (pas Bernard !) me manque. Merci à mes autres amis, Clément B pour les conseils nutritionnels (céréales complètes), Vincent pour m'avoir initiée à François Bégaudeau, Tom pour les conseils musicaux, Anton, Sonia, Léa et mes amis de la bomba, mes amis de New York Krishnan et Sophia, Clément M, Camille T pour les déjeuners, Camille L pour ton amitié qui traverse les époques... Un grand merci à Ninon L qui me supporte depuis deux ans, pour les bêtises à Tel Aviv et New York et pour Lulu ; te voir mener ta vie m'incite chaque jour à poursuivre.

Je souhaite en dernier lieu remercier mes parents pour leur amour inconditionnel et leur présence. Merci de m'avoir soutenue et encouragée depuis toutes ces années, malgré ma première expérience de recherche infructueuse où il s'agissait de mettre racine de deux sous forme de fraction. Vous m'avez transmis toute petite votre goût pour le travail intellectuel et votre immense ténacité. Enfin merci bien sûr à toute ma famille et en particulier à mon petit frère Louison.

Bilan des travaux

Contexte et motivations

Cette thèse est consacrée à l'étude mathématique de certains systèmes de particules en interaction appelés gaz de Riesz. Ceux-ci permettent de modéliser des particules aléatoires chargées (sans énergie cinétique) interagissant par paires au travers du noyau g s pxq " |x| ´s où s est un paramètre strictement positif. Par extension, la famille des gaz de Riesz comprend également les systèmes à interaction logarithmique en dimension une et deux, i.e le log-gaz uni-dimensionnel et le gaz de Coulomb bi-dimensionnel, deux modèles particulièrement importants en physique et en mathématiques. En tant que systèmes de particules à longue portée, les gaz de Riesz forment une famille de modèles particulièrement riche, dont nous nous proposons d'étudier quelques aspects. Ce manuscrit s'insère dans une vaste littérature à l'intersection des probabilités et de la physique mathématique. Le comportement microscopique des gaz de Riesz à longue portée a fait l'objet d'une importante série de travaux qui ont permis de décrire, au moyen d'un principe de grande déviations, le comportement microscopique de ces systèmes de particules. Si cette description microscopique est bien valide en toute dimension, l'analyse des propriétés probabilistes de ces systèmes -comme les fluctuations, les corrélations, la rapidité de convergence à l'équilibre -est complètement différente en dimension une et en dimension supérieure. C'est en effet seulement en dimension une qu'il est possible d'exploiter la convexité de l'interaction, ce qui donne accès à toute une gamme d'inégalités de concentration et d'inégalités fonctionnelles pour étudier les fluctuations et le temps de relaxation de la dynamique.

Au fil de cette introduction, nous précisons d'abord le contexte mathématique de notre travail puis donnons un aperçu de quelques méthodes fondamentales du domaine avant de présenter les contributions principales de ce manuscrit.

Dynamique de Langevin

On présente la dynamique de Langevin suramortie qui permet de modéliser une dynamique moléculaire de particules sans énergie cinétique. On considère N particules x 1 , . . . , x N dans R d interagissant selon une énergie générale (disons régulière) H N : pR d q N Ñ R. On suppose que les particules évolue en cherchant à minimiser l'énergie, tout en étant agitées par un petit bruit Brownien. Pour un paramètre β ą 0, qui joue le rôle de température inverse, on examine alors l'équation différentielle stochastique

dX t " ´α∇H N pX t qdt `c 2α β dB t , (1.1) 
où pB t q tě0 est un mouvement Brownien standard sur pR d q N et α ą 0 un paramètre correspondant à un changement déterministe de temps. L'équation (1.1) définit un processus de Markov sur pR d q N dont le générateur infinitésimal du semi-groupe est donné par l'opérateur différentiel linéaire du second-ordre L :" αpβ∇H N ¨∇ ´∆q.

(1.2)

On peut de plus vérifier que la mesure invariante de ce processus de Markov est donnée par la mesure de probabilité ci-dessous, appelée distribution de Boltzmann-Gibbs :

dP N,β " 1 Z N,β e ´βH N pX N q dX N , (1.3) 
où Z N,β est la fonction de partition

Z N,β " ż pR d q N
e ´βH N pX N q dX N .

Il se trouve que (1.3) est la solution d'un « principe variationnel de Gibbs ». On vérifie aisément que la mesure (1.3) minimise la fonctionnelle µ P PppR d q N q Þ Ñ βE µ rH N s `Entpµq, où Ent désigne l'entropie sur pR d q N : Entpµq "

ż log dµ dx dµ, (1.4) 
si µ est absoluement continue par rapport à la mesure de Lebesgue sur pR d q N et Entpµq " `8 sinon. On peut montrer que sous des hypothèses générales, par exemple si la Hessienne de H N est minorée par une constante négative [START_REF] Royer | An initiation to logarithmic Sobolev inequalities[END_REF], alors la dynamique (1.1) est ergodique et qu'en particulier la loi de X t converge en temps long vers la distribution de Boltzmann-Gibbs (1.3). Une question intéressante du point de vue de la physique statistique est de déterminer si cette propriété d'unicité de le mesure reste vraie lorsque la taille du système tend vers l'infini, autrement s'il y a un unique état de Gibbs. Ainsi l'interaction de Riesz recoupe l'interaction logarithmique en dimension 1 et 2 ainsi que l'interaction coulombienne pour d ě 2. On utilise la terminologie suivante :

La famille des gaz de Riesz

• Pour s " 0 et d " 1, on parle de log-gaz 1D ou de β-ensemble.

• Pour s " 0 et d " 2, on parle de log-gaz 2D, qui correspond aussi au gaz de Coulomb 2D.

• De façon plus générale, pour s " d ´2 et d ě 2, on parle de gaz de Coulomb.

Le paramètre s détermine la singularité de l'interaction ainsi que sa portée. En effet pour s ą d, l'interaction d'une configuration périodique bien espacée sur un domaine compact devient sommable et l'énergie est dite à courte portée. A l'opposé, pour s ď d, les termes principaux dans l'énergie correspondent aux interactions à longue portée. Afin que les particules ne s'échappent pas à l'infini, il convient de compactifier le domaine, ce qui peut se faire de deux façons : la première consiste à ajouter à (1.5) un potentiel extérieur confinant, c'est-à-dire un terme de la forme ř N i"1 V px i q avec V : R d Ñ R suffisamment régulière et croissant assez vite à l'infini, ce qui amène à considérer le Hamiltonien

H V N : X N P pR d q N Þ Ñ ÿ i‰j g s pN s d px i ´xj qq `N s d N ÿ i"1
V px i q.

(1.7)

Dans ce cas on notera P V N,β la mesure de Gibbs

dP V N,β :" 1 Z V N,β e ´βH V N pX N q dX N , (1.8) 
où Z V N,β est la fonction de partition

Z V N,β :" ż e ´βH V N pX N q dX N .
Une autre façon de confiner les particules est de remplacer R d par un domaine compact, par exemple par r0, 1s d ou par le tore de dimension d, noté T d . Notons que dans le régime longue portée (à la différence du régime courte portée), si on confine un gaz de Riesz dans un domaine compact, alors la mesure d'équilibre se concentre sur la frontière du domaine et ce choix n'est donc pas pertinent. Enfin si les particules vivent sur le tore T d , soulignons que le noyau (1.6) doit être remplacé par le noyau de Riesz periodisé, voir sous-section (1.3.2).

Motivations

Donnons à présent quelques motivations physiques et mathématiques pour l'étude des gaz de Riesz.

On se réfère aux comptes-rendus de littérature très complets [START_REF] Serfaty | Systems of points with coulomb interactions[END_REF][START_REF] Chafaï | Aspects of coulomb gases[END_REF][START_REF] Mathieu Lewin | Coulomb and riesz gases: The known and the unknown[END_REF].

• Les gaz de Riesz définissent pour s ă d une famille de modèles à longue portée, qui sont intéressants en tant que tels. En effet, ceux-ci échappent à la théorie classique de la physique statistique élaborée dans les années 70, 80 et 90 (Ruelle, Giorgii, Dobrushin...) [START_REF] Fröhlich | On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems[END_REF][START_REF] Georgii | Translation Invariance and Continuous Symmetries in Two-Dimensional Continuum Systems[END_REF][START_REF] Ch | Translation invariance in statistical mechanics of classical continuous systems[END_REF][START_REF] Edouard | On the symmetry of the Gibbs states in two-dimensional lattice systems[END_REF], qui donne des résultats généraux pour des interactions à courte portée, notamment en dimension 2. Les gaz de Riesz forment donc un cadre particulièrement riche pour développer de nouvelles méthodes pour comprendre les fluctuations et corrélations des systèmes à longue portée, y compris en dimension 1.

• Une motivation importante pour l'étude des log-gaz en dimension 1 vient des matrices aléatoires. En effet comme observé dans les papiers fondateurs [START_REF] Wigner | Characteristic vectors of bordered matrices with infinite dimensions[END_REF][START_REF] Dyson | A Brownian-motion model for the eigenvalues of a random matrix[END_REF], le log-gaz 1D avec β P t1, 2, 4u apparaît comme loi jointe des valeurs propres de matrices aléatoires Gaussiennes symmétriques/hermitiennes/symplectiques à entrées indépendantes. Les β-ensembles ont ainsi été abondamment étudiés en utilisant des techniques extrêmement variées. Les β-ensembles s'étendent également en des modèles discrets [START_REF] Borodin | Gaussian asymptotics of discrete βensembles[END_REF] qui modélisent alors les losanges horizontaux dans les pavages aléatoires de domaines hexogonaux par exemple. En dimension 2 pour β " 2, le log-gaz correspond à la loi jointe des valeurs propres d'un modèle de matrices nonhermitiennes, appelé ensemble de Ginibre [START_REF] Ginibre | Statistical ensembles of complex: Quaternion, and real matrices[END_REF]. De plus celui-ci a une structure déterminentale qui en fait un système intégrable [START_REF] Khoruzhenko | Non-hermitian random matrix ensembles[END_REF][START_REF] Peter | Log-Gases and Random Matrices (LMS-34)[END_REF][START_REF] Dubach | Powers of ginibre eigenvalues[END_REF].

• Le gaz de Coulomb en dimension 2 et 3 est un modèle particulièrement important puisque les interactions électrostatiques et gravitationnelles sont coulombiennes. En dimension 3, le gaz de Coulomb permet par exemple de modéliser les plasmas en astrophysique [START_REF] Baus | Statistical mechanics of simple coulomb systems[END_REF]. Le gaz de Coulomb bi-dimensionnel surgit quand à lui dans de nombreux domaines de la physique : il permet de décrire les vortex dans les modèles de Ginzburg-Landau (supraconductivité) et Gross-Pitaevskii (superfluidité) [START_REF] Sandier | Vortices in the Magnetic Ginzburg-Landau Model[END_REF][START_REF] Sandier | From the ginzburg-landau model to vortex lattice problems[END_REF], les vortex dans le modèle XY (magnétisme, mécanique du solide) [START_REF] Bietenholz | Berezinskii-kosterlitz-thouless transition and the haldane conjecture: Highlights of the physics nobel prize[END_REF], la fonction d'onde de Laughlin dans l'effet de Hall quantique fractionnaire en mécanique quantique. Le gaz de Riesz est une extension naturelle du gaz de Coulomb et a qui a également de nombreuses motivations physiques, voir par exemple [START_REF] Mazars | Long ranged interactions in computer simulations and for quasi-2d systems[END_REF][START_REF] Barré | Large deviation techniques applied to systems with long-range interactions[END_REF][START_REF] Campa | Statistical mechanics and dynamics of solvable models with long-range interactions[END_REF][START_REF] Torquato | Hyperuniformity and its generalizations[END_REF].

• L'étude de minimiseurs de (1.5) sur T d est également un problème majeur en mathématiques et tout à fait d'actualité. Pour s " `8, ce problème n'est rien d'autre que le problème d'empilement compact, où il s'agit d'ordonner des sphères dures de telle sorte que la proportion d'espace occupé soit la plus grande possible. Il est conjecturé que pour certaines dimensions, les minimiseurs de (1.5) sont donnés par des réseaux périodiques : c'est la conjecture de cristallisation, qui explique la formation spontanée de structures très ordonnées. Plus précisément, il est conjecturé dans [START_REF] Cohn | Universally optimal distribution of points on spheres[END_REF] que le réseau triangulaire en dimension 2, le réseau E 8 en dimension 8 et le réseau de Leech en dimension 24 sont les minimiseurs universels d'énergie de la forme (1.5) pour des interactions générales et « complètement monotones », dont les interactions de Riesz. Cette conjecture a été démontrée en dimension 8 et 24 dans [START_REF] Cohn | Universal optimality of the e_8 and leech lattices and interpolation formulas[END_REF] suite à l'avancée spectaculaire [START_REF] Maryna | The sphere packing problem in dimension 8[END_REF]. Le lecteur peut se référer à [START_REF] Blanc | The Crystallization Conjecture: A Review[END_REF] pour un compte-rendu de littérature sur la conjecture de cristallisation. L'étude des minimiseurs de (1.5) joue également un rôle clé en théorie de l'approximation [START_REF] Landkof | Foundations of modern potential theory[END_REF][START_REF] Saff | Distributing many points on a sphere[END_REF][START_REF] Brauchart | The riesz energy of the nth roots of unity: an asymptotic expansion for large n[END_REF][START_REF] Brauchart | The next-order term for optimal riesz and logarithmic energy asymptotics on the sphere[END_REF][START_REF] Chafaï | On the solution of a riesz equilibrium problem and integral identities for special functions[END_REF].

Comportement macroscopique

Considérons une énergie de la forme (1.7) sur pR d q N avec s ă d et V : R d Ñ R lisse et croissant suffisamment vite à l'infini. Le potentiel de Riesz étant à longue portée, le comportement macroscopique du système est dicté par une énergie de type champ-moyen. En effet, la force principale s'exerçant sur une particule est donnée par la force générée par la distribution moyenne de charges, qui est donc dominante devant la force exercée par les particules voisines. Ceci peut se formaliser avec un énoncé de Gamma-convergence ou bien avec un énoncé de grandes déviations. Pour étudier la densité macroscopique de particules, il est naturel de considérer la mesure empirique, définie par

µ N " 1 N N ÿ i"1 δ x i . (1.9) 
Le Hamiltonien (1.7) se réécrit comme une fonction de la mesure empirique, comme suit :

H V N pX N q " N 2´s d ij ∆ c gpN s d px ´yqqdµ N pxqdµ N pyq `N 2´s d ż V pxqdµ N pxq,
où ∆ désigne la diagonale de R d ˆRd . Ainsi, lorsque µ N avoisine une certaine mesure µ, on s'attend à ce qu'en un certain sens, l'énergie H V N pX N q soit comparable à N 2´s d I V pµq où I V désigne la fonctionnelle

I V : µ P PpR 2 q Þ Ñ ij gpx ´yqdµpxqdµpyq `ż V pxqdµpxq. (1.10) 
Comme montré dans [START_REF] Serfaty | Coulomb gases and Ginzburg-Landau vortices[END_REF], la suite de fonctions tN s d ´2H V N u vues comme des fonctions sur PpR d q Γ-converge vers I V : PpR d q Ñ p´8, `8q au sens de la convergence faible des mesures. D'autre part, on peut montrer que pour toute mesure ν P PpR d q et pour ε assez petit, on a ż µ N PBpν,εq e ´βH V N pX N q dX N " e ´βN 2´s d I V pνq`opN 2 q .

En particulier, la mesure de Gibbs se concentre autour de l'unique minimiseur µ V de I V , appelé mesure d'équilibre. Ainsi la suite des mesures images de P N,β par l'application µ N satisfait à un principe de grandes déviations (PGD) avec fonction de taux βpI V ´IV pµ V qq, [START_REF] Ben | Large deviations for wigner's law and voiculescu's non-commutative entropy[END_REF][START_REF] Chafaï | First-order global asymptotics for confined particles with singular pair repulsion[END_REF][START_REF] Serfaty | Coulomb gases and Ginzburg-Landau vortices[END_REF], voir soussection 1.2.1 pour une définition précise. En conséquence, µ N converge vers une limite déterministe donnée par la mesure d'équilibre µ V .

La mesure d'équilibre se caractérise au moyen d'équations d'Euler-Lagrange mais son support est délicat à déterminer. On utilisera la terminologie bulk pour parler de l'intérieur du support. Donnons deux cas particuliers importants. Dans le cas du log-gaz en dimension 1 avec potentiel quadratique (β-ensemble Gaussien), la mesure d'équilibre est donnée après mise à échelle par la loi du semi-cercle de densité ? 4 ´x2 1 |x|ă2 , ce qui est cohérent pour β P t1, 2, 4u avec le théorème de Wigner [START_REF] Anderson | An Introduction to Random Matrices[END_REF]. Dans le cas du log-gaz en dimension 2 avec potentiel extérieur quadratique, la mesure d'équilibre est uniforme sur un disque dont le rayon dépend de β. On renvoie à [77, Table 1.2] pour une liste plus complète des mesures d'équilibre pour les log-gaz.

Mouvement Brownien de Dyson et limite hydrodynamique

Nous avons vu comment le système à l'équilibre peut être approché par sa limite de champ moyen. Il est également possible de dériver une limite de champ moyen dans l'équation de Langevin (1.1). Sur tpx 1 , . . . , x N q P R N : x 1 ă . . . ă x N u, on considère

dX i ptq " 1 N ÿ j:j‰i dt X i ptq ´Xj ptq ´1 2 V 1 pX i ptqqdt `c 2 βN dB i ptq, i " 1, . . . , N, (1.11) 
avec β ą 0 et V : R d Ñ R lisse et croissant à l'infini. Ce processus stochastique est appelé mouvement Brownien de Dyson. Rappelons que comme observé par Dyson en 1962 [START_REF] Dyson | A Brownian-motion model for the eigenvalues of a random matrix[END_REF], pour β P t1, 2, 4u et V quadratique, (1.11) correspond à l'évolution des valeurs propres de matrices N ˆN symmétriques/hermitiennes/symplectiques à entrées Browniennes indépendantes. Par ailleurs comme nous l'avons vu, la loi invariante de Xptq est donné par le β-ensemble (1.8).

Comme dans le paragraphe précédent, considérons la mesure empirique

µ N ptq " 1 N N ÿ i"1 δ X i ptq .
Comme montré par exemple dans [START_REF] Leonard | Interacting brownian particles and the wigner law[END_REF], si la distribution initiale µ N p0q converge faiblement vers une mesure µ 0 lorsque N tend vers l'infini, alors le processus pµ N ptq tě0 q converge faiblement vers le processus déterministe pµ t q tě0 , donné par l'unique solution de

xµ t , f y " xµ 0 , f y ´ż t 0 ż V 1 pxqf 1 pxqµ s pdxqds `β 2 ż t 0 ż R 2
f 1 pxq ´f 1 pyq x ´y µ s pdxqµ s pdyqds (1.12) pour tout t ě 0 et f P C 3 b pR, Rq. Cette équation d'évolution non-linéaire est l'équation de MacKean-Vlasov associée au mouvement Brownien de Dyson. En dimension supérieure le passage à la limite dans l'équation dXptq " ´∇H V N pXptqqdt `c 2 β dB t , Xptq P pR d q N avec β P R (équation de Langevin) ou β " 8 (descente de gradient) constitue un problème très délicat. Celui-ci a été résolu pour la descente de gradient pour d " 1 et s P p0, 1q dans [START_REF] Berman | Propagation of chaos for a class of first order models with singular mean field interactions[END_REF], pour d " 2 et s " 0 dans [START_REF] Goodman | Convergence of the point vortex method for the 2-d euler equations[END_REF][START_REF] Schochet | The point-vortex method for periodic weak solutions of the 2-d euler equations[END_REF] pour pour s P p0, d ´2q dans [START_REF] Hauray | Wasserstein distances for vortices approximation of euler-type equations[END_REF][START_REF] José | The derivation of swarming models: mean-field limit and wasserstein distances[END_REF], puis pour d ´2 ď s ă d dans [START_REF] Serfaty | Mean field limit for coulomb-type flows[END_REF]. En incorporant la méthode d'énergie modulée de [START_REF] Serfaty | Mean field limit for coulomb-type flows[END_REF] à des techniques antérieures [START_REF] Jabin | Quantitative estimate of propagation of chaos for stochastic systems with W ´1,8 kernels[END_REF], une limite de champ moyen pour l'équation de Langevin avec bruit et interaction singulière a également été obtenu dans [START_REF] Bresch | On mean-field limits and quantitative estimates with a large class of singular kernels: application to the patlak-keller-segel model[END_REF]. Ainsi le temps de relaxation à l'échelle macroscopique du mouvement Brownien de Dyson est dicté par l'équation d'évolution (1.12) et satisfait t " 1. Comme conjecturé par Dyson, la relaxation locale est beaucoup plus rapide et se produit à l'échelle mésoscopique ou microscopique 1{N ! η ! 1 en un temps t " η. Le mouvement Brownien de Dyson est ainsi un outil particulièrement efficace pour démontrer l'universalité des statistiques des β-ensembles et matrices de Wigner [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF][START_REF] Bourgade | Edge universality of β ensembles[END_REF][START_REF] Bourgade | Universality of general β-ensembles[END_REF][START_REF] Erdős | Gap universality of generalized wigner and beta-ensembles[END_REF][START_REF] Bourgade | Fixed energy universality for generalized wigner matrices[END_REF][START_REF] Landon | Fixed energy universality of dyson brownian motion[END_REF].

Description du comportement miscroscopique

Le système (1.8) peut être vu à l'échelle macroscopique comme un milieu continu qui se décrit à l'aide de la fonctionnelle d'énergie (1.10). Si l'on zoome d'un facteur N 1 d autour d'un point x P supppµ V q, on observe un nuage de points aléatoire avec en moyenne µ V pxq particules par unité de volume. Au vu du scaling imposé dans (1.5), l'interaction entre deux particules voisines est de taille 1. Ainsi, à l'échelle microscopique, on observe un processus aléatoire non-trivial (distinct du processus de Poisson), que l'on peut alors tenter de décrire avec le formalisme des grandes déviations. La description de ce processus microscopique a été entreprise dans l'article important [START_REF] Leblé | Large deviation principle for empirical fields of log and riesz gases[END_REF], qui couvre le cas régime longue portée maxp0, d ´2q ď s ă d.

Notons C N pxq la configuration centrée en x et mise à échelle d'un facteur N 1 d , i.e C N pxq " ř N i"1 δ ? N px i ´xq . L'observable adéquate [START_REF] Leblé | Large deviation principle for empirical fields of log and riesz gases[END_REF][START_REF] Georgii | Large deviations and the maximum entropy principle for marked point random fields[END_REF] pour décrire le processus de points est obtenue en moyennant C N pxq pour x dans le support de la mesure d'équilibre :

i N :" ż supppµ V q δ px,C N pxqq dx.
(1.13)

Cet objet est appelé champ empirique. Le processus de points observé étant aléatoire, son comportement ne peut pas être décrit uniquement avec une fonction de type énergie. La fonctionnelle de grandes déviations, qui indique la probabilité d'observer un certain processus de point doit ainsi mesurer l'aléa présent dans ce processus de points. Cette fonction, qui mesure le volume de configurations, est appelée entropie relative spécifique et est l'analogue de (1.4) pour les processus en volume infini. Il est ainsi montré dans [START_REF] Leblé | Large deviation principle for empirical fields of log and riesz gases[END_REF] que le processus moyenné i N satisfait à un PGD avec une fonction de taux de la forme F β " βEnergie `Entropie. La difficulté pour étudier la limite thermodynamique du gaz de Riesz dans le régime longue portée est de montrer que l'énergie (1.7) peut se réécrire, après factorisation autour de l'équilibre et mise échelle, comme une fonctionnelle typiquement additive. Dans la série de travaux [START_REF] Sandier | 1d log gases and the renormalized energy: crystallization at vanishing temperature[END_REF][START_REF] Sandier | 2d coulomb gases and the renormalized energy[END_REF][START_REF] Rougerie | Higher dimensional coulomb gases and renormalized energy functionals[END_REF][START_REF] Rota | Renormalized energy equidistribution and local charge balance in 2d coulomb systems[END_REF][START_REF] Leblé | Large deviation principle for empirical fields of log and riesz gases[END_REF][START_REF] Leblé | Fluctuations of two dimensional coulomb gases[END_REF][START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF][START_REF] Petrache | Next order asymptotics and renormalized energy for riesz interactions[END_REF] un ensemble de techniques inspirées de l'analyse du modèle de Ginzburg-Landau [START_REF] Sandier | From the ginzburg-landau model to vortex lattice problems[END_REF] ont été développées pour traiter les interactions de type Riesz. Le point de départ est de réécrire l'énergie comme la norme L 2 du champ coulombien généré par le jellium [START_REF] Sandier | 1d log gases and the renormalized energy: crystallization at vanishing temperature[END_REF][START_REF] Sandier | 2d coulomb gases and the renormalized energy[END_REF] et une technique d'écrantage inspirée de [2] puis développée dans [START_REF] Leblé | Large deviation principle for empirical fields of log and riesz gases[END_REF][START_REF] Armstrong | Local laws and rigidity for coulomb gases at any temperature[END_REF][START_REF] Serfaty | Gaussian fluctuations and free energy expansion for 2d and 3d coulomb gases at any temperature[END_REF] permet de recoller des champs électriques entre eux et ainsi de montrer que l'énergie est typiquement additive. Ceci a permis d'écrire dans [START_REF] Leblé | Large deviation principle for empirical fields of log and riesz gases[END_REF] un PGD pour l'observable (1.13) puis dans [START_REF] Leblé | Local microscopic behavior for 2d coulomb gases[END_REF] pour (1.13) mais moyenné à de petites échelles. A l'aide d'approximations sous-additives et super-additives de l'énergie inspirées de techniques d'homogénisation stochastique, [START_REF] Armstrong | Local laws and rigidity for coulomb gases at any temperature[END_REF] améliore la méthode de [START_REF] Leblé | Local microscopic behavior for 2d coulomb gases[END_REF] pour obtenir des lois locales valables à l'échelle microscopique ainsi que des estimées d'additivité optimales sur l'énergie et les fonctions de partition. Pour les β-ensembles, on renvoie également à [START_REF] Borot | Asymptotic expansion of β matrix models in the one-cut regime[END_REF][START_REF] Borot | Asymptotic expansion of beta matrix models in the multi-cut regime[END_REF] qui donnent des développements à tout ordre des fonctions de partition.

Le plasma à deux composantes

On introduit à présent une variante du gaz de Coulomb bi-dimensionnel où deux types de particules de charge positive et négative coexistent. Ce système est appelé gaz de Coulomb (ou plasma) à deux composantes ou 2CP. Considérons N particules de charge positive x 1 , . . . , x N et N particules de charge négative y 1 , . . . , y N dans Λ " r0, 1s 2 interagissant selon l'énergie

H N " 1 2
ÿ i‰j gpx i ´xj q `1 2 ÿ i‰j gpy i ´yj q ´ÿ i,j gpx i ´yj q où g est le noyau coulombien en dimension L'énergie tend vers ´8 lorsque deux particules de charge opposées colisionnent avec un poids relatif en distance ´β dans la fonction de partition. Lorsque β P p0, 2q cette singularité est intégrable : le bruit suffit à repousser les particules. Lorsque β ě 2, la singularité devient non-intégrable et la fonction de partition (1.15) diverge. Ainsi, dans le régime de température β ě 2, il convient de renormaliser l'interaction en la tronquant à une échelle η " λ ? N pour donner un sens à la distribution (1.14).

L'une des motivations importantes à l'étude du gaz de Coulomb à deux composantes vient de la physique de la matière condensée et plus précisément du modèle XY. Le modèle XY est un modèle de ferromagnétisme dans le plan où des spins à valeurs dans le cercle unité interagissent selon le cosinus de l'angle des plus proches voisins. Le champ formé par les angles peut se décomposer en une onde de spin régulière et un ensemble de singularités composé de tourbillons d'indice 1 et ´1, appelés vortex et antivortex. De plus, de façon remarquable, on peut monter que ces vortex correspondent à des charges positives et négatives interagissant selon le potentiel de Coulomb. Dans les années 70, Kosterlitz, Thouless et indépendemment Berezinsky [START_REF] Kosterlitz | Ordering, metastability and phase transitions in two-dimensional systems[END_REF][START_REF] Kosterlitz | The critical properties of the two-dimensional xy model[END_REF][START_REF] Vadim | Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group. i. classical systems[END_REF] montrent qu'une transition de phase «d'ordre infini» a lieu dans le modèle XY. Cette transition se manifeste notamment par un passage d'une décroissance exponentielle des corrélations des spins à une décroissance algébrique en deçà de la température critique. La transition KT est liée à l'appariement en dipôles des vortex et antivortex et plus précisément à la variation du nombre de charges non neutres à une certaine échelle lorsque l'échelle augmente. Il existe des preuves mathématiques de l'existence de cette transition et celles-ci reposent sur des outils sophistiqués utilisant notamment la représentation de Sine-Gordon et des arguments de groupe de renormalisation [START_REF] Jürg | Classical and quantum statistical mechanics in one and two dimensions: twocomponent Yukawa-and Coulomb systems[END_REF][START_REF] Jürg | The Kosterlitz-Thouless transition in two-dimensional abelian spin systems and the coulomb gas[END_REF][START_REF] Mcbryan | On the decay of correlations in SO(n)-symmetric ferromagnets[END_REF]. Nous renvoyons à [START_REF] Bietenholz | Berezinskii-Kosterlitz-Thouless transition and the Haldane conjecture: Highlights of the physics nobel prize[END_REF] pour une synthèse sur le sujet.

Par ailleurs dans le régime β P p0, 2q, une description variationnelle de la limite thermodynamique du plasma à deux composantes a été obtenue dans [START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF]. Le résultat de [START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF] se base notamment sur la formulation électrique de l'énergie, une technique d'écrantage inspirée de [START_REF] Leblé | Large deviation principle for empirical fields of log and Riesz gases[END_REF] ainsi que des techniques de grandes déviations empruntés quelques arguments combinatoires de [START_REF] Gunson | Two-dimensional neutral Coulomb gas[END_REF].

Fluctuations des log-gaz

Une fois le comportement macroscopique du système établi, une question naturelle est de quantifier les fluctuations de la mesure ř N i"1 δ x i ´N µ V contre des fonctions-test. Étant donnée une certaine fonction borélienne ξ : R Ñ R, on considère alors l'objet Fluct N rξs :" ř N i"1 ξpx i q ´N ş ξdµ V , appelé statistique linéaire. Une question importante venue des matrices aléatoires est d'obtenir un théorème central limite (TCL) pour de telles quantités. Il apparaît que lorsque ξ est suffisamment régulière, Fluct N rξs est d'ordre 1 avec un comportement asymptotique Gaussien, voir notamment [START_REF] Johansson | On fluctuations of eigenvalues of random hermitian matrices[END_REF][START_REF] Shcherbina | Fluctuations of linear eigenvalue statistics of β matrix models in the multicut regime[END_REF][START_REF] Borot | Asymptotic expansion of β matrix models in the one-cut regime[END_REF][START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF][START_REF] Bourgade | Universality of general β-ensembles[END_REF][START_REF] Bekerman | CLT for fluctuations of β-ensembles with general potential[END_REF][START_REF] Bourgade | Optimal local law and central limit theorem for β-ensembles[END_REF][START_REF] Hardy | CLT for circular β-ensembles at high temperature[END_REF]. Lorsque la fonction-test ξ est singulière, un autre comportement peut être observé. Par exemple pour ξ " 1 pa,bq avec pa, bq dans le support de µ V , Fluct N rξs fluctue en ? log N et un TCL de type log-corrélé est satisfait. Ainsi, l'ordre de grandeur des fluctuations dépend de la régularité de la fonction-test. Notons que dans le cas des β-ensembles, le potentiel logarithmique satisfait à un TCL log-corrélé [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF] et l'étude des extrêmes de ce champ s'inscrit dans un sujet d'actualité relié aux marches aléatoires branchantes [START_REF] Kahane | Sur le chaos multiplicatif[END_REF][START_REF] Ding | Convergence of the centered maximum of logcorrelated gaussian fields[END_REF][START_REF] Lambert | Mesoscopic central limit theorem for the circular β-ensembles and applications[END_REF]. Il existe de nombreuses motivations à l'étude des fluctuations des log-gaz et l'une d'elles est reliée à la conjecture KLS [START_REF] Lovasz | Isoperimetric problems for convex bodies and a localization lemma[END_REF] et plus précisément à une conjecture plus faible appelée conjecture de variance généralisée. Comme montré dans [START_REF] Dadoun | Asymptotics of the inertia moments and the variance conjecture in schatten balls[END_REF], pour p ą 3, la boule unité des matrices auto-adjointes pour la norme de p´Schatten satisfait à la conjecture de variance généralisée et ce résultat est obtenu en étudiant les fluctuations d'une certaine statistique linéaire sous le log-gaz avec potentiel |x| p .

Les méthodes utilisées pour obtenir ces TCL exploitent le caractère longue portée de l'interaction, avec les équations de boucles ou la méthode de transport de [START_REF] Shcherbina | Fluctuations of linear eigenvalue statistics of β matrix models in the multicut regime[END_REF][START_REF] Leblé | Fluctuations of two dimensional coulomb gases[END_REF] inspirée de [START_REF] Johansson | On fluctuations of eigenvalues of random hermitian matrices[END_REF]. Notons que la preuve du TCL pour des fonctions-test lisses peut se passer du caractère 1D du modèle [START_REF] Bekerman | CLT for fluctuations of β-ensembles with general potential[END_REF] et cette preuve fonctionne également pour le gaz de Coulomb bi-dimensionnel [START_REF] Leblé | Fluctuations of two dimensional coulomb gases[END_REF][START_REF] Bauerschmidt | The twodimensional coulomb plasma: quasi-free approximation and central limit theorem[END_REF][START_REF] Leblé | A local CLT for linear statistics of 2d coulomb gases[END_REF]] malgré de nombreuses difficultés additionnelles. En revanche lorsque la fonction-test est singulière il semble nécessaire d'utiliser la convexité et les propriétés de concentration qui en découlent [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF][START_REF] Bourgade | Optimal local law and central limit theorem for β-ensembles[END_REF]. Pour le gaz de Coulomb en dimension supérieure d ě 3 ou bien pour le gaz de Riesz avec s P p0, dq et d ě 2, le problème se complique car les termes à longue portée dans l'énergie deviennent moins dominants : il est alors nécessaire de contrôler avec une meilleure précision les fluctuations des variations locales de l'énergie et des termes d'angles. On peut citer [START_REF] Serfaty | Gaussian fluctuations and free energy expansion for 2d and 3d coulomb gases at any temperature[END_REF] pour un TCL valide pour le gaz de Coulomb en dimension 3, sous une hypothèse d'absence de transition de phase. Un modèle simplifié du gaz de Coulomb en dimension 3, appelé gaz de Coulomb hiérarchique, est également étudié dans [START_REF] Chatterjee | Rigidity of the three-dimensional hierarchical coulomb gas[END_REF][START_REF] Ganguly | Ground states and hyperuniformity of the hierarchical coulomb gas in all dimensions[END_REF].

Le processus Sinus beta

Le comportement microscopique du log-gaz peut être décrit au moyen du PDG [START_REF] Leblé | Large deviation principle for empirical fields of log and riesz gases[END_REF], qui exhibe une fonctionelle d'énergie F β sur les processus ponctuels. La question de l'unicité des minimiseurs de F β paraît difficilement accessible en dimension supérieure à 1. En dimension 1 et pour s " 0, l'unicité a été obtenue dans [START_REF] Erbar | The one-dimensional log-gas free energy has a unique minimizer[END_REF] avec un argument de convexité par déplacement. Le minimiseur est alors identifié au processus Sine β , qui correspond à la limite universelle du processus microscopique dans le bulk des β-ensembles.

Etant donné x dans l'intérieur support de µ V , considérons la configuration aléatoire non moyennée centrée en x,

C N " N ÿ i"1 δ ?
N px i ´xq .

La variable C N est une variable aléatoire sur l'espace des configurations de points. Montrer l'universalité pour les β-ensembles à énergie fixée revient à montrer que la loi de C N sous P N,β converge vers un certain processus ponctuel universel. Cette universalité a été démontrée dans la série de travaux [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF][START_REF] Bourgade | Universality of general β-ensembles[END_REF][START_REF] Erdős | Gap universality of generalized wigner and beta-ensembles[END_REF]. Le processus limite, appelé Sine β avait déjà introduit dans [START_REF] Killip | Eigenvalue statistics for cmv matrices: from poisson to clock via circular beta ensembles[END_REF] comme limite du β-ensemble circulaire (d'où son nom, puisque sur le cercle g 0 " ´log | sin x 2 | ! ) et dans [START_REF] Valkó | Continuum limits of random matrices and the brownian carousel[END_REF] comme limite des β-ensembles Gaussiens. En outre, le processus Sine β se décrit au moyen d'un système d'équations différentielles stochastiques [START_REF] Valkó | Continuum limits of random matrices and the brownian carousel[END_REF] et également comme le spectre d'un opérateur aléatoire en dimension infinie [START_REF] Valkó | The sine β-operator[END_REF].

Le processus Sine β peut également être étudié à travers le formalisme de Dubroshin-Landford-Ruelle (DLR), développé dans les années 70-80 pour décrire les mesures de Gibbs en volume infini. Les équations DLR décrivent la loi du processus en donnant à l'intérieur d'un compact conditionnellement à l'extérieur, [START_REF] Dereudre | Introduction to the theory of gibbs point processes[END_REF][START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF]. Ceci suppose de pouvoir donner un sens à l'interaction d'un point avec une infinité d'autres, ce qui est délicat dans le cas des interactions à longue portée. La description DLR du processus Sine β a été obtenue dans [START_REF] Dereudre | DLR equations and rigidity for the sine-β process[END_REF] en utilisant des estimées précises de rigidité. Une propriété intéressante qui peut être étudié dans le formalisme DLR est celle de la cardinale-rigidité. Suivant [START_REF] Ghosh | Rigidity and tolerance in point processes: Gaussian zeros and ginibre eigenvalues[END_REF], on dit qu'un processus ponctuel est cardinal-rigide si pour tout compact, la donnée du processus restreint à l'extérieur du compact suffit à reconstituer le nombre de points à l'intérieur.

Cette propriété surprenante, qui traduit une forme forte de longue portée, a été démontrée pour le processus Sine β dans [START_REF] Dereudre | DLR equations and rigidity for the sine-β process[END_REF][START_REF] Chhaibi | Rigidity of the sine-beta process[END_REF].

Temps de mélange et phénomène de cutoff

Nous avons discuté dans le paragraphe 1.1.5 la limite de (1.11) à t fixé, lorsque N tend vers l'infini. On se pose à présent une question différente (mais reliée) : « Quel temps faut-il attendre pour que le système (1.11) soit proche de l'équilibre P V N,β ? » En particulier, comment ce temps critique dépend-il de N ? Pour traduire cet énoncé, on se donne une certaine distance (ou divergence) dist sur l'espace des mesures de probabilité sur R N , prenant ses valeurs dans r0, maxs et l'on se demande au bout de quel temps t N , lim

N Ñ8
distpLoipX N t N q, P V N,β q " 0.

Cette question est motivée par un sujet d'actualité en probabilité, qui consiste à établir un phénomène de cutoff pour les processus de Markov. Rappelons-en la définition. Considérons une famille de processus de Markov indexée par N , X N " pX N t q tě0 , à valeurs dans un certain espace S N et de loi invariante µ N . Supposons qu'à N fixé et que pour toute condition initiale x N 0 P S N , l'on ait lim N Ñ8 distpLoipX N t q, µ N q " 0.

Alors on dit qu'un phénomène de cutoff a lieu si la convergence de X N vers l'équilibre s'effectue de façon abrupte, c'est-à-dire s'il existe un temps critique c N tel que pour tout ε ą 0 assez petit,

lim N Ñ8 sup x N 0 PS N distpLoipX N t N q, µ N q " # max si t N " c N p1 ´εq 0 si t N " c N p1 `εq. (1.16) 
Le phénomène de cutoff est typiquement associé à un effet de grande dimension. Par exemple, X N peut être une marche aléatoire sur le groupe symétrique, le mouvement Brownien sur la sphère de dimension N , etc. Le cutoff pour le temps de mélange des processus de Markov a été mis en lumière par David Aldous et Persi Diaconis [3,[START_REF] Diaconis | The cutoff phenomenon in finite Markov chains[END_REF][START_REF] Diaconis | Time to reach stationarity in the Bernoulli-Laplace diffusion model[END_REF][START_REF] Levin | Markov chains and mixing times. With a chapter on "Coupling from the past[END_REF] et est l'objet de nombreux travaux [START_REF] Saloff-Coste | Precise estimates on the rate at which certain diffusions tend to equilibrium[END_REF][START_REF] Saloff-Coste | On the convergence to equilibrium of Brownian motion on compact simple Lie groups[END_REF][START_REF] Méliot | The cut-off phenomenon for brownian motions on compact symmetric spaces[END_REF][START_REF] Lachaud | Cut-off and hitting times of a sample of Ornstein-Uhlenbeck processes and its average[END_REF][START_REF] Caputo | Spectral gap and cutoff phenomenon for the Gibbs sampler of ∇φ interfaces with convex potential[END_REF][START_REF] Barrera | Thermalisation for small random perturbations of dynamical systems[END_REF].

Pour établir un résultat du type (1.16), il convient de conjecturer quelle est l'observable qui converge le plus lentement vers l'équilibre. Pour le mouvement Brownien de Dyson, comme expliqué en 1.1.5 ce sont les observables macroscopiques qui jouent ce rôle. Ainsi la limite hydrodynamique (1.12) donne une borne inférieure crédible sur le temps de mélange, qu'il convient alors de faire coïncider avec une borne supérieure.

Quelques méthodes pour les systèmes de particules

On donne à présent quelques point de repères sur les méthodes mathématiques, pour certaines classiques, utilisées dans la littérature sur les systèmes de particules en interactions.

Principes de grandes déviations

On rappelle la notion de principe de grandes déviations. Soit pµ n q une suite de mesures de probabilité sur un espace topologique χ muni de sa tribu borélienne B, pa n q une suite de réels positifs tendant vers l'infini et I : χ Ñ r0, 8s une fonction s.c.i. On dit que pµ n q suit un principe de grandes déviations (PGD) de vitesse pa n q et de fonction de taux I si pour tout B P B, La définition (1.17) peut paraître peu naturelle mais il s'agit en fait de la bonne formalisation de (1.18). La présence d'un infimum dans (1.17) reflète le fait qu'à l'échelle exponentielle la probabilité d'un événement rare partitionné en sous-événements est environ égale à la probabilité du moins rare de ces sous-événements. En effet si µ n pBq décroît en e ´JpBq avec J : χ Ñ r0, 8s alors nécessairement JpA Y Bq " infpJpAq, JpBqq car maxpµ n pAq, µ n pBqq ď µ n pA Y Bq ď 2 maxpµ n pAq, µ n pBqq.

On renvoie à [START_REF] Dembo | Large deviations techniques and applications[END_REF][START_REF] Rassoul | A course on large deviations with an introduction to Gibbs measures[END_REF] pour une introduction générale sur le sujet. Les grandes déviations offrent un cadre naturel pour étudier le comportement asymptotique de systèmes de particules du type (1.8). Supposons que l'on ait trouvé une certaine observable i N à valeurs dans χ qui satisfait selon nous à un PGD avec fonction de taux I et de vitesse pa n q. Par exemple i N peut être la mesure empirique (1.9), le champ empirique (1.13). Dans ce cadre [START_REF] Chafaï | First-order global asymptotics for confined particles with singular pair repulsion[END_REF][START_REF] Leblé | Large deviation principle for empirical fields of log and Riesz gases[END_REF] un PGD se prouve souvent en deux temps :

• Montrer une borne supérieure en donnant une minoration précise de l'énergie. On se restreint à un événement où notre suite d'observable i N est proche d'une certaine observable limite x P χ et on minore a ´1 n H N pX N q à la limite par Ipxq.

• Pour établir la borne inférieure du LDP on ne peut pas minorer l'énergie mais on peut toutefois se restreindre à un certain sous-espace de bonnes configurations. Il faut alors construire à la main des configurations telles que ι N est proche de x et a ´1 n H N pX N q proche de Ipxq, en faisant attention à ce que le volume de configurations soit suffisant.

Ces techniques de grandes déviations sont basées sur des méthodes énergétiques et permettent de développer les fonctions de partition [START_REF] Leblé | Large deviation principle for empirical fields of log and riesz gases[END_REF][START_REF] Armstrong | Local laws and rigidity for coulomb gases at any temperature[END_REF] et dans certains cas d'obtenir des estimées sur les fluctuations du système [START_REF] Leblé | CLT for fluctuations of linear statistics in the sine-β process[END_REF][START_REF] Bauerschmidt | The twodimensional coulomb plasma: quasi-free approximation and central limit theorem[END_REF][START_REF] Serfaty | Gaussian fluctuations and free energy expansion for 2d and 3d coulomb gases at any temperature[END_REF].

Méthodes énergétiques

Nous introduisons quelques outils au fondement de la série de travaux [START_REF] Sandier | 1d log gases and the renormalized energy: crystallization at vanishing temperature[END_REF][START_REF] Sandier | 2d coulomb gases and the renormalized energy[END_REF][START_REF] Rougerie | Higher dimensional coulomb gases and renormalized energy functionals[END_REF][START_REF] Rota | Renormalized energy equidistribution and local charge balance in 2d coulomb systems[END_REF][START_REF] Leblé | Large deviation principle for empirical fields of log and riesz gases[END_REF][START_REF] Leblé | Fluctuations of two dimensional coulomb gases[END_REF][START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF][START_REF] Petrache | Next order asymptotics and renormalized energy for riesz interactions[END_REF] qui permettent de manier efficacement l'énergie (1.7). Pour simplifier on se restreint au cas coulombien s " d ´2 et d ě 2. Soit µ V la mesure d'équilibre donnée par le minimiseur de la fonctionnelle (1.10). En notant µ N :" 1 N ř N i"1 δ x i , on peut écrire (1.10) sous la forme

H V N pX N q " N ´s d ij gpx ´yqdpN µ N qpxqdpN µ N qpyq `N ż V pxqdµ N pxq. (1.19) 
On pose fluct N " N pµ N ´µV q. En développant l'expression ci-dessus autour de µ V , on obtient

H V N pX N q " N ´s d ij gpx ´yqdpN µ V qpxqdpN µ V qpyq `2N N ÿ i"1 ζ V px i q `FN pX N , µ V q, avec ζ V le potentiel de confinement effectif ζ V :" g ˚µ `V 2 ´ż ´g ˚µ `V 2 ¯dµ V
et F N p¨, µ V q l'énergie du second-ordre F N pX N , µ V q :" ij gpx ´yqdfluct N pxqdfluct N pyq.

(1.20)

Par minimalité de µ V , la fonction ζ V s'annule sur le support de la mesure d'équilibre. Le système N pµ N ´µV q peut être vu comme un ensemble de particules ponctuelles baignant dans un fond constant de densité ´N µ V , ce qui correspond à un jellium en physique mathématique, voir par exemple [START_REF] Chafaï | Macroscopic and edge behavior of a planar jellium[END_REF][START_REF] Chafaï | At the edge of a one-dimensional jellium[END_REF]. Il est ensuite possible de réécrire l'énergie (1.20) en fonction du champ électrique généré par le jellium fluct N . Notons H N le potentiel généré par le jellium, i.e H N " g ˚fluct N .

Puisque g est le noyau coulombien, on peut observer que

F N pX N , µ V q " ´1 c d,s ż H N ∆H N .
En intégrant formellement par partie on trouverait

F N pX N , µ V q » 1 c d,s ż |∇H N | 2 .
(1.21)

Le champ électrique ∇H N divergeant en 1 |x´x i | autour d'une charge ponctuelle x i , celui-ci n'est pas dans L 2 . Pour donner un sens à (1.21), il convient de régulariser le système. Au lieu de régularise le potentiel g lui-même, on peut désingulariser ∇H N en étalant les masses de Dirac δ x i en des mesures uniformes δ pη i q x i sur la sphère BBpx i , η i q. Pour η " pη 1 , . . . , η N q, on note alors H η N le potentiel généré par ce jellium régularisé :

H N,η " g˚´N ÿ i"1 δ pηq x i ´N µ V ¯.
On peut alors montrer que

F N pX N , µ V q " 1 c d,s lim ηÑ0 ´żR d |∇H N,η | 2 ´cd,s N ÿ i"1 gpη i q ¯. (1.22) 
Une observation fondamentale est que le membre de droite dans (1.22) est décroissant en le paramètre de troncature η à petite erreur près. De par le théorème de Newton, on peut montrer que si les boules Bpx i , η i q sont disjointes alors mesure (1.8) et une fonction régulière F : R d Ñ R. Une façon d'étudier les fluctuations de F sous P V N,β est de considérer la transformée de Laplace

E P V N,β
re tF s, t P R.

(1.23)

Cette transformée de Laplace peut se réécrire comme un ratio de fonction de partition

E P V N,β re tF s " Z N,β ptq Z V N,β e ´tN ş ξdµ V , où Z N,β ptq :" Z V ´t β F N,β
" ż e tF ´βH V N pX N q dX N .

Notons P V N,β ptq la mesure de probabilité 9e tF P V N,β . Sous P V N,β ptq, les particules sont soumises à une force additionnelle en ´tF qui modifie la distribution des charges. Pour remettre les particules à l'équilibre, il faut appliquer un transport qui envoie P V N,β ptq sur P V N,β et par des résultats classiques d'analyse [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF], ce transport peut être cherché sous la forme du gradient d'une fonction convexe ∇Φ t . Ce gradient est solution de l'équation de Monge-Ampère

´log det DΦ t `βpH V N ˝∇Φ t ´HV N q " tF ´log E P V N,β
re tF s.

(1.24)

En linéarisant l'équation en t et en écrivant ∇Φ t " Id `t∇ϕ `optq, on se ramène alors à étudier l'équation linéaire pLϕ "q ´∆ϕ `β∇H N ¨∇ϕ " F ´EP V N,β rF s.

(

On reconnaît le générateur du semi-groupe de Markov (1.2). L'équation ci-dessus est appelée équation de Poisson, en analogie avec le cas sans interaction où L est un Laplacien. En effectuant le changement de variables Id `t∇ϕ dans la transformée de Laplace (1.23) on peut observer que les termes linéaires s'annulent et que les termes quadratiques se regroupent en

Var P V N,β
rF s " E P V N,β r∇F ¨∇ϕs.

(1.26)

Cette formule est appelée formule de représentation de Helffer-Sjöstrand et peut aussi se montrer par une simple intégration par partie sous P V N,β . Le passage par la transformée de Laplace donne de plus une interprétation mécanique de la solution de (1.25) : ∇ϕ correspond au transport infinitésimal à appliquer aux particules pour les remettre à l'équilibre lorsque celles-ci ont été perturbées par ´tF . Ce transport est aussi appelé réponse linéaire dans le langage des systèmes dynamiques.

Il est souvent intéressant d'étudier de (1.25) sous sa forme différenciée. On peut remarquer que le commutateur de L et de l'opérateur gradient fait apparaître la Hessienne de l'énergie :

∇Lϕ " L∇ϕ `β∇ 2 H V N ∇ :" A 1 ∇ϕ où A 1 est l'opérateur A 1 " L b I N `β∇ 2 H V N .
(1.27)

Notons que ceci est l'équivalent du théorème de Bochner, qui exprime le défaut de commutation entre le Laplacien sur une variété riemanienne et le gradient en fonction du tenseur de Ricci [START_REF] Ledoux | The concentration of measure phenomenon[END_REF].

Il existe au moins deux cas de figure où la représentation (1.26) est effective et permet de contrôler la variance de F : lorsque l'interaction est à longue portée et F est une statistique linéaire ou lorsque l'énergie est convexe. En effet si F " ř N i"1 ξpx i q ´N ş ξdµ V avec ξ : R d Ñ R et si s P p0, dq (mais pas pour s ą d !), on peut chercher une solution approchée de (1.25) sous la forme d'un transport qui agit diagonalement ∇Φ : X N Þ Ñ pψpx 1 q, . . . , ψpx N qq avec ψ : R d Ñ R d . Le fonction ψ est de plus donnée par

g 1 s ˚ψ " ξ ´ş ξdµ V 2βc s,d N 1´s d .
(1.28)

Le transport ψ solution de (1.28) peut s'interpréter comme la solution d'un problème de transport en dimension d. En effet rappelons que la distribution macroscopique des charge sous P V N,β est donnée dans la limite où N Ñ 8 par µ V qui minimise I V (1.10). Sous P N,β ptq la distribution de macroscopique est tiltée et est donnée par µ Vt qui minimise I Vt " I V ´t β Fluct N rξs. En écrivant les conditions d'optimalité de µ Vt et en linéarisant formellement en t, on trouve que la solution de (1.28) transporte µ Vt sur µ V . Ceci illustre une commutation entre le fait de linéariser (1.24) et de passer à la limite de champ moyen.

Inégalités fonctionnelles

Dans ce paragraphe on rappelle quelques inégalités de concentration très classiques pour les mesures log-concaves. On considère une mesure µ sur R d log-concave par rapport à la Gaussienne de variance σ 2 ą 0, c'est-à-dire que µ s'écrit dµ " e ´f dν où ν " N p0, σ 2 q et f : R d Ñ R convexe. Alors pour F P H 1 , ν P PpR d q et t P R, on a

Var µ rF s ď 1 σ 2 E µ r|∇F | 2 s, (Poincaré) (1.29) 
Entrν | µs ď 1 2σ 2 Fisherrν, µs, (log-Sobolev) (1.30) log E µ re tF s ď tE µ rF s `t2 2σ 2 sup |∇F |, (concentration Gaussienne), (1.31) La première inégalité est un cas particulier de l'inégalité de Brascamp-Lieb et peut s'obtenir par linéarisation de (1.30), qui suit du critère de Bakry-Emery (voir [START_REF] Bobkov | From brunn-minkowski to brascamp-lieb and to logarithmic sobolev inequalities[END_REF]). La preuve de la concentration Gaussienne s'obtient par exemple en appliquant (1.30) et l'argument de Herbst [START_REF] Ledoux | The concentration of measure phenomenon[END_REF] ou par le théorème de contraction de Caffarelli [START_REF] Caffarelli | Monotonicity properties of optimal transportation ¶and the fkg and related inequalities[END_REF]. Ces inégalités ont également des conséquences dynamiques. Si on considère la dynamique de Langevin (1.1) et que l'on note µptq la loi de X t à l'instant t, on peut voir en dérivant l'entropie relative par rapport à µ le long du semi-groupe et un utilisant (1.30) que

Entrµ t | µs ď Entrµ 0 | µse ´2 σ 2 t . (1.32) 
Ceci fournit alors un moyen de quantifier le temps de convergence à l'équilibre dans le problème mentionné dans le paragraphe 1.1.10. Des généralisations importantes de (1.30) sont utilisées dans la littérature sur les β-ensembles. Dans le cas où µ est donnée par (1.8) avec d " 1, s " 0 et V convexe, alors comme observé dans [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF], on peut écrire une inégalité de log-Sobolev qui exploite la convexité de l'interaction en se restreignant à des fonctions de divergence nulle.

Représentation des corrélations

On peut observer par polarisation que la formule (1.26) permet d'exprimer la covariance de deux fonctions F : R d Ñ R et G : R d Ñ R suffisamment lisse :

Cov P V N,β rF, Gs " E P V N,β
r∇ϕ ¨∇Gs, où ∇ϕ est solution de l'équation d'Helffer-Sjöstrand A 1 ∇ϕ " ∇F, (1.33) avec A 1 défini en (1.27). Ainsi, pour déterminer la décroissance de la corrélation de F " N px i`1 ´xi q et de G " N px j`1 ´xj q, il convient d'étudier la décroissance des incréments de ∇ϕ. En présence d'une interaction convexe (i.e dans le cas d " 1), les inégalités de concentration (1.29) et (1.31) peuvent se réécrire sous la forme d'estimées L 2 et uniformes sur ∇ϕ, voir [START_REF] Helffer | On the correlation for kac-like models in the convex case[END_REF]. En revanche, obtenir des estimées de décroissance suppose une analyse plus fine. Il existe de nombreux travaux dans la littérature qui s'attaquent à la question de la décroissance des solutions de (1.27), en particulier lorsque l'énergie est convexe. Une première méthode consiste à réécrire (1.33) au moyen d'une représentation de Fenyman-Kac [START_REF] Bach | Correlation at low temperature: I. exponential decay[END_REF][START_REF] Deuschel | Large deviations and concentration properties for ∇ ´ϕ interface models[END_REF][START_REF] Giacomin | Equilibrium Fluctuations for ∇ϕ Interface Model[END_REF][START_REF] Naddaf | On homogenization and scaling limit of some gradient perturbations of a massless free field[END_REF][START_REF] Helffer | On the correlation for kac-like models in the convex case[END_REF][START_REF] Erdős | Gap universality of generalized wigner and beta-ensembles[END_REF] qui suppose de contrôler des marches aléatoires dans un environnement aléatoire. Il existe également d'autres points de vue plus analytiques qui s'inspirent des techniques d'homogénisation stochastique [START_REF] Naddaf | On homogenization and scaling limit of some gradient perturbations of a massless free field[END_REF][START_REF] Armstrong | C 2 regularity of the surface tension for the ∇ϕ interface model[END_REF][START_REF] Dario | Massless phases for the villain model in dě 3[END_REF][START_REF] Thoma | Thermodynamic and scaling limits of the non-gaussian membrane model[END_REF].

Résultats obtenus et perspectives

Cette thèse est divisée en trois parties. Dans le chapitre 2 on étudie un problème de convergence vers l'équilibre pour le mouvement Brownien de Dyson, dans le second on étudie les fluctuations et les corrélations à l'équilibre pour le gaz de Riesz circulaire et dans le troisième on s'attachera à décrire l'équilibre pour le gaz de Coulomb à deux composantes dans le régime β P r2, `8q. Ainsi les deux premières parties exploiteront la structure uni-dimensionelle du modèle et la convexité sous-jacente tandis que la troisième partie se base sur des inégalités énergétiques et des méthodes de grandes déviations.

Cutoff pour le temps de mélange du mouvement brownien de Dyson

Dans la première partie, en collaboration avec D. Chafaï et C. Labbé, on étudie le problème du temps de mélange du mouvement Brownien de Dyson présenté dans le paragraphe 1.1.10. On se restreint à un cas particulier où le potentiel extérieur V dans (1.7) est quadratique, ce qui donne un aspect intégrable au modèle [START_REF] Chafaï | On Poincaré and logarithmic Sobolev inequalities for a class of singular Gibbs measures[END_REF][START_REF] Lassalle | Polynômes de Jacobi généralisés[END_REF]. Lorsqu'il n'y a pas d'interaction, (1.11) est alors un processus de Ornstein-Uhlenbeck en dimension N (" n). De façon à pouvoir éteindre l'interaction, on écrit l'énergie sous la forme

H n " β ÿ i‰j log 1 |x i ´xj | `n n ÿ i"1
V px i q, où β ě 0 est désormais un paramètre qui contrôle la force de l'interaction et V pxq " |x| 2 2 . On considère ensuite la dynamique de Langevin mise à échelle en temps,

X n 0 " x n 0 P R n , dX n,i t " c 2 n dB i t ´V 1 pX n,i t qdt `β n ÿ j‰i dt X n,i t ´Xn,j t , 1 ď i ď n. (1.34)
Dans la suite on parlera de (1.34) comme du processus de Dyson-Ornstein-Uhlenbeck (DOU) pour β ą 0 et du processus de Ornstein-Uhlenbeck (OU) pour β " 0. A cause de la singularité de l'interaction, il peut être délicat de donner un sens à (1.34). C'est pourquoi on se restreint au cas β " 0 et β ě 1, où l'équation est bien posée (la basse température rend les collisions improbables, comme pour le gaz de Coulomb à deux composantes). Pour β " 2, le système (1.34) correspond aux valeurs propres du processus de Ornstein Uhlenbeck matriciel. L'article [START_REF] Boursier | Universal cutoff for dyson ornstein uhlenbeck process[END_REF] se propose d'étudier le phénomène de cutoff pour le temps de mélange de (1.34) et dans une grande variété de distances et de divergences.

Nous commençons par analyser le cas simple du processus OU. La mesure invariante P 0 n est ici donnée par une Gaussienne en dimension n centrée de matrice de covariance 1 n I n , P 0 n " N p0, 1 n I n q. On peut établir un cutoff à condition initiale fixée : pour tout z n 0 , il y a cutoff avec un temps critique dépendant |z n 0 |, hormis dans le cas de la distance de Wasserstein où la norme de |z n 0 | doit être assez grande.

Théorème 1 (Cutoff pour OU). Soit Z n " pZ n t q tě0 un OU donné par (1.34) avec β " 0 et P 0 n sa loi invariante. Soit dist P tTV, Hellinger, Entropy, χ 2 , Fisheru, prenant ses valeurs dans r0, maxs. Alors, pour tout ε P p0, 1q, lim nÑ8 distpLawpZ n tn q | P 0 n q " # max si t n " p1 ´εqc n , 0 si t n " p1 `εqc n où c n " # logp ? n|z n 0 |q _ 1 4 logpnq if dist P tTV, Hellinger, Entropy, χ 2 u, logpn|z n 0 |q _ 1 2 logpnq if dist " Fisher.

Pour la distance de Wasserstein on a la dichotomie suivante :

• si lim nÑ8 |z n 0 | " `8, alors pour tout ε P p0, 1q, avec c n " log |z n 0 |,

lim nÑ8
WassersteinpLawpZ tn q, P 0 n q " # `8 si t n " p1 ´εqc n , 0 si t n " p1 `εqc n ,

• si lim nÑ8 |z n 0 | " α P r0, 8q alors il n'y a pas de phénomène de cutoff c'est-à-dire pour tout t ą 0 lim nÑ8 Wasserstein 2 pLawpZ t q, P 0 n q " pα 2 ´1qe ´2t `2p1 ´a1 ´e´2t q.

Le théorème 1 met en lumière un phénomène intéressant : pour dist P tTV, Hellinger, Entropy, χ 2 , Fisheru, lorsque la condition initiale est très proche de l'équilibre, i.e ici |z n 0 | ď n ´1 4 , alors le temps de mélange est indépendant de z n 0 . Ce temps critique correspond au temps minimal pour étaler des conditions initiales ponctuelles.

Vient ensuite l'étude du processus DOU pour β ě 1. Cette fois-ci on établit un cutoff au pire cas (1.16) comme dans la plupart des travaux sur le cutoff. Nous obtenons des bornes inférieures et supérieures sur le temps de mélange qui donnent (entre autres) le résultat suivant : Théorème 2 (Cutoff pour DOU). Soit pX n t q tě0 le processus DOU (1.34) avec β " 0 or β ě 1 de loi invariante P β n . Prenons dist P tTV, Hellinger, Wassersteinu. Soit pa n q n une suite de réels satisfaisant inf n a n ą 0. Alors, pour tout ε P p0, 1q, on a

lim nÑ8 sup x n 0 Pr´an,ans n distpLawpX n tn q | P β n q " # max if t n " p1 ´εqc n 0 if t n " p1 `εqc n où c n :" # logpna n q if dist P tTV, Hellingeru logp ? na n q if dist " Wasserstein .
Ainsi le temps critique apparaît comme étant indépendant de l'intensité de l'interaction β. Pour β " 2, le résultat ci-dessus peut s'obtenir par contraction du temps de mélange du processus de Ornstein-Uhlenbeck matriciel qui suit du Théorème 1. Notons que les conditions initiales z n 0 qui réalisent la borne inférieure sont celles pour lesquelles la trace est loin de l'équilibre à l'instant initial, i.e lim inf nÑ8

1 n |x n,1 0 `. . . `xn,n 0 | ą 0.
Pour de telles conditions initiales, c'est donc le temps de mélange de la trace qui donne le temps critique. La preuve de la borne inférieure exploite un aspect intégrable du DOU et la borne supérieure utilise la décroissance exponentielle de l'entropie relative (1.32) ainsi que des arguments de monotonie et de couplage inspirés de [START_REF] Lacoin | Mixing time and cutoff for the adjacent transposition shuffle and the simple exclusion[END_REF]. Dans la sous-section 1.3.4, nous mentionnons quelques prolongements possibles à ce travail. 1. Donner des estimées quasi-optimales sur les fluctuations des espacements entre particules avec des probabilités sous-exponentielles de déviation.

2. Énoncer un TCL pour les statistiques linéaires valables à toute échelle et pour des fonctions-test aussi singulières que possible.

3. Monter une estimée optimale de décroissance des corrélations pour les variables des gaps N px i`1 ´xi q. Comparer le résultat à celui obtenu dans le régime courte portée s ą 1.

4.

Montrer que le processus microscopique converge vers un certain processus limite Riesz s,β qui généralise alors Sine β à des valeurs s P p0, 1q.

Précisons un peu le modèle sur lequel on travaille avant d'énoncer les résultats principaux. Sur le cercle T :" R{Z et pour un paramètre s P p0, 1q, on considère le noyau de Riesz, solution de l'équation de Laplace fractionnaire p´∆q 1´s 2 g s " c s pδ 0 ´1q. Le noyau g s est donné par la périodisation du noyau de Riesz réel :

g s : x P T Þ Ñ lim nÑ8 ´n ÿ k"´n 1 |x `k| s ´2 1
´s n 1´s ¯" ζps, xq `ζps, 1 ´xq, où ζps, xq est la fonction zêta de Hurwitz. On considère alors l'énergie d'interaction par paires

H N : X N P T N Þ Ñ N ´s ÿ i‰j g s px i ´xj q.
L'un des avantages majeurs de la dimension 1 est qu'il est possible d'ordonner les particules. Pour x, y P T, on dit que x ă y si x " x 1 `k, y " y 1 `k1 avec k, k 1 P Z, x 1 , y 1 P r0, 1q et x 1 ă y 1 . Définissons alors D N l'ensemble des particules ordonnées (x 1 étant libre) D N " tX N " px 1 , . . . , x N q P T N : x 2 ´x1 ă . . . ă x N ´x1 u.

Le gaz de Riesz circulaire est alors donné par la mesure de probabilité

dP N,β " 1 Z N,β expp´βH N pX N qq1 D N pX N qdX N .
Lorsque le nombre de particules tend vers l'infini, la distribution macroscopique de charge converge vers la mesure uniforme sur le cercle. On s'attend ainsi à ce que l'espacement (ou gap) N px i`k ´xi q se concentre autour de k, lorsque k est suffisamment large. Si les variables étaient i.i.d, alors pour k suffisant grand cette quantité fluctuerait en Opk 1 2 q. Dans le cas du C β E, il est connu que l'amplitude des fluctuations de N px i`k ´xi q est d'ordre Op ? log kq. Le problème (1) consiste alors à déterminer l'amplitude des fluctuations de ces gaps et nous obtenons dans [START_REF] Boursier | Optimal local laws and CLT for the long-range circular Riesz gas[END_REF] le résultat suivant : Théorème 3 (Rigidité des gaps). Soit ε ą 0 et δ " ε 4ps`2q . Il existe deux constantes Cpβq ą 0 et cpβq ą 0 localement uniformes en β telles que pour tout i P t1, . . . , N u et 1 ď k ď N 2 , on a

P N,β p|N px i`k ´xi q ´k| ě k s 2 `εq ď Cpβqe ´cpβqk δ .
Ce résultat indique que le nombre de points dans un arc de cercle pa, bq fluctue au plus en OpN s 2 `εq. Notre second résultat affine cette asymptotique. On prouve un TCL pour la statistique linéaire Fluct N rξpℓ ´1 N ¨qs " ř N i"1 ξpℓ ´1 N x i q ´N ℓ N ş ξ lorsque ξ satisfait aux hypothèses suivantes :

Hypothèses 1.

(i) (Régularité) ξ est C ´s`ε pour un certain ε ą 0.

(ii) (Régularité par morceaux) Soit ψ " p´∆q ´s 2 ξ. La fonction ψ est C 2 par morceaux : il existe a 1 ă . . . ă a p (p P N) telle que sur pa i , a i`1 q, ψ est C 2 , pour tout i P t1, . . . , pu.

(iii) (Singularité) Pour tout i P t1, . . . , pu, il existe α i P p0, 1 ´s 2 q tel que

|ψ 2 |pxq ď C |x ´ai | 1`α i .
(iv) (Support) Soit tℓ N u une suite dans r0, 1s. Supposons ξ supportée sur p´1 2 , 1 2 q ou ℓ N " 1. Dans le premier cas, on note ξ 0 : R Ñ R

ξ 0 pxq " # ξpxq if |x| ď 1 2 0 if |x| ą 1 2 .
(1.35)

Ces hypothèses signifient que la fonction-test ξ est lisse par morceaux avec un nombre fini de singularités dominées par |x| ´s 2 `ε dans C 1´s 2 pT, Rq. Pour toutes mesures µ et ν sur R on note dpµ, νq la distance dpµ, νq " sup

! ż f dpµ ´νq : |f | 8 ď 1, |f 1 | 8 ď 1
) .

On montre dans [START_REF] Boursier | Optimal local laws and CLT for the long-range circular Riesz gas[END_REF] le résultat suivant :

Théorème 4 (TCL pour les statistiques linéaires). Soit ξ et ℓ N satisfait les hypothèses 1.

• La suite de variables aléatoires pN ℓ N q ´s 2 Fluct N rξpℓ ´1 N ¨qs converge en loi vers une Gaussienne centrée de variance σ 2 ξ donnée par

σ 2 ξ " 1 2βc s $ & % |ξ| 2 H 1´s 2 if ℓ N " 1 |ξ 0 | 2 H 1´s 2
if ℓ N Ñ 0, avec ξ 0 comme dans (1.35).

• Soit Z " N p0, σ 2 ξ q avec σ 2 ξ . Alors pour tout ε ą 0, on a

dpLoippN ℓ N q ´s 2 Fluct N rξpℓ ´1 N ¨qsq, LoipZqq " O ´pN ℓ N q ´1´s 2 `pN ℓ N q ´p1´s 2 ´max α l ´εq ¯.
Le théorème ci-dessus s'applique notamment à la fonction indicatrice et on s'attend alors à ce qu'un TCL de type log-corrélé soit vérifié à l'instar de 1 pa,bq pour s " 0.

Une fois ces questions de fluctuations élucidées, on aborde le problème (3) sur la décroissance de la corrélations des gaps. Le théorème 4 montre que les particules x i ´x1 et x k ´x1 sont très corrélées avec une covariance de taille |i ´k| s . Ainsi pour montrer une forme de décroissance des corrélations il est très naturel de considérer les variables N px i`1 ´xi q plutôt que les variables x i . On note d la distance symétrique sur t1, . . . , N u, i.e pour tout 1 ď i, j ď N , dpi, jq " minp|j ´i|, N ´|j ´i|q. Nous obtenons dans [START_REF] Boursier | Decay of correlations and thermodynamic limit for the circular riesz gas[END_REF] le résultat ci-dessous : Théorème 5 (Décroissance des corrélations). Soit s P p0, 1q. Pour tout ε ą 0, il existe une constant C ą 0 telle que pour tout f, g : R Ñ R dans H 1 et pour tout i, j P t1, . . . , N u,

| Cov P N,β rf pN px i`1 ´xi qq, hpN px j`1 ´xj qqs| ď CpE P N,β rf 1 px i q 2 s 1 2 `|f 1 | 8 e ´cpβqdpi,jq δ qpE P N,β rh 1 px j q 2 s 1 2 `|h 1 | 8 e ´cpβqdpi,jq δ q 1 dpi, jq 2´s´ε .
(1.36)

De plus, étant donné ε ą 0 assez petit et n P t1, . . . , N u, il existe i, j tels que n 2 ď |i ´j| ď n et

| Cov P N,β rN px i`1 ´xi q, N px j`1 ´xj qs| ě ε 1 dpi, jq 2´s .
Soit s P p1, `8q. Alors pour tout ε ą 0, il existe une constant C ą 0 telle que pour tout f, g : R Ñ R dans H 1 et pour tout i, j P t1, . . . , N u,

| Cov P N,β rf pN px i`1 ´xi qq, hpN px j`1 ´xj qqs| ď CpE P N,β rf 1 px i q 2 s 1 2 `|f 1 | 8 e ´cpβqdpi,jq δ qpE P N,β rh 1 px j q 2 s 1 2 `|h 1 | 8 e ´cpβqdpi,jq δ q ´1 dpi, jq s´ε `1 N ¯.
(1.37)

En particulier la covariance entre N px i`1 ´xi q et N px j`1 ´xj q décroît en dpi, jq ´p2´sq , ce qui coïncide dans la limite où s tend vers 0 avec le cas du log-gaz étudié dans [START_REF] Erdős | Gap universality of generalized wigner and beta-ensembles[END_REF]. Par ailleurs ce résultat est cohérent avec le théorème 4 : étant donnés deux points à distance d, la corrélation pointpoint est de taille d s , la corrélation point-gap de taille d s´1 (une dérivée de prise) et la corrélation gap-gap de taille d s´2 (deux dérivées de prises). Le théorème 5 met en lumière un phénomène quelque peu surprenant : la corrélation entre les gaps est croissante en s dans le régime longue portée bien que lorsque s augmente, la portée de l'énergie diminue. En physique statistique il est fréquent que la présence de grandes fluctuations impliquent une décroissance rapide des corrélations, ce qui est au coeur de l'argument de Mermin-Wagner sur l'absence de transition de phase du premier ordre pour les systèmes à symétries continues en dimension 2. Dans notre modèle à longue portée c'est bien le contraire qui se produit : plus les fluctuations sont grandes, plus la décroissance des corrélations est lente.

L'approche proposée dans [START_REF] Boursier | Decay of correlations and thermodynamic limit for the circular riesz gas[END_REF] est de donner une preuve du Théorème 5 reposant uniquement sur l'analyse de l'équation de Helffer-Sjöstrand dans sa version statique (1.33). L'une des spécificités de cette équation est que l'on ne peut utiliser que des inégalités adimensionnelles (puisque N tend vers l'infini). En d'autres termes les seules opérations licites sont les intégrations par parties et les principes du maximum. On donne ainsi dans [START_REF] Boursier | Decay of correlations and thermodynamic limit for the circular riesz gas[END_REF] une preuve simple de la décroissance des corrélations dans le cas s P p0, 1q qui n'utilise pas de représentation en environnement aléatoire [START_REF] Erdős | Gap universality of generalized wigner and beta-ensembles[END_REF] ni de méthode d'homogénisation [START_REF] Armstrong | C 2 regularity of the surface tension for the ∇ϕ interface model[END_REF].

Avec des estimées de décorrélation du type du théorème 5, il est relativement aisé d'obtenir l'unicité des processus limite, comme énoncé dans le résultat ci-dessous : Théorème 6 (Unicité de la mesure limite). Soit s P p0, 1q Y p1, `8q. Il existe un processus ponctuel Riesz s,β tel que pour tout x P T, la suite des processus ponctuels pQ N,β pxqq converge vers Riesz s,β dans la topologie de la convergence locale : pour toute fonction borélienne et locale ϕ : ConfpRq Ñ R, on a lim

N Ñ8 E Q N,β pxq rϕs " E Riesz s,β rϕs.
Ceci permet alors de définir un processus en volume infini Riesz s,β qui généralise le processus Sine β , voir 1.1.9. A la différence du processus Sine β , il semble que le processus Riesz s,β ne puisse être défini que comme l'unique limite des processus ponctuels.

L'énergie libre du gaz de Coulomb à deux composantes

La dernière partie de ce manuscrit réalisée en collaboration avec S. Serfaty a pour objet le gaz de Coulomb bi-dimensionnel à deux composantes introduit dans le paragraphe 1.1.7. On s'intéresse au régime de température β P p2, `8q. Comme on l'a vu, la fonction de partition Z N,β n'est pas convergente et il convient de tronquer l'interaction à une certaine échelle η :" λ ? N où λ ą 0 est un paramètre petit. Pour manipuler l'énergie, il est préférable, au lieu de tronquer, d'étaler les charges ponctuelles δ x en des mesures uniformes de masse 1 sur des disques de rayon η, notées δ pηq x . On se donne N charges positives x 1 , . . . , x N et N charges négatives y 1 , . . . , y N dans Λ :" r0, ?

N s 2 , que l'on notera z 1 , . . . , z 2N avec d i le signe de z i , i.e d i "

1 si 1 ď i ď N et d i " ´1 si N `1 ď i ď 2N . On considère alors l'énergie H N,λ " 1 2 ÿ i‰j ij d i d j gpx ´yqδ pηq z i pxqδ pηq z j pyq (1.38)
ainsi que la mesure de probabilité

P λ N,β " 1 Z λ N,β e ´βH N,λ pX N ,Y N q dx 1 . . . , dx N dy 1 . . . dy N , (1.39) où Z λ N,β " ż e ´βH N,λ pX N ,Y N q dx 1 . . . , dx N dy 1 . . . dy N .
On notera g λ pzq l'interaction effective de points à distance z :

g λ pzq " ij gpx ´yqδ pλq 0 pxqδ pλq z pyq. (1.40)
Le gaz de Coulomb à deux composantes (2CP) est notamment étudié dans le régime β P p0, 2q dans [START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF]. Un PGD pour le champ empirique y est donné, ainsi qu'un développement de la fonction de partition. L'objectif de notre travail est de décrire microscopiquement le plasma à deux composantes dans le régime β P p2, `8q et de montrer de façon quantitative la formation de dipôles. Plus précisément on s'intéresse aux questions suivantes :

1. Montrer que sous P λ N,β le système s'organise en une majorité de dipôles neutres de taille η. Quantifier cette proportion de bons dipôles.

2. Monter que l'interaction de l'assemblée de dipôles est bornée par une quantité proportionelle au nombre de points, avec un facteur qui tend vers 0 quand λ tend vers 0.

3. En déduire qu'à l'ordre principal lorsque N Ñ 8 et λ Ñ 0, le système se concentre autour d'un processus Poissonien de dipôles, où les charges positives sont tirées indépendamment, avec une charge négative accrochée à chacune d'elles à distance typique η.

On introduit pz 1 , . . . , z 2N q " px 1 , . . . , x N , y 1 , . . . , y 2N q et pour tout i " t1, . . . , 2N u, on note d i le signe de z i , i.e d i " 1 si i P t1, . . . , N u et d i " ´1 si i P tN `1, . . . , 2N u. Pour tout i P t1, . . . , 2N u, on notera également ϕ 1 piq l'indice du plus proche voisin de z i . Pour λ ą 0 on définit

γ λ :" $ ' ' ' ' & ' ' ' ' % 1 | log λ| if β " 2 λ β´2 if β P p2, 4q λ 2 | log λ| 2 if β " 4 λ 2 | log λ| if β ą 4.
Théorème 7. Soit β P r2, `8q.

Il existe une constante explicite

C β ą 0 telle que log Z λ N,β " 2N log N `N pp2´βq log λ1 βą2 `log | log λ|1 β"2 q´N `N log C β 1 βą2 `OpN γ λ q. 2. Soit I :" t1 ď i ď N : ϕ 1 ˝ϕ1 piq " i, d i d ϕ 1 piq " ´1u. Pour tout |t| ď β 2 , on a log E P λ N,β " exp ´tF λ ´t ÿ iPI g λ pz i ´zϕ 1 piq q ¯ı ď CN γ λ .
3. La mesure de Gibbs se concentre sur des dipôles de taille λ. En effet en notant

D :" ! pX N , Y N q, |I| ě N p1 ´cγ λ q ´ÿ iPI g λ pλ ´1|z i ´zϕ 1 piq |q ď M N ) ,
on a P λ N,β pD c q ď expp´CN q, pour c ą 0, C ą 0 et M ą 0 indépendantes de N et λ.

La preuve de ce résultat repose sur des techniques de grandes déviations inspirées de [START_REF] Gunson | Two-dimensional neutral Coulomb gas[END_REF] et de [START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF] et sur une méthode de minoration de l'énergie (1.38). Dans le cas du gaz de Coulomb à une composante, comme expliqué dans le paragraphe 1.2.2, l'énergie est monotone par rapport au paramètre de troncature : elle décroît quand le rayon des disques des charges étalées augmente. Cette propriété de monotonie n'est plus vraie pour le plasma à deux composantes mais en utilisant le théorème de Newton, on peut toutefois calculer de façon explicite l'erreur faite en changeant le rayon des disques dans (1.38). En augmentant ces rayons jusqu'à la semi-distance aux seconds plus proche voisins (resp. 2p plus proches voisins), on peut ainsi isoler les interactions à plus proches voisins qui sont dominantes dans l'énergie. En suivant [START_REF] Gunson | Two-dimensional neutral Coulomb gas[END_REF] on peut ensuite décomposer l'espace des phases en fonction de la classe d'isomorphisme du graphe des plus proches voisins et montrer que le système se concentre sur des configurations ayant une majorité de dipôles neutres.

Nous établissons ensuite une inégalité énergétique donnant un contrôle uniforme sur les fluctuations des statsitiques linéaires pour des fonction-tests lipschitziennes.

Théorème 8. Etant donnée une fonction lipschitzienne ξ : Λ Ñ R, on note

Fluct N pξq :" ż Λ ξ ´N ÿ i"1 pδ x i ´δy i q ¯. Soit α λ " $ ' ' & ' ' % λ 2pβ´2q β si β P p2, 4q λ| log λ| 1{2 si β " 4. λ si β P p4, 8q (1.41) 
Alors, il existe une constante C ą 0 telle que

log E P λ N,β rexpppFluct N pξqq 2 qs ď CN α λ }∇ξ} 2 L 8 .
L'estimée ci-dessus est obtenue en contrôlant les moments exponentiels de l'énergie (1.38) pour des charges étalées sur des disques de rayons aléatoires de taille typique α 1{2 λ . A nouveau, nous calculons la variation d'énergie résultant de cet étalement des charges et concluons avec les développement des fonctions de partition obtenus dans le Théorème 7.

Perspectives de recherche

.

Une question naturelle est d'étendre le cutoff du Théorème 2 aux β-ensembles non-Gaussiens, en commençant par exemple par le cas où le potentiel extérieur V est uniformément convexe mais non quadratique. La borne supérieure donnée par l'inégalité de Log-Sobolev (1.32) ne coïncide a priori plus avec le trou spectral du générateur et il convient d'utiliser d'autres arguments. Au vu du théorème 1, il semble intéressant d'étudier le temps de mélange du mouvement Brownien de Dyson lorsque la condition initiale est très proche de l'équilibre, par exemple lorsque chaque z i 0 est placé en un quantile de la mesure d'équilibre. Il paraît crédible que le temps de mélange soit minoré par c logpnq pour une constant c ą 0 indépendante de z n 0 et peut-être même universelle dans la classe des β-ensembles. Ce temps critique correspondrait au temps nécessaire pour étaler des conditions initiales ponctuelles.

En ce qui concerne l'analyse des gaz de Riesz, il serait naturel et intéressant d'étudier les dimensions supérieures. Une première étape est d'obtenir des lois locales dans le cas longue portée non coulombien. En raison du caractère non local du Laplacien fractionnaire, les méthodes de [START_REF] Leblé | Local microscopic behavior for 2d coulomb gases[END_REF][START_REF] Armstrong | Local laws and rigidity for coulomb gases at any temperature[END_REF] ne s'adaptent pas de façon immédiate. Une question particulièrement intrigante est celle de la décroissance des corrélations en dimension strictement plus grande que 1. Au vu de la preuve de [START_REF] Boursier | Decay of correlations and thermodynamic limit for the circular riesz gas[END_REF] il est envisageable que certains arguments se passent de convexité et que le caractère longue portée de l'interaction, ainsi que la positivité de la transformée de Fourier du noyau de Riesz, permettent d'établir un résultat faible de décroissance des corrélations. Le cas du gaz de Riesz hypersingulier pourrait également être traité en adaptant les méthodes de [START_REF] Richthammer | Translation-invariance of two-dimensional gibbsian point processes[END_REF] développées pour le gaz de sphères dures.

Le chapitre 5 de ce manuscrit peut se prolonger de nombreuses manières. Une première piste est d'affiner les asymptotiques du théorème 7 de façon à pouvoir observer les transitions liées à l'apparition des multipôles [START_REF] Hubert Lacoin | A probabilistic approach of ultraviolet renormalisation in the boundary sine-gordon model[END_REF]. Une deuxième direction serait de mieux comprendre mathématiquement la transition KT, qui a lieu à β " 4. Cette transition devrait se voir dans la variation du nombre de dipôles non-neutres à une certaine échelle lorsque l'échelle augmente. Une étape importante dans cette direction est ainsi de comprendre la fluctuation de la charge dans le plasma à deux composantes. Pour commencer il serait intéressant d'étudier les fluctuations des statistiques linéaires lisses dans le cas β P p0, 2q et de montrer que celles-ci ont une amplitude en op ? N q. Cette question est assez originale puisqu'à la différence du plasma à une composante [START_REF] Bauerschmidt | The twodimensional coulomb plasma: quasi-free approximation and central limit theorem[END_REF][START_REF] Leblé | CLT for fluctuations of linear statistics in the sine-β process[END_REF], la réponse linéaire associée à une statistique linéaire ř N i"1 ξpx i q ´řN i"1 ξpy i q ne peut pas se chercher sous la forme d'un transport qui agit diagonalement, voir le paragraphe (1.2.3), et il convient alors d'imaginer une autre stratégie de preuve.

Introduction and main results

Let us consider a Markov process X " pX t q tě0 with state space S and invariant law µ for which

lim tÑ8 distpLawpX t q | µq " 0
where distp¨| ¨q is a distance or divergence on the probability measures on S. Suppose now that X " X n depends on a dimension, size, or complexity parameter n, and let us set S " S n , µ " µ n , and X 0 " x n 0 P S n . For example X n can be a random walk on the symmetric group of permutations of t1, . . . , nu, Brownian motion on the group of n ˆn unitary matrices, Brownian motion on the n-dimensional sphere, etc. In many of such examples, it has been proved that when n is large enough, the supremum over some set of initial conditions x n 0 of the quantity distpLawpX n t q | µ n q collapses abruptly to 0 when t passes a critical value c " c n which may depend on n. This is often referred to as a cutoff phenomenon. More precisely, if dist ranges from 0 to max, then, for some subset S n 0 Ă S n of initial conditions, some critical value c " c n and for all ε P p0, 1q,

lim nÑ8 sup x n 0 PS n 0 distpLawpX n tn q | µ n q " # max if t n " p1 ´εqc n 0 if t n " p1 `εqc n .
It is standard to introduce, for an arbitrary small threshold η ą 0, the quantity inftt ě 0 : sup x 0 PS n 0 distpLawpX n t q | µ n q ď ηu known as the mixing time in the literature. Of course such a definition fully makes sense as soon as t Þ Ñ sup x 0 PS n 0 distpLawpX n t q | µ n q is non-increasing. When S n is finite, it is customary to take S n 0 " S n . When S n is infinite, it may happen that the supremum over the whole set S n of the distance to equilibrium remains equal to max at all times, in which case one has to consider strict subspaces of initial conditions. For some processes, it is possible to restrict S n 0 to a single state in which case one obtains a very precise description of the convergence to equilibrium starting from this initial condition. Note that the constraint over the initial condition can be made compatible with a limiting dynamics, for instance a mean-field limit when the process describes an exchangeable interacting particle system.

The cutoff phenomenon was put forward by Aldous and Diaconis at the origin for random walks on finite sets, see for instance [3,[START_REF] Diaconis | The cutoff phenomenon in finite Markov chains[END_REF][START_REF] Chen | The cutoff phenomenon for ergodic Markov processes[END_REF][START_REF] Levin | Markov chains and mixing times. With a chapter on "Coupling from the past[END_REF] and references therein. The analysis of the cutoff phenomenon is the subject of an important activity, still seeking for a complete theory: let us mention that, for the total variation distance, Peres proposed the so-called product condition (the mixing time must be much larger than the inverse of the spectral gap) as a necessary and sufficient condition for a cutoff phenomenon to hold, but counter-examples were exhibited [START_REF] Levin | Markov chains and mixing times. With a chapter on "Coupling from the past[END_REF]Sec. 18.3] and the product condition is only necessary.

The study of the cutoff phenomenon for Markov diffusion processes goes back at least to the works of Saloff-Coste [START_REF] Saloff-Coste | Precise estimates on the rate at which certain diffusions tend to equilibrium[END_REF][START_REF] Saloff-Coste | On the convergence to equilibrium of Brownian motion on compact simple Lie groups[END_REF] in relation notably with Nash-Sobolev type functional inequalities, heat kernel analysis, and Diaconis-Wilson probabilistic techniques. We also refer to the more recent work [START_REF] Méliot | The cut-off phenomenon for brownian motions on compact symmetric spaces[END_REF] for the case of diffusion processes on compact groups and symmetric spaces, in relation with group invariance and representation theory, a point of view inspired by the early works of Diaconis on Markov chains and of Saloff-Coste on diffusion processes. Even if most of the available results in the literature on the cutoff phenomenon are related to compact state spaces, there are some notable works devoted to non-compact spaces such as [START_REF] Lachaud | Cut-off and hitting times of a sample of Ornstein-Uhlenbeck processes and its average[END_REF][START_REF] Caputo | Spectral gap and cutoff phenomenon for the Gibbs sampler of ∇φ interfaces with convex potential[END_REF][START_REF] Barrera | Thermalisation for small random perturbations of dynamical systems[END_REF][START_REF] Barrera | The cutoff phenomenon in total variation for nonlinear Langevin systems with small layered stable noise[END_REF][START_REF] Barrera | Cutoff thermalization for Ornstein-Uhlenbeck systems with small Lévy noise in the Wasserstein distance[END_REF][START_REF] Barrera | Cut-off phenomenon for Ornstein-Uhlenbeck processes driven by Lévy processes[END_REF].

Our contribution is an exploration of the cutoff phenomenon for the Dyson-Ornstein-Uhlenbeck diffusion process, for which the state space is R n . This process is an interacting particle system. When the interaction is turned off, we recover the Ornstein-Uhlenbeck process, a special case that has been considered previously in the literature but for which we also provide new results.

Distances

As for dist we use several standard distances or divergences between probability measures: total variation (denoted TV), Hellinger, relative entropy (denoted Kullback), relative variance (denoted χ 2 ), Wasserstein of order 2, and Fisher information, surveyed in Appendix 2.8.1. We take the following convention for probability measures µ and ν on the same space: 

distpµ | νq " $ ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' % }µ ´ν} TV when dist " TV Hellingerpµ, νq when dist " Hellinger Kullbackpµ | νq when dist " Kullback χ 2 pµ | νq when dist " χ 2 Wassersteinpµ, νq when dist " Wasserstein Fisherpµ | νq when dist " Fisher , (2.1) 

The Dyson-Ornstein-Uhlenbeck (DOU) process and preview of main results

The DOU process is the solution X n " pX n t q tě0 on R n of the stochastic differential equation

X n 0 " x n 0 P R n , dX n,i t " c 2 n dB i t ´V 1 pX n,i t qdt `β n ÿ j‰i dt X n,i t ´Xn,j t , 1 ď i ď n, (2.3) 
where pB t q tě0 is a standard n-dimensional Brownian motion (BM), and where

• V pxq " x 2
2 is a "confinement potential" acting through the drift ´V 1 pxq " ´x

• β ě 0 is a parameter tuning the interaction strength.

The notation X n,i t stands for the i-th coordinate of the vector X n t . The process X n can be thought of as an interacting particle system of n one-dimensional Brownian particles X n,1 , . . . , X n,n , subject to confinement and singular pairwise repulsion when β ą 0 (respectively first and second term in the drift). We take an inverse temperature of order n in (2.3) in order to obtain a mean-field limit without time-changing the process, see Section 2.2.5. The spectral gap is 1 for all n ě 1, see Section 2.2.6. We refer to Section 2.2.9 for other parametrizations or choices of inverse temperature.

In the special cases β P t0, 1, 2u, the cutoff phenomenon for the DOU process can be established by using Gaussian analysis and stochastic calculus, see Sections 2.1.4 and 2.1.5. For β " 0, the process reduces to the Ornstein-Uhlenbeck process (OU) and its behavior serves as a benchmark for the interaction case β ‰ 0, while when β P t1, 2u, the approach involves a lift to unitary invariant ensembles of random matrix theory. For a general β ě 1, our main results regarding the cutoff phenomenon for the DOU process are given in Sections 2.1.6 and 2.1.7. We are able, in particular, to prove the following: for all dist P tTV, Hellinger, Wassersteinu, a ą 0, ε P p0, 1q, we have

lim nÑ8 sup x n 0 Pr´a,as n distpLawpX n tn q | P β n q " # max if t n " p1 ´εqc n 0 if t n " p1 `εqc n ,
where P β n is the invariant law of the process, and where

c n :" # logp ? naq if dist " Wasserstein logpnaq if dist P tTV, Hellingeru .
This result is stated in a slightly more general form in Corollary 2.1.7. Our proof relies crucially on an exceptional exact solvability of the dynamics, notably the fact that we know explicitly the optimal long time behavior in entropy and coupling distance, as well as the eigenfunction associated to the spectral gap which turns out to be linear and optimal. This comes from the special choice of V as well as the special properties of the Coulomb interaction. We stress that such an exact solvability is no longer available for a general strongly convex V , even for instance in the simple example V pxq " x 2

2

`x4 or for general linear forces. Nevertheless, and as usual, two other special classical choices of V could be explored, related to Laguerre and Jacobi weights, see Section 2.2.8.

Analysis of the Dyson-Ornstein-Uhlenbeck process

The process X n was essentially discovered by Dyson in [START_REF] Dyson | A Brownian-motion model for the eigenvalues of a random matrix[END_REF], in the case β P t1, 2, 4u, because it describes the dynamics of the eigenvalues of nˆn symmetric/Hermitian/symplectic random matrices with independent Ornstein-Uhlenbeck entries, see Lemma 2.5.1 and Lemma 2.5.2 below for the cases β " 1 and β " 2 respectively.

• Case β " 0 (interaction turned off). The particles become n independent one-dimensional Ornstein-Uhlenbeck processes, and the DOU process X n becomes exactly the n-dimensional Ornstein-Uhlenbeck process Z n solving (2.8). The process lives in R n . The particles collide but since they do not interact, this does not raise any issue.

• Case 0 ă β ă 1. Then with positive probability the particles collide producing a blow up of the drift, see for instance [START_REF] Cépa | Diffusing particles with electrostatic repulsion[END_REF][START_REF] Chafaï | On Poincaré and logarithmic Sobolev inequalities for a class of singular Gibbs measures[END_REF] for a discussion. Nevertheless, it is possible to define the process for all times, for instance by adding a local time term to the stochastic differential equation, see [START_REF] Chafaï | On Poincaré and logarithmic Sobolev inequalities for a class of singular Gibbs measures[END_REF] and references therein. It is natural to expect that the cutoff universality works as for β R p0, 1q, but for simplicity we do not consider this case here.

• Case β ě 1. If we order the coordinates by defining the convex domain

D n " tx P R n : x 1 ă ¨¨¨ă x n u,
and if x n 0 P D n then the equation (2.3) admits a unique strong solution that never exits D n , in other words the particles never collide and the order of the initial particles is preserved at all times, see [START_REF] Leonorad | Interacting Brownian particles and the Wigner law[END_REF]. Moreover if

D n " tx P R n : x 1 ď ¨¨¨ď x n u
then it is possible to start the process from the boundary D n zD n , in particular from x n 0 such that x n,1 0 " ¨¨¨" x n,n 0 , and despite the singularity of the drift, it can be shown that with probability one, X n t P D n for all t ą 0. We refer to [START_REF] Anderson | An introduction to random matrices[END_REF]Th. 4.3.2] for a proof in the Dyson Brownian Motion case that can be adapted mutatis mutandis.

In the sequel, we will only consider the cases β " 0 with x n 0 P R n and β ě 1 with x n 0 P D n . The drift in (2.3) is the gradient of a function, and (2.3) rewrites

X n 0 " x n 0 P D n , dX n t " c 2 n dB t ´1 n ∇EpX n t qdt, (2.4) 
where

Epx 1 , . . . , x n q " n n ÿ i"1 V px i q `β ÿ iąj log 1 |x i ´xj | (2.5)
can be interpreted as the energy of the configuration of particles x 1 , . . . , x n .

• If β " 0, then the Markov process X n is an Ornstein-Uhlenbeck process, irreducible with unique invariant law P 0 n " N p0, 1 n I n q which is reversible.

• If β ě 1, then the Markov process X n is not irreducible, but D n is a recurrent class carrying a unique invariant law P β n , which is reversible and given by

P β n " e ´Epx 1 ,...,xnq C β n 1 px 1 ,...,xnqPDn dx 1 ¨¨¨dx n , (2.6) 
where C β n is the normalizing factor given by

C β n "
ż Dn e ´Epx 1 ,...,xnq dx 1 ¨¨¨dx n .

(2.7)

In terms of geometry, it is crucial to observe that since ´log is convex on p0, `8q, the map

px 1 , . . . , x n q P D n Þ Ñ Interactionpx 1 , . . . , x n q " β ÿ iąj log 1 x i ´xj , is convex. Thus, since V is convex on R, it follows that E is convex on D n .
For all β ě 0, the law P β n is log-concave with respect to the Lebesgue measure as well as with respect to N p0, 1 n I n q.

Non-interacting case and Ornstein-Uhlenbeck benchmark

When we turn off the interaction by taking β " 0 in (2.3), the DOU process becomes an Ornstein-Uhlenbeck process (OU) Z n " pZ n t q tě0 on R n solving the stochastic differential equation

Z n 0 " z n 0 P R n , dZ n t " c 2 n dB n t ´Zn t dt, (2.8) 
where B n is a standard n-dimensional BM. The invariant law of Z n is the product Gaussian law P 0 n " N p0, 1 n I n q " N p0, 1 n q bn . The explicit Gaussian nature of Z n t " N pz n 0 e ´t, 1´e ´2t n I n q, valid for all t ě 0, allows for a fine analysis of convergence to equilibrium, as in the following theorem. [START_REF] Lachaud | Cut-off and hitting times of a sample of Ornstein-Uhlenbeck processes and its average[END_REF], see also [START_REF] Barrera | Abrupt convergence for a family of Ornstein-Uhlenbeck processes[END_REF]. Let us mention that in [START_REF] Barrera | Cutoff thermalization for Ornstein-Uhlenbeck systems with small Lévy noise in the Wasserstein distance[END_REF], a cutoff phenomenon for TV, entropy and Wasserstein is proven for the OU process of fixed dimension d and vanishing noise. This is to be compared with our setting where the dimension is sent to infinity: the results (and their proofs) are essentially the same in these two situations, however we will see below that if one considers more general initial conditions, there are some substantial differences according to whether the dimension is fixed or sent to infinity.

The restriction over the initial condition in Theorem 2.1.1 is spelled out in terms of the second moment of the empirical distribution, a natural choice suggested by the mean-field limit discussed in Section 2.2.5. It yields a mixing time of order logpnq, just like for Brownian motion on compact Lie groups, see [START_REF] Saloff-Coste | On the convergence to equilibrium of Brownian motion on compact simple Lie groups[END_REF][START_REF] Méliot | The cut-off phenomenon for brownian motions on compact symmetric spaces[END_REF]. For the OU process and more generally for overdamped Langevin processes, the non-compactness of the space is replaced by the confinement or tightness due to the drift.

Actually, Theorem 2.1.1 is a particular instance of the following, much more general result that reveals that, except for the Wasserstein distance, a cutoff phenomenon always occurs. Theorem 2.1.2 (General cutoff for OU). Let Z n " pZ n t q tě0 be the OU process (2.8) and let P 0 n be its invariant law. Let dist P tTV, Hellinger, Kullback, χ 2 , Fisheru. Then, for all ε P p0, 1q,

lim nÑ8 distpLawpZ n tn q | P 0 n q " # max if t n " p1 ´εqc n , 0 if t n " p1 `εqc n where c n " # logp ? n|z n 0 |q _ 1 4 logpnq if dist P tTV, Hellinger, Kullback, χ 2 u, logpn|z n 0 |q _ 1 2 logpnq if dist " Fisher.
Regarding the Wasserstein distance, the following dichotomy occurs:

• if lim nÑ8 |z n 0 | " `8, then for all ε P p0, 1q, with c n " log |z n 0 |,

lim nÑ8 WassersteinpLawpZ tn q, P 0 n q " # `8 if t n " p1 ´εqc n , 0 if t n " p1 `εqc n ,
• if lim nÑ8 |z n 0 | " α P r0, 8q then there is no cutoff phenomenon namely for any t ą 0 lim nÑ8 Wasserstein 2 pLawpZ t q, P 0 n q " α 2 e ´2t `2´1 ´a1 ´e´2t ´1 2 e ´2t ¯.

Theorem 2.1.2 is proved in Section 2.3. The observation that for every distance or divergence, except for the Wasserstein distance, a cutoff phenomenon occurs generically seems to be new.

Let us make a few comments. First, in terms of convergence to equilibrium the relevant observable in Theorem 2.1.2 appears to be the Euclidean norm |z n 0 | of the initial condition. This quantity differs from the eigenfunction associated to the spectral gap of the generator, which is given by z 1 `¨¨¨`z n as we will recall later on. This is also related to the equality of (2.20) and (2.41). Second, cutoff occurs at a time that is independent of the initial condition provided that its Euclidean norm is small enough: this cutoff time appears as the time required to regularize the initial condition (a Dirac mass) into a sufficiently spread out absolutely continuous probability measure; in particular this cutoff phenomenon would not hold generically if we allowed for spread out (non-Dirac) initial conditions. Note that, for the OU process of fixed dimension and vanishing noise, we would not observe a cutoff phenomenon when starting from initial conditions with small enough Euclidean norm: this is a high dimensional phenomenon. In this respect, the Wasserstein distance is peculiar since it is much less stringent on the local behavior of the measures at stake: for instance lim nÑ8 Wassersteinpδ 0 , δ 1{n q " 0 while for all other distances or divergences considered here, the corresponding quantity would remain equal to max. This explains the absence of generic cutoff phenomenon for Wasserstein. Third, the explicit expressions provided in our proof allow to extract the cutoff profile in each case, but we prefer not to provide them in our statement and refer the interested reader to the end of Section 2.3.

Exactly solvable intermezzo

When β ‰ 0, the law of the DOU process is no longer Gaussian nor explicit. However several exactly solvable aspects are available. Let us recall that a Cox-Ingersoll-Ross process (CIR) of parameters a, b, σ is the solution R " pR t q tě0 on R `of

R 0 " r 0 P R `, dR t " σ a R t dW t `pa ´bR t qdt, (2.9) 
where W is a standard BM. Its invariant law is Gammap2a{σ 2 , 2b{σ 2 q with density proportional to r ě 0 Þ Ñ r 2a{σ 2 ´1e ´2br{σ 2 , with mean a{b, and variance aσ 2 {p2b 2 q. It was proved by William Feller in [START_REF] Feller | Two singular diffusion problems[END_REF] that the density of R t at an arbitrary t can be expressed in terms of special functions. If pZ t q tě0 is a d-dimensional OU process of parameters θ ě 0 and ρ P R, weak solution of

dZ t " θdW t ´ρZ t dt (2.10)
where

W is a d-dimensional BM, then R " pR t q tě0 , R t :" |Z t | 2 , is a CIR process with parameters a " θ 2 d, b " 2ρ, σ " 2θ. When ρ " 0 then Z is a BM while R " |Z| 2 is a squared Bessel process.
The following theorem gathers some exactly solvable aspects of the DOU process for general β ě 1, which are largely already in the statistical physics folklore, see [START_REF] Potters | A first course in random matrix theory: for physicists, engineers and data scientists[END_REF]. It is based on our knowledge of eigenfunctions associated to the first spectral values of the dynamics, see (2.23), and their remarkable properties. As in (2.23), we set πpxq :" x 1 `¨¨¨`x n when x P R n .

Theorem 2.1.3 (From DOU to OU and CIR). Let pX n t q tě0 be the DOU process (2.3), with β " 0 or β ě 1, and let P β n be its invariant law. Then:

• pπpX n t qq tě0 is a one-dimensional OU process weak solution of (2.8) with θ " ? 2, ρ " 1. Its invariant law is N p0, 1q. It does not depend on β, and πpX n t q " N pπpx n 0 qe ´t, 1 ´e´2t q, t ě 0. Furthermore πpX n t q 2 is a CIR process of parameters a " 2, b " 2, σ " 2 ? 2.

• p|X n t | 2 q tě0 is a CIR process, weak solution of (2.9) with a " 2 `βpn ´1q, b " 2, σ " a 8{n. Its invariant law is Gammap 1 2 pn `β npn´1q 2 q, n 2 q of mean 1 `β 2 pn ´1q and variance β `2´β n . Furthermore, if d " n`β npn´1q 2 is a positive integer, then p|X n t | 2 q tě0 has the law of p|Z t | 2 q tě0 where pZ t q tě0 is a d-dimensional OU process, weak solution of (2.8) with θ " a 2{n, ρ " 1, and Z 0 " z n 0 for an arbitrary n ErπpX n t qs and 1 n Er|X n t | 2 s respectively, do not exhibit a critical phenomenon. This is related to the exponential decay of the first two moments in the mean-field limit (2.29), as well as the lack of cutoff for Wasserstein already revealed for OU by Theorem 2.1.2. This also reminds the high dimension behavior of norms in the field of the asymptotic geometric analysis of convex bodies. In another direction, this elementary observation on the moments also illustrates that the cutoff phenomenon for a given quantity is not stable under rather simple transformations of this quantity.

z n 0 P R d such that |z n 0 | " |x n 0 |.
From the first part of Theorem 2.1.3 and contraction properties available for some distances or divergences, see Lemma 2.8.2, we obtain the following lower bound on the mixing time for the DOU, which is independent of β: Corollary 2.1.4 (Lower bound on the mixing time). Let pX n t q tě0 be the DOU process (2. The derivation of an upper bound on the mixing time is much more delicate: once again recall that the case β " 0 covered by Theorem 2.1.2 is specific as it relies on exact Gaussian computations which are no longer available for β ě 1. In the next subsection, we will obtain results for general values of β ě 1 via more elaborate arguments.

In the specific cases β P t1, 2u, there are some exactly solvable aspects that one can exploit to derive, in particular, precise upper bounds on the mixing times. Indeed, for these values of β, the DOU process is the process of eigenvalues of the matrix-valued OU process:

M 0 " m 0 , dM t " c 2 n dB t ´Mt dt,
where B is a BM on the symmetric n ˆn matrices if β " distpLawpX n p1`εqcn q | P β n q " 0.

Combining this upper bound with the lower bound already obtained above, we derive a cutoff phenomenon in this particular matrix case.

Corollary 2.1.6 (Cutoff for DOU in the matrix case). Let pX n t q tě0 be the DOU process (2.3), with β P t0, 1, 2u, and invariant law P β n . Let dist P tTV, Hellinger, Kullback, χ 2 , Wassersteinu. Let pa n q n be a real sequence satisfying inf n ? na n ą 0, and assume further that lim nÑ8 ? na n " 8 if dist " Wasserstein. Then, for all ε P p0, 1q, we have

lim nÑ8 sup x n 0 Pr´an,ans n distpLawpX n tn q | P β n q " # max if t n " p1 ´εqc n 0 if t n " p1 `εqc n where c n :" # logpna n q if dist P tTV, Hellinger, Kullback, χ 2 u logp ? na n q if dist " Wasserstein .
Theorem 2.1.5 and Corollary 2.1.6 are proved in Section 2.5.

It is worth noting that d " n `β npn´1q 2 in Theorem 2.1.3 is indeed an integer in the "random matrix" cases β P t1, 2u, and corresponds then exactly to the degree of freedom of the Gaussian random matrix models GOE and GUE respectively. More precisely, if we let X n 8 " P β n then:

• If β " 1 then P β n is the law of the eigenvalues of S " GOE n , and

|X n 8 | 2 " ř n j,k"1 S 2
jk which is the sum of n squared Gaussians of variance v " 1{n (diagonal) plus twice the sum of n 2 ´n 2 squared Gaussians of variance v 2 (off-diagonal) all being independent. The duplication has the effect of renormalizing the variance from v 2 to v. All in all we have the sum of d " n 2 `n 2 independent squared Gaussians of same variance v. See Section 2.5.

• If β " 2 then P β n is the law of the eigenvalues of H " GUE n , and

|X n 8 | 2 " ř n j,k"1 |H jk | 2
is the sum of n squared Gaussians of variance v " 1{n (diagonal) plus twice the sum of n 2 ´n squared Gaussians of variance v 2 (off-diagonal) all being independent. All in all we have the sum of d " n 2 independent squared Gaussians of same variance v. See Section 2.5.

Another manifestation of exact solvability lies at the level of functional inequalities. Indeed, and following [START_REF] Chafaï | On Poincaré and logarithmic Sobolev inequalities for a class of singular Gibbs measures[END_REF], the optimal Poincaré constant of P β n is given by 1{n and does not depend on β, and the extremal functions are tranlations/dilations of x Þ Ñ πpxq " x 1 `¨¨¨`x n . This corresponds to a spectral gap of the dynamics equal to 1 and its associated eigenfunction. Moreover, the optimal logarithmic Sobolev inequality of P β n (Lemma 2.8.6) is given by 2{n and does not depend on β, and the extremal functions are of the form x Þ Ñ e cpx 1 `¨¨¨`xnq , c P R. This knowledge of the optimal constants and extremal functions and their independence with respect to β is truly remarkable. It plays a crucial role in the results presented in this article. More precisely, the optimal Poincaré inequality is used for the lower bound via the first eigenfunctions while the optimal logarithmic Sobolev inequality is used for the upper bound via exponential decay of the entropy.

Cutoff in the general interacting case

Our main contribution consists in deriving an upper bound on the mixing times in the general case β ě 1: the proof relies on the logarithmic Sobolev inequality, some coupling arguments and a regularization procedure.

Theorem 2.1.7 (Upper bound on the mixing time: the general case). Let pX n t q tě0 be the DOU process (2.3), with β " 0 or β ě 1 and invariant law P β n . Take dist P tTV, Hellinger, Wassersteinu. Set

c n :" # logp ? n|x n 0 |q _ logpnq if dist P tTV, Hellingeru logp|x n 0 |q _ logp ? nq if dist " Wasserstein .
Then, for all ε P p0, 1q, we have

lim nÑ8 distpLawpX n p1`εqcn q | P β n q " 0.
Combining this upper bound with the general lower bound that we obtained in Corollary 2.1.4, we deduce the following cutoff phenomenon. Observe that it holds both for β " 0 and β ě 1, and that the expression of the mixing time does not depend on β.

Corollary 2.1.8 (Cutoff for DOU in the general case). Let pX n t q tě0 be the DOU process (2.3) with β " 0 or β ě 1 and invariant law P β n . Take dist P tTV, Hellinger, Wassersteinu. Let pa n q n be a real sequence satisfying inf n a n ą 0. Then, for all ε P p0, 1q, we have

lim nÑ8 sup x n 0 Pr´an,ans n distpLawpX n tn q | P β n q " # max if t n " p1 ´εqc n 0 if t n " p1 `εqc n where c n :" # logpna n q if dist P tTV, Hellingeru logp ? na n q if dist " Wasserstein .
The proofs of Theorem 2.1.7 and Corollary 2.1.8 for the TV and Hellinger distances are presented in Section 2.6. The Wasserstein distance is treated in Section 2.7. Let us make a comment on the assumptions made on a n in Corollaries 2.1.6 and 2.1.8. They are dictated by the upper bounds established in Theorems 2.1.5 and 2.1.7, which take the form of maxima of two terms: one that depends on the initial condition, and another one which is a power of a logarithm of n. The logarithmic term is an upper bound on the time required to regularize a pointwise initial condition, its precise expression varies according to the method of proof we rely on: in the matrix case, it is the time required to regularize a larger object, the matrix-valued OU process; in the general case, it is related to the time it takes to make the entropy of a pointwise initial condition small. These bounds are not optimal for β " 0 (compare with Theorem 2.1.2), and probably neither for β ě 1.

A natural, but probably quite difficult, goal would be to establish a cutoff phenomenon in the situation where the set of initial conditions is reduced to any given singleton, as in Theorem 2.1.2 for the case β " 0. Recall that in that case, the asymptotic of the mixing time is dictated by the Euclidean norm of the initial condition. In the case β ě 1, this cannot be the right observable since the Euclidean norm does not measure the distance to equilibrium. Instead one should probably consider the Euclidean norm |x n 0 ´ρn |, where ρ n is the vector of the quantiles of order 1{n of the semi-circle law that arises in the mean-field limit equilibrium (see Subsection 2.2.5). More precisely Note that ρ n " 0 when β " 0.

ρ n,i " inf # t P R : ż t ´8 a 2β 
A first step in this direction is given by the following result:

Theorem 2.1.9 (DOU in the general case and pointwise initial condition). Let pX n t q tě0 be the DOU process (2.3) with β " 0 or β ě 1, and invariant law P β n . There hold WassersteinpLawpX p1`εqtn q, P β n q " 0.

• If lim nÑ8 |x n 0 ´ρn | " α P r0, 8q, then, for all t ą 0, lim nÑ8 WassersteinpLawpX t q, P β n q 2 ď α 2 e ´2t .

Theorem 2.1.9 is proved in Section 2.7.

Non-pointwise initial conditions

It is natural to ask about the cutoff phenomenon when the initial conditions X n 0 is not pointwise. Even if we turn off the interaction by taking β " 0, the law of the process at time t is then no longer Gaussian in general, which breaks the method of proof used for Theorem 2.1.1 and Theorem 2.1.2. Nevertheless, Theorem 2.1.10 below provides a universal answer, that is both for β " 0 and β ě 1, at the price however of introducing several objects and notations. More precisely, for any probability measure µ on R n , we introduce Let us define the map Ψ : R n Þ Ñ D n by Ψpx 1 , . . . , x n q :" px σp1q , . . . , x σpnq q.

Spµq

(2.17

)
where σ is any permutation of t1, . . . , nu that reorders the particles non-decreasingly.

Theorem 2.1.10 (Cutoff for DOU with product smooth initial conditions). Let pX n t q tě0 be the DOU process (2.3) with β " 0 or β ě 1, and invariant law P β n . Let S, Φ, and Ψ be as in (2.15), (2.16), and (2.17). Let us assume that LawpX n 0 q is the image law or push forward of a product law µ 1 b ¨¨¨b µ n by Ψ where µ 1 , . . . , µ n are laws on R. Then:

1. If lim nÑ8 ˇˇ1 n n ÿ i"1 ż
xµ i pdxq ˇˇ‰ 0 then, for all ε P p0, 1q, lim nÑ8 KullbackpLawpX p1´εq logpnq q | P β n q " `8. 

If

Additional comments and open problems

About the results and proofs

The proofs of our results rely among other ingredients on convexity and optimal functional inequalities, exact solvability, exact Gaussian formulas, coupling arguments, stochastic calculus, variational formulas, contraction properties and regularization. The proofs of Theorems 2.1.1 and 2.1.2 are based on the explicit Gaussian nature of the OU process, which allows to use Gaussian formulas for all the distances and divergences that we consider (the Gaussian formula for Fisher seems to be new). Our analysis of the convergence to equilibrium of the OU process seems to go beyond what is already known, see for instance [START_REF] Lachaud | Cut-off and hitting times of a sample of Ornstein-Uhlenbeck processes and its average[END_REF] and [START_REF] Barrera | Thermalisation for small random perturbations of dynamical systems[END_REF][START_REF] Barrera | The cutoff phenomenon in total variation for nonlinear Langevin systems with small layered stable noise[END_REF][START_REF] Barrera | Cutoff thermalization for Ornstein-Uhlenbeck systems with small Lévy noise in the Wasserstein distance[END_REF][START_REF] Barrera | Cut-off phenomenon for Ornstein-Uhlenbeck processes driven by Lévy processes[END_REF].

Theorem 2.1.3 is a one-dimensional analogue of [START_REF] Bolley | Dynamics of a planar Coulomb gas[END_REF]Th. 1.2]. The proof exploits the explicit knowledge of eigenfunctions of the dynamics (2.23), associated with the first two non-zero spectral values, and their remarkable properties. The first one is associated to the spectral gap and the optimal Poincaré inequality. It implies Corollary 2.1.4, which is the provider of all our lower bounds on the mixing time for the cutoff.

The proof of Theorem 2.1.5 is based on a contraction property and the upper bound for matrix OU processes. It is not available beyond the matrix cases. All the other upper bounds that we establish are related to an optimal exponential decay which comes from convexity and involves sometimes coupling, the simplest instance being Theorem 2.1.7 about the Wasserstein distance. The usage of the Wasserstein metrics for Dyson dynamics is quite natural, see for instance [START_REF] Bertucci | A spectral dominance approach to large random matrices[END_REF].

The proof of Theorem 2.1.7 for the TV and Hellinger relies on the knowledge of the optimal exponential decay of the entropy (with respect to equilibrium) related to the optimal logarithmic Sobolev inequality. Since pointwise initial conditions have infinite entropy, the proof proceeds in three steps: first we regularize the initial condition to make its entropy finite, second we use the optimal exponential decay of the entropy of the process starting from this regularized initial condition, third we control the distance between the processes starting from the initial condition and its regularized version. This last part is inspired by a work of Lacoin [START_REF] Lacoin | Mixing time and cutoff for the adjacent transposition shuffle and the simple exclusion[END_REF] for the simple exclusion process on the segment, subsequently adapted to continuous state-spaces [START_REF] Caputo | Mixing time of the adjacent walk on the simplex[END_REF][START_REF] Caputo | Spectral gap and cutoff phenomenon for the Gibbs sampler of ∇φ interfaces with convex potential[END_REF], where one controls an area between two versions of the process.

The (optimal) exponential decay of the entropy (Lemma 2.8.7) is equivalent to the (optimal) logarithmic Sobolev inequality (Lemma 2.8.6). For the DOU process, the optimal logarithmic Sobolev inequality provided by Lemma 2.8.6 achieves also the universal bound with respect to the spectral gap, just like for Gaussians. This sharpness between the best logarithmic Sobolev constant and the spectral gap also holds for instance for the random walk on the hypercube, a discrete process for which a cutoff phenomenon can be established with the optimal logarithmic Sobolev inequality, and which can be related to the OU process, see for instance [START_REF] Diaconis | Time to reach stationarity in the Bernoulli-Laplace diffusion model[END_REF][START_REF] Diaconis | Logarithmic Sobolev inequalities for finite Markov chains[END_REF] and references therein. If we generalize the DOU process by adding an arbitrary convex function to V , then we will still have a logarithmic Sobolev inequality -see [START_REF] Chafaï | On Poincaré and logarithmic Sobolev inequalities for a class of singular Gibbs measures[END_REF] for several proofs including the proof via the Bakry-Émery criterion -however the optimal logarithmic Sobolev constant will no longer be explicit nor sharp with respect to the spectral gap, and the spectral gap will no longer be explicit.

The proof of Theorem 2.1.10 relies crucially on the tensorization property of Kullback and on the asymptotics on the normalizing constant C β n at equilibrium.

Analysis and geometry of the equilibrium

The full space R n is, up to a bunch of hyperplanes, covered with n! disjoint isometric copies of the convex domain D n obtained by permuting the coordinates (simplices or Weyl chambers). Following [START_REF] Chafaï | On Poincaré and logarithmic Sobolev inequalities for a class of singular Gibbs measures[END_REF], for all β ě 0 let us define the law P β ˚n on R n with density proportional to e ´E , just like for P β n in (2.6) but without the 1 px 1 ,...,xnqPDn . If β " 0 then P 0 ˚n " P 0 n " N p0, Regarding log-concavity, it is important to realize that if β " 0 then E is convex on R n , while if β ą 0 then E is convex on D n but is not convex on R n and has n! isometric local minima.

• The law P β ˚n is centered but is not log-concave when β ą 0 since E is not convex on R n . As β Ñ 0 `the law P β ˚n tends to P 0 ˚n " P 0 n " N p0, 1 n I n q which is log-concave.

• The law P β n is not centered but is log-concave for all β ě 0. Its density vanishes at the boundary of D n if β ą 0. As β Ñ 0 `the law P β n tends to the law of the order statistics of n i.i.d. N p0, 1 n q.

Spectral analysis of the generator: the non-interacting case

This subsection and the next deal with analytical aspects of our dynamics. We start with the OU process (β " 0) for which everything is explicit; the next subsection deals with the DOU process (β ě 1).

The infinitesimal generator of the OU process is given by

Gf " 1 n ´∆ ´∇E ¨∇¯" 1 n n ÿ i"1 B 2 i ´n ÿ i"1 V 1 px i qB i . (2.18)
It is a self-adjoint operator on L 2 pR n , P 0 n q that leaves globally invariant the set of polynomials. Its spectrum is the set of all non-positive integers, that is, λ 0 " 0 ą λ 1 " ´1 ą λ 2 " ´2 ą ¨¨¨. The corresponding eigenspaces F 0 , F 1 , F 2 , ¨¨¨are finite dimensional: F m is spanned by the multivariate Hermite polynomials of degree m, in other words tensor products of univariate Hermite polynomials. In particular, F 0 is the vector space of constant functions while F 1 is the n-dimensional vector space of all linear functions.

Let us point out that G can be restricted to the set of P 0 n square integrable symmetric functions: it leaves globally invariant the set of symmetric polynomials, its spectrum is unchanged but the associated eigenspaces E m are the restrictions of the vector spaces F m to the set of symmetric functions, in other words, E m is spanned by the multivariate symmetrized Hermite polynomials of degree m. Note that E 1 is the one-dimensional space generated by πpxq " x 1 `¨¨¨`x n .

The Markov semigroup pe tG q tě0 generated by G admits P 0 n as a reversible invariant law since G is self-adjoint in L 2 pP 0 n q. Following [START_REF] Saloff-Coste | Precise estimates on the rate at which certain diffusions tend to equilibrium[END_REF], let us introduce the heat kernel p t px, yq which is the density of LawpX n t | X n 0 " xq with respect to the invariant law P 0 n . The long-time behavior reads lim tÑ8 p t px, ¨q " 1 for all x P R n . Let }¨} p be the norm of L p " L p pP 0 n q. For all 1 ď p ď q, t ě 0, x P R n , we have 

2}LawpX n t | X n 0 " xq ´P 0 n } TV " }p t px,

Spectral analysis of the generator: the interacting case

We now assume that β ě 1. The infinitesimal generator of the DOU process is the operator

Gf " 1 n ´∆ ´∇E ¨∇¯" 1 n n ÿ i"1 B 2 i ´n ÿ i"1 V 1 px i qB i `β 2n ÿ j‰i B i ´Bj x i ´xj . (2.22)
Despite the interaction term, the operator leaves globally invariant the set of symmetric polynomials. Following Lassalle in [START_REF] Lassalle | Polynômes de Hermite généralisés[END_REF][START_REF] Baker | The Calogero-Sutherland model and polynomials with prescribed symmetry[END_REF], see also [START_REF] Chafaï | On Poincaré and logarithmic Sobolev inequalities for a class of singular Gibbs measures[END_REF], the operator G is a self-adjoint operator on the space of P β ˚n square integrable symmetric functions of n variables, its spectrum does not depend on β and matches the spectrum of the OU process case β " 0. In particular the spectral gap is 1.

The eigenspaces E m are spanned by the generalized symmetrized Hermite polynomials of degree m. For instance, E 1 is the one-dimensional space generated by πpxq " x 1 `¨¨¨`x n while E 2 is the two-dimensional space spanned by px 1 `¨¨¨`x n q 2 ´1 and x 2 1 `¨¨¨`x 2 n ´1 ´β 2 pn ´1q.

(2.23)

From the isometry between L 2 pD n , P β n q and L 2 sym pR n , P β ˚nq, the above explicit spectral decomposition applies to the semigroup of the DOU on D n . Formally, the discussion presented at the end of the previous subsection still applies. However, in the present interacting case the integrability properties of the heat kernel are not known: in particular, we do not know whether p t px, ¨q lies in L p pP β n q for t ą 0, x P D n and p ą 1. This leads to the question, of independent interest, of pointwise upper and lower Gaussian bounds for heat kernels similar to the OU process, with explicit dependence of the constants over the dimension. We refer for example to [START_REF] Souplet | Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds[END_REF][START_REF] Engoulatov | A universal bound on the gradient of logarithm of the heat kernel for manifolds with bounded Ricci curvature[END_REF][START_REF] Grigor | Heat kernel and analysis on manifolds[END_REF] for some results in this direction.

Mean-field limit

The measure P β n is log-concave since E is convex, and its density writes

x P R n Þ Ñ e ´n 2 |x| 2 C β n ź iąj px i ´xj q β 1 x 1 﨨¨ďxn . (2.24)
See [81, Sec. 2.2] for a high-dimensional analysis. The Boltzmann-Gibbs measure P β n is known as the β-Hermite ensemble or HβE. When β " 2, it is better known as the Gaussian Unitary Ensemble (GUE). If X n " P β n then the Wigner theorem states that the empirical measure with atoms distributed according to P β n converges in distribution to a semi-circle law, namely

1 n n ÿ i"1 δ X n,i weak ÝÑ nÑ8 a 2β ´x2 βπ 1 xPr´?2β, ? 2βs dx, (2.25) 
and this can be deduced in this Coulomb gas context from a large deviation principle as in [START_REF] Ben | Large deviations for Wigner's law and Voiculescu's non-commutative entropy[END_REF]. Let pX n q tě0 be the process solving (2.3) with β ě 0 or β ě 1, and let

µ n t " 1 n n ÿ k"1 δ X n,i t (2.26)
be the empirical measure of the particles at time t. Following notably [START_REF] Leonorad | Interacting Brownian particles and the Wigner law[END_REF][START_REF] Biane | Free diffusions, free entropy and free Fisher information[END_REF][START_REF] José | Contractions in the 2-Wasserstein length space and thermalization of granular media[END_REF][START_REF] José | Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates[END_REF][START_REF] Li | On the law of large numbers for the empirical measure process of generalized Dyson Brownian motion[END_REF][START_REF] Donati-Martin | Convergence to equilibrium in the free Fokker-Planck equation with a double-well potential[END_REF], if the sequence of initial conditions pµ n 0 q ně1 converges weakly as n Ñ 8 to a probability measure µ 0 , then the sequence of measure valued processes ppµ n t q tě0 q ně1 converges weakly to the unique probability measure valued deterministic process pµ t q tě0 satisfying the evolution equation has all its moments finite, then for all t ě 0, we have the free Mehler formula

xµ t , f y " xµ 0 , f y ´ż t 0 ż V 1 pxqf 1 pxqµ s pdxqds `β 2 ż t 0 ż R 2 f 1 pxq
µ t " dil e ´2t µ 0 ' dil ? 1´e ´2t µ 8 , (2.28) 
where dil σ µ is the law of σX when X " µ, where "'" stands for the free convolution of probability measures of Voiculescu free probability theory, and where µ 8 is the semi-circle law of variance β 2 . In particular, if µ 0 is a semi-circle law then µ t is a semi-circle law for all t ě 0.

Let us introduce the k-th moment m k ptq :" , t ě 0, z P C `. The cutoff phenomenon is in a sense a diagonal pt, nq estimate, melting long time behavior and high dimension. When |z n 0 | is of order n, cutoff occurs at a time of order « logpnq: this informally corresponds to taking t Ñ 8 in pµ t q tě0 . When µ 0 is centered with same second moment β 2 as µ 8 , then there is a Boltzmann H-theorem interpretation of the limiting dynamics as n Ñ 8: the steady-state is the Wigner semi-circle law µ 8 , the second moment is conserved by the dynamics, the Voiculescu entropy is monotonic along the dynamics, grows exponentially, and is maximized by the steady-state.

ż x k µ t pdxq

L p cutoff

Following [START_REF] Chen | The cutoff phenomenon for ergodic Markov processes[END_REF], we can deduce an L p cutoff started from x from an L 1 cutoff by showing that the heat kernel p t px, ¨q is in L p pP β n q for some t ą 0. Thanks to the Mehler formula, it can be checked that this holds for the OU case, despite the lack of ultracontractivity. The heat kernel of the DOU process is less accessible.

In another exactly solvable direction, the L p cutoff phenomenon has been studied for instance in [START_REF] Saloff-Coste | Precise estimates on the rate at which certain diffusions tend to equilibrium[END_REF][START_REF] Saloff-Coste | On the convergence to equilibrium of Brownian motion on compact simple Lie groups[END_REF] for Brownian motion on compact simple Lie groups, and in [START_REF] Saloff-Coste | On the convergence to equilibrium of Brownian motion on compact simple Lie groups[END_REF][START_REF] Méliot | The cut-off phenomenon for brownian motions on compact symmetric spaces[END_REF] for Brownian motion on symmetric spaces, in relation with representation theory, an idea which goes back at the origin to the works of Diaconis on random walks on groups.

Cutoff window and profile

Once a cutoff phenomenon is established, one can ask for a finer description of the pattern of convergence to equilibrium. The cutoff window is the order of magnitude of the transition time from the value max to the value 0: more precisely, if cutoff occurs at time c n then we say that the cutoff window is w n if lim bÑ`8 lim nÑ8 distpLawpX cn`bwn q | P β n q " 0, lim bÑ´8 lim nÑ8 distpLawpX cn`bwn q | P β n q " max, and for any b P R 0 ă lim nÑ8 distpLawpX cn`bwn q | P β n q ď lim nÑ8 distpLawpX cn`bwn q | P β n q ă max .

Note that necessarily w n " opc n q by definition of the cutoff phenomenon. Note also that w n is unique in the following sense: w 1 n is a cutoff window if and only if w n {w 1 n remains bounded from above and below as n Ñ 8. We say that the cutoff profile is given by φ : R Ñ r0, 1s if lim nÑ8 distpLawpX cn`bwn q | P β n q " φpbq.

The analysis of the OU process carried out in Theorems 2.1.1 and 2.1.2 can be pushed further to establish the so-called cutoff profiles, we refer to the end of Section 2.3 for details.

Regarding the DOU process, such a detailed description of the convergence to equilibrium does not seem easily accessible. However it is straightforward to deduce from our proofs that the cutoff window is of order 1, in other words the inverse of the spectral gap, in the setting of Corollary 2.1.6. This is also the case in the setting of Corollary 2.1.8 for the Wasserstein distance. We believe that this remains true in the setting of Corollary 2.1.8 for the TV and Hellinger distances: actually, a lower bound of the required order can be derived from the calculations in the proof of Corollary 2.1.4; on the other hand, our proof of the upper bound on the mixing time does not allow to give a precise enough upper bound on the window.

Other potentials

It is natural to ask about the cutoff phenomenon for the process solving (2.3) when V is a more general C 2 function. The invariant law P β n of this Markov diffusion writes

e ´n ř n i"1 V px i q C β n ź iąj px i ´xj q β 1 px 1 ,...,xnqPDn dx 1 ¨¨¨dx n . (2.32)
The case where V ´ρ 2 |¨| 2 is convex for some constant ρ ě 0 generalizes the DOU case and has exponential convergence to equilibrium, see [START_REF] Chafaï | On Poincaré and logarithmic Sobolev inequalities for a class of singular Gibbs measures[END_REF]. Three exactly solvable cases are known:

• e ´V pxq " e ´x2 2 : the DOU process associated to the Gaussian law weight and the β-Hermite ensemble including HOE/HUE/HSE when β P t1, 2, 4u,

• e ´V pxq " x a´1 e ´x1 xPr0,8q : the Dyson-Laguerre process associated to the Gamma law weight and the β-Laguerre ensembles including LOE/LUE/LSE when β P t1, 2, 4u,

• e ´V pxq " x a´1 p1 ´xq b´1 1 xPr0,1s : the Dyson-Jacobi process associated to the Beta law weight and the β-Jacobi ensembles including JOE/JUE/JSE when β P t1, 2, 4u, up to a scaling. Following Lassalle [START_REF] Lassalle | Polynômes de Hermite généralisés[END_REF][START_REF] Lassalle | Polynômes de Laguerre généralisés[END_REF][START_REF] Lassalle | Polynômes de Jacobi généralisés[END_REF][START_REF] Baker | The Calogero-Sutherland model and polynomials with prescribed symmetry[END_REF] and Bakry [START_REF] Bakry | Remarques sur les semigroupes de Jacobi[END_REF], in these three cases, the multivariate orthogonal polynomials of the invariant law P β n are the eigenfunctions of the dynamics of the process. We refer to [START_REF] Edelman | Random matrix theory[END_REF][START_REF] Dumitriu | Matrix models for beta ensembles[END_REF][START_REF] Lippert | A matrix model for the β-Jacobi ensemble[END_REF] for more information on (H/L/J)βE random matrix models.

The contraction property or spectral projection used to pass from a matrix process to the Dyson process can be used to pass from BM on the unitary group to the Dyson circular process for which the invariant law is the Circular Unitary Ensemble (CUE). This provides an upper bound for the cutoff phenomenon. The cutoff for BM on the unitary group is known and holds at critical time or order logpnq, see for instance [START_REF] Saloff-Coste | On the convergence to equilibrium of Brownian motion on compact simple Lie groups[END_REF][START_REF] Saloff-Coste | Precise estimates on the rate at which certain diffusions tend to equilibrium[END_REF][START_REF] Méliot | The cut-off phenomenon for brownian motions on compact symmetric spaces[END_REF].

More generally, we could ask about the cutoff phenomenon for a McKean-Vlasov type interacting particle system pX n t q tě0 in pR d q n solution of the stochastic differential equation of the form

dX n,i t " σ n,t pX n qdB n t ´n ÿ i"1 ∇V n,t pX n,i t qdt ´ÿ j‰i ∇W n,t pX n,i t ´Xn,j t qdt, 1 ď i ď n, (2.33)
for various types of confinement V and interaction W (convex, repulsive, attractive, repulsiveattractive, etc), and discuss the relation with the propagation of chaos. The case where V and W are both convex and constant in time is already very well studied from the point of view of long-time behavior and mean-field limit in relation with convexity, see for instance [START_REF] José | Contractions in the 2-Wasserstein length space and thermalization of granular media[END_REF][START_REF] José | Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates[END_REF][START_REF] Li | On the law of large numbers for the empirical measure process of generalized Dyson Brownian motion[END_REF].

Regarding universality, it is worth noting that if V " |¨| 2 and if W is convex then the proof by factorization of the optimal Poincaré and logarithmic Sobolev inequalities and their extremal functions given in [START_REF] Chafaï | On Poincaré and logarithmic Sobolev inequalities for a class of singular Gibbs measures[END_REF] remains valid, paving the way to the generalization of many of our results in this spirit. On the other hand, the convexity of the limiting energy functional in the mean-field limit is of Bochner type and suggests to take for W a power, in other words a Riesz type interaction.

Alternative parametrization

If pX n t q tě0 is the process solution of the stochastic differential equation (2.3), then for all real parameters α ą 0 and σ ą 0, the space scaled and time changed stochastic process pY n t q tě0 " pσX n αt q tě0 solves the stochastic differential equation

Y n 0 " σx n 0 , dY n,i t " c 2ασ 2 n dB i t ´αY n,i t dt `αβσ 2 n ÿ j‰i dt Y n,i t ´Y n,j t , 1 ď i ď n, (2.34) 
where pB t q tě0 is a standard n-dimensional BM. The invariant law of pY n t q tě0 is e ´n 2σ 2 |y| 2 C β n ź iąj py i ´yj q β 1 py 1 ,...,ynqPDn dy 1 ¨¨¨dy n (2.35) where C β n is the normalizing constant. This law and its normalization C β n depend on the "shape parameter" β, the "scale parameter" σ, and does not depend on the "speed parameter" α. When β ą 0, taking σ 2 " β ´1, the stochastic differential equation (2.34) boils down to ) is that β can be now truly interpreted as an inverse temperature and the right-hand side in the analogue of (2.25) does not depend on β, while the drawback is that we cannot turn off the interaction by setting β " 0 and recover the OU process as in (2.3). It is worthwhile mentioning that for instance Theorem 2.1.7 remains the same for the process solving (2.36) in particular the cutoff threshold is at critical time cn α and does not depend on β.

Y n 0 " x n 0 ? β , dY n,i t " c 2α nβ dB i t ´αY n,i t dt `α n ÿ j‰i dt Y n,i t ´Y n,j t , 1 ď i ď n (2.

Discrete models

There are several discrete space Markov processes admitting the OU process as a scaling limit, such as for instance the random walk on the discrete hypercube, related to the Ehrenfest model, for which the cutoff has been studied in [START_REF] Diaconis | Time to reach stationarity in the Bernoulli-Laplace diffusion model[END_REF][START_REF] Diaconis | Logarithmic Sobolev inequalities for finite Markov chains[END_REF], and the M/M/8 queuing process, for which a discrete Mehler formula is available [START_REF] Chafaï | Binomial-Poisson entropic inequalities and the M/M/8 queue[END_REF]. Certain discrete space Markov processes incorporate a singular repulsion mechanism, such as for instance the exclusion process on the segment, for which the study of the cutoff in [START_REF] Lacoin | Mixing time and cutoff for the adjacent transposition shuffle and the simple exclusion[END_REF] shares similarities with our proof of Theorem 2.1.7. It is worthwhile noting that there are discrete Coulomb gases, related to orthogonal polynomials for discrete measures, suggesting to study discrete Dyson processes. More generally, it could be natural to study the cutoff phenomenon for Markov processes on infinite discrete state spaces, under curvature condition, even if the subject is notoriously disappointing in terms of high-dimensional analysis. We refer to the recent work [START_REF] Salez | Cutoff for non-negatively curved Markov chains[END_REF] for the finite state space case.

Cutoff phenomenon for the OU

In this section, we prove Theorems 2. Hellinger 2 pLawpZ n t q, P 0 n q " 1 ´exp ´´n 4

|z n 0 | 2 e ´2t 2 ´e´2t `n 4 log ´4 1 ´e´2t p2 ´e´2t q 2 ¯¯, (2.39) 
2KullbackpLawpZ n t q | P 0 n q " n|z n 0 | 2 e ´2t ´ne ´2t ´n logp1 ´e´2t q, (2.40) 
χ 2 pLawpZ n t q | P 0 n q " ´1 `1 p1 ´e´4t q n{2 exp ´n|z n 0 | 2 e ´2t 1 `e´2t ¯, (2.41)

FisherpLawpZ n t q | P 0 n q " n 2 |z n 0 | 2 e ´2t `n2 e ´4t 1 ´e´2t , (2.42) 
Wasserstein 2 pLawpZ n t q, P 0 n q " |z n 0 | 2 e ´2t `2p1 ´a1 ´e´2t ´1 2 e ´2t q, (2.43) which gives the desired lower and upper bounds as before by using the hypothesis on z n 0 . Total variation cutoff. By using the comparison between total variation and Hellinger distances (Lemma 2.8.1) we deduce from (2.39) the cutoff in total variation distance at the same critical time. The upper bound for the total variation distance can alternatively be obtained by using the Kullback estimate (2.40) and the Pinsker-Csiszár-Kullback inequality (Lemma 2.8.1). Since both distributions are tensor products, we could use alternatively the tensorization property of the total variation distance (Lemma 2.8.4) together with the one-dimensional version of the Gaussian formula for Kullback (Lemma 2.8.1) to obtain the result for the total variation. 

Remark 1 (Competition between bias and variance mixing

A n " c B n or c A n ! c B n .
This can be seen as a competition between bias and variance mixing. Remark 2 (Total variation discriminating event for small initial conditions). Let us introduce the random variable Z n 8 " P 0 n " N p0, 1 n I n q " N p0, 1 n q bn , in accordance with (2.38). There holds

S n t :" n ÿ i"1 pZ n,i t ´zn,i 0 e ´tq 2 " Gamma ´n 2 , n 2p1 ´e´2t q ¯and |Z n 8 | 2 " Gamma ´n 2 , n 2 
¯.
We can check, using an explicit computation of Hellinger and Kullback between Gamma distributions and the comparison between total variation and Hellinger distances (Lemma 2.8.1), that

C t :" distpLawpS n t q | Lawp|Z n 8 | 2 qq admits a cutoff at time c C n " c B n " 1 4
logpnq. Moreover, one can exhibit a discriminating event for the TV distance. Namely, we can observe that

› › ›Gamma ´n 2 , n 2p1 ´e´2t q ¯´Gamma ´n 2 , n 2 

¯› › ›

TV " Pp|Z n 8 | 2 ě α t q ´PpS n t ě α t q with α t the unique point where the two densities meet, which happens to be α t " ´e2t logp1 ´e´2t qp1 ´e´2t q.

From the explicit expressions (2. ż pf ´gq1 gďf dx " µpg ď f q ´νpg ď f q.

(2.50)

In particular, when µ " N pm 1 , σ 2 1 I n q and ν " N pm 2 , σ 2 2 I n q then gpxq ď f pxq is equivalent to

ψpxq :" |x ´m1 | 2 σ 2 1 ´|x ´m2 | 2 σ 2 2 ď n log σ 2 2 σ 2 1 , (2.51) 
for all x P R n , and therefore, with Z 1 " µ and Z 2 " ν, we get

}µ ´ν} TV " P ´ψpZ 1 q ď n log σ 2 2 σ 2 1 ¯´P ´ψpZ 2 q ď n log σ 2 2 σ 2 1 ¯. (2.52)
Let us assume from now on that m 2 " 0 and σ 1 ‰ σ 2 . We can then gather the quadratic terms as

ψpxq " ´1 ´σ2 1 σ 2 2 ¯|x ´m 1 | 2 σ 2 1 `´1 σ 2 1 ´1 p1 ´σ2 1 σ 2 2 qσ 2 1 ¯|m 1 | 2 where m1 :" 1 1 ´σ2 1 σ 2 2 m 1 . (2.53)
We observe at this step that the random variable

|Z 1 ´m 1 | 2 σ 2 1
follows a noncentral chi-squared distribution, which depends only on n and on the noncentrality parameter

λ 1 :" |m 1 ´m 1 | 2 σ 2 1 " σ 2 1 pσ 2 2 ´σ2 1 q 2 |m 1 | 2 .
(2.54)

Similarly, the random variable

|Z 2 ´m 1 | 2 σ 2 2
follows a noncentral chi-squared distribution, which depends only on n and on the noncentrality parameter

λ 2 :" | m1 | 2 σ 2 1 " σ 4 2 σ 2 1 pσ 2 2 ´σ2 1 q 2 |m 1 | 2 .
(2.55)

It follows that the law of ψpZ 1 q and the law of ψpZ 2 q depend over m 1 only via |m 1 |. Hence

ψpZ 1 q d " X 1 `¨¨¨`X n and ψpZ 2 q d " Y 1 `¨¨¨`Y n (2.56)
where X 1 , . . . , X n and Y 1 , . . . , Y n are two sequences of i.i.d. random variables for which the mean and variance depends only (and explicitly) on |m 1 |, σ 1 , σ 2 . Note in particular that these means and variances are given by 1 n the ones of ψpZ 1 q and ψpZ 2 q. Now we specialize to the case where µ " LawpZ n t q " N pz n 0 e ´t, 1´e ´2t n I n q and ν " LawpZ n 8 q " N p0, 1 n I n q " P 0 n , and we find ¯.

ErψpZ 1 qs " n ´1 ´σ2 t σ 2 8 ¯´|z n 0 | 2 e ´2t σ 2 
The other cases are similar.

General exactly solvable aspects

In this section, we prove Theorem 2.1.3 and Corollary 2.1.4. The proof of Theorem 2.1.3 is based on the fact that the polynomial functions πpxq " x 1 `¨¨¨x n and |x| 2 " x 2 1 `¨¨¨`x 2 n are, up to an additive constant for the second, eigenfunctions of the dynamics associated to the spectral values ´1 and ´2 respectively, and that their "carré du champ" is affine. In the matrix cases β P t1, 2u, these functions correspond to the dynamics of the trace, the dynamics of the squared Hilbert-Schmidt trace norm, and the dynamics of the squared trace. It is remarkable that this phenomenon survives beyond these matrix cases, yet another manifestation of the Gaussian "ghosts" concept due to Edelman, see for instance [START_REF] Edelman | The random matrix technique of ghosts and shadows. Markov Process[END_REF].

Proof of Theorem 2.1.3. The process Y t :" πpX n t q solves dY t "

n ÿ i"1 dX n,i t " c 2 n n ÿ i"1 dB i t ´n ÿ i"1 X n,i t dt `β n ÿ j‰i dt X n,i t ´Xn,j t .
By symmetry, the double sum vanishes. Note that the process W t :" 1 ? n ř n i"1 B i t is a standard one dimensional BM, so that dY t " ? 2dW t ´Yt dt. This proves the first part of the statement. We turn to the second part. Recall that X t P D n for all t ą 0. By Itô's formula

dpX n,i t q 2 " c 8 n X n,i t dB i t ´2pX n,i t q 2 dt `2 β n X n,i t ÿ j:j‰i dt X n,i t ´Xn,j t `2 n dt.
Set W t :"

ř n i"1 ş t 0 X n,i s |X n s | dB i s .
The process pW t q tě0 is a BM by the Lévy characterization since

xW y t " ż t 0 ř n i"1 pX n,i s q 2 |X n s | 2 ds " t.
Furthermore, a simple computation shows that

n ÿ i"1 X n,i t ÿ j:j‰i 1 X n,i t ´Xn,j t " npn ´1q 2 .
Consequently the process R t :"

|X n t | 2 solves dR t " c 8 n R t dW t `´2 `βpn ´1q ´2R t ¯dt,
and is therefore a CIR process of parameters a " 2 `βpn ´1q, b " 2, and σ " a 8{n. When d " β 2 n 2 `p1 ´β 2 qn is a positive integer, the last property of the statement follows from the connection between OU and CIR recalled right before the statement of the theorem.

The last proof actually relies on the following general observation. Let X be an n-dimensional continuous semi-martingale solution of dX t " σpX t qdB t `bpX t qdt where B is a n-dimensional standard BM, and where

x P R n Þ Ñ σpxq P M n,n pRq and x P R n Þ Ñ bpxq P R n
are Lipschitz. The infinitesimal generator of the Markov semigroup is given by

Gpf qpxq " 1 2 n ÿ i,j"1 a i,j pxqB i,j f pxq `n ÿ i"1
b i pxqB i f pxq, where apxq " σpxqpσpxqq J , for all f P C 2 pR n , Rq and x P R n . Then, by Itô's formula, the process M f " pM f t q tě0 given by M f t " f pX t q ´f pX 0 q ´ż t 0 pGf qpX s qds "

n ÿ i,k"1 ż t 0 B i f pX s qσ i,k pX s qdB k s
is a local martingale, and moreover, for all t ě 0,

xM f y t " ż t 0
Γpf qpX s qds where Γpf qpxq " |σpxq J ∇f pxq| 2 " apxq∇f ¨∇f.

The functional quadratic form Γ is known as the "carré du champ" operator. If f is an eigenfunction of G associated to the spectral value λ in the sense that Gf " λf (note by the way that λ ď 0 since G generates a Markov process), then we get

f pX t q " f pX 0 q `λ ż t 0 f pX s qds `M f t ,
in other words df pX t q " dM f t `λf pX t qdt.

Now if

Γpf q " c (as in the first part of the theorem), then by the Lévy characterization of Brownian motion, the continuous local martingale W :" 1 ? c M f starting from the origin is a standard BM and we recover the result of the first part of the theorem. On the other hand, if Γpf q " cf (as in the second part of the theorem), then by the Lévy characterization of BM the local martingale W :"

ż t 0 1 a cf pX s q dM f
s is a standard BM and we recover the result of the second part.

At this point, we observe that the infinitesimal generator of the CIR process R is the Laguerre partial differential operator Lpf qpxq " 4 n xf 2 pxq `p2 `βpn ´1q ´2xqf 1 pxq.

(2.57)

This operator leaves invariant the set of polynomials of degree less than or equal to k, for all integer k ě 0, a property inherited from (2.22). We will use this property in the following proof.

Proof of Corollary 2.1.4

By Theorem 2.1.3, Z " πpX n q is an OU process in R solution of the stochastic differential equation

Z 0 " πpX n 0 q, dZ t " ? 2dB t ´Zt dt,
where B is a standard one-dimensional BM. By Lemma 2.3.1, Z t " N pZ 0 e ´t, 1 ´e´2t q for all t ě 0 and the equilibrium distribution is P β n ˝π´1 " N p0, 1q. Using the contraction property stated in Lemma 2.8.2, the comparison between Hellinger and TV of Lemma 2.8.1 and the explicit expressions for Gaussian distributions of Lemma 2.8.5, we find

}LawpX n t q ´P β n } TV ě }LawpZ t q ´P β n ˝π´1 } TV ě Hellinger 2 pLawpZ t q, P β n ˝π´1 q " 1 ´p1 ´e´2t q 1{4 p1 ´1 2 e ´2t q 1{2 exp ´´πpX n 0 q 2 e ´2t 4p2 ´e´2t q ¯.
Setting c n :" logp|πpX n 0 q|q and assuming that lim nÑ8 c n " 8, we deduce that for all ε P p0, 1q lim nÑ8 }LawpX n cnp1´εq q ´P β n } TV " 1.

The comparison between Hellinger and TV of Lemma 2.8.1 allows to deduce that this remains true for the Hellinger distance.

We turn to Kullback. The contraction property stated in Lemma 2.8.2 and the explicit expressions for Gaussian distributions of Lemma 2.8.5 yield 2KullbackpLawpX n t q | P β n q ě 2KullbackpLawpZ t q | P β n ˝π´1 q " πpX n 0 q 2 e ´2t ´e´2t ´logp1 ´e´2t q.

This is enough to deduce that lim nÑ8

KullbackpLawpX n p1´εqcn q | P β n q " `8.

The situation is similar for χ 2 : the contraction property stated in Lemma 2.8.2 and the explicit expressions for Gaussian distributions of Lemma 2.8.5 yield χ 2 pLawpX n t q | P β n q ě χ 2 pLawpZ t q | P β n ˝π´1 q " ´1 `1 ?

1 ´e´4t exp ˆ1 1 `e´2t p1 ´πpX n 0 qe ´tq 2 ˙,
so that lim nÑ8 χ 2 pLawpX n p1´εqcn q | P β n q " `8. Using the explicit expressions for Gaussian distributions of Lemma 2.8.5, we thus find Wasserstein 2 pLawpX n t q, P β n q ě 1 n Wasserstein 2 pLawpZ t q, P β n ˝π´1 q " 1 n

Regarding the

´πpX n 0 q 2 e ´2t `2 ´e´2t ´2a 1 ´e´2t

¯.

Setting c n :" log ´|πpx n 0 q| ? n ¯and assuming c n Ñ 8 as n Ñ 8, we thus deduce that for all ε P p0, 1q lim nÑ8 WassersteinpLawpX n p1´εqcn q, P β n q " `8.

The random matrix cases

In this section, we prove Theorem 2.1.5 and Corollary 2.1.6 that cover the matrix cases β P t1, 2u.

For these values of β, the DOU process is the image by the spectral map of a matrix OU process, connected to the random matrix models GOE and GUE. We could consider the case β " 4 related to GSE. Beyond these three algebraic cases, it could be possible for an arbitrary β ě 1 to use random tridiagonal matrices dynamics associated to β Dyson processes, see for instance [START_REF] Holcomb | Tridiagonal models for dyson brownian motion[END_REF].

The next two subsections are devoted to the proof of Theorem 2.1.5 in the β " 2 and β " 1 cases respectively. The third section provides the proof of Corollary 2.1.6.

Hermitian case (β " 2)

Let Herm n be the set of n ˆn complex Hermitian matrices, namely the set of h P M n,n pCq with h i,j " h j,i for all 1 ď i, j ď n. An element h P Herm n is parametrized by the n 2 real variables ph i,i q 1ďiďn , pℜh i,j q 1ďiăjďn , pℑh i,j q 1ďiăjďn . We define, for h P Herm n and 1 ď i, j ď n, π i,j phq "

$ ' & ' % h i,i if i " j ? 2 ℜh i,j if i ă j ? 2 ℑh j,i if i ą j . (2.59) Note that Trph 2 q " n ÿ i,j"1 |h i,j | 2 " n ÿ i"1 h 2 i,i `2 ÿ iăj pℜh i,j q 2 `2 ÿ iăj pℑh i,j q 2 " ÿ i,j π i,j phq 2 .
We thus identify Herm n with R n ˆR2 n 2 ´n 2 " R n 2 , this identification is isometrical provided Herm n is endowed with the norm a Trph 2 q and R n 2 with the Euclidean norm.

The Gaussian Unitary Ensemble GUE n is the Gaussian law on Herm n with density

h P Herm n Þ Ñ e ´n 2 Trph 2 q C n where C n :" ż R n 2 e ´n 2 Trph 2 q n ź i"1 dh i,i ź iăj dℜh i,j ź iăj dℑh i,j . (2.60)
If H is a random n ˆn Hermitian matrix then H " GUE n if and only if the n 2 real random variables π i,j pHq, 1 ď i, j ď n, are independent Gaussian random variables with

π i,j pHq " N ´0, 1 n ¯, 1 ď i, j ď n. (2.61)
The law GUE n is the unique invariant law of the Hermitian matrix OU process pH t q tě0 on Herm n solution of the stochastic differential equation

H 0 " h 0 P Herm n , dH t " c 2 n dB t ´Ht dt, (2.62) 
where B " pB t q tě0 is a Brownian motion on Herm n , in the sense that the stochastic processes pπ i,j pB t qq tě0 , 1 ď i ‰ j ď n, are independent standard one-dimensional BM. The coordinates stochastic processes pπ i,j pH t qq tě0 , 1 ď i, j ď n, are independent real OU processes.

For any h in Herm n , we denote by Λphq the vector of the eigenvalues of h ordered in nondecreasing order. Lemma 2.5.1 below is an observation which dates back to the seminal work of Dyson [START_REF] Dyson | A Brownian-motion model for the eigenvalues of a random matrix[END_REF], hence the name DOU for X n . We refer to [START_REF] Erdős | A dynamical approach to random matrix theory[END_REF]Ch. 12] and [START_REF] Anderson | An introduction to random matrices[END_REF]Sec. 4.3] for a mathematical approach using modern stochastic calculus. Lemma 2.5.1 (From matrix OU to DOU). The image of GUE n by the map Λ is the Coulomb gas P β n given by (2.6) with β " 2. Moreover the stochastic process X n " pX n t q tě0 " pΛpH t qq tě0 is well-defined and solves the stochastic differential equation (2.3) with β " 2 and x n 0 " Λph 0 q.

Let β " 2. Let us assume from now on that the initial value h 0 P Herm n of pH t q tě0 has eigenvalues x n 0 where x n 0 is as in Theorem 2.1.5. We start by proving the upper bound on the χ 2 distance stated in Theorem 2.1.5: it will be an adaptation of the proof of the upper bound of Theorem 2.1.1 applied to the Hermitian matrix OU process pH t q tě0 combined with the contraction property of the χ 2 distance. Indeed, by Lemma 2.5.1 and the contraction property of Lemma 2.8.2 χ 2 pLawpX n t q | P β n q ď χ 2 pLawpH t q | GUE n q.

(2.63)

We claim now that the right-hand side tends to 0 as n Ñ 8 when t " t n is well chosen. Indeed, using the identification between Herm n and R n 2 mentioned earlier, we have GUE n " N pm 2 , Σ 2 q where m 2 " 0 and where Σ 2 is an n 2 ˆn2 diagonal matrix with pΣ 2 q pi,jq,pi,jq " 1 n .

(2.64)

On the other hand, the Mehler formula (Lemma 2.3.1) gives LawpH t q " N pm 1 , Σ 1 q where m 1 " e ´th 0 and where Σ 1 is an n 2 ˆn2 diagonal matrix with pΣ 1 q pi,jq,pi,jq " 1 ´e´2t n .

(2.65) Therefore, using Lemma 2.8.5, the analogue of (2.40) reads

χ 2 pLawpH t q | GUE n q " ´1 `1 p1 ´e´4t q n 2 {2 exp ˆn|h 0 | 2 e ´2t 1 `e´2t ˙.
(2.66)

where |h 0 | 2 " ÿ 1ďi,jďn π i,j ph 0 q 2 " ÿ 1ďi,jďn |ph 0 q i,j | 2 " Trph 2 0 q " |x n 0 | 2 .
(2.67)

Taking now c n :" logp ? n|x n 0 |q _ logp ? nq, for any ε P p0, 1q, we get χ 2 pLawpX n p1`εqcn q | P β n q ď χ 2 pLawpH p1`εqcn q | GUE n q ÝÑ nÑ8 0.

(2.68)

In the right-hand side of (2.66), the factor n 2 is the dimension of the R n 2 to which Herm n is identified, while the factor n in the first term is due to the 1{n scaling in the stochastic differential equation of the process. This explains the difference with the analogue (2.40) in dimension n.

From the comparison between TV, Hellinger, Kullback and χ 2 stated in Lemma 2.8.1, we easily deduce that the previous convergence remains true upon replacing χ 2 by TV, Hellinger or Kullback.

It remains to cover the upper bound for the Wasserstein distance. This distance is more sensitive to contraction arguments: according to Lemma 2.8.2, one needs to control the Lipschitz norm of the "contraction map" at stake. It happens that the spectral map, restricted to the set Herm n of n ˆn Hermitian matrices, is 1-Lipschitz: more precisely, the Hoffman-Wielandt inequality, see [START_REF] Hoffman | The variation of the spectrum of a normal matrix[END_REF] and [START_REF] Horn | Matrix analysis[END_REF]Th. 6.3.5], asserts that for any two such matrices A and B, denoting ΛpAq " pλ i pAqq 1ďiďn and ΛpBq " pλ i pBqq 1ďiďn the ordered sequences of their eigenvalues, we have

n ÿ i"1 |λ i pAq ´λi pBq| 2 ď ÿ i,j |A i,j ´Bi,j | 2 .
Applying Lemma 2.8.2, we thus deduce that WassersteinpLawpX n t q, P β n q ď WassersteinpLawpH t q, GUE n q.

(2.69)

Following the Gaussian computations in the proof of Theorem 2.1.2, we obtain Wasserstein 2 pLawpH t q, GUE n q " |x n 0 | 2 e ´2t `2 ´e´2t ´2a 1 ´e´2t .

(2.70)

Set c n :" logp|x n 0 |q. If c n Ñ 8 as n Ñ 8 then for all ε P p0, 1q we find

WassersteinpLawpX n p1`εqcn q, P β n q ÝÑ nÑ8 0.

This completes the proof of Theorem 2.1.5.

Symmetric case (β " 1)

The method is similar to the case β " 2. Let us focus only on the differences. Let Sym n be the set of n ˆn real symmetric matrices, namely the set of s P M n,n pRq with s i,j " s j,i for all 1 ď i, j ď n.

An element s P Sym n is parametrized by the n `n2 ´n 2 " npn`1q 2 real variables ps i,j q 1ďiďjďn . We define, for s P Sym n and 1 ď i ď j ď n, π i,j psq "

# s i,i if i " j ? 2 s i,j if i ă j . (2.71) Note that Trps 2 q " n ÿ i,j"1 s 2 i,j " n ÿ i"1 s 2 i,i `2 ÿ iăj s 2 i,j " ÿ 1ďiďjďn π i,j psq 2 .
We thus identify isometrically Sym n , endowed with the norm

a Trph 2 q, with R n ˆR n 2 ´n 2 " R npn`1q 2 
endowed with the Euclidean norm.

The Gaussian Orthogonal Ensemble GOE n is the Gaussian law on Sym n with density

s P Sym n Þ Ñ e ´n 2 Trps 2 q C n where C n :" ż R npn`1q 2 e ´n 2 Trps 2 q ź 1ďiďjďn ds i,j . (2.72)
If S is a random n ˆn real symmetric matrix then S " GOE n if and only if the npn`1q 2 real random variables π i,j pSq, 1 ď i ď j ď n, are independent Gaussian random variables with

π i,j pSq " N ´0, 1 n ¯, 1 ď i ď j ď n. (2.73)
The law GOE n is the unique invariant law of the real symmetric matrix OU process pS t q tě0 on Sym n solution of the stochastic differential equation

S 0 " s 0 P Sym n , dS t " c 2 n dB t ´St dt (2.74)
where B " pB t q tě0 is a Brownian motion on Sym n , in the sense that the stochastic processes pπ i,j pB t qq tě0 , 1 ď i ď j ď n, are independent standard one-dimensional BM. The coordinates stochastic processes pπ i,j pS t qq tě0 , 1 ď i ď j ď n, are independent real OU processes. For any s in Sym n , we denote by Λpsq the vector of the eigenvalues of s ordered in non-decreasing order. Lemma 2.5.2 below is the real symmetric analogue of Lemma 2.5.1.

Lemma 2.5.2 (From matrix OU to DOU). The image of GOE n by the map Λ is the Coulomb gas P β n given by (2.6) with β " 1. Moreover the stochastic process X n " pX n t q tě0 " pΛpS t qq tě0 is well-defined and solves the stochastic differential equation (2.3) with β " 1 and x n 0 " Λps 0 q. As for the case β " 2, the idea now is that the DOU process is sandwiched between a real OU process and a matrix OU process.

By similar computations to the case β " 2, the analogue of (2.66) becomes

χ 2 pLawpH t q | GOE n q " ´1 `1 p1 ´e´4t q pnpn`1qq 2 8 exp ˆn|h 0 | 2 e ´2t 1 `e´2t ˙. (2.75)
This allows to deduce the upper bound for TV, Hellinger, Kullback and χ 2 . Regarding the Wasserstein distance, the analogue of (2.70) reads

Wasserstein 2 pLawpS t q, GOE n q " |x n 0 | 2 e ´2t `2 ´e´2t ´2a 1 ´e´2t . (2.76)
If lim nÑ8 logp|x n 0 |q " 8 then we deduce the asserted result, concluding the proof of Theorem 2.1.5.

Proof of Corollary 2.1.6

Let β P t1, 2u. Recall the definitions of a n and c n from the statement. Take x n,i 0 " a n for all i, and note that πpx n 0 q " na n . Given our assumptions on a n , Corollary 2.1.4 yields for this particular choice of initial condition and for any ε P p0, 1q lim nÑ8 distpLawpX n p1´εqcn q | P β n q " max .

On the other hand, in the proof of Theorem 2.1.5 we saw that

χ 2 pLawpX n t q | P β n q ď ´1 `1 p1 ´e´4t q bn{2 exp ˆn|x n 0 | 2 e ´2t 1 `e´2t ˙,
where b n " n 2 for β " 2 and b n " pnpn `1q{2q 2 for β " 1. Since |x n 0 | ď ? na n for all x n 0 P r´a n , a n s n , and given the comparison between TV, Hellinger, Kullback and χ 2 stated in Lemma 2.8.1 we obtain for dist P tTV, Hellinger, Kullback, χ 2 u and for all ε P p0, 1q lim nÑ8 sup

x n 0 Pr´an,ans n distpLawpX n p1`εqcn q | P β n q " 0, thus concluding the proof of Corollary 2.1.6 regarding theses distances. Concerning Wasserstein, the proof of Theorem 2.1.5 shows that for any x n 0 P r´a n , a n s n we have Wasserstein 2 pLawpX n t q, P β n q ď |x n 0 | 2 e ´2t `2 ´e´2t ´2a

1 ´e´2t ď na 2 n e ´2t `2 ´e´2t ´2a 1 ´e´2t . If ? na n Ñ 8, then for c n " logp ?
na n q we deduce that for all ε P p0, 1q lim nÑ8 sup

x n 0 Pr´an,ans n distpLawpX n p1`εqcn q | P β n q " 0.

Cutoff phenomenon for the DOU in TV and Hellinger

In this section, we prove Theorem 2.1.7 and Corollary 2.1.8 for the TV and Hellinger distances. We only consider the case β ě 1, although the arguments could be adapted mutatis mutandis to cover the case β " 0: note that the result of Theorem 2.1.7 and Corollary 2.1.8 for β " 0 can be deduced from Theorem 2.1.2. At the end of this section, we also provide the proof of Theorem 2.1.10.

Proof of Theorem 2.1.7 in TV and Hellinger

By the comparison between TV and Hellinger stated in Lemma 2.8.1, it suffices to prove the result for the TV distance, so we concentrate on this distance until the end of this section. Our proof is based on the exponential decay of the relative entropy at an explicit rate given by the optimal logarithmic Sobolev constant. However, this requires the relative entropy of the initial condition to be finite. Consequently, we proceed in three steps. First, given an arbitrary initial condition x n 0 P D n , we build an absolutely continuous probability measure µ x n 0 on D n that approximates δ x n 0 and whose relative entropy is not too large. Second, we derive a decay estimate starting from this regularized initial condition. Third, we control the total variation distance between the two processes starting respectively from δ x n 0 and µ x n 0 .

Regularization

In order to have a finite relative entropy at time 0, we first regularize the initial condition by smearing out each particle in a ball of radius bounded below by n ´pκ`1q , for some κ ą 0. Let us first introduce the regularization at scale η of a Dirac distribution δ z , z P R by δ pηq z pduq " Uniformprz, z `ηsqpduq " η ´11 rz,z`ηs du. Given x P D n and κ ą 0, we define a regularized version of δ x at scale n ´κ, that we denote µ x , by setting

µ x " b n i"1 δ pηq x i `3iη , (2.77) 
where η :" n ´pκ`1q . The parameters have been tuned in such a way that, independently of the choice of x P D n , the following properties hold. The supports of the Dirac masses δ pηq x i `3iη , i P t1, . . . , nu, lie at distance at least η from each other. The volume of the support of µ x is equal to η n , and therefore the relative entropy of µ x with respect to the Lebesgue measure is not too large. Finally, provided X n 0 " x and Y n 0 is distributed according to µ x , almost surely |X n 0 ´Y n 0 | 8 ď p3n `1qη.

Convergence of the regularized process to equilibrium

Lemma 2.6.1 (Convergence of regularized process). Let pY n t q tě0 be a DOU process solution of (2.3), β ě 1, and let P β n be its invariant law. Assume that LawpY n 0 q is the regularized measure µ x n 0 in (2.77) associated to some initial condition x n 0 P D n . Then there exists a constant C ą 0, only depending on κ, such that for all t ě 0, all n ě 2 and all x n 0 P D n

KullbackpLawpY n t q | P β n q ď Cpn|x n 0 | 2 `n2 logpnqqe ´2t .
Proof of Lemma 2.6.1. By Lemma 2.8.7 and since LawpY n 0 q " µ x n 0 , for all t ě 0, there holds

KullbackpLawpY n t q | P β n q ď Kullbackpµ x n 0 | P β n qe ´2t . (2.78)
Now we have

Kullbackpµ x n 0 | P β n q " E µ x n 0 " log dµ x n 0 dP β n ȷ .
Recall the definition of S in (2.15). As P β n has density e ´E C β n , we may re-write this as

Kullbackpµ x n 0 | P β n q " Spµ x n 0 q `Eµ x n 0 rEs `log C β n . (2.79) Recall the partition function C β ˚n " n!C β n from Subsection 2.2.2.
It is proved in [START_REF] Ben | Large deviations for Wigner's law and Voiculescu's non-commutative entropy[END_REF], using explicit expressions involving Gamma functions via a Selberg integral, that for some constant

C ą 0 log C β n ď log C β ˚n ď Cn 2 . (2.80) 
Next, we claim that Spµ x n 0 q ď n logpn 1`κ q. Indeed since µ x n 0 is a product measure, the tensorization property of entropy recalled in Lemma 2.8.4 gives

Kullbackpµ x n 0 | dxq " n ÿ i"1 Kullbackpδ pηq 0 | dxq.
Moreover an immediate computation yields Kullbackpδ pηq 0

| dxq " logpη ´1q so that, given the definition of η, we get Kullbackpµ x n 0 | dxq " n logpn κ`1 q.

(2.81)

We turn to the estimation of the term E µ x n 0 rEs. The confinement term can be easily bounded:

E µ x n 0 « n 2 n ÿ i"1 x 2 i ff ď pn|x n 0 | 2 `n2 η 2 q.
Let us now estimate the logarithmic energy of µ x n 0 . Using the fact that the logarithmic function is increasing, together with the fact the supports of δ pηq x i `3iη lie at distance at least η from each other, we notice that for any i ą j there holds

E µ x n 0 rlog |x i ´xj |s " ij log |x ´y|δ pηq x i `3iη pdxqδ pηq x j `3jη pdyq ě ij log |x ´y|δ pηq 3η pdxqδ pηq 0 pdyq ě log η.
It follows that the initial logarithmic energy cannot be much larger than n 2 log n:

E µ x n 0 « ÿ iąj log 1 |x i ´xj | ff ď npn ´1q 2 log n κ`1 .
This implies that there exists a constant C ą 0, only depending on κ, such that for all n ě 2 

E µ x n 0 rEs " E µ x n 0 « n 2 n ÿ i"1 |x i | 2 `β ÿ iąj log 1 |x i ´xj | ff ď C `n|x n 0 | 2 `n2 log n ˘. ( 2 
Kullbackpµ x n 0 | P β n q ď C `n|x n 0 | 2 `n2 log n ˘.
This bound, combined with (2.78), concludes the proof of Lemma 2.6.1.

Convergence to the regularized process in total variation distance

Let pX n t q tě0 and pY n t q tě0 be two DOU processes with X n 0 " x n 0 and LawpY n 0 q " µ x n 0 , where the measure µ x n 0 is defined in (2.77). Below we prove that, as soon as the parameter κ is large enough, the total variation distance between LawpX n t q and LawpY n t q tends to 0, for any fixed t ą 0. Note that at time 0, almost surely, there holds X n,i 0 ď Y n,i 0 , for every i P t1, . . . , nu. We now introduce a coupling of the processes pX n t q tě0 and pY n t q tě0 that preserves this ordering at all times. Consider two independent standard BM B n and W n in R n . Let X n be the solution of (2.3) driven by B n , and let Y n be the solution of

dY n,i t " c 2 n ´1tY n,i t ‰X n,i t u dW i t `1tY n,i t "X n,i t u dB i t ¯´Y n,i t dt `β n ÿ j‰i dt Y n,i t ´Y n,j t , 1 ď i ď n.
We denote by P the probability measure under which these two processes are coupled. Let us comment on the driving noise in the equation satisfied by Y n . When the i-th coordinates of X n and Y n equal, we take the same driving Brownian motion and the difference Y n,i ´Xn,i remains non-negative due to the convexity of ´log, see the monotoncity result stated in Lemma 2.8.9. On the other hand, when these two coordinates differ, we take independent driving Brownian motions in order for their difference to have non-zero quadratic variation (this allows to increase their merging probability). Under this coupling, the ordering of X n and Y n is thus preserved at all times, and if X n s " Y n s for some s ě 0, then it remains true at all times t ě s. Note however that if X n,i s " Y n,i s , then this equality does not remain true at all times except if all the coordinates match.

As in (2.91), the total variation distance between the laws of X n t and Y n t may be bounded by

}LawpY n t q ´LawpX n t q} TV ď PpX n t ‰ Y n t q,
for all t ě 0. We wish to establish that for any given t ą 0, lim nÑ8

PpX n t ‰ Y n t q " 0.

To do so, we work with the area between the two processes X n and Y n , defined by

A n t :" n ÿ i"1 `Y n,i t ´Xn,i t ˘" πpY n t q ´πpX n t q, t ě 0.
As the two processes are ordered at any time, this is nothing but the geometric area between the two discrete interfaces i Þ Ñ X n,i t and i Þ Ñ Y n,i t associated to the configurations X n t and Y n t . We deduce that the merging time of the two processes coincide with the hitting time of 0 by this area, that we denote by τ " inftt ě 0 : A n t " 0u. The process A n has a very simple structure: it is a semimartingale that behaves like an OU process with a randomly varying quadratic variation. Let N t be the number of coordinates that do not coincide at time t, that is

N t :" # ␣ i P t1, . . . , nu : X n,i t ‰ Y n,i t ( .
Then A n satisfies dA n t " ´An t dt `dM t , where M is a centered martingale with quadratic variation

dxM y t " 2 n N t dt. (2.83)
Note that whenever t ă τ we have

dxM y t ě 2 n .
This a priori lower bound on the quadratic variation of M , combined with the Dubins-Schwarz theorem, allows to check that τ ă 8 almost surely. Note that in view of the coupling between X n t and Y n t , we have X n t " Y n t for all t ě τ .

Recall the following informal fact: with large probability, a Brownian motion starting from a hits b by a time of order pa ´bq 2 . For a continuous martingale, this becomes: with large probability, a continuous martingale starting from a accumulates a quadratic variation of order pa ´bq 2 up to its first hitting time of b. Our next lemma states such a bound on the supermartingale A n . Lemma 2.6.2. Let a ą b ě 0. Let τ b " inftt ą 0 : A t " bu ă 8 almost surely. Then, for all u ě 1,

PpxAy τ b ě pa ´bq 2 u | A 0 " aq ď 4u ´1{2 .
Proof. Without loss of generality one can assume that A 0 " a almost surely. By Itô's formula, for all λ ě 0, the process

S t " exp ´´λA t ´λ2 2 xAy t ¯,
defines a submartingale (taking its values in r0, 1s). Doob's stopping theorem yields

Ere ´λ2 2 xAyτ b s " e λb ErS τ b s ě e λb ErS 0 s " e ´λpa´bq .
On the other hand, for λ " 2pa ´bq ´1u ´1{2 , there holds

Ere ´λ2 2 xAyτ b s ď P `xAy τ b ă pa ´bq 2 u ˘`e ´λ2 2 pa´bq 2 u P `xAy τ b ě pa ´bq 2 u ď 1 ´p1 ´e´λ 2 2 pa´bq 2 u qP `xAy τ b ě pa ´bq 2 u ď 1 ´1 2 P `xAy τ b ě pa ´bq 2 u ˘.

Consequently one deduces that

PpxAy τ b ě pa ´bq 2 uq ď 2p1 ´e´λpa´bq q ď 4u ´1{2 .

We are now ready to prove the following lemma:

Lemma 2.6.3. If κ ą 3 2 , then for every sequence of times pt n q n with lim nÑ8 t n ą 0, we have

lim nÑ8 sup x n 0 PDn
}LawpY n tn q ´LawpX n tn q} TV " 0.

Proof of Lemma 2.6.3. Let pt n q n be a sequence of times such that lim nÑ8 t n ą 0. In view of the definition of µ x n 0 and η, the initial area satisfies almost surely

A n 0 ď 4n 1´κ .
According to Lemma 2.6.2, with a probability that goes to 1, one has

xA n y τ ´xA n y 0 ă 16n 2´2κ log n.
On the other hand, by (2.83), we have the following control on the quadratic variation:

xAy τ ´xAy 0 ě 2 n τ.
One deduces that, with a probability that goes to 1,

τ ď 16 2 n 3´2κ log n,
and this quantity goes to 0 as n Ñ 8, whenever κ ą 3 2 . Therefore for κ ą 3 2 , there holds

lim nÑ8 sup x n 0 PDn
PpX n tn ‰ Y n tn q " 0, thus concluding the proof of Lemma 2.6.3.

Proof of Theorem 2.1.7 in TV and Hellinger. Let κ ą 3 2 and fix some initial condition x n 0 P D n . By the triangle inequality for TV, there holds }LawpX n t q ´P β n } TV ď }LawpY n t q ´P β n } TV `}LawpX n t q ´LawpY n t q} TV .

(2.84)

Taking t " t n p1 `εq with t n " logp ? n|x n 0 |q _ logpnq, one deduces from Lemma 2.6.1 and the Pinsker inequality stated in Lemma 2.8.1 that the first term in the right-hand side of (2.84) vanishes as n tends to infinity. Meanwhile Lemma 2.6.3 guaranties that the second term tends to 0 as n tends to infinity. We also conclude using the comparison between TV and Hellinger (see Lemma 2.8.1) that lim nÑ8

HellingerpLawpX n tn q, P β n q " 0.

Proof of Corollary 2.1.8 in TV and Hellinger

Proof of Corollary 2.1.8 in TV and Hellinger. By Lemma 2.8.1 and the triangle inequality for TV, we have sup

x n 0 Pr´an,ans n }LawpX n t q ´P β n } TV ď sup

x n 0 Pr´an,ans n }LawpY n t q ´LawpX n t q} TV `sup

x n 0 Pr´an,ans n b 2 KullbackpLawpY n t q | P β n q.
Take t " p1 `εqc n with c n " logpna n q. Lemmas 2.6.1 and 2.6.3, combined with the assumption made on pa n q, show that the two terms on the right-hand side vanish as n Ñ 8. Using Lemma 2.8.1, the same result holds for Hellinger.

On the other hand, take x n,i 0 " a n for all i and note that πpx n 0 q " na n goes to `8 as n Ñ 8. By Corollary 2.1.4 we find lim nÑ8 sup

x n 0 Pr´an,ans n distpLawpX n p1´εqcn q | P β n q " 1 whenever dist P tTV, Hellingeru.

Proof of Theorem 2.1.10

Proof of Theorem 2.1.10. Lower bound. The contraction property provided by Lemma 2.8.2 gives

KullbackpLawpX n t q | P β n q ě KullbackpLawpπpX n t qq | P β n ˝π´1 q.
By Theorem 2.1.3 P n ˝π´1 " N p0, 1q and Y " πpX n q is an OU process weak solution of Y 0 " πpX n 0 q and dY t " ? 2dB t ´Yt dt. In particular for all t ě 0, LawpY t q is a mixture of Gaussian laws in the sense that for any measurable test function g with polynomial growth, E LawpYtq rgs " ErgpY t qs " ErG t pY 0 qs where G t pyq " E N pye ´t,1´e ´2t q rgs. Now we use (again) the variational formula used in the proof of Lemma 2.8.2 to get

KullbackpLawpπpX n t qq | P β n ˝π´1 q " sup g tE LawpπpX n t qq rgs ´log E N p0,1q re g su,
and taking for g the linear function defined by gpxq " λx for all x P R and for some λ ‰ 0 yields

KullbackpLawpπpX n t qq | P β n ˝π´1 q ě λe ´t n ÿ i"1 ż xµ i pdxq ´λ2 2 .
Finally, by using the assumption on first moment and taking λ small enough we get, for all ε P p0, 1q, lim nÑ8

KullbackpLawpπpX n p1´εq logpnq q | P β n ˝π´1 q " `8,

Upper bound. From Lemma 2.8.7 we have, for all t ě 0, KullbackpLawpX n t q | P β n q ď KullbackpLawpX n 0 q | P β n qe ´2t . Arguing like in the proof of Lemma 2.6.1 and using the contraction property of Kullback provided by Lemma 2.8.2 for the map Ψ defined in (2.17), we can write the following decomposition

KullbackpLawpX n 0 q | P β n q ď Kullbackpb n i"1 µ i | P β ˚nq " Spb n i"1 µ i q `Eb n i"1 µ i rEs `log C β ˚n ď n ÿ i"1 Spµ i q `ÿ i‰j ij Φdµ i b dµ j `Cn 2 .
Combining (2.80) with the assumptions on the µ i 's yields for some constant C ą 0 KullbackpLawpX n 0 q | P β n q ď Cn 2 and it follows finally that for all ε P p0, 1q, lim nÑ8 KullbackpLawpX p1`εq logpnq q | P β n q " 0. 

Cutoff phenomenon for the DOU in Wasserstein

in Wasserstein

Let pX t q tě0 be the DOU process. By Lemma 2.8.7, for all t ě 0 and all initial conditions X 0 P D n , Wasserstein 2 pLawpX t q, P β n q ď e ´2t Wasserstein 2 pLawpX 0 q, P β n q.

Suppose now that LawpX n 0 q " δ x n 0 . Then the triangle inequality for the Wasserstein distance gives

Wasserstein 2 pδ x n 0 , P β n q " ż |x n 0 ´x| 2 P β n pdxq ď 2|x n 0 | 2 `2 ż |x| 2 P β n pdxq.
By Theorem 2.1.3, the mean at equilibrium of |X n t | 2 equals 1 `β 2 pn ´1q and therefore

ż |x| 2 P β n pdxq " 1 `β 2 pn ´1q.
We thus get

Wasserstein 2 pLawpX n t q, P β n q ď 2p|x n 0 | 2 `1 `β 2 pn ´1qqe ´2t .
Set c n :" logp|x n 0 |q _ logp ? nq. For any ε P p0, 1q, we have

lim nÑ8
WassersteinpLawpX n p1`εqcn q, P β n q " 0 and this concludes the proof of Theorem 2.1.7 in the Wasserstein distance.

Regarding the proof of Corollary 2.1.8, if

x n 0 P r´a n , a n s n then |x n 0 | ď ? na n . Therefore if inf n a n ą 0, setting c n " logp ?
na n q we find, as required,

lim nÑ8 sup x n 0 Pr´an,ans n
WassersteinpLawpX n p1`εqcn q, P β n q " 0.

Proof of Theorem 2.1.9

This is an adaptation of the previous proof. We compute

Wasserstein 2 pδ x n 0 , P β n q " ż |x n 0 ´x| 2 P β n pdxq ď 2 |x n 0 ´ρn | 2 `2 ż |ρ n ´x| 2 P β n pdxq,
where ρ n P D n is the vector of the quantiles of order 1{n of the semi-circle law as in (2. WassersteinpLawpX n p1`εqtn q, P β n q " 0.

On the other hand, if |x n 0 ´ρn | converges to some limit α then we easily get, for any t ě 0, lim nÑ8 Wasserstein 2 pLawpX n t q, P β n q ď α 2 e ´2t .

Remark 3 (High-dimensional phenomena). With X n " P β n , in the bias-variance decomposition

ż |ρ n ´x| 2 P β n pdxq " |EX n ´ρn | 2 `Ep|X n ´EX n | 2 q,
the second term of the right hand side is a variance term that measures the concentration of the log-concave random vector X n around its mean EX n , while the first term in the right hand side is a bias term that measures the distance of the mean EX n to the mean-field limit ρ n . Note also that

Ep|X n ´EX n | 2 q " Ep|X n | 2 q ´|EX n | 2 " 1 `β 2 pn ´1q ´|EX n | 2
, reducing the problem to the mean. We refer to [START_REF] Gustavsson | Gaussian fluctuations of eigenvalues in the GUE[END_REF] for a fine asymptotic analysis in the determinantal case β " 2.

Appendix

Distances and divergences

We use the following standard distances and divergences to quantify the trend to equilibrium of Markov processes and to formulate the cutoff phenomena.

The Wasserstein-Kantorovich-Monge transportation distance of order 2 and with respect to the underlying Euclidean distance is defined for all probability measures µ and ν on R n by

Wassersteinpµ, νq " ´inf pX,Y q Er|X ´Y | 2 s ¯1{2 P r0, `8s (2.85) 
where |x| " a x 2 1 `¨¨¨`x 2 n and where the inf runs over all couples pX, Y q with X " µ and Y " ν. The total variation distance between probability measures µ and ν on the same space is

}µ ´ν} TV " sup A |µpAq ´νpAq| P r0, 1s (2.86) 
where the supremum runs over Borel subsets. If µ and ν are absolutely continuous with respect to a reference measure λ with densities f µ and f ν then }µ ´ν} TV " 1 2 ş |f µ ´fν |dλ " 1 2 }f µ ´fν } L 1 pλq . The Hellinger distance between probability measures µ and ν with densities f µ and f ν with respect to the same reference measure λ is

Hellingerpµ, νq " ´ż 1 2 p a f µ ´af ν q 2 dλ ¯1{2 " ´1 ´ż a f µ f ν dλ ¯1{2 P r0, 1s. (2.87) 
This quantity does not depend on the choice of λ. We have Hellingerpµ, νq "

1 ? 2 } a f µ ´?f ν } L 2 pλq .
Note that an alternative normalization is sometimes considered in the literature, making the maximal value of the Hellinger distance equal ? 2.

The Kullback-Leibler divergence or relative entropy is defined by

Kullbackpν | µq " ż log dν dµ dν " ż dν dµ log dν dµ dµ P r0, `8s (2.88)
if ν is absolutely continuous with respect to µ, and Kullbackpν | µq " `8 otherwise.

The χ 2 divergence or relative variance is given by

χ 2 pν | µq " › › › dν dµ ´1› › › 2 L 2 pµq " ż ˇˇˇd ν dµ ´1ˇˇˇˇ2 dµ " } dν dµ } 2 L 2 pµq ´1 P r0, `8s. (2.89)
We set it to `8 if ν is not absolutely continuous with respect to µ. If µ and ν have densities f µ and f ν with respect to a reference measure λ then χ 2 pν | µq " ş pf 2 ν {f µ qdλ ´1. The (logarithmic) Fisher information or divergence is defined by

Fisherpν | µq " ż ˇˇ∇ log dν dµ ˇˇ2 dν " ż |∇ dν dµ | 2 dν dµ dµ " 4 ż ˇˇ∇ b dν dµ ˇˇ2 dµ P r0, `8s (2.90)
if ν is absolutely continuous with respect to µ, and Fisherpν | µq " `8 otherwise. Each of these distances or divergences has its advantages and drawbacks. In some sense, the most sensitive is Fisher due to its Sobolev nature, then χ 2 , then Kullback which can be seen as a sort of L 1`" L log L norm, then TV and Hellinger which are comparable, then Wasserstein, but this rough hierarchy misses some subtleties related to some scales and nature of the arguments.

Some of these distances or divergences can generically be compared as the following result shows.

Lemma 2.8.1 (Inequalities). For any probability measures µ and ν on the same space,

}µ ´ν} 2 TV ď 2Kullbackpν | µq 2Hellinger 2 pµ, νq ď Kullbackpν | µq Kullbackpν | µq ď 2χpν | µq `χ2 pν | µq Hellinger 2 pµ, νq ď }µ ´ν} TV ď Hellingerpµ, νq a 2 ´Hellingerpµ, νq 2 .
We refer to [208, p. 61-62] for a proof. The inequality between the total variation distance and the relative entropy is known as the Pinsker or Csiszár-Kullback inequality, while the inequalities between the total variation distance and the Hellinger distance are due to Kraft. There are many other metrics between probability measures, see for instance [START_REF] Svetlozar | Probability metrics and the stability of stochastic models[END_REF][START_REF] Gibbs | On choosing and bounding probability metrics[END_REF] for a discussion.

The total variation distance can also be seen as a special Wasserstein distance of order 1 with respect to the atomic distance, namely

}µ ´ν} TV " inf pX,Y q PpX ‰ Y q " inf pX,Y q Er1 X‰Y s P r0, 1s (2.91) 
where the infimum runs over all couplings X " µ and Y " ν. This explains in particular why TV is more sensitive than Wasserstein at short scales but less sensitive at large scales, a consequence of the sensitivity difference between the underlying atomic and Euclidean distances. The probabilistic representations of TV and Wasserstein make them compatible with techniques of coupling, which play an important role in the literature on convergence to equilibrium of Markov processes.

We gather now useful results on distances and divergences.

Lemma 2.8.2 (Contraction properties). Let µ and ν be two probability measures on a same measurable space S. Let f : S Þ Ñ T be a measurable function, where T is another measurable space.

• If dist P tTV, Kullback, χ 2 u then

distpν ˝f ´1 | µ ˝f ´1q ď distpν | µq. • If S " R n , T " R k then, denoting }f } Lip " sup x‰y |f pxq´f pyq| |x´y| , Wassersteinpµ ˝f ´1, ν ˝f ´1q ď }f } Lip Wassersteinpµ, νq.
The notation f ´1 stands for the reciprocal map f ´1pAq " ty P S : f pxq P Au and µ ˝f ´1 is the image measure or push-forward of µ by the map f , defined by pµ ˝f ´1qpAq " µpf ´1pAqq. In terms of random variables we have Y " µ ˝f ´1 if and only Y " f pXq where X " µ.

The proof of the contraction properties of Lemma 2.8.2 are all based on variational formulas. Note that following [START_REF] Villani | Optimal transport. Old and new[END_REF]Ex. 22.20 p. 588], there is a variational formula for Fisher that comes from its dual representation as an inverse Sobolev norm. We do not develop this idea in this work.

Proof. The proof of the contraction property for Wasserstein comes from the fact that every coupling of µ and ν produces a coupling for µ ˝f ´1 and ν ˝f ´1. Regarding TV, the contraction property is a consequence of the definition of this distance and of measurability. In the case of Kullback, the property can be proved using the following well known variational formula:

Kullbackpν | µq " sup g tE ν rgs ´log E µ re g su
where the supremum runs over all g P L 1 pνq, or by approximation when the supremum runs over all bounded measurable g. This variational formula can be derived for instance by applying Jensen's inequality to ´log E ν re g dµ dν s. Equality is achieved for g " logpdν{dµq. Now, taking g " h ˝f gives

Kullbackpν | µq ě E ν˝f ´1 rhs ´log E µ˝f ´1 re h s,
and it remains to take the supremum over h to get

Kullbackpν | µq ě Kullbackpν ˝f ´1 | µ ˝f ´1q.
The variational formula for Kullbackp¨| µq is a manifestation of its convexity, it expresses this functional as the envelope of its tangents, its Fenchel-Legendre transform or convex dual is the log-Laplace transform. Such a variational formula is equivalent to tensorization, and is available for all Φ-entropies such that pu, vq Þ Ñ Φ 2 puqv 2 is convex, see [START_REF] Chafaï | Binomial-Poisson entropic inequalities and the M/M/8 queue[END_REF]Th. 4.4]. In particular, the analogous variational formula as well as the consequence in terms of contraction are also available for χ 2 which corresponds to the Φ-entropy with Φpuq " u 2 ´1 (variance as a Φ-entropy).

Lemma 2.8.3 (Scale invariance versus homogeneity). The total variation distance is scale invariant while the Wasserstein distance is homogeneous just like a norm, namely for all probability measures µ and ν on R n and all scaling factor σ P p0, 8q, denoting µ σ " LawpσXq where X " µ, we have }µ σ ´νσ } TV " }µ ´ν} TV while Wassersteinpµ σ , ν σ q " σWassersteinpµ, νq.

Proof. For the Wasserstein distance, the result follows from

Wassersteinpµ σ , ν σ q " ´inf pX,Y q Er|σX ´σY | 2 s ¯1{2 " σWassersteinpµ, νq ,
while for the TV distance, it comes from the fact that A Þ Ñ A σ :" tσx : x P Au is a bijection.

We turn to the behavior of the distances/divergences under tensorization.

Lemma 2.8.4 (Tensorization). For all probability measures µ 1 , . . . , µ n and ν 1 , . . . , ν n on R, we have

Hellinger 2 pb n i"1 µ i , b n i"1 ν i q " 1 ´n ź i"1 ´1 ´Hellinger 2 pµ i , ν i q ¯, Kullbackpb n i"1 ν i | b n i"1 µ i q " n ÿ i"1 Kullbackpν i | µ i q, χ 2 pb n i"1 µ i | b n i"1 ν i q " ´1 `n ź i"1
pχ 2 pµ i , ν i q `1q,

Fisherpb n i"1 ν i | b n i"1 µ i q " n ÿ i"1 Fisherpν i | µ i q, Wasserstein 2 pb n i"1 µ i , b n i"1 ν i q " n ÿ i"1 Wasserstein 2 pµ i , ν i q, max 1ďiďn }µ i ´νi } TV ď } b n i"1 µ i ´bn i"1 ν i } TV ď n ÿ i"1 }µ i ´νi } TV .
The equality for the Wasserstein distance comes by taking the product of optimal couplings. The first inequality for the total variation distance comes from its contraction property (Lemma 2.8.2), while the second comes from |pa 1 ¨¨¨a n q ´pb 1 ¨¨¨b n q| ď ř n i"1 |a i ´bi |pa 1 ¨¨¨a i´1 qpb i`1 ¨¨¨b n q, a 1 , . . . , a n , b 1 , . . . , b n P r0, `8q, which comes itself from the triangle inequality on the telescoping sum ř n i"1 pc i ´ci´1 q where c i " pa 1 ¨¨¨a i qpb i`1 ¨¨¨b n q via c i ´ci´1 " pa i ´bi qpa 1 ¨¨¨a i´1 qpb i`1 ¨¨¨b n q.

Lemma 2.8.5 (Explicit formulas for Gaussian distributions). For all n ě 1, m 1 , m 2 P R n , and all n ˆn covariance matrices Σ 1 , Σ 2 , denoting Γ 1 " N pµ 1 , Σ 1 q and Γ 2 " N pµ 2 , Σ 2 q, we have

Hellinger 2 pΓ 1 , Γ 2 q " 1 ´detpΣ 1 Σ 2 q 1{4 detp Σ 1 `Σ2 2 q 1{2
e ´1 4 pΣ 1 `Σ2 q ´1pm 2 ´m1 q¨pm 2 ´m1 q ,

2KullbackpΓ 1 | Γ 2 q " Σ ´1 2 pm 1 ´m2 q ¨pm 1 ´m2 q `TrpΣ ´1 2 Σ 1 ´In q `log detpΣ 2 Σ ´1 1 q, χ 2 pΓ 1 | Γ 2 q " ´1 `detpΣ 2 q a detpΣ 1 q detp2Σ 2 ´Σ1 q e 1 2 pΣ ´1 2 `p2Σ 2 Σ ´1 1 Σ 2 ´Σ2 q ´1qpm 2 ´m1 q¨pm 2 ´m1 q , FisherpΓ 1 | Γ 2 q " |Σ ´1 2 pm 1 ´m2 q| 2 `TrpΣ ´2 2 Σ 1 ´2Σ ´1 2 `Σ´1 1 q Wasserstein 2 pΓ 1 , Γ 2 q " |m 1 ´m2 | 2 `Tr ´Σ1 `Σ2 ´2b a Σ 1 Σ 2 a Σ 1 ¯,
where the formula for χ 2 pΓ 1 | Γ 2 q holds if 2Σ 2 ą Σ 1 , and χ 2 pΓ 1 | Γ 2 q " `8 otherwise. Moreover the formulas for Fisher and Wasserstein rewrite, if

Σ 1 and Σ 2 commute, Σ 1 Σ 2 " Σ 2 Σ 1 , to FisherpΓ 1 | Γ 2 q " |Σ ´1 2 pm 1 ´m2 q| 2 `TrpΣ ´2 2 pΣ 2 ´Σ1 q 2 Σ ´1 1 q Wasserstein 2 pΓ 1 , Γ 2 q " |m 1 ´m2 | 2 `Trpp a Σ 1 ´aΣ 2 q 2 q.
Regarding the total variation distance, there is no general simple formula for Gaussian laws, but we can use for instance the comparisons with Kullback and Hellinger (Lemma 2.8.1), see [START_REF] Devroye | The total variation distance between high-dimensional Gaussians[END_REF] for a discussion.

Proof of Lemma 2.8.5. We refer to [204, p. 47 and p. 51] for Kullback and Hellinger, and to [START_REF] Givens | A class of Wasserstein metrics for probability distributions[END_REF] for Wasserstein, a far more subtle case. The formula for χ 2 pΓ 1 | Γ 2 q follows easily from a direct computation. We have not found in the literature a formula for Fisher. Let us give it here for the sake of completeness. Using ErX i X j s " Σ ij `mi m j when X " N pm, Σq we get, for all n ˆn symmetric matrices A and B ErAX ¨BXs "

n ÿ i,j,k"1 A ij B ik ErX j X k s " n ÿ i,j,k"1 A ij B ik pΣ jk `mj m k q " TracepAΣBq `Am ¨Bm
and thus for all n-dimensional vectors a and b, ErApX ´aq ¨BpX ´bqs " ErAX ¨BXs `Apm ´aq ¨Bpm ´bq ´Am ¨Bm " TracepAΣBq `Apm ´aq ¨Bpm ´bq. Now, using the notation q i pxq " Σ ´1 i px ´mi q ¨px ´mi q and |Σ i | " detpΣ i q,

FisherpΓ 1 | Γ 2 q " 4 a |Σ 2 | a |Σ 1 | ż ˇˇ∇e ´q1 pxq 4 `q2 pxq 4 ˇˇ2 e ´q2 pxq 2 a 2π|Σ 2 | dx " ż |Σ ´1 2 px ´m2 q ´Σ´1 1 px ´m1 q| 2 e ´q1 pxq 2 a 2π|Σ 1 | dx " ż p|Σ ´1 2 px ´m2 q| 2 ´2Σ ´1 2 px ´m2 q ¨Σ´1 1 px ´m1 q `|Σ ´1 1 px ´m1 q| 2 q e ´q1 pxq 2 a 2π|Σ 1 | dx " TracepΣ ´1 2 Σ 1 Σ ´1 2 q `|Σ ´1 2 pm 1 ´m2 q| 2 ´2TracepΣ ´1 2 q `TracepΣ ´1 1 q " TracepΣ ´2 2 Σ 1 ´2Σ ´1 2 `Σ´1 1 q `|Σ ´1 2 pm 1 ´m2 q| 2 .
The formula when Σ 1 Σ 2 " Σ 2 Σ 1 follows immediately.

Convexity and its dynamical consequences

We gather useful dynamical consequences of convexity. We start with functional inequalities.

Lemma 2.8.6 (Logarithmic Sobolev inequality). Let P β n be the invariant law of the DOU process solving (2.3). Then, for all law ν on R n , we have

Kullbackpν | P β n q ď 1 2n Fisherpν | P β n q.
Moreover the constant 1 2n is optimal. Furthermore, finite equality is achieved if and only if dν{dP β n is of the form e λpx 1 `¨¨¨`xnq , λ P R.

Linearizing the log-Sobolev inequality above with dν{dP β n " 1 `εf gives the Poincaré inequality

Var P β n pf q ď ´ż f Gf dP β n . (2.92)
It can be extended by truncation and regularization from the case where f is smooth and compactly supported to the case where f is in the Sobolev space H 1 pP β n q. Finite equality is achieved when f is an eigenfunction associated to the eigenvalue ´1 of G, namely f pxq " apx 1 `¨¨¨`x n q `b, a, b P R, hence the other name spectral gap inequality. It rewrites in terms of χ 2 divergence as

χ 2 pν | P β n q ď 1 n ż ˇˇ∇ dν dP β n ˇˇ2 dP β n .
(2.93)

The right-hand side plays for the χ 2 divergence the role played by Fisher for Kullback. We refer to [START_REF] Erdős | A dynamical approach to random matrix theory[END_REF][START_REF] Chafaï | On Poincaré and logarithmic Sobolev inequalities for a class of singular Gibbs measures[END_REF] for a proof of Lemma 2.8.6. This logarithmic Sobolev inequality is a consequence of the log-concavity of P β n with respect to N p0,1 n I n q. A slightly delicate aspect lies in the presence of the restriction to D n , which can be circumvented by using a regularization procedure.

There are many other functional inequalities which are a consequence of this log-concavity, for instance the Talagrand transportation inequality that states that when ν has finite second moment,

Wasserstein 2 pν, P β n q ď 1 n Kullbackpν | P β n q
and the HWI inequality 1 that states that when ν has finite second moment,

Kullbackpν | P β n q ď Wassersteinpν, P β n q b Fisherpν | P β n q ´n 2 Wasserstein 2 pν | P β n q,
and we refer to [START_REF] Villani | Optimal transport. Old and new[END_REF] for this couple of functional inequalities, that we do not use here.

Lemma 2.8.7 (Sub-exponential convergence to equilibrium). Let pX n t q tě0 be the DOU process solution of (2.3) with β " 0 or β ě 1, and let P β n be its invariant law. Then for all t ě 0, we have the sub-exponential convergences χ 2 pLawpX n t q | P β n q ď e ´2t χ 2 pLawpX n 0 q | P β n q, KullbackpLawpX n t q | P β n q ď e ´2t KullbackpLawpX n 0 q | P β n q, FisherpLawpX n t q | P β n q ď e ´2t FisherpLawpX n 0 q | P β n q, Wasserstein 2 pLawpX n t q, P β n q ď e ´2t Wasserstein 2 pLawpX n 0 q, P β n q.

Recall that when β ą 0 the initial condition X n 0 is always taken in D n . For each inequality, if the right-hand side is infinite then the inequality is trivially satisfied. This is in particular the case for Kullback and Fisher when LawpX n 0 q is not absolutely continuous with respect to the Lebesgue measure, and for Wasserstein when LawpX n 0 q has infinite second moment.

Elements of proof of Lemma 2.8.7. The idea is that an exponential decay for Kullback, χ 2 , Fisher, and Wasserstein can be established by taking the derivative, using a functional inequality, and using the Grönwall lemma. More precisely, for Kullback it is a log-Sobolev inequality, for χ 2 a Poincaré inequality, for Wasserstein a transportation type inequality, and for Fisher a Bakry -Émery Γ 2 inequality, see for instance [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF][START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF][START_REF] Villani | Optimal transport. Old and new[END_REF]. It is a rather standard piece of probabilistic functional analysis, related to the log-concavity of P β n . We recall the crucial steps for the reader convenience. Let us set µ t " LawpX n t q and µ " P β n . For t ą 0 the density p t " dµ t {dµ exists and solves the evolution equation B t p t " Gp t where G is as in (2.22). We have the integration by parts

ż f Ggdµ " ż gGf dµ " ´1 n ż ∇f ¨∇gdµ.
For Kullback, we find using these tools, for all t ą 0, denoting Φpuq :" u logpuq,

B t Kullbackpµ t | µq " ż Φ 1 pf t qGf t dµ " ´1 n ż Φ 2 pf t q|∇f t | 2 dµ " ´1 n Fisherpµ t | µq ď ´2Kullbackpµ t | µq, (2.94)
where the inequality comes from the logarithmic Sobolev inequality of Lemma 2.8.6. It remains to use the Grönwall lemma to get the exponential decay of Kullback.

The derivation of the exponential decay of the Fisher divergence follows the same lines by differentiating again with respect to time. Indeed, after a sequence of differential computations and integration by parts, we find, see for instance [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF]Ch. 5], [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF], or [START_REF] Villani | Optimal transport. Old and new[END_REF],

B t Fisherpµ t | µq " ´2n ż f t Γ 2 plogpf t qqdµ, (2.95) 
where Γ 2 pf q :" 1 n 2 f 22 `1 n V 2 f 12 is the Bakry -Émery "Gamma-two" operator of the dynamics. Now using the convexity of V , we get, by the Grönwall lemma, for all t ą 0,

B t Fisherpµ t | µq ď ´2Fisherpµ t | µq.
(2.96)

This can be used to prove the log-Sobolev inequality, see [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF]Ch. 5], [START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF], and [START_REF] Villani | Optimal transport. Old and new[END_REF]. This differential approach goes back at least to Boltzmann (statistical physics) and Stam (information theory) and was notably extensively developed later on by Bakry, Ledoux, Villani and their followers.

For the Wasserstein distance, we proceed by coupling. Indeed, since the diffusion coefficient is constant in space, we can simply use a parallel coupling. Namely, let pX 1 t q tě0 be the process started from another possibly random initial condition X 1 0 , and satisfying to the same stochastic differential equation, with the same BM. We get

dpX t ´X1 t q " ´1 n p∇EpX t q ´∇EpX 1 t qqdt, hence dpX t ´X1 t q ¨pX t ´X1 t q " ´1 n pp∇EpX t q ´∇EpX 1 t qq ¨pX t ´X1 t qqdt. (2.97) 
Now since E is uniformly convex with ∇ 2 E ě nI n , we get, for all x, y P R n , p∇Epxq ´∇Epyqq ¨px ´yq ě n|x ´y| 2 , which gives

d|X t ´X1 t | 2 ď ´2|X t ´X1 t | 2 dt and by the Grönwall lemma, |X t ´X1 t | 2 ď e ´2t |X 0 ´X1 0 | 2 .

It follows that

Wasserstein 2 pLawpX t q, LawpX 1 t qq ď e ´2t Er|X 0 ´X1 0 | 2 s. By taking the infimum over all couplings of X 0 and X 1 0 we get Wasserstein 2 pLawpX t q, LawpX 1 t qq ď e ´2t Wasserstein 2 pLawpX 0 q, LawpX 1 0 qq.

Taking X 1 0 " P β n we get, by invariance, for all t ě 0, Wasserstein 2 pLawpX t q, P β n q ď e ´2t Wasserstein 2 pLawpX 0 q, P β n q.

Lemma 2.8.8 (Monotonicity). Let pX n t q tě0 be the DOU process (2.3), with β " 0 or β ě 1 and invariant law P β n . Then for all dist P tTV, Hellinger, Kullback, χ 2 , Fisher, Wassersteinu, the function t ě 0 Þ Ñ distpLawpX n t q | P β n q is non-increasing.

Elements of proof of Lemma 2.8.8. The monotonicity for TV, Hellinger, Kullback, χ 2 comes from the Markov nature of the process and the convexity of

u Þ Ñ Φpuq " $ ' ' ' ' & ' ' ' ' % 1 2 |u ´1| if dist " TV 1 ´?u if dist " Hellinger 2 u logpuq if dist " Kullback u 2 ´1 if dist " χ 2 .
This is known as the Φ-entropy dissipation of Markov processes, see [START_REF] Chafaï | Entropies, convexity, and functional inequalities: on Φ-entropies and Φ-Sobolev inequalities[END_REF][START_REF] Villani | Optimal transport. Old and new[END_REF][START_REF] Bakry | Analysis and geometry of Markov diffusion operators[END_REF]. This can also be seen from (2.94). The monotonicity for TV follows also from the contraction property of the total variation with respect to general Markov kernels, see [START_REF] Levin | Markov chains and mixing times. With a chapter on "Coupling from the past[END_REF]Ex. 4.2].

The monotonicity for Fisher comes from the identity (2.95) and the convexity of V . By (2.94) this monotonicity is also equivalent to the convexity of Kullback along the dynamics. The monotonicity for Wasserstein can be obtained by computing the derivative along the dynamics starting from (2.97), but this is more subtle due to the variational nature of this distance and involves the convexity of V , see for instance [40, Bottom of p. 2442 and Lem. 3.2].

The monotonicities can also be extracted from the exponential decays of Lemma 2.8.7 thanks to the Markov property and the profile e ´t " 1 ´t `optq of the prefactor in the right hand side.

The convexity of the interaction ´log as well as the constant nature of the diffusion coefficient in the evolution equation (2.3) allows to use simple "maximum principle" type arguments to prove that the dynamic exhibits a monotonous behavior and an exponential decay.

Lemma 2.8.9 (Monotonicity and exponential decay). Let pX n t q tě0 and pY n t q tě0 be a pair of DOU processes solving (2.3), β ě 1, driven by the same Brownian motion pB t q tě0 on R n and with respective initial conditions X n 0 P D n and Y n 0 P D n . If for all i P t1, . . . , nu X n,i 0 ď Y n,i 0 then the following properties hold true:

• (Monotonicity property) for all t ě 0 and i P t1, . . . , nu,

X n,i t ď Y n,i t ,
• (Decay estimate) for all t ě 0, max iPt1,...,nu

pY n,i t ´Xn,i t q ď max iPt1,...,nu pY n,i 0 ´Xn,i 0 qe ´t.
Proof of Lemma 2.8.9. The difference of Y n t ´Xn t satisfies

B t pY n,i t ´Xn,i t q " β n ÿ j:j‰i pY n,j t ´Xn,j t q ´pY n,i t ´Xn,i t q pY n,j t ´Y n,i t qpX n,j t ´Xn,i t q ´pY n,i t ´Xn,i t q. (2.98)
Since there are almost surely no collisions between the coordinates of X n , resp. of Y n , the right-hand side is almost surely finite for all t ą 0 and every process Y n,i t ´Xn,i t is C 1 on p0, 8q. Note that at time 0 some derivatives may blow up as two coordinates of X n or Y n may coincide.

Let us define M ptq " max iPt1,...,N u pY n,i t ´Xn,i t q and mptq " min iPt1,...,N u pY n,i t ´Xn,i t q.

Elementary considerations imply that M and m are themselves C 1 on p0, 8q and that at all times t ą 0, there exist i, j such that B t M ptq " B t pY n,i t ´Xn,i t q and B t mptq " B t pY n,j t ´Xn,j t q.

This would not be true if there were infinitely many processes of course. Now observe that if at time t ą 0 we have Y n,i t ´Xn,i t " M ptq, then

B t pY n,i t ´Xn,i t q ď ´pY n,i t ´Xn,i t q.
This implies that B t M ptq ď ´M ptq. Similarly, we can deduce that B t mptq ě ´mptq. Integrating these differential equations, we get for all t ě t 0 ą 0 M ptq ď e ´pt´t 0 q M pt 0 q, mptq ě e ´pt´t 0 q mpt 0 q.

Since all processes are continuous on r0, 8q, we can pass to the limit t 0 Ó 0 and get for all t ě 0,

min iPt1,...,N u pY n,i t ´Xn,i t q ě 0, max iPt1,...,N u pY n,i t ´Xn,i t q ď e ´t max iPt1,...,N u pY n,i 0 ´Xn,i 0 q.
Remark 4 (Beyond DOU dynamics). The monotonicity property of Lemma 2.8.9 relies on the convexity of the interaction ´log, and has nothing to do with the long-time behavior and the strength of V . In particular, this monotonicity property remains valid for the process solving (2.3) with an arbitrary V provided that it is C 1 and there is no explosion, even in the situation where V is not strong enough to ensure that the process has an invariant law. If V is C 2 then the decay estimate of Lemma 2.8.9 survives in the following decay or growth form: (2.39) for the explicit formula) with n " 50, β " 0, and

max iPt1,...,nu pY n,i t ´Xn,i t q ď max iPt1,...,nu pY n,i 0 ´Xn,i 0 qe tp´inf R V 2 q , t ě 0.
t Þ Ñ HellingerpLawpX n t q | P β n q (see
|x n 0 | 2
n " 1. Note that logp50q « 3.9.

Chapter 3

Optimal local laws and CLT for the long-range Riesz gas

This chapter is based on the article Optimal local laws and CLT for the circular Riesz gas, arXiv preprint arXiv:2112.05881. 

Introduction

Setting of the problem

In this paper, we study the one-dimensional Riesz gas on the circle. We denote T :" R{Z. For a parameter s P p0, 1q, let us consider the Riesz s-kernel on T, defined by

g s pxq " lim nÑ8 ´n ÿ k"´n 1 |k `x| s ´2 1 ´s n 1´s ¯" ζps, xq `ζps, 1 ´xq, (3.1) 
where ζps, xq stands for the Hurwitz zeta function [START_REF] Bruce | On the Hurwitz zeta-function[END_REF]. Note that g is the fundamental solution of the fractional Laplace equation on the circle

p´∆q 1´s 2 g " c s pδ 0 ´1q, (3.2) 
with c s given by

c s " Γp 1´s 2 q Γp s 2 q ? π 2 1´s . (3.3)
We endow T with the natural order x ă y if x " x 1 `k, y " y 1 `k1 with k, k 1 P Z, x 1 , y 1 P r0, 1q and x 1 ă y 1 and work on the set of ordered configurations

D N " tX N " px 1 , . . . , x N q P T N : x 2 ´x1 ă . . . ă x N ´x1 u.
On D N let us consider the energy

H N : X N P D N Þ Ñ N ´s ÿ i‰j g s px i ´xj q, (3.4) 
where g is given by (3.2). The circular Riesz gas, at the inverse temperature β ą 0, is defined by the Gibbs measure

dP N,β " 1 Z N,β expp´βH N pX N qq1 D N pX N qdX N ,
where Z N,β is the normalizing constant, called the partition function, given by

Z N,β " ż D N e ´βH N pX N q dX N .
Throughout the paper, s is a fixed parameter in p0, 1q.

The choice of the normalization in the definition of the energy (3.4) appears to be a natural choice, making β the effective inverse temperature governing the microscopic scale behavior.

The model described above belongs to a family of interacting particle systems named Riesz gases. On R d , those are associated to a kernel of the form |x| ´s with s ą 0. The Riesz family also contains in dimensions 1 and 2 the so-called log-gases with kernel ´log |x|. For d ě 2 and s " d ´2, |x| ´s is the fundamental solution of the Laplace equation on R d and therefore corresponds to the Coulombian interaction. The parameter s determines the singularity as well as the range of the interaction. When s ą d, the interaction is short-range and the system, referred to as hypersingular Riesz gas, resembles a nearest-neighbour model. For s P p0, dq or s " 0 and d " 1, 2, Riesz gases are long-range particle systems, which have, as such, attracted much attention in both mathematical and physical contexts.

The 1D log-gas, also called β-ensemble has been extensively studied in the last decades, partly for its connection to random matrix theory. Indeed, it corresponds, in the cases β P t1, 2, 4u, to the distribution of the eigenvalues of N ˆN symmetric/Hermitian/symplectic random matrices with independent Gaussian entries (see the original paper of Dyson [START_REF] Dyson | A Brownian-motion model for the eigenvalues of a random matrix[END_REF]). The 1D log-gas also appears in many other contexts such as zeros of random polynomials, zeros of the Riemann function and is conjectured to be related for instance to the eigenvalues of random Schrödinger operators [START_REF] Mathieu Lewin | Coulomb and riesz gases: The known and the unknown[END_REF]. The 2D Coulomb gas is another fundamental model, which has raised considerable attention in the last decades. Among many other examples, it is connected to non-unitary random matrices, Ginzburg-Landau vertices, Fekete points, complex geometry, the XY model and the KT transition [START_REF] Serfaty | Systems of points with coulomb interactions[END_REF]. For other values of s, let us mention that the case s " 2 in dimension 1 is an integrable system, called classical Calogero-Sutherland model. The study of minimizers of Riesz interactions is also a dynamic topic [START_REF] Hardin | Minimal riesz energy point configurations for rectifiable d-dimensional manifolds[END_REF][START_REF] Chafaï | On the solution of a riesz equilibrium problem and integral identities for special functions[END_REF] and is the object of long-standing conjectures related to sphere packing problems [START_REF] Blanc | The Crystallization Conjecture: A Review[END_REF]. From a statistical physics perspective, even in dimension 1, the Riesz gas is not fully elucidated since the classical theory of the 60-70s [START_REF] Ruelle | Statistical Mechanics: Rigorous Results[END_REF] fails to be applied due the long-range nature of the interaction. The reader may refer to the nice review [START_REF] Mathieu Lewin | Coulomb and riesz gases: The known and the unknown[END_REF], where an account of the literature and many open problems on Riesz gases are given.

As the number of particles N tends to infinity, the empirical measure

µ N :" 1 N N ÿ i"1 δ x i
converges almost surely under P N,β (in a suitable topology) to the uniform measure on the circle. This result can be obtained through standard large deviations techniques (see for instance [START_REF] Serfaty | Coulomb gases and Ginzburg-Landau vortices[END_REF]Ch. 2] for the case of Riesz gases on the real line, which adapts readily to the periodic setting).

In the large N limit, particles tend to spread uniformly on the circle, which suggests that particles spacing (or gaps) N px i`k ´xi q concentrate around the value k. The first goal of this paper is to quantify the fluctuations of the gaps around their mean. We establish the optimal size of the fluctuations of N px i`k ´xi q, which turns out to be in Opβ ´1 2 k s 2 q, as conjectured in the recent physics paper [START_REF] Santra | Gap statistics for confined particles with power-law interactions[END_REF]. This type of result is referred to in the literature as a rigidity estimate. It was intensively investigated for β-ensembles (see for instance [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF][START_REF] Bourgade | Universality of general β-ensembles[END_REF][START_REF] Bourgade | Edge universality of β ensembles[END_REF][START_REF] Bourgade | Optimal local law and central limit theorem for β-ensembles[END_REF]), but the correct observable in that case is x i ´γi , where x i is the i-th particle and γ i the classical location of the i-th particle, that is the corresponding quantile of the equilibrium measure arising in the mean-field limit.

A complementary way to study the rigidity of the system is to investigate the fluctuations of linear statistics of the form

Fluct N rξpℓ ´1 N ¨qs :" N ÿ i"1 ξpℓ ´1 N x i q ´N ℓ N ż T ξ, (3.5) 
where ξ : T Ñ R is a given measurable test-function and tℓ N u a sequence of numbers in p0, 1s.

For smooth test-functions, many central limit theorem (CLT) results are available in the literature on 1D-log gases, including [START_REF] Johansson | On fluctuations of eigenvalues of random hermitian matrices[END_REF][START_REF] Shcherbina | Fluctuations of linear eigenvalue statistics of β matrix models in the multicut regime[END_REF][START_REF] Borot | Asymptotic expansion of β matrix models in the one-cut regime[END_REF][START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF][START_REF] Bourgade | Universality of general β-ensembles[END_REF][START_REF] Bekerman | CLT for fluctuations of β-ensembles with general potential[END_REF][START_REF] Bourgade | Optimal local law and central limit theorem for β-ensembles[END_REF][START_REF] Hardy | CLT for circular β-ensembles at high temperature[END_REF]. For 1D Riesz gases with s P p0, 1q, to our knowledge, no prior results on CLT for linear statistics are known. In this paper we obtain a quantitative CLT for (3.5), which is valid at all scales tℓ N u down to microscopic scales ℓ N " 1 N . A major direction in random matrix theory is to establish CLTs for (3.5) allowing test-functions which are as singular as possible. Indeed it is a natural question to capture the fluctuations of the number of points and of the logarithmic potential, which are key observables for the log-gas. The question of the optimal regularity on the test-function has also drawn a lot of interest because it encapsulates non-universality features in the context of Wigner matrices. In this paper, the stake for us is to provide a robust method allowing to treat singular test-functions in a systematic way. The main question we investigate is therefore a regularity issue. Using new concentration inequalities we are able to treat singular test-functions, including characteristic functions of intervals and inverse power function up to the critical power s 2 . In particular we obtain a CLT for the number of points, thus extending to a Riesz (periodic and fully convex) setting some of the recent results of [START_REF] Bourgade | Optimal local law and central limit theorem for β-ensembles[END_REF].

Let us now introduce the main tools and objects used in the proofs. For any reasonable Gibbs measure on D N (or R N ), the fluctuations of any (smooth) statistics F : D N Ñ R are related to the properties of a partial differential equation called the Helffer-Sjöstrand (H.-S.) equation, which is sometimes referred to as a Witten Laplacian (on 1-forms). This equation appears in [START_REF] Sjöstrand | Potential wells in high dimensions i[END_REF][START_REF] Sjöstrand | Potentials wells in high dimensions ii, more about the one well case[END_REF][START_REF] Helffer | On the correlation for kac-like models in the convex case[END_REF]. It is more substantially studied in [START_REF] Helffer | Remarks on decay of correlations and witten laplacians brascamp-lieb inequalities and semiclassical limit[END_REF][START_REF] Helffer | Remarks on decay of correlations and witten laplacians brascamp-lieb inequalities and semiclassical limit[END_REF][START_REF] Naddaf | On homogenization and scaling limit of some gradient perturbations of a massless free field[END_REF], where it is used to establish correlation decay, uniqueness of the limiting measure and log-Sobolev inequalities for models with convex interactions. The purpose of the present paper is to show how the analysis of Helffer-Sjöstrand equations provides powerful tools to study the fluctuations of linear statistics with singular test-functions.

The proof of the near-optimal rigidity is essentially similar to [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF]. It exploits the convexity of the interaction and is thus very specific to 1D systems. The method is mainly based on a concentration inequality for divergence-free functions and on a key convexity result due to Brascamp [START_REF] Herm | On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation[END_REF].

The method of proof of the CLT for linear statistics starts by performing the mean-field transport argument usually attributed to Johansson [START_REF] Johansson | On fluctuations of eigenvalues of random hermitian matrices[END_REF]. When studying the Laplace transform of linear statistics Fluct N rξs, this consists in applying a well-chosen change of variables on each point, depending only on its position, to transport the uniform measure on the circle to the perturbed equilibrium measure (perturbed by the effect of adding tFluct N rξs to the energy). In this paper, one computes variances instead of Laplace transforms and the implementation of the transport of [START_REF] Johansson | On fluctuations of eigenvalues of random hermitian matrices[END_REF] takes the form of an integration by parts. This argument is a variation of the so-called loop equations (see [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF] for various comments on this topic). It is the starting point of many CLTs on β-ensembles and Coulomb gases but it received a more systematic analysis in the series of works [START_REF] Leblé | Fluctuations of two dimensional coulomb gases[END_REF][START_REF] Bekerman | CLT for fluctuations of β-ensembles with general potential[END_REF][START_REF] Leblé | CLT for fluctuations of linear statistics in the sine-β process[END_REF][START_REF] Leblé | A local CLT for linear statistics of 2d coulomb gases[END_REF][START_REF] Serfaty | Gaussian fluctuations and free energy expansion for 2d and 3d coulomb gases at any temperature[END_REF]. One can also interpret this transport as a mean-field approximation of the H.-S. equation associated to (the gradient of) linear statistics.

Since the transport is an approximate solution (a mean-field approximation) of the H.-S. equation, it creates an error term, sometimes called loop equation term, which is essentially a local weighted energy and the heart of the problem is to estimate its fluctuations. In contrast, in [START_REF] Leblé | Fluctuations of two dimensional coulomb gases[END_REF][START_REF] Bekerman | CLT for fluctuations of β-ensembles with general potential[END_REF][START_REF] Leblé | CLT for fluctuations of linear statistics in the sine-β process[END_REF][START_REF] Serfaty | Gaussian fluctuations and free energy expansion for 2d and 3d coulomb gases at any temperature[END_REF] the typical size in a large deviation sense of this error term is evaluated, rather than the size of its fluctuations. Let us point out however that the later seems untractable in dimension d ě 2 because of the lack of convexity. The core of this paper is about the control on the fluctuations of this loop equation term through the analysis of the related H.-S. equation. Our proof is based on the following three technical inputs:

• The near-optimal rigidity estimates on gaps and nearest-neighbour distances,

• A Poincaré inequality in gap coordinates,

• A comparison principle for the Helffer-Sjöstrand equation.

The use of the comparison principle mentioned above (also known in [START_REF] Cartier | Inégalités de corrélation en mécanique statistique[END_REF][START_REF] Helffer | On the correlation for kac-like models in the convex case[END_REF]) is one of the main novelties of the paper. This is the key technical tool to be able to treat linear statistics with singular test-functions. Indeed, after performing loop equations techniques, we will study singular local quantities, for which standard concentration inequalities, such as the Brascamp-Lieb or log-Sobolev inequalities, do not give the right order of fluctuations.

The central limit theorem is then obtained from a rather straightforward application of Stein's method. We show how the mean-field transport naturally leads to an approximate Gaussian integration by parts formula. As a result, quantifying normality boils down to controlling the variance of the loop equation term. The CLT then follows from the variance bound discussed in the above comments.

Main results

The following results are valid for all parameter s P p0, 1q, thus covering the entire long-range regime.

Our first result concerns the fluctuations of gaps and discrepancies. We establish the following near-optimal decay estimate: Theorem 3.1.1 (Near-optimal rigidity). Let ε P p0, 1q and δ " ε 4ps`2q . There exists two constants Cpβq ą 0 and cpβq ą 0 locally uniform in β such that for each i P t1, . . . , N u and 1 ď k ď N 2 , we have

P N,β p|N px i`k ´xi q ´k| ď k s 2 `εq ě 1 ´Cpβqe ´cpβqk δ . (3.6)
Similarly for all ε P p0, 1q, setting δ " ε 2ps`2q , there exist two constants Cpβq ą 0 and cpβq ą 0 locally uniform in β such that for all a P T and ℓ N P p0, 1 4 q, we have

P N,β ´ˇˇN ÿ i"1 1 pa´ℓ N ,a`ℓ N q px i q ´2N ℓ N ˇˇď pN ℓ N q s 2 `ε¯ě 1 ´Cpβqe ´cpβqpN ℓ N q δ . (3.7)
Theorem 3.1.1 is the natural extension of the rigidity result of [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF]Th. 3.1] in the Riesz setting. As in [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF], the controls on the deviations of the considered quantities have exponentially small probability. This exponential estimate then allows one to control the maximum of the deviations of the gaps and therefore reduces the phase space to an event where all gaps are close to their standard value. Theorem 3.1.1 is proved in Section 3.4.

The purpose of the next result is to show that k s 2 is the exact fluctuation scale of the gap N px i`k ´xi q. This is equivalent to proving that ř N i"1 1 p0,ℓ N q px i q fluctuates at scale pN ℓ N q s 2 , for all ℓ N P p0, 1q. In fact we consider a larger class of linear statistics with singular test-functions. These are defined by

Fluct N rξs " N ÿ i"1 ξpx i q ´N ż T ξ,
where ξ : T Ñ R is a singular but piecewise smooth test-function. We are also able to treat linear statistics Fluct N rξpℓ ´1 N ¨qs with test-functions supported at any scales tℓ N u, including the microscopic scale. We make the following assumptions on ξ and on the sequence tℓ N u:

Assumptions 3.1.1.

(i) (Global regularity) The map ξ is in C ´s`ε pT, Rq for some ε ą 0.

(ii) (Piecewise regularity) Let ψ " p´∆q ´s 2 ξ. The map ψ is piecewise C 2 : there exist a 1 ă . . . ă a p (p P N) such that on pa i , a i`1 q, ψ is C 2 , for each i P t1, . . . , pu (with the convention that a p`1 " a 1 ).

(iii) (Singularity) For each i P t1, . . . , pu, there exists α i P p0, 1 ´s 2 q such that

|ψ 2 |pxq ď C |x ´ai | 1`α i . ( 3.8) 
(iv) (Support) Let tℓ N u be a sequence in r0, 1q. Assume either that ξ is supported on p´1 2 , 1 2 q or that ℓ N " 1. In the first case, we let ξ 0 : R Ñ R given by ξ 0 pxq "

# ξpxq if |x| ď 1 2 0 if |x| ą 1 2 .
(3.9)

Let us first comment upon the above assumptions.

Remark 5 (Comments on the Assumptions 3.1.1).

• Assumptions (ii) and (iii) compare the singularities of ξ with the singularity at 0 of |x| ´s 2 `ε: the derivative of order 1 ´s 2 of ξ near a singularity a P T is bounded by the derivative of order 1 ´s 2 x Þ Ñ |x ´a| ´s 2 `ε. Note that the function x Þ Ñ |x| ´s 2 is the critical inverse power which does not lie in H 1´s 2 pT, Rq.

• When the scale ℓ N tends to 0, Assumption (iv) ensures that Fluct N rξpℓ ´1 N ¨qs is at most of order OpN ℓ N q.

• The characteristic function ξ " 1 p´a,aq satisfies Assumptions 3.1.1. Indeed the map ψ " p´∆q ´s 2 ξ is piecewise C 2 with two singularities at ´a and a and ψ 2 satisfies (3.8) with α 1 " α 2 " 1 ´s: ψ 2 pxq " 

| ¨|H α , for α ą 0. Let h : T Ñ R in L 2 pT, Rq of Fourier coefficient f pkq, k P Z. Whenever it is finite we call |h| 2 H α the quantity |h| 2 H α " ÿ kPZ |k| 2α | ĥ| 2 pkq.
Similarly, the fractional Sobolev seminorm of a function h : R Ñ R in L 2 pR, Rq, that we also denote |h| H α , is defined by

|h| 2 H α " ż |ξ| 2α | ĥ| 2 pξqdξ, (3.10) 
where ĥ stands for the Fourier transform of h. The variance of Fluct N rξp¨ℓ ´1 N qs under P N,β may be expanded as follows:

Theorem 3.1.2 (Variance of singular linear statistics). Let ξ and tℓ N u satisfying Assumptions 3.1.1. Let ψ " p´∆q ´s 2 ξ. Let a 1 ă . . . ă a p be the singularities of ψ 2 and denote 1 `α1 , . . . , 1 `αp their order as in (3.8). Let α " max p i"1 α i . Let us define

σ 2 ξ " 1 2βc s $ & % |ξ| 2 H 1´s 2 if ℓ N " 1 |ξ 0 | H 1´s 2
if ℓ N Ñ 0, with ξ 0 as in (3.9).

For all ε ą 0, there holds

Var P N,β rFluct N rξpℓ ´1 N ¨qss " N s σ 2 ξp¨ℓ ´1 N q `OppN ℓ N q 2s´2`maxp1,2αq`ε q " pN ℓ N q s pσ 2 ξ `1ℓ N Ñ0 Opℓ 2 N |ξ| 2 L 2 qq `OppN ℓ N q 2s´2`maxp1,2αq`ε q. (3.12)
Note that since max α l ă 1 ´s 2 , ξ P H 1´s 2 pT, Rq and moreover the remaining term in the expansion (3.12) is always oppN ℓ N q s q.

Remark 6 (On the adaptation to β-ensembles). We expect that our method can also give a (logcorrelated) CLT for the test-functions 1 p´a,aq and x Þ Ñ log |x ´a| for 1D log-gases on the circle or on the real line when the external potential is convex.

By Remark 5, the number-variance (i.e variance of the number of points) of the Riesz gas grows in OpN s q, like the variance of smooth linear statistics. In comparison, for the 1D log-gas, smooth linear statistics fluctuate in Op1q with an asymptotic variance proportional to the squared Sobolev norm | ¨|2 (see [START_REF] Bekerman | CLT for fluctuations of β-ensembles with general potential[END_REF] for instance) whereas the number of points in an interval p´a, aq fluctuate in Oplog N q. This distinct behavior is due to the fact that the characterize function

1 p´1 2 , 1 2 q is not in H 1 2 pT, Rq but is in H 1´s 2
pT, Rq for all s P p0, 1q. Theorem 3.1.2 shows that concerning the fluctuations, the Riesz gas with s P p0, 1q interpolates between the 1D log-gas case s " 0 and the Poisson-type case s " 1. Moreover Theorem 3.1.2 makes the 1D long-range Riesz gas a hyperuniform particle system in the sense of [START_REF] Torquato | Hyperuniformity and its generalizations[END_REF] (meaning that the number-variance is much smaller than for i.i.d variables).

As mentioned in the beginning of the introduction, the next-order term in the expansion (3.12) corresponds to the variance of a local energy arising from the mean-field transport of [START_REF] Johansson | On fluctuations of eigenvalues of random hermitian matrices[END_REF], sometimes referred in the literature to as a loop equation term. One could extract the leading-order of this variance and relate it to the second derivative of the free energy of the infinite Riesz gas.

The next question we address concerns the asymptotic behavior of rescaled linear statistics. We show that under the Assumptions 3.1.1 and provided ℓ N " 1 N , the linear statistics converges after rescaling to a Gaussian random variable. For any probability measures µ and ν on R let us denote dpµ, νq the distance

dpµ, νq " sup ! ż f dpµ ´νq : |f | 8 ď 1, |f 1 | 8 ď 1
) .

We establish the following result: • The sequence of random variables pN ℓ N q ´s 2 Fluct N rξpℓ ´1 N ¨qs converges in distribution to a centered Gaussian random variable with variance σ 2 ξ given by

σ 2 ξ " 1 2βc s $ & % |ξ| 2 H 1´s 2 if ℓ N " 1 |ξ 0 | 2 H 1´s 2
if ℓ N Ñ 0, with ξ 0 as in (3.9).

(3.13)

• Let Z be a centered Gaussian random variable with variance σ 2 ξ . Then for all ε ą 0, we have

dpLawppN ℓ N q ´s 2 Fluct N rξpℓ ´1 N ¨qsq, LawpZqq " O ´pN ℓ N q ´1´s 2 `pN ℓ N q ´p1´s 2 ´max α l ´εq ¯.
Theorem 3.1.3 can be interpreted as the convergence of the field ř N i"1 g s px i ´¨q´N ş g s px´¨qdx to a fractional Gaussian field for the weak topology. Observe that if ξ i and ξ j have disjoint support then if s P p0, 1q, Γ i,j is not, in general, equal to 0, which shows that the corresponding fractional field does not exhibit spatial independence. This reflects the non-local nature of the fractional Laplacian p´∆q 1´s 2

for s P p0, 1q. Following Remark 5, Theorem 3.1.3 gives a CLT for gaps and discrepancies: Corollary 3.1.4 (CLT for the number of points). For all a P T and tℓ N u such that ℓ N " 1 N , the sequence of random variables

N ´s 2 ζp´s, 2ℓ N q ´1 2 ´N ÿ i"1 1 p´ℓ N ,ℓ N q px i q ´2N ℓ N ¯
converges in distribution to a centered Gaussian random variables with variance

σ 2 paq :" cotanp π 2 sq β π 2 s
.

For each i P t1, . . . , N u and any sequence of integers tk N u with values in t1, . . . , N 2 u such that k N Ñ 8 as N Ñ 8, the sequence of random variables

k ´s 2 N ζp´s, k N N q ´1 2 pN px i`k N ´xi q ´kN q
converges in distribution to a centered Gaussian random variables with variance σ 2 p 1 2 q.

Note that ζp´s, 2ℓ N q " Opℓ s N q with ζps, 2ℓ N q " ℓ s N when ℓ N Ñ 0. Corollary 3.1.4 is an extension of the results on the fluctuations of single particles in the bulk for β-ensembles, see [START_REF] Gustavsson | Gaussian fluctuations of eigenvalues in the GUE[END_REF] for the GUE and [START_REF] Bourgade | Optimal local law and central limit theorem for β-ensembles[END_REF]. Theorem 3.1.3 can also be applied to power-type functions of the form x P T Þ Ñ |x| ´α with α P p0, s 2 q.

Corollary 3.1.5 (CLT for power-type functions). Let a P T and α P p0, s 2 q. Let ℓ N " 1 N . Then

N ´s 2 ´N ÿ i"1 1 |x i ´a| α ´2α N
converges in distribution to a centered Gaussian random variables with a variance given by (3.11).

The test-function x P T Þ Ñ |x| ´s 2 is the critical inverse power which does not lie in H 1´s 2 . This should be compared in the case s " 0 to the test-functions 1 p´a,aq and ´log |x|, for which the associated linear statistics satisfy a log-correlated central limit theorem as shown for instance in [START_REF] Bourgade | Optimal local law and central limit theorem for β-ensembles[END_REF].

Context, related results, open questions

Rigidity of β-ensembles As mentioned in the introduction, Theorems 3.1.1 and 3.1.3 are the natural extensions to the circular Riesz gas of some known results on the fluctuations of β-ensembles. We refer again to [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF][START_REF] Bourgade | Universality of general β-ensembles[END_REF][START_REF] Bourgade | Edge universality of β ensembles[END_REF][START_REF] Bourgade | Optimal local law and central limit theorem for β-ensembles[END_REF] for rigidity estimates, to [START_REF] Johansson | On fluctuations of eigenvalues of random hermitian matrices[END_REF][START_REF] Shcherbina | Fluctuations of linear eigenvalue statistics of β matrix models in the multicut regime[END_REF][START_REF] Borot | Asymptotic expansion of β matrix models in the one-cut regime[END_REF][START_REF] Bekerman | CLT for fluctuations of β-ensembles with general potential[END_REF][START_REF] Lambert | Quantitative normal approximation of linear statistics of β-ensembles[END_REF][START_REF] Hardy | CLT for circular β-ensembles at high temperature[END_REF]205] for CLTs for linear statistics with smooth test-functions and to [START_REF] Hardy | CLT for circular β-ensembles at high temperature[END_REF][START_REF] Lambert | Mesoscopic central limit theorem for the circular β-ensembles and applications[END_REF] for the case of the circular β-ensemble. In the case of the GUE, that is for β " 2 with a quadratic potential, a CLT for test-functions in H 1 2 is obtained in [START_REF] Sosoe | Regularity conditions in the CLT for linear eigenvalue statistics of wigner matrices[END_REF] using a Littlewood-Paley type decomposition argument. However as observed in [172, Rem. 1.3], the minimal regularity of the test-function depends on β. Indeed for β " 4, leveraging on variances expansions of [START_REF] Jiang | Moments of traces of circular beta-ensembles[END_REF], [START_REF] Lambert | Mesoscopic central limit theorem for the circular β-ensembles and applications[END_REF] 

exhibits a test-function in H 1 2
such that the associated linear statistics does not have a finite limit. Since the characteristic function of a given interval is not is H 1 2 , the asymptotic scaling of discrepancies in intervals is not of order 1. It is proved in [START_REF] Gustavsson | Gaussian fluctuations of eigenvalues in the GUE[END_REF] that for the GUE, eigenvalues x i in the bulk fluctuate in Op ? log iq and that discrepancies are of order ? log N . A general CLT for the characteristic functions of intervals and for the logarithm function is given in the recent paper [START_REF] Bourgade | Optimal local law and central limit theorem for β-ensembles[END_REF]. Concerning the method of proof, let us point out a very similar variation on Stein's method developed in [START_REF] Lambert | Quantitative normal approximation of linear statistics of β-ensembles[END_REF], see also [START_REF] Hardy | CLT for circular β-ensembles at high temperature[END_REF] for a high-temperature regime.

Local laws and fluctuations for the Langevin dynamics A related and much studied question concerns the rigidity of the Dyson Brownian motion, an evolving gas of particles whose invariant distribution is given by β-ensemble. The time to equilibrium at the microscopic scale of Dyson Brownian motion was studied in many papers including [START_REF] Erdős | Universality of random matrices and local relaxation flow[END_REF][START_REF] Erdős | Gap universality of generalized wigner and β-ensembles[END_REF], see also [START_REF] Bourgade | Extreme gaps between eigenvalues of wigner matrices[END_REF] for optimal relaxation estimates. A central limit theorem at mesoscopic scale for linear statistics of the Dyson Brownian Motion is established in [START_REF] Huang | Local law and mesoscopic fluctuations of dyson brownian motion for general β and potential[END_REF], thus exhibiting a time dependent covariance structure.

Decay of the correlations and Helffer-Sjöstrand representation

The decay of the gaps correlations of β-ensembles have been extensively studied in [START_REF] Erdős | Gap universality of generalized wigner and beta-ensembles[END_REF], where a power-law decay in the inverse squared distance is established. The starting point of [START_REF] Erdős | Gap universality of generalized wigner and beta-ensembles[END_REF] is based on a a representation of the correlation function by a random walk in a dynamic random environment or in other words on a dynamic interpretation of the Helffer-Sjöstrand operator. The paper [START_REF] Erdős | Gap universality of generalized wigner and beta-ensembles[END_REF] then develops a sophisticated homogenization theory for a system of discrete parabolic equations. In a different context, a more direct analysis of the Helffer-Sjöstrand operator has been developed in the groundwork [START_REF] Naddaf | On homogenization and scaling limit of some gradient perturbations of a massless free field[END_REF] to characterize the scaling limit of the gradient interface model in arbitrary dimension d ě 1. Combining ideas from [START_REF] Naddaf | On homogenization and scaling limit of some gradient perturbations of a massless free field[END_REF] and from quantitative stochastic homogenization, the paper [START_REF] Armstrong | C 2 regularity of the surface tension for the ∇ϕ interface model[END_REF] then shows that the free energy associated to this model is at least C 2,α for some α ą 0. We also refer to the recent paper [START_REF] Thoma | Thermodynamic and scaling limits of the non-gaussian membrane model[END_REF] which studies in a similar framework the scaling limit of the non-Gaussian membrane model. In non-convex settings, much fewer results are available in the literature. One can mention the work [START_REF] Dario | Massless phases for the villain model in dě 3[END_REF] which establishes the optimal decay for the two-point correlation function of the Villain rotator model in Z d , for d ě 3 at low temperature. It could be interesting to develop a direct method to analyze the large scale decay of the Helffer-Sjöstrand equation in the context of one-dimensional Riesz gases. We plan to address this question in future work.

Uniqueness of the limiting point process

The question of the decay of the correlations mentioned above is related to property of uniqueness of the limiting measure. One expects that after rescaling, chosen so that the typical distance between consecutive points is of order 1, the point process converges, in a suitable topology, to a certain point process Riesz β . For s " 0, the limiting point process called Sine β , is unique and universal as proved in [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF][START_REF] Bourgade | Universality of general β-ensembles[END_REF]. The existence of a limit was first established in [START_REF] Valkó | Continuum limits of random matrices and the brownian carousel[END_REF] for β-ensembles with quadratic exterior potential, together with a sophisticated description and in [START_REF] Killip | Eigenvalue statistics for cmv matrices: from poisson to clock via random matrix ensembles[END_REF] for the circular β-ensemble. The Sine β process has also been characterized as the unique minimizer of the free energy functional governing the microscopic behavior in [START_REF] Erbar | The one-dimensional log-gas free energy has a unique minimiser[END_REF] using a displacement convexity argument. In Chapter 4, we prove the existence of a limiting point process Riesz β for the circular Riesz ensemble.

1D hypersingular Riesz gases Although the 1D hypersingular Riesz gas (i.e s ą 1) is not hyperuniform, its fluctuations are also of interest. In such a system, the macroscopic and microscopic behaviors are coupled, a fact which translates into the linear response associated to linear statistics (in contrast with long-range particle systems, the linear response is a combination of a mean-field change of variables, moving each point according to its position only, and of local perturbations). Simple heuristic computations shows that the limiting variance is then proportional to a L 2 norm (after subtraction of the mean) with a factor depending on the second order derivative of the free energy.

Fluctuations of Riesz gases in higher dimension For d ě 1 and s smaller than d, the proof of existence of a thermodynamic limit for the Riesz gas is delicate as the energy is long-range. It was obtained in [START_REF] Leblé | Large deviation principle for empirical fields of log and riesz gases[END_REF] for s P pminpd ´2, 0q, dq, leveraging among many other ingredients on an electric formulation of the Riesz energy, see [START_REF] Petrache | Next order asymptotics and renormalized energy for riesz interactions[END_REF], and on a screening procedure introduced in [START_REF] Sandier | From the ginzburg-landau model to vortex lattice problems[END_REF] and then improved in [START_REF] Rougerie | Higher dimensional coulomb gases and renormalized energy functionals[END_REF][START_REF] Petrache | Next order asymptotics and renormalized energy for riesz interactions[END_REF]. The first task to study the fluctuations of higher dimensional long-range Riesz gases is to establish local laws, that is to control the number of points and the energy in cubes of small scales. This was done for the Coulomb gas in arbitrary dimension down to the microscopic scale in the paper [START_REF] Armstrong | Local laws and rigidity for coulomb gases at any temperature[END_REF] using subadditive and supperadditive approximate energies. Due to the lack of convexity, establishing a CLT or even a sub-poissonian rigidity estimate for linear statistics of Riesz gases in arbitrary dimension is a very delicate task. In dimension 2, since long-range interactions are overwhelmingly dominant, a CLT for linear statistics with smooth test-functions can be proved, see [START_REF] Leblé | Fluctuations of two dimensional coulomb gases[END_REF][START_REF] Bauerschmidt | The twodimensional coulomb plasma: quasi-free approximation and central limit theorem[END_REF][START_REF] Leblé | Local microscopic behavior for 2d coulomb gases[END_REF], without proving any "probabilistic cancellation" on local quantities, but only a "quenched cancellation" on some angle term. Let us finally mention the work [START_REF] Leblé | The two-dimensional one-component plasma is hyperuniform[END_REF] where the 2D Coulomb gas is shown to be hyperuniform, meaning that the variance of the number of points in a ball scales much smaller than the volume. The paper [START_REF] Leblé | The two-dimensional one-component plasma is hyperuniform[END_REF] establishes an important quantitative translation invariance property based on refinements of Mermin-Wagner type arguments, see also [START_REF] Thoma | Overcrowding and separation estimates for the coulomb gas[END_REF]. In higher dimension much fewer results are available. One can mention the result of [START_REF] Serfaty | Gaussian fluctuations and free energy expansion for 2d and 3d coulomb gases at any temperature[END_REF] which treats the 3D Coulomb gas at high temperature "under a no phase transition assumption". A simpler variation of the 3D Colomb gas, named hierarchical Coulomb gas, has also been investigated in the work [START_REF] Chatterjee | Rigidity of the three-dimensional hierarchical coulomb gas[END_REF], followed by [START_REF] Ganguly | Ground states and hyperuniformity of the hierarchical coulomb gas in all dimensions[END_REF].

Outline of the main proofs

We now explain the general strategy to obtain the variance expansion formula of Theorem 3.1.2 and the CLT of Theorem 3.1.3. Since the proof of Theorem 3.1.1 is similar to the proof of [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF]Th. 3.1] we do not detail it here.

To simplify assume that ℓ N " 1. We are interested in the fluctuations of the linear statistics Fluct N rξs, where ξ : T Ñ R is a piecewise smooth function satisfying Assumptions 3.1.1.

The Helffer-Sjöstrand equation Let F : D N Ñ R smooth enough. The fluctuations of F are related to a partial differential equation through the representation

Var P N,β rF s " E P N,β r∇F ¨∇ϕs, (3.14) 
where ϕ :

D N Ñ R solves the Poisson equation " Lϕ " F ´EP N,β rF s on D N ∇ϕ ¨⃗ n " 0 on BD N , (3.15) 
where L stands for the generator L " β∇H N ¨∇ ´∆.

Note that (3.14) directly follows by integration by parts once it is known that (3.15) has a solution. Differentiating (3.15), one obtains the so-called Helffer-Sjöstrand equation which reads

" A 1 ∇ϕ " ∇F on D N ∇ϕ ¨⃗ n " 0 on BD N , (3.16) 
with A 1 formally given by

A 1 " β∇ 2 H N `L b I N .
We will use various tools to analyze the solution of (3.16) based on mean-field approximations, convexity and monotonicity.

Since B ij H N ď 0 for each i ‰ j, it is standard that P N,β satisfies the FKG inequality, meaning that the covariance between two increasing functions is non-negative. This can be formulated by saying that L ´1 preserves the cone of increasing functions: if ∇F ě 0 (coordinate wise), then ∇ϕ ě 0. A nice consequence is the following: if F, G : D N Ñ R are such that |∇F | ď ∇G, then Var P N,β rF s ď Var P N,β rGs.

(3.17)

This comparison principle can be extended to non-gradient vector-fields, which will be used as a key argument to handle the fluctuations of some complicated singular functions.

Mean-field transport It turns out that when F is a linear statistics, i.e F " Fluct N rξs for some smooth enough test-function ξ : T Ñ R, then the solution ∇ϕ of (3.16) can be approximated by a transport Ψ N in the form

X N P D N Þ Ñ 1 N 1´s pψpx 1 q, .
. . , ψpx N qq for some well-chosen map ψ : T Ñ R. Letting ∆ :" tpx, yq P T 2 : x " yu, one may write

∇H N ¨ΨN " N ij ∆ c g 1 s px ´yqpψpxq ´ψpyqqdµ N pxqdµ N pyq,
where µ N :"

1 N ř N i"1 δ x i .
Let us expand µ N around the Lebesgue measure dx on T and denote fluct N " N pµ N ´dxq. Noting that the constant term vanishes, one can check that

∇H N ¨ΨN " 2 ż p´g 1 s ˚ψqfluct N `1 N 1´s Arψs (3.18) with Arψs " ij ∆ c pψpxq ´ψpyqqN ´sg 1 s px ´yqdfluct N pxqdfluct N pyq. (3.19) 
The leading-order of (3.18) being a linear statistics, one can choose ψ such that ´β∇H N ¨ΨN div Ψ N » F by letting ψ such that

ψ 1 " ´1 2βc s p´∆q 1´s 2 ξ
with ş ψ " 0. The central task of the paper is to show that for a large class of singular maps ψ and all ε ą 0,

Var P N,β rArψss ď CN 1`ε |ψ 1 reg | 2 L 2 . (3.20)
Splitting the variance of the next-order term Denote

ζ : px, yq P T 2 Þ Ñ ψpxq ´ψpyq x ´y so that Arψs " ij ∆ c ζpx, yqN ´s gpx ´yqdfluct N pxqdfluct N pyq, (3.21) 
where g : x P Tzt0u Þ Ñ xg 1 s pxq. Note that for each i " 1, . . . , N

B i Arψs " 2 ż y‰x i B 1 ζpx i , yqN ´s gpx ´yqdfluct N pyq loooooooooooooooooooooooooomoooooooooooooooooooooooooon »V i `2 ż y‰x i ζpx i , yqN ´s g1 px ´yqdfluct N pyq looooooooooooooooooooooooomooooooooooooooooooooooooon »W i .
We have thus split ∇Arψs into a macroscopic force V and a microscopic force W (the splitting is in fact slightly different). By subadditivity, it follows that

Var P N,β rArψss ď 2 E P N,β rV ¨A´1 1 Vs looooooooomooooooooon pIq `2 E P N,β rW ¨A´1 1 Ws loooooooooomoooooooooon pIIq .
Control on pIIq with Poincaré inequality in gap coordinates In gap coordinates the microscopic force W behaves well: there exists W such that for all

U N P R N , W ¨UN " ´N ÿ i"1
Wi N pu i`1 ´ui q satisfying typically (i.e with overwhelming probability) the estimate

| W| 2 ď CN 1`ε |ψ 1 | 2 L 2 (3.22)
for all ε ą 0. By penalizing configurations with large nearest-neighbor distances, one can modify the Gibbs measure into a new one being uniformly log-concave with respect to the variables N px i`1 xi q, i " 1, . . . , N . Applying the Poincaré inequality in gap coordinates therefore gives using (3.22),

pIq ď CN 1`ε |ψ 1 | 2 L 2 . (3.23)
Control on pIq with the comparison principle In substance, one should think of V as satisfying for each i " 1, . . . , N |V i | ď C|ψ 2 px i q| `"Lower order terms".

Note that for instance if ξ " 1 pa,bq , ψ 2 reg blows like |x| ´p2´sq near a and b. Therefore for such singular ψ, the Poincaré inequality does not provide satisfactory estimates for pIq.

If V i was exactly given by ψ 2 px i q for each i " 1, . . . , N , one could upper bound E P N,β rV¨A ´1 1 Vs by N |ψ 1 reg | 2 L 2 since for all f P L 2 pTq,

Var P N,β rFluct N rf ss ď N |f | 2 L 2 . (3.25)
The idea is to use the comparison principle (3.17) to compare the Dirichlet energy of V with respect to the variance of a linear statistics, which are easier to handle using for instance (3.25). Let

ζ N : T Ñ R such that ζ 1 N " C|ψ 2 |. Equation (3.24) can be put in the form |V| ď ∇Fluct N rζ N s.
It then follows from (3.17) that

E P N,β rV ¨A´1 1 Vs ď Var P N,β rFluct N rζ N ss `"Lower order terms"
and the variance of Fluct N rζ N s is then roughly bounded by

Var P N,β rFluct N rζ N ss ď N |ζ N | 2 L 2 ď CN maxp1,2 max α i q , which yields pIIq ď CN maxp1,2 max α i q ď CN |ψ 1 | 2 L 2 . (3.26)
Let us emphasize that ζ N is in fact slightly more complicated: its fluctuations are therefore studied as an auxiliary linear statistics by rerunning the previous steps. Combining (3.23) and (3.26) gives (3.20), which easily concludes the proof of Theorem 3.1.2.

Central limit theorem

The starting point for the proof of the CLT of Theorem 3.1.3 is very similar to [START_REF] Lambert | Quantitative normal approximation of linear statistics of β-ensembles[END_REF] and proceeds by Stein's method. Let G N " N ´s 2 Fluct N rξs. We shall prove that for all η P C 1 pR, Rq such that |η 1 | 8 ď 1, up to a small error term,

E P N,β rηpG N qG N s " σ 2 ξ E P N,β rη 1 pG N qs `Error N , (3.27) 
with σ 2 ξ as in (3.13). The fundamental observation of Stein is that this approximate integration by parts formula quantifies a distance to normality. Indeed letting Z be a centered random variable with variance σ 2 ξ and h : R Ñ R smooth, one can solve the ODE xηpxq ´η1 pxq " hpxq ´ErhpZqs (3.28) and (3.27) can be written in the form

E P N,β rhpG N qs ´ErhpZqs " Error N ,
showing that G N is approximately Gaussian. Let us explain how to obtain (3.27). Let ∇ϕ " A ´1 1 ∇G N . By integration by parts we have

E P N,β rηpG N qG N s " E P N,β rη 1 pG N q∇G N ¨∇ϕs. (3.29)
The goal is then to prove that ∇G N ¨∇ϕ concentrates around σ 2 ξ . As explained in the second paragraph, ∇ϕ may be approximated by the transport N ´1`s 2 Ψ with Ψ : X N P D N Þ Ñ pψpx 1 q, . . . , ψpx N qq for some well-chosen map ψ : T Ñ R. Performing this approximate transport allows one to replace (3.29) by

E P N,β rηpG N qG N s ´σ2 ξ E P N,β rη 1 pG N qs " E P N,β " η 1 pG N q ´1 N N ÿ i"1 ξ 1 px i qψpx i q ´σ2 ξ ¯ı loooooooooooooooooooooooooomoooooooooooooooooooooooooon pIq `1 N 1´s 2 Cov P N,β rηpG N q, βArψs ´Fluct N rψ 1 ss looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon pIIq . (3.30)
The error term pIq is handled with the local laws, the error term pIIq by inserting (3.20) which concludes the proof of the CLT.

Structure of the paper

• Section 3.2 records some useful preliminaries on the fractional Laplacian on the circle.

• Section 3.3 shows the well-posedness of the Helffer-Sjöstrand equation and gives various consequences of convexity and monotonicity.

• Section 3.4 completes the proof of the near-optimal rigidity result of Theorem 3.1.1.

• Section 3.5 provides a proof of the variance expansion of Theorem 3.1.2.

• Section 3.6 contains the proof of the CLT of Theorem 3.1.3.

Notation

We denote d : t1, . . . , N u 2 Ñ N the symmetric distance dpi, jq " minp|j ´i|, N ´|j ´i|q for each 1 ď i, j ď N , ∆ the diagonal ∆ " tpx, yq P T 2 : x " yu. For all α P p0, 1q we let C α pT, Rq be the space of α-Hölder continuous functions from T to R C ´αpT, Rq the dual of C α pT, Rq. We write ∇ 2 f for the Hessian of a real-valued function f .

For future works, we keep track of the dependency of the constants in β. For all A, B ě 0, we write A ď CpβqB whenever there exists a constant C P R (which may depend on s) locally uniform in β such that A ď CB. Similarly, we write A " O β p1q whenever there exists a constant C locally uniform in β such that |A| ď C.
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Preliminaries

The fundamental solution of the fractional Laplacian on circle

We begin by justifying that the fundamental solution of the fractional Laplace equation on the circle is given by (3.1). The formula (3.1) can be expected since it corresponds to the periodic summation of the inverse power function x P R Þ Ñ |x| ´s, which is the fundamental solution of the fractional Laplace equation on the real line. For all complex variables s and a such that Repsq ą 1 and a ‰ 0, ´1, ´2, . . ., set ζps, aq "

8 ÿ n"0 1 pn `aq s .
Given a ‰ 0, ´1, ´2, . . ., one can extend in a unique manner ζp¨, aq into a meromorphic function on the whole complex plane with a unique pole at s " 1, which is simple with a residue equal to 1. This function is called the Hurwitz zeta function [START_REF] Bruce | On the Hurwitz zeta-function[END_REF]. Lemma 3.2.1 (Fundamental solution). Let g be the solution of the fractional Laplace equation on the circle p´∆q

1´s 2 g " c s pδ 0 ´1q, (3.31) 
with c s as in (3.3). Then for all x P Tzt0, ´1u,

g s pxq " ζps, xq `ζps, 1 ´xq " lim nÑ8 ´n ÿ k"´n 1 |k `x| s ´2 1 ´s n 1´s ¯. (3.32)
Moreover for all p ě 1 and all x P T g ppq pxq " p´1q p s . . . ps `p ´1qpζps `k, xq `p´1q p ζps `k, 1 ´xqq " p´1q p s . . . ps `p ´1q

ÿ kPZ 1 |x `k| s`p . (3.33)
Proof. Let g be the fundamental solution of (3.31). Following [START_REF] Roncal | Fractional laplacian on the torus[END_REF], one first derives the semi-group representation for p´∆q For an integrable function on the torus on the torus and k P Z, we let f pkq be k-th component of the Fourier series of f , namely

f pkq " 1 2π ż T f pyqe ´iky dy.
The fractional Laplacian p´∆q ´α on the torus is defined by the Fourier multiplier

{ p´∆q ´αf pkq " |k| ´2α p f pkq, k P Z for all f P SpT, Rq such that ∫ f " 0,
where SpT, Rq is the space of real-valued Schwartz functions on T. Applying (3.34) to λ " |k| 2 then gives

{ p´∆q ´αf pkq " 1 Γpαq ż 8 0 e ´|k| 2 t p f pkq dt t 1´α . (3.35)
Let pW t q tě0 be the heat kernel on T, defined by its Fourier coefficients x W t pkq " e ´|k|t 2 , for all k P Z, t ě 0.

The heat kernel on the circle is then given by its Fourier series or alternatively by the periodization of the heat kernel on R [START_REF] Roncal | Fractional laplacian on the torus[END_REF]: 

W t pxq " 1 2π ÿ kPZ e ´t|k| 2 e
1 |x ´k| s ´2 1 ´s n 1´s " lim nÑ8 n ÿ k"0 ´1 pk `1 ´xq s ´1 1 ´s n 1´s ¯`lim nÑ8 n ÿ k"0 ´1 pk `xq s ´1 1 ´s n 1´s ¯,
where we have used the change of variables t P R `˚Þ Ñ 1 t and (3.34) in the third equality. According to the Euler-Maclaurin formula, one may rewrite each sum as follows using the fact that for all a P p0, 1q,

lim nÑ8 ´n ÿ k"0 1 pk `aq s ´1 1 ´s n 1´s ¯" ´1 1 ´s a 1´s `1 a s ´s ż 8 0 t ´ttu ´1 2 pt `aq 1`s dt. (3.41)
If s is complex-valued with σ :" Repsq ą 1, then the left-hand side of the last display is given ζps, aq. Using an analytic continuation argument, it is argued in [31, Eq. (5.

2)] that for σ ą ´1 and a P p0, 1q, ζps, aq coincides with the right-hand side of (3.41). As a consequence we find that for all x P T and s P p0, 1q g s pxq " ζps, 1 ´xq `ζps, xq.

The identity (3.33) is then standard.

Inverse Riesz transform

In Section 3.5, when implementing loop equations techniques, we will consider the solution ψ of a convolution equation in the form g ˚ψ1 " ξ ´ş ξ with ş ψ " 0, where ξ : T Ñ R is a smooth test-function. The map ψ 1 is given by the fractional Laplacian of order 1´s 2 of ξ. Proceeding as in the proof of Lemma 3.2.1, one can easily derive a pointwise formula for ψ when ξ is smooth enough. We add some other useful simple formulas. 

1 2c s |ξ| 2 H 1´s 2 " ij g 2 s px ´yqpψpxq ´ψpyqq 2 dxdy ´2 ż ξ 1 pxqψpxqdx " ´ż ξ 1 pxqψpxqdx. (3.43)
Assume that ξ is supported on p´1 2 , 1 2 q. Let ℓ N P p0, 1s. Let ξ 0 : R Ñ R such that

ξ 0 pxq " # ξpxq if |x| ď 1 2 0 if |x| ą 1 2 . (3.44) 
Then

|ξpℓ ´1 N ¨q| H 1´s 2 " ℓ s N |ξ 0 | 2 H 1´s 2 `Opℓ 2 N |ξ 0 | 2 L 2 q. (3.45)
Proof. Let ξ P C ´s`ε pT, Rq for some ε ą 0 and let ψ such that ψ For completeness, let us sketch the main arguments. Let α P p0, 1q. We have

λ α " 1 Γp´αq ż 8 0 pe ´tλ ´1q dt t 1`α , for all λ ą 0.
Arguing as in the proof of Lemma 3.2.1, we find that for any f P L 2 pTq and k P Z,

{ p´∆q α f pkq " |ξ| 2α f pkq " 1 Γp´αq ż 8 0 pe ´|k| 2 t f pkq ´1q dt t 1`α dt,
which gives by taking the inverse Fourier transform

p´∆q α f pxq " 1 Γp´αq ż 8 0 pf ˚Wt pxq ´f pxqq dt t 1`α dt, (3.47) 
where W t is as in (3.36). If f P C 1´s`ε pT, Rq, then, as shown in [START_REF] Roncal | Fractional laplacian on the torus[END_REF], one can invert the order of integration. We then compute (3.46). We also compute

ż 8 0 W t pxq dt t 1`α " 1 ? 4π ÿ kPZ ż 8 0 1 t 3 
c 1 s c s " 1 π Γp1 ´s 2 qΓp s 2 q |Γp´1 ´s 2 q|Γp 1´s 2 q " c 1 s c s " 1 ´s π 2 tanp π 2 sq .
Integrating the above formula with the condition that ş ψ " 0 yields

ψpxq " 1 π tanp π 2 sq ż ÿ kPZ ξpyq ´∫ ξ |x ´y ´k| 1´s sgnpx ´yqdy, (3.48) 
Therefore (3.42) holds when ξ P C 1´s`ε pT, Rq, for some ε ą 0. By density, we conclude that (3.42) holds as soon as ξ P C ´s`ε for some ε ą 0. Equation (3.43) follows by integration by parts.

Assume that ξ is supported on p´1 2 , 1 2 q. Let ξ 0 : R Ñ R such that

ξ 0 pxq " # ξpxq if |x| ď 1 2 0 if |x| ą 1 2 .
We have

|ξpℓ ´1 N ¨q| 2 H 1´s 2 " ż T 1 |x|ă 1 2 ℓ N ξpℓ ´1 N xq ÿ kPZ ż T ξpℓ ´1 N xq ´ξpℓ ´1 N yq |x ´y `k| 2´s 1 |y|ă 1 2 ℓ N dydx " ż R ξ 0 pℓ ´1 N xq ÿ kPZ ż R ξ 0 pℓ ´1 N xq ´ξ0 pℓ ´1 N yq |x ´y `k| 2´s dydx " ℓ s N |ξ 0 | 2 H 1´s 2 `ÿ kPZ ˚żR ξ 0 pℓ ´1 N xq ξ 0 pℓ ´1 N xq ´ξ0 pℓ ´1 N yq |x ´y `k| 2´s dydx " ℓ s N |ξ 0 | 2 H 1´s 2 `O´ℓ 2 N ż |ξ 0 pxq||ξ 0 pxq ´ξ0 pyq|dxdy " ℓ s N |ξ 0 | 2 H 1´s 2 `Opℓ 2 N |ξ| 2 L 2 q.
Next, we apply the pointwise formula (3.42) to indicator and inverse power functions.

Lemma 3.2.3 (Explicit formulas). Let ζps, aq be the Hurwitz zeta function. Let ξ " 1 p´a,aq ´2a for some 0 ă a ă 1 2 and ψ be given by (3.42). We have ψpxq " ´cotanp π 2 sq πs pζp´s, x `aq ´ζp´s, x ´aqq, @x P T.

Let α P p0, sq, ξ " ζpα, ¨q `ζpα, 1 ´¨q and ψ be given by (3.42). Then with c s , c α , c c´α as in (3.3), we have ψpxq " c α 2c s´α c s pζps ´α, xq `ζps ´α, 1 ´xqq, @x P T.

Lemma 3.2.4 (Decay at infinity). Let ξ P C ´s`ε pT, Rq such that ş ξ " 0. Assume that ξ is supported on p´a, aq for some 0 ă a ă 1 4 . Then ψ :" p´∆q 1´s 2 ξ is C 8 on Tzr´a, as and for each k ě 1, there exists a constant C k ą 0 such that for all x P Tzr´2a, 2as,

|ψ pkq |pxq ď C k |ξ| L 1 1 |x| 1´s`k .
(3.49)

Proof. Since ξ P L 1 pT, Rq, one may differentiate (3.42) under the integral sign. Using the fact that ∫ pξ ´ş ξq " 0, we obtain (3.49).

In Section 3.5 we will consider test-functions ξ with poor regularity, that one should regularize at a small scale ℓ ą 0 to obtain a transport with bounded second derivative. For any ℓ ą 0, define the smoothing kernel

K ℓ : x Þ Ñ 1 ℓ $ & % 1 ℓ px `ℓq if x P p´ℓ, 0q ´1 ℓ px ´ℓq if x P p0, ℓq 0 if |x| ě ℓ.
(3.50) Lemma 3.2.5 (Regularization). Let ξ P C ´s`ε pT, Rq, piecewise C 2´s pT, Rq. Fix y 0 P supppξq. Let ψ P C ε pT, Rq be given by ψ 1 " p´∆q 1´s 2 ξ with ş ψ " 0. Assume that ξ is supported on py 0 ´a, y 0 `aq for some 0 ď a ď 1 2 . Assume that there exist α i ě 0, i " 1, . . . , l and χ 0 ą 0 such that

|ψ 2 |pxq ď χ 0 ´p ÿ l"1 1 |x ´al | 1`α l 1 |x´y 0 |ă2a `1 pa `|x ´y0 |q 3´s ¯, @x P T (3.51)
Let ℓ P p0, 1q and ψ ℓ " ψ ˚Kℓ with K ℓ given by (3.50). There exists a constant C ą 0 such that

|ψ 2 ℓ |pxq ď Cχ 0 ´p ÿ l"1 1 p|x ´al | _ ℓq 1`α l 1 |x´y 0 |ă2a `1 pa `|x ´y0 |q 3´s ¯, @x P T. (3.52)

The Helffer-Sjöstrand equation

In this section we introduce some results on the solutions of Helffer-Sjöstrand equations. We first state existence and uniqueness results valid for energies with convex pairwise interactions and derive a known comparison principle that one adapts to the circular setting. We then study an important change of coordinates which leads to the study of H.-S. equations on affine hyperplanes of R N . Finally we give a maximum principle on the solution and recall some standard results for log-concave probability measures.

Well-posedness and first properties

In this subsection we introduce the H.-S. equation and state some standard existence and uniqueness results. We follow partly the presentation of [START_REF] Armstrong | C 2 regularity of the surface tension for the ∇ϕ interface model[END_REF]. Let µ be a probability measure on D N in the form

dµ " e ´HpX N q 1 D N pX N qdX N ,
with H : D N Ñ R measurable. We make the following assumptions on H:

Assumptions 3.3.1. Assume H : D N Ñ R is in the form H : X N Þ Ñ ÿ i‰j χp|x i ´xj |q, with χ : R `˚Ñ R satisfying χ P C 8 pR `˚, Rq, χ 2 ě c ą 0.
Let F : D N Ñ R be a smooth enough function. We seek to express the variance of F under µ in terms of a partial differential equation. Let us recall the integration by parts formula for µ. Define on C 8 c pD N q the Langevin operator

L µ " β∇H N ¨∇ ´∆,
with ∇ and ∆ the gradient and Laplace operators of T N . Recall that the operator L is the generator of a Langevin dynamics for which µ is the invariant measure. By integration by parts under µ, for any functions ϕ, ψ P C 8 pD N q such that ∇ϕ ¨⃗ n " 0 a.e on BD N , we have 

E µ rψL µ ϕs " E µ r∇ψ ¨∇ϕs. ( 3 
∇L µ ϕ " A µ 1 ∇ϕ,
with A 1 the so-called Helffer-Sjöstrand operator

A µ 1 " ∇ 2 H `Lµ b I N .
Therefore the solution ϕ of L µ ϕ " F ´Eµ rF s formally satisfies

" A µ 1 ∇ϕ " ∇F on D N ∇ϕ ¨⃗ n " 0 on BD N . (3.55)
This PDE is called the Helffer-Sjöstrand equation. To make the above statements rigorous one should work on the appropriate functional spaces. Let us define the norm

}F } H 1 pµq " E µ rF 2 s 1 2 `Eµ r|∇F | 2 s 1 2 .
Define H 1 pµq the completion of C 8 pD N q with respect to the norm } ¨}H 1 pµq . Also define the norm

}F } H ´1pµq " supt|E µ rF Gs| : G P H 1 pµq, }G} H 1 pµq ď 1u.
We let H ´1pµq be the dual of H 1 pµq, defined as the completion of C 8 pD N q with respect to the norm } ¨}H ´1pµq . We are interested in the well-posedness of (3.55) when ∇F is replaced by any vector-field (possibly non-gradient) v P L 2 pt1, . . . , N u, H ´1pµqq.

Since the density of µ with respect to the Lebesgue measure on D N is not bounded from below, the existence of a solution to the Helffer-Sjöstrand equation (3.55) is not straightforward. To circumvent this difficulty we prove that (3.55) is well-posed when F is a function of the gaps. Define the map Π :

X N P D N Þ Ñ px 2 ´x1 , x 3 ´x1 , . . . , x N ´x1 q P R N ´1 (3.56)
and the push-forward of µ by the map Π

µ 1 " µ ˝Π´1 . (3.57) 
Proposition 3.3.1 (Existence and representation). Let µ satisfying Assumptions 3.3.1. Assume that F is in the form F " G ˝Π, G P H 1 pµ 1 q or that the kernel χ is bounded. Then there exists a unique ∇ϕ P L 2 pt1, . . . , N u, H 1 pµqq such that

" A µ 1 ∇ϕ " ∇F in D N ∇ϕ ¨⃗ n " 0 on BD N , (3.58) 
with the first identity being, for each coordinate, an identity on elements of H ´1pµq. Moreover the solution of (3.58) is the unique minimizer of the functional

ψ Þ Ñ E µ rψ ¨∇2 Hψ `|Dψ| 2 ´2∇F ¨ψs, (3.59) 
on maps ψ P L 2 pt1, . . . , N u, H 1 pµqq such that ∇ϕ ¨⃗ n " 0 on BD N . The variance of F may be represented as

Var µ rF s " E µ r∇ϕ ¨∇F s (3.60)
and the covariance between F any function G P H 1 pµq as Cov µ rF, Gs " E µ r∇ϕ ¨∇Gs.

The identity (3.60) is called the Helffer-Sjöstrand formula. The proof of Proposition 3.3.1 is postponed to the Appendix (see Section 3.7.1).

Remark 7 (Remark on the boundary condition). Let ϕ P H 1 pµq. The map ∇ϕ satisfies the boundary condition ∇ϕ ¨⃗ n " 0 on BD N if and only if B i ϕ " B j ϕ whenever i " j, for each i, j P t1, . . . , N u.

Remark 8 (Link to the Monge-Ampère equation). We formally discuss the link between (3.58) and the Monge-Ampère equation. Let F : D N Ñ R be a smooth enough test-function. For all t ě 0, consider the measure dµ t " When ∇F is replaced by a non-gradient vector-field v, the solutions ψ of the equation A 1 ψ " v with a Neumann boundary condition are in general non-unique. In order to have a well-posed equation one assumes additionally that ř N i"1 v i " 0 and that each coordinate v i is a function of the gaps.

Proposition 3.3.2 (Well-posedness for non-gradient vector-fields). Let µ satisfying Assumptions 3.3.1. Let v P L 2 pt1, . . . , N u, H ´1pµqq such that v ¨pe 1 `. . .`e N q " 0 and for each i P t1, . . . , N u, v i " w i ˝Π for some w i P H ´1pµ 1 q. There exists a unique ψ P L 2 pt1, . . . , N u, H 1 pµqq such that

$ & % A µ 1 ψ " v on D N ψ ¨pe 1 `. . . `eN q " 0 on D N ψ ¨⃗ n " 0 on BD N . (3.61)
Moreover the solution of (3.61) is also the unique minimizer of

ψ Þ Ñ E µ rψ ¨∇2 Hψ `|Dψ| 2 ´2v ¨ψs,
on maps ψ P L 2 pt1, . . . , N u, H 1 pµqq such that ψ ¨⃗ n " 0 on BD N .

We postpone the proof of Lemma 3.3.2 to the Appendix (see Section 3.7.1). When v satisfies the assumptions of Lemma 3.3.2 we can denote non-ambiguously ψ " pA µ 1 q ´1v the solution of (3.61).

Lemma 3.3.3. Let µ satisfying Assumptions 3.3.1. Let v, w P L 2 pt1, . . . , N u, H ´1pµqq satisfying the assumptions of Proposition 3.3.2. We have E µ rpv `wq ¨pA µ 1 q ´1pw `wqs ď 2 ´Eµ rv ¨pA µ 1 q ´1vs `Eµ rw ¨pA µ 1 q ´1ws ¯.

(3.62)

Let F " G ˝Π with ∇G P L 2 pt1, . . . , N u, H ´1pµ 1 qq. Then the solution of (3.61) is the solution ∇ϕ of (3.58).

Proof. Since v ´w satisfies pe 1 `. . . `eN q ¨pv ´wq " 0, one can define pA µ 1 q ´1pv ´wq. Moreover note that by integration by parts E µ rpv ´wq ¨pA µ 1 q ´1pv ´wqs ě 0.

By linearity this implies (3.62).

Let us prove the second part of the statement. Let F " G˝Π with ∇G P L 2 pt1, . . . , N u, H ´1pµ 1 qq. Let ∇ϕ be the solution of (3.58) with F function of the gaps. Observe that ř N i"1 B i F " 0. Taking the scalar product of (3.58) with pe 1 `. . . `eN q yields pe 1 `. . . `eN q ¨∇2 Hψ `Lµ pψ ¨pe 1 `. . . `eN qq " 0.

By symmetry, pe 1 `. . . `eN q ¨∇2 Hψ " 0 and therefore L µ pψ ¨pe 1 `. . . `eN qq " 0.

Since ∇pψ ¨pe 1 `. . . `eN qq ¨⃗ n " 0 on BD N , this implies that ∇ψ ¨pe 1 `. . . `eN q " 0.

Monotonicity and its consequences

In this subsection, we give some monotonicity results related to the FKG inequality.

Let µ be a probability measure on R N in the form

dµ " e ´HpX N q dX N with H : D N Ñ R smooth verifying B ij H ď 0 for each i ‰ j. The FKG inequality [START_REF] Bakry | Diffusions hypercontractives[END_REF] then states that the covariance between two increasing functions (i.e increasing in all their coordinates) is non-negative. This can be reformulated by saying that for all increasing function F : D N Ñ R smooth enough, the solution ϕ of (3.54) is also increasing. In our case, we have B ij H N ď 0 on D N for each i ‰ j and since the Langevin dynamics is conservative in D N (i.e the process does not hit the boundary a.s), the FKG inequality holds true.

In the next proposition we show that a maximum principle for solutions of non-gradient Helffer-Sjöstrand equations (3.61) holds, at the condition of fixing an origin. Let

D x N ´1 " tpx 1 , . . . , x N ´1 P T N ´1 : x 1 ´x ď x 2 ´x . . . x N ´1
´xu. Denote µ x the law of px 2 , . . . , x N q conditionally on x 1 " x when px 1 , . . . , x N q is distributed according to µ. Let H x : y P D x N ´1 Þ Ñ Hpx, yq. Let L x " L µ x acting on H 1 pµ x q and A x 1 " A µx Let v P L 2 pt1, . . . , N ´1u, H ´1pµ x qq. There exists a unique ψ P L 2 pt1, . . . , N ´1u,

H 1 pµ x qq solution of $ & % A x 1 ψ " v on D x N ψ 1 " 0 on D x N ψ ¨⃗ n " 0 on BD x N .
(3.63)

If F P H 1 pµ x q, then the solution of (3.63) is in the form ψ " ∇ϕ P L 2 pt1, . . . , N ´1u, H 1 pµ x qq.

Moreover the variance of F under µ x may be represented as

Var µ x rF s " E µ x r∇ϕ ¨∇F s.
In the sequel given v P L 2 pt1, . . . , N ´1u, H ´1pµ x qq, we denote A x 1 v the solution of (3.63). The proof of Proposition 3.3.4 is entirely similar to the proof of Proposition 3.3.2. We can now state the maximum principle for (3.63), derived for instance in [START_REF] Cartier | Inégalités de corrélation en mécanique statistique[END_REF][START_REF] Helffer | On the correlation for kac-like models in the convex case[END_REF]. Lemma 3.3.5 (Monotonicity). Let µ satisfying Assumptions 3.3.1. Assume additionally that lim xÑ0 χpxq " `8. Let v P L 2 pt1, . . . , N ´1u, H ´1pµ x qq. Let ψ P L 2 pt1, . . . , N ´1u, H 1 pµ x qq be the solution of (3.63). Assume that v i ě 0 a.e on D x N , for each i P t1, . . . , N ´1u. Then ψ i ě 0 a.e on D x N , for each i P t1, . . . , N ´1u.

Proof. Let ψ P L 2 pt1, . . . , N ´1u, H 1 pµ x qq be the solution of (3.63). Let us prove that for each i P t1, . . . , N ´1u, ψ i ě 0 a.e on D x N . Let ψ `and ψ ´be the positive and negative parts of ψ. Taking the scalar product of the equation A x 1 ψ " v with ψ ´gives ψ ´¨∇ 2 H x ψ `ψ´¨Lx ψ " ψ ´¨v ě 0.

By integration by parts under µ x , one can observe that

E µ x " ψ ´¨∇ 2 H x ψ `N ÿ i"1 ∇ψ í ¨∇ψ i ı ě 0.
Indeed since lim xÑ0 χpxq " `8, the boundary term in the above integration by parts vanishes. Note that ∇ψ í ¨∇ψ i " ´|∇ψ í | 2 and

ψ ´¨∇ 2 H x ψ `" ÿ i‰j χ 2 px j ´xi qpψ í ψ ì ´ψí ψ j q " ´ÿ i‰j χ 2 px j ´xi qψ í ψ j ď 0. (3.64) 
One deduces that

E µ x rψ ´¨∇ 2 H x ψ ´`|Dψ ´|2 s " 0.
This implies that ψ ´" 0 and concludes the proof. Let us emphasize that we have crucially used the assumption that the interaction blows up when two particles collide, which somehow puts the boundary of the domain at infinity.

As a crucial consequence of Lemma 3.3.5, one can compare the variances of two functions under µ x by comparison of their gradients. We derive the following new observation: Then E µ x rv ¨pA x 1 q ´1vs ď E µ x rw ¨pA x 1 q ´1ws. In particular if F, G P H 1 pµq satisfy for each i P t1, . . . , N ´1u,

|B i F | ď B i G, a.e on D x N ,
then Var µ x rF s ď Var µ x rGs.

Proof. For x " px 1 , . . . , x N q P R N , we use the notation x ě 0 whenever for each i P t1, . . . , N ´1u, x i ě 0. Let v, w P L 2 pt1, . . . , N u, H ´1pµ x qq as in the statement of Lemma 3.3.6. Let v `and v ´be the positive and negative parts of v. Using the fact that A x 1 is self adjoint on L 2 pt1, . . . , N u, H 1 pµ x qq, one finds that E µ x rw ¨pA x 1 q ´1ws ´Eµ x rv ¨pA x 1 q ´1vs " E µ x rpv `wq ¨pA x 1 q ´1pw ´vqs.

Note that since w ´v ě 0, by Lemma 3.3.5, pA x 1 q ´1pw ´vq ě 0 and that w `v ě 0, one gets E µ x rpv `wq ¨pA x 1 q ´1pw ´vqs ě 0, which gives the desired result. The second part of statement is straightforward.

Lemma 3.3.5 and Lemma 3.3.6 allow a comparisons between general vector-field ψ P L 2 pt1, . . . , N u, H 1 pµqq. However if one restricts the comparison to gradients, much less is required on the measure µ, as shown in the following: Lemma 3.3.7. Let µ be a probability measure on D N in the form dµ " e ´H dX N with H : D N Ñ R in C 2 such that the dynamics is conservative and

B ij H ď 0 for each i ‰ j.
Let F, G P H 1 pµq such that for each i P t1, . . . , N u,

|B i F | ď B i G.
(3.66)

Then Var µ rF s ď Var µ rGs.

(3.67)

Proof. It is standard that µ satisfies the FKG inequality meaning that for all measurable nondecreasing functions f and g, the covariance between f and g under µ is non-negative. We refer to [START_REF] Bakry | Sur les inégalités fkg[END_REF]Th. 1.3] in the R N case.

Let F, G P H 1 pµq be as in (3.66). One may write

Var µ rGs " Var µ rF s `Cov µ rG `F, G ´F s
Since G ´F and F `G are non-decreasing, their covariance is non-negative, concluding the proof of (3.67).

Variances upper bounds

We recall some well-known consequences of convexity regarding variances. 

E µ r∇ϕ ¨∇2 H∇ϕ `|∇ 2 ϕ| 2 ´2∇F ¨∇ϕs.
Since E µ r|∇ 2 ϕ| 2 s ě 0, one gets Var µ rF s ď ´min

ϕPH 1 pµq E µ r∇ϕ ¨∇2 H∇ϕ ´2∇F ¨∇ϕs " ´Eµ " min U N PR N U N ¨∇2 HU N ´2∇H ¨UN ı " E µ r∇F ¨p∇ 2 Hq ´1∇F s.
The Brascamp-Lieb inequality requires some regularity on the function F . We now give a simple concentration property for linear statistics, which depends only on the L 2 norm of the test-function. We obtain the following sub-poissonian estimate: Lemma 3.3.9. Let µ satisfying Assumptions 3.3.1. Let ξ P L 2 . We have

Var µ " N ÿ i"1 ξpℓ ´1 N x i q ı ď N ℓ N ´żT ξ 2 ´´ż T ξ ¯2¯. (3.69) 
Proof. Let ξ P L 2 pT, Rq. Let pξ k q be a sequence of elements of C 2 pT, Rq such that pξ k q converge to ξ in L 2 pT, Rq. Let us prove that (3.69) holds for ξ k . Since we have not proved that the H.-S. equation (3.58) is well posed only for gradients of functions of the gaps, we proceed by regularizing µ. For η ą 0, let χ η be such that χ η is bounded by η ´1, χ 2 η ě 0 and χ η ď χ. Define

dµ η " 1 Z η e ´Hη dX N , where H η " ÿ i‰j χ η px i ´xj q.
Denote L µη the operator acting on H ´1pD N , Rq,

L µη " ∇H η ¨∇ ´∆.
Since the density of µ η is bounded from below and from above with respect to the Lebesgue measure on D N , one may apply Proposition 3.3.1, which allows to express the variance of ξ k under µ η as

Var µη rFluct N rξ k ss " ´min E µη r∇ϕ ¨∇2 H∇ϕ `|∇ 2 ϕ| 2 ´2∇ϕ ¨∇Fluct N rξ k ss,
where the minimum is taken over maps ϕ : D N Ñ R such that ∇ϕ P L 2 pt1, . . . , N u, H 1 pD N , Rqq and ∇ϕ ¨⃗ n " 0 on BD N . Since ∇ 2 H η is non-negative, one may bound this by

Var µη rFluct N rξ k ss ď ´min E µη r|∇ 2 ϕ| 2 ´2∇ϕ ¨∇Fluct N rξ k ss, (3.70) 
where the minimum is taken over maps ϕ P H 1 . The variational problem (3.70) has a minimum, attained at a certain ϕ k P H 1 , which satisfies " L µη pB i ϕ k qpX N q " ξ 1 k px i q for each i P t1, . . . , N u and

X N P D N ∇ϕ ¨⃗ n " 0 on BD N . (3.71) Let θ k : T Ñ R be such that θ 1 k " ξ k ´ş ξ k . Set ϕ k : X N P D N Þ Ñ θ k px 1 q `. . . `θk px N q.
Recalling Remark 7, one can observe that ϕ k is a solution to (3.71) and by convexity ϕ k is a minimizer of (3.70), which yields

Var µη rFluct N rξ k ss ď E µη " N ÿ i"1 θ 2 k px i q 2 ´2 N ÿ i"1 ξ 1 k px i qθ 1 k px i q ı " E µη " N ÿ i"1 ξ 2 k px i q ı " N ´żT ξ 2 k ´´ż T ξ k ¯2¯.
Letting k go to `8 yields

Var µη rFluct N rξss ď N ´żT ξ 2 ´´ż T ξ ¯2¯.
Then, letting η tend to 0, we deduce by dominated convergence that (3.69) holds.

Log-Sobolev inequalities and Gaussian concentration

In this subsection we gather results of Log-Sobolev inequalities and Gaussian concentration. We first recall a crucial convexity result proved in [START_REF] Herm | On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation[END_REF].

Lemma 3.3.10. Let µ satisfying Assumptions 3.3.1. Let I Ă t1, . . . , N u, |I| " K. Denote π I and π I c the projections on the coordinates px i q iPI and px i q iPI c . Split H into H " H 1 ˝πI `H2 with

H 1 " X K P D K Þ Ñ ÿ i‰jPI χp|x i ´xj |q, H 2 : X N P D N Þ Ñ ÿ iPI c ÿ j‰i χp|x i ´xj |q.
Let ν be the push-forward of µ by the map π I . Then r ν may be written

dr νpxq9e ´pH 1 `r Hq 1 D K pxqdx, with ∇ 2 r H ě 0.
Proof. Let I Ă t1, . . . , N u and K " |I|. On D N , introduce the coordinates pz, yq " ppx i q iPI , px i q iPI c q. Fix z P D K , v P R K and denote h : t Þ Ñ r Hpz `tvq. One can check that

h 2 ptq " E P px`tvq rv ¨B11 H 2 vs ´Var P px`tvq rv ¨B1 H 2 s, (3.72) 
where P pzq is the probability measure Furthermore since ∇ 2 H 2 is non-negative, its Schur complement is non-negative, which gives

dP pzq " 1 Zpzq e ´H2 pz,
B 11 H 2 ´B12 H 2 pB 22 H 2 q ´1B 12 H 2 ě 0.
Inserting this into p3.72q, this justifies that ∇ 2 r H ě 0.

We pause to state the Log-Sobolev inequality for uniformly log-concave measures on convex domains of R N , which is a special case of the Bakry-Emery criterion [START_REF] Bakry | Diffusions hypercontractives[END_REF]. Recall the relative entropy of a probability measure µ with respect to ν, defined by

Entpµ | νq " ż log dµ dν dµ P r0, `8s,
if ν is absolutely continuous with respect to µ and Entpν | µq " `8 otherwise. Let also recall the Fisher information of µ with respect to ν, given by

Fisherpµ | νq " ˇˇ∇ log dν dµ ˇˇ2dν,
if ν is absolutely continuous with respect to µ and Fisherpν | µq " `8 otherwise.

Lemma 3.3.11. Let K be a convex domain of R N . Let w ą 0 and γ w be a centered Gaussian distribution on R N with covariance matrix 1 w I n . Let γ w K defined by conditioning γ w into K. Assume that µ is a measure on K in the form dµ " f dγ w K with f : K Ñ R Borel and log-concave. Then ν satisfies a log-Sobolev inequality with constant 2w, meaning for all probability measure µ P PpAq,

Entpµ | νq ď 2wFisherpµ | νq.
Lemma 3.3.12. Let K be a convex domain of R N . Let w ą 0 and γ w be a centered Gaussian distribution on R N with covariance matrix 1 w I n . Let γ w K defined by conditioning γ w into K. Assume that µ is a measure on K in the form dµ " f dγ w K with f : K Ñ R Borel and log-concave. Then µ satisfies Gaussian concentration: for all F P H 1 , we have

log E µ re tF s ď tE µ rF s `w 2 t 2 sup K |∇F | 2 , for all t P R. (3.73) 
We now state a concentration result which can be applied to divergence-free test-functions for measures on the form given by Assumptions 3.3.1. Recall

U N ¨∇2 HU N ě c ÿ i‰j pu i ´uj q 2 , for all U N P R N .
The crucial observation is that when ř N i"1 u i " 0, the Hessian of the energy controls N ´1 times the Euclidean norm of u:

U N ¨∇2 HU N ě pN ´1qc N ÿ i"1 u 2 i . (3.74) 
Furthermore one can observe that the solution ϕ of the equation Lϕ " F ´Eµ rF s is divergence-free whenever F is divergence-free. Combining this with (3.74) gives the following Gaussian estimate:

Lemma 3.3.13. Let I Ă t1, . . . , N u and π I the projection on the coordinates px i q iPI . Let µ satisfying Assumptions 3.3.1. Let F " G ˝πI P H 1 pµq. Assume that F is independent of ř iPI x i , i.e ř iPI B i F " 0. For all t P R we have

log E µ re tF s ď tE µ rF s `t2 2cp|I| ´1q sup |∇F | 2 .
The proof of Lemma 3.3.13 can be found in [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF]Le. 3.9]. It can be adapted readily to our circular setting. For completeness we sketch the main arguments below and follow line by line the proof of [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF].

Proof. Let I P t1, . . . , N u of cardinal m. To simplify the notation assume that I " t1, . . . , mu. On D N introduce the coordinates px, x 1 q with x " px i q iPI P D m and x 1 " px i q iPI 1 P D N ´m. The energy H can be split into Hpx, x 1 q " H 1 pxq `H2 px, x 1 q with H 1 uniformly convex, H 2 convex and H 1 independent of ř iPI x i , i.e ř iPI B i H 1 " 0. On D m , introduce the coordinates x " pz, wq with z " px 1 , . . . , x m´1 q P D m´1 and w " m ´1 2 ř m i"1 x i . Observe that this change of variables can be written in the form pz, wq " M ˚px 1 , . . . , x m q, with M an orthogonal matrix. Since H 1 is independent of w, one can write it in the form H 1 " r H 1 pzq. Similarly F can be written in the form F " gpzq. Let ν be the law of the push-forward of µ by x P R N Þ Ñ z. Namely, dν " (3.76)

The proof of (3.76) is similar to the proof of Lemma 3.3.10. Since H 1 is independent of q, one has

B zq HpB qq Hq ´1B zq H " B zq H 2 pB qq H 2 q ´1B zq H 2 .
Hence, by positivity of B zz H 2 , its Schur complement is positive and

B zz H ´Bzq HpB qq Hq ´1B zq H " B zz H 1 `Bzz H 2 ´Bzq H 2 pB qq H 2 q ´1B zq H 2 ě B zz H 1 .
Inserting this into (3.76) we deduce that for all u P R m´1 ,

u ¨Bzz r Hu ě u ¨Bzz H 1 u " Ă M u ¨Bxx H 1 Ă M u ě c ÿ i‰j pp Ă M uq i ´p Ă M uq j q 2 ,
where Ă M denotes the first m ´1 columns of M . Moreover we can observe that

ÿ i‰j pp Ă M uq i ´p Ă M uq j q 2 " pm ´1q m´1 ÿ i"1 u 2 i .
Since ν is uniformly log-concave with a lower bound on the Hessian equal to pm ´1qc, we can apply the Gaussian concentration of Lemma 3.3.12, which gives for all t P R, E µ re tF s " E ν re tg s ď e tEν rgs`t

2 2cpm´1q sup |∇zg| 2 .
We can now observe that, since M is orthogonal, |∇ z g| 2 " |∇F | 2 . This concludes the proof.

Near-optimal rigidity

This section is devoted to the proof of the rigidity result of Theorem 3.1.1. The method uses various techniques invented in the seminal paper [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF]Th. 3.1]. Being working on the circle instead of the real line, some simplifications can be made: among other things, the expectation of gaps under the Gibbs measure is known and one does not need to estimate the accuracy of standard positions, which was one of the main issues of [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF]. The first task for us is to obtain a local law on gaps saying that for each i P t1, . . . , N u and 1 ď k ď N 2 , N px i`k ´xi q is typically of order k. To this end we perform the mutliscale analysis of [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF] allowing one bootstrap this local law down to microscale. The argument is based on a convexifying procedure that we first detail.

Comparison to a constrained Gibbs measures

Because the Hessian of the energy degenerates when particles are far away from each other, one cannot directly derive Gaussian concentration estimates for P N,β . Following [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF], one may add to the Hamiltonian a convexifying term, which penalizes configurations with large gaps. Let θ be a smooth cutoff function θ : R `Ñ R `such that θpxq " x 2 for x ą 1, θ " 0 on r0, 1 2 s and θ 2 ě 0 on R `. Let I " tj : i ď j ď i `ku and K ą 0. Define

F " k 2 θ ´N K px i`k ´xi q ¯(3.77)
and the locally constrained Gibbs measure

dQ N,β " 1 K N,β e ´βpH N `FqpX N q 1 D N pX N qdX N . (3.78)
In the sequel we will often take K " tk 1`ε u for some ε ą 0. The measure Q N,β is more concentrated than P N,β in the directions e i for i P I. Recall the total variation distance between two measures µ and ν on D N : TVpµ, νq " sup

APBpD N q
|µpAq ´νpAq|.

The Pinsker inequality, see [START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF]Ch. 5] for a proof, asserts that

TVpµ, νq 2 ď 2Entpµ | νq, (3.79) 
where Entp¨| νq is the relative entropy with respect to ν. Using (3.79) and the log-concavity of the constrained measure (3.78), one may derive the following control:

Lemma 3.4.1. Let i P t1, . . . , N u, 1 ď k ď N 2 , I " tj : i ď j ď i `ku and K ą 0. Let Q N,β be the measure (3.78). Denote π I the projection π I : X N P D N Þ Ñ px i q iPI P D k`1 . There exists a constant Cpβq depending only on β and s and locally uniform in β such that

TVpP N,β ˝π´1 I , Q N,β ˝π´1 I q 2 ď Cpβqk 5 K s E P N,β "´N K px i`k ´xi q ¯21 x i`k ´xi ě K 2N ı .
Proof. Applying Pinsker's inequality (3.79) to µ " P N,β ˝π´1

I and ν " Q N,β ˝π´1 I reads TVpP N,β ˝π´1 I , Q N,β ˝π´1 I q 2 ď 2EntpP N,β ˝π´1 I | Q N,β ˝π´1 I q. (3.80) Note EntpP N,β ˝π´1 I | Q N,β ˝π´1 I q " EntpP N,β ˝pGap k`1 ˝πI q ´1 | Q N,β ˝pGap k`1 ˝πI q ´1q.
Indeed under P N,β and Q N,β , the law of x i is uniformly distributed on the circle and independent of the law of Gap k`1 ˝πI pX N q. By Lemma 3.3.10, the Hamiltonian H of Gap k`1 ˝πI pX N q satisfies

U k`1 ¨∇2 HU k`1 ě C ÿ iăjPI pN pu j ´ui qq 2 K s`2 ě C ÿ iPIz max I pN pu i`1 ´ui qq 2 K s`2 , for all U k`1 P R k`1 .
Consequently the measure ν :"

Q N,β ˝pGap k`1 ˝πI q ´1 is c-uniformly log-concave for c " Cβ K s`2
and by Lemma 3.3.11 it satisfies a log-Sobolev inequality with constant 2c ´1. Writing F " G Gap k`1 ˝πI , this gives

EntpP N,β ˝pGap k`1 ˝πI q ´1 | νq ď CpβqK s`2 E P N,β r|∇pG ˝Gap k`1 ˝πI q| 2 s. (3.81) 
One can next upper bound the Fisher information by

E P N,β r|∇G| 2 ˝Gap k`1 ˝πI s ď Cpβqk 5 K ´2E P N,β "´θ 1 ´N K px i`k ´xi q ¯¯2 ı ď Cpβqk 5 K ´2E P N,β "´N K px i`k ´xi q ¯¯2 1 x i`k ´xi ě K 2N ı .
Inserting this into (3.81) and using (3.80) concludes the proof of Lemma 3.4.1.

First local law

We establish a local law, saying that each gap N px i`k ´xi q is typically of order k with an exponentially small probability of deviations.

Lemma 3.4.2. Let δ ą 0. There exist two constants cpβq ą 0 and Cpβq ą 0 locally uniform in β such that for each i P t1, . . . , N u and 1 ď k ď N 2 , P N,β pN px i`1 ´xi q ě k 1`δ q ď Cpβq exp ´´cpβqk

2 minpδ, 1´s 2p2`sq q ¯. (3.82)
The proof of Lemma 3.4.2, inspired from the multiscale analysis of [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF], proceeds by a bootstrap on scales: if the local law (3.82) is assumed to hold for 1 ď k ď N 2 , then in view of Lemma 3.4.1, one may convexify the measure in a window of size k without changing much the measure. Moreover, the convexified measure satisfies better concentration estimates, allowing one to prove through Lemma 3.3.13 that (3.82) holds at a slightly smaller scale.

Proof.

Step 1: setting the bootstrap Let δ 0 :" 1´s 2p2`sq . We wish to prove that there exist two constants c 0 pβq and C 0 pβq ą 0 locally uniform in β such that for each i P t1, . . . , N u, 1 ď k ď N 2 and all δ P p0, δ 0 s,

P N,β pN px i`k ´xi q ě k 1`δ q ď C 0 pβqe ´c0 pβqk 2δ . (3.83) 
Let K ě 1. Assume that (3.83) holds for each k ě K. Note that this easily implies that for all δ ą 0 and k ě K, P N,β pN px i`k ´xi q ě k 1`δ q ď C 0 pβqe ´c0 pβqk Let us prove that there exists some α 0 P p0, 1q such that (3.83) holds for each k ě K 1´α 0 . Fix α 0 P p0, 1q, i P t1, . . . , N u, k ě K 1´α 0 , γ ą 0 and

I " tj : i ď j ď i `Ku.
Let θ be a smooth cutoff function θ : R `Ñ R `such that θpxq " x 2 for x ą 1, θ " 0 on r0, 1 2 s and θ 2 ě 0 on R `. Let γ P p0, δ 0 s be a constant to be carefully chosen. As in (3.78) set

F " K 2 θ ´N K 1`γ px i`K ´xi q ¯. (3.85) 
Let Q N,β be the constrained Gibbs measure

dQ N,β " 1 K N,β e ´βpH N `FqpX N q 1 D N pX N qdX N .
Let δ P p0, 1´s 2p2`sq s. Since x i`k ´xi is a function of px i q iPI , one can write

P N,β pN px i`k ´xi q ě k 1`δ q ď Q N,β pN px i`k ´xi q ě k 1`δ q `TVpP N,β ˝π´1 I , Q N,β ˝π´1 I q. (3.86)
Step 2: upper bound on the total variation distance.

Let us control the total variation distance between the push-forwards of P N,β and Q N,β onto the coordinates px i q iPI . By Lemma 3.4.1, we have

TVpP N,β ˝π´1 I , Q N,β ˝π´1 I q ď CpβqK 5`sp1`γq E P N,β " θ ´1 K 1`γ N px i`K ´xi q ¯ı.
One can upper bound the right-hand side of the last display by

E P N,β " θ ´1 K 1`γ N px i`K ´xi q ¯ı ď CpβqK 5`sp1`γq ÿ jěK 1`γ j 2 K 2p1`γq P N,β pN px i`K ´xi q ě jq.
Using the the induction hypothesis (3.83), one finds that for all κ ă 2 minpγ, δ 0 q " 2γ,

E P N,β " θ ´1 K 1`γ N px i`K ´xi q ¯ı ď Cpβqe ´c0 pβqK κ .
Recalling that k ě K 1´α 0 , we deduce that for all κ 1 ă 2γ 1´α 0 ,

TVpP N,β ˝π´1 I , Q N,β ˝π´1 I q ď Cpβqe ´c0 pβqk κ 1 .
Therefore, provided γ ą δp1 ´α0 q,

there exists k 0 pβq locally constant in β such that for all k ě k 0 pβq,

TVpP N,β ˝π´1 I , Q N,β ˝π´1 I q ď 1 2 C 0 pβqe ´c0 pβqk 2δ . (3.88)
Step 3: accuracy under Q N,β .

One shall first study the expectation of N px i`k ´xi q under Q N,β . Since it is not bounded, one cannot directly apply (3.88) and one needs to prove a tightness result. Let ε 1 ą 0. Observe that log E Q N,β re pN px i`k ´xi qq ε 1 s " log E P N,β re pN px i`k ´xi qq ε 1 ´βF s ´log E P N,β re ´βF s ď log E P N,β re pN px i`k ´xi qq ε 1 ´βF s ď log E P N,β re pN px i`k ´xi qq ε 1 s.

By Jensen's inequality, in view of (3.83), we have

log E P N,β re ´βF s ě ´βE P N,β rFs ě ´CpβqK. (3.89) 
There remains to upper bound the exponential moment of pN px i`k ´xi qq ε 1 under P N,β . For all α ą 0, one may write

E P N,β re pN px i`k ´xi qq ε 1 s ď E P N,β re pN px i`K ´xi qq ε 1 s ď e K ε 1 ÿ jěK e pj`1q ε 1 P N,β pN px i`K ´xi q ě jq.
Using (3.84), one finds that for ε 1 ą 0 small enough depending on s,

log E Q N,β re pN px i`k ´xi qq ε 1 s ď CpβqK.
It follows that

E Q N,β rN px i`k ´xi q1 N px i`k ´xi qąK 2{ε 1 s ď E Q N,β re 1 2 pN px i`k ´xi qq ε 1 1 N px i`k ´xi qąK 2{ε 1 s `Oβ p1q ď E Q N,β re pN px i`k ´xi qq ε 1 s 1 2 Q N,β pN px i`k ´xi q ą K 2{ε 1 q 1 2 `Oβ p1q ď E Q N,β re pN px i`k ´xi qq ε 1 s 1 2 e ´K2 E Q N,β re pN px i`k ´xi qq ε 1 s ď Cpβqe cpβqK´K 2 `Oβ p1q " O β p1q. (3.90) 
Similar computations show that

E P N,β rN px i`k ´xi q1 N px i`k ´xi qąK 2{ε 1 s " O β p1q. (3.91) 
Having this tightness property, we can now compare the expectations of N px i`k ´xi q under P N,β and Q N,β . One may write

|E P N,β rN px i`k ´xi q1 N px i`k ´xi qďK 2{ε 1 s ´EQ N,β rN px i`k ´xi q1 N px i`k ´xi qďK 2{ε 1 s| ď K 2{ε 1 TVpP N,β ˝π´1 I , Q N,β ˝π´1 I q ď 1 2 K 2{ε 1 C 0 pβqe ´c0 pβqk 2δ ,
where we have used (3.88) in the last inequality. Besides, combining (3.90) and (3.91), one gets

E P N,β rN px i`k ´xi q1 N px i`k ´xi qąK 2{ε 1 s ´EQ N,β rN px i`k ´xi q1 N px i`k ´xi qąK 2{ε 1 s " O β p1q.
One deduces that

E Q N,β rN px i`k ´xi qs " E P N,β rN px i`k ´xi qs `Oβ p1q " k `Oβ p1q. (3.92) 
Step 4: fluctuations under Q N,β .

One shall study the fluctuations of N px i`k ´xi q under Q N,β by applying the concentration estimate for divergence-free functions stated in Lemma 3.3.13. Denote G :

X N P D N Þ Ñ N px i`k ´xi q.
Observe that ř N j"1 B i G " 0, B i G " 0 for each i P I c and sup |∇G| 2 " 2N 2 . Moreover Q N,β satisfies the assumptions of Lemma 3.3.13: Q N,β may be written Q N,β " e ´pH 1 `H2 q dX N with ∇ 2 H 2 ě 0 and H 1 pxq " r Hpπpxqq such that U 2k`1 ¨r HU 2k`1 ě c|U 2k`1 | 2 , for all U 2k`1 P R 2k`1 where c " βN 2 K ´p1`γqps`2q .

Lemma 3.3.13 therefore gives

| log E Q N,β re tG s ´tE Q N,β rGs| ď Cpβqt 2 K p1`γqps`2q´1
, for all t P R.

It follows that log Q N,β p|N px i`k ´xi q ´EQ N,β rN px i`k ´xi qs| ě k 1`δ q ď Cpβq ´cpβq k 2p1`δq K p1`γqps`2q´1 .
Recalling that k ě K 1´α 0 , one can rewrite this as log Q N,β p|N px i`k ´xi q ´EQ N,β rN px i`k ´xi qs| ě k 1`δ q ď Cpβq ´cpβqk 2p1`δq´1 1´α 0 pp1`γqps`2q´1q , which gives by (3.92) the estimate log Q N,β p|N px i`k ´xi q ´k| ě k 1`δ q ď Cpβq ´cpβqk 2p1`δq´1 1´α 0 pp1`γqps`2q´1q .

(3.93)

Step Having chosen δ ă 2δ 0 " 1´s 2`s , we deduce that there exists α 0 P p0, 1q such that (3.95) is satisfied, which yields the existence of γ ą 0 satisfying both (3.87) and (3.94). For such constants α 0 ą 0 and γ ą 0, we deduce from (3.88) and (3.93) that there exists k 0 pβq locally constant in β such that for each k ě k 0 pβq

Q N,β pN px i`k ´xi q ě k 1`δ q ď 1 2 C 0 pβqe ´c0 pβqk 2δ .
(3.96)

In combination with (3.88) this implies the existence of a number k 0 pβq locally constant in β such that for each k ě k 0 pβq P N,β pN px i`k ´xi q ě k 1`δ q ď C 0 pβqe ´c0 pβqk 2δ , thus concluding the bootstrap (3.83). Observe that (3.83) trivially holds for K " N . One concludes that (3.83) holds for each k ě k 0 pβq. At the cost of changing C 0 pβq, (3.83) also holds for each k ě 1.

Reduction to a block average

In this subsection we implement a method of [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF], consisting in replacing the position of a point x i by a block average at a certain scale. For each i P t1, . . . , N u and 1 ď k ď N 2 , let I k piq stand for the interval of indices I k piq " tj P t1, . . . , N u : dpi, jq ď ku.

Define the block average

x rks i " 1 2k `1 ÿ jPI k piq x j . (3.97) 
Lemma 3.4.3 (Comparison to a block average). Let ε P p0, 1q. There exist two constants Cpβq ą 0 and cpβq ą 0 locally uniform in β such that for each i P t1, . . . , N u and

1 ď k ď N 2 , P N,β p|N px i ´xrks i q| ě k s 2 `εq ď Cpβqe ´cpβqk ε 4ps`2q .
Proof. Let i P t1, . . . , N u and

1 ď k ď N 2 . Fix ε ą 0. Let α " 1 p with p P N. Since x r0s i " x i , one can break N px i ´xrks i q into N px i ´xrks i q " p´1 ÿ m"0 N px rtk mα us i ´xrtk pm`1qα us i q.
For each m P t0, . . . , p ´1u, denote G m " N px rtk mα us i ´xrtk pm`1qα us i q and I m " I tk pm`1qα u piq.

The function G m only depends on the variables px j q jPIm and ř jPIm B j G m " 0. Let ε 1 ą 0. Let Q N,β be the constrained Gibbs measure (3.78) with I " I m and K " k pm`1qα`ε 1 . The measure Q N,β satisfies Assumption 3.3.1 with c " βN 2 k ´ppm`1qα`ε 1 qps`2q . Note that sup |∇G m | 2 " OpN 2 k ´αm q. Thus, by Lemma 3.3.13, for all t P R, we have log E Q N,β re tGm s " tE Q N,β rG m s `Oβ pt 2 k αms`αp1`sq`ε 1 ps`2q q.

Fix ε 1 and α such that αp1 `sq `ε1 ps `2q " ε 2 , say α " ε 2p1`sq and ε 1 " ε 4ps`2q . Since αm ď 1, one sees that

Q N,β p|G m ´EQ N,β rG m s| ě k s 2 `εq ď Cpβqe ´cpβqk ε . (3.98)
Arguing as in the proof of Lemma 3.4.2, see Step 3, one finds that the expectation of G m under

Q N,β satisfies E Q N,β rG m s " O β p1q. (3.99) 
Consequently by (3.98) and (3.99), one has

Q N,β p|G m | ě k s 2 `εq ď Cpβqe ´cpβqk ε .
Meanwhile by Lemma 3.4.1 and Lemma 3.4.2, we have

TVpP N,β ˝π´1 Im , Q N,β ˝π´1 
Im q ď Cpβqe ´cpβqk ε 1 .

It follows that

P N,β p|G m | ě k s 2 `εq ď Cpβqe ´cpβqk ε 4ps`2q .
As a consequence there exist constants depending on ε such that

P N,β ´p´1 ÿ m"0 |G m | ě α ´1k ε ¯ď Cpβqe ´cpβqk ε 4ps`2q .
This concludes the proof of Lemma 3.4.3.

Proof of Theorem 3.1.1

The proof of Theorem 3.1.1 immediately follows from Lemma 3.4.3. Indeed when studying the fluctuations of N px j ´xi q, up to a small error, one can replace x i and x j by their block average at scale dpj, iq. Furthermore, the difference of these block averages may be bounded using Lemma 3.3.13 since its gradient has a small enough Euclidian norm.

Proof of Theorem 3.1.1. 

Let i P t1, . . . , N u, 1 ď k ď N 2 and ε ą 0. Let us split the gap N px i`k xi q into N px i`k ´xi q " N px i`k ´xrks i`k q ´N px i ´xrks i q `N px rks i`k ´xrks i q. ( 3 
P N,β p|N px rks i`k ´xi`k q| ě k s 2 `εq ď Cpβqe ´cpβqk δ , (3.102) 
Let G :

X N P D N Þ Ñ N px rks i`k ´xrks i q.
Let Q N,β be the constrained Gibbs measure (3.77) with I " tj : dpi, jq ď ku and K " k p1`γq for some γ ą 0 to fix later. Note that sup |∇G| 2 " O β p N 2 k q. Moreover observe that Q N,β satisfies Assumptions 3.3.1 with c " βN 2 k ´p1`γqps`2q . Consequently Lemma 3.3.13 gives log E Q N,β re tG s " tE Q N,β rGs `Oβ pt 2 k p1`γqps`2q´2 q, for all t P R.

(3.103)

Arguing like in the proof of Lemma 3.4.2, one gets 

E Q N,β rGs " O β p1q. ( 3 
Q N,β p|G| ě k s 2 `εq ď Cpβqe ´cpβqk ε s`2 .
Together with (3.101) and (3.102), this proves (3.6). Since for each i P t1, . . . , N u, x i is uniformly distributed on T, one easily concludes the proof of (3.7).

Control on the probability of near collisions

Let us control the probability of having two particles very close to each other. One may fix a single gap and show that there exists an inverse power of this gap with a finite exponential moment, which gives via Markov's inequality the following bound:

Lemma 3.4.4. Let α P p0, s 2 q. There exist two constants Cpβq ą 0 and cpβq ą 0 locally uniform in β such that for each i P t1, . . . , N u and ε ą 0 small enough, there holds P N,β pN px i`1 ´xi q ď εq ď Cpβqe ´cpβqε ´α .

Proof. Let α P p0, s 2 q. Let η : R `Ñ R `be a smooth function such that ηpxq "

# 1 if x P r0, 1s 0 if x P r2, `8s.
One shall study the fluctuations of

X N P D N Þ Ñ ξpN px 2 ´x1 qq where ξ : x P R `Þ Ñ ηpxq|x| ´α.
Let µ be the push-forward of P N,β by the map X N P D N Þ Ñ N px 2 ´x1 q, i.e the law of a single gap under P N,β . By Lemma 3.3.10, the measure µ is of the form dµ " e ´βpg`Hqpyq 1 p0,N q pyqdy, with H : p0, N q Ñ R convex. Consider ψ P L 2 pµq solution of " βpg `Hq 1 ψ ´ψ1 " ξ ´ş ξ on p0, N q ψp0q " ψpN q " 0.

(3.107)

We claim that sup yPp0,N q |ψpyq| |y| 1`s´α ď Cpβq.

(3.108)

First, there exists a constant c " cpβq ą 0 such that for ψ ď 0 on r0, cq. Second, note that ´pg `Hq 1 ď g 1 s ď 0.

It follows that for all x P p0, cq, Third, since ψ is bounded on p0, `8q, we deduce that (3.108) holds.

0 ď ´ψpxq ď e βgspxq
From (3.108) one can derive a Gaussian concentration estimate by considering the Laplace transform of ξ under µ. For a small t P R, let us perform the change of variables Id `tψ with ψ given by (3.107). For t small enough, this defines a valid change of variables and therefore

E µ rexpptξqs " E µ "
exp ´tξ ˝pId `tψq ´βppg `Hq ˝pId `tψq ´pg `Hqq `logpId `tψ 1 q ¯ı.

By convexity, we have pg `Hq ˝pId `tψq ´pg `Hq ě tpg `Hq 1 ψ, logpId `tψ 1 q ď tψ 1 .

Taylor-expanding ξ k ˝pId `tψq and using that ψ solves (3.107), one gets that for t small enough

log E µ rexpptξqs ´tE µ rξs ď log E µ " exp ´t2 sup yPp0,N q |ψpyq| |y| 1`s´α ¯ı ď Cpβqt 2 , (3.110) 
where we have used that α P p0, s 2 q in the last inequality. To control the expectation, one may write by symmetry

E µ rξs " 1 N E P N,β " N ÿ i"1 ξpN px i`1 ´xi qq ı " O β p1q. (3.111)
The proof of Lemma 3.4.4 then follows from (3.110), (3.111) and Markov's inequality.

Optimal rigidity for singular linear statistics

In this section, we give the optimal scaling of gaps and discrepancies and improve the fluctuation results of Theorem 3.1.1. We will consider statistics with test-functions having poor regularity. In contrast with Section 3.4, we give controls on variances rather than exponential moments. We however believe that our method can be upgraded to get Gaussian concentration.

Mean-field transport

We now present the transportation argument of [START_REF] Johansson | On fluctuations of eigenvalues of random hermitian matrices[END_REF][START_REF] Shcherbina | Fluctuations of linear eigenvalue statistics of β matrix models in the multicut regime[END_REF]. As mentioned in the introduction, this transport is the starting point of many CLTs on β-ensembles and Coulomb gases including the series of papers [START_REF] Leblé | Fluctuations of two dimensional coulomb gases[END_REF][START_REF] Bekerman | CLT for fluctuations of β-ensembles with general potential[END_REF][START_REF] Leblé | CLT for fluctuations of linear statistics in the sine-β process[END_REF][START_REF] Serfaty | Gaussian fluctuations and free energy expansion for 2d and 3d coulomb gases at any temperature[END_REF]. The method consists in moving each particle according to its position only, so that at the first order, the main term of the linear variation of the energy compensates the linear statistics. This transport, which can be interpreted as a mean-field approximation of the solution of the Helffer-Sjöstrand equation, creates a local error term, sometimes called "loop equation term". For a measurable map ψ : ℓ ´1 N T Ñ R, we denote A ℓ N rψs the quantity

A ℓ N rψs " ij ∆ c N ℓ N pψpℓ ´1 N xq ´ψpℓ ´1 N yqqN ´p1`sq g 1 s px ´yqdfluct N pxqdfluct N pyq. (3.112)
Remark 9. The loop equation term (3.112) appears in many proofs of CLTs for log-gases. For the 2D Coulomb gas, it is replaced by an angle term, as seen in [START_REF] Leblé | Fluctuations of two dimensional coulomb gases[END_REF] and [START_REF] Bauerschmidt | The twodimensional coulomb plasma: quasi-free approximation and central limit theorem[END_REF]. For β-ensembles, the corresponding quantity is smooth and may therefore be controlled using the local laws by bounding the measure fluct N . In the Riesz case s P p0, 1q, (3.112) is as singular as the energy, which makes this term more delicate to treat.

Proposition 3.5.1. Let ξ P C ´s`ε pT, Rq for some ε ą 0 and ℓ N P p0, 1s. Assume either that ξ is supported on p´1 2 , 1 2 q or that ℓ N " 1. Let ψ P C ε pℓ ´1 N T, Rq given by

ψ 1 " ´1 2βc s ℓ 1´s N p´∆q 1´s 2 pξpℓ ´1 N ¨qqpℓ N ¨q and ż ψ " 0 (3.113) 
and Ψ P C ε pD N , R N q given by Ψ :

X N P D N Þ Ñ ℓ N pψpℓ ´1 N x 1 q, . . . , ψpℓ ´1 N x N qq.
We have Proof. Let ψ P C ε pT, Rq for some ε ą 0 be such that ş ψ " 0. Define the transport

Var P N,β rFluct N rξpℓ ´1 N ¨qss " ´1 pN ℓ N q 2p1´sq E P N,β rβΨ ¨∇2 H N Ψ `|DΨ| 2 s `2 pN ℓ N q 1´s E P N,β " N ÿ i"1 ξ 1 pℓ ´1 N x i qψpℓ ´1 N x i q ı `1 pN ℓ N q 2p1´sq Var P N,β " βA ℓ N rψs ´N ÿ i"1 ψ 1 pℓ ´1 N x i q ı . ( 3 
Ψ : X N P D N Þ Ñ pψpx 1 q, . . . , ψpx N qq.
Let us expand ∇H N ¨Ψ. Let µ N " 1 N ř N i"1 δ x i be the empirical measure. Almost surely under P N,β , there holds

∇H N ¨Ψ " ij ∆ c N ´p1`sq g 1 s px ´yqN pψpxq ´ψpyqqdpN µ N qpxqdpN µ N qpyq,
where ∆ stands for the diagonal tpx, yq P T 2 : x " yu. By decomposing µ N into µ N " dx 1 

N fluct N , one can break ∇H N ¨Ψℓ N into ∇H N ¨Ψℓ N " N 2 ij N pψpxq ´ψpyqqN ´p1`
β∇H N ¨1 N 1´s Ψ " Fluct N rξs `1 N 1´s Arψs. (3.118) 
Since ş ψ " 0, there exists ϕ P C 1,ε pT, Rq such that ϕ 1 " ϕ. Let Φ P C 1,ε pD N , Rq be such that ∇Φ " Ψ, i.e Φ : X N P D N Þ Ñ ϕpx 1 q `. . . `ϕpx N q. One can write

Var P N,β rFluct N rξss " Var P N,β " Fluct N rξs ´1 N 1´s LΦ ı ´1 N 2p1´sq Var P N,β rLΦs `2 N 1´s Cov P N,β rFluct N rξpℓ ´1 N ¨qs, LΦs.
By (3.118), we have

Var P N,β " Fluct N rξs ´1 N 1´s LΦ ı " 1 N 2p1´sq Var P N,β rβArψs ´Fluct N rψ 1 ss.
For the two other terms, observing that Ψ satisfies the boundary condition Ψ ¨⃗ n " 0 on BD N , we get by integration by parts

Var P N,β rLΦs " E P N,β rβΨ ¨∇2 H N Ψ `|DΨ| 2 s and Cov P N,β rFluct N rξs, LΦs " E P N,β " N ÿ i"1 ξ 1 px i qψpx i q ı .
We thus obtain

Var P N,β rFluct N rξss " ´1 N 2p1´sq E P N,β rβΨ ¨∇2 H N Ψ `|DΨ| 2 s `2 N 1´s E P N,β " N ÿ i"1 ξ 1 px i qψpx i q ı `1 N 2p1´sq Var P N,β " βArψs ´N ÿ i"1 ψ 1 px i q ı . (3.119) 
Let ξ supported on p´1 2 , 1 2 q and ℓ N P p0, 1s. Let ψ P C ε pℓ ´1 N T, Rq such that

ψ 1 " ´1 2βc s ℓ 1´s N p´∆q 1´s 2 pξpℓ ´1 N ¨qqpℓ N ¨q with ż ψ " 0 (3.120)
and Ψ P C ε pD N , R N q given by Ψ :

X N P D N Þ Ñ ℓ N pψpℓ ´1 N x 1 q, . . . , ψpℓ ´1 N x N qq.
Applying (3.119) to ξpℓ ´1 N ¨q allows one to write

Var P N,β rFluct N rξpℓ ´1 N ¨qss " ´1 pN ℓ N q 2p1´sq E P N,β rβΨ ¨∇2 H N Ψ `|DΨ| 2 s `2 pN ℓ N q 1´s E P N,β " N ÿ i"1 ξ 1 pℓ ´1 N x i qψpℓ ´1 N x i q ı `1 pN ℓ N q 2p1´sq Var P N,β " βA ℓ N rψs ´N ÿ i"1 ψ 1 pℓ ´1 N x i q ı ,
Indeed, letting ϕ N :" ℓ N ψpℓ ´1 N ¨q with ψ as in (3.120), we have

ϕ 1 N " ψ 1 pℓ ´1 N ¨q " ´1 2βc s ℓ 1´s N p´∆q 1´s 2 pξpℓ ´1 N ¨qq. Therefore ℓ 1{p1´sq N
ϕ N is the solution of (3.117) and by inserting this into (3.119) applied to ξpℓ ´1 N ¨q, we deduce that (3.129) holds.

Remark 11. Proposition 3.5.1 can be interpreted as a mean-field approximate solution of

# A 1 ∇ϕ " ∇Fluct N rξs on D N ∇ϕ ¨⃗ n " 0 on BD N .
The existence of an approximate solution in the class of "diagonal transports", Ψ : X N P D N Þ Ñ pψpx 1 q, . . . , ψpx N qq is a consequence of the long-range nature of the system and more precisely of the mean-field approximation of the energy. For the hypersingular Riesz gas, i.e the Riesz gas with g s pxq " |x| ´s for s ą 1, one cannot approximate the solution of the above equation within this class.

Splitting of the loop equation term

In view of Proposition 3.5.1, expanding the variance of a linear statistic reduces to controlling the loop equation term (3.112). Let us first discard a strategy based on local laws only. Recall that for all ψ P C ε pℓ ´1 N T, Rq,

A ℓ N rψs " ij ∆ c N ℓ N pψpℓ ´1 N xq ´ψpℓ ´1 N yqqN ´p1`sq g 1 s px ´yqdfluct N pxqdfluct N pyq.
By using local laws on gaps, one may control the above integral away from the boundary. Nevertheless A ℓ N rψs contains among other terms the quantity

N ÿ i"1 N pψpℓ ´1 N x i`1 q ´ψpℓ ´1 N x i qqN ´p1`sq g 1 s px i`1 ´xi q,
which is in OpN ℓ N |ψ 1 | 8 q with overwhelming probability. Therefore applying a local law estimate will give in the best case, the bound

Var P N,β rA ℓ N rψss " OppN ℓ N q 2 |ψ 1 | 2 8 q.
Inserting this into Proposition 3.5.1 gives an error term of order OppN ℓ N q 2s q, which is larger than the expected order of fluctuations of linear statistics. Instead one shall exploit the convexity of the interaction and bound the fluctuations of A ℓ N rψs using various concentration inequalities. As emphasized in Section 3.3, the variance of a smooth function under a log-concave probability measure is related to the norm of its gradient and one should therefore first differentiate (3.112). Before entering into the main computations, we first define a localized version of A ℓ N rψs. We will assume that 0 is in the support of ξ and then we then let i 0 be the index (defined almost surely) such that x i is the closest point to 0:

i 0 " argmin 1ďiďN |x i |.
Fix γ ą 1 and let I N " ti P t1, . . . , N u : dpi, i 0 q ď pN ℓ N q γ u.

(3.121)

For ψ P C ε pℓ ´1 N T, Rq, we define a localized version of A ℓ N rψs by letting

r A ℓ N rψs " ÿ i‰jPI N N ℓ N pψpℓ ´1 N x i q ´ψpℓ ´1 N x j qqN ´p1`sq g 1 s px i ´xj q ´2N ÿ iPI N ż |y|ď pN ℓ N q γ N N ℓ N pψpℓ ´1 N xq ´ψpℓ ´1 N yqqN ´p1`sq g 1 s px i ´yqdy. (3.122)
For ε ą 0, define the good event

A " tX N P D N : @i, k : i, i `k P I N , N |x i`k ´xi ´N k| ď pN ℓ N q ε k s 2 u X tX N P D N : @i P I N , pN ℓ N q ´ε ď N |x i`1 ´xi | ď pN ℓ N q ε u. (3.123)
Lemma 3.5.2. Let ξ satisfying Assumptions 3.1.1. Let ψ 0 P C δ pT, Rq such that g 1 s ˚ψ0 " ξ ´∫ ξ with ş ψ 0 " 0. Assume that ψ 2 0 has p singularities in a 1 , . . . , a p of order 1 `α1 , . . . , 1 `αp , with α i P p0, 1q, as defined in (3.8). Assume that ξ is supported on p´1 2 , 1 2 q or that ℓ N " 1. Let ψ P C δ pℓ ´1 N T, Rq given by

ψ 1 " ´1 2c s ℓ 1´s N p´∆q 1´s 2 pξpℓ ´1 N ¨qqpℓ N ¨q and ż ψ " 0. (3.124)
Let ψ reg " ψ ˚Kℓ with K ℓ defined in (3.50) and ℓ " 1{pN ℓ N q 1´ε 1 with ε 1 ą 0. Denote I "

p´p N ℓ N q γ N , pN ℓ N q γ N qXT. One can break ∇ r A ℓ N rψ reg s into V`W with V, W P L 2 pt1, . . . , N u, H 1 pP N,β qq satisfying • For each i P I c N , V i " W i " 0. • Uniformly on i P I N , sup A |V i | ď CpN ℓ N q κε ´ℓ´1 N `p ÿ l"1 ℓ α l N 1 p|x i ´ℓN a l | _ 1 N q 1`α l ¯1|x i |ă2ℓ N `CpN ℓ N q κε ÿ l:α l ą s 2 pN ℓ N q α l N ´s 2 1 p|x i ´ℓN a l | _ pN ℓ N q ε 1 N q 1`s 2 `CpN ℓ N q κε N ´s 2 1 pℓ N `|x i |q 1`s 2 `C pN ℓ N q γs ℓ ´1 N pℓ ´1 N |x i | `1q 2´s `CpN ℓ N q κε´p2´sqp1´γq N ´s 2 1 pdpx i , BIq ^1 N q 1`s 2 . ( 3 

.125)

• There exists W P L 2 pt1, . . . , N u, H 1 pP N,β qq such that for all

U N P R N , W ¨UN " ´N ÿ i"1 WN pu i`1 ´ui q with sup A | W| 2 ď CpN ℓ N q κε pN ℓ N `pN ℓ N q 2 max α l q. (3.126)
The proof of Lemma 3.5.2 is deferred to the Appendix.

Remark 12 (Remarks on the decomposition). Conditionally on x 1 " x, F becomes a function of the gaps, i.e F " F ˝Gap N for some F : R N Ñ R. However, due to the (nonintegrable) singularity of ψ 1 , the norm |∇ F | is too large for the Log-Sobolev inequality to give sharp bounds on the variance of r A ℓ N rψ reg s.

Variance quantitative expansion

We proceed to the proof of Theorem 3.1.2. The first step is to perform the mean-field transport of Proposition 3.5.1, which reduces the problem to approximating the variance of the loop equation term (3.112). We then multiply the gradient of (3.112) by a cutoff function supported on a good event (of overwhelming probability) on which gaps are close to their standard values. Using the uniform controls of the last subsection, we then deduce from a Poincaré inequality in gap coordinates and from the comparison principle of Lemma 3.3.5 a sharp control on the variance of (3.112).

Proof of Theorem 3.1.2. Let ξ satisfying Assumptions 3.1.1. Let ψ P C δ pT, Rq defined by

ψ 1 " ´1 2βc s p´∆q 1´s 2 ξ with ż ψ " 0.
By assumption, ψ 2 has singularities in a 1 ă . . . ă a p of order 1 `α1 , . . . , 1 `αp with α 1 , . . . , α p P p0, 1 ´s 2 q. Let tℓ N u be a sequence of positive numbers in p0, 1s. Assume either that ξ is supported on p´1 2 , 1 2 q or that ℓ N " 1.

Step 1: regularization. Let ε 1 ą 0. Define ξ reg " ξ ˚Kℓ with K ℓ defined in (3.50) and ℓ " 1{pN ℓ N q 1´ε 1 .

(3.127) By Lemma 3.3.9, there holds

Var P N,β rFluct N rξ reg pℓ ´1 N ¨q ´ξpℓ ´1 N ¨qss ď N ℓ N |ξ reg ´ξ| 2 L 2 .
Moreover one can check that

|ξ reg ´ξ| 2 L 2 ď CpN ℓ N q κε 1 ´1´1 `pN ℓ N q 2pmax α l ´p1´sqq
¯.

Since max α l ă 1 ´s 2 , for ε 1 small enough, the above quantity is oppN ℓ N q ´p1´sq q. We deduce that, up to a lower order term, one can replace the test-function ξ be its regularized version ξ reg :

Var P N,β rFluct N rξss " Var P N,β rFluct N rξ reg ss`O ´Var P N,β rFluct N rξ reg ss 1 2 p1`pN ℓ N q max α l ´p1´sq q `pN ℓ N q κε 1 `2 max α l ´2p1´sq ¯. (3.128)
Step 2: mean-field transport. Let ψ reg P C 2 pℓ ´1 N T, Tq be such that

ψ 1 reg " ´1 2βc s p´∆q 1´s 2 pξ reg pℓ ´1 N ¨qqpℓ N ¨q with ż ψ reg " 0.
Let us now define the map

Ψ ℓ N : X N P D N Þ Ñ ℓ N pψ reg pℓ ´1 N x 1 q, . . . , ψ reg pℓ ´1 N x N qq.
By Proposition 3.5.1 we have

Var P N,β rFluct N rξ reg pℓ ´1 N ¨qss " ´1 pN ℓ N q 2p1´sq E P N,β rβΨ ℓ N ¨∇2 H N Ψ ℓ N `|DΨ ℓ N | 2 s `2 pN ℓ N q 1´s E P N,β " N ÿ i"1 pξ 1 reg ψ reg qpℓ ´1 N x i q ı `1 pN ℓ N q 2p1´sq Var P N,β " βA ℓ N rψ reg s´N ÿ i"1 ψ 1 reg pℓ ´1 N x i q ı .
(3.129) By Lemma 3.3.9, the variance of Fluct N rψ 1 reg pℓ ´1 N ¨qs is bounded by

Var P N,β rFluct N rψ 1 reg pℓ ´1 N ¨qss ď N ℓ N |ψ 1 reg | 2 L 2 .
Since |ψ 1 reg | 2 L 2 ď Cp1 `pN ℓ N q 2 max α l ´1q, this implies that

Var P N,β " βA ℓ N rψ reg s ´N ÿ i"1 ψ 1 reg pℓ ´1 N x i q ı ď Cpβq ´Var P N,β rA ℓ N rψ reg ss `pN ℓ N q maxp1,2 max α l q ¯.
Step 3: asymptotic of the mean-field terms. Define

B ℓ N rψ reg s " ij ∆ c
N ´ps`2q g 2 s px ´yqpN ℓ N q 2 pψ reg pℓ ´1 N xq ´ψreg pℓ ´1 N yqq 2 dfluct N pxqdfluct N pyq.

(3.130) By splitting the empirical measure µ N into µ N " dx `1 N fluct N like in the proof of Proposition 3.5.1 and using (3.43), we can easily show that

´1 pN ℓ N q 2p1´sq E P N,β rβΨ ℓ N ¨∇2 H N Ψ ℓ N `|DΨ ℓ N | 2 s `2 pN ℓ N q 2p1´sq E P N,β " N ÿ i"1 ξ 1 reg pℓ ´1 N x i qℓ s N ψ reg pℓ ´1 N x i q ı " 1 2βc s N s |ξ reg pℓ ´1 N ¨q| 2 H 1´s 2 ´pN ℓ N q 2s´1 ż pψ 1 reg q 2 ´β pN ℓ N q 2p1´sq E P N,β rB ℓ N rψ reg ss. (3.131)
When ℓ N tends to 0, by (3.45), we have

|ξ reg pℓ ´1 N ¨q| 2 H 1´s 2 " ℓ s N | r ξ reg | 2 H 1´s 2 `Opℓ 2 N |ξ| 2 L 2 q.
Moreover one can easily prove that

E P N,β rB ℓ N rψ reg ss ď CpβqpN ℓ N q κε ppN ℓ N `pN ℓ N q 2 max α l q, (3.132) 
see Lemma 3.7.4 in Appendix 3.7.2.

Step 4: reduction to a finite-range quantity We now reduce to a localized version of A ℓ N rψ reg s. Let γ ą 3´s 2´s _ 1 s _ 1 `1 1´s and y 0 P supppξq. As in Subsection 3.5.2, define i 0 " argmin 1ďiďN |x i | and I N " tj : dpj, i 0 q ď pN ℓ N q γ u.

Let us split A ℓ N rψ reg s into A ℓ N rψ reg s " r A ℓ N rψ reg s `Aext with r A ℓ N rψ reg s as defined in (3.122):

r A ℓ N rψ reg s " ÿ iPI N ,dpi,jqďpN ℓ N q γ N ℓ N pψpℓ ´1 N x i q ´ψreg pℓ ´1 N x j qqN ´p1`sq g 1 s px i ´xj q ´2N ÿ iPI N ż |y|ď pN ℓ N q γ N N ℓ N pψ reg pℓ ´1 N xq ´ψreg pℓ ´1 N yqqN ´p1`sq g 1 s px i ´yqdy.
In Appendix 3.7.2, we show that the remaining term A ext is o β ppN ℓ N q 1 2 q, since γ has been chosen large enough: there exist Cpβq ą 0 and δ ą 0 such that

P N,β p|A ext | ą pN ℓ N q 1 2 q ď Cpβqe ´cpN ℓ N q δ . (3.133)
We thus deduce that Var P N,β rA ext s " o β pN ℓ N q.

(3.134)

The estimate (3.133) is proved in Lemma 3.7.5.

Step 5: fixing an origin In order to apply the comparison principle of Lemma 3.3.5, one needs to fix an origin. Recall that x 1 is uniformly distributed on the circle. Conditioning by x 1 allows one to split the variance of r A ℓ N rψ reg s in the following way:

Var P N,β r r A ℓ N rψ reg ss " E P N,β rVar P N,β r r A ℓ N rψ reg s | x 1 " xss `Var P N,β rE P N,β r r A ℓ N rψ reg s | x 1 " xss.

We claim that

Var P N,β rE P N,β r r A ℓ N rψ reg s | x 1 ss ď CpβqppN ℓ N q 2p1´sq `pN ℓ N q 2 max α l q.

(3.135)

The proof of (3.135) uses the fact that the law of x 2 , . . . , x N under P N,β p¨| x 1 " xq is the law of x 2 ´x1 `x, . . . , x N ´x1 `x under P N,β as well as the rigidity estimate of Theorem 3.1.1. We postpone the details to the Appendix, see Lemma 3.7.6.

Step 6: convexification and reduction to a good event Let us first define a convexication of P N,β by penalizing large nearest-neighbor gaps in the window I N . We proceed as in Section 3.4. Let θ : R `Ñ R `be a smooth cutoff function such that θpxq " |x| 2 for x ą 1, θ " 0 on r0, 1 2 s and θ 2 ě 0 on R `. Fix ε ą 0 and x P T. Define

F " ÿ i,i`1PI N θ ´N px i`1 ´xi q pN ℓ N q ε ānd the locally constrained Gibbs measure dQ N,β " 1 K N,β e ´βpH N `Fq 1 D N pX N qdX N . (3.136) 
In view of Lemma 3.4.1 and Theorem 3.1.1, the total variation distance between P N,β p¨| x 1 " xq and Q N,β p¨| x 1 " xq satisfies

TVpP N,β p¨| x 1 " xq, Q N,β p¨| x 1 " xqq ď Cpβqe ´cpN ℓ N q δ , (3.137) 
for some constants C ą 0 and c ą 0 depending on β and some constant δ ą 0 depending on ε.

The above estimate together with (3.135) can be summarized into Var P N,β r r A ℓ N rψ reg ss " E P N,β rVar Q N,β p¨|x 1 "xq r r A ℓ N rψ reg sηss `Oβ ppN ℓ N q 2p1´sq `pN ℓ N q 2 max α l q.

(3.138) Recall the good event (3.123). Let θ : R Ñ R such that θpxq " 1 for |x| ą 1, θpxq " 0 for |x| ă 1 2 and θpxq " 2|x| ´1 for 1 2 ď |x| ď 1. Define the cutoff function

η " ź iPI N ź ´N 2 ďkď N 2 :i`kPI N θ´N px i`k ´xi q ´k |k| s 2 pN ℓ N q ε ¯ź iPI N θ´p N ℓ N q ε N px i`1 ´xi q ¯(3.139)
By subadditivity one can write

Var Q N,β p¨|x 1 "xq r r A ℓ N rψ reg ss ď 2E Q N,β p¨|x 1 "xq rpη∇ r A ℓ N rψ reg sqpA x 1 q ´1pη∇ r A ℓ N qrψ reg ss `2E Q N,β p¨|x 1 "xq rp∇η r A ℓ N rψ reg sqpA x 1 q ´1p∇η r A ℓ N rψ reg sqs. (3.140) Let us split ∇ r A ℓ N rψ reg s into ∇ r A ℓ N rψ reg s " V `W with V,
W as in Lemma 3.5.2. Using subadditivity again we find

E Q N,β p¨|x 1 "xq rpη∇ r A ℓ N rψ reg sqpA x 1 q ´1pη∇ r A ℓ N qrψ reg ss ď 2pE Q N,β p¨|x 1 "xq rpηVq ¨pA x 1 q ´1pηVqs `2E Q N,β p¨|x 1 "xq rpηWq ¨pA x 1 q ´1pηWqsq. (3.141)
Step 7: using Poincaré in gap coordinates for ηW and r A ℓ N rψ reg s∇η To estimate the Dirichlet energy of ηW one can take advantage of the fact that Q N,β is uniformly log-concave in gap coordinates. Indeed proceeding as in the proof of Lemma 3.3.8 one can write

E Q N,β p¨|x 1 "xq rηW ¨pA x 1 q ´1pηWqs ď β ´1E Q N,β p¨|x 1 "xq rη 2 W ¨p∇ 2 pH N `Fqq ´1Ws " ´β´1 E Q N,β " min U N PR N U N ¨∇2 pH N `FqU N ´2pηWq ¨UN ı . (3.142) By definition of Q N,β , for all U N P R N , U N ¨∇2 pH N `FqU N ě pN ℓ N q ´ps`2qε N ÿ i"1 pN pu i`1 ´ui qq 2
and besides ηW ¨UN " ´N ÿ

i"1

η Wi N pu i`1 ´ui q with |η W| satisfying (3.126). Inserting these into (3.142) we deduce that there exist constants C ą 0 and κ ą 0 such that

E Q N,β p¨|x 1 "xq rηW¨pA x 1 q ´1pηWqs ď Cβ ´1pN ℓ N q κε E Q N,β p¨|x 1 "xq rη 2 | W| 2 s ď Cβ ´1pN ℓ N q κε`maxp1,2 max α l qq .
Similarly for the vector-field r A ℓ N rψ reg s∇η, one gets

E Q N,β p¨|x 1 "xq rp∇η r A ℓ N rψ reg sqpA x 1 q ´1p∇η r A ℓ N rψ reg sqs ď Cβ ´1pN ℓ N q κε E Q N,β p¨|x 1 "xq r| r A ℓ N rψ reg s∇η| 2 s.
Since ∇η " 0 on A c with r A ℓ N rψ reg s uniformly bounded on A by pN ℓ N q κ for some κ ą 0 we find that

E Q N,β p¨|x 1 "xq r| r A ℓ N rψ reg s∇η| 2 s ď CpN ℓ N q κ E Q N,β p¨|x 1 "xq r|∇η| 2 s ď Cpβqe ´cpβqpN ℓ N q δ , (3.143) 
where we have used Theorem 3.1.1 and Lemma 3.4.4 in the last inequality.

Step 8: using the comparison principle for V By Lemma 3.5.2, there exist constants C ą 0 and κ ą 0 such that for each i P I N ,

sup |ηV i | ď CpN ℓ N q κε ÿ l:α l ą s 2 pN ℓ N q α l N ´s 2 1 p|x i ´ℓN a l | _ pN ℓ N q ε 1 N q 1`s 2 1 |x i |ď2ℓ N `CpN ℓ N q κε p ÿ l"1 ℓ α l N 1 p|x i ´ℓN a l | _ 1 N q 1`α l 1 |x i |ď2ℓ N `CpN ℓ N q κε N ´s 2 1 pℓ N `|x i |q 1`s 2 `C pN ℓ N q γs ℓ ´1 N pℓ ´1 N |x i | `1q 2´s `CpN ℓ N q κε´p2´sqp1´γq N ´s 2 1 pdpx i , BIq ^1 N q 1`s 2 . (3.144)
The main term in the right-hand side of (3.144) corresponds to the gradient of a linear statistics that we now define. Let ζ N : T Ñ R piecewise smooth such that

ζ 1 N : x P T Þ Ñ ℓ ´1 N η N pℓ ´1 N xq `N ´s 2 1 p|x| `ℓN q 1`s 2 `CpN ℓ N q κε ÿ l:α l ą s 2 pN ℓ N q α l N ´s 2 1 p|x ´al ℓ N | _ pN ℓ N q ε 1 N q 1`s 2 . (3.145)
Note that ζ N is a discontinuous function, increasing on r0, 1q. There exist constants C ą 0 and κ ą 0 such that |V| ď CpN ℓ N q κε ∇Fluct N rζ N s.

One can now apply the comparison principle of Lemma 3.3.5 and more precisely its consequence stated in Lemma 3.3.6 to get

E Q N,β p¨|x 1 "xq rpηVq ¨pA x 1 q ´1pηVqs ď 4C 2 pN ℓ N q 2κε Var Q N,β p¨|x 1 "xq " N ÿ i"1 ζ N px i q ı .

Using (3.137), we can write

Var Q N,β p¨|x 1 "xq rFluct N rζ N ss ď Var P N,β p¨|x 1 "xq rFluct N rζ N ss `Oβ pe ´cpβqpN ℓ N q κ q.

(3.146)

Moreover,

E P N,β rVar Q N,β p¨|x 1 "xq rFluct N rζ N ss ď Var P N,β rFluct N rζ N ss `Oβ pe ´cpβqpN ℓ N q κ q.
The test-function ζ N is the sum of the five test-functions appearing when integrating (3.145). For the two first terms, one may use the sub-Poissonian estimate of Lemma 3.3.9. For the three other terms, this estimate is not precise enough, and one shall study the variance of the corresponding linear statistics separately. Let us define f η pxq :" f pxq1 xRp0,ηq `f 1 pηqpx ´ηq `f pηq, where f pxq :" x ´s 2 , η :" 1{N 1´ε 1 . (3.147) By Lemma 3.3.9, we have

Var Q N,β p¨|x 1 "xq " N ÿ i"1
ζ N px i q ı ď CpβqpN ℓ N q κε pN ℓ N q maxp1,2 max α l q `CpβqpN ℓ N q κε N ´s Var P N,β

" N ÿ i"1 f η px i q ı .
Combining the above estimates one gets

E Q N,β p¨|x 1 "xq rV¨pA x 1 q ´1Vs ď CpβqpN ℓ N q κε pN ℓ N q maxp1,2 max α l q `CpβqpN ℓ N q κε N ´s Var P N,β " N ÿ i"1 f η px i q ı .
(3.148) There remains to bound from above the variance of the singular linear statistics f η defined in (3.147). Let us observe that the test-function f is the critical case of Assumptions 3.1.1, since f is not in H 1´s 2 . Let us highlight that the cutoff ℓ " 1{pN ℓ N q 1´ε 1 has been added to circumvent this criticality. Indeed it is enough to prove that for any fixed ε 1 ą 0, there exists a constant Cpβq ą 0 such that Var P N,β rFluct N rf η ss ď CpβqN s .

(3.149)

Having established (3.149) will show that the right-hand side of (3.148) is negligible.

Step 9: bound on the auxiliary linear statistics Let f η be as in (3.147). To establish (3.149), we apply to f η the first steps of the current proof. Let ϕ P C ε pT, Rq be such that

ϕ 1 " ´1 2βc s p´∆q 1´s 2 f η with ż ϕ " 0.
Observe that by Lemma 3.2.5, the map ϕ satisfies

|ϕ 1 | ď Cpβq 1 |x| 1´s 2 _ 1 N 1´ε 1 . Denote Ψ N : X N P D N Þ Ñ pϕpx 1 q, . . . , ϕpx N qq.
By Proposition 3.5.1 we have

Var P N,β rFluct N rf η ss " ´1 N 2p1´sq E P N,β rβΨ N ¨∇2 H N Ψ N `|∇ 2 Ψ N | 2 s `2 N 1´s E P N,β rFluct N rf 1 η ϕs `1 N 2p1´sq Var P N,β rβArϕs ´Fluct N rϕ 1 ss.
By Lemma 3.3.9, there holds

Var P N,β rFluct N rϕ 1 ss ď N |ϕ 1 | 2 L 2 " OpN 2´s q.
Expanding the mean-field terms like in Step 4, one deduces that for all ε ą 0,

Var P N,β rFluct N rf η ss ď Cpβq ´N s `1 N 2p1´sq Var P N,β rArϕss `N 1´2p1´sq`ε |ϕ 1 | 2 L 2 ď Cpβq ´N s `1 N 2p1´sq Var P N,β rArϕss `N s`ε´ε 1 p1´sq ď Cpβq ´N s `1 N 2p1´sq Var P N,β rArϕss ¯, (3.150) 
where the last inequality is obtained by choosing ε small enough compared to ε 1 . For I N " t1, . . . , N u and ℓ N " 1 and Q N,β be the constrained Gibbs measure (3.136) for I N " t1, . . . , N u and ℓ N " 1.

Arguing like in Step 4, one justifies that

Var P N,β rArϕss " E P N,β rVar Q N,β rArϕs | x 1 " xss `Oβ pN 2´s´ε 1 p1´sq`κε q.

Let x P T and η 0 the cutoff (3.139) for I N " t1, . . . , N u. Let us decompose ∇Arϕs into ∇Arϕs " V 0 `W0 with V 0 , W 0 as in Lemma 3.5.2. By subadditivity and proceeding as in Step 7, one can write

Var Q N,β p¨|x 1 "xq rArϕss ď 3pE Q N,β p¨|x 1 "xq rpη 0 V 0 q¨pA x 1 q ´1pη 0 V 0 qs`E Q N,β p¨|x 1 "xq rpη 0 W 0 q¨pA x 1 q ´1pη 0 W 0 qsq `Oβ pe ´cpN ℓ N q κ q.
In view of Lemma 3.5.2, there exists W0 P L 2 pt1, . . . , N u, H 1 pP N,β qq such that for all U N P R N ,

W 0 ¨UN " ´N ÿ i"1 W0 i N pu i`1 ´ui q with sup |η 0 W0 | 2 ď CN κε`1 ż 1 1 N 1´ε 1 1 x 2´s dx ď CN κε`2´s´ε 1 p1´sq .
Therefore proceeding as in Step 7, one finds

E Q N,β p¨|x 1 "xq rpη 0 W 0 q ¨pA x 1 q ´1pη 0 W 0 qs ď CpβqN κε`2´s´ε 1 p1´sq . (3.151)
Now for η 0 V 0 , following the line of reasoning of Step 8, we obtain E Q N,β p¨|x 1 "xq rη 0 V 0 ¨pA x 1 q ´1pη 0 V 0 qs ď CpβqN κε´s Var P N,β rFluct N rf ss `CpβqN κε`2´s´ε 1 p1´sq , (3.152) with f defined in (3.147). At this point, the sub-poissonian estimate of Lemma 3.3.9 is sharp enough: one can write Var P N,β rFluct N rf ss " O β pN q.

Inserting this into (3.152) using (3.151) and (3.150) and choosing ε small enough, one obtains

Var P N,β rFluct N rf η ss " O β pN s`κε´ε 1 p1´sq q.
By choosing ε small enough, we deduce that there exists a constant C depending on ε 1 such that

Var P N,β rFluct N rf η ss ď CpβqN s . (3.153)
Step 10: conclusion. Inserting (3.153) into (3.148) yields

E Q N,β p¨|x 1 "xq rpηVq ¨pA x 1 q ´1pηVqs ď CpβqpN ℓ N q κε`maxp1,2 max α l q . ( 3.154) 
Therefore recalling (3.134), (3.138) and using (3.141) one gets Var P N,β rA ℓ N rψ reg ss ď CpβqpN ℓ N q κε`maxp1,2 max α l q `CpβqpN ℓ N q 2p1´sq p1`pN ℓ N q s`2 max α l ´p2´sq q.

(3.155) Inserting this into (3.129) and using (3.131), (3.132) we conclude Var P N,β rFluct N rξ reg pℓ ´1 N ¨qss " σ 2 ξreg pN ℓ N q s `Oβ ppN ℓ N q κε`maxp1,2 max α l q´2p1´sq q.

Finally one can check that

σ 2 ξreg " σ 2 ξ `O´1 N ℓ N `1 pN ℓ N q 1´s 2 ´max α l `κε 1 ¯. (3.156) 
By choosing ε 1 small enough we can absorb the error terms (3.128) and (3.156) into the error arising from (3.155). This concludes the proof of Theorem 3.1.2.

Central Limit Theorem

Proof of the CLT

In this subsection we give a proof of the CLT for singular linear statistics stated in Theorem 3.1.3. One could proceed by considering the Laplace transform of the fluctuations but instead we deduce the CLT from an application of Stein's method. The starting point of the method shares many similarities with [START_REF] Lambert | Quantitative normal approximation of linear statistics of β-ensembles[END_REF]. In the sequel, we leverage on variance estimates obtained in the last subsection and obtain a CLT in a weak topology. We believe that one could obtain with the same approach a local CLT for smooth test-functions.

Proof of Theorem 3.1.3. Let ξ be a test-function satisfying Assumptions 3.1.1 and tℓ N u such that ℓ N " 1 N . Assume either that ξ is supported on p´1 2 , 1 2 q or that ℓ N " 1. Define G N " pN ℓ N q ´s 2 Fluct N rξpℓ ´1 N ¨qs.

Let η : R Ñ R be a smooth function. The principle of Stein method is to prove that up to a small error term Error N , the following integration by parts formula holds:

E P N,β rηpG N qG N s " σ 2 ξ E P N,β rη 1 pG N qs `Error N , (3.157) 
with

σ 2 ξ " 1 2βc s |ξ| 2 H 1´s 2
.

(3.158) Indeed (3.157) controls a certain distance to a normal distribution. Let Z " N p0, σ 2 ξ q. If h : R Ñ R is smooth enough, then one can solve the ODE η 1 pxq ´ηpxqx " hpxq ´ErhpZqs, x P R.

The fundamental observation is that

E P N,β rhpG N qs ´ErhpZqs " E P N,β rηpG N qG N ´σ2 ξ η 1 pG N qs.
This allows one to prove the following standard inequality (see for instance [START_REF] Louis | Normal approximation by Stein's method[END_REF]):

sup tPR |P N,β pG N ď tq ´PpZ ď tq| ď 2 ´sup ηPD |E P N,β rη 1 pG N q ´GN ηpG N qs| ¯1 2 ,
where D is the set of functions η : R Ñ R such that |η| 8 ď 1, |η 1 | 8 ď 1. Let us now prove that (3.157) holds for η P D up to a small error term.

Step 1: regularization Let ε 1 ą 0. Consider ξ reg the regularization of ξ at scale 1{pN ℓ N q p1´ε 1 q as in (3.127). Set gN " pN ℓ N q ´s 2 Fluct N rξ reg pℓ ´1 N ¨qs

Observe that

E P N,β rηpG N qG N ´η1 pG N qs " E P N,β rηpg N qg N ´η1 pg N qs `Oβ p1 `pN ℓ N q max α l ´p1´s 2 q q. (3.159)
In the sequel we establish that gN satisfies the approximate Gaussian formula (3.157).

Step 2: main computation Let us first discuss the relation between (3.159) and the H.-S. equation A 1 ∇ϕ " ∇ GN . The discussion is only formal since we have not proved the well-posedness of the H.-S. equation under P N,β for test-functions which are not functions of the gaps. Let ∇ϕ be the solution of

" A 1 ∇ϕ " ∇ GN on D N ∇ϕ ¨⃗ n " 0 on BD N .
By integration by parts under P N,β , one can write

E P N,β rηpg N qg N s " E P N,β rηp GN qL GN s " E P N,β rη 1 p GN q∇ GN ¨∇ϕs. (3.160)
The point is to show that under P N,β , the quantity ∇ GN ¨∇ϕ concentrates around a constant, which turns out to be σ 2 ξ . Let ψ reg P C 2 pℓ ´1 N T, Rq satisfying

ψ 1 reg " ´1 2βc s ℓ 1´s N p´∆q 1´s 
2 pξ reg pℓ ´1 N ¨qqpℓ N ¨q and ∫ ψ reg " 0.

By Remark 11, ∇ϕ may be decomposed into

∇ϕ " 1 pN ℓ N q 1´s 2 pℓ N ψ reg pℓ ´1 N x 1 q, . . . , ℓ N ψ reg pℓ ´1 N x N qq `1 pN ℓ N q 1´s 2 A ´1 1 rβ∇A ℓ N rψ reg s ´∇Fluct N rψ 1 reg pℓ ´1 N ¨qs, (3.161) 
with A ℓ N rψ reg s defined in (3.112). Inserting (3.161) into (3.160) leads to

E P N,β rηp GN q GN s " E P N,β " η 1 p GN q N ÿ i"1 1 N ℓ N ψ reg pℓ ´1 N x i qξ 1 reg pℓ ´1 N x i q ı `1 pN ℓ N q 1´s 2 E P N,β " η 1 p GN q∇ GN ¨A´1 1 pβ∇A ℓ N rψ reg s ´∇Fluct N rψ 1 reg pℓ ´1 N ¨qsq ı
One can reformulate this into

E P N,β rηp GN q GN s " E P N,β " η 1 p GN q N ÿ i"1 1 N ℓ N ψ reg pℓ ´1 N x i qξ 1 reg pℓ ´1 N x i q ı `1 pN ℓ N q 1´s 2
Cov P N,β rηp GN q, pβA ℓ N rψ reg s ´Fluct N rψ 1 reg pℓ ´1 N ¨qss and the above identity follows from a rigorous integration by parts, as in the proof of Proposition 3.5.1. It follows that gN satisfies the approximate Gaussian identity

E P N,β rηp GN q GN s " σ 2 ξ E P N,β rη 1 p GN qs `Error 1 N `Error 2 N , (3.162) 
with

Error 1 N " E P N,β " η 1 p GN q ´N ÿ i"1 1 N ℓ N ψ reg pℓ ´1 N x i qξ 1 reg pℓ ´1 N x i q ´σ2 ξ ¯ı, Error 2 N " 1 pN ℓ N q 1´s 2 Cov P N,β rηp GN q, pβA ℓ N rψ reg s ´Fluct N rψ 1 reg pℓ ´1 N ¨qss.
Step 3: the error term Error 1

N

One can bound Error 1 N by

|Error 1 N | ď |η 1 | 8 1 N ℓ N E P N,β " | N ÿ i"1 ξ 1 reg pℓ ´1 N x i qψ reg pℓ ´1 N x i q ´N ℓ N σ 2 ξ | ı .
Since ψ 1 reg " ´1 2βcs p´∆q 1´s 2 ξ reg , observe that

E P N,β " N ÿ i"1 ξ 1 reg pℓ ´1 N x i qψ reg pℓ ´1 N x i q ı " N ℓ N σ 2 ξreg ,
with σ ξreg as in (3.158). Moreover from the definition of ξ reg ,

σ 2 ξreg " σ 2 ξ `O´1 N ℓ N `1 pN ℓ N q 1´s 2 ´max α l `κε 1 ¯.
We therefore obtain the following bias-variance decomposition:

|Error 1 N | ď C|η 1 | 8 1 N ℓ N ´1 `Var P N,β " N ÿ i"1 ξ 1 reg pℓ ´1 N x i qψ reg pℓ ´1 N x i q ı 1 2 ¯.
By the sub-poissonian estimate of Lemma 3.3.9,

Var P N,β " N ÿ i"1 ξ 1 reg pℓ ´1 N x i qψ reg pℓ ´1 N x i q ı 1 2 ď pN ℓ N q 1 2 |ψ reg ξ 1 reg | L 2 .
By Assumptions 3.1.1, ψ reg is of order Op|x ´a| 1´max α l q around a singularity a of ξ reg while ξ 1 reg grows in Op|x ´a| ´max l α l ´sq. It follows that

|ψ reg ξ 1 reg | 2 L 2 ď C ´1 `ż 1 1 N ℓ N 1 |x| 4 max α l ´2`2s dx ¯ď Cp1 `pN ℓ N q 4 max α l `2s´3 q. Hence E P N,β " | N ÿ i"1 ξ 1 reg pℓ ´1 N x i qψ reg pℓ ´1 N x i q ´N ℓ N σ 2 ξ | ı ď CpN ℓ N q 1 2 `CpN ℓ N q 2 max α l `s´1 . and Error 1 N " OppN ℓ N q ´1´s 2 `pN ℓ N q ´p2´2 max α l ´sq q. (3.163) 
Since max α l ă 1 ´s 2 , note that Error 1 N " o N ℓ N p1q.

Step 4: the error term Error (3.164) A quantitative bound on the variance of A ℓ rψ reg s has been obtained in the proof of Theorem 3.1.2. The estimate (3.155) asserts that Var P N,β rA ℓ N rψ reg ss ď CpβqpN ℓ N q κε`maxp1,2 max α l q .

Moreover from the sub-poissonian of Lemma 3.3.9,

Var P N,β rFluct N rψ 1 reg pℓ ´1 N ¨qs ď N ℓ N ż pψ 1 reg q 2 ď CpβqpN ℓ N q maxp1,2 max α l q .
It follows that

|Error 2 N | ď Cpβq pN ℓ N q 1´s 2 |η| 8 pN ℓ N q κε 2 `maxp 1 
2 ,max α l q .

(3.165)

Step 5: conclusion Inserting (3.163), (3.165) into (3.162) and using (3.159) one obtains

|E P N,β rηpG N qG N ´σ2 ξ η 1 pG N qs| ď C ´pN ℓ N q ´p1´s 2 ´max α l ´κεq `pN ℓ N q ´1´s 2 ¯.
Since max α l ă 1 ´s 2 , this error term is o N ℓ N p1q and this concludes the proof of Theorem 3.1.3. Now for ℓ N Ñ 0, we have

lim N Ñ8 1 pN ℓ N q s lim N Ñ8 Var P N,β rFluct N rξpℓ ´1 N ¨qss " r σ 2 ξ :" |ξ 0 | 2 H 1´s 2
, where ξ 0 : R Ñ R, ξ 0 " 1 p´a,aq . In this case, by expanding (3.166) as a tends to 0, we find

r σ 2 ξ " cotanp π 2 sq β π 2 s p2aq s .
Let tk N u be a sequence in t1, . . . , N 2 u such that k N Ñ 8. Let i 0 " argmin

1ďiďN |x i |.
Let us prove that k ´s 2 N pN px i 0 `kN ´xi 0 q ´kN q converges in distribution. Let ε ą 0. Let π : Z Þ Ñ s ´N 2 , N 2 s X Z such that πpnq " n mod N and πpnq Ps ´N 2 , N 2 s X Z. Define the event

A " tX N P D N : |N x i 0 | ď k ε N , @i, j P tk : dpk, i 0 q ď 2k N u, |N px j ´xi q´N πpj´iq| ď dpj, iq s 2 `εu.
Since i 0 is the index of the smallest point, by Theorem 3.1.1, the event A has overwhelming probability: there exists δ ą 0 depending on ε such that

P N,β pA c q ď Cpβqe ´cpβqk δ N .
Moreover note that on A, we have

N px k N `i0 ´xi 0 q ´kN " ´´N ÿ i"1 1 p0,ℓ N q px i q ´N ℓ N ¯`Opk ε N `k s 2 p s 2 `εq N q,
where ℓ N " k N N . Since A has overwhelming probability, choosing ε ą 0 small enough, one deduces from Theorem 3.1.3 and the above computations that meaning that for all v, w P C 8 pD N q such that v ¨⃗ n " 0 on BD N , the following identity holds E µ rpB i vqws " E µ rvB i ws.

N ´s 2 ζp´s, k N N q ´1 2 pN px k N `i0 ´xi 0 q ´kN q ùñ Law N p0, σ 2 q,
(3.168)

The above identity can be shown by integration by parts under the Lebesgue measure on D N . Recall the map Π :

X N P D N Þ Ñ px 2 ´x1 , . . . , x N ´x1 q P T N ´1
and µ 1 " µ ˝Π´1 .

Lemma 3.7.1. Assume that µ satisfies Assumptions 3.3.1. Let F P H ´1pµq. Assume either that F is in the form F " G ˝Π with G P H ´1pµ 1 q or that χ is bounded. Then there exists a unique

ϕ P H 1 pµq such that that $ & % L µ ϕ " F ´Eµ rF s on D N ∇ϕ ¨⃗ n " 0 on BD N E µ rϕs " 0. (3.169) 
Moreover the solution ϕ of (3.169) is the unique minimizer of ϕ Þ Ñ E µ r|∇ϕ| 2 ´2ϕF s, over functions ϕ P H 1 pµq such that E µ rϕs " 0.

Lemma 3.7.1 is a variation on Lax-Milgram's lemma. When the interaction kernel χ is bounded, a uniform Poincaré inequality holds. If one does not assume that χ is bounded, then one can observe that the Poincaré inequality holds for all functions of the gaps.

Proof. Assume that F " G ˝Π with G P H ´1pµ 1 q. Let E " tϕ P H 1 pµq : ϕ " ψ ˝Π, ψ P H 1 pµ 1 q, E µ rϕs " 0u and J :

ϕ P E Þ Ñ E µ r|∇ϕ| 2 s ´2E µ rF ϕs. (3.170) One can write |E µ rF ϕs| ď }F } H ´1pµq }ϕ} H 1 pµq .
By assumptions ∇ 2 H ě c on the subspace tx P R N : x 1 " 0u for some constant c ą 0 and therefore

E µ rϕ 2 s " Var µ rϕs " Var µ 1 rψs ď E µ 1 r∇ψ ¨p∇ 2 Hq ´1∇ψs ď c ´1E µ 1 r|∇ψ| 2 s " 1 4c E µ r|∇ϕ| 2 s.
(3.171) Consequently there exists some constant C ą 0 such that for all ϕ P E,

|E µ rF ϕs| ď C}F } H ´1pµq E µ r|∇ϕ| 2 s 1 2 . (3.172)
It follows that J is coercive with respect to the H 1 pµq norm and that J is bounded from below. Let pϕ k q be a sequence of elements of E such that pJpϕ k qq converges to inf J. Since pϕ k q is bounded in H 1 pµq, there exists a sub-sequence converging weakly to a certain ϕ P E. It follows from (3.172) that J is l.s.c on H 1 pµq. Since J is convex, J is l.s.c for the weak topology on H 1 pµq. Therefore ϕ is a minimizer of J on E. The first-order minimality condition for ϕ reads E µ r∇ϕ ¨∇hs " E µ rF hs, for all h P E. By integration by parts one may rewrite the above quantity as

E µ r∇ϕ ¨∇hs " E µ rL µ ϕhs `żBD N p∇ϕ ¨⃗ nqhe ´H .
It follows that ∇ϕ ¨⃗ n " 0 on BD N and that for all h P E, E µ rpL µ ϕ ´F `Eµ rF sqhs " 0.

If h P H 1 pµq, letting h " ş hpx 1 , . . . , x N qdx 1 , one may note that E µ rL µ ϕ ´F `Eµ rF sqhs " E µ rpL µ ϕ ´F `Eµ rF sq hs " 0.

We deduce that ϕ satisfies L µ ϕ " F ´Eµ rF s, as elements of H ´1pµq and ∇ϕ ¨⃗ n " 0 on BD N . The uniqueness is straightforward. When the density of µ is bounded from below by a positive constant, it is standard that µ satisfies a Poincaré inequality. We deduce from the same arguments the proof of existence and uniqueness of a solution to (3.169).

We can now complete the proof of Proposition 3.3.1.

Proof of Proposition 3.3.1. Let F " G ˝Π with G P H 1 pµ 1 q. Recall that if F P H 1 pµq, ∇F P L 2 pt1, . . . , N u, H ´1pµqq. Indeed

N ÿ i"1 }B i F } 2 H ´1pµq ď N ÿ i"1 }B i F } 2 L 2 ď }ϕ} 2 H 1 pµq .
By Lemma 3.7.1, there exists ϕ P H 1 pµq such that Lϕ " F ´Eµ rF s as elements of H ´1pµq and ∇ϕ ¨⃗ n " 0 on BD N . Let w P C 8 pD N q such that w ¨∇n " 0 on BD N . For each i P t1, . . . , N u, we have

E µ rwB i F s " E µ rB i wpF ´Eµ rF sqs " E µ rB i wL µ ϕs " E µ r∇B i w ¨∇ϕs " N ÿ j"1 E µ rpB i B j wqB j ϕs `N ÿ j"1 E µ rprB j , B i swqB j ϕs.
For the first term in the sum above, we have

N ÿ j"1 E µ rpB i B j wqB j ϕs " N ÿ j"1
E µ rpB j wqB i B j ϕs " E µ r∇w ¨∇pB i ϕqs " E µ rwL µ pB i ϕqs.

For the second term, using the identity rB j , B i s " p∇ 2 Hq i,j , one can write

N ÿ j"1 E µ rprB j , B i swqB j ϕs " E µ rwe i ¨∇2 H∇ϕs.
We conclude by density that, in the sense of H ´1pµq, for each i P t1, . . . , N u,

L µ pB i ϕq `p∇ 2 H∇ϕq i " B i F.
This concludes the proof of existence of a solution to (3.58). The Helffer-Sjöstrand formula (3.60) then easily follows from an integration by parts: letting ∇ϕ be the solution of (3.58), we can write Var µ rF s " E µ rpF ´Eµ rF sqL µ ϕs " E µ r∇F ¨∇ϕs.

When the density of µ is bounded from below we conclude likewise.

Let us no prove that the variational characterisation of the solution of (3.58). Let E " tψ P L 2 pt1, . . . , N u, H 1 pµqq : ψ " v ˝Gap N , v P L 2 pt1, . . . , N u, H 1 pµ 1 qqu and J :

ψ P E Þ Ñ E µ r|Dψ| 2 `ψ ¨∇2 Hψ ´2∇F ¨ψs.
By standard arguments, one can easily prove that J admits a unique minimizer ψ, which satisfies the Euler-Lagrange equation

" A µ 1 ψ " ∇F on D N ψ ¨⃗ n " 0 on BD N . (3.173) 
Since J is convex on E, if ∇ϕ verifies (3.173), then ψ " ∇ϕ.

Auxiliary estimates

Discrete convolution products

Lemma 3.7.2. Let α, β be such that α `β ą 1. Let k 0 P N.

(i) If α P p0, 1q and β P p0, 1q,

ÿ kPN,k‰k 0 1 k α 1 |k 0 ´k| β ď C k α`β´1 0 . (ii) If α " 1 and β P p0, 1q, ÿ kPN,k‰k 0 1 k α 1 |k 0 ´k| β ď C log k 0 k β 0 , (iii) If α ą 1 and β ą 0, ÿ kPN,k‰k 0 1 k α 1 |k 0 ´k| β ď C k minpα,βq 0 .
The above estimates follow from straightforward computations, see for instance [START_REF] Mourrat | Correlation structure of the corrector in stochastic homogenization[END_REF][START_REF] Dario | Massless phases for the villain model in dě 3[END_REF]. Let us now adapt Lemma 3.7.2 to truncated convolution products. Lemma 3.7.3. Let α, β be such that α `β ą 1. Let k 0 P N.

Proof of Lemma 3.5.2

Proof of Lemma 3.5.2. We suppose that ξ is supported on p´1 2 , 1 2 q and that ℓ N P p0, 1q, the proof in the macroscopic case being similar. Let i 0 " argmin 1ďiďN |x i |, γ ą 1 and I N " ti P t1, . . . , N u : dpi, i 0 q ď pN ℓ N q γ u.

To lighten the notation let us write I N " t1, . . . , Ku with K " 1 `tpN ℓ N q γ u. Let ψ P C δ pℓ ´1 N T, Rq given by (3.124) and ψ reg " ψ ˚Kℓ with ℓ " 1{pN ℓ N q ε 1 for some ε 1 ą 0.

Denote u N the regular grid of spacing 1 N on T:

u N i " i N P T, i " 1, . . . , N. (3.175) 
Step 1: splitting Let g : x P Tzt0u Þ Ñ g 1 s pxqx. One may express A ℓ N rψ reg s as

A ℓ N rψ reg s " ij ∆ c ℓ N pψ reg pℓ ´1 N yq ´ψreg pℓ ´1 N xqq y ´x N ´s gpy ´xqdfluct N pxqdfluct N pyq. Denote ζ : px, yq P pℓ ´1 N Tq 2 Þ Ñ ℓ N pψ reg pℓ ´1 N yq ´ψreg pℓ ´1 N xqq y ´x .
One can split the gradient of r A ℓ N rψ reg s into V `W with V i , W i given for each i P I N by

V i " 2 ÿ k:i`kPI N B 1 ζpx i , x i`k qN ´s gpx i`k ´xi q ´2N ż |y|ď pN ℓ N q γ N B 1 ζpx i , yqN ´s gpy ´xi qdy `2 ÿ k:i`kPI N ζpx i , x i`k qN ´s g1 pu N k q ´2N ż |y|ď pN ℓ N q γ N
ζpx i , yqN ´s g1 py ´xi qdy and

W i " 2 ÿ k:i`kPI N ζpx i , x i`k qN ´spg 1 px i`k ´xi q ´g 1 pu N k qq with V i " W i " 0 for each i P I c N . Let us isolate from V i the discretization errors: for each i P I N write V i " V 1 i `V2 i with V 1 i " 2 ÿ k:i`kPI N B 1 ζpx i , x i`k qN ´s gpx i`k ´xi q ´2 ÿ k:i`kPI N B 1 ζpx i , x i `uN k qN ´s gpu N k q `2 ÿ k:i`kPI N pζpx i , x i`k q ´ζpx i , x i `uN k qqN ´s g1 pu N k q and V 2 i " 2 ÿ k:i`kPI N pB 1 ζpx i , u N k qgpu N k q`ζpx i , u N k qg 1 pu N k qq´2N ż |y|ď pN ℓ N q γ N pB 1 ζpx i , yqgpyq`ζpx i , yqg 1 pyqqdy.
Step 2: control on V 1 For each i P I N , one may write

V 1 i " 2 ÿ k:i`kPI N B 1 ζpx i , x i`k qN ´spgpx i`k ´xi q ´gpu N k qq `2 ÿ k:i`kPI N pB 1 ζpx i , x i`k q´B 1 ζpx i , x i `uN k qqN ´s gpu N k q`2 ÿ k:i`kPI N pζpx i , x i`k q´ζpx i , x i `uN k qqN ´s g1 pu N k q. (3.176) Denote V 1,1 i , V 1,2 i and V 1,3
i the three terms in (3.176). By assumption, ψ reg satisfies |ψ 2 reg | ď Cη N where

η N : x P ℓ ´1 N T Þ Ñ ´1 `p ÿ l"1 1 p|x ´al | _ 1 pN ℓ N q 1´ε 1 q 1`α l ¯1|x|ă2 `1 p1 `|x|q 3´s .
(3.177)

Observe that there exists a constant C ą 0 such that for all x, y P T,

|B 1 ζpx, yq| ď Cℓ ´1 N pη N pℓ ´1 N xq `ηN pℓ ´1 N yqq. (3.178)
Therefore, on the good event A defined in (3.123), one can bound V 1,1 uniformly in i P I N by

|V 1,1 i | ď Cℓ ´1 N pN ℓ N q κε ÿ jPI N :j‰i pη N pℓ ´1 N x j q `ηN pℓ ´1 N px i `uN j´i qqq 1 |j ´i| 1`s 2 . ( 3.179) 
Let us keep track of the indices near the singularities of ξ: for each i " 1, . . . , p let

k l :" argmin 1ďiďN |x i ´ℓN a l |. (3.180) 
Note that there exists C 0 ą 0 such that for all X N P A,

|j ´K 2 | ě C 0 N ℓ N ùñ |x j | ą 2ℓ N , for each j P I N .
Moreover we can write

1 |ℓ ´1 N px ´ℓN a l q| _ pN ℓ N q ´p1´ε 1 q " ℓ N |x ´ℓN a l | _ ℓ N pN ℓ N q ´p1´ε 1 q " N ℓ N |N x ´N ℓ N a l | _ pN ℓ N q ε 1 . It follows that η N pℓ ´1 N x j q `ηN pℓ ´1 N px i `uN j´i qq ď CpN ℓ N q κε 1 |j´K 2 |ďC 0 N ℓ N ˆ´1 `p ÿ l"1 pN ℓ N q 1`α l 1 p1 `|j ´kl |q 1`α l ^1 pN ℓ N q ε 1 p1`α l q ¯`CpN ℓ N q κε pN ℓ N q 3´s p|j ´K 2 | `N ℓ N q 3´s .
Inserting this into (3.179) gives

|V 1,1 i | ď Cℓ ´1 N pN ℓ N q κε ÿ |j´K 2 |ďC 0 N ℓ N ´1`p ÿ l"1 pN ℓ N q 1`α l 1 1 `|j ´kl | 1`α l ^1 pN ℓ N q ε 1 p1`α l q 1 1 `|j ´i| 1`s 2 Cℓ ´1 N pN ℓ N q κε pN ℓ N q 3´s N ÿ j"1 1 pN ℓ N `|j ´K 2 |q 3´s 1 1 `|j ´i| 1`s 2 . (3.181)
One can first check that

ÿ |j´K 2 |ďC 0 N ℓ N 1 |j ´i| 1`s 2 ď $ & % 1 if |i ´K 2 | ď 2C 0 N ℓ N N ℓ N |i´K 2 | 1`s 2 if |i ´K 2 | ě 2C 0 N ℓ N . (3.182)
The behavior of the discrete convolution product depends on whether α l ă s 2 or not. By Lemma 3.7.3, we have

ÿ |j´K 2 |ďC 0 N ℓ N 1 1 `|j ´kl | 1`α l ^1 pN ℓ N q ε 1 p1`α l q 1 1 `|j ´i| 1`s 2 ď C $ ' ' ' & ' ' ' % 1 |i´k l | 1`α l `1 p|i´k l |_pN ℓ N q ε 1 q 1`s 2 if |i ´K 2 | ď 2C 0 N ℓ N and α l ą s 2 1 |i´k l | 1`α l if |i ´K 2 | ď 2C 0 N ℓ N and α l ď s 2 1 |i´K 2 | 1`s 2 `αl if |i ´K 2 | ě 2C 0 N ℓ N . (3.183)
On the event A, there exist constants C ą 0 and κ ą 0 such that

|i ´kl | ě CpN ℓ N q ´κε |N x i ´N ℓ N a l |, for each i P I N , 1 ď l ď p.

Besides we can check that

N ÿ j"1 1 pN ℓ N `|j ´N 2 |q 3´s 1 |j ´i| 1`s 2 ď C $ & % 1 pN ℓ N q 3´s 2 if |i ´K 2 | ď 2N ℓ N 1 |i´K 2 | 3´s 2 if |i ´K 2 | ě 2N ℓ N .
Observe that the term (3.182) is dominant at infinity. One can therefore gather these expressions into

|V 1,1 i | ď CpN ℓ N q κε ÿ l:α l ą s 2 pN ℓ N q α l N ´s 2 1 p|x i ´ℓN a l | _ pN ℓ N q ε 1 N q 1`s 2 1 |x i |ă2ℓ N `CpN ℓ N q κε p ÿ l"1 ℓ α l N 1 p|x i ´N ℓ N a l | _ 1 N q 1`α l 1 |x i |ă2ℓ N `CpN ℓ N q κε N ´s 2 1 p|x i | `ℓN q 1`s 2 . (3.184)
We turn to the second term of (3.176). Observe that there exists a constant C ą 0 such that for all a, x, y P T,

|B 1 ζpx, y `aq ´B1 ζpx, yq| ď Cℓ ´1 N pη N pℓ ´1 N yq `ηN pℓ ´1 N py `aqq `ηN pℓ ´1 N xqq |a| |x ´y| .
Applying this to x " x i , y " x j , a " x j ´xi ´uN j´i , we find that there exist constants C ą 0 and κ ą 0 such that uniformly on A and for each i, j P I N ,

|B 1 ζpx i , x j q´B 1 ζpx i , x i `uN j´i q| ď Cℓ ´1 N pN ℓ N q κε pη N pℓ ´1 N x i q`η N pℓ ´1 N px i `uN j´i qq`η N pℓ ´1 N x j qq 1 |j ´i| 1`s 2 .
As a consequence we get that V 1,2 i is bounded uniformly on A by

|V 1,2 i | ď Cℓ ´1 N pN ℓ N q κε ÿ jPI N :j‰i pη N pℓ ´1 N x j q `ηN pℓ ´1 N px i `uN j´i qqq 1 |j ´i| 1`s 2 .
In view of the previous computation, one deduces that V 1,2 i verifies the estimate (3.184). With similar arguments one can check that V 1,3 i also satisfies (3.184) and therefore

|V 1 i | ď CpN ℓ N q κε ÿ l:α l ą s 2 pN ℓ N q α l N ´s 2 1 p|x i ´ℓN a l | _ pN ℓ N q ε 1 N q 1`s 2 1 |x i |ă2ℓ N `CpN ℓ N q κε p ÿ l"1 ℓ α l N 1 p|x i ´N ℓ N a l | _ 1 N q 1`α l 1 |x i |ă2ℓ N `CpN ℓ N q κε N ´s 2 1 p|x i | `ℓN q 1`s 2 .
(3.185)

Step 3: control on V 2 Fix x P T and define

f : y P N T Þ Ñ ζpx, x `y N qN ´s g1 p y N q `B1 ζpx, x `y N qN ´s gp y N q.
For each K 1 , K 2 P t1, . . . , N 2 u, one may write using the Euler-Maclaurin formula

ÿ ´K1 ďkďK 2 ,k‰0 f pkq " ż r´K 1 ,K 2 szr´1,1s f pyqdy`f p´K 1 q `f pK 2 q 2 `O´ż ´1 ´N 2 |f 1 pyq|dy`ż N 2 1 |f 1 pyq|dy ¯.
Let us thus upper bound the L 1 norm of f 1 . First, note as in (3.178) that for all y P N T,

ˇˇB 2 ζpx, x `y N q ˇˇď Cℓ ´1 N ´ηN pℓ ´1 N xq `ηN pℓ ´1 N px `y N q ¯.
It follows that

ż N 2 1 ˇˇB 2 ζpx `y N qN ´p1`sq g1 p y N q ˇˇdy ď Cℓ ´1 N ż N 2 1
´ηN pℓ ´1 N xq `ηN pℓ ´1 N px `y N qq ¯1 y 1`s dy.

We recognize an expression similar to (3.179) and after performing some computations we find

ż N 2 1 ˇˇB 2 ζpx, N ´p1`sq g1 p y N q ˇˇdy ď CpN ℓ N q κε p ÿ l"1 ℓ α l N 1 p|x ´ℓN a l | _ 1 N q 1`α l 1 |x|ă2ℓ N `CpN ℓ N q κε ÿ l:α l ąs pN ℓ N q α l N ´s 1 p|x ´ℓN a l | _ pN ℓ N q ε 1 N q 1`s `CpN ℓ N q κε N ´s 1 p|x| `ℓN q 1`s . (3.186)
Using that for all x P T, y P p´N 

|V 2 i | ď CpN ℓ N q κε p ÿ l"1 ℓ α l N 1 p|x ´ℓN a l | _ 1 N q 1`α l 1 |x|ă2ℓ N `CpN ℓ N q κε ÿ l:α l ąs pN ℓ N q α l N ´s 1 p|x ´ℓN a l | _ pN ℓ N q ε 1 N q 1`s `CpN ℓ N q κε N ´s 1 p|x| `ℓN q 1`s `Cf pdpi, BI N qq. (3.187) Split f into f 1 `f2 with f 1 : y P N T Þ Ñ ζpx, x `y N qN ´s g1 p y N q. First recall that ˇˇζpx i , x i `dpi, BI N q N q ˇˇď C ℓ 2´s N pℓ N `|x i |q 2´s .
Let i P I N such that dpi, i 0 q ď 1 2 dpi, BI N q. One can write

|f 1 pdpi, BI N qq| ď CN pN ℓ N q γp1`sq 1 pℓ ´1 N |x i | `1q 2´s " C pN ℓ N q γs ℓ ´1 N pℓ ´1 N |x i | `1q 2´s .
Let i P I N such that dpi, i 0 q ě 1 2 dpi, BI N q. Then |f 1 pdpi, BI N qq| ď CN dpi, BI N q 1`s pN ℓ N q ´p2´sqp1´γq . Let I " p´p N ℓ N q γ N , pN ℓ N q γ N q X T. On the event A there holds

1 dpi, BI N q 1`s 2 ď C pN ℓ N q κε pN dpx i , BIq ^1q 1`s 2 . It follows that on A, |f 1 pdpi, BI N qq| ď CpN ℓ N q κε´p2´sqp1´γq N ´s 2 1 pdpx i , BIq ^1 N q 1`s 2 .
Besides we also have that for each i P I N ,

|f 2 pdpi, BI N qq| ď CpN ℓ N q κε ℓ ´1 N η N pℓ ´1 N xq.
Since (3.187) can be absorbed into (3.185), we have obtained that uniformly on i P I N

|V i | ď CpN ℓ N q κε ÿ l:α l ą s 2 pN ℓ N q α l N ´s 2 1 p|x i ´ℓN a l | _ pN ℓ N q ε 1 N q 1`s 2 1 |x i |ă2ℓ N `CpN ℓ N q κε p ÿ l"1 ℓ α l N 1 p|x i ´N ℓ N a l | _ 1 N q 1`α l 1 |x i |ă2ℓ N `CpN ℓ N q κε N ´s 2 1 p|x i | `ℓN q 1`s 2 `C pN ℓ N q γs ℓ ´1 N pℓ ´1 N |x i | `1q 2´s `CpN ℓ N q κε´p2´sqp1´γq N ´s 2 1 pdpx i , BIq ^1 N q 1`s 2 .
Step 4: control on W in gap coordinates Let W P L 2 pt1, . . . , N u, H 1 pP N,β qq be the vectorfield given for each i P I N by Wi "

N ÿ k"1 ÿ lPI N : l`kPI N ,i´kălďi ζpx l`k , x l qN ´p1`sq pg 1 px l`k ´xl q ´g 1 pu N k qqpδ k‰N {2 `1 2 δ k"N {2 q
and Wi " 0 for i R I N . For all U N P R N , we have

W ¨UN " ´N ÿ i"1
Wi N pu i`1 ´ui q.

There exist constants C, κ ą 0 such that uniformly on A, for each l, l

`k P I N N ´p1`sq |g 1 px l`k ´xk q ´g 1 pu N k q| ď CpN ℓ N q κε k 2`s 2 . ( 3.188) 
By assumption |ψ 1 reg | ď Cγ N where

γ N : x P ℓ ´1 N T Þ Ñ ´1 `p ÿ l"1 1 |x ´al | α l ¯1|x|ă2 `1 1 `|x| 2´s .

One may thus bound Wi uniformly on A by

| Wi | ď CpN ℓ N q κε K ÿ k"1 K ÿ j"i`1 p|γ N pℓ ´1 N x k q| `|γ N pℓ ´1 N x j q|q 1 |j ´k| 2`s 2 .
Reindexing this sum gives

| Wi | ď CpN ℓ N q κε K ÿ j"1 |γ N pℓ ´1 N x j q| 1 |j ´i| 1`s 2 . (3.189)
Recalling (3.180), for each l " 1, . . . , p and j P I N we have that uniformly on A,

N |x j ´ℓN a l | ě pN ℓ N q ´ε|j ´kl |.
Furthermore there exists a constant C 0 ą 0 such that for each i, j P I N and uniformly on A

|j ´i| ě C 0 N ℓ N ùñ |x j | ą 2ℓ N .
Inserting this into (3.189) we find that

| Wi | ď CpN ℓ N q κε ÿ |j´K 2 |ďC 0 N ℓ N p ÿ l"1 pN ℓ N q α l 1 |j ´kl | α l 1 |j ´i| 1`s 2 `CpN ℓ N q 2´s N ÿ j"1 1 pN ℓ N `|j ´K 2 |q 2´s 1 |j ´i| 1`s 2 . (3.190)
Let 1 ď l ď p. Since α l P p0, 1q, one can observe that

ÿ |j´K 2 |ďC 0 N ℓ N 1 |j ´kl | α l 1 |j ´i| 1`s 2 ď C $ & % 1 |i´k l | α l if |i ´K 2 | ď 2C 0 N ℓ N N ℓ N |i´K 2 | 1`s 2 `αl if |i ´K 2 | ě 2C 0 N ℓ N .
Summing the squares of these over 1 ď i ď K ´1 therefore gives

pN ℓ N q 2α l ÿ 1ďiďK ´ÿ |j´K 2 |ďC 0 N ℓ N 1 |j ´kl | α l 1 |j ´i| 1`s 2 ¯2 ď C $ ' & ' % N ℓ N if α l P p0, 1 2 q pN ℓ N q logpN ℓ N q if α l " 1 2 pN ℓ N q 2α l if α l P p 1 2 , 1q. (3.191) Besides we can check that N ÿ j"1 1 pN ℓ N `|j ´N 2 |q 2´s 1 |j ´i| 1`s 2 ď C $ & % 1 pN ℓ N q 2´s if |i ´K 2 | ď 2N ℓ N N ℓ N |i´K 2 | 3´s if |i ´K 2 | ě 2N ℓ N .
Summing the squares of these over

1 ď i ď K ´1 gives pN ℓ N q 2p2´sq K ÿ i"1 ´N ÿ j"1 1 N ℓ N `|j ´N 2 | 2´s 1 |j ´i| 1`s 2 ¯2 ď CN ℓ N . (3.192) 
Inserting (3.191) and (3.192) into (3.190) we concludes that there exist constants C ą 0 and κ ą 0 such sup A | W| 2 ď CpN ℓ N q κε pN ℓ N q maxp1,2 max α l q .

(3.193)

Additional useful estimates

Lemma 3.7.4. Let ξ satisfying Assumptions 3.1.1. Let ψ 0 P C δ pT, Rq such that g 1 s ˚ψ0 " ξ with ş ψ 0 " 0. Assume that ψ 2 0 has p singularities in a 1 , . . . , a p of order 1 `α1 , . . . , 1 `αp , with α i P p0, 1q, as defined in (3.8). Assume that ξ is supported on p´1 2 , 1 2 q or that ℓ N " 1. Let ψ P C δ pℓ ´1 N T, Rq given by ψ 1 " ´1 2c s ℓ 1´s N p´∆q 1´s 2 pξpℓ ´1 N ¨qqpℓ N ¨q and ż ψ " 0.

Let ψ reg " ψ ˚Kℓ with K ℓ defined in (3.50) and ℓ " 1{pN ℓ N q 1´ε 1 with ε 1 ą 0. We have

E P N,β rB ℓ N rψ reg ss ď CpβqpN ℓ N q κε pN ℓ N `pN ℓ N q 2 max α l q. (3.194)
Proof. Let us recall

B ℓ N rψ reg s " ij ∆ c N ´ps`2q g 2 s px ´yqpN ℓ N q 2 pψ reg pℓ ´1 N xq ´ψreg pℓ ´1 N yqq 2 dfluct N pxqdfluct N pyq. Denote h : px, yq P pℓ ´1 N Tq 2 z∆ Þ Ñ N ´ps`2q g 2 s px ´yqpN ℓ N q 2 pψ reg pℓ ´1 N xq ´ψreg pℓ ´1 N yqq 2 .
Since the first marginal of P N,β is the Lebesgue measure dx on T, one can simplify the expectation of B ℓ N rψ reg s into

E P N,β rB ℓ N rψ reg ss " N ÿ i"1 E P N,β " ÿ j:j‰i hpx j , x i q ´N ż hpy, x i qdy ı .
Let u N be the regular grid as in (3.175). One may split the above term into ÿ j:j‰i hpx j , x i q ´N ż hpy, x i qdy "

ÿ j:j‰i phpx j , x i q ´hpx i `uN j´i , x i qq `ÿ j:j‰i hpx i `uN j´i , x i q ´N ż hpx i `y, x i qdy :" E 1 i `E2 i . (3.195)
Let us factorize h into hpx, yq " hpx, yqN ´ps`2q g 2 s px ´yq by setting h : px, yq Þ Ñ pN ℓ N q 2 pψ reg pℓ ´1 N xq ´ψreg pℓ ´1 N yqq 2 .

Let

γ N : x P ℓ ´1 N T Þ Ñ ´1 `p ÿ l"1 1 |x ´al | α l ¯1|x|ă1 `1 1 `|x| 2´s .
By assumption, one can bound the difference of hpx, y `aq and hpx, yq by

| hpx, y `aq ´hpx, yq| ď CN 2 ℓ N |ψpℓ ´1 N xq ´ψpℓ ´1 N yq|pγ N pℓ ´1 N py `aqq `γN pℓ ´1 N yqq|a| ď CN 2 pγ N pℓ ´1 N xq `γN pℓ ´1 N yqqpγ N pℓ ´1 N py `aqq `γN pℓ ´1 N yqq|a||x ´y|.

It follows that

E P N,β r|E 1 i |s ď CpβqE P N,β " ÿ j:j‰i pγ N pℓ ´1 N x i q`γ N pℓ ´1 N x j qqpγ N pℓ ´1 N x j q`γ N pℓ ´1 N px i `uN j´i qqq |N px j ´xi q ´N u N j´i | |N px j ´xi q| 1`s ı By Theorem 3.1.1, one can thus write |E 1 i | ď CpβqpN ℓ N q κε ÿ j:j‰i 1ďjďC 0 N ℓ N p ÿ l"1 pN ℓ N q 2α l 1 |j ´N ℓ N a l | 2α l 1 |i ´j| 1`s 2 `CpN ℓ N q κε ÿ j:j‰i pN ℓ N q 2p2´sq 1 pj `N ℓ N q 2´s 1 |j ´i| 1`s 2 .
By assumption, α ă 1 ´s 2 and therefore 2α l ă 2 ´s ă 2 ´s 2 . Consequently one may use directly (3.183). After some computations one finds

E P N,β " N ÿ i"1 |E 1 i | ı ď CpβqpN ℓ N q κε`maxp2 max α l ,1q . (3.196) 
For the discretization error, proceeding as in the proof of Lemma 3.5.2, one can write

ˇˇÿ j:j‰i hpx i `uN j´i , x i q ´N ż hpx i `y, x i qdy| ď 1 N ż N 2 1 |B 1 hpx i , y N , x i q|dy ď C ż N 2 1 1 y 1`s pγ N pℓ ´1 N x i q 2 `γN pℓ ´1 N px i `y N qq 2 q ď Cγ N pℓ ´1 N x i q 2 .
Summing the above estimate yields

E P N,β " N ÿ i"1 |E 2 i | ı ď CpβqpN ℓ N q κε`maxp2 max α l ,1q . (3.197) 
In combination with (3.195) and (3.196), this gives (3.194).

Moreover arguing as in (3.200), one finds that on B,

ÿ iPI N ,dpi,I c N qď 1 2 pN ℓ N q γ γ N pℓ ´1 N x i q ď CpN ℓ N q κε`p2´sq´γp1´sq .
Combining this with (3.199), (3.200) and (3.201), one finally gets that on B,

|A ext | ď CpN ℓ N q κε ppN ℓ N q 2´s´γp1´s´εq `pN ℓ N q 1´γp s 2 ´εq.
Choosing γ ą 3´s 2´s _ 1 s , one thus gets that for ε ą 0 small enough,A ext satisfies

sup B |A ext | ď CpN ℓ N q 1 2 .
Together with (3.198), this finishes the proof.

Lemma 3.7.6. Let ξ satisfying Assumptions 3.1.1. Let ψ 0 P C δ pT, Rq such that g 1 s ˚ψ0 " ξ with ş ψ 0 " 0. Assume that ψ 2 0 has p singularities in a 1 , . . . , a p of order 1 `α1 , . . . , 1 `αp , with α i P p0, 1q, as defined in (3.8). Assume that ξ is supported on p´1 2 , 1 2 q or that ℓ N " 1. Let ψ P C δ pℓ ´1 N T, Rq given by

ψ 1 " ´1 2c s ℓ 1´s N p´∆q 1´s 2 pξpℓ ´1 N ¨qqpℓ N ¨q and ż ψ " 0.
Let ψ reg " ψ ˚Kℓ with K ℓ defined in (3.50) and ℓ " 1{pN ℓ N q 1´ε 1 with ε 1 ą 0. Let r A ℓ N rψ reg s given by (3.122). We have

Var P N,β rE P N,β r r A ℓ N rψ reg s | x 1 ss ď CpβqppN ℓ N q 2p1´sq `N ℓ N q.
Proof. First recall that for any ψ : T Ñ R smooth enough such that ş ψ " 0,

E P N,β rA ℓ N rψss " 0. (3.202)
Indeed, letting ξ " ´2βg ˚ψ and ∇Φ : X N Þ Ñ 1 pN ℓ N q 1´s ℓ N pψpℓ ´1 N x 1 q, . . . , ψpℓ ´1 N x N qq, we have shown in the proof of Proposition 3.5.1 that 0 " E P N,β rLΦs " E P N,β

"

Fluct N rξpℓ ´1 N ¨qs ´1 pN ℓ N q 1´s Fluct N rψ 1 pℓ ´1 N ¨qs `βA ℓ N rψs ı .

The first marginal of P N,β being the Lebesgue measure on the circle, one obtains (3.202). Let i 0 " argmin 1ďiďN |x i |. The point is that

Law P N,β px 1 , . . . , x N | x 1 " xq " Law P N,β px 1 `x, . . . , x N `x | x 1 " 0q " Law P N,β px 1 `x, . . . , x N `x | x i 0 " 0q " Law P N,β px 1 ´xi 0 `x, . . . , x N ´xi 0 `xq.
Fix x 0 P T and let us denote ψ x 0 " ψ reg px 0 `¨q. In view of the preceding remark,

E P N,β rA ℓ N rψ reg s | x 1 " xs " E P N,β " ij ∆ c N ´p1`sq g 1 s px´yqN ℓ N pψ x 0 pℓ ´1 N px´x i 0 qq´ψ x 0 pℓ ´1 N py´x i 0 qqdfluct N pxqdfluct N pyq ı .
By Theorem 3.1.1, x i 0 " Op 1 N q with overwhelming probability. Since the singularities of ψ 1 are in L 1 pT, Rq, one obtains by Taylor expansion that E P N,β rA ℓ N rψ reg s | x 1 " x 0 s " E P N,β rA ℓ N rψ x 0 ss `Oβ ppN ℓ N q 1´s q.

Applying (3.202) to ψ x 0 one thus gets E P N,β rA ℓ N rψ x 0 ss " 0, which gives 

Var P N,β rE P N,β rA ℓ N rψ reg s | x 1 " x 0 ss " O β ppN ℓ N q 2p1´sq q. ( 3 
Var P N,β r r A ℓ N rψ reg s | x 1 " x 0 s ď CpβqppN ℓ N q 2p1´sq `N ℓ N q.
4.1 Introduction

Setting of the problem

The circular Riesz gas This paper aims to study an interacting particles system on the circle T :" R{Z, named circular Riesz gas. Let us note that given a parameter s ą 0, the Riesz s-kernel on T is defined by

g s : x P T Þ Ñ lim nÑ8 ´n ÿ k"´n 1 |x `k| s ´2 1 ´s n 1´s ¯. (4.1) 
Also note that for s P p0, 1q, g s is the fundamental solution of the fractional Laplace equation

p´∆q 1´s 2 g s " c s pδ 0 ´1q, (4.2) 
where p´∆q 1´s 2

is the fractional Laplacian on T . Let us now endow T with the natural order x ă y if x " x 1 `k, y " y 1 `k1 with k, k 1 P Z, x 1 , y 1 P r0, 1q and x 1 ă y 1 , allowing one to define the set of ordered configurations D N " tX N " px 1 , . . . , x N q P T N : x 2 ´x1 ă . . . ă x N ´x1 u.

And let us also consider the pairwise energy

H N : X N P D N Þ Ñ N ´s ÿ i‰j g s px i ´xj q. (4.3)
Finally, the circular Riesz gas at inverse temperature β ą 0 corresponds to the probability measure

dP N,β " 1 Z N,β e ´βH N pX N q 1 D N pX N qdX N . (4.4)
One of the main motivations for studying such an ensemble stems from random matrix theory. For s " 0, the Riesz kernel on R, i.e the solution of p´∆q 1 2 g " δ 0 , is given up to a multiplicative constant, by the logarithm kernel ´log |x| and by log | sinpx{2q| on the circle. Interacting particles systems such as (4.4) on R with logarithmic interaction and external potential are called 1D log-gases or βensembles and the circular log-gas or circular β-ensemble corresponds to (4.4) with the log kernel on T. As observed by Dyson [START_REF] Dyson | A Brownian-motion model for the eigenvalues of a random matrix[END_REF], for some special values of β, namely β P t1, 2, 4u, the β-ensemble matches the joint law of the N eigenvalues of symmetric/hermitian/symplectic random matrices with independent Gaussian entries and there are numerous results on β-ensembles including results on fluctuations, correlations, infinite volume limit, edge behavior, dynamical properties, relaxation time, etc.

The one-dimensional Riesz gas is a natural extension of β-ensembles and a fundamental model on which to understand the properties of long-range particles systems. The interaction (4.1) is indeed long-range when s P p0, 1q while short-range (or hyper-singular, following the terminology of [START_REF] Sergiy | Discrete energy on rectifiable sets[END_REF]) when s P p1, `8q. The long-range Riesz gas is to this extent a particularly rich model in which interesting phenomena occur, falling outside the classical theory of statistical mechanics (Ruelle, Dobruhsin, Georgii, etc). Riesz gases, as a family of power-law interacting particles systems on R d , have also received much attention in the physics literature. Apart from the log and Coulomb cases, which are ubiquitous in both mathematical and physics contexts [START_REF] Serfaty | Systems of points with coulomb interactions[END_REF], Riesz gases have been found out to be natural models in solid state physics, ferrofluids, elasticity, see for instance [START_REF] Mazars | Long ranged interactions in computer simulations and for quasi-2d systems[END_REF][START_REF] Barré | Large deviation techniques applied to systems with long-range interactions[END_REF][START_REF] Campa | Statistical mechanics and dynamics of solvable models with long-range interactions[END_REF][START_REF] Torquato | Hyperuniformity and its generalizations[END_REF]. We refer to the nice review [START_REF] Mathieu Lewin | Coulomb and riesz gases: The known and the unknown[END_REF] which presents a comprehensive account of the literature with many open problems.

The first-order asymptotic of long-range Riesz gases is governed by a mean-field energy functional, which prescribes the macroscopic distribution of particles [START_REF] Chafaï | First-order global asymptotics for confined particles with singular pair repulsion[END_REF][START_REF] Serfaty | Coulomb gases and Ginzburg-Landau vortices[END_REF], corresponding in our circular setting (4.4) to the uniform measure of the circle. In Chapter 3, we have investigated the fluctuations of the system and shown that gaps (large spacing between particles) fluctuate much less than for i.i.d variables and much more than in the log-gas case. Additionally we have established a central limit theorem for linear statistics with singular test-functions, which can be applied in particular to characteristic functions of intervals, thus proving rigorously the predictions of the physics literature [START_REF] Mathieu Lewin | Coulomb and riesz gases: The known and the unknown[END_REF][START_REF] Santra | Gap statistics for confined particles with power-law interactions[END_REF]. The purpose of this very paper is to investigate another class of problems, related to the question of decay of correlations. More precisely we work at proving the optimal decay of gap correlations as in [START_REF] Erdős | Gap universality of generalized wigner and beta-ensembles[END_REF] which considers this question for β-ensembles and at proving the uniqueness of the limiting measure. We will show that after rescaling, chosen so that the typical spacing between particles is of order 1, the point process converges in the large N limit to a certain point process Riesz s,β .

Infinite volume limit Let px 1 , . . . , x N q be distributed according to (4.4). Fix a centering point on T, say x " 0, and consider the rescaled point configuration

C N " N ÿ i"1 δ N x i 1 |x i |ă 1 4 .
With a slight abuse of notation, C N can be seen as a random variable on point configurations on R. Our goal is to prove that the law of C N converges as N tends to infinity, in a suitable topology, to a certain point process Riesz s,β . This property is known in statistical physics as the uniqueness of the Gibbs state and is related to phase transitions. Note that while the existence of limiting point processes is standard [START_REF] Georgii | Large deviations and the maximum entropy principle for marked point random fields[END_REF][START_REF] Dereudre | DLR equations and rigidity for the sine-β process[END_REF], uniqueness is not expected to hold for general interactions even in dimension one. In the cases of the Gaussian and circular β-ensembles, a unique limit has been exhibited in the seminal works [START_REF] Valkó | Continuum limits of random matrices and the brownian carousel[END_REF][START_REF] Kritchevski | The scaling limit of the critical onedimensional random schrodinger operator[END_REF] and then shown to be universal in the bulk of β-ensembles for a large class of smooth external potentials in [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF][START_REF] Bourgade | Universality of general β-ensembles[END_REF], see also [START_REF] Bekerman | Transport maps for β-matrix models and universality[END_REF]. The limiting measure, called the Sine β process, can be described using a system of coupled stochastic differential equations [START_REF] Valkó | Continuum limits of random matrices and the brownian carousel[END_REF] or alternatively as the spectrum of an infinite-dimensional random operator [START_REF] Valkó | The sine β-operator[END_REF]. In contrast, the one-dimensional Coulomb gas, i.e with kernel |x| ´s for s " ´1, is not translation invariant in infinite volume as proved in [START_REF] Kunz | The one-dimensional classical electron gas[END_REF] and Gibbs states are therefore non-unique. As a consequence, the proof of uniqueness for the long-range gas should use both convexity arguments and the decay of the (effective) interaction. In higher dimension, let us mention that the existence of a limit, up to an extraction, for the microcopic process has been proved for the Coulomb gas in [START_REF] Armstrong | Local laws and rigidity for coulomb gases at any temperature[END_REF], but the uniqueness of such a limit is still a completely open problem.

Decay of the correlations A proof of uniqueness for the limiting measure of the averaged microscopic process is obtained for the log-gas in [START_REF] Erbar | The one-dimensional log-gas free energy has a unique minimiser[END_REF] using a displacement convexity argument showing that the free energy of the infinite gas has a unique minimizer. The strategy of [START_REF] Erbar | The one-dimensional log-gas free energy has a unique minimiser[END_REF] could possibly be applied to the circular Riesz setting, but this method does not provide convergence without averaging nor a speed of convergence. Instead, we propose to examine the rate of decay of correlations, which is much related to this uniqueness problem. Since points are very correlated (fluctuations being small), the appropriate observables to examine are the nearest-neighbor variables. For 1D log-gases, the correlation between N px i`1 ´xi q and N px j`1 ´xj q is proven in [START_REF] Erdős | Gap universality of generalized wigner and beta-ensembles[END_REF] to decay in |i ´j| ´2. In this paper we give for the first time a proof of the optimal decay of gap correlations for the circular Riesz gas, which matches the case s " 0 found in [START_REF] Erdős | Gap universality of generalized wigner and beta-ensembles[END_REF] as well as the predictions of the physics literature [1,196,[START_REF] Mathieu Lewin | Coulomb and riesz gases: The known and the unknown[END_REF]. Moreover we establish that this gap correlation exhibits a discontinuity at s " 1 with a much faster decay for s " 1 `than s " 1

´.

The Helffer-Sjöstrand equation For generic Gibbs measure on D N (or R N ), the covariance between two smooth enough test-functions is connected to the decay of the solution of a partial differential equation, named the Helffer-Sjöstrand (H.-S.) equation. This equation appears in [START_REF] Sjöstrand | Potential wells in high dimensions i[END_REF][START_REF] Sjöstrand | Potentials wells in high dimensions ii, more about the one well case[END_REF][START_REF] Helffer | On the correlation for kac-like models in the convex case[END_REF] and is more substantially studied in [START_REF] Helffer | Remarks on decay of correlations and witten laplacians brascamp-lieb inequalities and semiclassical limit[END_REF][START_REF] Helffer | Remarks on decay of correlations and witten laplacians brascamp-lieb inequalities and semiclassical limit[END_REF][START_REF] Naddaf | On homogenization and scaling limit of some gradient perturbations of a massless free field[END_REF], where it is used to establish correlation decay, uniqueness of the limiting measure and Log-Sobolev inequalities for models with convex interactions. Different approaches to obtaining decay estimates on the solutions of Helffer-Sjöstrand equations have been developed in the statistical physics literature, mainly for Gibbs measure with convex interactions. The random walk representation of [START_REF] Erdős | Gap universality of generalized wigner and beta-ensembles[END_REF], already pointed out in [START_REF] Helffer | On the correlation for kac-like models in the convex case[END_REF], [START_REF] Naddaf | On homogenization and scaling limit of some gradient perturbations of a massless free field[END_REF] and used priorly in [START_REF] Bach | Correlation at low temperature: I. exponential decay[END_REF][START_REF] Deuschel | Large deviations and concentration properties for ∇ ´ϕ interface models[END_REF][START_REF] Giacomin | Equilibrium Fluctuations for ∇ϕ Interface Model[END_REF] for instance, corresponds to a Feynman-Kac representation of the solution of the H.-S. equation. The work [START_REF] Erdős | Gap universality of generalized wigner and beta-ensembles[END_REF] then develops a sophisticated homogenization theory for a system of coupled partial differential equations. There are also more analytic methods relying on ideas from stochastic homogenization, see for instance [START_REF] Naddaf | On homogenization and scaling limit of some gradient perturbations of a massless free field[END_REF][START_REF] Armstrong | C 2 regularity of the surface tension for the ∇ϕ interface model[END_REF][START_REF] Dario | Massless phases for the villain model in dě 3[END_REF][START_REF] Thoma | Thermodynamic and scaling limits of the non-gaussian membrane model[END_REF].

As aforementioned, the method available in the literature [START_REF] Erdős | Gap universality of generalized wigner and beta-ensembles[END_REF] to prove the decay of correlations for the 1D log-gas requires that one controls random walks in random environments, which can be quite technical. The gamble of the present paper is to develop a method relying only on integration by parts to treat the long-range Riesz gas with s P p0, 1q. We will first consider as a landmark the hypersingular case s ą 1 and work with a known distortion argument, used for instance in [START_REF] Helffer | Remarks on decay of correlations and witten laplacians brascamp-lieb inequalities and semiclassical limit[END_REF] or in older techniques to study the decay of eigenfunctions of Schrödinger operators [START_REF] Combes | Asymptotic behaviour of eigenfunctions for multiparticle schrödinger operators[END_REF]. We will then adapt the method to the long-range case using substantial new inputs including discrete elliptic regularity estimates. Let us emphasize that as it stands, our method cannot be applied to the logarithmic case since it requires to have nearest-neighbor gaps all bounded from above by a large N -dependent constant much smaller than N , with overwhelming probability. Note that this was also one of the crucial difficulty in [START_REF] Erdős | Gap universality of generalized wigner and beta-ensembles[END_REF] preventing a simple implementation of the techniques of Caffarelli, Chan and Vasseur [START_REF] Caffarelli | Regularity theory for parabolic nonlinear integral operators[END_REF].

Main results

Let us denote d the symmetric distance of t1, . . . , N u, i.e dpi, jq " minp|j ´i|, N ´|j ´i|q for each 1 ď i, j ď N . Our first result, which concerns the correlations between gaps in the long-range regime s P p0, 1q, is the following: Theorem 4.1.1 (Decay of the correlations for the long-range Riesz gas). Let s P p0, 1q. For all ε ą 0, there exists a constant C ą 0 such that for all ξ, χ : R Ñ R in H 1 and for each i, j P t1, . . . , N u,

| Cov P N,β rξpN px i`1 ´xi qq, χpN px j`1 ´xj qqs| ď CpβqpE P N,β rξ 1 px i q 2 s 1 2 `|ξ 1 | 8 e ´cpβqdpi,jq δ qpE P N,β rχ 1 px j q 2 s 1 2 `|χ 1 | 8 e ´cpβqdpi,jq δ q 1 dpi, jq 2´s´ε . (4.5)
Moreover, given ε ą 0 small enough and any n P t1, . . . , N u, there exist i, j such that n 2 ď |i´j| ď n and

| Cov P N,β rN px i`1 ´xi q, N px j`1 ´xj qs| ě ε 1 dpi, jq 2´s . ( 4.6) 
Theorem 4.1.1 is the natural extension of [START_REF] Erdős | Gap universality of generalized wigner and beta-ensembles[END_REF], which proves that that for β-ensembles the correlation between N px i`1 ´xi q and N px j`1 ´xj q decays in |i ´j| ´2. The lower bound (4.6) is obtained by using a result from Chapter 3 which gives the leading-order asymptotic of the correlation between N px i ´x1 q and N px j ´xi q. Theorem 4.1.1 is in accordance with the expected decay of the truncated correlation function in the mathematical physics and physics literature, see [START_REF] Mathieu Lewin | Coulomb and riesz gases: The known and the unknown[END_REF].

Let us comment on the norms appearing in (4.5). Our method is mainly based on L 2 arguments for a distortion of the Helffer-Sjöstrand equation system which is captured by the L 2 norm of ξ 1 and χ 1 . Besides by assuming that ξ 1 and χ 1 are uniformly bounded, we can control the solution on a bad event of exponentially small probability by carrying out a maximum principle argument.

Theorem 4.1.1 should be compared to the decay of correlations in the short-range case, that we quantify in the next theorem: Theorem 4.1.2 (Decay of correlations for the short-range Riesz gas). Let s P p1, `8q. There exists a constant κ ą 0 such that for all ξ, χ : R Ñ R in H 1 and each i, j P t1, . . . , N u, we have

| Cov P N,β rξpN px i`1 ´xi qq, χpN px j`1 ´xj qqs| ď CpβqpE P N,β rξ 1 px i q 2 s 1 2 `|ξ 1 | 8 e ´cpβqdpi,jq δ qpE P N,β rχ 1 px j q 2 s 1 2 `|χ 1 | 8 e ´cpβqdpi,jq δ q ´1 dpi, jq s´ε `1 N ¯.
(4.7)

Remark 13 (Lagrange multiplier and finite volume correlations). The factor 1 N reflects correlations due to fact that the total number of points in system is fixed, see [START_REF] Ernst | Nonequilibrium fluctuations in µ space[END_REF][START_REF] Pulvirenti | The boltzmann-grad limit of a hard sphere system: analysis of the correlation error[END_REF][START_REF] Bodineau | Statistical dynamics of a hard sphere gas: fluctuating boltzmann equation and large deviations[END_REF]. In fact, in the framework of Helffer-Sjöstrand equations, it can be interpreted as a Lagrange multiplier associated to the constraint ř N j"1 N px j`1 ´xj q " N , with the convention that x N `1 " x 1 . Interestingly, this correction does not appear in the long-range case (see Theorem 4.1.1).

It would be interesting to establish the rate of decay of correlations in the case s " 1. We believe that for s " 1, the situation is similar to the long-range case stated in Theorem 4.1.1 and that correlations decays in dpi, jq ´1 log dpi, jq ´κ for some κ ą 0. Our next result concerns the limit as N tends to infinity of the law of the configuration

N ÿ i"1 δ N x i 1 |x i |ă 1 4 , (4.8) 
Since P N,β is translation invariant, this is equivalent to centering the configuration around any point x P T. Let ConfpRq be the set of locally finite, simple point configurations in R. Given a Borel set B Ă R, we let N B : ConfpRq Ñ N be the number of points lying in B. The set ConfpRq is endowed with the σ-algebra generated by the maps tN B : B Borelu. A point process is then a probability measure on ConfpRq. Let px 1 , . . . , x N q distributed according to P N,β . For all x P T, denote 

Q N,β " Law ˜N ÿ i"1 δ N x i 1 |x i |ă 1 4 ¸P PpConfpRqq. ( 4 
G : R K Ñ R in H 1 . Let F : X N Ñ D N Þ Ñ GpN px 2 ´x1
q, . . . , N px K ´xK´1 qq. Fix x P R and let us denote z 1 " argmin zPC |z i ´x|. Then for all ε ą 0, there holds

E P N,β rF s " E Riesz s,β rGpz 2 ´z1 , . . . , z K ´zK´1 qs `Oβ ´N ´s 2 `ε sup |∇G| 2 ¯.
Combining the CLT of Chapter 3 and the convergence result of Theorem 4.1.3, we can additionally prove a CLT for gaps and discrepancies under the Riesz s,β process. Let ζps, xq the Hurwitz zeta function (see for instance [START_REF] Bruce | On the Hurwitz zeta-function[END_REF]). Theorem 4.1.5 (Hyperuniformity of the Riesz s,β process). Let s P p0, 1q. Under the process Riesz s,β , the sequence of random variables K ´s 2 pz K ´z1 ´Kq converges in distribution to Z " N p0, σ 2 q as K tends to infinity with

σ 2 " 1 β π 2 s cotan ´π 2 s ¯.
Moreover, the variance of z K ´z1 under Riesz s,β may be expanded as

Var Rieszpβq rz k ´z1 s " K s σ 2 `opK s q. (4.10)

In particular, Theorem 4.1.5 implies that the fluctuations of the number of points in a given interval under Riesz s,β is much smaller than for the Poisson process. In the language of [START_REF] Torquato | Hyperuniformity and its generalizations[END_REF], this says that Riesz s,β is hyperuniform when s P p0, 1q. Our techniques, combined with the method of Chapter 3, can also give a central limit theorem for linear statistics under the Riesz s,β process, as done in [START_REF] Leblé | CLT for fluctuations of linear statistics in the sine-β process[END_REF][START_REF] Lambert | Mesoscopic central limit theorem for the circular β-ensembles and applications[END_REF] for Sine β .

We conclude this set of results by studying the repulsion of the Riesz s,β process at 0. We show that the probability of having two particles very close to each other decays exponentially. Proposition 4.1.6. Fix α P p0, s 2 q. Let ε P p0, 1q. There exist constants cpβq ą 0 and Cpβq ą 0 depending on α and locally uniformly in β such that

P Riesz s,β p|z i`1 ´zi | ě εq ě 1 ´Cpβqe ´cpβqε ´α .

Related questions and perspective

DLR equations and number-rigidity Having proved the existence of an infinite volume limit for the circular Riesz gas, a natural question is then to study the Riesz s,β process from a statistical physics perspective. The first step in that direction is to establish the Dubroshin-Landford-Ruelle (DLR) equations for the Riesz s,β process as was done for the Sine β process in [START_REF] Dereudre | DLR equations and rigidity for the sine-β process[END_REF]. We refer to [START_REF] Georgii | Gibbs Measures and Phase Transitions[END_REF] for a presentation of DLR equations in the context of lattice gases and to [START_REF] Dereudre | Introduction to the theory of gibbs point processes[END_REF] in the context of point processes. A question of interest is then to study the number-rigidity property within the family of long-range Riesz gases. Number-rigidity is a qualitative property, recently put forward in [START_REF] Ghosh | Rigidity and tolerance in point processes: Gaussian zeros and ginibre eigenvalues[END_REF] which says the following: a point process is number-rigid whenever given any compact domain of R d , the knowledge of the exterior determines in a deterministic fashion the number of points inside the domain. Number-rigidity is a quite surprising phenomenon, which has been proved to occur for the 1D log-gas independently in [START_REF] Chhaibi | Rigidity of the sine-beta process[END_REF] and in [START_REF] Dereudre | DLR equations and rigidity for the sine-β process[END_REF] using DLR equations. The recent work [START_REF] Dereudre | Number-rigidity and β-circular riesz gas[END_REF] also provides a strategy to rule out number-rigidity. Together with the local laws of Chapter 3, the result of [START_REF] Dereudre | Number-rigidity and β-circular riesz gas[END_REF] should say that the Riesz s,β process is not number-rigid for s P p0, 1q. This reflects a major difference between the log-gas which is purely long-range and the Riesz gas for which the effective energy is short-range.

Regularity of the free energy A natural question is to investigate the regularity with respect to β of the infinite volume process Riesz s,β . A way to address this problem is to study the regularity of the free energy of the infinite Riesz gas, which is defined by

f : β P p0, `8q Þ Ñ lim N Ñ8 ´1 N ´log Z N,β ´1 2 βN 2´s ij g s px ´yqdxdy ¯. (4.11)
The existence of such a limit was obtained in [START_REF] Leblé | Large deviation principle for empirical fields of log and riesz gases[END_REF] for Riesz gases in arbitrary dimension d ě 1 with maxp0, d ´2q ă s ă d. In dimension one, one expects that no phase transition occurs for the circular Riesz gas and that the free energy is smooth and even analytic. To prove that f is twice differentiable, a standard approach is to prove that the rescaled variance of the energy under (4.4) converges locally uniformly in β as N tends to infinity. This should be an easy consequence of Theorems 4.1.1 and 4.1.3.

Coulomb and Riesz gases in d ě 2 Because the Hamiltonian of the Riesz gas in dimension d ě 2 is not convex, it is not clear how one could obtain a result on the decay of correlations. In fact, even showing local laws in the long-range setting is still open, except in the Coulomb case s " d ´2 tackled into the series of papers [START_REF] Leblé | Large deviation principle for empirical fields of log and riesz gases[END_REF][START_REF] Leblé | Local microscopic behavior for 2d coulomb gases[END_REF] culminating into the optimal local law result of [START_REF] Armstrong | Local laws and rigidity for coulomb gases at any temperature[END_REF]. Nevertheless, a quantitative estimate on the translation invariance of the 2D Coulomb gas has been recently obtained in the work [START_REF] Leblé | The two-dimensional one-component plasma is hyperuniform[END_REF], building on a Mermin-Wagner's-type argument in the spirit of [START_REF] Georgii | Translation Invariance and Continuous Symmetries in Two-Dimensional Continuum Systems[END_REF], see also [START_REF] Thoma | Overcrowding and separation estimates for the coulomb gas[END_REF] for related considerations. Concerning other Riesz gases, the hypersingular Riesz gas [START_REF] Douglas | Large deviation principles for hypersingular riesz gases[END_REF] is seemingly a more tractable model to look at since it resembles, as s becomes large, the hard-core model, for which some results are known. For the latter, the translation invariance of the infinite volume Gibbs measures has been proved in [START_REF] Richthammer | Translation-invariance of two-dimensional gibbsian point processes[END_REF] by constructing approximate translations avoiding particles collapses.

Outline of the proofs

As mentioned, the heart of the paper is about the analysis of a partial differential equation related to the correlations, in the context of long-range Riesz gases. Given a reasonable Gibbs measure dµ " e ´HpX N q dX N on D N (or R N ), the well-known fluctuation-dissipation relation asserts that the covariance between any smooth functions F, G : D N Ñ R may be expressed as

Cov µ rF, Gs " E µ r∇ϕ ¨∇Gs, (4.12) 
where ∇ϕ solves " ´∆ϕ `∇H ¨∇ϕ " F ´Eµ rF s on

D N ∇ϕ ¨⃗ n " 0 on BD N , (4.13) 
One may recognize the operator L µ " ´∆ `∇H ¨∇ which is the infinitesimal generator of the Markov semigroup associated to the Langevin dynamics with energy H. The Helffer-Sjöstrand equation then corresponds to the equation obtained by differentiating (4.13), which reads

" A µ 1 ∇ϕ " ∇F on D N ∇ϕ ¨⃗ n " 0 on BD N . where A µ 1 :" ∇ 2 H `Lµ b I N . (4.14)
When the Hessian of the energy is uniformly positive-definite, then one can derive by integration by parts a weighted L 2 estimate on |∇ϕ|, which yields a Brascamp-Lieb inequality. Additionally a maximum principle argument can also give a uniform bound on |∇ϕ| as seen in [START_REF] Helffer | On the correlation for kac-like models in the convex case[END_REF].

The Hamiltonian we are interested in is rather a convex function of the gaps than of the points. Henceforth it is very convenient to rewrite Equation (4.14) in a new of system of coordinates. We define the change of variables

Gap N : X N P D N Þ Ñ pN |x 2 ´x1 |, . . . , N |x N ´x1 |q P R N
and work on the polyhedron M N :" tpy 1 , . . . , y N q P pR `˚q N : y 1 `. . . `yN " N u.

Assume that the measure of interest µ can be written dµ " e ´Hg ˝Gap N pX N q 1 D N pX N qdX N and that the test-functions in (4.12) are of the form F " ξ ˝Gap N and G " χ ˝Gap N . Set ν " Gap N #µ. Then letting

L ν " ∇H g ¨∇ ´∆ and A ν 1 " ∇ 2 H g `Lν b I N ,
one may check that the variance of F under µ can also be represented as

Cov µ rF, Gs " E ν r∇ψ ¨∇χs, (4.15) 
where ∇ψ solves $ & % A ν 1 ∇ψ " ∇ξ `λpe 1 `. . . `eN q on M N ∇ψ ¨pe 1 `. . . `eN q " 0 on M N ∇ψ ¨⃗ n " 0 on BM N .

(4.16)

Let us mention that the coefficient λ in (4.16) can be seen as a Lagrange multiplier associated to the linear constraint y 1 `. . . `yN " N . Our main problem is to understand how B j ψ decays when ∇ξ " e 1 . A first important insight comes from expanding the Hessian of the energy (4.3) in gap coordinates, that we denote H g N . Using some rigidity estimates obtained in Chapter 3, one can show that for all ε ą 0, there exists δ ą 0 such that

P N,β ´ˇˇB ij H g n ´1 1 `dpi, jq s ˇˇě 1 1 `dpi, jq 1`s 2
´ε ¯ď Ce ´dpi,jq δ , where d stands for the symmetric distance on t1, . . . , N u, i.e dpi, jq " minp|i ´j|, N ´|i ´j|q. In other words, the interaction matrix in the system (4.16) concentrates around a constant long-range matrix. This already gives a first heuristic to understand the decay of gap correlations stated in Theorem 4.1.1, which is consistent with the decay of h :" p´∆q 1´s 2 δ 0 . Due to the long-range nature of the interaction, the analysis of (4.16) is rather delicate. Let us present an idea of the proof in the short-range case s ą 1 as it will be a model for the long-range case also. To simplify assume that there exist s ą 1 and c ą 0 such that uniformly

∇ 2 H g N ě c ´1Id with |B ij H g N | ď C dpi, jq s for each 1 ď i, j ď N .
(4.17)

The matrix H g N then looks like a diagonally dominant matrix. The idea to obtain a decay estimate on the solution of (4.16) is to multiply B i ψ by dpi, 1q α for some well-chosen α ą 0. Let L α " diagpp1 `dpj, 1q α q j q P M N pRq be the distortion matrix and ψ dis :" L α ∇ψ which solves βp∇ 2 H g N `δLα qψ dis `Lν ψ dis " e 1 `λL α pe 1 `. . . `eN q, where δ Lα is the commutator

δ Lα :" L α ∇ 2 H g N L ´1 α ´∇2 H g N . ( 4 

.18)

A first key is that the more ∇ 2 H g N is diagonal, the more it will commute with diagonal matrices. In fact one can check that for α ă s ´1 2 , the commutator (4.18) is small compared to the identity, in the sense of quadratic forms. By integration by parts and using the convexity of H g N , this entails an L 2 estimate on ψ dis and therefore a hint on the global decay of ∇ψ. This idea of studying a distorted vector-field is well known in statistical physics, see for instance [START_REF] Helffer | Remarks on decay of correlations and witten laplacians brascamp-lieb inequalities and semiclassical limit[END_REF][START_REF] Combes | Asymptotic behaviour of eigenfunctions for multiparticle schrödinger operators[END_REF]. By projecting (4.16) in a smaller window we can then improve through a bootstrap argument this first decay estimate.

In the long-range regime s P p0, 1q, the above argument no longer works. A natural way of proceeding is to factorize Equation (4.16) around the ground state by multiplying the system by a matrix A close to the inverse of the Riesz matrix H s :" p 1 i‰j dpi,jq s q 1ďi,jďN . A simple construction can ensure that A∇ 2 H g n remains uniformly positive-definite but the drawback of the operation is that the differential term Dψ can no longer be controlled. The main novelty of the paper is a method based on the comparison of the two distorted norms

E ν " n ÿ i"1 dpi, 1q 2α pB i ψq 2 ı and E ν " n ÿ i"1 dpi, 1q 2γ |∇pB i ψq| 2 ı , (4.19) 
for well-chosen constants α ą 0 and γ ą 0. The first step is to derive an elliptic regularity estimate on the solution of (4.16). We prove that the solution has a discrete fractional primitive of order ∇ψ| (up to a residual term that we do not comment here). The proof uses the distortion argument presented in the short-range case, the elliptic regularity estimate and a discrete Gagliardo-Nirenberg inequality. In a third step we control |L α ∇ψ| by |L α´1 ´s 2 ∇ 2 ψ| by implementing the factorization trick aforementioned. Combining these two inequalities we deduce that for α " 3 2 ´s and γ " 1 ´s 2 , each of the terms in (4.19) are small. This gives the optimal global decay on the solution of (4.16), which we then seek to localize.

The proof of localization, which allows one to go from (4.19) to an estimate on a single B i ψ, is also quite delicate. Fix an index j P t1, . . . , N u and let J "

! i P t1, . . . , N u : dpi, jq ď 1 2 dpj, 1q
) .

Projecting Equation (4.16) on the window J makes an exterior field appear, which takes the form

V l :" ´β ÿ iPJ c B il H g N B i ψ, l P J. (4.20)
We then break V into the sum of an almost constant field V p1q (looking like V j ř lPJ e l q and a smaller field V p2q . A key is that the equation (4.49) associated to a vector-field proportional to pe 1 `. . . `eN q is much easier to analyze. It indeed admits a mean-field approximation, quite similar to the mean-field approximation of (4.14) when F is a linear statistics, see Chapter 3. We then bootstrap the decay of solutions of (4.16). Applying the induction hypothesis to bound (4.20) and to bound the decay of (4.16) in the window J, one finally obtains after a finite number of iterations, the optimal result of Theorem 4.1.1.

The uniqueness of the limiting point process stated in Theorem 4.1.3 is then a routine application of our result on decay of correlations (in fact stated for slightly more general systems than (4.16)). Because the existence of an accumulation point of (4.9) in the local topology is standard, the problem can be rephrased into a uniqueness question. We will prove that the sequence (4.9) defines, in some informal sense, a Cauchy sequence. We let I " t1, . . . , nu be the active window and draw the exterior configurations under P N,β and P N 1 ,β for distinct values of N and N 1 which satisfy n ! N, N 1 . We then let µ n and ν n the conditioned measures in gap coordinates, which we try to compare. To allow such a comparison, the strategy is to define a continuous path νptq from µ n to ν n by linear interpolation of the exterior energies. Given a test-function F : R n Ñ R depending on a finite number of coordinates, we can then write E µn rF s ´Eνn rF s "

ż 1 0 Cov νptq r∇F, ∇Eptqsdt, (4.21) 
where Eptq corresponds to the exterior energy term. By applying our result on the decay of correlations to the measure νptq, we find that (4.21) is small, which easily concludes the proof of Theorem 4.1.3.

Organization of the paper

• Section 4.2 records various preliminary results, such as rigidity estimates on circular Riesz gases and controls on the discrete fractional Laplacian.

• Section 4.3 focuses on the well-posedness of the Helffer-Sjöstrand equation and states some of its basic properties.

• In Section 4.4 we introduce our distortion techniques to prove the decay of correlations in the long-range case.

• Section 4.5 is the heart of the paper. It develops a more involved method to be able to treat the decay of correlations for the long-range Riesz gas.

• Section 4.6 concludes the proof of uniqueness of the limiting measure of Theorem 4.1.3.

Notation

We let d be a distance on t1, . . . , N u defined for each i, j P t1, . . . , N u by dpi, jq " minp|j ´i|, N ´|j ´i|q.

For x P R n , we let |x| be the Euclidian norm of x and for M P M n pRq, }M } be the Hilbert-Schmidt norm of M , i.e }M } " sup

vPR n zt0u |M v| |v| .
We let pe 1 , . . . , e N q be the standard orthonormal basis of R N . We either use the notation ∇ 2 f for the Hessian of a real-valued function f : R n Ñ R.

For A, B ě 0, we write A ď CpβqB or A " O β pBq whenever there exists a constant C P R locally uniform in β (which might depend on s) such that A ď CB.

Preliminaries

We begin by recording some useful preliminary results that will be used throughout the paper.

Discrepancy estimates

One shall first state a control on the probability of having two particles very close to each other.

According to [START_REF] Boursier | Optimal local laws and CLT for the long-range circular Riesz gas[END_REF]Lem. 4.5], the following holds:

Lemma 4.2.1. Let s P p0, 1q and α P p0, s 2 q. There exist constants Cpβq ą 0 and cpβq ą 0 locally uniform in β such that for each i P t1, . . . , N u and ε ą 0, P N,β pN px i`1 ´xi q ď εq ď Cpβqe ´cpβqε ´α .

In addition, in view of [START_REF] Boursier | Optimal local laws and CLT for the long-range circular Riesz gas[END_REF]Th. 1], the fluctuations of large gaps satisfy the following estimate: Theorem 4.2.2 (Near-optimal rigidity). Let s P p0, 1q. There exists a constant Cpβq locally uniform in β such that for all ε ą 0, setting δ " ε 4ps`2q , for each i P t1, . . . , N u and 1 ď k ď N 2 , we have

P N,β p|N px i`k ´xi q ´k| ě k s 2 `εq ď Cpβqe ´cpβqk δ .
Let us highlight that the variance of N px i`k ´xi q can in fact be shown to be of order k s , together with a central limit theorem, see [START_REF] Boursier | Optimal local laws and CLT for the long-range circular Riesz gas[END_REF]Cor. 1.1].

Fractional Laplacian on the circle

In this subsection we justify the expression of the fundamental solution of the fractional Laplace equation on the circle (4.2). Recall the Hurwitz zeta function [START_REF] Apostol | Modular Functions and Dirichlet Series in Number Theory[END_REF].

Lemma 4.2.3 (Fundamental solution). Let g s be the solution of (4.2). Let s P p0, 1q. For all x P T, we have

g s pxq " ζps, xq `ζps, 1 ´xq " lim nÑ8 ´n ÿ k"´n 1 |k `x| s ´2 1 ´s n 1´s ¯. (4.22)
Moreover for all p ě 1 and all x P T, we have g ppq s pxq " p´1q p s ¨¨¨ps `p ´1q

ÿ kPZ 1 |x `k| s`p .
Proof. We only sketch the main arguments and refer to [52, Sec. 2] for a more detailed proof. Using the Fourier characterization of the fractional Laplacian and applying the formula

λ ´1´s 2 " 1 Γp 1´s 2 q ż 8 0 e ´λt dt t 1´1 ´s 2
, valid for all λ ą 0, one can express g s as

g s pxq " c s Γp 1´s 2 q ż 8 0 pW t pxq ´1q dt t 1`s 2
, where W t is the heat kernel on T, namely

W t pxq " 1 2π
ÿ kPZ e ´t|k| 2 e ikx " 1 ? 4πt

ÿ kPZ e ´|x´k| 2 4t
.

The proof of (4.22) then follows from Fubini's theorem which allows one to invert the order of integration and summation.

The kernel g s can be identified with a periodic function on R and a crucial consequence of (4.22) is that the restriction of this function to p0, 1q is convex, thus allowing the use of various consequences of convexity, such as concentration and functional inequalities.

Discrete and semi-discrete Fourier transforms

In the sequel we will need to consider the discrete Fourier transform of functions defined on the discrete circle Z{N Z. The Fourier and inverse Fourier transforms on Z{N Z are defined by

F d pf qpθq " N ´1 ÿ n"0 f pnqe inθ , for f : t1, . . . , N u Ñ R, θ " 2πk N , k P t0, . . . , N ´1u, (4.23) F ´1 d pϕqpnq " 1 N N ´1 ÿ k"0 ϕ ´2πk N ¯e ´2iπk N dθ, for ϕ : t2kπ{N : 0 ď k ď N ´1u Ñ R, n P t1, . . . , N u.
(4.24) Recall that for all f defined on t1, . . . , N u, f " F ´1 d ˝Fd pf q.

Besides if f : Z Ñ R is in L 2 , then the semi-discrete Fourier of Z defined by

F Z pf qpθq " `8 ÿ
n"0 f pnqe inθ , θ P r0, 2πs, belongs to L 2 pr0, 2πsq and one can recover f by the Fourier inverse transform f " F ´1 Z pF Z pf qq, where

F ´1 Z pϕqpnq " 1 2π
ż 2π 0 ϕpθqe ´inθ dθ, for ϕ P L 2 pr0, 2πsq, n P Z.

Inversion of the Riesz matrix

We study the inverse of two discrete convolution equations on Z{N Z. Let us denote gs the Riesz kernel on R, i.e Let us observe that (4.27) is consistent with the decay of the fundamental solution of the fractional Laplacian. Indeed the coefficient pH s q ´1 i,1 is given by the i-th coordinate of the solution v of the convolution equation v ˚gs " δp1q on Z{N Z. The continuous counterpart of this equation is g s ˚ψ " δ 0 on the real line and it is well-known that the solution ψ decays in |x| ´p2´sq near the origin.

gs : x P R Þ Ñ 1 |x| s P R `8 Y t`

Proof.

Step 1: the aliasing formula We first consider the case M " H s . Let ψ : t1, . . . , N u Ñ R be the solution of the convolution equation g s ˚ψ " δp1q on t1, . . . , N u. One can express ψ as the solution of

F d pψqF d pg s q " 1,
where F d stands for the discrete Fourier transform on Z{N Z, as defined in (4.23). For shortcut, for all k P t0, . . . , N ´1u, we denote θ k " 2πk N . We claim that F d pg s q is non-vanishing, which we will prove afterwards. Let h P L 2 pr0, 2πsq such that for all θ P tθ 0 , . . . , θ N ´1u, 1 F d pg s q " h.

The function h shall be specified later. Let ϕ : Z Ñ R such that

F Z pϕq " h. (4.29)
The point is that one can recover ψ from ϕ: for each 1 ď n ď N , there holds ψpnq "

8 ÿ k"0 ϕpn `kN q. (4.30)
Indeed by computing the discrete Fourier transform of the right-hand side, we find that for all θ P tθ 0 , . . . , θ N ´1u,

N ´1 ÿ n"0 8 ÿ k"0 ϕpn `kN qe inθ " N ´1 ÿ n"0 8 ÿ k"0 ϕpn `kN qe ipn`kN qθ " 8 ÿ n"0 ϕpnqe inθ " hpθq " F d pψqpθq.
By Fourier inversion, this concludes the proof of the aliasing formula (4.30).

Step 2: discrete and semi-discrete Fourier transform of g s Let us now compute the discrete Fourier transform of g s on Z{N Z. First one can observe that for each 0 ď k ď N ´1,

F d pg s qpθ k q " `8 ÿ n"1 1 n s e inθ k ``8 ÿ n"1 1 n s e ´inθ k . (4.31) 
Let us emphasize that the above identity is only true for θ P tθ 0 , . . . , θ N ´1u. The above sum is related to a well-known function called periodic zeta function [START_REF] Apostol | Modular Functions and Dirichlet Series in Number Theory[END_REF], defined by

F px, sq " 8 ÿ n"1 e 2iπnx n s ,
where s P C and x P R satisfy Repsq ą 1 if x is an integer and Repsq ą 0 otherwise. One can express (4.31) as

F d pg s qpθ k q " F ´θk 2π , s ¯`F ´´θ k 2π , s ¯, for each 0 ď k ď N ´1.
Also, when Repsq ą 0 and 0 ă x ă 1, it is known, see [START_REF] Apostol | Modular Functions and Dirichlet Series in Number Theory[END_REF], that

F px, sq " Γp1 ´sq p2πq 1´s ´eiπ 1´s 2 Γp1 ´s, xq `e´iπ 1´s 2 Γp1 ´s, 1 ´xq ¯.
Consequently we have the identity F d pg s q " S on tθ 0 , . . . , θ N ´1u, where

Spθq " 2 s Γp1 ´sq π 1´s cos ´πp1 ´sq 2 ¯´Γp1 ´s, θ 2π q `Γp1 ´s, 1 ´θ 2π q ¯. (4.32)
One can observe that there exists a constant c ą 0 such that for all θ P r0, 2πs,

Spθq ě c |θ| 1´s .
(4.33)

Step 3: conclusion for M " H s We have shown that the discrete Fourier transform of g s on Z{N Z does not vanish, thus allowing to use (4.30). We now specify h " S. Let us define

ϕ : n P Z Þ Ñ ż 1 0 Spθqe ´inθ dθ.
One can check using (4.31) that |ϕpnq| ď C n 2´s . Since ϕ P L 2 , by Fourier inversion, one can observe that F d pϕq " S. Consequently, applying (4.30), we find that there exists a constant C ą 0 such that for each 1 ď n ď N ,

|ψpnq| ď C 8 ÿ k"0 1 |n `kN | 2´s ď C n 2´s ,
which proves (4.27) in the case M " H s .

Step 4: discrete Fourier transform of gs We wish to show that the discrete Fourier transform fo gs is non-vanishing. Let us define the function

S N : θ P r0, 2πs Þ Ñ N ´1 ÿ n"0 gs pnqe inθ . (4.34)
One can note that for each 1 ď k ď N , F d pg s qpθ k q " S N pθ k q. Moreover pS N q converges pointwise to the function defined in (4.32). In addition, using Abel's summation formula, we get that for all θ P r0, 2πs,

R N pθq :" S N pθq ´Spθq " O ´1 N s |θ| ¯. (4.35) 
Consequently there exists a constant c ą 0 such that for |θ| ą c N , S N pθq is non zero. Let us check that S N does not cancel on r0, c N s. The point is that for θ " α N with |α| ď c,

S N pθq " N 1´s 1 N N ´1 ÿ k"0 1 p k N q s e 2iπα k N " N 1´s pc α `oN p1qq
with c α ą 0. We thus deduce that S N has no zero on r0, 2πs and one may apply the aliasing formula (4.30). Let us define

ϕ : n P Z Þ Ñ ż S N pθqe inθ .
Step 5: bound on ϕ In view of (4.33) and (4.35), there exists

c 1 ą 0 such that for |θ| ą c 1 N , 0 ă R N pθq Spθq ă 1 2 and 1 S N pθq " 1 Spθq ´1 `8 ÿ k"1 p´1q k ´RN pθq Spθq ¯k¯.
For k " 1 using (4.35), we have

ż r´π,πszr´c 1 N , c 1 N s R N pθq Spθq 2 e ´inθ dθ " ´8 ÿ l"N `1´1 pl `1q s ´1 l s ¯żr´π,πszr´c 1 N , c 1 N s 1 Spθq 2 cosp pl`1qθ
2 q sinp lθ 2 q sinp θ 2 q e ´inθ dθ. (4.36)

Let l ě N `1. Let us define h, G n,l : r´π, πs Ñ R such that for all θ P r´π, πs hpθq "

1 Spθq 2 sinp θ 2 q , G 2 n,l pθq " cos ´pl `1qθ 2 ¯sin ´lθ 2 ¯e´inθ .
Noting

|hpθq| ď C|θ| 1´2s , |h 2 pθq| ď C |θ| 1`2s , |G n,l |pθq ď C l , | r G n,l |pθq ď C l 2
, one gets by integration by parts,

ż r´π,πszr´c 1 N , c 1 N s 1 Spθq 2 cosp pl`1qθ 2 q sinp lθ 2 q sinp θ 2 q e ´inθ dθ " ´ż π ´π h 1 pθqG 1 n,l pθqdθ `O´1 N 2´2s ¯.
Integrating by parts again gives

´ż π ´π h 1 l pθqG 1 n,l pθqdθ " ż πl ´πl h 2 pθqG n,l pθqdθ " 1 l ż π ´π h 2 pθ{lqG n,l pθ{lqdθ " O ´1 l 2p1´sq ¯.
Inserting this into (4.36) and summing this over l yields

ż r´π,πszr´c 1 N , c 1 N s R N pθq Spθq 2 e ´inθ dθ " O ´1 N 2´s ¯.
Let 2 ď k ď 2 s ´1. By performing iterative integration by parts as in the foregoing computations, we find that ˇˇż

r´π,πszr´c 1 N , c 1 N s R N pθq k Spθq k`1 e ´inθ dθ ˇˇ" O ´1 N 2´s ¯.
Finally if k ě 2 s , the integral at hand is convergent at infinity and by (4.33), (4.35) we have

ˇˇż r´π,πszr´c 1 N , c 1 N s R N pθq k Spθq k`1 e ´inθ dθ ˇˇď C N ks ż r´π,πszr´c 1 N , c 1 N s 1 |θ| spk`1q´1 `O´1 N 2´s ¯" O ´1 N 2´s ¯.
We conclude that ż

r´π,πszr´c 1 N , c 1 N s dθ S N pθq " ż r´π,πszr´c 1 N , c 1 N s dθ Spθq `O´1 N 2´s ¯. (4.37)
Furthermore one can easily check that We deduce that there exists a constant C ą 0 such that for each n P Z,

ż r´c 1 N , c 1 N s 1 S N pθq dθ ď CN s ż r´c 1 N , c 1 N s |θ|dθ " O ´1 N 2´s ¯and ż r´c 1 N c 1 N s 1 Spθq dθ " O ´1 N 2´s ¯. ( 4 
|ϕpnq| ď C n 2´s .
In particular, ϕ P L 2 and F d pϕq " 1 S N . Consequently using (4.30), one deduces that there exists a constant C ą 0 such that for each n P Z,

|ψpnq| ď C n 2´s .
The estimate (4.28) is straightforward.

Remark 14 (Discrete fractional primitive). In view of (4.32) the convolution of f : Z{N Z Ñ R with g s formally corresponds to a fractional primitive of f of order 1 ´s.

The Helffer-Sjöstrand equation

In this section we introduce some standard results on Helffer-Sjöstrand equations. We first recall basic properties valid for a certain class of convex Gibbs measures. We then study an important change of variables and rewrite the Helffer-Sjöstrand in gap coordinates. For the class of Gibbs measures we are interested in, the energy is a convex function of the gaps. This allows one to derive a maximum principle for solutions, which will be a central tool in the rest of the paper.

Well-posedness

We start by explaining the principle of Helffer-Sjöstrand representation and give some existence and uniqueness results. The subsection is similar to Chapter 3 and follows partly the presentation of [START_REF] Armstrong | C 2 regularity of the surface tension for the ∇ϕ interface model[END_REF]. Let µ be a probability measure on D N in the form

dµ " e ´HpX N q 1 D N pX N qdX N ,
where H : D N Ñ R is a smooth and convex function. Given a smooth test-function F : D N Ñ R, we wish to rewrite its variance in a convenient and effective way. Let us recall the integration by parts formula for µ. Let L µ be the operator acting on C 8 pD N , Rq given by

L µ " ∇H ¨∇ ´∆,
where ∇ and ∆ are the standard gradient and Laplace operators on T N . The operator L µ is the generator of the Langevin dynamics associated to the energy H of which µ is the unique invariant measure. By integration by parts under µ, for any functions ϕ, ψ P C 8 pD N , Rq such that ∇ϕ ¨⃗ n " 0 on BD N , we can write E µ rψL µ ϕs " E µ r∇ψ ¨∇ϕs. (4.40) This formula may be proved by integration by parts under the Lebesgue measure on D N . Assume that the Poisson equation

" L µ ϕ " F ´Eµ rF s on D N ∇ϕ ¨⃗ n " 0 on BD N (4.41)
admits a weak solution in a certain functional space. Then, by (4.40), the variance of F under µ can be expressed as Var µ rF s " E µ r∇F ¨∇ϕs.

The above identity is called the Helffer-Sjöstrand representation formula. Let us differentiate (4.41).

Formally, for all ϕ P C 8 pD N , Rq, we have

∇L µ ϕ " A 1 ∇ϕ,
where A µ 1 is the so-called Helffer-Sjöstrand operator given by A µ 1 " ∇ 2 H `Lµ b I N , with L µ bI N acting diagonally on L 2 pt1, . . . , N u, C 8 pD N , Rqq. Therefore the solution ∇ϕ of (4.41) formally satisfies

" A µ 1 ∇ϕ " ∇F on D N ∇ϕ ¨⃗ n " 0 on BD N . (4.42)
This partial differential equation is called the Helffer-Sjöstrand equation. Let us now introduce the appropriate functional spaces to make these derivations rigorous. Let us define the norm

}F } H 1 pµq " E µ rF 2 s 1 2 `Eµ r|∇F | 2 s 1 2 .
Let H 1 pµq be the completion of C 8 pD N q with respect to the norm } ¨}H 1 pµq . Let also define the norm }F } H ´1pµq " supt|E µ rF Gs| : G P H 1 pµq, }G} H 1 pµq ď 1u.

We denote H ´1pµq the dual of H 1 pµq, that is the completion of C 8 pD N q with respect to the norm } ¨}H ´1pµq . We wish to prove that under mild assumptions on F , Equation (4.42) is well-posed, in the sense of L 2 pt1, . . . , N u, H ´1pµqq. Let us now make the following assumptions on µ:

Assumptions 4.3.1. Assume that µ is a probability measure on D N written dµ " e ´HpX N q 1 D N pX N qdX N , with H : D N Ñ R in the form H : X N Þ Ñ ÿ i‰j χp|x i ´xj |q,
with χ : R `˚Ñ R satisfying χ P C 2 pR `˚, Rq and χ 2 ě c ą 0.

In our applications, χ is often given by g s or a variant of it and the density of the measure µ is not necessarily bounded from below with respect to the Lebesgue measure on D N . Additionally, the measure µ does not satisfies a uniform Poincaré inequality. Due to these limitations, to prove the well-posedness of (4.42), we further assume that F is a function of the gaps. We denote Π : X N P D N Þ Ñ px 2 ´x1 , . . . , x N ´x1 q P T N ´1.

(4.43)

We also let µ 1 be the push-forward of µ by the map Π:

µ 1 " µ ˝Π´1 .
We can now state the following well-posedness result:

Proposition 4.3.1 (Existence and representation). Let µ satisfying Assumptions 4.3.1. Let F P H 1 pµq. Assume that F is in the form F " G ˝Π, G P H 1 pµ 1 q or that µ ě c ą 0. Then there exists a unique ∇ϕ P L 2 pt1, . . . , N u, H 1 pµqq such that Remark 15 (On the boundary condition). The boundary condition ∇ϕ ¨⃗ n " 0 on BD N means that if x i " x j , then B i ϕpX N q " B j ϕpX N q.

" A µ 1 ∇ϕ " ∇F on D N ∇ϕ ¨⃗ n " 0 on BD N , ( 4 
Remark 16 (Link to the Monge-Ampère equation). We formally discuss the link between (4.44) and the Monge-Ampère equation. Let F : D N Ñ R be a smooth test-function. For all t ě 0, consider the measure dµ t " e tF Eµre tF s dµ. According to well-known optimal transportation results [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF], the measure µ t can be written µ t " µ ˝∇Φ ´1 t with Φ t : There exists a unique ψ P L 2 pt1, . . . , N u, H 1 pµqq such that

D N Ñ R
" A µ 1 ψ " v on D N ψ ¨⃗ n " 0 on BD N . (4.46) 
In addition if v " ∇F P L 2 pt1, . . . , N u, H ´1pµ 1 qq, then the solution of (4.46) is given by the solution of (4.44).

The proof of Proposition 4.3.2 is also given in the Appendix.

Change of coordinates

In the sequel we will study the decay of correlations in gap coordinates. Define the map

Gap N : X N P D N Þ Ñ pN px 2 ´x1 q, . . . , N px 1 ´xN qq P M N ,
where M N " Gap N pD N q " tY N P pR `˚q N : y 1 `. . . `yN u. 

H g : M N Ñ R be such that H " H g ˝Gap N .
Define the generator acting on C 8 pM N , Rq,

L ν " ∇H g ¨∇ ´∆,
with ∇ and ∆ the standard gradient and Laplace operator on M N . Also let A ν 1 be the Helffer-Sjöstrand operator acting on L 2 pt1, . . . , N u, C 8 pM N , Rqq:

A ν 1 " ∇ 2 H g `Lν b I N .
Let F : D N Ñ R in the form F " G˝Gap N with G : R N Ñ R smooth. Let us rewrite Equation (4.44) in gap coordinates. One can expect that the solution ∇ϕ of (4.44) can be factorized into ϕ " ψ ˝Gap N with ∇ψ P L 2 pt1, . . . , N u, H 1 pνqq. Let us derive some formal computation to conjecture the equation satisfied by ∇ψ. For all t ě 0, let dν t " e tG Eν re tG s dν. In view of Remark 16, we wish to find a map ∇ψ P L 1 pt1, . . . , N u, H 1 pνqq such that in a certain sense, ν ˝pId `t∇ψq " ν t `optq.

(4.48)

Since ν and ν t are both measures on M N , one can observe that ř N i"1 B i ψ " 0. It is standard the the Gibbs measure ν t is the minimizer of the functional

ν P PpM N q Þ Ñ E ν rH g `tGs `EntpP q,
where Ent stands for the entropy on M N . Equation (4.48) is compatible with the variational characterization if ∇ψ minimizes ∇ψ Þ Ñ E ν r∇ψ ¨∇2 H g ∇ψ `|∇ 2 ψ| 2 ´2∇G ¨∇ψs, over maps ∇ψ P L 2 pt1, . . . , N u, H 1 pνqq such that ř N i"1 B i ψ " 0 and ∇ψ ¨⃗ n " 0 on BM N . The Lagrange equation associated for the minimality of ∇ψ reads

A ν 1 ∇ψ " ∇G `λpe 1 `. . . `eN q,
where λ : M N Ñ R is a smooth function. We now state this result in the following proposition: with λ satisfying λ " 1 N pe 1 `. . . `eN q ¨p∇ 2 H g ∇ψ ´∇Gq.

(4.50)

The variance of F can be represented as

Var µ rF s " E ν r∇G ¨∇ψs.
Furthermore, ∇ψ is the unique minimizer of

∇ψ Þ Ñ E ν r∇ψ ¨∇2 H g ∇ψ `|∇ 2 ψ| 2 ´2∇G ¨∇ψs,
over maps ∇ψ P L 2 pt1, . . . , N u, H 1 pνqq such that ∇ψ ¨pe 1 `. . . `eN q " 0.

The proof of Proposition 4.3.3 is postponed to the Appendix, see Section 4.7.2.

Remark 17. There are several manners to factorize the energy (4.3) since we are working on the circle. We choose the more natural one and set

H g N : Y N P M N Þ Ñ N ´s N ÿ i"1 N {2 ÿ k"1
g s py i `. . . y i`k qp21 k‰N {2 `1k"N{2 q.

Maximum principle

In this subsection we derive a useful maximum principle, which allows one to bound the supremum of the L 2 norm of the solution in presence of a uniformly convex Hamiltonian. This maximum principle is fairly standard on R N , see for instance [START_REF] Helffer | On the correlation for kac-like models in the convex case[END_REF]Sec. 10]. We adapt the proof to make it work on D N and M N . A more subtle analysis could perhaps permit to treat general convex domains.

Proposition 4.3.6. Let µ satisfying Assumptions 4.3.1 and ν " Gap N #µ. Assume additionally that lim xÑ0 χ 1 pxq " ´8. Let M : M N Ñ S N pRq be a measurable map. Assume that there exists a constant c ą 0 such that for for all U N P R N ,

U N ¨MU N ě c|U N | 2 . (4.55)
Let v P L 2 pt1, . . . , N u, H 1 pνqq and ψ P L 2 pt1, . . . , N u, H 1 pνqq be the solution of

$ & % Mψ `pL ν b I N qψ " v `λpe 1 `. . . `eN q on M N ψ ¨pe 1 `. . . `eN q " 0 on M N ψ ¨⃗ n " 0 on BM N . (4.56)
Then ψ satisfies the following uniform estimate:

sup |ψ| ď c ´1 sup |v|. (4.57)
We give a proof of Proposition 4.3.6 via stochastic flow following the approach of [73, Th. 2.1].

Proof. We wish to give a Feynman-Kac representation for solutions of (4.56). Let

X x t " x ´ż t 0 ∇H g pX x s qds `?2dB t .
Note that since lim xÑ0 ξ 1 pxq " ´8, the dynamics is conservative: for all x P D N , the process X x t does not hit the boundary of M N a.s. Let A : L 2 pt1, . . . , N u, H 1 pνqq Þ Ñ L 2 pt1, . . . , N u, H ´1pνqq be the operator (4.56). Given a source vector-field v P L 2 pt1, . . . , N u, H 1 pνqq, one may represent the solution of (4.56) as

ψ " ż `8 0 e tA vdt.
This follows from the fact that A has a spectral gap in L 2 pt1, . . . , N u, H Integrating this with respect to t gives (4.57).

The proof of Proposition 4.3.6 is an adaptation in a more involved case of a known maximum principle for the Helffer-Sjöstrand equation, see for instance [START_REF] Helffer | On the correlation for kac-like models in the convex case[END_REF].

Let us emphasize that the above proof crucially relies on the fact that lim xÑ0 χ 1 pxq " ´8. We now give the standard Gaussian concentration lemma for uniformly log-concave measures on convex bodies.

Study of a commutator

Let us begin by introducing the distortion argument. Given s ą 1, let ν be the measure (4.4) in gap coordinates or a slight variant of it. We will be studying the equation

$ & % A ν
1 ∇ψ " e 1 `λpe 1 `. . . `eN q on M N ∇ψ ¨pe 1 `. . . `eN q " 0 on M N ∇ψ ¨⃗ n " 0 on BM N .

(4.60)

By Remark 17, if ν " P g N,β there exists an event of overwhelming probability on which the Hessian of the energy in gap coordinates decays in dpi, jq ´s away from the diagonal. The idea is to study the equation satisfied by L α ∇ψ, where L α stands for the following distortion matrix: L α " diagpγ 1 , . . . , γ N q, where γ i " 1 `dpi, i 0 q α for each 1 ď i ď N .

(4.61)

Let us denote ψ dis " L α ∇ψ P L 2 pt1, . . . , N u, H 1 pνqq.

One can check that ψ dis solves

A ν 1 ∇ψ `βδ Lα ∇ψ " e 1 `λL α pe 1 `. . . `eN q, where δ Lα :

" L α ∇ 2 H g N L ´1 α ´Hg N .
Note that when M P M N pRq is a matrix with off-diagonal entries decaying fast enough, then the commutator L α ML ´1 α ´M is in some sense small compared to the identity, as shown in the next lemma.

Lemma 4.4.1 (Commutation lemma). Let s ą 1 and M P M N pRq. Assume that there exists a constant ε ą 0 such that

|M i,j | ď N ε 1 `dpi, jq s , for each 1 ď i, j ď N . (4.62) 
Let α P p 1 2 , s ´1 2 q and L α be as in (4.61). There exist constants C ą 0 and c ą 0 such that for all ε 0 ą 0 small enough, letting ε 1 " ε`ε 0 minps´1,s´1 2´α q , we have that for all U N P R N ,

|U N ¨pL α ML ´1 α ´MqU N | ď 1 2 N ´ε0 |U N | 2 `CC κ N |U N | ´ÿ i:dpi,1qďcN ε 1 u 2 i ¯1 2 . (4.63) 
Proof. Let M P M N pRq satisfying (4.62), α ą 0, L α be as in (4.61) and U N P R N . We denote

δ Lα " L α ML ´1 α ´M P M N pRq.
For each

1 ď i ď N , one may split pδ Lα U N q i into pδ Lα U N q i " ÿ l:dpi,lqď 1 2 dpi,1q pδ Lα q i,l u l loooooooooooomoooooooooooon pIq i `ÿ l:dpi,lqą 1 2 dpi,1q pδ Lα q i,l u l loooooooooooomoooooooooooon pIIq i . (4.64) 
If dpi, lq ď 1 2 dpi, 1q, then

ˇˇγ i ´γl γ l ˇˇď C dpi, lq 1 `dpi, 1q
and it follows from Cauchy-Schwarz inequality that

|pIq i | ď Cn ε dpi, 1q s´1 2 |U N |. (4.65) 
Let us choose α P p 1 2 , s ´1 2 q. If dpi, lq ě 1 2 dpi, 1q, then

ˇˇγ i ´γl γ l ˇˇď C γ i γ l ,
which gives, since α ą 1 2 ,

|pIIq i | ď Cn ε dpi, 1q α´s ÿ l:dpi,lqą 1 2 dpi,1q 1 dpl, 1q α |u l | ď Cn ε dpi, 1q s´α |U N |. (4.66) 
Let K 0 ě 1. Combining (4.65) and (4.66) one obtains

|U N ¨δLα U N | ď CN ε |U N | 2 ´ÿ i:dpi,1qěK 0 1 dpi, 1q 2 minps´1 2 ,s´αq ¯1 2 `CN ε |U N | ´ÿ i:dpi,1qďK 0 u 2 i ¯1 2 ď CN ε |U N | 2 1 K minps´1,s´1 2 ´αq 0 `CN ε |U N | ´ÿ i:dpi,1qďK 0 u 2 i ¯1 2 .
Therefore by choosing K 0 " cN ε 1 with ε 1 " ε`ε 0 minps´1,s´1 2 ´αq , we find that

|U N ¨δLα U N | ď 1 2 N ´ε0 |U N | 2 `CN ε |U N | ´ÿ i:dpi,1qďK 0 u 2 i ¯1 2 . (4.67)

Localization in a smaller window

Due to the degeneracy of the interaction at infinity, the system lacks of uniform convexity and one shall sometimes restrict the system to a smaller window. Fix n to be the size of a subsystem, say n " N or n ď N {2. One may add some convexity within the window I :" t1, . . . , nu without changing much the measure. Denote π : M N Ñ πpM N q Ă R n the projection on the coordinates px i q iPI . For ε ą 0 and θ : r0, `8q Ñ p0, `8q smooth such that θ " 0 on p1, `8q, θ 2 ě 1 on r0, 1 2 q, θ 2 ě 0 on r0, `8s, let us define

F g : X n P R n Þ Ñ n ÿ i"1 θpn ´εx i q (4.68)
and the constrained measures

dQ g N,β 9e ´βF g ˝πdP g N,β . (4.69) 
Note that the forcing (4.68) is tuned so that the total variation distance between P N,β and Q N,β decays exponentially in n using the Log-Sobolev inequality. We now define

ν :" Q g N,β ˝π´1 . (4.70) Define r E n,N : x P πpM N q Þ Ñ ´1 β log ż e ´βpH g N ´npyq`H g n,N px,yqq dy, (4.71) 
where

H g n,N : px, yq P pR n ˆRN´n q X M N Þ Ñ H g N px, yq ´Hg n pxq ´Hg N ´npyq. (4.72) 
By Lemma 4.3.5, ν may be written in the form

dνpxq9e ´β r H g n pxq 1 πpM N q pxqdx (4.73)
where

r H g n :" H g n `Fg `r E n,N . (4.74) 
In the sequel one will be studying the decay of the covariance between x i and x j under ν through the analysis of the associated Helffer-Sjöstrand equation. Define the good event

A " ␣ X n P πpM N q : @i P t1, . . . , nu, n ´ε ď x i ď n ε ( X ! @i P t1, . . . , nu, k P t1, . . . , n ´iu, |x i `. . . `xi`k´1 ´k| ď n ε k 1 2 
) . (4.75)

Let A " ∇ 2 F pU n q P M n pRq for some U n P R n where F is the quadratic form

F : X n P R n Þ Ñ ÿ i,jPI g 2 s p|j ´i|qpx i `. . . `xj q 2 . Let us decompose ∇ 2 r H g n into ∇ 2 r H g n " M `M with M " ∇ 2 F g `∇2 H g n 1 A `A1 A c and M " ∇ 2 H g n 1 A c ´A1 A c `∇2 r E n,N . (4.76) 
In the case n ď N {2, we will replace ∇ 2 r H g n in (4.60) by M and derive some decay estimates on the solution, which will be transferred to the solution of (4.60) using a convexity argument. One can check that uniformly on the event (4.75) and for each 1 ď i, j ď n, we have

|M i,j | ď Cn κε 1 `dpi, BIq s´1{2 dpj, BIq s´1{2 . (4.77) 
For the purpose of Section 4.6 it is convenient to work with a general measure ν on πpM N q satisfying the following: Assumptions 4.4.1. Let ν be a probability measure on πpM N q in the form dν " e ´βH g pxq dx with H g : πpM N q Ñ R in C 2 and such that lim dpx,πpM N qqÑ0 ∇H g pxq ¨⃗ n " ´8.

Let A be the good event (4.75). Assume that there exist C ą 0, δ ą 0 (depending on ε) such that νpA c q ď e ´nδ .

Note that the above condition ensures first that no boundary term appears in the computations and second that the Langevin dynamics is conservative, implying that the maximum principle of Proposition 4.3.6 holds true.

Instead of the specific interaction matrix defined in (4.76) we will be working with a more general measurable function M from πpM N q to S n 0 pRq with n 0 ď n satisfying the following: Assumptions 4.4.2. Let n 0 ď n. Let M be a measurable map from πpM N q to S n 0 pRq.

1. There exists κ ą 0 such that uniformly on πpM N q, M ě n ´κε I n 0 .

2. There exist κ ą 0 and C ą 0 such that uniformly on πpM N q and for each 1 ď i, j ď n 0 ,

|M i,j | ď
Cn κε 1 `|i ´j| s .

The initial decay estimate

In this subsection we introduce a simple perturbation argument, which gives a first estimate on the decay of correlations for the constrained hypersingular Riesz gas. The method can be applied to other convex models for which the Hessian of the energy satisfies some decay assumption. This technique follows from an adaptation of a rather classical argument in statistical physics [START_REF] Helffer | On the correlation for kac-like models in the convex case[END_REF][START_REF] Combes | Asymptotic behaviour of eigenfunctions for multiparticle schrödinger operators[END_REF]. Lemma 4.4.2. Let s P p1, `8q. Let ν and M satisfying Assumptions 4.4.1 and 4.4.2. Let χ n P H 1 pνq, i 0 P t1, . . . , nu and ψ P L 2 pI, H 1 pνqq be the solution of

" βMψ `Lν ψ " χ n e i 0 on πpM N q ψ ¨⃗ n " 0 on BπpM N q. (4.78) 
Then, for all α P p 1 2 , s ´1 2 q, there exist a constant Cpβq locally uniform in β and κ ą 0 such that

E ν " n ÿ i"1 dpi, i 0 q 2α ψ 2 i ı 1 2 ď Cpβqn κε E ν rχ 2 n s 1 2 . ( 4.79) 
Proof. Let ψ P L 2 pI, H 1 pνqq be in the solution of (4.78). Taking the scalar product of (4.78) with ψ and integrating by parts, one may show that there exist constants κ ą 0 and C ą 0 such that

E ν r|∇ψ| 2 s `βE ν r|ψ| 2 s ď Cβ ´1n κε E ν rχ 2 n s. (4.80) 
Fix α P p 1 2 , s ´1 2 q and consider as in (4.61) the distortion matrix L α " diagpγ 1 , . . . , γ n q, where γ i " 1 `dpi, i 0 q α for each 1 ď i ď n.

Let us define u dis the distorted vector-field

u dis :" L α u P L 2 pI, H 1 pνqq. (4.81) 
Observing that L α e i 0 " e i 0 , we can check that u dis solves

A ν 1 u dis `βδ Lα u dis " χ n e i 0 , (4.82) 
where δ Lα :" L α ML ´1 α ´M.

Taking the scalar product of (4.82) with u dis and integrating by parts under ν gives

E ν rβu dis ¨pM `δLα qu dis s `Eν r|∇u dis | 2 s " E ν ru i 0 χ n s, (4.83) 
where we have used the fact that u dis i 0 " u i 0 . This gives

E ν rβu dis ¨pM `δLα qu dis s `Eν r|∇u dis | 2 s ď Cpβqn κ 0 ε E ν rχ 2 n s.
By assumption, there exist constants C ą 0, κ ą 0 such that uniformly on D N and for each i ‰ j,

|M i,j | ď Cn κε 1 `dpi, jq s .
One may therefore apply Lemma 4.4.1 to the matrix M " ∇ 2 H g n pX n q, which gives the existence of κ ą 0 and κ 1 ą 0 independent of X n such that, letting K 0 " tn κε u, there holds

|E ν ru dis ¨δLα u dis s| ď n ´εps`2q 2 E ν r|u dis | 2 s ´Cpβqn κ 1 ε E ν r|u dis | 2 s 1 2 E ν " ÿ i:dpi,1qďK 0 pu dis i q 2 ı 1 2 . (4.84)
Furthermore, using the definition of u dis (4.81) and the a priori bound (4.80), we find that

E ν " ÿ i:dpi,1qďK 0 pu dis i q 2 ı 1 2 ď K α 0 E ν r|u| 2 s 1 2 ď Cpβqn κ 2 ε E ν rχ 2 n s 1 2 
.

Combining these we deduce that there exists κ ą 0 such that

β 2 n ´εps`2q E ν " n ÿ i"1 dpi, i 0 q 2α pψ p1q i q 2 ı 1 2 `Eν " n ÿ i"1 dpi, i 0 q 2α |∇ψ plq i | 2 ı 1 2 ď Cpβqn κε E ν rχ 2 n s 1 2 . (4.85)

Bootstrap on the decay exponent

This subsection introduce a an iterative argument to improve the decay estimate of Lemma 4.4.2. The method consists in studying the projection of Equation (4.78) in a small window. By controlling the field outside the window with the a priori decay estimate, one obtains through the distortion argument of Lemma 4.4.2 a better decay estimate on the solution. After a finite number of iterations one gets the following result:

Proposition 4.4.3. Let s P p1, `8q. Let ν and M satisfying Assumptions 4.4.1 and 4.4.2. Let χ n P H 1 pνq, i 0 P t1, . . . , nu and ψ P L 2 pI, H 1 pνqq be the solution of

" βMψ `Lν ψ " χ n e i 0 on πpM N q ψ ¨⃗ n " 0 on BπpM N q. (4.86)
There exist κ ą 0 and Cpβq ą 0 locally uniform in β such that for each 1 ď j ď n,

E ν rψ 2 j s 1 2 ď Cpβqn κε 1 1 `dpj, i 0 q s E ν rχ 2 n s 1 2 . (4.87) 
Proof.

Step 1: setting the bootstrap Assume that for any n 0 ď n and all M taking values and in S n 0 pRq satisfying Assumptions 4.4.2, each i 0 P t1, . . . , nu and χ n P H 1 pνq, the solution ψ P L 2 pI,

H 1 pνqq of # Mψ `Lν ψ " χ n e i 0 on πpM N ) ψ ¨⃗ n " 0 on BπpM N q (4.88)
satisfies for some α ě s ´1 2 , κ ą 0 and δ ą 0 the estimate

E ν rψ 2 j s 1 2 ď Cpβqn κε ´1 1 `dpj, i 0 q α `1 n ¯Eν rχ 2 n s 1 2 . (4.89) 
We wish to prove that (4.89) holds for α " s. Without loss of generality one may assume that n " n 0 . Fix i 0 P t1, . . . , nu, χ n P H 1 pνq and ψ solution of (4.88).

Step 2: localization Fix an index j P t1, . . . , nu and define the window J " ti P t1, . . . , nu : dpj, iq ď dpj, i 0 q{2u.

Our aim is to study the equation satisfied by ψ J :" pψ j q jPJ P L 2 pJ, H 1 pνqq. Projecting Equation (4.116) on the l-th coordinate for l P J reads

β ÿ iPJ M i,l ψ i `Lν ψ l " ´β ÿ iPJ c M i,l ψ i .
Let us denote M J " pM i,j q i,jPJ and V P L 2 pJ, H 1 pνqq given for each l P J by

V l " ´β ÿ iPJ c M i,l ψ i , (4.91) 
so that ψ J solves # βM J ψ J `Lν ψ J " V on πpM N ) ψ J ¨⃗ n " 0 on BπpM N q. (4.92) 
Step 3: bound on the exterior field Fix l P J and split V l into

V l " ÿ iPJ c ,dpi,i 0 qď 1 2 dpj,i 0 q M i,l ψ i loooooooooooooomoooooooooooooon pIq l `ÿ iPJ c ,dpi,i 0 qą 1 2 dpj,i 0 q M i,l ψ i loooooooooooooomoooooooooooooon pIIq l . (4.93) 
Using Cauchy-Schwarz inequality and Lemma 4.4.2, we find

E ν rpIq 2 l s 1 2 ď Cpβqn κε 1 dpj, i 0 q s´1 2 1 dpl, BJq s´1 2 E ν rχ 2 n s 1 2 .
On the other hand using Cauchy-Schwarz inequality and Lemma 4.4.2 again, one gets

E ν rpIIq 2 l s 1 2 ď Cpβqn κε dpj, i 0 q s E ν rχ 2 n s 1 2 .
Step 4: optimal decay for the auxiliary system Let us split ψ " ř lPJ ψ plq , where for each l P J ψ plq P L 2 pJ, H 1 pνqq solves # βM J ψ plq `Lν ψ plq " V l e l on πpM N ) ψ plq ¨⃗ n " 0 on BπpM N q

One may apply the bootstrap assumption (4.89) to M J and ψ plq , which gives the bound

E ν rpψ plq j q 2 s 1 2 ď Cpβqn κε 1 dpj, lq α ´1 dpj, i 0 q s´1 2 1 dpl, BJq s´1 2 `1 dpj, i 0 q s ¯Eν rχ 2 n s 1 2 .
Summing this over l P J yields

E ν rψ 2 j s 1 2 ď Cpβqn κε dpj, i 0 q α 1 E ν rχ 2 n s 1 2 ,
where α 1 " minps, s `α ´1, 3s ´αq.

Since α ě s ´1 2 and s ą 1, α 1 ą α. After a finite number of iterations, we find that (4.89) holds for α " s.

Conclusion in the case n " N

In view of Proposition 4.3.3, the H.-S. equation contains when n " N a Lagrange multiplier associated to the linear constraints that y 1 `. . . `yN " N on M N . By controlling this multiplier one obtains the following result: Lemma 4.4.4. Let χ n P H 1 pνq, i 0 P t1, . . . , nu. Let ψ P L 2 pI, H 1 pνqq solution of $ & % βMψ `Lν ψ " χ n e i 0 `λpe 1 `. . . `en q on πpM N q ψ ¨pe 1 `. . . `en q " 0 on πpM N q ψ ¨⃗ n " 0 on BπpM N q.

(4.94)

There exists constants Cpβq ą 0, δ ą 0 such that for each 1 ď j ď n,

E ν rψ 2 j s 1 2 ď Cpβqn κε ´1 1 `dpj, i 0 q s `1 n ¯Eν rχ 2 n s 1 2 . (4.95) 
Proof. Let us first prove that the Lagrange multiplier λ in (4.94) satisfies

E ν rλ 2 s 1 2 ď Cpβq n 1´κε E ν rχ 2 n s 1 2 , (4.96) 
for some constants Cpβq ą 0, κ ą 0. By linearity one can split ψ into ψ " ψ p1q `ψp2q where ψ p1q P L 2 pI, H 1 pνqq solves " βMψ p1q `Lν ψ p1q " χ n e i 0 on πpM N q ψ p1q ¨⃗ n " 0 on BπpM N q.

In view of Proposition 4.4.3, we have uniformly in j P I,

E ν rpψ p1q j q 2 s 1 2 ď Cpβqn κε 1 1 `dpj, i 0 q s E ν rχ 2 n s 1 2 , (4.97) 
E ν rpψ p2q j q 2 s 1 2 ď Cpβqn κε E ν rλ 2 s 1 2 . ( 4.98) 
Let K 0 ě 1. Split M into M p1q `Mp2q with M p1q given for each i, j P I by M p1q i,j " M i,j 1 dpi,jqďK 0 .

Let u " ř jPI e j . Recall from (4.50) that nλ " βu ¨Mψ ´χn " βu ¨Mp1q ψ `βu ¨Mp2q ψ ´χn .

First note that there exists Cpβq ą 0, κ ą 0 such that

E ν rpu ¨Mp1q ψq 2 s 1 2 ď Cpβqn κε K κ 0 E ν r|ψ| 2 s 1 2 .
Moreover taking the scalar product of (4.94) with ψ and integrating by parts under ν yields the energetic estimate

E ν r|ψ| 2 s 1 2 ď Cpβqn κε E ν rχ 2 n s 1 2 .
Consequently there exists constants Cpβq ą 0, κ ą 0 such that

E ν rpu ¨Mp1q ψq 2 s 1 2 ď Cpβqn κε K κ 0 E ν rχ 2 n s 1 2 . ( 4.99) 
Besides, employing (4.97), we find

E ν rpu ¨Mp2q ψ p1q q 2 s 1 2 ď Cpβqn κε E ν rχ 2 n s 1 2 . (4.100) 
Finally, note

|u ¨Mp2q ψ p2q | ď ÿ i,k:dpi,kqěK 0 |M i,k ||ψ p2q k | ď n κε K ´s 0 ÿ k |ψ p2q k |.
Using the bound (4.98) one can see that

E ν rpu ¨Mp2q ψ p2q q 2 s 1 2 ď Cpβqn κε K ´s 0 nE ν rλ 2 s 1 2 . (4.101) 
Taking K 0 large with enough with respect to n ε , one can make the left-hand side of (4.101) smaller than n 2 E ν rλ 2 s 1 2 . Combining this with (4.99) and (4.100) one obtains

nE ν rλ 2 s 1 2 ď n 2 E ν rλ 2 s 1 2 `Cpβqn κε E ν rχ 2 n s 1 2 ,
which proves (4.96). Combined with (4.97) and (4.98) this concludes the proof of (4.95).

Estimate on the main equation

There remains to compare the solution of (4.60) to the solution ψ p1q of the simplified equation (4.78). This supposes to estimate the quantity M ψ p1q where M is the perturbation in (4.76).

Proposition 4.4.5. Let s P p1, `8q. Let r H g n be as in (4.74). Let i 0 P t1, . . . , nu such that |i 0 ´n{2| ď n{4. Let χ n P H 1 pνq and ψ P L 2 pI, H 1 pνqq be the solution of

" β∇ 2 r H g n ψ `Lν ψ " χ n e i 0 on πpM N q ψ ¨⃗ n " 0 on BπpM N q. (4.102) 
Then, uniformly in 1 ď j ď n, we have

E ν rψ 2 j s 1 2 ď Cpβqn κε ´1 1 `dpi 0 , jq s `1 n minps´1{2,2s´2q ¯pE ν rχ 2 n s 1 2 `sup |χ n |e ´cpβqn δ q. (4.103)
Similarly let w P L 2 pt1, . . . , N u, H 1 pνqq be the solution of

$ & % β∇ 2 pH g N `Fg qw `Lν w " χ N e i 0 `λpe 1 `. . . `eN q on M N w ¨pe 1 `. . . `eN q " 0 on M N w ¨⃗ n " 0 on BM N (4.104) 
Then, uniformly in 1 ď j ď N , we have

E ν rw 2 j s 1 2 ď Cpβqn κε ´1 1 `dpi 0 , jq s `1 N ¯pE ν rχ 2 n s 1 2 `sup |χ n |e ´cpβqn δ q. (4.105) Proof. Let M p1q " ∇ 2 H g n 1 A c ´A1 A c and M p2q " ∇ 2 r E n,N .
Let ψ P L 2 pI, H 1 pνqq be the solution of (4.102), ψ p1q P L 2 pI, H 1 pνqq solving " βMψ p1q `Lν ψ p1q " χ n e i 0 on πpM N q ψ p1q ¨⃗ n " 0 on BπpM N q.

Define ψ p2q " ψ ´ψp1q . One can check that ψ p2q is solution of

" β∇ 2 r H g n ψ p2q `Lν ψ p2q " βM p1q ψ on πpM N q ψ p2q ¨⃗ n " 0 on BπpM N q.
Taking the scalar product of the above equation with ψ p2q and integrating by parts under ν we obtain, recalling the definition of the good event (4.75),

βE ν rψ p2q ¨Mψ p2q s ď Cpβqpsup |ψ p1q |E ν r|M p1q | 2 s 1 2 `Eν r|M p2q | 2 1 A c s 1 2
`Eν r1 A ψ p1q ¨M p2q ψ p1q sq (4.106) Applying the maximum principle of Proposition 4.3.6 we find that there exist Cpβq, κ ą 0 such that

sup |ψ p1q | ď Cpβqn κε sup |χ n |.
By Assumption 4.4.1 there exist constants Cpβq ą 0, cpβq ą 0, δ ą 0 such that

E ν r|M p1q | 2 s 1 2 ď Cpβqe ´cpβqn δ , E ν r1 A c |M p2q | 2 s 1 2 ď Cpβqe ´cpβqn δ .
Let us now estimate the vector-field M p2q ψ p1q . We claim that for uniformly in 1 ď j ď n,

E ν r1 A pM p2q ψ p1q q 2 j s 1 2 ď Cpβqn κε 1 `dpj, BIq s 2 1 n s´1{2 E ν rχ 2 n s 1 2 . ( 4.107) 
Fix 1 ď j ď n. Recall that for any x in the interior of A and for each

1 ď k, l ď n, M p2q k,l pxq " B kl r E n,N pxq " E Q g N,β p¨|xq rB kl H g n,N s ´Cov Q g N,β p¨|xq rB k H g n,N , B l H g n,N s.
In view of (4.77) we have that for each 1 ď k, l ď n,

E ν rpM p2q k,l q 2 s 1 2 ď Cpβqn κε 1 `dpk, BIq s´1{2 dpl, BIq s´1{2 . (4.108) 
One can then split the quantity pM p2q ψ p1q q j into pM p2q ψ p1q q j "

ÿ k:dpk,BIqďn{4 M p2q j,k ψ p1q k loooooooooooomoooooooooooon pIq j `ÿ k:dpk,BIqąn{4 M p2q j,k ψ p1q k loooooooooooomoooooooooooon pIIq j .
For the first quantity, using (4.108) and (4.87), we can write

E ν r1 A pIq 2 j s 1 2 ď Cpβqn κε 1 `dpj, BIq s´1{2 ÿ k:dpk,BIqďn{4 1 |k ´n 2 | s 1 1 `dpk, BIq s´1{2 E ν rχ 2 n s 1 2 ď Cpβqn κε 1 `dpj, BIq s´1{2 1 n minps,2s´3{2q E ν rχ 2 n s 1 2 . (4.109) 
For the second quantity using the bound on the increments of M given in (4.77), we find

E ν " 1 A ´ÿ k:dpk,BIqąn{4 M p2q j,k ψ p1q k ¯2ı 1 2 ď Cpβqn κε 1 `dpj, BIq s´1{2 ÿ k:dpk,BIqąn{4 1 |k ´n 2 | s 1 n s´1{2 E ν rχ 2 n s 1 2 ď Cpβqn κε 1 `dpj, BIq s´1{2 1 n s´1{2 E ν rχ 2 n s 1 2 . (4.110)
Putting (4.109) and (4.110) together we obtain (4.107). Summing this over j yields

E ν r|M p2q ψ p1q | 2 s 1{2 ď Cpβqn κε n minps´1{2,2s´2q E ν rχ 2 n s 1 2 . (4.111) 
Using the uniform convexity of r H g n , we then obtain from (4.106) the bound

E ν r|ψ p2q | 2 s 1{2 ď Cpβqn κε n minps´1{2,2s´2q pE ν rχ 2 n s 1 2 `sup |χ n |e ´cpβqn δ q.
In particular, together with (4.87), this yields (4.103). The proof of (4.105) follows from similar considerations by making use of Lemma 4.4.4.

Decay of gaps correlations

We are now ready to conclude the proof of the decay of correlations for the hypersingular Riesz gas. When x i and x j are at macroscopic or large mesosopic distance, one can take n " N and use the estimate of Proposition 4.4.3. Otherwise we choose n to be a power of |i ´j| and apply the estimate of Proposition 4.4.5 for such a number n. This will complete proof of Theorem 4.1.2.

Proof of of Theorem 4.1.2. Let ν be the constrained measure on t1, . . . , N u defined in (4.70) with n " N . Using the Pinsker inequality, the fact that ν satisfies a Log-Sobolev inequality (see Lemma 4.3.8) and the local law of Lemma 4.7.2, one can observe that

TVpP g N,β , νq ď p2EntpP g N,β | νqq 1 2 ď CpβqN κε E P g N,β r|∇F g | 2 s 1 2 ď Cpβqe ´cpβqN δ .
In particular, it follows that Cov P N,β rξpN px j`1 ´xj qq, χpN px i`1 ´xi qqs " Cov ν rξpx j q, χpx i qs `Oβ pe

´N δ sup |ξ| sup |χ|q. (4.112) 
Moreover, by Proposition 4.3.3, the covariance term in the last display may be expressed as Cov ν rξpx j q, χpx i qs " E ν rξ 1 px j qB j ϕs,

with ∇ϕ P L 2 pt1, . . . , N u, H 1 pνqq solution of $ & % A ν 1 ∇ϕ " χ 1 px i qe i `λpe 1 `.
. . `eN q on πpM N q ∇ϕ ¨pe 1 `. . . `eN q " 0 on πpM N q ∇ϕ ¨⃗ n " 0 on BπpM N q.

Using the estimate of Proposition 4.4.5, Hölder's inequality and (4.112), one obtains (4.5) in the case where dpj, iq ě N ε 0 . We now consider the case where dpi, jq is much smaller than a power of N . Let n P t1, . . . , N u be the smallest number such that

1 n minps´1{2,2s´2q ď 1 dpi, jq 1`s .
Without loss of generality, one can assume that 1 ď n 3 ď i, j ď 2n 3 . Since N px i`1 ´xi q and N px j`1 ´x1 q are functions of x 1 , . . . , x n and since A has overwhelming probability, one may write Cov P N,β rξpN px j`1 ´xj qq, χpN px i`1 ´xi qqs " Cov ν rξpx j q, χpx i qs `Oβ pe ´cpβqn δ sup |ξ| sup |χ|q.

(4.113) By Proposition 4.3.3 again one can express this covariance term as

Cov ν rx j , x i s " E ν rξ 1 px j qB j ϕs, (4.114) 
where ∇ϕ P L 2 pI, H 1 pνqq is solution of

" A ν 1 ∇ϕ " χ 1 px i qe i on πpM N q ∇ϕ ¨⃗ n " 0 on BπpM N q. (4.115)
Inserting the result of Proposition 4.4.5 we find that

E ν rpB j ϕq 2 s 1 2 ď Cpβqn κε ´1 dpj, iq s `1 n minps´1{2,2s´2q ¯pE ν rχ 1 px i q 2 s 1 2 `sup |χ 1 |e ´cpβqn δ q.
Inserting this into (4.114) and using (4.113) completes the proof of (4.5) by choosing n large enough.

Decay of correlations for the long-range Riesz gas

This section is the core of the paper and aims to develop a method to study the decay of correlations in the long-range case s P p0, 1q. Because the Hessian of the energy in gap coordinates concentrates around the Riesz matrix (4.25) which has slowly decaying entries, it is not clear how the strategy of Section 4.4 can be adapted. Indeed the commutation result of Lemma 4.4.1 cannot be applied to (4.25). The trick is to exploit the fact that the Hessian is not only positive-definite but actually controls a fractional primitive of the solution. This should be compared with the method of [52, Sec. 4] adapted from [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF] which exploits the long-range nature of the interaction to have sharp concentration estimates.

Periodization

We begin by performing the following series of reductions, which will lead to the study of a simplified equation:

1. Convexification and reduction to px 1 , . . . , x n q, 2. Adding of a Schur complement to the energy of the n points and splitting of the H.-S. operator, 3. Embedding the system into a periodic system of 2n points, 4. Control on the perturbation operator.

As pointed out in Section 4.4, due to the lack of uniform convexity, the study of the correlations at microscopic distance requires to localize the system at a smaller scale. Let n P t1, . . . , N u be the active scale, I the window I " t1, . . . , nu and π : M N Ñ πpM N q Ă R n be the projection on the coordinates px i q iPI . Let θ : R `Ñ R `smooth such that θ " 0 on p1, `8q, θ 2 ě 1 on r0, 1 2 q and θ 2 ě 0 on r0, `8s. Let ε ą 0 and F g be the forcing

F g : X n P R n Þ Ñ n ÿ i"1
θpn ´εx i q and the constrained measure

dQ g N,β 9e ´βF g ˝πdP g N,β . Let ν " P g N,β
˝π´1 . We will be studying the solution ψ P L 2 pI, H 1 pνqq of

" A ν 1 ψ " χ n e i 0 on πpM N q ψ ¨⃗ n " 0 on BπpM N q, (4.116) 
One would like to work with a periodic system of size n ě 2n instead of (4.116). The idea is to subtract from A ν 1 the appropriate quantity to identify the equation with the projection on the coordinates px i q iPI of a larger system of size n. Let n ě 2n and Ī " t1, . . . , 2nu. Let K 0 be a large power of tn ε u. Consider M P M npRq the truncated Riesz matrix at distance K 0 , i.e M " ∇ 2 F pxq for some x P R n where

F : X n P R n Þ Ñ ÿ i,jP Ī:dpi,jqěK 0 g 2 s pdpi, jqqpx i `. . . `xj q 2 .
Consider the block decomposition of M on R n ˆRn´n ,

M " ˆA B C D ˙, A P M n pRq. (4.117) 
Also let G :

X n P R n Þ Ñ ÿ iPI,jPI c :dpi,jqěK 0 g 2 s pdpi, jqqpx i `. . . `xj q 2 .
Let A p2q " pB ij Gq i,jPI and A p1q " A ´Ap2q . Let

M p1q " ˆAp1q 0 0 0 ˙and M p2q " ˆAp2q B C D ˙. (4.118) 
Since ∇ 2 F ě 0, M p2q ě 0 and therefore A p1q ´BD ´1C ě 0. Furthermore we also have A p1q ě 0.

Noting that D is positive-definite, we will subtract from A ν 1 the operator

BpD `β´1 L ν b I n´n q ´1C.
The measure ν can be written

dνpxq " expp´β r H g n pxqq1 πpM N q pxqdx,
where for any x P πpM N q and 1 ď i, j ď n,

B ij r H g n pxq " B ij F g pxq`B ij H g n pxq`E Q g N,β p¨|xq rB ij H g n,N px, ¨qs´Cov Q g N,β p¨|xq rB i H g n,N px, ¨q, B j H g n,N px, ¨qs, (4.119) 
with

H g n,N : px, yq P pR n ˆRN´n q X M N Þ Ñ H g N px, yq ´Hg n pxq ´Hg N ´npyq.
For ε ą 0, define the good event

A " tX n P πpM N q : @i, i `k P t1, . . . , nu, n ´ε ď

x i ď n ε , |x i `. . . `xi`k ´k| ď n ε k s 2 u. (4.120) Let us split A ν 1 into A ν 1 " Āν 1 `M, (4.121) 
where Āν 1 , M : L 2 pI, H 1 pνqq Ñ L 2 pI, H ´1pνqq are given by

Āν 1 :" β∇ 2 F g `βp∇ 2 H g n `EQ g N,β p¨|xq r∇ 2 H g n,N px, ¨qsq1 A `βA1 A c ´βBpD`β ´1L ν bI n´n q ´1C`L ν bI n , (4.122) 
M :" βp∇ 2 H g n `EQ g N,β p¨|xq r∇ 2 H g n,N px, ¨qsq1 A c ´βA1 A c ´β Cov Q g N,β p¨|xq r∇H g n,N px, ¨q, ∇H g n,N px, ¨qs `βBpD `β´1 L ν b I n´n q ´1C. (4.123)
One can prove that the operator Āν 1 has a spectral gap, resulting in the uniqueness of the solution

ψ P L 2 pI, H 1 pνqq of # Āν 1 ψ " v on πpM N q ψ ¨⃗ n " 0 on BπpM N q,
for any v P L 2 pI, H 1 pνqq. As in Section 4.4, we work with general measures ν on πpM N q. Assumptions 4.5.1. Let ν be a probability measure on πpM N q in the form dν " e ´βH g pxq dx with H g : πpM N q Ñ R C 2 and such that lim dpx,BπpM N qqÑ0 ∇H g pxq ¨⃗ n " ´8.

Let A be the good event (4.120). Assume that there exist C ą 0, δ ą 0 (depending on ε) such that νpA c q ď e ´nδ .

As in Section 4.4, one shall work with a slightly more general system, for the sake of the bootstrap argument to come. Let r A : πpM N q Ñ S n pRq be a measurable map. Let M : πpM N q Ñ M npRq be given by

M " ˆr A B C D ˙, (4.124) 
with B, C, D constants matrices as in (4.117). One shall impose the following assumptions on M: Assumptions 4.5.2. Let M : πpM N q Ñ S n pRq be as (4.124). Assume that 1. There exists a positive constant κ ą 0 such that uniformly on πpM N q, M ě n ´κε I n.

2. There exists a family on non-negative functions pα i,k q such that for all U n P R n,

U n ¨MU n " ÿ i,k α i,k pu i `. . . `uk q 2 .
3. Let A P M n pRq be as in (4.117). There exists a positive constant κ ą 0 such that uniformly on (4.120) and for each 1 ď i, j ď n,

r A i,j " A i,j `O´nκε dpi, jq 1`s 2 ¯. (4.125) 
Finally let Ā1 :

L 2 pI, H 1 pνqq Ñ L 2 pI, H ´1pνqq in the form Ā1 " β r A ´BpβD `Lν b I n´n q ´1C `Lν b I n . (4.126) 
Lemma 4.5.1. Let M be in the form (4.124) for r A satisfying Assumptions 4.5.2. Let Ā1 be given by (4.126). Let ψ P L 2 p Ī, H 1 pνqq be the solution of " βMψ `pL ν b I nqψ " χ n e i 0 on πpM N q ψ ¨⃗ n " 0 on BπpM N q. (4.127)

Let ψ p1q P L 2 pI, H 1 pνqq be the solution of

" Ā1 ψ p1q " χ n e i 0 on πpM N q ψ p1q ¨⃗ n " 0 on BπpM N q. (4.128) 
We have the identity ψ j " ψ p1q j for each j P I.

Proof. Uniqueness and existence of solutions of (4.127) and (4.128) follow from the Lax-Migram's theorem. Let us indeed prove that the quadratic forms

v P L 2 pI, H 1 pνqq Þ Ñ E ν rv ¨Ā ν 1 vs, w P L 2 p Ī, H 1 pνqq Þ Ñ E ν rw ¨pβM `Lν b I n´n qws are coercive. Let us split H g n into H p1q `Hp2q with H p1q : X n P πpM N q Þ Ñ N ´s ÿ i‰j:|i´j|ďK 0 g s px i `. . . `xj q. (4.130) Denote M p1q " ˆ∇2 H p1q `∇2 F g 0 0 0 ˙and M p2q " ˆ∇2 H p2q pxq `EQ N,β p¨|xq r∇ 2 H g n,N px, ¨qs B C D ˙.
Let M be as in (4.117). Observe that there exists κ ą 0 such that for all U n " pU n , V n´n q P R n

ˇˇU n ¨pM p2q ´MqU nˇď n κε K ´s 2 0 |U n | 2 U n ¨∇2 pF g `Hp1q qU n ě n ´κε |U n | 2 .
Let us choose K 0 " tn ε u m for m large enough. In view of the last displays one can see that there exists κ ą 0 such that for all U n " pU n , V n´n q P R n,

U n ¨MU n ě U n ¨MU n `n´κε |U n | 2 ě n ´κ1 ε |U n| 2 .
Since L ν is non-negative we obtain that for all v P L 2 p Ī, H 1 pνqq,

E ν rv ¨pβM `Lν b I nqvs ě n ´κε E ν r|v| 2 s.
Because M p2q ě 0, we also have that A p2q ´BD ´1C ě 0. Then note

Apxq´BD ´1C ě ∇ 2 H p1q `Ap2q ´BD ´1C ´Opn κε K ´s 2 0 I n q ě ∇ 2 H p1q ´Opn κε K ´s 2 0 I n q ě n ´κε I n . (4.131) Let w P L 2 pI, H 1 pνqq. One can observe that w ¨BpD `β´1 L ν b I n´n q ´1pCwq " pCwq ¨pD `β´1 L ν b I n´n q ´1pCwq.
Integrating this over ν and using the fact that D is positive shows that for all w P L 2 pI, H 1 pνqq,

0 ď E ν rw ¨BpD `β´1 L ν b I n´n q ´1pCwqs ď E ν rw ¨BD ´1Cws. (4.132) 
Consequently, inserting (4.131), we find

E ν rw ¨Ā ν 1 ws ě n ´κε E ν r|w| 2 s.
Let us next explain how to compare pA ν 1 q ´1 to p Āν 1 q ´1. Let ψ P L 2 pI, H 1 pνqq be the solution of (4.116) and

ψ p1q P L 2 pI, H 1 pνqq of " Āν 1 ψ p1q " χ n e i 0 on πpM N q ψ p1q ¨⃗ n " 0 on BπpM N q.
Let w :" ψ p1q ´ψ P L 2 pI, H 1 pνqq, which solves

" A ν 1 w " M ψ p1q on πpM N q w ¨⃗ n " 0 on BπpM N q.
Taking the scalar product of the first line of the last display with w and integrating by parts with respect to ν yields

βn ´κε E ν r|w| 2 s ď βE ν rw ¨∇2 r H g n ws ď E ν rw ¨M ψ p1q s. (4.133) 
We will prove in Lemma 4.5.3 that

|E ν rw i pM ψ p1q q i s| ď Cpβqn κε E ν rw 2 i s 1 2 ÿ jPI 1 1 `dpi, BIq s 2 dpj, BIq s 2 E ν rpψ p1q j q 2 s 1 2 .
Inserting the last display into (4.133) will then give

E ν r|w| 2 s 1 2 ď Cpβqn κε n 1´s 2 n ÿ j"1 E ν rpψ p1q j q 2 s 1 2 1 `dpj, BIq s 2 . (4.134) 
Our main task is to establish that ψ p1q j typically decays in dpj, i 0 q ´p2´sq , making the left-hand side of (4.134) bounded by n ´1{2 . This will show that the increments of ψ are bounded by dpj, i 0 q ´p2´sq Òpn ´1{2 q, allowing to conclude the proof of Theorem 4.1.1 by choosing n large enough. We finally complete Step 4 and control the operator (4.123). Recall that B ⊺ " C. Recall I " t1, . . . , nu. Let η, ϕ P L 2 pνq. Then for each 1 ď i, j ď n, we have

|E ν rpηCe j q ⊺ pβD `Lν b I n´n q ´1pϕCe i qs| ď Cpβqn κε dpi, BIq s 2 dpj, BIq s 2 E ν rη 2 s 1 2 E ν rϕ 2 s 1 2 .
(4.135)

In addition for each 1 ď i, j, l ď n, we have

|E ν rpηCq ⊺ pβD`L ν bI n´n q ´1pϕCe i qs| ď Cpβqn κε |j ´l| minpdpj, BIq 1`s 2 , dpl, BIq 1`s 2 q 1 dpj, BIq s 2 E ν rη 2 s 1 2 E ν rϕ 2 s 1 2 . (4.136)
The term in the left-hand side of (4.135) is comparable to the covariance between B i H g n,N and B j H g n,N under a Gaussian measure. This analogy suggests us to proceed as if we were trying to control the variances of B i H g n,N and B j H g n,N , which would require to control the fluctuations of large gaps. We will thus import a method of [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF] which starts by decomposing a given gap into a sum of block averaged statistics.

Proof. First note that since βD 1 `Lν b I n´n is a positive operator on L 2 pI, H 1 pνqq, we find that

|E ν rpηCe j q ⊺ pβD `Lν b I n´n q ´1pϕCe i qs| ď E ν rpηCe j q ¨pβD 1 `Lν b I n´n q ´1pηCe j qs 1 2 E ν rpϕCe i q ¨pβD `Lν b I n´n q ´1pϕCe i qs 1 2 . (4.137)
Using the positivity of L ν b I n´n and D, one can write E ν rpηCe j ηq¨pβD`L ν bI n´n q ´1pηCe j qs ď β ´1E ν rpηCe j q¨D ´1pηCe j qs " β ´1E ν rη 2 spCe j q¨D ´1pCe j q.

The right-hand side of the last display may be identified with the variance of pCZ 1 q j where Z 1 is a Gaussian vector Z 1 " N p0, Dq. Let Z be the random vector defined for each k P t1, . . . , N uzI by Z k " Z 1 1 `. . . `Z1 k . One may check that pC 1 Zq j " ÿ iPt1,...,N uzI ÿ kPt1,...,N uzI:dpk,jqědpk,iq

1 |i ´k| s`2 N pZ k ´Zj q. ( 4.138) 
We claim that there exists C ą 0 and κ ą 0 such that for each 1 ď i ď n and 1 ď i `k ď n,

VarrN pZ i`k ´Zi qs ď Ck s`κε . (4.139) 
Combining (4.138) and (4.139) entails, modulo (4.139),

|e j ¨BD ´1Ce j q| ď C 1 `dpj, BIq s{2 .
Let us now prove the claim (4.139). Fix 1 ď i ď i `k ď n. One shall split N pZ i`k ´Zi q into a sum of block average statistics. For each 1 ď k ď n{2 and i P t1, . . . , nu, let I k pkq be an interval of integers in tn `1, . . . , nu of cardinal k `1 such that i P I k piq. Define the block average

Z rks i " 1 k `1 ÿ jPI k piq Z k .
Let α ą 0 be a small number, α " 1 p with p P N ˚. One may write

N pZ i ´Zrks i q " p´1 ÿ m"0 N pZ rtk mα us i ´Zrtk pm`1qα us i q. (4.140) 
For each m P t0, . . . , p ´1u, denote G m " N pZ rtk mα us i ´Zrtk pm`1qα us i q and I m " I tk pm`1qα u piq. Let us define the matrix D p1q " pD p1q q i,jPIm by

D p1q i,j " # D i if i ‰ j ´řkPIm,k‰i D j if i " j.
Let u " pB i G m q iPIm and D Im " pD i,j q i,jPIm . Since G m depends only on the variables in I m , we have the identity VarrG m s " u ¨DIm u.

Moreover, since D Im ě D p1q , there holds VarrG m s ď u ¨Dp1q u.

Let v " pD p1q q ´1u. Using the fact that ř iPIm B i G m " 0 and D p1q ř iPIm e i " 0, one may check that

ř iPIm v i " 0. It follows that v ¨Dp1q v ě ÿ i‰jPIm 1 |i ´j| s`2 pN pv i ´vj qq 2 ě N 2 |I m | s`1 |v| 2 .

Furthermore observe that

|∇G m | 2 ď CN 2 |I m | .
The two last displays give by integration by parts the series of inequalities

β N 2 |I m | s`1 |v| 2 ď v ¨Dp1q v ď C|v| N 2 |I m | . It follows that VarrG m s ď Cpβq|I m | s E µ rη 2 s 1 2 . (4.141) 
Summing (4.141) over m and using (4.140), one finds that VarrN pZ i`k ´Zi qs ď Ck s`κε , which yields (4.139), thus concluding the proof of (4.135). The proof of (4.136) is similar.

Let us now control the operator M appearing in (4.123).

Lemma 4.5.3. Let A be the good event (4.120). Uniformly in x P A, 1 ď i ď j ď n and N , we have

Var Q g N,β p¨|xq rB i H g n,N , B j H g n,N s ď Cpβqn κε dpi, BIq s 2 dpj, BIq s 2 . ( 4.142) 
Let ν satisfying Assumptions 4.4.1. Then for all ϕ, η P L 2 pνq and 1 ď i, j ď n,

E ν rϕe i ¨M pηe j qs ď Cpβqn κε dpi, BIq s 2 dpj, BIq s 2 E ν rη 2 s 1 2 E ν rϕ 2 s 1 2 .
(4.143)

In addition, for all ϕ, η P L 2 pνq and 1 ď i, l, j ď n, E ν rpϕe i q¨M pηpe j ´el qqs ď

Cpβqn κε dpj, BIq s 2 dpi, lq pdpi, BIq ^dpl, BIqq 1`s 2 E ν rϕ 2 s 1 2 E ν rη 2 s 1 2 `Cpβqe ´cpβqn δ sup |ϕ| sup |η|. (4.144) 
Proof. The control (4.142) is a direct consequence a rigidity estimate under Q N,β p¨| xq that we defer to Lemma 4.6.2, which proof can be found in the Appendix. Regarding the definition of ( Note that (4.142) one could refine (4.142) and show that this term concentrates around the quantity CovrCZ 1 q j , pCZ 1 q i s, where Z 1 " N p0, Dq. One expects that there exists some α ą 0 such that

Var Q g N,β p¨|xq rB i H g n,N , B j H g n,N s " pP n Ce i q ¨pD `β´1 L ν b I n´n q ´1pP n Ce j q `nκε O β ´1 1 `dpi, BIq s`α 2 1 1 `dpj, BIq s`α 2 ¯,
where B, C and D are as in (4.117). Having such an expansion could refine our control on the solution of (4.116) through (4.133).

Elliptic regularity estimate

The stake for us is to obtain a decay estimate on the solution of (4.128). We first derive an elliptic regularity estimate and give an L 2 bound on the discrete primitive of order 3 2 ´s of ψ in terms of |L 1{2 ψ|. We then state a straightforward control on the L 1 norm on the discrete primitive of order 1 ´s of ψ with respect to |L 3{2´s ψ|. By interpolation, this yields via a discrete (1D) Gagliardo-Nirenberg inequality a control on the L p norm with p " 1 1´s{2 of the fractional primitive of order 1 ´s 2 of ψ. Throughout the section, for all α ą 0, L α stands for the distortion matrix L α " diagpγ 1 , . . . , γ nq with γ i " 1 `dpi, i 0 q α for each 1 ď i ď n.

(4.145) Lemma 4.5.4. Let s P p0, 1q. Let ν and M satisfying Assumptions 4.5.1 and 4.5.2. Let χ n P H 1 pνq, i 0 P t1, . . . , nu and ψ P L 2 p Ī, H 1 pνqq be the solution of $ & % βMψ `Lν ψ " χ n e i 0 `λpe 1 `. . . `en q on πpM N q ψ ¨pe 1 `. . . `en q " 0 on πpM N q ψ ¨⃗ n " 0 on BπpM N q.

(4.146)

Recalling (4.145), there exists κ ą 0 such that letting p " 1 1´s{2 ,

E ν "´n ÿ i"1 |pg s{2 ˚ψq i | p ¯2{p ı 1 2 ď Cpβqn κε ´Eν rχ 2 n s 1 2 `sup |χ n |e ´cpβqn δ `Eν r|L 1{2 ψ| 2 s 1 2 `nE ν rλ 2 s 1 2
¯s ˆEν r|L 3{2´s ψ| 2 s 1´s 2 . (4.147) Proof. Let us denote v " χ n e i 0 `λpe 1 `. . . `en q. Let ψ P L 2 p Ī, H 1 pνqq be the solution of (4.146). In view of (4.125), the matrix M may be split into M " M p1q `Mp2q where M p1q P M npRq is the constant Toeplitz matrix with the Riesz kernel g s and M p2q satisfying

|M p2q i,j | ď n κε dpi, jq 1`s 2
, for each i, j P Ī.

Taking the convolution of (4.146) with g s´1 and the scalar product with ψ easily gives

E ν " n ÿ i"1 pg s´1{2 ˚ψq 2 i ı 1 2 ď Cpβqn κε ´Eν rχ 2 n s 1 2 `sup |χ n |e ´cpβqn δ `Eν r|L 1{2 ψ| 2 s 1 2 `nE ν rλ 2 s 1 2
¯.

(4.148) Indeed, the differential terms satisfies

n ÿ i"1 E ν rL ν ppg s´1 ˚ψq i qψ i s " n ÿ i"1 E ν r∇pg s´1 ˚ψq i q ¨∇ψ i s " ÿ i,j,k E ν rg s´1 pdpi, kqqB j ψ k ¨Bj ψ i s.
Since g s´1 is a positive kernel, for each j P t1, . . . , nu, setting u k " B j ψ k , we have ÿ i,k g s´1 pdpi, kqqu i u k ě 0, which justifies the claim (4.148).

Recall that by Remark 14, the convolution of a discrete function f : Z{nZ with g α for α ą ´1 corresponds to a fractional primitive of order 1 ´α of f . One can now interpolate between the L 1 norm of the primitive of ψ of order 1 ´s and the L 2 norm of the primitive of order 1 ´s 2 . Let ϕ : T Ñ R smooth enough. Applying Lemma 4.7.1 to u :" g s´1{2 ˚ψ with s 1 " 0, s 2 " 1 2 , s 0 " 1 2 ´s 2 P ps 1 , s 2 q, θ " s, p 1 " 2, p 2 " 1 and p " 1 1´s 2

gives

}g s{2 ˚ψ} L 1 1´s{2 pTq ď C}g s ˚ψ} θ L 1 pTq }g s´1{2 ˚ψ} 1´θ L 2 pTq . (4.149) 
Let ϕ 0 : T Ñ R smooth such that ϕp i n q " ψ i for each i P t1, . . . , nu. Using (4.149) and making ϕ 0 slightly vary, we deduce that 

´n ÿ i"1 |pg s{2 ˚ψq i | 1 1´s{2 ¯1´s{2 ď C ´n ÿ i"1 |pg s ˚ψq i | ¯1´s ´n ÿ i"1 pg s´1{2 ˚ψq 2 i ¯s 2 . ( 4 

Control on derivatives

The aim is now to control the decay of ∇ψ i with respect the (global) decay of ψ i . The proof relies on the distortion argument of Lemma 4.4.2, the central task being to bound a variant of the commutator L α ML ´1 α ´M from above.

Let us pause to explain the strategy of this proof. At first let us fix a small parameter ε 0 ą 0. In view of its specific positive-definiteness structure, M can be bounded from below by a matrix r M where interactions are cut off for dpi, kq ą dpi, i 0 q 1´ε 0 . We then seek to control pL α ML ´1 α ψ dis ´r Mψ dis q i for each 1 ď i ď n. By construction, p r Mψ dis q i may be bounded by |L 3{2´s´ε 0 ψ|. Similarly one can bound the left and right tails of pL α ML ´1 α ψ dis q i by |L 3{2´s´ε 0 ψ|. We are thus left to estimate ÿ kPApiq ψ k gs pdpi, kqq where Apiq :" tk ‰ i : dpi, i 0 q 1´ε 0 ď dpi, kq ď dpi, i 0 q 1`ε 0 u.

(4.152)

The point is to express this sum with respect w :" H s{2 ψ, the discrete primitive w of order 1 ´s{2 of ψ, which gives

ÿ kPApiq ψ k gs pdpi, kqq " n ÿ l"1 ÿ kPApiq g ´1 s{2 pdpk, lqqg s pdpi, kqq1 i‰k w l , (4.153) 
where g ´1 s{2 :" H ´1 s{2 e 1 . Given an index l, one shall therefore estimate a truncated convolution product between gs and g ´1 s{2 . If l lies away from the boundary of Apiq, this product almost equals gs ˚g´1 s{2 plq » g 1´s{2 . Fixing a threshold of size dpi, i 0 q 1´2ε 0 , one can decompose (4.153) according to whether dpl, BApiqq ě dpi, i 0 q 1´2ε 0 . Owing to the previous remark and by Hölder's inequality, one can bound the first contribution by the L p norm of w with p " 1 1´s{2 and insert (4.147). On the other hand, the second contribution can be controlled by |L 3{2´s´ε 0 ψ|.

We finally obtain a control on |L 1´s{2 Dψ| depending on |L 1´s{2´ε 0 ψ| and on n ε 0 |L 1{2 ψ|. A reversed inequality will be proved in the next subsection allowing one to control |L 3{2´s ψ| by |L 1´s{2 ψ|. Since ε 0 ą 0 and 3{2 ´s ą 1{2, this will provide a bound on |L 3{2´s ψ| and |L 1´s{2 Dψ|. Lemma 4.5.5. Let s P p0, 1q. Let ν and M satisfying Assumptions 4.5.1 and 4.5.2. Let χ n P H 1 pνq, i 0 P t1, . . . , nu and ψ P L 2 p Ī, H 1 pνqq be the solution of $ & % βMψ `Lν ψ " χ n e i 0 `λpe 1 `. . . `en q on πpM N q ψ ¨pe 1 `. . . `en q " 0 on πpM N q ψ ¨⃗ n " 0 on BπpM N q.

(4.154)

Let α 0 P p 1´2s 1´s , 1q as in Lemma 4.5.4. Let γ ě 1 2 . There exist Cpβq locally uniform in β, κ ą 0, δ ą 0 and ε 0 ą 0 such that

E ν " n ÿ i"1 dpi, i 0 q 2p γ 2 `1 4 q |∇ψ i | 2 ı ď Cpβqn κε E ν r|L γ ψ| 2 s 1 2 ´nκε 0 E ν r|L 1{2 ψ| 2 s 1´α 0 2 E ν r|L 3{2´s ψ| 2 s α 0 2 `n´ε 0 E ν r|L 3{2´s ψ| 2 s 1 2 `nκε 0 `1pE ν rλ 2 s 1 2 ¯`n κpε 0 `εq E ν rχ 2 n s. (4.155)
Proof. Let ψ P L 2 p Ī, H 1 pνqq be the solution of (4.154).

Step 1: a priori estimates and distortion First note that ψ satisfies the energetic estimate

E ν r|ψ| 2 s 1 2 `Eν r|Dψ| 2 s 1 2 ď Cpβqn κε E ν rχ 2 n s 1 2 . (4.156)
For α ě 1 2 , let L α P M npRq be as in (4.145). Let ψ dis " L α ψ. Multiplying (4.175) by L α , one can see that ψ dis solves βL α ML ´1 α ψ dis `Lν ψ dis " χ n e i 0 `λL α pe 1 `. . . `en q.

In contrast with the short-range case, one cannot expect |Mψ dis | to be of order n κε under ν if α " 3 2 ´s and one should therefore not split L α Mψ dis into Mψ dis `pL α ML ´1 α ´Mqψ dis . We will instead isolate short-range interactions. Fix a small parameter ε 0 ą 0. By Assumptions 4.4.1, there exists a family of non-negative functions pα i,j q i,jP Ī such that

U N ¨MU N " ÿ k‰l α k,l pu k `. . . `ul q 2 ě ÿ k‰l:dpk,lqďdpk,i 0 q 1´ε 0 α k,l pu k `. . . `ul q 2 :" U N ¨r MU N .
By construction, we therefore have M ě r M, where r M i,j :" ÿ kěj,lďi:dpk,lqďdpi,i 0 q 1´ε 0 α k,l .

Denoting l 0 :" tdpi, i 0 q 1´ε 0 u, let us define the matrix valued-function given for each i, j P Ī by r M p1q i,j " # g s pj ´iq ´gs pl 0 q ´hs pl 0 qpdpj, iq ´l0 q if dpj, iq ď l 0 0 if dpj, iq ą l 0 .

Finally let M p2q " M ´Hs be the random part of M and set

δ p1q Lα " L α H s L ´1 α ´r M p1q and δ p2q Lα " L α M p2q L ´1 α ´Mp2q , so that ψ dis is solution of β r Mψ dis `βδ p1q Lα ψ dis `βδ p2q Lα ψ dis `Lν ψ dis " χ n e i 0 `λL α pe 1 `. . . `en q. (4.158)
Step 2: integration by parts We proceed as in the proof of Lemma 4.4.2. Taking the scalar product of (4.158) with ψ dis reads Step 3: control on the long-range commutator This step is the most important of the proof.

E ν rβψ dis ¨p r M `δp1q Lα `δp2q Lα qψ dis s `Eν r|∇ψ dis | 2 s " E ν rψ i 0 χ n `L2α ψ ¨pe 1 `. . .
Recalling that L α H s L ´1 α ψ dis " L α H s ψ, one may split δ p1q Lα ψ dis into pδ p1q Lα ψ dis q i " dpi, i 0 q α ÿ k:dpi,kqědpi,i 0 q 1´ε 0 g s pi ´kqψ k looooooooooooooooooomooooooooooooooooooon pIq i `ÿ k:dpi,kqďdpi,i 0 q 1´ε 0 g s pi ´kq ´dpi, i 0 q α dpk, i 0 q α ´1¯ψ dis

k looooooooooooooooooooooooooomooooooooooooooooooooooooooon pIIq i `pIIIq i , (4.161) 
with pIIIq i " h s pdpi, i 0 q 1´ε 0 q ÿ k:dpi,kqďdpi,i 0 q 1´ε 0 pdpi, kq´dpi, i 0 q 1´ε 0 qψ dis k ´gs pdpi, i 0 q 1´ε 0 q ÿ k:dpi,kqďdpi,i 0 q 1´ε 0 ψ dis k .

Let us split pIq i further into

pIq i " dpi, i 0 q α ÿ k:dpi,i 0 q 1´ε 0 ďdpi,kqďdpi,i 0 q 1`ε 0 g s pi ´kqψ k loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon pIq 1 i `dpi, i 0 q α ÿ k:dpi,kqądpi,i 0 q 1`ε 0 g s pi ´kqψ k looooooooooooooooooooooomooooooooooooooooooooooon pIq 2 i .
First note that by Cauchy-Schwarz inequality,

|pIq 2 i | ď C ´ÿ k:dpi,kqądpi,i 0 q 1`ε 0 1 dpi, kq 2s 1 dpi 0 , kq 3´2s ¯1 2 |L 3{2´s ψ| ď C dpi, i 0 q 1`ε 0 |L 3{2´s ψ|.
We turn to the term pIq 1 i . The idea is to express it with respect to the primitive of order 1 ´s{2 of ψ and to use the L 1 1´s{2 control of Lemma 4.5.4. Let w " H s{2 ψ and g ´1 s{2 " H ´1 s{2 e 1 . One may write

pIq 1 i " n ÿ
l"1 ´ÿ k:dpi,i 0 q 1´ε 0 ďdpi,kqďdpi,i 0 q 1`ε 0 1 dpi, kq s g ´1 s{2 pk ´lq ¯wl .

The value of the truncated convolution product in front of w l depends on whether l lies close to the boundary of Apiq :" tk : dpi, i 0 q 1´ε 0 ď dpi, kq ď dpi, i 0 q 1`ε 0 u. We claim that there exists a constant C ą 0 such that for each l P t1, . . . , nu,

ˇˇÿ kPApiq 1 dpi, kq s g ´1 s{2 pk ´lq ˇˇď C ´1 dpi, lq s 1 dpl, BApiqq 1´s{2 `1 dpi, lq 1`s 2 ´κε 0 ¯. (4.163) 
Let us prove (4.163). First, in view of Lemma 4.2.4, the kernel g ´1 s{2 satisfies

|g ´1 s{2 |pkq ď C dpk, 1q 2´s{2 for each 1 ď k ď n, (4.164) 
with ˇˇn ÿ

k"1 g ´1 s{2 pkq ˇˇď C n 1´s 2 . ( 4.165) 
If dpl, Apiqq ě dpi, i 0 q, then by (4.164), the result if straightforward. Now if l P Apiq with dpl, BApiqq ě dpi, i 0 q, one can write

ÿ kPApiq 1 dpi, kq s g ´1 s{2 pk ´lq " ´ÿ kPApiq 1 dpi, kq s g ´1 s{2 pk ´lq " O ´1 dpi, i 0 q 1`s 2 ´κε 0 ¯.
Finally let l such that dpl, BApiqq ď dpi, i 0 q. One has ÿ kPApiq 1 dpi, kq s g ´1 s{2 pk´lq " ÿ kPApiq:dpk,lqď 3 4 dpi,i 0 q 1 dpi, kq s g ´1 s{2 pk´lq`ÿ kPApiq:dpk,lqą 3 4 dpi,i 0 q 1 dpi, kq s g ´1 s{2 pk´lq.

In view of (4.164) there holds ˇˇÿ kPApiq:dpk,lqą 3 4 dpi,i 0 q 1 dpi, kq s g ´1 s{2 pk ´lq ˇˇď C dpi, i 0 q 1`s 2 ´κε 0 .

Let us split the first term by writing

1 dpi, kq s " 1 dpi, lq s `1 dpi, kq s ´1 dpi, lq s .
Since dpl, Apiqq ď dpi, i 0 q and dpk, lq ď 3 4 dpi, i 0 q one has ˇˇ1 dpi, kq s ´1 dpi, lq s ˇˇď Cdpk, lq dpi, i 0 q 1`s .

(4.166)

Using in turn (4.164) and (4.165), one can see that

ÿ kPApiq:dpk,iqďdpi,i 0 q g ´1 s{2 pk ´lq " ÿ kPApiq g ´1 s{2 pk ´lq `O´1 dpi, i 0 q 1´s{2 " O ´1 dpl, BApiqq 1´s{2 `1 dpi, i 0 q 1´s{2 ¯.
Finally inserting (4.166) we have ˇˇÿ kPApiq:dpk,lqďdpi,i 0 q ´1 dpi, kq s ´1 dpi, lq s ¯1 dpk, lq 2´s{2 ˇˇď C dpi, i 0 q s{2 dpi, lq 1`s ď C dpi, lq 1`s 2 ´κε 0 .

Combining the two last displays, one obtains the claimed estimate (4.163).

Let us split the sum over l in (4.162) according to whether dpl, BApiqq ě dpi, i 0 q 1´2ε 0 . For the first contribution one can write

ˇˇÿ l:dpl,BApiqqědpi,i 0 q 1´2ε 0 1 dpi, lq s 1 dpl, BApiqq 1´s{2 w l ˇˇď Cdpi, i 0 q κε 0 ÿ l:dpi,lqědpi,i 0 q 1´2ε 0 1 dpi, lq 1`s 2 |w l | ď Cdpi, i 0 q κε 0 ´n ÿ l"1 |w l | 1 1´s{2 ¯1´s{2 ´ÿ l:dpi,lqědpi,i 0 q 1´2ε 0 1 dpi, lq 2 s p1`s 2 q ¯s 2 ď C dpi, i 0 q 1´κε 0 ´n ÿ l"1 |w l | 1 1´s{2
¯1´s{2 .

Inserting the estimate (4.147) of Lemma 4.5.4 then yields

E ν "ˇˇˇÿ l:dpl,BApiqqědpi,i 0 q 1´2ε 0 1 dpi, lq s 1 dpl, BApiqq 1´s{2 w l ˇˇ2 ı 1 2 ď Cpβqn κε 1 dpi, i 0 q 1´κε 0 pE ν r|L 1{2 ψ| 2 s 1 2 `Eν rχ 2 n s 1 2 q s E ν r|L 3{2´s ψ| 2 s 1´s 2 .
For the second contribution, one can check via Cauchy-Schwarz inequality that

|w l | ď C dpl, i 0 q 1´s{2 |L 3{2´s ψ|. It follows that ˇˇÿ l:dpl,BApiqqďdpi,i 0 q 1´2ε 0 1 dpi, lq s 1 dpl, BApiqq 1´s 2 w l ˇˇď C 1 dpi, i 0 q 1`s 2 ÿ l:dpl,BApiqqďdpi,i 0 q 1´2ε 0 1 dpl, BApiqq 1´s 2 |L 3{2´s ψ| ď C dpi, i 0 q 1`sε 0 |L 3{2´s ψ|. (4.167) 
We have crucially used the fact that in (4.167), the series ř k 1 k 1´s{2 is diverging, in order to have an error in the last display much smaller than dpi, i 0 q ´1, when ε 0 ą 0. This justifies our choice of considering a fractional primitive of order 1 ´s{2 (rather than 3{2 ´s for instance). One can gather these estimates into

E ν rpIq 2 i s 1 2 ď Cpβqn κε dpi, i 0 q 1´α ´´E ν rχ 2 n s 1 2 `sup |χ n |e ´cpβqn δ `nκε 0 E ν r|L 1{2 ψ| 2 s 1 2 ¯s `Eν r|L 3{2´s ψ| 2 s 1´s 2 `1 dpi, i 0 q 1`sε 0 E ν r|L 3{2´s ψ| 2 s 1 2 ¯. (4.168) 
We now control the terms pIIq i and pIIIq i . Let us write pIIq i as pIIq i " ÿ k:dpi,kqďdpi,i 0 q 1´ε 0 1 dpi, kq s pdpi, i 0 q α ´dpk, i 0 q α qψ k " dpi, i 0 q α ÿ k:dpi,kqďdpi,i 0 q 1´ε 0 1 dpi, kq s ´1 ´dpi, kq α dpi, i 0 q α ¯ψk .

One can Taylor expand the weight in the above equation when dpi, kq ď dpi, i 0 q 1´ε 0 into ˇˇ1 ´dpi, kq α dpi, i 0 q α ˇˇď C dpi, kq dpi, i 0 q .

This allows one to upper bound pIIq i by

|pIIq i | ď dpi, i 0 q α´1 ÿ k:dpi,kqďdpi,i 0 q 1´ε 0 dpi, kq 1´s |ψ k | ď C dpi, i 0 q 1´α`p1´sqε 0 |L 3{2´s ψ|. (4.169) 
Similarly, by expanding dpk, i 0 q α for k close to i, one obtains

|pIIIq i | ď C dpi, i 0 q 1´α`ε 0 p1´sq |L 3{2´s ψ|. (4.170) 
Putting (4.168), (4.169) and (4.170) together, one obtains that for ε 0 ą 0 large enough with respect to ε, there exists κ ą 0 such that

|E ν rψ dis ¨δp1q Lα ψ dis s| ď Cpβqn κε E ν r|L 2α´1{2 ψ| 2 s 1 2 ´nκε 0 E ν r|L 1{2 ψ| 2 s 1 2 `n´ε 0 E ν r|L 3{2´s ψ| 2 s 1 2 n κε 0 E ν r|L 1{2 ψ| 2 s s 2 E ν r|L 3{2´s ψ| 2 s 1´s 2 `nκε 0 E ν rλ 2 s 1 2 ¯`Cpβqn κε 0 E ν rχ 2 n s. (4.171)
Step 4: control on the short-range commutator It remains to upper bound δ p2q Lα . Recall that by (4.124), the off-diagonal entries of M p2q typically decays in dpi, jq ´p1`s 2 q . One may write pδ p2q Lα ψ dis q i " ÿ k:dpi,kqď 1 2 dpi,i 0 q

M p2q i,k ´dpi, i 0 q α dpk, 1q α ´1¯ψ dis k loooooooooooooooooooooooomoooooooooooooooooooooooon pIq i `ÿ k:dpi,kqą 1 2 dpi,i 0 q M p2q i,k ´dpi, i 0 q α dpk, 1q α ´1¯ψ dis k loooooooooooooooooooooooomoooooooooooooooooooooooon pIIq i .
The first term can be bounded for any value of α by

E ν rpIq 2 i s 1 2 ď Cpβqn κε dpi, i 0 q 1 2 `s 2 E ν r|ψ dis | 2 s 1 2 ,
with Cpβq depending on α. For the second term we have

E ν rpIIq 2 i s 1 2 ď Cpβqn κε dpi, i 0 q 1`s 2 ´α E ν r|L 1{2 ψ| 2 s 1 2 .
Consequently arguing as in the short-range case (see the proof of Lemma 4.4.2) we obtain

ˇˇE ν " n ÿ i"1 ψ dis i pIq i ıˇˇˇď β 2 n ´εps`2q E ν r|ψ dis | 2 s `Cpβqn κε E ν r|ψ dis | 2 sE ν rχ 2 n s 1 2 .
By construction, we have

E ν " ψ dis ¨r Mψ dis `n ÿ i"1 ψ dis i pIq i s ı ě 0. (4.172) 
For the second term, the point is to give a control in term of L 2α´1{2 ψ:

ˇˇE ν " n ÿ i"1 ψ dis i pIIq i ıˇˇˇď Cpβqn κε E ν r|L 2α´1{2 ψ| 2 s 1 2 E ν r|L 1{2 ψ| 2 s 1 2 . (4.173)
Step 5: conclusion Note that for α ě 1 2 , 2α ´1 2 ě α. Therefore in view of (4.171), (4.172) and (4.173) we obtain from (4.159) that for α ě 1 2 ,

E ν " n ÿ i"1 dpi, i 0 q 2α |∇ψ i | 2 ı ď Cpβqn κε E ν r|L 2α´1{2 ψ| 2 s 1 2 ´nκε 0 E ν r|L 1{2 ψ| 2 s s 2 E ν r|L 3{2´s ψ| 2 s 1´s 2 `n´ε 0 E ν r|L 3{2´s ψ| 2 s 1 2 `nκε 0 `nE ν rλ 2 s 1 2 ¯`n κε 0 E ν rχ 2 n s ¯. (4.174)
This completes the proof of Lemma 4.5.5.

Global decay estimate

Leveraging on the a priori estimate of Lemma 4.5.5, we establish a global decay estimate on the solution. The method uses a factorization of the system around its ground state to reduce the problem to the well-understood short-range situation of Section 4. βMψ `Lν ψ " χ n e i 0 `λpe 1 `. . . `en q on πpM N q ψ ¨pe 1 `. . . `en q " 0 on πpM N q ψ ¨⃗ n " 0 on BπpM N q.

(4.175)

There exists a constant Cpβq locally uniform in β and κ ą 0 such that

E ν " n ÿ i"1 dpi, i 0 q 2´s |∇ψ i | 2 ı 1 2 `Eν " n ÿ i"1 dpi, i 0 q 3´2s ψ 2 i ı 1 2 ď Cpβqn κε E ν rχ 2 n s 1 2 . (4.176)
In addition, there exist a constant Cpβq locally uniform in β and κ ą 0 such that

E ν rλ 2 s 1 2 ď Cpβq n 1´κε E ν rχ 2 n s 1 2 . (4.177)
Proof. The proof builds on the estimate (4.155). The strategy is to multiply the system (4.175) by a constant matrix close to the inverse of H s , so that the system becomes short-range. There are two difficulties: first one should keep a positive-definite matrix and second one should control the differential terms involving L ν .

Step 1: factorization around the ground state To solve the first issue, the idea is to define a kernel f which is vanishing outside a certain grid centered at 1 and of length K 1 " tn ε u κ 0 for some

κ 0 P N ˚. Assume first that m :" n K 1 P N. Define f plq " # g ´1 s pkq if l " 1 `kK 1 , 0 ď k ď m ´1 0 otherwise , (4.178) 
where g ´1 s " H ´1 s e 1 . Also let A be the Toeplitz matrix associated to h:

A :" pf pj ´iqq i,j P M npRq. (4.179) Let us first show that f is a positive-definite kernel on t1, . . . , nu. Let θ P t 2kπ n : 0 ď k ď n´1u. One may notice that

n´1 ÿ k"0 f pkqe ikθ " m´1 ÿ k"0 g ´1 s pkqe ikθK 1 .
Since K 1 θ P t 2kπ m : 0 ď k ď m ´1u, the above sum is positive. It follows that (4.178) defines a positive-definite kernel and (4.179) a positive-definite matrix.

Assume that n K 1 R N. Let m " t n K 1 u and v P R mK 1 with v k " u k for each 1 ď k ď mK 1 . Let also A 1 " pf pi ´jqq 1ďi,jďmK 1 . One can observe that for all U n P R n,

|U n ¨AU n ´VmK 1 ¨A1 V mK 1 | ď Cn κε ´K1 ÿ k"1 |u k | 2 ¯1 2 |L 3{2´s U N |.
We now argue that for K 1 large enough, the matrix AM is positive-definite. This is quite delicate since as is well known, the product of two positive-definite matrix is not in general positive-definite. Assume first that n K 1 P N. The idea is to separate M into the sum of a Toeplitz matrix associated to a positive kernel and a random "diagonally dominant" positive matrix. As in Subsection 4.5.1, we first isolate small-range interactions, which do not concentrate around a constant, but provide some near-uniform convexity. Following Assumptions 4.4.1, there exists a family of non-negative functions pα i,j q i,jP Ī such that

U N ¨MU N " ÿ k‰l α k,l pu k `. . . `ul q 2 .
For K 1 as above, let us split M into M " M p1q `Mp2q with for each 1 ď i, j ď n,

M p1q i,j " ÿ pk,lqPI i,j α k,l 1 dpk,lqďK 1 ,
where I i,j :" tk P Ī : dpk, i`j 2 q ą 1 2 dpi, jqu. Since M p1q i,j " 0 if dpi, jq ą K 1 observe that AM p1q " M p1q . Consequently there exists κ 0 ą 0 (independent of K 1 ) such that AM p1q ě n ´κ0 ε I n.

(4.180)

Let us now control the product of A with the long-range matrix M p2q . To this end, we split M p2q into the sum of a Toeplitz matrix and of a random part. Let us h be the Riesz kernel truncated at K 1 defined for each k P t1, . . . , nu by hpkq :"

ÿ pi,jqPI 1,k g 2 s pj ´iq1 dpj,iqěK 1 . (4.181)
Observe that h is a non-negative kernel since for all

U N P R N , ÿ i,j hpi ´jqu i u j " ÿ i,j
g 2 s pi ´jq1 dpi,jqěK 1 pu i ´uj q 2 . Now let M p2,1q be the Toeplitz matrix associated to h and M p2,2q :" M p2q ´Mp2,1q . Since Toeplitz matrices do commute, the product of A and M p2,1q is non-negative. For the random part M p2,2q , note

|M p2,2q i,j | ď Cn κε dpi, jq 1`s 2 1 dpi,jqěK 1 ,
uniformly for 1 ď i, j ď n. Therefore denoting } ¨} the spectral norm on M npRq, we find that on (4.120),

}AM p2,2q } ď Cn κε K ´s 2 1 . (4.182) 
This can be made much smaller than the lower bound in (4.180) by choosing K 1 large enough, thus proving that AM p2q is positive-definite. In conclusion, if n K 1 P N, there exists κ ą 0 such that on (4.120), AM ě n ´κε I n.

To summarize, on the first hand, the positivity of AM p1q follows from the construction (4.178), the positivity of M p1q and (4.182). On the one hand the positivity of AM p2,1q follows from the fact A and M p2,1q are positive and commute. Now, if n K 1 R N, then for all U n P R n,

U n ¨AMU n ě n ´κε I n ´Cn κε ´K1 ÿ i"1 |u i | 2 ¯1 2 |L 3{2´s U n|. (4.183)
We will apply (4.183) to ψ dis :" L α ψ and control

ř K 1 i"1 pψ dis i q 2 by K 2α 1 |ψ| 2 .
Finally, the kernel (4.178) defines an approximation of g ´1 s : choosing K 1 to be a large power of tn ε u as above, one can check that there exists a constant κ ą 0 such that for each k P t1, . . . , nu,

|h ˚f |pkq ď

Cn κε 1 `dpk, 1q 2´s .

(4.184) Indeed, if i " 1 `pK 1 ´1ql P t1, . . . , nu, then

n ÿ k"1 g s pk ´iqf pkq " K s 1 n K 1 ÿ k"1 g s pkqf pk ´lq " K ´s 1 1 l"1 .
Now if i P t1, . . . , nu, one can decompose is it into i " i 0 `pi ´i0 q with i 0 P t1 `pK 1 ´1qZu X t1, . . . , nu and |i ´i0 | ď K 1 . Therefore, by Taylor expansion,

ˇˇn ÿ k"1 g s pk´iqf pkq´n ÿ k"1 g s pk´i 0 qf pkq´OpK 1 q n ÿ k"1 g 1 s pk´iqf pkq ˇˇď CK 2 1 n ÿ k"1 1 dpi, kq 2`s 1 dpk, 1q 2´s ď CK 2 1 dpi, 1q 2´s .
In addition, one can check that the first-order term verifies

ˇˇn ÿ k"1 g 1 s pk ´iqf pkq ˇˇď C dpi, 1q 2´s , thus implying that ˇˇn ÿ k"1 g s pk ´iqf pkq ˇˇď
Cn κε dpi, 1q 2´s . By comparing g s to h, we conclude the proof of (4.184).

Step 2: distortion For α ě 1 2 , let L α P M npRq be as in (4.145). The argument proceeds by multiplying Equation (4.175) by L α A. Set ψ dis " L α ψ, which solves βL α AML ´1 α ψ dis `pL α AL ´1 α ´AqL ν ψ dis `AL ν ψ dis " L α Apχ n e i 0 `λpe 1 `. . . `en qq. (4.185)

Set

δ Lα " L α AML ´1 α ´AM.

Taking the scalar product of (4.185) with ψ dis and integrating over ν yields 

βE ν " ψ dis ¨pAM `δLα qψ dis `ÿ i,k A i,k ∇ψ dis i ¨∇ψ dis k `ÿ i,k pL α AL ´1 α ´Aq i,k ∇ψ dis i ¨∇ψ dis k ı " E ν rχ n ψ i 0 `λL α ψ
ÿ k pL α AL ´1 α ´Aq i,k ∇ψ dis i ¨∇ψ dis k " ÿ k f pi ´kq ´dpi, i 0 q α dpk, i 0 q α ´1¯∇ ψ dis i ¨∇ψ dis k " ÿ k:dpk,iqď 1 2 dpi,i 0 q f pi ´kq ´dpi, i 0 q α dpk, i 0 q α ´1¯∇ ψ dis i ¨∇ψ dis k loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon pIq i `ÿ k:dpk,iqą 1 2 dpi,i 0 q f pi ´kq ´dpi, i 0 q α dpk, i 0 q α ´1¯∇ ψ dis i ¨∇ψ dis k loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon pIIq i .
We seek to control the expectation of pIq i and pIIq i in term of E ν r|L γ Dψ| 2 s. For the second term, using (4.184) and the fact that ř n k"1 ψ k " 0, we find

E ν r|pIIq i |s ď Cpβqn κε E ν r|∇ψ dis i | 2 s 1 2 dpi, i 0 q 2´s´α E ν " ÿ k:dpk,iqą 1 2 dpi,i 0 q dpk, i 0 q 2γ |∇ψ k | 2 ı 1 2 ˆ´ÿ k:dpi,kqě 1 2 dpi,i 0 q 1 dpk, 1q 2γ ¯1 2 ď Cpβqn κε E ν r|∇ψ dis i | 2 s 1 2 dpi, i 0 q 3 2 ´s´α`γ E ν r|L γ Dψ| 2 s 1 2 . (4.187)
For the first term, using Cauchy-Schwarz inequality one can first write

|pIq i | ď C dpi, i 0 q ´ÿ k:dpi,kqď 1 2 dpi,i 0 q 1 dpi, kq |∇ψ dis k | 2 ¯1 2 ´ÿ k:dpi,kqď 1 2 dpi,i 0 q 1 dpi, kq 1´2s |∇ψ dis k | 2 ¯1 2 .
Summing this over i yields 

n ÿ i"1 |pIq i | ď C ´n ÿ i"1 ÿ k:dpi,kqď 1 2 dpi,i 0 q 1 dpi, kq dpk, i 0 q 2γ |∇ψ k | 2 ¯1 2 ˆ´n ÿ i"1 1 dpi, i 0 q 2´4pα´γq ÿ k:dpi,kqď 1 2 dpi,i 0 q 1 dpi, kq 1´2s dpk, i 0 q 2γ |∇ψ k | 2 ¯1 2 ď Cn κε ´n ÿ i"1 dpi, i 0 q 2γ |∇ψ i | 2 ¯1 2 ´n ÿ k"1 dpk, i 0 q 2γ |∇ψ k | 2 1 dpk, i 0 q 2´2s´4pα´γq ¯1 2 . ( 4 
pL α AL ´1 α ´Aq i,k ∇ψ dis i ¨∇ψ dis k ıˇˇˇď Cpβqn κε E ν " n ÿ i"1 dpi, i 0 q 2γ |∇ψ i | 2 ı . (4.189) 
Step 4: control on the commutator δ Lα One should now control the commutator δ Lα appearing in (4.186). Let us recall the decay estimate on f ˚h stated in (4.184). By analyzing AM p2q , one can see that the off-diagonals entries of AM typically decay in

E ν rpAMq 2 i,j s 1 2 ď Cn κε dpi, jq 2´s .
As a consequence one may apply Lemma 4.4.1 which tells us that for α P p0, 3 2 ´ss,

E ν rψ dis ¨δp1q Lα ψ dis s ď n ´κ0 ε 2 E ν r|ψ dis | 2 s `Cpβqn κε E ν r|ψ dis | 2 s 1 2 E ν r|ψ| 2 s 1 2 .
From the positivity of AM stated in (4.183) this gives E ν rψ dis pAM `δLα qψ dis s ě Taking ε 0 ą 0 large enough with respect to ε, one obtains the existence of a constant κ ą 0 such that There exist a constant Cpβq locally uniform in β and κ ą 0 such that

n ´κ0 ε 2 E ν r|ψ dis | 2 s ´nκε E ν r|ψ dis | 2 s 1 2 E ν r|ψ| 2 s 1 2 . ( 4 
E ν r|L 3{2´s ψ| 2 s 1 2 `Eν r|L 1´s{2 Dψ| 2 s 1 2 ď Cpβqn κε pE ν rχ 2 n s 1 2 `nE ν rλ 2 s 1 2 q. ( 4 
E ν " n ÿ i"1 dpi, i 0 q 2´s |∇ψ i | 2 ı 1 2 `Eν " n ÿ i"1 dpi, i 0 q 3´2s ψ 2 i ı 1 2 ď Cpβqn κε E ν rχ 2 n s 1 2 .
Proof. Let ψ P L 2 p Ī, H 1 pνqq be the solution of (4.196). One can decompose ψ into ψ " v `w where v, w P L 2 p Ī, H 1 pνqq solve $ & % βMv `Lν v " χ n e i 0 `λpe 1 `. . . `en q on πpM N q v ¨pe 1 `. . . `en q " 0 on πpM N q v ¨⃗ n " 0 on BπpM N q, (4.197) " βMw `Lν w " λpe 1 `. . . `en q on πpM N q w ¨⃗ n " 0 on BπpM N q. (4.198)

For the vector-field v, one may apply Lemma 4.5.6 which gives

E ν " n ÿ i"1 dpi, i 0 q 2´s |∇v i | 2 ı 1 2 `Eν " n ÿ i"1 dpi, i 0 q 3´2s v 2 i ı 1 2 ď Cpβqn κε E ν rχ 2 n s 1 2 (4.199)
as well as

E ν rλ 2 s 1 2 ď Cpβq n 1´κε E ν rχ 2 n s 1 2 . (4.200)
It remains to address Equation (4.198). One can write a mean-field approximation for (4.198) in the form f pe 1 `. . . `en q where f P H 1 pνq is the solution of

βf `1 n1´s L ν f " λ. (4.201)
By integration by parts this implies together with the control (4.200) that

E ν rf 2 s 1 2 ď Cpβq n 2´s´κε E ν rχ 2 n s 1 2 (4.202)
and

E ν r|∇f | 2 s 1 2 ď Cpβq n 3 2 ´s´κε E ν rχ 2 n s 1 2 . (4.203) 
Define w p1q " f ˆpe 1 `. . . `en q and w p2q " w ´wp1q which is solution of " βMw p2q `Lν w p2q " ´βM p2q w p1q on πpM N q w ¨⃗ n " 0 on BπpM N q.

By (4.202), there holds

E ν r|M p2q w p1q | 2 s 1 2 ď Cpβq n 3 2 ´s´κε E ν rχ 2 n s 1 2 .
In particular

E ν r|w| 2 s 1 2 ď Cpβq n 3 2 ´s´κε E ν rχ 2 n s 1 2 (4.204) 
and similarly 

E ν r|∇w|s 1 2 ď Cpβq n 1´s 2 ´κε E ν rχ 2 n s 1 2 . ( 4 

Localization and optimal decay

Let us now adapt the localization argument of Subsection 4.4.4 to derive the near-optimal decay of the solution of (4.175). Having proved Lemma 4.5.6, it remains to control the decay of ψ j for a single j P Ī. To this end, we project the periodized equation (4.175) into a small window centered around j. After isolating an exterior field, one can see that the projected equation has a similar structure as the equation one is starting from. By splitting the external field in a suitable manner, one can then decompose the solution into two parts, that we control separately. βMψ `Lν ψ " χ n e i 0 `λpe 1 `. . . `en q on πpM N q ψ ¨pe 1 `. . . `en q " 0 on πpM N q ψ ¨⃗ n " 0 on BπpM N q.

(4.206)

There exist Cpβq locally uniform in β and κ ą 0 such that for each 1 ď i ď n,

E ν rψ 2 i s 1 2 ď Cpβqn κε 1 `dpi, i 0 q 2´s E ν rχ 2 n s 1 2 , (4.207) 
E ν r|∇ψ i | 2 s 1 2 ď Cpβqn κε 1 `dpi, i 0 q 3 2 ´s 2 E ν rχ 2 n s 1 2 . (4.208)
Proof. We proceed by bootstrapping the decay exponent on solutions of (4.206) and (4.196) for all M satisfying Assumptions 4.5.2. Assume that there exist α ě 3 2 ´s and γ ě 1 ´s 2 with γ ď α such that for M satisfying Assumptions 4.5.2 and all χ n P H ´1pνq, i 0 P t1, . . . , nu, if ψ P L 2 p Ī, H 1 pνqq solves (4.206) or (4.196), then there exists Cpβq and κ ą 0 such that for each 1 ď j ď n,

E ν rψ 2 j s 1 2 ď Cpβqn κε dpj, i 0 q α E ν rχ 2 n s 1 2 , (4.209) 
E ν r|∇ψ j | 2 s 1 2 ď Cpβqn κε dpj, i 0 q γ E ν rχ 2 n s 1 2 . (4.210) 
In addition to (4.209) and (4.210), we will also make a systematic use of the global estimates of Lemma 4.5.6 and Lemma 4.5.7.

Step 1: projection and embedding Let χ n P H 1 pνq, i 0 P t1, . . . , nu and ψ P L 2 p Ī, H 1 pνqq be the solution of (4.206). Fix an index j P t1, . . . , nu and define the window J :" ti P t1, . . . , nu : dpi, jq ď dpi 0 , jq{2u. (4.211)

Let n 0 " |J|. Let ψ J :" pψ i q iPJ P L 2 pJ, H 1 pνqq. Projecting (4.206) onto (4.211) reads

$ & % βM J ψ J `Lν ψ 0 " ´β´ř lPJ c M i,l ψ l ¯iPJ on πpM N q ψ 0 ¨⃗ n " 0 on BπpM N q. (4.212)
Let us operate the series of reductions of Subsection 4.5.1 to reduce the study to a periodic system of size n0 " 2n 0 . One may assume that dpj, i 0 q ě n κε for some large κ ą 0, otherwise the statements (4.207) and (4.208) are straightforward. Let us denote J " t1, . . . , n0 u. We now let d stand for the symmetric distance on J. Consider the Riesz matrix on J truncated at K 0 " tn κε u chosen as in (4.117), namely M 0 " ∇ 2 F pxq P M n0 for some x P R n0 where

F : X n0 P R n0 Þ Ñ ÿ i,jP J:dpi,jqěK 0 g 2 s pdpi, jqqpx i `. . . `xj q 2 .
Consider the block decomposition of M on R n 0 ˆRn 0 ´n0 ,

M " ˆA0 B 0 C 0 D 0 ˙, A 0 P M n 0 pRq. (4.213) 
Let us add and subtract to the first line of (4.212) the quantity B 0 pD 0 `β´1 L ν b I n 0 qC 0 . Defining

M 0 " ˆMJ B 0 C 0 D 0 ˙,
with B 0 , C 0 and D 0 as in (4.213), this allows one to identify ψ J j with ψ 0 j for each j P t1, . . . , n 0 u, where ψ 0 P L 2 p J, H 1 pνqq solves # βM 0 ψ 0 `Lν ψ 0 " V on πpM N q ψ 0 ¨⃗ n " 0 on BπpM N q.

Moreover, the external field V P L 2 p J, H 1 pνqq satisfies V l " 0 if l P tn 0 `1, . . . , n0 u and for each l P t1, . . . , n 0 u,

V l " ´β ÿ iPJ c M i,l ψ i
´ÿ iPJ e l ¨B0 pβD 0 `Lν b I n0 ´n0 q ´1pC 0 e i ψ i q `λ.

Note that M 0 satisfies Assumptions 4.5.2.

Step 2: splitting of the exterior potential Fix ε 1 ą 0 and partition J into K :" tdpj, i 0 q ε 1 u intervals I 1 , . . . , I K of equal size, up to a Opdpj, i 0 q 1´ε 1 q for the last one. For each k P t1, . . . , Ku, let i k be an index in the center of I k . One can split the external potential into V " V p1q `Vp2q , where

V p2q l " V i k if l P I k .
Note that V p2q is piecewise constant on the partition J " Y K k"1 I k . By linearity, ψ 0 can be decomposed into ψ 0 " v `w with v, w P L 2 p J, H 1 pνqq solving

# βM 0 v `Lν v " ř lPJ V
p1q l e l on πpM N q v ¨⃗ n " 0 on BπpM N q, (4.214)

# βM 0 w `Lν w " ř lPJ V
p2q l e l on πpM N q w ¨⃗ n " 0 on BπpM N q. (4.215)

Step 3: study of v By using Cauchy-Schwarz inequality, Equation (4.135), the fact that ř n k"1 ψ k " 0, the estimates (4.176) and (4.177) and Lemma 4.5.2, one may check that for each l P J,

E ν rpV p1q q 2 l s 1 2 ď Cpβqn κε dpj, lq 1´ε 1 dpj, i 0 q 3 2 ´s 1 dpl, BJq 1 2 
`s E ν rχ 2 n s 1 2 .

Note that we have not made use of the bootstrap assumption for this last estimate but rather of the global estimate (4.176). Let us decompose v into v " ř lPJ v plq where for each l P J, v plq P L 2 p J, H 1 pνqq solves

# βM 0 v plq `Lν v plq " V p1q l e l on πpM N q v plq ¨⃗ n " 0 on BπpM N q, (4.216) 
By applying the bootstrap assumption (4.209) in the window J, one can see that for each l P J and j P J,

E ν rpv plq j q 2 s 1 2 ď Cpβqn κε dpj, lq 1´ε 1 ´α dpj, i 0 q 3 2 ´s 1 dpl, BJq 1 2 
`s E ν rχ 2 n s 1 2 .

Summing this over l P J yields

E ν rv 2 j s 1 2 ď Cpβqn κε dpj, i 0 q α`ε 1 E ν rχ 2 n s 1 2 . (4.217)
In a similar manner, using the induction hypothesis (4.210), one also obtains

E ν r|∇v j | 2 s 1 2 ď Cpβqn κε dpj, i 0 q γ`ε 1 E ν rχ 2 n s 1 2 . (4.218)
Step 4: study of w It remains to study the solution w associated to the piecewise constant vector-field V p2q . The argument is inspired from the mean-field approximation of the linear response associated to a linear statistics, see for instance Chapter 3. We will construct an approximation of w by replacing M 0 by the constant Riesz matrix on the window J. For each k P t1, . . . , Ku, we let w pkq P L 2 p J, H 1 pνqq be the solution of

# βM 0 w pkq `Lν w pkq " V p2q i k ř lPI k e l on πpM N q w pkq ¨⃗ n " 0 on BπpM N q.
Let ϕ pkq P L 2 p J, H 1 pνqq be the solution of

βg s ˚ϕpkq `Lν ϕ pkq " V p2q i k ÿ lPI k e l . (4.219) 
We let M p2q 0 be the difference between M 0 and the Toeplitz matrix associated to g s . Let also

η pkq P L 2 p J, H 1 pνqq defined by η pkq i " ϕ pkq i`1 ´ϕpkq i
for each i P J. One shall observe that

βg s ˚ηpkq `Lν η pkq " V p2q i k pe i k`1 ´ei k q.
Using the bootstrap assumption we find that for each i P J,

E ν rpη pkq i q 2 s 1 2 ď Cpβqn κε dpj, i 0 q α E ν rpV p2q i k qs 1 2 , E ν r|∇η pkq i | 2 s 1 2 ď Cpβqn κε dpj, i 0 q γ E ν rpV p2q i k qs 1 2 .
In view of Lemma 4.5.6, we also have

E ν rpV p2q i k qs 1 2 ď Cpβqn κε dpj, i 0 q E ν rχ 2 n s 1 2 .
It thus follows that

E ν rpη pkq i q 2 s 1 2 ď Cpβqn κε dpj, i 0 q α`1 E ν rχ 2 n s 1 2 , (4.220) E ν r|∇η pkq i | 2 s 1 2 ď Cpβqn κε dpj, i 0 q γ`1 E ν rχ 2 n s 1 2 .
Besides, from the global estimate of Lemma 4.5.6, letting S " g s ˚ϕpkq , we have

E ν rS 2 i s 1 2 ď Cpβqn κε dpj, i 0 q E ν rχ 2 n s 1 2 . (4.221)
Let ε 0 P p0, 1q be a small number. One may then write ϕ pkq j as ϕ pkq j " ÿ lP J g ´1 s pdpj, lqqS l " ÿ lP J:dpj,lqądpj,i 0 q 1´ε 0 g ´1 s pdpj, lqqS l looooooooooooooooooomooooooooooooooooooon pIq j `ÿ lP J:dpj,lqďdpj,i 0 q 1´ε 0 g ´1 s pdpj, lqqS l looooooooooooooooooomooooooooooooooooooon pIIq j .

For the first term using (4.221) we find

E ν rpIq 2 j s 1 2 ď Cpβqn κpε`ε 0 q dpj, i 0 q 2´s E ν rχ 2 n s 1 2 .
One may then split the second term into pIIq j " ÿ lP J:dpj,lqďdpj,i 0 q 1´ε 0 g ´1 s pdpj, lqqpS j ´Sl q loooooooooooooooooooooooomoooooooooooooooooooooooon pIIq 1 j `ÿ lP J:dpj,lqądpj,i 0 q 1´ε 0 g ´1 s pdpj, lqqS j loooooooooooooooooooomoooooooooooooooooooon

pIIq 2 j . (4.222) 
In view of (4.221), pIIq 2 j is bounded by

E ν rppIIq 2 j q 2 s 1 2 ď Cpβqn κpε`ε 0 q dpj, i 0 q 2´s E ν rχ 2 n s 1 2 .
For pIIq 1 j we can note that

S l ´Sj " ÿ iP J ϕ pkq i ´1 dpl, iq s ´1 dpj, iq s ¯" ÿ iP Jpϕ pkq i ´ϕpkq j q ´1 dpl, iq s ´1 dpj, iq s ¯.
At this point one may use the bound on the increments of ϕ pkq stated in (4.220), which gives

E ν r|S l ´Sj | 2 s 1 2 ď Cpβqn κε dpl, jqdpj, i 0 q 1´s 1 dpj, 1q α`1 E ν rχ 2 n s 1 2 .
Plugging this into (4.222) leads to E ν rpϕ pkq j q 2 s 1 2 ď Cpβqn κε ´n´ε 0 dpj, i 0 q α `nκε 0 dpj, i 0 q 2´s ¯Eν rχ Let us emphasize that ϕ pkq differs from w pkq .

Step 5: conclusion for M p2q 0 " 0 Assume that M p2q 0 " 0. Then ϕ pkq " w pkq and one may infer from (4.217) and (4.223) that there exists a small η ą 0 such that

E ν rψ 2 j s 1 2 ď Cpβqn κε ´1 dpj, i 0 q α`η `1 dpj, i 0 q 2´s ¯Eν rχ 2 n s 1 2 , E ν r|∇ψ j | 2 s 1 2 ď Cpβqn κε ´1 dpj, i 0 q γ`η `1 dpj, i 0 q 3 2 ´s 2 ¯Eν rχ 2 n s 1 2 .
One concludes after a finite number of steps that

E ν rψ 2 j s 1 2 ď Cpβqn κε dpj, i 0 q 2´s E ν rχ 2 n s 1 2 , (4.225) 
E ν r|∇ψ j | 2 s 1 2 ď Cpβqn κε dpj, i 0 q 3 2 ´s 2 E ν rχ 2 n s 1 2 . (4.226)
Step 6: control of w in the general case We go back to the general case. Let us define e pkq " w pkq ´ϕpkq where ϕ pkq is as in (4.219). Note that e pkq solves βM 0 e pkq `Lν e pkq " ´βM p2q 0 ϕ pkq .

According to the estimates (4.225) and (4.226) of Step 6, the vector-field M p2q 0 ϕ pkq satisfies for each

1 ď i ď n, E ν rppM p2q 0 ϕq pkq i q 2 s 1 2 ď Cpβqn κε dpj, i 0 q 2´s E ν rχ 2 n s 1 2 , E ν r|∇pM p2q 0 ϕq pkq i | 2 s 1 2 ď Cpβqn κε dpj, i 0 q 3 2 ´s 2 E ν rχ 2 n s 1 2 .
It follows from the bootstrap assumptions (4.209) and (4.210) that for each 1 ď i ď n,

E ν rpe pkq i q 2 s 1 2 ď Cpβqn κε ´1 dpj, i 0 q 2´s `1 dpj, i 0 q α`1´s ¯Eν rχ 2 n s 1 2 , E ν r|∇e pkq i | 2 s 1 2 ď Cpβqn κε ´1 dpj, i 0 q s 2 ´s 2 `1 dpj, i 0 q γ`1´s ¯Eν rχ 2 n s 1 2 .
Consequently the same estimate holds for w pkq . Summing this over k yields this existence of a constant κ ą 0 such that

E ν rw 2 j s 1 2 ď Cpβqn κpε`ε 1 q ´1 dpj, i 0 q 2´s `1 dpj, i 0 q α`1´s ¯Eν rχ 2 n s 1 2 , E ν r|∇w j | 2 s 1 2 ď Cpβqn κpε`ε 1 q ´1 dpj, i 0 q 3 2 ´s 2 `1 dpj, i 0 q γ`1´s ¯Eν rχ 2 n s 1 2 .
Combined with (4.217) and (4.218), this improves the induction hypotheses (4.209) and (4.210) provided ε 1 ą 0 is chosen small enough. After a finite number of iterations, one finally gets (4.207) and (4.208).

Step 7: conclusion for equation (4.196) In view of the bootstrap assumption, it remains to consider the solution ψ of (4.196). Let us split ψ as in the proof of Lemma 4.5.7 into ψ " v `w where v, w P L 2 p Ī, H 1 pνqq are solutions of (4.197) and (4.198). By applying the result of Step 6 to v, one can see that there exists a positive η ą 0 such that for each i P t1, . . . , nu,

E ν rv 2 i s 1 2 ď Cpβqn κε ´1 dpi, i 0 q α`η `1 dpi, i 0 q 2´s ¯Eν rχ 2 n s 1 2 , (4.227) 
E ν r|∇v i | 2 s 1 2 ď Cpβqn κε ´1 dpi, i 0 q γ`η `1 dpi, i 0 q 3 2 ´s 2 ¯Eν rχ 2 n s 1 2 . (4.228)
As in the proof of Lemma 4.5.7 one shall split w into w " w p1q `wp2q with w p1q " f ˆpe 1 `. . . `en q, where f is given by (4.201). Let M p2q be the difference between M and the Toeplitz matrix associated to g s . Observe that w p2q solves " βMw p2q `Lν w p2q " ´βM p2q w p1q on πpM N q w ¨⃗ n " 0 on BπpM N q.

Using (4.202) we find that for each i P t1, . . . , nu,

E ν rpM p2q w p1q q 2 i s 1 2 ď Cpβqn κε dpj, i 0 q 2´s E ν rχ 2 n s 1 2 .
By applying the bootstrap assumption to upper bound w p2q , we find that for each i P t1, . . . , nu, E ν rpw p2q i q 2 s 1 2 ď Cpβqn κε ´1 dpj, i 0 q 2´s `1 dpj, i 0 q α`1´s ¯Eν rχ 2 n s 1 2 .

Similarly, applying (4.203), one gets

E ν r|∇w p1q i | 2 s 1 2 ď Cpβqn κε ´1 dpj, i 0 q 3 2 ´s 2 `1 dpj, i 0 q γ`1´s ¯Eν rχ 2 n s 1 2 .
Combining the two last displays with (4.227) and (4.228) improves the recursion hypothesis when ψ is solution of (4.196).

Remark 18. Even though the Lagrange multiplier in (4.206) is of order 1{n, there is no correction of order 1{n in (4.207), contrarily to the case s ą 1. This is related to the fact that u :" H ´1 s pe 1 `. . . `en q satisfies u i " c{n 1´s for each 1 ď i ď n. Note that in the above proof, the Lagrange multiplier is contained in V p2q and the smallness of the associated solution shown in (4.223).

4.5.6 Decay estimate for solutions of (4.116)

In the case n ď N {2, one shall now deduce from Proposition 4.5.8 a control on the solution of (4.116).

Proposition 4.5.9. Let s P p0, 1q. Let i 0 P t1, . . . , nu, χ n P H 1 pνq and ψ P L 2 pI, H 1 pνqq solution of " A ν 1 ψ " χ n e i 0 on πpM N q ψ ¨⃗ n " 0 on BπpM N qq, (

Assume that |i 0 ´n{2| ď n{4. There exist constants Cpβq ą 0, cpβq ą 0, δ ą 0 and κ ą 0 such that for each j P t1, . . . , nu,

E ν rψ 2 j s 1 2 ď Cpβqn κε ´1 dpj, i 0 q 2´s `1 ? n ¯pE ν rχ 2 n s 1 2 `sup |χ n |e ´cpβqn δ q. (4.230)
Proof. The proof is similar to that of Proposition 4.4.5. Let ψ P L 2 pI, H 1 pνqq be the solution of (4.229) and ψ p1q solution of

" Āν 1 ψ p1q " χ n e i 0 on πpM N q ψ p1q ¨⃗ n " 0 on BπpM N q, (4.231) 
Let ψ p2q :" ψ ´ψp1q , which solves " A ν 1 ψ p2q " ´βM ψ p1q on πpM N q ψ p2q ¨⃗ n " 0 on BπpM N q.

Taking the scalar product of the above equation with ψ p2q and integrating by parts under ν yields

E ν r|ψ p2q | 2 s ď Cpβqn κε E ν rψ p2q ¨M ψ p1q s. (4.232) 
We claim that uniformly in 1 ď j ď n,

E ν rψ p2q ¨M ψ p1q s ď Cpβq n 1´κε E ν r|ψ p2q | 2 s 1 2 E ν rχ 2 n s 1 2 . (4.233)
Let A be the good event (4.120). Fix 1 ď j ď n. One can split the quantity pM ψ p1q q ¨ej into pM ψ p1q q ¨ej " ÿ k:dpk,BIqďn{4 

1 dpk, i 0 q 2´s 1 dpk, BIq s 2 E ν rpψ p2q j q 2 s 1 2 E ν rχ 2 n s 1 2 ď CpβqE ν rpψ p2q j q 2 s 1 2 n 1´s 2 ´κε dpj, BIq s 2 E ν rχ 2 n s 1 2 .
For the second quantity, we can write

pIq j " ÿ k:dpk,BIqąn{4
e j ¨M ppe k ´ei 0 qψ p1q k q `ÿ k:dpk,BIqďn{4 e j ¨M pe i 0 ψ p1q k q. (4.234)

For the first term of the last display, using the bound on the increments of M given in (4.253), we find that

E ν " 1 A ψ p2q j e j ¨´ÿ k:dpk,BIqąn{4 M ppe k ´ei 0 qψ p1q k q ¯ı ď Cpβqn κε dpj, BIq s 2 ÿ k:dpk,BIqąn{4 1 dpi 0 , kq 1´s 1 n 1`s 2 E ν rpψ p2q j q 2 s 1 2 E ν rχ 2 n s 1 2 ď CpβqE ν rpψ p2q j q 2 s 1 2 n 1´s 2 `κε dpj, BIq s 2 E ν rχ 2 n s 1 2 .
(4.235)

Because ψ p1q ¨pe 1 `. . . `en q " 0, the second term of (4.234) satisfies 

E ν " 1 A ψ p2q j e j ¨´ÿ k:dpk,BIqąn{4 M pe i 0 ψ p1q k q ¯ı ď CpβqE ν rpψ p2q j q 2 s 1 2 n 1´κε E ν rχ 2 n s 1 2 . ( 4 
E ν r1 A ψ p2q ¨M ψ p1q s ď CpβqE ν r|ψ p2q | 2 s 1 2 n 1´κε E ν rχ 2 n s.
Finally, inserting the maximum principle of Proposition 4.3.6 we obtain

E ν r1 A c ψ p2q ¨M ψ p1q s ď Cpβqn κε sup |χ n |E ν r|ψ p2q | 2 s 1 2 E ν r1 A c |M | 2 s 1 2 ď Cpβqe ´cpβqn δ sup |χ n |E ν r|ψ p2q | 2 s 1 2 .
Inserting the last displays into (4.232) we find

E ν r|ψ p2q | 2 s ď Cpβq n 1´κε pE ν rχ 2 n s `e´cpβqn δ sup |χ n | 2 q. (4.237)
In particular, for each 1 ď j ď n, there holds

E ν rpψ p2q j q 2 s ď Cpβq n 1´κε pE ν rχ 2 n s `e´cpβqn δ sup |χ n | 2 q
and the estimate (4.230) follows. from the decay estimate of Propositions 4.5.8 and 4.5.9. Note that for gaps N px i`1 ´xi q and N px j`1 ´xj q at macroscopic distance, one may directly apply Proposition 4.5.8, whereas for gaps at small microscopic or microscopic distance, one can import the result of Proposition 4.5.9, which yields (4.5) by coosing n large enough with respect to dpi, jq.

Uniqueness of the limiting measure

In this section we show that the sequence of the laws of microscopic processes converges, in a suitable topology, to a certain point process Riesz s,β , as claimed in Theorem 4.1.3. The existence of an accumulation point being a routine argument, Theorem 4.1.3 is in fact a uniqueness result.

To establish uniqueness of the accumulation point, one should prove that in a certain sense, the sequence of the microscopic point processes forms a Cauchy sequence. In the following subsection, we further explain the strategy of proof and reduce the problem to a statement on the decay of correlations.

Reduction to a correlation estimate

To prove Theorem 4.1.4, we seek to compare the two following quantities:

E P g N,β
rF px 1 , . . . , x n qs and E P g N 1 ,β rF px 1 , . . . , x n qs, with F : R N Ñ R smooth, (

where 1 ď n ď N 1 ď N . Let us denote I " t1, . . . , nu and π : D N Ñ πpD N q the projection on the coordinates px 1 , . . . , x n q. Let also I 1 " t1, . . . , nu and π 1 : M N Ñ πpM N q the projection on the coordinates px 1 , . . . , x n q. We claim that if F depends on variables in the bulk of t1, . . . , nu, then the expectation of F under P g N,β and P g N 1 ,β approximately coincide, whenever N and N 1 are chosen large enough. We will draw an exterior configuration y " py n`1 , . . . , y N q P π I c pD N q from P N,β and an exterior configuration z " pz n`1 , . . . , z N 1 q P π I c pD N 1 q from P N 1 ,β and compare the conditioned measures P N,β p¨| yq and P N 1 ,β p¨| zq. Let us slightly modify the measures P N,β and P N 1 ,β by adding the following quantity to the Hamiltonian:

F " n ÿ i"1 θ ´N px i`1 ´xi q n ε ¯. (4.239) 
Define F g such that F " F g ˝Gap N and the constrained measures

dQ N,β 9e ´βF dP N,β dQ N 1 ,β 9e ´βF dP N 1 ,β (4.240 
)

dQ g N,β 9e ´βF g dP g N,β dQ g N 1 ,β 9e ´βF g dP g N 1 ,β . (4.241) 
We say that a configuration y " py n`1 , . . . , y N q P π I c pD N q is admissible if

|N py i`k ´yi q ´k| ď Cn ε k s 2 for each n `1 ď i, i `k ď N (4.242)
and that y P π I c pD N q and z P π I c pD N 1 q are compatible if N ´N py N ´yn`1 q " N 1 ´N pz N ´zn`1 q. (4.243)

Given y P π I c pD N q and z P π I c pD N 1 q two admissible and compatible configurations, we define the conditioned measures µ y n " Q N,β p¨| yq and µ z n " Q N,β p¨| zq. (4.244)

Letting

A n " tpx 1 , . . . , x n q P πpD n q : N px n ´x1 q ď N ´N py N ´yn`1 qu, we can write dµ y n pxq9e ´βpHnpxq`H n,N px,yq`Fpxqq 1 An pxqdx (4.245)

dµ z n pxq9e ´βpHnpxq`H n,N 1 px,zq`Fpxqq 1 An pxqdx, (4.246) 
where H n,N px, yq stands for the interaction between x and y. To compare µ y n and µ z n , a first possibility is to transport one measure onto the other and to study the decay of the solution of the Monge-Ampere equation. Instead, we interpolate between µ y n and µ z n and consider a continuous path µptq in the space of probability measures on πpD N q. There are several ways of interpolating, one of them consisting in running the Langevin dynamics as in [START_REF] Armstrong | C 2 regularity of the surface tension for the ∇ϕ interface model[END_REF]. A simple way of proceeding is to consider a convex combination of H n,N and H n,N Observe that µp0q " µ y n and µp1q " µ z n . Let G : R n Ñ R be a measurable bounded function. Define

h : t P r0, 1s Þ Ñ E µptq rGs.
It is straightforward to check that h is smooth and that for all t P p0, 1q, h 1 ptq " β Cov µptq rG, H n,N p¨, yq ´Hn,N p¨, zqs.

Integrating this between 0 and 1, we obtain the following integral representation of the difference of the expectations of G under µ n and ν n : Lemma 4.6.1. Let G : R n Ñ R be a measurable bounded function in the form G " r G ˝ϕ where ϕ : X n P R n`1 Þ Ñ pN px 2 ´x1 q, . . . , N px n ´xn´1 qq. Let also µptq be the measure defined in (4.248), νptq " ϕ#µptq, ỹ " Gap N ´npyq, z " Gap N ´npzq and α n P p0, N 1 q. We have

E µ z n rGs " E µ y n rGs `β ż 1 0 Cov νptq r r G, H g n,N p¨, ỹq ´Hg n,N p¨, zqsdt. (4.249) 
We will consider functions r G depending on a small number of coordinates in the bulk of t1, . . . , nu. Let us emphasize that B i pH g n,N p¨, ỹq ´Hg n,N p¨, zqq typically decays in dpi, BIq ´s 2 under νptq. One should therefore prove that the decay of correlations under νptq is fast enough in order to compensate the long-range of the interaction and conclude that the covariance term in (4.249) is small. One shall apply the general result of Proposition 4.4.5 to the measure µptq. This first requires to prove that µptq satisfies Assumption 4.4.1. The main task is to obtain rigidity estimates under µptq.

Rigidity estimates under the perturbed measure

We control the expectation and the fluctuations of gaps under the measure µptq. Lemma 4.6.2. Let s P p0, 1q. Let 1 ď n ď N ď N 1 with N " n 2 s . Let y P π I c pD N q and z P π I c pD N 1 q be two admissible and compatible configurations in the sense of (4.242) and (4.243). Let µptq be the probability measure (4.248). There a exists constants κ ą 0, Cpβq ą 0 and cpβq ą 0 locally uniform in β such that µptqpN px i`1 ´xi qq ě n κε q ď Cpβqe ´cpβqn δ , for each 1 ď i ď n, (4.250)

µptqp|N px i`k ´xi q ´k| ě n κε k s 2 q ď Cpβqe ´cpβqn δ , for each 1 ď i ď i `k ď n. 

1 :" β∇ 2 F g `βA1 A c `β∇ 2 pH g n pxq `Eptqq1 A ´βBpD `β´1 L νptq b I n q ´1C `Lνptq b I n , M ptq : β∇ 2 pH g n `Eptqq1 A c ´βA1 A c `βBpD `β´1 L νptq b I n q ´1C
, where A, B, C, D are as in (4.117). In view of Lemmas 4.6.2 and 4.5.2, for s P p0, 1q, there exists Cpβq ą 0, cpβq ą 0, δ ą 0 and κ ą 0 such that for each 1 ď i, j, l ď n, η, ϕ P L 2 pνptqq, E νptq rpϕe j q¨M ptqpηe i qs 

Estimate on the main equation

It remains to study the decay of the solution of the Helffer-Sjöstrand equation associated to νptq when the source vector-field is localized on a small number of coordinates in the bulk of t1, . . . , nu.

To this end we study the difference between the solution of the main equation ψ and the solution ψ p1q of the approximate equation (4.256). By convexity, we obtain a satisfactory bound on ψ and conclude that the correlation under νptq between a gap in the bulk of t1, . . . , nu and the interaction energy Eptq tends to 0 as n tends to infinity. `n´1 2 1 sPp1,`8q q.

Proof. Let s P p0, 1q. Let ψ P L 2 pI, H 1 pνptqqq be the solution of (4.258). Let ψ p1q P L 2 pI, H 1 pνptqqq be the solution of $ & % βMψ p1q `Lνptq ψ p1q " χ n e i 0 `λpe 1 `. . . `en q on A n ψ p1q ¨pe 1 `. . . `en q " 0 on A n ψ p1q ¨⃗ n " 0 on BA n .

Set ψ p2q " ψ ´ψp1q P L 2 pI, H 1 pνptqqq. One can observe that ψ p2q is solution of

$ &
% β∇ 2 pH g n ptq `Fg qψ p2q `Lνptq ψ p2q " ´βM ptqψ p1q `λpe 1 `. . . `en q on A n ψ p2q ¨pe 1 `. . . `en q " 0 on A n ψ p2q ¨⃗ n " 0 on BA n .

Using ˝π´1 p¨| A n q being uniformly log-concave with constant c " βn ´εps`2q on the convex set A n , it follows from the Barky-Emery criterion (see Lemma 4.3.8) that Q g N,β ˝π´1 p¨| A n q satisfies a Log-Sobolev inequality with constant 2c ´1. In particular,

EntrP g N,β ˝π´1 p¨| A n q | Q g N,β
˝π´1 p¨| A n qs ď 2c ´1E P N,β r|∇F| 2 s.

Using Theorem 4.2.1, one can upper bound the relative entropy by

EntrP g N,β ˝π´1 p¨| A n q | Q g N,β
˝π´1 p¨| A n qs ď Cpβqe ´cpβqn δ , for some δ ą 0.

It follows from the Pinsker inequality that

TVpP g N,β ˝π´1 p¨| A n q, Q g N,β ˝π´1 p¨| A n qq ď Cpβqe ´cpβqn δ .
Similarly we find

TVpP g N 1 ,β ˝π´1 p¨| A n q, Q g N 1 ,β ˝π´1 p¨| A n qq ď Cpβqe ´cpβqn δ .
One may therefore replace the expressions in (4.260) and (4.261) by

E P g N,β rG ˝π | A n s " E Q g N,β
rG ˝π | A n s `Oβ psup |G|e ´cpβqn δ q, (4.262)

E P g N 1 ,β rG ˝π | A n s " E Q g N 1 ,β rG ˝π | A n s `Oβ psup |G|e ´cpβqn δ q. (4.263)
Fix two exterior admissible (in the sense of (4.242)) configurations y P π I c pD N q and z P π I c pD N 1 q and let ỹ " Gap N ´npyq and z " Gap N ´npzq. Let µptq (" µpt, y, zq) be interpolating between µ y n and µ z n as in (4.248) and let νptq be the push-forward of µptq be X n P πpD n q Þ Ñ pN px 2 x1 q, . . . , N px n ´xn qq. Assume that G depends only on x i for i P J :" tt n 2 u ´K, . . . , t n 2 u `Ku. For each i P J, let ψ pt,iq P L 2 pI 1 , H 1 pνptqqq be the solution of $ ' & ' % βA νptq 1 ψ pt,iq " pB i Gqe i on A n ψ pt,iq ¨pe 1 `. . . `en q " 0 on A n ψ pt,iq ¨⃗ n " 0 on BA n .

By applying the estimates of Lemmas 4.6. We are now ready to conclude the proof of the uniqueness of the limiting measure. We will consider random variables in the space of configurations on R and one should first define a σalgebra on it. We let ConfpRq be the set of locally finite and simple point configurations in R. Given a Borel set B Ă R, we denote N B : ConfpRq Ñ N the number of points lying in B. We then endow ConfpRq with the σ-algebra generated by the maps tN B : B Borelu. We call point process a probability measure on ConfpRq. We then say that a sequence P N of point processes converges to P for the local topology on ConfpRq whenever for any bounded, Borel and local function f : ConfpRq Ñ R, the following convergence holds:

lim nÑ8 E P N rf s " E P rf s.
Proof of Theorems 4.1.3 and 4.1.4.

Step 1: compactness. Let px 1 , . . . , x N q distributed according to P N,β . Denote

Q N " Law ˜N ÿ i"1 δ N x i 1 |x i |ă 1 4 ¸P PpConfpRqq.
Let us show that the sequence pQ N q has an accumulation point in the local topology on PpConfpRqq. We follow the strategy of [START_REF] Dereudre | DLR equations and rigidity for the sine-β process[END_REF]Prop. 2.9]. For all R ą 0 denote Λ R " r´R, Rs and for all Q P PpConfpRqq, Q R the law of C| Λ R when C is distributed according to Q. For two point processes P and Q, define the relative specific entropy of P with respect to Q by

EntrP | Qs " lim sup RÑ8 EntrP R | Q R s.
Let Π be a Poisson point process on R. According to [START_REF] Georgii | Large deviations and the maximum entropy principle for marked point random fields[END_REF]Prop. 2.6], the level sets of Entr¨| Πs are sequentially compact for the local topology. As a consequence it is enough to check that sup

N PN ˚sup KPN ˚1 K EntrQ N K , Π Λ K s ă 8. (4.265)
Let B K,Λ K be a Bernoulli process on Λ K . Following [START_REF] Dereudre | DLR equations and rigidity for the sine-β process[END_REF], one can split the relative entropy into

EntrQ N K | Π Λ K s " ż log dQ N K dB K,λ K dQ N K `ż log dB K,Λ K dΠ Λ K dQ N K " ´log K N,β pΛ K q ´βE Q N K " ÿ x i ‰x j PC g s px i ´xj q ı ´log ˆe´N N N N ! ˙, (4.266) 
where

K N,β pΛ K q " ż exp ´´β ÿ x i ‰x j PCXΛ K g s px i ´xj q ¯1 N 4 D N pX N q dX N .
From the rigidity estimates of Theorem 4.2.2, we have

log K N,β pΛ K q " ´βE Q N K " ÿ x i ‰x j PCXΛ K g s px i ´xj q ı `Oβ pKq.
Inserting this into (4.266), we deduce that (4.265) holds. It follows that pQ N q has an accumulation point in the local topology.

Step 2: uniqueness.

Let us now prove that this accumulation point is unique. Let P, Q P PpConfpRqq be two accumulation points of pQ N q in the local topology. Note that P and Q are necessarily translation invariant. Let k 0 ě 1. Set F : C P ConfpRq Þ Ñ Gpz 2 ´z1 , . . . , z k 0 ´z1 q, with G : R k 0 Ñ R smooth. In view of Proposition 4.6.5, we can see that

E P rF s " E Q rF s.
This implies that for each k 0 P N, the law of pz 2 ´z1 , . . . , z k 0 ´z1 q under P equals the law of pz 2 ´z1 , . . . , z k 0 ´z1 q under Q. Since P and Q are translation invariant, we conclude that P " Q. 

Proof of the hyperuniformity result

Having already established in Chapter 3 that the N -Riesz gas is hyperuniform and that N px K ´x1 q is of order OpK s q under P N,β with a Gaussian asymptotic behavior, it is now immediate using the convergence result of Theorem 4.1.3 to prove that Riesz s,β is also hyperuniform.

Proof of Theorem 4.1.5. Let 1 ď K ď N 2 . Set ℓ N " N K . Let F N " pN ℓ N q ´s 2 ˜N ÿ i"1 1 p0,ℓ N qpx i q ´ℓN ¸. Let Z " N p0, σ 2 q with σ 2 " 1 β π 2 s cotan ´π 2 s ¯.
Let η : R Ñ R such that |η We deduce that under the process Riesz s,β , the sequence K ´s 2 pz K ´z1 ´Kq converges in distribution to Z " N p0, σ 2 q. Moreover by Chapter 3, Var P N,β rF N s " VarrZs `oN pK s q, with a o N pK s q uniform in N . Proceeding as above, one easily prove the variance estimate (4.10).

Proof of the repulsion estimate

Proof of Proposition 4.1.6. Let α P p0, s 2 q. We have proved in [52, Lemma 4.5] that there exist two constants Cpβq ą 0 and cpβq ą 0 locally uniform in β such that for each i P t1, . . . , N u and ε ą 0 small enough, P N,β pN px i`1 ´xi q ď εq ď Cpβqe ´cpβqε ´α .

Since pP g

N,β q converges to Riesz s,β in the local topology, we can pass the above inequality to the limit as N Ñ 8 and we obtain P Riesz s,β pz i`1 ´zi ď εq ď Cpβqe ´cpβqε ´α .

Appendix

Discrete Gagliardo-Nirenberg inequality

The Gagliardo-Nirenberg inequality, originally proved independently in [START_REF] Gagliardo | Proprieta di alcune classi di funzioni in piu variabili[END_REF][START_REF] Nirenberg | On elliptic partial differential equations[END_REF], is an interpolation inequality between different weak derivatives in L p spaces. The result was at first stated for derivatives of integer order and then extended to derivatives of fractional order in the rather recent paper [START_REF] Brezis | Gagliardo-Nirenberg inequalities and non-inequalities: the full story[END_REF]. The main result of [START_REF] Brezis | Gagliardo-Nirenberg inequalities and non-inequalities: the full story[END_REF] gives sufficient and necessary conditions on the orders and exponents for an interpolation inequality to hold on R n . For shortcut, we only present one of the cases where the interpolation inequality is valid. Lemma 4.7.1 (Brezis-Mironescu). Let 1 ď p, p 1 , p 2 ď 8. Let s 1 , s 2 ě 0 and θ P p0, 1q such that

s 1 ď s 2 , s 0 " θs 1 `p1 ´θqs 2 , 1 p " θ p 1 `1 ´θ p 2 .
Assume that s 2 ă 1. Then, there exists a constant C ą 0 depending on p 1 , p 2 , s 1 , s 2 , θ such that for all u P W s 1 ,p 1 pRq X W s 2 ,p 2 pRq, }u} W s 0 ,p pRq ď C}u} θ W s 1 ,p 1 pRq }u} 1´θ W s 2 ,p 2 pRq .

By taking a periodic function of period 1 on p´n, nq, one can show by letting n tend to infinity that Lemma 4.7.1 also holds for functions defined on the circle.

Well-posedness results

The proofs of Propositions 4. By density, it then follows that

" L ν ϕ " G ´Eν rGs on M N ∇ϕ ¨⃗ n " 0 on BM N .
To prove that ∇ϕ satisfies the Helffer-Sjöstrand equation (4.49), we need to adapt the integration by parts formula (4.270). One may easily show that for all v P C 8 pM N q such that ∇v ¨⃗ n " 0 on BD N and ψ P L 2 pt1, . . . , N u, C 8 pM N q such that ψ ¨pe 1 `. . . `eN q " 0, there holds

E ν rψ ¨∇vs " E ν rvp´∇H g ¨ψ `divψqs . (4.274) 
Let w P L 2 pt1, . . . , N u, C 8 c pM N qq such that ř N i"1 w i " 0. In view of (4.274), E ν rw ¨∇Gs " E ν rpG ´Eν rGsqp´∇H g ¨w `divwqs " E ν rL ν ϕp´∇H g ¨w `divwqs.

Integrating part the last equation gives E ν rw ¨∇Gs " E ν r∇ϕ ¨∇p´∇H g ¨w `divwqs " E ν rw ¨pL ν ∇ϕ `∇2 H g ∇ϕqs.

By density, we deduce that there exists a Lagrange multiplier λ P H ´1pνq such that ∇ 2 H g ∇ϕ `Lν ∇ϕ " ∇G `λpe 1 `. . . `eN q.

Recalling that ∇ϕ ¨⃗ n " 0 on BM N , this yields the existence of a solution to (4.49). Since ř N i"1 B i ϕ " 0, taking the scalar product of the above equation with e 1 `. . . `eN yields λ " 1 N pe 1 `. . . `eN q ¨∇2 H g ∇ϕ.

The uniqueness of the solution to (4.49) is straightforward. The proof of the variational characterization comes from arguments similar to the proof of Proposition 4.3.1.

Local laws for the HS Riesz gas

Lemma 4.7.2. Let s ą 1. For all ε ą 0 small enough, there exists δ ą 0 such that P N,β pN px i`1 ´xi q ě k ε q ď Cpβqe ´cpβqk δ , for each 1 ď i ď N . For all ε ą 0 small enough, there exists δ ą 0 such that

P N,β p|N px i`k ´xi q´k| ě k 1 2 `εq ď Cpβqe ´cpβqk δ , for each 1 ď i ď N and 1 ď k ď N 2 . (4.276)
Proof. We consider the case 1 ă s ă 2. The case s ě 2 is simpler and will be sketched afterwards.

One shall proceed by a bootstrap on scales. Consider the statement Ppkq: for all ε ą 0, there exists δ ą 0 such that P N,β pN px i`k ´xi q ě k 1`ε q ď Cpβqe ´cpβqk δ . (4.277)

Assume that PpKq holds. Let us prove that PpK 1´α 0 q holds for α 0 P p0, 1q small enough. Let k " tK 1´α 0 u. Let i P t1, . . . , N u and I " tj P t1, . . . , N u, dpj, iq ď ku.

Let θ be a smooth cutoff function θ : R `Ñ R `such that θpxq " x 2 for x ą 1, θ " 0 on r0, 1 2 s and θ 2 ě 0 on R `. For γ ą 0 to determine later define the forcing

F " ÿ i‰jPI θ ´N px j ´xi q K 1`γ ānd the constrained probability measure dQ N,β " 1 K N,β
e ´βF dP N,β .

One can write P N,β pN px i`k ´xi q ě k 1`δ q ď Q N,β pN px i`k ´xi q ě k 1`δ q `TVpP N,β , Q N,β q. By choosing γ ą δp1 ´α0 q, one can show that TVpP N,β , Q N,β q ď Cpβqe ´cpβqk 2δ . Using Lemma 4.3.9, one has

log E Q N,β re tN px i`k ´xi q s ď tE Q N,β rN px i`k ´xi qs `t2 2β K s`γ , for all t P R.
Moreover with computations similar to Chapter 3, we find E Q N,β rN px i`k ´xi qs " k `Oβ p1q. Combining the two last display we find

Q N,β pN px i`k ´xi q ě k 1`δ q ď Cpβqe ´cpβqk s`γ 1´α 0 ´2p1`δq .
The exponent in the right-hand side of the last display is strictly smaller than ´2δ if and only if γ ă 2p1 ´α0 q ´s.

Since s ă 2, there exists α 0 ą 0 small enough such that δp1 ´α0 q ă 2p1 ´α0 q ´s.

One concludes that (4.277) holds for each k ě K 1´α 0 , for some constant α 0 depending only on s. After a finite number of steps, one concludes that Pp1q holds. The estimate 4.275 immediately follows.

For s ě 2, the proof of Lemma 4.7.2 can be run without making use of convexity arguments. One can establish (4.275) by showing that the log-Laplace transform of the energy of K consecutive points is of order K. This can be done recursively by controlling the interaction energy oft two intervals of points. For this short-range model, one can control this interaction by shrinking configurations as in [START_REF] Douglas | Large deviation principles for hypersingular riesz gases[END_REF]Proof of Prop. 4.4].

Let us now justify (4.275). One can constrain small gaps and define a new measure uniformly logconcave in gap coordinates. By rewriting N px i`k ´xi q into N px i`k ´xi q " ř i`k´1 j"i N px j`1 ´xj q, one easily concludes the proof of (4.276).

Local laws for the interpolating measure

We provide some useful rigidity estimates for the conditioned measure (4.244) and adapt the proofs of Chapter 3 which are based on techniques of [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF].

Proof of Lemma 4.6.2. Let y P π I c pD N q and z P π I c pD N q be as in the statement of Lemma 4.6.2 and µptq as in (4.248). The first bound (4.250) is immediate in view of the forcing (4.239). Let us prove (4.251).

Step 1: control of the fluctuations Let i P t1, . . . , nu and k P t1, . . . , N {2u such that 1 ď i `k ď n. We wish to prove that for ε 1 ą 0 large enough with respect to ε, there exists δ ą 0 depending on ε 1 ą 0 such that µptq ´|N px i`k ´xi q ´Eµptq rN px i`k ´xi qs| ě k s 2 `εn ε ¯ď Cpβqe ´cpβqk δ .

(4.278)

We will make use of a method of [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF], which consists in splitting decomposing the gap N px i`k ´xi q into a sum of block average statistics. For each i P J c , we define I k piq be an interval of integers of cardinal k `1 such that i P I k piq and define the block average

x rks i " 1 k `1 ÿ jPI k piq x j .
Let α ą 0 be a small number, α " 1 p with p P N ˚. Since

x r0s i " x i , one can break x i ´xrks i into N px i ´xrks i q " p´1 ÿ m"0 N px rtk mα us i ´xrtk pm`1qα us i q. (4.279) 
For each m P t0, . . . , p ´1u, denote G m " N px rtk mα us i ´xrtk pm`1qα us i q and I m " I tk pm`1qα u piq. We study the fluctuations of G m . Because G m depends only on the variables in I m and since ř iPIm B i G m , one can use the Gaussian concentration result for divergence free test-functions stated in Lemma 4.3.9. Fix m P t0, . . . , p ´1u and introduce the coordinates x " px i q iPIm and y " px i q iPIzIm on πpD N q. The measure µptq satisfies the assumptions of Lemma 4.3.9 in the window I m . It can indeed be written dµptq " e ´βHpx,yq 1 πpD N qpx,yq dxdy with Hpx, yq " H 1 pxq `H2 px, yq where H 2 is convex and

H 1 satisfies ř iPIm B i H 1 " 0 with ∇ 2 H 1 ě N 2 k ´pm`1qαps`2´εq .
As a consequence, one may use Lemma 4.3.9, which entails

log E µptq re tGm s ď tE µptq rG m s `t2 2β N ´2k pm`1qαps`2`εq |I m | ´1 sup |∇G m | 2 ď tE νptq rG m s `t2 2β 
k αps`1q`msα`εps`2q .

We conclude that for ε 1 large enough with respect to ε, there exists δ ą 0 depending on ε 1 such that

µptqp|G m ´Eµ rG m s| ě k s 2 `ε1 q ď Cpβqe ´cpβqk δ .
Inserting this in (4.279), one deduces that for ε 1 large enough with respect to ε, there exists δ ą 0 depending on ε 1 such that µptqp|N px i ´xrks i q ´Eµptq rN px i ´xrks i qs| ě k s 2 `εq ď Cpβqe ´cpβqk δ . (4.280)

One can finally check that the variable N px rks i`k ´xi`k q verifies the same estimate: proceeding as for G m with m " p ´1, we obtain that for ε 1 ą 0 large enough with respect to ε, there exists δ ą 0 depending on ε Let us control the first sum, say the terms at the right-hand side of I. Fix k P I. By Taylor expansion, one may write

N 1 {2 ÿ j"n`1 ´1 |N px k ´yj q| s ´1 |N px k ´zj q| s ¯" N 1 {2 ÿ j"n`1 g1 
s pN px k ´yj qqN py j ´zj q `pIq k (4.285) transition temperature, vortices are bound into dipole pairs (i.e. pairs of vortices with opposite winding numbers), while above the transition temperature, vortices are like "free particles".

In the original papers, as well as in subsequent research, it is expected that in the XY model (or its simplified variant, the Villain model) the energy of the system can be split into a vortex-gas energy and a spin-wave contribution, corresponding to the fluctuations around the vortex configurations [START_REF] Kosterlitz | The critical properties of the two-dimensional xy model[END_REF][START_REF] Kosterlitz | Ordering, metastability and phase transitions in two-dimensional systems[END_REF][START_REF] Kennedy | The xy model has long-range order for all spins and all dimensions greater than one[END_REF]. This statement turns out to be delicate to prove rigorously, and this has attracted the attention of researchers, even recently [START_REF] Garban | Statistical reconstruction of the gaussian free field and kt transition[END_REF][START_REF] Garban | Quantitative bounds on vortex fluctuations in 2d coulomb gas and maximum of the integer-valued gaussian free field[END_REF].

Once the spin-wave contribution can be separated, the model reduces to a (2D) gas of dipoles with logarithmic interaction, which can also be called a two-component plasma, or (two-component) Coulomb gas. The Coulomb gas is thus a fundamental model on which to understand the BKT transition, as seen in the original paper of Kosterlitz [START_REF] Kosterlitz | Ordering, metastability and phase transitions in two-dimensional systems[END_REF].

The lattice (two-component) Coulomb gas was studied in the seminal work of Fröhlich-Spencer [START_REF] Jürg | The Kosterlitz-Thouless transition in two-dimensional abelian spin systems and the coulomb gas[END_REF] via the sine-Gordon representation and expansions into multipole ensembles, allowing to analyze the decay rate of correlation functions, thus giving the first proof of the BKT transition, see also [START_REF] Mcbryan | On the decay of correlations in SO(n)-symmetric ferromagnets[END_REF][START_REF] Bietenholz | Berezinskii-Kosterlitz-Thouless transition and the Haldane conjecture: Highlights of the physics nobel prize[END_REF].

The Coulomb gas may as well be studied in the continuum rather than on a lattice, and is expected to exhibit the same transition between a situation with free vortices and a situation with vortices of opposite sign bound in dipole pairs. There is a subtlety however, due to the fact that this "dipole transition" should happen at inverse temperature β " 2 in the units we use, while the KT transition between exponentially and algebraically decaying correlations is expected to happen at β " 4 in this setting. Also, it is a little delicate to directly compare the situation of the Coulomb gas in the continuum where one takes a fixed number N of charges of each sign, corresponding to a canonical ensemble, and the situation of the XY model, corresponding to a grand-canonical ensemble where the number of vortices is not prescribed.

Here we will focus on the continuum Coulomb gas or "two component plasma" in the canonical case and we will provide a proof of the "dipole transition" based simply on the analysis of dipoles pairs via large deviations techniques that allow to weigh their energy and entropy costs, in some sense very close to the arguments and computations found in the original papers [START_REF] Kosterlitz | Ordering, metastability and phase transitions in two-dimensional systems[END_REF][START_REF] Kosterlitz | The critical properties of the two-dimensional xy model[END_REF] and also in the seminal paper [START_REF] Gunson | Two-dimensional neutral Coulomb gas[END_REF].

Model

We first consider the continuum Coulomb gas, defined as an ensemble with configurations pX N , Y N q (with X N " px 1 , . . . , x N q P Λ N and Y N " py 1 , . . . , y N q P pΛ N of N positive and N negative particles (or vortices with degrees `1 or ´1) in the blown-up cube Λ " r0, ? N s 2 of R 2 , having energy

FpX N , Y N q " 1 2 ˜ÿ i‰j ´log |x i ´xj | ´log |y i ´yj | `2 ÿ i,j log |x i ´yj | ¸, (5.1) 
and consider the (canonical) ensemble

1 Z N,β exp p´βFpX N , Y N qq dX N dY N , (5.2) 
with dX N and dY N the uniform Lebesgue measures on Λ N . This model was studied in particular in [START_REF] Gunson | Two-dimensional neutral Coulomb gas[END_REF][START_REF] Deutsch | Equilibrium properties of a two-dimensional coulomb gas[END_REF], and more recently in [START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF]. The integral defining Z N,β diverges as soon as β ě 2, due to the fact that the energy of very short dipoles diverges in a nonintegrable way, which corresponds to the dipole transition. The ensemble (5.2) was thus studied only in the regime β ă 2 in the aforementioned works [START_REF] Gunson | Two-dimensional neutral Coulomb gas[END_REF][START_REF] Deutsch | Equilibrium properties of a two-dimensional coulomb gas[END_REF][START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF]. The latest results of [START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF], building on important insights from [START_REF] Gunson | Two-dimensional neutral Coulomb gas[END_REF] and techniques developed for the study of the one-component Coulomb gas in [START_REF] Sandier | 2D Coulomb gases and the renormalized energy[END_REF][START_REF] Rougerie | Higher-dimensional Coulomb gases and renormalized energy functionals[END_REF][START_REF] Leblé | Large deviation principle for empirical fields of log and Riesz gases[END_REF][START_REF] Leblé | Fluctuations of two dimensional coulomb gases[END_REF], show an expansion of log Z N,β as N Ñ 8, as well as a large deviations principle on point processes, which characterize a situation with free interacting particles, with competition between the attraction of opposite charges and the entropic repulsion. This corresponds to the situation of temperature larger than the critical temperature.

In order to study such a system for β ě 2, a truncation of the interaction is needed, as already recognized in [START_REF] Kosterlitz | The critical properties of the two-dimensional xy model[END_REF][START_REF] Kosterlitz | Ordering, metastability and phase transitions in two-dimensional systems[END_REF] and analyzed in [START_REF] Jürg | The Kosterlitz-Thouless transition in two-dimensional abelian spin systems and the coulomb gas[END_REF], see also the discussion in [START_REF] Hubert Lacoin | A probabilistic approach of ultraviolet renormalisation in the boundary sine-gordon model[END_REF]. Let us for shortcut always denote gpxq " ´log |x|,

and we will abuse notation by considering g as either of function of R 2 or of R depending on the context.

Truncating the interaction involves introducing a small lengthscale λ and renormalizing the divergent part of the free energy as λ Ñ 0. A natural proposed way is to truncate the energy at a distance λ and consider 1 2 ÿ i,j gpx i ´xj q ^gpλq `gpy i ´yj q ^gpλq ´2gpx i ´yj q ^gpλq, (

where ^denotes the minimum of two numbers. The precise method of truncation of the interaction is not really important, and here we propose a variant of this which is convenient for our techniques: instead of truncating g we consider charges smeared on discs of radius λ, with λ small, interacting otherwise in the normal Coulomb fashion: letting δ pλq z denote the uniform measure of mass 1 supported on Bpz, λq, we let κ :"

ij gpx ´yqδ p1q 0 pxqδ p1q 0 pyq, (5.5) 
and observe, by scaling, that ij gpx ´yqδ pλq 0 pxqδ pλq 0 pyq " gpλq `κ.

(5.6)

We then consider the energy

F λ pX N , Y N q " 1 2 ij gpx ´yqd ˜N ÿ i"1 δ pλq x i ´δpλq y i ¸pxqd ˜N ÿ i"1 δ pλq x i ´δpλq y i ¸pyq ´N pgpλq `κq. (5.7)
Here, compared to (5.1) we have reinserted the self-interaction terms which are no longer infinite but equal to gpλq `κ, and then subtracted them off. We will denote by

g λ pzq " ij gpx ´yqδ pλq 0 pxqδ pλq z pyq, (5.8) 
the effective interaction between two points at distance |z|. Moreover, the convolution g ˚δpλq 0 is harmonic outside of Bp0, λq and it follows from the mean-value theorem (or Newton's theorem) that g λ pzq " ż g ˚δpλq 0 δ pλq z " gpzq for |z| ě 2λ.

(5.9)

Thus we see that F λ is the same as (5.4) except with gpx i ´xj q ^gpλq replaced by g λ px i ´xj q, and if the distances between points are larger than λ, the interactions coincide and F λ coincides with F. Also if λ " 0 then the definition in (5.7) coincides with F of (5.1), as proved in [START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF] -this is essentially Newton's theorem and Green's formula. Let us point out that the choice of δ pλq z to be the uniform measure in the unit ball is unimportant, we could replace it by any radial distribution of the form 1 λ 2 ρp x´z λ q with ρ radial, as was done in [START_REF] Rougerie | Higher-dimensional Coulomb gases and renormalized energy functionals[END_REF]. Newton's theorem would still apply and nothing else would change, except for the precise value of the constant κ. Finally, we could in principle use charges smeared on circles instead of discs as in previous works [START_REF] Petrache | Next order asymptotics and renormalized energy for riesz interactions[END_REF][START_REF] Leblé | Large deviation principle for empirical fields of log and Riesz gases[END_REF][START_REF] Leblé | Fluctuations of two dimensional coulomb gases[END_REF], it does make the initial computations simpler but the potential generated a circle is too singular for our needs here.

We will thus work with (5.7) and study

dP λ N,β " 1 Z λ N,β exp p´βF λ pX N , Y N qq dX N dY N (5.10)
in the limit where λ tends to zero, where

Z λ N,β " ż r0, ? N s 2N ˆr0, ? N s 2N exp p´βF λ pX N , Y N qq dX N dY N . (5.11) 
When β ă 2 one can immediately set λ " 0 and recover the model studied in [START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF], but when β ą 2 one expects log Z λ N,β to diverge as λ Ñ 0. The picture that emerges from the literature, mostly based on the sine-Gordon representation, is well-described in [START_REF] Hubert Lacoin | Complex Gaussian multiplicative chaos[END_REF]: for β ą 2, the divergence of the system as λ Ñ 0 corresponds to the pairing of short dipoles (of lengthscale λ), and the transition at β " 2 is followed as β increases by a sequence of transitions corresponding to the formation of a subdominant proportion of multipoles (quadrupoles, sextupoles etc) as the temperature is decreased and the entropic repulsion becomes less strong [START_REF] Jürg | The Kosterlitz-Thouless transition in two-dimensional abelian spin systems and the coulomb gas[END_REF]. This is due to the dipole-dipole interaction which is weakly attractive. When β reaches 4, in the grand canonical setting (when the number of particles is not fixed) the system is expected to collapse under the attraction of the dipoles, as first shown in [START_REF] Jürg | Classical and quantum statistical mechanics in one and two dimensions: twocomponent Yukawa-and Coulomb systems[END_REF] via a Euclidean Field Theory approach, however we will see that it is not the case in the canonical setting here. As written in [START_REF] Hubert Lacoin | Complex Gaussian multiplicative chaos[END_REF] the complete mathematical picture is far from complete from the mathematical angle, and most of the approaches rely on the sine-Gordon transformation and on sophisticated Renormalization Group techniques which require to assume translation invariance [START_REF] José | Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model[END_REF]. In [START_REF] Jürg | The Kosterlitz-Thouless transition in two-dimensional abelian spin systems and the coulomb gas[END_REF], it is written "We believe that the techniques of Section 5 will eventually permit us to prove convergence of an expansion of the two-dimensional Coulomb gas in terms of neutral multipole configurations, at low density and low temperature, designed to imply the existence of the Kosterlitz-Thouless transition. But the required combinatorial and refined electrostatic estimates are still missing."

Our main goal here is to analyze (5.7)-(5.10) via a simple and direct approach based solely on energy and entropy, precisely via electrostatic estimates for the energy. We obtain below a precise free energy expansion as N Ñ 8 and λ Ñ 0, and use it to prove that configurations mostly form free dipoles for all β P p2, `8q, as characterized by convergence to a Poisson process of dipoles (this shows that the multipoles, though present, concern only a vanishing fraction of the particles). Combined with the description of [START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF], it constitutes a first proof of the dipole transition, and we hope this point of view will also inform the understanding of the BKT transition. We also address the important question of the fluctuations of the (two-component) Coulomb gas.

Note that the two-component Coulomb gas or plasma is quite different from the one-component Coulomb gas or plasma, which consists only of positively charged particles repelling each other and confined by an external potential, or equivalently a uniform negative background charge (this is then called a jellium). The one-component Coulomb gas never diverges or forms dipole pairs, but rather the particle density converges macroscopically to an equilibrium measure limit (dictated by the external potential) while at the microscopic scale the particles arrange themselves in more and more ordered point patterns as temperature decreases, in fact the system is expected to crystallize at zero temperature, at least in low dimensions. There has been much progress on the one-component plasma in recent years, including free energy expansion [START_REF] Lieb | Erratum: "The thermodynamic limit for jellium[END_REF][START_REF] Leblé | Large deviation principle for empirical fields of log and Riesz gases[END_REF][START_REF] Armstrong | Local laws and rigidity for coulomb gases at any temperature[END_REF][START_REF] Serfaty | Gaussian fluctuations and free energy expansion for 2d and 3d coulomb gases at any temperature[END_REF], local laws for the distribution of points down to the microscale [START_REF] Leblé | Local microscopic behavior for 2d coulomb gases[END_REF][START_REF] Armstrong | Local laws and rigidity for coulomb gases at any temperature[END_REF], variational characterization of the limiting point processes [START_REF] Leblé | Large deviation principle for empirical fields of log and Riesz gases[END_REF], and CLTs for the fluctuations of linear statistics [4,[START_REF] Rider | The noise in the circular law and the gaussian free field[END_REF][START_REF] Bauerschmidt | The twodimensional coulomb plasma: quasi-free approximation and central limit theorem[END_REF][START_REF] Leblé | Fluctuations of two dimensional coulomb gases[END_REF][START_REF] Serfaty | Gaussian fluctuations and free energy expansion for 2d and 3d coulomb gases at any temperature[END_REF].

The main points in common with [START_REF] Sandier | 2D Coulomb gases and the renormalized energy[END_REF][START_REF] Leblé | Large deviation principle for empirical fields of log and Riesz gases[END_REF][START_REF] Leblé | Local microscopic behavior for 2d coulomb gases[END_REF][START_REF] Leblé | Fluctuations of two dimensional coulomb gases[END_REF][START_REF] Armstrong | Local laws and rigidity for coulomb gases at any temperature[END_REF][START_REF] Serfaty | Gaussian fluctuations and free energy expansion for 2d and 3d coulomb gases at any temperature[END_REF] but also with [START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF] will be the general philosophy of electrostatic energy and large deviations techniques, as well as the electric formulation of the energy that we present just below.

Main results and method

The electric formulation mentioned above consists in reexpressing the energy in terms of the electric potential h λ generated by the configuration pX N , Y N q and defined as a function over all R 2 by

h λ rX N , Y N s :" g ˚˜N ÿ i"1 δ pλq x i ´δpλq y i ¸, (5.12) 
where ˚denotes the convolution. In the sequel, we will most often drop the rX N , Y N s dependence in the notation. Note that by definition of g, h λ satisfies the Poisson equation

´∆h λ rX N , Y N s " 2π ˜N ÿ i"1 δ pλq x i ´δpλq y i ¸. (5.13) 
A direct insertion into (5.7) and integration by parts using (5.13) yields the following rewriting of the energy

F λ pX N , Y N q " 1 4π ż R 2 |∇h λ rX N , Y N s| 2 ´N pgpλq `κq. (5.14) 
Before stating our main result, let us introduce some more notation. Let us define the probability measure

dµ β prq :" 2π C β exp ´β 2 g 1 prq ¯1R `prqrdr, (5.15) 
where C β stands for the normalizing constant

C β :" 2π ż 8 0 exp ´β 2 g 1 prq ¯rdr. (5.16) 
We will denote tz 1 , . . . , z 2N u " tx 1 , . . . , x N , y 1 , . . . , y N u the collection of all points (positive or negative) and denote their charge d i " 1 if i P r1, N s d i " ´1 if i P rN `1, 2N s. We will also denote by ϕ 1 piq the index for the/a first nearest neighbor to z i among all the points z j , j ‰ i.

Our first theorem provides a free energy expansion and a concentration on dipoles configurations. The constant C β is related to our precise way of smearing the Dirac charges and corresponds to the interaction of overlapping disc charges, it is defined in (5.16).

Theorem 5.1.1. For all λ ą 0, denote

γ λ :" $ ' ' ' ' & ' ' ' ' % 1 | log λ| if β " 2 λ β´2 if β P p2, 4q λ 2 | log λ| 2 if β " 4 λ 2 | log λ| if β ą 4.
(5.17)

For each β P p2, `8q the following holds (5.20)

3. the Gibbs measure is concentrated on mostly neutral λ-dipoles configurations in the sense that letting

D :" ! Z 2N P Λ 2N , |I| ě N p1 ´bγ λ q, ÿ iPI g λ p|z i ´zϕ 1 piq |q ď N log λ `M N ) , (5.21) 
we have

P λ N,β pD c q ď expp´CN q, (5.22) 
for some b ą 0, C ą 0 and M ą 0 independent of N and λ.

The formula (5.18) can be compared with the formula for β ă 2 obtained in [START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF], and this already exhibits a transition at β " 2, since the divergence in λ is present only for β ě 2. The screening method of [START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF] would in fact allow us to prove an almost additivity of the free energy log Z λ N,β -once the 1 2 βN log N corresponding to the interaction scaling has been removed -for any β, and the existence of a thermodynamic limit

f pβ, λq " lim N Ñ8 log Z λ N,β ´β 2 N log N N (5.23)
with an explicit rate of convergence independent of λ. We believe the rate can be made to be OpN ´1{2 log N q by analogy with [START_REF] Armstrong | Local laws and rigidity for coulomb gases at any temperature[END_REF] but we defer this to future work, in any case to obtain a rate independent of λ it suffices to apply almost verbatim the proof in [START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF]. For β ă 2, this is proven in [START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF] (with λ " 0) and a variational characterization of f is also provided there:

f pβ, 0q " ´min P PP F β pP q (5. 24 
)
where P corresponds to the space of stationary signed point processes of intensity 1 (each species has intensity 1), and F β (the rate function in the Large Deviations Principle proved there) is the sum of β times a suitable "renormalized energy" of point processes (an infinite volume Coulomb interaction energy) and a specific relative entropy with respect to the Poisson point process of intensity 1. We see that in that regime we have free particles of positive and negative charges, whose positions is governed by the minimization of F β . The result (5.18) then completes this picture by proving that for β P p2, `8q f pβ, λq " p2 ´βq log λ ´1 `log C β `oλ p1q (5.25)

and that for β " 2, f pβ, λq " log | log λ| ´1 `oλ p1q.

(5.26)

Here the energy is dominated by pure dipole energy, demonstrating the transition from free particles to bound pairs. The question of the sharp rate of convergence o λ p1q is very important as it encodes the multipole transitions. Here we obtain a power rate which exhibits a transition at β " 4, which we believe to be sharp and to correspond to the BKT transition. The proofs also show a form of transition at β " 3, which corresponds to the quadrupole transition (i.e. a transition in the proportion of still negligible quadrupoles).

We next show as a corollary that the averaged microscopic process concentrates as N tends to infinity and λ tends to 0 to a Poissonian dipole process. In addition we derive some large deviations asymptotic as λ tends to 0, which can be read as the limit of the large deviations principle at fixed λ. For each centering point in Λ, we will observe the particles x j lying around x and the attached nearest-neighbor particles. To have a well-defined limit, one shall blow-up the nearest-neighbor distances by a factor λ ´1. Still using the notation (5.19) for positive charges belonging to a neutral dipole, let us consider the rescaled configuration centered at x denoted

C N pxq :" ÿ iPI δ p ? N pz i ´xq,λ ´1?
N pz ϕ 1 piq ´zi qq P PpR 2 ˆR2 q.

(5.27)

Let χ be set of simple locally finite point configurations on R 2 . We will work on the set E " ! ÿ iPJ δ px j ,y j q : J finite or countable , px j q jPJ P χ, py j q jPJ P pR 2 q |J| ) (5.28) endowed with the coarsest topology T generated by ! ÿ jPJ δ px j ,y j q P E :

x j P A, y j P B ) , (5.29) 
where A and B are measurable subsets of R 2 with A bounded. This topology is designed so that the y i variable is observable only if x i lies in a compact set. In Subsection 5.6 one will endow pE, T q will a distance d. The variable p5.27q is a random variable on E. We next consider an averaging of (5.27) over the centering point in Λ:

i N :" ż Λ δ px,C N pxqq dx P PpΛ ˆEq. (5.30) 
The space PpEq is then endowed with the topology of weak convergence generated by the functions in C b pEq. Let us now define the Poissonian dipole process denoted P dip . Given X " pX i q iPN a Poisson point process of intensity 1 on R 2 , pu i q iPN a sequence of i.i.d variable of law µ β (5.15) independent of X, we let P dip P PpEq be

P dip :" Law ´N ÿ i"1 δ pX i ,u i q ¯. (5.31) 
Let also Pdip be the tensorization of P dip with the Lebesgue measure on Λ:

Pdip :" dx| Λ b P dip P PpΛ ˆEq.

(5.32)

We will show that pi N q concentrates around (5.32) as N tends to infinity and λ Ñ 0 with a Large Deviations Principle. To define the rate function, we start by introducing a (specific) relative entropy for probability measures on E similar to [START_REF] Rassoul | A course on large deviations with an introduction to Gibbs measures[END_REF]. For all P, Q P PpEq, let

EntpQ | P q :" lim RÑ8 1 R EntpQ| Λ R | P | Λ R q, (5.33) 
where Λ R :" r0, ? Rs 2 . For all P P PpΛ ˆEq and x P Λ we let P x P PpEq be the desintegration of P with respect to x. Let Ent be an averaging of Ent defined for all P , Q P PpΛ ˆEq by

Entp Q | P q :" ż Λ EntpQ x | P x qdx.
Let us emphasize that the entropy thus defined depends on the topology put on E. Theorem 5.1.2. For any measurable subset A of PpE ˆΛq, we have

´inf QP Å EntpQ | Pdip q ď lim inf λÑ0 lim inf N Ñ8 1 N log P λ N,β pi N P Aq ď lim sup N Ñ8 1 N log P λ N,β pi N P Aq ď ´inf QP Ā EntpQ | Pdip q (5.34)
In addition, for all ε ą 0, we have

lim λÑ0 lim sup N Ñ8 P λ N,β pi N R Bp Pdip , εqq " 0. (5.35)
We finally address the important question of the fluctuations of linear statistics. We provide an energetic control, similar in spirit to [START_REF] Leblé | Fluctuations of two dimensional coulomb gases[END_REF]Prop 2.5], showing that Lipschitz functions fluctuate less than OpN 1{2 α 1{2 λ q, for some α λ tending to 0 as λ tends to 0. Note that one could obtain a better rate of fluctuations in opN 1{2 q at fixed λ, but this would require different arguments. 

Fluct N pξq :" ż Λ ξ ˜N ÿ i"1 pδ x i ´δy i q ¸. Set α λ " $ ' ' ' ' & ' ' ' ' % | log λ| ´1 if β " 2 λ 2pβ´2q β if β P p2, 4q λ| log λ| 1{2 if β " 4 λ if β P p4, 8q.
(5.36)

Then, there exists a constant C ą 0 such that

log E P λ N,β rexpppFluct N pξqq 2 qs ď CN α λ }∇ξ} 2 L 8 .
In order to prove Theorem 5.1.1 we need to obtain sharp upper and lower bounds on the energy of a configuration in terms of its dipoles and multipoles, and good corresponding "volume estimates". A generic configuration can be quite complicated, in particular it is not obvious how to extract its dipoles. As we did in [START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF] we follow important ideas of [START_REF] Gunson | Two-dimensional neutral Coulomb gas[END_REF] which consists in examining the nearest neighbor graph of a configuration and its nearest neighbor distances, denoted for each point of the configuration z i by r 1 pz i q. Combining this description in terms of nearest neighbor distances with the electric formulation turns out to be a powerful way to quickly obtain energy lower bounds. This is done by a ball-growth method, which consists in expanding the circular charges δ pλq z i into a charge δ pr 1 pz i qq z i of same mass but supported in the disc Bpz i , r 1 pz i qq. This way the discs remain distinct and Newton's theorem applies to show the interaction energy has essentially not changed during that growth process. This however misses an order 1 in the interaction energy of each dipole.

In order to avoid this loss, we push here this method further: we examine second nearest neighbor distances r 2 pz i q and second nearest neighbor graphs and expand the circular charges to size r 2 . In the works on the one-component plasma [START_REF] Leblé | Fluctuations of two dimensional coulomb gases[END_REF][START_REF] Armstrong | Local laws and rigidity for coulomb gases at any temperature[END_REF][START_REF] Serfaty | Gaussian fluctuations and free energy expansion for 2d and 3d coulomb gases at any temperature[END_REF] we were able to take advantage of the fact that when all the charges are positive, the interaction of disc charges decreases when the radii are increased. This is no longer the case in a situation with different signs, and so instead of using monotonicity, we proceed to a direct estimation of the change in the interaction when the discs are increased. We then obtain an estimate which bounds from below the energy in terms of nearest neighbor interactions only and which is more precise than that of [START_REF] Gunson | Two-dimensional neutral Coulomb gas[END_REF] or [START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF], as the only error remaining in the estimate corresponds to dipole-dipole interaction.

An important feature of this dipole decomposition lower bound is that it is amenable to integration in phase-space with the method of Gunson-Panta (revisited in [START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF]) of separating the integral over types of nearest neighbor graphs. This part contains the most delicate estimates as we need to control the contributions of the dipole-dipole interaction errors, something not handled in [START_REF] Gunson | Two-dimensional neutral Coulomb gas[END_REF][START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF] and which requires new ideas.

A matching lower bound is provided, which leverages again on the electric formulation to compute the energy as a sum of noninteracting dipoles (they are made noninteracting by solving for local electric potentials satisfying zero Neumann boundary condition). Once matching upper and lower bounds are obtained, it must follow that the Gibbs measure did concentrate on dipole configurations, as deduced in (5.22).

Plan of the paper: Section 5.2 is devoted to the proof of the energy lower bound and reduction to a dipole energy by the ball-growth method. In Section 5.3, this lower bound is inserted into the Gibbs measure to produce, via suitable decomposition of the phase-space and large deviation estimates, the free energy upper bound. Section 5.4 provides a matching lower bound by explicit construction of configurations and estimates of their free energy. Section 5.5 present a first bound on linear statistics, and Section 5.6 proves Theorem 5.1.2 on the convergence to a Poisson dipole process.

By scaling, we also have g λ pzq " gpλq `g1 pz{λq, |g λ pzq ´gpmaxp|z|, λqq| ď C (5.44)

where C is some universal constant.

Dipole expansion of the energy

For i P C k for some k " 1, . . . , K, we let

D i " d i `dϕ 1 piq . (5.45)
If the 2-cycle is neutral, as in the most typical case, then D i " 0.

Proposition 5.2.1 (Dipole decomposition of the energy). Let pX N , Y N q be any configuration in Λ 2N and consider its nearest neighbor graph decomposition as above with n denoting the number of neutral 2-cycles. We have

F λ pX N , Y N q ě 1 2 K ÿ k"1 ˜ÿ iPC k d i d ϕ 1 piq g λ pz i ´zϕ 1 piq q ´di D i `g `minpr 2 pz i q, r 2 pz ϕ 1 piq q ˘`κ ˘´C ˆr1 pz i q r 2 pz i q ˙2 ´ÿ iPI k zC k pgpr 2 pz i qq `κq ¸(5.46)
where C is universal.

Here the error term corresponds to dipole-dipole interaction and is small when a dipole is wellseparated from other points so that r 1 ! r 2 , which we can expect for a large proportion of the small dipoles, but not for long dipoles nor dipoles which belong to a quadrupole or more generally a multipole. The error term in d i D i corresponds to nonneutral dipoles, they are sharp, and not problematic since nonneutral dipoles carry an excess energy which can be retrieved from the main interaction term, but has to be limited by the distance to second nearest neighbors.

We now rephrase this inequality into one that is less sharp but will be more convenient for our purposes.

Corollary 5.2.2. For any configuration pX N , Y N q in Λ 2N , using the above notation, we have

F λ pX N , Y N q ě ´1 2 ÿ iRtY k C k ,d i d ϕ 1 piq "1u g λ pz i ´zϕ 1 piq q ´C ÿ iPI dip ,ϕ 2 piqPI dip ˆr1 pz i q r 2 pz i q ˙2 ´CpN ´nq, (5.47)
where C is universal, I dip is as in (5.42) and n is the number of neutral 2-cycles in the graph.

The right-hand side thus reduces the interaction to just nearest-neighbor interactions, except those of non-neutral 2-cycles (which in fact contribute positively to the energy). The error term is restricted to the connected components that consist of just an isolated neutral 2-cycle.

Proof of the corollary. First we note that if i P C k and if d i d ϕ 1 piq " ´1, we have D i " 0 and the corresponding term in the sum (5.47) reduces to ´gλ pz i ´zϕ 1 piq q. If on the other hand d i d ϕ 1 piq " 1, then d i D i " 2 and we observe that since minpr 2 pz i q, r 2 pz ϕ 1 piq qq ě r 1 pz i q " r 1 pz ϕ 1 piq q and by definition (5.39) and (5.44), we have g λ pz i ´zϕ 1 piq q ´2 `g `minpr 2 pz i q, r 2 pz ϕ 1 piq q ˘`κ ˘´C ˆr1 pz i q r 2 pz i q ˙2 ě ´C1

for some universal constant C 1 . Next, for i P I k zC k we use that r 2 pz i q ě r 1 pz i q and by definition (5.39) and (5.44), gpr 2 pz i qq ě g λ pz i ´zϕ 1 piq q ´C with again C a universal constant. We deduce that

F λ pX N , Y N q ě ´1 2 ÿ iRtiPY k C k u g λ pz i ´zϕ 1 piq q ´1 2 ÿ iPY k C k ,d i d ϕ 1 piq "´1 ˜gλ pz i ´zϕ 1 piq q ´C ˆr1 pz i q r 2 pz i q ˙2¸´C |ti : d i d ϕ 1 piq " 1u| ´C K ÿ k"1 p|I k | ´2q.
We then note that by definition of n (the number of neutral 2-cycles), we have |ti :

d i d ϕ 1 piq " 1u| ď 2pN ´nq
while the number of points not in a 2-cycle is bounded by the number of points not in a neutral 2-cycle, which is 2pN ´nq. Since r 1 {r 2 is always bounded by 1, we may absorb the error term into N ´n for all points belonging to a connected component of γ 2N which is not reduced to a 2-cycle or whose second nearest-neighbor index ϕ 2 piq is not in a 2-cycle. Hence the result follows.

We now turn to the proof of Proposition 5.2.1. As explained in the introduction, the proof relies on an enlargement of the disc charges. To evaluate the change of energy, we use the following lemma.

Lemma 5.2.3. For any 2N -tuples ⃗ τ and ⃗ α, we have

1 2π ˆżR 2 |∇h ⃗ τ | 2 ´|∇h ⃗ α | 2 ˙" ÿ i,j ż R 2 
d i d j ´g ˚δpτ i q z i ´g ˚δpα i q z i ¯´δ pτ j q z j `δpα j q z j ¯.

(5.48)

Proof. Observe that

h ⃗ τ ´h⃗ α " 2π 2N ÿ i"1 d i ´g ˚δpτ i q z i ´g ˚δpα i q z i ¯,
and them expand using integrations by parts and ´∆h ⃗ α " 2π

ř 2N i"1 d i δ pα i q z i .
Proof Proposition 5.2.1. We are going to define for each point z i in the configuration, an appropriate radius τ i . Each index i belongs to one connected component I k of the nearest-neighbor graph γ of the configuration. We let τ i " # min `r2 pz i q, r 2 pz ϕ 1 piq q ˘if i P C k r 2 pz i q otherwise.

(5.49)

We then apply Lemma 5.2.3 and increase the balls from α i " λ to τ i . We obtain that ż

R 2 |∇h λ | 2 ´żR 2 |∇h ⃗ τ | 2 " 2π ÿ i,j
d i d j ˆij gpx ´yqδ pλq z i pxqδ pλq z j pyq ´ij gpx ´yqδ pτ i q z i pxqδ pτ j q z j pyq ˙. (5.50) First, if τ i " τ j " λ, the terms in parenthesis cancel. We may thus restrict the sum to the situation where maxpτ i , τ j q ą λ, which also means that r 2 pz i q or r 2 pz j q is the true (quarter of the) second neighbor distance. Next, if Bpz i , λq and Bpz j , λq intersect, so do Bpz i , τ i q and Bpz j , τ j q since by definition and (5.40), τ i ě λ, τ j ě λ. If on the other hand Bpz i , λq and Bpz j , λq are disjoint, and Bpz i , τ i q and Bpz j , τ j q as well, then by Newton's theorem and mean value theorem the two terms in the parenthesis are equal to gpz i ´zj q hence cancel. We may thus restrict the sum to the situation where maxpτ i , τ j q ą λ and Bpz i , τ i q and Bpz j , τ j q intersect, that is |z i ´zj | ď τ i `τj ď r 2 pz i q `r2 pz j q ď 2 maxpr 2 pz i q, r 2 pz j qq (5.51) in view of the definitions (5.49). Since r 2 pz i q or r 2 pz j q is the true (quarter of the) second neighbor distance, this implies that j P N 1 piq or i P N 1 pjq. Moreover, let us show that (5.51) implies that we have both i P N 1 piq and j P N 1 pjq. If i " j this is obvious. If not, then say j ‰ i and j R N 1 piq, this means that j " ϕ k piq with k ě 2. In particular z i , z ϕ 1 piq and z j are distinct and we thus have, by definition (5.40)

r 2 pz i q ď 1 4 |z i ´zj |.
On the other hand, we know that z i " z ϕ 1 pjq , and z ϕ 1 piq is a point distinct from z j and z ϕ 1 pjq thus by triangle inequality and definition (5.40)

r 2 pz j q ď 1 4 |z j ´zϕ 1 piq | ď 1 4 |z j ´zi | `1 4 |z i ´zϕ 1 piq | ď 1 4 |z i ´zj | `1 4 |z i ´zj |
from which it follows that r 2 pz i q `r2 pz j q ď 3 4 |z i ´zj | a contradiction with (5.51). Thus the sum reduces to terms for which i " j or i and j are both nearest neighbor to each other, which we denote by ", i.e. i and j belong to a 2-cycle of the nearest neighbor graph. With the definition (5.8) and (5.6), we thus get from (5.50

) that ż R 2 |∇h λ | 2 ě 2π 2N ÿ i"1
pg λ p0q ´gpτ i q ´κq `2π ÿ i‰j:j"i d i d j ´gλ pz i ´zj q ´ij gpx ´yqδ pτ i q z i pxqδ pτ j q z j pyq ¯.

(5.52)

We examine the contribution of the 2-cycles. If i P C k , then τ i " τ j by definition and thus by (5.44) the contribution of the parenthesis in (5.52) is

2πd i d j ´gλ pz i ´zj q ´gpτ i q ´g1 p z i ´zj τ i q ¯.
This term appears twice due to the two edges between the vertices of the cycle and to the equality τ i " τ j . We also note that Bpz i , 4r 1 pz i qq contains at least 2 points, hence by triangle inequality, we find that if i " j, we have r 2 pz j q ď 1 4 |z i ´zj | `r2 pz i q.

(5.53)

Reversing the roles of i and j this implies that if i " j, we have |r 2 pz i q ´r2 pz j q| ď 1 4 |z i ´zj | ď r 1 pz i q.

(5.54)

We deduce that z i ´zj τ i " Op r 1 pz i q r 2 pz i q q. In view of (5.43) we may replace g 1 p

z i ´zj τ i q by κ `O´| z i ´zj | 2 τ 2 i
¯, and then by κ `O´´r

1 pz i q r 2 pz i q ¯2¯.
Inserting these facts into (5.52), we obtain that

ż R 2 |∇h λ | 2 ě 4πN g λ p0q ´2π 2N ÿ i"1 pgpτ i q `κq `2π ÿ i‰j:j"i d i d j ˜gλ pz i ´zj q ´gpτ i q ´κ `O´´r 1 pz i q r 2 pz i q ¯2¯¸. (5.55) 
We may now split this over the connected components of the nearest neighbor graph I k , and obtain by regrouping terms

ż R 2 |∇h λ | 2 ě 4πN g λ p0q `2π K ÿ k"1 ˜ÿ iPC k d i d ϕ 1 piq g λ pz i ´zϕ 1 piq q ´di `di `dϕ 1 piq ˘pgpτ i q `κq `O´´r 1 pz i q r 2 pz i q ¯2ÿ iPI k zC k gpr 2 pτ i qq `κI
n view of the definition of F λ (5.14) we obtain the result.

Free energy upper bound

This section is devoted to the proof of the free energy upper bound. This will be based on the energy lower bound of Corollary 5.2.2 which reduces the interaction to nearest neighbor terms, together with a quadratic error depending on second nearest neighbor distances. The main difficulty is to partition the phase-space efficiently to integrate the exponential of this reduced energy. This is based on refinements of the Gunson-Panta change of variables and approach [START_REF] Gunson | Two-dimensional neutral Coulomb gas[END_REF]. We will start by proving upper bounds for simpler nearest neighbor models and build up to the upper bound for the full model including the second nearest neighbors errors.

Preliminaries

We start by presenting some tools needed to implement the integrations.

Dirichlet integrals

We first recall a result on computing "multiple Dirichlet integrals of type 1", see [254, p. 258].

Lemma 5.3.1 (Dirichlet integrals). Given an integer k ě 1 and α 1 , . . . , α k ą 0, let

I k pα 1 , . . . , α k q :" ż pR `qk 1 0ăt 1 `...`t k ă1 t α 1 ´1 1 . . . t α k ´1 k dt 1 . . . dt k .
(5.56)

Then I k pα 1 , . . . , α k q " Γpα 1 q . . . Γpα k q Γpα 1 `. . . `αk q 1 α 1 `. . . `αk (5.57) and if the k-tuple pα i q k i"1 is defined by α i " α ą 0 for 1 ď i ď k 0 and α i " 1 for k 0 `1 ď i ď k, then log I k " ´pαk 0 `pk ´k0 qq logpαk `k ´k0 q `Opkq.

(5.58)

Proof. The identity (5.57) can be checked by successive integration by parts or using a Fourier transform argument. For the particular case stated in the lemma, we find from (5.57) that

I k " Γpαq k 0 Γpαk 0 `k ´k0 q 1 αk 0 `k ´k0 . ( 5.59) 
The relation (5.58) is then derived using Stirling's formula.

Gunson-Panta change of variables

The Gunson-Panta method relies on considering the nearest neighbor graph of a configuration and partitioning the phase-space accordingly. We use the notation introduced already in Section 5.2, but we can apply it more generally to p points, and not necessarily an even number of points. Given a set of p points z 1 , . . . , z p , let I 1 , . . . , I K denote the connected components of its nearest neighbor graph, and denote by m k and m 1 k the two points of the 2-cycle C k . We then define the Gunson-Panta change of variables via the map Φ GP p pz 1 , . . . , z p q " pu 1 , . . . , u p q (5.60)

where

u i " " z i ´zϕ 1 piq if i P I k , j ‰ m 1 k z i if i " m 1 k .
(5.61)

Number of graphs

It will be important to count the number of nearest-neighbor graph types. The number of nearest neighbor graphs on t1, . . . , pu with K connected components is given by 

|D p,K | " 2pp ´1q!p p´2K 2 K pK ´1q!pp ´2Kq! . ( 5 
F dip λ pZ 2N q :" ´1 2 ÿ iRtiPY k C k ,d i d ϕ 1 piq "1u
g λ pz i ´zϕ 1 piq q ´CpN ´nq,

where n stands for the number of neutral 2-cycles in the system. The energy F dip λ defines a reduced dipole model that we now study. Lemma 5.3.2 (Expansion for the reduced dipole model). Let β P r2, `8q and C β be the constant defined in (5.16). For β ą 2, we have

log ż r0, ? N s 2N ˆr0, ? N s 2N exp ´´βF dip λ pX N , Y N q ¯dX N dY N ď 2N log N `N p2 ´βq log λ ´N `N log C β `Oplog N q. (5.65) For β " 2, we have log ż r0,1s 2N ˆr0,1s 2N exp ´´βF dip λ pX N , Y N q ¯dX N dY N ď 2N log N `N log | log λ|´N `O´N | log λ| ¯.
(5.66)

Because β ě 2, the free energy of a neutral dipole of size λ diverges in logpλ 2´β 1 βą2 | log λ|1 β"2 q as λ tends to 0. As a consequence, pairs of particles of opposite charges are formed and most of them are of size λ. We will see below that the the leading-order behavior of the system under P λ N,β is the same as under this reduced dipole model. Indeed, if tm k , m 1 k u is a 2-cycle, the interaction g λ pu m k q is counted twice, which explains why this term appears in the above integral with a factor β instead of β{2 in the above integral, which turns out to be crucial: since β ą 2, when tm k , m 1 k u is a 2-cycle, the term exppβg λ pu m k qq diverges. On the other hand the weight of pairs of points which are not in a dipole while converge if β ă 4 and diverge if β ě 4.

Step 2: integration in the case β P p2, 4q. If i is not in a 2-cycle, the weight associated with g λ pu i q is not divergent when β ă 4, hence one can remove the cutoff λ. Using that g λ ď g `C from (5.44) (5.84)

Using the fact the logarithm of a sum of N terms equals the logarithm of the maximum, up to an error smaller than log N , we find log K λ N,β ď max It remains to optimize IpK, nq with respect to K and n under the condition that 1 ď n ď K ď N . Let us denote x " K N and y " n N which are such that 0 ď y ď x ď 1. The important point is that the terms in log N in the definition of (5.86) scale out: more precisely the term K log N coming from the integration of the roots of the K 2-cycles in Λ cancels out, at the leading order, with the term ´K log K coming from the combinatorial factor (5.83). On A :" tpx, yq P r0, 1s 2 : y ď xu define the function φ β px, yq " yp2´βq log λ`p2´x´yq log ´2 2 ´x ´y ¯´x log x´2p1´xq logp1´xq`c 0 p1´xq, (5.87) so that IpK, nq " N φ β p n N , K N q. The term yp2 ´βq log λ imposes the maximum. Indeed the other terms are independent of λ and since log λ Ñ ´8 as λ Ñ 0 with β ą 2, there exists a constant c ą 0 depending on β such that for λ small enough, the maximum of φ β is attained for y ě 1´c | log λ| . Arguing exactly like in the case β P p2, 4q, one may check that for λ small enough, ϕ β is maximal for x " y " 1, which proves (5.66). Now assume that β ě 4. In view of (5.80), the expression (5.85) is then replaced by log K λ N,β ď log K λ N,β ď 2N logp2N q `N logpC β ´1 ´2 log 2q `max One can check that for λ small enough, ϕ β attains its maximum at x " y " 1, thus showing that (5.90) also holds for β ě 4.

Step 6: optimization under constraint.

For the rest of the paper, it will be useful to optimize IpK, nq under constraint. In order to upper bound the probability of having less than n 0 neutral dipoles, we will need to consider the maximum of IpK, nq under the constraint n ď n 0 and K ě n. Let us compute the maximum of φ β over the event A " tpx, yq P r0, 1s 2 : y ď n 0 N , x ě yu. Proceeding as in Step 5, one can see that λ small enough, sup px,yqPA φ β px, yq ď φ β p n 0 N , n 0 N q.

(5.94)

As a consequence for λ small enough, max nďn 0 ,Kěn IpK, nq ď Ipn 0 , n 0 , N, N q ď n 0 pp2 ´βq log λ1 βą2 `log | log λ|1 β"2 q `CpN ´n0 q.

(5.95)

Upper bound on the energy of p points for a nearest-neighbor model

We now study a new nearest-neighbor model which will be useful for evaluating the contributions of the dipole-dipole interaction or quadrupole errors that appear in (5.47). We consider an integral of p variables z 1 , . . . , z p living on Λ, where the nearest neighbor interaction energy is counted only for a small subgroup of k points z 1 , . . . , z k . In practice, this result will be applied to p ď cN λ α for some α ą 0. Let us emphasize that the computations differ significantly from those of Lemma 5.3.2 since the probability that both points of a 2-cycle in the nearest neighbor graph of z 1 , . . . , z p belong to the subset tz 1 , . . . , z k u is small. ' ˆ¨´d C 0 k ppk ´2k 0 q ¯p2´β 2 qpk´2k 0 q 1 βPp2,4q `log

´b C 0 k k´2k 0 `1 λ ¯k´2k 0 1 β"4
`´λ ? p ¯p2´β 2 qpk´2k 0 q 1 βą4 '.

Let us optimize the above function with respect to k 0 P t0, . . . , tl{2uu. Assume β P p2, 4q. Using that plogpk ´2k 0 q ´logpkqqpk ´2k 0 q " Opkq and 2 ´β 2 ď 1, we have ď l log l ´pl ´2k 0 q logplq ´k0 log l `pl ´2k 0 q log l `p2 ´βqk 0 | log λ| ´pp1 ´β 2 qk ´k0 q log p `k logpC 0 q `Ck " l log l ´p1 ´β 2 kq log p ´pp1 ´β 2 k ´k0 q logp p l q `p2 ´βqk 0 | log λ| `k logpC 0 q `Ck.

(5.108)

We then argue that the maximum of the above function with respect to k 0 is attained for k 0 " l if p l λ β´2 is small enough and for k 0 " 0 if p l λ β´2 is large enough. When β P p2, 4q, we deduce that (5. if p l λ 2 ď 1 p λ ? p q p2´β 2 qk if p l λ 2 ě 1.

(5.112)

Notice that there exists a constant C ą 0 such that sup ¯, which coincides with (5.98). The proof of (5.99) is similar.

C 0 ą1 ´1 ´C0 k p ¯p´k´m C k 0 ď C k . ( 5 
Building on the last lemma, we treat the quadratic error terms arising from the energy lower bound of Corollary 5.2.2 when the nearest-neighbor graph consists only of isolated neutral dipoles. Lemma 5.3.4. Let f pxq " ´t|x| 2 for some t ě 0. Let γ be a nearest neighbor graph with p isolated neutral 2-cycle components. For every z i , let r 1 1 pz i q denote its nearest neighbor of same sign, i.e. r 1 1 pz i q :" max ´λ, Proof. First, without loss of generality, we may assume that for each i, the nearest neighbor to x i is y i . Let us first make the change of variables pX p , Y p q Þ Ñ pX p , W p :" X p ´Yp q.

1
It is a valid change of variables on the set tγ 2p " γu. We note that in the setting we are in, r 1 pz i q " maxpλ, 1 4 |w i |q ď r 1 1 pz i q, and so we may then rewrite ż γ 2p "γ exp ´´β ´Fdip λ pX p , Y p q `ÿ iPI dip ,d i "1 f ´r1 pz i q r 1 1 pz i q ¯¯¯d X p dY p Note that here we have used the definition of C β in (5.16) and the fact that g 1 is bounded in the unit ball. We then find, using r 1 1 px i q ě λ,

2πλ 2´β ż r 1
1 px i q{λ 0 r exp ˜βg 1 prq ´βf ´λ maxp 1 4 r, 1q r 1 1 px i q ¯¸dr ď λ 2´β ˆCβ `Cβt λ 2 r 1 1 px i q 2 `Cβtλ β´2 r 1 1 px i q 2´β `Cβt λ 2 r 1 1 px i q 2 ˆlog r 1 1 px i q λ ˙1β"4 ď

λ 2´β C β ˜1 `CC ´1 β βt ˜ˆλ r 1 1 px i q ˙β´2 1 βă4
`ˆλ r 1 1 px i q ˙2 1 βą4 `λ2 r 1 1 px i q 2 ˆlog r 1 1 px i q λ ˙1β"4 ¸¸.

( which implies that x " Opλ 2 q, thus contradicting (5.127). As a consequence (5.126) holds. Moreover if x ‰ 0, then again ϕ 1 β pxq " 0 which gives, by Taylor expanding the logarithm that logpxq " logpλ β´2 q `Op1q and one can check that ϕ β pλ β´2 q ą 0. Therefore we find that sup p0,1q ϕ β pxq ď Cλ β´2 , which gives together with (5.124) the control (5.116) in the case β P r3, 4q.

We next turn to the case β ą 4. Let x be the maximizer of ϕ β . One can first dismiss the cases x " 0 and x " 1. Assume that x ě λ 2 | log λ| 2 . We then have ϕ β pxq " ´x log x ´p1 ´xq logp1 ´xq `x logpλ 2 q `x 2 logpλ ´2xq " ´x 2 log x ´p1 ´xq logp1 ´xq `x logpλq :" ψpxq " sup

yěλ 2 | log λ| tψpyqu.
It is easy to check that ψ is maximal for y " Cλ 2 and decaying on ry, 2λ 2 | log λ| 2 s. This implies that x " λ 2 | log λ| 2 . Let us examine the case where x ą λ 2 | log λ| 2 . We then find by optimizing under constraint as before that logpxq " logpλ 2 | log λ|q `Op1q. We conclude by observing that It remains to examine the case β " 4. As before, we dismiss the case x " 0 and x " 1. Consider first the case where the maximizer x of ϕ β satisfies x ě λ 2 | log λ| 4 . We then find by optimization under constraint as for the case β P r3, 4q that x " λ 2 | log λ| 4 . Now assume that x ď λ 2 | log λ| 4 . Then ϕ β pxq " ´x logpxq ´p1 ´xq logp1 ´xq `x logpλ 2 | log λ| 2 q :" f pxq.

Consequently x must be equal to the maximizer of f under the constraint x ď λ 2 | log λ| 2 , which turns out to satisfy x " logpλ 2 | log λ| 2 q `Op1q. We have thus observed that in both case, the maximizer of ϕ β satisfies x " Opλ 2 | log λ| 2 q, yielding sup p0,1q

ϕ β ď λ 2 | log λ| 2 ,
concluding the proof of (5.116) in the case β " 4. Le us emphasize that for β " 4, both functions in the definition of the maximum in (5.125) give rise to the same maximizer, hinting a form of criticality at β " 4.

Main result

We may now obtain the main upper bound. ´r1 pz i q r 2 pz i q ¯2¯¯d X N dY N ď pn ´pqpp2 ´βq log λ1 βą2 `log | log λ|1 β"2 q `pK ´pq log N `pN ´pq log C β 1 βą2 `p2N ´K ´nq log

´2N

2N ´K ´n ¯`c 0 pN ´nq `p log N `ppp2 ´βq log λq1 βą2 `log | log λ|1 β"2 `log C β 1 βą2 `CN γ λ " npp2 ´βq log λ1 βą2 `log | log λ|1 β"2 q `K log N `N log C β 1 βą2 `p2N ´K ´nq log

´2N

2N ´K ´n ¯`c 0 pN ´nq `CN γ λ , (5.133) where γ λ is as in (5.17 ´r1 pz i q r 2 pz i q ¯2¯¯d X N dY N ď 2N logp2N q `K log N ´K log K `2pN ´Kqplog N ´logpN ´Kqq ´n ´2n log 2 `Oplog N q `npp2 ´βq log λ1 βą2 `log | log λ|1 β"2 q `N log C β 1 βą2 `p2N ´K ´nq log

´2N

2N ´K ´n ¯`c 0 pN ´nq `CN γ λ ď 2N logp2N q `N plog C β 1 βą2 ´1 ´2 log 2q `IpK, nq `CN γ λ , where IpK, nq is as in (5.86) for β P p2, 4q, as in (5.91) for β " 2 and as in (5.92) for β ě 4. Arguing as in the rest of the proof of Lemma 5.3.2, i.e. maximizing over K and n, we deduce the result.

We finish by proving the claim (5.132). Let us first consider the case of a positively charged point, say z 1 " x 1 , belonging to an isolated neutral 2-cycle. If r 2 px 1 q ě 1 2 r 1 1 px 1 q then the absorption is also obvious. So we may reduce to the case r 2 px 1 q ď 1 2 r 1 1 px 1 q, which implies that r 2 px 1 q is achieved at a negative charge, say y 2 , and since we consider only the case where ϕ 2 piq P I dip , this means that y 2 forms a neutral dipole with, say, x 2 . We have r 2 px 1 q " max ˆλ, so that r 1 px 2 q ě r 1 1 px 1 q ´|x 1 ´y2 | ě 2r 2 px 1 q ´1 4 |x 1 ´y2 | ě r 2 px 1 q ě r 1 px 1 q.

Moreover, by triangle inequality

|x 2 ´x1 | ď |x 1 ´y2 | `|y 2 ´x2 |
so that by definition of r 2 and the fact that the nearest neighbor to y 2 is x 2 , we have r 1 1 px 2 q ď r 2 px 1 q `1 4 |y 2 ´x1 | ď 2r 2 px 1 q.

It thus follows that r 1 px 1 q r 2 px 1 q ď 2 r 1 px 2 q r 1 1 px 2 q so that the corresponding term in the sum in the left-hand side of (5.132) can be absorbed into the sum corresponding to x 2 in the right-hand side.

We next turn to the case of a negatively charged point, say y 1 . We first assume that the min in the definition of r 2 py 1 q is achieved by a positive charge, say x 2 . By triangle inequality, and since x 1 is the nearest neighbor of y 1 ,

|x 1 ´x2 | ď |x 1 ´y1 | `|y 1 ´x2 | ď 2|y 1 ´x2 | so that r 1 1 px 1 q ď maxpλ, 1 2
|y 1 ´x2 |q ď 2r 2 py 1 q.

Thus, since r 1 px 1 q " r 1 py 1 q, r 1 px 1 q r 1 1 px 1 q ě 1 2 r 1 py 1 q r 2 py 1 q and the absorption can be made as well. Secondly, we consider the case where the min in the definition of r 2 py 1 q is achieved by a negative charge, say y 2 , which forms an isolated neutral dipole with x 2 . If r 1 px 1 q r 1 1 px 1 q ě 1 6 then the left-hand side term r 1 py 1 q r 2 py 1 q can be absorbed into the right-hand side term, up to a multiplicative constant. We may thus assume that r 1 px 1 q ď 1 6 r 1 1 px 1 q. In the same way, we may assume that r 1 px 2 q ď 1 6 r 1 1 px 2 q. In particular r 1 1 px 1 q and r 1 1 px 2 q are not equal to λ but to a true quarter minimal distance. Then we may write by triangle inequality that If the max is achieved by x 1 , we then deduce that r 1 py 1 q r 2 py 1 q ď 4r 1 py 1 q |y 1 ´y2 | ď 4r 1 px 1 q |x 1 ´x2 | ´8r 1 px 1 q ď 4r 1 px 1 q 4r 1 1 px 1 q ´8r 1 px 1 q ď 1 r 1 1 px 1 q{r 1 px 1 q ´2 ď C r 1 px 1 q r 1 1 px 1 q

(5.134) by using that r 1 px 1 q ď 1 6 r 1 1 px 1 q. If the max is achieved by x 2 then the reasoning is identical. We have thus proved the claim in all cases.

Remark 20 (On the quadripole transition). At β " 3, the free energy of quadripoles, i.e of two very close neutral dipoles, starts diverging as λ tends to 0. Consequently, points which are not in small well-separated dipoles prefer forming small quadripoles than being alone. The error term in N ´n in our computations, see for instance (5.133), contains these quadripole terms and should therefore be expanded in order to see the transition at β " 3. This would require a more precise cluster expansion of the energy.

Free energy lower bound

We now derive a lower bound on the partition function. For that, we use a method inspired from previous work on the one-component plasma and on Ginzburg-Landau, starting in [START_REF] Sandier | From the Ginzburg-Landau model to vortex lattice problems[END_REF][START_REF] Sandier | 2D Coulomb gases and the renormalized energy[END_REF], which allows, thanks to the electric formulation of the energy, to compute the interaction additively in terms of electric potentials defined in disjoint subregions of the space. (5.136)

Proof.

Step 1: bounding the energy from above. We are going to reduce the integral to configurations where y i P Bpx i , 1 2 rpx i qq where rpx i q :" 1 2 min i‰j |x j ´xi |. For such configurations let us now bound the energy from above. First we recall (5.14). We note that for the configurations in the integration set, the balls Bpx i , rpx i qq are disjoint and contain only the points x i and y i . We then let, for each i, u i solve

# ´∆u i " 2πpδ pλq x i ´δpλq y i q in Bpx i , rpx i qq Bu i Bν " 0 on BBpx i , rpx i qq
We then define a global "electric field" E by pasting together the electric fields defined over these disjoint balls:

E :" N ÿ i"1
1 Bpx i ,rpx i qq ∇u i .

Thanks to the crucial choice of zero Neumann boundary conditions on the boundary of the disjoint balls, this vector field satisfies ´div E " 2π

˜N ÿ

i"1 δ pλq

x i ´δpλq y i ¸" ´∆h λ (5.137) where h λ is the electric potential of the configuration as in (5.12). The trick is then to take advantage of the L 2 projection property onto gradients to show that the energy can be estimated from above by the L 2 norm of E:

indeed ż R 2 |E| 2 " ż R 2 |∇h λ | 2 `żR 2 |E ´∇h λ | 2 `2 ż R 2
pE ´∇h λ q ¨∇h λ and the last term vanishes after integration by parts, in view of (5.137 " 4πpgpλq `κq ´4πg λ px i ´yi q `O´| x i ´yi | 2 rpx i q 2

¯.

Inserting into (5.138) and (5.14) we deduce that

F λ pX N , Y N q ď ´N ÿ i"1
g λ px i ´yi q `O´| x i ´yi | 2 rpx i q 2 ¯.

(5.140)

In all cases, since we have built the configurations so that |x i ´yi | ď 1 2 rpx i q we can bound the error term by OpN q.

Step 2: bounding the free energy. Because of all the possible relabelling of the pairs, we may write 2πr exp ´βg λ prq ´C r 2 rpx i q 2 ¯drdx i (5.142)

Z λ N,
We have ż 1

2 rpx i q 0 2πr exp ´βg λ prq ´C r 2 rpx i q 2 ¯dr " ż 1 2 rpx i q 0 2πr exp ´βpgpλq `g1 p r λ qq ¯dr `O´ż 1 2 rpx i q 0 r 3 rpx i q 2 pr ^λq β dr Similarly to (5.119), we compute that ż 1 2 rpx i q 0 r 3 rpx i q 2 pr ^λq β dr " O ˆrpx i q 2 λ β 1 rpx i qď2λ `1rpx i qě2λ ˆλ4´β rpx i q 2 `rpx i q 2´β 1 βPp2,4q `λ4´β rpx i q 2 1 βą4 `1 rpx i q 2 log rpx i q 2λ 1 β"4 ˙ď C ˜rpx i q 2´β 1 βPr2,4q `λ4´β rpx i q 2 ^rpx i q 2 λ β 1 βě4 `plog rpx i q 2λ q ^0 rpx i q 2 1 β"4

¸.

We also compute that, in view of (5.44)

0 ď ż 8 1 2
rpx i q λ 2πs exppβg 1 psqqds ď 1 rpx i qě2λ ż 8

1 2 rpx i q λ 2πs exppβgpsq `Cqqds `C1 rpx i qď2λ ď C ˆ´´r px i q 2λ ¯2´β 1 βą2 `log ´rpx i q 2λ ¯1β"2 ¯1rpx i qě2λ `1rpx i qď2λ

"

C ˆ´rpx i q 2´β λ 2´β ^1¯1 βą2 `´log ´rpx i q λ ¯^1 ¯1β"2 ˙.
This error term can always be absorbed in the others, thus, in view of (5.16), we may write ż 1 2 rpx i q 0 2πr exp ´βg λ prq ´C r 2 rpx i q 2 ¯dr " λ 2´β ˆCβ `O ˆrpx i q 2´β λ 2´β 1 βPr2,4q `λ2 rpx i q 2 ^rpx i q 2 λ 2 1 βě4 `λ2 rpx i q 2 ˆplog rpx i q 2λ q ^0˙1 β"4 ˙˙, for β ą 2 and 

´1

´C λ 2 rpx i q 2 ^rpx i q 2 λ 2 ´C λ 2 rpx i q 2 ˆplog rpx i q 2λ q ^0˙1 β"4 ¯dx 1 . . . 

´1

´C λ 2 rpx i q 2 ^rpx i q 2 λ 2 ´C λ 2 rpx i q 2 ´plog rpx i q 2λ q ^0¯1 β"4 ¯dx 1 . . . 

´1

´C λ 2 r 1 px i q 2 ´C λ 2 r 1 px i q 2 ´plog r 1 px i q λ q ^0¯1 β"4 qdx 1 . . . where r 1 is as in (5.39) and φ is as in (5.121). We may then expand the product as in (5.123). Up to the sign, and the inequality being reversed, the terms in the product are identical to those found in (5.123). We thus deduce in the same way that 

´1

´C λ 2 rpx i q 2 ^rpx i q 2 λ 2 ´C λ 2 rpx i q 2 ˆplog rpx i q 2λ q ^0˙1 β"4 ¯dx 1 . . . dx N ě N pλ 2 | log λ| 2 1 β"4 `λ2 | log λ|1 βą4 q (5.146) and inserting into (5.144), we obtain the result.

Next, we turn to the case β P p2, 4q. In that case we have instead log Z λ N,β ě log N ! `N pp2 ´βq log λ1 βą2 `log | log λ|1 β"2 q `N log C β 1 βą2 rpx 1 q 2´β dx 1 . . . dx N " E P rr 2´β s.

(5.148)

The distribution f of r is called nearest-neighbor function. It is related to the so-called spherical contact distribution function. The point is that a Poisson point process, conditioned to having one point at x P R 2 remains a Poisson point process. As a consequence, the probability that r ě r is equal to the probability that the number of points in Bp0, rq equals to 0, i.e the probability of X " 0 where X is a Poisson variable of parameter λ " πr 2 . We deduce that P P pr ď rq " 1 ´e´πr 2 , which implies that f prq " 2πre ´πr 2 .

As a consequence we find that since β ă 4, ż f prqr 2´β dr " 2π ż 1 r β´3 e ´πr 2 dr ă 8.

We deduce that

log ´N ´N ż r0, ? N s 2N N ź i"1
´1 ´Crpx i q 2 λ β´2 ¯dx 1 . . . dx N ¯ě ´CN λ β´2 .

Inserting into (5.147) and using Stirling's formula we find the result (5.135) in the case β P p2, 4q.

Finally, the bound (5.143) being independent of x i 's, (5.136) is straightforward.

It is now immediate to complete the dipole description of Theorem 5.1.1. Let γ λ be the error rate defined in (5.17). First, one may observe that for t " β, the Laplace transform (5.20) ´r1 pz i q r 2 pz i q ¯2 `CpN ´nq ¯dZ 2N .

In the proof of Proposition 5. Together with the lower bound of Proposition 5.4.1, this concludes the proof of (5.20) for ´β 2 ď t ď 0. We turn to the proof of Item (3) of Theorem 5.1.1. Let I be the set of the indices of positive charges belonging to a neutral dipole:

I " t1 ď i ď N : ϕ 1 ˝ϕ1 piq " i, d i d ϕ 1 piq " ´1u.

(5.150)

Fix n 0 P t0, . . . , N u. We seek to upper bound the probability that of having less than n 0 neutral dipoles. For each 1 ď n ď K ď N , select a functional digraph γ K,n P D 2N,K,n . By decomposing the event t|I| ď n 0 u as the disjoint union of the events tγ 2N " γ K,n u for n ď n 0 and K ě n, we can write log P λ N,β p|I| ď n 0 q ď max pK,nq:Kěn,nďn 0 where IpK, nq is as in (5.86). We have already optimized IpK, nq under this constraint in the proof of Lemma 5.3.2. Applying the estimate (5.95) and the lower bound on log Z λ N,β found in Proposition 5.2.1, we thus find that for λ small enough, max pK,nq:Kěn,nďn 0 ´log ż tγ 2N "γ K,n u expp´βF λ q `log |D 2N,K,n | ¯´log Z λ N,β ď 2N log N `N log C β ´N `pβ ´2q log λpN ´n0 q `CpN ´n0 q.

Hence there exist λ 0 , c ą 0 and M 1 ą 0 depending on β such that for any |λ| ď λ 0 , P λ N,β p|I| ď N p1 ´cγ λ qq ď expp´M 1 N γ λ q.

(5.152)

One can next observe that " exp ´ÿ iPI g 1 ´λ´1 pz i ´zϕ 1 piq q ¯¯ı " OpN q.

Together with Markov's inequality this concludes the proof of (5.22).

Energetic control on linear statistics

In this section, we leverage on our ball-growth method for electric energy lower bounds of Section 5.2 to derive an energetic control on the fluctuations of linear statistics, which is the equivalent of [START_REF] Leblé | Fluctuations of two dimensional coulomb gases[END_REF]Prop 2.5] for the one-component plasma. In the next proposition, we show that the log-Laplace transform of linear statistics is of order of a power of λ times N 1 2 for some constant depending on β, provided the test-function is smooth enough. Let us emphasize that linear statistics are in fact expected to fluctuate much less, i.e in rate o N p ? N q for small but fixed λ. Proving such a rigidity statement would require more involved techniques.

with

A 1 " F λ pZ 2N q ´Fdip λ pZ 2N q, A 2 " ÿ iPI dip ,ϕ 2 piqPI dip ´r1 pz i q r 2 pz i q ¯2 `pN ´nq, A 3 " ÿ iPI dip ,ϕ 2 piqPI dip ´r1 pz i q γ ¯21 r 1 pz i qďγ .

Step where Λ k " r0, ? ks 2 . Let C b pEq be the set of continuous bounded functions from pE, T q to pR, | ¨|q. The relative entropy (5.33) with respect to P dip can be expressed as EntrP | P dip s " sup f PC b pEq pE P rf s ´log E P dip re f sq.

(5.163)

The proof of Theorem 5.1.2 follows the line of reasoning of the Gärtner-Ellis theorem, also used in [START_REF] Rassoul | A course on large deviations with an introduction to Gibbs measures[END_REF]Chapter 6] to prove a process-level LDP for the empirical field in a discrete setting. The first step is to replace the large deviation principle of [START_REF] Georgii | Large deviations and the maximum entropy principle for marked point random fields[END_REF] for the Poisson process by an analogous statement for our Poissonian dipole process. For all C " ř iPI δ px i ,y i q P E and x P Λ, we let θ x ¨C :" ÿ iPI δ px i ´x,y i q .

(5.164)

We also define the maps (5.166)

j n : C P E Þ Ñ 1 |Λ n |
Lemma 5.6.1. Let pΛ n q be an increasing sequence of cubes such that Y n Λ n " R 2 . Let R n be the push-forward of P dip by the map (5.165). Then pR n q satisfies a large deviation principle at speed |Λ n | with rate function Entp¨| P dip q.

To prove Lemma 5.6.1, we adapt almost line by line the proof of [START_REF] Rassoul | A course on large deviations with an introduction to Gibbs measures[END_REF]Chapter 6]. We begin by showing that given a local continuous bounded function on E, the limit (5.167) is well-defined, thus defining the so-called pressure. Using the variational characterization of the entropy, this will prove the upper bound for all compact sets, which can be extended to an upper bound for all closed sets by exponential tightness. The proof of the lower bound is similar to Cramer's theorem in that it uses a change of measure but the law of large numbers is replaced by the ergodic theorem.

Proof. Without loss of generality one may assume that Λ n " r0, ? ns 2 .

Step 1: study of the pressure. Let f P C b,loc pEq. One shall first prove that the following limit is well-defined: ppf q :" lim The proof proceeds by a super-additivity argument. For each n P N ˚, denote .168) As in [212, Prop 6.14], we cover the set Λ n with shifted well separated cubes of size m for some m ă N . Let m ă N and Λ plq m Ă Λ n , for l P t1, . . . , k 2 u be k 2 shifted copies of Λ l , chosen so that the distance between each consecutive subcube is at distance r in each direction. One may take k " t 2n´1 2m``2n´1 u. One can check that the volume not covered by the union of the Λ f pC n pxqqdx, 1 ď l ď k 2 are independent. We then conclude with (5.169) and independence that p n pf q ď κ N,m }f } 8

p n pf q " 1 |Λ n | log E P dip " exp ż Λn f pC N pxqqdx ȷ . ( 5 
`|Λ m | p2m `2r ´1q 2 p m pf q.

We deduce that (5.167) is well-defined. In addition we find that if f is bounded and F Λm -measurable, then ppf q ď 1 |Λ m | log E rexpp|Λ m |f qs .

(5.170)

Step 2: duality. We now put the space PpEq in duality with C b,loc pEq. We claim that for all Q P PpEq, p ˚pQq " EntpQ | P dip q, (5.171) where p ˚pQq :" sup f PC b,loc pEq pE Q rf s ´ppf qq.

Let f P C n,loc pEq. Let m such that f " f | Λm . In view of (5.170), we have

p ˚pQq ě E Q " f |Λ m | ı ´p´f |Λ m | ¯ě 1 |Λ m | pE Q rf s ´log Ere f sq.
Taking the supremum over f P C b,loc pEq yields p ˚pQq ě EntpQ| Λm | P | Λm q and therefore p ˚pQq ě EntpQ | P q. Conversely, f " ş Λn f pC n pxqqdx is F Λ m`n -measurable and EntpQ| Λ m`n | P | Λ m`n q ě E Q r f s ´log Ere f s " |Λ n |pE Q rf s ´pn pf qq, where p n pf q is as in (5.168). By letting n tend to infinity, we thus find

EntpQ | P q ě E Q rf s ´ppf q and therefore EntpQ | P q ě p ˚pQq.

Step 3: exponential tightness. Let us now show that pj n q is tight, meaning that for all b ą 0 there exists a compact K b Ă PpEq such that P dip pj n R K b q ď e ´|Λn|b . For R ą 0, let N R : Λ ˆE Ñ R be the map such that N R pr, Cq " |C `| X Λ R . One can observe that j N is supported on the set č RPN ˚tP P PpΛ ˆEq :

E P rN R s ď 2πR 2 u, (5.172) 
which is a compact set of PpEq, see for instance [START_REF] Leblé | Large deviation principle for empirical fields of log and Riesz gases[END_REF]Lemma 7.7]. This proves that pj n q is tight.

Step 4: upper bound. The upper bound can be first proved for compact subsets proceeding as in the proof of Cramer's theorem, see also [START_REF] Rassoul | A course on large deviations with an introduction to Gibbs measures[END_REF]Theorem 4.24]. It then follows from (5.171) that for any compact set F Ă PpEq, lim sup nÑ8 1 n log P dip pi n P F q ď ´inf QPF EntpQ | P dip q.

This upper bound can be generalized to closed sets by using the fact that pi N q is exponentially tight in PpΛ ˆEq.

Step 5: density of ergodic processes. We denote P 1,s pEq the set of point processes on E which are translation invariant (or stationary) and P 1,e pEq Ă P 1,s pEq the subset of extreme points of P 1,s pEq. Note that P 1,s pEq is exactly the set of ergodic processes on E. Recall that a stationary point process P is ergodic if and only if for all A P T which is invariant by translation, P pAq P t0, 1u.

We claim that for all Q P P 1,s pEq, there is a sequence of ergodic processes pQ k q which converges weakly to Q and such that lim kÑ8 EntpQ k | P dip q " EntpQ | P dip q.

The proof can be adapted readily from [212, Lemma 6.9].

Step EntpQ | P dip q.

(5.173)

Arguing with the density result of Step 5, this concludes the proof of the lower bound for all closed sets.

Next one extends the large deviations principle of Lemma 5.6.1 to the sequence of the pushforwards of P λ N,β by p5.30q. There are three tasks to deal with: one should handle the tagged microscopic field instead of j N , reduce the problem to an LDP under the dipole measure Q and finally deal with Bernoulli variables instead of Poissonian variables. (5.174)

The results of the previous sections show that there exists a constant C ą 0 such that for every measurable subset B of Λ 2N , ˇˇˇl og ż B expp´βF λ q ´log ż B expp´βF dip λ q ˇˇˇď CN γ λ .

In addition, one also has the stronger statement

ˇˇˇˇl og ż B expp´βF λ q ´log ż BXt|I c |ďC 0 N α λ expp´βF dip λ pZ 2N qqdZ 2N ˇˇˇˇď CN γ λ ,
where I is as in (5.19). Let n ě N p1 ´C0 α λ q. Now assume that B is given by B " ti N pX N , Y N q P Gu where G is a measurable subset of PpΛ ˆEq. Let us denote

Bn " tpX N , Y N q P Λ N N ˆpλ ´1Λ N q N : jN pX N , Y N q P Gu.

One then reduces the integral over dZ 2N above as an integral on 2n variables. Given Z 2n P Λ 2n , we let γ 2n pZ 2n q be the nearest-neighbor graph of Z 2n and let γ P D We finally obtain log ż i N PG expp´βF λ q " N `N pp2 ´βq log λ1 βą2 `log | log λ|1 β"2 q `log ż

Λ N N ˆpλ ´1Λ N q N N ź i"1
1j N pX N ,U N qPG exp ´β 2 g 1 pu i q ¯dX N dU N . (5.175) 
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1 |x| s si s ą 0

 10 Spécifions à présent la classe d'énergie qui nous intéresse. Étant données N particules x 1 , . . . , x N dans R d , on considère ÿ i‰j g s pN s d px i ´xj qq, (1.5) où g s est le noyau de Riesz sur R d , associé à un certain paramètre s ě 0, donné par la formule g s pxq " " ´log |x| si s " 0 et d P t1, 2u. (1.6) Le noyau de Riesz définit une interaction classique qui est correspond à la solution de l'équation de Laplace fractionnaire p´∆q d´s 2 g s " c s,d δ 0 .

´inf B I ď lim inf nÑ8 1 a n log µ n pBq ď lim sup nÑ8 1

 1 a n log µ n pBq ď ´inf B I (1.17) Cette définition formalise le fait qu'en un certain sens, pour tout B P B, µ n pBq » e ´an inf B I . (1.18)
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 71 Proofs of Theorem 2.1.7 and Corollary 2.1.
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 21 Figure 2.1: A trajectory of a single DOU with n " 3 and x n 0 " p´10, 0, 10q, β " 0 on top and β " 2 on bottom. The driving Brownian motions are the same.
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xÑ´a c 0 1 |x`a| 2´s and ψ 2 pxq " xÑa c 0 1 |x´a|

 11 2´s for some constant c 0 ‰ 0.Before stating the theorem, recall the definition of the fractional Sobolev seminorm on the circle

Theorem 3 . 1 . 3 (

 313 CLT for singular linear statistics). Let ξ and ℓ N satisfying Assumptions 3.1.1.

´1´s 2 .

 2 Let α P p0, 1q. Recall λ ´α " 1 Γpαq ż 8 0 e ´λt dt t 1´α , for all λ ą 0. (3.34)

Lemma 3 . 2 . 2 ( 1

 3221 Inversion of the Riesz transform). Let ξ P C ´s`ε pT, Rq for some ε ą 0. Let ψ P C ε pT, Rq given by ψ ξpyq ´∫ ξ |x ´y ´k| 1´s sgnpx ´y ´kqdy, for all x P T (3.42)

1 acting on L 2 Proposition 3 . 3 . 4 (

 12334 pt1, . . . , N ´1u, H 1 pµ x qq. Existence with a fixed point). Let µ satisfying Assumptions 3.3.1. Let x P T.

Lemma 3 . 3 . 6 (

 336 Energy comparison). Let µ satisfying Assumptions 3.3.1 and assume lim xÑ0 χpxq " `8. Let x P T and v, w P L 2 pt1, . . . , N ´1u, H ´1pµ x qq. Assume that for each i P t1, . . . , N ´1u, |v i | ď w i , a.e on D x N . (3.65)

Lemma 3 . 3 . 8 (( 3 . 68 )

 338368 Brascamp-Lieb inequality). Let µ satisfying Assumptions 3.3.1. Let A Ă D N be a convex domain with a piecewise smooth boundary. Let F : D N Ñ R in the form F " G ˝Π with ∇G P L 2 pt1, . . . , N ´1u, H ´1pµ 1 qq. There holds Var µ rF | As ď ´Eµ " min U N PR N ´UN ¨∇2 HU N ´2∇F ¨UN ¯| A ı " E µ r∇F ¨p∇ 2 Hq ´1∇F | As. Elements of proof. Let us illustrate the proof in the case A " D N . By Proposition 3.3.1, the variance of F may be expressed as Var µ rF s " ´min ϕPH 1 pµq

ż x 0 e

 0 βgspyq pξpyq ´∫ ξqdy. (3.109) In view of (3.109), one may compute that sup yPp0,cq |ψpyq| |y| 1`s´α ď Cpβq.

. 114 ) 10 (

 11410 Remark Scaling relation). On the circle, the Riesz kernel does not satisfy any nice scaling relation, as opposed to the Riesz kernel on the real line. As a consequence the fractional Laplacian of ξpℓ ´1 N ¨q cannot be expressed as a dilatation of the fractional Laplacian of ξ, hence(3.113). If ξ is replaced by a function ξ : R Ñ R and if p´∆q 1´s 2 denotes the fractional Laplacian on the real line, we have ℓ 1´s N p´∆q 1´s 2 pξpℓ ´1 N ¨q " pp´∆q 1´s 2 ξqpℓ ´1 N ¨q and (3.113) would be given by ψ 1 " ´1 2βcs p´∆q 1´s 2 ξ. When the scale ℓ N Ñ 0, then arguing as in Lemma 3.2.2, we can see that the solution of (3.113) approaches ´1 2βcs p´∆q 1´s 2 ξ 0 where ξ 0 : R Ñ R is as in(3.44). Therefore in the limit where ℓ N Ñ 0, (3.113) should be understand as a function supported on R and independent of ℓ N .

(4. 47 )

 47 Since M N is not an open subset of D N , Proposition 4.3.1 should be slightly adapted. Let µ satisfying Assumptions 4.3.1 and

Proposition 4 . 3 . 3 .

 433 Let µ satisfying Assumptions 4.3.1. Let F P H 1 pµq in the form F " G ˝Gap N with G P H 1 pνq. There exists a unique ∇ψ P L 2 pt1, . . . , N u, H 1 pνqq solution of$ & % A ν1 ∇ψ " ∇G `λpe 1 `. . . `eN q on M N ∇ψ ¨pe 1 `. . . `eN q " 0 on M N ∇ψ ¨⃗ n " 0 on BM N , (4.49)

Lemma 4 . 5 . 2 .

 452 Let ν satisfying Assumptions 4.5.1. Let s P p0, 1q. Let B, C, D be as in (4.117).

  , the bound on the Schur complement (4.143) follows from (4.142) and Lemma 4.5.2. Since A has overwhelming probability one may bound the contribution involving the Hessian of H p2q n and E Q N,β p¨|xq rH n,N px, ¨qs (in gap coordinates) by sup |ϕ| sup |η|Cpβqe ´cpβqn δ .

  `en qλs. (4.159) By construction, there exists a constant κ 0 ą 0 such that r M ě n ´κ0 ε I n. (4.160) It therefore remains to control the commutators δ p1q Lα and δ p2q Lα .

4. 5 . 7 1 Proof of Theorem 4 . 1 . 1 .

 571411 Proof of Theorem 4.1.Arguing as in the proof of Theorem 4.1.2, one may deduce Theorem 4.1.1

  study the decay of correlations under the measure µptq defined in(4.248). Following the procedure of Subsection 4.5.1, one may split A

Āνptq

  

  The proof of Theorem 4.1.4 is now straightforward. Proof of Theorem 4.1.4. By Theorem 4.1.3, lim N Ñ8 E P N,β rF ˝πs " E Riesz s,β rGpz 2 ´z1 , . . . , z k 0 ´z1 qs. Since the error term in (4.259) is uniform in N , this concludes the proof of Theorem 4.1.3.

Proposition 5 . 1 . 3 .

 513 For a Lipschitz test-function ξ : Λ Ñ R, let us define

Proof. Step 1 :ź iPI k zC k exp ´β 2 g λ pu i q ¯exp ´β1 tdm k d m 1 k"

 11 change of variables. Let us denoteexp ´´βF dip λ pX N , Y N q ¯dX N dY N .(5.67)Following[START_REF] Gunson | Two-dimensional neutral Coulomb gas[END_REF], we expand the partition function by splitting the phase space according to the nearest-neighbor graph of the points γ 2N . Let γ be a graph in D 2N,K . Performing the Gunson-Panta change of variables (5.60) with p " 2N , and using (5.64) we may write ż ´1u g λ pu m k q ¯dU N .(5.68) 

ż D 1 1 |u 1 | β 2 ¨¨¨1 |u 2N ´K´2n | β 2 dU 2 exppβg λ puqqdu " 2π ż 8 0exppβg λ prqqrdr " 2πλ β´2 ż 8 0exppβg 1 2 2N ´K´n ´N 4πp2N ´K ´nq ¯2N´n´K´β 4 p2N ´K´2nq ż D 2 r ´β 4 1 .´β 2 g 1 |u 2N ´2K´2n | β 2 dU 2 exp ´β 2 g λ puq ¯du ¯2pN´Kq . ( 5 . 79 )

 12228812212122579 2N ´K´n ,(5.70) whereD 1 " ! U 2N ´K´n P pR 2 q 2N ´K´n : |U 2N ´K´n | 2 ď N 4π ) ,(5.71)where u 2N ´K´2n`1 , . . . , u 2N ´K´n correspond to the non-neutral dipoles, which are not counted in the interaction. Performing a polar change of coordinates for the first integral we recognize ż R prqqrdr " λ β´2 C β ą 0(5.72) by definition(5.16).It remains to estimate the second integral in(5.70). By performing a polar change of coordinates again and the change of variables r 1 i " r 2 i , we can rewrite this as an integral over a simplex of R 2N ´K´n . By scaling one obtains ż . . r ´β 4 2N ´K´2n dR 2N ´K´n , (5.73) where D 2 " ␣ R 2N ´K´n P pR `q2N ´K´n : r 1 `. . . `r2N´K´n ď 2N ´K ´n( . Since β P p2, 4q, we can set α " 1 ´β 4 ą 0 and k 0 " 2N ´K ´2n and insert (5.58) into (5.73) to obtain, using 2N ´2K ´2n ď 2pN ´nq, λ pv i q ¯vi dv i ď ´2N ´n ´K ´β 4 p2N ´K ´2nq ¯log ´2N 2N ´K ´n ¯`c 0 pN ´nq ď p2N ´K ´nq log ´2N 2N ´K ´n ¯`c 0 pN ´nq, (5.74) for some constant c 0 depending on β. Combining with (5.70) and (5.72), this gives log ż tγ 2N "γuexpp´βF dip λ q ď K log N `np2 ´βq log λ `N log C β `p2N ´K ´nq log ´2N 2N ´K ´n ¯`c 0 pN ´nq (5.75)Step 3: integration in the case β " 2. In the case β " 2, one may separate the variables u m 1 k from the others but one should keep a volume constraint on the integral over dipole variables. Instead of (5.70), we writeż tγ 2N "γu expp´βF dip λ q ď e CβpN ´nq N K ż D exppβg λ pu 1 qq . . . exppβg λ pu n qqdU n 2N ´K´n ,(5.76)where D 1 is as in (5.71) and D given byD " ! U n P pR 2 q n : |u 1 | 2 `. . . `|u n | 2 ď N 4π ) . (5.77) For the first integral, one may check that log ż D exppβg λ pu 1 qq . . . exppβg λ pu n qqdU n ď n log ´ż b n log ´| log λ| `1 2 logp N n q `Op1q ¯. (5.78)Let us emphasize that contrarily to the case β ą 2, the integral of exppβg λ q over p0, λq does not diverge as λ tends to 0. The second integral may be bounded as in Step 2, which gives together with (5.78),log ż tγ 2N "γu expp´βF dip λ q ď K log N `n log | log λ| `n log ´| log λ| `c 0 pN ´nq.Step 4: integration in the case β ě 4. For β ą 4 the variables with factor ´β{2 in (5.70) turn to be also diverging and one instead writesż tγ 2N "γu expp´βF dip λ q ď e CβpN ´nq N K ´żR 2 exppβg λ puqqdu ¯n´ż R As a consequence,arguing as in (5.72)), one gets log ż tγ 2N "γu expp´βF dip λ q ď K log N `pβ ´2qn| log λ| `n log C β `2pN ´Kqp β 2 ´2q| log λ| `CpN ´nq, (5.80) where the term pN ´Kq log C β{2 is absorbed into N ´n. For β " 4 one gets log ż tγ 2N "γu expp´βF dip λ q ď K log N `pβ ´2qn| log λ| `n log C β `2pN ´Kq log | log λ|1 β"4 `p2N ´K ´nq log ´2N 2N ´K ´n ¯`CpN ´nq, (5.81) Step 5: sum over graphs and optimization. The total number of pairs of particles is N p2N ´1q and the number of pairs of neutral charge is N 2 . It follows that |D 2N,K,n | " |D 2N,K | One can therefore check from (5.62) and (5.63) that log |D 2N,K,n | ď log |D 2N,K | ´n log 2 `Oplog N q, (5.82) which yields using Stirling's formula log |D 2N,K,n | ď 2N logp2N q´K log K `2pN ´Kqplog N ´logpN ´Kqq´n´2n log 2`Oplog N q. (5.83) Combining (5.75) and (5.83), we find that in the case β P p2, 4q, log ż tγ 2N "γu expp´βF dip λ q `log |D N,K,n | ď np2 ´βq log λ `p2N ´K ´nq log ´2N 2N ´K ´n N log C β `2N logp2N q´K log K´2pN ´Kq log ´1´K N ¯´np1`2 log 2q`c 0 pN ´nq`Oplog N q.

  2N "γ n,K u expp´βF dip λ q `log |D 2N,K,n | ď 2N logp2N q `N plog C β ´1 ´2 log 2q `max 1ďnďKďN IpK, nq `Oplog N q, (5.85) where IpK, nq :" np2 ´βq log λ `p2N ´K ´nq log ´2N 2N ´K ´n K log N ´K log K ´2pN ´Kq log ´1 ´K N ¯`c 0 pN ´nq. (5.86)

Fix x ě 1

 1 ´c | log λ| . The function y Þ Ñ φ β px, yq is increasing on p1 ´c | log λ| , 1q therefore sup px,yqPA φ β px, yq " sup xą1´c | log λ| φpx, xq " φ β p1, 1q. (5.88) It follows that for λ small enough, max 1ďnďKďNIpK, nq " IpN, N q.(5.89)Inserting this into (5.85) we find that for β P p2, 4q.log K λ N,β ď 2N log N `p2 ´βqN log λ `N log C β ´N `Oplog N q,(5.90)which concludes the proof of the lemma in the case β P p2, 4q. In the case β " 2, (5.85) is replaced bylog K λ N,β ď 2N logp2N q ´N p1`2 log 2q `max 0ďnďKďN :" n log log |λ| `np β 2 ´1q log N ´p1 ´β 4 qp2N ´2Kq log ´p1 ´β 4 q2pN ´Kq `K ´nK log K ´2pN ´Kq log ´1 ´K N ¯`c 0 pN ´nq " N φ β p n φ β is defined by φ β : px, yq P A Þ Ñ y log | log λ|`¯x logpN xq ´2p1 ´xq logp1 ´xq ´yp1 `2 log 2q `c0 p1 ´yq,

1ďnďKďN

  IpK, nq `Oplog N q, where IpK, nq " np2 ´βq log λ `2pN ´Kq ´p β 2 ´2q| log λ|1 βą4 `log | log λ|1 β"4 ¯´K log K ´2pN ´Kq logp1 ´K N q `c0 pN ´nq, (5.92) leading to optimize the function φ β px, yq " yp2 ´βq log λ `2p1 ´xq ´p β 2 ´2qplog λq1 βą4 `log | log λ| 2p1 ´xq logp1 ´xq `c0 p1 ´yq. (5.93)

Lemma 5 . 3 . 3 .log pr 1

 5331 Let k ď p and let us consider the energy over r0, 1s 2p defined by F k pz 1 , . . . , z p q :pz i qq (5.96)with r 1 defined byr 1 pz i q " min ´λ ? p , 1 4 min j‰i |z i ´zj | ¯.(5.97)Putting the two last displays together, one obtainsż A k 0 l,m,n Xt|z 1 | 2 `...`|z k | 2 ďC 0 k p u expp´βF k pz 1 , . . . , z k`m qqdz 1 . . . dz k`m ď C k l! pl ´2k 0 q!k 0 !pk ´lq l´2k 0 ¨´λ ?

  ,n Xt|z 1 | 2 `...`|z k | 2 ďC 0 k p u expp´βF k pz 1 , . . . , z k`m qqdz 1 . . . dz k`m

p q p2´βq l 2 ´b k ppk´lq ¯p2´β 2 qpk´lq if p l λ β´2 ď 1 pk ´lq l p 1 ? p q p2´β 2 qk if p l λ β´2 ě 1 .( 5 . 109 )| log λ| l 2 ´b k ppk´lq ¯p2´β 2 qpk´l 2 q if p l 1 | log λ| ď 1 pk ´lq l p 1 ? p q p2´β 2 qk if p l 1 | log λ| ě 1 ,l l{2 | log λ| l 2 ´b k ppk´lq ¯p2´β 2 qpk´l 2 q if p l λ 2 | 2 |

 115109111122 [START_REF] Dumitriu | Matrix models for beta ensembles[END_REF]) is bounded bylog ż A l,m,n Xt|z 1 | 2 `...`|z k | 2 ďC 0 k p u expp´βF k pz 1 , . . . , z p qqdz 1 . . . dz p ď C k ´1 ´C0 k Similar computations show that for β " 2, log ż A l,m,n Xt|z 1 | 2 `...`|z k | 2 ďC 0 k p u expp´βF k pz 1 , . . . , z p qqdz 1 . . . dz p ď C k ´1 ´C0 Xt|z 1 | 2 `...`|z k | 2 ďC 0 k p u expp´βF k pz 1 , . . . , z p qqdz 1 . . . dz p ď C k ´1 ´C0 k p log λ| 2 ď 1 ´1 ´C0 k p ¯p´k´m pk ´lq l | log λ| p2´β 2 qk if p l λ log λ| 2 ě 1,(5.111) and for β ą 4, log ż A l,m,n Xt|z 1 | 2 `...`|z k | 2 ďC 0 k p u expp´βF k pz 1 , . . . , z p qqdz 1 . . . dz p ď C k ´1 ´C0

4 2´β ż r 1 1 px i q{λ 0 r 1 1 1 1 px i q ¯¸dr ď λ 2´β ˜Cβ `Cβt ż 1 0 r ´λ r 1 1 px i q ¯2dr `Cβt ż r 1 1 px i q{λ 1 r 1´β ´λr r 1 1

 4101101111 |w i |, λq r 1 1 px i q ¯¯dX p dW p .(5.118) Let us integrate over W p first, and simplify the domain of integration by including it in the set t|w i | ď r1 1 px i qu. Using polar coordinates, (5.44), performing the change of variables |w i | " λ|w 1 i |, and recalling that by definition r1 1 px i q ě λ we may then bound each integral over w i by2πλ exp ˜βg 1 prq ´βf ´λ maxp 1 4 r, 1q r 1 1 px i q ¯¸dr ď 2πλ 2´β ż r px i q{λ 0 r exp βg 1 prq ˜1 ´Cβf´λ maxp 1 4 r, 1q r px i q ¯2dr ¸(5.119) 

ϕ β pλ 2 |ϕ β ď Cλ 2 |

 22 log λ|q ą ϕ β pλ 2 | log λ| 2 q. log λ|, which gives combined to (5.124) the proof of(5.116) in the case β ą 4.

  results of Lemma 5.3.2 (applied with N ´n), more precisely (5.75), and Lemma 5.3.4, we findlog ż tγ 2N "γu exp ´´β ´Fdip λ pX N , Y N q ´C ÿ iPtY k C k ,|I k |"2,d i d ϕ 1 piq "´1u

  ). There remains to sum over the functional digraphs. Using (5.83), we first obtain thatlog ´|D 2N,K,n | ż tγ 2N "γu exp ´´β ´Fdip λ pX N , Y N q ´C ÿ iPtY k C k ,|I k |"2,d i d ϕ 1 piq "´1u

  We may then write by reverse triangle inequality that|x 2 ´y2 | ě |x 2 ´x1 | ´|x 1 ´y2 |

|x 1

 1 ´x2 | ď |y 1 ´y2 | `|x 1 ´y1 | `|x 2 ´y2 | ď |y 1 ´y2 | `8 maxpr 1 px 1 q, r 1 px 2 qq.

Proposition 5 . 4 . 1 .

 541 Assume β P p2, `8q. We havelog Z λ N,β ě 2N log N `N p2 ´βq log λ ´N `N log C β `O ´N pλ β´2 1 βă4 `λ2 | log λ| 2 1 β"4 `λ2 | log λ|1 βą4 q ¯. (5.135)For β " 2, we havelog Z λ N,β ě 2N log N `N log | log λ| ´N `O´N | log λ| ¯.

ż 1 2

 1 rpx i q 0 2πr exp ´βg λ prq ´C r 2 rpx i q 2 ¯dr " | log λ| ´1 `O´1 | log λ| ¯¯,(5.143)for β " 2. Let us start with the case β ě 4. Inserting this result into (5.142), we then findlog Z λ N,β ě log N ! `N p2 ´βq log λ `N log C β

1 ´1 ´Cφpr 1

 11 px i qq ¯dx 1 . . . dx N(5.145) 

Proof of Theorem 5 . 1 . 1 . Denote G " ÿ iPI g λ pz i ´zϕ 1 piq q ( 5

 5115 exp p´βGpX N , Y N qq dX N dY N .

3 . 5 ,

 35 we have shown that the above integral satisfieslog ż exp ´´βF dip λ `C ÿ iPI dip ,ϕ 2 piqPI dip ´r1 pz i q r 2 pz i q ¯2 `CpN ´nq ¯dZ 2N ď 2N log N `p2 ´βq log λ `N log C β ´N `CN γ λ .

  ´log ż tγ 2N "γ K,n u expp´βF λ q `log |D 2N,K,n | log Z λ N,β `Oplog N q. (5.151)We have already controlled this quantity in the proof of Proposition 5.3.5. For instance, for β P p2, 4q one may insert (5.133) and we get logż tγ 2N "γ K,n u expp´βF λ q ď np2 ´βq log λ `N log C β ´p2N ´n ´Kq log ´2N 2N ´K ´n ¯`c 0 pN ´nq `CN γ λ ,for some constant c 0 ą 0. This leads to optimizing the same function as in (5.85):max pK,nq:Kěn,nďn 0 ´log ż tγ 2N "γ K,n u expp´βF λ q `log |D 2N,K,n | ď 2N logp2N q `N plog C β ´1 ´2log 2q `max pK,nq:1ďnďn 0 ,Kěn IpK, nq `CN γ λ ,

.

  Using Theorem 5.1.1 to expand the ratio of partition function together with (5.20), we find that log E P λ N,β

ż

  Λnδ θx¨C dx P PpEq,(5.165)jn : C P E Þ Ñ 1 |Λ n | ż Λn δ px,θx¨Cq dx P PpΛ ˆEq.

rlsm

  's satisfies |Λ n | ´k2 |Λ m | ď |Λ n |κ N,m with lim mÑ8 lim nÑ8 κ n,m " 0. (5.169) By construction the variables ş Λ plq m

Proof of Theorem 5 . 1 . 2 . 2 λ

 5122 Step 1: reduction to the dipole measure. To lighten the notation, setγ λ :" β´2 if β P p2, 4q λ 2 | log λ| 2 if β " 4 λ 2 | log λ| if β ą 4.

  

  Le 2CP est alors donné par la mesuredP N,β " 1 Z N,β expp´βH N pX N , Y N qq1 pX N ,Y N qPΛ 2N dx 1 . . . dx N dy 1 . . . dy N N pX N , Y N qqdx 1 . . . dx N dy 1 . . . dy N .

		(1.14)
	où Z N,β désigne la fonction de partition	
	ż	
	Z N,β "	(1.15)
	Λ 2N	

2, c'est-à-dire gpxq " ´log |x|, x P R 2 . expp´βH

  1.3.2 Fluctuations, corrélations et limite thermodynamique pour le gaz de Riesz circulaire Les chapitres 3 et 4 de ce manuscrit sont consacrés à l'étude du gaz de Riesz sur le cercle dans le régime longue portée. Comme mentionné précédemment, le gaz de Riesz sur le cercle correspond

pour s " 0 au log-gaz circulaire ou β-ensemble circulaire ou C β E. Les β-ensembles sont des modèles fondamentaux de la physique statistique, abondamment étudiés dans la littérature probabiliste en raison de leur liens avec les matrices aléatoires. Il existe un très grand nombre de résultats sur ces modèles et l'une des richesses du sujet réside dans la multiplicité des approches et outils possibles pour les aborder : probabilités intégrables, modèles tridiagonaux, méthodes de gaz de Coulomb, approche dynamique avec le mouvement de Dyson, représentation avec des diffusions stochastiques, des spectres d'opérateurs aléatoires, etc. Pour s P p0, 1q, il semble exister moins de structures mathématiques sous-jacentes (pas de bon modèle matriciel a priori). On se propose alors d'étudier ce modèle avec une approche purement « physique statistique ». Plus précisément on poursuit le programme suivant :

  du même ordre de grandeur que pour des fonctions-test lisse contrairement au cas s " 0. Enfin notons que |x| ´s 2 est la puissance critique qui n'est pas dans H

	1´s
	2

1 pa,bq où pa, bq est un arc de cercle et à la fonction puissance inverse |x| ´α pour α P p0, s 2 q. En effet, 1 pa,bq est dans H 1´s 2 pour tout s P p0, 1q mais 1 pa,bq R H 1 2 . Ainsi pour s P p0, 1q la statistique linéaire associée est

  Theorem 2.1.1 (Cutoff for OU: mean-field regime). Let Z n " pZ n t q tě0 be the OU process (2.8) and let P 0 n be its invariant law. Suppose that Theorem 2.1.1 is not a surprise, and actually the TV and Hellinger cases are already considered in

				lim nÑ8	|z n 0 | 2 n	ą 0 and lim nÑ8	|z n 0 | 2 n	ă 8
	where |z| "	a z 2 1 `¨¨¨`z 2 n is the Euclidean norm. Then for all ε P p0, 1q,
						#
		lim nÑ8	distpLawpZ n tn q | P 0 n q "	max if t n " p1 ´εqc n 0 if t n " p1 `εqc n
	where				
		$ ' &	1 2 logpnq if dist " Wasserstein,
		c n "		logpnq	if dist P tTV, Hellinger, Kullback, χ 2 u,
		'		
		%		

3 2 logpnq if dist " Fisher. Theorem 2.1.1 is proved in Section 2.3. See Figure 2.1 and Figure 2.2 for a numerical experiment. Theorem 2.1.1 constitutes a very natural benchmark for the cutoff phenomenon for the DOU process.

  At this step it is worth noting that Theorem 2.1.3 gives in particular, denoting β n :" 1`β 2 pn´1q, Sec. 2.2], the limits can also be deduced from the Dumitriu-Edelman tridiagonal random matrix model[START_REF] Dumitriu | Matrix models for beta ensembles[END_REF] isospectral to β-Hermite. These formulas for the "transient" first two moments ErπpX n t qs and Er|X n t | 2 s reveal an abrupt convergence to their equilibrium values : In contrast, the first two moments of the normalized mean empirical measure Er 1

	ErπpX n t qs " πpx n 0 qe ´t ÝÑ tÑ8	0 and Er|X n t | 2 s " β n `p|x n 0 | 2 ´βn qe ´2t ÝÑ tÑ8	β n .	(2.11)
	Following [81, • If lim nÑ8	πpx n 0 q n	" α ‰ 0 then for all ε P p0, 1q,
					#
			lim nÑ8	|ErπpX n tn qs| "	`8 if t n " p1 ´εq logpnq 0 if t n " p1 `εq logpnq	.	(2.12)
	• If lim nÑ8	|x n 0 | 2			
	by 1					n	ř n i"1 δ X n,i t	s, given

n " α ‰ β 2 then for all ε P p0, 1q, denoting β n :" 1 `β 2 pn ´1q,

lim nÑ8 ˇˇEr|X n tn | 2 s ´βn ˇˇ" # `8 if t n " p1

´εq 1 2 logpnq 0 if t n " p1 `εq 1 2 logpnq . (2.13) These critical times are universal with respect to β. The first two transient moments are related to the eigenfunctions (2.23) associated to the first two non-zero eigenvalues of the dynamics. Higher order transient moments are related to eigenfunctions associated to higher order eigenvalues. Note that ErπpX n t qs and Er|X n t | 2 s are the first two moments of the non-normalized mean empirical measure Er ř n i"1 δ X n,i t s, and this lack of normalization is responsible of the critical times of order logpnq.

  3) with β " 0 or β ě 1, and invariant law P β and assume that lim nÑ8 c n " 8. Then, for all ε P p0, 1q, we have

	lim nÑ8	distpLawpX n p1´εqcn q | P β n q " max .
	Theorem 2.1.3 and Corollary 2.1.4 are proved in Section 2.4.
	´|πpx n 0 q| ?

n . Let dist P tTV, Hellinger, Kullback, χ 2 , Wassersteinu. Set c n :" # logp|πpx n 0 q|q if dist P tTV, Hellinger, Kullback, χ 2 u log n ¯if dist " Wasserstein ,

  Note that S takes its values in the whole p´8, `8s, and when Spµq ă `8 then ´Spµq is the Boltzmann-Shannon entropy of the law µ. For all x P R n with x i ‰ x j for all i ‰ j, we have Epx 1 , . . . , x n q " n 2

									ij			
											Φpx, yq1 tx‰yu L n pdxqL n pdyq	(2.16)
	where L n :"	1 n	n ÿ i"1	δ x i and where Φpx, yq :"	n	n ´1 V pxq `V pyq 2	`β 2	log	1 |x ´y|	.
		"	$ &	ż	dµ dx	log	dµ dx	dx " "Kullbackpµ | dxq" if	dµ dx	log	dµ dx	P L 1 pdxq	.	(2.15)
				%	`8					otherwise

  ˚n by the map Ψ n : R n Ñ D n defined in(2.17). Furthermore for all bounded measurable f : R n Ñ R, denoting Σ n the symmetric group of permutations of t1, . . . , nu,

	1 n I n q according to our definition of P 0 n . ˚n has density pC β If β ą 0 then P β ˚nq ´1e ´E with C β n where C β n is the normalization ˚n " n!C β of P β n . Moreover P β ˚n is a mixture of n! isometric copies of P β n , while P β n is the image law or push forward of P β
	ż	f dP β ˚n "	ż	f sym dP β n	with f sym px 1 , . . . , x n q :"	1 n!	ÿ σPΣn	f px σp1q , . . . , x σpnq q.

  ¨q ´1} 1 ď }p t px, ¨q ´1} p ď }p t px, ¨q ´1} q . (in other words L 2 ) cutoff, provided one can estimate ř ψPB 1 |ψpxq| 2 which is the square of the norm of the projection of δ x on B 1 .Following[START_REF] Saloff-Coste | Precise estimates on the rate at which certain diffusions tend to equilibrium[END_REF] Th. 6.2], an upper bound would follow from a Bakry-Émery curvature-dimension criterion CDpρ, dq with a finite dimension d, in relation with Nash-Sobolev inequalities and dimensional pointwise estimates on the heat kernel p t px, ¨q or ultracontractivity of the Markov semigroup, see for instance[START_REF] Saloff-Coste | Aspects of Sobolev-type inequalities[END_REF] Sec. 4.1]. The OU process satisfies to CDpρ, 8q but never to CDpρ, dq with d finite and is not ultracontractive. Actually the OU process is a critical case, see[START_REF] Ané | Sur les inégalités de Sobolev logarithmiques[END_REF] Ex. 2.7.3].

							(2.19)
	In the particular case p " 2 we can write					
		8				
	}p t px, ¨q ´1} 2 2 "	ÿ	e ´2mt	ÿ	|ψpxq| 2 .	(2.20)
		m"1		ψPBm	
	where B m is an orthonormal basis of F m Ă L 2 pP 0 n q, hence	
	}p t px, ¨q ´1} 2 2 ě e ´2t	ÿ	|ψpxq| 2 ,	(2.21)
				ψPB 1	
	which leads to a lower bound on the χ 2					

  is the solution of the following complex Burgers equation B t s t pzq " s t pzq `zB z s t pzq `βs t pzqB z s t pzq, t ě 0, z P C `.

	The semi-circle law on r´c, cs has density 2 ? 4z 2 ´4c 2 ´2z ? c 2 ´x2 πc 2 1 xPr´c,cs , mean 0, second moment or variance c 2 4 , and Cauchy-Stieltjes transform s t pzq " c 2
		of µ t . The first and second moments
	satisfy the differential equations m 1 1 " ´m1 and m 1 2 " ´2m 2 `β respectively, which give
	m 1 ptq " e ´tm 1 p0q ÝÑ tÑ8	0 and m 2 ptq " m 2 p0qe ´2t `β 2	p1 ´e´2t q ÝÑ tÑ8	β 2	.	(2.29)
	More generally, beyond the first two moments, the Cauchy-Stieltjes transform	
	z P C `" tz P C : ℑz ą 0u Þ Ñ s t pzq "	ż R	µ t pdxq x ´z		(2.30)
	of µ t (2.31)

  1.1 and 2.1.2: actually we only prove the latter since it implies the former. We start by recalling a well-known fact. If pY t q tě0 is an OU process in R d solution of the stochastic differential equation Y 0 " y 0 P R d and dY t " σdB t ´µY t dt for parameters σ ą 0 and µ ą 0 where B is a standard d-dimensional Brownian motion then pY t q tě0 " ´y0 e ´µt `σ ż t

	Lemma 2.3.1 (Mehler formula). 0 e µps´tq dB s	¯tě0	hence Y t " N ´y0 e ´µt ,	σ 2 2	1 ´e´2µt µ	I d ¯for all t ě 0.
	Moreover its coordinates are independent one-dimensional OU processes with initial condition y i 0 and invariant law N p0, σ 2 2µ q, 1 ď i ď d.
	Proof of Theorem 2.1.1 and Theorem 2.1.2. By using Lemma 2.3.1, for all n ě 1 and t ě 0,
	Z n t " N ´zn 0 e ´t,	1 ´e´2t n	I n ¯" b n i"1 N ´zn,i 0 e ´t,	1 ´e´2t n	¯, P 0 n " N ´0,	I n n	¯" N ´0,	1 n	¯bn (2.38) .
	Hellinger, Kullback, χ 2 , Fisher, and Wasserstein cutoffs. A direct computation from (2.38) or
	Lemma 2.8.5 either from multivariate Gaussian formulas or univariate via tensorization gives

  The triangle inequality for dist yields |A t ´Bt | ď distpLawpZ n t q | P 0 n q ď A t `Bt . Therefore the critical time of Theorem 2.1.2 is dictated by either A t or B t , according to whether c

	admits a cutoff at time c B n " 1 4 logpnq.
			). From the computations of the proof
	of Theorem 2.1.2, we can show that for dist P tTV, Hellinger, χ 2 u
	A t :" distpLawpZ n t q | LawpZ n t	´zn 0 e ´tqq
	has a cutoff at time c A n " logp	? n|z n 0 |q, while
		B t :" distpLawpZ n t	´zn 0 e ´tq | P 0 n q

Table 2 .

 2 and ϕpbq are as in Table2.1. The cutoff window is always of size 1. Since the total variation distance is not expressed in a simple explicit manner, further computations are needed to extract the precise cutoff profile, which is given in the following lemma: 1: Values of t n,b and ϕpbq for the cutoff profile of the OU process in(2.48). and let t n,b be as in Table(2.1) for Hellinger. Then, for all b P R, we have

				39), (2.40), (2.41), (2.42), (2.43), it is immediate to extract
	the cutoff profile associated to the convergence of LawpZ n t q to P 0 n in Hellinger, Kullback, χ 2 , Fisher
	and Wasserstein. For Wasserstein we already know by Theorem 2.1.2 that a cutoff occurs if and
	only if |z n 0 | Ñ nÑ8	8. In this case, regarding the profile, we have
		lim nÑ8	WassersteinpLawpZ n t q, P 0 n q " ϕpbq,	(2.44)
	where for all b P R,			
		t n,b " log |z n 0 | `b and ϕpbq " e ´b.	(2.45)
	For the other distances and divergences, let us assume that the following limit exists
			a :" lim nÑ8	?	n|z n 0 | 2 P r0, `8s.	(2.46)
	This quantity can be related with			
		c A n :" logp|z n 0 |	?	nq and c B n :"	log n 4	(2.47)
	which were already introduced in Remark 1. Indeed
		a " 0 ðñ c A n ! c B n , a " `8 ðñ c A n " c B n ,
	while a P p0, 8q is equivalent to c A n -c B n . Then, for dist P tHellinger, Kullback, χ 2 , Fisheru, we have, for all b P R,
		lim nÑ8	distpLawpZ t n,b q | P 0 n q " ϕpbq,	(2.48)
	where t n,b				

  Wasserstein distance, we have }π} Lip :" sup x‰y Schwarz inequality, and by Lemma 2.8.2, for all probability measures µ and ν on R n ,

		|πpxq´πpyq| |x´y|	ď	?	n from the
	Cauchy-Wassersteinpµ ˝π´1 , ν ˝π´1 q ď	? nWassersteinpµ, νq.			(2.58)

  .82) Inserting (2.80), (2.81) and (2.82) into (2.79) we obtain (for a different constant C ą 0)

  As a consequence, there exists a constant C ą 0 such that for each k P Z and all t P R,

	It follows that															
		ÿ kPZ ˚ż 1 0	|u k |ptqdt ď C	ÿ kPZ ˚ż 8 1	1 t 1´s 2	e ´|k| 2 t dt ď C	ż 8 1	1 t 1´s 2	e ´t 2 ă 8.	(3.39)
	To treat the other part of the integral, we can write
	u k ptq "	1 t 1`s 2	ż	T	´e´| x´k| 2 4t	´e´| y´k| 2 4t	¯dy "		1 t 1`s 2	e ´|k´x| 2 4t	ż	|k´y|ą|k´x|	´1	4t ´e |k´x| 2 ´|k´y| 2	¯dy
																`1 t 1`s 2	|k´y|ă|k´x| ż	e	´|k´y| 2 4t	´1	4t ´e |k´y| 2 ´|k´x| 2	¯dy.
													|u k ptq| ď	Ck t 2`s 2	e	´pk´1q 2 4t	.
	When u ě 1, by comparison to a Gaussian integral, one may check that
														ÿ		´|k| 2 4u 2 ď Cu 2 ,
														kPZ ˚ke
	which leads to						ż 8 1	ÿ kPZ	ikx " |u k ptq|dt ď C ż 8 1	1 4πt 1 t 1`s 2 ? dt ă 8. kPZ ÿ e ´|x´k| 2 4t	.	(3.36) (3.40)
	One may rewrite (3.35) as g s pxq " c s Γp 1´s 2 q ? 4π For f P SpTq such that ş f " 0, p´∆q ´αf equals its Fourier series and one obtains { p´∆q ´αf pkq " 1 Γpαq ż 8 0 { f ˚Wt pkq dt ÿ ż 8 u k ptqdt kPZ 0 t 1´α . " c s Γp 1´s 2 q ? 4π ÿ kPZ ´ż 8 0 e ´|x´k| 2 4 t dt t 1`s 2 ´ż 8 0 ż T e ´|y´k| 2 4 t 1`s 2 dy t dt "
			Γp s 2 qc s Γp 1´s 2 q ? 4π	p´∆q ´αf pxq " ÿ kPZ ´1 | x´k 2 | s ´żT Γpαq 1 | y´k 2 | s ż 8 0 dy " f ˚Wt pxq dt t 1´α .	(3.37)
					´n ÿ											
	Moreover by (3.36), lim nÑ8	k"´n	ż T	W t pyqdy " 1 "	1 4πt ?	kPZ ÿ	ż	T	e	4t ´|y´k| 2	dy.
	Applying (3.37) to α " 1´s 2 P p0, 1q and f " c s pδ 0 ´1q therefore gives
	g s pxq "	c s Γp 1´s 2 q	ż 8 0	pW t pxq ´1q	t	dt 1`s 2	"	c s Γp 1´s 2 q	1 ? 4π	ż 8 0	ÿ kPZ ´e´| x´k| 2 4t	´żT	e	´|x´k| 2 4t	dx	¯dt t 1`s 2	.
																		(3.38)
	Define the sequence of functions								
					u k : t P R `˚Þ Ñ	1 t 1`s 2	´e´| x´k| 2 4t	´żT	e ´|y´k| 2 4t	dy ¯, k P Z ˚.

First observe that when t ě 1,

ÿ kPZ ˚e´|k| 2 t ď e ´t 2 ÿ kPZ ˚e´1 2 |k| 2 t ď Ce ´t 2 .

Combining (3.39) and (3.40), we deduce by Fubini's theorem that the order of integration and summation in

(3.38) 

can be inverted and we find

  If ξ P C 1´s`ε pT, Rq it is well-known, see for instance[START_REF] Raúl | User's guide to the fractional laplacian and the method of semigroups[END_REF] Th. 2], that for all x P T,

	ψ 1 pxq "	´c1 s 2c s	ż	ÿ kPZ	ξpyq ´ξpxq |x ´y ´k| 2´s dy, where c 1 s "	2 1´s Γp1 ´s 2 q 2 |Γp´1 ´s 2 q|π 1	.	(3.46)

1 

" ´1 2cs p´∆q 1´s 2 ξ with ş ψ " 0.

1

  Eµre tF s e tF dµ. The measure µ t can be written µ t " µ ˝Φ´1 : D N Ñ D N such that ş Φ t " 1 solution of the Monge-Ampère equation ´log det DΦ t `H ˝Φt ´H " tF ´log E µ re tF s.Formally, since µ t " µ `tν `optq, one expects that Φ t " Id `tϕ `optq. Linearizing the above equation in t formally gives L µ ϕ " F ´Eµ rF s, which is the Poisson equation (3.54).

t with Φ t

  RˆR N ´m e ´Hpx,yq pB zz H ´Bzq HpB qq Hq ´1B zq Hqdwdy.

	The point is that r H is convex. We claim that
	B zz r H ě	Z 1	ż
			(3.75)

1 Z e ´r Hpzq dz, with r Hpzq " ´log Z `r H 1 pzq ´log ż e ´Hpx,yq dwdy.

  5: conclusion. The exponent in the last display is larger than 2δ if and only if

	2p1 `δq	´1 1 ´α0	pp1 `γqps `2q ´1q ą 2δ ðñ γ ă	2p1 ´α0 q ´p1 `sq 2 `s	.	(3.94)
	Observe that the conditions (3.87) and (3.94) can be satisfied if and only if
	p1 ´α0 qδ ă	2p1 ´α0 q ´p1 `sq 2 `s	ðñ 1 ´α0 ą	p2 `sqδ `p1 `sq 2	.	(3.95)

  Since g is the fundamental solution of the fractional Laplace equation p´∆q 1´s 2 g " c s pδ 0 ´1q, ψ is the unique solution of

							sq g 1 s px ´yqdxdy
	`2N	ż	´ż N pψpxq ´ψpyqqN ´p1`sq g 1
							ż
				ψ 1 "	´1 2βc s	p´∆q	1´s 2 ξ with	ψ " 0.	(3.117)
	For this map, one can observe that the constant term in the splitting (3.115) vanishes:
	ij						ż
	N	N pψpxq ´ψpyqqN ´p1`sq g 1 s px ´yqdxdy " ´N 1´s	g 1 s ˚ψ " 0.

s px ´yqdy ¯dfluct N pxq `Arψs, (3.115) with Arψs as defined in (3.112) with ℓ N " 1. For the crossed term we can write N ż N pψpxq ´ψpyqqN ´p1`sq g 1 s px ´yqdy " ´N 1´s g 1 s ˚ψ. (3.116) Let ψ P C ε pT, Rq be the solution of the convolution equation ´2βg 1 s ˚ψ " ξ ´ş ξ with ş ψ " 0. By (3.115) and (3.116), there holds

  Var P N,β rA ℓ N rψ reg ss

			2 N	To upper bound Error 2 N , one can write for instance
	|Error 2 N | ď	2β pN ℓ N q 1´s 2	|η| 8

1 2 `2 pN ℓ N q 1´s 2 |η| 8 Var P N,β rFluct N rψ 1 reg pℓ ´1 N ¨qss 1 2 .

  Proof of Corollary 3.1.4. By Lemma 3.2.3, the function ξ :" 1 p´a,aq satisfies Assumptions 3.1.1 and one may apply Theorem 3.1.3. Let us define

	3.6.2 Proof of Corollary 3.1.4					
						ψ "	´1 2c s	p´∆q	1´s 2 ξ.
	By integration by parts, the asymptotic variance σ 2 ξ may be expressed as
	σ 2 ξ "	1 2βc s	|ξ| 2 H	1´s 2	"	´1 β	ż p´a,aq	ψ 1 "	´1 β	pψpaq ´ψp´aqq.
	Furthermore, from the explicit computation of Lemma 3.2.3, we have
	ψpxq "	´cotanp π 2 sq πs	pζp´s, x `aq ´ζp´s, x ´aqq.
	It follows that				σ 2 ξ "	cotanp π 2 sq β π 2 s	ζp´s, 2aq.	(3.166)

  Let µ satisfying Assumptions 3.3.1. The formal adjoint with respect to µ of the derivation B i , i P t1, . . . , N u is given by B i w " B i w ´pB i Hqw,

	3.7 Appendix		
	3.7.1 Well-posedness of the H.-S. equation		
	3.7.1.1 Well-posedness for gradients		
	where σ 2 "	cotanp π 2 sq β π 2 s	. (3.167)

By symmetry, (3.167) holds for each i P t1, . . . , N u.

  .203) Besides, by Lemma 3.7.5, one can writeE P N,β rVar P N,β rA ext | x 1 " x 0 ss ď Var P N,β rA ℓ N s ď CpβqN ℓ N .

	(3.204)
	Combining (3.203) and (3.204) therefore gives

  Additionally we are able to give a quantitative bound on the convergence of Q N,β pxq to Riesz s,β for smooth test-functions.

	Theorem 4.1.4 (Quantitative convergence). Let s P p0, 1q Y p1, `8q. Let K P t1, . . . , N 2 u and

.9) Theorem 4.1.3 (Uniqueness of the limiting measure ). Let s P p0, 1q Y p1, `8q. There exists a translation invariant point process Riesz s,β such that the sequence of point processes pQ N,β q converges to Riesz s,β in the topology of local convergence: for any bounded, Borel and local test function ϕ : ConfpRq Ñ R, we have

lim N Ñ8 E Q N,β rϕs " E Riesz s,β rϕs.

Theorem 4.1.3 extends the known convergence results for β-ensembles, see

[START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF][START_REF] Bourgade | Edge universality of β ensembles[END_REF][START_REF] Valkó | Continuum limits of random matrices and the brownian carousel[END_REF][START_REF] Leblé | A uniqueness result for minimizers of the 1d log-gas renormalized energy[END_REF][START_REF] Dereudre | DLR equations and rigidity for the sine-β process[END_REF]

.
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 3 ´s in L 2 (up to some n κε multiplicative factor) provided ψ i decays fast enough. In a second step we will control |L γ ∇ 2 ψ| by |L γ

	2 `1 4

  8u. We will be studying the inverses of H s " ´gs pdpi, jq1 i‰j qq

		¯1ďi,jďN
			P M N pRq,	(4.25)
	r H |pM ´1q i,j | ď	C 1 `dpj, iq 2´s .	(4.27)
	In addition we have		
	ˇˇN ÿ i"1 pM ´1q i,1 ˇˇď	C N 1´s .	(4.28)

s " ´g s pdpi, jqq1 i‰j ¯1ďi,jďN P M N pRq. (4.26) Lemma 4.2.4 (Decay of the inverse Riesz matrix). Let M P tH s , r H s u. There exists a constant C ą 0 such that for each 1 ď i, j ď N ,

  .44) with the first identity being, for each coordinate, an identity on elements of H ´1pµq. Moreover the solution of (4.44) is the unique minimizer of the functional ∇ϕ Þ Ñ E µ r∇ϕ ¨∇2 H∇ϕ `|∇ 2 ϕ| 2 ´2∇F ¨∇ϕs, over maps ∇ϕ P L 2 pt1, . . . , N u, H 1 pµqq. The variance of F may be represented asThe identity (4.45) is called the Helffer-Sjöstrand formula. The proof of Proposition 4.3.1 is postponed to the Appendix, see Section 4.7.2.

	Var µ rF s " E µ r∇ϕ ¨∇F s	(4.45)

and the covariance between F any function G P H 1 pµq as Cov µ rF, Gs " E µ r∇ϕ ¨∇Gs.

  solution of the Monge-Ampère equation ´log det D∇Φ t `H ˝∇Φ t ´H " tF ´log E µ re tF s. Formally, since νptq " µ `tν `optq, one expects that Φ t " Id `tϕ `optq. Linearizing the above equation in t formally gives L µ ϕ " F ´Eµ rF s, which is the Poisson equation (4.41). The boundary condition in (4.44) reflects the fact that for all t ě 0, ∇Φ t maps D N on itself.

Proposition 4.3.2. Let µ satisfying Assumptions 4.3.1. Let v P L 2 pt1, . . . , N u, H ´1pµ 1 qq such that v ¨pe 1 `. . . `eN q " 0.

  1 pνqq. One can then represent e tA v as e tA v " E ν rvpX x t qe

	´şt 0 MpX x s qds s.
	Using Assumption (4.55), one gets
	sup |e tA v| ď sup |v|e ´tc

  4. Let us emphasize that due to the degeneracy of the inverse of Riesz matrix (4.25), it is unavoidable to have an a priori control on Dψ such as (4.155). Lemma 4.5.6. Let s P p0, 1q. Let ν and M satisfying Assumptions 4.5.1 and 4.5.2. Let χ n P H 1 pνq, i 0 P t1, . . . , nu and ψ P L 2 p Ī, H 1 pνqq be the solution of

	$
	&
	%

  ¨Lα Ape 1 `. . . `en qs. (4.186)Step 3: control on the commutator with L ν We give a control on the quantity L α AL ´1 α ´A. Recall that the matrix A fails to be uniformly positive-definite (in n). Consequently one cannot bound the differential term in (4.186) by the norm |Dψ dis |. However as we have seen in Lemma 4.5.5 the gradient of ψ satisfies a global decay estimate whenever ψ does. Let us first split the quantity of interest into

  .190) Step 5: conclusion Combining (4.186), (4.189) and(4.190) one gets that for α P p0,3 2 ´ss,E ν r|L α ψ| 2 s dpi, i 0 q 2pα´1 ´s 2 q |∇ψ i | 2 dpi, i 0 q 2p1´s 2 q |∇ψ i | 2 ı ď Cn κε ´n´ε 0 E ν r|L 3{2´s ψ| 2 s`n κε 0 E ν r|L 3{2´s ψ| 2 s Cpβqn κε pn κε 0 E ν rχ 2 n s 1 2 `n´ε 0 E ν r|L 3{2´s ψ| 2 s

		1 2 ď Cpβqn κε	´Eν rχ 2 n s	1 2 `nα´1 2 `sE ν rλ 2 s	1 2 `Eν	" n ÿ	ı 1 2	¯. (4.191)
										i"1
	In particular taking α " 3 2 ´s, one obtains
	E ν r|L 3{2´s ψ| 2 s	1 2 ď Cpβqn κε	´Eν rχ 2 n s	1 2 `nE ν rλ 2 s	1 2 `Eν	" n ÿ	dpi, i 0 q 2p1´s 2 q |∇ψ i | 2	ı 1 2	¯. (4.192)
										i"1
	Furthermore applying the estimate (4.155) with γ " 1 ´s 2 , we recognize
	E ν	" n ÿ								1´s 2 E ν r|L 1{2 ψ| 2 s	s 2
		i"1							
									`nκε 0 E ν r|L 3{2´s | 2 s	1 2 nE ν rλ 2 s	1 2 `Eν rχ 2 n s ¯. (4.193)
	Since s P p0, 1q, combining (4.192) and (4.193) one gets
	E ν r|L 3{2´s ψ| 2 s	1 2 `Eν r|L 1´s{2 Dψ| 2 s	1 2 ď 1 2 `nE ν rλ 2 s	1 2 q.

  Cpβqn κε´1 E ν r|L 1{2 ψ| 2 s Let s P p0, 1q. Let ν and M satisfying Assumptions 4.5.1 and 4.5.2. Let χ n P H 1 pνq, i 0 P t1, . . . , nu and ψ P L 2 p Ī, H 1 pνqq be the solution of " βMψ `Lν ψ " χ n e i 0 on πpM N q ψ ¨⃗ n " 0 on BπpM N q.

			.194)
	Using the expression (4.50), one can also see that	
	E ν rλ 2 s	1 2 ď 1 2 .	(4.195)
	Since 3 2 ´s ą 1 2 , one gets from (4.194) and (4.195) the estimates (4.176) and (4.177).	
	One shall extend the global decay estimate of Lemma 4.5.6 to the H.-S. equation without linear
	constraint.		
	Lemma 4.5.7. (4.196)

  .205) It follows from (4.204) and (4.205) that w satisfies the estimate (4.199) and so does ψ.

  Proposition 4.5.8. Let s P p0, 1q. Let ν and M satisfying Assumptions 4.5.1 and 4.5.2. Let χ n P H 1 pνq, i 0 P t1, . . . , nu and ψ P L 2 p Ī, H 1 pνqq be the solution of

	$
	&
	%

  1 . For t P r0, 1s, we define Eptqpxq " p1 ´tqH n,N px, yq `tH n,N 1 px, zq and H n ptq " H n `F `Eptq

		(4.247)
	and the probability measure	
	dµptqpxq9e ´βHnptqpxq 1 An pxqdx.	(4.248)

  Cpβqn κε |i ´l| minpdpi, BIq 1`s 2 , dpj, BIq 1`s 2 qdpj, BIq `Cpβqe ´cpβqn δ sup |ϕ| sup |η|. (4.253)Similarly in the case s P p1, `8q, for each 1 ď i, j, l ď n, η, ϕ P L 2 pνptqq, E νptq rpϕe j q¨M ptqpηe i qs BIq s´1 2 dpj, BIq s´1 2 E νptq rϕ 2 s Let y P π I c pM N q be an admissible configuration in the sense of (4.242) and νptq be the measure defined in(4.248). Let χ n P H 1 , i 0 P t1, . . . , nu and ψ P L 2 pI, H 1 pµptqqq solution of Āνptq 1 ψ " χ n e i 0 `λpe 1 `. . . `en q on A n ψ ¨pe 1 `. . . `en q " 0 on A n ψ ¨⃗ n " 0 on BA n .

	There exist constants κ ą 0 and Cpβq ą 0 such that
	E νptq rψ 2 j s	1 2 ď Cpβqn κε pE νptq rχ 2 n s	1 2 `sup |χ n |e ´cpβqn δ	q ´1năN ? n	`1sPp0,1q dpi 0 , jq 2´s	`1sPp1,`8q dpi 0 , jq 1`s	¯.
									(4.257)
	We establish the well-posedness of (4.257) in the Appendix, see Section 4.7.2.
	Proof. In view of Lemma 4.6.2, one may observe that νptq satisfies Assumptions 4.5.1 if s P p1, `8q
	and Assumptions 4.4.1 if s P p0, 1q. The estimate of Proposition 4.4.3 can therefore be applied to
	νptq, which gives (4.257).					
			1 2 ď	Cpβqn κε dpi, BIq s 2 dpj, BIq	s 2	E νptq rϕ 2 s	1 2 E νptq rη 2 s	1 2 `Cpβqe ´cpβqn δ sup |ϕ| sup |η|,
									(4.252)
	E νptq	" pϕe j qM ptqpηpe i ´el qq	ı 1 2 ď				s 2	E νptq rϕ 2 s	1 2 E νptq rη 2 s	1 2
			1 2 ď	Cpβqn κε dpi, 1 2 E νptq rη 2 s	1 2 `Cpβqe ´cpβqn δ sup |ϕ| sup |η|,
									(4.254)
	E νptq	" pϕe j qM ptqpηpe i ´el qq ı 1 2 ď	minpdpi, BIq	Cpβqn κε |i ´l| 3 2 `s, dpj, BIq 3 2 `sqdpj, BIq	1 2	`s E νptq rϕ 2 s	1 2 E νptq rη 2 s	1 2
									`Cpβqe ´cpβqn δ sup |ϕ| sup |η|. (4.255)
	4.6.4 Decay of the approximate solution
	One may apply the estimate (4.207) of Section 4.5 to the measure νptq.
	Lemma 4.6.3. Let s P p0, 1q Y p1, `8q. $		
			&					
									(4.256)
			%					

  Lemma 4.6.4. Let s P p0, 1q Y p1, `8q. Let y P π I c pD n q be an admissible configuration in the sense of (4.242) and νptq be the measure defined in (4.248). Letχ n P H 1 , i 0 P t1, . . . , nu such that |i 0 ´n 2 | ď n 4 . Let ψ P L 2 pI 1 , H 1 pνptqqq solving $ & % β∇ 2 pH gn ptq `Fg qψ `Lνptq ψ " χ n e i 0 `λpe 1 `. . . `en q on A n ψ ¨pe 1 `. . . `en q " 0 on A n ψ ¨⃗ n " 0 on BA n .

					(4.258)
	There exist a constant Cpβq ą 0 and a constant κ ą 0 such that
	n ÿ j"1	1 2 s j s E νptq rψ 2 dpj, BIq 2	ď Cpβqn κε pE νptq rχ 2 n s	1 2 `sup |χ n |e ´cpβqn δ	qpn ´s 2 1 sPp0,1q

  the bounds (4.252) and(4.253) and arguing as in the proof of Proposition 4.5.9, we getE νptq r|ψ p2q | 2 s ď Cpβq n 1´κε pE νptq rχ 2 n s `sup |χ n | 2 e ´cpβqn δ q. Cpβqn κε´s 2 pE νptq rχ 2 n s 1 2 `sup |χ n |e ´cpβqn δ qand the same estimate holds for ψ. We conclude likewise in the case s P p1, `8q. 4.6.6 Proof of Theorem 4.1.3 and Theorem 4.1.4Inserting the decay estimate of Lemma 4.6.3 into the identity (4.249), one may easily compare the measure µ y n and µ z n . Integrating y and z in the set of admissible configurations gives in particular the following comparison between the measure P N,β and P N 1 ,β : Proposition 4.6.5. Let s P p0, 1q Y p1, `8q. Let G : R n Ñ R in H 1 such that sup |∇G| ă 8. Assume that G depends only on the variables x i for i P J :" tt n 2 u ´K, . . . , t n 2 u `Ku with K ď n{5. Let A be the good event(4.120). We have rGpx 1 , . . . , x n qs ˇď Cpβqn κε pn ´s 2 1 sPp0,1q`n´1 2 1 sPp1,`8q q ´supProof. The proof follows from Lemma 4.6.3 and from the local laws. Let us defineA n " tpx 1 , . . . , x n q : πpM N q : x 1 `. . . `xn ď 2nu.

	By Cauchy-Schwarz inequality, this yields n ÿ j"1 1 dpj, BIq s 2 E νptq rpψ p2q j q 2 s 1 N,β rGpx 1 , . . . , x n qs ´EP g N,β By restricting the domain of integration to A n , which has overwhelming probability by Theorem A ÿ iPJ |B i G| `e´cpβqn δ sup ÿ iPJ |B i G| ¯. (4.259) 4.2.2, one can write E P g N,β rG ˝πs " E P g N,β " E P g N,β rG ˝π | A n s ı `Cpβq sup |G|e ´cpβqn δ , (4.260) E P g N 1 ,β rG ˝πs " E P g N,β " E P g N,β rG ˝π | A n ı `Cpβq sup |G|e ´cpβqn δ . (4.261) 2 ď ˇˇE P g Let F g be the forcing (4.239) and Q g N,β , Q g N 1 ,β as in (4.241). The measure Q g N,β

  used the fact that the event (4.120) has overwhelming probability under νptq (see Lemma 4.6.2). Moreover, under Q N,β (resp Q N 1 ,β ), the exterior configuration y (resp z) is admissible with overwhelming probability. Therefore, integrating (4.264) over y and z in the set of admissible configurations, one obtains from (4.262) and (4.263) the claimed result.

			1, 4.6.2 and 4.6.4, we find
	|E P g N,β	rG ˝π | ỹs ´EP g N 1 ,β	rG ˝π | z| ď	ż 1 0	| Cov νptq rG, H g n,N 1	´Hg n,N s|dt
			"	ÿ iPJ	ż 1 0	|E νptq r∇pH g n,N 1	´Hg n,N q ¨ψpt,iq s|dt
			ď Cpβqn κε´s 2	ÿ	pE νptq rpB i Gq 2 s	1 2 `sup |B i G|e ´cpβqn δ	q
							iPJ
			ď Cpβqn κε´s 2 sup	ÿ	p|B i G| `sup |B i G|e ´cpβqn δ	q,
							A	iPJ
							(4.264)
	where we have				

  1 | 8 ď 1. In Chapter 3, we have proved thatE P N,β rηpF N qs " ErηpZqs `oK p1q,(4.267)with a o K p1q uniform in N . Set r F N " K ´s 2 N px K ´x1 q. Riesz s,β rηpK ´s 2 pz K ´z1 ´Kqqs.

	(4.269)
	Combining (4.267), (4.268) and (4.269), one deduces that

Using Theorem 4.2.2, we can prove that E P N,β rηp r F N qs " E P N,β rηpF N qs `oK p1q, (4.268) with a o K p1q uniform in N . Now by Theorem 4.1.4, we have lim N Ñ8 E P N,β rηp r F N qs " E E Riesz s,β rηpK ´s 2 pz K ´z1 ´Kqqs " ErηpZqs `oK p1q.

  3.1 and 4.3.3 can be found in [52, Appendix A]. For completeness we sketch the main arguments below. Let µ satisfying Assumptions 4.3.1. The formal adjoint with respect to µ of the derivation B i , i P t1, . . . , N u is given by B Proof of Proposition 4.3.1. Let F " G ˝Π with G P H 1 pµq. Recall that if F P H 1 pµq, then ∇F P L 2 pt1, . . . , N u, H ´1pµqq. Let E " tϕ ˝Π : ϕ P H 1 pµ 1 q, E µ rϕ ˝Πs " 0u. Proof of Proposition 4.3.3. Let G P H ´1pνq. Denote E " tϕ P H 1 pνq : E ν rϕsu " 0 and J the functional J : ϕ P E Þ Ñ E ν r|∇ϕ| 2 ´2ϕGs. By standard arguments (see the proof of Proposition 4.3.1), we can show that J admits a unique minimizer ϕ. Since ϕ is a minimizer of J, for all h P E, E ν r∇ϕ ¨∇hs " E ν rGhs. By integration by parts, one can observe that for all h P E, E ν r∇ϕ ¨∇hs " E ν rL ν ϕhs `żBM N p∇ϕ ¨⃗ nqhe ´H .

	Consider the functional
	J : ϕ P E Þ Ñ E µ r|∇ϕ| 2 ´2ϕF s.

i w " B i w ´pB i Hqw, meaning that for all v, w P C 8 pD N , Rq such that ∇w ¨⃗ n " 0, the following identity holds E µ rpB i vqws " E µ rvB i ws.

(4.270)

The above identity can be shown by integration by parts under the Lebesgue measure on D N . Recall the map Π :

X N P D N Þ Ñ px 2 ´x1 , . . . , x N ´x1 q P T N ´1 and µ 1 " µ ˝Π´1 .

One may easily check that J admits a unique minimizer. Indeed for all ϕ " ψ ˝Π P E, one can write |E µ rϕF s| ď }F } H ´1pµq |}ϕ} H 1 pµq .

  Step 2: accuracy estimate It remains to control the expectation of N px i`k ´xi q under µptq. By construction we can writeE µptq rN px i`k ´xi qs´E µp0q rN px i`k ´xi qs " β Cov µpsq rN px i`k ´xi q, H n,N p¨, zq´H n,N p¨, yqsds.By Cauchy-Schwarz inequality and using (4.278) one can write |E µptq rN px i`k ´xi qs ´Eµp0q rN px i`k ´xi qs| ď Cpβqn κε k Var µpsq rH n,N p¨, zq ´Hn,N p¨, yqs First of all, let us use the fact that there exists a constant C ą 0 such that for all x P T, Recall that N 1 ď N . To begin the comparison let us restrict the sum as follows: r H n,N px, yq ´r H n,N 1 px, zq " ´1 |N px i ´yj q| s ´1 |N px i ´zj q| s ÿ

	1 such that				
	µptqp|N px	rks i	´xrks i`k q ´Eµptq rN px	rks i	´xrks i`k qs| ě k	s 2 `εq ď Cpβqe ´cpβqk δ .	(4.281)
	Combining (4.280) applied to i and i `k and (4.281), one finally gets the claim (4.278).
							ż t
							0
								s 2	ż t	1 2 ds.
								0	(4.282)
				|N ´sg s p	x N	q ´g s pxq| ď	C N s ,	(4.283)
	where gs : x P T Þ Ñ 1 |x| s . Let us denote			
			r H n,N px, yq "	ÿ iPI,jPt1,...,N uzI	1 |N px i ´yj q| s
	and		r H n,N 1 px, zq "	ÿ iPI,jPt1,...,N 1 uzI	1 |N px i ´zj q| s .
			ÿ	ÿ			
			iPI	jPt1,...,N 1 uzI	
							iPI	ÿ jPt1,...,N uzt1,...,N 1 u	1 |N px i ´zj q| s (4.284)

  2N log N `N pp2´βq log λ1 βą2 `log | log λ|1 β"2 q´N `N log C β 1 βą2 `OpN γ λ q,(5.18) 

	1.			
	log Z λ N,β " 2. Let			
	I :" t1 ď i ď N : ϕ 1 ˝ϕ1 piq " i, d i d ϕ 1 piq " ´1u.	(5.19)
	For all |t| ď β 2 ,			
	log E P λ N,β	"	exp ´tF λ	´t ÿ

iPI g λ pz i ´zϕ 1 piq q ¯ı ď CN γ λ .

  .[START_REF] Brezis | Gagliardo-Nirenberg inequalities and non-inequalities: the full story[END_REF] This identity can be found for instance in[START_REF] Gunson | Two-dimensional neutral Coulomb gas[END_REF]. One can check that log |D p,K | " p log p ´K log K `pp ´2Kqplog p ´logpp ´2Kqq ´K ´K log 2 `Oplog pq. (5.63) Remark 19 (Typical number of connected components). Assume that z 1 , . . . , z p are p i.i.d variables drawn uniformly on the square Λ " r0, 1s 2 . Then, the number of connected components of γ p satisfies .3.2 Upper bound for a reduced dipole model Corollary 5.2.2 tells us that up to an error term involving ratios of nearest and second-nearest neighbor distances, one can bound from below F λ by

	ErKs "	8π	3π `3? 3	p `oppq.

We refer to

[START_REF] Eppstein | On nearest-neighbor graphs[END_REF] Theorem 2] 

for a proof of this statement. 5

  gpu i q ¯exp ´β1 tdm k d m 1 k "´1u g λ pu m k q ¯dU N . (5.69)The domain of integration is a complicated subset of R 2N but one can approximate it by a simple subset by keeping only a volume constraint. The balls Bpz i , 2r 1 pz i qq being disjoint, one may check thatΦ GP 2N ptγ 2N " γuq Ă D :" ! U 2N P R 4N :Using this approximation one can integrate separately the neutral dipole variables u m k and the variables u 1 m k on Λ and we get

		we find				
	ż					
		expp´βF dip λ q ď e CβpN ´nq		
	tγ 2N "γu					
		ˆżΦptγ 2N "γuq	K ź k"1	ź iPI k zC k	C exp	´β 2
							K ÿ k"1	ÿ iPI k ,i‰m 1 k	|u i | 2 ď	N 4π	, @k P t1, . . . , Ku, u m 1 k P Λ	) .
	ż tγ 2N "γu	expp´βF dip λ q ď e CβpN ´nq	´żR 2	exppβg λ puqqdu ¯n
				ˆC2pN´Kq N K

  m´1 ˙pp ´kqpp ´1q . . . pp ´k ´m `1q " pp ´kq k´l ,(5.114) one finds that if each of the first subcases of (5.109), (5.110),(5.111) and(5.112), there holdsż r0,1s 2p expp´βF k pz 1 , . . . , z p qqdZ p ď C k pλ p1´β 2 ql 1 βą2 `| log λ| l{2 1 β"2 ¯´k k ´l ¯p1´β 4 qpk´lq ˆ´1 βă4 `| log λ| k´l 1 β"4 `λp2´β 2 qpk´lq 1 βą4 ¯. (5.115)Otherwise in all of the second subcases of (5.109), (5.110),(5.111) and (5.112), the logarithm of the left-hand side of (5.115) is bounded by (5.98). It remains to optimize (5.115) over l. Let us write l " kx and consider the function If β ě 4, the bound (5.115) may be written ¯l 2 λ ´lp1 βą4 `| log λ| k´l 1 β"4 q ď Ck `sup 2´β 2 q1 βą4 `log | log λ|1 β"4 q. 2´β ¯`p1 ´xqplogpλ 2´β 2 q1 βą4 `log | log λ|1 β"4 q. The above function being linear in x, one can write sup |ϕ β | ď C `max ´1 2 logp k p λ 2´β q, logpλ 2´β 2 q1 βą4 `log | log λ|1 β"4

	log	k ÿ l"0 ˆk l	˙pk´l	´l p	xPp0,1q	ϕ β pxq,
	where								
	ϕ β : x P p0, 1q Þ Ñ ´x logpxq ´p1 ´xq logp1 ´xq	`x 2	logpλ 2´β q	`x 2	logpx	k p	q
	`p1 ´xqplogpλ Again notice	.113)
	Using (5.113) and the fact that |ϕ β pxq| ď C `x 2 log	´k p	λ
	ÿ m,n 1 `...`nm"k´l	ˆk	´l n 1	˙ˆk ´l ´n1 n 2	ˆnm´1 `nm n k ˙. . . ÿ l"0 ˆk l ˙pk´l ´λ ? p	¯p2´βq l 2	´1βą2 `| log λ|	2 1 β"2 l	¯ll{2
										ḑ
	ˆ˜´d	k ppk ´2lq	¯p2´β 2 qpk´l 2 q	1 βPp2,4q `| log λ| k´l 2 1 β"4	`´λ ? p	¯p2´β 2 qpk´l 2 q	1 βą4
	C k p ¯l 2 ϕ β : x P p0, 1q Þ Ñ ´x logpxq´p1´xq logp1´xq`x β 4 k k ÿ ˙´l l"0 ˆk l p 2	logpλ 2´β q`x 2	logpx	k p	q´p1´β 4	qp1´xq logp1´xq
										"	´x 2	logpxq	`β 4	p1 ´xq logp1 ´xq	`x 2	logpλ 2´β k p	q.
	Notice that there exists a constant C ą 0 such that for all x P p0, 1q
				|ϕ β pxq| ď C	`x 2	logpλ 2´β k p	q ď C	`1 2	logpλ 2´β k p	q1 λ 2´β k p ě1 .
	Inserting this into (5.115) shows that for β P p2, 4q

k ÿ l"0 ˆk l ˙pk´l ´1 ? p ¯p2´β 2 qpk´lq ´λ ? p ¯p2´βq l 2 l l{2 ď C k ´1 `λ2´β k p ¯k{2 .

  pX p , Y p q `ÿ iPI dip ,d i "1 f ´r1 pz i q r 1 1 pz i q ¯¯¯d X p dY p ď p ´log N `p2 ´βq log λq `log C β `Cpλ β´2 1 βă4 `λ2 | log λ| 2 1 β"4 `λ2 | log λ|1 βą4 q

								¯.
				4	min j‰i,d i d j "1	|z i ´zj |
	For any β ą 2 we have				
	log	ż	exp ´´β ´Fdip				
		γ 2p "γ					
								¯.
								(5.116)
	For β " 2 we have				
	log	ż γ 2p "γ	exp ´´β ´Fdip λ pX p , Y p q	`ÿ iPI dip ,d i "1	f	´r1 pz i q r 1 1 pz i q	¯¯¯d X p dY p
						ď p ´log N `log | log λ|	`C | log λ|	¯. (5.117)

λ

  pX p , Y p q `ÿ iPY k C k ,|I k |"2,d i d ϕ 1 piq "´1,d i "1

											.120)
	Thus, defining								
		φpxq :" CC ´1 β βt	˜ˆλ x	˙β´2	1 βď4	`ˆλ x	˙2 1 βą4	`λ2 x 2 ´log	x λ	¯1β"4 ¸,	(5.121)
	we may bound the left-hand side of (5.118) by from above by		
	ż γ 2p "γ	exp ´´β ´Fdip						f	´r1 pz i q r 1 1 pz i q	¯¯¯d X p dY p
								ż		
						ď λ pp2´βq C p β	r0,1s 2p	

λ p ź i"1 p1 `φpr

1 

1 px i qqqdX p .

(5.122) 

  ). It thus follows thatBpx i ,rpx i qq |∇u i | 2 (5.138)that is, we can reduce the computation to a sum over the disjoint balls. We next bound the right-hand side. First we let v i :" u i ´pg ˚δpλq x i ´g ˚δpλq y i q. It solves# ´∆v i " 0 in Bpx i , rpx i qq Bν " ´´px´x i q |x´x i | 2`px´y i q |x´y i | 2 ¯¨ν on BBpx i , rpx i qq and thus by elliptic regularity estimates we have}∇v i } L 8 pBpx i , 3 4 rpx i qq ď C |x i ´yi | rpx i q 2 .

									(5.139)
	Now, using (5.139), we find				
	ż	Bpx i ,rpx i qq	|∇u i | 2 " 2π	Bpx i ,rpx i qq ż	u i	x i ´δpλq	´δpλq y i	"
			x i δ pλq y i ´ż g ˚δpλq y i δ pλq x i 2π ˆ2pgpλq `κq ´ż g ˚δpλq	˙`ż	v i	x i ´δpλq	´δpλq y i	"
			4πpgpλq `κq ´4π	ij	gpx ´yqδ pλq x i pxqδ pλq y i pyq	`O´| x i ´yi | 2 rpx i q 2
				ż R 2	|∇h λ | 2 ď	4π 1	i"1 ÿ N	ż
			Bv i				

  β ě N ! ż x i Pr0, ? N s 2 ,y i PBpx i , 1 2 rpx i qq expp´βF λ pX N , Y N qqdy 1 . . . dy N dx 1 . . . dx N(5.141)where as above rpx i q " 1 2 min j‰i |x j ´xi |. We may now insert (5.140) into (5.141) to obtain λ px i ´yi q `O´| x i ´yi | 2 rpx i q 2 ¯¸dy 1 . . . dy N dx 1 . . . dx N

	ż		˜β N
	Z λ N,β ě N !	? x i Pr0, y i PBpx i , 1 N s 2 2 rpx i qq	exp	ÿ i"1
		ě N !	ż r0,	? N s 2N	N ź i"1	ż 1 2 rpx i q 0

g

  `N log N `log ´N ´N ż ´1´C rpx i q 2´β λ 2´β ¯dx 1 . . . dx N ¯. (5.147)´1 ´Crpx i q 2 λ β´2 ¯dx 1 . . . dx N ě log ´1 ´Crpx i q 2´β λ β´2 ¯dx 1 . . . dx N 2N rpx i q 2´β dx 1 . . . dx NIt remains to evaluate the expectation of r 2´β under the Lebesgue measure on r0, 1s 2N . Let P be a Poisson point process of intensity 1. First, one may justify that

							N
							ź
							r0, ? N s 2N	i"1
	We may use Jensen's inequality to write
	log ´N ´N ż r0, ? N s 2N	N ź i"1			
		N	´N ż r0,	? N s 2N	N ÿ i"1
		ě	´C´λ β´2	N ÿ i"1	N	´N ż r0,	? N s "
							´C´N λ β´2 N	´N ż r0,	? N s 2N
	lim N Ñ8	N	´N ż r0,	? N s 2N

rpx 1 q 2´β dx 1 . . . dx N ¯.

  is nothing but the ratio of partition function " exppβpF λ ´Gqqs ď CN γ λ . By Hölder's inequality, this proves the upper bound for all 0 ď t ď β. It remains to prove the inequality for ´β 2 ď t ď 0. Let us upper bound (5.20) for t " ´β 2 . Applying Corollary 5.2.2, one may bound the energy F λ from below, which gives

							log E P λ N,β	"	exppβpF λ ´Gqqs "	Kλ N,β N,β Z λ	,
	which we can bound using Lemma 5.3.2 and Proposition 5.4.1 by
							log E P λ N,β
	log E P λ N,β	"	exp	´β 2	pG ´Fλ q	¯ı
					ď	1 Z λ N,β	ż	exp ´´βF dip λ	`C	ÿ iPI dip ,ϕ 2 piqPI dip

  3: bounding exponential moments of the electric energy. Let us estimate the exponential moments of A 1 and A 2 separately. One has In view of Lemma 5.3.2 and Proposition 5.4.1 we havelog E P λ N,β rexppβA 1 qs ď CN p| log λ| ´11 β"2 `λβ´2 1 βPp2,4q `λ2 | log λ| 2 1 β"4 `λ2 | log λ|1 βą4 q.(5.155) For the term A 2 , we have already shown thatlog E P λ N,β " exp ´ÿ iPI dip ,ϕ 2 piqPI dip ´r1 pz i q r 2 pz i q ¯2¯ı ď CN p| log λ| ´11 β"2 `λβ´2 1 βPp2,4q `λ2 | log λ| 2 1 β"4 `λ2 | log λ|1 βą4 q. (5.156) iPI dip ,ϕ 2 piqPI dip ˆr1 pz i q r 2 pz i q ˙2 `CpN ´nq,with n being the number of neutral dipoles. Let us denote Q the reduced dipole modelInserting the upper bound on K λ N,β given by Lemma 5.3.2, the lower bound on Z λ N,β of Proposition 5.4.1, the auxiliary estimate of Lemma 5.3.4, we reduce to

		E P λ N,β	rexppβA 1 qs "	1 N,β Z λ	ż	expp´βF dip λ pZ 2N qqdZ 2N .
	Using Corollary 5.2.2 we find that	
			E P λ N,β	re tA 3 s ď	1 N,β Z λ	ż	expptA 3 ´βF dip λ `Gq,
	where F dip λ is as in (5.64) and G given by
							ÿ
			G :" C	
						dQ "	1 N,β K λ	expp´βF dip λ qdZ 2N .
	Using Hölder's inequality, one may write
		E P λ N,β	rexpptA 3 qs ď E Q rexpp2tA 3 qs	1 2 E Q re 2G s	1 2	K λ N,β N,β Z λ	.	(5.157)
	log E P λ N,β	rexpptA 3 qs ď	1 2	log E Q rexpp2tA 3 qs

`CN p| log λ| ´11 β"2 `λβ´2 1 βPp2,4q `λ2 | log λ| 2 1 β"4 `λ2 | log λ|1 βą4 q.

  6: lower bound. Let O be an open subset of PpEq. Let Q P PpEq be an ergodic process. One can assume that EntpQ | P dip q ă 8, which implies that for all Λ R , Q| Λ R has a Radon-Nikodymderivative f R " dQ| Λ R dpP dip q| Λ R. One can thus perform the following change of variables:1 |Λ n | log P dip pj n P Oq " 1 |Λ n | log ż 1 O pj n qf ´1 n dQ n | log Qpj n P Oq ´1 |V n |Qpj n P Oq ż jnPO log f n dQ n ,where we have used Jensen's inequality in the last line. Using the fact that x log x ě ´1 e for all x ą 0, we find that 1 |Λ n | log P dip pj n P Oq ě 1 |V n | log Qpj n P Oq ´1 Qpj n P Oq|V n | EntpQ| Λn | P | Λn q ´1 e|V n |Qpj n P Oq . |V n | log P dip pj n P Oq ě ´EntpQ | P dip q,

		"	1 |V n |	log Qpj n P Oq	`1 |V n |	log	"	Qpj n P Oq 1	jnPO ż	f ´1 n dQ n	ı
	1 |V n One may then justify that ě					
				lim					
	which gives	lim nÑ8	1 |Λ						

nÑ8 Qpj n P Oq " 1 and therefore lim nÑ8 1 n | log P dip pj n P Oq ě ´inf QPP 1,e pEq

  2n,n,n be a graph with n neutral 2-cycles. Using the upper bound (5.116) of Lemma 5.3.4, we find pu i q ¯du 1 . . . du n dx 1 . . . dx n ¯`OpN γ λ q. pu i q ¯du 1 . . . du n dx 1 . . . dx n ¯`OpN γ λ q. pu i q ¯dU n dX n" λ np2´βq N ´n ż Λ n N ˆpλ ´1Λ N q n 1 B pN 1{2 X n , N 1{2 Y N q UnqPGu dµ bn β pU n qdX n `OpN γ λ q.

		ż						
	log	BXt|I c |ďC 0 N λ β´2	expp´βF dip λ q		
	" log g After a series of reduction one then estimates ´ÿ něN p1´C 0 λ β´2 q n! ż BXtγ 2n "γu n ź i"1 exp ´β 2
		ż						
	log	BXt|I c |ďC 0 N λ β´2	expp´βF dip λ q		
	" log g Now by scaling, ´ÿ něN p1´C 0 λ β´2 q n! ż B n ź i"1 exp ´β 2
	ż B	n ź i"1	exp	´β 2	g n ź i"1	exp	´β 2	g 1 pu i q ¯dU n dX n
						" λ np2´βq N	´n ż	Λ n n ˆpλ ´1Λnq n	1 t jnpXn,

λ λ λ

Here "H" is the capital η used by Boltzmann for entropy, "W" is for Wasserstein, "I" is for Fisher information.
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(i) If α ą 1 and β P p0, 1q,

(3.174)

(ii) If α ą 1 and β " 1,

(iii) If α ą 1 and β ą 1,

Proof of Lemma 3.7.3. Let us prove the three statements together. Let α ą 1. We split the sum over k along the condition k ě 2k 0 . If k ě 2k 0 , |k ´k0 | ě k 2 and therefore

If k 0 ď K 2 , the remaining part is empty and therefore ÿ kěK,k‰k 0

Assume now that k 0 ě K 2 . We split the remaining term into two parts according to whether |k ´k0 | ě k 0 2 or not. For the first contribution one has

For the second contribution we may write

One can bound the sum in the right-hand side by

Combining the above estimates concludes the proof of Lemma 3.7.3.

Lemma 3.7.5. Let ξ satisfying Assumptions 3.1.1 and A ext :" A ℓ N rψ reg s ´r A ℓ N rψ reg s with A ℓ N rψ reg s and r A ℓ N rψ reg s as in (3.112), (3.122). Let γ ą 3´s 2´s _ 1 s . There exist constants Cpβq ą 0, cpβq ą 0 and δ ą 0 such that P N,β p|A ext | ą pN ℓ N q 1 2 q ď Cpβqe ´cpβqpN ℓ N q δ . Proof. Let ε ą 0 be a small number, with ε ď s 4 ^1´s

2 . Define the good event B " tX N P D N : @1 ď i ď N, 1 ď k ď N {2, |N px i`k ´xi q ´k| ď k s 2 `ε _ pN ℓ N q s 2 `εu X tX N P D N : @1 ď i ď N, pN ℓ N q ´ε ď N px i`1 ´xi q ď pN ℓ N q ε u.

In view of Theorem 3.1.1, the event B has overwhelming probability: there exist δ ą 0 depending on ε and Cpβq ą 0, cpβq ą 0 such that P N,β pB c q ď Cpβqe ´cpβqpN ℓ N q δ . (3.198) Let us now upper bound A ext on B. By assumption the map ψ 1 reg is bounded by Cγ N with

On can therefore bound A ext on B by

(3.199)

The second sum of the last display is bounded by

Since the singularities of ψ 1 are in L 1 pℓ ´1 N T, Rq, one can check that on B, ÿ

Chapter 4

Decay of correlations and thermodynamic limit for the circular Riesz gas

This chapter is based on the article Decay of correlations and thermodynamic limit for the circular Riesz gas, arXiv preprint arXiv:2209.00396.

One may check that for each i P t1, . . . , N u and

and for each i, j P t1, . . . , N u and

Recall that under the Gibbs measure (4.4), for large k, the spacing N px i`k ´xi q concentrates around k. The expression (4.52) then tells us that the Hessian of the energy in gap coordinates concentrates around a constant matrix with off-diagonal entries decaying in dpi, jq ´s, similar to (4.25) or (4.26).

The Brascamp-Lieb inequality

We now recall the Brascamp-Lieb inequality, a basic concentration inequality for strictly convex logconcave measures [START_REF] Herm | On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation[END_REF]. In our context, the measure µ is not strictly log-concave, but its pushforward ν is, therefore allowing one to upper bound the variance of any smooth function of the gaps in the following way: 

Localization

In this subsection we record a crucial convexity Lemma, which is due to Brascamp, see [START_REF] Herm | On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation[END_REF]. This lemma is based on the Brascamp-Lieb inequality for log-concave measures on D N , originally derived in [START_REF] Herm | On extensions of the brunn-minkowski and prékopaleindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation[END_REF] on R N , see also Lemma 4.3.4.

Lemma 4.3.5. Let µ be a measure on D N in the form dµ " e ´H dX N , with H smooth enough. On D N let us introduce the coordinates x " px 1 , . . . , x n q and y " px n`1 , . . . , x N q. Assume that H may be written in the form Hpx, yq " H 1 pxq `H2 px, yq with ∇ 2 H 2 non-negative. Let r µ be the push forward of µ by the map X N Þ Ñ px 1 , . . . , x n q. Then, the measure r µ may be written in the form dr µpxq " e ´r Hpxq dx, with r Hpxq " ´log Lemma 4.3.7 can be derived using Log-Sobolev inequality and Herbst argument. When a measure µ is uniformly log-concave on a convex domain on R n , it follows from the Bakry-Emery criterion [START_REF] Bakry | Diffusions hypercontractives[END_REF] that µ satisfies a Log-Sobolev inequality. Lemma 4.3.8. Let µ be a uniformly log-concave measure on a convex domain of R N , with a convexity constant larger than c ą 0. Then µ satisfies the Log-Sobolev inequality with constant 2c ´1.

Concentration inequality for divergence free functions

If µ is of the form of Assumptions 4.3.1, µ is not uniformly log-concave and on cannot apply directly Lemma 4.3.7. However, one can observe that

for all U N P R N such that u 1 `. . . `uN " 0. (4.58)

Using this observation and the particular structure of µ, one can give a concentration estimate for divergence free functions F , i.e for F verifying B 1 ϕ `. . . `BN ϕ " 0. We now state this crucial concentration result found in [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF].

Lemma 4.3.9. Let µ satisfying Assumptions 4.3.1. Assume that χ 2 ě c N . Let I Ă t1, . . . , N u, cardpIq " K. Let F P H 1 pµq such that ř N i"1 B i F " 0 and B i F " 0 for each i P I c . We have

Furthermore, for all t P R,

We refer to [START_REF] Bourgade | Bulk universality of general β-ensembles with non-convex potential[END_REF] for a proof, see also [START_REF] Boursier | Optimal local laws and CLT for the long-range circular Riesz gas[END_REF]Lem. 3.13] for a transcription.

Decay of correlations for the HS Riesz gas

This section considers the hypersingular Riesz gas, i.e the Riesz gas with the kernel (4.22) for a parameter s ą 1. We show that the covariance between N px i`1 ´xj q and N px j`1 ´xj q decays at least in dpi, jq ´ps`1q . To this end we will be studying the Helffer-Sjöstrand equation in gap coordinates (4.49). Advantaged by that the Hessian of the energy in gap coordinates has typically summable entries, one may implement a simple distortion argument inspired from [START_REF] Helffer | Remarks on decay of correlations and witten laplacians brascamp-lieb inequalities and semiclassical limit[END_REF] to obtain decay estimates.

Moreover since ϕ P E, one can observe that

It follows that J is bounded from below. Since J is convex and l.s.c, by standard arguments, it is l.s.c for the weak topology of H 1 pµq and therefore J admits a minimizer ϕ.

One can then easily check by integration by parts that the Euler-Lagrange equations for ϕ state that a.e on D N , L µ ϕ " F ´Eµ rF s, (4.271)

with the boundary condition ∇ϕ ¨⃗ n " 0, (

a.e on BD N . Equations (4.271) and (4.272) easily imply that J admits a unique minimizer.

Let us now differentiate rigorously Equation (4.271). Let w P C 8 c pD N q and i P t1, . . . , N u. By integration by parts, we have

The first term of the right-hand side of the last display may be expressed as

For the second term, recalling the identity rB j , B i s " p∇ 2 Hq i,j , one may write

E µ rprB j , B i s wqB j ϕs " E µ rpw ¨∇2 H∇ϕq i s.

One deduces that, in the sense H ´1pµq, for each i P t1, . . . , N u,

Together with the boundary condition (4.272), this concludes the proof of existence and uniqueness of a solution to (4.44). We turn to the proof the variational characterization of the solution of (4.44). Let

By standard arguments, one can prove that J admits a minimizer ψ, which satisfies the Euler-Lagrange equation A µ 1 ψ " ∇F. Moreover, one may assume that ψ ¨⃗ n " 0 on BD N . By integration by parts, we conclude that ψ " ∇ϕ.

Let us now prove Proposition 4.3.3. Recall the notation

where the error term pIq k satisfies

for some ε 1 ą 0. By Taylor expansion again and using Lemma 4.6.2, one can write

Var µpsq rg 1 s pN px k ´yj qqs ď Cpβqn κε g2 s pj ´kqpn ´kq s{2`κε . The leading-order of the right-hand side of (4.285) therefore satisfies

s pN px k ´yj qqN pz j ´yj q "

with

The point is that leading order term in (4.287) is constant with respect to x and its variance is therefore 0 under µpsq. It follows that uniformly in s, 

Introduction

Setting of the problem

In the 1970's, Kosterlitz and Thouless [START_REF] Kosterlitz | The critical properties of the two-dimensional xy model[END_REF][START_REF] Kosterlitz | Ordering, metastability and phase transitions in two-dimensional systems[END_REF] and independently Berezinsky [START_REF] Vadim | Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group. i. classical systems[END_REF] predicted a completely new type of phase transitions without long range order in two-dimensional systems, now called Berezinsky-Kosterlitz-Thouless (BKT) transition. This celebrated transition (see [START_REF] Bietenholz | Berezinskii-kosterlitz-thouless transition and the haldane conjecture: Highlights of the physics nobel prize[END_REF] for a review) was predicted to happen in a whole range of models which exhibit quantized vortices in a neutral ensemble, more specifically the XY or "rotator" spin model, models of dislocations and superfluids, and it has important consequences for condensed matter physics.

The transition in the XY model is probably the one that has attracted the most attention in the mathematical physics community. In this model unit spins are sampled on a lattice, constituting a Up1q analogue of the Ising model. The BKT transition consists in that the correlation function between distant spins decays exponentially above the transition temperature, and decays in power law below [START_REF] Mcbryan | On the decay of correlations in SO(n)-symmetric ferromagnets[END_REF][START_REF] Jürg | The Kosterlitz-Thouless transition in two-dimensional abelian spin systems and the coulomb gas[END_REF][START_REF] Bietenholz | Berezinskii-Kosterlitz-Thouless transition and the Haldane conjecture: Highlights of the physics nobel prize[END_REF][START_REF] Bricmont | On the uniqueness of the equilibrium state for plane rotators[END_REF]. This transition is explained by the formation of topological vortices, which are points around which the spin field has a nonzero degree or winding number. Below the 5.2 Nearest neighbors and dipole decomposition lower bound

Definitions

Signed point configurations

With the shortcut Z 2N for pX N , Y N q, we are able to rewrite (5.12) as

(5.37)

When increasing the discs we will also denote similarly for any vector ⃗

(5.38)

Successive nearest neighbor distances

First we set r 1 pz i q :" max ˆλ, 1 4 min

then for each p ě 2, r p pz i q :" max ˆλ, where ϕ 0 piq " i and for each k ě 1, z ϕ k piq denotes some point (it is in general not unique) of the configuration R tz i , . . . , z ϕ k´1 piq u such that |z i ´ϕk piq| achieves the min that arises in the definition of r k pz i q. We call z ϕ k piq the k-th nearest neighbor to z i . We note that we always have

We also denote N k piq :" ti, ϕ 1 piq, . . . , ϕ k piqu (5.41)

the set of the k first nearest neighbors indices.

Nearest neighbor graphs

As discussed in the introduction, the dipole decomposition estimate will be used in conjunction with the method of Gunson-Panta [START_REF] Gunson | Two-dimensional neutral Coulomb gas[END_REF] which breaks the configuration into nearest neighbor graphs. It is worth noting however that [START_REF] Gunson | Two-dimensional neutral Coulomb gas[END_REF] builds the nearest neighbor graphs of all particles, irrespective of their sign, whereas for us the sign will play an important role. The nearest-neighbor graph γ 2N pZ 2N q of Z 2N is a directed graph on t1, . . . , 2N u, with an edge from p to q if z q is the nearest-neighbor of z p . The graph γ 2N pZ 2N q has between 1 and N connected components and each of its connected components contains a 2-cycle with trees attached to each vertex of the 2-cycle. We denote D 2N,K the set of nearest-neighbor graphs on t1, . . . , 2N u with K connected components. Note that each labeling of points gives rise to a different digraph. We also let D 2N,K,n , 1 ď n ď K be the set of nearest-neighbor graphs with n neutral 2-cycles.

Let γ P D 2N,K,n . Let us denote I 1 , . . . , I K the connected components of γ and for each k P t1, . . . , Ku, let us label m k and m 1 k the two vertices of the 2-cycle in I k and call C k " tm k , m 1 k u the corresponding 2-cycle. We also let

i.e. the indices corresponding to isolated neutral dipoles (i.e. whose 2-cycle form a connected component of the graph γ).

Additional results on g λ

Returning to (5.8), we note that

z ¨ν `Op|z| 2 q " κ `Op|z| 2 q (5.43)

as |z| Ñ 0, where we used that g ˚δp1q 0 " g " 0 on BBp0, 1q by Newton's theorem. 

(5.98)

Additionally there also holds (5.100)

Let l P t0, . . . , ku be the number of points in t1, . . . , ku with nearest-neighbor in t1, . . . , ku. There are `k l ˘ways of choosing such points. Assume that these points correspond to z 1 , . . . , z l . There remains to choose the nearest-neighbors of the points z l`1 , . . . , z k among z k`1 , . . . , z p . The difficulty is that some of the points z l`1 , . . . , z k might share the same nearest-neighbor. Let us denote A l the event A l " tpz 1 , . . . , z p q P r0, 1s 2p : ϕ 1 pz 1 q, . . . , ϕ 1 pz l q P t1, . . . , lu, ϕ 1 pz l`1 q " z k`1 , . . . , ϕ 1 pz k q " z 2k´l u.

(5.101) Given a partition n 1 `. . . `nm " k ´l with n 1 , . . . , n m ě 1 and m ě 1, one shall choose m subsets of t1, . . . , pu of respective cardinal n 1 , . . . , n m and match all subset to a certain unique element of tk `1, . . . , nu. The number of choices is then equal to ˆk ´l n 1 ˙ˆk ´l ´n1 n 2 ˙. . . ˆnm´1 `nm n m´1 ˙pp ´kqpp ´1q . . . pp ´k ´m `1q.

(5.102)

Let us remark that the number of groups m is bounded from below by k´l 6 since a single point can be the nearest-neighbor of at most 6 distinct points. Assume that these common nearest-neighbors are given by z k`1 , . . . , z k`m (m ď k ´l). For 1 ď m ď k´l 6 and n :" pn 1 , . . . , n m q such that n 1 `. . . `nm " k ´l, let us denote A l,m,n the event A l,m,n " A l X tpz 1 , . . . , z p q P r0, 1s 2p : ϕ 1 pz l`1 q " . . . " ϕ 1 pz l`n 1 q " k `1, . . . ϕ 1 pz k´nm`1 q " . . . " ϕ 1 pz k q " k `mu. Assume that there are k 0 2-cycles in t1, . . . , lu, k 0 " 1, . . . , tl{2u. There is a number l! pl´2k 0 q!k 0 ! 2 ´k0 of ways of choosing k 0 pairs among t1, . . . , lu. In addition, for each point in t1, . . . , lu not in one of these 2-cycles, there are less than pk ´lq l´2k 0 number of choices for the nearest-neighbor. One may assume without loss of generality that z 1 , . . . , z 2k 0 are the points belonging to the 2-cycles. Let A k 0 l,m,n Ă A l,m,n be the set of points with a nearest-neighbor labelling satisfying the above constraints.

By integrating out the variables z k`m`1 , . . . , z p on a subset of volume 1 ´C0 k p , we find that

(5.105) Note that although our way of counting these functional digraphs is very rough, it is precise enough for the optimization over k 0 (note that for k " p it is not that different from formula (5.62)). The important point is that, when scaling out k 0 as k 0 " lx, the terms in l logplq in the combinatorial factors and in the integral cancel out.

Let us decompose

(5.106) By construction, on the event A k 0 l,m,n , the first term of (5.106) depends only on z 1 , . . . , z 2k 0 . One may therefore integrate the second term of (5.106) with respect to z 2k 0 `1, . . . , z m`k . By performing a change of variables in z i ´zϕ 1 piq for 2k 0 `1 ď i ď k, one may reduce the integral to a multiple Dirichlet integral as was done in the proof of Lemma 5.3.2. We find

and the bound is independent of m and n. In addition it is easy to check that

We next turn to bounding the integral appearing in the right-hand side. Expanding the product and inserting the definition of φ, we find that for β P r2, 4q, log ż

with a constant that depends on β, and where we return to the notation r 1 px i q to denote the nearest neighbor of x i within the system of the x i 's. To evaluate these integrals, we may apply Lemma 5.3.3 to β 1 " 2pβ ´2q. For β P r2, 3q we then find (after rescaling the lemma)

By Newton's formula this implies that for β P p2, 3q, log

which shows (5.116). In the general case β P r2, `8q, by applying Lemma 5.3.3, we find

where ϕ β is the function defined by

(

The function ϕ β being concave, it has a unique maximizer on r0, 1s. We claim that for β P r3, 4q, the maximizer x of ϕ β satisfies

Assume by contradiction that (5.126) does not hold. Then, up to an extraction, one may assume that xpλ 6´2β 1 βPp3,4q `| log λ|1 β"3 q Ý ÝÝ Ñ λÑ0 `8.

(5.127)

If x " 1, then ϕ β pxq " logpλq `Op1q ă 0 " ϕ β p0q. Therefore x P p0, 1q and by minimality ϕ 1 β pxq " 0 and therefore logpxq " logpλ β´2 q `1 2 logppλ 6´2β 1 βPp3,4q `| log λ|1 β"3 qxq `Op1q, Proposition 5.3.5 (Upper bound). Let β P p2, `8q and C β be the constant defined in (5.16). There holds

For β " 2, there holds

Proof. To bound the partition function from above, we start by inserting the lower bound (5.47) into its definition. This way it suffices to bound from above

Let us split the integrals over the functional digraphs. Let γ P D 2N,K,n . For each configuration with graph γ, we may relabel the points so that the positive charges that form the neutral two-cycles C k such that |I k | " 2 (i.e. isolated neutral 2-cycles), are x 1 , . . . x p (p ď n). We may assume that each x i for i ď p forms a cycle with y i . The remaining points are labelled z 1 , . . . , z 2N ´2p . In view of (5.64), we may rewrite with obvious notation,

i.e. we split the energy between the contribution of the isolated neutral 2-cycles, which we can treat by Lemma 5.3.4, and that of the rest, which we can treat by Lemma 5.3.2. We denote by γ 1 the nearest neighbor graph of the first n x i 's and y i 's, and γ 2 that of the rest of the variables. Separating variables we obtain

We next claim that

where f pxq " ´tx 2 for some appropriate constant t, as above. This allows to replace in (5.131) the left-hand side term by the right-hand side. Assuming the claim, and inserting into (5.131) the Proof of Proposition 5.1.3.

Step 1: the electric energy bounds the fluctuations. As in the one-component case [START_REF] Sandier | 1D Log gases and the renormalized energy: Crystallization at vanishing temperature[END_REF][START_REF] Leblé | Fluctuations of two dimensional coulomb gases[END_REF] or in [START_REF] Leblé | Large deviations for the two-dimensional two-component plasma[END_REF], the fluctuations are well bounded by the electric energy ş |∇h ⃗ α | 2 , where h ⃗ α is as in (5.38), as soon as ⃗ α is small enough. We recall the elementary argument. Let ξ be a Lipschitz test-function from Λ to R. Taking the Laplacian of (5.38), using Green's formula and the Cauchy-Schwartz inequality, we have

On the other hand, by definition of the smeared charges, we may write

Combining the two relations, we deduce that

Step 2: upper bound for the electric energy. The proof consists in repeating the proof of Proposition 5.2.1. We define the radii τ i as in that proposition and let

for a γ P p0, 1q to be chosen later. We then bound from below ş |∇h ⃗ α | 2 as in the proof of Proposition 5.2.1. The points such that r 1 pz i q ą γ do not contribute any terms since the corresponding balls are not inflated. We obtain the same contributions for the other points as in Proposition 5.2.1, except with the r 2 pz i q replaced by γ ^r2 pz i q. Arguing also as in the proof of Corollary 5.2.2, we may obtain

´r1 pz i q r 2 pz i q ¯2`´r 1 pz i q γ ¯21 r 1 pz i qďγ ´CpN ´nq.

We may rewrite this as

After some computations we find that

We thus conclude combining the last display with (5.155) and (5.156) that

Step 4: conclusion. Combining (5.158) with (5.153), we obtain

Optimizing over γ, we may then choose γ as follows:

(5.160)

Inserting this into (5.159) concludes the proof of the proposition.

Convergence to a Poisson dipole process

In this subsection we show that the empirical field defined in (5.30) satisfies in the large N limit and as λ tends to 0, a large deviations principle with rate function given by a certain entropy on point processes, which differs from the specific relative entropy of [START_REF] Leblé | Large deviation principle for empirical fields of log and Riesz gases[END_REF]. Recall the definitions of pE, T q, i N , P dip , Pdip from (5.28), (5.30), (5.31) and (5.32). Let us recall that the Borel σ-algebra on E can be defined by the σ-algebra generated by functions of the form

where n 1 , . . . , n p P I, A 1 , . . . , A p are bounded measurable sets of R 2 , B 1 , . . . , B p measurable sets of R 2 . We have thus defined a probability space pE, Aq. One can check that the topological space pE, T q can be endowed with a distance by setting

Step 2: from Poisson to Bernoulli. The only differences between the above integral and Pd p jn P Gq are the fact that the number of positive charges falling into a given domain is not Poissonian but rather Bernoulli and the fact that the u i 's are distributed according to the law µ β truncated at λ ´1. Arguing as in [START_REF] Leblé | Large deviation principle for empirical fields of log and Riesz gases[END_REF] Inserting this into (5.175) yields the claimed result.

ABSTRACT RÉSUMÉ

Cette thèse se propose d'étudier divers problèmes de mécanique statistique pour une famille de systèmes de particules en interaction, appelés gaz de Coulomb et de Riesz.

Nous commençons par examiner le temps de mélange du mouvement Brownien de Dyson avec confinement quadratique, dont la mesure invariante est donnée par le beta-ensemble d'Hermite. Nous établissons un résultat de cutoff pour le temps de mélange du système dans une variété de distances et de divergences, lorsque le nombre de particules tend vers l'infini.

Nous considérons ensuite les fluctuations et corrélations du gaz de Riesz circulaire dans le régime longue portée. Tout d'abord, nous quantifions les fluctuations des espacements entre particules et énonçons un théorème central limite pour les statistiques linéaires valables pour des fonctions-tests possiblement très singulières. Puis nous montrons une estimée optimale sur la décroissance de la corrélation des gaps, qui nous permet de montrer l'unicité du processus limite en volume infini.

La suite de ce manuscrit est consacrée à l'étude du gaz de Coulomb bi-dimensionnel à deux composantes dans un régime de basse température où la fonction de partition diverge. Après avoir proposé une renormalisation efficace du modèle, nous donnons un développement asymptotique de la fonction de partition lorsque le paramètre de troncature tend vers zéro, des estimées sur nombre et la taille de dipôles neutres ainsi qu'un contrôle énergétique sur les fluctuations.

MOTS CLÉS

Systèmes de particules en interaction à longue portée, temps de mélange, grandes déviations, fluctuations, décroissance des corrélations, limite thermodynamique, transition de phase.

This thesis is devoted to the analysis of different problems concerning the statistical mechanics of a family of interacting particles systems, named Coulomb and Riesz gases.

We begin by studying the mixing time of the Dyson Brownian motion with quadratic confinement, whose invariant measure is the Hermite beta-ensemble. We establish a cutoff phenomenon for the mixing time in a variety of distances and divergences, when the number of particles tend to infinity.

We then consider the fluctuations and correlations of the circular Riesz gas in the long-range regime. First, we quantify the fluctuations of gaps and give a central limit theorem for linear statistics allowing very singular test-functions. Second, one shows an optimal estimate on the decay of gaps correlations, allowing one to prove the uniqueness of the infinite volume measure.

The rest of the manuscript is devoted to the study of the two-dimensional two-component plasma in a low temperature regime where the partition function diverges. After proposing an efficient way to renormalize the model, we derive an asymptotic expression for the partition function as the truncation parameter tends to zero, some estimates on the number and size of neutral dipoles and an energetic control on the fluctuations.
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