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1.1 Contexte et motivations

Cette thése est consacrée a I'étude mathématique de certains systémes de particules en interaction
appelés gaz de Riesz. Ceux-ci permettent de modéliser des particules aléatoires chargées (sans én-
ergie cinétique) interagissant par paires au travers du noyau gs(x) = |z|~° ol s est un paramétre
strictement positif. Par extension, la famille des gaz de Riesz comprend également les systémes
a interaction logarithmique en dimension une et deux, i.e le log-gaz uni-dimensionnel et le gaz de
Coulomb bi-dimensionnel, deux modéles particuliérement importants en physique et en mathéma-
tiques. En tant que systémes de particules a longue portée, les gaz de Riesz forment une famille de
modéles particuliérement riche, dont nous nous proposons d'étudier quelques aspects.

Ce manuscrit s'insére dans une vaste littérature a |'intersection des probabilités et de la physique
mathématique. Le comportement microscopique des gaz de Riesz a longue portée a fait I'objet d'une
importante série de travaux qui ont permis de décrire, au moyen d'un principe de grande déviations,
le comportement microscopique de ces systémes de particules. Si cette description microscopique
est bien valide en toute dimension, |'analyse des propriétés probabilistes de ces systémes - comme les
fluctuations, les corrélations, la rapidité de convergence a |'équilibre - est complétement différente
en dimension une et en dimension supérieure. C'est en effet seulement en dimension une qu'il est
possible d'exploiter la convexité de |'interaction, ce qui donne accés a toute une gamme d'inégalités
de concentration et d'inégalités fonctionnelles pour étudier les fluctuations et le temps de relaxation
de la dynamique.

Au fil de cette introduction, nous précisons d'abord le contexte mathématique de notre travail
puis donnons un apercu de quelques méthodes fondamentales du domaine avant de présenter les
contributions principales de ce manuscrit.

1.1.1 Dynamique de Langevin

On présente la dynamique de Langevin suramortie qui permet de modéliser une dynamique molécu-
laire de particules sans énergie cinétique. On considére N particules z1,...,zx dans R? interagis-
sant selon une énergie générale (disons réguliere) Hy : (R9)Y — R. On suppose que les particules
évolue en cherchant a minimiser |'énergie, tout en étant agitées par un petit bruit Brownien. Pour un
paramétre 3 > 0, qui joue le rdle de température inverse, on examine alors I'équation différentielle
stochastique

dX; = —aVHy (X;)dt + 4 /2§‘dBt, (1.1)

ol (By)¢=0 est un mouvement Brownien standard sur (R%)" et a > 0 un paramétre correspondant a
un changement déterministe de temps. L'équation (1.1) définit un processus de Markov sur (R%)Y
dont le générateur infinitésimal du semi-groupe est donné par |'opérateur différentiel linéaire du
second-ordre

L:=a(fVHy -V —A). (1.2)

On peut de plus vérifier que la mesure invariante de ce processus de Markov est donnée par la mesure
de probabilité ci-dessous, appelée distribution de Boltzmann-Gibbs :

1
dPng = ZNﬁe_/BHN(XN)dXNa (1.3)

ot Zy s est la fonction de partition

Zng = J G*BHN(XN)dXN.
RHN
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Il se trouve que (1.3) est la solution d'un « principe variationnel de Gibbs ». On vérifie aisément
que la mesure (1.3) minimise la fonctionnelle

pe P(RHY) — BEL[HN] + Ent(p),

ot Ent désigne I'entropie sur (R%)Y

d
Ent(u) = J log ﬁdu, (1.4)

si yu est absoluement continue par rapport a la mesure de Lebesgue sur (RN et Ent(y) = 40
sinon. On peut montrer que sous des hypothéses générales, par exemple si la Hessienne de Hj est
minorée par une constante négative [220], alors la dynamique (1.1) est ergodique et qu'en particulier
la loi de X; converge en temps long vers la distribution de Boltzmann-Gibbs (1.3). Une question
intéressante du point de vue de la physique statistique est de déterminer si cette propriété d'unicité
de le mesure reste vraie lorsque la taille du systéme tend vers I'infini, autrement s'il y a un unique

état de Gibbs.

1.1.2 La famille des gaz de Riesz

Spécifions a présent la classe d'énergie qui nous intéresse. Etant données N particules 1, ..., zN
dans R<, on considere

9N (i — x)), (1.5)

1#]
ol g5 est le noyau de Riesz sur R?, associé a un certain paramétre s > 0, donné par la formule

1

s sis>0

1.6
—log|xz| sis=0etde{1,2}. (16)

Le noyau de Riesz définit une interaction classique qui est correspond a la solution de |'équation de
Laplace fractionnaire

d—s
(_A) Tgs = cs,d50‘

Ainsi I'interaction de Riesz recoupe I'interaction logarithmique en dimension 1 et 2 ainsi que |'interaction
coulombienne pour d = 2. On utilise la terminologie suivante :

e Pour s =0 et d=1, on parle de log-gaz 1D ou de 3-ensemble.
e Pour s =0 et d =2, on parle de log-gaz 2D, qui correspond aussi au gaz de Coulomb 2D.
e De facon plus générale, pour s = d — 2 et d > 2, on parle de gaz de Coulomb.

Le paramétre s détermine la singularité de I'interaction ainsi que sa portée. En effet pour s > d,
I'interaction d'une configuration périodique bien espacée sur un domaine compact devient sommable
et I'énergie est dite a courte portée. A |'opposé, pour s < d, les termes principaux dans |'énergie
correspondent aux interactions a longue portée. Afin que les particules ne s'échappent pas a l'infini,
il convient de compactifier le domaine, ce qui peut se faire de deux facons : la premiére consiste a
ajouter a (1.5) un potentiel extérieur confinant, c'est-a-dire un terme de la forme 31N | V(z;) avec
V : R — R suffisamment réguliére et croissant assez vite a I'infini, ce qui améne a considérer le
Hamiltonien

N
My Xy e RV o Y ga(Ni (s — a)) + Na V(). (1.7)
7] =1
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Dans ce cas on notera }P’]‘\/,ﬁ la mesure de Gibbs

1
Vo
APy 5=y

N?ﬁ

e~ IHE XN g Xy (1.8)

ou Z]‘\/,”B est la fonction de partition
Z%ﬁ = JeﬁHXf(XN)dXN.

Une autre facon de confiner les particules est de remplacer R% par un domaine compact, par exemple
par [0,1]¢ ou par le tore de dimension d, noté T?. Notons que dans le régime longue portée (a la
différence du régime courte portée), si on confine un gaz de Riesz dans un domaine compact, alors
la mesure d'équilibre se concentre sur la frontiére du domaine et ce choix n'est donc pas pertinent.
Enfin si les particules vivent sur le tore T?, soulignons que le noyau (1.6) doit étre remplacé par le
noyau de Riesz periodisé, voir sous-section (1.3.2).

1.1.3 Motivations

Donnons a présent quelques motivations physiques et mathématiques pour I'étude des gaz de Riesz.
On se référe aux comptes-rendus de littérature trés complets [238, 77, 191].

e Les gaz de Riesz définissent pour s < d une famille de modéles a longue portée, qui sont
intéressants en tant que tels. En effet, ceux-ci échappent a la théorie classique de la physique
statistique élaborée dans les années 70, 80 et 90 (Ruelle, Giorgii, Dobrushin...) [122, 127, 138,
207], qui donne des résultats généraux pour des interactions a courte portée, notamment en
dimension 2. Les gaz de Riesz forment donc un cadre particuliérement riche pour développer
de nouvelles méthodes pour comprendre les fluctuations et corrélations des systémes a longue
portée, y compris en dimension 1.

e Une motivation importante pour I'étude des log-gaz en dimension 1 vient des matrices aléa-
toires. En effet comme observé dans les papiers fondateurs [255, 106], le log-gaz 1D avec
B € {1,2,4} apparait comme loi jointe des valeurs propres de matrices aléatoires Gaussiennes
symmeétriques/hermitiennes/symplectiques a entrées indépendantes. Les 3-ensembles ont ainsi
été abondamment étudiés en utilisant des techniques extrémement variées. Les (3-ensembles
s'étendent également en des modéles discrets [42] qui modélisent alors les losanges horizon-
taux dans les pavages aléatoires de domaines hexogonaux par exemple. En dimension 2 pour
8 =2, le log-gaz correspond a la loi jointe des valeurs propres d'un modéle de matrices non-
hermitiennes, appelé ensemble de Ginibre [134]. De plus celui-ci a une structure déterminentale
qui en fait un systéme intégrable [161, 119, 104].

e Le gaz de Coulomb en dimension 2 et 3 est un modéle particuliérement important puisque les
interactions électrostatiques et gravitationnelles sont coulombiennes. En dimension 3, le gaz
de Coulomb permet par exemple de modéliser les plasmas en astrophysique [25]. Le gaz de
Coulomb bi-dimensionnel surgit quand a lui dans de nombreux domaines de la physique : il
permet de décrire les vortex dans les modéles de Ginzburg-Landau (supraconductivité) et Gross-
Pitaevskii (superfluidité) [227, 228], les vortex dans le modéle XY (magnétisme, mécanique
du solide) [34], la fonction d'onde de Laughlin dans I'effet de Hall quantique fractionnaire en
mécanique quantique. Le gaz de Riesz est une extension naturelle du gaz de Coulomb et a
qui a également de nombreuses motivations physiques, voir par exemple [197, 18, 66, 249].



8 Chapter 1. Introduction

e L'étude de minimiseurs de (1.5) sur T? est également un probléme majeur en mathématiques
et tout a fait d'actualité. Pour s = +o0, ce probléme n'est rien d'autre que le probléme
d'empilement compact, ol il s'agit d'ordonner des sphéres dures de telle sorte que la pro-
portion d'espace occupé soit la plus grande possible. |l est conjecturé que pour certaines
dimensions, les minimiseurs de (1.5) sont donnés par des réseaux périodiques : c'est la conjec-
ture de cristallisation, qui explique la formation spontanée de structures trés ordonnées. Plus
précisément, il est conjecturé dans [87] que le réseau triangulaire en dimension 2, le réseau Eg
en dimension 8 et le réseau de Leech en dimension 24 sont les minimiseurs universels d'énergie
de la forme (1.5) pour des interactions générales et « complétement monotones », dont les
interactions de Riesz. Cette conjecture a été démontrée en dimension 8 et 24 dans [88] suite
a I'avancée spectaculaire [252]. Le lecteur peut se référer a [36] pour un compte-rendu de
littérature sur la conjecture de cristallisation. L'étude des minimiseurs de (1.5) joue également
un role clé en théorie de I'approximation [174, 222, 57, 58, 82].

1.1.4 Comportement macroscopique

Considérons une énergie de la forme (1.7) sur (RY)N avec s < d et V : R? — R lisse et croissant
suffisamment vite a l'infini. Le potentiel de Riesz étant a longue portée, le comportement macro-
scopique du systéme est dicté par une énergie de type champ-moyen. En effet, la force principale
s'exercant sur une particule est donnée par la force générée par la distribution moyenne de charges,
qui est donc dominante devant la force exercée par les particules voisines. Ceci peut se formaliser
avec un énoncé de Gamma-convergence ou bien avec un énoncé de grandes déviations. Pour étudier
la densité macroscopique de particules, il est naturel de considérer la mesure empirique, définie par

|
N = Z Os, - (1.9)
i=1
Le Hamiltonien (1.7) se réécrit comme une fonction de la mesure empirique, comme suit :

HY (Xy) = N2 j j g(N (2 — y)dpy (@)dun(y) + N2~ f V(@)dun (),
Ac

oii A désigne la diagonale de R? x R%. Ainsi, lorsque sy avoisine une certaine mesure /i, on
s'attend a ce qu'en un certain sens, I'énergie HY (X ) soit comparable & N?~a Iy (u) ol Iy, désigne
la fonctionnelle

v e PE) — [[ oo - yautant) + [ Vie)duta), (1.10)

Comme montré dans [237], la suite de fonctions { N4 ~2HY} vues comme des fonctions sur P(R?)
I-converge vers Iy : P(R?) — (—c0, +00) au sens de la convergence faible des mesures. D’autre
part, on peut montrer que pour toute mesure v € P(R?) et pour ¢ assez petit, on a

J e PHE XN g X0y = o~ BN ATy (0)+o(N?),
;,LNEB(V,a)

En particulier, la mesure de Gibbs se concentre autour de I'unique minimiseur uy de Iy, appelé
mesure d'équilibre. Ainsi la suite des mesures images de Py g par I'application p satisfait a un
principe de grandes déviations (PGD) avec fonction de taux 5(Iy — Iy (1v)), [11, 80, 237], voir sous-
section 1.2.1 pour une définition précise. En conséquence, u converge vers une limite déterministe
donnée par la mesure d'équilibre py .
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La mesure d'équilibre se caractérise au moyen d'équations d'Euler-Lagrange mais son support est
délicat a déterminer. On utilisera la terminologie bulk pour parler de I'intérieur du support. Donnons
deux cas particuliers importants. Dans le cas du log-gaz en dimension 1 avec potentiel quadratique
(8-ensemble Gaussien), la mesure d'équilibre est donnée aprés mise a échelle par la loi du semi-cercle
de densité v/4 — 221 |, <9, ce qui est cohérent pour 5 € {1,2,4} avec le théoreme de Wigner [5].
Dans le cas du log-gaz en dimension 2 avec potentiel extérieur quadratique, la mesure d'équilibre
est uniforme sur un disque dont le rayon dépend de 5. On renvoie a [77, Table 1.2] pour une liste
plus compléte des mesures d'équilibre pour les log-gaz.

1.1.5 Mouvement Brownien de Dyson et limite hydrodynamique

Nous avons vu comment le systéme a I'équilibre peut étre approché par sa limite de champ moyen.
Il est également possible de dériver une limite de champ moyen dans |'équation de Langevin (1.1).

Sur {(z1,..., xN) e RN :2; <...<xn}, on considére
1 2
— — —V(X;(t))dt + | —=dB;(t), i=1,...,N, (1.11)
j;l Xi( J(t) 2 BN

avec B > 0 et V : R — R lisse et croissant a l'infini. Ce processus stochastique est appelé
mouvement Brownien de Dyson. Rappelons que comme observé par Dyson en 1962 [106], pour
B € {1,2,4} et V quadratique, (1.11) correspond a I'évolution des valeurs propres de matrices
N x N symmétriques/hermitiennes/symplectiques a entrées Browniennes indépendantes. Par ailleurs
comme nous |'avons vu, la loi invariante de X (¢) est donné par le S-ensemble (1.8).

Comme dans le paragraphe précédent, considérons la mesure empirique

1 N
pn(t) = & D 0%
=1

Comme montré par exemple dans [215], si la distribution initiale 1z (0) converge faiblement vers
une mesure po lorsque N tend vers l'infini, alors le processus (un(t)i=0) converge faiblement vers
le processus déterministe (fi)¢=0, donné par I'unique solution de

B f'ly
Cues [ = Cpo, f) — f fV/ ) ps(da)ds Ty x_y()
pourtoutt >0et f € Cb (R,R). Cette équation d’ evolutlon non-linéaire est |'équation de MacKean-
Vlasov associée au mouvement Brownien de Dyson. En dimension supérieure le passage a la limite

dans I'équation

ps(dz)ps(dy)ds  (1.12)

dX(t) = —VHX(X(t))dt + \/gdBt, X(t)e RHY

avec 3 € R (équation de Langevin) ou 5 = oo (descente de gradient) constitue un probléme trés
délicat. Celui-ci a été résolu pour la descente de gradient pour d = 1 et s € (0,1) dans [30], pour
d =2 et s = 0dans [136, 235] pour pour s € (0,d—2) dans [146, 71], puis pour d—2 < s < d dans
[240]. En incorporant la méthode d'énergie modulée de [240] & des techniques antérieures [155], une
limite de champ moyen pour I'équation de Langevin avec bruit et interaction singuliére a également
été obtenu dans [61].

Ainsi le temps de relaxation & |'échelle macroscopique du mouvement Brownien de Dyson est
dicté par I'équation d'évolution (1.12) et satisfait ¢ » 1. Comme conjecturé par Dyson, la relaxation
locale est beaucoup plus rapide et se produit a I'échelle mésoscopique ou microscopique 1/N « n « 1
en un temps t » 7. Le mouvement Brownien de Dyson est ainsi un outil particuliérement efficace
pour démontrer |'universalité des statistiques des [3-ensembles et matrices de Wigner [46, 47, 49,
116, 50, 175].
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1.1.6 Description du comportement miscroscopique

Le systeme (1.8) peut &tre vu a |'échelle macroscopique comme un milieu continu qui se décrit

a l'aide de la fonctionnelle d'énergie (1.10). Si I'on zoome d'un facteur N autour d'un point
x € supp(uy ), on observe un nuage de points aléatoire avec en moyenne py (x) particules par
unité de volume. Au vu du scaling imposé dans (1.5), I'interaction entre deux particules voisines est
de taille 1. Ainsi, a I'échelle microscopique, on observe un processus aléatoire non-trivial (distinct
du processus de Poisson), que I'on peut alors tenter de décrire avec le formalisme des grandes
déviations. La description de ce processus microscopique a été entreprise dans |'article important
[182], qui couvre le cas régime longue portée max(0,d — 2) < s < d.

Notons Cy(x) la configuration centrée en x et mise a échelle d'un facteur Ni, ie Cn(z) =
Zf\il 6\/ﬁ(mi_$). L'observable adéquate [182, 129] pour décrire le processus de points est obtenue
en moyennant Cx(x) pour x dans le support de la mesure d'équilibre :

iN = J 5(x,CN(:v))dx' (1.13)
supp(py)

Cet objet est appelé champ empirique. Le processus de points observé étant aléatoire, son com-
portement ne peut pas étre décrit uniquement avec une fonction de type énergie. La fonctionnelle
de grandes déviations, qui indique la probabilité d'observer un certain processus de point doit ainsi
mesurer |'aléa présent dans ce processus de points. Cette fonction, qui mesure le volume de con-
figurations, est appelée entropie relative spécifique et est |'analogue de (1.4) pour les processus en
volume infini. Il est ainsi montré dans [182] que le processus moyenné iy satisfait & un PGD avec
une fonction de taux de la forme F3 = SEnergie + Entropie.

La difficulté pour étudier la limite thermodynamique du gaz de Riesz dans le régime longue
portée est de montrer que |'énergie (1.7) peut se réécrire, aprés factorisation autour de |'équilibre
et mise échelle, comme une fonctionnelle typiquement additive. Dans la série de travaux [230,
232, 218, 203, 182, 184, 186, 206] un ensemble de techniques inspirées de I'analyse du modéle de
Ginzburg-Landau [228] ont été développées pour traiter les interactions de type Riesz. Le point
de départ est de réécrire |'énergie comme la norme L? du champ coulombien généré par le jellium
[230, 232] et une technique d'écrantage inspirée de [2] puis développée dans [182, 9, 239] permet de
recoller des champs électriques entre eux et ainsi de montrer que I'énergie est typiquement additive.
Ceci a permis d'écrire dans [182] un PGD pour |'observable (1.13) puis dans [180] pour (1.13)
mais moyenné 3 de petites échelles. A |'aide d'approximations sous-additives et super-additives de
I'énergie inspirées de techniques d’homogeénisation stochastique, [9] améliore la méthode de [180]
pour obtenir des lois locales valables & I'échelle microscopique ainsi que des estimées d'additivité
optimales sur I'énergie et les fonctions de partition. Pour les 3-ensembles, on renvoie également a
[44, 43] qui donnent des développements a tout ordre des fonctions de partition.

1.1.7 Le plasma a deux composantes

On introduit a présent une variante du gaz de Coulomb bi-dimensionnel ol deux types de particules
de charge positive et négative coexistent. Ce systéme est appelé gaz de Coulomb (ou plasma) a

deux composantes ou 2CP. Considérons N particules de charge positive x1,..., 2y et N particules
de charge négative y1,...,yn dans A = [0, 1]? interagissant selon |'énergie
1 1
Hy =5 2 0w —25) + 5 > 9 — ) = ) 9(xi = yj)
i#j i#j ij

ol g est le noyau coulombien en dimension 2, c'est-a-dire

g(xz) = —log|z|, xeR%
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Le 2CP est alors donné par la mesure

1
dPN,g = 7 eXp(—,BHN(XN, YN))]l(XN,YN)eAW\’dxl cee dedyl .. .dyN (1.14)

N,

ou Zy g désigne la fonction de partition

ZN,ﬁ = JAQN eXp(—B/HN(XN, YN))dxl “. dl‘Ndyl NN dyN. (1.15)

L'énergie tend vers —oo lorsque deux particules de charge opposées colisionnent avec un poids relatif
en distance™” dans la fonction de partition. Lorsque 3 € (0,2) cette singularité est intégrable :
le bruit suffit & repousser les particules. Lorsque 8 > 2, la singularité devient non-intégrable et la
fonction de partition (1.15) diverge. Ainsi, dans le régime de température 5 > 2, il convient de
renormaliser I'interaction en la tronquant a une échelle = ﬁ pour donner un sens a la distribution
(1.14).

L'une des motivations importantes a I'étude du gaz de Coulomb 3 deux composantes vient de la
physique de la matiére condensée et plus précisément du modéle XY. Le modéle XY est un modéle de
ferromagnétisme dans le plan ou des spins a valeurs dans le cercle unité interagissent selon le cosinus
de I'angle des plus proches voisins. Le champ formé par les angles peut se décomposer en une onde
de spin réguliére et un ensemble de singularités composé de tourbillons d'indice 1 et —1, appelés
vortex et antivortex. De plus, de facon remarquable, on peut monter que ces vortex correspondent
a des charges positives et négatives interagissant selon le potentiel de Coulomb. Dans les années
70, Kosterlitz, Thouless et indépendemment Berezinsky [165, 164, 29] montrent qu'une transition
de phase «d'ordre infini» a lieu dans le modeéle XY. Cette transition se manifeste notamment par un
passage d'une décroissance exponentielle des corrélations des spins a une décroissance algébrique en
deca de la température critique. La transition KT est liée a I'appariement en dipéles des vortex et
antivortex et plus précisément a la variation du nombre de charges non neutres a une certaine échelle
lorsque I'échelle augmente. Il existe des preuves mathématiques de |'existence de cette transition et
celles-ci reposent sur des outils sophistiqués utilisant notamment la représentation de Sine-Gordon
et des arguments de groupe de renormalisation [120, 121, 198]. Nous renvoyons a [35] pour une
syntheése sur le sujet.

Par ailleurs dans le régime 3 € (0, 2), une description variationnelle de la limite thermodynamique
du plasma a deux composantes a été obtenue dans [186]. Le résultat de [186] se base notamment
sur la formulation électrique de |'énergie, une technique d'écrantage inspirée de [183] ainsi que des
techniques de grandes déviations empruntés quelques arguments combinatoires de [139].

1.1.8 Fluctuations des log-gaz

Une fois le comportement macroscopique du systéme établi, une question naturelle est de quantifier
les fluctuations de la mesure Zf\il 8z, — Ny contre des fonctions-test. Etant donnée une certaine
fonction borélienne £ : R — R, on considére alors I'objet Flucty[&] := sz\ilf(l’z) — N {&dpy,
appelé statistique linéaire. Une question importante venue des matrices aléatoires est d'obtenir un
théoréme central limite (TCL) pour de telles quantités. Il apparait que lorsque & est suffisamment
réguliére, Flucty[£] est d'ordre 1 avec un comportement asymptotique Gaussien, voir notamment
[157, 241, 44, 46, 49, 27, 51, 145]. Lorsque la fonction-test £ est singuliére, un autre comportement
peut &tre observé. Par exemple pour { = 1, avec (a, b) dans le support de iy, Flucty[£] fluctue
en y/log N et un TCL de type log-corrélé est satisfait. Ainsi, I'ordre de grandeur des fluctuations
dépend de la régularité de la fonction-test. Notons que dans le cas des 3-ensembles, le potentiel
logarithmique satisfait a un TCL log-corrélé [46] et I'étude des extrémes de ce champ s'inscrit dans
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un sujet d'actualité relié aux marches aléatoires branchantes [159, 102, 172]. Il existe de nombreuses
motivations a |'étude des fluctuations des log-gaz et 'une d'elles est reliée a la conjecture KLS
[195] et plus précisément a une conjecture plus faible appelée conjecture de variance généralisée.
Comme montré dans [90], pour p > 3, la boule unité des matrices auto-adjointes pour la norme de
p—Schatten satisfait a la conjecture de variance généralisée et ce résultat est obtenu en étudiant les
fluctuations d'une certaine statistique linéaire sous le log-gaz avec potentiel |z|P.

Les méthodes utilisées pour obtenir ces TCL exploitent le caractére longue portée de |'interaction,
avec les équations de boucles ou la méthode de transport de [241, 184] inspirée de [157]. Notons
que la preuve du TCL pour des fonctions-test lisses peut se passer du caractére 1D du modéle [27]
et cette preuve fonctionne également pour le gaz de Coulomb bi-dimensionnel [184, 24, 187] malgré
de nombreuses difficultés additionnelles. En revanche lorsque la fonction-test est singuliére il semble
nécessaire d'utiliser la convexité et les propriétés de concentration qui en découlent [46, 51]. Pour le
gaz de Coulomb en dimension supérieure d > 3 ou bien pour le gaz de Riesz avec s € (0,d) et d > 2,
le probléme se complique car les termes a longue portée dans |'énergie deviennent moins dominants :
il est alors nécessaire de contrdler avec une meilleure précision les fluctuations des variations locales
de I'énergie et des termes d'angles. On peut citer [239] pour un TCL valide pour le gaz de Coulomb
en dimension 3, sous une hypothése d'absence de transition de phase. Un modéle simplifié du gaz de
Coulomb en dimension 3, appelé gaz de Coulomb hiérarchique, est également étudié dans [83, 124].

1.1.9 Le processus Sinus beta

Le comportement microscopique du log-gaz peut é&tre décrit au moyen du PDG [182], qui exhibe une
fonctionelle d'énergie F3 sur les processus ponctuels. La question de I'unicité des minimiseurs de F3
parait difficilement accessible en dimension supérieure & 1. En dimension 1 et pour s = 0, |'unicité
a été obtenue dans [112] avec un argument de convexité par déplacement. Le minimiseur est alors
identifié au processus Sineg, qui correspond a la limite universelle du processus microscopique dans
le bulk des 3-ensembles.

Etant donné = dans I'intérieur support de py, considérons la configuration aléatoire non moyen-
née centrée en z,

N
CN = D\ 6 N(es—a):

i=1
La variable Cjy est une variable aléatoire sur I'espace des configurations de points. Montrer |'universalité
pour les -ensembles a énergie fixée revient a montrer que la loi de Cy sous Py g converge vers
un certain processus ponctuel universel. Cette universalité a été démontrée dans la série de travaux
[46, 49, 116]. Le processus limite, appelé Sineg avait déja introduit dans [162] comme limite du
j3-ensemble circulaire (d'ou son nom, puisque sur le cercle gy = —log|¥2Z| | ) et dans [250]
comme limite des -ensembles Gaussiens. En outre, le processus Sineg se décrit au moyen d'un sys-
téme d'équations différentielles stochastiques [250] et également comme le spectre d'un opérateur
aléatoire en dimension infinie [251].

Le processus Sineg peut également étre étudié a travers le formalisme de Dubroshin-Landford-
Ruelle (DLR), développé dans les années 70-80 pour décrire les mesures de Gibbs en volume infini. Les
équations DLR décrivent |a loi du processus en donnant a I'intérieur d'un compact conditionnellement
a I'extérieur, [93, 128]. Ceci suppose de pouvoir donner un sens a |'interaction d'un point avec une
infinité d'autres, ce qui est délicat dans le cas des interactions a longue portée. La description
DLR du processus Sineg a été obtenue dans [94] en utilisant des estimées précises de rigidité. Une
propriété intéressante qui peut étre étudié dans le formalisme DLR est celle de la cardinale-rigidité.
Suivant [131], on dit qu'un processus ponctuel est cardinal-rigide si pour tout compact, la donnée
du processus restreint a I'extérieur du compact suffit a reconstituer le nombre de points a l'intérieur.
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Cette propriété surprenante, qui traduit une forme forte de longue portée, a été démontrée pour le
processus Sineg dans [94, 86].

1.1.10 Temps de mélange et phénomeéne de cutoff

Nous avons discuté dans le paragraphe 1.1.5 la limite de (1.11) a ¢ fixé, lorsque N tend vers I'infini.
On se pose a présent une question différente (mais reliée) : « Quel temps faut-il attendre pour que
le systeme (1.11) soit proche de I'équilibre IP’XW 7 » En particulier, comment ce temps critique
dépend-il de N 7 Pour traduire cet énoncé, on se donne une certaine distance (ou divergence) dist
sur I'espace des mesures de probabilité sur RY, prenant ses valeurs dans [0, max] et I'on se demande
au bout de quel temps ty,

Jim dist(Loi(X}\ ), P 5) = 0.

Cette question est motivée par un sujet d'actualité en probabilité, qui consiste a établir un phénoméne
de cutoff pour les processus de Markov. Rappelons-en la définition. Considérons une famille de
processus de Markov indexée par N, XV = (X/V);=0, a valeurs dans un certain espace SV et de loi
invariante u/V. Supposons qu'a NV fixé et que pour toute condition initiale 22 € S™, I'on ait

lim dist(Loi(X}), u™V) = 0.
N—0

Alors on dit qu'un phénoméne de cutoff a lieu si la convergence de X*V vers I'équilibre s'effectue de
facon abrupte, c’est-a-dire s'il existe un temps critique ¢y tel que pour tout € > 0 assez petit,

lim sup dist(Loi(Xt]YV),uN) =

max sity =cn(l—¢) (1.16)
NﬁooacéVGSN .

0 si tNICN(l-i-E).

Le phénoméne de cutoff est typiquement associé a un effet de grande dimension. Par exemple, X~
peut &tre une marche aléatoire sur le groupe symétrique, le mouvement Brownien sur la sphére de
dimension N, etc.

Le cutoff pour le temps de mélange des processus de Markov a été mis en lumiére par David Aldous
et Persi Diaconis [3, 99, 101, 190] et est I'objet de nombreux travaux [224, 226, 199, 168, 68, 22].

Pour établir un résultat du type (1.16), il convient de conjecturer quelle est I'observable qui
converge le plus lentement vers |'équilibre. Pour le mouvement Brownien de Dyson, comme expliqué
en 1.1.5 ce sont les observables macroscopiques qui jouent ce réle. Ainsi la limite hydrodynamique
(1.12) donne une borne inférieure crédible sur le temps de mélange, qu'il convient alors de faire
coincider avec une borne supérieure.

1.2 Quelques méthodes pour les systéemes de particules

On donne a présent quelques point de repéres sur les méthodes mathématiques, pour certaines
classiques, utilisées dans la littérature sur les systémes de particules en interactions.

1.2.1 Principes de grandes déviations

On rappelle la notion de principe de grandes déviations. Soit (1) une suite de mesures de probabilité
sur un espace topologique x muni de sa tribu borélienne B, (ay) une suite de réels positifs tendant
vers l'infini et I : x — [0,00] une fonction s.c.i. On dit que (i) suit un principe de grandes
déviations (PGD) de vitesse (ay,) et de fonction de taux I si pour tout B € B,

1 1
—inf I <liminf — log p,(B) < limsup — log pun(B) < —inf I (1.17)
B

B n—90 dp n—on Un
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Cette définition formalise le fait qu'en un certain sens, pour tout B € B3,
B) ~ ¢~ infg I
n(B) ~ ¢ . (1.18)

La définition (1.17) peut paraitre peu naturelle mais il s'agit en fait de la bonne formalisation de
(1.18). La présence d'un infimum dans (1.17) refléte le fait qu'a I'échelle exponentielle la probabilité
d'un événement rare partitionné en sous-événements est environ égale a la probabilité du moins
rare de ces sous-événements. En effet si u,(B) décroit en e /(B) avec J : x — [0,00] alors
nécessairement J(A u B) = inf(J(A), J(B)) car

max(fin(A), pn(B)) < pin(A U B) < 2max(un(A), pin(B))-

On renvoie a [92, 212] pour une introduction générale sur le sujet. Les grandes déviations offrent un
cadre naturel pour étudier le comportement asymptotique de systémes de particules du type (1.8).
Supposons que I'on ait trouvé une certaine observable iy a valeurs dans x qui satisfait selon nous a
un PGD avec fonction de taux I et de vitesse (ay). Par exemple iy peut étre la mesure empirique
(1.9), le champ empirique (1.13). Dans ce cadre [80, 183] un PGD se prouve souvent en deux temps

e Montrer une borne supérieure en donnant une minoration précise de |'énergie. On se restreint
a un événement ol notre suite d'observable iy est proche d'une certaine observable limite
x € x et on minore a; ' Hy(Xy) a la limite par I(z).

e Pour établir la borne inférieure du LDP on ne peut pas minorer |'énergie mais on peut toutefois
se restreindre a un certain sous-espace de bonnes configurations. |l faut alors construire a la
main des configurations telles que ¢y est proche de x et a, !Hx(Xy) proche de I(z), en
faisant attention a ce que le volume de configurations soit suffisant.

Ces techniques de grandes déviations sont basées sur des méthodes énergétiques et permettent de
développer les fonctions de partition [182, 9] et dans certains cas d'obtenir des estimées sur les
fluctuations du systeme [181, 24, 239].

1.2.2 Meéthodes énergétiques

Nous introduisons quelques outils au fondement de la série de travaux [230, 232, 218, 203, 182, 184,
186, 206] qui permettent de manier efficacement |'énergie (1.7). Pour simplifier on se restreint au
cas coulombien s = d — 2 et d > 2. Soit uy la mesure d'équilibre donnée par le minimiseur de la
fonctionnelle (1.10). En notant py := + Zf\il dz;, on peut écrire (1.10) sous la forme

HY(Xy) = N6 f f oz — y)A(Nux) (@)A(Npx) (y) + N f V(@)dun (2). (119)

On pose flucty = N(un — py). En développant I'expression ci-dessus autour de py/, on obtient

N
M () = N3 [ gl = AN ) @A) @) + 28 3 Gl + By (),
=1

avec (y le potentiel de confinement effectif

v :=g*u+‘2/—f<g*u+‘2/>duv
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et Fx (-, uy) I'énergie du second-ordre

Fn(Xn,py) = Jfg(x — y)dfluct y (z)dfluct ; (y). (1.20)

Par minimalité de py, la fonction (y s'annule sur le support de la mesure d'équilibre. Le systéme
N(un — py) peut étre vu comme un ensemble de particules ponctuelles baignant dans un fond
constant de densité —Npuy, ce qui correspond a un jellium en physique mathématique, voir par
exemple [78, 79]. Il est ensuite possible de réécrire |'énergie (1.20) en fonction du champ électrique
généré par le jellium flucty. Notons Hy le potentiel généré par le jellium, i.e Hy = g * flucty.
Puisque g est le noyau coulombien, on peut observer que

1

Cd,s

FN<XN7MV):_ JHNAHN

En intégrant formellement par partie on trouverait

1

Cd,s

Fn(Xn, py) ~ JNHNP. (1.21)

Le champ électrique V H y divergeant en ‘x% autour d'une charge ponctuelle z;, celui-ci n'est pas

dans L2. Pour donner un sens a (1.21), il convient de régulariser le systéme. Au lieu de régularise le
potentiel g lui-méme, on peut désingulariser VH en étalant les masses de Dirac d,, en des mesures

uniformes (5%70 sur la sphére 0B(x;,n;). Pour n = (n1,...,nn), on note alors H}, le potentiel

généré par ce jellium régularisé :

Hyy = 9*(% o5 — N/W)-
i=1
On peut alors montrer que
N
P ) = (| 1V - cas 3390n)). (1.22)

Une observation fondamentale est que le membre de droite dans (1.22) est décroissant en le
paramétre de troncature 7 a petite erreur prés. De par le théoréme de Newton, on peut mon-
trer que si les boules B(x;,n;) sont disjointes alors

N
1

Fn(Xn,pv) = 1o < fRd |VHy > = cao Z g(m)) + petite erreur explicite.
) Z‘:1

Cette réécriture de |'énergie, ainsi que la propriété de monotonie par rapport au paramétre de
troncation 7, permet de minorer |'énergie de facon trés efficace. D'autre part, cette formulation donne
des outils pour montrer que I'énergie Fiy(Xn, 1) est typiquement additive : c'est la technique de
screening.

1.2.3 Théoréme de fluctuation-dissipation

Ce paragraphe décrit une méthode pour obtenir un TCL pour les statistiques linéaires en présence
d'un systéme de particules a interaction longue portée du type (1.5) avec s < d. Considérons la
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mesure (1.8) et une fonction réguliére F: RY — R. Une facon d'étudier les fluctuations de F' sous
PX,@ est de considérer la transformée de Laplace

Epv [ef], teR. (1.23)
N8
Cette transformée de Laplace peut se réécrire comme un ratio de fonction de partition

B [eF] = ZN,‘f(t)e—thgduV,
N,B ZNB

ou
Znslt) = 20 7" = fetFBHXf(XN)dXN.

Notons P%ﬂ(t) la mesure de probabilité ocetF]P’KB. Sous Pxﬂ(t), les particules sont soumises a
une force additionnelle en —tF qui modifie la distribution des charges. Pour remettre les particules
a I'équilibre, il faut appliquer un transport qui envoie Pxﬂ(t) sur IPX,’B et par des résultats classiques
d'analyse [59], ce transport peut &tre cherché sous la forme du gradient d'une fonction convexe V®,.
Ce gradient est solution de I'équation de Monge-Ampére

—logdet Dy + B(HYX 0o VO, — HY) = tF — log Epy _ [eF]. (1.24)

En linéarisant I'équation en ¢ et en écrivant V&, = Id +tV¢ + o(t), on se raméne alors a étudier
I'équation linéaire

(Lo =) = Ap+ BVHy - Vo = F —Epy [F]. (1.25)

On reconnait le générateur du semi-groupe de Markov (1.2). L'équation ci-dessus est appelée
équation de Poisson, en analogie avec le cas sans interaction ot £ est un Laplacien. En effectuant
le changement de variables Id +tV ¢ dans la transformée de Laplace (1.23) on peut observer que les
termes linéaires s'annulent et que les termes quadratiques se regroupent en

Cette formule est appelée formule de représentation de Helffer-Sjdstrand et peut aussi se montrer par
une simple intégration par partie sous ]P’KB. Le passage par la transformée de Laplace donne de plus
une interprétation mécanique de la solution de (1.25) : V¢ correspond au transport infinitésimal a
appliquer aux particules pour les remettre a I'équilibre lorsque celles-ci ont été perturbées par —tF'.
Ce transport est aussi appelé réponse linéaire dans le langage des systémes dynamiques.

Il est souvent intéressant d'étudier de (1.25) sous sa forme différenciée. On peut remarquer que
le commutateur de £ et de I'opérateur gradient fait apparaitre la Hessienne de I'énergie :

VL) = LV + BVPHNY = A1V

ot A; est I'opérateur
A = LRIy + BVPHY. (1.27)

Notons que ceci est I'équivalent du théoréme de Bochner, qui exprime le défaut de commutation
entre le Laplacien sur une variété riemanienne et le gradient en fonction du tenseur de Ricci [189].

Il existe au moins deux cas de figure ou la représentation (1.26) est effective et permet de
contrdler la variance de F' : lorsque I'interaction est a longue portée et F' est une statistique linéaire
ou lorsque I'énergie est convexe. En effet si F' = Zf\ilﬁ(mz) — N {&dpy avec € : R? — R et si
s € (0,d) (mais pas pour s > d !), on peut chercher une solution approchée de (1.25) sous la forme
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d'un transport qui agit diagonalement V® : Xy — (¢(21),...,¢(zy)) avec 1 : R — R%. Le
fonction 1 est de plus donnée par

§ — §&duy

!
%) = —.
9 = e NS

(1.28)

Le transport 1 solution de (1.28) peut s'interpréter comme la solution d'un probléme de transport
en dimension d. En effet rappelons que la distribution macroscopique des charge sous IP’X,”B est
donnée dans la limite ou N — oo par py qui minimise Iy, (1.10). Sous Py g(t) la distribution de
macroscopique est tiltée et est donnée par py, qui minimise Iy, = Iy — %FluetN[f]. En écrivant
les conditions d'optimalité de py;, et en linéarisant formellement en ¢, on trouve que la solution de
(1.28) transporte py, sur py . Ceci illustre une commutation entre le fait de linéariser (1.24) et de
passer a la limite de champ moyen.

1.2.4 Inégalités fonctionnelles

Dans ce paragraphe on rappelle quelques inégalités de concentration trés classiques pour les mesures
log-concaves. On considére une mesure p sur R? log-concave par rapport a la Gaussienne de variance
02 > 0, c'est-a-dire que y s'écrit du = e~ fdv ott v = N(0,02) et f: R? — R convexe. Alors pour
FeH'vePRY) etteR, ona

1
Var, [F] < TEM[|VF|2], (Poincareé) (1.29)
o
1
Ent[v | pu] < ﬁFisher[V, w1}, (log-Sobolev) (1.30)
o
2
logE,[e""] < tE,[F] + % sup |VF|, (concentration Gaussienne), (1.31)
o

La premiére inégalité est un cas particulier de I'inégalité de Brascamp-Lieb et peut s'obtenir par
linéarisation de (1.30), qui suit du critére de Bakry-Emery (voir [37]). La preuve de la concen-
tration Gaussienne s'obtient par exemple en appliquant (1.30) et I'argument de Herbst [189] ou
par le théoréme de contraction de Caffarelli [64]. Ces inégalités ont également des conséquences
dynamiques. Si on considére la dynamique de Langevin (1.1) et que 'on note u(t) la loi de X; a
I'instant ¢, on peut voir en dérivant |'entropie relative par rapport a u le long du semi-groupe et un
utilisant (1.30) que

_2

Ent[s; | 1] < Ent[po | ple™=7", (1.32)
Ceci fournit alors un moyen de quantifier le temps de convergence a I'équilibre dans le probléme
mentionné dans le paragraphe 1.1.10. Des généralisations importantes de (1.30) sont utilisées dans
la littérature sur les B-ensembles. Dans le cas ol y est donnée par (1.8) avecd =1, s =0et V

convexe, alors comme observé dans [46], on peut écrire une inégalité de log-Sobolev qui exploite la
convexité de |'interaction en se restreignant a des fonctions de divergence nulle.

1.2.5 Représentation des corrélations

On peut observer par polarisation que la formule (1.26) permet d’exprimer la covariance de deux
fonctions F : R —» R et G : R? — R suffisamment lisse :

Covpy [F.G] = Epy [V6- VG,
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ot V¢ est solution de I'équation d'Helffer-Sjéstrand
A1V¢ = VF, (1.33)

avec A; définien (1.27). Ainsi, pour déterminer la décroissance de la corrélation de F' = N (41 —x;)
et de G = N(xj41 — x;), il convient d'étudier la décroissance des incréments de V. En présence
d'une interaction convexe (i.e dans le cas d = 1), les inégalités de concentration (1.29) et (1.31)
peuvent se réécrire sous la forme d'estimées L? et uniformes sur V¢, voir [149]. En revanche,
obtenir des estimées de décroissance suppose une analyse plus fine. |l existe de nombreux travaux
dans la littérature qui s'attaquent a la question de la décroissance des solutions de (1.27), en
particulier lorsque |'énergie est convexe. Une premiére méthode consiste a réécrire (1.33) au moyen
d'une représentation de Fenyman-Kac [12, 96, 132, 201, 149, 116] qui suppose de controler des
marches aléatoires dans un environnement aléatoire. Il existe également d'autres points de vue plus
analytiques qui s'inspirent des techniques d’homogénisation stochastique [201, 10, 91, 247].

1.3 Reésultats obtenus et perspectives

Cette thése est divisée en trois parties. Dans le chapitre 2 on étudie un probléme de convergence vers
I'équilibre pour le mouvement Brownien de Dyson, dans le second on étudie les fluctuations et les
corrélations a I'équilibre pour le gaz de Riesz circulaire et dans le troisiéme on s'attachera a décrire
I'équilibre pour le gaz de Coulomb a deux composantes dans le régime [ € [2, +00). Ainsi les deux
premiéres parties exploiteront la structure uni-dimensionelle du modéle et la convexité sous-jacente
tandis que la troisiéme partie se base sur des inégalités énergétiques et des méthodes de grandes
déviations.

1.3.1 Cutoff pour le temps de mélange du mouvement brownien de Dyson

Dans la premiére partie, en collaboration avec D. Chafai et C. Labbé, on étudie le probleme du
temps de mélange du mouvement Brownien de Dyson présenté dans le paragraphe 1.1.10. On se
restreint a un cas particulier ou le potentiel extérieur V' dans (1.7) est quadratique, ce qui donne un
aspect intégrable au modeéle [81, 177]. Lorsqu'il n'y a pas d'interaction, (1.11) est alors un processus
de Ornstein-Uhlenbeck en dimension N (= n). De fagon a pouvoir éteindre |'interaction, on écrit
I'énergie sous la forme

1 n
Mo =B log ———— +n ) Vix),
i#j i — ;] i=1

2
ou B = 0 est désormais un paramétre qui contrdle la force de I'interaction et V(x) = % On
considére ensuite la dynamique de Langevin mise & échelle en temps,

) 2 . dt
Xy =z5eR", dX;"' = \/7de —V/(X"")dt + p Z —————— 1<i<n. (134)
n n e xmt . xmd
VE t t
Dans la suite on parlera de (1.34) comme du processus de Dyson-Ornstein-Uhlenbeck (DOU) pour
S > 0 et du processus de Ornstein-Uhlenbeck (OU) pour 8 = 0. A cause de la singularité de
I'interaction, il peut étre délicat de donner un sens a (1.34). C'est pourquoi on se restreint au cas
S =0cet [ =1, o I'équation est bien posée (la basse température rend les collisions improbables,
comme pour le gaz de Coulomb a deux composantes). Pour 8 = 2, le systéme (1.34) correspond

aux valeurs propres du processus de Ornstein Uhlenbeck matriciel. L’article [54] se propose d'étudier
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le phénoméne de cutoff pour le temps de mélange de (1.34) et dans une grande variété de distances
et de divergences.

Nous commencons par analyser le cas simple du processus OU. La mesure invariante Pg est ici
donnée par une Gaussienne en dimension n centrée de matrice de covariance 1, P? = N/(0,21,).
On peut établir un cutoff a condition initiale fixée : pour tout 2, il y a cutoff avec un temps critique
dépendant |z(/|, hormis dans le cas de la distance de Wasserstein ot la norme de |z{j| doit &tre assez
grande.

Théoréme 1 (Cutoff pour OU). Soit Z" = (Z}"),> un OU donné par (1.34) avec =0 et P_ sa
loi invariante. Soit dist € {TV, Hellinger, Entropy, x2, Fisher}, prenant ses valeurs dans [0, max].
Alors, pour tout ¢ € (0,1),

lim dist(Law(Z;") | PY) =

n—0o0

max Sit, = (1 —¢)cy,
0 site=(14¢)cn
ou

n =

log(v/n|2g]) v §log(n) if dist € {TV, Hellinger, Entropy, x?},
log(n|zf|) v 3log(n)  ifdist = Fisher.

Pour la distance de Wasserstein on a la dichotomie suivante :

1

e silim, .o |2(| = +0, alors pour tout € € (0, 1), avec ¢, = log |z}

lim Wasserstein(Law(Zy, ), PY) =

n—a0

+00  sit, = (1—¢)cy,
0 site=(1+¢)cn,

e silim, . |2)| = € [0,00) alors il n’y a pas de phénomeéne de cutoff c'est-a-dire pour tout
t>0
nli_r}g) Wasserstein?(Law(Z;), PY) = (a® — 1)e™2 + 2(1 — /1 — e~2t).

Le théoréme 1 met en lumiére un phénoméne intéressant : pour dist € {TV, Hellinger, Entropy,
x?, Fisher}, lorsque la condition initiale est trés proche de I'équilibre, i.e ici |2f| < n_i, alors le
temps de mélange est indépendant de z;. Ce temps critique correspond au temps minimal pour
étaler des conditions initiales ponctuelles.

Vient ensuite I'étude du processus DOU pour 8 > 1. Cette fois-ci on établit un cutoff au pire
cas (1.16) comme dans la plupart des travaux sur le cutoff. Nous obtenons des bornes inférieures et
supérieures sur le temps de mélange qui donnent (entre autres) le résultat suivant :

Théoréme 2 (Cutoff pour DOU). Soit (X{'),5 le processus DOU (1.34) avec 8 = 0 or 3 > 1

de loi invariante P?. Prenons dist € {TV, Hellinger, Wasserstein}. Soit (ay), une suite de réels
satisfaisant inf,, a,, > 0. Alors, pour tout € € (0,1), on a

max ift, = (1 —¢)c,

lim su dist(Law(X") | PP =
b dist(Law(Xp) | PY) {O e

n—0on xle[—an,an]™

ou

) log(nay) if dist € {TV, Hellinger}
" | log(y/nay) if dist = Wasserstein
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Ainsi le temps critique apparait comme étant indépendant de I'intensité de |'interaction 5. Pour
8 = 2, le résultat ci-dessus peut s'obtenir par contraction du temps de mélange du processus de
Ornstein-Uhlenbeck matriciel qui suit du Théoréme 1. Notons que les conditions initiales zj qui
réalisent la borne inférieure sont celles pour lesquelles la trace est loin de I'équilibre a I'instant initial,
i.e liminf, %]a:g’l + ...+ :cg’" > 0. Pour de telles conditions initiales, c'est donc le temps de
mélange de la trace qui donne le temps critique. La preuve de la borne inférieure exploite un aspect
intégrable du DOU et la borne supérieure utilise la décroissance exponentielle de I'entropie relative
(1.32) ainsi que des arguments de monotonie et de couplage inspirés de [169]. Dans la sous-section
1.3.4, nous mentionnons quelques prolongements possibles a ce travail.

1.3.2 Fluctuations, corrélations et limite thermodynamique pour le gaz de Riesz
circulaire

Les chapitres 3 et 4 de ce manuscrit sont consacrés a I'étude du gaz de Riesz sur le cercle dans le
régime longue portée. Comme mentionné précédemment, le gaz de Riesz sur le cercle correspond
pour s = 0 au log-gaz circulaire ou 3-ensemble circulaire ou CgE. Les 3-ensembles sont des modéles
fondamentaux de la physique statistique, abondamment étudiés dans la littérature probabiliste en
raison de leur liens avec les matrices aléatoires. Il existe un trés grand nombre de résultats sur ces
modéles et |'une des richesses du sujet réside dans la multiplicité des approches et outils possibles
pour les aborder : probabilités intégrables, modéles tridiagonaux, méthodes de gaz de Coulomb,
approche dynamique avec le mouvement de Dyson, représentation avec des diffusions stochastiques,
des spectres d'opérateurs aléatoires, etc. Pour s € (0,1), il semble exister moins de structures
mathématiques sous-jacentes (pas de bon modéle matriciel a priori). On se propose alors d'étudier
ce modéle avec une approche purement « physique statistique ». Plus précisément on poursuit le
programme suivant :

1. Donner des estimées quasi-optimales sur les fluctuations des espacements entre particules avec
des probabilités sous-exponentielles de déviation.

2. Enoncer un TCL pour les statistiques linéaires valables a toute échelle et pour des fonctions-test
aussi singuliéres que possible.

3. Monter une estimée optimale de décroissance des corrélations pour les variables des gaps
N(xi+1 — x;). Comparer le résultat a celui obtenu dans le régime courte portée s > 1.

4. Montrer que le processus microscopique converge vers un certain processus limite Rieszg g qui
généralise alors Sineg a des valeurs s € (0,1).

Précisons un peu le modéle sur lequel on travaille avant d'énoncer les résultats principaux. Sur
le cercle T := R/Z et pour un paramétre s € (0,1), on considére le noyau de Riesz, solution de
I'équation de Laplace fractionnaire

1—

(_A)ngs = CS((SO - 1)-

Le noyau g5 est donné par la périodisation du noyau de Riesz réel :

: S 1 2 4
gSZ$ETH7}H’IC}O<k:Z_n|x+k‘|SI—Sn S) =((s,z) + ((s,1 — ),

ol ((s,x) est la fonction zéta de Hurwitz. On considére alors |'énergie d'interaction par paires

Hy : Xy € ™ — N_Sng(l‘i —SL‘]').
i#]
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L'un des avantages majeurs de la dimension 1 est qu'il est possible d'ordonner les particules. Pour
z,yeT, onditquex <ysiz=a+k y=vy +k avec k,k' €Z, 2/,y/ € [0,1) et 2’ < ¥/.
Définissons alors Dy I'ensemble des particules ordonnées (x; étant libre)

DN:{XN:(xl,...,$N)€TN:$2—.I1<...<.CCN—£61}.

Le gaz de Riesz circulaire est alors donné par la mesure de probabilité

dPy g =

L oxp(— T (Xx) oy (X)dX .

ZN 3

Lorsque le nombre de particules tend vers I'infini, la distribution macroscopique de charge con-
verge vers la mesure uniforme sur le cercle. On s'attend ainsi & ce que I'espacement (ou gap)
N (x;+, — x;) se concentre autour de k, lorsque k est suffisamment large. Si les variables étaient
i.i.d, alors pour k suffisant grand cette quantité fluctuerait en O(k:%) Dans le cas du CgE, il est
connu que |'amplitude des fluctuations de N(z;,; — ;) est d'ordre O(+/logk). Le probléme (1)
consiste alors & déterminer I'amplitude des fluctuations de ces gaps et nous obtenons dans [52] le
résultat suivant :

Théoréeme 3 (Rigidité des gaps). Soite > 0 et § = @. Il existe deux constantes C'(3) > 0 et
¢(B) > 0 localement uniformes en (3 telles que pour tout i € {1,..., N} et 1 <k < % on a

P s(IN (s — i) — k| > k2+) < C(B)e ¥’

Ce résultat indique que le nombre de points dans un arc de cercle (a,b) fluctue au plus en
O(NSJFE). Notre second résultat affine cette asymptotique. On prouve un TCL pour la statistique
linéaire Fluctn[£((5 )] = sz\il E(Unt i) — NUy § € lorsque ¢ satisfait aux hypothéses suivantes :

Hypotheses 1.
(i) (Régularité) & est C~5%¢ pour un certain e > 0.

(ii) (Régularité par morceaux) Soit 1) = (—A)~2¢. La fonction v est C? par morceaux : il existe
a1 < ...<ay, (peN) telle que sur (a;,a;+1), ¥ est C?, pour touti € {1,...,p}.

(iii) (Singularité) Pour touti € {1,...,p}, il existe a; € (0,1 — 3) tel que
C

|z — a;|1+ed”

[¥"](x) <

(iv) (Support) Soit {{n} une suite dans [0,1]. Supposons & supportée sur (—
Dans le premier cas, on note ) : R — R

) &) ifz] <
50(:”)_{0 if 2| >

,%) Oqu = 1.

D=

(1.35)

N[ N[

Ces hypothéses signifient que la fonction-test £ est lisse par morceaux avec un nombre fini de

s

singularités dominées par |z|~2%° dans C'~2(T,R). Pour toutes mesures x et v sur R on note
d(p,v) la distance

dnv) = sup{ [ fGu =) s 17l < 117 < 1},

On montre dans [52] le résultat suivant :
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Théoréme 4 (TCL pour les statistiques linéaires). Soit £ et ¢ satisfait les hypothéses 1.

e La suite de variables a/éatoires (Nly)~2Flucty[€ (¢5+)] converge en loi vers une Gaussienne
centrée de variance 05 donnée par

2 1 |£|2 1—s IfZN = 1
28cs | |&]? 1 ifbny — 0, avec & comme dans (1.35).
HZ

e Soit Z ~ N'(0,0%) avec of. Alors pour tout e > 0, on a
d(Loi((N£x) "2 Fluctn[€(£31)]), Loi(Z)) = o((NzN)—l%s + (NeN)—U—%—mawl—a)).

Le théoréme ci-dessus s'applique notamment a la fonction indicatrice 1, ) ot (a,b) est un arc

de cercle et a la fonction puissance inverse |z|~* pour a € (0, 5). En effet, 1,4 est dans H 2

pour tout s € (0,1) mais 1,y ¢ H3. Ainsi pour s € (0,1) la statistique linéaire associée est du
méme ordre de grandeur que pour des fonctions-test lisse contrairement au cas s = 0. Enfin notons
que \w|_§ est la puissance critique qui n'est pas dans H'3" et on s'attend alors a ce qu'un TCL de
type log-corrélé soit vérifié a l'instar de 1, ;) pour s = 0.

Une fois ces questions de fluctuations élucidées, on aborde le probléme (3) sur la décroissance de
la corrélations des gaps. Le théoréme 4 montre que les particules z; — 1 et x; —x1 sont trés corrélées
avec une covariance de taille i — k|. Ainsi pour montrer une forme de décroissance des corrélations
il est trés naturel de considérer les variables N(x; 1 — x;) plutdt que les variables z;. On note d la
distance symétrique sur {1,..., N}, i.e pour tout 1 <, < N, d(i,7) = min(|j —i|, N — |j — ).
Nous obtenons dans [53] le résultat ci-dessous :

Théoréeme 5 (Décroissance des corrélations). Soit s € (0,1). Pour tout € > 0, il existe une constant
C > 0 telle que pour tout f,g: R — R dans H' et pour tout i,j € {1,..., N},

| Covpy s [f(N(@it1 — 24)), A(N (2541 — z5))]|
< C(Epy ,[f () 17 + | f'ope™ D0’ )(E]P)N,ﬂ[h/(xj)Q]% + Ih'looe_c(ﬁ)d(i’j)é);-

d(i, j)*=*¢
(1.36)
De plus, étant donné € > 0 assez petit et n € {1,..., N}, il existei,j tels que 5 < |i — j| <n et
1
| COVPN,B[N(xi+1 — i), N(zj41 — 25)]| = 5W

Soit s € (1,+). Alors pour tout ¢ > 0, il existe une constant C > 0 telle que pour tout
f,9:R — R dans H' et pour tout i,j € {1,...,N},

| Coviey 5 [f (N (i1 —24)); h(N(xm — ;)]

< CBry 1 (01} 11 e~ P09 ) By [0 (1 P 69 (e ).
(1.37)

En particulier la covariance entre N (z;41 — ;) et N(zj41 — x;) décroit en d(i, )~ =), ce qui
coincide dans la limite ot s tend vers 0 avec le cas du log-gaz étudié dans [116]. Par ailleurs ce
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résultat est cohérent avec le théoréme 4 : étant donnés deux points a distance d, la corrélation point-
point est de taille d*, la corrélation point-gap de taille d*~! (une dérivée de prise) et la corrélation
gap-gap de taille d*=2 (deux dérivées de prises). Le théoréme 5 met en lumiére un phénoméne
quelque peu surprenant : la corrélation entre les gaps est croissante en s dans le régime longue
portée bien que lorsque s augmente, la portée de I'énergie diminue. En physique statistique il est
fréquent que la présence de grandes fluctuations impliquent une décroissance rapide des corrélations,
ce qui est au coeur de I'argument de Mermin-Wagner sur |'absence de transition de phase du premier
ordre pour les systémes a symétries continues en dimension 2. Dans notre modéle d longue portée
c'est bien le contraire qui se produit : plus les fluctuations sont grandes, plus la décroissance des
corrélations est lente.

L'approche proposée dans [53] est de donner une preuve du Théoréme 5 reposant uniquement
sur |'analyse de I'équation de Helffer-Sjostrand dans sa version statique (1.33). L'une des spécificités
de cette équation est que I'on ne peut utiliser que des inégalités adimensionnelles (puisque N tend
vers |'infini). En d'autres termes les seules opérations licites sont les intégrations par parties et
les principes du maximum. On donne ainsi dans [53] une preuve simple de la décroissance des
corrélations dans le cas s € (0,1) qui n'utilise pas de représentation en environnement aléatoire
[116] ni de méthode d'homogeénisation [10].

Avec des estimées de décorrélation du type du théoréme 5, il est relativement aisé d'obtenir
I'unicité des processus limite, comme énoncé dans le résultat ci-dessous :

Théoréme 6 (Unicité de la mesure limite). Soit s € (0,1) U (1,400). Il existe un processus
ponctuel Rieszg g tel que pour tout x € T, la suite des processus ponctuels (Qy g(x)) converge
vers Rieszs g dans la topologie de la convergence locale : pour toute fonction borélienne et locale
¢ : Conf(R) - R, on a

]\}i—{noo EQN,B(x) [¢] = ERiesz&@ [¢]

Ceci permet alors de définir un processus en volume infini Riesz, g qui généralise le processus
Sineg, voir 1.1.9. A la différence du processus Sineg, il semble que le processus Rieszs g ne puisse
étre défini que comme |'unique limite des processus ponctuels.

1.3.3 L’énergie libre du gaz de Coulomb a deux composantes

La derniére partie de ce manuscrit réalisée en collaboration avec S. Serfaty a pour objet le gaz de
Coulomb bi-dimensionnel & deux composantes introduit dans le paragraphe 1.1.7. On s'intéresse
au régime de température 5 € (2,+00). Comme on I'a vu, la fonction de partition Zx g n'est pas
convergente et il convient de tronquer |'interaction a une certaine échelle n := LN ot A > 0 est un
paramétre petit. Pour manipuler I'énergie, il est préférable, au lieu de tronquer, d'étaler les charges
ponctuelles 0, en des mesures uniformes de masse 1 sur des disques de rayon 7, notées 5.

On se donne N charges positives z1,...,xy et N charges négatives y1,...,yn dans A :=
[0, \/NF que l'on notera 21,...,29n avec d; le signe de z;, ied; =1sil<i< Netd; =—1si

N +1<i<2N. On considére alors |'énergie

1
o = 5 X, [[ ddigte - )5 @50 w) (138)
i#]

ainsi que la mesure de probabilité

1
]P’f‘vﬁ = — e PHNAENYN) qgy L dandy; ... dyy, (1.39)
Znp
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On notera g)(z) l'interaction effective de points a distance z :

ga(z) = ﬂm — 1)aD (@)W ). (1.40)

Le gaz de Coulomb a deux composantes (2CP) est notamment étudié dans le régime 8 €
(0,2) dans [186]. Un PGD pour le champ empirique y est donné, ainsi qu'un développement de
la fonction de partition. L'objectif de notre travail est de décrire microscopiquement le plasma a
deux composantes dans le régime 3 € (2, +00) et de montrer de fagon quantitative la formation de
dipoles. Plus précisément on s'intéresse aux questions suivantes :

1. Montrer que sous P;‘\w le systéme s'organise en une majorité de dipdles neutres de taille 7.
Quantifier cette proportion de bons dipdles.

2. Monter que l'interaction de I'assemblée de dipéles est bornée par une quantité proportionelle
au nombre de points, avec un facteur qui tend vers 0 quand A tend vers 0.

3. En déduire qu'a I'ordre principal lorsque N — o0 et A — 0, le systéme se concentre autour
d'un processus Poissonien de dipéles, ol les charges positives sont tirées indépendamment,
avec une charge négative accrochée a chacune d'elles a distance typique 7.

On introduit (21,...,2on) = (Z1,...,ZN,Y1,--.,Y2N) €t pour tout i = {1,...,2N}, on note
d; le signe de z;, ied; = 1siie{l,...,.N}etd; = —1siie{N+1,...,2N}. Pour tout
i € {l,...,2N}, on notera également ¢;(¢) I'indice du plus proche voisin de z;. Pour A > 0 on
définit
mbT if =2
N2 if Be(2,4)
A =

N|logA\? ifB3=4
Nllog A| if B> 4.
Théoreme 7. Soit 8 € [2,+0).
1. Il existe une constante explicite Cg > 0 telle que
log Zﬁ,ﬁ = 2N log N+ N((2—p) log A g=o+log |log A|1g—2)—N+N log C3lg=2+O(Nvy).
2. Soit
I := {1 < ) < N : ¢1 e} ¢1(l) = Z)dlddn(z) = —1}

Pour tout |t| < g ona

logEP?\r’B [exp(tFA - tZgA(zi - Zdn(i)))] < CN~j.
el

3. La mesure de Gibbs se concentre sur des dipéles de taille A\. En effet en notant
D 5:{(XN7YN)7 | = N1 —cy) - 29,\()\_1121' — Zg0)]) < MN}7
el
on a
P 5(D%) < exp(—CN),
pourc >0, C >0 et M > 0 indépendantes de N et \.
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La preuve de ce résultat repose sur des techniques de grandes déviations inspirées de [139] et
de [186] et sur une méthode de minoration de I'énergie (1.38). Dans le cas du gaz de Coulomb a
une composante, comme expliqué dans le paragraphe 1.2.2, |'énergie est monotone par rapport au
paramétre de troncature : elle décroit quand le rayon des disques des charges étalées augmente.
Cette propriété de monotonie n'est plus vraie pour le plasma a deux composantes mais en utilisant
le théoréme de Newton, on peut toutefois calculer de facon explicite I'erreur faite en changeant le
rayon des disques dans (1.38). En augmentant ces rayons jusqu'a la semi-distance aux seconds plus
proche voisins (resp. 2p plus proches voisins), on peut ainsi isoler les interactions & plus proches
voisins qui sont dominantes dans |'énergie. En suivant [139] on peut ensuite décomposer |'espace
des phases en fonction de la classe d'isomorphisme du graphe des plus proches voisins et montrer
que le systéme se concentre sur des configurations ayant une majorité de dipdles neutres.

Nous établissons ensuite une inégalité énergétique donnant un contrdle uniforme sur les fluctua-
tions des statsitiques linéaires pour des fonction-tests lipschitziennes.

Théoreme 8. Etant donnée une fonction lipschitzienne £ : A — R, on note

N
Flucty () := Lfg( Z(% ~ 5%.)).

Soit
2(8=2)
B siBe(2,4)
ax =1 Mlog A2 sip=4. (1.41)
A si € (4,0)

Alors, il existe une constante C' > 0 telle que
log Epy _[exp((Flucty (£))*)] < CNay|VE[F.

L'estimée ci-dessus est obtenue en contrélant les moments exponentiels de I'énergie (1.38) pour
iy . . . : 1/2

des charges étalées sur des disques de rayons aléatoires de taille typique a/\/ . A nouveau, nous calcu-

lons la variation d'énergie résultant de cet étalement des charges et concluons avec les développement

des fonctions de partition obtenus dans le Théoréme 7.

1.3.4 Perspectives de recherche

Une question naturelle est d'étendre le cutoff du Théoréme 2 aux (-ensembles non-Gaussiens,
en commencant par exemple par le cas ou le potentiel extérieur V' est uniformément convexe mais
non quadratique. La borne supérieure donnée par |'inégalité de Log-Sobolev (1.32) ne coincide a
priori plus avec le trou spectral du générateur et il convient d'utiliser d'autres arguments. Au vu du
théoreme 1, il semble intéressant d'étudier le temps de mélange du mouvement Brownien de Dyson
lorsque la condition initiale est trés proche de I'équilibre, par exemple lorsque chaque z{ est placé
en un quantile de la mesure d'équilibre. Il parait crédible que le temps de mélange soit minoré par
clog(n) pour une constant ¢ > 0 indépendante de 2§ et peut-&tre méme universelle dans la classe
des B-ensembles. Ce temps critique correspondrait au temps nécessaire pour étaler des conditions
initiales ponctuelles.

En ce qui concerne |'analyse des gaz de Riesz, il serait naturel et intéressant d'étudier les dimen-
sions supérieures. Une premiére étape est d'obtenir des lois locales dans le cas longue portée non
coulombien. En raison du caractére non local du Laplacien fractionnaire, les méthodes de [180, 9] ne
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s'adaptent pas de facon immédiate. Une question particuliérement intrigante est celle de la décrois-
sance des corrélations en dimension strictement plus grande que 1. Au vu de la preuve de [53] il
est envisageable que certains arguments se passent de convexité et que le caractére longue portée
de I'interaction, ainsi que la positivité de la transformée de Fourier du noyau de Riesz, permettent
d'établir un résultat faible de décroissance des corrélations. Le cas du gaz de Riesz hypersingulier
pourrait également étre traité en adaptant les méthodes de [213] développées pour le gaz de sphéres
dures.

Le chapitre 5 de ce manuscrit peut se prolonger de nombreuses maniéres. Une premiére piste
est d'affiner les asymptotiques du théoréme 7 de facon a pouvoir observer les transitions liees a
I'apparition des multipdles [170]. Une deuxiéme direction serait de mieux comprendre mathéma-
tiquement la transition KT, qui a lieu 3 8 = 4. Cette transition devrait se voir dans la variation
du nombre de dipéles non-neutres a une certaine échelle lorsque I'échelle augmente. Une étape
importante dans cette direction est ainsi de comprendre la fluctuation de la charge dans le plasma
a deux composantes. Pour commencer il serait intéressant d'étudier les fluctuations des statistiques
linéaires lisses dans le cas 3 € (0,2) et de montrer que celles-ci ont une amplitude en o(v/N).
Cette question est assez originale puisqu'a la différence du plasma a une composante [24, 181], la
réponse linéaire associée a une statistique linéaire 3\ | £(x;) — S | £(y;) ne peut pas se chercher
sous la forme d'un transport qui agit diagonalement, voir le paragraphe (1.2.3), et il convient alors
d'imaginer une autre stratégie de preuve.
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2.1 Introduction and main results

Let us consider a Markov process X = (X;),-, with state space S and invariant law z for which
tlim dist(Law (X¢) | u) =0
—00

where dist(- | -) is a distance or divergence on the probability measures on S. Suppose now that
X = X" depends on a dimension, size, or complexity parameter n, and let us set S = S™, u = u",
and Xy =z} € S™. For example X" can be a random walk on the symmetric group of permutations
of {1,...,n}, Brownian motion on the group of n x n unitary matrices, Brownian motion on the
n-dimensional sphere, etc. In many of such examples, it has been proved that when n is large
enough, the supremum over some set of initial conditions z{} of the quantity dist(Law(X}") | u")
collapses abruptly to 0 when ¢ passes a critical value ¢ = ¢,, which may depend on n. This is often
referred to as a cutoff phenomenon. More precisely, if dist ranges from 0 to max, then, for some
subset S = S™ of initial conditions, some critical value ¢ = ¢,, and for all ¢ € (0, 1),

lim sup dist(Law(X}") | u") =

n—ao ,.n n
z{ES]

max ift, = (1—¢)c,

0 ift, =146,
It is standard to introduce, for an arbitrary small threshold n > 0, the quantity inf{t > 0 :
Supcsp dist(Law(X7") | u”) < n} known as the mixing time in the literature. Of course such
a definition fully makes sense as soon as ¢ — sup,cgndist(Law(X}") | 4") is non-increasing.

When S™ is finite, it is customary to take S’ = S™. When S™ is infinite, it may happen that
the supremum over the whole set S™ of the distance to equilibrium remains equal to max at all
times, in which case one has to consider strict subspaces of initial conditions. For some processes,
it is possible to restrict S{' to a single state in which case one obtains a very precise description of
the convergence to equilibrium starting from this initial condition. Note that the constraint over the
initial condition can be made compatible with a limiting dynamics, for instance a mean-field limit
when the process describes an exchangeable interacting particle system.

The cutoff phenomenon was put forward by Aldous and Diaconis at the origin for random walks
on finite sets, see for instance [3, 99, 84, 190] and references therein. The analysis of the cutoff
phenomenon is the subject of an important activity, still seeking for a complete theory: let us mention
that, for the total variation distance, Peres proposed the so-called product condition (the mixing time
must be much larger than the inverse of the spectral gap) as a necessary and sufficient condition for
a cutoff phenomenon to hold, but counter-examples were exhibited [190, Sec. 18.3] and the product
condition is only necessary.

The study of the cutoff phenomenon for Markov diffusion processes goes back at least to the
works of Saloff-Coste [224, 226] in relation notably with Nash—-Sobolev type functional inequalities,
heat kernel analysis, and Diaconis—Wilson probabilistic techniques. We also refer to the more recent
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work [199] for the case of diffusion processes on compact groups and symmetric spaces, in relation
with group invariance and representation theory, a point of view inspired by the early works of
Diaconis on Markov chains and of Saloff-Coste on diffusion processes. Even if most of the available
results in the literature on the cutoff phenomenon are related to compact state spaces, there are
some notable works devoted to non-compact spaces such as [168, 68, 22, 20, 21, 23|.

Our contribution is an exploration of the cutoff phenomenon for the Dyson—Ornstein—Uhlenbeck
diffusion process, for which the state space is R™. This process is an interacting particle system.
When the interaction is turned off, we recover the Ornstein—Uhlenbeck process, a special case that
has been considered previously in the literature but for which we also provide new results.

2.1.1 Distances

As for dist we use several standard distances or divergences between probability measures: total
variation (denoted TV), Hellinger, relative entropy (denoted Kullback), relative variance (denoted
x?2), Wasserstein of order 2, and Fisher information, surveyed in Appendix 2.8.1. We take the
following convention for probability measures i and v on the same space:

-

e — vy when dist = TV
Hellinger(u, v) when dist = Hellinger
Kullback hen dist = Kullback
dist(p | v) = | 211 ack(p | v)  when ?s 211 ac , (2.1)
X (u | v) when dist = x

Wasserstein(u, )  when dist = Wasserstein
Fisher(u | v) when dist = Fisher

\

see Appendix 2.8.1 for precise definitions. The maximal value max taken by dist is given by

. { 1 if dist € {TV, Hellinger}, 22)

4o if dist € {Kullback, x?, Wasserstein, Fisher}.

2.1.2 The Dyson—Ornstein—Uhlenbeck (DOU) process and preview of main re-
sults

The DOU process is the solution X™ = (X}"),5, on R" of the stochastic differential equation

A 2 - dt
XP=aleRY, dX = \deg Cvixryde+ 2 Mo
n N Xy — Xy

where (Bi),s is a standard n-dimensional Brownian motion (BM), and where

o V(x) = % is a “confinement potential” acting through the drift —V'(z) = —x

e (3 > 0 is a parameter tuning the interaction strength.

The notation X;"* stands for the i-th coordinate of the vector X;*. The process X™ can be thought
of as an interacting particle system of n one-dimensional Brownian particles X™!, ... X™", subject
to confinement and singular pairwise repulsion when 3 > 0 (respectively first and second term in
the drift). We take an inverse temperature of order n in (2.3) in order to obtain a mean-field limit
without time-changing the process, see Section 2.2.5. The spectral gap is 1 for all n > 1, see Section
2.2.6. We refer to Section 2.2.9 for other parametrizations or choices of inverse temperature.
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In the special cases 3 € {0, 1, 2}, the cutoff phenomenon for the DOU process can be established
by using Gaussian analysis and stochastic calculus, see Sections 2.1.4 and 2.1.5. For 8 = 0, the
process reduces to the Ornstein—Uhlenbeck process (OU) and its behavior serves as a benchmark for
the interaction case 3 # 0, while when 3 € {1,2}, the approach involves a lift to unitary invariant
ensembles of random matrix theory. For a general 5 > 1, our main results regarding the cutoff
phenomenon for the DOU process are given in Sections 2.1.6 and 2.1.7. We are able, in particular,
to prove the following: for all dist € {TV, Hellinger, Wasserstein}, a > 0, € € (0,1), we have

max ift, = (1 —¢)e,
0 if t, = (14+¢)cy

Y

lim  sup dist(Law(X}) | Py = {

n—00 zje[—a,a]™
where Pff is the invariant law of the process, and where

) log(y/na) if dist = Wasserstein
" log(na) if dist € {TV, Hellinger} -

This result is stated in a slightly more general form in Corollary 2.1.7. Our proof relies crucially
on an exceptional exact solvability of the dynamics, notably the fact that we know explicitly the
optimal long time behavior in entropy and coupling distance, as well as the eigenfunction associated
to the spectral gap which turns out to be linear and optimal. This comes from the special choice
of V' as well as the special properties of the Coulomb interaction. We stress that such an exact
solvability is no longer available for a general strongly convex V', even for instance in the simple
example V(z) = %2 + 2% or for general linear forces. Nevertheless, and as usual, two other special
classical choices of V' could be explored, related to Laguerre and Jacobi weights, see Section 2.2.8.

2.1.3 Analysis of the Dyson—Ornstein—Uhlenbeck process

The process X" was essentially discovered by Dyson in [106], in the case S € {1,2,4}, because it
describes the dynamics of the eigenvalues of . x n symmetric/Hermitian/symplectic random matrices
with independent Ornstein—Uhlenbeck entries, see Lemma 2.5.1 and Lemma 2.5.2 below for the cases
B =1 and 8 = 2 respectively.

e Case § = 0 (interaction turned off). The particles become n independent one-dimensional
Ornstein—Uhlenbeck processes, and the DOU process X™ becomes exactly the n-dimensional
Ornstein-Uhlenbeck process Z™ solving (2.8). The process lives in R™. The particles collide
but since they do not interact, this does not raise any issue.

e Case 0 < 8 < 1. Then with positive probability the particles collide producing a blow up of
the drift, see for instance [74, 81] for a discussion. Nevertheless, it is possible to define the
process for all times, for instance by adding a local time term to the stochastic differential
equation, see [81] and references therein. It is natural to expect that the cutoff universality
works as for 5 ¢ (0,1), but for simplicity we do not consider this case here.

e Case 3 > 1. If we order the coordinates by defining the convex domain
D,={zeR":2; < - <ax,},

and if z{y € D,, then the equation (2.3) admits a unique strong solution that never exits D,,,
in other words the particles never collide and the order of the initial particles is preserved at
all times, see [216]. Moreover if

Dy={reR" 21 < <z}
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then it is possible to start the process from the boundary D, \D,,, in particular from zjJ such
that z{'' = ... = 2", and despite the singularity of the drift, it can be shown that with
probability one, X}* € D,, for all t > 0. We refer to [6, Th. 4.3.2] for a proof in the Dyson

Brownian Motion case that can be adapted mutatis mutandis.

In the sequel, we will only consider the cases 3 = 0 with 2} € R" and 8 > 1 with zjJ € D,,.
The drift in (2.3) is the gradient of a function, and (2.3) rewrites

2 1
XD =al e D,, dXI'= \det — SVE(XM)dt, (2.4)
n n
where
" 1
E(z1,...,2p) =n2 V(xi)—i-BZlogi (2.5)
i=1 i>j |zi — a5
can be interpreted as the energy of the configuration of particles =1, ..., x,.

e If B = 0, then the Markov process X™ is an Ornstein—Uhlenbeck process, irreducible with
unique invariant law P} = N(0, 11,,) which is reversible.

e If 3> 1, then the Markov process X™ is not irreducible, but D, is a recurrent class carrying
a unique invariant law PP which is reversible and given by

8 efE(mlw-yﬁn)
P = 0 l(th’xn)eﬁndxl coodxy, (2.6)
n
where C% is the normalizing factor given by
o = J e B@Lmn)qr) o d,. (2.7)

In terms of geometry, it is crucial to observe that since —log is convex on (0, +0), the map

1

b
.’Ei—x]’

(x1,...,2pn) € Dy, — Interaction(zy,...,x,) = Z log

i>7

is convex. Thus, since V is convex on R, it follows that F is convex on D,,. For all 5 = 0, the law
PPis log-concave with respect to the Lebesgue measure as well as with respect to A/ (0, %In)

2.1.4 Non-interacting case and Ornstein—Uhlenbeck benchmark

When we turn off the interaction by taking 5 = 0 in (2.3), the DOU process becomes an Ornstein—
Uhlenbeck process (OU) Z" = (Z}),>, on R" solving the stochastic differential equation

2
70 =l e R, dZP = \/;dBt” — Zrdt, (2.8)

where B"™ is a standard n-dimensional BM. The invariant law of Z™ is the product Gaussian law
—2t

P? = N(0,11,) = N(0,2)®". The explicit Gaussian nature of Z" ~ N(zfle~!,1=2—1,), valid
for all £ = 0, allows for a fine analysis of convergence to equilibrium, as in the following theorem.
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Theorem 2.1.1 (Cutoff for OU: mean-field regime). Let Z" = (Z}'),5 be the OU process (2.8)
and let PV be its invariant law. Suppose that

il 1%L
lim — >0 and lim — <

where |z| = /22 + - -+ + 22 is the Euclidean norm. Then for all € € (0, 1),

lim dist(Law(Z) | PY) =

max ift, = (1—¢)ey
{0 ift,=(1+¢)cy,
where
+log(n) if dist = Wasserstein,
¢n =< log(n)  ifdist € {TV, Hellinger, Kullback, x?},
3log(n) if dist = Fisher.

Theorem 2.1.1 is proved in Section 2.3. See Figure 2.1 and Figure 2.2 for a numerical experiment.

Theorem 2.1.1 constitutes a very natural benchmark for the cutoff phenomenon for the DOU
process. Theorem 2.1.1 is not a surprise, and actually the TV and Hellinger cases are already
considered in [168], see also [19]. Let us mention that in [21], a cutoff phenomenon for TV, entropy
and Wasserstein is proven for the OU process of fixed dimension d and vanishing noise. This is to
be compared with our setting where the dimension is sent to infinity: the results (and their proofs)
are essentially the same in these two situations, however we will see below that if one considers more
general initial conditions, there are some substantial differences according to whether the dimension
is fixed or sent to infinity.

The restriction over the initial condition in Theorem 2.1.1 is spelled out in terms of the second
moment of the empirical distribution, a natural choice suggested by the mean-field limit discussed in
Section 2.2.5. It yields a mixing time of order log(n), just like for Brownian motion on compact Lie
groups, see [226, 199]. For the OU process and more generally for overdamped Langevin processes,
the non-compactness of the space is replaced by the confinement or tightness due to the drift.

Actually, Theorem 2.1.1 is a particular instance of the following, much more general result that
reveals that, except for the Wasserstein distance, a cutoff phenomenon always occurs.

Theorem 2.1.2 (General cutoff for OU). Let Z" = (Z}'),>, be the OU process (2.8) and let P,
be its invariant law. Let dist € {TV, Hellinger, Kullback, x2, Fisher}. Then, for all ¢ € (0, 1),

max ift, = (1 —¢)cp,

lim dist(Law(Z™) | P°) =
an ( W( t”) | n) {0 ift, = (1 + E)Cn

where

log(v/n|z3]) v $log(n) if dist € {TV, Hellinger, Kullback, x?},
Cp =

log(n|28]) v 3 log(n) if dist = Fisher.

Regarding the Wasserstein distance, the following dichotomy occurs:

e iflim, .o |2(| = +0, then for all € € (0,1), with ¢,, = log |z}

’

lim Wasserstein(Law(Zy, ), PY) =

n—o0

+00  ifty, = (1—¢)cp,
0 ift, = (1 +¢)cn,
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e iflim, .o |2| = a € [0,00) then there is no cutoff phenomenon namely for any t > 0

lim Wasserstein?(Law(Z;), PY) = a®e™% + 2(1 —V1—e2— %e_%).

n—o0

Theorem 2.1.2 is proved in Section 2.3.

The observation that for every distance or divergence, except for the Wasserstein distance, a
cutoff phenomenon occurs generically seems to be new.

Let us make a few comments. First, in terms of convergence to equilibrium the relevant ob-
servable in Theorem 2.1.2 appears to be the Euclidean norm |z{| of the initial condition. This
quantity differs from the eigenfunction associated to the spectral gap of the generator, which is
given by z1 + -+ + z, as we will recall later on. This is also related to the equality of (2.20)
and (2.41). Second, cutoff occurs at a time that is independent of the initial condition provided
that its Euclidean norm is small enough: this cutoff time appears as the time required to regularize
the initial condition (a Dirac mass) into a sufficiently spread out absolutely continuous probability
measure; in particular this cutoff phenomenon would not hold generically if we allowed for spread
out (non-Dirac) initial conditions. Note that, for the OU process of fixed dimension and vanishing
noise, we would not observe a cutoff phenomenon when starting from initial conditions with small
enough Euclidean norm: this is a high dimensional phenomenon. In this respect, the Wasserstein
distance is peculiar since it is much less stringent on the local behavior of the measures at stake: for
instance lim,,—,o, Wasserstein(do, d1/,,) = 0 while for all other distances or divergences considered
here, the corresponding quantity would remain equal to max. This explains the absence of generic
cutoff phenomenon for Wasserstein. Third, the explicit expressions provided in our proof allow to
extract the cutoff profile in each case, but we prefer not to provide them in our statement and refer
the interested reader to the end of Section 2.3.

2.1.5 Exactly solvable intermezzo

When (3 # 0, the law of the DOU process is no longer Gaussian nor explicit. However several exactly
solvable aspects are available. Let us recall that a Cox—Ingersoll-Ross process (CIR) of parameters
a,b, o is the solution R = (R;)i=0 on R of

Ry=roeRy, dR; = on/RdW; + (a — bRy)dt, (2.9)

where W is a standard BM. Its invariant law is Gamma(2a/0?, 2b/0%) with density proportional to
r =0 r20/0°=1¢=207/7% \ith mean a/b, and variance ac?/(2b2). It was proved by William Feller
in [118] that the density of R; at an arbitrary ¢ can be expressed in terms of special functions.

If (Zt),>0 is a d-dimensional OU process of parameters § > 0 and p € R, weak solution of

dZt = Hth — ptht (210)

where W is a d-dimensional BM, then R = (R;),-, Rt := |Z;|?, is a CIR process with parameters
a=6%d, b=2p, o =20. When p =0 then Z is a BM while R = |Z|? is a squared Bessel process.

The following theorem gathers some exactly solvable aspects of the DOU process for general
B = 1, which are largely already in the statistical physics folklore, see [209]. It is based on our
knowledge of eigenfunctions associated to the first spectral values of the dynamics, see (2.23), and
their remarkable properties. As in (2.23), we set 7(z) := 1 + - - - + z,, when z € R™.

Theorem 2.1.3 (From DOU to OU and CIR). Let (X}'),, be the DOU process (2.3), with 3 = 0
or 8 =1, and let Pf be its invariant law. Then:
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o (m(X]")),>0 is a one-dimensional OU process weak solution of (2.8) with § = /2, p = 1.
Its invariant law is N'(0,1). It does not depend on 3, and w(X}*) ~ N (m(zB)e™t, 1 — e~ %),
t = 0. Furthermore w(X[")? is a CIR process of parameters a = 2, b =2, ¢ = 2+/2.

e (|X?*);50 is a CIR process, weak solution of (2.9) witha =2+ (n—1),b=2, 0 = /8/n.
Its invariant law is Gamma(L (n + 82%1) 1) of mean 1+ 5(n — 1) and variance 5 + 2.
Furthermore, if d = n—l—ﬁ@ is a positive integer, then (|X['|?), has the law of (| Z;|*),=
where (Zy),~ is a d-dimensional OU process, weak solution of (2.8) with 0 = \/2/n, p =1,
and Zy = 2B for an arbitrary 2z} € R? such that |28| = |z

At this step it is worth noting that Theorem 2.1.3 gives in particular, denoting 3,, := 1+§(n—1),
E[r(X})] = w(af)e — 0 and E[X7P] = By + (2P~ B)e ™ — B (211)
—00 —00

Following [81, Sec. 2.2], the limits can also be deduced from the Dumitriu-Edelman tridiagonal
random matrix model [105] isospectral to 5-Hermite. These formulas for the “transient” first two
moments E[7(X[*)] and E[| X}*|?] reveal an abrupt convergence to their equilibrium values :

o If limy,, o, 08 — o 0 then for all £ € (0, 1),

ift,=(1—¢)l
lim [E[r(x7 )] = 4 T° Ftn=(1=e)logln) (2.12)
n—00 " 0 if t, = (1 +¢)log(n)
o If lim,,,q |x7§|2 =q # g then for all € € (0, 1), denoting 3, := 1+ g(n - 1),
. n +00  if ty, = (1 —¢)ilog(n
lim [E[| X7 [2] = Ba| = _ ( )3 g(n) (2.13)
n—w 0 if t, = (1+¢)51log(n)

These critical times are universal with respect to 5. The first two transient moments are related to the
eigenfunctions (2.23) associated to the first two non-zero eigenvalues of the dynamics. Higher order
transient moments are related to eigenfunctions associated to higher order eigenvalues. Note that
E[r(X[)] and E[|X[*|?] are the first two moments of the non-normalized mean empirical measure
E[>", 5X,f“']' and this lack of normalization is responsible of the critical times of order log(n). In

contrast, the first two moments of the normalized mean empirical measure ]E[% i1 Oxni]
t

by LE[x(X]")] and LE[|X["|?] respectively, do not exhibit a critical phenomenon. This is related
to the exponential decay of the first two moments in the mean-field limit (2.29), as well as the lack
of cutoff for Wasserstein already revealed for OU by Theorem 2.1.2. This also reminds the high
dimension behavior of norms in the field of the asymptotic geometric analysis of convex bodies.
In another direction, this elementary observation on the moments also illustrates that the cutoff
phenomenon for a given quantity is not stable under rather simple transformations of this quantity.

, given

From the first part of Theorem 2.1.3 and contraction properties available for some distances or
divergences, see Lemma 2.8.2, we obtain the following lower bound on the mixing time for the DOU,
which is independent of 3:

Corollary 2.1.4 (Lower bound on the mixing time). Let (X}'),5, be the DOU process (2.3) with
B8 =0 orfB =1, and invariant law PY. Let dist e {TV, Hellinger, Kullback, x?, Wasserstein}. Set

log(|m(xg)]) if dist € {TV, Hellinger, Kullback, x?}
= log (‘W(%”) if dist = Wasserstein ’

n

3

3
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and assume that lim,,_,o, ¢, = 0. Then, for all ¢ € (0,1), we have

lim dist(Law(X"__, )| P?) = max.

N0 (1—e)en
Theorem 2.1.3 and Corollary 2.1.4 are proved in Section 2.4.

The derivation of an upper bound on the mixing time is much more delicate: once again recall
that the case 8 = 0 covered by Theorem 2.1.2 is specific as it relies on exact Gaussian computations
which are no longer available for 5 > 1. In the next subsection, we will obtain results for general
values of § = 1 via more elaborate arguments.

In the specific cases 8 € {1,2}, there are some exactly solvable aspects that one can exploit to
derive, in particular, precise upper bounds on the mixing times. Indeed, for these values of 3, the
DOU process is the process of eigenvalues of the matrix-valued OU process:

2
Mg = my, th = \/7dBt - Mtdt,
n

where B is a BM on the symmetric n x n matrices if 3 = 1 and on Hermitian n x n matrices if
B =2, see (2.62) and (2.74) for more details. Based on this observation, we can deduce an upper
bound on the mixing times by contraction (for most distances or divergences).

Theorem 2.1.5 (Upper bound on mixing time in matrix case). Let (X}'),5, be the DOU process

(2.3) with 5 € {0, 1,2}, and invariant law PP and dist e {TV, Hellinger, Kullback, x?, Wasserstein}.
Set
o { log(+v/n|zgd|) v log(y/n) ifdist € {TV, Hellinger, Kullback, x?}

log(|zg|) if dist = Wasserstein

and assume that lim,,_, o, ¢, = o if dist = Wasserstein. Then, for all € € (0,1), we have

lim dist(LaW(X("Ha)cn) | Pf) = 0.

n—0o0

Combining this upper bound with the lower bound already obtained above, we derive a cutoff
phenomenon in this particular matrix case.

Corollary 2.1.6 (Cutoff for DOU in the matrix case). Let (X}'),> be the DOU process (2.3), with

g € {0,1,2}, and invariant law PP, Let dist e {TV, Hellinger, Kullback, x?, Wasserstein}. Let
(an),, be a real sequence satisfying inf,, \/na, > 0, and assume further that lim, ., /na, = oo if
dist = Wasserstein. Then, for all € € (0,1), we have

max ift, = (1—¢)ey

lim su dist(Law(X") | PP =
p (Law(X3) | PY) {0 i — (14 e

n—0on zle[—an,an]™

where

log(nay,) if dist € {TV, Hellinger, Kullback, x?}
Cp =
log(v/nay,)  if dist = Wasserstein

Theorem 2.1.5 and Corollary 2.1.6 are proved in Section 2.5.

It is worth noting that d = n + ﬁ@ in Theorem 2.1.3 is indeed an integer in the “random
matrix' cases § € {1,2}, and corresponds then exactly to the degree of freedom of the Gaussian
random matrix models GOE and GUE respectively. More precisely, if we let X7 ~ PP then:
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o If 3 =1then P} is the law of the eigenvalues of S ~ GOE,, and |X2)? = P szk which

is the sum of n squared Gaussians of variance v = 1/n (diagonal) plus twice the sum of ”QT_”

squared Gaussians of variance § (off-diagonal) all being independent. The duplication has the

n?+n

effect of renormalizing the variance from § to v. All in all we have the sum of d = ™

independent squared Gaussians of same variance v. See Section 2.5,

o If 3 =2 then P/ is the law of the eigenvalues of H ~ GUE,, and |X7|2 = ke [Hjkl* is
the sum of n squared Gaussians of variance v = 1/n (diagonal) plus twice the sum of n? —n
squared Gaussians of variance § (off-diagonal) all being independent. All in all we have the

sum of d = n? independent squared Gaussians of same variance v. See Section 2.5.

Another manifestation of exact solvability lies at the level of functional inequalities. Indeed, and
following [81], the optimal Poincaré constant of PP is given by 1/n and does not depend on /3, and
the extremal functions are tranlations/dilations of x +— 7(x) = 21 + - -+ + x,. This corresponds to
a spectral gap of the dynamics equal to 1 and its associated eigenfunction. Moreover, the optimal
logarithmic Sobolev inequality of P’ (Lemma 2.8.6) is given by 2/n and does not depend on 3, and
the extremal functions are of the form z — e“@1++on) ¢ e R This knowledge of the optimal
constants and extremal functions and their independence with respect to 3 is truly remarkable. It
plays a crucial role in the results presented in this article. More precisely, the optimal Poincaré
inequality is used for the lower bound via the first eigenfunctions while the optimal logarithmic
Sobolev inequality is used for the upper bound via exponential decay of the entropy.

2.1.6 Cutoff in the general interacting case

Our main contribution consists in deriving an upper bound on the mixing times in the general case
B = 1: the proof relies on the logarithmic Sobolev inequality, some coupling arguments and a
regularization procedure.

Theorem 2.1.7 (Upper bound on the mixing time: the general case). Let (X{'),5, be the DOU

process (2.3), with § = 0 or 8 = 1 and invariant law P} Takedist {TV, Hellinger, Wasserstein}.
Set

- log(|zg|) v log(v/n)  if dist = Wasserstein
Then, for all £ € (0,1), we have

' { log(v/n|zf|) v log(n) if dist € {TV, Hellinger}

lim dist(Law (X" . )| P?) = 0.

oo (I+€)en

Combining this upper bound with the general lower bound that we obtained in Corollary 2.1.4,
we deduce the following cutoff phenomenon. Observe that it holds both for 5 =0 and 5 > 1, and
that the expression of the mixing time does not depend on .

Corollary 2.1.8 (Cutoff for DOU in the general case). Let (X}'),~, be the DOU process (2.3) with

B =0 orB>1 and invariant law P}. Take dist € {TV, Hellinger, Wasserstein}. Let (an), bea
real sequence satisfying inf,, a,, > 0. Then, for all ¢ € (0,1), we have

max ift, = (1 —¢)ey

lim su dist(Law(X") | PP =
p (Law(X3) | PY) {0 i — (11 e

n—w P e[—an,an]™

where
{ log(nay,) if dist € {TV, Hellinger}
Cp 1= .

log(y/nay,)  if dist = Wasserstein
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The proofs of Theorem 2.1.7 and Corollary 2.1.8 for the TV and Hellinger distances are presented
in Section 2.6. The Wasserstein distance is treated in Section 2.7. Let us make a comment on
the assumptions made on a,, in Corollaries 2.1.6 and 2.1.8. They are dictated by the upper bounds
established in Theorems 2.1.5 and 2.1.7, which take the form of maxima of two terms: one that
depends on the initial condition, and another one which is a power of a logarithm of n. The
logarithmic term is an upper bound on the time required to regularize a pointwise initial condition,
its precise expression varies according to the method of proof we rely on: in the matrix case, it is
the time required to regularize a larger object, the matrix-valued OU process; in the general case,
it is related to the time it takes to make the entropy of a pointwise initial condition small. These
bounds are not optimal for 5 = 0 (compare with Theorem 2.1.2), and probably neither for g > 1

A natural, but probably quite difficult, goal would be to establish a cutoff phenomenon in the
situation where the set of initial conditions is reduced to any given singleton, as in Theorem 2.1.2
for the case 5 = 0. Recall that in that case, the asymptotic of the mixing time is dictated by the
Euclidean norm of the initial condition. In the case 5 > 1, this cannot be the right observable
since the Euclidean norm does not measure the distance to equilibrium. Instead one should probably
consider the Euclidean norm |z — p,|, where p,, is the vector of the quantiles of order 1/n of the
semi-circle law that arises in the mean-field limit equilibrium (see Subsection 2.2.5). More precisely

mf{teR [ e,

i .
Loc(-v28,v28)d7 > n} , ie{l,...,n} (2.14)

Note that p,, = 0 when 8 = 0.
A first step in this direction is given by the following result:

Theorem 2.1.9 (DOU in the general case and pointwise initial condition). Let (X{'),., be the
DOU process (2.3) with 3 =0 or 8 = 1, and invariant law P};. There hold

o Iflim, o |z — pn| = +00, then, denoting t, = log(|x{ — pnl|), for all € € (0,1),

lim Wasserstein(Law (X (11, ), P5 =o0.

n—aoo
o Iflim, o |z — pn| = a € [0,00), then, for all t > 0,

lim Wasserstein(Law(X;), P?)? < a%e 2.

n—o0

Theorem 2.1.9 is proved in Section 2.7.

2.1.7 Non-pointwise initial conditions

It is natural to ask about the cutoff phenomenon when the initial conditions X' is not pointwise.
Even if we turn off the interaction by taking 8 = 0, the law of the process at time ¢ is then no longer
Gaussian in general, which breaks the method of proof used for Theorem 2.1.1 and Theorem 2.1.2.
Nevertheless, Theorem 2.1.10 below provides a universal answer, that is both for 3 =0and > 1
at the price however of introducing several objects and notations. More precisely, for any probability
measure 4 on R™, we introduce

d du
f log —de = “Kullback(p | dz)" if dM log — 1z © Ll(dm)
x

otherwise

(2.15)
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Note that S takes its values in the whole (—o0, +00], and when S(u) < +oo then —S(u) is the
Boltzmann—Shannon entropy of the law . For all z € R™ with z; # x; for all i # j, we have

E(z1,...,2,) = n? Jf@(az, Y) 1 gy} Ln(dz) L (dy) (2.16)
1< 1
where L, := ni;éxi and where ®(z,y) := - ﬁ 0 Viz) ;_ Vi) + glog P
Let us define the map ¥ : R” — D,, by
\Il(wl,...,xn) = (wa(l),...,xa(n)). (217)
where o is any permutation of {1,...,n} that reorders the particles non-decreasingly.

Theorem 2.1.10 (Cutoff for DOU with product smooth initial conditions). Let (X}'),-, be the

DOU process (2.3) with 3 =0 or 5 > 1, and invariant law Pf. Let S, ®, and ¥ be as in (2.15),
(2.16), and (2.17). Let us assume that Law(X({}) is the image law or push forward of a product law
1 ® - & py by W where pq, ..., puy, are laws on R. Then:

n—0o0

1 n
1. If lim ’ﬁ Z unl(dx)’ # 0 then, for all e € (0, 1),
i=1

lim Kullback(Law (X (1) 10g(n)) | P2) = +o0.

n—ao0

2. If lim iZ:S(,ul) < o and lim IZJJCDd,uZ-@d,uj < o, then, for all € € (0,1),

2 2
n—aoo n—ao0
nia N iz

lim Kullback(Law (X(1 42 1og(n)) | PZ) = 0.

n—0m

Theorem 2.1.10 is proved in Section 2.6.3.

It is likely that Theorem 2.1.10 can be extended to the case dist € {Wasserstein, Hellinger, Fisher}.
2.1.8 Structure of the paper

e Section 2.2 provides additional comments and open problems.

e Section 2.3 focuses on the OU process (8 = 0) and gives the proofs of Theorems 2.1.1 and
2.1.2.

e Section 2.4 concerns the exact solvability of the DOU process for all 3, and provides the proofs
of Theorem 2.1.3 and Corollary 2.1.4.

e Section 2.5 is about random matrices and gives the proofs of Theorem 2.1.5 and Corollary
2.1.6.

e Section 2.6 deals with the DOU process for all 8 with the TV and Hellinger distances, and
provides the proofs of Theorem 2.1.7 and Corollary 2.1.8.

e Section 2.7 gives the Wasserstein counterpart of Section 2.6 and the proof of Theorem 2.1.9.
e Appendix 2.8.1 provides a survey on distances and divergences, with new results.

e Appendix 2.8.2 gathers useful dynamical consequences of convexity.
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2.2 Additional comments and open problems

2.2.1 About the results and proofs

The proofs of our results rely among other ingredients on convexity and optimal functional inequal-
ities, exact solvability, exact Gaussian formulas, coupling arguments, stochastic calculus, variational
formulas, contraction properties and regularization.

The proofs of Theorems 2.1.1 and 2.1.2 are based on the explicit Gaussian nature of the OU
process, which allows to use Gaussian formulas for all the distances and divergences that we consider
(the Gaussian formula for Fisher seems to be new). Our analysis of the convergence to equilibrium of
the OU process seems to go beyond what is already known, see for instance [168] and [22, 20, 21, 23].

Theorem 2.1.3 is a one-dimensional analogue of [39, Th. 1.2]. The proof exploits the explicit
knowledge of eigenfunctions of the dynamics (2.23), associated with the first two non-zero spectral
values, and their remarkable properties. The first one is associated to the spectral gap and the
optimal Poincaré inequality. It implies Corollary 2.1.4, which is the provider of all our lower bounds
on the mixing time for the cutoff.

The proof of Theorem 2.1.5 is based on a contraction property and the upper bound for matrix
OU processes. It is not available beyond the matrix cases. All the other upper bounds that we
establish are related to an optimal exponential decay which comes from convexity and involves
sometimes coupling, the simplest instance being Theorem 2.1.7 about the Wasserstein distance.
The usage of the Wasserstein metrics for Dyson dynamics is quite natural, see for instance [32].

The proof of Theorem 2.1.7 for the TV and Hellinger relies on the knowledge of the optimal
exponential decay of the entropy (with respect to equilibrium) related to the optimal logarithmic
Sobolev inequality. Since pointwise initial conditions have infinite entropy, the proof proceeds in three
steps: first we regularize the initial condition to make its entropy finite, second we use the optimal
exponential decay of the entropy of the process starting from this regularized initial condition, third
we control the distance between the processes starting from the initial condition and its regularized
version. This last part is inspired by a work of Lacoin [169] for the simple exclusion process on
the segment, subsequently adapted to continuous state-spaces [67, 68], where one controls an area
between two versions of the process.

The (optimal) exponential decay of the entropy (Lemma 2.8.7) is equivalent to the (optimal)
logarithmic Sobolev inequality (Lemma 2.8.6). For the DOU process, the optimal logarithmic Sobolev
inequality provided by Lemma 2.8.6 achieves also the universal bound with respect to the spectral
gap, just like for Gaussians. This sharpness between the best logarithmic Sobolev constant and the
spectral gap also holds for instance for the random walk on the hypercube, a discrete process for
which a cutoff phenomenon can be established with the optimal logarithmic Sobolev inequality, and
which can be related to the OU process, see for instance [101, 100] and references therein. If we
generalize the DOU process by adding an arbitrary convex function to V, then we will still have a
logarithmic Sobolev inequality — see [81] for several proofs including the proof via the Bakry—Emery
criterion — however the optimal logarithmic Sobolev constant will no longer be explicit nor sharp
with respect to the spectral gap, and the spectral gap will no longer be explicit.

The proof of Theorem 2.1.10 relies crucially on the tensorization property of Kullback and on
the asymptotics on the normalizing constant cf at equilibrium.



40 Chapter 2. Universal cutoff for Dyson Ornstein Uhlenbeck process

2.2.2 Analysis and geometry of the equilibrium

The full space R™ is, up to a bunch of hyperplanes, covered with n! disjoint isometric copies of the
convex domain D,, obtained by permuting the coordinates (simplices or Weyl chambers). Following
[81], for all B = 0 let us define the law an on R™ with density proportional to e, just like for p?
n (2.6) but without the 1., 5 .

If 8 =0 then PY, = P = N(0,11,) according to our definition of P..

If 3 > 0 then an has density (C’fn)_le_E with Cfn = nlC? where CF is the normalization
of Pff. Moreover an is a mixture of n! isometric copies of Pf, while Pf is the image law or
push forward of an by the map ¥, : R® — D,, defined in (2.17). Furthermore for all bounded
measurable f : R™ — R, denoting ¥,, the symmetric group of permutations of {1,...,n},

. 1
dean = stymdPg with  foym(z1,...,2pn) = ] Z F@a(1)s s Ta(n))-

" oex,

Regarding log-concavity, it is important to realize that if 5 = 0 then E is convex on R", while
if 3> 0 then E is convex on D,, but is not convex on R™ and has n! isometric local minima.

e The law an is centered but is not log-concave when 8 > 0 since F is not convex on R".
As B — 0% the law P2, tends to PO, = P% = \/(0, 17.) which is log-concave.

e The law PY is not centered but is log-concave for all 8 = 0.
Its density vanishes at the boundary of D, if 5 > 0.
As 8 — 0 the law P} tends to the law of the order statistics of n i.i.d. (0, L.

2.2.3 Spectral analysis of the generator: the non-interacting case

This subsection and the next deal with analytical aspects of our dynamics. We start with the OU
process (/3 = 0) for which everything is explicit; the next subsection deals with the DOU process
(B=1).

The infinitesimal generator of the OU process is given by
Gf:1<A—VE-V)=liag—ivl(l“)a (2.18)
" i ' i=1 o .

It is a self-adjoint operator on L?(R™, PY) that leaves globally invariant the set of polynomials. Its
spectrum is the set of all non-positive integers, thatis, \ =0> A1 = -1 > X = —-2> ..., The
corresponding eigenspaces Fy, F1, Fo, - -+ are finite dimensional: F,, is spanned by the multivariate
Hermite polynomials of degree m, in other words tensor products of univariate Hermite polynomials.
In particular, Fj is the vector space of constant functions while F} is the n-dimensional vector space
of all linear functions.

Let us point out that G can be restricted to the set of P! square integrable symmetric functions:
it leaves globally invariant the set of symmetric polynomials, its spectrum is unchanged but the
associated eigenspaces F,, are the restrictions of the vector spaces F,, to the set of symmetric
functions, in other words, E,, is spanned by the multivariate symmetrized Hermite polynomials of
degree m. Note that Ej is the one-dimensional space generated by 7(x) = z1 + -+ - + x,.

The Markov semigroup (e®),. generated by G admits P_ as a reversible invariant law since
G is self-adjoint in L2(P?). Following [224], let us introduce the heat kernel p;(z,y) which is the
density of Law(X}* | X% = x) with respect to the invariant law P0. The long-time behavior reads
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limy o0 pe(z,-) =1 for all z € R". Let ||, be the norm of L7 = LP(PY). Forall 1<p<gq,t>0,
x € R"”, we have

2|Law (X} | X§' = @) = Plrv = [pe(e, ) = L < lpel, ) = 1p < [pe(z, ) =g (219)

In the particular case p = 2 we can write

o0
Ipe(, ) =13 = D5 2™ 7 (). (2.20)
m=1 YEBm
where B,, is an orthonormal basis of F,, = L?(P?), hence
Ipe(z,) =13 = e 3 |w(a), (2.21)
YeEB

which leads to a lower bound on the x? (in other words L?) cutoff, provided one can estimate
PINS |4()|? which is the square of the norm of the projection of §, on Bj.

Following [224, Th. 6.2], an upper bound would follow from a Bakry—Emery curvature—dimension
criterion CD(p, d) with a finite dimension d, in relation with Nash—-Sobolev inequalities and dimen-
sional pointwise estimates on the heat kernel p;(z, -) or ultracontractivity of the Markov semigroup,
see for instance [225, Sec. 4.1]. The OU process satisfies to CD(p, o) but never to CD(p, d) with
d finite and is not ultracontractive. Actually the OU process is a critical case, see [7, Ex. 2.7.3].

2.2.4 Spectral analysis of the generator: the interacting case

We now assume that S > 1. The infinitesimal generator of the DOU process is the operator
1 1 & - B 0; — 0;
G :—<A— E- ):— 2 -NV(a)o+ N A9 2.22
f=—(a-vE-V n; ; (w:) *%éxi—xj (2.22)

Despite the interaction term, the operator leaves globally invariant the set of symmetric polynomials.
Following Lassalle in [176, 13], see also [81], the operator G is a self-adjoint operator on the space
of an square integrable symmetric functions of n variables, its spectrum does not depend on /3
and matches the spectrum of the OU process case 8 = 0. In particular the spectral gap is 1.
The eigenspaces E,, are spanned by the generalized symmetrized Hermite polynomials of degree m.
For instance, E; is the one-dimensional space generated by 7(z) = 1 + - -+ + x, while Ey is the
two-dimensional space spanned by

(x1+---+x,)%>—1 and x%—I—---eri—l—g(n—l). (2.23)

From the isometry between L%(D,,, PY) and L2, (R, PP, the above explicit spectral decom-
position applies to the semigroup of the DOU on D,,. Formally, the discussion presented at the end
of the previous subsection still applies. However, in the present interacting case the integrability
properties of the heat kernel are not known: in particular, we do not know whether p;(x,-) lies in
LP(P}) for t > 0, z € D, and p > 1. This leads to the question, of independent interest, of
pointwise upper and lower Gaussian bounds for heat kernels similar to the OU process, with explicit
dependence of the constants over the dimension. We refer for example to [245, 109, 137] for some

results in this direction.
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2.2.5 Mean-field limit

The measure Py is log-concave since E is convex, and its density writes

N -2z
zeR

H x1<~~~<xn- (224)

n i>7

See [81, Sec. 2.2] for a high-dimensional analysis. The Boltzmann—Gibbs measure PP is known
as the -Hermite ensemble or HGE. When 8 = 2, it is better known as the Gaussian Unitary
Ensemble (GUE). If X" ~ P} then the Wigner theorem states that the empirical measure with
atoms distributed according to P’ converges in distribution to a semi-circle law, namely

weak \/ 2,3 —x?
- Z Oxns o g1

ﬁ’]‘l’ xe[f\/ﬁ,mdm? (225)

n
z 1

and this can be deduced in this Coulomb gas context from a large deviation principle as in [28].
Let (X™),~ be the process solving (2.3) with 8> 0 or 8> 1, and let

1 n
- ;1 Oxcni (2.26)

be the empirical measure of the particles at time ¢. Following notably [216, 33, 70, 69, 192, 103],
if the sequence of initial conditions (1),,~; converges weakly as n — o to a probability measure
po, then the sequence of measure valued processes ((4f');5),,, converges weakly to the unique
probability measure valued deterministic process (1), satisfying the evolution equation

— f'(y)
r—y

Guer £ = o £ — f [v@rwpanas+ f po(do)ps(dy)ds  (2.27)

for all t > 0 and f € C}(R,R). The equation (2.27) is a weak formulation of a McKean-Vlasov
equation or free Fokker—Planck equation associated to a free OU process. Moreover, if pg has all
its moments finite, then for all ¢ > 0, we have the free Mehler formula

me = dﬂeth,U() dﬂmuo@, (2.28)

where dil, p is the law of o X when X ~ 1, where “E’ stands for the free convolution of probability
B

measures of Voiculescu free probability theory, and where 1 is the semi-circle law of variance 5.
In particular, if pg is a semi-circle law then p; is a semi-circle law for all £ > 0.

Let us introduce the k-th moment my(t) := Jmkut(dx) of u¢. The first and second moments
satisfy the differential equations m)| = —m; and m{, = —2mg + (3 respectively, which give

my (t) = e_tml(o) — 0 and mg(t) = m2(0)6_2t + é

t—0o0 2

(1—e ) — 5 (2.29)

t—oo 2

More generally, beyond the first two moments, the Cauchy—-Stieltjes transform

pie(da)

xr—z

zeC+—{zeC:%z>O}Hst(z)—JR (2.30)

of uy is the solution of the following complex Burgers equation

Orst(z) = s4(2) + 20.8¢(2) + Bs(2)0:8¢(2), t=0,z¢€Cy. (2.31)
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2+

.. . 2_ 2 . 2
The semi-circle law on [—c, c| has density =51 .[_. ., mean 0, second moment or variance -,

and Cauchy-Stieltjes transform s;(z) = 7%‘2102_2*", t>0,2eC,.

The cutoff phenomenon is in a sense a diagonal (¢,n) estimate, melting long time behavior and
high dimension. When |z{| is of order n, cutoff occurs at a time of order ~ log(n): this informally
corresponds to taking ¢t — o0 in ()¢>0-

When p is centered with same second moment g as i, then there is a Boltzmann H-theorem
interpretation of the limiting dynamics as n — o00: the steady-state is the Wigner semi-circle law
oo, the second moment is conserved by the dynamics, the Voiculescu entropy is monotonic along
the dynamics, grows exponentially, and is maximized by the steady-state.

2.2.6 L? cutoff

Following [84], we can deduce an LP cutoff started from = from an L' cutoff by showing that the
heat kernel py(z,-) is in LP(P}) for some ¢t > 0. Thanks to the Mehler formula, it can be checked
that this holds for the OU case, despite the lack of ultracontractivity. The heat kernel of the DOU
process is less accessible.

In another exactly solvable direction, the L? cutoff phenomenon has been studied for instance
in [224, 226] for Brownian motion on compact simple Lie groups, and in [226, 199] for Brownian
motion on symmetric spaces, in relation with representation theory, an idea which goes back at the
origin to the works of Diaconis on random walks on groups.

2.2.7 Cutoff window and profile

Once a cutoff phenomenon is established, one can ask for a finer description of the pattern of
convergence to equilibrium. The cutoff window is the order of magnitude of the transition time
from the value max to the value 0: more precisely, if cutoff occurs at time ¢,, then we say that the
cutoff window is w,, if

m m diSt(La‘W(XC7L+b’lHn) | PT?) = 07

b—+00 n—0

lim lim dist(Law(Xe, 1o, ) | P7) = max,

b——0o0 N—00

and for any be R

0 < lim dist(Law(Xe, 1pw,) | P7) < lim dist(Law(Xe, 1w, ) | PP) < max.
n—00 n—w
Note that necessarily w,, = o(c,) by definition of the cutoff phenomenon. Note also that w;, is
unique in the following sense: w, is a cutoff window if and only if w,,/w!, remains bounded from
above and below as n — 0.
We say that the cutoff profile is given by ¢ : R — [0, 1] if

lim dist(Law(Xe, +pw,) | P?) = o(b).

n—0o0
The analysis of the OU process carried out in Theorems 2.1.1 and 2.1.2 can be pushed further to
establish the so-called cutoff profiles, we refer to the end of Section 2.3 for details.

Regarding the DOU process, such a detailed description of the convergence to equilibrium does
not seem easily accessible. However it is straightforward to deduce from our proofs that the cutoff
window is of order 1, in other words the inverse of the spectral gap, in the setting of Corollary 2.1.6.
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This is also the case in the setting of Corollary 2.1.8 for the Wasserstein distance.

We believe that this remains true in the setting of Corollary 2.1.8 for the TV and Hellinger distances:
actually, a lower bound of the required order can be derived from the calculations in the proof of
Corollary 2.1.4; on the other hand, our proof of the upper bound on the mixing time does not allow
to give a precise enough upper bound on the window.

2.2.8 Other potentials

It is natural to ask about the cutoff phenomenon for the process solving (2.3) when V' is a more
general C? function. The invariant law PP of this Markov diffusion writes

—n iy V(wi)
e
T H(x, — xj)ﬁl(ml .... $n)65ndx1 cooday,. (2.32)

1>7

The case where V' — £ |-|? is convex for some constant p > 0 generalizes the DOU case and has
exponential convergence to equilibrium, see [81]. Three exactly solvable cases are known:

(M)

T

e ¢ V(@) — ¢77: the DOU process associated to the Gaussian law weight and the S-Hermite
ensemble including HOE/HUE/HSE when g € {1, 2,4},

o ¢ V@) = aza_le_xlxe[o’oo): the Dyson—Laguerre process associated to the Gamma law weight
and the (-Laguerre ensembles including LOE/LUE/LSE when 3 € {1, 2,4},

o e V@ = ga=1(1—2)*"11,[o.11: the Dyson—Jacobi process associated to the Beta law weight
and the -Jacobi ensembles including JOE/JUE/JSE when 3 € {1, 2,4},

up to a scaling. Following Lassalle [176, 178, 177, 13] and Bakry [14], in these three cases, the
multivariate orthogonal polynomials of the invariant law PP are the eigenfunctions of the dynamics
of the process. We refer to [108, 105, 194] for more information on (H/L/J)SE random matrix
models.

The contraction property or spectral projection used to pass from a matrix process to the Dyson
process can be used to pass from BM on the unitary group to the Dyson circular process for which
the invariant law is the Circular Unitary Ensemble (CUE). This provides an upper bound for the
cutoff phenomenon. The cutoff for BM on the unitary group is known and holds at critical time or
order log(n), see for instance [226, 224, 199].

More generally, we could ask about the cutoff phenomenon for a McKean—Vlasov type interacting
particle system (X7'),-, in (R?%)" solution of the stochastic differential equation of the form

AX[ = 0 (XM)AB] = T VVaa (XAt = Y VWX — X[)dt, 1<i<n, (233)
i=1 j#i

for various types of confinement V' and interaction W (convex, repulsive, attractive, repulsive-
attractive, etc), and discuss the relation with the propagation of chaos. The case where V and W
are both convex and constant in time is already very well studied from the point of view of long-time
behavior and mean-field limit in relation with convexity, see for instance [70, 69, 192].

Regarding universality, it is worth noting that if V' = |]2 and if W is convex then the proof
by factorization of the optimal Poincaré and logarithmic Sobolev inequalities and their extremal
functions given in [81] remains valid, paving the way to the generalization of many of our results in
this spirit. On the other hand, the convexity of the limiting energy functional in the mean-field limit
is of Bochner type and suggests to take for W a power, in other words a Riesz type interaction.



2.2. Additional comments and open problems 45

2.2.9 Alternative parametrization

If (X{");50 is the process solution of the stochastic differential equation (2.3), then for all real
parameters & > 0 and o > 0, the space scaled and time changed stochastic process (Y;"),-, =
(0 X&) >0 solves the stochastic differential equation

2
4 ni afo dt

j#i Lt

2a02

Y§ = oxf, Ay = 1<i<n, (234)

n

where (By),s is a standard n-dimensional BM. The invariant law of (Y}"),- is

o2z lul?
7 H(yl o yj)ﬁl(yh...,yn)eﬁndyl Tt dyn (2.35)
n >

where CF is the normalizing constant. This law and its normalization P depend on the “shape
parameter’ /3, the “scale parameter” o, and does not depend on the “speed parameter’ . When
B > 0, taking 02 = 371, the stochastic differential equation (2.34) boils down to

xg ; 200 ., ; o dt
Yo =L, A =g CodBl - aYMdt+ - Y o 1<i<n (2.36)
\/B n,B n jil }/tnyl o }/t'nq]
while the invariant law becomes
e_nQinL/‘Q B
C’B H(yl o y]) 1(y1,"' 7yn)65ndyl T dyn (237)
n

The equation (2.36) is the one considered in [113, Eq. (12.4)] and in [154, Eq. (1.1)]. The advantage
of (2.36) is that § can be now truly interpreted as an inverse temperature and the right-hand side
in the analogue of (2.25) does not depend on 3, while the drawback is that we cannot turn off the
interaction by setting 5 = 0 and recover the OU process as in (2.3). It is worthwhile mentioning
that for instance Theorem 2.1.7 remains the same for the process solving (2.36) in particular the
cutoff threshold is at critical time <* and does not depend on 3.

2.2.10 Discrete models

There are several discrete space Markov processes admitting the OU process as a scaling limit, such
as for instance the random walk on the discrete hypercube, related to the Ehrenfest model, for which
the cutoff has been studied in [101, 100], and the M/M/co queuing process, for which a discrete
Mehler formula is available [76]. Certain discrete space Markov processes incorporate a singular
repulsion mechanism, such as for instance the exclusion process on the segment, for which the study
of the cutoff in [169] shares similarities with our proof of Theorem 2.1.7. It is worthwhile noting
that there are discrete Coulomb gases, related to orthogonal polynomials for discrete measures,
suggesting to study discrete Dyson processes. More generally, it could be natural to study the cutoff
phenomenon for Markov processes on infinite discrete state spaces, under curvature condition, even
if the subject is notoriously disappointing in terms of high-dimensional analysis. We refer to the
recent work [223] for the finite state space case.
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2.3 Cutoff phenomenon for the OU

In this section, we prove Theorems 2.1.1 and 2.1.2: actually we only prove the latter since it implies
the former. We start by recalling a well-known fact.

Lemma 2.3.1 (Mehler formula). If (Y;),o, is an OU process in R? solution of the stochastic
differential equation Yy = yo € R% and dY; = odB; — uY;dt for parameters ¢ > 0 and p > 0 where
B is a standard d-dimensional Brownian motion then

—ut 021 —e 2t

hence Y; ~ N(yoe ,—7105) for all t = 0.
U

t
(Yt)t>0 = (yﬂe_ut + UJ 9

. e“(s_t)st)

t=0

Moreover its coordinates are independent one-dimensional OU processes with initial condition v} and
. 2 )
invariant law N'(0, 32), 1 <i < d.

Proof of Theorem 2.1.1 and Theorem 2.1.2. By using Lemma 2.3.1, for allm > 1 and ¢t > 0,

1— 6_2t

7z ~ J\/‘(deft7 7171) _ ®?:1N<ngieft7 1_e_2t>7 PO — N(O, I—") = N(O, l>®n.
n n n " (2.38)

Hellinger, Kullback, x2, Fisher, and Wasserstein cutoffs. A direct computation from (2.38) or
Lemma 2.8.5 either from multivariate Gaussian formulas or univariate via tensorization gives

1 —2t

. - nl|z8Pe”® n —e
Helhnger (LaW(Zt ), Pn) =1- exp( - Zm + Z 10g<4m)>, (239)
2Kullback(Law (Z]") | P?) = n|z5|?e 2" — ne™" — nlog(1 — e™2%), (2.40)

1 ef2t
—4t
. _ e
Fisher(Law(Z) | PY) = n?|28|%e ™" + n21_7€_2t, (2.42)
1

Wasserstein?(Law (Z;"), P0) = |20]%e ™2 + 2(1 — /1 — =2 — ie*%), (2.43)

which gives the desired lower and upper bounds as before by using the hypothesis on z{.

Total variation cutoff. By using the comparison between total variation and Hellinger distances
(Lemma 2.8.1) we deduce from (2.39) the cutoff in total variation distance at the same critical
time. The upper bound for the total variation distance can alternatively be obtained by using the
Kullback estimate (2.40) and the Pinsker-Csiszar—Kullback inequality (Lemma 2.8.1). Since both
distributions are tensor products, we could use alternatively the tensorization property of the total
variation distance (Lemma 2.8.4) together with the one-dimensional version of the Gaussian formula
for Kullback (Lemma 2.8.1) to obtain the result for the total variation. O

Remark 1 (Competition between bias and variance mixing). From the computations of the proof
of Theorem 2.1.2, we can show that for dist € {TV, Hellinger, x?}

Ay = dist(Law(Z}") | Law (Z] — zfe™))

has a cutoff at time ¢t = log(y/n|2§

), while

By := dist(Law(Z}* — ze™ %) | P?)
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admits a cutoff at time cB = 1 1 log(n). The triangle inequality for dist yields
|A; — By| < dist(Law(Z") | P°) < A; + By.

Therefore the critical time of Theorem 2.1.2 is dictated by either A; or By, according to whether

> B orct « cB. This can be seen as a competition between bias and variance mixing.

Remark 2 (Total variation discriminating event for small initial conditions). Let us introduce the
random variable Z3, ~ P2 = N(0,11,) = N'(0, 1)®", in accordance with (2.38). There holds
n
Sy = Zl(Zt"’Z —2te 2 ~ Gamma(

=1

2 31— o2 n_Qt)> and \Z;"”C]2~Gamma(2 2)

We can check, using an explicit computation of Hellinger and Kullback between Gamma distributions
and the comparison between total variation and Hellinger distances (Lemma 2.8.1), that

Cy := dist(Law(S}") | Law(|Z2% %))
admits a cutoff at time ¢§ = ¢B = 1log(n). Moreover, one can exhibit a discriminating event for
the TV distance. Namely, we can observe that

HGamma(2 ﬁ) Gamma(Q 2)HTV B(1Z5]° > 1) — B(S} > o)

with oy the unique point where the two densities meet, which happens to be
o = —e*log(l —e ) (1 —e™2).

From the explicit expressions (2.39), (2.40), (2.41), (2.42), (2.43), it is immediate to extract
the cutoff profile associated to the convergence of Law(Z}) to P in Hellinger, Kullback, x2, Fisher
and Wasserstein. For Wasserstein we already know by Theorem 2.1.2 that a cutoff occurs if and
only if 2| = In this case, regarding the profile, we have

lim Wasserstein(Law(Z7"), P?) = ¢(b), (2.44)
n—0oo
where for all b € R,
tnp =log|28| +b and ¢(b) =e . (2.45)
For the other distances and divergences, let us assume that the following limit exists
= lim /n|2f|* € [0, +o0]. (2.46)
n—aoo
This quantity can be related with
logn
A= log(|z|v/n) and P = 1 (2.47)

which were already introduced in Remark 1. Indeed

a:O<:>ch‘<<cf, a:+oo<:>c;?>>c§,

while a € (0,0) is equivalent to ¢ = 5.
Then, for dist € {Hellinger, Kullback, x2, Fisher}, we have, for all b € R,

lim dist(Law(Z,,) | PY) = ¢(b), (2.48)
where ¢,,;, and ¢(b) are as in Table 2.1. The cutoff window is always of size 1.

Since the total variation distance is not expressed in a simple explicit manner, further computa-
tions are needed to extract the precise cutoff profile, which is given in the following lemma:
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a=+®w a=0 a € (0, +o0)
tnp
Hellinger || log(|z{|v/n) + b loin +b loin b
Kullback || log(|2g|v/n) +b | 8% +p logn |
X2 || log(|2[v/n) + b | 8% +b logn 4,
Fisher || log(|zg|n) +b IO%" +b 1o§n b
¢(b)
Hellinger \/1 _ege?® \/1 P \/1 _ o—hae— ket
Kullback %e*% %6*46 %ae—zb n ie*‘“’
2 || e 1 R P
Fisher || e=20 e—4b ae—2b 1 o—1b

Table 2.1: Values of ¢,,;, and ¢(b) for the cutoff profile of the OU process in (2.48).

Lemma 2.3.2 (Cutoff profile in TV for OU). Let Z™ = (Z}')i>0 be the OU process (2.8), started
from 2 € R™, and let P? be its invariant law. Assume as in (2.46) that a := lim,_.o |23|?/n €
[0, +0], and let t,,;, be as in Table (2.1) for Hellinger. Then, for all b € R, we have

lim [|Law(Z7 ) = Plrv = 6(b),

where
( b
erf<;—2> ifa = +o0
—2
P(b) := erf(eT) ifa=0 )
\/ﬁ
erf< 2ae 4+e > ifa e (0,400)

1
where erf(u) := \fj e Pdt = P(|X| < v/2u) with X ~ N'(0,1) is the error function.
T Jit|<u

Proof of Lemma 2.3.2. The idea is to exploit the fact that we consider Gaussian product measures
(the covariance matrices are multiple of the identity), which allows a finer analysis than for instance
in [98, Le. 3.1]. We begin with a rather general step. Let u and v be two probability measures on
R™ with densities f and g with respect to the Lebesgue measure dz. We have then

1

b= vle =5 [1F = gl = 5 ([ = 9yesdo = [(F = 9tepe),  (299)

and since

[ et = = [ = 9= Lyt = [(7 = yess = [(F = g)1yesa,
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we obtain

= vlry = f (f — 9)lgesdz = ulg < f) — vlg < f). (2.50)

In particular, when 1 = N'(my,011,) and v = N (ma, 031,,) then g(z) < f(z) is equivalent to

|z —mi]? |z —ma|? ag
= - < nlog—%, 2.51
(@) o? o3 n108 o? ( )

for all z € R™, and therefore, with Z; ~ pu and Z5 ~ v, we get

=l = P(0(21) < nlog 2) — B((22) < nlog 3). (252)

Let us assume from now on that ms = 0 and o1 # 09. We can then gather the quadratic terms as

2\ |z — > /1 1 1
W(z) =(1- 91 M+ - - |ml|2 where My = ———mj. (2.53)
2 2 2 o2\ o o?
73 a1 1 (1-7Z)o3 1—=%
2 2

|Z1— mll

We observe at this step that the random variable follows a noncentral chi-squared distri-

bution, which depends only on n and on the noncentrallty parameter

=12 2
my —m o
M = [m 1 L 2\m1]2. (2.54)

U% (‘75_‘71)

Similarly, the random variable M follows a noncentral chi-squared distribution, which depends
2

only on n and on the noncentrality parameter

2 o5

Ay 1= Slma . (2.55)

N
It follows that the law of ¢(Z1) and the law of ¢/(Z3) depend over m; only via |m;|. Hence
WZ) L X+ + X, and W(Z)LVi+-+Y, (2.56)

where X1,...,X, and Y7,...,Y,, are two sequences of i.i.d. random variables for which the mean
and variance depends only (and explicitly) on , 01, 02. Note in particular that these means
and variances are given by % the ones of 1(Z;) and ¥(Z3). Now we specialize to the case where

pu = Law(Z]') = N(zfe”?, 1_‘:Lifmln) and v = Law(Z%) = N'(0,11,) = P?, and we find

o? |20 |2e—2t o2 2262t
E[y)(Z1)] = (1_7t>_077 E[1)(Z,)] = (&_1) 121%™
[v(Z1)] =n oz ) [¥(Z2)] =n .2 + 2
while
1 1\2 1 1 \2 2
Var[y)(Z1)] = 2”(72_72> t+4 ‘ n’2€_2t, Var[y(Z3)] = 2n(72_72> Ué+4a%\zg\2e_2t.
9% 9% 0% of o o

Let t = ¢, be as in Table 2.1 for Hellinger. Using (2.52) and the central limit theorem for the i.i.d.
random variables X1,..., X, and Y1,...,Y,, we get, with Z ~ N/(0, 1),

|Law(Z7") — PSHTV =P(Z < i) — P(Z < Ant) + on(1),
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where

—nlog(l —e*) —E[y(Z])] S —nlog(l —e™*) — B[y(Z%)]
Var[(Z1)] Co Var[y(Z3)]

Expanding 7y, , gives the cutoff profile. Let us detail the computations in the most involved case
limy, o0 |28]%/n = a € (0, +00). For all b e R, recall ¢, = 10%" + b. One may check that

In,t =

1
—nlog(l — e 2m0) —E[y(Z} )] = 5e*‘*b +ae ? +0,(1),

1
—nlog(l —e™*0) —E[i)(Z3)] = — e~ — ae™ + oa(1),

Var[y(Zy )] = 2¢™% 4 4ae™® + 0,(1), Var[¢(Z2)] = 2¢7* + dae™?* + 0, (1).

It follows that

Tim [Law(Z7, ) = PYpy = P(\Z| <

——Ae 4 1 2ae_2b> = erf(f\/ e—4b 4 2ae_2b>.
2V/2 4

The other cases are similar. O

2.4 General exactly solvable aspects

In this section, we prove Theorem 2.1.3 and Corollary 2.1.4.

The proof of Theorem 2.1.3 is based on the fact that the polynomial functions w(z) = x4+ -+
x, and |x|? = 23 + -+ + 22 are, up to an additive constant for the second, eigenfunctions of the
dynamics associated to the spectral values —1 and —2 respectively, and that their “carré du champ”
is affine. In the matrix cases § € {1, 2}, these functions correspond to the dynamics of the trace,
the dynamics of the squared Hilbert—Schmidt trace norm, and the dynamics of the squared trace. It
is remarkable that this phenomenon survives beyond these matrix cases, yet another manifestation
of the Gaussian “ghosts’ concept due to Edelman, see for instance [107].

Proof of Theorem 2.1.3. The process Y; := 7(X/") solves
dy; = de’” (ZdBt ZX"’dtJrBZ XX
J?":Z -

By symmetry, the double sum vanishes. Note that the process W; := \F >, Bj is a standard one

dimensional BM, so that dY; = 1/2dW; — Y;dt. This proves the first part of the statement.
We turn to the second part. Recall that X; € D,, for all ¢ > 0. By Itd's formula

i i 1 i i ; dt 2
d(X{")? = \/gth’Zde _o(x)2dt 4 20 x Y ot Tt
n n X” A x™mI o op
Jig#i t
Set Wi i= >, SO |Xn dBZ The process (W), is a BM by the Lévy characterization since

W, = J Zict |Xn|2 L
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Furthermore, a simple computation shows that

L , 1 -1
Z XZM Z n,i n,j = n(n2 )
=1 X, - Xt

Jig#Fr ot
Consequently the process R; := | X[*|? solves
8
ARy = ||~ RidW; + (2 + B —1) - 2Rt>dt,
and is therefore a CIR process of parameters a =2+ 3(n — 1), b= 2, and 0 = 4/8/n.

When d = §n2 +(1- g)n is a positive integer, the last property of the statement follows from the

connection between OU and CIR recalled right before the statement of the theorem. O

The last proof actually relies on the following general observation. Let X be an n-dimensional
continuous semi-martingale solution of

dX; = O'(Xt)dBt + b(Xt)dt
where B is a n-dimensional standard BM, and where
zeR" —o(x)e Mp,(R) and zeR"— b(z)eR"

are Lipschitz. The infinitesimal generator of the Markov semigroup is given by

| =

G(f)(x) =5 D) ai;(@)di;f(x) + ) bi(x)dif(z), where a(z)=o(z)(c(x))T,
ij=1

i=1

for all f € C2(R™,R) and 2 € R™. Then, by Itd's formula, the process M/ = (Mtf)t20 given by

M = £ = £000) — [ @I = 3 [ auf(Xo)ows(X)aBS

ik=1

is a local martingale, and moreover, for all ¢ > 0,

(M), = L D(f)(Xs)ds where T(f)(z) = |o(2)"Vf(x)]* = a(2)Vf- V.

The functional quadratic form I" is known as the “carré du champ” operator.
If f is an eigenfunction of G associated to the spectral value X in the sense that Gf = Af (note by
the way that A < 0 since G generates a Markov process), then we get

F(Xy) = f(Xo) + /\K f(Xs)ds + M/, inother words df(X;) = dM/ + Af(X;)dt.

Now if I'(f) = ¢ (as in the first part of the theorem), then by the Lévy characterization of Brownian
motion, the continuous local martingale W := ﬁMf starting from the origin is a standard BM and
we recover the result of the first part of the theorem. On the other hand, if I'(f) = cf (as in the
second part of the theorem), then by the Lévy characterization of BM the local martingale

dmf!

v | e
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is a standard BM and we recover the result of the second part.

At this point, we observe that the infinitesimal generator of the CIR process R is the Laguerre
partial differential operator

L(f)(z) = %xf”(q:) + (24 8(n—1) = 22)f'(x). (2.57)

This operator leaves invariant the set of polynomials of degree less than or equal to &, for all integer
k = 0, a property inherited from (2.22). We will use this property in the following proof.

2.4.1 Proof of Corollary 2.1.4

By Theorem 2.1.3, Z = 7(X™) is an OU process in R solution of the stochastic differential equation
Zo=7n(X}), dZ; = \2dB; — Zdt,

where B is a standard one-dimensional BM. By Lemma 2.3.1, Z; ~ N (Zpe™t,1—e72!) forall t > 0
and the equilibrium distribution is Plorl = N(0,1). Using the contraction property stated in
Lemma 2.8.2, the comparison between Hellinger and TV of Lemma 2.8.1 and the explicit expressions
for Gaussian distributions of Lemma 2.8.5, we find

|Law(X]") = B|rv = |Law(Z) — P} on " rv
Hellinger? (Law (Z;), P? o 7~ 1)

(1 _ e—2t>1/4 7T(X6L)26_2t>
(1-— %ef2t)1/2 4(2 —e2t) )"

=
=

=1- exp(—

Setting ¢, := log(|7(X{)|) and assuming that lim,, o ¢, = 00, we deduce that for all € € (0,1)

lim |Law (X[, .)) = P/lrv = 1.

n—o0

The comparison between Hellinger and TV of Lemma 2.8.1 allows to deduce that this remains true
for the Hellinger distance.
We turn to Kullback. The contraction property stated in Lemma 2.8.2 and the explicit expressions
for Gaussian distributions of Lemma 2.8.5 yield
2Kullback(Law (X)) | P?) > 2Kullback(Law(Z;) | PP o 77 1)

=m(XP)%e 2 —e 2 —log(1l —e ).
This is enough to deduce that

lim Kullback(Law(X[}_.,,, ) | B) = +o.

The situation is similar for y?: the contraction property stated in Lemma 2.8.2 and the explicit
expressions for Gaussian distributions of Lemma 2.8.5 yield

X*(Law(X[") | PY) = x*(Law(Z) | P} o ")

1 1 ny . —t\2
=—-1+ ﬁexp <1+e2t(1_7T(XO)e ) > )
so that

lim XQ(LaW(Xﬁ,E)Cn) | PJ) = +o0.

n—o0
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Regarding the Wasserstein distance, we have ||, := supa#yw < 4/n from the

Cauchy—-Schwarz inequality, and by Lemma 2.8.2, for all probability measures i and v on R",
Wasserstein(u o', von™ 1) < v/nWasserstein(u, v). (2.58)
Using the explicit expressions for Gaussian distributions of Lemma 2.8.5, we thus find
Wasserstein? (Law (X}), PP) > %WassersteinZ(LaW(Zt), PP o1
- %(w(xg)%*?t b2 o2yl

Setting ¢, := log ('”%)‘> and assuming ¢, — 00 as n — o, we thus deduce that for all £ € (0, 1)

lim Wasserstein(Law (X} ), PP) = +oo.

n—on (1—e)en /2™ n

2.5 The random matrix cases

In this section, we prove Theorem 2.1.5 and Corollary 2.1.6 that cover the matrix cases 3 € {1, 2}.
For these values of 3, the DOU process is the image by the spectral map of a matrix OU process,
connected to the random matrix models GOE and GUE. We could consider the case 3 = 4 related
to GSE. Beyond these three algebraic cases, it could be possible for an arbitrary 5 > 1 to use
random tridiagonal matrices dynamics associated to  Dyson processes, see for instance [151].

The next two subsections are devoted to the proof of Theorem 2.1.5 in the 5 =2 and 8 =1
cases respectively. The third section provides the proof of Corollary 2.1.6.

2.5.1 Hermitian case (§ = 2)

Let Herm,, be the set of n x n complex Hermitian matrices, namely the set of h € M,, ,(C) with
hi; = h;; forall 1 <i,5 < n. An element h € Herm,, is parametrized by the n? real variables
(hii)i<i<n, (Rhij)i<i<j<n, (Shij)i<i<j<n- We define, for h € Herm,, and 1 <i,j < n,

hz‘,i if ¢ =j
mig(h) = V2Rhi; ifi<j. (2.59)
\/5%]1]'72' if ¢ >j

Note that

Tr(h?) = i |hi 2 = i e 42 ) (Rhij)® +2 ) (Shiy)? = mij(h)%
i=1 4.J

ij=1 i<j i<j

7’L27774 .
We thus identify Herm,, with R* x R>" 2 = R"™, this identification is isometrical provided Herm,,
is endowed with the norm 4/Tr(h?) and R™ with the Euclidean norm.

The Gaussian Unitary Ensemble GUE,, is the Gaussian law on Herm,, with density

e—%Tr(hQ)

h € Herm,, — . where C,, := J;Rn? e~ s Tr(h?) H dh; H dRh; ; H dSh; ;. (2.60)

i<j i<j
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If H is a random n x n Hermitian matrix then H ~ GUE,, if and only if the n? real random variables
7 ;(H), 1 <1,j < n, are independent Gaussian random variables with

1
mij(H) ~ N(O, ;), 1<i,j<n (2.61)

The law GUE,, is the unique invariant law of the Hermitian matrix OU process (H}),-, on Herm,
solution of the stochastic differential equation

2
Hy = ho € Herm,,, dH; = \/7dBt — Hydt, (2.62)
n

where B = (B;),> is a Brownian motion on Herm,, in the sense that the stochastic processes
(mij(Bt))i=0, 1 < @ # j < n, are independent standard one-dimensional BM. The coordinates

stochastic processes (; ;(H¢)),~q, 1 <i,j < n, are independent real OU processes.

For any h in Herm,, we denote by A(h) the vector of the eigenvalues of h ordered in non-
decreasing order. Lemma 2.5.1 below is an observation which dates back to the seminal work of
Dyson [106], hence the name DOU for X™. We refer to [113, Ch. 12] and [6, Sec. 4.3] for a
mathematical approach using modern stochastic calculus.

Lemma 2.5.1 (From matrix OU to DOU). The image of GUE,, by the map A is the Coulomb gas
PP given by (2.6) with 3 = 2. Moreover the stochastic process X™ = (X1 )0 = (A(Ht))ysg is
well-defined and solves the stochastic differential equation (2.3) with 5 = 2 and xj = A(hy).

Let 3 = 2. Let us assume from now on that the initial value hg € Herm,, of (H;),5, has
eigenvalues xj where z{} is as in Theorem 2.1.5. We start by proving the upper bound on the
x? distance stated in Theorem 2.1.5: it will be an adaptation of the proof of the upper bound of
Theorem 2.1.1 applied to the Hermitian matrix OU process (H;),-, combined with the contraction
property of the y? distance. Indeed, by Lemma 2.5.1 and the contraction property of Lemma 2.8.2

2 (Law (X)) | PPy < x?(Law(H;) | GUE,). (2.63)

We claim now that the right-hand side tends to 0 as n — oo when t = ¢, is well chosen. Indeed,
using the identification between Herm,, and R™ mentioned earlier, we have GUE,, = N (mg, X2)
where mo = 0 and where X5 is an n? x n? diagonal matrix with

1
(32)i.9),6) = .- (2.64)

On the other hand, the Mehler formula (Lemma 2.3.1) gives Law(H;) = N (m1,¥1) where m; =
e 'hg and where X1 is an n? x n? diagonal matrix with

1—e2
CE) g = —— (2.65)

n

Therefore, using Lemma 2.8.5, the analogue of (2.40) reads

1 ef2t
where
hol*> = >} mij(ho)® = >, (ho)iyl* = Tr(h§) = |ag . (2.67)

1<i,5<n 1<i,j<n
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Taking now ¢, := log(y/n|zg|) v log(y/n), for any € € (0,1), we get

C(Law(X) o) | PR < 2(Law(H(140).,) | GUE,) — 0. (2.68)
In the right-hand side of (2.66), the factor n? is the dimension of the R” to which Herm,, is
identified, while the factor n in the first term is due to the 1/n scaling in the stochastic differential
equation of the process. This explains the difference with the analogue (2.40) in dimension n.
From the comparison between TV, Hellinger, Kullback and x? stated in Lemma 2.8.1, we easily
deduce that the previous convergence remains true upon replacing x? by TV, Hellinger or Kullback.

It remains to cover the upper bound for the Wasserstein distance. This distance is more sensitive
to contraction arguments: according to Lemma 2.8.2, one needs to control the Lipschitz norm of the
“contraction map” at stake. It happens that the spectral map, restricted to the set Herm,, of n x n
Hermitian matrices, is 1-Lipschitz: more precisely, the Hoffman-Wielandt inequality, see [150] and
[152, Th. 6.3.5], asserts that for any two such matrices A and B, denoting A(A) = (Ai(A))1<i<n
and A(B) = (Ai(B))1<i<n the ordered sequences of their eigenvalues, we have

2

DIIN(A) = Xi(B)P < D A — By
i—1 i

Applying Lemma 2.8.2, we thus deduce that
Wasserstein(Law (X[), P?) < Wasserstein(Law(H;), GUE,,). (2.69)
Following the Gaussian computations in the proof of Theorem 2.1.2, we obtain
Wasserstein?(Law (H;), GUE,,) = |28]%e 2 + 2 — e 72! — 24/1 — e 2, (2.70)
Set ¢, := log(|z§|). If ¢, — 00 as n — oo then for all € € (0,1) we find

P5 — 0.

Wasserstein(Law (X (... ), P,
n n—00

This completes the proof of Theorem 2.1.5.

2.5.2 Symmetric case (§ = 1)

The method is similar to the case 3 = 2. Let us focus only on the differences. Let Sym,, be the set
of n x n real symmetric matrices, namely the set of s € M, ,(R) with s; ; = s;; forall 1 <14, j < n.
. : 2_ .

An element s € Sym,, is parametrized by the n 4+ *5" = w real variables (s; j)1<i<j<n. We

define, for s € Sym,, and 1 < i < j <mn,

mij(s) = { sig  fi=g (2.71)

ﬁsi,j if i < i .
Note that
n n
2 2 2 2 2
Tr(s*) = Z ;= Z i+ 22 i = Z mij(s)°.
ij=1 i=1 i<j 1<i<j<n
. o . . . n?-n n(n+1)
We thus identify isometrically Sym,,, endowed with the norm 4/Tr(h?), with R" xRz =R ey

endowed with the Euclidean norm.
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The Gaussian Orthogonal Ensemble GOE,, is the Gaussian law on Sym,, with density

e—%Tr(s2)

seSymnr—»Tn

where (), = J o2 Tr(s%) ds; ;. 2.72
Rn(n2+1) H 5] ( )

1<i<j<n

If S is a random n x n real symmetric matrix then S ~ GOE,, if and only if the w real

random variables 7; ;(S), 1 <1 < j < n, are independent Gaussian random variables with

1
75 (S) ~ N(o, g), 1<i<j<n (2.73)

The law GOE,, is the unique invariant law of the real symmetric matrix OU process (S;),-, on
Sym,, solution of the stochastic differential equation

2
SO = S0 € Symn, dSt = \/;dBt — Stdt (274)

where B = (B;),- is a Brownian motion on Sym,, in the sense that the stochastic processes
(mi;(Bt))t=0, 1 < i < j < n, are independent standard one-dimensional BM. The coordinates
stochastic processes (7;,;(5t)),5o, 1 <@ < j < n, are independent real OU processes.

For any s in Sym,,, we denote by A(s) the vector of the eigenvalues of s ordered in non-decreasing
order. Lemma 2.5.2 below is the real symmetric analogue of Lemma 2.5.1.

Lemma 2.5.2 (From matrix OU to DOU). The image of GOE,, by the map A is the Coulomb gas
PP given by (2.6) with 8 = 1. Moreover the stochastic process X" = (X{'),>o = (A(51));5¢ is
well-defined and solves the stochastic differential equation (2.3) with 5 =1 and x{} = A(so).

As for the case 8 = 2, the idea now is that the DOU process is sandwiched between a real OU
process and a matrix OU process.
By similar computations to the case 8 = 2, the analogue of (2.66) becomes

1
(1—e*)

e—2t
x*(Law(H;) | GOE,) = —1 + (n(ngl))2 exp <n|h0]21+62t> . (2.75)

This allows to deduce the upper bound for TV, Hellinger, Kullback and 2. Regarding the Wasserstein
distance, the analogue of (2.70) reads

Wasserstein?(Law(S;), GOE,) = |zh[2e ™ +2 —e 2 —24/1 — e 2t (2.76)

If lim,, o0 log(|zg|) = oo then we deduce the asserted result, concluding the proof of Theorem 2.1.5.

2.5.3 Proof of Corollary 2.1.6

Let 8 € {1,2}. Recall the definitions of a,, and ¢,, from the statement. Take xg’i = q, for all 4,
and note that 7(z{}) = nay,. Given our assumptions on a,, Corollary 2.1.4 yields for this particular
choice of initial condition and for any € € (0, 1)

lim dist(Law (X(j_,.,) | P%) = max.

n—0o0

On the other hand, in the proof of Theorem 2.1.5 we saw that

1 e 2
2 n 15] . n|2
CLaw(X7) | ) < 1+ g oxp (nlabP g )
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where b, = n? for 8 = 2 and b, = (n(n + 1)/2)2 for 8 = 1. Since |28 < +/na, for all
28 € [—an,an]™, and given the comparison between TV, Hellinger, Kullback and x? stated in
Lemma 2.8.1 we obtain for dist € {T'V, Hellinger, Kullback, x?} and for all ¢ € (0,1)

lim  sup  dist(Law(X(},..) | PY) =0,

n—00 zle[—an,an]”
thus concluding the proof of Corollary 2.1.6 regarding theses distances.
Concerning Wasserstein, the proof of Theorem 2.1.5 shows that for any z{} € [—ay, a,]™ we have

Wasserstein?(Law (X[), P7) < |zh[2e ™ +2 —e ™2 —24/1 — e 2

<nale ™ +2 e —24/1 —e 2t
If \/na, — o, then for ¢,, = log(y/nay,) we deduce that for all € € (0,1)
lim sup  dist(Law(X} )| P?y =o.

1+¢)c
n—0 G €[—an,an]™ ( Jen

2.6 Cutoff phenomenon for the DOU in TV and Hellinger

In this section, we prove Theorem 2.1.7 and Corollary 2.1.8 for the TV and Hellinger distances. We
only consider the case 8 > 1, although the arguments could be adapted mutatis mutandis to cover
the case 5 = 0: note that the result of Theorem 2.1.7 and Corollary 2.1.8 for 5 = 0 can be deduced
from Theorem 2.1.2. At the end of this section, we also provide the proof of Theorem 2.1.10.

2.6.1 Proof of Theorem 2.1.7 in TV and Hellinger

By the comparison between TV and Hellinger stated in Lemma 2.8.1, it suffices to prove the result
for the TV distance, so we concentrate on this distance until the end of this section. Our proof
is based on the exponential decay of the relative entropy at an explicit rate given by the optimal
logarithmic Sobolev constant. However, this requires the relative entropy of the initial condition to
be finite. Consequently, we proceed in three steps. First, given an arbitrary initial condition zf € D,,
we build an absolutely continuous probability measure p;n on D,, that approximates d,» and whose
relative entropy is not too large. Second, we derive a decay estimate starting from this regularized
initial condition. Third, we control the total variation distance between the two processes starting
respectively from d,n and fizn.

2.6.1.1 Regularization

In order to have a finite relative entropy at time 0, we first regularize the initial condition by smearing
out each particle in a ball of radius bounded below by n=(**1) for some x > 0. Let us first introduce
the regularization at scale 7 of a Dirac distribution d,, z € R by

60 (du) = Uniform([z, z + n])(du) = n_ll[z,zﬂ]du.

Given z € D,, and k > 0, we define a regularized version of §, at scale n™", that we denote p,, by
setting

Mz = ®?:153(C:)1_3m7 (2.77)
where 1 := n=("*1 The parameters have been tuned in such a way that, independently of the choice
of x € D,,, the following properties hold. The supports of the Dirac masses 59(2131‘77' ie{l,...,n},
lie at distance at least 1 from each other. The volume of the support of u, is equal to 0", and
therefore the relative entropy of ju, with respect to the Lebesgue measure is not too large. Finally,
provided X' = x and Y is distributed according to j,, almost surely | X' — Y{'|oo < (3n + 1)n.
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2.6.1.2 Convergence of the regularized process to equilibrium

Lemma 2.6.1 (Convergence of regularized process). Let (Y;")i=0 be a DOU process solution of
(2.3), B =1, and let PY be its invariant law. Assume that Law(Yy') is the regularized measure fi,n
in (2.77) associated to some initial condition x}} € D,,. Then there exists a constant C > 0, only
depending on k, such that for allt > 0, all n > 2 and all zfj € D,,

Kullback(Law (Y;") | P?) < C(n|zR | + n?log(n))e 2.
Proof of Lemma 2.6.1. By Lemma 2.8.7 and since Law(Y") = pizn, for all £ > 0, there holds
Kullback(Law (Y;") | P?) < Kullback(pzz | PPe 2, (2.78)

Now we have

5 dptag
Kullback(pzn | P) = Euzg log |

Recall the definition of S in (2.15). As PP has density & [3 , we may re-write this as
Kullback(tian | PY) = S(ptap) + Ey,p [E] + log ch. (2.79)

Recall the partition function Cfn — nlC? from Subsection 2.2.2. It is proved in [28], using explicit
expressions involving Gamma functions via a Selberg integral, that for some constant C' > 0

log C? <logC% < Cn?. (2.80)
Next, we claim that S(jn) < nlog(n'*™*). Indeed since i,y is a product measure, the ten-
sorization property of entropy recalled in Lemma 2.8.4 gives
n
Kullback(igp | dz) = Y Kullback(s" | ).
i=1

Moreover an immediate computation yields Kullback( \ dr) = log(n~!) so that, given the
definition of 7, we get
Kullback(pzn | dz) = nlog(n A, (2.81)

We turn to the estimation of the term E,,_,[E]. The confinement term can be easily bounded:
*0

i3

Let us now estimate the logarithmic energy of y;n. Using the fact that the logarithmic function is

increasing, together with the fact the supports of 53(3 21—327]
we notice that for any 7 > j there holds

n|ac"|2 + n2772).

lie at distance at least ) from each other,

By llog o = ) = [ Tog o = 41507, (d)317,, (@0

> ” log [z — y[d5 (dz)6y" (dy)

= logn.



2.6. Cutoff phenomenon for the DOU in TV and Hellinger 59

It follows that the initial logarithmic energy cannot be much larger than n?log n:

1 n(n —1)
E, ., 1 < logn"*1.
Haf [Z 8 ’.I‘Z — x]\] 2 ogn
1>]

This implies that there exists a constant C' > 0, only depending on &, such that for all n > 2

< C(n|z§)* + n®logn). (2.82)

n
n
By, [E] = Euzg [2 Z i + 52 log
i=1

b
6 =7 i —

Inserting (2.80), (2.81) and (2.82) into (2.79) we obtain (for a different constant C' > 0)
Kullback(pzn | P9 < C(n|z§* +n®logn).

This bound, combined with (2.78), concludes the proof of Lemma 2.6.1. O

2.6.1.3 Convergence to the regularized process in total variation distance

Let (X7')i=0 and (Y;")i=0 be two DOU processes with X' = zg and Law(Y{") = jizp, where the
measure (7 is defined in (2.77). Below we prove that, as soon as the parameter  is large enough,
the total variation distance between Law(X}') and Law(Y}") tends to 0, for any fixed ¢ > 0.

Note that at time 0, almost surely, there holds X" < Y;*", for every i € {1,...,n}. We now
introduce a coupling of the processes (X[");=0 and (Y;"):>0 that preserves this ordering at all times.
Consider two independent standard BM B™ and W™ in R™. Let X" be the solution of (2.3) driven
by B™, and let Y™ be the solution of

. 2 . . ; IS dt
n,e __ ) ) ) ) n,t 2 : .
d}/t = \/;(1{1/trb,t¢XzL,l}dLLtZ + 1{Y;TL,'L:XZL,l}dBZ/> — }/; de + E 7}/”77; anj’ 1 <1< n.
VE R 1t

We denote by P the probability measure under which these two processes are coupled. Let us
comment on the driving noise in the equation satisfied by Y. When the i-th coordinates of X"
and Y™ equal, we take the same driving Brownian motion and the difference Y™ — X™' remains
non-negative due to the convexity of —log, see the monotoncity result stated in Lemma 2.8.9. On
the other hand, when these two coordinates differ, we take independent driving Brownian motions in
order for their difference to have non-zero quadratic variation (this allows to increase their merging
probability). Under this coupling, the ordering of X™ and Y is thus preserved at all times, and if
X" =Y for some s > 0, then it remains true at all times ¢ > s. Note however that if X" = Y,
then this equality does not remain true at all times except if all the coordinates match.
As in (2.91), the total variation distance between the laws of X}* and Y;” may be bounded by

[Law(¥;?) — Law(X[) |rv < P(X] # ¥;7),
for all £ > 0. We wish to establish that for any given ¢t > 0,

lim P(X}" # Y/") = 0.

n—0o0

To do so, we work with the area between the two processes X™ and Y™, defined by

A= 3 (Y = XPT) = w (V) = m(XP), =0,
=1
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As the two processes are ordered at any time, this is nothing but the geometric area between the
two discrete interfaces i — X;"" and i — Y, associated to the configurations X]* and Y;”. We
deduce that the merging time of the two processes coincide with the hitting time of 0 by this area,
that we denote by 7 = inf{t > 0: A} = 0}.

The process A™ has a very simple structure: it is a semimartingale that behaves like an OU
process with a randomly varying quadratic variation. Let NV; be the number of coordinates that do
not coincide at time ¢, that is

N; := #{ie {1,...,n}: th’i # Ytn’i}.

Then A™ satisfies
dA} = —A}dt + dM;,

where M is a centered martingale with quadratic variation

2
d{(M); = —N,dt. (2.83)
n
Note that whenever t < 7 we have 5
d{M) = —.
n

This a priori lower bound on the quadratic variation of M, combined with the Dubins—Schwarz
theorem, allows to check that 7 < oo almost surely. Note that in view of the coupling between X}’
and V)", we have X" =Y;" for all t > .

Recall the following informal fact: with large probability, a Brownian motion starting from a hits
b by a time of order (a — b)2. For a continuous martingale, this becomes: with large probability, a
continuous martingale starting from a accumulates a quadratic variation of order (a — b)? up to its
first hitting time of b. Our next lemma states such a bound on the supermartingale A™.

Lemma 2.6.2. Leta > b > 0. Let 7, = inf{t > 0 : Ay = b} < o0 almost surely. Then, for all
u=1,
P({A),, = (a—b)%u | Ay = a) < 4u~12

Proof. Without loss of generality one can assume that Ay = a almost surely.
By Ité's formula, for all A = 0, the process

oz o 2 i)
defines a submartingale (taking its values in [0, 1]). Doob's stopping theorem yields
Efe— ] = ME[S,,] > ME[Sp] = e o).
On the other hand, for A = 2(a — b)~'u~'/2, there holds
E[efg@“%b] <P((A);, < (a— b)2u) + efg(a*b)QU]P’«A%b > (a— b)QU)
L= e @ IPB(CAY, > (a - b))
P({A)z7, = (a — b)*u).

<1-

—~

N =

<1-

Consequently one deduces that

P({A)y, = (a —b)%u) < 2(1 —e M0y < gy ™12,
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We are now ready to prove the following lemma:

Lemma 2.6.3. Ifk > % then for every sequence of times (t,), with lim, ,  t, > 0, we have

lim sup [Law(Y;") — Law (X} )|rv = 0.

n—o =
z{€Dy

Proof of Lemma 2.6.3. Let (t,),, be a sequence of times such that lim,_, . ¢, > 0. In view of the
definition of y;n and 7, the initial area satisfies almost surely

AR < dntor
According to Lemma 2.6.2, with a probability that goes to 1, one has
(A™y, —(A™ < 16n* " logn.

On the other hand, by (2.83), we have the following control on the quadratic variation:

(A, — (A% > %T.

One deduces that, with a probability that goes to 1,

16
T< ?n?’_% logn,

and this quantity goes to 0 as n — o0, whenever k > % Therefore for k > % there holds

lim sup P(X; #Y/")=0,

n—w xgeﬁn
thus concluding the proof of Lemma 2.6.3. O

Proof of Theorem 2.1.7 in TV and Hellinger. Let k > % and fix some initial condition z% € D,,. By
the triangle inequality for TV, there holds

|Law(X#) — P llry < [Law(¥;") — PY|lrv + [Law(X[") — Law(Yy")|v- (2.84)

Taking t = t,(1 + ¢) with ¢, = log(y/n|z{|) v log(n), one deduces from Lemma 2.6.1 and the
Pinsker inequality stated in Lemma 2.8.1 that the first term in the right-hand side of (2.84) vanishes
as n tends to infinity. Meanwhile Lemma 2.6.3 guaranties that the second term tends to 0 as n
tends to infinity. We also conclude using the comparison between TV and Hellinger (see Lemma
2.8.1) that

lim Hellinger(Law (X} ), P5 =o.

n—0o0

2.6.2 Proof of Corollary 2.1.8 in TV and Hellinger

Proof of Corollary 2.1.8 in TV and Hellinger. By Lemma 2.8.1 and the triangle inequality for TV,
we have

sup  [Law(X]) = P/|rv < sup  |Law(Y;") — Law(X?)|rv

xge[_anvan]n xge[_anvan]n

+  sup \/2Kuuback(Law(Ytn)\P,§).

zi€[—an,an]™
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Take t = (1 + )¢y, with ¢, = log(nay,). Lemmas 2.6.1 and 2.6.3, combined with the assumption
made on (a;,), show that the two terms on the right-hand side vanish as n — . Using Lemma
2.8.1, the same result holds for Hellinger.

On the other hand, take z("* = a,, for all i and note that 7(z{}) = na, goes to +00 as n — . By
Corollary 2.1.4 we find

lim sup  dist(Law(X{}_,. ) | PA =1

n—aon zpe[—an,an]”

whenever dist € {TV, Hellinger}. O

2.6.3 Proof of Theorem 2.1.10
Proof of Theorem 2.1.10. Lower bound. The contraction property provided by Lemma 2.8.2 gives
Kullback(Law (X)) | P?) > Kullback(Law (7 (X)) | P2 o n™ ).

By Theorem 2.1.3 P,o7n ! = N(0,1) and Y = 7(X™) is an OU process weak solution of Yy =
7(XF) and dY; = v/2dB; — Y;dt. In particular for all t > 0, Law(Y;) is a mixture of Gaussian laws
in the sense that for any measurable test function g with polynomial growth,

ELawi[9] = Elg(Yo)] = E[Gi(Yo)]  where  Gi(y) = Exrye—r,1-e21)[9]-
Now we use (again) the variational formula used in the proof of Lemma 2.8.2 to get

Kullback(Law (7 (X{")) | Pf or™t) = Sup{ELaw(w(Xt"))[g] —log Er(o,1)[e?]},
g

and taking for g the linear function defined by g(x) = Az for all x € R and for some A\ # 0 yields

)\2

Kullback(Law(r(X™) | P8 o 7~1) > Ae~ tZJW (dr) ~ 5

Finally, by using the assumption on first moment and taking A small enough we get, for all ¢ € (0, 1),

nli_rgo Kullback(Lavv(Tr(X(1 o) log(n ) | Pﬁ o l) = 400,

Upper bound. From Lemma 2.8.7 we have, for all ¢ > 0
Kullback(Law (X[) | P?) < Kullback(Law (Xg) | P2)e™2.

Arguing like in the proof of Lemma 2.6.1 and using the contraction property of Kullback provided
by Lemma 2.8.2 for the map ¥ defined in (2.17), we can write the following decomposition

Kullback(Law (X{) | P?) < Kullback(®7_,u; | P2))
= S(®1pi) + Egp_ i, [E] +log CF,
Z S () + ZJJ(I)dmC@du] + Cn.
i#]
Combining (2.80) with the assumptions on the p;'s yields for some constant C' > 0
Kullback(Law (X{) | P?) < Cn?
and it follows finally that for all € € (0,1),
lim Kullback(Law (X(14¢)10g(n)) | P) = 0.

n—o0
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2.7 Cutoff phenomenon for the DOU in Wasserstein

2.7.1 Proofs of Theorem 2.1.7 and Corollary 2.1.8 in Wasserstein
Let (X¢),, be the DOU process. By Lemma 2.8.7, for all ¢ > 0 and all initial conditions X € Dy,
Wasserstein?(Law (X;), P?) < e”*Wasserstein? (Law(Xg), P?).

Suppose now that Law(X(') = d;z. Then the triangle inequality for the Wasserstein distance gives
WassersteinQ(éwg, PPy = j|$6‘ — z)? PP(dx) < 2|28 + 2 J |z P8 (dx).

By Theorem 2.1.3, the mean at equilibrium of | X*|? equals 1 + g(n — 1) and therefore

f|x12pf(dx> 14 g(n 1),

We thus get

Wasserstein?(Law (X[), PP) < 2(|28)? + 1 + g(n —1))e 2.

Set ¢, := log(|zg]) v log(y/n). For any € € (0,1), we have

lim Wasserstein(LaW(X(”Ha)Cn), P2 =0

n—0o0

and this concludes the proof of Theorem 2.1.7 in the Wasserstein distance.
Regarding the proof of Corollary 2.1.8, if z € [—ay, an]™ then |z{| < v/nay,. Therefore if inf,, a,, >
0, setting ¢, = log(y/na,,) we find, as required,

lim sup  Wasserstein(Law(X(} ., ), P5 =o0.
n—on zpe[—an,an]” "

2.7.2 Proof of Theorem 2.1.9

This is an adaptation of the previous proof. We compute
Wassersteinz((smg, PPy = J|x8 — z|? P?(dx)
<2af = pal? +2 [ Ipn - af? P(do),

where p,, € D,, is the vector of the quantiles of order 1/n of the semi-circle law as in (2.14). The
rigidity estimates established in [48, Th. 2.4] justify that

lim | |pn — 2> P%(dz) = 0.
n—o0
If |x§ — pn| diverges with n, we deduce that for all € € (0, 1), with t,, = log(|z§ — pn|).

lim Wasserstein(Law(XﬁJrs)tn), Pff) = 0.

n—oo

On the other hand, if |z{] — p,,| converges to some limit « then we easily get, for any ¢ > 0,

lim Wasserstein?(Law (X[), P?) < a2e™ 2.
n—0o0
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Remark 3 (High-dimensional phenomena). With X,, ~ PP in the bias-variance decomposition
[ 1w = a2 P2(A2) = X, — puf? + E(X, ~ BX, D),

the second term of the right hand side is a variance term that measures the concentration of the
log-concave random vector X,, around its mean EX,,, while the first term in the right hand side
is a bias term that measures the distance of the mean EX,, to the mean-field limit p,. Note also
that E(| X, —EX,|?) = E(|X,]?) — |EX,]? =1+ g(n —1) — |EX,,|?, reducing the problem to the
mean. We refer to [140] for a fine asymptotic analysis in the determinantal case 3 = 2.

2.8 Appendix

2.8.1 Distances and divergences

We use the following standard distances and divergences to quantify the trend to equilibrium of
Markov processes and to formulate the cutoff phenomena.

The Wasserstein—Kantorovich—-Monge transportation distance of order 2 and with respect to the
underlying Euclidean distance is defined for all probability measures 1 and v on R™ by

2
Wasserstein(u,y)=((1nf)E[|X Y| ])/ e [0, +o0] (2.85)

where |z| = 4/z] + - - + 22 and where the inf runs over all couples (X,Y) with X ~ pand Y ~ v.

The total variation distance between probability measures p and v on the same space is
= vy = Sup [n(A) —v(A)[ € [0,1] (2.86)

where the supremum runs over Borel subsets. If 11 and v are absolutely continuous with respect to a
reference measure A with densities f, and f, then |pu—v|rv = 3 §|fu — fuld\ = 3| f. — fulloron

The Hellinger distance between probability measures 1 and v with densities f,, and f, with
respect to the same reference measure \ is

Hellinger(u, ) (f (VFu— \/E)%u)m—( JMdA) e [0, 1]. (2.87)

This quantity does not depend on the choice of A\. We have Hellinger(u, v) = %H« Fu= T2
Note that an alternative normalization is sometimes considered in the literature, making the maximal
value of the Hellinger distance equal v/2.

The Kullback—Leibler divergence or relative entropy is defined by
Kullback(v | u) = flog g"du = f L ]og 9L du e [0, +o0] (2.88)

if v is absolutely continuous with respect to x, and Kullback(v | 1) = +00 otherwise.

The x? divergence or relative variance is given by

dv 2 dv 2

L2(p)
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We set it to +o0 if v is not absolutely continuous with respect to p. If 42 and v have densities f,
and f, with respect to a reference measure A then x?(v | ) = ((f2/f,)d\ — 1.

The (logarithmic) Fisher information or divergence is defined by

v :
duzf - du=4ﬂv d
dp

if v is absolutely continuous with respect to i, and Fisher(v | ) = +00 otherwise.

Each of these distances or divergences has its advantages and drawbacks. In some sense, the
most sensitive is Fisher due to its Sobolev nature, then x?, then Kullback which can be seen as a
sort of L't = Llog L norm, then TV and Hellinger which are comparable, then Wasserstein, but
this rough hierarchy misses some subtleties related to some scales and nature of the arguments.

Some of these distances or divergences can generically be compared as the following result shows.

Fisher(v | p) f‘Vlog dv

dp € [0, +0] (2.90)

Lemma 2.8.1 (Inequalities). For any probability measures p and v on the same space,

| — v|3y < 2Kullback(v | p)
2Hellinger?(u, v) < Kullback(v | )
Kullback(v | p) < 2x(v | ) + X*(v | )
Hellinger? (11, v) < || — v|rv < Hellinger (s, v)y/2 — Hellinger(u, v)2.

We refer to [208, p. 61-62] for a proof. The inequality between the total variation distance and
the relative entropy is known as the Pinsker or Csiszar—Kullback inequality, while the inequalities
between the total variation distance and the Hellinger distance are due to Kraft. There are many
other metrics between probability measures, see for instance [211, 133] for a discussion.

The total variation distance can also be seen as a special Wasserstein distance of order 1 with
respect to the atomic distance, namely

= vley = inf B(X #Y) = inf Ellxsv]e(0.1] (291)

)

where the infimum runs over all couplings X ~ pand Y ~ v. This explains in particular why TV is
more sensitive than Wasserstein at short scales but less sensitive at large scales, a consequence of
the sensitivity difference between the underlying atomic and Euclidean distances. The probabilistic
representations of TV and Wasserstein make them compatible with techniques of coupling, which
play an important role in the literature on convergence to equilibrium of Markov processes.

We gather now useful results on distances and divergences.

Lemma 2.8.2 (Contraction properties). Let p and v be two probability measures on a same mea-
surable space S. Let f : S — T be a measurable function, where T is another measurable space.

e Ifdist € {TV, Kullback, x?} then

dist(vo f= | po f71) < dist(v | p).

e IfS—R", T = R¥ then, denoting |y, = sup,.., LEI=10),

Wasserstein(puo f 1, vo f71) < Ifll;p, Wasserstein(u, v).
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The notation f~! stands for the reciprocal map f~1(A) = {y € S : f(x) € A} and uo ftis
the image measure or push-forward of i by the map f, defined by (o f~1)(A4) = pu(f~1(A)). |
terms of random variables we have Y ~ o f~1if and only Y = f(X) where X ~ p.

The proof of the contraction properties of Lemma 2.8.2 are all based on variational formulas.
Note that following [253, Ex. 22.20 p. 588], there is a variational formula for Fisher that comes
from its dual representation as an inverse Sobolev norm. We do not develop this idea in this work.

Proof. The proof of the contraction property for Wasserstein comes from the fact that every coupling
of pu and v produces a coupling for p1o f~! and v o f~!. Regarding TV, the contraction property
is a consequence of the definition of this distance and of measurability. In the case of Kullback, the
property can be proved using the following well known variational formula:

Kullback(v | ) = sup{E,[g] — logE,[e?]}
9

where the supremum runs over all g € L!(v), or by approximation when the supremum runs over
all bounded measurable g This variational formula can be derived for instance by applying Jensen's
inequality to — log E, [eY “] Equality is achieved for g = log(dr/du). Now, taking g = ho f gives

Kullback(v | 1) = E,op-1[h] — logE . p-1[e"],
and it remains to take the supremum over h to get

Kullback(v | 1) = Kullback(vo f=4 | po f71).
The variational formula for Kullback(- | p) is a manifestation of its convexity, it expresses this
functional as the envelope of its tangents, its Fenchel-Legendre transform or convex dual is the
log-Laplace transform. Such a variational formula is equivalent to tensorization, and is available for
all @-entropies such that (u,v) — ®”(u)v? is convex, see [76, Th. 4.4]. In particular, the analogous

variational formula as well as the consequence in terms of contraction are also available for x? which
corresponds to the ®-entropy with ®(u) = u? — 1 (variance as a ®-entropy). O

Lemma 2.8.3 (Scale invariance versus homogeneity). The total variation distance is scale invariant
while the Wasserstein distance is homogeneous just like a norm, namely for all probability measures
p and v on R™ and all scaling factor o € (0, 00), denoting u, = Law(cX) where X ~ u, we have

ltte — vo|Tv = ||t — v|TV while Wasserstein(ue, vs) = o Wasserstein(u, v).

Proof. For the Wasserstein distance, the result follows from

1/2
Wasserstein(uq, Vy) =<()i(n}f/)E[\aX — UY]2]> = oWasserstein(u, v) ,

while for the TV distance, it comes from the fact that A — A, := {ox : x € A} is a bijection. [

We turn to the behavior of the distances/divergences under tensorization.
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Lemma 2.8.4 (Tensorization). For all probability measures iy, ..., u, and vi,...,v, on R, we
have
n
Hellinger? (@ i, @ 1143) = 1 — H (1 — Hellinger? (p;, VZ‘)),
i=1

Kullback(® v; | @1 1) = Z Kullback(v; | ),
i=1

X2(®?=1:ui ‘ ®?=1Vi> =1+ H(X2(Mia l/i) + 1)7
Fisher(®;_ v | @7 i) = Z Fisher(v; | ps),
Wasserstein® (@7, s, @1 v;) = Z Wasserstein? (u;, v;),

n
max [ — villrv < | @y s — & yvilrv < ) lwi — villov.
1<ign 4

The equality for the Wasserstein distance comes by taking the product of optimal couplings. The
first inequality for the total variation distance comes from its contraction property (Lemma 2.8.2),
while the second comes from |[(ai---an) — (bi---bp)| < Dy lai — bil(ar---ai—1)(bit1---by),
ai,...,an,b1,...,by € [0,+00), which comes itself from the triangle inequality on the telescoping
sum Z?Zl(ci—ci_l) where C; = (a1 s ai)(bi+1 s bn) via Ci—Ci—1 = (ai—bi)(al cee ai_l)(le s bn)

Lemma 2.8.5 (Explicit formulas for Gaussian distributions). For all n > 1, my,ms € R", and all
n X n covariance matrices .1, X9, denoting T'y = N'(u1,%1) and Ty = N (g, X2), we have

. det(2122)1/4 1 1 _ i _
2 _q . Ue\ALe2) (Z14+22) " H(ma—m1)-(ma2—my)
Hellinger<(T'1,I'g) = 1 det(21;22)1/26 (B4 2=mi)-(mz—m1)
2Kullback(Ty | Te) = By (m1 — ma) - (m1 — ma) + Tr(X5 181 — 1,,) + log det(ZoX7 ),
(T | Ta) = 1 dot(®s) b7 BT B ) ) ma ) (ma )

+
\/det(Zl) det(222 — 21)
Fisher(I'; | T2) = |25 (m1 — ma)|? + Tr(X528; — 2551 + 271

Wasserstein?(I'y, T') = |mq — ma|? + Tr(Zl +3Y5—2 \/2122\/21),

where the formula for x*(T'y | T'2) holds if 2Y5 > %1, and x*(T'y | T's) = +c0 otherwise. Moreover
the formulas for Fisher and Wasserstein rewrite, if ¥1 and Yo commute, ¥1X9 = Y91, to

Fisher(I'y | T'g) = |25 (m1 — mo)|* + Tr(55; (82 — £1)%27 )
Wasserstein?(T'y, T'g) = |m1 — ma|* + Tr((v/Z1 — v/22)?).
Regarding the total variation distance, there is no general simple formula for Gaussian laws, but

we can use for instance the comparisons with Kullback and Hellinger (Lemma 2.8.1), see [98] for
a discussion.

Proof of Lemma 2.8.5. We refer to [204, p. 47 and p. 51] for Kullback and Hellinger, and to [135]
for Wasserstein, a far more subtle case. The formula for x2(I'; | T'y) follows easily from a direct
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computation. We have not found in the literature a formula for Fisher. Let us give it here for the
sake of completeness. Using E[X;X;] = X;; + m;m; when X ~ N(m,X) we get, for all n x n
symmetric matrices A and B

E[AX - BX] Z Ay ByE[X; X)) = Z Ay Bir(Zjk + mymy) = Trace(AXB) + Am - Bm
7]7k 1 ,],k‘ 1

and thus for all n-dimensional vectors a and b,

E[A(X —a)-B(X —b)] =E[AX - BX]|+ A(m —a) - B(m —b) — Am - Bm
= Trace(AXB) + A(m — a) - B(m — b)

Now, using the notation ¢;(z) = X (z — m;) - (x — m;) and || = det(%;),

ﬂv ql(z> qz(z)
|21

frEQ (& —ma) — 57 (& — my) 2

_a2(=)
e 2

—dzx
\/ 27| 2|

a1 (=)
e 2

—dz
A/ 27T’§:1|

_ f (155 (& — ma)|? — 255 (& — ma) - ST (& — my) + |57 (@ — ma)[?)

Fisher(I'y | T'2) =4

q1(x)
e 2

—dx
A/ 27T|§31|

= Trace(X5 2155 1) + |25 1 (my — ma)[* — 2Trace(X5 1) + Trace(3 1)
= Trace(X5 2% — 2551 + 271 + |25 (my — ma)|?.

The formula when XX = Y93 follows immediately. O

2.8.2 Convexity and its dynamical consequences
We gather useful dynamical consequences of convexity. We start with functional inequalities.

Lemma 2.8.6 (Logarithmic Sobolev inequality). Let P be the invariant law of the DOU process
solving (2.3). Then, for all law v on R™, we have

1
Kullback(v | P?) < 2—Fisher(u | P5).
n

Moreover the constant % is optimal.
Furthermore, finite equality is achieved if and only if dv/dPY is of the form eM@1+-+en) X e R.

Linearizing the log-Sobolev inequality above with dl//de = 1+¢ef gives the Poincaré inequality
Var s (f) < —ffode. (2.92)

It can be extended by truncation and regularization from the case where f is smooth and compactly
supported to the case where f is in the Sobolev space Hl(Pff). Finite equality is achieved when
f is an eigenfunction associated to the eigenvalue —1 of G, namely f(z) = a(xy + -+ + =) + b,
a,b € R, hence the other name spectral gap inequality. It rewrites in terms of x? divergence as

(v | P%) < ﬂ ‘ apPs. (2.93)
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The right-hand side plays for the x? divergence the role played by Fisher for Kullback.

We refer to [113, 81] for a proof of Lemma 2.8.6. This logarithmic Sobolev inequality is a
consequence of the log-concavity of PP with respect to N/ (0, %In) A slightly delicate aspect lies in
the presence of the restriction to D,,, which can be circumvented by using a regularization procedure.

There are many other functional inequalities which are a consequence of this log-concavity, for
instance the Talagrand transportation inequality that states that when v has finite second moment,

1
Wasserstein? (v, P?) < —Kullback(v | P?)
n
and the HWI inequality! that states that when v has finite second moment,

Kullback(v | P?) < Wasserstein (v, P?)/Fisher(v | P}) — gWassersteinz(u | P9),

and we refer to [253] for this couple of functional inequalities, that we do not use here.

Lemma 2.8.7 (Sub-exponential convergence to equilibrium). Let (X{'),., be the DOU process

solution of (2.3) with 3 =0 or 8 > 1, and let P? be its invariant law. Then for all t > 0, we have
the sub-exponential convergences

&2 (Law(XD) | PY).

e~ 2Kullback(Law(X}) | P?),
e~ 2Fisher(Law (X)) | P?),

e~ 2 Wasserstein? (Law (X)), PP).

Fisher(Law (X/'
Wasserstein? (Law (X[), P?

INCININ N

(Law(X{") | B)
Kullback(Law (X[) | P?)
(Law(X{") | B)
2 )

Recall that when 5 > 0 the initial condition X is always taken in D;,.

For each inequality, if the right-hand side is infinite then the inequality is trivially satisfied. This
is in particular the case for Kullback and Fisher when Law(X(') is not absolutely continuous with
respect to the Lebesgue measure, and for Wasserstein when Law(X{) has infinite second moment.

Elements of proof of Lemma 2.8.7. The idea is that an exponential decay for Kullback, x?, Fisher,
and Wasserstein can be established by taking the derivative, using a functional inequality, and using
the Gronwall lemma. More precisely, for Kullback it is a log-Sobolev inequality, for x? a Poincaré
inequality, for Wasserstein a transportation type inequality, and for Fisher a Bakry—Emery I'y
inequality, see for instance [7, 16, 253]. It is a rather standard piece of probabilistic functional
analysis, related to the log-concavity of PP, We recall the crucial steps for the reader convenience.
Let us set u; = Law(X/') and p = PP For t > 0 the density p;, = dp/dp exists and solves the
evolution equation dy;p; = Gp; where G is as in (2.22). We have the integration by parts

| r69au = | gsan =~ [ Vi Vodn.

For Kullback, we find using these tools, for all t > 0, denoting ®(u) := ulog(u),

o:Kullback (11 | p) = J ' (f)Gfrdp = —% f " (f)IV fel*dp

1
= ——Fisher(u: | pn) < —2Kullback(pe | i), (2.94)
n

YHere “H" is the capital  used by Boltzmann for entropy, “W" is for Wasserstein, “I" is for Fisher information.
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where the inequality comes from the logarithmic Sobolev inequality of Lemma 2.8.6. It remains to
use the Gronwall lemma to get the exponential decay of Kullback.

The derivation of the exponential decay of the Fisher divergence follows the same lines by
differentiating again with respect to time. Indeed, after a sequence of differential computations and
integration by parts, we find, see for instance [7, Ch. 5], [16], or [253],

oiFisher(py | p) = —2nfftf2(log(ft))d,u, (2.95)

where Ty (f) := #f’& +1V7 f2 is the Bakry — Emery “Gamma-two” operator of the dynamics. Now
using the convexity of V, we get, by the Grénwall lemma, for all £ > 0,

oiFisher(py | p) < —2Fisher(u: | p). (2.96)

This can be used to prove the log-Sobolev inequality, see [7, Ch. 5], [16], and [253]. This differential
approach goes back at least to Boltzmann (statistical physics) and Stam (information theory) and
was notably extensively developed later on by Bakry, Ledoux, Villani and their followers.

For the Wasserstein distance, we proceed by coupling. Indeed, since the diffusion coefficient is
constant in space, we can simply use a parallel coupling. Namely, let (X/),-, be the process started
from another possibly random initial condition X, and satisfying to the same stochastic differential
equation, with the same BM. We get

A(X: — X)) = —(VE(X,) - VE(X)))dt,

hence

d(Xy — X{) - (Xi — X}) = ——((VE(Xy) — VE(X})) - (X¢ — X7))dt. (2.97)

S

Now since E is uniformly convex with V2E > nl,, we get, for all 2,y € R",

\Y

(VE(z) = VE(y)) - (z —y) = nlz — y/?,

which gives
d|X; — X[]? < —2|X; — X/ dt

and by the Gronwall lemma,
|1 X: — X{* < e X0 — Xg|*.

It follows that
Wasserstein? (Law (X;), Law(X})) < e ' E[| Xo — X{|*].

By taking the infimum over all couplings of X and X, we get
Wasserstein? (Law (X;), Law(X})) < e ?*Wasserstein®(Law(Xy), Law(X{)).
Taking X ~ PP we get, by invariance, for all ¢ > 0,
Wasserstein?(Law (X;), P?) < e”*Wasserstein? (Law(Xg), P?).
O

Lemma 2.8.8 (Monotonicity). Let (X}'),5, be the DOU process (2.3), with 3 = 0 or 8 > 1
and invariant law PJ. Then for all dist e {TV, Hellinger, Kullback, x2, Fisher, Wasserstein}, the
function t > 0 — dist(Law(X[") | P}) is non-increasing.
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Elements of proof of Lemma 2.8.8. The monotonicity for TV, Hellinger, Kullback, x> comes from
the Markov nature of the process and the convexity of

Tlu—1| if dist =TV

1 —u if dist = Hellinger?
ulog(u) if dist = Kullback
u? —1  if dist = x?

ur— P(u) =

This is known as the ®-entropy dissipation of Markov processes, see [75, 253, 16]. This can also be
seen from (2.94). The monotonicity for TV follows also from the contraction property of the total
variation with respect to general Markov kernels, see [190, Ex. 4.2].

The monotonicity for Fisher comes from the identity (2.95) and the convexity of V. By (2.94)
this monotonicity is also equivalent to the convexity of Kullback along the dynamics. The mono-
tonicity for Wasserstein can be obtained by computing the derivative along the dynamics starting
from (2.97), but this is more subtle due to the variational nature of this distance and involves the
convexity of V, see for instance [40, Bottom of p. 2442 and Lem. 3.2].

The monotonicities can also be extracted from the exponential decays of Lemma 2.8.7 thanks
to the Markov property and the profile e™* = 1 —t + o(t) of the prefactor in the right hand side. [J

The convexity of the interaction — log as well as the constant nature of the diffusion coefficient
in the evolution equation (2.3) allows to use simple “maximum principle” type arguments to prove
that the dynamic exhibits a monotonous behavior and an exponential decay.

Lemma 2.8.9 (Monotonicity and exponential decay). Let (X{'),5 and (Y{"),-, be a pair of DOU
processes solving (2.3), = 1, driven by the same Brownian motion (By);=o on R™ and with
respective initial conditions X} € D,, and YJ* € D,,. If for all i € {1,...,n}

X(?)l,i < Yon,i
then the following properties hold true:
e (Monotonicity property) for all t = 0 and i e {1,...,n},

n,% n,%
Xt: <}/ta’

o (Decay estimate) for all t = 0,

max (V"' — X{") < max (Y — X ")e .
ie{l,...,n} ie{l,...,n}

Proof of Lemma 2.8.9. The difference of Y;* — X}* satisfies

o (Yy" —Xt’)zﬁ Z

Jig#i

(¥ = X) = (0 = X
(¥ =YX = X7

— (V"= X, (2.98)

Since there are almost surely no collisions between the coordinates of X", resp. of Y, the right-hand
side is almost surely finite for all ¢ > 0 and every process Y, — X;"" is C! on (0,0). Note that at
time 0 some derivatives may blow up as two coordinates of X™ or Y™ may coincide.

Let us define

M(t) = e (V™ = X') and m(t) = o fnin (Y™ —X).



72 Chapter 2. Universal cutoff for Dyson Ornstein Uhlenbeck process

Elementary considerations imply that M and m are themselves C' on (0, 00) and that at all times
t > 0, there exist 4, j such that

atM(t) = at(Y;n’i — th’l) and 6tm(t) = at(}/tnvj _ th,j)‘

This would not be true if there were infinitely many processes of course. Now observe that if at time
t > 0 we have V"' — X" = M(t), then

@(Y;n’i N XZ"L,Z) < _(Y;n,i N XZL’Z)

This implies that 0; M (t) < —M (t). Similarly, we can deduce that d;m(t) = —m(t). Integrating
these differential equations, we get for all t > t5 > 0

M(t) < e T M(ty), m(t) = e Ttm(ty).

Since all processes are continuous on [0, 00), we can pass to the limit ¢y | 0 and get for all ¢ > 0,

\Y

. Yn,i N Xn,i 0’ Yn,z' - Xn,i < —t Yn,z' - Xn,i .
ie{gri}gN}( f ) ie{IE.E.i.),{N}( f ¢ <e iegﬁfN}( 0 0)

O

Remark 4 (Beyond DOU dynamics). The monotonicity property of Lemma 2.8.9 relies on the
convexity of the interaction —log, and has nothing to do with the long-time behavior and the
strength of V. In particular, this monotonicity property remains valid for the process solving (2.3)
with an arbitrary V provided that it is C' and there is no explosion, even in the situation where V
is not strong enough to ensure that the process has an invariant law. If V is C? then the decay
estimate of Lemma 2.8.9 survives in the following decay or growth form:

, , . R
max (V"' — X["') < max (Y] — X{)el "=V > 0.
i€{l,...,n} i€{l,...,n}
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Figure 2.1: A trajectory of a single DOU with n = 3 and 2 = (—10,0,10), 5 = 0 on top and
B = 2 on bottom. The driving Brownian motions are the same.
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Figure 2.2: Plot of the function ¢ — Hellinger(Law(X}") | PP (see (2.39) for the explicit formula)
n|2
with n = 50, 8 =0, and % = 1. Note that log(50) ~ 3.9.



CHAPTER 3

Optimal local laws and CLT for the
long-range Riesz gas

This chapter is based on the article Optimal local laws and CLT for the circular Riesz gas, arXiv
preprint arXiv:2112.05881.
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3.1 Introduction

3.1.1 Setting of the problem

In this paper, we study the one-dimensional Riesz gas on the circle. We denote T := R/Z. For a
parameter s € (0,1), let us consider the Riesz s-kernel on T, defined by

gs(z) = lim ( Z |l<::33|3 - 138711_8) =((s,z) +¢(s,1 —x), (3.1)

k=—n

where ((s,x) stands for the Hurwitz zeta function [31]. Note that g is the fundamental solution of
the fractional Laplace equation on the circle

1—s

(=A)2 g =cs(d— 1), (3.2)

with ¢g given b
o Tz va N
“TTE) 2 (3.3)

We endow T with the natural order 2 < y if x = 2’ + k, y =3/ + k' with K,k € Z, 2,y € [0,1)
and 2/ < ' and work on the set of ordered configurations

DNz{XNz(xl,...,xN)eTN:$2—:L“1<...<:L‘N—x1}.
On Dy let us consider the energy

Hn ZXNEDN’_’N_Sng(xi_xj)a (3.4)
i#j

where g is given by (3.2). The circular Riesz gas, at the inverse temperature 5 > 0, is defined by
the Gibbs measure

dPn,5 = exp(=fHN(XN)) LDy (Xn)dX N,

1
ZNg

where Z g is the normalizing constant, called the partition function, given by
Zng = f e PN XN g X .
i DN

Throughout the paper, s is a fixed parameter in (0,1).

The choice of the normalization in the definition of the energy (3.4) appears to be a natural
choice, making 3 the effective inverse temperature governing the microscopic scale behavior.

The model described above belongs to a family of interacting particle systems named Riesz gases.
On RY, those are associated to a kernel of the form || =% with s > 0. The Riesz family also contains
in dimensions 1 and 2 the so-called log-gases with kernel —log|z|. For d > 2 and s = d — 2,
|| =% is the fundamental solution of the Laplace equation on R? and therefore corresponds to the
Coulombian interaction. The parameter s determines the singularity as well as the range of the
interaction. When s > d, the interaction is short-range and the system, referred to as hypersingular
Riesz gas, resembles a nearest-neighbour model. For s € (0,d) or s = 0 and d = 1,2, Riesz gases
are long-range particle systems, which have, as such, attracted much attention in both mathematical
and physical contexts.

The 1D log-gas, also called S-ensemble has been extensively studied in the last decades, partly
for its connection to random matrix theory. Indeed, it corresponds, in the cases (5 € {1, 2,4}, to the
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distribution of the eigenvalues of N x N symmetric/Hermitian/symplectic random matrices with
independent Gaussian entries (see the original paper of Dyson [106]). The 1D log-gas also appears
in many other contexts such as zeros of random polynomials, zeros of the Riemann function and is
conjectured to be related for instance to the eigenvalues of random Schrédinger operators [191]. The
2D Coulomb gas is another fundamental model, which has raised considerable attention in the last
decades. Among many other examples, it is connected to non-unitary random matrices, Ginzburg-
Landau vertices, Fekete points, complex geometry, the XY model and the KT transition [238]. For
other values of s, let us mention that the case s = 2 in dimension 1 is an integrable system, called
classical Calogero-Sutherland model. The study of minimizers of Riesz interactions is also a dynamic
topic [143, 82] and is the object of long-standing conjectures related to sphere packing problems
[36]. From a statistical physics perspective, even in dimension 1, the Riesz gas is not fully elucidated
since the classical theory of the 60-70s [221] fails to be applied due the long-range nature of the
interaction. The reader may refer to the nice review [191], where an account of the literature and
many open problems on Riesz gases are given.
As the number of particles N tends to infinity, the empirical measure

1 N

T N£
converges almost surely under Py g (in a suitable topology) to the uniform measure on the circle.
This result can be obtained through standard large deviations techniques (see for instance [236,
Ch. 2] for the case of Riesz gases on the real line, which adapts readily to the periodic setting).
In the large N limit, particles tend to spread uniformly on the circle, which suggests that particles
spacing (or gaps) N(z;+r — ;) concentrate around the value k. The first goal of this paper is
to quantify the fluctuations of the gaps around their mean. We establish the optimal size of the
fluctuations of N(x;4r — x;), which turns out to be in O(5~ 2k2), as conjectured in the recent
physics paper [234]. This type of result is referred to in the literature as a rigidity estimate. It was
intensively investigated for 3-ensembles (see for instance [46, 49, 47, 51]), but the correct observable
in that case is x; — ~;, where z; is the i-th particle and ~; the classical location of the i-th particle,
that is the corresponding quantile of the equilibrium measure arising in the mean-field limit.

A complementary way to study the rigidity of the system is to investigate the fluctuations of

linear statistics of the form

N
Flucty[¢ Z ((x'wi) — Ny f £, (3.5)

where £ : T — R is a given measurable test-function and {{x} a sequence of numbers in (0, 1].
For smooth test-functions, many central limit theorem (CLT) results are available in the literature
on 1D-log gases, including [157, 241, 44, 46, 49, 27, 51, 145]. For 1D Riesz gases with s € (0,1),
to our knowledge, no prior results on CLT for linear statistics are known. In this paper we obtain a
quantitative CLT for (3.5), which is valid at all scales {¢;y} down to microscopic scales {y » . A
major direction in random matrix theory is to establish CLTs for (3.5) allowing test-functions which
are as singular as possible. Indeed it is a natural question to capture the fluctuations of the number
of points and of the logarithmic potential, which are key observables for the log-gas. The question
of the optimal regularity on the test-function has also drawn a lot of interest because it encapsulates
non-universality features in the context of Wigner matrices. In this paper, the stake for us is to
provide a robust method allowing to treat singular test-functions in a systematic way. The main
question we investigate is therefore a regularity issue. Using new concentration inequalities we are
able to treat singular test-functions, including characteristic functions of intervals and inverse power
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function up to the critical power 5. In particular we obtain a CLT for the number of points, thus
extending to a Riesz (periodic and fully convex) setting some of the recent results of [51].

Let us now introduce the main tools and objects used in the proofs. For any reasonable Gibbs
measure on Dy (or RY), the fluctuations of any (smooth) statistics ' : Dy — R are related to
the properties of a partial differential equation called the Helffer-Sjostrand (H.-S.) equation, which is
sometimes referred to as a Witten Laplacian (on 1-forms). This equation appears in [242, 243, 149].
It is more substantially studied in [148, 147, 201], where it is used to establish correlation decay,
uniqueness of the limiting measure and log-Sobolev inequalities for models with convex interactions.
The purpose of the present paper is to show how the analysis of Helffer-Sjéstrand equations provides
powerful tools to study the fluctuations of linear statistics with singular test-functions.

The proof of the near-optimal rigidity is essentially similar to [46]. It exploits the convexity of the
interaction and is thus very specific to 1D systems. The method is mainly based on a concentration
inequality for divergence-free functions and on a key convexity result due to Brascamp [55].

The method of proof of the CLT for linear statistics starts by performing the mean-field transport
argument usually attributed to Johansson [157]. When studying the Laplace transform of linear
statistics Flucty[£], this consists in applying a well-chosen change of variables on each point,
depending only on its position, to transport the uniform measure on the circle to the perturbed
equilibrium measure (perturbed by the effect of adding tFlucty[€] to the energy). In this paper,
one computes variances instead of Laplace transforms and the implementation of the transport of
[157] takes the form of an integration by parts. This argument is a variation of the so-called loop
equations (see [46] for various comments on this topic). It is the starting point of many CLTs on
[B-ensembles and Coulomb gases but it received a more systematic analysis in the series of works
[184, 27, 181, 187, 239]. One can also interpret this transport as a mean-field approximation of the
H.-S. equation associated to (the gradient of) linear statistics.

Since the transport is an approximate solution (a mean-field approximation) of the H.-S. equation,
it creates an error term, sometimes called loop equation term, which is essentially a local weighted
energy and the heart of the problem is to estimate its fluctuations. In contrast, in [184, 27, 181, 239]
the typical size in a large deviation sense of this error term is evaluated, rather than the size of its
fluctuations. Let us point out however that the later seems untractable in dimension d > 2 because
of the lack of convexity. The core of this paper is about the control on the fluctuations of this loop
equation term through the analysis of the related H.-S. equation. Our proof is based on the following
three technical inputs:

e The near-optimal rigidity estimates on gaps and nearest-neighbour distances,
e A Poincaré inequality in gap coordinates,
e A comparison principle for the Helffer-Sjéstrand equation.

The use of the comparison principle mentioned above (also known in [72, 149]) is one of the main
novelties of the paper. This is the key technical tool to be able to treat linear statistics with singular
test-functions. Indeed, after performing loop equations techniques, we will study singular local
quantities, for which standard concentration inequalities, such as the Brascamp-Lieb or log-Sobolev
inequalities, do not give the right order of fluctuations.

The central limit theorem is then obtained from a rather straightforward application of Stein's
method. We show how the mean-field transport naturally leads to an approximate Gaussian inte-
gration by parts formula. As a result, quantifying normality boils down to controlling the variance
of the loop equation term. The CLT then follows from the variance bound discussed in the above
comments.
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3.1.2 Main results

The following results are valid for all parameter s € (0, 1), thus covering the entire long-range regime.
Our first result concerns the fluctuations of gaps and discrepancies. We establish the following
near-optimal decay estimate:

Theorem 3.1.1 (Near-optimal rigidity). Let € € (0,1) and 6 = m. There exists two constants
C(B) > 0 and ¢(B) > 0 locally uniform in 8 such that for eachi € {1,...,N} and 1 < k < % we
have S

Prs(IN (zir = 2:) = K| < k349) > 1= C(B)e O (3.6)

Similarly for all € € (0,1), setting § = m there exist two constants C(3) > 0 and ¢(8) > 0

locally uniform in 3 such that for all a € T and ¢y € (0, %), we have

N
PN’B <‘ Z ]l(a—EN,a+€N)(xi) —2N/{y| < (NEN)%—%) =>1- C(ﬂ)e_c(ﬂ)(]\wl\j)&' (3-7)
=1

Theorem 3.1.1 is the natural extension of the rigidity result of [46, Th. 3.1] in the Riesz setting.
As in [46], the controls on the deviations of the considered quantities have exponentially small
probability. This exponential estimate then allows one to control the maximum of the deviations of
the gaps and therefore reduces the phase space to an event where all gaps are close to their standard
value. Theorem 3.1.1 is proved in Section 3.4.

The purpose of the next result is to show that k2 is the exact fluctuation scale of the gap
N(xi+x — x;). This is equivalent to proving that Zf\il L (0,e5) (i) fluctuates at scale (Nly)2, for
all /5 € (0,1). In fact we consider a larger class of linear statistics with singular test-functions.
These are defined by

N
Flucty[¢] = Zzlg(a;i) — N ﬁr £,

where £ : T — R is a singular but piecewise smooth test-function. We are also able to treat
linear statistics Flucty[¢(¢5'-)] with test-functions supported at any scales {¢y}, including the
microscopic scale. We make the following assumptions on £ and on the sequence {{y}:

Assumptions 3.1.1.
(i) (Global regularity) The map £ is in C~57%(T,R) for some £ > 0.

(ii) (Piecewise regularity) Let 1) = (—A)~2€. The map v is piecewise C2: there exist a; < ... <
ap (p € N) such that on (a;,a;+1), ¥ is C?, for eachi € {1,...,p} (with the convention that

ap+1 = al)-
(iii) (Singularity) For each i € {1,...,p}, there exists a; € (0,1 — 3) such that
C
" < —————. 3.8
V@) < o (38)

(iv) (Support) Let {{x} be a sequence in [0,1). Assume either that & is supported on (—3, 3) or
that {5 = 1. In the first case, we let &y : R — R given by

{5(@ if |z] <

o =1, if |2| >

(3.9)

D= D=
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Let us first comment upon the above assumptions.
Remark 5 (Comments on the Assumptions 3.1.1).

e Assumptions (i) and (iii) compare the singularities of & with the singularity at 0 of |z|~2+¢:
the derivative of order 1 — 5 of { near a singularity a € T is bounded by the derivative of order
-5 2 |z— a|~3%¢. Note that the function x — |z| 2 is the critical inverse power which

does not lie in H%(T,R).

e When the scale {x tends to 0, Assumption (iv) ensures that Fluctn[€(¢5')] is at most of
order O(N/{y).

e The characteristic function § = 1_, ) satisfies Assumptions 3.1.1. Indeed the map 1 =
(=A)73¢ is piecewise C? with two singularities at —a and a and o' satisfies (3.8) with
_ _ e " ~ 1 " ~ 1
o1 = a9 1—s: ¢'(x) L COTap and ¢"(x) L O for some constant
co # 0.

Before stating the theorem, recall the definition of the fractional Sobolev seminorm on the circle
| - |ga, for @ > 0. Let h : T — R in L?(T,R) of Fourier coefficient f(k), k € Z. Whenever it is
finite we call |h|%;o the quantity

Blfa = X k[ |R[* (k).
keZ

Similarly, the fractional Sobolev seminorm of a function h : R — R in L?(R,R), that we also denote
|| e, is defined by

B2 = j €2 (€)de, (3.10)

where h stands for the Fourier transform of h.
The variance of Fluctx[£(-£")] under Py 5 may be expanded as follows:

Theorem 3.1.2 (Variance of singular linear statistics). Let ¢ and {{n} satisfying Assumptions 3.1.1.
Let ip = (—A)72¢. Leta; < ... < a, be the singularities of ¢" and denote 1 + a,...,1+ a,
their order as in (3.8). Let a = max!_; o;. Let us define

1 €2 .. ifin=1
"'z (3.11)
2Bcs |§0|H% if £y — 0, with & as in (3.9).

2 _
0-6_

For all ¢ > 0, there holds
VaI'IPN , [FluctN [5(67\[1)]] _ Nso,g( . + O((NEN)2S_2+maX(1’2a)+E)
? N
= (NN)*(0F + Ly 00 (R [€[72)) + O((N ey ) 2Hmaxti2a)se),
(3.12)

: 1-s - .
Note that since maxoy < 1 — 35, £ € H2 (T,R) and moreover the remaining term in the

expansion (3.12) is always o((N{xn)®).

Remark 6 (On the adaptation to -ensembles). We expect that our method can also give a (log-
correlated) CLT for the test-functions 1(_, 4y and x — log |z — a| for 1D log-gases on the circle or
on the real line when the external potential is convex.
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By Remark 5, the number-variance (i.e variance of the number of points) of the Riesz gas grows
in O(N?), like the variance of smooth linear statistics. In comparison, for the 1D log-gas, smooth
linear statistics fluctuate in O(1) with an asymptotic variance proportional to the squared Sobolev
norm | - |? 1 (see [27] for instance) whereas the number of points in an interval (—a,a) fluctuate

in O(log N). This distinct behavior is due to the fact that the characterize function 1._1 1, is
272

not in H%(T,]R) but is in H%(T,R) for all s € (0,1). Theorem 3.1.2 shows that concerning
the fluctuations, the Riesz gas with s € (0,1) interpolates between the 1D log-gas case s = 0
and the Poisson-type case s = 1. Moreover Theorem 3.1.2 makes the 1D long-range Riesz gas
a hyperuniform particle system in the sense of [249] (meaning that the number-variance is much
smaller than for i.i.d variables).

As mentioned in the beginning of the introduction, the next-order term in the expansion (3.12)
corresponds to the variance of a local energy arising from the mean-field transport of [157], sometimes
referred in the literature to as a loop equation term. One could extract the leading-order of this
variance and relate it to the second derivative of the free energy of the infinite Riesz gas.

The next question we address concerns the asymptotic behavior of rescaled linear statistics. We
show that under the Assumptions 3.1.1 and provided ¢ » % the linear statistics converges after
rescaling to a Gaussian random variable. For any probability measures 1 and v on R let us denote
d(u, v) the distance

dev) = supf [ FaGu =) Iflo < 117 < 1.

We establish the following result:
Theorem 3.1.3 (CLT for singular linear statistics). Let £ and {y satisfying Assumptions 3.1.1.

e The sequence of random variables (N{x)~3Fluctn[£(¢y'-)] converges in distribution to a
centered Gaussian random variable with variance a? given by

9 1 |§‘Z% I'f£N=1

= 3.13
7€~ 98¢, |§0|21;s if {n — 0, with & as in (3.9). (313)
2

o Let Z be a centered Gaussian random variable with variance o?. Then for all e > 0, we have

d(Law((N£y) 2 Flucty[E(£5')]), Law(Z)) = o((NeN)-? + (NeN)—ﬂ—%—maxal—E)).

Theorem 3.1.3 can be interpreted as the convergence of the field vazl gs(zi—)—N §gs(z—-)dx
to a fractional Gaussian field for the weak topology. Observe that if &; and &; have disjoint support
then if s € (0,1), I'; ; is not, in general, equal to 0, which shows that the corresponding fractional
field does not exhibit spatial independence. This reflects the non-local nature of the fractional
Laplacian (—A)% for s € (0,1). Following Remark 5, Theorem 3.1.3 gives a CLT for gaps and
discrepancies:

Corollary 3.1.4 (CLT for the number of points). For all a € T and {{x} such that {x > %, the
sequence of random variables

to\»—t
M =

T5¢(—s,208)" (m;) — 2N£N)

—INLN)
=1
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converges in distribution to a centered Gaussian random variables with variance

cotan(Zs
o?(a) == 7752 )
555
For each i € {1,...,N} and any sequence of integers {kn} with values in {1,..., %} such that

kny — o0 as N — oo, the sequence of random variables

kx

) F (N @iy — @) — k)

S
—3
kN g(_S,
converges in distribution to a centered Gaussian random variables with variance o*(3).

Note that ((—s,2¢n) = O(fy) with ((s,2¢n) ~ £} when {5 — 0. Corollary 3.1.4 is an
extension of the results on the fluctuations of single particles in the bulk for 8-ensembles, see [141]
for the GUE and [51]. Theorem 3.1.3 can also be applied to power-type functions of the form
reTw— ||~ with a € (0, 5).

Corollary 3.1.5 (CLT for power-type functions). Let a€ T and a € (0,%). Let {nx » +. Then

U
V(S L)
= e —al*
converges in distribution to a centered Gaussian random variables with a variance given by (3.11).

. _s . .- . . . 1=s .

The test-function z € T +— |z| ™2 is the critical inverse power which does not lie in H 2 . This
should be compared in the case s = 0 to the test-functions 1(_,,) and —log|z|, for which the
associated linear statistics satisfy a log-correlated central limit theorem as shown for instance in [51].

3.1.3 Context, related results, open questions

Rigidity of $-ensembles As mentioned in the introduction, Theorems 3.1.1 and 3.1.3 are the
natural extensions to the circular Riesz gas of some known results on the fluctuations of 3-ensembles.
We refer again to [46, 49, 47, 51] for rigidity estimates, to [157, 241, 44, 27, 173, 144, 205] for
CLTs for linear statistics with smooth test-functions and to [144, 172] for the case of the circular
B-ensemble. In the case of the GUE, that is for 8 = 2 with a quadratic potential, a CLT for
test-functions in H3 is obtained in [244] using a Littlewood-Paley type decomposition argument.
However as observed in [172, Rem. 1.3], the minimal regularity of the test-function depends on .
Indeed for § = 4, leveraging on variances expansions of [156], [172] exhibits a test-function in H?
such that the associated linear statistics does not have a finite limit. Since the characteristic function
of a given interval is not is H%, the asymptotic scaling of discrepancies in intervals is not of order
1. It is proved in [141] that for the GUE, eigenvalues z; in the bulk fluctuate in O(+/logi) and
that discrepancies are of order y/log N. A general CLT for the characteristic functions of intervals
and for the logarithm function is given in the recent paper [51]. Concerning the method of proof,
let us point out a very similar variation on Stein's method developed in [173], see also [144] for a
high-temperature regime.
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Local laws and fluctuations for the Langevin dynamics A related and much studied question
concerns the rigidity of the Dyson Brownian motion, an evolving gas of particles whose invariant
distribution is given by [-ensemble. The time to equilibrium at the microscopic scale of Dyson
Brownian motion was studied in many papers including [114, 115], see also [45] for optimal relaxation
estimates. A central limit theorem at mesoscopic scale for linear statistics of the Dyson Brownian
Motion is established in [153], thus exhibiting a time dependent covariance structure.

Decay of the correlations and Helffer-Sjostrand representation The decay of the gaps cor-
relations of (-ensembles have been extensively studied in [116], where a power-law decay in the
inverse squared distance is established. The starting point of [116] is based on a a representation
of the correlation function by a random walk in a dynamic random environment or in other words
on a dynamic interpretation of the Helffer-Sjéstrand operator. The paper [116] then develops a
sophisticated homogenization theory for a system of discrete parabolic equations. In a different con-
text, a more direct analysis of the Helffer-Sjéstrand operator has been developed in the groundwork
[201] to characterize the scaling limit of the gradient interface model in arbitrary dimension d > 1.
Combining ideas from [201] and from quantitative stochastic homogenization, the paper [10] then
shows that the free energy associated to this model is at least C** for some o > 0. We also refer
to the recent paper [247] which studies in a similar framework the scaling limit of the non-Gaussian
membrane model. In non-convex settings, much fewer results are available in the literature. One
can mention the work [91] which establishes the optimal decay for the two-point correlation function
of the Villain rotator model in Z¢, for d > 3 at low temperature. It could be interesting to develop
a direct method to analyze the large scale decay of the Helffer-Sjéstrand equation in the context of
one-dimensional Riesz gases. We plan to address this question in future work.

Uniqueness of the limiting point process The question of the decay of the correlations men-
tioned above is related to property of uniqueness of the limiting measure. One expects that after
rescaling, chosen so that the typical distance between consecutive points is of order 1, the point
process converges, in a suitable topology, to a certain point process Rieszg. For s = 0, the lim-
iting point process called Sineg, is unique and universal as proved in [46, 49]. The existence of a
limit was first established in [250] for S-ensembles with quadratic exterior potential, together with
a sophisticated description and in [163] for the circular S-ensemble. The Sineg process has also
been characterized as the unique minimizer of the free energy functional governing the microscopic
behavior in [111] using a displacement convexity argument. In Chapter 4, we prove the existence of
a limiting point process Rieszg for the circular Riesz ensemble.

1D hypersingular Riesz gases Although the 1D hypersingular Riesz gas (i.e s > 1) is not
hyperuniform, its fluctuations are also of interest. In such a system, the macroscopic and microscopic
behaviors are coupled, a fact which translates into the linear response associated to linear statistics
(in contrast with long-range particle systems, the linear response is a combination of a mean-field
change of variables, moving each point according to its position only, and of local perturbations).
Simple heuristic computations shows that the limiting variance is then proportional to a L? norm
(after subtraction of the mean) with a factor depending on the second order derivative of the free
energy.

Fluctuations of Riesz gases in higher dimension For d > 1 and s smaller than d, the proof of
existence of a thermodynamic limit for the Riesz gas is delicate as the energy is long-range. It was
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obtained in [182] for s € (min(d — 2,0), d), leveraging among many other ingredients on an electric
formulation of the Riesz energy, see [206], and on a screening procedure introduced in [228] and then
improved in [218, 206]. The first task to study the fluctuations of higher dimensional long-range
Riesz gases is to establish local laws, that is to control the number of points and the energy in cubes
of small scales. This was done for the Coulomb gas in arbitrary dimension down to the microscopic
scale in the paper [9] using subadditive and supperadditive approximate energies. Due to the lack of
convexity, establishing a CLT or even a sub-poissonian rigidity estimate for linear statistics of Riesz
gases in arbitrary dimension is a very delicate task. In dimension 2, since long-range interactions
are overwhelmingly dominant, a CLT for linear statistics with smooth test-functions can be proved,
see [184, 24, 180], without proving any “probabilistic cancellation” on local quantities, but only a
“quenched cancellation” on some angle term. Let us finally mention the work [188] where the 2D
Coulomb gas is shown to be hyperuniform, meaning that the variance of the number of points in
a ball scales much smaller than the volume. The paper [188] establishes an important quantitative
translation invariance property based on refinements of Mermin-Wagner type arguments, see also
[248]. In higher dimension much fewer results are available. One can mention the result of [239]
which treats the 3D Coulomb gas at high temperature “under a no phase transition assumption”. A
simpler variation of the 3D Colomb gas, named hierarchical Coulomb gas, has also been investigated
in the work [83], followed by [124].

3.1.4 Qutline of the main proofs

We now explain the general strategy to obtain the variance expansion formula of Theorem 3.1.2 and
the CLT of Theorem 3.1.3. Since the proof of Theorem 3.1.1 is similar to the proof of [46, Th. 3.1]
we do not detail it here.

To simplify assume that £y = 1. We are interested in the fluctuations of the linear statistics
Flucty[£], where £ : T — R is a piecewise smooth function satisfying Assumptions 3.1.1.

The Helffer-Sjostrand equation Let F': Dy — R smooth enough. The fluctuations of F' are
related to a partial differential equation through the representation

VarPN,ﬁ [F] = EPN,ﬁ [VF ’ v¢]a (3.14)
where ¢ : Dy — R solves the Poisson equation

{ Egﬁ:F—EpN,B[F] on DN

Vé-ii =0 on 0Dy, (3.15)

where L stands for the generator
L=pVHy -V —A.

Note that (3.14) directly follows by integration by parts once it is known that (3.15) has a solution.
Differentiating (3.15), one obtains the so-called Helffer-Sjostrand equation which reads

{ A1V¢p =VF on Dy (3.16)

Vo =0 on 0Dy,

with A; formally given by
A = BVPHN + LR Iy.

We will use various tools to analyze the solution of (3.16) based on mean-field approximations,
convexity and monotonicity.
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Since 0;jHn < 0 for each i # j, it is standard that Py g satisfies the FKG inequality, meaning
that the covariance between two increasing functions is non-negative. This can be formulated by
saying that £~! preserves the cone of increasing functions: if VF > 0 (coordinate wise), then
V¢ = 0. A nice consequence is the following: if F,G : Dy — R are such that |[VF| < VG, then

Varp, ,[F] < Varp, ,[G]. (3.17)

This comparison principle can be extended to non-gradient vector-fields, which will be used as a key
argument to handle the fluctuations of some complicated singular functions.

Mean-field transport It turns out that when F'is a linear statistics, i.e F' = Flucty[{] for some
smooth enough test-function £ : T — R, then the solution V¢ of (3.16) can be approximated
by a transport Wy in the form Xy € Dy — 1= (¥(21),...,¥(zy)) for some well-chosen map
Y : T — R. Letting A := {(2,y) € T? : x = y}, one may write

VHy Uy = N ﬂ g — 1) (@(@) — () dpy (@)dux (),
J)

where py = %Zf\il 0z,. Let us expand ppn around the Lebesgue measure dz on T and denote
flucty = N(uny — dz). Noting that the constant term vanishes, one can check that

1
VHy - WUy =2 J(g; x 1)) fluct y + Nl—sA[w] (3.18)
with

A[Y] = j j ((z) — b(y)) N~ gl (x — y)dfiuct y (z)dfluct y (3). (3.19)
Ac

The leading-order of (3.18) being a linear statistics, one can choose 1 such that —fVHy - ¥y +
div Uy ~ F by letting 1 such that

1 1-s
55 ()T

with {4 = 0. The central task of the paper is to show that for a large class of singular maps ¢ and
all e > 0,

W =

Var]PN,E [AW]] < CN1+E‘¢;eg|%2- (3.20)

Splitting the variance of the next-order term Denote

< . (.T,y) c TQ — ¢($) - T,ZJ(Z/)
T —y
so that
Ay = f f C(, y) N3 — y)dfiuct x (z)dfluct x (y), (3.21)
AC

where g : 2 € T\{0} — xg,(x). Note that for each i =1,...,N

OiAly] =2 J . 01¢(zi, y) N~ g(z — y)dfluct y (y) + 2 f ) (@i, y) NG (z — y)dftuctn (y) -
Y#T; Y7FT;

< _ _/

EVZ‘ zwi
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We have thus split VA[v] into a macroscopic force V and a microscopic force W (the splitting is
in fact slightly different). By subadditivity, it follows that

Var]P’N,ﬁ [AW]] < 2EPN,B [V ’ A1_1V] +2EPN,[3 [W ) Al_lw] :
) (un

Control on (II) with Poincaré inequality in gap coordinates In gap coordinates the micro-
scopic force W behaves well: there exists W such that for all Uy € RY,

N
W UN = — Z WiN(uZ‘+1 - uz)
i=1

satisfying typically (i.e with overwhelming probability) the estimate
IW|> < CN"#[g|7, (3.22)

for all e > 0. By penalizing configurations with large nearest-neighbor distances, one can modify the
Gibbs measure into a new one being uniformly log-concave with respect to the variables N (z;1 —
x;),i =1,...,N. Applying the Poincaré inequality in gap coordinates therefore gives using (3.22),

(I) < ON'=[/|2. (3.23)

Control on (I) with the comparison principle In substance, one should think of V as satisfying
foreachi=1,...,N
|Vi| < C|¢"(x;)| + “Lower order terms”. (3.24)

Note that for instance if £ = T(,4), Yy, blows like 2|~ 2=%) near a and b. Therefore for such
singular 1, the Poincaré inequality does not provide satisfactory estimates for (I).
If V; was exactly given by ¢"(x;) foreach i = 1,..., N, one could upper bound EPNYB[V-AflV]
by N|t)]egl7- since for all f e L*(T),
Varp, ,[Flucty[f]] < N|f|7-. (3.25)
The idea is to use the comparison principle (3.17) to compare the Dirichlet energy of V with respect

to the variance of a linear statistics, which are easier to handle using for instance (3.25). Let
¢y : T — R such that ¢}, = C|¢"|. Equation (3.24) can be put in the form

|V| < VFlucty[¢n].
It then follows from (3.17) that
Epy 4[V - ATV < Varp,, ,[Flucty[(n]] + “Lower order terms”
and the variance of Fluct x[(n] is then roughly bounded by
Varg, , [Flucty[(n]] < N[(n[2, < CNmax(t2maxad),

which yields
(II) < CNmaX(l,?maXOéi) < CN‘lb/’%g (326)

Let us emphasize that (y is in fact slightly more complicated: its fluctuations are therefore studied
as an auxiliary linear statistics by rerunning the previous steps.
Combining (3.23) and (3.26) gives (3.20), which easily concludes the proof of Theorem 3.1.2.
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Central limit theorem The starting point for the proof of the CLT of Theorem 3.1.3 is very
similar to [173] and proceeds by Stein's method. Let G = N~ 2Flucty[£]. We shall prove that
for all n € C1(R,R) such that || < 1, up to a small error term,

EPN,ﬂ [U(GN)GN] = O—SE]P’N,[% [n/(GN)] + Errory, (3.27)

with ag as in (3.13). The fundamental observation of Stein is that this approximate integration by
parts formula quantifies a distance to normality. Indeed letting Z be a centered random variable
with variance 052 and h : R — R smooth, one can solve the ODE

zn(x) —1'(x) = h(z) — E[h(Z)] (3.28)
and (3.27) can be written in the form
Epy ;[R(GN)] — E[A(Z)] = Errory,

showing that Gy is approximately Gaussian. Let us explain how to obtain (3.27). Let V¢ =
AI1VGN. By integration by parts we have

Epy ,[N(GN)GN] = Epy , [0 (GN)VGN - V. (3.29)

The goal is then to prove that VG - V¢ concentrates around 02. As explained in the sec-
ond paragraph, V¢ may be approximated by the transport N~1*2W with ¥ : Xy € Dy
(¥(x1),...,0(zN)) for some well-chosen map ¢ : T — R. Performing this approximate transport
allows one to replace (3.29) by

N
Eey s [1(GN)GN] = 02Bp [0 (GN)] = Ery [ 1 (G) (% > € @) - o?)|
=1
(1)
+ i Covey,[1(G), BALY] — Flucey[0']].(3:30)
(a1

The error term (I) is handled with the local laws, the error term (II) by inserting (3.20) which
concludes the proof of the CLT.

3.1.5 Structure of the paper

e Section 3.2 records some useful preliminaries on the fractional Laplacian on the circle.

Section 3.3 shows the well-posedness of the Helffer-Sjéstrand equation and gives various con-
sequences of convexity and monotonicity.

Section 3.4 completes the proof of the near-optimal rigidity result of Theorem 3.1.1.

Section 3.5 provides a proof of the variance expansion of Theorem 3.1.2.

Section 3.6 contains the proof of the CLT of Theorem 3.1.3.
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3.1.6 Notation

We denote d : {1,..., N}? — N the symmetric distance d(i,7) = min(|j — i|, N — |j —i|) for each
1 <i,j7 < N, A the diagonal A = {(z,y) e T? : x = y}.

For all a € (0,1) we let C%(T,R) be the space of a-Holder continuous functions from T to R
C~%(T,R) the dual of C%(T,R). We write V2 f for the Hessian of a real-valued function f.

For future works, we keep track of the dependency of the constants in 8. For all A, B > 0, we
write A < C(8) B whenever there exists a constant C' € R (which may depend on s) locally uniform
in B such that A < CB. Similarly, we write A = Og(1) whenever there exists a constant C' locally
uniform in /3 such that [A| < C
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3.2 Preliminaries

3.2.1 The fundamental solution of the fractional Laplacian on circle

We begin by justifying that the fundamental solution of the fractional Laplace equation on the circle
is given by (3.1). The formula (3.1) can be expected since it corresponds to the periodic summation
of the inverse power function z € R — |z|~*, which is the fundamental solution of the fractional
Laplace equation on the real line. For all complex variables s and a such that Re(s) > 1 and
a#0,—1,—-2,..., set

s 1
ROy
= (n+a)
Given a # 0,—1,—2,..., one can extend in a unique manner ((-,a) into a meromorphic function

on the whole complex plane with a unique pole at s = 1, which is simple with a residue equal to 1.
This function is called the Hurwitz zeta function [31].

Lemma 3.2.1 (Fundamental solution). Let g be the solution of the fractional Laplace equation on

the circle X

(—A) 2 g=cs(d—1), (3.31)
with cs as in (3.3). Then for all z € T\{0,—1},
B L = 2
gs() = ((s,) + (5,1 — ) = lim ( Z e T ). (3.32)

Moreover for allp > 1 and all t € T

9P (x) = (=1)Ps... (s +p = D)(C(s + k,2) + (=1)P((s + k,1 - )
— (1P (3.33)
=(=1)Ps...(s+p— Z|x+k|3ﬂ’
Proof. Let g be the fundamental solution of (3.31). Following [217], one first derives the semi-group
representation for (—A)_%s. Let a € (0,1). Recall

1 o0
A — J e_)‘t%, for all A > 0. (3.34)
0
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For an integrable function on the torus on the torus and k € Z, we let f(k:) be k-th component of
the Fourier series of f, namely

Py - L —iky
f) = 5= | swevay.
The fractional Laplacian (—A)~ on the torus is defined by the Fourier multiplier
(—ZFaf(k) = |k\*2af(k),k €Z forall feS(T,R) such that [ f =0,

where S(T,R) is the space of real-valued Schwartz functions on T. Applying (3.34) to A = |k|?
then gives

— 1

“A)-o — eIkt
(B8 = F jo Fo (3.35)
Let (W;)¢=0 be the heat kernel on T, defined by its Fourier coefficients
Wy(k) =e ™ forall keZ, t > 0.

The heat kernel on the circle is then given by its Fourier series or alternatively by the periodization
of the heat kernel on R [217]:

1 , 1 z—k|?
Wt(SC) _ Z 67t|k|26zkx _ \/t Z €,| 4?\ ' (336)

keZ dmt 1=

One may rewrite (3.35) as
- B 1 © TR dt
(R0 = e | P

For f € S(T) such that § f =0, (—A)~“f equals its Fourier series and one obtains

(81 f@) = i [ W) (337)
N F(Oé) 0 t tl_a' '
Moreover by (3.36),
fW()d 1 1 Z \uk|2d
T t\y)ay = - \/Zrmk Y.
€7
Applying (3.37) to a = % € (0,1) and f = cs(dg — 1) therefore gives
Cs © dt =k k|2 _lz—k? dt
gsxz_sf Wi(z) — 1 J —fe i dr)——s.
)= Fi |, @~ = i v M ) ) s

Define the sequence of functions

1 lz—k|? _l k\Q
up :te RT™* — 5 (e_ In —j I dy) keZ*.
t 72 T

First observe that when ¢t > 1,

2 t 1 2 t
Z e Pt < o2 Z e 3kt < ez,

keZ* keZ*
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It follows that

m\ﬂ
A
8

(3.39)

—|k|2tdt < CJ L
ti=2 1 13"

Slmoecg [y

keZ*

To treat the other part of the integral, we can write

1 |z —k|2 ly— k|2 1 k—z|2 lk—a|2—|k—y|2
ug(t) = Sf (e* w —e )dy seuf (1—6#)@/
145 Jp thte lk—y|>|k—a|

1 Je—y|? [k—y|%—|k—x|?
+ ? J‘ e U (1 — . 4t )dy
U2 Jk—y|<|k—a]

As a consequence, there exists a constant C > 0 such that for each k € Z and all t € R,

Ck _@¢-1?
Uk x s € at
(D] < 5

When u > 1, by comparison to a Gaussian mtegral one may check that

Z ke~ 4u2 < C’u
keZ*
which leads to
f Z lug (t)|dt < f dt < 0. (3.40)
1

keZ
Combining (3.39) and (3.40), we deduce by Fubini's theorem that the order of integration and
summation in (3.38) can be inverted and we find

gs() = gméj e

ek dt foof _ =k, dt )

55 e” i —o—=d

12)V4”1§(J t'*z Jo Jr §1+3 7
(

Cn

—~

Cn No|w

)Cs 1 dy
r(ty wrkez(mS -, \%’“\s)

i ( i 1 2 H)
= ]im — n
n—o e —kI* 1-—s

k=—n

& 1 1 = 1 1
=1 _ 1—5) li ( o 1—s>
nggo];)((k+l—x)s 1—s" +nl—r>roloI;) (k + x)® 1-s' )

where we have used the change of variables ¢ € R** - 1 and (3.34) in the third equality. According
to the Euler-Maclaurin formula, one may rewrite each sum as follows using the fact that for all
€(0,1),

. S 1 1o 1 41 Ot—|t| -1
O e R e R S A e L

If s is complex-valued with o := Re(s) > 1, then the left-hand side of the last display is given
((s,a). Using an analytic continuation argument, it is argued in [31, Eq. (5.2)] that for 0 > —1
and a € (0,1), {(s,a) coincides with the right-hand side of (3.41). As a consequence we find that
for all z € T and s € (0,1)

gs(z) = ((s,1 — ) + ((s,2).
The identity (3.33) is then standard. O



90 Chapter 3. Optimal local laws and CLT for the long-range Riesz gas

3.2.2 Inverse Riesz transform

In Section 3.5, when implementing loop equations techniques, we will consider the solution 1) of a
convolution equation in the form g« ¢/ = & — (£ with {¢ = 0, where £ : T — R is a smooth
test-function. The map 1)’ is given by the fractional Laplacian of order 25 of £. Proceeding as in
the proof of Lemma 3.2.1, one can easily derive a pointwise formula for 1) when £ is smooth enough.

We add some other useful simple formulas.

Lemma 3.2.2 (Inversion of the Riesz transform). Let £ € C~57¢(T,R) for some ¢ > 0. Let
Y e C¢(T,R) given by

’ _L . 1—s J _
Y = 263( A) 2 ¢ and 1 = 0.
Then
1 §ly) — /¢
U(x zﬂf —=2 gon(x —y —k)dy, forallzeT 3.42
) = ) ’;N_y_k‘ls @—y—H) (3.42)
L 2 — _ 2 . / J
e 21 = [ e = @) - vw)Pdedy — 2 [ ¢ @0t € x)(a)dr. (3.43)
Assume that £ is supported on (—%, %) Let £ € (0,1]. Let & : R — R such that
E(x) if|z] < 5
= 3.44
“ol@) {o if 2| > L. (3.44)
Then
€Ny 15e = Ex 6ol 1e + O(UR S0l T2)- (3.45)
Proof. Let £ € C™*T¢(T,R) for some ¢ > 0 and let 1) such that ¢’ = ——(—A)%g with {4 = 0.
If £ e C175F5(T, R) it is well-known, see for instance [246, Th. 2], that for all z € T,
/ _ 21—SF 1—3$
P (z) = —CSJ Lﬁ(i)_sdy, where ¢, = % (3.46)
= ID(=5*)[w2
For completeness, let us sketch the main arguments. Let a € (0,1). We have
o 1 * —tA dt
Y = F(—Q)L (e —1)151?7 for all A > 0.
Arguing as in the proof of Lemma 3.2.1, we find that for any f € L?(T) and k € Z,
AP0 = €270 = w2 [ (409 1)
r=a) Jy et
which gives by taking the inverse Fourier transform
(8 F@) = s [ Wile) = 50 i (3.47)
_ - % _ el _
x F(_a) 0 t\& X tl+a ™7
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where W is as in (3.36). If f € C1=5%¢(T,R), then, as shown in [217], one can invert the order of
integration. We then compute

foowt( = ZJ Rt ar = 12Jw Loy
0 tHa keZ t2+a \/Ekez 0 tz7%
_ i +a) Z 1
VAar keZ(Ix k|)1+2a

Inserting this into (3.47) gives the representation

1 s 2175T(1 — §)
(—A) T f() = 20 =3) f Y,
| 17 W% keZ, ‘x - Y- k|2 S

which is accordance with (3.46). We also compute

1 TO-TG) 1
PO e 3tan(3s)

Integrating the above formula with the condition that { = 0 yields

B - 4
Y(x) mang J;;z‘“"_y K- —sgn(z — y)dy, (3.48)

Therefore (3.42) holds when & € C1=5+¢(T,R), for some € > 0. By density, we conclude that (3.42)
holds as soon as & € C75%¢ for some € > (0. Equation (3.43) follows by integration by parts.

Assume that & is supported on (—%, %) Let & : R — R such that

5@@:{“@ f ] <

0 if |z >

N D=

We have

_ Uy Ny)
SN 15 J1|x< Ly (' EJ Ly geydyde

_ 2
= ]w y—l—k\ s

_ - So(! (Ny)
—f&o(éN J ‘x_yﬂc'“ dyda

keZ

€ —1
|€0|2 st Z f &o( 5_ fo(‘ o) - So(ly )dydx

2—
keZ* Y+ k’ °

=€%mﬁls4<9€%fKM@H&@ﬂ£memm)
= 6ol 1. + O IelR).

Next, we apply the pointwise formula (3.42) to indicator and inverse power functions.
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Lemma 3.2.3 (Explicit formulas). Let ((s,a) be the Hurwitz zeta function. Let { = 1(_, o) — 2a
for some 0 < a < % and 1 be given by (3.42). We have

o) = — G (o) (s —a)), Ve

s

Let a € (0,s), £ = ((a, )+ (e, 1—-) and ) be given by (3.42). Then with cs, o, Ce—q as in (3.3),

we have
Co

P(x) = (C(s—a,z)+((s—a,1—x)), VYaxeT.

2¢s—aCs

Lemma 3.2.4 (Decay at infinity). Let £ € C™*T¢(T,R) such that (¢ = 0. Assume that £ is
supported on (—a,a) for some 0 < a < ;. Then ¢ := (—A)12;S§ is C* on T\[—a, a] and for each
k =1, there exists a constant Cy, > 0 such that for all x € T\[—2a, 2a],

1
W ®|(z) < Crl¢| [k (3.49)

Proof. Since { € L'(T,R), one may differentiate (3.42) under the integral sign. Using the fact that
[(€—§&) =0, we obtain (3.49). t

In Section 3.5 we will consider test-functions £ with poor regularity, that one should regularize
at a small scale £ > 0 to obtain a transport with bounded second derivative. For any £ > 0, define
the smoothing kernel

1 Ha+0) ifze(—£0)
Kiiz— =3 —3(x—10) ifze(0,0) (3.50)

1o if 2] > .

Lemma 3.2.5 (Regularization). Let & € C~57¢(T,R), piecewise C>~*(T,R). Fix yo € supp(&).
Let p € C5(T,R) be given by ¢/ = (—A)?f with (¢ = 0. Assume that§ is supported on
(yo — a,yo + a) for some 0 < a < % Assume that there exist o;; = 0, i = , 1 and xo > 0 such
that

1
"
"] (2 m(Z a,|1+az Ljyyol<2a + o |x_y0|)3_s), VeeT (3.51)

Let £ € (0,1) and 1y = ¢ * K; with K, given by (3.50). There exists a constant C' > 0 such that

M»s

|:1:7y0|<2a +

[4](x) < Cxof ! ; ). veeT.  (352)

x—al|v€1+0‘l (a+ |z —yo|)3~

l:1

3.3 The Helffer-Sjostrand equation

In this section we introduce some results on the solutions of Helffer-Sjostrand equations. We first
state existence and uniqueness results valid for energies with convex pairwise interactions and derive
a known comparison principle that one adapts to the circular setting. We then study an important
change of coordinates which leads to the study of H.-S. equations on affine hyperplanes of RY.
Finally we give a maximum principle on the solution and recall some standard results for log-concave
probability measures.



3.3. The Helffer-Sjéstrand equation 93

3.3.1 Well-posedness and first properties

In this subsection we introduce the H.-S. equation and state some standard existence and uniqueness
results. We follow partly the presentation of [10]. Let i be a probability measure on Dy in the form

dp = 67H(XN)]IDN (XN)dXN,
with H : Dy — R measurable. We make the following assumptions on H:

Assumptions 3.3.1. Assume H : Dy — R is in the form

H: Xy~ Y x(lzi — ),
1#]

with x : Rt* — R satisfying
x€CPRY™ R), x">c>0.

Let F': Dy — R be a smooth enough function. We seek to express the variance of F' under u
in terms of a partial differential equation. Let us recall the integration by parts formula for p. Define
on CX(Dy) the Langevin operator

LM = BVHN -V = A,

with V and A the gradient and Laplace operators of T?. Recall that the operator £ is the generator
of a Langevin dynamics for which p is the invariant measure. By integration by parts under u, for
any functions ¢, 1 € C*(Dy) such that V¢ -7 = 0 a.e on Dy, we have

E,[$:L"6] = E[VY - Vo). (3.53)

Moreover, let us emphasize that whenever lim,_,o x(z) = o0, the Neumann boundary condition
V¢ -7t = 0 is not necessary. Let us now assume that the Poisson equation

{ LFe=F —E,[F] on Dy (3.54)

V¢ -1i=0 on 0Dy
admits a solution in a weak sense. Then, by (3.53), one may rewrite the variance of I as
Var,[F| = E,[VF -Vg].

The above formula is called the Helffer-Sj6strand representation formula. Let us formally differentiate
the equation (3.54). Formally we have

VL = ALY,
with A; the so-called Helffer-Sjostrand operator
Al =VPH + L' ® Iy.
Therefore the solution ¢ of LF¢ = F — E,[F'] formally satisfies

{ AYV¢ =VF on Dy

Vé-=0  ondDy. (3.55)
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This PDE is called the Helffer-Sjostrand equation. To make the above statements rigorous one
should work on the appropriate functional spaces. Let us define the norm

1 1
|F i uy = BulF?12 + EL[[VF[*]2.

Define H (1) the completion of C*(Dy) with respect to the norm | - | z1(,. Also define the norm
|F =100y = sup{[EL[FG]| : G € H (1), [ Glarn () < 1}

We let H=1(u) be the dual of H'(y), defined as the completion of C*(Dy) with respect to the
norm || - |[g-1(,). We are interested in the well-posedness of (3.55) when VF is replaced by any
vector-field (possibly non-gradient) v e L2({1,..., N}, H=*(u)).

Since the density of u with respect to the Lebesgue measure on Dy is not bounded from
below, the existence of a solution to the Helffer-Sjéstrand equation (3.55) is not straightforward.
To circumvent this difficulty we prove that (3.55) is well-posed when F'is a function of the gaps.
Define the map

HIXNGDN'—)(332—131,2153—.’E1,...,SUN—131)ERN_I (3.56)
and the push-forward of ;1 by the map II
p = poll™L. (3.57)

Proposition 3.3.1 (Existence and representation). Let p satisfying Assumptions 3.3.1. Assume
that F is in the form F = G oIl, G € H' (i) or that the kernel x is bounded. Then there exists a
unique Vo€ L2({1,..., N}, H (1)) such that

{ ANV¢ =VF inDy

Vé-i=0  ondDy, (3.58)

with the first identity being, for each coordinate, an identity on elements of H~'(11). Moreover the
solution of (3.58) is the unique minimizer of the functional

Y Byl VEHY + Dy = 2VE -], (3.59)

on maps ¢ € L*>({1,..., N}, H'(u)) such that V¢ -ii = 0 on 0Dy. The variance of F may be
represented as
Var,[F] =E,[V¢- VF] (3.60)

and the covariance between F any function G € H'(11) as
Cov,u[F,G] = Eu[Ve - VG].

The identity (3.60) is called the Helffer-Sjéstrand formula. The proof of Proposition 3.3.1 is
postponed to the Appendix (see Section 3.7.1).

Remark 7 (Remark on the boundary condition). Let ¢ € H'(u). The map V¢ satisfies the boundary
condition V¢ - it = 0 on 0Dy if and only if 0;¢p = 0;¢ whenever i = j, for eachi,j € {1,...,N}.

Remark 8 (Link to the Monge-Ampére equation). We formally discuss the link between (3.58) and
the Monge-Ampére equation. Let F' : Dy — R be a smooth enough test-function. For all t > 0,
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consider the measure du; = mew dp. The measure pi; can be written y; = o ®; ' with
"

®, : Dy — Dy such that { ®, = 1 solution of the Monge-Ampeére equation
—logdet D®; + Ho®, — H = tF — logE,[e'].

Formally, since py = p + tv + o(t), one expects that ®; = Id +t¢ + o(t). Linearizing the above
equation in t formally gives
L' = F —E,[F],

which is the Poisson equation (3.54).

When V F is replaced by a non-gradient vector-field v, the solutions ) of the equation A1y = v
with a Neumann boundary condition are in general non-unique. In order to have a well-posed
equation one assumes additionally that Zf\il v; = 0 and that each coordinate v; is a function of the
gaps.

Proposition 3.3.2 (Well-posedness for non-gradient vector-fields). Let u satisfying Assumptions
331 Letve L*({1,...,N}, H Y (u)) such thatv-(e1+...+ey) = 0 and foreachi € {1,..., N},
v; = w; o Il for some w; € H~1(y'). There exists a unique v € L*>({1,...,N}, H'(11)) such that

Al = on Dy
Y-(e1+...+ex)=0 onDyn (3.61)
Y-n=0 on 0Dy.

Moreover the solution of (3.61) is also the unique minimizer of

v B[y VEHY + [DY]? — 20 9],
on maps e L2({1,..., N}, H' (i) such that -7 = 0 on dDy.

We postpone the proof of Lemma 3.3.2 to the Appendix (see Section 3.7.1). When v satisfies
the assumptions of Lemma 3.3.2 we can denote non-ambiguously ¢ = (A}')~!v the solution of
(3.61).

Lemma 3.3.3. Let u satisfying Assumptions 3.3.1. Let v,w € L*({1,..., N}, H (u)) satisfying
the assumptions of Proposition 3.3.2. We have

Bul(o +w) - (44) 7w+ w)] < 2(Eufo - (45) o] + Byfw- (A1) w]). (3.62)

Let F = G oIl with VG € L*({1,...,N}, H '(i')). Then the solution of (3.61) is the solution
V6 of (3.58).

Proof. Since v — w satisfies (e1 + ...+ en) - (v —w) = 0, one can define (4})~! (v —w). Moreover
note that by integration by parts

E,[(v — w) - (A4~ (v — w)] > 0.

By linearity this implies (3.62).

Let us prove the second part of the statement. Let F' = Goll with VG € L2({1,..., N}, H-(i)).
Let V¢ be the solution of (3.58) with F' function of the gaps. Observe that Zfil 0;F = 0. Taking
the scalar product of (3.58) with (e; + ...+ ey) yields

(e1+...+en) - VEHY + LY (e1 4+ ... +en)) = 0.
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By symmetry, (e; + ...+ ey) - V2ZHv = 0 and therefore
LF)-(e1+...+en)) =0.
Since V(¢ - (e1 + ...+ en)) -7 =0 on Dy, this implies that
Vip-(e1+...+en)=0.

3.3.2 Monotonicity and its consequences

In this subsection, we give some monotonicity results related to the FKG inequality.
Let s be a probability measure on RY in the form

dup = e HXNq Xy

with H : Dy — R smooth verifying d;;H < 0 for each i # j. The FKG inequality [15] then
states that the covariance between two increasing functions (i.e increasing in all their coordinates)
is non-negative. This can be reformulated by saying that for all increasing function F' : Dy — R
smooth enough, the solution ¢ of (3.54) is also increasing. In our case, we have 0;;Hy < 0on Dy
for each i # j and since the Langevin dynamics is conservative in Dy (i.e the process does not hit
the boundary a.s), the FKG inequality holds true.

In the next proposition we show that a maximum principle for solutions of non-gradient Helffer-
Sjostrand equations (3.61) holds, at the condition of fixing an origin. Let

T N—1 .,
DN_1={(1‘1,...,$N_1€T .xl—xéxz—x...x]v_l—x}.

Denote u* the law of (z3,...,zyN) conditionally on 1 = = when (z1,...,zy) is distributed ac-
cording to p. Let H® : y € D% | — H(x,y). Let L% = L* acting on H'(u®) and A% = A}"
acting on L2({1,..., N — 1}, H*(u%)).
Proposition 3.3.4 (Existence with a fixed point). Let u satisfying Assumptions 3.3.1. Let x € T.
Let v € L*({1,...,N — 1}, H }(u®)). There exists a unique v € L*({1,...,N — 1}, H*(u%))
solution of
Ay =v on D},
Y1=0  on Dy (3.63)
=0 ondDg,.
If F e H'(u®), then the solution of (3.63) is in the form 1 = V¢ € L*({1,...,N — 1}, H'(u®)).
Moreover the variance of F' under u* may be represented as

Var,:[F| = Eu=[V¢ - VF].

In the sequel given v € L?({1,...,N — 1}, H *(u®)), we denote A%v the solution of (3.63).
The proof of Proposition 3.3.4 is entirely similar to the proof of Proposition 3.3.2. We can now
state the maximum principle for (3.63), derived for instance in [72, 149].

Lemma 3.3.5 (Monotonicity). Let p satisfying Assumptions 3.3.1. Assume additionally that
limg 0 x(2) = +o0. Letve L2({1,...,N — 1}, H 1 (u®)). Let ¢p e L2({1,...,N — 1}, H'(u®))
be the solution of (3.63). Assume that

v; =20 aeon Dy, foreachie{l,...,N —1}.

Then
Y; >0 aeonD%, foreachie{l,...,N —1}.
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Proof. Let v € L2({1,...,N — 1}, H'(1®)) be the solution of (3.63). Let us prove that for each
ie{l,...,N—1}, ¢; = 0aeon D%. Let " and )~ be the positive and negative parts of 1.
Taking the scalar product of the equation A1y = v with ¢~ gives

T VEHT AT LT =4

By integration by parts under u®, one can observe that
N
By [0 - V2H G + Y, Vo) - V| = 0
i=1

Indeed since lim,_,g x(z) = 40, the boundary term in the above integration by parts vanishes.
Note that V¢, - Vi, = —|Ve);|? and

VT VIPHTYT = Y X (g — @) (0] 0 — ) = = D X (wy —wm) o) < 0. (3.64)
i#] 1#]

One deduces that
B[y - V2H"Y™ + Dy~ ] = 0

This implies that v~ = 0 and concludes the proof. Let us emphasize that we have crucially used
the assumption that the interaction blows up when two particles collide, which somehow puts the
boundary of the domain at infinity. O

As a crucial consequence of Lemma 3.3.5, one can compare the variances of two functions under
1”® by comparison of their gradients. We derive the following new observation:

Lemma 3.3.6 (Energy comparison). Let p satisfying Assumptions 3.3.1 and assume lim,_,o x(z) =
+o0. Letz € T and v,w e L?({1,..., N —1}, H~(u®)). Assume that for eachi e {1,..., N —1},

lvi| < w;, a.eon D%. (3.65)

Then
E,z[v - (Agf)_lv] <Epe|w- (Af)_lw].

In particular if F,G € H'(u) satisfy for eachie {1,...,N — 1},
|0;F| < 6;G, a.eon DY,

then
Val'ua: [F] < Val'um [G] .

Proof. For z = (z1,...,2n) € RY, we use the notation 2 > 0 whenever for eachi e {1,..., N —1},
x; = 0. Letv,we L2({1,..., N}, H~'(4®)) as in the statement of Lemma 3.3.6. Let v* and v~ be
the positive and negative parts of v. Using the fact that A7 is self adjoint on L2({1,..., N}, H'(u®)),
one finds that

Eps [w - (AD) ] = Bys[v - (A7) 7H0] = By [(v + w) - (A]) 7 (w = w)].
Note that since w — v > 0, by Lemma 3.3.5, (4%)~!(w — v) > 0 and that w + v > 0, one gets
Eps[(v+w) - (A7) "H(w — )] > 0,

which gives the desired result. The second part of statement is straightforward. O
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Lemma 3.3.5 and Lemma 3.3.6 allow a comparisons between general vector-field ¢ € L2({1,..., N}, H'(u)).
However if one restricts the comparison to gradients, much less is required on the measure y, as
shown in the following:

Lemma 3.3.7. Let i be a probability measure on Dy in the formdy = e Hd Xy with H : Dy — R
in C? such that the dynamics is conservative and

0i;H <0 for each i # j.
Let F,G € H'(u) such that for eachie {1,...,N},
‘5if7’5§ 0;G. (3.66)

Then
Var,[F'| < Var,[G]. (3.67)

Proof. It is standard that . satisfies the FKG inequality meaning that for all measurable non-
decreasing functions f and g, the covariance between f and g under p is non-negative. We refer to
[17, Th. 1.3] in the RY case.

Let F,G € H'(uu) be as in (3.66). One may write

Var,[G] = Var,[F| + Cov,[G + F,G — F|
Since G — F and F + G are non-decreasing, their covariance is non-negative, concluding the proof

of (3.67). O

3.3.3 Variances upper bounds

We recall some well-known consequences of convexity regarding variances.

Lemma 3.3.8 (Brascamp-Lieb inequality). Let p satisfying Assumptions 3.3.1. Let A < Dy be a
convex domain with a piecewise smooth boundary. Let F' : Dy — R in the form F = G o I with
VG e L*({1,...,N — 1}, H Y (i")). There holds
Var,[F | A] < —Eu[ min (UN V2HUy — 2VF - UN> | A] — B, [VF-(V2H)"'VF | A].
UneRN
(3.68)

Elements of proof. Let us illustrate the proof in the case A = Dy. By Proposition 3.3.1, the
variance of F' may be expressed as

Var,[F] = — ¢€1211r(1u) E.[Ve - VZHVS + |V3¢|* — 2VF - V.

Since E,,[|[V2¢|?] = 0, one gets

Var,[F] < — min E,[V¢-V2HV¢$ —2VF - V¢]
peH ™ (1)

— ~E,| min Uy -V2HUy —2VH - Uy|
UNERN

=E,[VF - (V*H)'VF].
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The Brascamp-Lieb inequality requires some regularity on the function F'. We now give a simple
concentration property for linear statistics, which depends only on the L? norm of the test-function.
We obtain the following sub-poissonian estimate:

Lemma 3.3.9. Let yu satisfying Assumptions 3.3.1. Let £ € L?. We have

Varu[ig(ﬂlei)] < NEN(JT 52—(L 5)2). (3.69)

Proof. Let ¢ € L*(T,R). Let (&) be a sequence of elements of C2(T,R) such that (&) converge
to & in L?(T,R). Let us prove that (3.69) holds for &;. Since we have not proved that the H.-S.
equation (3.58) is well posed only for gradients of functions of the gaps, we proceed by regularizing
. Form >0, let x; be such that x;, is bounded by n~!, Xy = 0 and x; < x. Define

1
dpy = 767H”dXN, where H, = Z (@i — ).
n i#]
Denote L£Hn the operator acting on H—'(Dy,R),
L =VH, -V —-A.

Since the density of 11, is bounded from below and from above with respect to the Lebesgue measure
on Dy, one may apply Proposition 3.3.1, which allows to express the variance of & under y,, as

Var,, [Flucty[&]] = —minE,, [V¢- VZHV¢ + |V2¢|* — 2V¢ - VFluct v [€]],

where the minimum is taken over maps ¢ : Dy — R such that V¢ € L2({1,..., N}, H'(Dy,R))
and V¢ -7 = 0 on dDy. Since V2H,, is non-negative, one may bound this by

Var,,, [Flucty[&;]] < —minE,, [[V?¢[* — 2V - VFlucty[&]], (3.70)

where the minimum is taken over maps ¢ € H!. The variational problem (3.70) has a minimum,
attained at a certain ¢, € H', which satisfies

L (0;01)(Xn) = & (x;) foreachie{l,...,N}and Xy € Dy (3.71)
Vo-1n=0 on dDy. '
Let 0 : T — R be such that 6, = & — {&. Set

or: Xye Dy — Hk(xl) + ...+ ek(l’N).

Recalling Remark 7, one can observe that ¢y, is a solution to (3.71) and by convexity ¢y, is a minimizer
of (3.70), which yields

N N N
Var, [Fluct v [6:]] < By, | Y 06(2:)? = 23 (00 (w)| = B, | 3 €3(0)
=1 =1 =1

Letting k go to +0 yields

Var,, [Flucty[£]] < N ( JT — < JT 5) 2> .

Then, letting 1 tend to 0, we deduce by dominated convergence that (3.69) holds. O
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3.3.4 Log-Sobolev inequalities and Gaussian concentration

In this subsection we gather results of Log-Sobolev inequalities and Gaussian concentration. We first
recall a crucial convexity result proved in [55].

Lemma 3.3.10. Let u satisfying Assumptions 3.3.1. Let I < {1,...,N}, |I| = K. Denote 7 and
mre the projections on the coordinates (x;)ic; and (x;)icre. Split H into H = Hy o wy + Hy with

Hy = Xk € D — Z x(|zi —xj]), Hz:Xne€Dn— Z ZX(W@ —zjl).
i#jel ielc j#1i

Let v be the push-forward of . by the map wy. Then U may be written
dﬁ(x)OCef(H”ﬁ)]lDK (x)dz,

with
V2H > 0.

Proof. LetI c {1,...,N}and K = |I|. On Dy, introduce the coordinates (z,y) = ((x3)ier, (Ti)iere)-
Fix z € Dg, v e RX and denote h : ¢t — H(z + tv). One can check that

h'(t) = Ep(atin)[v - O11Hov] — Varp(y g1 [v - 01 Ha], (3.72)
where P(z) is the probability measure

L —m
7@ e

dP(z) =

Since y — Ha(x,y) is convex, one may apply the Brascamp-Lieb inequality stated in Lemma 3.3.8,
which gives
Varp(gi0) [0 - 01Ha] < Ep(gyi0)[v - (012H2) (02 Ha) ™ (012H2)v].

Furthermore since V2H, is non-negative, its Schur complement is non-negative, which gives
011 Hy — 012Ha (022 Ha) ™' 012Hy > 0.
Inserting this into (3.72), this justifies that V2H > 0. O
We pause to state the Log-Sobolev inequality for uniformly log-concave measures on convex

domains of R™, which is a special case of the Bakry-Emery criterion [15]. Recall the relative entropy
of a probability measure 1 with respect to v, defined by

d
Ent(p | v) = jlog d—fjdu € [0, +0],

if v is absolutely continuous with respect to p and Ent(v | ) = +00 otherwise. Let also recall the
Fisher information of p with respect to v, given by

. dv 2
Fisher(u | v) =‘V10g @‘ dv,

if v is absolutely continuous with respect to p and Fisher(v | u) = 400 otherwise.
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Lemma 3.3.11. Let K be a convex domain of RN. Let w > 0 and v* be a centered Gaussian
distribution on RY with covariance matrix %In. Let v§ defined by conditioning v into K. Assume
that 1 is a measure on K in the form dyp = fdv}% with f : K — R Borel and log-concave. Then v
satisties a log-Sobolev inequality with constant 2w, meaning for all probability measure 11 € P(A),

Ent(u | v) < 2wFisher(p | v).

Lemma 3.3.12. Let K be a convex domain of RN. Let w > 0 and v* be a centered Gaussian
distribution on RY with covariance matrix %In. Let ~}% defined by conditioning v into K. Assume
that 1 is a measure on K in the form dp = fdvy} with f : K — R Borel and log-concave. Then p
satisfies Gaussian concentration: for all F '€ H', we have

logE,[e""] < tE,[F] + %tQ sup |VF|?, forallt e R. (3.73)
K

We now state a concentration result which can be applied to divergence-free test-functions for
measures on the form given by Assumptions 3.3.1. Recall

UN~V2HUN>CE(U1'—U]')2, for all UNGRN.
i#j

The crucial observation is that when Zfil u; = 0, the Hessian of the energy controls N — 1 times
the Euclidean norm of u:

N
Uy - V?HUy = (N = 1)c > u;. (3.74)
=1

Furthermore one can observe that the solution ¢ of the equation Lo = F —E,[F] is divergence-free
whenever F' is divergence-free. Combining this with (3.74) gives the following Gaussian estimate:

Lemma 3.3.13. Let I < {1,...,N} and w; the projection on the coordinates (x;)icr. Let u
satisfying Assumptions 3.3.1. Let F = G omy € H' (). Assume that F is independent of Y,_; x;,
ie Y 0:F =0. Forallt e R we have

2

_— F|2.
2(|I] — 1) sup |V F|

logE,[e""] < tE,[F] +

The proof of Lemma 3.3.13 can be found in [46, Le. 3.9]. It can be adapted readily to our
circular setting. For completeness we sketch the main arguments below and follow line by line the
proof of [46].

Proof. Let I € {1,...,N} of cardinal m. To simplify the notation assume that I = {1,...,m}.
On Dy introduce the coordinates (x,z’) with = (2;)ie; € Dy, and 2/ = (2)ierr € DN—pm. The
energy H can be split into H(z,2') = Hi(z) + Ha(z,2') with H; uniformly convex, Hy convex
and H; independent of ., x;, i.e >,.; 0;H1 = 0. On D,,, introduce the coordinates = (z, w)
with z = (z1,...,2m-1) € Dyp—1 and w = m=3 >t x;. Observe that this change of variables
can be written in the form (z,w) = M*(x1,..., ), with M an orthogonal matrix. Since H is
independent of w, one can write it in the form H; = H;(z). Similarly F can be written in the form
F = g(2). Let v be the law of the push-forward of 1 by z € RV + 2. Namely, dv = %e‘H(Z)dz,
with

~

H(z) = —log Z + Hy(z) — logfe_H(x’y)dwdy. (3.75)
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The point is that H is convex. We claim that

o> 2 f e 1@ (0 H — 0.,H(0gqH) ' 0. H)dwdy. (3.76)
Z JrxrN-m

The proof of (3.76) is similar to the proof of Lemma 3.3.10. Since H; is independent of ¢, one has
02qH (0gqH) 1 02qH = 0:qHo(0gqHa) ™" 0. Ho.
Hence, by positivity of 0,,Hs, its Schur complement is positive and
0zzH — 0.qH (04qH) ' 02qH = 0..H1 + 0..Ho — 0.qH2(0gqH2) ' 0.qH2 > 0..H.
Inserting this into (3.76) we deduce that for all v e R™~!,

w0y Hu>=u-0,,Hiu = Mu - 6mH1]\7u > cZ}((]\f\fu)2 — (Mu)j)Q,
i#j

where M denotes the first m — 1 columns of M. Moreover we can observe that

Y ((FFu); = (Wu);)? = (= 1) 3w

1#]

Since v is uniformly log-concave with a lower bound on the Hessian equal to (m —1)¢, we can apply
the Gaussian concentration of Lemma 3.3.12, which gives for all t € R,

2
B[] — B, (6] < 0 sy o 9ol

We can now observe that, since M is orthogonal, |V.g|> = |[VF|2. This concludes the proof. [

3.4 Near-optimal rigidity

This section is devoted to the proof of the rigidity result of Theorem 3.1.1. The method uses various
techniques invented in the seminal paper [46, Th. 3.1]. Being working on the circle instead of the
real line, some simplifications can be made: among other things, the expectation of gaps under
the Gibbs measure is known and one does not need to estimate the accuracy of standard positions,
which was one of the main issues of [46]. The first task for us is to obtain a local law on gaps saying
that for each i € {1,...,N} and 1 < k < % N(xiyr — ;) is typically of order k. To this end
we perform the mutliscale analysis of [46] allowing one bootstrap this local law down to microscale.
The argument is based on a convexifying procedure that we first detail.

3.4.1 Comparison to a constrained Gibbs measures

Because the Hessian of the energy degenerates when particles are far away from each other, one
cannot directly derive Gaussian concentration estimates for Py g. Following [46], one may add to
the Hamiltonian a convexifying term, which penalizes configurations with large gaps. Let 6 be a
smooth cutoff function § : R — R such that 6(z) = 2% for z > 1, ¢ = 0 on [0,3] and 6" > 0
on R*. Let I = {j:i<j<i+k}and K >0. Define

F = ng(?(:ch - xi)) (3.77)
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and the locally constrained Gibbs measure

1

e PONHREN T b (X y)dX . (3.78)
Kypg

dQn g =

In the sequel we will often take K = |k!¢| for some & > 0. The measure Qy s is more concentrated
than Py g in the directions e; for i € I. Recall the total variation distance between two measures p
and v on Dy:

TV(u,v) = sup |u(A) —v(A)|
AeB(Dy)

The Pinsker inequality, see [7, Ch. 5] for a proof, asserts that
TV (u,v)? < 2Ent(u | v), (3.79)

where Ent(- | v) is the relative entropy with respect to v. Using (3.79) and the log-concavity of the
constrained measure (3.78), one may derive the following control:

Lemma 3.4.1. Letie{l,....N},1<k< %, I={j:i<j<i+k}andK >0. Let Qng
be the measure (3.78). Denote 7ty the projection 7wy : Xy € Dy > (x;)ier € Dy11. There exists a
constant C(3) depending only on 3 and s and locally uniform in § such that

TV(Pysom " Qupon) < CORK By, | (el — o) 1 o |
Proof. Applying Pinsker's inequality (3.79) to = Py g o 7r1_1 and v = Qng o 7r1_1 reads
TV(Pyngom; ,Quponrt)? < 2Ent(Pygon’ | Quponh). (3.80)
Note
Ent(Pygon; |Qupgomns') =Ent(Pygo (Gapyyyomr) ™ | Quyg o (Gapgys omr) ™).

Indeed under Py g and Qu g, the law of z; is uniformly distributed on the circle and independent of
the law of Gapy . o m7(Xn). By Lemma 3.3.10, the Hamiltonian H of Gap,_; o m;(Xy) satisfies

S C Z (N (wip1 — ug))?

k+1
K5+2 ) RE

Vs - V2 HU 20 Y KM

i<jel iel\ max [

for all Upyq €

Consequently the measure v := Qn g o (Gapy,q o mr)~ " is c-uniformly log-concave for ¢ = %

and by Lemma 3.3.11 it satisfies a log-Sobolev inequality with constant 2¢~!. Writing F = G o
Gapy,1 o 7y, this gives

-1

Ent(Py g o (Gapy,q o)~ | v) < C(ﬁ)KSHEpNﬁUV(G o Gapy,q o m1)]?]. (3.81)
One can next upper bound the Fisher information by
5 —2 / N 2
Eey ,[[VGI? 0 Gapg s 0 1] < COW K ey, | (0 (T (@ivn — )|
_ N 2
< C(ﬁ)kSK 2]EPN,B [<?(xz+k — :L'Z))) 1Ii+k—$i>%]'

Inserting this into (3.81) and using (3.80) concludes the proof of Lemma 3.4.1. O
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3.4.2 First local law

We establish a local law, saying that each gap N(z;.x — ;) is typically of order k with an expo-
nentially small probability of deviations.

Lemma 3.4.2. Let § > 0. There exist two constants ¢(3) > 0 and C(8) > 0 locally uniform in

such that for eachie {1,...,N} and 1 < k < %
Py (N (i41 —2:) = K170 < () exp(—c(AF " 07575, (3.82)

The proof of Lemma 3.4.2, inspired from the multiscale analysis of [46], proceeds by a bootstrap
on scales: if the local law (3.82) is assumed to hold for 1 < k < &, then in view of Lemma
3.4.1, one may convexify the measure in a window of size k without changing much the measure.
Moreover, the convexified measure satisfies better concentration estimates, allowing one to prove
through Lemma 3.3.13 that (3.82) holds at a slightly smaller scale.

Proof.

Step 1: setting the bootstrap Let §j := ﬁ We wish to prove that there exist two constants

co(B) and Cy(B) > 0 locally uniform in 5 such that for each i € {1,...,N}, 1 < k < % and all
J € (0,50],

k26

Py g(N(wik — i) = k') < Co(B)e ) (3.83)

Let K > 1. Assume that (3.83) holds for each k > K. Note that this easily implies that for all
0>0and k> K,

5 1t6
B)k™ ¥

P (N (@isk — 2i) > k') < Co(B)e ! (3.84)

Let us prove that there exists some ag € (0,1) such that (3.83) holds for each k > K!'~20. Fix
ap€ (0,1),ie{l,...,N}, k=K' ~ >0 and

I={j:i<j<i+K}

Let 6 be a smooth cutoff function 6 : RT — R such that 6(z) = 22 for z > 1, § = 0 on [0, 3]
and 0” > 0 on RT. Let v € (0,dp] be a constant to be carefully chosen. As in (3.78) set

N

_ 2
F - K%( 5

(Tirx — x)) (3.85)
Let Qn g be the constrained Gibbs measure

1
Knp

dQn g = efﬁ(HN‘FF)(XN)]lDN(XN)dXN.

Let 6 € (0, ﬁ] Since x; 4 — x; is a function of (z;)es, one can write

Pns(N(zisr—x;) = k') < Qu (N (i —2i) = 'O+ TV(Pygon; !, Qugont). (3.86)



3.4. Near-optimal rigidity 105

Step 2: upper bound on the total variation distance. Let us control the total variation
distance between the push-forwards of Py s and Qun s onto the coordinates (z;);c;. By Lemma
3.4.1, we have

. _ . 1
TV(Pasom ! Qug o mr ) < COE By |0 Ni@irk — 1)) |-

One can upper bound the right-hand side of the last display by
1 s 32 ,
Epy 4 [9<WN(%+K — xz))] < C(B)K>H0HY) 2 WPN,,B(N<$¢+K —x;) = j).

jZKlJr'Y

Using the the induction hypothesis (3.83), one finds that for all x < 2min(~, dy) = 27,

Ep, , [9(%]\7@»% )| < @ @K

Recalling that & > K1~ we deduce that for all ' < 1320,

/
K

TV(]P)N”B o 7TI_1’ @N,b’ o 77.]—1) < C(B>€—co(ﬁ)k ‘

Therefore, provided
v >0(1— ap), (3.87)

there exists ko(3) locally constant in 5 such that for all & > ko(5),

TV(Pygo 71'1_1, Qnpo 771_1) < %Co(ﬂ)efco(’g)k%. (3.88)

Step 3: accuracy under Qy 3.  One shall first study the expectation of N (x4, — ;) under
Qn . Since it is not bounded, one cannot directly apply (3.88) and one needs to prove a tightness
result. Let ¢ > 0. Observe that

log EQN,B [e(N(kaim))sl] = log EIP’N,/s [e(N(kaixi))ELﬁF] — log E]P’N,/B [eiﬁF]

E/

< logIEpNﬂ[e(N(x”’“_Ii))El_ﬁF] < logEPN’B[e(N(m”’“_mi)) ].
By Jensen's inequality, in view of (3.83), we have
logEpy ,[e "] > —BEp, ,[F] = —C(B)K. (3.89)

There remains to upper bound the exponential moment of (N (z; 1 — xi))al under Py 5. For all
a > 0, one may write

Epy, [eN00 =207 < Bpy, [N oren2)] < KT 57 UMD Ry (N (wigxc = 24) ).
J>K

Using (3.84), one finds that for &’ > 0 small enough depending on s,
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It follows that

Equ s [N @ik = )Ly, —ansr2e] < E@Nﬁ[e% (@i =1))” Loy rc2] + Op(1)

< gy [N @2 13 Quy (N (@i, — 21) > K27 + 05(1)
Egy [V @i ]3Py [eW(Emi—z)]

< C(B)ePE=KE L 05(1) = 0p(1).

N

(3.90)

Similar computations show that
EPNﬁ [N(xl+k - xi)ﬂN(xi+k—xi)>K2/5/] = 05(1) (391)

Having this tightness property, we can now compare the expectations of N (z;4; — x;) under Py g
and Qy g. One may write

k20

! 1 !
< KTV o', Qupom ') < 5K Co(B)e M,
where we have used (3.88) in the last inequality. Besides, combining (3.90) and (3.91), one gets

EIP’N,ﬁ [N(:Uz-‘rk: - xi)ﬂN(zi+k—mi)>K2/5’] - EQN,ﬁ [N($z+k - xi)ﬂN(zi+k—xi)>K2/5’] = Oﬁ(l)
One deduces that

Eqy s [N(@ivk — 2i)] = Epy 4[N (ivr — 2i)] + Op(1) = k + Op(1). (3.92)

Step 4: fluctuations under Qy g. One shall study the fluctuations of N(x;4+r — ;) under
Qn 3 by applying the concentration estimate for divergence-free functions stated in Lemma 3.3.13.
Denote
G: XN € DN — N(xi-i-k —l‘i).

Observe that Zjvzl ;G = 0, ;G = 0 for each i € I and sup |[VG|*> = 2N2. Moreover Qy 5
satisfies the assumptions of Lemma 3.3.13: Qu 3 may be written Qn g = e~ (Hi+H2)q X v with
V2Hy > 0 and Hy(x) = H(w(x)) such that

U2k+1 : ﬁU2k+1 = C‘U2k+1|2, for all ng_,_l € R2k+1 where ¢ = ﬁNQK_(1+’Y)(s+2).
Lemma 3.3.13 therefore gives

\logEQN’B[etG] —tEqy 4 [G]] < C(BEKINEHD=L 0 forall ¢ e R.

It follows that
L2(1+6)

log Qn g(IN(zirk — 2i) — Equ 4[N (Tigr — z4)]| = k) < 0B) - C(ﬁ)m~

Recalling that & > K~ one can rewrite this as

log Qg (N (@i 15 —2:) —Eaqy s [N @ik —2:)]| = k1H0) < C(8) —c(B)k° 0~ Tag (V4271

which gives by (3.92) the estimate

log Qn (N (zisk — 25) — k| = %) < O(8) — e(B)k21H)~ ey (1+0(+2-1), (3.93)
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Step 5: conclusion.  The exponent in the last display is larger than 24 if and only if

1 21— ) — (1 + s)
2(1+9) 1_a0((1+’y)(s+2) 1)>20 =< 5 s (3.94)
Observe that the conditions (3.87) and (3.94) can be satisfied if and only if
2(1 —ap) — (1 + 9) (2+s5)0+ (1+s)
(1—a)d < 5+ s = 1—ay> 5 . (3.95)
Having chosen ¢ < 2y = %;2 we deduce that there exists ag € (0, 1) such that (3.95) is satisfied,

which yields the existence of v > 0 satisfying both (3.87) and (3.94). For such constants ap > 0
and v > 0, we deduce from (3.88) and (3.93) that there exists ko(3) locally constant in /3 such that
for each k = ko(5)

|26

1
Qn (N (zipg —z) = k') < 500(5)6760(6) (3.96)

In combination with (3.88) this implies the existence of a number ky(3) locally constant in 3 such
that for each k > ko(p)

k25

Pr g(N(zipks — i) = k') < Co(B)e0OF,

thus concluding the bootstrap (3.83). Observe that (3.83) trivially holds for X' = N. One concludes
that (3.83) holds for each k > ko(3). At the cost of changing Co(53), (3.83) also holds for each
k=1 O

3.4.3 Reduction to a block average

In this subsection we implement a method of [46], consisting in replacing the position of a point z;
by a block average at a certain scale. Foreachie {1,...,N} and 1 < k < % let Ij(7) stand for
the interval of indices

L) = {jefl,...,N}: d(i,5) < k).

Define the block average

k 1
x£]22k+1 Z zj. (3.97)
JEIL (i)

Lemma 3.4.3 (Comparison to a block average). Lete € (0,1). There exist two constants C(3) > 0

and ¢(3) > 0 locally uniform in B such that for eachi€ {1,...,N} and 1 < k < %

Prg(IN(z; — 2| > £54%) < 0 (8)e <R

Proof. Let i€ {1,...,N}and 1 <k < % Fixe > 0. Let a = % with p € N. Since xl[o] = x;, one
can break N(z; — a:l[k]) into
p—1
N(z; — ")y = > N(lF I kel
m=0

For each m € {0,...,p — 1}, denote

k_(m+1)a”

G = N(@F" g ll ) and Ly = Ijpmina)(0):
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The function G, only depends on the variables (z;) jer,, and Zjelm 0jGm = 0. Lete’ > 0. Let Qn g

be the constrained Gibbs measure (3.78) with I = I,,, and K = k(m+1a+" The measure Qy 5
satisfies Assumption 3.3.1 with ¢ = SN2k~ ((m+Da+e)(s+2)  Note that sup [VG,,|? = O(N2E—™).
Thus, by Lemma 3.3.13, for all ¢t € R, we have

log Eqy, ,[¢!97] = tEqy ,[Gm] + Og(t2kemseallrs)+</(+2))

Fix ¢’ and « such that a(1 + s) + &'(s +2) = and ¢/ =

one sees that

, say a = . Since am < 1,

£ _£& __&
2 2(1+s) 4(s+2)

15

Qn,5(IGm — Eqy ,[Giml| = k37°) < O(B)e DK

Arguing as in the proof of Lemma 3.4.2, see Step 3, one finds that the expectation of GG, under
Qn g satisfies

(3.98)

Eqy 4[Gm] = Op(1). (3.99)
Consequently by (3.98) and (3.99), one has

Qu.(|Grm| = k21¢) < C(B)e R

Meanwhile by Lemma 3.4.1 and Lemma 3.4.2, we have

E/

TV(Pngo 7I‘I_Tj, Qnpgo n;j) < C(ﬁ)e—c(ﬁ)k ‘
It follows that 5
kAG+2)

Prs(|IGm| > k27%) < C(B)e P

As a consequence there exist constants depending on ¢ such that
S _e _
PW( 2. Gml = Oflk‘f) < C(B)e BRI

m=0

This concludes the proof of Lemma 3.4.3. O

3.4.4 Proof of Theorem 3.1.1

The proof of Theorem 3.1.1 immediately follows from Lemma 3.4.3. Indeed when studying the
fluctuations of N(x; — x;), up to a small error, one can replace z; and z; by their block average
at scale d(j,). Furthermore, the difference of these block averages may be bounded using Lemma
3.3.13 since its gradient has a small enough Euclidian norm.

Proof of Theorem 3.1.1. Letie {l,...,N}, 1 <k < % and € > 0. Let us split the gap N (z;1x —
x;) into

N(@iir — ;) = N(@gyp, — alh) = N(w; — 2y + NP, — 2, (3.100)
By Lemma 3.4.3, letting 6 = @, we have
Py s(IN(@ - 2))| = k3+9) < O(B)e ¥, (3.101)

Prs(IN (2l — 200 = k35) < C(B)e P, (3.102)

i+k
Let

G: Xy e Dy — N(a', —2l").
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Let Qu 5 be the constrained Gibbs measure (3.77) with I = {j : d(i,j) < k} and K = k(1) for
some v > 0 to fix later. Note that sup|VG|? = Og(NTQ). Moreover observe that Qp g satisfies
Assumptions 3.3.1 with ¢ = N2k~ (1+7)(+2)  Consequently Lemma 3.3.13 gives

logEqy ,[e'%] = tEqy ,[G] + Og(2EITVE=2) 1 for all t e R. (3.103)
Arguing like in the proof of Lemma 3.4.2, one gets
Eqy 4 [G] = Os(1). (3.104)
Fix v = ;55. By (3.103) and (3.104) one finds
Qu (G| = k27¢) < C(B)e Ik (3.105)

Again, by Lemma 3.4.1 and Lemma 3.4.2, one has

(>4

TV(Pygom !, Qupomn') < C(B)e P, (3.106)

Combining (3.105) and (3.106) one deduces that

>4

Qu (|G| = k27¢) < C(B)e Pk,

Together with (3.101) and (3.102), this proves (3.6). Since for each i € {1,..., N}, z; is uniformly
distributed on T, one easily concludes the proof of (3.7). O

3.4.5 Control on the probability of near collisions

Let us control the probability of having two particles very close to each other. One may fix a single
gap and show that there exists an inverse power of this gap with a finite exponential moment, which
gives via Markov's inequality the following bound:

Lemma 3.4.4. Let o€ (0,3). There exist two constants C() > 0 and ¢(3) > 0 locally uniform
in 3 such that for each i € {1,...,N} and € > 0 small enough, there holds

o

Pn g(N (i1 — ;) <e) < C(B)e P,

Proof. Let a € (0,5). Let 7 : R* — R* be a smooth function such that

n(x)_{l if 2 €[0,1]

0 ifxe2, +x].
One shall study the fluctuations of Xy € Dy +— £(N(xo — x1)) where
£z eRY — n(x)|z|~*.

Let 11 be the push-forward of Py g by the map X € Dy — N (22 — 1), i.e the law of a single gap
under Py g. By Lemma 3.3.10, the measure y is of the form

dp = e PO 6 vy (y)dy,
with H : (0, N) — R convex. Consider 1) € L?(u) solution of

Blg+H)dp—¢'=&—[& on (0,N)
{ w(%) =y(N) =0. (3.107)
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We claim that

[V (y)|
AL < O0(B). 3.108
yes(g,l?v) |y[tHs—e < Clh) ( )

First, there exists a constant ¢ = ¢(8) > 0 such that for 1) < 0 on [0, ¢). Second, note that
—(g+H) <g,<0.

It follows that for all = € (0, ¢),
0< —ula) < P [ 0 (e(y) - &)y, (3109)
0

In view of (3.109), one may compute that

sup el < C(B).

ye(0,c) ‘y’ Lhs—a

Third, since ¢ is bounded on (0, 4+0), we deduce that (3.108) holds.

From (3.108) one can derive a Gaussian concentration estimate by considering the Laplace
transform of & under p. For a small ¢t € R, let us perform the change of variables Id +¢v with 1
given by (3.107). For t small enough, this defines a valid change of variables and therefore

E,[exp(t€)] = B, | exp (€ o (1d +4) = (g + H) o (1d +1) — (g + H)) + log(1d +t¢)) |
By convexity, we have
(9 +H)o(Id+ty) — (9 + H) > t(g + H)'¢,

log(Id +t') < ta'.

Taylor-expanding & o (Id +t1)) and using that ¢ solves (3.107), one gets that for ¢ small enough

log B, [exp(t€)] — tE,[€] < log E#[exp (t2 s MH < OB, (3.110)

where we have used that « € (0, 5) in the last inequality. To control the expectation, one may write

2
by symmetry

N
1
E,[¢] = NEPW[Z E(N(zit1 — mi))] = Op(1). (3.111)
i=1
The proof of Lemma 3.4.4 then follows from (3.110), (3.111) and Markov's inequality. O

3.5 Optimal rigidity for singular linear statistics

In this section, we give the optimal scaling of gaps and discrepancies and improve the fluctuation
results of Theorem 3.1.1. We will consider statistics with test-functions having poor regularity. In
contrast with Section 3.4, we give controls on variances rather than exponential moments. We
however believe that our method can be upgraded to get Gaussian concentration.



3.5. Optimal rigidity for singular linear statistics 111

3.56.1 Mean-field transport

We now present the transportation argument of [157, 241]. As mentioned in the introduction, this
transport is the starting point of many CLTs on 3-ensembles and Coulomb gases including the series
of papers [184, 27, 181, 239]. The method consists in moving each particle according to its position
only, so that at the first order, the main term of the linear variation of the energy compensates
the linear statistics. This transport, which can be interpreted as a mean-field approximation of the
solution of the Helffer-Sjéstrand equation, creates a local error term, sometimes called “loop equation
term”. For a measurable map ) : KJ_VIT — R, we denote Ay, [t/] the quantity

Agy Y] = f Nin((Uyte) — p(Uty)) N~ gl (2 — y)dflucty (z)dflucty (y).  (3.112)

Remark 9. The loop equation term (3.112) appears in many proofs of CLTs for log-gases. For the
2D Coulomb gas, it is replaced by an angle term, as seen in [184] and [24]. For [3-ensembles, the
corresponding quantity is smooth and may therefore be controlled using the local laws by bounding
the measure flucty. In the Riesz case s € (0,1), (3.112) is as singular as the energy, which makes
this term more delicate to treat.

Proposition 3.5.1. Let £ € C"*"¢(T,R) for some ¢ > 0 and ¢y € (0,1]. Assume either that £ is

supported on (—%, %) orthat {y = 1. Let 1) € Cg(ég,l'lf, R) given by

1o -
V= g v (=)

(€N and w0 (3.113)
and W e C5(Dy,RY) given by

v XN € DN — EN(w(gj_lel)a . ,w(ﬁj_\,lxN))

We have
. 1
VarPN’B [FluCtN[f(ENl.)]] - _WEPN’B [,3\11 . V27-[N\I’ + |D\If|2]
N 1 N
1,.. . rep—1,..
+ 7(” EPM[Z ¢ (05 ) (ly a:z)] + e Ve [BAZN [l - > ¥ty xl)].

=1
(3.114)

Remark 10 (Scaling relation). On the circle, the Riesz kernel does not satisfy any nice scaling
relation, as opposed to the Riesz kernel on the real line. As a consequence the fractional Laplacian
of{(ﬁj_\,l-) cannot be expressed as a dilatation of the fractional Laplacian of £, hence (3.113). If{ is
replaced by a function £ : R — R and if (—A)% denotes the fractional Laplacian on the real line,
we have

75 (=A) T () = () T ()

and (3.113) would be given by i)/ = —25168(—A)153

as in Lemma 3.2.2, we can see that the solution of (3.113) approaches —w%s(—A)%fo where
& : R — R is as in (3.44). Therefore in the limit where { — 0, (3.113) should be understand as
a function supported on R and independent of £ .
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Proof. Let ¢ € C*(T,R) for some € > 0 be such that {1 = 0. Define the transport

U:XyeDy— (w(:El), . ,w(.%']v))

Let us expand VHy - W. Let uy = %sz\; dz; be the empirical measure. Almost surely under
Py g, there holds

VHy - = j j N0+ g/ (& — ) N((z) — () d(N ) (2)d (N 1) (),
Ac

where A stands for the diagonal {(x,y) € T? : * = y}. By decomposing uy into uy = dz +
%ﬂuctN, one can break VHy - Wy, into

Vi Uiy = N | [ N(0(@) ~ sV gl y)dady
2 ([ M)~ p@IN gl )y dttuct (@) + Alul, (3115)
with A[v] as defined in (3.112) with {5 = 1. For the crossed term we can write
N [ Nwla) bV g o -y = NG (3.116)

Let ¢ € C*(T,RR) be the solution of the convolution equation —23¢. * 1) = & — (£ with {¢ = 0.

Since g is the fundamental solution of the fractional Laplace equation (—A)%g =cs(0p—1), ¢ is

the unique solution of
o . 1 . 1—s . _
Y = 2503( A)2 ¢ with sz =0. (3.117)

For this map, one can observe that the constant term in the splitting (3.115) vanishes:

N [[ @)~ oIV gl p)dady = N [ v =0,
By (3.115) and (3.116), there holds

BVHN -

U = Flucty[&] +

Ni-s vims Al (3.118)

Since {1 = 0, there exists ¢ € C1¢(T,R) such that ¢ = ¢. Let ® € C*(Dy,R) be such that
Ve =V,ied: XyeDy— ¢(x1)+ ...+ ¢d(xn). One can write

Vare, , [Flucty[¢]] = Vars, , [FluctN[f] Nl . ch]
1 2 _
— iy Varey s [£0] + <= Covey , [Flucty [€(05" )], £2].
By (3.118), we have
1
Varp, [FluctN[ﬂ NI sﬁ@] ) Varp,, ,[BA[¢] — Fluctx[¢']].

For the two other terms, observing that U satisfies the boundary condition ¥ - 77 = 0 on 0Dy, we
get by integration by parts

Varp, ,[£L®] = Ep, ,[BY - V*HN T + [DT|?]
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and
N

Covey ,[Flucty[¢], L] = Ep, , [ 3 5’(x,-)¢(g;i)].

i=1

We thus obtain

1
o=y Ben s (B - V2HNY + |DT]

Varp,, ,[Flucty[£]] = — o1

N

N
+ %EPW[Z fl(xi)¢($i)] + ﬁ Varg, , [ﬁA[w] - 1//(:@)]. (3.119)
=1

=1

Let £ supported on (—3,3) and £y € (0,1]. Let ¢ € CE(¢5'T, R) such that

O (-0)

v = 2fes N

B ) with [v =0 (3.120)
and ¥ € C°(Dy,RY) given by

U:Xye Dy Ny e),. ... 0y an)).

Applying (3.119) to £(£5'-) allows one to write

Varg, , [Fluctn[£(£y")]] = — Epy ,[BY - VPHN U + [DV]

1
(NEN)Q(lfs)
N

wg)EmJfo%W%%wumémﬁWMAMmm—ZW%%&

i=1

Indeed, letting ¢ := €ntp(£5' ) with ¢ as in (3.120), we have

By = V(L) = — (= A) T (€(05H)).

28c, v

Therefore £, va QSN is the solution of (3.117) and by inserting this into (3.119) applied to £(¢yy Ly,
we deduce that (3.129) holds. O

Remark 11. Proposition 3.5.1 can be interpreted as a mean-field approximate solution of

A1V = VFlucty[£] on Dy
V¢ -i=0 on 0Dy.

The existence of an approximate solution in the class of “diagonal transports”, ¥ : Xy € Dy —
(¥(x1),...,0(xN)) is a consequence of the long-range nature of the system and more precisely of
the mean-field approximation of the energy. For the hypersingular Riesz gas, i.e the Riesz gas with
gs(x) ~ |x|™% for s > 1, one cannot approximate the solution of the above equation within this
class.
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3.5.2 Splitting of the loop equation term

In view of Proposition 3.5.1, expanding the variance of a linear statistic reduces to controlling the
loop equation term (3.112). Let us first discard a strategy based on local laws only. Recall that for
all 1 € C5 (¢ T, R),

Agy ] = f f N ((051) — () N~0+9)g) (& — y)dfiucty (2)dflucty (y).
Ac

By using local laws on gaps, one may control the above integral away from the boundary. Nevertheless
Ay, [1] contains among other terms the quantity

N
D IN@ U wip1) — (U5 ) )N~ gl (g — a4),
=1

which is in O(N/¢n|1'|s) with overwhelming probability. Therefore applying a local law estimate
will give in the best case, the bound

Varpy , [Agy [¥]] = O(NEn)?[W'[2).

Inserting this into Proposition 3.5.1 gives an error term of order O((N¢y)?*), which is larger than
the expected order of fluctuations of linear statistics. Instead one shall exploit the convexity of
the interaction and bound the fluctuations of Ay, [¢] using various concentration inequalities. As
emphasized in Section 3.3, the variance of a smooth function under a log-concave probability measure
is related to the norm of its gradient and one should therefore first differentiate (3.112).

Before entering into the main computations, we first define a localized version of Ay, [¢)]. We
will assume that 0 is in the support of £ and then we then let iy be the index (defined almost surely)
such that x; is the closest point to 0:

ip = argmin|x;|.
1<i<N

Fix v > 1 and let
In={ie{l,...,N}:d(i,ip) < (Nln)"}. (3.121)

For ¢ € C5(¢3'T, R), we define a localized version of A, 1] by letting
Al = D5 New(@(ly'e:) = w(ty'ap))N~ g (a — 2j)
i#jEIN

—2N ) f Ny (W(ty'z) — (0t y) )N~ g (2 — y)dy.  (3.122)
Iy\sw

iGIN

For ¢ > 0, define the good event

A={XyeDy:Vik:iji+kelyn Nz —xi— Nk| < (Nly)k2}
N{Xny €Dy :Viely,(Nly)° < N|zit1 — x| < (Ney)®}. (3.123)

Lemma 3.5.2. Let ¢ satisfying Assumptions 3.1.1. Let vy € C°(T,R) such that g’ g = & — [ &
with (1o = 0. Assume that v has p singularities in a1, ...,a, of order 1 + az,...,1 + a,, with
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€ (0,1), as defined in (3.8). Assume that ¢ is supported on (—%,1) or that {y = 1. Let
(

¥ e CO(U T, R) given by
1

W= =54

Let ey = 1 Ky with Ky defined in (3.50) and ¢ = 1/(Nex)'=¢" with ¢’ > 0. Denote I =
(— ) (NENTTY AT One can break VA [treg] into VAW withV, W € L2({1,..., N}, H'(Py 5))
satisfying

e Foreachie I, V;=W; =0.

S () (Ey ) and fz/J:O. (3.124)

e Uniformly on i€ Iy,

1
. Fi& (67
e Vil < CNEw) ( i Z N (|Jzi — Inar| v )1+az)]l|”“|<%N
FOWEN)™ ] (NEy)™N~2 A O(NEY)ENT
l:al>% (|CCZ —ENCL[| \Y% ( l;{,v) )1+§ (fN + ‘331|) 2
¢ ' 2ms) (1) 2 1
+ + C(Ney)re= =901 N3 - (3.125
(NEN)T® (O3t |i] +1)2= (NEw) (d(xi,00) A £)1F3 (3.125)
e There exists W e L>({1,...,N}, H (Py.)) such that for all Uy € RY,
N ~
WUy = = > WN(uis1 — )
i=1
with )
sup |[W[2 < C(NUN)(Nly + (NOy)2maxar), (3.126)
A

The proof of Lemma 3.5.2 is deferred to the Appendix.

Remark 12 (Remgrks on the decompgsition). Conditionally on v1 = x, F becomes a function of
the gaps, i.e F' = F o Gapy for some I : RN — R. However, due to the (nonintegrable) singularity
of i/, the norm |V F| is too large for the Log-Sobolev inequality to give sharp bounds on the variance

of Ay [treg)-

3.5.3 Variance quantitative expansion

We proceed to the proof of Theorem 3.1.2. The first step is to perform the mean-field transport of
Proposition 3.5.1, which reduces the problem to approximating the variance of the loop equation term
(3.112). We then multiply the gradient of (3.112) by a cutoff function supported on a good event
(of overwhelming probability) on which gaps are close to their standard values. Using the uniform
controls of the last subsection, we then deduce from a Poincaré inequality in gap coordinates and
from the comparison principle of Lemma 3.3.5 a sharp control on the variance of (3.112).

Proof of Theorem 3.1.2. Let ¢ satisfying Assumptions 3.1.1. Let 1 € CO(T,R) defined by

1 1—s
= — ~A)z ith = 0.
W= e (AT with [
By assumption, 9" has singularities in a; < ... < ap of order 1 + a,...,1+ o, with a1,...,ap €

(0,1 —3). Let {{x} be a sequence of posmve numbers in (0,1]. Assume either that & is supported
on (— % 1) or that £y = 1.
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Step 1: regularization. Let ¢/ > 0. Define
Ereg = €% Ky with K, defined in (3.50) and £ = 1/(N{x)' . (3.127)
By Lemma 3.3.9, there holds
Vare,, ,[Flucty [Sreg (') = §(0y" )] < Ny [reg — €72

Moreover one can check that
‘greg - €|%2 < C(NEN)I%/*l (1 + (NEN)Q(maxal*(lfs))>.

Since max oy < 1 — 3, for ¢’ small enough, the above quantity is o((N¢x)~(1=9)). We deduce that,
up to a lower order term, one can replace the test-function £ be its regularized version ;cq:

Varp,, ,[Flucty[£]] = Varp, ,[Fluct y[&reg]]4+O ( Varp,, , [Fluct y[&reg]] 2 (1+ (N )maxa—(1=s)y

+ (NEN)55’+2 maxal—2(1—s)) ) (3.128)

Step 2: mean-field transport.  Let ¢y, € CQ(EIVI’]I‘,T) be such that

1
2f3cs

Meg = = (_A) 153 (greg(gj_vl‘))(gN‘) with Jwreg =0.

Let us now define the map

\IIKN : Xy €Dy — EN(wreg(gj_\flxl)a ) wreg(gj_vlmN))'

By Proposition 3.5.1 we have

VarPN,ﬁ [FluCtN[greg(éj_Vl')]] = - EPN,ﬁ [ﬁ\IIgN ’ v2’}_[]\7\1141\7 + |D\IIEN ‘2]

1
(NKN)Q(I_S)

1
WEP’Nﬁ[Z Ereqtree) (Cy $l)]+(JV€zv)(18'>V&rPNﬁ[5AfN Uree] Z Uesl3') |
) . (3.129)

2

By Lemma 3.3.9, the variance of Flucty|: reg(Ej_\,l-)] is bounded by

Var]PN,ﬂ [FIUCtN [wreg (ﬁ_ )]] < NeN‘wllreg‘%Q :

Since [¢]e,|72 < C(1+ (Ney)?™ax~1) this implies that

2

Vatry | B vy [Yreg] = Y Wleg(U' ) | < C(8) (Varey ,[Ay [regl] + (Wey)mex(t2macen ),

=1
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Step 3: asymptotic of the mean-field terms.  Define

BEN wreg j N~— (5+2) ” )(NKN) (d}reg(gj_\flx) - wreg(gﬁly))QdﬂU‘CtN(x)dﬂuCtN(y)'

(3.130)
By splitting the empirical measure upy into puy = dx + %ﬂuetN like in the proof of Proposition
3.5.1 and using (3.43), we can easily show that

1
_ WEPMQ [B\PZN . v2HN\I/€N + ‘D\PENP]
2 N ) 1 ) N B |
/ — s _ B . - ~ /
a0 B | 2 a8 20 it 29)| = 5N a1 e = (V) [t
g
= iy B By [Yreg]] - (3.131)

When ¢ tends to 0, by (3.45), we have
(Grea ()2 1s = Cxléresl? 1pe + O(RIE]Z2)-
Moreover one can easily prove that

Epy 5 [Bey [Ureg]] < C(B)(NEN)™((Nly + (NLy)?mx0), (3.132)

see Lemma 3.7.4 in Appendix 3.7.2.

Step 4: reduction to a finite-range quantity We now reduce to a localized version of Ay [treg].
Let v > g%j vivit ﬁ and yo € supp(§). As in Subsection 3.5.2, define

s

io = argmin|x;| and Iy = {j:d(j,i0) < (NlN)7}.
1<i<N

Let us split Agy [treg] into Agy [Yreg] = AZN [threg] + A" with AgN [Yreg| as defined in (3.122):

KEN [wreg] = Z NKNW(EJ_VI%) wreg(é x]))N (1+S)gs( - x])

ieln,d(i,7)<(NEN)Y

- Z jy<(NeN)7 NEN(wreg(gzile) - ¢reg(€;\f1y))N7(1+s)gg (zi — y)dy.
= N

iEIN

In Appendix 3.7.2, we show that the remaining term A®*" is 05((N€N)%), since -y has been chosen
large enough: there exist C(5) > 0 and § > 0 such that

Py s(|A] > (Ny)2) < C(B)e NN, (3.133)

We thus deduce that
VarPN,ﬁ [AeXt] = O,B(NKN)- (3.134)

The estimate (3.133) is proved in Lemma 3.7.5.
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Step 5: fixing an origin In order to apply the comparison principle of Lemma 3.3.5, one needs
to fix an origin. Recall that x is uniformly distributed on the circle. Conditioning by x; allows one
to split the variance of Ay, [¢reg] in the following way:

VarPN,ﬁ [AKN [wreg]] = EPN,B [VarIP’N,B [AEN [¢reg] | Ty = x]] + Va’rIPN,ﬁ [EPN,H [AKN [d’reg] | Ty = l‘]]
We claim that

Varey ; [Eey s [Aey [Yreg] | 21]] < C(B)((NEN)?1 ) 4 (Ney)?mexe), (3.135)
The proof of (3.135) uses the fact that the law of x3,..., 25 under Py g(- | 21 = ) is the law of
xg — 21+ x,...,xn — 21 + x under Py g as well as the rigidity estimate of Theorem 3.1.1. We

postpone the details to the Appendix, see Lemma 3.7.6.

Step 6: convexification and reduction to a good event Let us first define a convexication of
Pn g by penalizing large nearest-neighbor gaps in the window I;. We proceed as in Section 3.4.
Let 6 : Rt — R* be a smooth cutoff function such that 6(z) = |z|? for 2 > 1, § = 0 on [0, 1] and
0” >0 on R". Fixe >0 and z € T. Define

N($i+1 - xz)
F = 0| —————=
2wy

and the locally constrained Gibbs measure

—— e PO (X )d X . (3.136)

dQng = Kns

In view of Lemma 3.4.1 and Theorem 3.1.1, the total variation distance between Py (- | 1 = )
and Qn g(- | 1 = x) satisfies

TV(Py (- | 21 = 2),Qu(- | 21 = 2)) < C(B)e NN, (3.137)

for some constants C' > 0 and ¢ > 0 depending on 8 and some constant § > 0 depending on ¢.
The above estimate together with (3.135) can be summarized into

VarPN,g [AZN [djreg]] = EPN,g [VarQN,B(-p:l:x) [AZN [¢reg]77]] + Oﬁ((NeN)%liS) + (NEN)Zmaxal)‘
) ) ) (3.138)
Recall the good event (3.123). Let 6 : R — R such that 6(z) = 1 for |z| > 1, 6(z) = 0 for |z| < &

and 0(z) = 2|z| — 1 for 3 < |z| < 1. Define the cutoff function

=11 (M [T e

. ' Lo — T
€IN — T <k<Frithely iely (Tit1 i)

By subadditivity one can write

Varg, , (foy—o) [Aey [Yregl] < 2Bqy o (as =) [(1VAly [Yreg]) (AT) T (1V ALy ) [reg]]
+ 2B gy (o1 =) (VN ALy [Yreg]) (AT) T (VA gy [Yreg])]. (3.140)

Let us split VA, [¢hreg] into
VAZN [¢reg] = V + W

with V, W as in Lemma 3.5.2. Using subadditivity again we find

By a(-to1 =) [(1V Bty [reg ) (AT) (VA ) [res]] < 2By 4o =) [(0V) - (AT) T (V)]
+ 2By 4 (for—o) [(TW) - (AD) T (pW)]).  (3.141)
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Step 7: using Poincaré in gap coordinates for nW and AgN [Yreg] VN To estimate the Dirich-
let energy of W one can take advantage of the fact that Qg is uniformly log-concave in gap
coordinates. Indeed proceeding as in the proof of Lemma 3.3.8 one can write

EQJ\J,,&('\MZI) [77W . (Agf)_l(nW)] < 6_1EQN,5(~\901::C) [772W . (V2(HN + F))_1W]
- —5—1EQN7[3[ min Uy - V2(Hy + F)Uy — 2(nW) UN]. (3.142)

UNGR

By definition of Qu g, for all Uy € RN,

Uy - VX(Hy +F)Ux = (NEx) 25N (N (w1 — u4))?

VB

=1

and besides

N
nW-Uy = — 2 NWiN (uit1 — u;)
i—1

with |yW| satisfying (3.126). Inserting these into (3.142) we deduce that there exist constants
C > 0 and k > 0 such that

Eqy 5(fo1 =) [TW-(AD) " (7W)] < OB (NEN) " Eqy (=) [0 [WIP] < OB} (Neyy) e tmex(l2maxan),
Similarly for the vector-field KZN [Vreg| V), One gets
Eqy s (o1 =2)[(VNAey [treg]) (AT) T H(VNAgy [threg])] < CB™HNEN)“Eqy (- for—a) [[Aey [reg] VI*].

Since Vn = 0 on A€ with KgN [reg| uniformly bounded on A by (N¢y)" for some £ > 0 we find
that

e K —c s
Egy o (fer=o) [Ary [Ureg] V1] < C(NEN) By, (for=a) [[V0I*] < C(B)e PNV (3.143)

where we have used Theorem 3.1.1 and Lemma 3.4.4 in the last inequality.

Step 8: using the comparison principle for V. By Lemma 3.5.2, there exist constants C' > 0
and x > 0 such that for each i € Iy,

. 1
sup [nVi| < C(NLy)™ > (Ney)™N™2 T Ljp, <20
Lag>% (Ji — Enar| v S5
+ C(Nty)"e i i ! 1 +C(NY )*”~8J\r—%—1
=1 Nl — tnvay| v &)L i<t (In + |zi))'H2
C 0y 1

+ + O(Ney)re= =)= =3 —. (3.144
(NKN)’YS (£E1|x1’ + 1)2—5 ( N) (d(.’I}Z,aI) A %)1-‘,—5 ( )

The main term in the right-hand side of (3.144) corresponds to the gradient of a linear statistics
that we now define. Let (v : T — R piecewise smooth such that

1
(| + €n)'2
1

+ C(NLy)™ > (Ney)¥N™2 e
Lay>3 (|lz — aln| v 3

N|w

(hireTw Oty (lyte) + N™

——. (3.145)
)1+

(NI
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Note that (x is a discontinuous function, increasing on [0,1). There exist constants C' > 0 and
k > 0 such that

|V| < C(NEN)'%VFthtN [CN]

One can now apply the comparison principle of Lemma 3.3.5 and more precisely its consequence
stated in Lemma 3.3.6 to get

N
EQN,B('\M:I) [(7V) - (A:f)il(nv)] < 402(‘]\761\7)2% VarQN,B('\m:x) [ Z CN(IZ)]
=1

Using (3.137), we can write
Varg,, , (fay—a) [Flct N [Cn]] < Varp,, | oy o [Fluctn [Cn]] + Og(e P NIT) - (3.146)
Moreover,
Epy 5 [Vargy ;e - [Flucty[(n]] < Varp, , [Flucty [Cy]] + Og(e PN,
The test-function (v is the sum of the five test-functions appearing when integrating (3.145). For
the two first terms, one may use the sub-Poissonian estimate of Lemma 3.3.9. For the three other

terms, this estimate is not precise enough, and one shall study the variance of the corresponding
linear statistics separately. Let us define

fn(.%') = f(x>]lx¢(0,17) + f/(n)(x - 77) + f(77)7 where f(x) = 1'_%, n:= I/Nl_gl' (3147)

By Lemma 3.3.9, we have

N
VarQy, (a1 =) [ 2 CN(wi)]
=1
N
< C(B) (N ) (N m=x(2maxen) o C(B) (NN YN~ Varpy | Y fulwi) |
=1

Combining the above estimates one gets

N
Equ (11 =) [V- (A1) I V] < C(B) (N ) (N )02 300 L O(8) (Nen ) N~ Varpy | D fo(ai) |-
i=1
(3.148)
There remains to bound from above the variance of the singular linear statistics f;, defined in (3.147).
Let us observe that the test-function f is the critical case of Assumptions 3.1.1, since f is not in

H'Z. Letus highlight that the cutoff ¢ = 1/(N¢x)'~¢ has been added to circumvent this criticality.
Indeed it is enough to prove that for any fixed &’ > 0, there exists a constant C(3) > 0 such that

Varp,, ,[Flucty[f,]] < C(8)N°. (3.149)

Having established (3.149) will show that the right-hand side of (3.148) is negligible.
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Step 9: bound on the auxiliary linear statistics Let f, be as in (3.147). To establish (3.149),
we apply to f;, the first steps of the current proof. Let ¢ € C°(T,R) be such that

1
2fcs

Observe that by Lemma 3.2.5, the map ¢ satisfies

¢ =

(—A)'2"f, with fqﬁ:O.

1
9| < C(/B)‘l_ﬁ—l'

|:L‘ 2V lee/

Denote
Un: Xy €Dy (o(21),...,0(zN)).

By Proposition 3.5.1 we have

1
N2(1-s)

2 1
+ WE]}DN’B [FthtN [f;,gb] + m Var]PN’B [ﬁA[¢] - FthtN[¢/]] .

By Lemma 3.3.9, there holds

Varp,, , [Flucty[fy]] = — Epy ,[BYN - VPHN N + [V2UN]?]

Varg,, , [Flucty[¢']] < N|¢/[72 = O(N**).

Expanding the mean-field terms like in Step 4, one deduces that for all £ > 0,

1 —2(1-s
N2(1-s) Val"lPNﬁ [Alo]] + N2 )+E|¢,|i2>

Varey , [Fluctn[f,]] < C(8) (N* +

<C(B) (NS + Varp,, ,[A[6]] + NS*E*E/(H)) (3.150)

1
N
1
< 0(5)(]\73 + N2(-s) VarPN,@[A[¢]]),

where the last inequality is obtained by choosing & small enough compared to&’. For Iy = {1,..., N}
and /y = 1 and Qp g be the constrained Gibbs measure (3.136) for Iy = {1,..., N} and {n = 1.
Arguing like in Step 4, one justifies that

Varp, ,[A[¢]] = Ery , [Vargy ,[A[¢] | 21 = a]] + Og(N? 7779 e),
Let x € T and n° the cutoff (3.139) for Iy = {1,..., N}. Let us decompose VA[¢] into
VAlg] =V + W?
with VO, WY as in Lemma 3.5.2. By subadditivity and proceeding as in Step 7, one can write
Varg, s (Jar=2) [A[D]] < 3By s(te1=a) [(1°V)-(AD) T 0OV +Eqy 4 (for =) (" WO)-(AT) (" WO)])
+ Og(e VW)™,
In view of Lemma 3.5.2, there exists W0 € L2({1,..., N}, H'(Py)) such that for all Uy € RY,

N
WO'UN = —ZW?N(UZ'+1—UZ‘>
=1
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with
1
x2—s

dz < CNna-i-Q—s—a’(l—s) )

1
sup ’nﬂwﬂ‘Q < CNH£+1J 1
lesl

Therefore proceeding as in Step 7, one finds
Egy s (a1 [(1°W) - (AD) 7 (P WO)] < C(B)NreH2ms—<l1s), (3.151)
Now for °VO, following the line of reasoning of Step 8, we obtain

E gy (=) [1°V" - (A) T (°VO)] < C(B)N"* Vare,, , [Flucty[f]] + C(8) N7 179),

(3.152)
with f defined in (3.147). At this point, the sub-poissonian estimate of Lemma 3.3.9 is sharp
enough: one can write

Varp,, ,[Flucty[f]] = Og(N).
Inserting this into (3.152) using (3.151) and (3.150) and choosing £ small enough, one obtains

Varp,, ,[Flucty[f,]] = Op(N=+re=e'(1=9)),
By choosing ¢ small enough, we deduce that there exists a constant C' depending on ¢’ such that

Varp, ,[Flucty[f,]] < C(B)N*. (3.153)

Step 10: conclusion. Inserting (3.153) into (3.148) yields

EQu =) [(1V) + (AD) T (V)] < C(B) (o) mex(tzmeen), (3.154)
Therefore recalling (3.134), (3.138) and using (3.141) one gets
Varg,, [Agy [treg]] < C(8) (Ve S=msx0:2ms) 4 () (Nt 20— (L (W ey 2=

(3.155)
Inserting this into (3.129) and using (3.131), (3.132) we conclude
V&TPN,B [FIUCtN[greg(gjvl')]] _ Ugreg (NEN)S + OB((NEN)HEeraX(LQmaxaz)*Z(lfS))'
Finally one can check that
1 1
2 2
= . 1
O—ngg g¢ + O(NgN + (NEN)l—;—maxozH-ms’) (3 56)

By choosing &’ small enough we can absorb the error terms (3.128) and (3.156) into the error arising
from (3.155). This concludes the proof of Theorem 3.1.2. O

3.6 Central Limit Theorem

3.6.1 Proof of the CLT

In this subsection we give a proof of the CLT for singular linear statistics stated in Theorem 3.1.3.
One could proceed by considering the Laplace transform of the fluctuations but instead we deduce the
CLT from an application of Stein's method. The starting point of the method shares many similarities
with [173]. In the sequel, we leverage on variance estimates obtained in the last subsection and obtain
a CLT in a weak topology. We believe that one could obtain with the same approach a local CLT
for smooth test-functions.
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Proof of Theorem 3.1.3. Let £ be a test-function satisfying Assumptions 3.1.1 and {/x} such that

Iy > % Assume either that £ is supported on (—%, %) or that £y = 1. Define

Gy = (Ney) " 2Fluctn[£(051)]-

Let n : R — R be a smooth function. The principle of Stein method is to prove that up to a small
error term Errory, the following integration by parts formula holds:

E]PN,ﬁ [U(GN)GN] = UngNﬁ [n/(GN)] + Errory, (3.157)
with )
of = 28c |§|§{153. (3.158)

Indeed (3.157) controls a certain distance to a normal distribution. Let Z ~ N(0, Ug). Ifh:R—->R
is smooth enough, then one can solve the ODE

The fundamental observation is that
Epy s [M(GN)] — E[h(Z)] = Epy ,[1(GN)GN — 01 (Gw)]-

This allows one to prove the following standard inequality (see for instance [85]):

-

sup [Py g(Gn <t) —P(Z <) < Q(SUP [Epy [ (GN) — GN??(GN)]I) :
teR neD

where D is the set of functions 1 : R — R such that |n| < 1, |'|o < 1. Let us now prove that
(3.157) holds for n € D up to a small error term.

Step 1: regularization Let ¢’ > 0. Consider &g the regularization of £ at scale 1/(NOy)(1=<)
as in (3.127). Set

gn = (NOn) " 2Flucty[€reg (C3)]
Observe that

Epy [0(Gn)GN =1 (GN)] = Biy , [0(53)n — 1 (Gn)] + Op(1 + (NLy)™ >~ (173)). (3.159)

In the sequel we establish that gy satisfies the approximate Gaussian formula (3.157).

Step 2: main computation Let us first discuss the relation between (3.159) and the H.-S.
equation 41V¢ = VGy. The discussion is only formal since we have not proved the well-posedness
of the H.-S. equation under Py g for test-functions which are not functions of the gaps. Let V¢ be
the solution of 3
A1V¢ = VGN on DN
{V(b-ﬁ:O on 0Dy.

By integration by parts under Py 5, one can write

Epy ,[n(7n)gn] = Epy ,[0(GN)LGN] = Epy , [0 (GN)VGN - V). (3.160)
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The point is to show that under Py g, the quantity VGy - V¢ concentrates around a constant,
which turns out to be 7. Let ¢req € C2(£§' T, R) satisfying

1 —s
wllreg = _25656}V (_A)

By Remark 11, V¢ may be decomposed into

1;9 (greg(gj_vl'))(gN') and f@breg =0.

1

T ey

(ENwreg(gj_lel)7 cee 7£Nwreg(€]_v1$N>)

1

WAl_l[/BVAZN [wreg] — VFIUCtN[z/J;eg(EJ_Vl.)]’ (3161)

_|_

with Ay, [treg] defined in (3.112). Inserting (3.161) into (3.160) leads to

N
EIPNﬁ[ (GN)GN] EPN[-}I: GN Z @breg(g mz)freg(Z xz)]

+ (]VEN]_)lgE[PNﬁ [U/(GN)VéN . Al_l(ﬁVAzN [wreg] — VFIUCtN [w;eg(g&l)])]

One can reformulate this into

N
By [0(GN)ON] = Ery , [1(G3) Y. 17 S )€l 05101
z=1
+ (Nf]i)l 5 COVIP’NB[ (GN>7 (BAZN[wreg] _FluCtN[wéeg(gj_Vl‘)]]

and the above identity follows from a rigorous integration by parts, as in the proof of Proposition
3.5.1. It follows that gy satisfies the approximate Gaussian identity

E]pNﬁ[n(éN)éN] = O'EEIP’N,B[UI(@N)] + Error}v + Error?\,, (3.162)

with
N

Errork = Bey 1 (Giv) (3] - e n' 0 8hu(0512) = o) |

1

W Covpy 4 [U(GN)7 (BAgy [Yreg] — FIUCtNW;eg(E;Vl-)]],

2 _
Errory =

Step 3: the error term Errory, One can bound Error}; by

N
1 _ _
Errork | < 0o B | D5 Eheg (0" 2i)hes(Ey'20) = NOwoZ]
=1
Since ., = —25105 (—A)lg &reg, Observe that

N
EPN’B [ Z é~1/”eg(ej_\/'lxi)wreg (6&1131)] = NgNo.greg,

i=1
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with o¢,., as in (3.158). Moreover from the definition of &g,

1 1
2 _ 2
M O(NeN i (NEN)l—S—maxaer%’)'

We therefore obtain the following bias-variance decomposition:

[SIES

N
1 _ _
]Error]l\;| < 0’77/|00M (1 + V&I‘[PN’B |: Z féeg(glei)wreg(gNlmi)]
i=1

).

By the sub-poissonian estimate of Lemma 3.3.9,
N 1 L
— — 2 ES
Var]PN,B [ Z geg(elei)wreg(Elei)] < (NKN) 2 ‘wreg géeg’LQ'
i=1
By Assumptions 3.1.1, ¢)yeq is of order O(|z — a|'™™8%) around a singularity a of &g while Ereg
grows in O(|z — a|~ ™14~ |t follows that
1
1 max _
’wreg g;eg‘%g < C(l +f . Wdl’) < C(l + (]\75]\[)4 ax a;+2s 3)'
Niy
Hence
N 1
Epy , [| 3 g () e (O ) — N@Nag\] < O(NEy)? + O(Nly)2maxa+s=1,
i=1

and
Errory = O(Nty) ™2 + (Ny)~(@-2maxar—s)y, (3.163)

Since maxa; < 1 — 5, note that Errork = oney (1).

Step 4: the error term Error%\, To upper bound Error;, one can write for instance
Error}| < — Vi A 2 2 \ Fluct v [¢... (0<1)]]2
|Errory| < WW@ arlP’N,g[ In [wreg]] + WW@ arPN,/B[ uc N[wreg( N SlIER

(3.164)
A quantitative bound on the variance of Ay[treg] has been obtained in the proof of Theorem 3.1.2.
The estimate (3.155) asserts that

Varp, , [Ay [Yreg]] < C(B)(Ney)rermaxt2mexa),

Moreover from the sub-poissonian of Lemma 3.3.9,

Varp,, , [Flucty[thes (C5')] < Nly f (Vieg)? < C(B)(Ny)mex(12maxan),

It follows that

c(b)

1—s

N 2

[Error| < [7]ao (N ) % Pz maxan), (3.165)

Step 5: conclusion Inserting (3.163), (3.165) into (3.162) and using (3.159) one obtains

[Epy 5 [n(GN)GN — 020 (GN)]| < C((NKN)—(l—g—maxal—ng) N (NKN)_lgs‘)'

Since max a; < 1— 3, this error term is oy, (1) and this concludes the proof of Theorem 3.1.3. [
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3.6.2 Proof of Corollary 3.1.4

Proof of Corollary 3.1.4. By Lemma 3.2.3, the function ¢ := 1_, ,) satisfies Assumptions 3.1.1 and
one may apply Theorem 3.1.3. Let us define

1 1—s

Y= —E(—A) 7 &

By integration by parts, the asymptotic variance ag may be expressed as

1
208c;

Furthermore, from the explicit computation of Lemma 3.2.3, we have

0f = oo M€ 1 = ~3 ¥ = =2 (W(a) = P(=a)).

2

cotan(%s)

P(x) = (C(=s,2+a) = ((=s,2 —a)).

s

It follows that
cotan(3s)

T%SC(_S’ 2a). (3.166)

2
0'5 =
Now for £ — 0, we have

. 1 . 1T 2. (2
]\}Enoo (Nly)* ]\}linoovarPN,g [FIUCtN[f(EN )] = O¢ := |€0|H?’

where §p : R — R, §p = 1(_,q). In this case, by expanding (3.166) as a tends to 0, we find

.o cotan(gs) s
= 2% 9g)0,
0-5 ﬁgs ( a’)
Let {kn} be a sequence in {1,..., %} such that ky — 0. Let

ip = argmin|x;|.
1<i<N

Let us prove that k2 (N (Zig+ky — %iy) — kn') converges in distribution. Let ¢ > 0. Let 7 : Z

1— 4. 41~ Z such that 7(n) = n mod N and n(n) €] — &, §] n Z. Define the event

s

A ={Xy € Dy :|Nay,| < ki, Vi, j € {k: d(k,io) < 2kn}, [N(zj—2;)—Nm(j—i)| < d(j,)2 "}

Since ig is the index of the smallest point, by Theorem 3.1.1, the event A has overwhelming
probability: there exists § > 0 depending on & such that

Pr,s(A°) < C(B)e Dk,
Moreover note that on A, we have

N »
N(@hyrio = wig) = kin = —<Z Lo,en) (@) — NEN) + Ok + k]%,(2+5)),
=1

where / = %\’ Since A has overwhelming probability, choosing € > 0 small enough, one deduces
from Theorem 3.1.3 and the above computations that
kn

S t E
N=5¢(—8, N3 (N (2 sig — i) — kn) = N(0,02), where o2 = = an(Zs)

—F. (3.167
N Law ﬁgs ( )

By symmetry, (3.167) holds for each i € {1,..., N}. O
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3.7 Appendix

3.7.1 Well-posedness of the H.-S. equation
3.7.1.1 Well-posedness for gradients

Let u satisfying Assumptions 3.3.1. The formal adjoint with respect to p of the derivation 0;,
i€ {l,...,N} is given by
8;"10 = ﬁlw - (&H)w,

meaning that for all v,w e C*(Dy) such that v -7 = 0 on dDy, the following identity holds
E,[(div)w] = E,[vdfw]. (3.168)

The above identity can be shown by integration by parts under the Lebesgue measure on Dy. Recall
the map
II: XyeDy+— (.Tg—xl,...,x]v—an)ETNil

and p/ = poII~t

Lemma 3.7.1. Assume that y satisfies Assumptions 3.3.1. Let F '€ H~'(u). Assume either that
F is in the form F = G o Il with G € H='(y') or that x is bounded. Then there exists a unique
¢ € H'(u) such that that

Lt = F —E,[F] on Dy

Vo-i=0 on 8Dy (3.169)

E,[4] - 0.

Moreover the solution ¢ of (3.169) is the unique minimizer of
6 = Bu[|Vo[* - 20F],
over functions ¢ € H' () such that E,[¢] = 0.

Lemma 3.7.1 is a variation on Lax-Milgram's lemma. When the interaction kernel x is bounded,
a uniform Poincaré inequality holds. If one does not assume that  is bounded, then one can observe
that the Poincaré inequality holds for all functions of the gaps.

Proof. Assume that F' = G oIl with G € H=*(p/). Let

E={¢eH (1):¢=1vollyeH i)ELs] =0

and
J:¢e E—E,[|Ve|*] — 2E,[Fo]. (3.170)

One can write
EL[FO]l < [ 1) D] 1 (p0)-

By assumptions V2H > c on the subspace {z € R"V : 1 = 0} for some constant ¢ > 0 and therefore

_ _ 1
Eu[¢7] = Varu[¢] = Vary [v] < B[V - (V2H)T'VY] < By [|VY°] = Eu[[Ve’].
(3.171)
Consequently there exists some constant C' > 0 such that for all ¢ € E,

EL[Fol < C|F|i1(EullV[2]2. (3.172)
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It follows that .J is coercive with respect to the H'(1) norm and that J is bounded from below. Let
(¢r) be a sequence of elements of E such that (J(¢x)) converges to inf J. Since (¢y) is bounded
in H'(p), there exists a sub-sequence converging weakly to a certain ¢ € E. It follows from (3.172)
that J is I.s.c on H'(u). Since J is convex, J is |.s.c for the weak topology on H!(u). Therefore
¢ is a minimizer of J on E. The first-order minimality condition for ¢ reads

E,[Vo-Vh] = E,[Fh,

for all h € E. By integration by parts one may rewrite the above quantity as
E,[Vé-Vh] = E,[LFoh] + J (Vo -i)he 1.
oD

It follows that V¢ -7 = 0 on Dy and that for all h € E,
E.[(LY¢ — F + E,[F])h] = 0.
If he H (1), letting h = §h(z1,...,zN)dz1, one may note that
E,[£"6 — F + E,[F])h] = E[(£"6 — F +E,[F])i] = 0.

We deduce that ¢ satisfies
Li¢ = F —E,[F],

as elements of H~'(p) and V¢ -7 = 0 on 0Dy. The uniqueness is straightforward.

When the density of 11 is bounded from below by a positive constant, it is standard that y satisfies
a Poincaré inequality. We deduce from the same arguments the proof of existence and uniqueness
of a solution to (3.169). O

We can now complete the proof of Proposition 3.3.1.

Proof of Proposition 3.3.1. Let F = G oIl with G € H'(yi/). Recall that if F € H'(u), VF €
L2({1,...,N},H ' (u)). Indeed

N

Y NoF 31 < D N6FI3: < 16030

i=1 =1

=z

By Lemma 3.7.1, there exists ¢ € H'(u) such that L = F — E,[F] as elements of H~!(u) and
Vé-ii=0o0n0Dy. Let we C*®(Dy) such that w-Vn =0on dDy. Foreachie {1,...,N}, we
have

E,[wé;F] = E,[0fw(F — B, [F])] = Eu[0fwllé] = E,[Vorw - V)

N
Z (67 050)258) + 2, Bul([0, &7 Tw)d;].
j=1

2

For the first term in the sum above, we have

N
[(0F0w)0;¢] = Z [(0;w)0;0;6] = B, [Vw - V(0:;¢)] = E[wLH(d:9)].

J=1 J=1

=
Ei
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For the second term, using the identity [9;, 0F] = (V?H); ;, one can write
N
Z [([0;, 8} w)0;0] = E,[we; - VZHV ).

We conclude by density that, in the sense of H~1(p), for each i e {1,..., N},
LM¢) + (VEHV ¢); = O;F.

This concludes the proof of existence of a solution to (3.58). The Helffer-Sjostrand formula (3.60)
then easily follows from an integration by parts: letting V¢ be the solution of (3.58), we can write

Var,[F] = Eu[(F — Eu[F])L¥¢] = E,[VF - V).

When the density of u is bounded from below we conclude likewise.
Let us no prove that the variational characterisation of the solution of (3.58). Let

= {peL?({1,...,N},H' (1)) : v =vo Gapy,ve L*({1,...,N}, H (i/'))}

and
Jihe EwEL[|DY)? + - VEHy — 2VF - 4].

By standard arguments, one can easily prove that J admits a unique minimizer v, which satisfies
the Euler-Lagrange equation

Al =VF on Dy
{ P-n=20 on 0Dy. (3173)
Since J is convex on E, if V¢ verifies (3.173), then ¢ = V. O

3.7.2 Auxiliary estimates
3.7.2.1 Discrete convolution products

Lemma 3.7.2. Let o, 8 be such that o+ 3 > 1. Let kg € N.

(i) Ifae (0,1) and B € (0,1),

Z 1 1 C
_ B +B8-1"
keN, k+£ko ke ko — k| ko

(if) Ifa =1 and 5 € (0,1),
1 1 C'log kg
YLt e G
TR

keN, k#ko

(iii) Ifa« > 1 and 5 > 0,

Z i 1 < C
ke, B (R0 — K7 pnin(ed)

The above estimates follow from straightforward computations, see for instance [200, 91]. Let
us now adapt Lemma 3.7.2 to truncated convolution products.

Lemma 3.7.3. Let o, 8 be such that o + 3 > 1. Let kg € N.
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(i) Ifa>1and € (0,1),

1 . K
1 1 Katp—1 lf]{}o < 5
RS b i (3.174)
k>K,Zk¢ko ke |k — kol® { ) Ko T ifko > 5.

(i) fa>1and =1,
1

Z 1 L { RaihT if ko < &
o _ 118 1 1 . e
- ~ ) —avsT + 5 logk fko>= 5.
k=K k+#ko ke ko — k| kg + ke OBR0 TR0 =7

(iii) Ifa > 1 and f > 1,

oL o< 1K,j) if S <k <K
AT S
k>t |k — kol kiJriﬁﬁ ifko > K.

Proof of Lemma 3.7.3. Let us prove the three statements together. Let @ > 1. We split the sum
over k along the condition k > 2kg. If k > 2kg, |k — ko| = % and therefore

Y EETRES. Y S mid
< < —.
ke>2ko k=K ke [k — kol k>2ko k=K ko8 ™ max(K, ko) P

If ko < % the remaining part is empty and therefore

Z 1 1 - 1
ra b — ka8~ +B—-1"
ko E o ko |k — kol K«

Assume now that ky > % We split the remaining term into two parts according to whether
|k — ko| = %0 or not. For the first contribution one has

Z 1 1 1 1 < 1 1
Wk —hof S 5 A4 ke S PRl
K <k<2ko,|k—ko|>*0 | ol kg kS Fo
For the second contribution we may write
Z 1 1 1 1
ko |k — kg|5 kg p |k — kolP
Kék‘SQkoJk—k(ﬂS |k‘—k()|<707k‘2[(
k+#ko k#ko
One can bound the sum in the right-hand side by
kg " if Be(0,1)
1 < log ko if =1
Z lk—kol® ~ ) 1 if 5> 1 and k:o >
_ ko
sz,lli;Iz)ol 2 7(1(—130)5*1 if 3>1and & < ko <K.

Combining the above estimates concludes the proof of Lemma 3.7.3. O
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3.7.2.2 Proof of Lemma 3.5.2

Proof of Lemma 3.5.2. \We suppose that ¢ is supported on (—

in the macroscopic case being similar. Let iy = argmin|z;|, v
1<i<N

33) and that £y € (0, 1), the proof
> 1

In={ie{l,...,N}:d(i,ig) < (Nln)"}.
To lighten the notation let us write Iy = {1,..., K} with K = 1+|(N¢x)?|. Let ¢ € C°(¢3'T,R)

given by (3.124) and teg = ¥ * Ky with £ = 1/(N{y)" for some &/ > 0.
Denote u® the regular grid of spacing % on T:

eT, i=1,...,N. (3.175)

Step 1: splitting Let §: z € T\{0} — g.(z)z. One may express Ay, [{reg] as

-1 —1
Apy[Yreg] = ff I gLy 5)_;%% (ty 2)) N7%g(y — x)dfluct 5y (x)dfluct 5 (y).
Ac

Denote
N (Preg (U'Y) — treg (U3 @)

Ci(z,y) € ((4'T)* = '

One can split the gradient of AeN [Yreg] into V 4+ W with V;, W; given for each i € Iy by

Vi=2 > 0C(i, wirk) N G(wik — ;) — 2N 01¢(@i, y)N°g(y — x;)dy
k:itkel yl <%
3 N =
+2 Z (@i, wi k) NG (uy) — 2N (i, y) N™°F (y — 2)dy
kiit+kel lyl <%
K N =
and

Wi=2 3 C(wsmisr) N7 @ik — 2) — §'(u]))
kii+keln

with V; = W; = 0 for each i € I§,. Let us isolate from V; the discretization errors: for each i € Iy
write V; = V] + V? with

Vi=2 > 0l zik) N oGk — ) =2 ). (s, z+uf )N~ g(uy)

ki+kely kui+kely
+2 > (Clws wign) = Clasxi + ) )N G ()
kiit+keln
and
Vi=2 > (al(anu)gug)+¢ (s ug)g (uy)—2N (01¢ (2, 1) () +C (i, 9)F () dy.

(Nen)Y
kii+kely ly| <N )T
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Step 2: control on V! For each i € Iy, one may write

Vi=2 Z 016 (i, iy k)N~ (G(wipn — i) — G(u))

kii+keln
+2 7 (@il(mi, migk) =i (i Ay )N G )42 Y (i wagn) —C (i, mitug) ) ) NG ().
kii+kely kii+kely
(3.176)
Denote Vil’l, Vil’2 and Vil’:)’ the three terms in (3.176). By assumption, 1, satisfies |1y, < Cny
where
e T —(1+ i ! 1 + = (3.177)
NN T €Ly '—’( 1 a) lz[<2 T )38 '
= (z—af v W)H ! (1 + |z)
Observe that there exists a constant C' > 0 such that for all z,y € T,
|01¢ (2, )| < Cly (v (') + v (E5'y))- (3.178)
Therefore, on the good event A defined in (3.123), one can bound V%! uniformly in i € Iy by
1,1 -1 KE -1 -1 N 1
Vil < Oty (Niw) Z (v (Cy x5) + v (U (@ + 054)) ——=- (3.179)
jeln:j#i lj—i]" "2
Let us keep track of the indices near the singularities of &: for each i = 1,...,p let
k! := argmin|z; — (nay|. (3.180)
1<i<N
Note that there exists Cy > 0 such that for all Xy € A,
. K .
l7 — 5| > CoNUln = |zj| > 20N, for each j e Iy.
Moreover we can write
1 _ In B NVl
M]_Vl(a: - ﬁNa,l)| Vv (NKN)_(I_el) |x - ENCL[’ \% EN(NKN)f(Ifsl) \Na; - NKNal| Vv (NKN)‘E/ ’
It follows that
77N(£Xf1$j) + 77N(£1_\71(37i + ué\/;z)) < C(NKN)KE]IU_%SCONM
p 3—s
1 1 (Nln)
(14 S (New)+or _ A )+ OV — -
( z; (L+ 1[5 —KH)tHer— (Ney)e (”O‘l)> (I — 51+ New)3=s
Inserting this into (3.179) gives
|V171‘ < Ce—l(Ng )KE Z <1+Zp1(N£ )1+al ]- A ]. 1
i ISV N N i Ll[l+a "(T+a --1§>
i-Kl<CoNey =1 L |j = KHUrer (NOy)' e 1 |5 — |t
Y 1 1

+ CUN (NEN)™ (NEN)* ™ )

S(Ney + 17— 5314 —if're

(3.181)
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One can first check that
3 1 1 if i — & < 2C Nty ( )
— = < N¢ s K 3.182
P a1+3 — 2N if | — S| = 2C,N{ly.
- Si<coney 7 xpeg (= g] > 20Nty

The behavior of the discrete convolution product depends on whether a; < 5 or not. By Lemma
3.7.3, we have

Z ' 1 N 1 1

1 — kit e'(1+ap) - s1+2
li—E|<CoNEy 17 | (NEN) RNV

1 1 . . K
li—kl|Tted + (\ifkllv(NZN)E/)H% if ‘Z - 7| QCONEN and ap > %
<CH e if i — £| < 20Nty and oy < 5 (3.183)
1 s K
\i_5|1+%+0‘l if ‘Z—g‘ = C()NEN.
2

On the event A, there exist constants C' > 0 and x > 0 such that

li — k| = C(Ntn)""|Naz; — Nlyay|, foreachiely, 1<i<
Besides we can check that

N

1 _ K
E . _ ERN K
S (New + 17— F1)Ps i — 't ; K1|37 if |i 7| > 2Nly

Observe that the term (3.182) is dominant at infinity. One can therefore gather these expressions
into

B 1
Vit < C(NEn)™ ) (Ney)N~3 o) 1eg | loil<2
Liog>3 (‘xl - KNCZ | v N )
p 1 s 1
+ O(Nly) e e

1. + CO(NlN)* N2 —M .
24N (= Waan] v e Hesd<ze  COVEVEN 20

(3.184)

We turn to the second term of (3.176). Observe that there exists a constant C' > 0 such that
for all a,xz,y €T,

101¢(2,y + a) — 1 {(z, y)| < Cl (v (Ly'y) + v (L

Ayt a)) + (i) 1

lz —y|

Applying thisto z = z;, y = zj, a = xj — x; — ujv_l we find that there exist constants C' > 0 and
% > 0 such that uniformly on A and for each i,j € Iy,

1

|01¢ (i, 25) =01 (i, wit ) )| < CLGH(NEN)™ (nn (U i) +n (Uy e

Naitul )+ (03 )

As a consequence we get that Vil’2 is bounded uniformly on A by

VP2 < COMNEN)™ DT (v (Ot ag) + nv (0 (s + ) B fe

. 145
Jeln:j#1 |.7 - l| T2
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In view of the previous computation, one deduces that Vil’2 verifies the estimate (3.184). With
similar arguments one can check that Vil’3 also satisfies (3.184) and therefore

s 1
Vi < C(NEy)™ Y (Ney)*N™2 T <20y
Lar>3 (J; — Eyvay| v DTy 13
+ O(NY )HEZP]W ! FO(NIy)YSN—5— 1
S T IR S T I

(3.185)

Step 3: control on V? Fix 2 € T and define

NT N=F TyN—5(L).
fiye <(wx+N) (N)+61<(:c,m+N) 9
For each Ky, Ko e {1,..., %} one may write using the Euler-Maclaurin formula

F(—K1) + f(IK) -1 L
— ) .
LB f[ ey SO . +o( f_glf(y)ldzﬂr f 7 Wldy)

Let us thus upper bound the L! norm of f’. First, note as in (3.178) that for all y € N,

‘(’32((17,96 + %)‘ <Oty (mv(é o) + v (05 (@ + ;i,))

It follows that

N
J2
1

We recognize an expression similar to (3.179) and after performing some computations we find

%)N (1+s) 7' ( ‘dy < Cly J;N (nN(ﬁ :C)+77N(£ (x—i— y)))

(x + N

dy.

y1+5

p
1
%o ,N=AF9)g () ldy < C(New)™= Y o3 1
1 1
+ C(Nty)= NiN) N~ L O(NEN)ENT
) zzés( : (Jo — tyay| v D y1+ (W) (| + €n)1ts
(3.186)

Using that for all z € T, y € (—N %)

2

e,z + L) < cry (mv(ﬁ ) + nx(Cx (x+y>))@

N N N’
one gets
5 3 y 1
|7 totw+ g Lyay < Coy—1 [ * (nwtent) + w630+ 20) s

Finally, noting that for all x € T, y € (—%, %)

[021¢(z, x + N” < C'Ejvl (nN(fx,lx) + 77N(€Nl($ + %)))
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one may check that

f Flonca + BIN 5y < e [ ¥ (v (51 + om0 @ + 3) .

N
Combining these estimates we find that {2 | f’(y)|dy is bounded by the right-hand side of (3.186)
and so is S:lﬁ |f'(y)|dy. Inserting this into (3.188) we conclude that V? is bounded by
2

p
1
VE < C(NEy)™= ) e 1,
| l| ( N) l:Zl (|J}—£N(Il| >1+al | ‘<2£N
1 1
+C NKN)KE NﬁN)alN_s n +C(Ntly HEN_S——i-Cf(d i,&IN) .
( l:o%;s( (‘I’ _ gNal‘ Vi %)14—8 ( ) (|£ZZ| + EN)1+5 ( )

(3.187)
Split f into fi + fo with fi : y € NT — ((2, 2 + %)N g (4). First recall that

d(i, 0ln),| _ s

i i+ ——)| < (Un + a2

Let i € Iy such that d(i,49) < 3d(i,dIy). One can write

CN 1 e 0y
(NEN )Y (O] +1)27s (NEN)T® (0! ] + 1)2
Let i € Iy such that d(i,i9) > 1d(i,0Iy). Then

CN (
d(i, 0Iy)'+s

[f1(d(i, 01n))| <

|f1(d(i, 0In))| < Ney)~ @)=,

Let I = (—W, %) N T. On the event A there holds

1 o (Ney)=e
d(i,0In)'5  (Nd(zi, 0I) A 1)1F2

It follows that on A,
1
(d(zi,0I) A £)1F2

|f1(d(i,0IN))| < C(NEy)"™® —(2-5)(1-7) Ny —3

Besides we also have that for each ¢ € Iy,
|f2(d(i, 01n))| < C(Nen )y nn (0 ).
Since (3.187) can be absorbed into (3.185), we have obtained that uniformly on i € Iy

1

Vil < C(Ntn)™ Z (NZN)QZN_% < s ]l|aci|<2€N
Lag>3 (|:L',L _ENaJl| v (Nt;{[\]) )1-‘,—5
OV Y 6 1 LO(NEy)ENTE
N - N (|lzi — Nénay| v )1+a Ly | <20 N (ol + EN)”%
c oy . .

+ C(Ney) =G0 N2

+
(NEN)P (O3} i] +1)2- (i, 01) A 5)'*2
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Step 4: control on W in gap coordinates

Let W e L2({1,..., N}, H'(Py3)) be the vector-
field given for each i € Iy by

Z SN Cn ) NG (4, — )

N 1
— G (W) (kenyo + 5%:1\//2)
lEIN
l+keIN,z k<l<i

and W; = 0 for i ¢ In. For all Uy € RY, we have

N
W Uy = —ZWiN(UHl — u;).
i=1

There exist constants C, k > 0 such that uniformly on A, for each I,l + k€ Iy

C(148)1~ - C(N/Oy)Re
N™OFG (g, — ) — ' (uf)] < (Vew)

<=y (3.188)
By assumption |t

reg| < Cyn where

1
) -1
YN T E Ly ( E ]m al|al) |x\<2+1 |

1"2_5 '
One may thus bound W; uniformly on A by

K K
~ _ _ 1
(Wil < C(NEn)™ Y0 D) (vt ai)| + v (' ) ) 5=
k=1 j=it+1 |7 — K7
Reindexing this sum gives
s 1
IW;| < C(Nly)" }] Iy %ﬂr—ﬂﬂ; (3.189)

Recalling (3.180), for each I = 1,...,p and j € I we have that uniformly on A

Nlzj — tnar| = (Nen)~°|j = K],
Furthermore there exists a constant Cjy > 0 such that for each i, j € Iy and uniformly on A
=il =

CoNfN — |:L‘J| > QEN.
Inserting this into (3.189) we find that

- P 1 1
Wil <C(New)™ 0 (N i
- K Coney -1 lj = K |5 —
N
1 1
+C(NKN)2_SZ

- ——. (3.190)
j=1 (NEN + |] - %’)2_5 |] - Z|H_2

Let 1 <1 < p. Since oy € (0,1), one can observe that

1 e K

Z 1 1 < (C li—kl|* if |Z — 5’ < 2Cy)Nin
e s SOY N gl K

li—&|<CoNen |7 = e g —il' "2 ‘i_%|l+%+o¢l if [i 2 | = 2Co Ny
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Summing the squares of these over 1 < i < K — 1 therefore gives

NfN IfOélE(O,%)
(New)> Y ( 3 = = )2 < C{ (Nty)log(Nty) ifa; =1
1<i<K i K |j B kl|al |J _i|1+% : g
SisK o ]j=5|<CoNty (NLy )2 if g € (3,1).
(3.191)
Besides we can check that
L (Ney + |;_ Feli—ilts T | s i 5> 2Ny
Summing the squares of these over 1 < i < K — 1 gives
(20 W[ o 1 1 2
Ny 3 ( =) <Cney. 3.192

Inserting (3.191) and (3.192) into (3.190) we concludes that there exist constants C' > 0 and £ > 0
such )
sup [W|? < C(Nly)re (N £y )mex(l2maxa) (3.193)
A

O]

3.7.2.3 Additional useful estimates

Lemma 3.7.4. Let ¢ satisfying Assumptions 3.1.1. Let ¢y € C°(T,R) such that g\ * 1y = &
with (1o = 0. Assume that i has p singularities in ay,...,a, of order 1 + a1, ...,1 + oy, with

€ (0,1), as defined in (3.8). Assume that £ is supported on (—%, %) or that {n = 1. Let
RS C‘s(ﬁj_\,l']l‘, R) given by

W= e A T ) and w0
Let e = 1 * K, with K, defined in (3.50) and £ = 1/(N{x)'~%" with &’ > 0. We have

EPN,B [BKN [¢reg]] < C(ﬁ)(NEN)HE(NEN + (NEN)zmaX o ) (3.194)

Proof. Let us recall

By [Yreg) = Jf N_(S+2)gg(x — y)(NKN)z(lbreg(E;,lx) — wreg(Ej}ly))QdﬂuctN(m)dﬂuctN(y).

Denote

h(z,y) € (G T)NA = N7 gz — ) (Nl ) (dreg (U 2) = treg (Cn'9))

Since the first marginal of Py g is the Lebesgue measure dz on T, one can simplify the expectation
of Byy [¥reg] into

EIP’N[;[BEN[U)reg ZEIP’Nﬁ[ Z h :U],ZL‘z Njh Y, T dy]

=1 VEE
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Let u’V be the regular grid as in (3.175). One may split the above term into
Z h I]’xz NJ Y,T; dy - Z (h(:E]vxz) - h(l‘l + u;\f ir L ))
J:j#i JigF#i

+ 3 b+ ) NJ (z; +y,x;)dy := E} + EZ. (3.195)
J:j#i

Let us factorize h into h(z,y) = h(x,y)N~+2) g (x — 1) by setting
h(,y) = (NN (reg (U3 0) = Yreg(C3'9)) %

Let
1
) -1
wirely T ( 2|x_al|al> Ir\<1+1+’x|2—s'

By assumption, one can bound the difference of a(z,y + a) and h(z,y) by
h(z,y + a) = h(z,y)| < CN* x| (€' 2) — (5 )| (i (63! (y + @) + (')l
< ON*(yn (3 a) + v (') (v 6y (y + @) + v (Ex'y)lallz — .
It follows that
Epy ,[|E;[]

J—1
[N () — z;) [+

Ty —X;) — uN.
< C(ﬁ)EPNﬁ[ Z (v (O @)+ (O @) (v (O )+ (0 (i) )))|N( : ) - N ]
Jij#i

By Theorem 3.1.1, one can thus write

P
1 1
[Bf| < C(B)(Nn)™ (VL) — —
’ PIY j = Niaji — 5[5
1<j<CoNey
1 1
+ C(NEx)™= Y (N )22 B —
j;éz (j + Nin)? s|j—2‘1+2
By assumption, o < 1 — 5 and therefore 2a; < 2 — s < 2 — 5. Consequently one may use directly
(3.183). After some computatlons one finds
N
Erys| ) [EH| < C(8)(Ney)remm@masary), (3.19)

i=1

For the discretization error, proceeding as in the proof of Lemma 3.5.2, one can write

N
| X
‘ E h(zi + ué'v—i’xi) - th(l“i +y,zi)dyl < - f : |01h (i, E,x@-)ldy
=t N J, N

N
2 1 _ _ _
<C |7 O + (ot 1)) < O,

Summing the above estimate yields

N
EPN,B [ Z ‘Eﬂ] < C(B)(NEN)KEeraX(Qmaxal’l). (3197)
i=1

In combination with (3.195) and (3.196), this gives (3.194). O
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Lemma 3.7.5. Let ¢ satisfying Assumptions 3.1.1 and A% : tn [ Vree]) — AEN[¢reg] with

N
Apy[tbreg] and Agy[treg] as in (3.112), (3.122). Let v > 3=% v % There exist constants
C(B) > 0,¢(8) >0 and § > 0 such that

V2l

Py s(|A™] > (Nly)2) < C(B)e DNV,

E] 1

Proof. Let € > 0 be a small number, with ¢ < 7 A 5°. Define the good event

'

S

—{XyeDn:V1<i<N,1<k<N/2|N(isp —x) — k| < k27 v (Nly)2+e)
O{XNEDN:V1<i<N,(N£N) €<N(xi+1—xi)<(N€N)€}.

l\J

In view of Theorem 3.1.1, the event 13 has overwhelming probability: there exist § > 0 depending
on e and C(B) > 0,¢(B) > 0 such that

Py s(BY) < C(B)e PN’ (3.198)
Let us now upper bound A®** on B. By assumption the map 1/Jreg is bounded by Cvy with
Lz e (AT (1+Zp]1>11 P
" " =l — ] T T e
On can therefore bound A% on B by
N 1
AT < O™ ), 2, O (Ey'es) + Wity e T —r
i=1 jelg, +d(j,1) "2
ol 1
< O(NEN)™ Y v (Ut e) —————— + O(Nen)™ D aw(tyley)  (3.199)
i=1 1+ d(7’7 I]CV>2 c jels,

< C(NEN)™ Y n(ly'e:) + C(NEN)™ Y () ay).

d(i,0I¢,)2~¢

iGIN jEI]C\I
The second sum of the last display is bounded by
| D7 vty )| < C(NLy)serBms) % < C'(NLy)Fet@=s)=(=5) (3 200)
jeIs, k=(NEN)Y
Recall [In]| =1+ 2|(N¢n)?]. One may split the first sum into
1
Dyt a) S aTenie
Ty d(i, 01z
- Y wle et Y wle
% . e\ (E— ) e\ 2
ieIy,d(i,0In)>% (NlN)Y d(z’aIN)ﬂ{ ™) i€In,d(i,0In)< % (NLN)Y d(i, oI )
1
—1,.. -1,
<C ‘Z v (0 ;) (N )G +C ().
i€ly ieln,d(i,1$) <5 (Ntn)Y
Since the singularities of 1" are in Ll(ﬂj\,l’JI‘,]R), one can check that on B,
Dy e) < C(NEy)™=tt, (3.201)
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Moreover arguing as in (3.200), one finds that on 5,

Z (6 xz) C(NKN)KEJFQ s)— '\/(175)'

i€l ,d(i, 1) <5 (Neyn)Y
Combining this with (3.199), (3.200) and (3.201), one finally gets that on B,

A < C(NON)E(NOy) 257707579 1 (N ) G2,

Choosing v > —i v % one thus gets that for £ > 0 small enough, A®** satisfies
sup |A™| < C(Ney)2.
B
Together with (3.198), this finishes the proof. O

Lemma 3.7.6. Let ¢ satisfying Assumptions 3.1.1. Let ¢y € C°(T,R) such that ¢’ = 1y = &
with (o = 0. Assume that i has p singularities in ay,...,a, of order 1 + a1, ...,1 + oy, with

€ (0,1), as defined in (3.8). Assume that & is supported on (—3%,%) or that {y = 1. Let
P e Cé(ﬁfvl’ll‘, R) given by

1

U = 5t

F ) and [v=0

Let Yreq = 0+ K, with Ky defined in (3.50) and ¢ = 1/(Néx)'~% withe' > 0. Let Agy [Vreg| given
by (3.122). We have

VarPN,B [EPN,ﬁ [AEN [wreg] | 371]] < C(/B)((NEN)Q(lis) + N/ly).

Proof. First recall that for any ¢ : T — R smooth enough such that {1 = 0,
Eey 5 [Acy [¥]] = 0. (3.202)
Indeed, letting £ = —28g * 1 and VO : Xy — WEN(@Z)(Z]_V%Q,...,1/1(61_\,1:51\[)), we have

shown in the proof of Proposition 3.5.1 that

0 =Epy ,[LP] =Ep,, [FluetN[§(€]_Vl-)] — FluctN[w'(ﬁﬁl-)] + BAgy W]]

bt
(N£N>1_S

The first marginal of Py 3 being the Lebesgue measure on the circle, one obtains (3.202). Let
ip = argmin|x;|. The point is that

1<i<N
Lawpy ,(1,...,2n8 | 21 = 2) = Lawp ,(v1 + z,...,on + 7 [ 21 = 0)
= Lawpy ;(z1 +2,..., 28 + 7 | 74, = 0)
— La,W]P)N,B(xl —,f[,'io +$’...,$N _1'7,'0 +£I»’)

Fix o € T and let us denote ;) = reg(z0 + -). In view of the preceding remark,

EPN;%[AEN 7#reg] | I = x]

[
~ Ery, f | N0 )N b g (O 1) = (€5 (i)t o) et )|
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By Theorem 3.1.1, z;, = O(%) with overwhelming probability. Since the singularities of v’ are in
LY(T,R), one obtains by Taylor expansion that

EIPN,B [AZN [wreg] | Ty = 1:0] = EPN,B [AZN [1/}w0]] + OB((NKN)lis)‘
Applying (3.202) to 15, one thus gets

EPN,B [AéN [@Z)xo]] =0,

which gives
Varp, o [Eey s [Aey [¥reg] | 21 = w0]] = Op((NEx)?1 ). (3.203)

Besides, by Lemma 3.7.5, one can write
Epy ,[Varp, ,[A™" | 21 = x0]] < Varp, ,[Agy] < C(B)Nly. (3.204)
Combining (3.203) and (3.204) therefore gives

VarPN,,B [AEN [wreg] | Ty = .1‘0] < C(B)((NKN)QH_S) + NgN)'



CHAPTER 4

Decay of correlations and
thermodynamic limit for the circular
Riesz gas

This chapter is based on the article Decay of correlations and thermodynamic limit for the circular
Riesz gas, arXiv preprint arXiv:2209.00396.
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4.1 Introduction

4.1.1 Setting of the problem

The circular Riesz gas This paper aims to study an interacting particles system on the circle
T := R/Z, named circular Riesz gas. Let us note that given a parameter s > 0, the Riesz s-kernel
on T is defined by

: S 1 2 1—s
gs.xe’]l“‘»—>nl£%o(2 e el ) (4.1)

k=—n
Also note that for s € (0,1), gs is the fundamental solution of the fractional Laplace equation
1—

(—A) 2 gy = cs(do — 1), (4.2)

where (—A)% is the fractional Laplacian on T . Let us now endow T with the natural order z < y
fr=0+k y=y +k withk,k €Z, o',y € [0,1) and 2’ < ¢/, allowing one to define the set
of ordered configurations

N
Dy ={Xy=(x1,...;2N) €T 29 —21 < ... < 2xNy — 21}
And let us also consider the pairwise energy

’HN:XNEDNHN_SZgS(xi—:Uj). (4.3)
i#j
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Finally, the circular Riesz gas at inverse temperature 3 > 0 corresponds to the probability measure

dPNﬁ = 767’6HN(XN)]IDN(XN)(1XN. (4.4)

ZN’ﬂ

One of the main motivations for studying such an ensemble stems from random matrix theory. For
s = 0, the Riesz kernel on R, i.e the solution of (—A)%g = §y, is given up to a multiplicative constant,
by the logarithm kernel —log |z| and by log |sin(z/2)| on the circle. Interacting particles systems
such as (4.4) on R with logarithmic interaction and external potential are called 1D log-gases or [3-
ensembles and the circular log-gas or circular 3-ensemble corresponds to (4.4) with the log kernel on
T. As observed by Dyson [106], for some special values of 3, namely 5 € {1, 2,4}, the S-ensemble
matches the joint law of the N eigenvalues of symmetric/hermitian/symplectic random matrices
with independent Gaussian entries and there are numerous results on S-ensembles including results
on fluctuations, correlations, infinite volume limit, edge behavior, dynamical properties, relaxation
time, etc.

The one-dimensional Riesz gas is a natural extension of 3-ensembles and a fundamental model
on which to understand the properties of long-range particles systems. The interaction (4.1) is
indeed long-range when s € (0,1) while short-range (or hyper-singular, following the terminology
of [41]) when s € (1,+). The long-range Riesz gas is to this extent a particularly rich model
in which interesting phenomena occur, falling outside the classical theory of statistical mechanics
(Ruelle, Dobruhsin, Georgii, etc). Riesz gases, as a family of power-law interacting particles systems
on R?, have also received much attention in the physics literature. Apart from the log and Coulomb
cases, which are ubiquitous in both mathematical and physics contexts [238], Riesz gases have
been found out to be natural models in solid state physics, ferrofluids, elasticity, see for instance
[197, 18, 66, 249]. We refer to the nice review [191] which presents a comprehensive account of the
literature with many open problems.

The first-order asymptotic of long-range Riesz gases is governed by a mean-field energy func-
tional, which prescribes the macroscopic distribution of particles [80, 237], corresponding in our
circular setting (4.4) to the uniform measure of the circle. In Chapter 3, we have investigated the
fluctuations of the system and shown that gaps (large spacing between particles) fluctuate much less
than for i.i.d variables and much more than in the log-gas case. Additionally we have established a
central limit theorem for linear statistics with singular test-functions, which can be applied in par-
ticular to characteristic functions of intervals, thus proving rigorously the predictions of the physics
literature [191, 234]. The purpose of this very paper is to investigate another class of problems,
related to the question of decay of correlations. More precisely we work at proving the optimal
decay of gap correlations as in [116] which considers this question for S-ensembles and at proving
the uniqueness of the limiting measure. We will show that after rescaling, chosen so that the typical
spacing between particles is of order 1, the point process converges in the large NV limit to a certain
point process Riesz, 3.

Infinite volume limit Let (z1,...,2x) be distributed according to (4.4). Fix a centering point
on T, say = 0, and consider the rescaled point configuration

N
Cr = 2 Onw gy <
=1

With a slight abuse of notation, Cy can be seen as a random variable on point configurations on R.
Our goal is to prove that the law of Cy converges as N tends to infinity, in a suitable topology, to
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a certain point process Rieszs g. This property is known in statistical physics as the uniqueness of
the Gibbs state and is related to phase transitions. Note that while the existence of limiting point
processes is standard [129, 94], uniqueness is not expected to hold for general interactions even
in dimension one. In the cases of the Gaussian and circular S-ensembles, a unique limit has been
exhibited in the seminal works [250, 166] and then shown to be universal in the bulk of 3-ensembles
for a large class of smooth external potentials in [46, 49], see also [26]. The limiting measure, called
the Sineg process, can be described using a system of coupled stochastic differential equations [250]
or alternatively as the spectrum of an infinite-dimensional random operator [251]. In contrast, the
one-dimensional Coulomb gas, i.e with kernel |z|~* for s = —1, is not translation invariant in infinite
volume as proved in [167] and Gibbs states are therefore non-unique. As a consequence, the proof
of uniqueness for the long-range gas should use both convexity arguments and the decay of the
(effective) interaction. In higher dimension, let us mention that the existence of a limit, up to an
extraction, for the microcopic process has been proved for the Coulomb gas in [9], but the uniqueness
of such a limit is still a completely open problem.

Decay of the correlations A proof of uniqueness for the limiting measure of the averaged micro-
scopic process is obtained for the log-gas in [111] using a displacement convexity argument showing
that the free energy of the infinite gas has a unique minimizer. The strategy of [111] could possibly
be applied to the circular Riesz setting, but this method does not provide convergence without aver-
aging nor a speed of convergence. Instead, we propose to examine the rate of decay of correlations,
which is much related to this uniqueness problem. Since points are very correlated (fluctuations
being small), the appropriate observables to examine are the nearest-neighbor variables. For 1D
log-gases, the correlation between N(z;41 — ;) and N(xj.1 — x;) is proven in [116] to decay in
li — 7|72 In this paper we give for the first time a proof of the optimal decay of gap correlations
for the circular Riesz gas, which matches the case s = 0 found in [116] as well as the predictions
of the physics literature [1, 196, 191]. Moreover we establish that this gap correlation exhibits a
discontinuity at s = 1 with a much faster decay for s = 1* than s = 1.

The Helffer-Sjéstrand equation For generic Gibbs measure on Dy (or RY), the covariance
between two smooth enough test-functions is connected to the decay of the solution of a par-
tial differential equation, named the Helffer-Sjéstrand (H.-S.) equation. This equation appears in
[242, 243, 149] and is more substantially studied in [148, 147, 201], where it is used to establish corre-
lation decay, uniqueness of the limiting measure and Log-Sobolev inequalities for models with convex
interactions. Different approaches to obtaining decay estimates on the solutions of Helffer-Sjéstrand
equations have been developed in the statistical physics literature, mainly for Gibbs measure with
convex interactions. The random walk representation of [116], already pointed out in [149], [201]
and used priorly in [12, 96, 132] for instance, corresponds to a Feynman-Kac representation of the
solution of the H.-S. equation. The work [116] then develops a sophisticated homogenization theory
for a system of coupled partial differential equations. There are also more analytic methods relying
on ideas from stochastic homogenization, see for instance [201, 10, 91, 247].

As aforementioned, the method available in the literature [116] to prove the decay of correlations
for the 1D log-gas requires that one controls random walks in random environments, which can be
quite technical. The gamble of the present paper is to develop a method relying only on integration
by parts to treat the long-range Riesz gas with s € (0,1). We will first consider as a landmark
the hypersingular case s > 1 and work with a known distortion argument, used for instance in



146 Chapter 4. Decay of correlations and thermodynamic limit for the circular Riesz gas

[147] or in older techniques to study the decay of eigenfunctions of Schrédinger operators [89]. We
will then adapt the method to the long-range case using substantial new inputs including discrete
elliptic regularity estimates. Let us emphasize that as it stands, our method cannot be applied to
the logarithmic case since it requires to have nearest-neighbor gaps all bounded from above by a
large N-dependent constant much smaller than N, with overwhelming probability. Note that this
was also one of the crucial difficulty in [116] preventing a simple implementation of the techniques
of Caffarelli, Chan and Vasseur [65].

4.1.2 Main results

Let us denote d the symmetric distance of {1,..., N}, i.e d(i,j) = min(|j — i|, N — |j — i|) for
each 1 < 4,5 < N. Our first result, which concerns the correlations between gaps in the long-range
regime s € (0, 1), is the following:

Theorem 4.1.1 (Decay of the correlations for the long-range Riesz gas). Lets € (0,1). Foralle > 0,
there exists a constant C' > 0 such that for all £, x : R — R in H' and for eachi,j € {1,...,N},

| Covey s [E(N (i1 — i), x(N (211 — )]

1 —c i.7)0 1 —c 3.7)9 1
< C(B)(Epy o [€(2:)°]7 + 1€ |e™ DI By ,[X (25)]2 + X oo™ D))

(4.5)

Moreover, given e > 0 small enough and anyn € {1, ..., N}, there exist i, j such that § < |i—j| <n

and
1

d(i, j)*=s
Theorem 4.1.1 is the natural extension of [116], which proves that that for S-ensembles the
correlation between N (z;11 — z;) and N(zj11 — z;) decays in |i — j|~2. The lower bound (4.6) is
obtained by using a result from Chapter 3 which gives the leading-order asymptotic of the correlation
between N(x; — x1) and N(x; — x;). Theorem 4.1.1 is in accordance with the expected decay of
the truncated correlation function in the mathematical physics and physics literature, see [191].

Let us comment on the norms appearing in (4.5). Our method is mainly based on L? arguments
for a distortion of the Helffer-Sjéstrand equation system which is captured by the L? norm of &’ and
X'. Besides by assuming that £’ and ’ are uniformly bounded, we can control the solution on a bad
event of exponentially small probability by carrying out a maximum principle argument.

Theorem 4.1.1 should be compared to the decay of correlations in the short-range case, that we
quantify in the next theorem:

| Covpy o [N(2it1 — @), N(wj41 —a5)]| = € (4.6)

Theorem 4.1.2 (Decay of correlations for the short-range Riesz gas). Let s € (1, +00). There exists
a constant & > 0 such that for all ¢, x : R — R in H' and eachi,j e {1,..., N}, we have

| Covpy 4 [E(N (i1 — x4)), x(N (41 — 7;7))]]
< C(B) By € (@01 +1¢ e 09 By [ P14 o6 (G 1),
(4.7)

Remark 13 (Lagrange multiplier and finite volume correlations). The factor % reflects correlations
due to fact that the total number of points in system is fixed, see [117, 210, 38]. In fact, in the
framework of Helffer-Sjbstrand equations, it can be interpreted as a Lagrange multiplier associated
to the constraint Z;V:1 N(zj41—x;) = N, with the convention that x 1 = 1. Interestingly, this
correction does not appear in the long-range case (see Theorem 4.1.1).
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It would be interesting to establish the rate of decay of correlations in the case s = 1. We
believe that for s = 1, the situation is similar to the long-range case stated in Theorem 4.1.1 and
that correlations decays in d(i,7) ' logd(i, )" for some x > 0. Our next result concerns the limit
as N tends to infinity of the law of the configuration

N
=1

Since Py g is translation invariant, this is equivalent to centering the configuration around any point
x € T. Let Conf(R) be the set of locally finite, simple point configurations in R. Given a Borel
set B c R, we let Np : Conf(R) — N be the number of points lying in B. The set Conf(R)
is endowed with the o-algebra generated by the maps {Np : B Borel}. A point process is then a

probability measure on Conf(R). Let (z1,...,2y) distributed according to Py 3. For all z € T,
denote
N
Qnp = Law (Z 5Nzi]l$i<}1> € P(Conf(R)). (4.9)
i=1

Theorem 4.1.3 (Uniqueness of the limiting measure ). Let s € (0,1) u (1,+00). There exists
a translation invariant point process Rieszs g such that the sequence of point processes (Qn g)
converges to Rieszg g in the topology of local convergence: for any bounded, Borel and local test
function ¢ : Conf(R) — R, we have

lim EQN,ﬁ [¢] = IERieszSﬁ [¢]

N—o

Theorem 4.1.3 extends the known convergence results for 5-ensembles, see [46, 47, 250, 179, 94].
Additionally we are able to give a quantitative bound on the convergence of Qy g(x) to Riesz, g for
smooth test-functions.

Theorem 4.1.4 (Quantitative convergence). Let s € (0,1) U (1, +). Let K € {1,...,5} and
G:RE -RinH'. Let F: Xy — Dy — G(N(z2 —21),...,N(xg —2xx_1)). Fixz e R and let
us denote z; = argmin,..|z; — z|. Then for all ¢ > 0, there holds

Epy 5 [F] = ERiesz, 5[G(22 — 21, .., 25 — 2K-1)] + Op (N_%Jrg sup |VG\2> )

Combining the CLT of Chapter 3 and the convergence result of Theorem 4.1.3, we can addi-
tionally prove a CLT for gaps and discrepancies under the Riesz, 5 process. Let ((s, ) the Hurwitz
zeta function (see for instance [31]).

Theorem 4.1.5 (Hyperuniformity of the Riesz, 3 process). Let s € (0,1). Under the process
Rieszg g, the sequence of random variables

K_%(ZK — 21 — K)
converges in distribution to Z ~ N'(0,02) as K tends to infinity with

= ggeoran (39)
o° = cotan [ —s) .
B5s 2

Moreover, the variance of zi — z1 under Rieszs g may be expanded as

VarRies(g)[20 — 21] = K°0% + o(K*). (4.10)
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In particular, Theorem 4.1.5 implies that the fluctuations of the number of points in a given
interval under Rieszg g is much smaller than for the Poisson process. In the language of [249], this
says that Riesz, g is hyperuniform when s € (0,1). Our techniques, combined with the method of
Chapter 3, can also give a central limit theorem for linear statistics under the Riesz g process, as
done in [181, 172] for Sineg.

We conclude this set of results by studying the repulsion of the Riesz, 5 process at 0. We show
that the probability of having two particles very close to each other decays exponentially.

Proposition 4.1.6. Fix a € (0,3). Let ¢ € (0,1). There exist constants c(3) > 0 and C(3) > 0
depending on « and locally uniformly in 8 such that

PRieSZs,BOZiH —zil=e)=1- 0(5)6—0(5)6"‘.

4.1.3 Related questions and perspective

DLR equations and number-rigidity Having proved the existence of an infinite volume limit for
the circular Riesz gas, a natural question is then to study the Riesz, g process from a statistical
physics perspective. The first step in that direction is to establish the Dubroshin-Landford-Ruelle
(DLR) equations for the Rieszs g process as was done for the Sineg process in [94]. We refer to
[128] for a presentation of DLR equations in the context of lattice gases and to [93] in the context
of point processes. A question of interest is then to study the number-rigidity property within the
family of long-range Riesz gases. Number-rigidity is a qualitative property, recently put forward in
[131] which says the following: a point process is number-rigid whenever given any compact domain
of R%, the knowledge of the exterior determines in a deterministic fashion the number of points inside
the domain. Number-rigidity is a quite surprising phenomenon, which has been proved to occur for
the 1D log-gas independently in [86] and in [94] using DLR equations. The recent work [95] also
provides a strategy to rule out number-rigidity. Together with the local laws of Chapter 3, the result
of [95] should say that the Riesz, g process is not number-rigid for s € (0,1). This reflects a major
difference between the log-gas which is purely long-range and the Riesz gas for which the effective
energy is short-range.

Regularity of the free energy A natural question is to investigate the regularity with respect to
f3 of the infinite volume process Rieszs 3. A way to address this problem is to study the regularity
of the free energy of the infinite Riesz gas, which is defined by

f:B8€e(0,+x0)— ]\}i_r)noo —%(log ZNg — %BNQ_S ffgs(x — y)dxdy). (4.11)

The existence of such a limit was obtained in [182] for Riesz gases in arbitrary dimension d > 1
with max(0,d — 2) < s < d. In dimension one, one expects that no phase transition occurs for
the circular Riesz gas and that the free energy is smooth and even analytic. To prove that f is
twice differentiable, a standard approach is to prove that the rescaled variance of the energy under
(4.4) converges locally uniformly in 8 as N tends to infinity. This should be an easy consequence
of Theorems 4.1.1 and 4.1.3.
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Coulomb and Riesz gases in d > 2 Because the Hamiltonian of the Riesz gas in dimension d > 2
is not convex, it is not clear how one could obtain a result on the decay of correlations. In fact,
even showing local laws in the long-range setting is still open, except in the Coulomb case s = d —2
tackled into the series of papers [182, 180] culminating into the optimal local law result of [9].
Nevertheless, a quantitative estimate on the translation invariance of the 2D Coulomb gas has been
recently obtained in the work [188], building on a Mermin-Wagner's-type argument in the spirit of
[127], see also [248] for related considerations. Concerning other Riesz gases, the hypersingular Riesz
gas [142] is seemingly a more tractable model to look at since it resembles, as s becomes large, the
hard-core model, for which some results are known. For the latter, the translation invariance of the
infinite volume Gibbs measures has been proved in [213] by constructing approximate translations
avoiding particles collapses.

4.1.4 CQutline of the proofs

As mentioned, the heart of the paper is about the analysis of a partial differential equation related
to the correlations, in the context of long-range Riesz gases. Given a reasonable Gibbs measure
dp = e HXN)AX )y on Dy (or RY), the well-known fluctuation-dissipation relation asserts that
the covariance between any smooth functions F, G : Dy — R may be expressed as

Cov,[F,G] = E,[Vé - VG, (4.12)

where V¢ solves

—Ap+VH -Vp=F—E,F] onDn (4.13)
Vo-ii=0 on 0Dy, '
One may recognize the operator £V = —A + VH - V which is the infinitesimal generator of the

Markov semigroup associated to the Langevin dynamics with energy H. The Helffer-Sjostrand
equation then corresponds to the equation obtained by differentiating (4.13), which reads
A?V(ﬁ =VF on DN o 2 1
{ V7= 0 on oDy where A} :=V°"H 4+ L'® Iy. (4.14)

When the Hessian of the energy is uniformly positive-definite, then one can derive by integration
by parts a weighted L? estimate on |V¢|, which yields a Brascamp-Lieb inequality. Additionally a
maximum principle argument can also give a uniform bound on |V¢| as seen in [149].

The Hamiltonian we are interested in is rather a convex function of the gaps than of the points.
Henceforth it is very convenient to rewrite Equation (4.14) in a new of system of coordinates. We
define the change of variables

Gapy : Xy € Dy — (N|z2 — x1|,...,N|zny — x1]) e RN
and work on the polyhedron
My ={(y1,...,yn) € (R+*)N cy1+...+yn = N}L

Assume that the measure of interest 1 can be written dpy = e*HgOGaPN(XN)]lDN (Xn)dXy and that
the test-functions in (4.12) are of the form F' = { o Gapy and G = x o Gapy. Set v = Gapy#pu.
Then letting

LY =VHE.-V—-A and AY =V?H®+ L' Q Iy,
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one may check that the variance of F' under i can also be represented as
Cov,[F,G] = E,[Vy - Vy], (4.15)

where V1 solves
ATV¢=V§+)\(€1+...+€N) on My
Vi-(e1+...+en) =0 on My (4.16)
V- =0 on OMy.

Let us mention that the coefficient A in (4.16) can be seen as a Lagrange multiplier associated to
the linear constraint y1 4 ... + yx = N. Our main problem is to understand how ¢;7) decays when
V¢ = eg. A first important insight comes from expanding the Hessian of the energy (4.3) in gap
coordinates, that we denote H%;. Using some rigidity estimates obtained in Chapter 3, one can show
that for all ¢ > 0, there exists 6 > 0 such that

Pn,s (

1 1 s
0 HE — —| = 5 ) < Cem )"
J 1+d(i,g)® 1+d(i, gtz

where d stands for the symmetric distance on {1,..., N}, i.e d(i,j) = min(|i — j|, N —|i — j|). In
other words, the interaction matrix in the system (4.16) concentrates around a constant long-range
matrix. This already gives a first heuristic to understand the decay of gap correlations stated in
Theorem 4.1.1, which is consistent with the decay of h := (—A) 2 5.

Due to the long-range nature of the interaction, the analysis of (4.16) is rather delicate. Let us
present an idea of the proof in the short-range case s > 1 as it will be a model for the long-range

case also. To simplify assume that there exist s > 1 and ¢ > 0 such that uniformly

VHE, = ¢ Hd  with [0, < for each 1 < 4,7 < N. (4.17)

C
d(i, j)*
The matrix H%; then looks like a diagonally dominant matrix. The idea to obtain a decay estimate
on the solution of (4.16) is to multiply d;3 by d(i,1)* for some well-chosen o > 0. Let L, =
diag((1 + d(j,1)®);) € Mn(R) be the distortion matrix and 1% := L, V4 which solves

B(VEHE, + 0L, )™ + LYY = e + ALqg(e1 + ... + en),
where dr,,, is the commutator
Oy, i= La VPHE L, — VS, (4.18)

A first key is that the more V2H%; is diagonal, the more it will commute with diagonal matrices. In
fact one can check that for a < s — 3, the commutator (4.18) is small compared to the identity, in
the sense of quadratic forms. By integration by parts and using the convexity of H%;, this entails an
L? estimate on ¢/ and therefore a hint on the global decay of V). This idea of studying a distorted
vector-field is well known in statistical physics, see for instance [147, 89]. By projecting (4.16) in a
smaller window we can then improve through a bootstrap argument this first decay estimate.

In the long-range regime s € (0,1), the above argument no longer works. A natural way of
proceeding is to factorize Equation (4.16) around the ground state by multiplying the system by a

matrix A close to the inverse of the Riesz matrix Hj := (d](l

;77;;3)1<i7]’<]\[. A simple construction can
ensure that AV?HE remains uniformly positive-definite but the drawback of the operation is that
the differential term D1 can no longer be controlled. The main novelty of the paper is a method

based on the comparison of the two distorted norms

M=

Ey[zn]d(m)?a(aﬂp)?] and B, | ) d(i, 1290, (4.19)
=1

i=1
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for well-chosen constants o > 0 and v > 0. The first step is to derive an elliptic regularity estimate
on the solution of (4.16). We prove that the solution has a discrete fractional primitive of order
% — s in L? (up to some n" multiplicative factor) provided v; decays fast enough. In a second step

we will control |L, V2| by |Ly_ 1 V4| (up to a residual term that we do not comment here). The
2 4

proof uses the distortion argument presented in the short-range case, the elliptic regularity estimate
and a discrete Gagliardo-Nirenberg inequality. In a third step we control [LoV¢| by |L,_1-s V23|
2

by implementing the factorization trick aforementioned. Combining these two inequalities we deduce

that for « = 3 — s and v = 1 — £, each of the terms in (4.19) are small. This gives the optimal

2
global decay on the solution of (4.16), which we then seek to localize.

The proof of localization, which allows one to go from (4.19) to an estimate on a single 0;7, is

also quite delicate. Fix an index j € {1,..., N} and let
. . L. .
= .. : < - .
J={ie{l . N} d(ig) < 5d(5,1)]
Projecting Equation (4.16) on the window J makes an exterior field appear, which takes the form
Vii= =B ) auHg o, lel (4.20)
i€J¢

We then break V into the sum of an almost constant field V(1) (looking like V;3,_;¢;) and a
smaller field V). A key is that the equation (4.49) associated to a vector-field proportional to
(e1 + ...+ en) is much easier to analyze. It indeed admits a mean-field approximation, quite similar
to the mean-field approximation of (4.14) when F is a linear statistics, see Chapter 3. We then
bootstrap the decay of solutions of (4.16). Applying the induction hypothesis to bound (4.20) and
to bound the decay of (4.16) in the window .J, one finally obtains after a finite number of iterations,
the optimal result of Theorem 4.1.1.

The uniqueness of the limiting point process stated in Theorem 4.1.3 is then a routine application
of our result on decay of correlations (in fact stated for slightly more general systems than (4.16)).
Because the existence of an accumulation point of (4.9) in the local topology is standard, the
problem can be rephrased into a uniqueness question. We will prove that the sequence (4.9) defines,
in some informal sense, a Cauchy sequence. We let I = {1,...,n} be the active window and draw
the exterior configurations under Py 3 and Pyv g for distinct values of N and N’ which satisfy
n « N,N’. We then let u, and v, the conditioned measures in gap coordinates, which we try to
compare. To allow such a comparison, the strategy is to define a continuous path v(¢) from p, to
vn, by linear interpolation of the exterior energies. Given a test-function F' : R™ — R depending on
a finite number of coordinates, we can then write

E,..[F] - E,, [F] = L ' Covy [VE, VE@®)]dt, (4.21)

where E(t) corresponds to the exterior energy term. By applying our result on the decay of correla-
tions to the measure v(t), we find that (4.21) is small, which easily concludes the proof of Theorem
4.1.3.

4.1.5 Organization of the paper

e Section 4.2 records various preliminary results, such as rigidity estimates on circular Riesz gases
and controls on the discrete fractional Laplacian.

e Section 4.3 focuses on the well-posedness of the Helffer-Sjostrand equation and states some
of its basic properties.
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e In Section 4.4 we introduce our distortion techniques to prove the decay of correlations in the
long-range case.

e Section 4.5 is the heart of the paper. It develops a more involved method to be able to treat
the decay of correlations for the long-range Riesz gas.

e Section 4.6 concludes the proof of uniqueness of the limiting measure of Theorem 4.1.3.

4.1.6 Notation
We let d be a distance on {1,..., N} defined for each i,j € {1,...,N} by

For x € R™, we let |z| be the Euclidian norm of  and for M € M, (R), |M| be the Hilbert-
Schmidt norm of M, i.e

Mv
b= sup B
veR™\{0} v
We let (eq,...,en) be the standard orthonormal basis of RY.

We either use the notation V2 f for the Hessian of a real-valued function f : R — R.
For A,B > 0, we write A < C(8)B or A = Og(B) whenever there exists a constant C' € R"
locally uniform in 8 (which might depend on s) such that A < CB.
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4.2 Preliminaries

We begin by recording some useful preliminary results that will be used throughout the paper.

4.2.1 Discrepancy estimates

One shall first state a control on the probability of having two particles very close to each other.
According to [52, Lem. 4.5], the following holds:

Lemma 4.2.1. Let s€ (0,1) and a € (0, 5). There exist constants C(3) > 0 and c(3) > 0 locally
uniform in [ such that for each i€ {1,...,N} ande > 0,

Pys(N(zis1 — 27) <) < C(B)e P,
In addition, in view of [52, Th. 1], the fluctuations of large gaps satisfy the following estimate:

Theorem 4.2.2 (Near-optimal rigidity). Let s € (0,1). There exists a constant C(3) locally uniform

in B such that for all € > 0, setting § = m, foreachie{l,...,N} and1 <k < % we have

Prs(IN(zisk — z3) — k| > k31¢) < C(B)e ¥,

Let us highlight that the variance of N(z;y; — z;) can in fact be shown to be of order k%,
together with a central limit theorem, see [52, Cor. 1.1].
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4.2.2 Fractional Laplacian on the circle

In this subsection we justify the expression of the fundamental solution of the fractional Laplace
equation on the circle (4.2). Recall the Hurwitz zeta function [8].

Lemma 4.2.3 (Fundamental solution). Let g5 be the solution of (4.2). Let s € (0,1). Forallxz €T,
we have

: S 1 2 1—s
g5(@) = ((s,2) + ((s,1 — 2) = T}ggo(k_Zn i) (4.22)
Moreover for all p > 1 and all x € T, we have
ggp)(x) ( 1) S+p—1 2 ‘x+k’s+p

Proof. We only sketch the main arguments and refer to [52, Sec. 2] for a more detailed proof. Using
the Fourier characterization of the fractional Laplacian and applying the formula

) o0
AT = ! J e M 7df_ ,
r(452) =15

valid for all A > 0, one can express g5 as

Cs © dt
4(0) = iy J, V)~ 1

where W, is the heat kernel on T, namely

k2

Wi(z) = L e kP gtk ! Z e T
2m = 4mt

The proof of (4.22) then follows from Fubini's theorem which allows one to invert the order of

integration and summation. [

The kernel gs; can be identified with a periodic function on R and a crucial consequence of
(4.22) is that the restriction of this function to (0, 1) is convex, thus allowing the use of various
consequences of convexity, such as concentration and functional inequalities.

4.2.3 Discrete and semi-discrete Fourier transforms

In the sequel we will need to consider the discrete Fourier transform of functions defined on the
discrete circle Z/NZ. The Fourier and inverse Fourier transforms on Z/NZ are defined by

N-1
Fa(£)(0) = Y f(n)e™, for f:{1,...,N} >R, 9:%, ke{o,...,N—1}, (4.23)

N—
1 2 —2im
FiY (o) (n) = NE (;k>e N0, for¢: (2kn/N:0<k<N -1} >R, ne{l,...,N}.

(4.24)
Recall that for all f defined on {1,..., N}, f = F; " o Fu(f).
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Besides if f:Z — R is in L?, then the semi-discrete Fourier of Z defined by
+00 A
Fa(£)(0) = Y f(n)e™, 00,2,
n=0

belongs to L?([0,27]) and one can recover f by the Fourier inverse transform

f=F (Fz(f),

where

27
Fr (@) (n) = % ) P(0)e~ a0, for ¢ € L2([0,27]), neZ.

4.2.4 Inversion of the Riesz matrix

We study the inverse of two discrete convolution equations on Z/NZ. Let us denote g5 the Riesz
kernel on R, i.e

1
gs:z€R— — e R™™® U {+0}.

|z[*
We will be studying the inverses of
H, =(0s(dli ins))) € Mu(R), (4.25)
B, = (306 ) i), € Mu(R), (4.26)

Lemma 4.2.4 (Decay of the inverse Riesz matrix). Let M € {Hs,fﬂs}. There exists a constant
C > 0 such that for each 1 <i,7 < N,

C
-1y«
In addition we have
N C
’Z(M*l)i,l < - (4.28)

i=1
Let us observe that (4.27) is consistent with the decay of the fundamental solution of the
fractional Laplacian. Indeed the coefficient (Hj); | is given by the i-th coordinate of the solution v
of the convolution equation v * g; = d(1) on Z/NZ. The continuous counterpart of this equation
is gs * 1) = &g on the real line and it is well-known that the solution 1 decays in |z|~(27%) near the
origin.

Proof.

Step 1: the aliasing formula We first consider the case M = H. Let ¢ : {1,..., N} —> R be
the solution of the convolution equation g5 * 1 = (1) on {1,...,N}. One can express 1) as the
solution of

Fa(¥)Falgs) =1,
where F,; stands for the discrete Fourier transform on Z/NZ, as defined in (4.23). For shortcut, for

all k€ {0,...,N — 1}, we denote 6, = 25, We claim that F,(gs) is non-vanishing, which we will
prove afterwards. Let h e L%([0,27]) such that for all § € {,...,0n_1},
1
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The function h shall be specified later. Let ¢ : Z — R such that
Fz(9) = h. (4.29)

The point is that one can recover 1) from ¢: for each 1 < n < N, there holds

0

2 o(n +EkN). (4.30)

Indeed by computing the discrete Fourier transform of the right-hand side, we find that for all
0 e {90, A 70N—1}:

N—-1 o
Z Z d(n+ kN)e nd —

n=0 k=0 n=

2

-1 o
Z ¢ n—l—kN) i(n+kN)O
0 k=0

¢(n)e™ = h(9) = Fa()(6).

NIER

n=0

By Fourier inversion, this concludes the proof of the aliasing formula (4.30).

Step 2: discrete and semi-discrete Fourier transform of g; Let us now compute the discrete
Fourier transform of gs on Z/NZ. First one can observe that for each 0 <k < N — 1,

0 oo
Falgs)(O) = D, —emP 4 ) —em ik, (4.31)
n=1 n=1
Let us emphasize that the above identity is only true for 6 € {6,...,0n_1}. The above sum is

related to a well-known function called periodic zeta function [8], defined by

=15

where s € C and x € R satisfy Re(s) > 1 if = is an integer and Re(s) > 0 otherwise. One can
express (4.31) as

sznm

Falgs)(Or) =F<29—7l:_73) —|—F<—§—;,s), foreach0<k <N -1

Also, when Re(s) > 0 and 0 < z < 1, it is known, see [8], that

F(z,s) = I(m<e“rlf(l —s,x) +e Z7T7F(1 —s,1— x))

Consequently we have the identity F;(gs) = S on {fp,...,0n_1}, where

S(0) = QSF(: s) cos(ﬁ(12 S)) (F(l - 20 )+ T(1—s,1— i)) (4.32)

ml s

One can observe that there exists a constant ¢ > 0 such that for all 6 € [0, 27],

NOE (4.33)

_c
|0|175'
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Step 3: conclusion for M = H; We have shown that the discrete Fourier transform of g5 on
Z/NZ does not vanish, thus allowing to use (4.30). We now specify h = S. Let us define

1
p:nel— f S(0)e""0de.
0

One can check using (4.31) that
C
D] < s
Since ¢ € L2, by Fourier inversion, one can observe that F;(¢) = S. Consequently, applying (4.30),
we find that there exists a constant C' > 0 such that for each 1 < n < N,

C
< )
Z |n—|—k‘]\7|2 s T p2-s

which proves (4.27) in the case M = Hi.

Step 4: discrete Fourier transform of g, We wish to show that the discrete Fourier transform
fo g, is non-vanishing. Let us define the function

N-1
Sy :0e[0,20] — > Ga(n)e™. (4.34)
n=0

One can note that for each 1 < k < N, F4(9s)(0x) = Sn(6x). Moreover (Sy) converges pointwise
to the function defined in (4.32). In addition, using Abel's summation formula, we get that for all
0 € [0,2r],

Ry (0) := Sn(0) — S(0) = O(Ns1|9|>. (4.35)

Consequently there exists a constant ¢ > 0 such that for |0] > &, Sn(6) is non zero. Let us check

that S does not cancel on [0, 7]. The point is that for 6 = {- with |a] < ¢,

| Nt
Sn(f) = N5 —

v 2
with ¢4 > 0. We thus deduce that Sy has no zero on [0, 27] and one may apply the aliasing formula
(4.30). Let us define

227ra— Nl S(Ca+0N(1))

p:nel— fsN(e)em@.

Step 5: bound on ¢ In view of (4.33) and (4.35), there exists ¢; > 0 such that for |0] > &,

0< Ré%?) < % and

le(e) 500) (1 + ,;1 (Réfg))k)
For k = 1 using (4.35), we have
f[ N8 S 9(;;) o

0

1 cos( )sin(¥%) .
-2 (z+ z)f[ ey S(0)2 ; ) 2oem0dp. (4.36)

I=N+1
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Let I/ > N + 1. Let us define h,G,,; : [—7, 7] — R such that for all 6 € [—7, 7]

h(8) = _ na(0) = cos((l +21)6> sin(%)e*me.

Noting
~ C
3 |G s (0) < ﬁa

_9s C C
|h(0)’ < C’0|1 2 ’ |h”(0)’ |0|1+2$ |G"7l’<9> < 7

one gets by integration by parts,
(l+1

1 cos(~—5+)si (59) ind JW . 1
g9 — — | WO ,()df + O .
J[—m]\[—x,;&] S(0)? sm(%) e )Cna(6) <N2 28>

Integrating by parts again gives

s ml T
- [ o6 ©0 = [ OG0 = [ 1660/ = 0151

-7 —l

Inserting this into (4.36) and summing this over [ yields

By (0) —ino 1
infg — .
f[m]\[;;,;;] SO (5=

Let 2 <k < % — 1. By performing iterative integration by parts as in the foregoing computations,

we find that . .
‘J " é:fg)(kil —modg‘ - O<N273)'

ilil
NN

Finally if k > % the integral at hand is convergent at infinity and by (4.33), (4.35) we have

N C) L C J 1 1 1
< _ — ) = — ).
‘f[—ﬂﬂr]\[—j\},j\}] S(g)k+1e dﬁ‘ = Nks [ \[— 5L, <L |9|s(k+1)—1 + O<N2fs) O(N2—s)

°1 1
N’*N

We conclude that

do J 4o 1
- +0 : 437
f[—mﬂ]\[—i&,j&] Sn(0)  Jman-s,c S(0) (Na—s) (4.37)

Furthermore one can easily check that

1 1 1 1
< ON* - —df = .
f[_c o T <€ f[_ 0196 O(57=) and J[—?HH s O(5)

‘1“1
N’ N

N’'N
(4.38)
Combining (4.37) and (4.38) we get
g 1 i 1 e 1
in _ in 4
el - da+o(N2 ) (4.39)
We deduce that there exists a constant C > 0 such that for each n € Z,
C
D) < -

In particular, ¢ € L? and Fy(¢) = ﬁ Consequently using (4.30), one deduces that there exists a
constant C' > 0 such that for each n € Z,
C

Bl < .

The estimate (4.28) is straightforward. O
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Remark 14 (Discrete fractional primitive). In view of (4.32) the convolution of f : Z/NZ — R
with gs formally corresponds to a fractional primitive of f of order 1 — s.

4.3 The Helffer-Sjostrand equation

In this section we introduce some standard results on Helffer-Sjostrand equations. We first recall
basic properties valid for a certain class of convex Gibbs measures. We then study an important
change of variables and rewrite the Helffer-Sjéstrand in gap coordinates. For the class of Gibbs
measures we are interested in, the energy is a convex function of the gaps. This allows one to derive
a maximum principle for solutions, which will be a central tool in the rest of the paper.

4.3.1 Well-posedness

We start by explaining the principle of Helffer-Sjéstrand representation and give some existence and
uniqueness results. The subsection is similar to Chapter 3 and follows partly the presentation of [10].
Let 1 be a probability measure on Dy in the form

dp = e_H(XN)]lDN (XN)dXN,

where H : Dy — R is a smooth and convex function. Given a smooth test-function F' : Dy — R,
we wish to rewrite its variance in a convenient and effective way. Let us recall the integration by
parts formula for u. Let £ be the operator acting on C*(Dy, R) given by

[P =VH-V - A,

where V and A are the standard gradient and Laplace operators on TY. The operator £* is the
generator of the Langevin dynamics associated to the energy H of which p is the unique invariant
measure. By integration by parts under p, for any functions ¢, € C*(Dy, R) such that Vg7t = 0
on 0Dy, we can write
EulvL'e] = Eu[Vi) - V). (4.40)
This formula may be proved by integration by parts under the Lebesgue measure on Dy.
Assume that the Poisson equation

{ Lty = F —E,[F] on Dy

Vo-n=0 on 0Dy (4.41)

admits a weak solution in a certain functional space. Then, by (4.40), the variance of F' under

can be expressed as
Var,[F| = E,[VF - Vg].

The above identity is called the Helffer-Sjéstrand representation formula. Let us differentiate (4.41).
Formally, for all ¢ € C*(Dxy,R), we have

VLG = A1V,
where A is the so-called Helffer-Sjéstrand operator given by
A =V?H + LM ® Iy,

with L£® Iy acting diagonally on L2({1,..., N},C®(Dx,R)). Therefore the solution V¢ of (4.41)
formally satisfies

I —
{ AYV¢ =VF on Dy (4.42)

Vé-ii=0  ondDy.



4.3. The Helffer-Sjéstrand equation 159

This partial differential equation is called the Helffer-Sjostrand equation. Let us now introduce the
appropriate functional spaces to make these derivations rigorous. Let us define the norm

1 1
|F i1y = EulF?)2 + BL[|[VF]2,

Let H'(u) be the completion of C*(Dy) with respect to the norm | - Izt (u)- Let also define the
norm

|F i1 = sup{[EL[FG]| : G € H' (1), |Gy < 1}-

We denote H~!(u) the dual of H!(u), that is the completion of C*(Dy) with respect to the norm
I+ | z-1(u)- We wish to prove that under mild assumptions on F', Equation (4.42) is well-posed, in
the sense of L2({1,..., N}, H !(u)). Let us now make the following assumptions on y:

Assumptions 4.3.1. Assume that yu is a probability measure on Dy written
dp = e HEN1 (X n)d X,

with H : Dy — R in the form
H: Xy = ) x(zi — ),
1#]
with x : Rt* — R satisfying
xeC*R™ R) and x"=c>0.

In our applications, x is often given by g5 or a variant of it and the density of the measure i is
not necessarily bounded from below with respect to the Lebesgue measure on Dy . Additionally, the
measure p does not satisfies a uniform Poincaré inequality. Due to these limitations, to prove the
well-posedness of (4.42), we further assume that F' is a function of the gaps. We denote

I1: Xy €Dy — (x5 —x1,...,25 —x1) € TN L. (4.43)
We also let 11/ be the push-forward of 1 by the map II:
p o= poll™t.
We can now state the following well-posedness result:

Proposition 4.3.1 (Existence and representation). Let u satisfying Assumptions 4.3.1. Let F €
HY(p). Assume that F is in the form F = G oIl, G € H'(y') or that i = ¢ > 0. Then there exists
a unique Vo e L2({1,...,N}, H* (1)) such that

B _
{ AV =VF onDy (4.44)

Vo-1n=0 on 0Dy,

with the first identity being, for each coordinate, an identity on elements of H~'(11). Moreover the
solution of (4.44) is the unique minimizer of the functional

Vo — E, [V V2HV¢ + |V3¢|? —2VF - V¢,
over maps Vo e L?({1,...,N}, H' (1)). The variance of F may be represented as
Var,[F] = E,[V¢ - VF] (4.45)
and the covariance between F any function G € H'(11) as

Cov,[F,G] = E,[Vé - VG].



160 Chapter 4. Decay of correlations and thermodynamic limit for the circular Riesz gas

The identity (4.45) is called the Helffer-Sjéstrand formula. The proof of Proposition 4.3.1 is
postponed to the Appendix, see Section 4.7.2.

Remark 15 (On the boundary condition). The boundary condition V¢ -7 = 0 on 0Dy means that
if x; = xj, then 0;p(Xn) = 0;0(XN).

Remark 16 (Link to the Monge-Ampére equation). We formally discuss the link between (4.44)
and the Monge-Ampére equation. Let F' : Dy — R be a smooth test-function. For all t = 0,

consider the measure dy; = ﬁ;F]du. According to well-known optimal transportation results [60],
"

the measure ji; can be written y; = po V®, ' with ®; : Dy — R solution of the Monge-Ampére
equation
—logdet DV®; + Ho V®, — H = tF —logE,[e'"].

Formally, since v(t) = pu + tv + o(t), one expects that &, = Id +t¢ + o(t). Linearizing the above
equation in t formally gives
[,'LLQZ) =F - EM[F]v

which is the Poisson equation (4.41). The boundary condition in (4.44) reflects the fact that for all
t >0, V® maps Dy on itself.

Proposition 4.3.2. Let u satisfying Assumptions 4.3.1. Letv e L*({1,...,N}, H-1 (i) such that
v-(eg+...+en)=0.
There exists a unique v € L>({1,...,N}, H' (1)) such that

{A‘f@[)zv on Dy

Y-1m=0 ondDp. (4.46)

In addition ifv = VF € L?({1,..., N}, H= (1)), then the solution of (4.46) is given by the solution
of (4.44).

The proof of Proposition 4.3.2 is also given in the Appendix.

4.3.2 Change of coordinates
In the sequel we will study the decay of correlations in gap coordinates. Define the map
Gapy : Xy € Dy — (N(zg — x1),...,N(x1 —xN)) € My,

where
My = Gapy(Dn) = {Yv e RV iy + ... +yn}. (4.47)

Since My is not an open subset of Dy, Proposition 4.3.1 should be slightly adapted. Let pu
satisfying Assumptions 4.3.1 and H& : My — R be such that

H = H® o Gapy.
Define the generator acting on C*(My,R),
LY =VHS® -V —A,

with V and A the standard gradient and Laplace operator on M. Also let Ay be the Helffer-
Sjostrand operator acting on L2({1,..., N},C*(Mn,R)):

AY =V2HE + LV ® Iy.
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Let F': Dy — Rin the form F' = GoGapy with G : RY — R smooth. Let us rewrite Equation
(4.44) in gap coordinates. One can expect that the solution V¢ of (4.44) can be factorized into
¢ = 1 o Gapy with Vop € L2({1,..., N}, H'(v)). Let us derive some formal computation to

conjecture the equation satisfied by V. For all ¢ > 0, let dyy = ﬁj(;]dy. In view of Remark 16,

we wish to find a map Vi e LY({1,..., N}, H'(v)) such that in a certain sense,
vo (Id+tVy) = vt + o(t). (4.48)

Since v and v; are both measures on My, one can observe that 'V | 9;9) = 0. It is standard the
the Gibbs measure v; is the minimizer of the functional

vePMpy)— E,[HE +tG] + Ent(P),

where Ent stands for the entropy on My. Equation (4.48) is compatible with the variational
characterization if Vi minimizes

Vip — E, [V - VEHEVY + |V2Y|? — 2VG - Vi,

over maps Ve € L2({1,...,N}, H'(v)) such that ZZ]\LI 0ip =0and V-1 =0 on OMpy. The
Lagrange equation associated for the minimality of V1) reads

ATV =VG+ Ner + ... +en),
where A : My — R is a smooth function. We now state this result in the following proposition:

Proposition 4.3.3. Let u satisfying Assumptions 4.3.1. Let '€ H'(u) in the form F = G o Gapy
with G € H'(v). There exists a unique Vi € L*({1,...,N}, H'(v)) solution of

AV =VG+ Ner +...+en) on My

VZ/J-(61+...+6N):0 on My (4-49)
V- =0 on OMn,
with \ satisfying
1
A\ = N(el ... +en) (VEHEVY — VQ). (4.50)

The variance of ' can be represented as
Var,[F] = E,[VG - V.
Furthermore, V) is the unique minimizer of
Vip — B, [Vy - VPHEVY + |V2|? — 2VG - V],
over maps Vi € L2({1,...,N}, H*(v)) such that Vi) - (e1 + ... + en) = 0.
The proof of Proposition 4.3.3 is postponed to the Appendix, see Section 4.7.2.

Remark 17. There are several manners to factorize the energy (4.3) since we are working on the
circle. We choose the more natural one and set

N N/2

HE Y e My > N7 gu(i + - yisn) QLianyo + Limn o).
i=1k=1
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One may check that for eachie {1,...,N} and Yy € My,

N/2

_ Yi + oo+ Yigl
oHEG(YN) =), >, N U (%)(ﬂk#\m + Lj—ny2) (4.51)
k=1 li—k<l<i
and for eachi,je {1,...,N} and Yy € My,
_ Yiek + oo T Yirp

WM& (Yn) = >, N (Hs)gf,f( : N - )(2]1|k—k:’\¢N/2 + Ljp—p)=ny2)-  (4.52)

1<k k'<N/2

lk—k/|<N/2

Recall that under the Gibbs measure (4.4), for large k, the spacing N (z; . —x;) concentrates around
k. The expression (4.52) then tells us that the Hessian of the energy in gap coordinates concentrates
around a constant matrix with off-diagonal entries decaying in d(i,j)~*, similar to (4.25) or (4.26).

4.3.3 The Brascamp-Lieb inequality

We now recall the Brascamp-Lieb inequality, a basic concentration inequality for strictly convex log-
concave measures [55]. In our context, the measure i is not strictly log-concave, but its pushforward
v is, therefore allowing one to upper bound the variance of any smooth function of the gaps in the
following way:

Lemma 4.3.4. Let A ¢ Dy be a convex domain with a piecewise smooth boundary. Let F' =
G o Gapy with G € H(v). There holds

Var,[F | Al < E,[VF - (V2H)'VF | Al

4.3.4 Localization

In this subsection we record a crucial convexity Lemma, which is due to Brascamp, see [55]. This
lemma is based on the Brascamp-Lieb inequality for log-concave measures on Dy, originally derived
in [56] on RY, see also Lemma 4.3.4.

Lemma 4.3.5. Let ;1 be a measure on Dy in the form du = e #d Xy, with H smooth enough.

On Dy let us introduce the coordinates © = (x1,...,xy,) and y = (p41,...,2N). Assume that
H may be written in the form H(x,y) = Hy(z) + Ha(z,y) with V2Hy non-negative. Let Ji be the
push forward of v by the map Xy +— (x1,...,x,). Then, the measure [i may be written in the

form dji(x) = e H@)dz, with
H(z) = — logfe_H(x’y)dy

and H satisfies
V2H > V2H;.

Moreover, we have

&ﬁ[(x) = azH(.%') — Eu(\x) [61'H2], foreach 1<i< n, x€ Dy, (4.53)

(9,]]?[(1') = c%JH(x) — COVqu) [@HQ, ajHQ], foreach 1<i,j<n, xz€D,. (4.54)
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4.3.5 Maximum principle

In this subsection we derive a useful maximum principle, which allows one to bound the supremum of
the L? norm of the solution in presence of a uniformly convex Hamiltonian. This maximum principle
is fairly standard on R¥, see for instance [149, Sec. 10]. We adapt the proof to make it work on
Dy and My. A more subtle analysis could perhaps permit to treat general convex domains.

Proposition 4.3.6. Let p satisfying Assumptions 4.3.1 and v = Gapy#u. Assume additionally
that lim,_,0 X' (z) = —0. Let M: My — Sy(R) be a measurable map. Assume that there exists
a constant ¢ > 0 such that for for all Uy € RV,

Un - MUy = ¢|Un|. (4.55)
Letve L?({1,...,N},H'(v)) and ¢ € L?({1,...,N}, H'(v)) be the solution of

M+ (LY@ IN)Y =v+ ANep +...+eny) on My
1/1'(614-...4—6]\[) =0 on My (4.56)
1/1‘7_5:0 on OMy.

Then 1) satisfies the following uniform estimate:
sup || < ¢ sup |v]. (4.57)
We give a proof of Proposition 4.3.6 via stochastic flow following the approach of [73, Th. 2.1].

Proof. We wish to give a Feynman-Kac representation for solutions of (4.56). Let
t
XF =z — f VHE(XT)ds + v/2dB;.
0

Note that since lim, o &'(x) = —o0, the dynamics is conservative: for all x € Dy, the process X7
does not hit the boundary of My as.

Let A : L*({1,...,N},H (v)) — L?({1,...,N},H *(v)) be the operator (4.56). Given a
source vector-field v € L2({1,..., N}, H'(v)), one may represent the solution of (4.56) as

+o0
P = J etudt.
0

This follows from the fact that A has a spectral gap in L?({1,..., N}, H'(v)). One can then
represent e!4v as

ey = B [u(XF)e™ fo M(X3)ds],
Using Assumption (4.55), one gets
tA —tc
sup |e"*v| < sup |vle
Integrating this with respect to ¢ gives (4.57). O

The proof of Proposition 4.3.6 is an adaptation in a more involved case of a known maximum
principle for the Helffer-Sjéstrand equation, see for instance [149].

Let us emphasize that the above proof crucially relies on the fact that lim,_o x/(z) = —00. We
now give the standard Gaussian concentration lemma for uniformly log-concave measures on convex
bodies.
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Lemma 4.3.7. Let p satisfying Assumptions 4.3.1 and v = Gapy#u. Let cn be the constant in
(4.55). Let A < Dy be a convex domain with a piecewise smooth boundary. Let F' = G o Gapy
with G € H'(v). For all t € R, we have

2
logE, [ | A] < tE,[F | Al + — sup |VG/|*.
2cn a4

Lemma 4.3.7 can be derived using Log-Sobolev inequality and Herbst argument. When a measure
1 is uniformly log-concave on a convex domain on R"™, it follows from the Bakry-Emery criterion
[15] that u satisfies a Log-Sobolev inequality.

Lemma 4.3.8. Let ;1 be a uniformly log-concave measure on a convex domain of RN, with a
convexity constant larger than ¢ > 0. Then p satisfies the Log-Sobolev inequality with constant
2¢ L.

4.3.6 Concentration inequality for divergence free functions

If 11 is of the form of Assumptions 4.3.1, i is not uniformly log-concave and on cannot apply directly
Lemma 4.3.7. However, one can observe that

N
Un -V2HUy = cn Z:(N(uZ —u;))? =en(N —1) Z u?,
i#] i=1

for all Uy € RY such that uj + ... 4+ uyx = 0. (4.58)

Using this observation and the particular structure of i, one can give a concentration estimate for
divergence free functions F', i.e for F' verifying 01¢ + ... + dn¢ = 0. We now state this crucial
concentration result found in [46].

Lemma 4.3.9. Let u satisfying Assumptions 4.3.1. Assume that X" > cy. Let I < {1,...,N},
card(I) = K. Let F e H' (i) such that Y | ;F = 0 and &;F = 0 for each i € I°. We have

1

(K — 1)CNE“[|VF|2]' (459)

Var,[F] <

Furthermore, for all t € R,

t2

logE,[etF] < tE,[F1+ —
Og )u‘[e ] ;U‘[ ]+2(K_1)CN

sup |[VF|2.

We refer to [46] for a proof, see also [52, Lem. 3.13] for a transcription.

4.4 Decay of correlations for the HS Riesz gas

This section considers the hypersingular Riesz gas, i.e the Riesz gas with the kernel (4.22) for a
parameter s > 1. We show that the covariance between N(z;;1 — x;) and N(z;4+1 — ;) decays
at least in d(i,j)~*Y. To this end we will be studying the Helffer-Sjéstrand equation in gap
coordinates (4.49). Advantaged by that the Hessian of the energy in gap coordinates has typically
summable entries, one may implement a simple distortion argument inspired from [147] to obtain
decay estimates.
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4.4.1 Study of a commutator

Let us begin by introducing the distortion argument. Given s > 1, let v be the measure (4.4) in gap
coordinates or a slight variant of it. We will be studying the equation

AV =e;+ Ner + ... +eny) on My
Vip-(e1+...+en) =0 on My (4.60)
Vi -1 =0 on OMy.

By Remark 17, if v = P}g\,ﬁ there exists an event of overwhelming probability on which the Hessian
of the energy in gap coordinates decays in d(i,j)~° away from the diagonal. The idea is to study
the equation satisfied by L, V1, where L, stands for the following distortion matrix:

L, = diag(y1,...,7n), where y; =1+ d(i,i9)” for each 1 <i < N. (4.61)

Let us denote .
8 =LoVy e LP({1,..., N}, H' (v)).

One can check that )% solves
AV + BOL, Vb = e1 + ALg(e1 + ... +en), where dp, := LaV*H§ L' — HS.

Note that when M € My (R) is a matrix with off-diagonal entries decaying fast enough, then the
commutator L,ML;! — M is in some sense small compared to the identity, as shown in the next
lemma.

Lemma 4.4.1 (Commutation lemma). Let s > 1 and M € My(R). Assume that there exists a
constant € > 0 such that

N¢ .
‘Ml,j’ < W, for eaCh 1 < 1,7 < N (462)
Let a € (3,5 — %) and Ly, be as in (4.61). There exist constants C > 0 and ¢ > 0 such that for all
€0 > 0 small enough, letting &' = ﬁ we have that for all Uy € RV,
’ 2—«a
1 1
U+ (LaMLG! = M)Uy| < SN~ [Un[* + cc;fvam( 3 u?) 2, (4.63)

i:d(i,1)<cN¢’

Proof. Let M € My (R) satisfying (4.62), a > 0, L, be as in (4.61) and Uy € RY. We denote
or, = LaMLY — M e My (R).

For each 1 < i < N, one may split (1, Un); into

O Un)i= D, Ou)uw+ ), (Ou)iw- (4.64)
L:d(i,l)<3d(i,1) L:d(il)>2d(i,1)
1) (1D);

If d(i,1) < 3d(i,1), then

Yi — M ‘ < d(Z, l)
Vi Tl + d(Z, 1)
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and it follows from Cauchy-Schwarz inequality that

Cn?®
()il € ———|Un/. (4.65)
d(i,1)°"2
Let us choose av € (1,5 — 3). If d(i,1) > 3d(i, 1), then
Vi — 'Yl‘ < Cﬂ,
M il

which gives, since o > 1

£

(ID)i| < Cnfd(i, 1) )]
L:d(i,l)>2d(3,1)

1 n
< Un|. 4.66
att e S g, 1ya U] (4.66)

Let Ky = 1. Combining (4.65) and (4.66) one obtains

1 1 1
Ux - 61 Un| < CN5|UN|2( T H)) 2, CN5|UN\< 3 uf) .
i:d(i,1) =Ko d(i, 1) 2 i:d(i,1)<Ko
1
< ONYUNP —ee e CNEyUN|( 3 u?) 2.
0 T2 i:d(i,1)< Ko
Therefore by choosing Ky = ¢N¢ with ¢/ = ﬁ we find that
) 2
1 1
Uy - 61, Un| < SN [UN[” + CNa\UN|( 3 uf) 2, (4.67)

i:d(i,1)<Ko

4.4.2 Localization in a smaller window

Due to the degeneracy of the interaction at infinity, the system lacks of uniform convexity and one
shall sometimes restrict the system to a smaller window. Fix n to be the size of a subsystem, say
n = N orn < N/2. One may add some convexity within the window I := {1,...,n} without
changing much the measure. Denote 7 : My — w(Mpy) < R™ the projection on the coordinates
(xi)ier. For e > 0 and 6 : [0, +m0) — (0, +00) smooth such that § = 0 on (1,+), #” > 1 on
[0,3), 6" =0 on [0, +0], let us define

F&: X, e R" — ) 0(n “z;) (4.68)
i=1
and the constrained measures
dQ§, goce TR, 4. (4.69)

Note that the forcing (4.68) is tuned so that the total variation distance between Py 3 and Qu
decays exponentially in n using the Log-Sobolev inequality. We now define

vi=Q% 0 a L (4.70)
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Define
En,N czem(My) - _;logfeB(H%v_n(y)ﬂii,zv(x,y))dy, (4.71)
where
HE v : (2,y) € (RY x RY ™) A My o HE (2,9) — HE(0) — H (). (472)
By Lemma 4.3.5, v may be written in the form
dv(z)oce PO (@) da (4.73)
where R N
HE := HE + F& + E, v. (4.74)

In the sequel one will be studying the decay of the covariance between x; and z; under v through
the analysis of the associated Helffer-Sjostrand equation. Define the good event

A={X,er(Mp):Vie{l,...,n},n"° <z; <n°}
m{We{1,...,n},ke{1,...,n—i},|xi+...+xi+k_1*k‘| <n€k%}. (4.75)

Let A = V2F(U,) € My, (R) for some U, € R"™ where F is the quadratic form

F:X,eR" e Y gl(lj — i) (@i + ... +x;)%
i,5€l
Let us decompose V2HE into V2HE = M + M with
M = V2F& + V2HE1 4 + Al 4 and M = V2HEL 4o — Al gc + V2E, v (4.76)

In the case n < N /2, we will replace V272 in (4.60) by M and derive some decay estimates on the
solution, which will be transferred to the solution of (4.60) using a convexity argument. One can
check that uniformly on the event (4.75) and for each 1 < i,j < n, we have

Cnlie
1+ d(i, 0I)5=12d(j, 01—/

|M; ;| < (4.77)
For the purpose of Section 4.6 it is convenient to work with a general measure v on (M)
satisfying the following:

Assumptions 4.4.1. Let v be a probability measure on w(My) in the form dv = e PH*@) dz with
He& : m(My) — R in C? and such that

lim VHS&(z) -1 = —o0.
d(z,m(Mp))—0

Let A be the good event (4.75). Assume that there exist C' > 0, > 0 (depending on ¢) such that

V(A% <e ™.

Note that the above condition ensures first that no boundary term appears in the computations
and second that the Langevin dynamics is conservative, implying that the maximum principle of
Proposition 4.3.6 holds true.

Instead of the specific interaction matrix defined in (4.76) we will be working with a more general
measurable function M from m(My) to Sy, (R) with ng < n satisfying the following:
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Assumptions 4.4.2. Let ng < n. Let M be a measurable map from 71(My) to S, (R).

1. There exists k > 0 such that uniformly on 7(My),

—KE
M =>n""1,,.

2. There exist k > 0 and C' > 0 such that uniformly on m(My) and for each 1 < i,j < no,

KRE
M, < —07
R R I

4.4.3 The initial decay estimate

In this subsection we introduce a simple perturbation argument, which gives a first estimate on the
decay of correlations for the constrained hypersingular Riesz gas. The method can be applied to
other convex models for which the Hessian of the energy satisfies some decay assumption. This
technique follows from an adaptation of a rather classical argument in statistical physics [149, 89].

Lemma 4.4.2. Let s € (1,+m). Let v and M satisfying Assumptions 4.4.1 and 4.4.2. Let x,, €
H'(v),ipe {1,...,n} and ¢ € L*>(I, H*(v)) be the solution of

{ BMY + LY = xpei, on T(My) (4.78)

Iﬁ'ﬁ:O Onﬁﬂ'(MN).

Then, for all av € (3, s — %), there exist a constant C(3) locally uniform in 8 and k > 0 such that

=

E| ) dGiyio) v} ] < C(AN™E [, (4.79)
=1

Proof. Let ¢ € L*(I, H'(v)) be in the solution of (4.78). Taking the scalar product of (4.78) with
Y and integrating by parts, one may show that there exist constants x > 0 and C > 0 such that

E,[|[VY*] + BE,[[¥]*] < CB~'n By [x2]- (4.80)

Fix a € (3, s — 3) and consider as in (4.61) the distortion matrix
L, = diag(y1,.-.,7), where v; =1+ d(i,i9)" for each 1 <i < n.

Let us define ud® the distorted vector-field

udS := Lou e L*(I, H (v)). (4.81)
Observing that Lye;, = e;,, we can check that udis solves
A’fudis + 55Laudis = Xn€iys (4.82)

where
or, = LoML; 1 — M.

Taking the scalar product of (4.82) with u®® and integrating by parts under v gives

E, [Bu™™ - (M + 61, )u™™] + B, [|Vu®™*] = E, [uigxn], (4.83)
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dis

where we have used the fact that u$)> = u;,. This gives

E, [fu®™ - (M + 61, )u™] + E, [[Vu™™*] < C(8)n"E, [x;]-

By assumption, there exist constants C' > 0, k > 0 such that uniformly on Dy and for each ¢ # 7,

KrE
|Mz'j| < L
’ 1+d(i,j5)®

One may therefore apply Lemma 4.4.1 to the matrix M = V2H%(X,,), which gives the existence of
k > 0 and k¥’ > 0 independent of X,, such that, letting

KO — [nHEJ’

there holds

dis dis n—e(s+2) dis |2 e dis 271 dis\2 ] 2
|E, [u®® - or, u™®]| < TEyHu |“] = C(B)n" °E,[|[u™®|*]2E, (ug™®)*|". (4.84)
ixd(i,1) <Ko

=

Furthermore, using the definition of 44" (4.81) and the a priori bound (4.80), we find that

[N

B Y @2 < KgE[ul)E < OB B,

i:d(i,1)<Ko

Combining these we deduce that there exists x > 0 such that

n

B nSC R [Zdz i0)27 (! >]§+E [Zd(iaio)MW@bgl)F]% < CBE,[\2]e.

i=1

N|=

(4.85)

4.4.4 Bootstrap on the decay exponent

This subsection introduce a an iterative argument to improve the decay estimate of Lemma 4.4.2.
The method consists in studying the projection of Equation (4.78) in a small window. By controlling
the field outside the window with the a priori decay estimate, one obtains through the distortion
argument of Lemma 4.4.2 a better decay estimate on the solution. After a finite number of iterations
one gets the following result:

Proposition 4.4.3. Let s € (1,+00). Let v and M satisfying Assumptions 4.4.1 and 4.4.2. Let
Xn € H'(V),ig€ {1,...,n} and ¢ € L*>(I, H*(v)) be the solution of

BMY + LY = xpnei, on T(My) (4.86)
Y-1i=0 on om(My). '
There exist k > 0 and C(3) > 0 locally uniform in 8 such that for each 1 < j < n,
B [0]} < COm B[ (4:87)
J 1 +d(j,ig)s ™ '

Proof.



170 Chapter 4. Decay of correlations and thermodynamic limit for the circular Riesz gas

Step 1: setting the bootstrap Assume that for any ny < n and all M taking values and in S, (R)
satisfying Assumptions 4.4.2, each ig € {1,...,n} and x,, € H'(v), the solution v € L?(I, H(v))
of

M¢ + ‘Cud} = Xn€i; ON 7T(-/\/ll\f) (4 88)
Y-n=0 on or(Mpy) '
satisfies for some o > s — % k> 0 and § > 0 the estimate
E 21 < OO (1 + B[] (4.89)
14 ] ~ 1 + d(]’ Zo)a n 1% n . .

We wish to prove that (4.89) holds for & = s. Without loss of generality one may assume that
n =ng. Fixige {1,...,n}, xn € H*(v) and ¢ solution of (4.88).

Step 2: localization Fix an index j € {1,...,n} and define the window
J={ie{l,...,n}:d(j,i) <d(j,i0)/2}. (4.90)

Our aim is to study the equation satisfied by 7 := (1;);es € L*(J, H*(v)). Projecting Equation
(4.116) on the I-th coordinate for [ € J reads

B Migthi + L%y = =B > M.

€ ieJe

Let us denote M7 = (M; ;); jes and V € L%(J, H!(v)) given for each [ € .J by

Vi=—8 My, (4.91)

ieJe

so that ¢” solves

M7 4 L7 =V on m(My) (4.92)
Y in=0 on on(Mypy). '
Step 3: bound on the exterior field Fix [ e J and split V; into
V= > Mi,tb; + > Mi1bs - (4.93)
ieJe,d(iyio)<3d(j,io) ieJe,d(iyio)> d(jsio)
(Bz (1‘;)1

Using Cauchy-Schwarz inequality and Lemma 4.4.2, we find

y 1 1 \
E,[(I)}]2 < C(B)n"* . —E,[x2]2.
O < o iy Taweny 10

On the other hand using Cauchy-Schwarz inequality and Lemma 4.4.2 again, one gets

C(B)n"*

E,[(I1){]> < W]EV [xal>.
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Step 4: optimal decay for the auxiliary system Let us split v = >, ¥V where for each

leJypWe L2(J, H (v)) solves

BMIp® + £vp® = Ve, on m(Mn)
oD 7 =0 on dn(My)

One may apply the bootstrap assumption (4.89) to M7 and ¢(!), which gives the bound

(D2 % KE 1 1 1 1 2 %
EV[(wj ) ] < C(B)n <d(j’i0)s_; d(l’&])‘s_% + d(],lo)s)]Ey[Xn] .

Summing this over [ € J yields

211 cB)n™ 213
Ey[wj] < d(j,io)a/Ey[Xn] )

where
o =min(s,s+a—1,3s — a).

Since a > s — % and s > 1, &/ > a. After a finite number of iterations, we find that (4.89) holds

for a = s.

4.4.5 Conclusion in the case n =N

O]

In view of Proposition 4.3.3, the H.-S. equation contains when n = N a Lagrange multiplier asso-
ciated to the linear constraints that y; + ... 4+ yny = N on My. By controlling this multiplier one

obtains the following result:
Lemma 4.4.4. Let x, € H' (v),ige {1,...,n}. Letyp € L*>(I, H'(v)) solution of

BMY + LY = xpei, + Mer + ... +e,) onm(My)
vo(er+...+e,) =0 on t1(Mp)
Y-ii=0 on om(My).

There exists constants C(3) > 0,6 > 0 such that for each 1 < j < n,
E L1 < OO (1 + LRGN
T L+d(jyio)* ~ n/ 0"
Proof. Let us first prove that the Lagrange multiplier \ in (4.94) satisfies

C 1
O et

n

N

E,[M\]? <

for some constants C(3) > 0,k > 0. By linearity one can split ¥ into ¢ = (1) 4 (2

v e L2(I, H'(v)) solves

BMYMD) 4 £vp() = y e, on T(My)
-0 on om(My).

In view of Proposition 4.4.3, we have uniformly in j € I,

1 1
E.[x2]2,

B )V)1F < OO B

(4.94)

(4.95)

(4.96)

) where

(4.97)
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Eu[(0”)"]2 < C(B)n™E,[X]2. (4.98)
Let Ko = 1. Split M into M) 4 M) with M(!) given for each i,j € I by
(1)
Mi,j = Mi,j]ld(i,j)sKo-
Let uw =} ;. e;. Recall from (4.50) that
nA = Bu- My — xn = Bu- MYy + Bu- M@y — ..

First note that there exists C'(8) > 0, x > 0 such that

< C(BNK§E, ]2

N

Ey[(u- MB)?]

Moreover taking the scalar product of (4.94) with ) and integrating by parts under v yields the
energetic estimate

E,[[¢2]2 < C(B)n"E,[x2]>.

Consequently there exists constants C'(8) > 0,k > 0 such that

Ey[(u- MD9)?]2 < C(B)n"KFE, [} (4.99)
Besides, employing (4.97), we find

E,[(u- MPypM)2)2 < C(B)n" B, [x2]?. (4.100)

Finally, note

ju- MPp )| < Z M &

2 KE J7—S 2
W <Ky Y ).
i,k:d(i,k) =Ko k

Using the bound (4.98) one can see that
E,[(u- M®p®)2)2 < C(B)n" K *nE, [A?]2. (4.101)

Taking K large with enough with respect to n°, one can make the left-hand side of (4.101) smaller

than %Ey[)\z]%. Combining this with (4.99) and (4.100) one obtains

nE, ]2 < SE,[N)2 + C(8)n"E, []%,

which proves (4.96). Combined with (4.97) and (4.98) this concludes the proof of (4.95). O

4.4.6 Estimate on the main equation

There remains to compare the solution of (4.60) to the solution 1)(!) of the simplified equation
(4.78). This supposes to estimate the quantity M1)(") where M is the perturbation in (4.76).

Proposition 4.4.5. Let s € (1,+c0). Let HE be as in (4.74). Let ig € {1,...,n} such that
lig —n/2| < n/4. Let x, € H'(v) and o € L?>(I, H*(v)) be the solution of

BV2HEY + LY = xnei, on T(My)
{ Y-i=0 on on(My). (4.102)
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Then, uniformly in 1 < j < n, we have

1 1
1 + d(io, j)* * pmin(s—1/2,2s—2

B[4} < o3 ( B + sup [xale D). (4.103)

Similarly let w e L*({1,..., N}, H' (v)) be the solution of

w'(el+...+eN)=O on Mpy (4.104)

BVZ(HE, + F&)w + LYw = xnei, + AMer + ... +en) on My
w-n=0 on OMy

Then, uniformly in1 < j < N, we have

1 K 1 1 1 —c(B)n’
Eu[wgz']Q < O(B)n 8(W + N)(EV[X’%L]2 + sup |xnle ) )- (4.105)

Proof. Let M) = V?HE1 4o — Al g and M?) = VQEH,N. Let v € L?(I, H'(v)) be the solution
of (4.102), M) e L?(I, H'(v)) solving

BMy® 4 £vp(D) = e on m(My)
oW .7 =0 on om(My).

Define 1(2) = ¢p — (1) One can check that () is solution of

BV2HEY@ + LY@ = BM Dy on w(My)
@ .7 =0 on om(My).

Taking the scalar product of the above equation with ¥(2) and integrating by parts under v we
obtain, recalling the definition of the good event (4.75),

BE [ - My < C(8)(sup [p VB [IMDP] + B, [[MPP1ac]? + B [Lag® - MPy0))
(4.106)
Applying the maximum principle of Proposition 4.3.6 we find that there exist C'(3), x > 0 such that

sup V] < C(B)n"™ sup [xnl.
By Assumption 4.4.1 there exist constants C(5) > 0,¢(3) > 0,6 > 0 such that

E,[[MDP]z < C(8)e O,

)

E,[1 4| MP ]2 < C(B)e B

Let us now estimate the vector-field /(241 We claim that for uniformly in 1 < j < n,

COMT 1 g 2 (4.107)

E,[14(M@yp1)2]7 < . y
[ A( (0 )] 1+d(j,(9])§ ns—1/2

J

Fix 1 < 7 < n. Recall that for any z in the interior of A and for each 1 < k,1 < n,
9 ~
Mlg,l) (:[;) = aklEn’N (l’) = EQ%V,EHZE) [8lei7N] - COVQ%v,ﬂ("x) [8;.37-[7%7]\[, alH,iN]
In view of (4.77) we have that for each 1 < k,l < n,

(2)y291 C(B)n"*
E,[(M < .
(O™ < Tt any1ag, any 7

(4.108)
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One can then split the quantity (M(2)¢(1))j into

(M(Q)w(l))j _ Z M;,Qk) 1(61)+ Z Mﬁ)i/};(gl)-
k:d(k,01)<n/4 k:d(k,0I)>n/4

-

(Bj (IT);

For the first quantity, using (4.108) and (4.87), we can write

1 C(B)n"e 1 1 212
B < — Py Eobin]*
5 /2 _ nls 871/2 n
L+d(j,01) k:d(k,0I)<n/4 |k 2’ L+ d(k,oI) (4.109)
C B nie 1 1
=1 (- ) ~1/2 , mi 2—32E”[X$L]2'
T d(j, 0312 pmin(s25-372)

For the second quantity using the bound on the increments of M given in (4.77), we find

213 C(B)ne 1 1 1
Eflal > M) | < s D iy AP
[ (k:d(k,61)>n/4 ) ) ] L+d(j,on)>=1/2 k:d(k,01)>n/4 [k — 5[ nsm1/2
C(B)n"e 1 941
< E,[y2]z. (4.110
1+ d(j, o) 12 p=—12 Dea]- - (4:110)
Putting (4.109) and (4.110) together we obtain (4.107). Summing this over j yields
KRE

B [MOWOP? <« —CORT Bk (a.111)

pmin(s—1/2,2s—2) "

Using the uniform convexity of H&, we then obtain from (4.106) the bound

C(B)nlﬂi

L — 5
W(Eu[xik + sup |xp e ).

E,[l¢?P]? <

In particular, together with (4.87), this yields (4.103). The proof of (4.105) follows from similar
considerations by making use of Lemma 4.4.4. O

4.4.7 Decay of gaps correlations

We are now ready to conclude the proof of the decay of correlations for the hypersingular Riesz gas.
When z; and z; are at macroscopic or large mesosopic distance, one can take n = IV and use the
estimate of Proposition 4.4.3. Otherwise we choose 7 to be a power of |i— j| and apply the estimate
of Proposition 4.4.5 for such a number n. This will complete proof of Theorem 4.1.2.

Proof of of Theorem 4.1.2. Let v be the constrained measure on {1,..., N} defined in (4.70) with
n = N. Using the Pinsker inequality, the fact that v satisfies a Log-Sobolev inequality (see Lemma
4.3.8) and the local law of Lemma 4.7.2, one can observe that

1 K 1 —c J
TV (P 5, v) < (2Ent(B% 5 | )2 < C(B)N"Eps, [[VFE[’]2 < C(B)e PN,
In particular, it follows that

Covpy ,[E(N (w41 — 7)), X(N (i1 — )] = Covy [€(z;), x ()] + Oa(e™™" sup |¢] sup|x]).
(4.112)
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Moreover, by Proposition 4.3.3, the covariance term in the last display may be expressed as

Covy[&(25), x(2i)] = Ey [ (z)0;],
with Vo e L2({1,..., N}, H'(v)) solution of

AN G = X' (xi)e; + Ner + ... +en) on m(My)
Vo-(e1+...+en)=0 on T(My)
Vo-1i=0 on on(Mnp).

Using the estimate of Proposition 4.4.5, Holder's inequality and (4.112), one obtains (4.5) in the
case where d(j,1) = N®°.

We now consider the case where d(i, j) is much smaller than a power of N. Let ne {1,..., N}
be the smallest number such that

1 1
pmin(s—1/2,25—2) < d(z"j)1+s'

Without loss of generality, one can assume that 1 < § < 4,5 < %n Since N(x;+1 — z;) and
N(xj41 — x1) are functions of z1,...,z, and since A has overwhelming probability, one may write

Covey , [€(N (w41 — ;) X(N (i1 — 2:))] = Cov, [€(x;), X(:)] + Og(e D™ sup|¢] sup x]).

(4.113)
By Proposition 4.3.3 again one can express this covariance term as
COVV[IE]',CCZ'] = E,,[g’(xj)é‘jgzb], (4114)
where V¢ € L2(I, H'(v)) is solution of
AYV$ = X'(zi)ei on m(My)
{ Vo-1i=0 on om(My). (4.115)

Inserting the result of Proposition 4.4.5 we find that

Lo, )
d(]a i)s nmin(5—1/2,28—2)

E,[(9;0)%)7 < C(ﬁ)”“( )(EV[X/(Z'i)z]% + sup |y/|e <),

Inserting this into (4.114) and using (4.113) completes the proof of (4.5) by choosing n large
enough. O

4.5 Decay of correlations for the long-range Riesz gas

This section is the core of the paper and aims to develop a method to study the decay of correlations
in the long-range case s € (0,1). Because the Hessian of the energy in gap coordinates concentrates
around the Riesz matrix (4.25) which has slowly decaying entries, it is not clear how the strategy
of Section 4.4 can be adapted. Indeed the commutation result of Lemma 4.4.1 cannot be applied
to (4.25). The trick is to exploit the fact that the Hessian is not only positive-definite but actually
controls a fractional primitive of the solution. This should be compared with the method of [52,
Sec. 4] adapted from [46] which exploits the long-range nature of the interaction to have sharp
concentration estimates.
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4.5.1 Periodization

We begin by performing the following series of reductions, which will lead to the study of a simplified
equation:

1. Convexification and reduction to (z1,...,zy),

2. Adding of a Schur complement to the energy of the n points and splitting of the H.-S. operator,
3. Embedding the system into a periodic system of 2n points,

4. Control on the perturbation operator.

As pointed out in Section 4.4, due to the lack of uniform convexity, the study of the correlations
at microscopic distance requires to localize the system at a smaller scale. Let n € {1,..., N} be the
active scale, I the window I = {1,...,n} and 7 : My — (M) < R”" be the projection on the
coordinates (z;)ic;. Let 6 : Rt — RT smooth such that § = 0 on (1,+0), #” > 1 on [0, 3) and
6" =0 on [0,+0]. Let € > 0 and F& be the forcing

n
F&: X, eR" — ) 0(n ;)
=1

and the constrained measure

dQ§, goce PFEOTARE 4.

Let v =P% 50 71, We will be studying the solution ¢ € L?(I, H'(v)) of
(4.116)

AT = Xneiy, on m(My)
Y-n=0 on or(Mny),

One would like to work with a periodic system of size n > 2n instead of (4.116). The idea is
to subtract from AY the appropriate quantity to identify the equation with the projection on the
coordinates (;)scs of a larger system of size n. Let 7 > 2n and [ = {1,...,2n}. Let K, be a large
power of |n?]. Consider M € M (R) the truncated Riesz matrix at distance Ko, i.e M = V2F(x)
for some z € R™ where

F:XzeR"— > g2 (d(i,3) (i + ...+ x5)2
i,jel:d(i,5)=Ko

Consider the block decomposition of M on R™ x R"",

A B
M = <C D> , Ae M,[R). (4.117)
Also let )
G:Xp,eR"— > g2 (d(i,§)) (i + ..+ x5)2

iel,jelc:d(i,5) =Ko

Let A® = (0;;G);jer and AD) = A — AP Let

M 9 A® B
m _ (A (2) =
M (0 0) and M (C D). (4.118)
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Since V2F = 0, M® > 0 and therefore A®Y) — BD=1C' > 0. Furthermore we also have A1) > 0.
Noting that D is positive-definite, we will subtract from A} the operator

B(D+ AL ®@ L)' C.
The measure v can be written

dv(z) = exp(—BHE (7)) Lr(my) (2)da,

where for any x € 7(My) and 1 < 4,5 < n,

@J?‘N[%(l’) = (7ing(x)+(3ileﬁ(.T)+EQ§;V7[1(.|I) [aini’N(:zj, -)]—COVQ%#(_‘%) [a{Hi}N(a:? s aj%,g%N(x? )]7
(4.119)
with
HE N (2,y) € (R x RYT) n My > H (2, y) — HE () — HE, (1)

For € > 0, define the good event

A={X,en(Mpy):Viji+ke{l,....,n},n S <z <n |xi+... 42—kl <nk2}. (4.120)

Let us split A} into
Ay = AY + M, (4.121)

where AY, M : L*(I, H'(v)) — L*(I, H '(v)) are given by

A} = BVPFE+B(VPHE+Eqe (o) [VPHE n (2, ) ) Lat+BAL4e—BB(D+L7 ' L7®5 ) ' C+L®,,
(4.122)

M := 5(V2%%+EQ§VYB(-\95) [VPHE (2, )]) L ac—BATL4—f Covag, , (o) [VHR v (@), VHE y ()]
+BB(D+ 7L ®@T;n) ' C. (4.123)
One can prove that the operator A” has a spectral gap, resulting in the uniqueness of the solution
e L2(I,H(v)) of

A =v  on m(My)
Y-=0 ondr(My),

for any v € L(I, H'(v)). As in Section 4.4, we work with general measures v on (M y).

Assumptions 4.5.1. Let v be a probability measure on w(My) in the form dv = e~ PH*(@)dz with
He : 7(My) — R C? and such that

lim VHE(x) -1 =—o0.
d(x,0m(My))—0

Let A be the good event (4.120). Assume that there exist C > 0,9 > 0 (depending on €) such that

V(A <e ™.
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As in Section 4.4, one shall work with a slightly more general system, for the sake of the bootstrap
argument to come. Let A : 7(My) — S,(R) be a measurable map. Let M : 7(My) — M5z(R)

be given by R
A B
M = <C D) , (4.124)

with B, C, D constants matrices as in (4.117). One shall impose the following assumptions on M:
Assumptions 4.5.2. Let M : 71(My) — S, (R) be as (4.124). Assume that

1. There exists a positive constant k > 0 such that uniformly on w(My),
M = n_”alﬁ.
2. There exists a family on non-negative functions («; 1) such that for all Uy € R",

Un - MU; = Zai,k(ui + ...+ uk)2.

3. Let Ae My, (R) be as in (4.117). There exists a positive constant k > 0 such that uniformly
on (4.120) and for each 1 <i,j < n,

KRE

Aij = Aij+ O(d(Z PEE ) (4.125)
Finally let Ay : L2(I, H'(v)) — L?*(I, H (v)) in the form
A =BA—B(BD+ LY @ Iien) 'C + L7 @ I. (4.126)

Lemma 4.5.1. Let M be in the form (4.124) for A satisfying Assumptions 4.5.2. Let A be given
by (4.126). Let v € L*(I, H*(v)) be the solution of

My + (LY ® In)Y = Xnei, on T(Mpy)
{ Y-in=0 on or(My). (4.127)

Let (V) e L2(I, H'(v)) be the solution of

AW = xnei, on w(My)
{ YW .7 =0 on dm(My). (4.128)

We have the identity
pj = @Z)J(D for each j € I. (4.129)

Proof. Uniqueness and existence of solutions of (4.127) and (4.128) follow from the Lax-Migram'’s
theorem. Let us indeed prove that the quadratic forms

ve L*(I,H'(v)) — E,[v- AYv],
we L2(I, H (v)) = Ey[w - (BM + LY ® In_n)w]
are coercive. Let us split HE into HY + H®) with

HY: X, er(My) >N Y ga(mi+... +5). (4.130)
i#j:)i—j|<Ko
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Denote

M<1>:(V2H(”+V2Fg 0) o M(Q):(VQH@)(ZL‘)—l—EQNﬁ(.I)[VQ'HiN(x,-)] B)
0 0 C D)

Let M be as in (4.117). Observe that there exists x > 0 such that for all U = (U, Vi) € R™

‘Uﬁ (M@ — M)U| < n* K, 2|0, 2

Uy - V2(F& + HO)U, = n~"¢|U,|%.

Let us choose Ky = |n®|™ for m large enough. In view of the last displays one can see that there
exists k > 0 such that for all U = (U, Vi_,) € R?,

Un - MUy, = Uy - MUy + n= " |U,|? = n™"¢|Ux |%.
Since L£” is non-negative we obtain that for all v € L?(I, H'(v)),
Eyfv- (BM + £ & In)v] = n"E,[[v[2].
Because M(?) > 0, we also have that A®®) — BD=1C' > 0. Then note

A(x)—BDL0 = V2HD 4+ A® _BD 10— 0" K, I,,) = V2HV —O(n* K, *I,,) > n~"I,.
(4.131)
Let we L%(I, H*(v)). One can observe that
w-B(D+ 7L @ In_n) L (Cw) = (Cw) - (D + 1LY @ In_pn) H(Cw).
Integrating this over v and using the fact that D is positive shows that for all w e L?(I, H'(v)),
0<E, w-BD+p'L'® I ) ' (Cw)] <E,[w- BD™'Cw]. (4.132)
Consequently, inserting (4.131), we find
Ey,[w - A{w] = n "E,[Jw|?].
O

Let us next explain how to compare (AY)~! to (AY)~1. Let v € L?(I, H'(v)) be the solution
of (4.116) and (M) € L2(I, H'(v)) of

{ Afy

i 1) = Xn€i, on m(My)
W 7 = 0

on on(Mpy).
Let w := ™M) — ) e L2(I, H'(v)), which solves

AYw = My on m(My)
w-i=0 on dn(My).

Taking the scalar product of the first line of the last display with w and integrating by parts with
respect to v yields

Bn~ R, [Jw|?] < BE,[w - V*HEw] < B, [w - MypM]. (4.133)
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We will prove in Lemma 4.5.3 that

Y ON ke 213 1 (1Dy211
[, [wi(MyD)i]] < C(B)n"E, [w]] ;1+d(m);d(jﬂ);1ay[<wj IER

Inserting the last display into (4.133) will then give

E,[|lw]7]2 < C(B)n"n j;l—i—d(j,ﬁf)g'

(4.134)

Our main task is to establish that %(_1) typically decays in d(j,i0)~(2=*), making the left-hand side of

(4.134) bounded by n=/2. This will show that the increments of ¢ are bounded by d(j, ig)~(>~*) +
O(n=1/2), allowing to conclude the proof of Theorem 4.1.1 by choosing n large enough.
We finally complete Step 4 and control the operator (4.123). Recall that BT = C.

Lemma 4.5.2. Let v satisfying Assumptions 4.5.1. Let s € (0,1). Let B,C,D be as in (4.117).
Recall I = {1,...,n}. Letn, ¢ € L?(v). Then for each 1 < i,j < n, we have

RE

Q
=

n
d(i,0I)2d(j,01)2

B, [(nCe;)T(BD + LY @ In—n) " (¢Ce)]| < E,[?]2E,[¢%]2.  (4.135)

In addition for each 1 < i,j,l < n, we have

@l 1 L g ()
win(dG. oD 8 at, o) agant T AT

(4.136)

B, [(nC)T(BD+LQIr—n) " (¢Ce;)]| <

The term in the left-hand side of (4.135) is comparable to the covariance between ;4% ; and
8]-7-[%,]\, under a Gaussian measure. This analogy suggests us to proceed as if we were trying to
control the variances of ;4% \ and d;H2 ,;, which would require to control the fluctuations of large
gaps. We will thus import a method of [46] which starts by decomposing a given gap into a sum of
block averaged statistics.

Proof. First note that since D’ + £¥ ® I is a positive operator on L?(I, H'(v)), we find that

IE,[(nCe;)T(BD + L” ® In_n) " (#Ce;)]|
<E[(nCe;) - (BD' + L7 ® Ln—n) " (nCe)|ZE,[(¢Ce;) - (BD + L7 ® In—n) "} (¢Ce:)]>.
(4.137)

Using the positivity of LY ® I, and D, one can write

E,[(nCejn)-(BD+L'®I;-5) " (1Ce;)] < BB, [(1Ce;)-D™ ' (1Ce;)] = B~ Eu[n*](Ce;)-D~H(Cey).

The right-hand side of the last display may be identified with the variance of (CZ’); where Z' is a
Gaussian vector Z' ~ N (0, D). Let Z be the random vector defined for each k € {1,..., N}\I by
Zy=2Z1+...+ 2.
One may check that
1
C'2);= ] > ————=N(Z), — Zj). (4.138)

' A i — k2
€{l,....N}\I ke{l,....N}\I:d(k,j)=d(k,3)
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We claim that there exists C' > 0 and x > 0 such that foreach 1 <i<nand1<i+k < n,
Var[N(Z; 1, — Z;)] < Ck*TF=. (4.139)

Combining (4.138) and (4.139) entails, modulo (4.139),

C
. BD7'Cej)| < —————.
e ) < T5aG,e07

Let us now prove the claim (4.139). Fix 1 < < i+ k < n. One shall split N(Z;;1, — Z;) into
a sum of block average statistics. For each 1 <k <n/2andie {1,...,n}, let Iy(k) be an interval
of integers in {n + 1,...,n} of cardinal k + 1 such that i € I;,(7). Define the block average

W _ 1
A Z D
Jeli(4)

Let « > 0 be a small number, a = % with p € N*. One may write

p—1
N(Z— 2y = 3 N ey, (4.140)
m=0
For each m € {0,...,p — 1}, denote G,,, = N(Zi[[kmaﬂ - Zi“k(mﬂ)a”) and Iy = Ijpimena(i). Let
us define the matrix DY) = (DW), ;c; by
D(l) _ D; if 2 # J
" — Dker, ke Dj ifi=7.

Let u = (0;Gm)icr,, and DIm = (Ds,j)i jer,,- Since Gy, depends only on the variables in I,,, we
have the identity
Var[Gp] = u - D,

Moreover, since Dm > DU there holds
Var[Gy,] < u- DWu.

Let v = (D)~ Using the fact that Yier,, 0iGm = 0 and D) Yiicr,, € = 0, one may check
that >, v = 0. It follows that

1 N2
1 2 2
v-DWy > Z W(N(Uz‘—vj)) = WW :
1#j€lm
Furthermore observe that )
VG| < ON"
[ 1m|

The two last displays give by integration by parts the series of inequalities

N2

ﬁW’UF < - D(l)'U < C"U —_.

It follows that

N

Var[Gnl < C(8) I ", )5 (4.141)
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Summing (4.141) over m and using (4.140), one finds that
Var[N(Z; — Z;)] < Ck*FFe,

which yields (4.139), thus concluding the proof of (4.135).
The proof of (4.136) is similar. O

Let us now control the operator M appearing in (4.123).

Lemma 4.5.3. Let A be the good event (4.120). Uniformly inx e A, 1 <i<j<mnandN, we
have
C(B)n"

1/8 148
Var@%\r,/aﬂm) [alHn,N7 a]Hn,N] ( (3‘[)%d(], (3[) (4142)
Let v satisfying Assumptions 4.4.1. Then for all ¢,ne L?*(v) and 1 <i,j < n,
C(B)n"* in 1
B [ge: - Mlne;)] < —— D" g, [12]4E, (624, (4.143)

d(i,ol)2d(j, 01)*
In addition, for all p,ne L*(v) and 1 <i,l,j < n,

C(B)n"e d(i,1)

EAwwaﬂimﬁa—@ﬂ]<(ﬂ$ags(ﬂ@an/\aaanﬂ+*

(4.144)

Proof. The control (4.142) is a direct consequence a rigidity estimate under Qu g(- | ) that we
defer to Lemma 4.6.2, which proof can be found in the Appendix. Regarding the definition of
(4.123), the bound on the Schur complement (4.143) follows from (4.142) and Lemma 4.5.2. Since
A has overwhelming probability one may bound the contribution involving the Hessian of 7—[7(12) and
Eqy.»(fe)[Hn.v (@, )] (in gap coordinates) by sup |¢|sup n|C(8)e<(5)", O

Note that (4.142) one could refine (4.142) and show that this term concentrates around the
quantity Cov[CZ");,(CZ');], where Z' ~ N'(0, D). One expects that there exists some o > 0 such
that

Var@%v,ﬁ("x) [6[Hn N 0; ’Hi N] (P Cel) (D + 5—1£V ® [ﬁin)—l(PnCEj)

+n0 ( L L )
N L di, oD 1+ dGenE )

where B, C' and D are as in (4.117). Having such an expansion could refine our control on the
solution of (4.116) through (4.133).

4.5.2 Elliptic regularity estimate

The stake for us is to obtain a decay estimate on the solution of (4.128). We first derive an elliptic
regularity estimate and give an L? bound on the discrete primitive of order % — s of ¢ in terms of
|L1/2%|. We then state a straightforward control on the L' norm on the discrete primitive of order
1 — s of i with respect to |Lg/s_¢|. By interpolation, this yields via a discrete (1D) Gagliardo-
Nirenberg inequality a control on the L? norm with p = 1/2 of the fractional primitive of order
1 — 3 of ¥. Throughout the section, for all o > 0, L, stands for the distortion matrix

Lo = diag(y1,...,7va) with 4 =14d(i,i9)" foreach 1l <i<n. (4.145)

E,[¢°]2E, ]2 +C(B)e D™ sup o] sup |n].
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Lemma 4.5.4. Lets € (0,1). Letv and M satisfying Assumptions 4.5.1 and 4.5.2. Let x,, € H'(v),
ioe{l,...,n} and € L*(I, H'(v)) be the solution of
LMY + LY = xpeiy + Aer + ... +en) onm(My)
Y-(e1+...+em) =0 on T(Mpy) (4.146)
Y-1i=0 on om(My).

Recalling (4.145), there exists k > 0 such that letting p =

1
1—s/2"
< 2/p 3 1 —e(B)n 1 1\8
B[ (D 1gar)il?) | * < CB)n™= (Bux21% +sup [xale™ O 4, [Ty ot )3 +nE, [X]F)
i=1

1—s
XEV[|L3/2—sw|2]?' (4147)
Proof. Let us denote v = xnei, +A(eg +...+e). Let v € L2(I, H(v)) be the solution of (4.146).
In view of (4.125), the matrix M may be split into M = M) + M®) where M) € M;;(R) is the
constant Toeplitz matrix with the Riesz kernel g5 and M3 satisfying

2 nKZE
| E,j)! S o STEE
d(i, j)

Taking the convolution of (4.146) with gs_1 and the scalar product with v easily gives

for each i,j € I.

n 1
1 —c(f)n 1 1
[295 2+ 9 |* < OB (ESLG]E + sup [xale ™ + B, [|Lyjp0 ]2 +nE, [37]).

(4.148)
Indeed, the differential terms satisfies
Z Y((gs—1 * )i wl=2 V(gs—1#9)i) - Vo] = > Eylgs1(d(i, k)b - 053],
i=1 i=1 1,7,k
Since gs—1 is a positive kernel, for each j € {1,...,n}, setting ux, = 0;4r, we have

ng—l(d(ia k))uzuk = 0)

which justifies the claim (4.148).

Recall that by Remark 14, the convolution of a discrete function f : Z/nZ with g, for a > —1
corresponds to a fractional primitive of order 1 — « of f. One can now interpolate between the
L' norm of the primitive of 1 of order 1 — s and the L? norm of the primitive of order 1 — .

Let ¢ : T — R smooth enough. Applying Lemma 4.7.1 to u := Gs—1/2 * 1 with 51 = 0, s9 = %
802%_56(81,32),6:8,p1:2,p2:13ndp:égives
0 -6
Llfls 72 (T) < CHQS * wHLl(']I‘)Hgsfl/Q * wH}/Q(T) (4149)

Let ¢o : T — R smooth such that ¢(%) = v); for each i € {1,...,n}. Using (4.149) and making ¢
slightly vary, we deduce that

(Sl 01=7) ™ <o(Rlaeninl) T (Dlapew?)’. @1s0)
=1 i=1 ]

=1

Besides, by Cauchy-Schwarz inequality, it is straightforward to check that

2 1(gs * )il < C(B)n™[Lgjr— 9. (4.151)
i—1

Inserting (4.151) and (4.148) into (4.150) one obtains (4.147). O
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4.5.3 Control on derivatives

The aim is now to control the decay of V1i); with respect the (global) decay of ;. The proof
relies on the distortion argument of Lemma 4.4.2, the central task being to bound a variant of the
commutator L,ML_* — M from above.

Let us pause to explain the strategy of this proof. At first let us fix a small parameter g > 0. In
view of its specific positive-definiteness structure, M can be bounded from below by a matrix M where
interactions are cut off for d(i, k) > d(i,io)' . We then seek to control (LoML 4% — Mapdis),
for each 1 < i < 7. By construction, (I\/Il/;d‘b),- may be bounded by |Lj/s_s_. 9. S|m||ar|y one can
bound the Ieft and right tails of (LML ¢4); by |Ls/o—s—c,®|- We are thus left to estimate

D Ukds(d(i k) where  A(i) := {k #i:d(i,io)' "% <d(i,k) < d(i,ig)' **}.  (4.152)
ke A(3)

The point is to express this sum with respect w := Hj /51, the discrete primitive w of order 1 — s/2
of 1), which gives

n
2 %gs Z k Z Z s/2 (d(i,k))ﬂiikwl, (4.153)
keA(i) l=1keA(i
where gs_/é = Hs_/éel. Given an index [, one shall therefore estimate a truncated convolution

product between g, and gs_/; If [ lies away from the boundary of A(i), this product almost equals

)1=2%0 one can decompose (4.153) according

Js * g;/é(l) ~ g1_s/2- Fixing a threshold of size d(, io
to whether d(l,0A(7)) > d(i,ig)'~2%°. Owing to the previous remark and by Hélder's inequality,
one can bound the first contribution by the LP norm of w with p = ﬁ and insert (4.147). On
the other hand, the second contribution can be controlled by |Lg/o_s_- 9.

We finally obtain a control on |L;_,/, Dy depending on |L;_, /5. 4| and on n®0|L; 53|. A re-
versed inequality will be proved in the next subsection allowing one to control [Lg /o3| by [Li_g 9]

Since 9 > 0 and 3/2 — s > 1/2, this will provide a bound on |Lgz/;_,%| and [L;_s /s D3|

Lemma 4.5.5. Letse ( 1). Let v and M satisfying Assumptions 4.5.1 and 4.5.2. Let x,, € H*(v),
ipe{1,...,n} and ¢ € L*(I, H'(v)) be the solution of

BMY + LY = xpei, + ANer + ... +en) onm(My)
v-(e1+...+em)=0 on m(My) (4.154)
Y-n=0 on dn(My).
Let ag € (11:283, 1) as in Lemma 4.5.4. Let vy > % There exist C(B) locally uniform in 3, k > 0,
6 > 0 and g9 > 0 such that

E,[ Y deiio) %irw]\ OB E, (1L 1% (n* 0B, [[Ly ot ) B Lyl ¥

=1
+ 0 E, [|Lajp_ |7 + “EOH(EV[A?]%) +nfEotERE, [\2]. (4.155)

Proof. Let ¢ € L?(I, H'(v)) be the solution of (4.154).
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Step 1: a priori estimates and distortion First note that 1) satisfies the energetic estimate

E,[[¢1%]? +E,[|Dy*]? < C(B)n"E,[x2]>. (4.156)

For a > 1, let L, € M (R) be as in (4.145). Let 94 = L,1. Multiplying (4.175) by L, one can
see that wdls solves

BLAML M0 4 £79p%S =y, e + ALa(er + ... + eq).

In contrast with the short-range case, one cannot expect |My¥®| to be of order n"** under v if
o= % — 5 and one should therefore not split Ly,My into Mydis + (L,ML;! — M)wpdis. We will
instead isolate short-range interactions. Fix a small parameter ¢g > 0. By Assumptions 4.4.1, there

exists a family of non-negative functions («; ;); ;o1 such that

-MUpy = Eakluk—i— +ul)2> Z Ockl(uk-l—...—l—ul)g = UN-|\7|UN.
k#l keL:d(k,l)<d(k,io) 1 <0

By construction, we therefore have M > M, where
M.

1,5 = Z Oth.

k>7,1<i:d(k,l)<d(i,i0)' 0

Denoting Iy := |d(i,i9)! 75|, let us define the matrix valued-function given for each i, j € I by

M@_{%U—O—%%%mewuw—b)EM@O<% (4.157)
’ 0 if d(4,1) > lo.
Finally let M(® = M — H, be the random part of M and set
0 = LyH, L' =MD and 6 = LML - MO,
so that ¢4 is solution of
BT 4 g6t gdis 1 g5Eydis 1 prydis = yoei 1+ ALg(er + - + en). (4.158)

Step 2: integration by parts We proceed as in the proof of Lemma 4.4.2. Taking the scalar
product of (4.158) with ¢4 reads

E, [By™ - (M +0p,) + 02 6] + By [[Ve™[*] = Ey[thigxn + Lzath - (e1+ .. + en)Al. (4.159)
By construction, there exists a constant kg > 0 such that
M > n = "0c [ (4.160)

It therefore remains to control the commutators 6&) and 5&)
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Step 3: control on the long-range commutator Thls step is the most important of the proof.
Recalling that L,H L, 4% = L,H,, one may split 5 ¢d15 into

(6&%&8% = d(i,19)" Z 9s(i — k) + Z gs(i — k) ((m _ 1) dis | (II1);,

k:d(i,k)=d(i,ip) 50 k:d(i,k)<d(i,ip) =50
(0): (11
(4.161)
with
(I11); = hs(d(i,ig)' =) > (d(i, k)=d(i, io)' =)™ —gs(d(i, i)' ) e
k:d(i,k)<d(i,i0) %0 k:d(i,k)<d(i,i0) 10
Let us split (7); further into
(I); = d(i,ig)® > gs(i — k)y + d(i,i9)* > gs(i — k) .
k:d(iio) 50 <d(i,k)<d(i,ig) 1 50 k:d(i,k)>d(i,i0) 1 tc0
o, %
First note that by Cauchy-Schwarz inequality,
1 1 3 C
ni<c Lo s¥| < ——=1|L3/o_s¥|.
|( )z‘ ( Z d(’i,k)QS d(io,k)3_25> | 3/2 s¢| d(i,i0)1+60| 3/2 SW

k:d(i,k)>d(i,i0) =0

We turn to the term (I);. The idea is to express it with respect to the primitive of order 1 — s/2
1
of 1 and to use the L™=+2 control of Lemma 4.5.4. Let w = H /5% and g;/; = H;/lQel. One may

write -
I = ;( > d(@,’lk) 92k — l))wl. (4.162)

1 K:d(iyio) 20 <d(i,k) <d(i,ig) <0
The value of the truncated convolution product in front of w; depends on whether [ lies close to
the boundary of A(i) := {k : d(i,ip)' =% < d(i,k) < d(i,ip)' T5°}. We claim that there exists a
constant C' > 0 such that for each [ € {1,...,7},

e - + 4.163
ke%: d (1, k s/2 ‘ (d(z,l)s d(l,&A(z))l_S/Z d(, l) ,%0) ( )
Let us prove (4.163). First, in view of Lemma 4.2.4, the kernel g;/é satisfies

9,5/ () < ¢ f hl<k<n (4.164)

gs/2 W or eac <k<n, _
with )

S C
-1
PHRCIE = (4.165)

If d(l,A(i)) = d(i,ig), then by (4.164), the result if straightforward. Now if [ € A(i) with
d(l,0A(i)) = d(i,i0), one can write
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Finally let [ such that d(l,0A(3)) < d(i,70). One has
2 g i (k=1) = > L g A (k=D + > 1 g A (k=1).
d 9 . o d(i k) Ger2 . g A, k) Gar2
ke A(i):d(k,l)< 3 d(ii0) ke A(i):d(k,l)> 5 d(ii0)
In view of (4.164) there holds
2 Trmsdsp (k= D) S s
ke A(i):d(k,1)> 2 d(i io) (i, k) d(i, ig) 27"

Let us split the first term by writing

L S SRR
d(i,k)s  d@i, D) d(ik)s  d(i, )5

Since d(l, A(i)) < d(i,io) and d(k,l) < 3d(i,io) one has

1 1

Cd(k,1)
‘d(z’,k)s d(i, 1)

< TiioT (4.166)

Using in turn (4.164) and (4.165), one can see that

1
3 ghk—D=Y gs_/;(k:—l)+O(W)

ke A(i):d(k,i)<d(iio) ke A(i)

1 1
- O(d(l,&A(i))ls/z + d(z"z'o)ls/2>'

Finally inserting (4.166) we have

- Ns/2
’ (d(ilk)s a d(ill)8>d(k 52_5/2‘ < le((? Zl(;zﬂ < d(i,l 1C+§—H€0'
ke AGi):d(k 1) <d(isio) N0 ’ ; ; (i,1)
Combining the two last displays, one obtains the claimed estimate (4.163).
Let us split the sum over [ in (4.162) according to whether d(l,0A(i)) = d(i,ip)! 2. For the
first contribution one can write

1 1 ok
Z ©7)s 1—s/2 Wi < Cd(’b,lo) =0
‘l:d(l,aA(i))Bd(i,io)l—Qfo d(i, )* (i, 0A (D)= ‘

e (2 - 1 5 C n 1\ 12
< Ca(iyig)= (Y | =72 ) > ﬂmﬁ@%02<ﬂmwlm(ZMM1ﬂ) .

=1 1:d(3,0) =d(i,ip)t — 250

1—s/2

Inserting the estimate (4.147) of Lemma 4.5.4 then yields

1 1 291
E, ' '
H l:d(LaA(i))é(ivio)l—ng d(i,l)s d(l, 614(1))1*8/2 wl’ ]

< C(B)n™ (Eo[[L129 217 + E,[x2]2)°Eu[|Lajo_stb[?] 7
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For the second contribution, one can check via Cauchy-Schwarz inequality that

C
lwi| < WIL?,/HM.
It follows that
1 1 1 1
> s ~Grw| S C—F > ———————= L3
‘l:d(l,aA(i))Sd(i,io)l250 d(i,1)* d(l,0A())' 2 d(i,ig)'* 2 :d(1,0A () <d(iig) =290 d(l,0A(i))" >
C
< W|L3/Q—s¢|~
(4.167)

We have crucially used the fact that in (4.167), the series >, kl_lig/g is diverging, in order to have
an error in the last display much smaller than d(i,i9)~!, when g9 > 0. This justifies our choice of
considering a fractional primitive of order 1 —s/2 (rather than 3/2 — s for instance). One can gather
these estimates into

211 C(/B)nl% 211 —c(B)n? KEO 211)°
B < g s ((BDG1E + 5w hale @ + 0B, Ly 0] )
2 1—s 1 2 1
+ Ey[|Lajps["] 2 + WEV[‘L3/2—S¢| ]2)' (4.168)

We now control the terms (I1); and (I11);. Let us write (I1); as

- Y L (a(i,io)” - d(k, o))

k:d(i,k)<d(i,ig)t—50 d(i, k)®
= d(i,10)” 1 d(e, k)*
Cl(%ZO) )5 (1 ( ) >/(/}k

. e, Ak
k:d(i,k)<d(i,i0) %0

One can Taylor expand the weight in the above equation when d(i, k) < d(i,i0)! =" into

d(i, k) d(i, k)
- <
’1 d(i,io o Cd(i,lo)
This allows one to upper bound (I7); by
S vae o \1-s C
\(I1);| < d(i,ig)* > d(i, k)7 || < PRI (e ILajo st (4.169)
k:d(i k) <d(i,io) =50 ’
Similarly, by expanding d(k,io)* for k close to i, one obtains
IIT);| < ¢ L 1
(I < o o (4170)

Putting (4.168), (4.169) and (4.170) together, one obtains that for €9 > 0 large enough with respect
to g, there exists k > 0 such that

. . 1 1 —& 1
|Eu[wdls ' 5£10)¢dls]| < C(B>nHEEVUL2a—l/2w’2]§ (TLKEOIEVULl/QwP]§ +n OEV”LS/Z—sw‘Q] 2

1—s

WOE, [Lyp P B, [Lajp 2T + 0B, [V]F) + (BB, [\2]. (4171)
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Step 4: control on the short-range commutator It remains to upper bound 583 Recall that
by (4.124), the off-diagonal entries of M(®) typically decays in d(i,j)f(”%). One may write

is d(i, i is dZZ is
@Dyt =Y ME?k?(dEk’l; )w > ME?ﬁ(dEk’li )wd.

kxd(i,k)< 3 d(4,i0) k:d(i,k)> 2 d(i,io)
(- (-

>

(I)i (1)
The first term can be bounded for any value of o by

C(ﬁ)nﬁé‘

E,[(1)]? < — R, [Jy®e? 2
[(1);] 2i)i 3 [V EF] 2,

7

with C () depending on «. For the second term we have

C(ﬂ)nlis

E,[(I1)?]7 < S dig) i

1
Ey[[L1 9[>

Consequently arguing as in the short-range case (see the proof of Lemma 4.4.2) we obtain

B30 <

By construction, we have

ﬁ = IR, [ 2] 1 O(8)n R, [y PIE, [x3].

I:,lpdls Mypdis 1 Z 38 (1) ] 0. (4.172)

For the second term, the point is to give a control in term of Lo, _ /9%

(]

C (BN Ey[[Laa_1 20 2] By [|Ly 00?2 (4.173)

Step 5: conclusion Note that for & > 1, 2a — § > a. Therefore in view of (4.171), (4.172) and
(4.173) we obtain from (4.159) that for a > 1,

N - \2a K 17 4 s 1-s
E,| Y] dlii0) Vil | < COOMEylLoa 1213 (w0 B, Lyt PP E, Lo o] 2
=1
OB, [[Lyn U P]E 4 50 4 0B [N ) 4 OB, [x2]). (4.174)
This completes the proof of Lemma 4.5.5. O

4.5.4 Global decay estimate

Leveraging on the a priori estimate of Lemma 4.5.5, we establish a global decay estimate on the
solution. The method uses a factorization of the system around its ground state to reduce the
problem to the well-understood short-range situation of Section 4.4. Let us emphasize that due to
the degeneracy of the inverse of Riesz matrix (4.25), it is unavoidable to have an a priori control on
D1 such as (4.155).
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Lemma 4.5.6. Let s € (0,

). Let v and M satisfying Assumptions 4.5.1 and 4.5.2. Let x,, € H'(v),
ioe{l,...,n} andwesz

0,1
( L(v)) be the solution of

LMY + LY = xpeiy + Aer + ... +en) onm(My)
Y-(e1+...+ep)=0 on T(My) (4.175)
Y-n=0 on or(Myp).

There exists a constant C(3) locally uniform in 3 and k > 0 such that

[Z ivio) Vel +
In addition, there exist a constant C((3) locally uniform in 8 and k > 0 such that

c(b)

nlf/cs

(NI

[i (i,i0)% 07 ]% < C(B)"E,[x2]>. (4.176)

E,[\2]2. (4.177)

n

=

Ey[N]

\

Proof. The proof builds on the estimate (4.155). The strategy is to multiply the system (4.175) by
a constant matrix close to the inverse of Hy, so that the system becomes short-range. There are
two difficulties: first one should keep a positive-definite matrix and second one should control the
differential terms involving L£".

Step 1: factorization around the ground state To solve the first issue, the idea is to define a
kernel f which is vanishing outside a certain grid centered at 1 and of length K = |n®]"® for some
ko € N*. Assume first that m := Kil € N. Define

JHk) fl=14kK;,0<k<m-—1
fay =9 B FI= 10k " (4.178)
0 otherwise
where g;! = H 'e;. Also let A be the Toeplitz matrix associated to h:
A= (f(1—1))ij € Ma(R). (4.179)
Let us first show that f is a positive-definite kernel on {1,...,n}. Letf € {2"37” 0<k<n—1}.
One may notice that
11
zk@ Z g zk9K1.
k:O

Since K10 € {2"% : 0 < k < m — 1}, the above sum is positive. It follows that (4.178) defines a
positive-definite kernel and (4.179) a positive-definite matrix.

Assume that Kil ¢ N. Let m = [Kilj and v € R™K1 with v, = uy, for each 1 <k < mK;. Let
also A" = (f(i — j))1<i,j<mKk,- One can observe that for all Uy € R",

K,

1
Un - AUz — Vinge, - AVig,| < cnm( 3 |uk|2> *|Ls o Un|-
k=1

We now argue that for K large enough, the matrix AM is positive-definite. This is quite delicate
since as is well known, the product of two positive-definite matrix is not in general positive-definite.
Assume first that Kil € N. The idea is to separate M into the sum of a Toeplitz matrix associated
to a positive kernel and a random “diagonally dominant” positive matrix. As in Subsection 4.5.1, we
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first isolate small-range interactions, which do not concentrate around a constant, but provide some
near-uniform convexity. Following Assumptions 4.4.1, there exists a family of non-negative functions
(i j); jer such that
Un -MUy = Z ak,l(uk + ...+ ul)z.
k#l

For K7 as above, let us split M into M = M®) + M®) with for each 1 < 1,7 <n,

1
Mz(,j): Z ki Lagk <k,

(k‘,l)EIi’]'

where I, ; = {k € I : d(k,%) > 1d(i,7)}. Since M;lj) = 0 if d(i,j) > K; observe that

AM® = MM Consequently there exists ko > 0 (independent of K1) such that
AMW) > p=ros 1o (4.180)

Let us now control the product of A with the long-range matrix M(®). To this end, we split M(?)
into the sum of a Toeplitz matrix and of a random part. Let us h be the Riesz kernel truncated at
K defined for each k € {1,...,a} by

hk) = Y. gi( — ) laga=k,- (4.181)

(ivj)ell,k'

Observe that & is a non-negative kernel since for all Uy € RY,

D Ih(i = fuiuy = > gh (= ) lag sk, (wi — ug).
i,j i,J

Now let M) be the Toeplitz matrix associated to i and M2 := M2 — M21)  Since Toeplitz
matrices do commute, the product of A and M1 is non-negative. For the random part M(22),
note

(2,2) Cn*e
IMig"| < s ez
uniformly for 1 < 4,j < n. Therefore denoting | - | the spectral norm on M3 (R), we find that on
(4.120),
|AME2)| < Cn®e K 2. (4.182)

This can be made much smaller than the lower bound in (4.180) by choosing K large enough, thus
proving that AM(?) is positive-definite. In conclusion, if 7& € N, there exists & > 0 such that on
(4.120),

AM = n~" I,

To summarize, on the first hand, the positivity of AM®) follows from the construction (4.178), the
positivity of M(1) and (4.182). On the one hand the positivity of AMZ1 follows from the fact A
and M1 are positive and commute. Now, if Kil ¢ N, then for all Uy € R”,

Ki 1
U - AMUz > n~ "I, — Cn“(z |u2-|2) *|L3 o Un|. (4.183)
i=1

We will apply (4.183) to 14 := L.t and control 3.7 (145)2 by K232,
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Finally, the kernel (4.178) defines an approximation of g;!: choosing K7 to be a large power of
|n¢| as above, one can check that there exists a constant x > 0 such that for each k € {1,...,7},

Cn/{&‘
|hox f(k) < m

Indeed, if i =1+ (K; — 1)l € {1,...,7n}, then

n_

(4.184)

7 K
> gs(k — i) f( Klng — K{7%1-,.
k=1
Now if i € {1,...,n}, one can decompose is it into i = ig + (i — ip) with ig € {1 + (K1 — 1)Z} n
{1,...,n} and |i —ig| < K. Therefore, by Taylor expansion,
7 ‘ n . 7 . 7 1 CK2
| 2 gulk=i)f (k)= Y go(k—io) f(R)=O(K1) ¥ gh(k=i) f (k)| < C Z T A S di D
k=1 k=1 k=1 k=1 )

In addition, one can check that the first-order term verifies

& C
/ .
2 9ok =) f(k)| < w55
‘kl ’ d(i, 1)
thus implying that .
n C'nke
Z gs(k =) f(k)| < -5
‘k—l ’ d(i, 1)
By comparing g5 to h, we conclude the proof of (4.184).

Step 2: distortion For a > 1, let L, € M5 (R) be as in (4.145). The argument proceeds by
multiplying Equation (4.175) by L,A. Set ¢4 = L), which solves

BLLAML 1Y 1+ (LoALLY — A) LY 4 ALYYS = LoA(xnei, + Aer + ... +eq)). (4.185)

Set
or, = LodAML, ! — AM.

Taking the scalar product of (4.185) with ¢4 and integrating over v yields
BB, [0 - (AM + 61, ) 0% + 3 Ak VU™ - Vil + 3 (LoALL ! — AV - vyl |
= E,[xn¥i, + ALa® - LoA(er + ...+ en)].  (4.186)

Step 3: control on the commutator with £” We give a control on the quantity L,AL;! — A.
Recall that the matrix A fails to be uniformly positive-definite (in n). Consequently one cannot
bound the differential term in (4.186) by the norm |Dvy¥|. However as we have seen in Lemma
4.5.5 the gradient of v satisfies a global decay estimate whenever ¢) does. Let us first split the
quantity of interest into

Z(LGALEI _ A)kaV%hS . vw,cﬁhs Z f F (7) _ 1>v,¢;hs V?,Z)dls

p k,io)®

- Y - k)(d(i’ii?)a - 1)v¢?is D S (R (LZO)C; —1) Ve vy

d(k, o)

k:d(k,i)é%d(i,io) kid(k,i)>%d(i,i0) d(k7 ZU)

J

~—

(i (1)
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We seek to control the expectation of (I); and (I1); in term of E,[|L,Dv|?]. For the second term,
using (4.184) and the fact that >;'_; ¢ = 0, we find

EV vwzdis2%
IV Ly

1
. 2y 212
T qopsa B (ko) |V

E [|(IT):]] < C(B)n"™

k:d(k,i)> 3 d(4,i0)

1 3 E, [|Vyisf)2 L
(% awm) <c@we T g i porth. - aas)

Fos 5 —Ss—aty
sd(i,k) > L d(iio) d(i,ip)2

For the first term, using Cauchy-Schwarz inequality one can first write

C 1 is% 1 1s%
i<zl X eV (X g Vee)”

k:d(i,k) <3 d(4,i0) k:d(i,k) < 3 d(4,i0)

Summing this over i yields

Yl < (Y. Ok 0 V)

X(Z d(i,ig)2—4(a=) Z d(i7k)1—25d(k710) ka|>

kd(i,k)< $d(i,i0)

n 1 n 1 1
KE . 27 2 27 2 2
<Cn <i_21d(z,zo V| ) (Z (ki) [V 0)2234@7)) . (4.188)
Combining (4.188) and (4.187), one can see that if a < + 152, then
By | Y(LaAL! = A)pVoil - Vo] < c(g)nE, [Z (i) |IVi?]. (4.189)

i,k =1

Step 4: control on the commutator d7,, One should now control the commutator dr,, appearing
n (4.186). Let us recall the decay estimate on f * h stated in (4.184). By analyzing AM®), one
can see that the off-diagonals entries of AM typically decay in

Cnhe

E,[(AM)?,]2 < < i

As a consequence one may apply Lemma 4.4.1 which tells us that for « € (0, % —s],

—KQE&
n 0

B, [0 - 000 < BB 0] + COn R [0 PR, [0,

From the positivity of AM stated in (4.183) this gives

— R
n~Hoe

E, [ (AM + 61, )9%] > = —E, [[W™°] - B, [[v"* ]2 B, [Jw]?] 2. (4.190)
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Step 5: conclusion Combining (4.186), (4.189) and (4.190) one gets that for a € (0,3 — s],

w\»—A

B (Lot Pl < O (B 021 4no HHE, DB, 3 d, e~ 2 wu] ). (a.19)

=1
In particular taking a = % — s, one obtains
1 1 1 n s 1
Ey[|Lsjo—st’]2 < C(B)n" (Ey[x,%]ﬁ E,[A2]? + [Z i, io 2(1—§>|V¢i\2] ) (4.192)

Furthermore applying the estimate (4.155) with v = 1 — 3, we recognize

n s 1—s s
B 25 dthi0)* PV ] < 0w (0 BulILaya e BullLaya o] 7 By [Lab ]

+ 17O, [[Lyj o[ nE, N2]E + B, [\2]). (4.193)
Since s € (0,1), combining (4.192) and (4.193) one gets
1 1 1 1 1
Ey[|Lsjs—s¥ P12 +E[|L1— 5o DYI*]Z < C(B)n™ (0" B, [x;]2 +1" P By [|Ly o]z +nE, [A?]2).

Taking 9 > 0 large enough with respect to &, one obtains the existence of a constant x > 0 such
that

1 1 x 1 1
Ey[[Lyj2-s¥*]2 + Eu[|Lisp DY ]2 < C(B)n" (Eu[xp]2 + nE,[N]2). (4.194)

Using the expression (4.50), one can also see that
E,[X*]2 < C(8)n" Ly 20 ). (4.195)
Since 3 — s > 1, one gets from (4.194) and (4.195) the estimates (4.176) and (4.177). O

One shall extend the global decay estimate of Lemma 4.5.6 to the H.-S. equation without linear
constraint.

). Letv and M satisfying Assumptions 4.5.1 and 4.5.2. Let x,, € H'(v),
I,H'(v)) be the solution of

BMY + L7 = xpei, on (M)
{ Y-i=0 on m(My). (4.196)

Lemma 4.5.7. Letse (0,1
ipe{l,...,n} and ¢ e L?(

There exist a constant C(3) locally uniform in 8 and k > 0 such that

divio 19w 2] + [i i 0]’ < CEm LA,

=

I
—

E,|

(2

(v)) be the solution of (4.196). One can decompose % into ) = v + w

Proof. Let v € L*(I,H!
(v)) solve

where v, w e L(I,

BMv + LYV = xpei, + Ae1 + ...+ eq) on m(Mpy)
v-(er+...+ez)=0 on 1(Mpy) (4.197)
v-ﬁzo on om(My),
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BMw + LYw = X1 + ... +er) onmT(Mpy)

{ w-ii=0 on om(Mpy). (4.198)

For the vector-field v, one may apply Lemma 4.5.6 which gives

n 1 n 1
B[ Y dli, i) Vo] + B[ Y di i) 2] < comeRLEE (4199)

i=1 i=1
as well as
e < g, (4.200)
n

It remains to address Equation (4.198). One can write a mean-field approximation for (4.198) in
the form f(e; + ...+ en) where f € H(v) is the solution of

1

ﬁlfs

Bf+

Lf =\ (4.201)

By integration by parts this implies together with the control (4.200) that

1 C 1
E,[f%]7 < nQ(f)mEu[xiP (4.202)
and
E,IV/P]} < 2, [2)8. (4.203)
nz

Define w™) = f x (e; + ... + es) and w® = w —w™ which is solution of

5|\/|w(2) + LY@ = _BM(Q)w(l) on W(MN)
Wi =0 on dT(Mpy).

By (4.202), there holds

B IMOut Pl < g, ),
ni*S*liE
In particular
B [lu’)} < 2B, [33]} (4.200
nE_S_HE
and similarly
E,[Vollt < —P) g2k, (4.205)
nl—5—ke
It follows from (4.204) and (4.205) that w satisfies the estimate (4.199) and so does . O

4.5.5 Localization and optimal decay

Let us now adapt the localization argument of Subsection 4.4.4 to derive the near-optimal decay of
the solution of (4.175). Having proved Lemma 4.5.6, it remains to control the decay of 1); for a
single j € I. To this end, we project the periodized equation (4.175) into a small window centered
around j. After isolating an exterior field, one can see that the projected equation has a similar
structure as the equation one is starting from. By splitting the external field in a suitable manner,
one can then decompose the solution into two parts, that we control separately.
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Proposition 4.5.8. Let s € (0,1). Let v and M satisfying Assumptions 4.5.1 and 4.5.2. Let
Xn € H'(v), ig € {1,...,n} and ¢ € L*(I, H'(v)) be the solution of

LMY + LY = xpeiy + Aer + ... +en) onm(My)
Y-(e1+...+ep) =0 on m(My) (4.206)
Y-ii=0 on dm(Mpy).

There exist C(3) locally uniform in 3 and k > 0 such that for each 1 < i < n,

sy CEWE

Ey[¥7]7 < WEV[Xn] ; (4.207)

E,[|Vyil?]? < %Eu[xi]i (4.208)
1+ d(Z> ZO) 22

Proof. We proceed by bootstrapping the decay exponent on solutions of (4.206) and (4.196) for all
M satisfying Assumptions 4.5.2. Assume that there exist a > % —sandy > 1- 3 with v < a such
that for M satisfying Assumptions 4.5.2 and all x,, € H~1(v), ip € {1,...,n}, if ¥ € L*(I, H'(v))

solves (4.206) or (4.196), then there exists C(3) and x > 0 such that for each 1 < j < n,

C(B)n"*

212  Y\WP)n 213
1 C RE 1
E, [|Vy;[*]2 < d((fz'g)v E,[x2]2. (4.210)

In addition to (4.209) and (4.210), we will also make a systematic use of the global estimates of
Lemma 4.5.6 and Lemma 4.5.7.

Step 1: projection and embedding Let x,, € H'(v), ig € {1,...,n} and v € L?(I, H'(v)) be
the solution of (4.206). Fix an index j € {1,...,n} and define the window

Ji={ie{l,...,a}:d(,5) < d(io,j)/2}. (4.211)

Let ng = |J|. Let ¥/ := (¢)ies € L2(J, H*(v)). Projecting (4.206) onto (4.211) reads

BMI T+ LV = —ﬂ(ZlEJc Mi,l¢l>iej on (M) (4.212)

wo‘ﬁzo on (971'(./\/1]\[).

Let us operate the series of reductions of Subsection 4.5.1 to reduce the study to a periodic system of
size g = 2ng. One may assume that d(j,i9) = n"c for some large k > 0, otherwise the statements
(4.207) and (4.208) are straightforward. Let us denote J = {1,...,7o}. We now let d stand for
the symmetric distance on J. Consider the Riesz matrix on J truncated at K = |n"¢| chosen as in
(4.117), namely Mg = V2F(x) € My, for some x € R™ where

F:Xp, € R7 D gid, ) i+ .+ ),
i,jeJ:d(i,5)=Ko

Consider the block decomposition of M on R™ x R™0~"0,

. AO BO
M = <Co D0> . Age My, (R). (4.213)
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Let us add and subtract to the first line of (4.212) the quantity Bo(Do + 37 1£Y ® I,,,)Co. Defining

M7 B,
MO = (CO DO) ;
with By, Cy and Dy as in (4.213), this allows one to identify @Z)j] with 1/1? for each j e {1,...,np},
where 1° € L2(J, H'(v)) solves

BMoy? + L¥4° =V on 7(My)
PO =0 on om(My).

Moreover, the external field V e L?(J, H'(v)) satisfies V; = 0 if l € {ng + 1,...,70} and for each
le {1,...,7},0},

Vi=—8 Y Mt — Y e Bo(BDo + L @ Ing—no) " (Coeithi) + \.

eJe e

Note that My satisfies Assumptions 4.5.2.

/

Step 2: splitting of the exterior potential Fix ¢/ > 0 and partition .J into K := |d(j,i0) |
intervals I, ..., Ik of equal size, up to a O(d(7, i0)175/> for the last one. For each ke {1,..., K},
let i), be an index in the center of Ij. One can split the external potential into V.= V(1) 4 V()
where

VP =V, iflel,

i
Note that V(2) is piecewise constant on the partition J = UK | I;.. By linearity, ¢/° can be decom-
posed into ¥° = v + w with v, w e L?(J, H'(v)) solving

BMov + L0 = Xy, Vier on m(My) (4.214)
v-n=0 on on(Mnp),

(4.215)

BMow + L = Y, ViPer on w(My)
w-n=0 on onr(Mpy).

Step 3: study of v By using Cauchy-Schwarz inequality, Equation (4.135), the fact that ZZ:I Vv =
0, the estimates (4.176) and (4.177) and Lemma 4.5.2, one may check that for each [ € J,

RE d(]’ l)l_al 1

E,[(VI))?]z <C . —E,[x2]2.
[( )l] (6)’0 d(], i0)§_5 d(l,&J)5+S [X ]

Note that we have not made use of the bootstrap assumption for this last estimate but rather
of the global estimate (4.176). Let us decompose v into v = >,_;v()) where for each I € J,
v e L2(J, H'(v)) solves
BMgo®) 4 Lrol) = Vl(l)el on T(My) 4216
W .= (4.216)
vW.n =0 on onr(Mypy),

By applying the bootstrap assumption (4.209) in the window .J, one can see that for each [ € J and
jeld,

(i)' = 1
d(j.io)2 ™ d(l,0.0)3+

E,[(v{")2)7 < C(B)n"* E,[x2]%.
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Summing this over [ € J yields

C(B)n"* 211
< d(j’io)a%/Ey[xn] . (4.217)

In a similar manner, using the induction hypothesis (4.210), one also obtains

C(B)n"*

2-1

E,[[Vo;%] <

Step 4: study of w It remains to study the solution w associated to the piecewise constant
vector-field V). The argument is inspired from the mean-field approximation of the linear response
associated to a linear statistics, see for instance Chapter 3. We will construct an approximation of
w by replacing Mg by the constant Riesz matrix on the window .J. For each k€ {1,..., K}, we let
w®) e L2(.J, H'(v)) be the solution of

BMow®) 4+ £rw® =V S e on w(My)
w®) .7 =0 on om(My).

Let ¢(®) e L2(J, H'(v)) be the solution of

Bgs oM + £76® = v S e, (4.219)
lEIk

We let M(()Q) be the difference between Mg and the Toeplitz matrix associated to gs. Let also
n¥) e L2(J, H'(v)) defined by ngk) = @@1 — qﬁz(k) for each i € J. One shall observe that

Bgs * ﬁ(k) + Eyn(k) = Vl(lf) (6ik+1 - eik).

Using the bootstrap assumption we find that for each i € J,

1 _ C(B)n™ (2112
]Ey (k) 2 é < %EV ; 27

[(n;")7] (i) [(Vi )]
(k)2qL _ C(B)n"® (2)\q1

In view of Lemma 4.5.6, we also have
1 C(B)n™ 1
E,[(VP)E < B[]
[(Vi )] 4G, io) [X7]

It thus follows that
E,[x2]2, (4.220)

()|21% < C(B)n"*

1
E, [V, S dGaign T v[xn]2.

Besides, from the global estimate of Lemma 4.5.6, letting S = g, * ¢(¥), we have

E,[57]2 < = B[] (4.221)
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Let g9 € (0,1) be a small number. One may then write qbg-k) as

off =Y et@Gsi= Y GlaG)s+ Y g G

leJ leJ:d(j,1)>d(j,i0)t 0 leJ:d(4,1)<d(j,io)t %0

J

v~ g

(D); (11);
For the first term using (4.221) we find
C(B)nn(s+so)

271
d(j,i9)%* Evb]

E,[(I)2]7 <

One may then split the second term into

(I1); = > 9:1(d(5,1))(S; — Sp) + D 951(d(5,1))S; -

le J:d(j,1)<d(j,i0)* %0 leJ:d(j,1)>d(jio) L0
A

(I1); any
In view of (4.221), (1I)7 is bounded by

C(B)nn(s+€o)

BT < =55 7 Bobal.

For (1I); we can note that

_ m(_t 1 = -l -
&—%—E% Qmm duw)—Z@i %)@ww dﬁW)

e

(4.222)

At this point one may use the bound on the increments of ¢(*) stated in (4.220), which gives
1
2.

1

E,[S: — S22 < C(8)n"=d(l, j)d(j, i)' gyt Bl

Plugging this into (4.222) leads to

0} V1 < 0O (s + s SR

A similar computation shows that
n_%0 n
— + B
d(4,i0)7  d(j,i0)2 %

E,[IVe{" P15 < C(8)n=(

Let us emphasize that ¢*) differs from w(®).

2)

(4.223)

(4.224)

Step 5: conclusion for M(()Q) =0 Assume that M(() = 0. Then ¢ = w*) and one may infer

from (4.217) and (4.223) that there exists a small > 0 such that

1 e 1 1 !
E,[v5]% < C(B)n (d(j, i0)otn 1 d(j, io)Q—s)E”[X%]Q’

1 1 )

i + . )E 213
d(]a ’LO)'YJFT] d(], iO)%_i V[Xn]
One concludes after a finite number of steps that

1 C’ RE 1
E,[42]} < Ol(]{f()))i_szﬁzu[xi]a,

E, (Ve 1% < C(B)n™(

(4.225)

(4.226)
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Step 6: control of w in the general case We go back to the general case. Let us define
e®) = wk) — p(*) where ¢(¥) is as in (4.219). Note that ¢(¥) solves

AMoe®) + £7e®) = —gMEP p®).

According to the estimates (4.225) and (4.226) of Step 6, the vector-field M(()Z)qb(k) satisfies for each
1<i<n,
2) \(k)y2q1
E[(M§79){"))2 <
1 C(B)n" 1
BV )PP < -~ g )i,

It follows from the bootstrap assumptions (4.209) and (4.210) that for each 1 < i < n,

1 1 1 1
B (")) < CO (G + gy ) Gl
1

k) 211 . 1 1
EVHVBE )|2]2 < C(ﬂ)n E(d(j i )%‘% + d(] Z'O)'y+1fs)EV[X721]2'
» 00 ’

Consequently the same estimate holds for w*). Summing this over k vyields this existence of a

constant k > 0 such that

1 1 1
- +— )Ey 212,
Wiy dGagyrs ) Bl

E,[w?]? < OB+ (

1 n 1
d(j,ig)z—3  d(j.io)
Combined with (4.217) and (4.218), this improves the induction hypotheses (4.209) and (4.210)

provided & > 0 is chosen small enough. After a finite number of iterations, one finally gets (4.207)
and (4.208).

1 ’ 1
E, [V 2]3 < C(B)nt+)( s EDGTE

Step 7: conclusion for equation (4.196) In view of the bootstrap assumption, it remains to
consider the solution 1 of (4.196). Let us split ¢ as in the proof of Lemma 4.5.7 into ¢ = v + w
where v,w e L2(I, H(v)) are solutions of (4.197) and (4.198). By applying the result of Step 6 to
v, one can see that there exists a positive > 0 such that for each i € {1,... 7},

1 1 1 1
Eufer]: < C(B)nm<d(i,io)a+” " d(i,io)Q‘S)E”[X’%]E’ (4.227)

1 1

— + 35
6, 80)7 d(,dg)2

E (Vo2 < C8)m™( x JEDEE (4.228)

As in the proof of Lemma 4.5.7 one shall split w into w = w®) + w® with
wV = fx (e1 4 ... +en),

where f is given by (4.201). Let M(?) be the difference between M and the Toeplitz matrix associated
to g;. Observe that w® solves

BMw® + £'w® = —pM@ ™) on T(My)
w-i=0 on dT(Mpy).
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Using (4.202) we find that for each i € {1,...,7n},

C(B)n~
= d(j, 2'0)275

[NIES
N|=

E,,[(M(2)w(1))2]

2

E.[x2]z.

By applying the bootstrap assumption to upper bound w(?, we find that for each i € {1,...,7},

1 N 1
d(]a i0)2is d(]>Z0)

By [(w{™)?)2 < c(@)n s JEDG)E

Similarly, applying (4.203), one gets

1 1 \
+ = E,[x2]2.
d(j,io)2 3 d(mo)”“‘S) R

B, [IVe (" P]E < c@)n(

Combining the two last displays with (4.227) and (4.228) improves the recursion hypothesis when
1 is solution of (4.196). O

Remark 18. Even though the Lagrange multiplier in (4.206) is of order 1/n, there is no correction
of order 1/n in (4.207), contrarily to the case s > 1. This is related to the fact that u :=
H;(e1 + ... + ey) satisfies u; ~ ¢/n'~% for each 1 < i < n. Note that in the above proof,
the Lagrange multiplier is contained in V(2 and the smallness of the associated solution shown in
(4.223).

4.5.6 Decay estimate for solutions of (4.116)

In the case n < N/2, one shall now deduce from Proposition 4.5.8 a control on the solution of
(4.116).

Proposition 4.5.9. Let s (0,1). Letige {1,...,n}, xn € H'(v) and ¢ € L?>(I, H*(v)) solution
of
ATy = xnei, on (M)
{ Vo= 0  ondon(Mu)), (4.229)

Assume that |ig — n/2| < n/4. There exist constants C () > 0,¢(8) > 0,6 > 0 and k > 0 such
that for each j € {1,...,n},

1 1 1 1 5
EVW?'P < C(B)n™ (W + %> (Ey[X2]2 + sup |xn|e~ ). (4.230)

Proof. The proof is similar to that of Proposition 4.4.5. Let ¢ € L?(I, H'(v)) be the solution of
(4.229) and ¥ solution of

Av. (1) .
{ Alq/). )énem on T1(My) (4.231)

Let @ := ¢ — (1), which solves

Avp? = — MY on T(My)
v® i =0 on om(My).

Taking the scalar product of the above equation with ¢(2) and integrating by parts under v yields

E[[v@ %] < C(B)n"E, [ - MyM)]. (4.232)
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We claim that uniformly in 1 < j <n

B0 - v < SO g, (10 21E, (21

Let A be the good event (4.120). Fix 1 < j < n. One can split the quantity (M) -
MypDye;= N e M)+ D e M(ey)).

k:d(k,0I)<n/4 k:d(k,0I)>n/4
1), (D),
By (4.143) and (4.144), one may upper bound the first quantity by
(2) C(B)n" 1 1 (2)271 941
E [La¢:7(1); < ————~ o s sE, [ (v 2K, Xnl?
AT S 008 ¢ 3 00 a0 I
1
_ COE[W)):
nlmak Ed(j,a.[)%

For the second quantity, we can write

Dj= > e Men—e)of)+ Y e Meiuy).

kd(k,01)>n/4 k:d(k,01)<n/4

(4.233)

e; Into

E,[x

1
Ak

(4.234)

For the first term of the last display, using the bound on the increments of M given in (4.253), we

find that
B ta@ei( Y M(er—ei)vf))]

k:d(k,0T)>n/4

C(B)n"* 1 1 (2)\271 9 1
S V= - S sE(0;7) 2B X ]2 < ——
d(3, o1)> k:d(k,az]:)>n/4 d(io, k)!= n'*3 ’ n!

Because 91 - (e; 4 ... 4+ e,) = 0, the second term of (4.234) satisfies

C El/ (2)2% |
s % )]« o e

k:d(k,0I)>n/4

(4.236)

Putting (4.234), (4.235) and (4.236) together we obtain (4.233). Summing this over j yields

213
B 1@ 2] < COBMV T g oy

Finally, inserting the maximum principle of Proposition 4.3.6 we obtain

E, [14:0®-MypM] < C(B)n"™ sup [xn By [0 P12E, [14e | M[2]2 < C(8)e= @™ sup |y |E, [|0)[?]7.

Inserting the last displays into (4.232) we find

B0 P] < SO B 03] + e sup 2.

In particular, for each 1 < 7 < n, there holds
2 ¢
B [0 < S0

nl—ke
and the estimate (4.230) follows.

—C! n(s
(Eu 2] + e O sup [y, |?)

(4.237)



4.6. Uniqueness of the limiting measure 203

457 Proof of Theorem 4.1.1

Proof of Theorem 4.1.1. Arguing as in the proof of Theorem 4.1.2, one may deduce Theorem 4.1.1
from the decay estimate of Propositions 4.5.8 and 4.5.9. Note that for gaps N(z;+1 — x;) and
N(zj41 — x;) at macroscopic distance, one may directly apply Proposition 4.5.8, whereas for gaps
at small microscopic or microscopic distance, one can import the result of Proposition 4.5.9, which
yields (4.5) by coosing n large enough with respect to d(i, 7). O

4.6 Uniqueness of the limiting measure

In this section we show that the sequence of the laws of microscopic processes converges, in a
suitable topology, to a certain point process Riesz g, as claimed in Theorem 4.1.3. The existence
of an accumulation point being a routine argument, Theorem 4.1.3 is in fact a uniqueness result.
To establish uniqueness of the accumulation point, one should prove that in a certain sense, the
sequence of the microscopic point processes forms a Cauchy sequence. In the following subsection,
we further explain the strategy of proof and reduce the problem to a statement on the decay of
correlations.

4.6.1 Reduction to a correlation estimate
To prove Theorem 4.1.4, we seek to compare the two following quantities:

Eps, [F(z1,...,20)] and B [F(w1,...,20)],  with F:RY - R smooth, (4.238)
> N/,

where 1 <n < N' < N. Let us denote I = {1,...,n} and 7 : Dy — 7w(Dy) the projection on
the coordinates (z1,...,2,). Letalso I’ = {1,...,n} and 7’ : My — 7w(My) the projection on
the coordinates (x1,...,2,). We claim that if F' depends on variables in the bulk of {1,... ,n},
then the expectation of F' under P§; ; and P%V,ﬁ approximately coincide, whenever N and N’ are
chosen large enough. We will draw an exterior configuration y = (yp+1,...,yn) € 7re(Dy) from
Py g and an exterior configuration z = (zp41,...,2n7) € mre(Dnr) from Pys 5 and compare the
conditioned measures Py g(- | y) and Pyv 5(- | ). Let us slightly modify the measures Py g and
Py 5 by adding the following quantity to the Hamiltonian:

n
F = ;a(W) (4.239)

Define F& such that F = F& o Gap,y and the constrained measures
dQy goce PPy 5 dQpr goce PF APy 4 (4.240)
dQ§ goce TdAPE QK yoce AP, . (4.241)

We say that a configuration y = (yp+1,-..,yn) € Tre(Dy) is admissible if
IN(yisr — yi) — k| < Cnfk2 foreachn+1<ii+k<N (4.242)
and that y € m1<(Dy) and z € mre(Dy/) are compatible if
N — N(yn — ynt+1) = N' = N(2n — 2n41)- (4.243)

Given y € (D) and z € mre(Dyr) two admissible and compatible configurations, we define the
conditioned measures

ph=Qup(-ly) and pg = Qup(-|2). (4.244)
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Letting
An = {(21,...,m) € m(Dp) : N(zp —21) < N = N(Yyn — Ynt1)},

we can write

dpt (z)oce PHn @)+ Hn N (@) +F@) Y ) (1)da (4.245)
d,qu(a:)oce_ﬁ(H"(m)+anN’(’”’Z)+F(x))]lAn (x)dz, (4.246)

where H,, n(z,y) stands for the interaction between z and y. To compare uy and uZ, a first
possibility is to transport one measure onto the other and to study the decay of the solution of the
Monge-Ampere equation. Instead, we interpolate between i, and u? and consider a continuous
path 1(t) in the space of probability measures on 7(Dy). There are several ways of interpolating,
one of them consisting in running the Langevin dynamics as in [10]. A simple way of proceeding is
to consider a convex combination of H,, x and #,, n+. For t € [0, 1], we define

Et)(xz) =1 —-t)Hpn(z,y) + tHy N (x,2) and  H,(t) = H, + F + E(t) (4.247)

and the probability measure
dp(t) (@)oce PHn®@) ] 4 (2)da. (4.248)

Observe that p(0) = pi, and u(1) = .
Let G : R® — R be a measurable bounded function. Define

h:te [0, 1] = Eﬂ(t) [G]
It is straightforward to check that h is smooth and that for all ¢ € (0, 1),

]”/(t) = 5COV,M(t) [G,’HMN(',y) - Hn,N(', Z)]

Integrating this between 0 and 1, we obtain the following integral representation of the difference of
the expectations of G under pu,, and v,:

Lemma 4.6.1. Let G : R" — R be a measurable bounded function in the form G = G o ¢ where
¢ : X, € R s (N(29 — 21),...,N(2 — _1)). Let also u(t) be the measure defined in
(4.248), v(t) = ¢p#u(t), § = Gapy_,(y), Z = Gapy_,,(z) and ay, € (0, N'). We have

1
E,Uaﬁ [G] = Eu;{ [G] + f[) COVV(t) [Gv HiN('? :'-7) - Hi,N('a 2)]dt (4249)

We will consider functions G depending on a small number of coordinates in the bulk of
{1,...,n}. Let us emphasize that 0;(HE (-, §) — HE (-, %)) typically decays in d(i,0I)~2 un-
der v(t). One should therefore prove that the decay of correlations under v(t) is fast enough in
order to compensate the long-range of the interaction and conclude that the covariance term in
(4.249) is small. One shall apply the general result of Proposition 4.4.5 to the measure p(t). This
first requires to prove that u(t) satisfies Assumption 4.4.1. The main task is to obtain rigidity

estimates under ().

4.6.2 Rigidity estimates under the perturbed measure

We control the expectation and the fluctuations of gaps under the measure p(t).
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Lemma 4.6.2. Let s € (0,1). Let1 < n < N < N with N » ns. Let y € mre(Dn) and
z € mre(Dpnr) be two admissible and compatible configurations in the sense of (4.242) and (4.243).
Let 11(t) be the probability measure (4.248). There a exists constants . > 0, C(8) > 0 and ¢(8) > 0
locally uniform in [3 such that

1) (N (zis1 — 21)) = n™) < C(B)e P foreach 1 <i < n, (4.250)

L) (N (i — 25) — k| = n"k3) < C(B)e P foreachl <i<i+k<n. (4.251)

4.6.3 Decomposition of the operator

To compare u%y) and ,u,(f), we study the decay of correlations under the measure p(t) defined in

(4.248). Following the procedure of Subsection 4.5.1, one may split Ai(t) into Ai(t) = fli(t) + M (t)

with

AW .= BVFE 4 BAL4e + BVE(HE(2) + E(t))1a — BB(D + 57 L'V @ L) 1C + L'O @ I,
M(t) : BVA(HE + E(t))La — BAL4e + BB(D + 7' LD @ 1,) 7' C,

where A, B,C, D are as in (4.117). In view of Lemmas 4.6.2 and 4.5.2, for s € (0,1), there exists
C(B) > 0,¢(B) > 0,6 >0 and x > 0 such that for each 1 < i,5,l <n, n, ¢ € L*(v(t)),

C(/B)n){f;' _ s
3 5 +C(B)e B’ gy su ,
2. o0 3, 51)5 (8) P |¢|sup [n]

(4.252)

D=
(SIS

E, o [(¢e;)-M(t)(ne:)]? < 0 [17Ey ) [17]

C(B)n"<li — 1| - ,
S S 5 El/ 2EI/
min(d(i’ aj)l-*-g,d(j’ 8])“5)(1(] 51)5 (t) [¢ ] (t)[T] ]

+C(B)eP" sup | sup [n|. (4.253)
Similarly in the case s € (1,+), for each 1 <i,5,l <n, n, ¢ € L2(v(t)),

[N
N|=

B, (6e) M () n(ei - )| <

N[

E, n[(de;)-M(t)(ne;)]? < o

e ST B suplol s o,

(4.254)
C(B)n"<i — 1

min(d(i, 0I)2*+*, d(j, o1)2**)d(j, o1)
+C(8)e P sup|p|sup |n|. (4.255)

(NI

Ey)| (6e) M (B)(n(e: — )| * < E, () [6*]2Ey o [1]?

+s

N

4.6.4 Decay of the approximate solution
One may apply the estimate (4.207) of Section 4.5 to the measure v/(t).

Lemma 4.6.3. Let s€ (0,1) u (1,+). Let y € mre(My) be an admissible configuration in the
sense of (4.242) and v(t) be the measure defined in (4.248). Let x, € H*, ig € {1,...,n} and
e L2(I,H' (u(t))) solution of

A'f(t)"lﬂ = Xn€ip, + )\(61 + ...+ en) on A,
ve-(eg+...+e,) =0 on A, (4.256)
Y-1i=0 on dA,.
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There exist constants k> 0 and C(3) > 0 such that

1 . 1 —e(BYnd (Ln<N Lse(o Lyea,
E, 1312 < C(B)n" (B [x2]2 + sup [xnle =) )( \/% + d(ioeg)z),s + d(iz( j;ﬁ)s)-
(4.257)

We establish the well-posedness of (4.257) in the Appendix, see Section 4.7.2.

Proof. In view of Lemma 4.6.2, one may observe that v/(t) satisfies Assumptions 4.5.1 if s € (1, 4+00)
and Assumptions 4.4.1 if s € (0,1). The estimate of Proposition 4.4.3 can therefore be applied to
v(t), which gives (4.257). O

4.6.5 Estimate on the main equation

It remains to study the decay of the solution of the Helffer-Sjéstrand equation associated to v/(t)
when the source vector-field is localized on a small number of coordinates in the bulk of {1,...,n}.
To this end we study the difference between the solution of the main equation ¢ and the solution
(1) of the approximate equation (4.256). By convexity, we obtain a satisfactory bound on 1 and
conclude that the correlation under v(t) between a gap in the bulk of {1,...,n} and the interaction
energy E(t) tends to 0 as n tends to infinity.

Lemma 4.6.4. Let s € (0,1) U (1,+). Lety € me(Dy) be an admissible configuration in the
sense of (4.242) and v(t) be the measure defined in (4.248). Let x,, € H', ig € {1,...,n} such
that |ig — 2| < 2. Let € L*(I', H*(v(t))) solving

BV2(HE(t) + F&) + LYOeh = xpei + Mer + ... +en) on Ay,
v-(er+...+e,) =0 on A, (4.258)
Y-n=0 on 0A,.
There exist a constant C(3) > 0 and a constant . > 0 such that
% By lv3]? . : @y -3 .
Y~ < OB By DA +sup xale D) (03 L) + 17 F et ).
j=1 d(j,oI)?

Proof. Lets e (0,1). Lete € L?(I, H (v(t))) be the solution of (4.258). Let (") € L2(I, H'(v(t)))
be the solution of

BMyp 4 £vOpD) =y ei + Ney + ... +e,) on A,
v (e1+...4e,)=0 on A,
w(l) =0 on dA,.

Set (2 = 4p —p() e L2(I, H' (v(t))). One can observe that (2 is solution of

BV2(HE(t) + FE)Y @) + £vOp2) — —BM ()™ + A(eg + ... +e,) on A,
1[)(2)'(614-...—1-6”):0 on A,
Y@ .ii=0 on 0A,.

Using the bounds (4.252) and (4.253) and arguing as in the proof of Proposition 4.5.9, we get
C
B[] < S0

— 5
e By D] + sup [xa[Pe ).
By Cauchy-Schwarz inequality, this yields

2” : )22 Ke—3 211 —c(B)n?
75]}31/ . 2 < C 2 EV P +
o d(gol)2 ()] (B)n (Evy[x2] sup | xnle )

and the same estimate holds for 1. We conclude likewise in the case s € (1,4). O
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4.6.6 Proof of Theorem 4.1.3 and Theorem 4.1.4

Inserting the decay estimate of Lemma 4.6.3 into the identity (4.249), one may easily compare the
measure y;, and pZ. Integrating y and z in the set of admissible configurations gives in particular
the following comparison between the measure Py g and Py 5:

Proposition 4.6.5. Let s € (0,1) U (1,+). Let G : R* — R in H! such that sup [VG| < oo.
Assume that G depends only on the variables x; forie J := {|5| - K,...,|5]+ K} with K < n/5.
Let A be the good event (4.120). We have

EP%’B [G(z1,...,24)] — Epiw [G(z1,. .. ,xn)]‘

_s _1 —c(B)nd
S C(B)n"™(n" 21y + 1 2186(17+w))<sip2 10:G| + =B supZ |@iG|). (4.259)
ieJ ieJ

Proof. The proof follows from Lemma 4.6.3 and from the local laws. Let us define
A ={(x1,...,2n) s T(MpN) s 21 + ...+ 2 < 2n}.

By restricting the domain of integration to A,,, which has overwhelming probability by Theorem
4.2.2, one can write

EP%V,B [G © ﬂ-] = EP%\]’E [EP%\’ﬁ [G o ’ An]] + C(B) sup ’G|€—c(ﬁ)n67 (4260)
Eps, [Gom] = Eps [Eps [G o | An| + C(8)sup |Gl (4.261)

Let F& be the forcing (4.239) and QF 5, QF, 5 as in (4.241). The measure Q% 5077 '(- | Ay)

being uniformly log-concave with constant ¢ = An5(5+2) on the convex set A,,, it follows from the
Barky-Emery criterion (see Lemma 4.3.8) that Q}g\,ﬁ om (- | A,) satisfies a Log-Sobolev inequality

with constant 2¢~!. In particular,
Ent[P§, ;0 1] AR | Q%50 7| Ap)] < 2¢ ' Bpy L [IVFI?.
Using Theorem 4.2.1, one can upper bound the relative entropy by
Ent[P§ ;o 1A | Q% 50 7 AL < C(B)e B for some & > 0.

It follows from the Pinsker inequality that

8

TV(PR o ([ An), QR0 (| An)) < C(B)e™

Similarly we find

)

TV(P%V,’ﬂ o (- | An),(@f\,,ﬁ o (| An)) < C(ﬁ)e—c(ﬁ)n

One may therefore replace the expressions in (4.260) and (4.261) by

§

Eps [Gom| Al =Eqg, [Gom | An] + Og(sup |Gle ™), (4.262)

— §
Eps, [Gom| An] =Eqs, [Gom|An]+Op(sup|Gle c(Bny, (4.263)

Fix two exterior admissible (in the sense of (4.242)) configurations y € mre(Dy) and z € wre(Dyy)
and let § = Gapy_,(y) and Z = Gapy_,(2). Let u(t) (= wu(t,y,z)) be interpolating between
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(
r1),...,N(xn — 2,)). Assume that G depends only on z; for i e J := {|5]| — K,...,|[5] + K}.
For each i € J, let 1(t) e L2(I', H'(v(t))) be the solution of

ﬂAlll(t)w(t’i) = ((%G)ez on .An
(

d)(t’i)~ 61—|—...+6n) =0 onA,
) 7 =0 on 0A,,

By applying the estimates of Lemmas 4.6.1, 4.6.2 and 4.6.4, we find

1
Beg, (G o | 7] =B, [Gor| 2| | [ Cov,lG,HS = HE i

ieg Y0
< C(B)n"=3 Z(Ey(t)[(aic:)?]% + sup|,GlePn’)
e
< C(B)n™ 5 sup Y (10,G] + sup [,Gle =),
e
(4.264)

where we have used the fact that the event (4.120) has overwhelming probability under v(t) (see
Lemma 4.6.2). Moreover, under Qx 3 (resp Qn- g), the exterior configuration y (resp z) is admissible
with overwhelming probability. Therefore, integrating (4.264) over y and z in the set of admissible
configurations, one obtains from (4.262) and (4.263) the claimed result. O

We are now ready to conclude the proof of the uniqueness of the limiting measure. We will
consider random variables in the space of configurations on R and one should first define a o-
algebra on it. We let Conf(R) be the set of locally finite and simple point configurations in R.
Given a Borel set B < R, we denote Np : Conf(R) — N the number of points lying in B. We
then endow Conf(R) with the o-algebra generated by the maps {Np : B Borel}. We call point
process a probability measure on Conf(R). We then say that a sequence Py of point processes
converges to P for the local topology on Conf(R) whenever for any bounded, Borel and local
function f : Conf(R) — R, the following convergence holds:

lim Epy[f] = Ep[f].

n—0o0

Proof of Theorems 4.1.3 and 4.1.4.

Step 1: compactness.  Let (x1,...,2y) distributed according to Py 3. Denote
N
N
QYN = Law (21 5in]1|wi|<i> e P(Conf(R)).

Let us show that the sequence (Q”) has an accumulation point in the local topology on P(Conf(R)).
We follow the strategy of [94, Prop. 2.9]. For all R > 0 denote A = [—R, R] and for all
Q@ € P(Conf(R)), Qg the law of C|4,, when C is distributed according to ). For two point processes
P and Q, define the relative specific entropy of P with respect to @ by

Ent[P | Q] = limsup Ent[Pg | Qr].

R—0
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Let IT be a Poisson point process on R. According to [129, Prop. 2.6], the level sets of Ent[- | II]
are sequentially compact for the local topology. As a consequence it is enough to check that

1
sup sup —Ent[Q%,HAK] < . (4.265)
NeN* KeN* K

Let Bi A, be a Bernoulli process on Ag. Following [94], one can split the relative entropy into

dQ% N dBKA
d log SoEAK
B (@K T J 8 ~qIT,
NN) (4.266)

= —log Kng(Ak) — BEQ%[ D, gslwi— a:j)] —log (e_NN!

x‘i#xjec

Ent[QY | 1Tx,] = f log QY

K

where

KNﬁ(AK) = Jexp( - ,8 Z gs(a:i - xj))]l%DN(XN)dXN'

;7T ;€CNAK

From the rigidity estimates of Theorem 4.2.2, we have

log Kng(Ak) = —BEQIN{[ D gslwi— 90]')] + Op(K).

xiiijCﬁAK

Inserting this into (4.266), we deduce that (4.265) holds. It follows that (Q*V) has an accumulation
point in the local topology.

Step 2: uniqueness. Let us now prove that this accumulation point is unique. Let P,Q €
P(Conf(R)) be two accumulation points of (Q%) in the local topology. Note that P and Q are
necessarily translation invariant. Let kg > 1. Set

F:Ce COHf(R) g G(Zg — Rl Ry — 21),

with G : RFo — R smooth. In view of Proposition 4.6.5, we can see that

Ep[F] = Eo[F].

This implies that for each ky € N, the law of (22 — 21,...,2k, — 21) under P equals the law
of (22 — 21,..., 25, — 21) under Q. Since P and @ are translation invariant, we conclude that
P=qQ. O

The proof of Theorem 4.1.4 is now straightforward.

Proof of Theorem 4.1.4. By Theorem 4.1.3,

]\}iinoo Epy 4 [F o 7] = ERiess, 5[G(22 — 21, .-+, 21y — 21)]-

Since the error term in (4.259) is uniform in N, this concludes the proof of Theorem 4.1.3. O
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4.6.7 Proof of the hyperuniformity result

Having already established in Chapter 3 that the N-Riesz gas is hyperuniform and that N (zx — z1)
is of order O(K*) under Py 3 with a Gaussian asymptotic behavior, it is now immediate using the
convergence result of Theorem 4.1.3 to prove that Riesz, g is also hyperuniform.

Proof of Theorem 4.1.5. Let 1 < K < % Set {y = % Let
N
Fy = (Niy) 2 (Z Lio,0n) (1) —5N> :
i=1

Let Z ~ N(0,02) with

9 1 m
o cotan <§s> .

— 755
Let 7 : R — R such that |n'|c < 1. In Chapter 3, we have proved that
Epy s [n(Fn)] = E[n(2)] + ok (1), (4.267)

with a 0k (1) uniform in N. Set N
Fy = K_iN((L‘K — l‘l).

Using Theorem 4.2.2, we can prove that

E[F’Nﬁ [n(ﬁN)] = EPN.,B [n(FN)] + OK(1)7 (4268)

with a 0k (1) uniform in N. Now by Theorem 4.1.4, we have

lim Ep, ,[1(FN)] = ERiess, ,[1(K 2 (25 — 21 — K))]. (4.269)

N—0

Combining (4.267), (4.268) and (4.269), one deduces that

ERiesz, o [1(K 2 (2x — 21 — K))] = E[n(Z)] + ok (1).

s

We deduce that under the process Riesz; g, the sequence K ™2 (2x —21 — K') converges in distribution
to Z ~ N(0,0?). Moreover by Chapter 3,

Var]pNﬁ [FN] = Var[Z] + ON(KS),

with a o (K®) uniform in N. Proceeding as above, one easily prove the variance estimate (4.10). [

4.6.8 Proof of the repulsion estimate

Proof of Proposition 4.1.6. Let a € (0, 5). We have proved in [52, Lemma 4.5] that there exist two
constants C'(3) > 0 and ¢(3) > 0 locally uniform in 3 such that for each i€ {1,...,N} and ¢ > 0
small enough,

IPN,ﬁ(N(xi-i-l — a:l) <e) < C(,B)eic(ﬁ)si&.

Since (]P’%V’B) converges to Riesz, 5 in the local topology, we can pass the above inequality to the
limit as N — o0 and we obtain

@

PRiess, 5 (zi+1 — 2z < €) < C(B)e W™,
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4.7 Appendix

4.7.1 Discrete Gagliardo-Nirenberg inequality

The Gagliardo-Nirenberg inequality, originally proved independently in [123, 202], is an interpolation
inequality between different weak derivatives in LP spaces. The result was at first stated for deriva-
tives of integer order and then extended to derivatives of fractional order in the rather recent paper
[62]. The main result of [62] gives sufficient and necessary conditions on the orders and exponents
for an interpolation inequality to hold on R™. For shortcut, we only present one of the cases where
the interpolation inequality is valid.

Lemma 4.7.1 (Brezis-Mironescu). Let 1 < p,p1,p2 < 0. Let s1,s2 = 0 and 0 € (0, 1) such that

1 0 1-6
su<sa, so=Osi+(1—0)ss, —=—+—.
p D1 b2

Assume that sy < 1. Then, there exists a constant C' > 0 depending on p1,pa2, s1, s2,0 such that
for all u € W*1:P1(R) n W*2P2(R),

0 —6
HUHWSOYP(R) < CHUHWSMH (R) HUHIl/VSmm (R)"

By taking a periodic function of period 1 on (—n,n), one can show by letting n tend to infinity
that Lemma 4.7.1 also holds for functions defined on the circle.

4.7.2 Well-posedness results

The proofs of Propositions 4.3.1 and 4.3.3 can be found in [52, Appendix A]. For completeness we
sketch the main arguments below.
Let p satisfying Assumptions 4.3.1. The formal adjoint with respect to p of the derivation ¢;,
i€{l,...,N} is given by
Ofw = dyw — (0;H)w,

meaning that for all v, w € C*(Dy,R) such that Vw - 77 = 0, the following identity holds
E,[(0iv)w] = E,[vdfw]. (4.270)

The above identity can be shown by integration by parts under the Lebesgue measure on Dy. Recall
the map
H:XNGDN'—) (mg—xl,...,xN—wl)eTN_l

and
/ — ,U/ o H_l.
Proof of Proposition 4.3.1. Let F = G oIl with G € H'(u). Recall that if F € H!(u), then
VFeL?({1,...,N},H ' (u)). Let
E={¢oll:pe H' (1),E,[¢oTI] = 0}.
Consider the functional
J:¢e EwEL[|Ve|]* —20F].

One may easily check that J admits a unique minimizer. Indeed for all ¢ = ¢ oIl € E, one can
write

Eu[¢F]| < |F | =1l -
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Moreover since ¢ € E, one can observe that

1
Eull¢]’] = Bw[l$*] < B[ VY] = o -Eul| V4[]

It follows that J is bounded from below. Since J is convex and |.s.c, by standard arguments, it is
|.s.c for the weak topology of H'(;) and therefore J admits a minimizer ¢.
One can then easily check by integration by parts that the Euler-Lagrange equations for ¢ state
that a.e on Dy,
Lt = F —E,[F], (4.271)

with the boundary condition
Vi =0, (4.272)

a.e on 0Dy. Equations (4.271) and (4.272) easily imply that J admits a unique minimizer.
Let us now differentiate rigorously Equation (4.271). Let w e CX(Dy) and i € {1,...,N}. By
integration by parts, we have

EulwoiF] = Ep[ofw(F — Ey[F])] = Eu[0fwle] = Eu[Voiw - V]
N
= Y Eu[(805w)d;¢] +ZE ([0;, 0] w)d;¢).
j=1 J=1
The first term of the right-hand side of the last display may be expressed as
Z E,[(0F0;w)0;0] = Z E,.[(0;w)0:0;6] = B, [Vw - V(0;0)] = E.[wLH(d:9)].
Jj=1 7j=1

For the second term, recalling the identity [0}, 0}] = (V2H); j, one may write
N
Z (10, 671 w)0;6) = Bul(w - V2HV$)i].

One deduces that, in the sense H~1(u), for each i € {1,... N},
(V2HV ¢); + LF(0:i¢) = O;F.

Together with the boundary condition (4.272), this concludes the proof of existence and uniqueness
of a solution to (4.44). We turn to the proof the variational characterization of the solution of
(4.44). Let

J:L*({1,...,N}, H () = E,[|Dy> + 4 - V2Hyp — 24 - VF]. (4.273)

By standard arguments, one can prove that J admits a minimizer v, which satisfies the Euler-
Lagrange equation
Al = VF.

Moreover, one may assume that ¢ - 77 = 0 on ¢dDp. By integration by parts, we conclude that

Y =Vo. O
Let us now prove Proposition 4.3.3. Recall the notation
Gapy : Xy € Dy — (N|zg — 21|, N|zg — a2|,..., N|zy — z1]) e RY,

My = Gapy(Dy) and v = Gapy#u.
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Proof of Proposition 4.3.3. Let G € H~'(v). Denote E = {¢ € H'(v) : E,[¢]} = 0 and J the
functional
J:pe E—E[|Ve|]* - 26G].

By standard arguments (see the proof of Proposition 4.3.1), we can show that J admits a unique
minimizer ¢. Since ¢ is a minimizer of J, for all he F,

E,[V¢ - Vh] = E,[GH].

By integration by parts, one can observe that for all h € E,

E,[Vé - Vh] = E,[LY¢h] + LM (V- i)he .

By density, it then follows that

LY¢ =G —E,[G] on My
Vo-1n=0 on dIMy.

To prove that V¢ satisfies the Helffer-Sjostrand equation (4.49), we need to adapt the integration
by parts formula (4.270). One may easily show that for all v € C*(My) such that Vv -7 = 0 on
0Dy and ¢ € L2({1,...,N},C®(My) such that ¢ - (e; + ...+ en) = 0, there holds

E, [¢ - Vo] = E, [v(—VHE - ¢ + divep)] . (4.274)
Let we L2({1,...,N},C2(My)) such that SN w; = 0. In view of (4.274),
E,[w-VG] = E,[(G - E,[G])(—~VHE - w + divw)] = E,[£"¢(—VHE - w + divw)].
Integrating part the last equation gives
E,[w-VG] =E,[V¢ V(-VHE - w+ divw)] = E,[w - (L'V¢ + VZHEV)].
By density, we deduce that there exists a Lagrange multiplier A € H~!(v) such that
V2HEV ¢ + LYV = VG + Mey + ... +en).

Recalling that V¢ - @ = 0 on dMy, this yields the existence of a solution to (4.49). Since
Zf\il 0;¢ = 0, taking the scalar product of the above equation with e; + ... + ey yields

1
A= —(e1 +... +en) VZHEV.

N
The uniqueness of the solution to (4.49) is straightforward. The proof of the variational characteri-
zation comes from arguments similar to the proof of Proposition 4.3.1. O

4.7.3 Local laws for the HS Riesz gas
Lemma 4.7.2. Let s > 1. For all ¢ > 0 small enough, there exists § > 0 such that
Prs(N(zig1 — 25) > k) < C(B)e “P* | foreach1 <i < N. (4.275)

For all ¢ > 0 small enough, there exists 6 > 0 such that

Py (N (zisp—as)—k| = k2t) < C(B)e @ foreach1<i< N and1<k<

N
- (4276)
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Proof. \We consider the case 1 < s < 2. The case s > 2 is simpler and will be sketched afterwards.
One shall proceed by a bootstrap on scales. Consider the statement P(k): for all € > 0, there exists
0 > 0 such that S

Png(N(zisp — x;) = k') < O(B)e PR, (4.277)
Assume that P(K) holds. Let us prove that P(K'=0) holds for ap € (0,1) small enough. Let
k=|K!7@]| Letie{l,...,N}and

I={jefl,...,N}d(j,i) < k}.

Let 6 be a smooth cutoff function § : R — R such that §(z) = 2? for 2 > 1, § = 0 on [0, 1]
and #” > 0 on R*. For v > 0 to determine later define the forcing

Fe 3 oY)
i#£jel

and the constrained probability measure

dQn g =

—BF
(& d]P)N .
Ky g h

i

One can write
Pns(N(zisr — ) = E'0) < Qu (N (zix — 25) = KM0) + TV(Py. 5, Qn p)-

By choosing v > (1 — o), one can show that

TV(By,5,Qn,5) < C(B)e OF.

Using Lemma 4.3.9, one has

2
log Eq, ,[e™N+720] < tEqy , [N (2isk — 2:)] + %K”V, for all t € R.

Moreover with computations similar to Chapter 3, we find
EQN,[% [N(xl-i-k - ZUl)] =k+ Oﬁ(l)-
Combining the two last display we find

kij‘YO—mM)

Qu (N (wigr — i) = k') < C(B)e )
The exponent in the right-hand side of the last display is strictly smaller than —24 if and only if
v <2(1—ap) —s.
Since s < 2, there exists ag > 0 small enough such that
0(1 —ap) <2(1 —ap) — s.

One concludes that (4.277) holds for each & > K'~20, for some constant ag depending only on
s. After a finite number of steps, one concludes that P(1) holds. The estimate 4.275 immediately
follows.

For s = 2, the proof of Lemma 4.7.2 can be run without making use of convexity arguments. One
can establish (4.275) by showing that the log-Laplace transform of the energy of K consecutive points
is of order K. This can be done recursively by controlling the interaction energy oft two intervals of
points. For this short-range model, one can control this interaction by shrinking configurations as in
[142, Proof of Prop. 4.4].

Let us now justify (4.275). One can constrain small gaps and define a new measure uniformly log-
concave in gap coordinates. By rewriting N (z;1x — ;) into N (24 — ;) = Z;Z’f_l N(zj41—xj),
one easily concludes the proof of (4.276). O
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4.7.4 Local laws for the interpolating measure

We provide some useful rigidity estimates for the conditioned measure (4.244) and adapt the proofs
of Chapter 3 which are based on techniques of [46].

Proof of Lemma 4.6.2. Let y € mc(Dy) and z € 7e(Dy) be as in the statement of Lemma 4.6.2
and p(t) as in (4.248). The first bound (4.250) is immediate in view of the forcing (4.239). Let us
prove (4.251).

Step 1: control of the fluctuations Leti € {1,...,n} and k € {1,...,N/2} such that 1 <
1+ k < n. We wish to prove that for ¢/ > 0 large enough with respect to ¢, there exists § > 0
depending on &’ > 0 such that

p) (1N @ik = 1) — B[N (@ie — w)]| > £370°) < C@)e@F . (a278)
We will make use of a method of [46], which consists in splitting decomposing the gap N (z;4 — ;)

into a sum of block average statistics. For each i € J¢, we define I (i) be an interval of integers of
cardinal k£ + 1 such that i € I (i) and define the block average

W _ 1 .
C s WIS

Jelx(3)
Let @ > 0 be a small number, o = 1% with p € N*. Since :cl[o] = x;, one can break z; — a:z[k] into
p—1
N(wi—all) = 37 Nl _ Gy, (4.279)
m=0
For each m € {0,...,p — 1}, denote G,,, = N(aczukma” — mELk(mH)a”) and I, = Ijpimina)(4).

We study the fluctuations of G,,. Because G,, depends only on the variables in I,,, and since
Yicr,, 0iGm, one can use the Gaussian concentration result for divergence free test-functions stated
in Lemma 4.3.9. Fix m € {0,...,p — 1} and introduce the coordinates = = (z;)icr,, and y =
(z:i)ienr,, on m(Dn). The measure yu(t) satisfies the assumptions of Lemma 4.3.9 in the window
I,,,. It can indeed be written

dp(t) = e PO b wyydady  with  H(z,y) = Hi(z) + Ha(x,y)

where Hs is convex and H satisfies Zielm 0;H1 = 0 with

V2H1 > N2k—(m+1)a(s+2—e)‘

As a consequence, one may use Lemma 4.3.9, which entails
2

+ %N_2k:(m+1)a(s+2+6) |1~ sup VG, |2

2

26

We conclude that for &’ large enough with respect to ¢, there exists § > 0 depending on &’ such that

log 1y [€"“™] < B, (1) [Gim]

< tE,/(t) [Gm] + ka(5+1)+msa+5(s+2).

() (|G — Bu[Gra]| = 24y < C(B)e K’
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Inserting this in (4.279), one deduces that for &’ large enough with respect to ¢, there exists § > 0
depending on ¢’ such that

pO (N (@i — ai) = B[Nz — 2| = k37%) < C(B)e PP, (4.280)
One can finally check that the variable N(:cl[lfr]k — x;+1) verifies the same estimate: proceeding as
for G,,, with m = p— 1, we obtain that for ¢’ > 0 large enough with respect to ¢, there exists § > 0
depending on ¢’ such that
k k k k s (B
nO(N @ —al) B, V@ -1 = k349 < og)e . (4.281)

Combining (4.280) applied to i and i + k and (4.281), one finally gets the claim (4.278).

Step 2: accuracy estimate It remains to control the expectation of N(x;4r — x;) under u(t).
By construction we can write

t
o) [N (@in—20) ] =Epo) [N (ipn—2:)] = 5L Cov (o) [N(Tip ke —2i), Hon (- 2) = Hn,n (5 y)]ds.

By Cauchy-Schwarz inequality and using (4.278) one can write

t
El 1
By [N @ik — 26)] = Epyo) [N (Tisr — 1) ]| < C(B)n" k> J Var,, ) [Hnn (5 2) = Hnn (- y)]2ds.

" (4.282)
First of all, let us use the fact that there exists a constant C' > 0 such that for all z € T,
IN‘Sgs(%) = gs(z)] < NQ (4.283)
where g5 : x € T — ﬁ Let us denote
Ronloa) = ¥ et
iel,je{l,...,.N\I ¢ y])|
and N )
e = | B W5

iel,je{l,....N'}\I

Recall that N’ < N. To begin the comparison let us restrict the sum as follows:

~

Hon(@,y) = Hon(2,2) =Y, ) (\N( J° [N (z — Zj)|s)

iel je{l,...N'\I i = ;)|

+>] > |N(xi1_ F (4.284)

i€l je{1,...N}\{1,...,N"}

Let us control the first sum, say the terms at the right-hand side of I. Fix k € I. By Taylor
expansion, one may write

N'/2 1 1 N'/2 ,
jz%l(N(xk —F NG st) - j:;lgs(z\f(:ck — YN (y; —z) + (D) (4.285)
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where the error term (I)j satisfies

N2 s+e’ KE
1 . J —nl C(B)n
Var, ) [(Ir]2 < C(B)n ej:;H TRE S dh e (4.286)
for some ¢/ > 0. By Taylor expansion again and using Lemma 4.6.2, one can write
Var,, (o) [70(N (2 — y;))] < C(BN" G, — k) (n — k)*/>*r=,
The leading-order of the right-hand side of (4.285) therefore satisfies
N'/2 N'/2
DG N —y))N(z —y) = D 35li — kDN (z —yy) + (D) (4.287)
j=n+1 j=n+1
with
N2 s/2 s/2+ ke KE
1 . J —n|¥|n — k| c(B)n
Var, o [(IT)i]> < C(B)n 6]»_;1 R < k. D)= (4.288)

The point is that leading order term in (4.287) is constant with respect to = and its variance is
therefore 0 under p(s). It follows that uniformly in s,

N'/2 1 1

Voo 3 (e ~ W =) <00 (4:289)

One may proceed similarly for the terms at the left-hand side of I and one concludes that (4.289)
also holds for the first quantity in (4.284). It remains to upper bound the second term in (4.284).
By assumptions on z, one has

1
Vio[Y Y o] SCEmNTER (8290
il jef1,. NT\{1,..,N'} [N (i = 2)|
Combining (4.283), (4.286), (4.289) and its similar estimate, we find that uniformly in s,
Varu(s) [HmN(',y) — HTL,N('y Z)] < C(B)n"*.
Inserting this into (4.282) one obtains
B [N @ik — 21)] — Epyo) [N (zi4k — 20)]| < C(B)n"<kztre, (4.291)

Let us denote B < myc(Dy) the set of admissible configurations as defined in (4.242). By taking
t=1and N = N/, we find that for all 3,z € B,

By s [N @ick — 23)] = Eqy (1) [N (@isr — 2:)]| < C(B)n k2 tre, (4.292)
Since by Theorem 4.2.2
Equ s [N (Tivk — z:) 1] — k| < C(B)n",
we deduce from (4.292) that for all admissible configuration y € w(Dy),
B (i [N @ik — 2:)] — k| < C(B)n"k2 ",

Inserting this into (4.291) concludes the proof of Lemma 4.6.2. O
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5.1 Introduction

5.1.1 Setting of the problem

In the 1970's, Kosterlitz and Thouless [164, 165] and independently Berezinsky [29] predicted a
completely new type of phase transitions without long range order in two-dimensional systems, now
called Berezinsky-Kosterlitz-Thouless (BKT) transition. This celebrated transition (see [34] for a
review) was predicted to happen in a whole range of models which exhibit quantized vortices in
a neutral ensemble, more specifically the XY or “rotator" spin model, models of dislocations and
superfluids, and it has important consequences for condensed matter physics.

The transition in the XY model is probably the one that has attracted the most attention in the
mathematical physics community. In this model unit spins are sampled on a lattice, constituting
a U(1) analogue of the Ising model. The BKT transition consists in that the correlation function
between distant spins decays exponentially above the transition temperature, and decays in power
law below [198, 121, 35, 63]. This transition is explained by the formation of topological vortices,
which are points around which the spin field has a nonzero degree or winding number. Below the
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transition temperature, vortices are bound into dipole pairs (i.e. pairs of vortices with opposite
winding numbers), while above the transition temperature, vortices are like “free particles".

In the original papers, as well as in subsequent research, it is expected that in the XY model (or its
simplified variant, the Villain model) the energy of the system can be split into a vortex-gas energy
and a spin-wave contribution, corresponding to the fluctuations around the vortex configurations
[164, 165, 160]. This statement turns out to be delicate to prove rigorously, and this has attracted
the attention of researchers, even recently [126, 125].

Once the spin-wave contribution can be separated, the model reduces to a (2D) gas of dipoles
with logarithmic interaction, which can also be called a two-component plasma, or (two-component)
Coulomb gas. The Coulomb gas is thus a fundamental model on which to understand the BKT
transition, as seen in the original paper of Kosterlitz [165].

The lattice (two-component) Coulomb gas was studied in the seminal work of Frohlich-Spencer
[121] via the sine-Gordon representation and expansions into multipole ensembles, allowing to analyze
the decay rate of correlation functions, thus giving the first proof of the BKT transition, see also
[198, 35].

The Coulomb gas may as well be studied in the continuum rather than on a lattice, and is
expected to exhibit the same transition between a situation with free vortices and a situation with
vortices of opposite sign bound in dipole pairs. There is a subtlety however, due to the fact that
this “dipole transition" should happen at inverse temperature 5 = 2 in the units we use, while the
KT transition between exponentially and algebraically decaying correlations is expected to happen
at 8 = 4 in this setting. Also, it is a little delicate to directly compare the situation of the Coulomb
gas in the continuum where one takes a fixed number N of charges of each sign, corresponding
to a canonical ensemble, and the situation of the XY model, corresponding to a grand-canonical
ensemble where the number of vortices is not prescribed.

Here we will focus on the continuum Coulomb gas or “two component plasma" in the canonical
case and we will provide a proof of the “dipole transition" based simply on the analysis of dipoles
pairs via large deviations techniques that allow to weigh their energy and entropy costs, in some
sense very close to the arguments and computations found in the original papers [165, 164] and also
in the seminal paper [139].

5.1.2 Model

We first consider the continuum Coulomb gas, defined as an ensemble with configurations (X, Yy)
(with Xy = (21,...,2n5) € AN and Yy = (y1,...,yn) € (AY of N positive and N negative
particles (or vortices with degrees +1 or —1) in the blown-up cube A = [0,v/N]? of R?, having
energy

1
F(Xn, Yn) =5 (Z —log |2; — a5 — log |ys — y;| + 2 log |az; — yj|> , (51)
i 0]

and consider the (canonical) ensemble

7 exp (=BF(Xn, Yy)) dXndY, (5.2)
N7/3

with dXn and dYy the uniform Lebesgue measures on AY. This model was studied in particular
in [139, 97], and more recently in [186]. The integral defining Zy 3 diverges as soon as [ >
2, due to the fact that the energy of very short dipoles diverges in a nonintegrable way, which
corresponds to the dipole transition. The ensemble (5.2) was thus studied only in the regime 8 < 2
in the aforementioned works [139, 97, 186]. The latest results of [186], building on important
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insights from [139] and techniques developed for the study of the one-component Coulomb gas in
[233, 219, 183, 184], show an expansion of log Zy g as N — o0, as well as a large deviations principle
on point processes, which characterize a situation with free interacting particles, with competition
between the attraction of opposite charges and the entropic repulsion. This corresponds to the
situation of temperature larger than the critical temperature.

In order to study such a system for 8 > 2, a truncation of the interaction is needed, as already
recognized in [164, 165] and analyzed in [121], see also the discussion in [170]. Let us for shortcut
always denote

g(x) = —log|z], (5.3)

and we will abuse notation by considering g as either of function of R? or of R depending on the
context.

Truncating the interaction involves introducing a small lengthscale A and renormalizing the
divergent part of the free energy as A\ — 0. A natural proposed way is to truncate the energy at a
distance A and consider

*Zg ~g(A) + 8y —yj) A g(A) — 28(xi — y;) A g8(A), (5.4)

where A denotes the minimum of two numbers.
The precise method of truncation of the interaction is not really important, and here we propose
a variant of this which is convenient for our techniques: instead of truncating g we consider charges

smeared on discs of radius A, with X small, interacting otherwise in the normal Coulomb fashion:

)

letting 02" denote the uniform measure of mass 1 supported on B(z, \), we let

- j j g(e — 1)) (@) (y), (5.5)

and observe, by scaling, that

] st = e @3 ) = ) + . (5.6)

We then consider the energy

N
Fa(Xn,Yy) = H z—1) (Za — o> )(x)d (Z 5N —5§j>> (y)— N(g(\) + k). (5.7)
=1 =1

Here, compared to (5.1) we have reinserted the self-interaction terms which are no longer infinite
but equal to g(A) + , and then subtracted them off.

We will denote by
U 2 — )0V (2)50 (y), (5.8)

the effective interaction between two points at distance |z|. Moreover, the convolution g = 5(()’\) is

harmonic outside of B(0, A) and it follows from the mean-value theorem (or Newton's theorem) that

gr(z) = fg * 6(())‘)69) =g(z) for|z| = 2A. (5.9)

Thus we see that F) is the same as (5.4) except with g(x; —x;) A g()) replaced by gy (z; —z;), and
if the distances between points are larger than )\, the interactions coincide and F) coincides with
F. Also if A = 0 then the definition in (5.7) coincides with F of (5.1), as proved in [186] — this is
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essentially Newton's theorem and Green's formula. Let us point out that the choice of (59) to be the
uniform measure in the unit ball is unimportant, we could replace it by any radial distribution of the
form /\l—gp(xxz) with p radial, as was done in [219]. Newton's theorem would still apply and nothing
else would change, except for the precise value of the constant k. Finally, we could in principle use
charges smeared on circles instead of discs as in previous works [206, 183, 184], it does make the

initial computations simpler but the potential generated a circle is too singular for our needs here.
We will thus work with (5.7) and study

A

1
dPY 5 = x—exp (~FA(X, Yiv)) dXndVyy (5.10)
N7/B

in the limit where )\ tends to zero, where

Zn s :f exp (—BFA(Xn, Yn)) dXndYy. (5.11)
[0/ N]2N x[0,V/N]2N

When 3 < 2 one can immediately set A = 0 and recover the model studied in [186], but when § > 2
one expects log Z])\‘,”B to diverge as A\ — 0. The picture that emerges from the literature, mostly
based on the sine-Gordon representation, is well-described in [171]: for 5 > 2, the divergence of the
system as A — 0 corresponds to the pairing of short dipoles (of lengthscale \), and the transition
at 8 = 2 is followed as /3 increases by a sequence of transitions corresponding to the formation of a
subdominant proportion of multipoles (quadrupoles, sextupoles etc) as the temperature is decreased
and the entropic repulsion becomes less strong [121]. This is due to the dipole-dipole interaction
which is weakly attractive. When /3 reaches 4, in the grand canonical setting (when the number
of particles is not fixed) the system is expected to collapse under the attraction of the dipoles, as
first shown in [120] via a Euclidean Field Theory approach, however we will see that it is not the
case in the canonical setting here. As written in [171] the complete mathematical picture is far
from complete from the mathematical angle, and most of the approaches rely on the sine-Gordon
transformation and on sophisticated Renormalization Group techniques which require to assume
translation invariance [158]. In [121], it is written “We believe that the techniques of Section 5
will eventually permit us to prove convergence of an expansion of the two-dimensional Coulomb
gas in terms of neutral multipole configurations, at low density and low temperature, designed to
imply the existence of the Kosterlitz-Thouless transition. But the required combinatorial and refined
electrostatic estimates are still missing.”

Our main goal here is to analyze (5.7)—(5.10) via a simple and direct approach based solely on
energy and entropy, precisely via electrostatic estimates for the energy. We obtain below a precise
free energy expansion as N — o0 and A — 0, and use it to prove that configurations mostly form
free dipoles for all 8 € (2,+00), as characterized by convergence to a Poisson process of dipoles
(this shows that the multipoles, though present, concern only a vanishing fraction of the particles).
Combined with the description of [186], it constitutes a first proof of the dipole transition, and we
hope this point of view will also inform the understanding of the BKT transition. We also address
the important question of the fluctuations of the (two-component) Coulomb gas.

Note that the two-component Coulomb gas or plasma is quite different from the one-component
Coulomb gas or plasma, which consists only of positively charged particles repelling each other and
confined by an external potential, or equivalently a uniform negative background charge (this is
then called a jellium). The one-component Coulomb gas never diverges or forms dipole pairs, but
rather the particle density converges macroscopically to an equilibrium measure limit (dictated by
the external potential) while at the microscopic scale the particles arrange themselves in more and
more ordered point patterns as temperature decreases, in fact the system is expected to crystallize at
zero temperature, at least in low dimensions. There has been much progress on the one-component
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plasma in recent years, including free energy expansion [193, 183, 9, 239], local laws for the distri-
bution of points down to the microscale [180, 9], variational characterization of the limiting point
processes [183], and CLTs for the fluctuations of linear statistics [4, 214, 24, 184, 239].

The main points in common with [233, 183, 180, 184, 9, 239] but also with [186] will be the
general philosophy of electrostatic energy and large deviations techniques, as well as the electric
formulation of the energy that we present just below.

5.1.3 Main results and method

The electric formulation mentioned above consists in reexpressing the energy in terms of the electric
potential h), generated by the configuration (X, Yxy) and defined as a function over all R? by

N
hA[XN, Y] =g = <Z s — 53(,?)) ; (5.12)
i=1

where = denotes the convolution. In the sequel, we will most often drop the [ X, Y] dependence
in the notation.
Note that by definition of g, h) satisfies the Poisson equation

N
—Ah\[Xn,Yn] =2 (Z 5N — 55,?) : (5.13)

i=1

A direct insertion into (5.7) and integration by parts using (5.13) yields the following rewriting of
the energy

1

FACK Vi) = o= [ 193X Yl = N (g0 + ), (514)

R
Before stating our main result, let us introduce some more notation. Let us define the probability

measure
21 B

dpg(r) = ol exp(agl(r)) 1g+ (r)rdr, (5.15)

B

where C stands for the normalizing constant

Cg:=2m LOO exp(ggl (r))rdr. (5.16)

We will denote {z1,...,2on} = {Z1,...,2ZN,91,...,yn} the collection of all points (positive or
negative) and denote their charge d; = 1 if i € [I,N] d; = —1if i € [N + 1,2N]. We will also
denote by ¢;(i) the index for the/a first nearest neighbor to z; among all the points z;,j # i.

Our first theorem provides a free energy expansion and a concentration on dipoles configurations.
The constant Cj is related to our precise way of smearing the Dirac charges and corresponds to the
interaction of overlapping disc charges, it is defined in (5.16).

Theorem 5.1.1. For all A > 0, denote
1 .
TTog | ifg =2
NP2 ifBe (2,4
YA = ) 5 . fe24) (5.17)
N|logA\|* ifg=4

N|log A|  if B> 4.

For each j € (2, +0) the following holds
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L
log Zﬁ,ﬁ =2Nlog N+ N((2—p)log A1g=2+log|log A|1g—2) —N+Nlog Cglg=o+O(N~y),
(5.18)
2. Let
Ti={1<i<N:iodi(i) =i,didg,i) = —1}. (5.19)
For all |t| < §
logEPJAV’B [exp(tFA — tEgA(zi — z¢1(i))>] < CNAj. (5.20)

el

3. the Gibbs measure is concentrated on mostly neutral A-dipoles configurations in the sense that
letting

D 5:{Z2N e AN |I|=N(1 - bfy,\),ZgA(in — Zg(5)) < Nlog A + MN}, (5.21)

el

we have
Py 5(D°) < exp(—CN), (5.22)

for some b > 0, C > 0 and M > 0 independent of N and X.

The formula (5.18) can be compared with the formula for 5 < 2 obtained in [186], and this
already exhibits a transition at 3 = 2, since the divergence in A is present only for 3 > 2. The
screening method of [186] would in fact allow us to prove an almost additivity of the free energy
log Zf\‘[ﬁ — once the %ﬁN log N corresponding to the interaction scaling has been removed — for
any (3, and the existence of a thermodynamic limit

A B
F(B.2) = lim log ZNp— 5Nlog N

lim ¥ (5.23)

with an explicit rate of convergence independent of A\. We believe the rate can be made to be
O(N~"21log N) by analogy with [9] but we defer this to future work, in any case to obtain a rate
independent of A it suffices to apply almost verbatim the proof in [186]. For 8 < 2, this is proven
in [186] (with A = 0) and a variational characterization of f is also provided there:

f(8,0) = —min F(P) (5.24)
where P corresponds to the space of stationary signed point processes of intensity 1 (each species has
intensity 1), and Fp (the rate function in the Large Deviations Principle proved there) is the sum of
[ times a suitable “renormalized energy" of point processes (an infinite volume Coulomb interaction
energy) and a specific relative entropy with respect to the Poisson point process of intensity 1. We
see that in that regime we have free particles of positive and negative charges, whose positions is
governed by the minimization of Fj.

The result (5.18) then completes this picture by proving that for 5 € (2, 4+0)

f(B,A) =(2—p)logA —1+1ogCs + ox(1) (5.25)

and that for 8 = 2,
f(B,\) =log|log Al — 1+ 0)(1). (5.26)
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Here the energy is dominated by pure dipole energy, demonstrating the transition from free particles
to bound pairs. The question of the sharp rate of convergence 0,(1) is very important as it encodes
the multipole transitions. Here we obtain a power rate which exhibits a transition at 8 = 4, which
we believe to be sharp and to correspond to the BKT transition. The proofs also show a form
of transition at 5 = 3, which corresponds to the quadrupole transition (i.e. a transition in the
proportion of still negligible quadrupoles).

We next show as a corollary that the averaged microscopic process concentrates as N tends to
infinity and A tends to O to a Poissonian dipole process. In addition we derive some large deviations
asymptotic as A tends to 0, which can be read as the limit of the large deviations principle at fixed
A. For each centering point in A, we will observe the particles x; lying around z and the attached
nearest-neighbor particles. To have a well-defined limit, one shall blow-up the nearest-neighbor
distances by a factor A=1. Still using the notation (5.19) for positive charges belonging to a neutral
dipole, let us consider the rescaled configuration centered at = denoted

el
Let x be set of simple locally finite point configurations on R2. We will work on the set
E :{ Z (5(%7%) : J finite or countable , (a:j)jeJ € X, (yj)jeJ € (RQ)‘J‘} (5.28)
1€
endowed with the coarsest topology 7 generated by
{ X0 € Biaje Ay e B, (5.29)
jedJ

where A and B are measurable subsets of R? with A bounded. This topology is designed so that
the y; variable is observable only if z; lies in a compact set. In Subsection 5.6 one will endow (E,T)
will a distance d. The variable (5.27) is a random variable on E. We next consider an averaging of
(5.27) over the centering point in A:

IN = JA (5(5076]\,(1,))(111' € P(A X E) (530)

The space P(E) is then endowed with the topology of weak convergence generated by the functions
in Cy(E). Let us now define the Poissonian dipole process denoted PUP. Given X = (X;)ien a
Poisson point process of intensity 1 on R?, (u;);en a sequence of i.i.d variable of law g (5.15)
independent of X, we let PYP € P(E) be

N
Pdip = Law( Z 6(Xz,uz)) . (5.31)
i=1
Let also PP be the tensorization of P4P with the Lebesgue measure on A:
PP .= dz|y @ PP e P(A x E). (5.32)

We will show that (in) concentrates around (5.32) as N tends to infinity and A — 0 with a Large
Deviations Principle. To define the rate function, we start by introducing a (specific) relative entropy
for probability measures on E similar to [212]. For all P,Q € P(E), let

. 1
Ent(Q | P) := lim =Ent(Qlar [ Plag); (5.33)



5.1. Introduction 225

where A := [0,v/R]?. Forall Pe P(A x E) and x € A we let P* € P(E) be the desintegration
of P with respect to z. Let Ent be an averaging of Ent defined for all P,Q € P(A x E) by

Ent(Q | P) = L Ent(Q® | P*)da.

Let us emphasize that the entropy thus defined depends on the topology put on E.

Theorem 5.1.2. For any measurable subset A of P(E x A), we have

. _ 1
— C12r€11f4 Ent(Q | PUP) < li&n_}(r)lf li]{[nj(lxl)f N log Pf‘v’ﬁ(iN e A)

1 o .
< limsup — log P} 4(iy € A) < — inf Ent(Q | PYP) (5.34
msup - log nplin € A) o Q| ) (5.34)

In addition, for all € > 0, we have

lim lim sup Py 4(in ¢ B(PYP,¢)) = 0. (5.35)
A=0 Nooo '

We finally address the important question of the fluctuations of linear statistics. We provide an
energetic control, similar in spirit to [185, Prop 2.5], showing that Lipschitz functions fluctuate less
than O(Nl/Qa}\/Q), for some «) tending to 0 as A tends to 0. Note that one could obtain a better
rate of fluctuations in o(N'/2) at fixed ), but this would require different arguments.

Proposition 5.1.3. For a Lipschitz test-function £ : A — R, let us define

N
Flucty (&) := f ¢ (2(5%. — 5%)) .

A

i=1
Set
|[log A7t ifg=2
5 if B e (2,4
ay = #he(2,4) (5.36)
Mlog\|V2 ifg =4
A if B € (4,0).

Then, there exists a constant C > 0 such that

logEpy [exp((Flucty(€))*)] < CNax | V€[ 7.

In order to prove Theorem 5.1.1 we need to obtain sharp upper and lower bounds on the energy
of a configuration in terms of its dipoles and multipoles, and good corresponding “volume estimates".
A generic configuration can be quite complicated, in particular it is not obvious how to extract its
dipoles. As we did in [186] we follow important ideas of [139] which consists in examining the
nearest neighbor graph of a configuration and its nearest neighbor distances, denoted for each point
of the configuration z; by ri(z;). Combining this description in terms of nearest neighbor distances
with the electric formulation turns out to be a powerful way to quickly obtain energy lower l())(\))unds.
zi

This is done by a ball-growth method, which consists in expanding the circular charges §;;’ into

a charge 5;&21(%)) of same mass but supported in the disc B(z;,r1(z;)). This way the discs remain
distinct and Newton's theorem applies to show the interaction energy has essentially not changed

during that growth process. This however misses an order 1 in the interaction energy of each dipole.
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In order to avoid this loss, we push here this method further: we examine second nearest neighbor
distances ro(z;) and second nearest neighbor graphs and expand the circular charges to size ry. In
the works on the one-component plasma [184, 9, 239] we were able to take advantage of the fact
that when all the charges are positive, the interaction of disc charges decreases when the radii are
increased. This is no longer the case in a situation with different signs, and so instead of using
monotonicity, we proceed to a direct estimation of the change in the interaction when the discs are
increased. We then obtain an estimate which bounds from below the energy in terms of nearest
neighbor interactions only and which is more precise than that of [139] or [186], as the only error
remaining in the estimate corresponds to dipole-dipole interaction.

An important feature of this dipole decomposition lower bound is that it is amenable to integra-
tion in phase-space with the method of Gunson-Panta (revisited in [186]) of separating the integral
over types of nearest neighbor graphs. This part contains the most delicate estimates as we need to
control the contributions of the dipole-dipole interaction errors, something not handled in [139, 186]
and which requires new ideas.

A matching lower bound is provided, which leverages again on the electric formulation to compute
the energy as a sum of noninteracting dipoles (they are made noninteracting by solving for local
electric potentials satisfying zero Neumann boundary condition). Once matching upper and lower
bounds are obtained, it must follow that the Gibbs measure did concentrate on dipole configurations,
as deduced in (5.22).

Plan of the paper: Section 5.2 is devoted to the proof of the energy lower bound and reduction
to a dipole energy by the ball-growth method. In Section 5.3, this lower bound is inserted into
the Gibbs measure to produce, via suitable decomposition of the phase-space and large deviation
estimates, the free energy upper bound. Section 5.4 provides a matching lower bound by explicit
construction of configurations and estimates of their free energy. Section 5.5 present a first bound
on linear statistics, and Section 5.6 proves Theorem 5.1.2 on the convergence to a Poisson dipole
process.

Acknowledgements: We would like to thank Christophe Garban and Thomas Spencer for very
helpful discussions on the nature of the BKT transition.
5.2 Nearest neighbors and dipole decomposition lower bound

5.2.1 Definitions
Signed point configurations

With the shortcut Zon for (X, Y), we are able to rewrite (5.12) as

2N
hy =g =* (Z dﬂg?)
i=1

and thus
2N
—Ahy =21 > did). (5.37)
i=1
When increasing the discs we will also denote similarly for any vector @ = (as, ..., asy) in R2Y

2N
hg = g * (Z dz-(sg?f)) . (5.38)
=1
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Successive nearest neighbor distances

First we set 1
r1(z;) := max <)\, — min |z; — zj|> , (5.39)
4 VE)
then for each p > 2,
1
rp(z;) :=max [ A\, = min Zi — 2j 5.40
(=) < 4 g (i.¢1(i),mbp1 (i)} | j) (5.40)

where ¢o(i) = i and for each k > 1, z4, (;) denotes some point (it is in general not unique) of the
configuration ¢ {2;,..., 2, ()} such that [z; — ¢x(i)| achieves the min that arises in the definition
of ri(z;). We call Zg, (i) the k-th nearest neighbor to z;. We note that we always have

1
max ()\, 1’22 — z¢k(i)]> = ri(z).

We also denote
Ni(9) := {1, 01(), . . ., P (i)} (5.41)

the set of the & first nearest neighbors indices.

Nearest neighbor graphs

As discussed in the introduction, the dipole decomposition estimate will be used in conjunction with
the method of Gunson-Panta [139] which breaks the configuration into nearest neighbor graphs. It
is worth noting however that [139] builds the nearest neighbor graphs of all particles, irrespective of
their sign, whereas for us the sign will play an important role.

The nearest-neighbor graph von (Zan) of Zan is a directed graph on {1,...,2N}, with an edge
from p to ¢ if z, is the nearest-neighbor of z,. The graph yan(Z2x) has between 1 and N connected
components and each of its connected components contains a 2-cycle with trees attached to each
vertex of the 2-cycle. We denote Dy i the set of nearest-neighbor graphs on {1,...,2N} with K
connected components. Note that each labeling of points gives rise to a different digraph. We also
let Doy i ny 1 < n < K be the set of nearest-neighbor graphs with n neutral 2-cycles.

Let v € Doy k. Let us denote Iy,...,Ix the connected components of v and for each
ke{l,...,K}, let us label mj and mj_the two vertices of the 2-cycle in I}, and call C, = {my, m}}
the corresponding 2-cycle. We also let

TP = {UyCh, Ck, = {i, $1(4)}, didgs, sy = —1} (5.42)

i.e. the indices corresponding to isolated neutral dipoles (i.e. whose 2-cycle form a connected
component of the graph 7).

Additional results on gy

Returning to (5.8), we note that
ai(2) =+ [ el - 0 0) (50 - 8") @ = w+ | zevrO(P)
2B(0,1)
= k+0(|z>) (5.43)

as |z| — 0, where we used that g = 6(()1) =g =0on 0dB(0,1) by Newton's theorem.
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By scaling, we also have

gx(z) = g(A) +g1(z/A),  [ea(z) —g(max(|z[, )| < C (5.44)

where C' is some universal constant.

5.2.2 Dipole expansion of the energy
For i € Cj, for some k =1,..., K, we let

D;=d; + ddn(i)‘ (5.45)
If the 2-cycle is neutral, as in the most typical case, then D; = 0.

Proposition 5.2.1 (Dipole decomposition of the energy). Let (Xn,Yn) be any configuration in
AN and consider its nearest neighbor graph decomposition as above with n denoting the number
of neutral 2-cycles. We have

Fa(Xn, YN)

K r (Z) 2
2| 2 dids@a(zi — z00) — diDs (g(min(m(zi),rz(zqsl@»)w)0(1 ?)
k=1 2(2)

ieC k

>

N | =

- Z (g(r2(zi))+’i)> (5.46)

1€l \Cx
where C is universal.

Here the error term corresponds to dipole-dipole interaction and is small when a dipole is well-
separated from other points so that r; « ry, which we can expect for a large proportion of the
small dipoles, but not for long dipoles nor dipoles which belong to a quadrupole or more generally
a multipole. The error term in d;D; corresponds to nonneutral dipoles, they are sharp, and not
problematic since nonneutral dipoles carry an excess energy which can be retrieved from the main
interaction term, but has to be limited by the distance to second nearest neighbors.

We now rephrase this inequality into one that is less sharp but will be more convenient for our
purposes.

Corollary 5.2.2. For any configuration (Xx,Yy) in A?N, using the above notation, we have

1
Fa(Xn,YN) = 3 Z ex(zi — 24,(3))
i¢{UkCr didg, (1)=1}

rl(zi) 2
—C Z)eldip <r2(2i)) —C(N —n), (5.47)

ie]dip’¢2(@'
where C'is universal, I js as in (5.42) and n is the number of neutral 2-cycles in the graph.

The right-hand side thus reduces the interaction to just nearest-neighbor interactions, except
those of non-neutral 2-cycles (which in fact contribute positively to the energy). The error term is
restricted to the connected components that consist of just an isolated neutral 2-cycle.
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Proof of the corollary. First we note that if i € Cj, and if d;dy, ;) = —1, we have D; = 0 and the
corresponding term in the sum (5.47) reduces to —gx(2; — 24,(;))- If on the other hand d;dy, ;) = 1,
then d;D; = 2 and we observe that since min(ra(2;),r2(2¢,(i))) = ri(zi) = ri(z¢,(;)) and by
definition (5.39) and (5.44), we have

A 2
gx(zi — 2z4,()) — 2 (g (min(ra(2:), r2(24,(3))) + £) — C (:;EZ;) > ¢

for some universal constant C’. Next, for i € I;;\Cy we use that ry(z;) = ri1(z;) and by definition
(5.39) and (5.44), g(r2(zi)) = ga(zi — 2¢,(;)) — C with again C' a universal constant. We deduce
that

1
FA(XN, YN) = —5 Z gx(zi — 2¢,(5))
i¢{ieurCr)

) 2 K
_; 3 Gﬂ%—%mﬂ—CCN@>>—CW:@%@=1HATEUM—%.
k=1

. ro( 2
zEUka,did%(i):fl 2( Z)

We then note that by definition of n (the number of neutral 2-cycles), we have
|{Z : did(bl(i) = 1}| < 2(N — n)

while the number of points not in a 2-cycle is bounded by the number of points not in a neutral
2-cycle, which is 2(N — n). Since ry/ra is always bounded by 1, we may absorb the error term into
N — n for all points belonging to a connected component of o which is not reduced to a 2-cycle
or whose second nearest-neighbor index ¢2(7) is not in a 2-cycle. Hence the result follows. O

We now turn to the proof of Proposition 5.2.1. As explained in the introduction, the proof relies
on an enlargement of the disc charges. To evaluate the change of energy, we use the following
lemma.

Lemma 5.2.3. For any 2N-tuples T and d, we have
1 o
% (J}RQ [Vhz? - \VhaP) — ZJRQ d;d; <g * 52:1') — g 526!)) (5§jj) n dgjg)) . (5.48)
Z'7j

Proof. Observe that

2N
he —hg =21 d; (g #00) — g 5;%')) :
=1

and them expand using integrations by parts and —Ahgz = 27 21251 didg?i). O

Proof Proposition 5.2.1. We are going to define for each point z; in the configuration, an appropriate
radius 7;. Each index i belongs to one connected component I}, of the nearest-neighbor graph ~ of
the configuration. We let

Ti_{min(rg(zi),rg(zm(i))) if i e Cp (5.49)

ra(zi) otherwise.
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We then apply Lemma 5.2.3 and increase the balls from «; = A to 7;. We obtain that

[
=2 ) did; <Hg(x — )6 (@ H ()67 (y )) . (5.50)
[2¥}

First, if 7, = 7; = A, the terms in parenthesis cancel. We may thus restrict the sum to the situation
where max(7;,7;) > A, which also means that ry(z;) or ra(z;) is the true (quarter of the) second
neighbor distance. Next, if B(z;,A) and B(z;, ) intersect, so do B(z;, ;) and B(z;,7;) since by
definition and (5.40), 7; = A, 7; = A. If on the other hand B(z;, \) and B(zj, \) are disjoint, and
B(z;, ;) and B(zj,7;) as well, then by Newton's theorem and mean value theorem the two terms in
the parenthesis are equal to g(z; — z;) hence cancel. We may thus restrict the sum to the situation
where max(7;,7j) > A and B(z;, 7;) and B(zj,7;) intersect, that is

|zi — zj| < 7+ 75 < ra(zi) +ra(z) < 2max(ra(2),r2(25)) (5.51)

in view of the definitions (5.49). Since ra(z;) or ra(z;) is the true (quarter of the) second neighbor
distance, this implies that j € N1 (i) or i € N1(j). Moreover, let us show that (5.51) implies that we
have both i € Ni(i) and j € N1(j). If i = j this is obvious. If not, then say j # i and j ¢ N1(7),
this means that j = ¢ (i) with & > 2. In particular 2;, z4, ;) and z; are distinct and we thus have,
by definition (5.40)

1
ra(zi) < o lzi =zl

On the other hand, we know that z; = Ze (
by triangle inequality and definition (5.40)

j)» and zg, ;) is a point distinct from z; and zy, ;) thus

1 1 1 1 1
ra(z;) < Z|Zj — 24, ()| < Z|ZJ —zi| + Z‘ZZ — 24, < Z|zz — zj| + 1|zl — zj]
from which it follows that
3
rQ(Zi) + rQ(Zj) < 1|ZZ - Zj|
a contradiction with (5.51). Thus the sum reduces to terms for which ¢ = j or i and j are both
nearest neighbor to each other, which we denote by ~, i.e. 7 and j belong to a 2-cycle of the nearest

neighbor graph.
With the definition (5.8) and (5.6), we thus get from (5.50) that

f |Vhy|?

2772 (gA(0) —g(mi) — k) + 27 Z dd g,\ ff T —y )62?)(3/))

iFEJ g~
(5.52)

We examine the contribution of the 2-cycles. If i € Cy, then 7; = 7; by definition and thus by
(5.44) the contribution of the parenthesis in (5.52) is

2rd;d; (gA(Zz’ —z) —g(m) g (2 - E )>'

Ti
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This term appears twice due to the two edges between the vertices of the cycle and to the equality
Ty = Tj.

We also note that B(z;, 4r1(z;)) contains at least 2 points, hence by triangle inequality, we find
that if 7 ~ j, we have

1
rg(zj) < Z‘Zi — Zj| + rg(z,-). (5.53)
Reversing the roles of i and j this implies that if i ~ j, we have
1
Ir2(z2) = r2(z)l < Zl2i = 2] < (=), (5.54)

We deduce that *-2 = = O(zy,

[ |zi—2;] ri(zi) 2
n view of (5. 43) we may replace g; (“==) by /<;+O<7J), and then by /<a+0((r2 , ) )
Inserting these facts into (5.52), we obtam that /

|19 > 4mNa(0) — 2 Y (et +

- didj<gk<zi_zj>_g<m_Ho((gggf)). (555)

£~

We may now split this over the connected components of the nearest neighbor graph I, and obtain
by regrouping terms

|19 = 4mea(0)

K .
. ( 2, didiy 98 (=i = 201)) — i (di + dy9) (8(7) + 1) + O(<r1(ZZ))2>

ieck rQ(Zi)

- g(f2(Tz‘))+f€>

iE]k\ck

In view of the definition of Fy (5.14) we obtain the result.

5.3 Free energy upper bound

This section is devoted to the proof of the free energy upper bound. This will be based on the energy
lower bound of Corollary 5.2.2 which reduces the interaction to nearest neighbor terms, together
with a quadratic error depending on second nearest neighbor distances. The main difficulty is to
partition the phase-space efficiently to integrate the exponential of this reduced energy. This is
based on refinements of the Gunson-Panta change of variables and approach [139]. We will start by
proving upper bounds for simpler nearest neighbor models and build up to the upper bound for the
full model including the second nearest neighbors errors.

5.3.1 Preliminaries

We start by presenting some tools needed to implement the integrations.
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Dirichlet integrals

We first recall a result on computing “multiple Dirichlet integrals of type 1", see [254, p. 258].

Lemma 5.3.1 (Dirichlet integrals). Given an integer k > 1 and a1, ..., o > 0, let
Ik(Oq, N ,Ckk) = J 10<t1+...+tk<1t?1_1 N tzkildtl e dtk. (556)
(RH)k
Then r r .
I(aq,...,0p) = (1) . Tlaw) (5.57)

F(a1+...+a;€)a1+...+ak

and if the k-tuple (ai)le is defined by a; = o> 0 for1 <i < kgandoa; =1 forkg+1<i<k,
then
log I, = —(akg + (k — ko)) log(ak + k — ko) + O(k). (5.58)

Proof. The identity (5.57) can be checked by successive integration by parts or using a Fourier
transform argument. For the particular case stated in the lemma, we find from (5.57) that

['(a)ko 1
I, = . :
"7 Tlake + k — ko) ako + k — ko (5:59)
The relation (5.58) is then derived using Stirling’s formula. O

Gunson-Panta change of variables

The Gunson-Panta method relies on considering the nearest neighbor graph of a configuration and
partitioning the phase-space accordingly. We use the notation introduced already in Section 5.2, but
we can apply it more generally to p points, and not necessarily an even number of points. Given a
set of p points 21,...,2p, let I1,..., Ik denote the connected components of its nearest neighbor
graph, and denote by m;, and mj, the two points of the 2-cycle Cj,. We then define the Gunson-Panta
change of variables via the map

@fp(zl,...,zp) = (u1,...,up) (5.60)
where o . )
wi={ A7 @ Tielismy (5.61)
2 if i =my,.

Number of graphs

It will be important to count the number of nearest-neighbor graph types. The number of nearest
neighbor graphs on {1,...,p} with K connected components is given by

o 2=
Dyl = 2K(K — 1)!(p — 2K)!"

This identity can be found for instance in [139]. One can check that
log | Dy k| = plogp — Klog K + (p—2K)(log p—log(p—2K)) — K — K log2+ O(logp). (5.63)

(5.62)

Remark 19 (Typical number of connected components). Assume that z1, ..., z, are p i.i.d variables
drawn uniformly on the square A = [0,1]2. Then, the number of connected components of ,
satisfies 5
T
E|K| = ——=p+ o(p).
(K=o W (p)

We refer to [110, Theorem 2] for a proof of this statement.
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5.3.2 Upper bound for a reduced dipole model

Corollary 5.2.2 tells us that up to an error term involving ratios of nearest and second-nearest neighbor
distances, one can bound from below F, by

; 1
FAP(Zan) = ) 2 8(zi = 29,(5)) = C(N —n), (5:64)
ig{ieukCr.didg, (iy=1}

where n stands for the number of neutral 2-cycles in the system. The energy F()i\ip defines a reduced
dipole model that we now study.

Lemma 5.3.2 (Expansion for the reduced dipole model). Let 3 € [2,400) and C3 be the constant
defined in (5.16). For 3 > 2, we have

logf exp (—5F§1P(XN, YN)> AdX ydYy
[0,\/N]2N><[O,\/N]2N

<2NlogN + N(2—f)logA — N + Nlog Cs + O(log N). (5.65)

For 3 = 2, we have

- N
logj exp (—5F§‘p(XN,YN)) dXndYx < 2N log N+ N log | log A|— N+O< )

0,112V x[0,1] |log Al
(5.66)

Because 3 > 2, the free energy of a neutral dipole of size \ diverges in log(A2P14-5 +
|log A|1g—2) as X tends to 0. As a consequence, pairs of particles of opposite charges are formed
and most of them are of size A\. We will see below that the the leading-order behavior of the system
under P?‘v,g is the same as under this reduced dipole model.

Proof. Step 1: change of variables. Let us denote

A

KNp = exp <_BF§\ip(XN7 YN)) dXndYy. (5.67)

J‘[(]’\/N]QN X [07\/ﬁ]2N

Following [139], we expand the partition function by splitting the phase space according to the
nearest-neighbor graph of the points yon. Let v be a graph in Doy k. Performing the Gunson-
Panta change of variables (5.60) with p = 2N, and using (5.64) we may write

J exp(fﬁFiip)ngN
{ven=n}

< 6CB(N—n)J ﬁ H exp(ﬁgk(ul» eXp(ﬁl{dmk . =_1}g>\(umk))dUN (5.68)
k=1iel;\

2N ({'VZN 'Y}

Indeed, if {my, m}} is a 2-cycle, the interaction gy (um,, ) is counted twice, which explains why this
term appears in the above integral with a factor 3 instead of 3/2 in the above integral, which turns
out to be crucial: since § > 2, when {my, m}} is a 2-cycle, the term exp(5gx(um,)) diverges. On
the other hand the weight of pairs of points which are not in a dipole while converge if 5 < 4 and
diverge if 8 > 4
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Step 2: integration in the case 3 € (2,4). If i is not in a 2-cycle, the weight associated with
gx(u;) is not divergent when 8 < 4, hence one can remove the cutoff A\. Using that gy < g+ C
from (5.44) we find

f exp(—ﬁFiip) < eCPIN—)
{ren=2}

K
B
X Cexp|=g(ui) ) exp( Bl a4 , =118 (Uum,) |JdUn. (5.69)

‘[I’({’YzN—’Y});Eiel:\[Ck <2 > ( { k“m } k )

The domain of integration is a complicated subset of R?Y but one can approximate it by a simple
subset by keeping only a volume constraint. The balls B(z;,2r1(z;)) being disjoint, one may check
that

K
N
GP _ . 4N 12
(I’QN({’}/QN—’)/})CD.—{UQNER : E E |u2| éZW,V]{}E{l,...,K},um;CGA}.

k=1 iEIk,Z'#m;g

Using this approximation one can integrate separately the neutral dipole variables u,,, and the
variables u;,, on A and we get

J{wN:w} exp(—BF‘iip) < cCB(N—n) ( fRQ exp (e (u))du>n

1 1
% CZ(N—K)NKJ 5o ﬁdU2N—K—n7 (5_70)
D' |ut]?  |uaN—K—2n]2
where N
D ~{Usy i € B2V K Uy g o < 4—}, (5.71)
T
where usN K _9n41,--.,U2N_K_n correspond to the non-neutral dipoles, which are not counted in

the interaction.
Performing a polar change of coordinates for the first integral we recognize

o]

exp(3en(r))rdr = 2m\ [ exp(g () = X720 > 0

|, oty = 2x | 0
(5.72)

0
by definition (5.16).
It remains to estimate the second integral in (5.70). By performing a polar change of coordinates

again and the change of variables r/ = r2, we can rewrite this as an integral over a simplex of
R2N—K-n_ By scaling one obtains

1 1
f I 7AUaN—K—n
D’ ug|2 |uaN—K—2n|2
(27r)2N—K—n N 2N-n—K—2(2N-K-2n) _8 _8
S 92N—K—n (4W(2N—K—n)> " &1 ! "'TQJ\AIL—K_m—LdR?Nfon,
(5.73)

where
_D// = {RQN—K—n (< (R+)2N7K7n el + ...+ TON—K—-n < 2N — K — n} .
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Since 5 € (2,4), we canset « = 1 — g > 0 and kg = 2N — K — 2n and insert (5.58) into (5.73)
to obtain, using 2N — 2K — 2n < 2(N —n),

2N—K—n

logf H exp< g 1)z)>vzdvZ
S|
<<2N —n—K— §(2N - K — 2n)) log<$> + co(N —n)
< (2N - K —n) log($> +co(N —n), (5.74)

for some constant ¢y depending on 3. Combining with (5.70) and (5.72), this gives

logf exp(—ﬁFiip) < Klog N +n(2—f)log A+ NlogCp
{van=1}

2N
2N - K —n

Step 3: integration in the case § = 2. In the case § = 2, one may separate the variables

+ (2N - K —n) log< ) +co(N —n) (5.75)

(" from the others but one should keep a volume constraint on the integral over dipole variables.
Instead of (5.70), we write

f exp(—BFYP) < eCPNV -1 N K f exp(Bga(u1)) . . . exp(Bga(un))dUy,
{van="} D

1 1
x CHN=K) f . S dUsy—sc—n, (5.76)
D' |ug |2 |U2N 2K — 2n|

where D’ is as in (5.71) and D given by
2yn 2, 2 _ IV
{U e (R : [ur|? + ... + |un)| <f}. (5.77)
4
For the first integral, one may check that

N

g, | exp(3ga(m))..exp(en (1)U, < nlog (| exp(d(r))ar)

= nlog(fo)\ exp(Begx(r))dr + f\/7 —dr) = nlog(\ log Al + = log(N) + O(l)). (5.78)

Let us emphasize that contrarily to the case 5 > 2, the integral of exp(/3g)) over (0, ) does not
diverge as A tends to 0. The second integral may be bounded as in Step 2, which gives together
with (5.78),

; 1 N
logj exp(—ﬁFilp) < Klog N + nlog|log A| + nlog(| log A| + —log(—) + 0(1))
{ran=1} 2 "
2N

Step 4: integration in the case 5 > 4. For § > 4 the variables with factor —3/2 in (5.70) turn
to be also diverging and one instead writes

LWN_W} exp(—BFIP) < O =) N K ( JR2 exp(ﬁgk(u))duy ( JR2 eXp(ggA(u)>du) 2(N—K)‘

(5.79)
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As a consequence, arguing as in (5.72)), one gets

logj exp(—ﬁFg\hp) < Klog N + (8 —2)n|log A| + nlogCg + 2(N — K)(g —2)|log Al
{ranv=n}
+ C(N —n), (5.80)

where the term (N — K)log Cp/, is absorbed into N — n. For 3 = 4 one gets

logf exp(—ﬁFiip) < Klog N + (8 —2)n|log A| + nlog Cj
{van=1}

2N

) +O(N —n), (5.81)

Step 5: sum over graphs and optimization.

The total number of pairs of particles is N(2N — 1) and the number of pairs of neutral charge is

N2, |t follows that ,

N2\ (N(N—1
(D)
=| 2N»K| (N(QNfl))
K

|Dan,Kn

One can therefore check from (5.62) and (5.63) that
log |Dan i n| < log|Dan k| —nlog2 + O(log N), (5.82)
which yields using Stirling's formula

log |Dan k.n| < 2N 1og(2N)— K log K+2(N — K)(log N —log(N — K)) —n—2nlog 2+ O(log N).
(5.83)
Combining (5.75) and (5.83), we find that in the case 3 € (2,4),
i 2N
__ ppdip N o . Ay
logf{mv_’y} exp(—pF\") +log [Dy,gn| < n(2—F)logA + (2N — K —n) log<2N — n)
K
+Nlog Cs+2N log(2N)— K log K —2(N—K) log(l—N)—n(1+2log 2)+¢o(N—n)+O0(log N).

(5.84)

Using the fact the logarithm of a sum of N terms equals the logarithm of the maximum, up to an
error smaller than log N, we find

1<sn<K<N

logK]AVﬁ < max (logL K} exp(—ﬂFiip) + log ‘DQN’KJL|)
YN ="

<2Nlog(2N) + N(logCg —1 —2log2) + max I(K,n)+ O(logN), (5.85)

1<sn<K<N
where
2N )
2N —K —n
+ Klog N — K log K — 2(N — K)log(1 - %) +eo(N —n). (5.86)

I(K,n) ==n(2— B)logh + (2N — K — n) 1og(
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It remains to optimize I(K,n) with respect to K and n under the condition that 1 <n < K < N.
Let us denote x = % and y = « which are such that 0 <y < 2 < 1. The important point is that
the terms in log N in the definition of (5.86) scale out: more precisely the term Klog N coming
from the integration of the roots of the K 2-cycles in A cancels out, at the leading order, with the
term —K log K coming from the combinatorial factor (5.83). On A := {(z,y) € [0,1]? : y < =}

define the function

) —zlogx—2(1—x)log(1—x)+co(l—x),
(5.87)

pp(x,y) = y(2—B)log A+ (2—z—y) m(m

so that I(),n) = Npg(&,%). The term y(2 — 3) log A imposes the maximum. Indeed the other
terms are independent of A and since log A — —o0 as A — 0 with 8 > 2, there exists a constant

¢ > 0 depending on 3 such that for A small enough, the maximum of 3 is attained for y > 1—@.
Fixz>1-— m. The function y — ¢g(x,y) is increasing on (1 — m, 1) therefore
sup ¢p(z,y) =  sup  o(z,2) = pa(1,1). (5.88)
(z,y)EA x>1—m
It follows that for A small enough,
I(K =I(N,N). 5.89
\Jmax I(K,n)=I(N,N) (5.89)
Inserting this into (5.85) we find that for 8 € (2,4).
log K 5 < 2Nlog N + (2 — B)Nlog A + NlogCs — N + O(log N), (5.90)

which concludes the proof of the lemma in the case 3 € (2,4). In the case § = 2, (5.85) is replaced
by

log K 5 < 2N1og(2N) — N(1 +2log2) + max I(K,n)+O
N,B

0<n<K<N

|log)\|)’

where

I(K,n) == nloglog|A| + n(g ~1)log N — (1 - g)(m _2K) 1og((1 - g)Z(N “K)+ K — n)

~ KlogK —2(N — K) 1og<1 - %) +co(N —n) = Nog(—, %), (5.91)

where g is defined by

g (z,y) e A ylog\log)\H—y(g—l)logN—(2—§)(1—x) log(N((Q—%)(l—xH—x—y))

—zlog(Nz) —2(1 —z)log(l —z) —y(1 + 2log2) + co(1 —y),
Arguing exactly like in the case § € (2,4), one may check that for A small enough, ¢z is maximal

for x = y = 1, which proves (5.66). Now assume that 5 > 4. In view of (5.80), the expression
(5.85) is then replaced by

log K7 53 <log K§ 5 < 2Nlog(2N) + Nlog(Cg — 1 —2log2) + max I(K,n)+ O(log N),

1<n<K<N
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where

I(K,n) = n(2 — B)log A + 2(N — K) ((g —2)|log A|1g=4 + log |log >\|15:4> ~KlogK
—2(N — K)log(1 — %) +co(N —n), (5.92)

leading to optimize the function

05(,) = y(2 — B)log A +2(1 — 2)((5 — 2108 \)1 5o + log | log )
—2(1 —x)log(l —x) +co(l —y). (5.93)

One can check that for A small enough, ¢z attains its maximum at = = y = 1, thus showing that
(5.90) also holds for g > 4.

Step 6: optimization under constraint.

For the rest of the paper, it will be useful to optimize I(K,n) under constraint. In order to upper
bound the probability of having less than ng neutral dipoles, we will need to consider the maximum
of I(K,n) under the constraint n < ng and K > n. Let us compute the maximum of g over the
event A = {(z,y) € [0,1]? : y < 3¢,z > y}. Proceeding as in Step 5, one can see that A small
enough,

nog no
sup 905(1‘7 y) < (pﬁ(77 7) (594)
(.)eA NN

As a consequence for A small enough,

<ma}>{<> I(K, n) < I(no,no, N, N) < ng((2 — ﬁ) log )\15>2 + log | log )\|15:2) + C(N - no).
n<no,K=n
(5.95)

O

5.3.3 Upper bound on the energy of p points for a nearest-neighbor model

We now study a new nearest-neighbor model which will be useful for evaluating the contributions
of the dipole-dipole interaction or quadrupole errors that appear in (5.47). We consider an integral
of p variables z1, ..., 2, living on A, where the nearest neighbor interaction energy is counted only
for a small subgroup of k& points 21, ..., 2. In practice, this result will be applied to p < ¢cNA® for
some « > 0. Let us emphasize that the computations differ significantly from those of Lemma 5.3.2
since the probability that both points of a 2-cycle in the nearest neighbor graph of z1,. .., 2, belong
to the subset {z1,..., 2} is small.

Lemma 5.3.3. Let k < p and let us consider the energy over [0, 1]? defined by

k
Fi(z1,...,2p) = %Zlog(rl(zi)) (5.96)
i=1

with ry defined by
(5.97)

min |Zi — Zj’

r(z) = min(\/ﬁ, 7 )
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Then

log( JAP exp (—BFi(z1, ..., 2p)) de)

-

0 if <2
Klog 1+|10g/\|§) it =2
;) it Be(2,4) (5.98)
log (A2 |log /\\2> if B=4
if B>4.
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Additionally there also holds

k ri(z)
| log =7 | k 1k 4
1 ——=—dZ,) <kl Ck + —log|—— v |logAI*). 5.99
Og(f[o 1]”1—! ri(zi)? p> BrT " 2 Og()\2p v [log ) ( )
Proof. Let Cy > 1. Let us consider the integral
J[o o 1|Z1\2+-.-+IZk|2SCo§ exp(—=BF(z1,. .., 2p))d 2. (5.100)

Let I € {0,...,k} be the number of points in {1,...,k} with nearest-neighbor in {1,...,k}. There
are (];) ways of choosing such points. Assume that these points correspond to z1,..., 2. There
remains to choose the nearest-neighbors of the points 2,1, ..., 2, among 2,11, ..., z,. Thedifficulty
is that some of the points z;,1, ..., z; might share the same nearest-neighbor. Let us denote A; the
event

Ar={(z15- -, 2) € [0,1]%: 61(21), -, 91 (21) € {1, 1, 01(2041) = 2ty D1 (2) = 2051}

(5.101)
Given a partition ny +...+n, = k—Iwithny,...,n,, = 1 and m = 1, one shall choose m subsets
of {1,...,p} of respective cardinal ni,...,n,, and match all subset to a certain unique element of
{k+1,...,n}. The number of choices is then equal to

(0 [ I G [ B SR VR CA LY

ny n2 Nm—1

Let us remark that the number of groups m is bounded from below by % since a single point can
be the nearest-neighbor of at most 6 distinct points. Assume that these common nearest-neighbors

are given by 2zxi1,...,2k4m (m < k—1). For 1 < m < % and n := (n1,...,ny,) such that
ni+ ...+ ny, =k —1, let us denote A, ,, the event
Al,m,n = Al N {(Zl, - ,Zp) € [0, 1]2p : le(zl-&-l) =...= (;51(2’[4_”1) =k+1,...
¢1(2k—nm+1) =...= ¢1(Zk) =k+ m} (5.103)

One can see that

f[o - 1|21|2+.._+|Zk‘2<00k exp(—BF(z1,. .., 2p))d2Z,

< i (’;) m7n1+.§nm_kl (kn_l l) (k _fl; ”1> (”m;;fln”””) (p—k)(p—1) ... (p—k—m~+1)

« J exp(—BF(z1, .., 2))dz1 ... dzy. (5.104)
Al’m’"mﬂzl‘2+'~'+|Zk|2<CQ%}
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Assume that there are kg 2-cyclesin {1,...,l}, ko = 1,...,[l/2]|. Thereisa number WQ ko
of ways of choosing kg pairs among {1,...,l}. In addition, for each point in {1,...,l} not in one
of these 2-cycles, there are less than (k — 1)! =20 number of choices for the nearest-neighbor. One
may assume without loss of generality that zi,..., 2%, are the points belonging to the 2-cycles.
Let Af?nn C Ajmn be the set of points with a nearest-neighbor labelling satisfying the above

constraints.
By integrating out the variables 24,41, ..., 2, on a subset of volume 1 — C()%, we find that

— k\p—k—m
J exp(—fFi(z1,...,2p))dz1...dzp < C’k<1 _007)10
‘1lmnﬁ{"zl|2+"'+‘Zk+m‘2<00§}

11/2] [)~2ko

(k —
8 Z l—2k0 Ylheo12F0

f exp(—BFk(21, .+, 2k+m))d21 . . . d2kim.
Az ”ﬁ{lzl|2+“'+|2k+m|2<00§}

,m,

(5.105)

Note that although our way of counting these functional digraphs is very rough, it is precise enough
for the optimization over kg (note that for k = p it is not that different from formula (5.62)). The
important point is that, when scaling out kg as ko = [z, the terms in [log(l) in the combinatorial
factors and in the integral cancel out.

Let us decompose Fj(z1,. .., Zk1m) into
1 2ko 1 k
Fiu(z1, ..., Zhpm) = Z log(r1(2:)) + 5 D1 log(ri(z:). (5.106)
1= 2k0+1
By construction, on the event A” Lo the first term of (5.106) depends only on 21, ..., z9,. One
may therefore integrate the second term of (5. 106) W|th respect to 2oxy+1, - - - Zm+k- By performing
a change of variables in z; — 21 (i) for 2kg + 1 < i < k, one may reduce the integral to a multiple

Dirichlet integral as was done in the proof of Lemma 5.3.2. We find

k

1
J . exp( ~3 Z log(rl(zi)))dz%OH o d2Zim
Al,?n,nm“zl|2+"'+‘Zk|2<00§} 7:=2k?0+1
Cok
Cok (2—2)(k—2ko) F—oko T 1\ k—2ko
< CF - —
<¢ ( p(k — 2k0)> Lser2) “Og( A ) 151
A\ (2 5)(k—2ko)
+ (\/ﬁ) 1B>4> . (5.107)

and the bound is independent of m and n. In addition it is easy to check that

Jus

l,m,n

2k‘0
exp( - = Z log(ry zz))>dz1 o dzpym

< C* (i)(%ﬁ)kolﬁ» + 1og(7” Coka 1y

NG A ) 12

f\{|21|2+ +‘Zk|2<00 k}
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Putting the two last displays together, one obtains

J . exp(—fFg (21, 2Zkem))d21 ... dzpym
A 0

(\{|Z1|2+...+‘2k|2<00§}

k l' 1—2k )\ (2_:8)k0 %@k + 1 ko
<CF— (k- D)2ko | [ = I _
<C il ( ) 1gon + 1og( - ) 152

l,m,n

(1= 2k NG
ot Coke ><2§)(k2ko>1 o (\/kc%ﬁo + 1>k2k01 o B )<2§><k2ko>1
p(k — 2ko) Be(24) & b\ p=4 b g4 |-

Let us optimize the above function with respect to kg € {0,...,|l/2]}. Assume 8 € (2,4). Using
that (log(k — 2ko) — log(k))(k — 2ko) = O(k) and 2 — 2 < 1, we have

log jAkO eXp(*,BFk(Zl, ey Zk;+m))d21 .. .dzk+m

A{lz1 242 [2<Co B}
< llogl — (I — 2kg)log
—((1—

=llogl— (1 — gkz)logp— ((

l,m,n

1) — kologl + (I — 2ko) logl + (2 — B)ko|log |

I

Yk — ko) logp + klog(Co) + Ck

=N

~ Ok~ ko)1oa(2) + (2~ kol log A + klog(Co) + C.
(5.108)

We then argue that the maximum of the above function with respect to kg is attained for kg = [ if
%’)\5_2 is small enough and for kg = 0 if %)\B_Q is large enough. When (3 € (2,4), we deduce that

(5.105) is bounded by

logf exp(—BFi(z1,. .. azp>)d2’1 ... dz,
Al,m77lﬂ{|z1‘2+...+|zk|2<002}

o\ p—k—m (25)@ D% (/o )<2§)(kl) if EAT2 < 1
< Ck<1 - CO—) 2ok 4 Ve Pk TS (5.100)
P (k — l)%%)(?—a)k if DAP72 > 1.
Similar computations show that for § = 2,
logf exp(—BFg(z1,...,2p))d21...dz
Apmon {2124+ |25 2<Co £}
2-5)(k—4)
—kem 1/2 L k 2 2/ .ep 1
< C’“(l - Cﬁ)p ch {l [ log Al (V pﬁ(k—ﬂ) Fimex <1 (5.110)
b (k— l)l(ﬁ)@_i)k if %|101g)\| =1,
for g = 4,
logf exp(—BF(z1,...,2p))d21...dz
Apm,n {2124+ |25 2<Co £}
2-5)(k-5)
hem /2 (/K 22 £
k;)p k O{f l |log)\|2( p(k—l)) if I TTog A2 (5.111)

< C’“(l -G

p—k—m B .
(1 - Cog) (k= D' log \[C=D% i 222 5,
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and for 3 > 4,

logj exp(—fFi(z1,...,2p))dz1...dzp
Al,m,nr\{|zl\2+.“+|Zk|2<005}

2-2)(k-1)
Ckem | 7/2¢ AN\ 2 2 D2
<0k<1—005)p {l (vﬁ)Z( re=) IV <T (5119
N e 120> 1
Notice that there exists a constant C' > 0 such that
kN p—k—m
sup (1 - Ci)p ok < C*, (5.113)
Co>1 p

Using (5.113) and the fact that

2 <kn_1l> <k—7lu—”1> <nm;:n+lnm>(p_k)(p_1)...<p_k_m+1)

m,n1—+...4+nm=k—I
= (p—k)FT (5.114)

one finds that if each of the first subcases of (5.109), (5.110), (5.111) and (5.112), there holds

k !
k A\ @2-8)g .
- < k E k—1 2 1 1 Ly 12
\f[o,l]%) oxp(=fFi(z1; .-, 2))dZp < € =0 <l>p <\/13) < >2 + [log Al2 ﬁ—2>l

k (2-5)(k—3) . A\ @=5) (k1)
X (( i — 2l)> Le(2,4) + |log Al 315 4+<\/ﬁ) 1g=4

§ Z( >( )é A= 2)115>2 + |log)\|l/215 2) <kk_l)(1f)(kl)

=0
X (16<4 + [log A\F 15y + A(2—§>(’“—l>1ﬂ>4). (5.115)

Otherwise in all of the second subcases of (5.109), (5.110), (5.111) and (5.112), the logarithm of
the left-hand side of (5.115) is bounded by (5.98). It remains to optimize (5.115) over [. Let us
write [ = kx and consider the function

¢p:xe(0,1) - —zlog(z)—(1—x) log(l—x)—i-g log()\Q_ﬁ)—i—g log(m];)—(l—i)(l—x) log(1—x)

k
= —%log(aj) + g(l —z)log(l —x) + glog(/\z_ﬁz—?).

Notice that there exists a constant C' > 0 such that for all z € (0,1)

x a2k _ k
|ps(z)] <C+§log(/\2 ﬁp) <C+ 210g()\2 p) A-AEs 1

Inserting this into (5.115) shows that for 3 € (2,4)

l_io(?)pk_lcﬁ)(g_g)(k_l)Qﬁ)@_mélm - C’k(l HQ_BI;)W
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If 5 = 4, the bound (5.115) may be written
[k r—t (12 k-1
) ( z)p (3) X7 s+ llog A1) < Ot sup 95to),
where

¢p:xe(0,1) - —xlog(z) — (1 —z)log(l —z) + glog()\%’g) + ;log(af];)

+(1— a:)(log()\zfg)15>4 + log |log A|15_4).
Again notice
x k 2.8 9B
6s(z)| < C + §log<2—))\ ) + (1 — 2)(log(A2~ %) 1424 + log | log A|15_).
The above function being linear in x, one can write
1 kiogs 2-8
sup |¢g| < C + max(i log(;)\ ),1og(A*"2)15-4 + log | log /\|15:4>,

which coincides with (5.98). The proof of (5.99) is similar. O

Building on the last lemma, we treat the quadratic error terms arising from the energy lower
bound of Corollary 5.2.2 when the nearest-neighbor graph consists only of isolated neutral dipoles.

Lemma 5.3.4. Let f(z) = —t|z|? forsomet > 0. Let~y be a nearest neighbor graph with p isolated
neutral 2-cycle components. For every z;, let v\ (z;) denote its nearest neighbor of same sign, i.e.

1 :
r(z) = max()\, 7,0m |z — zj\).
sAi Q5=

For any 3 > 2 we have

S PR C=)))

ieldip ;=1 "
<p (logN + (2= B)logA) +logCs + C(A\* 2154 + A2|log A[*15-4 + A?|log )\]15>4)> .
(5.116)

For 3 = 2 we have

logj :exp<—ﬁ(F§ip(Xp,Y},)+ 3 f(r}gjg)))dxpdyp

4 r
ieldip 4, =1 1

C
<p<logN+log\log)\\ + |log)\|>' (5.117)

Proof. First, without loss of generality, we may assume that for each i, the nearest neighbor to x;
is y;. Let us first make the change of variables

(vaYp) = (X, Wy 1= X, — Yp)
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It is a valid change of variables on the set {2, = v}. We note that in the setting we are in,
1 /
ri(z;) = max(A, 7 fwi]) <ri(z),

and so we may then rewrite

L en(-a(RrG ) - Y P )ax,a,

‘ r(z;
ieldiv.g;=1 1 i)

_ j exp (5 i g (wi) — B i f(nm(/h“m))dxpdwp. (5.118)
Y2p=" i=1 i=1

ri (@)

Let us integrate over W), first, and simplify the domain of integration by including it in the set
{|wi| < ri(z;)}. Using polar coordinates, (5.44), performing the change of variables |w;| = A|w}|,
and recalling that by definition r{(2;) = X\ we may then bound each integral over w; by

1

ri(zi)/A x(L
277)\25L T exXp <ﬁg1(r) — ﬂf(AmaW)> dr

ri (zi)

max(Lr
rexp Bg1(r) (1 — C’Bf(W)) dr

2 ri(@i)/A 2
< AP (Cg + Cﬁtf r(#) dr + C,Btf 7’1*5( ,)\T ) dr) (5.119)
1

1
o \ri(@) ry(z;)

Note that here we have used the definition of C'3 in (5.16) and the fact that g; is bounded in the
unit ball. We then find, using r}(z;) = A,

< 2772 f e
0

1

rh (i) /A
27r)\2_5f r exp <6g1 (r)— Bf(W)) dr

0 ry (@)

<328 (O 4 OB+ OB 0 + Ot (10g 1) 1
h ’ ri(zi)? B h (2:)2 ) p=4

A\ A\ % ) (z;)
< P (1 . 1 )1 log 2 ) 154 | |
= Cﬁ( o Bt<(ra<wi>> 5<4+(ra<wi>> ﬁ>4+ra<xi>2<°g X o)

Thus, defining
A\ P2 A\ 2 A2 x
o -1
o(z) = CCﬁ I512 <<x> 1<y + <x> 1g54 + o) (log X) 15_4> , (5.121)

we may bound the left-hand side of (5.118) by from above by

di ri(2i)
f exp( — B(FI (X, ¥;) + 3 (5 (z-)>)>prde

Y2p=" i€UkChi k| =2,did g, (1y=—1,di=1 1=

p
< w9y j [0+ e @))dX,. (5.122)
[0,1]2P 7
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We next turn to bounding the integral appearing in the right-hand side. Expanding the product and
inserting the definition of ¢, we find that for 3 € [2,4),

lof + o(r (x dX
gApH o(ri(x:))

< log Z ( >Ck)‘k (=2 J r(z1)? 7o (o) Pday . day, (5.123)

AP

with a constant that depends on 3, and where we return to the notation ri (z;) to denote the nearest
neighbor of x; within the system of the x;'s. To evaluate these integrals, we may apply Lemma 5.3.3
to 8/ =2(8 —2). For B € [2,3) we then find (after rescaling the lemma)

log JAP ﬁ(l + (i (z:))) < log Z < > F=20k 1+ O(log p).
i=1
By Newton's formula this implies that for 5 € (2, 3),
log pr H 1+ o(rh (:)))d X, < log(1 + CA =3P < CpAF=2
which shows (5.116). In the general case ( € [2, +0), by applying Lemma 5.3.3, we find
log jAp [0+ (] ()X, < psup 65+ Olog). (5.124)

where ¢ is the function defined by

¢p:xe (0,1) — —zlog(z) — (1 — z)log(1l — z) + z(log A">*F=22)15_5 + log | log A|15-5)

-

0 if 5 € [2,3)
log(1 + |log A|z) if =3
+ g log(1 + A\5—28z) if 3e(3,4)  (5.125)

log max(A =2z, |log A|*) if B =4
log max(A =2z, |log \|?) if B e (4, +0).

\

The function ¢4 being concave, it has a unique maximizer on [0,1]. We claim that for 5 € [3,4),
the maximizer x of ¢z satisfies

(AP 1ge (03 + |log A|15_3) = O(1). (5.126)

Assume by contradiction that (5.126) does not hold. Then, up to an extraction, one may assume
that
x()\6_261ﬁ€(3,4) + ]log )\’]_g:;),) /\—w> +00. (5127)

If x = 1, then ¢g(z) = log(A) + O(1) < 0 = ¢g(0). Therefore z € (0,1) and by minimality
¢’5(x) = 0 and therefore

_ 1 _
log(z) = log(\?2) + §log((A6 2153y + [log A15_3)z) + O(1),
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which implies that = O()\?), thus contradicting (5.127). As a consequence (5.126) holds. More-
over if  # 0, then again qﬁ’ﬁ(x) = 0 which gives, by Taylor expanding the logarithm that

log(z) = log(M~2) + 0(1)
and one can check that ¢5(\?~2) > 0. Therefore we find that

sup ¢g(r) < ON 72
(0,1)

which gives together with (5.124) the control (5.116) in the case € [3,4).
We next turn to the case 3 > 4. Let  be the maximizer of ¢3. One can first dismiss the cases
x=0and x = 1. Assume that x > A\2|log A\|>. We then have

pp(z) = —zlogx — (1 — 2)log(1 — x) + zlog(A\?) + glog(x\*%)

— _g logz — (1 —x)log(l —z) + zlog(\) :==¢(x) = sup {¥(y)}.
y=22|log \|

It is easy to check that 1 is maximal for y = CA\? and decaying on [y,2)2|log A|?]. This implies
that z = A?|log A\|?. Let us examine the case where z > A\?|log A\|?>. We then find by optimizing
under constraint as before that log(z) = log(\?|1log A|) + O(1). We conclude by observing that

dp(N*|log A|) > ¢3(A*|log A[*).

It follows that
sup ¢z < CA?|log \|,
(0,1)
which gives combined to (5.124) the proof of (5.116) in the case 5 > 4.

It remains to examine the case 3 = 4. As before, we dismiss the case = 0 and x = 1. Consider
first the case where the maximizer = of ¢4 satisfies > A\?|log A|*. We then find by optimization
under constraint as for the case 3 € [3,4) that x = A?|log \|*. Now assume that = < A\%|log A|*.
Then

pp(x) = —xlog(z) — (1 —z)log(l — z) + zlog(A?|log A|?) := f(x).

Consequently  must be equal to the maximizer of f under the constraint z < A?|log A|?, which
turns out to satisfy x = log(A\?|log A|?) + O(1). We have thus observed that in both case, the
maximizer of ¢z satisfies x = O(A?|log A|?), yielding

sup ¢ < A2[log A2,
(0,1)

concluding the proof of (5.116) in the case 5 = 4. Le us emphasize that for 5 = 4, both functions
in the definition of the maximum in (5.125) give rise to the same maximizer, hinting a form of
criticality at 8 = 4. O
5.3.4 Main result

We may now obtain the main upper bound.



5.3. Free energy upper bound 247

Proposition 5.3.5 (Upper bound). Let 3 € (2,+x) and Cg be the constant defined in (5.16).
There holds

logZ]){w <2NlogN + (2—-B)NlogA — N + NlogCg
+ O(N(Aﬁ*21ﬁ<4 + A% log A215_4 + A2|log >\|15>4)>. (5.128)

For 3 = 2, there holds

log Z% 5 < 2N log N + N log |log A —N+O( (5.129)

N
Tog )"

Proof. To bound the partition function from above, we start by inserting the lower bound (5.47)
into its definition. This way it suffices to bound from above

_ dip . rl(zi) 2
longQNexp( B(FYP(Xn, Yy) Ciddipg(i)ddip(m(zi)) ) )dxnavy. (5.130)

Let us split the integrals over the functional digraphs. Let v € Doy k. For each configuration
with graph ~, we may relabel the points so that the positive charges that form the neutral two-cycles
Ci such that |I;| = 2 (i.e. isolated neutral 2-cycles), are z1,...x, (p < n). We may assume that
each z; for i < p forms a cycle with y;. The remaining points are labelled z1,. .., 2on_2,. In view
of (5.64), we may rewrite with obvious notation,

: ri(z;)\2
A -c 3 (A
ieTdip gy (i)erdip 2\

= F{*(Zon—2p) — Zp: (gx(l’z‘ —y)+C (rl (Zi)>2>’

i=1 seIdip gy (i)e[dip

i.e. we split the energy between the contribution of the isolated neutral 2-cycles, which we can
treat by Lemma 5.3.4, and that of the rest, which we can treat by Lemma 5.3.2. We denote by
~! the nearest neighbor graph of the first n z;'s and y;'s, and v? that of the rest of the variables.
Separating variables we obtain

L72N=7} exp( - B(F;“p(XN, Yy)—C 2 rl(zi)>2>>dXNdYN

. . ro(2;
deIdip o (7)eIdip 2(21)

< exp <—5F§ip (Z2N72p)) dZon—2p

JAQN_Q]”“‘{’}’QN—zp(ZzN—zp)7’2}‘

exp( - 5(F§ip(xp, Y,) - C

ieIdip ¢ (i)eIdip

r (Zz)

FQ(ZZ')

2
xj ) ))dx,dv,. (5.131)
AP {y2p(Xp,Yp) =7}

We next claim that

3 (”(Z"))2<—C 3 f(”(z")), (5.132)

. I (.
iEIdip,(bQ(i)E[dip rQ(Zl) ierdip d;—1 rl(Zl)

where f(z) = —tz? for some appropriate constant ¢, as above. This allows to replace in (5.131)
the left-hand side term by the right-hand side. Assuming the claim, and inserting into (5.131) the
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results of Lemma 5.3.2 (applied with N — n), more precisely (5.75), and Lemma 5.3.4, we find

logj exp( - 5(F‘§ip(XN, Yn) - C 3 (rl(zi))z»dXNdYN
{ranv=n} ie{OkChol Tk [ =2didy, (1y=—1} ra(2i)
< (n—p)((2—B)log A1y +log|log A[1g-2) + (K —p)log N + (N — p)log Cslg=s
2N
2N -K —n
+ plog N + p((2 — ) log A\)1g~2 + log |log A|[15-2 + log Cglg=o + C Ny
=n((2 — B)log A\15=2 + log |log A\|15-2) + K log N + N log C313-9
2N
2N —-K —n
where «, is as in (5.17). There remains to sum over the functional digraphs. Using (5.83), we first
obtain that

+(2N—K—n)log< >+60(N—n)

+ (2N — K —n) 1og( )+CO(N—n) + CNy, (5.133)

10g<\D2N,K,n f eXp( - B (Fiip(XN, Yn)
V2N =7}

o n () axan)

ie{OkCho T | =2,didy, (5y=—1) ra(zi)
< 2Nlog(2N)+ Klog N — Klog K +2(N — K)(log N —log(N — K)) —n—2nlog2+ O(log N)
+n((2 - B)log Alg=2 + log [log A|15_2) + N log C31p-9
2N
2N —-K —n
<2Nlog(2N) + N(logCglg=s — 1 —2log2) + I(K,n) + CN~jy,

+(2N—K—n)log( )+ co(N = n) + CNyy

where I(K,n) is as in (5.86) for 8 € (2,4), as in (5.91) for 8 = 2 and as in (5.92) for 5 > 4.
Arguing as in the rest of the proof of Lemma 5.3.2, i.e. maximizing over K and n, we deduce the
result.

We finish by proving the claim (5.132). Let us first consider the case of a positively charged

point, say z; = x1, belonging to an isolated neutral 2-cycle. If ro(z1) > %r’l (x1) then the absorption

is also obvious. So we may reduce to the case ra(z1) < 3ri(z1), which implies that ra(z1) is
achieved at a negative charge, say y2, and since we consider only the case where ¢o(i) € I9P, this
means that yo forms a neutral dipole with, say, zo. We have

1 1 1 1
ro(z1) = max ()\, Z\xl — y2|> < §r'1(x1) = §max()\, Z]xl — x9|)

and .
|21 — ye| < §|951 ]
We may then write by reverse triangle inequality that
w2 — 2| = |w2 — 21| — 21 — 12
so that
ri(z2) = ri(21) = 21 — 2| = 2ra(21) — iul = y2| = ra(x1) = r1(z1).

Moreover, by triangle inequality

|22 — 1] < |21 — Yol + |y2 — 22
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so that by definition of ro and the fact that the nearest neighbor to ys is x2, we have

1
rll(w2) < r2($1) + Z’yg — l’l’ < 2!’2(%1).

It thus follows that
F1($1) < 2r1 (902)
ro(zy) — r(2)

so that the corresponding term in the sum in the left-hand side of (5.132) can be absorbed into the
sum corresponding to x5 in the right-hand side.

We next turn to the case of a negatively charged point, say y;. We first assume that the min in
the definition of ro(y) is achieved by a positive charge, say x3. By triangle inequality, and since z;
is the nearest neighbor of y1,

|21 — 22| < |21 —y1| + |y1 — 22| < 2[y1 — 22

so that

1
() < max(\, 3l — z2l) < 2ra(un).

Thus, since ry(x1) = ri(y1),
r(z1) < 1ri(y1)
ri(z1) = 2ra(y1)

and the absorption can be made as well. Secondly, we consider the case where the min in the
definition of ry(y1) is achieved by a negative charge, say y2, which forms an isolated neutral dipole

with zo. If 20 > L then the left-hand side term -2 can be absorbed into the right-hand side
ri(z1) = 6 r2(y1) |
/

term, up to a multiplicative constant. We may thus assume that ri(z1) < 51 (71). In the same
way, we may assume that ry(z2) < &r{(z2). In particular r{(z1) and r{(z2) are not equal to A but
to a true quarter minimal distance. Then we may write by triangle inequality that

lr1 — m2| < |y — y2| + |21 — w1] + |22 — Y| < |y1 — ye| + 8max(ri (1), r1(z2)).

If the max is achieved by x1, we then deduce that

n(y) _ 4n(y) _ 4ry(z1) - 4ry (z1)

rp(y1)  yi— vl |z —x2| — 8ri(m1) — 4ry(z1) — 8ri(x1)
< 1 < rl(xl)
S r@)/r(z) -2 T r(x)

(5.134)

by using that ri(x1) < %r’l (1). If the max is achieved by x2 then the reasoning is identical. We
have thus proved the claim in all cases. O

Remark 20 (On the quadripole transition). At 8 = 3, the free energy of quadripoles, i.e of two
very close neutral dipoles, starts diverging as A tends to 0. Consequently, points which are not in
small well-separated dipoles prefer forming small quadripoles than being alone. The error term in
N — n in our computations, see for instance (5.133), contains these quadripole terms and should
therefore be expanded in order to see the transition at 3 = 3. This would require a more precise
cluster expansion of the energy.
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5.4 Free energy lower bound

We now derive a lower bound on the partition function. For that, we use a method inspired from
previous work on the one-component plasma and on Ginzburg-Landau, starting in [229, 233], which
allows, thanks to the electric formulation of the energy, to compute the interaction additively in
terms of electric potentials defined in disjoint subregions of the space.

Proposition 5.4.1. Assume 3 € (2,4+x). We have
log Zy 5 > 2N log N + N(2 — B)log A — N + Nlog Cy
+ 0 (N2 150s + X|10g APLos + A og Al1g=a) ) . (5.135)
For 3 = 2, we have

log Z% 5 = 2N log N + N log |log A —N+O<|10]\g[>\|>. (5.136)
Proof. Step 1: bounding the energy from above. We are going to reduce the integral to
configurations where y; € B(z;, 3r(z;)) where r(z;) := 2 min, . |z; — 2;|. For such configurations
let us now bound the energy from above. First we recall (5.14). We note that for the configurations
in the integration set, the balls B(z;,r(z;)) are disjoint and contain only the points z; and y;. We
then let, for each 7, u; solve

—Au; = 2%(5;(5?) — ?5;\ ) in B(zi, r(z;))
% =0 on 0B(xi,r(x;))

We then define a global “electric field" E by pasting together the electric fields defined over these

disjoint balls:
N

E = Z 1Bz, r(z) Vi
i=1

Thanks to the crucial choice of zero Neumann boundary conditions on the boundary of the disjoint
balls, this vector field satisfies

N
~divE =27 (Z 5 — 5§,j>> = —Ah, (5.137)

i=1

where h) is the electric potential of the configuration as in (5.12). The trick is then to take advantage
of the L? projection property onto gradients to show that the energy can be estimated from above
by the L? norm of E: indeed

J |E|2=J |VhA]2+J |E—VhA|2+2J (E —Vhy) - Vhy
R2 R2 R2 R2

and the last term vanishes after integration by parts, in view of (5.137). It thus follows that

N
1
Vhy? < — J Vu;|? 5.138
fR2 I =3 AT (5.138)

that is, we can reduce the computation to a sum over the disjoint balls. We next bound the

right-hand side. First we let v; := u; — (g * 59(52\) — g 5@(,;\)). It solves

—A'Ul‘ =0 in B(xm r(‘T@))
%1;: _ ( (I—xz) + (Ji—yi)Q) -V 0on aB(xlar(xl))

T =2

lz—yi
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and thus by elliptic regularity estimates we have

lz; — vl
IV Vil Lo (8w, Sr(e) S r(zi)? (5.139)

Now, using (5.139), we find

Vui]? = 27rf ui (68 — 5N
JB(wi,r(m)) B(zir(x)) ( ! )
—2r (2<g<x> + ) — f g+ 0505 — fg * 65?’6£?>) + f i (08 - 82)

-t e [ - o2

o — 2
=4n(g(A) + k) — dmgr(z; — yi) + O(|:(xz)y21|)

Inserting into (5.138) and (5.14) we deduce that
2
T —Yi
F XN,YN Zg)\ (ﬂ> (5.140)

r(z;)?

In all cases, since we have built the configurations so that |z; — y;| < 4r(z;) we can bound the
error term by O(N).

Step 2: bounding the free energy. Because of all the possible relabelling of the pairs, we may
write

ZNﬁ N'J eXp(—ﬂF)\(XN,YN))dyl...dyNd.%'l...d:CN (5141)
z;€[0,v/N] Yi€B(xi,5r(2i))

where as above r(z;) = 3 min;; |x; — 2;|. We may now insert (5.140) into (5.141) to obtain

N 2

€T i

thfﬁ > N!J efoVN]2 OXP (B Z;g,\(xi yi) + O(‘ (xz)y?’ )> dyi ...dyndxy ... dzy
yieB(xi,%r(mi)) =

N ~le(zy) 2
2 r
>N!J f 2nrexp| Bgx(r) — C drdz; (5.142
[O,W]QNH 0 < A7) r(wi)2> (5.142)
We have
Lr(ay) 2
2 r
Jo 27r exp (ﬁgx(r) - Cw)dr

— le’(l’i) 27r exp(ﬁ(g()\) + gl(%)))dr + O(Lér(m) Wdr>

Similarly to (5.119), we compute that

r(z) r3
f ————dr
0 r(@i)2(r A A)P

r(x )2 4P X8 1 r(z;)
—0< e 1iz)<on + Le)=2x W**( xi)? 61ﬁ€(24)+ 2 ——5lgsa + @2 log o) 1g-4

AP (ay (log =5 ))/\O
< O (I’( ) 5166[2 4) + w A ()\/6) 16>4 + Wlﬁzzl .

r
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We also compute that, in view of (5.44)

0

2msexp(Bg(s) + C))ds + C1y(,,)<2n

a0
0< J N 2msexp(Bg1(s))ds < lr(mi)BQAf o)

A
<C (((r(;;))zﬁlﬂm + 10g<r(256)\¢)>1522)1r(xi)>% + 1r<xi)<2A>

-0 (L 1)t (os() A 1)15m2).

This error term can always be absorbed in the others, thus, in view of (5.16), we may write

=

N
>
N

Lr(zy) 2
2 r
L 27r exp (ﬁgA(r) — C’W)dr
9 r(mi)%ﬁ A2 r(z;)? A2 r(x;)
— A B (C[B =+ O <)\2—5166[2’4) + W VAN Tlﬁ;gl + r(,z‘i)Z (log 2)\ ) AN 0 1ﬁ=4 s
for § > 2 and
%r(xi)z " Var = log A1+ O 14
Jo 7rrexp<ﬁg,\(r)— W> r = |log \( + <\10g)\\))7 (5.143)

for B = 2. Let us start with the case 8 > 4. Inserting this result into (5.142), we then find

log Zy, 3 = log NI + N(2 — B)log A + N log Cs
N

N () z? r(zi)
+ IOg J‘[(),\/N]?N H(l - Cr(xi)2 A 22 -C )2 ((log o\ ) A O) 15:4>d£€1 .. .dZL‘N

i=1 r(w;

(5.144)

N
)\2 r(l‘i)2 )\2 F(ZL‘z)
log f[o,\/ﬁ]w H(l — Cr(a:i)Q A 2 Cr(mi)Q ((log ) ) A 0) 1I3=4> dri...dzy

2

N
a3 A ri (i)
=1 1= - 1 1o_g)day ...

N
= log J‘[O’\/NJQN g(l — C’go(rl(xi))>d3:1 .. .de (5.145)

where r; is as in (5.39) and ¢ is as in (5.121). We may then expand the product as in (5.123). Up
to the sign, and the inequality being reversed, the terms in the product are identical to those found
in (5.123). We thus deduce in the same way that

N 2 2 2
A r(z;) A r(z:)
logf[o’ T | |<1 Cr(xi)2 N2 Cr(xi)Q ((log o ) A0 15:4>dx1...dx]\/

> N(\?|log A*15-4 + A?|log A\|[15-4) (5.146)

and inserting into (5.144), we obtain the result.
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Next, we turn to the case § € (2,4). In that case we have instead
log Zy 5 = log N1 + N((2 — 8)log A1 g2 + log | log A|15_2) + Nlog Clp-2

N
+ Nlog N + log (N J[O . H(1 - cf(ifﬁ Jdar.day). (5.147)

We may use Jensen's inequality to write

log< f . ﬁ(1 — Or(ay)* N~ 2)dx1 de)

i=1
N
> N_Nf Z 10g<1 - Cr(:v,-)Q_ﬁ)\ﬁ_Q)dxl odxy
[0.VN]2N 55
N

> —C( N2 N_NJ r(x; 2=Bdzy ... dan

( 1_21 [07\/N]2N ) )

- —C(NA5*2N*N f(a1)2Pday .. .de).

[va/ﬁ]zN

It remains to evaluate the expectation of r>~# under the Lebesgue measure on [0,1]*V. Let P be
a Poisson point process of intensity 1. First, one may justify that

A}i_r)noo NN OV r(z1)> Pdey ... dey = Ep[r?~P]. (5.148)

The distribution f of r is called nearest-neighbor function. It is related to the so-called spherical
contact distribution function. The point is that a Poisson point process, conditioned to having one
point at = € R? remains a Poisson point process. As a consequence, the probability that r > r
is equal to the probability that the number of points in B(0,7) equals to 0, i.e the probability of
X = 0 where X is a Poisson variable of parameter A = 7r2. We deduce that

Pp(r<r)=1-— e,

which implies that
f(r) = 2mre ™.

As a consequence we find that since 8 < 4,

1
ff(r)Tz_ﬁdT = QWJTHC_FTQdT < 00.

We deduce that

N

1og(N—N J[O,WPN E(1 - Cr(z:i)2)\ﬂ_2>d:p1 . ..de) > _CONM2,

Inserting into (5.147) and using Stirling’s formula we find the result (5.135) in the case 5 € (2,4).
Finally, the bound (5.143) being independent of x;'s, (5.136) is straightforward. O

It is now immediate to complete the dipole description of Theorem 5.1.1.
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Proof of Theorem 5.1.1. Denote
G =gz — 24, (5.149)

iel

and let Kj},ﬂ be the reduced partition function

f(?v,ﬁ = J exp (—FG(Xn,Yn))dXndYn.
[0,V/N]2N x [0,/ N2V

Let ) be the error rate defined in (5.17). First, one may observe that for t = 3, the Laplace
transform (5.20) is nothing but the ratio of partition function

KN s
logBpy [ exp(B(F — G))] = 32,
which we can bound using Lemma 5.3.2 and Proposition 5.4.1 by

log By, | exp(B(Fy — G))] < Oy,

By Holder's inequality, this proves the upper bound for all 0 < ¢ < 3. It remains to prove the
inequality for —g <t < 0. Let us upper bound (5.20) for t = —g. Applying Corollary 5.2.2, one

may bound the energy F from below, which gives

logEPJAVﬁ [exp(g(G — F)\)>]

! fexp(—ﬁFf\“p—i-C 3 (”(Zi))2+0(N—n))dZQN.

< —
Z A \ro(z
N8 JeTdip gy (i)eTdip 2(#)

In the proof of Proposition 5.3.5, we have shown that the above integral satisfies

logfexp< —pFP Lo ) (”(Zi))Q +O(N - n))ngN

ieTdip o (i)edip ra()
<2NlogN + (2—p)logA+ NlogCs — N + CN~,.

Together with the lower bound of Proposition 5.4.1, this concludes the proof of (5.20) for —g <
t <0.

We turn to the proof of Item (3) of Theorem 5.1.1. Let I be the set of the indices of positive
charges belonging to a neutral dipole:

I={1<i<N:¢p1001(i) = Zadquﬁl(z) = —1}. (5.150)

Fix ng € {0,..., N}. We seek to upper bound the probability that of having less than ng neutral
dipoles. For each 1 < n < K < N, select a functional digraph v%™ € Doy .. By decomposing
the event {|I| < ng} as the disjoint union of the events {yon = v} for n < ng and K = n, we
can write

— log Zﬁw + O(log N). (5.151)

log]P’?‘Vﬂ(m < ng) < max (logf exp(—pFFx) + log | Dan K n
{ran=nFm}

(K,n):K=n,n<ng
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We have already controlled this quantity in the proof of Proposition 5.3.5. For instance, for 5 € (2,4)
one may insert (5.133) and we get

logf exp(—BFx) < n(2—p)logA+ NlogCp
{yon=7E"}

2N

— N —n = K)log (g g,

) + co(N —n) + C Ny,

for some constant ¢o > 0. This leads to optimizing the same function as in (5.85):

(K,n):K=nn<ng

max (logf exp(—pFy) + log |D2N,K7n’>
{ran=75"}

<2Nlog(2N) + N(logCs — 1 —2log 2) + max I(K,n) + CN~y,

(K;n):1<n<ng,K>n

where I(K,n) is as in (5.86). We have already optimized I (K, n) under this constraint in the proof
of Lemma 5.3.2. Applying the estimate (5.95) and the lower bound on log Zj},ﬂ found in Proposition
5.2.1, we thus find that for X\ small enough,

] _BF,) +log|D ) — log Z2
(Kvn)irfr(lg)é,n<no< o L’Y2N—7K,n} exp(=fF) + 1og | Don sl 08 ZN,p

<2Nlog N + NlogCg — N + (8 — 2)log A\(N — ng) + C(N — ng).
Hence there exist Ag, ¢ > 0 and M; > 0 depending on [ such that for any |A| < Ao,

Prs(H| < N(1 =) < exp(—=MiN7y). (5.152)

One can next observe that

o[ (G0)] = oty [en (B )| B2

Using Theorem 5.1.1 to expand the ratio of partition function together with (5.20), we find that
log]E]p]AV’ﬂ [exp(Z;gl (Afl(zi - Zdn(i))))] = O(N).
€

Together with Markov's inequality this concludes the proof of (5.22). O

5.5 Energetic control on linear statistics

In this section, we leverage on our ball-growth method for electric energy lower bounds of Section 5.2
to derive an energetic control on the fluctuations of linear statistics, which is the equivalent of [184,
Prop 2.5] for the one-component plasma. In the next proposition, we show that the log-Laplace
transform of linear statistics is of order of a power of A times N3 for some constant depending on
B, provided the test-function is smooth enough. Let us emphasize that linear statistics are in fact
expected to fluctuate much less, i.e in rate oy (v/N) for small but fixed \. Proving such a rigidity
statement would require more involved techniques.
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Proof of Proposition 5.1.3. Step 1: the electric energy bounds the fluctuations. As in the
one-component case [231, 185] or in [186], the fluctuations are well bounded by the electric energy
§|Vha|?, where hg is as in (5.38), as soon as @ is small enough. We recall the elementary argument.

Let £ be a Lipschitz test-function from A to R. Taking the Laplacian of (5.38), using Green's

formula and the Cauchy-Schwartz inequality, we have
1
5\ 2
< 196l ([, 19a) "
R2

[

On the other hand, by definition of the smeared charges, we may write

2N
J €d (277 di(s., - 55?2')))
A i=1

Combining the two relations, we deduce that

1 2% 2N
Fucty (©) < 5196l ([ 190a)" + L),

=1

2N
< V€= ) ai
i=1

hence

2N 2
[Flucty (6)]* < C|VE|2 L |Vha|? + (Z ozi) : (5.153)
R i=1
Step 2: upper bound for the electric energy. The proof consists in repeating the proof of
Proposition 5.2.1. We define the radii 7; as in that proposition and let

o {/\ if r1(2;) > 7y (5.154)

Tiny ifri(z) <7y

fora~ € (0,1) to be chosen later. We then bound from below { |Vhz|? as in the proof of Proposition
5.2.1. The points such that ri(z;) > 7 do not contribute any terms since the corresponding balls are
not inflated. We obtain the same contributions for the other points as in Proposition 5.2.1, except
with the ro(z;) replaced by v A ra(2;). Arguing also as in the proof of Corollary 5.2.2, we may obtain

1 9 1 5 1
- _ > I E - )
i{UkCr,didg, (5)=1},r1(2:) <y

ri(zi) \2
oY (MY o)
ieIdiP,@(i)eIdiP(rz(Zi) A 7>

1 1
= [Vha|* — 3 > ex(zi — 2, (3))
R i#{ Uk Cr,didg, (1)=1}

ri(z:)\2  /r(zi)\2
- C + 1, e — C(N — ).
ieldip,gi)eldip ( rz(zi) ) ( v ) 1(2:)<y ( n)

We may rewrite this as
1
el [Vhal? < A1 + C(Az + A3),
R
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with _
Ay = Fx(Zan) — FYP(Zan),
rl(zi)

A2 - ro (Zz)

ieIdip o (i)eIdiP

As = Z (rl(zi))21r1(2i)<’y.

ieTdip ¢ (3)eldip

)2+(N—n),

Step 3: bounding exponential moments of the electric energy. Let us estimate the exponential
moments of A; and A, separately. One has

1 .
Epy [exp(8A1)] = —— | exp(—BFP(Zan))dZon.
B ZN,,B
In view of Lemma 5.3.2 and Proposition 5.4.1 we have

log ey [exp(B41)] < CN(|log A 520 + AP 2104y + A2 log AP 154 + A?|log A|1g=4).

(5.155)
For the term A5, we have already shown that

logEP&ﬁ[eXp( Z (rl(zz)>2>] < ON(Jlog M| '1g=2

. . rol z2;
ieTdip o (i)edip 2(21)

+ N2 15004y + A2 log AP 1g_s + A?|log A|1g=s).  (5.156)

Using Corollary 5.2.2 we find that

1 di
EPJAV’B[etAg’] < % Jexp(tAg — BF)\p + G),

where Fiip is as in (5.64) and G given by

ec B (50) rew-n

i€ IdiP o (i) IdiP

with n being the number of neutral dipoles. Let us denote Q the reduced dipole model

1 i
dQ = —— exp(—BFYP)d Zan.
Ky

Using Holder's inequality, one may write
Egpy [exp(tAs)] < Eg[exp(2tAs)]|2Eq[e2¢]2 —2. (5.157)

Inserting the upper bound on KJ)\\fB given by Lemma 5.3.2, the lower bound on Zﬁ,ﬂ of Proposition
5.4.1, the auxiliary estimate of Lemma 5.3.4, we reduce to

1
log prﬁ[exp(tAg)] <3 log Eg[exp(2tAs)]
+ CN([log Al "M 1520 + AP 21 5c(0.4) + A log AP15_q + A?| log A|154).
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After some computations we find that

g

logfexp(tAg - ﬁFiip) < ENlogN — N+ Nlog ()\Q_ﬁ(3’515>2 + |log A|1g—2

+ Clg_s + 72_51&(274) + )\4_67_2156(4@) + | log A\7_215:4) + Clog N
B
2
+ ON (10 A 502 + (V1) L geay + (V02 08 M Laoa + (V)54

< ENlog N — N + Nlog(A\*?Cp)1p=2 + Nlog | log A[15—5

We thus conclude combining the last display with (5.155) and (5.156) that

2
log EP?\Vﬁ {exp (fRQ |Vhg| )}

< CN(| log Al =2 + (A1) 1geiza) + (A7) log AlLp—q + (A/7)215>4)- (5.158)

Step 4: conclusion. Combining (5.158) with (5.153), we obtain

%log Epy , [exp(|Fluct ()]
< C[V¢|L» (N’YQ + CN(! log A" g2 + (M) g, + (M) og Al ge(u,0)
+ (V1) 1gog + N([log Al gmg + N 2104 + A2 log A?1-y + A?| log >\|15>4)). (5.159)
Optimizing over v, we may then choose ~ as follows:

|log A|~1/2 if B=2

e if Be (2,4
o if 5 (2,4) (5.160)
A2 log A\|V4 i g =4
AL/2 if Be (4,0).
Inserting this into (5.159) concludes the proof of the proposition. O

5.6 Convergence to a Poisson dipole process

In this subsection we show that the empirical field defined in (5.30) satisfies in the large NV limit and
as A tends to 0, a large deviations principle with rate function given by a certain entropy on point
processes, which differs from the specific relative entropy of [183]. Recall the definitions of (E,T),
in, P4, PAP from (5.28), (5.30), (5.31) and (5.32). Let us recall that the Borel o-algebra on E
can be defined by the o-algebra generated by functions of the form

14, ()18, (Yny) - - - 1, (20,) 1B, (Yn,, ), (5.161)

where ny,...,n, € I, Ay,..., A, are bounded measurable sets of R?, By, ..., B, measurable sets
of R2. We have thus defined a probability space (E, A). One can check that the topological space
(E,T) can be endowed with a distance by setting

1 Sup {| S (F(@iyi) = F(@h¥) 1, aren, | fr g € Lip (R? x RQ)}

d(C,C') = ]; o ICI(As) + €] (Ax) ’

(5.162)
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where Ay = [0,VE]%.
Let Cy(E) be the set of continuous bounded functions from (E,7T) to (R,|-|). The relative
entropy (5.33) with respect to P4P can be expressed as

Ent[P | PYP] = sup (Ep[f] — logEpan[e’]). (5.163)
feCy(E)

The proof of Theorem 5.1.2 follows the line of reasoning of the Gartner-Ellis theorem, also used
in [212, Chapter 6] to prove a process-level LDP for the empirical field in a discrete setting. The
first step is to replace the large deviation principle of [130] for the Poisson process by an analogous
statement for our Poissonian dipole process. For all C = >3, ; (5, ,,) € £ and z € A, we let

iel
O - C = > 00—y (5.164)
iel
We also define the maps
niCe B f 59, cdz € PE), (5.165)
’An‘ An
jn :Ce B — ’A1|f 5(1,01-C)d$ € P(A X E) (5.166)
n| JA,

Lemma 5.6.1. Let (A,,) be an increasing sequence of cubes such that U, A, = R%. Let R, be the
push-forward of PYP by the map (5.165). Then (R,,) satisfies a large deviation principle at speed
|A,| with rate function Ent(- | P4P).

To prove Lemma 5.6.1, we adapt almost line by line the proof of [212, Chapter 6]. We begin
by showing that given a local continuous bounded function on E, the limit (5.167) is well-defined,
thus defining the so-called pressure. Using the variational characterization of the entropy, this will
prove the upper bound for all compact sets, which can be extended to an upper bound for all closed
sets by exponential tightness. The proof of the lower bound is similar to Cramer’s theorem in that
it uses a change of measure but the law of large numbers is replaced by the ergodic theorem.

Proof. Without loss of generality one may assume that A,, = [0, v/n]?.

Step 1: study of the pressure. Let f € Cpoc(E). One shall first prove that the following limit is

well-defined: .

—— log Epaip [expf f(CN(x))dx] . (5.167)
An

nl

The proof proceeds by a super-additivity argument. For each n € N*, denote

pn(f) = A1n|log Epaip [exp f(CN(x))da:] . (5.168)

ATL

As in [212, Prop 6.14], we cover the set A, with shifted well separated cubes of size m for some

m < N. Let m < N and Aqgl) c A, forle {1,...,k?} be k? shifted copies of A;, chosen so that
the distance between each consecutive subcube is at distance 7 in each direction. One may take
(1]

k= [%i’iﬁj One can check that the volume not covered by the union of the Aj;'s satisfies

|An| — k2|Am‘ < ’An|"9N,m
with
lim lim &y, = 0. (5.169)

m—00 n—00
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By construction the variables SAU) f(Cn(x))dz, 1 <1 < k? are independent. We then conclude with
(5.169) and independence that

[Ar pm(f).

< m o | 6. 1\9Pm
pn(f) RN, HfHOO + (2771 +2r — 1)2

We deduce that (5.167) is well-defined. In addition we find that if f is bounded and F,, -measurable,

then
1

(1) < T LB E [exp(| A ). (5.170)
Step 2: duality. We now put the space P(E) in duality with Cpjoc(E). We claim that for all
Qe P(E), .

P*(Q) = Ent(Q | PIP), (5.171)
where

p*(Q):= sup (Eq[f]—p(f))

J€Cb,10c(E)
Let f € Cpioc(E). Let m such that f = fl|a,,. In view of (5.170), we have

p'(@ = Eo[ ] - (i) = i (Balf - gL,

Taking the supremum over f € Cpo.(E) yields

p*(Q) = Ent(Q|a,, | Pla,,)

and therefore p*(Q) = Ent(Q | P). Conversely, f = S, f(Cn(x))dw is Fa,,,,-measurable and

m+n

Ent(Qansn | Plansn) = Eolf] —logE[e/] = [Aul(Eqlf] — pa(/)),

where p,(f) is as in (5.168). By letting n tend to infinity, we thus find

Ent(Q | P) = Eq[f] — p(f)

and therefore Ent(Q | P) = p*(Q).

Step 3: exponential tightness. Let us now show that (j,,) is tight, meaning that for all b > 0 there
exists a compact K, c P(E) such that PP (5, ¢ K,) < e 1 For R >0, let Ng: Ax E — R
be the map such that ANz(r,C) = |C*| n Ag. One can observe that jy is supported on the set

(] {PeP(Ax E): Ep[Ng] < 27R?}, (5.172)
ReN*
which is a compact set of P(E), see for instance [183, Lemma 7.7]. This proves that (j,) is tight.

Step 4: upper bound. The upper bound can be first proved for compact subsets proceeding as
in the proof of Cramer’s theorem, see also [212, Theorem 4.24]. It then follows from (5.171) that
for any compact set F' < P(E),

1 . .
limsup— log P4 (i € F) < — inf Ent(Q | P7).
€

n—oo N

This upper bound can be generalized to closed sets by using the fact that (i) is exponentially tight
in P(A x E).
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Step 5: density of ergodic processes. We denote P; (E) the set of point processes on E which
are translation invariant (or stationary) and Py .(E) < Py (E) the subset of extreme points of
P1s(E). Note that Py 4(E) is exactly the set of ergodic processes on E. Recall that a stationary
point process P is ergodic if and only if for all A € 7 which is invariant by translation, P(A) € {0, 1}.
We claim that for all Q € Py s(E), there is a sequence of ergodic processes (Qx) which converges
weakly to @ and such that

Jim Ent(Qy | PPy — Ent(Q | PIP).
—00

The proof can be adapted readily from [212, Lemma 6.9].

Step 6: lower bound. Let O be an open subset of P(E). Let QQ € P(E) be an ergodic process.

One can assume that Ent(Q | P4P) < oo, which implies that for all A, Q|a,, has a Radon-Nikodym

. . d . .
derivative fr = %. One can thus perform the following change of variables:

1 dio / - 1
A 0e PG, < 0) - |1ogjlo<jn>f 40,
1
] ~1dQ,
Og[Q(jneO) J;'neO fu @ ]

1 J
- log frd@n,
[ValQ(jn € O) Jj.c0

where we have used Jensen's inequality in the last line. Using the fact that zlogz > —% for all
z > 0, we find that

log Q(]n € O)

1
|V|

log Q(]n € O)

|V|

IVI

1 1 1
g Qin & O) = G 2 oywn @l | Pla) = o = oy

Pdip(jn € O) |V |

1
|An]
One may then justify that

nh_{%o Qine0) =1
and therefore

1 . .
Jim, 1o PG € 0) = —Ent(Q| P),

which gives

divj e 0O)>— inf Ent dipy, 5.173
THOO,A‘ Pne0) 2= inf  Ent(@Q]PT) (5.173)

Arguing with the density result of Step 5, this concludes the proof of the lower bound for all closed
sets. O

Next one extends the large deviations principle of Lemma 5.6.1 to the sequence of the push-
forwards of P?\/,B by (5.30). There are three tasks to deal with: one should handle the tagged
microscopic field instead of jy, reduce the problem to an LDP under the dipole measure Q and
finally deal with Bernoulli variables instead of Poissonian variables.

Proof of Theorem 5.1.2. Step 1: reduction to the dipole measure. To lighten the notation, set
1 TN
Tog X if =2
N2 if 2,4
™= Fae24) (5.174)
N|log\J? if p=4
N|log A| if B> 4.
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The results of the previous sections show that there exists a constant C' > 0 such that for every
measurable subset B of A2V,

logf exp(—fF)) —logf exp(—/BFiip) < CNmj.
B B
In addition, one also has the stronger statement
logJ exp(—pF)) — logf exp(—BFiip(ZgN))ngN < CNyy,
B Bn{|I¢|<CoNay

where I is asin (5.19). Let n = N(1—Cpay). Now assume that B is given by B = {in(Xn,Yn) €
G} where G is a measurable subset of P(A x E). Let us denote

Bn = {(XN,YN) € A% X ()\_IAN)N 35N(XN,YN) € G}

One then reduces the integral over dZ,n above as an integral on 2n variables. Given Z,, € A",
we let 2, (Z2y,) be the nearest-neighbor graph of Zy, and let v € Da,, ., be a graph with n neutral
2-cycles. Using the upper bound (5.116) of Lemma 5.3.4, we find

log j exp(fﬁF;hp)
Br{|I¢|<CoNAS—2

= log< Z n! JB Hexp( g (u;) )du1 ... du,dzy . ..dwn) + O(Nvy).

n=N(1—Cor?-2) ~lrzn=1}i=1

After a series of reduction one then estimates

log j exp(—ﬁF;hp)
B{|I¢|<CoNAS~2

= log< Z f Hexp( g (u;) )du1 ... du,dzy . ..da:n) + O(Nvy).

n=N(1—CorB~2)

Now by scaling,

JB ﬁ exp <§g,\(uz)> dU,dX,,

— \(2-8) y—n 1B(N1/2Xn, N1/2YN) H exp(égl (W))dUnan
A%X(}\flAN)n i=1 2

— An(Z_ﬁ)N_nJ i (A_lA " 1{3n(Xn,Un)€G}dM%n(Un)an + O<NFY)\)

We finally obtain
logf Gexp(—BF,\) =N+ N((2— B)log A\l=2 + log | log \|15-2)
INE

N
B
1 1; P (u;))dX ydUy.  (5.175
* OgJANx(A IAN)NH In (XN, Un)e GeXp(2g1(u )) ndUn ( )
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Step 2: from Poisson to Bernoulli. The only differences between the above integral and Py(j, €
(7) are the fact that the number of positive charges falling into a given domain is not Poissonian but
rather Bernoulli and the fact that the u;'s are distributed according to the law 14 truncated at A~
Arguing as in [183], we can prove that for all closed set F' < P(A x E) and open set O < P(A x E),

1 — _
lim sup lim sup — logf 15, (X Un)eF}du%"(Un)an < — inf Ent(Q | PP),
A0 n—ooo M AR X(A=1AL)" ’ QeF

lim inf lim inf 1 log

_ ®n : ERoN ~di
pinlmint Slog [ 1 pgeo i U0X, < — jnf En(Q] PU7)

QeO

Inserting this into (5.175) yields the claimed result. O



[1]

]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Bibliography

Angel Alastuey and Ph. A. Martin. Decay of correlations in classical fluids with long-range
forces. Journal of Statistical Physics, 39:405-426, 1985. (Cited on page 145.)

Giovanni Alberti, Rustum Choksi, and Felix Otto. Uniform energy distribution for an isoperi-
metric problem with long-range interactions. Journal of the American Mathematical Society
Mathematics Subject Classification, 18:569-605, 04 2009. (Cited on page 10.)

David Aldous and Persi Diaconis. Shuffling cards and stopping times. Am. Math. Mon.,
03:333-348, 1986. (Cited on pages 13 and 28.)

Yacin Ameur, H3kan Hedenmalm, and Nikolai Makarov. Fluctuations of eigenvalues of random
normal matrices. Duke mathematical journal, 159(1):31-81, 2011. (Cited on page 222.)

Greg W. Anderson, Alice Guionnet, and Ofer Zeitouni. An Introduction to Random Matrices.
Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2009. (Cited on

page 9.)

Greg W. Anderson, Alice Guionnet, and Ofer Zeitouni. An introduction to random matrices,
volume 118 of Cambridge Studies in Advanced Mathematics. Cambridge University Press,
Cambridge, 2010. (Cited on pages 31 and 54.)

Cécile Ané, Sébastien Blachére, Djalil Chafai, Pierre Fougéres, lvan Gentil, Florent Malrieu,
Cyril Roberto, and Grégory Scheffer. Sur les inégalités de Sobolev logarithmiques, volume 10.
Paris: Société Mathématique de France, 2000. (Cited on pages 41, 69, 70 and 103.)

T.M. Apostol. Modular Functions and Dirichlet Series in Number Theory. Graduate Texts in
Mathematics. Springer New York, 1997. (Cited on pages 153 and 155.)

Scott Armstrong and Sylvia Serfaty. Local laws and rigidity for coulomb gases at any tem-
perature. arXiv: Mathematical Physics, 2019. (Cited on pages 10, 14, 25, 83, 145, 149, 222,
223 and 226.)

Scott Armstrong and Wei Wu. C? regularity of the surface tension for the V¢ interface
model. Communications on Pure and Applied Mathematics, 75(2):349-421, 2022. (Cited on
pages 18, 23, 82, 93, 145, 158 and 204.)

Gérard Ben Arous and Alice Guionnet. Large deviations for wigner's law and voiculescu's
non-commutative entropy. Probability Theory and Related Fields, 108:517-542, 1997. (Cited
on page 8.)

Volker Bach and Jacob Schach Mgller. Correlation at low temperature: |. exponential decay.
Journal of Functional Analysis, 203:93-148, 2003. (Cited on pages 18 and 145.)

Timothy H. Baker and Peter J. Forrester. The Calogero-Sutherland model and polynomials
with prescribed symmetry. Nuclear Phys. B, 492(3):682-716, 1997. (Cited on pages 41
and 44.)

Dominique Bakry. Remarques sur les semigroupes de Jacobi. Number 236, pages 23—-39. 1996.
Hommage a P. A. Meyer et J. Neveu. (Cited on page 44.)



Bibliography 265

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Dominique Bakry and Michel Emery. Diffusions hypercontractives. In Jacques Azéma and
Marc Yor, editors, Séminaire de Probabilités XIX 1983/84, pages 177-206, Berlin, Heidelberg,
1985. Springer Berlin Heidelberg. (Cited on pages 96, 100 and 164.)

Dominique Bakry, lvan Gentil, and Michel Ledoux. Analysis and geometry of Markov diffusion
operators, volume 348. Cham: Springer, 2014. (Cited on pages 69, 70 and 71.)

Dominique Bakry and Dominique Michel. Sur les inégalités tkg. Séminaire de probabilités de
Strasbourg, 26:170-188, 1992. (Cited on page 98.)

Julien Barré, Freddy Bouchet, Thierry Dauxois, and Stefano Ruffo. Large deviation techniques
applied to systems with long-range interactions. Journal of Statistical Physics, 119(3):677—
713, 2005. (Cited on pages 7 and 144.)

Gerardo Barrera. Abrupt convergence for a family of Ornstein-Uhlenbeck processes. Braz. J.
Probab. Stat., 32(1):188-199, 2018. (Cited on page 32.)

Gerardo Barrera, Michael Anton Hbégele, and Juan Carlos Pardo. The cutoff phenomenon
in total variation for nonlinear Langevin systems with small layered stable noise. preprint
arXiv:2011.10806v1, 2020. (Cited on pages 29 and 39.)

Gerardo Barrera, Michael Anton Hogele, and Juan Carlos Pardo. Cutoff thermalization for
Ornstein-Uhlenbeck systems with small Lévy noise in the Wasserstein distance. preprint
arXiv:2009.10590v1 to appear in J. Stat. Phys. 2021, 2020. (Cited on pages 29, 32 and 39.)

Gerardo Barrera and Milton Jara. Thermalisation for small random perturbations of dynamical
systems. The Annals of Applied Probability, 30(3):1164 — 1208, 2020. (Cited on pages 13,
29 and 39.)

Gerardo Barrera and Juan Carlos Pardo. Cut-off phenomenon for Ornstein-Uhlenbeck processes
driven by Lévy processes. Electron. J. Probab., 25:Paper No. 15, 33, 2020. (Cited on pages 29
and 39.)

Roland Bauerschmidt, Paul Bourgade, Miika Nikula, and Horng-Tzer Yau. The two-
dimensional coulomb plasma: quasi-free approximation and central limit theorem. arXiv
preprint arXiv:1609.08582, 2016. (Cited on pages 12, 14, 26, 83, 111 and 222.)

Marc Baus and Jean-Pierre Hansen. Statistical mechanics of simple coulomb systems. Physics
Reports, 59(1):1-94, 1980. (Cited on page 7.)

Florent Bekerman, Alessio Figalli, and Alice Guionnet. Transport maps for 5-matrix models
and universality. Communications in mathematical physics, 338(2):589-619, 2015. (Cited on
page 145.)

Florent Bekerman, Thomas Leblé, and Sylvia Serfaty. CLT for fluctuations of S-ensembles
with general potential. Electronic Journal of Probability, 23, 2018. (Cited on pages 11, 12,
76, 77, 80, 81 and 111.)

Gérard Ben Arous and Alice Guionnet. Large deviations for Wigner's law and Voiculescu's
non-commutative entropy. Probab. Theory Related Fields, 108(4):517-542, 1997. (Cited on
pages 42 and 58.)


https://arxiv.org/abs/2011.10806v1
https://arxiv.org/abs/2009.10590v1

266

Bibliography

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Vadim L. Berezinsky. Destruction of long range order in one-dimensional and two-dimensional
systems having a continuous symmetry group. i. classical systems. Sov. Phys. JETP, 32:493—
500, 1971. (Cited on pages 11 and 218.)

Robert J. Berman and Magnus Onnheim. Propagation of chaos for a class of first order models
with singular mean field interactions. SIAM Journal on Mathematical Analysis, 51(1):159-196,
2019. (Cited on page 9.)

Bruce C. Berndt. On the Hurwitz zeta-function. Rocky Mountain Journal of Mathematics,
2(1):151 — 158, 1972. (Cited on pages 75, 87, 89 and 147.)

Charles Bertucci, Mérouane Debbah, Jean-Michel Lasry, and Pierre-Louis Lions. A spectral
dominance approach to large random matrices. preprint arXiv:2105.08983v1, 2021. (Cited on
page 39.)

Philippe Biane and Roland Speicher. Free diffusions, free entropy and free Fisher information.
Ann. Inst. H. Poincaré Probab. Statist., 37(5):581-606, 2001. (Cited on page 42.)

Wolfgang Bietenholz and Urs Gerber. Berezinskii-kosterlitz-thouless transition and the haldane
conjecture: Highlights of the physics nobel prize 2016. arXiv preprint arXiv:1612.06132, 2016.
(Cited on pages 7 and 218.)

Wolfgang Bietenholz and Urs Gerber. Berezinskii-Kosterlitz-Thouless transition and the Hal-
dane conjecture: Highlights of the physics nobel prize 2016. arXiv preprint arXiv:1612.06132,
2016. (Cited on pages 11, 218 and 219.)

Xavier Blanc and Mathieu Lewin. The Crystallization Conjecture: A Review. EMS Surveys in
Mathematical Sciences, 2(2):255-306, 2015. Final version to appear in EMS Surv. Math. Sci.
(Cited on pages 8 and 76.)

Sergey Bobkov and Michel Ledoux. From brunn-minkowski to brascamp-lieb and to logarithmic
sobolev inequalities. Geometric and Functional Analysis, 10, 12 2000. (Cited on page 17.)

Thierry Bodineau, Isabelle Gallagher, Laure Saint-Raymond, and Sergio Simonella. Statistical
dynamics of a hard sphere gas: fluctuating boltzmann equation and large deviations. arXiv
preprint arXiv:2008.10403, 2020. (Cited on page 146.)

Francois Bolley, Djalil Chafai, and Joaquin Fontbona. Dynamics of a planar Coulomb gas.
Ann. Appl. Probab., 28(5):3152-3183, 2018. (Cited on page 39.)

Francois Bolley, lvan Gentil, and Arnaud Guillin. Convergence to equilibrium in Wasserstein
distance for Fokker-Planck equations. J. Funct. Anal., 263(8):2430-2457, 2012. (Cited on
page 71.)

Sergiy V. Borodachov, Douglas P. Hardin, and Edward B. Saff. Discrete energy on rectifiable
sets. Springer Monographs in Mathematics, 2019. (Cited on page 144.)

Alexei Borodin, Vadim Gorin, and Alice Guionnet. Gaussian asymptotics of discrete [ -
ensembles. Publications Mathématiques de L'IHES, 125:1-78, 2017. (Cited on page 7.)

Gaétan Borot and Alice Guionnet. Asymptotic expansion of beta matrix models in the multi-cut
regime. arXiv preprint arXiv:1303.1045, 2013. (Cited on page 10.)


https://arxiv.org/abs/2105.08983v1

Bibliography 267

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Gaétan Borot and Alice Guionnet. Asymptotic expansion of S matrix models in the one-cut
regime. Communications in Mathematical Physics, 317(2):447-483, 2013. (Cited on pages 10,
11, 76 and 81.)

Paul Bourgade. Extreme gaps between eigenvalues of wigner matrices. Journal of the European
Mathematical Society, 2021. (Cited on page 82.)

Paul Bourgade, Laszlé Erdés, and Horng-Tzer Yau. Bulk universality of general S-ensembles
with non-convex potential. Journal of mathematical physics, 53(9):095221, 2012. (Cited on
pages 9, 11, 12, 17, 76, 77, 78, 81, 82, 83, 101, 102, 104, 107, 145, 147, 164, 175, 180
and 215.)

Paul Bourgade, Laszlé Erdds, and Horng-Tzer Yau. Edge universality of 3 ensembles. Com-
munications in Mathematical Physics, 332(1):261-353, 2014. (Cited on pages 9, 76, 81
and 147.)

Paul Bourgade, Laszl6 Erdds, and Horng-Tzer Yau. Edge universality of beta ensembles.
Comm. Math. Phys., 332(1):261-353, 2014. (Cited on page 63.)

Paul Bourgade, Laszl6 Erd6s, and Horng-Tzer Yau. Universality of general S-ensembles.
Duke Mathematical Journal, 163(6):1127-1190, 2014. (Cited on pages 9, 11, 12, 76, 81, 82
and 145.)

Paul Bourgade, Laszlo Erd6s, Horng-Tzer Yau, and Jun Yin. Fixed energy universality for gen-
eralized wigner matrices. Communications on Pure and Applied Mathematics, 69(10):1815—
1881, 2016. (Cited on page 9.)

Paul Bourgade, Krishnan Mody, and Michel Pain. Optimal local law and central limit theorem
for S-ensembles. Communications in Mathematical Physics, 390(3):1017-1079, 2022. (Cited
on pages 11, 12, 76, 77 and 81.)

Jeanne Boursier. Optimal local laws and CLT for the long-range circular Riesz gas. arXiv
preprint arXiv:2112.05881, 2021. (Cited on pages 21, 152, 153, 164, 175, 210 and 211.)

Jeanne Boursier. Decay of correlations and thermodynamic limit for the circular riesz gas.
arXiv preprint arXiv:2209.00396, 2022. (Cited on pages 22, 23 and 26.)

Jeanne Boursier, Djalil Chafai, and Cyril Labbé. Universal cutoff for dyson ornstein uhlenbeck
process. arXiv preprint arXiv:2107.14452, 2021. (Cited on page 18.)

Herm Jan Brascamp and Elliott H. Lieb. On extensions of the Brunn-Minkowski and Prékopa-
Leindler theorems, including inequalities for log concave functions, and with an application to
the diffusion equation. J. Functional Analysis, 22(4):366-389, 1976. (Cited on pages 77, 100
and 162.)

Herm Jan Brascamp and Elliott H. Lieb. On extensions of the brunn-minkowski and prékopa-
leindler theorems, including inequalities for log concave functions, and with an application to
the diffusion equation. Journal of Functional Analysis, 22(4):366-389, August 1976. (Cited
on page 162.)

Johann S Brauchart, Douglas P. Hardin, and Edward B. Saff. The riesz energy of the nth
roots of unity: an asymptotic expansion for large n. Bulletin of the London Mathematical
Society, 41(4):621-633, 2009. (Cited on page 8.)



268

Bibliography

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Johann S. Brauchart, Douglas P. Hardin, and Edward B. Saff. The next-order term for
optimal riesz and logarithmic energy asymptotics on the sphere. Recent advances in orthogonal
polynomials, special functions, and their applications, 578:31-61, 2012. (Cited on page 8.)

Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions.
Communications on pure and applied mathematics, 44(4):375-417, 1991. (Cited on page 16.)

Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions.
Communications on Pure and Applied Mathematics, 44:375-417, 1991. (Cited on page 160.)

Didier Bresch, Pierre-Emmanuel Jabin, and Zhenfu Wang. On mean-field limits and quanti-
tative estimates with a large class of singular kernels: application to the patlak—keller—segel
model. Comptes Rendus Mathematique, 357(9):708-720, 2019. (Cited on page 9.)

Haim Brezis and Petru Mironescu. Gagliardo-Nirenberg inequalities and non-inequalities: the
full story. Annales de I'Institut Henri Poincaré (C) Non Linear Analysis, 35(5):1355-1376,
2018. (Cited on page 211.)

Jean Bricmont, JR Fontaine, and LJ Landau. On the uniqueness of the equilibrium state for
plane rotators. Communications in Mathematical Physics, 56(3):281-296, 1977. (Cited on
page 218.)

Luis Caffarelli. Monotonicity properties of optimal transportation9and the fkg and related
inequalities. Communications in Mathematical Physics, 214:547-563, 01 2000. (Cited on
page 17.)

Luis Caffarelli, Chi Hin Chan, and Alexis Vasseur. Regularity theory for parabolic nonlinear
integral operators. Journal of the American Mathematical Society, 24(3):849-869, 2011.
(Cited on page 146.)

Alessandro Campa, Thierry Dauxois, and Stefano Ruffo. Statistical mechanics and dynamics
of solvable models with long-range interactions. Physics Reports, 480(3-6):57-159, 20009.
(Cited on pages 7 and 144.)

Pietro Caputo, Cyril Labbé, and Hubert Lacoin. Mixing time of the adjacent walk on the
simplex. Ann. Probab., 48(5):2449-2493, 2020. (Cited on page 39.)

Pietro Caputo, Cyril Labbé, and Hubert Lacoin. Spectral gap and cutoff phenomenon for the
Gibbs sampler of V¢ interfaces with convex potential. arXiv e-prints, page arXiv:2007.10108,
2020. (Cited on pages 13, 29 and 39.)

José A. Carrillo, Robert J. McCann, and Cédric Villani. Kinetic equilibration rates for granular
media and related equations: entropy dissipation and mass transportation estimates. Rev.
Mat. Iberoamericana, 19(3):971-1018, 2003. (Cited on pages 42 and 44.)

José A. Carrillo, Robert J. McCann, and Cédric Villani. Contractions in the 2-Wasserstein
length space and thermalization of granular media. Arch. Ration. Mech. Anal., 179(2):217-
263, 2006. (Cited on pages 42 and 44.)

José Antonio Carrillo, Young-Pil Choi, and Maxime Hauray. The derivation of swarming
models: mean-field limit and wasserstein distances. In Collective dynamics from bacteria to
crowds, pages 1-46. Springer, 2014. (Cited on page 9.)



Bibliography 269

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

Pierre Cartier. Inégalités de corrélation en mécanique statistique. In Séminaire Bourbaki vol.
1972/73 Exposés 418—435, pages 242-264. Springer, 1974. (Cited on pages 77 and 96.)

Patrick Cattiaux, Max Fathi, and Arnaud Guillin. Self-improvement of the bakry-emery cri-
terion for poincaré inequalities and wasserstein contraction using variable curvature bounds.
Journal de Mathématiques Pures et Appliquées, 166:1-29, 2022. (Cited on page 163.)

Emmanuel Cépa and Dominique Lépingle. Diffusing particles with electrostatic repulsion.
Probab. Theory Related Fields, 107(4):429-449, 1997. (Cited on page 30.)

Djalil Chafai. Entropies, convexity, and functional inequalities: on ®-entropies and ®-Sobolev
inequalities. J. Math. Kyoto Univ., 44(2):325-363, 2004. (Cited on page 71.)

Djalil Chafai. Binomial-Poisson entropic inequalities and the M/M /oo queue. ESAIM, Probab.
Stat., 10:317-339, 2006. (Cited on pages 45 and 66.)

Djalil Chafai. Aspects of coulomb gases. arXiv preprint arXiv:2108.10653, 2021. (Cited on
pages 7 and 9.)

Djalil Chafai, David Garcia-Zelada, and Paul Jung. Macroscopic and edge behavior of a planar
jellium. Journal of Mathematical Physics, 61(3):033304, 2020. (Cited on page 15.)

Djalil Chafai, David Garcia-Zelada, and Paul Jung. At the edge of a one-dimensional jellium.
Bernoulli, 28(3):1784-1809, 2022. (Cited on page 15.)

Djalil Chafai, Nathael Gozlan, and Pierre-André Zitt. First-order global asymptotics for con-
fined particles with singular pair repulsion. The Annals of Applied Probability, 24(6):2371-
2413, 2014. (Cited on pages 8, 14 and 144.)

Djalil Chafai and Joseph Lehec. On Poincaré and logarithmic Sobolev inequalities for a class
of singular Gibbs measures. In Geometric aspects of functional analysis. Israel seminar (GAFA)
2017-2019. Volume 1, pages 219-246. Cham: Springer, 2020. (Cited on pages 18, 30, 34,
36, 39, 40, 41, 42, 44 and 69.)

Djalil Chafai, Edward B. Saff, and Robert S. Womersley. On the solution of a riesz equilibrium
problem and integral identities for special functions, 2021. (Cited on pages 8 and 76.)

Sourav Chatterjee. Rigidity of the three-dimensional hierarchical coulomb gas. Probability
Theory and Related Fields, 175(3):1123-1176, 2019. (Cited on pages 12 and 83.)

Guan-Yu Chen and Laurent Saloff-Coste. The cutoff phenomenon for ergodic Markov pro-
cesses. Electron. J. Probab., 13:no. 3, 2678, 2008. (Cited on pages 28 and 43.)

Louis HY Chen, Larry Goldstein, and Qi-Man Shao. Normal approximation by Stein’s method.
Springer Science & Business Media, 2010. (Cited on page 123.)

Reda Chhaibi and Joseph Najnudel. Rigidity of the sine-beta process. arXiv preprint
arXiv:1804.01216, 2018. (Cited on pages 13 and 148.)

Henry Cohn and Abhinav Kumar. Universally optimal distribution of points on spheres. Journal
of the American Mathematical Society, 20(1):99-148, 2007. (Cited on page 8.)

Henry Cohn, Abhinav Kumar, Stephen D Miller, Danylo Radchenko, and Maryna Viazovska.
Universal optimality of the e 8 and leech lattices and interpolation formulas. arXiv preprint
arXiv:1902.05438, 2019. (Cited on page 8.)



270

Bibliography

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

Jean-Michel Combes and Lawrence E. Thomas. Asymptotic behaviour of eigenfunctions for
multiparticle schrédinger operators. Communications in Mathematical Physics, 34:251-270,
1973. (Cited on pages 146, 150 and 168.)

Benjamin Dadoun, Matthieu Fradelizi, Olivier Guédon, and P-A Zitt. Asymptotics of the inertia
moments and the variance conjecture in schatten balls. arXiv preprint arXiv:2111.07803, 2021.
(Cited on page 12.)

Paul Dario and Wei Wu. Massless phases for the villain model in d> 3. arXiv preprint
arXiv:2002.02946, 2020. (Cited on pages 18, 82, 129 and 145.)

Amir Dembo and Ofer Zeitouni. Large deviations techniques and applications. Jones and
Bartlett Publishers, Boston, MA, 1993. (Cited on page 14.)

David Dereudre. Introduction to the theory of gibbs point processes. In Stochastic Geometry,
pages 181-229. Springer, 2019. (Cited on pages 12 and 148.)

David Dereudre, Adrien Hardy, Thomas Leblé, and Myléne Maida. DLR equations and rigidity
for the sine- process. Communications on Pure and Applied Mathematics, 74(1):172-222,
2021. (Cited on pages 12, 13, 145, 147, 148, 208 and 209.)

David Dereudre and Thibaut Vasseur. Number-rigidity and [-circular riesz gas. arXiv preprint
arXiv:2104.09408, 2021. (Cited on page 148.)

Jean-Dominique Deuschel, Giambattista Giacomin, and Dmitry loffe. Large deviations and
concentration properties for V — ¢ interface models. Probability Theory and Related Fields,
117:49-111, 2000. (Cited on pages 18 and 145.)

C. Deutsch and M. Lavaud. Equilibrium properties of a two-dimensional coulomb gas. Physical
Review A, 9(6):2598-2616, 1974. (Cited on page 219.)

Luc Devroye, Abbas Mehrabian, and Tommy Reddad. The total variation distance between
high-dimensional Gaussians. preprint arXiv:1810.08693v5, 2018. (Cited on pages 48 and 67.)

Persi Diaconis. The cutoff phenomenon in finite Markov chains. Proc. Nat. Acad. Sci. U.S.A.,
93(4):1659-1664, 1996. (Cited on pages 13 and 28.)

Persi Diaconis and Laurent Saloff-Coste. Logarithmic Sobolev inequalities for finite Markov
chains. Ann. Appl. Probab., 6(3):695-750, 1996. (Cited on pages 39 and 45.)

Persi Diaconis and Mehrdad Shahshahani. Time to reach stationarity in the Bernoulli-Laplace
diffusion model. SIAM J. Math. Anal., 18:208-218, 1987. (Cited on pages 13, 39 and 45.)

Jian Ding, Rishideep Roy, and Ofer Zeitouni. Convergence of the centered maximum of log-
correlated gaussian fields. The Annals of Probability, 45(6A):3886-3928, 2017. (Cited on
page 12.)

Catherine Donati-Martin, Benjamin Groux, and Myléne Maida. Convergence to equilibrium
in the free Fokker-Planck equation with a double-well potential. Ann. Inst. Henri Poincaré,
Probab. Stat., 54(4):1805-1818, 2018. (Cited on page 42.)

Guillaume Dubach. Powers of ginibre eigenvalues. Electronic Journal of Probability, 23:1-31,
2018. (Cited on page 7.)


https://arxiv.org/abs/1810.08693v5

Bibliography 271

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

loana Dumitriu and Alan Edelman. Matrix models for beta ensembles. J. Math. Phys.,
43(11):5830-5847, 2002. (Cited on pages 34 and 44.)

Freeman J. Dyson. A Brownian-motion model for the eigenvalues of a random matrix. J.
Mathematical Phys., 3:1191-1198, 1962. (Cited on pages 7, 9, 30, 54, 76 and 144.)

Alan Edelman. The random matrix technique of ghosts and shadows. Markov Process. Relat.
Fields, 16(4):783-792, 2010. (Cited on page 50.)

Alan Edelman and N. Raj Rao. Random matrix theory. Acta Numerica, 14:233-297, 2005.
(Cited on page 44.)

Alexandre Engoulatov. A universal bound on the gradient of logarithm of the heat kernel for
manifolds with bounded Ricci curvature. J. Funct. Anal., 238(2):518-529, 2006. (Cited on
page 41.)

David Eppstein, Michael S. Paterson, and Foong Frances Yao. On nearest-neighbor graphs.
Discrete Comput. Geom., 17(3):263-282, 1997. (Cited on page 232.)

Matthias Erbar, Martin Huesmann, and Thomas Leblé. The one-dimensional log-gas free
energy has a unique minimiser. arXiv preprint arXiv:1812.06929, 2018. (Cited on pages 82
and 145.)

Matthias Erbar, Martin Huesmann, and Thomas Leblé. The one-dimensional log-gas free en-
ergy has a unique minimizer. Communications on Pure and Applied Mathematics, 74(3):615—
675, 2021. (Cited on page 12.)

Laszl6 Erd6s and Horng-Tzer Yau. A dynamical approach to random matrix theory, volume 28
of Courant Lecture Notes in Mathematics. Courant Institute of Mathematical Sciences, New
York; American Mathematical Society, Providence, RI, 2017. (Cited on pages 45, 54 and 69.)

Laszl6 Erdés, Benjamin Schlein, and Horng-Tzer Yau. Universality of random matrices and
local relaxation flow. Inventiones mathematicae, 185(1):75-119, 2011. (Cited on page 82.)

Laszl6 Erd6s and Horng-Tzer Yau. Gap universality of generalized wigner and (-ensembles.
preprint. arXiv preprint arXiv:1211.3786, 2012. (Cited on page 82.)

Laszl6 ErdSs and Horng-Tzer Yau. Gap universality of generalized wigner and beta-ensembles.
Journal of the European Mathematical Society, 17(8):1927-2036, 2015. (Cited on pages 9,
12, 18, 22, 23, 82, 144, 145 and 146.)

Matthieu H. Ernst and Ezechiel G. D. Cohen. Nonequilibrium fluctuations in y space. Journal
of Statistical Physics, 25:153-180, 1981. (Cited on page 146.)

William Feller. Two singular diffusion problems. Ann. Math. (2), 54:173-182, 1951. (Cited
on page 33.)

Peter J. Forrester. Log-Gases and Random Matrices (LMS-34). Princeton University Press,
2010. (Cited on page 7.)

Jiirg. Frohlich. Classical and quantum statistical mechanics in one and two dimensions: two-
component Yukawa- and Coulomb systems. Comm. Math. Phys., 47(3):233-268, 1976. (Cited
on pages 11 and 221.)



272

Bibliography

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

Jiirg. Frohlich and Thomas. Spencer. The Kosterlitz-Thouless transition in two-dimensional
abelian spin systems and the coulomb gas. Communications in Mathematical Physics,
81(4):527-602, 1981. (Cited on pages 11, 218, 219, 220 and 221.)

Jiirg Frohlich and Charles Pfister. On the absence of spontaneous symmetry breaking and
of crystalline ordering in two-dimensional systems. Communications in Mathematical Physics,
81(2):277 — 298, 1981. (Cited on page 7.)

Emilio Gagliardo. Proprieta di alcune classi di funzioni in piu variabili. Ricerche di Matematica,
7(1):102-137, 1958. (Cited on page 211.)

Shirshendu Ganguly and Sourav Sarkar. Ground states and hyperuniformity of the hierarchical
coulomb gas in all dimensions. Probability Theory and Related Fields, 177(3):621-675, 2020.
(Cited on pages 12 and 83.)

Christophe Garban and Avelio Sepualveda. Quantitative bounds on vortex fluctuations in
2d coulomb gas and maximum of the integer-valued gaussian free field. arXiv preprint
arXiv:2012.01400, 2020. (Cited on page 219.)

Christophe Garban and Avelio Sepulveda. Statistical reconstruction of the gaussian free field
and kt transition. arXiv preprint arXiv:2002.12284, 2020. (Cited on page 219.)

Hans-Otto Georgii. Translation Invariance and Continuous Symmetries in Two-Dimensional
Continuum Systems. In Mathematical results in statistical mechanics (Marseilles, 1998) World
Sci. Publ., River Edge, NJ, 1999, 11 1998. (Cited on pages 7 and 149.)

Hans-Otto Georgii. Gibbs Measures and Phase Transitions. De Gruyter, 2011. (Cited on
pages 12 and 148.)

Hans-Otto Georgii and Hans Zessin. Large deviations and the maximum entropy principle for
marked point random fields. Probability Theory and Related Fields, 96:177-204, 01 1993.
(Cited on pages 10, 145 and 209.)

Hans-Otto Georgii and Hans Zessin. Large deviations and the maximum entropy principle for
marked point random fields. Probability Theory and Related Fields, 96:177-204, 01 1993.
(Cited on page 259.)

Subhroshekhar Ghosh and Yuval Peres. Rigidity and tolerance in point processes: Gaussian
zeros and ginibre eigenvalues. Duke Mathematical Journal, 166(10):1789-1858, 2017. (Cited
on pages 12 and 148.)

Giambattista Giacomin, Stefano Olla, and Herbert Spohn. Equilibrium Fluctuations for V¢
Interface Model. The Annals of Probability, 29(3):1138 — 1172, 2001. (Cited on pages 18
and 145.)

Alison L. Gibbs and Francis Edward Su. On choosing and bounding probability metrics. Int.
Stat. Rev., 70(3):419-435, 2002. (Cited on page 65.)

Jean Ginibre. Statistical ensembles of complex: Quaternion, and real matrices. Journal of
Mathematical Physics (New York) (U.S.), 3 1965. (Cited on page 7.)

Clark R. Givens and Rae Michael Shortt. A class of Wasserstein metrics for probability distri-
butions. Michigan Math. J., 31(2):231-240, 1984. (Cited on page 67.)



Bibliography 273

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

Jonathan Goodman, Thomas Y. Hou, and John Lowengrub. Convergence of the point vortex
method for the 2-d euler equations. Communications on Pure and Applied Mathematics,
43(3):415-430, 1990. (Cited on page 9.)

Alexander Grigor'yan. Heat kernel and analysis on manifolds, volume 47. Providence, RI:
American Mathematical Society (AMS); Somerville, MA: International Press, 2009. (Cited on
page 41.)

Ch. Gruber and Ph. Martin. Translation invariance in statistical mechanics of classical contin-
uous systems. Annals of Physics, 131(1):56—72, 1981. (Cited on page 7.)

Jack Gunson and L. S. Panta. Two-dimensional neutral Coulomb gas. Comm. Math. Phys.,
52(3):295-304, 1977. (Cited on pages 11, 25, 219, 220, 225, 226, 227, 231, 232 and 233.)

Jonas Gustavsson. Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. Henri Poincaré,
Probab. Stat., 41(2):151-178, 2005. (Cited on page 64.)

Jonas Gustavsson. Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. H. Poincaré
Probab. Statist., 41(2):151-178, 2005. (Cited on page 81.)

Douglas P. Hardin, Thomas Leblé, Edward B. Saff, and Sylvia Serfaty. Large deviation prin-
ciples for hypersingular riesz gases. Constructive Approximation, 48(1):61-100, 2018. (Cited
on pages 149 and 214.)

Douglas P. Hardin and Edward B. Saff. Minimal riesz energy point configurations for recti-
fiable d-dimensional manifolds. Advances in Mathematics, 193(1):174-204, 2005. (Cited on
page 76.)

Adrien Hardy and Gaultier Lambert. CLT for circular 3-ensembles at high temperature. Journal
of Functional Analysis, page 108869, 2020. (Cited on page 81.)

Adrien Hardy and Gaultier Lambert. CLT for circular 8-ensembles at high temperature. Journal
of Functional Analysis, 280(7):108869, 2021. (Cited on pages 11 and 76.)

Maxime Hauray. Wasserstein distances for vortices approximation of euler-type equations.
Mathematical Models and Methods in Applied Sciences - M3AS, 19, 03 2009. (Cited on

page 9.)

Bernard Helffer. Remarks on decay of correlations and witten laplacians brascamp-lieb in-
equalities and semiclassical limit. journal of functional analysis, 155(2):571-586, 1998. (Cited
on pages 77, 145, 146, 150 and 164.)

Bernard Helffer. Remarks on decay of correlations and witten laplacians brascamp—lieb inequal-
ities and semiclassical limit. Journal of Functional Analysis, 155(2):571-586, 1998. (Cited on
pages 77 and 145.)

Bernard Helffer and Johannes Sjostrand. On the correlation for kac-like models in the convex
case. Journal of statistical physics, 74(1-2):349-409, 1994. (Cited on pages 18, 77, 96, 145,
149, 163 and 168.)

Alan J. Hoffman and Helmut W. Wielandt. The variation of the spectrum of a normal matrix.
Duke Math. J., 20:37-39, 1953. (Cited on page 55.)



274

Bibliography

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

Diane Holcomb and Elliot Paquette. Tridiagonal models for dyson brownian motion. preprint
1707.02700, 2017. (Cited on page 53.)

Roger A. Horn and Charles R. Johnson. Matrix analysis. 2nd ed. Cambridge: Cambridge
University Press, 2nd ed. edition, 2013. (Cited on page 55.)

Jiaoyang Huang and Benjamin Landon. Local law and mesoscopic fluctuations of dyson
brownian motion for general 5 and potential. arXiv preprint arXiv:1612.06306, 2016. (Cited
on page 82.)

Jiaoyang Huang and Benjamin Landon. Rigidity and a mesoscopic central limit theorem for
Dyson Brownian motion for general 5 and potentials. Probab. Theory Relat. Fields, 175(1-
2):209-253, 2019. (Cited on page 45.)

Pierre-Emmanuel Jabin and Zhenfu Wang. Quantitative estimate of propagation of chaos for
stochastic systems with W=1% kernels. arXiv preprint arXiv:1706.09564, 2017. (Cited on

page 9.)

Tiefeng Jiang and Sho Matsumoto. Moments of traces of circular beta-ensembles. The Annals
of Probability, 43(6):3279-3336, 2015. (Cited on page 81.)

Kurt Johansson. On fluctuations of eigenvalues of random hermitian matrices. Duke mathe-
matical journal, 91(1):151-204, 1998. (Cited on pages 11, 12, 76, 77, 80, 81 and 111.)

Jorge V. José, Leo P. Kadanoff, Scott Kirkpatrick, and David R. Nelson. Renormalization,
vortices, and symmetry-breaking perturbations in the two-dimensional planar model. Phys.
Rev. B, 16:1217-1241, Aug 1977. (Cited on page 221.)

Jean-Pierre Kahane. Sur le chaos multiplicatif. Ann. Sci. Math. Québec, 9(2):105-150, 1985.
(Cited on page 12.)

Tom Kennedy, Elliott H. Lieb, and B. Sriram Shastry. The xy model has long-range order
for all spins and all dimensions greater than one. Phys. Rev. Lett., 61:2582-2584, Nov 1988.
(Cited on page 219.)

Boris A. Khoruzhenko and H.-J. Sommers. Non-hermitian random matrix ensembles. arXiv
preprint arXiv:0911.5645, 2009. (Cited on page 7.)

Rowan Killip and Mihai Stoiciu. Eigenvalue statistics for cmv matrices: from poisson to clock
via circular beta ensembles. arXiv preprint math-ph/0608002, 2006. (Cited on page 12.)

Rowan Killip and Mihai Stoiciu. Eigenvalue statistics for cmv matrices: from poisson to clock
via random matrix ensembles. Duke Mathematical Journal, 146(3):361-399, 2009. (Cited on
page 82.)

John M. Kosterlitz. The critical properties of the two-dimensional xy model. Journal of Physics
C: Solid State Physics, 7(6):1046-1060, mar 1974. (Cited on pages 11, 218, 219 and 220.)

John M. Kosterlitz and David J. Thouless. Ordering, metastability and phase transitions in
two-dimensional systems. Journal of Physics C: Solid State Physics, 6(7):1181-1203, apr
1973. (Cited on pages 11, 218, 219 and 220.)

Evgenij Kritchevski, Benedek Valké, and Balint Virdg. The scaling limit of the critical one-
dimensional random schrodinger operator. arXiv preprint arXiv:1107.3058, 2011. (Cited on
page 145.)


https://arxiv.org/abs/1707.02700

Bibliography 275

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

Hervé Kunz. The one-dimensional classical electron gas. Annals of Physics, 85(2):303-335,
1974. (Cited on page 145.)

Béatrice Lachaud. Cut-off and hitting times of a sample of Ornstein-Uhlenbeck processes and
its average. J. Appl. Probab., 42(4):1069-1080, 2005. (Cited on pages 13, 29, 32 and 39.)

Hubert Lacoin. Mixing time and cutoff for the adjacent transposition shuffle and the simple
exclusion. Ann. Probab., 44(2):1426-1487, 2016. (Cited on pages 20, 39 and 45.)

Hubert Lacoin, Rémi Rhodes, and Vincent Vargas. A probabilistic approach of ultraviolet
renormalisation in the boundary sine-gordon model. arXiv preprint arXiv:1903.01394, 20109.
(Cited on pages 26 and 220.)

Hubert Lacoin, Rémi. Rhodes, and Vincent Vargas. Complex Gaussian multiplicative chaos.
Communications in Mathematical Physics, 337(2):569-632, 2015. (Cited on page 221.)

Gaultier Lambert. Mesoscopic central limit theorem for the circular S-ensembles and applica-
tions. Electronic Journal of Probability, 26:1-33, 2021. (Cited on pages 12, 81 and 148.)

Gaultier Lambert, Michel Ledoux, and Christian Webb. Quantitative normal approximation
of linear statistics of 5-ensembles. Annals of Probability, 47(5):2619-2685, 2019. (Cited on
pages 81, 86 and 122.)

N. S. Landkof. Foundations of modern potential theory. Die Grundlehren der mathematischen
Wissenschaften, Band 180. Springer-Verlag, New York-Heidelberg, 1972. Translated from the
Russian by A. P. Doohovskoy. (Cited on page 8.)

Benjamin Landon, Philippe Sosoe, and Horng-Tzer Yau. Fixed energy universality of dyson
brownian motion. Advances in Mathematics, 346:1137-1332, 2019. (Cited on page 9.)

Michel Lassalle. Polynémes de Hermite généralisés. C. R. Acad. Sci. Paris Sér. | Math.,
313(9):579-582, 1991. (Cited on pages 41 and 44.)

Michel Lassalle. Polynémes de Jacobi généralisés. C. R. Acad. Sci. Paris Sér. | Math.,
312(6):425-428, 1991. (Cited on pages 18 and 44.)

Michel Lassalle. Polynémes de Laguerre généralisés. C. R. Acad. Sci. Paris Sér. | Math.,
312(10):725-728, 1991. (Cited on page 44.)

Thomas Leblé. A uniqueness result for minimizers of the 1d log-gas renormalized energy.
Journal of Functional Analysis, 268(7):1649-1677, 2015. (Cited on page 147.)

Thomas Leblé. Local microscopic behavior for 2d coulomb gases. Probability Theory and
Related Fields, 169(3):931-976, 2017. (Cited on pages 10, 25, 83, 149 and 222.)

Thomas Leblée. CLT for fluctuations of linear statistics in the sine-3 process. International
Mathematics Research Notices, 2018. (Cited on pages 14, 26, 77, 111 and 148.)

Thomas Leblé and Sylvia Serfaty. Large deviation principle for empirical fields of log and riesz
gases. Inventiones mathematicae, 210(3):645-757, 2017. (Cited on pages 10, 12, 14, 83, 148
and 149.)

Thomas Leblé and Sylvia Serfaty. Large deviation principle for empirical fields of log and Riesz
gases. Invent. Math., 210(3):645-757, 2017. (Cited on pages 11, 14, 220, 221, 222, 258, 260
and 263.)



276

Bibliography

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

Thomas Leblé and Sylvia Serfaty. Fluctuations of two dimensional coulomb gases. Geometric
and Functional Analysis, 28(2):443-508, 2018. (Cited on pages 10, 12, 14, 77, 83, 111, 220,
221, 222, 226 and 255.)

Thomas Leblé and Sylvia Serfaty. Fluctuations of two dimensional coulomb gases. Geometric
and Functional Analysis, 28(2):443-508, 2018. (Cited on pages 225 and 256.)

Thomas Leblé, Sylvia Serfaty, and Ofer Zeitouni. Large deviations for the two-dimensional
two-component plasma. Comm. Math. Phys., 350(1):301-360, 2017. (Cited on pages 10, 11,
14, 24, 25, 219, 220, 221, 222, 223, 225, 226 and 256.)

Thomas Leblé and Ofer Zeitouni. A local CLT for linear statistics of 2d coulomb gases. arXiv
preprint arXiv:2005.12163, 2020. (Cited on pages 12 and 77.)

Thomas Leblé. The two-dimensional one-component plasma is hyperuniform. 2021. (Cited
on pages 83 and 149.)

Michel Ledoux. The concentration of measure phenomenon. AMS Surveys and Monographs,
89, 01 2001. (Cited on pages 16 and 17.)

David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains and mixing times. With
a chapter on “Coupling from the past” by James G. Propp and David B. Wilson. 2nd edition.
Providence, RI: American Mathematical Society (AMS), 2nd edition edition, 2017. (Cited on
pages 13, 28 and 71.)

Mathieu Lewin. Coulomb and riesz gases: The known and the unknown. arXiv preprint
arXiv:2202.09240, 2022. (Cited on pages 7, 76, 144, 145 and 146.)

Songzi Li, Xiang-Dong Li, and Yong-Xiao Xie. On the law of large numbers for the empirical
measure process of generalized Dyson Brownian motion. J. Stat. Phys., 181(4):1277-1305,
2020. (Cited on pages 42 and 44.)

Elliot H. Lieb and Heide Narnhofer. Erratum: “The thermodynamic limit for jellium”(J. Statist.
Phys. 12 (1975), 291-310). J. Statist. Phys., 14(5, 465), 1976. (Cited on page 222.)

Ross A. Lippert. A matrix model for the 3-Jacobi ensemble. J. Math. Phys., 44(10):4807—
4816, 2003. (Cited on page 44.)

L Lovasz, R Kannan, and M Simonovits. Isoperimetric problems for convex bodies and a
localization lemma. Discrete and computational geometry, 13(3-4):541-560, 1995. (Cited on
page 12.)

Ph. A. Martin. Sum rules in charged fluids. Reviews of Modern Physics, 60:1075-1127, 1988.
(Cited on page 145.)

Martial Mazars. Long ranged interactions in computer simulations and for quasi-2d systems.
Physics Reports-review Section of Physics Letters - PHYS REP-REV SECT PHYS LETT,
500:43-116, 03 2011. (Cited on pages 7 and 144.)

Oliver A. McBryan and Thomas Spencer. On the decay of correlations in SO(n)-symmetric
ferromagnets. Communications in Mathematical Physics, 53(3):299 — 302, 1977. (Cited on
pages 11, 218 and 219.)



Bibliography 277

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[200]

[210]

[211]

[212]

[213]

Pierre-Loic Méliot. The cut-off phenomenon for brownian motions on compact symmetric
spaces. Potential Analysis, 40(4):427-509, 2014. (Cited on pages 13, 29, 32, 43 and 44.)

Jean-Christophe Mourrat and Felix Otto. Correlation structure of the corrector in stochastic
homogenization. The annals of probability, 44(5):3207-3233, 2016. (Cited on page 129.)

Ali Naddaf and Thomas Spencer. On homogenization and scaling limit of some gradient
perturbations of a massless free field. Communications in mathematical physics, 183(1):55—
84, 1997. (Cited on pages 18, 77, 82 and 145.)

Louis Nirenberg. On elliptic partial differential equations. Annali della Scuola Normale Supe-
riore di Pisa - Classe di Scienze, Ser. 3, 13(2):115-162, 1959. (Cited on page 211.)

Simona Rota Nodari and Sylvia Serfaty. Renormalized energy equidistribution and local charge
balance in 2d coulomb systems. International Mathematics Research Notices, 2015(11):3035-
3093, 2015. (Cited on pages 10 and 14.)

Leandro Pardo. Statistical inference based on divergence measures, volume 185 of Statistics:
Textbooks and Monographs. Chapman & Hall/CRC, Boca Raton, FL, 2006. (Cited on
page 67.)

Luke Peilen. Local laws and a mesoscopic clt for beta-ensembles.  arXiv preprint
arXiv:2208.14940, 2022. (Cited on page 81.)

Mircea Petrache and Sylvia Serfaty. Next order asymptotics and renormalized energy for riesz
interactions. Journal of the Institute of Mathematics of Jussieu, 16(3):501-569, 2017. (Cited
on pages 10, 14, 83 and 221.)

Charles Edouard Pfister. On the symmetry of the Gibbs states in two-dimensional lattice
systems. Communications in Mathematical Physics, 79(2):181 — 188, 1981. (Cited on page 7.)

David Pollard. A user’s guide to measure theoretic probability, volume 8 of Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2002.
(Cited on page 65.)

Marc Potters and Jean-Philippe Bouchaud. A first course in random matrix theory: for
physicists, engineers and data scientists. Cambridge: Cambridge University Press, 2021. (Cited
on page 33.)

Mario Pulvirenti and Sergio Simonella. The boltzmann—grad limit of a hard sphere system:
analysis of the correlation error. Inventiones mathematicae, 207(3):1135-1237, 2017. (Cited
on page 146.)

Svetlozar T. Rachev. Probability metrics and the stability of stochastic models. Chichester
etc.: John Wiley & Sons Ltd., 1991. (Cited on page 65.)

Firas Rassoul-Agha and Timo Seppaldinen. A course on large deviations with an introduction
to Gibbs measures. Providence, Rl: American Mathematical Society (AMS), 05 2015. (Cited
on pages 14, 224, 259, 260 and 261.)

Thomas Richthammer. Translation-invariance of two-dimensional gibbsian point processes.
Communications in mathematical physics, 274(1):81-122, 2007. (Cited on pages 26 and 149.)



278

Bibliography

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

Brian Rider and Balint Virdg. The noise in the circular law and the gaussian free field.
International Mathematics Research Notices, 2007, 2007. (Cited on page 222.)

Leonard C. G. Rogers and Zahn Shi. Interacting brownian particles and the wigner law.
Probability Theory and Related Fields, 95:555-570, 12 1993. (Cited on page 9.)

Leonorad C. G. Rogers and Zhan Shi. Interacting Brownian particles and the Wigner law.
Probability theory and related fields, 95(4):555-570, 1993. (Cited on pages 30 and 42.)

Luz Roncal and Pablo Radl Stinga. Fractional laplacian on the torus. Communications in
Contemporary Mathematics, 18(03):1550033, 2016. (Cited on pages 87, 88 and 91.)

Nicolas Rougerie and Sylvia Serfaty. Higher dimensional coulomb gases and renormalized
energy functionals. arXiv: Mathematical Physics, 2013. (Cited on pages 10, 14 and 83.)

Nicolas Rougerie and Sylvia Serfaty. Higher-dimensional Coulomb gases and renormalized
energy functionals. Communications on Pure and Applied Mathematics, 2015. (Cited on
pages 220 and 221.)

Gilles Royer. An initiation to logarithmic Sobolev inequalities. Transl. from the French by
Donald Babbitt, volume 14. Providence, RI: American Mathematical Society (AMS); Paris:
Société Mathématique de France, 2007. (Cited on page 6.)

David Ruelle. Statistical Mechanics: Rigorous Results. Mathematical physics monograph
series. W. A. Benjamin, 1974. (Cited on page 76.)

Edward B. Saff and Arno B. J. Kuijlaars. Distributing many points on a sphere. The Mathe-
matical Intelligencer, 19:5-11, 1997. (Cited on page 8.)

Justin Salez. Cutoff for non-negatively curved Markov chains. preprint 2102.05597v1, 2021.
(Cited on page 45.)

Laurent Saloff-Coste. Precise estimates on the rate at which certain diffusions tend to equi-
librium. Mathematische Zeitschrift, 217(1):641-677, 1994. (Cited on pages 13, 28, 40, 41,
43 and 44.)

Laurent Saloff-Coste. Aspects of Sobolev-type inequalities, volume 289. Cambridge University
Press, 2002. (Cited on page 41.)

Laurent Saloff-Coste. On the convergence to equilibrium of Brownian motion on compact
simple Lie groups. J. Geom. Anal., 14(4):715-733, 2004. (Cited on pages 13, 28, 32, 43
and 44.)

Etienne Sandier and Sylvia Serfaty. Vortices in the Magnetic Ginzburg-Landau Model, vol-
ume 70. Springer (Birkhduser), Basel, 01 2007. (Cited on page 7.)

Etienne Sandier and Sylvia Serfaty. From the ginzburg-landau model to vortex lattice problems.
Communications in Mathematical Physics, 313(3):635-743, 2012. (Cited on pages 7, 10
and 83.)

Etienne Sandier and Sylvia Serfaty. From the Ginzburg-Landau model to vortex lattice prob-
lems. Comm. Math. Phys., 313:635-743, 2012. (Cited on page 250.)


https://arxiv.org/abs/2102.05597v1

Bibliography 279

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

[243]

[244]

[245]

Etienne Sandier and Sylvia Serfaty. 1d log gases and the renormalized energy: crystallization
at vanishing temperature. Probability Theory and Related Fields, 162(3-4):795-846, 2015.
(Cited on pages 10 and 14.)

Etienne Sandier and Sylvia Serfaty. 1D Log gases and the renormalized energy: Crystallization
at vanishing temperature. Prob. Theor. Rel. Fields, 162:795-846, 2015. (Cited on page 256.)

Etienne Sandier and Sylvia Serfaty. 2d coulomb gases and the renormalized energy. The Annals
of Probability, 43(4):2026-2083, 2015. (Cited on pages 10 and 14.)

Etienne Sandier and Sylvia Serfaty. 2D Coulomb gases and the renormalized energy. Annals
Probab., 43:2026-2083, 2015. (Cited on pages 220, 222 and 250.)

Saikat Santra, Jitendra Kethepalli, Sanaa Agarwal, Abhishek Dhar, Manas Kulkarni, and Anu-
pam Kundu. Gap statistics for confined particles with power-law interactions. arXiv preprint
arXiv:2109.15026, 2021. (Cited on pages 76 and 144.)

Steven Schochet. The point-vortex method for periodic weak solutions of the 2-d euler equa-
tions. Communications on Pure and Applied Mathematics, 49(9):911-965, 1996. (Cited on

page 9.)

Sylvia Serfaty. Coulomb gases and Ginzburg-Landau vortices. Zurich Lectures in Advanced
Mathematics. European Mathematical Society (EMS), Ziirich, 2015. (Cited on page 76.)

Sylvia Serfaty. Coulomb gases and Ginzburg-Landau vortices . Zurich Lectures in Advanced
Mathematics. European Mathematical Society Publishing House, 2015. (Cited on pages 8
and 144.)

Sylvia Serfaty. Systems of points with coulomb interactions. In Proceedings of the International
Congress of Mathematicians: Rio de Janeiro 2018, pages 935-977. World Scientific, 2018.
(Cited on pages 7, 76 and 144.)

Sylvia Serfaty. Gaussian fluctuations and free energy expansion for 2d and 3d coulomb gases
at any temperature. arXiv preprint arXiv:2003.11704, 2020. (Cited on pages 10, 12, 14, 77,
83, 111, 222 and 226.)

Sylvia Serfaty. Mean field limit for coulomb-type flows. Duke Mathematical Journal,
169(15):2887-2935, 2020. (Cited on page 9.)

Mariya Shcherbina. Fluctuations of linear eigenvalue statistics of 3 matrix models in the multi-
cut regime. Journal of Statistical Physics, 151(6):1004-1034, 2013. (Cited on pages 11, 12,
76, 81 and 111.)

Johannes Sjostrand. Potential wells in high dimensions i. Annales de I'.H.P. Physique
théorique, 58(1):1-41, 1993. (Cited on pages 77 and 145.)

Johannes Sjostrand. Potentials wells in high dimensions ii, more about the one well case.
Annales de I'l.H.P. Physique théorique, 58, 1993. (Cited on pages 77 and 145.)

Philippe Sosoe and Percy Wong. Regularity conditions in the CLT for linear eigenvalue statistics
of wigner matrices. Advances in Mathematics, 249:37-87, 2013. (Cited on page 81.)

Philippe Souplet and Qi S. Zhang. Sharp gradient estimate and Yau's Liouville theorem for
the heat equation on noncompact manifolds. Bull. Lond. Math. Soc., 38(6):1045-1053, 2006.
(Cited on page 41.)



280

Bibliography

[246]

[247]

[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]

Pablo Radl Stinga. User's guide to the fractional laplacian and the method of semigroups. In
Fractional Differential Equations, pages 235-266. De Gruyter, 2019. (Cited on page 90.)

Eric Thoma. Thermodynamic and scaling limits of the non-gaussian membrane model. arXiv
preprint arXiv:2112.07584, 2021. (Cited on pages 18, 82 and 145.)

Eric Thoma. Overcrowding and separation estimates for the coulomb gas. arXiv preprint
arXiv:2210.05902, 2022. (Cited on pages 83 and 149.)

Salvatore Torquato. Hyperuniformity and its generalizations. Physical Review E, 94(2), Aug
2016. (Cited on pages 7, 80, 144 and 148.)

Benedek Valké and Balint Virag. Continuum limits of random matrices and the brownian
carousel. Inventiones mathematicae, 177(3):463-508, 2009. (Cited on pages 12, 82, 145
and 147.)

Benedek Valké and Balint Virag. The sine S-operator. Inventiones mathematicae, 209(1):275—
327, 2017. (Cited on pages 12 and 145.)

Maryna S. Viazovska. The sphere packing problem in dimension 8. Annals of Mathematics,
185(3):991-1015, 2017. (Cited on page 8.)

Cédric Villani. Optimal transport. Old and new, volume 338. Berlin: Springer, 2009. (Cited
on pages 66, 69, 70 and 71.)

Edmund Taylor Whittaker and George Neville Watson. A Course of Modern Analysis. Cam-
bridge Mathematical Library. Cambridge University Press, 4 edition, 1996. (Cited on page 232.)

Eugene P. Wigner. Characteristic vectors of bordered matrices with infinite dimensions. Annals
of Mathematics, 62(3):548-564, 1955. (Cited on page 7.)



RESUME

Cette thése se propose d'étudier divers problemes de mécanique statistique pour une famille de
systemes de particules en interaction, appelés gaz de Coulomb et de Riesz.

Nous commencgons par examiner le temps de mélange du mouvement Brownien de Dyson
avec confinement quadratique, dont la mesure invariante est donnée par le beta-ensemble
d'Hermite. Nous établissons un résultat de cutoff pour le temps de mélange du systéme dans une
variété de distances et de divergences, lorsque le nombre de particules tend vers l'infini.

Nous considérons ensuite les fluctuations et corrélations du gaz de Riesz circulaire dans le
régime longue portée. Tout d'abord, nous quantifions les fluctuations des espacements entre
particules et énoncons un théoréme central limite pour les statistiques linéaires valables pour des
fonctions-tests possiblement trés singulieres. Puis nous montrons une estimée optimale sur la
décroissance de la corrélation des gaps, qui hous permet de montrer I'unicité du processus limite en
volume infini.

La suite de ce manuscrit est consacrée a I'étude du gaz de Coulomb bi-dimensionnel a deux
composantes dans un régime de basse température ou la fonction de partition diverge. Apres avoir
proposé une renormalisation efficace du modéle, nous donnons un développement asymptotique de
la fonction de partition lorsque le parametre de troncature tend vers zéro, des estimées sur
nombre et la taille de dipbles neutres ainsi qu'un contréle énergétique sur les fluctuations.

MOTS CLES

Systemes de particules en interaction a longue portée, temps de mélange, grandes
déviations, fluctuations, décroissance des corrélations, limite thermodynamique, transition de
phase.

ABSTRACT

This thesis is devoted to the analysis of different problems concerning the statistical mechanics of a
family of interacting particles systems, named Coulomb and Riesz gases.

We begin by studying the mixing time of the Dyson Brownian motion with quadratic
confinement, whose invariant measure is the Hermite beta-ensemble. We establish a cutoff
phenomenon for the mixing time in a variety of distances and divergences, when the number of
particles tend to infinity.

We then consider the fluctuations and correlations of the circular Riesz gas in the long-range
regime. First, we quantify the fluctuations of gaps and give a central limit theorem for linear statistics
allowing very singular test-functions. Second, one shows an optimal estimate on the decay of gaps
correlations, allowing one to prove the uniqueness of the infinite volume measure.

The rest of the manuscript is devoted to the study of the two-dimensional two-component
plasma in a low temperature regime where the partition function diverges. After proposing
an efficient way to renormalize the model, we derive an asymptotic expression for the partition
function as the truncation parameter tends to zero, some estimates on the number and size of
neutral dipoles and an energetic control on the fluctuations.

KEYWORDS

Long-range interacting particles system, mixing time, large deviations, fluctuations, fluctuations,
decay of correlations, thermodynamic limit, phase transition.
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