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The advance of space exploration naturally leads to more ambitious goals and complex mission design concepts. Often, these take place in environments whose dynamics are heavily perturbed by factors that can be associated, among others, to the weak gravity of the body of interest, to additional perturbing bodies, irregular gravity fields, solar radiation pressure, and non-circular orbits. When designing missions to such environments, the mismatch between traditional simplified astrodynamics models and the real dynamics may hinder our ability to design adequate trajectories in these systems. As a consequence, this might limit the accessibility to possible optimal design scenarios due to a lack of design flexibility and increase the need for maintenance maneuvers. Conversely, when basing the design mostly on full-ephemeris representations of the dynamics, it might lead to a lack of insight into the dynamical structures that govern said systems, require higher computational cost for their early design, or importantly, restrain designers from generating families of solutions that meet mission requirements.

This dissertation addresses these possible shortcomings by bridging the two scenarios and contributing to the design of dynamical solutions in strongly perturbed systems. In this regard, a part of this work deals with the development of non-ephemeris higher-fidelity models that, while incorporating the most significant perturbations of a system, still allow for the systemic computation of natural dynamical solutions on which one can base a mission's design.

With this goal in mind, we formulate and utilize numerical Dynamical Systems Theory (DST) techniques to analyze and formulate trajectories in these environments, leveraging the use of dynamical solutions such as equilibrium points, periodic orbits, and, most significantly, quasi-periodic tori, which dictate the motion of the perturbed systems. The hyperbolic invariant manifolds of these solutions are also used to extend the mission design concepts.

Two significant areas for the current and future states of space exploration frame the application of these developments. Namely, we explore the systems around small bodies and the cislunar environment. Both areas present inherent challenges due to the multiple perturbations associated with each type of environment, which support the goals and framework established by this work.
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Introduction

In this chapter, the motivations behind this thesis work are introduced. Limitations arising from common mission design approaches to heavily perturbed systems are presented in Section 1 and used to frame the research goals proposed in this thesis and shown in Section 2.

In Section 3, the specific contributions of this thesis are listed; subsequently the publications associated with these contributions are specified in Section 4. Finally, the outline of the thesis is presented in Section 5.

Space mission design in perturbed environments

The last three decades have been marked by a growing interest in a more detailed exploration of other bodies in the solar system. As missions grow more ambitious in their goals and targets, the demanding nature of the systems they aim for fosters an increase in the complexity of their mission design. More specifically, many recent and future missions focus on bodies with high scientific value that have nonetheless complex and chaotic environments due to a combination of possible perturbations. In particular, these perturbations can be associated to factors such as the small mass of the body of interest, irregular gravity, the presence of additional bodies, the eccentricity of the bodies' orbits, among others. Examples of such environments can be seen in missions to asteroids (as JAXA's Hayabusa [START_REF] Yoshikawa | Hayabusa sample return mission[END_REF] and Hayabusa2 missions [START_REF] Tsuda | Hayabusa2 mission status: Landing, roving and cratering on asteroid Ryugu[END_REF] to asteroids Itokawa and Ryugu respectively, NASA's OSIRIS-REx mission to asteroid Bennu [START_REF] Lauretta | OSIRIS-REx: Sample Return from Asteroid (101955) Bennu[END_REF], and the currently underway AIDA mission that includes ESA's Hera [START_REF] Michel | European component of the AIDA mission to a binary asteroid: Characterization and interpretation of the impact of the DART mission[END_REF] and NASA's DART [START_REF] Rivkin | The double asteroid redirection test (DART): Planetary defense investigations and requirements[END_REF] counterparts to the binary asteroid system Didymos), to comets (such as ESA's Rosetta [START_REF] Heinz Glassmeier | The Rosetta mission: Flying towards the origin of the solar system[END_REF] or NASA's Deep Impact [START_REF] William | Deep Impact mission design[END_REF]), to planetary moons (such as JAXA's Martian Moons eXploration (MMX) mission to study Phobos in detail [START_REF] Kawakatsu | Mission Design of Martian Moons eXploration (MMX)[END_REF]), and to our own cislunar environment -the subject of numerous future missions as well as NASA's Artemis program to return humans to the Moon and to set the next space station in Lunar orbit [START_REF] Nasa | White Paper : Gateway Destination Orbit Model : A Continuous 15 Year NRHO Reference Trajectory[END_REF][START_REF]NASA's Lunar Exploration Program Overview[END_REF]. The common theme running throughout these systems is the presence of additional perturbations that are not commonly included in traditional astrodynamics models. While it is possible to design baseline trajectories for these environments by "over"-simplifying the dynamics, we risk increasing fuel usage to operationally maintain said trajectories, missing possible optimal design scenarios, and having a lack of insight into the dynamical properties of the system and of the chosen trajectories. Moreover, it can easily reduce the overall design flexibility due to a lack of coherent options and a smaller number of families of solutions. It is therefore in the best interest of mission designers to already include the main perturbations of a mission's environment in the baseline trajectory design studies. This gives us the flexibility to focus on and maximize the main goal of space exploration missions: the science opportunities.

In this frame, it is important to firstly understand how to model real environments in the context of specific space missions. The aim of this work is thus to model these perturbed environments by depicting the most relevant perturbations of these systems, in such a way that still allows mission designers to find natural families of solutions on which the mission design can be based upon. The difficulty is to avoid both extreme cases: the over-simplification, which would miss the changes to the solution space introduced by these perturbations, as well as the use of only full ephemeris models, where one can often only find solutions to the trajectory design problems by using black-box optimization techniques, therefore losing design flexibility and dynamical insight. In turn, the solutions found by using these perturbed models can be pruned or refined in later stages of the mission design process by using ephemeris models and correction routines that validate and correct the proposed trajectories.

After identifying the relevant perturbations and modeling the mission's dynamical environment, one must possess the tools to compute and analyze (families of) possible trajectory design solutions. These tools and methods should be able to incorporate the additional system perturbations and produce realistic operational trajectories. Specifically, this thesis work makes use of numerical methods imported from Dynamical Systems Theory (DST) in order to compute and analyze these motions.

The field of DST is an area of mathematics that deals with the analysis and description of complex dynamical systems. As such, it can provide important insight into the problems commonly analyzed in astrodynamics, as well as valuable tools to find solutions in these systems. Although this thesis does not lie specifically within the field of DST, as it does not try to fully explore and prove the mathematical concepts that it employs, it makes use of numerical procedures and methods that have been derived from it. These are applied in the context of real space missions and explored in a less formal and more application-driven manner so as to produce and analyze mission design solutions. Work based on DST has already proven to be extremely valuable to space exploration, with several missions having heavily based their trajectory design concepts on it. Examples of this can be seen in missions such as the International Sun Earth Explorer 3 (ISEE-3), the Genesis mission, the James Webb Space Telescope (JSWT), as well as the Herschel, Planck, and Gaia missions, all of which have flown trajectories first computed by the application of DST to astrodynamics [START_REF] Robert | A new trajectory for Exploring the Earth's Geomagnetic Tail[END_REF][START_REF] Lo | Genesis mission design[END_REF][START_REF] Beckman | Finding acceptable james webb space telescope mission orbits from a fixed ariane flight profile[END_REF][START_REF] Renk | Gaia: Trajectory Design with Tightening Constraints[END_REF][START_REF] Hechler | Herschel, Planck and GAIA Orbit Design[END_REF].

When considering the chaotic systems described by restricted three-and four-body problems, analytical solutions do not exist, which leads us to studying the dynamical systems and their possible solutions from a DST perspective. This translates into analyzing dynamical solutions such as equilibrium or libration points, periodic orbits, and quasi-periodic orbits, which are, 1. Space mission design in perturbed environments respectively, zero-, one-, and two-or higher-dimensional tori. Importantly, these natural structures typically dictate the general motion of particles on the phase space and provide significant insights into the dynamics of the system, such as stability properties, geometry, regions and directions of motion, among others [START_REF] Sang Koon | Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics[END_REF][START_REF] Jorba | On the Persistence of Lower Dimensional Invariant Tori under Quasi-Periodic Perturbations[END_REF]. Evidently, the inclusion of other perturbations in the models affects these dynamical solutions. For instance, constant perturbations may displace the position of equilibrium points, whereas periodic perturbations, such as the inclusion of additional bodies, will cause the equilibrium points to disappear and to generally be replaced by a manifold with a dimension equal to the number of periodic perturbations. In the same way, non-resonant periodic orbits will be replaced by quasi-periodic tori that incorporate the new periodic perturbation. Solutions that are resonant with the period of an added perturbation will retain their dimensionality in the perturbed model but will be isolated solutions in the phase space due to the requirement on the resonance of their period [START_REF] Jorba | On the Persistence of Lower Dimensional Invariant Tori under Quasi-Periodic Perturbations[END_REF].

The important aspect to note in the previous examples is that it is possible to design trajectories while incorporating perturbations into the dynamical models used to describe the environments of space missions. We do this by acknowledging the perturbed nature of a mission's system from the start and designing for it instead of in spite of it. On this point, the higherdimensionality of quasi-periodic solutions jumps out as clear advantage, as it translates into significantly larger sets of (families of) solutions and a much wider design flexibility that can incorporate the system's perturbations. Whereas periodic orbits may offer advantages with regards to the ease of their computation, they can often be limiting when designing trajectories in perturbed environments, either because they mostly disappear under the presence of a perturbation, or as pointed out by Olikara [START_REF] Zubin | Computation Of Quasi-Periodic Tori And Heteroclinic Connections In Astrodynamics Using Collocation Techniques[END_REF], because their families of solutions do not cover a wide enough range of the phase space when compared to their higher-dimensional quasi-periodic counterparts. This is also relevant when computing transfers to or from hyperbolic tori; the higher-dimensionality of the quasi-periodic solutions translates into higher-dimensional arrays of possible transfers. Nevertheless, the study and use of periodic orbits as intermediate solutions are an important step in designing valuable and realistic trajectories.

Due to their potential for incorporating perturbations into their formulation and the aforementioned advantages associated with their higher-dimensionality, the study of quasi-periodic tori plays a significant role in this thesis. Specifically, we make use of numerical algorithms in order to generate families of quasi-periodic tori. These are mostly based in the formulations developed by Gómez, Modelo, Olikara, and Scheeres [START_REF] Gómez | The dynamics around the collinear equilibrium points of the RTBP[END_REF][START_REF] Zubin | Numerical method for computing quasi-periodic orbits and their stability in the restricted three-body problem[END_REF], often known as the GMOS algorithm, which were compiled and compared with other numerical algorithms in [START_REF] Baresi | Fully numerical methods for continuing families of quasi-periodic invariant tori in astrodynamics[END_REF]. A variety of other formulations exists, which can take analytic or semi-analytic forms, such as those found in [START_REF] Àngel | Dynamics in the center manifold of the collinear points of the restricted three body problem[END_REF][START_REF] Haro | A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms[END_REF][START_REF] Jorba | On the computation of reducible invariant tori on a parallel computer[END_REF][START_REF] Gómez | Lissajous orbits around halo orbits[END_REF]. The numerical nature of the methods hereby used also reflects the applicationdriven scenario behind this thesis work, meaning we do not delve into KAM theory to try and rigorously prove the existence of the tori. Rather, we use formalisms and considerations coming from these fields and generally assume their existence under standard conditions.

In this thesis, the techniques cited above as well as other methodologies are employed in mainly two contexts of space mission design: small bodies and the cislunar environment. As mentioned, their relevance to the current and future frame of space exploration makes them valuable subjects. Others authors have dedicated considerable research efforts to each of these areas. In particular, and framing the work to be presented in this thesis, one can mention the work by Scheeres and the Colorado Boulder group on orbit design in perturbed environments and around small bodies [START_REF] Daniel | Orbital Motion in Strongly Perturbed Environments[END_REF][START_REF] Scheeres | Design, Dynamics and Stability of the OSIRIS-REx Sun-Terminator Orbits[END_REF][START_REF] Scheeres | The Restricted Hill Full 4-Body problem: Application to spacecraft motion about binary asteroids[END_REF], works on the deployment of landers to small bodies seen in [START_REF] Tardivel | Ballistic deployment of science packages on binary asteroids[END_REF][START_REF] Ferrari | Ballistic landing design on binary asteroids: The AIM case study[END_REF][START_REF] Herrera-Sucarrat | Asteroid observation and landing trajectories using invariant manifolds[END_REF], and other studies on the use of quasi-periodic orbits for their exploration in [START_REF] Broschart | Quasi-terminator orbits near primitive bodies[END_REF][START_REF] Baresi | Orbit design and maintenance in the elliptical Hill problem with applications to the Phobos sample return mission MMX[END_REF][START_REF] Baresi | Bounded relative orbits about asteroids for formation flying and applications[END_REF], among others. Regarding trajectory design in the cislunar environment, we can point out recent works on the Near-Rectilinear Halo Orbit (NRHO) family by [START_REF] Zimovan | Near rectilinear halo orbits and their application in cis-lunar space[END_REF][START_REF] Davis | Orbit maintenance and navigation of human spacecraft at cislunar near rectilinear halo orbits[END_REF], the use of the Bicircular problem model (to be presented) by [START_REF] Gómez | Dynamics and mission design near libration points -Vol. II fundamentals: the case of the triangular libration points[END_REF][START_REF] Jorba-Cuscó | Two periodic models for the Earth-Moon system[END_REF], which include works on periodic and quasi-periodic orbit design [START_REF] Kenza | Dynamics of synodic resonant near rectilinear halo orbits in the bicircular four-body problem[END_REF][START_REF] José | Families of Halo-like invariant tori around L2 in the Earth-Moon Bicircular Problem[END_REF] as well as transfer trajectories [START_REF] Stephen | Characteristics and Analysis of Families of Low-Energy Ballistic Lunar Transfers[END_REF][START_REF] Mccarthy | Characterization of Families of Low-Energy Transfers to Cislunar Four-Body Quasi-Periodic Orbits[END_REF]. Other authors have used coupled restricted three-body problems [START_REF] Canalias | Contributions to Libration Orbit Mission Design using Hyperbolic Invariant Manifolds[END_REF] or the the Restricted Hill Four-Body Problem [START_REF] Scheeres | The Restricted Hill Four-Body Problem with Applications to the Earth-Moon-Sun System[END_REF][START_REF] Zubin | Mapping connections between planar sun-earth-moon libration point orbits[END_REF] to find connections between different families in the cislunar environment.

Both subjects of study, small-body exploration and the cislunar environment, capture the essence of the goals that drive this work. These goals are formally stated in the following section.

Research objectives

Having introduced the context and motivations for this thesis, the objectives of this research can be established. They can be defined as follows:

1. To gain insight into strongly perturbed environments and on how to model those dynamical systems in a sufficiently accurate manner by means of restricted problems.

2. To elaborate on and develop tools for the systematic computation of realistic solutions in said systems.

3. To apply these methodologies to real mission design problems.

Contributions

In this section, the main contributions of this thesis are presented and briefly explained. As stated, although theoretical development was also pursued, this thesis work remains practical and application-driven in its nature. Previous knowledge is re-iterated, adapted and improved when possible, then applied to new problems in order to design realistic trajectories for space missions. The contributions can be divided as follows:

Contributions to the numerical computation of quasi-periodic tori: A study on numerical methods for computing families of quasi-periodic tori has been undertaken. In addition to presenting the two methods considered in this work, the GMOS and PDE(DFT) algorithms [START_REF] Baresi | Fully numerical methods for continuing families of quasi-periodic invariant tori in astrodynamics[END_REF], we formulate homotopy continuation as a means to introduce periodic perturbations into the computation of quasi-periodic tori, generalize the notions for the number of equations and parameters needed in the computation of quasi-periodic tori, and implement a modification to the Discrete Fourier Transform (DFT) formulation typically used to compute partial derivatives in these methods. Additionally, modifications are made to the two numerical algorithms, in order to improve the computational aspects of their implementation and their robustness. Specifically, we implement the use of unfolding parameters to the PDE(DFT) formulation and introduce the integration of all the trajectories simultaneously in the Boundary Value Problem formulation of the GMOS method to allow for integral-type constraint equations and a more coherent error control between the integrated trajectories. The formulations are applied to the case of Mars' moon, Phobos, in the frame of JAXA's Martian Moons eXploration (MMX) mission as a short example.

Invariant manifolds in the Augmented Hill Problem: In order to demonstrate some of the presented dynamical tools in the context of small-body exploration, we present a study on the invariant manifolds of the L 2 point and those of periodic orbit families emanating from it under the hypothesis of the Augmented Hill Problem (AHP). Focusing on a particular type of family that is equivalent to the Circular Restricted Three-Body Problem (CR3BP)'s Halo family, and which has interesting properties for small-body exploration, we present baseline low-energy trajectories to land on asteroids or comets for landers with different mass-to-area ratios from both periodic and quasi-periodic trajectories. Furthermore, we demonstrate how the quasi-periodic tori considered can be employed in designing science trajectories that have excursions around the small body before returning to the quasi-periodic torus by computing homoclinic connections, which we show can be easily calculated due to the families' geometric and dynamical properties.

The Elliptic-Circular Restricted Four-Body Problem: A significant result of this thesis is the formulation of what we define as the Elliptic-Circular Restricted Four-Body Problem (ECR4BP) and its application to trajectory design in the cislunar environment. The model was only once before mentioned in literature under the name of the Circular-Elliptic model, albeit not formulated or formally introduced, by Castellà and Jorba in [START_REF] Castellà | The lagrangian points of the real Earth-Moon system[END_REF], to study the practical stability of the Earth-Moon's L 4 and L 5 equilibrium points. In this thesis, the equations of motion of the problem are derived, and the previously introduced methods for computing quasi-periodic motion in perturbed systems are applied to the case of the Earth-Moon-Sun system. Specifically, we compute the dynamical equivalents of the CR3BP's synodic and sidereal resonant Near-Rectilinear Halo Orbits (NRHO) [START_REF] Howell | Almost rectilinear halo orbits[END_REF], which are studied in the context of NASA's Lunar Gateway mission.

Transfers in the cislunar environment: Using the formulation of the Elliptic-Circular model, we compute transfers from Earth-vicinity to the aforementioned resonant quasi-periodic NRHOs. These are obtained from the stable hyperbolic manifolds of the tori, also known as their whiskers. These transfers are analyzed and a simple algorithm is presented that allows for their transformation to a real-ephemeris model, where they can be used as initial guesses in multiple shooting optimization algorithms to find the real transfer trajectories.

Publications

The journal articles, conference proceedings papers, and other communications published or presented during this thesis are listed in what follows.

4.1 Articles in peer-reviewed journals 

Other communications

• D. Villegas-Pinto, "Trajectory design in strongly perturbed three-body problems", Journées CNES Jeunes Chercheurs (JC2), 2021, Toulouse, France;

• N. Baresi, D. Villegas-Pinto, "Quasi-Periodic Orbits for the Exploration of Small Irregular Moons ", 2021 SIAM Conference on Dynamical Systems, 2021, Online.

Thesis outline

This thesis is organized in the following manner. Chapter 2 presents the background knowledge and the theoretical preliminaries necessary for the development of the present work. Then, in Chapter 2

Background

In this chapter, the main theoretical background necessary for the development of this thesis is presented. In Section 1, different restricted three-and four-body astrodynamics problems are introduced. These represent the framework for the dynamical models in which a massless particle moves. Then, in Section 2, common perturbations that can be added to these astrodynamics problems are discussed. Section 3 presents periodic orbits as a dynamical solution of the presented models, as well as a numerical technique used to compute families of these solutions. Section 4 discusses stability and hyperbolic invariant manifolds, analyzing how these manifolds can be computed from hyperbolic tori such as periodic orbits. Finally, Section 5 introduces quasi-periodic motion, which is organized in dynamical solutions commonly known as quasi-periodic tori.

Common astrodynamics problems

In order to describe the motion of a spacecraft in different types of environments, one can make use of different dynamical models from astrodynamics. These models, usually referred to as problems, consider that a particle or a spacecraft has negligible mass (i.e. restricted problems), which is under the gravitational influence of one or more bodies. Due to the type of space missions addressed in this work, we always consider at least two bodies in addition to the spacecraft. Specifically, we focus on restricted three-and four-body problems. These problems can be written as a system of first order differential equations of the type

Ẋ = f (X, ξ, t) (2.1)
where typically X = [x, y, z, ẋ, ẏ, ż] T , t represents the time variable, ξ is a vector of possible external parameters of dimension k, and f is a smooth vector field f : R n × R k × R → R n , with n = 6 in this particular case. Using this notation, we can define a few common astrodynamics problems on which we can base our dynamical systems, to be extended with the addition of one or more perturbations. A short list can be seen below, starting with one of the most used models in astrodynamics, the Circular Restricted Three-Body Problem (CR3BP), followed by primaries' orbits in the ER3BP, which causes the distance between them to be time-dependent, the normalization of the equations is not as simple. Because the three-dimensional ER3BP is not nearly as common as the CR3BP in literature and because it will be used later on in this thesis, let us derive its equations more thoroughly. Considering an inertial frame and a rotating frame that rotates about the same origin with an angular velocity ν = dν dt , we can write the acceleration in dimensional coordinates in the inertial frame as

r * I = r * + 2 ν × ṙ * + ν × ( ν × r * ) + ν × r * , ( 2.7) 
where r * I is the position vector in the inertial frame and r * is the position vector in the rotating frame. The superscript * represents dimensional coordinates. Note that since for the elliptical case the angular velocity of the primaries is not constant, we cannot omit ν. Of course, the acceleration in the inertial frame is simply r *

I = -Gm 1 r * 1 3 (r * -r * 1 ) -Gm 2 r * 2 3 (r * -r * 2 )
, where r * 1 and r * 2 are the positions of the primary and secondary in the rotating reference frame, respectively. Simplifying Eq. (2.7) we arrive at

    ẍ * ÿ * ÿ *     + 2 ν     -ẏ * ẋ * 0     -ν2     -x * y * 0     + ν     -y * x * 0     = - Gm 1 r * 1 3     x * -x * 1 y * z *     - Gm 2 r * 2 3     x * -x * 2 y * z *     .
(2.8)

The system represented in Eq. (2.8) is dependent on time, i.e. it represents a non-autonomous Hamiltonian. However, we can transform the problem by using the true anomaly ν as a free variable, instead of time, and normalizing the equations by the variable distance between the two primaries, l. This distance is given by l = a 1 -e 2 1 + e cos ν , (2.9)

which is a function of the true anomaly and describes the Two-Body Problem (2BP) [START_REF] Szebehely | Theory of orbits[END_REF].

Recalling the conservation of angular momentum νl 2 = h = GM a (1 -e 2 ), where a and e are the semi-major axis and the eccentricity of either primary around the other, we can write

ν = dν dt = (GM ) 1/2 (1 + e cos ν) 2 a 3/2 (1 -e 2 ) 3/2 . ( 2 

.10)

We can now use the distance between the two primaries, l, the time derivative of the true anomaly, ν, and the sum of the masses of the primaries, M , to define the units of length, time, and mass as

[LU] = l, [TU] = 1/ ν, [M U ] = m 1 + m 2 , respectively.
To completely transform the equations of motion we need also the following simplifications. From the conservation of angular momentum in the 2BP

l 2 dν dt 2 = h 2 = a(1 -e 2 )GM, (2.11) 
and, because the angular momentum is constant, i.e. d dt l 2 dν dt = 0

l d 2 ν dt 2 + 2 dl dt dν dt = 0. (2.
12)

The final simplification comes from vector calculus. Taking l in the 2BP as the radial vector, and ν as the true anomaly vector, l = l l = l(cos ν, sin ν) and ν = (-sin ν, cos ν), normal to l. Note that the superscript ˆ represents a unit vector. Differentiating l with respect to time

dl dt = dl dt (cos ν, sin ν)) + l dν dt (-sin ν, cos ν) = dl dt l + l dν dt ν. (2.13)
In the same way, we reach

d 2 l dt 2 = d 2 l dt 2 -l dν dt 2 l + 2 dl dt dν dt + l d 2 ν dt 2 ν. (2.14)
However, from the 2BP, we know that the acceleration only has a radial component

d 2 l dt 2 = - GM l 2 l, (2.15) 
and therefore 

d 2 l dt 2 -l dν dt 2 = - GM l 2 . ( 2 
d 2 r * dt 2 = d dt d dt (r l) = l d 2 r dt 2 + 2 dl dt dr dt + r d 2 l dt 2 = l dr dt d 2 ν dt 2 + d 2 r df 2 dν dt 2 + 2 dl dt dr dν dν dt + r d 2 l dt 2 .
(2.17)

The second term becomes

2 df dt         - d (y l) dt d (x l) dt 0         = 2 df dt         -y dl dt -l dν dt dy dt x dl dt + l dν dt dx dt 0         . (2.18)
The third and fourth terms become -l (dν/dt) 2 [x, y, 0] T and l d 2 f /dt 2 [-y, x, 0] T , respectively. The right-hand side of Eq. (2.8) becomes

- GM l 2     1 -µ r 3 1     x + µ y z     + µ r 3 2     x -(1 -µ) y z         , (2.19) 
where, again, µ = m 2 / (m 1 + m 2 ) and

r 1 = (x + µ) 2 + y 2 + z 2 , r 2 = (x -(1 -µ)) 2 + y 2 + z 2 .
Combining Eqs. (2.17) to (2.19), we can then write, for the x-direction l dν dt

2 d 2 x dν 2 -2 dy dν + dx dν -y l d 2 ν dt 2 + 2 dν dt dl dt + x d 2 l dt 2 -l dν dt 2 = GM l 2 - x + µ r 3 1 (1 -µ) - x -(1 -µ) r 3 2 µ .
(2.20)

Recalling the simplifications calculated in Eqs. (2.11), (2.12), and (2.14), we can arrive at the dimensionless equation of motion in the x-direction

x ′′ -2y ′ = 1 1 + e cos ν x - x + µ r 3 1 (1 -µ) - x -(1 -µ) r 3 2 µ , ( 2.21) 
where ′ = d dν is the differentiation with respect to the true anomaly. Applying the same process in the y-and z-directions, we arrive at the dimensionless equations of motion for these directions, respectively

y ′′ + 2x ′ = 1 1 + e cos ν y - y r 3 1 (1 -µ) - y r 3 2 µ , ( 2.22 
)

z ′′ + z = 1 1 + e cos ν z - z r 3 1 (1 -µ) - z r 3 2 µ . ( 2.23) 
We can also write

x ′′ -2y ′ = ∂ω ∂x , ( 2.24a 
)

y ′′ + 2x ′ = ∂ω ∂y , ( 2.24b 
)

z ′′ + z = ∂ω ∂z , ( 2.24c) 
with

ω = 1 1 + e cos ν 1 2 x 2 + y 2 + z 2 + 1 -µ r 1 + µ r 2 . (2.25)
An alternative formulation proposed in [START_REF] Luk'yanov | Energy conservation in the restricted elliptical three-body problem[END_REF] that is closer to the form of the equations for the CR3BP is

x ′′ -2y ′ = ∂ψ ∂x , ( 2.26a 
)

y ′′ + 2x ′ = ∂ψ ∂y , (2.26b) z ′′ = ∂ψ ∂z , (2.26c) with ψ = 1 1 + e cos ν 1 2 x 2 + y 2 -ez 2 cos ν + 1 -µ r 1 + µ r 2 . (2.27)
Finally, note that because the system is non-autonomous, it no longer possesses an integral of motion. One can, nevertheless, analyze pulsating subregions of motions and perform transformations to yield equivalents of an energy constant [START_REF] Campagnola | Subregions of motion and elliptic halo orbits in the elliptic restricted three-body problem[END_REF][START_REF] Luk'yanov | Energy conservation in the restricted elliptical three-body problem[END_REF].

Elliptic Hill Problem:

As the name suggests, the Elliptic Hill Problem (EHP) is an extension of the Hill Problem, or, in the same way, a specific case of the ER3BP. The equations of motion are derived directly from the ER3BP by taking the same approximations that are taken for the Hill Problem, where the motion is approximated to the vicinity of the secondary body, with m 2 m 1 ≪ 1. We can write the dimensionless equations of motion of the EHP from Eq. (2.8) using

[LU] = µ 2 ν2 1/3 = µ 2 µ 1 1/3 l, (2.28a) [TU] = 1/ ν, (2.28b) 
where l and ν are the same as for the ER3BP, defined in Eqs. (5.1) and (5.2), respectively. The dimensionless equations of motion then become

x ′′ -2y ′ = 1 1 + e cos ν 3x - x r 3 , (2.29a 
)

y ′ + 2x ′ = 1 1 + e cos ν - y r 3 , ( 2.29b 
)

z ′′ = 1 1 + e cos ν -z - z r 3 , (2.29c)
where again the superscript ′ = d/dν represents differentiation with respect to the true anomaly ν.

Bicircular Restricted Four-Body Problem:

Taking the CR3BP as a starting point, one can arrive at the so-called Bicircular Restricted Four-Body Problem (BCR4BP), or simply the Bicircular problem for short, by adding the perturbation of a third body that moves in a circular orbit about the barycenter of the primary and secondary. Although the model is not coherent, i.e. the motion of the three-bodies does not describe a solution of the three-body problem as the effect of the third body's gravity on the other two bodies is neglected, it can be a good approximation of the dynamics as a simplified restricted four-body model. It is often applied in the context of the Earth-Moon-Sun system in order to include both the Earth-Moon and the Earth-Sun dynamics [START_REF] Castellà | On the vertical families of two-dimensional tori near the triangular points of the bicircular problem[END_REF][START_REF] Jorba-Cuscó | Two periodic models for the Earth-Moon system[END_REF]. A schematic representation of the problem's geometry applied to the Earth-Moon-Sun case can be seen in Figure 2.4, viewed from the co-rotating or synodic reference frame (which rotates with the Earth and Moon) centered on the Earth-Moon barycenter.

2. Additional perturbations position of the third body in the pulsating frame we use

         x 3 = a 3 cos σ, y 3 = -a 3 sin σ, z 3 = 0, (2.32)
where σ is the angular position of the third body in the rotating frame, as shown in Figure 2.4, noting the minus sign for y 3 as the third body moves in a clockwise direction around the primarysecondary barycenter. Alternatively, the minus sign for y 3 can be omitted and added in the body's angular velocity. Because the third body's orbit is circular, it moves at a constant angular rate, Ω 3 , which can be written in normalized coordinates as

σ = n -n 3 n (2.33)
recalling that the time unit is [TU] = 1/n. Note that although we can simply integrate the equations of motion as is by writing σ(t) = σ 0 + σt, it may be beneficial for the convergence of some numerical algorithms to integrate the sine and cosine components of σ. That is, we can write c = cos σ and s = sin σ and append c and s to our state-vector, integrating the new variables as

dc dt = -s σ, (2.34a 
)

ds dt = c σ. (2.34b)
Once again, since the system is non-autonomous, it does not have an integral of motion, as was the case with the other periodic systems presented.

Additional perturbations

Different perturbations can be considered in order to render simplified astrodynamics problems closer to the real dynamics while maintaining a degree of simplicity that allows for the systemic computation of families of dynamical solutions. It should be noted that all the perturbations hereby addressed are framed in either the context of a constant perturbation or (a combination of) periodic perturbations. This allows us to construct periodic or quasi-periodic dynamical systems that admit natural dynamical solutions such as quasi-periodic tori. The inclusion of nonperiodic perturbations, such as the use of a pre-computed ephemeris position for a perturbing body, would disrupt this possibility.

The eccentricity of the primaries' orbits is one possible perturbation, addressed in the previous section under the formulation of elliptical problems (ER3BP, EHP). As with all other perturbations, its inclusion in the dynamical model depends on the relative significance it poses with respect to the other perturbations of the system. The perturbation is periodic since it makes the distance between the two primaries vary as a function of their true anomaly, which makes the system time-dependent.

Additionally, one can include different gravity potential models for the primary bodies. Note that in Section 1 only standard point-mass gravity potentials where considered for describing the bodies, although different models can easily be used instead. Examples of different gravity potential models include the spherical harmonics model [START_REF] Daniel | Orbital Motion in Strongly Perturbed Environments[END_REF], the constant density triaxial ellipsoidal model [START_REF] Daniel | Orbital Motion in Strongly Perturbed Environments[END_REF], and the constant density polyhedron model [START_REF] Werner | Spherical harmonic coefficients for the potential of a constant-density polyhedron[END_REF]. Depending on the type of trajectories being considered, as well as the mission design phase, different models can be considered. The work developed in [START_REF] Tardivel | Ballistic deployment of science packages on binary asteroids[END_REF] shows examples of mission design considering only one massive body, usually an asteroid or a comet, where high-fidelity gravity modeling is implemented in the context of the deployment of scientific packages to the surfaces of these bodies. We note that although high-fidelity gravity modeling is not used in this thesis, it could easily be implemented and treated as a periodic perturbation to the system, in the same way as the other perturbations addressed in this thesis. In that case, the period of the perturbation would correspond to the body's spin period.

Another common perturbation, which is especially significant when considering the dynamics about asteroids and comets, is that posed by Solar Radiation Pressure (SRP). Due to the small mass of these bodies, the acceleration imparted by SRP can significantly affect the dynamics. In the same way, eclipses also become important to consider. These factors can significantly alter the geometry of periodic orbits [START_REF] García Yárnoz | On the a and g families of orbits in the Hill problem with solar radiation pressure and their application to asteroid orbiters[END_REF], as well as their stability [START_REF] Villegas-Pinto | Temporary Capture of Asteroid Ejecta into Periodic Orbits: Application to JAXA's Hayabusa2 Impact Event[END_REF]. We can write the acceleration caused by SRP on a body as [START_REF] Mcinnes | Solar Sailing -Technology, Dynamics and Mission Applications[END_REF] 

a SRP = - C r W E R 2 AU Bcd 2 S cos 2 α n, (2.35) 
where C r is the reflectivity coefficient, W E = 1368 J s -1 m -2 is the solar irradiance, R AU is the distance of 1 AU, B is the mass-to-area ratio of the body under the influence of SRP, c is the speed of light, d S is the vector from the Sun to the body, α is the angle between the incident radiation and the surface normal, and n is the surface normal. A common approximation when modeling spacecraft is to use a cannonball model, i.e. to assume that the body is spherical. This gets rid of the need to track the spacecraft's attitude and simply assumes an average mass-to-area ratio over the whole body. Eq. (2.35) then simplifies to

a SRP = C r W E R 2 AU Bc d S d 3 S . (2.36)
Depending on the problem used and whether the Sun is the primary body or not, the perturbation posed by the SRP can be considered to be constant, e.g. for the case of the Hill Problem applied to an asteroid orbiter with SRP, also known as the Augmented Hill Problem (AHP), or position/time dependent (considering the Sun as a non-central body, the SRP would act along the same vector as the Sun's gravitational acceleration but with opposite sign). Finally, one can also consider the presence of additional bodies in the dynamical system. A common example that was previously presented and will be addressed again later in this thesis is that of the cislunar environment. Indeed, as was seen, one way of modeling the cislunar environment is to use the Bicircular model and include the Sun as the third body. Other such models exist where additional bodies are added as a perturbation to the dynamics. An example is the Hill Four-Body Problem [START_REF] Daniel | Orbital Motion in Strongly Perturbed Environments[END_REF][START_REF] Zubin | Computation Of Quasi-Periodic Tori And Heteroclinic Connections In Astrodynamics Using Collocation Techniques[END_REF], where the Hill Problem is used as a starting point and an additional body is then introduced to the model.

To sum up, the perturbations to be considered in this thesis can be modeled, in general, using the formulation

f (X, t) = f 0 (X, t) + f c + f p (X, t) , ( 2.37) 
where f 0 represents the base model or problem, f c are possible constant perturbations, and f p represents possible periodic perturbations.

Periodic orbits

The definition of a periodic orbit can be written as follows:

X t = ϕ (X t , t + T ) , (2.38)
where T is the smallest period that verifies equation and X t is a state along the periodic orbit at some time t. When considering time-independent autonomous systems, such as the CR3BP or the Hill Problem, periodic orbits can be found in one-parameter families. That is, one parameter can be used to describe the family along its family curve. As an example, one can consider the (southern) Halo family of the CR3BP [START_REF] Howell | Three-dimensional, periodic, 'halo' orbits[END_REF]. Its family curve can plotted using, for instance, the period and the Jacobi constant of each orbit along the family, as seen in Figure 2.5, where the period is given in normalized coordinates. Note that this defines a one-dimensional curve, which can be described by a single parameter along the family. This parameter can sometimes be the orbit period, but since we can have inflection points along the family's orbital parameters, it is more common and accurate to use the pseudo-arclength parameter [START_REF] Seydel | Practical Bifuraction and Stability Analysis[END_REF], which will be defined in what follows.

In addition to Eq. (2.39), we need two more equations in order to solve the BVP; one is necessary because the period is not known, meaning we have n equations but n + 1 unknowns, while the other is necessary to fix the initial point or phase along the periodic orbit and is commonly known as a phase condition. One possible formulation for the phase condition is the classical Poincaré phase condition [START_REF] Doedel | Computation of periodic solutions of conservative systems with application to the 3-body problem[END_REF]:

p(X 0 ) = f ( X) T X 0 -X0 , (2.41)
where X is a previously known solution (or an approximation of a solution). The last equation to be added is known as the pseudo-arclength continuation equation [START_REF] Seydel | Practical Bifuraction and Stability Analysis[END_REF], which makes use of the family curve to compute different members along the family, separated by a user-defined step size:

q(X 0 , T ) = (X 0 -X0 ) T ∂ X0 ∂h + (T -T ) ∂ T ∂h -δs, (2.42)
where h is the arclength parameter that steps along the family curve, ∂ z/∂h is the family tangent at the known solution, with z = [ X0 ; T ] T , and δs is the user-defined stepsize along the family.

In order to compute the family tangent we can compute the null space of Jacobian DH at the known solution z, where H is the reduced matrix of the BVP system:

H( z) = g( z) p( z) = 0. (2.43) 
Assuming that H depends implicitly on the arclength parameter, h, we can find ∂ z/∂h from the null space of DH via the chain rule as

∂H ∂h = ∂H ∂ z ∂ z ∂h = DH( z) ∂ z ∂h = 0. (2.44)
Then, the full BVP can be formed as

F (z) =     g(z) p(z) q(z)     .
(2.45)

The problem is then corrected iteratively until ||F || < ǫ, where ǫ is an user-defined error tolerance, via Newton's method

δzDF (z) = -F (z), (2.46)
where δz is the correction to be applied, and for which Eq. (2.46) is solved for. Once a solution is found, a new guess along the family can be found as

z k+1 = z k + ∂z k ∂h δs, (2.47)
where z k is the newly found solution. A simple check can also be made to ensure that the family tangent, ∂z k ∂h , points in the desired direction along the family curve:

d = sign{< z k -z k-1 , ∂z k ∂h >}.
(2.48)

Stability and hyperbolic invariant manifolds

When analyzing periodic orbits, it is often valuable to study their stability. It is possible to do so by analyzing their State Transition Matrix (STM), Φ(t), defined as [START_REF] Montenbruck | Satellite Orbits -Models, Methods, and Applications[END_REF]]

Φ(t) = dϕ t (X 0 ) dX 0 , ( 2.49) 
which maps the variations with respect to the initial X 0 forward in time along the orbit. The stability information is obtained when the STM is integrated over one full period of the periodic orbit defined by (X 0 , T ), at which point we obtain what is called the Monodromy matrix, M = Φ(T ). Starting from Eq. (2.49), the Monodromy matrix can be computed by integrating the following ordinary differential equation

Φ(t) = A(t)Φ(t), (2.50) 
where A is the Jacobian of the equations of motion at some time t

A(t) = ∂f (X, t) ∂X .
(2.51)

Knowing that Φ(t 0 ) = I n , the identity matrix, Eq. (2.49) can be integrated from t 0 to T to obtain M . For the Hamiltonian systems considered in this thesis, all the eigenvalues of M occur in reciprocal pairs of the type (λ, 1/λ) [START_REF] Daniel | Orbital Motion in Strongly Perturbed Environments[END_REF]. Because linear stability is attained only for ||λ i || ≤ 1, all the eigenvalues must be on the unit circle for a periodic orbit to be considered linearly stable. Additionally, for autonomous Hamiltonian systems as the CR3BP or the Hill Problem, which permit a time-invariant integral of motion, there always exists a unity eigenvalue pair [START_REF] Broucke | Stability of periodic orbits in the elliptic, restricted three-body problem[END_REF]. When considering unstable periodic orbits, non-unity eigenvalue pairs define hyperbolic directions that can be used to compute hyperbolic stable -associated with an eigenvalue smaller than unity -and unstable -associated with an eigenvalue larger than unity -invariant manifolds [START_REF] Sang Koon | Dynamical Systems, the Three-Body Problem and Space Mission Design[END_REF]. These trajectories depart or arrive at the orbit along the local hyperbolic eigenvector direction as t → ∞ when an infinitesimal perturbation ε is applied in said directions. In theory this establishes a way of arriving to or departing from a periodic orbit without using any fuel. Although in practice some correction maneuvers are necessary, they are typically very small when compared to traditional transfer maneuvers. Previous missions, such as the Genesis mission [START_REF] Lo | Genesis mission design[END_REF] and others [START_REF] Canalias | Assessment of mission design including utilization of libration points and weak stability boundaries[END_REF] have taken advantage of this dynamical system property to design cheap transfer trajectories. The eigenvectors associated with the stable and unstable directions of an hyperbolic eigenvalue pair, v S , v U , respectively, can be propagated along the periodic orbit to 5. Quasi-periodic tori Hamiltonian systems. Because the aim of this thesis is its applicability to real missions rather than fundamental research, the knowledge and methods borrowed from DST remain numerical and practical in their nature, serving the goal proposed.

Chapter 3

Contributions to the numerical computation of quasi-periodic tori

In this chapter, contributions to two numerical methods used to compute quasi-periodic tori are presented; namely, to a method based on Partial Differential Equation (PDE) and the Discrete Fourier Transform (DFT), known as PDE(DFT) [START_REF] Baresi | Fully numerical methods for continuing families of quasi-periodic invariant tori in astrodynamics[END_REF], and to another based on the stroboscopic mapping of invariant curves via a Boundary Value Problem (BVP) formulation, known as GMOS after its creators [START_REF] Gómez | The dynamics around the collinear equilibrium points of the RTBP[END_REF][START_REF] Zubin | Numerical method for computing quasi-periodic orbits and their stability in the restricted three-body problem[END_REF]. We begin by describing the two possible initialization schemes for quasi-periodic motion in Section 1, which is followed by the core formulation of the PDE(DFT) and GMOS methods in their standard forms in Sections 2 and 3, respectively. Then, in Section 4 the typical additional equations that must be added to the formulation of either algorithm are introduced. Section 5 presents the modifications to the two base algorithms implemented in this thesis, followed by an analysis on their computational performance with and without the modifications in Section 6. Later, in Section 7, we open the door to possible applications of these algorithms in astrodynamics, where we explore a short example for Phobos' exploration in the context of the Martian Moons eXploration (MMX) mission. Lastly, Section 8 presents the conclusions of this chapter and sums up its main results.

Initialization of quasi-periodic motion

As mentioned in Chapter 2, quasi-periodic motion can originate either from a center manifold or from the forcing of a periodic perturbation to a lower dimensional torus, such as a periodic orbit, which generally increases the dimension of said torus and forces one of the quasi-periodic torus' frequencies to be that of the perturbation [START_REF] Jorba | On the Persistence of Lower Dimensional Invariant Tori under Quasi-Periodic Perturbations[END_REF].

For the first case, one can extract quasi-periodic motion from the center eigenspace of an elliptic manifold, i.e. the complex unitary eigenvalue pair of an equilibrium point or periodic orbit. Let us recall the formalism u(θ) : T d → R n that defines the diffeomorphism and the constant incommensurate angular frequencies ω = θ that uniquely identify the torus. Likewise, ρ = {ω 1 T, ..., ω d-1 T } is the rotation vector. Then, considering a periodic orbit with period T , ψ k and add it to a state along the periodic orbit, X k , multiplied by a step size δs as

u k (θ 1 ) = X k + δs ψ k (θ 1 )/||ψ k (θ 1 )||. (3.4)
These initial approximations and variations are used later to generate the guess for the next member of the quasi-periodic tori family and can also be employed in approximating the family tangent by means of the difference between consecutive tori. Using the aforementioned notation, the torus frequencies are initialized as

ω 0 = 2π/T, (3.5a 
)

ω 1 = α/T, (3.5b)
which means that the rotation number will be initialized as ρ = T ω 1 = α.

In the case that a quasi-periodic tori does not originate from a center manifold but rather from the forcing of an external periodic perturbation, the initialization procedure is even simpler than for the previous case. When adding a periodic perturbation to a system we make use of what is known as homotopy continuation. By making use of this method, the procedure is organized into families of problems and solutions that depend on an artificial homotopy continuation parameter, ǫ. This parameter is tracked from the initial point, which represents the original unperturbed system, to the final point, which represents the perturbed system for which a solution is required [START_REF] Sommese | The Numerical Solution of Systems of Polynomials -Arising in Engineering and Science[END_REF]. Typically, the perturbation is added gradually to the system via said homotopy parameter, such that ǫ varies from zero to one as

f (ǫ) = (1 -ǫ)f 0 + ǫf p , ( 3.6) 
where f 0 represents the original system and f p is the perturbed system. Note that for the cases explored in this thesis, f 0 and f p typically have common terms, which means Eq. (3.6) can be simplified. Since ǫ ∈ [0, 1], the solution of the quasi-periodic torus that corresponds to f (0) will correspond to whatever lower-dimensional torus is used as a starting point. If, following the previous example, a discretized periodic orbit, X k , is used as the one-dimensional manifold solution of the f 0 system, the initial guess for the invariant circle(s) can simply be X k , repeated N 1 times for the number of discretization points used along the θ 1 direction. After the first iteration, the invariant circle(s) will naturally start deviating from X k as a function of ǫ, forming an invariant curve around the periodic orbit. For the torus frequencies, the fundamental or longitudinal frequency will be the same as before, whereas ω 1 will reflect the periodic perturbation of f p , as

ω 0 = 2π/T, (3.7a 
)

ω 1 = 2π/T p , (3.7b)
where T p is the period of the perturbation.

The PDE(DFT) algorithm

As indicated by its name, the PDE(DFT) finds the diffeomorphism u and the torus frequencies ω by employing Partial Differential Equations (PDEs). In turn, the Discrete Fourier Transform (DFT) is employed in order to compute the derivatives associated with some of these equations.

Let us first assume a generic vector field f (X, ξ, t) = Ẋ, where again ξ is some vector of additional parameters that we will ignore for now, and t represents a possible time variable. Note that in the following, we make no assumptions as to the time-dependence of the system. The methodology applies to both time-dependent and time-independent systems, where only the explicit computation of some partial derivatives changes. Replacing the state-vector X with the torus u in the system f and applying the chain rule, we arrive at

f (u(θ), t) = d-1 i=0 ∂u ∂θ i dθ i dt = d-1 i=0 ∂u ∂θ i ω i , (3.8)
where d is the dimension of the torus. Eq. (3.8) defines the invariance equation of the quasiperiodic torus, which forms the basis of the PDE(DFT) method. We can then discretize the torus u in N = N 0 × ... × N d-1 points, as U (θ), by selecting a number of nodes N i in each θ i direction, e.g. θ 0,n 0 = 2πn 0 /N 0 for n 0 = {0, ..., N 0 -1} and likewise for the other dimensions. We can then formulate the problem as

G(z) = d-1 i=0 ∂U ∂θ i ω i -f (U ) = 0, (3.9) 
where z = [U , ω] T , ω = {ω 0 , ..., ω d-1 }. Different methods to compute the partial derivatives in Eq. (3.9) could be used; in this research, we consider the DFT, as advocated in [START_REF] Zubin | Numerical method for computing quasi-periodic orbits and their stability in the restricted three-body problem[END_REF][START_REF] Baresi | Fully numerical methods for continuing families of quasi-periodic invariant tori in astrodynamics[END_REF]. We can write the d-dimensional DFT as

Û [k] = N 0 -1 n 0 =0 ... N d-1 -1 n d-1 =0 U ( 2πn N ) e -2πj(n•k/N ) , ( 3.10) 
where (n

• k/N ) = (n 0 k 0 /N 0 + ... + n d-1 k d-1 /N d-1
). The Inverse Discrete Fourier Transform (IDFT) is then

U (θ) = 1 N N 0 -1 k 0 =0
...

N d-1 -1 k d-1 =0 Û [k] e (θ • γ(k)) , ( 3.11) 
where γ i (k i ) is given by

γ i (k i ) =          jk i if 0 ≤ k i < N i /2, j(k i -N i ) if N i /2 < k i < N i , 0 if k i = N i /2, ( 3.12) 
for i = {0, ..., d -1}. Note that we use a different formulation of the DFT to that employed in [START_REF] Baresi | Fully numerical methods for continuing families of quasi-periodic invariant tori in astrodynamics[END_REF]. This comes from the trigonometric interpolation implementation of the Fourier transform that minimizes the oscillation related to aliasing (see [START_REF] Steven | Notes on FFT-based differentiation[END_REF] for details) and makes the transform well-defined between the nodes, independently of whether the number of nodes is even or odd, which is not the case for previous formulations of the algorithm.

Using this formulation, we can directly take the partial derivatives with respect to θ i from Eq. (3.11) by simply multiplying the Fourier coefficients by γ i . However, it is not efficient to transform our function each time we wish to take the partial derivatives. Instead, note that these operations can be grouped and later multiplied directly by U (θ). Writing the transforms as separate matrix blocks, we can define the operand to obtain the partial derivative with respect to θ i as

[Dθ i ] = [D -1 ][γ i ][D], (3.13) 
where [D] and [D -1 ] represent the DFT and IDFT matrix operations respectively. Additionally, note that we do not necessarily need to use the d-dimensional DFT, since we are only taking first order partial derivatives in one direction at a time. Nevertheless, the operand [Dθ i ] can be precomputed and multiplied by U (θ) to produce the relevant partial derivatives as ∂U (θ)/∂θ i = [Dθ i ] U (θ). This also makes the computation of the Jacobian matrix simpler, since we can directly take the partial with respect to U . Rewriting the invariance condition in Eq. (3.9) we arrive at

G(z) = d-1 i=0 [Dθ i ] U (θ) ω i -f (U ) = 0. (3.14)
Finally, note that when the system is time-dependent, it can occur that one of the partial derivatives ∂u/∂θ i can either be taken explicitly (if one of the angles appears in the statevector), or might be explicitly related to f . For the latter, an example is the ER3BP, where the normalized system uses the true anomaly, ν, as the time variable, such that f (u, ν) = u ′ = du/dν| ν .

The GMOS algorithm

The GMOS algorithm, named after Goméz, Mondelo, Olikara, and Scheeres [START_REF] Gómez | The dynamics around the collinear equilibrium points of the RTBP[END_REF][START_REF] Olikara | Computing Families of Quasi-Periodic Tori in Autonomous Hamiltonian Systems[END_REF], allows us to find the diffeomorphism u by mapping the stroboscopic image of an invariant curve, or, in other words, by integrating an initial invariant circle (at some initial θ 0 ) over the stroboscopic time T , for which we then revert the rotation ρ over its other angles. It is therefore framed as Boundary Value Problem (BVP), and it can take a single-shooting formulation, where the initial invariant circle is integrated up to T , or a multiple-shooting formulation, where the integration arcs are subdivided in N 0 nodes. In what follows, the core formulation of GMOS is described without making assumptions with regards to the single-versus multiple-shooting implementation, nor the time-dependence or time-independence of the system.

The GMOS algorithm

Integrating the initial invariant circle under the flow of the system over a time T , or, alternatively, after ∆θ 0 = 2π, the other angles θ i will have rotated by ρ i = ω i T = ω i 2π/ω 0 . We can then write

ϕ T (u(θ 0 , θ 1 , ..., θ d-1 )) = u(θ 0 , θ 1 + ρ 1 , ..., θ d-1 + ρ d-1 ), (3.15) 
since we have the boundary conditions u(θ i + 2π, •) = u(θ i , •), and ϕ T represents the flow after a time T . Note that ϕ T (u(θ)) is the image of our stroboscopic map u under a rotation along θ 0 equal to ∆θ 0 = 2π = ω 0 T . As with the case of the BVP for computing periodic orbits presented in Section 3 of Chapter 2, it is common to rescale the time as τ = T t, such that du/dτ = T f (u, τ ) and τ ∈ [0, 1] [START_REF] Zubin | Computation Of Quasi-Periodic Tori And Heteroclinic Connections In Astrodynamics Using Collocation Techniques[END_REF]. We neglect this notation in the following equations for clarity, but adopt this convention in the implementation of the algorithm. We define a rotation operator R -ρ that undoes the rotation along the other angular directions such that R -ρ i (u(•,

θ i + ρ i )) = u(•, θ i ).
We can then write the invariance condition for the GMOS algorithm

R -ρ (ϕ T (u)) -u = 0. (3.16)
The rotation operator can be written by means of the DFT, noting that the rotations needs only be undone in the angular directions ranging from θ 1 to θ d-1 . Then, the DFT of the discretized invariant circle X T (θ 1 , ..., θ d-1 ) = X T ( θ) = ϕ T (u(θ)) can be written as before

XT [k] = N 1 -1 n 1 =0
... 

N d-1 -1 n d-1 =0 X T ( 2πn N ) e -2πj(n•k/N ) , ( 3.17 
R -ρ (X T ( θ)) = 1 N 1 ... 1 N d-1 N 1 -1 k 1 =0 ... N d-1 -1 k d-1 =0 XT [k] e ( θ-ρ) • γ(k) , ( 3.18) 
where γ is defined as in Eq. (3.12) for i = {1, ..., d -1}. Again, we can write these operations in matrix blocks as

[R -ρ ] = [D -1 ][Q -ρ ][D], (3.19) 
where [Q -ρ ] is the diagonal matrix that rotates the Fourier coefficients by e j(-ρ • k) . This yields our final invariance condition

G(z) = [R -ρ ]X T -X 0 = 0, (3.20) 
where X 0 represents the initial invariant circle for some θ 0 and z = [u; T ; ρ] T . Finally, we note that when using the multiple-shooting implementation of GMOS, also referred to as GMOS(MS), we can write G as

G =        m 0 . . . m N 0 -2 g        = 0, (3.21) 
with g taking the same form as the single-shooting invariance condition of Eq. (3.20) but between the last and first nodes as g = [R -ρ ]X N 0 -1 τ -X 0 0 and where m i represents the continuity at the nodes [START_REF] Betts | Practical Methods for Optimal Control and Estimation Using Nonlinear Programming[END_REF] as

m i (X) = ϕ τ X i , t i -X i+1 = X i τ -X i+1 0 , ( 3.22) 
where i = {0, 1, ..., N 0 -2}, N 0 is the number of multiple shooting nodes, and ϕ τ X i , t i is the flow integrated from the initial conditions X i , t i after some time τ = T /N 0 .

Additional equations

Note that up to now we have N = N 0 × ... × N d-1 equations for the PDE(DFT) algorithm and

N = N 1 × ... × N d-1 or N = N 0 × ... × N d-1
for the GMOS algorithm (depending whether the single-or multiple-shooting implementation is used). However, the total number of equations needed actually depends on the number of parameters that describe the family and the number of external parameters of the system. As a note, in the following we tacitly assume that the necessary conditions for the persistence of quasi-periodic motion are maintained, such as nonresonance and non-degeneracy [START_REF] Jorba | On the Persistence of Lower Dimensional Invariant Tori under Quasi-Periodic Perturbations[END_REF].

As hinted at in Chapter 2, d-dimensional families that are dependent on k external parameters typically live in (d -k)-parameter families. More specifically, these k external parameters refer to parameters that are fixed by the dynamical system being used, e.g. when using a timeperiodic system we would have k = 1 external parameters, which translate in fixing one of the torus frequencies. This goes in line with the formulations stated by Olikara in [START_REF] Zubin | Computation Of Quasi-Periodic Tori And Heteroclinic Connections In Astrodynamics Using Collocation Techniques[END_REF], regarding the number of parameters and equations needed to compute tori in autonomous, periodically forced, and quasi-periodically forced systems, and by Baresi in [START_REF] Baresi | Fully numerical methods for continuing families of quasi-periodic invariant tori in astrodynamics[END_REF], regarding the number of parameters that describe the families in autonomous systems, i.e. where the families are independent of external parameters. Jorba and Villanueva [START_REF] Jorba | On the Persistence of Lower Dimensional Invariant Tori under Quasi-Periodic Perturbations[END_REF] also analyze these dependences to arrive at similar and more detailed conclusions. As indicated by Olikara, external forcing parameters are usually translated into an equivalent of one of the torus angles, θ i , appearing in the equations of motion. However, this assumes that the external parameters are fixed and not part of the continuation process. In reality, we can either be computing a quasi-periodic solution from scratch in a time-dependent system, where indeed the external forcing parameters will be fixed, or making use of homotopy continuation to continue a solution into a time-dependent system, as shown in Eq. (3.6), where these parameters will vary along the continuation process.

For the first case, when we have k external fixed parameters, d-dimensional tori do indeed tend to inhabit (d -k)-parameter families, which means we have (N + d -k) unknowns, and we usually need (d -k) phase conditions and (d -k) parametrizing conditions (to be defined). These are, similarly to the periodic orbit case of Chapter 2, used to fix the relative phase of the solutions and to select a specific solution among the family, respectively. As an example, one can think of computing a family of two-dimensional quasi-periodic tori in the BCR4BP from a previously known two-dimensional torus. In this case, d = 2 and k = 1, and one of the torus' angles will be represented in the equations of motion by the Sun angle. As such, one of the torus frequencies will be known a-priori as it corresponds to the Sun's angular velocity in the BCR4BP frame. We will then have a one-parameter family of two-dimensional tori, described by the other torus frequency or, equivalently, the fundamental period, which will be used to step along the family (assuming we step over resonances), and we will require only one phase and one parametrizing conditions. For the second case, when we compute a torus solution from the introduction of a periodic perturbation to a system via homotopy continuation, the homotopy continuation parameter will actually become a variable in the BVP equations. This means that, even though one of the torus frequencies will be fixed to that of the new perturbation, the homotopy parameter will be used to step along the artificial family formed by the d-dimensional manifold at different values of ǫ. A more generic formulation for the number of parameters needed to describe the family can then be given as follows. Let us assume k to be the number of forced perturbations, i.e. for which we either don't make use of homotopy continuation or for which the "full" value of the perturbation has already been attained (ǫ = 1) and is therefore fixed, and k p to be the number of variable perturbations along which the homotopy continuation can be performed. Then, a ddimensional manifold will typically inhabit a (d -k)-parameter family. We will have (N + d -k) unknowns (in which we include the k p homotopy parameters), and we will need to include (d -k -k p ) phase conditions and (d -k) parametrizing conditions. As an example, consider continuing a periodic orbit of the CR3BP into a two-dimensional quasi-periodic tori family of the time-dependent ER3BP. In this case, we will have d = 2, k = 0, and k p = 1. Similarly to the previous example, one of the torus frequencies will be known and fixed to the angular rate of the primaries' true anomaly. However, we will have ǫ as a new variable representing the introduction of the primaries' eccentricity, and two possible continuation directions: T and ǫ. In this case, we would then tend to have a two-parameter family of two-dimensional tori, and require one phase condition and two parametrizing conditions.

It should be noted , however, that these formulations depend on how the tori are parametrized. If we fix T until we achieve the desired value of eccentricity, we could effectively remove it from the vector of unknowns and we would require one less parametrizing equation. Nevertheless, this last formulation allows us to be more general and retain applicability for all cases. Finally, it is worth mentioning that an improvement in numerical convergence has sometimes been verified by maintaining a phase condition for the direction of a known torus frequency in quasi-periodic systems.

Now that the number of equations, parameters, and unknowns needed to compute families of quasi-periodic tori have been discussed, we can focus on the form of the additional equations. As mentioned, we may require phase conditions and parametrizing conditions. The phase condition for ith angular direction can be written as [START_REF] Zubin | Computation Of Quasi-Periodic Tori And Heteroclinic Connections In Astrodynamics Using Collocation Techniques[END_REF][START_REF] Baresi | Fully numerical methods for continuing families of quasi-periodic invariant tori in astrodynamics[END_REF] 

p i (u) = u -ũ, ∂ ũ ∂θ i = 1 N N 0 -1 ... N d-1 -1 (u -ũ) T ∂ ũ ∂θ i = 0, (3.23) 
where ũ is a previously known torus of the same family. To compute the partials with respect to θ i we can use the DFT as described in Eq. (3.13) for both algorithms. Specifically for the GMOS algorithm, we can approximate the partial along the θ 0 direction from Eq. (3.8) by substituting the partials that were obtained from the DFT method

∂u ∂θ 0 = 1 ω 0 f (u) - d-1 i=1 ∂u ∂θ i ω i . (3.24)
The first parametrizing equation is usually set to either a specific energy level C, when the system is autonomous

q 0 (u) = 1 N N 0 -1 ... N d-1 -1 C(u) -C = 0, (3.25) 
or a specific period T

q 0 (T ) = T -T = 0, (3.26) 
although in theory we could fix any other torus frequency this way. Note, of course, that since T = 2π/ω 0 , it is equivalent to say we fix the period or the fundamental frequency of the torus.

Similarly to the numerical continuation of periodic orbits, the remaining equations are usually covered by the pseudo-arclength continuation [START_REF] Seydel | Practical Bifuraction and Stability Analysis[END_REF]. For a two-dimensional quasi-periodic tori family in an autonomous system, the equation takes the form

q 1 (z) = z -z, ∂ z ∂h -δh = 1 N N 0 -1 N 1 -1 (u -ũ) T ∂ ũ ∂h + (T -T ) ∂ T ∂h + (ρ -ρ) ∂ ρ ∂h -δh = 0, (3.27) 
where ∂ z/∂h is the family tangent at the previously known solution, which characterizes the relative variation of the torus variables with respect to the pseudo-arclength parameter h, and δh is the step size. For higher-dimensional tori, a multiple-parameter continuation method must be implemented instead [START_REF] Henderson | Multiple parameter continuation: Computing implicitly defined k-manifolds[END_REF][START_REF] Zubin | Mapping connections between planar sun-earth-moon libration point orbits[END_REF]. The family tangent can be approximated as the difference between the last two known solutions or, as for the periodic orbit case of Chapter 2, from the null space of the Jacobian of G appended with the additional equations up to and excluding equation q 1 . Although different formulations are possible, the factor used to normalize the family tangent must be such that

∂z ∂h , ∂z ∂h = 1, (3.28) 
5. Modifications to the algorithms for a known solution z(h). This comes from approximating the next solution to first order by taking a step δh from z(h) as

z(h + δh) = z(h) + ∂z ∂h δh, ( 3.29) 
and substituting into equation (3.27). With these additional equations we can now build the complete error vector F

F (z) =     G(z) p(z) q(z)     = 0, (3.30) 
for which a solution can be found iteratively using

DF (z)δz = -F (z), (3.31) 
where DF is the Jacobian matrix of F [START_REF] Zubin | Numerical method for computing quasi-periodic orbits and their stability in the restricted three-body problem[END_REF]. Then, as for the periodic orbit case, the next family member is initialized as

z m+1 = z m + ∂z m ∂h δh. ( 3.32) 
Finally, note that, starting from a known solution or good enough initial guess z = X0 , ξ , where ξ are any additional parameters, we have that G X0 , ξ = 0. Then, by the Implicit Function Theorem, if

• G X X0 , ξ ∈ R N × R N is non-singular
• and G and G X are smooth near X0 , ξ , then there exists a unique continuous family (X 0 (h), ξ(h)), along the continuation parameter h, which may be one of the parameters in ξ, such that

• (X 0 (h 0 ), ξ(h 0 )) = X0 , ξ , • G (X 0 (h), ξ(h)) = 0 for h near h 0 .
This allows us to justify the existence of a family and use the aforementioned numerical continuation formulations.

Modifications to the algorithms

In addition to the changes in the implementation of the DFT routine used in both algorithms, the formulation of the homotopy continuation procedure, and the reinterpretation of the number of equations, parameters, and unknowns for the different types of problems, a few algorithmspecific modifications have also been implemented. Specifically, we implement the use of unfolding parameters in the PDE(DFT) algorithm to square the Jacobian matrix, and integrate all trajectories simultaneously in the GMOS algorithm by extending the state-vector and the vector-field. Although unfolding parameters have been implemented before for GMOS [START_REF] Zubin | Computation Of Quasi-Periodic Tori And Heteroclinic Connections In Astrodynamics Using Collocation Techniques[END_REF] and advocated in general for BVPs, they have not been used for PDE-type approaches. These modifications are detailed below.

PDE(DFT)

Although we have so far added all the equations needed in order to compute families of quasiperiodic tori, one may note that the Jacobian matrix DF is often not square. Indeed, using the formulation introduced in Section 4, note that we will usually have (d -k -k p ) more equations than unknowns. This means that one has to solve Eq. (3.31) using algorithms such as QR factorization for a non-square matrix, which represents a significant hurdle in terms of computational time and is prone to numerical errors. This is particularly significant for the PDE(DFT) method, as N is typically larger due the larger number of discretization points needed (which yields Jacobian matrices generally in the order of at least 7500 2 entries and larger). We can minimize this by squaring the DF matrix with the introduction of unfolding parameters. Specifically, we add (d -k -k p ) unfolding parameters, λ i . These parameters embed the Hamiltonian system augmenting the vector field in such a way that a solution is only found for λ = 0, and are commonly implemented in continuation routines for periodic orbit families [START_REF] Doedel | Computation of periodic solutions of conservative systems with application to the 3-body problem[END_REF][START_REF] Muñoz-Almaraz | Continuation of periodic orbits in conservative and Hamiltonian systems[END_REF]. The use of unfolding parameters also has the significant advantage of making the continuation algorithms more robust and less prone to dynamical and numerical instabilities.

In order to extend the vector field we use the approach introduced in [START_REF] Zubin | Computation Of Quasi-Periodic Tori And Heteroclinic Connections In Astrodynamics Using Collocation Techniques[END_REF], which makes use of the partial derivatives with respect to the action angles, I, of the torus

f (X) := f 0 (X) + d-1 i=0 λ i ∂I i ∂X (X), (3.33) 
which matches the original vector field f 0 only for λ = 0. Locally, the torus actions behave similarly to an integral of motion, with the advantage that we have the same number of torus actions as independent angle coordinates. Moreover, we do not need to compute the torus actions explicitly, as we can directly obtain the relevant partial derivatives from [START_REF] Zubin | Computation Of Quasi-Periodic Tori And Heteroclinic Connections In Astrodynamics Using Collocation Techniques[END_REF]:

∂I i ∂X = - ∂y ∂X T J ∂y ∂X ∂u ∂θ i , ( 3.34) 
where y is the transformation to canonical coordinates y(X) := (q, p)(X) ∈ R n/2 × R n/2 , and q, p are the generalized coordinates and momenta, respectively. The matrix J is n × n and defined as

J = 0 +I n/2 -I n/2 0 , ( 3.35) 
where I n/2 is the identity matrix.

6. Comparison

GMOS

The GMOS algorithm requires us to integrate N trajectories, which can result in a significant computational cost. We avoid this by introducing the improvement of integrating all the trajectories simultaneously, therefore extending the state-vector. This not only has the benefit of reducing the computational time (which could also be obtained by parallelizing the integration), but as mentioned by Betts in [START_REF] Betts | Practical Methods for Optimal Control and Estimation Using Nonlinear Programming[END_REF] (see chapter 3.9.3), it plays an important role on the consistency of our approximations. Indeed, by constructing an augmented system where all the trajectories are integrated together, we guarantee that they will have the same number of integration steps, which translates into a more consistent approximation among all the solutions and for further operations using said solutions. The error differences that result from different numbers of integration steps can be further accentuated by numerical differentiation schemes used after the integration routine, such as computing partial derivatives with, in our case, the DFT. Although the trajectories might remain under the error tolerance stipulated by the integration routine, they will often require vastly different numbers of steps to do so and might not yield consistent approximations. Integrating all the trajectories simultaneously allows us to not require such low tolerance errors and maintain consistency among all trajectories, with the addition of significantly reducing the computation time.

Another important benefit associated with integrating all trajectories simultaneously is that it allows us to use variational equations that involve interdependence between the θ 0 direction and the other angular directions. That is, we can integrate, along the θ 0 direction, quantities that vary with the whole invariant circle that is being integrated. This enables the use of integral constraints in place of the discrete constraints exemplified in Section 4 for the phase conditions, which are said to be more robust and efficient [START_REF] Doedel | Computation of periodic solutions of conservative systems with application to the 3-body problem[END_REF].

Comparison

Having detailed the algorithms in the previous sections, we can now compare their numerical efficiency, as well as the improvements being introduced. Firstly, it is important to discuss the bottlenecks of each algorithm in terms of computational time. Since the PDE(DFT) algorithm does not require integration, its bottleneck is clearly the computation of Newton's method in Eq. (3.31), which requires solving a linear problem of the type Ax = b for potentially a very large matrix A (see Figure 3.2a as an example). For a non-square matrix this requires using methods such as QR factorization, which are computationally demanding. As mentioned, in order to address this we have implemented unfolding parameters, which square the Jacobian matrix and significantly decrease the computational time of the operation. An example of the reduction in computational time achieved by this, when compared to the PDE(DFT) implementation without unfolding parameters, can be seen in Table 3.1 for a two-dimensional torus and different numbers of nodes. It should be noted that the running times were obtained using the Spyder profiler for Python and that they can vary slightly for different runs as they also depend on parameters external to the program. Nonetheless, it is clear that the introduction of unfolding parameters improves the computational efficiency of the algorithm significantly, producing a decrease of angular direction, Tables 3.1 and 3.2 show that the GMOS multiple shooting algorithm outperforms the PDE(DFT) for the time needed to solve Newton's method equation, even when using unfolding parameters. This is likely due to a "better-behaved" configuration of GMOS's Jacobian matrix, in terms of sparsity configuration. The sparsity plot of the Jacobian matrix DF for each method can be seen in Figure 3.2. Note that the non-zero terms of the GMOS matrix are mostly placed along the diagonal, whereas the PDE(DFT) presents diagonal entries along the whole matrix. Sparse Jacobian matrices whose entries are placed mostly along the diagonal are generally faster to invert, or to solve Newton's method equation with [START_REF] Betts | Practical Methods for Optimal Control and Estimation Using Nonlinear Programming[END_REF], which might make the operation faster for the GMOS algorithm when using large numbers of nodes. Additionally, it is worth noting that this sparse configuration could open the door for a faster implementation of the two methods if numerical libraries based on sparse matrices are used for the algorithms. Furthermore, we can see that for the largest number of nodes along θ 0 , the average runtime of the GMOS(MS) necessary to find one quasi-periodic torus is smaller than that of the PDE(DFT) method (78s for GMOS compared to around 150s for PDE(DFT)), even though the GMOS requires numerical integration. This might be related to the fact that the PDE(DFT) method requires a larger number of algebraic operations involving very large matrices, which are significantly slow, although the integration time associated with GMOS can vary depending on the initial conditions and dynamics. Nevertheless, we find that in general, the GMOS algorithm outperforms PDE(DFT) and as such should be preferred for most applications. The same conclusion was also put forward in [START_REF] Baresi | Spacecraft Formation Flight on Quasi-periodic Invariant Tori[END_REF].

Applications to trajectory design

Having introduced the methods and equations necessary for the computation of families of quasiperiodic tori, we can now find quasi-periodic motion in the frame of specific missions, focusing on the applications and possibilities that said trajectories enable. In Section 7.1, we discuss the Martian Moons eXploration (MMX) mission by JAXA, the extensions of its candidate periodic orbits to quasi-periodic tori families, and applications to its mission design. In Section 7.2, we present a powerful tool to visualize the trajectories that move along the surface of quasi-periodic tori, and demonstrate its uses to plot relevant quantities in the frame of the MMX mission.

The Martian Moon eXploration mission

The MMX mission by JAXA will attempt to answer the questions surrounding the origin of the Martian Moons, Phobos and Deimos, with plans to return a sample from Phobos' surface to Earth and to perform extensive scientific observations on and around Phobos [START_REF] Kawakatsu | Mission Design of Martian Moons eXploration (MMX)[END_REF]. To be launched in 2024, MMX will orbit Phobos on a orbit family called Quasi-Satellite Orbit (QSO), also known as Distant-Retrogate Orbit (DRO). Due to their attractive linear stability and dynamical properties, five nominal QSOs have been selected, categorized by different altitude values as low (QSO-La, QSO-Lb, QSO-Lc), medium (QSO-M), and high altitude (QSO-H) [START_REF] Canalias | Trajectory analysis for the Phobos proximity phase of the MMX mission[END_REF].

x-axis points at all times in the anti-Mars direction and is always aligned with Phobos' largest ellipsoidal axis. The z-axis points in the direction of Mars-Phobos' orbital angular momentum vector and the y-axis completes the orthonormal frame. The dimensionless equations of motion can be written as

ẍ -2 ẏ = ∂g ∂x + 3x (3.36a) ÿ + 2 ẋ = ∂g ∂y (3.36b) z = ∂g ∂y -z (3.36c)
where the length and time units are [LU] = µ 2 /n 2 1/3 and [TU] = 1/n, respectively, µ 2 is Phobos' gravitational parameter, n is Phobos' mean motion about Mars, and g is the gravity potential of the constant density ellipsoid, as defined in [START_REF] Baresi | Quasi-periodic Motion around Phobos : Applications to the Martian Moons eXploration (MMX)[END_REF][START_REF] Daniel | Orbital Motion in Strongly Perturbed Environments[END_REF].

Having defined our vector field, we are now in a position to apply the methods described in the previous sections in order to obtain quasi-periodic tori around QSOs. Note that the choice of in-plane vs out-of-plane quasi-periodic tori comes from the choice of the center eigenvalues and associated eigenvectors of the periodic orbit. Since QSOs possess two unitary complex eigenvalues we can choose either to obtain our in-plane or out-of-plane quasi-periodic motion. Focusing on the Lb-QSO, we can then produce its associated quasi-periodic vertical QSO by choosing an eigenvalue whose eigenvector has an out-of-plane component. Implementing the family continuation routine associated with either algorithm, we can obtain a family of vertical quasi-periodic QSOs. In Figure 3.4, we can see a member of the family, together with the nominal periodic QSO-Lb (in a dashed black line) and a portion of a sample quasi-periodic trajectory on the surface of the torus in blue.

We can proceed equivalently in order to obtain planar quasi-periodic QSOs, such as the quasi-periodic torus seen in Figure 3.5, obtained also from the periodic QSO-Lb.

Just by analyzing Figures 3.4 and 3.5, it is clear that the quasi-periodic trajectories offer new opportunities for mission design when compared to the periodic orbits. In fact, we can see that in terms of science possibilities, the quasi-periodic tori give us significantly wider ranges of observation scenarios and conditions. Specifically, we can see that the vertical quasi-periodic torus of QSO-Lb shown in Figure 3.4 allows us to reach significantly higher latitudes (around 30 • for the QSO-Lb, higher for the larger QSOs), which would otherwise be impossible given that periodic QSOs are equatorial. Alternatively, for the planar quasi-periodic QSO-Lb family, we can see that in the same revolution the trajectory's altitude varies significantly more than for the periodic orbit. In the same orbital revolution, the spacrecraft reaches significantly lower and higher altitudes than those of the periodic orbit.

These characteristics in turn enable the possibility of obtaining better resolution measurements and performing different scientific observations, which would allow us to obtain relevant data in areas such as spectroscopy, gravity measurement, remote sensing, and others. Additionally, these quasi-periodic trajectories could enable an easier access to land on Phobos, as they give us a significantly wider array of initial conditions from which to deploy a lander or execute a

In the following chapters we apply these methodologies to other missions and dynamical environments, with the goal of better characterizing perturbed dynamics and finding interesting and realistic orbit solutions.

Chapter 4

Invariant manifolds in the Augmented Hill Problem for small-body exploration

In this chapter, the theoretical background and methodologies previously introduced are leveraged to exemplify possible applications for small-body exploration. Particularly, we focus on the Augmented Hill Problem (AHP), a formulation of the Hill Problem that includes Solar Radiation Pressure (SRP) and eclipses that is often a good approximation for the dynamics about small bodies. In Section 1, the context of this study is presented with a small introduction to small-body exploration. This is followed by a presentation of some of the dynamical solutions of the AHP model in Section 2, which focuses particularly on the periodic and quasi-periodic solutions to be studied in this chapter. Section 3 then analyzes landing trajectories from some of the considered periodic orbits via their hyperbolic invariant manifolds. This is followed by an analysis into the hyperbolic manifolds of the quasi-periodic trajectories in Section 4, both as possible baseline landing trajectories and as homoclinic connections that can be useful to science operations. Finally, Section 5 resumes the findings of this chapter, demonstrating the value of dynamical systems tools to designing trajectories for small-body exploration.

Small-body exploration

The scientific exploration of asteroids and comets, besides being a great testament to the development of space exploration, may allow us to attain an unprecedented degree of knowledge about the origins of our solar system. These small bodies are said to contain remnants of the beginning of the solar system, and key-information about its formation and history. The scientific data from the sample-return Hayabusa2 mission by JAXA and the sample-return OSIRIS-REx mission by NASA is yet to be completely analyzed, and even so they have already contributed to many scientific discoveries [START_REF] Morota | Sample collection from asteroid (162173) Ryugu by Hayabusa2: Implications for surface evolution[END_REF][START_REF] Lauretta | The unexpected surface of asteroid (101955) Bennu[END_REF]. Additionally, as is the case with ESA's Hera and NASA's DART counterpart missions to the binary asteroid Didymos, the study of these near-Earth objects can be very relevant to the topics of planetary protection and space situational awareness. DART was launched in the end of 2021 and should impact the smaller body, Dimorphos, on 1. Small-body exploration September 26, 2022, at a relative velocity of around 6 km/s [START_REF] Rivkin | The double asteroid redirection test (DART): Planetary defense investigations and requirements[END_REF], whereas Hera will arrive a few years later to the binary system to analyze the aftermath of DART's impact to Dimorphos [START_REF] Michel | European component of the AIDA mission to a binary asteroid: Characterization and interpretation of the impact of the DART mission[END_REF]. Other small-body missions include two of NASA's Discovery program missions: Lucy, which was launched in the end of 2021 and which will investigate seven Trojan asteroids [START_REF] Harold | Lucy mission to the Trojan asteroids: Science goals[END_REF], and Psyche, which will rendezvous with and study the largest known metal asteroid in the solar system [START_REF] Oh | Development of the Psyche Mission for NASA's Discovery Program[END_REF]. Additionally, the planned Janus mission consists of a twin spacecraft design that will fly-by near-Earth objects of interest and will be launched together with Psyche as part of the NASA SIMPLEx's program [START_REF] Scheeres | Janus: A NASA SIMPLEx mission to explore two NEO Binary Asteroids[END_REF].

The relevance of small-body missions in the current era of space exploration raises the importance of the study and modeling of the environments about these bodies. As it has already been said, their small gravity amplifies the significance of additional perturbations, such as that posed by Solar Radiation Pressure (SRP). It is common to model these environments using adaptions of the Hill problem detailed in Chapter 2. In this chapter we make use of what is sometimes referred to as the Augmented Hill Problem (AHP), where the Hill approximation is used to include the SRP acceleration to the dynamics, which is assumed to be constant and parallel to the x-axis of the Hill Problem's rotating frame (see Figure 2.2 of Chapter 2). This comes from the approximation to the vicinity of the small body, where we assume that the distance to the Sun is approximately constant. Additionally, although it is often not included in the problem's formulation, we include eclipses caused by the small body. A simple cylindrical eclipse model is used for this due to the distance and the relative size of the small body with respect to the Sun, which make the differences to a more complex model, such as the conic eclipse model, negligible [START_REF] García | Alternating orbiter strategy for asteroid exploration[END_REF].

As indicated, we adopt the same orthogonal rotating reference frame of the Hill Problem, centered on the secondary body, where the x-axis points in the anti-Sun at all times and the z-axis points in the direction of the angular momentum vector of the secondary's orbit about the Sun. The length and time units also remain the same, [LU ] = (µ/n 2 ) 1/3 and [T U ] = 1/n, respectively, where µ is the secondary's gravitational parameter and n is its mean motion about the Sun. The normalized equations of motion are

ẍ -2 ẏ = - x r 3 + 3x + β (4.1a) ÿ + 2 ẋ = - y r 3 (4.1b) z = - z r 3 -z (4.1c)
where r = x 2 + y 2 + z 2 and β is the normalized SRP acceleration. The normalized SRP can be expressed as a ratio between the dimensional SRP acceleration and the secondary's mass parameter, as

β = (1 + C R )P 0 m/A µ 1/3 µ 2/3 S (4.2)
where C R is the reflectivity coefficient or albedo, P 0 ≈ 1.02 × 10 17 kg m s -2 is the solar constant, 3. Landing opportunities via the hyperbolic unstable manifolds of periodic terminator orbits to generate baseline landing trajectories to the surface of small bodies. Whether it be larger spacecraft, cubesats, or rovers, the deployment and landing of these structures is extremely challenging due to weak gravity, the small sphere of influence, and the generally perturbed dynamics that most small bodies such as asteroids and small comets possess. Previous works have studied landing trajectories onto small bodies [START_REF] Tardivel | Ballistic deployment of science packages on binary asteroids[END_REF][START_REF] Ferrari | Ballistic landing design on binary asteroids: The AIM case study[END_REF][START_REF] Herrera-Sucarrat | Asteroid observation and landing trajectories using invariant manifolds[END_REF], but these do not usually take a baseline orbit or trajectory into account, and rather focus on initial conditions of the lander's trajectory as opposed to assuming that the mothercraft is in a particular orbit. A study that does, however, take this into account is presented in [START_REF] Çelik | Ballistic deployment from quasi-satellite orbits around Phobos under realistic dynamical and surface environment constraints[END_REF], where baseline periodic orbits are divided into various nodes, from which departure Delta-V's are applied. The approach taken in this section follows a similar direction, diverging on the family of orbits used and on the method used to obtain the deployment conditions. Here, we make use of the direction of the unstable manifolds of the terminator orbits closest to L 2 to generate these landing trajectories. In this section we focus only on the periodic terminator orbits. Different types of landing probes have been considered in this study. Namely, as specified in Table 4.1, we have considered lander-types that resemble a spacecraft, a cubesat, a MASCOTtype lander [START_REF] Ulamec | Landing on small bodies: From the rosetta lander to MASCOT and beyond[END_REF], and two additional ones -with smaller mass-to-area ratio -named lander A and B. Note that for the cubesat we consider an effective area of 0.023 m 2 and mass of 4 kg [START_REF]CubeSat Design Specification[END_REF], and for the MASCOT-type lander [START_REF] Ulamec | Landing on small bodies: From the rosetta lander to MASCOT and beyond[END_REF] we consider an effective area of 0.072 m 2 and a mass of 10 kg. A general reflectivity coefficient of C R = 0.4 is considered for all the landers. Lastly, we To simulate the landing trajectories from the terminator orbits, we select 160 equidistant nodes along each orbit and compute its inner unstable manifolds. We find that, excluding the cubesat lander, 100 % of the trajectories reach the asteroid surface. For the cubesat, 80 % reach Ryugu and 100 % reach Bennu. Given the large mass-to-area ratio considered for the cubesat, and therefore its small value of β (see Table 4.1), it was expected that some of the trajectories would not intersect the asteroid surface. For such low β values, the effect of the L 2 manifold is sometimes not sufficient to guide all the trajectories directly to the small-body. As can be seen in Figure 4.8 for the case of the cubesat at Ryugu, some of the manifolds miss the asteroid on a first pass and either escape or impact later.

Conclusions

This chapter has presented applications of numerical DST methods and trajectory design tools to small-body exploration, which were showcased in the context of the Augmented Hill Problem (AHP). Specifically, we focused on the periodic orbit family that is equivalent to the Halo orbit family of CR3BP, which is often referred to as the terminator family, and the quasiperiodic tori that emanate from these orbits. Both the periodic and quasi-periodic solutions were analyzed for different values of relative Solar Radiation Pressure (SRP) acceleration, which depends on the mass of the small-body and the mass-to-area ratio of the spacecraft being considered. In this frame, the invariant hyperbolic manifolds of these solutions were studied. These are dictated by hyperbolic manifolds of the L 2 point, which are affected by the value of the relative SRP acceleration. We analyzed the possibility to construct baseline landing trajectories using the unstable manifolds of these solutions. Additionally, we demonstrate how the hyperbolic manifolds of the quasi-periodic terminator tori allow, when selecting trajectories that don't intersect with the body, for the easy design of homoclinic connections.

Chapter 5

The Elliptic-Circular problem and the cislunar environment

In this chapter, a novel dynamical problem is presented, based on the work by Castellà and Jorba [START_REF] Castellà | The lagrangian points of the real Earth-Moon system[END_REF]. Named the Elliptic-Circular Restricted Four-Body Problem (ECR4BP), or Elliptic-Circular model for short, the problem is especially suited to tackle the dynamics associated with the cislunar environment, as it incorporates both the perturbation posed by the Sun and the eccentricity of the Moon's orbit. As such, the problem is employed in the frame of NASA's Lunar Gateway mission in order to find and analyze the dynamical equivalents of the mission's planned orbit, which belongs to the Near-Rectilinear Halo Orbit (NRHO) family, which was originally computed in the CR3BP. Specifically, we study two resonant synodic or and one resonant sidereal NRHOs, performing numerical continuation from the CR3BP to the higher-fidelity Elliptic-Circular via the methods presented in the previous chapters. The chapter is divided as follows. Section 1 presents the motivation and frame of this contribution, detailing previous work in trajectory design on the cislunar environment and details on the Lunar Gateway mission. In Section 2, the equations of motion of the Elliptic-Circular are presented, and in Section 3 the numerical continuation procedure of the orbits of interest is formulated, leveraging the schemes previously presented in Chapter 3. Then, Section 4 presents the quasi-periodic tori that arise from these numerical procedures. In Section 5 their stability is studied, and in Section 6 several torus maps associated with these solutions are analyzed. Finally, Section 7 resumes the findings of this study.

Cislunar space and the Lunar Gateway mission

Pushed by recently undertaken [START_REF] Nath | Chandrayaan-1 mission to the Moon[END_REF][START_REF] Zhou | Scientific objectives and payloads of the lunar sample return mission-Chang'E-5[END_REF] and planned lunar missions, the interest in accurately modeling the cislunar environment has gained a significant importance for space mission designers. Particularly, NASA's Artemis program [START_REF]NASA's Lunar Exploration Program Overview[END_REF] has cemented the relevance of cislunar space and lunar missions for the future of space exploration, be it as the exploration of the Moon or as the staging ground for interplanetary missions. Central to these plans, the NASA-led Lunar Gateway station will be deployed about the Moon in what is known as a Near-Rectilinear 1. Cislunar space and the Lunar Gateway mission Halo Orbit (NRHO) to serve for science and observation, life support and habitation of visiting astronauts, communications, and as an outpost for future missions. The Gateway's planned orbit type, the NRHO, is a sub-family of the Earth-Moon's L 2 Southern Halo orbit family [START_REF] Nasa | White Paper : Gateway Destination Orbit Model : A Continuous 15 Year NRHO Reference Trajectory[END_REF][START_REF] Howell | Almost rectilinear halo orbits[END_REF] that has been extensively studied due to its relevance in the frame of space exploration. As reported in [START_REF] Davis | Orbit maintenance and navigation of human spacecraft at cislunar near rectilinear halo orbits[END_REF], the NRHO sub-family experiences lower perilune altitudes and presents attractive near-stable conditions with respect to the rest of the Halo family, which translates in lower station-keeping costs. Specifically, the targeted orbit for the Lunar Gateway is a 9:2 resonant synodic NRHO of the L 2 southern family [START_REF] Nasa | White Paper : Gateway Destination Orbit Model : A Continuous 15 Year NRHO Reference Trajectory[END_REF], meaning that a spacecraft along this orbit completes 9 revolutions for every two revolutions of the Earth-Moon-Sun system, where the synodic period of the Earth-Moon-Sun is about 29.5 days. The use of synodic resonant orbits has been shown to be advantageous in the past, particularly regarding eclipse avoidance, as demonstrated in [START_REF] Zimovan | Near rectilinear halo orbits and their application in cis-lunar space[END_REF][START_REF] Davis | Orbit maintenance and navigation of human spacecraft at cislunar near rectilinear halo orbits[END_REF][START_REF] Chikazawa | Minimizing eclipses via synodic resonant orbits with applications to EQUULEUS and MMX[END_REF].

It is common to study cislunar trajectories in the simplified Earth-Moon dynamical model of the CR3BP, where the NRHO and Halo families were originally formulated [START_REF] Howell | Almost rectilinear halo orbits[END_REF]. However, as stated throughout this thesis, the CR3BP can be a poor approximation of the real dynamics, which can be particularly true in the case of the cislunar environment. For this reason, studies have been performed where NRHOs initially computed in the CR3BP are continued into highfidelity full-ephemeris models and further analyzed in these models, as is the case in [START_REF] Davis | Orbit maintenance and navigation of human spacecraft at cislunar near rectilinear halo orbits[END_REF][START_REF] Nasa | White Paper : Gateway Destination Orbit Model : A Continuous 15 Year NRHO Reference Trajectory[END_REF]. Although multiple techniques exist, this is typically done by applying small velocity corrections (discontinuities) at specific points along the trajectory in order to keep it in the proximity of the baseline CR3BP orbit. Although the analyses performed via these techniques are very valuable, one could argue that part of their dynamical information might be lost due to the discontinuities applied, even if very small in magnitude. Moreover, we have no guarantees that the trajectories to which the algorithms converge represent the actual dynamical equivalent of the CR3BP's periodic NRHOs.

In order to retain a higher degree of dynamical information and a better dynamical correspondence with respect to the CR3BP's trajectories, we can make use of higher-fidelity dynamical models that allow us to compute the dynamical substitutes of the CR3BP's NRHOs. We can do this by using some of the models presented in Chapter 2, such as the periodic Bicircular problem, which incorporates the influence of the Sun's gravity in the dynamics, and has previously been used to analyze periodic and quasi-periodic orbits in the cislunar space [START_REF] Kenza | Dynamics of synodic resonant near rectilinear halo orbits in the bicircular four-body problem[END_REF][START_REF] José | Families of Halo-like invariant tori around L2 in the Earth-Moon Bicircular Problem[END_REF][START_REF] Mccarthy | Characterization of Families of Low-Energy Transfers to Cislunar Four-Body Quasi-Periodic Orbits[END_REF][START_REF] Stephen | Characteristics and Analysis of Families of Low-Energy Ballistic Lunar Transfers[END_REF].

While these works remain very relevant and useful in the design of trajectories around the cislunar space, for the most part, they do not consider a significant perturbation present in the real dynamics of the system: the eccentricity of the Moon's orbit. Aiming to further improve the accuracy of the dynamical systems used to model the cislunar environment, we propose to incorporate this perturbation into our dynamical model, thus generalizing the BCR4BP into what we refer to as the Elliptic-Circular Restricted Four-Body Problem (ECR4BP). The ECR4BP, or Elliptic-Circular problem, models the Earth and the Moon in elliptical orbits about their barycenter and considers that the Sun moves in a circular orbit about the Earth-Moon's barycenter. The model has been previously shown to describe the motion of a particle near the Earth-Moon's triangular equilibrium points accurately when compared to JPL ephemeris, as opposed to the CR3BP [START_REF] Castellà | The lagrangian points of the real Earth-Moon system[END_REF]. This is proven to be particularly significant in terms of the practical stability of solutions, which the authors show the CR3BP and even the Bicircular can over-estimate. Note that, just as the Bicircular, the Elliptic-Circular is not a coherent model. That is, for both models the motion of the massive bodies is not a solution of the Three-Body Problem since the Sun is considered to not affect the motion of the Earth and the Moon. Nevertheless, the model remains a good approximation of the dynamics of a spacecraft subject to the gravitational attraction of all bodies, making it an attractive option for spacecraft mission design. While coherent restricted four-body models such as the Quasi-Bicircular model exist [START_REF] Andreu | The quasi-bicircular problem[END_REF], we do not consider them in this thesis. Other restricted four-body problems that should be mentioned include the Hill four-body problem [START_REF] Scheeres | The Restricted Hill Four-Body Problem with Applications to the Earth-Moon-Sun System[END_REF] and the BiElliptic problem [START_REF] Assadian | On the quasi-equilibria of the BiElliptic four-body problem with non-coplanar motion of primaries[END_REF][START_REF] Chakraborty | BiElliptic Restricted Four Body Problem[END_REF].

In this chapter, we employ the ECR4BP model to study the dynamical equivalents of some of the CR3BP's NRHOs, among them, that planned for the Lunar Gateway. Specifically, we propose to analyze three types of resonant NRHOs in this model: the 9:2 and 4:1 synodic resonant NRHOs, and the 4:1 sidereal resonant NRHO. In addition to the planned Gateway orbit, the two 4:1 resonances are chosen due to their relative proximity to the 9:2 synodic resonance and their consistent stability behavior during continuation to other models [START_REF] Kenza | Dynamics of synodic resonant near rectilinear halo orbits in the bicircular four-body problem[END_REF][START_REF] Davis | Orbit maintenance and navigation of human spacecraft at cislunar near rectilinear halo orbits[END_REF]. Additionally, while the synodic resonances have been studied before in the Bicircular model, the sidereal resonance has only been analyzed in an ephemeris model [START_REF] Davis | Orbit maintenance and navigation of human spacecraft at cislunar near rectilinear halo orbits[END_REF]. To the best of the author's knowledge, neither has been analyzed in a non-ephemeris high-fidelity dynamical model that incorporates both the perturbation of the Sun and that of the Moon's eccentricity.

Equations of motion

The Elliptic-Circular can be seen as a generalization of the Bicircular, the latter of which considers that the primary and secondary move in circular orbits whereas the former considers they move in elliptical orbits. In both models, the third body (in our case, the Sun) moves in a circular orbit about the barycenter of the other two bodies, with all bodies moving in the same orbital plane. As detailed in Chapter 2, the Bicircular model represents a periodic system, characterized by its synodic frequency or period, i.e. the rate at which the relative positions of the Earth-Moon-Sun repeat, which is given by Ω 3 = n -n 3 , where n is the mean motion of the primary and secondary and n 3 is the third body's mean motion. The Elliptic-Circular model, however, represents a quasi-periodic system with two (incommensurate) frequencies, one equal to Ω 3 , same as for the Bicircular, and another being the rate of the true anomaly of the two primaries, which is influenced by their eccentricity. Both models use a co-rotating reference frame centered on the barycenter of the primary and such that the x-axis constantly points from the primary to the secondary, the z-axis points in the direction of their mutual orbit's angular momentum vector, and the y-axis completes the orthogonal frame. A representation of each model can be seen in Figure 5.1 in the co-rotating reference frame centered on the barycenter of the primary and secondary. The dashed lines represent the orbits of the primary and secondary in a pseudo-inertial frame at the moment where the rotating and inertial frames coincide to illustrate the differences in the orbits of the primaries between the two models. However, since order to derive these equations, it is best to start from the derivation of the equations of the ER3BP shown in Chapter 2 and introduce the terms relative to the Sun, which we can directly import from the equations of the Bicircular model. Accordingly, we can write the dimensional acceleration due to the third body's influence as r * 3 = -

Gm * 3 r * 3 3 r * 3 - Gm * 3 a * 3 3     x * 3 y * 3 z * 3     , (5.3) 
where the superscript * represents dimensional values, µ * 3 is the third body's gravitational parameter, a * 3 is the semi-major axis of the third body's orbit, x * 3 , y * 3 , z * 3 are the position coordinates of the third body in the co-rotating frame, r * = [x * , y * , z * ] T is the position-vector of the spacecraft, and

r * 3 = (x * -x * 3 ) 2 + (y * -y * 3 ) 2 + (z * -z * 3 )
2 is the distance between the spacecraft and the third body. Note that the Sun is assumed to be on the same plane as the Earth-Moon system, which means z * 3 = 0. Then, using the normalization scheme,

r * 3 = GM l 2     - µ 3 r 3 3 r 3 - µ 3 a 3 3     x 3 y 3 0         = GM l 2 r ′′ 3 , (5.4) 
where ′ denotes differentiation with respect to the true anomaly and r ′′ 3 is the normalized third-body acceleration. The term GM l 2 simplifies with the other terms coming from the ER3BP normalization (see Eqs. (2.11) to (2.20)), yielding the normalized equations of motion of the ECR4BP in the pulsating rotating frame:

x ′′ -2y ′ = ∂ψ ∂x , ( 5.5a 
)

y ′′ + 2x ′ = ∂ψ ∂y , (5.5b 
)

z ′′ = ∂ψ ∂z , (5.5c) 
with

ψ = 1 1 + e cos ν 1 2 x 2 + y 2 -ez 2 cos ν + 1 -µ r 1 + µ r 2 + µ 3 r 3 - µ 3 a 3 3 (x 3 x + y 3 y + z 3 z) , ( 5.6) 
where

r 1 = (x + µ) 2 + y 2 + z 2 and r 2 = (x -(1 -µ)) 2 + y 2 + z 2 .
We can also write the 2. Equations of motion equations of motion as

x ′′ -2y ′ = ∂ ψ ∂x , ( 5.7a 
)

y ′′ + 2x ′ = ∂ ψ ∂y , ( 5.7b 
)

z ′′ + z = ∂ ψ ∂z , ( 5.7c) with ψ 
= 1 1 + e cos ν 1 2 x 2 + y 2 + z 2 + 1 -µ r 1 + µ r 2 + µ 3 r 3 - µ 3 a 3 3 (x 3 x + y 3 y + z 3 z) , (5.8) 
which can be beneficial when taking partial derivatives, as will be shown in Section 3.1. Note that when setting the eccentricity to zero the equations simplify to the Bicircular case and when setting µ 3 to zero they simplify to the ER3BP model. Due to the normalization used, the primary and secondary are always on the x-axis at -µ and 1 -µ, respectively.

To compute the position of the third body in the pulsating frame we use the same formulation presented previously for the Bicircular:

         x 3 = a 3 cos σ = a * 3 l cos σ, y 3 = -a 3 sin σ = - a * 3 l sin σ, z 3 = 0, (5.9) 
where σ is the angular position of the third body in the pulsating frame. Starting from σ = (ν -n 3 t) + σ 0 , (

we can derive the rate of change of the Sun's angular position with respect to the true anomaly in the pulsating rotating coordinate frame as

σ ′ = dσ dν = 1 -n 3 / ν = 1 - n 3 (1 -e 2 ) 3/2 n (1 + e cos ν) 2 (5.11) 
with n = GM/a 3 . Owing to Eq. (5.11), it is found that σ would grow linearly with the true anomaly ν as expected from Eq. (5.10). To enforce periodicity in σ, we find it best to introduce two auxiliary variables, namely c = cos σ and s = sin σ. This is done in order for numerical algorithms to identify solutions separated only by a 2π variation on σ as the same solution.

Although modulo functions could be used with the same purpose, our implementation allows for derivatives and subsequently dependent equations to behave correctly numerically. Then, obeying to the equations of motion:

c ′ = -s σ ′ , ( 5.12a 
)

s ′ = c σ ′ . ( 5.12b) 
The latter may be rewritten in vector form as

χ ′ = σ ′ J χ = 1 - n 3 (1 -e 2 ) 3/2 n (1 + e cos ν) 2 J χ, ( 5.13) 
with χ = c, s T and J = 0 -1 1 0 .

By appending Eq. (5.13) to the equations of motion Eq. (5.7) and χ to the six-dimensional state-vector r T , v T T , we can formulate an eight-dimensional system of first-order ordinary differential equations such that

X ′ = f (X, ξ, ν, ) = f (X, ξ, ν + 2π), (5.14) 
where X = r T , v T , χ T T and ξ = [µ, e, µ 3 ] T is a vector of system parameters. In the following, periodic and quasi-periodic orbits are generated by first selecting sidereal and synodic Halo orbits in the CR3BP model of the Earth-Moon system (µ = 0.01215, e = 0.0, µ 3 = 0.0). These periodic orbits are later continued into either the ER3BP (e = 0.0549, µ 3 = 0.0) or BCR4BP model (e = 0.0, µ 3 = 328900.55) by means of homotopy continuation [START_REF] Campagnola | Mission analysis for the Martian Moons Explorer (MMX) mission[END_REF][START_REF] Kenza | Dynamics of synodic resonant near rectilinear halo orbits in the bicircular four-body problem[END_REF][START_REF] Oshima | Continuation and stationkeeping analyses on planar retrograde periodic orbits around the Earth[END_REF], and finally substituted by two-dimensional tori in the Earth-Moon-Sun Elliptic-Circular model via the GMOS algorithm and pseudo-arclength continuation.

Numerical continuation

With the goal of finding and studying the dynamical substitutes of NRHOs in the ECR4BP, there are a few possible approaches that can be followed. However, it is important to first understand what these dynamical substitutes will be. Following the explanation in Chapter 3, in a quasi-periodic system such as the ECR4BP, a CR3BP periodic orbit that is non-resonant with any of these perturbations would be replaced by a three-dimensional quasi-periodic torus that incorporates the frequencies of the system's perturbations and the period of the underlying periodic orbit. However, families of three-(and higher) dimensional quasi-periodic tori are harder to compute due to increased computational costs and more complex multi-parameter continuation algorithms [START_REF] Henderson | Multiple parameter continuation: Computing implicitly defined k-manifolds[END_REF]. If we choose underlying periodic orbits that are resonant with one of the system's perturbations, the tori become two-dimensional instead of three-dimensional, as one of the torus frequencies will incorporate both the period of the orbit and one of the system's periodic perturbations. As such, the solution envisioned in this study is to choose underlying periodic orbits of the NRHO family that are resonant with one of these perturbations, that is, either synodic resonant orbits (with the Earth-Moon-Sun period) or sidereal resonant orbits (with the Earth-Moon period), which will then produce two-dimensional resonant quasi-periodic tori in the Elliptic-Circular model.

The outset of our analysis are then the CR3BP's p : q resonant orbits, where p is the number of orbital periods and q is the number of either synodic or sidereal months. By design, synodic orbits remain periodic in the Bicircular model, whereas sidereal orbits remain periodic in the ER3BP. The difference with respect to their CR3BP counterparts is that the time-dependent periodic solutions will envision p-revolutions instead of just one in order to equal the q revolutions of either the Bicircular or ER3BP system, respectively. A numerical continuation algorithm using homotopy continuation is implemented to compute these synodic and sidereal resonant orbits in their respective systems, while varying their corresponding dynamical parameter (µ 3 for the synodic case and e, the Moon's eccentricity, for the sidereal one), using the formulations presented in Chapter 3. Then the GMOS algorithm described is used to perform a second homotopy continuation along the remaining parameter (e for the synodic case and µ 3 for the sidereal one).

As explained in Chapter 3, both continuation routines can be implemented as BVPs of the form G (X 0 , ξ) = 0. Typically, two different algorithms are used, one for obtaining the periodic orbits, and a different algorithm for obtaining quasi-periodic tori. However, we've verified that the GMOS algorithm hereby used to compute quasi-periodic can also be used, successfully, to perform homotopy continuation on periodic orbits, specifically for sidereal and synodic resonant orbits, from the CR3BP to the ER3BP and from the CR3BP to the BCR4BP, respectively. When computing resonant periodic orbits, the rotation operator [R -ρ ] associated with the GMOS invariance condition (cf. Eq. (3.16)) does not affect X 1 due to the commensurate nature of the torus' frequencies associated with resonant periodic orbits, which allows us to continue these solutions as well. Additionally, due to the periodicity of these resonant orbits, the invariant circle collapses into a single point, which means we can set N 1 , the number of points along the initial invariant circle, as N 1 = 1. Note that this continuation procedure is also effective with non-resonant periodic orbits, as X 1 will be at the "origin" of an invariant circle, and as such the rotation will have no effect.

Both continuation routines need a reliable initial guess. For the first homotopy continuation, these are obtained by initializing the algorithm with the CR3BP's periodic orbit repeated over p periods, whereas for obtaining the quasi-periodic tori we use the resonant multi-revolution periodic orbit previously obtained in the time-periodic systems, either the ER3BP or Bicircular model, to continue along the Sun mass or the eccentricity, respectively.

As detailed in Chapter 3, since we are computing resonant objects in non-autonomous systems, all torus frequencies will be fixed along the continuation procedure. As a consequence, we can effectively exclude them from our vector of unknowns and, subsequently, we will have a one-parameter family of one-dimensional tori for the resonant periodic orbits of the intermediate models (the ER3BP and the BCR4BP), and a one-parameter-family of two-dimensional tori for the resonant quasi-periodic tori of the Elliptic-Circular. Additionally, whenever we perform continuation on the Sun mass, we use the phase condition associated with θ 1 , and whenever we continue along the Earth-Moon eccentricity, we use the phase condition associated with θ 0 (cf. Eq. (3.23)). Because the ECR4BP uses an augmented system and state-vector, we must add two phase constraints to fix the initial angle of the Sun, σ 0 , at either 0 or π as

p c (X) = c 0 -cos(σ 0 ), (5.15) 
p s (X) = s 0 -sin(σ 0 ). (5.16) For the parametrizing equation we include the previously introduced pseudo-arclength constraint, including the homotopy parameter in question (either the eccentricity or the Sun mass parameter) in the equation as:

q(z) = z -z, ∂ z ∂h -δh = 1 N N -1 X 0 -X0 T ∂ X0 ∂h + (ξ -ξ) ∂ ξ ∂h -δs = 0, (5.17) 
where z = [X, ξ] T . When the parameter we are continuing along is close to the desired value, we can switch from the pseudo-arclength constraint to a simple forcing equation in order to match said value.

Partial derivatives with respect to continuation parameters

While the partial of ∂F /∂X 0 is explained in [START_REF] Zubin | Numerical method for computing quasi-periodic orbits and their stability in the restricted three-body problem[END_REF], the computation of the partials ∂F /∂ε and ∂F /∂e for a system like the ECR4BP are not mentioned, noting that ε is the homotopy mass parameter that multiplies µ 3 and varies from zero to one. Additionally, recall that F refers to GMOS' equations as F = [G, p, q] T . In order to compute these quantities, we make use of variational equations, integrating the quantities of interest appended to the state-vector of our numerical integrator. We hereby focus specifically on ∂G/∂ξ, given that the partials of p (X, ξ) and q (X, ξ) follow from the derivations in [START_REF] Zubin | Computation Of Quasi-Periodic Tori And Heteroclinic Connections In Astrodynamics Using Collocation Techniques[END_REF][START_REF] Baresi | Fully numerical methods for continuing families of quasi-periodic invariant tori in astrodynamics[END_REF]. Moreover, note that

∂ ∂ξ ([R -ρ ]X τ ) = [R -ρ ] ∂X τ ∂ξ , (5.18) 
since ρ does not depend on any parameter. As for ∂Xτ ∂ξ , we must obtain Θ = ∂ϕ(X 0 )/∂ξ, where ϕ(X 0 ) is the flow of the vector field f = f (X, ξ, ν) at the final state. We can find Θ by making use of the expression

Θ ′ = AΘ + B, (5.19) 
where A = ∂f /∂X and B = ∂f /∂ξ, with initial conditions Θ 0 = 0. Noting that the homotopy mass parameter ε simply multiplies the normalized Sun mass in the equations of motion, the partial ∂f /∂ε can be derived directly from Eqs. (5.7a)-(5.8) as

B = ∂f ∂ε = 1 1 + e cos ν r ′′ 3 (5. 20 
)
where ψ is defined in Eq. (5.8). Conversely, the partial ∂f /∂e can be written as

∂f ∂e = - cos ν (1 + e cos ν) 2 ∇ ψ + 1 1 + e cos ν ∂r ′′ 3 ∂e , ( 5.21) 
where the dependency of r ′′ 3 on e comes from the normalization (note that a 3 = a * 3 /l and that r 3 depends on a 3 ). The derivation of ∂r ′′ 3 ∂e can be computed by simply writing out the normalized length components relative to the Sun acceleration as function of the dimensional values divided by the length unit, as in Eq. (5.9). Using g r 3 = -µ 3 

dg w dw = - µ 3 w 3 I 3 -3ww T 1 w 2 (5.23) 
where w must be replaced with either r 3 or a 3 to obtain the respective partial. Additionally,

dr 3
da 3 = -I 3 , and for the last partial we have

da 3 de = a 3 2e 1 -e 2 + cos ν 1 + e cos ν . ( 5.24) 
The only dependency that cannot be computed explicitly is that of c and s with respect to e. These partial derivatives must be integrated along the trajectory as

dc ′ de = -s dσ ′ de , ( 5.25 
)

ds ′ de = c dσ ′ de , (5.26) 
where dσ ′ /de is obtained directly from Eq. (5.11) as

dσ de = n 3 n   3e 1 -e 2 1 2 (1 + e cos ν) 2 + 2 cos ν 1 -e 2 3 2
(1 + e cos ν) 3   .

(5.27)

Torus frequencies

As previously mentioned, the torus frequencies can be calculated and known a priori. This is due to the fact that we are computing resonant quasi-periodic tori in a quasi-periodic system that has been recasted as pseudo-periodic. The fundamental torus frequency, ω 0 , is computed from the period of the underlying (multi-revolution) periodic orbits as before

ω 0 = 2π/T, (5.28) 
where T is the normalized period of the underlying periodic orbit. Although the expression for ω 0 remains the same for the two types of resonances, the physical meaning of their torus angles and the expression for the second torus frequency, ω 1 , changes between the synodic and sidereal resonant quasi-periodic tori of the Elliptic-Circular model. These differences will be important when generating the guesses for the initial invariant circles of the different resonant tori. For synodic resonant tori, the second torus angle, θ 1 , will reflect the true anomaly of the Earth-Moon, due to the additional perturbation imposed by the introduction of their eccentricity. For this reason, ω 1 will be the normalized rate of the true anomaly in the system, which means ω 1 = 1 for all synodic resonances, and, consequently, ρ = T , where ρ is the rotation number.

The fundamental torus angle, θ 0 , will reflect the motion of the Sun, where a full rotation over θ 0 corresponds to the integer number of synodic periods that define the resonance, or in other words, T = qT syn .

On the other hand, for sidereal resonant tori, since T is resonant with the sidereal period, ω 0 will be 1/q, e.g. ω 0 = 1 for a 4:1 sidereal resonance but for a 3:2 resonance we would have ω 0 = 0.5. This means that the fundamental torus angle, θ 0 , will reflect the true anomaly of the Earth-Moon and that for a 4:1 and a 3:2 sidereal resonances, a full rotation over θ 0 would correspond to ∆ν = 2π and ∆ν = 4π, respectively. The second torus angle, θ 1 , will then reflect the Sun angle for the sidereal resonances. However, because the rate of the Sun angle is not constant in the normalized system (recall that the time unit is not constant), we have to integrate the variation of the Sun angle over a full 2π rotation of θ 0 to obtain:

ω 1 = ρ/T = 1 T 2π 0 σ ′ dθ 0 .
(5.29)

It follows that, for the sidereal resonant case, ρ will be equivalent to the variation of the Sun angle over one rotation of θ 0 .

Dynamical solutions

Using the GMOS algorithm with the multiple shooting implementation, we can produce the dynamical solutions equivalent to the CR3BP's synodic and sidereal resonant periodic orbits of interest in the different dynamical systems. The parameters and constants used can be seen in Table 5.1. Additionally, it is worth noting that while all the resonances studied in this work converge correctly in the full Elliptic-Circular model using the aforementioned algorithm, many of the other synodic and sidereal resonant orbits fail to do so, even after being computed in the intermediate models, i.e. in the Bicircular and ER3BP models. A possible explanation to this phenomenon might be found in [START_REF] Kenza | Dynamics of synodic resonant near rectilinear halo orbits in the bicircular four-body problem[END_REF], where it is referred that convergence issues were also experienced when transitioning the 3:1 synodic resonant NRHO to a high-fidelity ephemeris model by the authors in [START_REF] Davis | Orbit maintenance and navigation of human spacecraft at cislunar near rectilinear halo orbits[END_REF]. The reason put forward relates to the numerical continuation of this orbit and that of the 5:1 synodic resonant NRHO between the CR3BP and the Bicircular, where a bifurcation along the stability curves can be seen at different values of the homotopy continuation parameter (this is the case for many resonances but extensive testing was not performed). This causes a mismatch in the eigenstructure of the intermediate multi-revolution periodic orbits, which seems to later prevent the numerical continuation to the full Elliptic-Circular model as quasi-periodic tori or good convergence in the ephemeris models. Unlike other resonances, the ones selected in this paper do not present such a bifurcation or mismatch in the continuation to the intermediate models.

Initial guess generation

As the initial guesses of the quasi-periodic tori continuation procedures, the multi-revolution resonant periodic orbits must first be obtained in the intermediate models, i.e. in the Bicircular and ER3BP models. To do so, we start from the CR3BP resonant p : q-type periodic orbits and initialize the continuation procedure by repeating the orbits over p periods of their original CR3BP trajectories, such that their period will be T = pT res , where T res is the period of the resonant periodic orbits in the CR3BP model. As mentioned, we also make use of the GMOS algorithm to continue these resonant periodic orbits into the intermediate models. To do so, we set N 1 = 1, and, as we are using a multiple shooting implementation, set N 0 = p, such that there is only one multiple shooting node per revolution and that each one is placed at the apolune of its orbital revolution. We set a phase constraint with respect to the θ 0 angular coordinate for the continuation along Sun mass parameter (CR3BP to BCR4BP) or with respect to θ 1 for the continuation along the eccentricity (CR3BP to ER3BP), the two additional phase constraints on the Sun angle, and the pseudo-arclength equation, just as explained in Section 3. The initial resonant periodic NRHOs in the CR3BP and the result of this continuation procedure can be seen in Figures 5.2 different initial angle of zero or π produces two different periodic orbits, which is not the case for even p. Although in this work we focus only on solutions with an initial angle of zero, one could extend these to cover initial angles of π as well. Moreover, depending on the p : q resonant orbit being computed, one could consider other initial angles separated by a phase of q2π/p. However, this would lead to the same periodic orbit, simply initialized at a different point along its trajectory. An example would be the 4:1 multi-revolution synodic resonant NRHO in the Bicircular, which as shown in [START_REF] Kenza | Dynamics of synodic resonant near rectilinear halo orbits in the bicircular four-body problem[END_REF], could be computed with initial Sun angles separated by a phase of approximately 360 • /4 = 90 • , which all correspond to the same orbit. Previous authors have presented unique solutions in the Bicircular for different initial Sun angles, but this typically entails small discontinuities in the trajectories [START_REF] Stephen | Characteristics and Analysis of Families of Low-Energy Ballistic Lunar Transfers[END_REF]. Since we admit a solution as converged when the error vector is below a certain threshold, using the Newton method instead of, for instance, least-squares, our algorithm does not accept these solutions, causing the error vector to plateau and not converge. Nevertheless, as mentioned, the solution space of the trajectories presented in this study could be extended by changing the initial angles of the intermediate periodic models to π, or even to include the discontinuities associated with different angles.

Quasi-Periodic Tori Continuation

After obtaining the multi-revolutions periodic solutions in the intermediate models, we are in a position to proceed with the numerical continuation towards the Elliptic-Circular model taking these solutions as initial guesses of the quasi-periodic tori. We take the converged solutions of the intermediate models, which are already defined in N 0 = p multiple shooting nodes situated at the apolune of each revolution, and we form the invariant circles at each θ 0 node by repeating each of these states N 1 times. Of course, this means that for the zeroth family member of this numerical continuation, i.e. where e = 0 for the synodic resonances or ǫ = 0 for the sidereal resonance, all cartesian coordinates of the initial invariant circle will coincide with the initial state of the underlying multi-revolution resonant periodic orbit. However, as we move along the family they will naturally spread and display the closed curve more clearly. We set the value of N 1 to 50 for higher accuracy but note that it can be set between 30 and 50 (or larger), depending on the resonant trajectories. We find that trajectories with lower perilunes, such as the 9:2 synodic resonant NRHO, typically require a higher number of N 1 nodes to achieve good quadratic convergence and to accurately interpolate points on the surface of the torus, although this is not strictly necessary to find the solutions. This also falls in line with the previous observations about the strong non-linearities present at perilune.

It should be noted that for the initial guess of the first family member, although each multiple shooting node will be comprised of invariant circles that share the same initial position and velocity vectors (since we simply repeated each state N 1 times for each node), the integration of their trajectories will not be equal. In fact, since we are performing continuation along either the Earth-Moon eccentricity for synodic resonant tori or Sun mass parameter for sidereal resonant tori, the θ 1 angular direction of the torus will reflect different quantities, just as mentioned in Section 3.2. Specifically, it will reflect the Earth-Moon true anomaly or the Sun angle, respectively.

For a synodic resonant torus, each state along the initial invariant circle will have a different value of true anomaly, corresponding to the different values of θ 1 as ν 0,j = 2πj/N 1 , (5.31) where j = {0, 1, ..., N 1 -1} and ν 0,j represents the jth of value true anomaly, or, equivalently, of θ 1 , of the initial node i = 0 along θ 0 . In the same way, the values of true anomaly for the subsequent nodes will be

ν i,j = T i/N 0 + 2πj/N 1 , (5.32) 
with i = {0, 1, ..., N 0 -1}.

For the initial guess of the first family member of the sidereal resonant tori, we vary θ 1 along with the Sun angle σ, meaning that, for the initial guess, each state along the initial invariant circle will have a different Sun angle σ 0,j = 2πj/N 1 .

(5.33)

However, it should be noted that for sidereal resonant tori we cannot compute the initial guesses for the values of σ i,j at the other N 0 -1 nodes in the same way as we do for ν i,j in the case of synodic resonant tori. The reason for this is that σ does not vary linearly with the true anomaly. Instead, we must first integrate σ ′ over ∆θ 0 = 2π and evaluate σ at the N 0 nodes, similarly to how we obtain ω 1 and the rotation number in Eq. (5.29). The values of σ at the first point along each invariant circle will then be

σ i,0 = 2πi/N 0 0 σ ′ σ=σ 0,0 dθ 0 , ( 5.34) 
where σ ′ is given by Eq. (5.11). Then, σ i,j = σ i,0 + σ 0,j . (

Because c and s have been appended to the state-vector of our equations of motion, the values of σ i,j are left to vary freely and are corrected at each iteration of the continuation algorithm, constrained only by the multiple shooting equations that enforce continuity at the nodes and the constraint on the initial Sun angle of the initial invariant circle (cf. Eqs. (5.15) and (5.16)).

As such, the expression on Eq. (5.35) is used only as an initial guess. Additionally, although σ relates to θ 1 in the case of sidereal tori, we see that they do not necessarily equal each other, as θ 1 varies linearly with θ 0 , which is not the case for σ. By considering the solution where the homotopy continuation parameter is zero as the first known solution, i.e., by repeating the trajectories coming from the intermediate models over N 1 points, we can take a step along the family tangent direction as described in Eq. (3.32). Then, by means of the GMOS algorithm and the proposed continuation procedure, we continue 5. Stability analysis period (less than a year), and it already displays a wider and seemingly thicker visual appearance. This suggests that the quasi-periodic trajectories hereby computed and the converged trajectories obtained in full-ephemeris models might represent different dynamical solutions, although analyses of these quasi-periodic solutions in a full-ephemeris model would be necessary for a more accurate comparison.

Stability analysis

In order to better analyze the two-dimensional quasi-periodic tori obtained in the full Elliptic-Circular model, we study the linear stability associated with these dynamical solutions. Although different criteria exist in order to study the stability of dynamical solutions, we choose to analyze the solutions hereby presented using the finite Lyapunov exponents associated with the tori's Floquet matrices (for information on Floquet theory and Lyapunov exponents see [START_REF] Daniel | Orbital Motion in Strongly Perturbed Environments[END_REF]). The reason behind this choice of metric is that it normalizes the stability values by the period of the solution. This is convenient due to the long periods introduced with the multirevolution periodic NRHOs computed in the intermediate models. If another approach was used, such as the norm of the eigenvalues of the state transition matrix, the longer periods of these orbits would make it seem like their stability had significantly decreased with respect to their single-revolution counterparts of the CR3BP. By using Lyapunov exponents we obtain a more accurate interpretation of the changes in stability, as demonstrated by [START_REF] Kenza | Dynamics of synodic resonant near rectilinear halo orbits in the bicircular four-body problem[END_REF] when comparing the stability of the CR3BP resonant NRHOs with the synodic resonant multi-revolutions NRHOs of the Bicircular model. The Lyapunov exponents can be approximated as

φ i = ℜ ln λ i T , ( 5.36) 
where λ i are the eigenvalues of the state transition matrix after one period, i.e. the monodromy matrix (introduced in Chapter 2), and T is the period of the solution. A solution is considered to be linearly stable if all its Lyapunov exponents are equal to zero. It should be noted that this criteria is formulated for periodic orbits, and that it arises from a limit approximation [START_REF] Daniel | Orbital Motion in Strongly Perturbed Environments[END_REF]. Although we do not derive said approximation to employ the Lyapunov exponents in the stability analysis of quasi-periodic solutions, we tacitly use this metric and find that, empirically, it produces consistent results that are congruous with those shown for their underlying periodic orbits. As such, we obtain the eigenvalues associated with the Floquet matrix, B, of the quasiperiodic tori and use the tori's fundamental period, i.e. one full revolution along θ 0 , which corresponds to the period of the underlying multi-revolution periodic NRHO, to compute their Lyapunov exponents. As explained in [START_REF] Zubin | Computation Of Quasi-Periodic Tori And Heteroclinic Connections In Astrodynamics Using Collocation Techniques[END_REF][START_REF] Baresi | Spacecraft Formation Flight on Quasi-periodic Invariant Tori[END_REF], the eigenvalues of a quasi-periodic torus' Floquet matrix provide us with linear stability information about the torus, similarly to the monodromy matrices of periodic orbits. The Floquet matrix is computed by assembling a block diagonal of the N 1 monodromy matrices, Φ i , of each trajectory along the invariant circle, and undoing the torus rotation by means of the rotation operator, [R -ρ ], as

B = [R -ρ ]        Φ 0 Φ 1 . . . Φ N 1 -1        , ( 5.37) 
which will have a dimension of nN 1 × nN 1 , where n is the number of state variables. Since the stability of the Sun's position bears no physical meaning, we can focus only on the first six rows and columns of each monodromy matrix. We can then compute the eigenvalues of the Floquet matrix, which will be distributed in concentric circles on the complex plane. Since eigenvalues occur in reciprocal pairs, so will the radii of these circles, i.e. R 1 = 1/R 2 , where R 1 and R 2 are the radii of reciprocal circles in the complex plane [START_REF] Jorba | On the Persistence of Lower Dimensional Invariant Tori under Quasi-Periodic Perturbations[END_REF]. Due to the six-dimensional state we are considering for the stability analysis of these quasi-periodic tori, we will have six concentric circles, where each is a reciprocal pair of another. We can then either sample each circle to obtain an eigenvalue or simply consider their radius, which will be equal to its intersection with the real axis, in order to obtain the six λ i necessary for the computation of the Lyapunov exponents. Additionally, we note that because the Elliptic-Circular is non-autonomous, we will not necessarily have a unit radius circle pair, which would be the case for autonomous systems such as the CR3BP.

As mentioned in the beginning of Section 4, Boudad et al. [START_REF] Kenza | Dynamics of synodic resonant near rectilinear halo orbits in the bicircular four-body problem[END_REF] perform the same analysis when translating periodic synodic resonant NRHOs from the CR3BP to the Bicircular model, and find that out of the four synodic resonances studied by the authors, the 3:1 and 5:1 synodic resonant NRHOs present bifurcations along the stability curve of their Lyapunov exponents when plotted against the continuation parameter. These bifurcations, which change the stability of these two NRHOs from linearly stable to slightly unstable, seem to translate in convergence issues when continuing the solutions to high-fidelity ephemeris models. We verify that the same resonant orbits also experience convergence issues when continuing them into the full Elliptic-Circular model from the Bicircular. Accordingly, the synodic resonances hereby considered (9:2 and 4:1), which as shown in [START_REF] Kenza | Dynamics of synodic resonant near rectilinear halo orbits in the bicircular four-body problem[END_REF] do not present any bifurcations along their stability curve when continuing them from the CR3BP to the Bicircular model, do not produce convergence issues in their continuation to the full Elliptic-Circular model.

Furthermore, the analysis of the Lyapunov exponents of quasi-periodic solutions as a function of their continuation parameter allows us to verify that the solutions correspond to the actual dynamical equivalents of the CR3BP's solutions by ensuring that there are no discontinuities along the family curve.

The evolution of the Lyapunov exponents of each of the resonant quasi-periodic NRHOs along their continuation parameter can be seen in Figure 5.10. It is interesting to note that, similarly to the cases of the 9:2 and 4:1 synodic resonant NRHOs of the Bicircular computed in [START_REF] Kenza | Dynamics of synodic resonant near rectilinear halo orbits in the bicircular four-body problem[END_REF], the Lyapunov exponents of their quasi-periodic counter parts remain approximately the same throughout the continuation procedure. Although not visible in Figure 5.10a, a bifurcation along one of the stable (zero) Lyapunov exponent pairs exists from the start of the perturbation, In contrast, the torus maps of the 4:1 sidereal quasi-periodic NRHO seen in Figure 5.14 display four sets of two eclipse regions, spaced approximately by π/4 along the θ 0 direction and by π along the θ 1 direction. These correspond to the four regions around the perilunes and to opposite sides of the Moon, i.e. around the intersections with the z = 0 plane. Because sidereal resonances no longer have such a favorable eclipse avoidance geometry, it is normal to see more eclipse regions for this quasi-periodic torus. Nevertheless, passages through these regions could be minimized by employing the strategies described above. Additionally, as with the 9:2 synodic resonance, only Moon eclipses are detected.

Finally, it should be noted that the Elliptic-Circular model does not take into account the inclination of each of the bodies' orbital planes. Such a consideration would be made when translating these results into a high-fidelity ephemeris model and would likely lead to an even smaller number of eclipse events. Further analyses can be made by means of torus maps, depending on the physical quantities we are interested in representing along the tori. These empower mission designers to choose ideal geometries and conditions for a variety of operations, transfers, or science observations.

Conclusions

This chapter has presented and detailed a higher-fidelity dynamical model called the Elliptic-Circular Restricted Four-Body Problem (ECR4BP), which incorporates the eccentricity of the primary and secondary bodies' orbits and a third body in a circular co-planar orbit about their barycenter. Motivated by the model's suitability to study the cislunar environment and by the future exploration of the cislunar space by the Lunar Gateway and associated missions, we have investigated the quasi-periodic structures of the Earth-Moon-Sun system that are the dynamical equivalents to periodic resonant Near-Rectilinear Halo Orbits (NRHOs) of the CR3BP. We have presented the steps and methods necessary to compute these quasi-periodic tori. Framed by the planned orbits for the Lunar Gateway mission, we have focused on synodic and sidereal resonant orbits, which are resonant with the period of the Earth-Moon-Sun and the period of the Earth-Moon system, respectively. These resonant periodic orbits produce resonant twodimensional quasi-periodic tori in the ER3BP model, which can be computed with the numerical continuation routines hereby outlined. We have analyzed these solutions in terms of relevant mission parameters and their possible application to the Lunar Gateway's orbit, such as eclipses events, altitude with respect to the Moon's surface, and the dynamical stability of these quasiperiodic trajectories. We find that the stability of these solutions remains very close to the nearstable behavior presented by their periodic counterparts, although one of the synodic resonances presents a bifurcation along one of its stable eigenpairs during the condition procedure. We also find that the geometry associated with synodic resonances verifies eclipse avoidance properties in the full Elliptic-Circular model, in line with the findings of previous works.

Chapter 6

Connections in the cislunar space

In this chapter, building on the previous formulation of the Elliptic-Circular model, natural connections between Earth-vicinity and the resonant quasi-periodic NRHOs are computed. The chapter is organized as follows. Section 1 presents a brief introduction to the topic of transfer design and interplanetary trajectories, contextualizing the use of the Elliptic-Circular problem as a tool to generate families of solutions that can later be used as initial guesses in full-ephemeris optimization algorithms. Section 2 then presents how these transfers are computed in the Elliptic-Circular model using the hyperbolic invariant manifolds of the previously computed quasi-periodic tori. The results obtained for the transfers in the Elliptic-Circular problem are then presented and analyzed in Section 3. Section 4 formulates the translation of these solutions from the Elliptic-Circular to full-ephemeris models. This is then used in Section 5 to obtain real transfer trajectories computed in a full-ephemeris model via an optimization scheme that corrects the trajectories generated from the initial guesses provided via the Elliptic-Circular's transfers. Finally, Section 6 presents the conclusions and general findings of this chapter.

Introduction

Computing and designing transfer trajectories has always been an important activity in the field of space exploration. Accommodating mission requirements into the transfer designs, such as fuel usage (∆V), type of propulsion, departure dates, time of flight, among many others, often translates into complex multi-variable optimization problems that have been extensively studied in the past, and which stay relevant due to the development of new optimization algorithms and increased computational power [START_REF] Betts | A Survey of Numerical Methods for Trajectory Optimization[END_REF][START_REF] D R Myatt | Global Optimization Tools for Mission Analysis and Design[END_REF][START_REF] Vinkó | Benchmarking different global optimisation techniques for preliminary space trajectory design[END_REF]. Although highly dependent on the problem, their chaotic high-dimensional nature typically makes it challenging and computationally demanding to systematically obtain families of solutions for varying parameters of the mission design. This is particularly true for what are known as low-energy transfers, which approximate natural connections of the simplified dynamical models and use significantly lower ∆V values [START_REF] Topputo | Low Energy Interplanetary Transfers Exploiting Invariant Manifolds of the Restricted Three-Body Problem[END_REF][START_REF] Topputo | On optimal two-impulse Earth-Moon transfers in a four-body model[END_REF]. Of course, the lower ∆V represents a trade-off in transfer time, which increases as a consequence. This balance is dictated by mission constraints and requirements. In the frame of the Lunar Gateway mission, multiple re-supply missions are expected. Because many of these missions will not have tight time of flight constraints and will be looking to maximize the cargo mass, lowenergy transfers present an attractive option for their trajectory design. It is in this frame that the study of high-fidelity non-ephemeris systems -such as the Elliptic-Circular model -can be valuable for trajectory optimization and design. By accommodating the perturbations of the Sun's gravity and the Moon's eccentricity, we are able to better approximate the dynamics while providing a sufficiently simple system that allows for said systemic computation of solutions, which can then be passed along as either initial guesses or baseline trajectories to optimization algorithms.

In this chapter, these properties are leveraged to find natural connections between Earthvicinity and the Moon. Particularly, in the frame of future lunar missions and, more specifically, the Gateway mission, we focus on designing trajectories that arrive at the previously computed resonant quasi-periodic NRHOs of the Elliptic-Circular. In order to find said natural connections we make use of the hyperbolic invariant manifolds of the quasi-periodic tori. Equivalently to the periodic orbit case introduced in Chapter 2, d-dimensional tori possess (d + 1)-dimensional invariant hyperbolic manifolds when their internal eigenstructure includes hyperbolic motion. As seen in Chapter 5, this is indeed the case for the quasi-periodic NRHOs considered, as they all include a pair of non-unitary "eigencircles" (R = 1), which represent the stable (R < 1) and unstable (R > 1) hyperbolic directions.

Initialization of hyperbolic manifolds

The hyperbolic manifolds of quasi-periodic tori, also known as their whiskers, can be approximated in a similar way as those of periodic orbits. The stability information accessible from the GMOS method can be used to initialize these hyperbolic directions [START_REF] Zubin | Computation Of Quasi-Periodic Tori And Heteroclinic Connections In Astrodynamics Using Collocation Techniques[END_REF]. Specifically, let v S,U 0 ∈ R 6N be the hyperbolic stable or unstable eigenvectors associated with the torus' Floquet matrix B, i.e. representing the hyperbolic directions at θ 0 = 0 (see Eq. (5.37)). Then, we can make use of the matrix B(t), which is defined as

B(t) = [R -ω 1 t ]        Φ 0 (t) Φ 1 (t) . . . Φ N 1 -1 (t)        , ( 6.1) 
where Φ i are the monodromy matrices of each trajectory along of invariant circle, to propagate the hyperbolic eigenvectors along the θ 0 direction:

v S,U (t) = B(t)v S,U 0 , ( 6.2) 
noting that B(T ) = B. Discretizing the number of nodes along the θ 0 direction, such that v S,U (t i ) represent the hyperbolic directions of the torus' invariant circle at the ith node along 3. Transfers in the Elliptic-Circular the θ 0 direction, we linearly approximate the initial states of the hyperbolic manifolds as

X S,U i = X i + ε v S,U (t i ) ||v S,U (t i )|| , ( 6.3) 
where ε is a small perturbation and X i is the invariant circle at θ 0 = 2πi/n 0 and t i = iT /n 0 , where n 0 is the number of discretization nodes and i = {0, 1, ..., n 0 -1}. The eigenvectors in Eq. ( 6.3) are normalized such that the norm of each individual vector is unitary. Note that in this case, n 0 is different from the N 0 parameter used in GMOS, which also denotes the number of nodes used along the θ 0 direction. However, while GMOS will generally work fine with small values of N 0 (and can even be set as N 0 =1 for the single shooting implementation), we typically want to use large n 0 values in order to better describe the surface of the hyperbolic manifold. Due to the longer integration times typically used for hyperbolic manifolds, as well as the highly chaotic environments associated with these systems, small n 0 values would provide very sparse solutions, which would not accurately describe the manifold. This is because the hyperbolic manifolds can be parametrized as a torus moving through time (θ, τ ) : T d × R, where d = 2 in the case we are considering. That is, we will no longer integrate the initial invariant circle along the torus as in the GMOS algorithm, but rather integrate a full discretized representation of said torus in time along the hyperbolic directions. Additionally, note that Eq. (6.1) undoes the rotation of the hyperbolic directions along the torus via the operator [R -ω 1 t ]. This is convenient in terms of describing the initial points of the manifold, which, just as in the case for the torus maps, is represented by a regular grid along θ 0 = 2πi/n 0 and θ 1 = 2πk/N 1 , with k = {0, 1, ..., N 1 -1}. However, it means that the discretized torus must also be obtained at a regular grid, using the same procedure as described for the torus maps (see Section 7.2 of Chapter 3). For the values of initial true anomaly associated with the resonant quasi-periodic NRHOs under study, this means that, for the synodic resonant tori:

ν i,j = 2πi/n 0 , ( 6.4) 
and for the sidereal resonant tori:

ν i,j = iT /n 0 . (6.5)
Recall that for the synodic resonant tori, ν will be representative of θ 1 , while for the sidereal resonant tori it will simply reflect θ 0 (cf. Eqs (5.31) to (5.35)). Since the Sun angle σ is part of the state-vector via c and s, we do not have to enforce any other condition. Even though it reflects θ 1 for the sidereal resonances, its rotation will be undone naturally by the rotation operator [R -ω 1 t ].

Transfers in the Elliptic-Circular

Using the previously mentioned formulation, we can integrate the stable invariant manifolds of the three quasi-periodic resonant NRHOs backwards in time. We set n 0 = 1800, set the optimization problem: min te∈Σ J(t e ), (6.7) where t e is the epoch in seconds past the J2000 and J is the cost function J(t e ) = η 0 (σ(t e ) -σ EC ) 2 + η 1 (ν(t e ) -ν EC ) 2 1/2 , (

where η i are the weight factors, σ(t e ), ν(t e ) are the functions that return the Sun angle and Moon true anomaly, respectively, from the SPICE ephemeris at a specific epoch, and σ EC , ν EC are the Sun angle and Moon true anomaly angle coming from the Elliptic-Circular model, respectively. The inclusion of the weight factors in Eq. (6.8) is common in optimization problems and can also help in targeting the most relevant of the two angles. Although, for this example, we find satisfactory accuracy when using η 0 = 0.5, η 1 = 0.5, it is important to recall how each angle affects and relates to the tori. As was previously mentioned, for synodic resonant tori, the longitudinal torus angle, θ 0 will reflect the Sun angle σ, while for sidereal resonant tori, it will reflect the Moon true anomaly ν. Moreover, it is the angular frequency associated with the fundamental torus direction, ω 0 , that is resonant with either the synodic or the sidereal period. This means that for a synodic resonant torus, all perilunes will happen at specific values of σ -e.g. for the 4:1 resonance they would be separated by approximately π/2 -but can have any value of ν; in the same way, for a sidereal resonant torus, the perilunes would correspond to specific values of ν but can have any value of σ. As a consequence, the angular variable associated with θ 0 (σ for the synodic resonances and ν for the sidereal resonances) will typically have a higher impact on the accuracy of the solution for the full-ephemeris model. We find that a good match in terms of both angles is generally found for a particular date (errors with standard deviations below 0.5 • ) for equal weights. Nevertheless, we note that when a date is found, the time of flight value computed in the Elliptic-Circular is, as mentioned, used to obtain either the corresponding departure or the corresponding arrival date. This means that said corresponding date will generally have a larger error in terms of the aforementioned angles. Although we verify this is indeed the case for the true anomaly, which is tied with the fact that the actual orbital elements of the Moon can vary more significantly throughout its orbit, the errors associated with the Sun angle remain within acceptable ranges (also below a 0.5 • standard deviation).

The optimization problem of Eq. (6.7) can be solved using different algorithms. In this work, we use the readily implemented Simplicial Homology Global Optimization (SHGO) algorithm [START_REF] Endres | A simplicial homology algorithm for Lipschitz optimisation[END_REF] from Python's Scipy library, which we find produces satisfactory results. Once the dates are known, we are in a position to transform the state-vectors from the Elliptic-Circular frame to one of SPICE's available inertial frames, such as the mean ecliptic and equinox of J2000 (ECLIPJ2000), or the Earth mean equator and equinox of J2000 frame (J2000, also known as ICRF or EME2000).

Let X be a state-vector in the Elliptic-Circular rotating frame centered on Earth in dimensional coordinates. Then, the invertible transformation from the Elliptic-Circular to the 5. Transfers in the ephemeris models ECLIPJ2000 holds [START_REF] Baresi | Transition of two-dimensional quasi-periodic invariant tori in the real-ephemeris model of the Earth-Moon system[END_REF]:

Y = R R I 0 R R I [ Ω] R R I X.
(6.9) R R I is the 3 × 3 rotation matrix from the Elliptic-Circular's rotating frame to the ECLIPJ2000 inertial frame

R R I = r m r m , h m × r m ||h m × r m || , h m h m , ( 6.10) 
where r m is the Moon's position vector as seen from the Earth in the ECLIPJ2000, h m = r m ×v m is the Moon's specific angular momentum, and v m is the Moon's velocity as seen from the Earth in the same frame. The matrix [ Ω] in Eq. (6.9) represents the cross product in matrix form associated with the Moon's angular frequency vector, Ω = [Ω x , Ω y , Ω z ] T :

[ Ω] = (6.11) noting that Ω can be obtained directly from SPICE via

    0 -Ω z Ω y Ω z 0 -Ω x -Ω y Ω x 0     ,
Ω = r m × v m r 2 m , ( 6.12) 
and is written as Ω = [0, 0, Ω] T . Finally, it is important to mention that although X = [r EC ; v EC ] T is the dimensional state of the spacecraft in the Earth-centered Elliptic-Circular, when considering the arrival states around the Moon, we compute r EC considering the distance between Earth and the Moon as the real distance obtained from SPICE:

x EC = r m + x EC/m , (6.13) where x EC is the x-coordinate of r EC in the Earth-centered Elliptic-Circular and x EC/m is the spacecraft's x-coordinate in the Moon-centered Elliptic-Circular.

Transfers in the ephemeris models

In order to test the initial guesses generated from the aforementioned algorithms, we use a simple Earth-centered n-body model with point masses, taking into account the Earth, the Moon, and the Sun. We can write the acceleration, r, in the Earth-centered inertial frame (e. Elliptic-Circular model. We see that both converged trajectories have approximately a two-day difference in time of flight with respect to the nominal guess coming from the Elliptic-Circular model.

Conclusions

This chapter has presented low-energy cislunar transfers between the Earth-vicinity and three types of resonant quasi-periodic NRHOs. Using the Elliptic-Circular model and the 9:2 synodic, 4:1 synodic, and 4:1 sidereal resonant quasi-periodic tori thereby computed and previously presented, we first make use of the tori's hyperbolic manifolds to find natural connections between Earth-vicinity and these dynamical objects. We verify that the approach allows us to generate families of solutions that have, on average, transfer times between 90 and 200 days, centered around the 150 day mark. The shorter times of flight (<100 days) are found for the 9:2 synodic and 4:1 sidereal tori, which have lower perilunes, and specifically for trajectories that arrive around the perilune region of the tori. These trajectories are then translated to an ephemeris model by matching the geometry of the Elliptic-Circular problem to their real positions known via ephemeris files, which allows to us to find corresponding departure and arrival dates. Using a two-point optimizer algorithm from Airbus Defence and Space that patches the trajectories from the final and initial states at a mid-point, we obtain corresponding transfers in a real-ephemeris model. Although the optimization algorithm is not particularly adapted to treat this type of problem, the trajectories found maintain low ∆V values (below 20 m/s) that follow trajectories close to those found in the Elliptic-Circular model.

Chapter 7

Conclusions and future work

This thesis work has investigated and elaborated on the models and tools necessary to design trajectories in strongly perturbed environments. With space missions seeking higher scientificvalue targets in innovative and bolder mission designs, the traditional methods and models that have been used in the past for designing their trajectories can often overlook interesting design scenarios, require higher operational maintenance, and lack the dynamical insight that can, among others, allow us to generate families of solutions. This is due to the fact that these missions often take place in highly-perturbed systems, which can be affected by a variety of perturbations such as the small mass of the main body, irregular gravity fields, presence of additional bodies, ellipticity of their orbits, among others. In this frame, we have formulated dynamical models and techniques that allow us to incorporate the main perturbations associated with these environments into the trajectory design solutions.

In particular, after an initial introduction to the necessary background theory, contributions to the computation of quasi-periodic tori have been presented in Chapter 3. The subject of quasi-periodic motion is heavily explored throughout this work, and forms the basis for the incorporation of perturbations into the higher-fidelity representation of dynamical solutions. We have shown how the modifications implemented to the algorithms can improve their computational efficiency and their robustness, and presented an example of these using the Mars-Phobos system and JAXA's MMX mission.

Using the notions previously presented, we explored the dynamical environment around small bodies, which is heavily perturbed by Solar Radiation Pressure (SRP), using the formulation of the Augmented Hill Problem (AHP) in Chapter 4. The formulation used also includes eclipses, which are often not incorporated into the dynamical models used to study these systems. We analyzed invariant manifold structures associated with this problem, and noted that the hyperbolic manifolds of the L 2 equilibrium point are heavily influenced by SRP. Using periodic and quasiperiodic tori belonging to what is known as the terminator or Halo family, we generated baseline landing trajectories to the surface of small bodies via the hyperbolic unstable manifolds of the tori. For this, multiple "landers" with different mass-to-area ratios were considered, as well as asteroids Bennu and Ryugu, as example scenarios. We also showed that the quasi-periodic tori considered are specially suited for the design of homoclinic connections and presented several examples of these trajectories.

We then moved onto an analysis of the cislunar space in Chapter 5, where we presented a novel dynamical model that includes the presence of the Sun and the ellipticity of the Moon's orbit. Using this model, which we call the Elliptic-Circular, we investigated the dynamical substitutes of the Lunar Gateway's planned orbits, which become two-dimensional resonant quasi-periodic tori. After demonstrating how to formulate and continue these solutions, we analyzed them in terms of stability, eclipse avoidance properties, and overall geometry. We verified that the tori approximately retain these properties when compared to their formulation in simpler models such as the Circular Restricted Three-Body Problem (CR3BP).

Finally, we have used the resonant quasi-periodic tori computed for the Lunar Gateway to generate transfer trajectories from Earth-vicinity to the tori in Chapter 6 via their stable hyperbolic manifolds. These trajectories were first presented and analyzed in the Elliptic-Circular model, and then their transformation to ephemeris models was addressed. We verified that the procedure allows for the formulation of large numbers of transfer trajectories that can then be used to initialize optimization algorithms in the real ephemeris, thereby enabling the generation of families of low-energy transfer trajectories.

In spite of the work developed, there are areas of work that would benefit from further exploration, as well as valuable research topics that have arisen from the studies hereby presented. These are listed below:

• With regards to the numerical computation of quasi-periodic tori, the use of sparse matrix libraries, such as those existing in Python and Matlab, could provide computational improvements, particularly when dealing with larger-dimension matrices, as those in the PDE(DFT) method or as those arising from the computation of three-dimensional tori. On this last aspect, the implementation of multi-parameter continuation for the numerical continuation of families of three-dimensional quasi-periodic tori would be a valuable direction of work that would allow us to increase the number of perturbations to a system and to cover an even larger region of the solution phase space.

• Although we have presented applications of trajectory design to small-body exploration, the subject can be further explored in the directions proposed by this thesis. Specifically, the subject of binary asteroids, which is framed by ESA's Hera mission, was one of the applications of this work that did not materialize due to finite time resources. Indeed, their study is especially suited to be tackled by the means proposed in this thesis, such as the use of higher-fidelity models as the Elliptic-Circular or the Bicircular with SRP, and even including higher-fidelity gravitational models, using quasi-periodic tori for the trajectories of spacecraft. Although higher-fidelity gravity models were not extensively used in this work, they can easily be treated as another periodic perturbation to the dynamics and addressed in the same way as the other periodic perturbation presented. Additionally, we note that the computation of quasi-periodic tori when considering SRP and, particularly, eclipses, should be given more attention in the future. We have found that numerical procedures need to be adjusted for the dynamical discontinuity created by the eclipses (when the quasi-periodic trajectories cross these regions), which seem to isolate solutions in the phase space and make it difficult to find the directions of continuation.

• Finally, the work arising from the formulation of the Elliptic-Circular model would benefit from a study and comparison about its accuracy when compared to other dynamical models. This would allows to quantify the fidelity of these models with respect to the real-ephemeris. Furthermore, the correction and continuation of the quasi-periodic tori found in the Elliptic-Circular model to real-ephemeris models would be extremely valuable and would provide a direct comparison with the solutions that have been continued from the CR3BP to the real-ephemeris models. Additionally, a more extensive analysis on the families of transfer solutions that are found in the ephemeris model (by means of, e.g. multiple shooting optimization), and that come from the Elliptic-Circular's trajectories would further our understanding of these connections and their main characteristics.
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  r = r * l , we can now transform the terms in Eq. (2.8). Taking the first term of the left-hand side

  ) where in this case n = {n 1 , ..., n d-1 }, k = {k 1 , ..., k d-1 }, N = {N 1 , ..., N d-1 }. The rotation can then be included in the inverse transform as
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 333333 and g a 3 = -µ 3 a , with a 3 = [c, -s, 0] T = [x 3 , y 3 , z 3 ] T , we use the chain rule to write ∂r ′′ can be obtained from the expression

  to 5.4, where the 9:2 synodic, 4:1 synodic and 4:1 sidereal resonant NRHOs are shown first in the CR3BP and then in their respective intermediate models, the Bicircular model for the synodic resonances and the ER3BP for the sidereal resonance. The trajectories are shown in dimensional coordinates in the Earth-Moon rotating reference frame centered on the Moon, where the x-axis points from the Earth to the Moon and the z-axis points in the direction of the angular momentum vector of the Earth-Moon orbits. The projections of each trajectory on the different planes can be seen in grey.
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Table 4 .1: Lander parameters
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	Lander	m/A [kg/m 2 ] β at Bennu β at Ryugu
	Cubesat MASCOT	171.43 55.56	18.86 58.20	10.08 31.12
	Spacecraft Lander A Lander B	35.00 20.00 10.00	92.38 161.66 323.31	49.40 86.44 172.88

consider that asteroids Bennu and Ryugu are spherical bodies with radii of 252.78 m and 446.5 m, respectively, and gravitational constants of 4.892 m 3 s -2 and 32.0 m 3 s -2 , respectively

[START_REF] Lauretta | The unexpected surface of asteroid (101955) Bennu[END_REF][START_REF] Barnouin | Shape of (101955) Bennu indicative of a rubble pile with internal stiffness[END_REF][START_REF] Soldini | Assessing the Hazard Posed by Ryugu Ejecta Dynamics on Hayabusa2 Spacecraft[END_REF]

.

Table 5 . 1 :

 51 Physical constants and parameters used for the different models. GM refers to the gravitational parameter, L to the distance or semi-major axis between two bodies. Sources for data:[START_REF] Wieczorek | The constitution and structure of the Lunar interior[END_REF][START_REF]Astrodynamic Parameters -Solar System Dynamics[END_REF][START_REF]Numerical Standards for Fundamental Astronomy -Astronomical Constants : Current Best Estimates (CBEs)[END_REF].

	Parameter	Value
	GM Earth [m 3 s -2 ] 3.9860044189 ×10 14
	GM Moon [m 3 s -2 ]	4.902801076 ×10 12
	GM Sun [m 3 s -2 ]	1.32712440018 ×10 20
	L Earth-Moon [km]	384 399
	L Sun-Earth [km]	149.5978707 ×10 6

The large number of N0 nodes (N0 = 50) seen in Table3.2 is shown merely for demonstration purposes so it
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Abstract i about 80% in runtime.

Table 3.1: Analysis of the average runtime (per torus) associated with obtaining the first five elements of quasi-periodic torus family using the PDE(DFT) method, without (non-square DF) and with (square DF) the implementation of unfolding parameters. Obtained using the Spyder profiler on a 2020 MacBook Air 1. When using a single shooting approach for the GMOS algorithm, i.e. all trajectories are integrated for a time T , the computational bottleneck of the algorithm is typically not in solving Newton's method but rather in the integration routine (the computational time for Newton's method in the single shooting method is typically two to three orders of magnitude below the integration time). However, there are situations where, due to numerical or dynamical instabilities, we must use a multiple shooting implementation, i.e. splitting each trajectory into N 0 sections and integrating each for T /N 0 . In these situations, solving Newton's method becomes more significant in terms of computational expense, as the number of entries of the Jacobian matrix increases by a factor of N 2 0 . The multiple shooting implementation of GMOS will then benefit more from the implementation of the unfolding parameters than the single shooting implementation. That being said, the unfolding parameters should still be used for the single shooting version of GMOS, as they provide more robustness to the algorithm. An analysis of the average runtime needed to solve Newton's method and to arrive at an individual torus solution when using the GMOS multiple shooting algorithm can be seen in Table 3.2, which are obtained from using the same conditions as in Table 3.1 only for the GMOS algorithm. Note that we are using the GMOS implementation with the modifications described in section 5, integrating all the trajectories simultaneously by appending them to the state-vector; in Table 3.2 we simply compare the performance of the algorithm with and without unfolding parameters. It is clear that as we increase the number of nodes, the unfolding parameters have a greater impact on the computational time. In fact, as the total number of nodes, N , grows, the computation time needed to solve Newton's method grows faster than the computation time needed to integrate all the trajectories, eventually becoming more computationally demanding than the integration routine, which is why the squaring of the Jacobian matrix via the use of unfolding parameters becomes so crucial.

An important difference with respect to the PDE(DFT) algorithm is that, even when faced with numerical or dynamical instabilities, the GMOS multiple shooting algorithm does not typically require as many nodes in the θ 0 direction, i.e. N 0 can usually be significantly smaller 1